IBM System/360 Operating System:
MVT Job Management,

Program Logic Manual,

Program Number 360S-CI-535

0S Release 21

This publication describes the internal logic of
the job management routines for the MVT control
program of the IBM System/360 Operating System.
Included are discussions of input stream
processing, work queue management, job
initiation and termination, I/O device
allocation, system output processing, and the -
scheduling and execution of operator commands.

This manual is intended for persons involved
in program maintenance, or system programmers
who are altering the program design. - Program
logic information is not necessary for the use
and operation of the program.

File No. S360-36
Order No. GY28-6660-9

Program Logic

Tenth Edition (March, 1972)

This is a major revision of, and obsoletes, GY28-6660-8. The
publication has been modified to reflect the changes
described in the "Summary of Amendments." Changes or
additions to the text and illustrations are indicated by a
vertical line to the left of the change.

This edition applies to release 21 of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
and System/370 SRL Newsletter, GN20-0360, for the editions
that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the formm has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y.
12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1967,1968,1969,1970,1971,1972

This book describes the internal logic of
the IBM System/360 Operating System job
management routines for the MVT control
program. It includes discussions of input
stream processing, work queue management,
job initiation and termination, I/O device
allocation, system output processing, and
the scheduling and execution of operator
commands.

The book is intended for persons
involved in program maintenance, or for
system programmers responsible for altering
the program design.

The introduction to this book describes
job management in terms of the system tasks
performed. Parts 1-6 describe the
functions performed and the flow of control
among the routines. The appendixes contain
format descriptions of the major work areas

Preface

and tables used by job management, brief
descriptions of job management modules,
module cross references, flowcharts, and an
abbreviation dictionary.

Users of this book should have a thorough
knowledge of IBM System/360 programming.

The following publications provide basic

background information:

IBM Systems/360 Operating System:

Job Control Language Reference Manual,
GC28-6704

Supervisor Services, GC28-66UL6

A more complete list of books providing
reference and background information is
contained in the Biblicgraphy, which

precedes the Index to this publication.

Preface 3

4 0S/360 MVT Job Management (Release 21)

SUMMARY OF AMENDMENTS FOR GY28-6660-9
—— OS RELEASE 21 v & o o o o o o = o

SUMMARY OF AMENDMENTS FOR GY28-6660-8
—— OS RELEASE 20.1 ¢ ¢ o o o o o o « o«

SUMMARY OF AMENDMENTS FOR GY28-6660-6
== OS RELEASE 20 2 2 « o o « o o = o =

INTRODUCTION o o o« o o
Processing Input Streams
Initiating Job Steps . .
Writing System Output .
Initializing and Establis
TasksS < o o o o o o « &«
Queue Management
Operator Commands . «

ﬁg)

nanl.<.loa
0]
s (s s s 2
o
3

.on:‘anoa

PART 1: INITIALIZATION AND RESTART
The Master Scheduling Task « « . «
Initializing the Queue Data Set
Formatting the Queue Data Set
System Restart « « o ¢ o o o o
Table Construction
Purge Queue Construction . . .
Incomplete Input Queue Entries
Incomplete Output Queue Entries
Incomplete ASB and RJE Queue
EntriesS .« o« o o o o o o o o o o &«
Dequeued Input Queue Entries . . .
Dequeued Hold Queue Entries . . .
Dequeued ASB and RJE Queue Entries
Dequeued Output Queue Entries . .
Incomplete Input Queue Entires . .
Enqueued and Dequeued Input Queue
Entries . . . “ e e e e e e
Dequeued Input Queue Entries
Dequeued RJE Queue Entries .
SCD PXrocessing « « « « « « «
Returning Logical Tracks . .
Purge Queue Processing . . .
Dequeued Output Queue Entries
Dequeued Input Queue Entries
Dequeued RJE Queue Entries .
Dequeued ASB Queue Entries .
Dequeued Hold Queue Entries
Scratching Data Sets . . .

LI R Y B |
[] L L] . [] L] L] L] . . .
s e 8 6 8 8 0 s 0 0 s

PART 2: PROCESSING INPUT STREAMS .
The Reading Task « « « o« « o o o « =
Using The Interpreter As a Reader
Using The ASB Routine As a Reader
ASB ContrOl FIlOW « ¢« o 2 o o o « =
ASB I/0 ExXceptions . o« o« o o « « =
ASB Job Control Language
COmPresSsSion « o o o o o o o « @
ASB Queue ProcessSing « <« « « « «
Input Stream Processor Routine .
ASB Queue Reader Routine

ASB Termination Routine . . .
Interpreter Controller Routine
ASB SYSIN Data Set Processing

" s 8 s s s

13

14

Contents

Checking DD * and DD DATA
Statements « o« ¢ ¢ o @ o ¢ o o o @
Processing DD * and DD DATA
Statements . . ¢ ¢ . ¢ . 0 0 e o W
Restarting JObsS .« « ¢ ¢ ¢ o « o o o« «
The Restart Reader . . . « o o « o« &
Restarting the Step

PART 3: INITIATING TASKS
Initiating System Tasks .
Initiating Job Step Tasks
Grouping Initiators . .
Initiator Functions . . .
Initializing the Initiator
Selecting JObs . « - « . .
Looking For Work
Waiting For Work
Dequeuing The Job . . .
System Output Processing « . « «
Data Set Integrity . « « < « -
Executing the Stop and Modify Commands
The STOP Command « « « « « o « o« «
The MODIFY Command « « « « « o o «
Region Management e« « o« o o o « o «
Determining Region Characteristics
Releasing and Obtaining Regions .
The I/0 Device Allocation Interface
Attaching the Subtask . .« « « « . .
Terminating Subtasks « « « « « « o < «
OUTLIM Termination . . . e« o ® o =
The ATTACH and Abnormal Termlnatlon
ROULINES o o o o o o o o o o o o =

The Termination Routine Interface
Unexecuted Ste€ps « « « « o« « o« «

JOb SUSPENSion « o« o w o« « o o o

Job Termination . « « ¢« ¢ o « « «

PART 4: PROCESSING SYSTEM OUTPUT .
Initializing and Processing Commands
Processing a Queue EntXy « « « « « o«
Processing Data SetsS « -« o « o« <« o«
Initjalization
The Data Set Proce551ng Subtask
Processing System Message Blocks
Service ROULINES o &« o o o o «
The Put Routine . « « « « <« =«
The Spanned Data Sets Routine .
The Command Chaining Access Metho
Routine . . ¢ « « « o« &«
The Transition Routine
3211 Processor Routine (IEFSDTTE)

LR)

o o N4 o s 0 2 0 0

PART 5: COMMAND PROCESSING . .
Command Scheduling « « « « « « &« « + &
Initializing the Command Scheduling
Routine . . ¢ &« o o« o« o« .
Storage and Notification
Error Message Processing
STAE Exit Routines . . .
STAE Retry Routines . .
Command Execution
Task-Creating Commands .

e 8 & 8 s s

.
(%]
F—3

s s 8 & s 4 8 @ s
wn
o

DR R R Y S S S S S)
=2
&~

. [) .
Q9
EEN

) D
[e] [oo] ~
(%] N =)}

.
[o o]
~

Contents 5

The START Command e« « « « « « « « 2101
The MOUNT Command .« « « « « « o » <107
The DISPLAY A Command « « « « « « 2108
The DISPLAY M Command .« . « « « » 108
The DISPLAY C,K Command . « « « - .109
The DISPLAY PFK Command . « « « - 110
The DISPLAY U Command .« « « « « - 2110
The DISPLAY CONSOLES Command110
The MONITOR A Command .« « « =« « « 2111
The DUMP Command « « « o =« o« o « « o112
The Queue Manipulation Commands . .113
The Get Region Routine (IEEPALTR) .114
The Syntax Check Routine (Module ,
IEESDS562) < o o o = « « s o = . 114
The ECB/IOB Construction Routlne
(Module IEESDS582) . « @« « « « « « 2114
The Queue Search Control Routine
(Module IEESDS563) . ¢ o « « « « « 114
The Queue Search Return Routine .
(Module IEESDS583) < « o « « « « « «115
The Queue Search Routine (Module
TEESD564) . v o o« o o « « o« =« « = 2115
The DISPLAY Q/DISPLAY N Message
Setup Routine (Module IEESD584) . .116
The Queue Alter Service Routine
(Module IEESD565) &« 2 o « « « « « 2116
The Queue Scratch Setup Routine
(Module IEESD575) . &« o« ¢ « « « o <117
The Queue Alter Delete Routine
(Module IEESD576) 2 o« @« « @« « « « 117
The Queue Restart Enqueue Routine
(Module IEESD577) =« o o =« « « « « 117
The Queue Message Class Setup
Routine (Module IEESD578)117
The Queue SMB Routine (Module
IEESD579) « o & = « e e e e e 2117
The Message Routine (Module
IEESD580) . . . - . . 2117
The Queue Scratch Routlne (Module
JEESDS581) o o o = o o = « o =« « « 2117
The System Reconfiguration Commands 117
The QUIESCE Command . « « « « « « 118
The VARY CommandsS « « « « « « « - 2119
The VARY Channel Command . . . - . 119
The VARY CPUCommand « « « « « « o« 121
The VARY Storage Command124
Existing-Task Commands < . .127
The CANCEL Command « « « « « o « « o127
The MONITOR DSNAME Command . « - « 127
The MONITOR JOBNAMES Command128
The DISPLAY R Command . « « =« « « 128
The MONITOR SPACE Command . «. « - 129
The DISPLAY SQA Command . - « « « .129
The MONITOR STATUS Command . « . - .129
The DISPLAY T Command . . « « « « 130
The MSGRT Command - . . .130
The CONTROL Command .« . « « « « « 131
The HALT Command « « « « = « « =« « 2132
The MODE Command (Models 85, 145,
155, and 165 0nly) &132
The MODIFY Command « « « « « =« o « 2136
The SET AUTO Command « « « =« <136
The SET DATE and SET CLOCK Commands 136
The SET PROC and SET Q Commands . .137
The STOPMN DSNAME Command . « « . 137
The STOPMN JOBNAMES Command137
The STOPMN SPACE Command . « « « « <137
The STOPMN STATUS Command . - - . -138

0S/7360 MVT Job Management (Release 21)

The STOPMN SESS Command .« « « « « .138
The STOP Command « « « « « « « « « 138
The STOPMN A Command « « « « « « « 2138
The SWITCH Command « « « « « « « « 2139
The UNLOAD Command « « « « « « o » «139
The VARY Commands . . e o « o <139
VARY ONLINE/OFFLINE (Systems
Without MCS) e o o « « - <139
VARY ONLINE/OFFLINE (Systems With
MCS) o o o o « o = « = = =« « « « o« o181
VARY PATH . o o o a o o =« o « « « o141
VARY CONSOLE 2« o 2 2 o 2 = « « « « 21842
VARY HARDCPY &« « o o o w o « « « o o142
VARY MSTCONS « <« ¢ o « « « = o « « 2143
PART 6: COMMON ELEMENTS OF JOB
MANAGEMENT . o« o« o o « o « o« « o o o« o 2145
The Work Queues . o« « « « « « « « « = o145
Queue Manadgement . . « « - « « o « « 2148
Using Queue Management . « « « « . .152
Using the ENQ and DEQ Macro
Instructions « « « =« 2 o « « « o « 152
Input/Output Operations154
Specifying Track Stacking155
Initializing a Stack «155
Record ACCESS =« o « « o « o « « « 2156
Purging a Stack . « « « « < < « o« .158
Assigning Queue Space€ . . . « . . .158
Assign/Start « ¢« « « &« o o o < . . 158
ASSIgN « v « « o = o o« o« o = « « « <158
Enqueuing an Entry « « « « . < . o .161
Dequeuing an Entry « « « « « « « . .162
Deleting an ECB From the No-Work
Chain < ¢« 4 o o o ¢ o @ = o o« « « 2163
Deleting an Entry . . « « « « . . .164
Transient Queue Management
Routines (SVC 90) . « « & « « « « o164
Dequeue by Jobname Routine
(IEFLOCDQ) 2 « « 2 = =« s« o = « « = 2164
The Interpreter Routine . . « . « . . .166
The Interpreter Interface . . .166
The Interpreter Entrance LlSt (NEL) 167
The Option List . « « « « «168
The Exit List . ¢ ¢ @« ¢ o « « « « 170
Initializing the Interpreter173
Input and Control Operations 173
Reading Control Statements173
End-of-Data and Null Statement
Processing v« « o« o o o = = « « « o <174
Processing Control Statements . . .175
Processing In-Stream Procedures . .176
Processing JOB, EXEC, PROC, and DD
Statements ¢ ¢ . ¢ o o o o o o o o 2177
Queue Entry Processing . « « « « « 179
Post-Processing Entry . « « « « . 179
Processing System Input Data181
-I/0 Exror Processing . . « « « « . .181
Scanning the JCL Statement182
Processing Symbolic Parameters . . .183
Processing JCL Statements186
Auxiliary Routines « « « « « = « « » 187
The Get Parameter Routine187
The Test and Store Routine188
The Dictionary Entxry Routine190
The Dictionary Search Routine . . .190
The Interpreter Message Routine . .190
The Queue Manager Interface Routine 190

The Record Compression Routine

.190

—

The Record Decompression Routine . .191 SMF ProCeSSing o« « « « « o« s o o o 2223
Interpreter EXits .« o « o« o o« o o « 192 Restart Preparation . . « « . « . .223
Interpreter Termination193 Disposition and Unallocation224

I/0 Device Allocation . . « « « « o « 2195 Data Set Disposition . . + . . <. . .225
Allocation Housekeeping .« « « « « < 2197 Unallocating Devices . . . « o o <226

Protecting UCB Information197 JOB Statement Condition Codes e - <226

Obtaining an SMB « « « « « =« « « « 2198 Step Termination Exit . . « « « . .227

Displaying the Job Name198 Job Termination . . e e e e o o o 227

Job and Step Flush « « « « « < « <« .198 Disposition and Unallocatlon e o o 227

EXEC Statement Conditional Job Termination Exit « « « o « « « 228

Execution Processing « « « =« « « . .198 System Management Facilities229
Gathering Information199 An Overview of SMF229

Completing Tables . . . - . .199 The SMF SVC Routine (SVC 83)230

JFCB Housekeeping Control Routlne 199 Initializing Functions230

Allocate Processing Routine200 Transferring Records . . « « « « . .230

Dedication Determination Routine . .200 Switching Data Sets . « . « « « « .232

Direct System Output Determination The SMF Writer « o« « o o o o « o « o 4232

ROULINE @ @ o « o o o « = = o o » 201 The SMF Dump Routine . . « « <« « . <« .233

Fetch DCB Processing Routine201 The SMF Records . o« o« « = e « « <233

GDG Single Processing Routine . . .201 The Write-To-Programmer Fac111ty e o o <236

GDG All Processing Routine201 The Write-To-Programmer

Patterning DSCB Processing Routine .201 Initialization Routine « . . .236

Error Message Processing Routine . .201 The Write-To-Programmer Message

Calculating Table sizes201 Processing Routine . « « « <« « o « « .236

Constructing Tables . . . <« « <« . 204 The Write-To-Programmer Error

Constructing the Allocate Work Processing Routine . .« « « <« « < « . .238

Table (AWT) .« o o « o o o o « « « 204

Volume Affinity Resolution205 APPENDIX A: TABLES AND WORK AREAS . . .239

Calculating Device Requirements . .205 Account Control Table (ACT)241

Channel Load Assignments . « . « . .206 Allocation/IEFVPOST Communication
Unit Assignment . . « « « « « « « « .208 BlOCKS @ o o o ¢ o o o o o o =« .« - 2u3

Demand Allocation . . . e o o« « 2208 Command Scheduling Control Block

Allocation of Resident and (CSCB) v« v« v o « & e o e a4 o s e 4 285

Reserved Volumes . « « « « « « « « 2208 Data Set Block (DSB) e o e e o e o = <247

Device Range Reduction . «208 Data Set Enqueue Table (DSENQ)2u8

Allocation of Specifically Data Set Name Table (DSNT)249

Requested Units .« ¢« ¢« o« o o « « « 2209 Device Mask Table (DMT) . .« « . . « .250

Automatic Volume Recognition209 Device Name Table (DNT)251

Processing Requests for Mounted Direct System Output Control Block

Volumes .« o « o o« « e o e o « o 2210 (DSOCB) @« v @ o o o o o o o « o o o« 2252

Processing Requests for Unmounted Initiator Entrance List « <« .253

VOlUMES @« 2 o o o o o « o o o « o« 4210 Initiator Exit List . « « o « « « « «255

Decision Allocation211 Initiator Option List . . « . « « . .256

Unit Elimination . . « « « « < . . .212 In-Stream Procedure Work Area258

Passed Data Sets . o« o o = o « o« « 212 Interpreter Work Area (IWA)262

Data Set Selection212 Job Control Table (JCT) . . . « . . .265

Unit Selection <« <« « . . . 2212 Job File Control Block (JFCB) and
TIOT Construction . .« . <« « « . o« . .213 Extension (JFCBX) .« o o o o o « « « 267

Storage Requirement Calculation . .213 Job Management Record (JMR)269

TIOT Entry Construction213 Job Scheduling Entrance List270

Public Volume Processing . « « « . .213 Job Scheduling Exit List « -«271
Space Assignment 214 Job Scheduling Option List272

Mounting Volumes . . « « « « « « « 2214 Job Scheduling Work Area « « « « « « 273

Obtaining Space . . ¢« &« &« « + « « 216 Linkage Control Table (LCT)275

Compressing the TIOT « « « « o « .« 216 Master Scheduler Resident Data Area .277

Verifying Volumes That Do Not Passed Data Set Queue . . « . « . . .281

Require Space Allocation216 Procedure Override Table283
Common Subroutines « ¢ & o« . .217 Step Control Table (SCT) . . . - . . .285

Allocation Recovery . . « « « « « 217 Step Control Table Extension Block

Lack of Available Devices217 (SCTX) . + e o« o o o 2287

Lack of Available Space218 Step Input/Output Table (SIOT) e <« - <289

Device Strikeout . . « « ¢ o . . . 2219 System Management Control Area (SMCA) 291

Separation Strikeout220 System Message Block (SMB)295

Unsolicited Device End Posting . . .220 System Output Class Directory (SCD) .296
Allocation Exit &221 Task Input/Output Table (TIOT)297

Task Termination <« « «221 Timing Control Table (TCT)299
Termination Housekeeping222 Timing Control Task Input/Output
Step Termination « o« +« o« ¢ o o o o« o 0222 Table (TCTIOT) « o « « @ « « « =« « « <300

Contents 7

Volume Table
Write-to-Programmer Control

(WTPCB)
APPENDIX B:
APPENDIX C:
APPENDIX C1
APPENDIX C2

APPENDIX C3

MODULE DESCRIPTIONS

MODULE CROSS-REFERENCE

e o o o

Block

.301
.302
.305
.361
.363
.369
.377

8 0S/360 MVT Job Management (Release 21)

APPENDIX Ch
APPENDIX C5
APPENDIX D:

APPENDIX E:

JOB MANAGEMENT CHARTS

DICTIONARY OF

ABBREVIATIONS

| APPENDIX F:

BIBLIOGRAPHY

INDEX . .

MODULE CROSS-REFERENCE

.385
.393
.401

437
YN
. 450

. 451

Figures
Figure 1. The Master Scheduling Task
Figure 2. The Queue Data Set After

Initialization e e o s @ e ° = o o @
Figure 3. Master Queue Control
Record e o ® % ® 8 ® ® @ @ e @ ® o o
Figure U4, MVT System Restart . o e
Figure 5. System Restart Work Area
Figure 6. System Restart Tables . .
Figure 7. ASB Routine . . . « -
Figure 8. Automatic SYSIN Batchlng
Work Area (ASBWA) (Part 1 of 2) . .
Figure 9.
Area (SAMWA) e e e e e e e e e e e e
Figure 10. Interface Between the
Restart Reader and the Interpreter .
Figure 11. Group Control Block (GCB)
Figure 12. Initiator Load Modules and
Control Flow e« o o ® o ° ° o o o & ®

Figure 13. Communication Parameter
Area (CPR) e e e - « o o o o
Figure 14. Inltlator ECB LlSt - -
Figure 15. GETPART Work Table (GWT)
Figure 16. Region Allocation Decision

Table o o o o o o o e @ o o o o = o
Figure 17. Result of Issuing the
GETPART Macro Instruction . . . < . .
Figure 18. ATTACH Macro Instruction
Parameter List e e s e e s e e moe e
Figure 19. Initiator Parameter List
Figure 20. System Output Writer
Overall Flow e« @ s o o a & e @ o o =
Figure 21. System Output Writer Table
Area @ o ;e ® ® @ o % s e @ ® s @ ® =
Figure 22. System Output Writer
Control Character Processing « o o =
Figure 23.
Table o o o ¢ @ ¢ o ¢ o o o o = o o
Figure 24. Control Flow in the
Command Scheduling Routine (Part 1 of
2) @ e e e e e e e e eme e e e e
Figure 25. Verb Table Entry « e e .
Figure 26. Extended Save Area of SVRB
as Used for Passing Information
Between Modules of the SVC 34 Routine
Figure 27. Command Storage and
Notification Techniques (Part 1 of 2)
Figure 28.
as Used for Message Processing in the

SVC 34 Routine e o a m @ « o w .

Figure 29. Classification of Commands
Figure 30. Task Creating Commands -
Figure 31. Major Attributes of System

Tasks, Jobstep Tasks in START Command,
and Job Step Tasks in Input Stream -
Figure 32. The System Task Control

ROULINEG &« ¢ @ o &6 o o o o o o o « o &
Figure 33. Start Descriptor Table

(SDT) @ ¢ o o o @ o = o =« @ o« o« o o
Figure 34. Linkage Table
Figure 35. Task Identification in the
Display Active Routine e o ® o o o

Special Access Method Work

Transition Routine Decision

. 72
. 73

. 87

. 89

Extended Save Area of SVRB

100

.102

.103

.104

.105
.107

.109

Hlustrations

Figure 36. DUMP Command Operand and
Resulting Storage Dumped o e e e e e

Figure 37. The Queue Alter Routine .
Figure 38. VARY Channel Decision
Table < ¢ ¢ ¢ o o o o « o o o o = o =
Figure 39. VARY CPU Decision Table .
Figure 40. Vary Queue Element (VQE)
Figure 41. Free Block Queue Element

(FBOE) @ o« « o « o o o a o o o o« = o =
Figure 42. The VARY STOR OFFLINE
Command « « « « o o o o o o o o o = @
Figure 43, Machine Status Block (MSB)
Figure 44. Command Input Buffer (CIB)
Figure 45. Control Flow in the
Command Scheduling Routine «

Figure 46. Typical Input Queue Entry
Figure 47. Output Queue Entries o«
Figure 48. Assigning Space Within

Logical Tracks e o o o o s o ® o o o
Figure 49. Assignment of Two Sets of
Logical Tracks e % o o o s e o @ -
Figure 50. The Entry Enqueued in the
Input Queue . . . - e« @ o o @ -
Figure 51. The Entry Enqueued in an
Output Queue e« e s o s @ 2 @ @ o o
Figure 52. Queue Manager Parameter
Area « % o e 2 e o ® ° e o @ o o o
Figure 53. Sequence of I/0 Operations
Performed by Queue Management Routines
Figure 54. Usage of Track Stacking
Routines by Queue Management « o o
Figure 55. Track Stack Area « o o
Figure 56. Record Accessing Routine
Interface . o« o o o ¢ o o o @ o = o o

Figure 57. Logical Track Assignment
Figure 58. Queue Control Record
Format e o o o s o a2 o e = e s * o
Figure 59. Typical Queue- .
Figure 60. 8-Byte Element of the
No-Work Chain .« « ¢ o ¢ @ o ¢ o o o «
Figure 61. Interpreter Data Flow . .
Figure 62. Interpreter Entrance List

(NEL) « o o @ o « o o o o o o o o« o o

Figure 63. Interpreter Option List .
Figure 64. Interpreter Exit List . .
Figure 65. Typical Interpreter Output

(Queue Data Set) “ e e e e . .« o .
Figure 66. End-of-Data and Null
Statement Processing e e o o s e o =
Figure 67. In-Stream Procedure
Parameter List e o o o m s e s. e o e

Figure 68. Processing JOB, EXEC,
PROC, PEND, DD, and Command Statements
Figure 69. Post-Processing Entry . .
Figure 70. Intermnal List Entry Format
Figure 71. Scan Dictionary Entry

Format e ® o s 8 o ® ® e e e e e o @
Figure 72. Symbolic Parameter Table

Buffer « ¢ ¢ « o o ¢ ¢ o o o o o o o
Figure 73. Keyword Branch Table Entry
Figure 74. Parameter Descriptor Table
(PDT) & o o @ o o o o e« o o o =« o o =

.112

«113

.120
.122
.125
.125
<126

135
.136
-140
.146
<147
.148
.149
.150
.151
.153

154

.155
.156

.157
.160

.161
.162

.163
.167

.168
.170
<171
.172
.174
.176

178
.180

182
.182

.183
187

.188

Illustrations 9

Figure 75. Table Codes Used in the

Test and Store Subroutine . . « « . . .190
Figure 76. Record Compression

Technique .« ¢ o @ o o o @ o« « « « « « 2191
Figure 77. Compression/Decompression
Parameter Area .« o . 191
Figure 78. Interpreter Ex1t L1nkage .192
Figure 79. IEFUJV Parameter List and

JMR JOD LOg e « o« o o o « « « o « « « 2193
Figure 80. Refer-Back Dictionary . . .194
Figure 81. I/0 Device Allocation

Routine . . o o o o @ o o« ¢« o o« « « < 2196
Figure 82. Allocation Control Block .202
Figure 83. Formulas for Determining
Allocation Table Sizes e e e o = o o 2203
Figure 84. Relative Positions of

Tables Used for I/0 Device Allocation .203
Figure 85. Allocate Volume Table

ENtYY o o o o o o o o o o o o « =« o « 2203
Figure 86. The Allocate Work Table . .204
Figure 87. Allocate Work Table Entry
SOUXCES o« = o o o o o o = s o s = o« =« 2204
Figure 88. Calculation of Data Set

Device Requirements . . o o o <« o 205
Figure 89. Scheduler Lookup Table . <207
Figure 90. Channel Load Table « « - 2208
Figure 91. Data Set Selection Example 212
Figure 92. Data Set Uniqueness

Attributes e o o o e . o o e o s o & 2212
Figure 93. Formulas for Finding TIOT
Storage Requirements e e o o . <213
Figure 94. Task Input/Output Table

Entry Sources213
Figure 95. SMF Records (Part 1 of 2) .234
Figure 96. WTP Processing Decision

Table . ¢ o @ o ¢ o o o o o o o = « « 236
Figure 97. WTP Message Processing

Routine Decision Table « o . o o « «237
Figure 98. Account Control Table

(ACT) &« v o o o o o o o o « = e o o o241
Fiqgure 99. Allocation/IEFVPOST
Communication Blocks © e e e o e e o 242
Figure 100. Command Scheduling

Control Block (CSCB) o e e . e o o o2U4
Figure 101. Data Set Block (DSB) « o .2U6
Figure 102. Data Set Enqueue Table

(DSENQ) @ ¢ & o « o o o « « « « = « - 228
Figure 103. Data Set Name Table

(DSNT) e = e e e e = e e « o o o = « 2249
Figure 104. Device Mask Table (DMT) .250

10

0S/360 MVT Job Management (Release 21)

Figure 105. Device Name Table (DNT)
Figure 106. Direct System Output
Control Block (DSOCB) « o « o 2 « o «
Figure 107. Initiator Entrance List
(IEL) ¢ o « o o o o« =« o @« = a = o o =
Figure 108. Initiator Exit List .- -
Figure 109. Initiator Option List .
Figure 110. In-stream Procedure Work
Area e e o @ o 4 o o o e o s s w = e
Figure 111. Interpreter Work Area
(IWA) -- (Part 1 of 3) - .
Figure 112. Job Control Table (JCT)
Figure 113. Job File Control Block
(JFCB) e o o @ @ ® e e e e @ @ © o @
Figure 114. Job File Control Block
Extension (JFCBX) &« o o o « o « o o« &
Figure 115. Job Management Record
(JMR) @ o o o o o o @ s o o« = &« o @ =
Figure 116. Job Scheduling Entrance
List (JSEL) e o @ o o a e e ® o e o =
Figure 117. Job Scheduling Exit List
(JSXL) e @ ® @ ® @ 8 ® @ ® e e @ o
Figure 118. Job Scheduling Option
List (JsoL) e @ ® ® e ® o ® @ o ® e
Figure 119. Job Scheduling Work Area
(JSWA) e o o = ® @ e ® ®© o @ e o o
Figure 120. Linkage Control Table

(ICT) « o ¢ o o o o o o o o o o o « o

Figure 121. Master Scheduler Resident
Datad AY€A =« o« « o o o« © o « « o = o =
Figure 122. Passed Data Set Queue
Tables and PDQ Overflow Block
Figure 123. Procedure Override Table
Figure 124. Step Control Table (SCT)
Figure 125. Step Control Table
Extension (SCTX) « e . -
Figure 126. Step Input/Output Table
(SI0T) . . e e e e o s s e @« @ o
Figure 127. System Management Control
Area (SMCA) e e ® e 1 o @ ® @ o o o o
Figure 128. System Message Block
(SMB) ¢ v ¢ o o e e o o o o « « « « =
Figure 129. System Output Class
Directory (SCD) =« ¢ v o o o o o & -
Figure 130. Task Input/Output Table
(TIOT) « e o e e o e .
Figure 131. Timing Control Table
(TCT) o o o o o o o s s @ a =« o o« « o

Figure 132. TCT I/O Table (TCTIOT)
Figure 133. Volume Table (VOLT) .« .
Figure 134. Write-to-Programmer

Control Block (WTPCB) .« o« « o o = o« o

.251
252
.253
-254
.256
.258

«259
.264

<266
-267
.268
270
.271
<272
273
274
<276
.280
.282
.284
.287
.288

.290

«294

.296
.297
.298
300
.301

.302

Charts

Chart 01.
Chart 02.
Chart 03.
Routine

Chart 04.
Chart 05.
Chart 06.
Chart 07.
Routine

Chart 08.

Job Management Data Flow .
Interpreter Control Flow .
Interpreter Initialization
Interpreter Control Routine
Interpreter Scan Routine .
JCL Statement Processors .
Interpreter Termination

« ® ® @ ® ®© ® e ® e ® e o -

Execute Statement Condition

Code Processing Routine . . « . « <« .

Chart 09.
Chart 10.
Routin
Chart 11.

Routine --

Chart 12.
Chart 13.
Routine

Chart 14.
Chart 15.
Routine

Chart 16.
Chart 17.
Routine

Chart 18.
Chart 19.

JFCB Housekeeping Routines
JFCB Housekeeping Control
Part 1 . & ¢ ¢ o ¢ o« o o .
JFCB Housekeeping Control
Part 2 . o o o ¢ o o o o @
ALLOC Processing Routine .
Dedication Determination

401
402

.403
.4o4
405
406
407

.408
.409

.410

411
412

-413

Fetch DCB Processing Routine 414

GDG Single Processing
GDG All Processing Routine
Patterning DSCB Processing

415
416

<417

Mount Control Volume Routine 418

Demand Allocation Routine .

419

Chart 20.
Chart 21.
Chart 22.
Chart 23.

Decision Allocation Routine
TIOT Construction Routine .
External Action Routine . .
Space Request and TIOT

Compression Routines . .« « o« o o o « .

Chart 24.
Routine
Chart 25.

Extended External Action

Automatic Volume

Recognition (AVR) Routine < .

Chart 26.

Job Statement Condition

Code Processing Routine . . . <« « . .

Chart 27.
Chart 28.

Termination Routine
Step Termination --

Disposition Routine . « o« « « « « .« .

Chart 29.

Step Termination --

Unallocation RoOUtine « « « o o o @« o

Chart 30.
Chart 31.

Job Termination Routine . .
Job Termination --

Disposition and Unallocation Routine .

Chart 32.

Queue Management

Initialization Routine . . « « « o « «

Chart 33.

Queue Management Assign

Start and Assign Routine . . . « « .

Chart 34.
Routine
Chart 35.
Routine
Chart 36.
Routine

Queue Management Enqueue
Queue Management Dequeue

Queue Management Delete

Illustrations

-420
421
422
423
424
425

426
427

.428

429
-430

431
432
-433
.u34
435

436

11

12 0S/360 MVT Job Management (Release 21)

NEW PROGRAMMING FEATURES

Status Display Support

The following task-creating commands
have been added to the COMMAND
PROCESSING section: DISPLAY PFK;
DISPLAY C,K; DISPLAY M (removed from
the list of existing-task commands);
MONITOR A.

The following existing-task commands
have been added to the COMMAND
PROCESSING section: MSGRT; STOPMN;
CONTROL.

The operands in the following list have
been moved from the STOP command to the
STOPMN command: DSNAME, SPACE,
JOBNAMES, STATUS, SESS. Note: For
release 21, the system will continue to
recognize these operands as valid for
use with the STOP command as well as
for the STOPMN command.

M65MP Shared DASD
Changes have been made to some VARY
commands for shared direct access
storage device support.

Console DUMP Command
A new SVCLIB module has been added to
provide for dumping of main storage to
a pre-allocated data set, SYS1.DUMP.

VARY with OLTEP
The VARY CONSOLES and VARY ONLINE
routine has been modified for use of an
online test executive program.

DISPLAY SQA Command
A new SVC 34 command has been added to
display the system queue area.

Automatic Volume Recognition
Changes have been made to reflect new
devices and volumes and processing

- modifications in this area of the book.

MISCELLANEOUS CHANGES

SET Command
A new module has been added to the
processing routine for this command.

Queue Manager Parameter Area
The QMPA has been slightly modified.

Summary of Amendments
for GY28-6660-9
OS Release 21

TIME Macro Instruction
Provision has been made for the use of
this macro instruction during subtask
attaching and allocation housekeeping
routines.

Alternate Step Delete
The Alternate Step Delete routine has
been deleted.

Master Scheduler Initialization Routine
Sections. of this routine have been
rewritten.

Reply Processor for Non-MCS
An SVC 34 routine for non-MCS
environments has been added.

TCTIOT
The graphic layout of this table has
been modified.

Job Cancellation
Changes have been made to reflect job
cancellation processing when in the
flush/fail mode. See Allocation
Housekeeping section.

Dictionary
New abbreviations have been added to
the Appendix E dictionary.

Module Cross-Reference
Appendix C has been updated to reflect
new and changed module cross-reference
information resulting from other
changes in the publication.

Dynamic Data Set Allocation
The description of this feature has
been removed from the publication. The
subject matter may now be found in the
publication IBM System/360 Operating
System: Terminal Monitor Program and
Service Routines Program Logic Manual,
GY28-6770.

NEW PUBLICATION FEATURE

Module Descriptive Name-Assembly Name
Cross Reference

Appendix F now contains a cross-reference
between the module descriptive names and
the assembly listing names that are given
in Appendix B. Thus, if the descriptive
name is known, the corresponding assembly
module name may be found. The appendix
also contains references to illustrations
that contain the module names.

Summary of Amendments 13

Summary of Amendments
for GY28-6660-8
OS Release 20.1

1

|Area of Publication Affected

| (areas correspond to entries

Name of Item | Description |in Table of Contents)
4
T

TSO System Management|SMF routines have been changed |Part 2

Facilities (SMF) |to provide SMF recording for Attaching the Subtask
| jobs operating under TSO.

—_—
dt s e e)

Part 6

| Task Termination

Step termination
SMF Processing

| |System Management Facilities |
| | The SMF SVC Routine (SVC 83) |
| Transferring Records |
The SMF Records

] Appendix A

Job Management Record (JMR)
Figure 90

| System Management Control |
Area (SMCA)

| Timing Control Table (TCT)
| Figure 102
[l
L)

TSO Master Scheduler
Support/shortened
CSCB

The Command Scheduling Control |Part 2
Block size is reduced. |Terminating Subtasks

Part 5

Command Scheduling

| Task-Creating Commands
| The START Commands
The DISPLAY A Command

Bppendix A
| Command Scheduling Control Block
Figure 75

Appendix E

e e e e e e e e e e e e e e e s B e . . . e . . . e S e, S, S, S S, . S S, e e, S A S, e e

‘e —————— e ————————— ————

|

|

I

.

|

t

|TSO Master Scheduler |SVC 34 has been changed to |Paxrt 5

|Support STAE in the |provide the STAE facility for |Command Scheduling

|Master Scheduler |error recovery in the master | Initializing the Command

| command scheduling routines. | Scheduling Routine

|
|
|
|
|
|
L

Figure 21

Command Execution
Task-Creating Commands
The START Command
Figure 25

S S S —

I
|
|
I
I
|
L

|
{
|
|
i
|
|
|
|
|
|
|
|
|
|
Appendix C |
|
|
i
i
|
|
|
|
|
|
|
|
|
J
)

(Part 1 of 5

14 0S/360 MVT Job Management (Release 21)

1
|Area of Publication Affected
| (areas correspond to entries

Name of Item Description |in Table of Contents)

oy e e

Existing-Task Commands
The STOP DSNAME Command through
The STOP STATUS Command

| TSO Master Scheduler
| Support STAE in the
|Master Scheduler

| (Continued)

Appendicies B, C, and E

[SO

TSO Master Scheduler
Support/Operator
Subcommands

SVC 34 routines have been |Introduction
changed to support TSO operator |Operator Commands
subcommands.
|Paxrt 5
| Command Scheduling
| Initializing the Command
Scheduling Routine

Storage and Notification
Table 4

Exrror Message Processing

Command Execution
Task-Creating Commands
The DISPLAY A Command
The Syntax Check Routine

The Monitor DSNAME Command
through the HALT Command

The STOP DSNAME Command through
the STOP STATUS Command

Appendix A
Command Scheduling Control Block

|

|

|

|

|

|

|

|

|

|

|

|
|Existing-Task Commands
|

|

|

|

|

|

|

|

| Figure 75
|

|Master Scheduler Resident Data
| Area

| Figure 92

|Appendix B
| IEEVDSP1, IEEVRC, IEEVRCTL,

| IEE1403D

I
|Appendix E

i

TSO Scheduler | The System Task Control and theIPart 3

LOGON/LOGOFF |Initiator routines have been |Initiator Functions
| changed to support TSO job | Figure 12
| processing

‘+t—_——————f———.e———_———_— ——————_ e e —_—_————— e e e e e

|Initializing the Initiator
|
|Selecting Jobs
Looking for Work, through
Data Set Integrity

Terminating Subtasks
Job Termination

e s B L p—

e e e —

|
|
|Attaching the Subtask, through
|
|
L

]
I
I
|
{
|
[
|
|
I
I
1
[
|
|
I
|
|
|
|
|
[
[
|
|
|
|
l
|
|
|
|
I
I
I
|
|
I
|
|
|
|
|
|
|
[
|
|
|
[
i
|
|
|
|
|
|
|
|
|
|
|
|
|
i |
)

(Part 2 of 5

Summary of Amendments 15

Name of Item

Description

L)

|Area of Publication Affected
| (areas correspond to entries
|in Table of Contents)

4

|TSO Scheduler
| LOGON/LOGOFF
| (Continued)

————

4

+
|Part 5

| Command Execution -

| Task-Creating Commands
| The START Commands

| Figure 25
t
|

— et . e, . e, s ey e e w—

Appendix A
Job Management Record (JMR)

through Linkage Control Table

Appendix B

TSO Scheduler
Commands

1]

| The work queues have been
changed to include the TSO
background reader queue. The
Queue Alter routines can now
| process the background reader
| queue.

L
+--
|Introduction

Operator Commands

Part 1
|Initializing the Queue Data Set |
| : |
|
Part 5
Command Execution
Task-Creating Commands
| The Queue Manipulation Commands]| .
| The Queue Search Control
| Routine (Module IEESD563)

The System Reconfiguration
Commands ’

|Paxt 6
| The Work Queues

Reader Device Type

e s . e . s G S o — — . o . . S— — —

| The reader device type and

| changes to indicate a dummy
| IEFRDER DD statement
4

;_

D

=}

Qs

[

»

o
.

B e et e B e . o e e e s . e s S o S . S e S .

|SWITCH Command
|Processing

]

| sVC 34 has been changed to
|include processing of the
| SWITCH command by module

| I6GC1403D :

o s . e e e e e e e e e

|Paxrt 5

| Command Scheduling
Storage and Notification
Table 4 ’

—— e —

Command Execution
|
Existing-Task Commands
The DISPLAY T Command

The SWITCH Command |

|
l :
|Appendix B
IEE1403D

Appendix C

Dynamic Allocation

| Dynamic Allocation routines for|Appendix F

| TSO have been added.
L

!
|
|
1
L]
|
|
1

16 0S/360 MVT Job Management (Release 21)

|
|
I
i
|
I
3
)

(Part 3 of 5

Name of Item Description

LB

|Area of Publication Affected
| (areas correspond to entries
|in Table of Contents)

4

e e . e e}

as an output device

)

L]
3211 Printer Support of the 3211 UCS printer|Part 1

|Initializing and Processing
| Commands .

|

| Processing a Queue Entry

| Processing Data Sets

| The Data Set Processing
Subtask

Processing System Message
Blocks

| Service Routines
| The Transition Routine

Figure 19

|Figure 88

Appendix B
IEFSDTTE

OLTEP Allocation eligibility for

units being tested by OLTEP

Part 6

I/0 Device Allocation

Unit Assignment
Demand Allocation

Automatic Volume Recognition
Common Subroutines

Allocation Recovery
Lack of Available Devices

Appendix E

Use of MODE command for
Model 145

MODE Command
[

o e

Part 5
Figure 21

Command Execution
Existing-Task Commands
The MODE Command

ol

. ppendix B
. IGF29701

Rotational Positional|Use of a RPS device for work
Sensing | queues

. . . e e . e, W i e .

e e e s e e s e e e e e e e e s e o e e e s e e e e e i e e e e e e

Part 1
Initializing the Queue Data Set

Appendix B
IEFSD055

B
g
[o%
'J‘
%

B

[Miscellaneous changes|Modifications to system task
land improvements to |control routines
|existing publicdtion |

- o e e
THPEICIC N, Sey—

[Part 5
[Figure 25

I
|Table 6.1

(Part 4 of

Summary of Amendments

|
|
|
|
|
1
|
|
|
|
I
|
|
|
I
|
I
|
i
|
|
|
|
|
|
I
|
|
1
|
|
|
|
|
|
I
1
|
1
I
[
|
|
|
|
3
)

5

17

Name of Item

Description

T

Area of Publication Affected
(areas correspond to entries
in Table of Contents)

Modifications to the START
Command

Part 5

Command Execution
Task-Creating Commands

| The START Command

— — T e e e . By S, et B

1

+
|Modifications to Queue routines

+

Part 5

Command Execution
Task-Creating Commands
The Queue Search Routine

Figure 28

Appendix B
IEESD582

IEESD583

1

[— ——— -

I
I
4

]
Modifications to queue entry

processing

1
|Part 6
The Interpreter Routine
Input and Control Operations
| Queue Entry Processing
L

18 0s/360 MVT Job Management (Release 21)

(Part 5 of 5

.
I
|
|
1
|
|
I
|
1
I
|
I
I
I
I
I
I
|
|
1
|
I
I
I
J
)

Summary of Amendments
for GY28-6660-6
OS Release 20

Name of Item

1
Description | Area of Publication Affected
| (areas correspond to entries
|in Table of Contents)
[l

Shortened CSCB

)
A reduction in the size of the |Part 3
command scheduling control |Texrminating Subtasks--Cancel,
block. : |Timer, and OUTLIM Termination

r
I

|

I

_Ir

|

I

I

| |

I |Part 5

| |Figure 25

I | ‘

| | Command Execution--Task-Creating
| |Commands: The START Command
| I

| |Appendix A

| Figure 75

|

|

|

|

|

|

|

I

|

_IL

Appendix B
IEEVICTL

IEEVSMSG

Appendix C
|
|Appendix E
+

[e o . e . e . . e . e e e e . e . . e . . S, S . . e . . . M . . e, . e e, e S, i B, e e . e e . . . e . . . B S s

STAE in the
Master Scheduler

|A change to SVC 34 to provide |Part 5

the STAE facility for error | Command Scheduling--Initializing
recovery in the master schedul-|the Command Scheduling Routine
ing and command scheduling |

|routines. |Figure 21

| |

Command Scheduling--Storage

and Notification

| Command Scheduling--Error
|Message Processing

|
Command Execution--Task-Creating
Commands

| Command Execution--Existing-
|Task Commands: The MODIFY
|Command, The STOP Command

|

|Rppendix B
|TEEPDISC

|
| IEEVDSP1
|
| IEEVWAIT

|
|IEE0003D

o o o o o e . . . e . . . i, . . e, . . i,

|
|IEE5103D
1

b e e e e e e e e e e e e —_— — — — ——— e e e e e e e — — ——— — —— —— ——— e e e ——————— e e e e e e

(Continued)

summary of Amendments

19

Name of Item

T
Description |Area of Publication Affected
| (areas corresrond to entries
|in Table of Contents)
1

STAE in the
Master Scheduler
(Continued)

H
| IEE5203D
|

[IEE5303D

——— e e e e e o e e e]

ASCII

A change to routines that |Paxrt 4
verify tape labels so that they|Initializing and Processing
can process American National |Commands--Service Routines: The

|

| Paxt 6

|I/70 Device Allocation-~-Unit
|Assignment: Automatic Volume

| |Recognition, Processing Requests
| | for Unmounted Volumes

| I
|Figure 70

!
| Table 15

|

|Appendix A
|Figure 88
|

|Appendix E

Standard labels. | Put Routine, Transition Routine

D e e Y S p——

Model 155 Recovery
Management Support

| The addition of a routine |Paxrt 5

| (module IGF29601) to SVC 34 |Figure 21

| that enables the operator to |

|display status information | Command Execution--Existing-Task
|about the Model 155 via the |Commands: The MODE Command

| MODE command.

e . —

|
|Figure 32

|Appendix B
| IGF29601

o

i

|
|
I
|
|
[
|
I
|
|

Model 165 Recovery
Management Support

[o e o e . e . e e e e e . e S . e e . S . e, e e, S e . . . S, . e, S S o T S T— — — — — . . B S S o S, G . . S e, S, .

|The addition of a routine |Paxrt 5

| (module IGF55301) to SVC 34 |Figure 21

| that enables the operator to |

|display status information | Command Execution--Existing-Task
|about the Model 165 via the |Commands: The MODE Command

| MODE command. |

|Figure 32
I
|Appendix B
|IGF55301

|
|
I
|
1
|
|
!

20 0S/360 MVT Job Management (Release 21)

(Continued)

J
4

|
I
|
I
I
|
I

4

Name of Item

Description

-
|Area of Publication Affected
| (areas correspond to entries
]1in Table of Contents)

|

Time-of-Day Clock

e —— .]

|Routines (modules IGC6503D and
| IGC6603D) that set the TOD
|clock for sSystem/370 models
|during SET command processing.

+
|Part 1

|The Master Scheduling Task

|
|Paxt 5

|Figure 21
|

| Command Execution--Existing-Task

— s S . . . e el St e, St o

|
|
|
| Commands: The SET DATE and SET
| CLOCK Commands
| |
| [Appendix B
| | IEE6503D
|
| IEE6603D
|
	Appendix C	
		,
		Appendix E
+ + i
Delayed Volume |A change to I/0 device alloca- |Part 3 |
|Verification |tion that delays the verifica- |Figure 12 |
|tion of volumes containing old | |
|data sets until the end of |Paxrt 6 |
|]allocation processing. |I/0 Device Allocation--Allocation |
| |Housekeeping: Protecting UCB |
| |Information |
| | |
| |Figure 66 |
| | | |
| | |I/0 Device Allocation--Gathering |
| | |Information: Completing Tables |
I |
| |I/0 Device Allocation--Unit | |
| | |Assignment: Processing Requests |
| | for Unmounted Volumes |
| |
| |I/0 Device Allocation--Space |
| | Assignment: Mounting Volumes, |
| | Compressing the TIOT |
| | | [
| | |I/0 Device Allocation--Common |
| | |Subroutines: Unsolicited Device |
| | |End Posting Routine, Lack of |
| | |Available Devices, Lack of Avail- |
| | |able Space, Separation Strike-Out |
| | |
| | |I/0 Device Allocation--Allocation |
| | |Exit |
| | | , |
| | |Appendix A |
i | |Figure 74 i
| | | |
| | |Appendix B |
| | | IEFSD41Q |
| | | |
| | |IEFVPOST |
L L L J
(Continued)

Summary of Amendments 21

r

| Delayed Volume
|Verification

| (Continued)

| IEFWDO000
| LeFwExra
=IEFXT002
| zeFx003
| Appendix ¢

|

' .
|Appendix D
|Chart 22

|Chart 23

|
|Chart 24

| .
|Appendix E

S R U - —

e ———— — — — — — — — — {— — a— — — o]

ments

L J
i
High-Speed Job |Changes to modules IEFORMAT anleart 1 |
|Queue Format | IEFSD055 so that module |Initializing the Queue Data Set-- |
| | IEFSD055 issues the XDAP macro |Formatting the Queue Data Set
	instruction to write the master	
OCR into the control record		
area.		
-t f {		
Improvements to	Changes to the SIOT at decimal	Appendix A
Existing Publication	offsets 47, 48, 55, and 84 to	Figure 97
	reflect release 20 mapping.	
	t {	
	Changes to the SCTX to reflect	Appendix A
	re1ease.20 mapping. {Figure 96	
' 1		
	Clar1f1cat10n of the passing oflPart 3	
	control from the Attach routine	Attaching the Subtask
	(module IEFSD263) to the TCTIOT	
	Construction routine (module	
	LEFSMFAT) .	
¢ , : + 4		
	Explanation of passing of	Paxt 6
	control from modules IEFVHEB	Figure 55
]and IEFVHH to module IEFUJV.	
I b + i		
	Clarification of mounting	Paxrt 6
	direct access volumes.	I/70 Device Allocation--Space
		Assignment: Mounting Volumes
I b f 1		
	Clarification of SMF exits from	Part 6
	the reading task.	Figure 13
L 4 1 J		
r] 1 T		
Calculation of Data	Additional calculation of	Part 6 ‘
set Device Require-	device requirements if both	I/0 Device Allocation--Gathering
	unit affinity and volume	Information: Calculating device
L 1

|affinity apply to the data set,|Requirements
|and if the device type speci- |
|fied is tape only. |Table 16

1

L

22 0S/360 MVT Job Management (Release 21)

To the user of a computing system, the basic unit of work is the job.

Introduction

The user must

arrange for the programs that execute that job to be loaded and executed, he must insure
that the required I/0 devices are available (and that the appropriate data sets and

scratch volumes are mounted),

frequently performed by an operator,
installation management.

and he must oversee the operation and cancel or change the
order in which jobs are run as external conditions dictate.

These functions are

following the instructions of programmers and

With the IBM System/360 Operating System however, these functions are performed by Job

Management routines.

Since the number and types of I/0 devices, the names of data sets,

program names, and other descriptive information must be communicated to the operating
system, Job Management routines read and interpret job control language (JCL) statements.
Since it is often desirable to include data in the input stream of JCL statements, and
convenient for the system to write standard output data sets, System Input and Output

routines have been included.

Operator commands, and the routines to execute those

commands, have been included to give the operator control over the processing performed

by Job Management routines.

At the MVT level, these functions are performed concurrently by Job Management

routines executing the reading,
execution tasks.

Processing Input Streams

Jobs are presented to the operating system
in input streams consisting of JCL
statements, system input data records, and
operator command statements. Each time the
operator issues a START command specifying
a reader, a reading task is established to
process an input stream. The interpreter,
the program that performs the reading task,
includes the following functions:

e It reads records from an input stream
and the procedure library.

e It scans JCL statements and converts
them to internal text.

e It builds tables from the internal
text, and creates input queue entries
from the tables.

e Tt places messages from the operating
system to the programmer in a system
output queue entry (which, however, is
not completed or enqueued until the
last step of the job has terminated).

e Tt assigns space in output queue
entries for pointers to system output
data sets.

e It writes system input data records to
an intermediate, direct access device,
and places pointers to a job's system
input data sets in its input gqueue
entry.

initiating, writing, master scheduling, and command

e It enqueues the job's input queue entry
at the priority specified for the job.

Each reading task in the system may be
performed concurrently with other reading
tasks, as well as with other system tasks
and job steps. Performance of a reading
task is terminated when the operator issues
a STOP command, or when the associated
input stream is exhausted.

Initiating Job Steps

Each time the operator issues a START
command specifying an initiator, an
initiating task is established to schedule
the execution of job steps. The initiator
is the program that executes an initiating
task; it selects the highest priority job
from the first of the input queues
associated with it that contains entries.
If there are no entries available in any of
its queues, the initiator enters the wait
state until an entry is enqueued or a STOP
or MODIFY command is issued.

When a queue entry becomes available,
the initiator dequeues it and insures the
integrity of data sets for which a
nontemporary name has been specified. It
selects the steps of the job (in the order
in which the EXEC statements appeared), and
for each step, performs the following
functions:

e It obtains a region of main storage for
the step.

Introduction 23

e It uses the I/O Device Allocation
routine to check EXEC statement
condition codes, to allocate I/O
devices, to obtain space on direct
access devices, to issue mounting
messages, to construct the job step
TIOT, and to add messages to the job's
message class output queue entry.

e It passes information to the
supervisor, and passes control to the
first program of the job step via the
ATTACH macro instruction, then enters
the wait state while the step is being
executed.

e When the job step has been executed,
the initiator uses the Termination
routine to check JOB statement
condition codes, to execute the User's
Accounting routine, to direct the
disposition of the data sets referred
to during execution of the job step, to
free the I/0 devices allocated to the
job step, and to add messages (and
pointers to system output data sets) to
the job’s output queue entries. If the
step is the last step of the job, the
Termination routine also enqueues the
job's output queue entries.

Each initiating task may be performed
concurrently with other initiating tasks
and job steps, as well as with other system
tasks. However, only one job at a time,
and (within a job) only one step at a time
is executed as a result of the performance
of one initiating task. Thus, the number
of job steps that can be executed
concurrently is equal to the number of
initiating tasks established in the system.

The performance of an initiating task is
interrupted during the execution of its
subtask (the job step), and when there are
no entries in the input queue. Performance
of the task is terminated when the operator
issues a STOP-command.

Writing System Output

System output consists of messages from the
operating system to the programmer, and of
data sets designated by the programmer as
system output data sets. The messages, and
in many cases pointers to the data sets,
are placed in output queue entries by
routines performing the reading and
initiating tasks.

System output is divided into classes
(as specified by the programmer and the
installation). There is an output queue
corresponding to each of the 36 available

24 0S/360 MVT Job Management {(Release 21)

classes. Messages are placed in the
message class; data sets may be in the
message class, or they may be placed in
other classes. There might, for example,
be one class for output to a printer.
Another class might be for punched output,
and a third might be for output to be
written on tape for later printing.

There are two ways of having system
output written on the arpropriate output
device:

e The operator may use START commands to
initiate direct system output (DSO)
processing for one or more classes. He
may change the set of classes via
MODIFY commands, via STOP commands, or
by issuing additional START commands.

e The operator may use START commands to
establish writing tasks. He may change
the set of classes via MODIFY commands,
via STOP commands, or by issuing
additional START commands.

If DSO processing has been started, a
job having system output in a DSO class
writes data directly on the appropriate
device. System output in other classes is
written on a direct access device for later
processing by a system output writer.

If the DSO processing is specified for
the message class, the initiator writes
messages concerning the job on the
appropriate device. Otherwise, it adds the
messages to the job's message class output
queue entry for later processing by a
system output writer.

When a job terminates, the output queue
entries that contain messages or pointers
to data sets are enqueued. Such messages
and data sets must be processed by system
output writers.

When the operator issues a START or
MODIFY command, to establish or change a
writing task, the command specifies the
queues from which the writer selects
entries, and the writer processes as
follows:

e The queues are listed in the order
specified in the command; the writer
dequeues the highest priority entry
from the first queue in its list that
contains entries. If there are no
entries available in any of its queues,
the writer enters the wait state until
an entry is enqueued.

e A queue entry may contain messages,
pointers to data sets, or both; the
writer reads each record in the entry
into main storage and determines

whether the record contains messages or
a pointer to a data set.

e If the record contains messages, the
messages are written to the output
device, and another record is obtained
from the queue entry. If the record
points to a data set, the writer opens
the data set, attaches a subtask to
write the data set records to the
output device, then closes and deletes
the data set before obtaining another
queue entry record.

e When the last record in a queue entry
has been processed, the writer deletes
the entry before dequeueing another
entrye.

Each writing task may be performed
concurrently with the performance of other
writing tasks, as well as with job step
tasks and with other system tasks. The
performance of the writing task is
interrupted during the performance of its
subtask, and when there are no output gqueue
entries of the classes in the writer's
list. Performance of a writing task is
terminated only when the operator issues a
STOP command; performance of the subtask
may be terminated with a CANCEL command.

Initializing and Establishing System Tasks

The master scheduling task is established
when the system is loaded. Routines
performing this task initialize the
nucleus, console communications, and the
system log (see the publications IBM
System/360 Operating System: IPL/NIP,
Program Logic Manual, GY¥28-6661, and IBM
System/360 Operating System: MVT
Supervisor, Program Logic Manual,
GY28-6659). Other routines performing the
master scheduling task establish the queue
initialization task, and schedule the
execution of the initial SET command and
the commands specified by its AUTO
parameter. When the system has been
initialized, the Master Scheduler routines
remain in the wait state except when an
operator command or a system log operation
requires the establishment of a system
task. The Master Scheduler Attach routine
then issues the ATTACH macro instruction to
establish the START command task (which is
executed by the System Task Control
routine) in response to START commands, and
to establish the appropriate command
execution tasks in response to other task
creating commands. When the required task
has been established, the master scheduler
returns to the wait state; when the tasks
it establishes are terminated, the routines
performing those tasks return control to
the supervisor.

Queue Management

The queue data set, which contains the work
queues, is initialized or reinitialized by
routines performing the queue
initialization task. The space for the
queue data set is allocated when the system
is generated; the data set is not, however,
placed in the proper format until, in
response to the F parameter of the initial
SET command, the Queue Formatting routine
writes initialized queue control records
(QCRs) and sets up and chains logical
tracks.

Once the queue data set has been
formatted, the procedure need not be
repeated; when the system is reloaded the F
parameter may be omitted from the initial
SET command. When the F parameter is
omitted, System Restart routines,
performing the queue initialization task,
inspect the queue data set to insure that
there are no incomplete input queue
entries, and to re-enqueue any dequeued
input or output queue entries so that they
can be processed when an initiator and
system output writer are started.

Management of the work queues is done by
a set of routines that are used as
subroutines by routines performing system
tasks. There are 76 queues, of which 56
are used by the operating system. These
are:

e The 15 input queues, which contain
entries describing jobs to be run by
the system.

e The Remote Job Entry (RJE) queue, which
contains entries describing jobs for
input to the job management routines.

e The hold queue, which contains input
queue entries in the hold state as a
result of a HOLD command.

e The 36 output queues, which contain
entries describing the system output of
jobs that have been run by the system.

e The free-track queue, which contains
the tracks in the queue data set that
are not assigned to a queue entry.

e The automatic SYSIN batching (ASB)
queue, which contains compressed JCL
statements for use as input to the
interpreter.

e The background reader (BRDR) queue,
which contains pointers to data sets
for TSO jobs submitted via the SUBMIT
command. (A description of the
background reader is in the TSO Control
Program PLM. A description of the .

Introduction 25

SUBMIT command is in the TSO Command
Processor PLMs.)

The user of queue management provides a
parameter area that specifies the operation
to be performed; when records are to be
transferred, he also provides a main
storage area for the records. The user
then links to a Queue Management routine,
which performs one of the following
functions:

e Tt initializes for the establishment of
a queue entry.

e It assigns records and (as required)
logical tracks to the entry.

e It writes records into the assigned
locations, or reads them into main
storage.

e It enqueues queue entries in the
specified queue, at the specified
priority. ‘

e Tt dequeues the highest priority entry
from the specified queue.

e It deletes entries: returns the tracks
assigned to them to the free-track
queue. :

An option permits logical tracks to be
"stacked" in main storage, thus reducing
the number of accesses to the queue data
set. The Track Stacking routines, which
are subroutines of the Queue Management
routines, establish and maintain the track
stack in main storage and accomplish the
transfer of logical tracks and records.

Operator Commands

Operator commands may be entered into the
system via an operator's console input
device, via a TSO terminal, or via a system
input reader. The execution of operator
commands is scheduled by an SVC routine
(SVC 34); the commands are executed either
by a routine performing a task established
(by the master scheduler) as a command
execution task, or by routines performing
existing system tasks.

26 0S/360 MVT Job Management (Release 21)

The command scheduling routines (SVC 34)
examine the command verb and determine
whether the command is to be executed
immediately by a routine that is part of an
existing task or whether execution of the
command requires the creation of a new
system task. If the command is to be
executed immediately, control passes to the
appropriate processing routine via an XCTL
macro instruction. If the command requires
the creation of a system task for
execution, a command scheduling control
block (CsSCB) is built, the command is
stored in the CSCB, and the master
scheduling task is posted. The master
scheduling task passes control to the
appropriate command processing routine via
an ATTACH macro instruction.

If the command to be executed is a START
or MOUNT command, the master scheduler
passes control to the System Task Control
routine via the ATTACH macro instruction.
The System Task Control routine obtains a
region, checks the operand of the command,
and builds an "internal input stream" from
the parameters in the command operand. The
interpreter, used as a closed subroutine,
reads the input stream (which calls a
cataloged procedure), and creates the
appropriate job description tables. The
System Task Control routine then passes
control to the Initiator subroutine to
complete the command processing.

The Initiator subroutine uses the I/0
Device Allocation routine to allocate
devices and then attaches the program that
executes the starting task. After
execution and termination of the starting
task, the initiator returns control to the
System Task Control routine. This routine
frees the region and returns control to the
master scheduler.

The queue accessing commands (CANCEL,
DISPLAY, HOLD, RELEASE, and RESET) are
executed by routines performing the queue
alter task. These routines access the
input, hold, ASB, RJE, BRDR, and output
queues and make changes or display
information as specified in the command.

The remaining commands are discussed in
the "Command Processing" section of this
publication, and in the sections describing
the executing routines.

Part 1: |Initialization and Restart

When the operating system is loaded, it must be initialized to conform to the locations

and extents of the system data sets,

and to the requirements of the installation.

This

process, which includes formatting the work queue data set, is called system

initialization.

If the work queue data set is already in the proper format, special

processing must be performed to purge the work queues of incomplete and inappropriate

entries; in this case, the processing is called system restart.

System initialization

and restart are performed by routines executing the master scheduling task, or by
routines executing subtasks of the master scheduling task.

The Master Scheduling Task

The master scheduling task (Figure 1) is
one of the system tasks established when
the system is loaded. The portions of this
task that are discussed in this publication
are to perform the following functions:

e Initializing the master scheduler
resident data area.

e Establishing the queue initializing
task.

e Establishing the direct access volume
initializing task.

e Causing the initializing commands to be
executed.

e Initializing the system management
facilities (SMF) if they are included
in the system.

e Establishing command processing tasks
(see the "Command Processing" section
of this publication). :

The remaining portions of the master
scheduling task are discussed in other
publications. The portion performed by the
nucleus initialization program (NIP) is
discussed in the IPL/NIP Program Logic
Manual; the portions performed by the
Console Initialization routine and by the
Log Initialization routine are discussed in
the MVT Supervisor program logic manual;
and the portions performed by the TSO
Initialization routine are discussed in the
Time Sharing Option Control Program Program

Logic Manual.

The initializing functions of the master
scheduling task are performed in the Master
Scheduler IPL routine (module IEEVIPL),
which the macro SGIEEOOV assembles during
system generation. The Nucleus
Initialization program enters the Master
Scheduler IPL routine via a LINK macro
instruction, and passes to it a pointer to

., the UCB for the parameter library

(SYS1.PARMLIB) unit.

Before performing the initialization of
the master scheduler resident data area,
the Master Scheduler IPL routine links to
the Console Initialization routine
(IEECVCTI). On the return, it posts the
event control block (ECB) that the
communications task is waiting for. Next,
the IPL routine issues a 'READY' message
for the operator and moves the master
scheduler's TIOT from the IPL routine into
a section of main storage obtained from
subpool 255. Then the routine uses a WTO
macro instruction to display commands that
are available for execution as a result of
the AUTO parameter in a SET command, and
waits for the SET command to be issued.

The SET command causes the Command
Scheduling routine to issue a POST macro
instruction that specifies an ECB in the
master scheduler resident data area. When
the posting occurs, the Master Scheduler
IPL routine looks for the procedure library
and for the work queue data sets. If the
SET command has specified the units that
contain those data sets, the routine checks
the specified units; if no units are
specified in the SET command, the routine
checks the catalog, the units specified
when the system was generated, and finally
the system residence volume.

When the routine has determined which
units should contain the data sets, it
checks to see that the units are in the
ready state, that the correct volumes are
mounted, and that the data sets are
actually on the specified volumes. If so,
it stores pointers to the UCBs in the
master scheduler resident data area, and in
the master scheduler's TIOT. Then the IPL
routine catalogs the procedure library data
set into the volume on which it was found.

If either data set cannot be found, or
if the correct volumes are not mounted, or
if the specified units are not ready, the
routine issues a message to the operator
and waits for the SET command to be
re-issued. Initialization does not
continue until the error has been corrected
and the data sets are found.

Part 1: Initialization and Restart 27

ENTRY
LINK (From NIP)
~ LINK and RETURN ATTACH and RETURN
%w IEEVIPL ﬁqu
3
Note lg LINK and RETURN Master Scheduler
4 IPL Routine
Log NON-SMF No Log RETURN ATTACH
XCTL SMF
SMF
IEEVLINT \ IEESMFI3 IEESMFIT IEEPPRES
Locate Log Data SMF Parameter SMF .
Sets, Create LCA Processor Initialization Get Region
|EELOGO1 IEESMFWR IEESMFOI |IEEVPRES
Write JFCBs. ATTACH
Create DCBs, SMF Writer SMF (').pen. Interface
Post Log ECB. y Initialization
—IEFPRES
Volume Attribute
IEELWAIT IEESMF12
Resident Wait SMF
Routine Initialization IEFKIMSG
Messages
NON-SMF XCTL o
: IEEVWAIT
Note 1: All transfers of control between load modules
are done via XCTL unless otherwise marked,
Note 2: Console Initialization (see the MVT Supervisor PLM), Scheduler Wailt
Note 3: Queue Initialization (see "Initializing the Queue
Data Set" in this publication).
Note 4: TSO Initialization (see the TSO Control Program PLM).

'Figure 1. The Master Scheduling Task

28 0S/360 MVT Job Management (Release 21)

In Systems/370 machines, the Master
Scheduler IPL routine uses the WTOR macro
instruction to ask the operator for SET
command parameters for setting the
time-of-day (TOD) clock. After the
operator has replied, the routine generates
an intermnal SET command and issues SVC 34
to pass control to the Command Scheduling
routine. During command processing, the
TOD Clock routines (modules IGC6503D and
IGC6603D) of the Command Scheduling routine
use the CLOCK and DATE parameters from the
SET command to set the TOD clock (see the
"Command Processing" section of this
publication).

After cataloging the procedure library,
the IPL routine uses the ATTACH macro
instruction to pass control to the queue
initializing task (in module IEFQINTZ) and
then waits for completion of the
initialization procedures. After
initialization is completed, the IPL
routine receives control and uses the
DETACH macro instruction to detach the TCB
of the queue initialization task. Then the
routine issues the ATTACH macro instruction
to establish the direct access volume
initialization task (module IEEPPRES) and
waits for the completion of the task.

When the ATTACH macro instruction is
issued, control is passed to the Get Region
routine (module IEEPPRES), which obtains a
register save area and a region of main
storage, then passes control (via a LINK
macro instruction) to the Interface
routine.

After obtaining a pointer to the UCB for
the parameter library unit, the Interface
routine (module IEEVPRES) opens a DCB for
the parameter library, obtains main storage
for a read DECB, and branches to the Volume
Attribute Setting routine.

The Volume Attribute Setting routine
(module IEFPRES) scans the PRESRES data set
entries until it finds one that corresponds
to a mounted volume, then sets the volume
attributes in the UCB.

If there are volumes listed in the
PRESRES data set that are not mounted, the
routine uses the WIOR macro instruction to
request the operator to mount the correct
volumes. The operator replies with a list
of unit addresses or "GO"; if the reply
contains unit addresses, the routine reads
the volume labels, checks the volume
serials, and places them (and the volume
attributes) in the UCBs.

When all of the volumes listed in the
PRESRES data set are mounted, or when the
operator has replied "GO", the routine uses
the WTO macro instruction to inform the
operator of the volume serials and

attributes of all permanently resident and
reserved volumes, then returns control to
the master scheduler.

The Master Scheduler IPL routine then
detaches the TCB for the direct access
volume initializing task and uses the WTO
macro instruction to display the commands
selected for execution via the AUTO
parameter of the SET command. It schedules
the execution of the commands by issuing an
SVC 34 for each command.

If the system includes TSO, the IPL
routine uses a LINK macro instruction to
give control to module IFEVSIPL for
initializing the SY¥S1.BROADCAST data set.
When the IPL routine again receives
control, it uses the XCTL macro instruction
to pass control either to the system log
initialization routine (IEEVLIN1), if the
system includes the system log, or to the
SMF initialization routine (IEESMFIT), if
the system includes the system management
facility. If the system contains neither
the SMF nor the system log facility, the
routine uses the XCTL macro instruction to
give control to the Master Scheduler Wait
routine (IEEVWAIT).

Routines IEEVLIN1 and IEELOGO1
initialize the system log. Routine
IEEVLIN1 locates the log data sets and
establishes the Log Control Area (LCA) and
log buffers. Routine IEELOGO1l writes the
log job file control blocks onto the job
queue, creates the log DCBs, issues an
ATTACH macro instruction for the log Writer
routine (IEELWAIT) and posts the log ECB.

If module IEEVLIN1 does not locate the
log data sets, the operator receives a
message that the system does not support
the log option. As a result, module
IEE0303F (which is one of the sVC 36, or
WI'L, routines) re-issues WTL macro
instructions as WTO macro instructions.
The control program (module IEE1603D) then
treats LOG and WRITELOG commands (from the
operator) as NOPs and sends a message to
the console informing the operator that it
does not support the system log. The log
initialization routine IEELOGO1l then uses
an XCTL macro instruction to pass control
either to the SMF initialization routine if
the system includes SMF or to the Master
Scheduler Wait routine IEEVWAIT.

The posting of the log ECB (by routine
IEELOGO01) causes the lcg writer routine
IEELWAIT to become disgatchable
(executable) to continue the system log
initialization. When routine IEELWAIT is
given control, it determines that
initialization processes are being
performed and uses the WTL macro
instruction to open the log data sets.
When the log data sets are successfully

Part 1: Initialization and Restart 29

opened, routine IEELWAIT waits on the log
ECB. (Section 7 of the MVT Supervisor PLM
contains further information about the
system log.)

Initializing the system management
facilities includes obtaining and storing
the SMF parameters, allocating devices to
and opening the SMF data sets, establishing
the SMF task, initializing a 10-minute
timer, and issuing the initial SMF records.
These functions are performed by the’ SMF
Initialization routine, the SMF Open
Initializer, and the SMF SVC routine
83).

(svc

The SMF Initialization routine consists
of three modules: IEESMFIT, IEESMFI3, and
IEESMFI2. The routine is entered at
IEESMFIT, which adds the compiled-in DD
names SMFMANX and SMFMANY to the master
scheduler TIOT, then obtains main storage
from subpool 255 for the system management
control area (SMCA). The SMCA is described
in Appendix A. ’

Module IEESMFIT of the Initialization
routine stores a pointer to the SMCA in the
communications vector table (CVT) then
determines whether the SYS1.PARMLIB data
set contains the SMF parameter member,
SMFDEFLT. If not, module IEESMFIT passes
control to module IEESMFI3 at entry point
IEESMFMS. If the SMF parameter member is
present, module IEESMFIT opens the data
set, and reads member SMFDEFLT into main
storage. If an I/0 error occurs during the
read, the routine passes control to
IEESMFI3 at entry point IEESMFIO;
otherwise, it passes control to IEESMFI3 at
entry point IEESMFI3.

Module IEESMFI3 inspects the SMF
parameter member to determine whether all
required parameters have been supplied
correctly. If any required parameters are
missing or incorrectly specified, or if the
routine was entered because the member was
missing or there was an I/O error, IEESMFI3
uses the WTOR macro instruction to have the
operator enter the parameters.

When the parameters have been entered
correctly, the routine stores them in the
SMCA and uses the WTO macro instruction to
display them to the operator. If operator
intervention is permitted (OPI=YES), the
routine uses the WTOR macro instruction to
allow the operator to make changes. When
it has stored any changes, IEESMFI3 passes
control to IEESMFIT at entry point
IEESMFI4.

When it is entered from IEESMFI3, module
IEESMFIT determines whether an SMF data set
was specified. If not, the routine uses
the XCTL macro instruction to pass control
to the Master Scheduler Wait routine

30 0s/360 MVT Job Management (Release 21)

‘opened, and establishes the SMF task.

(module IEEVWAIT); if so, the routine
obtains main storage from subpool 255 for
the SMF buffer, and uses the XCTL macro
instruction to pass control to the SMF Open
Initializer routine.

The SMF Open Initializer prepares to
have the SMF data sets allocated and
The
JFCBs for the data sets (SY¥S1.MANX and
SYS1.MANY) are compiled into module
IEESMFOI; the routine uses the Queue
Management Assign/Start and Read/Write
routines to obtain space in the work queue
data set and to write the JFCBsi. It
stores the JFCB addresses in the master
scheduler TIOT, and uses the ATTACH macro
instruction to pass control to the SMF
Writer routine (module IEESMFWR). The SMF
Writer routine issues a WAIT macro
instruction (specifying the writer ECB in
the SMCA) to place the SMF task in the wait
state.

The SMF Open Initializer then sets the
first time switch in the SMCA, posts the
writer ECB causing the SMF Writer routine
to issue SVC 83 with a negative pointer to
the SMCA for allocation and opening of SMF
data sets, and issues a WAIT macro
instruction for the buffer ECB.

The SMF SVC routine (SVC 83) consists of
three load modules: the Record Transfer
routine (module IEESMF8C), the SMF Open
routine (module IEESMFOP) and the SMF
Allocation routine (module IEESMFAL). The
Record Transfer routine, which is always
entered first, inspects register 1 to
determine whether a record transfer is
required. When the SVC is to perform data
set switching or initialization functions,
the register is negative, and the Record
Transfer routine uses the XCTL macro
instruction tao pass control to the SMF Open
routine.

The SMF Open routine (module IEESMFOP)
determines whether to perform
initjialization or data set switching by
testing the first-time switch (bit 3 of the
SMCA miscellaneous indicators field). If
the switch is on, initialization is
required; the routine loads register 5 with
a pointer to the first data set area in the
SMCA and inspects the corresponding entry
in the master scheduler TIOT. If the TIOT
UCB pointer field is zero, the SMF Open

1The JFCB records appear as an incomplete
input queue entry. In the event of a
system restart, the System Restart
routines return the srace occupied by the
JFCB records to the free-track queue, and
the SMF Open Initializer routine replaces
them when it is executed again.

routine uses the XCTL macro instruction to
pass control to the SMF Allocation routine.

The SMF Allocation routine (module
IEESMFAL) uses register 5 to determine
which of the two SMCA data set areas
contains information on the data set to be
allocated. The user may specify either a
volume serial or a unit address for each
SMF data set, and the SMF Allocation
routine uses the specified information as a
search argument in a search of the UCB
list. When it finds a match, the routine
stores a pointer to the UCB in register 1.

If the device is a tape device, or if it
is a direct access device capable of
handling the maximum size SMF record, the
SMF Allocation routine marks the UCB
"allocated" and "permanently resident." If
the device is a direct access device, the
routine also turns on bit 2 in the
appropriate device status field in the
SMCA.

When it has completed the allocation of
a device to one SMF data set, the SMF
Allocation routine sets the SMCA Open DS
routine switch to X'80', then uses the XCTL
macro instruction to pass control to the
SMF Open routine.

When the SMF Open routine (module
IEESMFOP) is entered, it tests the Open DS
routine switch. Since it was entered from
the SMF Allocation routine, the switch is
set to X'80' and register 1 contains a
pointer to the UCB corresponding to the
allocated device.

The Open routine sets the Open DS
routine switch to zero, then stores the
contents of register 1 in the TIOT entry
corresponding to the data set associated
with the allocated device. The routine
uses the RDJFCB macro instruction to bring
the JFCB for the data set into main
storage, then updates the JFCB volume
serial and label type fields with
information from the UCB and SMCA.
the routine uses the OBTAIN macro
instruction to determine whether the data
set is empty. If so, the routine uses the
OPEN macro instruction to open the data set’
for BsAM.

Next,

When the data set has been opened, the
SMF Open routine tests the first-time
switch. If the bit is on (in this case it
will be, because this is the first
post-allocation entry) the routine sets it
off, then determines whether the data set
is on a tape volume or a direct access
volume.

If the data set is on a tape volume, no
further allocation is required, because
only one tape SMF data set is permitted.
If, however, the data set is on a direct
access volume, two data sets are required,
and another device must be allocated. The
Open routine sets register 5 to point to
the other data set area in the SMCA and
uses the XCTL macro instruction to pass
control to the SMF Allocation routine.

When allocation is complete, the SMF
Open routine is again entered with the Open
DS routine switch set to X'80'. The
routine stores the UCB pointer and opens
the data set, then tests the first-time
switch. In this case, the switch is off;
no further processing is required, and the
SMF Open routine issues the EXIT macro
instruction to return control to the SMF
Writer routine, via the supervisor.

On the return from the SVC 83 routine,
the SMF Writer routine rosts the buffer ECB
that module IEESMFOI issued the WAIT on.
The Writer routine then issues a WAIT on
the writer ECB in the SMCA. The SMF Open
Initjalizer routine determines whether
allocation and opening of the SMF data sets
was successful. If either failed, the
routine passes control via an XCTL to the
Master Scheduler Wait routine (module
IEEVWAIT). If allocation and opening were
successful, the routine issues an XCTL to
pass control to module IEESMFI2.

Module IEESMFI2 branches to the Timer
Enqueue routine (see the MVT Supervisor
PLM) and passes it a compiled-in timer
queue element that requests 10-minute time
intervals.

If an SMF data set is present, module
IEESMFI2 constructs the SMF IPL record
(type 0), and the SMF online devices record
(type 8), and if volume information is
requested, the SMF online direct access
devices record (type 19). It uses SVC 83
to have the records transferred to the SMF
buffer, then uses the XCTL macro
instruction to pass control to the Master
Scheduler Wait routine.

The Master Scheduler Wait routine
(module IEEVWAIT) enters the wait state,
and the system is ready to process the
commands that start the job management
process. :

Part 1: Initialization and Restart 31

Initializing the Queue Data Set

The 76 work queues occupy space on a
permanently resident volume. The space for
the queue data set, which contains these
queues, is allocated when the system is
generated, in response to a DD statement
submitted by the installation. The DD
statement specifies the amount of space
(contiguous tracks) to be allocated.

When the queue data set is initialized,
it is divided into two major areas. One,
the control record area, is fixed in
length; it occupies the first 2736 bytes of
the queue data set, and contains a 36-byte
queue control record (QCR) for each of the
76 queues. The first QCR is the master
QCR; it contains information about the
queue data set as a whole, and is used in
the control and maintenance of the
free-track queue. The other QCRs are each
used in the maintenance of a single queue;
there is one hold queue control record, one
ASB queue control record, one RJE queue
control record, 15 input queue control
records, 36 output queue control records,
one background reader queue, and a gueue
control record for each of the 20 unused
queues.

The other major area in the queue data
set is the logical track area. A logical
track is an area of contiguous space (not
necessarily corresponding to a physical
track) that contains a 20-byte logical
track header (LTH) record, and a number,
specified by the installation, of 176-byte
records. The length of a logical track is
20+176N bytes, where N is the
installation-specified -number (between 10
and 255) of records per logical track.

The queue initializing process is begun
when the Master Scheduler IPL routine
attaches the initializing task, passing
control to module IEFQINTZ. This module,
which resides in the link-pack area,
obtains a region, then passes control to
module IEFSDO055. This module obtains main
storage for a work area, and for a DEB and
DCB for the queue data set, then opens the
data set for BSAM. The routine also
examines the UCB for the jobgqueue to
determine if the queue is on a rotational
position sensing (RPS) device.1 If it is,

1Rotational Position Sensing is an IBM 3330
Disk Pack characteristic that permits the
location of records by an explicit angular
position. Further details may be found in
the Component Summary publication listed
in the Preface.

32 0S/360 MVT Job Management (Release 21)

the routine sets an indicator in the queue
manager resident storage and stores the
device type code. All other routines use
this information prior to reading from or
writing to the jobqueue.

FORMATTING THE QUEUE DATA SET

If the operator used the parameter "F" in
the SET command, the queue must be
formatted, and module IEFSD055 uses the
WTOR macro instruction to give the operator
the opportunity to override the queue
parameters specified at system generation.
These parameters (the number of 176-byte
records per logical track, the number of
176-byte records to be reserved for an
initiator, and the number of 176-byte
records to be reserved for terminating a
job) are discussed in the section
"Assigning Queue Space." The parameters
are stored in the work area, and control is
passed to module IEFORMAT.

Module IEFORMAT uses BSAM to write
records into the queue data set to put it
in the proper format (the format of the
queue data set after initialization is
shown in Figure 2). The routine writes,
into the control record area, a complete
set of queue control records, all of which
are set to zero. It then writes the
logical track header records and
intervening 176-byte data records into the
logical track area. The 176-byte data
records are set to zerc; each LTH contains
a pointer to the next LTH.

The pointer (designated NN) in the LTH
is a 2-byte binary number that represents
an offset from the beginning of the logical
track area. The NN of the first LTH is
one; the NNs of subsequent LTHs are found
by adding the number of records per logical
track, plus one, to the current NN.

Finally, module IEFORMAT builds the
master queue control record with pointers
(in NN format) to the first and last
logical track headers. After control is
returned to module IEFSD(055, XDAP is used
to write the master QCR (see Figure 3) into
the control record area.

. Module IEFSDO55 moves the DEB, DCB and
master QCR into the queue management
resident data area. The three queue
parameters T, K, and T' (which are
described in the section "Assigning Queue
Space") are set up; a bit is set to
indicate that a reserve of tracks exists,
and the routine closes the DCB before
returning control to module IEFQINTZ.
Module IEFQINTZ frees the region, and
returns control to the Master Scheduler IPL
routine.

Master QCR 36 36 36 1296
R (See Figure 3) Hold QCR ASB QCR
+~
£ 36 Output QCRs
- (Classes A - Z and 0 - 9) 3% Control
RJE QCR Record
540] Area
L 15 Input QCRs i
(Classes A - Q) 36
BRDR QCR
J’ Reserved 720 -
T (20 Unused QCRs) I
20 176
! r- LTH First 176 - byte record
\
First
Logical
Track / Additional 176 - byte records
| F20 176 Logical
LTH \ Track
176 - byte records Area
) # 20
r LTH
Last
Locical 176 - byte records
Track
| Figure 2. The Queue Data Set After Initialization
L 8l
it Address (MBBCCHHR) of the master QCR ~
1 2 1
Reserved Pointer to the First Logical Track in the Free-Track Queue Reserved
2 2
Number of Logical Tracks in the Queue Data Set Number of Logical Tracks in the Free-Track Queue
2 2
Number of Logical Tracks Reserved for Job Termination Number of Logical Tracks Reserved for Initiators
2 2
Pointer to the Last Logical Track in the Free-Track Queue Address (TT) of the First Physical Track Containing no QCRs
2 2
Number of QCRs per Physical Track Number of Records per Physical Track
2 2
Number of 176-byte Records per Logical Track Number of Logical Tracks to Reserve per Initiator
2 2
Number of QCRs on the Mixed Track Pointer to the First Record on the First Track Containing no QCRs

Figure 3. Master Queue Control Record

Part 1: Initialization and Restart 33

SYSTEM RESTART queue data set, and the logical tracks
assigned to them returned to the free-

When the system is first initialized, the track queue.
queue data set must be formatted; when the
system is restarted, the. formatting need e Incomplete output gqueue entries may
not be repeated, but the existing queue ‘ exist, reflecting the system output
data set must be reinitialized. requirements of any jobs that have not
been completely processed. If the
If the restart is necessary because of a input queue entry for a job is not
power failure or system error, there may be complete (has not been enqueued) the
entries in the queues for which processing logical tracks assigned to its output
had not been completed. The System Restart queue entries need only be returned to
routines (shown in Figure 4) must therefore the free-track queue. Otherwise, the
inspect the queue data set, determine the existing system output (and any system
status of any queue entries that exist, and output generated when the job is
perform the processing required to allow processed) will be processed normally.
normal processing to be resumed. Such entries are therefore identified,
but not processed, by System Restart
The following kinds of entries may be routines.
found in the queue data set. They are
processed as described below: e Incomplete Automatic SYSIN Batching
(ASB) queue entries will exist if
e Incomplete input queue entries will processing was halted during execution
exist if processing was halted while of an ASB task. Logical tracks
input streams were being processed. assigned to such entries will be
Such entries must be purged from the returned to the free-track queue.

Note: Modules IEFSD300, IEFSD301,
IEFSD302, [EFSD303, and
IEFSD305 use the MVT System
Restart TTR and NN Conversion

Entry from |EEVIPL

Routine (module IEFSD310), which IEFQINTZ
" is a small conversion routine that R
. . s eturn
is not shown in this figure. Get/Free Region
]
1 Q#F
IEFORMAT Q=F IEFSD055 IEFSD300
Queve Table
Queve Format Initialization Construction
IEFVSDRA IEFSD301
Restart Purge Queue
Activation Construction
IEFSD305 IEFSD302
Re-Enqueue Job Names
> or Delete Table
y i I l
IEFSD514 IEFVSDRD IEFSD304 IEFSD303
TIOT Restart Scratch
Read/Write Determination Data Sets Delete
Link Attach
IEFSD308
Terminati Scratch
ermination Data Sets

]

IEFRPREP

Restart
Preparation

Figure 4. MVT System Restart

34 0S/360 MVT Job Management (Release 21)

e Incomplete remote -job entry (RJE) gqueue
entries will exist if processing was
halted during transmission to the
central system. Logical tracks
assigned to such entries will be
returned to the free-track queue.

e Enqueued input, output, hold, ASB, and
RJE queue entries may exist; they
remain in the queues, and are processed
normally when the appropriate system
tasks are established.

e Dequeued input gqueue entries represent
jobs that have been selected for
initiation, but that have not been
processed by the Job Termination
routine. If such a job can be
restarted, the System Restart routines
initiate the restart; if the job cannot
be restarted, the System Restart
routines enqueue the job's output queue
entries and delete its input gqueue
entry.

e Dequeued output queue entries represent
partially finished system output
"jobs". Such queue entries are
modified so that all system messages
and data sets that have not been
processed will be written by the first
eligible output writer started.

o Dequeued hold queue entries may exist
if the Queue Alter routine was
processing an entry in the hold queue,
as during execution of CANCEL, RESET
and RELEASE commands. The System
Restart routines re-enqueue such
entries in the hold queue.

e Decueued ASB queue entries represent
jobs that have been processed by the
ASB Input Stream Processor routine.
Such entries are re-enqueued in the ASB
queue, and any input or output queue
entries for the job are deleted.

e Dequeued RJE queue entries represent
jobs that are being processed by the
RJE reader, or that have been processed
by the RJE reader. Such entries are
re-enqueued on the RJE queue. Any
input or output queue entries
associated with them are treated
normally.

Table Construction

The operator indicates that the system is
being restarted (that the queue data set is
in the proper format) by omitting the "F"
parameter from the SET command. When
module IEFSD055 has opened the queue data
set (see "Initializing the Queue Data
Set"), it passes control to the Table
Construction routine, which begins the
restart process.

The Table Construction routine (module
IEFSD300) obtains main storage for the
system restart work area (Figure 5), reads
the master QCR into main storage, and
obtains main storage for the logical track
header table (table A), the
top-of-queue-pointer table (table B), and
the queue entry pointer table (table C).

Table A (see Figure 6) is constructed
with an entry for each logical track in the
queue data set. As tracks are released to
the free-track queue, and as queue entries
are processed, the System Restart routines
set the corresponding table A entries to
Zero.

Table B is simply a list of pointers,
and is therefore not shown. The table
enables the System Restart routines to find
the first entry in each queue without
having to re-read the QCR.

Table C (also shown in Figure 6) is
constructed as queue entries are processed.
It is used to find the SCD in entries that
have corresponding system output queue
entries, and enables the System Restart
routines to read the SCDs in order by
direct access storage address.

The Table Constructicn routine builds
table B by reading the QCRs into main
storage and extracting the top-of-queue
pointer from each QCR. It constructs table
A by reading each LTH into main storage (in
their physical sequence) and extracting the
required information from it, then converts
each 2-byte pointer (in NN format) to a
relative address within table A, using the

formula
8| (NN | +1
X+1

= relative address in table A of the LTH
where X is the number cf records per
logical track.

When tables A and B have been
constructed, the routine identifies, and
sets to zero, all table A entries
corresponding to tracks in the free-track
queue. The master QCR furnishes a pointer
to the first track; when the corresponding
table A entry is found, its pointer to the
next logical track assigned is extracted,
and the entry is set to zero. If the
pointer is zero, the entry corresponds to
the last track in the free-track queue.

Table A entries corresponding to tracks
assigned to enqueued input queue entries,
hold queue entries, output queue entries,
ASB queue entries and RJE queue entries are
set to zero in a similar manner. Table B
furnishes the starting point. When the
input, hold, ASB, and RJE queues are
processed, an additional step is performed;

Part 1: Initialization and Restart 35

the first-logical-track-assigned pointer
for each entry is converted to a relative
address in table C, and stored at that
location.

RJE
Ind

Addr of Param List for IEFSD055 Status Indicators

Address of Table B or Address of

Purge Queue Address Interp. Jobnames Table

Address of Table C or Address of

Init. Jobnames Table Address of Table A

MBBCCHHR Returned After Conversion

36

~ Purge Queue A

352

TL Buffer Area: 2 Buffers of 176 Bytes Each ’ﬁ:
72
~L . B
—~ Register Save Area o~
4
Reserved
4
Reserved
72
j; ECB/IOB o
72
= E -
CB/IOB -

Figure 5. System Restart Work Area

36 O0S/360 MVT Job Management (Release 21)

When this processing has been completed,
table A contains entries corresponding to
the following kinds of queue entries:

Incomplete input queue entries.
Incomplete ASB queue entries.
Incomplete RJE queue entries.
Incomplete output queue entries.
Dequeued input queue entries.
Dequeued hold queue entries.
Dequeued ASB queue entries.
Dequeued RJE queue entries.
Dequeued output queue entries.

In addition, the construction of table C
has been started; it contains an entry
corresponding to the first logical track
assigned to each enqueued input, hold, ASB,
and RJE queue entry.

Purge Queue Construction

The storage occupied by table B is then
released, and control is passed to the
Purge Queue Construction routine (module
IEFSD301), which obtains main storage for
the jobnames table (see Figure 6), then
scans table A to identify the remaining
queue entries by inspecting the queue and
status fields of each table A entry.

Incomplete Input Queue Entries

The relative address in table A of the
first logical track assigned to the queue
entry is divided by two, which converts it
from a relative address in table A to a
relative address in table C. The resulting
address is stored in table C, and the table
A entries corresponding to the tracks
assigned to the queue entry are marked
"tested."

Incomplete Output Queue Entries

No corresponding entry is made in table C,
but the table A entries are marked
"tested."

Incomplete ASB and RJE Queue Entries

The relative address in table A of the
first logical track assigned to the queue
entry is divided by two, which converts it
from a relative address in table A to a
relative address in table C. The resulting
address is stored in table C, and the table
A entries corresponding to the tracks
assigned to the queue entry are marked
"tested."

Pointer to First 2 Pointer To Next 2 Pointer to Next 2 Qu ! Job !
Logical Track Assigned Logical Track Assigned Entry in This Queue eue Status
LTH Table (Table A) Entry: One Entry per LTH
Queue Field: 1 = Hold Queue Job Status Field: 1 = Canceled
2 = ASB Queue 2 = Priority
3-38 = Output Queues 4 = Enqueued
39 =RJE Queue 16 =RJE with enqueued
40-54 = Input Queues input Queue entry
55-75 = Reserved
2 1 1 -\
NN of First Ones if Ones if First Logical Track
Logical Track Init Interp Assigned Entry
TTR of SCD 3 Zero | SCD Entry > I?ol:?::r F}r:ge
(Table C)
NN of First 2 ! X'02 or | ASB Entry (X'02')
Logical Track Zero X104 RIE Enfry (X104 J
~N
4
Table Length
4
Number of Names > Jobnames
Table
L
:lj Names (8-bytes each) CI./ _J
3 N
Job Name
1 . 2 No. of 1
Op NN. of First Records
Code Logical Track Used >- Table D
2 No. of 1 1
Link to Next Tracks in Type=39
Track in this entry Entry
1 1 . 2
Status=4 Priority Link to Next
Queue Entry _J

Figure 6. System Restart Tables

Part 1: Initialization and Restart 37

Dequeued Input Queue Entries

These entries are enqueued in the purge
queue, with priority 14. The purge QCR is
maintained in main storage, and the enqueue
function is performed in module IEFSD301.
When the entry has been enqueued, the
relative address in table A of the first
logical track assigned to the entry is
divided by two to convert it to a relative
address in table C, and the result is
stored in table C. All table A entries
corresponding to logical tracks assigned to
the queue entry are set to zero.

Dequeued Hold Queue Entries

The procedure used is the same as that used
for dequeued input queue entries.

Dequeued ASB and RJE Queue Entries

The relative address of the entry's first
logical track header record is placed in
Table C; a hexadecimal 02 (ASB) or 04 (RJE)
is placed in the status field of the Table
C entry, and the entry is enqueued in the
purge queue at priority 14.

Dequeued Output Queue Entries

The procedure used is the same as that used
for dequeued input queue entries, except
that no table C entry is made.

When processing of table A has been
completed, the pointers in table C are
converted to NN format, with the following
formula:

Pointers from
Table C -1|(X+1) +1=NN
m

where X is the number of records per
logical track.

All table A entries have been set to
zero, except those entries that correspond
to the logical tracks assigned to
incomplete input, output, ASB, and RJE
queue entries. Table C now contains a
pointer (in NN format) to each incomplete,
enqueued, and dequeued input queue entry,
to each incomplete and dequeued ASB and RJE
queue entry, and to each enqueued and
dequeued hold queue entry. The purge gqueue
now contains all dequeued input, output,
hold, AsB, and RJE queue entries, enqueued
with priority 14.

Control is now passed to module
IEFSD302, which builds the jobnames table,
and updates SCDs as required. The routine
scans table C, and processes the non-zero
entries as follows.

38 0S/360 MVT Job Management (Release 21)

Incomplete Input Queue Entires

The pointer from table C is converted to
MBBCCHHR format and the LTH is read into
main storage. The job name is extracted
from the LTH and placed in the first
available slot in the interpreter jobnames
table.

Enqueued and Dequeued Input Queue Entries

The pointer from table C is increased by 1
(to obtain the NN of the JCT) and is
converted to MBBCCHHR format. The JCT is
read into main storage. The address (in
TTR format) of the SCD is extracted and
placed in table C, replacing the pointer to
the first logical track assigned to the
queue entry.

Dequeued Input Queue Entries

If the table C entry represents an entry
that has been dequeued from the input
queue, an additional step is performed:
the job name is extracted from the JCT and
placed in the first available location in
the initiator jobnames table.

Dequeued RJE Queue Entries

The entry's logical track header is placed
in table D. When jobnames table
construction is complete, the jobname of
the RJE entry is compared to the
interpreter names in the jobnames table; if
a match is found, the name is removed from
the jobnames table, and a switch is set to
indicate that the input queue entry
associated with the RJE queue entry has not
been enqueued.

SCD Processing

Module IEFSD302 sorts the SCD pointers in
table C (which are in TTR form) into
ascending order, then uses them to read
each SCD into main storage. An SCD is
created by an interpreter and included in
each input queue entry; it points to the
output queue entries required for the job,
and contains information from the QMPA used
to build the queue entries. When an
interpreter enqueues an input queue entry,
all records required for the output queue
entries have been assigned to them (except
for the message class queue entry, which
will require space for initiator messages);
the SCD correctly reflects the status of
the output queue entries while the entry is
in the input queue. Therefore, if the SCD
read into main storage was obtained from an
enqueued input queue entry, the SCD needs
no further processing. It is, however,

used as a source of information; its
pointers to the first logical track
assigned to the output queue entries for
the job are used to find the corresponding
table A entries, which are then set to
zero.

If, however, the entry from which the
SCD was obtained has been dequeued, the SCD
may not reflect the status of the output
queue entry for the message class. When an
input queue entry is dequeued by an
initiator, information is extracted from
the message class slot of the SCD and used
to build a OMPA, and to assign additional
records to the message class entry as they
are needed. The SCD, however, is not
updated to reflect the additional
assignments, and therefore it contains
obsolete information about the status of
the message class entry.

In addition, since the number of records
assigned (within a logical track) is not
written into the LTH until the next logical
track is assigned, the LTH of the last
logical track assigned may also contain
obsolete information. The number of
records actually assigned in a logical
track can be determined only from the QMPA
used to build the entry, and when the
system is being restarted, that QMPA is not
available.

When the SCD is obtained from a dequeued
input queue entry, it must be updated to
accurately reflect the status of the output
queue entry for the message class. The
table A entries corresponding to the tracks
assigned to the output queue entries are
scanned; if they are zero, it means that
the output queue entries have been
enqueued, and the SCD slots corresponding
to any enqueued output queue entries are
set to zero.

If the table A entries corresponding to
the logical tracks assigned to the message
class output queue entry are not zero, the
LTHs and the message class slot in the SCD
must be updated. The LTH (in table A) of
the last logical track known to be assigned
is scanned. If the pointer to the next
logical track is not zero, each succeeding
LTH is scanned, until the LTH of the last
logical track actually assigned has been
found. The SCD is updated to reflect the
actual status. The table A entries
corresponding to the output queue entries
are set to zero, and the SCD is written
back into the queue.

When all SCDs have been read in and
processed, all table A entries have been
set to zero, except for those entries
corresponding to the tracks assigned to
incomplete input queue entries, and to the
incomplete output queue entries associated

with those jobs. The main storage occupied
by table C is then released, and control is
passed to module IEFSD303.

Returning Logical Tracks

Module IEFSD303 is then used to add those
logical tracks assigned to incomplete queue
entries to the free-track queue. Table A
is scanned, and an LTH is constructed for
each non-zero entry. The LTHs are chained
together and written into the queue data
set; the master QCR (passed by module
IEFSD055) is updated to reflect the
additional tracks and written to the queue
data set, the main storage occupied by
table A is released, and control is
returned to module IEFSDO055.

Module IEFSD055 moves the DEB, DCB, and
master QCR into the master scheduler
resident data area, then closes the DCB.
In the restart situation, it then passes
control to module IEFSD305.

Purge Queue Processing

Module IEFSD305 uses the WTO macro
instruction to inform the operator of the
names of any jobs represented by incomplete
input queue entries. It then scans the
purge QCR, updates the corresponding queue
entries as necessary, and re-enqueues the
entries in the appropriate queue. There
are four kinds of entries in the purge
queue; they are processed as described
below.

Dequeued Output Queue Entries

The routine reads each 176-byte record into
main storage. If the record is a system
message block (SMB), it is ignored, and the
next record is read in. If the record is a
data set block (DSB), an OBTAIN macro
instruction is used to determine whether
the data set exists. If it exists, the
next record is read from the queue entry;
if not, the DSB is set to zero (except for
the link field) and written back into the
queue data set before the next record is
read. Finally, the entry is reenqueued (by
the Queue Management Enqueue routine) in
the appropriate output queue, with a
priority of 14.

Dequeued Input Queue Entries

If the entry is a dequeued input queue
entry, the System Restart routines
determine the point at which processing
stopped, and process the entry accordingly:

Part 1: Initialization and Restart 39

e If processing stopped after a step of
the job was selected, but before it
started execution, the System Restart

output queue entries and delete the
job's input queue entry.

e If processing stopped while a step of
the job was being executed, the System
Restart routines determine whether the
job is to be restarted: If so, the
restart is initiated; if not, the
routines enqueue the job's system
output queue entries and delete its
input queue entry.

e If processing stopped while a step
(other than the last step) of the job
was being terminated, the System
Restart routines complete the
termination and re-enqueue the job's
input gqueue entry.

e If processing stopped while the last
step of the job was being terminated,
the System Restart routines complete
the termination and delete the job's
input queue entry.

The Restart Determination routine
(module IEFVSDRD) determines the point at
which the processing of the step stopped,
and either returns control to module
IFFSD305 or sets up an interface with the
Termination routine and then passes control
to it.

If processing stopped after the step was
selected but before it started executing,
the Restart Determination routine adjusts
the SMB pointer in the SCT so that it
points to the last Interpreter SMB for the
step and returns control to module IEFSD305
with a return code X'10°'.

If processing stopped while the step was
being executed or terminated, the Restart
Determination routine sets up an interface
with the by Termination routine by: .

e Testing bit 2 of the SCT step type
indicators field; if the bit is set to
one it indicates that there is system
output data in the message class, and
the Restart Determination routine
updates the SMB pointer in the SCT to
point to the first Termination SMB.
If, however, the message class contains
only operating system messages, the
routine updates the pointer so that it
points to the last Allocation SMB.

e Using the Table Breakup routine (module
IEFSD514) to read the job step TIOT
from the queue data set (where it was
stored by the initiator). If an I/O
error prevents the routine from reading

40 0S/360 MVT Job Management (Release 21)

the TIOT, control returns to module
IEFSD305 with a return code of X'0C'.

e Constructing and initializing an LCT
and setting the system restart bit in
the JCT restart switches field (if the
TIOT was read progrerly).

e Constructing a TCB for the job step.
If processing stopped while the step
was being terminated, the JCT points to
the SCT for the next step; if
processing stopped while the step was
being executed, the JCT points to the
SCT for the current step, and the
Restart Determination routine sets the
TCB ABEND flags on and sets the TCB
completion code field to X'FF3'.

When it has set up the interface, the
Restart Determination routine uses the LINK
macro instruction to pass control to the
Termination routine. The Termination
routine performs its normal processing
(except that it does not unallocate I/O
devices), then returns control to the
Restart Determination routine.

Oon the return, the Restart Determination
routine (module IEFVSDRD) tests the return
code passed to it by the Termination
routine. If the return code is X'08', it
means that processing stopped while the
step was being executed. The Termination
routine used the Restart Preparation
routine and determined that a restart is
possible, was requested, and has been
authorized by the operator. In this case,
the Restart Determination routine passes
control (and the return code), to module
IEFSD305.

If the return code passed by the
Termination routine is X'00'. it means one
of two things:

e Processing stopped while the step was
being executed, but the step is not to
be restarted.

e Processing stopped while the step
(which is not the last step of the job)
was being terminated; entry to the
Termination routine from the restart
Determination routine was "normal"™; the
Restart Preparation routine was not
executed, and step termination was
completed.

When it finds a return code of X'00',
the Restart Determination routine tests the
job failed bit in the JCT to determine
whether the job was being processed in
flush mode. If not, the bit is off, and
the Restart Determination routine passes a-
return code of X'08' to module IEFSD305.

If the job was being processed in flush
mode when processing stopped, the job
failed bit is on, and the Restart
Determination routine passes the X'00"
return code to module IEFSD305.

If the return code passed by the
Termination routine is X'04', it means that
processing stopped while the last step of
the job was being terminated. Entry to the
Termination routine from the Restart
Determination routine was a "normal" entry;
the Restart Preparation routine was not
executed, and job termination has been
completed. The Restart Determination
routine passes the X'04' return code to
module IEFSD305.

When control is returned to module
IEFSD305, the routine inspects the return
code passed to it by the Restart
Determination routine. It uses the WTO
macro instruction to inform the operator of
the job name, the step name, the procedure
step name, and the job status, then
processes the entry.

A return code of X'00® indicates the
presence of one of two conditions: Either
the step was being executed when processing
stopped (and is not to be restarted), or
the step was being terminated in flush
mode, and is not the last step of the job.
In either case, module IEFSD305 reads the
job's SCD into main storage and enqueues
the output queue entries in the appropriate
queues. Then, the routine deletes the
input queue entry.

A return code of X'04" indicates that
processing stopped while the last step of
the job was being terminated. In this
case, the Termination routine has completed
step and job termination processing, and
module IEFSD305 need only delete the job's
input queue entry.

A return code of X'08' indicates that
the job is to be restarted. 1If the step
was being executed when processing stopped,
the SCT pointer in the JCT points to the
SCT for the current step. The Restart
Preparation routine has determined that a
restart is possible, has been requested,
and has been authorized. Module IEFSD305
deletes the job name from the jobnames
table, adds it to the restart activation
jobnames table, and enqueues the job's
entry in the hold queue.

If the step was being terminated when
processing stopped, the SCT pointer in the
JCT points to the SCT for the next step.

The step has been normally terminated, and
module IEFSD305 deletes the job name from
the jobnames table and enqueues the job's
entry in the appropriate input queue at
priority 14.

A return code of X'0C' indicates that an
I/0 error prevented the TIOT Read/Write
routine from reading the job step TIOT. 1In
this case, the step could not be processed
by the Termination routine and cannot be
restarted. Module IEFSD305 reads the last
Allocation SMB, reads and verifies the
validity of each record in the SMB chain,
and updates the last wvalid SMB to point to
the first Interpreter SMB for the next
step. Then the routine reads the SCD, uses
it to enqueue the job's system output queue
entries, and deletes the input queue entry.

A return code of X'10' indicates that
processing stopped before the step started
execution. Since the job step TIOT was not
saved (if it has been constructed) the job
cannot be restarted. Module IEFSD305
updates the last Allocation SMB to point to
the first Interpreter SMB for the next
step, then reads each DSB and uses the JFCB
pointer to read a record from the queue
data set.

If the record is not a valid JFCB,
module IEFSD305 sets the DSB to zero (to
indicate that it is the last in the chain)
and writes the DSB back into the queue data
set. Next it reads the SCD and engqueues
the job's output queue entries, then
deletes the job's input queue entry.

A return code of X'14' indicates that
the system conversion routine, IECPCNVT,
located in the nucleus, has stopped the
termination processing for the job being
executed. This action occurs in the
following situation: During job
termination processing, the termination
routine in module IEFSD42Q may request the
nucleus conversion routine to change a
relative track (TTR) value to an absolute
(MBBCCHHR) value. If module IEFSDU42Q
passes an invalid TTR value (e.g., one that
is all zeros, all blanks, or not on the
SYS1.SYSJOBQE data set) to the conversion
routine, an abnormal termination occurs.
Control returns to module IEFVSDRD, which
gives the return code (X'14') to module
IEFSD305. Module IEFSD305 stops the job
and prints a message.

Dequeued RJE Queue Entries

The entry is dequeued from the purge queue
and re-enqueued on the RJE queue with a
priority of 14. If the corresponding input
queue entry has not been enqueued, the LTH
for the RJE queue entry is modified
appropriately.

Part 1: Initialization and Restart 41

Dequeued ASB Queue Entries

The entry is dequeued from the purge queue
and re-enqueued on the ASB queue with a
priority of 14.

‘Dequeued Hold Queue Entries

The entry is dequeued from the purge gqueue
and re-enqueued in the hold queue.

When the processing of the purge queue
is completed, module IEFSD305 tests the
restart activation jobnames table. If
there is at least one entry, the routine
branches to the Restart Activation routine
(module IEFVSDRA). This routine constructs
a command to start the Restart Reader. The
command, which starts the procedure
IEFREINT, may contain up to 13 jobnames
specifying jobs to be restarted. If more
than 13 jobs are to be restarted, the
routine constructs an additional START
command. When it has constructed the START
commands, the Restart Activation routine
issues the MGCR macro instruction to
schedule the execution of the commands,
then branches back to module IEFSD305.

Module IEFSD305 determines the jobs that
are to be restarted and saves the
corresponding jobnames from the initiator
jobname table (see Figure 6). The module
then 2zeros these jobname entries in the
initiator jobname table and compresses the
consolidated jobnames table (CJT), which
consists of the interpreter jobnames table
and the initiator jobnames table, to remove
the zeroed entries. The remaining names in
the CJT correspond to jobs that are not to
be restarted and whose data sets,
therefore, are to be scratched.

Module IEFSD305 then branches to the
Scratch Data Set utility (module IEFSD304)
to scratch all data sets with generated
names (except for system output data sets)
created for these jobs.

Scratching Data Sets

When module IEFSD304 is entered, it
searches the system UCBs and makes a list

42 O0S/360 MVT Job Management (Release 21)

of those corresponding to direct access
devices (except data cell drives) in the
ready state. When it has completed the
list, module IEFSD304 uses the ATTACH macro
instruction to pass control to the Scratch
Data Set Utility routine.

The scratch data set utility routine
(module IEFSD308) reads each DSCB in the
VTOC of the volume mounted on the indicated
unit. When it finds a system output data
set name, it adds a one to the user count
field in the UCB for that volume. When it
finds a system input data set name, it
compares the fourth field in the name to
each of the job names in the consolidated
jobnames table. If it finds a match, it
scratches the data set; if not, it reads
the next DSCB. When it has processed all
DSCBs in the VTOC, the Scratch Data Set
Utility routine returns control to module
IEFSD304, which continues its search of the
UCBs.

Since the scratch data set utility
processes only one device before returning
control to its caller, an ATTACH macro
instruction corresponding to each UCB in
the list must be issued. If there are six
or less UCBs in the list, the required
number of ATTACH macro instructions are
issued, followed by a WAIT macro
instruction. If however, there are more

than six UCBs in the list, six ATTACH macro

instructions (and a WAIT macro instruction)
are issued initially; the remaining tasks
are attached as ECBs are posted.

The devices are processed in an order
that optimizes channel activity. The six
initial tasks are to process one device on
each channel having a direct access device
in the ready state, in ascending order by
channel. If additional devices must be
processed, they are processed in order of
channel activity.

When all devices on the list have been
processed, control is returned to module
IEFSD055, which passes control to module
IEFQINTZ. Module IEFQINTZ releases the
region, and returns control to the Master
Scheduler IPL routine.

Part 2: Processing Input Streams

An input stream is a series of records that primarily contains job control language (JCL)
statements; it may also contain references to procedures cataloged in the procedure

library, data sets to be processed by job steps, and operator cormands.

The information

in an input stream, and the information to which the input stream refers, controls the
job processing performed by the operating system.

In order to use the information in an input stream, the operating system must read
(obtain) input stream records and then interpret them (convert them to tabular format).
The reading and interpreting functions may be performed as parts of the same system task,

or they may be performed by routines executing separate tasks.

This section descrikes

several methods of performing the reading function; the interpreting function, which is
associated with reading, is always performed by the Interpreter subroutine, and is
discussed in the "Common Elements" section of this publication.

The Reading Task

The first task that must be accomplished by
the operating system in order to process
jobs is the reading task. A reading task
is established each time an appropriate
START command is issued. The task
performed by a reader is to read input
stream records until it encounters an
end-of-data condition or a STOP command.
When the routine performing the reading
task encounters a JCL statement, it stores
the statement in an internal gueue. When
it encounters data to be used as input to a
program performing a job step, the reader
places the data on a direct access volume
and generates a DD statement to replace the
DD * statement in the input stream. There
are several ways to accomplish the reading
task:

e The Interpreter subroutine may be used
as a direct reader. In this case, both
the reading and interpreting functions
are performed as parts of the same
system task: the interpreter reads
records from the specified input
stream, converts them to tabular form,
and stores them in an input queue.

e The Automatic SYSIN Batching (ASB)
routine may be used to read the input
stream. In this case, the reading and
interpreting functions are performed as
separate tasks: the ASB routine reads
the input stream, stores the JCL
statements for several jobs in a
batching queue, and establishes a
temporary task to perform the
interpreting function.

o The Remote Job Entry (RJE) routines may
be used to read the input stream. In
this case, the RJE routines read input
stream records from remote locations,
store them in an intermediate queue,
and the Interpreter subroutine uses the
intermediate queue as its input source.

(The RJE routines are described in
detail in the RJE Program Logic
Manual.)

USING THE INTERPRETER AS A READER

When a START RDR command is issued, it .
causes the System Task Control routine to
initiate the operation of the Interpreter
Reader Control routine (module IEFIRC) in
the problem program mode. In order to
provide flexibility in the assignment of an
I/0 device to the input stream, this
routine is initiated and terminated in a
manner similar to the way a job is
processed. The initiating function is
performed by the System Task Control
routine on the basis of information
furnished by the operator in the START
command, and information contained in the
procedure library (in the RDR procedure).

The System Task Control routine (which
is described in detail in the "Command
Processing" section of this publication)
receives control via an ATTACH macro
instruction issued in the Master Scheduler
Attach routine. The System Task Control
routine builds an internal data set of JCL
statements created from the information in
the START command, then uses the
Interpreter subroutine to combine these JCL
statements with the statements in the RDR
procedure, and to convert the information
to tabular format. It uses the Initiator
subroutine, which invokes the I/0 Device
Allocation routine (see the "Common
Elements"™ section of this publication) to
assign an I/0 device to the input stream,
obtains a region, and passes control to the
Interpreter Reader Control routine via an
ATTACH macrxo instruction.

The Interpreter Reader Control routine
acquires storage for and builds the

Part 2: Processing Input Streams 43

interpreter entrance list (NEL), then uses
the LINK macro instruction to pass control
to the Interpreter subroutine. The
interpreter processes the input stream
until a STOP command is received or the
input stream is exhausted, then returns
control to the Interpreter Reader Control
routine. The Interpreter Reader Control
routine returns control to the Initiator
subroutine, which uses the Termination
routine (also described in the "Common
Elements" section of this publication) to
terminate the task.

ATTACH

POST

IEFVMB

The Initiator subroutine then returns
control to the System Task Control routine,
which frees the region and returns control
to the Master scheduler.

USING THE ASB ROUTINE AS A READER

The issuing of a START RDRA command causes

the System Task Control routine to initiate
operation of the ASB program (Figure 7) in

the same way it initiates operation of the

Interpreter Reader Control program.

From System Task
Control Routine

XCTL

Interpreter

Region | POST
Regulator '

T

|
LINK . IEFVM

Interpreter
Controller

RETURN

Note: Modules IEFVMB, IEFVMD, IEFVMF,
and [EFVMG interface with the
following Queue Management
routines, which are not shown in this
figure:

o |[EFVMB interfaces with IEFQAGST
and [EFQRMNQQ

® [EFVMD interfaces with IEFQDELQ

® |EFVMF interfaces with [IEFQMDQQ
and [EFQDELQ

o [EFVMG interfaces with IEFQRMDQQ,
IEFQMRAW, and IEFQDELQ

Figure 7. ASB Routine

44 0S/360 MVT Job Management (Release 21)

Input Stream
Processor

|__IEFVMC
| Command .
Processor

IEFVMD
XCTL
ASB
Termination

To System Task

Control Routine
ATTACH
RETURN
BRANCH
RETURN
BRANCH
RETURN

ASB Control Flow

Control is initially passed to the ASB
Initialization routine (module IEFVMA),
which acquires main storage for the ASB
work area (ASBWA), validates and saves the
values from the PARM field buffer passed by
the Initiator subroutine, uses the EXTRACT
macro instruction to access the
communications parameter area (CPA), and
initializes data set processing. (The
ASBWA is shown in Figure 8.)

The ASB Initialization routine also uses
an ATTACH macro instruction to initialize
the Interpreter Region Regulator routine
(module IEFVME), which is resident in the
link pack area. The ASB Initialization
routine passes a five-word parameter list

Offset

to the Interpreter Region Regulator
routine. The parameter list contains a
pointer to the PARM field buffer, a pointer
to the ID of the console that issued the
START command, a fullword containing the
subpool ID and the region size of the
region required for the interpreter, and
two ECBs used for communication between the
Interpreter Region Regulator routine and
the Input Stream Processor routine. The
Interpreter Region Regulator routine
immediately issues a WAIT macro instruction
using the first of the communication ECBs.
After attaching the Interpreter Region
Regulator routine, the ASB Initialization
routine passes control to the Input Stream
Processor routine via an XCTL macro
instruction.

Hex Dec
0 0 4 4

Address of PARM Field from Started Procedure Address of Console ID from START CIB
8 8 4 4

Subpool and Size of Interpreter Region Start Interpreter ECB
10 16 2 7
Interpreter Complete ECB Address of Interpreter Region Regulator TCB

18 24 4 4

Address of Communications Parameter Area (CPA) Address of Current Input Statement
20 32 4 4

Address of Procedure Library Input Buffer Address of Next Procedure Statement in Buffer
28 40 3 1 1 1
Command Authority TTR of IEFDATA JFCB Sw A SwB SwC
30 48 1 1 55
SwD SwE
L
WTO Message Buffer -~
68 104 T Command 1| Termination 1 Console 1 19
Disp Message Number ID
70 112
General Work Area
or
. 120 DDname Save Area Reserved !
80 128 4 4
Number of Spooled Data Records Reserved

88 136 4 . 4

IEFDATA DCB End-of-Volume Exit IEFDATA DCB In-Storage JFCB Exit
90 144 8

Batching Device Type
98 152 8
Name on Last Procedure's EXECUTE Statement
s 160 Stepname on Last DD Override 8
A8 168 Name on Last DD Statement 8
0 176 1 1 Number of Queue 2
B Maximum BLKSIZE Max BUFNO Reserved Number of Jobs Per Batch Tracks Available
B8 184 Number of Queue 2 Current Number 2 4
R d
Tracks Used of Jobs in Batch eserve
|Figure 8. Automatic SYSIN Batching Work Area (ASBWA) (Part 1 of 2)
Part 2: Processing Input Streams U5

Offset

Hex Dec

Cco 192
General Work Area 8
00 4
e 2 Address of IEFDATA TIOT %
DO 208 | Jg
-~ QMPA . -
FO 240 4 4
Record Buffer Address Queve TTR Pointer
F8 248 4 4
Third TTR Pointer Address of Queue Record
100 256 4 . 4
Address of Next Space in Queue Record Block Address from Compress/Decompress Parm List
108 264 Block Length from 2 2 . . 4
Comp/Decomp Parm List Reserved Serial Number for Unique DSNAME
110 272 4 4
Serial Number At Start of Current Job Address of Verb in Current JCL Statement
118 280 4 4
Address of Operand in Current JCL Statement TTR of Last DD* or DD DATA Queue Record
120 288 . 4 Reserved 4
TTR of Procedure Library Member (7094 Emulator Only)
128 296 4 2 2
’ " . DD Statement Input Stmt
Pointer to Binary SYSIN Workarea Name Length Name Length
130° 304 4 4
Address of Compression/Decompression Parameter List Address of Record to be Compressed
138 312 4 2 2
Address Where Compressed Record is to be Written Length of Rec to be Compressed Length of Output Block
140 320 Char to be 1| Compression 1 2 %
Removed Switch Reserved 1
~
148 328
L IEFRDER DCB
i | g
A8 424 | IEFPDSI DCB T
T | | g
200 512 | IEFDATA DCB
T B y
Address of JFCB
260 608 Address of. Next Entry in In=stream Procedure Directory 4 Address of In-stream Procedure Directory 4
268 616 4

Character Delimiter Value to Replace /*

Figure 8.

The Input Stream Processor routine
(module IEFVMB) reads the input stream. It
places the JCL statements in the ASB queue
in a special compressed format and writes
any system input data sets onto a direct
access volume. After the data is written,
a DD statement describing the direct access
data set is generated and written in place
of the original SYSIN DD statement in the
ASB queue. If a PROC statement is read,
the routine saves the name field in the
in-stream procedure directory (located in
the in-stream procedure work area) for the
job. 2ll JCL following the PROC statement
is then written directly to the ASB queue

46 O0S/360 MVT Job Management (Release 21)

Automatic SYSIN Batching Work Area (ASBWA)

(Part 2 of 2)

until either a PEND statement ending the
in-stream procedure is read or the next JOB
statement is read. If an EXEC statement
that contains a procedure name is read, the
routine searches the in-stream procedure
directory for the specified procedure name.
If the routine finds the procedure in the
in-stream procedure directory, the EXEC
statement is written to the ASB queue
without further processing. However, if
the procedure was not an in-stream
procedure, the Input Stream Processor
routine issues a BLDL macro instruction to
locate the procedure in the procedure
library. It then generates a special

statement identifying the procedure
(including the relative track address of
the procedure's first record in the
procedure library) and writes it in the ASB
queue immediately preceding the EXEC
statement.

Whenever the Input Stream Processor
routine encounters an unrecognizable
statement, it passes control to the Command
Processor routine (module IEFVMC) via an
XCTL macro instruction. This routine
determines whether the statement is a
command verb. If it is a command verb,
theroutine processes it according to the
disposition specified in the RDRA
procedure. If it is not a command verb, a
switch is set in the ASBWA informing the
Input Stream Processor routine of the
error. In either case, control is returned
to the Input Stream Processor routine. If
the error switch is on in the ASBWA, the
Input Stream Processor routine writes the
statement in the ASB queue for subsequent
error diagnosis by the Interpreter.

The Input Stream Processor routine and
the ASB Initialization routine use the ASB
Termination routine (module IEFVMD) to
handle both normal and error termination
conditions. This routine resets the system
resources used by the ASB routine to their
original status, and generates an error
message if termination was caused by an
error.

The input stream processing continues
until one of the following conditions
arises:

e The number of jobs specified in the
RDRA procedure has been read and placed
in the ASB queue.

e The input stream has been exhausted.

e The number of tracks allocated for the
ASB queue (specified in the RDRA
procedure) has been exhasted or a STOP
command has been encountered.

e At least one complete job has been
placed in the ASB queue and the ASB
routine ciunnot allocate more direct
access space for copying SYSIN data
sets.

When one of these conditions occurs, the
Input Stream Processor routine initiates
interpretation by issuing a POST macro
instruction for the communications ECB for
which the Interpreter Region Regulator
routine is waiting. The Input Stream
Processor routine then continues to process
one additional job before issuing a WAIT
macro instruction using the other '
communications ECB which it shares with
Interpreter Region Regulator routine.

Although the records for the additional job
are placed in the ASB queue, they are not
actually enqueued (by placing a pointer in
the QCR) until after interpretation has
been completed.

The Interpreter Region Regqgulator routine
issues a request for a main storage region
in which to execute the Interpreter
program. When such a region becomes
available, the routine passes control to
the Interpreter Controller routine (module
IEFVMF) via a LINK macro instruction.

The Interpreter Controller routine
constructs the Interpreter entrance list
(NEL). Special access methods to be used
by the Interpreter for both reading JCL
statements and finding cataloged procedures
are indicated by entries in the NEL exit
list. NEL entries are also set up to
establish communication between the
Interpreter Subroutine and the special
access method routines, which are control
sections in the Interpreter Controller
routine. After constructing the NEL, the
Interpreter Controller routine enters the
Interpreter program via an ATTACH macro
instruction and waits for Interpreter
completion.

The NEL exit list entry indicates to the
Interpreter subroutine that the ASB Queue
Reader routine (module IEFVMG) should be
entered whenever a GET is issued to obtain
input stream records. The ASB Queue Reader
routine reads and expands a compressed JCL
statement from the ASB queue. After the
expanded statement is built in the Special
Access Method Work Area (SAMWA), it is
passed to the Interpreter Subroutine for
processing. (The SAMWA is shown in Figure
9.)

When the ASB Queue Readeéer routine
encounters the special statement generated
by the Input Stream Processor routine to
indicate a cataloged procedure, the
statement is used to f£fill the procedure
name and first record TTR fields in the
SAMWA, which is shared by the ASB Queue
Reader routine and the ASB Find routine
(module IEFVMH). The ASB Queue Reader
routine then processes the next statement
in the ASB queue, which is the execute
statement for the cataloged procedure in
question. Using the NEL exit 1list entry,
the Interpreter subroutine branches to the
ASB Find routine instead of issuing a FIND
macro instruction to locate the procedure.
The ASB Find routine uses the information
in the SAMWA to return the information
normally returned to the Interpreter
subroutine after execution of a FIND macro
instruction. The special FIND macro
instruction processing removes the
relatively slow FIND operation from the
Interpreter subroutine and places it in the

Part 2: Processing Input Streams 47

Offset
Hex Dec

0 oJ_

&
4

~ QMPA
24 36 4 4
Address of Queue Record Buffer Current Queue Record TTR
2C 44 176
. :rt Current Queue Record :'1:
D 220 80
:J: JCL Statement Buffer :%ll
12C 300 4
Reserved Dequeuve ECB
134 308 8 4
Continued Address of Queue Mgmt Control Routine
13C 316 4 4
Address of Queue Mgmt Delete Routine - Address of Queue Management Unchain Routine
144 324 2 2 4
- 1/O Error Retry Count Reserved Address of Queue Management Dequeue Routine
14C 332 4 72
Track Stacking Parameter List N
194 404 ﬁ:
Queuve Management Save Area
In-Stream Procedure Name
19C 412 8 4
Continued TTR of First Record in In=-Stream Procedure
1A4 420 4 4
Address of Compression/Decompression Parameter List Address of Decompressed Record Buffer
1AC 428 i 4) ‘ 2| Length of Block Containing 2
Address of Block Containing Compressed Records Length of Decompressed Record Compressed Records
184 436 Character 1| Compression 1 Reserved for Record 2
Removed Switches Decompression Routine

Figure 9. Special Access Method Work Area

Input Stream Processor routine, which
requires much less main storage.

Upon return from the Interpreter
program, the Interpreter Controller routine
checks the return code for an I/0 error, a
'queue full' condition, or an Interpreter
ABEND.

Normally, the Queue Management routines
wait for space to become available in the
gueue when a 'queue full" condition is
encountered; however, when the ASB routine
is being used, a switch is set in the queue
management parameter area (QMPA) which
causes the Queue Management routines to
pass a return code when such a condition
arises. When the Interpreter program:
recognizes this code, it purges any input
or output queue entries created for the job
and terminates processing.

If either a ‘queue full' or I/0 error
condition was indicated to the Interpreter
Controller routine, the routine
reconstructs the job control language
statements for the job being interpreted
when the condition arose and places them:

48 0S/360 MVT Job Management (Release 21)

(SAMWA)

back in the ASB queue. If Interpreter
ABEND code was indicated, an error message
is generated by the Interpreter Controller
routine and the remaining entries in the
ASB queue are purged. The Interpreter
program is restarted after the first
occurrence of an I/0 error. In all other
cases, control is returned to the
Interpreter Region Regulator routine.

The Interpreter Region Requlator routine
normally posts the completion of its task
(using the shared communication ECB), and

' thus returns control to the Input Stream

Processor routine with the return code from
the Interpreter program. However, if a
'queue full' condition was indicated, it
issues an ENQ macro instruction to obtain
exclusive control of the no-queue-space
ECB. Next the routine clears the ECB to
remove the POST that occurred when the
interpreter purged the input and output
queue entries for the job. It then issues
a WAIT macro instruction using the
no-queueé-space ECB to allow job
terminations to free additional queue
space. When the ECB is posted, the routine
issues a DEQ to release control of the

no-queue-space ECB, acquires a new region
of main storage, and restarts the
Interperpreter Controller routine. After
completion, the routine again issues a WAIT
macro instruction using the communication
ECB.

Upon return from the Interpreter Region
Regulator routine, the Input Stream
Processor routine normally restarts the
reading of the input stream. However, if
there is no more input to be read, or if
the return code from the POST macro
instruction indicated the occurrence of an
error requiring termination, the routine
passes control to the ASB Termination
routine, which terminates the task.

ASB I/0 Exceptions

The SYSIN batching function involves the
use of four data sets. They are:

o The input stream, which is read by the
Input Stream Processor routine.

® The compressed JCL stream (ASB queue),
which is written by the Input Stream
Processor routine and read by the ASB
Queue Reader routine.

e The system input data sets, which are
written on direct access volumes by the
Input Stream Processor routine.

e The procedure library, which is read by
the Input Stream Processor routine.

Exceptional I/O conditions -- read or
write errors and space availability
problems -- are handled in most cases by
deleting all in progress queue entries and
scratching all data sets created for the
job. The Interpreter subroutine is
initiated for any jobs completed in the ASB
queue and processing is terminated after
freeing the ASB work area.

ASB Job Control Language Compression

To make efficient use of available queue
space, the ASB routine compresses JCL
statements before placing them in the ASB
queue. To perform this compression, the
Input Stream Processor passes control to
the Record Compression routine (module
IEZNCODE). The Record Compression routine
compresses statements by replacing
contiguous occurrences of a specified
character with a count field. A detailed
description of the routine can be found in
Part 6 of this publication under the
section entitled "The Interpreéter Routine:
Auxiliary Routines."

When the ASB Queue routine receives
control to access jobs in the ASB gueue, it
uses the Record Decompression routine

(module IEZDCODE) to decompress the
compressed statements. A description of
the Record Decompression routine can also
be found in the section noted above.

ASB Queue Processing

The ASB routine makes extensive use of
Queue Management routines to store
compressed JCL statements in the ASB queue
and later retrieve them for use as input to
the Interpreter program. Each job is
enqueued as a separate string of
forward-chained 176-byte queue records,
each record containing as many compressed
JCL stataments as possible. The end of a
job being retrieved from the ASB queue is
recognized by a forward pointer of all
blanks.

The Queue Management routines that are
used to accomplish the storage and
retrieval functions are described in detail
in the "Common Elements of Job Management"
section of this publication. The ways in
which Queue Management routines are used by
ASB routines are described in this section.

There are four ASB routines that use
Queue Management routines: the Input
Stream Processor routine, the ASB Queue
Reader routine, the ASB Termination
routine, and the Interpreter Controller
routine.

Input Stream Processor Routine

At the start of each job, the Input Stream
Processor routine uses the Queue Management
Assign/Start routine to initialize the QMPA
for ASB queue processing and to assign
space for three queue records. The first
two queue records are used as the beginning
of the compressed JCL chain. The third
space is used to contain a JFCB for the
system input data sets, if any are included
in the job. The queue address of the third
space is moved to the TIOT so the JFCB will
be written there when the data set is
opened.

The initial assignment of two queue
records is necessary to establish the
forward chain. A pointer to the second
record is placed in the first four bytes of
the first record before the first record is
written.

As 176-byte queue records are filled
with compressed JCL statements, the Input
Stream Processor routine uses the Queue
Management Read/Write routine to place them
on a direct access volume and assign space
for the next queue record. In order to
maintain the forward chain, the Input
Stream Processor routine stays one record
aliead of the current record being written.

Part 2: Processing Input Streams 49

When the Input Stream Processor routine
recognizes the first statement of the next
job, the forward pointer in the current
queue record to be written is set to all
blanks to indicate the end of the chain.
The routine then uses the Queue Management
Read/Write routine to place the last record
on a direct access volume and uses the
Queue Management Enqueue routine to enqueue
the job at priority seven. (All jobs are
enqueued at priority seven so that the
first job placed in the queue will be the
first job retrieved for Interpreter
processing.)

ASB Queue Reader Routine

The ASB Queue Reader routine uses the Queue
- Management Dequeue routine to access jobs
in the ASB queue. Since all jobs have the
same priority, the first job enqueued will
be the first job dequeued. Subsequent
records in the job's chain are read by the
Queue Management Read/Write routine using
the forward pointer in the previous record.

When a forward pointer of all blanks is
encountered, the ASB Queue Reader routine
uses the Queue Management Delete xoutine to
delete the job's entry from the ASB queue.
The logical tracks used by the job's entry
are returned to the free track queue, and
the ASB Queue Reader routine uses the Queue
Management Dequeue routine to access the
next job in the ASB queue.

When the ASB Queue Reader routine enters
the Queue Management Dequeue routine and
the ASB Queue is empty, a 'no-work'
condition exists. This condition results
in the insertion of an ECB in the no-work
ECB chain. (This ECB is posted when work
becomes available.) Instead of waiting for
work to become available, the ASB Queue
Reader routine uses the Queue Management
Unchain routine to remove the ECB from the
no-work ECB chain and then causes
termination of the Interpreter program.

ASB Termination Routine

If the ASB Termination routine is entered
because of an error condition, and if a job
has been partially entered in the ASB
queue, the routine uses the Queue
Management Delete routine to delete the
partially completed job from the ASB queue,
thus returning the queue space assigned to
the job to the free track queue.

Interpreter Controller Routine
The Interpreter Controller routine uses
Queue Management routines when error

conditions arise that necessitate changes
in the ASB queue.

50 0S/360 MVT Job Management (Release 21)

When the first I/0 error condition or
when a queue full condition arises, the
Interpreter Controller routine reenqueues
the current job being interpreted. Since
the forward chaining of the job's queue
records has not been changed, this returns
the job to its condition before
interpretation was initiated.

When an error arises during
interpretation which cannot be handled by
restarting the Interpreter program, the
Interpreter Controller routine use the
Queue Management Delete routine to remove
the job from the ASB queue.

If an error condition occurs that will
result in termination of the ASB routine,
the Interpreter Controller routine uses the
Queue Management Dequeue routine and the
Queue Management Delete routine to remove
all remaining jobs from the ASB queue.

ASB SYSIN Data Set Processing

Most of the initialization for the writing
of SYSIN data on direct access volumes is
accomplished in the ASB Initialization
routine. The routine does the following:

e Locates the SYSIN data set (IEFDATA)
entry in the RDRA procedure TIOT.

e Stores the queue address of the JFCB
for SYSIN data sets in the ASBWA.

e Reads the JFCB for SYSIN data sets into
the ASBWA.

e Sets bits in the UCBs pointed to in the
IEFDATA device entries in the TIOT
indicating that SYSIN data set devices,
which are not already specified as
permanently resident or reserved, are
reserved and public.

e Constructs, in the SYSIN data set JFCB
in the ASBWA, the base of a unique data
set name to be generated for SYSIN data
sets.

e Stores the blocksize and buffer number
values in the SYSIN data set JFCB in
another area of the ASBWA.

The constructed base of the unique data
set name is:

SYsddddd.Ttttttt.IV00O0.

The 'ddddd' represents a five-byte current
date field, and the 'tttttt' represents a
six-byte current time field.

The Input Stream Processor routine
performs one initialization function. It
sets up entries in the SYSIN data set DCB

that allow the Input Stream Processor
routine to process end-of-volume conditions
and that indicate processing will take
place with a JFCB which is already in main
storage (not in a queue).

Checking DD * and DD DATA Statements

When the Input Stream Processor routine
encounters a DD * or DD DATA statement, it
searches for, and checks the syntax of the
value of, the DLM parameter. If the
parameter's value is valid, the routine
stores it in the last field shown for the
ASBWA (Figure 8). Then the routine
searches for the BLKSIZE and BUFNO
subparameters of the DCB parameter, and if
present, stores them in the SYSIN data set
JFCB in the ASBWA.

If either the block size or buffer
number subparameters are not specified in
the DD statement in the input stream, the
Input Stream Processor routine checks to
see if the job step that includes the SYSIN
data set specifies the execution of a
cataloged procedure. If a cataloged
procedure is indicated, the Input Stream
Processor routine locates the procedure and
searches it for a DD statement with a
DDNAME parameter that matches the name of
the DD * or DD DATA statement in the input
stream. If such a statement is found, the
routine uses the block size and buffer
number subparameters from the cataloged
statement to take the place of whichever
subparameter is missing (or both, if both
are missing) on the input stream statement.
If a subparameter cannot be found in either
location -- the input stream statement or
the procedure statement -- the value
specified in the original JFCB entry is
restored.

The Input Stream Processor routine then
checks the validity of the BLKSIZE and
BUFNO subparamenters. Block size must be a
multiple of 80 and equal to or less than
the block size value specified originally
in the SYSIN data set JFCB. The buffer
number must be equal to or less than its
originally specified value.

Processing DD * and DD DATA Statements

When the Input Stream Processor routine
encounters « DD * or DD DATA statement, it
saves the address of the queue location
where the next record is to be written and
the address where the next record will be
placed in the current buffer. The DD
statement and any continuation statements
are then compressed and placed in the queue
record and any subsequently needed queue
records.

If an error is detected after processing
the DD * or DD DATA statement, the SYSIN
data set in the input stream is flushed, a
/% statement is placed in the queue record
following the DD * or DD DATA entry, and
processing of the job's input stream
records continues. The Interpreter
subroutine diagnoses the error and prints
the appropriate programmer message.

If no errors are detected in the DD * or
DD DATA statement, the Input Stream
Processor routine obtains the queue address
that was saved when the DD* or DD DATA
statement was encountered and sets the
address of the next record in the block to
point to the location where the DD
statement was written. This procedure
removes the DD * or DD DATA statement from
the queue and allows a genexrated DD
statement describing the direct access
volume data set to be rut in its place.

The Input Stream Prccessor routine then
constructs the remaining portion of the
unique data set name for the SYSIN data
set, as follows:

represents the current job
name. This field may be from one to eight
bytes long. The '"nnnnnnn' represents a
seven-byte generated serial number, which,
beginning at one, is increased by one for
each SYSIN data set written on a direct
access volume. The format of the complete
unique data set name is:

Using the UCBs pointed to in the IEFDATA
device entries in the TIOT, the Input
Stream Processor routine attempts to
allocate space for the SYSIN data set. If
the attempt is unsuccessful, the routine
issues a message to the operator and waits
for one minute to allow space to. become
available through job terminations. After
completing the wait, the Input Stream
Processor routine checks the stop RDRA ECB
and terminates operation if so requested by
the operator. If termination is not
requested, the allocation procedure is
repeated until the necessary space is
acquired, after which the data set is
opened and the input stream data records
are written on the direct access volume.

The Input Stream Processoxr routine then
completes the generated DD statement, using
the device entries in the TIOT to obtain
the number of volumes written to and their
volume serial numbers. The routine then
compresses the DD statement in the current
queue record and continues the processing
of the next input stream record.

Part 2: Processing Input Streams 51

Restarting Jobs

The execution of a job step may be
terminated as a result of a CANCEL command,
because the step's timer interval expired,
because of a program error, or as a result
of a system ABEND. If the job is eligible
for restart, and if the operator authorizes
the restart, the step will be restarted
automatically by the operating system.
Otherwise, the programmer may request a
deferred restart by coding the RESTART
parameter on the JOB statement, adding a
SYSCHK DD statement, and resubmitting the
job.

Much of the processing required before a
job can be restarted automatically is
performed in the Termination routine, in
the initiator, and in the System Restart
routines. This processing results in the
job's input queue entry having been
re-enqueued in the hold queue, and in the
MGCR macro instruction® having been issued
to schedule the execution of the START
Restart Reader command.

If the restart is a deferred restart,
the job is resubmitted through the input
stream. In the case of a deferred step
restart, the interpreter simply points the
JCT to the SCT of the step to be restarted
(instead of pointing it to the first step);
the job is then initiated normally,
starting with the restart step. In the
case of a deferred checkpoint restart,
however, the interpreter generates an EXEC
statement and uses it in conjunction with
the SYSCHK DD statement submitted by the
programmer to create an extra step. The
extra step is the DSDR Processing step; it
is executed first (by the DSDR Processing
routine), and its SCT points to the step to
be restarted from a checkpoint.

This section discusses the processing
performed in the Restart Reader routine,
and also discusses the processing performed
in the Data Set Descriptor Record (DSDR)
Processing routine, which is executed as
the first step of the restarting job when a
checkpoint restart is to be performed.

THE RESTART READER

When the Command Scheduling routine (SVC34)
encounters a START command, it posts the
Master Scheduler. The Master Scheduler
passes control (via the ATTACH macro
instruction) to the System Task Control
routine. The System Task Control routine
passes control to the Initiator subroutine,

1The MGCR macro instruction issues SVC34.

52 0S/360 MVT Job Management (Release 21)

which attaches the system program specified
via the command.

If the command is a START Restart Reader
(s IEFREINT,,, jobname,...jobname), the
program that gains control is the Restart
Reader routine.

A START Restart Reader command is
constructed and issued when a step is to be
restarted automatically: as a result of an
abnormal termination during the execution
of the step, or as a result of system
restart processing. When the Restart
Reader (module IEFVRRC) is entered, the
job's input queue entry has been partially
processed by an initiator while starting
the job, and has been re-enqueued in the
hold queue. The function of the Restart
Reader is to restore the queue entry to its
state before the job was initiated, and if
a checkpoint restart is planned, to add the
control blocks and tables that will cause
the DSDR processing routine to be executed
as the first step.

The Restart Reader constructs a QMPA,
extracts a job name from the restart
activation jobnames tables, and uses the
Queue Management Dequeue routine to dequeue
the job from the hold queue and read the
JCT into main storage. The Dequeue routine
returns control to the Restart Reader,
which uses the XCTL macro instruction to
pass control to a linkage routine. The
linkage routine (module IEFRCLN1l) passes
control to the Interpreter Initialization
routine via a LINK macro instruction.

The interface between the Restart Reader
and the Interpreter is shown in Figure 10.

The Interpreter is used to re-read the
original JCL, and to create a queue entry
that duplicates the original queue entry.
The Interpreter does not, however, actually
enqueue the entry.

The original JCL is available, in
condensed form, in the SMBs created for the
job when its input stream was first
processed. The Interpreter uses a special
access method, the SMB Reader, to read the
job's SMBs and reconstruct the JCL.

The Restart SVC Issuing routine (module
IEFRSTRT) is loaded into main storage via
the interpreter access method exit. When
the Interpreter Get routine issues the GET
macro instruction, the Restart SVC Issuing
routine is entered at entry point IEFSMR
and issues the restart SVC (SVC 52) to
execute the SMB Reader.

When it is entered for the first time,
the SMB Reader constructs a QMPA, reads in
the job's SCTs, and stores the address of
the end of .the SMB chain.

(ENTRY)

Interpreter
Entrance List

Option List

Y Do Not Enqueue
Option List /
IEFVRCC Pointer L/‘
Restart >
Reader ECB Pointer
A Restart Reader CSCB
XCTL ¢ JCL Pointer
w v
IEFRCLN1 IEFRCLNZ QMPA Pointer Stop ECB
Linkage Checkpoint
Routine Restart JCT Pointer _/_
Linkage Routine
LNK A X — JCT of
Exit List Dequeued Job

and

y RETURN

IEFVSMBR

SMB
Reader

Figure 10.

Each time the SMB Reader is entered
(including the first time) it reads and
inspects an SMB. If the SMB contains a
message, a DSB entry, or a procedure
library statement, the routine ignores it
and reads the next SMB in the chain. If
the SMB contains a JCL statement, the
routine expands it (except that it blanks
out the asterisk in column 3 of a converted
comments statement), and replaces DD#* and
DD DATA statements with DD DUMMY
statements. The routine places the
expanded JCL statement in a buffer and
returns control to the Restart SVC Issuing
routine; the Restart SVC Issuing routine
returns control to the Interpreter. When
the routine reaches the end of the SMB
chain, it uses the DCB end-of-data exit.

The original JCL is reprocessed by the
interpreter. It constructs the approriate
tables, and when processing is complete,
the interpreter returns control to the
Restart Reader, and passes it the addresses
of the newly created JCT and of the QMPA
used in writing the tables into the work
queue data set.

and - .
RETURN y LINK and RETURN Pointer
Interpreter
A
GET
4
|EFRSTRT
Restart SVC
Issuing Routine
ASVC 52 Exit List

QMPA Used to
Dequeue Job

Access Method
Exit

f

Interface Between the Restart Reader and the Interpreter

The restart reader uses the SCT pointer
in the o0ld JCT to read the SCT for the step
to be restarted into main storage, then
extracts and stores the step name. Next,
it reads the newly created SCTs in order,
until it finds the one that corresponds to
the step to be restarted.

When it finds the newly created SCT that
corresponds to the ster to be restarted,
the Restart Reader updates the original SCT
with the information from the new SCT
(except for the queue addresses and
dependency codes) and writes the old SCT
back into the queue data set.

Using the queue addresses in the old and
new SCTs, the Restart Reader updates the
other tables for the step to be restarted,
writes them back into the queue data set,
and then deletes the newly created input
and system output queue entries.

The job's queue is now exactly as it was
when the step was originally selected for
initiation.

Part 2: Processing Input Streams 53

If the job is to be restarted from a
checkpoint, however, an additional job step
(the DSDR Processor) will be executed to
prepare for the checkpoint restart, and
additional tables must therefore be added
to the job's input queue entry. The
Restart Reader creates the appropriate JCL
statements in main storage. It passes
control to a linkage routine (module
IEFRCLN2), which passes control to the
Interpreter (using the same interface used
by the System Task Control routine).

When the Interpreter returns control to
the Restart Reader, it passes the addresses
of the JCT and the QMPA it used. The
Restart Reader extracts the address of the
SCT from the JCT, and updates the
restarting job's JCT to point to the SCT of
the DSDR Processor step. It adjusts the
SCT of the DSDR Processor step to point to
the SCT of the step to be restarted, then
deletes the system output queue entries
created by the interpreter for the DSDR
step.

When the queue entry has been enqueued,
the Restart Reader determines whether there
are any unprocessed jobs specified in the
restart activation jobnames table. If so,
it processes each remaining job. If there
are no unprocessed jobs, the Restart Reader
returns control to the initiator, which
uses the Termination routine to terminate
the Restart Reader, then returns control to
the System Task Control routine.

RESTARTING THE STEP

If the restart is a step restart, no
further special processing is required.
When the Restart Reader has completed its
processing, the job's input queue entry is
in the same form it was in when. the step to
be restarted was ready to be selected for
processing by an initiator for the first
time. When the initiator dequeues the job,
it will select the restart step as the
first step (because the JCT points to the
SCT for the restart step) and normal
processing will continue.

If the restart is a checkpoint restart,
additional processing must be performed.
The job's queue entry is in the same form
as it was when the step was ready to be
initiated (except that the DSDR Processing
step has been inserted and will be selected
first) but processing will resume at a
checkpoint instead of at the beginning of
the step. Thus, the queue entry must be
made to appear as it did when the
checkpoint was taken.

The information that enables the queue

entry to be updated is saved when the
checkpoint is taken. The DSDR Processing

54 0S/360 MVT Job Management (Release 21)

routine is initiated in place of the
restart step; it updates the queue entry
from the information in the checkpoint
record, then changes the name of the
program specified to execute the restart
step to IEFRSTRT. IEFRSTRT, a program that
issues SVC 521, is thus executed when the
restart step is initiated.

When the DSDR Processing routine
(IEFDSDRP) is entered, it finds the
initiator's QMPA, reads the JCT to
determine the type of restart to be
performed, and obtains the JFCB for the
checkpoint data set. If a
programmer-deferred restart is to be
performed, the DSDR Processing step JFCB is
the proper JFCB; if an automatic restart is
to be performed, the proper JFCB is the one
created for the restart step.

The DSDR Processing routine constructs a
DCB for the checkpoint data set, opens it,
then reads the SCT for the restart step.

It changes the program name in the SCT for
the restart step to IEFRSTRT, and
determines the number of SIOTs in the
restart step.

The routine uses the number of SIOTs to
calculate the size of the SIOT Processing
table (SIOP), which is uses to reduce the
number of accesses to the queue data set
during DSDR processing. The SIOP has a
15-byte entry for each SIOT; each entry
(constructed when the SIOT is read)
contains the addresses of the SIOT and its
associated JFCB, the ddname, and a byte
used to indicate whether a matching DSDR
has been found.

When the routine has performed the
processing described above, it reads the
first SIOT and constructs an SIOP entry,
then reads the checkpoint data set header
record and uses the information it contains
to calculate the beginning addresses and
lengths of the area in each storage
hierarchy allocated to the restart step.
This information is stored in the SCT and
used in obtaining a region of main storage
when the restart step is initiated.

Next, the routine begins the actual DSDR
processing. It reads a DSDR, and attempts
to match it with an entry in the SIOP table
by comparing ddnames. If no match is
found, the routine reads the next SIOT,
constructs an SIOP entry, and checks for a
match. This process is repeated each time
the routine reads a new DSDR. When it
finds a match, the routine checks for a
blank ddname. The SIOTs (and corresponding

1For a discussion of SVC 52 (Restart) and
SVC 63 (Checkpoint), see the MVT
Supervisor PLM.

DSDRs) for all but the first part of a
concatenated data set have blank names;
when a blank ddname is encountered, the
routine checks the preceding SIOP entry,
and only if it has been matched is there a
match on the current DSDR.

If the DSDR corresponds to a JFCB
(rather than to a GDG bias count table),
the routine reads the corresponding JFCB
and overlays all non-volume information
with the information in the DSDR, except in
the following cases:

e If the DSDR corresponds to a DD DUMMY
statement, it is ignored; processing
continue with the next DSDR.

e If the GDG All bit is on, or if the
data set is a system input or system
output data set and a deferred restart
is being performed, the dsname in the
JFCB is retained as well as the volume
information. The remaining DSDRs

associated with a GDG are not
processed.

o If the GDG Single bit is on in the
DSDR, it is turned off in the SIOT.
The DSDR is otherwise processed
normally.

If the DSDR corresponds to a GDG bias
count table, and if the restart is a
programmer-deferred restart, the
corresponding GDG bias count table is
overlaid by the DSDR. If the restart is an
automatic restart, the records are not
processed.

Finally, the DSDR Processing routine
reads the first core image record (CIR),
and, if the checkpoint data set is on a
direct access device, issues the NOTE macro
instruction and closes the data set. The
routine then writes out the updated JCT,
SCT, and SCTX, then returns control to the
supervisor.

Part 2: Processing Input Streams 55

56 0S/360 MVT Job Managerﬁent (Release 21)

Part 3: Initiating Tasks

The Initiator subroutine is used to initiate both system tasks and job step tasks. In
order to initiate a task, the initiator retrieves job control information about the task

and reserves system resources for the use of the task.
are completed, the initiator passes control to the task.

After the reserxrvations for a task
When a task has terminated, the

Termination routine of the initiator releases the task's system resources and returns

control to the System Task Control routine.

N

Initiating System Tasks

When the System Task Control routine is
processing a starting system task, it uses
the initiator as a subroutine to continue
the processing. The Initiator Control
routine (module IEEVICTL) provides an
interface between the System Task Control
routine and the Initiator subroutine by
passing the JCT and CSCB for the starting
task to the initiator. The Initiator
subroutine performs region and I/O device
allocation, attaches the program that
executes the starting task, performs
termination functions after execution, and
returns control to the System Task Control
routine.

Initiating Job Step Tasks

If a START command specifies an initiator,
the Initiator subroutine is being invoked
to initiate a job step task. In response
to the START command specifying the
initiator, the Initiator Control routine
(module IEEVICTL) serves as the interface
between the System Task Control routine and
the Initiator subroutine by obtaining
storage for and building the initiator
entrance list (IEL), the initiator options
list, and the initiator exit list (see
Appendix A: Tables and Work Areas for a
detailed description of these lists). Then
the Initiator Control routine passes
control to the initiator. The initiator
selects one job at a time for processing
from the input queues. Each step of a job
is processed in turn, and when the last
~step of a job has ended, the initiator
selects another job. This process
continues as long as there are jobs in any
of the input queues associated with the
initiator or until performance of the

initiator is stopped by operator command.
The Initiator subroutine terminates the
task and finally returns control to the
System Task Control routine.

GROUPING INITIATORS

Each initiator is capable of selecting jobs
from up to eight of the 15 input queues.
The START command, or the PARM field of the
EXEC statement in the specified initiator
procedure, specifies which of the input
queues are to be associated with an
initiating task. If several START commands
are issued, and each specifies the same
initiator procedure, a corresponding number
of initiators may be started that will
process jobs from the same set of input
queues.

When this occurs, the initiators are
identified as a group by the procedure name
used in the START commands. Members may be
added to the group by issuing additional
START commands; the size of the group may
be reduced by issuing STOP commands, and
the set of queues associated with the group
may be changed by issuing MODIFY commands.

A group may also be defined by using the
identifier parameter in the START command.
If this is done, the group consists of
those initiators with the same procedure
name that share an identifier; it is
affected by START, STOP, and MODIFY
commands containing that identifier.

Communication among the initiators in a
group is maintained with the aid of a group
control block (GCB). The GCB, which is
shown in Figure 11, is constructed by the
first member of the group to be .
established. It is added to a chain of
GCBs, where it remains until the last
member of the group stops.

Part 3: Initiating Tasks 57

Entry Length Reserved

Pointer to Next GCB in Chain

Procname

Identifier

Member Count Stop Count Modify Count Reserved

1 1 1 1

Pointer to Command Input Buffer

Figure 11. Group Control Block (GCB)

Initiator Functions

The initiator and its subroutines perform
the following functions:

58

e Job Selection: When the System Task

Control routine uses the initiator as a
subroutine to initiate a system task,
the initiator continues processing of
the starting system task. However, if
the initiator receives control to
initiate a job step task, it scans the
ECB list to find the first of its
queues that contains an entry. If
necessary, it waits until an entry
becomes available, then dequeues a job
and prepares to process the job.

Region Management: The initiator
determines the size of the region

0S/360 MVT Job Management (Release 21)

required by each task, frees the
current region, and obtains a new one
of the proper size.

e I/0 Device Allocation: The initiator
uses the I/0 Device Allocation routine
(as a subroutine) to check EXEC
statement condition codes and to
allocate I/0 devices to tasks. The I/O
Device Allocation routine is described
in Part 6 of this publication.

.

e Attaching Tasks: The initiator gathers
information needed by the supervisor to
run the task, and transmits this
information via the ATTACH macro
instruction. Control is passed to the
first program of the task; at
termination, the supervisor returns
control to the Initiator Attach
routine.

e Terminating Tasks: The initiator uses
the Termination routine (as a
subroutine) to release the I/O devices
that were allocated to the task, to
direct the disposition of data sets
used or created by the task, and to
check JOB statement condition codes.
If the initiator is terminating a job
step task and the terminating step is
the last step of a job, the initiator
uses the Queue Management routines to
enqueue the job's system output queue
entries, and to delete the job's entry
from the input queue. The Termination
routine is described in Part 6 of this
publication.

Figure 12 shows the flow of control
among the modules of the initiator and
indicates the sequence in which the
functions are performed. In Figure 12, the
modules are grouped into load modules.

|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
l
l
|
|
|
|
|
|
!

Normal

IFigure

GENERAL NOTE:

IEFSDPPT

IEFSD514 “IEFSD104

Program Prop-~
erties Table

IEFDSOCR IEFDSOWR

DSO Environ-
ment Check

IEFSD102

Table
Breakup

Post-Attach

Note 1: |EFIIC is attached from IEFSD263, which receives
control from the System Task Control routine,
Note 2: Identifiers outside shaded blocks are load module

names,

Note 3: Control Flow among the modules of the 1/0O

Device Allocation routine is shown in Chart 12,

IEFDSOAL

I IEFIIC IEFSD060
| / i : ¢ Modules IEFSD 161, IEFSD162, and IEFSD514 interface
Note | [EFIIC TEFSD 160 MODIFY with Queue Management routines as follows:
ENTRY I > interf Command o IEFSD161 interfaces with IEFQMDQQ and
J i 1 Gortral Initialization [T IEFQMRAW
.y [o IEFSD162 interfaces with IEFQMRAW
I, o |EFSD514 interfaces with IEFQAGST and
i From IEEVICTL IEFSD061 IEFQMRAW
l e S
| D - IEFSD161 IEFSD 166
! Wait for Work Job Selection |~ Job Deletion [
IEFSD 105 a i
2 | — K 4
| iersp105 | \EFVSDRA)
Wait Restart

l ~ Activation
l |EFSD 168
] Job . Terminati o E

Link Pack Area I Suspension ermination
| IEFSD101 IEFSD 164
| .
1 Dettarmm'e Task Delete
I Region Size °

Allocation
Interface

I
l
l Step cannot

be run

Step to be run|
I

IEFSD263

IEFSD263

1€l 1y |

Job Step

Attach

IEFSD514

Table
: Breakup

1/O Device
Allocation

|EFWDO000 Note

1/0 Device
Allocation
(Load 3) .

Allocation
(Load 2)

12. Initiator Load Modules and Control

Flow

Part 3: Initiating Tasks 59

Initializing the Initiator

The Initiator Initialization routine
(module IEFSD160) is entered under three
circumstances:

e Tt is entered when the Initiator
Control routine (module IEEVICTL)
issues an XCTL macro instruction to use
the initiator as a subroutine.

e It is entered when the Initiator
Interface Control routine (module
IEFIIC) issues an XCTL macro
instruction after receiving control
from the System Task Control routine in
response to a START command that
specifies an initiator.

o It is entered when the Initiator Job
Selection routine issues an XCTL macro
instruction in response to a MODIFY
command. The processing performed in
this case is described in the section
"Processing the START and MODIFY
Commands."

When the Initiator Initialization
routine is entered under the first
circumstance, the Initiator subroutine is
being invoked to initiate a system task, a
job that was started via a START command,
or a TSO task entered from a TSO terminal.
(For a description of the TSO Control
Program, see the TSO Control Program PLM.)
The Initialization routine is passed the
JCT for the task and, therefore, does not
dequeue a job from the input queue, process
the STOP or MODIFY commands, nor build an
ECB list to dequeue another job.

When the Initiator Initialization
routine is entered under the second
circumstance, the Initiator subroutine is
being invoked to initiate a job step task
that is not specified in a START command.
In this case, the initiator must select the
job from the input queue.

The routine is passed an initiator
entrance list (IEL), an initiator options
list, and an initiator exit list. The
routine determines the processing to be
performed from the information in the
lists. The routine performs a syntax check
on the class names, force priorities, and
limit priority in the START command. If no
specification was made in the command, the
routine performs the syntax check on the
PARM field of the Initiator Procedure EXEC

60 0S/360 MVT Job Management (Release 21)

statement. If it finds a syntax error, the
routine returns control to the System Task
Control routine, and the Initiating Task is
terminated. If no error is found, the
routine proceeds with the initialization:

e It obtains main storage from subpool
253 for the linkage control table
(LCT), for a two-level register save
area, and for queue manager parameter
areas (QMPAs) for the message class and
input queues.

e It places a pointer to the Track
Stacking Parameter List into each QMPA.

e It copies the number-of-buffers
specification from the Master Scheduler
Resident Data Area into the Track
Stacking Parameter Area.

e It initializes the LCT with the QMPA
pointers, UCB List pointer, the
initiator options from the initiator
options list, the address of the
initiator exit list, the addresses of
the JCT and the CSCB if the initiator
is being used as a subroutine to
process a system task, and the return
address to the System Task Control
routine.

The following processing takes place
only when the Initiator subroutine is
initiating jobs from the input queues:

e It inputs the force priorities, limit
priority, and the priority at which the
initiator was attached to initiate a
job step task, in the LCT.

e It obtains main storage from subpool
253 for the Initiator ECB List (see
Figure 14).

e It constructs the ECB List, setting the
post bit on in each ECB.

e Tt scans the chain of Group Control
Blocks. If no GCB in the chain
contains the initiator procedure name,
the routine constructs and initializes
a GCB and adds it to the chain. If a
GCB exists for the group, the routine
increments the member count by one.

Finally, the Initiator Initialization
routine places a pointer to the ECB List in
the LCT, places a pointer to the LCT in
General Register 1, and passes control to
the Job Selection routine.

Selecting Jobs

The process of job selection takes place
only if the initiator receives control to
initiate a job step task that is not
specified in a START command.

The process of job selection includes
the following functions:

e Looking for work by scanning the
initiator's ECB list for an indication
that a queue entry is available.

e Waiting for work, if there are no queue
entries available.

e Dequeuing a job from the first queue on
the initiator's list that contains an
entry.

e Determining whether direct system
output (DSO) processing has been
initiated for any classes in which the
job has data sets, assigning direct
system output control blocks (DSOCBS)
as required, and constructing a QMPA
for the system output messages that
pertain to the job.

Most of these functions are performed in
the Job Selection routine (module
IEFsD161). The wait for work takes place
in the Initiator Wait routine (module
IEFSD105), which resides in the link pack
area.

LOOKING FOR WORK

Whenever it is entered, the Job Selection
routine determines whether an internal stop
has been issued, indicating that a started
task or TSO terminal task has been
completely processed. If so, the routine
frees storage and returns control to the
System Task Control routine. If no
internal stop has been issued, the routine .
determines whether a STOP or MODIFY command
has been issued by testing the stop bit in
the ECB pointed to by the communication
parameter area (CPA) -- see Figure 13, by
testing the verb code in the command input
buffer (CIB), and by checking for the
presence of data in the command input
buffer. If no MODIFY or STOP command has
been issued, the routine determines whether
it must dequeue a job from the input queue.
If a JCT has been passed to the initiator,
there is no need for the routine to dequeue
a job for processing from the input queue.
Otherwise, the Job Selection routine must
dequeue a job from the queue. It scans the
initiator's ECB list (see Figure 14),
looking for an ECB that has been posted.
When it finds an ECB with the post bit on,

the Job Selection routine builds a QMPA for
the corresponding queue, using the area
obtained in the Initialization routine.
When the QMPA has been constructed, the Job
Selection routine uses a BALR instruction
to pass control to the Queue Management
Dequeue routine. The Dequeue routine
issues an ENQ macro instruction and reads
the QCR into main storage to determine
whether there are any jobs in the queue.

ECB Address
CIB Address 4
Figure 13. Communication Parameter Area
(CpPA)
Note: The ECB address is a pointer to the

communications ECB that is posted by SVC 34
when a STOP or MODIFY command is issued.
The CIB address is a pointer to the command
input buffer that contains the command code
and parameters from the STOP and MODIFY
commands.

If there are no jobs in the queue, the
Dequeue routine issues the DEQ macro
instruction and adds the appropriate ECB in
the initiator ECB list to the no-work
chain. The Dequeue routine then returns
control to the Job Selection routine, which
continues its scan of the ECBs in the list,
looking for a posted ECB.

WAITING FOR WORK

If there are no jobs in any of the input
queues in the initiator's set, the Job
Selection routine uses the WTO macro
instruction to inform the operator that the
initiator is waiting for work, then uses
the XCTL macro instruction to pass control
to the Initiator Wait routine.

The Initiator Wait routine (module
IEFSD105) is always loaded into the link
pack area. When it is entered, the routine
releases the initiator's region and issues
a WAIT macro instruction specifying the
initiator's ECB list. The first ECB
specified in the list is posted by the
Command Scheduling routine (SVC 34) as a
result of a STOP or MODIFY command that
applies to the initiator. The other ECBs
specified in the list are in no-work chain
elements; they are posted by the Queue
Management Enqueue routine when a job is
enqueued in the corresponding queue. When
any of the ECBs is posted, the Initiator
Wait routine obtains a new region of main
storage for the initiator, and passes
control to the Job Selection routine.

Part 3: Initiating Tasks 61

Work Area Length of table area

Command ECB pointer

Class ECB pointer

Class Name
ECB List = L
7
Class ECB pointer
7 1 3
Class ECB Q/M Link field
3
8-Byte L L L A
Elements 7 T o T’
4 1
Class ECB Q/M Link field

Figure 14. Initiator ECB List

DEQUEUING THE JOB

If there are jobs in the input queue, the
Dequeue routine dequeues the highest
priority job. When it has updated the
input QCR, the routine writes the QCR back
into the queue data set, then creates a
CSCB for the job. It issues SVC 34 to have
the Command Scheduling routine place the
CSCB in the chain, then issues the DEQ
macro instruction to permit access to the
QCRs by routines performing other tasks.?®

Before returning control to the Job
Selection routine, the Dequeue routine
reads the JCT from the job's queue entry
into main storage. When it regains
control, the Job Selection routine sets the
delete bit in the CSCB on to indicate that
this CSCB should be deleted from the CSCB
chain and its main storage released when
the job is completed. It then stores the
address of the CSCB for the job in the ICT.
Then, as is the case for all tasks, it
obtains main storage in subpool 255 for the
write-to-programmer control block (WTPCB)
and storage in subpool 253 for the job step
control block (JSCB). It places the
addresses of the CSCB and the WTPCB in the
JSCB, and the address of the JSCB in the
LCT.

iWwhen the DEQ macro instruction has been
issued, the job has been dequeued. At
that point, a CANCEL command applying to
the job becomes an existing-task command
instead of a task-creating command (see
the Command Processing section of this
publication).

62 0S/360 MVT Job Management (Release 21)

If more jobs are to be dequeued
following completion of this job, the
routine places the force priority and the
1limit priority in the LCT. Next the
routine tests the job-canceled bit in the
QMPA; if the bit is on, the routine sets
the job-fail bit in the JCT on, sets the
job termination bit in the LCT on, and
reinitializes the address of the data set
enqueue table in the JCT to zero so that
data set integrity processing will not take
place for this task.

The routine updates the track stacking
information in the QMPA from the
information in either the LCT or the
initiator options list. It places the
protect key from the TCB in the JCT and
then extracts (from the JCT) the TTR of the
SCT for the first step to be run. The
Queue Management Read/Write routine reads
the SCT into main storage.

SYSTEM OUTPUT PROCESSING

The Job Selection routine uses the
information in the SCD to build a queue
manager parameter area (in the second of
the two areas obtained by the
Initialization routine) for the system
output message class. This parameter area
is used when the I/0 Device Allocation
routine and the Termination routine add
system message blocks to the job's message
class queue entry, and when the Termination
routine enqueues the job's output queue
entries.

The programs processing a job can write
system output directly on an output device
only if a direct system output block
(DSOCB) for the job class has been assigned
to the job. If DSO processing has been
initiated, the Job Selection routine issues
an ENQ macro instruction, in the share
mode, specifying the chain of DSOCBs. It
then uses the system output class directory
(SCD) to determine whether there are any
DSOCBs that can be assigned to the job. A
DSOCB can be assigned if the following
conditions are met:

e The DSOCB is available (not assigned to
another job, and no commands pending).

e The DSOCB specified a system output
class (including the message class)
used in the job.

e No other DSOCB for that class has been
assigned to the job.

If the conditions are met, the Job
Selection routine makes the assignment by
storing the initiator's protection key in
the DSOCB's protection key field. The
routine continues assigning DSOCBs to the
job for other unassigned output classes
until no more can be assigned, then sets
the DSO indicator bit on in the JCT.

DATA SET INTEGRITY

If the address of the data set enqueue
(DSENQ) table is not zero, or if the bit in
the CSCB indicating "bypass data set
integrity processing" is not on, the Job
Selection routine reads the DSENQ table
into main storage. (If the CSCB bit is on,

or if the job was previously failed, the
Job Selection routine places zeros in the
DSENQ table address.) The DSENQ table,
which may occupy several 176-byte records,
contains the name of each non-temporary
data set required by the job, and indicates
whether the data set may be shared, or
whether exclusive use of it is required.
The routine obtains main storage (in
subpool 255), then builds an ENQ macro
instruction parameter list, specifying each
name in the DSENQ table as well as its
attribute (exclusive or share). Since
duplicate names may exist in different
records of the DSENQ table, these
duplicates are eliminated; if the attribute
of a duplicate name differs from the
attribute of the original, the more
restrictive attribute is assigned.

When the parameter list is completed, it
is written back into the queue data set (in
the space occupied by the DSENQ table), and
a pointer to the list in subpool 255 is
placed in the LCT. The ENQ SVC (SVC 56) is
issued in the Replace Region routine (only
on the first step of a job); the DEQ is
issued in the Job Delete routine, when the
job has been terminated.

Since the ENQ SVC is issued before a
region is obtained for the first step of
the job, no region will be obtained while
any data set required for the job is under
the exclusive control of another job. The
ENQ SVC is issued with the USE option, so
that a list of names of the available data
sets is immediately returned to the
initiator. Appropriate operator messages
are then issued. Control finally passes to
the Region Size Determination routine
(module IEFSD101).

Part 3: Initiating Tasks 63

Executing the Stop and Modify Commands

When a STOP or MODIFY command specifies a
group of initiators, the communications ECB
of each member of the group is posted. In
the case of a MODIFY command, the list of
input queues to be associated with each
initiator is stored in its command input
buffer (CIB) and the member count field of
the GCB is stored in the modify count
field. In the case of a STOP command, the
stop count field is incremented by one.

The MODIFY CIB is pointed to by the CPA and
the CSCB. The STOP CIB is pointed to by
the GCB if one exists; otherwise, it is
pointed to by the CPA and the CSCB.

If the initiator is waiting for work and
one of the ECBs in an initiator'®s ECB list
i$ posted, the Initiator Wait routine
obtains a new region for the initiator and
passes control to the Job Selection
routine. If the intiator is processing a
job, processing continues until the Job
Selection routine (module IEFSD161)
receives control to dequeue another job.

In either case, upon entry the Job
Selection routine tests the communication
ECB; if that ECB has been posted, a command
has been issued, and the routine uses the
ENQ macro instruction to prevent multiple
accesses to the GCB. The routine then
tests the stop count field in the GCB. If
the field is not zero, the initiator is to
stop; if the field is zero, the Initiator
subroutine determines if a CIB is present
in the chain pointed to by the
communications parameter area. If a CIB is
present, the initiator checks it for a STOP
command. If a STOP command is to be
processed, the initiator processes it. If
the command is not STOP, the initiator
checks the command input buffer for a
MODIFY command. If the stop count is zero,
and no MODIFY command has been issued, the
initiator continues processing.

64 0S/360 MVT Job Management (Release 21)

THE STOP COMMAND

If the initiator is to stop, the routine
tests the command input buffer to determine
whether a MODIFY command has also been
issued. If so, it is not executed, but the
Job Selection routine reduces the modify
count in the GCB by one. It also reduces
the member count by one, and then tests it.
If the member count is zero, there are no
other members in the group and the Jokt
Selection routine deletes the GCB from the
chain and frees the main storage it
occupies. In any case, the routine issues
the DEQ macro instruction for the GCB
chain, frees the main storage occupied by
the ICT and the ECB list, and returns
control to the System Task Control routine.

THE MODIFY COMMAND

If the stop count is zero, the initiator is
to continue processing. The Job Selection
routine issues the DEQ macro instruction to
permit routines performing other tasks to
access the GCB, and then inspects the
command input buffer. Unless the buffer is
zero, a MODIFY command is to be executed,
and the Job Selection routine uses the XCTL
macro instruction to pass control to the
Initiator Initialization routine.

The Initialization routine (Module
IEFSD160) performs a syntax check of the
class names, force priorities, and limit
priority specified in the MODIFY command
(now stored in the CIB pointed to by the
CPA or CSCB). If the routine encounters a
syntax error, it issues an error message to
the operator and passes control to the Job
Selection routine without executing the
command. If no errors are found, the
Initialization routine constructs a new ECB
list, then passes control to the Job
Selection routine.

Region Management

Modules of the initiator operate in various
regions of main storage. When the
Initiator Initialization routine is first
entered, it operates in a region obtained
by or for the System Task Control routine.
Subsequently, initiator modules operating
in the 1link pack area release and obtain
main storage regions as required.

DETERMINING REGION CHARACTERISTICS

Whenever the initiator requests a region of
main storage, it determines the
characteristics (size, address, and
hierarchy) required for the region. 1In
making this determination, the initiator
uses the following factors:

e Minimum initiator region size, which is
specified by the user when the system
is generated (see the Storage Estimates

SRL, GC28-6551) and stored in the
BAMINPAR field of the master scheduler
resident data area. The minimum
initiator region must be large enough
to contain the largest I/O Device
Allocation load module (and associated
tables and work areas). The user may
change the minimum initiator region
size at IPL time when specifying system
parameters.

@ Minimum job step reqion size, which is
calculated by the Nucleus
Initialization Program (see the IPL/NIP
PLM) if load module IEFSD061 is in the
link pack area. Load module IEFSD061
contains the Termination, Job
Selection, and Region Size
Determination routines. The minimum
job step region must be large enough to
contain the tables and work areas
associated with termination and job
selection functions. The value is
stored in the BAMIPAR2 field of the
master scheduler resident data area and
is equal to the minimum initiator
region size less the size of load
module IEFSDO061.

A minimum size region is required for
the initiator to attach a subtask and for
termination upon return from the subtask.
If load module IEFSDO061 is lcaded in the
link pack area, the region is equal in size
to the minimum job step region size.
Otherwise, it is equal in size to the
minimum initiator region size. The minimum
size region may be located in either
hierarchy zero or hierarchy one.

e Hierarchy 0 and hierarchy 1 region
sizes, which may be specified in the
EXEC statement, are stored in the step

control table (SCT). These values
specify the size (in each hierarchy) of
the region required for the execution
of the job step.

o Hierarchy 0 and hierarchy 1 region
addresses, which are stored in the SCT
when a job step is to be restarted from
a checkpoint. These are the beginning
addresses in each hierarchy of the
region originally obtained for the job
step.

RELEASING AND OBTAINING REGIONS

The initiator releases the current region
of main storage, and obtains a new region,
under the following circumstances:

e When the initiator must wait for work.
e Each time the initiator selects a step.

o Before the initiator attaches a job
step, if load module IEFSD061 is in the
link pack area and the requested region
size is smaller than the minimum
initiator size region.

o Before the initiator attaches a system
task, if the requested region size is
smaller than the minimum initiator size
region.

e Upon return from processing a system
task, if the requested region size for
the system task is smaller than the
minimum job step region size (necessary
for termination).

When the Initiator subroutine is
entered, the current region being used is
large enough to accommodate the first load
of the initiator. This region is used by
the initiator until it begins processing a
starting system task, selects a job and
step, or determines that it must wait for
work to become available.

If the initiator must wait for work,
control is passed to the Initiator Wait
routine (module IEFSD105) in the 1link pack
area. The Wait routine releases the
current region being used by the initiator
and then issues a WAIT macro instruction.

When the post occurs, the Initiator Wait
routine regains control, builds a parameter
list for GETMAIN, and issues a conditional
GETPART macro instruction for a minimum
size region in hierarchy zero. If
sufficient main storage is unavailable in
hierarchy zero, the routine issues a
conditional GETPART macro instruction for a
minimum size region in hierarchy one. If
main storage is again unavailable, the

Part 3: Initiating Tasks 65

routine issues an unconditional request for
a minimum size region in hierarchy zero.

When the region is obtained, the routine
passes control to the Job Selection routine
(module IEFSD161) to select a job and a
step.

Each time the initiator selects a step,
it frees the current region and obtains a
new one in which to perform the I/0 device
allocation function.

The FREEPART and GETPART macro
instructions are actually issued in the ,
Free/Get Region (module IEFSD102), which is
in the link pack area. But the processing
required before the macro instructions are
issued is performed in the Region Size
Determination routine (module IEFSD101),
which is a part of load module IEFSDO061.

When the Region Size Determination
routine is entered, it branches to the User
Exit Initialization routine (module
IEFSMFIE). If SMF is supported, this
routine initializes and updates the timing
control table (TCT), updates the job log
portion of the job management record (JMR)
and passes control to the user's Job
Initiation Exit routine (module IEFUJI) or
Step Initiation Exit routine (module
IEFUSI). If SMF is not supported, the User
Exit Initialization routine returns control
to the Region Size Determination routine.

When it is entered, the User Exit
Initialization routine determines whether a
TCT already exists for this job. If not,
it obtains main storage from subpool 253
for the TCT and for the first 40 bytes of
the JMR. The routine initializes the TCT,
then uses the Queue Management Read/Write
routine to bring the JMR into main storage.
It copies the first 40 bytes of the JMR
into the area reserved for it, then issues
the TIME BIN macro instruction and stores
the job initiation start time and date in
the JMR. If user exits were specified, the
routine brings the job account control
table (ACT) into main storage, then passes
control to the user's Job Initiation Exit
routine (module IEFUJI).

If the TCT already exists, the JMR is
already in main storage. The User Exit
Initialization routine issues the TIME BIN
macro instruction, and stores the step

start time and date in the JMR. If user
" exits are specified, the routine brings the
step ACT into main storage, then passes
control to the user's Step Initiation Exit
routine (module IEFUSI).

66 0S/360 MVT Job Management (Release 21)

On the return from the user's exit
routine, the User Exit Initialization
routine inspects the return code. If the
return code specifies that the job is to be
canceled, the routine sets the job-failed
bit in the JCT.

If the step being initiated is the first
step of the job, and if the SMCA options
field indicates that SMF data set
information is required, the routine tests
the SMCA option field to determine whether
SMF exits are specified.

If SMF exits are not specified, the
routine uses the Queue Management Read
routine to bring the job ACT into main
storage (if SMF exits are specified, the
table is already in main storage.) The
routine constructs a type 20 SMF record and
issues SVC 83 to have the record placed in
the SMF data set.

The User Exit Initialization routine
returns control to the Region Size
Determination routine (module IEFSD101).
This routine determines whether track
stacking?® is being used.

If so, and if the job step is not the
first step of a TSO job, the routine uses
the Stack Purge routine to write out any
updated work queue records. Otherwise, and
on return from the Stack Purge routine, the
Region Size Determination routine scans the
program properties table (module IEFSDPPT)
to determine whether the program to be
executed is a privileged program, i.e. it
is allowed to receive the region size
specified for the step and/or is
noncancellable (except during allocation).

Note: The program properties table
(IEFSDPPT) is a table for job step tasks
like the linkage table (IEEVLNKT -- see
Figure 34) for system tasks. IEFSDPPT
contains the names of the job step tasks
that are allowed privileged execution.
table consists of two parts: the first
part contains the 8-character names, padded
with blanks if necessary, of the job step
tasks that will receive the region size
requested; the second part of the table
contains the names of the job step tasks
that are noncancellable.

The

If the Region Size Determination routine
finds that the job step task to be executed
is allowed to receive the region size
requested, it turns off the minimum

1see the "Inputs/Output Operations" portion
of the section "The Work Queues" in this
publication.

initiator region size bit in the ICT. If
the job step task is non-cancellable, the
routine turns off the cancellable bit in
the CSCB and turns on the non-cancellable
bit in the LCT. [Note: +this task is
cancellable only during allocation.]

The Region Size Determination routine
then obtains 44 bytes of main storage (from
subpool 253) for the GETPART work table
(GWT) .

The GWT (shown in Figure 15) is a work
area for the Region Size Determination
routine and for the Free/Get region
routine. It is also used as the parameter
list for the GETPART macro instruction.
The Region Size Determination routine
initializes the GWT as follows:

e It sets the region size and region
address pointers.

e Tt multiplies the SCT-specified region
size values by 1024, and stores the
results in the low-order three bytes of
the region size fields.

o It stores the end-of-list code in the
high-order byte of the appropriate
region size field, and it stores a zero
in the high-order byte of the hierarchy
0 region size field (if necessary).

e It stores the region address
specifications (if any) in the
low-order three bytes of the region
address fields, and it stores the
appropriate hierarchy code in the
high-order byte of each field.

e It sets the request to X'80°',
indicating an unconditional request,
and it sets the operation code to
X'F7', indicating a "get" region (as
opposed to a "replace" region) request.

e It stores the SCT-specified hierarchy 0
region address (if any) in the original

address specification field.

e It stores the constant X'F7' in the
high-order byte of the BAMINPAR value
field, and it stores the allocation
region size value (from the BAMINPAR
field of the master scheduler resident
data area) in the low-order three bytes
of the field.

e It stores the region size for the
subtask, if the Initiator Attach
routine (module IEFSD263) is to replace
the region.

e It stores the region size required for
termination processing of the subtask
if a new region is to be obtained.

Offset
Hex Dec
0 0 4
Region Size Pointer
4 4 ' 2
Region Address Pointer
8 8 1 . 1 2
t
Request Code 8::;0 on Reserved
C 12 i 1 3
Ehg:‘r:hy Region Address Request (or Zero)
10 16 . 1 3
l]-hé:;r:hy Region Address Request (or Zero)
14 20 .
End-of-List 1 . L 3
Code or Zero Hierarchy O Region Size Request
18 24 —of=-List |
Eﬁr:i{ed st Hierarchy 1 Region Size Request (or Zero)
1C 28 1
Reserved Region Size for Subtask (or Zero)
20 32 1
Reserved Region Size for Termination (or Zero)
24 36 1 Original Region Address 3
Reserved Specification (or Zero)
28 40 1 3
X 'F7' BAMINPAR Value
Figure 15. GETPART Work Table (GWT)

Before performing allocation for a
subtask, the initiator must obtain a
minimum initiator size region in either
hierarchy 0 or hierarchy 1. The Replace
Region Interface routine (module IEFSD101)
determines which hierarchy will contain the
minimum size region.

If a hierarchy is specified in the START
command, it is passed to the initiator as
an option. The region sizes requested for
each hierarchy in the EXEC statement are
added, and the total region is obtained in
the hierarchy specified in the START
command .

If no hierarchy is specified in the
START command, the routine determines the
hierarchy from the EXEC statement. The
routine makes the checks shown in Figure 16
and decides the appropriate region size and
hierarchy in which it should be allocated
(shown in the last two lines of the Region
Allocation Decision Table).

Part 3: Initiating Tasks 67

RO =0 (or not specified) X X XX [X [X[X[X|X[X[X]|X

R1 =0 (or not specified) X [X X | X X X X X X X

RO < MJR X XX (X X

MJR < RO < MIR X [XX |[X]|X [X

RO > MIR XX X [X][|X[X
RT < MJR X [X [X

MJR < RT < MIR X 1X|X

R1 > MIR X | X {X

R1>0 X X X X
Job step task being initiated X X X X X X X X X X X X |X X X

System task being initiated X |X X X X X | X X |X X | X
IEFSDO061 in link pack area X [X X | * X |* X | * X X |*|* X X *o K XX |*|*
Region size allocated in HO MIR [MIR|MJR|MIR| O | O [0 [0 [0 {0 [0 [0 [0 [MIR{MUR{MIR[MUR|RO |RO [MIR[RO {RO [MIR[RO |RO |MJrR|MIR[RO |RO [RO {RO
Region size allocated in H1 0{0 [0 |0 [MmR[MURIRT |MIR|RT |RT |RT|RT|RT[O | O [RT|RT|O |RT |O |[RT[O [RT|O |R1|O [RT|O [RT[O (R

Where: RO = Region size requested in hierarchy 0

R1 = Region size requested in hierarchy 1
MJR = Minimum job step region size
MIR = Minimum initiator region size

Figure 16. Region Allocation Decision Table

If the step is being restarted from a
checkpoint, region addresses are also
specified in the SCT. If load module
IEFSD061 is in the link pack area, and the
requested region size is less than the
minimum size region, the address specified
in the SCT must be recalculated to ensure
that a minimum initiator size region can be
obtained. :

The address is calculated using the
following formula:

Ay = A - (BAMINPAR - S)
where

A; = recalculated hierarchy 0 or
hierarchy 1 address
the hierarchy region address
specified in the SCT
BAMINPAR = the minimum initiator region
size
the SCT specified region size

A

S

If load module IEFSD061 is in the link
pack area and the region size requested is
less than the minimum initiator region size
the Region Size Determination routine
determines the region size required for the
subtask by choosing the greater of the
requested size or the minimum job step
region size. The routine places this value
in the GWT for later use by the Allocation
Interface routine. :

System tasks are executed in the region
size requested in the EXEC statement. If
the requested size is smaller than the
minimum initiator region size (or the
minimum job step region size if load module

68 0S/360 MVT Job Management (Release 21)

HO = Hierarchy 0
H1 = Hierarchy 1
* = [EFSD061 may or may not be in the link pack area

IEFSD061 is in the link pack area), the
size necessary for termination is placed in
the GWT by the Region Size Determination
routine. This value will be used by the
Initiator Attach routine (module IEFSD263)
in later processing.

Next the Region Size Determination
routine stores the address of the GWT in
the LCTPARM3 field of the LCT and passes
control to the Free/Get region routine
(module IEFSD102), which is in the link
pack area. Size routine passes the region
size to the Replace Region routine.

The Free/Get Region routine (module
IEFSD102) resides in the link pack area.
When it is entered, it frees subpool 0 and
the old region, then inspects the LCTPARM1
field in the LCT to determine whether an
ENQ macro instruction need be issued. If
the field is zero, the job uses only
temporary data sets, or else the current
step is not the first step of the job, and
no ENQ need be issued. If the field is not
zero, the routine issues a conditional ENQ
(RET=USE) specifying data set names. If
the routine is unable to obtain all of the
data sets specified in the ENQ, it issues a
DEQ (RET=HAVE) to free those that are
controlled and writes messages to the
operator indicating the names of data sets
that are not available to the job. The
routine then issues a WTOR macro
instruction giving the operator the options
of retrying the ENQ with RET=USE,
cancelling (failing) the job, or waiting
for the data sets to become available
(RET=NONE). The routine then follows the
instructions of the operator's reply.

Main Storage (Hierarchy 0)

Region Obtained

Ay

Example 1: The starting address of the region is recalculated so that even if
the requested region extends to the link pack area, a region of
the size specified in BAMINPAR can be obtained.

¢—— BAMINPAR ————————~

— S
A

Region Obtained

L hkl'uPcck‘AVre

—

- S

BAMINPAR

Excmple\Z: If requesting a region at the recalculated address Aq results in an
error return, a region of BAMINPAR bytes at address A is obtained.

A
AI
Example 3: If the link pack area has expanded since the checkpoint was taken,
S bytes may not be available at address A ; if supervisor queue
space has expanded, address A may be in the supervisor queue
space, In either case, the step cannot be restarted.

Figure 17.

When the ENQ is completed (either
successfully or unsuccessfully), the
Free/Get Region routine frees the main
storage occupied by the parameter list
pointed to by LCTPARM1 and issues the
GETPART macro instruction (execute form),
using the GWT as the parameter list.
Example 1 of Figure 17 shows the effect,
under normal circumstances, of issuing the
macro instruction.

If an error return occurs, it means
either that the requested region is larger
than the total amount of main storage
available for region allocation, or that a
region address was specified and the
recalculated address is in supervisor queue
space.

If all main storage available for
allocation is not sufficient to fill the
request, the Free/Get Region routine stores

e———————— BAMINPAR ———————

|~ S
A

Result of Issuing the GETPART Macro Instruction

an error code (8) in the LCT field
LCTPARM3, and issues a GETPART macro
instruction in the register form to obtain
a minimum job step size region.

If the recalculated region extends into
supervisor queue space, the routine stores
the SCT-specified hierarchy 0 region
address in the hierarchy 0 region address
field of the GWT, then reissues the macro
instruction using the execute form. The
effect of reissuing the GETPART macro
instruction is shown in Example 2 of Figure
17.

If an error return now occurs, it means
that the main storage environment has
changed since the checkpoint was taken.
Either the link pack area, or supervisor
queue space (or both) has expanded.
Example 3 in Figure 17 shows each
situation:

Part 3: Initiating Tasks 69

e If the link pack area has expanded,
there is not enough main storage
between the specified address (A) and
the link pack area to satisfy the
request.

e If supervisor queue space has expanded,
the specified address (A) is in
supervisor queue space, and the request
cannot be satisfied.

In either case, the step cannot be
restarted; the Frees/Get Region routine
stores an error code (8) in the LCTPARM3
field of the LCT and issues a GETPART macro
instruction (register form) to obtain a
minimum initiator size region.

When it has obtained a region of main
storage, the routine passes control to the
Allocation Interface routine (module
IEFSD162) which is loaded into the new
region.

The Allocation Interface routine
inspects the LCTPARM3 field of the ICT; if
the field indicates that the region could
not be obtained, the routine sets the job
failed bit on in the JCT, then passes
control to the I/O Device Allocation
routine.

Before the initiator attaches .a job step

(if load module IEFSD061 is in the link
pack area) or a system task, it determines
whether the region is to be replaced. The
Allocation Interface routine (module
IEFSD162) checks the GWT to determine
whether the region size requested for the
subtask is smaller than the minimum
initiator region size. If not, the routine
releases the main storage used by the GWT,
since no replacement is necessary, and
passes control to the TIOT Storage routine.

70 0S/360 MVT Job Management (Release 21)

However, if the requested region size is
smaller than the minimum initiator region
size, the routine checks the LCT to
determine which hierarchy contains the
minimum size region and places the region
size needed for the subtask in the
appropriate region size field in the GWT.
It then changes the operation code in the
GWT to X'"F6' to indicate a "replace" region
instead of a "get" region and finally
passes control to the TIOT Storage routine.

The actual replacement of the region is
performed in the Initiator Attach routine
(module IEFSD263). This routine, operating
in the link pack area, issues the GETPART
macro instruction in the execute form,
using the GWT as a parameter list. After
the region has been obtained, the routine
checks the termination region size field in
the GWT to determine if a new region size
is required for termination. (If the
current task is a job step task, the field
will contain zero and no region will ke
obtained. However, if the task is a system
task and the size requested for it is
smaller than the minimum initiator region
size, a new region will be obtained for
termination.) If a new region is not
required, the routine releases the GWT and
attaches the subtask. If a new region is
required, the routine checks the LCT for
the hierarchy containing the minimum size
region and places the termination region
size in the appropriate region field in the
GWT. It then changes the operation code to
X'F7' indicating a "get" region.

Upon return from processing a system
task, if a new region is required for
termination, the Initiator Attach routine
obtains the region and releases the storage
occupied by the GWT.

The 1/0 Device Allocation Interface

When a region has been obtained for the job
step or system task, the Allocation
Interface routine (module IEFSD162) is
entered. It obtains main storage from
subpool 255 for the task parameter list
(specified in the EXEC statement PARM
field).

If the high-order byte of the track
stacking parameter list is not zero, it
means that track stacking is specified.

The routine obtains a 72-byte register save
area and passes control to the Stack
Initialization routine (see the I/0
Operations portion of the section on The
Work Queues in this publication). When the
track stack has been initialized, the
Allocation Interface routine builds the
allocation parameter list and determines
whether the task is a job step that is
being restarted from a checkpoint by
checking if the program name in the SCT is
IEFRSTRT. If so, the Allocation Interface
routine passes control via a LINK macro
instruction to the DSO Environment Check
routine (module IEFDSOCR).

The DSO Environment Check routine uses
the Queue Management Read routine to bring
the SIOTs for the restarting step into main
storage. It compiles a list of system
output classes and unit types for which DSO
processing is required and compares the
list to the available DSOCBs. If the
appropriate DSOCBs are available, the DSO
Environment Check routine returns control
to the Allocation Interface routine with a
return code of zero.

If additional DSOCBs are required, the
DSO Environment Check routine uses the WTO

macro instruction to inform the operator,
frees the job's resources, uses the Job
Suspension routine (module IEFSD168) to
enqueue the job on the hold queue, and
returns control to the Allocation Interface
routine with a return code of eight. The
Allocation Interface routine then passes
control to the Job Selection routine
(module IEFSD161) to select another job.

If the return code is zero, or if the
task is not a step restarting from a
checkpoint, initiation of the task
continues. The Allocation Interface
routine issues a LINK macro instruction to
pass control to the I/0 Device Allocation
routine.

The I/0 Device Allocation routine (see
part 6 of this publication) is used as a
subroutine. It checks EXEC statement
condition codes, then analyzes the requests
for I/0 devices and data sets, and
allocates devices to the job step or system
task. It issues operator messages to have
any required volumes mounted, and creates
the TIOr. Finally, it returns control to
the Allocation Interface routine, with a
return code that indicates whether the
allocation process was successful.

On the return, the Allocation Interxface
routine inspects the return code. If the
return code is not zero, it means that the
task could not be run, either because of
EXEC statement condition codes, or because
the device or data set requirements of the
task could not be satisfied, and control is
passed to the Task Delete routine. If the
return code is zero, the task can be run,
and preparations are made to attach it.

Part 3: Initiating Tasks 71

Attaching the Subtask

The Supervisor routines need certain
information in order to control the
execution of a task. This information is
passed to the supervisor via the ATTACH and
STIMER macro instructions. In addition,
information must be saved for the use of
the Termination routine, and the task's
TIOT must be moved to protected storage.

If a job step is to be attached, the
Allocation Interface routine determines if
DSO processing is to be performed (DSO
processing is bypassed if a system task is
to be attached). First the routine
determines if the DSOCB indicator bit in
the JCT is on and the DSO work bit in the
SCT is on. If so, the Allocation Interface
routine issues a LINK macro instruction to
pass control to the DSO Writer routine
(module IEFDSOWR). This routine writes job
separators and system messages for SYSOUT
classes that are specified for direct
system output processing in this step. It
scans the DSOCB chain for active DSOCBs
assigned to the job. If an active DSOCB
has its job separator bit off, the routine
writes the appropriate job separator in the
DSO data set and turns the job separator
bit on. If the message class bit is on,
the routine writes the accumulated SMBs and
stores the TTR of the next SMB in the JCT.

If the routine encounters job queue
errors while writing the job separators
and/or system messages, it returns control
with a return code of 12, and the
Allocation Interface routine causes
abnormal termination of the job. If the
DSO Writer routine encounters I/0 errors,
it returns control with a return code of
four, and the Allocation Interface routine
fails the job. Otherwise, if no errors are
encountered, the DSO Writer routine returns
control to the Allocation Interface with a
return code of zero.

Next, in the case of both a job step and
a system task, the Allocation Interface
routine (module IEFSD162) passes control to
the Table Breakup routine (module
IEFSD514). This routine converts the TIOT
into a series of 176-byte records, and uses
the Queue Management Read/Write and Assign
routines to obtain space for the records
and add them to the task's input queue
entry. When the entire TIOT has been
written out, the routine returns control to
the Allocation Interface routine, which
uses the Queue Management Read/Write
routine to write the JCT and SCT into the
work queue data set. Then the routine
takes a pre-invocation exit if one is
specified in the initiator exit list. If a
nonzero return code results from the exit,

72 0S/360 MVT Job Management (Release 21)

the task is to be failed; the routine posts
the CANCEL ECB with the appropriate
completion code in the CSCB.

If a job step task is being attached,
the routine determines whether the current
step is the first step of the job to be
run.?* If so, and if joblib or fetch data
sets have been specified, the Allocation
Interface routine obtains main storage from
subpool 253 for any necessary DCBs. The
steplib and fetch data set DCBs are created
and opened as required for the task.

If a job step is being attached, the
Allocation Interface routine (module
IEFSD162) determines whether allowing the
step to use the full amount of time
specified for it would cause the job time
limit to be exceeded: the routine
calculates the amount of job time remaining
by subtracting the job time used from the
job time limit, then compares this figure
to the step time limit. It places the
smaller of the two figures in the timer
work area.

For both a job step and a system task,
the Allocation Interface routine obtains
storage from subpool 253 and builds the
ATTACH macro instruction parameter list
(see Figure 18) and the initiator parameter
list (see Figure 19). The routine then
passes control to the Pre-Attach routine
(module IEFSD103).

Pointer to Program Name

Pointer to Fetch or Joblib DCB

Pointer to ATTACH ECB

Jobstep- Owned Subpool

Shared Subpool

Reserved

Limit Priority 1|

(LPMOD) Reserved

Dispatching Priority (DPMOD)

Blanks

ATTACH Macro Instruction
Parameter List

Figure 18.

1Tf the job is being restarted, the first
step of the job is not necessarily the
first step to be run. In such cases, the
joblib and fetch DCBs are constructed and
opened before the first step of the job is
started.

‘ Upon entry the Pre-Attach routine checks
‘the CSCB to determine whether a system task
or a job step task is being started. If a
system task is being started, the routine
writes the LCT for the task on the job
queue. Next it obtains storage in subpool
253 for a 16-byte parameter area to be used
by the Attach routine (module IEFSD263), an
8-byte area for saving track stacking
information from the LCT, and a 72-byte
area for saving the QMPAs from the LCT.

The routine uses the Table Breakup routine
to convert the LCT to 176-byte records,
which are added to the task's input queue
entry. The write-to-programmer control
block (WTPCB) is updated to point to the
system output QOMPA in the JSCB.

The Pre-Attach routine determines the
dispatching priority at which the system
task will be attached. If a DPRTY value is
specified for the system task, the routine
converts that value to a dispatching
priority. If the dispatching priority is
less than or equal to the limit value
(255), the routine places it in the ATTACH
macro instruction list. If the dispatching
priority exceeds the limit value, the
routine places the limit value in the
ATTACH macro instruction list.

If no DPRTY exists, but a PRTY does, the
routine converts the PRTY value to a
dispatching priority. If the dispatching
priority is less than or equal to the limit
value, the routine places it in the ATTACH
macro instruction list., If the dispatching
priority exceeds the 1limit value, the
routine places the limit value in the
ATTACH macro instruction parameter list.

If no priority is specified, the routine
uses a default of 251.

Pointer to Job Step Parameter List

Pointer to Fetchlib DCB

PointFr to ATTACH Parameter List

Pointer to LCT

Pointer to Initiator TCB

Pointer to TIOT List

Figure 19. Initiator Parameter List

If a job step task is being started, the
Pre-Attach routine determines the priority
at which the job step will be attached.

If a force priority is associated with
the class from which the job is selected,
and it is equal to or less than the limit
value, it is put into the ATTACH macro
instruction parameter list. If the force

priority is greater than the limit value,
the limit value is put into the ATTACH
macro instruction parameter list.

If no force priority exists, and if a
DPRTY value is specified for the job step,
the Pre-Attach routine converts it to a
dispatching priority in the same manner
that it does for a system task (see above
explanation). If no DPRTY value exists,
the routine converts the PRTY value to a
dispatching priority.

For all tasks, the routine initializes
the ATTACH macro instruction parameterxr
list, then passes control to the Attach
routine (module IEFSD263).

The Attach routine (module IEFSD263)
resides in the link-pack area. If SMF is
in the system, the Attach routine first
passes control to the TCTIOT Construction
routine (module IEFSMFAT). This routine
determines the lowest addresses allocated
at the high end of the hierarchy 0 and 1
regions and the highest addresses allocated
at the low end of the hierarchy 0 and 1
regions, then calculates the amount of
unused storage. It stores these figures
and the wait time limit in the TCT. If a
background job is being processed, the
routine places into the TCT the addresses
of both the User Time Limit Exit routine
(module IEFUTL) and the SYSOUT Limit
routine (module IEFUSO). If a foreground
job is being processed, the routine
bypasses the placing of these addresses in
the TCT. Finally, the routine obtains main
storage from subpool 253 and constructs the
timing control task input/output table
(TCTIOT).

When it has constructed the TCTIOT,
module IEFSMFAT issues a TIME macro
instruction (SVC 11) to obtain a time stamp
that indicates the time at which loading of
the problem program began. After storing
the time stamp in the TCT, the routine
passes control back to the Attach routine
(module IEFSD263). If the task is a TSO
task, the Attach routine exits to TSO
module IKJEFLM. Otherwise, the Attach
routine moves the job step parameter list
from subpool 253 to subpool zero, and frees
the main storage obtained from subpool
zero. The ATTACH macro instruction is then
used to attach the task. If a job step is
attached, the STIMER macro instruction is
used to set the step time interval. The
Attach routine then relinquishes control to
the CPU by waiting for a POST macro
instruction specifying either the cancel,
attach, or dynamic allocation ECB. (The
dynamic allocation ECB is posted by dynamic
allocation routines to permit data set
integrity processing.)

Part 3: Initiating Tasks 73

Terminating Subtasks

An executing task is terminated under one
of the following circumstances

e A task requests normal or abnormal
termination, or is abnormally
terminated by the supervisor because of
an error condition; the attach ECB is
posted, and the Attach routine is given
control.

e A CANCEL command is issued; the Command
Scheduling routine posts the cancel
ECB, and the Attach routine is given
control.

e A job step fails to return control
before its time interval has expired;
an Asynchronous Exit routine, activated
by the timer, posts the cancel ECB, and
the Attach routine is given control.

e A job step exceeds the system output
record limit specified in the DD
statement OUTLIM parameter.

OUTLIM TERMINATION

If a job step exceeds the system output
record limit specified in a DD statement
OUTLIM parameter, an SMF asynchronous exit
routine (module IEATLEXT; see the MVT
Supervisor PLM) is given control. IEATLEXT
constructs a parameter list containing the
address of the JMR job name and time stamp
fields and the address of the DCB. Using a
branch and link instruction, IEATLEXT
passes control to the SMF User Output Limit
routine (module IEFUSO), which is located
in load module IEFSD263 in the link pack
area.

The user may supply a routine named
IEFUSO that determines whether the job step
is to be terminated. If the step is not to
be terminated, the user-supplied routine
must place the number of additional records
to be permitted the step in register 1, and
return control to IEATLEXT with a return
code of 4 in register 15.

If the step is to be terminated, the
user-supplied routine returns control to
IEATLEXT with a return code of 0 in ,
register 15. If the user does not replace
the IBM-supplied version of IEFUSO, it will
return control with a code of 0. On the
return, IEATLEXT passes control to the’
Attach routine.

74 0S/360 MVT Job Management (Release 21)

THE ATTACH AND ABNORMAL TERMINATION
ROUTINES

In the case of an OUTLIM termination, the
Attach routine (module IEFSD263) receives
control from module IEATLEXT (see the above
explanation of OUTLIM TERMINATION). 1In the
case of a CANCEL or timer termination, the
POST macro instruction issued as a result
of the CANCEL command or timer expiration
causes an SVC interruption to occur.
Therefore, even though the task may be
executing, it is interrupted. Since the
initiator (which was in the wait state
until the post occurred) has a slightly
higher priority than the task, the Attach
routine, operating under the initiator TCB,
is given control first.

When the Attach routine receives
control, it determines whether the timer
was set before the task was attached. If
so, the task is a job step, and the routine
issues the TTIMER macro instruction (with
the cancel option) and places the time
remaining to the job step in the timer work
area. Next, the routine inspects the
cancel ECB; if it has been posted, the
Attach routine prepares to pass control to
the Abnormal Termination routine.
Otherwise, the routine bypasses abnormal
termination processing.

The Attach routine passes control to the
Abnormal Termination routine when a task
must be prevented from further use of
system resources because of a CANCEL
command, or because its time interval has
expired, or because it has exceeded the
nunber of records specified in a DD
statement OUTLIM parameter. If the
dispatching priority of the task to be
cancelled is less than that of the
initiator, the Attach routine issues a CHAP
macro instruction to make the task's
priority equal to that of the initiator.
The Attach routine then builds a parameter
list to pass to the Abnormal Termination
routine via register 15. The first word of
the parameter list is the address of the
job step TCB. The second word is the
completion code that was posted with the
cancel ECB. The routine also sets the
appropriate abnormal termination indicator
in the CSCB and a bit in the task TCB to
indicate that no STAE routines are to be
executed. Then the routine issues SVC 34
to call the Command Scheduling routine,
which branches to the Abnormal Termination
routine.

When control returns to the Attach
routine, it relinquishes control by issuing
a WAIT macro instruction that specifies the
attach ECB. After the initiator enters the
wait state, the job step is abnormally
terminated. The Attach routine gets
control as a result of a POST macro

instruction issued when the abnormal
termination is complete.

If the terminating task is a TSO task,
the Attach routine passes control to TSO
module IKJEFLM. If the terminating task is
a job step task, the Attach routine saves
the step's TCB flags, the TCT address, the
task completion code in the LCT, and the
dispatching priority. If a system task is
terminating, the routine saves the TCB
flags, the TCT address, the task completion
code, and the dispatching priority in the
parameter area obtained by module IEFSD103.
The routine releases subpool zero and
issues a DETACH macro instruction to remove
the TCB from the queue and to release the
storage it occupied.

If a system task is terminating, the
routine determines if the task has been
using less than a minimum initiator size
region (or a minimum job step size region
if load module IEFSD061 is in the link pack
area). If so, the routine obtains a new
region for termination and passes control
to the Post-Attach routine (module
IEFSD104).

Upon entry, module IEFSD104 checks the
parameter list that was built by the Attach
routine to determine whether a system task
or a job step task is terminating. If a
system task is terminating, the routine
obtains storage in subpool 253 and uses the
Table Breakup routine to read the ICT from
the job queue and place it in the area
obtained in subpool 253. Next the routine
moves the QMPAs and track stacking
information saved in subpool 253 by the
Pre-Attach routine (module IEFSD103) into
the LCT. The routine then updates the
WIPCB with the address of the system output
QOMPA. Next it releases the storage
obtained in subpool 253 by module IEFSD103
for the parameter area, track stacking
information, and QMPAs.

The Post-Attach routine takes a
post-invocation exit if one is specified in
the initiator exit list, passing the LCT.
Then control passes to the Task Delete
routine (module IEFSD164).

THE TERMINATION ROUTINE INTERFACE

The Task Delete routine (module IEFSD164)
is entered from module IEFSD104 whenever a
task terminates. Its primary function is
to create an interface with the Termination
routine (see part 6 of this publication),
which is used as a subroutine to direct the
disposition of any data sets used by the
task, to execute the User's Accounting
routine, to check JOB statement condition
codes, and to release the I1I/0 devices
allocated to the task. It also uses the

CHAP macro instruction to return the
initiator's priority to its original level.

When a task terminates, the initiator
parameter list, and the fetch, steplib, and
joblib DCBs are in main storage areas
previously obtained for them. Needed
information is extracted from the initiator
parameter list, the WTPCB for the task
being terminated is placed in the JSCB
pointed to by the active TCB, the fetch,
steplib, and joblib DCBs are closed, the
main storage areas are released, and the
WI'PCB pointer for the initiator is replaced
in the JSCB pointed to by the initiator's
active TCB.

The Termination routine needs the
information in the JCT, the SCT, the WTPCB,
and the job and step account control tables
(ACTs). The Task Delete routine determines
whether track stacking is specified. 1If
so, it uses the Stack Initialization
routine to build a stack, then uses the
Queue Management Read routine to bring the
JCT, SCT, and ACTs into main storage. It
places the step time in the step ACT, then
adds the step time to the job ACT, before
writing the ACTs back into the queue data
set. The routine creates a dummy TCB for
termination and initializes it with
information passed from the Attach routine.
It then issues a branch and link
instruction to pass control to the
Termination routine.

When the Termination routine returns
control, the Task Delete routine releases
the dummy TCB.

If a job step is terminating and if the
step is the last step of the job (and the
job is not to be restarted), the Task
Delete routine reinitializes the
write-to-programmer control block (WTPCB)
to zeroces and passes control to the Job
Delete routine.

If the step is not the last step of the
job (and the job is not to be restarted)
the Task Delete routine reinitializes the
WTPCB for use by the next step of the job,
uses the Queue Management Read/Write
routine to bring the SCT for the next step
into main storage, and rasses control to
the Region Size routine.

If the job is to be restarted, the Task
Delete routine reinitializes the WTPCB to
zeros, sets the origin class ID field of
the QMPA to indicate that the job is to be
reenqueued in the hold queue (it will later
be moved to an input queue), and passes
control to the Job Suspension routine.

Part 3: Initiating Tasks 75

Unexecuted Steps

When a step cannot be run, the Allocation
Interface routine also passes control to
the Task Delete routine (module IEFSD164).
Certain termination functions must be
performed even though the step was never
attached; system input data sets, for
example, must be deleted. The Task Delete
routine must therefore provide an interface
for the Termination routine identical to
the interface provided when a step has been
executed.

Since no ATTACH macro instruction
parameter list was created, the storage
cannot be released. Since the SCT and JCT
are already in main storage, they need not
be read in again, and since no ATTACH macro
instruction was issued, there is no job
step TCB. Thus the Task Delete routine
need only create a dummy TCB, and
initialize it. The routine then uses the
branch and link instruction to pass control
to the Termination routine.

When the Task Delete routine regains
control, it uses the FREEMAIN macro
instruction to release the main storage
occupied by the dummy TCB. If the step is
the last step of the job, the routine
passes control to the Job Delete routine.

If, however, the step is not the last
step, the Task Delete routine updates the
WIPCB for use by the next step, uses the
Queue Management Read routine to bring the
SCT for the next step into main storage,
then passes control to the Region Size
routine. '

Job Suspension

When a job is to be restarted or when the
necessary DSO resources are not available,
the Job Suspension routine (module
IEFSD168) is used to suspend processing of
the job and to initiate the process of
restarting. When it is entered, the
routine uses the Queue Management
Read/Write routine to update the SYSOUT
class directory (sSCD) in the QMPA. If any
DSOCBs were allocated for the job, the
routine uses the DSO Free Block routine
(module IEFDSOFB) to free the DSOCBs.
the Job Suspension routine issues a DEQ
macro instruction specifying the names of
data sets for which the Replace Region
routine (module IEFSD102) issued an ENQ
macro instruction. Next the routine
reenqueues the JCT on the job queue, or on
the hold queue for DSO, at a priority of 14
for restart. Finally, the routine frees

Then

76 0S/360 MVT Job Management (Release 21)

the main storage occupied by the SCT and

the JCT. If the job is to be restarted,

the routine passes control to the Restart
Activation routine (module IEFVSDRA) .

The Restart Activation routine (module
IEFVSDRA) constructs a START command
containing the name of the job to start the
Restart Reader. It issues the MGCR macro
instruction to schedule execution of the
command, then returns control to its
caller, the Job Suspension routine.l

On the return, the Job Suspension
routine frees the WI'PCB and the JSCB for
the job being suspended and passes control
to the Job Selection routine. The
Initiatgr subroutine than continues
processing.

JOB TERMINATION

When the last step of the job terminates,
the Task Delete routine passes control to
the Job Delete routine (module IEFSD166).
This routine uses the Queue Management Read
routine to read the DSENQ table into main
storage. It builds a DEQ macro instruction
parameter list, and issues the DEQ macro
instruction with the RET=HAVE option,
making the data sets referred to by this
job available to other jobs. It uses the
Queue Management Delete routine to remove
the job from the input queue, and then
releases the main storage occupied by the
JCT and the SCT. It uses SVC 34 to delete
all CIBs on the CIB chain pointed to ky the
CSCB for the executed task. If the delete
bit is on in the CsSCB, the routine then
issues SVC 34 to have the Command
Scheduling routine delete the job's CSCB
from the CSCB chain, and release the main
storage it occupies. The main storage
occupied by the JSCB and the WIPCB for the
task is released by the Job Delete routine.
Then, if only one job is to be processed
(indicated by the options in the LCT), the
routine sets the internal stop switch in
the LCT on. For non-TSO tasks, module
IEFSD166 issues a CHAP macro instruction
with a priority change value of zero. This
causes the current (or active) initiator to
be placed below all other initiators of the
same priority on the TCB queue. Thus all
initiators of the same priority have an
equal chance to be dispatched. Finally,
the routine passes control to the Job
Selection routine.

iThe Restart Activation routine is also
used in the System Restart routine (see
the section "Common Elements"™ in this
publication).

Part 4: Processing System Output

System output consists of data sets and messages from the operating system to the
programmer. The messages, and pointers to the data sets, are placed in system output
queues by the interpreter and initiator; they are retrieved by routines performing
writing tasks, and written on devices designated by operator command for system output.

There are 36 classes of system output permitted in the operating system, and there is
an output queue that corresponds to each class. The programmer defines a data set as
being a system output data set by using the SYSOUT keyword in the DD statement; he
specifies the class to which it belongs in the parameter associated with the SYSOUT
keyword. For each system output data set, the interpreter assigns srace in the
appropriate output queue entry for a data set block (DSB), which points to the data set's
JFCB.

The programmer may specify the class that is to contain operating system messages
pertaining to his job by using the MSGCLASS keyword in the JOB statement. System message
blocks (SMBs) containing interpreter, allocation, and termination messages are built, and
placed in entries for the designated queue. If the programmer makes no message class
specification, the system uses the class designated as the message class when the system
is generated.

Each output queue entry describes the system output, of the corresgonding class, for
one job. If the entry corresponds to the message class, it contains SMBs, and may also
contain DSBs, if there are system output data sets in that class; if the entry does not
correspond to the message class, it contains only DSBs.

There are two ways in which system output is written on the appropriate output device:

e The operator may use START commands to initiate direct system output (DSO) processing
for one or more classes.

e The operator may use START commands to establish writing tasks fdor system output
writers.

If DSO processing is started, a job having system output in a DSO class writes data
directly on the appropriate device at job and step initiation and termination. It writes
system output in other classes on a direct access device for processing by system output
writers after the job has completed execution.

The task of a system output writer (established as a result of a START command
specifying a writer) is to dequeue output queue entries by class, and to write the
messages and data sets on its output device. In its execution of a writing task, the
system output writer (see Figure 20) performs the following functions:

e Tt initializes itself according to the parameters in the cataloged writer procedure
and the START command, and reinitializes itself in response to MODIFY commands.

e It uses Queue Management routines to dequeue system output queue entries. If there
are no entries in the queue that corresponds to the first class specified in the
cataloged procedure or command, it tries the next. If there are no entries in any of
its classes, the writer enters the wait state until a job terminates, and the
Termination routine enqueues an entry in an output queue corresponding to one of its
classes.

o It uses the GET/PUT lLevel Data Management routines to read records from system output
data sets, and to write those records, as well as system output messages, on its
output device. If a User routine has been specified to perform this function, the
writer passes control to the User's routine.

Part 4: Processing System Output 77

8L

(TZ oseaTay) 3Iuswsbeuel qor LAW 09€/SO

*07 2InbT4

MOTd TTeISA0 I93TiM Indino Wa3sAg

IEFSD087

IEFSD088 |

Transition
= 2

y

IEFSD08Y |

Standard
Writer

Optional User
Routine

Notes:

1. Loaded by either IEFSD078 or IEFSD087 ; used as a
subroutine by IEFSD086, IEFSD087, IEFSD089, and
IEFSD094 '

2. Loaded by IEFSD081; used as a subroutine by
IEFSD070, IEFSD078, and IEFSD086

3, IEFSD070 attaches either IEFSD087 or the optional
user routine

4. Modules IEFSD079, IEFSD086, and IEFSD171
interface with Queue Management routines, which
are not shown in this figure:

® [EFSD079 exits to IEFQDELQ
© [EFSD086 exits to IEFQRMNQQ and IEFQMRAW
® [EFSD171 exits to IEFRMNQQ and IEFQMRAW

5, Linked to from IEFSDO086, |EFSD087 cndv
IEFSD094,

ENTRY

IEFSD080

| IEFSDo84 |

Wait For
Work

IEFSD083 |

| Commands

Main Logic

Control To IEFSD263

IEFSD094

IEFSD085 IEFSD086

IEFSD088

Transition

Data Set
Delete

IEFSD095 |

Block Letters |

= .
apen n
o

IEFSD086

SMB Handler

IEFSD08?

j

e

IEFSDTTE

Spanned Data Command Chaining | 3211 Printer
Access Method ‘

I'nitializing and Processing Commands

The System Output Writer is entered at the
Writer Initialization routine (module
IEFSD080) via an ATTACH macro instruction
issued in the Attach routine of the
Initiator subroutine. The Initialization
routine moves the DD name from the Writer's
TIOT to the DCB for the output data set,
then reads the JFCB into main storage.

If, upon inspecting the output UCB, the
routine determines that the output device
is a 3211 UCS rpinter, the UCS and FCB
image-ids established at START WTR time are
saved as default ids in the writer
communication area--PARLIST. If inspection
of the output UCB indicates that the output
device is a 1403 printer with the UCS
feature, the initialization routine saves
the UCS image-id in the manner just
indicated. These default ids are
subsequently used by the SMB handler
(IEFSD086), the Standard Writer Routine
(IEFSD087), and the Job Separator
(IEFSD094) if new image-ids are not defined
and currently loaded image-ids are not
default image-ids.

The routine inspects the JFCB to
determine whether the writer is to use the
standard QSAM Put Locate routine, or
whether it is to use a special command
chaining access method. It uses the
special access method if all of the
following conditions are met:

e The writer uses a printer or punch as
the output device.

e The writer uses machine control
characters.

o The writer does not use PCI.

e The writer uses four or more buffers
for the output data set.

If all of the conditions are met, the
Writer Initialization routine sets a
switch, frees the main storage occupied by
the JFCB, and passes control to the Class
Name Setup routine. ,

The Class Name Setup routine (module
IEFSD081) initializes the writer to process
a specified set of system output classes.
The routine is first entered from the
Writer Initialization routine; it is
subsequently entered from the Command
routine to process the MODIFY command.

When the Class Name Setup routine is
first entered, it determines whether the
special access method is to be used. If
so, the routine obtains main storage for,

and constructs an IOB, an ECB, the required
CCWs, the required buffers, and an EXCP DCB
(which overlays the QSAM DCB).

Whether the special access method is to
be used or not, the routine opens the
output data set. If the output device is a
UCS printer, the UCS/FCB buffers are loaded
by OPEN to that environment specified in
the writer's output DD card, the WITR PROC
or the START WTR command. If the special
access method is to be used, the routine
uses the LOAD macro instruction to bring
the Command Chaining Access Method routine
into main storage.

Whenever the Class Name Setup routine is
entered, it performs validity checks on the
contents of the PARM field in the procedure
EXEC statement (if the command is a START
command), and on the command itself. Then,
using the validated information, the
routine creates and modifies the list of
classes to be processed by the writer,
stores the information used in translating
carriage control characters, and sets up
the pointers and ECBs used in communicating
with other tasks. The table area created
by the Class Name Setup routine is shown in
Fiqure 21.

The first three words of the table area
are used as a work area. The first word
contains the length of the table area.
second word is. used by the Main Logic
routine to store the queue address of the
first record of the current output queue
entry, in case a permanent error makes it
necessary to re-enqueue the entry when the
writer is stopped. The third word of the
work area contains three indicators in the
high-order bits: The first bit (the 1442
Punch bit) is set on to indicate that the
output device is a 1442 card read punch;
the second bit (the punch type output bit)
is set on when the outprut device is an
intermediate device, and the records it
holds will eventually be punched; the third
bit (the printer or punch bit) is set on
when the output device is a printer or
punch. These indicators are used in
translating carriage control characters
from input data sets.

The

The ECB pointer list contains, as its
first entry, the address of the
communications ECB in the CSCB. This ECB

is posted by the Command Scheduling routine
whenever there is a command for the writer
to process. The remainder of the entries
in the ECB pointer list contain the
addresses of the class ECBs, in the order
in which the corresponding classes are to
be processed by the writer.

The 8-byte elements associate a class
ECB with a class. There is an element for
each class specified in the START or MODIFY

Part 4: Processing System Output 79

4 4 4
Work Area Length of table area TTR of first queue entry record Reserved
‘ \
Command ECB pointer Printer or Punch
4
Class ECB pointer Punch type output
1442 Punch
ECB List = s
4 Class Name
Class ECB pointer /
411 3
Class ECB Q/M Link field
£ ~L ~L ~
8-Byte Elements- ~ ~ -~
411 3
Class ECB Q/M Link Field
Figure 21. System Output Writer Table Area

command; the elements are arranged in the
same order as specified in the command.

The first word in each element contains the
class ECB, which is initialized as posted,
and is' subsequently posted by queue
management whenever an entry in that class
is enqueued. The second word in the
element contains, in the high-order byte,
the class name. The low order three bytes
contain a queue management linkage field.
When a dequeue request is made that cannot
be satisfied (because there are no entries
in that queue), the Queue Management
Dequeue routine adds the element to a chain
of elements associated with writers that
process the class.

When the table area has been
constructed, control is passed to the Main
Logic Control routine.

The Main Logic Control routine (module
IEFSD082) is entered whenever the system
output writer is ready to process an output
queue entry or a command, and whenever a
permanent I/0O error is encountered. If a
command is to be processed, or an I/0 error
has been encountered, the routine passes
control - to the Command routine. If a queue
entry is available, the routine dequeues
it, and passes control to a Linkor routine.
If no work is available, the Main Logic
Control routine passes control to the Wait
routine.

The Main Logic Control routine first
inspects the return code passed to it by a
Queue Management or Writer routine; if the
code indicates that a permanent I/0 error
has been encountered, the Main Logic
Control routine passes control to the

80 0S/360 MVT Job Management (Release 21)

Command routine. If no I/0O error was
encountered, the Main Logic Control routine
determines whether a command is to be
processed by inspecting the command ECB; if
the ECB has been posted, a command has been
issued, and control is passed to the
Command routine.

The Command routine (module IEFSD083)
uses the Queue Management Unchain routine
to unchain each class ECB. If the command
is MODIFY, control is then passed to the
Class Name Setup routine. If the command
is STOP WTR, or if a permanent I/0 error
was encountered, the Command routine closes
the output data set, frees the storage
obtained for the table area, informs the
operator, and returns control to the
Initiator subroutine.

If there is no command to process, the
Main Logic Control routine looks for a
class ECB that has been posted. It
examines the class ECBs (in the order in
which the class names were specified); when
it finds a class ECB in the posted state,
it uses queue management to dequeue the
highest priority entry in the corresponding
queue. If the dequeue operation is
successful, the Main Logic Control routine
passes control to the Linkor routine
(module IEFSD078).

If, however, the gueue contains no
entries (because other writers have
processed all entries since the POST macro
instruction was issued), the Main Logic
Control routine looks for another posted
class ECB.

list. The writer is thus placed in the
wait state until either the command ECB or
a class ECB is posted. When the Wait
routine regains control, it passes control
back to the Main Logic Control routine.

If none of the ECBs are in the posted
state, or if there are no available entries
that correspond to posted ECBs, control is
passed to the Wait routine (module
IEFSDO084), which issues a WAIT macro
instruction specifying the ECB pointer

Part 4: Processing System Output 81

Processing a Queue Entry

An output queue entry is made up of DSBs
(one for each data set specified by the job
to be in that class); if the queue
corresponds to the message class, the queue
entry also includes the SMBs for the job.
The records in the queue entry are linked
together so that each record points to the
next. When the Main Logic Control routine
degqueues an entry, the first record is read
into main storage, and the Main Logic
Control routine passes control to the
Linkor routine.

The Linkor routine (module IEFSDO078)
examines the output DCB, and if the output
data set is to contain VS (variable-length
spanned) records, the routine uses the LOAD
macro instruction to bring the Spanned Data
Sets routine (module IEFSDXXX) into main
storage. '

If a separator program has been
specified to identify the output resulting
from processing a queue entry, the Linkor
routine passes control to it. The
IBM-supplied Separator program consists of
two modules:

e The Job Separator routine (module
IEFSD094) , which is the control
routine. When it is entered, this
routine initializes itself, and then
examines the output UCB device type.
If it is a 3211 printer, the Job
Separator determines if the currently
loaded UCS/FCB image-ids are default
images and if data checks are blocked.
If not, the Job Separator issues the
LINK macro instruction to the 3211
Processor Module (IEFSDTTE) to load the
writer default image-ids saved in the
PARLIST parameter list by the
Initialization routine (IEFSD080) and
to block data checks during Job
Separator processing. On return from
the 3211 Processor Module the Job
Separator routine uses the Transition
routine (see the section on the service
routines), and determines whether the
output data set is to be printed or
punched. It uses the Block Letters
routine (the other module of the
Separator program) to generate the
necessary records, and it uses the Put
routine to place them in the output
data set. It uses the Transition
routine again, then returns control to
the Linkor.

e The Block Letters routine (module
IEFSD095), which generates the records
that make up the block letters and
numbers. It is entered from the Job
Separator routine, and when it has
generated the requested record, it

82 0S/360 MVT Job Management (Release 21)

returns control to the Job Separator
routine.

When the Separator program is entered
(at the Job Separator routine) it executes
the Transition routine and then determines
whether the output data set is to be
printed or punched.

If the output data set is to be printed,
the Job Separator routine uses the Block
Letters routine to generate the records
necessary to print the job name and system
output class name (in block letters) on
each of the pages. The Job Separator
routine generates the records necessary to
overprint a line of asterisks on the fold
preceeding each page, and on the fold
following the last of the three pages.

If the output data set is to be punched,
the Job Separator routine uses the Block
Letters routine to generate the records
necessary to punch the job name and system
output class name in each of three cards.

In either case, the Job Separator
routine uses the Put routine (module
IEFSD089) to place the records in the
output data set. When the last record has
been passed to the Put routine, the Job
Separator routine executes the Transition
routine, then returns control to the Linkor
routine (module IEFSD078).

The Separator routine determines whether
the command chaining access method is being
used. If so, it passes control to the
Command Chaining Access Method routine
(module IEFSDXYZ), which truncates the
chain of CCWs and writes out any filled
(but unwritten) buffers, then returns
control to the Separator.

On the return from the Separator
routine, the Linkor routine examines the
entry and passes contrcl to the appropriate
processor, depending on whether the record
is an SMB or a DSB. The processors read
the subsequent records, and pass control to
each other as the record type changes.

When the entry has been processed, control
is returned to the Linkor routine, which
passes control to the Job Delete routine.

The Job Delete routine (module IEFSD079)
uses queue management to delete the job's
output queue entry from the queue. If an
I/0 error occurred during processing of the
entry and SMF is supported, the routine
stores an error indicator before issuing
SVC 83 to have the SMF record (type 6)
transferred to the SMF buffer. On the
return, the Job Delete routine passes
control to the Main Logic Control routine.

PROCESSING DATA SETS

The characteristics of a writer's output
data set are fixed when the writer is
started. The characteristics of its input
data sets may vary widely, and are unknown
until the writer is ready to process a data
set. The writer must therefore dynamically
initialize itself to process any one of a
large variety of inputs, and it must be
able to reformat input records and

trans late control characters to fit the
characteristics of the output data set. If
the output device is a 3211 UCS printer,
the UCS/FCB buffers can be dynamically
loaded prior to processing each data set.

The initialization is performed by the
DSB Handler routine each time a data set is
to be processed; the reformatting and
control character translation (as well as
the input and output operations) are done
by routines executing a Data Set Processing
subtask of the writing task.

Initialization

When a routine of the System Output Writer
reads a DSB from the output queue entry,
control is passed to the DSB Handler
routine (module IEFSD085). When it is
entered, the DSB Handler obtains main
storage for the input data set DCB (which
is filled in when the data set is opened),
and builds a new TIOT for the writer. The
new TIOT is a two-entry TIOT; the entry for
the output data set is copied from the old
TIOT, and the entry for the input data set
is created from information in the DSB, and
in the JFCB for the input data set.

If SMF is included in the system, the
DSB contains job log information. The DSB
Handler determines whether this information
is present, and if so begins construction
of an SMF record by storing the job log
information in an SMF record area.

If a system restart has been performed
since the DSB was created, the volumes
containing system output data sets may have
been remounted on different units. The DSB
handler routine uses the Queue Management
Read/Write routine to bring the JFCB into
main storage; the volume information is
extracted, and the volumes searched for the
data set. If the data set cannot be found,
the routine uses the WTO macro instruction
to inform the operator.

If the DSB was preceded by an SMB, or if
it is the first record in the queue entry
the routine obtains main storage from
subpool 255 for a new CSCB, for an ATTACH
macro instruction parameter list (which
contains an ECB), and for an ECB list that
points to the attach ECB and the cancel ECB
in the subtask CSCB. The DSB handler moves

the writer name into the CSCB jobname
field, and issues SVC 34 to cause the
Command Scheduling routine to place the
CSCB in the chain of CSCBs. Thus, the
program that processes the data set,
whether it is the standard writer or a
user-supplied program, can be canceled by
operator command.

Next, the DSB handler determines whether
a User routine was specified to process
this data set (if so, it stores the program
name), or whether the processing is to be
done by the standard writer. The routine
then determines from the writer CSCB
whether the writer is to pause before
processing any data set, or whether it is
to pause only when the form specification
changes. If a pause is required, the DSB
handler constructs an SMF Forms record
(type 6) and issues SVC 83 to have the
record transferred to the SMF buffer. It
then uses the WTOR macro instruction to
inform the operator, and waits for the
reply. When the reply is received, the DSB
handler passes control to the Attachor
routine.

The Attachor routine (module IEFSD070)
uses the ATTACH macro instruction to pass
control to either the Standard Writer
routine or to the user's program. This
subtask has a priority one less than that
of the writing task, which enters the wait
state until the attach ECB or the cancel
ECB (in the subtask CSCB) is posted.

If either ECB is posted, processing of
the data set has been terminated. The
Attachor routine determines whether the
command chaining access method is being
used. If so, the Attachor passes control
to the Command Chaining Access Method
routine, which truncates the CCW chain and
writes any filled but unwritten buffers to
the output data set. On the return, the
Attachor routine passes control to the Data
Set Delete routine.

The Data Set Delete routine (module
IEFSD171) makes the SMB Processor ready for
reinitialization, determines which routine
should get control, and passes control to
that routine.

When it is entered, the Data Set Delete
routine releases the main storage occupied
by the two-entry TIOT constructed in the
DSB Handler routine, then restores the TIOT
pointers so that they point to the original
one-entry TIOT. The routine then examines
the return code passed to it by the
Attachor routine.

On a normal return from the Attachor,
the Data Set Delete routines uses the
SCRATCH macro instruction to delete the
data set (except when the data set is the

Part U4: Processing System Output 83

System Log data set). If it is unable to
delete the ‘data set, the routine issues a
message to the operator, and passes control
(and an error return code) to the Linkor
routine (module IEFSD078).

If the data set was successfully
deleted, the Data Set Delete routine uses
the Queue Management Read/Write routine to
bring the next record of the entry into
main storage, examines the record, and does
one of the following:

e If the record is a DSB, the Data Set
Delete routine passes control to the
DSB Handler routine (module IEFSDO085).

e If the record is an SMB, the Data Set
Delete routine issues SVC 34 to delete
the subtask CSCB (command scheduling
control block) from the CSCB chain, and
to free the main storage it occupies.
The routine then frees the main storage
occupied by the ATTACH macro
instruction parameter list and passes
control to the SMB Handler routine
(module IEFSD086).

If there are no more records in the
queue entry, the Data Set Delete routine
issues SVC 34 to delete the subtask CSCB
from the CSCB chain, and to free the main
storage it occupies. The routine then
frees the main storage occupied by the
ATTACH macro instruction parameter list and
passes control to the Linkor routine
(module IEFSD078).

If the return code from the Attachor
routine indicates that a permanent I/0
error occurred in the input data set, the
Data Set Delete routine issues a message to
the operator, but otherwise performs the
same processing it performs on a normal
return.

If the return code from the Attachor
routine indicates that a permanent I/0
error occurred in the output data set, the
Data Set Delete routine notifies the
programmer that the processing of the entry
has been interrupted. If at least one
queue entry record has been successfully
processed, the routine builds an SMB,
places a message in it, and makes the SMB
point to the DSB corresponding to the data
set whose processing was interrupted. The
Data Set Delete routine then uses the Queue
Management Read/Write routine to write the
SMB as the first record of the currént
queue entry. Thus, when the queue entry is
retrieved for processing, the SMB
constructed by the Data Set Processor will
be processed first. Since the SMB points
to the DSB corresponding to the data set
whose processing was interrupted, ‘
intervening records will not be processed;
the data set will be reprocessed, and-

84 0S/360 MVT Job Management (Release 21)

subsequent records will be retrieved in
order.

When the SMB has been written, the Data
Set Delete routine issues SVC 34 to delete
the subtask CSCB from the CSCB chain, and
to free the main storage it occupies. The
routine then frees the main storage
occupied by the ATTACH macro instruction
parameter list and passes control to the
Linkor routine (module IEFSD078).

The Data Set Processing Subtask

The Data Set Processing Subtask includes
the functions of obtaining records from the
input data set, of moving records from
input buffers to output buffers, of
reformatting and translating control
characters as necessary, and of placing
records in the output data set. The term
"records", as used in this section, refers
to the logical records handled by the
GET/PUT (LOCATE) macro instructions. 1In
the case of a data set consisting of Vs
(variable-length spanned) records, a more
precise term would be "segments."

The first routine entered to perform the
Data Set Processing subtask is the Standard
Writer routine (module IEFSD087). When it
is entered via the ATTACH macro
instruction, if the output device is a UCs
printer, prior to opening the input data
set the Standard Writer routine issues the
LINK macro instruction for the 3211
Processor Module (IEFSDTTE). This
processor routine analyzes the input JFCB
for user UCS/FCB environmental change
requests and dynamically loads the UCS/FCB
buffers for each input data set. On return
from the 3211 Processor routine, the
Standard Writer routine uses the OPEN (type
J) macro instruction to open the input data
set. If the input data set was never
opened by the job step (thus contains no
records), a DCB exit routine sets a switch.
On the return from the Open routine, the
Standard Writer tests the switch; if the
data set was not properly opened, the
Standard Writer routine returns control to
the Attachor routine, thus terminating the
task.

If the data set was properly opened, the
Standard Writer routine examines the input
DCB to determine whether the input data set
contains VS records. If so, ahd if the
Spanned Data Sets routine (module IEFSDXXX)
has not already been lcaded into main
storage, the Standard Writer routine
obtains main storage for control
information and issues the LOAD macro
instruction. When the routine has been
loaded (or if it was already in main
storage) the Standard Writer routine passes
control to the Spanned Data Sets routine
for initialization.

On the return from the Spanned Data Sets
routine, the Standard Writer routine tests
for any initialization errors. If an error
occurred, the routine uses the WTO macro
instruction to inform the operator, then
closes the input data set, executes the
Transition routine, and returns control to
the Attachor routine. If no error
occurred, or if the Spanned Data Sets
routine is not to be used, the Standard
Writer routine passes control to the
Transition routine.

On the return from the Transition
routine (module IEFSD088), the Standard
Writer routine begins its main-line
processing. The routine obtains a record
(or a segment, if VS records are being
processed) from the input data set via a
GET macro instruction (locate mode). The
routine stores the control character,
segment information, and record length,
then resets the pointer to the record so
that it points to the first data character
instead of to the control character.
Finally, the Standard Writer passes control
to the Put routine, and on the return,
issues another GET macro instruction.

The Standard Writer routine continues
the process of obtaining a record, storing
control information, and passing control to
the Put routine, until either an
end-of-data or a permanent I/O error
condition is encountered in the input data
set. In either case, the Standard Writer
routine passes control to the Transition
routine; then closes the input data set,
frees the main storage obtained in the
Spanned Data Sets routine, and returns
control to the Attachor routine.

PROCESSING SYSTEM MESSAGE BLOCKS

The SMB Processor extracts the messages
from SMBs and writes the messages to the
writer's output data set. The SMB
Processor gets control whenever the Linkor
routine (module IEFSD078) determines that
the record read in the Main Logic Control
routine is an SMB, and whenever the Data
Set Delete routine (module IEFSD171) of the
DSB Processor reads an SMB. It returns
control to the Linkor when there are no
more queue entry records to process, and it
passes control to the DSB Handler routine
(module IEFSD085) of the DSB Processor when
the next record to be processed is a DSB.

The first module of the SMB Processor to
be executed is the SMB Handler routine
(module IEFSD086). When it is first
entered, the SMB Handler examines the
output UCB device type. If it is a 3211
UCS printer, the SMB handler determines if
the currently loaded UCS/FCB image-ids are

default images and if data checks are
blocked. If not the SMB handler issues the
LINK macro instruction to the 3211
Processor Module (IEFSDTTE) to load the
writer default image-ids saved in the
PARLIST parameter list by the
Initialization routine (IEFSD080) and
blocks data checks during SMB processing.
On return from the 3211 Processor routine,
the SMB Handler inspects the output data
set DCB to determine whether the output
data set is to contain variable-length
spanned (VS) records. If so, the SMB
Handler routine passes control to the
Spanned Data Sets routine (module IEFSDXXX)
for initialization.

On the return from the Spanned Data Sets
routine, or if it determines that VS
records are not to be processed, the SMB
Handler passes control to the Transition
routine (module IEFSD088) to ensure that
overprinting will not take place. On the
return, the SMB Handler extracts the
messages from the SMB.

If a message is compressed, the SMB
Handler expands it before storing a pointer
to its location. When the pointer has been
stored, the SMB Handler passes control to
the Put routine (module IEFSD089). This
routine uses the PUT macro instruction to
place the message in the output data set.

On the return from the Put routine, the
SMB Handler extracts the next message from
the SMB and passes control back to the Put
routine. When there are no more messages
to be extracted, the SMB Handler passes
control to the Transition routine.

On the return from the Transition
routine, the SMB Handler uses the Queue
Management Read/Write routine to bring the
next record from the queue entry into main
storage. If the record is an SMB, the SMB
Handler executes the Transition routine and
continues passing the messages to the Put
routine. If the record is a DsSB, or if
there are no more records in the queue
entry, the SMB Handler determines whether
the writer is using the command chaining
access method. If so it passes control to
the Command Chaining Access Method routine
to write out any filled (but unwritten)
buffers. On the return, it returns control
to the Linkor routine (module IEFSD078).

If the return from the Put routine
indicates that a permanent I/O error has
been encountered, the SMB Handler routine
returns control to the Linkor routine
(module IEFSD078).

Part 4: Processing System Output 85

SERVICE ROUTINES

Because of the similarities in the
processing performed by the Separator
program, by the Data Set Processor and by
the SMB Processor, they use certain
routines in common:

o The Put routine (module IEFSD089),
which is entered from the Standard
Writer, Transition, and SMB Handler
routines. The Put routine performs
control character translation, moves
records and messages from input buffers
to output buffers (or uses the Spanned
Data Sets routine to move segments),
and issues the PUT macro instruction.
If SMF is included, the Put routine
increments the temporary output record
counter in the SMF record for each
record written to the output device.

e The Spanned Data Sets routine (module
IEFSDXXX) which is entered from the Put
routine. The Spanned Data Sets routine
moves variable-length spanned (VS)
record segments from input buffers to
output buffers.

o The Command Chaining Access Method
routine (module IEFSDXYZ), which is
entered via the PUT macro instruction.
The Command Chaining Access Method
routine simulates the processing
performed by the Q0SAM Put Locate and
Truncate routines, except that it uses
command chaining.

o The Transition routine (module
IEFSD088) which is entered from the
Standard Writer routine and the SMB
Handler. The Transition routine
prevents overprinting from occurring in
the transition between queue entry
records.

e The 3211 Processor routine (module
IEFSDTTE) which is entered via the LINK
macro from the Standard Writer routine,
the SMB Handler, or the Job Separator
routine. The 3211 Processor routine
initializes the UCS/FCB buffers for
3211 UCS printer output prior to the
output of each data set, group of SMBs
or job separator.

The Put Routine

The Put routine (module IEFSD089) is
entered from the Standard Writer routine,
the SMB Handler routine, the Job Separator
routine, or the Transition routine when a
record (or segment) is available in an
input buffer or work area. When it is

86 0S/360 MVT Job Management (Release 21)

entered, the routine determines whether
control character processing is necessary,
and if so, performs the necessary
processing. '

The control characters associated with a
logical record (or with thé first segment
of a VS record) are carriage tape channel
numbers, line spacing indicators, or punch
stacker numbers. An input data set may or
may not use control characters. If it
does, they are expressed as American
National Standard control characters, or as
machine control characters. Similarly, the
output data set may use either American
National Standard or machine control
characters, or none. Since American
National Standard control characters are
acted upon before a record is printed orx
punched, and machine control characters are
acted upon afterward, the Put routine may
have to translate a control character and
associate it with a record other than the
one it originally accompanied. The kind of
processing required derends on the
combination of control character types used
in the input and output data sets, and is
shown in Figure 22.

When it has performed any necessary
control character processing, the Put
routine determines whether it must process
VS records.

If VS recoxds are to be processed, the
Put routine uses the Spanned Data Sets
routine (module IEFSDXXX) to move the
segments from the input buffers to the
output buffers. The Put routine passes
control to the Spanned Data Sets routine
with an indication (in the high-order byte
or Register 15) that a segment is
available. The Spanned Data Sets routine
passes a return code, which is examined by
the Put routine when it regains control,
that indicates whether another segment is
required or whether a PUT macro instruction
should be issued.

If the records to be processed are not
VS records, the Put rcutine does the moving
from input buffer to output buffer. If the
input record is too large for the output
buffer, the Put routine truncates the
record at the low-order end. If a
fixed-length record is smaller than the
buffer, the Put routine left justifies the
record and pads with blanks.

If a permanent I/O error occurs, the Put
routine returns control to its caller.

|Actions

| 1. No control character processing.

| 2. Use the control character from the
| current record for the previous

| record.

| 3. Use the control character from the
| previous record for the current

| record.

| 4. Do not use control characters for
| output records.
| 5. Generate an American National
| Standard control character for each
| output record.
| 6. Do Action 5, then do Action 2.

r T . L . L I . s O O L |
| Input |American [X|X[X| | | | | | |
| National | | | I T I
| Standard | | (| | |
| - { 11
|Data Set Machine | 1X]X|X | |
[l 14

T T 1

|Control None | X|X|X]|
|Characters | 1 T T T Y I
t + —t-t+-t-t-t-t+-t+-+-1
|Output |American |X| | |X] | IX] | |
| I[Natiomal | | | | | | | | | |
Istandaxd | | | [| | | | | |

f=———- b=ttt -+t

|Data Set |Machine 11X 1 1X1 | Ixt]
| R o ot S S S o
| Control |None | IXt Xl X
Characters | |1 | [
L | I | | I I T N S |

T 17T T 1T T 17T 71771

DO ACTION# |1] 2| 4|3|1|4][5]6]1]
1_L_1 LLLLI_II

Actions: |
|

|

|

|

|

|

|

|

|

|

|

|

|

i

System Output Writer Control
Character Processing

Figure 22.

The Spanned Data Sets Routine

The Spanned Data Sets routine (module
IEFSDXXX) is used by the Put routine when
either the input data set or the output
data set (or both) consists of
variable-length spanned (VS) records. The
routine is entered each time an input
buffer (or work area) becomes available,
and each time a PUT macro instruction makes
an-output buffer available. It moves
records (or segments) from the input
buffers (or work area) to the output
buffers. If the input data set has
American National Standard control
characters and the output data set has
machine control characters, the routine
uses a work area td hold a complete record
until the control character from the next
record is available.

If the work area is not required, the
Spanned Data Sets routine moves the
contents of the input buffer directly to
the output buffer. When the output buffer
is full, the routine returns control to the
Put routine to have a PUT macro instruction

issued. When the input buffer is empty,
the Spanned Data Sets routine returns
control to the Put routine, which returns
control to its caller to obtain another
buffer.

If the work area is used, the Spanned
Data Sets routine fills it from the input
buffer. The work area is as large as the
largest record to be handled by the
routine, and if more than one input buffer
is required to f£fill the work area, the
routine returns control to the Put routine
with a GET request. The Put routine
returns control to its caller, which
obtains another input buffer (or generates
another record), and passes control to the
Put routine. The Put routine then passes
control to the Spanned Data Sets routine,
which moves the contents of the input
buffer (or the generated record) to the
work area.

When the first segment of the next :
record is available, the Spanned Data Sets
routine fills the output buffer from the
work area, then returns control to the Put
routine to have a PUT macro instruction
issued. If more output buffers are
required to empty the work area, the
routine continues to request PUTs until the
work area is empty.

The Command Chaining Access Method Routine

The Command Chaining Access Method routine
(module IEFSDXYZ) simulates the processing
performed by the QSAM Put Locate and
Truncate routines. The difference is that
the Command Chaining Access Method routine
uses command chaining to write one string
of up to nine buffers with a single IOB and
a single EXCP macro instruction. If ten or
more buffers are specified, the routine
writes them as two strings, but uses one
IOB.

The Command Chaining Access Method
routine is entered under the following
circumstances:

e Via a PUT macro instruction issued in
the Put routine (module IEFSD089).

e Via a branch instruction from the
Attachor routine (module IEFSD070)
after each data set has been processed.

e Via a branch instruction from the SMB
Handler routine when it determines that
the next record to be processed is a
DSB, or that there are no more records
in the queue entry.

e From the Linkor routine (module
IEFSD078) after the Separator program
has been executed.

Part 4: Processing System Output 87

When it is entered via a PUT macro
instruction, the Command Chaining Access.
Method routine determines whether all of
the buffers in a chain have been filled,
and if so it writes them to the output data
set. In any case, it returns control to
its caller with a pointer to the next
available buffer.

When it is entered via a branch
instruction, the routine breaks the CCW
chain at the CCW corresponding to the last
buffer filled. It then uses the EXCP macro
instruction to write the filled buffers to
the output data set, and returns control to
its caller.

The Transition Routine

The Transition routine (module IEFSD088) is
used by the DSB Processor, the SMB
Processor, and the Separator program to
perform the following functions:

e It prevents overprinting from occurring
when a data set using American National
Standard control characters is followed
by a data set using machine control
characters.

e It causes extra records to be printed
or punched at the beginning of a data
set so that the initial control
character will be effective.

e It causes extra records to be printed
or punched at the end of a data set so
that the final control character will
be effective.

e It causes extra records to be printed
or punched at the end of a data set or
a group of messages so that the last
significant record will be written
before a PAUSE option takes effect.

The Transition routine is entered from
the Standard Writer routine before a data
set is processed and again when an
end-of-data condition is encountered. It
is entered from the SMB handler routine
before and after each SMB is processed, and
it is entered from the Separator program
before and after the separator records have
been written.

When it is entered, the Transition
routine determines the type of processing
required by making the decisions shown in
Figure 23, then performs the required
processing. Each time it is required to
write a record to the output data set, the
Transition routine uses the Put routine
(module IEFSD089). When it has completed
its processing, the routine returns control
to its caller.

88 0S/360 MVT Job Management (Release 21)

3211 Processor Routine (IEFSDTTE)

This module is entered only if the output
device is a 3211 Printer and some change to
the UCS/FCB environment has been
predetermined. A complete analysis is
performed to identify those parameters
requiring change as determined from caller
requests for parameters which differ from
the presently established environment. The
input JFCB entry is first checked for a
change request. This is followed by a test
for valid association with prerequisite
parameters or the need to secure default
parameters. The input request is then
compared with the present parameters as
defined in the output UCB. If the input
request differs from the present output,
the input request is transferred either
from the input JFCB or from PARLIST (in the
case of default parameters) to the SETPRT
list in core. The SETPRT macro is then
executed to permit data management to
reload the UCS/FCB buffer(s), block data
checks, load character set images in the
folded mode or request operator
verification of images or alignment of
forms. The return codes in register 15
reflecting the status of the UCS/FCB load
are used as offsets into a branch control
table to select an input error message for
sysout to the printer or an output message
for a WTO to the operators' console. The
System Output Writer PUT routine in
IEFSD089 is used to output the error
message to the printer. If an input error
occurred, a switch is set in the WKSOR
communication region to forward a request
for input data set skip and proceed to the
next input data set. An output error
return code in register 15 results in
writer termination.

This routine cannot be used with a
user-written writer routine for the
following reasons.

e It utilizes the standard 2-register
interface with IEFSD089 to pass the
start and length of a line of print and
printer control characters (the sysout
printer error message) to the Standard
Writer PUT routine for output.

e It requires the use of the WKSOR work
area to locate the PARLIST
communication area in which default
image-ids are saved and to pass input
error indicators to IEFSD087 to effect
skipping of data sets in error and
advancement to the next data set. This
WKSOR area is gotton and initialized by
the Standard Writer Routine IEFSD087.

A user-written writer routine has the
SETPRT macro facility available whereby the
required UCS/FCB environment can be user
established at will.

IEFSDTTE is entered from:

e IEFSD086 for loading of default images
and to block data checks for SMB's.

e TEFSD087 to process UCS/FCB
environmental changes for each input
data set.

e IEFSDO94 for loading default images.
Control is returned to the calling
routine or passed to IEFSD089 to output
error messages.

containing a Machine Stacker 1 c.c.

r . . DL D D D D s e e e
|Output for Printing |Y|Y|Y|Y|Y|Y|Y]Y] |
. I S
Output for Punching [|¥|Y
B I I T I [l
T . T T 1T ° T
Input |American |Y|Y|Y|Y] | | |
Control |National 111 |
Character |Standard 111 |
| t - t—t—t—t-1+-+-+-+-+-+-1
| [Machine | | | | |Y[¥Y|Y|Y| | |
L } | IS ISR T N I NN B B S B |
r 1 . T T rrTrTr v
|output |American |Y| | | [¥]Y] | |Y¥Y| |
|Control |[Nationmal | | | | | | | 1 11
|Character |Standaxrd | | | | | | | 1 |1
| t - t—t-t-+-+-+-+-+-1-1
| |Machine il | 1yl | Yl
| b1 +-t-t-t-+-+-+-+-1+-
I |None A NI
L 1 ottt _L_1 L1
r L. T 11T T 1T1T7 T 1T1
|Start Transition Il oyl | | 11
L | Y WO N [N I IR SOy N S |
r . T T TrTrrTrryr T
|End Transition 1Yl Y1yl 1Y|YlY|Y|Y]
L | R R W NSO SN S O S N B |
r . DU D D R R I B R R D
| Do Action # |112]3]4|5|6]|6]|4]7]|8]
} Lttt _t_L_t_ L
|Actions: .
| 1. Print a line of blanks with American
| National Standard Suppress c.c.
| 2. Print a line of blanks with American|
| National Standard Space 1 c.c. |
| 3. Put a Machine Space 1 c.c. in the
| previous record and do Action 6.
| 4. Print a line of blanks with no c.c.
| 5. Put an American National Standard |
| Space 1 c.c. in the current record.|
| 6. Print a line of blanks with Machine |
| Suppress c.cC. |
| 7« Punch 3 blank records, each
| containing an American National |
| Standard Sstacker 1 c.c. |
| 8. Punch 3 blank records, each |
| [
L J

Figure 23. Transition Routine Decision

Table

Part 4: Processing System Output 89

90 0S/360 MVT Job Management (Release 21)

Command processing consists of command scheduling and command execution.

Part 5. Command Processing

Command

scheduling is the synchronization of command execution with other events in the system;
it is accomplished when the Command Scheduling routine (SVC 34) stores the command, and

notifies a job management routine that the command is available for execution.

Command

execution is accomplished by various Job Management routines as part of their performance
of existing system tasks, or by Job Management routines performing tasks established in

response to the command.

Operator commands may be read from any of the units designated as console input
devices, they may be read from a TSO terminal, or they may be placed in an input stream

and read by an interpreter as a part of a reading task.

In addition, commands may Le

assembled into the system when it is generated; these commands are executed after initial
program loading, as part of system initialization.

The reading of commands from console devices is described in the MVT Supervisor

Program Logic Manual.

The reading of commands from a TSO terminal is described in the
TSO Command Processor Program Logic Manuals.

The reading of commands by the interpreter

is described in the section on The Interpreter Routine in this publication.

The "Command Scheduling" portion of this section discusses the initialization of the
Command Processing routine (SVC 34) and the techniques it uses for storing commands,

notifying the responding routine that a command is to be processed,
The "Command Execution" portion discusses the commands themselves:

messages.

and issuing error
the way

they are processed in the SVC 34 routine, and the way they are processed by special

command execution tasks.

Command Scheduling

Commands must usually be executed at
distinct points in the cycle of events in
the system. Since the operator cannot
synchronize the execution of his commands
with the system, the execution of commands
must be scheduled by the system. Command
scheduling is the synchronization of
command execution with task processing.
Commands must first be stored--compactly,
conveniently, and chronologically. An
appropriate system routine must then be
notified that a command is awaiting
execution.

The Command Scheduling routine (SVC 34)
condenses and stores command verbs and
operands, and notifies the appropriate
responding system routine. Many commands
are stored in command scheduling control
blocks (CSCBs) that are chained together;
the Command Scheduling routine manipulates
the CSCB chain as required.

The Command Scheduling routine, shown in
Figures 24 and 45, is entered whenever an
SVC 34 is issued by routines performing the
console and TSO terminal communications,
reading, initiating, and writing tasks.

The routine is used whenever there is an
operator command ready for scheduling,
whenever an executing job step is to be
canceled, and whenever a CSCB must be
deleted from the chain and the CIB or, in

the case of TSO, a LOGON communications
element (LCE), is to be added or deleted
from the chain. This section discusses
only the command scheduling functions; the
other functions are discussed in the
section on the initiating task.

INITIALIZING THE COMMAND SCHEDULING ROUTINE
The first module of the Command Scheduling

routine (SVC 34) to be executed is the STAE
Environment Creation routine (module

IGC0003D).1. (For a detailed discussion of

the STAE facility, see the MVT Supervisor
PLM.) This routine is entered twice each
time SVC 34 is issued. When it is entered
following the issuing of SvVC 34, the
routine creates the STAE environment. When
a failure occurs during execution of the
command or master scheduling tasks, the
routine is entered again. This time it
passes control to the STAE Exit routine to
prepare for retry.

When the routine receives control, it
first checks register 1. If register 1
points to the characters "STAE", the
routine has been entered because of a

iThroughout the discussion of the Command
Scheduling routine (SVC 34), load module
names will be used in order to indicate
transient SVC routines that are used by
the master scheduler.

Part 5: Command Processing 91

Command Processing

RETURN

STOP
STOPMN Systems with
MODIFY MCS/TSO

Y

Nonperiodic
Stop/Modify

STOP, MODIFY Selected Job

CANCEL

DUMP
HOLD
MOUNT
QUIESCE

RELEASE
RESET
START

RETURN

SEND

DISPLAY USER
DISPLAY PFK

DISPLAY R
DISPLAY SQA

DISPLAY

DISPLAY T

CONTROL

Status Display (MONITOR A)

MONITOR
Non=Status Display

Note: The Message
Module blocks represent
either IGC0503D or
1GG2103D.

Figure 24. Control Flow in the Command Scheduling Routine (Part 1 of 2)
(Part I -- See Figure 45 for Part II)

92 0S/360 MVT Job Management (Release 21)

Note: The Message Module blocks represent

_ 1GCos03D
] ST Commra |5
Processor, Part T
1GC8603D SET CLOCK 1GC0903D
! SET DATE
SET SET Command TDAT »| Timer A
Processor, Part I Error Maintenance
TOD Clock
> Message -
Module
1GC6503D 1GC6603D
SET SET
Time~of-Day Time-of-Day
Clock (Part I) Clock (Part 1)
IGF08501
| Machine Status | MODE STATUS
Control for Model
85 (Part 1)
[
IGF2603D |GF08502
MODE > . Machine Status >
 MODE Router Control for Mode |
A 85 (Part 2) .
 (cRopl
'Machine Status
Control for | =
Model 145 |
HALT ;
SWITCH _ [
UNLOAD_ [~
VARY

either IGC0503D or IGG2103D.

Figure 24.

I

Control Flow in the Command Scheduling Routine (Part 2 of 2)
(Part I -- See Figure 45 for Part II)

Part 5:

Command Processing

93

failure during execution of the command or
master scheduling tasks. Therefore, the
routine uses an XCTL macro instruction to
pass control to the first load of the STAE
Exit routine {module IGC5103Dj.

If register 1 does not point to "STAE",
the routine checks register 0. If register
0 does not point to "STAE", this is the
first entry to the routine for this issuing
of sVC 34. The routine saves registers 0,
1, 5, and 15 in the extended save area
(XSA) of the supervisor request block
(SVRB) that was created when SVC 34 was
issued. Then the routine places "STAE" in
the XSA and places the address of "STAE" in
register 0. Finally, the routine issues
SVC 34.

If register 0 points to "STAE", this is
the second entry to the routine for this
issuing of SVC 34. The routine establishes
the STAE environment by placing the STAE
Exit Linkage routine in the XSA. If svC 34
was issued in response to a command, the
routine stores the command verb with the
STAE Exit Linkage routine in the XSA.

Then, the routine restores registers 0, 1,
and 5 to their original condition upon
entry to the routine and places the
contents of register 15 in the sixth word
of the second XSA. Finally, the routine
passes control via an XCTL macro
instruction to the Chain Manipulation
routine (module IGC0303D).

When the Chain Manipulation routine is
entered, it tests register 1:

o If register 1 is positive, SVC 34 has
been entered to schedule the execution
of a command. In this case, the Chain
Manipulator routine uses the XCTL macro
instruction to pass control to the
Command Translator routine (module
IGC5403D).

e If register 1 is not positive, the
routine tests both register 1 and
register 0 and performs the indicated
processing as follows:

r T T 1
| Register 1|Register 0|Processing |

[l } 4
f Negative i Zero TCSCB processingi
| Negative | Negative |Set CIB count |
i | | in CscB |
Negative	Positive	CIB processing
Zero	Positive	Free CIB chain
Zero	Negative	Set CIB count
		to zero
L L L J

When the Command Translator routine is
entered to schedule the execution of a
command, register 1 points to a parameter
list (on a halfword boundary) consisting of

94 0S/360 MVT Job Management (Release 21)

a length field and a buffer containing the
. command, and register 0 indicates the
source of the command.

e If register 0 is positive and the high

order bit of the lower half word is on,
register 0 contains the ID of the TSO
terminal through which the command was
issued (TJID).

Register 0

=S .
QO

The Command Translator routine places
the terminal ID in the TJID field of
the extended save area (XSA) of the
supervisor request block (SVRB) -- see
Figure 26.

If register 0 is positive and the high
order bit of the lower half word is not
on, register 0 contains the UCMI
corresponding to the console through
which the command was issued, or a
X'00" showing that the command was
issued by a system routine.

Register 0 T 9
| 0 |UCMI or X'00'|
L 1]

31 15 0

In systems with the multiple console
support (MCS) option, the Command
Translator routine determines whether
the command is to ke added to the hard -
copy log. If so, it issues a WTO macro
instruction with the MCSFLAG=HRDCPY
parameter, and stores the contents of
register 0 in the UCMI field of the
XSA.

In systems without MCS, the routine
stores zeros in the UCMI field of the
XSA.

If register 0 is negative, the SVC was
issued in the Interpreter routine. In
this case, the register contains the
command authorization field from the
PARM field of the reader procedure EXEC
statement.

In systems with MCS, the Command
Translator routine determines whether
the command is to be added to the hard
copy log. If so, it issues a WTO macro
instruction with the MCSFLAG=HRDCPY
parameter and stores a X'80' in the
UCMI field of the XSA. Then it stores
the contents of the register in the
module interface work area.

In systems without MCS, the routine
stores a X'80' in the UCMI field of the
XSA.

When it has updated the XSA, the routine
translates any lowercase EBCDIC Characters
in the command (except those enclosed in
parentheses) into uppercase EBCDIC
characters and uses the XCTL macro
instruction to pass control to the Router
routine.

The Router routine (module IGCO403D)
scans the command buffer for the command
verb, and uses the verb to find the
appropriate entry in the verb table (see
Figure 25). If there is no verb table
entry corresponding to the command verb,
the command is invalid; the Router routine
uses the XCTL macro instruction to pass
control to a message routine that informs
the operator and returns control to the
supervisor.

Command Verb

Verb Abbreviation

Verb Index Code

Module Branch Offset

MCS Command Group

Figure 25. Verb Table Entry

If the command is valid, the Router
routine determines whether the source has
the authority to issue the command. If the
UCMI field of the XSA contains X'00' (the
source is a system routine or the system
does not contain the MCS option) any valid
command is authorized. If the UCMI field
contains X'80', the command source is the
input stream, and the command authorization
is in the module interface work area of the
XSA. The routine compares the
authorization to the MCS command group
field in the verb table entry. Otherwise,
the routine uses the UCMI to find the
appropriate unit control module entry, and
compares the command authorization to the
MCS command group field in the verb table
entry.

Ptr to Name of Next Module Ptr to DCB for XCTL

Name of Next Module

1 3 1 3
Error . Verb Ptr to 1st Operand
Code Pir to SVC 34 Parm List Code Char in Parm List

Command Verb

Module Interface Work Area

1 1 2 15
UCMI Reserved TJID

Reserved

Extended Save Area of SVRB as
Used for Passing Information
Between Modules of the SvC 34
Routine

Figure 26.

If the source is not authorized to issue
the command, the Router routine uses the
XCTL macro instruction to pass control to a
message module that informs the issuing
operator and returns control to the
supervisor.

If the source is authorized to issue the
command, the Router routine stores a X'00'
in the UCMI field of the XSA (unless the
command is a VARY command) and uses the
XCTL macro instruction to pass control to
the module specified in the verb table
entry.

If the command is a VARY command, the
authorization necessary depends on the
second operand; the router routine
therefore assumes that no authorization is
necessary, and the authorization is checked
in a subsequent module.

Part 5: Command Processing 95

STORAGE AND NOTIFICATION

The Command Scheduling routine uses several
techniques for storing commands and

notifying a responding routine.

Figure 27

lists the commands alphabetically (within
storage technique), and also shows the
method of notification and the name of the

responding routine.

The storage techniques

are discussed below:

96

e Creating a New CSCB:

When the
execution of a command as part of an
existing system task is not feasible
(see task-creating commands), a new
command execution task must be
established. The CSCB Creation routine
(module IGC0803D) determines whether
the command is one that will be
executed by the master scheduler
(DISPLAY A, DISPLAY U, DISPIAY
CONSOLES, DISPLAY C,K, DISPIAY M,
DISPLAY PFK, MONITOR A, QUIESCE, VARY
CH, VARY CPU, and VARY STOR). If the
command is not one of these commands,
the routine builds a CSCB to contain
the command, encodes the command, and
stores it in the CSCB.

If the command is one of those executed
in the master sheduler region, the CSCB
Creation routine determines whether it
can be executed. Because of storage
limitations, only one such command can
be executed at a time, except that in a
system that includes multiprocessing as
many as two VARY STOR OFFLINE commands
can be executed concurrently with one
other command.

If the command cannot be executed, the
CSCB Creation routine passes control to
a message routine that informs the
operator and returns control to the
supervisor. If the command can be
executed, the CSCB Creation routine
builds a CSCB to contain the command,
encodes the command, and stores it in
the CSCB.

When a CSCB has been constructed, it is
marked "pending" and added to the chain
of CSCBs, where it becomes a
communications region between the
Command Scheduling routine and the
master scheduler. It is the master
scheduler's task to attach system
tasks; when it is notified of the

0S/360 MVT Job Management (Release 21)

command (via a POST macro instruction),
it scans the chain and attaches the
task of executing the command.

Updating an Existing CSCB: When a
CANCEL command is to be executed as a
part of a specific, currently existing
system task (a job that has been
selected, a TSO job, or the subtask of
a system output writer), the CANCEL
Processor routine (module IGC3703D)
marks the CSCB that corresponds to the
task and issues a POST macro
instruction to the ECB in the CSCB.
The executing routine tests the bits in
the CSCB, and executes the command.

Chaining the CIB: When a command
(other than the CANCEL command) is to
be executed as a part of a specific,
currently existing system task, the
Stop and Modify Scheduling routine
(module IGC0703D) builds a command
input buffer (CIB) in subpool 245 from
the command image and adds the CIB to
the CIB chain. Routines that execute
the task inspect the CIB chain and then
execute the command(s).

Using a System Table: When the command
is to be executed by a specific routine
(performing any existing system task),
the operands are encoded and stored in
system tables. The responding routine
tests bits in the tables during its
normal operating cycle, and executes
commands as indicated.

Using General Registers: When the
Execution routine can operate as a part
of the Command Scheduling routine, and
when the information in the operands of
the command can be placed in general
registers, this is the technique used.
Notification consists of passing
control to the Execution routine.

Building a Parameter List: When the
Execution routine can operate as a part
of the same task as the Command
Scheduling routine, but the operand
information cannot be placed in general
registers, a parameter list is
constructed. Notification is
accomplished by passing control to the
responding routine.

Storage

Command

Notification

Initial Responder

Create
new
CSCB

—— . e e i o e e e e

CANCEL (job in queue)
DISPLAY A
DISPIAY C,K
DISPLAY CONSOLES
DISPLAY jobname
DISPLAY M
DISPLAY N
DISPLAY PFK
DISPLAY Q
DISPLAY U
DISPLAY USERS3
DUMP

HOLD

MONITOR A

MOUNT

QUIESCE

RELEASE

RESET

SEND3

START

VARY CH

VARY CPU

VARY STOR

CSCB

CANCEL (job selected/
TSO session)

CANCEL wtrdevice

Chain CIB

-+ e e e e e — e ——

MODIFY
STOP

POST

Master Scheduler

by — — v}

Initiator

——— — — —— ——

Writer

Named task

MONITOR DSNAME
MONITOR JOBNAMES
MONITOR SESS3
MONITOR SPACE
MONITOR STATUS

Update
system

MODE
SET PROC
SET Q

tables

—— . — . et e Wiy s

STOPMN% DSNAME
STOPMN%4 JOBNAMES
STOPMN4 SESS3
STOPMN4 SPACE
STOPMN4 STATUS
UNLOAD

VARY unit

e e e e e s e e s e . e e e e e . e B bt e e e, S ki e e . Vo . . . S S, S, . . S e S, . S e S

Inspect
tables

Initiator

———— — ——— ———

Initiator

Y S S SIS T

SWITCH

svcC 83

SMF SVC Routine

SWAP=2
VARY PATH2

L

POST

Master Scheduler

F
[
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
t
|
| Update
|
|
t
|
|
F
|
|
|
|
I
|
[
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
t

|'See the MVT Supervisor Program Logic Manual.

|2See the Input/Output Supervisor Program Logic Manual.
|3See the TSO Command Processor Program Logic Manuals.
|#See the "Summary of Amendments"” for Release 21.

L

i e e s s i —

IFigure 27. Command Storage and Notification Techniques (Part 1 of 2)

Part 5:

Command Processing 97

i 1 i 1 |
| Storage Command | Notification Initial Responder |
t H 1
i DISPLAY R | |
I
+ |
DISPLAY SQA | [
Il
1 |
DISPLAY T | TIME |
| Load ! s 4 |
| general | SET CLOCK | STIMER | Timer Maintenance routinel |
- registers ¢} + i]
SET DATE | XCTL |
L (] J
[} T 1
Build HALT* | sSvC 76 Statistics Update routine2 |
parm $ J
| 1list LOG | WTL | Log routine?
} L L J
L} 1
| *See the MVT Supervisor Program Logic Manual. |
| 2see the Input/Output Supervisor Program Logic Manual. |
| 3see the TSO Command Processor Program Logic Manuals. |
| “See the "Summary of Amendments" for Release 21. |
L J

Figure 27.

ERROR MESSAGE PROCESSING

Validity checking is performed in all
modules of the Command Scheduling routine.
If an error condition is encountered in any
module, a code representing the error is
placed in the extended save area of the
SVRB (shown in Figure 28) and control is
passed to the appropriate Error Message
routine (module IGC0503D or module
IGG2103D). The routine uses a WTO macro
instruction, or a TPUT macro instruction if
the command was issued from a TSO terminal,
to inform the operator of the error
condition, then returns control to the
supervisor.

Record Header

Message |1D

Command Verb

20
:r) Pre-formatted Message

_I)

Extended Save Area of SVRB as
Used for Message Processing in
the SVC 34 Routine

Figure 28.

STAE EXIT ROUTINES
If a STAE environment is in effect and a

failure occurs during the command or master
scheduling tasks, ABTERM processing obtains

98 0S/360 MVT Job Management (Release 21)

Command Storage and Notification Techniques (Part 2 of 2)

the address of the STAE Exit Linkage
routine from the STAE control block and
passes control to the routine. The Exit
Linkage routine issues SVC 34 with register
1 pointing to the characters "STAE" in main
storage.

When the first routine (module IGC0003D)
of sSVC 34 receives control, it checks
register 1. When it finds that the
register points to "STAE", it uses an XCTL
macro instruction to pass control to the
first load of the STAE Exit routine
(modules IGC5103D, IGC5203D, IGC5303D).

If the SYS1.DUMP data set is available,
module IGC5103D provides a dump of the
entire main storage by means of the SVC
dump facility. Then it sets a code for the
third load module of the STAE Exit routine
(module IGC5303D), which will issue a
message indicating that the dump was
provided.

Next, module IGC5103D scans the
following control blocks for errors: the
command scheduling contxrol block (CSCB),
the command input buffer (CIB), the group
control block (GCB), and the LOGON
communication element (LCE). If a chain
pointer is found to be in error (i.e., it
points out of the system queue area or to
other than a doubleword boundary), the
routine truncates the chain by setting the
pointer to zero. The next pointer is then
checked. When all the control blocks have
been checked, module IGC5103D determines
whether an ENQ macro instruction had keen
issued specifying the GCB chain. If so, it
releases the chain using a DEQ macro
instruction. Then module IGC5103D passes
control to module IGC5203D.

Module IGC5203D scans the reply queue
element (RQE) chain and truncates it if any
block in the chain is not in the SQA or is
not on a doubleword boundary. Next, if the
Display Active routine (module IEEVDSP1)
was processing at the time of the failure,
module IGC5203D frees the main storage used
by the routine and turns off the display
active bit in the M/S resident data area.
After all of this processing is completed,
module IGC5203D passes control via an XCTL
macro instruction to the third load of the
STAE Exit routine (module IGC5303D).

For each error that modules IGC5103D and
IGC5203D f£ind, module IGC5303D issues a
message to the console indicating the
failing component, the error that was
found, and the action, if any, that was
taken. The routine also issues a message
indicating the command that was being
processed at the time of the failure, if
the command can be determined. If the
command was from a TSO terminal, the
routine issues the messages to the terminal
as well as to the console.

If the error occurred during the master
scheduling task, module IGC5303D returns
control to the Master Scheduler STAE Retry
routine through the ABEND processing. If
the error occurred during the command
scheduling task (SvC 34), the routine
places the Command Scheduler STAE Retry
routine in the XSA and passes control to it
via ABEND.

STAE RETRY ROUTINES

The Command Scheduler STAE Retry Routine:
This routine is part of module IGC5303D.
Placed in the XSA by module IGC5303D, the
routine frees the main storage occupied by
the ABEND/STAE work area and returns
control to SVC 34.

The Master Scheduler STAE Retxry Routine:
This routine is part of the master
scheduling task. After receiving control
from ABEND processing, the routine frees
the ABEND/STAE work area and branches to
the entry point of the Master Scheduler
Wait and Attach routine (module IEEVWAIT).

Part 5: Command Processing 99

Command Execution

The execution of a command is the
performance of the function specified in
the command. These functions are performed
by Job Management routines, either as new
tasks established by the master scheduler,
or as parts of existing system tasks.
Commands are classified, accordingly, into
two categories: task-creating commands,
and existing-task commands. Figure 29
lists in alphabetical order the commands
whose execution is discussed in this
publication.

r
| TASK-CREATING {EXISTING—TASK]
lCOMMANDS JCOMMANDS |
4
r t 4
CANCEL	CANCEL «(job selected)
(job in queue)	CANCEL (TSO user)
DISPLAY A	CANCEL wtxdevice
DISPLAY C,K	CONTROL
DISPLAY CONSOLES DISPLAY R	
DISPLAY jobname DISPLAY SQA	
DISPLAY M DISPLAY T	
DISPLAY N HALT	
DISPLAY PFK MODE	
DISPLAY Q MODIFY	
DISPLAY U . MONITOR DSNAME	
DISPLAY USER MONITOR JOBNAMES	
DUMP	MONITOR SESS
HOLD	MONITOR SPACE
MONITOR A	MONITOR STATUS
MOUNT	MSGRT
QUIESCE	SET
RELEASE	sToP
RESET	STOPMN® A
SEND	STOPMN* DSNAME
START	STOPMN? JOBNAMES
VARY CH	STOPMN® SESS
VARY CPU	STOPMN® SPACE
VARY STOR	STOPMN1 STATUS
!	swaP
	SWITCH
	UNLOAD I
	VARY ONLINE/OFFLINE
	VARY CONSOLES
	VARY HARDCPY
	VARY MSTCONS
	VARY PATH
b : ' i	
*See the "Summary of Amendments" for	
Release 21.	
L J

Figure 29. Classification of Commands

The LOG, REPLY, CONTROL, and WRITELOG
commands are discussed in the MVT
Supervisor Program Logic Manual; the HALT,
SWAP, and VARY PATH commands are discussed
in the I/0 Supervisor Program Logic Manual;
the commands associated with remote job
entry processing are discussed in the
Remote Job Entry Program Logic Manual; the
commands associated with graphic job

100 0S/360 MVT Job Management (Release 21)

processing are discussed in the Graphic Job
Processor Support PLM. The commands
associated with TSO are discussed in the
TSO Command Procéeéssor PLMs.

TASK-CREATING COMMANDS

When the execution of a command includes
the performance of a continuing system
function (initiating or writing, for
example), or when it involves the use of a
serially reusable resource (such as the
queue control records), the command is
executed as a separate system task. Thus,
the routine that issues the SVC 34 is not
subject to an indefinite wait, and the
function performed by the Command Execution
routine is performed asynchronously with
other tasks.

A Command Scheduling Control Block
(CSCB) must be created for all
task-creating commands. The CSCB Creation
routine (module IGC0803D) is entered from
IGC3703D when a CANCEL command is processed
and the job to be cancelled is in the input
or output queue; from IGC2203D when a VARY
command has been processed with the CPU,
channel, or storage operand; from the
routing location module 1 (IGC7503D) for
DISPLAY commands with the active, (C,K),
conscles, jobname, M, N, PFK, Q, or U
operand; and from IGCO403D for the other
task-creating commands. (The CSCB Creation
routine is also entered from module
IGC5803D for the TSO commands, DISPLAY USER
and SEND. For a detailed discussion of the
processing of these commands, see the TSO
Command Processor PLMs.)

The CSCB Creation routine examines the
command to determine whether it is one of
the following task-creating commands that
are executed in the master scheduler
region: DISPLAY A, DISPLAY C,K, DISPLAY M,
DISPLAY PFK, DISPLAY U, QUIESCE, VARY CH,
VARY CPU, and VARY STOR. If so, only one
such command can be executed at a time, and
the routine tests the common bit in the
status flags field of the master scheduler
resident data area. If the bit is on, it
means that a command is being executed in
the master scheduler region, and the CSCB
Creation routine passes control to a
message routine that informs the operator
and returns control to the supervisor.

If the bit is off, the command can be
executed; the CSCB Creation routine sets
the bit on and constructs a CSCB for the
command, then enqueues it in the chain and
uses the POST macro instruction to notify
the master scheduler.

If the command is not one that is
executed in the master scheduler region,
the CSCB Creation routine creates a CSCB
and examines the verb code in the extended
save area to determine whether the verb is
START or MOUNT. If it is neither START nor
MOUNT, the routine posts the master
scheduler and returns control to the
supervisor. If it is either START or
MOUNT, the routine passes control to the
START/MOUNT Hierarchy Parameter Processing
routine (module IGC3803D). This routine
processes the hierarchy parameter, posts
the master scheduler, and passes control to
the supervisor.

The master scheduler is the initial
responder to all task-creating commands.
It performs no analysis of the operand of
the command however; it merely determines
which task must be performed by analyzing
the verb code in the CSCB, then attaches
the task.

In response to the POST macro
instruction issued in module IGC0803D (the
CSCB Creation routine of the Command
Scheduling routine), the Master Scheduler
Wait and Attach routine (module IEEVWAIT)
disables all interruptions and scans the
chain of CSCBs looking for a CSCB in
pending status. When it finds one, the
master scheduler sets the CSCB assignment
pending switch off, enables interruptions,
and examines the verb code in the CSCB.

If the verb is START, the Master
Scheduler Attach routine must assign a
reader number, which is used by the
interpreter as a part of the base for
assigning unique data set names. The
number is maintained in the master
scheduler resident data area; when a task
is started, the field is incremented by
one, then stored in the CSCB.

If the command is not a START or MOUNT
command, the command processing routine
issues SVC 34 to have the Command
Scheduling routine delete the CSCB from the
chain (but not free the main storage it
occupies) after issuing the ATTACH macro
instruction.

The tasks of performing the DISPLAY A,
DISPLAY U, DISPLAY CONSOLES, DISPLAY C,K,
DISPLAY M, DISPLAY PFK, MONITOR A, DUMP,
QUIESCE, VARY CH, VARY CPU, VARY STOR, and
queue manipulation commands are attached
with a protection key of zero, and in the
supervisor mode; the tasks of performing
the START and MOUNT commands are attached
with a protection key of zero, but in the
problem program mode.

Figure 30 lists the task-creating
commands and indicates which execution
routine the Attach routine calls to have
the command processed.

In order to prevent the loss of any
subsequent posts from the Command
Scheduling routine, the Master Scheduler
Attach routine repeats the scan, and
attaches command execution tasks until
there are no pending CSCBs in the chain.
When this happens, control is returned to
the Master Scheduler Wait routine, and the
master scheduler goes into the wait state,
until another POST macro instruction
occurs.

The START Command

The operator issues a START command to
initiate system tasks or user's job step
tasks. System tasks are those privileged
tasks, such as reading input streams and
writing system output, that function with a
protection key of zero and are listed by
name in the linkage table IEEVLNKT (see
Figure 34). Job step tasks function with a
nonzero protection key and are not listed
in the linkage table.

The description of a user's job has
three sources: the procedure library, the
input streams, and the operator. The
procedure library contains job control
language statements that describe
frequently executed series of job steps.
Job control language statements in an input
stream may completely describe a job, or
they may invoke a procedure, and modify it
by overriding its statements or overriding
fields within statements. The operator may
furnish additional information in the
operand of a START command; this
information is used to invoke and modify a
procedure.

The job description information for a
system task, however, comes from three
sources: the procedure library, JCL
statements, and the operator. The
procedure library contains standard
descriptions of a reader, an initiator, and
a writer (the user may add descriptions of
other tasks to be established via START
commands). JCL statements, (corresponding
to input stream JCL) are stored internally;
these statements invoke and modify the
procedure. The operator furnishes
additional information in the operand of
the START command; this information is
edited into the internally stored JCL’
statements before they are used to invoke
and modify the procedure.

Part 5: Command Processing 101

First Module Executed |

I I
I - command b _ -
| | Load Module | Assembly Module
1L { 1 .
T]]
| System Task Commands | |
| START | IEEPRWI2 | IEEPRWI2
| MOUNT | IEEPRWI2 | IEEPRWI2
F . + 1 !
| The DISPLAY A Command | IEEVDSP1 | IEEVDSP1
The DISPLAY CONSOLES Command | IEEPDISC | IEEPDISC
The DUMP Command | IEE60110 | IEE60110
The MONITOR A Command | IEEVDSPL | IEEVDSP1 I
] 1 -]
i T T 1
Queue Manipulation Commands | IEEPALTR] IEEPALTR |
CANCEL (job in queue) | | |
DISPLAY C,K | | |
DISPLAY jobname | | |
DISPLAY M | | |
DISPLAY N | | |
| DISPLAY PFK | | |
| DISPLAY Q | | |
DISPLAY U [| |
HOLD I | |
RELEASE | I |
I RESET | . I |
F : -4 { }
| QUIESCE | IEEMPS03! | IEEMPSO03
| VARY CH | IEEMPVCH | IEEMPVCH |
| VARY CPU | IEEMPVCP | IEEMPVCP
| VARY STOR | IEEMPVSE | IEEMPVSE |
I] [l)
[}] T T
TSO Operator Commands®		
DISPLAY USER	IEEVGPSD	IEEVGPSD
SEND	IEEVGPSD	IEEVGPSD
[l L L ']		
r 1		
i1See TSO Command Processor PLMs.		
L N J
Figure 30.

Task Creating Commands

Figure 31 summarizes the major
attributes of and differences between
system tasks, job step tasks initiated via
a START command, and job step tasks
initiated via the input stream.

The START command task is performed by
the System Task Control routine (Figure
32); when the master scheduler determines
that the command is START, it issues the
ATTACH macro instruction to pass control to
the Get Region routine (module IEEPRWI2),
which is the first module of the System
Task Control routine. The Get Region
routine resides in the link pack area.
obtains a region from the specified
hierarchy (the size is specified when the

It

102 0S/360 MVT Job Management (Release 21)

system is generated). IEEPRWI2 then
establishes a STAE environment that
contains exit and retry routines, to
process abnormal-end-of-task conditions.
Then the module passes control to the START
Syntax Check routine (module IEEVSTAR),
which is loaded into the new region.

If the system task control routine has
an abnormal end of task condition, the STAE
exit routine issues a message describing
the condition to the operator. The STAE
retry routine then attempts to de-allocate
the existing device and releases the
region. It issues an SVC 3 instruction to
terminate the task.

[T T T T T 1
					May be	
		Job	May	May use stopped,		
	Protection	step	use	checkpoint/	Data set modified,	
	key	timing	SMF	restart integrity cancelled	START CIB	
N (] 4 1 1 1]						
N] [) 1]) T T						
System task	zZero	mo	no	no yes yves	yes	
				except out-	(note:	i
				put writers	cancella-	
		I		tion may be		
						done only
						during
						allocation)
L 1 L 1 1 L L J						
L] T T T T LB] L]						
Job step task	nonzero	yes	mno	no	yes yes	yes

|in a START | | | | | | |
| command | | | | | | | |
t } 1 } } f } 1
|Job step task | nonzero | yes | yes | yes | yes yes | no |
|in input stream| | | 1 | | |
L L L L L L. L L J

Figure 31.
Step Tasks in Input Stream

The Syntax Check routine gets main
storage for and builds the start descriptor
table (SDT) -- see Figure 33. JOB, EXEC,
and DD statements are generated by the
Syntax Check routine and placed in the SDT.
Seven entries are provided in the SDT: the
first entry contains the JOB statement, and
the second entry contains the EXEC
statement that calls the procedure
specified in the START command; additional
entries are provided for a DD statement and
continuations of the EXEC and DD
statements. The Syntax Check routine
compares keyword parameters in the START
command with a list of keyword parameters
(but not DD subparameters) that are
allowable in a DD statement or a JOB
statement. If a keyword corresponds to a
member of the list of DD parameters, the
routine stores it in the DD statement in
the SDT. This DD statement overrides the
IEFRDER DD statement in the procedure
specified in the START command. If a
keyword does not appear in the list, it is
assumed to be a symbolic parameter keyword
and is placed in the EXEC statement in the
SDT.

Finally, the Syntax Check routine passes
control to the JCL Edit routine (module
IEEVJCL) , which builds the job control
language set (JCLS). Using the information
in the SDT, the JCL Edit routine puts the

Major Attributes of System Tasks, Jobstep Tasks in START Command, and Job

JCL in the form appropriate for the
interpreter. Each statement is built in an
88-character buffer (obtained with a
GETMAIN macro instruction). A pointer to
the first buffer is placed in the CSCB
associated with the START command. Each
buffer contains a pointer to the next
buffer, 4 bytes of reserved space, and a
"card image" of the statement in the last
80 bytes.

After building the JCLSs, the JCL Edit
routine builds the following:

e The Job Scheduling Entrance List (JSEL)

e The Job Scheduling Option List (JSOL)
e The Option Buffer (OPT)
e The Job Scheduling Exit List (JSXL).

The routine then releases the main storage
occupied by the SDT and sets a flag in the
JSXL to indicate a request for a post
processing €xit to entry point IEERGN in
module IEEPRTNZ. The JCL Edit routine then
issues an XCTL macro instruction to give
control to the Job Scheduling subroutine at
entry point IEEVRCTL of module IEEVRCTL.

Part 5: Cormand Processing 103

ENTRY

ATTACH

IEEPRWI2

| 1EEPRWI2 .
Get Region
Routine

XCTL

Interpreter
Control

Interpreter

Write Error

Message

IEEVRJCL (IEEPSN)

=

L i

IEEVRJCL

| JCLReader |

Read/Write
Routine

IEEVRC

Interpreter
Exit

Convert
Routine

Initiator
XL Subroutine

(Note 2)

Initiator
Control

Message
Writer

PRTN

R

RETURN

Notes: General. * The names in the upper left corners of the shaded blocks are load module names ; the names in the
unshaded blocks are assembly module (MODLIB) names.

1. There are two "Syntax Check " routines: ®'The START command uses load module IEEVSTAR, containing assembly modules IEEVSTAR and IEEVJCL.
® The MOUNT command uses load module IEEVMNT1, containing assembly modules IEEVMNT1 and
IEEVJCL.

2. The Initiator subroutine attaches module [EEVMNT2 if a MOUNT command is being processed.

Figure 32. The System Task Control Routine

104 0S/360 MVT Job Management (Release 21)

1
SDT Size Ident. Flags Reserved
72
= JCL Statement :l:
Ident. Flags Reserved 72
j.. JCL Statement ~
1
Ident. Flags Reserved
72L
= JCL Statement %,
1 1 72
Ident. Flags Reserved
-~ JCL Statement ~
Ident. Flags Reserved !
72 L
= JCL Statement =~
1 1 72
Ident. Flags Reserved
‘:T JCL Statement %:
1
Ident Flags Reserved
72
L =
“[JCL Statement

Figure 33. Start Descriptor Table (SDT)

Notes: The start descriptor table
consists of up to seven entries, each of
which contains a JCL statement (or a
portion of a JCL statement) constructed
by the Syntax Check routine of the System
Task Control routine. In addition, each
entry contains an identification flags
field, whose bits, when set to one, have
the following meanings:

Bit Meaning
0 JOB statement

1 EXEC statement

2 DD statement

3 DD statement continuation

4 EXEC statement continuation
5-7 Reserved

The mapping macro-instruction for the
start descriptor table is IEESDT.

The Job Scheduling subroutine interprets
the JCL for a single job, calls the
initiator subroutine to initiate that job,
and performs the necessary cleanup
functions after regaining control from the
Initiator subroutine. The information in
the following lists determines the

functions that the JSS and the Initiator
subroutine will perform:

The Job Scheduling Entrance List

The Job Scheduling Options List

The Job Scheduling Exit List

The Option List (also known as the
Option Buffer, or OPT) that the caller
of the subroutine passes when giving
control to the Jss.

A routine may call the JSs for any of the
following reasons:

1. To complete the processing of a START
command

2. To complete the processing of a MOUNT
c ommand

3. To complete the processing of a LOGON
command that is entered from a TSO
terminal.

The routine then uses the Q-manager
routines IEFCNVRT and IEFRDWRT to write
onto the job Q the LTH for the task to be
executed. This permits normal termination
processing of data sets to be performed at
warm-start time.

The Reader/Interpreter (R/I) Control
routine, IEEVRCTL, builds the interpreter
entrance list (NEL), the interpreter option
list, the interpreter exit list, and the
job scheduling work area (JISWA). The third
word of the NEL contains the address of the
JCLS. Routine IEEVRCTL issues a LOAD macro
instruction specifying the JCL reader
routine IEEVRJCL, the interpreter post scan
exit routine IEEPSN, and, when track
stacking is specified, the load module
IEFQMSKL, so that the reader may use these
modules.

Control routine IEEVRCTL then creates
entries in the NEL exit list for routines
IEEVRJCL and IEEPSN, for IEFQMSK1 if track
stacking is specified, for the SMF exit
(routine IEFUJV) if specified, and for the
interpreter exit routine IEEVRC. Next,
routine IEEVRCTL processes the OPT options
that the Job Scheduling subroutine has
passed. If any options are present, the
module gives control to (exits to) module
IEFVSCAN, which processes the options and
sets appropriate bits in the NEL and the
JSWA.

Module IEFVSCAN verifies that the
contents of the OPT conform to the syntax
indicated by routine IEEVRCTL. IEFVSCAN
scans the buffer from left to right (low
address to high address). As each valid
EBCDIC-encoded/operand in the buffer is
encountered, the scan routine issues a CALL
macro instruction for an exit routine
defined for that operand. The exit

Part 5: Command Processing 105

routines (which are in module IEEVRCTL)
transform the keyword options into bit
settings in the NEL and the JSWA. Module
IEFVSCAN then returns control to module
IEEVRCTL and provides an indicative return
code.

If module IEFVSCAN passes a return code
other than zero, the caller (of IEEVRCTL)
receives the code in the JSXL. Module
IEEVRCTL then releases storage that had
been obtained for the Jswa, JsSOL, OPT,
JSEL, NEL, and the exit list. Then, if so
indicated in the JSXL, module IEEVRCTL
takes a post processing exit. If no exit
is available, IEEVRCTL returns control to
the caller via the contents of register 14.
The R/I control routine then frees the main
storage used for the JSOL and the OPT, and
passes control to the reader by means of an
XCTL macro instruction.

The interpreter, used as a closed
subroutine, is the same routine that
performs the reading task. The non-zero
value of the third word of the interpreter
entrance list indicates that the input
stream is an internal data set. Because
the input stream is internal, the
interpreter does a pseudo OPEN to bring a
special access method into main storage,
and stores a pointer to it in the input
DCB. The special access method reads the
records of the JCLS; it is entered from the
expansion of the standard GET macro
instruction.

The internally stored job control
language statements, and the statements
from the procedure library, are analyzed
and combined normally. -The standard job
description tables are built, and an input
queue entry is constructed, but because bit
7 of the option switches field of the -
option list is off, the entry is not
enqueued, and the "job" cannot be selected
by an initiator. If errors are detected
during interpreter processing, the
appropriate messages are placed in system
message blocks, which are enqueued in the
message class queue.

After it has scanned each JCL statement
and stored it in the internal text buffer,
the interpreter exits to the Interpreter
Post Scan Exit routine (module IEEPSN),
which is specified in the interpreter exit
list. When the interpreter passes control
to the Post Scan Exit routine, it passes a
pointer to a parameter list, the first word
of which is the address of the interpreter
internal text buffer. The routine searches
the buffer for an entry representing an
EXEC statement that specifies a program
name. Then the routine compares the
program name specified in the EXEC
statement with the list in the linkage
table (see Figure 34) that contains all

106 0S/360 MVT Job Management (Release 21)

valid program names for procedures
initiated by a START command.

If a valid program name is found in a
multi-step job, the Interpreter Post Scan
Exit routine sets an error return code in
the communication area for the System Task
Control routine.

If the program name is found in the
linkage table, the routine checks another
table that contains a list of all programs
in the linkage table for which data set
integrity is not provided. If the program
name is found in the second table, an
indicator is set in the communication area
for the System Task Control routine.

After scanning the internal text buffer
for each JCL statement, the routine returns
control to the interpreter.

The interpreter places the main storage
address of the job control table (JCT) in
the NEL, and using the Interxrpreter Exit
list established by routine IEEVRCTL,
passes control via an XCTL macro
instruction to the Interxrpreter Exit routine
(module IEEVRC) with a code that indicates
whether processing was successful.

The Interpreter Exit routine issues a
DELETE macro instruction specifying, as
operands, the following:

e The JCL reader routine

e The interpreter post scan exit routine

e The track stacking load module used by
the interpreter.

In doing this, the routine uses the
queue management routines IEFCNVRT and
IEFDWRT to indicate that for a warm start,
the job should be processed as if it had
been dequeued from an input queue.

Then the routine analyzes the return
codes from both the reader and the scan
routines and performs the appropriate
processing. If the codes indicate either
JCL or I/0 errors, the exit routine sets
the appropriate error code in field CHSPA
of the CSCB. (Appendix A explains the
error codes that are set in the CSCB.)
all errors, routine IEEVRC sets the
'job-failed' bit in the JCT to request
task/termination and passes the return
codes (via the JSXIL) to the caller.

For

The Interpreter Exit routine then frees
main storage for the following:

e The JCLS)

o The reader/interpreter register save
area ‘

e The NEL

The OPT

e The exit list.

Then the routine issues an XCTL macro
instruction to pass control to the
Initiator Control routine (module
IEEVICTL.)

First System Task 8
8
Second System Task
L Vcr..ﬁ
-]
nth System Task
End of Section: 1 First System Task with No
Zeroes Data Set Integrity
8 Second System Task with No
Cont. Data Set Integrity
8
Cont. 2
L v Nth System Task with No
T ar. Data Set Integrity
8| End of Table: 1
Cont. Zeroes
Figure 34. Linkage Table
Note: The linkage table contains all of

the names that may be used in the PGM=
name parameter of a procedure EXEC
statement if the procedure is a system
task.

The Initiator Control routine provides
an interface between the System Task
Control routine and the Intitator
subroutine. This interface is similar to
the one provided by the Interpreter Control
routine between the System Task Control
routine and the Interpreter subroutine.
First the routine builds three parameter
lists for the initiator: the initiator
entrance list (IEL), the initiator option
list, and the initiator exit list.

The option list, pointed to by the third
word of the IEL, contains switches that
indicate the processing that the initiator
is to perform when invoked by the System
Task Control routine. The Initiator
Control routine sets the switches according
to whether a system task or a problem
program is being executed and/or according
to information contained in the JSWA. The
control routine then issues an XCTL macro
instruction to’'pass control to the
Initiator subroutine (at entry point
IEFSD060). After performing the
appropriate processing, the initiator
returns control to entry point IEEVIC of
the Initiator Control routine, as indicated
in the initiator exit list.

A second function of the Initiator
Control routine (other than to serve as an
interface to the Initiator subroutine) is
to handle errors found by the interpreter,
the Interpreter Post Scan Exit routine, or

the initiator. If errors are indicated,
the routine issues a CALL macro instruction
to pass control to the Message Writing
routine (module IEEVSMSG), which writes the
error message to the console.

Upon return from the initiator after
termination of the task, the Initiator
Control routine releases the main storage
occupied by several control blocks built
for the started task. Module IEEVICTL
moves non-zero return codes from the IXL to
the JSXL and indicates that the Initiator
subroutine encountered the error. The
module then processes the JSXL and takes an
exit to entry point IEERGN of module
IEEPRTNZ. The Free Region routine (module
IEEPRTN2), which receives control from the
Initiator Control routine via an XCTL macro
instruction, is the last load module of the
System Task Control routine. This routine,
which resides in the link pack area, frees
the CSCB, JSCB, and WTPCB if they exist,
and then releases the region. It exits by
branching to the master scheduler.

The MOUNT Command

The MOUNT command is used to reserve a unit
for a particular volume. A unit will ke
allocated, a mount message issued, and the
unit control block (UCB) will be marked;
the system will not unload the volume until
an UNLOAD command (see existing-task
commands) is issued. The performance of
the MOUNT command task, and the performance
of the START command tasks by the System
Task Control routine differ only in the
module that checks syntax.

As is the case with the START commands,
the information in the descriptor table is
used to complete an internal data set that
corresponds to JCL statements in the input
stream. This data set is read, combined
with statements from the MOUNT command
procedure in the procedure library, and
converted to tabular format by the
interpreter. The tables are later used by
the I/0 Device Allocation routine, which is
invoked by the Initiator subroutine.

As in the case of the START commands,
the Job Scheduling subroutine is invoked.
The JSS uses the reader/interpreter to
interpret the JCLs and then passes control
to the Initiator subroutine. The
initiator, in turn, invokes the I/0 Device
Allocation routine and, upon return,
attaches the Mount Command Bit Setting
routine (module IEEVMNT2). This routine
marks the UCB corresponding to the
allocated unit "reserved" and either
"public," "private," or "storage." It
returns control to the Initiator
subroutine.

Part 5: Command Processing 107

The DISPLAY A Command

When the DISPLAY Commands Router routine
(module IGC3503D) determines that a DISPLAY
A Command is to be executed, it tests the
region busy bit in the master scheduler
resident data area. The DISPLAY A command
is one of the commands that are executed in
the master scheduler region; furthermore,
only one DISPLAY A command can be executed
for each call of the Display Active
routine. Therefore, if the region busy bit
is on, the command cannot be executed and
the DISPLAY Commands Router routine passes
control to a message module. The message
module issues a message to the requesting
operator and returns control to the
supervisor.

If the region busy bit is not on, the
DISPLAY Commands Router routine turns it
on. Then the routine passes control to the
Routing Location Module 1 (IGC7503D). This
routine scans the command for routing
(L=xxx) operands. If explicit routing
operands have been specified, the routing
routine places them in the extended save
area (XsA). If no operands, or only
partial operands, are specified, the
routine checks the Routing Control Table
for default routing operands. If it finds
no defaults, the routine identifies the
issuing console as the receiving console
and defaults the area identifier to a null
value (i.e., the first available area will
be used). After the routine identifies the
console address and the display area, it
places them in the XSA. Then the routine
passes control to the CSCB Creation routine
(module IGCO0803D) via an XCTL macro
instruction. This routine creates and
enqueues a CSCB for the command, posts the
master scheduler, and returns control to
the supervisor.

When a pending CSCB indicates that a
DISPLAY A command is to be executed, the
Master Scheduler Attach routine passes
control to the Display Active routine via
the ATTACH macro instruction.

The Display Active routine (module
IEEVDSP1) disables the system for
interruptions, then scans the supervisor
TCB queue. When it finds a TCB containing
a TIOT address, the routine determines the
type of task, and performs the processing
shown in Figure 35. If the task is the
Master Scheduling task, a START-command
task or system task with no subtasks, the
Display Active routine passes control to
the Display Region Size routine. Other
command processing tasks (including the
DISPLAY A task) are considered to be
subtasks of the Master Scheduling task and
are added to its subtask count. Subtasks
of job steps and subtasks of system tasks
(e.g., the System Output Writer's Writing

108 0S/360 MVT Job Management (Release 21)
e

‘routine (IGC50110).

subtask) are added to the appropriate
subtask count.

The Display Region Size routine (module
IEEVDRGN) is entered with a pointer to a
TCB. The routine determines the boundaries
of the hierarchy 0 and hierarchy 1 portions
of the region assigned to the task and the
amount of supervisor queue space used for
the task, and returns the information to
the Display Active routine.

When it reaches the end of the TCB
queue, the Display Active routine extracts
the job and step names from the TIOTs,
enables the system for interruptions, and
issues an SVC 110. Execution of sSvVC 110
causes control to be passed to the Master
Scheduler Router routine (IGC00110), which
passes control to the Active Task Message
The Active Task
Message routine adds a control line and
label lines to the display begun by
IEEVDSPl. It uses the WTO macro
instruction to pass the operator the
following displays:

e Job and step names

e Subtask counts

e Region boundary addresses

e Supervisor queue space usage figures.

The Active Task Message routine then
returns control to IEEVDSPl. This routine
turns off the common bit and the display
active flag, uses SVC 34 to unchain the
CSCB (and free the storage it occupies),
and returns control to the supervisor.

If the DISPLAY A command was issued in a
TSO environment, the Display Active routine
scans the region control block (RCB) table.
If the command was issued from a terminal,
the routine uses the TPUT macro instruction
to pass information about the TSO region to
the TSO operator. A detailed description
of the TSO processing of the DISPLAY A
command is in the TSO Command Processor
PLMs.

The DISPLAY M Command

When the Display Router routine (IGC3503D)
determines that a DISPLAY M command is to
be executed, it passes control to the
Routing Location Routine (IGC7503D), which
scans the command for routing (L=xxXx)
operands. If explicit routing operands
have been specified, module IGC7503D places
them in the extended save area (XsSA). If
no operands, or only rpartial operands, are
specified, the routine checks the routing
control table for default routing operands.

If no default operands are found, the
routine identifies the issuing console as
.the console to receive the display and
defaults the display area identifier to a
null value (i.e., the first available
display area will be used). After the
routine identifies the console address and
the display area, it places them in the
XSA. The Routing Location routine then
checks the validity of the routing operands
and, if no errors are found, passes control
to the CSCB creation routine (IGC0803D).
This routineés enqueues a CSCB, posts the
master scheduler, and returns control to
the supervisor.

When a pending CSCB indicates that a
DISPLAY M command is to be executed, the
Resident WAIT/ATTACH routine (IEEVWAIT)
passes control to the GET Region routine
(IEEPALTR). This routine determines that a
status display is to be created, and issues
an SVC 110. The Master Scheduler Router,
which is the first routine of svC 110,
determines that a DISPLAY M command is to
bé executed, and passes control to the
Display Matrix Routines (IGC30110,
IGC31110, and IGC32110). These routines

T T
TCBLTC |
TCBOTC Field Field | TIOT Task See Note
4 L
1 T
Zero | Master Scheduling Task 3a
|Master Scheduler TCB|Zero Not Master Scheduler TIOT |START-Command Task 3a
Master Scheduler TCB|Nonzero |Not Master Scheduler TIOT |START-Command Task 3b
4 1 1 L J
1 T T L) b
Master Scheduler TCB| | Master Scheduler TIOT |other Command Task | 3¢]
[L 1 L J
1 T T 1 1
START-Command TCB Zexro | |System Task With No 3a
| |Subtasks |
| i H 1
START-Command TCB Nonzero | |system Task With No 3b
' | |Subtasks |
1 1)
] T 1
Oother TCB | Unique |Job step With No 3a |
| |Subtasks |
L Il 1 L]
T) L) LB 1
Other TCB | | Not Unique |Job sStep, Subtask of | 3d
| | | |Job sStep, or Subtask | |
| | |of System Task | |
4 L L L 1I
Notes: |
1. The TCBOTC field points to the TCB of the task that established the current task. |
2. The TCBLTC field points to the TCB of the first task established by the current |
task. |
3. Depending upon the type of task, the processing performed is as follows: |
a. Enter the Display Region Size routine. |
b. Continue scan of supervisor TCB queue. |
| c. Increment Master Scheduler Subtask count by 1, then continue scan of TCB queue. |
| d. Increment origin task subtask count by 1, then continue scan of TCB queue. |
|4. If RJE, TCAM, or TSO is in the system, the search of the TCB by DISPLAY active is |
| -altered. |
L £ J
Figﬁre 35. Task Identification in the Display Active Routine

build the display and pass it to the
operator by using a WTO macro instruction.

The DISPLAY C,K Command

When the Verb Checker routine (IGCOLO3D)
determines that a DISPLAY command has been
entered, it passes control to the DISPLAY
Command Router routine (IGC3503D). The
router routine scans the command and,
finding it to be a DISPLAY C,K command,
passes control to the Routing Location
routine (IGC7503D). The Routing Location
routine determines the proper routing
(I=xxx) operands and stores them in the
XSA. It then passes control to the CSCB
creation routine (IGC0803D), which engqueues
a CSCB, posts the master scheduler, and
returns control to the supervisor.

When a pending CSCB indicates that a
DISPLAY C,K command is to be executed, the
Resident WAIT/ATTACH routine (IEEVWAIT)
passes control to the Get Region routine
(IEEPALTR), which issues an SVC 110. The
Master Scheduler Router, which is the first
routine of SVC 110, determines the type of
command entered and passes control to the

Part 5: Command Processing 109

DISPLAY C,K Processor routines (IGC10110,
IGC11110 and IGC12110). These routines
build the display of CONTROL command
operands and issue WTO macro instructions
to pass the information to the operator.

The DISPLAY PFK Command

When the Display Router routine (IGC3503D)
determines that a request for a display of
the commands associated with a console's
programmed function keyboard (PFK) key
numbers has been entered, it passes control
to the CSCB creation routine (IGC(0803D).
The CSCB Creation routine enqueues a CSCB
for the command, posts the master
scheduler, and returns control to the
supervisor.

When a pending CSCB indicates that a
DISPLAY PFK command is to be processed, the
master scheduler WAIT/ATTACH routine
(IEEVWAIT) passes control to the Get Region
routine (IEEPALTR). This routine
determines that a status display is to be
created and issues an SVC 110 to continue
processing of the request. The Master
Scheduler Router routine (IGC00110), which
is the first routine of SVC 110, determines
that a DISPLAY PFK command is to be
processed and passes control to the DISPLAY
PFK routine (IGC40110). This routine
builds the display and writes it to the
operator's console by means of the WTO
macro instruction. When the display is
complete, control is returned to the
supervisor.

The DISPLAY U Command

An operator issues the DISPLAY U command to
request a tabular display of status
information about specified units.
the Verb Checker routine (IGCO0403D)
determines that a DISPLAY U command has
been entered, it passes control to the
Display Router routine (IGC3503D). This
routine passes control to the Routing
Location routine (IGC7503D) which stores in
the XSA the proper routing (L=xxx) operands
for the command. Module IGC7503D passes
control to the CSCB creation routine
(IGC0803D) which enqueues a CSCB, posts the
master scheduler, and returns control to
the supervisor.

When

When a pending CSCB indicates that a
DISPLAY U command is to be executed, the
Resident WAIT/ATTACH routine (IEEVWAIT)
passes control to the Get Region routine
(IEEPALTR) which scans the command and
issues an SVC 110 to pass control to the
Master Scheduler Router routine (IGC00110).
This routine determines that a DISPLAY U
command is to be processed and passes
control to the Unit Status routines
(IGC20110, IGC21110, IGC22110 and
IGC23110).

110 0sS/360 MVT Job Management (Release 21)

Upon entry, module IGC20110 issues a
GETMAIN macro instruction to obtain a
workarea. The routine then checks the
command operands for correct syntax, and,
if there are syntax errors, passes control
to module IGC22110 to issue the appropriate
error message and return control to the
Master Scheduler Router. If there are no
errors, module IGC20110 sets switches in
the work area to indicate the units for
which status has been requested, and passes
control to module IGC21110. Module
IGC21110 determines if the device name
table is already in storage. If not, it
issues a GETMAIN macro instruction to
obtain an area into which the table can be
loaded and passes control to module
IGC23110. Module IGC23110 locates UCBs
which satisfy the command specifications
and builds a list of addresses in the
workarea. It then passes control back to
module IGC21110.

IGC21110 checks the workarea to
determine which UCBs must be searched. It
then assembles the display and places the
information in the text line of the work
area. The module then passes control to
module IGC23110, which issues a WTO macro
instruction to write each line of the
display. When the display is complete, the
module passes control to module IGC22110,
which issues a FREEMAIN macro instruction
to free the work area (and the device name
table, if it was obtained by a GETMAIN
macro instruction) and returns control to
the Master Scheduler Router (IGC00110).

The DISPLAY CONSOLES Command

When the DISPLAY Commands Router routine
(module IGC3503D) determines that the
command to be executed is a DISPLAY
CONSOLES command, it passes control to the
Routine Location Module 1 (IGC7503D). This
routine scans the command for routing
(L=xxx) operands. If explicit routing
operands have been specified, the routing
routine places them in the extended save
area (XsA). If no operands, or only
partial operands, are specified, the
routine checks the Routing Control Tabkle
for default routing operands. If it finds
no defaults, the routine identifies the
issuing console as the receiving console
and defaults the area identifier to a null
value (i.e., the first available area will
be used). After the routine identifies the
console address and the display area, it
places them in the XSA. Then it passes
control via an XCTL macro instruction to
the CSCB Creation routine, which creates
and enqueues a CSCB, rosts the master
scheduler, and returns control to the
supervisor.

When a pending CSCB indicates that the
command to be executed is a DISPILAY
CONSOLES command, the Master Scheduler
Attach routine uses the ATTACH macro
instruction to pass control to the DISPLAY
CONSOLES Get Region routine.

The DISPLAY CONSOLES Get routine (module
IEEPDISC) resides in the link pack area.
The routine obtains a region in which to
execute the command, then uses the LINK
macro instruction to pass control to the
DISPLAY CONSOLES Processor routine (module
IEEXEDNA).

The DISPLAY CONSOLES Processor routine
(module IEEXEDNA) uses information from the
unit control module (UCM) to construct
messages that describe the console
configuration.

When it is entered, the routine masks
interruptions, then issues a header
message. If hard copy is specified in the
system, the routine prepares a descriptive
message: if the device is a console, the
information comes only from the UCM entry,
but if the device is the system log device,
information from the MCS prefix to the UCM
base is also used.

The routine next constructs a message
for each unit that was specified as a
console when the system was generated.

When a message has been constructed, the
DISPLAY CONSOLES Processor routine uses the
WTO macro instruction to issue the message
to the operator who entered the command.

If the command was entered via an input
stream, the message goes to the master
console.,

When all messages have been issued, the
routine enables the system for
interruptions and returns control to the
DISPLAY CONSOLES Get Region routine (module
IEEPDISC), which releases the region and
returns control to the supervisor.

The MONITOR A Command

The MONITOR A command is one of the
commands that is executed in the master
scheduler region. When the MONITOR
Commands Router routine (Module IGC7103D)
determines that a MONITOR A command is to
be executed, it tests the region busy bit
in the master scheduler resident data area.
- If the region is busy (i.e., if the busy
bit is on), the MONITOR Commands Router
passes control to a message module. The
message module issues a message to the
requesting operator (indicating the region
is busy) and returns control to the
supervisor.

If the region busy bit is not on, the
MONITOR Commands Router routine turns it
on. Then the routine passes control to the
Routing Location Routine (IGC7503D). This
routine scans the command for the routing
(I=xxx) operands. If explicit routing
operands have been specified, the routine
places them in the extended save area
(XsA). If no operands, or only partial
operands, are specified, the routine checks
the Routing Control Table for default
routing operands. If no defaults are
found, the routine identifies the issuing
console as the receiving console and
defaults the display area identifier to a
null value (the first available area will
be used). When the console address and
display area identifiers have been
determined, the routine places them in the
XSA.

The Routing Location routine then tests
the validity of the routing operands, the
routing authority of the issuing console,
and the display-receiving capabilities of
the designated console. If no
incompatibilities are found, the routine
tests to see if the requested console area
is available. If the area is not
available, the routine rejects the command
and passes control to an appropriate error
message module. If the area is available,
the routine sets a MSGTYP=ACTIVE bit in the
screen area control block (SACB) for the
recéiving console and the UCMMSG bit in the
unit control module entry (UCME) of the
receiving console. The routine then uses
an XCTL macro instruction to pass control
to the CSCB creation routine (module
IGC0803D). This routine creates and
enqueues a CSCB for the command, posts the
master scheduler, and returns control to
the supervisor.

When a pending CSCB indicates that a
MONITOR A Command is to be initiated, the
Master Scheduler WAIT/ATTACH routine
determines if the system interval timer is
operating. If it is not operating, the
routine rejects the command and issues a
message to the console. If it is
operating, the routine establishes a
time-interval that specifies an exit
address in the Master Scheduler WAIT/ATTACH
routine.

The routine at the exit address gets
control initially and whenever the
time-interval elapses. The routine checks
a bit in the master scheduler region to see
if a MONITOR A display is in progress. If
the display is not in progress, the MONITOR
A command processing was stopped during the
time interval; the exit routine returns
control to the supervisor. If MONITOR A
command processing is in progress, the exit
routine issues an STIMER macro instruction
to re-establish the time interval and sets

Part 5: Command Processing 111

the CSCB pointer to zero. The routine then
tests the region busy bit in the master
scheduler region. If the bit is on, the
region is in use, and the display cannot be
updated; the routine passes an appropriate
message to the operator and returns control
to the supervisor. If the region is not
busy, the Master Scheduler WAIT/ATTACH
routine turns the busy bit on and uses the
ATTACH macro instruction to pass control to
the Display Active routine (IEEVDSP1l).

The display active routine (IEEVDSP1)
assembles the display by extracting
information from the TCBs and by passing
control to the display region size routine
(IEEVDRGN) to determine the dimensions of
the region assigned to each task. After
the display active routine builds the
display, it issues an SVC 110 to pass
control to the Master Scheduler Router
routine (IGC00110). This routine verifies
that an active task (DISPLAY A or MONITOR
A) command has been entered and passes
control to the Active Task routine
(IGC50110). The active task routine
completes the building of the display and
uses the WTO macro to pass the display to
the operator. The routine then passes
control back to the Display Active routine,
which frees any workareas and returns
control to the supervisor.

The DUMP Command

When an operator issues the DUMP command
from a console, the router module
(IEEO403D) identifies the command verb and
issues an XCTL macro instruction to give
control to the CSCB Create module
(IEE0803D). Module IEE0803D inspects the
operand field of the DUMP command. If COMM
is either not specified or incorrectly
specified, the module issues an XCTL macro
instruction to give control to the message
module (IEE7903D), which issues an invalid
operand message. If COMM is specified, the
create module establishes a command
scheduling control block (CSCB) for the

DUMP command and adds the CSCB to the CSCB
chain for task-creating commands. This
CSCB contains the verb code for DUMP and
the operand field specified.in the DUMP
command. Then module IEE0803D issues a
POST macro instruction to the master
scheduling task.

In an MVT environment, the Wait and
Attach routine (IEEVWAIT) checks the CSCB's
assignment-pending bit and then issues an
ATTACH macro instruction for the Queue
Alter routine (IEEPALTR). The Alter
routine identifies the command verb as DUMP
and issues an SVC 110. (In an MFT
environment, the Wait/Router routine
(IEECIR51) checks the assignment-pending
bit and issues the (svC 110.)

The first load module (IEE00110) of the
SVC 110 routine verifies that the command
is DUMP and issues an XCTL macro
instruction to give control to the Dump
Command module (IEE60110). Module IEE60110
then issues a WTOR macro instruction
requesting the operator to specify operands
for the DUMP command. After the reply,
module IEE60110 builds a parameter list
based on the specified operand and issues
an SVC DUMP (SVC 51). The SVC DUMP routine
dumps the specified contents of main
storage to a preallocated data set named
SYS1.DUMP.

Figure 36 indicates the areas of main
storage that are dumped according to the
operand (s) specified in the DUMP command.

After the dump has been completed, the SVC
DUMP routine returns control to the Dump
Command module. The Dump Command module
stores the return code (in register 15) in
the extended save area (XSA) and issues an
XCTL macro instruction for the Message
module (IEE7903D). Module IEE7903D checks
the return code and issues to the operator
a message based on the return code.

Main Storage Areas Dumped

*The nucleus and the SQA areas are dumped béfore any other areas.

I
l
T T

| Operand (s) | Nucleus | System Queue | Other |
| | | Area (SQAa) | |
[! 4 o | J
v L} T [} T
| U(Default) | Yes* | Yes* | All |
| ALL | Yes* | Yes* | All ‘] |
| STOR... | No | No | sStorage between specified addresses

| STOR...,SDATA | Yes | Yes | Storage between specified dddresses |
| sbDhATaA | Yes | Yes | None |
IL 1 L [} ; : {
| |
L 3

Figure 36.

112 0S/360 MVT Job Management (Rélease 21)

DUMP Command Operand and Resulting Storage Dumped

The Queue Manipulation Commands manipulation of the input, hold, and system

output queues. The task of executing these
The execution of the CANCEL, DISPIAY N, commands is performed by the Queue Alter
DISPLAY Q, DISPIAY jobname, HOLD, RELEASE, routine, which is described in Figure 37.
and RESET commands requires access to or

(Entry)
IEEPALTR : IEESD565 IEFQMNQ2

|
|
l
: , XCTL or = K . :
} IEEPALTR 1 ®< [EESD 565 | Link »| IEFQMNQQ
Get Region | ' l Message o . Enqueue :
| Routine - | ®= Return . Routine Return ; Routine
| . Link | IEEVDNX1 _
Link 7 : —)
| Pack | [iesnser . IEE0503D
rea -
I Syntax Check > Link
| Routine
Message
Return Assembly
Return
IEESD 584 \
lEESD575
| IEESD575 —— IEESD581

Queue Scratch Queue Scratch
Setup Routine

XCTL
IEESD576

|EESD578

XCTL Queve Alter
Delete

Routine

Queue Alter
Delete
Routine

Return

Queue | Return
| Restart Enqueue] |

Routine

Queue SMB

Note: Names in the upper left corners above shaded blocks A
Routirie

dre load module names, Names in unshaded blocks
are assembly module (MODLIB) names.

IFigure 37. The Queue Alter Routine

Part 5: = Command Processing 113

The Queue Alter routine, which is
protected by a STAE environment (described
in the next paragraph), is a collection of
several modules that check command syntax,
search and manipulate the queues, and issue
messages to the operator. It is entered
via an ATTACH macro instruction issued in
the Master Scheduler Wait and Attach
routine (module IEEVWAIT) after it has
deleted the command CSCB from the chain.

The Get Region Routine (IEEPALTR)

The first module of the Queue Alter routine
to be entered is the Get Region routine
(module IEEPALTR). This routine, which
resides in the link pack area, first
determines whether the command entered is a
DUMP command or a request for a status
display (D C,K; D U; D M; OR D PFK). If
so, the routine issues an SVC 110 to pass
control to the Master Scheduler Router
routine (IGC00110) for further processing
of these commands (this processing is
described under the various command titles
in the COMMAND EXECUTION section). If the
command entered is not a DUMP command or a
request for a status display, the routine
obtains a region of main storage for the
task. The module then creates a STAE
environment to provide for abnormal-end-of-
task conditions. This environment contains
exit and retry routines (within module
IEEPALTR). Then IEEPALTR uses the LINK
macro instruction to pass control to the
Queue Alter Syntax Check routine
(IEESD562).

When an abnormal end condition occurs,
the STAE routine issues a message to the
operator to inform him of the type of
abnormal ending. Then the routine frees
the region (including the subpools
allocated within it) in main storage and
returns control to the caller.

The Syntax Check Routine ‘(Module IEESD562)

The Syntax Check routine issues the ENQ
macro instruction to prevent access to the
system work queues (SYS1l.SYSJOBQE) by
routines performing other tasks, then scans
the operand of the command (which is stored
in the CsCB) for valid syntax.

If the command syntax is in error, the
Syntax Check routine passes control to the
Service routine (module IEESD565), which
uses the master scheduler Message Assembly
routine (module IEE0503D) to issue a
diagnostic message, and terminates the
task. If the command syntax is valid,
module IEFSD562 passes control to the
ECB/IOB Construction routine (module
IEESD582).

114 0S/360 MVT Job Management (Release 21)

The ECB/IOB Construction Routine (Module
IEESD582)

If the operand of the command contains a
job name, module IEESD582 searches the
chain of CSCBs for the corresponding CSCB.
If a match is found and the command is a
CANCEL command with no IN or OUT parameter
specified, the routine issues a POST macro
instruction specifying the ECB in the CSCB,
then passes control to the Service routine.
The Service routine (module IEESD565) uses
the Message Assembly routine (module
IEE0503D or module IEF2103D) to issue a
message that informs the console or TSO
terminal user that the job has been
canceled. The Service routine then returns
control to the caller. If the command is a
CANCEL command with the IN or OUT parameter
specified, or if the command is not a
CANCEL command, the job has been selected
for initiation and therefore the command
cannot be processed; module IEESD582 passes
control to the Serxrvice routine, which
informs the operator and terminates the
task.

If there is no CSCB for the job in the
chain, a search of the system work queues
is required to find the jobname. Module
IEESD582 issues a GETMAIN macro instruction
to obtain storage, and constructs an event
control block (ECB) and an input/output
block (I0B). Then, and if the operand of
the command does not contain a jobname,
module IEESD582 passes control to the Queue
Search Control routine (module IEESD563).

The Queue Search Control Routine (Module
IEESD563)

The Queue Search Control routine analyzes
the codes set by the Syntax Check routine
to determine what queue searching and
manipulating functions need to be
performed. The routine determines which
queue is to be searched and reads the queue
control record (QCR) for that queue.

e Upon initial entry, the Queue Search
Control routine reads QCRs until it
finds either

a. the first non-empty queue, if the
issued command is a DISPLAY Q or a
DISPLAY N command, or

b. a held queue, if the command is a
DISPLAY Q command.

It then passes control to the DISPLAY
Q/DISPLAY N Message Setup Routine
(module IEESD584).

e If all the queues selected for
searching are empty, module IEESD563
passes control to the Queue Alter
Service routine. This routine uses the
master scheduler message assembly

routine to issue a message to the
operator.

e If a DISPLAY Q command was specified
and an empty held queue has been found,
the Queue Search Control routine passes
control to the Queue Search Return
routine (module IEESD583). Module
IEESD583 adds the empty held queue to
the queue display message that it
issues.

e If the command is a HOLD Q command, the
Queue Search Return routine reads the
QCR for the specified gqueue, sets the
hold queue bits in the QCR, then
rewrites the QCR into S¥S1.SYSJOBQE.

If no queue is specified, the routine
places all input queues in hold status.
Finally, the routine passes control to
the Service routine to issue a queue
held message.

o If the command is a RELEASE Q command,
the routine reads the QCR for the
specified queue, turns off the hold
queue bits in the QCR, rewrites the QCR
into SYS1.SYSJOBQE, and posts the
appropriate ‘no-work' ECB in the ECB
list. If no queue is specified, the
routine releases all input queues and
passes control to the Service routine
to issue a queue released message.

o If a CANCEL command with the operand
ALL or OUT has been specified, and if
at least one jobname match was found
during the search of all the output
queues, module IEESD563 passes control
to the Queue Scratch Setup routine
(module IEESD575).

o For all other queue manipulation
commands, the Queue Search Control
routine establishes parameters for
searching and passes control to the
Queue Search routine (module IEESD564).

The Queue Search Return Routine (Module
IEESDS583)

After the Queue Search routine (module
IEESD564) completes a queue search, it
gives control to the Queue Search Return
routine, which performs the following
processing depending on the queue command
and the results of the queue search:

e If the jobname match does not occur,
the routine passes control to the Queue
Alter Service routine, which uses the
master scheduler Message Assembly
routine to issue a message to the
operator. Upon return, the Service
routine returns control to the caller.

e If the jobname match occurs and the
command is a CANCEL command, the
routine passes control to the Queue
Scratch Setup routine (module
IEESD575).

e If the jobname match occurs and the
command is a DISPLAY jobnames command,
the routine issues a WTO or TPUT macro
instruction to display job status
information, then passes control to the
Service routine.

o If the command is a DISPLAY Q command,
the routine issues a WTO or TPUT macro
instruction to display the number of
entries in the queues that were
searched, then passes control to the
Service routine.

For the following command, no queue
search is performed by module IEESD56U4:

e If the command is a DISPLAY Q command
and an empty held queue is found,
module IEESD583 receives control either
directly from the Queue Search Control
routine or on its first entry from the
DISPLAY Q/DISPLAY N Message Setup
routine. Module IEESD583 displays the
hold status of the queue as part of the
queue display message to the operator.

The Queue Searxch Routine (Module IEESDS564)

The actual searching and manipulation of
the queues is performed in the Queue Search
routine (module IEESD564). Depending on
the command and its operands, the following
functions are performed:

e If the command is a CANCEL command, the
routine searches the queues according
to the parameters specified in the
command. If no parameters are
indicated, the input, background
reader, and hold queues are searched
for the job's queue entry. If IN is
specified, the input and background
reader queues are searched; the search
ends if the entry is found. If a
specific input queue is specified, only
that queue is searched. If OUT is
specified, all output queues are
searched unless a specific queue was
indicated. If ALL is specified, the
input, background reader, and hold
queues are searched first. If the
job's entry is found, the output gqueues
are not searched; otherwise, the output
queues are searched, too. Whenever a
job's queue entry is found, the entry
is dequeued.

o Tf the command is a DISPLAY jobname
command, the routine searches the
input, hold, background reader, ASB,
and output queues. When it finds the
job's entry, the routine returns job

Part 5: Command Processing 115

116

status information to the Queue Search
Return routine, which then returns the
job's status to the operator.

If the command is a DISPIAY N command,
the routine searches the queues
specified in the command (if no
specification is made, all queues are
searched). The Queue Search routine
issues a WTIO or TPUT macro instruction
indicating the name of each job, and
the queue in which it is found.

If the command is a DISPILAY Q command,
the routine searches the queues
specified in the command (if no
specification is made, all queues are
searched). It returns the number of
entries in each queue searched to the
Queue Search Return routine.

If the command is a HOLD jobname
command, the routine searches the input
queues (and if necessary the hold
queue) for the job's entry. If the
entry is found in an input queue, the
routine dequeues it, and stores the
name of the input queue in the entry;
the Service routine uses the Queue
Management Enqueue routine to place the
entry in the hold queue. If the entry
is found in the hold queue, or if the
job is not found, the Service routine
informs the operator.

If the command is a RELEASE jobname
command, the routine dequeues the entry
from the hold queue. The Service
routine uses the Queue Management
Enqueue routine to reenqueue the entry
in its original input queue.

If the command is a RESET command, the
Service routine performs the specified
changes in class and priority. This is
accomplished by dequeueing the job's
entry and using the Queue Management
Enqueue routine to reenqueue the entry
in the specified queue, at the
specified priority. All queues are
searched, starting with the input
queues and the hold queue. A change in
class for an entry found in the input
queue causes the entry to be placed in
the queue of the new class. A class

change for a hold queue entry is placed

in the function code ID field of the
entry's logical track header record.

If the job's entry is not found in the
input queues, the background reader
queue, or in the hold queue, and a
priority change is called for, the
priorities of all output entries for
the job are reset. If the job is being
processed when the command is issued,
the routine stores the new priority in
the input queue QOMPA in the job"'s CSCB.
When the job terminates, the

0S/360 MVT Job Management (Release 21)

Termination routine uses that priority
to enqueue the output queue entries.

If the output queue qualifier is
specified, only the specified output
queue is searched and only one entry is
changed in class and priority. The
entry that is changed is the first
entry of the highest priority for the
specified job. If the job is being
processed when the command is issued or
if no entry for the job is found, the
operator is informed and no action is
taken.

The DISPLAY Q/DISPLAY N Message Setup
Routine (Module IEESDS584)

The DISPLAY Q/DISPLAY N Message Setup
routine receives control only once from the
Queue Search Control, either:

o when the first non-empty queue is found
during processing for either a DISPLAY
Q or a DISPLAY N command, or

o when a held queue is found during
processing for a DISPLAY Q command.

The routine issues the WTO or the TPUT
macro instruction to display the DISPLAY
Q/DISPLAY N control and label lines. If
entry to the routine was due to a held
queue being found, module IEESD584 passes
control to the Queue Search Return routine
(module IEESD583). This routine adds this
queue to the display message it issues to
the operator. Otherwise, module IEESD584
passes control to the Queue Search routine
(module IEESDS564) to begin the queue
search.

The Queue Alter Service Routine (Module
IEESD565)

The Queue Alter Service routine issues a
DEQ macro instruction to allow routines
performing other tasks access to the QCRs.
Based on information passed by the calling
routine, the Service routine performs the
following functions:

e If a queue entry is to be reenqueued,
it passes control via a LINK macro
instruction to the Queue Management
Enqueue routine (module IEFQMNQQ).

e If a message is to be written to the
operator, it passes control via a LINK
macro instruction to the master
scheduler Message Assembly routine
(module IEF0503D).

e If additional system output quéues must
be searched, the routine uses an XCTL
macro instruction to pass control to
the Queue Search Control routine
(module IEESD563).

e It issues a FREEMAIN macro instruction
to free the ECB/IOB that was used to
read SYSl.SYSJOBQE.

After the requested processing is
completed, the Service routine returns
control to the Get Region routine (module
IEEPALTR), which releases the region of
main storage obtained for the task and
returns control to the supervisor.

The Queue Scratch Setup Routine (Module
IEESD575)

The Queue Scratch Setup routine builds the
parameter list for the SCRATCH macro
instruction (SVC 29) according -to whether
the cancelled job is in the input or output
queues. If the job is in the input queue,
the Queue Scratch Setup routine determines
whether there are SYSIN data sets to be
scratched. If so, the routine passes
control to the Queue Scratch routine
(module IEESD581). After the Queue Scratch
routine has scratched all data sets, or if
there were no data sets to be scratched,
the Queue Scratch Setup routine passes
control to the Queue Alter Delete routine.

The Queue Alter Delete Routine (Module
IEESDS576)

The Queue Alter Delete routine passes
control to the Queue Management Delete
routine (module IEFQDELE) to delete the
queue entries associated with the cancelled
job. Upon return from the Queue Management
Delete routine, this routine passes control
to the Queue Message Class Setup routine
(module IEESD578).

The Queue Restart Enqueue Routine (Module
IEESDS577)

The Queue Restart Enqueue routine passes
control to the Queue Management Enqueue
routine (module IEFQMNQQ) to engqueue SYSOUT
data sets for cancelled restarting jobs.
Upon return from module IEFQMNQQ, the Queue
Restart Enqueue routine passes control to
the Queue SMB routine (module IEFSD579).

The Queue Message Class Setup Routine
(Module IEESD578)

The Queue Message Class Setup routine
places zeros in the DSBs for the message
class and sets up the QMPA for enqueuing
the message class. If the job is a
restarting job, the routine passes control
to the Queue Restart Enqueue routine. If
the job is in the output queue, with more
queues to be searched, the routine passes
control to the Queue Search Control routine

(module IEESD563). If the CANCEL command
is issued for a class other than the
message class or for a job that has no
message class, the routine passes control
to the Message routine (module IEESDS580).
Otherwise, it passes control to the Queue
SMB routine (module IEESD579).

The Queue SMB Routine (Mcdule IEESDS579)

The Queue SMB routine places the
appropriate cancel message into the first
SMB and passes control to the Queue
Management Enqueue routine (module
IEFQMNQQ) to enqueue the message class.
The Queue SMB routine also issues the
cancel message to the operator and returns
control to the Get Region routine (module
IEEPALTR) .

The Message Routine (Module IEESD580)

The Message routine issues the cancel
message to the operator if there is no
message class associated with the job.
routine then returns control to the Get
Region routine (module IEEPALTR).

The

The Queue Scratch Routine (Module IEESD581)

The Queue Scratch routine issues the
SCRATCH macro instruction (SVC 29). Upon
return from the SVC routine, the Queue
Scratch routine issues a "data set not
deleted" message if the return code is
nonzero. The routine returns control to
the Queue Scratch Setup routine (module
IEESD575).

The System Reconfiquration Commands

System reconfiguration is the process of
changing, physically or logically, the type
or quantity of elements available to the
system. Physical reconfiguration connects
or disconnects elements from the system.
Logical reconfiguration, which is
accomplished by programming, changes system
tables to notify the control program of the
number and types of elements available to
it. Logical reconfiguration may be
performed without performing physical
reconfiguration, but should always be done
when physical reconfiguration takes place.

Physical reconfiguration can be:
performed when the system is operating if
the QUIESCE command is issued before the
reconfiguration takes place. The QUIESCE
command, which is valid only in systems
that include the multiprocessing option,
suspends system activity until the operator
signals that the system may continue.

Part 5: Command Processing 117

Logical reconfiguration may be performed
when the system is loaded (see the IPL/NIP
Program Logic Manual). It may also be
performed as a result of issuing the VARY
command, which changes the status of paths,
devices, channels, CPUs, or areas of main
storage to online or offline. The VARY
Channel, VARY CPU, and VARY Storage
commands (which are valid only in systems
that include MVT with Model 65
Multiprocessing) are discussed in this
section, immediately following the
discussion of the QUIESCE command.

The QUIESCE Command

Before a physical reconfiguration can take
place, system activity must be suspended.
In order to suspend system activity, the
operator issues the QUIESCE command, which
is identified in the Command Scheduling
routine. The Command Scheduling routine
posts the Master Scheduler, and the Master
Scheduler Attach routine uses the ATTACH
macro instruction to pass control to the
Quiesce routine.

When it is entered, the Quiesce routine
(module IEEMPS03) disables the system for
all interruptions. If there are two CPUs
in the system, this locks out the other CPU
(prevents it from executing instructions in
the Supervisor routines). The Quiesce
routine then marks all TCBs (except its
own) non-dispatchable and uses the Task
Removal routine to issue a shoulder tap to
the other CPU. This forces the other CPU
to halt execution of its currently active
task, and the Quiesce task becomes the only
task in the system that can be executed.
Thus, no further I/0 operations will be
initiated, although there may be I/0
operations in progress. These I/0 ,
operations must be allowed to complete
before the system can be stopped and the
reconfiguration performed.

The Quiesce routine scans the system
UCBs, looking for any that indicate an
incomplete I/0 operation. If it finds that
there are I/0 operations in progress, the
Quiesce routine enables the system for
interruptions, sets the timer for a
ten-second interval, and waits for the
interval to expire.

When the timer interval has expired, the
Quiesce routine disables the system for
interruptions and scans the UCBs. If there
are still I/O operations in progress, the
routine again enables the system for
interruptions and requests a ten-second
timer interval.

If, after 24 ten-second intervals have
been used, an I/0 operation is still in

118 O0s/360 MVT Job Management (Release 21)

progress, the Quiesce routine assumes that
the QUIESCE command cannot be executed
(because a channel program is in a loop,
for example). In this case, the routine
sets all TCBs dispatchable and sets the
IEATCBP field to zero in each prefixed
storage area (PSA). This causes both CPUs
to start dispatching at the top of the
ready queue. Finally, the routine uses the
WLO macro instruction to inform the
operator that the command could not be
executed, and returns control to the
supervisor.

If, however, the Quiesce routine finds
that all I/0 operations have been
completed, it prepares the CPUs for
stopping:

e It saves the contents of the active
timer, then sets the active timer to a
large value.

e It uses a shoulder tap to cause the
other CPU to execute module IEEMPS00.
This routine locads a PSW disabled for
all interruptions, sets up the
External, Machine Check, and I/0O New
PSWs to trap interruptions (because
bringing power up or down may cause
false interruption signals to be
generated), and executes the Diagnose
Stop instruction.

e It performs the same operations
performed in mocdule IEEMPS00, but in
its own CPU.

The Diagnose Stop instruction causes a
CPU to enter the stopped state, and the
Manual light to be 1lit. When the Manual
lights are 1lit on both CPUs, the operator
may perform the physical reconfiguration
procedures.

When the physical reconfiguration
procedures have been completed, the
operator depresses the Start key on each
CPU. Each CPU then clears any pending
machine checks, sets the CPUWAIT bit in its
prefixed storage area (PSA), and tests the
other CPU"'s CPUWAIT bit until it has been
set.

When both CPUs have cleared all pending
machine checks, they clear any pending
external or I/O interrxuptions. Then, while

“the other CPU loads a PSW to put it in the

wait state and enable it for interruptions,
the CPU that is executing the QUIESCE
command restores the active timer, sets the
PSA field IEATCBP to zero for both CPUs,
turns off the common bit in the status
flags field of the master scheduler
resident data area, and returns control to
the supervisor.

The VARY Commands

The VARY command verb causes the Router
routine of the Command Scheduling routine
to pass control to the VARY Keyword Router
routine (module IGC3203D). This routine
identifies the first keyword in the command
and passes control to the appropriate
keyword processing routine. If the command
is one of the three task-creating VARY
commands (VARY CH, VARY CPU, and VARY
STOR), and if MCS is in the system, the
VARY Keyword Router routine passes control
to the MCS VARY Syntax Check routine
(module IGC3303D). If MCS is not included,
the VARY Keyword Router routine passes
control to the VARY/UNLOAD Syntax Scan
routine (module IGC1103D). In.either case,
a unit scan is performed, and control is
passed to the VARY Operand Check routine
(module IGC2203D). The VARY Operand Check
routine performs a syntax check of the
command operand. If errors are found, the
routine passes control to a message module
which informs the operator and returns
control to the supervisor. If no errors
are found, it passes control to the CSCB
Creation routine (module IGCO0803D). The
CSCB Creation routine creates and engqueues
a CSCB for the command, posts the master
scheduler, and returns control to the
supervisor.

The Master Scheduler Attach routine uses
the ATTACH macro instruction to pass
control to the appropriate module:

Command Module

VARY CH IEEMPVCH
VARY CPU IEEMPVCP '
VARY STOR IEEMPVSE

The VARY Channel Command

The operator issues a VARY channel command
to change the status of a channel to online
or offline.

When it is entered, the VARY Channel
routine (module IEEMPVCH) makes several
decisions, and on the basis of these
decisions, it executes the command, rejects
it, or informs the operator that the
channel is already in the requested status:

e It checks the command operands in the
CSCB to ensure that valid operands were
used.

e It checks the CSCB to determine whether
the option is ONLINE or OFFLINE.

e It checks the channel availability
table in the PSA to determine whether
the channel is actually in the system,
whether it is online or offline, and
whether it is operational.

e For OFFLINE requests, the routine
checks to ensure that the reserved path
to a shared direct access storage
device will not be made unavailable.

e For OFFLINE requests, if the channel
represents the last path to a device
(multiprocessing supports two paths to
each device from each CPU), the routine
checks the command operands in the CSCB
for "UNCOND". The "UNCOND" operand is
effective only if the path is not to an
allocated device, to a permanently
resident data set, or to a tape device.

e It checks to ensure that executing the
command will not remove the last path
to an operator's console.

These checks, and the actions performed as
a result, are shown in Figure 38, the VARY
Channel Decision Table.

Online: The VARY Channel routine
determines if the channel to be placed
online is already online; if it is, the WTO
"Channel Online" message is issued. If the
channel is offline, the VARY Channel
routine marks all TCBs, except its own,
nondispatchable. It then uses the Task
Removal routine to force the other CPU to
halt execution of its currently active
task.

The online routine must be executed on
the CPU specified in the command. To get
onto the proper CPU, the routine places the
active timer on the desired CPU and issues
an STIMER wait. When the timer
interruption occurs, the VARY Channel task
is dispatched on the CPU that has the
active timer. For the duration of the
STIMER wait, external interruptions are
enabled.

When the interval expires, the routine
marks the channel online in the channel
availability table, and uses the
Multiprocessing Test Channel routine in the
I/0 supervisor to determine whether the
channel to be brought online is
operational, and whether there are any
catastrophic channel errors. The routine
also uses the MAP function of the IOSGEN
macro to determine which paths to the
devices attached to this channel are
available.

If for any reason the channel cannot be
used, the routine marks the channel offline
and uses the WTO macro instruction to
inform the operator that the channel is
offline. Next the routine determines
whether MCS is in the system. If it is not
a new alternate console may be designated
by the system. The routine then marks all

Part 5: Command Processing 119

Operands Not Valid X

—

Operands Valid

ONLINE Option

OFFLINE Option

|Channel Online
L

MM
Ml
Ml X
Mlox

R SRR S Sy TP S ——
b
b

— e
— e S

¥
|Channel Offline

e il e e

—— e e e e

— e —
—— —
R

R S p—

Channel Operational X

Channel Not |
Operational | |

No UNCOND Operand

| UNCOND Operand
L

—}——
-+—

[

] 1]
|Channel Represents Noj
|Last Paths to Any
Devices

q"_
+
— gy c—

Channel Represents
Last Path to an
Allocated Device, a
Permanently Resident
Data Set, or a Tape
Device

L

!
}
I

——

r

|Channel Represents
|Last Path That is Not|
|to an Allocated |
| Device, a Permanently|
|Resident Data Set,

|2 Permanently Mounted|
| Device, or a Tape

| Device

I

—_—
—_———
—_—
—_——
—
— e oo

I
|Channel Represents

|Operator's Console
[

T U Sy p——
s T e e =

|
|
4
|
|Last Path to |
|
4
1}
|
L

S S —— .

]
|Do Action Number
1

——
o e s e e e i e e . e e e e . e s e s e e e e e e e S e
ey —

e

p o e e e e e

o e o
o o — —
pe o o —
o — e —

Actions:

1. Reject Command

2. WTO "Channel Online" message
3. Execute VARY Channel ONLINE
4. - Execute VARY Channel OFFLINE
5. WTO "Channel Offline" message

e e, S . S, S e S

Figure 38. VARY Channel Decision Table

tasks dispatchable, issues a dummy shoulder
tap to restart the channel being varied
online, unlocks the supervisor, and returns
control to the supervisor.

Offline: The VARY Channel routine
determines if the channel to be placed
offline is already offline; if it is, the
WTO "Channel Offline" message is issued.
If the channel is online, the routine uses

120 0S/360 MVT Job Management (Release 21)

the MAP function of the IOSGEN macro to
determine whether the channel to be varied
represents the last path to one of its
devices. If so, the CSCB is checked for
the "UNCOND" operand. If "UNCOND" was not
specified, control is returned to the
supervisor. If "UNCOND" was specified, the
routine determines if the device is
allocated or permanently mounted or
contains a permanently resident data set.

If any of these conditions exist, the
command is rejected and control is returned
to the supervisor. If none of these
conditions exist, the device is checked to
ensure that it is not the only remaining
operator's console. If it is the only
console, the command is rejected and
control is returned to the supervisor. If
it is not the only console, the channel is
eligible to be marked offline.

Next the VARY Channel routine marks the
channel offline in the channel availability
table, uses the WIO macro instruction to
inform the operator that the command has
been executed, turns off the common bit in
the status field of the master scheduler
resident data area, and returns control to
the supervisor.

If MCS is in the system, and placing a
channel offline will result in removing the
last path to any console, the VARY Channel
routine issues a message to the master
console operator advising him that his
command is rejected and providing him with
the unit addresses of all active asymmetric
consoles on the channel.

If MCS is not in the system, and a
channel is to be placed offline, the VARY
Channel routine examines the UCM entries
corresponding to the units on the channel
to determine whether the channel represents
the last path to any console. If so, and
if the console affected is the primary
console, a swap is performed so that the
alternate console becomes the primary
console, and a new alternate is found from
the list of consoles in the UCM. If the
alternate console is the console affected,
a new alternate is found.

The VARY CPU Command

The operator issues a VARY CPU command to
change the status of a CPU to online or
offline.

When it is entered, the VARY CPU routine
(module IEEMPVCP) first enqueues the UCBs
and then makes several decisions. On the
basis of these decisions, it executes the
command, rejects it, or informs the
operator that the specified CPU is already
in the requested state:

e It checks the command operands in the
CSCB to ensure that valid operands were
used. :

e It checks the command operands in the
CSCB to determine whether the option is
ONLINE or OFFLINE.

e It checks the CPUSTAT byte in the PSA
to determine whether the system is in
multiprocessing or partitioned mode,
whether one or two CPUs are online, and
(if one CPU is online) which CPU is
online.

e For OFFLINE requests, the VARY CPU
routine checks to ensure that the CPU
being varied offline is not an element
of the reserved path to a shared direct
access storage device.

e For OFFLINE requests, if the CPU
represents the last path to a device
(multiprocessing supports two paths to
each device from each CPU), the routine
checks the command operands in the CSCB
for "UNCOND". The "UNCOND" operand is
effective only if the path is not to an
allocated device, to a permanently
resident data set, or to a tape device.

These checks, and the actions performed as
a result are shown in Figure 39, the VARY
CPU Decision Table.

Online: The VARY CPU routine determines if
the CPU to be varied online is already
online; if it is, the WTO "CPU Online"
message is issued. If the CPU to be varied
online is offline, the VARY CPU routine
loads location zero of each PSA with a PSW.
The PSW that is stored in the PSA assigned
to the object CPU points to the
initialization routine to be executed by
that CPU. The PSW that is stored in the
other PSA points to an error routine that
will be executed by the object CPU if the
operator has the two prefix switches set
symmetrically.

When it has stored the PSWs, the VARY
CPU routine executes an External Start
instruction and begins testing the VRYCPU
byte located in the VARY CPU routine. This
byte is set to X'02" by the CPU to be
varied at the beginning of its
initialization routine. The VARY CPU
routine tests for X'02'; if the test is not
successful after X'2000X' tries, the
routine assumes that the External Start
instruction was not successful. In that
case, the routine uses the WTO macro
instruction to inform the operator that the
command could not be executed and returns
control to the supervisor. If, however,
the test is successful, the routine
switches the CPU IDs in the lock byte,
informs the CPU to be varied that
initialization is complete, and enters an
enabled wait state.

Part 5: Command Processing 121

4. WTO "CPU Online" Message
5. Execute VARY CPU ONLINE

o s w—

r T £ T T T T T T T T
Operands Not Valid | | | | |
4 4
T]
Operands Valid X X | X X X
ONLINE Option X
OFFLINE Option X X X X
1 L 4 1 L 4 4 4 L 4
1] . . L L} T L) T L ¥) T
Multiprocessing Mode | | | | | | | X | | X | | X | | X |
d 4 Ny 4 4 1 4 L 4
. T T T T T T T T T
Partitioned Mode | X [| | | | |
1 CPU Online X
2 CPUs Online X X X
CPU (to be Varied) is online | X X X X
1
| - g T
CPU (to be Varied) is offline | |
4 4 i [1
L]] L} LB 1)
No UNCOND operand | | | | : X |
[l 1 1 1 4 [[1 1 L1 i]
1) LB L} L} L r) { L]] 1
UNCOND operand | | | | | | | X |
L 4 4
T k| L
CPU Represents No Last Path to Any | |
Devices | X |
} +
Channel on CPU Represents Last Path| | |
to an Allocated Device, a | | |
Permanently Resident Data Set, or a | |
Tape Device | |
B + :
Channel on CPU Represents Last Path | | | |
that is Not to an Allocated Device | 1 | | | | | | | | | | | |
a Permanently Resident Data Set, | | | | | X | X
or a tape device | | | | |
i L [[l 4 d 4 1 4
[3 - T T T 1 T T T T
|Do Action Number | | 1| | 1| 31111 | 3
} L 4 1L L 1 L 41 L L
| Action:
| 1. Reject Command
2. WTO "CPU Offline" Message
3. Execute VARY CPU OFFLINE

TP —

Figure 39. VARY CPU Decision Table

122 0S/360 MVT Job Management (Release 21)

When it is entered, the initialization
routine for the CPU to be varied clears its
own registers and determines whether the
timer is enabled. If the timer is not
enabled, the initialization routine sets a
flag so that the Vary CPU routine will
issue a warning message that the timer is
not enabled.

Next, the initialization routine saves
its external new and I/0 new PSWs. In
order to trap any extraneous interruption
signals that may have been generated, the
routine loads a PSW that is enabled for
interruptions, then loads a disabled PSW.
It initializes the external and machine
check new PSWs for multiprocessing,
initializes its PSA, and then takes the
following steps to. verify that the
channels, control units, devices, and paths
assigned to the CPU to be varied are indeed
available to it:

e It sets bit three in each channel
availability table entry to zero.
bit is used only by the VARY CPU
routine to indicate that the channel
status is a result of a VARY CPU
command. When the CPU is again placed
online, the channel should therefore be
available to it. And, since this bit
is independent of VARY Channel, any
channels varied offline by VARY Channel
remain offline.

This

e The routine uses the I/0O Supervisor Test
Channel routine to ensure that all
channels not marked offline in the
channel availability table are
operational. If a channel is not
operational, the initialization routine
sets bit one in the channel
availability table entry to mark the
channel offline; when the VARY CPU
routine informs the operator that the
command has been executed, it also
notifies the operator of any channels
on the CPU that are marked offline.

e The routine uses the MAP function of the
IOSGEN macro to get the path indicators
for each UCB.

e The routine uses the I/O Supervisor Test
I/0 routine to test the online paths
from this CPU to all devices except
offline direct access devices. If the
return code indicates that the unit is
available, the UCB is marked online and
tape units are marked ready. A unit
check from any device except tape and
direct access is treated as a good path
and the device is marked online. If
the return code indicates that the
paths are unavailable, the routine uses
the IOSGEN macro instruction to mark
the paths offline if there is another

path available to the device and the
UCB is marked online; otherwise, the
path remains marked online.

The routine initializes the CONSOLID
field in the object CPU's PSA with the
address of jits operator console if it is
operational. Then, it determines if MCS is
in the system.

If not a new alternate console may be
designated by the system.

When channel and unit availability have
been verified, the initialization routine
initializes the CPUSTAT byte in both PSAs
to X'00", sets the second word of both
IEATCBP fields to zero, and initializes its
External and Machine Check New PSWs for
multiprocessing. A dummy shoulder tap is
injtiated to restart the channels on the
CPU just brought online. For systems
generated with the system management
facilities, a record containing the CPU ID,
the time, date, and the online routine is
built and written. All tasks are set
dispatchable.

The routine uses the WTO macro
instruction to inform the operator that the
command has been executed and to notify him
of any channels that are offline. The
routine dequeues on the UCBs, turns off the
common bit in the status flags field of the
master scheduler resident data area, and
returns control to the supervisor.

Offline: The VARY CPU routine determines
if the CPU to be placed offline is already
offline; if it is, the WTO "CPU Offline"
message is issued. If the CPU is online,
the VARY CPU routine determines whether the
active timer and (in systems without MCS)
console device are on the CPU to be varied
offline or on the CPU that will remain
online. The routine inspects the PREFTMRA
field in the PSA for each CPU; the field in
the PSA for the CPU containing the active
timer is set at zero, and if that CPU is to
be placed offline, the routine switches the
active timer to the other CPU by exchanging
the contents of the two PREFTMRA and timer
fields. If (in systems without MCS) the
channel containing the active console
device is on the CPU to be varied (i.e.,
the object CPU), the routine posts the
console ECB, causing the Console
Communications routine to switch to the
alternate console device.

In system with MCS, the VARY CPU routine
examines the UCM entries to determine
whether there are any active asymmetric
consoles on the CPU. If so, the routine
issues a message to the master comnsole
operator advising him that his command is

Part S: Command Processing 123

rejected, and providing him with the unit
addresses of all active asymmetric consoles
on that CPU.

Using the MAP function of the IOSGEN
macro of the I/0 Supervisor, the routine
checks the paths of each device attached to
a.channel that is online on the object CPU
to determine if the last available logical
path to the device is on the object CPU.
The command is rejected if the last path is
on the object CPU unless the "UNCOND"
parameter has been specified and the last
path is to a device that is not allocated,
does not contain any permanently resident
data sets, and is not a tape device. Any
device that will have its last path removed
is marked offline by the pending bit in the
UCB and the last path bit in the negative
UCB. The operator's console on the object
CPU is always taken offline, regardless of
the conditional parameter.

When the active timer and (in systems
without MCS) console device have been
switched to the CPU that is to remain
online, the routine sets all TCBs except
its own non-dispatchable, and uses the Task
Removal routine to force the other CPU to
halt execution of its currently active
task.

The VARY CPU routine then searches the
UCBs of the object CPU to determine whether
all I/0 operations on that CPU have been
completed.

If there are I/0 operations in progress,
the routine sets the timer for a
five-second interval and waits for the
interval to expire. When the interval has
expired, the routine again tests the UCBs
for incomplete I/0 operations; the routine
continues requesting five-second timer
intervals and testing UCBs until all I/O
operations are completed, or until three
minutes have elapsed. The command is
rejected after three minutes if all of the
I/0 has not been completed.

When all of the I/O operations have been
completed, the Vary CPU routine marks the
channels offline on the object CPU offline.
If MCS is not in the system, the alternate
console routine determines if a new
alternate must be found and searches the
UCMs to find another alternate if the
current one is scheduled to go offline.

The VARY CPU routine then tests the CPUID
byte in the PSA to determine whether it is
being executed on the CPU to be varied. If
so, the routine unlocks the supervisor,
sets the timer, and waits.

124 0OS/360 MVT Job Management (Release 21)

Once the timer has been set, the VARY
CPU task becomes non-dispatchable. No I/0
operations are in progress (and since all
tasks have been set non-dispatchable, none
will be initiated). The timer is in the
other CPU, the operator is forbidden to
depress the interrupt key, and no shoulder
taps should occur. The CPU to be varied is
therefore in a wait state, enabled for
interruptions; when the timer interruption
occurs, it will occur in the other CPU.
Thus the other CPU will continue the
execution of the VARY CPU task.

When the timer interruption occurs, the
supervisor dispatches the VARY CPU task.
The VARY CPU routine issues a shoulder tap
to the CPU to be varied, which unlocks the
supervisor and executes a Diagnose Stop
instruction.®

When the CPU to be varied unlocks the
supervisor, the VARY CPU routine, being
executed by the other CPU, locks the
supervisor. The VARY CPU routine sets the
IEATCBP field in the PSA of the CPU to be
varied to point to the dummy high priority
task and adjusts the CPUSTAT fields in both
PSsAs to reflect the new configuration. The
routine sets all TCBs dispatchable, writes
an SMF record if the SMF function is in the
system, issues a WTO macro instruction to
inform the operator that the command has
been executed, and returns control to the
supervisor.

When channel and unit availability has
been verified, the Initialization routine
sets all TCBs dispatchable and initializes
the CPUSTAT byte in both PSAs. It sets the
second word of both IEATCBP fields to zero,
initializes its external and machine check
new PSWs for multiprocessing, and uses the
WTO macro instruction to inform the
operator that the command has been executed
(and to notify him of any channels that are
offline). When the WTO macro instruction
has been issued, the VARY CPU routine turns
off the common bit in the status flags
field of the master scheduler resident data .
area, and returns control to the
supervisor.

The VARY Storage Command

The operator issues the VARY Storage
command to change the status of an area of
storage (except those areas allocated to
the supervisor) to online or offline. When

iThe Diagnose Stop instruction, located in
the PSA and named VARYSTOP, is followed by
an unconditional branch to the Diagnose
Stop instruction. Thus, if the Start key
is inadvertantly pressed, the system will
again stop.

the Command Scheduling routine recognizes
the command, it constructs a CSCB and adds
the CSCB to the chain. It posts the Master
Scheduler, and the Master Scheduler Attach
routine uses the ATTACH macro instruction
to pass control to the VARY Storage
routine.

When it is entered, the VARY Storage
routine (module IEEMPVSE) inspects the
parameter type switch in the CSCB to
determine whether the storage address
parameters are expressed as an address
range or as a storage box number.

If an address range is specified, the
routine converts the numbers to binary form
and orders them so that the smaller number
becomes the first address and the larger
number becomes the second address. The
routine then rounds the first address down
to the nearest lower multiple of 2048 (2K)
bytes, and rounds the second address up to
the next higher multiple of 2048 bytes. It
then converts the rounded off addresses to
EBCDIC form and stores them in the CSCB.
Thus the command is made to apply to all 2K
blocks of storage encompassed by the
specified address range and the operator
message written when the command has been
executed reflects the actual addresses
used.

If a storage box number is specified,
the VARY Storage routine computes the
second address as 262,144 (256K) times the
specified box number. It computes the
first address by subtracting 262,144 from
the second address.

Offline: When it has determined the
addresses of the area to be set offline,
the VARY Storage routine ensures that the
area does not overlap any main storage
areas assigned to the supervisor. It
inspects the main storage supervisor
partition queue element (MSSPQE), which
specifies the lower limit of the main
storage available for allocation and the
extent of the area. If the first address
specified in the command is smaller than
the address in the MSSPQE, or if the second
address in the command is larger than the
address in the MSSPQE plus the length of
the area, the area specified in the command
includes main storage allocated to the
supervisor. In this case, the routine
rejects the command..

If the routine accepts the command, it
constructs a vary queue element (VQE),
which is shown in Figure 40. Then it
searches for areas of main storage (within
the area specified in the command) that are
"free", e.g., not allocated.

Free areas of main storage are
represented by free block queue elements
(FBQEs), which have the format shown in
Figure 41. The routine searches the free
block queue for FBQEs whose areas overlap
the area specified in the command, and
modifies the queue so that such areas are
no longer represented by FBQEs.

In order to determine whether the area
represented by the FBQE (the free block)
overlaps the area specified in the command
(the VARY area), the routine compares the
beginning and ending addresses of the free
block to the beginning and ending addresses
of the VARY area, and performs the
processing described in Figure 42,

Reserved Pointer to Next VQE

Reserved Lower Boundary of Specified Area

Reserved

Length of Specified Area

VARY ECB
Figure 40. Vary Queue Element (VQE)
1
Reserved Forward Pointer
1
Reserved Backward Pointer
Reserved Number of Bytes in Set of 2K Blocks
Note: The FBQE occupies the first three words of the area it represents.
Figure 41. Free Block Queue Element (FBQE)

When the VARY Storage routine has
dequeued an FBQE (or modified one so that
an area of storage is no longer
represented), it marks the storage area
offline in the fail soft storage area map
(FSSEMAP). = Each PSA contains a copy of the
FSSEMAP, which is an area of 2048 bits (64
words). Each 2K block of main storage is
represented in the FSSEMAP by two bits:
bits 0 and 1 correspond to block 0; bits 2
and 3 correspond to block 1, etc. The two
bits are set on if the corresponding block
of main storage is offline, and they are
set off if the block is online. When it
has marked an area of storage offline, the
VARY Storage routine continues its search
of the free block queue.

When it has terminated the search, the
VARY Storage routine examines the FSSEMAP
to determine whether the command has been
completely executed, or whether there are
blocks of storage in the area specified in
the command that are allocated as regions
and therefore are not represented by an

Part 5: Command Processing 125

SITUATION

ACTION

\ w
‘1— VARY Area —-l

|‘; Free Block ——'l
G

F

If this situation exists, the areas do not
overlap, but there may be free blocks
that do overlap the VARY areq; the search
continues.

\i:— VARY Area —-|W
I‘—' Free Block —’I
F G

If this situation exists, the areas do not
overlap, and since no succeeding free
blocks will overlap the VARY area, the
search ends.

G

Y If this situation exists, there is an area at
w the lower end of the free block that will
I“—— VARY Area e o remain online. The routine builds and
enqueues an FBQE that represents the area
I“___ Free Block i from V to G, and modifies the original
F G FBQE to represent the area from F to V.
v W If this situation exists, there is an area at
. VARY Area the upper end of the free block that will
remain online. The routine builds and
enqueues an FBQE that represents the area
<= ==~ Free Block from W to G, and deletes the original FBQE

(or the one built as a result of situation 4).

Note: The letters V and W represent the beginning and ending addresses of the main storage area specified in the VARY command; the letters F and G
represent the beginning and ending addresses of the area represented by the FBQE.

Figure 42. The VARY STOR OFFLINE Command

FBQE. If there are areas of storage that
must still be set offline to satisfy the
command, the VARY Storage routine issues a
WAIT macro instruction specifying the ECB
in the VQE. This ECB may be posted by. a
routine used in the execution of the
FREEPART macro instruction (if the region
of storage freed overlaps the VARY area),
or it may be posted by the VARY Storage
routine when it is executing an overriding
VARY ONLINE command.

When the ECB has been posted, the VARY
Storage routine examines the length field
in the VQE. If the length field is zero,
the ECB was posted by the VARY Storage
routine executing an overriding VARY
command. In this case, the VARY Storage
routine uses the WTO macro instruction to
inform the operator that a VARY command was
overridden by a subsequent VARY command,
dequeues the VQE, and returns control to
the supervisor.

If the VQE length field is not zero, the
ECB was posted during execution of the
FREEPART routine. In this case, the VARY
Storage routine scans the FSSEMAP to
determine whether there are any storage
blocks specified in the command that were
not set offline during execution of the
FREEPART routine. If so, the command has
still not been executéd, and the routine
again issues the WAIT macro instruction.

126 0S/360 MVT Job Management (Release 21)

If, however, the entire area specified in
the command has been set offline, the
command has been executed; the routine uses
the WTO macro instruction to inform the
operator, dequeues the VQE, reduces the
VARY Storage count by one, and returns
control to the supervisor.

Online: When it has calculated the
addresses bounding the area to be set
online, the routine determines whether the
command overrides a previous VARY command
that has not yet been completely executed.
The routine searches the vary queue,
looking for a VQE that represents the same
address range specified in the current
command.

If the routine finds a VQE whose area
partially overlaps the area specified in
the current command, the VARY Storage
routine rejects the current command. 1If,
however, it finds a perfect match, the
routine sets the length field in the VQE to
zero and posts the ECB in the VQE. This
notifies the routine executing the
overridden command that the command has
been overridden.

When it has issued the POST macro
instruction, or if no matching (or
overlapping) VQE was found, the routine
compares the address range specified in the

VARY command with the address range in the
MSSPQE. If the area specified in the
command overlaps .an area allocated to the
supervisor, the routine adjusts the address
range to remove the overlap.

When it has made any necessary
adjustments, the routine verifies that the
storage specified in the command is
physically present in the sytem. If the
specified storage is not in the system, the
routine uses the WTO macro instruction to
inform the operator, then returns control
to the supervisor.

If the specified storage is in the
system, the VARY Storage routine marks each
block online in the FSSEMAP, and constructs
or extends an FBQE to represent the block.

When each 2K block in the specified area
has been brought online, the routine uses
the WTO macro instruction to inform the
operator that the command has been
executed, turns off the common bit in the
status flags field of the master scheduler
resident data area, and returns control to
the supervisor.

EXISTING-TASK COMMANDS

There are certain commands that must be
executed by routines performing tasks
currently established in the system.- The
DISPLAY JOBNAMES command, for example, can
only be executed by existing initiators.
These commands are called existing-task
commands .

The CANCEL Command

When an initiator starts to process a job,
it creates and enqueues a CSCB to represent
the job step. During the process of
initiation the CSCB is checked for a cancel
indication; if the command is received
before the job step's TCB is attached, the
job is immediately terminated.

If no CANCEL command is received, the
ATTACH macro instruction is issued and the
initiator goes into the wait state; it
becomes ready again when a program
executing the step issues the RETURN macro
instruction, or when a CANCEL command
causes the Command Scheduling routine to
post an ECB in the CSCB for the job step.

Similarly, the DSB Handler routines of
the system output writer create a CSCB to
represent the data set processing subtask
(which may be executed by the Standard
Writer routine or by a user-supplied
program). When the subtask has been
attached, the writer task enters the wait
state; it becomes ready again when the
program executing the subtask issues a

RETURN macro instruction, or when a CANCEL
command, using the writer device name as a
jobname, causes the Command Scheduling
routine to post an ECB in the CSCB that
represents the data set processing subtask.

The CANCEL Processor routine (module
IGC3703D) of the Command Scheduling SVC 34
routine searches the chain of CSCBs for the
one that represents a step of the job to be
canceled. If no such CSCB is found, the
job has not been selected, and a new task
must be established to manipulate the input
queue (see "Task-Creating Commands").

If the CSCB is found, it is marked
"canceled"™ and a POST macro instruction is
issued to the cancel ECB in the CSCB. If
TSO is active, the POST macro instruction
is issued with the TJID. The TJID is the
non-zero TSO terminal job identification
number. If TSO is not in the system, the
TJID is zerxo.

The POST macro instruction causes an SVC
interruption. The executing job step will
thus lose control of the CPU; since the
initiator has a higher priority than the
job step, the initiator will regain control
first.

When it gets control, the initiator
checks the ECBs in the CSCB. If the cancel
ECB has been posted, it marks the CSCB to
indicate that an abnormal termination
(ABTERM) is required, and issues SVC 34,
with register 1 negative, and pointing to
the CSCB. The Chain Manipulator routine
(module IGC0003D) of the Command Scheduling
routine branches to the ABTERM routine,
which modifies the job step's PSW to
request abnormal termination, then returns
control to the initiator. The initiator
goes into the wait state until control is
again passed to it by the terminating job
step.

When the initiator goes back into the
wait state, the job step regains control.
Since, however, its PSW has been altered to
request abnormal termination, the ABTERM
immediately occurs.

The CANCEL command can be issued from a
TSO terminal or from an operator's console
to terminate a TSO terminal session or a
background job. The processing of a CANCEL
command that is issued from the TSO
terminal is described in the TSO Command
Processor PLMs.

The MONITOR DSNAME Command

This command is stored when the
DISPLAY/MONITOR Commands Router routine
(module IGC3503D) of the Command Scheduling
routine turns on bit 4 in byte MSSSB in the
common area of the master scheduler

Part 5: Command Processing 127

resident data area. (If the MONITOR DSNAME
command is issued from a TSO terminal,
module IGC3503D turns on bit 1 of byte
BAMONITR in the common area of the master
scheduler resident data area. TSO
processing of the MONITOR DSNAME command is
described in the TSO Command Processor
PLMs.)

Four routines execute the MONITOR DSNAME
command: two allocation routines, AVR and
External Action, execute the command to
include the data set name in mount
messages; the Step Termination and Job
Termination routines execute the MONITOR
DSNAME command to include the data set name
in demount messages. The names of
temporary data sets are not displayed. 1If
the MONITOR DSNAME command is in effect,
the four routines execute it in the
following ways:

e AVR -- The AVR routine locates the
first non-temporary data set and
requests the Queue Management routine
to read the appropriate JFCB into main
storage. The data set name (less
extraneous blanks) is extracted from
the JFCB and placed into the mount
message.

o External Action -- Prior to issuing a
mount message for a TIOT entry, the
External Action routine scans the TIOT
for a nontemporary data set that is
allocated to the requested volume or
device. Such a nontemporary data set
is eligible for display if neither
deferred mounting nor unit affinity is
specified. If an eligible data set is
found, the External Action routine
requests the queue manager to read the
appropriate JFCB into main storage.
The Extermnal Action routine extracts
the data set name from the JFCB and
inserts it into the mount message. If
no eligible data set can be found, the
data set name is omitted from the mount
message.

e Step Termination -- The Step
Termination routine (module IEFZGST1)
requests queue mangement to read the
JFCB associated with the TIOT device
entry for which a demount message is to
be issued. The TIOT is scanned for the
first nontemporary data set allocated
to the device. If such a data set is
found, the volume serial number(s) in
the JFCB are compared with the serial
number of the volume to be demounted;
if a volume serial number is equal to
the serial number of the volume to be
demounted, termination message module
IEFZHMSG extracts the data set name
from the JFCB, inserts it into the
demount message, and issues a WTO or a
TPUT (if the command was issued from a

128 0S/360 MVT Job Management (Release 21)

TSO terminal) macro instruction. If no
eligible data set can be found, the
data set name is omitted from the
demount message.

e Job Termination -- The displaying of
the data set name in job termination
demount messages is restricted to tape.
the Job Termination routine executes
the MONITOR DSNAME command during the
processing of unreceived passed data
sets on tape volumes. Prior to
constructing a KEEP disposition message
for a nontemporary data set, the Job
Termination routine extracts the UCB
pointer from the PDQ block entry and
the volume serial number from the JFCB.
If the volume is mounted, termination
message module IEFZHMSG extracts the
data set name from the JFCB, inserts it
into the demount message, and issues a
WTO or a TPUT (if the command was
issued from a TSO terminal) macro
instruction. If no eligible data set
can be found, the data set name is
omitted from the demount message.

The MONITOR JOBNAMES Command

The DISPLAY/MONITOR Commands Router routine
(module IGC3503D) of the Command Scheduling
routine stores this command by setting bits
in the master scheduler resident data area:

e The job notification bit (BAJN)
indicates that the job's name is to be
displayed on the requesting console
output device when the first step of
the job is initiated and when the last
step of the job is terminated.

o The time notification bit (set only if
the optional keyword T is used in the
command) indicates that the time is to
be included in the message.

e If the MONITOR JOBNAMES command is
issued from a TSO terminal, module
IGC3503D sets bit 0 in byte BAMONITR in
the common area of the master scheduler
resident data area. TSO processing of
the MONITOR JOBNAMES command is
described in the TSO Command Processor
PLMs.

The MONITOR JOBNAMES command is executed
in the Allocation Entry routine and in the
Job Termination Exit routine.

The DISPLAY R Command

The DISPLAY R command identifies and
displays requests for operator action that
have not been satisfied: messages
requiring a reply, and volume mounting
instructions that have not been executed.

The task of executing the DISPIAY R command
is performed by the DISPIAY Requests
routine (module IEE2903D), which gets
control when the DISPLAY/MONITOR Commands
Router routine (module IEE3503D) determines
that the DISPLAY command has the R operand.
The DISPLAY Requests routine operates in
the SVC Transient Area.

The DISPLAY R command may be issued from
a console or from a TSO terminal. If the
command is issued from a console device,
the console identifier is passed to the
Display Requests routine in the UCMI field
of the XSA of the SVRB. If the command is
issued from a TSO terminal, the terminal
identifier is in the TJID field of the XSA
of the SVRB. (See the TSO Command
Processor PLMs for a detailed discussion of
TSO processing of the DISPLAY R command.)

The DISPLAY Requests routine first looks
for operator messages awaiting a reply. It
scans the reply queue, extracts the
two-byte message ID from each reply queue
element (RPQE), and stores the IDs in a
72-byte output buffer.2

Next, the DISPLAY Request routine
searches for outstanding mount messages.
It scans the list of UCBs, and in each UCB
it tests the high-order bit in the SRTEDMCT
field. If the bit is on, it means that a
mount message has been issued, and if the
unit is a direct access device, that the
correct volume has not yet been mounted.
In this case, the routine stores the unit
address in the output buffer.

If the unit is a tape device, the
identity of the volume is not verified
until a data set is opened. The Display
Requests routine assumes that if the unit
is in the ready state, the mounting
instructions have been executed. If the
unit is not in the ready state, the
operator has not yet mounted a volume, and
the routine stores the unit address in the
output buffer.

If the high-order bit of the UCB field
SRTEDMCT is not on, the Display Requests
routine tests the UCBAT1 field. If the
field is not zero, an AVR mount message has
been issued, but the operator has not yet
mounted the requested volume. In this
case, the routine sets a switch, and at the
end of the display indicates to the
operator that an AVR mount message is
pending.

1see the MVT Supervisor Program Logic
Manual for information on the reply queue
and RPQE.

When the output buffer is full, the
routine uses a WrO macro instruction or, if
the DISPLAY R command was issued from a TSO
terminal, a TPUT macro instruction to pass
the message IDs and unit addresses to the
operator. When the scan is complete and
the last message has been written, the
routine frees the main storage obtained for
the buffer and returns control to the
supervisor.

The MONITOR SPACE Command

This command is stored when module IGC3503D
of the Command Scheduling routine turns on
bit 5 in byte MSSSB of the common area of
the master scheduler resident data area.
(If the MONITOR SPACE command is issued
from a TSO terminal, module IGC3503D turns
on bit 2 in byte BAMONITR instead of bit 5
in byte MSSSB. TSO processing of the
MONITOR SPACE command is described in the
TSO Command Processor PLMs.)

The MONITOR SPACE command is executed by
the I/0 Device Allocation routine and by
the Job Termination and Step Termination
routines. When a direct access volume is
to be dismounted, the External Action
routine (module IEFWD000) of the I/O Device
Allocation routine, or the Termination
Message routine (module IEFZHMSG) tests bit
5 of byte MSSsSB. If the bit is on, the
routine issues SVC 78, (see the DADSM PLM),
to obtain information on the amount of
space available on the volume, then
includes the information with the demount
message.

The DISPLAY SQA Command

An operator uses the DISPLAY SQA (system
queue area) command when he wants to know
how much free storage remains in the system
queue area. When the Display Router
routine (in module IGC3503D) recognizes the
DISPLAY SQA command, it issues an XCTL
macro instruction to give control to module
IGC8503D. This module causes disabling of
the system while it obtains the low and
high boundaries of the system queue area
and the amount of free storage available.
(This latter value is determined by
chaining through the free queue elements
(FQEs). See the Main Storage Supervision
section of the MVT Supervisor Program Logic
Manual.) The module then causes enabling
of the system to occur and issues a WTO
macro instruction to display the
information just obtained.

The MONITOR STATUS Command

This command is stored when the
DISPLAY/MONITOR Commands Router routine of
the Command Scheduling routine turns on the
MSDISPST bit in the master scheduler
resident data area. (If the MONITOR STATUS

Part 5: Command Processing 129

command is issued from a TSO terminal,
module IGC3503D turns on bit 3 in byte
BAMONITR instead of the MSDISPST bit. TSO
processing of the MONITOR STATUS command is
described in the TSO Command Processor
PLMs.) Each initiator tests the bit when
it terminates a job step; if the bit is on,
the Step Termination routine uses a WTO or
TPUT macro instruction to display the
disposition of the data sets used in the
step.

The DISPLAY T Command

This command is executed entirely within
the Command Scheduling routine. The
DISPLAY/MONITOR Commands Router routine
(module IGC3503D) issues the TIME macro
instruction to obtain the time and date.

It then re-formats the information and uses
a WTO or TPUT macro instruction to display
the time of day and the date to the
requesting operator.

The DISPLAY T command may also be issued
from a TSO terminal. TSO processing of the
DISPLAY T command is described in the TSO
Command Processing PLMs.

The MSGRT Command

The MSGRT (MR) command establishes default
routine instructions (L=xxx operands) for
the DISPLAY, MONITOR, STOPMN and CONTROL
commands. When the Router routine
(IGCO403D) determines that a MSGRT command
is to be executed, it passes control to the
MSGRT Command Handler 1 routine (IGC6303D).

The MSGRT Command Handler 1 routine
first determines which command and operand
has been entered. If the REF operand has
been entered, the routine passes control to
the MSGRT Command Handler 2 routine
(IGC6403D). Otherwise, the MSGRT Command
Handler 1 routine scans the command for
syntax errors. If errors exist, the
routine sets an appropriate message code in
the XSA and passes control to the MSGRT
Command Handler 2 routine (IGC6403D). This
routine determines that a message is to be
written and passes control to the MSGRT and
CONTROL (MR and K) Message Module 1 routine
(IGC5603D), which writes the proper message
to the operator's console.

If the MSGRT Command Handler 1 routine
does not find syntax errors, it checks the
routing location (L=xxx) operands of the
command for valid console identification
number and display area identifier. If the
routine finds invalid operands, it sets an
error code in the XSA and passes control to
the message module to write a message to
the operator's console. If the L=xxx
operands are valid, the MSGRT Command
Handler 1 routine checks the requesting
console's UCM entry to determine if a

130 0S/360 MVT Job Management (Release 21)

Message Routing Control Table (MRCT)
already exists for that console. If no
table exists, the routine issues a GETMAIN
macro instruction for the required storage
and enters the command operands and routing
defaults in the MRCT.

Storage for the MRCT is requested in
48-byte sections. Each table section
consists of five 8-byte "data" entries and
one 8-byte address entry. Each address
entry may point to an additional U48-byte
table section (there may be several
additional sections; the address entry of
the last table section contains zeros). A
data entry in the MRCT consists of a 1l-byte
control byte, a 2-byte command code, a
2-byte operand code, a l-byte console
identifier, a 1l-byte display area
identifier, and one unused byte. For
example, an MRCT entry establishing default
routine operands for a DISPLAY Q command
(routing all DISPLAY Q commands to console
"09" and display area "A") would appear as

-follows:
0 1 3 5 6 7 8
r T T T 1 T 1
o1 | D | © | 09 | A | 00 |
L L L L 4 L J
8 bytes

Each command-and-operand combination for
which routine defaults are established:
comprises one entry in the MRCT.

If the MSGRT Command Handler 1 routine
determines that an MRCT already exists for
a console, it checks the table to determine
if it already contains an entry for the
command-and-operand combination that was
entered. If a duplicate entry is found,
the routine changes the console
identification number byte and the display
area identifier byte as appropriate to
reflect the new default routing
instructions. If no duplicate entry is
found, the routine must make a new table
entry. The routine searches for free space
in an existing table and, if space is
found, it places the new entry in the
existing table. If no space is found, the
routine issues a GETMAIN macro instruction
for another 48-byte table, and places the
entry in this new table section.

MSGRT REF: When the MSGRT Command Handler
1 routine determines that the operator has
entered a MSGRT REF command, it passes
control to the MSGRT Command Handler 2
routine. This routine locates the MRCT and
formats the entries for display. The
routine then determines if the entering
console is a display (CRT) console. If so,
the routine places the table in the entry
area of the Display Control Module (DCM) so
that it may be written to the screen, and
it sets a code in the XSA to cause a

display of the "CHANGE OPTIONS" message.
If the issuing console was not a CRT, the
routine uses the WTO macro instruction to
write the display of message routing
defaults.

The CONTROL Command

When the Command Verb Checkex routine
(IGCO403D) determines that a CONTROL
command is to be executed, it passes
control to the Routing Location module
(IGC7503D). This routine scans the command
for routing (L=xxx) operands. If complete
routing instructions have been specified,
it places them in the extended save area
(XSA). If no routing operands, or only
partial routing operands, have been
specified, the routine checks the routing
control table for default routing operands.
If it finds default values, it places them
in the XSA. If no defaults are found, the
routine identifies the issuing comnsole as
the receiving console and defaults the area
identifier to a null value (the first
available area will be used). After the
routine identifies the console address and
display area, it places appropriate
indicators in the XSA.

The Command Verb Checker routine then
passes control to the CONTROL Command
Handler 1 routine (IEE6703D). This routine
checks the syntax of the command and, if
major operands A, M, V or C have been
entered, passes control to the appropriate
routine as described in the following
sections:

CONTROL A: The CONTROL Command Handler 4
routine (IEE7803D) receives control from
the CONTROL Command Handler 1 routine for
all CONTROL A commands. This routine
checks the syntax of the command. If the
syntax is invalid, module IEE7803D passes
control to the MSGRT and CONTROL Message
Module (IEES5603D). If the CONTROL A
command syntax is valid and the command is
other than CONTROL A,REF or CONTROL A,NONE,
module IEE7803D passes control to the
CONTROL Command Handler 2 routine (module
IEE6803D). This routine first scans for
syntax errors and invalid area definitions.

If any are found, it sets an error code
in the XSA and passes control to the MR and
K Message Module (IGC5603D), which writes
an error message to the operator's console.
If the routine finds no errors, it
determines whether an existing area is
being changed or a new area is being
defined. If an operator is changing an
existing area, the routine changes the
existing screen area control block (SACB)
in the resident portion of the display
control module (DCM). If an operator is
defining a new area, the routine issues a

GETMAIN macro instruction so that
additional SACBs may be built.

CONTROL A,REF and CONTROL A,NONE: The
CONTROL Command Handler 4 Routine
(IEE7803D) receives control from the
CONTROL Command Handler 1 Routine for all
CONTROL A Commands. This module checks the
syntax of the command. If the syntax is
invalid, the module passes control to the
MSGRT and CONTROL Message Module (IEE5603D)
for an error message. If the command is a
valid CONTROL A,REF or CONTROL A,NONE
command, module IEE7803D passes control to
the COMMAND Command Handler 5 routine
(IEE6903D) to determine which command has
been entered.

If a CONTROL A, REF command has been
entered, or if a CONTROL A command has been
entered without any other operands (this
condition defaults to a CONTROL A, REF
command condition), the CONTROL Command
Handler 5 routine obtains the sizes of all
existing display areas from the screen area
control block. If the console that issued
the command is a display console, module
IGC6903D builds a message in the entry area
of the DCM and sets a code in the XSA to
indicate that the "CHANGE OPTIONS" message
also should be written to the operator's
console. If the console is not a display
console, module IGC6903D uses the WTO macro
instruction to write the display.

If a Control A,NONE command (indicating
that all display area definitions are
cancelled) has been entered, the CONTROL
Command Handler 5 routine first determines
whether any displays are currently being
displayed in the areas that are being
cancelled. If so, the routine rejects the
command and passes control to the MR and K
Message Module (IGC5603D), which writes an
appropriate error message to the operator's
console. If no displays are in the
cancelled areas, the routine reinitializes
the screen area control blocks contained
within the resident portion of the DCM
(these are the blocks defined during system
generation). The routine also issues a
FREEMAIN macro instruction to release the
screen area control blocks that were added
(by means of a GETMAIN macro instruction)
after system generation.

CONTROL M and CONTROL V: The CONTROL
Command Handler 3 routine (IGC7703D)
receives control from the CONTROL Command
Handler 1 routine whenever a CONTROL M
Command or a CONTROL V command is entered.

If the CONTROL V command has been
entered, the routine sets flags in the UCM
to indicate the new console status, and
posts the ECB of the UCM to change the
console status.

Part 5: Command Processing 131

If the CONTROL M command has been
entered, the routine first determines
whether the issuing console was the master
console (the CONTROL M command can only be
entered validly through the master
console). If the issuing console was not
the master console, the routine passes
control to the MR and K Message Module
(IGC5603D) for an error message. If. the
issuing console was the master console, the
routine scans the command operands. If
operands K M, REF, or K M with no other
operands (which defaults to a K M, REF
condition) have been entered, the routine
either displays the current value for the
system timer in the entry area (if the
issuing console is a display (CRT) console)
or uses a WTO macro instruction to write
the current value to the console.

If the command CONTROL M, UTME=nnn has
been entered, the CONTROL Command Handler 3
routine determines if the value of the nnn
field is valid (it must be a value between
30 and 999). If the specification is
valid, the routine changes the time field
in the UCM to reflect the new value.

CONTROL C: A CONTROL C command is entered
to cancel a status display. The CONTROL
Command Handler 4 routine receives control
from the CONTROL Command Handler 1 routine
whenever a CONTROL C command is entered.

The routine first checks the command
syntax and the display identification
number for validity. If either is invalid,
the routine sets a message code in the XSA
and passes control to the MR and K Command
Message Module (IGC5603D) for an
appropriate error message. If the command
is valid, the routine searches the console
output queue for a WQE with an
identification number that corresponds to
the identification number specified in the
"CONTROL C command. If a corresponding
number is found, the routine removes the
message from the queue. If one is not
found, the routine sets an error code in
the XSA and passes control to the MR and K
Message Module to write an error message.

Other CONTROL Command Operands: The
CONTROL Command Handler 1 routine handles
all other CONTROL command operands. The
routine schedules commands for execution
according to the operands entered, by
building a parameter list either in the DCM
(for commands routed only to the .issuing
console) or in an area of main storage for
which the routine issues a GETMAIN macro
instruction (for commands routed to
consoles other than the issuing console).
The parameter list consists of the command
plus the appropriate display area and
console identifiers. Device Independent
Display Operator Console Support (DIDCCS)
routines (described in IBM System/360

132 0S/360 MVT Job Management (Release 21)

Operating System: MVT Supervisor Program
Logic Manual, GY28-6659) perform the actual
execution of the commands.

The HALT Command

The HALT command is executed by the
Statistical Update routine (see the I1/0
Supervisor Program Logic Manual) as a
result of an SVC 76 issued by the HALT and
SWITCH SMF Commands Processor (module
IGC1403D) of the Command Scheduling
routine.

The MODE Command (Models 85,
165 Only)

145, 155, and

The operator issues the MODE command with
Models 85, 145, 155, and 165 to display the
status of certain machine functions or to
control the mode for recording recoverable
machine errors. With the Model 85, the
MODE command is also used to reactivate
deleted sectors in the high-speed buffer
storage area and to reactivate the
high-speed multiply circuitry. With the
Model 165, the MODE Command is also used to
reactivate the high-speed buffer storage
area.

When the operator issues the MODE
command, the Command Router routine (module
IEEO403D) passes contrcl to the MODE
Command Router routine (module IGF2603D).
The MODE Command Router routine determines
the machine model and uses the XCTL macro
instruction to pass control to the
appropriate Machine Status Control routine.
These routines execute the MODE command.

For Model 85 there are two Machine
Status Control routines (modules IGF08501
and IGF08502) while for Models 145, 155 and
165 there is only one apiece (modules
IGF29701, IGF29601 and IGF55301
respectively). The following paragraphs
describe the operation of these five
routines:

e Machine Status Control routine for
Model 85, Part 1 :(module IGF08501) --
This routine receives control from the
MODE Command Router routine. If the
STATUS parameter is specified in the
MODE command, the routine obtains
machine status information from the
machine status block (MsSB) for the
Model 85 (see Figure 43) and uses a WTO
macro instruction to display the status
message on the active system console
device. The following data is included
in the status message:

1) HIR mode, threshold, present error
count.

2) ECC mode, threshold, present error
count.

3) Sector deletions.
4) status of multiply feature.

5) status of high-speed buffer.

After processing the STATUS parameter,
the routine exits via SVC 3 to the
supervisor.

If the STATUS parameter is not
specified in the MODE command, IGF08501
passes control to IGF08502 which
processes all other command parameters.

Machine Status Control routine for
Model 85, Part 2 (module IGF08502) --
This routine processes five command
parameters: INIT, HIR, ECC, SECT, and
HSM.

INIT -- The routine sets the following
machine features to their initial
status: it enables the high-speed
buffer by setting bit 33 in the RESMCW
field of the Model 85 MSB to zero; it
reactivates previously deleted and
repaired sectors of the high-speed
buffer by resetting corresponding bits
in the RESECT field to zero; it
reactivates high-speed multiply
circuitry by reinitializing bit 8 in
the RESMCW field to zero; it sets the
machine recovery facilities, HIR and
ECC, to recording mode by setting bits
36-39 of the RESMCW to zero; and it
resets the threshold count to the value
that was specified at system generation
time.

HIR -- The routine sets the Hardware
Instruction Retry facility to either
recording mode or count mode. If the
operator requests recording mode, the
routine sets bits 36 and 37 in the
RESMCW field to zero. 1In recording
mode, every machine check error causes
an interruption, and the Machine Check
Handler routine formats and writes an
error message to the operator using a
WTO macro instruction. The operator
specifies a threshold number for
recording mode which is the number of
interruptions to be taken before MCH
switches to count mode. This number is
stored in the RETHIR field of the Model
85 MSB. A count of each recoverable
error is kept in the RELHIR field.

When a comparison indicates that the
threshold has been reached, RMS
processes the machine check, and then
the switch from recording to count mode
is made.

If the operator requests the count
mode, the routine sets bits 36 and 37
in the RESMCW field to zero and one
respectively. The routine stores the
threshold number for count mode in the
RETHIR. A counter in low storage is
incremented each time a recoverable
machine error occurs, and MCH is not
entered until the threshold count is
exceeded.

ECC -- The routine sets the Error
Correction Code to either recording
mode or count mode. If recording mode
is requested, the routine sets bits 38
and 39 in the RESMCW field to zero and
places the threshold count in the
RETECC field of the Model 85 MSB. The
procedure described above for HIR is
followed. If count mode is requested,
bits 38 and 39 are set to zero and one
respectively. The threshold number for
count mode is placed in the RETECC and
the procedure described above for HIR
is followed.

SECT -- The Machine Status Control
routine, Part 2, reactivates previously
deleted and repaired sectors of the
high-speed buffer by setting
corresponding bits in the RESECT field
of the Model 85 MSB to zero.

HSM -- The routine causes bit 8 in the
RESMCW field to be reinitialized to
zero allowing the high-speed multiply
circuitry to be used.

When processing of the command parameter is
completed, the routine passes control to
the supervisor via SVC 3.

e Machine Status Control routine for

Model 155 .(module IGF29601) -- This
routine receives control from the MODE
Command Router routine when the
operator issues the MODE command with
the Model 155. The routine determines
which of the three command parameters
(STATUS, HIR, or ECC) is specified and
takes the appropriate action:

STATUS -- The routine obtains machine
status information from the machine
status block (MSB) for the Model 155
(see Figure 43), which is pointed to by
the CVTRMS field of the CVT. Then the
routine uses a WTO macro instruction to
display the status message on the
system console device. The following
data is included in the status message:
1) HIR mode, current error count, error
threshold, elapsed time or 'INVL',
time threshold.

2) ECC mode, current error count, error
threshold, elapsed time or '"INVL',
time threshold.

3) Buffer pages deleted.

Part 5: Command Processing 133

HIR -- The routine sets the hardware
Instruction Retry facility to either
recording or quiet mode depending on
the parameter specified by the
operator. In recording mode, every
machine check causes an interruption,
and the Machine Check Handler routine
issues an error recovery report. The
recording mode may be requested with or
without specifying threshold values,
i.e., the number of errors and the time
allowed before the Machine Check
Handler routine switches to quiet mode.
If threshold values are not furnished
by the operator, IBM default values are
used. In either case, the routine
stores the error threshold and the time
threshold in the appropriate MSB fields
(see Figure 43). Then the routine
places zeros in the error and time
counters which are also in the MSB.

In quiet mode, soft machine check
interruptions are disabled, and the
Machine Check Handler routine does not
prepare recovery reports. If the
operator requests the quiet mode, the
Machine Status Control routine for
Model 155 sets bit 4 of control
register 14 on. Because of hardware
design, if HIR is placed in the quiet
mode, ECC is also placed in the quiet
mode.

ECC -- The routine sets the Error
Correction Code to either recording or
quiet mode. As for HIR, the operator
may request the recording mode with or
without specifying threshold values.
The procedure described above for HIR
is followed; however, the routine uses
different fields of the MSB (see Figure
43). If the operator requests the
quiet mode, the routine issues a
diagnose instruction to place ECC in
the quiet mode and sets bit 0 in the
COMTE field of the MSB on.

Machine Status Control routine for the
Model 145 (module IGF29701) - - This
routine receives control from the MODE
Command Router routine when an operator
issues a MODE command for the Model 145,
and it places the Model 145's main or
control storage in either record, quiet, or
threshold (for control storage only) mode
as specified by he command parameter. The
Machine Status Control routine determines
which combination of the following
parameters has been specified and takes
appropriate action:

MAIN -- This parameter specifies main
storage.
CNTR -- This parameter specifies

control storage.

134 0S/360 MVT Job Management (Release 21)

RECORD, QUIET, and THRES -- These
parameters specify machine mode.

Except for the combination MAIN and THRES,
the RECORD, QUIET, and THRES parameters can
be used in any combination with the MAIN
and CNTR parameters. In each case
(combination), the Machine Status Control
routine uses a DIAGNOSE instruction to
place the Model 145 in the specified mode.
The routine returns control to the
supervisor by using an SVC 3 instruction.

When processing of the command parameter is
completed, the routine passes control to
the supervisor via SVC 3.

e Machine Status Control routine for
Model 165 (module IGF55301) -- This
routine receives control from the MODE
Command Router routine when the
operator issues the MODE command with
the Model 165. The routine determines
which of the four command parameters
(STATUS, RECORD, QUIET, or ENABLE) is
specified and takes the appropriate
action:

STATUS -- The routine obtains machine
status. information from the machine
status block (MSB) for the Model 165
(see Figure 43), which is pointed to by
the CVTRMS field of the CVT. The
routine then uses a WTO macro
instruction to display the status
message on the system console device.
The status message informs the operator
whether the Model 165 is operating in
recording mode or quiet mode, what the
soft error count and soft error
threshold are, and whether the buffer
is enabled or disabled.

RECORD -- When this parameter is
specified, the routine turns off kit 4
of control register 14 to allow soft
machine-check interruptions, sets the
record flag in the MSB on, and sets the
soft error counter in the MSB to zero.

QUIET -- When this parameter is
specified, the routine sets bit 4 in
control register 14 on to suppress soft
machine-check interruptions, then turns
off the record flag in the MSB.

ENABLE -- When this parameter is
specified, the routine uses the
DIAGNOSE instruction to enable the
high-speed buffer storage area and
resets the buffer error counter in the
MSB to zero.

When processing of the command parameter is
completed control is returned to the
supervisor via SVC 3.

Offset

Hex Dec
0 0 Maintenance Control Word 8
(RESMCW)
8 8 ECC Recoverable Error Count 4 HIR Recoverable Error Count 4
(RELECC) (RELHIR)
10 16 ECC Error Threshold 4 HIR Error Threshold 4
(RETECC) (RETHIR)
18 24 Sector Bits 4 28
(RESECT) ~L
20 32 L Reserved
T (RESPR1)
38 56 40 l
~
T Used for Emulator Processing T
Machine Status Control Block (MSB) for Model 85
0 0 HIR Time Threshold 4 HIR Elapsed Time Counter 4
(COMTC) (COMTBC)
8 8 HIR Error Threshold 4 HIR Error Counter 4
(COMEC) (COMSECC)
10 16 ECC Time Threshold 4 ECC Time Counter 4
(COMTE) (COMTBE)
18 24 ECC Error Threshold 4 ECC Error Counter 4
(COMEE) (COMSECE)
20 32 Buffer Pages Deleted 4 Reserved 4
(COMBUFPG)
28 40 Address of Master Console 4 Address of Hardcopy Backup Conscle 4
(MSBMSCON) (MSBHDCPY)
30 48 48
:.J: MODE Command Work Area ::
Machine Status Block (MSB) for Model 155
0 0 Maintenance Control Word 8
(MSBMCW)
8 8 Soft Error Counter 4 4
i k
(MSBCOUNT) Control Register 14 Work Area
10 16 Soft Error Threshold 4 Buffer Error Count 2 Buffer Error Threshold 2
(MSBTHRLD) (MSBBUFER) (MSBBUFTH)
18 24 Primary Extended LOGOUT Pointer 4 Secondary Extended LOGOUT Pointer 4
(MSBPR1) (MSBSEC)
20 32 Status Field 1 7
(MSBMODE) Reserved
28 40 Master Console UCB Pointer 4 Hard Copy UCB Pointer 4
(MSBMSCON) (MSBHDCPY)
0 48 48|
T Reserved -]:
Machine Status Control Block (MSB) for Model 165
Figure 43. Machine Status Block (MSB)
Part 5: Command Processing 135

The MODIFY Command

The MODIFY command allows the operator to
change the list of classes that are
processed by direct system output (DSO)
processing, a system output writer, or an
initiator, and the conditions under which a
writer must pause for forms changes. It
also allows the console operator to change
initiator job classes and to pass command
images from remote terminals by RJE. The
MODIFY command allows the console operator
and TSO user to alter his started TSO job.
(See the TSO Command Processor PLMs for a
description of TSO processing of the MODIFY
command.) The STOP and MODIFY Scheduling
routine (module IGCO0703D) searches the
chain of GCBs, pointed to by the M/S
resident data area, for a GCB that
corresponds to the specified task. The
routine builds a command input buffer (CIB)
-- see Figure 44 -- from the command image.
If a GCB corresponding to the specified
task is found, the routine adds the CIB to
the chain pointed to by the CIB pointer in
the GCB. Then the routine searches the
chain of CSCBs to find the CSCBs that
correspond to the specified task. If the
counter (CHCIBCTR) in the CSCB indicates
that the maximum number of CIBs allowed by
the processing task has not been reached,
the routine adds the CIB to the chain
pointed to by the CIB pointer in the CSCB
(CHCIBP). Then, the routine issues the
POST macro instruction for the STOP/MODIFY
ECB (CHECBP) in the CSCB. This process is
repeated for each CSCB with the same task
name. If the CIB cannot be added to the
chain because the maximum number has been
attained, the STOP and MODIFY Scheduling
routine scans the CSCBs for one with the
same task name. If no such CSCB can be
found, or if the CHCIBCTRs in the CSCBs
with the same task name have been reached,
the routine frees the main storage occupied
by the CIB, and the MODIFY command is
rejected.

The SET AUTO Command

The AUTO parameter may be used in the SET
command only during system initialization.
It causes flags to be set in the Master
Scheduler IPL routine. These flags are
inspected to determine which of the
"automatic"™ commands, which are assembled
into the system when it is generated, are
to be executed as part of system
initialization.

136 0S/360 MVT Job Management (Release 21)

Address of next CIB in Queue

Command Length of CIB 1 Reserved
Verb Code (in Doublewds) eserve
4 ID of TSO Terminal 2
Cont. Issuing Command
1 1 2
:Zj:};g:r:rl:und Reserved Length of Data Field

&

:ILf Data :r

Command Input Buffer (CIB)

Figure 44.

Note: The STOP and MODIFY Scheduling
routine builds the command input buffer.
The Command Verb Code field contains the
hexadecimal identifier for the command that
is issued:

Code Command
X'04" START
xraqt MODIFY
X'40" STOP
x'oc* MOUNT

The mapping macro instruction for the
command input buffer is IEZCIB.

The SET DATE and SET CLOCK Commands

These commands are stored and the resgonder
notified, when part I of the SET Command
routine (module IGC0603D of the Command
Scheduling routine) reformats the operands
and passes the value to Part II of the Set
Command routine (module IGC8603D). Module
IGC8603D places the information in general
registers, and passes control to the Timer
Maintenance routine. The Timer Maintenance
routine is described in the MVT Supervisor
Program Logic Manual.

The CLOCK and DATE parameters in the SET
command are also used by System/370 models
to set the time-of-day (TOD) clock. When
an internal SET command is issued by the
Master Scheduler IPL routine during IPL, or
when the operator issues a SET command from
the console, Part I of the SET Command
routine (module IGC0603D) checks the
command syntax and passes control to part I
of the SET TOD clock routine (module
IGC6503D). This routine calculates both
the time at midnight and the difference
between the current time and the time being
set. It passes these values to part II of
the SET TOD clock routine (module IGC6603D)
which does the following:

e Sets the TOD clock.

e Updates the date in the CVT
(communication vector table).

e Updates TSO and system TQEs (timer
gueue elements) using values passed
from module IGC6503D.

Module IGC6603D then passes control to the
timer maintenance routine. (The Timer
Maintenance routine is described in the MVT
Supervisor Program Logic Manual.)

If TSO is included in the system, the
SET TOD Clock routine passes control via
SVC 95 to the TSO module IKJEATIO so that
TSO TQEs can be updated.

The SET PROC and SET Q Commands

The operator may enter SET commands with
the operands PROC and Q only when
initializing the system after IPL. These
operands cause the SVC 34 SET Commands
routine to store the locations of the
procedure library and the queue data set,
respectively, in the master scheduler
resident data area. If the keyword "F"
accompanies the Q parameter, the routine
sets a switch that causes the Queue
Management Initialization routine to format
the queue data set.

The STOPMN DSNAME Command

When the Router routine (module IGCO4O03D)
determines that a STOP command has been
issued, it passes control to the Periodic
Stop Command Processor routine (module
IGC4503D), which determines whether the
command was issued from a console device or
from a TSO terminal. If the command was
issued from a terminal, module IGC4503D
passes control to the MCS/TSO Periodic Stop
Command Processor routine (module
IGC5503D). (See the TSO Command Processor
PLMs for a description of TSO processing of
the STOP DSNAME command.)

If the command was issued from a console
device, module IGCU4503D stores the command
by turning off bit 4 in byte MSSSB in the
common area of the master scheduler
resident data area. This bit is tested by
AVR and External Action routines prior to
issuing mount messages; it is tested by the
Step Termination routine and the Job
Termination routine prior to issuing
demount messages. If the bit is on,
eligible nontemporary data sets are
displayed in the messages. For additional
discussion of the processing performed, see
the topic "The MONITOR DSNAME Command."

The STOPMN JOBNAMES Command

When the Periodic Stop Command Processor
routine (module IGCU4503D) receives control
to store a STOP JOBNAMES command, the
routine determines whether the command was
issued from a console device or from a TSO
terminal. If the command was issued from a
TSO terminal, module IGCU4503D passes
control to the MCS/TSO Periodic Stop
Command Processor routine (module
IGC5503D). (sSsee the TSO Command Processor
PLMs for a description of TSO processing of
the STOP JOBNAMES command.)

Module IGCU503D then determines if MCS
was included in the system. If not, the
module stores the command by turning off
the BAJN bit in the master scheduler
resident data area. If MCS is included in
the system, the module passes control to
module IGC5503D, which turns off both the
UCMMSGA bit in the UCME for the console
receiving the display and the appropriate
bit in the master scheduler resident data
area.

Initiators test the master scheduler
resident data area bit when they select a
job for processing, and when they terminate
the last step of a job. If the bit is on,
the name of the job is displayed on the
requesting operator's console. For
additional discussion of the processing
performed, see the topic "The MONITOR
JOBNAMES Command."

The STOPMN SPACE Command

When the Periodic Stop Command Processor
routine (module IGC4503D) receives control
to store a STOP SPACE command, the routine
determines whether the command was issued
from a console device or from a TSO
terminal. If the command was issued from a
TSO terminal, module IGC4503D passes
control to the MCS/TSO Periodic Stop
Command Processor routine (module
IGC5503D). (See the TSO Command Processor
PLMs for a description of TSO processing of
the DISPLAY SPACE command.)

If the command was issued from a console
device, module IGCU4503D stores the command
by turning off bit 5 of byte MSSSB in the
common area of the master scheduler
resident data area. This bit is tested by
the I/0 Device Allocation routine and the
Termination routine when a direct access
volume is to be dismounted; if the bit is
on, information on the amount of space
available on the volume is displayed with
the dismount message. For additional
discussion of the processing performed, see
the topic "The MONITOR SPACE Command."

Part 5: Command Processing 137

The STOPMN STATUS Command

When the Periodic Stop Command Processor
routine (module IGCU4503D) receives control
to store a STOP STATUS command, the routine
determines whether the command was issued
from a console device or from a TSO
terminal. If the command was issued from a
TSO terminal, module IGC4503D passes
control to the MCS/TSO Periodic Stop
Command Processor routine (module
IGC5503D). (See the TSO Command Processor
PLMs for a description of TSO processing of
the STOP STATUS command.

Module IGC4503D then determines if MCS
was included in the system. If not, the
module stores the command by turning off
the MSDISPT bit in the master scheduler
resident data area. If MCS is included in
the system, the module passes control to
module IGC5503D, which turns off both the
UCMMSGB bit in the UCME for the console
receiving the display and the appropriate
bit in the master scheduler resident data
area.

Each initiator tests the master
scheduler resident data area bit when it
terminates a job step; if the bit is on,
the Step Termination routine uses the WTO
macro instruction to display the
disposition of the data sets used in the
step. For additional discussion of the
processing performed, see the topic "The
MONITOR STATUS Command."

The STOPMN SESS Command

When the Periodic Stop Command Processor
receives control to store a STOPMN SESS
command, the routine determines whether the
command was issued from a console device or
from a TSO terminal. If the command was
issued from a TSO terminal, module IGC4503D
passes control to the MCS/TSO Periodic
STOP/STOPMN Command Processor (module
IGC5503D). (See the TSO Command Processor
PLMs for a description of TSO processing of
the STOPMN SESS command.)

If the command was not issued from a TSO
terminal, module IGCH4503D then checks to
see if MCS is included in the system. If
it is not, module IGCU503D stores the
command by turning off the BAMSESSC bit in
the master scheduler resident data area.

If MCS is included in the system, module
IGC4503D passes control to module IGC5503D,
which turns off the UCMMSGF bit in the
receiving console's UCME and the BAMSESSC
bit in the master scheduler resident data
area.

The master scheduler bit is tested by
TSO routines whenever a terminal user logs
on or off. If the bit is on, the
user-identifier of the terminal user is

138 0S/360 MVT Job Management (Release 21)

displayed on the operator's console (for
more information about this function, refer
to the description of MONITOR SESS in the
TSO Command Language SRLs).

The STOP Command

The STOP and MODIFY Scheduling routine
(module IGC0703D) searches the chain of
GCBs, pointed to by the M/S resident data
area, for a GCB that corresponds to the
specified task. The routine builds a
command input buffer (CIB) -- see Figure 44
-- from the command image. If a GCB
corresponding to the srecified task is
found, the routine adds the CIB to the
chain pointed to by the CIB pointer in the
GCB. Then the routine searches the chain
of CSCBs for the CSCB corresponding to the
specified task. It overlays the UCM entry
indicator (UCMI) of the console that issued
the START command with the UCMI of the
console that issued the STOP command, and
issues a POST macro instruction specifying
the STOP/MODIFY ECB in the CSCB.

It also sets the CHCIBCTR field of the
CSCB to zexro, indicating that no more
MODIFY commands can be accepted.

During its operating cycle, each system
task tests the STOP ECB. If it has been
posted, the routine returns control to the
System Task Control routine.

The STOPMN A Command

When the STOPMN/STOP Command Handler
Routine (IGC4503D) determines that a STOPMN
A command is to be executed, it passes
control by means of a XCLT macro
instruction to the Routing Location routine
(IGC7503D).

The Routing Location routine scans the
command for the routing (L=xxx) operands.
If explicit routing operands have keen
specified, the routine rlaces them in the
extended save area (XSA). If no operands,
or only partial operands, are specified,
the routine checks the Message Routing
Control Table (MRCT) for default routing
operands. If the routine finds no
defaults, it identifies the issuing console
as the console requiring termination of a
MONITOR A display and defaults the area
identifier to a null value. After the
routine determines the console address and
display area identifiers, it places them in
the XSA. It then passes control to the
Routing Location routine, load 2,
(IGC7603D). This routine determines that a
valid STOPMN command has been entered.
Routing Location routine, load 2, then sets
indicators in the screen area control ftlock

(SACB) of the issuing console's DCM and in
the unit control module entry (UCME). The
routine then issues an XCTL macro to pass
control to the STOPMN Command Handler, load
2, (IGC5503D).

Module IGC5503D terminates the action
initiated by the MONITOR A command by
turning off the UCMMSGC bit in the unit
control module entry for the console on
which the display is to be terminated. The
routine then determines if other MONITOR A
displays are in progress (by checking for a
UCMMSGC indicator in other UCME's). If no
indicator is found, module IGCS5503D turns
off the busy bit in the master scheduler
resident data area and passes control to
the CONTROL Command Handler 1 routine
(IGC6703D). Module IGC6703D builds a
parameter list and sets flags in the DCM of
the console from which the display is to be
removed. The parameter list and flags
indicate to the supervisor routines that
the display is to be erased from the screen
(the routines that perform this function
are the DIDOCS routines, documented in the
MVT Supervisor PLM, GY28-6659). Module
IGC6703D then returns control to the
supervisor.

The SWITCH Command

The operator uses the SWITCH command to
transfer SMF recording. If direct access
devices are being used, SMF recording is
transferred from the primary to the
alternate SMF data set. If SMF recording
is on magnetic tape, the SWITCH command
causes the current tape volume to be
dismounted, and the system then requests
and waits for another tape volume to be
mounted so as to continue recording. When
the Command Router routine recognizes the
SWITCH command, it passes control to the
HALT and SWITCH Commands Processor routine
(module IGC1l403D). This routine issues SVC
83 to pass control to the SMF SVC routine.
The SMF SVC routine purges the SMF buffers,
writes the data records into the SMF data
set, then transfers SMF recording using the
device status and device address fields in
the SMCA. A detailed description of the
above processing is in the section "The SMF
SVC Routine (SVC 83)" in part 6 of this
publication. After the SMF SVC routine
completes the processing of the SWITCH
command, it returns control to the HALT and
SWITCH Commands Processer routine, which
issues an XCTL macro instruc¢tion to give
control to the message module (IGC0503D).

A "no message" indication is also given to
the message module. Since module IGC0503D
is not to issue a message, it directly
returns control to the communications task
by means of a branch instruction using the
contents of register 14.

The UNLOAD Command

When the Router routine (module IGCO403D)
of the Command Scheduling routine
determines that an UNLOAD command has been
issued, control is passed to the
VARY/UNLOAD Syntax Scan routine (module
IGC1103D). Module IGC1l103D passes control
to the VARY/UNLOAD Processor (module
IGC3103D).

The UNLOAD command is stored when module
IGC3103D sets on the SRTEUNLD bit in the
UCB of the device to be unloaded. If the
unit is not allocated, the routine turns on
the BAVU bit (UCB search bit) in the master
scheduler resident data area, then returns
control to the supervisor. The I/O Device
Allocation routine and the Termination
routine (performing any system task) test
the bits at appropriate points in their
processing cycles. If the bits are on, the
routine physically unloads the unit.

The VARY .Commands

If the command to be executed is a VARY
command, the Router routine of the Command
Scheduling routine passes control to the
VARY Keyword Router routine (module
IGC3203D). This routine identifies the
first keyword and passes control to the
appropriate keyword processing routine (see
Figure 45). The keyword processing
routines examine the command for syntax
errors, and if an error is found, they pass
control to a message module that informs
the operator and returns control to the
supervisor. If the routines find no syntax
errors, they process the command.

VARY ONLINE/OFFLINE (Systems Without MCS)
If a system includes the M65MP option, the
Vary Keyword Router routine, in module
IGC3203D, passes control to module
IGC3603D, the Vary Preprocessor routine.
This latter module prevents devices that
have no paths marked as available to the
I/0 Supervisor from becoming 'online.'
Depending on the absence or the presence of
the M65MP option, either module IGC3203D or
module IGC3603D then passes control to the
VARY/UNLOAD Syntax Scan routine (module
IGC1103D). This module scans the VARY
ONLINE and VARY OFFLINE commands for syntax
errors and passes control to the
VARY/UNLOAD processor routine (module
IGC3103D). The processor routine searches
the list of UCBs for those corresponding to
the units specified in the command, and
sets the bits that request the specified
status change.

Part 5: Command Processing 139

ONLINE

VARY ONLINE/OFFLIN
Non-Console Units

7

OFFLINE

(with no additional
keywords)

(with additional
keywords)

(No MCS)

ONLINE (MCS)
CONSOLE

ONLINE

VARY

ONLINE/OFFLINE

Multiple
Units or
Mandatory

VARY CONSOLE
_ (GC4903D

Non=-console units
to process

Hardcopy

MSTCONS

HARDCPY

Note: The Message Module blocks represent either 1GC0503D or 1GG2103D,
Control Flow in the Command Scheduling

Figure 45.
(Part II -- See Figure 24 for Part I)

140 0s/360 MVT Job Management (Release 21)

!
Routine

If any of the units has a syntax error,
control passes to a message routine that
informs the operator and returns control to
the supervisor. If there is no syntax
error, the VARY/UNLOAD Processor routine
determines if the Online Test Executive
Program (OLTEP) is currently running an
online test program against a unit
specified in the command. If so, the test
program must be completed before the unit
can be brought online. The processor
routine issues an informational message to
the operator and returns control to the
supervisor. If OLTEP is not running a test
program, the VARY/UNLOAD processor routine
returns control directly to the supervisor.

The I/0 Device Allocation routine and
the Termination routine scan the UCBs as a
part of their normal processing. When they
encounter a UCB for which a status change
from ONLINE ALLOCATED to OFFLINE has been
requested, they set the bits that indicate
the new status.

VARY ONLINE/OFFLINE (Systems With MCS)

If a system includes the M65MP option, the
Vary Keyword Router routine, in module
IGC3203D, passes control to module
IGC3603D, the Vary Pre-processor routine.
This latter module prevents devices that
have no paths marked as available to the
I/0 supervisor from becoming ‘online’'.
When the MCS VARY Syntax Check routine
(module IGC3303D) is entered from either
module IGC3603D (for M65MP) or module
IGC3203D (without M65MP), it scans the unit
field for syntax errors. If the routine
finds an error, it passes control to a
message routine that informs the operator
and returns control to the supervisor.

If no errors are found, the routine
determines whether SMF is in the system.
If so, it passes control to the SMF VARY
Record Handler routine (module IGC2303D).
Then, or if SMF is not included, control is
passed to the VARY Secondary Syntax Scan
routine (module IGCH4203D). This routine
determines whether the command source was
authorized to issue the command. It also
determines whether the units are wvalid
system units. If errors are found, the
routine issues error messages.

The routine also determines whether the
specified unit is either the hard copy log
device or the master console. If so, it
issues a message to the operator informing
him that the unit cannot be processed.

If the unit can be processed, the VARY
Secondary Syntax Scan routine passes
control to the VARY ONLINE/OFFLINE
Processor for Console Devices routine
(module IGCH4603D). This routine determines

whether a DISPLAY JOBNAMES command is in
force for the unit. If so, and if no
DISPLAY JOBNAMES is in force for any other
unit, the VARY ONLINE/OFFLINE Processor for
Console Devices routine turns off the BAJN
bit in the master scheduler resident data
area.

The processor routine then determines if
OLTEP is currently running an online test
program against the unit that is to be
processed. If so, the test program must be
completed before the unit can be brought
online. The processor routine issues an
informational message to the operator and
returns control to the supervisor.

If OLTEP is not running a test program,
the VARY ONLINE/OFFLINE Processor for
Console Devices routine sets the bits in
the UCM entry and UCB corresponding to the
unit so that they indicate the new status.
It determines whether the VARY Secondary
Syntax Scan routine has encountered any
non-console units, and whether the entire
unit field has been scanned:

e If there are additional unit
specifications to be scanned, the
routine processes them.

e If the entire unit field has been
scanned and non-console units have been
encountered, the routine passes control
to the VARY/UNLOAD Processor routine
(module IGC3103D).

e« ITf the entire unit field has been
scanned and no non-console units have
been encountered, the routine returns
control to the supervisor.

If the VARY Secondary Syntax Scan
routine scans the entire unit field without
encountering a console unit it passes
control to the VARY/UNLOAD Processor
routine (module IGC3103D). This routine
performs the processing described under
"VARY ONLINE/OFFLINE (Systems Without MCS)"
and returns control to the supervisor or
(if it encounters an error) passes control
to a message module.

VARY PATH

With Alternate Path Retry (APR), the
operator may issue the VARY PATH command to
cause a path to be logically brought online
for use by the system or logically removed
from the system.

The VARY PATH Processor routine (module
IGC2403D) is entered from the VARY Keyword
Router routine. The routine causes the
path to be brought online or taken offline
by setting the path status bits in the UCB
using the IOSGEN macro instruction.

Part 5: Command Processing 141

The last path to a device will not be
varied offline because this may be
accomplished by varying the device itself.
(A reserved path to a shared direct access
storage device is considered to be the last
path.) Also, teleprocessing paths cannot
be varied.

Upon completion, the VARY PATH Processor
routine passes control to one of two
message modules (module IGCO0503D or module
1GG2103D).

The VARY PATH command is also discussed
in the I/0 Supervisor PLM.

VARY CONSOLE

If a system includes the M65MP option, the
VARY Keyword Router routine, in module
IGC3203D, passes control to module
IGC3603D, the Vary Preprocessor routine.
This latter module prevents devices that
have no paths marked as available to the
I/0 supervisor from becoming an active
console. When the MCS VARY Syntax Check
routine (module IGC3303D) is entered from
either module IGC3603D (for M65MP) orxr
module IGC3203D (without M65MP) to process
a VARY CONSOLE command, it determines
whether there are additional keywords in
the command. If so, it passes control to
the VARY CONSOLE Keyword Scan routine
(module IGC4403D); if not, it passes
control directly to the VARY Secondary
Syntax Scan routine (module IGC4203D). If
SMF is included in the system, the MCS VARY
Syntax Check routine first passes control
to the SMF VARY Record Handler routine
(module IGC2303D), which will then pass
control to either the VARY CONSOLE Keyword
Scan routine or the VARY Secondary Syntax
Scan routine.

The VARY CONSOLE Keyword Scan routine
determines whether the additional keywords
are specified correctly. If not, it passes
control to a message routine that informs
the requesting operator and returns control
to the supervisor. If the additional
keywords are correctly specified, or if
there were no additional keywords, control
passes to the VARY Secondary Syntax Scan
routine (module IGC4203D).

The VARY Secondary Syntax Scan routine
determines whether the issuing console is
authorized to issue the command. If not,
the routine informs the requesting operator
and returns control to the supervisor.

If the command is authorized, the VARY
Secondary Syntax Scan routine checks the
first unit specification for syntax errors.
If it finds an error, it issues a message
to the operator. If no errors are found,
it passes control to the VARY CONSOLE
Processor routine (module IGC4903D).

142 0S/360 MVT Job Management (Release 21)

The VARY CONSOLE Processor routine
maintains the console configuration. The
routine then determines if the OLTEP is
currently running an online test program
against the specified unit. If so, the
unit cannot be added to the active console
configuration until the test program
completes its processing. Module IGC4903D
issues a header message and passes control
to the Console Information Message routine
(module IGCU803D), which issues a status
message. The VARY CONSOLE Processor
routine then returns control to the
supervisor.

If OLTEP is not running a test program,
the VARY CONSOLE Processor routine uses
information provided through the VARY
command to change the attributes of active
consoles (the console's routing code
assignment, command authority, and
alternate console), and brings consoles
being used for other purposes (online or
offline) into active console status. In
addition, it insures that a console log is’
active and receiving the minimum required
routing codes whenever the log is
mandatory.

The VARY CONSOLE Processor routine then
issues a header message and passes control
to the Console Information Message load 1
routine (module IGC4803D) to construct a
message that states the unit's new
attributes. Module IGCU4803D passes control
to the Console Information routine load 2
(module IGC7303D). This ‘routine completes
the message, uses the WTO macro instruction
to issue it to the operator, and returns
control either to IGC4803D (if multiple
units were specified or if the hardcopy log
is required) or to the supervisor if
processing is complete.

VARY HARDCPY

If the VARY Keyword Router routine
encounters a VARY HARDCPY command, it
passes control to the VARY HARDCPY
Processor routine (module IGC4703D).

Module IGC4703D first determines whether
the command was issued with proper
authorization, i.e., by an operator via the
master console or by the system. If the
command was not issued with proper
authorization, the module passes control to
the VARY HARDCPY, OFF Processor routine
(module IGC5703D). This module determines
the type of error involved and passes
control to a message module that informs
the operator of the error and returns
control to the system.

If the VARY HARDCPY command was entered
through the master console or by the
system, module IGCU4703D determines which
operands have been entered. If VARY

HARDCPY, OFF has been entered, the module
passes control to the VARY HARDCPY, OFF
Processor (IGC5703D).

The processor determines whether the
hardcopy log is required; if it is
required, the VARY HARDCPY command is
invalid, and IGC5703D passes control to a
message module for an error message. If
the hardcopy log exists but is not required
(the hardcopy log is required if there is
more than one console in a system or if the
only console in the system is a display
console), module IGC5703D varies the
hardcopy log out of the system and passes
control to the Message Assembly routine
(IGC2103D), which notifies the operator of
the change in status of the hardcopy log.

If a command other than VARY HARDCPY,
OFF has been entered, module IGC4703D
checks to see if any of the operands CMDS,
INCMDS, STCMDS, NOCMDS, or ROUT= has been
specified and then sets a flag to indicate
which operand has been entered. Module
IGCH703D passes control to the VARY HARDCPY
UNIT Processor (module IGC7203D), which
insures that the specified unit is eligible
as a hardcopy log device. If an error is
found, the routine passes control to
IGC5703D, which passes control to the
message module that informs the operator of
the error. If a graphics device is in use
as a console (a display console), or if
there is more than one console in the
system, module IGC7203D adds routing codes
1 through 4, 7, 8, and 10 to those already

specified in the UCM. The module then sets
the commands flag to CMDS if the hard copy
l