File Number $S360-32
Order Number GC28-6586-15

OS Utilities

Program Numbers 3608-UT-506
360S-UT-507

utility programs and the control statements used with each program. These programs
data.

This publication discusses the capabilities of the IBM System/360 Operating System
are used by programmers responsible for organizing and maintaining operating system

0S

—

Sixteenth Edition (April 1973)

This edition is a major revision of, and makes obsolete, IBM System/360 Operating System:
Utilities, Order Number GC28-6586-14. For a summary of the major technical and editorial
changes to this edition, see “Summary of Major Changes for Release 21.7.”

Technical changes are indicated by a vertical line to the left of the change.

This edition applies to Release 21.7 of the IBM System/360 Operating System. It also applies to
any subsequent versions and modification levels until otherwise specified in new editions or
technical newsletters. :

The information contained in this publication is subject to significant change. Any such changes
will be published in new editions or technical newsletters. Before using this publication, consult

the latest “IBM System/360 and System/370 Bibliography,” GA22-6822, and the current SRL
Newsletters.

Requests for copies of IBM publications should be made to the IBM branch office that serves you.

A form for reader’s comments appears at the back of this publication. Address any additional
comments concerning this publication to IBM Corporation, Programming Publications, Post Office
Box 1900, Boulder, Colorado 80302.

©Copyright International Business Machines Corporation 1965, 1966, 1967, 1968, 1969, 1970,
1971, 1972, 1973

Front part
of book

Back part
of book

IEBTCRIN

oo

IBCRCVRP—Class C

How to Use This Publication 3

How to Use This Publication

Organization of
the Publication

This publication provides a full description of the use of the IBM System/360
Operating System utility programs. This publication assumes that the reader is familiar
with IBM System/360 Operating System terms and concepts.

Effective use of this publication requires an understanding of the following:

Organization of the publication as a whole.
Organization of each program description.

Use of special referencing aids that help you find the right utility program and the
right example.

Required publications.
Related publications.

Notational conventions used to describe the syntax (or format) of utility control
statements.

These topics are discussed below.

In addition to the preface you are now reading, a table of contents, a list of figures,
and a list of tables, this publication has these major parts:

“Summary of Major Changes for Release 21.7,"” which is a summary of the major
changes in this edition.

“‘Guide to Utility Program Functions,” which is a table arranged in alphabetical
order of utility program functions and the programs that perform them. This table
enables you to get to the program that can do what you need to have done. For
additional information, see ‘‘Special Referencing Aids’ below.

“Introduction,”” which introduces the utility programs and provides information on
the differences among system, data set, and independent utility programs. This
chapter contains basic information about how the programs are executed and about
the utility control statements used to specify program functions. New or infrequent
users of the utility programs should give particular attention to this chapter.

22 individual chapters—one for each utility program. These chapters are in
alphabetical order, beginning with IBCDASDI and ending with IFHSTATR. For a
discussion of the organization of these chapters, which will help you find the
information you need about a particular program, see ‘‘Organization of Program
Descriptions’ below.

“Appendix A: Exit Routine Linkage,”” which provides information about linking to
and returning from optional user-supplied exit routines. You should read this
appendix if you plan to code or use an exit routine. If you are coding an exit
routine, this appendix provides linkage conventions, descriptions of parameter lists,
and return codes. If you are using an existing exit routine, you may be interested in
the meaning of return codes from the exit routine.

“Appendix B: Invoking Utility Programs from a Problem Program,”” which describes
the macro instructions used to invoke a utility program from a problem program
rather than executing the utility program by job control statements or by a
procedure in the procedure library. You should read this appendix if you plan to
invoke a utility program from a problem program.

‘“Appendix C: DD Statements for Defining Mountable Devices,”” which provides a
review of how to define mountable volumes to ensure that no one else has access
to them. For a definitive explanation of this subject, see OS Job Control Language
Reference, GC28-6704.

‘‘Appendix D: Generation Data Groups,”” which describes generation data groups
and their indexes, and how to catalog and retrieve generation data sets. This
appendix is included because generation data groups are not fully described
elsewhere and because you need this background information if you are to
manipulate generation data groups with the utility programs. You should read this
appendix if you intend to use utility programs to create or manipulate generation
data sets.

“‘Appendix E: Processing User Labels,” which describes the user-label processing
that can be performed by IEBGENER, [EBCOMPR, IEBPTPCH, IEHMOVE, IEBTCRIN,
and IEBUPDTE. You should read this appendix if you plan to use a utility program
for processing user labels.

How to Use This Publication 5

Organization of
Program Descriptions

Special Referencing Aids

Required Publications

6 Utilities (Release 21.7)

e ‘IIndex,” which is a subject index to this publication.

Program descriptions are all organized the same way to enable you to find
information more easily. Each program is discussed according to the following pattern:

¢ Introduction to and description of the functions that can be performed by the
program. This description typically includes an overview of the program’s use,
definitions of terms, illustrations, etc.

¢ Input and output (including return codes) used and produced by the program.

e Control of the program through job control statements and utility control
statements. A brief explanation of the job control statements used to execute the
program appears in a table under ““Job Control Statements.”” Any restrictions on
job control statements appear under a ‘‘Restrictions’’ heading. The utility control
statements are introduced in a list under “‘Utility Control Statements’* so that you
can determine which of the statements are required for the task to be performed.

e Examples of using the program, including the job control statements and utility
control statements.

Two special referencing aids are included in this publication to help you:
1. Locate the right utility program.
2. Locate the right example.

To locate the right utility program, refer to Table 1 in “Guide to Utility Program
Functions,’”” which immediately precedes the ‘““Introduction.’” Figure 1 shows a portion
of the table. The figure shows that you can use IEHINITT to label a magnetic tape
volume or IEHLIST to list a volume table of contents.

Label magnetic tape volumes IEHINITT

List a password entry IEHPROGM
a volume table of contents IEHLIST
partitioned directories IEHLIST

Figure 1. Locating the Right Program

To locate the right example, use the table—called an ‘‘example directory’’—that
precedes each program’s examples. Figure 2 shows a portion of the example directory
for IEHMOVE. The figure shows that IEHMOVE Example 1 is an example of moving a
sequential data set and that IEHMOVE Example 2 is an example of copying a
sequential data set.

MOVE Sequential 2301 Drum, Source volume is demounted
2311 Disks after job completion.
Two mountable disks. 1
COPY Sequential 2311 Disk, Three cataloged sequential
2301 Drum, data sets are to be copied.
2314 or The 2314 or 2319 are
2319 Disks mountable. 2

Figure 2. Locating the Right Example

The reader should be familiar with the following publications:

e OS Messages & Codes, GC28-6631, which contains a complete listing and
explanation of the messages and codes issued by the utility programs and other
programs.

e OS JCL Reference, GC28-6704, which contains a complete explanation of the job
control statements available for the operating system.

e OS Data Management Services Guide, GC26-3746, which describes the input/output
facilities of the operating system. It contains information on record formats, data
set organization, access methods, direct access device characteristics, data set
disposition, and space allocation.

e OS Supervisor Services Guide, GC28-6646, which contains information on how to
use the services of the supervisor. Among the services of the supervisor are
program management, task creation and management, main storage management,
and checkpoint and restart.

e OS Supervisor and Data Management Macro Instructions, GC28-6647, which
contains a description of the WRITE SZ, LINK, and RETURN macro instructions, and
contains the format and contents of the DCB.

Related Publications

Notational Conventions

Bold Type

Italic Type

Punctuation

Brackets

Braces

Underscoring

Ellipsis

The additional publications referred to in this publication are:

e OS Data Management for System Programmers, GC28-6550, which contains
information on the PASSWORD data set and on writing optional user-supplied exit
routines.

e OS Storage Estimates, GC28-6551, which contains storage estimates.

e 0S System Control Blocks, GC28-6628, which contains a complete description of
the control blocks used by the operating system.

e [BM System/360 Principles of Operation, GA22-6821, which contains a description
of system structure; of the arithmetic, logical, branchlng, status swﬂchmg, and
input/output operations; and of the interruption system.

A uniform system of notation is used to describe the syntax (or format) of utility
control statements. This notation provides a basis for describing the structure of utility
control statements. That is, it describes which parameters are required and which are
optional, the options available in expressing values, and the required punctuation.

In the notation, bold type (LIST, 0, etc.) is used to indicate specific values that can be
entered.

ltalic type (nn, user-information, etc.) is used where a number, character string, or
keyword is to be inserted by the user. For instance, the italic letters in

MODE = mm
Tn

must be replaced by a value when coded.

The period, comma, equal sign, parentheses, and apostrophe are used for
punctuation and must be coded as shown. These punctuation marks serve to separate
the parameters of a utility control statement.

Brackets ([]) indicate that the elements and punctuation they enclose are optional.
The brackets themselves are for descriptive purposes only, and are not to be coded.
For instance

value = elementl,element2,element3[,element4]

indicates that ‘‘value = '’ must be followed by three required parameters (elementl,
element2, and element3) separated by commas. As indicated by the brackets,
element4 is optional and need not be coded. If element4 is coded, however, the
comma that immediately precedes it must also be coded.

When choices are available for an optional value, the choices appear in brackets, one
choice above another, as follows:

value = elementO [,elementl]
[,element2]
[,element3]

In the above example, ‘‘value =" must be followed by element0. Optionally,
elementl, element2, or element3 can be coded.

Braces ({ }) indicate a required choice. The braces themselves are for descriptive
purposes only, and are not to be coded. For example:

value = {elementl}
{element2}

indicates that ‘‘value = "’ must be followed by either elementl or element2.

Underscoring indicates a value that is assumed by the program if no value is entered
for that element. For example, given that no optional value is coded in the following:

value = [elementl]
[element2]

elementl is assumed.

Ellipsis (...) is used to indicate that one or more additional parameters or sets of
parameters, each of the same format, optionally can be added to the operand. For
example, given the following

value = elementl,element2...

the ellipsis indicates that everything preceding the ellipsis and following the equal sign
can be repeated.

How to Use This Publication 7

KEYWORD = device-list

8 Utilities (Release 21.7)

The term KEYWORD is replaced by either VOL, CVOL, FROM, or TO.

The term device is replaced by either a generic name, e.g. 3330; or a substitute for a
generic name, e.g. DISK, if this substitute has been generated into your system.

For direct access devices, the term list is replaced by one or more volume serial
numbers separated by commas. When there is more than one, the entire list field must
be enclosed in parentheses.

For tape, the term list is replaced by either one or more volume serial
number-comma-data set sequence number pairs. Each pair is enclosed in braces and
separated from the next pair by a comma. When there is more than one pair, the
entire list field must be enclosed in parentheses.

Contents

Summary of Major Changes for Release 21.7 17
Major Technical Changes & ¢ v ¢ ¢ i v v b b et e e e e e e e e e 17
Major Editorial Changes v . . ¢t o v i i s e e e e e e e e e e e e e e e 17
Guide to Utility Program Functions 19
Introduction e e e e e e e e e 23
(077 11 .o 23
JobControl Statements i e e e e e e e 23
Utility Control Statements o o i i i e e e e e 23
Continuing Utility Control Statements e e e e e e e e e e e e e e 24
Restrictions v vt i i it e e e e e e e e e e e e e e e 24
Multiprogramming Considerations 000 e e e e e e 24
System Utility Programs« L e e e e e e e e e e e e e 24
Data Set Utility Programs v i 0 i e e e e e e e e e e e 25
Independent Utility Programs v o v v i i i e e e e e e e e e e e 25
Executing IBCDASDI, IBCDOMPRS, andIBCRCVRP o o v v v v v . 26
Executing ICAPRTBL & v v i i i i s s e e e e e e e e s v e e e e e e e 26
IBCDASDI Program i i i it i et e e e e e 27
Initializing a Direct AccessVolume v v o i i n e e e e 27
Assigning an Alternate Track o L L i e e e e e e e e 27
InputandOutput L e e e e e e e e e e e e e e 27
Control . & . . s L e 27
Utility Control Statements v i i i e e e e e e e e e e e e 27
JOBStatement i e e e e e e e e e e e e e e e e 28
MSGStatement L e e e e e e e e e e e e e 28
DADEF Statement o L e e e e e e e e e e e e e 28

VLD Statement e e e e e e e e e e e e e e e e e 29
VIOCD Statement i e e e e e e e e e e e e e 30
IPLTXT Statement« . o 0 v i i st e s e e et e e e e e 30
GETALT Statement ¢ ¢ ¢ o L L i L e e e e e e e e e e e e e e 30
ENDStatement o i i e e e e e e e e e e 31
LASTCARD Statement o . . i i i s e e e e e e e e 31
IBCDASDI Examples . . . & v v v i i e i et e e i e e e e e e e e e e e e e e e e 31
IBCDMPRS Program e e e e e e e e e e e e e e 33
Inputand OQutput L. e e e e e e e 33
Control L e 33
Utility Control Statements o e e 33
JOBStatement e e e e e e e e e e 33
MSGStatement e e e e e e e e e 33
DUMP Statement« v o v i i s e e i e e e e e e e e e 33
VDRLStatement. o i i s e e e e e e e e e e e 35
RESTORE Statement ¢ 0 o i i i e e e e e e e s e e e e 35

END Statement i i i i e e e e e e e e e e e 36
IBCOMPRS Examiples . . . & . o v vt e e e e e e e e e e e e e e e e e e e 36
IBCRCVRP Program—Class C 37
RecoveringUsable Data« 0 i ¢ i i i i it e e e e e 37
ReplacingBadData. v i i i i i i e e e e e e e 37
ReplacementRecord ¢ . ¢ i i o i i e e e e e e e e e e e 37
Inputand Output L e e e e e e e e e 37
Control . . . & i i s e 37
Utility Control Statements o oo oo 37
JOB Statement L L e e e e e e e e e e e 38
MSGStatement L e e e e e e e e e e e 38
RECOVER Statement 0 . i i i i e e e e s e e e e e e e 38
REPLACE Statement o & i i i s e e et e e e e e 39

LIST Statement L . e e e e e e e 40
INSERT Statement« 0 v i i e et e e e e e e 40

END Statement i i e e e e e e e e e e e 41
IBCRCVRP Examples. v v vt v i i st e s e e e e e e e e e e e e e e e 41
ICAPRTBLProgram i i i it e i e e e e e e a 43
Inputand Output L e e e e e e e e e e e 43
Control e 43
Utility Control Statements o o i e e 43
JOBStatement e e e e e e e e e e e 43
DFENStatement o i s e e e e e e e e e e 43
UCSStatement & . ¢ o it e e e e e e e e e e e e e e e e e 43
FCBStatement @ v i i i i e e e e e e e 44

END Statement L 0 L e e e e e e e e 44
ICAPRTBLEXample . . . v & v i v i e e e et e e e e e e e e e e e e e e 44

Contents 9

10 Utilities (Release 21.7)

IEBCOMPR Program—ClassC i i 45

Inputand Output L L e e e e e e e e e e e e e e 46
Control e e e e e e e e e e e e e e e e 46
JobControl Statements L. L e e 46
Restrictions L e e e e e e e e e e e e e 46

Utility Control Statements o o Lo s e 47
COMPARE Statement o ¢ i i e e e e e e 47

EXITS Statement e e e e e 47
LABELS Statement L e e e e e e e e e e e e e 47
IEBCOMPRExamples v v v v ittt e e e e e e e e e e e e e e e e e 48
IEBCOPY Program i i i i e et e e e e e 53
CreatingaBackupCopy v ¢ ¢« t i i v i s e e e e e e e e e e e 53
CopyingDataSets @ 0 i i i i i i e e e e e e e e 53
Selecting Memberstobe Copied o 0oL, 54
Replacing Identically Named Members« o v Lo s e e e 54
Replacing Selected Members L 0o s s e e 55
Renaming Selected Members oL 000 e oo e 55
Excluding Members from a Copy Operation 55
CompressingaDataSet it 55
MergingDataSets e e e e e 55
RecreatingaDataSet i i e 55
InputandOQutput e e e e e e e e 55
Control L e 56
Job Control Statements e e e e e 56
Restrictions i i e e e e e e e e e e e e e e e e 57
Space Allocation e e e e e e e e e e e e e 57

Utility Control Statements L s e 58
COPY Statement L e e e e e e e e e 58
SELECT Statement i e e e e e e e e 60
EXCLUDE Statement v . o e e e e e e e e e e e e 61
IEBCOPY Examples . . .« . & v v o i i e 61
IEBDGProgram i e e e e 81
IBM-Supplied Patterns o e e e e e e e e e e e e e e 81
User-Specified Pictures v v i i e e e e e e e e e e 82
Modification of Selected Fields o oo 82
InputandQutput e e e e e e e e e e e e e e e e e e 82
Control L L e 83
Job Control Statements L oo .- . 83
Restrictions L e e e e e e s e e e e .. 84

PARM Information on the EXEC Statement 84

Utility Control Statements o o o L s e e e e 85
DSD Statement oo e e e e 85
FDStatement e e e e e e e e e e e 85
CREATE Statement« . ¢ o i i i e e e e e e e e e 89
REPEAT Statement i o e e e e e e e e e e 92

END Statement Lo e e e e e e 92
IEBDG Examples« v v v i e 93
IEBEDIT Program e e e e e e e e e e e e e e 101
InputandOutput L L e e e e e e e e 101
Control e 101
Job Control Statements L L Lo e 101
Restrictions« . . L L e e e e e e e e e e e e e e 101

Utility Control Statement« L o s e s e e e e e 101
EDIT Statement L e e e e e 101
IEBEDITExamples v o i i e e i e i e e e e e e e e e e e e e e e e 103
IEBGENER Program—ClassC 107
CreatingaBackupCopy . . . v ¢ v o i i i i i e e e e e e e e e e e e e 107
Producing a Partitioned Data Set from Sequential lnput 107
Expanding a Partitioned DataSet o 000 107
ProducinganEditedDataSet 0 0 oo, 107
Reblocking or Changing Logical Record Length 109
InputandOutput L e e e e e e e e 109
Control L L e 109
Job Control Statements Lo e e 110
Restrictions o L L e e e e e e e e e e e e e e e e 110

Utility Control Statements oo e 111
GENERATE Statement L L Lo e e e e e e 111

EXITS Statement e e e e e e e e e e 111
LABELS Statemento o e e e e e e e e e e e 112
MEMBER Statement L e e e e e e e 113
RECORD Statement v i i i it e s e e e e e e e e 113
IEBGENERExamples« o v i i e e e e e e e e e e e e e e e e e e 115

IEBISAM Program i i it it it it et e 123

Copying an Indexed SequentialDataSet 123
Creating a Sequential Backup Copy « ¢ ¢ v v v v v o i i v i e e e e e 123
Creating an Indexed Sequential Data Set from an Unloaded DataSet 124
Printing the Logical Records of an Indexed Sequential DataSet 124
Inputand Output L L L e e e e e e e e e e e e e 125
Control . . . o e 125
JobControl Statementso e e e e e e e e 126
PARM Information on the EXEC Statement 126
IEBISAMEXamPIES o & v v v v v vt v v v e e s h e e e e e e e e e e e e e e e 127
IEBPTPCH Program—ClassC 129
Printing or PunchingaDataSet , ... 129
Printing or Punching SelectedMembers ¢ v i 0 i v v i e 129
Printing or Punching Selected Records v v i v v v v v v v e 129
Printing or Punching a Partitioned Directory 129
Printing or Punching anEditedDataSet, 130
InputandOutput L e e e e e e e e e e e 130
Control . . L L e 130
JobControlStatements 00 e e e e 130
Restrictions« o v i i i e e e e e e e e e e e e e 131

Utility Control Statements ¢ C s e e e e e e 131
PRINT Statement i i i it e e e et e e e e e e e e e e 132
PUNCH Statement ¢ . i i s e e e e e e 134
TITLEStatement i i i it e e e e e e e e e 135
EXITSStatement 0 v i i i e e e e e e e e e e e 136
MEMBER Statement L e e e e e e e 136
RECORD Statement« ¢ i i i i i i s e s e e e e e e e 136
LABELS Statement e e e e 138
IEBPTPCHEXamples . . . v & v v v v e e e e e e e et e e et et e e e e e e e s 139
IEBTCRIN Program o it it i et e e et e e e e e e e s e e 145
Error Records & v i i i i e 145
Error Description Word (EDW) & o v v i i i i e e e i e e e e e 145
Level Status (Byte 0) v L i e e e e e e e e e e 145

Type Status (Byte 1) i i i i e e e e e e e e e e e 146
Start-of-Record (Byte 2) & ¢ ¢ i i e e e e e e e e e e e e 146
End-of-Record (Byte 3) ¢ i 0 i e e e e e e e e e e e e e 146
Sample Error Records . . . & & v i i it e e e e e e e e e e e e e e e e e e 146
MTDI Editing Criteria 0 o s i e e e e e e e e e e 148
MTDI Editing Restrictions L e e e e e e e 148
End-of-Cartridge e e e e e e e e e e e e e 149
Inputand Output . . . & . . L oL e e e e e e e e e e e e e e e s 149
Control e 149
Job Control Statements L e e e e e e e e e 149
Restrictions o e e e e e e e e e e e 150

Utility Control Statements o o oo o 150
TCRGEN Statement« o ¢« o i e e e e e e e e 151

EXITS Statement o o e e e e e e e e e e e 153
Return Codes from IEBTCRIN ¢ . v v vt o et e e s e e e e s 157
IEBTCRIN Examples v v v i e i e e et e e e e e e e e e e e e e 157
IEBUPDAT Program i i it it it et e e e e et e e 159
Inputand Output ¢ o e e e e e e e e e e 159
{74 (o 159
Job Control Statements L L e e e e e e 159
PARM Information on the EXEC Statement 159

Utility Control Statements« o o i e e e e e e 160
Header Statement. L . L e e e e 160
NUMBR Statement & 0 i i e e e e e e e e e 161
DELET Statement e e e e e e e e e e e e e e e 161
Logical Record Statement e e e 162
ALIAS Statement L L L e e e e e e e e e e e 162
ENDUP Statement ¢ i it e i e e s e e e e e e e e 162
IEBUPDAT Examples . . .« & it v i ittt e e e e e e e e e e e e e e e e e e 162
IEBUPDTE Program i . i ittt et e e s e e e e 165
Creating and Updating Symbolic Libraries oo v i v v v o0 165
IncorporatingChanges & v v i i i e s e e e e e e e e e e s 165
Changing Data SetOrganization v o v v i i v o i i e n e s 165
Inputand Output L e e e e e e e e e e e e 165

Contents 11

12 Utilities (Release 21.7)

Control « v v v e e e [166

Job Control Statements e e e e e e e e 166
Restrictions o e e e e e e e e 166

PARM Information on the EXEC Statement 167

Utility Control Statements« o 0 i i i e e e e e e e e e e e 167
Function Statement o e e e e e e e e e e e 167

Detail Statement L e e e e e e e e e e 171
DataStatement L L e e e e e e e e e e e 173
LABEL Statement, Ve e e e e e e e e e 173

ALIAS Statement L. e e e e e e e e e e e e e e 174
ENDUP Statement v i i it e e e e e e e e e e e 175
IEBUPDTE EXamples . . . v v v v i e et e et e v e e e e e e e e e e e e e e e e 175
IEHATLAS Program o i i i e e e e e e e i e e e 185
Inputand Output e e e e e e e e e e e e e e 185
Control . . . L e s e 185
JobControl Statements e e e e e 185
Restrictions L i i e e e e e e e e e e e e e e e e 185

Utility Control Statement e e e e e e e e e 186
TRACK or VTOC Statement. e e e e e e e e e e e e e e 186
JEHATLAS Examples & . 0 i i it e . 187
IEHDASDR Program i i i it e e e e e e e e 189
Initialize—With Recording-Surface Analysis 189
Initialize—Without Recording-Surface Analysis 189
Changing the Volume Serial Number of a Direct AccessVolume 190
Assigning Alternate Tracks for Specified Tracks 0. 190
Creating a Backup, Transportable, or PrintedCopy 190
Copying Dumped Data to a Direct Access Volume 191
InputandQutput e e e e e e e e e e e e e e e e e e e 191
Control e 192
Job Control Statements e e e e e 192
Restrictions e 193
PARM Information on the EXEC Statement 193

Utility Control Statements i i i i e e e e e 194
ANALYZE Statement L e e e e e e e e e e e e e e e 194
FORMAT Statement i e e e e e e e e e e e 196
LABEL Statement L . e e e e e e e e e e e 198
GETALT Statement i L e e e e e e e e e e . 198
DUMP Statement e 198
RESTORE Statement i i i i e e e e e e e e e e e e 200
IPLTXT Statement e e s e e e e e e e e e e 201
IEHDASDRExamples & . o i v i i e e s e e e e e e e e e e e e e e e e 202
IEHINITT Program i e e e i e e e e e e e e e e e 209
Placing a Standard Label Set on MagneticTape 209
Inputand Output o L e e e e e e 210
Control L e 210
Job Control Statements e e e e 210
Restrictions L L e e e e e e e e e e e e e e e . 210

PARM Information on the EXEC Statement 210

Utility Control Statement L e e e e e 211
INITT Statement o e e e e e e e e e e e 211
IEHINITT Examples . . . o v v i e s e e e e e e e e e et e e e e e e e n e e e e 212
IEHIOSUP Program i e e e e 215
Inputand Output e e e e e e e e e e 215
Control L e 215
Job Control Statements L L e e e e e e e 215
Restrictions 0 e e e e e e e e e e e e e e e 215
JEHIOSUP Examples & i i i it e 215
IEHLIST Program it it i e e e e e e 217
Listing Catalog Entries ¢ & ¢ 0 i 0 v i i e e e e e e e e e e e e e 217
Listing a Partitioned Data Set Directory« v v v v v v o e e e e e . 217
Edited Format L e e e e e e e e e e e e e e e e e e e 217
Unedited (Dump) Format« . o 0 i i it e e e e e 218
Listing a Volume Tableof Contents 218
Edited Format L L e e e e e e e e e e e e e 218
Unedited (Dump) Format e e 220
Inputand Output L e e e e e e e e e e e e e 220
Control e 220
Job Control Statements e e . 220
Restrictions L e e e e e e e e e e e e e 221

PARM Information on the EXEC Statement 221

Utility Control Statements L e e 221
LISTCTLG Statement i i i e e e e e et e e e e e 221
LISTPDS Statement e e e e e e e e e 222
LISTVTOC Statement i it i e e e e e e e e e e e 222
IEHLIST Examples . . .« o v v v it e 223

IEHMOVE Program e 227

Reblocking v v vt i i i i e e e e e e e e e e e e e e e e 230
MovingorCopyingaDataSet, 230
Moving or Copying a Group of CatalogedDataSets 232
Moving orCopyingaCatalog« o ¢ i i i v i i i i i it 233
Moving or Copying a Volumeof DataSets 233
Moving or Copying Direct Data Sets with Variable Spanned Records 234
Inputand Output o e e e e e e e e e e e e e e e e 234
Control . . v i s s e i e e e e e e e e e e e e e e e e e e s e e e e e e 234
Job Control Statements 235
Restrictons 0 0oL e e h e e e e e e e 236

. PARM Information on the EXEC Statement 236

Job Control Language for the Track Overflow Feature 237

Utility Control Statements ¢ . o i it i i i e s e e 237
MOVEDSNAME Statement o0t i it v v e ", . 238
COPYDSNAME Statemento e e e e e e 239
MOVEDSGROUP Statement & o v o v v i i i et e e et v e e s e s 239

COPY DSGROUP Statement it i ittt i e e e e s 240
MOVEPDS Statement o i i i i i it st i e . 241
COPYPDS Statement o i i it et e e s s e e e 242
MOVECATALOG Statement ¢ v v i i i i it it s e e e s 243

COPY CATALOG Statement ¢ v i v it et et e e e e a e e s 244
MOVEVOLUME Statement 0 0 v i v i v ittt e e e a 245
COPYVOLUME Statement« v v v v i it e b e e e e e s e e s 245
INCLUDE Statement o 4 v v it i it e et e e e e et e e 246
EXCLUDEStatement ¢ v i i it e s et e e e e e e e 246
SELECT Statement ¢ o v i it e e e e e e e e e 247
REPLACE Statement & 0 v it i e i e s s e e e e e e e e 247
IEHMOVE Examples v o i it et e e e b e s s e e e s s et 248
IEHPROGM Program i i i it et et et e e s e e s 257
Scratchinga DataSetorMember ittt 257
Renaming a DataSetorMember 00 257
Cataloging or UncatalogingaDataSet 257
Building or Deletinganindex ¢« . v i ¢ v i i i i e e e e e e 258
Building or Deleting anindexAlias ¢ oo v v v hh e 259
Connecting or ReleasingTwoVolumes . .~ e e 259
Building and Maintaining a GenerationIndex 000000 260
Maintaining Data Set Passwords 00t o e e e e e 261
Adding Data SetPasswords i i i s e e e e e e e 262
Replacing DataSetPasswords v it i i i e e 262
Deleting DataSetPasswords 0 oo e e 262
Listing Password Entries« . . 0o oo s e 263
Inputand Output L . e e e e e e e e e e e e e e e e s 263
Control L e 263
Job Control Statements e e e e e e e e e e e e 264
Restrictions L v i e e e e e e e e e e e e e e e e e e e 264

PARM Information on the EXEC Statement 265

Utility Control Statements« o . o o o e 265
SCRATCH Statement & 0 i e e e e e e e e e e 265
RENAME Statement v v o i i e e e e e 266
CATLG Statement & . i i e e e e e e e e e e 266
UNCATLG Statement & ¢ o o v e i s i e e e s e e e e e e e e e 267

BLDX (Build Index) Statement L0 o 00 e 267

DLTX (Delete Index) Statement 0 0 oo oo 267

BLDA (Build Index Alias) Statement 00000 268

DLTA (Delete Index Alias) Statement 0000 268
CONNECT Statement e e e e e e e e 268
RELEASE (Disconnect) Statement o 0 0oL, 269

BLDG (Build Generation Index) Statement 269

ADD (Add a Password) Statement L i i e e e e e e e 269
REPLACE (Replace a Password) Statement 270
DELETEP (Delete a Password) Statement 271

LIST (List Information from a Password) Statement 272
IEHPROGM Examples & v v vt i e et e e et e e h e e e e e e e e e e e 272
IFHSTATRProgram @ i i i i et e e e e et e e i e e e a e 277
Inputand Qutput e e s e e e e 277
Control e e e e e e e e 277
JobControl Statements L e e e e e e 278
IFHSTATRExample . . . ¢ & ¢ v v i ot e e e s e e et e e v e e o e e e v 278
Appendix A: Exit RoutineLinkage 000 279
Linkage toan ExitRoutine L. Lo e e e e 279
Label Processing Routine Parameters 279
Nonlabel Processing Routine Parameters 280
Return froman ExitRoutine ¢ o 0 oL e 280

Contents 13

14 Utilities (Release 21.7)

Appendix B: Invoking Utility Programs from a Problem Program 283

LINK or ATTACH Macro Instructiono v v v oL 283

LOAD Macrolnstruction v v v v v v i s e e e e e e e e e e e e e 284

CALL Macrolinstruction o v i o i i e e e e e e e 285
Appendix C: DD Statements for Defining Mountable Devices e 287
DD StatementExamples o L oo e e e e e e e e e e e e 287
Appendix D: GenerationData Groups 289
Absolute Generation and VersionNumbers 0L, 289
Relative Generation Numbers L o L e e e e e e 290
Building a Generationndex it 0 e e e e e e e e e e e 290
CreatingaNew Generation o 0 v i i i i i i s e e e e e 291
Allocatinga Generation L Lo s e e 292
Cataloginga Generation 0 i i e e 292
Using JCL Procedures to Catalog a Generation 292

Using IEHPROGM to CatalogaGeneration. v o0 o 292
Creating an ISAM Data Set as Part of a Generation DataGroup 292
Retrievinga Generation 0 L e e e e e e e e e e e e 293
Generation Data Group Examples e e e e e e e e e e e e e e e e 293
Appendix E: ProcessingUserLabels 297
Processing User Labels as Data Set Descriptors P e e e 297
Exiting to a User’s Totaling Routine 297
ProcessingUserLabelsasData 298
Index e e e e e e e e e e e e e e 299

Figures

N F= b et b et d e i s
CORNOCTAWNEHOLRONOOTAWN-

N
—

ww
N ==

oo,
SROR

NOOOOOTOOOOO U W,
COPNGITRIBN-SO®

WR N NN NN NN
mFOWRNOGRWN!

w
Hwr

Wwwwww
©ONG TS

IS
ol =

ABDAD
bl

DS
SR

o
ISBeg.

oo
RN

Locating the RightProgram 6
Locatingthe RightExample v 6
Partitioned Directories Whose Data Sets Can Be Compared Using IEBCOMPR . 45
Partitioned Directories Whose Data Sets Cannot Be Compared Using IEBCOMPR 45

Multiple Copy Operations WithinaJobStep 59
Copying a Partitioned Data Set—FullCopy 62
Copying from Three Input Partitoned DataSets 63
Copy Operation with “‘Replace” Specified on the Data Set Level w .. 65
Copying Selected Members with Reblocking and Deblocking 66
Selective Copy with “‘Replace” Specified on the Member Level 68
Selective Copy with ““Replace”” Specified on the Data SetLevel 69
Renaming Selected Members Using IEBCOPY 71
Exclusive Copy with “‘Replace” Specified for One Input Partitioned Data Set . . 72
CompressingaDataSetinPlace 73
Compress-in-Place Following Fuli Copy with ‘‘Replace’” Specified 74
Multiple Copy Operations/Copy Steps e e e e e e e e 77
Multiple Copy Operations/Copy Steps WithinaJobStep 79
IEBDG Actions e e e e e e e e e e e e e 82
Defining and Selecting Fields for Output Records Using IEBDG 85
Field Selected from the Input Record for Use in the Output Record 86
Compatible IEBDG Operations v v v v v v v v v u 88
Default Placement of Fields Within an Output Record Using IEBDG 91
Creating Output Records with Utility Control Statements 91
Repetition Due to the REPEAT Statement UsingIEBDG 92
Output Records at Job Step Completion. e e e e e e 94
Output Partitioned Member at Job Step Completion 96
Partitioned Data Set Members at Job Step Completion 97
Contents of Output Records at Job Step Completion*. 98
Creating a Partitioned Data Set from Sequential Input Using IEBGENER 108
Expanding a Partitioned Data Set Using IEBGENER 108
Editing a Sequential Data Set Using IEBGENER 109
An Unloaded Data Set Created Using IEBISAM 124
Record Heading Buffer Used by IEBISAM 125
Tape Cartridge Reader DataStream 147
RecordConstruction v v il 147
MTDICodesfromTCR o v v v v it e s et e e e 154
MTST CodesfromTCR-uo:....155
MTST Codes after Translation by IEBTCRIN with TRANS=STDCL 156
Format of System Status Information 170
Sequence Numbers and Data Statementsto Be Inserted 180
Sequence Numbers and Seven Data Statements toBe Inserted 181
Direct Access Volume Initialized Using IEHDASDR 190
Format of a Direct Access Volume Dumped to a Printer Using IEHDASDR 191
IBM Standard Label Group After Volume ReceivesData 209
Printout of INITT Statement Specifications and Initial Volume Label

Information L e e e e e e e e 212
Index Structure—Listed by IEHLIST 217
Sample Directory Block i e e e e e e e e e e 217
Edited Partitioned DirectoryEntry o000 218
Sample Partitioned Directory Listing 218
Sample Printout of a Volume TableofContents 219
Partitioned Data Set Before and After an IEHMOVE Copy Operation 231
Merging Two Data Sets Using IEHMOVE 232
Merging Three Data Sets Using [EHMOVE 232
Cataloging a Data Set Using IEHPROGM 258
Uncataloging a Data Set Using IEHPROGM 258
Index Structure Before and After an IEHPROGM Build Operation 259
Building an Index Alias Using IEHPROGM 259
Connecting a Volume to a Second Volume Using IEHPROGM 260
Connecting Three Volumes Using [EHPROGM 260
Building a Generation Index Using EHPROGM 260
Relationship Between the Protection Status of a Data Set and Its Passwords . . 261
Listingof aPasswordEntry 0L 0., 263
Index Structure After Generation Data Sets Are Cataloged 275
Type 21 (ESV) RecordFormat 277
Sample Output from IFHSTATR e e e e e e e e e e e e e e 277
Typical Parameter Lists e 284
Generation Index—ThreeEntries 0.0, 290
Relative Positioning—Three Entriesinthe Catalog 291
GenerationiIndex L Lo e e e e 291
System Action at OPEN, EOV, or CLOSETime 297

Figures 15

Tables

16 Utilities (Release 21.7)

N = b et b b bt b b e b
COXNOONPRWNHOORNDOAWN ==

N
—_

W RN NN NN NN
COBNOTORWNY

WWwwwwww
Noghrbh=

»wWw
—mOoL®;

2P AD
Pwh =

S
o

crooooToaoaaabshhbhhapn
ENOGRON-OOBND

Tasks and Utility Programs « . . . o o v v i b i e s e e 19
Tasks and Utility Programs o o v oo v n oo 19
ICAPRTBL WaitState Codes - & . v v v 0 v vt i e s e e e e 26
VTOC Entriesper Track v v v o v v i ittt e e e e e e e e 30
IBCDASDI Example Directory & .« . 4 i i o e e e e e 31
Valid 7-Track Tape Unit Modes inIBCDMPRS 34
IBCDMPRS Example Directory & ¢ v i i e e e e e e 36
Valid 7-Track Tape Unit ModesinIBCRCVRP 38
IBCRCVRP Example Directory & v v v i i i v i e e e e e 41
IEBCOMPR Job Control Statements e e e e e e e e e e e 46
IEBCOMPR Example Directory ¢ v o 0 v i i v v i e e 48
IEBCOPY Job Control Statements 57
Changing Input Record Format Using [EBCOPY 57
IEBCOPY Example Directory « . o v o 0 v 0 i et e e e e e 61
IBM-Supplied Patterns e e e e e e e e e e e e e e e 81
IEBDG Job Control Statements00, 83
IEBDG Example Directory oo e . 93
IEBEDIT Job Control Statements 102
IEBEDIT Example Directory v . v o v o i it e e 103
IEBGENER Job Control Statements 110
IEBGENER Example Directory ¢ v v v i v v v e e e 115
IEBISAM Job Control Statements 126
IEBISAM Example Directory ¢ . .« o i e e e e e e 127
IEBPTPCH Job Control Statements 130
IEBPTPCH Example Directory« v v v v v v o v vt e e v e 139
IEBTCRIN Job Control Statements 149
Special Purpose Codes o i i i e e e e e e e e e e e e 153
IEBTCRINReturnCodes v v v i i i e i s e e e e e e 157
IEBTCRIN Example Directory« . v o 0 v i v vt e e s e e 157
IEBUPDAT Job Control Statements 159
I[EBUPDAT Example Directory v v v v v o v v e 162
IEBUPDTE Job Control Statements 166
NEW, MEMBER, and NAME Parameters 171
IEBUPDTE Example Directory o o v o v v i 175
IEHATLAS Job Control Statements 186
IEHATLAS Example Directory« . v v v i i v e e e e 187
IEHDASDR Job Control Statements 192
IEHDASDR Example Directory o i i e e . 202
IEHINITT Job Control Statements 210
IEHINITT Example Directory v v v v v e e e e e e e e e e e 212
IEHIOSUP Job Control Statements 215
IEHIOSUP Example Directory ¢ & v v v v v it e e 215
IEHLIST Job Control Statements 0.0 221
IEHLIST Example Directory ¢ 0 v i i vt ot e i e 223
Move and Copy Operations—Direct Access Receiving Volume with Size

Compatible with Source Volume 229
Move and Copy Operations—Direct Access Receiving Volume with Size

Incompatible with Source Volume oL 229
Move and Copy Operations—Nondirect Access Receiving Volume 229
Moving and Copying Sequential and Partitioned DataSets 231
Moving and Copying a Group of Cataloged DataSets 233
Moving and CopyingtheCatalog 233
Moving and Copying a Volumeof DataSets 234
IEHMOVE Job Control Statements 235
IEHMOVE Example Directory 0 o 248
IEHPROGM Job Controf Statements 264
IEHPROGM Example Directory« v oo i oo 272
IFHSTATR Job Control Statements 278
Parameter Lists for Nonlabel Processing Exit Routines 280
Return Codes Issued by User Exit Routines 281
Sequence of DDNMELSTEntries & . v v v o v v v v v v e v e s 284

Summary of Major Changes for Release 21.7

Following is a summary of major technical and editorial changes.

Major Technical Changes There are no major technical changes. Minor maintenance corrections have been
made where applicable.

Major Editorial Changes Following is a summary of the major editorial changes to this publication for Release
21.7:

e The examples have been modified, where necessary, to reflect proper placement of
continuation for JCL and utility control statements.

e Various examples throughout the publication have been modified to reflect usage of
more recent device technologies.

e Additional examples have been included for IEHATLAS, IEHDASDR, and IEHMOVE.

Note: The following programs have been put into Class C Programming Maintenance
classification as of December 15, 1972, and are marked ‘‘Class C'’ at the start of
each of their descriptions in this publication.

IBCRCVRP IEBISAM
IEBCOMPR IEBPTPCH
IEBGENER IEBUPDAT

Summary of Major Changes for Release 21.7 17

Guide to Utility Program Functions

Table 1 shows a list of tasks that the utility programs can be used to perform. The
left-hand column shows tasks that you might want to perform. The middle column
more specifically defines the tasks. The right-hand column shows the utility programs
that can be used for each task. Notice that in some cases more than one program may
be available to perform the same task.

Table 1. Tasks and Utility Programs

Operation

Add
| Analyze

Assign alternate
tracks

Build
Catalog

Change

Compare
Compress-in-
place
Connect

Construct

Convert to
l partitioned

Convert to
sequential

Copy

Create

Delete

Dump

a password
tracks on direct access

to a direct access volume

a generation index
a generation
an index

a data set

a generation data set
data set organization
logical record length

volume serial number of direct access volume

a partitioned data set
sequential data sets

a partitioned data set
volumes

records from MTST and MTDI input

a sequential data set created as a
result of an unload
sequential data sets

a partitioned data set
an indexed sequential data set

a catalog

a direct access volume

a partitioned data set

a volume of data sets

an indexed sequential data set
cataloged data sets

dumped data from tape to direct access

job steps

members

selected members
sequential data sets
to tape

a library of partitioned members
a member

a sequential output data set

an index

an output job stream

a password

an index structure

records from a member

records in a partitioned data set

a direct access volume

Utility

IEHPROGM
IEHATLAS, IEHDASDR, IBCDASDI

IEHDASDR, IBCDASDI, IEHATLAS

IEHPROGM
IEHPROGM
IEHPROGM

IEHPROGM
IEHPROGM

IEBUPDTE
IEBGENER
IEHDASDR

IEBCOMPR
IEBCOMPR

IEBCOPY
IEHPROGM
IEBTCRIN

IEBCOPY
IEBUPDTE, IEBGENER

IEBUPDTE
IEBISAM, IEBDG

IEHMOVE

IEHDASDR, IEHMOVE, IBCDMPRS
IEBCOPY, IEHMOVE

IEHMOVE

IEBISAM

IEHMOVE

IEHDASDR, IBCDMPRS

IEBEDIT

IEBUPDAT, IEBGENER, IEBUPDTE, IEBDG
IEBCOPY, IEHMOVE

IEBGENER, IEHMOVE, IEBUPDTE
IBCDMPRS

IEBUPDTE
IEBDG
IEBDG

IEHPROGM
IEBEDIT

IEHPROGM
IEHPROGM
IEBUPDAT
IEBUPDTE

IEHDASDR, IBCDMPRS

Guide to Utility Program Functions 19

20 Utilities (Release 21.7)

Operation
Edit

Edit and convert
to partitioned

Edit and copy

Edit and list
Edit and print
Edit and punch
Enter

Exclude
Expand

Generate
Get alternate
tracks
Include

Initialize

Insert records
Label
List

Load

Merge
Modify
Move

Number records

Password protect

Print

Punch

Read
Reblock

Recover

Release
Rename

Utility

MTD! input IEBTCRIN

a sequential data set IEBGENER, IEBUPDTE

a job stream IEBEDIT
a sequential data set IEBGENER, IEBUPDTE
error statistics by volume (ESV) records IFHSTATR
a sequential data set IEBPTPCH
a sequential data set IEBPTPCH
a procedure into a procedure library IEBUPDTE
a partitioned data set member from a copy operation IEBCOPY, IEHMOVE
a partitioned data set IEBCOPY
a sequential data set IEBGENER
test data IEBDG

on a direct access volume IEHDASDR, IBCDASDI, IEHATLAS

changes to members or sequential data sets IEBUPDTE
source language modifications in a symbolic library IEBUPDAT
a direct access volume IEHDASDR, IBCDASDI
a tape IEHINITT
into a partitioned data set IEBUPDTE
magnetic tape volumes IEHINITT
a password entry IEHPROGM
a volume table of contents IEHLIST
contents of direct access volume on system output

device IEHDASDR
number of unused directory blocks and tracks IEBCOPY
partitioned directories IEHLIST
the contents of the catalog (SYSCTLG

data set) : IEHLIST
a previously unloaded partitioned data set IEBCOPY
an indexed sequential data set IEBISAM
an unloaded data set IEHMOVE
UCS and FCB buffers of a 3211 _ ICAPRTBL
partitioned data sets IEHMOVE, IEBCOPY
a partitioned or sequential data set IEBUPDTE
a catalog IEHMOVE
a volume of data sets |IEHMOVE
cataloged data sets IEHMOVE
partitioned data sets IEHMOVE
sequential data sets IEHMOVE
in a new member |IEBUPDAT, IEBUPDTE
in a partitioned data set IEBUPDTE
add a password IEHPROGM
delete a password IEHPROGM
list passwords IEHPROGM
replace a password IEHPROGM
a sequential data set IEBGENER, IEBUPDTE, |IEBPTPCH
partitioned data sets IEBPTPCH
selected records IEBPTPCH
a partitioned data set member IEBPTPCH
a sequential data set IEBPTPCH
selected records IEBPTPCH
Tape Cartridge Reader input IEBTCRIN
a partitioned data set IEBCOPY

a sequential data set IEBGENER, IEBUPDTE

data from defective tracks on direct access

volumes IBCRCVRP, IEHATLAS

a connected volume IEHPROGM
a partitioned data set member IEBCOPY, IEHPROGM
a sequential or partitioned data set IEHPROGM
moved or copied members JEHMOVE

Operation

Renumber
Replace

Restore
Retrieve
Scratch

Uncatalog
Unload

Update

Write

logical records

a password

bad data on a defective track

data on an alternate track

identically named members

logical records

members

records in a member

records in a partitioned data set

selected members

selected members in a move or copy operation

a dumped direct access volume from tape
usable data from a defective track

a volume table of contents

data sets

data sets

a partitioned data set

a sequential data set
an indexed sequential data set

in place a partitioned data set
TTR entries in the supervisor call library

IPL records and a program on a direct
access volume

Utility
IEBUPDTE, IEBUPDAT

IEHPROGM
IBCRCVRP
IBCRCVRP, IEHATLAS
IEBCOPY

IEBUPDTE

IEBUPDAT, IEBUPDTE
IEBUPDAT, IEBUPDTE
IEBUPDTE, IEBCOPY
IEBCOPY

IEHMOVE, IEBCOPY

IBCDMPRS, IEHDASDR
IBCRCVRP

IEHPROGM

IEHPROGM

IEHPROGM

IEBCOPY, IEHMOVE
IEHMOVE

IEBISAM

IEBUPDTE

IEHIOSUP

IBCDASI,
IEHDASDR

Guide to Utility Program Functions 21

Introduction

Control

Job Control Statements

Utility Control Statements

The IBM System/360 Operating System provides utility programs to assist in
organizing and maintaining data. Each utility program described in this publication falls
into one of three classes of programs. The program class into which a utility program
falls is determined by the function that the utility program performs and the manner in
which the program is controlled. The program classes are:

o System utility programs, which are used to maintain system control data at an
organizational or system level. These programs are controlled by job control
statements and utility control statements.

o Data set utility programs, which are used to reorganize, change, or compare data at
the data set and/or record level. These programs are controlled by job control
statements and utility control statements.

¢ Independent utility programs, which are used to prepare devices for system use
when the operating system is not available. Independent utility programs operate
outside, and in support of, IBM System/360 Operating System. These programs
are controlled by utility control statements.

The selection of a specific program is dependent on the nature of the job to be
performed. For example, renaming a data set involves modifying system control data.
Therefore, a system utility program can be used to rename the data set. In some
cases, a specific function can be performed by more than one program. Table 1 in
“‘Guide to Utility Program Functions,’”’ which immediately precedes this chapter, is
provided to help you find the program that performs the function you need.

System and data set utility programs are controlled by job control statements and
utility control statements. Independent utility programs are controlled by utility control
statements; because these programs are independent of the operating system, job
control statements are not required. The job control statements and utility control
statements necessary to use utility programs are provided in the major discussion of
each utility program.

A system or data set utility program can be introduced to the operating system in
different ways: :

e Job control statements can be included in the input stream.

e Job control statements, placed in a procedure library or defined as an inline
procedure, can be included by means of the EXEC job control statement.

o A utility program can be invoked by a calling program.

If job control statements are placed in a procedure library, they should satisfy the
requirements for most applications of the program; a procedure, of course, can be
modified or supplemented for applications that require additional parameters, data
sets, or devices. The data set utility IEBUPDTE can be used to enter a procedure into
a procedure library; see “IEBUPDTE Program.”

Independent utility programs do not require job control statements and cannot be
invoked by a calling program. For information on executing independent utility
programs, see ‘‘Independent Utility Programs’ below.

Utility control statements are used to identify a particular function to be performed by
a utility program and, when required, to identify specific volumes or data sets to be
processed. .

The control statements for the IBM System/360 Operating System utility programs
have the following standard format: -

The label symbolically identifies the control statement and, with the exception of
system utility program IEHINITT, can be omitted. When included, a name must begin in
the first position of the statement and must be followed by one or more blanks. It can
contain from one to eight alphameric characters, the first of which must be alphabetic.

The operation identifies the type of control statement. It must be preceded and
followed by one or more blanks.

The operand is made up of one or more keyword parameters separated by commas.
The operand field must be preceded and followed by one or more blanks. Commas,
parentheses, and blanks can be used only as delimiting characters.

Introduction 23

Continuing Utility
Control Statements

Restrictions

Multiprogramming
Considerations

System Utility Programs

24 Utilities (Release 21.7)

Comments can be written in a utility statement, but they must be separated from the
last parameter of the operand field by one or more blanks.

Utility control statements are coded on cards or as card images and are contained in
columns 1 through 71. A statement that exceeds 71 characters can be continued on
one or more additional cards. The label and operation fields must appear on the first
card. The operand, however, can be interrupted after any comma; a comment can be
interrupted after any column. Comments can be placed on any card containing a
complete or partial operand. However, when a comment is placed on a card with a
partial operand, the comment cannot be continued. A nonblank character must be
placed in column 72 to indicate continuation.

The continued portion of the utility control statement must begin in

column 16 of the following statement. (Job control language continuations can begin
in any column from 4 through 16, and do not require a nonblank character in column
72 for continued operand fields.) Comments can be placed on any card containing a

complete or partial statement. However, when a card is included for the sole purpose
of continuing a comment, the continuation must begin in column 16.

Note: The IEBCOPY, IBCRCVRP, IEBPTPCH, IEBGENER, IEBCOMPR, and IEBDG utility
programs permit certain exceptions to these requirements (see the applicable
program description).

The utility control statements are discussed in detail, as applicable, in the remaining
chapters.

e A substitute name that represents two or more different device types (for example,
DISK, meaning 2311 and 2314) cannot be processed by a utility program.

e Unless otherwise indicated in the description of a specific utility program, a
temporary data set can be processed by a utility program only if the user specifies
the complete name generated for the data set by the system (for example,
DSNAME = SYS68296.T000051.RP001.JOBTEMP.TEMPMOD).

In an MVT environment, a region size should be specified for each application of a
system or data set utility program. The region size is determined by the number of
bytes in the utility program and by the block sizes of the data sets used in the job
step). A region size can be specified as a parameter in the EXEC statement specifying
the utility program name. Refer to ‘““Job Control Statements’’ under each utility
program for the minimum region size.

A job that modifies a system data set (identified by SYS1.) must be run in a single job
environment; however, a job that uses a system data set, but does not modify it, can
be run in a multiprogramming environment. The operator should be informed of all
jobs that modify system data sets.

DD statements should ensure that the volumes on which the data sets reside cannot
be shared when update activity is being performed.

System utility programs manipulate collections of data and system control information.
The system utility programs are:

o IEHATLAS, which is used to assign alternate tracks when defective tracks are
indicated.

o IEHDASDR, which is used to initialize direct access volumes or to dump or restore
data.

o |EHINITT, which is used to write standard labels on tape volumes.

e |EHIOSUP, which is used to update entries in the supervisor call library.

e [EHLIST, which is used to list system control data.
e IEHMOVE, which is used to move or copy collections of data.
o |EHPROGM, which is used to build and maintain system control data.

e IFHSTATR, which is used to select, format, and write information about tape errors
from the IFASMFDP tape or the SYS1.MAN data set.

A system utility program is executed or invoked through the use of job control
statements and utility control statements.

System utility programs can be executed as jobs or can be invoked as subroutines by
a calling program. The invocation of utility programs and the linkage conventions are
discussed in ‘“‘Appendix B: Invoking Utility Programs from a Problem Program."

Data Set Utility Programs

Independent Utility
‘Programs

When using system utility programs, be sure that:

"~ o Each data set to be used by programs other than IEHPROGM, IEHMOVE, and

IEHLIST is defined on a DD statement specifying the data set name and

DISP = OLD. When updating activity is being performed by IEHPROGM, IEHMOVE,
IEHLIST, or IEHDASDR in a multiprogramming environment, other tasks should not
be allowed to access the-data set being updated. (Refer to ‘‘Appendix C: DD
Statements for Defining Mountable Devices' for precautions to be taken.)

e DD statements defining mountable devices specify that volumes mounted on those
devices cannot be shared.

o Mountable volumes are not made available to the system until the user is requested
by the system to mount the specified volumes.

e A reader procedure is used that will direct input and output data sets to volumes
other than those which are to be modified by a system utility program.

e When executing a SCRATCH operation, the data set or volume being scratched is
not being used by a program executing concurrently.

Data set utility programs manipulate partitioned, sequential, or indexed sequential
data sets provided as input to the programs. Data ranging from fields within a logical
record to entire data sets can be manipulated. The data set utility programs are:

¢ |EBCOMPR, which is used to compare records in sequential or partitioned data
sets.

e |EBCOPY, which is used to copy, compress, or merge partitioned data sets, to
select or exclude specified members in a copy operation, and to rename and/or
replace selected members of partitioned data sets.

o IEBDG, which is used to create a test data set consisting of patterned data.

o |EBEDIT, which is used to selectively copy job steps and their associated JOB
statements.

o IEBGENER, which is used to copy records from a sequential data set or to convert a
data set from sequential organization to partitioned organization.

e IEBISAM, which is used to place source data from an indexed sequential data set
into a sequential data set in a format suitable for subsequent reconstruction.

e |EBPTPCH, which is used to print or punch records that reside in a sequential or
partitioned data set.

e |EBTCRIN, which is used to construct records from the input data stream that have
been read from the IBM 2495 Tape Cartridge Reader.

e IEBUPDAT, which is used to incorporate changes to symbolic libraries.

e IEBUPDTE, which is used to incorporate changes to sequential or partitioned data
sets.

Data set utility programs can be executed as jobs or can be invoked as subroutines by
a calling program. The invocation of utility programs and the linkage conventions are
discussed in ‘‘Appendix B: Invoking Utility Programs from a Problem Program.”

Independent utility programs operate outside, and in support of, the IBM System/360
Operating System. They are not supported, however, by the 3066 console, which is
only used with the Model 165, System/370. If the 3066 is the only console available,
execute independent utilities by following step 3b ‘‘Executing IBCDASDI, IBCDMPRS,
IBCRCVRP"" below. The independent utility programs are:

o IBCDASDI, which is used to initialize a direct access volume and to assign alternate
tracks. .

¢ IBCDMPRS, which is used to dump and restore the data contents of a direct access
volume.

o IBCRCVRP, which is-used to recover usable data from a defective track, assign an
alternate track, and merge replacement data with the recovered data onto the
alternate track.

e [CAPRTBL, which is used to load the forms control and Universal Character Set
buffers of a 3211 after an unsuccessful attempt to IPL with the 3211 printer
assigned as the output portion of a composite console.

Introduction 25

Executing IBCDASDI,
IBCDMPRS, and IBCRCVRP

Executing ICAPRTBL

26 Utilities (Release 21.7)

IBCDASDI, IBCDMPRS, and IBCRCVRP are loaded as card decks or as card images on
tape. Control statements for the requested program can follow the last card or card

image of the program, or can be entered on a separate input device. To execute
IBCDASDI, IBCDMPRS, or IBCRCVRP:

1.

2.

Place the object program deck in the reader or mount the tape reel that contains
the object program.

Load the object program from the reader or tape drive by setting the load selector
switches and pressing the console LOAD key. When the program is loaded, the wait
state is entered and the console lights display the hexadecimal value FFFF.

. Define the control statement input device in one of the following ways:

(a) Press the REQUEST key of the console typewriter and, in response to the
message ‘DEFINE INPUT DEVICE”, enter “INPUT = xxxx,cuu’’. The xxxx is the
device type, c is the channel address, and uu is the unit address. The device
type can be 1402, 1442, 2400, 2501, or 2540.

(b) If the console typewriter is not available, enter at storage location 0110
(hexadecimal): 1cuu for a 1442 Card Read Punch; 2cuu for a 2400 9-track
tape drive; or Ocuu for a 2540 Card Read Punch, 2501 card reader, 3410 tape,
or 3420 tape. Press the console INTERRUPT key.

. Control statements are printed on the message output device. At the end of the

job, “END OF JOB" is printed on the message output device and the program
enters the wait state.

If the job executes IBCRCVRP and the message output device is a tape, the console
lights display the hexadecimal value DDDD at a normal end of the job and EEEE at an
abnormal end of job. If a machine check occurs, 00E2 is displayed.

ICAPRTBL must be loaded from a card reader. Control statements must follow the last
card of the program. Only one printer can be initialized each time the program is
executed.

To execute ICAPRTBL:

1.
2.

3.

Mount the correct train on the printer and ready the printer.

Place the object program deck and the control cards in the card reader. Ready the
reader and press the end-of-file key.

Load the object program from the reader by setting the load selector switches and
pressing the console LOAD key.

Wait state codes will be displayed in the address portion of the PSW for normal
termination and for input/output, system or control card errors. Code BO1 is issued
for normal termination; BO2 through BO7 are issued for control card errors; BOA
through BOC are issued for system errors; and B11 through B1D are issued for
input/output errors. Table 2 shows these codes and their meanings. For a detailed
discussion of the wait-state codes, see OS Messages & Codes, GC28-6631.

Table 2. ICAPRTBL Wait-State Codes

Code Meaning Code Meaning
BO1 Visually check the train image B12 Reader not ready.
printed on the 3211. B13 Reader unit check (display low
BO2 Missing control card or control main storage location 3 for
card out of order. sense information).
BO3 Incorrect JOB statement. B14 Reader channel error.
BO4 . Incorrect DFN statement. B15 No device end on reader.
BO5 Incorrect UCS statement. B19 Printer not online.
BO6 Incorrect FCB statement. BlA Printer not ready.
BO7 Incorrect END statement. B1B Printer unit check (display low
BOA External interrupt. main storage location 2
BOB Program check interrupt. through 7 for sense information).
BOC Machine check interrupt. B1C Printer channel error.
B11 Reader not online. B1D No device end on printer.

IBCDASDI Program

Initializing a Direct
Access Volume

Assigning an Alternate
Track

Input and Output

Control

Utility Control Statements

IBCDASDI is an independent utility used to initialize direct access volumes for use and
to assign alternate tracks on nondrum, direct access storage volumes. (See
“Introduction’” for general independent utility information.) IBCDASDI jobs can be
performed continuously by stacking complete sets of control statements.

IBCDASDI is not supported on MP65 with the mode switch set to MS; the mode switch
must be set to 65.

IBCDASDI can be used to initialize a direct access volume. A volume can be initialized
with or without surface analysis, a test for defective tracks; however, a surface
analysis should be performed when a volume is initialized for the first time.

Note: A 2321 volume is automatically initialized with a surface analysis.
When a volume is initialized, IBCDASDI:

o Checks for tracks that have been previously designated as defective (flagged) and
have had alternates assigned. This test must be suppressed when a disk is
initialized with surface analysis for the first time. This test must not be suppressed
when a volume is initialized without surface analysis.

e Automatically assigns alternates, if necessary, when a volume is initialized with
surface analysis. Tracks that are available for disposition as alternates are checked
first.

e Writes a track descriptor record (record 0) and erases the remainder of each track.
When a volume is initialized with surface analysis, IBCDASDI also writes a standard
home address.

e Writes IPL records on track O (records 1 and 2).

e Writes volume label on track O (record 3) and provides space for additional
records, if requested.

e Constructs and writes a volume table of contents (VTOC).

e Writes an IPL program, if requested. When a volume is initialized with surface
analysis, the IPL program is written on track 0 for 2301, 2305, 2314, or 2319
volumes or track 1 for 2303 or 2311 volumes. When a volume is initialized without
surface analysis, the IPL program is written on track 0 for 2301, 2305, 2314,
2319, or 3330 volumes or on track 1 for 2303 or 2311 volumes.

Note: Defective tracks are flagged and alternate tracks are assigned when the 3330
storage volumes are initialized at the factory. An IBCDASDI job to initialize a 3330 will
not perform a surface analysis. The quick DASDI, which can be performed on a 3330
volume, includes: (1) reading alternate tracks and decreasing the total count of the
alternates by one when an alternate is found defective or assigned; (2) writing a
volume label and VTOC; and (3) writing IPLTXT, if requested. Note that surface
analysis is not performed and neither the home address nor record O is written on the
primary tracks. The BYPASS and FLAGTEST options of the DADEF statement are
ignored. (See “‘DADEF Statement’”” below.)

IBCDASDI can be used to: (1) test a track and, if necessary, assign an alternate or
(2) bypass testing and automatically assign an aiternate.

If testing is performed, an alternate track is assigned for any track found defective. If
the defective track is an unassigned alternate, it is flagged to prevent its future use.
The alternate track address is made known to the operator.

If a track is tested and not found to be defective, no alternate is assigned. The
operator is notified by a message.

If testing is bypassed, an alternate track can be assigned for the specified track or its
alternate, whether it is defective or not. If the specified track is an unassigned
alternate, it is flagged to prevent its future use.

IBCDASDI uses as input a control data set, which consists of utility control statements.

IBCDASDI produces as output an initialized direct access volume and a message data
set.

IBCDASD! is controlled by utility control statements. Because IBCDASDI is an
independent utility, operating system job control statements are not used.

IBCDASD! utility control statements in the order in which they must appear are:
e JOB statement, which is used to indicate the beginning of an IBCDASDI job.

IBCDASDI Program 27

e MSG statement, which is used to define an output device for operator messages.
o DADEF statement, which is used to define the volume to be initialized.

¢ VLD statement, which contains information for constructing an initial volume label
and for allocating space for additional labels.

e VTOCD statement, which contains information for controlling the location of the
volume table of contents.

o IPLTXT statement, which is used to separate utility control statements from any IPL
program text statements.

e GETALT statement, which is used to assign an alternate track on a volume.
¢ END statement, which is used to indicate the end of an IBCDASDI job.
o LASTCARD statement, which is used to end a series of stacked IBCDASDI jobs.

Note: An IBCDASDI job that initializes a 2321 Data Cell cannot follow one that
initializes a different device type unless IBCDASDI is reloaded.

JOB Statement The JOB statement indicates the beginning of an IBCDASDI job.
The format of the JOB statement is:

JOB must be preceded and followed by at least one blank.

MSG Statement The MSG statement defines an output device for operator messages. It follows the
JOB statement and precedes any function definition statements.

The format of the MSG statement is:

where:

TODEV = xxxx
specifies the type of output device to receive messages, for example, 1403. The
devices that can be specified are 1403, 1443, 1052, 2400, 3210, and 3211.

TOADDR = cuu
specifies the channel number, ¢, and unit number, uu, of the message output
device.

DADEF Statement The DADEF statement defines the direct access volume to be initialized.
The format of the DADEF statement is{:
i ﬁﬁ

TODEV = xxxx
specifies the type of the direct access device to be initialized, for example, 2314.
Note that the 2319 disk is functionally equivalent to the 2314 disk. To use a 2319,
specify 2314 in the TODEV parameter:

TOADDR = cuu
specifies channel number, ¢, and unit nhumber, uu, of the device.

IPL = YES
specifies that an IPL program is to be written on the volume. An IPL initialization
program must be written on a device to be used for system residence. If IPL is
omitted, no IPL program is written.

28 Utilities (Release 21.7)

VOLID =
specifies whether a volume serial number check is to be made. These values can be
coded:

serial
specifies the volume serial number of the volume to be initialized. If serial does
not match the volume serial number found on the volume to be initialized, the
operator is notified and the job is terminated.

SCRATCH
specifies that no volume serial number check is to be made.

FLAGTEST = NO ‘
specifies that no check is to be made for previously flagged tracks on a disk
volume before surface analysis is performed. FLAGTEST = NO should be specified
when the disk recording surface is initialized for the first time. Because no check is
made for previously flagged tracks on drum volumes or on 2321 volumes, ~
FLAGTEST = NO need not be coded when these devices are initialized.

PASSES =n :
specifies the number of passes per track to be made in checking for defective
tracks. PASSES is valid when surface analysis is to be performed or when a quick
DASDI is to be performed on a 3330 volume. The value n can be 0 through 255.
The 0 specification indicates that a quick DASDI is to be performed on a 3330
volume. For a 3330 volume, a value greater than O causes no check to be made for
defective tracks. A specification of 1 through 255 indicates the number of passes
to be made per track for volumes other than a 3330 volume. If PASSES is omitted,
one pass is made per track. This parameter does not apply to 2321 volumes.

BYPASS = YES
specifies that no check is to be made for defective tracks. If BYPASS is omitted,
tracks are checked and those found defective are automatically assigned
alternates. This parameter applies only when surface analysis is not to be
performed; it does not apply to 2321 volumes.

BIN =d

specifies the decimal number of a bin to be initialized. The value of d can be 0
through 9. This parameter applies only to 2321 volumes.

MODEL = n
specifies a decimal model number (1 or 2). This parameter corresponds to the
2305-1 and 2305-2, respectively. MODEL is required when a 2305 is to be
initialized.

VLD Statement The VLD statement contains information for constructing an initial volume label and
for allocating space for additional labels.

The format of the VLD statement is:

where:

NEWVOLID = serial
specifies a one- to six-character volume serial number.

VOLPASS =
specifies the value of the volume security bit. These values can be coded:

0
specifies that the volume is not security protected. If VOLPASS is omitted, O is
assumed.

1
specifies that the volume is security protected.

OWNERID = xxxxxxXXXX
specifies a one- to ten-character field that identifies the owner of the volume. If
OWNERID is omitted, no identification is given.

ADDLABEL =n
specifies the total number of additional labels for which space is to be allocated.
The value of n can be 1 through 7. If ADDLABEL is omitted, O is assumed.

IBCDASDI Program 29

VTOCD Statement

IPLTXT Statement

GETALT Statement

30

Utilities (Release 21.7)

The VTOCD statement contains information for controlling the location of the volume
table of contents.

The format of the VTOCD statement isﬁ;w

where:

STRTADR = nnnnn
specifies the one- to five-byte track address, relative to the beginning of the
volume, at which the volume table of contents is to begin. The VTOC cannot occupy
track O or any alternate track. ,

EXTENT = nnnn
specifies the length (number of tracks) of the VTOC.

Table 3 shows the number of VTOC entries per track for each device type.

Table 3. VTOC Entries per Track
Device VTOC Entries per Track

2301 63
2314 25
2319 25
2302 .22
2303 17
2311 16
2321 8
2305-1 18
2305-2 34
3330 39

The IPLTXT statement separates utility control statements from IPL program text
statements. It is required only when IPL text is included.

The format

When IPL t

The GETALT statement is used to assign an alternate track on a volume. Any number
of alternate tracks can be assigned in a single job by including a GETALT statement
for each track.

Note: A GETALT statement that applies to a 3330 device causes an alternate track to
be assigned automatically without testing.

The format of the GETALT statement is:

where:

TODEV = xxxx
specifies the device type of the direct access device.

TOADDR = cuu
specifies the channel number, c, and unit number, uu, of the direct access device.

TRACK = cccchhhh
specifies the address of the track for which an alternate is requested, where cccc is
the cylinder number and hhhh is the head number.

VOLID = serial
specifies the volume serial number of the volume to which an alternate track is to
be assigned. If serial does not match the volume serial number found on this
volume, the operator is notified and the job is terminated.

FLAGTEST = NO
specifies that no check is to be made for a previously flagged track before a
surface analysis for a disk volume is performed on this track. This parameter is
used when testing before assigning an alternate.

PASSES =n
specifies the number of passes, n, to be made when performing a surface analysis
on this track. The value of n can be 1 through 255. If PASSES is omitted, one pass
is made. (If, however, the GETALT statement applies to a 3330 volume, an
alternate track is assigned without testing; the PASSES parameter is ignored.) This
parameter is used when testing before assigning an alternate.

BYPASS = YES .
specifies that no check for a defective track is to be made. Iif BYPASS is omitted,
the program assigns an alternate only if it finds that the specified track is defective. -

BIN=d
specifies the decimal number of a bin to be initialized. The value of d can be 0
through 9. This parameter applies only to 2321 volumes.

MODEL =n
specifies a decimal model number (1 or 2). This parameter corresponds to the
2305-1 and 2305-2, respectively. MODEL is required when a 2305 is to be
initialized.
The GETALT function should not be used immediately after a RESTORE operation that
did not complete successfully. Before using GETALT in such a case, reinitialize the
volume, if possible.

END Statement The END Statement denotes the end of job. It appears after the last function definition
statement.

END must start in column 2.

LASTCARD Statement The LASTCARD statement is required only when an IBCDASDI job or a series of
stacked IBCDASDI jobs is followed by other statements on the control statement input
device. The LASTCARD statement must follow the last END statement applying to an
IBCDASDI job.

The format of the LASTCARD statement is:

IBCDASDI Examples The examples that follow illustrate some of the uses of IBCDASDI. Table 4 can be
used as a quick reference guide to IBCDASDI examples. The numbers in the
“Example’’ column point to examples that follow.

Table 4. IBCDASDI Example Directory

Operation Comments Example

Initialize A 2305 volume is to be initialized with surface analysis.

Initialize A 2305 volume is to be initialized without surface analysis. 2

Initialize A 3330 volume to be used as the system residence volume

is to be initialized. An IPL program is included in TXT format. 3

Assign alternate Three alternate tracks are to be assigned on a 3330 volume.

tracks 4
IBCDASDI Example 1 In this example, a 2305 volume is initialized for the first time. A surface analysis is

performed with the initialization.
The example follows:

INIT JOB 'INITIALIZE 2305’
MSG TODEV=1403, TOADDR=00E
DADEF TODEV=2305,TOADDR=140,VOLID=SCRATCH, FLAGTEST=NO
VLD NEWVOLID=111111
VTOCD STRTADR=50,EXTENT=10
END

The control statements are discussed below:
o JOB initiates the IBCDASD! job.
e MSG defines the 1403 on channel 0, unit OE, as the output message device.

IBCDASDI Program 31

IBCDASDI Example 2

IBCDASDI Example 3

IBCDASDI Example 4

32 Utilities (Release 21.7)

DADEF specifies that a 2305 volume on channel 1, unit 40, is to be initialized.
Because the volume is being initialized for the first time, no check is to be made for
previously flagged tracks..

VLD specifies 111111 as the volume serial number of the volume to be initialized.

VTOCD specifies the starting address and length in tracks of the volume table of
contents.

In this example, a 2305 volume is initialized for the first time. No surface analysis is
performed with the initialization.

The example follows:
INIT JOB INITIALIZE 2305

MSG TODEV=1403, TOADDR=00E

DADEF TODEV=2305, TOADDR=140,VOLID=SCRATCH, BYPASS=YES
VLD NEWVOLID=230500

VTOCD STRTADR=1,EXTENT=3
END

The control statements are discussed below:

DADEF specifies that a 2305 volume is to be initialized and specifies the channel
and unit number. No check is to be made for the volume serial number or for
defective tracks.

VLD specifies the volume serial number of the volume to be initialized.

VTOCD specifies that the volume table of contents is to begin on track 1 and is to
extend over three tracks. ‘

END specifies the end of the IBCDASDI job.

In this example, a 3330 volume is initialized for later use as a system residence
volume. An IPL program is included in standard TXT format.

The example follows: ‘
INIT JOB 'INITIALIZE 3330’

MSG TODEV=1403, TOADDR=00E
DADEF TODEV=3330,TOADDR=150, IPL=YES

VLD NEWVOLID=P0O00O1,0WNERID=BROWN, ADDLABEL=2
VTOCD STRTADR=2,EXTENT=9
IPLTXT

(IPL program text statements)

END

The control statements are discussed below:

DADEF specifies that a 3330 volume is to be initialized and specifies the channel
number and unit number. An IPL program is to be included.

VLD specifies a volume serial number and owner identification for the volume to be
initialized. It also specifies that space is to be allocated for two additional labels.

VTOCD specifies that the volume table of contents is to begin on track 2 and is to
extend over nine tracks.

IPLTEXT specifies the beginning of IPL program text statements.

END specifies the end of IPL program text statements. Because IPL text is included,
END begins in column 2.

In this example, three alternate tracks are assigned to a 3330 volume, without
reinitialization of the volume. The check for a defective track is bypassed when the
first two of the three tracks are assigned.

The example follows: _
ALTRK JOB ASSIGN ALTERNATE TRACKS ON 3330

MSG TODEV=1052, TOADDR=009

STMT1 GETALT TODEV=3330, TOADDR=150,VOLID=P00002, QC

BYPASS=YES, TRACK=006F0001

STMT2 GETALT TODEV=3330,TOADDR=150,VOLID=P00002, QC

BYPASS=YES, TRACK=00910004

STMT3 GETALT TODEV=3330,TOADDR=150, QC

TRACK=004B0007,VOLID=P00002
END

The control statements are discussed below:

The first and second GETALT statements bypass the check for defective tracks.

The third GETALT statement causes the check for a defective track to be made
because BYPASS is not included.

IBCDMPRS Program

IBCDMPRS is an independent utility used to dump and restore data on direct access
volumes. (See “Introduction’ for general independent utility information.)

The data contents of a direct access volume (all data except the home address) can
be dumped to 2311, 2314, 2319, 2305, 3330, or tape volumes and restored to a
direct access volume that resides on the same type of device as the source volume.
Both the source volume and the volume to which data is to be restored must have
been initialized to IBM System/360 Operating System specifications. IBCDMPRS is
useful for preparing transportable copies and backup copies of direct access volumes.

IBCDMPRS is not supported on MP65 with the mode switch set to MS; the mode
switch must be set to 65.

Input and Output IBCDMPRS uses as input:
e A control data set, which contains utility control statements.
e A data set to be dumped to tape or to be restored to a direct access volume. -
IBCDMPRS produces as output:
e A data set dumped to tape or a data set restored to a direct access volume.

e A message data set.

Control IBCDMPRS is controlled by utility control statements. Because IBCDMPRS is an
independent utility, operating system job control statements are not used.

Utility Control Statements IBCDMPRS utility control statements are:
e JOB statement, which is used to begin an IBCDMPRS job.
e MSG statement, which is used to define an output device for operator messages.

o DUMP statement, which is used to identify the volume to be dumped and the
receiving volume.

e VDRL Statement, which is used to specify the upper and lower track limits of a
partial dump.

e RESTORE statement, which is used to identify the source volume whose data is to
be restored and the receiving volume.

e END statement, which is used to indicate the end of an IBCDMPRS job.
JOB Statement The JOB statement indicates the beginning of a job.

The format of the JOB statement is:
label] JOB [user mformatton]

JOB must be preceded and followed by at Ieast one blank

MSG Statement The MSG statement defines an output device for operator messages. It follows the
JOB statement and precedes any function definition statements.

The format of the MSG statement |s

where:

TODEV = xxxx
specifies the type of the output device to receive messages, for example, 1403.
The devices that can be specified are 1403, 1443, 1052, 2400, 3210, and 3211.

TOADDR = cuu
specifies the channel number, ¢, and unit number, uu, of the message output
device. .

DUMP Statement The DUMP statement is used to identify both the source volume whose contents are
to be dumped and the receiving volume. The data contents of the entire source
volume are dumped, including any data on alternate tracks. If both the source and
receiving volumes reside on 2311, 2314, 2319, or 3330 volumes, the receiving
volume is an exact replica of the source volume.

IBCOMPRS Program 33

34 Utilities (Release 21.7)

The format of the DUMP statement is:

FROMDEV = xxxx ‘
specifies the type of the source device, for example, 3330.

FROMADDR = cuu
specifies channel number, ¢, and unit number, uu, of the source device.

TODEV = xxxx
specifies the type of the receiving device, for example, 2400. If the receiving
device is a tape drive and no MODE parameter is specified, the data is written at
the highest density supported by the device. (For 7-track tape, the default mode is
93.)

TOADDR = cuu
specifies the channel number, ¢, and unit number, uu, of the receiving‘ device.

VOLID = serial[,serial]...
specifies the volume serial numbers of the receiving volumes to which data is to be
dumped. VOLID is required when the receiving volume has been initialized to
operating system specifications. If serial does not match the volume serial number
found on the receiving volume, the operator is notified and the job is terminated. If
VOLID is not specified and the receiving volume contains a volume serial nhumber,
the operator is notified.

MODE = mm t

specifies the bit density for data written onto the receiving magnetic tape volume.
This parameter is applicable to 7-track tape drives and to 9-track tape drives with
density selections of 800 and 1600 bits per inch. Valid modes for 7-track tape are
shown in Table 5. (Only those modes that set the data converter on are accepted.)
For 9-track tape with density selections of 800 and 1600 bits per inch, the mode
settings are CB and C3, respectively. If the receiving device is not a tape drive, the
MODE parameter is ignored. If the receiving device is a tape drive but no mode is
specified, the data is written at the highest density supported by the device.

BIN=d
specifies the decimal number of a bin to be dumped. The value of d can be 0

through 9. This parameter applies only to 2321 volumes. When a 2321 volume is to
be dumped to a 2311, 2314, 2319, or 3330 volume, d must be 0.

MODEL =n
specifies a decimal model number (1 or 2) for a 2305. This parameter is applicable
only when a 2305 is specified. If MODEL is omitted, 2305-1 is assumed.

Note: The 2319 disk is functionally equivalent to the 2314 disk. To use the 2319,
specify 2314,

Dump time can be minimized by selecting devices assigned to different channels. For
example:

DUMP FROMDEV=3330, FROMADDR=150, TODEV=2400, TOADDR=282

Table 5 shows valid modes for 7-track tape that can be entered for the MODE
parameter.

B

Table 5. Valid 7-Track Tape Unit Modes in IBCDMPRS

Mode Density Data
(mm) (bits-per-inch) Translator Converter Parity

13 200 Off On Odd
53 556 Off On Odd
93 800 Off On Odd

VDRL Statement

RESTORE Statement

The VDRL (volume dump/restore limits) statement is used to specify the upper and
lower limits of a partial dump. If a track within these limits has had an alternate
assigned to it, the data on the alternate track is included in the dump. When the VDRL
statement is used, it must be preceded by a DUMP statement and must be followed by
an END statement.

The format of the VDRL statement is:
— —

{" [label] VDRL BEGIN = nnnnn
L [LEND = nnnnn}
where:

BEGIN = nnnnn
specifies a one- to five-byte relative track address that identifies the first track to
be dumped.

END = nnnnn
specifies the relative track address of the last track to be dumped. If only one track
is to be dumped, this address is the same as the beginning address. If END is
omitted, the last track of the volume, excluding those tracks reserved as alternates,
is assumed to be the upper limit. -

The RESTORE statement is used to identify both the source volume whose data
contents are to be restored and the receiving volume.

Note: IBCDMPRS can be used to restore a tape created by IEHDASDR. Conversely,
IEHDASDR can be used to restore a tape created by IBCDMPRS.

The form}at of the RESTORE statement is:

E

where:

FROMDEV = xxxx
specifies the type of the source device, for example, 2400.

FROMADDR = cuu
specifies the channel number, c, and unit number, uu, of the source device.

TODEV = xxxx
specifies the type of the receiving device, for example, 3330. This device type must
be the same as the device containing the volume originally dumped.

TOADDR = cuu
specifies the channel number, c, and unit number, uu, of the receiving device.

VOLID = serial
specifies the volume serial number of the receiving volume. If serial does not match
the volume serial number found on the receiving volume, the operator is notified
and the job is terminated.

MODE = mm
specifies the bit density for data written to the receiving tape volume. This
parameter must match the mode specified when data was written to the source
volume. MODE should not be specified if the source and receiving volumes are not
tape or if MODE was not specified when data was written to the source volume.
Valid modes are shown earlier in Table 5. (Only those modes that set the data
converter on are accepted.) For 9-track tape drives with density selections of 800
and 1600 bits per inch, the mode settings are CB and C3, respectively.

BIN =d
specifies the decimal number of a bin to be restored. This parameter applies only
to 2321 volumes. The value of d can be O through 9. When a 2311, 2314, 2319,
2301, 2302, 2303, 2305, or 3330 volume is to be restored to a 2321 volume, d
must be 0.

MODEL = n
specifies a decimal model number (1 or 2) for a 2305. If MODEL is omitted,
2305-1 is assumed. '

IBCDMPRS Program 35

END Statement

IBCDMPRS Examples

IBCDMPRS Example 1

IBCDMPRS Example 2

36 Utilities (Release 21.7)

Restore time can be minimized by selecting devices assigned to different channels. For
example:

RESTORE FROMDEV = 2400,FROMADDR = 282,TODEV = 3330,TOADDR = 150

The END statement marks the end of job. It appears after the last function definition
statement.

The format of tpe END statement w;

i -

END must be preceded and followed by at least one blank.)

b

The examples that follow illustrate some of the uses of IBCDMPRS. Table 6 can be
used as a quick reference guide to the examples. The numbers in the ‘‘Example”
column point to examples that follow.

Table 6. IBCDMPRS Example Directory

Operation Comments Example
DUMP A direct access volume is to be

dumped to a tape volume. 1
RESTORE A data set dumped to tape is to be

restored to a direct access volume. 2

In this example, a direct access volume is dumped to a tape volume.

The example follows:

.DUMP JOB DUMP 3330 ONTO TAPE

MSG TODEV=1052, TOADDR=009
DUMP FROMDEV=3330,FROMADDR=150, QC
TODEV=2400, TOADDR=280
END

In this example, dumped data is restored to a direct access volume.
The example follows:

RESTORE JOB RESTORE 3330 FROM TAPE
MSG TODEV=1052, TOADDR=009
RESTORE FROMDEV=2400,FROMADDR=280,TODEV=3330, QC
TOADDR=150,VOLID=PZ1111
END

IBCRCVRP Program—Class C

Recovering Usable Data

Replacing Bad Data

Replacement Record

input and Output

Control

Utility Control Statements

IBCRCVRP is an independent utility used to retrieve usable data from a defective
track, to assign an alternate track, and to merge the usable data with replacement
data on the alternate track. (See “Introduction’’ for general independent utility
information.) IBCRCVRP will perform the recovery function on only the following
devices: 2302, 2303, 2311, 2314, 2319, 2321.

IBCRCVRP is not supported on MP65 with the mode switch set to MS; the mode
switch must be set to 65.

Note: IEHATLAS, a system utility program, can be used to perform these operations
under control of the operating system.

IBCRCVRP can be used to retrieve data from a defective track, write this data on a
receiving tape, and list the bad records on the message output device.

IBCRCVRP can be used to merge data recovered from a defective track with
replacement data and write the result on an assigned alternate track. (Alternate tracks
must be assigned manually on drum volumes.)

A replacement record is an 80-byte card image that contains replacement data for

bad fields. -
A replacement record must be supplied if a key or data field is found to be bad. The
replacement record is described by column, as follows:

e Columns 1 through 8 contain either “I/D = xxx"’' or ‘I /D = LAST". The value of 1/D
must be the same as that of the RECORD parameter of the associated INSERT
statement. See “INSERT Statement’’ below.

o Columns 9 and 10 are blank.

e Columns 11 through 80 contain replacement data in hexadecimal. The number of
bytes must be the same as that specified in the COUNT parameter of the INSERT
statement. See “INSERT Statement’’ below.

Replacement records can be continued. The continuation records must start in column
11 with the continued replacement data.

When the same device is used to read both control statements and replacement
records, a replacement record must follow the INSERT statement that describes it.

IBCRCVRP uses as input:
e A control data set, which contains utility control statements.

o A data set from which usable data on a defective track is to be recovered or a data
set on which bad data is to be replaced.

e Replacement data if bad data is to be replaced on a data set.
IBCRCVRP produces as output:

e A data set from which usable data has been recovered or a data set on which bad
data has been replaced.

e A message data set.

IBCRCVRP is controlled by utility control statements. Because IBCRCVRP is an
independent utility, operating system job control statements are not used.

IBCRCVRP utility control statements are:
e JOB statement, which is used to begin an IBCRCVRP job.
e MSG statement, which is used to define an output device for operator messages.

o RECOVER statement, which is used to identify the direct access volume that
contains the defective track, the defective track, and a receiving volume.

o LIST statement, which is used to request that the contents of the defective track be
listed.

o REPLACE statement, which is used to identify the tape device on which the volume
containing recovered data resides and the direct access volume on which
recovered data is to be merged with replacement data.

o INSERT, which identifies the device on which the replacement record volume
resides.

e END statement, which is used to indicate the end of an IBCRCVRP job.
IBCRCVRP Program—Class C 37

JOB Statement The JOB statement indicates the beginning of an IBCRCVRP job.
statement is:

JOB must be preceded and followed by at least one blank.

MSG Statement The MSG statement defines an output device for operator messages. It follows the
JOB statement and precedes any function definition statements.

The format of the MSG statement is:

i,

where:

TODEV = xxxx
specifies the type of the output device to receive messages, for example, 1403.
The devices that can be specified are 1403, 1443, 1052, and 2400.

TOADDR = cuu
specifies the channel number, ¢, and unit number, uu, of the message output
device.

MODE = mm
specifies the mode in which the message output tape is to be written. This
parameter is valid only when the message output device is 7-track tape. Valid
modes are shown in Table 7. If MODE is omitted, the following assumptions (6B)
are made: density is 556 bits per inch, translator is on, data converter is off, and
the parity is even.

Table 7 shows the values that can be entered for the MODE parameter.

Table 7. Valid 7-Track Tape Unit Modes in IBCRCVRP

Mode Density Data
(mm) (bits per inch) Translator Converter Parity
13 200 Off On Odd
23 200 Off Off Even
33 200 Off Off Odd
2B 200 On Off Even
3B 200 On Off Odd
53 556 Off On Odd
63 556 Off Off Even
4 73 556 Off Off Odd
6B 556 On Off Even
7B 556 On Off Odd
93 800 Off On Odd
A3 800 Off Off Even
B3 800 Off Off Odd
AB 800 On Off Even
BB 800 On Off Odd
RECOVER Statement The RECOVER statement identifies: (1) the direct access volume that contains the

defective track, (2) the defective track, and (3) a receiving tape. A RECOVER
statement is required for each defective track from which data is to be recovered. The
RECOVER statement must precede any associated LIST or INSERT statements when
IBCRCVRP is used to recover data.

The format of the RECOVER statement is:

T

D

where:

FROMDEV = xxxx
specifies the type of direct access device that contains the defective track, for
example, 2311.

38 Utilities (Release 21.7)

FROMADDR = cuu
specifies the channel number, ¢, and unit number, uy, of the direct access device
that contains the defective track.

TODEV = xxxx
specifies the type of the receiving tape volume. If is not specified, the data is
written at the highest density supported by the device.

TOADDR = cuu
specifies the channel number, ¢, and unit number, uu, of the receiving tape volume.
This tape must be different from other receiving tapes in the same job. If this
volume has no label or a if this volume is unlabeled or non standard labeled, the
RECOVER routine writes a tape mark preceding the data.

VOLID = serial
specifies the volume serial number of the direct access volume that contains the
defective track. If serial does not match the volume serial number found on the
specified volume, the operator is notified and the job is terminated.

TRACK = bbbbcccchhhh
specifies the hexadecimal bin, cylinder, and head addresses of the defective track.
if the specified track is one for which an alternate has been assigned, data is
recovered from the alternate, and a message identifying both tracks is issued.

MODE = mm
specifies the bit density for data written to the receiving tape volume. This
parameter is applicable to 7-track tape drives and to 9-track tape drives with
density selections of 800 and 1600 bits per inch. Valid 7-track modes are shown
earlier in Table 7. (Only those modes that set the data converter on are accepted.)
For 7-track tape, the default mode is 93. For 9-track tape drives with 800 and
1600 bits per inch density selections, the mode settings are CB and C3,
respectively. If no mode is specified, the data is written at the highest density
supported by the device.

REPLACE Statement The REPLACE statement identifies both the tape device containing recovered data
. (recover tape) and the direct access volume on which recovered data is merged with
new replacement data.

he REPLACE

e sy

statement is:

xmersre e

where:

FROMDEV = xxxx
specifies the type of the device on which the recover tape is mounted, for example,
2400. If MODE is not specified in this statement, it is assumed that the recover
tape was written at maximum density.

FROMADDR = cuu
specifies the channel number, ¢, and the unit number uu of the tape device on
which the recover tape is mounted.

TODEV = xxxx
specifies the device type of the direct access device on which recovered data is to
be merged with replacement data.

TOADDR = cuu
specifies the channel number, ¢, and unit number, uu, of the direct access device
on which recovered data is to be merged with replacement data.

VOLID = serial
specifies the volume serial number of the direct access volume on which recovered
data is to be merged with replacement data.

TRACK = bbbbcccchhhh
specifies the hexadecimal bin, cylinder, and head addresses of the defective
primary track from which data was recovered.

IBCRCVRP Program—Class C 39

LIST Statement

INSERT Statement

40 . Utilities (Release 21.7)

MODE = mm
specifies the bit density at which data was written onto the source magnetic tape
volume. MODE should not be specified if it was not specified when data was written
onto the source volume. Valid 7-track modes are shown earlier in Table 7. (Only
those modes that set the data converter on are accepted.) For 9-track tape drives
with 800 and 1600 bits per inch density selections, the mode settings are CB and
C3, respectively.

The LIST statement specifies that the entire contents of a defective track be printed
when data is being recovered; it specifies that both recovered data and replacement
records are to be listed after they are merged when data is being replaced. If the LIST
statement is omitted, only bad records are printed when data is being recovered; only
replacement records are listed when data is being replaced.

The format of the LIST statement is

where:

TODEV = xxxx
specifies the type of the list device, for example, 1403.

TOADDR = cuu
specifies the channel number, ¢, and un|t number, uu, of the list device.

MODE = mm
specifies the mode in which the list tape is to be written when the list device is
7-track tape. Valid modes are shown earlier in Table 7. If MODE is not specified
and the list device is different from the message output device, MODE =93 is
assumed. For 9-track tape drives with 800 and 1600 bits per inch density
selections, the mode settings are CB and C3, respectively.

Tape volumes must have either a standard label or a tape mark in place of a label. The
label or tape mark must be written in the same mode as the data.

If the list device and the message output device are the same, the list mode will be
the same as the message mode.

Neither the list device nor the message output device can be the same as the tape
device containing recovered data.

The INSERT statement identifies the device that contains each replacement record
and describes the count field of that record. INSERT statements and corresponding
data must be in sequence by record number (for example, if records 3 and 5 are bad,
the INSERT statement and replacement data for record 3 must precede the INSERT
‘statement and data for record 5).

The format of the INSERT statement is:

FROMDEV = xxxx
specifies the device type of the device that contains replacement data. FROMDEV
may be omitted if the bad record did not contain key or data fields.

FROMADDR = cuu
specifies the channel number, c, and unit number, uu, of the device that contains
replacement data. FROMADDR may be omitted if the bad record did not contain key
or data fields.

RECORD = nnn
indicates the decimal record number of the original bad record. (This number is
obtained from message IBC305l.)

END Statement

IBCRCVRP Examples

IBCRCVRP Example 1

RECORD = LAST
specifies that this replacement record is to be the last physical record written on
the alternate track. Records can be added after this record if the track capacity is
not exceeded. With this feature, records near the end of a defective track that has
missing address markers (and, thus, could not be recovered) can still be replaced.

COUNT = cccchhhhrrkkdddd
specifies in hexadecimal the count field for the replacement record, where cccc is
the cylinder number, hhhh is the head number, rr is the physical record number, kk
is the key length, in bytes, and dddd is the data length (excluding the key length), in
bytes. .

MODE = mm
specifies the mode in which the input tape was written when the replacement data
is on 7-track tape. Valid modes are shown earlier in Table 7. This tape volume must
have either a standard label or a tape mark in place of a label. The label or tape
mark must be written in the same mode as the data. If MODE is omitted, 93 is
assumed. For 9-track tape drives with 800 and 1600 bits per inch density
selections, the mode settings are CB and C3, respectively.

OVERFLOW = YES
specifies that the bad record, which is being replaced, was a segment, other than
the last segment, of an overflow record. The replacement record will be either the
last record or the only record on the assigned alternate track. Six lines per inch are
to be printed. Channel 1 is assigned to line 4, channel 2 is assigned to line 10,
channel 3 is assigned to line 16, etc.

The END Statement denotes the end of job. It appears after the last function definition
statement.

The format of the END statement is:
[label] END [user-information]
END must be preceded and followed by at least one blank.

The examples that follow illustrate some uses of IBCRCVRP. Table 8 can be used as a
quick reference guide to IBCRCVRP exampies. The numbers in the ‘““Example’ column
point to the examples that follow.

Table 8. IBCRCVRP Example Directory

Operation Comments Example
RECOVER Data is to be recovered from defective tracks on 2314 volumes. 1
REPLACE Bad data on a 2314 volume is to be replaced. 2

In this example data is recovered from defective tracks on 2314 volumes 123456 and
222222. The entire contents of these tracks are listed on a 1403 printer—channel O,
unit OE. Note that column 1 is blank.

The example follows:

JOB 'RECOVER 2314 TRACKS'

MSG TODEV=1403, TOADDR=00E

RECOVER FROMDEV=2314,FROMADDR=190, TODEV=2400, Qc
VOLID=123456, TRACK=0000005E0008, TOADDR=280

LIST TODEV=1403, TOADDR=00E

RECOVER FROMDEV=2314,FROMADDR=191, TODEV=2400, 4
TOADDR=281,VOLID=222222,TRACK=000000110005

LIST TODEV=1403, TOADDR=00E

END

IBCRCVRP Program—Class C 41

IBCRCVRP Example 2 In this example, bad data is replaced on 2314 volume 123456. Replacement records"
001 and 003 contain 32 (20 in hexadecimal) bytes and 40 bytes (including an 8-byte
key) of replacement data, respectively. Record 003 must be continued on an
additional card image because the replacement data exceeds 35 bytes. Note that
column 1 is blank for all but the replacement record statements.

The example follows:

JOB 'REPLACE 2314 TRACK'
MSG TODEV=1403, TOADDR=00E
REPLACE FROMDEV=2400, FROMADDR=280,TODEV=2311, C
TOADDR=190,VOLID=123456, TRACK=0000005E0008
LIST TODEV=1403, TOADDR=00E
INSERT FROMDEV=1442, FROMADDR=00C, RECORD=001, c

COUNT=005E000801000020
I/D=001 ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789

INSERT FROMDEV=1442, FROMADDR=00C,RECORD=003, c
COUNT=005E000803080020
I/D=003 FFFFFFFFFFFFFFFFDDD
DDDDDDDDDD
END

42 Utilities (Release 21.7)

ICAPRTBL Program

Input and Output

Control

Utility Control Statements

JOB Statement

DFN Statement

UCS Statement

ICAPRTBL is an independent utility used to load the Universal Character Set (UCS)
buffer and the forms control buffer (FCB) for an IBM 3211 Printer. (See

“Introduction’ for general independent utility information.)

ICAPRTBL is used when the 3211 is assigned as the output portion of a composite
console and an unsuccessful attempt has been made to initialize the operating system

because the UCS and FCB buffers contain improper bit patterns.

ICAPRTBL is used to

properly load the buffers sc thc cpcrating system can be initialized.

Note: When an operable console printer-keyboard is available, the buffers are loaded

under the control of the operating system.

ICAPRTBL uses as input utility control statements that contain images to be loaded
into the Universal Character Set and/or forms control buffer. ICAPRTBL produces as

output properly loaded UCS and FCB buffers.

ICAPRTBL is controlled by utility control statements. Because ICAPRTBL is an
independent utility, operating system job control statements are not used.

ICAPRTBL utility control statements are:

o JOB statement, which is used to indicate the beginning of an ICAPRTBL job.
o DFN statement, which is used to define the address of the 3211.
e UCS statement, which contains an image of the characters to be loaded into the

UCS buffer.

o FCB statement, which defines the image to be loaded into the FCB.
¢ END statement, which is used to indicate the end of an ICAPRTBL job.

The JOB statement indicates the beginning of an ICAPRTBL job.
The format of the JOB statement is
JOoB mu;§t be preceded and followed by at least one blank.

The DFN statement is used to define the address of the 3211 and to specify
lowercase letters are to be printed in uppercase when the lowercase print train is not

available.
The format of the DFN statement is:

where:

ADDR = cuu

specifies the channel number, ¢, and unit number, uy, of the 3211.

FOLD =

specifies whether lowercase letters are to be printed as uppercase letters when the
lowercase print train is not available. These values can be coded:

Y

specifies that lowercase letters are to be printed as uppercase letters when the

lowercase print train is not available.
N

specifies that lowercase letters are not to be printed as uppercase letters.
The UCS statement contains an image to be loaded into the UCS buffer.

The format of the UCS statement is:

N — e oo

where:

ucsname

is a one- to eight-character alphameric name. This name is printed on the printer

to serve as a reference to the print train being used.

ICAPRTBL Program 43

FCB Statement

END Statement

ICAPRTBL Example

44

JOB
DEFN
AT ucs
STD2 FCB

Utilities (Release 21.7)

ucs-image
specifies characters to be loaded into the UCS buffer. The characters must be
contained in columns 16 through 71. The first UCS statement contains the first 56
characters; subsequent statements contain continuations of the image to be loaded
into the UCS buffer.

The FCB statement defines the image to be loaded into the forms control buffer. The
FCB statement may precede or follow the UCS statement.

The format of the FCB statement is:

where:

fcbname
specifies a one- to eight-character name of the image loaded into the forms
control buffer. The actual image loaded into the buffer is not affected by this name,
but to serve as a meaningful reference when printed on the printer, fcbname should
be the same as the FCB image being used.

LPI =
specifies the number of lines per inch that will be printed on the document. These
values can be coded:

6
specifies that six lines per inch will be printed.
8 .
specifies that eight lines per inch will be printed.
LNCH =

specifies the channels of the FCB image. Each set of parentheses must contain the
line number (1-280), a comma, and the channel number (1-12) to be assigned to
that line. One or all of the 12 channels may be assigned in any order. Each set must
be separated by commas and the entire group surrounded by parentheses.

FORMEND = x
specifies the number of lines (maximum 180) on the printer form. For an 11 inch
form, spacing six lines per inch, x must be 66.

The END statement signals the end of the ICAPRTBL job.
The format of the END stat

y at east‘one

In this example, an A11 UCS image and an FCB image are loaded into the UCS and
FCB buffers.

The example follows:

LOAD A11 IMAGE

ADDR=002 , FCLD=N
1<.=IHGFEDCBA*$-RQPONMLKJI %, §ZYXWVUTS/2#0987654321<.=IHGF
EDCBA*$-RQPONMLKJI %, EZYXWVUTS/a#0987654321<.=THGFEDCBA* $-
RQPONMLKJI %, EZYXWVUTS/a#0987654321<.=IHGFEDCBA*$-RQPONMLK
J%, EZYXWVUTS/Q#0987654321<.=IHGFEDCBA*$-RQPONMLKJI %, EZYXW
VUTS/a#0987654321<.=IHGFEDCBA*$-RQPONMLKJ %, §ZYXWVUTS/a#0
987654321<.=ihgfedcba*$-rgponmlkj%, ézyxwvuts,/23098765432
1<.=IHGFEDCBA*$~RQPONMLKJ %, 6§ZYXWVUTS/a#0987654321<.=IHGH
EDCBA*$-RQPONMLKJ %, EZYXWVUTS/a#098765432

LPI=6, C

LNCH=((4) (10,2),(16,3),(22,4),(28,5),(34,6),(40,7), C

(46,8), (2,10), (58,11),(4,12),(66,9))

END

The control statements are discussed below:

e DFN specifies the channel and unit number of the 3211 and specifies that
lowercase letters are not to be printed as uppercase letters when the lowercase
print train is not available.

e UCS specifies the characters to be loaded into the UCS buffer.

e FCB specifies the values to be loaded into the forms control buffer.

IEBCOMPR Program-_Class C

IEBCOMPR is a data set utility used to compare two sequentially organized or two
partitioned data sets at the logical record level to verify a backup copy. Fixed,
variable, or undefined records from blocked or unblocked data sets or members can
be compared. (See “Introduction’” for general data set utility information.)

Two sequential data sets are considered equal, that is, are considered to be identical,
if:

e The data sets contain the same number of records.

e Corresponding records and keys are identical.

If these conditions are not met, an unequal comparison results. If records are unequal,
the record and block numbers, the names of the DD statements that define the data
sets, and the unequal records are listed in a message data set. Ten successive
unequal comparisons terminate the job step unless a user routine is provided to
handle error conditions.

Two partitioned data sets are considered equal if:

e Corresponding members contain the same number of records.

¢ Note lists are in the same position within corresponding members.
e Corresponding records and keys are identical.

If these conditions are not met, an unequal comparison results. If records are unequal,
the record and block numbers, the names of the DD statements that define the data
sets, and the unequal records are listed in a message data set. After ten successive
unequal comparisons, processing continues with the next member unless a user
routine is provided to handle error conditions.

Partitioned data sets can be compared only if all the names in one or both of the
directories have counterpart entries in the other directory. The comparison is made on
members identified by these entries and corresponding user data.

Figure 3 shows the directories of two partitioned data sets. Directory 2 contains
corresponding entries for all the names in Directory 1; therefore, the data sets can be
compared.

Directory 2 .
KBLDE FlGIH
| Ui

Directory 1
AB J Kikd

CDGL

Figure 3. Partitioned Directories Whose Data Sets Can Be Compared Using
IEBCOMPR

Figure 4 shows the directories of two partitioned data sets. Each directory contains a
name that has no corresponding entry in the other directory; therefore, the data sets
cannot be compared, and the job step is terminated.

Directory 1

Directory 2
ABIEFHIY

ABFIGHIJ

Figure 4. Partitioned Directories Whose Data Sets Cannot Be Compared Using
IEBCOMPR

IEBCOMPR Program—Class C 45

Input and Output

Control

Job Control Statements

Restrictions

46 Utilities (Release 21.7)

User exits are provided for optional user routines to process user labels, handle error
conditions, and modify source records. See ‘‘Appendix A: Exit Routine Linkage’’ for a
discussion of the linkage conventions to be followed when user routines are used.

At the completion or termination of IEBCOMPR, the highest return code encountered
within the program is passed to the calling program.

IEBCOMPR uses the following input:
o Two sequential or two partitioned data sets to be compared.

¢ A control data set that contains utility control statements. This data set is required
if the input data sets are partitioned or if user routines are used.

IEBCOMPR produces as output a message data set that contains informational
messages (for example, the contents of utility control statements), the results of
comparisons, and error messages.

IEBCOMPR provides a return code to indicate the results of program execution. The
return codes and their meanings are:

e 00, which indicates successful completion.
e 08, which indicates an unequal comparison. Processing continues.
e 12, which indicates an unrecoverable error. The job step is terminated.

e 16, which indicates that a user routine passed a return code of 16 to IEBCOMPR.
The job step is terminated.

IEBCOMPR is controlled by job control statements and utility control statements. The
job control statements are required to execute or invoke IEBCOMPR and to define the
data sets that are used and produced by IEBCOMPR. The utility control statements are
used to indicate the input data set organization (that is, sequential or partitioned), to
identify any user routines that may be provided, and to indicate whether user labels
are to be treated as data.

Table 9 shows the job control statements necessary for using IEBCOMPR.

Table 9. IEBCOMPR Job Control Statements

Statement Use
JOB Initiates the job.

EXEC Specifies the program name (PGM = IEBCOMPR) or, if the job control statements
reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set, which can be written to a system output
device, a tape volume, or a direct access volume.

SYSUT1 DD Defines an input data set to be compared.
SYSUT2 DD Defines an input data set to be compared.

SYSIN DD Defines the control data set or specifies DUMMY if the input data sets are
sequential and no user routines are provided. The control data set normally
resides in the input stream; however, it can be defined as a member within a
library of partitioned members.

The minimum region size that can be specified for IEBCOMPR is 14K + 2b, where b is
the largest block size in the job step, rounded to the next higher 2K.

One or both of the input data sets can be passed from a preceding job step.

Input data sets residing on different device types can be compared. Input data sets
with a sequential organization written at different densities can be compared.

e The SYSPRINT DD statement must be present for each use of IEBCOMPR.
e The SYSIN DD statement is required.

e The logical record lengths of the input data sets must be identical; otherwise,
unequal comparisons result. The block sizes of the input data sets can differ;
however, block sizes must be multiples of the logical record length.

e The block size specified in the SYSPRINT DD statement must be a multiple of 121.
The block size specified in the SYSIN DD statement must be a multiple of 80.

o When the input/output data set has fixed length, variable length, or variable
spanned records, the BLKSIZE, RECFM, and LRECL are required. When the data set
has undefined length records, only BLKSIZE is required.

Utility Control Statements The utility control statements used to control IEBCOMPR are:
e COMPARE statement, which is used to indicate the organization of a data set.
e EXITS statement, which is used to identify user exit routines to be used.

o LABELS statement, which is used to indicate whether user labels are to be treated
as data by IEBCOMPR.

COMPARE Statement The COMPARE statement is used to indicate the organization of data sets to be
compared.

The format of the COMPARE statement iS'

[Iabel] COMPARE [TYPORG = {PS}
, {PO}]

where

TYPORG =
specifies the organization of the input data sets. If TYPORG is omitted, input data
sets are assumed to be sequentially organized. The values that can be coded are:

PS
I specifies that the input data sets are sequential data sets. If nothing is specified,
PS is assumed.

PO
specifies that the input data sets are partitioned data sets.

The COMPARE statement, if included, must be the first utility control statement.
COMPARE is required if the EXITS or LABELS statement is used or if the input data
sets are partitioned data sets.

EXITS Statement The EXITS statement is used to identify any user exit routines to be used.
The format of the EXITS statement is:

where

INHDR = routinename
specifies the symbolic name of a routine that processes user input header labels.

INTLR = routinename
specifies the symbolic name of a routine that processes user input trailer labels.

ERROR = routinename
specifies the symbolic name of a routine that is to receive control after each
unequal comparison for error handling. If this parameter is omitted and ten
consecutive unequal comparisons occur while IEBCOMPR is comparing sequential
data sets, processing is terminated; if the input data sets are partitioned,
processing continues with the next member.

PRECOMP = routinename
specifies the symbolic name of a routine that processes logical records (physical
blocks in the case of VS or VBS records longer than 32K bytes) from either or both
of the input data sets before they are compared.

The EXITS statement is required if a user exit routine is to be used. If more than one
valid EXITS statement is included, all but the last EXITS statement are ignored. For a
discussion of the processmg of user labels as data set descriptors, see ‘“Appendix E
Processing User Labels.”

LABELS Statement The LABELS statement specifies whether user labels are to be treated as data by
' IEBCOMPR. For a discussion of this option, refer to ‘““Processing User Labels as Data”
in ‘‘Appendix E: Processing User Labels.”

The format of the LABELS statement is:

IEBCOMPR Program—Class C 47

IEBCOMPR Examples

IEBCOMPR Example 1

48 Utilities (Release 21.7)

where:

DATA = .
specifies whether user labels to be treated as data The values that can be coded
are:

YES
specifies that any user labels that are not rejected by a user’s label processing
routine are to be treated as data. Processing of labels as data stops in
compliance with standard return codes. If no value is entered, YES is assumed.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that user labels are to be treated as data regardless of any return
code. A return code of 16 causes IEBCOMPR to complete processing of the
remainder of the group of user labels and to terminate the job step.

ONLY :
specifies that only user header labels are to be treated as data. User header
labels are processed as data regardless of any return code. The job terminates
upon return from the OPEN routine.

Note: LABELS DATA = NO must be specified to make standard user label (SUL) exits
inactive when input/output data sets with nonstandard labels (NSL) are to be
processed.

If more than one valid LABELS statement is included, all but the last LABELS
statement is ignored.

The examples that follow illustrate some of the uses of IEBCOMPR. Table 10 can be
used as a quick reference guide to IEBCOMPR examples. The numbers in the
‘““Example’’ column point to examples that follow.

Table 10. IEBCOMPR Example Directory

Data Set

Operation Organization Devices Comments Example
COMPARE Sequential 9-track tape No user routines. Blocked input.
COMPARE Sequential 7-track tape No user routines. Blocked input. 2
COMPARE Sequential 7-track and User routines. Blocked input.

9-track tape Different density tapes. 3
COMPARE Sequential Card Reader, No user routines. Blocked input. \

) 9-track tape

COMPARE Partitioned 2314 Disk No user routines. Blocked input. 5
COPY (using Sequential 9-track tape No user routines. Blocked input.
IEBGENER) and Two job steps; data sets are
COMPARE passed to second job step. 6
COPY (using Partitioned 2311 Disk User routine. Blocked input.
IEBCOPY) and Two job steps; data sets are
COMPARE passed to second job step. 7

In this example, two sequential data sets that reside on 9-track tape volumes are to
be compared.

The example follows:

//TAPETAPE JOB 09#660,SMITH

/) EXEC PGM=IEBCOMPR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=2400,LABEL=(,NL),

// DCB=(RECFM=FB, LRECL=80, BLKSIZE=2000),

// DISP=(OLD,KEEP), VOLUME=SER=001234

//SYSUT2 DD UNIT=2400,LABEL=(,NL),DISP=(OLD,KEEP),
DCB=(RECFM=FB, LRECL=80,BLKSIZE=1040),

// VOLUME=SER=001235

//SYSIN DD DUMMY

/*

Because no user routines are to be used and the input data sets have a sequential
organization, utility control statements are not used.

The control statements are discussed below:

o SYSUT1 DD defines an input data set, which resides on an unlabeled, 9-track tape
volume. The blocked data set was originally written at 800 bits per inch density.

e SYSUT2 DD defines an input data set, which resides on an unlabeled, 9-track tape
volume. The blocked data set was originally written at 800 bits per inch density.

e SYSIN DD defines a dummy data set.

IEBCOMPR Example 2 In this example, two sequential data sets that reside on 7-track tape volumes are to
be compared.

The example follows:

//TAPETAPE JOB 09#660,SMITH
// EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SET1,LABEL=(2,SUL),DISP=(OLD,KEEP),
// VOL=SER=001234,DCB=(DEN=2 , RECFM=FB, LRECL=80,
// BLKSIZE=2000, TRTCH=C),UNIT=2400-2
//SYSUT2 DD DSNAME=SET1,LABEL=(,SUL),DISP=(OLD,KEEP),
// VOL=SER=001235,DCB=(DEN=2 , RECFM=FB, LRECL=80,
/7 BLKSIZE=2000, TRTCH=C), UNIT=2400-2
//SYSIN DD *

COMPARE TYPORG=PS
/LABELS DATA=ONLY

E3

The control statements are discussed below:

e SYSUT1 DD defines an input data set, which resides on a labeled, 7-track tape
volume. The blocked data set was originally written at 800 bits per inch density
with the data converter on.

e SYSUT2 DD defines an input data set, which is the first or only data set on a
labeled, 7-track tape volume. The blocked data set was originally written at 800
bits per inch density with the data converter on.

o SYSIN DD defines the control data set, which follows in the input stream.

e COMPARE specifies that the input data sets are sequentially organized.
o LABELS specifies that only user header labels are to be compared.

IEBCOMPR Example 3 In this example, two sequential data sets written at different densities on different
device types are to be compared. '

The example follows:

//TAPETAPE JOB 09#660,SMITH

// EXEC PGM=IEBCOMPR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAME=SET1,LABEL=(,SUL),DISP=(OLD,KEEP),

// VOL=SER=001234 ,DCB=(DEN=1,RECFM=FB, LRECL=80,

// BLKSIZE=320,TRTCH=C),UNIT=2400-2

//SYSUT2 DD DSNAME=SET2,LABEL=(,SUL),DISP=(OLD,KEEP),

/7 DCB=(RECFM=FB, LRECL=80, BLKSIZE=640),
VOLUME=SER=001235,UNIT=2400

//SYSIN DD *

COMPARE TYPORG=PS

EXITS INHDR=HDRS, INTLR=TLRS
LABELS DATA=NO :
/*

The control statements are discussed below:

e SYSUT1 DD défines an input data set, which is the first or only data set on a
labeled, 7-track tape volume. The blocked data set was originally written at 556
bits per inch density with the data converter on.

e SYSUT2 DD defines an input data set, which is the first or only data set on a
labeled, 9-track tape volume. The blocked data set was originally written at 800
bits per inch density.

e SYSIN DD defines the control data set, which follows in the input stream.
e COMPARE specifies that the input data sets are sequentially organized.

IEBCOMPR Program—~Class C 49

IEBCOMPR Example 4

IEBCOMPR Example 5

IEBCOMPR Example 6

50 Utilities (Release 21.7)

e EXITS identifies the names of routines to be used to process user input header
labels and trailer labels.

o LABELS specifies that the user input header and trailer labels are not to be
compared.

In this example, two sequential data sets (card input and tape input) are to be
compared.

The example follows:

//CARDTAPE JOB 09#660,SMITH

// EXEC PGM=IEBCOMPR

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUT2 DD UNIT=2400,VOLUME=SER=001234,LABEL=(,NL),
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=2000),

/7 DISP=(OLD,KEEP)

//SYSUT1 DD DATA

(input card data set)
/* .
The control statements are discussed below:

e SYSIN DD defines a dummy control data set. Because no user routines are
provided and the input data sets are sequential, utility control statements are not
used.

e SYSUT2 DD defines an input data set, which resides on an unlabeled, 9-track tape
volume. The blocked data set was originally written at 800 bits per inch density.

o SYSUT1 DD defines an input data set (card input).
In this example, two partitioned data sets are to be compared.

The example follows:

//DISKDISK JOB 09#660,SMITH

// EXEC PGM=IEBCOMPR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAME=PDSSET,UNIT=2314,DISP=(OLD,KEEP),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=2000),

// VOLUME=SER=111112

//SYSUT2 DD DSNAME=PDSSET,UNIT=2314,DISP=(OLD,KEEP),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000),
VOLUME=SER=111113

//SYSIN DD *

COMPARE TYPORG=PO
/%

The control statements are discussed below:

e SYSUT1 DD defines an input partitioned data set. The blocked data set resides on a
2314 volume.

e SYSUTZ2 DD defines an input partitioned data set. The blocked data set resides on a
2314 volume.

+ SYSIN DD defines the control data set, which follows in the input stream. The data
set consists of one utility control statement.

In this example, a sequential data set is to be copied and compared in two job steps.

The example follows:

//TAPETAPE JOB 09#660,SMITH

//STEPA EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=A

//SYSUT? DD DSN=COPYSET,UNIT=2400,DISP=(OLD,PASS),
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=640),

// LABEL=(,SL), VOLUME=SER=001234

//SYSUT2 DD DSNAME=COPYSET,DISP=(,PASS),LABEL=(,SL),
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=640),

// VOLUME=SER=001235,UNIT=2400

//SYSIN DD DUMMY .

*

//STEPB EXEC PGM=IEBCOMPR

//SYSPRINT DD SYSOUT=A

//SYSUTI DD DSNAME=*.STEPA.SYSUT1,DISP=(OLD,KEEP)
//SYSUT2 DD DSNAME=*_ STEPA.SYSUT2,DISP=(OLD,KEEP)
//SYSIN DD DUMMY

J*

IEBCOMPR Example 7

The first job step copies the data set and passes the original and copied data sets to
the second job step. The second job step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed below:

e 'SYSUT1 DD defines an input data set passed from the preceding job step. The data
set resides on a labeled, 9-track tape volume. The blocked data set was originally
written at 800 bits per inch density.

e SYSUTZ2 DD defines an input data set passed from the preceding job step. The data
set, which was created in the preceding job step, resides on a labeled, 9-track tape
volume. The blocked data set was originally written at 800 bits per inch density.

o SYSIN DD defines a dummy control data set. Because the input is sequential and no.
user exits are provided, no utility control statements are required.

In this example, a partitioned data set is to be copied and compared in two job steps.
The example follows:

//DISKDISK JOB 09#660,SMITH

//STEPA EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAME=OLDSET,UNIT=2311,DISP=(OLD,PASS),
// VOLUME=SER=111112,DCB=(RECFM=FB, LRECL=80,
// BLKSIZE=640)
//SYSUT2 DD DSNAME=NEWMEMS,UNIT=2311,DISP=(,PASS),
/7 VOLUME=SER=111113, SPACE=(TRK, (10,5,5)),
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=640)
//SYSUT3 DD UNIT=2311,SPACE=(TRK,(1))
//SYSUT4 DD UNIT=2311,SPACE=(TRK, (1))
//SYSIN DD * :

COPY OUTDD=SYSUT2, INDD=SYSUT1
/SELECT MEMBER=(A,B,D,E,F)

*
//STEPB EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=OLDSET,DISP=(OLD,KEEP)
//SYSUT2 DD DSNAME=NEWMEMS,DISP=(OLD,KEEP)
//SYSIN DD *

COMPARE TYPORG=PO

EXITS ERROR=SEEERROR

%K

The first job step copies the data set and passes the original and copied data sets to
the second job step. The second job step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed below:

e SYSUT1 DD defines a blocked input data set that is passed from the preceding job
step. The data set re_sides on a 2311 volume.

e SYSUT2 DD defines a blocked input data set that is passed from the preceding job
step. The data set resides on a 2311 volume.

o SYSIN DD defines the control data set, which contains a COMPARE statement and
an EXITS statement.

o COMPARE specifies partitioned organization.
o EXITS specifies that a user routine, SEEERROR, is to be used.

Because the input data set names are not identical, the data sets can be retrieved by
their data set names.

IEBCOMPR Program—Class C 51

IEBCOPY Program

Creating a Backup Copy

Copying Data Sets

IEBCOPY' is a data set utility used to copy one or more partitioned data sets or to
merge partitioned data sets. (See “Introduction’ for general data set utility
information.) Specified members of partitioned data sets can be selected for, or
excluded from, a copy process.

IEBCOPY can be used to:

o Create a backup copy.

e Copy data sets.

o Select members, from one or more data sets, to be copied.

e Replace identically named members on data sets.

e Replace selected data set members.

e Rename selected members.

e Exclude members, from one or more data sets, from being copied.
e Compress a data set in place.

¢ Merge data sets.

e Re-create a data set that has exhausted its primary, secondary, or directory space
allocation.

In addition, IEBCOPY automatically lists the number of unused directory blocks and
the number of unused tracks available for member records in the output partitioned
data set. The names of copied members can be listed by input partitioned data set.

When copying members that have aliases, the following should be noted:

o When the main member and its aliases are copied, they exist on the output
partitioned data set in the same relationship they had on the input partitioned data
set.

e When one alias is copied without its main member, it becomes a main member.

o When two or more aliases are copied without the main member, the lowest alias (in
alphameric collating sequence) becomes the main member; any remaining aliases
become aliases of the new main member. Note that if an old main member name is
present in an alias entry, it remains there.)

The rules for replacing or renaming members apply to both aliases and members; no
distinction is made between them.

At the completion or termination of the program, the highest return code encountered
within the program is passed to the calling program.

IEBCOPY can be used to copy a partitioned data set, totally or in part, from one direct
access volume to another. In addition, a data set can be copied to its own volume,
provided its data set name is changed. If the data set name is not changed, the data
set is compressed in place.

Note: The copied members are not reordered; that is, they are copied in the order in
which they exist on the original data set. If the members are to be collated, [EHMOVE
can be used for the copy operation. See the chapter “IEHMOVE Program’’ for a
discussion of the IEHMOVE program.

IEBCOPY can be used to copy more than one input partitioned data set, totally or in
part, from one or more direct access volumes to a single direct access volume. See
“‘COPY Statement’’ below for a discussion of how to specify more than one input
partitioned data set. The input partitioned data sets are copied in the order in which
they are specified.

1 This is a description of the version of IEBCOPY available on Release 21.7 of IBM System/360
Operating System. The program is designed to accept the job and control statements written for
the version available on releases prior to Release 20. However, it is recommended that any
future user applications be written to the specifications discussed in this chapter.

IEBCOPY Program 53

Selecting Members
to be Copied

Replacing ldentically
. Named Members

54 Utilities (Release 21.7)

Members can be selected from one or more input partitioned data sets. Selected
members are searched for in a low-to-high (a to z) collating sequence, regardless of
the order in which they are specified; however, they are copied in the same physical
sequence in which they appear on the input partitioned data set.

When selecting members from an input partitioned data set, remember that once a
member is found it is not searched for on any subsequent input partitioned data set.
Similarly, when all of the selected members are found, the copy step is terminated
although all of the input partitioned data sets may not have been searched. For
example, if members A and B are specified and A is found on the first of three input
partitioned data sets, it is not searched for again; if B is found on the second input
partitioned data set, the copy operation is successfully terminated after the second
input partitioned data set has been processed, although both A and B may also exist
on the third input partitioned data set.

However, if the first member name is not found on the first input partitioned data set,
the second selected member is searched for; if it is not found, the third is searched
for, and so on. This process continues until there are no more members to be
searched for in this input partitioned data set. All the members that were found on the
input partitioned data set are then processed for copying onto the output partitioned
data set. This process is repeated for the second input partitioned data set (except
that the members that were found on the first input partitioned data set are not
searched for again).

In many copy operations, the output partitioned data set may contain members that
have names identical to the names of the input partitioned data set members to be
copied. When this occurs, the user may specify that the identically named members
are to be copied from the input partitioned data set to replace existing members. The
replace option allows an input member to override an existing member on the output
partitioned data set with the same name.

If the replace option is not specified, input members are not copied when they have
the same name as a member on the output partitioned data set.

The replace option can be specified on the data set or member level. The level is
specified on a utility control statement.

When replace is specified on the data set (specified on a COPY or on the INDD
statement), the input data is copied as follows:

e In a full copy process, all members on an input partitioned data set are copied onto
an output partitioned data set; members whose names already exist on the output
partitioned data set are replaced by the members copied from the input partitioned
data set.

¢ In a selective copy process, all selected members on an input partitioned data set
are copied to an output partitioned data set; all selected members found are copied
and members whose names already exist on the output partitioned data set are
replaced by the found members copied from the input partitioned data set.

¢ In an exclusive copy process, all nonexcluded members on input partitioned data
sets are copied to an output partitioned data set; nonexcluded input members
whose names already exist on the output partitioned data set replace those
identically named members on the output partitioned data set.

When replace is specified on the member level (specified on a SELECT statement),
only selected members on the input partitioned data sets are copied, and identically
named members on the output partitioned data set are replaced.

Differences between full, selective, and exclusive copy processing should be
remembered when specifying the replace option when multiple data sets contain
member names common to some or all of the input partitioned data sets being copied.
These differences are:

e When a full copy is performed, the output partitioned data set contains the
replacing members that were on the last input partitioned data set copied.

e When a selective copy is performed, the output partitioned data set contains the
selected replacing members which were found on the earliest input partitioned data
set searched. Once a selected member is found, it is not searched for again;
therefore, once found, a selected member is copied, and if the same member exists
on another input partitioned data set it is not searched for, and hence, not copied.

e When an exclusive copy is performed, the output partitioned data set contains the
nonexcluded replacing members that were on the last input partitioned data set
copied.

Replacing Selected Members

Renaming Selected Members

Excluding Members from
a Copy Operation

Compressing a Data Set

Merging Data Sets

Re-creating a Data Set

Input and Output

The user may specify the replace option on either the data set or the member level
when members are being selected for copying.

If the replace option is specified on the data set level, all selected members found on
the designated input partitioned data sets replace identically named members on the
output partitioned data set. This is limited by the fact that once a selected member is
found it is not searched for again.

If the replace option is specified on the member level, the specified members on the
input partitioned data set replace identically named members on the output
partitioned data set. Once a member is found it is not searched for again. (See
“Replacing ldentically Named Members’’ earlier in this chapter.)

Selected members on input partitioned data sets can be copied and renamed on the
output partitioned data set. However, if the new name is identical to a member name
on the output partitioned data set, the input member is not copied unless the replace
option is also specified. See ‘“‘SELECT Statement’’ below for information on renaming
selected members.

Note: Renaming is not physically done to the input partitioned data set directory entry.
However, after the member is copied onto the output partitioned data set, the new
name is entered into the output partitioned data set directory.

Members from one or more input partitioned data sets can be excluded from a copy
operation. The excluded member is searched for on every input partitioned data set in
the copy operation and is always omitted from the copy.

The replace option can be specified on the data set level in an exclusive copy, in
which case, nonexcluded members on the input partitioned data set replace identically
named members on the output partitioned data set. See ‘‘Replacing Identically Named
Members'’ earlier in this chapter for more information on the replace option.

A compressed data set is one that does not contain embedded unused space. After
copying one or more input partitioned data sets to a new output partitioned data set
(by means of a selective, exclusive, or full copy that does not involve replacing
members), the output partitioned data set contains no embedded unused space.

To make unused space available, either the entire data set must be scratched or it
must be compressed in place. A compressed version can be created by specifying the
same data set for both the input and the output parameters in a full copy step. A
backup copy of the partitioned data set to be compressed in place should be kept until
successful completion of an in-place compression is indicated (by an end-of-job

message and a return code of 00). -

Note: An in-place compression does not release extents assigned to the data set.

A merged data set is one to which an additional member is copied. It is created by
copying the additional members to an existing output partitioned data set; the merge
operation—the ordering of the output partitioned data set’s directory—is
automatically performed by IEBCOPY.

Note: If there is a question about whether or not enough directory blocks are allocated
to the output partitioned data set to which an input partitioned data set is being
merged, the output partitioned data set should be re-created prior to the merge
operation.

A data set can be recreated by copying it and allocating a larger amount of space
than was allocated for the original data set. This application of IEBCOPY is especially
useful if insufficient directory space was allocated to a data set. Space cannot be
allocated in this manner for an existing data set into which members are being
merged.

IEBCOPY uses the following input:

e An input data set, which contains the members to be copied or merged into a
partitioned data set.

e A control data set, which contains utility control statements. The control data set is
required if selected members are to be copied, merged into a partitioned data set,
or omitted from the copy or merge operation.

If the control data set is null, a full copy is attempted from the input partitioned data
set to the output partitioned data set. In this case, SYSUT1 and SYSUT2 are required
ddnames for the input partitioned data set and output partitioned data set, described
under ‘“‘Job Control Statements’’ below, respectively.

IEBCOPY Program 55

Control
Job Control Statements

56 Utilities (Release 21.7)

Note: When merging into or compressing libraries, do not specify DISP = SHR. The
results of a merge into or compress of the current SYS1.LINKLIB or SYS1.SVCLIB
would be unpredictable.

IEBCOPY produces the following output:

e An output data set, which contains the copied or merged data. The output data set
is either a new data set (from a copy operation) or an old data set (from a merge
or compress-in-place).

e A message data set, which contains informational messages (for example, the
names of copied members) and error messages, if applicable.

o Spill data sets, which are temporary data sets used to provide space when not
enough main storage is available for the input and/or output partitioned data set
directories. These data sets are opened only when needed.

All input, output, and utility data sets must be on direct access devices. The following
devices may be used:

e 2311 Disk Storage Drive

e 2314 Direct Access Storage Facility

e 2319 Direct Access Storage Facility

e 2301 Disk Storakge

e 2302 Drum Storage

e 2303 Drum Storage

e 2305 Fixed Head Storage

e 2321 Data Cell Drive

e 3330 Disk Storage

Any combination of these devices is acceptable to IEBCOPY.

Note: Refer to OS Storage Estimates, GC28-6551, to determine when spill data sets
are required; see ‘‘Space Allocation’ below for a description of how to determine the
amount of space to allocate.) '

IEBCOPY produces a return code to indicate the results of program execution. The
return codes and their meanings are:

e 00, which indicates successful completion.

e 04, which indicates a condition from which recovery may be possible.

o 08, which indicates an unrecoverable error. The job step is terminated.
IEBCOPY is controlled by job control statements and utility control statements.
Table 11 shows the job control statements necessary for using IEBCOPY.

The minimum region size that can be specified for IEBCOPY is 28K + 2b, where b is
the largest block size in the job step, rounded to the next higher 2K. For additional
information, see OS Storage Estimates, GC28-6551.

Fixed or variable records can be reblocked. Reblocking or deblocking is done if the
block size of the input partitioned data set is not equal to the block size of the output
partitioned data set. Reblocking or deblocking cannot be done if either the input or the
output data set has undefined format records, keyed records, track overflow records,
note lists, or user TTRNs, or if compress in place is specified. (Earlier versions allowed
reblocking or deblocking with track overflow output records.)

Table 12 shows how input record formats can be changed. In addition, any record
format can be changed to the undefined format (in terms of its description in the
DSCB).

System data sets should not be compressed in place in a multiprogramming
environment unless the subject partitioned data set is made non-sharable. The libraries
in which IEBCOPY resides (SYS1.LINKLIB and SYS1.SVCLIB) must not be compressed
by IEBCOPY unless IEBCOPY is first transferred to a JOBLIB.

Refer to OS Data Management Services Guide, GC26-3746, for information on
estimating space allocations.

. Restrictions

Space Allocation

Table 11. IEBCOPY Job Control Statements

Statement Use
JoB Initiates the job.

EXEC Specifies the program name (PGM = IEBCOPY) or, if the job control statements
reside in the procedure library, the procedure name.

SYSPRINT DD Defines the sequential message data set used for listing statements and
messages. This data set can be written onto a system output device, a tape
volume, or a direct access volume.

anynamel DD Defines an input partitioned data set. The data set can be defined by a data set
name, as a cataloged data set, or as a data set passed from a previous job step.

anyname2 DD Defines an output partitioned data set.

SYSUT3 DD Defines a spill data set on a direct access device. SYSUT3 is used when there is
no space in main storage for some or all of the current input partitioned data
set's directory entries. SYSUT3 may also be used when not enough space is
available in main storage for retaining information during table sorting.

SYSUT4 DD Defines a spill data set on a direct access device. SYSUT4 is used when there is
no space in main storage for the current output partitioned data set’s merged
directory and the output partitioned data set is not new.

SYSIN DD Defines the control data set. The control data set normally resides in the input
stream; however, it can reside on a system input device, a tape volume, or a
direct access volume.

Table 12. Changing Input Record Format Using IEBCOPY

Input Output

Fixed Fixed Blocked
Fixed Blocked Fixed

Variable Variable Blocked

Variable Blocked Variable

Refer to OS Storage Estimates, GC28-6551, to determine when spill data sets are
required; see ‘‘Space Allocation’ below for a description of how to determine the

amount of space to allocate. .
e SYSPRINT and SYSIN are mandatory DD statements. The block size for the

SYSPRINT data set must be a multiple of 121. The block size for the SYSIN data

set must be a multiple of 80. Any blocking factor may be specified for these data

sets, with a maximum allowable block size of 32,767 bytes.

e The SYSPRINT DD statement must define a data set with fixed blocked or fixed
records.

e At least one INPUT DD statement is required; there must be one INPUT DD
statement for each unique part in the data set used for input in the job step.

¢ Input data sets cannot be concatenated.

e There must be an OUTPUT DD statement for each unique partitioned data set used
for output in the job step.

e The SYSIN DQ statement must define a data set with fixed block or fixed records.

Sometimes it is necessary to allocate space on spill data sets (SYSUT3 and SYSUT4).
To conserve space on the direct access volume, an initial quantity and a secondary
quantity for space allocation may be used, as shown in the following SPACE
parameter:

SPACE = (c,(x,y))

The c value should be a block length of 80 for SYSUT3 and of 256 for SYSUT4. The x
value is the number of blocks in the primary allocation, and the y value is the number
of blocks in a secondary allocation.

For SYSUT3, x + 15y must be equal to or greater than the number of entries in the
largest input partitioned data set in the copy operation, multiplied by 1.05.

For SYSUT4, x + 15y must be equal to or greater than the number of blocks allocated
to the largest output partitioned data set directory in the IEBCOPY job step.

IEBCOPY Program 57

Utility Control Statements

COPY Statement

58 Utilities (Release 21.7)

For example, if there are 700 members on the largest input partitioned data set,
space could be allocated for SYSUT3 as follows:

SPACE = (80,(60,45))

However, the total amount of space required for SYSUT3 in the worst case is used
only if needed. If space is allocated in this manner for SYSUT4, the user must specify
in his SYSUT4 DD statement:

DCB = KEYLEN =8

Note that IEBCOPY ignores all other DCB information specified for SYSUT3 and/or
SYSUT4. Multivolume SYSUT3 and SYSUT4 data sets are not supported.

IEBCOPY is controlled by the following utility control statements:
e COPY statement, which indicates the beginning of a COPY operation.

e SELECT statement, which specifies which members in the input data set are to be
copied.

e EXCLUDE statement, which specifies members in the input data set to be excluded
from the copy step.

In addition, when INDD, a COPY statement parameter, appears on a card other than
the COPY statement, it is referred to as an INDD statement; it can function as a
control statement in this context.

Utility control statements may be continued on subsequent cards provided that all the
data is contained in columns 2 through 71. Control statement operation and keyword
parameters can be abbreviated to their initial letters; for example, COPY can be
abbreviated to C.

The COPY statement is required to initiate all IEBCOPY copy operations. Any number
of COPY statements can appear within a single job step.

A COPY statement must precede a SELECT or EXCLUDE statement when members are
selected for or excluded from a copy step. In addition, if an input ddname is specified
on a separate INDD statement, it must follow the COPY statement and precede the
SELECT or EXCLUDE statement to which it applies. If one or more INDD statements
are immediately followed by the /* card or another COPY statement, a full copy is
invoked onto the most recent output partitioned data set previously specified.

IEBCOPY uses a copy operation/copy step concept. The unit of work starting with a
COPY statement and continuing until another COPY statement or until the end of the
control data set is found is called a copy operation. Within each copy operation, one
or more copy steps are present. Any INDD statement directly following a SELECT or
EXCLUDE statement marks the beginning of the next copy step and the end of the
preceding copy step within the copy operation. If such an INDD statement cannot be
found in the copy operation, then the operation consists of only one copy step.

Figure 5 shows the copy operation/copy step concept. Two copy operations are
shown in the figure: the first begins with the statement containing the name
COPOPER1, and the second begins with the statement containing the name
COPOPER2.

There are two copy steps within the first copy operation shown in Figure 5: the first
begins with the COPY statement and continues through the two SELECT statements;
the second begins with the first INDD statement following the two SELECT statements
and continues through the EXCLUDE statement preceding the second COPY
statement. There are two copy steps within the second copy operation: the first begins
with the COPY statement and continues through the SELECT statement; the second
begins with the INDD statement immediately following the SELECT statement and ends
with the same /* (delimiter) statement that ended the copy operation.

The format of the COPY statement is:

where:
OUTDD = ddname

specifies the name of the output partitioned data set. One ddname is required for
each copy operation; the ddname used must be specified on a DD statement.

L o st 4 e

st COPOPER1 OUTDD=AA, INDD=ZZ
Copy INDD=BB,CC
Operation INDD=DD
INDD=EE
SELECT MEMBER=MEMA , MEMB
SELECT MEMBER=MEMC

2nd INDD=GG
Copy INDD=HH
Operation EXCLUDE MEMBER=MEMD,MEMH

3rd COPOPER2 COPY OUTDD=YY, 1= (MM, PP} ,LIST=NO
Copy SELECT MEMBER=MEMB
Operation

4th INDD=KK
Copy INDD=LL,NN
Operation

Figure 5. Multiple Copy Operations Within a Job Step

INDD =
specifies the names of the input partitioned data sets. INDD may, optionally, be
placed on a separate card following a COPY statement containing the OUTDD
parameter, another INDD statement, a SELECT statement, or an EXCLUDE
statement. These values can be coded:

ddname
specifies the ddname, which is specified on a DD statement, of an input
partitioned data set. If more than one ddname is specified, the input data sets
are processed in the same sequence as the ddnames.

specifies that all members to be copied from this input partitioned data set are

to replace any identically named members on the output partitioned data set. (In
addition, members whose names are not on the output partitioned data set are

copied as usual.) When this option is specified with the INDD parameter, it does

not have to appear with the MEMBER parameter (discussed in ““SELECT -
Statement” in this chapter) in a selective copy operation. When this option is

specified, the ddname and the R parameter must be enclosed in a set of

parentheses; if it is specified with the first ddname in INDD, the entire field,

exclusive of the INDD parameter, must be enclosed in a second set of

parentheses.

LIST = NO
specifies that the names of copied members are not to be listed on SYSPRINT at
the end of each input data set.

Note: The control statement operation and keyword parameters can be abbreviated to
their initial letters; for example, COPY can be abbreviated to C and OUTDD can be
abbreviated to O.

Only one INDD and one OUTDD keyword may be placed on a single card. OUTDD must
appear on the COPY statement. When INDD appears on a separate card, no other
operands may be specified on that card.

INDD may appear on a separate card; if this option is selected, INDD is not preceded
by a comma.

If there are no keywords on the COPY card, compatibility with the previous version is
implied. In this case, comments may not be placed on this card.

If more than one ddname is specified, the input partitioned data sets are processed in
the same sequence as that in which the ddnames are specified.

A full copy is invoked only by specifying different input and output ddnames; that is,
by omitting the SELECT or EXCLUDE statement from the copy step.

The compress-in-place function is normally invoked by specifying the same ddname
(with the same dsname and volume serial number specified on the DD statement) for
both the OUTDD and INDD parameters of a COPY statement. If multiple entries are
made on the INDD statement, a compress in place will occur if one of the input

IEBCOPY Program 59

SELECT Statement

60 Utilities (Release 21.7)

ddnames is the same as the ddname specified by the OUTDD parameter of the COPY
statement, provided that SELECT or EXCLUDE is not specified.

The compress-in-place operation cannot be performed for the following:

e A data set with track overflow records.

* A data set with keyed records.

e A dafa set for which reblocking is specified in the DCB parameter.

e An unmovable data set.

When a compression is invoked by specifying the same ddname for the INDD and

. OUTDD parameters, and the DD statement specifies a block size that differs from the

block size specified in the DSCB, the DSCB block size is overridden; however, no
physical reblocking or deblocking is done by IEBCOPY.

The SELECT statement specifies members to be selected from input partitioned data
sets. This statement is also used to rename and/or replace selected members on the
output partitioned data set. More than one SELECT statement may be used in
succession, in which case the second and subsequent statements are treated as a
continuation of the first.

The SELECT statement must follow either a COPY statement that includes an INDD
parameter or one or more INDD statements. A SELECT statement cannot appear with
an EXCLUDE statement in the same copy operation.

When a selected member is found on an input partitioned data set, it is not searched
for again, regardiess of whether it is copied. A selected member will not replace an
identically named member on the output partitioned data set unless the replace option
is specified on either the data set or member level. (For a description of replacing
identically named members see ‘‘Replacing Identically Named Data Set Members,”
and “‘Replacing Selected Members”’ in this chapter.) In addition, a renamed member
will not replace a member on the output partitioned data set that has the same new
name as the renamed member, unless the replace option is specified.

The format of the SELECT statement is:

e

where

MEMBER =
specifies the members to be selected from the input partitioned data set. The
values that can be coded are:

name
specifies the name of a member that is to be selected in a copy step. Each
member name specified within one copy step must be unique; that is, duplicate
names cannot be specified as either old names, or new names, or both, under
any circumstances.

newname
specifies a new name for a selected member. The member is copied onto the
output partitioned data set using its new name. If the name already appears on
the output partitioned data set, the member is not copied unless replacement
(R) is also specified.

R
specifies that the input member is to replace any identically named member that
exists on the output partitioned data set.

Note: The control statement operation and keyword parameter can be abbreviated to
their initial letters; SELECT can be abbreviated to S and MEMBER can be abbreviated
to M.

To rename a member, the old member name is specified in the SELECT statement,
followed by the new name and, optionally, the R parameter. When this option is
specified, the old member name and new member name must be enclosed in a set of
parentheses. When any option within parentheses is specified anywhere in the
MEMBER field, the entire field, exclusive of the MEMBER keyword, must be enclosed in
a second set of parentheses.

EXCLUDE Statement

{EBCOPY Examples

The EXCLUDE statement specifies members to be excluded from the copy step. Unlike
the selective copy, an exclusive copy causes all specified members on each input
partitioned data set to be excluded from the copy.

More than one EXCLUDE statement may be used in succession, in which case the
second and subsequent statements are treated as a continuation of the first. The
EXCLUDE statement must follow either a COPY statement that includes an INDD
parameter or one or more INDD statements. An EXCLUDE statement cannot appear
with a SELECT statement in the same copy step; however, both may be used in a
single copy operation.

where:

MEMBER = [(Jmembername 1[,membernameZ2]...[)]
- specifies members on the input partitioned data sets that are not to be copied to
the output partitioned data set. The members are not deleted from the input
partitioned data set unless the entire data set is deleted. (This can be done by

specifying DISP = DELETE in the operand field of the input DD job control

statement.) Each member name specified within one copy step must be unique.

Note: The control statement operation and keyword parameter can be abbreviated to
their initial letters; EXCLUDE can be abbreviated to E and MEMBER can be abbreviated

to M.

The following examples illustrate some of the uses of IEBCOPY. Table 13 can be used
as a quick reference guide to IEBCOPY examples. The numbers in the ‘““Example”
column point to examples that follow.

Table 13. IEBCOPY Example Directory

Operation Device

COPY
COPY

CopPY

CcopY

copy

COPY

CoPY

copy
CopPY
CoPY

copPY
copY

2314 Disk

2311 Disk,
2301 Drum,
2302 Disk

2302 Disk,
2314 or 2319 Disk'

2302 Disk,
2314 Disk,
2311 Disk

2302 Disk,
2311 Disk

2301 Drum,
2314 or 2319 Disk,’
2311 Disk

2311 Disk

2314 Disk

2314 or 2319 Disk'

2311 Disk,
2314 Disk

2314 or 2319 Disk
2311 Disk

Comments
Full Copy.
Multiple input partitioned data sets.

Fixed-blocked and fixed record formats.

All members are to be copied
Identically named members on the
output data set are to be replaced.

Selected members are to be copied.
Variable blocked data set is to be
created. Record formats are variable-
blocked and variable.

Selected members are to be copied.
One member is to replace an
identically named member on the
output data set.

Selected members are to be copied.
Members found on first input data set
replace identically named members on
the output data set.

Selected members are to be copied.
Two members are to be renamed. One
renamed member is to replace an
identically named member on the
output data set.

Exclusive Copy. Fixed blocked and
fixed record formats.)

Compress-in-place.

Full copy to be followed by a.compress-
in-place of the output data set. Replace
specified for one input data set.

Multiple copy operations.
Multiple copy operations.

Example
1

2

-

10
11
12

' The 2319 disk is functionally equivalent to the 2314 disk; to use the 2319, specify 2314 in the
control statement.

IEBCOPY Program 61

IEBCOPY Example 1

62 Utilities (Release 21.7)

In this example, a partitioned data set (DATASET5) is to be copied from one disk
volume to another. Figure 6 shows the input and output data sets before and after
processing.

The example follows:

//COPY JOB 06#990, MCEWAN

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

;;INOUTd DD DSNAME=DATASET4,UNIT=2314,VOL=SER=111112,

DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2))

/;INOUTS DD DSNAME=DATASET5,UNIT=2314,VOL=SER=111113,

DISP=0OLD

/

//SYSUT3 DD UNIT=2314,SPACE=(TRK, (1))

//SYSUT4 DD UNIT=2314,SPACE=(TRK,(1))

//SYSIN DD *

SOPYOPER COPY OUTDD=INOUT4,INDD=INOUT5
*

DATASETS

Directory
AC

Output
DATASET4

Directory
AC

Before After

copy processing
operation DATASETS

Figure 6. Copying a Partitioned Data Set—Fuil Copy

The control statements are discussed below:

INOUT4 DD defines a partitioned data set (DATASET4). This data set is new and is
to be kept after the copy operation. Five tracks are allocated for the data set on a
2314 volume. Two blocks are allocated for directory entries.

INOUTS DD defines a partitioned data set (DATASET5), which resides on a 2314
volume and contains two members (A and C).

SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2314
volume.

SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2314
volume.

SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement.

COPY indicates the start of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. The OUTDD parameter
specifies INOUT4 as the DD statement for the output data set (DATASET4); the

IEBCOPY Example 2

INDD parameter specifies INOUTS as the DD statement for the input data set. After
the copy operation is finished, the output data set (DATASET4) will contain the

same members that are on the input data set (DATASETS5); however, there will be
no embedded unused space on DATASET4.

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

In this example, members are to be copied from three input partitioned data sets
(DATASET1, DATASETS5, and DATASET®6) to an existing output partitioned data set
(DATASET2). The secuence in which the control statements occur controls the
manner and sequence in which partitioned data sets are processed. Figure 7 shows
the input and output data sets before and after processing.

input
DATASET!

rectory
ABF

embers

Input
DATASET6

Directory
8COD

D

Input
DATASETS

Directory
AC

Members C

Qutput
DATASET2

Directory

Members E

Before
copy
operation

Directory
ABCEF

Members E

-

After
processing
DATASET1

Directory
ABCDEF

Members £

-~

After
processing
DATASET6

Directory
ABCDEF

i

Members E

After
processing
DATASETS

Figure 7. Copying from Three Input Partitioned Data Sets

IEBCOPY Program 63

IEBCOPY Example 3

64 Utilities (Release 21.7)

The example follows:

//COPY JOB 06#990, MCEWAN
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A '
//INOUT1 DD DSNAME=DATASET1,UNIT=2311,VOL=SER=111112,
7/ DISP=(OLD,KEEP)
//INOUTS5 DD DSNAME=DATASETS5, UNIT=2301,VOL=SER=111114,
// DISP=OLD
//INOUT2 DD DSNAME=DATASET2, UNIT=2302,VOL=SER=111115,
// DISP=(OLD,KEEP)
//INOUT6 DD DSNAME=DATASET6, UNIT=2301,VOL=SER=111117,
// DISP=(OLD,DELETE)
//SYSUT3 DD UNIT=2311,SPACE=(TRK, (1))
//SYSUT4 DD UNIT=2311,SPACE=(TRK, (1))
//SYSIN DD *
COPYOPER COPY OUTDD=INOUT2

INDD=INOUT

INDD=INOUT6

INDD=INOUTS
/*

The control statements are discussed below:

e INOUT1 DD defines a partitioned data set (DATASET1). This data set, which
resides on a 2311 volume, contains three members (A, B, and F) in fixed format
with a logical record length of 80 bytes and a block size of 80 bytes.

e INOUTS DD defines a partitioned data set (DATASETS), which resides on a 2301
volume. This data set contains two members (A and C) in fixed blocked format with
a logical record length of 80 bytes and a block size of 160 bytes.

e INOUT2 DD defines a partitioned data set (DATASET2), which resides on a 2302
volume. This data set contains two members (C and E) in fixed blocked format. The
members have a logical record length of 80 bytes and a block size of 240 bytes.

e INOUT6 DD defines a partitioned data set (DATASET6), which resides on a 2301
volume. This data set contains three members (B, C, and D) in fixed blocked format
with a logical record length of 80 bytes and a block size of 400 bytes. This data set
is to be deleted when processing is completed.

e SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

e SYSUT4 DD defines a temporary épill data set. One track is allocated on a 2311
volume.

o SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement and three INDD statements.

e COPY indicates the start of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. The OUTDD parameter
specifies INOUT2 as the DD statement for the output data set (DATASET2).

o The first INDD statement specifies INOUT1 as the DD statement for the first input
data set (DATASET1) to be processed. All members (A, B, and F) are copied to the
output data set (DATASET2).

e The second INDD statement specifies INOUT6 as the DD statement for the second
input data set (DATASET®6) to be processed. Processing occurs, as follows: (1)
members B and C, which already exist on DATASET2, are not copied to the output
data set (DATASET2), (2) member D is copied to the output data set (DATASET2),
and (3) all members on DATASETG6 are lost when the data set is deleted.

o The third INDD statement specifies INOUTS as the DD statement for the third input
data set (DATASETS5) to be processed. No members are copied to the output data
set (DATASET2) because all of them exist on DATASETZ2.

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

In this example, members are to be copied from an input partitioned data set
(DATASET®6) to an existing output partitioned data set (DATASET2). In addition, all
copied members are to replace identically named members on the output partitioned
data set. Figure 8 shows the input and output data sets before and after processing.

Input
DATASET6

Directory

Ajaitabte

Output
DATASET2

Copy replacing
Directory Directory member C
CE

BCDE L

Members E

B e
4 Otdmember.. .
-4 C not pointed ¥
| atafter
processing

Before After
copy processing
operation DATASET6

Figure 8. Copy Operation with **Replace’” Specified on the Data Set Level

The example follows:

//COPY JOB 06#990,MCEWAN
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//INOUT2 DD DSNAME=DATASET2,UNIT=2314,VOL=SER=111113,
// DISP=0LD
//INOUT6 DD DSNAME=DATASET6,UNIT=2302,VOL=SER=111117,
// DISP=(OLD,KEEP)
//SYSUT3 DD UNIT=2311,SPACE=(TRK, (1))
//SYSUT4 DD UNIT=2311,SPACE=(TRK, (1))
//SYSIN DD *
SOPYOPER COPY OUTDD=INOUT2,INDD=((INOUT6,R))
*

The control statements are discussed below:

e INOUT2 DD defines a partitioned data set (DATASET2), which resides on a 2314
volume. This data set contains two members (C and E).

o INOUT6 DD defines a partitioned data set (DATASET6), which resides on a 2302
volume. This data set contains three members (B, C, and D).

e SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

e SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311
" volume. : .

e SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement and an INDD statement.

e COPY indicates the start of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy. The OUTDD parameter
specifies INOUT2 as the DD statement for the output data set (DATASET2). The
INDD parameter specifies INOUT6 as the DD statement for the input data set
(DATASET6). Members B, C, and D are copied to the output data set (DATASET2).
The pointer in the output data set directory is changed to point to the new (copied)
member C; thus, the space occupied by the old member C is embedded unused
space. Member C is copied even though the output data set already contains a

IEBCOPY Program 65

member named ‘‘C"’ because the replace option is specified for all identically
named members on the input data set; that is, the replace option is specified on
the data set level.

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

IEBCOPY Example 4 In this example, five members (A, C, D, E, and G) are to be selected from two input
partitioned data sets (DATASET6 and DATASET2) to be copied to a new output
partitioned data set (DATASET4). Figure 9 shows the input and output data sets
before and after processing.

Input
DATASET2
Input
DATASET6
Directory
Directory
BCD

Member

Member

Output
DATASET4

Directory Directory

Member

Before ’ After After
copy processing processing
operation DATASET6 DATASET2

Figure 9. Copying Selected Members with Reblocking and Deblocking

The example follows:

//COPY JOB 06#990, MCEWAN

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUT2 DD DSNAME=DATASET2,UNIT=2314,VOL=SER=111114,

// DISP=(OLD,DELETE)

//INOUT6 DD DSNAME=DATASET6,UNIT=2302,VOL=SER=111117,
/ DISP=(OLD,KEEP)

//INOUT4 DD DSNAME=DATASET4 ,UNIT=2311,VOL=SER=111116,
// DISP=(NEW,KEEP),SPACE=(TRK,(5,,2)),

// DCB=(RECFM=VB, LRECL=96, BLKSIZE=300)

//SYSUT3 DD UNIT=2311,SPACE=(TRK, (1))

//SYSUT4 DD UNIT=2311,SPACE=(TRK, (1))

//SYSIN DD *

COPYOPER - COPY OUTDD=INOUT4
INDD=INOUT6
INDD=INOUT2
SELECT MEMBER=C,D,E,A,G
/%
The control statements are discussed below:

e INOUT2 DD defines a partitioned data set (DATASET2), which resides on a 2314
volume. This data set contains two members (C and E) in variable blocked format
with a logical record length of 96 bytes and a block size of 500 bytes. This data set
is to be deleted when processing is completed.

66 Utilities (Release 21.7)

IEBCOPY Example 5

o INOUT6 DD defines a partitioned data set (DATASET6), which resides on a 2302
volume. This data set contains three members (B, C, and D) in variable format with
a logical record length of 96 bytes and a block size of 100 bytes.

e INOUT4 DD defines a partitioned data set (DATASET4). This data set is new and is
to be kept after the copy operation. Five tracks are allocated for the data set on a
2311 volume. Two blocks are allocated for directory entries. In addition, records
are to be copied to this data set in variable blocked format with a logical record
length of 96 bytes and a block size of 300 bytes.

e SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

o SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

e SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement, two INDD statements, and a SELECT statement.

o COPY indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD parameter specifies INOUT4 as the
DD statement for the output data set (DATASET4).

o The first INDD statement specifies INOUT6 as the DD statement for the first input
data set (DATASET®6) to be processed. The members specified on the SELECT
statement are searched for. The found members (C and D) are copied to the output
data set (DATASET4) in the order in which they reside on the input data set, that is,
in TTR order. In this case, member D is copied first, and then member C is copied.

e The second INDD statement specifies INOUT2 as the DD statement for the second
input data set (DATASETZ2) to be processed. The members specified on the SELECT
statement and not found on the first input data set are searched for. The found
member (E) is copied onto the output data set (DATASET4). All members on
DATASET2 are lost when the data set is deleted.

e SELECT specifies the members to be selected from the input data sets (DATASET6
and DATASET?2) to be copied to the output data set (DATASET4).

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

In this example, two members (A and B) are to be selected from two input partitioned
data sets (DATASETS and DATASET6) to be copied to an existing output partitioned
data set (DATASET1). Member B is to replace an identically named member that
already exists on the output data set. Figure 10 shows the input and output data sets
before and after processing.

The example follows:

//COPY JOB 06#990, MCEWAN

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A ‘

//INOUT1 DD DSNAME=DATASET1,UNIT=2311,VOL=SER=111112,
// DISP=(OLD,KEEP)

//INOUT6 DD DSNAME=DATASET6, UNIT=2302,VOL=SER=111115,
// DISP=0LD

//INOUT5 DD DSNAME=DATASETS,UNIT=2311,VOL=SER=111116,
// DISP=(OLD,KEEP)

//SYSUT3 DD UNIT=2311,SPACE=(TRK, (1))

//SYSUT4 DD UNIT=2311,SPACE=(TRK, (1))

//SYSIN DD *

COPYOPER COPY OUTDD=INOUT1
INDD=INOUT5, INOUT6
SELECT MEMBER=((R,,R),A)
/%

The control statements are discussed below:

e INOUT1 DD defines a partitioned data set (DATASET1). This data set resides on a
2311 volume and contains three members (A, B, and F).

e INOUTG6 DD defines a partitioned data set (DATASET6). This data set resides on a
2302 volume and contains three members (B, C, and D).

e INOUT5 DD defines a partitioned data set (DATASET5). This data set resides on a
2311 volume and contains two members (A and C).

e SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

IEBCOPY Program 67

IEBCOPY Example 6

68 Utilities (Release 21.7)

Input
DATASETS

! Input
Directory
AC DATASET6

Directory
BCD

Member

Output
DATASET1

Directory Directory

not painted at

Before After After
copy processing processing
operation DATASETS DATASET6

Figure 10. Selective Copy with “‘Replace’ Specified on the Member Level

e SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

o SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement, an INDD statement, and a SELECT statement.

e COPY indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD parameter specifies INOUT1 as the
DD statement for the output data set (DATASET1).

e INDD specifies INOUT5 as the DD statement for the first input data set
(DATASETS5) to be processed and INOUT6 as the DD statement for the second
input data set (DATASET6) to be processed. Processing occurs, as follows: (1)
selected members are searched for on DATASETS, (2) member A is found, but is
not copied to the output data set because it already exists on DATASET2 and the
replace option is not specified, (3) selected members not found on DATASET5 are
searched for on DATASETS6, and (4) member B is found and copied to the output
data set (DATASET1), even though a member named B already exists on the output
data set, because the replace option is specified for member B on the member
level. The pointer in the output data set directory is changed to point to the new
(copied) member B; thus, the space occupied by the old member B is unused.

e SELECT specifies the members to be selected from the input data sets (DATASETS
and DATASET6) to be copied to the output data set (DATASET1).

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

In this example, two members (A and B) are to be selected from two input partitioned
data sets (DATASET5 and DATASETS6) to be copied to an existing output partitioned
data set (DATASET1). All members found on DATASETS5 are to replace identically
named members on DATASET1. Figure 11 shows the input and output data sets
before and after processing.

Input
DATASETS

| Input
Directory DATASET6

AC
Uqugd E R Directory
) BCD
Member C Member B
l\“"‘"—"'""/ ~_—

Uriused D

Available o

Output
DATASET1

——_—

Directory Directory
ABF

Directory

ooy
S Old'members
A not

pointed at

Y us

Before After After
copy processing processing
operation DATASETS DATASET6

Figure 11. Selective Copy with ‘‘Replace” Specified on the Data Set Level

The example follows:

//COPY JOB 06#990, MCEWAN

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUT1 DD DSNAME=DATASET1,UNIT=2311,VOL=SER=111112,
// DISP=(OLD,KEEP)

//INOUTS DD DSNAME=DATASET5,UNIT=2314,VOL=SER=111114,
/7 DISP=(OLD,DELETE)

//INOUT6 DD DSNAME=DATASET6,UNIT=2301,VOL=SER=111115,
// DISP=(OLD,KEEP)

//SYSUT3 DD UNIT=2311,SPACE=(TRK, (1))

//SYSUT4 DD UNIT=2311,SPACE=(TRK, (1))

//SYSIN DD *

COPYOPER COPY OUTDD=INOUT1
INDD=((INOUT5,R),INOUT6)
SELECT MEMBER=(A,B)
/%

The control statements are discussed below:

o INOUTL DD defines a partitioned data set (DATASET1). This data set resides on a
2311 volume and contains three members (A, B, and F).

o INPUT5 DD defines a partitioned data set (DATASETS). This data set contains two
members (A and C) and can reside on either a 2314 or 2319 volume. This data set
is to be deleted when processing is completed.

e INOUT6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) and resides on a 2301 volume.

e SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

o SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

IEBCOPY Program 69

IEBCOPY Example 7

70 Utilities (Release 21.7)

e SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement, an INDD statement, and a SELECT statement.

e COPY indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD operand specifies INOUT1 as the
DD statement for the output data set (DATASET1).

o INDD specifies INOUTS as the DD statement for the first input data set
(DATASETS5) to be processed and INOUT6 as the statement for the second input
data set (DATASET®6) to be processed. Processing occurs, as follows: (1) selected
members are searched for on DATASETS, (2) member A is found and copied to the
output data set (DATASET1) because the replace option was specified on the data
set level for DATASETS5, (3) member B, which was not found on DATASETS is
searched for and found on DATASET®6, (4) member B is not copied because
DATASET1 already contains a member called member B and the replace option is
not specified for DATASET6. The pointer in the output data set directory is changed
to point to the new (copied) member A; thus, the space occupied by the old
member A is unused.

e SELECT specifies the members to be selected from the input data sets (DATASETS
and DATASET®6) to be copied to the output data set (DATASET1).

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

In this example, four members (A, B, C, and D) are to be selected from an input
partitioned data set (DATASET®6) to be copied to an existing output partitioned data
set (DATASET3). Member B is to be renamed H; member C is to be renamed J; and
member D is to be renamed K. In addition, member C (renamed J) is to replace the
identically named member (J) on the output partitioned data set. Figure 12 shows the
input and output data sets before and after processing.

The example foliows:

//COPY JOB #990, MCEWAN

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUT3 DD DSNAME=DATASET3,UNIT=2311,VOL=SER=111114,
// DISP=(OLD,KEEP)

//INOUT6 DD DSNAME=DATASET6,UNIT=2311,VOL=SER=111117,
// DISP=(OLD,DELETE)

//SYSUT3 DD UNIT=2311,SPACE=(TRK,(1))

//SYSUT4 DD UNIT=2311,SPACE=(TRK,(1))

//SYSIN DD *

COPYOPER COPY OUTDD=INOUT3
INDD=INOUT6
SELECT MEMBER=((B,H),(C,J,R),A,(D,K))
E3

The control statements are discussed below:

o INOUT3 DD defines a partitioned data set (DATASET3). This data set contains four
members (D, G, H, and J).

o INOUT6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) and resides on a 2311 volume. DATASET®6 is to be
deleted when processing is completed; thus, all members on this data set are lost.

e SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

e SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

o SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement, an INDD statement, and a SELECT statement.

e COPY indicates the start of the copy operation. The presence of a SELECT
statement causes a selective copy. The OUTDD parameter specifies INOUT3 as the
DD statement for the output data set (DATASET3).

¢ INDD specifies INOUT6 as the DD statement for the input data set (DATASET®6).
Processing occurs, as follows: (1) selected members are searched for on
DATASET®6, (2) member B is found, but is not copied to DATASET3 because its
intended new name (H) is identical to the name of a member (H), which already
exists on the output data set, and replace is not specified, (3) member C is found
and copied to the output data set (DATASET3), although its new name (J) is

tnput

DATASET6

1

:C copied;

{ J.
identically
d’ member (J).

ri D copied;
r K.

Output
DATASET3

Directory
DGH

member J
replaced by

renamed K
member J ~]
~_
Before After
copy processing
operati¢n DATASETS

Figure 12. Renaming Selected Members Using IEBCOPY

identical to the name of a member (J), which already exists on the output data set,
because the replace option is specified for the renamed member, and (4) member
D is copied onto the output data set (DATASET3) because its new name (K) does
not already exist there.

e SELECT specifies the members to be selected from the input data set (DATASET6)
to be copied to the output data set (DATASET3).

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

IEBCOPY Example 8 In this example, five members (A, B, C, J, and L) are to be excluded from the copy
operation when each of the input partitioned data sets (DATASET1, DATASET3, and
DATASETS) is processed. In addition, replace is specified for the last input partitioned
data set (DATASET®6) to be processed; thus, with the exception of the members
specified on the EXCLUDE statement, all members on DATASET6 will replace any
identically named members on the output partitioned data set (DATASET4). Figure 13
shows the input and output data sets before and after processing.

The example follows:

//COPY JOB 064990, MCEWAN

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUT1 DD DSNAME=DATASET1,UNIT=2314,VOL=SER=111112,
// DISP=(OLD,KEEP)

//INOUT3 DD DSNAME=DATASET3,UNIT=2314,VOL=SER=111114,
// DISP=OLD .
//INOUT4 DD DSNAME=DATASET# , UNIT=2314,VOL=SER=111115,
// DISP=(NEW,KEEP), SPACE=(TRK, (5,1,2)),

// DCB=(LRECL=100, RECFM=FB, BLKSIZE=400)

//INOUT6 DD DSNAME=DATASET6,UNIT=2314,VOL=SER=111116,
// DISP=OLD

//SYSUT3 DD UNIT=2314,SPACE=(TRK,(1))

//SYSUT4 DD UNIT=2314,SPACE=(TRK, (1))

//SYSIN DD *

COPYOPER COPY OUTDD=INOUT4,INDD=INOUT1,INOUT3,(INOUT6,R)
EXCLUDE MEMBER=A,J,B,L,C
*

IEBCOPY Program 71

72 Utilities (Release 21.7)

{nput Input Input
DATASET1 DATASET3 DATASET6

-

Directory
ABF

Directory Directory
DGHJ BCD

Member

Qutput
DATASET4

S—

Directory Directory Directory
F DFGH . DFGH
Member F Me"u_/

Bt
not pointed
at

Before Atfter After After

processing processing processing

op':rVation DATASET1 DATASET3 DATASET6

Figure 13. Exclusive Copy with *Replace’” Specified for One Input Partitioned Data Set

The control statements are discussed below:

INOUT1 DD defines a partitioned data set (DATASET1). This data set contains
three members (A, B, and F) and resides on a 2314 volume. The record format is
fixed blocked with a logical record length of 100 bytes and a block size of 400
bytes.

INOUT3 DD defines a partitioned data set (DATASET3), which resides on a 2314
volume. This data set contains four members (D, G, H, and J) in fixed blocked
format with a logical record length of 100 bytes and a block size of 600 bytes.

INOUT4 DD defines a new partitioned data set (DATASET4). Five tracks are
allocated for the copied members on a 2314 volume. Two blocks are allocated for
directory entries. In addition records are to be copied to this data set in fixed
blocked format with a logical record length of 100 bytes and a block size of 400
bytes.

INOUT6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) in fixed format. The records have a logical record
length of 100 bytes and a block size of 100 bytes. This data set resides on a 2314
volume.

SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2314
volume.

SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2314
volume.

SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement and an EXCLUDE statement.

COPY indicates the start of the copy operation. The presence of an EXCLUDE
statement causes an exclusive copy. The OUTDD parameter specifies INOUT4 as
the DD statement for the output data set (DATASET4). The INDD parameter
specifies INOUT1 as the DD statement for the first input data set (DATASET1) to
be processed, INOUT3 as the DD statement for the second input data set
(DATASET3) to be processed, and INOUT6 as the DD statement for the last input
data set (DATASET®6) to be processed. Processing occurs, as follows: (1) member
F, which is not named on the EXCLUDE statement, is copied from DATASET]1, (2)
members D, G, and H, which are not named on the EXCLUDE statement, are copied

IEBCOPY Example 9

from DATASET3, and (3) member D is copied from DATASET6 because the replace
option is specified for nonexcluded members. The pointer in the output data set
directory is changed to point at the new (copied) member D; thus, the space
occupied by the old member D (copied from DATASET3) is unused.

¢ EXCLUDE specifies the members to be excluded from the copy operation. The
named members are excluded from all of the input partitioned data sets specified
in the copy operation.

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

In this example, a partitioned data set (DATASETS) is to be compressed in place.
Figure 14 shows the input and output data sets before and after processing.

The example follows:

//COPY JOB 06#990,MCEWAN
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//INOUTS DD DSNAME=DATASETS5,UNIT=2314,VOL=SER=111113,
// DISP=(OLD,KEEP)
//SYSUT3 DD UNIT=2311,SPACE=(TRK, (1))
//SYSUT4 DD UNIT=2311,SPACE=(TRK,(1))
//SYSIN DD *
COPYOPER COPY OUTDD=INOUTS5, INDD=INOUT5
/%
Input
DATASETS
Directory
AC
Output
DATASETS
Directory Directory
AC AC

Before

copy
operation

A

After
compressing
in place

Figure 14. Compressing a Data Set in Place

The control statements are discussed below:

e INOUT5 DD defines a partitioned data set (DATASET5). This data set contains two
members (A and C) and can reside on either a 2314 or 2319 volume.

e SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311

volume.

IEBCOPY Program 73

IEBCOPY Example 10

74 Utilities (Release 21.7)

e SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

e SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement.

e COPY indicates the start of the copy operation. The absence of a SELECT or
EXCLUDE statement causes a default to a full copy; however, the same DD
statement is specified for both the INDD and OUTDD parameters, causing a
compress in place of the specified data set. The OUTDD parameter specifies
INOUTS5 as the DD statement for the output data set (DATASET5). The INDD
parameter also specifies INOUT5 as the DD statement for the input data set
(DATASETS).

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

In this example, two input partitioned data sets (DATASET5 and DATASET6) are to be
copied to an existing output partitioned data set (DATASET1). In addition, all members
on DATASETS are to be copied; members on the output data set that have the same
names as the copied members are replaced. After DATASET6 is processed, the output
data set (DATASET1) is to be compressed in place. Figure 15 shows the input and
output data sets before and after processing.

Input

DATASETS DATASET6 DATASET1

Directory Directory Directory
AC cD

u Members

Output
DATASET1

Directory

Directory
ABCDF

Directory Directory

Members

Members F
\V/

o

d members B
and C not
pointed at

Before After After After
copy processing Processing compressing
operation DATASETS DATASET6 in place

Figure 15. Compress-in-Place Following Full Copy with ‘‘Replace” Specified

The example follows:

//COPY JOB 06#990,MCEWAN

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUT1 DD DSNAME=DATASET1,UNIT=2314,VOL=SER=111112,
// DISP=(OLD,KEEP)

//INOUTS DD DSNAME=DATASET5,UNIT=2311,VOL=SER=111114,
/ DISP=OLD

//INOUT6 DD DSNAME=DATASET6,UNIT=2311,VOL=SER=111115,
/ DISP=(OLD,KEEP)

//SYSUT3 DD UNIT=2311,SPACE=(TRK, (1))

//SYSUT4 DD UNIT=2311,SPACE=(TRK, (1))

//SYSIN DD *

COPYOPER COPY OUTDD=INOUT1

, INDD=INOUTS5, (INOUT6,R), INOUT1
*

The control statements are discussed below:

e INOUT1 DD defines a partitioned data set (DATASET1). This data set contains)
three members (A, B, and F) and resides on a 2314 or 2319 volume.

e INOUT5 DD defines a partitioned data set (DATASETS5). This data set contains two
members (A and C) and resides on a 2311 volume.

o INOUT®6 DD defines a partitioned data set (DATASET6). This data set contains
three members (B, C, and D) and resides on a 2311 volume.

e SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

e SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

o SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement and an INDD statement.

e COPY indicates the start of the copy operation. The OUTDD operand specifies
INOUT1 as the DD statement for the output data set (DATASET1). The absence of
a SELECT or EXCLUDE statement causes a default to a full copy.

o INDD specifies INOUT5 as the DD statement for the first input data set
(DATASETS) to be processed. it then specifies INOUT6 as the DD statement for the
second input data set (DATASET6) to be processed; in addition, the replace option
is specified for all members copied from DATASET6. Finally, it specifies INOUT1 as
the DD statement for the last input data set (DATASET1) to be processed; this
causes a compress in place of DATASET1 because it is also specified as the output
data set. Processing occurs, as follows: (1) member A is not copied from
DATASETS5 onto the output data set (DATASET1) because it already exists on
DATASET1 and the replace option was not specified for DATASETS, (2) member C
is copied from DATASET5 to the output data set (DATASET1), occupying the first
available space, and (3) all members are copied from DATASET6 to the output data
set (DATASET1), immediately following the last member. Members B and C are
copied even though the output data set already contains members with the same
names because the replace option is specified on the data set level. The pointers in
the output data set directory are changed to point to the new members B and C;
thus, the space occupied by the old members B and C is unused. The members
currently on DATASET1 are compressed in place, thereby eliminating embedded
unused space.

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

IEBCOPY Program 75

IEBCOPY Example 11

76 Utilities (Release 21.7)

In this example, members are to be selected, excluded, and copied from input
partitioned data sets onto an output partitioned data set. This example is designed to
illustrate multiple copy operations. Figure 16 shows the input and output data sets

before and after processing.
The example follows:

//COPY JOB 06#990,MCEWAN

//JOBSTEP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUTA DD DSNAME=DATASETA,UNIT=2314,VOL=SER=111113,
// DISP=0OLD

//INOUTB DD DSNAME=DATASETB,UNIT=2314,VOL=SER=111115,
// DISP=(OLD,KEEP)

//INOUTC DD DSNAME=DATASETC,UNIT=2314,VOL=SER=111114,
// DISP=(OLD,KEEP)

//INOUTD DD DSNAME=DATASETD,UNIT=2314,VOL=SER=111116,
// DISP=0OLD

//INOUTE DD DSNAME=DATASETE,UNIT=2314,VOL=SER=111117,
// DISP=0OLD

//INOUTX DD DSNAME=DATASETX,UNIT=2314,VOL=SER=111112,
// DISP=(NEW,KEEP), SPACE=(TRK,(5,1,2))
//SYSUT3 DD UNIT=2314,SPACE=(TRK, (1))

//SYSUT4 DD UNIT=2314,SPACE=(TRK, (1))

//SYSIN DD *

COPERST1 COPY O=INOUTX, I=INOUTA

COPY OUTDD=INOUTA , INDD=INOUTA

INDD=INOUTB
COPY O=INOUTA

INDD=INOUTD
EXCLUDE MEMBER=MM

INDD=INOUTC
SELECT MEMBER((ML,MD,R))

INDD=INOUTE

/*

T

he control statements are discussed below:

INOUTA DD defines a partitioned data (DATASETA). This data set contains eight
members (MA, MB, MC, MD, ME, MF, MG, and MH) and resides on either a 2314 or
a 2319 volume.

INOUTB DD defines a partitioned data set (DATASETB). This data set resides on
either a 2314 or a 2319 volume and contains two members (MA and MJ).

INOUTC DD defines a partitioned data set (DATASETC), which resides on either a
2314 or a 2319 volume. The data set contains four members (MF, ML, MM, and
MN).

INOUTD DD defines a partitioned data set (DATASETD). This data set resides on
either a 2314 or a 2319 volume and contains two members (MM and MP).

INOUTE DD defines a partitioned data set (DATASETE). This data set contains four
members (MD, ME, MF, and MT) and resides on either a 2314 or a 2319 volume.

INOUTX DD defines a partitioned data set (DATASETX). This data set is new and is
to be kept after the copy operation. Five tracks are allocated for the data set on
either a 2314 or a 2319 volume. Two blocks are allocated for directory entries.

SYSUT3 DD defines a temporary spill data set. One track is allocated on either a
2314 or a 2319 volume.

SYSUT4 DD defines a temporary spill data set. One track is allocated on either a
2314 or a 2319 volume.

SYSIN DD defines the control data set, which follows in the input stream. The data
set contains two COPY statements, several INDD statements, a SELECT statement
and an EXCLUDE statement.

The first COPY statement indicates the start of the first copy operation. This copy
operation is done to create a back-up copy of DATASETA, which is subsequently
compressed in place.

[/ weidoid AdODs3

First copy operation

| Second copy operation

Available

Input |
DATASETA DATASETB i DATASETD DATASETC DATASETE
<
|
Directory Directory ! Directory Directory Directory
MA MB MC MD MA MJ l MM M MF ML MM MN MD ME MF MT
ME MF MG I
1
|
|
|
|
MM
| N~
| Member ML
is copied, renamed
l MD, and replaces
the old, member
I MD
|
{ -
Output
DATASETA |
) |
Directory l Directory Directory Directory Directory
D A ME MC MD D'eﬁlle'XnB MC MD MA MB MC MD MA MB MC MD MA MB MC MD MA MB MC MD MA MB MC MD
ME MF MG | ME MF MG ME MF MG ME MF MG ME MF MG
ME MF MG ME MF MG MJ i MJ MJ MP MJ MP MJ MP MT
N I N R N N — A
Member !)
Member MA Nﬂ.——/ Mew‘/ | Mew/ Member MA Men'u-/ Membe\rﬂ’/
\ﬂ/ u_o_,./\ I Qi/ ‘ member Ur“b
| M DL
| P Mp
| ’ "
' DL
|
|

Before

copy
operation

After
compressing
in place

After
processing
DATASETB

Before
copy
operation

After
processing
DATASETD

Figure 16. Multiple Copy Operations/Copy Steps

After
processing
DATASETC

After
processing
DATASETE

IEBCOPY Example 12

78 Utilities (Release 21.7)

e The second COPY statement indicates the start of another copy operation. The
absence of a SELECT or EXCLUDE statement causes a default to a full copy;
however, the same DD statement, INOUTA, is specified for both the INDD and
OUTDD parameters, causing a compress in place of the specified data set.

e INDD specifies INOUTB as the DD statement for the input data set (DATASETB) to
be copied. Only member MJ is copied because member MA already exists on the
output data set.

e The third COPY statement indicates the start of the third copy operation. The
OUTDD parameter specifes INOUTA as the DD statement for the output data set
(DATASETA). This copy operation contains more than one copy step.

e The first INDD statement specifies INOUTD as the DD statement for the first input
data set (DATASETD) to be processed. Only member MP is copied to the output
data set (DATASETA) because member MM is specified on the EXCLUDE
statement.

¢ EXCLUDE specifies the member to be excluded from the first copy step within this
copy operation.

e The second INDD statement marks the beginning of the second copy step for this
copy operation and specifies INOUTC as the DD statement for the second input
data set (DATASETC) to be processed. Member ML is searched for, found, and
copied to the output data set (DATASETA). Member ML is copied even though its
new name (MD) is identical to the name of a member (MD) that already exists on
the output data set, because the replace option is specified for the renamed
member.

o SELECT specifies the member to be selected from the input data set (DATASETC)
to be copied to the output partitioned data set.

¢ The third INDD statement marks the beginning of the third copy step for this copy
operation and specifies INOUTE as the DD statement for the last data set
(DATASETE) to be copied. Only member MT is copied because the other members
already exist on the output data set. Because the INDD statement is not followed
by an EXCLUDE or SELECT statement, a full copy is performed.

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

The output data set is compressed in place first to save space because it is known
that it contains embedded unused space.

In this example, members are to be selected, excluded, and copied from input
partitioned data sets to an output partitioned data set. This example is designed to
illustrate multiple copy operatigns. Figure 17 shows the input and output data sets
before and after processing. .

The example follows:

//COPY JOB 064990, MCEWAN
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A :
//INOUTA DD DSNAME=DATASETA,UNIT=2311,VOL=SER=111113,
// DISP=0LD
//INOUTB DD DSNAME=DATASETB, VOL=SER=111115,
// DISP=(OLD,KEEP),UNIT=2311
//INOUTC DD DSNAME=DATASETC,VOL=SER=111114,
// DISP=(OLD,KEEP),UNIT=2311
//INOUTD DD DSNAME=DATASETD, VOL=SER=111116,
// DISP=OLD,UNIT=2311
//INOUTE DD DSNAME=DATASETE, VOL=SER=111117,
// DISP=OLD, UNIT=2311
//SYSUT3 DD UNIT=2311,SPACE=(TRK, (1))
//SYSUT4 DD UNIT=2311,SPACE=(TRK, (1))
//SYSIN DD *
COPY OUTDD=INOUTA

: INDD=INOUTE
SELECT MEMBER=MA, MJ
INDD=INOUTC
EXCLUDE MEMBER=MM,MN

COPY O=INOUTB, INDD=INOUTD
I=((INOUTC,R),INOUTB)
COPY 0=INOUTD, I=((INOUTB,R))
SELECT MEMBER=MM
/%

6/ weidoid Ad0D83

First copy operation

Input
DATASETE
Directory
MA MJ MK

Member MA

~—~———

input
DATASETC

Directory
MF ML MM MN

MF

ember

l Second copy operation

fnput
DATASETD

Directory
MM MP

Input
DATASETC

Directory
MF ML MM MN

MF
]
L

Member

_N/)
MM -

Input
DATASETB

Directory
MA MF MJ ML
MM MN Mp

M

Output
DATASETA

Directory
MA MB

MD

Member MA

Before

copy
operation

Directory
MA MB MD MJ

Mo

Member MA

u
L

N~ M0

MJ

After
processing
DATASETE

Figure 17. Multiple Copy Operations/Copy Steps Within a Job Step

Directory

MA MB MD MF
MJ ML
—
>
—

M

ML

After
processing
DATASETC

Output
DATASETB

Directory
MA My

Member MA

|
|
I
I
I
|
l
[
[
[
1
|
|
|
[
!
!
l
[
|
|
!
!
|
|
|
[
|
|
|
|
|
[
l
|
l
l
l
l
|
|
[

Before
copy
operation

O

Directory
MA MJ MM MP

Member MA

~

After
processing
DATASETD

-

Directory
MA MF MJ ML
MM MN MP

Member MA

N

\ MM J
After

processing
DATASETC

Directory
MA MF MJ ML
MM MN MP

Moo WA

e ™A

A»é'siab‘lej; ," S
After

compressing
in place

80 Utilities (Release 21.7)

The control statements are discussed below:

INOUTA DD defines a partitioned data set (DATASETA). This data set contains
three members (MA, MB, and MD) and resides on a 2311 volume.

INOUTB DD defines a partitioned data set (DATASETB). This data set resides on a
2311 volume and contains two members (MA and MJ).

INOUTC DD defines a partitioned data set (DATASETC), which resides on a 2311
volume. This data set contains four members (MF, ML, MM, and MN).

INOUTD DD defines a partitioned data set (DATASETD). This data set resides on a
2311 volume and contains two members (MM and MP).

INOUTE DD defines a partitioned data set (DATASETE), which resides on a 2311
volume. This data set contains three members (MA, MJ and MK).

SYSUT3 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

SYSUT4 DD defines a temporary spill data set. One track is allocated on a 2311
volume.

SYSIN DD defines the control data set, which follows in the input stream. The data
set contains three COPY statements, SELECT and EXCLUDE statements, and
several INDD statements.

The first COPY statement indicates the start of a copy operation. The QUTDD
operand specifies INOUTA as the DD statement for the output data set
(DATASETA).

The first INDD statement specifies INOUTE as the DD statement for the first input
data set (DATASETE) to be processed. Processing occurs, as follows: (1) member
MA is searched for and found, but is not copied because the replace option is not
specified, and (2) member MJ is searched for, found, and copied to the output data
set. Members are not searched for again after they are found.

SELECT specifies the members (MA and MJ) to be selected from the input data set
(DATASETE) to be copied.

The second INDD statement marks the end of the first copy step and the beginning
of the second copy step within the first copy operation. It specifies INOUTC as the
DD statement for the second input data set (DATASETC) to be processed.
Members MF and ML, which are not named on the EXCLUDE statement, are copied
because neither exists on the output data set.

EXCLUDE specifies the members (MM and MN) to be excluded from the second
copy operation.

The second COPY statement indicates the start of another copy operation. The
absence of a SELECT or EXCLUDE statement causes a default to a full copy. The O
(OUTDD) parameter specifies INOUTB as the output data set (DATASETB). The
INDD parameter specifies INOUTD as the first input data set (DATASETD) to be
processed. Members MP and MM are copied to the output data set.

INDD(l) specifies INOUTC as the DD statement for the second input data set
(DATASETC) and INOUTB as the DD statement for the third input data set
(DATASETB) to be processed. Members MF, ML, MM, and MN are copied from
DATASETC. Member MM is copied, although it already exists on the output
partitioned data sets, because the replace option is specified. Because DATASETB
is also the data set specified in the OUTDD PARAMETER, a compress in place takes
place. (The pointer in the output set directory is changed to point to the new
(copied) member MM; thus the space occupied by the replaced member MM is
embedded unused space.)

The third COPY statement indicates the start of another copy operation. The O
(OUTDD) parameter specifies INOUTD as the DD statement for the output data set
(DATASETD). The | (INDD) parameter specifies INOUTB as the DD statement for
the input data set (DATASETB).

SELECT specifies the member (MM) to be selected from the input partitioned data
set (DATASETB) to.be copied. The replace option is specified on the data set level.

The temporary spill data sets may or may not be opened, depending on the amount of
main storage available; therefore, it is suggested that the SYSUT3 and SYSUT4 DD
statements always appear in the job stream.

Data sets used as input data sets in one copy operation can be used as output data
sets in another copy operation, and vice versa.

IEBDG Program

IEBDG is a data set utility used to provide a pattern of test data to be used as a
programming debugging aid. (See “Introduction’’ for general data set utility
information.)

An output data set, containing records of any format, can be created through the use
of utility control statements, with or without input data. An optional user exit is
provided to pass control to a user routine to monitor each output record before it is
written. Sequential, indexed sequential, and partitioned data sets can be used for
input or output.

To generate test data, the user constructs a pattern of data that he can analyze
quickly for predictable results. Test data is generated through the use of utility control
statements.

When the user defines the contents of a field, he decides:

e What type of pattern—IBM-supplied or user-supplied—he wishes to place initially
in the defined field.

e What action, if any, is to be performed to alter the contents of the field after it is
selected for each output record.

IBM-Supplied Patterns IBM supplies seven patterns: alphameric, alphabetic, zoned decimal, packed decimal,
binary number, collating sequence, and random number. The user may choose one of
them when he defines the contents of a field. All patterns except the binary and
random number patterns repeat in a given field, provided that the defined field length
is sufficient to permit repetition. For example, the alphabetic pattern is:

ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFG. . .
Table 14 shows the IBM-supplied patterns.

Table 14. IBM-Supplied Patterns

Expressed in Expressed in
Type Hexadecimal Printable Characters
Alphameric ClC2...E9F0...F9 ABC...Z0...9
Alphabetic Clc2...E9 ABC...Z
Zoned Decimal FOFO . . . FOF1 00...01
Packed Decimal 0000...001C

(Positive pattern)

0000 ... 001D .

(Negative pattern) Not applicable
Binary Number 00...01

(Positive pattern)

FF...FF

(Negative pattern) Not applicable
Collating Sequence 40...F9 be.<(+ | &!1$%)~-/,%__>#@ ="

A...Z0...9

Random Number Random hexadecimal digits ~ Not applicable

Note: A packed decimal or binary number is right aligned in the defined field.

The user can specify a starting character when defining an alphameric, alphabetic, or
collating sequence field. For example, a ten-byte alphabetic field for which ‘‘H" is
specified as the starting character would appear as:

HIJKLMNOPQ

The same ten-byte alphabetic field with no specified starting character would appear
as:

ABCDEFGHIJ

The user can specify a mathematical sign when defining a packed decimal or binary
field. If no sign is specified, the field is assumed to be positive.

IEBDG Program 81

User-Specified Pictures

Modification of
Selected Fields

Input and Output

82 Utilities (Release 21.7)

Instead of selecting an IBM-supplied pattern, the user can specify a picture to be
placed in the defined field. The user can provide:

e An EBCDIC character string.
e A decimal number to be converted to packed decimal by IEBDG.
e A decimal number to be converted to binary by IEBDG.

When the user supplies a picture, he must specify a picture length that is equal to or
less than the specified field length. An EBCDIC picture is left aligned in a defined field;
a decimal number that is converted to packed decimal or to binary is right aligned in a
defined field.

The user can initially load (fill) a defined field with either an EBCDIC character or a
hexadecimal digit. For example, the 10-byte picture ‘‘BADCFEHGJI"” is to be placed in
a 15-byte field. An EBCDIC “2" is to be used to pad the field. The result is
BADCFEHGJI22222. (If no fill character is provided, the remaining bytes contain
binary zeros.) Remember that the fill character, if specified, is written in each byte of
the defined field prior to the inclusion of an IBM-supplied pattern or user-supplied
picture.

IEBDG can be used to change the contents of a field in a specified manner. One

of eight actions can be selected to change a field after its inclusion in each applicable
output record. These actions are ripple, shift left, shift right, truncate left, truncate
right, fixed, roll, and wave.

Figure 18 shows the effects of each of the actions on a six-byte alphabetic field. Note
that the roll and wave actions are applicable only when a user pattern is supplied. In
addition, the resuit of a ripple action depends on which type of pattern—IBM-supplied
or user-supplied—is present.

Ripple—user- Ripple—1BM-
supplied picture supplied format Shift left Shift right
ABCDEF ABCDEF ABCDEF ABCDEF
BCDEFA BCDEFG BCDEF ABCDE
CDEFAB CDEFGH CDEF ABCD
DEFABC DEFGHI DEF ABC
EFABCD EFGHIJ EF AB
FABCDE FGHIJK F A
ABCDEF GHIJKL ABCDEF ABCDEF
BCDEFA HIJKLM BCDEF ABCDE
4 Rotl—user- Wave—user-
Truhcate left Truncate right Fixed supplied picture supplied picture
ABCDEF ABCDEF ABCDEF AAA AAA
BCDEF ABCDE ABCDEF AAA AAA
CDEF ABCD ABCDEF AAA AAA
DEF ABC ABCDEF AAA AAA
EF AB ABCDEF AAA A A A
F A ABCDEF AAA AAA
ABCDEF ABCDEF ABCDEF . AAA AAA
BCDEF ABCDE ABCDEF AAA A A A

Figure 18. IEBDG Actions

If no action is selected, or if the specified action is not compatible with the format, the
fixed action is assumed by IEBDG.

IEBDG uses the following input:

e An input data set, which contains records that are to be used in the construction of
an output data set or partitioned data set member. The input data sets are
optional; that is, output records can be created entirely from utility control
statements.

e A control data set, which contains any number of sets of utility control statements.

Control

Job Control Statements

IEBDG produces the following output:

e An output data set, which is the result of the IEBDG operation. One output data set
is created by each set of utility control statements included in the job step.

¢ A message data set, which contains informational messages, the contents of
applicable utility control statements, and any error messages.

Note that input and output data sets may be sequential, indexed sequential, or
partitioned data set members.

BDAM is not supported.

IEBDG produces a return code to indicate the results of program execution. The return
codes and their meanings are:

e 00, which indicates successful completion.

e 04, which indicates that a user routine returned a code of 16 to IEBDG. The job
step is terminated at the user’s request.

e 08, which indicates that an error occurred while processing a set of utility control
statements. No data is generated following the error. Processing contmues
normally with the next set of utility control statements, if any.

e 12, which indicates that an error occurred while processing an input or output data
set. The job step is terminated.

e 16, which indicates that an error occurred from which recovery is not possible. The
job step is terminated.

IEBDG is controlled by job control statements and utility control statements. The job
control statements are used to execute or invoke IEBDG and define the data sets used
and produced by IEBDG. Utility control statements are used to control the functions of
the program and to define the contents of the output records.

Table 15 shows the job control statements necessary for using IEBDG.

Table 15. IEBDG Job Control Statements
Statement Use
JoB Initiates the job.

EXEC Specifies the program name (PGM = IEBDG) or, if the job control statements
reside in a procedure library, the procedure name. Additional information can be
specified in the EXEC statement; see “PARM Information on the EXEC Statement”
below.

SYSPRINT DD Defines a sequential message data set. The data set can be written on a syétem
output device, a tape volume, or a direct access volume. .

SYSIN DD Defines the control data set, which contains the utility control statements and,
optionally, input records. The data set normally resides in the input stream;
however, it can be defined as a sequential data set or as a member of a
partitioned data set.

seqinset DD Defines an optional sequential or indexed sequential data set used as input to
IEBDG. The data set can reside on a tape volume or on a direct access volume.
Any number of these statements (each having a ddname different from all other
ddnames in the job step) can be included in the job step. Each DD statement is
subsequently referred to by a DSD utility control statement.

parinset DD Defines an optional input partitioned data set member residing on a direct access
volume. Any number of these statements (each having a ddname different from
all other ddnames in the job step) can be included in the job step. The “parinset”
DD statement is referred to by a DSD utility control statement.

seqout DD Defines an output (test) sequential or indexed sequential data set. Any number of
“seqout’” DD statements can be included per job step; however, only one
“seqout” statement is applicable per set of utility control statements.

parout DD Defines an optional output partitioned data set member to be created and placed
on a direct access volume. Any number of “parout” DD statements (eachDD
statement referring to the same or to a different data set) can be included per job
step; however, only one “parout” statement is applicable per set of utility control
statements.

IEBDG Program 83

Restrictions

PARM Information on
the EXEC Statement

84 Utilities (Release 21.7)

The minimum region size required for using IEBDG varies with its use; see OS Storage
Estimates, GC28-655I, for information on calculating the region size required for a
particular application.

The SYSPRINT data set and the SYSIN data set can have any blocking factor.
Both input and output data sets can contain fixed, variable, or undefined records.

Refer to OS Data Management Services Guide, GC26-3746, for information on
estimating space allocations. ’

The ‘“‘seqinset’’ DD statement can be entered:

//seqginset DD DSNAME = setname,UNIT = xxxx,DISP = (OLD,KEEP),
// VOLUME = SER = xxxxxx,LABEL ={(...,...),
// DCB(applicable subparameters)

The LABEL parameter is included only for a magnetic tape volume. If the input data
set has an indexed sequential organization, DSORG = IS should be coded in the DCB
‘parameter.

The “parinset”” DD statement can be entered:

//parinset DD DSNAME = setname(membername),UNIT = xxxx,DISP = (OLD,
// KEEP),VOLUME = SER = xxxxxx,
// DCB = (applicable subparameters)

The ‘‘seqout” DD statement can be entered:

//seqout DD DSNAME = setname, UNIT = xxxx,
// DISP = (,KEEP),VOLUME = SER = xxxxxx,
// DCB = (applicable subparameters)

The LABEL parameter is included for magnetic tape; the SPACE parameter is included
for direct access.

The “parout’’ DD statement can be entered:
//parout DD DSNAME = setname(membername),UNIT = xxxx,

// VOLUME = SER = xxxxxx,DCB = (applicable
// subparameters),DISP = (,KEEP),
// SPACE = (applicable subparameter)

The SPACE parameter is included on the parout DD statement when creating the first
member to be placed in a partitioned data set.

e The input data set record type must agree with the output data set record type.

e The DSORG subparameter must be included in the DCB subparameters if the input
or output data set has an indexed sequential organization (DSORG = IS). If
members of a partitioned data set are used, DSORG = PS or DSORG = PO may be
coded. If the DSORG subparameter is not coded, DSORG = PS is assumed.

o If the SYSPRINT DD statement is omitted, no messages are written.

e On an MVT system, the ddname of the *‘seqout’” DD statement should not be
SYSPRINT.

e For an indexed sequential data set, the key length must be specified in the DCB.

The EXEC statement can include an optional PARM parameter to specify the number
of lines to be printed between headings in the message data set, coded as follows:

PARM = LINECNT = nnnn

The nnnn is a four-digit decimal number that specifies the number of lines (0000 to
9999) to be printed per page of output listing.

If PARM is omitted, 58 lines are printed between headings (unless a channel 12 punch
is encountered in the carriage control tape, in which case a skip to channel 1 is
performed and a heading is printed).

Note: If IEBDG is invoked, the line-count option can be passed in a parameter list that
is referred to by a subparameter of the LINK or ATTACH macro instruction. In
addition, a page count can be passed in a six-byte parameter list that is referred to by
a suparameter of the LINK or ATTACH macro instruction. For a discussion of linkage
conventions, refer to ‘‘Appendix B: Invoking Utility Programs from a Problem
Program.”

Utility Control Statements

DSD Statement

FD Statement

IEBDG is controlled by the following utility control statements:

o DSD statement, which specifies the ddnames of the ihput and output data sets. One
DSD statement must be included for each set of utility control statements.

o FD statement, which defines the contents and lengths of fields to be used in
creating output records.

o CREATE statement, which defines the contents of output records.

o REPEAT statement, which specifies the number of times a CREATE statement or a
group of CREATE statements are to be used in generating output records.

e END statement, which marks the end of a set of IEBDG utility control statements.

Any number of sets of control statements can appear in a single job step. Each set
defines one data set.

The DSD statement marks the beginning of a set of utility control statements and
specifies the data sets that IEBDG is to use as input. The DSD statement can be used
to specify one output data set and any number of input data sets for each application
of IEBDG.

The format of the DSD statement is:

where:

OUTPUT = (ddname)
specifies the ddname of the DD statement defining the output data set.

INPUT = (ddname,...)
specifies the ddname of a DD statement defining a data set used as input to the
program. Any number of data sets can be included as input—that is, any number of
ddnames referring to corresponding DD statements can be coded. Whenever
ddnames are included on a continuation card, they must begin in column four.

Note: The ddname SYSIN must not be coded in the INPUT parameter. Each parameter
should appear no more than once on any DSD statement.

The FD statement defines the contents and length of a field that will be used
subsequently by a CREATE statement (or statements) to form output records. A
defined field within the input logical record may be selected for use in the output
records if it is referred to, by name, by a subsequent CREATE statement.

Figure 19 shows how fields defined in FD statements are placed in buffer areas so that
subsequent CREATE statements can assign selected fields to specific output records.

£D Statements—define fields

Defines field 5
Defines field 4

Defines field 3
Defines field 2

Defines field 1

Contents are placed in buffers™,
so that subsequent CREATE
statements can selectively
create output records.

Field 3 Field 4 Field 5

CREATE Statement—creates Glitput record fromﬂggkéétéd”ﬁelds

o

Qutput record

Field 1 Field 4

Figure 19. Defining and Selecting Fields for Output Records Using IEBDG

IEBDG Program 85

86 Utilities (Release 21.7)

Figure 20 shows how the FD statement is used to specify a field in an input record to
be used in output records. The left-hand side of the figure shows that a field in the
input record beginning at byte 50 is selected for use in the output record. The
right-hand side of the figure shows that the field is to be placed at byte 20 in the
output record.

R s
g oy

Input record MM Output record
1

80 1 20

LENGTH
Same as input field

Figure 20. Field Selected from the Input Record for Use in the Output Record

The format of the FD statement is:

N‘,

where:

NAME = name
specifies the name of the field defined by this FD statement.

LENGTH = length-in-bytes
specifies the length in bytes of the defined field. For-variable records, four bytes of
length descriptor are added.

STARTLOC = starting-byte-location
specifies a starting location (within all output records using this field) in which a
field is to begin. For example, if the first byte of an output record is chosen as the
starting location, the keyword is coded STARTLOC = 1; if the tenth byte is chosen,
STARTLOC = 10 is coded, etc. If STARTLOC is omitted, the field will begin in the
first available byte of the output record (determined by the order of specified field
names in the applicable CREATE statement). For variable records the starting
location is the first byte after the length descriptor.

FILL =
specifies an EBCDIC character or hexadecimal digits to be placed in each byte of
the defined field prior to any other operation in the construction of a field. If FILL is
omitted, binary zeros are placed in the field. These values can be coded:

‘character’
specifies an EBCDIC character to be placed in the defined field.
X‘'2-hexadecimal-digits’
specifies two hexadecimal digits (for example, FILL = X‘40’ or FILL = X‘FF’) to
be piaced in each byte of the defined field.

FORMAT =
specifies an IBM-supplied pattern that is to be placed in the defined field. FORMAT
must not be used when PICTURE is used. The values that can be coded are:

pattern
specifies the IBM-supplied patterns, as follows:

AN
specifies an alphameric pattern.

ZD
specifies a zoned decimal pattern.

PD
specifies a packed decimal pattern.

co
specifies a collating-sequence pattern.

BI
specifies a binary pattern.

AL
specifies an alphabetic pattern.

RA
specifies a random binary pattern.

CHARACTER = character
specifies the starting character of a field. If CHARACTER is omitted, the starting
character is as described under “IBM-Supplied Patterns’ earlier.

PICTURE =
specifies the length and contents of a user-supplied field picture. PICTURE must
not be used when FORMAT is used. These values can be coded:

length
specifies the number of characters in the FD picture.

‘character-string’
specifies an EBCDIC character string that is to be placed in the defined field.
The character string is left aligned in the field. A character string may be broken
in column 71 and must be continued in column 4. Double quotation marks must
not be coded to represent a single quotation mark within a character string.)

P'decimal-number’)
specifies a decimal number that is to be converted to packed decimal and
placed right aligned in the defined field.

B‘decimal-number’
specifies a decimal number that is to be converted to binary and placed right
aligned in the defined field. In all cases, the number of characters within the
quotation marks must equal the number specified in the length subparameter.

SIGN = sign
specifies a mathematical sign (4 or -), which is used when defining a
packed decimal or binary field. If SIGN is omitted, the sign is assumed to be
positive.

ACTION = action

specifies that the contents of a defined field are to be altered after the field's
inclusion in an output record. These values can be coded: .

SL
specifies that the contents of a defined field are to be shifted left after the
field’s inclusion in an output record.

SR ,
specifies that the contents of a defined field are to be shifted right after the
field’s inclusion in an output record.

TL
specifies that the contents of a defined field are to be truncated left after the
field’s inclusion in an output record.

TR
specifies that the contents of a defined field are to be truncated right after the
field’s inclusion in an output record.

RO
specifies that the contents of a defined field are to be rolled after the field's
inclusion in an output record. RO can be specified only for a user-defined field.

wv
specifies that the contents of a defined field are to be waved after the field's
inclusion in an output record. WV can be specified only for a user-defined field.

FX
specifies that the contents of a defined field are to be fixed after the field's
inclusion in an output record. If ACTION is omitted, FX is assumed.

IEBDG Program 87

88 Utilities (Release 21.7)

RP
specifies that the contents of a defined field are to be rippled after the field's
inclusion in an output record. ‘

INDEX = number i
specifies a number to be added to this field whenever a specified number of
records have been written. If INDEX is omitted, no indexing is performed. These
additional values can be coded:

CYCLE = number
specifies a number of output records (to be written as output or made available
to an exit routine) that are treated as a group by the INDEX keyword. Whenever
this field has been used in the construction of the specified number of records, it
is modified as specified in the INDEX parameter. For example, if CYCLE = 3 is
coded, output records might appear as 111 222 333 444 etc. This parameter
can be coded only when INDEX is coded. If CYCLE is omitted and INDEX is
coded, a CYCLE value of 1 is assumed; that is, the field is indexed after each
inclusion in a potential output record.

RANGE = number
specifies an absolute value which the contents of this field can never exceed. If
an index operation attempts to exceed the specified absolute value, the contents
of the field as of the previous index operation are used.

INPUT = ddname
specifies the ddname for the input data set.

FROMLOC = number
specifies the location of the selected field within the input logical record. The
number represents the position in the input record. If, for example, FROMLOC = 10
is coded, the specified field begins at the tenth byte; if FROMLOC = 1 is coded, the
field begins at the first byte. (For variable records, significant data begins on the
first byte after the four-byte length descriptor.)

Some of the FD keywords do not apply when certain patterns or pictures are selected
by the user; for example, the INDEX, CYCLE, RANGE, and SIGN parameters are used
only with numeric fields. Figure 21 shows which IEBDG keywords can be used with the
applicable pattern or picture chosen by the user. Each keyword should appear no
more than once on any FD statement.

FORMAT/PI

URE Compatible Operations

Action

EBCDIC SL

*Zoned decimal numbers (ZD) do not include a sign.

Figure 21. Compatible IEBDG Operations

CREATE Statement The CREATE statement defines the contents of a record (or records) to be made
available to a user routine or to be written directly as an output record (or records).

The format of the CREATE statement is:

[label] CREATE {[QUANTITY = number]}
{[LFILL = {‘character'}
{X'2-hexadecimal-digits'}1}
{[INPUT = {ddname }
{SYSIN[(ccee)] }1}
{[,PICTURE = length,startloc, {‘character-string’ }
{P'decimal-number’ }
| S : : {B‘dec:mal-number 33k
S {[,NAME— {name }
c {(name1,namen..)}
{ (name,(COPY = namel,namen..))}]}
XIT = routmename]} o

QUANTITY = number
specifies the number of records that this CREATE statement is to generate; each
record is specified by the other parameters. If QUANTITY is omitted and INPUT is
not specified, only one output record is created. If QUANTITY is omitted and INPUT
is specified, the number of records created is equal to the number of records in the
input data set. If both QUANTITY and INPUT are coded, and the quantity specified
is greater than the number of records in the input data set, the number of records
created is equal to the number of input records to be processed plus the generated
data up to the specified number.

FILL =
specifies a value that is to be placed in each byte of the output record before any
other operation in the construction of record. If FILL is not coded, binary zeros are
placed in the output record. These values can be coded:

‘character’
specifies an EBCDIC character that is to be placed in each byte of the output
record.

X'2-hexadecimal-digits’
specifies two hexadecimal digits (for example, FILL = X*40’, or FILL = X‘FF’) to
be placed in each byte of the output record.

INPUT =
defines an input data set whose records are to be used in the construction of
output records. If INPUT is not coded, the output records are created entirely from
utility control statements. If INPUT is coded, QUANTITY should also be coded, .
unless the remainder of the input records are all to be processed by this CREATE
statement. These values can be coded:

ddname
specifies the ddname of a DD statement defining an input data set.

SYSIN[(ccco)]
specifies that the SYSIN data set (input stream) contains records (other than
utility control statements) to be used in the construction of output records. If
SYSIN is coded, the input records follow this CREATE statement (unless the
CREATE statement is in a REPEAT group, in which case the input records follow
the last CREATE statement of the group). When INPUT = SYSIN is coded, the
input records are delimited from any additional utility control statements by a
record containing $$$E in columns 1 through 4. If “(cccc)" coded, the input
records are delimited by a record containing EBCDIC characters beginning in
column 1; the cccc can be any combination of from one to four EBCDIC
characters.

PICTURE =
specifies the length, starting byte, and contents of a user-supplied picture (CREATE
statement picture). If both PICTURE and NAME are omitted, the fill character
specified in the CREATE statement appears in each byte of applicable output
records. These values can be coded:

length
specifies the number of bytes that the picture will occupy.

IEBDG Program 89

90 Utilities (Release 21.7)

startloc
specifies a starting byte (within any applicable output record) in which the
picture is to begin.

‘character-string’
specifies an EBCDIC character string that is to be placed in the applicable
record(s). The character string is left aligned at the defined starting byte. A
character string may be broken in column 71 and continued in column 4,

P‘decimal-number’
specifies a decimal number that is to be converted to packed decimal and
placed right aligned (within the boundaries of the defined length and starting
byte) in the output records.

B‘decimal-number’
specifies a decimal number that is to be converted to binary and placed right
aligned (within the boundaries of the defined length and starting byte) in the
output records.

NAME =
specifies the name or names of previously defined fields to be included in the
applicable output records. If both NAME and PICTURE are omitted, the fill character
specified in the CREATE statement appears in each byte of the applicable output
record. These values can be coded:

(namel,...)
specifies the name or names of a field or fields to be included in the applicable
output record(s). Each field is included in an output record in the order in which
its name is encountered in the CREATE statement.

COPY = number
indicates that all fields named in the inner parentheses (maximum of twenty) are
to be treated as a group and included the specified number of times in each
output record produced by this CREATE statement. Any number of sets of inner
parentheses can be included with NAME; however, sets of parentheses cannot
be embedded. Within each set of inner parentheses, COPY must appear before
the name of any field.

EXIT = routinename
specifies the name of a user routine that is to receive control from IEBDG before
writing each output record.

After processing each potential output record, the user routine provides a return code
to instruct IEBDG how to handle the output record. The user codes are:

e 00, which specifies that the record is to be written.

e 04, which specifies that the record is not to be written. The skipped record is not to
be counted as a generated output record; processing is to continue as though a
record were written. If skips are requested through user exits and input records are
supplied, each skip causes an additional input record to be processed in the
generation of output records. For example, if a CREATE statement specifies that
ten output records are to be generated and a user exit indicates that two records
are to be skipped, 12 input records are processed.

e 12, which specifies that the processing of the remainder of this set of utility control
statements is to be bypassed. Processing is to continue with the next DSD
statement.

e 16, which specifies that all processing is to halt.

Note: When an exit routine is loaded and when the user returns control to IEBDG,
register one contains the address of the first byte of the output record. Each keyword
should appear no more than once on any CREATE statement.

Figure 22 shows the addition of field X to two different records. In this example, field x
does not have a special starting location. In record 1, field X is the first field referred
to by the CREATE statement; therefore, field X begins in the first byte of the output
record. In record 2, two fields, field A and field B, have already been referred to by a
CREATE statement; field X, the next field referred to, begins immediately after field B.

The user can also indicate that a numerical field is to be modified after it has been
referred to n times by a CREATE statement or statements, that is, after n cycles, a
modification is to be made. A modification will add a user-specified number to a field.

The CREATE statement constructs an output record by referring to previously defined
fields by name and/or by providing a picture to be placed in the record. The user can
generate multiple records with a single CREATE statement.

Record 1

1 21 80
Field X

Record 2

1 41 61 80
Field A Field B Field X

Figure 22. Default Placement of Fields Within an Output Record Using IEBDG

When defining a picture in a CREATE statement, the user must specify its length and
starting location in the output record. The specified length must be equal to the
number of specified EBCDIC or numeric characters. (When a specified decimal number
is converted to packed decimal or binary, it is automatically right aligned.)

Figure 23 shows three ways in which output records can be created from utility control

statements.

1. Fields only Output record

CREATE

2. Fields and
picture B

Output record
| CREATE H 2 3

Picture

3. Picture only

Qutput record
| CREATE H Picture

Figure 23. Creating Output Records with Utility Control

As an alternative to creating output records from utility control statements alone, the
user can provide input records, which can be modified and written as output records.
Input records can be provided directly in the input stream, or in a data set.

As previously mentioned, the CREATE statement is responsible for the construction of
an output record. An output record is constructed in the following order:

1. A fill character, specified or default (binary zero), is initially loaded into each byte

of the output record.

w N

their names in the CREATE statement.

4. A CREATE statement picture, if any, is placed in the output record.

IEBDG provides a user exit so that the user can provide his own routine to analyze or
further modify a newly constructed record before it is placed in the output data set.

A set of utility control statements contains one DSD statement, any number of FD,
CREATE, and REPEAT statements, and one END statement when the INPUT parameter

is omitted from the FD card.

. An input record, if any is provided, is left aligned in the output record.
. FD fields, if any, are placed in the output record in the order of the appearance of

IEBDG Program 91

REPEAT Statement

END Statement

92 Utilities (Release 21.7)

When selecting fields from an input record (FD INPUT = ddname), the field must be
defined by an FD statement within each set of utility control statements. In this case,
defined fields for field selection are not usable across sets of utility control
statements. The FD card may be duplicated and used in more than one set of utility
control statements within the job step.

The REPEAT statement specifies the number of times a CREATE statement or group of
CREATE statements is to be used repetitively in the generation of output records. The
REPEAT statement precedes the CREATE statements to which it applies.

Figure 24 shows a group of five CREATE statements repeated n times.

‘The format of the REPEAT statement is:

£

REPEAT

J
v

£e
o

Figure 24. Repetition Due to the REPEAT Statement Using IEBDG

where:

QUANTITY = number
specifies the number of times the defined group of CREATE statements is to be
used repetitively. This number cannot exceed 65,535.

CREATE = number
specifies the number of following CREATE statements to be included in the group. If
the CREATE parameter is omitted, only one CREATE statement is repeated.

The END statement is used to mark the end of a set of utility control statements. Each
set of control statements can pertain to any number of input data sets and a single
output data set.

The format of the END statement is:

IEBDG Examples

IEBDG Example 1

The following examples illustrate some of the uses of IEBDG. Table 16 can be used as
a quick reference guide to IEBDG examples. The numbers in the “Example’’ column
point to examples that follow.

Table 16. IEBDG Example Directory

Data Set

Operation Organization Device Comments Example

Place binary zeros in Sequential 9-track tape Blocked input and output.

selected fields. 1

Ripple alphabetic Sequential 9-track tape, Blocked input and output.

pattern 2314 Disk 2

Create output records Sequential 2314 Disk Blocked output. 3

from utility control

statements

Modify records from Partitioned, 2314 Disk Reblocking is performed. Each

partitioned members Sequential block of output records contains

and input stream ten modified partitioned input
records and two input stream
records. 4

Create partitioned Partitioned 2314 Disk Blocked output. One set of

members for utility utility control statements per

control statements member. 5

Roll and wave user- Sequential 2311 Disk Output records are created

supplied patterns from utility control statements. 6

Create indexed Sequential, 2314 Disk Output records are created by

sequential data set Indexed augmenting selected input

using field selection sequential fields with generated data. 7

and data generation

In this example, binary zeros are to be placed in two fields of records copied from a
sequential data set. After the operation, each record in the copied data set (OUTSET)
contains binary zeros in locations 20 through 29 and 50 through 59.

The example follows:

//CLEAROUT JOB , ,MSGLEVEL=1

// EXEC PGM=IEBDG

//SYSPRINT DD SYSOUT=A :
//SEQIN DD DSNAME=INSET,UNIT=2400,DISP=(OLD,KEEP),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=800),

// VOLUME=SER=240000, LABEL=(,NL)

?;SEQOUT DD DSNAME=OUTSET, UNIT=2400,VOLUME=SER=240001,

DCB=(RECFM=FB, LRECL=80, BLKSIZE=800),
7/ ’ DISP=(,KEEP),LABEL=(,NL)
//SYSIN DD *
DSD OUTPUT=(SEQOUT), INPUT=(SEQIN)
FD NAME=FIELD1, INPUT=SEQIN, LENGTH=80
FD NAME=FIELD2, LENGTH=10,STARTLOC=20
FD NAME=FIELD3, LENGTH=10,STARTLOC=50
CREATE QUANTITY=100,INPUT=SEQIN,NAME=(FIELD1, 2c
FIELD2,FIELD3)
END
/*

The control statements are discussed below:

e SEQIN DD defines a sequential input data set (INSET). The data set was originally
written on a 9-track, unlabeled tape volume.

o SEQOUT DD defines the test data set (OUTSET). The output records are identical
to the input records, except for locations 20 through 29 and 50 through 59, which
contain binary zeros at the completion of the operation.

o SYSIN DD defines the control data set, which follows in the input stream.

e DSD marks the beginning of a set of utility control statements and refers to the DD
statements defining the input and output data sets.

¢ The first FD statement defines an 80 byte field of input data.

¢ The second and third FD statements create two ten-byte fields (FIELD and FILED3)
that contain binary zeros. The fields are to begin in the 20th and 50th bytes of
each output record.

IEBDG Program 93

IEBDG Example 2

IEBDG Example 3

94 Utilities (Release 21.7)

o CREATE constructs 100 output records in which the contents of previously defined
fields (FIELD1, FIELD2, and FIELD3) are placed in their respective starting locations
in each of the output records. Input records from data set INSET are used as the
basis of the output records.

o END signals the end of a set of utility control statements.

In this example, a ten-byte alphabetic pattern is to be rippled. At the end of the job
step the first output record contains ‘‘ABCEDFGHIJ”, followed by data in location 11
through 80 from the input record; the second record contains ‘“‘BCDEFGHIJK"’
followed by data in locations 11 through 80, etc.

The example follows:

//RIPPLE JOB ,,MSGLEVEL=1

EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//SEQIN DD DSNAME=INSET,DISP=(OLD,KEEP),VOL=SER=240000,
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=800),UNIT=2400
//SEQOUT DD DSNAME=OUTSET,UNIT=2314,VOLUME=SER=231400,
// ' DCB=(RECFM=FB, LRECL=80, BLKSIZE=800),
// DISP=(,KEEP),SPACE=(TRK, (20,10))
//SYSIN DD *

DSD OUTPUT=(SEQOUT) , INPUT=(SEQIN)
FD NAME=FIELD1, INPUT=SEQIN, LENGTH=80
FD NAME=FIELD2, LENGTH=10, FORMAT=AL, ACTION=RP, 2C
STARTLOC=1
CREATE QUANTITY=100,INPUT=SEQIN,NAME=(FIELD1,FIELD2)
END :
/*

The control statements are discussed below:

"o SEQIN DD defines an input sequential data set (INSET). The data set was originally

written on a 9-track, standard labeled tape volume.

e SEQOUT DD defines the test output data set (OUTSET). Twenty tracks of primary
space and ten tracks of secondary space are allocated for the sequential data set
on a 2314 volume.

o SYSIN DD defines the control data set, which follows in the input stream.

e DSD marks the beginning of a set of utility control statements and refers to the DD
statements defining the input and output data sets.

o The first FD statement defines an 80 byte field of input data.

e The second FD statement creates a ten-byte field in which the pattern
ABCEDFGHUJ is placed. The data is rippled after each output record is written.

o CREATE constructs 100 output records in which the contents of a previously
defined field (FIELD1) are included. The CREATE statement uses input records from
data set INSET as the basis of the output records.

e END signals the end of a set of utility control statements.

In this example, output records are to be created entirely from utility control
statements. Three fields are to be created and used in the construction of the output
records. In two of the fields, alphabetic data is to be truncated; the other field is a
numeric field that is to be indexed by one after each output record is written. Figure
25°'shows the contents of the output records at the end of the job step.

Field 1 Field 2 Field 3 (packed decimal)
1 31 61 71 80
ABCDEFGHIJKLMNOPQRSTUVWXYZABCD{ ABCDEFGHIJKLMNOPQRSTUVWXYZABCD|FF ... FF 1123 ...90
BCDEFGHIJKLMNOPQRSTUVWXYZABCD| ABCDEFGHIJKLMNOPQRSTUVWXYZABC |FF ... FF |123...91
CDEFGHIJKLMNOPQRSTUVWXYZABCD| ABCDEFGHIJKLMNOPQRSTUVWXYZAB FF...FF |123...92
DEFGHIJKLMNOPQRSTUVWXYZABCD| ABCDEFGHIJKLMNOPQRSTUVWXYZA FF...FF }123...93
EFGHIJKLMNOPQRSTUVWXYZABCD]| ABCDEFGHIJKLMNOPQRSTUVWXYZ FF...FF |123...94

Figure 25. Output Records at Job Step Completion

IEBDG Example 4

The example follows:

//UTLYONLY JOB ,,MSGLEVEL=1

EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//SEQOUT DD DSNAME=OUTSET,UNIT=2311,DISP=(,KEEP),
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=800),
// SPACE=(TRK, (20,10)), VOLUME=SER=240000
//SYSIN DD DATA

DSD OUTPUT=(SEQOUT)

FD NAME=FIELD1,LENGTH=30,STARTLOC=1,FORMAT=AL,ACTION=TL
FD NAME=FIELD2,LENGTH=30,STARTLOC=31, FORMAT=AL, ACTION=TL
FD NAME=FIELD3, LENGTH=10,STARTLOC=71,PICTURE=10, 4o

P'1234567890',INDEX=1
CREATE QUANTITY=100,NAME=(FIELD1,FIELD2,FIELD3),FILL=X'FF’'
END
/*

The control statements are discussed below:

e SEQOUT DD defines the test output data set. Twenty tracks of primary space and
ten tracks of secondary space are allocated for the sequential data set on a 2311
volume.

¢ SYSIN DD defines the control data set, which follows in the input stream.

o DSD marks the beginning of a set of utility control statements and refers to the DD
statement defining the output data set.

o FD defines the contents of three fields to be used in the construction of output
records. The first field contains 30 bytes of alphabetic data to be truncated left
after each output record is written. The second field contains 30 bytes of
alphabetic data to be truncated right after each output record is written. The third
field is a ten-byte field containing a packed decimal number (1234567890) to be
incremented by one after each record is written.

o CREATE constructs 100 output records in which the contents of previously defined
fields (FIELD1, FIELD2, and FIELD3) are included.

¢ END signals the end of a set of utility control statements.

In this example, two partitioned members and input records from the input stream are
to be used as the basis of a partitioned output member. Each block of 12 output
records is to contain ten modified records from an input partitioned member and two
records from the input stream. Figure 26 shows the content of the output partitioned
member at the end of the job step.

The example follows:

//MIX JOB , ,MSGLEVEL=1
// EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//PARIN1 DD DSNAME=INSET1(MEMBA),UNIT=2314,DISP=0LD,
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=800, DSORG=PS),
// VOLUME=SER=231400
//PARIN2 DD DSNAME=INSET2(MEMBA),UNIT=2314,DISP=O0LD,
DCB(RECFM=FB, LRECL=80, BLKSIZE=960, DSORG=PS),
VOLUME=SER=231401 \
//PAROUT DD = DSNAME=PARSET(MEMBA),UNIT=2314,DISP=(,KEEP),
// VOLUME=SER=231402,SPACE=(TRK, (20,10,5)),
7/ DCB(RECFM=FB, LRECL=80, BLKSIZE=960, DSORG=PS)
//SYSIN DD DATA
DSD OUTPUT=(PAROUT), INPUT=(PARIN1, PARIN2)
FD NAME=FIELD1,LENGTH=13,PICTURE=13, 'DEPARTMENT 21’
REPEAT QUANTITY=10,CREATE=2
CREATE QUANTITY=10, INPUT=PARIN1,NAME=FIELDI1
CREATE QUANTITY=2,INPUT=SYSIN

(input records 1 through 20)

$$$E
REPEAT QUANTITY=10,CREATE=2
CREATE QUANTITY=10,INPUT=PARIN2,NAME=FIELDI
CREATE QUANTITY=2,INPUT=SYSIN

(input records 21 through 40)

$$SE
END

/*

IEBDG Program 95

IEBDG Example 5

96 Utilities (Release 21.7)

Input Output Records

Figure 26. Output Partitioned Member at Job Step Completion

The control statements are discussed below:

PARIN1 DD defines one of the input partitioned members.

PARIN2 DD defines the second of the input partitioned members. (Note that the
members are from different partitioned data sets.)

PAROUT DD defines the output partitioned member. This example assumes that the
partitioned data set does not exist prior to the job step; that is, this DD statement
allocates space for the partitioned data set.

SYSIN DD defines the control data set, which follows in the input stream.

DSD marks the beginning of a set of utility control statements and refers to the DD
statements defining the input and output data sets.

FD creates a 13-byte field in which the picture “DEPARTMENT 21" is placed.

The first REPEAT statement indicates that the following group of two CREATE
statements is to be repeated ten times.

The first CREATE statement creates ten output records. Each output record is
constructed from an input record (from partitioned data set INSET1) and from
previously defined FIELD1.

The second CREATE statement indicates that two records are to be constructed
from input records included next in the input stream.

The $$$E record separates the input records from the REPEAT statement. The next
REPEAT statement group is identical to the preceding group, except that records
from a different partitioned member are used as input.

END signals the end of a set of utility control statements.

In this example, output records are to be created from three sets of utility control
statements and written in three partitioned data set members. Four fields are to be
created and used in the construction of the output records. In two of the fields
(FIELD1 and FIELD3), alphabetic data is to be shifted. The other two fields are to be
fixed alphameric and zoned decimal fields. Figure 27 shows the partitioned data set
members at the end of the job step.

MEMBA

Field 1 Field 3 Field 2 Binary zeros
1 31 51 71 80
ABGDEFGHIJK LMNOPQRSTUVWX YZABCD | ABCDEFGHIJKLMNOPQRST | 00000000010000000001 | fill
BCDEFGHIK LMNOPQRSTUVWXYZABCD | ABCDEFGHIJKLMNOPQRS | 00000000010000000001| _ fill
CDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQR| 00000000010000000001 | __fill

| DEFGHIIKI M NOPORSTUVWXYZABCE — | ABCDEFGHIJKLVNGPQ] 0000000010000~ | i |
MEMBB

Field 3 Field 3 Field 3 Field 2

1 21 41 61 80

ABCDEFGHIJKLMNOPQRST

ABCDEFGHIJKLMNOPQRST

ABCDEFGHIJKLMNOPQRST

00000000010000000001

ABCDEFGHIJKLMNOPQRS

ABCDEFGHIJKLMNOPQRS

ABCDEFGHIJKLMNOPQRS

00000000010000000001

ABCDEFGH IJLKMNOPQR

ABCDEFGHIJKLMNOPQR

ABCDEFGHIJKLMNOPQR

00000000010000000001

ABCDEFG HIJKLMNOPQ ABCDEFGHIJKLMNOPN Ww
MEMBC
Field 4 Field 1 Binary zeros
1 31 61 80
ABCDEFGHIUKLMNOPQRSTUVWXYZ0123| ABCDEFGHIJKLMNOPQRSTUVWXYZABCD fill
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123|{ BCDEFGHIJKLMNOPQRSTUVWXYZABCD fill
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123| CDEFGHIJKLMNOPQRSTUVWXYZABCD fill
ABCDEFGHLIKLMNOPQRSTUVWYYZ0123 w.—\&\/\

Figure 27. Partitioned Data Set Members at Job Step Completion

The example follows:

//UTSTS JOB , ,MSGLEVEL=1

/7 EXEC PGM=IEBDG

//SYSPRINT DD SYSOUT=A

//PAROUT1 DD DSNAME=PARSET(MEMBA),UNIT=2314,DISP=(,KEEP),
// VOLUME=SER=231400, SPACE=(TRK,(10,10,5)),

//
//PAROUT2 DD
//

//
//PAROUT3 DD
/7

DCB=(RECFM=FB, LRECL=80, BLKSIZE=800,DSORG=PS),
DSNAME=PARSET(MEMBB), UNIT=AFF=PAROUT1,

DCB=(RECFM=FB, LRECL=80,BLKSIZE=800,DSORG=PS),
DISP=0LD, VOLUME=SER=231400
DSNAME=PARSET(MEMBC) , UNIT=AFF=PAROUT1,

DCB=(RECFM=FB, LRECL=80,BLKSIZE=800, DSORG=PS),

// DISP=0OLD,VOLUME=SER=231400

//SYSIN DD DATA

DSD OUTPUT=(PAROUT1)

FD NAME=FIELD1, LENGTH=30, FORMAT=AL, ACTION=SL
FD NAME=FIELD2, LENGTH=20, FORMAT=ZD

FD NAME=FIELD3, LENGTH=20, FORMAT=AL, ACTION=SR
FD NAME=FIELD4, LENGTH=30, FORMAT=AN

CREATE QUANTITY=4,NAME=(FIELD',FIELD3,FIELD2) .
END

DSD OUTPUT=(PAROUTZ2)

CREATE QUANTITY=4,NAME=((COPY=3,FIELD3),FIELD2)
END

DSD OUTPUT=(PAROUT3)

CREATE QUANTITY=4,NAME=(FIELD4 ,FIELD1)

END
/*

The control statements are discussed below:

PAROUT1 DD defines the first member (MEMBA) of the partitioned output data set.
This example assumes that the partitioned data set does not exist prior to this job
step; that is, this DD statement allocates space for the data set.

PAROUT2 and PAROUT3 DD define the second and third members, respectively, of
the output partitioned data set. Note that each DD statement specifies DISP = OLD
and UNIT = AFF = PAROUTL.

SYSIN DD defines the control data set, which follows in the input stream.

DSD marks the beginning of a set of utility control statements and refers to the DD
statement defining the member applicable to that set of utility control statements.

FD defines the contents of a field that is used in the subsequent construction of
outputrecords.

CREATE constructs four records from combinations of previously defined fields.
END signals the end of a set of utility control statements.

IEBDG Program 97

IEBDG Example 6

98

Utilities (Release 21.7)

In this example, ten fields containing user-supplied EBCDIC pictures are to be used in
the construction of output records. After a record is written, each field is rolled or
waved, as specified in the applicable FD statement. Figure 28 shows the contents of
the output records at the end of the job step.

FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6 FIELD7 FIELD8 FIELD9 (FIELDY0

AAAAA| BBBBB A AA BB B AAA cceec DDDD C cC| bbb _ D| cccC
AAAAA BBBBB A AA BB B AAA Ccccce DDDD C Cc |IpbD_D cccC
AAAAA BBBBB A AA|BB B AAA ccccee ODDD c CC D D CccC
AAAAA BBBBB| A AA BB B |AAA cceee DDDD c _ccC DD D cCcC
AAAAA BBBBB |A AA BB B| AAA cccee DDDD} C CC_|bD D ccc
AAAAA BBBBB A __AA BB B AAA cceec DDDD _[C CC D D ccc
AAAAA| BBBBB A _ AAIBB B AAA ccccece DDDD Cc__cc DD D ccc
AAAAA BBBBB A AA BB B AAA [CCCCC DDDD C CC |bb DO ccc
AAAAA BBBBB [A AA BB 8 AAA cccee obpD[C CC D D ccc
AAAAA BBBBB| A AA BB B AAA cccee DDDD Cc cCc] bbp_D CccC
] E— — I 1~

Figure 28. Contents of Output Records at Job Step Completion

The example follows:

//ROLLWAVE JOB ,,MSGLEVEL=1

// EXEC PGM=IEBDG

//SYSPRINT DD SYSOUT=A

//OUTSET DD DSNAME=SEQSET,UNIT=2311,DISP=(,KEEP),

// VOLUME=SER=2311, SPACE=(TRK, (20,10)),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)

//SYSIN DD *

DSD OUTPUT=(OUTSET)

FD - NAME=FIELD1,LENGTH=8,PICTURE=8,' AAAAA',ACTION=RO
FD NAME=FIELD2,LENGTH=8,PICTURE=8, 'BBBBB ',ACTION=RO
FD NAME=FIELD3,LENGTH=8,PICTURE=8,'A AA ', ACTION=RO
FD NAME=FIELD4, LENGTH=8,PICTURE=8,' BB B',ACTION=RO
FD NAME=FIELD5,LENGTH=8,PICTURE=8,' AAA ',ACTION=RO
FD NAME=FIELD6 , LENGTH=8,PICTURE=8,' CCCCC',ACTION=WV
FD NAME=FIELD7,LENGTH=8,PICTURE=8,' DDDD ',ACTION=WV
FD NAME=FIELDS, LENGTH=8,PICTURE=8,' C CC ',ACTION=WV
FD NAME=FIELD9,LENGTH=8,PICTURE=8,' DD D', ACTION=WV
FD NAME=FIELD10, LENGTH=8,PICTURE=8,' CCC ',ACTION=WV
CREATE QUANTITY=300,NAME=(FIELD1,FIELD2,FIELD3,FIELD%, ac
FIELDS ,FIELD6,FIELD7,FIELDS,FIELDY,FIELD10)
END
/*

The control statements are discussed below:

e OUTSET DD defines the output sequential data set on a 2311 volume. Twenty
tracks of primary space and ten tracks of secondary space are allocated to the
data set.

e SYSIN DD defines the control data set, which follows in the input stream.

o DSD marks the beginning of a set of utility control statements and refers to the DD
statement defining the output data set.

e FD defines a field to be used in the subsequent construction of output records.
Note that the direction and frequency of the initial roll or wave depends on the
location of data in the field.

e CREATE constructs 300 records from the contents of the previously defined fields.
o END signals the end of a set of utility control statements.

IEBDG Example 7 In this example, the first ten bytes of the output record contain zoned decimal format
generated data. This field serves as the key field for the output record in the output
indexed sequential data set. The key field is incremented (indexed) by one for each
record. The input sequential data set provides an additional 80-byte field to complete
the output record.

The example follows:

//CREATEIS JOB MSGLEVEL=1
//BEGIN EXEC PGM=IEBDG
//TAPEIN DD DCB=(BLKSIZE=80,LRECL=80,RECFM=F),
// DISP=(OLD,KEEP),UNIT=2400,LABEL=(,SL),
// DSNAME=TAPEIT, VOL=SER=MASTER
//DISKOUT DD DCB=(BLKSIZE=270,LRECL=90,RECFM=FB,
// DSORG=IS,NTM=2, OPTCD=MY , RKP=0,KEYLEN=10,
// CYLOFL=1),UNIT=2314,SPACE=(CYL, 1),
// VOL=SER=231400,DSNAME=CREATIS, DISP=(NEW,KEEP)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
DSD OUTPUT=(DISKOUT), INPUT=(TAPEIN)

FD NAME=DATAFD, LENGTH=80, FROMLOC=1, STARTLOC=11, QC
INPUT=TAPEIN
FD NAME=KEYFD, LENGTH=10, STARTLOC=1, FORMAT=ZD , INDEX=1
CREATE INPUT=TAPEIN,NAME=(KEYFD,DATAFD)
END
/%

The control statements are discussed below:

e TAPEIN DD defines the sequential input data set.

o DISKOUT DD defines the indexed sequential output data set.

o SYSIN DD defines the control data set, which follows in the input stream.

o DSD marks the beginning of a set of utility control statements and refers to the DD
statement defining the output data set.

o FD defines a field that will be used in the subsequent construction of output
records. The first FD statement in this example defines and locates an 80-byte field
of input data. The data is field selected from one of the input logical records and
placed at start location 11 of the output logical record. The second FD statement
defines and locates the ten-byte key field.

o CREATE constructs a 90-byte output record by referring to the previously defined
fields.

e END signals the end of a set of utility control statements.

IEBDG Program 99

IEBEDIT Program

IEBEDIT is a data set utility used to create an output data set containing a selection of
jobs or job steps. (See “Introduction’ for general data set utility information.) At a
later time, the data set can be used as an input stream for job processing.

IEBEDIT creates an output job stream by editing and selectively copying a job stream
provided as input. The program can copy:

e An entire job or jobs, including JOB statements and any associated JOBLIB
statements.

o Selected job steps, including the JOB statement and any associated JOBLIB
statement.

All selected JOB statements, JOBLIB statements, jobs, or job steps are placed in the
output data set in the same order as they exist in the input data set. Note that a
JOBLIB statement is copied only if it follows a selected JOB statement.

When IEBEDIT encounters a selected job step containing an input record having the
characters ‘“..*"” in columns 1 through 3, the program automatically converts that
record into a termination statement (/* statement) and places it in the output data
set.

Input and Output IEBEDIT uses the following input:

o An input data set, which is a sequential data set consisting of a job stream. The
input data set is used as source data in creating an output sequential data set.

e A control data set, which contains utility control statements that are used to specify
the organization of jobs and job steps in the output data set.

IEBEDIT produces the following output:

¢ An output data set, which is a sequential data set consisting of a resultant job
stream.

o A message data set, which is a sequential data set that contains applicable contro!
statements, error messages, if applicable, and, optionally, the output data set.

IEBEDIT provides a return code to indicate the results of program execution. The
return codes and their meanings are:

e 00, which indicates successful completion.

e 04, which indicates that an error occurred. The output data set may not be usable
as a job stream. Processing continues.

o 08, which indicates that an unrecoverable error occurred while attempting to
process the input, output, or control data set. The job step is terminated.

Control IEBEDIT is controlled by job control statements and utility control statements. The job
control statements are required to execute or invoke the program and to define the
data sets used and produced by the program. The utility control statements are used
to control the functions of the program. -

Job Control Statements Table 17 shows the job control statements necessary for using IEBEDIT.
The minimum region size that can be specified for IEBEDIT is [OK.

Restrictions e The block size for the SYSPRINT data set must be a multiple of 121. The block size
for the SYSIN, SYSUT1, and SYSUT2 data sets must be a multiple of 80. Any
blocking factor can be specified for these block sizes.

Utility Control Statement IEBEDIT is controlled through the EDIT utility control statement.

EDIT Statement The EDIT statement indicates which step or steps of a specified job in the input data
set are to be included in the output data set. Any number of EDIT statements can be
included in an operation, thus including selected jobs in the output data set.

EDIT statements must be included in the same order as the input jobs that they
represent. If no EDIT statement is present in the control data set, the entire input data
set is copied.

IEBEDIT Program 101

102 Utilities (Release 21.7)

Table 17. IEBEDIT Job Control Statements
Statement Use
JoB Initiates the job.

EXEC Specifies the program name (PGM = IEBEDIT) or, if the job control statements
reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access volume.

SYSUT1 DD Defines a sequential input data set on a card reader, a tape volume, or a direct
access device.

SYSUT2 DD Defines a sequential output data set on a card punch, printer, tape volume, or
direct access device.

SYSIN DD Defines the control data set. The data set normally is included in the input
stream; however, it can be defined as a member of a procedure library or as a
sequential data set existing somewhere other than in the input stream.

The format of the EDIT statement is:
EDIT [STAR

where:

START = jobname
specifies the name of the input job to which the EDIT statement applies. (Each EDIT
statement must apply to a separate job.) If START is specified without TYPE and
STEPNAME, the JOB statement and all job steps for the specified job are included
in the output. If START is omitted and only one EDIT statement is provided, the first
job encountered in the input data set is processed. If START is omitted from an
EDIT statement other than the first statement, processing continues with the next
JOB statement found in the input data set.

TYPE =
specifies the contents of the output data set. If TYPE is omitted, TYPE = POSITION
is assumed. These values can be coded:

POSITION
specifies that the output is to consist of a JOB statement, the job step specified
in the STEPNAME parameter, and all steps that follow it. All job steps preceding
i the specified step are omitted from the operation. This is the default.

INCLUDE ~
specifies that the output data set is to contain a JOB statement and all job steps
specified in the STEPNAME parameter.

EXCLUDE
specifies that the output data set is to contain a JOB statement and all jobs
steps belonging to job except those steps specified in the STEPNAME
parameter.

STEPNAME =
specifies the first job step to be placed in the output data set when coded with
TYPE = POSITION. Job steps preceding this step are not copied to the output data
set. When coded with TYPE = INCLUDE or TYPE = EXCLUDE, STEPNAME specifies
the names of job steps that are to be included in or excluded from the operation.
For example, STEPNAME = (STEPA,STEPF-STEPL,STEPZ) indicates that job steps
STEPA, STEPF through STEPL, and STEPZ are to be included in or excluded from
the operation. If STEPNAME is omitted, the entire input job whose name is specified
on the EDIT statement is copied. If no job name is specified, the first job
encountered is processed.

NOPRINT
specifies that the message data set is not to include a listing of the output data set.
If NOPRINT is omitted, the resultant output is listed in the message data set.

Note: Any JOBLIB DD statement that follows a selected JOB statement is
automatically copied to the output data set.

IEBEDIT Examples

IEBEDIT Example 1

IEBEDIT Example 2

The following examples show some of the uses of IEBEDIT. Table 18 can be used as a
quick-reference guide to IEBEDIT examples. The numbers in the ‘'Example’’ column
point to examples that follow.

Table 18. IEBEDIT Example Directory

Operation Devices Comments Example
COPY 9-track tape The input data set contains three jobs. One job is
to be copied. 1
COPY 7-track tape The output data set is the second data set on the
volume. One job step is to be copied from each of
three jobs. 2
COPY 2311 Disk, Include a job step from one job and exclude a
. 9-track tape job step from another job. 3
COPY 2314 or 2319 Latter portion of a job stream is to be copied.
Disk! 4
COPY 9-track tape All records in the input data set are to be copied.
The ..* record is converted to a /* statement in
the output data set. 5

1 The 2319 disk is functionally equivalent to the 2314 disk; to use the 2319, specify 2314 in the
control statement.

In this example one job (JOBA), including ali of its job steps (A, B, C, and D), is to be
copied into the output data set. The input data set contains three jobs: JOBA, which
has four job steps; JOBB, which has three job steps; and JOBC, which has two job
steps.

The example follows:

//EDIT1 JOB 09#440,SMITH
/7 EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=2400,DISP=(OLD,KEEP),VOLUME=SER=001234
//SYSUT2 DD UNIT=2400,DISP=(NEW,KEEP),VOLUME=SER=001235,
// DCB=(RECFM=F, LRECL=80,BLKSIZE=80),
// DSNAME=OUTTAPE
//SYSIN DD *
, EDIT START=JOBA
E3

The control statements are discussed below:

e SYSUT1 DD defines the input data set. The data set resides on a 9-track, standard
labeled tape volume (001234).)

e SYSUT2 DD defines the output data set. The data set is to reside as the first data
set on a standard labeled, 9-track tape volume (001235).

e SYSIN DD defines the control data set, which follows in the input stream.
o EDIT indicates that JOBA is to be copied in its entirety.

This example copies: (1) the JOB statement and steps STEPC and STEPD for JOBA, .
(2) the JOB statement and STEPE for JOBB, and (3) the JOB statement and STEPJ for

JOBC. The input data set contains three jobs: JOBA, which includes STEPA, STEPB,

STEPC, and STEPD; JOB B, which includes STEPE, STEPF, and STEPG; and JOBC,

which includes STEPH and STEPJ.

The example follows:

//EDIT2 JOB 09#440,SMITH
// EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=(OLD,KEEP),VOLUME=SER=001234,
// UNIT=2400-2
//SYSUT2 DD DSNAME=OUTSTRM,UNIT=2400-2,DISP=(NEW,KEEP),
// DCB=(DEN=1,RECFM=F, LRECL=80, BLKSIZE=80,
// TRTCH=C),LABEL=(2,SL)
//SYSIN DD *
EDIT START=JOBA,TYPE=INCLUDE,STEPNAME=STEPC,STEPD
EDIT START=JOBB,TYPE=INCLUDE, STEPNAME=STEPE
EDIT START=JOBC,TYPE=INCLUDE, STEPNAME=STEPJ
/*

IEBEDIT Program 103

IEBEDIT Example 3

IEBEDIT Example 4

104 Utilities (Release 21.7)

The control statements are discussed below:

e SYSUT1 DD defines the input data set. The data set resides on a 7-track, standard
labeled tape volume (001234).

e SYSUT2 DD defines the output data set. The data set is to reside as the second
data set on a 7-track, standard labeled tape volume (001235).

o SYSIN DD defines the control data set, which follows in the input stream.
o The EDIT statements copy the indicated JOB statements and job steps.

This example copies: (1) the JOB statement and steps STEPF and STEPG for JOBB
and (2) the JOB statement and STEPH, excluding STEPJ, for JOBC. The input data set
contains three jobs: JOBA, which includes STEPA, STEPB, STEPC, and STEPD; JOBB,

‘which includes STEPE, STEPF, and STEPG; and JOBC, which includes STEPH and

STEPJ.
The example follows:

//EDIT3 JOB 09#440,SMITH
// EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INSET,UNIT=2314,DISP=(OLD,KEEP),
// VOLUME=SER=231400 _
//SYSUT2 DD DSNAME=OUTTAPE,UNIT=2400,LABEL(,NL),
// DCB=(DEN=2,RECFM=F, LRECL=80,BLKSIZE=80),
//- DISP=(,KEEP)
//SYSIN DD *
EDIT START=JOBB, TYPE=INCLUDE,STEPNAME=STEPF-STEPG

, EDIT START=JOBC, TYPE=EXCLUDE,STEPNAME=STEPJ

*

The control statements are discussed below:

e SYSUT1 DD defines the input data set. The data set resides on a 2314 volume
(231400).

e SYSUT2 DD defines the output data set. The data set is to reside as the first or
only data set on an unlabeled, 9-track (800 bits per inch) tape volume.

e SYSIN DD defines the control data set, which follows in the input stream.
e The EDIT statements copy selected JOB statements and job steps.

This example copies the JOBA JOB statement, the job step STEPF, and all the steps
that follow it. The input data set contains one job (JOBA), which includes STEPA,
STEPB, . . . STEPL. Job steps STEPA through STEPE are not included in the output
data set.

The example follows:

//EDIT4 JOB 09#440,SMITH

// EXEC PGM=IEBEDIT

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAME=INSTREAM,UNIT=2314,DISP=(OLD,KEEP),

// VOLUME=SER=231400

//SYSUT2 DD DSNAME=OUTSTREM,UNIT=2314,DISP=(,KEEP),

// DCB=(RECFM=F, LRECL=80,BLKSIZE=80),

// VOLUME=SER=231401, SPACE=(TRK, 2)

//SYSIN DD *

) EDIT START=JOBA,TYPE=POSITION, STEPNAME=STEPF
*

The control statements are discussed below:

e SYSUT1 DD defines the input data set. The data set resides on a 2314 or 2319
volume (231400).

e SYSUT2 DD defines the output data set. The data set is to reside on a 2314 volume
(231401). Two tracks are allocated for the output data set.

e SYSIN DD defines the control data set, which follows in the input stream.
e EDIT copies the JOB statement and job steps STEPF through STEPL.

IEBEDIT Example 5 This example copies the entire input (SYSUT1) data set. The record containing the
characters ‘'..*"”” in columns 1 through 3 is converted to a * /*"’ statement in the
output data set.

The example follows:

//EDIT5 JOB 09#440,SMITH
// EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=0QUTTAPE, UNIT=2400,VVOLUME=SER=001234,
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80),DISP=(NEW,KEEP)
//SYSIN DD DUMMY
//SYSUT1 DD DATA
//BLDGDGIX JOB
// EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=2311,VOLUME=SER=111111,DISP=0LD
//SYSIN DD *
BLDG INDEX=A.B.C,ENTRIES=10, EMPTY
. o *
/*
The control statements are discussed below:

e SYSUT2 DD defines the output data set. The data set is to reside as the first data
set on a 9-track tape volume (001234).

e SYSIN DD defines a dummy control data set.

e SYSUT1 DD defines the input data set, which follows in the input stream. The job is
terminated when the termination statement (/*) is encountered.

IEBEDIT Program 105

IEBGENER Program—Class C

IEBGENER is a data set utility used to copy a sequential data set or a partitioned
member, or to create a partitioned data set from a sequential or partitioned member
used as input. (See "Introduction” for general data set utility information.) IEBGENER
can be used to expand an existing partitioned data set by creating partitioned
members and merging them into the data set that is to be expanded.

IEBGENER provides optional editing facilities and exits for user routines that process
labels, manipulate input data, create keys, and handle permanent input/output errors.
Refer to ‘‘Appendix A: Exit Routine Linkage'' for a discussion of linkage conventions
that are applicable when user routines are provided.

IEBGENER can be used to:

o Create a backup copy of a sequential data set or a partitioned member.
e Produce a partitioned data set from sequential input.

e Expand a partitioned data set.

e Produce an edited sequential or partitioned data set.

e Reblock or change the logical record length of a data set.

o Create user labels on sequential output data sets.

At the completion or termination of IEBGENER, the highest return code encountered
within the program is passed to the calling program.

Creating a Backup A backup copy of a sequential data set or partitioned member can be produced by
Copy copying the data set or member to any IBM-supported output device. For example, a
copy can be made from tape to tape, from direct access to tape, etc.

A data set that resides on a direct access volume can be copied to its own volume,
provided that its data set name is changed. A partitioned data set cannot reside on a
magnetic tape volume.

Producing a Partitioned IEBGENER can be used to produce a partitioned data set from sequential output.
Data Set from Through the use of utility control statements, the user can logically divide the
Sequential Input sequential data set into record groups and assign member names to the record

groups. IEBGENER places the newly created members in a partitioned output data set.

Note: A partitioned data set cannot be produced if an input or output data set
contains spanned records.

Figure 29 shows how a partitioned data set is produced from a sequential data set
used as input. The left-hand side of the figure shows the sequential data set. Utility
control statements are used to divide the sequential data set into record groups and
to provide a member name for each record group. The right-hand side of the figure
shows the partitioned data set produced from the sequential input.

Expanding a Partitioned An expanded data set is a data set into which an additional member or members

Data Set have been merged. IEBGENER creates the members from sequential input and places
them in the data set being expanded. The merge operation—the ordering of the
partitioned directory—is automatically performed by the program.

Figure 30 shows how sequential input is converted into members that are merged into
an existing partitioned data set. The left-hand side of the figure shows the sequential
input that is to be merged with the partitioned data set shown in the middle of the
figure. Utility control statements are used to divide the sequential data set into record
groups and to provide a member name for each record group. The right-hand side of
the figure shows the expanded partitioned data set. Note that members B, D, and E
from the sequential data set were placed in available space and that they are
sequentially ordered in the partitioned directory.

Producing an Edited IEBGENER can be used to produce an edited sequential or partitioned data set.

Data Set Through the use of utility control statements, the user can specify editing information
that applies to a record, a group of records, selected groups of records, or an entire
data set.

IEBGENER Program—Class C 107

108 Utilities (Release 21.7)

Sequential Partitioned
input output
| Record
group
1

Utility control sta
names first mem!
Directory

LASTREC 1

LASTREC 2
1

Utility control
identified last r

Record
Utility control group

names new mem

n = LASTREC n

Utility control
identified last r

.
Utility control s%
names new mei

\/\ Record

group
n

LASTREC n
Figure 29. Creating a Partitioned Data Set from Sequential Input Using IEBGENER

An edited data set can be produced by:
o Rearranging or omitting defined data fields within a record.
o Supplying literal information as replacement data.

e Converting data from packed decimal to unpacked decimal mode, unpacked
decimal to packed decimal mode, or H-set BCD to EBCDIC mode.

Sequential Existing Expanded
input data set data set
. M%mber
Utility contr
define record

Directory Directory
ACEG ABICDEFE G

embers A

LASTREC
Member
D
Auvailable space
LASTREC
Member

Figure 30. Expanding a Partitioned Data Set Using IEBGENER

Figure 31 shows part of an edited sequential data set. The left-hand side of the figure
shows the data set before editing is performed. Utility control statements are used to

identify the record groups to be edited and to supply editing information. In this figure,
literal replacement information is supplied for information within a defined field. (Data
is rearranged, omitted, or converted in the same manner.) The BBBB field in each
record in the record group is to be replaced by CCCC. The right-hand side of the
figure shows the data set after editing.

1 > Record >
Utility control statement > 1 >
Defines record group, contains > 1;
literal replacement data (CCCC). ; o
A ey] !
Applies to all records within pos; o
the group. i Qn';
o o
> Record >
> 2 >
> >
> >
L] o
per] Record pis
pus group ol
> >
> >
—~ k/\
4 0
i hid
o o
> Record >
> n >
> >
> >
o] o
@ 2
] O
w o

Figure 31. Editing a Sequential Data Set Using IEBGENER

Note: IEBGENER cannot be used to edit a data set if the input and output data sets
consist of VS or VBS records and have equal block sizes and logical record lengths. In
this case, any utility control statements that specify editing are ignored; IEBGENER
performs a straight copy; that is, for each physical record read from the input data
set, the utility writes an unedited physical record on the output data set.

Reblocking or Changing IEBGENER can be used to produce a reblocked output data set containing either
Logical Record Length fixed or variable records. In addition, the program can produce an output data set

having a logical record length that differs from the input logical record length.
Input and Output IEBGENER uses the following input:

e An input data set, which contains the data that is to be copied, edited, converted
into a partitioned data set, or converted into members to be merged into an
existing data set. The input is either a sequential data set or a member of a
partitioned data set.

e A control data set, which contains utility control statements. The control data set is
required if editing is to be performed or if the output data set is to be a partitioned
data set.

IEBGENER produces the following output:

¢ An output data set, which can be either sequential or partitioned. The output data
set can be either a new data set (created during the current job step) or an existing
partitioned data set that is to be expanded.

e A message data set, which contains informational messages (for example, the
contents of utility control statements) and any error messages. .

IEBGENER provides a return code to indicate the results of program execution. The
return codes and their meanings are:

e 00, which indicates successful completion.
e 04, which indicates probable successful completion. A warning message is written.

e 08, which indicates that processing was terminated after the user requested
processing of user header labels only.

e 12, which indicates an unrecoverable error. The job step is terminated.

e 16, which indicates that a user routine passed a return code of 16 to IEBGENER.
The job step is terminated.

Control IEBGENER is controlled by job control statements and utility control statements. The
job control statements are required to execute or invoke IEBGENER and to define the
data sets that are used and produced by the program. The utility control statements
are used to control the functions of IEBGENER.

IEBGENER Program—Class C 109

Job Control Statements

Restrictions

110 Utilities (Release 21.7)

Table 19 shows the job control statements necessary for using IEBGENER.

Table 19. IEBGENER Job Control Statements

Statement Use

JoB Initiates the job.

EXEC Specifies the program name (PGM = IEBGENER) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data set can be written to a
system output device, a tape volume, or a direct access volume.

SYSUT1 DD Defines the input data set. It can define a sequential data set or a member of
a partitioned data set.

SYSUT2 DD Defines the output data set. It can define a sequential data set, a member of a
partitioned data set, or a partitioned data set.

SYSIN DD Defines the control data set, or specifies DUMMY when the output is

sequential and no editing is specified. The control data set normally resides in
the input stream; however, it can be defined as a member within a library of
partitioned members.

The minimum region size that can be specified for the execution of IEBGENER is
14K + b, where b is the largest block size in the job step rounded to the next higher
2K.

IEBGENER always uses two buffers regardless of what was specified in the DCB.

If both the SYSUT1 and the SYSUT2 DD statements specify standard user labels
(SUL), IEBGENER copies user labels from SYSUT1 to SYSUT2. See “‘Appendix E:
Processing User Labels’’ for a discussion of the available options for user label
processing.

Both the input data set and the output data set can contain fixed, variable, undefined,
or variable spanned records. These records can be reblocked by the specification of a
new maximum block length on the SYSUT2 DD statement. During reblocking, if the
output data set resides on a direct access volume:

e For fixed or variable records, keys can be retained only by using the appropriate
user exit.

e For variable spanned records, keys can never be retained.

When the input/output data set has fixed length, variable length, or variable spanned
records, the block size, the logical record length, and the record format are required.
When the input/output data set has undefined records, only the block size is required.

Refer to OS Data Management Services Guide, GC26-3746, for information on
estimating space allocations.

e The SYSPRINT DD statement is required for each use of IEBGENER.

e The block size for the SYSPRINT data set must be a multiple of 121. The block size
for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for these block sizes.

e Space must be allocated for an output data set (SYSUT2 DD statement) that is to
reside on a direct access device unless the data set is an expanded data set, in
which case space must not be allocated.

e DCB parameters in a SYSUT2 DD statement defining an expanded partitioned data
set must be compatible with the specifications made when the data set was
originally created.

o Concatenated data sets with unlike attributes are not allowed as input to
IEBGENER. For information on concatenated data sets, see OS Data Management
Services Guide, GC26-3746.

e The SYSIN DD statement is required for each use of IEBGENER.

¢ RECFM (except for undefined data sets), BLKSIZE, and LRECL (except for
undefined data sets) must be specified on the SYSUT1/SYSUT2 DD statement
when the data set is new and when the data set is a dummy data set, a card punch,
or a printer. '

e When neither RECFM, BLKSIZE, nor LRECL are present for the input data set, these
values are copied from the input data set.

e Always specify the output BLKSIZE when the LRECL and RECFM (except for U) is
specified. The default RECFM is U for the output data set. The output LRECL must

Utility Control Statements

GENERATE Statement

EXITS Statement

be present when editing is to be performed and the RECFM is either FB, VS, or
VBS. In other cases a default LRECL value is generated by IEBGENER.

e The input data set must always have a BLKSIZE parameter. The default RECFM is U
for the input data set. The input LRECL must be specified when RECFM is either VS,
VBS, or FB. In other cases a default LRECL is generated by IEBGENER.

IEBGENER is controlled by utility control statements. The statements and the order in
which they must appear are:

o GENERATE statement, which is used to indicate the number of member names and
alias names, record identifiers, literals, and editing information contained in the
control data set.

e EXITS statement, which is used to indicate that user routines are provided.
e LABELS statement, which is used to specify user-label processing.

o MEMBER statement, which is used to specify the member name and alias of a
member of a partitioned data set to be created.

o RECORD statement, which is used to define a record group to be processed and to
supply editing information.

The control statements are included in the control data set as required. If no utility
control statements are included in the control data set, the entire input data set is
copied sequentially.

When the output is to be sequential and editing is to be performed, one GENERATE
statement and as many RECORD statements as required are used. If user exits are
provided, an EXITS statement is used.

When the output is to be partitioned, one GENERATE statement, one MEMBER
statement per output member, and RECORD statements, as required, are used. If user
exits are provided, an EXITS statement is used.

The GENERATE statement is used when: (1) output is to be partitioned, (2) editing is
to be performed, or (3) user routines are provided and/or label processing is
specified. :

The GENERATE statement must appear before other statements. If it contains errors
or is inconsistent with other statements, IEBGENER is terminated.

MAXNAME = n
specifies a number that is no less than the total number of member names and
aliases appearing in subsequent MEMBER statements. MAXNAME is required if
there are one or more MEMBER statements.

MAXFLDS =n
specifies a number that is no less than the total number of FIELD parameters
appearing in subsequent RECORD statements. MAXFLDS is required if there are any
FIELD parameters in subsequent RECORD statements.

MAXGPS = n
specifies a number that is no less than the total number of IDENT parameters
appearing in subsequent RECORD statements. MAXGPS is required if there are any
IDENT parameters in subsequent RECORD statements. '

MAXLITS =n
specifies a number that is no less than the total number of characters contained in
the FIELD literals of subsequent RECORD statements. MAXLITS is required if the
FIELD parameters of subsequent RECORD statements contain literals. MAXLITS
does not pertain to literals used in IDENT parameters.

The EXITS statement is used to identify exit routines supplied by the user. Linkages to
and from exit routines are discussed in “Appendix A: Exit Routine Linkage.”

The EXITS statement is used when user routines are provided.

IEBGENER Program—Class C 111

LABELS Statement

112 Utilities (Release 21.7)

The format of the EXITS statement is:

PR iy

INHDR = routinename
specifies the symbolic name of a routine that processes user input header labels.

OUTHDR = routinename
specifies the symbolic name of a routine that creates user output header labels.
OUTHDR is ignored if the output data set is partitioned.

INTLR = routinename
specifies the symbolic name of a routine that processes user input trailer labels.

OUTTLR = routinename
specifies the symbolic name of a routine that processes user output trailer labels.
OUTTLR is ignored if the output data set is partitioned.

KEY = routinename
specifies the symbolic name of a routine that creates the output record key. (This
routine does not receive control when a data set consisting of VS or VBS type
records is processed because no processing of keys is permitted for this type of
data.)

DATA = routinename
specifies the symbolic name of a routine that modifies the physical record (logical
record for VS or VBS type records) before it is processed by IEBGENER.

IOERROR = routinename
specifies the symbolic name of a routine that handles permanent input/output error
conditions.

TOTAL =
specifies that exits to a user’s routine are to be provided prior to writing each
record. The keyword OPTCD = T must be specified for the SYSUT2 DD statement.
TOTAL is valid only when the utility is used to process sequential data sets. These
values must be coded:

routinename
specifies the name of a user-supplied totaling routine.

size
specifies the number of bytes needed to contain totals, counters, pointers, etc.

For a detailed discussion of the processing of user labels as data set descriptors, and
for discussion of user label totaling), refer to ““Appendix E: Processing User Labels.”

The LABELS statement specifies whether or not user labels are to be treated as data
by IEBGENER. For a detailed discussion of this option, refer to “‘Processing User
Labels as Data,” in ““Appendix E: Processing User Labels.”

The LABELS statement is used when the user wants to specify that: (1) no user labels
are to be copied to the output data set, (2) user labels are to be copied to the output
data set from records in the data portion of the SYSIN data set, or (3) user labels are
to be copied to the output data set after they are modified by the user’s label
processing routines. If more than one valid LABELS statement is included, all but the
last LABELS statement are ignored.

The formag of the LABELS statement is:

where:

DATA =
specifies whether user labels are to be treated as data by IEBGENER. These values
can be coded:

YES
specifies that any user labels that are not rejected by a user’s label-processing
routine are to be treated as data. Processing of labels as data ends in
compliance with standard return codes. If no value is entered, YES is assumed.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that user labels in the group currently being processed are to be
treated as data regardless of any return code. A return code of 16 causes
IEBGENER to complete processing the remainder of the group of user labels and
to terminate the job step.

ONLY
specifies that only user header labels are to be treated as data. User header
labels are processed as data regardless of any return code. The job terminates
upon return from the OPEN routine.

INPUT
specifies that user labels for the output data set are supplied as 80-byte input
records in the data portion of SYSIN. The number of input records that should be
treated as user labels must be identified by a RECORD statement.

Note: LABELS DATA = NO must be specified to make standard user label (SUL) exits
inactive when input/output data sets with nonstandard labels (NSL) are to be
processed.

MEMBER Statement The MEMBER statement is used when the output is to be partitioned. One MEMBER
statement must be included for each member to be created by IEBGENER. The
MEMBER statement provides the name and aliases of a member that is to be created.

All RECORD statements following a MEMBER statement pertain to the member named
in that MEMBER statement. If no MEMBER statements are included, the output data
set is organized sequentially.

The format of the MEMBER statement is

where:

NAME = (name[,alias]...)
speclfles a member name followed by a list of its aliases. If only one name appears
in the statement, it need not be enclosed in parentheses.

RECORD Statement The RECORD statement is used to define a record group and to supply editing
information. A record group consists of records that are to be processed identically.

The RECORD statement is used when: (1) the output is to be partitioned, (2) editing is
to be performed, or (3) user labels for the output data set are to be created from
records in the data portion of the SYSIN data set. The RECORD statement defines a
record group by identifying the last record of the group with a literal name.

without editing. More than one RECORD statement may appear in the control

If no RECORD statement is used, the entire input data set or member is processed
statement stream for IEBGENER. .

Within a RECORD statement, one IDENT parameter can be used to define the record
group; one or more FIELD parameters can be used to supply the editing information
“applicable to the record group; and one LABELS parameter can be used to indicate
that this statement is followed immediately by output label records.

IEBGENER Program—Class C 113

114 Utilities (Release 21.7)

where:

IDENT =
identifies the last record of the input group to which the FIELD parameters or
MEMBER statement applies. If the RECORD statement is not followed by additional
RECORD or MEMBER statements, IDENT also defines the last record to be
processed. If IDENT is omitted, the remainder of the input data is considered to be
in one record group; subsequent RECORD and MEMBER statements are ignored.
These values can be coded:

length
specifies the length (in bytes) of the identifying name. The length cannot exceed
eight characters.

‘name’
specifies the exact literal that identifies the last input record of a record group.
If no match for name is found, the remainder of the input data is considered to
be in one record group; subsequent RECORD and MEMBER statements are
ignored.

input-location :
specifies the starting location of the field that contains the identifying name in
the input records.

FIELD =
specifies field-processing and editing information. Only the contents of specified
fields in the input record is copied to the output record. The values that can be
coded are:

length
specifies the length (in bytes) of the input field or literal to be processed. If
length is not specified, a length of 80 bytes is assumed. If a literal is to be
processed, a length of 40 bytes or less must be specified.

input-location
specifies the starting byte of the field to be processed. If input-location is not
specified, byte 1 is assumed.

‘literal’
specifies a literal (maximum length of 40 bytes) to be placed in the specified
output location. If a literal contains apostrophes, each apostrophe must be
written as two consecutive apostrophes.

conversion
specifies a two-byte code that indicates the type of conversion to be performed
on this field. If no conversion is specified, the field is moved to the output area
without change. The values that can be coded are:

PZ
specifies that data (packed decimal) is to be converted to unpacked decimal
data.

P
specifies that data (unpacked decimal) is to be converted to packed decimal
data.

HE
specifies that data (H-set BCD) is to be converted to EBCDIC.

output-location
specifies the starting location of this field in the output records. If output-location
is not specified, byte 1 is assumed.

LABELS =n
is an optional parameter that indicates the number of records in the SYSIN data set
to be treated as user labels. The number n, which is a number from 1 to 8, must
specify the exact number of label records that follow the RECORD statement. if this
parameter is included, DATA = INPUT must be coded on a LABELS statement
before it in the input stream.

If conversion is specified in FIELD, the following restrictions apply:

o PZ-type (packed-to-unpacked) conversion is impossible for packed decimal
records longer than 16K bytes.

e For ZP-type (unpacked-to-packed) conversion, the normal 32K-byte maximum
applies.

e When the ZP parameter is specified, the conversion is performed in place. The
original unpacked field is replaced by the new packed field. Therefore, the ZP
parameter must be omitted from subsequent references to that field. If the field is
needed in its original unpacked form, it must be referenced prior to the use of the
ZP parameter.

If conversion is specified in the FIELD parameter, the length of the output record can
be calculated for each conversion specification. When L is equal to the length of the
input record, the calculation is made, as follows:

e For a PZ (packed-to-unpacked) specification, 2L - 1.

e ForaZP (unpacked-to packed) specmcatlon, (L/2) + C. If L is an odd number, C
is 1/2; if L is an even number, Cis 1.

e For an HE (H-set BCD to EBCDIC) specification, L.

If both output header labels and output trailer labels are to be contained in the SYSIN
data set, the user must include one RECORD statement (including the LABELS
parameter), indicating the number of input records to be treated as user labels, for
header labels and one for trailer labels. The first such RECORD statement indicates
the number of user header labels; the second indicates the number of user trailer
labels. If only output trailer labels are included in the SYSIN data set, a RECORD
statement must be included to indicate that there are no output header labels in the
SYSIN data set (LABELS = 0). This statement must precede the RECORD LABELS = n
statement which signals the start of trailer label input records.

For a detailed discussion of the LABELS option, refer to ‘‘Processing User Labels As
Data,” in “Appendix E: Processing User Labels.”

Note: IDENT and FIELD parameters are ignored in stralght copy processing of data
sets that contain VS or VBS records.

IEBGENER Examples The examples that follow illustrate some of the uses of IEBGENER. Table 20 can be
used as a quick reference guide to IEBGENER examples. The numbers in the -
“Example’’ column point to the examples that follow.

Table 20. IEBGENER Example Directory

Data Set
Operation Organization Devices Comments - Example
COPY Sequential Card Reader, Blocked output.
Tape 1
Copy—with Sequential Card Reader, Blocked output.
editing Tape 2
COPY-with Sequential Card Reader, Blocked output. Input includes
editing Tape // cards. 3
COPY—with Sequential Card Reader, Blocked output. Input includes
editing 2311 Disk // cards. 4
PRINT Sequential Card Reader, Inputincludes // cards. System
Printer output device is a printer 5
CONVERT Sequential Tape, Blocked output. Three members
input, 2314 Disk are to be created,
Partitioned
output 6
Copy—with Sequential 2301 Drum Blocked output. Two members are
editing to be merged into existing data set. 7
COPY-with Sequential Tape Blocked output. Data set edited as
editing one record group. 8
COPY-with Sequential 2314 Disk Blocked output. New record length
editing specified for output data set. Two
. record groups specified. 9
COPY—-with Sequential Tape Blocked output. Data set edited as
editing one record group. 10

IEBGENER Program—Class C 115

IEBGENER Example 1

IEBGENER Example 2

IEBGENER Example 3

116 Utilities (Release 21.7)

In this example, a card-input, sequential data set is to be copied to a 9-track tape
volume.

The example follows:

//CDTOTAPE JOB 09#660,SMITH

// EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUT2 DD DSNAME=OUTSET,UNIT=2400,LABEL=(,SL),
// DISP=(,KEEP),VOLUME=SER=001234,

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000)

//SYSUT1 DD *

(input card data set)
/*
The control statements are discussed below:

e SYSIN DD defines a dummy data set. No editing is to be performed; therefore, no
utility control statements are needed.

e SYSUT2 DD defines the output data set. The data set is written to a 9-track tape
volume at a density of 800 bits per inch. The data set is to reside as the first (or
only) data set on the volume.

e SYSUT1 DD defines the card-input data set. The data set can contain no // cards.

In this example, a card-input, sequential data set is to be copied to a 7-track tape
volume. The control data set is a member of a partitioned data set.

The example follows:

//CDTOTAPE JOB 09#660,SMITH

// EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSNAME=CNTRLIBY(STMNTS),UNIT=2311,

// DISP=(OLD,KEEP),VOLUME=SER=111112,

// DCB=(RECFM=F, LRECL=80,BLKSIZE=80)

//SYSUT2 DD DSNAME=OUTSET,UNIT=2400-2,LABEL=(,SL),
// DCB=(DEN=1,RECFM=FB, LRECL=80,BLKSIZE=2000,

// TRTCH=C),DISP=(,KEEP),VOLUME=SER=001234

//SYSUT1 DD *

(input card data set)
/%
The control statements are discussed below:

o SYSIN DD defines the control data set, which contains the utility control
statements. The control statements reside as a member, STMNTS, in a partitioned
data set.

o SYSUT2 DD defines the output data set. The data set is written as the first or only
data set on the volume. It is written at 556 bits per inch density on a 7-track tape
volume.

e SYSUT1 DD defines the card-input data set. The data set can contain no // cards.

In this example, a card-input, sequential data set is to be copied to a 9-track tape
volume. The input contains cards that have slashes (//) in columns 1 and 2. The
control data set is a member of a partitioned data set.

The example follows:

//CDTOTAPE JOB 09#660,SMITH

// EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSNAME=CNTRLIBY(STMNTS),UNIT=2314,

// DISP=(OLD,KEEP),VOLUME=SER=111112,

// DCB=(RECFM=F, LRECL=80,BLKSIZE=80)

//SYSUT2 DD DSNAME=OUTSET,UNIT=2400,LABEL=(2,SL),
// VOLUME=SER=001234,DCB=(RECFM=FB,

// LRECL=80,BLKSIZE=2000),DISP=(,KEEP)

//SYSUT1 DD DATA

(input card data set, including // cards)
/*

The control statements are discussed below:

o SYSIN DD defines the data set containing the utility control statements. The
statements reside as a member, STMNTS, in a partitioned data set.

e SYSUT2 DD defines the copied sequential data set (output). The data set is written
as the second data set on the specified tape volume.

e SYSUT1 DD defines the card-input data set. The data set is to be edited as
specified in the utility control statements (not shown). The input data set contains
// cards.

IEBGENER Example 4 In this example, a card-input, sequential data set is to be copied to a 2311 volume.
The input data set contains // cards.

The example follows:

//CDTOTAPE JOB 09#660,SMITH

/7 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSNAME=CNTRLIBY(STMNTS),UNIT=2311,

// DISP=(OLD,KEEP),VOLUME=SER=111112,

// DCB=(RECFM=F, LRECL=80,BLKSIZE=80)

//SYSUT2 DD DSNAME=OUTSET,UNIT=2311,VOLUME=SER=111113,
// DISP=(,KEEP),SPACE=(TRK,(20,10)),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000)

//SYSUT1 DD DATA

(input card data set, including // cards)

/*

The control statements are discussed below:

« SYSIN DD defines the control data set, which contains the utility control

statements. The control statements reside as a member, STMNTS, in a partitioned
data set.

o SYSUT2 DD defines the output data set. Twenty tracks of primary storage space
and ten tracks of secondary space are allocated for the data set on a 2311 volume.

e SYSUT1 DD defines the card-input data set. The data set is to be edited as
specified in the utility control statements (not shown). The input data set contains
// cards.

IEBGENER Example 5 In this example, the content of a card data set is to be printed. The printed output is
to be left aligned, with one 80-byte record appearing on each line of printed output.

The example follows:

//CDTOPTR JOB 09#660,SMITH

// EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUT2 DD SYSOUT=A,DCB=(RECFM=F, LRECL=80,BLKSIZE=80)
//SYSUT1 DD DATA

(input card data set, including // cards)
/%
The control statements are discussed below:

o SYSIN DD defines a dummy data set. No editing is to be performed; therefore, no
utility control statements are required.

o SYSUT2 DD indicates that the output is to be written on the system output device
(printer). Carriage control can be specified by changing the RECFM = F
subparameter to RECFM = FA.

¢ SYSUT1 DD defines the input card data set. The input data set contains // cards.

IEBGENER Program—ClassC 117

IEBGENER Example 6

IEBGENER Example 7

118 Utilities (Release 21.7)

In this example, a partitioned data set (consisting of three members) is to be created
from sequential input.

The example follows:

//TAPEDISK JOB 09#660,SMITH

// EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAME=INSET,UNIT=2400,LABEL=(,SL),
// DISP=(OLD,KEEP), VOLUME=SER=001234,

// DCB=(RECFM=F, LRECL=80,BLKSIZE=80)

//SYSUT2 DD DSNAME=NEWSET,UNIT=2314,DISP=(,KEEP),
// VOLUME=SER=111112,SPACE=(TRK,(20,10,5)),

7/ DCB“(RECFM—FB LRECL=80, BLKSTZE=2000)

//SYSIN DD

GENERATE
MEMBER

GROUP1 RECORD
MEMBER
GROUP2 RECORD

MAXNAME 3,MAXGPS=2
NAME=MEMBER1

IDENT=(8, 'FIRSTMEM', 1)
NAME=MEMBER2

IDENT=(8, 'SECNDMEM', 1)
NAME=MEMBER3

MEMBER
/*

The control statements are discussed below:

e SYSUT1 DD defines the input data set (INSET). The data set was originally written
on a 9-track tape volume at 800 bits per inch density.

e SYSUT2 DD defines the output partitioned data set (NEWSET). The data set is to be
placed on a 2314 volume. Twenty tracks of primary space, ten tracks of secondary
space, and five blocks (256 bytes each) of directory space are allocated to allow
for future expansion of the data set. The output records are blocked to reduce the
space required by the data set.

e SYSIN DD defines the control data set, which follows in the input stream. The utility
control statements are used to create members from sequential input data; the
statements do not specify any editing.

o GENERATE indicates that: (1) three member names are included in subsequent
MEMBER statements and (2) the IDENT parameter appears twice in subsequent
RECORD statements.

e The first MEMBER statement assigns a member name (MEMBER1) to the first
member.

e The first RECORD statement (GROUP1) identifies the last record to be placed in
the first member. The name of this record (FIRSTMEM) appears in bytes 1 through
8 of the input record.

e The remaining MEMBER and RECORD statements define the second and third
members.

In this example, sequential input is to be converted into two partitioned members. The
newly created members are to be merged into an existing partitioned data set. User
labels on the input data set are to be passed to the user exit routines.

The example follows:

//DRUMDRUM JOB 09#660,SMITH
/7 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INSET,UNIT=2301,DISP=(OLD,KEEP),
// VOLUME=SER=111112,DCB=(RECFM=FB, LRECL=80,
// BLKSIZE=20000),LABEL=(,SUL)
//SYSUT2 DD DSNAME=EXISTSET,UNIT=2301,DISP=(MOD,KEEP),
// VOLUME=SER=111113,DCB=(RECFM=FB, LRECL=80, v
// BLKSIZE= 2000)
//SYSIN DD
GENERATE MAXNAME=3,MAXGPS=1
EXITS INHDR=ROUT1, INTLR=ROUT2

MEMBER NAME=(MEMX,ALIASX)
GROUP1 RECORD IDENT=(8,'FIRSTMEM',1)

MEMBER NAME=MEMY
/*

The control statements are discussed below:

e SYSUT1 DD defines the input data set (INSET). The input data set, which resides on
a 2301 volume, has standard and user labels.

e SYSUT2 DD defines the output partitioned data set (EXISTSET). The members
created during this job step are merged into the partitioned data set. The output
records are blocked to reduce the space required by the new members.

o SYSIN DD defines the control data set, which follows in the input stream. The utility
control statements are used to create members from sequential input data; the
statements do not specify any editing.

o GENERATE indicates that: (1) two member names and one alias are included in
subsequent MEMBER statements and (2) an IDENT parameter appears in a
subsequent RECORD statement.

e EXITS defines the user routines that are to process user labels.

e The first MEMBER statement assigns a member name (MEMX) and an alias
(ALIASX) to the first member.

e The first RECORD statement identifies the last record to be placed in the first
member. The name of this record (FIRSTMEM) appears in bytes 1 through 8 of the
input record.

e The second MEMBER statement assigns a member name (MEMY) to the second
member. The remainder of the input data set is included in this member.

IEBGENER Example 8 In this example, a sequential input data set is to be edited and copied.
The example follows:

//TAPETAPE JOB 09#660,SMITH
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=OLDSET,UNIT=2400-2,DISP=(OLD,KEEP),
// VOLUME=SER=001234,LABEL=(3,SUL), -
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80, TRTCH=C),
//SYSUT2 DD DSNAME=NEWSET,UNIT=2400-2,DISP=(NEW,PASS),
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000,TRTCH=C),
// VOLUME=SER=001235,LABEL=(,SL)
//SYSIN DD *
GENERATE MAXFLDS=3,MAXLITS=11
RECORD FIELD=(10, '#**k%kkxkxk' 1), 2C
FIELD=(5,1,HE,11),FIELD=(1,'=',,16)
EXITS INHDR=ROUT1,OUTTLR=ROUT2
LABELS DATA=INPUT
RECORD LABELS=2

(first header label record)
(second header label record)

RECORD LABELS=2

(first trailer label record)
(second trailer label record)

/*
The control statements are discussed below:

e SYSUT1 DD defines the sequential input data set (OLDSET). The data set was
originally written as the third data set (800 bits per inch) on a 7-track tape volume.

e SYSUT2 DD defines the sequential output data set (NEWSET). The data set is
written as the first or only data set on a 7-track tape volume. A density of 800 bits
per inch and data conversion are specified for the write operation. The output
records are blocked to reduce the space required by the data set and to reduce the .
access time required when the data set is subsequently referred to. The data set is
passed to a subsequent job step.

o SYSIN DD defines the control data set, which follows in the input stream.

o GENERATE indicates that: (1) a maximum of three FIELD parameters is included in
subsequent RECORD statements and (2) a maximum of 11 literal characters are
included in subsequent FIELD parameters.

o EXITS indicates that the specified user routines require control when SYSUTL is
opened and when SYSUT2 is closed.

e LABELS indicates that labels are included in the input stream.

e The first RECORD statement controls the editing, as follows: (1) asterisks are
placed in positions 1 through 10, (2) bytes 1 through 5 of the input record are
converted from H-set BCD to EBCDIC mode and moved to positions 11 through 15,
and (3) an equal sign is placed in byte 16.

IEBGENER Program—ClassC 119

IEBGENER Example 9

120 Utilities (Release 21.7)

e The second RECORD statement indicates that the next two records from SYSIN
should be written out as user header labels on SYSUT2.

e The third RECORD statement indicates that the next two records from SYSIN
should be written as user trailer labels on SYSUT2.

Note: This examiple shows the relationship between the RECORD LABELS statement
and the EXITS statement. IEBGENER attempts to write a first and second label trailer
as user labels at close time of SYSUTZ2, but, before returning control to the system;
the user routine ROUT2 can review these records and change them, if necessary.

In this example, a sequential input data set is to be edited and copied.
The example follows:

//DISKDISK JOB 09#660,SMITH
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=OLDSET,UNIT=2314,DISP=(OLD,KEEP),
// VOLUME=SER=111112,DCB=(RECFM=F, LRECL=100,BLKSIZE=100)
//SYSUT2 DD DSNAME=NEWSET,UNIT=2314,DISP=(NEW,KEEP),
// VOLUME=SER=111113,DCB=(RECFM=FB, LRECL=80,
// BLKSIZE=640),SPACE=(TRK,(20,10))
//SYSIN DD *
GENERATE MAXFLDS=4 ,MAXGPS=1
EXITS TOERROR=ERRORRT
GROUP1 RECORD IDENT=(8, 'FIRSTGRP', 1), QC
FIELD=(21,80,,60),FIELD=(59,1,,1)
9ROUP2 RECORD FIELD=(11,90,,70),FIELD=(69,1,,1)
E 3
The control statements are discussed below:

e SYSUT1 DD defines the input data set (OLDSET). The logical record length of the
input records is 100 bytes.

e SYSUT2 DD defines the output data set (OUTSET). Twenty tracks of primary
storage space and ten tracks of secondary storage space are allocated for the data
set on a 2314 volume. The logical record length of the output records is 80 bytes,
and the output is blocked.

e SYSIN DD defines the control data set, which follows in the input stream.

o GENERATE indicates that: (1) a maximum of four FIELD parameters is included in
subsequent RECORD statements and (2) a maximum of one IDENT parameter
appears in a subsequent RECORD statement.

e EXITS identifies the user routine that handles input/output errors.

e The first RECORD statement controls the editing of the first record group, as
follows: (1) FIRSTGRP, which appears in bytes 1 through 8 of the input record, is
defined as being the last record in the first group of records and (2) bytes 80
through 100 of each input record are moved into positions 60 through 80 of each
corresponding output record. (This example implies that bytes 60 through 79 of the
input records in the first record group are no longer required; thus, the logical
record length is shortened by 20 bytes.) The remaining bytes within each input
record are transferred directly to the output records, specified in the second FIELD
parameter.

e The second RECORD statement indicates that the remainder of the input records
are to be processed as the second record group. Bytes 90 through 100 of each
input record are moved into positions 70 through 80 of the output records. (This
example implies that bytes 70 through 89 of the input records from group 2 are no
longer required; thus, the logical record length is shortened by 20 bytes.) The
remaining bytes within each input record are transferred directly to the output
records, specified in the second FIELD parameter.

If the logical record length of the output data set differs from that of the input data
set, as in this example, all positions in the output records must undergo editing to
justify the new logical record length.

IEBGENER Example 10 In this example, a sequential input data set is to be edited and copied.
The example follows:

//TAPETAPE JOB 09#660,SMITH
/ EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=OLDSET,UNIT=2400,DISP=(OLD,KEEP),
// VOLUME=SER=001234,LABEL=(3,SUL),DCB=(RECFM=F,
// LRECL=80,BLKSIZE=80)
//SYSUT2 DD DSNAME=NEWSET,UNIT=2400,DISP=(NEW,PASS),
// VOLUME=SER=001235,LABEL=(,SUL),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
//SYSIN DD *
GENERATE MAXFLDS=3,MAXLITS=11
RECORD FIELD=(10, '***x**%kx*k*"' 1), 2cC
FIELD=(5,1,HE,11),FIELD=(1,'=',,16)
LABELS DATA=INPUT
RECORD LABELS=3

(first header label record)
(second header label record)
(third header label record)

RECORD LABELS=2

(first trailer label record)
(second trailer label record)

/%
The control statements are discussed below:

e SYSUT1 DD defines the input data set (OLDSET). The data set was originally
written as the third data set (800 bits per inch) on a 9-track tape volume.

e SYSUT2 DD defines the output data set (NEWSET). The data set is written as the
first or only data set on a 9-track tape volume. A density of 800 bits per inch is
specified for the write operation. The output records are blocked to reduce the
space required by the data set and to reduce the access time required when the
data set is subsequently referred to. The data set is passed to a subsequent job
step.

o SYSIN DD defines the control data set, which follows in the input stream.

o GENERATE indicates that: (1) a maximum of three FIELD parameters is included in
subsequent RECORD statements and (2) a maximum of 11 literal characters are
included in subsequent FIELD parameters.

o LABELS indicates that label records are included in the input stream.

¢ The first RECORD statement controls the editing, as follows: (1) asterisks are
placed in positions 1 through 10, (2) bytes 1 through 5 of the input record are
converted from H-set BCD to EBCDIC mode and moved to positions 11 through 15,
and (3) an equal sign is placed in byte 16.

e The second and third RECORD statements indicate that three 80-byte records
(cards), to be written as user labels on the output data set, immediately follow. The
first RECORD statement indicates that the following cards are to be treated as
header labels. The second RECORD statement indicates that the following cards
are to be treated as trailer labels.

IEBGENER Program—Class C 121

IEBISAM Program—Class C

IEBISAM is a data set utility used to copy an indexed sequential data set directly from
one direct access volume to another. (See ‘‘Introduction’’ for general data set utility
information.)

Alternatively, IEBISAM can be used to reorganize an indexed sequential data set into a
sequential (unloaded) data set and place that data set on a direct access or magnetic
tape volume. The unloaded data set is in a form that can be subsequently loaded, that
is, it can be converted back into an indexed sequential data set.

Optionally, IEBISAM can be used to print the records of an indexed sequential data
set.

IEBISAM can be used to:
¢ Copy an indexed sequential data set.

e Create a sequential backup (transportable) copy of source data from an indexed
sequential data set.

e Create an indexed sequential data set from an unloaded data set.
e Print an indexed sequential data set.

At the completion or termination of IEBISAM, the highest return code encountered
within the program is passed to the calling program.

Copying an Indexed IEBISAM can be used to copy an indexed sequential data set directly from one

Sequential Data Set direct access volume to another. When the data set is copied, the records marked for
deletion are only deleted if the DELETE parameter was specified in the OPTCD
(optional control program service) field. Those records that are contained in the
overflow area of the original data set are moved into the primary area of the copied
data set. The control information characteristics such as BLKSIZE and OPTCD can be
overridden by new specifications. Caution should be used, however, when overriding
these characteristics (see ‘“Unloaded Data Sets’ in this chapter).

Creating a Sequential An unloaded sequential data set can be created to serve as a backup or

Backup Copy transportable copy of source data from an indexed sequential data set. When the
unloaded data set is created, the records marked for deletion are only deleted if the
DELETE parameter was specified in the OPTCD field. When the data set is
subsequently loaded—reconstructed into an indexed sequential data set—records that
were contained in the overflow area assigned to the original data set are moved
sequentially into the primary area.

An unloaded data set consists of 80-byte logical records. The data set contains:
o Fixed records from an indexed sequential data set.
e Control information used in the subsequent loading of the data set.

Control information consists of characteristics that were assigned to the indexed
sequential data set. These characteristics are:

e Optional control program service (OPTCD)

o Record format (RECFM)

e Logical record length (LRECL)

o Block size (BLKSIZE)

¢ Relative key position (RKP)

o Number of tracks in cylinder index (NTM)

o Key length (KEYLEN)

o Number of overflow tracks on each cylinder (CYLOFL)

When a load operation is specified, these characteristics can be overridden by new
specifications in the DCB parameter of the SYSUT2 DD statement (refer to ‘‘Job
Control Statements’’ for a discussion of the SYSUT2 DD statement). Caution should
be used, however, because checks are made to ensure that:

1. Record format is the same as that of the original indexed sequential data set
(either fixed or variable length).

2. Logical record length is greater than or equal to that of the original indexed
sequential data set when the RECFM is V or VB.

IEBISAM Program~Class C 123

Creating an Indexed
Sequential Data Set from
an Unloaded Data Set

Printing the Logical
Records of an Indexed
Sequential Data Set

124 Utilities (Release 21.7)

3. For fixed records, the block size is equal to or a multiple of the logical record length
of the records in the original indexed sequential data set. For variable records, the
block size is equal to or greater than the logical record length plus four.

4. Relative key position is equal to or less than the logical record length minus the key
length. Following are relative key position considerations:

o If the RECFM is variable (V) or variable blocked (VB), the relative key position
should be at least 4.

o |f the DELETE parameter was specified in the OPTCD field and the RECFM is
fixed or fixed blocked, the relative key position should be at least 1. If the
DELETE parameter was specified in the OPTCD field and the RECFM is V or VB,
the relative key position should be at least 5.

5. The key length is less than or equal to 255 bytes.

6. For a fixed unblocked data set with relative key position equal to zero, the LRECL is
the length of the data. In all other cases, the LRECL is the length of the key plus the
data. When changing the record format from fixed unblocked and RKP = 0 to fixed
blocked, the output LRECL value must be equal to the input LRECL plus the input
key length.

If either RKP or KEYLEN is overridden, it might not be possible to reconstruct the data
set.

The number of 80-byte logical records in an unloaded data set can be determined by
the formula:

X = n(y+2) 4 158
78

where x is the number of 80-byte logical records created, n is the number of records
in the indexed sequential data set, and y is the length of a fixed record or the average
length of variable records.

Figure 32 shows the format of an unloaded data set for the first three 100-byte
records of an indexed sequential data set. Each is preceded by two bytes (bb) that
indicate the number of bytes in that record. (The last record is followed by two bytes
containing binary zeros to identify the last logical record in the unloaded data set.)
The characteristics of the indexed sequential data set are contained in the first two
logical records of the unloaded data set. Data from the indexed sequential data set
begins in the third logical record. Each logical record in the unloaded data set contains
a binary sequence number (aa) in the first two bytes of the record.

80 bytes
ala blbl Characteristics
ala Characteristics
ala b]bl 76 bytes of data
ala 24 bytes of data lb| b[52 bytes of data
afa 48 bytes of data Iblbl 28 bytes of data
2|a 72 bytes of data [b]b]

Figure 32. An Unloaded Data Set Created Using IEBISAM

An indexed sequential data set can be created from an unloaded version of an
indexed sequential data set. When the unloaded data set is loaded, those records
that were contained in the overflow area assigned to the original indexed sequential
data set are moved sequentially into the primary area of the loaded indexed
sequential data set.

The records of an indexed sequential data set can be printed or stored as a
sequential data set for subsequent printing. Each input record is placed

in a buffer from which it is printed or placed in a sequential data set. When the
DELETE parameter is specified in the OPTCD field, each input record not marked for
deletion is also placed in a buffer from which it is printed or placed in a sequential
data set. Each printed record is converted to hexadecimal unless specified otherwise
by the user.

IEBISAM provides user exits so that the user can include his own routines to:
e Modify records before printing.

o Select records for printing or terminate the printing operation after a certain
number of records have been printed.

e Convert the format of a record to be printed.

e Provide a record heading for each record if the record length is at least 18 bytes. If
no user routines are provided, each record is identified in sequential order on the
printout.

When a user routine is supplied for a print operation, IEBISAM issues a LOAD macro
instruction. A BALR 14,15 instruction is used to give control to the user’s routine.
When the user’s routine receives control, register O contains a pointer to a record
heading buffer; register 1 contains a pointer to an input record buffer.

The input record buffer has a length equal to the length of the input logical record.
Figure 33 shows the record heading buffer.

Register O Record

number
{decimal)

ASA (B |B(B(BIB|RIE|C|O|R|D|B(B|x|x|x]x

Available to the user -q
L-_——Total length = line length of applicable printer

Register 1

x

Input record

L‘—~ Total fength = input logical record length (LRECL)

Figure 33. Record Heading Buffer Used by IEBISAM

The user returns control to IEBISAM by issuing a RETURN macro instruction (via
register 14) or by using a BR 14 instruction after restoring registers 2 through 14.
(Note that the user must save registers 2 through 14 when control is given to the user
routine.)

A user routine must place a return code in register 15 before returning control to
IEBISAM. The possible return codes and their meanings are:

e 00, which indicates that buffers are to be printed.

e 04, which indicates that the buffers are to be printed and the operation is to be
terminated.

o 08, which indicates that this input record is not to be printed; processing continues.

e 12, which indicates that this input record is not to be printed; terminate the
operation.

Input and Output IEBISAM uses an input data set; the organization of the input data set depends on the
operation to be performed, as follows:

o |f a data set is to be copied, unloaded, or printed in logical sequence, the input is
an indexed sequential data set.

o If a data set is to be loaded, the input is an unloaded sequential version of an
indexed sequential data set.

IEBISAM produées as output an output data set, which is the result of the IEBISAM
operation, and a message data set, which contains informational messages and any
error messages.

IEBISAM provides a return code to indicate the results of program execution. The
return codes and their meanings are:

e 00, which indicates successful completion. -

¢ 04, which indicates that a return code of 04 or 12 was passed to IEBISAM by the
user routine.

o 08, which indicates that an error condition occurred that caused termination of the
operation.

e 12, which indicates that a return code other than 00, 04, 08, or 12 was passed to
IEBISAM from a user routine. The job step is terminated.

e 16, which indicates that an error condition caused termination of the operation.

Control IEBISAM is controlled by job control statements. Utility control statements are not
used.

IEBISAM Program—Class C 125

Job Control Statements

PARM Information on
the EXEC Statement

126 Utilities (Release 21.7)

Table 21 shows the job control statements necessary for using IEBISAM.

Table 21. IEBISAM Job Control Statements
Statement Use
JoB Initiates the job.

EXEC Specifies the program name (PGM = IEBISAM). Additional information is required
on the EXEC statement to control the execution of IEBISAM; see “PARM
Information on the EXEC Statement’ below.

SYSUT1 DD Defines the input data set.
SYSUT2 DD Defines the output data set.

SYSPRINT DD Defines a sequential message data set, which can be written to a system output
device, a tape volume, or a direct access device.

The minimum region size that can be specified for the execution of IEBISAM is 8K.

If the block size of the SYSPRINT data set is not a multiple of 121, a default value of
121 is taken (no error message is issued, and no condition code is set).

The PARM parameter on the EXEC statement is used to control the execution of
IEBISAM. The PARM parameter is entered:

PARM = {COPY }
{UNLOAD }
{LOAD }
{PRINTL }
{‘PRINTL[,N][,EXIT = routinename]’ }

The PARM values have the following meaning:

e COPY specifies a copy operation.

¢ UNLOAD specifies an unload operation. This is the default.
¢ LOAD specifies a load operation.

e PRINTL specifies a print operation in which each record is converted to
hexadecimal before printing. The N is an optional value that specifies that records
are not to be converted to hexadecimal before printing.

e EXIT is an optional value that specifies the name of an exit routine that is to receive
control before each record is printed.

Note: Exit routines must be included in either the job library or the link library.

For a COPY operation, the SYSUT2 DD statement must include a primary space
allocation that is sufficient to accommodate records that were contained in overflow
areas in the orlglnal indexed sequential data set. New overflow areas can be specified
when the data set is copied.

For an UNLOAD operation, specifications that are implied by default or included in the
DCB parameter of the SYSUT2 DD statement (for example, tape density) must be
considered when the data set is subsequently loaded. If a block size is specified in the
DCB parameter of the SYSUT2 DD statement, it must be a multiple of 80 bytes.

For a LOAD operation, if the input data set resides on an unlabeled tape, the SYSUT1
DD statement must specify a BLKSIZE that is a multiple of 80 bytes. Specifications
that are implied by default or included in the DCB parameter of the SYSUT1 DD
statement must be consistent with specifications that were implied or included in the
DCB parameter of the SYSUT2 DD statement used for the UNLOAD operation. The
SYSUT2 DD statement must include a primary space allocation that is sufficient to
accommodate records that were contained in overflow areas in the original indexed
sequential data set. If new overflow areas are desired, they must be specified when
the data set is loaded.

For a PRINTL operation, if the device defined by the SYSUT2 DD statement is a
printer, the specified BLKSIZE must be equal to or less than the physical printer size; -
that is 121, 133, or 145 bytes. if BLKSIZE is not specified, 121 bytes is assumed.
LRECL (or BLKSIZE when no LRECL was specified) must be between 55 and 255
bytes.

If a user routine is supplied for a PRINTL operation, IEBISAM issues a LOAD macro
instruction to make the user routine available. A BALR 14,15 instruction is
subsequently used to give control to the routine. When the user routine receives
control, register O contains a pointer to a record heading buffer; register 1 contains a
pointer to an input record buffer.

IEBISAM Examples

IEBISAM Example 1

IEBISAM Example 2

The following examples illustrate some of the uses of IEBISAM. Table 22 can be used
as a quick reference guide to IEBISAM examples. The numbers in the “Example’

column point to the examples that follow.

Table 22. IEBISAM Example Directory

Operation
CoPY

UNLOAD

UNLOAD

LOAD

PRINTL

Data Set

Organization Devices

Indexed
sequential

Indexed
sequential,
Sequential

Indexed
sequential,
Sequential

Sequential,
Indexed
sequential

Indexed
sequential,
Sequential

2314 Disks

2314 Disk,
9-track
tape

2314 Disk,
7-track
tape
9-track
tape,
2314 Disk
2311 Disk,

System
Printer

Comments
Unblocked input; blocked output

Prime area and index separation.

Blocked output.

Blocked output. Data set written
as second data set on input
volume.

Input data set is second data set
on tape volume.

Blocked input. Output not
converted.

Example

1

In this example, an indexed sequential data set is to be copied from two 2314

volumes to two other 2314 volumes. The output data is blocked.

The example follows:

//CPY
//

//SYSPRINT DD

//SYSUT1

// DCB=(DSORG=I1S,RECFM=F,LRECL=500,RKP=4,BLKSIZE=500)

//SYSUT2

// DCB=(DSORG=IS,RECFM=FB,BLKSIZE=1000),SPACE=(CYL,(2))

DD

JOB 09#770,SMITH

EXEC PGM=IEBISAM,PARM=COPY

SYSOUT=A

DD DSNAME=ISAMO1,VOLUME=SER=(222222,333333),
// DISP=(OLD,DELETE),UNIT=(2314,2),

DD DSNAME=ISAMO2(INDEX),UNIT=2314,
// DISP=(NEW,KEEP),VOLUME=SER=444444,

DSNAME=ISAMO2(PRIME), UNIT=(2314,2),
// DSB=(DSORG=IS,BLKSIZE=1000),SPACE=(CYL,(10)),
// VOLUME=SER=(444444 ,555555),DISP=(NEW,KEEP)

/*

The control statements are discussed below:

e EXEC specifies the program name and the COPY operation.

e SYSUT1 DD defines an indexed sequential input data set, which resides on two
2314 volumes.

e SYSUT2 DD defines the output data set index area; the index and prime areas are
separated.

o The second SYSUT2 DD defines the output data set prime area. Ten cylinders are
allocated for the prime area on each of the two 2314 volumes.

In this example, indexed sequential input is to be converted into a sequential data set;
the output is to be placed on a 9-track tape volume.

The example follows:

//STEP1
//

//SYSPRINT DD

//SYSUT1

JOB 09#770,SMITH

EXEC PGM=IEBISAM, PARM=UNLOAD

SYSOUT=A
DD DSNAME=INDSEQ,UNIT=2314,DISP=(OLD,KEEP),

// VOLUME=SER=111112,DCB=(DSORG=1S)

//SYSUT?2

DD DSNAME=UNLDSET, UNIT=2400,LABEL=(,SL),

// DISP=(,KEEP),VOLUME=SER=001234,
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=640)
/*

The control statements are discussed below:
e EXEC specifies the program name and the UNLOAD operation.
e SYSUT1 DD defines the indexed sequential input data set, which resides on a 2314

volume.

IEBISAM Program—Class C 127

IEBISAM Example 3

IEBISAM Example 4

IEBISAM Example 5

128 Utilities (Release 21.7)

e SYSUT2 DD defines the unloaded output data set. The data set consists of fixed
blocked records, and is to reside as the first or only data set on a 9-track tape
volume. The data set is to be written at a density of 800 bits per inch.

In this example, indexed sequential input is to be converted into a sequential data set
and placed on a 7-track, tape volume.

The example follows:

//STEPA JOB 09#770,SMITH
// EXEC PGM=IEBISAM, PARM=UNLOAD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INDSEQ,UNIT=2314,DISP=(OLD,KEEP),
// VOLUME=SER=111112,DCB=(DSORG=IS)
//SYSUT2 DD DSNAME=UNLDSET,UNIT=2400-2,LABEL=(2,SL),
// VOLUME=SER=001234,DCB=(DEN=2 , RECFM=FB,
;/ LRECL=80, BLKSIZE=1040, TRTCH=C), DISP=(,KEEP)
E3

The control statements are discussed below:

o EXEC specifies the program name and the UNLOAD operation.

e SYSUT1 DD defines the input data set, which is an indexed sequential data set. The
data set resides on a 2314 volume.

e SYSUT2 DD defines the unloaded output data set. The data set consists of fixed
blocked records, and is to reside as the second data set on a 7-track tape volume.
The data set is to be written at 800 bits per inch density.

In this example, an unloaded data set is to be converted to the form of the original
indexed sequential data set.

The example follows:

//STEPA JOB 094770,SMITH

// EXEC PGM=IEBISAM,PARM=LOAD

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAME=UNLDSET,UNIT=2400,LABEL=(2,SL),

// DISP=(OLD,KEEP),VOLUME=SER=001234

//SYSUT?2 DD DSNAME=INDSEQ, DISP=(,KEEP), DCB=(DSORG=IS),

// SPACE=(CYL,(1)),VOLUME=SER=111112,UNIT=2314
/*

The control statements are discussed below:
e EXEC specifies the program name and the LOAD operation.

e SYSUT1 DD defines the input data set, which is a sequential (unloaded) data set.
The data set is the second data set on a 9-track tape volume.

e SYSUT2 DD defines the output data set, which is an indexed sequential data set.
One cylinder of space is allocated for the data set on a 2314 volume.

In this example, the logical records of an indexed sequential data set are to be printed
on a system output device.

The example follows:

//PRINT JOB 09#770,SMITH
7/ © EXEC PGM=IEBISAM,PARM='PRINTL,N'
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=ISAMO3,UNIT=2311,DISP=0LD,
| // VOLUME=SER=222222,DCB=(DSORG=IS)
//SYSUT2 DD SYSOUT=A
*

The control statements are discussed below:

e EXEC specifies the progfam name and the PRINTL operation. The output records
are not to be converted to hexadecimal prior to printing.

e SYSUT1 DD defines the input data set, which resides on a 2311 volume.

e SYSUT2 DD defines the output data set. A logical record length (LRECL) of 121
bytes is assumed.

IEBPTPCH Program—Class C

IEBPTPCH is a data set utility used to print or punch all, or selected portions, of a
sequential or partitioned data set. Records can be printed or punched to meet either
standard specifications or user specifications. (See “Introduction’ for general data set
utility information.)

The standard specifications are:
e Each logical record begins on a new printed line or punched card.

e Each printed line consists of groups of 8 characters separated by 2 blanks. Each
punched card contains up to 80 contiguous bytes of information.

e Characters that cannot be printed appear as blanks.

e When the input is blocked, each logical record is delimited by ‘‘*'’ and each block is
delimited by ‘‘#='",

User formats can be specified, provided that no output record exceeds the capability
of the output device.

IEBPTPCH provides optional editing facilities and exits for user routines that can be
used to process labels or manipulate input or output records.

IEBPTPCH can be used to:

e Print or punch a sequential or partitioned data set in its entirety.

e Print or punch selected members from a partitioned data set.

e Print or punch selected records from a sequential or partitioned data set.
e Print or punch the directory of a partitioned data set.

o Print or punch an edited version of a sequential or partitioned data set.

At the completion or termination of the program, the highest return code encountered
within the program is passed to the calling program.

Printing or Punching IEBPTPCH can be used to print or punch a sequential data set or a partitioned data

a Data Set set in its entirety. Data to be printed or punched can be either hexadecimal or a
character representation of valid alphameric bit configurations. For a print operation,
packed decimal data should be converted to unpacked decimal or hexadecimal mode
to ensure that all characters are printable.

For a standard print operation, each logical record is printed in groups of eight

characters. Each set of eight characters is separated from the next by two blanks. Up
1 to 112 characters can be included on a printed line. (An edited output can be

produced to omit the blank delimiters and print up to 144 characters per line.)

Data from an input logical record is punched in contiguous columns in the punched
card(s) representing that record. Sequence numbers can be created and placed in
columns 73 through 80 of the punched cards.

Printing or Punching IEBPTPCH can be used to print or punch selected members of a partitioned data set.
Selected Members Utility control statements are used to specify members to be printed or punched.
Printing or Punching IEBPTPCH can be used to print selected records from a sequential or partitioned
Selected Records data set. Utility control statements can be used to specify:

e The termination of a print or punch operation after a specified number of records
has been printed or punched.

e The printing or punching of every nth record.
| ¢ The starting of a print or punch operation after a specified number of records.

Printing or Punching IEBPTPCH can be used to print or punch the contents of a partitioned directory.

a Partitioned Directory Each directory block is printed in groups of eight characters. If the directory is printed
in hexadecimal representation, the first four printed characters of each directory block
indicate the total number of used bytes in that block. For details of the format of the
directory, see OS System Control Blocks, GC28-6628.

Data from a directory block is punched in contiguous columns in the punched cards
representing that block.

IEBPTPCH Program—ClassC 129

Printing or Punching
an Edited Data Set

Input and Output

Control

Job Control Statements

130 Utilities (Release 21.7)

IEBPTPCH can be used to print or punch an edited version of a sequential or a
partitioned data set. Utility control statements can be used to specify editing
information that applies to a record, a group of records, selected groups of records,
or an entire member or data set.

An edited data set is produced by:
e Rearranging or omitting defined data fields within a record.

e Converting data from packed decimal to unpacked decimal or from alphameric to
hexadecimal representation.

IEBPTPCH uses the following input:

e An input data set, which contains the data that is to be printed or punched. The
input data set can be either sequential or partitioned.

e A control data set, which contains utility control statements. The control data set is
required for each use of IEBPTPCH.

IEBPTPCH produces the following output:
e An output data set, which is the printed or punched data set.

e A message data set, which contains informational messages (for example, the
contents of the control statements) and any error messages.

IEBPTPCH provides a return code to indicate the results of program execution. The

_return codes and their meanings are:

e 00, which indicates successful completion.

e 04, which indicates either that a physical sequential data set is empty, or that a
partitioned data set contains no members.

e 08, which indicates that a member specified for printing does not exist in the input
data set. Processing continues with the next member.

e 12, which indicates that an unrecoverable error occurred or that a user routine
passed a return code of 12 to IEBPTPCH. The job step is terminated.

e 16, which indicates that a user routine passed a return code of 16 to IEBPTPCH.
The job step is terminated.

IEBPTPCH is controlled by job control statements and utility control statements. The
job control statements are required to execute or invoke the IEBPTPCH program and
to define the data sets that are used and produced by the program. The utility control
statements are used to control the functions of IEBPTPCH.

Table 23 shows the job control statements necessary for using IEBPTPCH.

Table 23. IEBPTPCH Job Control Statements
Statement Use
JoB Initiates the job step.

EXEC Specifies the program name (PGM = IEBPTPCH) or, if the job control statements
reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set. The data set can be written to a system
output device, a tape volume, or a direct access device.

SYSUT1 DD Defines a sequential or partitioned input data set.
SYSUT2 DD Defines the output (printed or punched) data set.

SYSIN DD Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a member in a partitioned data set.

The minimum region size that can be specified for the execution of IEBPTPCH is
I6K + 2b, where b is the largest block size in the job step rounded to the next higher
2K.

The input data set can contain fixed, variable, undefined, or variable spanned records.
Variable spanned records are allowed only when the input is sequential.

Both the output data set and the message data set can be written to the system
output device if it is a printer. Variable spanned records are allowed only when the
input is sequential.

Restrictions

Utility Control Statements

If the logical record length of the input records is such that the output would exceed
the output record length, the utility divides the record into multiple lines or cards in
the case of standard printed output, standard punched output, or when the PREFORM
parameter was specified. Otherwise, only part of the input record is printed (a
maximum of 144 characters) or punched (a maximum of 80 characters).

The SYSPRINT DD statement is required for each use of IEBPTPCH.

The RECFM must be fixed block with ASCII carriage control characters (FBA), and
the LRECL must be 121. Output can be blocked by specifying a BLKSIZE which is a

multiple of 121 on the SYSPRINT DD statement. The default BLKSIZE is 121.

The SYSUT1 DD statement is required for each use of IEBPTPCH. The RECFM
(except for undefined records), and the BLKSIZE and the LRECL (except for

undefined and fixed unblocked records) must be present on the DD statement, in

the DSCB, or on the tape label.

The SYSUT2 DD statement is required for each use of IEBPTPCH. The RECFM must

be FBA or fixed block with machine-code control characters (FBM).
The LRECL parameter, or, if no logical record length is specified, the BLKSIZE

parameter, specifies the number of characters to be written per printed line or per
punched card (this count includes a control character). The number of characters

specified must be in the range of 2 through 145. The default values for edited
output lines are 121 characters per printed line and 81 characters per punched

card. The SYSUT2 data set can be blocked by specifying both the LRECL and the
BLKSIZE parameters, in which case, block size must be a multiple of logical record

length.

The block size for the SYSPRINT data set must be a multiple of 121. The block size

for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for these block sizes. ‘

The SYSIN DD statement is required for each use of IEBPTPCH.

The RECFM must be FB and the LRECL must be 80. Any blocking factor can be
specified for the BLKSIZE (multiple of 80). The default BLKSIZE is 80.

A partitioned directory to be printed/punched must be defined as a sequential data

set (TYPORG = PS). Code the RECFM, BLKSIZE, and LRECL in the SYSUT1 DD
card.

IEBPTPCH is controlled by utility control statements. The control statements are
shown in the order in which they must appear, as follows:

PRINT or PUNCH statement, which specifies that the data is to be either printed or

punched.

TITLE statement, which specifies that a title is to precede the printed or punched

data.
EXITS statement, which specifies that user routines are provided.

MEMBER statement, which specifies that the input is a partitioned data set and that

a selected member is to be printed or punched.

RECORD statement, which specifies whether editing is to be performed, that is,
records are to be printed or punched to nonstandard specifications.

LABELS statement, which speéifies whether user labels are to be treated as data.

The control statements are included in the control data set, as required. Any number
of MEMBER and RECORD statements can be included in a job step.

IEBPTPCH Program-—Class C

131

PRINT Statement

132 Utilities (Release 21.7)

where:
PREFORM =

The PRINT statement is used to initiate the IEBPTPCH operation. If this is a print
operation, PRINT must be the first statement in the control data set.

The format of the PRINT statement is:

specifies that a control character is provided as the first character of each record
to be printed. The control characters are used to control the spacing, number of
lines per page, and page ejection. If an error occurs, the print operation is
terminated. If PREFORM is coded, except for syntax checking, any additional PRINT
operands and all other control statements except LABELS statements are ignored.
PREFORM must not be used for printing data sets with VS or VBS records longer
than 32K bytes. These values can be coded:

A
specifies that an ASA control character is provided as the first character of each
record to be printed. If the input record length exceeds the output record
length, the utility uses the ASA character for printing the first line, with a single
space character on all subsequent lines of the record.

specifies that a machine-code control character is provided as the first
character of each record to be printed. If the input record length exceeds the
output record length, the utility prints all lines of the record with a
print-skip-one-line character until the last line of the record, which will contain
the actual character provided as input.

TYPORG =

specifies the organization of the input data set. If TYPORG is omitted, sequential
organization is assumed. These values can be coded:

PS
specifies that the input data set is organized sequentially.

PO
specifies that the input data set is partitioned.

TOTCONV =

specifies the representation of data to be printed. TOTCONV can be overridden by
any user specifications (RECORD statements) that pertain to the same data. These
values can be coded:

XE
specifies that data is to be printed in 2-character per byte hexadecimal
representation (for example, C3 40 F4 F6). If XE is not specified, data is printed
in 1-character per byte alphameric representation. The above example would
appear as C 46.

PZ
specifies that data (packed decimal mode) is to be converted to unpacked
decimal mode. If TOTCONV is omitted, data is not converted. IEBPTPCH does
not check for packed decimal mode. The output is unpredictable when the input
is not packed decimal.

CNTRL=n
specifies a control character for the output device that indicates line spacing, as
follows: 1 indicates single spacing; 2 indicates double spacing; and 3 indicates
triple spacing. if CNTRL is omitted, 1 is assumed.

STRTAFT =n

specifies, for sequential data sets, the number of logical records (physical blocks in
the case of VS or VBS type records longer than 32K bytes) to be skipped before

| printing begins. For partitioned data sets, specifies the number of logical records to
be skipped in each member before printing begins. The n value must not exceed
32,767. If STRTAFT is specified and RECORD statements are present, the first
RECORD statement of a member describes the format of the first logical record to
be printed.

STOPAFT =n

specifies, for sequential data sets, the number of logical records (or physical blocks
in the case of VS or VBS records longer than 32K bytes) to be printed. For

| partitioned data sets, this specifies the number of logical records to be printed in
each member to be processed. The n value must not exceed 32,767. If STOPAFT is
specified and RECORD statements are present, the operation is terminated when

l the STOPAFT count is satisfied, at the end of a record group, or at the end of the
data set; whichever occurs first.

SKIP =n
specifies that every nth record (or physical block in the case of VS or VBS records
longer than 32K bytes) is to be printed. If SKIP is omitted, successive logical
records are printed.

MAXNAME = n
specifies a number no less than the total number of subsequent MEMBER
statements. If MAXNAME is omitted when there is a MEMBER statement present,
the print request is terminated.

MAXFLDS = n
specifies a number no less than the total number of FIELD parameters appearing in
I subsequent RECORD statements. If MAXFLDS is omitted when there is a FIELD
parameter present, the print request is terminated.

MAXGPS =n
specifies a number no less than the total number of IDENT parameters appearing in
subsequent RECORD statements. If MAXGPS is omitted when there is an IDENT
parameter present, the print request is terminated.

MAXLITS = n
specifies a number no less than the total number of characters contained in the
IDENT literals of subsequent RECORD statements. If MAXLITS is omitted when
there is a literal present, the print request is terminated.

INITPG =n
specifies the initial page number; the pages are numbered sequentially thereafter.
1 IfINITPG is omitted, 1 is assumed. The value of n must not be greater than 9999.

MAXLINE = n
specifies the maximum number of lines to a printed page. Spaces, titles, and
subtitles are included in this number. If n is smaller than the total number of
spaces, titles, and subtitles, an error message is issued. If MAXLINE is omitted, 60
is assumed.

IEBPTPCH Program—Class C 133

PUNCH Statement The PUNCH statement is used to initiate the IEBPTPCH operation. If this is a punch
operation, PUNCH must be the first statement in the control data set.

The format of the F;pNCH ;tatement is:

where:

PREFORM =
specifies that a control character is provided as the first character of each record
to be punched. The control characters are used to select a stacker. If an error is
discovered, the punch operation is terminated. If PREFORM is coded, except for
syntax checking, any additional PUNCH operands and all other control statements
except LABELS statements are ignored. PREFORM must not be used for punching
data sets with VS or VBS records longer than 32K bytes. These values can be
coded:

A
specifies that an ASA control character is provided as the first character of each
record to be punched. If the input record length exceeds the output record
length, the utility duplicates the ASA character on each output card of the
record.

specifies that a machine-code control character is provided as the first
character of each record to be punched. If the input record length exceeds the
output record length, the utility duplicates the machine control character on
each output card of the record.

TYPORG =
specifies the organization of the input data set. If TYPORG is omitted, sequential
organization is assumed. These values can be coded:

PS
| specifies that the input data set is organized sequentially. This is the default.

PO
specifies that the input data set is partitioned.

TOTCONV =
specifies the representation of data to be punched. TOTCONV can be overridden by
any user specifications (RECORD statements) that pertain to the same data. These
values can be coded:

XE
specifies that data is to be punched in 2-character per byte hexadecimal
representation (for example, C3 40 F4 F6). If XE is not specified, data is
punched in 1-character per byte alphameric representation. The above example
would appear as C 46.

Pz
specifies that data (packed decimal mode) is to be converted to unpacked
decimal mode. If TOTCONV is omitted, data is not converted. IEBPTPCH does
not check for packed decimal mode. The output is unpredictable when the input -
is not packed decimal.

134 Utilities (Release 21.7)

TITLE Statement

CNTRL =n
specifies a control character for the output device that is used to select the
stacker, as follows: 1 indicates the first stacker and 2 indicates the second stacker.
If CNTRL is omitted, 1 is assumed.

STRTAFT =n
specifies, for sequential data sets, the number of logical records (physical blocks in
the case of VS or VBS type records longer than 32K bytes) to be skipped before
punching begins. For partitioned data sets, specifies the number of logical records
(physical blocks in the case of VS or VBS type records longer than 32K bytes) to be
skipped in each member before punching begins. The n value must not exceed
32,767. If STRTAFT is specified and RECORD statements are present, the first
RECORD statements of a member describes the format of the first logical record to
be punched.

STOPAFT=n
specifies, for sequential data sets, the number of logical records (or physical blocks
in the case of VS or VBS records longer than 32K bytes) to be punched. For
partitioned data sets, this specifies the number of logical records (or physical
blocks in the case of VS or VBS records longer than 32K bytes) to be punched in
each member to be processed. The n value must not exceed 32,767. If STOPAFT is
specified and RECORD statements are present, the operation is terminated when
the STOPAFT count is satisfied or at the end of the first record group, whichever
occurs first.

SKIP = n
specifies that every nth record (or physical block in the case of VS or VBS records
longer than 32K bytes) is to be punched. If SKIP is omitted, successive logical
records are punched.

MAXNAME = n
specifies a number no less than the total number of subsequent MEMBER
statements. If MAXNAME is omitted when there is a MEMBER statement present,
the punch request is terminated.

MAXFLDS = n
specifies a number no less than the total number of FIELD parameters appearing in
subsequent RECORD statements. If MAXFLDS is omitted when there is a FIELD
parameter present, the punch request is terminated.

MAXGPS = n
specifies a number no less than the total number of IDENT parameters appearing in
subsequent RECORD statements. If MAXGPS is omitted when there is an IDENT
parameter present, the punch request is terminated.

MAXLITS = n
specifies a number no less than the total number of characters contained in the
IDENT titerals of subsequent RECORD statements. If MAXLITS is omitted when
there is a literal present, the punch request is terminated.

CDSEQ =n
specifies the initial sequence number of a deck of punched cards. This value must
be contained in columns 73 through 80. Sequence numbering is initialized for each
member of a partitioned data set. If CDSEQ is omitted, the cards are not numbered.
If the value of n is zero, 00000000 is assumed as a starting sequence.

CDINCR=n
specifies the increment to be used in generating sequence numbers. If CDINCR is
omitted and CDSEQ is coded, 10 is assumed as an increment value for sequence
numbering.

The TITLE statement is used to request title and subtitle records. Two TITLE
statements can be included for each use of IEBPTPCH. A first TITLE statement defines
the title, and a second defines the subtitle. The TITLE statement, if included, must
immediately follow the PRINT or PUNCH statement in the control data set.

The format of the TITLE statement is:

IEBPTPCH Program—Class C 135

where:

ITEM =
specifies title or subtitle information. The values that can be coded are:
‘title’
specifies the title or subtitle literal (maximum length of 40 bytes), enclosed in
apostrophes. If the literal contains apostrophes, each apostrophe must be
written as two consecutive apostrophes.

output-location
specifies the starting position at which the literal for this item is to be placed in
the output record. If output-location is not specified, 1 is assumed. The specified
title may not exceed the output logical record length minus 1.

EXITS Statement The EXITS statement is used to identify exit routines supplied by the user. Exits to
label processing routines are ignored if the input data set is partitioned. Linkage to
and from user routines are discussed in “Appendix A: Exit Routine Linkage.”

The EXITS statement, if included, must immediately follow any TITLE statement or
follow the PRINT or PUNCH statement.
EXITS statement is:

e st e

The format of the

INHDR = routinename
specifies the symbolic name of a routine that processes user input header labels.

INTLR = routinename
specifies the symbolic name of a routine that processes user input trailer labels.

INREC = routinename
specifies the symbolic name of a routine that manipulates each logical record (or
physical block in the case of VS or VBS records longer than 32K bytes) before it is

processed.

OUTREC = routinename
specifies the symbolic name of a routine that manipulates each logical record (or
physical block in the case of VS or VBS records longer than 32K bytes) before it is
printed or punched. When standard specifications are used, this exit is not
available. '

MEMBER Statement The MEMBER statement is used to identify members to be printed or punched. All
RECORD statements that follow a MEMBER statement pertain to the member indicated
in that MEMBER statement only. When RECORD and MEMBER statements are used, at
least one MEMBER statement must precede the first RECORD statement. If no
RECORD statement is used, the member is processed to standard specifications.

If no MEMBER statement appears, and a partitioned data set is being processed, all
members of the data set are printed or punched. Any number of MEMBER statements
can be included in a job step.

The format of the MEMBER statement is

2

where:

NAME =
specifies a member to be printed or punched. These values can be coded:

membername
specifies a member by its member name.

aliasname
specifies a member by its alias.

If the NAME parameter is specified in the MEMBER statement, MAXNAME must be
specified in a PRINT or PUNCH statement.

RECORD Statement The RECORD statement is used to define a group of records—called a record
group—that is to be printed or punched to the user’s specifications. A record group
consists of any number of records to be edited identically.

136 Utilities (Release 21.7)

If no RECORD statements appear, the entire data set, or named member, is printed or
punched to standard specifications. If a RECORD statement is used, all data following
the record group it defines (within a partitioned member or within an entire sequential
data set) must be defined with other RECORD statements. Any number of RECORD
statements can be included in a job step.

The format of the RECORD statement is:

. [label] RECORD [IDENT = (length,'name’,input-location)]

: [L,FIELD = (length[,input-location][,conversion]
‘oo ... Loutput-locationD][,FIELD =...]

where:

IDENT =
identifies the last record of the record group to which the FIELD parameters apply.
If IDENT is omitted and STOPAFT is not included with the PRINT or PUNCH
statement, record processing halts after the last record in the data set. If IDENT is
omitted and STOPAFT is included with the PRINT or PUNCH statement, record
processing halts when the STOPAFT count is satisfied or after the last record of the
data set is processed, whichever occurs first. The values that can be coded are:

length
specifies the length (in bytes) of the field that contains the identifying name in
the input records. The length cannot exceed eight bytes.

‘name’
specifies the exact literal that identifies the last record of a record group. If the
literal contains apostrophes, each must be written as two consecutive
apostrophes.

input-location
specifies the starting location of the field that contains the identifying name in
the input records.

Note: The sum of the length and input location must be equal to or less than the
initial LRECL plus one.

FIELD =
specifies field processing and editing information. These values can be coded:

length
specifies the length (in bytes) of the input field to be processed.

| Note: The length must be equal to or less than the initial input LRECL.

input-location
specifies the starting byte of the input field to be processed. If input-location is
not specified, 1 is assumed.

Note: The sum of the length and input location must be equal to or less than the
initial input LRECL plus one.

conversion
specifies a two-byte code that indicates the type of conversion to be performed
on this field before it is printed or punched. If conversion is not specified, the
field is moved to the output area without change. The values that can be coded
are:

PZ
specifies that data (packed decimal) is to be converted to unpacked decimal
I data. The converted part of the input record (length L) occupies 2L - 1 output
characters.

XE
| specifies that data (alphameric) is to be converted to hexadecimal data. The
converted part of the input record (length L) occupies 2L output characters.

output-location
specifies the starting location of this field in the output records. If output-location
is not specified, 1 is assumed. Unspecified fields in the output records appear as
blanks in the printed or punched output. Data that exceeds the SYSUT2 printer
or punch size is not printed or punched. The specified fields may not exceed the
I output logical record length minus 1. When either one or multiple “FIELDS' are

specified, the sum of all lengths and extra characters needed for conversions
must be equal to or less than the output LRECL minus one.

IEBPTPCH Program—Class C 137

A RECORD statement referring to a partitioned data set for which no members have
been named need contain only FIELD parameters. These are applied to the records in
all members of the data set.

If a FIELD parameter is included in the RECORD statement, MAXFLDS must be
specified in the PRINT/PUNCH statenrent.

If an IDENT parameter is included in the RECORD statement, MAXGPS must be
specified in the PRINT/PUNCH statement. If a literal is specified in the IDENT
parameter, MAXLITS must be specified in the PRINT/PUNCH statement.

LABELS Statement The LABELS statement specifies whether user labels are to be treated as data. For a
detailed discussion of this option, refer to ‘‘Processing User Labels as Data,” in
“‘Appendix E: Processing User Labels."”

The format of the LABELS statement is:

where:

DATA =
specifies whether user labels are to be treated as data. The values that can be

coded are:

YES
specifies that any user labels that are not rejected by a user’s label processing

routine are to be treated as data. Processing of labels as data stops in
compliance with standard return codes. If no value is entered, YES is assumed.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that user labels are to be treated as data regardless of any return
code. A return code of 16 causes the utility to complete the processing of the
remainder of the group of user labels and to terminate the job step.

ONLY ‘
specifies that only user header labels are to be treated as data. User header

labels are processed as data regardless of any return code. The job terminates
upon return from the OPEN routine.

Note: DATA = NO must be specified to make standard user labels (SUL) exits inactive
when input data sets with nonstandard labels (NSL) are to be processed.

If more than one valid LABELS statement is included, all but the last LABELS
statement are ignored.

138 Utilities (Release 21.7)

IEBPTPCH Examples

IEBPTPCH Example 1

The following examples illustrate some of the uses of IEBPTPCH. Table 24 can be
used as a quick reference guide to |IEBPTPCH examples. The numbers in the
“Example’’ column point to the examples that follow.

Table 24, |IEBPTPCH Example Directory

Data Set
Operation Organization Devices Comments Example
PRINT Sequential 9-track tape, Standard format. Conversion to
System printer hexadecimal. 1
PUNCH Sequential 7-track tape, Standard format. Conversion to
Card Reader hexadecimal. 2
PRINT Partitioned 3330 Disk Storage Standard format. Conversion to
System printer hexadecimal. Ten records from
each member are to be printed. 3
PRINT Partitioned 2314 Disk, Standard format. Conversion to
System printer hexadecimal. Two members are
to be printed. 4
PRINT Sequential 9 track tape, User specified format. Input
System printer data set is the second data set
on the volume. 5
PUNCH Sequential 2314 Disk, User specified format. Sequence
Card Reader numbers are to be assigned and
Punch punched. 6
PRINT Sequential, 2314 Disk, Standard format. Conversion to
Partitioned System printer hexadecimal. 7
PUNCH Sequential Card Reader, Standard format. Control data
Card Read set is a member in a cataloged
Punch partitioned data set. 8
PRINT Sequential 2311 Disk, User specified format. User

System printer routines are provided. Processing
ends after first record group is
printed. 9

In this example, a sequential data set is to be printed according to standard
specifications. The input data set resides on a 9-track tape volume, originally written
at 800 bits per inch density. The printed output is to be converted to hexadecimal.

The example follows:

//PRINT JOB 09#660,SMITH
// EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD . UNIT=2400,LABEL=(,NL),VOLUME=SER=001234,
// DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=2000)
//SYSUT2 DD SYSOUT=A
//SYSIN DD
PRINT TOTCONV=XE
TITLE ITEM=('PRINT SEQ DATA SET WITH CONV TO HEX',10)
/*

The control statements are discussed below.

o SYSUTI1 DD defines the input data set. The data set contains undefined records; no
record is larger than 2,000 bytes.

e SYSUT2 DD defines the output data set. The data set is written to the system
output device (printer assumed). Each printed line contains groups (8 characters
each) of hexadecimal information. Each record begins a new line of printed output.

o SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT and TITLE statements.

e PRINT initiates the print operation and specifies conversion from alphameric to
hexadecimal representation.

o TITLE specifies a title to be placed beginning in column 10 of the printed output.
The title is not converted to hexadecimal.

IEBPTPCH Program—Class C 139

IEBPTPCH Example 2

IEBPTPCH Example 3

140 Utilities (Release 21.7)

In this example, a sequential data set is to be punched according to standard
specifications. The input data set resides on a 7-track tape volume, originally written
at a density of 556 bits per inch. The punched output is converted to hexadecimal.

The example follows:

//PUNCHSET JOB 09#660,SMITH
7/ EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INSET,UNIT=2400-2,VOLUME=SER=001234,
// LABEL=(,NL),DISP=(OLD,KEEP),DCB=(DEN=1,RECFM=FB,
// LRECL=80,BLCKSIZE=2000, TRTCH=C)
//SYSUT2 DD UNIT=2540-2
//SYSIN DD *
PUNCH TOTCONV=XE
TITLE ITEM=('PUNCH SEQ DATA SET WITH CONV TO HEX',10)
/*

The control statements are discussed below:

e SYSUT1 DD defines the input data set. The data set contains 80-byte, fixed
blocked records. '

e SYSUT2 DD defines the output data set. The data set is to be punched by an IBM
2540-2 Card Read Punch (punch feed). Each record from the input data set is
represented by two punched cards.

¢ SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PUNCH and TITLE statements.

o PUNCH initiates the punch operation and specifies conversion from alphameric to
hexadecimal representation.

e TITLE specifies a title to be placed beginning in column 10. The title is not
converted to hexadecimal.

In this example, a partitioned data set (ten records from each member) is to be
printed according to standard specifications. The input data set resides on a 3330
volume. The printed output is converted to hexadecimal.

The example follows:

//PRINTPDS JOB 09#660,SMITH
// EXEC PGM=TEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=PDS,UNIT=3330,DISP=(OLD,KEEP),
// VOLUME=SER=111112,DCB=(RECFM=U, BLKSIZE=3265)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *
PRINT TOTCONV=XE, TYPORG=PO,STOPAFT=10
, TITLE ITEM=('PRINT PDS - 10 RECS EACH MEM',20)
*

The control statements are discussed below:

e SYSUT1 DD defines the input data set. The data set contains undefined records; no
record is larger than 3,625 bytes.

e SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Each record begins a new line of printed output. The size of the record
determines how many lines of printed output are required per record.

e SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT and TITLE statements.

o PRINT initiates the print operation, specifies conversion from alphameric to
hexadecimal representation, indicates that the input data set is partitioned, and
specifies that ten records from each member are to be printed.

o TITLE specifies a title to be placed beginning in column 20 of the printed output.
The title is not converted to hexadecimal.

IEBPTPCH Example 4 “ In this example, two partitioned members are to be printed according to standard
specifications. The input data set resides on a 2314 volume. The printed output is to
be converted to hexadecimal.

The example follows:

//PRNTMEMS JOB 09#660,SMITH

// EXEC PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAME=PDS,DISP=(OLD,KEEP),VOLUME=SER=111112,

// DCB=(RECFM=F, LRECL=80,BLKSIZE=80),UNIT=2314

//SYSUT2 DD SYSOUT=A

//SYSIN DD *
PRINT TYPORG=PO,TOTCONV=XE, MAXNAME=2
TITLE ITEM=('PRINT TWO MEMBS WITH CONV TO HEX',10)
MEMBER NAME=MEMBERI

, MEMBER NAME=MEMBER?

%

The control statements are discussed below:

e SYSUT1 DD defines the input data set. The data set contains 80-byte, fixed
records.

o SYSUTZ2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Each record begins a new line of printed output.

e SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains PRINT, TITLE, and MEMBER statements.

¢ PRINT initiates the print operation, indicates that the input data set is partitioned,
specifies conversion from alphameric to hexadecimal representation, and indicates
that two MEMBER statements appear in the control data set.

e TITLE specifies a title to be placed beginning in column 10 of the printed output.
The title is not converted to hexadecimal.

o MEMBER specifies the member names of the members to be printed.

IEBPTPCH Example 5 In this example, a sequential data set is to be printed according to user specifications.
The input data set is the second data set on a 9-track tape volume. The data set was
originally written at a density of 800 bits per inch.

The example follows:

//PTNONSTD JOB 09#660,SMITH
/ EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SEQSET,UNIT=2400,LABEL=(2,SUL),
// DISP=(OLD,KEEP), VOLUME=SER=001234,
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT MAXFLDS=1

EXITS INHDR=HDRIN, INTLR=TRLIN

RECORD FIELD=(80)

LABELS DATA=YES
/*

The control statements are discussed below:

e SYSUT1 DD defines the input data set. The data set contains 80 byte,
fixed blocked records.

e SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains 80 contiguous characters (one record) of
information. :

o SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, RECORD, EXITS and LABELS statements.

e PRINT initiates the print operation and indicates that one FIELD parameter is
included in a subsequent RECORD statement.

e EXITS indicates that exits will be taken to user header label and trailer label
processing routines when these labels are encountered on the SYSUT1 data set.

e RECORD indicates that each input record is to be processed in its entirety (80
bytes). Each input record is printed in columns 1 through 80 on the printer.

e LABELS specifies that user header and trailer labels are to be printed according to
the return code issued by the user exits.

IEBPTPCH Program—Class C 141

IEBPTPCH Example 6

IEBPTPCH Example 7

142 Utilities (Release 21.7)

In this example, a sequential data set is to be punched according to user
specifications. The input data set resides on a 2314 volume.

The example follows:

//PHSEQNO JOB 09#660,SMITH
/7 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SEQSET,UNIT=2314,LABEL=(,SUL),
// VOLUME=SER=111112,DISP=(OLD,KEEP),
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=2000)
//SYSUT2 DD DSNAME=PUNCHSET,UNIT=2540-2
//SYSIN DD %
PUNCH MAXFLDS=1,CDSEQ=00000000,CDINCR=20
RECORD FIELD=(72)
, LABELS DATA=YES
*

The control statements are discussed below:

e SYSUT1 DD defines the input data set. The data set contains 80-byte, fixed
blocked records.

e SYSUT2 DD defines the output data set. The data set is to be punched by an IBM
2540-2 Card Read Punch (punch feed). Each record from the input data set is
represented by one punched card.

e SYSIN DD defines the control data set, which follows in the input stream. The
control. data set contains the PUNCH, RECORD, and LABELS statements.

e PUNCH initiates the punch operation, indicates that one FIELD parameter is
included in a subsequent RECORD statement, and assigns a sequence number for
the first punched card (00000000) and an increment value for successive
sequence numbers (20). Sequence numbers are placed in columns 73 through 80
of the output records.

e RECORD indicates that bytes 1 through 72 of the input records are to be punched.
Bytes 73 through 80 of the input records are replaced by the new sequence
numbers in the output card deck.

e LABELS specifies that user header labels are to be punched. Labels cannot be
edited. They are moved to the first 80 bytes of the output buffer. In this example,
there are no sequence numbers present in the cards with user header and user
trailer labels.

In this example, the directory of a partitioned data set is to be printed. The input data
set resides on a 2314 volume. The printed output is to be converted to hexadecimal.

The example follows:

//PRINTDIR JOB 09#660,SMITH

// EXEC PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=Aa

//SYSUT1 DD DSNAME=PDS,UNIT=2314,VOLUME=SER=111112,

// DISP=(OLD,KEEP),DCB=(RECFM=U, BLKSIZE=256)

//SYSUT2 DD SYSOUT=A

//SYSIN DD *
PRINT TYPORG=PS, TOTCONV=XE
TITLE ITEM=('PRINT PARTITIONED DIRECTORY OF PDS',10)
TITLE ITEM=('FIRST TWO BYTES SHOW NUM OF USED BYTES',10)
LABELS DATA=NO

J*

The control statements are discussed below:

e SYSUT1 DD defines the input data set (the partitioned directory).

e SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains groups (8 characters each) of hexadecimal
information. Six lines of print are required for each record. Each record begins a
new line of printed output.

e SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, TITLE, and LABELS statements.

e PRINT initiates the print operation, indicates that the partitioned directory is
organized sequentially, and specifies conversion from alphameric to hexadecimal
representation.

o The first TITLE statement specifies a title, which is not converted to hexadecimal.

o The second TITLE statement specifies a subtitle, which is not converted to
hexadecimal.

o LABELS specifies that no user labels are to be printed.

Note: Not all of the bytes in a directory block need contain data pertaining to the
partitioned data set; unused bytes are sometimes used by the operating system as
temporary work areas. The first four characters of printed output indicate how many
bytes of the 256-byte block pertain to the partitioned data set. Any unused bytes
occur in the latter portion of the directory block; they are not interspersed with the
used bytes.

IEBPTPCH Example 8 In this example, a card deck containing valid punch card code or BCD is to be
duplicated. The input card deck resides in the input stream.

The example follows:

//PUNCH JOB 09#660,SMITH

/ EXEC PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSNAME=PDSLIB(PNCHSTMT),DISP=(OLD,KEEP)
//SYSUT2 DD UNIT=2540-2

//SYSUT1 DD DATA

] (input card data set including // cards)
/%
The control statements are discussed below:

o SYSIN DD defines the control data set. The control data set contains a PUNCH
statement and is defined as a member of the partitioned data set PDSLIB. (The
| data set is cataloged. The RECFM must be FB and the LRECL must be 80.)

e SYSUT2 DD defines the output data set. The data set is to be punched on an IBM
2540-2 Card Read Punch (punch feed).

e SYSUT1 DD defines the input card data set, which follows in the input stream.

IEBPTPCH Example 9 In this example a record group is to be printed. A user routine is provided to
manipulate output records before they are printed.

The example follows:

//PRINT JOB 09#660,SMITH
7/ EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SEQDS,UNIT=2311,DISP=(OLD,KEEP),
// LABEL=(,SUL),VOLUME=SER=111112,
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=2000)
//SYSUT2 DD SYSOUT=A
//SYSIN DD %
PRINT MAXFLDS=2,MAXGPS=1,MAXLITS=6,STOPAFT=32767

1 TITLE ITEM=('TIMECONV-DEPT D06'),ITEM=('JAN 10-17"')
EXITS OUTREC=NEWTIME, INHDR=HDRS, INTLR=TLRS
RECORD IDENT=(6,'498414"',1), Qe

FIELD=(8,1,,10),FIELD=(30,9,XE,20)
LABELS DATA=ALL, CONV=XE
/%
The control statements are discussed below:
e SYSUT1 DD defines the input data set. The data set resides on a 2311 volume.

e SYSUT2 DD defines the output data set on the system output device (printer
assumed).

o SYSIN DD defines the control data set, which follows in the input stream. The
control data set contains the PRINT, TITLE, EXITS, and RECORD statements.

e The PRINT statement: (1) initializes the print operation, (2) indicates that two
FIELD parameters are included in subsequent RECORD statements, (3) indicates
that one IDENT parameter is included in a subsequent RECORD statement, (4)
indicates that six literal characters are included in the subsequent IDENT
parameter, and (5) indicates that processing is to be terminated after 32,767
records are processed or after the first record group is processed, whichever .
comes first. Because MAXLINE is omitted, 60 lines are printed on each page.

o TITLE specifies a title.

e EXITS specifies the name of a user routine (NEWTIME), which is used to manipulate
output records before they are printed.

IEBPTPCH Program—Class C 143

e RECORD defines the record group to be processed and indicates where information
from the input records is placed in the output records. Bytes 1 through 8 of the
input records appear in columns 10 through 17 of the punched output, and bytes 9
through 38 are printed in hexadecimal representation and placed in columns 20
through 79.

e LABELS specifies that all user header or trailer labels are to be printed regardless
of any return code, except 16, issued by the user’s exit routine. It also indicates
that the labels are to be converted from alphameric to hexadecimal representation.

144 Utilities (Release 21.7)

IEBTCRIN Program

IEBTCRIN is a data set utility used to read input from the IBM 2495 Tape Cartridge
Reader (TCR), edit the data as specified by the user, and produce a sequentially
organized output data set. (See “Introduction’ for general data set utility
information.)

The input to IEBTCRIN is in the form of cartridges written by either the IBM Magnetic
Tape SELECTRIC Typewriter (MTST) or the IBM 50 Magnetic Data Inscriber (MTDI).
An input data set (one or more cartridges) must consist of either all MTST cartridges
or all MTDI cartridges. '

IEBTCRIN can be used to construct records from the stream of data bytes read
sequentially from the Tape Cartridge Reader. The user has the option of gaining
temporary control (via a user-supplied exit routine) to process each logical record.

When MTDI input is edited, IEBTCRIN maintains information about each record as it is
being edited. This information is summarized in the Error Description Word (EDW)
which is described below. When the EDW contains a nonzero value in either the level
status (byte 0) or the type status (byte 1), the record is considered an error record by
the program and the EDW is appended to the start of the record to aid the user in
analyzing the error.

Error Records If a record is found to be in error, the record is passed.to the user error exit routine if
one is specified. If an error exit is not specified, the action to be taken is determined
by the option specified in a utility control statement.

When either MTST input or MTDI input without editing is specified, the only error that
can be recognized is a record containing one or more permanent data checks. The
data check bytes are replaced as described in a utility control statement. The record is
considered an error record, but because a data check is the only error that can occur,
no EDW is appended to the error record.

Error Description The Error Description Word (EDW) consists of four bytes that are appended to the
Word (EDW) start of an error record.

The error description word is in EBCDIC format; for example, a 2 is represented as
X'F2' and a C is represented as X‘C3'. The information provided in each of the four
bytes of the EDW is discussed below.

Level Status (Byte 0) The level status indicator identifies error records that result from inter-record
dependency that cannot be identified in the type status byte.

The level status is presented with each error record and has a value of:

e 0, for any error record that will not cause questionable data in following records. A
nonzero type status accompanies this byte.

e 1, for any error record that may cause questionable data in following records, and
for which the level status of the previous record was 0.

e 2, for any error record that contains questionable data because the error level of
the preceding record was 1 or 2, or for any error record that may cause
guestionable data in the following records and for which the level status of the
previous record was 1 or 2.

A level status of other than 0 is presented with error records resulting from the
following:

o The start-of-record (SOR) location has a character defined as an error.

e The record contains two or more data check bytes side by side. These may have
been an SOR and EOR.

e The record is longer than the user-specified maximum length record.

e The length of the record is not equal to the length of the first valid record of the
same program level encountered on this cartridge. For this purpose, a valid record
is one that contains no errors as identified in the type status, with the possible
exception of being shorter than the user-specified minimum length.

e The record has a data-duplication dependency on a previous record with one of the
above errors.

The level status is set to 0 when IEBTCRIN encounters: (1) a record without one of the
previous errors, (2) a canceled record, or (3) the first record of a cartridge.

IEBTCRIN Program 145

Type Status (Byte 1)

Start-of-Record (Byte 2)

End-of-Record (Byte 3)

Sample Error Records

146 Utilities (Release 21.7)

The type status indicator identifies records in error because of SOR, EOR, length,
field, or data check error conditions.

The type status is presented with each error record and has a value of:

e 0, for any record that contains none of the following identifiable errors, but
contains questionable data due to a nonzero level status. (See ‘‘Level Status’’
earlier in this chapter.)

e 1, for any record that has: (1) an SOR character of other than P1 through P8 or a
GS code, (2) an EOR character of other than a VOK code for records when the user
specified a record verification check, or (3) an EOR character of other than a VOK
or RM code for records when the user specified no record verification check.

e 2, for any record that has an incorrect length because it is: (1) longer than the
user-specified maximum, (2) shorter than the user-specified minimum, or (3) not
equal to the length of the first valid record of the same program level encountered
on this cartridge.

e 4, for any record that has a field error. A field error occurs when duplication or
left-zero justification functions did not occur in a field due to an error condition.
See “MTDI Editing Criteria’’ below.

e 8, for any record that has a permanent data check error.

The type status indicator can also have values of 3, 5, 6,7,9,A,B,C, D, E, and F.
These values indicate a combination of SOR, EOR, length, field, and data check errors.
For example, a value of A indicates a record with a data check error (8) as well as an
incorrect length (2).

This byte contains an indication of the start-of-record (SOR) character associated
with this record. The SOR character can be 1 through 8, where 1 indicates P1, 2
indicates P2, etc., or E, which indicates that the SOR character is in error.

This byte contains an indication of the end-of-record (EOR) character associated with
this record. The EOR character can be: U, which indicates an unverified record; V,
which indicates a verified record; or E, which indicates that the EOR character is in
error.

Figure 34 shows a stream of data bytes read sequentially from the tape cartridge
reader.

Figure 35 shows the records constructed by IEBTCRIN from the input records shown in
Figure 34. These records show some of the errors that can occur during processing
and their effect on the Error Description Word. The following parameters were
specified on the TCRGEN statement for these records:

TCRGEN TYPE = MTDLEDIT = EDITR,VERCHK = VOKCHK, QC
MAXLN = 50,REPLACE = X‘5B’

IEBTCRIN classifies records 2 through 9 in Figure 35 as error records. The records are
classified, as follows:

e Record 1 is a valid record. It contains a program level 1 code, and thus establishes
the valid length for all program level 1 records in this cartridge to be 25 bytes.

e Record 2 has a data check in the SOR location. Level status is set to 1 because the
SOR location might have contained a cancel code that would cause any data
duplicated on the following record to be questionable. The type status (9) indicates
the record has an incorrect SOR/EOR character (1) and a data check error (8).

e Record 3 contains no identifiable error, but contains questionable data because it
requires duplication from the previous record, which had a level status of 1.

o Record 4 has a data check. Because it contained no DUP codes, the level status is
set to O.

e Record 5 is shorter than the first program level 1 record on this cartridge (length
error). This record also contains an RM code rather than a VOK code in the EOR
location (VOKCHK was specified). Because IEBTCRIN cannot determine why the
record is short, all data duplicated from this record is questionable; the level status
is set to 1. The type status is set to 3 indicating an SOR/EOR error (1) and length
error (2).

e Record 6 contains a DUP code that is beyond the last position of the preceding
record.

P v * DDDDDDDDDDDDDDD DV
111372 RECORD NUMBER 1AO *111378UUUUUUUUUUUUUUU20U0
1 K * PPPPPPPPPPPPPPP PK
P DDDDDDDDDDDDDDD DV P . v
357987UUUUUUUULUUULUL3UO 358977 REC*RD NUMBER 4AO
PPPPPPPPPPPPPPP PK 1 . K

P R P DDDDDDDDDDDDDDD DV
358436 RECORD NUMBER 5 358436U0U00UU0UVUULUULUGUC
1 M 1 PPPPPPPPPPPPPPP PK

P v
998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREHOUSEO
3 K

* VE
367*82 RECORD NUMBER 8AO
1 * KD

Figure 34. Tape Cartridge Reader Data Stream

(Record 1) (Record 2)
v v
P o} o]
1111372 RECORD NUMBER 1AK 19EV $111378 RECORD NUMBER 2AK
(Record 3) (Record 4)
v v
P 0 P o
201V 1357987 RECORD NUMBER 3AK 081V 1358977 REC$RD NUMBER 4AK
(Recorad 5) (Record 6)
\Y
P R P (o}
1310 1358436 RECORD NUMBER 5M 241V 1358436 RECORD NUMBER 6$K
(Record 7) (Record 8)
v
P [0}
233E]| 3998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREH 21EV OUSEK
(Record 9) ’
MAXLN ends here
\Y (EOR Forced)
P 0
081V 1367$82 RECORD NUMBER BAK

‘

Resulting Error
Description Word

Figure 35. Record Construction

IEBTCRIN Program 147

MTDI Editing Criteria

MTDI Editing Restrictions

148 Utilities (Release 21.7)

o The seventh input record is longer than the maximum user-specified record length.
Note that it is passed as two records. The first record (record 7) indicates an EOR
error and a length error; the second (record 8) indicates an SOR error. Because
record 7 is an error record, its length (50 bytes) is not established as the valid
length for all program level 3 records on this cartridge.

¢ Record 9 has a data check. Because it contained no DUP codes, the level status is
setto O.

The cartridges created on the IBM 50 Magnetic Data Inscriber contain a continuous
stream of data bytes (that is, there are no interblock gaps). Therefore, when editing is
specified, IEBTCRIN extracts records one at a time from the data stream. To
accomplish this, IEBTCRIN scans for control codes written by MTDI. IEBTCRIN uses
start-of-record (SOR) and end-of-record (EOR) locations to extract MTDI records
from the input stream.

The (SOR) location is defined as:

e The location of the first character on a cartridge.

e The location of the first character after the previous record’s (EOR) location.
e The location of an SOR code.

e The location of a GS code.

The character in the SOR location is checked to determine if it is a valid
start-of-record character. A P1 through P8, a cancel code, or a GS code are valid
start-of-record characters; all others are invalid.

The EOR location by priority sequence is:
1. The same location as the SOR location, if the SOR character was a valid GS code.

2. The location of the first encountered RM or VOK code if that location is within the
length of the maximum user-specified record size.

3. The location of any code preceding either a valid SOR code or the end-of-media
code, if that location is within the length of the maximum user-specified record
size.

4. The location determined in 2 or 3, regardless of the maximum user-specified
record size if the SOR location contains a cancel code.

5. If one of the previous EOR locations cannot be defined, an EOR condition will be
forced at the location where the record length equals the maximum user-specified
record size.

The character in the EOR location is checked to determine if it is a valid
end-of-record character. Valid EOR characters are the GS character (if the SOR
character was a GS code) and VOK or RM codes; all others are invalid. Each GS code
is considered a valid SOR code or EOR code and will be bypassed.

Following are the restrictions that apply when editing MDTI records:

e All canceled records are bypassed; they are not passed to any exit routines or
written on any data sets. The level status is set to 0.

e All input records less than three bytes in length (SOR location, one data byte, and
EOR location) are treated as canceled records. The remaining portion of a record
that was longer than the user-specified maximum record size can result in an input
record of this size.

e Data duplication is accomplished by replacing the DUP code with the character
from the corresponding location of the previous record.

e The record used for data duplication is the record returned from any user exits.
e GS codes will not affect the level status or duplication of following records.
e Data duplication does not oceur for any of the following conditions:

1. The DUP code is encountered in the first record of a cartridge.

2. The DUP code is encountered in a record immediately following a canceled
record. A canceled record is one that contains a cancel code in the SOR location
or an input record of less than three bytes as described above.

3. The DUP code is encountered in a position that would cause duplication of a
position beyond the last data byte of the previous record.

4. The DUP code is encountered in a position that would cause duplication of an
error-replace character.

End-of-Cartridge

Input and Output

Control

Job Control Statements

In each case, the DUP code is replaced with the user specified error-replace
character, and a field error is indicated.

o Left-zero justification does not occur; the left-zero fill code (LZ) is replaced with
the user-specified error-replace character and a field error is indicated for either of
the following conditions:

1. The left-zero fill code (LZ) is encountered without first having encountered its
corresponding left-zero start code (LZS).

2. The user-specified maximum record size is exceeded before encountering the
valid end of a left-zero field.

Unique codes, written by the MTST or the MTDI device, signal the program when all

data on a cartridge has been read. For MTST cartridges, this end-of-cartridge code is

a lowercase stop code (st) or an uppercase stop code (ST). For MTDI cartridges, the
end-of-cartridge code is the end-data code (ED).

IEBTCRIN terminates input from a cartridge upon encountering the end-of-cartridge
code and rewinds the cartridge. IEBTCRIN continues to process cartridges until
end-of-file is encountered.

End-of-file is signaled following a rewind operation when there are no more cartridges
in the feed hopper, the END OF FILE button is pressed, and end-of-cartridge for the
last cartridge is recognized. An end-of-file indication will be passed to the OUTREC
and/or ERROR exits if specified by setting register 1 equal to 0.

IEBTCRIN uses the following input:

e An input data set, which contains data on tape cartridges to be read from the Tape
Cartridge Reader (TCR). The input data set was created on either MTST or MTDI.

e A control data set, which contains utility control statements that are used to control
the functions of IEBTCRIN.

IEBTCRIN produces the following output:

e An output data set, which contains the sequential output produced by the utility as
a result of processing the cartridge input according to the utility control statements.

¢ An error output data set, which contains records that do not conform to the
specifications for a valid record.

o A message data set, which contains diagnostic messages.

IEBTCRIN is controlled by job control statements and utility control statements. The
job control statements are required to execute or invoke IEBTCRIN and to define the
data sets that are used and produced by the program. The utility control statements
are used to indicate the source of the input data cartridges (MTST or MTDI) and to
specify the type of processing to be done.

Table 25 shows the job control statements necessary for using IEBTCRIN.

Table 25. IEBTCRIN Job Control Statements
Statement Use
JOB Initiates the job.

EXEC Specifies the program name (PGM = IEBTCRIN) or, if the job control statements
reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential message data set, which can be written to any
QSAM-supported output device.

SYSUT1 DD Defines the input data set.
SYSUT2 DD Defines a sequential output data set for valid records.
SYSUT3 DD Defines a sequential output data set for error records.

SYSIN DD Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a sequential data set or as a member of a
partitioned data set. If this statement is not included, all utility contro! statement
defaults are assumed and a message is issued to SYSPRINT. If DUMMY is
specified, all utility control statement defaults are assumed.

The minimum region size that can be specified for the execution of IEBTCRIN is
12K + 2b + ¢ + e, where (1) b is value specified for BUFL on the SYSUT1 DD
statement, (2) c is the maximum logical record length, and (3) e is the sum of user
exit routines, each rounded to the next higher 2K.

If the SYSPRINT DD statement is missing, a message is written on the operator
console and processing continues.

IEBTCRIN Program 149

Restrictions

Utility Control Statements

150 Utilities (Release 21.7)

if some parameters are specified but others are omitted, IEBCTRIN attempts to set
defaults for the missing parameters that are consistent with those supplied. For
example, if RECFM = VBA is specified, IEBTCRIN assumes BLKSIZE = 129 and
LRECL = 125. If LRECL, BLKSIZE, and RECFM are not specified, the defaults are
LRECL = 121, BLKSIZE = 121, and RECFM = FBA.

For the SYSUT1 DD statement, only the UNIT keyword is required. The value specified
in UNIT = xxxx can be ‘2495’, the device address, or any other name that was
generated in the system as a unit device name. The VOLUME = SER = keyword may
be specified to identify the tape cartridges to be mounted. The volume serial number
must be an externally recognizable name associated with the cartridges to be
processed. A message is issued to the operator instructing that the cartridges
identified by that name be mounted. if VOLUME is not specified, the name TCRINP is
assumed and used in the mount message. The BUFL DCB parameter can be specified
to indicate the size of input buffers; if BUFL is not specified, a value of 2000 is
assumed.

Fixed and variable records on the SYSUT2 or SYSUT3 data set can be blocked through
the specification of the BLKSIZE and RECFM DCB parameters.

SYSUT2 DD and SYSUT3 DD statements may be omitted or specified as DUMMY. A
message is issued on SYSPRINT and processing continues.

The DCB parameters defining the SYSIN, SYSPRINT, SYSUT2, and SYSUT3 data sets
can be supplied from any valid source (for example, DD statements or a data set
label). Because the output (SYSUT2 and/or SYSUT3) data sets are not opened until
the first record is ready for output (after any OUTREC and/or ERROR exits), DCB
parameters to be supplied from an existing data set label are not available for records
constructed before the data set is opened. Therefore, the DCB parameters should
always be provided in the DD statement even though they may already exist in the
label. Otherwise, defaults are used to construct records until the data set is opened.

If a permanent error occurs on SYSIN, SYSUT1 (not including a data check), SYSUT2,
or SYSUT3, a message is issued on SYSPRINT and the program is terminated. If a
permanent input/output error occurs on SYSPRINT, both the failing message and a
SYNADAF message indicating the error, are written on the programmer’s console and
processing is terminated.

e Because IEBTCRIN always constructs the SYSPRINT records with USASI (type A)
control characters, type A control characters should be indicated when RECFM is
specified.

o If a parameter is specified on SYSPRINT DD that is not consistent with the other
parameters, a message is issued and processing is ended.

e The SYSUT1 DD statement is required for each use of IEBTCRIN.

e The SYSUT2 DD and SYSUT3 DD statements must identify sequential data sets; the
data sets can have fixed, variable, variable spanned, or undefined records. These
data sets can be written on any QSAM-supported device.

o If editing of MTDI input is specified on the utility control statements, the SYSUT3
LRECL parameter should be four bytes greater than the SYSUT2 LRECL parameter
to include a four-byte Error Descriptor Word appended to the front of the record by
IEBTCRIN. (See “Error Records’’ earlier in this chapter.) For variable records on
either SYSUT2 or SYSUT3, the LRECL and BLKSIZE DCB parameters must be large
enough to include the four-byte record descriptor word.

o If inconsistent parameters are specified on SYSUT2 DD or SYSUT3 DD, a message
is issued and processing is ended.

IEBTCRIN is controlled by the following utility control statements:

e TCRGEN statement, which specifies whether MTDI or MTST input is to be
processed and the type of processing to be performed.

o EXITS statement, which specifies any exit routines provided by the user.

If these statements contain errors or inconsistencies, the program is terminated and
the appropriate diagnostics are sent to the message data set. If TCRGEN is not
specified, standard defaults are used.

Note: If TCRGEN or EXITS is specified, the operand must be made up of one or more
parameters.

TCRGEN Statement The TCRGEN statement is used to indicate the device (MTDI or MTST) on which the
input data was created and the type of processing to be performed on the input data.

The format of the TCRGEN statement |s
[label] TCRGEN [TYPE— {MTDI }

{MTST }]
[.,TRANS = {STDUC }
{STDLC)
{name }
{NOTRAN}]
LEDIT= {EDITD }
: {EDITR }
, {NOEDIT }]
[,VERCHK— {NOCHK :
{VOKCHK }]
§ [MINLN-—n] :
 [MAXLN=n] R e A
GREPLACE=XHx' e

_{NOERR }]

where:

TYPE =
specifies the device on which the magnetic tape cartridge(s) was written. These
values can be coded:

MTDI
specifies that the input was created on a Magnetic Data Inscriber. This is the
default.

MTST
specifies that the input was created on a Magnetic Tape SELECTRIC typewriter.

TRANS =

specifies the type of processing to be performed on MTST input. These values can
be coded:

STDUC
specifies that the MTST code is to be translated to standard EBCDIC; alphabetic
| characters are translated to uppercase. This is the default.

STDLC
specifies that the MTST code is to be translated to standard EBCDIC; alphabetic
characters are not translated to uppercase.

name
specifies a user-translate table to be used by IEBTCRIN. The translate table
must exist as a load module named in a user job library or the link library. This
load module must consist of a translate table which begins at the entry point and
conforms to the specifications for the translate instruction (TR) found in IBM
System/360 Principles of Operation, GA22-6821.

NOTRAN
specifies that no translation and no special processing is to be performed. Data
is passed exactly as read from the cartridge.

EDIT =
specifies the type of processing to be performed on MTDI mput These values can
be coded:
EDITD
specifies that the input is to be edited and that SOR and EOR codes are to be
l deleted and not included as part of the output record. This is the default.
EDITR

specifies that the input is to be edited and SOR and EOR codes are to be kept as
part of the output record.

NOEDIT
specifies that no editing is to be performed. Data, including any group separator
(GS) codes, is passed exactly as read from the cartridge.

IEBTCRIN Program 151

152 Utilities (Release 21.7)

VERCHK =
specifies whether a record-verification check is to be made on MTDI input that is to
be edited. This parameter is valid only when TYPE = MTDI and either EDIT = EDITD
or EDIT = EDITR are specified. These values can be coded:

NOCHK
specifies that no record-verification check is to be made. Either a record mark

(RM) or a verify OK (VOK) code is considered a valid end-of-record code. This
is the default.

VOKCHK
specifies that a record-verification check is to be made. A record that does not
contain a verify OK code is to be considered an error record.

MINLN = n
specifies in bytes the length, n, of the shortest valid edited record. This parameter
is valid only when TYPE = MTDI and either EDIT = EDITD or EDIT = EDITR are
specified. If IEBTCRIN encounters a record shorter than this specified length, the
record is considered an error record. If MINLN is omitted, no minimum length
checking is performed.

MAXLN = n
specifies the number of bytes, n, plus four for the record descriptor word when
variable records are specified, to be contained in all but the last record passed to
the output routine when editing is not performed. IEBTCRIN does not indicate the
end of data from one cartridge and the beginning of data from the next. Usually this
transition from one cartridge to another occurs within an output record. The last
record passed to the output routine contains only the number of bytes remaining
(plus four if the record format is variable) and is the only record that can be shorter
than the length specified by MAXLN. The size of the records actually written
depends on the record Iength (LRECL) specified for the output data set. If MAXLN
is omitted, a value of 120 is assumed.

REPLACE = X‘xx’
specifies the hexadecimal representation of the character to be used by IEBTCRIN
to replace error bytes. REPLACE allows the user to identify and possibly correct
error bytes in the error exit routine or in subsequent processing. The specified
REPLACE character should be one that does not normally appear in the data. X‘19’,
end-of-data, is assumed if REPLACE is not coded. To replace error bytes on MTDI
data, select a value for xx from Figure 36. to replace error bytes on MTST data,
select a value for xx from Figure 37. The replacement of error bytes is
accomplished before any specified MTST translation.

ERROPT =
specifies the disposition of all error records. ERROPT is ignored if a user error
routine is specified in the EXITS statement. These values can be coded:

NORMAL
specifies that all error records are to be placed in the error data set (SYSUT3).

NOERR
specifies that all records (including error records) are placed in the normal
output data set (SYSUT2). No records are placed in the error data set
(SYSUT3). This is the default.

If STDUC, STDLC, or name is specified, certain of the MTST codes are processed in a
special way before translation. Feed codes (FD), switch codes (SW), and autosearch
codes (AS), both uppercase and lowercase, are deleted from the data. Each
61-character reference code is reduced to a single search code (SRC).

A stop code, whether uppercase (ST) or lowercase (st), indicates that all data on a
cartridge has been read. Therefore, when an MTST cartridge to be processed by
IEBTCRIN is created, the user must not use a stop code for any purpose other than
signaling end-of-data on the cartridge. Stop codes within meaningful data cause any
subsequent data on the cartridge to be lost because the cartridge is rewound and
unloaded when a stop code is encountered.

If EDITD or EDITR is specified, the edit consists of the following functions:

o Records are extracted one at a time from the input buffers by scanning for the
record-delimiting codes (SOR and EOR).

o DUP codes are replaced with the character from the corresponding location in the
preceding record.

o Left-zero fields are right aligned and leading zeros are inserted where necessary.

EXITS Statement

e Left-zero start codes are deleted from the records.

e Group separator codes and records that start with cancel record codes are
bypassed.

For MTDI input with editing specified, MAXLN is used to specify in bytes the length of
the longest valid record after editing. If the program encounters a record in which a
valid end-of-record cannot be determined within this length, an end-of-record
condition is forced and the record is considered an error record.

The values that can be specified for MINLN and MAXLN are:

e For MTST processing or MTDI processing without editing, MINLN is not specified.
MAXLN should equal the number of bytes to be passed as a record.

e For MTDI processing when EDIT = EDITD, MINLN should equal the number of bytes
in the shortest valid record after editing, excluding SOR and EOR codes. MAXLN
should equal the number of bytes in the longest valid record after editing, excluding
SOR and EOR codes.

e For MTDI processing when EDIT = EDITR, MINLN should equal the number of bytes
in the shortest valid record after editing, including SOR and EOR codes. MAXLN
should equal the number of bytes in the longest valid record after editing, including
SOR and EOR codes.

Note: The values for MINLN and MAXLN should not include the four-byte record
descriptor word added to a variable length record.

Table 26 shows the hexadecimal characters representing special purpose codes that
must not be used as replacement bytes.

Table 26. Special Purpose Codes

MTDI Codes

X'00’ (LZ) X‘1F’ (VOK) X'74' (P4)
X1 (DUP) X‘3C (RM) X‘75' (P5)
X112’ (LZS) X711 (P1) X'76’ (P6)
X‘18’ (CAN) X'72' (P2) X'77' (P7)
X'1D" (GS) X73 (P3) X78 (P8)
MTST Codes

X110 (cr) X‘14' (CR) X561 (as)
X1y (sw) X‘15’ (SW) X565’ (AS)
X113’ (fd) X17’ (FD) X80 (src)

X‘81 through X‘FF’

The special purpose codes listed in Table 26 are used by IEBTCRIN when constructing
records. Use of these codes causes a message to be issued and the utility to be
terminated.

Figure 36 shows the values that can be chosen to replace error bytes for MTDI input.
Figure 37 shows the values that can be chosen to replace error bytes for MTST input.

Figure 38 shows MTST codes after they have been translated by IEBTCRIN when
TRANS = STDLC is specified.

The EXITS statement is used to identify user-supplied exit routines, which must exist
in either the user job library or the link library.

Upon entry, a parameter list is supplied to the exit routine Upon returning from the
exit routine, the user must provide an acceptable return code. See ‘‘Appendix A: Exit
Routine Linkage.”

The format of the EXITS statement is:

where:

ERROR = routinename
specifies the symbolic name of a routine that receives control before an error
record is passed to the error output data set (SYSUT3). This exit routine can be
used to analyze and, if possible, correct the error record. This parameter nullifies
any ERROPT value.

IEBTCRIN Program 153

)
~ 2
© g
) ‘S
< 3
@] 00 01 10 1" Bit Positions 0,1
5 o :
'§ g 00|01 |10 (11 }j00]O1T|10] 11|00} 01[10] 11]00]| 01| 10] 11| Bit Positions 2,3
[Q
- 2]
© dlo 1 2 3 415 6 7 8 9 Al B c|D E F First Hexadecimal Digit
0000 | O | LZ SP| & - 0 [082] O
0001 1 DUP / P1 A J 1
0010 | 2 LZS P2 B { K S 2
0011 3 P3 Cc L T 3
0100 | 4 P4 DImM|U]| 4
0101 5 P5 E N \% 5 Special Control:
LZ = Left zero fill
0110 | 6 P6 ; F|O|W]| 6] pup =Duplicate
LZS = Left zero start
o111 7 P7 G P X 7 ED = End data
GS = Group Separator
1000 | 8 CAN P8 H Q| vy] 8
1001 9 ED I R z | o9 Start of Record (SOR):
P1 = Program level 1
1010 | A ¢ ! : P2 = Program level 2
P3 = Program level 3
P4 = Program level 4
011 | B : s |- # P5 = Program level 5
P6 = Program level 6
1100 | C RM | < * % | @ P7 = Program level 7
P8 = Program level 8
1101 D GS {) - / CAN = Cance!
1110 | E VOK + ; > | =
End of Record (EOR):
1M1 F | l ? " RM = Record mark
VOK = Verify OK

This figure represents the character set and control
codes as read from an MTDI created cartridge.

Figure 36. MTDI Codes from TCR

OUTREC = routinename
specifies the symbolic name of a routine that receives control before the record is
passed to the normal output data set (SYSUT2). In this exit routine, the user can
process the record and perform his own output if output other than the SYSUT2
data set is desired. Any modification of an edited MTDI record may affect the
editing of following records because the record returned from this exit is used to
accomplish data duplication in the record that follows. If the SYSUT2 data set has
specified variable length records, a four-byte RDW is appended to the front of the
record. e

OUTHDR2 = routinename
specifies the symbolic name of a routine that receives control during the opening of
the SYSUT2 data set; this exit routine can be used to create user output header
labels for the normal output data set (SYSUT2).

OUTHDR3 = routinename
specifies the symbolic name of a routine that receives control during the opening of
the SYSUT3 data set; this exit routine can be used to create user output header
labels for the error data set (SYSUT3).

OUTTLR2 = routinename
specifies the symbolic name of a routine that receives control during the closing of
the SYSUT2 data set; this exit routine can be used to create user output trailer
labels for the normal output data set (SYSUT2).

154 Utilities (Release 21.7)

OUTTLR3 = routinename
specifies the symbolic name of a routine that receives control during the closing of -
the SYSUT3 data set; this exit routine can be used to create user output trailer
labels for the error data set (SYSUT3).

If MTDI is edited, a four-byte (EDW) is appended to the front of each error record
describing the error condition. For further definition of the EDW, see ‘‘Error Records"’
earlier in this chapter. If the SYSUT3 DD statement specified variable length records,
a four-byte Record Descriptor Word (RDW) is also appended to the front of the
record. For further description of the RDW, see OS Supervisor Services Guide,

GC28-6646.
S
~ [a]
o g
) K
- k 00 01 : 10 1 Bit Positions 0,1
5 2 ,
'§ T cojot1 |10 |1t |]o00O|O1 |10] 11 |o0]|0Ot{10]11]00]| 01| 10| 11| Bit Positions 2,3
o o
- o
[+ a1]0 1 2 3 4 5 6 7 8 9 Al B cC| D E F First Hexadecimal Digit
0000 | O z c | 5 0 I [tab| ' s | src
0001 1 2 |sw]| 6 9 . as i w
0010 | 2 t e h i spl| p y
0011 3 n | fd| k b = q .
oto0 | 4| z|crl %) |° |taBl “ | s [sRC
0101 5 @ [sw| ¢ (e | AS| | w
0110 | 6 T E| H J|SP| P Y
0111 7 N |FD|] K| B + Q -
1000 | 8 1 7 4 m [bsp| r o -
1001 9 3| st| 8 v a
1010 | A X d 1 g : /
1011 B u c f stx |,
crand CR = Carrier return code
1100 | C + & $ M |BSP| R (0] swand SW = Switch code
fdand FD = Feed code
stand ST = Stop code
1o D # ST) M A tab and TAB = Tab code
asand AS = Automatic search
1110 | E X D L] G : ? spand SP = Space
bsp and BSP = Backspace
1111 F U C F [STX| ., stx and STX = Stop transfer
src and SRC = Search

This figure represents the character set and control
codes as read from an MTST created cartridge.

Figure 37. MTST Codes from TCR

The user-supplied routines specified in ERROR and OUTREC can be used to examine
and modify any byte in the record or EDW. The record length can be changed, subject
to the following restrictions:

e A work area used to construct the records is allocated by the program equal in size
to the largest of (1) MAXLN, (2) LRECL on SYSUT2, or (3) LRECL on SYSUT3.

o The record length must not be increased beyond this size. Overlaying of other work
areas may then occur, causing unpredictable results.

The new record length must be placed in the location pointed to by the second
parameter word as received at entry to the routine. This length must include the EDW
and RDW (if applicable). It is not necessary to modify the RDW because it is

IEBTCRIN Program 155

re-created if the record is to be written by IEBTCRIN. However, if the user does his
own output from this routine, he must ensure that the RDW is correct for the record.

5
~ 2
-
") K
DA 00 01 10 1 Bit Positions 0,1
s 2 ,
‘§ 'g oojot {101 |oojo1|{10| 11 |]o0o|01]10| 11| 00] 01| 10| 11| Bit Positions2,3
Q. [e]
- 3]
@ d#lo|1{2]|3|4a4|516|7]|8|]9|A|B]|]Cc]|]D]|E| F| First Hexadecimal Digit
0000 0 SP| & - 0
0001 | 1 / a |i]| ° Al 1
0010 | 2 STX b k s Bl K| S 2
0011 3 c | t C L T 3
0100 | 4 d m| u DI MU 4
0101 5 |TAB e n v E|l N|J] V] S5
0110 | 6 BSP f ol w F{ Ol W| 6
0111 7 g P X G 4 X 7
1000 | 8 h{a y Hfaj VY| 8
1001 9 i r z | R| 2 9
1010 | A ¢ !
1011 B $ #
1100 | C * % | @
1101 | D | CR () - . TAB = Tab code
CR = Carrier return
1110 E SRC + H = + BSP = Backspace
SRC =Search
1111 F ? " STX = Stop transfer
SP = Space

Note: The STDUC option permits translating
both lowercase and uppercase alphabetic
characters to uppercase.

Figure 38. MTST Codes after Translation by IEBTCRIN with TRANS = STDCL

156 Utilities (Release 21.7)

If IEBTCRIN is to write the record, the length of the output record depends on the
RECFM specification, as follows:

¢ Fixed and variable records may have a maximum length equal to LRECL. Records
larger than this are truncated.

¢ Undefined records may have a maximum length equal to BLKSIZE. Records larger
than this are truncated.

These record lengths include the EDW and RDW, where applicable.

The record length returned from the error exit is used to establish the location of the
last data byte in the record. The location is used to control data duplication in the
following record. However, it is not used for checking the record length of subsequent
records.

Modifications to the EDW, record, or record length may affect the editing of
subsequent records. If the input is not edited, the user can examine and modify any
byte in the record. The record length can also be changed, subject to the MTDI editing
restrictions.

Return Codes from
IEBTCRIN

IEBTCRIN Examples

IEBTCRIN Example 1

At job termination, IEBTCRIN produces a return code to indicate the results of
program execution. Table 27 shows the return codes used by IEBTCRIN.

Table 27. IEBTCRIN Return Codes

Return
Code Interpretation

00 Normal termination.

04 Warning message issued; execution permitted. Conditions leading to issuance of this
code are: (1) SYSPRINT, SYSIN, SYSUT2, or SYSUT3 DD statements missing and (2)
DCB parameters missing in SYSUT2 or SYSUT3 DD statements.

12 Diagnostic error message issued; execution terminated. Conditions leading to issuance
of this code are: (1) SYSUT1 DD statement missing, (2) conflicting DCB parameters in
DD statements, and (3) invalid or conflicting utility control statements.

16 Terminal error message issued; execution terminated. Conditions leading to issuance
of this code are: (1) permanent input/output errors (not including data checks on the
TCR), (2) unsuccessful opening of data sets, (3) requests for termination by user exit
routine, (4) insufficient storage available for execution, and (5) user exit routine not
found.

The following examples illustrate some of the uses of IEBTCRIN. Table 28 can be used
as a quick reference guide to IEBTCRIN examples. The numbers in the ‘‘Example”
column point to examples that follow.

Table 28. IEBTCRIN Example Directory

Data Set
Operation Organization Device Comments Example
Edit MDTI input Sequential 2314 Disk, Fixed blocked output. Error
9-track tape exit routine specified 1
Invoke IEBTCRIN
with LINK macro
instruction 2

In this example, input from a tape cartridge is to be edited with normal records written
to a 2314 volume and error records written to a 9-track tape volume.

The example follows:

//JOBNAME JOB 0,SMITH,MSGLEVEL=1
//STPNAME EXEC PGM=IEBTCRIN

//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=TCR, VOLUME=SER=MYTAPE,DCB=(BUFL=3000)
//SYSUT2 DD DSNAME=GOODSET,DISP=(NEW,CATLG),UNIT=2314,

// VOLUME=SER=111222,SPACE=(TRK,(10,10)),
// DCB=(LRECL=100,BLKSIZE=1000,REDFM=FB)
//SYSUT3 DD DSNAME=ERRSET, UNIT=2400,
// VOLUME=SER=000001,DISP=(NEW,KEEP),
// DCB=(BLKSIZE=104,RECFM=U)
//SYSIN DD *
TCRGEN TYPE=MTDI,EDIT=EDITD,MAXLN=100,REPLACE=X'5B"'

, EXITS ERROR=MYERR

*

The control statements are discussed below:

o SYSUT1 DD defines the input tape cartridge data set. A console message instructs
the operator to mount a set of cartridges named MYTAPE. The two input buffers
are each 3000 bytes long (BUFL). The UNIT parameter assumes that TCR has been
system generated as a unit name for the Tape Cartridge Reader.

e SYSUT2 DD defines a sequential data set for the normal output records. The data
will be written to a 2314 volume.

e SYSUT3 DD defines a sequential data set for the error records. The records are
undefined with a maximum block size of 104 bytes, including a 4-byte ‘error
description word.

o SYSIN DD defines the control data set, which follows in the input stream.

e TCRGEN indicates MTDI input. The input is to be edited with SOR and EOR codes
deleted, the maximum valid record length is to be 100 bytes, and the replace
character is a hexadecimal ‘‘5B’’. VERCHK is defaulted to NOCHK. Minimum record
length checking is not requested.

IEBTCRIN Program 157

IEBTCRIN Example 2

158 Utilities (Release 21.7)

o EXITS indicates that a user has provided an exit routine to handle error records.
Because no job library has been specified, the exit routine (MYERR) must reside in
the link library.

In this example, IEBTCRIN is invoked via the LINK macro instruction in an Assembler
language program. An alternate name has been assigned to each of the DD
statements used by IEBTCRIN. The job control for this step must include DD
statements with the alternate DD names.

The example follows:

LINK EP=IEBTCRIN,PARAM=(OPTLIST,DDNAME),VL=1

CNOP 2,4 (OPTLIST mustbe on halfword boundary)
OPTLIST DC H'0' (Length mustbe zero for IEBTCRIN)

CNOP 2,4 (DDNAME list mustbe on halfword boundary)
DDNAME DC H'82' (Lengthof DDNAMElist)

DC 8F'0’'

DC C'NEWIN ' (Alternate DDNAME for SYSIN)

DC C'NEWPRINT' (Alternate DDNAME for SYSPRINT)

DC 2F'0’

DC C'NEWUT1 ' (Alternate DDNAME for SYSUT1)

DC C'NEWUT2 ' (Alternate DDNAME for SYSUT2)

DC C'NEWUT3 ' (Alternate DDNAME for SYSUT3)

IEBUPDAT Program—Class C

Input and Output

Control
Job Control Statements

PARM Information on
the EXEC Statement

IEBUPDAT is a data set utility used to incorporate IBM- and user-generated source
language modifications into a symbolic library—a partitioned data set containing
80-byte records, such as SYS1.PROCLIB and SYS1.MACLIB. (See “Introduction’’ for
general data set utility information.)

IEBUPDAT can be used to:

e Add, copy, and replace members.

e Add, delete, replace, and renumber the records within an existing member.
e Assign sequence numbers to the records of a new member.

IEBUPDAT uses the following input:

e A partitioned input data set, which contains an old master data set.

e A sequential input data set, which contains the transactions that are to be applied
to the old master data set.

e A control data set, which contains utility control statements.

IEBUPDAT produces as output a new master partitioned data set and a sequential
data set (SYSPRINT) that reflects either the latest changes applied to the old master
data set or to the entire new master data set.

IEBUPDAT is controlled by job control statements and utility control statements.
Table 29 shows the job control statements necessary for using IEBUPDAT.

Table 29. IEBUPDAT Job Control Statements
Statement Use
JOoB Initiates an IEBUPDAT job.

EXEC Specifies the program name (PGM = IEBUPDAT). Additional information can be
specified on the EXEC statement; see “‘PARM Information on the EXEC
Statement” below.

SYSUT1 DD Defines an input data set.

SYSUT2 DD Defines an output data set.

SYSPRINT DD Defines the sequential message data set.
SYSIN DD Defines the control data set.

The minimum region size that can be specified for IEBUPDAT is 10K + 2b, where b is
the largest block size in the job step rounded to the next higher 2K.

The input data set defined by SYSUT1 and the output data set defined by SYSUT2 can
contain either blocked or unblocked records with a logical record length of 80 bytes.
The output data set can have a blocking factor different from the input data set.

If the DD statements SYSUT1 and SYSUT2 define the same data set, the user can
make modifications to the old master without creating a new master.

If enough space cannot be allocated for reblocked output records, the update request
is terminated.

IEBUPDAT obtains control information through the EXEC statement and the SYSIN
data set. The EXEC statement for this program may contain the parameter:

PARM = (input,[inhdr},[intlr])
The input value is either NEW or MOD, as follows:
o NEW, which indicates that the input consists of the SYSIN data set.

e MOD, which indicates that the input consists of both the SYSIN and SYSUT1 data
sets.

The SYSUT1 data set need not be defined if NEW is specified. If the input value is
neither NEW nor MOD, an error is indicated and the operation is terminated. If an
input value is not specified, MOD is assumed.

The “inhdr” value specifies the symbolic name of a routine that processes the user
header label on the SYSIN data set.

IEBUPDAT Program—Class C 159

Utility Control Statements

Header Statement

160 Utilities (Release 21.7)

The “intlr"’ value specifies the symbolic name of a routine that processes the user
trailer label on the SYSIN data set.

The utility control statements used to control IEBUPDAT are shown in the order in
which they must appear, as follows:

e Header statement, which is used to identify members to be processed.

o NUMBR statement, which is used to identify the sequence number of records to be
processed.

e DELET statement, which is used to identify records to be deleted.

e Logical Record, which contains data to be added to or to replace an existing
record.

e ALIAS statement, which is used to create or retain aliases in a new master
directory.

o ENDUP statement, which indicates the end of the SYSIN input to IEBUPDAT.

The SYSIN data set can contain any number of Header statements and ALIAS
statements, each followed by a group of NUMBR, DELET, Logical Record, and ALIAS
statements.

A Header statement is used to identify a member to be processed. The statements
must be in binary collating sequence by member name.

where:

-/
is required and must appear in columns 1 and 2.

ADD
specifies that the named member is to be added in its entirety to the new master. if'
ADD is included, it must begin in column 10.

REPL
specifies that the named member is being entered in its entirety as a replacement
for a member in the old master. If REPL is included, it must begin in column 10.

CHNGE
specifies that modifications are to be made within the named member. If CHNGE is
included, it must begin in column 10.

REPRO
specifies that the entire named member is to be copied to the new master.
Members are deleted from a library by being omitted from a series of REPRO
Header statements. If REPRO is included, it must begin in column 10.

membername
specifies the name of the member to which the update transactions are to be
applied. The membername value must begin in column 16.

level
specifies the current run number, a two-digit number from 00 through 99.

source
specifies whether user or IBM modifications are to be made. The values that can be
coded are:

0
specifies user modifications.

1
specifies IBM modifications.

list
specifies what the SYSPRINT data set is to contain. The values that can be coded
are:

0
specifies that the SYSPRINT data set is to contain only modifications and control
statements.

NUMBR Statement

DELET Statement

1
specifies that the SYSPRINT data set is to contain the entire updated member
and control statements.

ssi
specifies eight hexadecimal characters of new system status index information that
is to be placed in the directory of the new master as the first four hexadecimal
bytes of user data. If ssi is not specified, the user data is copied as it exists in the
directory of the old master. System status index information is discussed in detail in
IBM System/360 Operating System: Maintenance, GC27-6918.

The NUMBR statement contains information to be applied to the member that is
named in the Header statement.

The NUMBR statement is used with CHNGE Header statements to change the
sequence number of one or more logical records within a member, and with ADD and
REPL Header statements to assign sequence numbers to the records within new and
replacing members. This statement affects only those sequence numbers that fall in
the specified range.

The format of}hngUMBkB/Wstatement is:
- _ NUMBR seqnumb]

,seqnumb2,newseq,increment

where:

./
is required and must appear in columns 1 and 2.

NUMBR ‘
specifies that this is a NUMBR statement. NUMBR must begin in column 10.

seqnumb 1
specifies the sequence number of the first record to be renumbered when used with
a CHNGE Header statement. This value is ignored when used with ADD and REPL
Header statements. This value must be contained in columns 16 through 23.

is a delimiter, which must appear in columns 24, 33, and 42.

seqnumb2
specifies the sequence number of the last record to be renumbered when used with
a CHNGE Header statement. This value is ignored when used with ADD and REPL
Header statements.

newseq
specifies the first new sequence number. This value must be contained in columns
34 through 41.

increment
specifies the increment value of successive new sequence numbers. This value
must be contained in columns 43 through 50.

All of the sequence numbers must be eight-digit alphameric fields.

The DELET statement contains information to be applied to the member that is named
in the Header statement.

The DELET statement is used to delete one or more logical records within a member.
It is used only in conjunction with a CHNGE Header statement.

The format of the DELET statement is:

is required and must appear in columns 1 and 2.

DELET
specifies that this is a DELET statement. DELET must begin in column 10.

seqnumb1
specifies the sequence number of the first logical record to be deleted. This value
must begin in column 16 and not extend beyond column 23.

is a delimiter, which must appear in column 24.

IEBUPDAT Program—Class C 161

Logical Record Statement

" ALIAS Statement

ENDUP Statement

IEBUPDAT Examples

162 Utilities (Release 21.7)

seqgnumb2 .
specifies the sequence number of the last logical record to be deleted. This value
must begin in column 25 and cannot extend beyond column 32.

The Logical Record statement contains information t