IBM Systemn/360 Operating System
Queued Telecommunications Access Method

Program Logic Manual

Program Number 360S-C0-519

This Program Logic Manual describes the internal logic
of the Queued Telecommunications Access Method (QTAM)
under Option 2 and Cption 4 of the IBM System/360
Operating System. This publication is intended for use
by personnel involved in program maintenance and by
system programmers who are altering the system design.
Program logic information is not necessary for the use
and operation of the program; therefore, distribution
of this publication is limited to persons with program
maintenance or modification responsibilities.

GY30-2002-2

Program Logic



PREFACE

This Program Logic Manual is a guide to the
internal structure of the Queued Telecom-
munications Access Method (QTAM). It is
designed to be used with :he prcgram list-
ing; program structure at the machine
instruction level is not discussed.

Effective use of this manual requires a
knowledge of the concepts presented in the
following IBM System/360 publications:

IBM System/360 Principles of Operation,
Form A22-6821

IBM System/360 Operating System: Queued
Telecommunications Access Method, Mes-
sage Control Program, Fornm C30-2005-2

IBM System/360 Operating System: Queued
Telecommunications Access Method, Mes-
sage Processing Program Services, Form
C30-2003-3

In addition, the following publications
may be used when information akcut other
elements of the control program is
required:

IBM System/360 Operating System:
Assembler 32K, Form Y26-3598

IBM System/360 Operating System:
Assembler 64K, Form Y26-3700

IBM System/360 Operating System: Basic
Direct Access Method, Program Logic
Manual, Form Y28-6617

IBM System/360 Operating System: I/O
Supervisor, Program Logic Manual, Form
Y28-6616

IBM System/360 Operating System: I/0
Support (OPEN/CLOSE/EOV), Program Logic
Manual, Form Y28-6609

IBM system/360 Operating System: Job
Management, Program Logic Manual, Form
Y28-6613

RESTRICTED DISTRIBUTION:

IBM System/360 Operating System: Link-
age Editor, Program Logic Manual, Form
¥28-6610

IBM System/360 Operating System:
Sequential Access Method, Program Logic
Manual, Form Y28-6604

IBM System/360 Operating System: Direct
Access Device Space Management, Program
Logic Manual, Form Y28-6607

IBM System/360 Operating System: Cata-
log Management, Prcgram Logic Manual,
Form Y28-6606

IBM System/360 Operating System: Fixed-
Task Supervisor, Program Logic Manual,
Form Y28-€612

This publication contains the following:
discussions on the physical organization
and logical organization as an introduction
to QTAM, an outline of the QTAM operation
as an overall logic flow, the function of
BTAM within QTAM, a summary of the internal
logic at the routine level, flowcharts of
each routine, and appendixes. The routine
names that appear as labels on the overall
logic flowchart can be used to access the
detailed flowchart for the specific rou-
tine. The labels on these detailed flow-
charts relate to the labels on the listings
for the routine.

Throughout this publication, option 2 of
multiprogramming with a fixed number of
tasks is assumed (MFT). QTAM also runs
under option 4 of multiprogramming with a
variable number of tasks (MVT). There are
no major differences in these two options
of the operating system for the logic of
QTAM except that partitions are regions and
priority of partitions must be assigned to
jobs in MVT.

This publication is intended for use by

IBM personnel only and may not be made available to others

without the approval of local IBM management.

Third Edition, November 1968

This edition, ¥30-2002-2, corresponds to OS Release 17.

It is a major

revision of, and renders obsolete, Form Y30-2002-1 and associated Tech-

nical Newsletters.

the previous edition are indicated in the following manner:

Changes not documented in Technical Newsletters to

changes to

the text are indicated by a vertical line to the left of the change; in
the case of a page which contains all new information, a bullet (e) is
placed next to the page number; similarly, changed or added illustra-
tions are denoted by a bullet to the left of the caption.

Significant changes or additions to the specifications contained in this

publication are continually being made.

When using this publication in

connection with the use of IBM equipment, check the latest SRL Newslet-
ter for revisions or contact the local IBM branch office.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back cf this publication for reader's com-

ments.

If the form has been removed, comments may be addressed to IBM

Corporation, Programming Documentation, Dept. 844, P.O. Box 12275,

Research Triangle Park, North Carolina, 27709.

C) Copyright International Business Machines Corporation 1966, 1967,
1968



PHYSICAL ORGANIZATION OF QTAM .
System Generation . . . . .
QTAM Nucleus . . . « . . .
QTAM Macro Definitions . .
External Routines . . . .
Support Modules . . . .
Assembling and Linkage Edltlng a
a

s o & & @
3 e 0 o o o
& o o o
& o 4 0 8 i

Message Control Program . . .
Assembling and Linkage Editing
Message Processing Program . . . . . «
Initializing the Message Control

Program . « o« o o ¢ o o o o o o o o @
Initializing a Message Processing

Program . « « o o o ¢ o o o o o = « =

LOGICAL ORGANIZATION OF QTAM . . . . .
OTAM Within the Operating System
Control Program Structure . . . . . .
Message Control Problem Program .
Message Processing Problem Program
QTAM Supervisory Routines . . . .
QTAM as a Separate Control Program .
Queue Management . .
Control Blocks . . .
QWAIT and QPOST . .
QPOST Example . . .

d o 0 4 3 B

QTAM Nucleus . . .
Qdispatch Routine

¢ o & @

OUTLINE OF QTAM OPERATION . . . . . .

Initialization . . . . . . ¢ ¢ ¢ & o &
Receiving . . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o &
PCI Interrupt (receiving the first
buffer) . . . ¢« . ¢ ¢ ¢ v e e . .
PCI Interrupt (receiving all buffers
except First) . . . . . . .« o -

Timer Interrupt - Checkp01nt
Disk Interrupt (Receiving) . . . . .
Disk Interrupt--Checkpoint Write . .
Line knd Interrupt (receive an EOB)
Line End Interrupt (Receive WRU
Signal on WTTA Line) . . . &« .« « « .
Line End Interrupt (Receive
EOT--Receive EOT/EOM on WTTA Lines)
Sending . . ¢ ¢ ¢ 4 4 e e 4 e 4 e o
Disk Interrupt (sending - header) .
Disk Interrupt (sending - all
buffers) . . . « o« =
PCI Interrupt (sendlng) o e e e -
Line £nd Interrupt (sending - EOB) .
Line rnd Interrupt (sending -
response to EOB) . . . . o s
Line End Interrupt (Send EOB/EOT) -
Message Processing . . « e e e
Disk Interrupt (flrst buffer
header) . . . . . . . .
Disk Interrupt (rewrlte) .
Disk Interrupt . . . . . .
CLOSEDOWN <« ¢ & o « o « « =

o & &
.
§
.

BTAM OPERATION WITHIN QTAM . . . o o
BTAM Read/Write Routine (IGG019NZ) e .

Interval

[V IV VIV Vo IV}

Vel

10
10

10

CONTENTS

Index Value . . . .- e -
BTAM Control Informatlon for Channel
Program Generation . . <« « ¢ o o « < .
BTAM Channel Programs . . . - . e e
Channel Programs For ATET 83B3
Selective Calling Station Lines . . .
Channel Programs for Western Union Plan
115A Outstations . <« . ¢« ¢« ¢ &« o ¢ . .
Channel Programs for IBM 1030 Lines .
Channel Programs for IBM 1050 Lines .
Channel Programs for IBM 1050 Dial
(Switched Connection Lines) . . . . .
Channel Programs for IBM 1060 Lines .
Channel Programs for TTY Models 33 and
35 TWX LIN€S & & @ @ o o © o o w o = o
Channel Programs for IBM 2740
Communications Lines . « ¢« « w o ¢ « =

IBM 2740 Basic Channel Programs . .

IBM 2740 With Checking « . « « . « =

IBM 2740 With Dial . v &« . o o « « .

IBM 2740 With Dial and Checking . .

IBM 2740 with Dial and Transmit

Control .« ¢ ¢ ¢ ¢ i e e 4 e e . o=

IBM 2740 With Dial, Transmit
Control, and Checking . . « « . o
IBM 2740 With Station Control . . .«
ibm 2740 With Station Control and

Checking . . .

Channel Programs for IBM 28“8 - 2260

Remote Lines
Channel Programs Employing the Auto
Poll Feature .

Channel Programs for World Trade

Telegraph Adapter . . « « o <« ¢ « =

e @ @ e @ @ e °© e e o =

MESSAGE CONTROL PROGRAM (LPS) ROUTINES
Breakoff Routine (Chart BY) . . . . .
Cancel Message Routine (Chart CL) . .
Date Stamp Routine (Chart CH) . . . .
Distribution List Routine (Chart DB) .
End of Address Routine (Chart DC) . .
End of Block Routine (Chart CY) . . .
End of Block and Line Correction

Routine (Chart CZ) . . . « . « .
Error Message Routine (Chart CQ)
Expand Routine (Chart CU) . . .
Intercept Routine (Chart CT) . .
Lookup Routine (Chart CO) . . .
Message Mode Routine (Chart CW) .
Conversational Mode Routine (Chart
Initiate Mode Routine (Chart CW) . . .
Priority Mode Routine (Chart CW) . . .
Message Type Routine (Chart CA) . . .
Operator Awareness (Chart EO) . . .
Operator Control Routine (Chart EE)

Pause Routine (Chart C0) . . .

Polling Limit Routine (Chart CR) .
Reroute Routine (Chart CS) . . .
Route Routine (Chart CN) . . . -
Scan Routine (Chart CF) . . . < .
Sequence In Routine (Chart CV) .
Sequence Out Routine (Chart CM) .

s 8 o
LI T )

L]
e & o & » & s b

53

54
56

57
58
59

60
62

63



Skip (Character Count) Routine (Chart
CJ) . . . . . .« -

Skip (Character Set) Routlne (Chart CJ)
Source Routine (Chart CI) . . . . . .
Time Stamp Routine (Chart CK) . . . .
Translate Routine (Chart CP) . . . . .
ROUTINES IN THE TRANSIENT AREA . . . .
Close Communications Line Group Routine
(Chart EB) v v« ¢ o ¢ e o o o o o o o =
Close Direct Access Message Queue

Routine (Chart EC) . . . . . -
Close Process Queue (Input and Output)
Routine (Chart EA) . . . . .« .

Line Group Open Executor - Load 1
Routine (Chart F1) . . . . . & . « . .
Line Group Open Executor - Load 2
Routine (Chart F2) . . ¢ & ¢ o « « .« &
Line Group Open Executor - Load 3
Routine (Chart F3) . . . . . « ¢ & o«
Open Line Group Executor Load 4 Routine
Open Direct Access Message Queue
Routine (Chart F4) . . . - - -
Open Direct Access-Load 2 (Chart FS) -
Open Checkpoint Records Data Set
Routine (Charts F6 and F7) . . . . . .
Open Message Processing Program Routine
(Input and Output) (Chart c4) . . . .

MESSAGE PROCESSING PROGRAM ROUTINES
Get Message Routine (Chart C6) . .
Get Record Routine (Chart C7)
Get Segment Routine (Chart C5)
Put Message Routine (Chart DBA)
Put Record Routine (Chart C9)
Put Segment Routine (Chart C8) . .« .
Change Polling List Routine (Chart CD)
Change Terminal Table Routine (Chart
CB) @ v v 4 e 4 e e e e aae - -
Checkpoint Request Routine (Chart C3)
Close Message Control Routine (Chart
ED) . . .« .« . .

Copy Terminal Table Routlne (Chart CG)
Copy Polling List Routine (Chart CC) .
Copy Queue Control Block Routine
(Chart CE) +« v v 4 & o @ & o « o o «
Locate DCB Routine (Chart BW) . . . .
Release Intercepted Message Routine
(Chart BzZ) . . . . . . .«
Retrieve - DASD Routlne (Chart C1) . .
Retrieve by Sequence Number Routine
(Chart C2) . &« .« & ¢ « « .
Start Line - Stop Line Routlne (Chart

2 L

L A )

QTAM CONTROL MODULE SUBROUTINES
Entry Interface Subroutine . .
QTAM Post (QPOST) Subroutine .
QTAM Wait (QWAIT) Subroutine .
Defer Entry Subroutine . . .
Priority Search Subroutine .
Queue Insert Subroutine . .

s 8 0
.

ODispatch Subroutine . . .
Exit Select Subroutine . .
Exit Interface Subroutine

@ 8 & & 9 0
e 0 & & & & o o
@ s & & s B

e & 3 s

@ 8 & o 4 3 0 B 0 9

QTAM IMPLEMENTATION MODULE ROUTINES
Receive Scheduler Routine (Chart DH) .

. 921
. 91
. 92
. 93

. 93

. 95
. 95
. 96
. 96

. 97

BRB-Ring Routine (Chart DI) . . . . . .110

Active Buffer Request Routine (Chart

DL) @ & & o @ o = s s o o s » = = « « 2111
Available Buffer Routine (Chart DM) . .111
Buffer BRB Routine (Chart DN) . . . . .1l11
Disk I/O Routine (Chart D2) . . . . 111
Disk End Appendage (Charts DO and Dl) .112
LPS Control Routine (Chart DO) . . . . .112
Activate Routine (Chart DP) . . . <112
Line STIO Appendage Routine (Chart DQ) .112
Line PCI Appendage Routine (Chart DR) .113
Line End Appendage Routine (Charts DS
and DT) « o « « o e o = « = © = - « 2113
WTTA Line Appendage Routine (Charts
Rl, R2, R3, and RU) . o @ ¢ w = = « « o114
WTTA Line PCI Routine . . . . . . . .114
WTTA Line End Routine . . . e o <114
Buffer Cleanup and Recall Routlne
(Charts DD and DE) . . . . - »115
DASD Destination Routine (Chart DX) . 116
Get Scheduler Routine (Chart DV) . . . .116
Return Buffer Routine (Chart DW) . . . .118
End of Poll Time Delay Routine (Chart
DI) . . « = - e - « o 2118
Interim LPS Routlne (Chart DU) e o o o« <118
Send Scheduler Routine (Chart DK) . . .118
Free BRB Routine (Chart DF) . . - . . .118
End Insert Routine (Chart DG) . . . . .119

Cross Partition Move Routine (Chart DY) 119

COMMUNICATIONS SERVICEABILITY
FACILITIES 2 « 2 = 2 o = o o« = o « « o« 2120
Checkpoint/Restart . . . . -« « 2120
Checkpoint Routine (Charts FA and FB) 120
Error Recovery Procedure . . . . . - 2122
Time-Out and Data Check for Auto Poll
Routine (Chart AF) . . . - e = e
Data Check Routine (Chart AB) o o e
Time-Out Routine (Chart AC) . . . .
Intervention Required Routine
(Charts AD and AE) . . . . e o o o 2125
Lost Data Routine (Chart AG) o e = = 2125
Error Post Routine (Charts AH and AI) 125
Bus-Out and Overrun Routine (Chart
AJ) e o @ ® e o o o . - - o e
Link Routine (Charts AK and AL) o -
Status Check Routine (Chart AM) . .
Command Reject, Equipment Check,
SIOCC1, SNO Error Routine (Chart AN)
Read Skip Return Routine (Chart AO)
Diagnostic Write/Read Routine (Chart
AP) e o = e
Line Error Recordlng Routine (Chart
AQ) o ° o e e o e e e
Operator Control LER Addltlon Routine
(ChaYt AR) v @« o« o « o o o o o o o =
Open and Checkpoint Restart Routine
(Chart AS) . . . e e e e e e e e
Not Operational Start I/0 Routine
(Chart AT) .
Bus-Out and Overrun for Auto Poll
Routine (Chart AU) . . . o s e e
Overrun Routine (Chart AV) o e e o @
On-Line Terminal Test . . . w « o «
Resident Terminal Test Routine
(Charts QL and QS) . « « &« « = o «
Terminal Test Header Analysis Routine
(Chart QA) ¢ v 2 o o o o o @ o = « o

.123
124
124

.126
.126
.127

127
127

B . . - o -128
.128
.128
.128
.129

- @ ® e e & *o - - e

.129
.129
-130
.130

.131



Terminal Test Routines (Charts Q3,

o4, Q5, Q6, and 08) . . . . .

QTAM CHARTS & <« @ « ¢ o o o =» =

APPENDIX A:
QUEUES « o « o + @ o o a o o o @
Active Buffer Request Queue
Additional CCW Queue . . . .
Available Buffer Queue . . .
Move Data Queue . . . . . o

o & e s .

Communications Line Queue
DASD Destination gueue .
Disk Input/Cutput Queue
Distribution List Queue
Inactive BRB Queue . .
Interim LPS Queue .
Time Queue . . . . .
LPS Queue .« .« o« .« «
DASD Process Queue .
Return Buffer Queue
Copy Clear Queue .
Change Queve . . .
Stop Queue . . . .
Stop4 Queue . . .
Stop The Line Queue
Get SVC 1 Queue . .
Checkpoint Queue . .
Check Request QCueue
Line Change Queue .
Dial Out-Call Queue
Subtasks . . . . .
Active Buffer Request Subtask
Available Buffer Subtask . .
DASD Destination Subtask . .
Disk Input/Output Subtask .
Distribution List Subtask .
Get Scheduling Subtask . . .
LPS Subtask . « ¢ &« ¢ @ ¢ w
Queue Insert Subtask . . . .
Queue Insert by Priority Subta

s & & 3
¢ s s .

e & 2 b e s o o
s & 3 e 4 8 & 4 o 4 0
i e § o s o o
S & e & & o o s b s s o

e s o 2 s

S

® s & 4 s s

Qdispatch Subtask . . . .
Receive Scheduling Subtask
Return Buffer Subtask . .
Send Scheduling Subtask
Time Subtask . « . « « .
Move Data Subtask . . .
Copy Clear Subtask . . .

s & s
o o s

m

& & 8 8 5 e & e e b 4 s 4 & s e e

Ko o & e 5 s e

e & 3 & s b &

-

QTAM QUEUES AND SUBTASKS

LI ]

s & & & o 3 o & e 4

.131
.132

.267
.267
.267
.267
.267
.267
.267
.267
.267
.268
.268
.268
.268
.268
.268
.268
.268
.269
.269
.269
.269
.269
.269
.269
.269
.269
.269
.269
.269
.270
.270
.270
.270
.270
.270
.270
.270
.270
.270
.270
.270
.271
.271

Change 1 Subtask
Stop 1 subtask .
Stop 3 Subtask .
Getsvc 2 Subtask
Stop 5 Subtask . . .
Checkpoint Subtask
Check Request Subtask
Line Change Subtask .
Qdispatch Subtask . .

e & & &

. 3
& & & & o o
@ & 5 o B o 6 &
a & 4 & e e @
e & 8 & & &
e B3 % & 8 3 & o
& & o 4 8 8 e
[

¢ & & 4 & 3 ¥

APPENDIX B: SYSTEM CONTROL BLOCKS

General Control Block Forms . . .
Queue Control Block . . . <« o =
Resource Element Control Block .
Truncated Subtask Control Block
Full Subtask Control Block . .
Line Control Block . . .
Data Control Block . . .
Data Extent Block . . .
Data Event Control Block
Unit Control Block . . .
Terminal Table . . . . .
Buffer Prefix . . . .

Special Control Block Forms
Queue Control Block . . .
Buffer Request Block . . .
Insert Block . . . -
Resource Element Control Bloc
(IECKSTOP) &« @« o = « o = o =

LT B )

8§ 8 6 3 8 o & ¥ ¥
& & 3 3 o 3 b 5 & 6 ¥ 4 8 o & ¥ a4

8 o & & o o 4 ¥ 3 ¥

L] xl e & 3 & & o & & 3 3

APPENDIX C: QTAM LINKAGES . « o « =

APPENDIX D: LIST OF QTAM MODULES -
Alphabetical List of QTAM Modules -
List of Modules by Macro instruction
Category « « « o = = « = o = « = < =
Support Macro instructions . . .
Message Control Macro Instructlons

@ o 0 o T o s o e

@ & & & 8 & & 8 0 b s F e 03

271
.271
.271
.271
.271
.271
.271
.271
.271

.272
.272
.272
.273
274
. 274
.274
. 277
.280
.284
.284
-286
. 287
.289
.289
.289
.291

291
.292

297
297

.299
.299
.299

Message Processing Macro Instructions 300

APPENDIX E: QUEUES AFFECTED BY QTAM
ROUTINES . . .

@ ® e e ® ® e e w © -

APPENDIX F: OPERATING SYSTEM CONTROL
BLOCK LINKAGES « o o « o 2 o o« o o @

APPENDIX G: HEADER AND TEXT
RELATIONSHIPS ON A DASD QUEUE . . .«

INDEX =« o @ « o o o s o © o a = o =

-

. 301

-303

- 304

-307



Chart AB. Data Check Routine . . .132
Chart AC. Time Out Routine . . . .133
Chart AD. Intervention Required
Routine .« .+ o« ¢ o ¢ o « o o = « = 134
Chart AE. Intervention Required
Routine (Continued) . . . .135
Chart AF. Time Out and Data Check .
for Auto Poll Routine . . . . . . .136
Chart AG. Lost Data Routine . . . .137
Chart AH. Error Post Routine . . .138
Chart AI. Error Post Routine
(Continued) . . . . ¢ ¢ 4 « « « « 139
Chart AJ. Bus Out and Overrun

ROUtiNe & & o ¢ o « o o o o« =« « « <140
Chart AK. Link Routine . . . « <141
Chart AL. Link Routine (Contlnued) 142
Chart AM. Status Check Routine . .143
Chart AN. Command Reject,

Equipment Check, SIO CC 1, SNO

Error Routine . . . . . e e e = o144
Chart AO. Read Skip Return Routine 145
Chart AP. Diagnostic Write/Read
Routine . . « ¢ ¢« + & & = =« « « = 2146
Chart AQ. Line Error Recording
Routine . . . . . - . - - «1U47
Chart AR. Operdtor Control LER
Addaition Routine . . . . &« « « « « -1UL8
Chart AS. OPEN and

Checkpoint/Restart Routine . . . . .149
Chart AT. Not Operational Start

I/0 Routine . . &« <« &« « & « 2 « o <150
Chart AU. Bus Out and Overrun for

Auto Poll Routine . . ¢« « « =« « - 151
Chart AV. Overrun Routine e « o 2152
Chart BW. Locate DCB Routine . . .153
Chart BX. Start Line-Stop Line

Routine . .« @ ¢ o o « o o o« « « « 2154
Chart BX1l. QTAM Start Line-Stop

Line Routine e e e s o & « e « « #2155
Chart BY. Breakoff Routine . . . .156
Chart BZ. Release Intercepted

Messages Routine . . . . . . « . . .157
Chart C0. Pause Routine . . . . . .158
Chart Cl. Retrieve - DASD Routine .159
Chart C2. Retrieve by Sequence

Number Routine . . . . e e e o - <160
Chart C3. Checkpoint Request

ROULINE & ¢ & o o o o o « « « « « 161
Chart C4. Open Message Process

QUEUE =« o« « o « @ o o o a o« « o « 2162
Chart C5. Get Segments Routine . .163
Chart C6. Get Messages Routine . .164
Chart C7. Get Records Routine . . .165
Chart C8. Put Message Segment

Routine . . . . ¢ ¢ ¢ o o « =« « - 2166
Chart C9. Put Record Routine . . .167
Chart CA. Message Type Routine . .168
Chart CB. Change Terminal Table
Routine . .« ¢ v o o o o« =« = o« =« =« 2169
Chart CC. Copy Polling List

RoOutine . . ¢ ¢ ¢ o o o o « = « « 2170

CHARTS

Chart CD. Change Polling List

Routine . . ¢ & ¢ @ ¢ ¢ o @ o« « « 171
Chart CE. Copy Queue Control

Block Routine . . w o o o o o « o« <172
Chart CF. Scan Routine . . . . . .173
Chart CG. Copy Terminal Table

ROUtine . w v @ o o o = » w = « « 174
Chart CH. Date Stamp Routine . . .175
Chart CI. Source Routine . . . . .176
Chart CJ. Skip to Character Set -

Skip on Count Routines . . . . . . .177
Chart CK. Time Stamp Routine . . .178
Chart CL. Cancel Message Routine .179
Chart CM. Sequence Out Routine ., .180
Chart CN. Route Routine . . . . . .181
Chart CO. Lookup Routine . . . . .182
Chart CP. Translate Routine . . . .183
Chart CQ. Error Message Routine . .184
Chart CR. Polling Limit Routine . .185
Chart CS. Reroute Routine . . . . .186
Chart CT. Intercept Routine . . . .187
Chart CU. Expand Routine . . . . ,188
Chart CV. Sequence in Routine . . .189
Chart CW. Mode, Initiate, and
Priority Routines . . . « « « « - .190
Chart CX. Mode Conversational

Routine . o o o & @ ¢ @ o o « o« « <191
Chart CY. End of Block Routine . .192
Chart CZ. End of Block and Line
Correction Routine . . . . « o o 2193
Chart DO. Disk End Appendage

Routine . . . - e o « o194
Chart D1. Disk End Apnendage

Routine (Continued) . . <« . . . . .195

Chart D2. Disk I/O Routine . . . .196
Chart DA. Put Message Routine . . .197
Chart DB. Distribution List

Routine . < o & ¢ o o o « = » « « 2198
Chart DC. End of Address Routine .199
Chart DD. Buffer Cleanup and

Recall Routine . . . . - e o o« 2200
Chart DE. Buffer Cleanup and

Recall Routine (Continued) . . . . .201
Chart DF. Free BRB Routine . . . .202
Chart DG. End Insert Routine . . .203
Chart DH. Receive Scheduler

ROUtinNe . o o o ¢ o o = =« =« « =« o« 204
Chart DI. BRB Ring Routine . . . .205
Chart DI1. BRB Ring Routine
(Continued) . o« ¢ « o = « =« = « « 206
Chart DJ. End of Poll Time Delay
Routine . . ¢ ¢ ¢ ¢ o o o o o o« o 2207
Chart DK. Send Scheduler Routine .208
Chart DK1l. Send Scheduler Routine
(Continued) . o« ¢ 2 ¢ o o o « « « 2209
Chart DL. Active Buffer Request
ROUtINE & © o « o = = o « o o « « 2210

Chart DM. Available Buffer Routine 211
Chart DN. Buffer BRB Routine . . .212
Chart DO. LPS Control Routine . . .213
Chart DP. Activate Routine . . . .214



Chart DQ. Line SIO Appendage

ROUtINE . ¢ & ¢ ¢ o & o« = o » =« « 2215
Chart DQ1. Line SIO Appendage

Routine (Continued) . . . . . . . .216
Chart DR. Line PCI Appendage

Routine . . « o« o o o o o o o« o o 2217
Chart DS. Line End Appendage

ROUtine . . & o« o o o = = » » =« » 2218
Chart DT. Line End Appendage

Routine (Continued) e e o o e = = 2219
Chart DT1. Line End Appendage
(continued) . . o ¢ « 2 o « = = = 220
Chart DU. Interim LPS Routine . . .221
Chart DV. Get Scheduler Routine . .222
Chart DW. Return Buffer Routine . .223
Chart DX. Destination DASD Routine 224
Chart DY. Cross Partition Move

ROUtINE .« o & ¢ ¢ o o o o o o o« = 225
Chart EA. Close Process Queue . . .226
Chart EAl. Close Process Queue
(Continued) . . @ ¢ o @ o « = « o 2227
Chart EB. Close Communications

Line Group . . - « « o o = « o « = 228
Chart EC. Close Direct Access

Message QUEeUE . o . <« =2 @« « = o o 229
Chart ED. Close Routine . . . . . .230
Chart EE. Operator Control Routine 231
Chart EF. Common Subroutines OPTCL 232
Chart EG. Common Subroutines

OPTCL (Continued) . . . . . . « . .233
Chart EH. Copy Termtbl Entry

OPTCL RoOUtine . o o o o« = o « « « 234
Chart EI. Change Termtbl Entry

OPTCL Routine . . . . « « « « « « 2235
Chart EJ. Intercept and Release

OPTCL Routine . « ¢« o« o 2 o« « = .236

Start Line OPTCL Routine 237

Chart EK.

Chart EL. Stop Line OPTCL Routine .238
Chart EM. Stop Line OPTCL Routine
(Continued) . . &« ¢ ¢ ¢ o« o o o« « 4239
Chart EN. Intrel OPTCL Routine . .240
Chart EO. Operator Awareness

Routine . . ¢ & o ¢ o ¢ o o =« o« o 22041
Chart Fl1. OPEN Line Group Load 1
Executor Routine . . . . . . « . . .2U2

Chart F2. OPEN Line Group Load 2
Executor Routine . « o v o o « «
Chart F3. Open Line Group Load 3

Executor Routine . ¢« o o o @ =«
Chart F4. OPEN Direct Access
Message Queue Routine . . . .
Chart F5S.
2 Routine . o o o o o o o
OPEN Checkpoint Data

Chart F6.
Set Routine . . . & v o« -« o .
Chart F7. OPEN Checkpoint Dat

Set Routine (Continued) . . .
Chart F8. QTAM Open Line Group
LOad U4 o 4 o o o o o o o = @
Chart F9. Close Process Queue
Load 2 4w ¢ e o o ¢ o o ° o =

Chart FA. Checkpoint Routine
Chart FB. Checkpoint Routine
(Continued) o o ¢ o o o o =
Chart NU. QTAM Nucleus (1 of 2
Chart NV. QTAM Nucleus (2 of 2
Chart QA. Terminal Test HDR

Analysis Module . . . . . . «
Chart QL.
MOAUlE 2« = o o o « « o o o = =
Chart QS. Terminal Subtasks .
Chart 03. 1030 Terminal Test
Module v w 2 & o ¢ 2 o = o = =
Chart Q4. 2740 Terminal Tes

MOAUle 4w & o o o « 2 o o o o =
Chart Q5. 1050 Terminal Test
Module 2 o ¢ ¢ o o« = o « o = =
Chart Q6. 1060 Terminal Test
MoAUlE o « w o o o o @ o o »
Chart Q8. 2848/2260 Terminal
Module . . . - e e s e o e
Chart R1.
Routine . . . . e o o @ = e
Chart R2. WITA
Routine (Part 1 of 3) . . . .
Chart R3.
Routine (Part 2 of 3) . . . .
Chart Rbu.
Routine (Part 3 of 3) . . . .

-

-
-

.
-
-
°

)
)

Resident Terminal Test

-

Test

WTTA Line PCI Appendage

Line End Appendage

-

-

-

OPEN Direct Access Load

WITA Line End Appendage

WITA Line End Appendage

- 243
- 2404
.245
.246
- 247
.2u8
.29

.250
.251

.252
.253
. 254
- 255

- 256
257

.258
«259
.260
- 261
.262
.263
. 264
.265

- 266



Control Block . o « « o o &

Figure 1. Physical Organization
Of QTAM ¢ v & ¢ o o o o o « = =
Figure 2. Flowchart of Message
Control Program . . . . o 0w .
 Figure 3. (Part 1 of 2) o e
Figure L. . ¢ ¢ ¢ ¢ ¢ ¢ o o = =
Figure 5. ¢ ¢ ¢ 6 ¢ ¢ ¢ o o = =
Figure 6. Element Chain . . .
Figure 7. Second Step of Qpost
Operation . . . . ¢« ¢« ¢ « ¢« o .
Figure 8. Resource Elerent

-

0 & o b

Figure 9. General Form of Full
and Truncated STCB . . . . .- .
Figure 10. General Form of QCB
and Example of GCB on the Ready
Queue . . . c o e . “ o e e e
Figure 11. QTAM Nucleus e e
Figure 12. Blocks Initialized by
Open Direct Access Device - e o
Figure 13. Control Block after
Open Line Groups « e e e e e
Figure 14. Buffer Ready to
Receive Message from Line . . . .
Figure 15. Channel Program
Prepared for First Buffer . . . .
Figure 16. Effect of PCI
Interrupt . . .« ¢ ¢ 0 e o e e o
Figure 17. Path of a Buffer for
Receiving . . ¢ w o ¢« o o o o o =
Figure 18. Ready Queue at Sending

Time .

-

20
20
22
29
31
32
33
34
36
38

40

FIGURES

Figure 19. Queuing in Message
Processing e e e o w e e @ o o« o o 46
Figure 20. Ready Queue to Obtain
MESSAGE « o o o o o © « o » o o o o 47
Figure 21. Ready Queue After

Obtaining MesSSage . « = o o = - o U8
Figure 22. Functional Flowchart

of QTAM Components (Part 1 of 2) . 49
Figure 23. 1050 Nonswitched

Device I/0 Module < « &« <« « = « - . 55
Figure 24. Interaction Between

BTAM and QTAM Channel Programs . <117
Figure 25. Linkage of ERP Modules 123
Figure 26. Typical DSECT for BRB .290
Figure 27. BRB on Inactive-BRB

QUEUE o 2 o © = 2 = o o o o = = « 290
Figure 28. BRB Assignment of Next
Segment AAAYESS « « o o o © « « o 2290
Figure 29. BRB After Assignment

of Next Segment Address . = - - - .291
Figure 30. BRB/CCW Initialized

for Direct Access Read or Write . .291
Figure 31. QTAM Linkages (Part 1

Of U) & 4 ¢« v o @ o o » = = = » 293
Figure 32. Queues Affected by

QTAM Routines . . . e « 2302
Figure 33. Control Block Llnkages 303
Figure 34. Example of Message

Header and Text Relationships in

Direct Access Destination and

Process Queues e e o o o s s o « <305



This section describes the various parts
of the total package called QTAM and
explains what the parts are, where they
come from, how they get into the system,
and their relationship to the rest of the
package. The function of these QTAM parts
and the logic of their operation are dis-
cussed in detail in subsequent sections.

Figure 1 shows the steps taken to begin
processing in the QTAM environwment. The
following discussion deals with these
steps:

1. System generation.

2. Assembling and linkage editing a mes-
sage control program.

3. Assembling and linkage editing a mes-
sage processing program.

4. Initializing a message control
program.

5. 1Initializing a message processing
program.

SYSTEM GENERATION

QTAM NUCLEUS

When QTAM is called for during a system
generation procedure (QTAM operand in
DATAMGT system generation macro instruc-
tion), a number of routines collectively
called the QTAM nucleus are included as a
permanent part of the System/360 Operating
System supervisor nucleus. These routines
are then always present in the system,
whether or not a telecommunications appli-
cation is being run.

The QTAM nucleus is packaged as a single
module named IECKQQO01l. During system
generation, it is linkage edited from
SYS1.MODLIB into SYS1.NUCLEUS. It is
loaded from there by the IPL procgram as one
of the resident SVC routines. The QTAM
nucleus consists of the following nine sub-
routines, each of which is discussed later
in this manual:

1. Entry interface
2. QTAM wait

3. QTAM post

. Qdispatch

Defer entry
Priority search
. Queue insert

N~Nouve

PHYSICAL ORGANIZATION OF QTAM

8. Exit select
9. Exit interface

QTAM MACRO DEFINITIONS

The operating system macro definition
library (SYS1.MACLIB) includes the macro
definitions used during the assembly of the
message control program and message pro-
cessing programs. Appendix D lists the
OTAM macro instructions.

EXTERNAL ROUTINES

When performing a system generation to
include QTAM, the user must define a spe-
cial library area named SYS1.TELCMLIB.
During the generation rum, all routines
that will later be linkage edited with mes-
sage control and message processing object
modules are copied frcm SYS1.MODLIB into
SYS1.TELCMLIB. In this publication, these
routines are defined as external routines.
Appendix D lists the modules in
SYS1.TELCMLIB and indicates the function
performed by the routine or routines in
each module.

SUPPORT MODULES

During the generation run, all modules
that are loaded into main storage by the
various Open executors and the QTAM Open
and Close executors are copied from
SYS1.MODLIB into the SYS1.SVCLIB. In this
publication, these modules are defined as
support modules. Appendix D lists the QTAM

support modules in SYS1.SVCLIB.

ASSEMBLING AND LINKAGE EDITING A MESSAGE
CONTROL PROGRAM

The user codes the QTAM macro instruc-
tions necessary to design a message control
program. The output cf this assembly
includes: several tables and control
blocks, a buffer area, linkages to QTAM
external and support routines, and, except
for these linkages and a few minor Line
Procedure Specificaticn (LPS) macro
instruction expansions, very little other
executable code. The message control
object module may include some user-written
routines, but these usually will not be
extensive.

Physical Organization of QTAM 9



The assembled object module is then
linkage edited to include the necessary
external routines from SYS1.TELCMLIB.
These external routines are the LPS rou-
tines used in processing header informa-
tion, translating from one code to another,
directing messages to the proper lines and
gueues, etc.

The resulting load module is stored in a
system library to be loaded for execution.

ASSEMBLING AND LINKAGE EDITING A MESSAGE
PROCESSING PROGRAM

A message processing program normally
needs only the OPEN, CLOSE, GET, and PUT
macro instructions and some data set
definition macro instructions. When this
is the case, no external routines are
required to be linked with the dbject
module. An installation will also write
one Or more message processing programs
that use the following macro instructions
to examine and modify the status of the
control program:

CHNGP
CKREQ
CLOSEMC
CHNGT
COPYP
COPYT
COPYQ
RELEASEM
RETRIEVE
STOPLN
STARTLN

When any of these macros are used, the
linkage editor will include the correspond-
ing external routines in the load module.
The load module is stored into a system
library for execution.

INITIALIZING THE MESSAGE CONTROL PROGRAM

The QTAM message control program is
normally executed in partition 0 as the
highest priority task in the system. The
initiator/terminator loads and transfers
control to the message control program.

The first QTAM macro instruction executed
must open the DASD queue area. When the
system Open routine detects the unique
organization code for the QTAM DASD queue,
it loads and transfers control to the first
OTAM Open executor (module IGG01930). The
Open routine performs several functions
described in more detail in subsequent sec-
tions. For the purposes of this section,
however, we need note only that the Open
routine loads a large module called the
QTAM Implementation module (IGG019NG) and
Checkpoint/Restart module (IGGO019NH) into

10

partition 0, along with the Message Control
Load module.

The Implementation module contains three
distinct types of routines - distinct as
far as their logical relationship to the
rest of the system. The three types are:

1. Problem program routines - executed
enabled to all interruptions as part
of the message control program task.
These routines receive control through
branches from the external routines
linkage edited with the message con-
trol program.

2. Supervisory routines - executed dis-
abled to all interruptions as part of
the QTAM nucleus "task." These rou-
tines receive control through branches
from the QTAM nucleus.

3. I/0 appendages - executed disabled to
all interruptions, again logically as
part of the QTAM nucleus "task."
These appendages receive control from
the I/0 Interruption Handler in the
input/output supervisor (I0S).

The logical relaticnship of the preced-
ing routines is discussed more fully in the
next section. When only physical organiza-
tion is considered, this collection of rou-
tines represents no more than a convenient
and efficient packaging technique. The
Implementation module can in no way be
thought of as a "program."

When the DCBs for the communications
line groups are opened, four other QTAM
Open executors are used (modules IGG0193N,
IGG0193R, IGG0193T, and IGGO194A). These
routines also perform several functions to
be discussed later. For this discussion,
however, note that only the WTTA Line
Appendage (IGG019QB) is loaded by the first
of these four executors when opening a WTITA
line group; the BTAM Read/Write routine and
BTAM modules containing model channel pro-
grams are loaded by the third of these four
executors. These modules are also loaded
into partition 0. The BTAM Read/Write rou-
tine is run in the problem program state as
part of the user's message control task.

INITIALIZING A MESSAGE PROCESS ING PROGRAM

It is possible to run a message control
program with no message processing program.
For example, a message switching applica-
tion can be handled entirely within the
message control program with a single mes-
sage processing program loaded at the end
of the day to initiate a system shutdown
procedure. However, there is usually at
least one, and possibly two or three, mes-
sage processing programs being executed at



the same time as the message control
program.

In this discussion, assume the normal
case where a message processing program is
to be loaded into partition 1 immediately
after the message control program is loaded
and initiated. A Start Initiator Function
should be employed. This will load the
message processing program into partition
1. When the message control task goes into
the wait state, the message processing pro-
gram opens the process queues, at which
time the GET/PUT macro instruction support
routines needed are also brought into par-
tition 1. There are three Get modules and
three Put modules. The modules selected
depend on the unit of data processed by the
program: segment, message, or record.

At any point during the initialization
of this message processing program task,
control may return to the message control
program because of an I/0 interruption from
one of the communications lines or from a
direct access storage device. More often,
execution of the processing program task
continues up to the pcint of a GET instruc-
tion before the message control task has a
message to pass on. In this case, the pro-
cessing task is placed in a wait state
until the conditions for accomplishing the
GET are satisfied. At any rate, the pro-
cess of initialization is complete at this
point with all of the parts of QTAM in
place and running.

Physical Organization of QTAM 11



/

Message Processing
Source Program

Assembler

/

System Generation
Macro Instructions

OS/360 Starter System

]

[\

System Residence

'\-_ o

MACLIB

Linkage Editor

Includes all QTAM

/

Message Control
Source Program

Macro Definitions

SYS1 e TELCMLIB

All QTAM External Routines

User Code and
GET/PUT Linkages

Status Changing
Extemal Routines

Job Scheduler

to be Linked with User

Assembler

Object Modules

SYS1 * SVCLIB

Includes all QTAM Support

Modules Loaded by OPEN

SYS1 * NUCLEUS

Includes QTAM Nucleus

\

—

OPEN

Linkage Editor

Macro Linkage
and User Code

LPS External Routines

Job Scheculer

IPL
Core Storage 't
Supervisor Nucleus
l QTAM Nucleus
Partition J L.
N =
Message Processing Program 2
Partition or other Programs
2
GET/PUT Modules
Partition Message Processing Program 1
! GET/PUT Programs
Read/Write Module
Partition Message Control Program
0 Check Point/Restart Module
QTAM Implementation Module

Figure 1. Physical Organization of QTAM

12




The previous section explained how the
physical pieces of QTAM are positioned in
main storage. This section discusses how
these pieces are logically related and how
they pass control back and forth.

In this section, the logical organiza-
tion of QTAM is discussed within two dif-
ferent frameworks. First, QTAM is consid-
ered as a part of operating system task
management and within the structure and
categories of that control program. Then
QTAM is considered as a separate logical
entity outside of the framework of the
operating system control program, and is
viewed as a control program in its own
right. The key to understanding the logi-
cal organization of QTAM lies in under-
standing the overlap of the two control
program structures.

OTAM WITHIN THE OPERATING SYSTEM CONTROL
PROGRAM STRUCTURE

The various pieces of QTAM discussed in
the preceding section can be grouped into
three logical categories:

1. Message control program
2. Message processing program(s)
3. QTAM supervisory routines

The message control program and message
processing programs are both run under con-
trol of the operating system task manage-
ment routines. When considered as a part
of operating system task management, these
programs are in no way different from any
other processing program tasks. They are
scheduled and dispatched according to the
priorities indicated in the task control
blocks (TCBs) for the partitions in which
they are being run.

After distinguishing and separating the
two processing program tasks, only the
third category, the QTAM supervisory rou-
tines, remains. These routines are
executed as type 2 SVC routines or as asyn-
chronously scheduled I/O interruption-
handling routines. Strictly speaking, they
are executed as part of the processing pro-
gram tasks. Practically speaking, however,
it is more meaningful to think of these
routines as a separate category outside of
the task framework established by operating
system task management. This section is
primarily an explanation of the nature of

LOGICAL ORGANIZATION OF QOTAM

this third category in relation to the
other two categories. The discussion con-
tinues subsequently in the section QTAM
Supervisory Routines, but first the message
control program and message processing
problem programs are more closely defined.

MESSAGE CONTROL PROBLEM PROGRAM

The message control problem program
includes the following:

1. The object module output from the
assembly of the user's code.

2. The external routines linkage edited
with the assembly output.

Note: If the DLIST macro instruction
is used, a single supervisory routine,
called the Distribution List routine
in a module named IECKDLQT, is linkage
edited into the message control load
module. This routine is one of the
supervisory routines, and is not part
of the problem program.

3. Five of the routines in the implemen-
tation module brcught into partition 0
by the DASD OPEN:

Note: Full descriptions of these rou-
tines may be found under the heading
QTAM Implementation Module Routines.
Flowchart "IDs" for each are identi-
fied below:

(Chart DP)
{Chart DO)

¢ Activate
e LPS Control

e Buffer Cleanup and Recall (Charts
DD, DE)

e Free BRB (buffer request block)
(Chart DF)

e End Insert (Chart DG)

4. The BTAM Read/Write routine and BTAM
Device I/0 modules (modified for and
incorporated into QTAM) brought in by
the line group OPEN.

A simplified flowchart of the message
control problem program is shown in Figure
2. The flowchart is included to show how
four problem program routines in the Imple-
mentation module and the BTAM Read/Write
routine are related to the rest of the mes-
sage control program.

Logical Organization of QTAM 13



A3
‘ START )

B3

OPEN DISK AND
LINE GROUPS
ISSUE ENDREADY

LPSCONTROL

AVAILABLE REQUEST FOR REQUEST FOR
BUFFER FOR QTAM MESSAGE-FILLED DISK 1/O
RECEIVING CLOSEDOWN BUFFER OPERATION
ACTIVATEi A +
— D1 D5
p2_Y o4
INITIATE LINE RETURN TO
READ INSTRUCTION RCVD M:ESISI:\SE ExCp
OPERATION AFTER ENDREADY, RECEIVED OR
SENT
LPS
RECEIVE SENT
BTAM GRCE)3UP v LPS SEND
ROUP _

e PERFORM LPS e E:RFORM Lps
BUILD CHANNEL RECEIVE B4 ESSAGE ERROR
PROGRAM A FUNCTION ON YES

M AND MESSAGE ALREADY SENT } CHECKING ON
EXCP PORTION IN THE TRANSMISSION
BUFFER OF MESSAGE
CLEANUP CLEANUP
~F2 e F4 f5
s PERFORM LPS
POST BUFFER F37sTILL SEND FUNCTI
TO SPECIFIED YES . RCVING THIS ON
DESTINATION ON MESSAGE RELEASE BUFFERS
MSG (NOT, PORTION IN
QUEUE EOT)
THIS BUFFER
L——’@ ACTIVATE
G2 rG4
SET UP FIRST INITIATE
BUFFER AND SENDING OF
READ CONTINUE MESSAGE OVER
FLAG THE LINE
—l BTAM
~H3 ~H4 y
PERFORM LPS
ERROR BUILD CHANNEL
CHECKING PROGRAM
FUNCTIONS ON AND EXCP
RECEIVED
MESSAGE
CLEANUP
-3
POST LAST
BUFFER TO
DESTINATION
QUEUE AND

eFigure 2.

14

RELEASE BUFFERS

: : FREEBRB Y

rK3

RELEASE BRB'S
AND FREE THE
LINE

Flowchart of Message Control Program



MESSAGE PROCESSING PROBLEM PROGRAM

A message processing problem program
includes: the assembled user code, any
external routines linkage edited with the
code, and the Get and Put routines. The
only difference between a QTAM message pro-
cessing program and any other processing
program is the requirement for and the
implementation of interpartition communica-
tion. The various macro instructions that
can be used in a message processing program
are handled as follows:

1. COPYP, COPYT, and COPYQ. These macro
instructions present no prablem. The
corresponding external routine simply
reads the requested information from
partition 0, using address pointers
stored in the communications vector
table (CVT) and in the terminal table.

2. All other macro instructions. The
remaining macro instructions cause SVC
interruptions to the QT2AM supervisory
routines. Any cross-partition com-
munication is done by the supervisory
routines, operating under the storage
protection key of the supervisor.

The only unusual operation to be noticed
when logical organization is considered is
in the case of a PUT macro instruction. To
avoid including a large amount of code in
the supervisory routines for each of the
three types of PUT (segment, record, or
message), certain code that must be
executed in the supervisor state is pack-
aged within the Put modules. The SVC rou-
tine entered as a result of a PUT branches
directly back to these routines in the
problem program Put modules to execute them
in the supervisor state.

QOTAM SUPERVISORY ROUTINES

This discussion of the QTAM supervisory
routines is still within the framework of
the operating system control program. When
the physical organization of these routines
is considered, they consist of:

1. The routines within the supervisor
nucleus.

2. The routines within the Implementation
module (in partition 0) that are
executed in the supervisor state.

This includes all except the five rou-
tines previously identified as part of
the message control problem program.

3. The Distribution List routine linkage
edited with the message control
program.

4. Part of the Put modules in the message
processing problem partition(s).

When the interruption-handling facili-
ties of the operating system are consid-
ered, the QTAM supervisory routines consist
of:

1. Type 2 SVC routines entered by SVCs 65
and 67 from problem program
partitions.

2. Asynchronously scheduled I/0
interruption-handling routines entered
from IOS.

Although the QTAM supervisory routines
can be considered from either point of
view, neither is very helpful in under-
standing the logical crganization of QTAM.
For example, a routine within an appendage,
to which control is passed to process an
I/0 interruption, may also be executed as
the result of an SVC interruption. The
problem is that both points of view are
taken from within the framework of the
operating system control program environ-
ment and are seen within the categories of
that system. The solution to the problem
lies in understanding the implications of
the statement: "QTAM is a Control Program."

QOTAM is a control program that is within
a second control program. Before discuss-
ing how the two control programs overlap,
it is important to describe the QTAM con-
trol program within its own framework as a
separate logical entity.

OTAM AS A SEPARATE CONTROL PROGRAM

The one essential function of a control
program is the allocation of system
resources. The system resources to be
allocated by QTAM are:

1. CPU processing time
2. Main storage space
3. I/0 paths

In order to perform this allocation
function efficiently, it is necessary to
break up the system resources into the
smallest practical number of pieces.
is done as follows:

This

1. The work to be done is broken into
many separate work units that are
defined as QTAM subtasks of message
processing and message control tasks.
Small pieces of the time resource are
then allocated to individual subtasks.

2. The main storage space to be allocated
is broken into a large number of buf-
fers. Thus, only that amount of
storage absolutely required at a given

Logical Organization of QTAM 15



time need be tied up for a given
function.

3. The I/O paths controlled by QTAM are
the communications lines and the disk
queue. Only that I/O path absolutely
required at a given time need be tied
up for a given function.

The term allocation is usually used only
to refer to physical resources; scheduling
refers to time resources. In a QTAM con-
trol program (as opposed to the operating
system) the entire allocation function is
performed by a single mechanism. This
allows interdependence of scheduling and

allocation.

The following sections describe the
resource allocation mechanisn of QTAM.
key to the mechanism is the ready queue,
the structure through which a resource is
allocated to a subtask. The actual
mechanism of allocation is the Owait and
Qpost operations performed by the QTAM sub-
tasks. oQwait, in effect, puts a request
for a resource on the ready queue. Qpost
passes an available resource to the ready
queue. The QTAM nucleus performs a gueue
management function that includes dispatch-
ing the subtask that is at the top of the
ready queue.

The

QUEUE MANAGEMENT

Elements, Queues, and Subtasks

The physical resources of the system are
broken into elements (e.g., the buffer
pool, a resource, is broken into individual
buffers, the elements) with each element
represented by an RECB (resource element
control block), which can be thought of as
an 8-byte identifying prefix.

r T
| RECB | BUFFER
L 1 J

If the RECB points to an available buffer
queue, the buffer is free and not in use.
The RECB is an identifier.

For every element in the system, there
is at least one subtask that works with the
element. These subtasks are represented by
STCBs (subtask control blocks).

The elements, and the subtasks that
operate on these elements, are associated
with one another through the use of a third
control block, the OCB (gueue control
block). Thus, a QCB will have a pointer to
the chain of elements under its control and
a pointer to the chain of subtasks waiting
to operate on these elements.

o16

Elements
QCB

Subtasks

Figure 3. (Part 1 of 2)

When a subtask needs an element, it
requests one from the QCB that handles that
particular element by "Qwaiting" in the
STCB chain of the QCB. If the element is

available, the subtask that Qwaited is
dispatched.
No elements available
QCB
Subtask A
. Subtask B
PRI=S Subtask C
r——=-" PRI=2
| PRI=2 - — PRI=1

Figure 3. (Part 2 of 2)

When a subtask has finished using an
element, it gives (Qpcsts) the element to
the appropriate QCB (Figure 4). The QTAM
nucleus gives this element to the first
(highest priority) subtask in the STCB
chain of the QCB. (Subtask A in Figure 5
would be dispatched). Note, however, that
STCB A is not usually removed from the STCB
chain unless it Qwaits on another QCB.) If
another element is posted to this QCB, sub-
task B will be dispatched. The STCB chains
end with a pexmanent STCB. (STCB C, in
Figure 4, will remain the last STCB in the
chain.) STCB C might point to a routine
that does nothing more than chain elements
into the QOCB's element chain. Subtask C
would have a lower priority than any other
subtask that might use the element and
would, therefore, be dispatched only if no
other subtask needed the element.



r—-————=—=- "
| |
L Element used
Subtask D i by D l
|
QCB QPOST
r——"">-"7777
|
Element Element used i
Chain | by D I
b e N
Subtask A
PRI=3 Subtask B
PRI=2 Subtask C
PRI=1
Figure 4.
QCe Element
Choin I-— ———————— —
|
glersent used !
Y
A '
L __ J
\
~ -
IEN
)
Subtask A M
PRI=3 Subtask B
PRI=2 Subtask C]

PRI=1

by the various QCBs and RECBs. These QCBs
and RECBs, just like the STCBs within their
own chains, appear on the ready queue in a
priority order (Figure 6).

To complete the general picture (Figure
6), an RECB (resource element control
block) appears on the ready queue. As was
mentioned previously, when an element is
Qposted to a QCB, the first subtask in the
QCB's chain gets control (register 1 points
to the RECB being Qposted).

In most cases, however, the Qpost is a
two step operation. The element's RECB
contains a pointer to the queue to which it
is being posted and is placed on the ready
queue in priority order (this is the first
step). As time becomes available for pro-
cessing, the ready queue is examined by a
routine called Qdispatch in the QTAM nu-
cleus. If the routine finds an RECB on the
ready queue, the RECB is replaced with its
QCB; then the first subtask in the QCB's
chain is executed (this is the second step
of the Qpost operation [Figure 71).

The ready queue's cperation can be
understood through an illustrative example
dealing with two simultaneous events:

First Event: A message starts coming
across the line into an allocated buffer.
Oother buffers must be obtained to accommo-
date the message in case its length exceeds
that of one buffer (high priority event).

Second Event: At the same time, a subtask

Figure 5.

The Ready Queue

The previous discussions pointed out
that suptasks gain control depending on:

1. The availablity of elements;
2. The priority of the subtask.

Since QTAM is a control program, it is
responsible for allocating CPU processing
time to the various tasks under its con-
trol. The mechanism it uses is called the
ready QCB, which can be thought of as a QCB
whose element chain is "time" and whose
subtask STCB chain is all the work to be
done in the system. (Note that the ready
QCB's subtask chain is called the ready
queue). The work to be done is represented

that has written a buffer to a disk now
frees the buffer by posting it to some QCB
whose subtask will chain it into an element
chain (low priority event).

In order to obtain a buffer, a BRB (buf-
fer request block) is posted to a QCB whose
subtask will eventually fulfill the request
for the buffer. The empty buffer and a BRB
will be placed on the ready queue "on their
way" to their appropriate queues. It is
much more vital to obtain a buffer for the
incoming message than to chain the freed
buffer, so QTAM assigns a higher priority
to the BRB than to the buffer and chains
them both into the ready queue in priority
order. The BRB will, therefore, be handled
first (i.e., the BRB will be replaced on
the ready queue by the QCB to which it was
posted; and the first subtask in the QCB's
STCB chain will get ccntrol to obtain the
needed buffer).

Logical Organization of QTAM 17e



QATTACH

READY

DUMMY

Figure

18

READY QCB

TAST DIS-
PATCHED QCB
"STCB CHAIN"
(READY QUEUE)
WAITR B
Qcs
LINK TO NEXT
LIN CHAIN
—— STCB 'B'
READY QUEUE Qce
LINK TO NEXT
IN CHAIN
7 STCB
RECB 'X’
POINTER TO
ITS QCB
LINK TO NEXT
I CHAIN
Qcs QCB 'X'
| INK TO NEXT
IN CHAIN
STCB

6. Element Chain

(IS NOT ON THE
READY QUEUE)




READY QCB

QATTACH
"STCBs"
(READY QUEUE
DUMMY p WAITR RECB "X"
. /
r—— - -1
t |
QCB "X" beeeege -
LINK
STCB IIZII
QCB "x'l
r—--TT- - == "'}
I
et ST 1
| | |
R il -
| ————t -
l___.....l.__..l:-___J —:
. -
STCB "Z"
QCB "J" , LINK
y
—

eFigure 7. Second Step of Qpost Operation

| CONTROL BLOCKS

Resource Element Control Blocks

There are three main types of permanent
resource element control blocks (RECBs):

1. Buffer RECBs
2. Communications line RECBs
3. Buffer request RECBs

Figure 8 shows the general form of a
RECB.

Buffers are areas of main storage used
to contain message data and/or control
information. The first 8 bytes of each
buffer comprise an RECB. As with all QTAM
elements, the identity of a buffer at a
particular time depends solely upon the

queue its representative RECB is chained
into at that time. The buffer itself is
always physically identifiable as a fixed
number of bytes of main storage. If the
RECB representing the buffer is chained
into a destination queue control block
(QCB), the buffer is full; that is, it con-
tains a message segment to be transmitted
to a destination. When the same RECB is
subsequently chained into the available
buffer QCB, the element involved is an
available buffer, even though there has
been no change in the physical storage
area.

Communications lines are represented to
OTAM through the line control block (LCB).
There is an LCB for each line. When a sub-
task has control of an LCB, it has control
of the line. Therefore, the LCB itself is

Logical Organization of QTAM 19



treated as the resource element. The RECB

is contained within the LCB.

In order to avoid preassigning buffers
before they are actually needed, QTAM uses
buffer request blocks (BRBs) to queue buf-
fer requests. (This process is explained
later in the section entitled Outline of
QTAM Operation.) These BRBs are elements.
The RECB is contained within the BRB.
There are at least as many BRBs in the sys-
tem as the number of buffers in the buffer
pool. Thus, this pool of BRBs is itself a
pool of resources to be allocated to the
various subtasks that use them.

r

| RECB

l r T -1
| | Key | OCB address |
I U S - 1
| | Priority | Link address |
l L 1 J

|Key is always zero.

|QCB _address is a pointer to the QCB to
|which the element has been posted.
|Priority is of the element represented.
|Link address is a pointer to the next
|element in the chain.

L

SRRy S SR S S MUU S S ——

Figure 8. Resource Element Control Block

Subtask Control Blocks

There are two types of subtask control
blocks (STCBs):

1. Truncated STCBs
2. Full STCBs

These are shown in Figure 9.

Truncated STCBs represent subtasks that are
executed in supervisory state. These sub-
tasks are performed by routines that are
packaged within the Implementation module
(and also by the Distribution List routine
linked with the message control program).
These routines are called implementation
routines and the truncated STCB represents
an implementation subtask.

Full STCBs represent subtasks that are
executed in problem program state. These
subtasks are performed by the message con-
trol program and message processing problem
programs. At this point, we see the over-
lap of the operating system control program
structure with the QTAM control program
structure. A QTAM problem program subtask
is created when an SVC 65 (Qwait) or 67
(Qpost) is issued within an operating sys-
tem task. More specifically, the supervi-
sor request block (SVRB) created by the
second-level Interruption Handler is modi-
fied and used as a QTAM STCB. As a sub-
task, the problem program is placed under
the subtask management of QTAM and must

20

Truncated STCB

Return
code

Priority Link address

[y —— ey
e ——
e e s e e 5

— e e Gt s € s it ey

]Return code is a nonzero value to distin-
]guish between a truncated and a full

| STCB. It is also used, in some cases, as
]a branch modifier to the routine asso-
]ciated with this STCB.

|Priority is of the subtask the STCB

] represents.

JLink address is a pointer to the next
]STCB in the chain. If the STCB can be
|the only STCB in a chain, the last 2

| bytes of this field are truncated and the
[STCB is assembled directly preceding its
{routine.

Full STCB

QCB address
(QATTACH)

Link address

v

+0|Return
| code=0
L

T
|

|
4

L ] . . v
+4| Priority |
b ¥

1 )

+8| STCB }
|size=96 |
|8 4L

— i v S s s G D s e

—

Event Control Block

Link field of SVRB

Register save area

T i el e ok e ko s

[ e
e —

b e e S . o S T —— —— o, — ——— — —— ————— — — — ——— — — —— —— —— — — — — —— — —  —— o W]

o D T s S e e e T ) T R W WS ) o D i i St i e T e S D

General Form of Full and Trun-
cated STCB

Figure 9.

contend for control in that multitask
environment before it is released to con-
tend with other operating system tasks in
the system. The way in which this is
implemented is discussed more fully in the
following sections. Note at this point,
however, that every problem program request
that results in a QTAM SVC 65 or 67 causes
a subtask to be created. These problem
program subtasks are always lower in
priority than any implementation subtask;
thus they are never considered for dis-
patching until all of the internal imple-
mentation subtasks have done all of the
work possible with the resources available.



There can never be more than one full STCB
per problem program partition at a time.

Queue Control Blocks

The ready queue can be thought of as a
queue of queues, each queue being asso-
ciated with a queue control block (QCB).
Figure 10 gives the general form of all
OCBs that are on the ready queue and an
example of a QCB that has replaced an RECB
on the ready queue. The types of queues
that may appear at any given time on the
ready queue are discussed in the following
paragraphs. A more complete and detailed
list of queues is given in Appendix A.

Available Buffer Queue: This queue is used
to keep track of unassigned buffers. The
element chain is the chain of all buffers
that are not assigned. As soon as a buffer
is no longer needed, it is posted to this
queue. The STCB chain for this QCB is
limited to the STCB for the available buf-
fer subtask, which is used whenever a buf-
fer is made available.

LPS Queue: This queue is used to pass ele-
ments from the QTAM control program to the
message control problem program. As shown
in Figqure 2, the element chain may point
to:
1. An empty buffer, signifying that a
Line Read operation is to be
initiated.

2. A message-filled buffer to be passed
through some portion of the LPS.

3. A request for a disk I/0 operation to
be started.

4. A request for a QTAM closedown.

The LPS queue controls the problem pro-
gram of the message control task. The LPS
Ccontrol routine in the message control pro-
gram waits for the LPS queue. When an ele-
ment is available, the LPS Control routine
is given control. This routine examines
the element to determine which of the four
possibilities is the first item in its ele-
ment chain. Figure 2 shows the action that
is taken for each case. The STCB chain for
this QCB is the STCB for the LPS Control
routine.

Main Storage Process Queue: This queue is
used to pass full buffers from the QTAM
control program to a message processing
program. The element chain is the chain of
buffers containing the message unit that is
passed to the message processing program.
This is the QCB that a message processing
program GET waits for.

Inactive BRB Queue: This queue is used to
keep track of inactive buffer request
blocks. The element chain is the chain of
all BRBs that are not assigned. As soon as
a BRB is no longer needed, it is posted to
this queue. The STCB chain may contain the
STCB for a receive-scheduling subtask and/
or one or more send-scheduling subtasks.

Active BRB Queue: This queue is used to
pass active buffer requests from the
various subtasks that require buffers to
the active buffer request subtask, which
obtains the buffers. The element chain is
the chain of active BRBs. The STCB chain
is limited to the STCB for the active buf-
fer request subtask.

Additional CCW Queue: This is a queue of
insert blocks containing the CCWs used to
transmit idle characters when certain line
control characters are encountered in an
outgoing message. When one of these line
control characters is encountered by the
send portion of the LPS, the problem pro-
gram waits for this queue to obtain one of
these insert blocks.

Disk Input/OQutput Queue: BRBs containing
channel command words are posted to this
queue when a Disk Read operation is
required. Full buffers are posted to the
same queue for writing messages on the
disk. The STCB chain is limited to the
STCB for the disk input/output subtask.

Communications Line Queue: There is one
QCB for each communications line. The QCB
is created from the LCB itself when the LCB
is encountered on the ready queue. This
occurs as follows:

1. When a send or receive operation is
completed, the LCB is posted to the
ready queue as an element.

2. When the LCB reaches the top of the
ready queue, a field within it is
initialized as a QCB.

3. The element chain is then completed by
posting the LCB to itself.

4. A receive-scheduling subtask is then
dispatched for the line unless there
is already a send-scheduling subtask
waiting for the line.

Return Buffer Queue: This queue is used by
the GET macro instructions to return a buf-
fer. After the data has been transferred
to the work area, the buffer is returned to
the available buffer queue via this QCB.

Time Queue: This queue is used to delay
the polling of a line for a specified
amount of time. The element chain for this
queue is the LCB waiting for an interrupt
from the Timer.

Logical Organization of QTAM 21



QCB

key element chain pointer

priority link address

STCB chain pointer

Example of the Available Buffer QCB on the Ready Queue

Ready Queue Buffer QCB for Available Buffer Q. RECB

3 pointer to RECB

next item on

E4 ready queue

T to Available Buffer
subtask A (BFRENQ)

RECB

C STCB

BFRENQ code

Buffers

Cfﬂz/;ca

next item
on ready
queue

Figure 10. General Form of QCB and Example of QCB on the Ready Queue

Move Data Queue: This queue is used to
move data while in supervisor mode. Data
can be moved within a partition or across
partitions.

Interim LPS Queue: This queue is used to
delay processing of buffers until all
requests have been processed. Elements of
this queue are transferred to the LPS
queue.

Note: Both the DASD destination QCB and
the DASD process QCB never appear on the
ready queue. They are assembled off the
ready queue, but with a Key of 3 (see the
following discussion of Keys and Appendix A
for a description of the above QCBs).

QWAIT AND QPOST

A suptask requests a resource from a
gueue by issuing a Qwait on the associated
OCB. A subtask passes a resource that it
is finished with by Qposting the resource
to the proper QCB.

Owait from Problem Program: A problem pro-
gram (either message control or message
processing) requests an element from the
OTAM system by issuing an SVC 65.

22

Note: All QTAM SVCs are macro generated.
The programmer should never have to issue
one directly. Because this is a type 2
SvC, the supervisor call second-level
Interruption Handler (SVC SLIH) creates an
SVRB and passes control to the Entry Inter-
face routine in the QTAM nucleus.

The operating system SVRB is converted
to a QTAM full STCB and is temporarily
chained into the STCB chain of the last
dispatched QCB (i.e., if the message con-
trol problem program [LPS] was issuing the
Qwait, the LPS QCB would have been the last
dispatched QCB). The address of the QCB
for the element queue being waited for is
passed in register 2. If the element is
~available, the full STCB is removed from
its temporary chain, the element's address
is placed in register 1, and control is
returned to the problem program.

If an element is not available, the full
STCB is added to the STCB chain of the QCB
whose element chain is being waited for.

An SVC 1 (WAIT) is issued to place the
requesting task in the wait state. The
operating system task management routines
then dispatch some other task if there is
one waiting. Otherwise, these routines
place the entire system in the wait state.

When another subtask subsequently posts
an element to the queue that the problem



program waited for, QTAM dispatches the
problem program subtask by posting the
event control block waited for as complete.
The problem program is then dispatched in
its proper task priority by operating sys-
tem task management.

ppost from Problem Program: A problem pro-
gram (either message control or message
processing) passes an element to the ready
queue by issuing an SVC 67. As with the
Qwait, the SVRB contains the address of the
Qattach QCB and is converted to a QTAM full
STCB. The Qpost STCB is then chained into
the STCB chain of the last dispatched QCB.
However, in the case of the Qpost, the last
dispatched QCB will usually be the ready
QCB itself. Thus, the full STCB will be
chained directly on the ready queue (see
the discussion of Keys for an example of
Opost). The address of the queue that the
element is being posted to is passed in
register 2, and the address of the RECB for
the element being passed is in register 1.
The RECB is placed on the ready queue.
(Note that when the ready QCB is the last
one dispatched, the RECB is placed on the
ready queue above the full STCB. The RECB
has a higher priority.) If a subtask is
waiting for the element, it is dispatched
in priority order. If no subtask is wait-
ing for the element, the RECB is chained to
the proper QCB. When the full STCB gets to
the top of the ready queue, control is
returned to the problem program by the 0S
supervisor routines.

Owait from Internal Implementation Subtask:
When one of the implementation subtasks
requires an element, the subtask checks the
QCB for the element queue being waited for.
If the element is available, the subtask
removes it from the chain and relinks the
element chain, if necessary.

If tne element chain is empty, the sub-
task branches directly to the queue manage-
ment routines in the QTAM nucleus. If the
STCB for the requesting subtask is not
already chained to the QCB for the
requested element, it is placed on the
chain. Control then passes to the Dispatch
routine to activate the next subtask.

Qpost from Internal Implementation Subtask:
When one of the implementation subtasks has
an element to pass to the ready queue, it
branches directly to the Qpost routine in
the QTAM nucleus. The RECB, containing the
address of the QCB to which it was posted,
is placed on the ready queue. The STCB for
the subtask that posted the element is left
chained to the QCB that it was already on,
and either the Qposting subtask or the sub-
task waiting for the element will be
executed.

QOPOST EXAMPLE

The new, full STCB is placed on the chain
of the last dispatch QCB (the ready queue).

READY QCB
[AST DIS-
QATTACH PATCHED QCB
Ist item
READY (READY QUEUE)
DUMMY WAITR
(pointer ¢ KEY=0 |QATTACHADDR
oinrer 1o

next in the ready

LINK ADDR

queuve chain, i.e.,
dummy)

/

T(

The Priority Search/Queue Insert routine
places the posted element on the ready
queue in priority order in front of the
full STCB.

Logical Organization of QTAM 23




The Dispatch routine finds an RECB with
a key of 0 and replaces it with its QCB
(IID).

READY QCB
QATTACH
READY READY QUEUE
DUMMY WAITR

Element's RECB

ADDR of
ITS QCB

Key=0

LINK

FULL STCB

QATTACH

Key=0 | AppR

LINK

/
ECB |

The QCB has replaced the RECB. The QCB
has a key of 3, and the truncated STCB in
its chain is dispatched. When the subtask
terminates, the Dispatch routine is
entered. The key in the ready queue's QCB
is set to 2. A QCB with a key of 3 is
found at the top of the ready queue. The
OCB is removed and its key is set to 1.

e24

READY QCB
LAST DIS-
QATTACH Key=2 | pATCHED QCB
READY (READY QUEUE
DUMMY WAITR

(QCB to which the element

was
posted)

Key=3

LINK

P
L

STCB ADDR

TRUNCATED
STCB

FULL STCB
QATTACH
Key=0 | ADDR

,LINK ADDR

The QCB at the top of the ready queue
has been removed. The ready QCB is dis-
patched by setting the key to 2. The ready
queue is examined and an RECB (full STCB)
with a key of 0 is found. The QCB pointed
to (Qattach or the ready queue) looks as if
it were on the ready queue (since it has a
key of 2). The Exit Select routine sets
the ready queue's key to 3; finds the full
STCB in the chain (this chain is the ready
queue); and posts it complete and exits.



READY QCB
| LAST DIS-
QATTACH Key= PATCHED QCB
Ist item
READY (READY QUEUE)
DUMMY WAITR

QATTACH
ADDR

KEY=0

_LINK ADDR

Highest-Code (EC): The only elements ever
given a code of EC are a BRB or special
dummy element. This is done in five
instances:

1. To indicate that the buffer request
for a disk operation has been unable
to be assigned a buffer.

2. To indicate that a buffer request is
made by the PCI interruption routine
for the first PCI on a receive
operation.

3. To execute a portion of the code of
the Put routine in supervisor mode.

4. To recognize that a SIO is to be
issued to the DASD.

5. To recognize that a QTAM closedown is
in progress.

Second Highest-Code (EU4): This priority is

QTAM NUCLEUS

The QTAM nucleus provides the overall
queue management facilities. These facili-
ties include:

1. Interfacing with the operating system
to convert SVRBs to STCBs.

2. Placing problem programs in the wait
state and then posting them as
complete.

3. Chaining RECBs to the ready queue, and
STCBs to QCBs in the proper priority
sequence.

4. Dispatching the highest-priority
suptask.

The nucleus is composed of several sub-
routines; each is discussed in the section
QTAM Control Module. At this point, how-
ever, we can look at the queue management
facility as a whole. Figure 11 shows a
generalized flowchart of the nucleus. The
Qdispatch routine examines the item at the
head of the ready queue. The position of
all items on the ready queue is determined
by the relative priorities of elements as
they are posted to the gueue. Generally
speaking, the priority of an element is
determined by the type of subtask to which
it is being passed. There are four priori-
ties, indicated by a hexadecimal code in
the RECB.

given to all elements being passed to
implementation subtasks that are disabled
to interruption, except those with a code
of EC.

Third Highest-Code (EO): This priority is
given to all elements being passed to the
message control program.

Lowest-Code (DC): This lowest priority
code is given to all elements being passed
to message processing programs.

QODISPATCH ROUTINE

Odispatch follows the address pointer in
location READY to the item (either an RECB
or QCB) at the top of the ready queue. To
determine whether the item is an RECB or
QCB, Qdispatch examines the key field in
the first byte.

e Key=0: All RECBs have a key of zero.
In some instances full STCBs appear
directly on the ready queue instead of
being chained to the QCB. Qdispatch
will find a full STCB during initiali-
zation, when the ENDREADY macro
instruction is executed and during a
Qpost from a processing program (see
sample Qpost above in Qpost Example).
This full STCB appears to Qdispatch as
an RECB pointing to a location labeled
QATTACH at READY-8, the QCB of the
ready queue. Therefore, the full STCB,
whose address is at location READY (the
top of the ready queue), appears at the
head of an STCB chain in a QCB labeled
QATTACH, and the full STCB is given
control . If Qdispatch finds an RECB,
one of the following events will
result:

Logical Organization of QTAM 25



26

1. If the QCB pointed to by the RECB
is not on the ready queue (key=1),
the RECB is replaced by its QCB,
and the first STCB in that QCB's
chain is dispatched (see the queue
management discussion).

2. If the QCB pointed to by the RECB
has a key of 2, the RECB remains
chained to the ready queue, and the
first subtask in the QCB's STCB
chain is dispatched.

3. If the QCB has a key of 3, the RECB
is removed, and then the first sub-
task in the QCB's chain is dis-
patched. Note that the QCB does
not, in the this case, replace the
RECB on the ready queue.

Key=1: 1Indicates a QCB that is not on
the ready queue.

Key=2: A key of 2 indicates a QCB with
a subtask at the top of its STCB chain
that is ready to be dispatched. A QCB
with a key of 2, however, represents a
special case. The STCB that is ready
was previously entered when an element
was made available to it. At some
point in its processing, it exited (by
Qposting or branching to either another
Implementation module routine or to
another part of the nucleus). Before
it exited, however, it elected to be
reentered whether or not ancther ele-
ment was made available to it. 1In
order to be reentered, this STCB had
set its own QCB key to 2. Now, when an
element is posted to this QCB, Qdis-
patch will discover that it is already
on the ready queue with a key of 2.

The STCB will, at this point, be reen-
tered immediately. The element, how-
ever, will not be removed from the
ready queue.

In summary then, when Qdispatch finds
an RECB pointing to a QCB with a key of
2, the first STCB in its chain will be
gaining control for a second time
(reentered), and that RECB will not be
removed from the ready queue.

Key=3: A key of 3 indicates a QCB with
an associated subtask that has been
dispatched, and the subtask has
finished all the processing required
with the element passed to it.

Note: The dispatched STCB may or may
not be the top STCB of the QCB's chain.
The subtask might have, during the
course of its operation, Qwaited on
another QCB, in which case it would
have been chained into the new QCB's
STCB chain. Regardless of the location
of the STCB, when Qdispatch finds a QCB

with key=3, it removes the QCB from the
ready queue and sets its key to 1.

The flowchart in Figure 11 further shows

‘how control is passed to the dispatched

subtask. If the subtask is represented by
a truncated STCB, the Exit Select routine
simply branches to the entry point of the
subtask. If it is a problem program sub-
task (full STCB), the Exit Interface rou-
tine branches to the Supervisor Post rou-
tine to post this SVRB/STCB as complete,
and then issues an SVC1l (WAIT) on the STCB
that the QTAM control program is currently
operating under. These SVRBS may or may
not be the same. When they are not the
same, we see the case where QTAM is placing
one problem program task in the wait state
and enabling another task that was pre-
viously placed in the wait state to again
be dispatched by the operating system task
supervisor.

There is one dummy element that is used
to indicate the end of all element chains
and is permanently the last item on the
ready queue. This dummy element is preas-
sembled in the ready queue's QCB (see
Figure 6). Note that the physical blocks
of main storage--the RECBs, QCBs, STCBs,
and this dummy element--are never physical-
ly moved in main storage. Their pointers
are merely changed to reflect their current
relative positions (on or off the ready
queue, in a chain, etc.). When this dqummy
element reaches the top of the ready queue,
a final wait is issued to place the last
QTAM problem program in the wait state
until an asynchronous item is put on the
ready queue.

Summary: The ready queue controls alloca-
tion of the resources. The contents of the
ready queue tie an element with a subtask.
Each resource element is represented by an
RECB (Resource Element Control Block),
which contains a pointer to an appropriate
QCB. The QCB contains a pointer to an STCB
associated with a routine that performs the
desired function. To allow more than one
item to request a subtask or wait for a
resource, items are chained or gqueued to a
QCB. Each subtask has an associated trun-
cated STCB that contains a code that is
used to gain access to the routine address.
RECBs to be acted upon, QCBs with acso-
ciated STCBs waiting for a resource, and
full STCBs representing processing programs
are chained to the ready queue. The second
word of each item on the chain of the ready
queue contains the address of the next item
on that queue. The last item points to a
dummy item. The position of all items on
the ready queue is determined by priorities
of the resource. These priorities, set by
the subtask posting the resource, are
determined by the type of function to be
performed.



A suptask requests the resource (Qwaits)
it requires for its execution from the
appropriate QCB, performs its function, and
passes (Qposts) the resource to another QCB
for the next function to be performed. The
Oposting and Qwaiting is daone by the QTAM
control program (IECKQQO01l in the nucleus).
After chaining the item into its proper
place, the QTAM nucleus examines the first
item in the ready queue chain to determine
which routine is to receive control. Three
items can appear on the ready queue:

1. RECBs
2. Full STCBs
3. QCBs

The first byte of these control blocks
contains a key, QKEY. A key of zero indi-
cates an RECB or a full STCB. A QCB has a
nonzero key whose value shows the status of
the ¢CB. These keys are either preas-
sembled in the YCB or set by IECKQQO1.

The three main types of elements repre-
sented py RECBs are: buffers, buffer re-
quest blocks (BrRBs), and line control
blocks (LCBs). By posting an element to a
queue the QTAM nucleus (refer to Figure 11)
causes:

1. The QCB address, passed in register 2,
to oe placed in the RECB whose address
is passed in register 1.

2. The RuCB to be inserted into the chain
of the ready queue in priority order.

3. When the RiCB reaches the top of the
ready queue, the QCB, in the RECB, to
replace the RECB on the ready queue if
the QCB is not on the ready queue.

4. A subtask to be given control to per-
form the function. The truncated STCB
in the STCB chain of the QCB provides
the address of the routine for the
suptask.

There are three ways of posting this
element:

1. If a Qpost is issued via an SVC (only
done in the problem program), an SVRB
is created by the system, and the nu-
cleus is entered at the Entry Inter-
face subroutine. This subroutine
transforms the SVRB into a full STCB
that is used to return to the problem
program. The RECB is chained as
described above.

2. If posting is done in the implementa-
tion subtasks, registers 1 and 2 are
set with the address of the RECB and
QCB respectively, and the subtask
branches directly to the post subrou-
tine in the nucleus.

3. If the implementation subtask wishes
to post several elements before anoth-
er subtask gets control, the implemen-
tation subtask places the RECB con-
taining a QCB address directly on the
ready queue.

A full STCB is made from an SVRB created
by the operating system as the result of an
SVC. The STCB is chained to the last dis-
patched QCB. If this QCB is the ready
gueue, then the STCB is chained directly
onto the ready queue. This STCB appears to
the nucleus as an RECB whose QCB is on the
ready queue with key=2. When the Exit
Select subroutine discovers that it is a
full STCB (by a zero code for the address
of the routine), control is not given to a
routine. The Exit Interface routine posts
the ECB in the STCB as complete and issues
a WAIT (svC 1) for the entry STCB. Normal-
ly I0S, through the SVRB-STCB, returns con-
trol to the problem program. If this STCB
that was serviced was not for the SVC that
caused the entry, the message control task
is in a wait state until there is an asyn-
chronous interrupt.

The special form of the QCB (12 bytes)
is the only type of QCB that appears on the
ready queue. DASD process and destination
QOCBs (full QCBs) are not chained on the
ready queue. A QCB can be placed on the
ready queue by a Qpost or Qwait.

When an element has been posted to a
queue and that queue is not on the ready
queue, then the QCB is chained on the ready
queue in place of the RECB. The key of the
QCB is set to 3 to indicate that the QCB is
on the ready queue but has been dispatched.
When this QCE is encountered on the ready
queue with a key of 3, it is removed and
the key is set to 1 to indicate that it is
not on the ready queue.

The above occurs for all QCBs with the
exception of DASD destination and DASD pro-
cess QCBs. As mentioned previously, these
two QCBs never appear on the ready queue.
They are preassembled off the ready gueue
with key=3. When an element is posted to
one of these QCBs, it appears (to Qdis-
patch) that it is on the ready queue (since
its key=3), and the first STCB in its chain
will get control. Note, however, that
these two QCBs do not replace the RECBs on
the ready queue.

As the result of a Qwait, the full STCB
is chained to the last dispatched queue.
If there is an element available in the QCB
being waited for (passed in register 2 to
the Wait subroutine), the subtask is given
control. The ECB in the full STCB is post-
ed complete. Control returns to the prob-
lem program as the Qwait was satisfied.

Logical Organization of QTAM 27



If the QCB being waited on is ready to
be activated (key=2), the Defer Entry sub-
routine causes the STCB to be chained to
the correct QCB but deferred. If the QCB
is not ready to be activated (key=1 or 3),
the STCB is chained to the correct QCB (if
the last dispatched queue is the one being
waited for, the QCB is immediately dis-
patched), and the QCB is inserted in
priority order on the ready queue. When an
element is posted to this QCB, the STCB
chained to the QCB is the full STCB pre-
viously chained. The QTAM control routine
recognizes the full STCB and posts the

28

event as complete. Return is made to the
routine that issued the Qwait, for now this
wait has been fulfilled.

Therefore, at a given moment, the ready
queue consists of a chain of full STCBs,
OCBs, and RECBs, arranged in priority
sequence. The rate at which a subtask
acquires resources is based on the avail-
ability of the resources and priority of
subtasks. This allocating and dispatching
of subtasks and resources is done by the
single mechanism of the control program
acting on the ready queue.



Waiting or Pasting

Posting

DISPATCH

Asynch.
Interrupt or End or
Ready Q

Top of Ready Q
=QCB or RECB

Element
Posted to itself

Branch from QTAM
Implementation Subtask

Get item from
Top of Ready Q

Waiting

Nucleus
'_ Initialize Full STCB

QDISPATCH Subroutine

YES |_
Contents of Ready =
Contents of QSAVE

Remove QCB from
Top of Ready Q
Get AKey to 1

Associated
QKEY = ejther
20r3

Remove RECB from Top
and Replace with QCB

Remove RECB from Top
of Ready Q and
Dispatch Associated QCB

Exit
Interface

IGGOIING

Top QCB Key
Set to 3

NRET (X)

EXIT SELECT

Subroutine

Implementation Module

®Figure 11.

QTAM Nucleus

SVC First Level Interruption Handler
and Second Level Interruption Handler

QPOST
REG 1
REG 2

SLIH Creates SVRB and
Passes it to QTAM

I and Chain to Last
Dispatched QCB

QWAIT or QPOST
(

Set last dispatched QCB

Place specified
QCB address in

Set up Parameters
in Registers for

Priority

Priority Search Subroutine

I
I

|

I

|

l RECB

| ]
|

|

|

I

DEFER ENTRY

Remove STCB from
Present Chain

Specified
QCB Key=2

Skip Top STCB
in Chain

Set up Parameters
in Registers

|'_ Priority Search Subroutine
EXIT ~
INTERFACE

| Subroutine

Remove STCB
from Queve

QWAIT
REG 2

ENTRY

INTERFACE
Subroutine

QPOST (67)

|
|
|
I
— e ]

POST Subroutine

(A Ready Q)

Passed
(4 RECB)

Subroutine

(4STCB)
(4 QCB)

QWAIT (65)

A Qcs

I
4 RECB |
|
b acs {

Routine

Specified
QCB Key =2

RECB Available

Exit Select

STCB on
Correct Chain

QCB KEY

1 = not on Ready queue

2 = on Ready queue and ready to
be activated

3 = on Ready queue but STCB is waiting
for RECB and cannot be reactivated

until RECB i

s available

WAIT
Subroutine

Defer Entry
Subroutine

YES

Remove RECB From
element chain

Defer Entry Subroutine

QDispatch

PRIORITY SEARCH
Subroutine

Priority and Find Insertion
Point for Item Passed

|

|
|
|
I Search Specified Chain by
|
|
|

Set up Parameters
1s Registers for
Queve Insert

| ==

QUEUE INSERT
Subroutine

|

Past ECB for Full STCB
Associated with QCB on
Top of Ready Q

Asynch, Interrupt

NO

Branch to 10§

@
1

Wait on RECB in
STCB Associated
with Current TCB

Exit to
OS Dispatcher

Logical Organization of QTAM

Insert "ltem"

into Chain

Dispatch

29



OUTLINE OF OTAM OPERATION

The following description is intended to
give a functional flow of messages through
the QTAM operation.

Processing of a QTAM message control
task is activated as a result of interrupts
(sVC, program control, disk, line end, and
line SIV) that occur during the sending and
receiving of a message. These interrupts
result in the processing of one or more
asynchronously operating QTAM subtasks or
appendages. These subtasks communicate
with one another and the message control
task by means of the Qpost and Qwait func-
tions (see section on Qwait and Qpost).
When a subtask has a resource element to be
processed by another subtask, the element
is posted to a gqueue representing that sub-
task. This is done in the problem program
by a Qpost supervisory call; the implemen-
tation subtasks branch to post in IECKQQO1.
Or an effective Qpost is issued by placing
the resource element control block (RECB)
in the puffer on the ready queue and the
address of the QCB in the first word of the
RECB. When a subtask is ready to receive
an element, the Qwait function is used.

The subtask sequence is managed by queuing
to the ready queue as discussed earlier
under Queue Management. The interference
of one iine with another is handled by the
queuing provided within the Cpost/Qwait
functions. This description shows the log-
ical sequence of events for a message
without regard for other subtasks and
interrupts that may occur and that do not
effect the processing of the message.
Therefore, when an element is posted to a
queue, the subtask associated with that
queue is activated immediately. Also for
the sake of continuity and simplicity, that
function of the QTAM nucleus that is
entered as the result of Qposting and
Owaiting is not included in this discus-
sion. The description takes the example of
a multisegment message ending in an EOB-EOT
from a nonswitched terminal.

Figure 22 is a functional flowchart of
the components of QTAM: message control
task, opens and closes, message processing
task, subtasks, and appendages. These com-
ponents are separated by solid lines. Also
on the flowchart, each subtask or module is
separated oy broken lines. The labels on
the flowchart, Figure 22, are the names of
the routines. The functional blocks for
the routine follow the label. When more
detailed information is needed for a par-
ticular functional block, refer to the
detailed explanation of each routine.
detailed description also gives the

This

30

sequence number of the logical flowchart
for that routine. This detailed flowchart
contains the labels that are in the listing
of the routine. Note that some of the
labels in Figure 22 are names of LPS delim-
iter macros for that group of the LPS. The
function of the expansion of these macros
is also represented with a functional
block. For the QTAM nucleus subroutines,
see Figure 11 in the Logical Organization
of QTAM section.

This description is divided into five
sections: Initialization, Receiving, Send-
ing, Message Processing, and Closedown.

The flow of QTAM operation can be traced by
following the steps in the description of
the flowchart, Figure 22.

INITIALIZATION

. The initial function of QTAM is
initiated by the OPEN macros in the problem
program. Upon discovering QTAM, the system
Open shifts control to the Open routines in
the transient area. These routines obtain
and initialize the control blocks (DEB,
DCB, and LCB/IOB), load QTAM resident rou-
tines into partition 0, and prepare the
lines for transmission.

Enter Message Control Task

1. Ovpen disk (see Figure 12)
2. Open checkpoint data set
3. Oven line groups (see Figure 13)

Enter OTAM Open Routines

e Open DASD
Message queues

1. Put the address of the terminal table
in the CVT.

2. Build DEBs.

3. Load Implementation module and store
the address in the terminal table.

4., Load the Checkpoint/Restart module and
store the address in the Implementa-
tion module.

Load 2

1. 1Initialize the QCB whose address is in
the terminal table with the address of
the DASD destination STCB.

2. Execute subtask to put address of
IECRKQQ01 in the Implementation module.

3. Free main storage for secondary DSCBs.

4. Replace offset to polling list with



CV1

DCB

Figure 12.

108
+156 TERMTBL +28 {108
+44 | DEB
+20 {DCB
TERMTBL DASD/QCB
+0 +8 | DASD Dest.
STCB if DEB
+4 t IMP Process QCB
+8 f gAfP ; +12 | DASD Dest.
estination STCB
+24 {DCB
Implementation routine
+0 }LPs Q. QCB for QCB for
Active BRB Q. Inactive BRB Q.
LPS+12 } Active BRB Q.
LPS +48 } Inactive BRB Q.
LPs +288 f TCB +4 } IECKBUFF +4 }IECKRQ
LPS +304 } IGGOI9NH
LPs +316 } IECKOPAW

GETRET-8 { IECKQQO!

the polling characters and index

Blocks Initialized by Open Direct Access Device

e Open Line Group Executors

bytes.
Put buffers in the available buffer
queue. Load
Put buffer request blocks (BRB) in
inactive BRB queue.
1.
2.

e Open Checkpoint/Restart

1.
2.

Caliculate size of checkpoint records.
For disposition NEW, write control

record for first record of data set Load
and two dummy checkpoint records.

For disposition OLD, the control rec- 1.
ord is read from the disk. 2.
If not for a restart, the data set is
formatted. If this is initialization Load
for a restart, the checkpoint record

is read (into the work area obtained 1.
by a GETMAIN). The data previously

recorded is restored. 2.

1
Build DEB.
If the line group is a WTTA line

group, load the WITA Line Appendage
module and establish linkages with the
Implementation module.

2

Build LCBs and IOBs.
Build NOP, SAD, or Enable commands.

3
Load BTAM Read/Write module and skele-

ton CCWs.
EXCP for each line.

Outline of QTAM Operation 31



LCB

+18 | STCB if INPUT
} Dispatch STCB o2 =
ispatc (]
if OUTPUT +28 $108
+24 focs

+12  link address +32 fLCB

8 108 +44 {DEB

+68 | DCB

TCB
+18 | DEB

QCB to

Ready Queue
QATTACH

(1
full STCB
+4 element
chain
READY
DUMMY QATTACH
Figure 13. Control Block after Open Line Groups
The channel program for a SAD, Enable or STATE for receiving (X'08). (Assume

NOP is executed to put the line in receive
status. IOS gives control to the SIO Line
Appendage routine, which requests that
Error Recovery Procedures be given control.
The Special Open and Checkpoint routine in
the ERPs checks for SIO errors. If there
was a normal Start I/0, return is made to
I0OS. The channel end/device end interrupt
gives the Line £nd Appendage control. If
IDLE has pbeen specified, return is made to

I0S. Otherwise, the LCB is posted to
itself, i.e., the QCB and RECB are the same
address.

The STCB for the Receive Scheduler is in
the LCB if the line was opened for input.
(If the line was opened for output, the
STCB is for the Qdispatch subroutine.) The
receive scheduler STCB contains the address
of the Receive Scheduler routine, which
gets control.

Enter Receive Scheduler subtask

e Receive Scheduler routine

1. Test for end of polling list.
2. If not end of polling list, set LCB-

32

not end of polling 1list.)
3. Branch to BRB-Ring routine.

If it is the end of the polling list, the
End of Poll Time Delay routine is entered.
If a time interval is specified, the Send
Scheduler is placed in the LCB that trans-
mits messages during the interval (receive
has priority over sending) or until all
messages on the queue have been sent
(receive and send have equal priority).

e BRB-Ring routine

1. Build ring of buffer request blocks
(BRB) to be used for dynamic buffer
allocation. (BRBs are obtained from
the inactive BRB queue.)

2. Make BRBs unaddressable.

3. Post the first BRB to the active BRB
queue with high priority.

The number of BRBs in the ring is equal
to the value specified in the BUFRQ
operand. The address of the first BRB in
the ring is stored in the LCB so the Acti-
vate routine can gain access to it later.
The first BRB is then posted with a priori-



ty of X'EC' to cause immediate servicing of
the request for a buffer.

Enter Active BRB subtask

e Active BRB routine (High priority)

1. Test for available buffer (assume
available). If the buffer is not
available, the request is put into the
active BRB chain of requests.

2. Branch to Buffer BRB routine.

e Buffer BRB routine

1. Assign empty buffer for receiving;
i.e., the LCB address is placed in the
prefix of the buffer.

2. Post empty buffer to LPS queue with
priority of X'EO'.

Return is to Open Load 3 as the result of
the EXCP.

Open Line Group Executors

1. EXCP is issued for each line to cause
each line to be made ready.

Load 4

1. Test for completion of I/0 on each
line. If I/0 has not completed there
is a 30-second delay.

2. Return is to the message control
program.

For option 2 (MFT) and option 4 (MVT) a
Start Initiator function should be em-
ployed. This will load the message pro-
cessing program into another partition or
region. (See the section on Initializing
Message Processing Prcgram.) The message
processing program gains control when the
message control task enters a WAIT state.
Figure 14 illustrates the formation of the
BRB ring and relation of the buffer to
queues.

RECEIVING

Now there is an empty buffer for each

Load 3 line chained on the LPS queue and a ring of
QCB for
LPS Queue
QCB for
Ready
Queue
RECB empty buffer
LCB
BRB BRB BRB
EC —1 EC — EC
08 08 08
—~—
\v
0 t Les 0 tLes 0 b Les

Figure 14. Buffer keady to Receive Message from Line

Ooutline of QTAM Operation 33



BRBs

for each line. The next function is

to read the messages from the terminal into

the buffers.

To do this, the CCWs must be

prepared for a particular terminal.

e ENDREADY macro instruction

1.
2.

Establish save registers.
Issue an SVC Qpost to enter the check-
point subtask.

Enter Checkpoint Subtask

e Checkpoint routine

1.

2.

3.

Set interval time via the Time Delay
routine (if CPINTV is specified).
Release main storage obtained in the
Open Checkpoint (if restart).

Return to ENDREADY via the full STCB
of the SVC Qpost.

ENDREADY continued

1.

Branch to LPS Control routine.

e LPS Control Routine

3. Since buffer is available, set MSTATUS
to 5 and branch to the Activate
routine.

e Activate routine

1. Prepare CCW for entire buffer in first
BRB (buffer address, operation code,
count) .

2. Build DECB for BTAM Read/Write
routine.

3. Branch to BTAM Read/Write routine.

¢ BTAM Read/Write routine

1. Prepare CCWs for terminal selection
and reading first segment (address in
DECB) .

2. Issue EXCP supervisor call.

e I0S branches to SIO Appendage

e Line SIO Appendage routine (refer to
Figure 11)

1. Move TIC command from BRB to end of
BTAM-prepared CCWs.
2. Test for send request on line or end

1. Set up registers for Activate routine. of polling list.
2. 1Issue an SVC Qwait for buffer in LPS 3. Get poll characters for next terminal
queue (empty buffer posted in Buffer that can be polled.
BRB routine). 4. Change poll CCW to point to poll
LCB
LCBCPA
BTAM
Channel
Buffer
MSLCB Program
Read
Data 4
PCI
TIC
DECB
+12 fFirst BRB BRB BRB
Buffer
TIC TIC ule
fLcs {Les ™  }ie
Figure 15. channel Program Prepared for First Buffer

34




characters found in terminal table.
5. Set PCI flag in the BTAM Read CCW.

e I0S issues Start I/0
Return is to the LPS Control routine.
e LPS Control routine

1. Issue a SVC Qwait for buffer in LPS
queue.

After a Start I/0 is executed for each
line, the LPS Control routine will find no
buffers on the LPS queue. The message con-
trol task will enter a wait state. Subse-
quent I/0 interrupts activate subtasks that
cause pbuffers to be posted to the LPS
queue, allowing the message control task to
continue.

PCI INTERRUPT (RECEIVING THE FIRST BUFFER)

The PCI Appendage is entered as a result
of a PCI flag set in the BTAM CCW by the
Line SIO Appendage. This PCI interrupt is
to allow buffers to be assigned to the BRBs
in the chain.

e PCI Appendage routine
1. Post (effective) all BRBs except the

first to the active BRB queue with
high priority to obtain a buffer.

Enter Active BRB subtask

e Active BRB routine

1. Obtain empty buffer from the available
buffer queue (assume available).
2. Branch to Buffer BRB routine.

e Buffer BRB routine

1. Assign empty buffer for receiving.

2. Set MSTATUS to 5 to signify empty
buffer.

3. Post empty buffer to the LPS queue
with priority of X'E0'.

Enter Message Control task

e LPS Control routine

1. Set up register for Activate routine.
2. Branch to Activate routine (empty
buffer).

e Activate routine

1. Prepare CCW for entire buffer in BRB.

2. Clear low-order bits from TIC command
in previous BRB to make it
addressable.

3. Branch to LPS Control routine.

e LPS Control routine

1. 1Issue an SVC Qwait for buffer in LPS
queue.

PCI INTERRUPT (RECEIVING ALL BUFFERS EXCEPT
FIRST)

PCI Appendage is entered as a result of
a PCI flag in the QTAM CCW in the BRB in
the ring. The PCI interrupt is needed to
return the BRB to the active BRB queue so
it can be reassigned. This interrupt also
indicates that the preceding buffer is full
and ready for the LPS macro instructions as
shown in Figure 16.

e PCI Appendage routine

1. Post (effective) preceding BRB to
active BRB queue with low priority.

2. Post (effective) all message-filled
buffers to LPS queue (via interim LPS
queue).

Enter Active BRB subtask

e Active BRB routine (low priority)

1. Chain BRB into active BRB element
chain.

The interim LPS subtask is entered to post
the buffer to the LPS queue. This subtask
provides a means of delaying the processing
of all buffers until all BRBs are pro-
cessed. Since a PCI interrupt may be
missed due to extended CPU disable time, a
buffer may be out of order.

Enter Message Control task

e LPS Control routine

1. Set up registers for LPS.

2. Branch to LPSTART (message-filled
buffer).

* RCVSEG portion to LPS

e RCVHDR portion of LPS (if header)

e ENDRCV macro instruction

1. Test for end of message, MSTATUS=X'42'
(assume not end of message).

2. Branch to Cleanup routine.

e Cleanup routine

1. Post buffer to DASD process or

destination queue specified by the
ROUTE or DIRECT macro.

Outline of QTAM Operation 35



QCB for
Ready Q.

RECB

Used
BRB

QCB for
Active BRB
Queaue

Figure 16. Effect of PCI Interrupt

I1f posted to a process queue, the Get
Scheduler routine is entered; if posted to
a destination queue, the Send Scheduler
routine is entered. After the Send Sched-
uler has been entered, the STCB in the DASD
destination queue changes to point to the
DASD Destination routine. Therefore, con-
trol would pass to the DASD Destination
routine and exit to the Qdispatch subrou-
tine to dispatch the next item on the ready
queue. Both schedulers use the common code
of the DASD destination routine, (If GET
has been previously issued in message pro-
cessing program, posting to the process
queue is changed. This is covered later in
the Message Processing section.)

e DASD Destination routine

1. Assign direct access location.

2. Reserve and record location of direct
access space for next message and/or
segment.

3. Post (effective) buffer to disk 1I/0
queue.

4. Return to scheduler.

¢ Send Scheduler routine

1. Set 'line trying to send' bit in LCB
(LCBINCAM = X'01') (Assume line is not
free so the Send Scheduler will wait
for the line to be free.)

2. Place send Scheduler STCB in LCB's
STCB chain.

36

RECB

message —
filled
Buffer

Destination
LCB

QCB for
Interim

LPS Queue

Destination
QCB

DASD
Destination
STCB

Message is queved for sending

Send
Scheduler
STCB

Message is queued for sending

Enter Disk I/0 subtask

e Disk I/0 routine (write)

Receive
Scheduler
STCB

1. Convert relative record number to
actual DASD address.
2. Execute EXCP supervisor call.




Return to Message Control task

e LPS Control routine
1. Issue a SVC gwait for buffer in LPS
queue. At this point there is no buf-

fer on the LPS queue so the message
control program enters a wait state.

TIMER INTERRUPT - CHECKPOINT INTERVAL

Enter Checkpoint/Restart routine

1. Issue a GETMAIN for main storage
required for checkpoint record.

2. Transfer data to work area (informa-
tion from terminal table, polling
list, LCB, and QCB).

3. Chain element to disk I/0 queue below
any other request for a Disk Write.
(If no elements are in the queue and
EXCP is issued for the disk
operation.)

Note: The first buffer has now been read
from the line and processed by the LPS
macros. The operations now in progress,
filling the second buffer from the line and
writing the first buffer to the disk, cause
the following possible interrupts.

1. Channel end/device end from the disk
indicating the Disk Write operation is
complete. Control passes to the Disk
End Appendage routine.

2. PCI indicating another full buffer has
been received.

3. Channel end/device end from the line
indicating an EOB was received from
the terminal. Control passes to the
Line End Appendage routine.

4. Channel end/device end/unit exception
from the line indicating an EOT was
received from the line. Control
passes to the Line End Appendage.

In this example, it is assumed that the
channel ends/device end from the disk opera-
tion occurs first and the others follow in
order given.

DISK INTERRUPT (RECEIVING)

The Disk End Appendage is entered as the
result of a disk operation. This interrupt
is used to free the message-filled, buffer
and to initiate for another disk or read
operation.

e Disk End Appendage routine

1. Place the disk I/0 QCB (effective
Qwait) on the ready queue to initiate
another disk operation if one is
stacked. (Assume none.)

2. Post buffer to available buffer queue.

Enter Available Buffer subtask

e Available Buffer routine

1. Find and remove BRB (from PCI inter-
rupt) from active BRB element chain.
2. Branch to Buffer BRB routine.

e Buffer BRB routine

1. Assign empty buffer for receiving.
2. Post empty buffer to LPS queue.

Now that a buffer is available, it can
be assigned to a BRB and used to continue
reading the message. Note that the basic
structure of the channel program has been
set, therefore all that is needed is to
complete the CCW. Figure 17 shows the
normal path of a buffer. Actually the buf-
fer is chained to the ready queue; however,
the diagram shows the logical association
between the buffer and function to be
performed.

Enter Message Control task

e LPS Control routine

1. Set up registers for Activate routine.

2. Branch to Activate routine (empty
buffer).

e Activate routine

1. Prepare CCW for entire buffer in BRB.

2. Clear low-order bit from TIC command
in previous BRB.

e Return is to LPS Control routine

1. 1Issue a SVC Qwait for buffer in LPS
queue.

DISK INTERRUPT--CHECKPOINT WRITE

Enter Checkpoint/Restart Routine

1. If there are errors, a WTO macro is
issued for a message. (Assume no
errors.)

2. If the complete record has not been

written, another disk operation is
Started.

Outline of QTAM Operation 37



BRB/CCW

-

Assign

~ Data filled buffer
N

~

~
S

Interim
LPS Queve

-- - = == -=-~- empty buffer
data in buffer

data after LPS

e RCVHDR portion of LPS (if header)

e ENDRCV macro instruction

to CCW
::;:fble L éssi_gn_ e‘mp_ry_bu_ffe_r to Iine_ o LPS l
Queve Queve
1
1
[
1
1 Insert in Send to
1 available disk destination
1+ buffer chain
]
'
)
Disk I/O Write on disk DASD
Queve Destination
Queve
Figure 17. Path of a Buffer for Receiving
3. When complete record is written, the
control record is written.
4. FRSEMAIN is issued to free the check-
point record.
1.
5. Timer is reset.
6. Dispatch next item on queue.

LINE END INTERRUPT (RECEIVE AN EOB)

The Line End Appendage routine is
entered as a result of an EOB indication.
The CCW must be set up to read the rest of
the buffer.

e Line £nd Appendage routine

1.
2.

Check for errors.
Post message-filled buffer to LPS
queue.

Enter Message Control task

e LPS Control routine

1.
2.

Set up registers for LPS.
Branch to LPSTART.

e RCVSEG portion of LPS

38

Test for end of message
(MSTATUS=X"'42"').

e EOB or EOBLC macro instruction

1.

Branch to EOB or EOBLC routine.

e EOB or EOBLC routine

1.
2.

Set up "first buffer" and "read con-
tinue" flags for Activate routine.
Branch to Activate routine.

e LPS macro instructions for error checking
of received messages.

¢ Activate routine

1.
2.

3.

Prepare CCW for entire buffer in BRB.
Prepare DECB for BTAM Read/Write
routine.

Branch to BTAM Read/Write routine.

e BTAM Read/Write routine

1.

2.

Prepare CCWs to respond to EOB and
read portion of buffer that follows
EOB.

Execute EXCP supervisor call.



e I0S branches to Line SIO Appendage
e Line SIO Appendage routine

1. Move TIC command from BRB to end of
BTAM-prepared CCWs.

e I0OS issues Start 1I/0
e LPS Control routine

1. Issue an SVC Qwait for buffer in LPS
queue.

LINE END INTERRUPT (RECEIVE WRU SIGNAL ON
WTTA LINE)

The WTTA Line Appendage routine is
entered as a result of a WRU indication.
If EOM is different from WRU, the CCW must
be set up to read the rest of the buffer.

e WTTA Line Appendage routine

1. Check for errors.

2. If this is the first buffer, the
requested identification exchange is
performed. On completion, restart the
Read CCW. If this is not the first
buffer, post it to the LPS queue, and
set the "WRU" flag in the LCB.

Enter Message Control Task

e LPS Control routine
e RCVSEG portion of LPS
¢ ENDRCV macro instruction
1. Test for end of message
(MSTATUS=X"'42").
2. Branch to EOB routine.
e EOB routine
1. Set up "first buffer" and "read con-
tinue" flags for Activate routine.
2. Branch to Activate routine.
e Activate routine
1. Prepare CCW for entire buffer in BRB.
2. Prepare DECB for BTAM Read/Write
routine.
3. Branch to BTAM Read/Write routine.
e BTAM Read/Write routine
1. Prepare CCW for ID Exchange and read
portion of buffer including WRU.
2. Execute EXCP supervisor call.

e 10S branches to line SIO Appendage.

e Line SIO Appendage routine

1. Move TIC command from BRB to end of
BTAM-prepared CCWs.

e IOS issues Start I/0.
e LPS Control routine

1. 1Issue an SVC Qwait for buffer in LPS
queue.

LINE END INTERRUPT (RECEIVE EOT--RECEIVE
EOT/EOM ON WTTA LINES)

The Line End Appendage is entered as a
result of an EOT indication.

e Line End Appendage routine
1. Check for errors.

2. Post buffer to LPS queue.

Enter Message Control Task

e LPS Control routine

1. Set up registers for LPS.
2. Branch to LPSTART.

¢ RCVSEG portion of LPS
e RCVHDR portion of LPS (if header)
e ENDRCV portion of LPS
e EOB or EOBLC macro instruction

1. Branch to EOB or EOBLC routine.
e EOB or EOBLC routine

1. Test for EOT.
2. Return to LPS macro instruction.

¢ LPS macro instructions to perform error
checking

e POSTRCV macro instruction
1. Branch to Cleanup routine.
e Cleanup routine

1. 1Issue a SVC Qpost to post buffer to
DASD process or destination gqueue.

Note: Enter DASD Destination routine and
disk I/O subtask as already explained under
the PCI Interrupt section (receiving all
buffers except first). Upon returning to
the Cleanup routine the following functions
have been performed:

Outline of QTAM Operation 39



1. Allocated disk location for text
segment.

2. Placed necessary linkages in text
prefix.

3. Initiated Disk Write operation for
last buffer.

Return to Cleanup routine

¢ Cleanup routine (continued)

1. Issue an SVC Qpost to post any
assigned but unused buffers to the
available buffer queue.

2. Branch to Free BRB routine.

e Free BRB routine

1. 1Issue an SVC Qpost to post BRBs to
inactive BRB queue. (If BRB is in the
active BRB queue it is not posted. A
flag is set so that when this buffer
is available it is not assigned and
the BRB is posted to the inactive BRB
queue.)

2. 1Issue an SVC Qpost to post the LCB to
itself to free the line.

The LCB contains the STCB for either the
Receive or Send Scheduler depending upon
the priority of sending and receiving. The
following priorities may be specified for
nonswitched lines.

1. Receive over send: Messages are sent
only during the polling interval
delay. If no polling delay is speci-
fied, no messages are sent.

2. Receive equal to send: For WTTA
lines, messages are sent if an EOT
signal has been received. For all
other lines, messages are sent at the
end of the polling list. All messages
queued for that line are sent before
polling is reinitiated.

3. Send over receive: Messages are sent
at EOT time, at the end of polling
list, and after a negative response to
poll.

The STCB contains the address of the
scheduler subtask in the link field. When
the LCB is posted to itself and is subse-
quently dispatched, the STCB is activated
so that the Send Scheduler routine (assume
line is free to send) is entered.

SENDING

Sending is initiated when a line is
free, and a full message has been received.
The message must be read into buffers and
then the header rewritten on the disk with
the "message sent" flag set. (See Figure
18.) The buffers are then routed through
the send LPS.

Enter Send Scheduler subtask

e Send Scheduler routine

QCB
Ready
Queve
Dummy
QCB
RECB RECB
Disk 1/0
Buffer BRB
BRB BRB
Figure 18. Ready Queue at Sending Time

40




1. Test for full message in queue.
2. Branch to BRB-Ring routine.

e BRB-Ring routine

1. Build ring of BRBs used for dynamic
buffer allocation. (BRBs are obtained
from the inactive BRB gueue.)

2. Post first BRB to disk I/0 queue.

Return to Message Control task

e LPS Control routine

1. 1Issue an SVC Qwait for buffer in LPS
queue.

Enter Disk I/0 subtask

e Disk I/0 routine (read)

1. Assign buffer from available buffer
queue for Disk Read. (If no buffer
available, BRB is posted to active BRB
queue.)

2. Put buffer on disk I/0 queue before
BRB (BRB is a request to read buffer.)

3. Convert relative record number to
actual DASD address.

4. Execute EXCP supervisor call.

DISK INTERRUPT (SENDING - HEADER)

The Disk End Appendage is entered as a
result of a disk operation. This interrupt
is used to initiate the writing of the buf-
fer back on this disk.

e Disk £nd Appendage routine (read)

1. Assign sequence number and set "mes-
sage sent" flag in prefix.

2. Return to IOS to rewrite buffer on
disk.

DISK INTERRUPT (SENDING - ALL BUFFERS)

The Disk End Appendage is entered as a
result of a disk operation. Note that the
buffer containing the header enters the
Disk End Appendage twice (read, rewrite).
Now that the header has been written back
on the disk the message-filled buffer can
be sent through the send LPS. This inter-
rupt also provides the opportunity to
initiate the reading of the next buffer
from the disk.

e Disk knd Appendage routine

1. Post (effective) buffer to LPS queue.

2. Set up next BRB to read next segment
of message.

3. Turn off the "send" bit so that the
buffer can go through send LPsS.

4. DPost next BRB to disk I/O queue if
available buffer for read.

Enter Disk I/0 subtask

e Disk I/0 routine (read)

1. Assign buffer from available buffer
queue for read. (If no buffer is
available, BRB is posted to active BRB
queue.)

2. Put buffer on disk I/0 queue ahead of
BRB (BRB is a request to read buffer).

3. Convert relative record number to
actual DASD address.

4. Execute EXCP supervisor call. Since
this routine was entered through an
appendage, an EXCP may not be able to
be executed. If the disk is idle, a
SI0 element (STARTIO) is posted to the
LPS queue. The LPS Control routine
would then issue the EXCP.

Enter Message Control task

e LPS Control routine

1. Set up registers for LPS.
2. Branch to LPSTART.

e SENDHDR macro instruction

1. Test for complete "message sent,"
"serviced" bit MSTATUS=X'10°. (Assume
complete message not sent).

2. Branch to header portion of LPS.

e SENDHDR portion of LPS (if header)

¢ ENDSEND macro instruction

1. Branch to Activate routine.

e Activate routine

1. Prepare CCW for entire buffer in BRB.

2. Indicate "message sent" flag in
prefix.

3. Prepare DECB for BTAM Read/Write rou-
tine (first buffer).
For all buffers except first:

4. Clear low-order bits from TIC command
in previous BRB.

5. Set "PCI" flag in CCW.

6. Branch back to LPS Control routine.

e BTAM Read/Write routine

1. Prepare CCWs for terminal selection
and writing first segment.

2. Execute EXCP supervisor call.

3. I0S branches to Line SIO Appendage

e Line SIO Appendage routine

Outline of QTAM Operation 41



1. Move TIC command from BRB to end of
BTAM-prepared CCWs.
2. IOS issues Start I/0

The sequence of Disk End Appendage, disk
I/0 subtask, and message control task is
repeated for each buffer. For the last
buffer the BRB is not posted to the disk
I/0 queue, but the disk I/O QCB is chained
to the ready queue to request another
operation.

Return to LPS Control routine

e LPS Control routine

1. Issue an SVC Qwait for buffer in LPS
queue.

PCI INTERRUPT (SENDING)

The PCI Appendage is entered as a result
of a "PCI" flag set in the CCW for every
buffer except the first.

e PCI Appendage routine

1. Post (effective) preceding BRB to
active BRB queue with low priority.

2. Post (effective) buffer to available

buffer queue.

Enter Active BRB subtask

e Active BRB routine (low priority)

1. Chain BRB into active BRB element
chain.

Enter Available Buffer subtask

e Available Buffer routine

1. Find and remove BRB (from PCI inter-
rupt) from active BRB element chain.

2. Test if wvalid or idle BRB. When there
is no more to read, the buffer is
placed in the available buffer chain
and the next item is dispatched.

3. Branch to Buffer BRB routine.

e Buffer BRB routine

1. Reserve buifer for Disk Read.
2. Post BRB to disk I/O queue.

Enter Disk I/0 subtask

e Disk 1/0 routine (read)

1. Assign buffer from available buffer
queue for Disk Read.

2. Put buffer on disk I/0 queue ahead of
BRB (BRB is a request to read buffer).

3. Convert relative record number to
actual DASD address.

4. Post disk request element to LPS

queue, if disk is idle (assume true
for this case). Execute EXCP super-
visor call, if disk is not idle. The
Start I/0 element is the CCWs created
by Disk I/O routine for reading the
next segment.

QCB QCB

for for
Ready LPS
Queve Queve

READY
DUMMY

]

Start I/O

o]

buffer

Start 1/O Element on Ready Queuve

Enter Message Control task

e LPS Control routine
1. 1Issue EXCP supervisor call for disk.

Disk End Appendage is same as explained
under Sending - All Buffers.

LINE END INTERRUPT (SENDING - EOB)

The Line End Appendage is entered as a
result of an EOB indication.

e Line End Appendage routine

1. Check for errors.

2. Return to IOS to read EOB.
LINE END INTERRUPT (SENDING - RESPONSE TO
EOB)

The Line End Appendage is entered as a
result of a response to an EOB.

e Line End Appendage routine

1. Check for errors.
2. Post buffer to LPS queue.



Enter Message Control task

e LPS Control routine

1. Set up registers for LPS.
2. Branch to LPS.

e SENDHDR macro instruction

1. Test for complete message sent.

2. Branch to the macro instructions fol-
lowing ENDSEND, as a complete message
has been sent (EOB).

e EOB or EOBLC macro instruction
1. Branch to EOB or EOBLC routines.
e EOB or EOBLC routine

1. Set up "first buffer" and "write con-
tinue® flags for Activate routine.

2. Branch to Activate routine.

e Activate routine

1. Prepare CCW for entire buffer in BRB.
2. Prepare DECB for Read/Write routine.

e Read/Write routine
1. Prepare CCW to write portion of buffer
that follows EOB.
2. Execute EXCP supervisor call.
e IOS branches to Line SIO Appendage

e Line SIO Appendage routine

1. Move TIC command from BRB to end of
prepared CCW.

¢ IOS issues Start I/0

Return to LPS Control routine

e LPS Control routine

1. 1Issue an SVC Owait for buffer in LPS
queue.

Available reserved buffer
Buffer  feeeereeensenenicniiniiieiiiiiiiiiiiiiinans -
Queve

Disk
1/0 Queve

[}

 buffer

: message read from
* returned disk

b = = — = — = —

sent through LPS

CCw/BRS LPS
Queve

Path of buffer for sending

Path of Buffer for Sending

LINE END INTERRUPT (SEND EOB/EOT)

The Line End Appendage is entered as a
result of an EOT indication. Now the buf-
fer is ready for the send LPS. Also the
EOT indicates that all BRBs and the line
can be freed.

e Line End Appendage routine

1. Check for errors.
2. Post buffer to LPS queue.

Enter Message Control task

e LPS Control routine

1. Set up registers for LPS.
2. Branch to LPSTART.

e SENDHDR macro instruction

1. Test for complete message sent
(MSTATUS=X'10"').

2. Branch to the macro instructions fol-
lowing ENDSEND, as a complete message
has been sent (EOB).

e EOB or EOBLC macro instruction
1. Branch to EOB or EOBLC routine.
e EOB or EOBLC routine

1. Test for EOT following EOB.
2. Return to LPS since line interrupt is
for EOT.

e LPS macro instruction for error checking
e POSTSEND macro instruction

1. Branch to Cleanup routine.
e Cleanup routine

1. Issue an SVC Qpost to post the buffer
to available buffer queue.

2. Issue an SVC Qpost to post BRBs to
inactive BRB queue. (If BRB is in the
active BRB queue, it is not posted. A
flag is set so that when a buffer is
available it is not assigned and the
BRB is posted to the inactive BRB
queue.)

3. 1Issue an SVC Qpost to post the ICB to
itself.

Enter Send Scheduler subtask

¢ Send Scheduler routine

1. Test for full message in queue.

2. Since no messages are now in the
queue, the Send Scheduler removes the
STCB from the line and places it back
in the destination line QCB's STCB
chain.

Outline of QTAM Operation 43



The line (LCB) would now be free to
execute the next STCB on its chain, which
may be the Receive Scheduler or another
Ssend Scheduler for another terminal on its
line.

Enter Receive Scheduler (If send and
receive have equal priority)

Cycle now complete.

MESSAGE PROCESSING

The procedure for routing buffers to a
message processing program before a GET has
been issued is similar to the description
in the Receiving section. The only dif-
ference is that the messages are posted to
the DASD process queue and the GET Schedul-
er is entered, which branches to the DASD
destination routine. Prior to the first
GET the incoming buffers accumulate on the
DASD process queue.

Enter Message Processing task

1. Open process queues.
e Open Process Queue routine

1 Build DEB (144 bytes).

2. Build chain of message processing
DEBs.

3. Initialize BRB and QCB in DEB.

4. Load Get and/or Put modules.

DEB MS  Process DASD Process QCB

+36 1 IECK STOP
+40 QCB
+ 44 } QPRIRTY

subtask +8

} GET Scheduler

+ 48
+52 | 'FE* (priority) 12 fres

+56 }Qcs for

DASD Process Q.

veo|on fies e

DEB MS Destination

+32

36 8RB | Gce

+40 | 18’ { QPRIRTY

+44

Process OPEN

Process OPEN

4y

Return to Message Processing task

The first GET is to initialize the pro-
cess of reading the buffers from the disk.
No buffers could be queued to the MS pro-
cess queue until this time because the mes-
sage processing queue may not have been
opened.

1. 1Issue GET.
e Get routine

1. Test for message in queue (if none,
exit to EODAD).

2. Issue an SVC Qpost to post the preced-
ing buffer to return buffer queue
(first time dummy buffer in BRB of
process DEB is used).

Enter Return Buffer subtask

¢ Return Buffer routine

1. Make BRB eligible for reading into MS
process queue.
2. Branch to Get Scheduler routine.

¢ Get Scheduler routine (special entry)

1. Get address of DASD process queue.

2. Test to see if BRB is eligible for a
read MSTIC=3. (assume it is eligible)

3. Set the relative record number of the
header segment on the DASD process
gueue in BRB.

4. Indicate disk operation for buffer in
BRB (MSTATUS=9).

5. Post BRB to disk I/0 queue for read.

Enter Disk I/0 subtask (read)

e Disk I/0 routine

1. Test for buffer available (assume
available)

2. Assign buffer from available buffer
queue for Disk Read.

3. Put buffer on disk I/O queue ahead of
BRB. (BRB is requested to read
buffer.)

4. Convert relative record number to
actual DASD address.

5. Execute EXCP supervisor call.

Return to Get routine

1. 1Issue an SVC Qwait for a buffer.

If the MS process queue had a message,
this wait would be satisfied. However to
illustrate a complete cycle, the disk end
procedure follows. The disk operation
replenishes the MS process queue depleted
by a GET (if there is a buffer in the DASD
process queue). Therefore the disk I/0
operation overlaps with the processing in
the user's processing program.



DISK INTERRUPT (FIRST BUFFER - HEADER)

The pisk End Appendage is entered as a
result of a disk operation.

Disk End Appendage routine (read)

1. Indicate message sent and assign
sequence number.

2. Return to IOS indicating that Start
I/0 is for a rewrite to write the mes-
sage back on disk.

DISK INTERRUPT (REWRITE)

The pDisk End Appendage is entered as a
result of a disk operation.

e Disk knd Appendage routine (BRB is still
a request to read a buffer).

1. Remove BRB and buffer from disk I/O
queue.

2. Put puffer in MS process queue.

3. Test for more space in MS process
qgueue. (Assume more space.)

4. Set up for new Disk Read to £ill Ms
process queue.

5. Post BRB to disk I/0 queue to cause
the reading of the next segment.

The wait is now satisfied for a buffer
in the MS process queue.

Return is to the Get routine

e Get routine (continued)

1. Move buffer to work area.
2. Return is made to the message process-
ing program.

For Get Message and Segment if the buf-

fer is empty or it is not end of message,
another buffer is requested.

Enter Message Processing task

1. Execute modifying and examining macro
instructions.

After the first GET has been issued,
then the MS process queue can continue to
be filled. If a message is posted to the
process gqueue after the first GET and there
is space in the MS process queue, the buf-
fer is put in the MS process queue without
actually doing the bDisk Read. (See Figure
19.) Tnis procedure is initiated when the
Cleanup routine posts a buffer to the DASD
process queue as follows.

Enter the Get Scheduler subtask (activated
by posting the buffer to the DASD process

queue)

e DASD Destination routine

1. Assign direct access location.

2. Reserve and record location of direct
access space for next message.

3. Post (effective) buffer to disk I/0
queue for write.

o Get Scheduler routine

1. Test for EXPEDITE (assume not
EXPEDITE) .

If EXPEDITE, the message is not put on
the disk but is put directly into the
MS process queue.

2. Test for space in MS process queue.
(Assume space.)

3. Test for disk address in BRB. (Assume
disk address is the same as for write
in DASD destination routine. This BRB
is in the active BRB queue as a result
of the post to the disk I/0 queue by
Disk End Appendage.)

4. Post BRB to disk I/0O queue for read.
(Second element on disk I/O queue,
BRB, is now a request to read first
element.)

Enter Disk I/0 subtask

e Disk I/0 routine (write)

1. Convert relative record number to
actual DASD address.
2. Execute EXCP supervisor call.

DISK INTERRUPT

The Disk End Appendage is entered as a
result of a disk operation.

e Disk End Appendage routine (write)

1. Remove BRB and buffer from disk I/O
queue.

2. Put buffer in MS process queue.

3. Test for more space in MS process
queue. (Assume space.)

4. Set up for disk read.

5. Post BRB to disk I/O gqueue.
to fill up MS process queue.)

(Continue

Enter Message Processing task (when Message

Control task enters a WAIT state)

1. 1Issue GET (not first time)

* Get routine

Outline of QTAM Operation 45



Chained to DASD Queve

written on disk | E

DASD Process Queue

Before first GET or MS Process Queue filled.

Chained to DASD and
MS Queue

DASD Process Queue written on disk

read into buffer
rewritten if header Buffer
chained to MS Queue
MS Process Queuve moved on GET work area

Buffer returned on next GET.

Buffer

After first GET, MS Queue not filled. %

MS Process
Queve

moved on GET
work area

Figure 19. Queuing in Message Processing

1. Test for message in DASD process
queue.

2. Post preceding buffer to return buffer
queue.

Enter Return Buffer subtask

¢ Return Buffer routine (not first time)

1. Make BRB eligible for Disk Read.

2. Post (effective) buffer to available
buifer queue.

3. Branch to Get Scheduler routine.

Note: Get Scheduler, Disk I/0, Disk End
Appendage, and Message Processing are the

e

Buffer returned on next GET.

same as in posting buffer to process queue
after first GET.

Enter Message Processing task

1. Issue PUT macro instruction.

e Put routine

1. set high priority in BRB in destina-
tion queue in DEB.

2. Issue an SVC Qpost to post BRB to
active BRB queue.



QCB

for

Ready
Queue
QCB
EN

for

Active

BRB Queue

full STCB

to return
to PUT
|
l 1
I I

\J'
Ready Queue to Obtain Message

Figure 20.

Enter Active BRB subtask

e Active BRB routine

1. Assign empty buffer fror available
buffer queue.
2. Branch to buffer BRB routine.

e Buffer BRB routine
1. Make BRB into QCB for MS destination
gueue.

2. Exit to Put routine

e Return to Put routine (special entry in
supervisory mode)

1. Move message from work area to buffer.

2. Post puffer to MS destination queue.

The STCB for the MS destination queue is

QPRIORTY, which inserts the buffer in the
queue and dispatches the next item on the
ready queue. In Figure 21 the MS destina-
tion queue will be removed and the full
STCB will be dispatched to return to the
Put routine.

BRB \\\\\\‘

Buffer

e Return to Put routine

1. 1Issue an SVC Qwait for new filled
buffer.

2. 1Issue an SVC Qpost to post the buffer
to DASD destination QCB.

Note: The results of the post to the DASD
destination queue are as explained in the
section on Receiving. The message is now
sent out to the terminal as explained in
the section on Sending.

CLOSEDOWN

Enter Message Processing Task

1. Issue CLOSEMC macro instruction.

e Close routine

1. Turn off master receive switch by the
move data subtask. This is to prevent
further receive operations.

2. 1Issue a STOPLN macro for all active
lines.

Outline of QTAM Operation 47



QCB

for Ready Queve ™~

Buffer

QCB

for MS
Destination Queue

full STCB

I
| |
|
v oT—
Ready Queue After Obtaining

Figure 21.
Message

e Stop Line routine

1. Issue a Halt I/0 for all dial lines or
2740 terminals (basic or with check-
ing) that are not in active
transmission.

2. Issue an SVC Qwait for the LCB. This

wait can be satisfied by

a. End of poll list,

b. Negative response with "send" flag
for the LCB,

c. Completion of current operation,

d. Completion of interval delay,
which will indicate that the line
is free.

3. Return to Close routine.

* Close routine

1. Issue STARTLN macro instruction.
e Start Line routine

1. Set up SAD/Enable or NOP command.

2. Issue a SVC Qpost to post LCB to queue
QCB to get in supervisor mode.

48

* Queue routine (in Line Change Routine)

1. EXCP

2. Dispatch next item on queue. This
should be the full STCB to return to
the Start Line routine, which returns
to the Close routine.

This starts all lines for output only.
The master receive switch keeps the input
lines inactive. The Close routine returns
to the message processing task.

Return to Message Processing task

1. Issue CLOSE process queue macro
instruction.

e Enter Close Process Queue routine

1. Remove DEB for each DCB from DEB chain
and TCB chain.

2. Test for general closedown. (Assume
general closedown. If not, return.)

3. Issue a STOPLN macro instruction.

¢ Stop Line routine

1. 1Issue a Halt I/0 for all dial lines or
2740 terminals (basic or with check-
ing) that are not in active
transmission.

2. 1Issue an SVC Qwait for the LCB.

3. Return to Close Process Queue routine.
(All process queues have been closed.)

e Return to Close Process Queue routine
4. Post request for message control close

to LPS queue.

Return to Message Control Task

e LPS Control routine

1. Test for request for closedown.
2. Branch to CLOSE macro instructioms.

e Close line group routine

1. Free main storage for LCB.

2. Clear DCB pointers.

3. Purge request for I/O on each line.
4. Disable all dial lines.

e Close DASD routine

1. Clear terminal table from the communi-
cations vector tabl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>