File No.

5360-36

GC28-6703-0

Systems Reference Library

IBM System/360 Operating System:

Job Control Language User's Guide

The job control language (JCL) is used with all
System/360 Operating System control programs.
Every job submitted for execution by the operating
system must include JCL statements. These
statements contain information required by the
operating system to initiate and control the
processing of jobs.

This publication contains tutorial information
on JCL for programmers. Special emphasis is
placed on "how to" perform specific functions
using a subset of the JCL statements rather than
on describing the full facilities of each
statement. This publication has four parts:

e Part I: Introduction to the job control
language -- describes how to use each JCL
statement.

e Part II: JCL for compilers, linkage editor,
and loader -- contains a summary of the JCL
statements used by those programs and examples
of their use.

e Part III: Cataloged and in-stream procedures
-- describes how to use and write cataloged
and in-stream procedures.

e Part IV: LEkxamples of cataloged procedures for
compilations, link edits, and executions --
contains IBM supplied cataloged procedures for
those functions and examples of their use.

After becoming familiar with the information
presented in this manual, you may use IBM
System/360 Operating System: Job Control Language
Reference, GC28-6704 for review and reference.

0S

First Edition (June, 1970)

This edition applies to release 19, of IBM System/360 Operat-
ing System, and to all subsegquent releases until otherwise
indicated in new editions or Technical Newsletters. Changes
are continually made to the information herein; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/360 SRL Newsletter,
Order No. GN20-0360, for the editions that are applicable

and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica-
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

© Copyright International Business Machines Corporation 1970

R

This publication describes the facilities
of the job control language (JCL) to new
programmers or to programmers who are not
familiar with the IBM System/360 Operating
System. It is assumed that the reader is
familiar with the concepts and terminology
introduced in the prerequisite publications
listed below and that he can write programs
using the assembler or a higher-level
language such as ALGOL, COBOL, American
National Standard COBOL (formerly USAS
COBOL), FORTRAN or PL/I. These languages
are used throughout this publication to
illustrate the use of JCL in various
applications. If you use another language,
you can still use this publication to learn
JCL and refer to the publications
associated with your language for specific
examples.

There are only two language-dependent
parameters in JCL statements: the PARM
parameter of the EXEC statement and the DCB
parameter of the DD statement. The
appropriate values for those two parameters
are summarized in this publication for the
users of the assembler, ALGOL, COBOL E and
F, BAmerican National Standard COBOL,
FORTRAN E, G, and H, and PL/I F; however,
you should check the related Programmer's
Guides for up-to-date information. If you
use another language, you must find the
values for those parameters in the
publications associated with your language.

Preface

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System:

Introduction, GC28-6534

Concepts and Facilities, GC28-6535

ASSOCIATED PUBLICATIONS

IBM System/360 Operating System:

ALGOL Programmer's Guide, GC33-4000

American National Standard COBOL
Programmer's Guide, GC28-6399

Assemblexr (E) Programmer's Guide,
GC28-6595

Assembler (F) Programmer's Guide,
GC26-3756

COBOL (E) Programmer's Guide, CG24-5029

COBCL (F) Programmer's Guide, CG28-6380

FORTRAN IV (E) Programmer's Guide,
GC28-6603

FORTRAN IV (G and H) Programmer's Guide,
GC28~6817

Linkage Editor and Loader, GC28-6538

PL/I (F) Programmer's Guide, GC28-6594

Introduction >
Part I: Introduction to the Job Control Lianguage »
Coding Conventions '
The JOB Statement »
The EXEC Statement —>
The DD Statement =
Naming the DD Statement Extending an Existing Data Set
Creating a New Data Set Special DD Statements —
Retreiving an Existing Data Set Postponing Definition of a Data Set
The Delimiter Statement >
The Null Statement —P
The Comment Statement >
The PROC Statement >
The PEND Statement >
The Command Statement >

Part II: JCL for Compilers, Linkage Editor and Lioader ————»

Part III: Cataloged and In-stream Procedures -

Part IV: Examples of Cataloged Procedures for
Compilations, Link Edits, and Executions

Appendixes

Glossary

Y oY oy v

Index

Coding

JOB

| 294 HOJ

o

| Q
[o]
3
[]
” H

Delimite

PROC

Commang

Part IV

Appendix

Glossar

Index

Qg

SUMMARY OF MAJOR CHANGES -~ RELEASE 19

INTRODUCTION . &« &« o o o o o o s o o« =

PART I: INTRODUCTION TO THE JOB
CONTROL LANGUAGE . o« « « o o o o o a =
What 1S @ JOD? 4 « o o v o o o o o o o
Processing Your Job . . . & 4 o .+ o
Job Control Language Statements . . .
Summary of the JCL Statements . . .
The Input Stream . . « « « o o« & o

CODING CONVENTIONS . « « . « e = s @
Fields in the JCL Statements « e e e e
Parameters in the Operand Field .
Spacing JCL Statement Fields
Continuing JCL Statements «
Coding Special Characters « »
Backward References . . . « o o o =
Notation for Defining JCL Statement
ParametersS « o« 4 « o o o o o o « o o o
Coding FOXmM .+ « « o« o« o o o « o s « o

THE JOB STATEMENT &« ¢ ¢ ¢ o « o o o =
Naming the Job . « & ¢ o o o ¢ o o o «
Installation Management Information .
Accounting Information Parameter . .
Programmer's Name Parameter
Operating System MesSSages . « « o« & »
MSGLEVEL Parameter . . .
MSGCLASS Parameter (Systems W1th
or MVT Only) . . + « o o o o o o o «
Processing Options . « « ¢« o o 4 « &
COND Parameter . « « « . PR -
TYPRUN Parameter (Systems W1th MFT
Or MVT Only) ¢ o o o o o o o o o o =
TIME Parameter (Systems With MFT or
MVT Only) . . « e e
Queuing Options (Systems Wlth MFT or
MVT Only) « e e . . .
CLASS Parameter (Systems Wlth MFT or
MVT Only) - e e e e . e e e .
PRTY Parameter (Systems W1th MFT or
MVT Only) . & « o o« o & . .«
Main Storage Options (Systems Wlth MVT

ONly) o ¢ o o o o o o o o o o o o o
REGION Parameter (Systems With MVT
only) .« ¢ ¢ o o o . « e e e

ROLL Parameter (Systems W1th MVT
ONly) « & v o o o o o o o = o o« s =
Checkpoint/Restart + « o o« o« &
RD Parameter . .« « o « o o o & o o =
RESTART Parameter . .« « o o o o o« o

THE EXEC STATEMENT . « « « o o o o o =
Naming the Step .
Processing Program Information
PGM Parameter « & © s e © s s a s =
PROC or Procedure Name Parameter . .

* e e s & & e e e =

PARM Parameter . . « « o o o o o o o
Installation Management Information .
ACCT Parameter . o 4 ¢ o o« o o = o »

s 3 s 8

38

38

39

40

40

41

Contents

Processing Options . « - « ¢« « o« . .
COND Parameter - o =

TIME Parametex (Systems W1th MFT or

MVT Only) « o o s o e o

Queuing Option (Systems With MvT Only)

DPRTY Parameter (Systems With MVT
Only) « o ¢ ¢ v 4 o o - - .

Main Storage Options (Systems W1th MVT

Only) « « « « o« o & @ - .
REGION Parameter (Systems W1th MVT
only) « « « « o o @ - « o .

ROLL Parameter (Systems Wlth
Only) =« ¢ o & o o o o o o o o o
Checkpoint/Restart . . « « « « « . .
RD Parameter . . o« o o« « « o o o &

THE DD STATEMENT . o« o« o o 2 o o o «
Naming the DD Statement
Creating a New Data Set . . « . « .
Unit Record Devices . « « o « «
Location of the Data Set
Data Attributes
Special Processing Options . . .
gystem Output Devices
Location of the Data Set
size of the Data Set
Data Attributes
Special Processing Option . . .
Magnetic Tape . « o « o « o « o =
Data Set Information
Location of the Data Set
Data Attributes . . «
Special Processing Options . . .
Direct Access Devices . + « « o .
Data Set Information
Location of the Data Set
Size of the pata Set
Data Attributes
Special Processing Options . . .
Retrieving an Existing Data Set . .
Unit Record Devices .+ o« o « & « =«
Location of the Data Set
Data Attributes
Special Processing Option . . .
Input Stream . . . e e .
Location of the Data Set « e o =
Data Attributes
Passed Data Set . . ¢« ¢ « o« o« & .
Data Set Information
Location of the pData Set
Data Attributes . . « « . .+ o .
Special Processing Option . . .
Cataloged Data Set . « « « « .« o .
Data Set Information
Location of the Data Set
Data Attributes
Special Processing Options . . .
Kept Data Set . . ¢ & « &« & « o .
Data Set Information
Location of the Data Set
Data Attributes < . . .
Special Processing Options . . .

"= e @ e » e e e

e ® o & @& @« @ o

. 64
. 65

.174
.175
-175
177
.180
-185
.187
-187
-188
.193
.193

Contents 7

Extending an Ekxisting Data Set . . .
Passed Data Set« . < . . .
Data Set Information
Location of the pData Set
Size of the Data Set
Data Attributes
Special Processing Option . . .
Cataloged Data Set
Data Set Information
Location of the Data Set
Size of the Data Set
Data Attributes . . < . 4 o . .
Special Processing Options . . .
Kept Data Set . .+ . <« ¢ « o « «
Data Set Information
Location of the Data Set
Size of the Data Set
Data Attributes
Special Processing Options . . .
Special DD Statements
Private Libraries « .
JOBLIB DD Statement
STEPLIB DD Statement
Data Sets for Abnormal Termination
Dumps « e« o s = e e s e e o & @
Checkpoint Data Set
The Checkpoint Data Set is
Cataloged « . e
The Checkpoint Data Set is Kept
Postponing Definition of a Data Set

THE DELIMITER STATEMENT
THE NULL STATEMENT . . « « « « a2 «
THE COMMENT STATEMENT s e = e s e e
THE PROC STATEMENT . . « « « « o« =
Naming the PROC Statement
Symbolic Parameters . « « « « « o+
THE PEND STATEMENT . . « « « o & &« «
THE COMMAND STATEMENT e e e & u e
PCP e o @ s @ e ® a @ s e & & s e
MPFT s e e @ o & o & @ a ® & o o o =
MVT “ e & & e a o s @ a @ & o ° e o

PART II: JCIL FOR COMPILERS, LINKAGE

EDITORS AND LOADER « « o « « o o o =«
ALGOL o« « o« « « o « « a s a o a o« =
Assembler E . <« « o « 2 o o o « =
Assembler F . . o ¢ & o o o o o « @
COBOL E =« « <« o« ¢ o o a o e s = o« «
COBOL F . . . « e e e « e e e e
American Natlonal Standard COBOL . .
FORTRAN E . . ¢« o« « o o o o a « o =
FORTRAN G « s e e & o @ ®© @ a o s @
FORTRAN H .« ¢ ¢ o o« o « o o o o o =
PL/T F . . e e & s & e s e o «
Linkage Edltor « e & e 4 s e e s s a
Loader « o« o 2 4 o « o« o @ o o o =
EXamples « o« o« « « « o o « o « o o o

PART TII: CATALOGED AND IN-STREAM
PROCEDURES « <« o« « o 4 o « = « o = =

-

-

.197
.197
.198
.201
.203
. 204
.206
. 207
. 207
.208
.212
.213
.213
. 215
. 216
. 217
. 222
.223
. 223
. 227
. 227
. 227
. 230

. 233
. 235

.235
.236
. 237

. 240
. 241
. 242

.243
. 243
. 243

. 245

. 246
. 246
. 247
. 248

. 249
.250
. 252
. 254
. 256
.258
.261
.264
. 267
. 269
. 272
. 275
. 279
.282

.293

USING CATALOGED AND IN-STREAM
PROCEDURES . . .« o« =« - e e e e .« . 2294
How to Call a Cataloqed Procedure . . 294
How to Ccall an In-Stream Procedure . . .29%4
Assigning Values To Symbolic Parameters 295
Nullifying a Symbolic Parameter . . .296
Examples of Assigning Values to

Symbolic Parameters . . e e e e e a w297
overriding, Adding, and Nulllfylng
Parameters on an EXEC Statement298

Overriding EXEC Statement Parameters .298

Adding EXEC Statement Parameters . . .299

Nullifying EXEC Statement Parameters .300
Examples of Overriding, Adding, and
Nullifying Parameters on an EXEC

Statement - e . . . <300
overriding, Addlng, and Nulllfylnq
Parameters on a DD Statement301

Overriding DD Statement Parameters . .302
Adding DD Statement Parameters303
Nullifying DD Statement Parameters . .304
Examples of Overriding, Adding, and
Nullifying Parameters on a DD Statement 305
Overriding DD Statements That Define
Concatenated Data Sets « . . .306

Adding DD Statements to a Procedure . .307
Examples of Adding DD Statements to a
Procedure . o« « o o o o o « « « » - o« 2308

WRITING PROCEDURES: CATALOGED AND
IN-STREAM &« « « o « o a 2 « « 2 « « o 2310
Why Catalog JCL Statements310

Why Use In-Stream Procedures - .310
The Contents of Cataloged and
In-Stream Procedures . « « « « . « « .310
Using Symbolic Parameters in a
Procedure & . . - - « 2311
Adding and Modifying Cataloged
ProceduUresS o« « o« « o « o =« « o o o « o314

PART IV: EXAMPLES OF CATALOGED

PROCEDURES FOR COMPILATIONS, LINK EDITS

AND EXECUTIONS . 2 « 2« 2 « « « « o« « « 2315
ALGOL e e e = & = 2 a = 2w = = =« a « « <316
Assembler E . + 4 « o o « « = « = « « .318

Assembler F . . . 4 . <o 4 « o « « = « 2320
COBOL E e 2 s o a e e a a = o = e a « 322
COBOL F e e & e a e e = s « « 2323
American National Standard COBOL324
FORTRAN E & o o o « a o o = o o o = « 2326
FORTRAN G « « « o o o « = « o« o« =« « « 2328
FORTRAN H e 4 & e 2 « = = s « = = « « 2330
PL/I F @ @ « ¢« o 2 o o « « =« = « « « « 2332
EXAmpPles . ¢« o« ¢ o o o o o o o« « o« « « 2334

APPENDIX A: INDEXED SEQUENTIAL DATA
SETS 4 « o o a o = a = « o = « o« =« « « 2337
Creating an Indexed Sequential Data Set 337
Data Set Information340
DSNAME Parameteér - « « « « 340
DISP Parameter . . « « « + « « « o <341
Location of the Data Set341
UNIT Parameter . . . « o o o o « « 341
VOLUME Parameter . . . « « o o « < 2342
LABEL Parameter . . .« « « « « « « 343
Size of the Data Set343

SPACE Parameter-The System A551gns

Tracks

® ® & ® @ e a4 e e @ o = -

SPACE Parameter-Requesting
Specific Tracks .« o« « o o o o« « =«
Data Attributes . . « & & & « <« o .

Retrieving or Extending an Indexed
Sequential Data Set . . . < . « < .« .
Data Set Information

DSNAME Parameter .« « o « ¢ « o« « o«
DISP Parameter « .« o« « o o o o =« =«

Location of the Data

Set

UNIT Parameter « o« o« o o o o -0 =
VOLUME Parameter . « « « o o o « o
Data Attributes . . . <« ¢« ¢« + ¢« o .

Overwriting an Indexed

Set . . .

@ e s @ a ®© 4 e a2 W e e ®w e

Data Set Information

“ ® e @ e e o e

DSNAME Parameter . « « « « o « o o
DISP Parameter « « « « o « o < o =

Location of the Data

set . . . 4 4 .

Illustrations

Figures

Figure 1.
Figure 2.
Figure 3.
Boundaries
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Procedure
Figure 9.
Figure 10.
with ABEND
Figure 11.
Figure 12.
Edit) . .
Figure 13.
Edit-Go)
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Edit-Go)
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Edit-Go)
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Edit-Go)
Figure 26.
Figure 27.

Your Program e e s e w e
Defining Job Boundaries .
Defining Job Step

JCL Statement Fields . .
Continuing JCL Statements
JCL Coding Form . . « <« «
Using the EXEC Statement
Modifying a Cataloged
Using the COND Parameter
Using the COND Parameter
ALGOFC (Compile) - e ..
ALGOFCL (Compile-Link
ALGOFCLG (Compile-Link
ALGOFCG (Compile-Load) .
ASmkC (Compile)
ASMECL (Compile-Link Edit)
ASMECLG (Compile-Link
ASMECG (Compile-Load) . .
ASMFC (Compile)
ASMFCL (Compile-Link Edit)
ASMFCLG (Compile-Link
ASMFCG (Compile-Load) . .
COBEC (Compile)
COBELG (Link Edit-Go) - -
COBCLG (Compile-Link
COBFC (Compile)
COBFLG (Link Edit-Go) « .

. 343

. 344
- 344

. 346
<347
. 347
. 347
.3u8
. 348
. 349
. 349

.351
. 351
. 351
.351
.351

. 20

. 22
. 23
. 26
. 29
. 50

. 50

. 316
. 316

. 317
. 317
.318
318

. 319
.319
« 320
320

.321
. 321
.322
.322

-322
-323
.323

UNIT Parameter . « « « - « - « - = 351
VOLUME Parameter « « « - « 352
LABEL Parameter . . « « « « « « o 2352
Size of the Data Set . . .« « .«352
Data Attributes . .« « ¢ « « +« o . o 2352
EXampleS . ¢ o o o o o « o « o « o« =« = 2353
APPENDIX B: GLOSSARY OF DCB
SUBPARAMETERS e e a s e s s e = e = @« <357
APPENDIX C: USING THE RESTART
FACILITIES « o « « o o« a o« =« « =« « « « 2365
Restarts . . . - - e« o« o o o « « 2365
Examples of U51ng the Restart
Facilities . . ¢ & 4 ¢« o« o = 4 « « <« . .368
APPENDIX D: SUMMARY OF THE DD
STATEMENT . « « 2 « « = =« =« « = « « « =371
GLOSSARY o o« « ¢ « « o « o« « « « « « « 388
INDEX « =« = 2 « a = o o « = = o « « « 2396
Figure 28. COBFCLG (Compile-Link
Edit-Go) e s a4 a4 s o e @« = & = o = - 2323
Figure 29. COBUC (Compile)324
Figure 30. COBULG (Link Edit-Go) . . .324
Figure 31. COBUCLG (Compile-Link
Edit-Go) e o s e e e o e = s o = « o 2324
Figure 32. COBUCG (Compile-Load) . -« <325
Figure 33. FORTEC (Compile) e - = = <326
Figure 34. FORTLCL (Compile-Link
Bdit) e & o s s a s a e e s = e = o « 2326
Figure 35. FORTELG (Link Edit-Go) . .326
Figure 36. FORTECLG (Compile-Link
Edit-Go) e e e e s e e e e e e s . s 2327
Figure 37. FORTGC (Compile) « - . - .328
Figure 38. FORTGCL (Compile-Link
Edit) e e = e« s+ e e e e a = = = s « « <328
Figure 39. FORTGLG (Link EAdit-Go) . .328
Figure 40. FORTGCLG (Compile-Link
Edit-Go) e« s s = = e s = o e = = = = 2329
Figure 41. FORTHC (Compile) - - -« - <330
Figure 42. FORTHCL (Compile-Link
Bdit) e 4 . s e e e e 2 e e« @« = = « <« 2330
Figure 43. FORT#HLG (Link Edit-Go) . 330
Figure 44, FORTHCLG (Compile-Link
Edit-GO) . « & 4 4 ¢ 4 o 4 4 & .« - . - 2331
Figure 45. PLI1DFC (Compile With Deck
Output) .+ &+ ¢ ¢ o ¢« ¢ & e ¢ o o = . = 2332
Figure #46. FLI1LFC (Compile With
Obiject Module Cutput . . . - - 2332
Figure 47. PL1LFCL (Complle Llnk
Edit) « o e . . - . - . . .332
Figure U48. PLlLFLG (Link Edit—Go) . .333
Figure 49. PL1LFCLG (Compile-Link
Edit-Go) e o o e e s o s s e e = o - 2333
Figure 50. PL1LFCG (Compile-Load) . -333
Figure 51. PL1LFG (Load)334

Contents/Illustrations

9

Tables

e,
Table 1. Processing Programs . . . « - 16 Table 41. FORTR4N E - Input Deck . . .26U4
Table 2. Character Sets 26 Taple 42. FORTRAN E - PARM Field of
Table 3. JOB Statement Parameters . . 30 EXEC Statement e« « o o o o o o o o o« o 265
Table 4. EXEC Statement Parameters . . 48 Table 43. FORTRAN F - DD Statements . .266
Table 5. DD Statement Parameters Table 44. FORTRAN G - Input Deck . . .267
(Part 1 of 2) « « =« =« « « « - 16 Taple 45, FORTRAN G - PARM Field of
Table 6. Parameters for Creating a EXEC Statement . v o o o o o o o o « « 267
Data Set . « « » « « « + « + « + « « - - 80 pable 46. FORTRAN G - DD Statements . .268
Table 7. DCB Subparameters for Card Table 47. FORTRAN H - Input Deck . . .269
Punch . + « « « o « « « « o« « =« « « - « 83 Table 48. FORTRAN H - PARM Field of
Table 8. DCB Subparameters for EXEC Statement W e e e e e .o u270
PLAiNter . « « « o = « « « « + = = « « « 84 Malle 49. FORTRAN 1 - DD Statements . .271
Table 9. DCB Subparameters for Table 50. PL/I F - Input Deck . . . 272
Creating a Data Set on Magnetic Tape . -110 pable 51. PL/I F - PARM Field of EXEp
Table 10. Direct Access Capacities . .138 gtratement (Part 1 of 2) . v w o o o o 2272
Table 11. Track Capacity -139 Taple 52. PL/I F - DD Statements . . .27
Table 12. DCB Subparameters for Table 53. Linkage £ditor - Input Deck .275
Creating a Sequential Data Set on Table 54. Linkage Editor - PARM Field
Direct Access Devices e « & o = s « « 2148 of EXEC Statement (Part 1 of 2) e . . 275
Table 13. DCB Subparameters for Table 55. Linkage Editor - DD
Creating a Direct Data Set 149 gtatements (Part 1 Of 2) . v v o « o . 277
Table 14. DCB Subparameters for Taple 56. Loader - Input Deck . . . 2279
Creating a Partitioned Data Set150 mpaple 57. Loader - PARM Field of LXEC
Table 15. Parameters for Retrieving a Statement (Part 1 of 2) v v v o o o o 2279
Data Set . -« « « o « o « « o + « 2+ « - «156 Taple 58. Loader - DD Statements . . .281
Table 16. DCB Subparameters for Card Table 59. Parameters for Creating an
Reader . . « -« « 2 = « o« « o » « « = » «159 7Indexed Sequential Data Set (Part 1 of
Table 17. DCB Subparameters for Paper 2 T 3 ¥ -
Tape Reader . « « « - = « « « « « « » 2160 Taple 60. DCB Subparameters for
Table 18. DCB Subparameters for Creating an Indexed Seguential Data Set 345
Retrieving a Data Set on Magnetic Tape .181 Table 61. Parameters for Retrieving -,
Table 19. DCB Subparameters for or Extending an Indexed Sequential
Retrieving a Sequential Data Set . . . <182 pata set (Part 1 of 2) « « o v & « « . .3U46
Table 20. DCB Subparameters for Table 62. DCB Subparameters for
Retrieving a Direct Data Set183 Retrieving an Indexed Sequential Data .350
Table 21. DCB Subparameters for Table 63. Creating a Data Set on an
Retrieving a Partitioned Data Set . . .18% ynit Record Device (Card Punch or
Table 22. Parameters for Extending a Printer) . v o v e e e e e e e Y. 372
Data Set .« « « « « 4 = « « ¢ « « o o« « 2196 mTaple 64. Creating a Data Set on a
Table 23. ALGOL ~ Input Deck -.250 gystem Output Device . -373
Table 24. ALGOL - PARM Field of EXEC Table 65. Creating a Data Set on a
Statement + 4+« < 4 - « - . «250 Magnetic Tape (Fart 1 of 2)374
Table 25. ALGOL - DD Statements251 Taple 66. Creating a Data Set on
Table 26. Assembler E - Input Deck . .252 pjirect Access Devices (Part 1 of 3) . .376
Table 27. Assembler E - PARM Field of Table 67. KRetrieving an Existing Data
EXEC Statement . . + « -« « « « « « « « 252 get From an Unit Record Device (Card
Table 28. Assembler E - DD Statements .253 Reader or Paper Tape Reader)379
Table 29. Assembler F - Input deck . .250 Taple 68. Retrieving a Data Set From
Table 30. Assembler F - PARM Field of the Input Stream . . . - « =« « « « - . .380
EXEC Statement . . . « « - « = « « o « 2254 paple 69. Retrieving a Passed Data
Table 31. Assembler F - DD Statements .255 get (Magnetic Tape or Direct Access) . .381
Table 32. COBOL E - Input Deck256 Table 70. Ketrieving a Cataloged Data
Table 33. COBOL E - PARM Field of ~ set (Magnetic Tape or Direct Access) . .382
EXEC Statement « - « « « « » « <256 Taple 71. Retrieving a Kept Data set
Table 34. COBOL E - DD Statements . . .257 (Magnetic Tape or Direct Access)383
Table 35. COBOL F - Input Deck258 r7aple 72. bLxtending a Passed Data Set
Table 36. COBOL F - PARM Field of . (Magnetic Tape or Direct Access)38u
EXEC Statement (part 1 of 2)298 5,14 73, Extending a Cataloged Data
Table 37. COBOL F - DD Statements - 260 5ot (magnetic Tape or Direct Access) . .385
Table 38. American National Standard i Table 74. Extending a Kept Data Jet
COBOL - Input Deck « - « - « =261 oohopjc Tape or Direct Access)386
Table 39. Arerican National Standard Table 75. Postponing Definition of a
COBOL - PARN Field of EXEC Statement . .261 i car v o v w v u w . .387 -~

Table 40. American National Standard
COBOL - DD Statements e e e e « & « e 203

10

The Release 19 changes listed below are described in this manual.

Summary of Majer Changes--Release 19

the text by a vertical line to the left of the change.

They are indicated in

r T T K
| Item | Description | Areas Affected |
b + 1 1
|System Management | The TIME parameter on the JOB and EXEC state- |19,30,38,48,58, |
| Facilities Subset 1 |ments now applies to MFT as well as MVT. |64

L 4 4

r T T '|
| System Management |The addition of the OUTLIM parameter on the 177,92-93,392 |
| Facilities Subset 2 |DD statement that specifies SYSOUT to limit an | i
| |output data set. | |
b ¥ ¥ 1
Input/Output	A new command, SWAP, that allows Dynamic Device	2“7,243
Recovery Management	Reconfiguration of two volumes has been added.	
Support		
F + 1 1		
Data Management	Two new values for BFTEK, DCB subparameter, have	357
Support for American	been added. A specifies record area buffering:	
National Standard	R specifies record buffering.	
COBOL [
k t ¥ 1		
Recognition of	B, @ new value for DCB subparameter OPICD, 1361	

| EOF on Input | requests that end-of-file recognition be [|
| |disregarded for tapes. | |
1 4 4

v T v "
|ISAM Improvements | For ISAM, a newly created data set can now | 342,346-349,

| |overlay an older one -- reusing the space. The |351-352 [
| |independent overflow area of an ISAM data set |

| |can now be on a different device type from the | |
| |prime area. | |
% 1 ¥ 4
|Direct System {In MFT and MVT, an output data set can now 189

| Output Facility |be written directly to the desired unit record | |
| |or magnetic tape device. | |
L 4 4

r 1} T —""'l
| seven-Track Tape |The default for 7-track tape is now 800 1359 |
|Default of 800 BPI |bits-pexr-inch. | |
L 4 4

r T T "
| DD DUMMY Substitu- |a data set that is not needed after restart can | 367 |
|tion at Restart |pe defined by coding the DUMMY parameter. | |
b t - ¥ 1
|In-Stream Procedures |A facility has been added that allows procedures|13r1ga;955g13#u |
| |to be included in the input stream of a job. |%38'392' B |
1 1 4 4 4
r T 13

Main Storage	If you code the REGION parameter and request {43,68	
Hierarchy Support	storage only from hierarchy 1, no hierarchy 0	
MVT Extension	segment is allocated.	
\ 1 | .|
r T v

Blocksize Adjustment	If the BLKSIZE parameter for a SYSOUT data set	358
for Sysout Data Sets	is not an integral multiple of and larger than	
	the logical record length, it is adjusted.	
L L L J

Summary of Major Changes -- Release 19 11

o

S

Introductid

Introduction

This publication contains tutorial information on the job control
language. This information is presented in four parts:

Part I: Introduction to the job control language

Part II: JCL for compilers, linkage editor, and loader

Part III: Cataloged and in-stream procedures

Part IV: Examples of cataloged procedures for compilations, 1link
edits, and executions.

The text relies heavily on examples to illustrate the facilities of JCL.
To facilitate reading Part I of this manual, all examples appear on
shaded areas. The use of shaded areas allows you to skip the examples
when you are reviewing the instructions, or to quickly find examples of
how to code a given function.

Parts II, III, and IV also contain many examples, but they are
isolated in sections within each part. shading is not used in this
case.

There are four appendixes to the publication:

Appendix A: Indexed Sequential data sets

Appendix B: Glossary of DCB Subparameters

Appendix C: Using the Restart Facillities.

Appendix D: Summary of the DD Statement.

A clossary of terms used in this publication follows the appendixes.

Introduction 13

R

Part I: Introduction to the Job Control Language

The purpose of an operating system is to supervise and optimize the work
done in a computer. The IBM System/360 Operating System achieves this
purpose by managing the allocation of system resources to the different
units of work (jobs) to be performed by the installation. The system
resources are the central processing unit, main storage, input/output
devices, and any programs that are part of the system.

To be effective, the installation's operating system must be general
enough to accommodate the variety of jobs to be performed in that
installation. Therefore, you, the user, must communicate with the
operating system to describe the requirements of your particular -job.
You do this through the Job Control Language (JCL).

The JCL statements allow you to tell the system how you have divided
your job into job steps (units of work, each of which is associated with
one processing program and related data), where your data is, and what
resources are needed to execute each step. Other facilities of the
language allow you to:

e Optimize use of channels, units, volumes, and direct access space.

e Pass data sets used by more than one step from one step to the next
step that uses it, to reduce mounting and retrieval time.

e Copy information on other JCL statements with a backward-reference
facility to reduce recoding time.

e Retrieve a data set by name using the system catalog, eliminating
the need to know its exact location.

In multiprogramming environments (MFT and MVT) the job control
language also allows you to:

e Share data sets between two or more job steps that are operating
independently.

e Classify jobs according to their characteristics so that the system
may balance the mix of jobs for more efficient operation.

JCL also provides a series of commands that are used by the operator
to communicate with the system.

The flexibility of the job control language is characterized by its
large number of optional facilities. Most applications require only a
limited number of these facilities. Applications that require a heavy
use of JCL or those that are performed on a regular basis can be
considerably simplified through the use of cataloged or in-stream
procedures. A procedure is a set of precoded JCL statements that can be
retrieved by coding a simple name on one JCL statement. Any statement
in the set can be temporarily modified by other JCL statements submitted
at the time the procedure is used. A procedure can contain precoded JCL
statements for one or more job steps. A job step in a cataloged
procedure is called a procedure step. Cataloged procedures reside on a
procedure library. In-stream procedures are coded as part of your job.

Part I: Introduction to the Job Control Language 15

What is a Job?

A job 1s a series of operations that solve a particular problem. These
operations are carried out by one or more processing progyrams. The
processing programs you may use in a job are the lancuage processors and
service programs provided by I1IBM and your own programs (see Table 1).
You may also use cataloged procedures which in turn may contain one or
more procedure steps. (kach procedure step uses a processing prooran.)

In other words, your job may use one Or mOore processing programs and
cataloged procedures to accomplish its purpose. tach unit of work
associated with one of those programs or procedure steps is called a job
step. Within each job step you must also provide whatever data the
processing program may need.

Table 1. Processing Programs

e 1
| Processing Programs |
po—mmmmmm e . - - P 1
| Language Processors | Service Programs | Application Programs |
k- +- P o 1
| ALGOL | Data set utilities | User-written

I | I |
| Assembler | Independent utilities | |
I I | I
COROL	Linkage Editor	
	I	
FORTRAN	Loader	
I I I		
PL/I	Sort/Merge]	
	I	
RPG	System utilities	
I		
	TESTRAN	I
L 1 - —_—e - -1

For example, you may write a program in COBOL to process insurance
premium payments. Your program must be compiled and link edited before
it can be executed. Therefore, your job will have three job steps:
compilation, 1link editing, and execution. During the compilation step
the COROL compiler processes your source program (input data) and
produces an object module (output data). In the next step, the linkage
editor uses the object module as its input data and produces a load
module (output data). In the last step, the load module (your program
in executable form) processes the insurance premium transactions (input
data) and records them in a master file (output data).

In addition to writing the source program, you must also write the
JCL statements that control the selection of the CCBOL compiler and
linkage editor and define the data used in your job. First, you must
write a JOB statement which marks the beginning of your job. You may
also use this statement to record some other information such as your
name and account number. After the JOB statement, you write an execute
(EXEC) statement to mark the beginning of your first job step. 1In this
EXEC statement you request the CORBOL compiler. Following the EXEC
statement, you write a data definition (DD) statement for each data set
the COBOL compiler requires. One of these DD statements tells the
compiler where to find your source program. (The source program can
also follow the DD statements required in this step. The DD statement
that defines your source program can indicate this fact.) Another DD
statement tells the compiler where to place the object module. Other DD
statements define data sets that can be used as work areas by the
compiler and for printing messages and compilation listings. After you
write all the statements required by the COBOL compiler, you must write
another EXEC statement to mark the beginning of the second job step and

16

a4

———

to reguest the linkage editor. In turn, the linkage editor requires
certain data sets, which you also define through DD statements. One of
tne DD statements tells the linkace editor where the COBOL compiler
placed the object module. Another DD statement tells the linkage editor
where it is to place the load module. The remaining DD statements
define data sets for work areas and for printing messages and listings.
Your next EXEC statement begins the third step and requests that your
program (load module produced in the previous step) be executed. You
will need DD statements to tell your program where the insurance premium
transactions are (they can also follow the DD statements for this step
if indicated by a DD statement), and where the master file is. You will
also define any work areas and other data sets your program requires.

If you plan to use your program several times, you can have the
linkage editor place it in a library (a permanent data set). Then you
do not need to compile and link edit it every time you use it, and can
then reduce your job to one ‘job step.

Alternatively, you could use a cataloged procedure containing three
steps: compilation, link editing, and execution of your program. In
tnis case, your EXEC statement would call the procedure, and all those
functions would be performed automatically, but you would have to
provide some additional information, such as where your program and your
data are.

Processing Your Job

In order to have a job processed, the JCL statements and any related
input data must be introduced to the operating system through an I/0
device (input unit) chosen by the operator for this purpose. The
sequence of JCL statements and input data for all the jobs being
submitted through an input unit is called the input stream. The ingput
unit can be a card reader, a magnetic tape, or a telecommunications
line. In systems with MFT or MVT, the input unit can also be a direct
access device.

For example, assume a PCP system where the input unit is a card
reader. You submit the job you prepared to process insurance premium
payments in the form of punched cards (Figure 1). This job has three
steps and the first and last steps contain input data (your source
program in the first step and the insurance premium transactions in the
third step). The operator places your deck in the card reader (input
unit) together with the decks for other jobs to be processed. (The card
decks for all these jobs constitute the input stream.) The operator
then "starts the reader", that is, he instructs the job management
routines of the operating system to start reading the input stream. The
operating system records the control statements of the first job step in
a job queue data set (SYS1.SYSJOBQE) until after they are used. Then it
examines the first job step and determines its needs. The first step of
your job requested the COBOL compiler and defined other data sets.
Therefore, the operating system determines whether there is any space
available on the devices you indicated for the data sets the COBOL
compiler will create during this step (for example, the object module)
and whether any data sets required by the compiler are available (for
example, your source program). If all data set requirements are met,
the COBOL compiler is brought into main storage and given control.

After your program is compiled, the operating system reads and
determines the requirements of the second step, which requested the
linkage editor. The operating system performs the same operations for
the data sets required by the linkage editor and then brings it into
main storage and gives it control. After the linkage editor produces
the load module, the operating system reads and processes the third
step. Its requirements are determined and your program is brought into
main storage and given control.

Part I: Introduction to the Job Control Language 17

SN

/
N T
’Q(o@(o ,/// (Premiums) y
<o)\/ Input Data
e
7 /
(/// DD Statements
A EXEC
w /
7
e DD Statements

input Data

]

DD Statements

Figure 1. Your Program

After your job is completed, the operating system starts processing
the next job in the input stream. If there were errors in your job, or
if the resources you requestea were not available (for examgple, your
program did not fit in the available main storage), the operating syster
would have written appropriate messages and terminated your job before
starting the next one.

Systems with PCP can have only one input stream, and the jobs are
processed one step at a time as described in the previous example.
Systems with MFT or MVT can have more than one input stream and can read
control statements and data for more than one job. The control
statements are recorded in the job queue data set (SYS1.SYSJOBQE) and
the data is recorded in temporary data sets on direct access devices.

MFT and MVT allow you to assign classes and priorities to your jobps.
These classes and priorities let you classify your jobs according to
their characteristics and importance. Therefore, the system can
increase performance by balancing the mix of jobs that are executed at a
given time according to the resources they require.

There can be up to 15 job classes in your installation. These
classes are designated by the letters A through O. The type of job
assigned to each class is arbitrary and should be determined by each
installation. For example, some installations may assign a class to
each of the following types of job:

« Jobs that use a large amount of main storage.
e Jobs that run for a long time.
¢ Teleprocessing jobs.

Within each class you may assign priorities to determine the order of
execution. For example, in the class of "jobs that run for a long time"
you may wish to assign a higher priority to the weekly payroll program
than to the monthly inventory analysis program.

18

e

The MFT or MVT system reads the various input streams and separates
the jobs in each stream by class. The jobs are enqueued on one of 15
available job queues, corresponding to their class. (All 15 job class
queues are in SYS1.SYSJOBQE.) The execution of each job within the
queue is then determined by the priority within the class. Jobs of
equal priority are enqueued on a first-in-first-out (FIFO) basis.

Using these classes and priorities, the system can process more than
one job at the same time. Each job is executed one step at a time and
steps of different jobs can be interleaved. For example, if while the
system is executing a job that runs for a long time enough resources are
available to process teleprocessing jobs, several teleprocessing jobs
can also run. The teleprocessing jobs are selected according to their
priority. Once the long-running job is finished, the system might
select a job that uses a large amount of main storage. The system
determines whether the resources it has left are sufficient for a high
priority job in one or more of the other queuves. If they are, that job
(or jobs) is selected and processed at the same time.

Job Control Language Statements

There are nine JCL statements:

1. Job (JOB) statement

2. Execute (EXEC) statement

3. Data definition (DD) statement
4. Delimiter statement

5. Null statement

6. Procedure (PROC) statement

7. Procedure end (PEND) statement
8. Comment statement

9. Command statement

Parameters coded on these JCL statements help the job scheduler to
regulate the execution of jobs and job steps, retrieve and dispose of
data, allocate I/0 resources, and communicate with the operator.

Summary of the JCL Statements

The job statement (or JOB statement) marks the beginning of a job and,
when jobs are stacked in the input stream, marks the end of the JCL
statements for the preceding job. It may contain accounting information
for use by your installation's accounting routines, give conditions for
early termination of the job, and regulate the display of job scheduler
messages. In systems with MFT or MVT, you can use parameters to assign
job priority, to request a specific class for job scheduler messages, to
hold a job for later execution, and to limit the maximum amount of time
the job may use the central processing unit (CPU). With MVT, you can
also specify the amount of main storage to be allocated to the job.

The execute statement (or EXEC statement) marks the beginning of a
job step and identifies the program to be executed or the cataloged
procedure to be used. It can also provide job step accounting
information, give conditions for bypassing or executing the job step,
and pass control information to a processing program. In systems with
MFT or MVT, a parameter allows you to assign a limit on the CPU time
used by a job step. In systems with MVT, you can use an additional
parameter to specify the amount of main storage to be allocated.

The data definition statement (or DD statement) describes a data set
and requests the allocation of I/0 resources. DD statement parameters
identify the data set, give volume and unit information, and describe
the data set's labels and physical attributes.

Part I: Introduction to the Job Ccntrol Language 19

The delimiter statement (or /* statement) and the null statement are
markers in an input stream. The delimiter statement is used to separate
data placed in the input stream from subsequent JCL statements. The
null statement can be used to mark the end of the JCIL statement and data
for a job.

The PROC statement may appear as the first JCL statement in a
cataloged or in-stream procedure. For cataloged procedures, the PROC
statement is used to assign default values to symbolic parameters
defined in the procedure. For in-stream procedures, it is used to mark
the beginning of the procedure.

The PEND statement is used to mark the end of an in-stream procedure.

The comment statement can be inserted before or after any JCL
statement that follows the JOB statement and can contain any information
thought helpful by the person who codes the JCL statements.

The command statement is used to enter commands through the input
stream. Commands can activate or deactivate system input and output
units, request printouts and displays, and perform a number of other
operator functions.

The Input Stream

The input stream is the sequence of JCL statements and data submitted to
the operating system for processing. Each job in the input stream has
its own set of JCL statements and data. Jobs are bounded by JOB
statements. Each JOB statement marks the beginning of one job and the
end of the preceding job. The end of a job can also pe marked by a null
statement. Fiqure 2 shows a group of jobs and their boundaries.

EXEC & DD

Statements

nput /

Stream

JOB Statement

Null Statement
Job /

Input Stream Data

EXEC & DD

| Statements

/ EXEC & DD

Statements

JOB Statement

Figure 2. Defining Job Boundaries

S

. g

4

E—_——

Each job consists of one or more job steps. Job steps are bounded by
EXEC statements. Each EXEC statement marks the beginning of a job step
and the end of the preceding step. Tne end of the last step in the job m
is marked by the JOB statement of the following job, or by a null
statement.

The EXEC statement is followed by the DD statements that define the
data sets required by the job step. If one of the data sets is in the
input stream, the data must be preceded by a DD statement and followed
by a delimiter (/%) statement. (In systems with MFT or MVT, a DD
statement and delimiter statement are not always required to bound data
in the input stream. However, it is good practice to do so and they
will be shown in the examples in this manual.) If the last DD statement
in a job defines data in the input stream, a null statement should be
used to mark the end of the job.

Figure 3 shows a group of jobs and their associated steps and data.

Part I: Introduction to the Job Control Language 21

Null Statement

/\

DD Statements

Input Stream /

EXEC Statement

// JOB Statement

P Null Statement

/ \ - tnput Stream Data

DD Statements

EXEC Statement

Delimiter Statement

Input Stream Data

DD Statements

EXEC Statement

JOB Statement

/j)

EXEC Statement //

JOB Statement 7

)

Fiqure 3. Defining Job Step Boundaries

Coding Conventions

The job control statements must conform to certain conventions. That
is, you must follow certain simple rules when coding JCL for your job.

These rules concern fields in the JCL statements, spacing of those

fields, continuing the statements onto additional cards or card images,

coding special characters, using the "backward-reference" facility, the

notation used to define JCL statements in this publication, and a coding

form for JCL statements.

Fields in the JCL Statements

JCL statements contain five fields:

1. identification
2. name

3. operation

4. operand

5. comments

The appropriate identification is required for each statement. In
some statements, one or more of the remaining four fields are omitted.

Figure 4 shows the fields in each statement.

| operands.
L

r T 1
|Statement | Fields |
F = .
Job	//name JOB operand! commentsi
Execute	//name® EXEC operand comments®
pata definition	//name? DD operand comments®
PROC(cataloged)	//name* PROC operand commentst
PROC (in-stream)	//name PROC operand?® comments2
PEND	//name® PEND comments®
Command	7/ operation operand comments?®
{Delimiter	7* comments?
Null	77
Comments	77*% comments
L

| *Optional |
| 20ptional -~ Do not code comments unless you code one or more |
|

a

Figure 4. JCL Statement Fields

The identification field indicates that the statement is a JCL
statement. It contains identifying characters (//,/%, or //%) which
must begin in column 1.

The name field identifies the JCL statement so that other statements
or system control blocks can refer to it. It can range from one to
eight characters in length, and can contain any alphameric or national
(a, $, and #) characters. However, the first character of the name
must be a letter or national character and must be in column 3.

The operation field specifies the type of JCL statement, or, in the
case of the command statement, the command. It can contain only one of

Coding Conventions 23

a set of prescribed operations or commands. The operation field has no
column requirements, but must be preceded and followed by at least one
blank. -

The operand field contains parameters separated by cormas.
Parameters are composites of prescribed words (keywords) and variables
for which information must be substituted. The operand field has no
fixed length or column requirements, but must be preceded and followed
by at least one blank. (Note that you must not code blanks between the
parameters in the operand field.)

The comments field can contain any information thought nelpful by
the person who codes the control statement. It has no fixed length or
column requirements, but must be separated from the operand field by at
least one blank.

Except for the comment statement, identifying characters and fielas
are contained in columns 1 through 71 of the control statement. If the
total number of characters exceeds 71, code the excess characters on
one or more continuation statements. In the comments statement,
comments can be coded in columns 4 through 80. The comments cannot be
continued onto another statement. (If you need more space for
comments, use several consecutive comments statements.)

Parameters in the Operand Field

The operand field is made up of two types of parameters: positional

parameters and keyword parameters. A positional parameter is

characterized by its position in the operand field in relation to other

parameters; a keyword parameter is positionally independent with

respect to others of its type, and is characterized by a keyword

followed by an equal sign and variable information (a keyword -—__=.
parameter). Both positional parameters and the variable information in

keyword parameters can be in the form of a list of several items

(subparameters) of information. You must not code blanks between the

parameters or subparameters of the operand field.

Positional parameters must be coded in the operand field in a
specific order and before any keyword parameters are coded. The
absence of a positional parameter is indicated by a comma coded in its
place. However, if the absent positional parameter is the last one, or
if all later positional parameters are also absent, you need not code
replacing commas. If all positional parameters are absent from the
operand, you need not code any replacing commas.

Keyword parameters must follow the positional parameters, but can be
coded anywhere in the operand field with respect to each other.
Because of this positional independence, you need not indicate the
absence of a keyword parameter.

A positional parameter or the variable information in a keyword
parameter sometimes assumes the form of a list of subparameters. Such
a list may be composed of both positional and keyword subparameters
that follow the same rules and restrictions as positional and keyword
parameters. You must enclose a subparameter list in parentheses,
unless the list reduces to a single subparameter.

The EXEC statement and DD statements associated with cataloged

procedures can contain one other type of parameter -- a symbolic
parameter. A symbolic parameters is characterized by a name preceded
by an ampersand (&). A symbolic parameter stands as a symbol for a -,

parameter, a subparameter, or a value. Symbolic parameters allow you
to make any information in the operand field of a procedure EXEC

24

statement or DD statement variable. The value to be assumed by a
symbolic parameter is coded on the EXEC statement that invokes the
procedure. This value is in effect only during that execution of the
procedure.

Spacing JCL Statement Fields

Except for the identifying characters in columns 1 and 2, or columns 1,
2, and 3, and the name field beginning in column 3, control statement
fields can be written in free form, that is, they need not begin in a
particular column. The only requirement is that you separate the name,
operation, operand, and comments fields by at least one blank. Since a
blank serves as a field delimiter, the operand field must be coded
continuously, that is, you cannot code blanks between parameters.

Continuing JCL Statements

Except for the comment statement, JCL statements are contained in
columns 1 through 71 of cards or card images. If the total length of a
statement exceeds 71 columns, or if you wish to place parameters on
separate cards, you must follow the operating system continuation
conventions. To continue an operand field:

1. Interrupt the field after a complete parameter or subparameter,
including the comma that follows it, at or before column 71.

2. Separate any comments from the interxrrupted field with at least one
blank. comments must end at or before column 71.

3. Code the identifying characters // in columns 1 and 2 of the
following card or card image.

4. continue the interrupted operand beginning in any column from 4
through 16. If columns 4 through 16 are left blank, the remainder
of the card or card image is treated as a comment and the
continuation of the preceding statement is assuwed to be complete.

Note: Optionally, a nonblank character can be coded in column 72 of
the card to indicate that the operand field continues on the next card.

Comments can be continued onto additional cards after the operand has
been completed. To continue a comments field:

1. Interrupt the comment at a convenient place, at or before column
71.

2. Code a nonblank character in column 72.

3. Code the identifying characters // in columns 1 and 2 of the
following card or card image.

4. cContinue the comments field beginning in any column after column
3.

Note that comments written on a comments (//%) statement cannot be

continued. You should use several comments statements if you need more
space for comments.

Coding Conventions 25

Figure 5 illustrates the continuation conventions.

r - a
| //NAME DD POSITIONALPARAMETER, KEYWORD=VALUE, COMMENT |
| 7/ XKEYWORD=(VALUE1l,VALUEZ,VALUE3, COMMENT |
| 77 VALUE4,VALUES) ANOTHER COMMENT X|
| 7/ MORE COMMENTS WITHOUT OPERANDS REQUIRE X|
| /77 NONBLANK CHARACTER IN COL.72 OF PRECEDING CARD |
| /7% THIS IS A COMMENTS STATEMENT, IN ORDER |
| /7% TO CONTINUE IT USE ANOTHER COMMENTS STATEMENT |
L -d

Figure 5. Continuing JCL Statements

Coding Special Characters

Alphameric, national, and special characters are used in writing JCL
statements. Table 2 defines the alphameric, national, and special
character sets. Special characters are used in JCL to delimit
parameters and fields, and to perform other syntactical functions.
With the exception of the cases listed below, parameters must be coded
in alphameric and national characters.

Table 2. Character Sets

r T
|Character Set | Contents
1

$
Alphameric | Letters

| Numbers
4

A through 2
0 through 9

¥
I"At" sign
National | Dollar sign

jPound sign

4
+

| Comma
jpPperiod

T
|
|
}
|
|
|
(]
1
|

| SLlash |
|
|
|
|
|
|
|
|
|
1

*aD

| Apostrophe

|Left parenthesis
Special |Right parenthesis

| Asterisk

| Ampersand

|Plus sign

| Hyphen

| Equal sign

[Blank

i

| 4+ @ % m =N+~

[— s e — — — — —— ———— " ——— T ————
e e e e e . —— — ———— b —— e o e e o e]

Seven parameters are exempt from the special character rule, that
is, they can contain special characters as well as alphameric and
national characters:

1. The accounting information on the JOB statement.

2. The programmer's name on the JOB statement.

3. The checkid field of the RESTART parameter on the JOB statement.
4, The ACCT parameter on the EXEC statement.

5. The PARM parameter on the EXEC statement.

B e

e L

"

6. The DSNAME parameter on the DD statement.

7. The volume serial number in the VOLUME parameter on the DD
statement. However, when using various typewriter heads ox
printer chains, difficulties in volume serial recognition may
arise if you use other than alphameric characters in the VOLUME
parameter.

If any of these parameters contain special characters, you must
notify the system of this by enclosing the item that contains the
special characters in apostrophes (5-8 punch), e.g., ACCT="123+456".

If one of the special characters is in apostrophe, you must identify it
by coding two consective apostrophes in its place, for example
'O'*NEILL'.

In five cases, parameters can contain special characters and not be
enclosed in apostrophes:

1. The programmer's name on the JOB statement can contain periods
without being enclosed in apostrophes, e.g., T.JONES.

2. In the UNIT parameter of the DD statement, the unit address can
contain a slash and the unit type can contain a hyphen without
being enclosed in apostrophes, e.g., UNIT=293/5, UNIT=2400-2.

3. The account number and items of accounting information on the JOB
statement, the ACCT parameter on the EXEC statement, and the
volume serial number in the VOLUME parameter on the DD statement
can contain hyphens without being enclosed in apostrophes.

4. The DSNAME parameter on the DD statement can contain hyphens
without being enclosed in apostrophes. If the DSNAME parameter is
a qualified name, it can contain periods without being enclosed in
apostrophes. If the statement identifies a generation of a
generation data group, the generation number in the DSNAME
parameter can contain a plus or minus (hyphen) sign without being
enclosed in apostrophes. If the DD statement defines a temporary
data set, the DSNAME parameter can contain, as the first two
characters, ampersands without being enclosed in apostrophes.

5. Any parameter that makes a backward reference can contain an
asterisk and periods without being enclosed in apostrophes. (See
"Backward References" below.)

Backward References

Many parameters in the JCL statements allow you to use a
backward-reference facility to fill in information. This
backward-reference facility permits you to copy previously coded
information or refer to DD statements that appear earlier in the job.
Most backward-references are of the form *.stepname.ddname, where the
term "stepname® identifies an earlier job step and "ddname" identifies
the DD statement to which you are referring. The named DD statement
must be contained in the named job step. If the DD statement appears
in the same job step as the reference, you can eliminate the term
stepname, i.e., *.ddname.

When the DD statement is contained in a cataloged procedure step,
you may want to refer to it in a later job step outside the procedure.
In order to refer to it, you must give both the name of the job step
that invokes the procedure and the name of the procedure step that
contains the DD statement, i.e., *.stepname.procstepname.ddname.

Coding Conventions 27

Notation for Defining JCL Statement Parameters

The formats of the parameters described in this publication for the
JOB, EXEC, and DD statements appear in the chapters on those
statements. Notations used in the format descriptions are described
pelow.

1.

28

Uppercase letters and words are coded on the JCL statement exactly
as they appear in the format description, as are the following
characters.

ampersand &
asterisk *
comma P

equal sign =
parentheses ()
period -

Lowercase letters, words, and symbols appearing in the format
description represent variables for which specitic information is
substituted when the parameter is coded.

For example, PRTY=priority is the format description for the PRTY
parameter. When you code the PRTY parameter on a JOB statement,
you substitute a number for the word "priority."”

Braces ([} are a special notation and are never coded on a JCL
statement. Braces are used to group related items; they indicate
that you must code one of the items.

For example, TRK . is part of the format description
CYL
block size
for the SPACE parameter. When you code the SPACE parameter, you
must code either TRK, CYL, or a substitute for "block size," which
would be a number.

Brackets [] are a special notation and are never coded on a JCL
statement. Brackets indicate that the enclosed item or items are
optional and you can code one or none of the items.

For example, (,DEFER] is part of the format descripticn for the
UNIT parameter. When you code the UNIT parameter, you can include
+DEFER in the UNIT parameter or omit it.

An example of more than one item enclosed in brackets is

EXPDT=yyddd
RETPD=nnnn

which is part of the format description for the LABEL parameter.
When you code the LABEL parameter, you can include either
EXPDT=yyddd or RETPD=nnnn in the LABEL parameter or omit both.

Sometimes, one of a group of items enclosed in brackets is a
comma. You code the comma when none of the other items in the
group is used and a following part of the parameter is still to be
coded. The comma indicates to the system that you have not
selected to code any of the items enclosed in brackets.

For example,[,progname {,form numbery) is part of the format
’

description for the SYSOUT parameter in systems with MFT and MVT.
when you code the SYSOUT parameter, you have the option of coding
poth " ,progname®™ and ",form number®™, omitting both, or coding only
one. The comma enclosed in brackets with ",progname®™ must be
coded when ",progname" is not coded but " ,form nurber" is coded;
that is, you would code: ,,form number).

Coding

Sometimes, one of a group of items enclosed in brackets is
underscored. This means that the underscored item is assumed if
you omit coding any of the items in the aroup.
For example,[,DELETE]is part of the format description

+ KEEP

« CATLG

of the DISP parameter. If you omit coding any of the items in the
group, the term ",DELETE" is assumed by the systemn.

5. An ellipsis ... (three consecutive periods) is a special notation
and is never coded on a JCL statement. An ellipsis is used to
indicate that the preceding item can be coded more than once in
succession.

For example, COND=((code,operator),...) 1is the tormat description
for the COND parameter on the JOB statement. The ellipsis
indicates that (code,operator) can pe repeated.

Coding Form

For your convenience in coding JCL statements, you can use Form N74167,
a punch card containing formatted lines, each representing a different
type of statement. (See Figure 6.) Some of the lines can be used for
concatenations, overrides, and continuation statements.

/ 1234586 78 9101121314 151617181920 21222324 2526 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 53 60 61 62 63 64 65 66 67 68 69 70 71 72|73 74 1576 77 18 79 BD\
" 2[3 Jobrame ~Var. 10T T2 14] Ti6 JOB Statement Operands e ID/SEQ (S)
AL L] 0B i 7

1 - Ve 12 17
3 Stepnome - Var] EXEC Statement Operands wlo0000000|3
gL IEREC n 6
EXEC Statement Operands H 0

or 00000100

7 /1 |EIXELC ®)
3 adnome - Var B s L
D 0 DD Statement Operands sloooooz00 5
£/ 4' i ! tlr Icl !) ‘ B
51 Concatenations

o enation: DD Statement Operands loocooo3oo
/| 101D 8 c

or 3 Stepname . ddname -Var. lﬁ N 24 DD Statement Operands (This statement fi ’ “or afditions) ,‘: 00000400 0
//MI:Rolcllvl:Jplm l]zlll lnll 1 8 ¥

nome -Var,Optional| PROC Statement Operands T
. 00000500
AL PIRIOC 8 R
el I Delimiter Statement Comments 00000600 E
[aC d Verb-V 13 d Stotement nds N
mmond Verb—Var " Command S Opera 00000700|S
// T
3 (Fixed]
x Blank Null Statement 00000800 A
/7 T
4 Comment Statement Comments E
,/;i " 000009 00|y
/ i
3 tinuation Statements (For all ab t Delimiter, and, Null, Comment Statements) 1€
/) Continuati ateme i ove excep ! Comm ul men ? 0000 1000|N
T

N 3[4 Continued Operands From Preceding Statement, Starting Before Column 17 é 00001 100|S

o (/7 s

-Er 1234656 78 91011121314151617 191320 21 222324 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 49 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 79 80|

k————»variuble Fields Shorter Than Maximum as Shown, Allow Left Justification of Fields That Follow. BMNT4I67

Figure 6. JCL Coding Form

Coding Conventions 29

Table 3. JOB Statement Parameters

r T T T T 1
| Type | Parameter | Function | P/K| Comments |
b a t t—+ 1
Installationaccounting	Supplies an account number and	P	Can be made mandatory	
management	informationjadditional accounting information			
information		to your installation's accounting		
		routines.		
I k + +-——+ 4				
	programmer	Your name. i P	Can be made mandatoryj]	
I	name I	[i		
b + t +-—-+ 1				
Operating	MSGLEVEL	Tells the operating system what	X	
system	information	(messages and display of		
messages		JCL statements) you want about your		
		job; e.g., device allocation i		
		messages statements.		i
F + +-———1 i				
]	MSGCLASS	Tells the operating	K	Systems with MNFT
		system in which output class you	jor MVT only.	
		want the MSGLEVEL messages and other		
		job scheduler messages to appear.] i	
F + + -t-=—t- 1				
Processing	COND	Specifies the conditions under which	K	
options]	Jyour job is to be terminated.			
k + +--—+ 1				
	TYPRUN	Prevents your job from being exe-	K	Systems with MFT
]		cuted until the operator releases	jor MVT only.	
I lit.				
I k + +-——1 1				
	TIME	Specifies the maximum amount of time	K	Systems with MFT or
		your job may use the CPU.		MVT only.]
% t ¥ " 1				
Queuing	CLASS	Assigns your job to a job class.	K	Systems with MFT or
joptions]	MVT only.	
- t e 1				
	PRTY	Assigns your job to a priority	K	Systems with MFT or
		within its job class.]	MVT only.	
; t $. 1				
Main Storage	REGION	Specifies the maximum region size	K	Systems with MVT only
joptions]	required by your job. i			
b t t-——1 !				
	ROLL	Specifies whether your job can use	K	Systems with MVT only
		the rollout/rollin function to]		
	jobtain more main storage for a job			
		step and whether your job can be	i	
		rolled out.] i		
F e + -4 1				
Checkpoint/	RD	Specifies whether your program can	K	
restart		use the automatic restart facility		
		of checkpoint/restart.]	[
+ + $——f—- {				
]	RESTART	Specifies that you are resubmitting	K	
]		your program after it failed and		
		that you want it restarted at some]
i	specific job step or checkpoint.]			
% L L 1 L ‘l				
Legend: P = Positional Parameter				
] K = Keyword Parameter |
L 4

30

The JOB Statement

The JOB statement must be the first JCL statement of your job. 1t must
contain a valid jobname in its name field and the word JOB in its
operation field. All parameters in its-operand field are optional,
although your installation can establish that the account number and the
programmer's name be mandatory. If no parameters are coded in the
operand field of the JOB statement, no comments can be coded on the
statement.

The parameters in the operand field allow you to specify six types of
optional information:

1. Installation management information.
2. Operating system messages.

3. Processing options.

4. Queuing options.

S. Main storage option.

6. Checkpoint/restart.

Table 3 shows the parameters used for each type of information and
their function. Please fold out Table 3 while reading this chapter.

The following paragraphs discuss the job name and the optional
parameters of the JOB statement. For further details refer to the
publications IBM System/360 Operating System: Job Control Language
Reference.

Naming the Job

Your job must have a name. It is required by the job scheduler portion
of the operating system.

The jobname is coded in the name field of the JOB statement. It can
range from one to eight characters in length and can contain any
alphameric or national (a, $, #) characters. HLowever, the first
character of the name must be a letter or national character and must
pegin in column 3. Jobnames need not be unique in a PCP environment
because jobs are executed one at a time. However, no two jobs should
have the same name in an MFT or MVT environment because more than one
job can be executed at a time.

The following are examples of jobnames in several JOB statements:

//MYJOB JOB
//MCS167 JOB
//R#123 JOB
//BNALYSIS JOB
//35AB JOB

Command statements use certain keywords that you should not use as
jobnames :

A
CONSOLES
DSNAME
JOBNAMES
N

The JOB Statement 31

Q

R
SPACE
STATUS
T

If you must use one of these terms as a jobname, you should instruct the
operator to enclose it in parentheses if he uses it in a command
statement.. For example, if you have assigned the jobname T to a job and
the operator wishes to display the status of the job, he must issue a
command stating DISPLAY (T) . If the parentheses were omitted, he would
get the usual time-of-day and date display resulting from a DISPLAY T
command.

Installation Management Information

You can specify two types of installation management information in the
JOB statement: accounting information and programmer's name. These two
items are specified through positional parameters. The first positional
parameter is for the accounting information; the second positional
parameter is for the programmer's name:

//jobname JOB account,programmer

If you omit the accounting information, you must indicate its absence
with a comma:

//jobname JOB ,programmer

If you omit both the accounting information and the programmer's name
and you are going to specify other parameters (such as MSGLEVEL) you do
not need to indicate their absence with commas:

//jobname JOB MSGLEVEL=...

The accounting information or programmer's name or both can be made
mandatory by the installation when the operating system is generated
(PCP) or in the input reader procedure (MFT or MVT). That is, your job
will fail if you do not write them in your JOB statement. Your manager
or supervisor should inform you of this requirement.

Accounting Information Parameter

The first positional parameter of the JOB statement allows you to supply
accounting information. It has the following format:

| (racct#)f,additional accounting informationj)
L

Replace the term "acct#"™ with the account number to which you want the
job charged; replace the term "additional accounting information" with
other items required by your installation's accounting routines. Your
manager or supervisor should tell you exactly how to code the accounting
information parameter. The following are general rules for coding the
accounting information.

e The account number and each item of accounting information are

considered subparameters and each must be separated by a comma. The
job accounting information may be enclosed in either parentheses or

32

4

apostrophes (5-8 punch) as long as none of the subparaneters
contains special characters.
For exampler :

(12A75, DEPTD58,705) or '12A7S,DEPTD58,705"

e If a subparameter contains special characters (except hyphens), you
can either, 1) enclose that subparameter in apostrophes and all the
job accounting information in parentheses, or 2) enclose all the job
accounting information in apostrophes.

For example:

(12A75, "DEPT/D58',705) or '12A75,DEPT/958,705'
(12A75,DEPT-D58, 705) or *12A75,DEPT-D58,705"

e If the special character is an apostrophe, it must be shown as two
consecutive apostrophes.
For example, show DEPT'D58 as:

(12A75,'DEPT"DS8',705) or *12A75,DEPT"D58,705"

e If job accounting information contains only an account number and
the number does not contain special characters, you need not enclose
the number in parentheses or apostrophes. If the account number
does contain special characters, enclose the number in apostrorhes.
For example- ‘
12A75
'12Aa.75"

*12a"75"

s If job accounting information does not contain an account number,
you must indicate its absence by coding a comma preceding the
additional accounting information.

For examplet:

(,DEPTD58,705) s L
(,'DEPT/D58',705) or ',DEPT/D58,705"

Job accounting information can consist of up to 142 characters
indicating the commas that separate the subparameters. This means you
may have to continue the information onto another card. If the
information is to be continued, enclose it in parentheses. Any
subparameter enclosed in apostrophes must be coded on one card. To
continue the information, follow the continuation conventions as
outlined in "Continuing Control Statements" in the section "Coding
Conventions®™. The following is an example of ccntlnulnc job accounting
information onto another card.

//YOURJOB JOB (12A75, 'DEPT/D58"',
/77 705)

Programmer’s Name Parameter

The second positional parameter indicates your name or identification to
your installation's accounting routines. This parameter must follow the
accounting information. The following are rules for coding the
programmer 's name:

¢ The number of characters in the name, including blanks, cannot
exceed 20.

e If the name contains special characters, other than periods, it must
be enclosed in apostrophes.

The JOB Statement 33

For example:

T.JONES
'T JONES' (blanks are special characters)
'sp/#4 T.JONES®

e [f the special character is an apostrophe, it must be shown as two
consecutive apostrophes.
For example the names O'Neill and J.O'Brien must be shown as:

'O"NEILL'
'J.O"BRIEN'

e If the job accounting information is not coded, you must indicate
its absence by a comma preceding the programmer's name.
For example:

//NCS JOB ,MARIA

Operating System Messages

The job scheduler portion of the operating system produces messages
about your job on the system output unit. These messages are a listing
of the JCL statements in your job and allocation/termination messages
indicating the resources used by your job. The MSGLEVEL parameter lets
you choose the type of messages to be produced about your job.

If your job is to run under MFT or MVT, you can also specify the
class of output unit on which those messages and other job scheduler
messages are to appear. The MSGCLASS parameter allows you to choose
from the output classes established in your installation's output writer
procedures. Your manager or supervisor should tell you which output
classes are available. (For information on output writer procedures,
see the section "System Reader, Initiator and Writer Cataloged
Procedures" in the publication IBM System/360 Operating System: System
Programmer's Guide.)

Do not use the MSGCLASS parameter if your job is to run under PCP.
(I1f you use MSGCLASS, it is ignored by the system.) Job scheduler
messages are always produced on the standard system output unit.

MSGLEVEL Parameter

The MSGLEVEL parameter tells the job scheduler what information you want
as output from your job. You can request the following output:

e The JOB statement.
e All input JCL statements.

e All cataloged procedure statements for procedures invocked by the
job's steps, and the internal representation of procedure statements
after symbolic parameter substitution.

e Allocation, disposition, and allocation recovery messages
(allccation/termination messages). Allocation/termination messages
have the prefix IEF and are listed in the publication IBM System/360
Operating System: Messages and Codes.

34

. | 4

-

The format of the MSGLEVEL parameter is:

r—-————~"~="=>=7>7"= T - == h)

| MSGLEVEL=([statements) [,meSsages])
b - _—— 4

Replace "statements"™ with one of the following:
0- only the JOB statement is to be displayed.
1- all JCL statements in your job, cataloged procedure statements,

and the internal representation of statements after symbolic
substitution are to be displayed.

2- only the JCL statements in your job are to be displayed
(cataloged procedure statements will not appear).

keplace "messages"™ with one of the following:

0- no allocation/termination messages are to appear, unless the job
abnormally terminates. If this occurs, these nessages will
appear as output.

1- all allocation/termination messages are to appear.

If you omit the MSGLEVEL parameter or one of the subparameters, a
default value is assumed. In systems with PCP, the default value
established during system generation is used. 1In systems with MFT or
MVT, the default value in the input reader procedure is assumed. Your
manager or supervisor should tell you the defaults chosen in your
installation.

For example, if you want only the JOB statement and no
allocation/termination messages displayed, code:

MSGLEVEL= (0, 0)

If you want only the JCL statements in your job and all
allocation/termination messages displayed, code:

MSGLEVEL=(2,1)

If you want to use your installation's default for JCL messages and
no allocation/termination messages displayed, code:

MSGLEVEL=(,0)

If you want all your JCL statements, cataloged procedures, and
internal representation of statments, and your installation's default
for allocation/termination messages, code:

MSGLEVEL=1

If you want your installation's defaults for both JCL statements, and
allocation/termination messages, omit the MSGLEVEL parameter.

MSGCLASS Parameter (Systems With MFT or MVT Only)

Systems with MFT or MVT can process several jobs at the same time. If
only one output class were used, the job scheduler messages and other
output from all the jobs would be interspersed on the same output
device. The MSGCLASS parameter allows you to route the job scheduler
messages to an output class other than the normal message class, A.

The JOB Statement 35

The format of the MSGCLASS parameter is:

L)
| MSGCLASS=x |
L - K]

Replace "x" with a letter (A-Z) or a number (0-9). Your job
scheduler messages will be produced on 2 device assigned to the class
you selected. If you omit the MSGCLASS parameter, job scheduler
messages are routed to the default output class specified in the output
reader procedure. The default for the MSGCLASS parameter is A unless
changed by your installation.

Your manager or supervisor should tell you which output classes are
available in your installation. Some of these output classes are
standard and some are reserved for special uses. You may have to notify
the operator if you are using a special output class in your job because
he has to "start an output writer" for that output class in order to
obtain the output.

Processing Options

There are three processing options available to your job through JOB
statement parameters.

The COND parameter specifies conditions for terminating your job if
one or more of its job steps are unsuccessful. For example, if your job
is a compile-link edit-go job, you can have your job terminated after an
unsuccessful compilation or link edit. That is, the system will not try
to process the remaining steps in your job thus saving computing time.

The TYPRUN parameter is only available in systems with MFT or MVT.
This parameter prevents your job from being executed until released by
the operator. For instance, you may tell the operator not to release
your job until a certain other job has been processed.

The TIME parameter is only available in systems with MFT or MVT. It
lets you set the maximum amount of time your job may use the CPU. This
parameter lets you find out how long your job uses the CPU and limits
the CPU time wasted if your program goes into a "loop".

COND Parameter

The operating system determines whether a job is to be discontinued
after a given job step by comparing the return code produced by that job
step to the conditions specified with the CCND parameters. A return
code is a number determined by the operating system or by the processing
program which indicates the relative "success™ of the job step. The
return codes of the operating system and IBM-supplied processing
programs are fixed numbers with specific meanings. They are listed in
the publication IBM System/360 Operating System: Messages and Codes and
in the publications associated with each processing program.

Only those user processing programs written in the assembler language
or PL/1 can set return codes for testing. The user return codes are
usually standardized in each installation. For example, each step in
your installation's payroll program may have its own set of return
codes. One return code for a given job step may indicate that all
payroll records were successfully processed while another may indicate
that there were faulty input records. You can set up the COND parameter

36

.............

4

L

.

so that the job is discontinued if the return code that indicates faulty
records is produced by that job step.

Not all return codes indicate either success or failure. For
example, in the case of a compiler one return code can indicate no
errors during compilation, a second code can indicate that the minor
errors encountered are not likely to prevent link editing and execution
of the compiled program, a third code can indicate that the major errors
encountered will probably cause further processing of the compiled
program to fail, and a fourth code can indicate that the compilation
process has terminated abnormally. The COND parameter allows you to
discontinue the job if any of these return codes are produced. You may
choose to continue processing only if no errors are found or, for
debugging purposes, you may choose to continue processing even if ma-jor
errors are found.

Note: If any job step is abnormally terminated (ABEND), all subsequent
steps are bypassed unless the COND parameter of the EXEC statement is
used to prevent it. (See the section on "The EXEC Statement.") If you
want to restart the same step that terminated abnormally you can use the
checkpoint/restart facility of the operating system. (See
"Checkpoint/Restart®™ in this chapter.)

The format of the COND parameter is:

r
| COND=((code,operator),...)
h 3

Replace "code"™ with any decimal number from 0 to 4095. Replace the term
"operator™ with one of the following:

GT (greater than)

GE (greater than or equal to)
EQ (equal to)

LT (less than)

LE (less than or equal to)

NE (not equal to)

If you coded COND=((50,GE), (60,LT)), it would read "if 50 is greater
than or equal to a return code, or 60 is less than a return code, I want
the remaining job steps bypassed.™ 1In other words, the job continues as
long as return codes range from 51 through 60. If you want to make only
one return code test, you need not code the outer parentheses. For
example, COND=(8,NE). A maximum of eight conditions can be established.

For example, if you code: COND=((5,GT),(8,EQ),(12,EQ),(17,EQ),(19,EQ),

(21,EQ), (23,LE)) your job will contlnue only if the return codes are:
5,6,7,9,10,11,13,14,16,18,20, or 22. .

The tests you specify with the COND parameter are made to the return
code, if any, produced by each step in your job. You can best take
advantage of this parameter when the return codes of each job step have
compatible meanings. . For example, a return code of 4 from the ALGOL
compiler indicates that the source program ‘was: compiled and sopme’ minor
errors. were found,,the same return code of 4 from the llnkage editor
indicates that a load module was produced, but an error which may cause
failure at execution time has been found.. If you want to take a chance
and continue pracesszng even if small errors are found, you should code
COND~(4 LE), that 1s, the Fob will: terminate if the return code of any

P £ you only want to continue processing if no
1 : \ ‘code COND=(4,LT), that is, the job will
termlnate 1f*the retul odc of any step is greater than or equal to 4.
(All codes greater than 4 indicate major errors for both the ALGOL
compiler and the linkage editor.)

The JOB Statement 37

If the same return code has different meanings in different job
steps, or if you want to take different actions according to which job
step produced the return code, you should use the COND parameter of the
EXEC statement to set up conditions for individual job steps. -~

If you omit the COND parameter from the JOB statement, no return code
tests are performed throughout the job. If you want return codes tested
for a given job step, use the COND parameter of the EXEC statement for
“hat job step. If the COND parameter is not used in either the JOB or
the EXEC statements, no return code tests are performed and the system
will try to execute each step in the job.

Note: The COND parameter of the EXEC statement 1s slightly different

from the COND parameter of the JOB statement. See the section on "The
EXEC statement". Examples of using the COND parameter in both the JOB
and EXEC statements are also shown in that section.

TYPRUN Parameter (Systems With MFT or MVT Only)

In systems with MFT or MVT you cannot predict whether a job in a job
class queue will be selected for execution before another job in a
different job class queue. (Job classes are discussed in "Processing
Your Job™ in the section "Part I: Introduction to the Job Control
Language".) If you have a job that must be executed after another one,
you can use the TYPRUN parameter to prevent execution of your job until
the first one completes processing. You must tell the operator that you
have held your job and the name of the job that must be processed before
yours. Then, when the console indicates that the first job has ended,
the operator should issue a command to RELEASE your job for processing.

The format of the TYPRUN parameter is: i

r
| TYPRUN=HOLD
L J

If both jobs are in the same job class queue, it is not enough to
assign a higher priority to the job that must be executed first. You
must also use the TYPRUN=HOLD parameter, because the higher priority
controls only the selection sequence and does not guarantee that the
first job will complete execution before the second is selected.

In systems with PCP, all you have to do is place the jobs in the
input queue in the order in which they are to be executed. Do not use
the TYPRUN=HOLD parameter in systems with PCP.

TIME Parameter (Systems With MVT Only)

The TIME parameter specifies the maximum amount of time a jcb may use
the CPU. Two benefits of the TIME parameter are that it allows you to
find out through messages how long the job uses the CPU (CPU time used
appears on the output listing), and it helps 1limit the CPU time wasted
by a step that goes into a loop. Normally, a job that exceeds its time
limit is terminated. However, if the System Management Facilities
option is included in the system and a user exit routine is provided,
this routine can extend the time limit so that processing can continue.
(The System Management Facilities option is described in the publication
IBM System/360 Operating System: Concepts and Facilities. User exit
routines to be used with the System Management Facilities option are
discussed in the publication IBM System/360 Operating System: System A,
Programmer's Guide.)

38

-

A 1 d

The format of the TIME parameter is:

r
| TIME=([minutes),seconds))
L

Replace the terms "minutes"™ and "seconds" with the maximum number of
minutes and seconds that the job can use the CPU. The number of minutes
must be less than 1440 (24 hours); the number of seconds must be less
than 60. That is, the maximum time you can specify is TIME=(1439,59).

If your job may require use of the CPU for more than 1439 minutes,
code TIME=1440 to eliminate the time limit.

If the CPU time limit is given in minutes only, you need not code the
parentheses. For example, "twelve minutes" is coded TIME=12. If the
CPU time limit is given in seconds only, you must code both the
parentheses and a comma to indicate the absence of minutes. For
example, "thirty seconds®™ is coded TIME=(,30).

If you omit the TIME parameter on the JOB statement, there is no CPU
time limit assigned to the job; however, each job step is still timed.
(see the description of the TIME parameter in the section "The EXEC
Statement".)

Coding TIME=1440 also lifts the restrictions on the amount of time a
job step may remain in a wait state. If the System Management
Facilities option is included in the system, the installation determines
this time limit. 1In this case, a job step remaining in a wait state for
more than the established time limit causes termination of the job
unless a user-provided exit routine extends the wait-state time limit
for that step. If the System Management Facilities option is not
included, the system automatically provides a 30-minute time limit for
wait states; that is, a job step remaining in a wait state for more than
30 consecutive minutes causes termination of the job. If any of the job
steps should be allowed to remain in a wait state for more than the
established time limit, code TIME=1440 to eliminate the time limit.

Note: You can specify different CPU time limits for each step in the
job by coding the TIME parameter on the EXEC statement associated with
each step, as described in the section "The EXEC Statement".

Queuing Options (Systems With MFT or MVT Only)

One of the most important features of MFT and MVT is the ability to
balance the job mix by recognizing the classes and priorities assigned
to jobs. Job classes and priorities are discussed in "Processing Your
Job™ in the section "Part I: Introduction to the Job Control Language”.

There can be up to 15 job classes in your installation. The type of
job assigned to each class is arbitrary and should be determined by each
installation. For example, some installations may assign a class to
each of the following types of jobs:

I/0-bound jobs.

CPU-bound jobs.

Jobs that are being debugged.

Jobs that use a particular device. For example, if there is only
one 7-track tape drive in your installation, two programs that use
that drive cannot be multiprogrammed. Therefore, those programs
should be assigned to the same job class to avoid their simultaneous
selection.

The JOB Statement 39

In general, all jobs of the same characteristics should be in the same
class.

The order of execution within each class is determined by the
priority assigned to each job. There can be up to 14 priorities in each
class. The higher the priority the sooner your job will be executed.

Your manager or supervisor should tell you which class and priority
to assign to your 7job.

CLASS Parameter (Systems With MFT or MVT Only)

The CLASS parameter is used to assign a job class to your jcb. The
format of the CLASS parameter is:

r
| CLASS=jobclass
L —_ 1

Replace the term "jobclass"™ with a letter from A through 0. For
example, if your job belongs to class C, code

CLASS=C

If you omit the CLASS parameter, or code CLASS=A, the default job
class of A is assigned to the job.

Note: If your installation provides time-slicing facilities in a systenm
with MFT, the CLASS parameter can be used to make your job part of a
group of jobs to be time-sliced. At system generation, a group of
contiguous partitions are selected to be used for time-slicing, and each
partition is assigned at least one job class. If you want your job to
pe time-sliced, specify a class that was assigned only to the partitions
selected for time-slicing.

PRTY Parameter (Systems With MFT or MVT Only)
Default job priorities within each class are established in the input
reader procedure. If you wish to assign a different priority to your

job, use the PRTY parameter.

The format of the PRTY parameter is:

r
| PRTY=number
L— -

e e =

Replace the term "number" with a decimal number from 0 through 13. The
highest priority number is 13.

Whenever possible, you should avoid using priority 13. This is used
by the system to expedite processing of jobs in which certain errors
were diagnosed. It is also intended for other special uses by future
features of systems with MVT.

40

-

Notes:

e If your installation provides time-slicing facilities in a system
with MVT, the PRTY parameter can be used to make your job part of a
group of jobs to be time-sliced. At system generation, the
priorities of the time-sliced groups are selected. If the job
priority number you specify corresponds with a priority number
selected for time-slicing, then your job will be time-sliced.

e If you want to assign a different priority to a job step, you can
code the DPRTY parameter on the EXEC statement associated with the
step, as described in the next chapter. The priority assigned to
the job applies to any step that does not use the DPRTY parameter.

Main Storage Options (Systems With MVT Only)

MVT processes several jobs at the same time in different regions of main
storage. The size of each region depends on the requirements of each
job. Once the processing of that job is completed, the system uses that
space for other jobs. (The free space can be subdivided into smaller
regions, used for a region the same size, or combined with adjacent free
space for a larger region.)

Regions are contiguous areas of main storage. However, you can
define a two-part region if your operating system was generated with
"Main Storage Hierarchy Support"™. Main storage hierarchy support
provides for storage hierarchies 0 and 1. If IBM 2361 Core Storage,
Model 1 or 2, is present in the system, processor storage is referred to
as hierarchy 0 and 2361 Core Storage is referred to as hierarchy 1. 1If
2361 core storage is not present but main storage hierarchy support was
specified during system generation, a two-part region is established in
processor storage when a region is defined to exist in two hierarchies.
The two parts are not necessarily contiguous.

The REGION parameter allows you to specify the region size to be used
by your job.

Notes:

e If you want to specify different region sizes for each step in the
job, you can, instead, code the REGION parameter on the EXEC
statement associated with each step, as described in the next
chapter.

e In systems without main storage hierarchy support, processor storage
is referred to as main storage. In systems with main storage
hierarchy support, main storage comprises both processor storage
{hierarchy 0) and 2361 core storage (hierarchy 1).

Sometimes a job step will run out of space in its region. Normally,
this means that the step is terminated. However if the rollout/rollin
option was generated for your MVT system, the system can obtain more
space for your job step. This is done by "rolling out" (writing onto a
direct access device) another job step that is currently being executed
and allocating its region to your job step. After your step is
processed, the rolled-out step is "rolled in" (read back into its
region) and its processing continues.

The ROLL parameter lets you specify whether the job steps in your job
can be rolled out and whether they can cause rollout of other job steps.

Note: ROLL parameters can also be coded on EXEC statements, but are
superseded by a ROLL parameter coded on the JOB statement.

The JOB Statement 41

REGION Parameter (Systems With MVT Only)

The REGION parameter allows you:

1.

To request the maximum amount of main storage to be allocated to
the job. This figure must include the size of those components
that are required by your program and are not resident in storage.

To request the amount of main storage to be allocated to the job
and in which storage hierarchy or hierarchies the space is to be
allocated. This request should be made only if main storage
hierarcny support is specified during system generation.

The storage requirements you must consider when specifying a region size
are outlined in the publication IBM System/360 Operating System:
Storage Estimates.

1.

42

The format of the REGION parameter for systems without storage
hierarchies is:

r h
| REGION=valuekK]
L - _——d

Replace the term "value" with the number of contiguous 1024-byte
areas you want allocated to the job, for example, REGION=52K. This
number can range from one to five digits but cannot exceed 16383.
It should be specified as an even number because if you specify an
odd number, the system treats it as the next hichest even number.
If you specify the maximum of 16383, you get 16384 bytes, however
you must not specify 16384,

If you omit the REGION parameter, the default value (as established

in the input reader procedure) is assumed.

The format of the REGION parameter for systems with storage
hierarchies is:

| REGION=([valueoK] [, value;K}) |

Replace the term "valueo" with the number of contiguous 1024-byte
areas you want allocated to the job in hierarchy 0 (processor
storage); replace the term "value," with the number c¢f contiguous
1024-byte areas to be allocated in hierarchy 1, (2361 Core
Storage), e.g., REGION=(60K,200K). Each value specified should be
an even number. (If you specify an odd number, the system treats
it as the next highest even number).

The following rules apply to the hierarchy sizes:

e If 2361 Core Storage is not present but main storage hierarchy
support was specified during system generation, a two-part
region is established in processor storage when a region is
defined to exist in two hierarchies. The two parts are not
necessarily contiguous. In this case, the sum of valuegand
value, cannot exceed 16383. For example, REGION=(10K,UK).

e [f 2361 Core Storage is present, value,, cannot exceed 16383,
and value, cannot exceed 1024 if using a single Nodel I, or
2048, if using a single Model 2.

o

e If main storage hierarchy support was not generated and regions
are requested in both hierarchies, the region sizes are
combined and an attempt is made to allocate a single region
from processor storage. If a region is requested entirely from
hierarchy 1, no hierarchy 0 segment is allocated.

In systems with main storage hierarchy support, you can omit either
subparameter, thereby requesting storage in only one hierarchy. If
you are requesting storage only in hierarchy 1, you must code a
comma to indicate the absence of the first subparameter, for
example, REGION=(,52K). If you are requesting storage only in
hierarchy 0, you need not code the parentheses, for example,
REGION=70K.

If you omit the REGION parameter, the default value (as established
in the input reader procedure) is assumed. When the default region
size is assumed, storage is always allocated in hierarchy 0.

ROLL Parameter (Systems With MVT Only)

The function of rollout/rollin is to allocate additional main storage to
a job step whose own region contains no more available space. In order
to allocate this additional space to a job step, another job step may
have to be rolled out, i.e., temporarily transferred to secondary
storage. The ROLL parameter allows you to indicate whether or not each
of your job steps can be rolled out and whether or not they can cause
rollout of other job steps.

The format of the ROLL parameter is:

r 1
| ROLL=(x,y)]
L —_—— i

The "x" declares each job step's ability to be rolled out. If "x" is
YES, each job step can be rolled out; if "x" is NO, the job steps of
this job cannot be rolled out. The "y" declares each job step's ability
to cause rollout of another job step. If "y" is YES, each job step can
cause rollout; if "y" is NO, the job steps cannot cause rollout. (YES
must be specified if you want additional main storage allocated to the
job's steps if it is required.) If you include the ROLL parameter, both
the "x" and "y" subparameters must be coded.

For example, ROLL=(NO,YES) indicates that your job steps cannot be
rolled out but that any one of them can cause roll out.

Roll parameters can also be coded on EXEC statements, but are
superseded by a ROLL parameter coded on the JOB statement. If this
parameter is omitted, the default specified in the reader procedure is
used. In the IBM-supplied reader procedures, the default specified is
ROLL=(YES,NO) .

Note: Teleprocessing jobs that use the autopoll option should not have
the ability to be rolled out. A rolled out job using this option cannot
be restarted properly. Therefore, you should always code ROLL=(NO,YES)
or ROLL=(NO,NO) for this kind of job.

The JOB Statement 43

Checkpoint/Restart

When a job step abnormally terminates (ABEND), you may have to resubmit
the job for execution. This means lost computer time and a delay in
obtaining the desired results. To reduce these effects, you can use the
restart facilities of the operating system provided your program is
written in the assembler language, COBOL, or PL/I.

If a job step abnormally terminates, or if a system failure occurs in
a system with MFT or MVT, the restart facilities allow you to request
that the -job step be restarted either at the beginning of the step (step
restart) or at some point within the step (checkpoint restart).
Furthermore, restart can occur automatically after abnormal termination,
or it can be deferred until job is resubmitted. Automatic restarts are
specified with the RD parameter, and deferred restarts with the RESTART
parameter. For detailed information on the checkpoint/restart
facilities, using the assembler language refer to the Publication IBM
System/360 Operating System: Supervisor and Data Management Services;
using COBOL, to IBM System/360 Operating System: COBOL (E) Programmer's
Guide, or to IBM System/360 Operating System: COBOL (F) Programmer's
Guide, or to IBM System/360 Operating System: American National
Standard COBOL Programmer's Guide; using PL/I, to IBM System/360
Operating System: PL/I (F) Programmer's Guide; and also to "Appendix C:
Using the Restart Facilities"™ of this publication, and to the
publication IBM System/360 Operating System: Advanced
Checkpoint/Restart Planning Guide, GC28-6708.

RD Parameter

A job can be automatically restarted at the beginning of the job step
that abnormally terminated (step restart) or within the step (checkpoint
restart). In either case, automatic restart can occur only if:

1. you use the RD parameter to request restart,

2. the return code returned during abnormal termination indicates that
the step is eligible for restart, and

3. the operator authorizes restart.

In order for checkpoint restart to occur, the CHKPT macro instruction
(assembler), or the RERUN clause (COBOL), or the CALL IHECKPT statement
(PL/1) must have been executed in your processing program prior to
abnormal termination. Through the RD (restart definition) parameter,
you can specify that step restart can occur or that the action of the
CHKPT macro instruction (assembler), or the RERUN clause (COBOL), or the
CALL IHECKPT statement (PL/I) is to be suppressed.

The format of the RD parameter is:

RD=request

[SR

Replace the word "request” with:
R To permit automatic step restart.
NC to suppress the action of the CHKPT macro instruction, or

RERUN clause, or CALL IHECKPT statement, and not to permit
automatic restart

4y

S

NR to request that the CHKPT macro instruction, or RERUN
clause, or CALL IHECKPT statement pe allowed to establisn a
checkpoint, but not to permit automatic restart

RNC to permit step restart and to suppress the action of the
CHKPT macro instruction, or RERUN clause, or CALL IHECKPT
statement.

Each of these requests is described in more detail in the following
paragraphs.

RD=R: If the processing proagrams used by the job do not include any
CHKPT macro instructions, (assembler), or RERUN clauses (COBOL), or CALL
IAECKPT statements (PL/I), RD=R allows execution to be resumed at the
beginning of the step that abnormally terminates. If any of the
programs do include one or more CHKPT macro instructions, or RERUN
clauses, or CALL IHECKPT statements, step restart can occur if a step
abnormally terminates before execution of a CHKPT macro instruction or
RERUN clause, or CALL IHECKPT statement; thereafter, checkpoint restart
can occur. If you cancel the effects of the CHKPT macro instructions,
or RERUN clauses, or CALL IHECKPT statements before a checkpoint restart
is performed, the request for automatic step restart is again in effect.

RD=NC or RD=RNC: RD=NC or RD=RNC should be specified when you want to
suppress the action of all CHKPT macro instructions (assembler), or
RERUN clauses (COBOL), or CALL IHECKPT statements (PL/I) included in the
programs used by this job. When RD=NC is specified, neither step
restart nor checkpoint restart can occur. When RD=RKRNC is specified,
step restart can occur. RD=NC has no effect on processing if CHKPT
macro instructions, or RERUN clauses, or CALL IHECKPT statements are not
included in the programs.

KD=NR: RD=NR permits a CHKPT macro instruction (assembler), or RERUN
clause (COBOL), or CALL IHECKPT statement (PL/I) to establish a
checkpoint, but does not permit automatic step or checkpoint restarts.
Instead, at a later time, you can resubmit the job and begin execution
at a specific checkpoint. (The RESTART parameter is used for
resubmitting a job for restart. See the next topic.) This parameter
has no effect on processing if CHKPT macro instructions, RERUN clauses,
or CALL IHECKPT statements are not included in the program.

If automatic restart is requested for an abnormally terminated step
and restart is authorized by the operator, special disposition
processing is performed. If automatic step restart is to occur, all
data sets in the restart step with a status of OLD or MOL, and all data
sets being passed to steps following the restart step are kept. All
data sets with a status of NEW in the restart step are deleted. If
automatic checkpoint restart is to occur, all data sets currently in use
by the job are kept. (For further information on data set disposition
refer to the section "The DD Statement" and to “Appendix C: Using the
Restart Facilities."

If you omit the RD parameter and no CHKPT macro instructions, or
RERUN clauses, or CALL IHECKPT statements are executed, automatic
restart cannot occur. If you omit the RD parameter but one or more
CHKPT macro instructions or RERUN clauses, or CALL IHECKET statements
are executed, automatic checkpoint restart can occur.

The JOE Statement U5

Notes:

o If you want to make different requests for each step in the job, you
can, instead, code the RD parameter on the EXkC statement associated
with each step, as described in the next chapter. If you specify
the D parameter on tne JOB statement, RD parameters on the job's
EXEC statements are ignored.

@ When using a system witn MFT or LVT, MSGLEVEL=(1,0) or
MSGLEVEL=(1,1) must be coded on the JOB statement if automatic
restart is to occur. If you omit this parameter, restart is not
performed.

¢ If restart is requested, assicn each step a unique step nane. (Cpon
restart, the system searches the name field for the name of the
abnormally terminated step. If two steps have the same name,
restart is attenpted at the first step encountered with the name
regardless of whetner or not this is the step that abnormally
terminated.) Step names are assigned in the EXEC statement for each
step.

RESTART Parameter

If your job abnormally terminated and you are resubmitting it forx
execution, you can use the restart facilities. These facilities reduce
the time required to execute the job since execution of the job is
resumed, not repeated.

Execution of a resubmitted job can be restarted at the beginning of a
step (step restart) or within a step (checkroint restart). In order for
caneckpoint restart to occur, the CHKPT macro instruction (in assembler
language), or KERUN clause (in COLOL), or CALL I4ECKPT statement (in
PL/I) must have been executed in your processing prooram during the
original execution of the job. Throuyh the RESTART parameter you can
specify where execution is to be restarted.

Note: Do not use the RESTART parameter the first time you run your job.

If you want execution to be restarted at a particular job step, code
tne keyword parameter.

r - - 3
| RESTART=stepname |

— e e o e i s e et e e e e e e 1

S

in the operand field of the JOB statement before resubritting the job.

Replace the word "stepname" with the name of the step at which execution
is to be restarted. You can replace "stepname" with an asterisk (¥) if
execution is to pe restarted at the first job step; that is, RESTART =*.

If you want execution to be restarted at a particular checkpoint
within a particular job step, code the keyword parameter.

[SRp—

| RESTART=(stepname,checkid)

in the operand field of the JOB statement before resubmitting the job.
rReplace the word "stepname" with the name of the step in which execution
is to be restarted. You can replace "stepname" with an asterisk (¥) if
execution is to pe restarted within the first job step. Kkeplace the
term "checkid" with the name that identifies the checkpoint within the
step. (If the name contains special characters, it must be enclosed in

46

apostrophes. If one of the special characters is an apostrophe,
identify it by coding two consecutive apostrophes in its place.)

If execution is to be restarted at a checkpoint, the resubmitted job
must include an additional DD statement. This DD statement defines the
checkpoint data set and has the ddname SYSCHK. (Do not include a SYSCHK
DD statement if step restart is to be performed.) The SYSCHK DD
statement is described in "Special DD Statements" in the section "The DD
Statement."

I1f execution is to be restarted at or within a cataloged procedure
step, you must give both the name of the step that invokes the procedure
and the procedure step name, i.e., RESTART-stepname.procstepname or
RESTART= (stepname.procstepname,checkid). If the first job step invokes
a cataloged procedure and you want execution to be restarted at the
first procedure step, you can replace "stername.procstepname” with an
asterisk(*).

If the RESTART parameter is not specified on the JOB statement of the
resubritted job, execution of the entire job is repeated.

Tne JCE 3tatement 47

JOB

Table 4. EXEC Statement Parameters

r T T - T T 1
| Type | Parameter | Function | P/K]| Comments |
L 41 1 1 L J
v) 1] 1 T 1
| Processing | PGM |[NaYou me the program to pe | P |must specify either a]
| Program | |executed in this step. | |program name or a procedure |
| Information } } + {name. |
| | PROC |Names the procedure to be | P | |
I | lused in this step. | | |
| b f f-——1 i
{ | Procedure|Alternative way of naming | P | |
i | Name {the procedure to be used in | ! |
i | |this step without using the | | |
| | | PROC keyword. | | |
| b + +——+ 1
	PARM	Passes special control in-	K	
		formation to those programs]	
		that require it.		
b -——4 + - . $--—1+ y				
Installation	ACCT	Supplies accounts infor-	K	
Management		mation to your installa-		
Information		tion's accounting routines.		
k ————} - -—- +-—1 1				
Processing	COND	specifies conditions for	K	
Options		executing or bypassing the		i
		job step.		
t + +-——+				
	TIME	Specifies the maximum amount	K	Systems with MFT or MVT only.
		of time this job step may		
	juse the CPU.			
b _ + f——— _ . ———t-—1 i				
Queueing	DPRTY	Assigns a dispatching prior-		Systems with MVT only.
option	ity to the job step.]		
F t t +-——1+ 1				
Main Storage	REGION	Specifies the maximum region	K	Systems with MVT only.
Options		size required by this job]	
		step.		
b - . -——4 1				
	ROLL	Specifies whether this job	K	Systems with MVT only.
		step can use the rollout/		
		rollin function. i i		
b —————1 - . t—-—t 1				
Checkpoint/	RD	Specifies whether this job	K	
Restart		step can use the automatic		
		restart facility of check-	i i	
		point/restart.		
I'; L L L 1 _Jl				
Legend: P = Positional parameter				
l K = Keyword parameter !

I8

The EXEC Statement

The EXEC statement must be the first JCL statement of each job step in
your job. It must also be the first statement of each procedure step in
a cataloged procedure. The EXEC statement is followed in the input
stream by DD statements and data that pertain to the step.

The main function of the EXEC statement is to identify the program to
be executed or the cataloged procedure to be used. For example, Figure
7 shows the input deck for a three-step job. The EXEC statement of the
first step requests a program named MYPROG. The DD statements and data
required by MYPROG follow the EXEC statement. The EXEC statement of the
second step requests a cataloged procedure named PROCCNE. When the
second step is to be executed the system will use PROCONE. PROCONE has
two procedure steps. The EXEC statement of the first procedure step
requests a program named XXX; the EXEC statement of the second procedure
step requests a program named YYY. After the cataloged procedure is
used the third step of your job is executed. The EXEC statement of the
third step requests a program named PRINT. The DD statements required
by PRINT follow the third EXEC statement. Note that you only supply the
JCL statements for your job. The cataloged procedure already exists in
the procedure library (SYS1.PROCLIB). Tnerefore, you need not be
concerned with writing the JCL statements for the cataloged procedure
unless you are actually writing the cataloged procedure to place it in
the procedure library. You can, however, modify cataloged procedure
statements by placing the corrections in the input deck for your job.
For example, in Figure 7 the DD statements that follow the EXEC
statement of the second step are used to make changes in corxrresponding
DD statements in the cataloged procedure. The methods used for
modifying cataloged procedures are described in the section "Part III:
cataloged Procedures".

The EXEC statement must contain the word EXEC in its operation field.
The stepname (name field) and most parameters in the operand field are
optional. The only required information in the operand field is either
the name of the program to be executed or the name of the procedure to
be used. The parameters in the operand field allows you to specify six
types of information:

1. Processing program information

2. Installation management information
3. Processing options

4. Queueing option

5. Main storage option

6. Checkpoint restart information

Table 4 shows the parameters used for each type of information and
their function. Please fold out Table 4 while reading this chapter.

The following paragraphs discuss the step name and the optional
parameters of the EXEC statement. For further details refer to the
publication IBM System/360 Operating System: Job Control Language
Reference Guide.

The EXEC Statement 49

Input Deck

i)
<3\‘2’Q

// DD Statements

// name EXEC

Procedure Library

// name EXEC
PGM=YYY

'/ DD Statemenis

// DD Statements

// name EXEC

9
if)//A PGM=PRINT
// name EXEC

PROC =PROCONE

PGM = XXX
// PROC Statement

N
Input Data
Q
<
/ // DD Statements

// name EXEC
PGM=MYPROG

// name JOB ...

Figure 7. Using the EXEC Statement

// DD Statements

// name EXEC
PROCB

7 >

// name EXEC
PGM =8

// DD Statements

// name EXEC
PGM =A

// PROC Statement

PGM =ONE
// name JOB, ..

Figqure 8. Modifying a Cataloged Procedure

50

Hlomion,

R

Naming the Step

The stepname identifies a job step within a job. You must specify a
stepname if later JCL statements refer to the step (see "Backward
References®™ in the chapter "Coding Conventions"), or if the step is
going to be part of a cataloged procedure or if you are going to perform
step or checkpoint restart at or within the step. Otherwise, the
stepname is optional.

Note: It is recommended that you give a stepname to each step in your
job because stepnames are used in many operating system nessages and it
would be easier for you to find out what part of your job causes the
messages if you supply a stepname. (1f the step is unnamed, the part of
the message where the stepname would appear is left blank.) Also, it
will save recording time if you decide at a later date to use backward
references or to turn your JCL statements into a cataloged procedure.

The stepname is coded in the name field of the EXEC statement. It
can range from one to eight characters in length and can contain any
alphanumeric or national (a,$,#) characters. However, the first
character of the name must be a letter or national character and must
begin in column 3. Each stepname in a job or procedure must be unique.

The following are examples of step names in several EXEC statements:

//STEP1 EXEC...
//CHECK EXEC. ..
//A%9 EXEC. ..

//LINKEDIT EXEC. ..

Processing Program Information

The main purpose of the EXEC statement is to identify either the program
to be executed or the cataloged procedure to be used in the job step.
The PGM parameter is used to identify the program to be executed. The
PROC parameter is used to identify the cataloged procedure. You can
also identify the cataloged procedure by simply coding its name as the
first parameter in the operand field of the EXEC statement.

The PGM parameter and the PROC parameter (or procedure name) are
mutually exclusive. One of them must be coded in the EXEC statement.

Your manager or supervisor should give you the names of the programs
and cataloged procedures available in your installation. (Also, see
pPart II of this publication).

Some programs require special information for their processing. For
example, you may have to let it know whether or not you want an output
listing. You indicate your choices through the PARM parameter.

Each program that requires them has a fixed set of options you can
specify through the PARM parameter. The options required by IBM
programs are listed in the publication associated with the program.
(Also, see Part II of this publication.)

The EXEC Statement 51

PGM Parameter

You must use the PGM parameter to indicate which processing program is
to to be used in this job step and where this programn resides.
Processing programs can reside in three types of libraries (partitioned
data sets):

1. The System library (SYS1.LINKLIE)
2. Private libraries
3. Temporary libraries

The way you code the PGM parameter depends upon which type of library
the program resides in. The PGM parameter must be the first parameter
in the operand field.

1. The system library is a partitioned data set named SYS1.LINKLIB.
All IBM-supplied processing programs and, probably, the most
frequently used programs written by your installation reside in
SYS1.LINKLIB. The format of the PGM parameter for specifying
programs that reside in SYS1.LINKLIB is:

r - =9
| PGM=progname |
L

—_—— —_— —_— —d

Replace the term "progname®" with the name or alias associated with
the program. For example, the name of the FORTRAN H compiler is
IEKAA00, therefore, to request it you should code:

//name EXEC PGM=IEKAAOO

You can also refer to the program through its alias. For example,
the name of the loader is IEWLDRGO and its alias is LOADER. You
can request the loader with either one of these two statements:

//7name EXEC PGM=IEWLDRGO
//7name EXEC PGM=LOADER

Not all programs have an alias. For example, your installation may
have several levels of the linkage editor, but only one of them can
have the alias IEWL. Your manacer or supervisor should give you a
list of the names and aliases of the processing programs in your
installation. (Also, see Part II of this publication.)

2. Private libraries are partitioned data sets that store programs not
used sufficiently to warrant their inclusion in the system library
(SYS1.LINKLIB). For example, a set of programs that prepare
quarterly sales tax reports could be placed in a private library.
The format of the PGM parameter is the same as for programs in
SYS1.LINKLIB:

r == s T s T T T T T |

| PGM=progname I
L

_ —— 4

Replace the term "progname®" with the name or alias of the program.
You indicate the fact that the program resides in a private library
by inserting a special DD statement in your input deck. This DD
statement defines the private library. You can name the DD
statement either JOBLIB or STEPLIB. The JOBLIB DD statement
specifies that the library is available to all steps in the job.
The STEPLIB DD statement specifies that the library is available
only to this job step. The use of these DD statements is explained
in "Special DD Statements™ in the section "The DD Statement."

52

3. Temporary libraries are temporary partitioned data sets created to
store a program until it is used in a later job step of the sarme
job. This type of library is particulary useful for storing the
program output (load module) of a linkage editor run until it is
executed by a later job step. The program stored in a temporary
library is assigned a name by the system, which is not predictable
by the programmer. Therefore, you use the PGM parameter to
identify it by location rather than by name. You do this using the
backward-reference feature of JCL (see "Backward References"™ in the
section "Coding Conventions".) The format of the PGM parameters
for specifying programs that reside in temporary libraries is:

| - - T q

| PGM=*.stepname.ddname |

Replace the term "stepname" with the name of the EXEC statement of
the job step (of the same job) where the temporary library is
created. Replace the term "ddname"™ with the name of the DD
statement that defined the library. The following example shows
the EXEC statement for a link edit step, the DD statement in that
step that defines the temporary library, and the EXEC statement
that requests the execution of the program stored in the temporary

library.

r - 1
| - |
¥ :
| //LINK EXEC PGM=IEWL This EXEC statement requests the |
| linkage editor |
| /7/SYSLMOD DD .ee This DD statement defines the |
| . temporary library |
| |
| |
| //7GO EXEC PGM=%,LINK.SYS5LMOD]
Lo 1

When the terporary library is created in a cataloged procedure
step, (of the same job) you may want to call it in a later job step
outside the procedure. 1In order to call it, you must give both the
name of the job step that invokes the procedure and the procedure
step name, i.e., PGM=*,stepname.procstepname.ddname.

The first part of the following example shows an EXEC statement that
calls a cataloged procedure named ASMFCL (ASMFCL is a cataloged
procedure which assembles and link edits a source program), and the EXEC
statement that requests the execution of the program link edited with
the cataloged procedure. The second part of the example shows the EXEC
statement of the procedure step in ASMFCL where the temporary library is
created, and the DD statement that defines the library.

The EXEC Statement 53

Input Deck

//CALL EXEC ASMFCL

-

. stepname

//7GO EXEC PGM=* CALL.LKED.SY3LMCD
. ddname

. pr0€§tepname

7
cataloged Prqgedure ////

//LKED EXEC “PGM=IEWL
//SYSLMOD”DD...

[o — — . —— T W— —" — U t————— —— t— o to—
o e e o — e ol s e — . —— —— — . s s s, it s v

Programs residing in the system library or private libraries can also
be executed by coding PGM=*,stepname.ddname, provided the named DD
statement defines the program as a member of such a library.

Note: If your DD statements request space allocation and disposition
processing you can satisfy these requirements prior to executing your
program (see the next chapter). To do this, write PGM=IEFER1Y4 instead
of specifying your program's name. This also allows you to check the
accuracy of your JCL statements. (If you create a data set when using
this program, the data sets status will be OLD when you execute your own
program. Make sure you change the DD statement to indicate this fact.)

PROC or Procedure Name Parameter

Instead of executing a particular program a job step may use a cataloged
or in-stream procedure. A cataloged or in-stream procedure can contain
JCL statements for several steps, each of whicn executes a particular
program. Cataloged procedures are members of the procedure library.
(The IBM-supplied procedure library is named SYS1.PROCLIE; at your
installation, there may be additional procedure libraries which would
have different names.)

The format of the PROC parameter is:

r
| PROC=procedure name
L

Replace the term "procedure name" with the member name of the cataloged
procedure or the name on the PROC statement of the in-stream procedure.
If you prefer, omit "PROC" and simply code the procedure name. For
example, you can request a cataloged procedure named COBFLG with either
one of the following EXEC statements:

//name EXEC PROC=COBFLG
//name EXEC COBFLG

The PROC parameter or the procedure name must be the first parameter
in the operand field.

54

Note:

s Subsequent parameters in the operand field can be used to override
EXEC statement parameters in the cataloged procedure.

e Such parameters reflect a reference to cataloged procedure steps in
their keywords.

e For details on using and modifying cataloged or in-stream
procedures, see "Part III: Cataloged and In-stream Procedures."

PARM Parameter EXEC

Some IBM-supplied processing programs allow you to select alternatives
from a set of options. For example, two of the options the FORTRAN G
compiler gives you are: (1) whether or not a listing of the object
module is to be printed, and (2) the number of lines in each page of the
listing. Your choices are indicated by certain values given to the PARM
parameter. For example, to indicate that you want a listing and that
each page is to have 65 lines write PARM=(LIST, 'LINECNT=65"').

Each IBM program that requires PARM information has a specific value
for each of its options. For example, in the case of the FORTRAN G
compiler, LIST specifies that a listing of the object module is to be
printed. The PARM values are listed in the publication associated with
the program and in Part II of this publication.

In many cases, default values can be selected for PARM values during
system generation. That is, the system programmer will select one
alternative (e.g., LIST) or assign a fixed value to another (e.qg.,
LINECNT=40). The system will assume the default option unless you
spec1fy the other alternatlve or change the fixed value. Foxr example,

ts IsT an NT= HO.‘ If you want a listlng of
cwrite:

PARM:'LINECNT O' (LIST 15 the default)

1f you want a 1ist1ng that has #0 1ines per page, omit PARM and both
defaults are assumed. -

Your manager or supervisor will tell you which default values were
generated for the installation's operating system.

The installation's processing programs Or your own program can accept
PARM values if the program is written in assembler language or PL/I.
The system will place the PARM values in an area of main storage
available to the program. You can then obtain these values by following
the instructions in "Acquiring the Information in the PARM field of the
EXEC Statement" in the publication IBM System/360 Operating System:
Supervisor and Data Management Services, GC28-6646, or in the

publication IBM System/360 Operating System: PL/I (F) Programmer's
Guide.

The format of the PARM parameter is:

r
| PARM=value
L

[

The EXEC Statement 55

Replace the term "value®™ with up to 100 characters of data. The
following are general rules for coding the PARM parameter:

e If the value contains more than one expression separated by commas,
the value must be enclosed in either apostrophes or parentheses.
For example:

PARM= (DECK, LIST, NOMAP)
PARM="DECK, LIST, NOMAP"'

e If any of the expressions contain special characters, you can either
1) enclose that expression in apostrophes (5-8 punch) and the value
in parentheses, or 2) enclose the entire value in apostrophes. (The
enclosing apostrophes and parentheses are not considered part of the
information and do not count towards the maximum of 100 characters
of data; commas within apostrophes are passed as part of the
information.) For example:

PARM= (DECK, "NAME=FIRST',LIST) or PARM='DECK,NAME=FIRST,LIST®
PARM=(P1,167, 'P*AA') or PARM='P1,167,P*AA"

e If the special character is an apostrophe, it must be shown as two
consecutive apostrophes. For example show NAT'L as:

PARM="NAT"L'

When two apostrophes are coded only one is passed to the processing
program.

e If the special character is an ampersand and you are not defining a
symbolic parameter, show the ampersand as two consecutive
ampersands. For example, show ABCED as:

PARM="ABC&ED'

When two ampersands are coded, only one is passed to the processing
program.

e If there is only one value and the value does not contain special
characters, you need not enclose the value in parentheses or
apostrophes. If the value contains special characters enclose the
value in apostrophes. For example:

PARM=LIST
PARM="L.24"
PARM="NAT"L"

Since the value can consist of up to 100 characters, you may have to
continue the value onto another card. If the value is to be continued,
enclose the value in parentheses. Any value enclosed in apostrophes
must be coded on one card. To continue the value, follow the
continuation conventions as outlined in the topic "Continuing Control
Statements" in the section "Coding Conventions". The continuation comma
is considered part of the value field and counts towards the maximum of
100 characters of data. The following is an example of continuing the
value onto another card.

//name EXEC...,PARM=(DECK,LIST, 'LINECNT=80",
4 NOMAP)

When the job step uses a cataloged procedure, you can pass information
to a step in the procedure by including as part of the keyword PARM, the
procedure step name, i.e., PARM.procstepname. This specification
overrides the PARM parameter in the named procedure step, if one is
present. You can code as many parameters of this form as there are

56

S

steps in the cataloged procedure. For example, the following EXEC
statement passes PARM information to two procedure steps of a cataloged
procedure named PROCTWO. The names of the two procedure steps are STEPL
and STEP2.

//Bl EXEC PROC=PROCTWO,PARM.STEP1=(ONE, 'TWO=B',
V THREE) , PARM. STEP 2= (FOUR, FIVE, SIX,
77 " SEVEN=G')

To pass information to the first step in a cataloged procedure and
nullify all other PARM parameters in the procedure, code the PARM
keyword without a procedure step name. For example:

//7A1 EXEC PROCTWO, PARM=(ONE, 'TWO=B"',EIGHT)

Installation Management Information

Some installations have job step accounting routines in addition to the
regular job accounting routines. Job step accounting is particularly
useful in cases where a different programmer is assigned to write each
step of a job, or where the installation's management wants to Know now
much time is spent on different functions such as compilation or link
editing.

You can specify job step accounting information instead of, or in
addition to job accounting information. Job step accounting information
is specified with the ACCT parameter in the EXEC statement. Job
accounting information is specified with a positional parameter in the
JOB statement (see the chapter "The JOB Statement").

ACCT Parameter

The ACCT parameter allows you to supply job step accounting information.
It has the following format:

- - -1

r
| ACCT=(accounting information) |
L _— - _1

Replace the term "accounting information" with one or more subparamreters
separated by commas. Your manager or supervisor should tell you exactly
how to code this parameter. The following are general rules for coding
the accounting information:

e The total number of characters of accounting information, plus the
commas that separate the subparameters, cannot exceed 142.

e If the list contains only one subparameter, you need not enclose it
in parentheses. For example:

ACCT=12345

e 1f any subparameter contains special characters (except hyphens),
you can either 1) enclose the subparameter in apostrophes (5-8
punches) and the value in parentheses, or 2) enclose the entire
value in apostrophes. The apostrophes are not considered part of
the information. For example:

_ACCT=(12345, *T/24') or ACCT='12345,T/24"
CCT=(12345, T-24)

The EXEC Statement b7

When the job step uses a cataloged procedure, you can supply
accounting information pertaining to a single procedure step by
including, as part of the keyword ACCT, the procedure step name, i.e., o,
ACCT.procstepname. This specification overrides the ACCT parameter in S
the named procedure step, if one is present. You can code as many
parameters of this form as there are steps in the cataloged procedure.
For example, the following EXEC statement passes job step accounting
information to two procedure steps of a cataloged procedure named PROC3.
The name of the two procedure steps are ONE and TWO.

//BBB EXEC PROC3,ACCT.ONE=(COMPILE,'T.JONES', X
/77 *5/20/69') ,ACCT. TWO=(LKED, "T.JONES", *'5/20/69")

To supply accounting information pertaining to all steps in a procedure,
code the ACCT parameter without a procedure step name. This
specification overrides all ACCT parameters in the procedure, if any are
present. For example:

//BBB EXEC PROC=PROC3,ACCT=('T.JONES', '5/20/69")

Processing Options

There are two processing options available to the job step through EXEC
statement parameters.

The COND parameter specifies conditions for executing or bypassing
the job step according to the success or failure of previous steps in
the job. For example, if one of the steps in your job is an error
analysis program, you would only want to execute it if there were errors
in the preceding steps. .

The TIME parameter is only available in systems with MFT or MVT. It
lets you set the maximum amount of time the step may use the CPU. This
parameter lets you find out how long the job step uses the CPU and
limits the CPU time wasted if the job step goes into a loop.

COND Parameter

Occasionally, some of the steps in a job may be unnecessary. For
example, the last step of an inventory job might be to prepare reorder
forms for depleted items. You would not want to execute this last step
if one of the previous steps discovered that there were no missing
items. The COND parameter of the EXEC statement lets you:

e Make as many as eight tests on return codes issuved by preceding job
steps or cataloged procedure steps, which completed normally. If
any one of the tests is satisfied, the job step is bypassed.

e Specify that the job step is to be executed even if one or more of
the preceding job steps abnormally terminated or only if one or moure
of the preceding job steps abnormally terminated.

The tests specified with the COND parameter of the EXEC statement are
performed in addition to the tests specified with the COND parameter of
the JOB statement. That is, the tests in the JOB statement are
performed first, and if any are met the job is discontinued regardless
of what you specify in the EXEC statements. Using the COND parameter in
both the JOB and EXEC statement allows you to set some conditions that
apply to all steps in the job and other conditions that apply only to
particular job steps. Abnormal termination (ABEND) of a job step

58

normally causes subsequent steps to be bypassed and the job to be
terminated. By means of the COND parameter, however, you can specify
execution of a job step after one or more proceding job steps have
abnormally terminated. For the COND parameter to be acted on, a job
step must ABEND while the program has control. If a job step is
abnormally terminated during scheduling, due to failures such as JCL
errors or inability to allocate space, the remaining job steps are
bypassed, no matter what you specified in any COND parameter.

The format of the COND parameter of the EXEC statement is:

(code, operator)
(code,operator,stepname)
COND=({ (code,operator,stepname.procstepname) } ,...)
EVEN
ONLY

o — e o o o=
e e s e e e o

You can write the term (code,operator(,stepnamef.procstepnamej}) up to
eight times, or you can can write either EVEN or ONLY and the term
(code,operator (,stepnamef[.procstepname}]) up to seven times.

Replace the term "code" with any decimal number from 0 through 4095.

Replace the term "operator" with one of the following:

GT (greater than)

GE (greater than or equal to)
E¢ (equal to)

LT (less than)

LE (less than or equal to)
NE (not equal to)

Replace the term "stepname" with the name of the preceding job step
that issues the return code to be tested. If you do not code a
"stepname" the test indicated is performed on all preceding steps. When
the return code is issued by a cataloged procedure step, you may want to
test it in a later job step outside of the procedure. 1In order to test
it, you must give both the name of the job step that invokes the
procedure and the procedure step name, i.e., COND=((code,operator,
stepname.procstepname), ...).

For example, 1f you wrlte-

conu~((2o GT’STEPl) (60 EQ,STEP2))

it would read “Bypass thlS step if 20 is greater than the return code
issued by STEP1, or if STEP2 issues a return code of 60."

If you ertE‘ e

COND“((20 GT STEPl) (60 EQ))

it would read "Bypass thls shep if 20 is greater than the return code
issued by STEPl, or 1f any of the preceding steps issues a return code
of 60™. :

If you want only one test made, omit the outer parentheses, for example:

COND= (10,LT) or COND=(15,NE,STEP5)

The EXEC Statement 59

EXEC

1f you write:
COND=(7,LT,STEP4.LINK)

it would read “Bypass this step if 7 is less than the return code issued
by a procedure step named LINK in the catalcged procedure called by an
EXEC statement named STEPU".

The EVEN and ONLY subparameters are mutually exclusive. Whichever
subparameter you select can be coded in combination with up to 7 return
code tests, and can appear before, between, or after return code tests,
for example:

COND= (EVEN, (4,GT,STEP3))
COND= ((8,GE, STEP1) , (16,GE) ,ONLY)
COND=((15,GT, STEP4) , EVEN, (30,EQ,STEP7))

The EVEN subparameter causes the step to be executed even if one or
more of the preceding job steps have abnormally terminated. However, if
any return code tests specified in this job step are satisfied, the step
is bypassed. The ONLY subparameter causes the step to be executed only
if one or more of the preceding job steps have abnormally terminated.
However, if any return code tests specified in this job step are
satisfied, the step is bypassed.

When a job step abnormally terminates, the COND parameter on the EXEC
statement of the next step is scanned for the EVEN or ONLY subparameter.
If neither is specified, the job step is bypassed and the EXEC statement
of the next step is scanned for the EVEN or ONLY subparameter. If EVEN
or ONLY is specified, return code tests, if any, are made on all
previous steps specified that executed and did not abnormally terminate.
If any one of these tests is satisfied, the step is bypassed.

Otherwise, the job step is executed.

For example, if you write:

COND=EVEN

it would read "Execute this step even if one or more of the preceding
steps abnormally terminated during execution".

If you write:
COND= ((10,LT,STEPA), (20,EQ) ,ONLY)

it would read, "Execute this step only if one of the preceding steps
terminated abnormally but bypass it if 10 is less than the return code
issued by STEPA or if any of the steps that terminated normally issued a
return code of 20".

If you write:
COND=((10,LT, STEPA) , (20,EQ) , EVEN)

it would read, "Bypass this step if 10 is less than the return code
issued by STEPA, or if any of the preceding steps issues a return code
of 20, otherwise execute this step even if one of the preceding steps
terminated abnormally".

If you omit the COND parameter, no return code tests are made and the

step will be bypassed if any of the preceding job steps abnormally
terminated.

60

1 d

Any tests specified with the COND parameter of the JOB statement take
precedence over those specified with EXEC statements. For example,
Figure 9 shows an input deck with nine steps and the return codes
produced by those steps that were executed. The following tests are

performed:

o Before
1. 1Is
2. 1Is

e Before

No

STEP2 (STEP1 produced a return code of 6):
10 less than 6? No.
the return code 2 or 42 No. Execute STEP2

STEP3 (STEP2 produced a return code of 2):
1. 1Is 10 less than 2 or 6? No.
2. Did one or more of the preceding steps terminate abnormally?
. Bypass STEP3.

r : v A
| //7MYJOB JOB A.SMITH,COND=(10,LT) | Return Code |
| //STEP1 EXEC PGM=AAA i 6 |
.	
//STEP2 EXEC PGM=BBB,COND=((2,EQ), (4,EQ))	2
-	
E	
//STEP3 EXEC PGM=CCC,COND=ONLY	-
[-	
7/STEP4 EXEC PGM=DDD,COND=((5,GT,STEP1), (2,EQ))	-
-	
I	
-	
7/STEPS5 EXEC PGM=EEE	9
-	
//STEP6 EXEC PGM=FFF,COND=((8,GT,STEP5),EVEN) N 10	
-	[
//STEP7 EXEC PGM=GGG,COND=(U,GT,STEPU)	12
-	
-	
-	
//STEP8 EXEC PGM=HHH	-
-	
//STEP9 EXEC PGM=III,COND=ONLY	-
L 1 1
Figure 9. Using the COND Parameter
o Before STEPU:

1. Is 10 less than 2 or 6? No.

2. Is 5 greater than 62 No.

3. 1Is one of the preceding return codes equal to 2? Yes. Bypass

STEP4.
e Before STEPS:
1. Is 10 less than 2 or 6? No. Execute STEPS.
The EXEC Statement 61

EXEC

62

s Before STEP6 (STEP5 produced a return code of 9):

1.
2'
3.

Is 10 less than 9, 2, or 6? No.

Is 8 greater than 9? No.

Did one of the preceding steps terminate abnormally? No. A~
Execute STEP6.

» Before STEP7 (STEP6 produced a return code of 10):

1.
2.

Is 10 less than 10, 9, 2, or 62 No.

Is 4 greater than return code of STEP4? STEPH was bypassed and
did not produce a return code so this test is ignored. Execute
STEP7.

» Before STEP8 (STEP7 produced a return code of 12):

1.

Is 10 less than 12, 10, 9, 2, or 6? Yes. Bypass STEP8 and
STEP9.

Figure 10 is another example of the use of the COND parameter. This
figure shows an input deck with nine steps and the return codes produced
by those steps that were executed. The following tests are performed:

e Before TWO (ONE produced a return code of 4):

1.
2‘

Is 5 equal to 42? No.
Is 7 less than 4?2 No. Execute TWO.

e Before THREE (TWO terminated abnormally):

1. 1Is 5 equal to 4? No.

2. 1Is EVEN or ONLY specified in THREE? Yes.

3. 1Is 20 greater than 4? Yes. Bypass THREE.

o -
s Before FOUR:

1. 1Is 5 equal to 4? WNo.

2. Is EVEN or ONLY specified@ in FOUR? Yes.

3. Is any of the preceding return codes equal to 3? No. Execute
FOUR.

o Before FIVE (FOUR produced a return code of 6):
1. Is 5 equal to 6 or 47 No.
2. Is 2 less than the return code of THREE? THREE was bypassed and
did not produce a return code, so this test is ignored.
3. Is EVEN or ONLY specified in FIVE? No. Bypass FIVE.
e Before SIX:

1. Is 5 equal to 6 or 4? No.

2. Is EVEN or ONLY specified in SIX? No. Bypass SIX.
e Before SEVEN:

1. Is 5 equal to 6 or 4? No.

2. 1Is EVEN or ONLY specified in SEVEN? Yes.

3. Is 6 equal to the return code of FIVE? FIVE was bypassed and
did not produce a return code, so this test is ignored. Execute
SEVEN.

¢ Before EIGHT (SEVEN produced a return code of 5):
1. Is 5 equal to 5, 6, or 4? Yes. Bypass EIGHT and NINE. —_—

. 4

E s e nm——— - T 1
| #/BBC /2345, COND=(5,EQ) | Return Code |
| //ONE " pPeM=A ‘ ‘ | 4 i
1 | |
} - - } {
| //TWO EXEC PGM=B,COND=(7,LT) [ABEND |
| - : | |
E 1 |
| //THREE EXEC PGM=C,COND=((20,GT,ONE) ,EVEN) | - |
be | |
| | |
| //FOUR EXEC PGM=D,COND=((3,EQ) ,ONLY) | 6 I
| ’ | |
B { |
| //FIVE EXEC PGM=E,COND=(2,LT, THREE) | - %
| - ‘ | {
| - | |
| - | |
| /7/SIX EXEC PGM=F I - |
| - R i |
| | |
| //SEVEN EXEC PGM=G,COND=((6,EQ,FIVE) ,ONLY) 1 5 |
| - | |
SR | |
| //EIGHT EXEC PGM=H,COND=EVEN I - I
|« | |
| = | |
I SO | |
| //NINE EXEC PGM=I 1 - |
VoL BT 1 B

Figure 10. ‘Using the COND Parameter with ABEND

When the job step uses a cataloged procedure, you can establish
return code tests and the EVEN or ONLY subparameter for a procedure step
by including, as part of the keyword COND, the procedure step name,
i.e., COND.procstepname. This specification overrides the COND
parameter in the named procedure step, if one is present. You can code
as many parameters of this form as there are steps in the cataloged
procedure. For example, the following EXEC statement passed COND
parameters to two procedure steps of a cataloged procedure named PROCH.
The name of the two procedure steps are STEPU4 and STEPG6.

//TEST EXEC PROC=PROCUY,COND.STEPU=((7,LT,STEP1),
72 (5,EQ) , EVEN) , COND. STEP6=((2,EQ) ,
Vs . (10,GT,STEP4))

To establish one set of return code tests and the EVEN or ONLY
subparameter for all steps in a procedure, code the COND parameter
without a procedure step name. This specification replaces all COND
parameters in the procedure, if any are present. For example,

//TEST EXEC PROCH,COND=((7,LT,STEP1), (5,EQ))

The stepname you specify in the condition, for example, STEP2 in
(5,EQ,STEP2), can be the name of either a preceding procedure step in
the cataloged procedure or of a preceding step in the job. Make sure
you do not use the same stepnames for EXEC statements in your job as
those used for procedure steps in any cataloged procedure used in that
job. You can also test the return code produced by a procedure step of

The EXEC Statement 63

EXEC

another cataloged procedure used in the job. For example, if you want
procedure step ST3 of the PROCB cataloged procedure bypassed when 10 is
less than the return code produced by procedure step EDIT of a catalcged
procedure called by the EXEC statement named TWO, code:

//THREE EXEC PROCB,COND.ST3=(10,LT,TWO.EDIT)

You can establish similar tests for all steps in the procedure by coding
the COND parameter without a procedure step name. For examgle, if you
want the entire PROCB cataloged procedure bypassed when 10 is less than
the return code produced by step EDIT of a cataloged procedure called by
the EXEC statement named TWO, code:

//THREE EXEC PROCB,COND=(10,LT,TWO.EDIT)
Notes:

e When a job step that contains the EVEN or ONLY subparameter
references a data set that was to be created or cataloged in a
preceding step, the data set (1) will not exist if the step creating
it was bypassed, or (2) may be incomplete if the step creating it
abnormally terminated.

e Tt is meaningless to specify the COND parameter for the first step
of a job.

TIME Parameter (Systems With MVT Only)

The TIME parameter specifies the maximum amount of time a job step or
cataloged procedure step may use the CPU. Two benefits of the TIME
parameter are that it allows you to find out how long the step uses the
CPU (CPU time appears on the output listing) and it helps 1limit the CPU
time wasted by a step that goes into a loop. Normally, a job step that
exceeds its time 1limit is terminated. However, if the System Management
Facilities option is included in the CPU system and a user exit routine
is provided, this routine can extend the time limit so that processing
can continue. (The System Management Facilities option and user exit
routines to be used with it are discussed in the publication IBM
Systemn/360 Operating System: System Programmer's Guide.)

The format of the TIME parameter is:

r
| TIME=(fminutes][,seconds}) |
L

Replace the term "minutes" and "seconds" with the maximum number of
minutes and seconds that the step can use the CPU. The number of
minutes must be less than 1440 (24 hours); the number of seconds must be
less than 60. That is, the maximum time you can specify is
TIME=(1439,59).

If the job step may require use of the CPU for more than 1439
minutes, code TIME=1440 to eliminate the time limit.

If the CPU time limit is given in minutes only, you need not code the
parentheses. For example, TIME=12. If the CPU time limit given is
seconds only, you must code both the parentheses and a comma to indicate
the absence of minutes. For example TIME=(, 30).

If you omit the TIME parameter, the default CPU time limit for a job

(as established in the cataloged procedure for the input reader) is
assumed.

6U

Coding TIME=1440 also lifts the restrictions on the amount of time a
job step may remain in a wait state. If the System Management
Facilities option is included in the system, the installation determines
this time limit. In this case, a job step remaining in a wait state for
more than the established time limit causes termination of the job
unless a user-provided exit routine extends the wait-state time limit
for that step. If the System Management Facilities option is not
included, the system automatically provides a 30-minute time limit for
wait states; that is, a job step remaining in a wait state for more than
30 consecutive minutes causes termination of the job. If the job step
should be allowed to remain in a wait state for more than the
established time 1limit, code TIME=1440 to eliminate the time limit.

Wnen the job step uses a cataloged procedure, you can set a CPU time
1imit for a single procedure step by including, as part of the keyword
TIME, the procedure step name, i.e., TIME.procstepname. This
specification overrides the TIME parameter in the named procedure step,
if one 1is present. You can code as many parameters of this form as
there are steps in the cataloged procedure. For example, the following
EXEC statement sets a time limit for two procedure steps of a cataloged
procedure named PROCS5. The name of the procedure steps are ABC and DEF.

//AAA EXEC PROCS5,TIME.ABC=20,TIME.DEF=(3,40)
To set a CPU time limit for an entire procedure, code the TIME parameter
without a procedure step name. This specification overrides all TIME

parameters in the procedure if any are present. For example:

//ARA EXEC PROC5,TIME=20

Queuing Option (Systems With MVT Only)

The DPRTY parameter allows you to specify a dispatching priority for the
job step. For further information on dispatching priority, refer to
"Task Priority" in the publication IBM System/360 Operating System:
Supervisor and Data Management Serxvices, GC28-6646.

DPRTY Parameter (Systems With MVT Only)

The format of the DPRTY parameter is:

r— 1
| DPRTY=([value,][,value,})
i 4

Replace both "value," and "value," with a number from 0 through 15. The
system uses the following formula to form the dispatching priority:

(value;x12) + value,=dispatching priority

If you do not assign a number to "value,", a default value of 0 is
assumed. If you omit "value;" you must code both the parentheses and a
comma preceding "value," to indicate the absence of "value,". For
example, if you code:

DPRTY=(,5)

a value of DPRTY=(0,5) is assumed.

The EXEC Statement 65

If you do not assign a number to "value,", a default value of 11 is
assumed. If you omit "value," you need not code the parentheses. For
example, if you code:

DPRTY=7
a value of DPRTY=(7,11) is assumed.

If you omit the DPRTY parameter, the job step is assigned the
priority you specified for the entire job either with the PRTY parameter
of the JOB statement, or by default.

Whenever possible, you should avoid assiganing a number of 15 to
"value;". This number is used for certain system functions.

When this step uses a cataloged procedure, you can assign a
dispatching priority to a single procedure step by including, as part of
the DPRTY parameter, the procedure step name, i.e., DPRTY.procstepname.
This specification overrides the DPRTY parameter in the named procedure
step, if one is present. You can code as many parameters of this form
as there are steps in the cataloged procedure. For example, the
following EXEC statement is used to establish a dispatching priority for
two procedure steps of a cataloged procedure named PROC6. The names of
the procedure steps are UP and DOWN.

//53TEP9 EXEC PROC6,DPRTY.UP=(,8) ,DPRTY.DOWN=(4,6)

To assign a single dispatching priority to an entire cataloged
procedure, code the DPRTY parameter without a procedure step name. This
specification overrides all DPRTY parameters in the procedure, if any
are present. For example:

//STEP9 EXEC PROC=PROC6,DPRTY=(5,9)

Note: If your installation provides time-slicing facilities in a system
with MVT, the DPRTY parameter can be used to make a job step part of a
group of job steps to be time-sliced. At system generation, the
priorities of the time-sliced groups are selected. 1f the number
assigned to value 1 corresponds to a priority number selected for
time-slicing and value 2 is either omitted or assigned a value of 11,
then the job step will be time-sliced.

Main Storage Options (Systems With MVT Only)

MVT processes several jobs at the same time in different regions of main
storage. The size of each region depends on the requirements of each
job. Once the processing of that job is completed, the system uses that
space for other jobs. (The free space can be subdivided into smaller
regions, used as is for a region the same size, or combined with
adjacent free space for a larger region.)

Usually you assign a region size through the REGION parameter of the
JOB statement as described in the preceding chapter. 1In this case each
step of the job will be executed in that region. You can, however,
specify a different region size for each step in the job using the
REGION parameter of the EXEC statement. This is desirable in cases
where different steps need a greatly different region size. For example
one step of your job may need 16K while another may need 128kK. If you
do not specify a region size for each step, there would be 112K unused
while the first step is executed. Had you specified a region size for
each step, MVT could use those 112K for executing other jobs while your
first step is executed.

66

“d——

Regions are contigquous areas of main storage. However, you can
define a two-part region if your operating system was generated with
"main storage hierarchy support". Main storage nierarchy support
provides for storage hierarchies 0 and 1. If IBM 2361 Core Storace,
xodel 1 or 2, is present in the system, processor storage is referred to
as hierarchy 0 and 2361 core storage is referred to as hierarchy 1.

If 2361 Core Storage is not present but main storage hierarchy
support was specified during system generation, a two-part region is
established in processor storage when a region is defined to exist in
two hierarchies. The two parts are not necessarily contiguous.

The REGION parameter allows you to specify the region size to be used
by your job step.

Notes:

e I1f you have specified a REGION parameter in the JOB statement,
REGION parameters on the JOB'S EXEC statements are ignored.

e In systems without main storage hierarchy support, processor storage
is referred to as main storage. In systems with main storage
hierarchy support, main storage comprises both processor storage
(hierarchy 0) and 2361 core storage (hierarchy 1).

Sometimes a job step will run out of space in its region. Normally,
this means that the step is terminated. However, if the rollout/roliin
option was generated for your MVT system, the system can obtain more
space for your job step. This is accomplished by "rolling out" another
job step that is currently being executed and allocating its region to
your job step. After processing of your step is ended, the rolled-out
step is "rolled in" and its processing continues.

The ROLL parameter lets you specify whether the job steps in your job
can be rolled out and whether they can cause roll out of other job
steps.

Note: ROLL parameters coded on EXEC statements are superseded by a ROLL
parameter coded on the JOB statement.

REGION Parameter (Systems With MVT Only)

The REGION parameter allows you:

1. To request the maximum amount of main storage to be allocated to
the job step. This figure must include the size of those
components that are required by your program and are not resident
in storage.

2. To request the amount of main storage to be allocated to the job
step and in which storage hierarchy or hierarchies the space is to
be allocated. This request should be made only if main storage
hierarchy support is specified during system generation.

The storage requirements you must consider when specifying a region
size are outlined in the publication IBM System/360 Operating Systemn:
Storage kstimates.

1. The format of the REGION parameter for systems without storage
hierarchies is:

- = - a

r
| REGION=valueK |

—_—1

The EXEC Statement 67

EXEC

68

Replace the term "value®™ with the number of contiguous 1024-bytes
areas you want allocated to the jobstep, for example, REGION=52K.
This number can range from one to five digits but cannot exceed
16383. It should be specified as an even number. (If you specifty
an odd number, the system treats it as the next highest even
number.)

If you omit the REGION parameter, the default value (as established
in the input reader procedure) is assumed.

When the job step uses a cataloged procedure, you can request a
region size for a single procedure step by including, as part of
the REGION parameter, the procedure step name, i.e.,
REGION.procstepname. This specification overrides the REGION
parameter in the named procedure step, if one is present. You can
code as many parameters of this form as there are steps in the
cataloged procedure. For example, the following EXEC statement is
used to assign reqgion sizes to two procedure steps of a cataloged
procedure named PROC7. The names of the procedure steps are LITTLE
and BIG.

//G0O EXEC PROC7,REGION.LITTLE=20K,REGION.BIG=200K

To request a single region size for an entire cataloged procedure,
code the REGION parameter without a procedure step name. This
specification overrides all REGION parameters in the procedure, if
any are present. For example,

//GO EXEC PROC=PROC7,REGION=200K

The format of the REGION parameter for systems with storage
hierarchies is:

- Ll

.
| REGION=([valuey K] {,value;K1)
L 1

Replace the term "value," with the number of contiguous 1024-byte
areas you want allocated to the job step in hierarchy 0 (processor
storage); replace the term "value;" with the number of contiguous
1024-bytes areas to be allocated in hierarchy 1 (2361 storage),
€.9., REGION=(60K,200K). Each value specified should be an even
number. (If you specify an odd number, the system treats it as the
next highest even number.)

The following rules apply to the hierarchy sizes:

e« If 2361 Core Storage is not present but main storage hierarchy
support was specified during system generation, a two-part
region is established in processor storage when a region is
defined to exist in two hierarchies. The two parts are not
necessarily contiguous. In this case, the sum of value, and
value, cannot exceed 16383. For example, REGION=(10X,UuK).

e If 2361 Core Storage is present, value,, cannot exceed 16383,
and value, cannot exceed 1024 if using a single Model 1, or
2048, if using a single Model 2.

e ITf main storage hierarchy support was not generated and regions
are requested in both hierarchies, the region sizes are
combined and an attempt is made to allocate a single region
from processor storage. If a region is requested entirely from
hierarchy 1, no hierarchy 0 segment is allocated.

h 4

In systems with main storage hierarchy support, you can omit either
subparameter, thereby requesting storage in only one hierarchy. If
you are requesting storage only in hierarchy 1, you must code a
comma to indicate the absence of the first subparameter, for
example, REGION=(,52K). If you are requesting storage only in
hierarchy 0, you need not code the parentheses, for example,
REGION=70K.

If you omit the REGION parameter, the default value (as established
in the input reader procedure) is assumed. When the default region
size is assumed, storage is always allocated in hierarchy 0.

When the job step uses a cataloged procedure, you can request a
region size for a single procedure step by including, as part of
the region parameter, the procedure step name i.e.,
REGION.procstepname. This specification overrides the REGION
parameter in the named procedure step, if one is present. You can
code as many parameters of this form as there are steps in the
cataloged procedure. For example, the following EXEC statement is
used to assign region sizes to two procedure steps of a cataloged
procedure named PROC8. The names of the procedure steps are FIRST
and SECOND.

//HIER EXEC PROCS8,REGION.FIRST=(40K, 20K),
7/ REGION. SECOND=(, 32K)

To request a single region size for an entire cataloged procedure,
code the REGION parameter without a procedure step name. This
specification overrides all REGION parameters in the procedure, if
any are present. For example:

//7HIER EXEC. PROC=PROC8,REGION=(40K, 32K)

Note: If you have specifed a REGION parameter on the JOB statement,
REGION parameters on the job's EXEC statements are ignored.

ROLL Parameter (Systems With MVT Only)

The function of rollout/rollin is to allocate additional main storage to
a job step whose own region contains no more available space. 1In order
to allocate this additional main storage to a job step, another job step
may have to be rolled out, i.e., temporarily transferred to secondary
storage. The ROLL parameter allows you to indicate whether or not your
job step can be rolled out and whether or not it can cause rollout of
other job steps.

The format of the ROLL parameter is:

r
| ROLL=(x,y)
L 1

The "x" declares the job step's ability to be rolled out. If "x" is
YES, the job step can be rolled out; if "x" is NO, the job step cannot
be rolled out. The "y" declares the job step's ability to cause rollout
of another job step. If "y" is YES, the job step can cause rollout; if
"y" is NO, the -job step cannot cause rollout. (YES must be specified if
you want additional main storage allocated to the job step if it is
required.) If you include the ROLL parameter, both the "x" and "y"
subparameters must be coded.

For example, ROLL=(NO,YES) indicates that the job step cannot be
rolled out but that it can cause roll out.

The EXEC Statement 69

EXEC

. d

Tr—

In systems with main storage hierarchy support, you can omit either
subparameter, thereby requesting storage in only one hierarchy. 1If
you are requesting storage only in hierarchy 1, you must code a
comma to indicate the absence of the first subparameter, for
example, REGION=(,52K). If you are requesting storage only in
hierarchy 0, you need not code the parentheses, for example,
REGION=70K.

If you omit the REGION parameter, the default value (as established
in the input reader procedure) is assumed. When the default region
size is assumed, storage is always allocated in hierarchy 0.

When the job step uses a cataloged procedure, you can request a
region size for a single procedure step by including, as part of
the region parameter, the procedure step name i.e.,
REGION.procstepname. This specification overrides the REGION
parameter in the named procedure step, if one is present. You can
code as many parameters of this form as there are steps in the
cataloged procedure. For example, the following EXEC statement is
used to assign region sizes to two procedure steps of a cataloged
procedure named PROC8., The names of the procedure steps are FIRST
and SECOND.

//7HIER EXEC PROC8,REGION.FIRST=(40K, 20K),
77 REGION. SECOND=(, 32K)

To request a single region size for an entire cataloged procedure,
code the REGION parameter without a procedure step name. This
specification overrides all REGION parameters in the procedure, if
any are present. For example:

//HIER EXEC PROC=PROCS,REGION=(40K, 32K)

Note: If you have specifed a REGION parameter on the JOB statement,
REGION parameters on the job's EXEC statements are ignored.

ROLL Parameter (Systems With MVT Only)

The function of rollout/rollin is to allocate additional main storage to
a job step whose own region contains no more available space. In order
to allocate this additional main storage to a job step, another job step
may have to be rolled out, i.e., temporarily transferred to secondary
storage. The ROLL parameter allows you to indicate whether or not your
job step can be rolled out and whether or not it can cause rcllout of
other job steps.

The format of the ROLL parameter is:

[p—

r
| ROLL=(x,y)
L

The "x" declares the job step's ability to be rolled out. If "x" is
YES, the job step can be rolled out; if "x" is NO, the job step cannot
be rolled out. The "y" declares the job step's ability to cause rollout
of another job step. If "y" is YES, the job step can cause rollout; if
"y" is NO, the job step cannot cause rollout. (YES must be specified if
you want additional main storage allocated to the job step if it is
required.) If you include the ROLL parameter, both the "x" and "y"
subparameters must be coded.

For example, ROLL=(NO,YES) indicates that the job step cannot be
rolled out but that it can cause roll out.

The EXEC Statement 69

When the job step uses a catalcged procedure, you can indicate
whether or not a single procedure step has the ability to be rolled out
and to cause rollout of another job step. To indicate this, include, as
part of the ROLL parameter, the procedure step name, i.e.,
ROLL.procstepnamre. This specification overrides the RCLL parameter in
the named procedure step, if one is present. You can code as many
parameters of this form as there are steps in the cataloged procedure.
For example, the following EXEC statement is used to assign roll
conditions to two steps of a cataloged procedure named PROCY9. The names
of the procedure steps are HOT and COLD.

//ROLLER EXEC PROCY9,ROLL.HOT=(NO,YEs3),
/7 ROLL.COLD=(YLS, NO)

To indicate whether or not all of the steps of a cataloged procedure
have the ability to be rollecd out and to cause rollout of other Jjob
steps, code tne ROLL parameter without a procedure step name. This
specification overrides all ROLL parameters in the procedure, if any are
present. For example:

//ROLLER EXEC PROCY9,ROLL=(YES,NO)

If this parameter is omitted, the default specified in the reader
procedure is used. In the IBM-supplied reader procedures, the default
specified is ROLL=(YES,NO).

Notes:

e roll parameters coded on EXEC statements are superseded by a ROLL
parameter coded on the JOE Statement.

¢ Teleprocessing jobs that use the autopoll option should not have the
ability to be rolled out. A rolled out job using this option cannot
be restarted properly. Therefore, you should always code
ROLL=(NO,YES) or ROLL=(NO,NO) for this kind of job.

Checkpoint/Restart

When a job step abnormally terminates (ABEND), you may have to resubmit
the job for execution. This means lost computer time and a delay in
obtaining the desired results. To reduce these effects, you can use the
restart facilities of the operating system provided your program is
written in the assembler language, COBOL, or PL/1.

If a job step abnormally terminates or if a system failure occurs in
a system with MFT or MVT, the restart facilities allow you to request
that the job step be restarted automatically either at the beginning of
the step (step restart) or within the step (checkpoint restart).
Automatic restarts are specified with the RD parameter of the EXEC
statement.

¥For detailed information on the checkpoint/restart facilities, using
the assembler language refer to the publication IBM System/360 Operating
System: Supervisor and Data Management Services; using COBOL, to IBM
System/360 Operating System: COBOL (E) Programmer's Guide, or to IBM
System/360 Operating System: COBOL (F) Programmer's Guide, or to IBM
System/360 Operating System: American National Standard COBOL
Programmer's Guide; using PL/1, to IBM System/360 Operating System:
PL/1 (F) Programmer's Guide; and also to "Appendix C: Using the Restart
Facilities" of this publication and to the publication IBM System/360
Operating System: Advanced Checkpoint/Restart Planning Guide,
GC28-6708.

70

RD Parameter

A job can be automatically restarted at the beginning of the job step
that abnormally terminated (step restart) or within the step (checkpoint
restart). In either case, automatic restart can occur only if:

1. vyou use the RD parameter to request restart,

2. the return code returned during abnormal termination indicates that
the step is eligible for restart, and

3. the operator authorizes restart.

In order for checkpoint restart to occur, the CHKET macro instruction
(assembler), or the RERUN clause (COBOL), or the CALL 1HECKET statement
(PL/1) must have been executed in your procescsing program prior to
abnormal termination. Through the RD (restart definition) paramecter,
you can specify that step restart can occur or that the action of the
ChGKkPT macro instruction (assembler), or the RLRUN clause (COB0L), or the
CALL IRECKPT statement (PL/1) is to be suppressed.

The format of the RD parameter is:

r
l RD=request |

—— - 4

Replace the work "request" with:
R to permit automatic step restart

NC to suppress the action of the CHKFT macro instruction, or
RERUN clause, or CALL IHECKPT statement, anG not permit
automatic restart

NR to request that the CHKPT macro instruction, or KERUN clause,
or CALL IHECKPT statement be allowed to establish a
checkpoint, but not to permit automatic restart

kNC to permit step restart and to suppress the action of the CnkpT
macro instruction, or RERUN clause, or CALL 1HECKFT statemwent.

Each of these requests is described in more detail in the followinc
paragraphs.

RD=R: If the processing programs used by this job ster do not include
any CdKPT macro instructions, (assembler), or RERUN clause (COBOL), or
CALL IHECKPT statements (PL/1), RD=R allows execution to be resumed at
the beginning of this step if it abnormally terminates. If any of these
programs do include one or more CHKPT macro instructions, or RERUN
clauses, or CALL IHECKPT statements step restart can occur if a step
abnormally terminates before execution of a CHKPT macro instruction or
RERUN clause, or CALL IHECKPT statement; thereafter, checkroint restart
can occur. If you cancel the effects of the CHKPT macro instructions or
RERUN clauses, or CALL IHECKPT statements before a checkpoint restart is
performed, the request for automatic step restart is again in effect.

RD=NC or RD=RNC: RD=NC or RD=RNC should be specified when you want to
suppress the action of all CHKPT macro instructions (assemvler), or
ReRUN clauses (COBOL), or CALL IHECKPT statements (PL/1) included in the
programs used by this step. When RD=NC is specified, neither step
restart not checkpoint restart can occur. When RD=RNC is specified,
step restart can occur. RD=NC has no effect on processing if CHKPT
macro instructions, or RERUN clauses, or CALI IHECKPT statements are not
included in the program.

The EXEC Statement 71

kE=NRK: RD=NR pernits a CuKP1l macro instruction (assembler), or KERUN
clause (COBOL), or CALL IAECKPT statement (PL/1) to establish a
checkpolint, but does not mnermit automatic step or checkpoint restarts.

Instead, at a later time, you can resupmit the job and begin execution A,
at a specific checkpoint. (The RESTAKT parameter of the JOB statement
is used for resubmitting a job for restart. Jee "Checkpoint/restart" in

the chapter "The JOR Statement".) This parameter has no effect on
processing if CHKPT macro instructions, RERUN clauses, or CALL IHECKPT
statements are not included in the program.

If automatic restart is requested for an abnormally terminated step
and restart is authorized by the operator, special disposition
processing is performed. Iif automatic step restart is to occur, all
data sets in the restart step with a status of OLD or MOD, and all data
sets being passed to steps following the restart step are kept. All
data sets with a status of NEW in the restart step are deleted. If
automatic checkpoint restart is to occur, all data sets currently in use
by the job are kept. (For further information on data set dispositions
refer to the section "The DD sStatement” and to "Appendix C: Using the
restart Pacilities."

If you omit the RD parameter and no CHKPT macro instructions, or
RERUN clauses, or CALL IHECKPT statements are executed, automatic
restart cannot occur. If you omit the RD parameter but one or more
CHKPT macro instructions or rERUN clauses, or CALL IHECKPT statements
are executed, automatic checkpolnt restart can occur.

When this job step uses a cataloged procedure, you can make a restart
request for a sinale procedure step by including, as part of the KD
parameter, the procedure step nawe, i.e., RD.procstepname. This
specification overrides the KD parameter in the named procedure step, if
one is present. You can code as many parameters of this form as there
are steps in the cataloged procedure.

For example, the following EXwuC statement requests restart for two
steps of a cataloged procedure named PROC10. The names of the procedure
step are FIVE and NINE.

//ASTEP EXEC PROC10,RD.FIVE=R,RD.NINE=NC

To specify a restart request for an entire cataloged procedure, code
tne RD parameter without a procedure step name. This specification
overrides all RD parameters in the procedure, if any are present.

For exampie:
//ASTEP EXEC PROC=PROC10,RD=K

Notes:

e 1f you specify the RD parameter on the JOB statement, RD parameters
on the job's EXEC statements are ignored.

e Yinen using a system with MVT, MSGLEVEL=(1,0) or MSGLEVEL=(1,1) must
be coded on the JOB statement. If you omit this parameter, restart
is not performed.

» If restart is requested for this step, assign each step a unique
step name. (Upon restart, tite system searches the name field for
the corresponding name of the abnormally terminated step. If two
steps have the same name, restart is attempted at the first step
encountered with the corresponding name regardless of whether or not
this is the step that abnormally terminated.) Step names are
assigned in the name field of the EXEC statement for each step.

e If restart occurs, the CPU time limit assigned to the step with the
TIME parameter is restored to its original value. 2,

72

e Lo d

The DD Statement

T'here must be a DU statement for each data set used in your job step.
Db statements follow the EXEC statement that marks the beginning of the
job step. You can include a maximum of 255 DD statements in each job
step.

The main functions of the DD statements are to describe the
characteristics of data sets and to indicate their location. These
functions allow you a great deal of freedom in writing your program.

For example, if you are writing a program to process paid bills, you do
not have to indicate in your program the size of the input records, or
tne type of device in which they are located. You can postpone these
definitions until you run the program when you must write the DD
statement for the input data sets. You can debug your program, and then
run it several times with different DL statements for the input recoxd
Gata set. In that way you can determine which record size is mrost
efficiently processed, whether the input should come from a card reader
or a magnetic tape unit. All your program needs to know to refer to the
data set is the name of the DD statement (ddname) that describes the
data set. Each time you execute the program you can use the DD
statement to describe a different data set as long as the ddname remains
constant. (Refer to "Section 3: Data Management" in the publication
183M system/360 Operating System: Concepts and Facilities for a summary

of the data management concepts you must know before reading this
chapter on the DD statement.)

You can, however, define data set characteristics within your program
so that you will not have to specify those characteristics that remain
constant each time you use a data set. The number and type of data set
characteristics you can specify in your program rather than in the DL
statement depends on the language you are using for writing your
program. For example, the assembler language allows you to specify more
data set characteristics in your program than the FORTRAN language.
nowever, regardless of the facilities of the language you are using, you
should only specify those requirements essential to processing in your
program and leave the rest for the DD statement. This gives you more
flexibility in writing the program and places fewer restrictions on any
future changes you may have to make to the program.

All job steps in your job (except those steps that use a cataloged
procedure) require DD statements because every program must have either
an input data set, or an output data set, and, in many cases, work data
sets in order to operate. The names of the DD statements required for
iBM-supplied programs, such as compilers and utilities, are predefined
and you must code their parameters according to the rules stated in the
publications associated with the programs. (A summary of JCL statements
for compilers, linkage editors, and loader appears in Part II of this
publication.)

Only you can determine the DD statements required for your own
program. In general, you will need one DD statement for each data set
defined with:

A data set numper if you are using ALGOL.

A DCB macro instruction if you are using the assembler.
An FD entry if you are using COBOL.

A data set reference number if you are using FORTRAN.
Tne TITLE option or file name if you are using PL/1.

o ¢ ¢ & 0

The DD Statement 73

You will need more than one DU statement for each data set in the two
following cases:

1. bDefinition and retrieval of index sequential (ISAl) data sets may
require up to three DD statements.

2. Several input data sets, each defined by a different DD statement,
may be read as if they were a single data set through tne technigue
of concatenation.

In both cases, only the first DD statement is c¢iven a ddnare.

Jf the -job step uses a catalogea procedure, you can use a DD
statement either to override parameters in a DD statement in the
procedure, or simply, to add a new DD statement to the procedure. 1In
both cases, the modification remains in effect only for the duration of
the job step, it does not change the procedure permanently.

A DD statement must contain the term DO in its operatior field.
Although all parameters in the DD statement's operanu tield are
optional, a blank operand field is invalid, except when you are
overriding DD statements defining concatenated data sets in a cataloged
procedure. (See "Overriding, Adding and Nullifying FParameters on a DD
Statement™ in Part III of this publication.

The parameters in the operand field allow you to specify five types
of optional information:

1. Data set information.

2. Location of the data set.

3. Size of the data set.

4., Dpata attributes. i
5. Special processing options.

Table 5 shows the parameters used for each type of information and their
functions.

As you can see, not all parameters are needed to define a data set.
In fact, some combinations of parameters cannot be used in the same DD
statement.

Tne valid combination of DD statement parameters allow you to perform
the following functions:

1. Create a data set:
a. on unit record devices (card punch or printer)
b. on system output devices
c. on magnetic tape
d. on direct access devices

2. Retrieve an existing data set:
a. from unit record devices (card reader or paper tape reader)
b. from input stream
c. passed data set (from magnetic tape on direct access)
d. cataloged data set (from magnetic tape or direct access)
e. kept data set (from magnetic tape on direct access)

3. Extend an existing data set:
a. passed data set (from magnetic tape or direct access)
b. cataloged data set (from magnetic tape or direct access) A,
c. kept data set (from magnetic tape or direct access)

4

i

4. Define special data sets:
a. private libraries
b. dump data sets
c. checkpoint data set

5. Postpone definition of a data set

This chapter describes the ddname and the parameters needed for each
of the above functions. The sections that describe each of the
functions are self-contained. For example, the section on how to create
a data set on magnetic tape contains full descriptions of all the
parameters (and their appropriate subparameters) needed for this
function. Self-contained sections eliminate ambiguity in the use of
parameters, but lead to some ryepetition in the text. For this reason, a
summary of the DD statement is given in Appendix . This appendix shows
the correct formats of the parameters for each of the functions without
textual descriptions.

Note: Some devices, such as graphics devices, are not discussed in this
manual. For information on how to specify IPM devices not described in
this manual, refer to IBM System/360 Cperating System: Job Control
Language Reference.

The DD Statement 75

Table 5.

DD Statement Paraneters (Part 1 of 2)

r
| Type

T
| Parameter

T
| Function
|

I,_...___ 4

T
| Data set | DBSNAME
| Information| (or DSN)

+ it
|Names the data set. If] K

jomitted, the data set |
|is considered to Le
| temporary.

4

T
| B/K

|
|
-

T
| Comments

o]
-
w
ro

+
sSpecifies the current

|status of the data set
|and whether or not it
|will be retained after
| the job step.

4

| Location of
| the pata
Set

UNIT

+
Specifies the type of
|device to be used for

| the data set.
i

VOLUME
(or VOL)

+
| Describes the volume
|on wnich the data set
|resides.

e e e e e e e e e e o e e

|For magnetic tape or
|direct access devices
|jonly.

4

LABEL

+
t

| Describes the volume
| tabel.

t
|For magnetic tape or
|direct access devices
|lonly.

SYSOoUuT

Routes a data set
through the output
stream.

e ——— e —

$——

#*

| Indicates that the
|data set is in the
| input stream.

|Only one of these
|parameters can be
|used in a DD state-
|ment.

e e A et e e e o e T e e e e e i e S s e e o e S e
=)
b
<
™

| Indicates that the
|data set is in the

| input stream and that
|it contains JCL state-
|ments to be treated as
|data.

IR

+—

e ——— e

Size of the|SPACE
Data Set

+
| Requests space on
|direct access devices.

|Only one of these
|parameters can be
jused in a DD state-
|ment.

Used to split cylin-
ders between data sets

+——t——

| Specifies that the
|cata set shares direct
|access space with

| other data sets.

s

Data
Attributes

[e e e G e e e e s e o o o e Tt e G . e S s (o S T ———— — T — —— ——— {— — — . . . ot

+
| sSpecifies the data
|attributes not speci-
|fied in your process-
|ing program.

L

o e e e e e ——————— e —

|
|
t

e e e e e e e e e e e e e s s — — ———— i e et e s s s i . i e it e s s i e e s i e e s . e et . e e e et .

T Sy S S

76

Table 5. DD Statement Parameters (Part 2 of 2)

F T | T 1 "l
| Type | Parameter| Function | B/K| Comments |
b + - -+ -
special	SEP	Requests that the data	K	Only one of these
Processing		set be assigned a]	parameters can be	
Options		separate channel from		used in a DD state-
]	the ones assigned to		ment.	
		earlier data sets.		
t + +-—A				
	AFF	Requests the same	K	
		separation require-		
		ments as a previous DD		
		statement that used		
		the SEP parameter.		
t + +——+				
	DUMMY { Indicates that I/0	P		
		operations are to be		
		bypassed for this datal]		
		set. Commonly used		
		while debugging a	i	
		program. b		
! b e i				
	DDNAME	Postpones the defini-	XK	In systems with PCP,
i		tion of a data set.		all other parameters
		Useful in cataloged		must be omitted. In
		procedures.		systems with MFT or
				MVT, the DCB subpa-
				rameters BLKSIZE and
				BUFNO may be coded.
t + } +				
	ucs	Requests a particular	K	
	J]chain in a 1403 print-			
		er with the universal		
		character set feature.		
t t t-—+ 1				
]	OUTLIM	Specifies a l1limit for	K	[The OUTLIM parameter
		the number of logical]is ignored unless
		records included in		SYSOUT is coded in
		the output data set		the operand field of
]		being routed through	jthe same DD state-	
		the output stream.		ment. For systems
				with MFT or MVT only.
} i 1 L 1 F)				
jLegend: P = Positional Parameter				
K = Keyword Parameter				
L J

The DD Statement 77

Naming the DD Statement

The ddname identifies the DD statement so that subsequent JCL statements
and the processing program can refer to it. The following rules apply
to the ddname:

1. Only the first DD statement of a group of DD statements that define
an indexed sequential (ISAM) data set must have a ddname. The name
field of the other DD statements in the group must be left blank.

2. Only the first DD statement of a group of DD statements that define
concatenated data sets must have a ddname. The name field of the
other DD statements in the group must be left blank.

3. All other DD statements must have ddnames.

Each ddname within a jobstep should be unique. If duplicate ddnames
exist, all I/0 references are directed to the first such DD statement in
the job step.

The ddname is coded in the name field of the DD statement. It can Ddname
range from one to eight characters in length and can contain any B

alphanumeric or national (a,$,#) characters. However, the first
character of the name must be a letter or national character and must be
in column 3. The following are examples of ddnames in several DD
statements.

//DD1 DDa.aw
//SYSIN DDews
/7/FILE DD...
//BAREA25 DD...
//7%#103 DD...

//FT31F001 DD...

The ddnames used by IBM processing programs are predetermined and you
must code them as shown in the publications associated with the
programs, and in Part II of this publication.

If you code your program in ALGOL or FORTRAN you must use certain
ddnames for your data sets. The format of the ddnames is:

ALGLDDnn (ALGOL)
FTnnF001 (FORTRAN)

where nn is the data set reference number. For further information
refer to the programmer's guide for the language you are using.

The ddnames JOBLIB,STEPLIB, SYSABEND, SYSUDUMP, and SYSCHK are reserved
for special system facilities. These ddnames are described in "Special
DD statements" later on in this section.

If your job step uses a cataloged procedure, the ddname must be
qualified by the procedure step name, i.e., procstepname.ddname. The
ddname can identify either a DD statement in the procedure whose
parameters you want to override, or a new DD statement you want to add
to the procedure. (In both cases, the modification remains in effect
only for the duration of the job step; it does not change the procedure
permanently.) For example, suppose you are using a cataloged procedure
named PROCTWO. The PROCTWO procedure has two procedure steps named
FIRST and SECOND. You want to change a DD statement named OUTPUT in
FIRST and add a DD statement named DATA to SECOND. Therefore you would
code:

//name EXEC PROC=PROCTWO

//FIRST.OUTPUT DD...
//SECOND.DATA DD...

The DD Statement 79

Table 6. Parameters for Creatinc a Data Set

r - L] T T 1
| Device | Parameter Type |Parameterj Comments |
L + i } 1
r] T T

|Unit |Location of the | UNIT | Required.]
|Record |Data Set | | f
|Devices |} + 1
| |Data Attributes DCB | Optional. |
| t 1 |
| {Special Process-| UCS | Optional (for 1403 printer with the universal]
H lina Ontisns H I chavrartor cot+ fast+nrad

: {ing Options : | character set feature). !
| | t + 1
| | | DUMMY | Optional.

b + + } 1
L T - t t - ——— 1
|System |[Location of the | SYSOUT | Required. Specifies the output class. |
| Cutput |Data Set 3 + 9
| Devices | | UNIT | Systems with MFT or MVT only. Optional. |
| 3 ¢ + 1
| |Size of the Data| SPACE | Systems with MFT or MVT only. i
| | Set | | Optional. |
| t t i
| | Data Attributes DCB | Optional. |
i k + i
| |Special Process-| OUTLIM | Optional. Meaningful only for Systems with MFT |
| |ing Option | | or MVT that have the Systems Management |
| | | | Facilities Option.

3 } + + i
|MagneticjData | DSNAME | Required if the data set is to be cataloged or |
| Tape | Information | (or DSN) | used by a later job. i
| | t + 1
		DIsSP	Required if the data set is to be cataloged, used
			by a later step in this job, or used by another
			job.
[b . } + - {			
] jLocation of the	UNIT	Required unless you request (with the VOLUME pa-	
	Data Set i	rameter) the same volume used for an earlier data	
			set in your job. earlier data set in your job.
	t + 4		
		VOLUME	Required if you want a specific volume. If you doj
		(or VOL)	not use this parameter you get a scratch tape.
	b + 1		
i	LABEL	Required if you do not want to use standard	
			labels for the aata set. 1
1 b + - i			
	Data Attributes	DCB	Optional.
[t + t 1			
	3Special Process-	SEP	Either parameter can be used.
	ing Options p—————— 4		
		AFF	
i t + 1			
i	DUMMY	Optional. i	
F -t--- - + t 1			
Direct	Data Set	DSNAME	Required if the data set is to be cataloged or
access |Information | (or DSN)| used by a later job.

{Devices | t + -
| | | DISP | Required if the data set is to be cataloged, used |
{ | | | by a later step in this jopb, or used by another i
| i | | Jjob. |
i b + | - - {
] | Location of the | UNIT | Required unless you request (with the VOLUME par- |
| |Data Set | | rameter) the same volume used for an earlier data |
| | | | set in your job, or unless you use the SPLIT or

|] | | SUBALLOC parameters to allocate space to this |
| |] | data set. i
i i b 3 ‘ 3
| t | VOLUME | Required if you want a specific volume or multiplel
| | | (or VOL)| volumes. If you do not use this parameter your |
| | | | data set will be allocated on any suitable volume. |
|] t t 1
| | | LABEL | Required if you want the data set to have both |
| | | | standard and user labels. |
[b t + : - i
	size of the Data	SPACE	One of these parameters is required. SPLIT can
	set p———————— { only be used for BSAM or QSAM data sets SPACE must		
		SPLIT	be used for ISAM data sets.
	e — i		
		SuBALLOC	

| t t + - -

| | Data Attributes |DCB | Optional. Required for BDAM and ISAM data sets.

| b t +

| |Special Process-|SEP | Either parameter can be used. |
I |ing Options pm———— 9 |
| | |AFF | !
1 [b e i
| i | DUMMY | Optional. |
3 _ L L i K

. Td

Creating a new Data Set

A new data set is an output data set. Before you define it with a DD
statement you must decide on what type of device you want it placed.
You can choose from:

Unit record devices (card punch or printer).
Magnetic tape.

Direct access devices.

System output device.

You will need a different set of parameters depending on the type of
device you choose (see Table 6). The following topics describe the use
of those parameters for each type of device. Please fold out Table 6
while reading this chapter.

Unit Record Devices

You can create an output data set on either a card punch or a printer.
As shown in Table 6, only the UNIT parameter is required to indicate the
device you want for the data set. The DSNAME and DISP parameters are
not used because data sets on unit record devices are always temporary
and cannot be retrieved by another DD statement in your job.

This section is summarized in Table 63 of Appendix D.

Location of the Data Set

The location of the data set is given by the UNIT parameter.

UNIT: The format of the UNIT parameter is:

r - 1
| unit address |
| UNIT=(device type]
| group name |
L—— 1
where:

unit address
is the actual machine address of the device. For examrle,
UNIT=00F. You should not specify the address unless you are sure
you want that specific device.

device type
corresponds to the model number of the I/0 device. Coding a device
type provides you with a certain degree of device independence in
that your data set may be placed in any of a number of devices of
the same type. For example, if you code

UNIT=1442

your data set will be punched in any 1442 Card kead Punch in the
system. The following device types can be specified:

The DD Statement 81

Unit Recor
Devices

o]

]

[

=

=
i a

Device Type Descrivtion

1052 1052 Printexr-keyboard

1403 1403 Printer or 1404 Printer (continucus form only)
1442 1442 card Read Punch

1443 Any 1443 Printer

2520 2520 Card Read Punch

2540-2 2540 card kead Punch (punch feed)

group name
is the name of a collection of devices selected by your
installation during system generation. For example, your
installation might select the name PUNCH for all card punch units
in the configuration. If you do not care which card punch is used
for your data set, you would then code

UNIT=PUNCH

Your manager or supervisor should tell you which group names were
generated for your installation.

Data Attributes

The DCB parameter allows you to specify attributes for your data set
when your program is to be executed rather than when it is compiled.

Any applicable attributes not specified in your program must be
specified with the DCB parameter. However, in most cases, your compiler
will provide a default value for an attribute if you do not specify it
in the program or in the DD statement. Other attributes are always
given a fixed value by the compiler and you do not have to specify them
at all. For example, you can select a buffering technique with the
assembler, but all other IBM compilers select one for you when it is
needed.

DCB: You can use the DCB parameter to directly specify the attributes
of your data set or to copy those attributes specified in a DD statement
for another data set.

The format of the DCB parameter for specifying the attribute is:

r
| DCB=(list of attributes)
L 1

The attributes in the list are coded in the form of keyword
subparameters separated by commas; for example,

DCB=(BLKSIZE=300,LRECL=100)

The valid subparameters that can be used with each compiler for the card
punch and printer are shown in Table 7 and 8, respectively. Underscored
items are those default values selected if you omit the subparameter.
Default values are not shown where the attribute can either be specified
in your program, or in the DD statement. If values for a given
subparameter are not shown, it is either specified in your source
program or given a fixed value by the compiler. A glossary of DCB
subparameters is given in Appendix B. Code only those parameters that
apply to your compiler as shown in Tables 7 and 8.

82

jusuwelels dd SYL

€8

(w
! %
3 T
bcs ALGOL Assembler COBOLE COBOL F ANS COBOL 2| FORTRANE FORTRAN G & H PL/IF
Subparameter
-
1,2
BFALN= ForD L2
=
_ SorkE
BFTEK= (QSAM only)
KB L] ’
BLKSIZE= number of bytes number of bytes number of bytes number of bytes number of bytes number of bytes number of bytes
L
BUFL= number of bytes
[
BUFNO= number of buffers number of buffers | number of buffers—] number of buffers Tor2 Tor2 number of buffers
[t]
EROPT= ABE ABE ABE ABE
L]
HIARCHY= Oorl
L] 1
LRECL= number of bytes number of bytes number of bytes number of bytes number of bytes
[
MODE= CorE] CorE CorE CorE CorE CorE CorE
L]
NCP= number of channel
programs (BSAM oniy)
L]
OPTCD= (c] [c] (c] [c] [c] (c] [c]
1
RECFM= e8]l A] U[AT,, L ulA] or ufA] o L_J[A:I or
M M M
B Fls][A Fle][A B
VIS {|A] or M M VIS {|A]or
BS ||M BS LM
B B
FIS [|A FIS ||A
BS|{M BS| M
[
STACK= Tor2 Tor2 lor2 lor?2 lor2 lor2 lTor2
! This function can be specified in your program rather than in the DD statement,
2For QSAM, you must specify both BFALN and BFTEK on the DD statement, or omit both.
3 American National Standard COBOL.
c
o] Q
o = o
P 4]
5 g 2
38 | &
g Q
0.

2T9®L

"L

yound pIed xo0j sisiswexedqns 104

h8

D 4
cs ALGOL Assembler COBOLE COBCLF ANS COBOL L“ FORTRAN E FORTRAN G & H PL/L F
Subparameter
BFALN= ForD 2
2
BFTEK= sorf
TEK= (QSAM only)
LL ! L] 1
BLKSIZE= number of bytes number of bytes number of bytes number of bytes number of bytes number of bytes number of bytes
L]
BUFL= number of bytes
1] 1 1 1
BUFNO= number of buffers number of buffers ' number of buffers™ number of buffers tor2 Tor2 ' number of buffers
[
EROPT= ACC or ABE ACC or ABE ACC or ABE ACC or ABE
Ly
HIARCHY = Oor 1
' [+ L
LRECL~ number of bytes | number of bytes number of bytes number of bytes number of bytes
L '
NCP= number of channel number of channel
programs (BSAM only) programs
(BSAM only)
L
OPTCD- [c] U] [c] [c] (c] [d] [c] €]
- T
13 3 3 3 3 3
PRTSP= 0,1,2,0r3 ["_' 0,1,2,0r3 L"‘ 0,1,2, 0r 3 L— 0,1,2,0r3 l'_{ 0,1,2, 0r 3 L2 0,1,2,0r3 L_‘ 0,1,2,0r3
' } i 1
l— ! | Formatted: Formatted:
i i
RECFM= ula] or

e

i
i
|
i

Unformatted o Unformatted:
vs[8][A vs[a][a
M i M

' This function can be specified in your program rather than in the DD statement.

2 For QSAM, you must specify both BFALN and BFTEK on the DD statement, or omit both.
3 Do not use if A or M is specified in the RECFM.,
4 American National Standard COBOL,

aTqer

*8

ID3UTIJ I0I sIazaweredqns gOd

—

o

The format of the DCB parameter for copying the DCB parameter of a
previous DD statement in your job is:

r—-—— - h!
* ,ddname |
| DCB=(4*.stepname.ddname f.list of attributes))]
| * ,stepname.procstepname.ddname |
L _— J
Replace "ddname" with the name of the DD statement whose DCB parameter
you want to copy. Replace "stepname" with the name of the EXEC
statement of the step that contains that DD statement. If the DD
statement you want to copy is contained in the same job step, omit the
stepname, i.e., DCB=*.ddname. The following example shows how to code
the DCB parameter to copy the DCB parameter of a DD statement in a
previous step:
r : 1
| /7/STEP2 EXEC... |
| 7/7DD1 DD...,DCB=(BLKSIZE=1600, LRECL=80) |
| - |
b |
I . |
| Z77STEP4 EXEC... |
| //COPY DDw«..,DCB=#%.STEP2.DD1 |
| . : |
I - |
|- |
L J

The following example shows how to code the DCB parameter to copy the
DCB parameter of a previous DD statement in the same step:

//STEPD EXEC...
//DDA DD« .. ,DCB=RECFM=F

/7/DDC DD...,DCB=%.DDA

[e s s o i — ———{—_ — —— -
e e i s s st s s i i s, s, et el

If you want to copy the DCB parameter of a DD statement contained in a
cataloged procedure step, you must give both the name of the job step
that invokes the procedure and the procedure step name, i.e.,

DCB=*.stepname.procstepname.ddname

The first part of the following example shows your input deck; the
second part- shows a cataloged procedure called by the CALL EXEC
statement in your deck.

The DD Statement 85

Creating

il

Unit Recora

Devices

i

|
|
|
|

INPUT DECK |

[o — — e e e i e S e e . . e e e S i . . e)

_____________‘

. [
. I
. I
//CALL EXEC PROC=XYZ |
. I
. |
. stepname |
//COPY EXEC... |
//DD1 DD...,DCB=%.CALL.STEPY4.PRINT I
_* ddname |

procstepname |

7 < - '|

CATALOGED PROCEDURE /////’ l
_ 2 |
. / |
. I
. d I
//STEP4 EXEC... |
//PRINT-DD...,DCB=PRTSP=3 1
. I
. I
. I
4

If you want to modify the DCB subparameters you are copying add the new
subparameters to the reference. The subparameters you specify will
override the corresponding copied subparameters. For example,

[————— ——— — — t—

//70UT EXEC...
//PUNCH1 DD...,DCB=(BLKSIZE=160, LRECL=80,0PTCD=C,MODE=F ,RECFM=F)
//PUNCH2 DD...,DCB=(*.PUNCH1,MODE=C, STACK=2)

[S ————

|
| o o o
|

Special Processing Options

There are two special processing options:

1.

86

If your data set is going to be printed on a 1403 printer with the
universal character set feature, you can use the UCS parameter to
specify a particular character set image. If you omit the UCS
parameter when a 1403 printer with the universal character set
special feature is to be used, a default character set is used if
the corresponding print chain or cartridge is mounted. Otherwise,
the operator is requested to specify the UCS parameter for a
default character set and mount the appropriate print chain or
cartridge.

You can suppress I/0 operations on your data set using the DUMMY
parameter.

Ay,

L —

—

Ucs:

The format of the UCS parameter is:

r
| UCs=(code],FOLD}|{,VERIFY})
|
L

| e —

where:

code

FOLD

is the character set code which corresponds to the IBM standard
character set image you want to use. For example, if you want the
"preferred character set, arrangement A", code UCS=PCAN. One of
the following codes can be specified.

Code IBM Standard Character

AN Arrangement A, standard ECBDIC character set. 48
characters.

HN Arrangement H, EBCDIC character set for FORTRAN and COBOL,
48 characters.

PCAN Preferred character set, arrangement A.

PCHN Preferred character set, arrangement H.

PN PL/1 character set.

QNC PL/1 preferred character set for commercial application.

ON PL/1 preferred character set for scientific applications.

RN Character set for commercial applications of FORTRAN and
COBOL.

TN Character set for text printing, 120 characters.

SN Preferred character set for text printing.

XN High-speed alphanumeric character set for 1403, Model 2.

YN High—speed alphanumeric character set for 1403, Model 3 or
Ni1.

Not all of the above character set images might be present in your
operating system. We suggest you place a check mark next to those
available to you. In addition to IBM character set images, your
installation may have its own character set images that have been
assigned unique character set codes. You should add those codes
and a description of the corresponding character set images to the
above list. Your manager or supervisor should give you a complete
list of available codes. He will also tell you which character set
images were selected as defaults during system generation.

specifies that you want certain EBCDIC characters to be printed
with the graphics corresponding to other EBCDIC characters. For
example:

UCcs= (TN, FOLD)
The FOLD option can only be coded when a character set code is

specified with the code subparameter. That is, you cannot specify
FOLD if you did not specify the code subparameter and are getting a

The DD Statement 87

Creating

(Corme

Unit Reco:
Devices

o

default character set. For details on the FOLD mode, refer to the

publication IBM 2251 Control Unit, GA2#4-3312. The FOLD mode is

most often requested when uppercase and lowercase data is to be

printed only in uppercase. A

VERIFY
specifies that you want a printer display of the character set
images. This specification requests that the operator is to
visually verify that the character set image corresponds to the
graphics of the chain or train that was mounted. For exanmple,

Ucs=(QNC, , VERIFY)

The VERIFY option can only be coded when a character set code is
specified with UCS parameter. That is, you cannot specify VERIFY
if you did not specify the code subparameter and are getting a
default character set.

Notes:

e You can specify both the FOLD and VERIFY options for the same
character set. For example,

UCS= (XN, FOLD, VERIFY)

e If you code VERIFY but omit FOLD, you must code a comma to indicate
its absence. For example,

UCs=(HN, , VERIFY)

e If you do not want the FOLD or VERIFY options, you can omit the
parentheses. For example,

UCS=RN _——

DUMMY: The DUMMY parameter allows you to bypass I/0 operations and data
set allocation and disposition. When your processing program asks to
write the dummy data set, the writer request is recognized, but no data
is transmitted. This facility is particularly useful when you are
debugging your program because it saves you processing time. For
example, you can suppress the writing of a data set until you are sure
your program is going to produce meaningful output.

The DUMMY parameter is a positional parameter. That means that it
must be coded first in the operand field. For example:

//0UTPUT DD DUMMY,UNIT=2520,DCB=BLKSIZE=50
//PRINT DD DUMMY,UNIT=1403

If you wish, you can omit all other parameters required to define your
data set except DCB. (If you were not going to write the DCB parameter
you do not have to write it.) For example, the two DD statements shown
above could be coded as follows:

//0UTPUT DD DUMMY,DCB=BLKSIZE=50
//PRINT DD DUMMY

When you are ready to perform I/0 operations on your data set, simply

omit the DUMMY parameter and code all parameters required to write the

data set. For example,
//0UTPUT DD UNIT=2520,DCB=BLKSIZE=50 A,
//PRINT DD UNIT=1403

88

System Output Devices

Your installation can designate printers and card punch units as system
output devices. These system output devices can be grouped into output
classes. (These are the same output classes described for the MSGCLASS
parameter of the JOB statement.) For example, one printer can be
designated as a class for compilation listings; another printer with a
special print chain can be a class for those output data sets that need
the special chain. There can be up to 36 output classes, although most
installations need fewer. The output classes are designated by a letter
(A-Z) or a number (0-9). Your manager or supervisor should give you a
list of the output classes in your installation and of the devices in
each class.

Whenever you have an output data set to be printed or punched, you
can either request a unit as described in "Unit Record Devices," or you
can request the output class that has the type of device you need.
(Please note that not every printer or card punch unit is necessarily
assigned to an output class.) You indicate which output class you want
with the SYSOUT parameter. For example, SYSOUT=M means that you want
your data set produced on one of the devices of output class M.

Although your data set is finally produced on the output class you
requested, the intervening process depends on whether your system has
PCP, MFT, or MVT.

Output Class Processing in PCP: Before the jobstep is executed, the
system notifies the operator of the output class you selected. The
operator then makes available to the system one of the units in that
output class. If none of the units in the output class is available at
the time, the operator selects a tape unit and the system writes your
output on tape. Later the operator transcribes the tape on a unit of
the desired output class.

Output Class Processing in MFT and MVT: The system allocates a data set
for you on a direct access volume and writes your output on this data
set. Later, a system routine called the system output writer (or a
special installation-written program) transfers your data set to a unit
of the output class you selected. This allows greater flexibility in
scheduling print and punch operations and improves operating system
efficiency. (You do not have to allocate space for your data set on a
direct access device. The system takes care of that automatically with
a standard allocation. However, if you have an unusually large data
set, you can override the standard allocation using the UNIT and SPACE
parameters as described later on in this topic.)

A system with MFT or MVT can also write an output data set directly
to the desired unit record or magnetic tape device. When using the
direct system output processing, the operator selects a unit record or
magnetic tape device for a class by issuing a START DSO (direct system
output) command. In addition to the SYSOUT parameter, the DCB and UCS
parameters can be coded. If the SYSOUT subparameters other than
classname are coded, the specified information is ignored. The UNIT and
SPACE parameters are also ignored if the direct system output writer is
used. Since the type of processing to be used may not always be known,
it is advisable to code these parameters in case an intermediate direct
access device is used.

This section is summarized in Table 64 of Appendix D.

The DD Statement 89

'

Creating

System Outy

i

Devices

Location of the Data Set

You indicate your selected output class you selected with the SYSOUT

parameter. If your system has MFT or MVT, your data set can first be
written on a direct access device and then transferred to the output

class selected. The system assigns you a direct access device unless
you request a specific one with the UNIT parameter.

SYSOUT: In systems with PCP, you use the SYSOUT parameter to specify
the output class. In systems with MFT or MVT, you can also specify that
a special installation-written program is transferred to your data set
to the unit record device, and that the data set is to be printed or

punched on a special output form.

The format of the SYSOUT parameter for PCP is:

r g
| SYSOUT=classname |
L A

Replace the term "classname™ with the letter (A-Z) or number (0-9), that
indicates the output class desired. If vyou specify SYSOUT=A, the output
data set and system messages resulting from your job will be printed in
chronological order on the same output listing. A is the standard
output class in PCP and corresponds to a printer.

For example, if you code:

//PRINT DD SYSOUT=D
your data set will be produced on a device belonging to output class D.
If none of those devices is available, the operator makes the system
write your data set on tape. At a later time the operator transfers
your data set from tape to a device in output class D.

The format of the SYSOUT parameter for MFT or MVT is:

hl
SYSOUT=(classname[}program][,form numbery) |

r
|
| ‘
L d

Replace the term "classname"” with the letter (A-2Z) or number (0-9) that
indicates the output class desired. When using direct system output
processing, all SYSOUT subparameters other than classname are ignored if
coded.

If you want the output data set and the system messages resulting
from your job to be printed in chronological order on the same output
listing, specify the same output class you requested with the MSGCLASS
parameter of the JOB statement. If you omitted the MSGCLASS parameter,
code SYSQUT=A unless the default for the MSGCLASS parameter is not A for
your installation.

Replace the term "program"™ with the name of the special installation
program that is to handle the transfer of your data set from direct
access to the output class requested. If you do not specify a special
program, the standard system output writers will handle the transfer.
Your manager or supervisor will tell you whether you should request a
special program rather than the standard system output writer.

90

oo’

Sre———

Replace the term "form number™ with the #4-digit form number of a
special printer paper or punched card stock you want to use for your
data set. If you do not specify a form number your installation
provides some standard type of paper or card. Your manager or
supervisor will tell you whether you should use a special form number
for the output data set.

In the fcllew1ng example you request output class 8 for your data set.

//DDS DD SYSO T~8

Using the same. example, 1f you want to use SpeClal farm 2107 for writing
your data set, code. P ;

//DD8 DD syspum=(a,,21071
In the following example, you - request output class R for your data set.

You also want a program named WIRPRT to transfer the data set from the
direct access dev1ce to a devmce of output class R."

//PRINT DD SYSOUT”(R WTRPRT)

Using the. same example, if you also want yaur data set wrltten on
special form 7329, code- SRR :

//PRINT DD SYSOUT*(R WTRPRT, 7329)

UNIT: The UNIT parameter can be used in system with MFT or MVT to
indicate the type of direct access device on which your data set will be
recorded before being transferred to the output class by the system
output writer. 1In the UNIT parameter, you can request the type of
direct access device you want, how many devices you want (up to a
maximum of five), and unit separation from other data sets. (Do not
request more than one unit unless you also use the SPACE parameter to
make a secondary allocation.) The UNIT parameter should be coded as
described in "Direct Access Devices."

If you omit the UNIT parameter the system assigns an available unit.

In the following example: you request that a 2314 drive be used to
store your data set before 1t is transferred to output class B.

//PUNCH DD SYSQHT—B UNIT~231H

Using . the same example, if you want a’ Speclal program named WITRPCH to
effect the transfer from the 2314 unit to output class B, code:

//PUNCH DD SYSOUT=(B,WIRPCH) , UNIT=2314

Size of the Data Set

In systems with MFT or MVT your data set can be written on a direct
access device. The system allocates a standard amount of space on the
device. Your manager or supervisor should tell you the size of the
standard allocation. If your data set is unusually large you can
override the standard allocation with the SPACE parameter.

The DD Statement 91

Creating

System Out)

Devices

(orms
Can

SPACE: The SPACE parameter is described in "Direct Access Devices."
You can request space in units of tracks, cylinders, or blocks. If you
request it in units of tracks or cylinders you should also specify the
UNIT parameter for more efficient allocation.

If you make a secondary allocation, you can specify more than one
device in the UNIT parameter. You can also specify the RLSE
subparameter to release any unused space.

In the following example, a data set is to be writtem on a device of
output class P. Instead of letting the system use the stand default
values you want to assign 20 cylinders on a 2314. 1In case 20 cylinders
are not enough, you want to make a secondary allocation of 5 cylindexs.

//0UT DD SYSOUT=P,UNIT=2314,SPACE=(CYL, (20,5))

Using the preceding example, if you think two 2314 units may be
needed, and if you also want to release unused space code:

//0UT DD SYSOUT=P,UNIT=(2314,2) ,SPACE=(CYL, (20,5) ,RLSE)

Data Attributes

The DCB parameter allows you to specify data set attributes for your
data set. In PCP, the data attributes you specify are those of a
printer or card punch. In MFT and MVT, the data attributes you specify
are those of your SYSOUT data set on a direct access device.

DCB: The DCB parameter for PCP is described in "Unit Record Devices",
(Tables 7 and 8) and, for MFT and MVT, in "Direct Access Devices" (Table
12).

In the following example, you specify printer spacing (PRTSP) for a
data set that is to be printed in output class A.

//SYSPRINT DD SYSOUT=A, DCB=PRTSP=2

Special Processing Option

The OUTLIM parameter allows you to specify a limit for the number of
logical records you want included in the output data set being routed
through the output stream. The OUTLIM parameter has meaning only in
systems with MFT or MVT that have the System Management Facilities
option with system, job, and step data collection. Your manager or
supervisor should tell you whether your system has the System Management
Facilities option.

OUTLIM: The format of the OUTLIM parameter is:

L]
| OUTLIM=number
L 1

Replace the term "number" with a numeric value of 1 through 16777215.
The OUTLIM parameter is ignored unless SYSOUT is coded in the operand
field of the same DD statement.

92

The limit for the number of logical records you want as output must
include a system overhead factor. Generally, the value you add to the
limit is eight times the blocking factor for your data. (For those
programmers who need a more precise value: The system overhead is the
number of EXCPs issued each time the OPEN or CLOSE macro instruction is
issued for the data set.)

When the number specified is reached, an exit provided by the System
Management Facilities option is taken to a user supplied routine that
determines whether to cancel the job or increase the limit. If the exit
routine is not supplied, the job is cancelled.

A discussion of the System Management Facilities option is contained
in the publication IBM System/360 Operating System: Concepts and
Facilities. Information on user exit routines to be used with the

System Management Facilities option is contained in the publication IBM ﬂ

System/360 Operating System: System Programmer's Guide.
< Creating

Magnetic Tape
Magnetic
You can create an output data set on magnetic tape using the parameters Tape

shown in Table 6. The data set information parameters (DSNAME and DISP)
let you specify whether your data set is to be temporary or
nonterporary. The location parameters (UNIT, VOLUME, and LABEL) let you
specify whether your data set is to occupy one volume (one reel of
tape) , several volumes, or part of a volume and the type of labels you
use for those volumes. You can also use special processing options (SEP
and AFF) to optimize channel use.

This section is summarized in Table 65 of Appendix D.

Data Set Information

The DSNAME and DISP parameter are used to specify whicn type of data set
you want to create. There are two types of data set: temporary and
nontemporary. A temporary data set is one that will be used for the
duration of the jobstep or the job only. A nontemporary data set is one
that can be used not only by the jobsteps in your job, but by later jobs
as well. There are three types of nontemporary data sets: cataloged
data sets, kept (or noncataloged) data sets, and members of generation
data groups.

The following is a summary of the types of data sets that can be
created on magnetic tape:
1. Temporary
a. For the duration of the job.
b. For the duration of the jobstep.
2. Nontemporary
a. Cataloged.

b. Kept (or noncataloged).
c. Member of a generation data group.

The DD Statement 93

The formats of the DSNAME and DISP parameters for each type of data set
are described below.

Temporaxry -- For the Duration of the Job: The formats of the DSNAME and
DISP parameters are:

DSNAME= & éname), DISP=(NEW, PASS,DELETE)
&name

e e wd

[——

In the DSNAME parameter, replace the term "name" with any name not
used by another temporary data set in the job. Each name consists of
one to eight alphameric or national (a,$,#) characters. However, the
first character of the name must be a letter or national character. The
system generates a name for the temporary data set, which begins with
SYS and includes the jobname, the temporary name assigned in the DSNAME
parameter, and other identifying characters. You can retrieve this data
set later in the job by coding

DSNAME= §Ename
or
DSNAME=é&name

in a DD statement, using the same name, or by coding:
DSNAME=*,stepname.ddname.

A double ampersand should be coded preceding the temporary name you
assign to a data set. However, a name preceded by a single ampersand is
treated as a temporary data set name, as long as no value is assigned to
it either on an EXEC statement invoking a procedure, or a PROC statement
within a procedure. If a value is assigned to it by one of these means,
it is treated as a symbolic parameter. (Symbolic parameters are
discussed in the section "The PROC Statement®" and in "Part III:
Cataloged Procedures.")

In the DISP parameter, the NEW subparameter indicates that you are
creating the data set. You do not have to code NEW as long as you
indicate its absence with a comma. The PASS subparameter indicates that
the temporary data set can be used by later steps in the job. The
DELETE subparameter indicates that this data set is to be deleted if the
job step abnormally terminates (ABEND). You need not code DELETE
because it is always assumed by the system for temporary data sets.

For example, the parameters DSNAME and DISP in the following DD
statement indicate that the temporary data set named AREA can be used by
later steps in the job:

//DD1 DD DSNAME=§&SAREA,DISP=(,PASS) ,...

Temporary —-- For the Duration of the Job Step: Both the DSNAME and DISP
parameters can be omitted to indicate a temporary data set which will be
deleted at the end of the job step. You can, if you wish, code the
following:

DSNAME= (§§name)} ,DISP=(NEW,DELETE,DELETE)
&Ename

e e e

[——

94

e 4

The temporary name in the DSNAME parameter is coded as described for
temporary data sets for the duration of the job. All subparameters of
the DISP parameter are assumed if omitted. For example, the three
following DD statements define the same data set: Terot el

//DD2 DD DSNAME=§&AREA, DISP=(NEW,DELETE, DELETE) , « « -
or ‘ T '

//7DD2 DD DSNAME=§&AREA, ...
or

//DD2 DDua.

Note that the location parameters must still be coded in those-
statements. S

Nontemporary -- cCataloged: The formats of the DSNAME and DISP parameter
are:

« DELET

DSNAME=dsname, DISP=(NEW, CATLG [, CATLG 1)
E
. KEEP

P —— —
b e e e

In the DSNAME parameter, replace the term "dsname"™ with the qualified
name you want to give to the data set. A qualified name is made up of
several 1-to-8-character names separated by periods. 2all but the last
of those names correspond to index levels in the catalog. Each name
must begin with a letter or national (a,$,#) character. Any letter,
number, national character, the hyphen, and the +0(12-0 multipunch) can
be used to complete each name. A qualified name can consist of 1
through 44 characters (including periods). Fox example,

DSNAME=AB-5283.M.$7.R2579AB2

Each level of qualification must already exist as an index in the
system catalog before you can request the system to catalog the data
set. An index level is created using the IEHPROGM utility program.

Once the indexes are established, the data set can be cataloged. If the
name has no qualifiers (called unqualified name), the system will create
the index entry for you. For example,

DSNAME=C174B
or
DSNAME=D

In the DISP parameter, the NEW subparameter indicates that you are
creating the data set. You do not have to code NEW as long as you
indicate its absence by a comma. The CATLG subparameter indicates that
the data set is to be cataloged. The third subparameter tells the
system what is to be done with the data set if the step abnormally
terminates (ABEND). If the data set name is either qualified or
unqualified, you can specify CATLG or DELETE. CATLG is assumed if you
omit the third subparameter. If the data set is unqualified, you can
specify KEEP as the third subparameter. KEEP tells the system that if
the step abnormally terminates you want the data set kept intact (but
not cataloged) until a later job requests that the data set be deleted
or until the expiration date has passed. (You can specify a retention
period or expiration date in the LABEIL parameter.)

The DD Statement 95

Creating

Magneti
Tape

8

i

c

In the following example, a new data set named SYSTEM.FILEl is to be
cataloged. If the step abnormally terminates it will be cataloged.

//DD3 DD DSNAME=SYSTEM.FILE1l,DISP=(,CATLG),...

In the following example, a new data set named AREA#5 is to be
cataloged. If the step abnormally terminates, it will be kept.

//DD4 DD DSNAME=AREA#5,D1SP=(,CATLG,KEEP), ...

Nontemporary —-- Kept: The formats of the DSNAME and DISP parameters
are:

r 1
| DSNAME=dsname,DISP=(NEW,KEEP[,KEEP) |
| [,DELETE] |
| ,CATLG I
L 1

In the DSNAME parameter, replace the term "dsname" with the
unqualified name you want to give to the data set. The name can contain
from 1 to 8 characters. The first character must be a letter or a
national character (a,%$,#). Any letter, number, national character, the
hyphen, and the +0(12-0 multipunch) can be used to complete the name.
For example,

DSNAME=aA#753

In the DISP parameter, the NEW subparameter indicates that you are
creating the data set. You do not have to code NEW as long as you
indicate its absence by a comma. The KEEP subparameter indicates that
the data set is to be kept intact (but not cataloged) until a later job
step or job requests that the data set be deleted or until the
expiration date has passed. (You can specify a retention period or
expiration data in the LABEL parameter.) The third subparameter tells
the system what is to be done with the data set if the step abnormally
terminates (ABEND). You can specify KEEP, DELETE, or CATLG. KEEP is
assumed if you omit the third subparameter.

Iin the following example, a new data set named RTW is to be kept. If
the step abnormally terminates, it will also be kept.

//DD5 DD DSNAME=RTW,DISP=(,KEEP),...

In the following example, a new data set named TWO is to be kept. If
the step abnormally terminates it will be deleted.

//DD6 DD DSNAME=TWO,DISP=(,KEEP,DELETE),...

Notes:

e You can give a disposition of PASS to a new data set with an
unqualified name. For example,

DSNAME=DATA, DISP=(,PASS)

Such a data set can become a temporary, cataloged, ox kept data set
according to the disposition you give to it in a later DD statement.
See "Passed Data Sets" in "Retrieving an Existing Data Set.™ If the
data set is not referred to by a later DD statement in the job, it
is deleted at the end of the job.

96

e You can use special characters as part of the unqualified data set
name if you enclose the name in apostrophes. For example,

DSNAME="'AB=750"

If the special character is an apostrophe, you must code it as two
consecutive apostrophes. For example, code NAT'L as

DSNAME="NAT"''L"

Do not catalog the data set if you enclose the data set name in
apostrophes.

Nontemporary -- Member Generation Data Group: A cataloged data set that
is periodically processed can be grouped with its earlier generations to
form a named generation data group. The entire group has a generation
group name. Each member of the group can be addressed by a simple
generation number. The last generation produced before the start of
your job has a generation number of 0. The generation produced before Creating
the last one is -1. The generation you are going to produce in your job
is +1. After your job ends, the generation you produced automatically —
becomes generation 0. If you produce more than one generation in your Magnetic
job, you must name them +1, +2, +3, etc. After your job, the highest Tape
generation number you produced, say, +3, becomes generation 0; +2

becomes -1; and +1 becomes -2.

il

For further information on creating generation data groups, refer to
Appendix D of the publication IBM System/360 Job Control Language
Reference. The formats of the DSNAME and DISP parameters for creating a
new member of a generation data group are:

DSNAME=groupname (+number) ,DISP=(NEW,CATLG|,CATLG |)
,DELETE

= ———

In the DSNAME parameter, replace the term "groupname" with the name
of the generation data group. The name can contain from one to eight
characters. The first character must be a letter or national character
(3,$,#). Any letter, number, national character, the hyphen, and the
+0(12-0 multipunch) can be used to complete the name. The groupname can
be a qualified name. The qualified name can contain up to 35 characters
(including periods). Replace the term "number® with the number of the
generation you are creating. If you are only creating one generation in
your job, this number will be 1. Fox example,

DSNAME=PAYROLL.PLANT20 (+1)
oxr
DSNAME=MASTER(+1)

if you are creating more than one generation in your job, number each
generation consecutively. For example,

DSNAME=MASTER (+1)

DSNAME=MASTER (+2)
etc.

In the DISP parameter, the NEW subparameter indicates that you are
creating the data set. You do not have to code NEW as long as you

indicate its absence by a comma. The CATLG subparameter indicates that
the new generation is to be cataloged. (This subparameter is required.)

The DD Statement 97

The third subparameter tells the system what is to be done with the data
set if the step abnormally terminates (ABEND). You can specify CATLG or
DELETE. CATLG is assumed if you omit the third subparameter.

In the following example, two new generations are added to the
PAYROLL generation data group. If the step abnormally terminates the
new generations will be deleted.

//STEP EXEC PGM=...

//DD7 DD DSNAME=PAYROLL(+1) ,DISP=(,CATLG,DELETE) ;...
//DD8 DD DSNAME=PAYROLL(+2) ,DISP=(,CATLG,DELETE) ;...

[o e . s s S o S
D

After your job is successfully completed PAYROLL(+2) becomes PAYROLL(0),
and PAYROLL(+1) becomes PAYROLL(-1).

Location of the Data Set

The UNIT, VOLUME and LABEL parameters are used to describe the location
of your data set. The UNIT parameter indicates which kind of tape drive
you want, and, if your data set is to occupy more than one volume, it
indicates how many tape drives are needed. The VOLUME parameter lets
you request a scratch volume (or volumes) or a private volume (or
volumes). If you request a private volume you can request a specific
volume or you can let the system assign you a volume. The LABEL
parameter describes the tape label of the volume used for your data set.

UNIT: The format of the UNIT parameter is:

group name ‘

P e —

unit address)[,unitcount
UNIT=({device type [,P][,DEFER])

b e e e @

The first positional subparameter identifies the tape drive you want
to use for your data set by its address, or unit name, or group name.

unit address
is the actual machine address of the tape drive. For example,

UNIT=240

You should not specify the address unless you are sure you want it.
Do not specify an address if you are going to need more than one
drive for the data set. (Multiple drives are requested with the
second subparameter of the UNIT parmeter.)

device type
corresponds to the type of tape drive. Coding a device type
provide you with a certain degree of device independence in that
your data set may be placed in any number of devices of the same
type. For example, if you code

UNIT=2400-1

98

o~

your data set will be placed on any 2400 series tape drive with
seven~-track compatibility and without data conversion. The
following device types can be specified.

Device Type Description

2400 2400 series Nine-Track Magnetic Tape Drive that can be
allocated to a data set written or to be written in
800 bpi density when the dual density feature is not
installed on the drive, or in 1600 bpi when the
dual-density feature is installed in the drive.

2400-1 2400 series Magnetic Tape Drive with Seven-Track
Compatibility and without Data Conversion.

2400~-2 2400 series Magnetic Tape Drive with Seven-Track
Compatibility and Data Conversion.

2400-3 2400 series Nine-Track Magnetic Tape Drive that can be
allocated to a data set written or to be written in
1600 bpi density.

2400-4 2400 series Nine-Track Magnetic Tape Drive having an
800 and 1600 bpi capability.

group name
is the name of a collection of devices, selected by your
installation during system generation. For example, youx
installation might select the name TAPE for all tape drives in the
confiquration. If you do not care which tape drive is used for
your data set, you would then code

UNIT=TAPE

Your manager or supervisor should tell you which group names were
generated for your installation.

The second positional subparameter is used only if your data set will
occupy more than one volume and if you want more than one of those
volumes to be mounted at the same time. This subparameter indicates how
many drives are to be used for mounting your data set's volumes.

unit count
indicates how many tape drives you want assigned to the data set.
You can specify a maximum of 59 drives per DD statement. Make sure
that your system has at least the number of drives you specify.
Otherwise an error will result. If you specify fewer drives than
the number of volumes in your data set, only the same number of
volumes as there are drives can be mounted at the same time. (If
you think your data set may use more volumes than you expect, you
should indicate the maximum number of volumes that can be used with
the volume count subparameter of the VOLUME parameter. Do not
request any more tape drives than the maximum number of volumes you
specify.) For example, if you write

UNIT=(2400,5)

five 800 bpi drives will be assigned to your data set.

specifies parallel mounting. When you request parallel mounting
the system counts the number of serial numbers specified with the
VOLUME parameter and assigns to the data set as many tape drives as
there are serial numbers. You should only use the P subparameter
if you are making specific volume requests in the VOLUME parameter.

The DD Statement 99

Creating

(Lormnn

Magnetic
Tape

i

I1f, in addition to indicating specific serial numbexs in the VOLUME
parameter, you also indicate a maximum number of volumes that can
be used by the data set, the number of drives assigned is the
number of serial volumes you specified and not the larger maximum
number of volumes that can be used.

If your data set required only one tape drive, you can either code 0
or omit this parameter. If you omit this subparameter and the DEFER
subparameter follows, you should code a comma to indicate its absence.
For example,

UNIT=(2400,,DEFER)

DEFER is the third positional subparameter. DEFER requests the
system to assign the required tape drives to the data set and to defer
the mounting of the volume or volumes until the processing program
attempts to open the data set. If you are running under MFT or MVT,
operating efficiency may decrease if you specify DEFER for a tape data
set. This is because if you code DEFER, the system issues a mount
message to the operator when the processing program attempts to use the
data set and then waits until the volume is mounted. If you do not code
DEFER, the mount message is issued when the device is assigned and there
is no waiting for the operator. By the time your program tries to use
the data set, it is very likely that the operator has already mounted
the volume and that the system will not have to wait for him.

In the following example, the UNIT parameter is used to request four
seven-track tape drives with data conversion.

UNIT=(2400-2,4)

In the following DD statement, the unit parameter is used to request
as many tape drives of a group named TAPE as there are volumes
specifically requested with the volume parameter. Deferred mounting is
also requested.

//DD9 DD UNIT=(TAPE,P,DEFER) , VOLUME=SER=(ABC24,ABC25,ABC29),...

As a result three tape drives are assigned to the data set, and all
three volumes requested can be mounted at the same time.

Note: The UNIT parameter is ignored if you use the VOLUME parameter to
request a volume used by a data set defined earlier in your job, that
is, if you specify VOLUME=REF.

VOLUME: The VOLUME parameter lets you request a specific volume for
your data set or lets the system assign your data set a suitable volume
(nonspecific request). If you make a nonspecific request, you can ask
for a scratch volume or for a private volume. If you make a specific
request, you get a private wvolume. Scratch volumes can only be
requested for temporary data sets., Private volumes can be requested for
either temporary or nontemporary data sets. The following is a summary
of the types of volume request that can be made for new data sets on
magnetic tape:

1. Nonspecific request

a. Scratch volume
b. Private volume

2. Specific request

a. Private volume

100

Note: When you ask the system to assign you an available volume
(nonspecific request), you can also specify which kind of labels you
want that volume to have. You simply indicate the label type with the
LABEL parameter and the system will make a volume with that label type
available to you.

Nonspecific Request -- Scratch Volume: If you have a temporary data set
you can request a scratch volume. The format of the VOLUME parameter
depends on whether you need one volume or more than one volume.

1. To request only one scratch volume simply omit the VOLUME
parameter. For example, if you have a temporary data set that will
last only for the duration of the job step and you want a scratch
volume to be mounted on a nine-track (800-bpi) tape drive, code:

//DD10 DD UNIT=2400,...

If you have a temporary data set named &§5AREA that is to be passed
to other steps in your job and you want a scratch volume to be
mounted on a seven-track drive with data conversion, code:

//DD11 DD DSNAME=§&§AREA,DISP=(,PASS),UNIT=2400-2,...

2. 1f your temporary data set requires more than one scratch volume,
code the VOLUME parameter as follows:

1

.
| VOLUME=(,,,volcount) |
L _— 1

Replace the term "volcount" with the number of volumes required for
your data set. ©For example, if your data set requires four scratch
volumes and you want them in succession on one nine-track tape
drive, code:

//DD12 DD UNIT=2400,VOLUME=(,, ,4),.«.

If your temporary data set requires six scratch volumes, and you
want to have them mounted two at a time on two nine-track drives,
code:

//DD13 DD UNIT=(2400,2) ,VOLUME=(,,,6),...

Nonspecific Request -- Private Volume: If you make a nonspecific
request for a private volume, the system assigns an available volume to
you. The private volume is demounted after its use in the job step,
unless a MOUNT command was used to mount it or the data set is passed to
a later job step.

The format of the VOLUME parameter depends on whether your data set
is temporary or nontemporary.

1. The format of the VOLUME parameter for making a nonspecific volume
request for temporary data sets is:

.
| VOLUME=(PRIVATE(,,,Volcountj)

The DD Statement 101

Creating

Magnetic

Tape

fi

102

The PRIVATE subparameter is required. If your temporary data set
requires more than one volume, replace the term "volcount"™ with the
number of wvolumes required.

For example, if you have a temporary data set named §§EFILE that is
to be passed to other steps in your job and you want two private
volumes to be mounted in sequential order on a drive of the group
named TAPE, code:

//DD14 DD DSNAME=§&&FILE,DISP=(,PASS),UNIT=TAPE,
V4 VOLUME={(PRIVATE, ;,2) s «-

If the §EFILE data set only needs one volume, code:

//DD15 DD DSNAME=§&FILE,DISP=(,PASS) ,UNIT=TAPE,
/77 VOLUME=PRIVATE, ...

If the EEFILE data set needs five volumes to be mounted at the same
time on five drives, code:

//DD16 DD DSNAME=§&FILE,DISP=(,PASS) ,UNIT=(TAPE,5),
/7 VOLUME=(PRIVATE,,,5) ;.-

In the preceding examples the volume is not demounted at the end of
the step because you coded PASS in the DISP parameter. When the
volumes are mounted in sequential order, only the last volume used
remains mounted at the end of the step.

If your temporary data set is used only in one job step the volume
is demounted at the end of the step. For example,

//DD17 DD UNIT=TAPE, VOLUME=PRIVATE
or, if your temporary data set needs three volumes, code

//DD18 DD UNIT=TAPE, VOLUME=(PRIVATE,,,3)

The format of the VOLUME parameter for making a nonspecific volume
request for a nontemporary data set is:

r
| VOLUME=(|{ PRIVATE,RETAIN|[,,volcount])
|
L

| W |

The subparameter PRIVATE is not needed when you have a nontemporary
data set because the system always assigns a private volume to
nontemporary tape data sets. You only need to code PRIVATE when
you also code RETAIN.

RETAIN means that the volume will not be demounted at the end of
the step. (RETAIN has the same effect on volume mounting as coding
PASS in the DISP parameter.) For example, if you want a
nonspecific private volume for a data set named ALPHA, code:

//DD19 DD DSNAME=ALPHA,DISP=(,KEEP) ,UNIT=2400

If you want to make sure that the nonspecific volume used for ALPHA
remains mounted at the end of the step, code:

//DD20 DD DSNAME=ALPHA,DISP=(,KEEP) ,UNIT=2400,

/7 VOLUME=(PRIVATE,RETAIN)

T

If your nontemporary data set needs more than one volume, replace
the term "volcount" with the number of volumes needed. For
example, ~:BETA needs four volumes to be
mounted:

//DD21 nn DSNAM PH : :
V4 VOLUMEP(PRIVATE, RE‘I‘ X VN‘, ,u)

Notes:

e The RETAIN subparameter is not needed if the tape volume was mounted

with the MOUNT command. A volume thus mounted remains mounted until
an UNLOAD command is issued. It is recommended that you use the
RETAIN subparameter whenever you want the volume to remain mounted
at the end of the step.

If you specify KEEP for your nontemporary data set, ask the machine
operator to tell you the serial number of the volume assigned to
your data set. You need the serial number to retrieve your data set
in later jobs.

Specific Request -- Private volume: You can request specific volumes

either stating the serial number of the volumes you want, or by
requesting the same volume used by an earlier data set.

1.

The format of the VOLUME parameter for requesting volumes by their
serial numbers is:

r
| VOLUME= (| PRIVATE,RETAIN|{| ,,volcount, | SER=(serial,...))
|
L

The PRIVATE subparameter is not needed when you make a specific
volume request, because the system always considers specific tape
volumes to be private volumes. You only need to code PRIVATE when
you also code RETAIN. RETAIN means that the volume will not be
demounted at the end of the step. If your data set has more than
one volume, and the volumes are mounted in sequential order, only
the last volume mounted is retained. (If more than one tape drive
is available to the multivolume data set, the last volumes mounted
are retained.)

Replace the term "volcount" with the maximum number of volumes the
data set can use. You should only use this subparameter if you
think your data set may use more volumes than those named in the
SER subparameter. Note that "volcount®" is the maximum number of
volumes that can be used and not additional volumes. For example,
if you name three volumes im the SER subparameter, but you think
you may need two more volumes, replace "volcount™ with 5. 1In this
case, you are in effect making a specific request for three volumes
and a nonspecific request for two volumes.

The SER subparameter indicates that the serial numbers of the
volumes you want for your data set will follow. Replace the term
"serial®™ with the 1-to-6 character serial number associated with
the volume. If the volume serial number is not 6 characters, it
will be padded with trailing blanks by the system. The volume
serial number can contain any alphameric and national characters

The DD Statement 103

il

Creating

Magnetic
Tape

i

and the hyphen. If it is necessary to include special characters,
other than a hyphen, in the volume serial number, enclose it in
apostrophes, for example,

VOLUME=SER=(54AB2, '6/10/8")

If only one volume is involved you need not code the parentheses,
for example,

VOL=SER=ABCDEF

In the following example you request that volumes AA22 and AB45 be
assigned to the A99.F77 data set. Only one tape drive named TAPE
will be used and the last volume used is to remain mounted at the
end of the step.

//DD23 DD DSNAME=A99.F77,DISP=(,CATLG) ,UNIT=TAPE,
7/ VOLUME= (PRIVATE, RETAIN, SER=(AA22,AB45)),...

In the following example, the same data set, A99.F77, is defined,
but the possibility that it may need one extra volume is indicated

//DD24 DD DSNAME=A99.F77,DISP=(,CATLG, UNIT=TAPE,
77 VOLUME= (PRIVATE, RETAIN, , 3, SER=(AA22,AB45)), ...

In the following example, you request that volumes ABC, BCD, and
CDE be assigned to the RECORD data set. All three volumes are to
be mounted in parallel on units of the group named TAPE7.

7/DD25 DD DSNAME=RECORD,DISP=(,KEEP) ,UNIT=(TAPE7,P),
/7 VOLUME=SER=(ABC,BCD,CDE) , ...

Notes:

s When using various typewriter heads or printer chains, difficulties

in volume serial number recognition may arise if you use other than
alphameric characters.

e SCRTCH should not be used as a volume serial number, because it is

used to notify the operator to mount a non-specific volume.

2. The format of the VOLUME parameter for requesting volumes used by
other data sets is:

r

| dsname

| VOLUME=(| PRIVATE,RETAIN || , , volcount, |REF=|*.ddname)

| . . * . stepname .ddname

|] *.stepname.procstepname.

| ddname

L

104

The PRIVATE and RETAIN parameters are used as described for
VOLUME=SER. The REF subparameter designates only one volume.
Therefore, if your data set requires more than one volume, you
should indicate so with the "volcount" subparameter. Replace
"volcount" with the maximum number of volumes for your data set.

The REF subparameter identifies the volume assigned to an earlier
data set. If the earlier data set resides on more than one tape

volume, only the last volume is assigned to your data set. You can

identify the earlier data set by its name or by making a backward
reference.

B

e

v

You can identify the data set by its name only if it is a
nontemporary cataloged data set or a nontemporary passed data set.
If one of these conditions is met, replace the term "dsname®" with
the data set's name. The data set's name cannot contain special
characters, except for periods in the case of qualified names. For
example,

VOLUME=REF=AB.CD.EF

If the data set is not cataloged or passed, or if it has been
assigned a temporary name, you can refer to it by making a backward
reference to the DD statement that defined it. (This DD statement
must be an earlier DD statement in your job.) Replace "ddname"
with the name of the DD statement where the earlier data set is
defined. Replace "stepname" with the name of the EXEC statement of
the step that has the earlier DD statement. If the earlier DD
statement is contained in the same job step, omit the stepname,
i.e.,

VOLUME=REF=%.ddname

The following example shows how to code the REF subparameter to use
the volume specified in a DD statement in a previous step. The
previous step defines a multivolume data set, therefore, only the
last volume is assigned to the new data set.

//STEP5 EXEC...
//7DD1 DD UNIT=2400,VOLUME=SER=(75934,34AB5,1679M)

r

|

|

| -

} .

| //STEP7 EXEC...
| //DDA DD VOLUME=REF=%*.STEP5.DD1,...
l -
l .
|

L

St v e s s . v . —— — oo o}

The following example shows how to code the REF subparameter to use
the volume specified in a DD statement in a previous step. In
addition to the volume used by the previous data set, the new data
set may use three more volumes.

1
//STEPC EXEC... |
//DD1 DD VOLUME=(PRIVATE,RETAIN,SER=ABC111),... |
. |
‘ |
//DD5 DD VOLUME=(,,,u4,REF=%*.DD1),...]
. |
. |

|

4

oo e e e o S o S . s o

When the earlier DD statement is contained in a cataloged procedure
step, you must give both the name of the job step that invokes the
procedure and the procedure step name, i.e.,

VOLUME=REF=%.stepname.procstepname.ddname
The first part of the following example shows your input deck; the

second part shows a cataloged procedure called by the STEP9 EXEC
statement in your job.

The DD Statement 105

(Creating
Magnetic
Tape

INPUT DECK

//STEP9 EXEC PROC=ABC
. stepname
//STEP12 EXEC...
//DDA DD VOLUME=REF=#,STEP9.PHASE3.FILE
procstepname
qgname

CATALOGED pROCEngEf -

-
-

//PHASE3 EXEC
//FILEDD VOLUME=SER=123456,...

P e s, o o S —— — " {— o — — {— —— — —— {—, — — ——— T—— d——
b e s rone e e o . it c— . c— ——— — c——— —" o——. w— i c——]

If you want to use the volume assigned to a kept data set defined
in another job, you must use VOLUME=SER.

When you request a volume using the REF subparameter, the system

obtains unit type information from the referenced data set. The

UNIT parameter is ignored if you code it in the same DD statement
as REF.

LABEL: The LABEL parameter is used to describe the type of label of the
volume you selected with the VOLUME parameter. It is also used to
indicate how many data sets, if any, precede your data set on the
volume. The LABEL parameter is also used to assign a retention period
and password protection to your data set, and to indicate whether this
data set is to be used for input or output exclusively. The format of
the LABEL parameter is:

r 1
| «SL |
| LABEL=([sequence} | ,SUL||,PASSWORD| |,IN |[,]|EXPDT=yyddd [) |
| +NSL |}, «OUT RETPD=nnnn]
I «NL I
| . BLP |
| I
L 4

The first positional subparameter indicates the order of your data
set on the tape volume. You only have to specify a sequence number if
you make a specific volume request (VOL=REF or VOL=SER) and if your data
set is not the first data set on the volume. If you do not specify a
sequence number and there are other data sets on the volume, your data
set will be written over the existing data sets. (If the existing data
set was assigned a retention period or password protection, your data

106

set will not be written and an error will result.) Replace the term
"sequence#" with the sequence number of your data set. For example, if
your data set is to be the fifth data set on the volume, code

LABEL=5

Note: If you request the system to bypass label processing (by
specifying BLP in the second positional subparameter of the LABEL
parameter), the system treats anything within tape marks as a data set.
Therefore, if you want your data set to be written in the proper
sequence, you must include all header and trailer labels and data sets
that precede your data set in the sequence number subparameter.

The second positional subparameter indicates the type of labels used
for the specific volume you requested, or, if you are requesting a
nonspecific volume, the type of labels you want on that volume. You can
omit this subparameter if standard labels are used.

You must specify one of the following:

418

SL Creating
if the data set has standard labels. If you specify SL (or omit
the second positional subparameter) the system can ensure that the
specific volume you requested is mounted, because the volume serial Magnetic
number is written on the label. If you make a nonspecific request Tape

and the operator mounts a tape that does not have standard labels,
the system asks the operator for the volume serial number and your
name so that it can include this information on the new standard
label.

SUL
if the data set has both standard and user labels. If you specify
SUL, the system can ensure that the specific volume you requested
is mounted because the volume serial number is written on the
label.

NL
if the data set has no labels. The operator must ensure that the
specific volume requested is mounted, because the volume has no
labels to indicate the serial number and the system cannot verify
this information. If you make a nonspecific request and the
operator mounts a volume with standard labels, you may use the
volume provided: (1) the expiration date of any existing data set
on the volume has passed, and (2) there are no password protected
data sets on the volume. If either condition is not met, the
system asks the operator to mount another volume.

NSL
if the data set has nonstandard labels. Nonstandard labels are
processed by installation-written routines. These routines must
ensure that the specific volume requested is mounted. If you make
a nonspecific request and the operator mounts a volume with
standard labels, you may use the volume provided: (1) the
expiration data of any existing data set has passed, and (2) there
are no password protected data sets on the volume. If eithex
condition is not met, the system asks the operator to mount another
volume.

BLP
if you want to bypass label processing, BLP is useful if you want
to use a blank tape or if you want to overwrite a seven-track tape
that differs from your current parity or density specification.
Your manager or supervisor should tell you if your system has the
BLP facility. If it does not and you code BLP, the system assumes
NL.

The DD Statement 107

The type of label used for tape volumes is determined by your
installation. Most installations use only one type of labels. Check
with your manager or supervisor before you specify a label type other
than the type used in your installation.

PASSWORD is the third positional subparameter. It tells the system
that the data set you are creating cannot be used by another job step or
job unless the operator can supply the system with the correct password.
Password protected data sets must have standard labels, that is you must
code the SIL subparameter (or omit the second positional subparameter).
For example:

//DD26 DD DSNAME=OPEN.SESAME,DISP=(,CATLG,DELETE) ,UNIT=2400,
V4 VOLUME=SER=SECRET, LABEL=(, , PASSWORD) , < .

Before or after you create the data set you must tell the system
programmer the name of your data set and the password. He will create
an entry in a data set named PASSWORD containing those two items.
Whenever a request is made for your data set the system will verify the
password supplied by the operator against the entry in the PASSWORD data
set.

The fourth positional subparameter (0OUT) is used only if you coded
your program in the assembler language or in FORTRAN. If you coded in
the assembler language it allows you to override the specification of
the OUTIN parameter in the OPEN macro instruction (for BSAM data sets
only). If OUTIN is specified and you want the data set processed for
output only code

LABEL=(,, ,0UT)

If you are a FORTRAN user, OUT means that the set is to be processed for
output only.

You can assign a retention period (length of time during which the
data set cannot be changed or deleted without the operator's permission)
to your nontemporary data set with either the RETPD=nnnn or EXPDT=yyddd
subparameter. These subparameters are keyword subparameters. You must
code the one you choose after the last positional subparameter you code.
For example:

LABEL=(5,RETPD=34)
LABEL=(,SUL, EXPDT=69251)
LABEL=(3,,PASSWORD, RETPD=100)

LABEL=(,NSL, ,OUT, EXPDT=7100)
LABEL=RETPD=170

The RETPD subparameter expresses the retention period in terms of the
number of days you want the data set retained. The format of RETPD is:
RETPD=nnnn

Replace "nnnn" with a number from 1 to 9999.

108

i

The EXPDT subparameter states the expiration data of your data set.
The format of EXPDT is:

EXPDT=yyddd

Replace "yyddd" with the 2-digit year number and the 3-digit day number.
For example, January 1, 1971 is coded as

LABEL=EXPDT=71001
and February 1,1971 is coded as

LABEL=EXPDT=71032
(Many calendars indicate the day number for each day of the year.)

If neither RETPD or EXPDT is specified, a retention period of zero
days is assumed; that is, your data set can be modified or deleted at

anytime. Do not specify a retention period for temporary data sets,
because they are always deleted at the end of the job step or the job.

Data Attributes

The DCB parameter allows you to specify data set attributes for your
data set when your program is to be executed rather than when it is
compiled. Any applicable attributes not specified in your program must
be specified with the DCB parameter. However, in most cases, your
compiler provides a default value for an attribute if you do not specify
it in the program or in the DD statement. Other attributes are always
given a fixed value by the compiler and you do not have to specify them
at all. For example, you can select a buffering technique with the
assembler, but all other IBM compilers select one for you when it is
needed.

DCB: You can use the DCB parameter to directly specify the attributes
of your data set or to copy those attributes specified in a DD statement
for another data set.

The format of the DCB parameter for specifying the attributes is:

r
| DCB=(list of attributes) |
OGP i

The attributes in the list are coded in the form of keyword
subparameters separated by commas; for example,

DCB=(BLKSIZE=300, LRECL=100)

The valid subparameters that can be used with each compiler for magnetic
tape data sets are shown in Table 9. Underscored items are those
default values selected if you omit the subparameter. Default values
are not shown where the attribute can be specified either in your
program or in the DD statement. If values for a given subparameter are
not: shown, they are either specified in your source program or given a
fixed value by the compiler. A glossary of DCB parameters is given in
Appendix B. Code only those parameters that apply to your compiler as
shown in Table 9.

The DD Statement 109

Creating

(orenn

Magnetic

i

Tape

0TT

—-

; 4 | 3
SD(LB " ALGOL Assembler COBOL E | COBOLF ANS COBOL “— FORTRAN E FORTRAN G & H PL/LF
ubparameter '
,2
BFALN= ForD ! ;
- ' S
BETEK= S, E,or A : ' §
(QSAM only)
, T 1 L]
BLKSIZE= number of bytes number of bytes number of bytes number of bytes number of bytes number of bytes | numher of bytes
] |
i i
1 |
BUFL= number of bytes l;ll i
1 1 1 1
BUFNO= i number of buffers D number of buffers | number of buffers | number of buffers Tor2 Tor2 number of buffers
|
: 13 3 3 3 3
DEN= 0,1,2,0r3 L 0,1,0r2 0,1,2, or 3 0,1,2,0r3 L‘ 0,1,2,0r 3 L 0,1,2,0r3 L— 0,1,2,0r3
L |
ERQOPT= ABE ABE ABE ABE » |
L
1 |
HIARCHY~ Oorl !
L 1
LRECL= number of bytes ! number of bytes number of bytes numbei of bytes number of bytes
% \
i 1
NCP= : number of channel : ber of ch :
| programs (BSAM only) number ot channe
programs
(BSAM only)
[L]
OPTCD= [c1(7] [c] (c] [c] [c] (] [c]
1 1
. Formatted: Formatted:
RECFM= E[B][A] UI:A] or ulAa] L_JH or U A} or
M
B> M v[B][A] or M -
B v[B][A] or B
Vs [AJ or F [B][;ﬂ M v|s [A} or
BS || M F [B] A |BS|{ M
Unformatted: B
B —_— M| B
FIs 1|A VS[BJ[Q] Unformatted: FIs |IA
BS || M [BS|{ M
vs[sj[A
M
TRTCH= C,EET,or T LL C,ELET, or T C,E,ET, or T C,ELET, or T C,EET,or T C,E,ET, or T C,E,ET, or T

" This function can be specified in your program rather than in the DD statement,
2 For QSAM, you must specify both BFALN and BFTEK on the DD statement or omit both,
3¢ DEN is omitted, 2 is assumed for 7-track, 2 is assumed for 9-track (one density), and 3 is assumed for 9-track (dual density).

" American National Standard COBOL,

9TgqelL

°6

adeg, oTysubey uo 395 eleg B bUTlEaI)d I0J siszswexedans gOd

The format of the DCB parameter for copying the DCB parameter of a
previous DD statement in your job is:

= ——— —

1
* .ddname |
DCB= (4§ * .stepname .ddname {.list of attributes]) |
* ,stepname.procstepname.ddname |
Jd
Replace "ddname" with the name of the DD statement whose DCB parameter
you want to copy. Replace "stepname" with the name of the EXEC
statement of the step that contains that DD statement. If the DD
statement you want to copy is contained in the same job step, omit the
stepname, i.e., DCB=*.ddname. The following example shows how to code
the DCB parameter to copy the DCB parameter of a DD statement in
previous step:
1
//STEP2 EXEC... |
//DD1 DD...,DCB=(BLKSIZE=1600,LRECL=80) |
. |
. |
. |
//STEP4 EXEC... |
//COPY DD...,DCB=*.STEP2.DD1 |
. |
. |
. |
J

o e o e e e e Gt . s

The following example shows how to code the DCB parameter of a previous
DD statement in the same step: ' N :

//STEPD EXEC...
//DDA DD...,DCB=RECFM=F

//DDC DD...,DCB=%.DDA

[e e ——a— —— —— —

If you want to copy the DCB parameter of a DD statement contained in a
cataloged procedure step, you must give both the name of the job step
that invokes the procedure and the procedure step name, i.e.,

DCB=%*.stepname.procstepname.ddname

The first part of the following example shows your‘input deck; the
second part shows a cataloged procedured called by the ST2 EXEC :
statement in your deck.

The DD Statement 111

T e i s st ki e i . i s, i i S

W

Creating

Magnetic
Tape

INPUT DECK

//5T2 EXEC PROC=XYZ

- stepname

//COPY EXEC...

//DD1 DD...,DCB=%¥.ST2.STEP4.DATA

/}V' ddname
procs%gpname

CATALOGED PROSEDﬁRE //////

//STEP4 EXEC...
//DATA-DD. .., DCB=BUFNO=4

o s e o e o S —— S —— —— ——— — —— — _— — = o
Lt e s e e e e e ot e s s v e s s i s s i s s s it e, e

If you want to modify the DCE subparameters you are copying add the new
subparameters to the reference. The subparameters you specify will
override the corresponding copied subparameters. For example,

//0UT EXEC...
//TAPE1 DD...,DCB=(BLKSIZE=160,LRECL=80,0PTCD=C,DEN=1
//TAPE2 DD...,DCB=(*.TAPE1l,DEN=2, RECFM=V)

[e e e s S s S o
b o e e o et e e e e]

Special Processing Options

There are two special processing options for data sets on magnetic tape:

1. You can request channel separation from other data sets in the same
job step using either the SEP or the AFF parameter.

2. You can suppress I/0 operations on your data set using the DUMMY
parameter.

SEP: When two or more data sets are to be used in a job step,
processing time may be shortened by requesting that the system transmit
data sets over separate channels. For example, it would be faster to
have your input data set and your output data set on separate channels
than to have them on the same channel.

112

You can request channel separation for data sets in each job step
using the SEP parameter. If possible, the system will honor this
request. It may not always be possible to honor the request for
separation because given devices may not be available for allocation
when the job step is executed or because there may not be enough devices
of a given type on different channels for all the data sets that request
separation. If channel separation is not requested, the system will
assign any available channel that has the device specified with UNIT
parameter.

The format of the SEP parameter is:

r
| SEP=(ddname,...)
L N]

Replace the terms "ddname" with the names of up to eight earlier DD
statements in the same job step. The earlier DD statements can define
any type of data set; new or existing, on magnetic tape or direct
access, temporary or nontemporary, etc.

In the following example, you request that the data set defined by the
FOUR DD statement be assigned to a channel other than the ones assigned
to the data sets defined by the ONE and TWO DD statement. The data sets
defined by ONE and TWO may or may not be on the same channel. The data
set defined by THREE may or may not be on the same channel as any of the
other three data sets.

r 1
| 7//7PROG1 EXEC PGM=PROCESS |
| //ONE DD UNIT=2400,VOLUME=PRIVATE, LABEL= (,NL) |
| //TWO DD DSNAME=SYSTEM.USER.ABC,DISP=0LD |
| //THREE DD DSNAME=HELP,DISP=(,KEEP) ,UNIT=2314, |
| 77/ VOLUME=SER=AFL, LABEL=RETPD=31 i
| //FOUR DD DSNAME=END,DISP=OLD,UNIT=2400-2, |
| 77/ VOLUME=SER=TAPET75, SEP=(ONE, TWO) |
L 4

Using the preceding example, if you want to request that the data set
defined by the THREE DD statement be on a channel other than the one
assigned to the data set defined by the TWO DD statement code:

r 1
| //PROG1 EXEC PGM=PROCESS |
| /7/ONE DD UNIT=2400,VOLUME=PRIVATE,LABEL=(,NIL) |
| /7/TWO DD DSNAME=SYSTEM.USER.ABC,DISP=0LD |
| //THREE DD DSNAME=HELP,DISP=(,KEEP),UNIT=2314, |
| 77/ VOLUME=SER=AFL, LABEL=RETPD=31, SEP=TWO |
| //FOUR DD DSNAME=END,DISP=OLD,UNIT=2400-2, |
| 77 VOLUME=SER=TAPE75, SEP=(ONE, TWO) |
L J

As a result of this example, the data sets defined by ONE and TWO may
or may not be on the same channel. The data set defined by THREE and
FOUR may or may not be on the same channel, but neither one will be on
the same channel as the data set defined by TWO. Also the data set
defined by FOUR will not be on the same channel as the data set defined
by ONE.

Remember that the request for channel separation made with the SEP
parameter is only a suggestion for more efficient operation, and not a
requirement. If your data set must be on separate channels specify unit
addresses with the UNIT parameter. You can obtain a configuration chart
with all the unit addresses from your manager or supervisor.

The DD Statement 113

Creating

(Lormns

Magneti
Tape

i

[+]

AFF: The AFF parameter provides a shortcut method of requesting channel
separation. When two or more data sets in the same joon step have the
same channel separation requirements, you can code the SkP parameter for
the first data set, and then request the same separation using the AFF
parametexr for the later data sets. The AFF parameter tells the system
that you want the data set defined in this DD statement to have the same
channel separation as the data set defined in the named DD statement.

The format of the AFF parameter is:

r 1
| AFF=ddname I
L 1

Replace "ddname" with the name of the earlier DD statement that requests
the desired channel separations. This data set and the earlier data set
may or may not be on the same channel.

‘ In the following example, the data sets defined by DD1 and DD2 may or
may not be on the same channel. The data sets defined by DD3 and DD5
may or may not be on the same channel, but neither one will be on the
same channel or channels as the data sets defined by DD1 or DD2. The
data set defined by DD4 will not be on the same channel as the data set
defined by DD3, but it may be on the same channel as the data sets
defined by DD, DD2, or DDS.

T h)
| //STEP EXEC PGM=METHOD2 T
| //DD1 DD .- |
| 7//DD2 DD ... |
| 7/DD3 DD SEP=(DD1,DD2) ;... |
{ //DDu DD SEP=DD3, - .. I
| //DD5 DD AFF=DD3, ... I
L i d

The requests for channel separation and affinity are only suggestions
to the system. They will be honored if the appropriate devices are
available.

LUMMY: The DUMMY parameter allows you to bypass I/0 operations and data
set disposition. When your processing programs ask to write the dummy
data set, the write request is recognized, but no data is transmitted.
This facility is particularly useful when you are debugging your program
because it saves you processing time. For example, you can suppress the
writing of a data set until you are sure your program is going to
produce meaningful output.

The DUMMY parameter is a positional parameter. That means that it
must be coded first in the operand field. For example: ‘

//70UTPUT DD DUMMY,UNIT=2400-1,
//DD7 DD DUMMY, DSNAME=§&JOE,DISP=(,PASS) ,UNIT=TAPE7,
/77 LABEL=(, SUL) , DCB=TRTCH=ET

If you wish, you can omit all other parameters required to define your
data set except DCB. (If you were not going to write the DCB parameter
you do not have to write it.) For example, the two DD statements shown .
above could be coded as follows: R

//70UTPUT DD DUMMY
//DD7 DD DUMMY, DCB=TRTCH=ET

114

When you are ready to perform I/0 operations on your data set, simply
omit the DUMMY parameter and code all parameters requ1red to wrlte the
data set. For example, ‘ SR i ;

//0UTPUT DD UNIT”2HOO 1

//DD7 DD DSNAME=§&JOE, DISP—(PASS) UNIT TEPﬁj,
4 LABEL=(, SUL), DCB»TRTCH=ET : ;

Direct Access Devices

You can create five different kinds of data set on direct access
devices:

Sequential data sets.
Direct data sets. Creating
Partitioned data sets.
Generation data sets.

Indexed sequential data sets. Direct Acces
Devices

il

i

The parameters shown in Table 6 are used to create those data sets.
The definition of an indexed sequential data set may require up to tnree
DD statements, and is discussed in Appendix A. The remaining four kinds
of data sets are defined with only one DD statement. The way you use
certain parameters indicates which kind of data set you are defining.
These differences are summarized below and will be pointed out again
when the parameters are discussed in the remainder of this topic.

e Sequential data set -- You use basically the same parameters used to
define a data set on magnetic tape and you must also allocate space
for the data set using one of the following parameters: SPACE,
SPLIT, or SUBALLOC.

¢ Direct data set -- You use the same parameters as for a sequential
data set, with the exception of the SPLIT parameter. If not
specified in your program, you must write DSORG=DA or DSORG=DAU in
the DCB parameter.

e Partitioned data set -- You use the same parameters as for a
sequential data set, with the exception of the SPLIT parameter. You
must code the number of directory blocks in the SPACE or SUBALLOC
parameters. You can define the first member of the data set at the
same time you allocate the partitioned data set. To do this use a
special form of the DSNAME parameter, i.e.,

DSNAME=dsname (membername)

To learn how to add more members to a partitioned data set, refer to
the section "Extending an Existing Data Set.”™

s Generation data set -- You use the same parameters as for a
sequential, partitioned, direct, or indexed sequential (if the
data set is defined on one DD statement) data set. You must use a
special form of the DSNAME parametex, i.e.,

DSNAME=groupname (+number)
Generation data sets must be cataloged, i.e.,

DISP=(,CATLG)

The DD Statement 115

For further information on the different types of data set refer to
"Section 3: Data Management" in IBM System/360 Operating System:
Concepts and Facilities. Programs written in ALGOL or FORTRAN H cannot
use direct data sets. Partitioned data sets can only be used by L
programs written in the assembler language. (Programs written in COSOL
or FORTRAN can use partitioned data sets in a restricted way. For
further information refer to the language Programmer's Guide.)

This section is summarized in Table 66 of Appendix D.

Data Set Information

The DSNAME and DISP parameter are used to specify which type of data set
you want to create. There are two types of data sets: temporary and
nontemporary. A temporary data set is one that will be used for the
duration of the jobstep or the job only . A nontemporary data set is
one that can be used not only by the jobsteps in your job, but by later
jops as well. There are three types of nontemporary data sets:
cataloged data sets, kept (or noncataloged) data sets, and members of
generation data groups.

The following is a summary of the types of data sets that can be
created on direct access devices:

1. Temporary

a. For the duration of the job (sequential, direct or
partitioned).

b. For the duration of the jobstep (sequential, direct or
partitioned).

2. Nontemporary
a. Cataloged (sequential, direct, or partitioned).

b. Kept (or noncataloged) (sequential, direct or partitioned).
c. Member of a generation data group.

The formats of the DSNAME and DISP parameters for each type of data set
are described below.

Temporary -- For the Duration of the Job: The formats of the DSNAME and
DISP parameters are:

r
| DSNAME=|é&&name ,DISP=(NEW,PASS,DELETE)]
| &Ename !
| & éname (membername)]
| g¢name (membername) I
L ———— ———

In the DSNAME parameter, replace the term "name" with any name not
used by another temporary data set in the job. Zach name consists oif
one to eight alphameric or national (a,$,#,) characters. However, the
first character of the name must be a letter or national character. If
you are creating the first member of a partitioned data set, add the
member name after the temporary name. The member name is enclosed in
parentheses and consists of one to eight alphameric or national A
characters. The first character must be a letter or national character.

116

"

The system generates a name for the temporary data set, which begins
with SYS and includes the jobname, the temporary name assigned in the
DSNAME parameter, and other identifying characters. You can retrieve
this data set later in the job by coding

DSNAME= & &name

DSNAME=&name

DSNAME= & éname (membername)
or

DSNAME= éname (membername)

in & DD statement, using the same name, or

DSNAME=*.stepname .ddname

A double ampersand should be coded preceding the temporary name you
assign to a data set. However, a name preceded by a single ampersand is
treated as a temporary data set name, as long as no value is assigned to
it either on an EXEC statement invoking a procedure, or a PROC statement
within a procedure. If a value is assigned to it by one of these means,
it is treated as a symbolic parameter. (Symbolic parameters are
discussed in the section "The PROC Statement"™ and in "Part III:
Cataloged Procedures.")

In the DISP parameter, the NEW subparameter indicates that you are
creating the data set. You do not have to code NEW as long as you
indicate its absence by a comma. The PASS subparameter indicates that
tihe temporary data set can be used by later steps in the job. The
DELETrs subparameter indicates that this data set is to be deleted if the
job step abnormally terminates (ABEND). You need not code DELETE
because it is always assumed by the system for temporary data sets.

For example, the parameters DSNAME and DISP in the following DD
statement indicate that the temporary data set named AREA can be used by
later steps in the job.

//DD1 DD DSNAME=&EAREA,DISP=(,PASS) ;e

In the following example the DSNAME parameter defines the first
member of a temporary data set named PDS.

//DDA DD DSNAME=§&PDS(ONE) ,DISP=(,PASS), ...

Temporary —-—- For the Duration of the Job 3tep: Both the DSNAME and DISP
parameters can be omitted to indicate a temporary data set which will be
deleted at the end of the job step. You can, if you wish, code the
following:

r———H™—""""%y——"—"—"—/""+"" """ """ T T/ T 7= a
| DSNAME=|&&name [.DISP=(NEW,DELETE,DELETE)] i
| &name |
| & gname (membername) |
| &name (membername) |
[R— - i

The temporary name in the DSNAME parameter is coded as described for
temporary data sets for the duration of the job. All subparameters ot

The DD Statement 117

Creating

il

Direct Acces
Devices

i

the DISP parameter are assumed if omitted. For example, the three
following DD statements define the same data set:

//DD2 DD DSNAME=§&AREA,DISP=(NEW,DELETE,DELETE) ,...
or

//DD2 DD DSNAME=EEAREA, ...
or

//7DD2 DD...

Note that the location parameters must still be coded in those
statements.

Nontemporary -- Cataloged: The formats of the DSNAME and DISP
parameters are:

r]
| DSNAME= {dsname, ,DISP=(NEW, CATLG[,CATLG |
| dsname(membername)} (DELETE|) |
| KEEP I
L 4

In the DSNAME parameter, replace the term "dsname” with the qualified
name you want to give to the data set. A qualified name is made up of
several names that correspond to index levels in the catalog; each
1-to-8 character name is separated by a period. Each name must begin
with a letter or national (a3, $,#) character. Any letter, number, nation
be used to complete each name. A qualified name can consist of 1
through 44 characters (including periods). For example,

DSNAME=AB.33.M.$7.R2579AB2

Each level of qualification must already exist as an index in the
system catalog before you can request the system to catalog the data
set. An index level is created using the IEHPROGM utility program.

Once the indexes are established, the data set can be cataloged. If the
name has no qualifiers (called an unqualified name), the system will
create the index entry for you. For example,

DSNAME=C174B
or
DSNAME=D

If you are creating the first member of a partitioned data set, add
the member name after the data set name. The member name is enclosed in
parentheses and consists of one to eight alphameric or national
characters. For example,

DSNAME=DATA.FILE{(G794)
or
DSNAME=ALPHA (MW)

In the DISP parameter, the NEW subparameter indicates that you are
creating the cdata set. You do not have to code NEW as long as you
indicate its absence by a comma. The CATLG subparameter indicates that
the data set is to be cataloged. The third subparameter tells the
system what is to be done with the data set if the step abnormally
terminates (ABEND). If the data set name is either qualified or
unqualified, you can specify CATLG or DELETE. CATLG is assumed if you
omit the third subparameter. If the data set name is unqualified, you

118

E—

can specify KEEP as the third subparameter. KEEP tells the system that
if the step ABENDs you want the data set kept intact (but not cataloged)
until a later job requests that the data set be deleted or until the
expiration date has passed. (You can specify a retention period or
expiration date in the LABEL parameter.)

In the followin
is to be cat ‘ogea,
tlm‘e‘ - . g .

//DD20 T

if youfwis

//DD21 Dﬁ”QSNAMEPEATEnEILE*DISP“fCATLG)....’
In the followzng

cataloged,

examglewfa new -data: set named 8¥STEM FILEl 15 to be

(Creating

manates, 1t w1ll be kept.

: . . Direct Acce:
,quyggz,.}, ;‘~4 4 - : Devices

ﬁ

Nontemporary -- Kept: The formats of the DSNAME and DISP parameters
are:

r]
| |
| DSNAME= f{ dsname DISP=(NEW, KEEP[,KEEP) |
| {dsname(membername)} +DELETE |
| ,CATLG |
L J

In the DSNAME parameter, replace the term "dsname" with the
ungualified name you want to give to the data set. The name can contain
from 1 to 8 characters. The first character must be a letter or a
national character (2,$,#). Any letter, number, national character, the
hyphen and the +0(12 0 multlpunch) can be used to complete the name.

For example, £ : e S .

DSNAME=aR#753

If you are creating the first member of a partitioned data set, add
the member name after the data set name. The member name is enclosed in
parentheses and consists of one to eight alphameric or national
characters. The first character must be a letter or nation character.
Fox example, T R LT T e -

DSNAME=STOR

In the DISP parameter, the NEW subparameter indicates that you are
creating the data set. You do not have to code NEW as long as you
indicate its absence by a comma. The KEEP subparameter indicates that
the data set is to be kept intact (but not cataloged) until a later job
step or job requests that the data set be deleted or until the
expiration date has passed. (You can specify a retention period or
expiration date in the LABEL parameter.) The third subparameter tells
the system what is to be done with the data set if the step abnormally
terminates (ABEND). You can specify KEEP, DELETE or CATLG. KXKEEP is
assumed if you omit the third subparameter.

The DD Statement 119

In the following example, a new data set named RTW is to be kept. If
the step ABENDs, it will also be kept.

//DDB DD DSNAME=RTW,DI5P=(,KEEP),...

In the following example a new partitioned data set named RRC is to
be kept. Its first member, ACS, is being created at the same time.

//DDB DD DSNAME=RRC(ACS) ,DISP=(,KEEP),...

In the following example, a new data set named TWO is to be kept. If
the step ABENDs it will be cataloged.

//DD6 DD DSNAME=TWO, DISP=(,KEEP,CATLG),...
Notes:

*» You can give a disposition of PASS to a new data set with an
unqualified name. For example,

DSNAME=DATA, DISP=(, PASS)

Such a data set can become a temporary, cataloged, or kept data set
according to the disposition you give to it in a later DD statement.
See "Passed Data Sets" in "Retrieving an Existing Data Set."™ If the
data set is not referred to by a later DD statement in the job, it
is deleted at the end of the job.

e You can use special characters as part of the qualified data set
name if you enclose the name in apostrophes. For example,

DSNAME="'AB=750"

If the special character is an apostrophe, you must code it as two
consectutive apostrophes. For example, code NAT'L as

DSNAME='NAT"''L"

Do not use special characters if the data set is to be cataloged or
if it contains a membername.

Nontemporary —- Member Generation Data Group: A cataloged data set that
is periodically processed can be grouped with its earlier generations to
form a named generation data group. The entire group has a generation
group name. Each member of the group can be addressed by a simple
generation number. The last generation produced before the start of
your job has a generation number of 0. The generation produced before
the last one is -1. The generation you are going to produce in your job
is +1. After your job ends, the generation you produced automatically
becomes generation 0. If you produce more than one generation in your
job, you must name them +1, +2, +3, etc. After your job, the highest
generation number you produced, say +3, becomes generation 0, +2 becomes
-1 and +1 becomes -2.

For further information on creating generation data groups, refer to
Appendix D of the publication IBM System/360 Operating System Job
Control langquage Reference. The formats of the DSNAME and DISP
parameters for creating a new member of a generation data group are:

DSNAME=groupname (+number) ,DISP=(NEW,CATLG [,CATLG) i
, DELETE

e -

120

L4

In the DSNAME parameter, replace the term "groupname" with the name
of the generation data group. The name can contain from one to eight
characters. The first character must be a letter or national character
(2,%$,%). Any letter, number, national character, the hyphen, and the +0
(12-0 multipunch) can be used to complete the name. The groupname can
be a qualified name. The qualified name can contain up to 35 characters
(including periods). Replace the term "number" with the number of the
generation you are creating. If you are only creating one generation in
your job, this number will be 1. For example,

D3SNAME=MASTER(+1)
oxr
DSNAME=A.B(+1)

If you are creating more than one generation in your job, number each
generation consecutively. For example, DSNAME=MASTER(+1),
DSNAME=MASTER(+2), etc.

In the DISP parameter, the NEW subparameter indicates that you are
creating the data set. You do not have to code NEW as long as you
indicate its absence by a comma. The CATLG subparameter indicates that Creating
the new generation is to be cataloged. (This subparameter is required.)
The third subparameter tells the system what is to be done with the data
set if the step abnormally terminates (ABEND). You can specify CATLG or Direct Acces
DELETE. CATLG is assumed if you omit the third subparameter. Devices

il

In the following example, two new generations are added to the
DATE.FILE generation data group. If the step abnormally terminates the
new generations will be deleted. :

//STEP EXEC PGM™...

-

//DD7 DD DSNAME=DATE.FILE(+1),DISP=(,CATLG,DELETE) ...
//DD8 DD DSNAME=DATE.FILE(+2) ,DISP=(,CATLG,DELETE) ...

e
L A ——

After your job is successfully completed DATE.FILE(+2) becomes
DATE.FILE(0), and DATE.FILE(+1) becomes DATE.FILE(-1).

Location of the Data Set

The UNIT, VOLUME and LABEL parameters are used to describe the location
of your data set. The UNIT parameter indicates the kind of direct
access device you want, and, if your data set is to occupy more than one
volume, it indicates how many units are needed. The VOLUME parameter
lets you request a public volume (or volumes), or a private volume (or
volumes). You can request a specific volume or you can let the system
assign you a volume. The LABEL parameter describes the tape label of
the volume used for your data set. You must allocate space to a
sequential data set using either the SPACE, SPLIT or SUBALLOC parameter;
to a partitioned or direct data set using either the SPACE or SUBALLOC
parameter; and to a generation data set using the SPACE parameter.

The DD Statement 121

UNIT: The format of the UNIT parameter is:

= e ——

unit address) {,unitcount
UNIT=({ device type P [« SEP=(ddname,...)])
groupnamnme '

| DU S —

The first positional subparameter identifies the direct access device
you want to use for you data set by its address, or unit name, or group
name.

unit address
is the actual machine address of the direct access device. For
example, UNIT=190. You should not specify the address unless you
are sure you want it. Do not specify the address if you are going
to need more than one unit for the data set. (Multiple units are
requested with the second subparameter of the UNIT parameter.) To
request a specific bin on a specific 2321, you should write

UNIT=address/bin
where "bin" is a number from 0 to 9. For example,
UNIT=293/7

indicates that you want bin 7 of the 2321 unit located at address
293. If you specify

UNIT=293
you are requesting any