
Systems Reference Library

IBM 1710 FORTRAN Executive System
Reference Manual

The 1710 FORTRAN Executive System provides the user
with the ability to direct process control operations with
programs written in the FORTRAN language.

File No. 1710-36
Form C26-5879-1

This publication supersedes and obsoletes the following IBM publications:

IBM 1710 FORTRAN Executive System Specifications (Form C26-5733)

IBM 1710 FORTRAN Executive Assembly Program Specifications (Form C26-5800)

This edition obsoletes the previous edition (Form C26-5879-0) which was a

limited printing for the initial distribution of the programming &ystem.

Copies of this and other IBM publications can be obtained through mM Branch Offices.
Comments concerning the contents of this publication may be.addressed to:

IBM, Product Publications Department, San Jose, Calif. 95114

© 1964 by International Business Machines Corporation

ii

mM 1710 FORTRAN EXECUTIVE SYSTEM

Introduction • • • • • •

General Operation • • • • • • • • • • •

Communications Areas •••••••••••
Disk Identification Map (DIM) Table ••
Sequential Program Table

Equivalence Table • • • • •

Mainline Core Load Map ••

Interrupt Indicator Table • •

Interrupt Subprogram Identification Map ••

Status Table for Interrupts • • • • • • • • •

Permanent Core Storage Area (Off-Line) ••

Permanent Core Storage Area (On-Line)

Executive Transfer Vector •••••••••

Disk Sector Area (Sector 19663) • • • ••

mM 1440, 1401, 1410 Systems Header Label Area ••

Mutual Disk Pack Label

Disk Pack Label •••••• • • • • • • • • • • • •

1710 FOR TRAN II-D •••

Nonprocess Programs •

Process Programs • • •

Statement Modifications. •

Subprograms. • • • • • • •
Contact Sense Subprogram •

Contact Operate Subprogram • •

Real-Time Clock Subprogram •

Manual Entry Subprogram

Library Functions •••••••
FOR TRAN Control Records • •
Entering the Source Program

Phase I Errors • • • • •

Phase II Errors ••••

End of Compilation

Identification Data • •
Subprograms Called by FORTRAN. •

Trace Feature •••••

Subroutines • • • • • • • • • • • • • • •

Library Subroutines. • • • • • • •

Arithmetic and Input/Output Routines.

Subroutine Error Checks • • • • • • •

Symbol Table Listing ••••••••

Symbol Table Listing for Subprograms

Core Loads ••••••••

Load Control Records. • •

Operating Procedures • • • • • • • • • •

OVERLAP Errors ••••• • • • •

Console Program Switch Settings • • •

iii

1

• 1

• 3
• 3

• 4
• • 5

• • 5
• 6

6

6

7
8

• 8
• 12

13

13

13

14

• 14
14

15

16

• 16
17

• • 18

• • 18
18

19

• 20
••• 22

• • 22
24

24

• 25
26

• • 26
26

• • 27
30

• • 31
32

• • 32
33

• • 36
37

• 38

CONTENTS

EXECUTIVE CONTROL PROGRAMS.

SKELETON EXECUTIVE •••••••

Skeleton Executive Loader • • •

MASTER INTERRUPT CONTROL PROGRAM

Interrupt Servicing •••••••••••••

Interrupt Interrog ation. • • • • • • • • • •

PROGRAM SCHEDULE CONTROL PROGRAM •

Core Load Scheduling and Loading

Servicing Recorded Interrupts. • • •

Logging Operations • • • • • • • • •
Special Operations for Log Routine

Description of PSC Options • • • •

ANALOG-DIGITAL CONTROL PROGRAM ••

Call Statement

Mainline Call. • • •• • • • • • • • • •
Interrupt Call • • • • • • • • • • • ••

ANALOG OUTPUT CONTROL PROGRAM.

Operation ••••••

Initializing Phase

Service Phase • •

Feedback Check
Analog Output Table

Location Options. • •

In-Core Option •

Disk Option • • • •

Call Statement
Mainline Call. •

Interrupt Call •

SERIAL INPUT jOUTPUT CONTROL PROGRAM.

Call Statement

Input Operations
Call Statement Procedure. •

Interrupt Procedure

Output Operations • • •

Manual Entry Unit

Digital Display Unit. •

Output Printer

Repetition of Field Format

Repetition of Groups

Scale Factors ••••

Length of Printed Line. • • •

Ending a FORMAT Statement. •

Printing the Message •••••

SYSTEM ALERT CONTROL PROGRAM

Any Check Interrupt ••
CE Interrupt. • • • • •

Typeout of Error Count

Correcting Procedures • • •

Restart Procedure • • •

Exception Procedure

Error Count Retrieval •

Checking Errors in Interrupt Routines • •

iv

• .39

• .39

• .39
• ••• 39

.40

• .40

• .41

• .41
••• 41

• .42
.42

.43

••• 43
.43

• .43
• .43

• •••• 44

• .44
.44

• .44
.45

• .45

• .45
.45

• .46
.46
.46

.46

.47

• ••• 47
.48

• .48
.48

• .48
• ••• 48

• .49
• .49

.51

• ••• 52
.52

• .53
• .54

• .54
• ••• 56

• .56
.56

• .57
.60

• ••• 60
.60

• .62
.62

DIAGNOSTIC AIDS • •

Trace Option • • • • •

Quick Look Diagnostics

Circuitry Tested • • •
Diagnostic Control Program • •

Call Statement •••••
Diagnostic Control Entry • • • • • • • • • • • • •

SUPERVISOR PROGRAM
Control Records • • • • •

Operation Codes •••

Control Card Formats

Comments Records. • • •

Module Change Numbers (Off-Line)
Using More Than One Disk Drive With the Process

Control System • • • • • • •

Module Chang e Numb ers On-Line
Disk Pack Identification Numbers

Stacked Input • • • • • • • • • • • • •

Job Arrangement • • • • • ••••••
Monitor Control Record Analyzer Routine.

Error Messages •••
I/O Routine ••••
I/O Routine Linkage.

I/O Constants
Card I/O ••••
Typewriter I/O •
Paper Tape I/O

Disk Storage I/O •

I/O Error Routine • • •
Error Detection and Correction.

Error Count Retrieval Routine.

Loader Routine. • •

System Output Format.

Indicator Codes.
Error Messages • • •

DISK UTILITY PROGRAM

Operation ••••••••
Write Addresses Routine
Alter Sector Routine

Operating Notes •••

Disk-to-Output Routine ••
Control Card (DDUMP)
Output Format • •
DIM Table ••••••

Load Programs Routine • • • •

Replace Programs Routine
Disk-to-Disk Routine

Delete Programs Routine

Define Parameters Routine ••••••••

v

• 63
• 63

• • 64

• • 64
.64

•••• 65

• 65

• 67
• • 67

• 67
• 70

• • 71

• 71

72

• • 73

• 73
73

• • 74

• 74
75
76
77
78

• 80

• 80
80
80
81
82
87
87

• • 88

• 88
• • 89

• 90
• 90
• 92

93

• 95

• 95
• 96
• 97

98
. • 98

101
102
103
104

Define Disk Pack Label • • • • • • • • • • •
Define FORTRAN Libraty Subroutine Name
Error Detection and Correction

Operator Action •••••
FOR TRAN and FEAP Output

FORTRAN EXECUTIVE ASSEMBLY PROGRAM •

Language ••••••••••••••
Calling Executive Control Programs
Using FORTRAN Subroutines • • • •

Adding Subroutines to the FORTRAN Libraty •
Working Areas ••••••••••••
Loading the Libraty Subroutine • • •
Additional Entries and Synonyms • •

Construction of I/O Requests and Format Statement Output
Matrices •••••••••••••••• ••••

• 106
• 107

• • 107
• • 110

• 110

112

• 112
• 117

••• 120

• • 120
• ••• 121

121
• •• 122

• • 123
123

• 123 Construction of Disk I/O Requests •••••••
Simulation of FETCH and RECORD in FEAP
Input/Output Format Control ••

Subscripting Routine Linkage.

. • 124

Operating Procedures
Assembly ••••

FEAP Error Messages
Error Correction
Post Assembly Phase
Ru1es of Relocatability. •

FEAP Modification Program.

MONITOR LOADER PROGRAM.
Card Formats •••••

Heading Control

• 125
126
127
127
129
129

• 131
133
134

137
137
137
137 Data ••••••

Trailer ••••• • • • • • • • • 137
Operating Procedures

Switches •••••
Paper Tape Loading
Card Loading ••
Loader Messages • •

EXECUTIVE ASSEMBLY AND LOADING PROCEDURES
System Symbols Defined by User ••••••••••

Master Interrupt Control. • • • • • • • • • • • • • • •
Assigning Process Interrupts and TImed Interrupts. •

Program Schedu1e Control.
Analog-Digital Control ••••••••••••••••
Analog Output Control. • • • • • • • • • • • • • • • • •

Contact Operate Contact Sense, Clock Read, Manual
Entry Read Subprograms, and Exception Core Load. •

Serial Input/Output Control •••.•••• 0 •••••••••

vi

• • 138
• • 138

138

• • 138
138

140
140
140
141

• 142
• • 143
• • 143

143
144

System Alert Control • •
Loading Procedure •
Starting Procedure •
Changing or Deleting Disk Areas ••
Procedure for Changing the Disk Areas Defined by DIMs •

SEQUENTIAL PROGRAM LIST EDIT ROUTINE
Operation •••••••••.•••••••••••••••.

APPENDIX A •••••••
FOR TRAN S TA TEMENTS •

Control Statements •••

Input/Output Statements
Specification Statements • •
Subprogram Statements. • • •

• 145
• • 145

• 147

• 148
• 148
• 150

• • 150

• 151
• • 151
• • 151

• 151
• 151

• • 151

APPENDIX B: FEAP MNEMONICS •••••••••••••••••••• 152

APPENDIX C •••••••••••••••
Executive Summary and Loading Sequence

APPENDIX D •••••••••••
Off-Line Starting Procedure.
On-Line Starting Procedure •

APPENDIX E ••••••••
Error Message Listing

APPENDIX F ••••••••••••••••••

Permanent System Symbol Table Listing ••

vii

• • 166
• 166

• • 171

• 171
• 171

172
172

• • 176

• 176

PREFACE

The IBM 1710 FORTRAN Executive System is designed to provide the user with a
programming tool that will simplify the creation of user-written process-control
programs. The language is primarily FORTRAN with the ability to call Executive
control programs such as Analog Input, Analog Output, Contact Sense, etc. In
addition, provision for entry to these control programs when using a one-for-one
type programming language is supplied with the FORTRAN Executive Assembly
Program (FEAP). This program is specially designed to aid the FORTRAN user if
he wishes to incorporate his own control programs or to produce FORTRAN sub
programs_,written in this language.

When the 1710 System is not connected to the process, the FORTRAN Executive
System can be operated in a manner similar to the 1620 Monitor I System.

The FORTRAN Executive System can be separated logically into the following
five programs:

FORTRAN II-D Compiler
Executive Programs
Supervisor Program
Disk Utility Program
FORTRAN Executive Assembly Program

The material in this publication is organized and presented under these headings.
Appendices are included which contain: (1) Listing of FORTRAN Statements;
(2) Listing of FEAP Mnemonics; (3) Executive Summary and Loading Sequence;
(4) Starting procedures; (5) Error Message Index; (6) Permanent System Symbol
Table Listing.

To fully understand the material in this publication, the reader should be
familiar with the information contained in the following IBM publications:

1710 Control System Reference Manual (Form A26-5709)
1710 Additional Special Features and Attached Units (Form A26-5660)
1311 Disk Storage Drive, Model 3 (Form A26-5650)
1620 Monitor I System Reference Manual (Form C26-5739)

MACHINE REQUffiEMENTS

The FORTRAN Executive requires that the following features be installed on the user's
1710 Control System with the 1711 Data Converter, Model 2.

1. IBM 1311 Disk Storage Drive, Model 3
2. Indirect Addressing
3 . Automatic Divide
4. Basic Interrupt
5. Analog Output Setup Interrupt (optional)
6. Serial Input/Output Channel (optional)

viii

IBM 1710 FORTRAN EXECUTIVE SYSTEM

INTRODUCTION

The FORTRAN Executive System is a programming system designed to provide users
with a simpler means of generating, organizing, and executing process-control programs
than those previously available. With this system, user's programs may be written in
FOR TRAN language or symbolic form; they may use the supplied Executive Control
programs; and they can be compiled and/or assembled and stored to disk storage under
control of a Monitor.

The FORTRAN Executive System is comprised of five programs:
Supervisor Program
Disk Utility Program (DUP)
FORTRAN II-D Program
FOR TRAN Executive Assembly Program (FEAP)
Executive Control Program(s)

The Supervisor, DUP, FORTRAN, and FEAP programs operate as an off-line
Monitor and can operate only when the 1710 System is not being used to control the
process. The Executive Control Programs, executed during operation of the user's
process control programs, are designed to provide the user with an efficient method of
using the 1710 features. Calls from FORTRAN programs to the Executive Control
Programs are handled by CALL statements.

General Operation

The implementation of the FORTRAN Executive System is accomplished in four phases.

Phase 1. Phase 1 consists of loading the Monitor programs to disk storage and using
the FORTRAN Executive Assembly program to assemble the Executive Control programs.
The Executive programs must be assembled by the user because only he can define
certain parameters that are required by these programs. For example, the Serial
Input/Output Control program must know the total number of SIOC units that are attached
to the system. This must be defined for the SIOC program when it is assembled. After
assembling the Executive programs needed, the Skeleton Executive program must be
loaded to disk using the special loader routine provided for this purpose.

Phase 2. Phase 2 consists of using the FORTRAN compiler or the FORTRAN Executive
Assembly program to compile or assemble user-written programs. Input may be from
cards, paper tape, or typewriter; and output may be in cards, paper tape, or directly to
disk storage. Compilation or assembly is done in the noninterruptible mode.

After compiling or assembling, the object program is in relocatable form, i. e. , the
addresses of the instructions must be modified relative to the program starting address.
The modification must be performed before the program can be executed.

Phase 3. Phase 3 consists of using the Disk Utility Program to load the object programs
(output from 1710 FORTRAN II or FEAP) to disk storage.

To facilitate rapid loading for execution, DUP combines process control programs
into groups called "core loads." A core load consists of the core image form of a main
program and the in-core subprograms and interrupt programs that it utilizes. The
object programs to make up a core load may be loaded from cards, paper tape, or from
disk storage itself. Core loads are always kept in disk storage and the relocatable form
of the programs that were used to make up a core load may also reside on disk.

Phase 3 is completed when all programs and subprograms have been loaded to disk
storage. The programs are in executable form, so that when they are called from disk
storage to be executed, no time will be lost adjusting addresses.

IBM 1710 FORTRAN Executive System
1

2

Phase 4. This is the execute phase. The operator first calls in Program Schedule
Control. This routine loads the:

Multiply and Add tables
FOR TRAN Arithmetic and Input/Output routines
Skeleton Executive program
Core portion of the Input/Output routine

The user specifies the desired program, and the core load is loaded into core
storage. After the core load is loaded, a branch occurs to the starting address of the
user's main program. From this point the 1710 Control System is capable of controlling
the process. The degree of control that the computer maintains over the process is
dependent only on the machine configuration and the user's programs.

The following section is included for the benefit of IBM and customer personnel who
are familiar with the IBM 1620 Monitor I System and/or the IBM 1710 Executive n
System.

The following differences should be noted:
1. The FIND and FE TCH operations permit reference to any portion of the

disk storage drive that contains the work cylinders.
2. All arrays are written from or read into core storage as one record when

RECORD or FETCH statements are used.
3. FIND is no longer a relocatable library function. This routine is stored

with the arithmetic and input/output subroutines.
4. The following library subroutines can be specified as "in-core" or used in

the arithmetic and input/output block.

LOGF
EXPF
Subscripting
Disk I/O

SINF-COSF
ATANF
SQRTF

5. The arithmetic and input/output subroutines have been permanently placed
on cylinders 0-6.

6. The standard work cylinders area on disk has been changed to 8 through
23.

7. LOCAL subprograms, previously stored in the work cylinders (temporary
storage), are stored permanently on disk storage in core image format.

Names for LOCAL subprograms are restricted to five characters or
less. Up to ten copies of the same subprogram in core image format can
be stored on disk storage and used by mainline programs that call them.
They will be used if they can fit into the core area for LOCAL subprograms
in the mainline core load. If no copy meets this requirement, a new copy
is created and stored on disk.

LOCAL subprograms that call other subprograms are unique and are
identified as such. They can be used only with the first mainline program
that calls them. If another mainline requires the same subprogram, the
subprogram must be renamed and loaded again, for a second unique copy.

LOCAL subprograms used with mainline core loads must be executed
in the masked mode if in-core interrupt subprograms that call LOCAL
subprograms are included in the mainline core load.

8. Interrupt routines can be loaded into core storage with mainline programs
by specifying the interrupt identification in an INTCR control record.

9. Interrupt core loads can include all normal FORTRAN II-D core load data;
e. g., 'subprograms-in-core, FORTRAN library functions, LOCAL sub
programs.

10. The reading of control records when loading FORTRAN programs is con
trolled by a CCEND control record instead of a control card count.

11. . Programs being compiled for off-line (nonprocess control) purposes
must include an OFFLN control record.

12. The floating-point mantissa length can be varied from 2 through 8. The
mantissa length and fixed-word length must be the same for all process
control programs. Fixed word length may be from 4 through 10.

13. The Mainline Core Load Map is stored in the first three sectors of the
mainline core load.

14. When called from an interrupt routine, the SlOC, ADC, and AO must have
an I suffix, e. g. , SIOCI.

15. All programs that use COMMON must reserve two fixed-point variables
for system use. These must be the first entries of COMMON. The first
such variable should be loaded with zeros initially if it is to be used by
the user's program.

COMMUNICATIONS AREAS

There are several areas of disk storage and core storage that will be used as communi
cations areas by the user's programs and the programs that make up the FORTRAN
Executive System.

The user must specify various sequences, priorities, address information, and
error restart procedures. These items are then automatically placed in "maps" or
tables, which permit the FORTRAN Executive System to be self-directing with no man
datory operator interventions. A map is simply a series of records.

A description of each of the communications areas follows.

Disk Identification Map (DIM) Table

The DIM table contains an entry for each program or data area stored in disk storage.
It resides on cylinder 24 and can accommodate up to 999 20-digit entries. The Disk
Utility Program maintains the DIM table.

The format of the 20-digit DIM entry follows:

DDDDDDSSSCCCCCEEEEE :f

DnDDDD is the disk sector address of the program or data.
SSS is the sector count.
CCCCC is the first core address. If this field is all 9's, the program is in relocatable
format. If the units pOSition is flagged, the FORTRAN loader is used to load the
I?rogram.
EEEEE is the entry address. This address is relative to the load address (first core
address to be loaded) for programs in relocatable format.
:\:: , * , *, or * is the rightmost character of a DIM entry.
These characters indicate the following conditions about a referenced program.

Character File Protected Permanently Assigned

* Yes No

* Yes Yes

:\:: No No

* No Yes

IBM 1710 FORTRAN Executive System
3

4

NOTE: (1) A file-protected program can be read but not written because it has read-only
flags written in all (or anyone) of the sector addresses in the disk area which it occupies.
If read-only flags are written by a user's program in sector addresses where a program
is stored, that disk storage area will not be "file protected," however, data cannot be
written in individual sectors which contain read-only flags. (2) A permanently assigned
program cannot be repositioned (moved) in disk storage because it has been assigned to
a given address by the user.

DIM entries are located in the following manner:
1. Refer to the Equivalence table to find the 4-digit DIM entry number.
2. Double this number and add the sum to 04S000.
3. Use the leftmost five digits of the result to locate the disk sector of the DIM

table.
4. Use the rightmost digit of the result to find the particular DIM entry.
The DIM table can be expanded (see DEFINE PARAMETER ROUTINE) to contain

up to 4995 DIM entries.

Sequential Program Table

The second through eighty-first sectors (SO sectors) of cylinder 99 are reserved on each
disk pack for a Sequential Program table which lists the programs, tables, and data
areas sequentially by DIM numbers, and available storage space by special coding. The
Sequential Program table is used by the Disk Utility program to determine the order of
programs and available storage space. When a program is added to or deleted from disk
storage, the table is updated to reflect the new sequence. Each SO-sector table will
accommodate up to 2000 4-digit entries. Three types of entries are included in a table.

1. DIM entry numbers for every program or data specified in the DIM table.
2. Available sector count to indicate the number of available sectors between

programs or data within cylinders.
3. Cylinder entry numbers to identify the beginning of each cylinder.
Available sector numbers always begin with 9 (9xxx); the three rightmost digits

denote the number of consecutive available sectors. For example, 9021 indicates that
21 consecutive sectors are unused within a cylinder. A maximum of 200 available sectors
can be represented by an entry.

Cylinder entry numbers always begin with 7 (7xx); the two rightmost digits represent
the cylinder number. One hundred of these entries are contained in the table, one for
each of the 100 cylinders numbers 00-99.

An example of how the three types of entries might appear in a Sequential Program
table for cylinders 4S-52 follows:

704S 0434 0435 7049 0436 9010 0437 7050 0437 7051 0437 7052 0437

where the programs identified by DIM entry numbers 0434 and 0435 occupy all 200 sec
tors of cylinder 48, and the programs identified by DIM numbers 0436 and 0437 occupy
all sectors of cylinders 49-52, with the exception of 10 unused sectors between the two
programs in cylinder 49. Note that programs that overlap cylinders have the associated
DIM entry number repeated for each cylinder on which it is stored.

Since the SP List is so important and since the user might unintentionally destroy a
portion of the list, an edit program which will restore a correct list to the Monitor pack
is provided (see Sequential Program List Edit Routine).

The length of the Sequential Program table is SO sectors unless shortened by a
DEFINE control record (see DISK UTILITY PROGRAM). Fifty sectors should provide
sufficient space in the table if 1000 programs are to be written on a disk pack. The
user may change the size of the table for his particular needs.

Each pack in the user's system will contain an SP List that specifies the contents
of that pack. A new (initial SP) List is automatically placed on a pack when it is labeled
(see DUP DLABL).

Equivalence Table

The Equivalence table contains the alphabetic name and the DIM entry number of each
program that has been assigned a name by the user. A name is not necessary unless
the program is to be referenced using the name. In many cases only a DIM number is
needed. The format of the Equivalence table is shown with an example below.

4142434400000234
~'-----'

Dim Program
Name Entry Number

This example shows a program named ABCD as being equivalent to DIM entry
number 0234. A 5-digit disk pack identification label that can be used by other systems
must be written on the 32nd through 36th position on the last sector of cylinder 99. This
sector should be given the sector address 00199 regardless of the addressing.

Mainline Core Load Map

The Mainline Core Load Map is used by the System to determine how the user wants
each "core load" to be handled. A core load is defined as a mainline program together
with the subprogram.s, subroutines, and data that are to be made available to the main
line progr am.

The Mainline Core Load Map is stored with the core load on disk, and when a par
ticular core load is brought into core storage for execution, the Core Load Map that
pertains to that core load is also loaded.

The Mainline Core Load Map consists of 33 core locations apportioned in the follow
ing manner:

1. The 3-digit DIM of the core load related to this record.
2. The 3-digit DIM of the next core load (the one the user wants to have executed

at the completion of the current core load).
3. The 3-digit DIM of the exception core load (refer to System Alert Control

Program).
4. The 3-digit DIM of the restart procedure core load (refer to System Alert

Control Program).
5. A I-digit Alert Procedure indicator. This indicator is interrogated by the

System Alert Control program to determine how the user wants a particular
error condition to be handled. The user has three choices:

o Halt the program in an interruptible mode
1 Record the error, but do not halt
1 Branch to the exception procedure program

6. The 6-digit disk address of the next mainline program.
7. The 3-digit sector count of the next mainline program.
s. The 5 -digit core storage address which is the core loading address of the next

sequential mainline program.
90 The 5 -digit core storage address which is the entry address of the current

core load
10. A record mark.

IBM 1710 FORTRAN Executive System
5

6

Interrupt Indicator Table

This table determines the order in which the user-assigned interrupt indicators are to
be interrogated. It consists of a 2-digit field for the SIOC, CE, Operator Entry,
Process interrupts, and the Timed interrupts.

The SIOC interrupt indicator number (45) is always inserted as the first entry in the
table. The second interrupt indicator number is reserved for the CE Interrupt Indicator
(27) . The user can assign the priority of the interrogation sequence for the Operator
Entry Interrupt indicator, the Timed Interrupt indicators and the Process Interrupt indi
cators. This information must be supplied when the Master Interrupt Control program
is assembled. The order of interrupt indicator interrogation is determined for all
mainline core loads at that time.

Because of its importance, the Any Check indicator (19) will always be interrogated
first, followed by: Seek Complete (42), Multiplex Complete (40), Analog Output Setup
(41), and those in the Interrupt Indicator table.

Interrupt Subprogram Identification Map

The Interrupt Subprogram Identification map (ISIM) contains address information relating
to the following Executive and user's interrupt programs.

1. SIOC Execute Interrupt program (Indicator 45)
2. CE Interrupt program (Indicator 27)
3. Operator Entry Interrupt program (Indicator 18)
4. Process Interrupt programs (Indicator 48-59)
5. Timed interrupts (Indicator 43, 44, and 47)
A total of 14 Process and timed interrupts (in any sequence) are allowable. Each

ISIM record is 16 pOSitions in length and is composed of the following fields:
1. One-digit status control code
2. Six-digit disk address of the program
3. Three-digit sector count of the program
4. Five-digit core storage address where the program will be located for

execution (this is also the entry address)
5. Record mark
A group mark is used in place of the ending record mark for interrupt subprograms

that call FORTRAN library subroutines.
The ISIM is assembled and updated automatically by the Disk Utility Program. It

is always in core storage when a process control program is being executed.
When an interrupt occurs and the interrupt program associated with it is not to be

executed immediately, the interrupt is recorded by the Master Interrupt Control pro
gram which places a flag over the record mark or group mark in the corresponding
ISIM record. See Program Schedule Control Program for a description of how inter
rupts are serviced.

The ISIM allows the Executive Control programs to call interrupt programs without
knowing specific addresses.

The status control code of each ISIM entry is placed there when a mainline core load
is loaded for execution. The data for the status control codes is obtained from the Status
Table for Interrupts that accompanies the core load.

Status Table for Interrupts

The Status Table for Interrupts is used to identify which interrupt programs are to be
recorded for execution at a later time. This table consists of a series of I-digit entries.
These entries correspond directly to a list of interrupt routines that have been placed in
the Interrupt Subprogram Identification Map. Each entry in the Interrupt Subprogram
Identification map corresponds to an entry in the Status Table for Interrupts.

When preparing the Status Table for Interrupts, the FORTRAN Executive System
inserts a 1, 0, or 0 into each 1-digit location. These digits cause the following actions
when interrogated by the Executive System.

1

o

Action

The corresponding interrupt subprogram is loaded into core
storage with the mainline program and will be executed if it is
called. (LOCAL subprograms that service interrupts are con
sidered "in-core" though they actually reside on disk until
execution.)

The corresponding interrupt core load is left on disk storage and
will be brought into core storage only if it is to be executed.

The corresponding interrupt core load is left on disk storage. If
the interrupt associated with this program occurs, it is re
corded for servicing at a later time.

When a Mainline Core Load map is brought into core storage, the data in the Status
Table for Interrupts is transferred to the Interrupt Subprogram Identification Map.

Permanent Core Storage Area (Off-Line)

Core Storage
Positions

402-421

422-425

426

427

428

Description

A 20-digit DIM entry or a 14-digit disk control field being used by
the I/O routine, Disk Utility program, or other programs.

Starting address of work cylinder. Only the four leftmost positions
of the sector address are given. This address will be 1000
(with the flag) unless changed by a DFINE control card.

Source of FEAP or FORTRAN source program input,

1 typewriter.
3 paper tape.
5 - card.

If this position is flagged, loading resumes after a TCD at core
storage address 00000. If unflagged, loading resumes at the
core storage address speCified by positions 435-439 of this
Communications Area.

Source of object program being loaded,

3 paper tape.
5 card.
7 disk.

A flag in this position indicates that a DEND type entry starts
execution of the object program. No flag indicates that a
TRA-TCD type entry starts execution of the object program.

mM 1710 FORTRAN Executive System
7

8

Core Storage
Positions

429

430-434

435-439

Description

Source of monitor control input,

1 typewriter.
3 = paper tape.
5 = card.

A flag is present in this position if library subroutines are to be
called with FORTRAN object programs.

"High" indicator, i. e. , the core storage address of the highest
position to be loaded plus one.

Address where loading is resumed following an FEAP TRA state
ment. This address will always be one of the following:
00000, 00075, 00150, or 00225.

Permanent Core Storage Area (On-Line)

402-405

411-415

The starting address (four high -order positions) of the disk storage working
cylinders.

"High" indicator, i. e. , the core storage address of the highest position to
be loaded plus one.

Executive Transfer Vector

The Executive Transfer Vector (ETV) is contained in the Skeleton Executive program.
The exact location varies with the FORTRAN Subroutine Set used. The label CTVT will
be in core location 07600 with subroutine sets 1 and 3; 09700 with set 2; 09100 with set
4.

Location

CTVT

CTVT+1

CTVT+6

CTVT+13

CTVT+18

CTVT+25

CTVT+30

CTVT+37

No. of
Char.

1

5

7

5

7

5

7

1

Label

MASK

EXECML

EXECIN

EXPSCP

EXMICP

PTI

Using Prog

MIC, PSC

MIC

USER, MIC

MIC

USER, MIC

MIC, PSC

USER, AO, AI

MIC, SAC,
PSC

Description

Flagged if Exec call made
from mainline while masked.

Return address to mainline

Entry point to MIC from a
mainline call

Return address to interrupt

Entry point to MIC from a
interrupt call

Entry address to PSC from
a mainline call

Return address from all
control programs

Process interrupt in execu
tion

No. of
Location Char. Label Using Prog Description

CTVT+38 1 INTPRO PSC, MIC Interrupt in progress

CTVT+39 1 Not used

CTVT+40 33 SAC, PSC Current Mainline map

CTVT+73 3 ERSV SAC & PSC Identification code of
restart mainline number

CTVT+76 1 AODOWN SAC, AOC Digit set when AO check
indicator is turned on. All
Analog outputs are termin-
ated when this digit is set.
To start AOC, digit must be
reset or AOC program
reloaded.

CTVT+77 1 AOBSY AOC, MIC Digit is set when AOC is
in operation

CTVT+78 1 AOSWS AOC Control digit for AOC

CTVT+79 1 AOSWA AOe Control digit for AOC

CTVT+80 1 IOERR SAC, IORT Hard error in IORT

CTVT+81 1 FFIN SIOC, SIOC FORMA T finished
FORMAT

CTVT+82 1 FORMAT SIOC, SIOC FORMAT in process
FORMAT

CTVT+83 2 AOCNT AOC Analog output item counter

CTVT+85 5 LASTR AOC Address of last record in
analog output table

CTVT+90 5 ERLOC SAC, AOC, Address +12 of instruction
ADC that caused error

CTVT+95 5 SAC SAC, AOC, Entry to core portion of
MIC, IORT SAC

CTVT+100 5 COMO SAC, SIOC Entry point to SIOC from
SAC after an SIOC printer
error

CTVT+105 2 NUMDEV SAC Number of SIOC units in
1710 system

CTVT+107 1 TYERR SIOC, SAC Control digit for SAC to
know if SIOC peripheral.
error has occurred

mM 1710 FORTRAN Executive System
9

No. of
Location Char. Label Using Prog Description --
CTVT+108 5 IN TAB SIOC Address of devices

CTVT+113 3 LOFCAR SIOC, USER Length of one line of
output printer message

CTVT+116 5 PRTTBL SIOC, SAC, High -order address of buffer
CB, PSC table which designates the

buffer area to be used by
a particular output printer

CTVT+121 5 SDlGlT SIOC, SAC, CE SIOC unit busy digit table

CTVT+126 5 TABL SIOC Low position of first
5 -digit field

CTVT+131 5 TAB9 SIOC, SAC, CE Address of SIOC error
count field

CTVT+136 2 SECT SAC Restart sector count

CTVT+138 5 SACPSC SAC, PSC Entry point to PSC after a
unit response failure

CTVT+143 1 SIOCCT SAC, MlC, Any SIOC interrupt control
PSC digit

CTVT+144 5 IN TSlO MlC, SIOC Entry point to SIOC program
when a SIOC interrupt occurs

CTVT+149 1 AIBSY MlC, ADC Digit is set when ADC is in
operation

CTVT+150 5 EXBI MIC, AO Entry point to MIC from a
call sequence to AO

CTVT+155 15 COMMON MIC, AO, AI COMMON linkage area

CTVT+170 1 lNX MIC, Disk exchange indicator

CTVT+171 5 EXMLO AI, AO, SIOC Return from control programs
to mainline

CTVT+176 5 lNOUT AI, AO, SIOC Return from control programs
to interrupt

CTVT+181 3 CSC PSC Sector count of current
mainline program

CTVT+184 5 INTPSC PSC, MIC Address for entering PSC
between core loads

CTVT+189 5 MlC Address to enter MIC before
returning to mainline

10.

No. of
Location Char. Label Using Prog Description

CTVT+194 3 SAVIO PSC Dim number of special
call mainline

CTVT+197 5 SAVRET PSC Return address of saved
program

CTVT+202 5 DIAGNO PSC Address of current quick look

CTVT+207 1 SLNTR AOC AOC Slew-Trim control

CTVT+208 2 ALCT SIOC Error count chart numbers

CTVT+210 2 ALPRT SIOC SIOC Alert message
printer address

CTVT+212 15 AOREC MIC, AOC AO Disk control field

CTVT+227 5 CALAO MIC, AOC Entry to AO on a call
sequence

CTVT+232 5 AIINT MIC, ADC Entry to AI on an ADC
interrupt (40)

CTVT+237 5 CALAI MIC, AI Entry to AI on a call
sequence

CTVT+242 5 INTBEG MIC, PSC Entry address of MIC for
interrupt entry

CTVT+247 5 GETDIA PSC, USER Entry address to call
diagnostic program

CTVT+252 4 TCO PSC Previous reading of time
clock

CTVT+256 4 NXL PSC Time of next logging
operation

CTVT+260 5 RET PSC, DIAG Diagnostic Return address
to PSC

CTVT+265 5 MICKEY AIC, SIOC Entry to MIC from SIOC for
M. E. and S. S. Interrupt

CTVT+270 5 AD DR MIC, SIOC Address of Exec. call
variable 0 and return address
to user's program

CTVT+275 5 SKSAB SACl, SAC2 RETURN address of SAC2
to SACI

CTVT+280 5 SACWK SACl, SAC2 Address of work constants
for SACl, SAC2

IBM 171 0 FORTRAN Executive System
11

12

No. of
Location Char. Label

CTVT+285 5 FILTAS

CTVT+290 5 SRET

CTVT+295 5 EXSIOC

Using Prog

'SAC1, SAC2

MIC, SIOC

MIC, SIOC

Description

SAC1 Exit control instruction

Return from SIOC to MIC
on a call statement

Entry to SIOC from a call
statement

Disk Sector Area (Sector 19663)

Disk Sector
Positions

00-19

20-21

22

23

24-35

36-39

40-44

45-46*

47-48*

49

50-72

73

74-75

76

Description

DIM entry used by I/O routine and Supervisor program.

Not used. Available for use by the user.

o indicates that the program to be loaded into disk storage is in
core image format; 1 indicates that the program to be loaded
into disk storage is in relocatable format.

o indicates card output; 1 indicates paper tape output.

Six-character alphabetic name of user',s source program to be
loaded into disk storage after assembly.

Four-digit DIM entry number of user's source program to be
loaded after assembly.

Basic core address for process core loads. The FORTRAN will
load the Mainline programs starting at the even hundred address
formed by placing zeros in the two low-order positions of this
field.

Two digits (ff) indicating length of mantissa for FORTRAN
SUbprograms. (Standard mantissa length is 08.)

Two digits (kk) indicate FORTRAN fixed-point word length (04
standard length) .

Digit indicates number of disk storage drives available to the
Monitor System.

Supervisor Program indicators.

Source of input, other than disk, for FORTRAN subprograms
(from D FINE control record; 5 is standard, 3 = paper tape,
5 = card).

Not used.

Object machine core size (from DFINE control record; 1 when
system is delivered).

Disk Sector
Positions

77-81

82

83*

84-88

89-93

94-98

99

Description

Not used.

FOR TRAN A and I/O subroutine set numbers (from FORX or
XEQS control record).

FORTRAN A and I/O standard subroutine set number (from DFINE
control record; 1 when system is delivered).

First core storage address of a relocatable obj ect program.

Computed relocation address of a relocatable object program.

Card sequence number.

A record mark (=F) •

* These items are the systems standards. See Define Parameters under Disk
Utility Program.

IBM 1440, 1401, 1410 Systems Header Label Area

To facilitate the processing of common disk packs, a standard alphabetic identification
label is created on the 1401, 1410, or 1440 Systems. This label is not used by the 1710
System. The disk storage area (first 19 sectors of the last disk track of the last cylind
er) reserved for this label can be released for other storage purposes, using the DELET
Disk Utility routine, if a disk pack will be used with the 1710 only. The DIM entries for
the four modules that may be connected to the system are 166, 167, 168 and 169.

Mutual Disk Pack Label

A 5 -digit disk pack indentification label that can be used by the other systems (1440,
1401, or 1410) must be written on the 32nd through 36th position on the last sector of
cylinder 99. This sector should be given the sector address 00199 regardless of the
addressing scheme used on the remainder of the disk pack. The sector can be labeled
automatically using the Define Disk Pack Label routine of the Disk Utility program.

Disk Pack Label

The first sector of cylinder 99 is a label sector, that is, it contains a label to identify
the disk pack. Each disk pack used by the FORTRAN Executive System must include
this label. A 5 -digit disk pack indentification number in the five leftmost pOSitions of
the sector constitutes the label. This number is used to provide protection for user's
records as explained in the section entitled Disk Pack Identification Numbers. This
file-protected label must be generated using the Define Disk Pack Label routine. The
DIM numbers for these labels are: 0158, 0159, 0160, and 0161 for packs placed on
modules 0, 1, 2, and 3, respectively.

IBM 1710 FORTRAN Executive System
13

14

1710 FORTRAN II-D

The 1710 FORTRAN II-D program is a compiler program; it reads user-written FORTRAN
statements in the form of cards, paper tape, or typewriter input, and compiles an object
program. It is similar to the 1620 FORTRAN II-D program described in the IBM 1620
Monitor I System Reference Manual (Form C26-5739), and with a few exceptions, the
statements that are available for use with the 1620 version apply also to the 1710 version.
Only the differences between the 1620 and 1710 versions and the operating procedures are
described in this section. A complete list of all 1710 FORTRAN II-D statements appears
in Appendix A.

The FORTRAN compiler program can be called for operation using a Monitor FOR
or FORX control record, however, if it is used on a 1710 Control System, the computer
must be operated off-line.

Using the FORTRAN language, the user may write process mainline programs,
process interrupt programs, process interrupt subprograms, nonprocess mainline pro
grams, and nonprocess subprograms. These program types, their control cards, and
statement restrictions are defined in the following paragraphs. A complete list of all
1710 FORTRAN ll-D statements appears in Appendix A.

Nonprocess Programs

Programs to perform nonprocess functions can be compiled when an OFFLN control card
is included with the source statements.

Nonprocess programs can be executed on a 1710 Control System only in the noninter
ruptible mode. They cannot contain a statement to call one of the Executive programs
(CALL ADC, CALL SIOC, etc.). The CALL LINK, CALL EXIT, and STOP statements
are valid, and Input/Output statements make use of the Supervisor I/O routines.

Process Programs

User-written programs designed to operate the 1710 Control System are considered pro
cess (or process-control) programs. There are two types of process programs: mainline
programs and interrupt programs.

Mainline process programs are normally executed when the computer is in the inter
ruptible mode of operation. They normally perform and deal with lower priority process
operations than interrupt programs.

Interrupt programs are called into operation by the occurrence of an interrupt, and
are usually executed in the noninterruptible mode of operation. Interrupt programs can
be recorded for execution at a later time, in which case, they can be executed in the
interruptible mode.

Interrupt programs can be further subdivided into two types: interrupt subprograms
and interrupt mainlines. Basically, the difference is whether or not the SUBROUTINE
subprogram statement is included in the source program. The interrupt mainline is the
main program for an interrupt core load. Interrupt subprograms are included as part of a
mainline core load; in this way, interrupts can be serviced sooner than with the interrupt
core load method. (Interrupt programs cannot be recorded). The subprograms that are
called by and accompany an interrupt mainline are not considered interrupt subprograms.

Source statements for interrupt programs must be preceded with an INTER control
statement. The INTER control statement serves as notification to the compiler to gen
erate a branch instruction to the Master Interrupt Control program for RETURN state
ments (used in interrupt subprograms), and for CALL RTMIEC statements (used in
interrupt core loads).

STATEMENT MODIFICATIONS

Each statement listed below is available only in the 1710 FORTRAN TI-D program or is
modified from the description given in the IBM 1620 Monitor I Reference Manual (Form
C26-5739). The following descriptions give the changes that have been made to the
statements.

The CALL EXIT, CALL LINK, and STOP statements are permitted in a source
program only if the source program statements are preceded with an 0 FFLN control
statement which indicates that this program is a nonprocess-control program.

PA USE Statement

The PAUSE statement is compiled to a WAIT (58) instruction when used in a process
program allowing interrupts to be recognized immediately.

IF (SENSE SWITCH) Statement

This statement has been expanded to allow a program check of the setting of the 1710
Branch Indicators as well as the Console Program Switches.

Example:

IF (SENSE SWITCH 70) 18, 39

which means, "If PBI number 70 is on, transfer to statement 18, otherwise transfer to
statement 39."

FIND Statement

The FIND statement is not effective with subroutine sets 1 and 3. It may be compiled in
programs to be used with sets 1 and 3, but control is immediately transferred to the next
sequential instruction when the FIND routine is entered. The access arm is pOSitioned
when the FIND statement is used with subroutine sets 2 and 4.

NOTE: Any area of the drive that contains the work cylinders can be specified in a FIND
Statement.

FE TCH Statement

Any area of the drive that contains the work cylinders can be specified in a FETCH
statement.

RE TURN Statement

For interrupt subprograms, this statement is compiled to a branch to the Master
Interrupt Control program.

CALL RTMIEC Statement

This statement must be used as the last executable statement in each interrupt mainline
program (interrupt core load) to return control to the Master Interrupt Control program.
The CALL RTMIEC statement can be used in a subprogram called by an interrupt main
line to return control to the Master Interrupt Control Program.

1710 FORTRAN II-D
15

16

CALL MASK Statement

This statement causes the compiler to generate an in-line Mask instruction in the
object program.

CALL UNMASK Statement

This statement causes the compiler to generate an in-line Unmask instruction in the
obj ect program.

CALL ADC Statement

This statement is used to call the Analog-Digital Control (ADC) program. The ADC
program and the CALL statement parameters are described in the Executive Control
Program section.

CALL PSC Statement

This statement is used to call the Process Schedule Control (PSC) program. The PSC
program and CALL statement parameters are described in the Executive Control
Program section.

CALL SlOC Statement

This statement is used to call the Serial Input/Output Control (SlOC) program. The
SlOC program and the CALL statement are described in the Executive Control Program
section.

CALL AOC Statement

This statement is used to call the Analog Output Control (AOC) program. The AOC
program and the CALL statement parameters are described in the Executive Control
program section.

CALL DIAG statement

This statement is used to call the Diagnostic Control program. The Diagnostic Control
program is described in a separate section (see Diagnostic Control Program).

SUBPROGRAMS

The following descriptions cover subprograms that are supplied with the FORTRAN
Executive System to provide the user with a means to perform specific 1710 operations.
The subprograms are supplied in symbolic FEAP format to be assembled by the user
(see Assembly Procedures).

Contact Sense Subprogram

This subprogram reads the status of 20 HSCS points, converts the reading into binary
data, and stores the data into the low-order positions of five fixed-point variables.

CALL Statement

11 is a fixed-point literal or variable containing the terminal address for a group of
contact points. The terminal. addresses are shown in Table 1. Only the first 20 points
of each address group are converted. 12 is a fixed -point array or the first of five
consecutive fixed-point variables into which the binary status will be read.

Table 1. Contact Sense Addresses

Terminal Contact Sense
Address Points Scanned

00 000-019

01 020-039

02 040-059

03 060-079

04 080-099
05 100-119

06 120-139

07 140-159

08 160-179
09 180-199
10 200-219

11 220-239

12 240-259
13 260-279
14 280-299

15 300-319
16 320-339
17 340-359
18 360-379
19 380-399

Example: (Assume fixed-point word length (k) of 5)

CALL CS(ITAS, J (1»

If ITAS is 00001, points 020 through 039 will be decoded and placed into J (1), J (2), J (3) ,
J (4), and J (5), respectively. The array would appear as shown if all twenty contacts
were closed.

~~0l111011110111l~~
CS point 020 J (1). • J (5) CS point 039

Contact Operate Subprogram

This subprogram is used to operate a specified contact point.

1710 FORTRAN II-D
17

18

CALL Statement

CALL CO (11)

11 may be either a literal (the terminal address), or a fixed-point variable that contains
the address of the contact to be closed.

Real-Time Clock Subprogram

This subprogram reads the 1711 real-time clock.

CALL Statement

CALL CLOCK (II)

11 is a fixed-point variable in which the value of the clock will be stored. This routine
can be used to read the High Resolution clock (6 digits), but will utilize only the four
high-order digit positions.

Manual Entry Subprogram

This subprogram reads in the seven digits of information from the 1 711 Manual Entry
Switches.

CALL Statement

CALL MEOP (11' 12>

11 is a fixed-point variable where the data of the three high-order Manual Entry switch
positions is to be stored, and 12 is a fixed-point variable where the data of the four low
order Manual Entry switches is to be stored. The low-order positions of the variables
will be used for the switch data.

LffiRARY FUNCTIONS

There are seven library functions included in the 1710 FORTRAN Executive System.
The functions are:

Type of Function

Logarithm (natural)
Exponential
COSine of an angle given in radians
Sine of an angle given in radians
Arctangent of an angle given in

radians
Square Root
Absolute Value

FORTRAN Name

LOGF
EXPF
CO SF
SlNF

ATANF
SQRTF
ABSF

All of these functions are provided in relocatable form. The relocatable subroutines
can be placed with tije mainline program when the core load is formed (see *LIBCR
control card). Any function not loaded with the mainline program is "flipped" in the
Arithmetic and Input/Output subroutine area. They are read in only when called for by
the object program. (The flipped library subroutines are permanently placed in disk
storage within the first six cylinders for faster access.) All user-written library
subroutines are placed with the core load when it is formed.

FORTRAN CONTROL RECORDS

The FORTRAN Compiler utilizes six control records to specify output options, etc.
When they are used, these records may be in any order but they must be read in between
the FOR (or FORX, when compiling off-line programs) Control record and the source
program statements.

The FORTRAN Control records must have an asterisk in column 1 and the Name
must be punched beginning in column 2. If a control record is read and is not a legally
named record, the message shown below is typed, and the program halts.

ERROR, INVALID CONTROL RECORD

The operator must correct the invalid record in the input unit and depress START.
The prescribed format and specific function of each control record is described

below.
OFFLN. The OFFLN control record must precede the source statements for a non
process control program or subprogram. In effect, the OFFLN record serves as notifi
cation to the compiler to bypass error checks for STOP, CALL LINK, and CALL EXIT
statements and to compile the PAUSE statement as a Halt. The format of the OFFLN
control records is as follows:

Columns 1-6 *OFFLN
7 -80 not used

FANDK. The FORTRAN Compiler, as delivered to the user, will process an object
program with a floating-point word length of 10 digits (f of 08 + 2=10) and a fixed-point
word length of 4 digits. The operator may vary these lengths, at compilation time, by
using the FANDK control record. The format of the FANDK Control record is as follows:

Columns 1-6
7-8
9-10

11-80

*FANDK
ff
kk
not used

where ff is the floating-point mantissa length, and kk is the fixed-point word length.
If entry is from the console typewriter, the same format must be followed.

The range of!. is 2 through 8; the range of k, 4 through 10. If!. or k is out of
the prescribed range, the following message is typed:

ERROR, F OR K OUTSIDE RANGE

PSTSN. This control record causes the symbol table and addresses of numbered
statements to be punched.

The format is as follows:

Columns 1-6 *PSTSN
7 n
8 -80 not used

where n is 2 if paper tape output is desired, or 4 for card output. See NOTE
following POBJP.

1710 FORTRAN II-D
19

20

POBJP. The POBJP Control record causes the obj ect program to be punched following
compilation. The format is as follows:

Columns 1-6 *POBJP
7 n
8-80 not used

where n is the same as for the PSTSN Control record.
The format of the processor output (object program) is given under LOADER

ROUTINE in the SUPERVISOR section.

NOTE: If n is not 2 or 4 in the PSTSN or POBJP Control records, the following message
is typed out on the console typewriter and the program will halt.

ERROR, INVALID OUTPUT UNIT CODE

The operator must correct the record that contains the error and depress the 1710 Start key.

LDISK. The LDISK Control record causes the object program to be moved to a permanent
area of disk storage following compilation. The format for the LDISK control statement is:

Columns 1-6
7-12

13-16
17-80

*LDISK
Name (optional)
Number (optional)
not used

where Name is the left-justified program name, and Number is a 4-digit DIM entry
number not already in use. If a DIM entry is not supplied, the Disk Utility program will
assign one.

After compilation, the Disk Utility Program will load the programs to disk and cre
ate a DIM entry for the program. At that time, the Name supplied in the LDISK record
will be placed in the Monitor Equivalence table. It is not necessary to supply the name
of a FUNCTION or SUBROUTINE subprogram. The name used in the FUNCTION or
SUBROUTINE statement will be used.

INTER. The INTER control record must precede each interrupt source program or inter
rupt subprogram. This record, in effect, causes the compiler to generate a branch to the
Master Interrupt Control program when a RE TURN statement is processed in a subpro
gram. For programs and subprograms, the INTER record causes the compiler to ensure
that the entry address is the same as the first core address. (The first instruction com
piled for an interrupt program or subprogram is always a branch instruction.)

Columns

ENTERING THE SOURCE PROGRAM

1-6 *INTER
7 -80 not used

The source program can be entered in the form of a punched paper tape, a deck of
punched cards, or a list of statements to be typed in at the console typewriter. This
entry option is specified in the FOR or FORX Monitor Control record.

Operating Procedures

All of the following operations may be performed before the processor is called, except
possibly items 1 and 3. If the operation taking place just prior to the compilation of a
source program required the Console Program switches to be set differently than the

desired settings for compiling, a Monitor P AUS Control record should have been inserted
before the FOR or FORX record. This will allow time for the operator to change the
switches.

The operations required to process a source program are as follows:
1. Set the Console Program switches for the desired compilation operations

(see Table 2).
2. Set all check switches to PROGRAM.
3. If punching is to take place, ready the paper tape punch with feed code

leader or, ready the card punch by loading blank cards and depressing the
Punch Start key.

4. Place aJOB Control record in the input unit.
5. Place a FOR or FORX Control record in the input unit (see the Monitor

Control Records section for format).
6. Place any desired FORTRAN Control records in the input unit (Load Control

Records).
7. Place the source program statements in the input unit (specified in the FOR

or FORX record).

Table 2. FORTRAN Compilation Switch Settings

SWITCH ON OFF

1 Source statements are Source statements are not
typed on the console type- listed.

2

3

writer as they are proc-
essed •

Source statement errors
are typed in the form
ERROR n.*

A t the end of Phase 1,
symbol table and statement
numbers are typed out.

Trace instructions for
arithmetic statements are
compiled but no additional
instructi ons are generated.

A trace instruction is com
piled to trace the va I ue of
the expression generated
in an IF statement. An
additional instruction is
generated in the .obi ect
program for every IF state
ment.

4 Errors made while typing
source statements can be
corrected by

Source statement errors
are typed in the form SSSS
and CCCC ERROR n. *

Symbol 'table and statement
numbers are not typed out.

Trace instructions for
ari thmeti c statements are
not compi led •

Trace instructions for IF
statements are not com
piled.

a. turning on switch 4, rc, turning off switch 4,

b. pressing the Release d. retyping statement.
and Start keys, -

*See description under Phase 1 Errors

1710 FORTRAN II-D
21

22

To resume machine operation, if the machine was stopped to allow the operator to per
form any of the above operations, depress the Start key.

Typewriter Input. If source statements are entered by way of the console
typewriter, each statement must be terminated with a record mark. After a statement
is typed, the operator must depress the R-S key to process that statement. As soon as
a statement is processed, the carriage returns to await entry of the next statement. A
statement of up to 330 characters may be typed with no intervening punctuation, spacing,
etc.

Normally card format need not be followed, however, in a comment statement the C
must be followed by at least two blanks (spaces) before the comment is typed.

Phase I Errors

During Phase Iof compilation, a number of tests are made for source program errors. If an
error is found in a source statement and Program Switch 1 is on, a message in the form

ERROR n

is typed, where n is the error code (see Table 3). If switch 1 is off, the error message
is in the form

SSSS + CCCC ERROR n

where ssss is the last statement number encountered by the program prior to the error,
and cccc is the number of statements follOWing the last numbered statement, ssss +
cccc is the statement that contains the error. For example, the message

0509 + 0012 ERROR 1

means that the twelfth statement following the statement numbered 509 is incorrect. If
an error occurs before a statement number is encountered, ssss will be 0000. Errors
detected after processing the END statement reference the END statement. Comment
cards, blank cards, and continuation cards are not included in the statement count.

If any Type I errors (see Table 3) are found during Phase I, no attempt is made to
process the source program through Phase II. At the completion of Phase I, control is
returned to the Monitor Supervisor program.

If a Type II error is found (other than Error 60), compilation continues on through
Phase ll. However, any FORTRAN Control records specifying output that were included
with the source program will be disregarded and control will transfer to the Supervisor
program at the completion of Phase ll. If Error 60 is encountered, normal processing
is continued since N 1 and N 2 can be corrected when loading the object program (see
Subroutine Error Checks). .

Phase II Error s

During processing of the intermediate output, certain checks are performed which were
impossible to perform during Phase 1. If an error is detected, an error message in one
of the following forms is typed:

XXXX SYMBOL TABLE FULL
XXXX IMPROPER DO NESTING
XXXX DO TABLE FULL
XXXX MIXED MODE

where xxxx is the relative number of the statements within the program, not counting
storage allocation statements, comments, or blank cards. The number does not corre
late with an actual statement number.

Table 3. FORTRAN Source Program Error Codes

TYPE 1: Compilation continues but outputting of intermediate output is stopped. Only one error of this type is detected in anyone statement.

Error No. Condition

Undeterminable, misspelled, or incorrectly
formed statement.

Syntax error in a nonorithmetic stotement
(exception: DO statements).

Dimensioned variable used improperly,
i.e., wi thout subscripting, or subscripting
appears on a variable not previously
dimensioned.

Symbol table full (processing may not be
conti nued).

.5 Incorrect subscript.

Same statement number assigned to more
than one statement.

Control transferred to FORMA T statement.

Variable name greater than 6 alphameric
characters •

Variable name used bath as a nondimensioned
variable name ond as a Subroutine or Function
name.

10 Invalid variable within an EQUIVALENCE
statement.

II Subroutine or Function name or dummy var
iable used in an EQUIVALENCE state
ment (subprogram only).

12 k not equal to f + 2 for equivalence of
fixed point to floating point variables.

13 Within an Equivalence list, placement of
two variables previously in Common, or One
variable previously equivalenced and
another either equivalenced or placed in
Common.

14 Sense Switch number missing in an IF
(Sense Swi tch n) stotement.

15 Statement number or numbers missing,
not separated by cammas, or nonnumerical
in a transfer statement.

16 Index of a computed GO TO missing,
invalid, or not preceded by a comma.

17 Fixed point number greater than k digits.

18 Invalid floating point number.

19 Incorrect subscripting within a DIMENSION
statement.

20 First character of a nome not alphabetic.

21 Variable within a DIMENSION statement
previously used as a nondimensioned
variable, or previously dimensioned or
used as a Subroutine or Function name.

22 Dimensioned variable used within an
arithmetic statement function.

TYPE 2: Compilation of intermediate output continues.

Error No. Condition

51 DO loop ended with a transfer statement.

52 No statement number for next executable
statement following a transfer statement.

53 Improperly ended nonari'thmetic statement.

54 Unnumbered CONTINUE statement.

55 Number of Common addresses assigned in
excess of storage capacity because of
Equivalence. See note at end of Table.

56 Statement number or subscript greater than
9999 (only first 4 significant digits are retained).

NOTE: Errors 55 and 59 are not detected if Type I errors occur during compilation.

Error No.

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Error No.

57

58

59

60

Condition

More than four continuation cards.

Statement number in a DO statement
appeared on a previous statement.

Syntax error in a DO statement.

FORMA T number missing in an input/
output statement.

Statement nurn ber in on input/ou tpu t
statement appeared previously on a state-
ment other than a FORMAT statement, or
a number on a FORMAT statement appeared
in other than on input/output statement.

Syntax error in input/output list or an
invalid list element.

Syntax error in CALL statement, or on inval id
argument, or invalid arguments in a CALL
statement to an interrupt subprogram.

SUBROUTINE or FUNCTION statement
not the first stotement in 0 subprogram.

Syntox error or invalid parameter in a
SUBROUTINE or FUNCTION statement.

Syntox error or involid variable in a
COMMON statement.

Variable in a Common list previously
placed in Common or previously equivalenced.

Library function name appeared to the left
of on equal sign Or in a COMMON,
EQUIVALENCE, DIMENSION, or input/
output statement; or function name not
followed by a left parenthesis.

Syntax error in FORMAT statement, or
invalid FORMAT specifications.

Invalid expression to the left of an equal
sign in on arithmetic expression.

Arithmetic statement function preceded
by the fi~t executable statement.

Invalid expression in an IF or CALL state-
ment, or inval id expression to the right of
an equal sign in an arithmetic statement.

Unbalanced parenthesis.

Invalid argument used in colling on
Arithmetic statement function or Function
subprogram.

Syntax error in disk I/O statement.

Disk I/O list omitted.

Disk I/O list contains bath simple. variables
and array names.

COMMON exceeds core storage size. (May
occur when large array is defined.)

STOP, CALL LI NK, or CALL EXIT statement
appears in a process control program.

Condition

RETURN statement appeared in program
other than a subprogrom (statement ignored).

RETURN statement not contained in a Sub-
routine or Function subprogram.

Statement number not defined. See note at
end of Table.

Syntax error in DEFINE DISK statement,
invalid use of, or DEFINE DISK statement
missing.

1710 FORTRAN II-D
23

24

If an IMPROPER DO NESTING or MIXED MODE message occurs, compilation is
continued, but only to check for other errors. The FORTRAN Control records, PSTSN,
POBJP, and LDISK will be disregarded, the object program will not be executed and
control will be returned to the Supervisor program.

Compilation stops immediately after the SYMBOL TABLE FULL or DO TABLE
FULL message is typed and control is returned to the Supervisor program. The approxi
mate allowable number of symbols differs with the core storage size of the source
machine. For a 1620 with 20,000 positions, approximately 200 symbols are allowed.
For a 1620 with 40,000 or 60,000 positions, the number of symbols allowed is approxi
mately 1200 or 2200, respectively.

End of Compilation

When all of the intermediate output is processed, the following messages are printed:

nnnnn CORES USED
aaaaa NEXT COMMON
END OF COMPILATION

where nnnnn is the number of core positions the object program requires (object program
and data areas except COMMON), and aaaaa is the next available core storage position
of the COMMON area, (aaaaa + 1 is the last used position of COMMON).

If FORTRAN Control records specifying output are included with the source program,
the outputting takes place following the END OF COMPILATION message.

Identification Data

When a program (or subprogram) is compiled, it is headed with an identification record
that will be used when the program is to be loaded into core storage for execution.

Both main program and subprogram header identification records are shown and
described as below:

Mainline or link
- -_ _ _ _ _ _ Word Rec _ _ First Next Subroutine

,00100 1 216719878981 Nl I N21 Length 1 Length 1 Length 1 ff I kk 1 Core I Common 1 Indicators I
5 J 2 6 2 5 2 3 5 2 2 5 5 30

Digits

Subprogram

_ _ _ _ Subprogram _ _ Entry Address Nex t Subrouti ne
100100 1216719878981 Name 1 Length 1 ff I kk 1 Less Six 1 Common I Indicators I

5 1 2 6 12 5 2 2 5 5 30

00100
2

67
987898

The address of the origin of the program less 100.
An indicator to the relocating loader that a constant

to be relocated is forthcoming.
The number of digits in the forthcoming constant.
An arbitrarily chosen constant to identify this as a

header record for a FORTRAN program.

Subprogram Name The name of the program in double digit representation
(left-justified). Used only in subprograms and FOR
TRAN function headers.

N1 The number of words per disk record. (From the
DEFINE DISK FORTRAN statement.) This field is
present only for mainline programs and links.

N2 The number of logical records in the disk as used by
the FORTRAN program. (From the DEFINE DISK
FOR TRAN statement.) This field is only present
in mainline program and link header records.

Word Length The number of digits in the words used to determine a
logical record. This value is the larger of the
floating word and the fixed word length.

Rec. Length The number of sectors to be used when reading or writ-
ing logical records. This value is limited to the
numbers 1 and 2.

Length The length of the program (This must be an even
number).

ff and kk The length of the mantissa and the fixed point words in
this program.

Entry Address Less Six The first location in the subprogram, less six, to enter
the subprogram.

First Core The first location in the program to begin execution.
Present only for mainline or link programs.

Next COMMON The next location available in COMMON.
This must be an even address (e. g., 19998)
so that COMMON can correctly be written
on disk during operation of FORTRAN loader.
Subprograms do not use this value.

Sub. Indicators A digit position for each library subroutine in the
FOR TRAN system.

The identification record occupies one whole sector when it is on the disk. The
format for the balance of this sector, if the program is in relocatable format, is shown
below:

0000021701234567891234567

Subprograms Called by FORTRAN

The names of the subprograms called by a program are stored at the end of the program.
The address within the calling program where the address of the subprogram will be
placed is also stored along with the name of the subprogram. These 18-digit name and
address records are created for the subprograms called and the last record includes a
record mark as the last character. If no functions or subprograms are called, a record
mark is placed in the first even core location following the program. Up to 100 sub
programs may be used with a.ny one' FORTRAN main program or link (50 can be loaded
with the program; 50 can be called on an as-needed basis, i. e. , LOCAL).

Name Address I 0 I
12 Digits 5 1

The names and addresses of the subprograms called are moved to the FORTRAN loader
work area when the subprogram is loaded. This FORTRAN loader will determine which
of the subroutines called by the subprogram have not already been loaded, and will load
those routines (exception: LOCAL subprograms cannot call a new subroutine). The
proper addresses are placed within the calling programs to link them with the subroutines
that they call.

1710 FORTRAN II-D
2S

26

Trace Feature

Under program switch control, instructions can be compiled into the object program to
enable the operator to trace the flow of the program when it is executed. During exe
cutionof the object program, the trace output is under control of Program Switch 4 as
described under Operating Procedures.

The trace output contains the value of the. left-hand side of each executed arithmetic
statement and/or, the value of the expression calculated in an IF statement.

SUBROUTINES

The subroutines for 1710 FORTRAN II-D are divided into two groups: (1) Library
subroutines, and (2) Arithmetic and Input/Output subroutines.

Library Subroutines

Fifteen relocatable subroutines are included in the FORTRAN library (see Table 4).

Table 4. FORTRAN II-D Library Subroutines

STORAGE REQUIREMENTS

·WITH WITHOUT
SUB- llBCR DIM FLOATING FlOATING

SYMBOLIC ROUTINE REQUEST ENTRY TRANSFER POINT POINT
TYPE OF FUNCTION NAME NUMBER NAME NUMBER ADDRESS FEATURE FEATURE

Logarithm (natural) LOGF I lOGF 10 02936 790 850

Exponential EXPF 2 EXPF 11 02941 1066 1158

Subscripting (I dimension) ENTSCI 3

}SUBSCR
12 02946 } Subscripting (2 dimensions) ENTSC2 4 13 02951 552 552

Subscripting (3 dimensions) ENTSC3 5 14 02956

RECORD RECORD 6
..,

15 02961
..,

FETCH FETCH 7 16 02966

Routine to load or unload disk buffer DKLIST 8 OKlO 17 02971 1564 1564

Routine to write or read arrays DKARAY 9 18 02976

Routine to complete FETCH or RECORD DKEND 10 .I i9 02981 ~

Cosin~ COSF 11 }SINCOS 20 02986 } 880 940
Sine SINF 12 21 02991

Arctangent ATANF 13 ATANF 22 02996 i234 1258

Square Root SQRTF 14 SQRTF 23 03001 526 540

Absolute Value ABSF 15 * 24 03006 26 26

* The Absolute Value subroutine is always loaded with the arithmetic subroutines

Two forms of the supplied library subroutines are included with the FORTRAN IT
System. One form is for users that have the floating-point feature installed on their
machine; the other form operates without the floating-point feature. Only one form is
loaded when the FORTRAN Executive System is initially loaded by the user.

The library subroutines can be stored with the core load that uses them (this is
accomplished with a LIBCR control statement when the cor,e load is formed), or, the
subroutines can be loaded when required during execution of the object program. The
latter method is accomplished by an indirect branch to a read-in routine. The sub
routine is read into an area commonly reserved for the Arithmetic and Input/Output
subroutines. This method is referred to as "flipping." The Absolute Value routine
does not need to be specified in an LIBCR control statement since it is always loaded
with the arithmetic subroutines.

Up to fifteen user-written subroutines may be added to the FORTRAN library. The
subroutines can be written in symbolic language and assembled with the FORTRAN
Executive Assembly program. Procedures for adding subroutines and information for
writing subroutines is given in the FEAP section under Adding Subroutines to the FOR
TRAN Library.

The FORTRAN statements RECORD and FETCH are processed by relocatable sub
routines numbered 6 through 10. These routines are loaded into core storage only if the
disk FORTRAN statements are utilized in the object program and an LIBCR control
record has specified DKIO to be loaded into core. Different routines may be used to
RECORD (or FETCH) an array. The routines that will write out or read in an entire
array with one disk instruction will be used when the whole array is to be handled as one
entity. The maximum speed in reading and writing of data from and to the disk is at
tained with even values for f and k, but whole arrays may be read or written as an
entity if f and k are not both even~ Either of these methods is faster than specifying the
array as -a list through the use of subscripting.

The FIND statement is used to position the access arm in the disk storage drive in
advance of a FETCH or RECORD. This is not done if either subroutine set 1 or 3 is
selected. It may be necessary for the FORTRAN system to change the position of the
arm after a FIND operation has been initiated. No automatic repositioning to the FIND
cylinder will occur after an arm disturbance until the next FETCH or RECORD state
ment is executed.

The FORTRAN statements that use subscripting notation will determine which of
three different subscripting subroutines are entered by the program. Subroutine num
bers 3, 4, and 5 are used to identify subscripting routines that handle one, two, and
three dimensions, respectively (this is actually one subroutine with three entry points).
Specifying that the subscripting routine be in core will slightly speed up the handling of
non-disk I/O. All single subscripting is done at compilation time unless calculation of'
the subscript is needed (i. e., 5**1).

Arithmetic and Input/Output Routines

The arithmetic and input/output subroutines, including constants and working areas, are
basic routines needed for proper execution of the object program. They are loaded
without being specifically called for by the object program. Besides performing the
fundamental tasks of adding, subtracting, etc. , the se routines al so perform some diag
nostic testing on the data being manipulated.

There are four arithmetic and input/output subroutine sets provided with the FOR
TRAN Executive System:

Set 1. The routines in this set are divided into groups, with each group containing
several different routines. When a specific routine is needed, its group is loaded to
core storage (from disk storage) overlaying the previous group. In this way, less core
storage is required since the groups alternately occupy the same area.

1710 FORTRAN II-D
27

28

When set 1 is used, the user's FORTRAN mainline programs (off-line) or the Exec
utiveroutines (on-line) can be loaded into core storage starting at position 07600. The
Automatic Floating Point Operations feature is not required for the use of this set.

Set 2. The routines in this set all all loaded to core storage and thus occupy more area
than set 1; however, during execution of the object program no time is lost by having
to read in the required group.

With set 2, the mainline program (off-line) or the Executive routines (on-line) can
be loaded into core storage starting at position 09700. The Automatic Floating Point
Operations feature is not required for the use of this set.

Set 3. This set is similar to set 1 except that the Automatic Floating Point Operation
feature is required for use of set 3. The routines are grouped as in set 1, and the
user's mainline programs (off-line) or Executive routines (on-line) can start at core
location 07600.

Set 4. This set is similar to set 2 except that the Automatic Floating Point Operation
feature is required for the use of set 4. The routines are all loaded to core storage
prior to program, execution and the user's mainline program (off-line) or the Executive
routines (on-line) can start in core location 09100.

Only two sets (one long form and one short form) are loaded to disk storage with the
system. If the user's machine features do not include the Automatic Floating Point
Operation feature, sets 1 and 2 must be loaded. The user further selects the long or
the short form as being the "system standard" set. When the FORTRAN Executive
System is delivered, the short form (set 1 or 3) is defined as being standard. This can
be changed with the Disk Utility Program DFINE Control record.

The long or short form can be selected at execution time by placing the set number
in column 28 of the XEQS Control record. If no digit is placed in this column, the sys
tem standard will be used. The user must remember, however, that if the short form
was chosen when the core load was formed, the program cannot use the long form during
execution because the program would overlap part of the Executive routines.

The digits used to select the set correspond directly to the set numbers as described
above.

1 - Short form, no floating-point feature. Read most routines in when required.
2 - Long form, no floating-point feature. All routines in core.
3 - Short form, Automatic Floating Point feature required. Read most routines

in when required.
4 - Long form, Automatic Floating Point feature required. All routines in core.

Any digit higher than 4 will result in the error message:

ER L8

After this message, the loading routine will set the digit to the System standard and
continue. If a 3 or 4 is used for a set number and only set 1 and 2 are on the disk, 1 or
2 will be used, respectively. Similarly, if 1 or 2 is used and only 3 and 4 ar.e on the
disk, 3 will be used in place of 1, and 4 will be used in place of 2. Nome s sage will be
typed in this event. If set 4 is specified, and set 2 is loaded on disk, erroneous opera
tion may result because set 2 requires more core area.

The arithmetic and input/output subroutines supplied with 1710 FORTRAN II-D are
shown in Table 5.

Table 5. FORTRAN Arithmetic and Input/Output Subroutines

Subroutine Symbol i c Name Operation Entry Address

Floating Point Arithmetic

Add .FAD FAC + A -+- FAC 03424
Subtract • FSB FAC - A -+- FAC 03412
Reverse Subtract • FSBR A - FAC -+- FAC 03436
Multiply .FMP FACx A FAC 03448
Divide .FDV FAC/ A FAC 03460
Reverse Divide .FDVR A / FAC -+- FAC 03472
Set FAC to zero • ZRFAC 0 .. FAC 02638

Fixed Point Arithmetic

Add .FXA FAC+I ~FAC 03400
Subtract .FXS FAC - I -...... FAC 03340
Reverse Subtract • FXSR 1- FAC ~ FAC 03352
Multiply .FXM FACx I ~FAC 03364
Divide .FXD FAC/ 1 ~FAC 03376
Reverse Divide .FXDR 1/ FAC ~FAC 03388

Common Subroutines

Store FAC and Print • TRACE F AC -+- A or I w/trace 03222
Load FAC • TOFAC A~FAC or I ~FAC 03198
Store FAC • FMFAC FAC ~A or FAC ~I 03210
Reverse Sign of FAC • RSGN - FAC FAC 03496
Fix a Floating Point Number • FIX FIX (FAC) ~ FAC 03520
Float a Fixed Point Number • FLOAT . FLOAT (FAC) ~FAC 03532
Absolute value in FAC • ABSF ±A or ± I""" FAC 03484

Exponentiation

Fixed Point J ** I • FIXI FAC ** I FAC 04124
Floating Point A ** (±I) • FAXI FAC ** (± I) ~ FAC 04128
Floating Point A ** (fB) .FAXB FAC ** (± B) ~ FAC 04244

Input/Output

Seek a cylinder • FINDI Seek Record I 02898
Read Card • RACD Initiate Read Card 04484
Read Tape • RAPT Initiate Read Paper Tape 04460
Read Typewriter .RATY Initiate Read Typewriter 04436
Write Card • WACO Initiate Write Card 04412
Write Tape .WAPT Initiate Write Paper Tape 04388
Write Typewriter .WATY Initiate Write Typewriter 04364

Format Control

.!TYPE } Handle
04508

• HTYPE 04676
• FTYPE I, H, F I 04628
• ETYPE E, A, and X 04652
• ATYPE specifications 04604
• XTYPE 04224
• SLASH Begin a new line 06588
• REP Repeat a single format spec. 04076
• REP 3 Repeat a group of specs. 06928
• REDO Repeat the entire format spec. 06828

NOTE: The symbols above are in the System Symbol Table. The period is a port of each symbol.

FAC - simulated accumulator

A & B - floating point variables

I & J - fixed point variables

~ - store in

NOTE: The label FAC can be used to reference the simulated accumulator

1710 FORTRAN II-D
29

30

Subroutine Error Checks

A number of error checks have been built into the library subroutines. The basic
philosophy in the disposition of an error is to type an error message ,set the result of
the operation to the most reasonable value under the circumstances, and continue the
program (note error Dl exception ,described below). Subroutine error codes, the
nature of the error, and the value of the result in FAC (symbolic name of the accumulator
in which arithmetic operations are performed) are listed in Table 6.

Table 6. FORTRAN Subroutine Error Codes

ERROR CODE ERROR RESULT IN FAC ERROR CODE ERROR RESULT IN FAC

01 Disk I/O used without a DEFINE F4 Overflow in FEXP 99 999
DISK statement. F5 Underflow in FEXP 00 099

02 Logica I record specified by
RECORD statement exceeds N2.

F6 Negative argument in FAXB /A/
B

Negative argument in FSQR SQR/x/
03 No group mark found at end of

an array that was read from disk.

E I Overflow in FAD or FSB 99 999

E2 Underflow in FAD or FSB 00 099

F7 Input data in incorrect form or
outside the allowable range

F8 Output data outside the allow-
able range

E3 Overflow in FMP 99 ... : .. 999

E4 Underflow in FMP 00 099

E5 Overflow in FDV or FDVR 99 999

F9 Input or output record longer
than 80 or 87 characters (which-
ever is applicable to the I/O
medium being used)

E6 Underflow in FDV or FDVR 00 099 Gl Zero to minus power in FIXI 999

E7 Zero division in FDVor FDVR 99 999

E8 Zero division in FXD or FXDR 999

E9 Overflow in FIX 99

G2 Fixed-point number to negative
000 power in FIX I

G3 Overflow in FIXI 999

Fl Loss of all significance in FSIN
000 ••••• 099 or FCOS

F2 Zero argument in FLN 99 999

F3 Negative argument in FLN In/x/

G4 Floating-point zero to negative
99 999 power in FAXI

G5 Overflow in FAXI 99 999

G6 Underflow in FAXI 00 099

G7 Zero to negative power in FAXB 99 999

The error printout is in the form

ERXX

where xx is the error code in the the table.
If error Dl occurs, the machine halts, the typewriter carriage returns, and the

operator must enter the DE FINE DISK statement parameter s by means of the typewriter
in the form of

NNXXXXX

where NN corresponds to N 1, and XXXXX corresponds to N 2 as described for the DEFINE
DISK statement. Error Dl will be indicated until the values of Nl and N2 are within the
correct range.

The FORTRAN loader further checks the value of N2 (number of data records as
specified in the DEFINE DISK statement) to see if the N2 disk work area would be over
laid by operation of the FORTRAN loader. The FORTRAN loader uses the disk working
area (starting from the high-order positions) fortables, COMMON save area, and
LOCAL subprograms. If N2 times Record length plus 1 is greater than the lowest disk
address used by the -FORTRAN loader, N2 will be redefined as

X-I
Record Length

where X is the lowest disk address used by the FORTRAN loader. The user is notified
of this action by the following me ssage:

MAX N2 ALLOWABLE Xxxxx

where Xxxxx is the maximum allowable value for N2 Loading and execution of the
programs continues.

If Error D2 occurs, the specified record will not be written, and the index value (I)
may be incorrect.

If Error F7 occurs, the field which is incorrect is replaced by zeros, and process
ing continues.

The exponent portion of an E -type input data field must be right-justified in that
field and may contain only one sign. Deviations from this rule are not checked. For
exponents greater than 99 (absolute value), the value is reduced modulo 100.

If Error F8 occurs, the incorrect field is set to blanks in the output record, and an
additional record is typed. This record contains the incorrect field in the form

E (f + 6). f
I (k + 1)

for floating-point numbers, and
for fixed-point numbers.

This additional record is also produced on the output unit (card punch, tape punch, or
typewriter) called for by the source statement.

If Error F9 occurs, the incorrect field is ignored and processing continues. How
ever, a remote possibility exists that part of the subroutines and the object program
may have been destroyed by the abnormal record. In this case, the program may in
explicably halt at some later point in its execution.

Symbol Table Listing

If Program Switch 1 is in the ON position during the FORTRAN compilation, the storage
addresses of the symbol table will be listed in the following order and form.

1. Floating point constants Fixed point constants

Xxxxx MMMMMMMMCC Xxxxx FFFFF

where Xxxxx is the low-order address of the constant.
MMMMMMMMCC is a floating-point constant.
FFFFF is a fixed-point constant.

2. Simple variable Dimensioned variables

XxxxxNAME Xxxxx NAME YYYYY

where Xxxxx for simple variables is the address at object time where the
value for NAME will be stored.

Xxxxx for dimensioned variable is the address at object time of the first
element in the array, NAME.

YYYYY is the address of the . last element in the array , NAME.
If NAME* is typed, this indicates a dummy parameter within an arithmetic

statement function.
3. Called subprograms

XxxxxNAME

where Xxxxx is the location at which the starting address of the subprogram
will be stored.

1710 FORTRAN II-D
31

32

4. Statement number s

SSSS XXXXX

where Xxxxx is the address of the first instruction generated for the statement
numbered SSSS.

If the statement number pertains to a FORMAT statement, the location XXXXX will
be the actual address of the FORMAT specification.

Symbol Table Listing for Subprograms

When compiling a subprogram, the dummy arguments are listed after statement numbers,
as follows:

XXXXXNAME

where Xxxxx is the location at which the actual address of the variable in the mainline
program, corresponding to the argument, NAME, will be stored upon entering the
subprogram. This same form is also used for simple and dimensioned variables.

The addresses listed are not the actual addresses at object time. Since programs
are relocated upon loading, the listed addresses have to be adjusted relative to the
starting location of the program or subprogram.

CORE LOADS

User's process-control programs are formed into groups called "core loads." A core
load consists of a mainline program, subprograms, and subroutines called in the core
load, and various communications areas that are used when the core load is loaded to
core storage for execution and during core load execution.

Core load programs are stored on disk in core-image format to facilitate rapid
loading when the core load is called for execution. The Disk Utility Program DLOAD
operation is used when forming a core load. The DLOAD routine, in conjunction with
a FORTRAN loading routine performs the job of converting the programs to core-image
format, making up the map entries and program linkage areas.

A core load is classed as either a mainline core load or an interrupt core load. The
distinction is simple: interrupt core loads are called by the Master Interrupt Control
program as a result of an interrupt (or by the Program Schedule Control program if the
interrupt was recorded) while the mainline core load is called by the Program Schedule
Control program as a result of a CALL PSC statement in a user's program. All portions
of an interrupt core load (mainline, subprograms, LOCAL subprograms, and subroutines)
are usually executed in the noninterruptible mode; a mainline core load is executed, for
the most part, in the interruptible mode.

The first three sectors on disk of a mainline core load contain the Subroutine
Transfer Vector, some program parameters (f, k, etc.), and the Interrupt Transfer
Vector. Sector 4 contains the Mainline Core Load Map for the core load, and the Status
Table for Interrupts. (These communications areas are described in the Executive
Control Programs section.) The mainline program for the core load begins at the
beginning of the fifth sector.

During the forming of a core load, the loader errors listed in Table 7 may appear,
as well as the overlap errors described later.

• Table 7. FORTRAN Loader Error Codes

ERROR
CODE MEANING, REASON RESULT

LI Inval id load control record. Typeout JOB ABAN-
Control word misspelled, DONED: bronch to
misplaced, or no asterisk. MONCAL"

L2 Invalid nomt! in LOCAL record Typeout JOB ABAN-
Not formed according to DONED: branch to
FORTRAN ,ules MONCAL"

Invalid indicator number in
"INTCR Record

L3 M~ltiple nome in LOCAL Typeout JOB ABAN-
recold DONED: branch to
Some subprogram nome MONCAL"
appears more than once for
some program or link, or
program or I ink nome appears
more than once

L4 LOCAL subprogra,"" table full Typeout JOB ABAN-
Greater than 50 LOCAL sub- DONED: branCh to
programs per link not allowed MONCAL"

Mainline table (link names) full
More than 50 links colling
lOCALS not allowed

L5 Inval id header record Branch to MONCAL.
Does not conform to standard
FORTRAN header record

L6 Unequal ForK Subprogram loaded,
Subprogram Fond/or K does but should be corrected
not compare with main pro- before execution
gram F or K

"MONCAL is the ~ymbolic nome for Monitor Control Record
Analyzer-routine.

Load Control Records

ERROR
CODE

lB

L9

LlO

L II

L 12

L 13

L 14

LIS

L16

MEANING, REASON

Invol id arithmetic and input/
output subroutine set

Not defined as I, 2, 3, or4

In-core subprogram table full
Greater than 50 subprograms
not allowed

New subprogram called from
LOCAL subprogram

LOCAL subprogram cannot
call new subprogram

An interrupt subprogram to be

Form C26-5879-1
Page Revised 5/14/65

By TNL N26-0120

RESULT

Set defined as system
standard is loaded,
depending on group
loaded

Ignore above 50th
subprogram

LOCAL subprogram
loaded; new sub-
program not loaded

Typeout JOB ABAN-
loaded in core has been specified DONED and Branch
as a recorded interrupt to MONCAl·

A core image copy of a LOCAL Subprogram is not
subprogram has been found to loaded
contain a DUP assigned asterisk

All available core image Subprogram is not
LOCAL suffixes have been used lcoded

Inval id I ibrary subroutine nome Type out JOB ABAN-
DONED and branch to
MONCAL·

An interrupt subprogram has Subprogram not loaded
been called by a mainline
program or one of its subprograms

A SIOC Execute interrupt (45) Subprogram not loaded
has been detected as on entry
in the INTPR Control Record.
This interrupt cannot be
recorded.

When forming core loads,' the following control records may be required to specify
certain necessary information. In stacked input, . the load control records follow
directly behind the DUP DLOAD record. The load control records themselves may be
in any sequence except for the' FORLD record, which must be first, and the CCEND
record which must be last.

FORLD Control Record

The FORLD control record is used to indicate the FORTRAN mainline program to be
used in the formation of a core load. The format is as follows:

Columns 1-6 *FORLD
7-12

13-16
Mainline program name
DIM number

If the mainline program is in cards or paper tape (System Output Format) no name
or DIM number is reqUired. If the mainline program is on disk, either name or DIM
number must be speCified. If a FORTRAN subroutine set other than the system stand
ard is deSired, the set number must be punched in column 17. The standard set is with
the Skeleton Executive for all core loads, and the user is responsible for the use of an
other subroutine set.

INTCR Control Record

The INTCR-control record is used to assign interrupt subprograms (in-core or LOCAL) to
a mainline core load.

The format of the INTCR control record is as follows:

1710 FORTRAN II-D
33

34

Columns 1-6
7-80

*INTCR
Name (of interrupt subprogram) ,slash(/),
indicator number, comma, name, slash,
indicator· number, comma, name, etc.

Blanks are not permitted between characters. The last indicator number of a card
is followed by blanks through column 80. For example:

*INTCRNAMEA/55, NAMEB/57

When an interrupt subprogram is to be loaded-on-call (see LOCAL Control Record),
the subprogram must be specified in both the LOCAL and INTCR control records. When
an interrupt subprogram is specified only in the INTCR record, it is, treated as an inter
rupt in -core subprogram and will be loaded to core with the mainline program.

Interrupt-in-core subprograms cannot call subprograms or library subroutines
that are loaded with (and used by) the mainlirie program unless the subprogram or
library subroutine that is called is executed in the non interruptible mode by the mainline.
(This restriction can be circumvented by USing two different names and loading the sub
program twice.) If a core load to service an interrupt is not loaded, that interrupt will
be serviced by an interrupt core load which will print the message E20. This routine
is provided with the system. If any interrupts are recorded, all interrupts musthave
associated ISIM entries. If an interrupt is to be recorded, the interrupt routine cannot
be placed in core with the mainline. Any call to the ADC. AO. or SIOC programs from
an interrupt that is to be recorded must be executed while the calling program is masked.

INTPR Control Record

Interrupts that are to be recorded when they are recognized and executed later must be
specified in the INTPR control record. The format of this record is as follows:

Columns 1-6
7-80

*INTPR
)C{,)C{,~, etc.

xx is the indicator number of each interrupt that is to be recorded. Blanks between
characters are not permitted .. For example,

*INTPR51, 54,52

would cause interrupts numbered 51, 52, and 54 to be recorded if they occurred during
the mainline core load that is being handled. Interrupt-in-core subprograms and SIOC
Enter interrupts cannot be recorded. This control record is used only when loading
mainline core loads to disk. '

DA TA Control Record

The purpose of the DATA control record is to indicate to the FORTRAN loader that all
segments of the program have been loaded prior to beginning .execution. .

'The rules for inclusion of the DATA control record are:

1. If the mainline or link program, or any of its associated subprograms are
loaded from the paper tape reader or card reader, a DATA control record
must be included in the stacked input whether or not any data is to be read
by the progr am.

2. If the mainline or link program and its associated subprograms are all loaded:
from disk, a DATA control record must not be included in the stacked input.

The format for the DATA Control record is as follows:

Columns

Paper Tape

1-15
6-80

*DATA
must be blank

t--75 zeros ~
* DAT AOOOOOOOOOOOOOOOOOOOO®

When a DATA record is recognized by the loading routine, a check is made to deter
mine which subprograms have not yet been loaded. If there are any such subprograms
they are listed on the console typewriter, the machine halts and the operator must then
see that these subprograms are made available for the loading routine to load before de
pressing the Start key. If all subprograms have been loaded, any remaining data in the
input unit will be skipped until the DATA record is read.

LOCAL Control Record

Subprograms that are to be loaded only when called for execution are specified at the time
the core load is being formed using a LOCAL control record. Nonprocess load-on-call
subprograms are specified when the mainline program is called for execution. The for
mat of the LOCAL control record is as follows:

Columns 1-6
7-80

*LOCAL
Mainline program name, comma, subprogr am
name, comma, subprogram name, comma,
etc.

LOCAL subprogram names must be five characters or less in length. If a LOCAL
subprogram is used to service any interrupt, the user must not permit that interrupt to
be serviced while the mainline is executing a LOCAL subprogram. This may be done by
masking the mainline during the execution of any LOCAL subprogram it uses. Interrupt
core loads may use LOCAL subprograms without masking.

LIBCR Control Record

Any of the supplied library subroutines may be placed in core storage with the mainline
program. If the subroutine is not loaded with the mainline, it will be loaded to core
storage inthe Arithmetic and Input/Output subroutine area when it is required for
execution.

To specify subroutines that are to be loaded with the mainline, the name that is
associated with the subroutine as shown in Table 4 is placed in an LIBCR control record.
The format of this record is illustrated in the following example which specifies that the
square root function and the disk input/ output routine are to reside with the mainline
program.

Columns 1-6
7-80

*LIBCR
SQRTF, DKIO

The subroutine names must be separated by commas (blanks are not permitted) .
Only the subroutines listed in Table 4 need be specified as in-core library subroutines.
All user-written subroutines are automatically loaded into core storage with the main
lines that call them. The Absolute Value subroutine is always loaded with the arithmetic
subroutines and need not be specified in the LIBCR control record.

1710 FORTRAN II-D
35

36

For nonprocess programs, the LIBCR control record is effective only for the main
line program. All user-written subroutines that are called by a Link program are loaded
to core with the Link program, and the IBM-supplied subroutines are "flipped. "

CCEND Control Record

The CCEND control record specifies the end of the control cards to be read before the
FORTRAN programs are loaded. It must be included even if no LOCAL, INTCR, or
INTPR control records are included. The format of the CCEND control record is as
follows:

Columns 1-6
7-80

OPERATING PROCEDURES

*CCEND
Not Used

To execute a previously compiled off-line FORTRAN program, the following items must
be placed in the input unit after the Monitor Supervisor program has been read into core
storage.

1. JOB Control record
2. XEQS Control record
3. LOCAL Control records (if required)
4. LIBCR Control record (if desired)
5. CCEND Control record
6. Main program (if not previously loaded to disk storage)
7. Subprograms (if required and not previously loaded to disk storage)
8. DATA Control record (Note: This must be supplied unless all programs called

have been loaded to disk storage)
9. Input data (if not previously loaded to disk storage)

10. Job End Control record
When called for execution, the main program is converted from relocatable format

and loaded into core storage. Following the loading of the main program, the "in-core"
subprograms are loaded. If any subprograms are not available, the message

LOAD SUBNAM

is typed, where SUBNAM is the name of the subprogram that must be loaded in the input
unit.

When all "in-core" subprograms are loaded, the library subroutines needed by the
main program and "in-core" subprograms are loaded into core storage. Following the
loading of the subroutines, if any subprograms have been defined as LOCAL subprograms
an "object-time read-in routine" is loaded and following it a linkage area is reserved for
each LOCAL subprogram.

The linkage data for each LOCAL subprogram includes the disk address, sector
count, first core address, entry address, and a record mark or group mark. This link
age can come from either of two sources. If the name of the subprogram is found to be
in the Equivalence table and if that subprogram is in core image with core addresses
that are within the LOCAL area for the mainline, the core image copy is used as the
LOCAL and the DIM entry is used for linkage data. The actual lookup in the Equivalence
table is performed on the first five characters as given in the name, plus a sixth char
acter which is supplied by the FORTRAN loader. This character is a 0-9 or an asterisk.
If a name - excluding the last character of 0 through 9 - is found in the table, a check is
made to determine if the core locations for that core image copy of the subprogram are
within the area for LOCAL subprograms that is available with the mainline being handled.

If such is the case, no new copy is needed and the copy that was found is utilized. If one
such copy was not loaded into core where the new mainline could utilize it, the search is
continued with the next higher number as the sixth character. If any such copy is found
to fit as a LOCAL with the new mainline, it is utilized by placing the DIM for that LOCAL
in the linkage area. If the search yields a duplicate five character name with an aster
isk in the sixth position, the search is abandoned because the subprogram is thus deter
mined to be unique and cannot be used with any other mainline.

If the LOCAL cannot be found in a usable core image form on the disk, it must be
loaded from the system input unit. Then the LOCAL subprogram is called for from card
or paper tape and loaded into core storage. The address to which this subprogram is
loaded will be the first core address for that LOCAL subprogram. The first LOCAL sub
program is then loaded permanently to disk storage by the Disk Utility Program.

DUP will assign an asterisk to the sixth character position of the subprogram name
if the subprogram calls subprograms of its own. This establishes the core image LOCAL
as unique. The LOCAL may call library subroutines that are flipped or are in core for
use by the mainline. Interrupt core loads require pseudo-calls in the mainline program
for library subroutines used by LOCALs. LOCALs cannot call library subroutines that
are not also available for use with the mainline.

DUP will assign the lowest available number between 0 and 9 to the LOCAL if it
might be used by some other mainline. In either case, the amended subprogram name
is placed in the Equivalence table. If all of the ten copies have been loaded, the DUP
handles the LOCAL name as an illegal duplicate name. The user must choose a different
name and load the subprogram again.

LOCAL subprograms loaded by way of the System input unit must be stacked follow
ing any "in-core" subprograms to be loaded.

OVERLAP Errors

During the loading of the main program, subprograms, subroutines, or the read-in
routine or the program linkage areas, the available core storage area may be exceeded.

If a main program or link program would exceed the available area, the following
message is typed and control is transferred to the Supervisor program

NAME Xxxxx OVERLAP
JOB ABANDONED

NAME is the name of the program or link program, XXXXX is the number of core stor
age positions required by that program. If the program has no assigned name, MAIN
is printed for NAME.

If a subprogram would exceed the available area, the NAME Xxxxx OVERLAP
message is typed and the named program is not loaded. Subprograms following the
"overlap subprogram" are loaded if possible.

If a subroutine would overlap the available core storage area, the message

NN XXXXX OVERLAP

is typed, where NN is the library subroutine number and Xxxxx is the length of the sub
routine. The subroutine is not loaded.

If the LOCAL subprogram read-in routine or program linkage areas exceed the
available core storage areas, the message

FLIPER XXXXX OVERLAP

is typed. FLIPER is the name assigned to the read-in routine and XXXXX is the length
of the routine and linkage area required. The read-in routine and the linkage area are
not loaded.

1710 FORTRAN II-D
37

38

After all possible programs are loaded, and there is any error - overlap or others -
the message

EXECUTION INHIBITED

is typed and a branch to MONCAL is executed. (MONCAL is the symbolic name for the
entry point to the Monitor Control Record Analyzer routine.)

During loading of a FORTRAN program, the errors listed in Table 7 may appear.

Console Program Switch Settings

Switch 1. When Switch 1 is on, a list of the programs being loaded is typed on the console
typewriter. The format of the list is:

XXXXXX NNNNN LLLLL LOADED

where xxxxx:x: is the name of the program or subprogram or the number of the subroutine,
NNNNN is the beginning core storage address, and LLLLL is the length of the program.

Switch 4. When Switch 4 is on, and trace instructions have been compiled into the object
program, the trace output is listed on the console typewriter. The trace output contains
the value of the left-hand side of each executed arithmetic statement and/or, the value of
the expression in an IF statement.

If the typewriter input is called for by the object program the operator must:

1. Type in the required data
2. Turn Console Program Switch 4 to the OFF position
3. Depress the Release key
4. Depress the Single Instruction key seven times
5. Turn Console Program Switch 4 to the ON pOSition
6. Depress the Start key
If the operator makes a mistake when typing the input data, it is necessary only to

depress the R-S key and retype the required data.

EXECUTIVE CONTROL PROGRAMS

The Executive Control programs available for use in setting up a control system appli
cation are listed below. A detailed description of each program is given later in this
section.

1. Master Interrupt Control (MIC). Supervises recognition of interrupts and ex
ecution of their respective subroutines.

2. Program Schedule Control (PSC). Supervises program loading and maintains
the status of the control and identification maps.

3. Analog-Digital Control (AD C). Performs all analog input operations.
4. Analog Output Control (AOC). Performs all analog output operations.
5. Serial Input/Output Control (SIOC). Handles all operations on the Serial Input/

Output Channel.
6. System Alert Control (SAC). Handles all 1710 error conditions.
The Executive Control programs are available in either card or paper tape form.

They are separated into individual decks or tapes so that the user may select only those
programs which fit his needs.

The programs are in 1710 SPS source language when received by the user. Before
they can be used, they must be assembled by the FORTRAN Executive Assembly program.
The programs are unassembled so the user can assign program addresses, stipulate
error procedures, and in general provide the parameters of the process. These items
are supplied through the use of System Symbol Table statements. The assembly pro
cedures are described later in the manual.

SKELETON EXECUTIVE

During process-control operation, the most often needed Executive control programs
and data are kept in core storage at all times. These programs and data are termed
the Skeleton Executive.

The Skeleton Executive consists of the following programs and data.

1. The Master Interrupt Control program.
2. The Interrupt Subroutine Identification Map.
3. The Executive Transfer Vector (ETV) which contains branch instructions and

indirect addresses for communication; as well as common data and indicators.
4. Portions of the Program Schedule Control, System Alert Control, and Serial

Input/Output Control programs.
5. The multiply and add tables.
6. The on-line lOR T, used by both FORTRAN subroutines and Executive Control

programs.
7. FOR TRAN subroutines and data.

Skeleton Executive Loader

The Skeleton Executive loader is a small loading program whose primary function is to
load the Skeleton Executive when the Executive System is initially started. Its operation
is described under Assembly and Loading Procedures.

MASTER INTERRUPT CONTROL PROGRAM

The Master Interrupt Control (MIC) program performs two services: (1) it functions as
an interrupt identification routine, and (2) it coordinates all communications between
Executive Control programs and user's programs.

These services can be more specifically defined as follows. The MIC program:

Executive Control Programs
39

40

1. Determine which interrupt(s) occurred.
2. Examines interrupts in a predetermined sequence, and enters the interrupt

routine that services the interrupt, or:
3. Determines whether desired interrupt subroutines are in core storage and , if

not, calls them in.
4. Handles the call sequences between user's programs and Executive programs.
5. Returns control to the mainline program when no interrupts remain to be

serviced.
The return path from all interrupt programs to the mainline program is through MIC.

The means of exit from an interrupt subprogram must always be a RETURN statement.
Interrupt Core Loads must use a CALL RTMIEC to cause a branch to MIC.

Whenever an Interrupt indicator comes on while the computer is in the interruptible
mode, an automatic branch to the address stored in Instruction Register 3 (IR-3) occurs.
For proper operation of process-control programs, the address in IR-3 must be that of
the MIC program.

INTERRUPT SERVICING

Upon assuming control, the MIC program tests the interrupt indicators to determine
which interrupt occurred. Indicators are tested in a sequence that is prescribed by the
user in the Interrupt Indicator table. This table is assembled with the MIC program and
consists of 17 two-digit indicator numbers in the order that the interrupt indicators are
to be interrogated.

Upon finding the interrupt indicator that is on, the MIC program checks the corre.,..
sponding entry in the Interrupt Subprogram Identification Map (ISIM). The Status Control
Digit in the ISIM indicates two things:

1. Whether or not the routine to service the interrupt is in core. If the routine is
in core, MIC saves various areas of the Skeleton Executive, and then branches
to the appropriate address in the Interrupt Transfer Vector (lTV). (This is an
indirect branch, thus control passes to the interrupt routine.)

2. Whether the interrupt is to be recorded, or serviced immediately. If the inter
rupt is to be recorded, MIC places a flag over the record mark or group mark
in the corresponding ISIM record, and control is returned to the mainline pro
gram. (See PSC for a description of how recorded interrupts are serviced.)

If the interrupt is to be serviced immediately, the areas of the Skeleton Executive
that might be destroyed by the interrupt core load and the portion of core that will con
tain the interrupt core load are saved on disk, the interrupt core load is called in from
disk and executed, and the saved portions of core storage are restored. The interrupt
core load also includes the area required for LOCAL subprograms. The use of any
variables in COMMON by the Interrupt Core Load is the responsibility of the user.

NOTE: Interrupt routines-in-core cannot be recorded.

Interrupt Interrogation

Interrupts are classed as internal or external depending upon their origin. Those that
come from within the control system (computer) are internal; those that originate within
the process are external.

Internal

The internal interrupts are contained in the following list with the name of the program
that MIC branches to when the interrupt occurs.

Interrupt

Any Check
Seek Complete
Any SIOC
Multiplex Complete
CE Interrupt
Analog Output Setup
One Minute
One Hour

MIC branches to

System Alert Control
Next Sequential Instruction
Serial Input! Output Control
Analog/Digital Control
CE Interrupt Subroutine
Analog Output Control
Program specified by user
Program specified by user

The timed interrupts may be recorded.

External

There are twelve process interrupt indicators available for assignment by the user.
When anyone of them is on, MIC checks the status control digit in the ISIM and either
records the interrupt or transfers control to the interrupt subprogram designated to
service that particular interrupt.

PROGRAM SCHEDULE CONTROL PROGRAM

The Program Schedule Control (PSC) program ensures that all the user's specifications
regarding core load scheduling are carried out. In addition it handles recorded inter
rupts, restarts programs because of error conditions, initiates logging operations, per
forms qUick look diagnostics, and in general, keeps track of the status of core storage
at all times.

Core. Load Scheduling and Loading

A core load consists of a mainline program supplemented by interrupt subprograms,
tables, etc. Core loads are scheduled by the user in the Core Load map when each
Mainline Core Load is placed on the disk. Using the Core Load map, the PSC program
sees to it that mainline programs are executed in proper sequence.

Core loads are normally executed by a call to the PSC program. This call specifies
that the, next scheduled core load (per Core Load map) should be loaded. The PSC pro
gram takes the disk address of the next core load in the current core load table (located
in the ETV area of core storage) and reads in the first four sectors of the next core load.
The fourth sector contains the new Core Load map. The record is then picked out of the
Core Load map to serve as the control and address information for the new core load.
PSC uses this map to determine the entry address when all other PSC operations are
finished. All of the next mainline will be read into core with one read starting with the
fifth sector of the mainline core load as it resides on disk.

Servicing Recorded Interrupts

According to the digits in the Status Table for Interrupts for each core load, interrupts
are either serviced immediately upon detection or they are recorded for later servicing.
An interrupt is said to be serviced when the program which is designed to cope with the
particular interrupt is executed.

The PSC program handles the servicing of recorded interrupts at the user's request,
either during the execution of a core load (serviced in the masked mode) or at the con
clusion of a core load (serviced in the interruptible mode).

Servicing recorded interrupts at the end of a core load does not require a specific
call sequence. The PSC program, when it is called to load a new core load, handles
recorded interrupts according to the following rules:

Executive Control Programs
41

42

1. If the units digit of the 3-digit identification code of the next core load is flagged,
then all recorded interrupts are serviced before that core load is entered.

2. If this digit (see Item 1 above) is not flagged, the PSC program checks the Status
Table for Interrupts in the next Core Load map record. Any current interrupts
not scheduled to be recorded in the next core load are serviced before that core
load is entered.

If a particular recorded interrupt does not meet either condition above, it continues
to be recorded.

An interrupt subprogram that is in core cannot be recorded: it is executed immedi
ately when the interrupt associated with it is recognized.

Programming Considerations for Servicing Recorded Interrupts

The servicing of recorded interrupts at the conclusion of a core load is done in the inter
ruptible mode. Any subsequent return to the noninterruptible mode within the interrupt
routine must be programmed by the user with a Mask instruction.

The following rules must be observed whenever an interrupt routine is being exe
cuted in the interruptible mode:

1. A Mask instruction must be executed before executing a CALL statement to an
Executive Control program. The user must unmask after the Executive call
has been completed if the processing of the recorded interrupt is to be con
tinued in the interruptible mode.

2. A Mask instruction must be executed upon completion of the routine, prior to
the CALL R TMIEC statement.

Logging Operations

The PSC program has the ability to initiate logging operations between core loads. The
routine for logging (when used) must be identified by DIM 67. DIM 67 must be established
before assembling the disk portion of PSC. When the system is delivered, this DIM is
in use to avoid automatic assignment by DUP for some other type of user program. The
user must delete the "program" supplied before loading his logging routine.

Special Operations for Log Routine

The user's logging routine must be written, compiled and loaded as if it were an Interrupt
Core Load. The interrupt indicator number to be used when loading must be 99 and the
DIM number that identifies the logging routine must be 0067. The exit from the logging
routine is With a CALL RTMIEC statement. All of the library routines, Executive pro
grams, subprograms, LOCAL subprograms that are available with an interrupt core
load are available with the logging routine. The logging routine will run in the interrupt
ible mode if the user unmasks during execution. The user must mask before calling an
Executive Control Program and before CALL RTMIEC is executed.

CALL Statement·

At any time during the execution of the mainline program, the user may call PSC to per
form any of its aforementioned tasks. The CALL statement and parameter are shown
below:

I -2

PSC Option A. Specified with O.
PSC Option B. Specified with 1.
PSC Option C. Specified with 2.
PSC Option D. Specified with 3.
PSC Option E. Specified with 4.
A fixed-point available or literal containing XXX, where XXX is the program
identification code for the next mainline program to be executed. 12 is re
quired only for options B and C.

Description of PSC Options

Option A
Option B

Option C

Option D
Option E

The next core load will be the one specified in the Core Load Map.
The next core load will be the one identified by XXX. If XXX is negative,
the next core load will be entered in the masked mode.
The next core load will be the one identified by XXX, which is a special
purpose program. (This option differs from Option B in that the user can
return to the" calling program" by utilizing Option D.) If XXX is negative,
the next core load will be entered in the masked mode.
Return to the mainline program that called the special purpose program.
Service all recorded interrupts and return to the next statement in the main
program.

ANALOG-DIGITAL CONTROL PROGRAM

The primary function of the Analog-Digital Control (ADC) program is to read and analyze
analog input points and to inform the user of overloads (signals exceeding acceptable
voltage range) in the analog input area.

CALL STATEMENT

Calls to the ADC program (always in core storage) may be given from a mainline pro
gram or from an interrupt routine.

Mainline Call

CALL ADC

Interrupt Call

CALL ADCI

11 is a fixed -point variable containing XXX, where XXX is the number of ADC points to
be read. 12 is a fixed-point variable containing the TAS address of the first TAS point to
be converted. 13 is the first fixed-point variable in an array where the values of the
ADC points are to be placed.

When an overload condition is detected, the ADC program will execute one of the
following three options. The user must select this option when the ADC program is
assembled.

1. The value of the overloaded point is replaced by 9999, and the number of the
overloaded point is placed in locations 02469-02472, with a flag set in 02473.

2. The number of the overloaded point is placed in locations 02469-02472, with a
flag set in 02473. The value of the overloaded point is not placed in 13'

3. Same as option 2, except the message

ADC OVLD QXXX

is typed on the console typewriter. The QXXX represents the number of the
overload point.

The user must clear the flag in location 02473 if he uses it to test for an overload
condition. If multiple points are read and more than one is overloaded, only the last
overloaded point number is left in core storage positions 02469-02472.

If second call to read ADC points is made before an earlier call has been completely
processed, the first call will be completed before the second call will be serviced.

Executive Control Programs
43

44

NOTE: Terminal address 299 is used by the ADC program to terminate a series of read
ings. This point must not be used by the customer. If 299 is required in the user's pro
gram, another number of an unused point must be placed in the ADC program before
assembly (see ADC listing) or after loading the Skeleton Executive.

ANALOG OUTPUT CONTROL PROGRAM

The function of the Analog Output Control (AOC) program is to select and adjust the var
ious Set-Point Positioners (SPPs) within the user's process. In doing this, the program
allows the user to specify different rates of adjustment so that set-point movements can
be synchronized.

Maximum accuracy can be ensured by reading feedback signals from the SPP just
b(3fore adjustment. The feedback signal reflects the most current setting of the SPP,
and if read just prior to adjustment ensures that the new setting will be as near as pos
sible to the desired setting. The user must initiate the reading of feedback input points
to accomplish this check.

OPERATION

The AOC program may be logically divided into two operating phases. The first is the
initializing phase which sets up the conditions for selecting and adjusting the SPPs; the
second is the service phase which selects the SPPs and starts the slew and trim operation.

Initializing Phase

When a call to the AOC program is executed, the initializing phase is entered and the
following events occur.

1. The call parameters are stored in the applicable record in the Analog Output
table, and the activity indicator in that record is set.

2. If a slew is required, a Slew/Trim Program indicator (located in the ETV area)
is set to slew. This is done regardless of the previous setting of the indicator
since slews are always given priority over trims. The slew/trim indicator is
used by the AOC program to determine which type of operation (slew or trim) is
to be performed next. If only a trim is required, the AOC program checks an
"AOC busy" indicator in the ETV area; if it is not on, indicating that an AOC
operation is not in progress, the slew/trim program indicator is set to trim.
Since the interval between setup times is 3.6 sec, many SPPs can be set up with
CALL statements before the service phase is entered.

NOTE: The service phase is not entered until the 1710 is in the interruptible
mode.

Service Phase

This phase begins when setup time is recognized by the Analog Output Setup Interrupt.
The operations performed in this phase are:

1. The Slew/Trim Program indicator is interrogated to determine if a slew opera
tion has been requested for any SPP; if it has, the addresses are selected for
each SPP record that has:

a. an activity code of I, and
b. a frequency code of 01.

2. After all SPPs which require service have been selected, the Analog Output Set
up indicator is tested and, if it is still on, the slew operation is readied.

NOTE: This Analog Output Setup indicator (28) is not the same as the Analog
Output Setup Interrupt indicator (41). Indicator 41 is turned off when the inter
rupt is recognized, but Indicator 28 remains on until the 0.7 sec setup time has
elapsed.

3. When the slew portion of the output cycle is reached, the slew is performed and
all selected SPPs are adjusted. No further adjustments are made until the next
3.6 sec cycle. When no more slews are needed, the Slew/Trim Program indi
cator is set to trim; trims are then performed in the same manner as were slews.
As t~ adjustment of each SPP is completed, its activity code is changed from
1 to O.

4. When all SPPs have been trimmed, the AOC program is terminated, the AOC
busy indicator is turned off, and control is returned to the calling program.

Feedback Check

At the completion of one or more analog output adjustments, the user may perform a
diagnostic analysis of the SPPs that were adjusted. A suggested procedure follows:

1. Interrogate the AOC Busy indicator to determine when all desired SPPs have
been adjusted.

2. Call the ADC program to read the feedback addresses of the SPPs to be ana
lyzed. If any readings are out of the desired range, the AOC program can be
called to make another adjustment to the SPP(s).

Analog Output Table

The Analog Output table is created by the program from data supplied in the CALL state
ment. The table will vary in size, depending upon the number of SPPs that are being
adjusted at anyone time. A description of the table ,entries follows:

SPP Address I Action I Frequency I

I i I X I X I X I ~ I X I X I i I X I ~ I I + I

SPP Address. The terminal address for upscale movement of the SPP. This address
plus one is the terminal address for downscale movement.

Action. The two high -order positions of this field contain the slew count from the CALL
statement. The units position is two times the Trim count (one trim equals 0.2
slew).

Frequency. Specifies how often the SPP will be serviced. This entry ranges from 01 to
99, where 01 calls for service every 3. 6-sec cycle, 4 calls for service every fourth
3.6-sec cycle, etc. Thus, the higher the number the lower the frequency of adjust
ment. The 4-digit field is of the form OOXx: where XX is the frequency count. This
count is placed in the two leftmost digits which are then "counted down" and permit
service when they reach 00. The two rightmost digits are used to restore the two
leftmost digits to XX after the SPP has been serviced.

LOCATION OPTIONS

There are two AOC programs provided with the FORTRAN Executive System. At assem
bly time the user must select, assemble, and load the program which will fulfill his
requirements.

In-Core Option

AOC Program 1 resides on the disk and the user has the option of placing the AO table on
the disk or leaving the table in core.

Executive Control Programs
45

46

This option should be selected if time considerations are more significant than core
area considerations. The complete table and the AO program is placed with the Skeleton
Executive. The AO program requires approximately 1400 positions, and the table re
quires 12 positions for each SPP to be serviced.

Disk Option

AOC Program 2 resides in core and the AO table must reside in core. With this option,
the AO program and, if desired, the AO table are stored on disk cylinder zero. This
option should be selected if core considerations outweigh time considerations.

The program and table are called into core either when a CALL statement is executed
or when the AO interrupt occurs and the in -core portion of the AO program determines
that adjustment of a SPP is required. Between 110 and 450 milliseconds (ms) is required
to read in the program (and table) and an additional 110 to 250 ms is required after
execution to restore core storage. If the table is stored in core, the read-in time can
be reduced to the range of 72-415 ms.

CALL STATEMENT

The AOC program can be called from a mainline program or from an interrupt routine.

Mainline Call

Interrupt Call

where II is the address of FF, FF is the frequency (see Analog Output Table)
where 12 is the address of PPP. PPP is the SPP terminal address for the upscale move
ment.
where 13 is the address of SST. SS is the number of slews to be executed, and T is twice
the number of trims to be executed. If T is odd, it will be changed in the AO table to the
next lower (absolute value) even amount. A negative 13 will cause the SPP to be moved
in the opposite direction from a positive 13' I

If the parameters of the CALL are to be changed they should be fixed-point variables.
If no change is required, literals may be used.

SERIAL INPUT/OUTPUT CONTROL PROGRAM

The Serial Input/Output Control (SIOC) program directs all input and output operations
relative to the Serial Input/Output Channel. By use of a CALL statement or an SIOC
Interrupt, data can be read from a manual entry unit or a sense switch unit, or can be
written on a digital display unit or an output printer. An operation function of the SIOC
program is to format all printer messages through use of the FORMAT statement.

CALL STATEMENT

The SIOC program may be called from any process-control user-program. The CALL
statements and parameters are shown below.

Type 1 - CALL SlOC (II)
or

Type 2 - CALL SlOC (II' 12)
or

Type 3- CALL SlOC (11,12,13 ,14)

NOTE: When SlOC is called from an interrupt program, the name SlOCI- must be
used in the CALL statement.

is a fixed-point variable or literal containing EMUU, where E deSignates the
unit type as follows:

o output printer
1 digital display unit
2 sense switch unit
3 manual entry unit

M is a modifier used to deSignate the type of operation and must be one of the
following:

o Print a message
1 If a manual entry unit is selected, execute a write

operation to turn on the Enter light; if a digital display
unit is selected, display the data on the unit.

2 - If a sense switch or manual entry unit is selected,
read the deSignated unit.

UU is the unit response indicator; a two-digit constant which indicates the
specific unit to be operated. The constant is identical to the last two digits of
the unit response indicator associated with the unit being addressed. For example,
if 6070 is the unit response indicator for the unit, UU would be defined as 70.

Type 1 - This type is only used to turn on the Enter light. It can be written as a literal:
31 UU, where UU is the unit response indicator, or as a fixed-point variable
which contains 31 UU.

Type 2 - 12 is a fixed-point variable containing the digital display unit data or the fixed
point variable that will receive the sense switch unit reading.

Type 3 - For the output printer:
12 is the statement number of the FORMAT statement.
13 is a literal or fixed-point variable describing the number of data addresses
in the list which follows. This parameter must be included with all printer
calls, even if the value is zero. 14 is the list of addresses of data to be trans
mitted to the output printer. This parameter is not necessary in all cases.

For the manual entry unit:
12, 13 , 14 are fixed-point variables that will receive the data from the manual
entry SWItches. Four switch settings are read into each variable.

Executive Control Programs
47

48

INPUT OPERATIONS

The SIOC input routine takes control when one of the following two situations occurs:
1. A CALL statement is executed which specifies either a sense switch unit or

a manual entry unit.
2. An interrupt is initiated by the depression of the Execute button on any of the

input units.

CALL Statement Procedure

Input units are read in a masked mode, starting with the lowest numerical address asso
ciated with the selected unit. After each reading, the address just read is incremented
by one until the twelve addresses of a manual entry unit or the four addresses of a sense
switch unit have been read.

The data is read into core storage, starting with the variable specified by 12 in the
CALL statement. The input data is read into the four low-order positions of the variable.
If several variables are required to contain the data, as with the manual entry switches,
four digits are read into each variable.

Interrupt Procedure

The operator can initiate an interrupt by pressing the Execute button on the unit. This
causes the user's program to be interrupted, thereby bringing the SIOC program into use.

All units with Execute buttons must have a common interrupt routine (correspond
ing to indicator 45). When an Execute button is pressed, the SIOC program places a
value (described under COMMON variable) in COMMON and branches to the user's inter
rupt routine.

COMMON Variable

The second entry in the COMMON area must be reserved for a fixed-point variable when
the SIOC program can be called into operation. by depression of the Execute button on an
input unit. The number placed in the variable by the SIOC program corresponds sequen
tially with the sequence that the sense switch and manual entry unit indicators are checked.
If the indicator is associated with the sense switch or manual entry unit assigned the lowest
unit number of any sense switch or manual entry unit, the number placed in the variable
is one, the next higher assigned sense switch or manual entry unit is two, etc.

The number placed in the variable should be interrogated in the user's interrupt rou
tine by a computed GO TO statement.

This variable, of course, must be reserved by every program that uses COMMON.

OUTPUT OPERATIONS

Three of the four available types of units can be involved in an output operation. They
are:

1.
2.
3.

Manual Entry Units
Digital Display Units
Output Printers

Manual Entry Unit

Although a manual entry unit is essentially an input unit, it can sometimes be considered
an output unit. For example, a user's program may require some input data from a
manual entry unit. To signal the operator that the data is needed, a CALL statement
with a control code of 3 and'a modifier of 1 is executed. This causes the SIOC program

to turn on the Enter light on the selected unit and branch back to the calling program.
When the operator has entered the data, he can initiate an interrupt by depressing the
Execute button.

Digital Display Unit

When a CALL statement specifies a digital display unit, the SIOC program immediately
writes four digits on the unit, starting at the address associated with the "thousands"
position of the unit.

The data to be written must be stored in the four low-order positions of the variable
specified by 12, The sign of the variable is transmitted to the sign position in the unit.

When a digital display unit error occurs, the SIOC program transfers control to the
System Alert Control program which prints an error message on the console typewriter.
The message contains the 4-digit value that was to be displayed.

Output Printer

The SIOC program section that pertains to the output printers must reside in core with
the Skeleton Executive program. This allows the SIOC program to return to the user's
programs between characters of the message being sent to an output printer.

]des sage Formatting

The SIOC format specification is placed in the body of an H-type FORTRAN FOR]dAT
statement. For example, the FORTRAN statement

FORMA T (7H F8. 2, 14)

would cause the conversion specification (F8. 2, 14) to become a part of the user's object
program, and thus be available to the SIOC program which performs the formatting. The
maximum length of the format statement is 87 characters in the body of the H-type FORTRAN
Format statement.

Errors detected during formatting are indicated by a message in the form

Snn

on the console typewriter. The nn corresponds to the message numbers as shown in
Table 8.

Numerical Conversion Specifications. The SIOC program allows the option of convert
ing stored numerical data into one of four formats before it is printed. The four types
of numerical conversion are coded as E, F, I, L. The E-, F-, and I-type conversions
are specified in a manner similar to that used for 1620 FORTRAN II-D FOR]dAT state
ments except that no automatic fixing or floating takes place; that is, E and F specifica
tions must be used with floating point variables only, and I and L specifications with
fixed point variables only. The format of each type is shown in Table 9.

I-Conversion (Iw or Iw. s). With the I specification an integer is printed as an integer t
right-justified in the field. The field size is represented by w; w must be greater than
or equal to the integer size plus 1. The additional space is for the sign. If w is not
sufficiently larger, an error typeout will occur (see Table 8). The Iw. s specification is
used to print fixed-point fields of a size other than the system standard of k. The s des
ignates the field size of the variable to be printed (S~2). The variable must be fixed
point.

Executive Control Programs
49

50

Table 8. Sloe Format Error Codes

ERROR ERROR
NUMBER REASON FOR TYPEOUT ACTION BY PROGRAM NUMBER

SOl Format statement specified Abandon the ca II
was not of Hollerith en-
closed type

S02 Number of characters not Go to next specification
specified in an H-type
specification

S03 n in H specification is toe Abandon statement
large

S04 n followed by an alpha Search to the next comma
character other than A, H, and continue processing.
E, F, L, I, or X.

S05 An E, F, I, L, or specifica- Same as S04
tion is followed by something
other than a number

S06 No period in an E, F, or L Same as S04
specification

S07 Period in E, F, L, or I Set d equal to zero, then
specification was followed search for next comma and
by something other than continue processing
number

SOS After apparently ending a Assume start of next specifi-
specification other than H or cation ond continue
X, there was no comma or /

S09 Apparently a specification Assume next character is start
starts with other than 0 of specification
number, a letter, (, or /

SIO Attempt to nest more than Ignore the new repeat and
one group repeat use first one

Table 9. SIOC Format Numerical Conversion Types

Conversion
Specification

In Core Storage
As Printed As

nEw.d

nFw.d

nlw.s

nLw.d

Legend n

floating point number

. floating point number

integer

integer

floating point number
with an exponent

floating point number
wi thout an exponent

integer

integer with a fixed
decimal point

The number of consecutive fields of data
that will be printed according to the
specification that follows n. If n is not
specified, only one field is printed.

w The total number of places that the user desires
to have reserved for the converted do ta.

d The number of places that the user desires to
have reserved for data to the right of the
decimal point.

s Size of the fixed field in core storage
if different from k {system standard} •

SII

SI2

SI3

SI4

SI5

SI6

SI7

SIS

SI9

S20

S21

REASON FOR TYPEOUT ACTION BY PROGRAM

All parentheses were not Abandon statement
closed

Control code specified other Ignore character
than: P, C, B, A, T, S, R,
F, M, E

Mode shift specified in for- Ignore character
mat statement

In E specification w< d + 6 Set specification equal
EI4.S

In F specification w<d + 2 Set specification equal
EI4.S

In L specification w< d + 2 Set specification equal
L~.O

In I specification w«No.
of Digits) + I

Set w equal (No. of
Digits) + I

Variable specified to be Print actuol variable on
printed in E specification
was not floating

consol e typewri ter.
Print XX.XXXXE.XX
per specification

Variable specified to be Print octual variable on
printed in F specification console typewriter.
was not floating Print XX.XXXX per

specification.

In F specified variable, Same as S 19
exponent is greater than
allotted area

A variable was specified to Continue without printing
be printed with no numerical variable
specification in Format
statement

L-Conversion (Lw. d). With the L specification, an integer is printed with a decimal
point. W is the size of the space reserved and d is the number of places printed to the
right of the decimal point. W must be greater than or equal to d+2. In an L specifica
tion, the integer will be left-justified and the number of spaces designated by w will be
printed. The variable must be fixed-point.

E-Conversion (Ew. d). With the E specification, floating-point numbers are printed with
an exponent. W is the total space provided on the output printer and d is the number of
places to the right of the decimal point. In order to provide space for the decimal point,
w must be greater than or equal to d+6. The variable will be left-justified in the output
space, while the exponent will be right-justified. The variable must be floating-point.

F-Conversion (Fw. d). With the F specification, floating-point numbers are printed with
a decimal point and no exponent. w is the total space reserved and d is the number of
places to the right of the decimal point. w must be greater than or equal to d+2. The
variable will be right-justified. The variable must be floating-point.

All types of numeric specifications must be separated by commas and may be im
mediately preceded by a number (e. g. , nIw) which designates the number of variables to
be specified. In I and F specifications, spaces between fields may be provided by reserv
ing sufficient space; but in E and L specifications, spaces must be specified as blanks
(see below).

Alphameric Specifications. There are two specifications that can be used for format
alphameric data. They are designated A and H.

A-Specification (Aw). The A specification causes w alphameric characters to be printed
from a variable or array name. Since each alphameric character is represented in core
storage by two decimal digits, the number of characters actually printed will be the larg
est whole number resulting from k/2 or f/2. If w is greater than f/2 or k/2, enough
spaces will be provided to complete the specification; if w is less than f/2 or k/2, only
w characters will be provided. Output will be right-justified. (Note: if k is odd, fixed
point integers to be printed under A specification must be left-justified in machine des
ignation, for example, if ~ = 5 then AB should be defined as 41420.)

H-Specification (nH). This specification provides a method by which alphameric infor
mation may be written. The specification is immediately followed by the alphameric in
formation to be printed. Blanks are considered alphameric data and must be included in
the count n.

Space Specifications (nX). To allow spaces in the printed output, the user can specify
nX. For example, 25X will cause the SIOC program to place 25 spaces in the printout.
The X specification should be used to space fields in E or L type formats.

Repetition of Field Format

It may be desired to print n successive fields within one record, in the same fashion.
This may be specified by giving n (where n is an unsigned fixed-point constant before E,
F, I, A or L. Thus the statement

FORMAT (9HI2, 3E12.4)

is equivalent to:

FORMAT (20HI2, E12.4,E12.4, E12.4)

Executive Control Programs
51

52

Repetition of Groups

A limited parenthetical expression is permitted in order to enable repetition of date
fields according to certain format specifications within a longer format specification,
thus,

FORMAT (17H2(FIO.6, EIO.2), 14)

is equivalent to:

FORMAT (26H FlO. 6, EIO. 2,FIO. 6, EIO. 2,14)

Only one level of repetition is permitted. Thus,

FORMAT (20H3(14, 3(FIO.2, EIO.4») is invalid.

Scale Factors

The E -type specification implies a scale factor. Therefore, E 16. 8 for an output field
will result in the printing or punching of a maximum of ten significant digits in the form
(-)XX.XXXXXXXXE(-)XX. A maximum of i digits can be placed to the right of the deci
mal point if the d specification is greater than i. In this case, d-f. low-order zeros will
be inserted to satisfy the d specification. The follOwing guide may be used when working
with E-type specifications.

1. If i (floating-point precision)~w-6, then f significant digits will be printed or
punched.

2. If i >w-6, then w-6 significant digits will be printed or punched. For example,
if i = 10 and the floating-point number is stored as 123456789135, it will be
printed as -12. 34567891E-37, according to specification E16. 8.

The F-type specification also implies a scale factor. Therefore, F16.8 for an out
put field will result in the printing or punching of a maximum of fourteen Significant digits
in the form (-) XXXXXX. XXXXXXXX. However, a maximum of i digits will be placed
to the right of the decimal point and the result will be right-justified in the output field.
If i is larger than w-2, only w-2 digits will appear in the output.

The X specification should be used to space fields in the E -type format. In the
statement

EI6.8, IX, EI6.8, IX, E16.8

a space will be provided between adj acent fields.
The SIOC formatting routine cannot handle P scale factors.

Printer Control Codes. The printer control codes are listed in Table 10. The code is
enclosed in parentheses within the FORMAT statement. For example, the statement

FORMAT (39H10HSTART DATA, (T), 14, (R), 8HEND DATA)

would be printed as:

START DATA b - b XXX
END DATA '---' '--.,--J

(1) (2)

(1) Spaces created by tabulate operation.
(2) Variable data.

Table 10. Executive SIOC Printer Control Codes

Format Code Operation

(P) Type Numerical Period

(C) Type Numerical Comma

(B) Print Black

(A) Print Red (alert)

(T) Tabulate Printer Carriage

(S) Space Printer Carriage

(R) or / Return Printer Carriage

(F) Form Feed

Repetition of Control Codes. It may be desired to perform a number of successive control
operations (e.g., 3(T». This may be specified by giving n before the control code. (A)
and (B) should not have repeats specified. If it is desired to repeat carriage returns,
the form n(R) should be used. Slashes cannot have repeats specified.

Form Feed

The programmer is responsible for form feed control. If the printed data is to be spaced
proper lyon form paper, the user must insert the form feed control code (F) at the proper
place in the message.

Print Red (Alert)

This control code is used primarily for important messages. When the first character
in a message is (A), i. e., Print Red, the SIOC program immediately prints the message
from core storage (alert messages are never put on disk storage). If a previous message
is in the process of being printed, it is interrupted so that the alert message can be
printed.

After the SIOC program has completed printing the alert message, it continues with
the interrupted message. The user should end his alert messages with a Print Black,
and a Return Carriage.

When a Print Red code is used within a message, it causes the printer to start print
ing in red. Black printing is not resumed until a Print Black code is executed.

NOTE: A Return Carriage should be programmed by the user at the beginning of an alert
message so that the message will start on a new line. The R or slash which indicates the
carriage return must follow the (A).

Length of Printed Line

At assembly time the user specifies, for all output printers, a maximum number of
characters per line that should appear in the printed output (see Assembly Procedures).

In SIOC FORMAT statements, the user is responsible for returning the carriage
when printing. The length of line specified at assembly time is simply a reasonable
number of characters to prevent the output printer from continuously printing at its
right margin setting.

Executive Control Programs

53

54

The responsibility to return the carriage on the ·output printer is the user's in order
to allow printing of one line of type in a DO loop.

For example, to print a line on the console typewriter the user may use the following
statements.

PRINT 10, (X(5) , J=1, 10)
10 FORMAT (14)

In order to print the same information on the SlOe output printer the following state
ments would be required.

CALL SlOe (IEMUU, 1, 0)
1 FORMAT (1H /)

DO 991=1, 10
CALL Sloe (IEMUU, 10, 1, X(J))

1 0 FORMAT (2HI4)
99 CONTINUE

NOTE: An additional control code is available for an end of message specification with the
FOR TRAN .Executive formatting program. The character is written (E). This character
is optional in the FORTRAN Executive system.

In no case should change mode (M) be used in a FORMAT statement.

Ending a FORMAT Statement

During output of data., the object program scans the FORMAT statement to which the rele
vant output statement refers. When a specification for a numerical field is found and list
items remain to be transmitted, output takes place according to the specification, and
scanning of the FORMAT statement resumes. If no items remain, transmission ceases
and execution of that particular output statement is terminated. Thus, a numerical output
operation will be brought to an end when a specification for a numerical field or the end of
the FORMAT statement is encountered, and there are no items remaining in the list.

Printing the Message

After the SlOe program formats the message, the message is transmitted to a "disk buffer
area." This area, specified by the user, can be up to five cylinders in length. When the
system is delivered, one half cylinder is defined for messages. Changes in the length and
location of the disk message buffer can be made when the system is defined. The proce
dure to be followed is described in the Assembly and Loading Procedures section.

If no previous messages are waiting in the disk buffer area and the SlOe is not busy,
the first character of the message is printed immediately and control is returned to the
calling program. If some previous message is in the process of being printed, the new
message is stored in the buffer area "behind" all previous messages. If the buffer area
is full when a new message arrives, the SlOe program "interlocks" and prints messages
continuously until there is room for the latest message. Regardless of the size of the
disk buffer area, there is a limit of 99 of the number of messages that may be stored on
disk at one time.

The user must provide a 100-digit buffer area in core storage from which characters
can be printed. When the first 100 characters of a message have been written, the next
100 characters are brought into the core buffer area from the disk buffer area. Upon
completion of the message, the SlOe program che~ks the disk buffer area and starts out
putting a new message if one is found to be waiting. The user may provide a buffer for
each output printer or any number of buffers to be shared by all printers. These options
are specified when the SlOe program. is assembled.

While the output printer is actually operating on a character, the user's mainline
program or interrupt subroutine is being executed. When the printer has completed the
indicated operation, a signal is generated to initiate an SIOC interrupt which permits the
next character to be transmitted to the printer.

Printer Errors. If an Alert (Print Red) message is being processed when a printer error
occurs, the SIOC program will attempt to print the message, from the beginning, up to
three times. If the error persists after three tries, the program will force the erron
eous message to print out on the selected printer and will type the following message on
the console typewriter:

THREE ERRORS ON ALERT MESSAGE

If a regular (non-alert) message is being processed when an error occurs, the SIOC
program will attempt to print the message up to nine times. If the error perSists, the
selected unit will be logically disconnected and the secondary unit specified at assembly
time will be used to print all subsequent messages sent to the faulty unit.

Unit Response Errors. The PSC program checks to see if unit responses are being re
ceived from the output printers in use. If a missing unit response is detected, the PSC
program transfers control to the SAC program which determines the unit that is not
responding. The SAC program types the character . (period) on the unit in error,
types the message

NO RESPONSE UNIT XX

on the console typewriter, and then returns control to the PSC program.
Whenever the number of output printer messages (specified at assembly time) or

the actual disk area reserved for messages is exceeded, the SIOC program will continue
to print messages on one unit at a time until the space on the disk is sufficient to contain
the messages that have been specified for printing. In the intervening time, the printing
of each entire message will be done in the masked mode.

Each time a printer fails to respond when a character is sent to it, an error message
will be printed on the console typewriter and another character will then be sent to the
unit. The no-response condition is detected using a timing loop that will time out after
several seconds. The error message printed will be in the format 60UU49ZZZZZ, where
60UU is the device indicator, 49 is an operation code, and ZZZZZ is an address that can
be ignored. This message indicates that the unit is no longer reliable.

If many messages are specified for any output printer that continues to fail to re
spond, these messages will fill the user's disk message area. To continue system oper
ation the system must be started again (see Assembly and Loading Procedures) and the
faulty unit taken off-line to prevent the filling of the disk message area with messages
that cannot be printed, and to permit the off-line repair of the printer. An alternate
printer, if available, may be substituted for the defective printer to enable the continuing
of the process-control system (see CE Interrupt Routine).

Executive Control Programs

55

56

SYSTEM ALER T CONTROL PROGRAM

The System Alert Control (SAC) program takes control of the 1710 whenever an error
condition is detected outside of IORT. SAC determines which error is present, records
each error by type, analyzes the error with respect to operating conditions, and decides
which of the following error procedures to execute.

1. Restart, using the program specified for restart in the Core Load map.
2. Branch to the Exception Core Load specified by the user in the Core Load map.

(The Exception Core Load will be entered in the masked mode.)
3. Record the error and continue with the current core load.
4. Wait in the interruptible mode. The Any Check Interrupt will cause the SAC

program to be entered.

Any Check Interrupt

When any of the errors listed in Table 11 occurs, the Any Check Interrupt brings the SAC
program into use. The SAC program analyzes the error, prints an error message, and
then determines which alternative procedure to follow.

Table 11. System Alert Control Program Error Checks

Name Indicata Code

1620:

Read Check 06

Write Check 07

MAR Check 08

MBR-E Check 16

MBR-O Check 17

1711:

*Any Check 19

lAS Check 21

Function Register Check 22

Analog Output Check 23

* No erra count kept.

Error Messages

The SAC program error message format is shown in Table 12. Up to 8 items can appear
in a message; however, only the first 5 items appear in all messages. The error codes
that appear as item 3 of each message are shown in Table 13.

CE Interrupt

In the FORTRAN Executive System, the CE Interrupt has three functions:
1. To type out a count of all errors that have occurred since the last depression of

the CE Interrupt switch.
2. To allow the Customer Engineer to set or reset the AODOWN digit (this digit,

when set to 1 makes the Analog Output Control program inoperative).
3. To allow the Customer Engineer to logically disconnect from, or reconnect to

the sy stem, any SIOC units.

Table 12. SAC Error Message Format

No. of
Item Characters Message Description

1 3 ERR Each message from the SAC program starts with these three
characters.

2 3 XXX Current Core Load Identification Code

3 2 XX Error code (Table 12)

4 7 RESTART Alternative procedure to be taken
or

ERR MSK
or

SKIP TO (exception)
or

WAIT
or

RETURN

5 3 XXX Identification code of the alternative procedure core load.
This is either the Restart Procedure identification code or the
Exception Procedure identification code.

6 22 0200000001 Two digit count of all error indicators. This sample message
000000010000 indicates two Read Check errors, one MBR-O Check error and

one Address Check error.

7 5 XXXXX Core location of the instruction that caused the error condition.
This is a TAS instruction.

8 12 XXXXXXXXXXXX T AS instruction that caused the error condition.

Typeout of Error Count

When the CE Interrupt switch is depressed, the CE Interrupt routine is called into use.
The first function of this routine is to type out error codes and error counts. The for
mat of the typeout is as follows:

Error Indicator

xx
XX

Error Count

XX
XX

Only nonzero error counts are typed out. For example, if no Read Checks have
occurred since the last typeout, then neither 06 nor its count will be typed out. After
each typeout the counts are restored to zeros.

AODOWN Status

The AODOWN digit is set to 1 whenever an Analog Output Check (analog output relay
failure) occurs. Until this digit is reset to 0, the AOC program is inoperative. To allow
the Customer Engineer to set the digit to 0 or 1, the CE Interrupt subroutine types out

Executive Control Programs
57

58

Table 13. SAC Error Message Codes

Code Description

TAS Errors:

01 TAS Check occurred while TAS was not in use.

02 Function Register Check occurred while TAS was not in use.

03 Illegal OP code was detected during the execution of a lAS instruction.

04 Illegal function code (Q7digit) was detected during the execution of a TAS instruction.

05 Illegal terminal address was detected during the execution of a lAS instruction.

06 An 03, 04, and/or 05 code occurred but the TAS instruction was re-executed with a legal OP

code, function code, and terminal address.

Analog Output Error:

07 Analog Output Check - the analog output relays failed to unlatch. The AOC program cannot be

used until the condition that caused this error is corrected (see C.L Interrupt).

IORT Errors:

10 Disk Error - Alert code in MCLM specifies a Wait condition.

11 Disk Error - Alert code in MLCM specifies branch to Exception routine.

Errors other than
TAS; or AO:

20 Less thon three errors have occurred in this core load.

21 Three errors have occurred in th is core load.

22 Less thon three errors have occurred in this core load; a process interrupt is not being executed.

23 All error i ndi co tors have been interrogated and the Any Check indicator (19) wi II not turn off.

24 Error count overflow.

25 Three errors have occurred in this core load; a process interrupt (recorded) is being executed.

SIOC Errors:

30 An error, other than a parity error, has been detected on a digital display unit. When this code

appears in an error message, the digital value that could not be displayed follows the code

in the message, e.g., 30 XXXX.

31 Aparity error has been detected on a digital display unit. When this code appears in an error

message, the digital value follows the code in the messoge (see Code 30).

32 This code is always used in conjunction with code 30. If a digital value will not display properly"

the SIOC program will try to display 9999. If the nines display properly, code 32 is indicated.

In an erra message, this code is followed by the indicator number of the unit in error.

33 This code is similar to code 32, except that if the nines do not display properly, code 33 is indicated.

In an erra message this code is followed by the indicata number of the unit in error.

the following message after the error count typeout:

CHANGE STATUS OF AODOWN DIGIT
YES, INSERT 1. NO, O. RS

NOTE: RS = Release and Start
If a 1 is inserted, the following message will be typed out:

INSERT 1 TO DISCONNECT OR
o TO REACTIVATE. RS

If a 0 is inserted after a previous disconnect, the AO program will be reinitialized.
This means that no AO operations will occur until a new call is executed.

If a 0 is inserted in response to the change-status message, the subroutine will pro
ceed to the SIOC disconnect routine.

SIOC Disconnect Routine

During each execution of the CE Interrupt subroutine, the Customer Engineer is given the
opportunity to logically disconnect or connect any SIOC units. The fo~lowing message is
typed:

CHANGE SIOC UNIT STATUS. YES, INSERT 1, NO, O. RS

If 0 is inserted, the subroutine returns control to the MIC program. If a 1 is in
serted, indicating that change is desired, a second message is typed.

ENTER UNIT NUMBER 70-89 RS

An SIOC unit code must be entered, after which the following message is typed:

TO DISCONNECT UNIT ENTER 1, CONNECT, O. RS

If a 0 is entered, the message

UNIT CONNE CTED xx:

is typed and control returns to the MIC program. If a 1 is entered, indicating a printer
unit, the message shown below is typed out.

ENTER SECONDARY PRINTER NUMBER 70-89. NONE 00. RS

This gives the Customer Engineer the opportunity to specify a different secondary
printer unit than was specified in the SAC program at assembly time. After a number
is entered, the subroutine transfers control to the MIC program.

NOTE: Any printer messages that are in progress when the CE Interrupt key is pressed
will be completed on the original printer unit even if that unit is logically disconnected
via the CE Interrupt subroutine.

Invalid Unit Indicator Numbers. If the Customer Engineer enters an invalid unit indica
tor number, i. e. , one that is outside the range of 70-89, the message

UNIT CODE OUT OF LIMITS

is typed along with a repeated request for a unit number.

Executive Control Programs
59

60

CORRECTIVE PROCEDURES

To a great extent, the corrective procedures previously mentioned are user-controlled
by certain fields in the Core Load map. Some actions taken by the SAC program, how
ever, are mandatory due to the type of error. Figure 1 shows the logic of the corrective
procedure selection.

Restart Procedure

The automatic restart performed by SAC will cause the Mainline Core Load specified for
restart in the MCL map to be read in and entered. A large portion of the Skeleton Exec
utive will also be initialized at this time. The Core Load specified for restart must not
expect data that was not on disk, or in the FORTRAN common area to be available, i. e. ,
the program must expect initial conditions when it is entered. Two exceptions to the re
initialization of data on restart are the Analog Output records and program, if either in
core or on disk, and the SIOC messages that are being outputted or are on disk in the
SIOC message area. These will be retained and the output operations continued.

If the mainline program has initiated a call to SIOC to print a message, and the main
line program is not masked, the message will be lost if a restart is initiated before the
message is formatted and stored on disk. This applies, even if the message is an alert
message, up to the time the formatting is complete. To avoid the loss of any message,
the call should be made while in the noninterruptible mode.

The FORTRAN areas and the MIC, ADC, PSC, and SAC programs will be reinstated
when a restart is initiated. The math tables and the IORT will also be reinstated. The
Executive Transfer Vector and ISIM will be reinstated, but information in ETV needed
to continue SIOC output printer operation and Analog Output operation, and the indications
of recorded interrupts that have occurred but have not been serviced, located in the ISIM
will be saved. The error counts maintained by SAC and IORT will be saved. In general,
every area of core within the Skeleton Executive will be reinitialized except those areas
that are needed for SIOC message operation, Analog Output operation, and recorded
interrupt service operation.

Exception Procedure

An Exception Core Load is provided with the system. This core load will handle error
conditions in the following manner:

If the errors occurred while executing a recorded interrupt routine, the data in po
sitions 02921-02930 are typed out on the console typewriter and the Next Core Load is
called for execution. The format of the data is shown below:

Core location

02921

!
Ixxxlxxxxx\xx\4=\
~~'-.,-'

Next Main!;n. J L Interrupt Indicator
DIM Number

Core Address
of Interrupt ISIM

Error

Update
Error
Count

t----~ Go to Res tart
Procedure

Wait in
Interruptible

Mode

Record Error, but
t--------------------------i~ do not halt

'--___________________________________ ~ Go to Exception

Procedure
Figure 1. System Alert Control Program Corrective Logic

Executive Control Programs
61

62

If the error occurred while executing a mainline core load, the Restart Core Load
is executed after typing the following message:

where the four fields are the DIlVInumbers of the Current, Next, Exception, and Re
start core loads, respectively.

Error Count Retrieval

The error counts maintained by SAC and lOR T will be printed when the CE interrupt is
initiated.· They will be set to zero after this typeout. The counts are maintained in core
at locations 02138 to 02161 with a record mark in 02162. The format of these counts is
shown below:

The XX is the number of errors that have occurred for each error indicator. The indi
cators checked and the order of the count fields is shown below:

06 07 16 17 36 37 38 08 21 22 23 45

NOTE: 45 is used to identify Any SIOC error.

Checking Errors in Interrupt Routines

The SAC program cannot recognize an error condition that causes an interrupt when the
1710 is in the noninterruptible mode. The error interrupt will only be recognized after
the interruptible mode is re-entered, i. e. , when a Branch Out instruction is executed by
MIC.

The user may permit SAC to service the error conditions that occur while his
program is noninterruptible, but the errors that occur in interrupt routines may be
incorrectly considered as mainline errors. Another method of handling errors while in
the noninterruptible mode is to test the error indicator in the program, and take the
corrective action that is needed without entering SAC. Indicators can be tested using
the IF (SENSE SWITCH) statement in FORTRAN. Any two digit indicator number may
be used as the sense switch to be tested.

DIAGNOSTIC AIDS

Several diagnostic aids are included in the FORTRAN Executive System. These include
a trace option, a set of five, short, specialized diagnostic routines (Quick Look Diagnos
tics), and a comprehensive Diagnostic Control program. The latter two aids are real
time diagnostics which attempt to detect errors before machine malfunctions occur.

TRACE OPTION

To aid the user in checking out his mainline programs and subroutines, the FORTRAN
Executive System provides for a trace option within each Executive program. When
used, this option traces the logical flow of the programs and types out messages when
significant changes in flow occur (Table 14).

Table 14. Executive Program Trace Option Typeouts

Typeout Description of Typeout

AIC The Analog-Digi ta I Control program has .been "branched to" be

cause of a call from either a mainline program or an interrupt

subprogram.

AI

AOC

AO

SIC

SI

CSC

PSC

xxxxx

The Analog-Digital Control program has been "branched to" be

cause of a Multiplex Complete interrupt.

The Analog Output Control program has been "branched to" be

cause of a call from either a mainline program or an interrupt

subprogram.

The Analog Output Control program has been "branched to" be

cause of an Analog Output Setup interrupt.

The Serial Input/Output Control program has been "branched to"

because of a call from either a mainline program or an interrupt

subprogram.

The Serial Input/Output Control program has been "branched to"

because of an Any SIOC interrupt.

The Contact Sense Control program has been "branched to" be

cause of a call from either a mainline program or an interrupt

subprogram.

The Program Schedule Control program has been "branched to" be

cause of a call from a mainline program.

The digits XXXXX represent the RETURN address of a specific call

sequence. This typeout occurs when the purpose of the specific

call sequence has been fulfilled and the "calling program" (mainline

program or interrupt subprogram) is again in control.

Diagnostic Aids

63

64

To use the trace option of the FORTRAN Executive, the user must specify the label
DEBUG as 00001 when loading the System Symbol table. This statement, when the Ex
ecutive program is assembled, will cause the trace instructions to be incorporated. For
a more complete description of the DEBUG statement, see the section concerning Assem
bly Procedures.

When the program checkout is completed, the trace instructions can be removed by
reassembling the Executive programs using a modification of the original control statement.

If the trace option is used with the AOC program, the trace message (AO) is typed
after the AO points are set up to avoid output operations. (The delay would be caused by
the trace message being typed during the O. 7 sec setup period, thereby leaving less time
for output operations.) The message, AOC, is typed when a call to the Analog Output
program is made. This message occurs as soon as the Analog Output program is entered.

NOTE: When the trace option is in operation,the typeouts can be suppressed by turning
program Switch 4 off.

QUICK LOOK DIAGNOSTICS

The Quick Look diagnostics are a set of five routines designed to verify proper operation
of selected machine circuits. Each diagnostic routine is .short (approximately 200 core
locations) and has a relatively fast execution time (less than 28 ms).

These routines are under direct control of the PSC program. The user does not have
to load them nor be concerned about their execution.

The primary function of the routines is to determine that a block of circuitry is
functioning normally. There is no attempt to provide any information of a descriptive or
analytic nature. If a malfunction is detected, the more comprehensive Diagnostic Con
trol program is called upon to further isolate the error.

Only one of the five routines is ever in core storage at anyone time. It is brought
into core and executed by the PSC program when a new core load is loaded. It is exe
cuted only between mainline core loads. A different routine is loaded when the next core
load is brought into core storage. Thus, the five routines are rotated so that each is
executed periodically.

Circuitry Tested

The Quick Look diagnostics concentrate on the circuitry in the computer that might fail
and yet not cause an error check. The circuitry most susceptible to such failure is re
lated to conditional branch and arithmetic operations. Consequently, the five diagnostic
routines perform their tests in these areas. Specifically, the circuitry tested by each
of the routines is apportioned as follows:

Routine 1 - Add, Add Immediate, Compare Immediate, Branch Not Equal, Branch No
Overflow

Routine 2 - Add, Add Immediate, Subtract, Subtract Immediate, Compare Immediate,
Branch No Overflow

Routine 3 - Transmit Digit, Branch On Digit, Branch No Record Mark, Branch No Flag,
Set Flag, Clear Flag

Routine 4 - Branch On Indicator, Branch No Indicator, Branch No Overflow, Branch On
Overflow

Routine 5 - Br'anch High, Branch Low, Branch Zero

DIAGNOSTIC CONTROL PROGRAM

The Diagnostic Control program is a comprehensive error detection program that is
executed as a result of either a direct call from the user or a call from the Program
Schedule Control program.

This diagnostic program performs all of the checks that the Quick Look Diagnostics
perform plus analysis of the Divide special feature. The program determines whether
a particular circuit is functioning properly. If it is not, a message is typed on the
console typewriter.

Call Statement

The user may call the Diagnostic Control program by executing the following FORTRAN
CALL statement.

CALL DIAG

The DC program may be called only from a noninterrupt routine but will probably
find more use during times when the computer is "idling," i. e. , not performing any
critical operations. The 1710 must be masked before a call to the Diagnostic Control
program is executed.

Diagnostic Control Entry

The FORTRAN Executive System will execute the Diagnostic Control program under the
following conditions:

1. One of the Quick Look routines executed by PSC between core loads has detected
an error.

2. A call has been executed for the diagnostic program in a process program.
(Probably in a user's Exception Procedure program.)

When the FORTRAN Executive System branches to the Diagnostic Control program,
the following message is typed on the console typewriter:

ERR ENTER DCP

When the Diagnostic Control program is completed, the return to the user's program
is denoted by the following message:

DCP COMPLETED XXXXXX

ill this message, XXXXXX is the contents of a 6-digit communication area containing
an indication of any errors that may have been detected. The six possible configurations
of XXXXXX are shown below along with the condition they indicate:

100000 - Any error which indicates that the 1710 System is no longer reliable. The
following message is typed along with this configuration:

CALL IBM

The computer re-enters and repeats the diagnostics.
010000 - The arithmetic tables contained an error but were corrected by the PSC

program.
001000 - The High Positive indicator circuitry is not functioning properly.
000100 - The Overflow indicator circuitry is not functioning properly.
000010 - The multiply circuitry is not functioning properly.
000001- The divide circuitry is not functioning properly.

If a disk error should occur while the Diagnostic program is attempting to restore
core storage, the message DK OVLA ER is typed, and another attempt to restore is
made.

Diagnostic Aids
65

SUPERVISOR PROGRAM

The Supervisor Program performs off-line control and input/output functions for the
FORTRAN Executive System. Through the use of control records, the FORTRAN com
piler, the FEAP processor, and the Disk Utility Program can be called into operation
by the Supervisor Program. It must be noted, however, that these Monitor-type opera
tions (the operation of the Supervisor Program, FORTRAN compiler, FEAP processor,
and the Disk Utility Program), must not be called for unless the 1710 is in the noninter
ruptible mode. (If an interrupt were to occur during a FORTRAN compilation, for ex
ample, there would not be any routine in core storage to recognize the interrupt.)

The Input/Output routine in the Supervisor Program is used by the FORTRAN non
process object programs and by the Disk Utility Program. Through the use of a macro
instruction in a FEAP nonprocess source program, cards and paper tape can be read and
punched, data can be stored to and retrieved from disk storage, and data can be read and
typed from the typewriter under control of the Supervisor I/O routine. Error checking
and correction procedures are a part of the I/O routine.

CONTROL RECORDS

The control records recognized by the Supervisor program are described here in terms
of cards, but the records can be in the form of paper tape records or typewriter input.

The input to the Supervisor Program consists of one or more "job decks." A job
deck may be a program to be compiled or executed, a combination of these two (including
data); or it may be a series of Disk Utility Program operations. The processing of each
job deck is controlled by the Supervisor Program as specified by the Monitor control
card that precedes it.

When a Monitor Control card is read, the program required to do the job is read into
core storage from disk storage. The program then processes input until the end of the
job is reached, a new Monitor Control card is encountered, or an error occurs. When
the end of the job deck is reached or a new Monitor Control card is encountered, the
Supervisor Program is reloaded into core storage from disk storage, and the process is
repeated. If an error occurs, a message is printed to identify the error, and the re
mainder of the job will be processed. If it is not possible for the job to continue, the
Supervisor Program will skip to the next job. All Monitor Control records, with the
exception of those entered from the typewriter, are typed out on the console typewriter.

Eleven Monitor Control cards are used to indicate the processing required of the
Supervisor Program. The manner in which the Supervisor handles each of these cards
is shown in Figure 2.

Operation Codes

An alphabetic pseudo operation code, left-justified in columns 3-6, is used to identify
each of the eleven control cards. By examining the operation code, the Supervisor Pro
gram determines what processing action is required. Columns 1 and 2 must contain
record marks.

JOB

A JOB operation causes (1) the description or operating instructions contained in the JOB
Control card to be typed, (2) modifies the disk module, if required, and (3) checks to
ensure that the proper disk packs have been attached by the operator.

Supervisor Program

67

68

STACKED INPUT
(Monitor Control Cards,
Data Cards, FEAP and
FORTRAN Source Cards,
Disk Utility Program
Control Cards)

Supervisor
with I/O Enter Succeeding
Routine Monitor Control

Records from
Typewriter

Type
Description HALT

Depress Stort
Key to Resume
Processing

Load FEAP
Processor into Load FEAP
Core Storage Object Program
from Disk Storage into Core Storage
ond Execute from Disk Storage

and Execute

Load FORTRAN Load FORTRAN n-D
ll-D Com iler into
Core torage from

Object Program with

Disk Storage and
Subroutines into Core
Storage from Disk

Execute
Storage and Execute

Load Disk Utility
Pass Cards

Program into Core
Storage from Disk

to next

Storage and
Monitor

Execute
Control Card

No No

Pass Cards to
Next Monitor
Job Card

Figure 2. Supervisor Program Logic

SPS

This operation causes the FORTRAN Executive Assembly Program to be read· into core
storage from disk storage and to be executed. The assembled object program may be
stored in disk storage and an entry made in the DIM (Disk Identification Map) table.

SPSX

The SPSX operation is similar to the SPS operation, with one exception; after the object
program is assembled, it is then executed. The SPSX operation is valid only with non
process programs.

FOR

A FOR operation causes the 1710 FORTRAN TI-D compiler program to be read into core
storage from disk storage and to be executed. The object program can be stored in disk
storage. If this occurs, an entry will be made in the DIM table.

FORX

The FORX operation is the same as the FOR operation, with one exception; the object
program is executed after it is compiled. The FORX operation is valid only with non
process programs.

XEQ

The XEQ operation causes the FEAP object program, identified by the control card data,
to be read into core storage from the input unit indicated in column 27, and then to be
executed. Each disk-stored program, called by the XEQ operation, must have a DIM
entry to enable the Supervisor program to find it. The XEQ record can be used only to
call nonprocess FEAP programs.

XEQS

This operation causes a FORTRAN object program, identified in the XEQS card, to be
read into core storage from disk storage, cards, or paper tape, and to be executed.
Each disk-stored program called by the XEQS operation must have a DIM entry to enable
the Supervisor Program to find it. The XEQS can only be used to call nonprocess
FORTRAN programs.

DUP

The DUP operation causes the Disk Utility Program to be read into core storage from
disk storage and to be executed.

TYPE

The TYPE operation causes a message - which requests the operator to enter the next
Monitor Control record from the typewriter - to be typed, and the program stops to
await keyboard input. After the operator enters the control record, the Release and
Start key must be depressed to resume computer operation. All succeeding control
records must be entered from the typewriter until a JOB record is entered to change the
source of input.

PAUS

The PAUS operation halts the program to allow the operator to change paper tapes, load
input cards, etc. Job processing is resumed by depressing the Start key.

=t= =t= (End-of-J ob)

The =t= =t= (end-of-job) operation causes the message

END OF JOB

to be typed, if a job has actually started, and control is to be resumed by the Supervisor
program. An End-of-Job record must follow each job. If this record is not present,
erroneous results may be obtained.

Supervisor Program
69

70

Control Card Formats

Columns 1-2
3-6
7

8-11
12-31

32-80

SPS, FOR, DUP, TYPE, PAUSe

=1= =1= (identification record marks)
Operation (JOB, left-justified).
Source of input,

5 = card.
3 = paper tape.
1 = typewriter.

Module change numbers (for disk input only).
Disk pack identification numbers (for disk input only),
12-16 drive O.
17 -21 drive 1.
22-26 drive 2.
27-31 drive 3.
Des cription.

Columns 1-2 t =1= (identification record mar~).
3-6 Operation (FOR, etc. , left-justified).
7 Source of input, for FEAP, FOR, or DUP Monitor

SPSX. Columns 1-2
3-6
7

FORX. Columns 1-2
3-6
7

8

XEQ. Columns 1-2
3-6
7-12

13-16

17-21

22-26

Control cards,
5 = card.
3 = paper tape.
1 = typewriter.

t=l=(identification record marks).
Operation (SPSX).
Source of input,

5 = card.
3 = paper tape
1 = typewriter.

=t==t=(identification record marks).
Operation (FORX).
Source of input,

5 = card.
3 = paper tape.
1 = typewriter.

FORTRAN subroutine set identification number.

=t==t=(identification record marks).
Operation (XEQ, left-justified).
Name of user's program, to be executed (same name
assigned in Equivalence table).
DIM (Disk Identification Map) entry number.
Note that either the name or the DIM entry number must
be given (if program is in disk storage), but if both are
given, the name takes precedence.
Address where loading of user's program begins if pro
gram is not in core image. If not supplied, address
02402 is assumed.
Address where execution of user's program is to begin
if program is not in core image. This address must be
relative to the start of the program if the program is
relocatable; otherwise, the absolute entry address must
be supplied.

27 Source of input,
Blank = disk.
5 = card.
3 = paper tape.

(Note that card or paper tape input must be in System
Output format.)

Columns 1-2 =t=R=(identification record marks).
Operation (XE QS).

**(End-of-Job).

3-6
7-12

13-16

27

28

Name of user's program to be executed (same name
assigned in Equivalence table).
DIM (Disk Identification Map) entry number.
Note that either the name or the DIM entry number must
be given (if program is in disk storage), but if both are
given, the name takes precedence.
Source of input,

Blank = disk.
5 = card.
3 = paper tape.

(Note that card or paper tape input must be in System
Output format).
Subroutine set identification.

Columns 1-2 =t=:f(identification record marks).
op'eration (** end-of-job). 3-4

Comments Records

Comments records - in card, paper tape, or typewriter form - can be used to specify
operating instructions and identify each job. Any number of these records may be in
serted in front of a job in the stacked input. Usually they are inserted behind a JOB
Monitor Control record.

When Comments records are encountered in the stacked input, they are typed out.
The format of the Comments record in terms of cards follows:

Columns 1-2 =t=*(identification record marks).
3-6 Operation (blanks or any combination of letters and/or

digits other than the eleven Monitor pseudo operation
codes, JOB, SPS, etc.).

7 -80 Comments.
When the Supervisor Program reads a Comments card, it will pass subsequent cards

until another card with * *, columns 1-2, is encountered. Therefore a Comments card
should be followed by another Comments card or a Monitor Control card.

Module Change Numbers (Off-Line)

Module change numbers, punched in card columns 8-11 of the JOB cards, can be used by
the operation on 1710 Systems with more than one 1311 Disk Storage Drive to alter the
normal assignment of disk storage drives for any job. For example, a job that uses
drive 0 in the execution of its program could use drive 1 instead of drive 0 by the entry
of a JOB Monitor Control card with the appropriate module change numbers.

Card columns 8, 9, 10, and 11 of the JOB card represent disk storage drives 0, 1,
2, and 3, respectively. A change to the normal program assignment of a disk storage
drive is made by punching the number of the substitute drive into the card column which
represents the normal drive. Therefore, in the preceding example, a digit 1 would be
punched into card column 8 to alert the program that drive 1 should be used for the job

Supervisor Program

71

72

instead of drive O. Card columns 9, 10, and 11 could be left blank because only the as
signment changes must be punched. The assignment of disk storage drives, placed in
effect by a JOB card, remains in effect until changed by a succeeding JOB card.

To overlap the time required to change disk packs for one job with the processing
time for a different job, the operator may choose to alternate the use of disk storage
drives from one job to the next. Alternating drives is possible only when all drives are
not in use for anyone job. For example, assume that job A is to be followed by job B
in the stacked input and the programs for both of these jobs use disk storage drives 0 and
1. Assume further that four disk storage drives are available to the 1710 System that is
to perform these jobs. By entering a module change number in the JOB Monitor Control
card for job B, the operator can use disk storage drives 2 and 3 for job B in place of
drives 0 and 1. Therefore, while job A is being done, the operator could mount the disk
packs for job B on drives 2 and 3, thus saving valuable operating time. The JOB card
module change numbers should be punched

Card columns

Module change numbers

so drives 2 and 3 will be used in place of drives 0 and 1, respectively, for job B.
If the system is redefined (DFINE control card) to utilize more than one module, a

JOB control card with the module change numbers for all the drives in the system must
be used. This precludes the occurrence of invalid MOD ERR messages when the addi
tional drives are addressed. The JOB card need only be used once with these module
change numbers unless substitution of one number for another, as described above, is
desired.

The user must utilize the initial start procedure before the JOB card when entering
module change numbers.

Using More Than One Disk Drive with the Process Control System

In order to utilize more than one disk .drive with the on-line IORT, some additional oper
ations must be performed (see DUP DFINE Description). These operations consist of
reading a portion of the on-line IORT program into core from disk, changing it to specify
the drive units that are on the particular system, and writing the data back on disk.

These changes can be made using the DUP DALTR routine. The sector that must be
specified is 17020. The section that must be specified is 01. The contents of this sec
tion initially are 0001000000. To introduce the ability to handle a second drive, this
section must ,ee _c1!a~ed to 00010300UO. Up to four drives can be used if the fields are
changed to 0001030507. An example of the typewriter log produced when DALTR is used
to change to a four drive system is shown below.

**JOB

**DUP

*DALTR

SECTOR
117020R-S

1 S T .HALF
2ND.HALF

SECTION
01R-S

0001000000 0000000010
0000000000 00=1=3340000

0001000000 TYPE CHANGE
000 1 030507R-S
1 ST. HALF 0001000000 0000000010
1 S T .HALF 0001030507 5050005010

(continued top of next page)

0502090170 0010336=1=00 0000000000 ORIGINAL
0001023902 1910010048 6241430=t=34 ORIGINAL

0502090170 0010336*00 0000000000 ORIGINAL
0502090170 0010336*00 0000000000 CORRECTED

2ND.HALF 5050505050 50=1=3340000 0001023902 1910010048 6241430=1=34 ORIGINAL
2N D. HALF 5050505050 50=1=3340000 0001023902 1910010048 6241430=1=34 CORRECT ED

SECTION
=1= R-S
DISK SECTOR 117020 CORRECTED
SECTOR

=l=R-S
END OF JOB

Module Change Numbers On-Line

The on-line IORT may be changed to substitute one drive for another using the procedure
described under Using More Than One Disk Drive with the Process Control System. In
this case the field containing 01 in the example would be changed to 03 if the first drive
is to substitute for the second drive, to 05 if the first drive is to substitute for the third
drive., or to 07 if the first drive is to substitute for the fourth drive. The IORT will then
cause data for the logical drive (i. e. , the 2nd, 3rd, or 4th drive) to be read or written
on the pack that is physically on drive one. Analagous substitutions of drives two, three
and four can be made. Once the drive assignments have been made they remain in effect
until the on-line IORT is reloaded from cards (paper tape) or until the user changes these
assignments using the procedure described here. It is also necessary to follow the DUP
DFINE procedure and the Monitor Module Change Numbers (off-line) to convert the entire
FORTRAN Executive System to multiple disk drive operation.

Disk Pack Identification Numbers

Card columns 12-31 of the JOB Monitor Control card can be punched with the four 5-digit
disk pack identification numbers, one identification number for each disk storage drive.

Disk Pack
Identification Number

Card columns 12-16
17-21
22-26
27-31

Disk Storage
Drive

o
1
2
3

The disk pack identification number from the JOB card is compared with the identifica
tion numbers recorded on the respective disk packs. If the proper disk packs are not
attached by the operator, the Supervisor will halt for operator instructions. If it is
desired to omit this check for any disk storage drive, the card field representing the
disk storage drive may be left blank. When the operator enters a module change number,
no change to the disk pack identification numbers (card columns 12-31) is required.

STACKED INPUT

Stacked input consists of control records (Monitor Disk Utility Program, FEAP, and
FORTRAN), source programs, object programs, and data arranged logically by job.
Each off-line job consists of phases which must fit into one of the following categories:

1. FEAP source program(s) to be assembled.
2. FORTRAN source program (s) to be compiled.
3. Disk Utility routine(s) to be executed.
4. FORTRAN or FEAP object program(s) to be called from disk storage and executed.

Supervisor Program
73

74

The order in which jobs are executed is not important, i. e. , a Disk Utility routine
may be executed before a FORTRAN compilation or vice versa. Jobs are executed in
the order in which they are encountered in the stacked input. Each job must be preceded
by a JOB card and followed by an end-of-job (=t-i~4=t) card.

Job Arrangement

A Disk Utility, FORTRAN or FEAP job is always represented by at least three Monitor
Control records.

1. JOB
2. DUP, SPS, SPSX, FOR,

FORX, XEQ, or XEQS

3. End-of-job

Purpose

Identify beginning of job
Transfer control to Disk Utility Program,

FORTRAN compiler, FEAP or user's
object program

Identify end of job

In addition to the Monitor Control records, there may be one or more Disk Utility
Program, FEAP, or FORTRAN system control records for each job. These records
are a part of the input for the individual system.

TYPE or P A US Control records may be inserted immediately preceding any of the
records in the above sequence. Any number of Comments records may be inserted in
front of Type 2 records. Source programs or input data can be entered immediately fol
lowing Type 2 records.

The following three points must be taken into consideration when arranging the input
for any job.

1. All Monitor Control records, with the exception of the records that follow a
TYPE Control record, must be read from the same input source. The input
source can only be changed at the beginning of each job or by a TYPE control
record.

2. A job, with the exception of a Disk Utility job, may consist of several system
functions possibly terminated by execution of a user's program. Execution of
a user's program is considered as the end-of-job. If any cards remain in the
stacked input for a job when it is ended in this manner, they will be passed
without processing. Processing resumes with the first Monitor Control card
of the next job in sequence.

3. If an error is detected in an FEAP assembly or FORTRAN compilation, the re
sulting object program or any programs that follow within the job cannot be
executed.

MONITOR CONTROL RECORD ANALYZER ROUTINE

This routine, a part of the Supervisor Program, is used to read the Monitor Control
records and Comments records (identified by=t =tin columns 1-2) to analyze these rec
ords, and to perform the operations or transfer control as directed by the pseudo opera
tion codes. The first Monitor Control record is read from the input source that is .
speCified by the operator when the Supervisor Program is originally loaded into core
storage from disk storage to start the entire operation. Subsequent Monitor Control
records and Comments records are read from the same input source until a JOB rec
ord changes the input source by specifying a different" source of input" or a TYPE card
is encountered. Reading of Monitor Control records continues from the new source until
again changed by another JOB Control record.

When the input source is the "typewriter," the Monitor Control Record Analyzer
routine types the message:

ENTER MONITOR CONTROL RECORD

The operator may then enter the next control record. The record is not typed out
if the entry is made by the typewriter.

If the operator makes a mistake while entering the record, he may correct the error
by turning on Program Switch 4 and depressing the R-S key on the typewriter. Switch 4
should then be turned off and the entire record re-entered.

When an SPS, SPSX, FOR, FORX, DUP, XEQ, or XEQS control record is read,
control is transferred from the Analyzer routine to the individual program specified by
the control record. Control is returned to the Analyzer routine after the program is
executed. When control is returned, the Analyzer routine will pass records, provided
the input source is other than the typewriter, until a Comments or Monitor Control
record is encountered in the stacked input. Therefore, the last job to be executed should
be followed by a TYPE or PAUS control card. If this control card is not present, the 1710
will stop on a Read Select instruction, expecting another control card.

Error Messages

During execution of the Monitor Control Record Analyzer routine, certain error mes'
sages may be typed. After typing a message, the 1710 will stop if any operator action
is required. A list, of these messages, the conditions which cause them, and the cor
rective actions required of the operator, follows.

Message

Cause
Action

Message

Cause
Action

Message
Cause

Action

Message
Cause
Action

Message
Cause
Action

ERROR IN FIELD AT COL. xx. SET SW4 TO IGNORE, OFF TO RE
ENTER CARD
An illegal character has been detected in a JOB Record data field.
To ignore the error turn Program Switch 4 on and depress the Start key.
The message" CONDITION IGNORED" is typed and processing continues.
To correct the error, turn Program Switch 4 off and depress the Start
key. The Monitor Control record input source will be changed to the type
writer, and the operator may then re-enter the control record. If it is
desired to read succeeding records from the original input source, column
7 must identify the input source.

PACK NUMBER. ERROR ON MODULE X. SET SSW·1 TO IGNORE OFF
TO RECOMPARE
Disk pack identification numbers compare "unequal. "
To ignore the error, turn Program Switch 4 on and depress the Start key.
The message "CONDITION IGNORED" is typed and processing is resumed.
To correct the error, place the correct disk packs on the disk drives and
depress the Start key. The disk pack identification number will again be
checked by the program.

END OF JOB
The end of a job has been reached. (This message will not be typed, if
the input source is the typewriter.)
None required.

CANNOT RESTORE COMMON- RESET AND START TO RE-TRY
Common area does not read into core storage from disk storage correctly.
Depress Reset and Start keys to retry the read operation.

EXECUTION
Loading and execution of user's object program has started.
None required.

Supervisor Program
75

76

Message
Cause

Action

Message
Cause

Action

Message
Cause

Action

Message
Cause

Action

Message
Cause

Action

Message
Cause
Action

'Message
Cause

Action

I/O Routine

JOB CARD GROUP ONLY
Control Record Analyzer routine is expecting a JOB, TYPE, or PAUS
Monitor Control record, but it does not find one.
Enter JOB, PAUS, or TYPE, Monitor Control record from typewriter and
depress theRelease and Start keys.

ERROR IN FIELD AT COLUMN XX. PHASE TERMINATED
A Monitor Control record contains an invalid code in the field starting at
column XX.
The phase is skipped and the supervisor will pass records from the control
record source until it encounters the next Monitor Control record.

EXECUTION IS INHIBITED
An error has occurred within a job which may prevent successful execution
of the user's object program.
None required. No user object program can be executed until the next JOB
Monitor Control record is encountered.

OBJECT DIM ERROR PHASE TERMINATED
The Supervisor is unable to find the DIM entry specified by an XEQ or
XE QS control record.
None required. The phase in which the error occurred is terminated and
processing continues.

OBJECT NAME ERROR PHASE TERMINATED
The Supervisor is unable to find a name in the Equivalence table which
corresponds to the name supplied in an XEQ or XEQS control record.
None required; the phase is terminated.

ENTER MONITOR CONTROL RECORD
A "=I==I=TYPE" Monitor Control record has been encountered.
Enter a Monitor Control record from the typewriter. (Monitor input source
is changed to the typewriter.)

SYSTEM DIM ERROR PHASE TERMINATED
Supervisor is unable to find DIM entry for FEAP, FORTRAN compiler, or
Disk Utility Program.
None required; the phas e is terminated.

The I/O routine is designed to relieve programmers of the necessity for writing input/
output subroutines. The I/O function is performed automatically by the I/O routine.
Therefore, the programmer can concentrate on describing his files and disregard the
actual operation of the I/O function. Provision is also made in this routine for error
detection and correction. If Parity, Wrong-Length Record Check, or Address Check
disk errors occur in a disk operation, the routine will repeat the operation which had
the error, up to nine times, in an attempt to correct the error. The Monitor System
uses this routine for I/O operations.

The I/O functions performed by the I/O routine include reading and punching cards
or paper tape, reading or writing typewriter, reading or writing disk records, and seek
ing disk cylinders. These functions may be used in a FEAP object program by entering
I/O macro-instructions (GET, PUT, SEEK, or CALL) in the user's source program.
These macro-instructions, as well as the associated declarative statements for defining
declarative constants (DTN, DTA, etc.), are described in the FEAP section.

All linkages for II 0 routines are generated automatically through the use of macro
instructions in SPS source programs or the I/O statements (e. g. , FIND, RECORD,
FETCH, PUNCH, READ, etc.) in FORTRAN source programs. The data and addresses
supplied in a macro-instruction or the parameters in a FORTRAN statement are incor-

porated into the linkage instructions where they are made available for use by the I/O
routine.

The I/O routine to be used with the Executive Control programs for on-line (process
control) is different from the off-line (nonprocess control) I/O routine in several ways.
The error counts that are maintained by the on-line I/O routine are coordinated with the
System Alert Control program error counts and are outputted for CE examination when
the CE interrupt is initiated. The error messages are shortened to conserve 1710 ma
chine time, and the error procedures are changed to conform to use with a continuously
running control program.

The entry addresses along with other important addresses and constants have been
maintained constant between the two routines. The on-line routine cannot be used to load
a program that is in System Output format, nor can it call in the Control Card Analyzer
routine.

The differences in methods, error messages, and error procedures are described
in the following paragraphs. Unless a function is specifically excluded, it is valid for
both the on-line and off-line routines.

Each time the I/O routine is entered as the result of an FEAP macro-instruction or
FORTRAN statement, the read, write, and parity check indicators are turned off. If a
read or write error occurs that cannot be corrected without operator intervention during
off-line operation, an error message is typed and the program halts. A restart proce
dure is specified for all off-line error conditions (see I/O Error Routine). An error
count is maintained by both the on-line and off-line I/O routine for inspection by the user
or for diagnostic analysis by an IBM Customer Engineer.

In addition to using the I/O routine with FEAP macro-instructions and FORTRAN
statements, the routine may be used by coding the general form of I/O routine linkage
directly in the user's program.

I/O Routine Linkage

General Form: TFM
B

IORT, * + 23
ENTRY, DEF, 7

IORT is the address (00565) of a 5-position storage area in the I/O routine.
ENTRY may be anyone of the four possible entry points in the I/O routine repre

sented by the following symbolic addresses:

Symbolic
Address

IORBC

Actual
Address

00520
Function

Write record into disk storage with Read
Back Check.

IOPT 00532 Write a record to an output device.
IOSK 00554 Seek a disk record.
lOOT 00566 Read a record from an input device.

DEF can be the address of any I/O declarative constant (see I/O Constants).

CALL LINK or CALL LOAD Linkage. These linkages are usually used to call programs
from disk storage, with or without execution. Linkages may be in either a short or long
sequence form. Both forms are alike with the exception that the long sequence form con
tains a relocation address.

Short Sequence
TFM
B7
DC

DC } or
DSC
DSC
DC

IORT, * + 19
lOCAL
1, MO

1, M1

1,0
5, Im@

Supervisor Program
77

78

Long Sequence

TFM
B7
DC

DC }
or
DSC
DC
DC
DSA
DSC

IORT, * + 19
lOCAL
1, MO

1, M1

1,0
4, IIlI
LLLLL
1, @

lOCAL is an entry to the I/O routine
MO M1 is a constant :J2 for CALL linkages, Ml is flagged for CALL LINK only.
IIII is the DIM entry number of the program to be called.
LLLLL is the relocation core storage address where the program is to be loaded.

If the short sequence is used to call a relocatable program, LLLLL is assumed by
the I/O routine to be the address contained in the "high" indicator field of the Communica
tions Area. If the long sequence is used to call a core image program, the I/O routine
will disregard LLLLL.

CALL EXIT Macro-Instruction Linkage.

B7 MONCAL

MONCAL (core storage address 00796) is an entry to the I/O routine which will call in
the Monitor Control Record Analyzer routine.

CALL EXIT linkage is used at the end of the execution of an off-line object program
to return control to the Monitor Control Record Analyzer routine to read another Monitor
Control record. If, during execution of an object program, an error is encountered which
will not allow normal exit to the Analyzer routine, the operator may manually branch to
MONCAL (00796) to resume processing.

I/O Constants

An I/O constant for card, paper tape, or typewriter consists of eight digits.

CCCCC is the address of an I/O area.
MO M 1 is one of the following codes which identifies the operation:

00 Typewriter Numerical
02 Paper Tape Numerical
04 Card Numerical
06 Typewriter Alphameric
08 Paper Tape Alphameric
To Card AlphameriC

Disk I/O constants may be in any of the following four forms:
1. M M1 fiDDDD =t=

2. Mg Ml D~DD'pLLLLL =t=

3. MO M1 0 !III LLLLL =t=
4. MO Ml 0 IIII =t=

DDDDD is the address of the leftmost position of the associated disk control field.
LLLLL is a relocation core storage address of a program to be called.
fin is the DIM entry number of a program to be called.
MO and Ml provide various disk options for the user. A list of these codes and their

associated options follows:
MO (code)

o

1

2

3

Ml (code)

o

2

4

6

Option

Add the starting address of the work cylinders from the
Communications Area (core positions 422-425 off
line, and 402-405 on-line) to the sector address in·
the disk control field.
(U sed with constant types 1 and 2 only.)

Same as option zero, except the "high" indicator in the
Communications Area will also be updated for disk
read operations only. This indicator is merely a
field which contains the core storage address of the
highest position to be loaded plus one.

Use the sector address in the disk control field for the
disk operation (SEEK, READ, or WRITE).

Use the sector address in the disk control field for the
disk operation. Also, update the "high" indicator in
the Communications Area for read operations only.

A flag over the code n, (n = 0, 1, 2, or 3) causes the read/
write heads to be repositioned to an assigned cylinder
(specified in the Communications Area) after any disk
I/O operation, except seek.

Option

Disk read or write in sector mode with WLRC.
NOTE: The user must place a group mark (*) in the
core storage location following the last character
position of the last sector of the record.

Disk read or write in sector mode without
WLRC.

Disk read or write in track mode with WLRC.
NOTE: The user must place a group mark (*) in the
core storage location following the last character position
of the last sector of the record.

Disk read or write in track mode without
WLRC.

A flag over code n (n = 1, 2, 4, or 6) causes the I/O routine
to branch to a given address after a disk read operation.
The given address will be the "execution address" if an
extended disk control field is used. Otherwise, it will be
the" core address" of the disk control field. If code n is
unflagged, the I/O routine will branch to the first instruction
following the disk operation calling linkage in the obj ect
program. If the entry address is not specified,
the entry is made to the (possibly relocated) first
card address of the deck to be loaded.

Supervisor Program
79

80

Disk Control Field

The disk control field, associated with 1/0 constants, types 1 and 2, may be in either of
the following formats:

DDDDDDSSSCCCCC :f:
DDDDDDSSSCCCCCEEEEE:f:

DDDDDD is the first sector address of the data or program.
SSS is the number of sectors to be read or written.
CCCCC is the core address (must be an even-numbered address) of the data or

program.
EEEEE is the execution address where program execution is to continue after a disk

read operation is completed. The second disk control field, known as an extended disk
control field, is used when Ml of the I/o constant is flagged.

Card 1/0

Cards are read or punched in alphameric or numerical form from a user-specified con
stant (generated from an I/o declarative statement) designated in general linkage. If a
punch error is detected during a write instruction, the instruction is again executed to
correct the error. If the error persists or a parity error occurs during a write opera
tion, an error message is typed and the program halts if off-line, or continues if on
line (see 1/0 Error Routines). Error messages will be typed for all read errors.

Typewriter 1/0

A specified 110 declarative constant designated in general linkage will be used by read or
write typewriter instructions (alphameric or numerical). If a read error or a parity
error occurs during reading, the program will type an error message and branch back
to the read instruction and await entry of data. The operator can then type in the data
and return control to the program. If a parity error or write check occurs during writing,
it will be counted and the indicators will be turned off - but the program will not halt.
Control operations (RCTY, SPTY, TBTY) are not executed in the 1/0 routine. These
must be handled in the main program coding.

Paper Tape 1/0

Paper tape is read. or punched in alphameric or numerical form from a specified 1/0
declarative constant designated in general linkage. If a parity read error occurs during
a read operation, an error message is typed and the program halts if off-line or continues
if on-line.

Disk Storage 1/0

Disk storage will be read or written as specified by the 110 declarative constant desig
nated in general linkage. Also, disk seek operations will be initiated to disk addresses
contained in the I/ 0 declarative constant deSignated in general linkage. For a CALL
macro-instruction, disk data records or programs will be written in the area of core
storage designated by the relocatable address in CALL linkage. If this address is not
present for a relocatable program, the processor selects the address. If the relocation
address is present but the program is an on-line program or is not relocatable (i. e. , it
is in either Absolute or Core Image format), the relocation address is ignored and the
program is stored at the core address specified by the DIM entry.

Disk storage indicators are reset by the 1/0 routine. If the Cylinder Overflow indi
cator (38) is turned on before the sector count reaches zero, a seek to the next cylinder
is initiated and reading or writing is resumed. If read, write, or parity indicators, or

indicators 36 or 37 are turned on, the instruction associated with the error will again be
executed up to nine times. If the error persists, an error message is typed and the pro
gram halts if off-line or branches to SAC if on-line.

The seek only linkage

TFM
B

IORT, * + 23
IOSK, DEF, 7

will allow computing time and seek time to overlap. DEF refers to any disk I/O constant.
The cylinder location of the arm on each drive is entered into a list by the I/o rou

tine. Every time the I/O routine executes a disk operation, the current entry cylinder is
compared to the previous cylinder and the arm is instructed to SEEK only if it is not al
ready located at the current cylinder.

Repositioning of Ac.cess Arms

The I/O routine contains four 2-digit cylinder indicators that can be used to reposition
the access arm on each of the four possible disk drives to a new cylinder following a
read or write operation. The four cylinder indicator core storage locations and their
associated drives follow:

Indicator Addresses

00512 - 00513
00514 - 00515
00516 - 00517
00518 - 00519

Drive

o
1
2
3

These indicator positions are reset to 00000000 by the Monitor Control Record Ana
lyzer routine. Therefore, a program which uses other cylinders for repositioning must
provide for changing the indicators.

Repositioning the access arm following a GET or PUT macro-instruction is optional.
If MO of the I/O constant used by a GET or PUT is flagged, the read/write heads will be
repositioned.

Full Track Operation

If any I/O operation is to be attempted with the Write Address light on, the programmer
must set a flag at OLDDA + 14 (core position 00455) before entering the I/O routine. The
flag will prevent accumulating error counts (which is a write disk sector operation). The
flag must be cleared before terminating the routine in which the Write Address light "on"
condition is pres ent.

If an I/O operation is attempted with the Write Address light on, no flag present at
OLDDA + 14, and an indicator 06, 07, 16, 17, 36, 37, or 38 on or turned on by the I/O
operation, the program will stop with the instruction at 00728. To save the error count,
the operator must (1) turn the Write Address light off, (2) depress the STOP/SIE key,
(3) turn the Write Address light on, if desired, and (4) depress the Start key to resume
automatic operation.

I/O ERROR ROUTINE

Each time the I/O routine begins execution, it tests indicator 19 (any check) to determine
if an error had occurred prior to entry. If the indicator is on, the I/O error routine will
be called into core storage and executed. This routine records a count of errors by type
(for indicators 06, 07, 16, 17, 36, 37, and 38), and provides the necessary error mes
sages and corrective operating options. In addition, the error routine turns off the in
dividual indicators (06, 07, 16, 17, 36, 37, and 38) by testing them.

Supervisor Program
81

82

After an I/O function is executed, indicator 19 is again tested. If it is on, the I/O
error routine is entered to process the error.

Error Detection and Correction

During execution of the I/O error routine, error messages are typed to describe errors
and the operator is allowed to intervene to decide how errors should be treated by the
program. A list of error correction options available to the operator for use with off
line programs follows.

Error Correction
Code Option

00 Ignore the error. When this option is used, the I/O
routine will finish processing the I/O operation
as though the error had not occurred.

05 Re-execute the I/O operation. If an error recurs
during the next execution, an error message is
again typed, the computer stops, and the oper
ator can exercise the same option or another
option.

10 Skip this phase of the job if error occurs at system
time (FEAP assembly, FORTRAN compiling,
Disk Utility Program, or Supervisor Program
execution time) and return control to the Monitor
Control Record Analyzer routine and pass records
to the next Monitor Control record.

15 Discontinue execution and return control to the Monitor
Control Record Analyzer routine and pass records
to the next JOB Monitor Control Record.

20 Continue processing by branching to a specified core
storage address without further processing of the
I/O request. When this option is exercised, the
operator enters the 5 -digit branch address from
the typewriter.

After each error message is typed, the computer halts. The operator then depresses
the Start key, enters a 2-digit error correction code from the typewriter, and depresses the
R-S key to resume processing.

If an error is made while entering a 2-digit correction code, it may be corrected by
turning Program Switch 4 on, depressing the typewriter R-S key, turning Program Switch
4 off, and re-entering the 2-digit code.

The I/O error routines have the facility to handle any of the following errors.

Entry Check
Typewriter write
Typewriter read
Paper tape read
Card write
Card read
Cylinder overflow
Write error count
Illegal DIM entry
System
Unavailable disk drive

In addition, the off-line I/O routine will detect Monitor Control records read by user
programs. Error messages, conditions, and corrective operator action associated with

each type of error are described as follows:

Entry Check. If indicator 19 (any check) is on, when tested in the preprocessing phase,
the message

is typed on the console typewriter for off-line programs. Each pair of indicator numbers
is flagged in the leftmost digit. If an indicator was on when tested, the rightmost digit
will also be flagged.

A shorter message will be typed in the on-line program. This message consists of
an N followed by the numbers 2 through 8, if all seven indicators are on, or just as many
numbers, corresponding to the indicators above, that are on when the I/O routine was
entered.

Typewriter Write. For this error, no error message is typed; however, the error is
automatically indicated by over-printing the error character(s) with a horizontal line.

Typewriter Read. For this error, the message

TYP ERR 06071617363738

is typed for off-line programs. To restart the computer, the operator exercises one of
the error correction options. On-line, the message

E9

is typed, and the program continues.

Paper Tape Read. The message

is typed for off-line programs. The operator must backspace the tape to the beginning of
the record before exercising error option 05. On line, the message

E12

is typed, and the program continues.

Paper Tape Write. The off-line program prints

and the program stops. The on-line program prints

E13

and continues.

Card Write. For ,this error, the I/O error routine retries the operation once for a write
check error (indicator 07). If the error is corrected by the retry, control is returned to
the I/O routine; if the error is not corrected, the message

Supervisor Program
83

84

is typed in the off-line program. The error option can then be exercised by the
operator. On -line, the me ssage

Ell

is typed, and the program continues.

Card Read. For this error, the I/O error routine retries the operation once for a
read check error (indicator 06). If the error is corrected by the retry, control is
returned to the I/O routine; if the error is not corrected, the message

is typed in the off-line program. The error option can then be exercised by the
operator. On-line, the message

EIO

is typed, and the program continues.

Cylinder Overflow. For this error, the I/O error routine tests to determine if a
legitimate overflow has occurred during a disk read or write operation. For a
legitimate overflow, a seek operation to the next cylinder is automatically initiated and
reading or writing continues. A maximum of three seek operations will be performed
if sufficient core storage is available to accommodate the data being read or written.

If the disk read or write operation results in an attempt to read or write data be
yond the highest sector address of the addressed disk module, the message

DSK OFL

is typed in the off-line program. All error correction options, except 05 are available
to the operator. If 05 was inadvertently entered, it would have the same effect as error
correction option 00. On-line, the message is

E14

and the program branches to the System Alert Control program which executes the users
error procedure for the mainline core load in progress.

For a disk error, which is other than a legitimate overflow, the disk read or write
operation causing the error is retried up to nine times; if this fails to correct the error,
the message

is typed in the off-line program where XXXXX is the 5-digit return address to the object
program. A flag is typed over the leftmost position of each pair of indicator numbers. The
indicator(s) which identifies the type of error will also be flagged in the rightmost pos
ition. If indicator 38 is flagged in its rightmost position, it may mean either of two
things:

1. A legitimate overflow did occur, but another type of error occurred in attempt
ing to transmit data to or from the succeeding cylinder.

2. A machine malfunction occurred.
If the operator exercises error correction option 05, but this does not correct the

error, he should turn the Disk, Parity, and I/O Check switches to STOP, and again
exercise option 05. The console lights may then be examined to determine the nature
of the error.

Form C26-5879-1

Page Revised 5/14/65

~y TNL N26-0120

The on-line routine types the same me ssage as for an entry error (N2345678)
except that an E appears instead of an N. The program then branches to the System
Alert Control program for further corrective action.

If a legitimate cylinder overflow condition occurs, a seek operation to the next
cylinder is automatically initiated and reading or writing continues.

In the on-line program, any disk error which is not corrected by retrying the
operation will cause an entry to SAC. To permit the user to distinguish such IORT disk
errors from other causes for entry to SAC, a single digit (a one) is placed in the last
core storage position of the computer. The FORTRAN program can detect· this indi-
cator by testing the first variable of COMMON using an IF statement. This variable
must be a fixed point variable and must be included in any definition of COMMON for on
line use. If a FORTRAN test·is made of the variable, the variable must be re-established
as zero by the user. Since only a single digit is placed in core storage when the disk
error is detected, it is necessary for the user to set the variable to zero when the on-line
program is started, as well as after the variable has been changed because of a disk error.
The indicator is set for any error detected by on-line IORT which results in entry to SAC
from IORT.

Write Error Count. If an error occurs while the I/O error routine is writing the error
count indisk storage, the message

BAD DISK WRITE. RESET START

will be typed in the off-line program. In. this case, the operator does not exercise an
error ·correction option, but he must:

1. Clear the Select-Lock light, if it is on.
2. Depress the Reset and Start keys.

On -line the error message is

E18

and the program continues.

Illegal DIM Entry. If the user supplies an illegal DIM number (not in DIM table) in a
CALL statement, the I/O routine will transfer control to the I/O error routine and
message

MAP ERR XXXXX IlIl

is typed in the off-line program where XXXXX is the core storage position immediately
follOWing the call linkage, and nIl is the· illegal DIM entry number. The operator then
enters error correction code 00 and depresses the Release and Start keys. The computer
will again halt. The operator must then type in a corrected 4-digit DIM entry number and
depress the Release and Start keys. When this error occurs in an on-line program, the
message

E17

is typed. In addition to an illegal DIM entry indication, this message indicates an illegal
disk control field in the on-line program. After the message the I/O routine branches to
the System Alert Control program for further error analysis.

Supervisor Program

85

85.1

Form C26-5879-1
Page Added 5/14/65
By TNL N26-0120

Syst~m. If the I/O error routine cannot interpret the nature of the error, the message

IMP ERR

is typed in the off-line program and control is returned to the Monitor Control Record
Analyzer routine without stopping to allow operator intervention. On-line, the message

E15

is typed, and control is -returned to the calling program.
In addition to the system error just described, the computer may halt in the I/O

routine at core storage address 00467 without typing a message. This halt occurs if a
read error occurs while the I/O routine is reading one of its subroutines from disk
storage. To retry the operation, the operator should:

86

1. Clear the Select-Lock light if it is on.
2. Depress the Reset and Start keys.

If this error persists, it may mean either of two things.
1. The user inadvertently altered the I/O routine in core storage.
2. A machine malfunction occurred.

In the on-line program the message

El

is typed and the operation is repeated.

Unavailable Disk Drive. If the programmer specifies a logical module for which there
is no physical disk storage drive, the message

MOD ERR XXXXX

is typed in the off-line program where XXXXX indicates the return address to the object
program. The operator must enter the error correction code 00 and depress the Release
and Start keys. The computer will again halt. The operator must then enter a corrected
I-digit drive code and depress the Release and Start keys to continue.

Illegal Drive Code. If the user gives an illegal drive code in the disk control field for a
disk operation, the message

MOD ERR XXXXX

is typed where XXXXX is the 5 -digit return address to the object program. To continue,
the operator should enter an error correction code 00 and depress the Release and Start
keys. The computer will halt to allow the operator to enter a corrected I-digit drive
code from the typewriter. Depress the Release and Start keys to resume operation.

In the on-line program, the message

E16

is typed for either an unavailable disk drive or for an illegal drive code, and the routine
branches to the System Alert Control program for further analysis.

Control Record Trap. To prevent the I/O ro~tine from inadvertently reading a control
record as a data record in the off-line program, the I/O routine is designed to trap control
records, if they are read from the Supervisor input source. Each record read is tested
for =t==t= in its first two positions. If present, control is transferred to the I/O error
routine and the message

TRP ERR

is typed. If the control record was read in numerical mode andit was not an end-of-job
record (****), an additional" message is typed:

MUST RELOAD

The operator then depresses the Start key and re-enters the record. The Monitor
Control Record Analyzer routine asswnes control and processes the trapped control
record. If the control record was read in alphameric mode, it is processed in the
normal manner by the Supervisor.

Loading Error. If the on-line IORT is assembled and loaded after the SAC program has
been loaded, the message

SAC

is typed and the machine halts. It is necessary to reload the Skeleton Executive (see
Assembly and Loading Procedures).

ERROR COUNT RETRIEVAL ROUTINE

Each time an error is detected by the off-line I/O error routine, an error count is
incremented by one. An error count is maintained for each of the following error
indicators:

06 Read Check
07 Write Check
16 MBR-E Check
17 MBR-O Check
36 Address Check
37 WLR-RBC
38 Cy linder Overflow

The error counts can be typed out and reset to zeros by entering the following
instructions and data from the typewriter:

34 00032 00701
36 00032 X0702
49 00070 0
11975400100046 (disk control field)

X is the drive code for the FORTRAN Executive System.
The Release and Start keys are depressed to start the operation. The seven

indicator counts are then typed in sequence in 14 consecutive positions with a flag over
the leftmost position of each count.

the error counts are reset to zeros after the typeout.
On-line, the error count is coordinated with the System Alert Control program

error counts and typed out via the CE interrupt program.

Loader Routine

The Loader routine, a part of the Supervisor program, is used to load user's object
programs into core storage from cards, paper tape, and disk storage. This routine is
only available for use by off-line programs. To perform the loading function, the Loader
routine is called into core storage whenever an object program is to be loaded into core
storage. The user's object program could be any program in System Output format.

Programs are sequence checked as they are loaded if input is from cards. This
check is performed on the last five digits of each input record. If any records are out
of sequence, an error message is typed and the operator is allowed to intervene to
correct the sequence error. Patch cards may be interspersed with other cards of an
object program to be loaded.

The sequence number of card input appears in columns 76-80. Sequence numbers
start with 00001 and must have a flag over their leftmost position in order to be sequence
checked.

Supervisor Program

87

88

SYSTEM OUTPUT FORMAT

The general output format for FORTRAN and FEAP programs is shown below.

Columns 1-5 Address of data
6 Indicator code
7-8 Length of data
9-75 Data

76 -8 0 Sequence number

Patch cards should be prepared in the same format. However, the sequence number
must not include a flag in column 76. All patch cards must precede the card that defines
the end of a relocatable program (Indicator Code 6). The entries shown above are de
scribed as follows:

NOTE: The descriptions given here are in terms of cards; however, paper tape and
disk formats are the same with the exception of the sequence number.

Address of Data. This entry will always refer to the location where the first digit of
data on the card is to be loaded. This entry will appear in columns 1 through 5 of a
reloadable card. The address is an absolute address, i. e. , no relocation increment
(presuming this program is relocatable) has been added yet.

Indicator Code. This I-digit entry is used to either define the type of data that is to
follow or to convey certain loading instructions to the loader. There are thirteen
different indicator codes that may be used; some are applicable to SPS II-D only
(see Indicator Codes).

Length of Data. This field is used in conjunction with certain indicator codes (1, 2, 2, 3, 3,
4, 4) to specify how many digits of data are to follow. With other indicator codes, this
field becomes part of a larger field and assumes a different role.

Data. This field contains actual data to be loaded. Data may be instructions, constants,
etc. , depending upon the indicator code. All instructions for relocatable programs will
contain flags over °0 , 01 of the operation code to specify if the P and Q addresses, re
spectively, should be incremented by the relocation address. If patch cards are prepar
ed, these flags must be punched for addresses to be adjusted. Instructions of programs
in absolute format must not be flagged.

Indicator Codes

Although the output format is shown divided into specific fields, these same fields do not
always make up the columns that are indicated. As will be seen by the descriptions of
the various indicator codes, the format varies considerably as the type of data on the
card changes.

The indicator codes are described as follows:

NOTE: Those codes marked with an asterisk are used in FEAP output only.

* - This digit indicates that a change is being made in the sequence of loading
addresses for the program. The five digits that follow the record mark denote
the new address or origin. After the 5 -digit address, there will be another
indicator code to define the data that follows. * - This digit is used whenever the data that follows is an instruction or relative
address which cannot be fully contained before the seventy-fifth column of the
card has been reached.

*0 - This digit is used when a TRA-TCD declarative combination is assembled in
any relocatable FEAP program. The five digits that follow the zero constitute
a branch address for entrance to a routine.

* 0 - This digit is used in the same manner as 0 above, except the flag denotes an
SPS program with absolute addresses.

1 - This digit indicates that the data to follow after the "length of data" field are
instructions.

2 - This digit indicates that the data following the "length of data" field are con
stants that are to be relocated.

2- This digit indicates that the data following the "length of data" field are con
constants that are not to be relocated.

3 - This digit indicates that the data following the "length of data" field are re
lative addresses to be relocated.

* 3 - This digit indicates that the data following the "length of data" field are re
lative addresses that are not to be relocated.

* 4 - This digit is used to supply numeric blanks when a relocatable program is
loaded. The 2-digit "length of data" field following the indicator specifies
how many numeric blanks are desired. Thus a 412 will cause twelve numeric
blanks to be inserted into core storage when loading.

* 4" - This digit is used in the same manner as the digit 4 above except that the flag
indicates the program is in "absolute" form.

6 - This digit indicates the end of a relocatable program. In FEAP, the five digits
immediately preceding a 6 or "6 (described below) will be the highest address
plus one or two to yield an even number for the number of core positions needed
for this program. In FEAP or FORTRAN, the card that follows a card contain
ing a 6 or "6 will contain five 9's in columns 1-5, a record mark in column 6
and zeros in columns 7 -75.

* 6" This digit indicates the end of an "absolute" program.

Error Messages

If an error occurs during execution of the Loader routine, an error message will be typed
and the 1710 will stop to await operator action. A list of error messages, the conditions
which cause them, and the corrective action required, follows:

Message - XXXXX LD 1 (XXXXX is the sequence number of the last card read in
correct sequence).

Cause - Card sequence error.
Action - Correct the order of input cards, starting with the card following

XXXXX, and place them in the card reader. Depress the Start key.

Message - LD2
Cause - Card read error.
Action - Reread card by depressing the Check Reset and Start keys on the card

read pu~ch.

Message - LD3
Cause - Disk read error.
Action - Depress Start key and retry.

Message - LD4
Cause - Disk read error while reading Loader routine into core storage.
Action - Depress Start key to retry.

Supervisor Program

89

90

DISK UTILITY PROGRAM

The Disk Utility Program is composed of a group of generalized routines designed to
assist the user in the off-line operation of the FORTRAN Executive System. By means
of these routines, certain frequently required operations, such as loading or unloading
portions of disk storage (data or programs), can be performed with a minimum of pro
gramming effort by the user.

The routines described in this section are:
1. Write Addresses. This routine writes disk pack sector addresses as specified

by the user. Data on the disk pack can be replaced by zeros or left unchanged.
2. Alter Sector. This routine uses the typewriter to change data in a sector of

disk storage. In most cases, only the digits to be changed must be typed.
3. Disk-to-Output. This routine unloads disk storage containing data or programs

into cards, paper tape, or on the typewriter.
4. Load Programs. This routine loads one or more programs from cards or

paper tape to disk storage at either a specified address or an address selected
by the load routine itself, and checks for an overlap of previously stored
programs.

5. Replace Programs. This routine implements the changes or additions neces
sary to update a program or disk storage. Input can be in either card or paper
tape form.

6. Disk-to-Disk. This routine copies data or programs from one area of disk
storage to another.

7. Delete Programs. This routine effectively deletes programs from the system
by deleting their associated DIM entries and Equivalence table entries without
actually removing the programs themselves.

8. Define Parameters. This routine allows the user to enlarge or shorten the disk
storage areas assigned for the work cylinders, DIM, IS1M, Sequential Program
table, and the Equivalence table and to specify certain options to be used as
system standards. If used, the Defined Parameters routine must be used prior
to the loading of any user's programs to disk storage.

9. Define Disk Pack Label. This routine writes the "label sectors" (first and last
sectors, cylinder 99) and establishes a Sequential Program table on a disk pack.
It can be used to initialize new disk packs.

10. Define FORTRAN Library Subroutine Name. This routine generates an entry
in the Equivalence table for FORTRAN subroutines that have multiple entries.
Thus, a name can be assigned to all entries in a subroutine. Each routine can
be entered and executed by means of control records readby the Disk Utility
program. In addition, the routines are used by both FEAP and FORTRAN to
output as sembled programs into cards or paper tape and to load and replace
programs in disk storage.

The Equivalence table, DIM table, and Sequential Program tables are used and mod
ified by the Disk Utility program in the execution of its routines. These tables are up
dated automatically for each disk storage change when the user adds, deletes, or replaces
a program. Entries are created in the tables whenever a new program is loaded to disk
storage.

OPERATION

When a DUP Control card (**DUP in card columns 1-5) is recognized by the Supervisor
Program, the Disk Utility Program will take control and select the appropriate Disk
Utility routine as identified by the next card in sequence, which should be a Disk Utility
Program Control card. This card is identified by an asterisk in card column 1. Card
columns 2-6 contain a code word to identify the Disk Utility routine desired; such as,

Alter Sector, Load Programs, etc. , and the remaining card columns provide additional
control information to be used by the Disk Utility routine itself. The user supplies the
control information which describes the function he desires. Because the control infor
mation for each type of Disk Utility Program Control card is different, the format of
each is described separately in the separate routine descriptions. After the execution
of a Disk Utility routine is completed, control is returned to the Monitor Control Rec
ord Analyzer routine.

A DUP Monitor Control card, as well as a Disk Utility Program Control card, is
required each time a Disk Utility routine is to be executed. These cards are stacked
with the other input cards to be processed by the System. This stacked input may be in
card or paper tape form or it may be entered from the typewriter.

If the code word contained in a Disk Utility Program Control card is not one of the
ten legitimate codes (DWRAD, DALTR, DDUMP, DLOAD, DREPL, DELET, DFINE,
DCOPY, DLABL, or DFLIB) an error message will be typed and the computer will halt.
This message will be comprised of the data from the control card and a constant, ERR
CONTROL. When the Start key is depressed, the Disk Utility routine will return con
trol to the Monitor Control Record Analyzer routine which will pass all cards until the
next Monitor Control card is reached.

If the control record is entered from the typewriter, the message

ENTER DUP CNTRL REC

is typed and the computer halts. The user may then enter the next Disk Utility Control
record from the typewriter and depress the R-S key to continue processing. Records
are entered in the alphameric mode.

The Disk Utility program uses the I/O routine of the Supervisor program to per
form its I/O functions. Therefore, error messages associated with that routine will
be typed if an I/O error occurs. The I/O error messages, as well as operating options
for I/O errors, are described under, I/O Error Routine, in the Supervisor Program
section.

Whenever a Disk Utility routine is instructed by a control record to write read
only flags with sector addresses, the message

DUP * TURN ON WRITE ADDRESS KEY, START

is typed and the-program halts. The operator should turn on the Write Address key (to
allow read-only flags to be written) and depress the Start key to continue processing.
After the program has been completely loaded, the message

DUP * TURN OFF WRITE ADDRESS KEY, START

is typed and the program again halts to allow the operator to turn off the Write Address
key.

Whenever a program of less than 200 sectors is aSSigned to disk by any Disk Utility
routine, it will always be placed in consecutive sectors of one cylinder. However, a
program can be assigned by the user, to any available disk storage area as described
under Load Programs Routine. Programs as large as 999 sectors long can be processed
by the Disk Utility program.

After a program is loaded to disk by any Disk Utility Program routine, the message

DK LOADED AAAAAA nn DDDDDD
SSS CCCCC EEEEE *

is typed to inform the user about the assigned DIM entry.
AAAAAA is the assigned program name, nn is the assigned DIM entry number and

the remainder of the message is the DIM entry itself.

Disk Utility Program

91

92

WRITE ADDRESSES ROUTINE

The Write Addresses routine is used to write sector addresses on a disk pack. Addresses
may be written with or without read-only flags over the leftmost positions. Data positions
of each sector may be changed to zeros or left unchanged.

When the Write Addresses routine is executed, the Write Address key must be turned
on. The message:

DUP * TURN ON WRITE ADDRESS KEY, START

is typed to signal the operator to turn the switch on. After the routine has been executed,
the message:

DUP * TURN OFF WRITE ADDRESS KEY, START

is typed to signal the operator to turn the switch off.
The format of the control card follows.

Control Card (DWRAD).

Columns 1
2-6
7-12

17

18

Asterisk (*)
Code word, DWRAD.
Disk sector address where writing is to start (seek address).
Letter P if read-only flags are to be written over addresses;
otherwise leave blank.
Letter Z if data positions are to be changed to ZEROS; letter
S if data positions are to remain unchanged.

21-26 Address to be written at sector where writing is to start.
27 -32 Final address to be written.

When the DWRAD Control card is read, control is transferred to the Write Addresses
routine and the message

or the message

WRITE AND SAVE
SEEK START STOP

XXxxxx XXxxxx XXxxxx

WRITE AND ZERO
_.§EEK ~'IART SIQ.P
XXXXXX XXXXXX XXXXXX

is typed to allow verification of control record data and the computer is halted. (Note
that the second form of the message indicates that sector data positions are to be changed
to zeros.) Six X's indicate the respective seek, start, and stop addresses. Depressing
the Start key causes execution of the routine. The routine seeks the disk sector address
specified in columns 7-12. The address specified in columns 21-26 is written in that
sector; the address is then incremented by one and written in the next sector. Writing
continues' in this manner until the incremented address is equal to the final address (col
umns 27-32) and the final address has been written.

If the program is unable to find the starting address (columns 7-12), or any address
that should be on the specified track in disk storage, an error message ER SK XXXXXX
will be typed. XXXXXX is the disk address on the last sector examined when no equal
comparison could be made with the sector addresses that should be on the track that has
been read. In addition, the 20 sector addresses from the selected track will be typed
and the program will halt. When the Start key is depressed, control is returned to the
Monitor Control Record Analyzer routine to read the next Monitor Control record.

ALTER SECTOR ROUTINE

This routine allows the user to alter the data in any selected sector of disk storage.
The sector data to be changed is typed out. All, or selected portions of the sector may
then be updated. After the changes have been made, the old and the new data are typed
out for visual comparison and verification. If the changes are satisfactory, the new
data is stored on the disk pack. As many sectors as desired may be altered each time
this routine is used. Control is tranferred to the Alter Sector routine when the control
card is read.

Control Card (DALTR).

Columns 1 Asterisk (*)
2-6 Code word, DALTR.

After the control card is read, the message

SECTOR

is typed and the program halts.
The operator types in the 6-digit address of the sector to be altered and depresses

the Release and Start key. If more or less than six digits are typed, the message

SECTOR ADDRESS ILLEGAL,
START TO RE-ENTER *DALTR

is typed and the machine halts. Pushing the Start key will restart all operations on the
given sector. The routine reads the sector and types it out in the following format.

1ST. HALF xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx ORIGI NAl

2ND. HALF xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx ORIGI NAl

Note that the two halves of the sector are identified by the phrases, "1ST HALF" and
"2ND HALF," respectively. (Typewriter margins must be at least 70 spaces apart to
permit this format.)

Each group of ten characters is assigned a section number by the routine. The first
five groups are assigned numbers 01-05; the last five groups are assigned numbers 06-10.
After the sector data is typed out, the routine requests the number of the section in which
the fir st change will be made.

The message typed out is shown below:

SECTION

The user now types in one 2-digit section number between 01 and 10. After depress
ing the Release and Start key, the message

SECTION NUMBER ILLEGAL,
START TO RE-ENTER *DALTR

Disk Utility Program

93

94

is typed if the section number is greater than 10. If the section number is correct (be
tween 01 and 10), the selected section is typed out for verification as shown below.

XXXXXXXXXX TYPE CHANGE

The changes can now be entered directly under the typed section. If a particular
character does not require changing, an "X" may be typed under that character, or the
character itself may be retyped. Although only one section is typed out for anyone se
lec~ion, succeeding sections may be altered by continuing to type changes. Spacing is
optlonal except that the number of characters (including spaces) cannot exceed 100.
Spaces (alpha blanks) will not become part of the sector data. For example, assume
that section 3 is selected and is typed out as shown below:

3574246798

The operator desires to make some changes in section 3 and section 4. For this ex
ample, the typewritten page may look like this:

3574246798
XXX7625X82

TYPE CHANGE
75234XX479

Typing may be terminated as soon as the last digit to be changed is typed; that is, if the
fifth digit in section 4 (previous example) is the last change, the last five digits of sec
tion 4 do not have to be typed in.

If the user does not type changes but simply depresses the Release and Start key,
the message

CORRECTIONS HAVE NOT BEEN ENTERED

is typed and the computer will halt on a read alphameric instruction to allow the user to
enter the changes.

If more digits are entered than the sector can contain, the message

TYPE-IN EXCEEDS SECTOR LENGTH, START

is typed. Depressing the Start key allows the operator to begin again and enter a new
sector address. Spaces are optional and do not become part of the sector data; however,
they are counted toward the maximum allowable number of characters which is 100.

After all changes have been made, the operator depresses the Release and Start key.
The routine then types out the original sector data along with the changes that were typed
in. The output appears as shown below:

1ST. HAlf 1234567890 1234567890 3574246798 8654213212 0987654321 ORIGINAL

1ST. HAlf 1234567890 1234567890 3577625782 7523413479 0987654321 CORRECTED

2ND. HAlf 7265417623 0176421432 8543217290 5482797654 8243176521 ORIGINAL

2ND. HAlf 7265417623 0176421432 8543417290 5482797654 8243176521 CORRECTED

At this point the routine will again type the word

SECTION

If other changes must be made, the operator enters a new (or possibly the same)
section number and depresses the Release and Start key. The Section change routine
is now repeated. When all the changes prove satisfactory, the operator enters a record
mark instead of a section number and depresses the Release and Start key. The routine
then writes the updated sector back on the disk pack and types the message

DISK SECTOR DDDDDD CORRECTED

DDDDDD is the sector address that was selected to be changed. The routine then branches
to the part of the routine that types the message "SECTOR" to allow the user to choose
another sector address and change another sector.

When all desired sectors have been altered, this routine is concluded by typing a rec
ord mark instead of a sector address after the word Sector has been typed out. This will
cause control to be returned to the Supervisor Program, which will read another Monitor
control statement.

Operating Notes

When the routine is ready to accept the new data (after the section number is typed in) ,
it positions the console typewriter in the" alphameric shift" mode. Therefore, typing
numerical data requires the operator to manually shift into numerical mode.

Flagged digits 1-9 may be inserted by typing the corresponding alphabetic letters
J -R. Flagged zeros, numeric blanks, flagged record marks, and flagged group marks
may be entered by using minus (-) key, @ key, W key, and G key, respectively. Alpha
blanks do not become a part of the sector data.

DISK-TO-OUTPUT ROUTINE

The Disk-to-Output routine transfers data from selected portions of disk storage to cards
paper tape, or the typewriter. This routine enables the user to preserve original record~
before t~ey ar~ update~ or changed, thus providing an audit trail. The card or paper tape
?utput wIll be In numerIcal form and will contain record marks and group marks. Numer
lCal blanks result in blank card columns.

Disk Utility Program

95

96

This routine can be used to obtain any of the following items of output as directed by
the user.

1. Program or data identified by name.
2. Program or data identified by DIM number.
3. Data between sector limits.
4. DIM table.
5. EqUivalence table.
6. Availability list (extracted from Sequential Program table).
7. Sequential Program table.

The routine is executed whenever a DDUMP control card is read by the Disk Utility pro
gram or wherever a FORTRAN compilation or FEAP assembly requires punching into
cards or paper tape.

The Disk-to-Output routine can be used to transmit any number of disk sectors to
cards, paper tape, or typewriter. Transmission will start with the first sector specified
in a DIM entry or with a beginning sector specified by the user. Transmission will end
when the sector count in the DIM entry reaches zero or when a specified ending sector
is found. The output following compilation or assembly is terminated by a "9's" trailer
record. The trailer record format is five 9's followed by a record mark, 69 zeros and
a sequence number. This record always follows all FEAP and FORTRAN object programs.
During execution of the Disk-to-Output routine, resulting from DUP control records,
error messages 01, 04, 06, or 20 may be typed (see ERROR DETECTION AND COR
RECTION).

The control card used to transfer control to the Disk-to-Output routine is punched
in the following format.

Control Card (DDUMP)

Columns 1
2-6
7-12

13-16

17

18

Asterisk (*).
Code word, DDUMP.
Alphabetic name of program or data to be punched or
typed (same name that appears in Equivalence table).
DIM entry number of programs to be punched or typed.
(If the letter M is present in column 18, either a name
or DIM entry number must be present, but both need not
be present.)
Output unit,

C card
P = paper tape
T = typewriter

Identify output
I Disk Identification Map (DIM)
E Equivalence table
A Availability entries from the sequential program

table from the disk module specified by column 19
(typed output only).

S Entire sequential program table from the disk module
specified by column 19.

M Program identified by columns 7-12 or 13-16 of
this card.

L The sectors between limits as specified by columns
21-26 and 27-32 of this card.

Output Format

Card

19

21-26
27-32
76-80

Module number (0,1,2, or 3) to be used if output options S
or A are exercised (see column 18 above).
Beginning disk storage address of output (lower limit).
Ending disk storage address of output (upper limit).
Beginning sequence number (less one) of output deck. If
no number is specified, the first card will have a sequence
number of 00001.

Each 300 positions of disk storage (three sectors) will be punched into four successive
cards; 75 columns of disk data followed by a five-column sequence number in each card.
When 2 sectors are to be outputted, 3 cards are punched. When 1 sector is outputted, 2
cards are punched. Therefore, all disk data is punched from 1 or 2 sector outputs.

A special trailer card containing 9's in columns 1-5, a record mark in column 6,
zeros in columns 7 -75, and a sequence number in columns 76-80 will be punched follow
ing the last output card. This record is used to terminate loading when the output is
reloaded by the Load Programs routine or Replace Programs routine. If the output deck
is reloaded by the Load Programs routine or Replace Programs routine, the trailer card
must remain behind the deck for control purposes. The 9's trailer record will load into
the work cylinders along with the balance of the data; however, the trailer record will
not require extra disk storage positions if the data is moved to another disk location. If
the output is a program to be reloaded by the loader routine, the entire program must be
outputted. The System Output Loader routine requires an entire program, with all of its
indicator codes, in order to operate.

When either the DIM table or Equivalence table is punched out, they will be in a
loadable format; i. e. , alphameric characters will be in 2-position alphameric coding
form.

Paper Tape

This output will be in standard loadable format, i. e., it may be reloaded to disk storage
by the Replace Programs routine. The output will be identical to the card format de
scribed above, except that the sequence number will not be punched with paper tape rec
ords. The last output sector will be followed by a trailer record for control in the event
that the output is reloaded into disk storage.

Typewriter

With the exception of the DIM table, Availability list, and Equivalence table, all type
writer output will be in a standard format. Each 100-character sector will be typed on
two lines as shown below.

,1

100 I

,1

100,

,1

100 I

Disk Utility Program

97

98

DIM Table

The output of the DIM table is in one of two formats. If Console Switch 3 is turned on
at any time the shorter format is typed. The complete DIM entry is typed if Switch 3
is turned off. The user may change the format at will during the time the output is being
printed.

xxxx Short format

Complete format XXxx ~lI..<lI..<"""lI..<>o..LlI..<""""'''''''''''''-'''''''''''"'''''J.""",,,",,,'''''''"'''''''''''

Unused (available) DIM entries are not printed.

Availability Lists. Availability lists are typed as follows:

AAAAA
BBBBB CCCCC
BBBBB CCCCC
BBBBB CCCCC

AAAAA is the disk pack identification number. BBBBB is the starting disk address of
an unused area of storage. CCCCC is the ending disk address for the unused area.

These entries, one per line, are extracted from the Sequential Program table by
the Disk-to-Output routine.

Equivalence Table. Equivalence table entries are typed in the following format with
five entries per line.

- -
NNNNNN 1111 NNNNNN 1111 NNNNNN "" NNNNNN 1111 NNNNNN 1111

- - - - -
NNNNNN 1111 NNNNNN "" NNNNNN 1111 NNNNNN 1111 NNNNNN 1111

NNNNNN is the alphameric name. IllI is the DIM entry number. Available FORTRAN
library entries will appear as RRRRRR 9999 in place of NNNNNN TIn .

LOAD PROGRAMS ROUTINE

The Load Programs routine is used initially to load FEAP or FORTRAN object programs
from the work cylinders or from cards or paper tape into disk storage. Overlap of
occupied areas of disk storage is prevented by the routine. Programs cannot be loaded
in the work cylinders with this routine. Programs will be loaded into areas of disk
storage selected by the routine itself, if the user does not specify a storage area prefer
ence. If the routine selects the storage area, it will always store the program on a
single cylinder, without overlapping cylinders, unless it is longer than an entire cylinder.
If the user selects the storage area, it will be stored in the selected area regardless of
cylinder overlap conditions.

This routine provides the following program loading options.
1. A name may be assigned to the program and placed in the Equivalence table.
2. A DIM entry may be assigned to the program.
3. The disk storage location can be specified and permanently assigned (fixed).
4. An entry address (execution address) can be assigned in the DIM entry to the

program.
5. Read-only flags can be written in the sector addresses.
6. The disk storage location for the program can be specified by cylinder(s) without

causing permanent assignment. Thus, several associated programs can be as
signed to the same cylinder or group of cylinders by the user without actually
specifying sector addresses.

7. Programs in either core-image or system output formats can be loaded; and
programs in system output format can be converted to core image while loading.

8. Process Control programs are loaded as mainline core loads or interrupt core
loads.

9. Mainline and interrupt core loads are automatically loaded in core image format
and permanently assigned.

10. Core Load maps and status tables are assembled from data selected by DUP and
data supplied in the control cards, and are loaded to disk storage with the core
load.

11. A library subroutine transfer vector area, and an interrupt subprogram trans
fer vector area are loaded automatically with mainline core loads.

12. An Interrupt Subprogram Identification Map entry is assembled automatically
when interrupt core loads are loaded. This entry is loaded into the ISIM for
the system.

13. A library subroutine transfer vector area is loaded (if library subroutines are
called) to disk storage automatically as part of the Interrupt Core Load.

It is possible, by exerciSing option 3, to permanently aSSign the sectors where the
program is to be loaded in disk storage. This capability is provided in this routine only.
All process core loads are automatically permanently assigned. When using this option,
any programs already in the specified load area, but not permanently assigned, will be
moved. The overlapped program is moved to the area which immediately follows the
new program. If this in turn would result in additional overlapping of other programs,
the process of moving programs continues until available space is found. If any pro
gram, in this move, is a permanently assigned program, or contains read-only flags
in its sector addresses, no programs are moved and the new program will not be loaded.

A program is considered immovable if it is either permanently assigned by the Load
Programs routine or if it contains read-only flags in any of its sector addresses. Per
manently assigned programs can be

1. Deleted by the Delete Programs routine.
2. Copied by the Disk-to-Disk routine.
3. Changed by the Alter Sector routine, except sectors containing read-only flags.
4. Dumped into card or paper tape or printed on the typewriter.
5. Read for any purpose with normal read commands.
6. Changed or overlayed (except sectors containing read-only flags).
A permanently assigned program will not be moved in disk storage by the Disk Utility

program.
Programs being loaded can be "file protected" by writing read-only flags over the

disk addresses of the storage sectors. All loading options are indicated by the control
card.

Disk Utility Program

99

100

Control Card (DLOAD).

Columns 1
2-6
7-12

17-20

21-26

27-32

33-38

39-43

44-48

49

50

51

52-54

55·-57

Asterisk (*)
Code word, DLOAD.
Alphabetic name (left-justified) of program to be loaded
into disk storage.
A DIM entry number to be given the program to be loaded.
(This number will not be used by the routine if it is al
ready assigned to another program)
Beginning disk sector address in the work cylinders that
contains the program to be permanently loaded. The first
digit of the sector address selected must be 1,3,5, or 7.
(This field is not used if column 58 contains an I or an M.)
Ending disk address in the work cylinders that contains
the program to be permanently loaded. The first digit of
the sector address selected must be 1, 3, 5, or 7. (This
field is not used if column 58 contains an I or an M.)
Assigned disk storage address of the program to be loaded.
(If this address is included, the program will be perma
nently assigned to the given address.) The first digit of
the sector address selected must be 1, 3, 5, or 7. (This
field is not used if column 58 contains an I or an M.)
Core storage address for a program that is placed in disk
storage in core-image format. This address will be placed
in the CCCCC portion of the associated DIM entry. (This
field is not used if column 58 contains an I or an M.)
Entry address (address of the first instruction to be exe
cuted) for a pro1£'am that is being loaded. This address
is placed in the EEEEE portion of the associated DIM entry.
This address is used for reading programs from disk in
core-image format with the I/O routine. (This field is not
used if column 58 contains an I or an M.)
Input unit

C = card.
P = paper tape.
D = disk storage work cylinders.

Letter I, if program to be loaded in in Core Image format.
S, if program to be loaded is in System Output format.
M, if program to be loaded is in System Output for

mat, and it is to be converted to Core Image
format before loading to disk storage.

(This field is not used if column 58 contains an I or an M.)
Letter P, if read-only flags are to be written over disk
addresses of storage sectors; otherwise leave blank. If
the read only option is included when a mainline core load
is being loaded, the MCL Map (first 3 sectors) will not be
protected with read-only flags to permit PSC to change the
map (see PSC).
Beginning cylinder (three digits XYY, where X is the module,
0, 1, 2, or 3, and YY is the cylinder number 00-99) to de
fine lower limit where program can be loaded. (This field
is not used if column 58 contains an I or an M.)
Ending cylinder (three digits XYY, where X is the module
0, 1, 2, or 3, and YY is the cylinder number 00-99) to
define upper limit where program can be loaded. (Note
that both the upper and lower limits will be ignored by the
routine if columns 33-38 of this card are punched. This
field is not used if column 58 contains an I or an M.)

101.1

Form C26-5879-1
Page Added 5/14/65
By TNL N26-Q120

Control Card (DREPL)

Columns 1
2-6
7-12

13-16

Asterisk (*).
Code word, DREPL.
Alphabetic name of program to be loaded.
The DIM entry number which identifies the program to be
loaded if the program is from another assigned disk stor
age area. (The program to be loaded will be deleted from
its original disk storage location.)
The DIM entry number which identifies the program to be
replaced.

58

60

61-62

63-65

66-68 .

69-71

72

76-80

Code for process core loads.
I is Interrupt Core Load
M is Mainline Core Load

Form C26-5879-1

Page Revised 5/14/65
By TNL N26-0120

Interrupt Core Loads will have 777XX placed in the DIlVI
entry (entry address portion), where 777 is a code to in
dicate an interrupt core load, and XX is the indicator num
ber taken from eard columns 61-62. Mainline core loads
will have a code of 888 in the entry address portion of the
DIM entr ies .
Any non-blank (non-special) character, if program to be
loaded is a FORTRAN object program. (This field is not
used if column 58 contains an I or an M.)
Interrupt indicator number. (For Interrupt Core Loads
only.)
Three-digit DIM number of next mainline core load. Col
umn 65 must be flagged if all recorded interrupts are to be
processed before the next core load is executed. (For
Mainline Core Loads only.)
Three-digit DIM number of exception mainline core load.
(For Mainline Core Loads only.)
Three-digit DIM number of restart mainline core load. (For
Mainline Core Loads only.) If no' restart mainline is in
dicated, 000 will be substituted and the user's Alert code
will be interrogated instead of performing the restart.
(See SAC.)
Alert code. (For Mainline Core Loads only. See SAC.)

1 Record error and continue.
o Wait in the interruptible mode.
1 Enter exception core load.

Beginning sequence number (minus one) of the program
being loaded.

REPLACE PROGRAMS ROUTINE

The Replace Programs routine is used to replace programs in disk storage with updated,
changed, or new programs. Programs can be loaded to a disk storage area from cards,
paper tape, or from another assigned disk storage area. In addition to loading disk stored
programs, identified by DIM entries, programs can be loaded from work cylinders.

A program can be given another name in the Equivalence table by reloading the pro
gram over its original assigned disk area using a different name. The program can then
be called by either name since both names are maintained in the Equivalence table.

With this routine, it is possible to load a program to itself adding read-only flags
to the disk addresses. A permanently assigned program in disk storage calUlot be re
placed by this routine. To replace a permanent program, (1) delete the program with
the Delete Programs routine and, (2) load the replacement program with the Load Pro
grams routine.

The format of the control card for this routine follows. All fields are optional with
the exception of columns 1-6, 17-20, and 49.

Disk Utility Program
101

102

21-26

27-32

39-43

44-48

49

50

51

60

DISK-TO-DISK ROUTINE

Beginning disk sector address if the program to be loaded
is in the work cylinders. The first digit of the sector ad
dress selected must be 1, 3, 5, or 7.
Ending disk sector address if the program to be loaded is
in the work cylinders. The first digit of the sector address
selected must be 1, 3, 5, or 7.
Core storage address for a program that is to be placed in
disk storage in core-image format. This address will be
placed in the CCCCC portion of the associated DIM entry.
Entry address (address of the first instruction to be exe
cuted) for a program that is being loaded. This address is
placed in the EEEEE portion of the associated DIM entry.
Input unit

C = card.
P = paper tape.
D = disk storage.

Letter I, if program to be loaded is in Core Image format.
S, if the program to be loaded is in the System Out

put format.
M, if program to be loaded is in System Output for

mat, and it is to be converted to core image for
mat before loading to disk storage.

Letter P, if read-only flags are to be written on disk ad-
dresses of storage sectors; otherwise leave blank.

Any'non-blank, alphameric character, if program to be
loaded is a FORTRAN or SPS object program which requires
subroutines.
Beginning sequence number (minus one) of the program
being loaded.

This routine can be used to copy data or programs in disk storage to any available (un
occupied) disk storage area including the work cylinders. A program to be copied should
be specified by a DIM entry, an alphabetic name that is in the Equivalence table, or a
sector address given by the user. The program cannot be copied into an area which is
already identified by a DIM entry number, except the work area (DIM entry 0001). Read
only flags may be written with the disk sector addresses of the copy, except in work cyl
inders, at the option of the user. When this routine is used, the DIM table and the
original program remain unchanged. It is not possible to copy a program over a portion
of that same program. It is not possible to copy a program into the work cylinders if that
program exceeds the work cylinder limits. Data can be copied from one portion of the
work area to another; however, no check will be made for overlapping of data, within the
work area. If a program or data to be copied is less than 100 sectors, there is no danger
of overlap.

If any read-only flags are encountered in sector addresses within the copy area, an
I/O routine error message is indicated. The program will be copied up to the point of
the error.

The options offered by this routine are identified in the control card that follows.

Control Card (D CO PY)

Columns 1
2-6
7-12

Asterisk (*).
Code word, DCOPY.
Alphabetic name of program to be copied.

Columns 13-16

21-26
27-32

33-38

51

The DIM entry number which identifies the program to be
copied.
Beginning sector address of program or data to be copied.
Ending sector address of program or data to be copied.
(The beginning and ending sectors will always be used
if present.)
Beginning disk sector address of the new copy. This address
must be that of work cylinders or available disk storage.
This field must always be punched.
Letter P, if read-only flags are to be written on disk
sector addresses at the new location of the program; other-
wise leave blank.

The sectors that are to contain the copy must not have read-only flags in the sector
address initially or an error will be indicated and copying will be terminated.

After the data is successfully copied, the message

NNNNN SECTORS OF DATA
COPIED FROM :xXxxxx TO yy-yyyy

is typed, where NNNNN specifies the number of copied sectors and:xXxxxx and YTIYYY
are the beginning sector addresses of the From and To areas, respectively. If the copied
data is written with read-only flags, an additional message is typed:

AND FILE PROTECTED

To move a program or data from one disk area to another, it should be: (1) copied
to the working cylinders from the original area, (2) deleted from the original area, and
(3) loaded to the new area from the working cylinders. This can be accomplished by
using the Disk-to-Disk, Delete Programs, and Load Programs routines, in that order.
Therefore, a *DCOPY control record is used to copy the program into working cylinders;
a *DELET control record is used to make the original storage area available by deleting
its DIM entry and EqUivalence table entry; and a *DLOAD control record is used to load
the program to a specified sector address and to generate the new DIM entry and
Equivalence table entry.

DELETE PROGRAMS ROUTINE

This routine can be used to delete a program and its associated DIM entry, Sequential
Program table entry, Interrupt Subprogram Identification Map entry, and Equivalence
table entry or entries (where the program has more than one name) from disk storage.
'When a program is deleted, read-only flags are removed.

If the program to be deleted is a mainline core load or an interrupt core load, the
DELET program performs an additional function in order to maintain the user's Mainline
Core Load map and Interrupt Subroutine Identification Map.

If an interrupt core load is deleted, the ISIM entry that specifies that core load is
replaced with an IS1M entry that specifies a short program to type the message:

E 20

This message is typea if a new interrupt routine to replace the missing interrupt routine
has not been loaded before an attempt is made to service the interrupt. The interrupt
indicator is turned off by MIC. The same message and action will result if an interrupt
routine was not loaded initially.

If a mainline core load is deleted, the mainline core load map entries of all main
line core loads already on disk are checked. All of the core loads that call the deleted

Disk Utility Program

103

104

mainline core load as the next core load have the actual disk address in their Mainline
Core Load Map. The DELET program will replace the first position of this disk
address for these core loads with a record mark. This code will be used at the time
that Program Schedule Control calls the next core load to cause the disk address por
tion of the Mainline Core Load Map to be filled with the correct disk address from the
DIM map. The DIM number in the Mainline Core Load map is not changed by the
DELET routine, so the user must retai.n the same DIM number for the new next-core
load that was used by the deleted next-core-load. If no new program has been loaded
to the next core load DIM, the Input/Output routine will indicate an illegal DIM entry error
and will transfer to the System Alert Control program to execute the user's error
procedure for the core load that calls the miSSing program.

The format of the control card follows.

Control Card (DELET).

Columns 1
2-6
7-12

13-16

18

Asterisk(*)
Code word, DELET.
Alphabetic name of program to be deleted (same name
that appears in Equivalence table).
DIM entry number of program to be deleted. (Either a
name or DIM must be present, but both are not required.)
Any alphameric character to indicate that a core load is
to be deleted.

DEFINE PARAMETERS ROUTINE

This routine can be used to alter the assignment of work cylinders, DIM table, Equivalence
table, Sequential Program table, or certain system specifications in the System Communi
cations Area. The tables can be enlarged or shortened or relocated as desired. Also,
this routine can be used to indicate that more than one disk storage drive is to be used with
the 1710.

When the size of the DIM table is changed, the Equivalence table will be moved to
immediately follow the DIM table. When redefinition of an area (working cylinders,
DIM table, or Sequential Program table) is attempted, the area must be available; i. e. ,
it must not be occupied by programs with assigned DIM entries. If an area is unavail
able, it will not be redefined and the message

DUP * ERROR 08

will be typed.
The normal assignment of disk storage for the above mentioned tables is as follows.

Description

Work Cylinder
DIM table
Equivalence table
Sequential Program table

Cylinder
Assignment

8-23
24
25(first eighty sectors)
99(second through eighty-first sector)

To make any alterations to these assignments, or to the system specifications, the
user must enter a control card containing the new parameters. Only the parameters to
be changed need be punched. The parameters from a control card are processed from
left to right by the routine. If any parameter is invalid, those parameters to its right
will not be processed. The number of modules in the system must be defined on a
separate card before the work area is redefined to a different module.

The DIM table and the Sequential Program table cannot be moved. The DIM table

can be shorted or lengthened and, in either case, the Equivalence table will automatic
ally be moved so that it is immediately behind the DIM table. The Sequential Program
table cannot exceed 80 sectors in length.

Control Card (D FINE) .

Columns 1
2-6
7-12

14-16

18
20-22

24-26

28-30

45-46

48-49

51

53

57

59-63

Asterisk (*)
Code word, DFINE.
Beginning disk sector address of work cylinders (must be
fir st addres s of a cylinder).
Number of cylinders to be reserved for work cylinders
(11 minimum, 99 maximum).
Number of disk storage drives on system (1-4).
Number of sectors to be reserved for DIM table (35
minimum, 999 maximum).
Number of sectors to be reserved for Equivalence table
(9 minimum, 999 maximum).
Number of sectors reserved for Sequential Program table
(80 sectors maximum).
(Note that the same number of sectors is reserved for each
disk storage drive on the system as defined in column 18.)
Standard length of mantissa (any number 02-08) for FORTRAN
programs (08 when the system is delivered). This value
must be the same for all process control programs.
Standard fixed-point word length (any number 04-10) for
FORTRAN programming system (disk sector positions
47-48 of Communications Area, 04 when the system is
delivered). This value must be the same for all process
control programs. .
Source of Input, other than disk input, for FORTRAN sub
programs (disk sector position 73 of Communications Area;
5 when the system is delivered).

3 = paper tape
5 = card

Core storage capacity of object machine (disk sector po
sition 76 of Communications Area; 1 when the system is
delivered) .

1 = 20,000
3 = 40,000
5 =60,000

FOR TRAN Arithmetic and I/O subroutine set identification
number (disk sector position 83 of Communications Area;
1 when the system is delivered).

1 = disk storage version
2 = core storage version
3 = disk storage version for machines equipped with

the Automatic Floating Point feature.
4 = core storage version for machines equipped with·

the Automatic Floating Point feature.
The core address for the start of mainline core loads. If
it is not an even -hundred address already, the address
will be reduced to the next lower even-hundred core lo
cation. When the system is delivered, this address is 12000.

The number of disk storage drives on the system may be 1, 2, 3, or 4. The Super
visor program and the Disk Utility program will need to know this number in order to
utilize all available disk storage. The system will utilize only the first disk storage drive

Disk Utility Program
105

106

unless additional drive availability is specified by a D FINE control card. Therefore,
it may be necessary for the user to process a D FINE control card immediately after
initially loading the Monitor System. When loading programs and assigning addresses,
the Monitor System will start with the first available sector on the first available disk
drive and proceed sequentially higher to available drives. Also, the user may want to
change some of the other parameters of the system before any actual processing is
initiated. If any errors are found in any data on a DFINE control card, all data to the
left of the data in error will have been processed and data to the right will be ignored.
See Error Detection and Correction for a description of possible DFINE errors.

When the routine is used to enlarge or shorten the tables or to change the number
of disk storage drives for the system, the *DFINE record should be followed by a
:f:f PADS record. After the routine is executed, :f=t= PADS record will halt the
computer to allow the operator to reinitialize the System.

DEFINE DISK PACK LABEL

This routine can be used to initialize a new disk pack by writing the disk pack iden
tification number in the label sectors (first and last sectors of cylinder 99) and the
Sequential Program table in cylinder 99. Also, the five-digit disk address of the
Communications Sector (19663) is written in the last five positions of the first sector
on cylinder 99.

All disk packs used by the Monitor System must be labeled and must contain a
Sequential Program table. The disk pack identification number is written in the first
five positions of the first sector in cylinder 99 and a read-only flag is written over the
corresponding sector address. The same number is also written in the 31st through
35th pOSitions of pOSitions 1-100 of the last sector of the disk pack. This sector
address is changed to 00199 regardless of the addressing scheme used for the remain
der of the disk pack.

Note that it is necessary to initialize the disk pack which contains the FORTRAN
Executive system because the system pack is not automatically initialized when the
system is loaded. Label sectors on a pack which contains the system may be changed
by this routine; however, the Sequential Program table will not be reintialized. The
FORTRAN Executive System disk pack is identified by 04800 in the sector address
portion of DIM entry 3.

The format of the control card follows.

Control Card (DLABL).

Columns 1
2-6
7-11

12

Asterisk (*).
Code word, DLABL.
Disk pack identification number to be aSSigned.
Disk drive number (0, 1, 2, or 3) of the disk drive that
contains the disk pack to be labeled.

Both a disk pack identification number and disk drive number must be given. If
either one is missing, the message

DDP * ERROR 01

is typed and the computer halts without writing label sectors. To correct the error, the
operator may enter a corrected control card in the stacked input. Depressing the Start
key will return control to the Monitor Control Record Analyzer routine to read the next
Monitor Control record in the stacked input.

Only numerical characters may be entered for the disk pack identification number.
If this number is all zeros or any pOSition contains a letter or special character, the
message

DUP * ERROR 10

is typed and the computer halts without writing a label sector. The restart procedure
is the same as that given for ERROR 01.

DEFINE FORTRAN LIBRARY SUBROUTINE NAME

This routine permits the user to assign additional names (synonyms) for the FORTRAN
library subroutines or to assign names to user-written library subroutines. Any user
written library subroutine with more than one entry will require this routine in order to
place the name of the additional entries in the Equivalence table. These names are add
ed to the Equivalence table within the first 50 entries of the system disk pack.

The control card format follows.

Control Card (DFLIB).

Columns 1
2-6
7-12

14-15

Asterisk (*).
Code word, DFLIB.
Name of library subroutine, left-justified.
DIM number. This number was originally specified by the
user when the subroutine was added to the system disk
pack. The abbreviated 2-digit DIM numbers for the six
teen standard library subroutines may be found in the
FORTRAN Library Subroutines table in the FORTRAN
section.

When a name is entered in the Equivalence table, the message

FORTRAN LIB NAME ENTERED NNNNNNfnI

is typed, where NNNNNN is the name specified in columns 7-12 and IIII is the DIM
number specified in columns 14-15 (preceded by two zeros).

Both a Name and DIM entry number must be given. If either is omitted, error
message 01 will be typed.

Error message 10 will be typed for any of the following conditions.
1. The Name is all numbers, its first character is not alphabetic, or it contains

special characters, including nonterminating blanks.
2. Columns 7-15 contain a record mark or group mark in any position or column

13 is not blank.
3. The DIM number is outside the range 10-39 or it contains letters or special

characters.
Error message 54 will be typed if no space is available for the Name within the

first 50 entries of the Equivalence table. Also, the Name itself will be typed.
Error message 51 will be typed if the name is a duplicate of another name in the

Equivalence table. If operator action is required for any of the above messages, refer
to Error Detection and Correction.

ERROR DETECTION AND CORRECTION

In addition to the messages described with the individual Disk Utility routines, other
numbered error messages may be typed. These messages, described here, may be
common to more than one Disk Utility Program as well as FORTRAN output operations
that follow compilation. Table 15 indicates, by message number, the error messages
that may be generated by each routine. A list of the error messages and their cause,
and a list of operator actions for the associated messages follow.

Disk Utility Program
107

108

Table 15. Numbered Error Messages Generated by pisk Utility Routines

ROUTINE

Write Addresses (DWRAD)

Alter Sector (DALTR)

Disk-to-Output (DDUMP)

Lood Programs (DLOAD)

Replace Programs (DREPL)

Disk-to-Disk (DCOPY)

Delete Programs (DELET)

Define Parameters (DFINE)

Define Disk Pack Label (DlABl)

Define FORTRAN library Subroutine
Name (DFlIB)

FORTRAN or SPS Output

Error Message

DUP * ERROR 01
DUP * ERROR 02

DUP * ERROR 03

DUP * ERROR 04

DUP * ERROR 05

DUP * ERROR 06

DUP * ERROR 07

DUP * ERROR 08

DUP * ERROR 10

DUP * ERROR 11

DUP * ERROR 12

DUP * ERROR 13

DUP * ERROR 14

DUP * ERROR 15

DUP * ERROR 16

ERROR MESSAGE NUMBER

I 2 3 4 5 6 7 8 10 1112 1314 1516 7 18 1920 2122 2324 5051 525J ~455 565 ~8 59 6061 62

X

X

X X

X

X

X

X

X

X X

X X X X X

X X X X X X X X

X X X X X X X X X X X

X X X X X X X X

X X X X

X X X X X X

X

X

X X

Cause

Field missing from control card.

X X X X X X X

X X X X

X

X X

X X X X X X X

"TO" DIM entry number specified in DREPL control
card is not in use in DIM table.

X

X X

"TO" DIM entry number, specified in a DREPL control
card refers to permanently assigned program.

"FROM" DIM entry number specified in a DDUMP,
DREPL, or DCOPYcontrol card is not in use in the
DIM table.

Work cylinders illegally specified for program stor
age by DLOAD or DREPL contol card entry.

DIM entry number specified in a DDUMP, DLOAD,
DREPL, DCOPY, or DELET control card is out of
range of DIM table entry capacity.

"FROM" DIM entry number in a DREPL control card
refers to an immovable program.

Insufficient available storage space at location spec
ified by a DLOAD, DREPL, DCOPY, DFINE control
card.

Field in DFLIB, DCOPY or DLABL control card
contains invalid data.

Number of modules specified in DFINE contol card
is greater than 4, or less than 1.

X

Beginning disk sector address of work cylinder, in
DFINE control card, is not first address in cylinder.

Insufficient available storage for specified work
cylinder (DFINE control card).

Number of sectors specified by DFINE control card for
Sequential Program table exceeds 80 sectors.

Sector address is non-numerical in a DWRAD, DDUMP,
DLOAD, DREPL, DCOPY or DELET control record.

Storage loaction specified by a DCOPY control card
would cause program storage to overlap work cylinders
if allowed.

Error Message

DUP * ERROR 17

DUP * ERROR 18

DUP * ERROR 19

DUP * ERROR 20

DUP * ERROR 21

DUP * ERROR 22
DUP * ERROR 23

DUP * ERROR 24

DUP * ERROR 50

DUP * ERROR 51

DUP * ERROR 52

DUP * ERROR 53
AAAAAA

DUP * ERROR 54
AAAAAA

DUP * ERROR.55
CARD SEQUENCE
NNNNN

DUP * ERROR 56

DUP * ERROR 57

DUP * ERROR 58

DUP * ERROR 59

Cause

Starting sector address is greater than ending address for
DWRAD or DCOPY control card.

Sequential Program table is defined as less than required
by the present contents of that table. The Sequential
Program table is full (DLOAD or DREPL control card or
when loading FORTRAN or FEAP output).

Core storage address of a program to be placed in disk
storage in core image format is less than 02302. A blank
address will be treated as 02402. If the program is a
Library function (DIM entries between 10 and 130), the
message will not be indicated.

Name specified by DDUMP, DCOPY or DELET control
card is not used in Equivalence table.

DIM number specified by DELET control card is not in
use.

An attempt to load more than 999 sectors has been made.
An attempt has been made to delete a core load but no digit

was found in column 18.
Cylinder limits specified in *DLOAD control card are

greater than allowed by System parameters.
The interrupt indicator specified in the DLOAD card is not

in the Interrupt Indicator Table. The program is loaded to
disk but the ISIM is not changed.

Name specified is a DLOAD, DREPL, or DFLIB control
card or a FORTRAN or FEAP control card has been re
jected because a duplication name exists in the Equivalence
table.

"TO" DIM entry number specified in DLOAD control card
is in use in DIM table. (The routine will load the program
and assign the DIM entry.)

Name specified in a DLOAD or DREPL control card or a
FORTRAN or FEAP control card has been rejected because
The Equivalence table (with the exception of the first 50
entries) is full. AAAAAA is the rejected name.

Name specified in a DLOAD, DREPL, or a DFLIB control
card or a FORTRAN or FEAP control card has peen rejected
because the first 50 entries of the Equivalence table are full.
AAAAAA is the rejected name.

Sequence error has been found while reading a program to
be loaded to disk storage. NNNNN is the sequence number
of the card that is out of sequence. Only cards with an eleven
punch over the leftmost position of the sequence number
(column 76) are sequence checked; therefore, patch cards
are excluded from the check.

DIM number supplied in FORTRAN or FEAP control card
is in use in DIM table, and N arne specified in the same
card has a different DIM number in the Equivalence table.

DIM number supplied in FORTRAN or FEAP control card
is in use in DIM table, and N arne specified in the same
card has no matching name in the Equivalence table.

"TO" DIM entry number specified in FORTRAN or FEAP
control card refers to a permanently assigned program
storage area.

DIM entry number specified in a FORTRAN or FEAP
control card is out of range of DIM table entry capacity.

Disk Utility Program
109

110

DUP * ERROR 60

DUP * ERROR 61
DUP * ERROR 62

Operator Action

Insufficient available storage space at location
specified by FORTRAN or FEAP control card.

DIM table full.
Equivalence table DIM entry (specified in DELET

control card) is not in use.

Messages 1-24. After the message is typed, the computer halts. The operator
may then enter a cqrrected control record. Depressing the Start key returns
control to the Monitor Control Record Analyzer routine to read the next Monitor
Control record.
Message 51. No operator action required. The routine continues and loads the
program without placing the name in the Equivalence table.
Message 52. The routine continues and assigns a DIM entry and loads the program.
Message 53, 54. No operator action required. The routine continues and loads the
program without placing a name in the Equivalence table.
Message 55. After the message is typed, the computer halts. To restart:

1. Remove the cards from the hopper.
2. Depress the Nonprocess Runout key.
3. Remove the last two cards from the stacker.
4. Arrange cards from steps 1 and 3 in correct sequence and place them in the

hopper.
5. Depress the Reader Start key. Note that paper tape contains no sequence

number, therefore, it can never generate this type of error.
Message 56. No operator action required. The routine continues and loads the
program, generating a DIM entry, without placing the name in the Equivalence table.
Message 57. No operator action required. The routine continues and loads the
program, generating a DIM entry, and places the name in the Equivalence table.
Messages 58. 59. No operator action required. The routine continues generating a
DIM entry and loading the program to disk storage.
Messages 60, 61. After the message types, the computer halts without loading the
programs, providing no other output is requested. (If a FORTRAN or FEAP control
record is included with the source data to indicate that the compiled or assembled
object program is to be punched, the program is outputted without halting the
computer~) To correct the error, a DLOAD, DREPL, or DDUMP Monitor Control
record can be entered in the stacked input to load the program to a different location
from the work cylinders or to output the program. Depressing the Start key returns
control to the Monitor Control Record Analyzer routine to read the next Monitor
Control record.

FORTRAN AND FEAP OUTPUT

The Disk Utility program contains the output routines for both FORTRAN and FEAP.
These routines load obj ect programs to disk storage and punch them out into cards
or paper tape.

Following compilation or assembly, the message

DK LOADED AAAAAA lIIl DnDDDD
SSS CCCCC EEEEE *

is always typed to inform the user about the assigned DIM entry. AAAAAA is the
supplied name, nll is the DIM entry number, and the remainder of the message is
the DIM entry.

For programs being loaded into disk storage, the user may select the DIM entry

and/or name. Names and DIM numbers are supplied in FORTRAN (*LDISK) or
FEAP (*NAME, *ID NUMBER) control records.

Processing of the Equivalence table and DIM table and the actual loading is
dependent upon whether the user supplies a Name and DIM number, Name only,
or DIM number only.

Name and number supplied by user.
1. If DIM entry is in use in DIM table.

a. and Name is already in Equivalence table.
1) If Name in table references number supplied, replace old

program with new program.
2) If Name in table references another number, type error

message 56, and load program with available DIM entry
number and no Name.

b. and Name is not in Equivalence table, type error message 57 and load
new program with available DIM entry number and add Name in
Equivalence table.

2. If DIM entry is not in use in DIM table.
a. and Name is already in Equivalence table, type error message 51 and

load program with assigned DIM entry number without assigning Name.
b. and Name is not in Equivalence table, load program and place Name in

Equivalence table.
N arne only supplied by user.
1. If an identical Name is in the Equivalence table, the program is loaded

without the supplied name (error 51 will be indicated).
2. If an identical Name is not in the Equivalence table, the object program is

loaded, an available DIM entry is assigned, and the name is added to the
Equivalence table.

DIM entry number only supplied by user.
1. Program is loaded. If number was in use, object program replaces old

programs. Names referencing the old program are deleted from the
Equivalence table.

Disk Utility Program 111

112

FORTRAN EXECUTIVE ASSEMBLY PROGRAM

The FORTRAN Executive Assembly Program (FEAP) is a disk-oriented symbolic
assembly program designed to simplify the preparation of symbolic programs for use
with the FORTRAN Executive System. It is similar to the 1620 SPS II-D program
described in the IBM 1620 Monitor I System Reference Manual (Form C26-5739). The
differences include additional mnemonics for the 1620 Model 2, index registers and
binary capabilities features, and new control records which facilitate coordination of
symbolic and FORTRAN programs. Only the operating procedures and the differences
between 1620 SPS II-D and 1710 FEAP are described in this section. Appendix B contains
a complete listing of all statements and mnemonics available for use with FEAP.

The FEAP program can be called for execution using a Monitor SPS or SPSX control
record, however, if it is used on a 1710 Control System, the computer must be operated
in the noninterruptible mode.

There are no SPS subroutines (FSQR, FEX, FA, FM, etc. ,) available with FEAP.
However, the user does have access to the FORTRAN library subroutines and arithmetic
and I/O routines when programming for use with FORTRAN. In addition, by using the
FEAP language, the user can write subroutines and add them to the FORTRAN library.
The procedures to follow, as well as programming notes, are given in this section under
Subroutines.

LANGUAGE

All SPS language specifications described in the 1620 Monitor I System Reference Manual
are valid for use in the FORTRAN Executive Assembly Program. Table 16 lists the
mnemonics for the 1620 Model 2, Index Register feature, and Binary Capabilities feature.
In addition, two new declarative operations have been added and are described in the
following paragraphs.

DSCI - Define Scan Image

The DSCI statement is used to set up an input area for the reading of High-Level Analog
Input points. The statement must have at least two operands; the first designates the
core storage address where the scan operation is to begin (if this operand is omitted,
the processor will assign the next available core storage location); the second and
succeeding operands define the addresses (00-19) of the multiplexer channels. All
operands may be actual or symbolic.

For each multiplexer address defined in the statement, the processor generates a
I-digit code plus four zeros. Addresses 00-09 will generate the codes 0-9; addresses
10-19 will generate the codes 0-9. Thus, the assembled result of a DSCI statement is
a constant equal in length to 5N plus 9=, where N is the number of multiplexer addresses
defined in the statement.

Example:

LABEL DSCI 15000, 01, 02, 19, 04, 17

This statement will generate the following constant:

10000200009000040000700009=

t
Location 15000

Table 16. Mnemonics for 1620 Model 2 Index Registers, and Binary Capabilities Features

Mnemonic Description Assembled Instruction

BKTY Backspace (typewriter) 34 xxxxx xOlx3

BS Branch and Select 60 xxxxx xxxxx

BSIA Branch and Select Indirect Addressing 60 xxxxx xxxx9

BSNI Branch and Select No Indirect Addressing 60 xxxxx xxxx8

TRNM Transmit Record, No Record Mark 30 xxxxx xxxxx

BNG Branch No Group Mark (with 1311 Disk Drive Unit) 55 xxxxx xxxxx

IXTY Index (typewriter) 34 xxxxx xOlx4

BANS Branch Band A Not Selected 47 xxxxx x31xx

BBNS Branch Band B Not Selected 47 xxxxx x32xx

BBAS Branch Band A Selected 46 xxxxx x31xx

BBBS Branch Band B Selected 46 xxxxx x32xx

BEBS Branch Either Band Selected 47 xxxxx x30xx

BNBS Branch Neither Band Selected 46 xxxxx x30xx

BCX Branch Conditionally; Modify Index Register 63 xxxxx xxxxx

BCXM Branch Conditionally, Modify Index Register Immediate 64 xxxxx xxxxx

BLX Branch and Load Index Register 65 xxxxx xxxxx

BLXM Branch and Load Index Register Immediate 66 xxxxx xxxxx

BSBA Branch and Select Band A 60 xxxxx xxxxl

BSBB Branch and Select Band B 60 xxxxx xxxx2

BSNX Branch and Select No Index Register 60 xxxxx xxxxO

BSX Branch and Store Index Register 67 xxxxx xxxxx

BX Branch and Modify Index Register 61 xxxxx xxxxx

BXM Branch and Modify Index Register Immediate 62 xxxxx xxxxx

MA Move Address 70 xxxxx xxx xx

ANDF AND to Field 93 xxxxx xxxxx

BBT Branch on Bit 90 xxxxx dxxxx

BMK Branch on Mask 91 xxxxx dxxxx

CPLF Complement Octal Field 94 xxxxx xxx xx

DTO Decimal to Octal Conversion 97 xxxxx xxxxx

EORF Exc lusive OR to Field 95 xxxxx xxxxx

ORF OR to Field 92.xxxxx xxx xx

OTD Octal to Decimal Conversion 96 xxxxx xxxxx

RBPT Read Binary Paper Tape 37 xxxxx x33xx

WBPT Write Binary Paper Tape 39 xxxxx x32xx

d = 0 operand for BBT and BMK

FORTRAN Executive Assembly Program
113

114

When a Scan Synchronized or Scan Free instruction is executed, the four zeros for
each address are replaced by the converted analog signal.

DFLC - Define Floating Constant

The DFLC statement is used to enter a floating-point constant into the object program.
The label is equivalent to the low-order address of the constant.

The DFLC statement contains three operands. The first operand is the mantissa length.
This operand may be actual or symbolic, but any symbols us ed must have been previously
defined. If the length is omitted, the mantissa length defined as ff in a MAIN or SUER
statement is used. If a MAIN or SUER statement was not used, ffis taken from the
System Communications Sector. If an attempt is made to specifya length greater than
28, or less than 2, an error message is typed, and the length is set to 8. The maximum
mantissa length is 8 for programs used with the FORTRAN Executive System.

The second operand is the floating-point constant. The constant may be in either
of two forms:

1. A number consisting of 1 to any number of decimal digits with a decimal point
at the beginning, at the end, or between two digits. A preceding plus sign is
optional for positive numbers. Zeros to the left of the decimal point are per
missible. If the number of digits in the constant exceeds the size of the man
tissa, the low order digits of the constant are truncated.

Examples:

17.
5.0
-.000003
0.0

2. An integral decimal exponent of one or two digits preceded by an E (or E and
sign) may follow a floating-point constant. The magnitude thus expressed must
be between the limits of 10-100 and 1099 , or must be zero.

Examples:

5.0E3
5.063E-5
0.lE-99

Blanks are ignored in either type of constant.

The third operand is the assigned address. The address may be omitted in
which case the processor assigns the next available locations.

Example:

LABEL DFLC 5, 148.00, ADDR, COMMENTS

FORTRAN-Oriented Statements

To facilitate the coordination of Symbolic programs and FORTRAN programs, five new
statements are included in the FORTRAN Executive Assembly program.

Invalid unless
MAIN or
SUBR is used

MAIN

Mnemonic

MAIN

SUBR

{

LIBF

COMN

CALL

Purpose

Defines a symbolic mainline program

Defines a symbolic subprogram

Calls a FORTRAN Library subroutine

Defines a work storage area

Calls a FORTRAN subprogram

A MAIN statement identifies a symbolic program that is to be used as the mainline
program in the FORTRAN Executive System. This statement must be the first statement
of the FEAP source program; that is, it must immediately follow the SPS Monitor control
record in the assembly operation. The format of the statement is:

Mnemonic Operands

MAIN

Nl and N2 are identical to the parameters used in the FORTRAN DEFINE DISK statement
described in the FORTRAN section. F and K are the desired floating-point mantissa and
fixed-point word lengths, respectively. If F and K are omitted, the system standards
are used.

SUBR

An SUBR statement identifies a symbolic subprogram that is to be used with the FORTRAN
Executive System. This statement must be the first statement following the SPS Monitor
control record. The format of the statement is:

Label Mnemonic Operands

NAME SUBR F,K

F and K are the desired floating-point mantissa length and fixed-point word length. This
statement overrides any name assigned by an *NAME aaaaaa control record.

LIBF

An LIBF statement is used wherever a FORTRAN Library subroutine is desired in the
FEAP program. The format of the statement is:

Mnemonic Operands

LIBF FmlCtion name, Argument

The Function Name is the symbolic name of a FORTRAN Library subroutine. The
subroutines and their names are:

FORTRAN Executive Assembly Program
115

116

Subroutine

Logarithm (Natural)
Exponential
Cosine
Sine
Arctangent
Square Root
Absolute
Disk Write
Disk Read
Disk Read or Write List
Disk Read or Write Array
Disk Read or Write Complete
Subscript 1 dimension
Subscript 2 dimension
Subs cript 3 dimension

LOOF
EXPF
COSF
SINF
ATANF
SQRTF
ABSF
RECORD
FETCH
DKLIST
DKARAY
DKEND
ENTSCI
ENTSC2
ENTSC3

The absolute value function is a library subroutine that is not relocatable. It is
loaded into core along with the arithmetic subroutines.

COMN

This statement is used to define the size. of a block of core storage to be used as a work
area. The format of the statement is:

Label Mnemonic Operands

WORK COMN A, B,C

A, B, and C are the three dimensions of an array. Any operands that are omitted are
assumed by the program to be one.

The amount of storage that is reserved equals A *B* C* (f + 2) where f equals the
mantissa length defined in the MAIN or SUBR statement. If the first letter of the label
is I, J, K, L, M, or N, denoting fixed-point mode, the amount of storage reserved is
equal to A*B*C* (k) where k is the fixed-point word length defined in the MAIN or SUBR
statement.

The location of the reserved area is at the high end of core storage. For example,
if 20,000 positions of core storage are available for execution of the program, then the
area would extend from location 19999 downward. If more than one area is defined (via
subsequent COMN statements), the second, third, etc. , areas will begin in the first
location following the preceding area.

The label of the statement refers to the units position of the first element in the
array, that is, the element with the lowest core address.

Notice that the use of this statement corresponds to the use of a DIMENSION and
a COMMON statement in FORTRAN. Thus, the same work area can be defined and used
in both a FORTRAN mainline program and a related FEAP subprogram.

CALL

The CALL statement allows FORTRAN subprograms to be called from a FEAP program.
The format of the statement is:

Mnemonic Operands

CALL NAME, A, B, ... N

NAME is the name of the subprogram being called, and A, B, ... N are arguments.
The arguments must be in symbolic form, and must be defined in the FEAP program.
A typical call might be:

CALL CO, N250

N250 DC K, 250

CO is the name of a Contact Operate subprogram and 250 is the number of a contact
to be closed. Note that the 250 is written symbolically as N250 and later defined as a
constant. K is the fixed-point word length and is also specified in the MAIN or SUBR
statement.

The instructions generated in-line are BTM * +6, *+11, 67 and DSA PI the first
time a particular subprogram is called. The BTM instruction generated in-line on all
successive calls to the same subprogram will have a P address which specifies the low
order (units) position of the P address of the BTM that was used in the first call. At
the end of the FEAP program output, the name of each subprogram called and the
address of the low-orde:r position of the P address of the first BTM generated for the
subprogram are outputted. At the time that the FORTRAN loader gets the subprogram
and loads it, the actual address of the subprogram called is placed in the P operand of the
first BTM instruction generated for each different subprogram called. The names and
address are then overloaded by the next routine to be loaded.

CALLING EXECUTIVE CONTROL PROORAMS

All the Executive control programs that can be called using the FORTRAN language can
be called also from FEAP-written FORTRAN routines. Four of these require an addi
tional parameter not required when writing in FORTRAN, three require different entry
addresses when called from interrupt and from noninterrupt routines, and two others
can be called in the same way that FORTRAN requires, but the function desired can be
more efficiently performed using a single FEAP instruction. In addition, the user can
utilize the SIOC output printer to print DMES formatted messages but must observe a
slightly different convention with respect to SIOC formatting. -

The entry points for PSC, ADC, AO, SIOC, and DIAG are in the Executive Transfer
Vector (ETV). The symbols for these entry points must be the addresses in the short
form (subroutine sets 1 and 3) ETV. These addresses are automatically corrected at
load time if the long form is used so the user need not concern himself. ADC, AO, and
SIOC must be entered at different addresses when called from an interrupt and from a
mainline program. Different names should be used for the interrupt calls (i. e. , ADCI,
AOI, and SIOCI). These addresses must be preloaded into the System Symbol Table by
the user unless they are defined with each assembly. In addition, the first four of these
control programs requires an additional identification parameter that is automatically
generated when writing in FORTRAN language. This parameter must be placed before
any other parameters for the calls that require it. A sample of each call of this type
will illustrate the way the call is written and also show the content of the parameter for
each call.

FORTRAN Executive Assembly Program
117

118

IDPSC
IDOPT
J

IDADC
JNO
MFRST
I

lDAO
lFROl
LSPP
lSLEW

IDSlOC
IDLlT

CALL PSC, IDPSC, IDOPT, J

DC
DC
DC

K, 3" EXTRA PARAM CONTENTS!
K, 2
K, 678

CALL ADC, IDADC, JNO, MFRST, I

DC
DC
DC
DSB

K, 2" EXTRA PARAM CONTENTS
K, 10
K, 110
K, 10

CALL AO, IDAO, IFROl, LSPP, lSLEW

DC
DC
DC
DC

K, 1" EXTRA PARAM CONTENTS
K, 1
K,68
K,5

CALL SlOC, IDSIOC, IDLlT

DC
DC

K, 0" EXTRA PARAM CONTENTS
K, 2171

In each example, the contents of the extra parameter required to identify the routine
has been specified with the remark EXTRA P ARAM CONTENTS.

NOTE: A mask operation must be performed before calling the SlOC, AO, or ADC pro
grams from a recorded interrupt routine. The return to MIC from a FEAP-written
interrupt routine is done using an indirect branch to 03252.

The user may write CALL MASK or CALL UNMASK in FEAP. The output will not
be the same as with FORTRAN, but it will perform the function desired. The output will
be BTM * +6, *+11, 67, and the name of the routine called (MASK or UNMASK) will be
outputted with the address of the *+6 operand. The FORTRAN loader will load the ad
dress of the MASK (or UNMASK) subprogram into the P operand. These subprograms
exist permanently in core and consist of these instructions:

MKSRll

MASK

DC 5, 0
MK
BB2

UNMASK

DC 5, 0
UMKSRI UMK

BB2

To accomplish the function, the user can use an FEAP instruction (MK or UMK) in
the same way it is used in-line when CALL MASK or CALL UNMASK instructions are
given in FORTRAN.

The SIOC output printer call includes (when using FORTRAN) a statement number.
This must be replaced with a label in FEAP language. The user may use the format
feature of the SIOC program or format his own messages at assembly time using the
DMES statement. In the SIOC formatting feature the label must address the position
of storage that is nine core storage positions before the format data to be used by the
SIOC formatting routine.

In addition, a five-digit DC and a three-digit DC must be included preceding the
user's format data to specify the FORTRAN format routine address and twice the num
ber of format characters. These DC's should be as shown below:

DC 5, 4676
DC 3, XXX

where XXX is two times the number of characters in the DAC that follows. The DAC
is used to specify the format using the same specifications as are used in the body of
the H-type FORTRAN FORMAT statement described in the SIOC section. Only the por
tion of the FORTRAN FORMAT statement after the first H should be in the DAC.

Example:

IDSIOC
IDPRT
NO
I

LAB
NUMF

CALL SIOC, IDSIOC, IDPRT, NUMF, NO, I

DC
DC
DC
DC
DC
DC
DAC
DS

K, 0
K, 072
K, 1
K, 1234
5, 04676
3, 012
6, 16, (R)
, LAB -10

This statement causes the contents of I to be printed with two spaces preceding,
i. e., bb1234. The K in the above example is the value of the fixed-point word length.

NOTE: If no variables are to be printed with a given call to SIOC, the DC that is labeled
NO must contain a constant of zero and the list must be empty (i. e. , NO must be the last
parameter).

When messages are not to be formatted by SIOC (i. e. , are written using DMES) ,
the user must include a three-digit sector count of the message to be printed immedi
ately before the DMES statement. This sector count must be calculated by the user.
Messages will automatically begin in the numeric mode and the user must change mode
if alphabetic output is to be printed. Since several DMES statements may be used in
succession to compose one message, user formatted messages may be as long as de
sired provided the message will fit in the message area on disk (100 sectors initially).

Example:

IDSIOC
IDMES
SECNT
LAB

CALL SIOCI, IDSIOC, IDME S, LAB

DC K, 0
DC K, 0172
DC 3, 001
DMES " (A) (R) (M) I AM AN ALERT MESSAGE (M) (B) (R) (E)

FORTRAN Executive Assembly Program
119

120

The call sequence above will cause the message

I AM AN ALERT MESSAGE

to be printed on the output printer. IDSIOC specifies that this is an SIOC call. (This
parameter is used only in FEAP-written SIOC calls.) IDMES specifies that the output
printer is to be selected, that the message is already formatted, and that device code
72 is used for the output printer desired. These three specifications are indicated in
the constant with the label IDMES using the 0, the 1, and the 72, resp~ctively. SECNT
is 001 to specify that the message requires one sector. This constant is not used with
alert messages and could have been omitted since alert messages are never stored on
disk before printing. Since the message was formatted at assembly time, the printing
of this alert message will start immediately. .

Since Contact Sense (CALL CS), Contact Operate (CALL CO), time reading (CALL
CLOCK) and 1711 manual entry reading (CALL MEOP) are used like normal FORTRAN
calls, the use of these statements has been covered under the description of subprograms
called in FEAP programs (see CALL Statement in FEAP section).

USING FORTRAN SUBROUTINES

To call a FORTRAN Arithmetic or I/o subroutine, the user executes a BTM instruction
referencing the symbolic address of the subroutine. The symbolic names of the avail
able subroutines are given in Table 5.

The second operand (Q field) should be the address of the A or I referred to in
Table 5. FAC, the FORTRAN accumulator, may be accessed by the subroutines
. TOFAC and. FMFAC; or the user may access FAC directly by writing TF (fixed-point)
or TFL (floating-point) and using the symbol. FAC as the P or Q operand. If the latter
method is used, the testing for overflow and underflow is the user's responsibility. The
names of FORTRAN subroutines and the symbol . F AC are stored in the System Symbol
Table; therefore, any FEAP assembly which refers to these symbols must be preceded
by a *SYSTEM SYMBOL TABLE control record. Although the names of the FORTRAN
110 routines and subs cripting routines are included for completeness, it is not recom
mended that they be called from a FEAP-assembled program unless the user has first
acquired a thorough understanding of them.

Adding Subroutines to the FORTRAN Library

The user may write library subroutines in FEAP language and have them placed in the
FORTRAN library. The subroutine must be assembled using FEAP and may be loaded
to disk storage at assembly time, or at a later time using the Disk Utility Program.

When the subroutine is loaded, a special DIM entry number which is reserved for
FORTRAN library subroutines must be used. This number is specified using the FEAP
control statement, ID NUMBER, or is punched in the DLOAD control card. Only 30
DIM entries are reserved, and, of these, the first 15 are in use when the system is
delivered. The first 10 must not be replaced because they are required for correct
operation of the FORTRAN system, but the user is free to replace any of the others if
he desires.

If a subroutine has multiple entries, the first DIM entry will define the subroutine,
but a DIM entry is required for each entry point, and no subroutine may have more than
9 entry points.

All entry points for a subroutine must be indicated in the follOwing manner at the
beginning of the source statements.

SUB DSA ENTRY1, ENTRY2, ... , ENTRY9
DORG SUB-4

ENTRYl

where ENTRYl is the name of the first entry point, and ENTRY2 is the name of the
second, etc.

The user must provide a 5-position area immediately preceding each entry point.
This space will be used to contain the address of the parameter for the subroutine when
the subroutine is entered. Only one parameter will be transferred to the subroutine. If
more than one in-line parameter is required, the user must utilize a subprogram.

The symbolic name for each entry point must be specified in a DSA statement at the
beginning of the source program when it is assembled (even if only one entry point is
desired). Also, the operand of the DEND statement must specify the number of entries
to the subroutine.

Wor king Areas

In writing the subroutine, the programmer may first move the argument into one of the
working areas such as FAC, BETA, or SAVE. In arithmetic subroutines, the exponent
of a floating point result is usually stored in SAVE before being moved to FAC. Acare
ful study of the arithmetic subroutines may reveal that the relocatable subroutines to be
added can share the normalization, sign determination, overflow, underflow, and error
typeout sections. The value calculated by the subroutine must be left in FAC. Even if
no value is calculated, it is advisable to place a constant in FAC.

When programming a subroutine with variable length floating-point numbers, it may
be necessary to use certain addresses and constants available in the arithmetic and input/
output subroutines. A reference to the listings of these subroutines will yield theneces
sary information. The symbolic names of the constants are listed in the System Symbol
Table.

Most of the symbolic addresses normally required have been placed permanently in
the Systems Symbol Table. As the mode of operation (fixed- or floating-point) is deter
mined by the argument of the subroutine, the FORTRAN processor does not distinguish
fixed-point subroutines from floating-point subroutines. It is up to the user to have a
thorough knowledge of the added subroutines and to use them correctly.

Loading the Library Subroutine

The Disk Utility Program can be utilized to add a subroutine to the FORTRAN library or
it can be added at ass embly time.

An example of the control records required for adding a subroutine directly to the
FORTRAN library at assembly time follows:

=t=' =t=iJOB
=1= =t=:SPS
*LIBR
*NAME HCOS
*ASSEMBLE RELOCATABLE
*STORE RELOADABLE
*ID NUMBER 0026

Monitor and SPS control records

FORTRAN Executive Assembly Program
121

122

SUB

HCOS

HSIN

DSA HCOS,
DORG SUB-4

DC 5,0
OP

DC 5,0
OP

DEND 2

HSIN

The User-written library
function SPS instructions

The Disk Utility Program can be utilized to load the subroutine to the library; in
which case, the NAME, STORE, RELOADABLE and ID NUMBER statements can be
omitted, but an OUTPUT CARD or OUTPUT PAPER TAPE statement would have to
be included.

The DLOAD (or DREPL) Control record must contain the information as shown in
the following example.

* DLOAD

Col

Columns

HCOS ,
7

1-6
7-12

17-20
39-43

44-48
49
50

j
49

I

t·
50

Code word *DLOAD.
Alpha name of program to be used in FORTRAN
arithmetic statements.
DIM entry number.
The length of the subroutine. This number
must be even.
The number of entry points.
Input unit (P for paper tape).
Core image format.

other options, such as read-only protection, are available if they are desired (see
DLOAD Control Record in the Disk Utility Program section of this manual).

Additional Entries and Synonyms

A DFLIB Control record must be entered if the subroutine contains more than one entry
point or if one entry point is to be called by more than one name. The format for the
DFLIB Control record to add the second entry for the preceding examples is as follows:

Columns 1-6
7-12

13
14-15
16-80

*DFLIB
HSINbb
Not used
27
Not used

where HSIN is the user-assigned name, left-justified, of the subroutine being added, and
27 is the next consecutive DIM entry number, after the DIM entry number used for the
original entry. The DIM entry number must be between 20 and 39 and must correspond
with the sequential position of the entry as it is written in the operands of the DSA state
ments in the source program. As delivered, the system already makes use of DIM entry
numbers 10 through 24 for FORTRAN library subroutines. However, the last 6 may be

removed, if desired. If no subroutines are removed from the FORTRAN library set, the
available DIM entry numbers for additional library subroutines are 0025 through 0039.

CONSTRUCTION OF I/O REQUESTS AND FORMAT STATEMENT OUTPUT

To simulate the FORTRAN input statement, ACCEPT N, A1, A2, Am' the user
will include the following sequence of linkage instructions to be assembled.

BTM . RATY, ADRFMT (N)
BTM . SWC, LOC (AI)

BTM . SWC, LOC (AM)
BTM . COMPLT, 0 0

The first instruction branches to the RATY I/O subroutine macro and transmits to
that routine the base address (ADRFMT) of format specifications that would result from
a FORTRAN FORMAT statement. The symbols . RACD or . RAPT may be used in place
9f . RATY if card or paper tape input is desired. The symbols. WATY, . WACD, or
• WAPT should be used to output data on the typewriter, card punch, or paper tapepunch,
respectively. Base address is the address of the last character prior to format speci
fications.

The BTM instructions transfer control and transmit the data address for each ele
ment of the list. The final instruction informs the I/O subroutine that it is the last ele
ment in the list. (Flag on low-order of LOC if field is fixed.) The low-order position
of LOC is flagged if data is in fixed form.

MATRICES

Where it is desired to read in or write out an entire matrix, the output from the source
statement will have the follOwing form:

BTM .RACD
TFM . PAR
BTM .MATRX

,ADRFMT(N)
, NOELS
, LOC(I)

BTM . COMPLT ,00

The first instruction branches to the proper I/O macro and transmits to that macro
the base address of the format speCifications that resulted from the FORMAT N state
ment. The base address is the address of the last character prior to format specifications.

The following two instructions transmit the total number of elements in matrix
(NOELS) to a parameter area (PAR) and the address of the location of the first element
of the matrix LOC(I) is transmitted to the matrix routine while branching to the matrix
routine (. MATRX.). These two instructions may appear by themselves in a list or in
front of or back of any single BTM, SWC, LOC(A) statement of the previous example.

When these linkage instructions are included in a FEAP assembly, a SYSTEM
SYMBOL TABLE statement must also be included.

CONSTRUCTION OF DISK I/O REQUESTS

To simulate the linkage for recording or fetching a list of variables, the user may write
the following instructions:

FORTRAN Executive Assembly Program
123

124

LIBF RECORD, IRECNO
LIBF DKLIST, LaC (AI)

LIBF DKLIST, LaC (AM)
LIBF DKEND, 0

The variables at LaC (AI) through LaC (AM) will be written in the records starting
with the record specified in IRECNO. The same instructions, employing FETCH in
stead of RECORD, will read the variables in the records specified in IRECNO into
LaC (AI) through LaC (AM). If the variable specified by LOC is fixed point, LaC
should be negative (-LaC). To simulate the linkage for recording of arrays the user
may write the following instructions:

LIBF RECORD, IRECNO
TFM .PAR, NOELSA
LIBF DKARAY, LOC (AI)
TFM .PAR, NOELSB
LIBF DKARAY, LOC (BI)

LIBF DKEND, 0

The array A and the array B with the number of variables specified in NOELSA and
NOELSB, respectively, will be written onto the disk-starting at the record specified in
IRECNO. A set of instructions using FETCH instead of RECORD would read the array
A and the array B. As many sets of TFM, . PAR, NOELS, and LIBF DKARAY, LOC (AI)
instructions as there are arrays to be read or written should be included before the LIBF
DKEND, 0 instruction. When using these routines with FEAP, NI and N2 must be defined
as described in the FORTRAN section. When the program that calls FETCH or RECORD
is assembled, a SYSTEM SYMBOL TABLE statement must also be included.

Simulation of FETCH and RECORD in FEAP

The user may wish to write or read data using his own routine, and to use this data with
the FORTRAN disk I/O routines. If this is done several considerations are important.

1. All listed variables must occupy the same number of positions on the disk. This
number equals the larger of k or (!. + 2). Shorter variables must be right-justified
in this space.

2. No more than NI variables may be placed on a single disk record.
3. Records must be one or two sectors in length as in FORTRAN.
4. All arrays must be written without wrong-length record check, they must include

a group mark immediately after the array when written, and, if the array starts
in an odd core position, a record mark must precede the array. The array must
be written from the position that contains the record mark.

5. All arrays must be read with wrong-length record check. The group mark will
come into core after the array and the wrong-length record check indicator will
be turned on.

6. Using IORT for reading arrays requires the following instructions to facilitate
correct error check operation: '
a) Place the instruction TFM DIOt35, YTURN before the IORT PUT macro.
b) Include the following instructions somewhere in the program:

YTURN

MYER

DIO
ERRET
INOUT
IOERR
CHECK
EEXlT

BI
BNI
TFM
B7
BI
BI
B7
DS
DS
DS
DS
DS
DS

*+12,3700
ERRET, 1900
INOUT, MYER
IOERR
*+12, 3700
CHECK-12, 1900
EEXlT
,00816
,00602
,02098
,00624
,01262
,01630

7. All arrays read into even core locations must be moved one position to the left
if the first character read is a record mark. A transmit record instruction
should be used.

8. All arrays to be read into odd core locations must instead be read into the next
higher core address, which is even. If a record mark is found in the first char
acter position, indicating that the array was originally written from an odd po
sition, the array must be moved two positions down in storage using a transmit
record instruction. If no record mark is found in the first position, the array
must be moved one position down in storage.

9. The user must save and restore any required data overlayed by arrays that are
read in this way.

10. The user must determine that no incorrect writes to disk are performed .

.Input/Output Format Control

The user should attempt to utilize the data about constructing I/O FORTRAN statements
to create FEAP written linkage and FORMAT statements only if he completely under
stands them. Since calls to the system IORT for input/output are more straight forward
and faster to execute, the user would be wise to utilize this alternative to simulating
FORTRAN I/O.

SLASH (. SLASH) (5) a five-digit absolute address corresponding to . SLASH in the
110 subroutine.

HOLLERITH (. H TYPE) (5,3,2,2) a five-digit absolute address corresponding to . HTYPE
in the 110 subroutine. This is followed by a three-digit field and W two-digit field s.
(W is the number of Hollerith characters.) The three-digit field will contain the
width times 2 followed by W two-digit fields containing the alphameric representation
of the Hollerith data.

REPETITION (. REP) (5,5, 2) a five-digit absolute address corresponding to . REP in the
1/ 0 subroutine, followed by a five-digit relocatable address specifying the format
location to which I/O program must return to secure next element of format speci
fication. These two five-digit fields will be followed by a two-digit field specifying
the total number of times the preceding format field is to be used.

(. REP3) A five-digit absolute address corresponding to . REP3 in the II 0 subroutines
and performing the same function as . REP but for several speCifications that are to
be repeated. Several references to REP may be "nested" within a reference to
. REP3.

FORTRAN Executive Assembly Program
125

126

X TYPE (. XTYPE) (5,3) a five-digit absolute address corresponding to . XTYPE in the
I/ a subroutine. This is followed by a three-digit field, containing twice the number
of alphabetic blanks desired.

E TYPE (. ETYPE) (5,3,2) a five-digit absolute address corresponding to . ETYPE in the
I/O subroutine. This is followed by a three-digit field w wand a two-digit field d d,
where w w is the width specification and d d is the decimal specification.

w w~ d d+6

F TYPE (. FTYPE) (5,3,2) a five-digit absolute address corresponding to . FTYPE in the
1/ a subroutine. This is followed by a three-digit and a two-digit field w w and d d,
where w w is the width speCification and d d is the decimal speCification.

w w ~ d d+2

I TYPE (. ITYPE) (5,3) a five-digit absolute address corresponding to . ITYPE in the
I/O subroutine. This is followed by a three-digit field w w which is the width speci
fication times 2.

w:$K-2
wSK-l

(ARG NEG)
(ARG POSITIVE)

A TYPE (. ATYPE) (5,3) a five-digit absolute address corresponding to . ATYPE in the
II a subroutine. The following field will contain three digits for the width specifica
tion times 2.

w:$(F/2) For variable length (character will
be set to (0)

w:$ (K/2) For fixed length

REDO (. REDO) (5,5) a five-digit absolute address corresponding to . REDO in the I/o
subroutine. The following field will contain the first address (less five) in the for
mat field that is to be repeated. This will be used specifically to terminate each
FORMA T statement.

SUBSCRIPTING ROUTINE LINKAGE

The subscripting routines utilize the following instructions to link from the calling
program:

BTM ENTSCX, *+12, 67
DSA BASE, D4, Dl, I, D2, J, D3, K, 0 =t=

ENTSCX is one of the three subscripting routine entries. If the Q address is flagged
(negative) the array is a formal parameter. That is, the address of the array is actually
the address of an address of the array. If Dl is negative, the call is within an input/
output call linkage. If only one or two dimensions are handled, the last four or two ad
dresses, respectively, may be omitted. The zero and record mark must be after the
last address included.

Dl, ,D2, D3 and D4 are calculated values based upon the following:

GIVEN:
Where
and
and

(Cl *V1 + B1 , C2 *V2 + B2, C3 *V3 + B3)
Cl, Bl, C2, B2, C3 and B3 are fixed point constants
VI , V 2 and V 3 are fixed point variables
I and J are the number of rows and columns, respectively;

THEN:

and

OPERATING PROCEDURES

Assembly

D1
D2
D3
D4

C1
I*C2
I*J*C3
B1 -1 + I* (B2 -1) + I*J* (B3 -1)

To assemble a FEAP source program, proceed as follows: load the source program
preceded by the applicable Monitor Control record (SPS or SPSX) and the desired FEAP
control records. The source program must end with a DEND statement. Following the
DEND statement is either the first card of the next "job," or data if the program is to be
executed immediately after assembly.

FEAP Control Records

FEAP control records must be provided to control the assembly of the programs. These
records may be in card, paper tape, or typewritten form, and are inserted in the stacked
input behind the Monitor Control record (SPS or SPSX). The control records are typed
out when they are encountered in the stacked input. The format of a FEAP control record
in terms of cards is as follows:

Columns 1 *
2-75 Control Statement

Only one control statement may be entered in each control card. The statements
must be written exactly as given, except for blanks which are permitted anywhere in the
control statement. Control statements may be followed by remarks. Any statement,
other than those listed below (e. g., an identification statement) will be typed, but will
have no effect on the assembly. The processor will indicate an identification statement
by typing (ill) to the right of such a statement.

Intervening blanks between the letters of a control statement do not invalidate the
statement. .

TWO PASS MODE. This control statement causes the object program to be produced by
entering the source program twice (two passes). Two passes are required when the
space allotted for work storage is too small to contain the intermediate output from the
assembly. (The. space required for a on-pass operation is approximately one sector per
source statement.) If one-pass assembly is attempted with too large a source program,
an error message is typed out.

OBJECT CORE n. This statement specifies the core storage capacity (20,000, 40,000,
or 60,000) of the object machine (machine on which the object program will run). If the
storage capacity of the assembly machine (machine on which the object program will be
assembled) and the object machine are the same, this statement is not needed. The n
digit of the statement is one of the coded digits 2, 4, or 6 which represents 20,000,
40, 000 and 60, 000, respectively.

The FEAP program can be called for operation on a 1710 Control System only when
the 1710 is operating in the noninterruptible mode.

ERROR STOP. This statement instructs the processor to stop whenever a source state
ment containing an error is encountered. When this occurs, an error message will be
typed (see Error Messages). The operator can then enter a corrected source statement

FORTRAN Executive Assembly Program
127

128

and continue assembly (see On -Line Error Correction). If an Error Stop control state
ment is omitted, the processor will not stop for erroneous source statements; however,
an error message will still be typed.

ASSEMBLE RELOCATABLE. This statement causes the processor to assemble a relo
catable object program in System Output format. If this statement is omitted, the pro
cessor will produce an "absolute, " nonrelocatable program.

BEGIN CARD INPUT, BEGIN PAPER TAPE INPUT, BEGIN TYPEWRITER INPUT.
These three statements cause the loading program to begin reading input from the newly
designated unit. These statements can be used as "last" control statements when the
source program is to be entered from a different input medium than were the control
statements.

TYPE SYMBOL TABLE. This statement causes the symbol table to be typed after all
source statements have been read (see Typeout of Symbol Table).

PUNCH SYMBOL TABLE. This statement causes the symbol table to be punched into
cards after all source statements have been read. These cards may be listed 80-80 on
an IBM 407 to obtain a printed symbol table.

LIST TYPEWRITER. This statement causes a program listing (containing both source
and object data) to be typed as the program is being assembled.

LIST CARD. This statement causes the program to be punched into cards which may be
used to make a program listing. If desired, both the LIST TYPEWRITER and LIST CARD
statements may be used in one assembly.

OUTPUT CARD. This statement causes the object program to be punched into cards in
a reloadable format (see System Output Format in the Supervisor section). This output
will occur after any symbol table and listing outputs.

OUTPUT PAPER TAPE. This statement causes the object program to be punched into
paper tape in a reloadable format (see System Output Format in the Supervisor section).
Either an OUTPUT CARD or an OUTPUT PAPER TAPE statement may be used for an
assembly, but not both.

STORE CORE IMAGE. This statement causes an assembled program to be permanently
stored on the disk in a format that is identical to the format of an executable program in
core storage. This statement may not be used in an assembly that also contains an AS
SEMBLE RELOCATABLE statement.

STORE RELOADABLE. This statement causes the assembled program to be stored on
the disk in a reloadable format. This format is identical to that described under System
Output Format. If neither Store Core Image not Store Reloadable is specified, the as
sembled program will not be permanently stored on the disk. However, the program will
remain in the work cylinders until destroyed by another job.

SYSTEM SYMBOL TABLE. This statement allows the source program to use symbols
stored in the System Symbol table without defining them in the source program itself.
There is a provision in FEAP for defining user symbols in the System Symbol table (see
FEAP Modification Program).

ID NUMBER dddd. This statement assigns a four-digit DIM entry number (dddd) to a
program being assembled. Exactly four digits, including leading zeros, must be entered.

NAME aaaaaa. This statement can be used to assign a Name in the Equivalence table
for an assembled program which is to be stored in disk storage. aaaaaa is a 6-char
acter alphameric name. At least one of these characters must be alphabetic.

LIBR. This statement must be entered when assembling a user-written subroutine that
is to be added to the library subroutines.

PUNCH RESEQUENCED SOURCE DECK. This statement causes the processor to punch
a new source deck in sequence by page and line number. The page and line field will
contain a five-digit number starting with 00010 and will increase by ten for each successive
card, e. g., 00010, 00020, etc. The resequenced deck is punched while the old source
cards are being read. The output appears in the punch stacker ahead of any other punched
output. When operating in two-pass mode, the resequenced source deck should be used
for the second pass. Corrections to source statements made from the typewriter will
not appear in a resequenced source deck.

PUNCH SELF-LOADING CARDS. This record causes the object program with a loader
to be punched in cards for use with another system. This deck may be loaded by in
serting in the card reader and pressing the LOAD key.

PUNCH SELF-LOADING TAPE. This statement causes the object program with a
loader to be punched in paper tape for use with another system. The tape may be
loaded from the tape reader by pressing the INSERT key and entering 36 00000 00300
R /S where R /S is the Release and Start key.

Only one of the above two control records may be present in an assembly. If either
one is used, the control records in the following list will be ignored and execution of the
assembled program will be inhibited.

FEAP ERROR MESSAGES

*ASSEMBLE RELOCATABLE
*STORE CORE IMAGE
*STORE RELOADABLE
*OUTPUT CARD
*OUTPUT PAPER TAPE

The error message codes that might be typed out on the typewriter during an assembly
are listed in Table 17.

Error messages take the following general form:

PPPPP ALABEL + CCCC ERn

where· PPPPP is the page and the line number of the statement in error, ALABEL is the
last label used, and CCCC is the number of statements from that label to the statement
in error.

When ER5 (see Table 1 7) is typed out, the erroneous symbol is also typed.
Table 18 shows what action the processor will take for each error if no Error Stop

control statement has been included in the assembly.

Error Correction

One-Pass Mode. If the operator wishes to correct source program errors during the
assembly process, he must use the Error Stop control statement. When an error occurs,
the appropriate error message is typed out along with one of the following instructions to
the operator:

FORTRAN Executive Assembly Program
129

Table 17. FEAP Error Codes

ERROR
CODE CAUSE OF ERROR

ERI The capacity of the machine on which the object pro-
gram is to be executed has been exceeded. The proc-
essor does not take subroutines into account when
determining this error.

ER2 Inval id label or record mark is in a label field.

ER3 Invalid OP code or record mark is in an OP code field.

ER4 A label is defined more than once.

ER5 I. A symbolic address contains more than six
charac ters •

2. An actual address contains more than fiv.e digits.
3. An undefined symbolic address is used in an operand:
4. A HEAD character ($) is improperly specified.

ER6 A DSA or DSCI statement has more than ten operands.

ER7 A DSB statement has the second operand missing.

ERS I. A DC, DSC, or DAC has a specified length greater
than 50.

2. A DVLC has a length greater than SO.
'3. A DMES has a length greater than 100.
4. A DNB has a length greater than 99.
5. DFLC has a length greater than 2S or less than 2.

ER9 A DC, DSC, DAC, DVLC, or DMES statement has no
constant specified.

ERIO I. A DC or DSC statement has a specified length
which is less than the number of digits in the
constant itself.

2. A DAC statement has a specified length which is
less than or greater than the number of digits in the
constant itself.

ERI I An inval id character is used as a HEAD character in a
HEAD statement.

ERI2 A HEAD operand contains more than one character.

ERI3 A DMES statement contains an invalid starting mode
character.

ER 14 I. A DMES statement contains a control character
which is incorrectly specified.

2. A DMES statement has an invalid format, i.e.,
stray parenthesis, etc.

ER 15 I. A DMES statement contains an alpha character in a
numerical field.

2. Format error in constant of DFLC.

ER 16 A DMES statement contains an inval id mode change.

ERI7 I. A relocatable assembly contains either a relocation
error (see Rules of Relocatability) or,

2. A DORG with an absolute operand.

ER IS I. A symbolic name used in a CALL LINK or CALL LOAD

2.
statement is not in the Equivalence table.
Name in LIBF not in the Equivalence table or refer to
an Inval id subroutine number.

ERI9 The storage area allotted for the symbol table has been
exceeded.

ER20 Intermediate output has exceeded disk storage work
area (program req ui res two passes).

ER21 Object output has exceeded disk storagp. work area.

ER22 Improper "select" operand is in a CALL statement; i.e.,
neither LINK, LOAD, nor EXIT is specified.

130

Table 18. Disposition of FEAP Errors When No Error Stop
Statement is Used

ERROR
CODE DISPOSITION

ERI No disposition.

ER2 The label is ignored.

ER3 A NOP is assembled.

ER4 The second definition of the label is ignored; the first
definition of the label is used in the assembly.

ER5 The operand is assembled as an absolute 00000.

ER6 The first ten operands are assembled; any remaining
operands are ignored.

ER7 The number of elements is set to I .

ERS I. Length is set to 50.
2. Length is set to 50.
3 . Length is set ta 100.
4. Length is set to 99.
5. Length is set to S.

ER9 A field of zeros is generated, equal to the size of the
length operand for the DC, DSC, DAC, or DVLC
constant. In the case of a ~ES, an end of message
(t t) is assembled and the address counter is increased
by 100.

ER 10 For a DC or DSC, the length of the constant is used as
the length operand; for a DAC, the specified length is
used, and the programmer-assigned address, if present,
is ignored.

ER II The HEAD charac ter is set to blank.

ER 12 The first character of the operand is used as the HEAD
character.

ERI3 The starting made is assembled as the alphabetic mode.

ER 14 An end of message (t t) is inserted into the constant.

ER 15 I. An end of message (t t) is inserted into the constant.
2. Floating 0.0 is assembled.

ER 16 A 0 is placed in the next available location following
the mode change.

ER 17 I. The operand is assembled as an absolute 00000.
2. The DORG is ignored.

ER IS I. A DIM number of 00000 is assembled.
2. A P address of 00000 is assembled.

ERI9 Processing continues but no more labels are stored.
After completion of the intermediate phase, processing
stops, the following message is typed, and control
returns to the Supervisor Program.

DISK AREA TOO SMALL. ASSEMBLY DELETED

ER20 Processing continues, but no more intermediate data is
sent to disk storage. After completion of the inter
mediate phase, processing stops, the following message
is typed, and control returns to the Supervisor Pragram.

DISK AREA TOO SMALL. ASSEMBLY DELETED

ER21 Processing staps immediately and control is returned to
the Supervisor Program.

ER22 The statement is ignored.

NOTE: Assembly and outputting continues in
all cases except ER 19,20,and 21.

RE-ENTER STATEMENT or

RE-ENTER OPERANDS

At this point, the processor returns the typewriter carriage and types the full erroneous
source statement. If only the operands are to be re-entered, the processor will then re
type the source statement up to the operand field. The processor at this point requires
that the operator enter either an entire corrected source statement or a corrected operand
field. The operator should use the previously typed original statement as a guide to the
positions of the Page, Line, Lable, Op code, and Operand fields.

Two-Pass Mode. The error correction procedure in two-pass mode is identical with that
of the one-pass mode, with one exception. During the second pass, .the processor might
type an error message containing "ER XX." This message always refers to a statement
corrected during thefirst pass. The operator should scan the typewritten record of the
corrections made during the first pass to find the one identical in page and line number,
label, and increment. When the processor types RE-ENTER STMT and returns the car
riage, the operator must re-enter the entire corrected statement, exactly duplicating
the statement entered during the first pass.

Post Assembly Phase

After assembly is completed and listings, if desired, have been outputted, the following
messages are typed:

END OF ASSEMBLY
XXXXX CORE POSITIONS REQUIRED
XXXXX STATEMENTS PROCESSED

In the above typeouts, XXXXX is a 5 -digit number.

Symbol Table Output

If either of the statements Type Symbol Table or Punch Symbol Table are present in an
assembly, the symbol table will be typed or punched during assembly. This output, if
punched, will precede the list deck in the punch stacker.

All 6-character labels are listed first in reverse alphameric order, i. e., 9 to 0, Z to A.
All other labels follow in normal alphameric order with their head characters. In the case
of an assembly in which the number of symbols exceeds 235 (some symbols will then have to
be stored on disk), the listing is broken into two or more blocks, each of which is sorted
as described above.

The format of the symbol table outp:ut is as follows:

Typewriter. The typed output lists all labels and their numerical equivalences, five to a
line. The format is as shown.

Label Equivalence
LLLLLL AAAAA(-)

Here LLLLLL refers to a 6-character label or a 5 or fewer character label with a head
character. AAAAA refers to the numerical equivalence of the symbol. The minus sign, if
present, denotes a negative quantity. If the program is being "assembled relocatable,"
the minus sign is replaced by an R to denote a relocatable quantity.

Card. The card output format of the symbol table is as follows:

FORTRAN Executive Assembly Progra:i:n

131

132

Columns 1-13
17-29
33-45
49-61
65-77

1st label plus equivalence
2nd label plus equivalence
3rd label plus equivalence
4th label plus equivalence
5th label plus equivalence

Formats of Typewriter Listing and Punched Deck

If desired, the operator can obtain a typewriter listing and/or a punched list deck of an
assembled program. The formats of each type of output are described here.

Typewriter. A typewriter listing consists of a source statement together with its asso
ciated assembled machine language instruction.

Card. A card list deck usually consists of one card for each source statement. The
format is as follows:

Columns 1-5
6
7-12

13
14-17
18
19-78

61-65
66

Page and line number.
Blank.
Label as on source card.
Blank.
Op mnemonic as on source card.
Blank.
Operand fields as on source card. If the fields extend
beyond column 59, the object information (normally found
in columns 6] -80 of first card) is placed on a subsequent
card or cards.
Actual address of assembled instruction or constant.
Blank.

NOTE: The data in columns 67-80 is peculiar to the type of statement assembled.

Imperative Statements.

Columns 67-68
69
70-74
75
76-80

N on -imperative Statements.

Columns 67-71
72
73-80

Op code in machine language.
Blank.
P operand in machine language.
Blank.
Q operand in machine language.

Length of assembled data.
Blank.
If these columns are punched, they will contain actual
assembled data.

Error Messages After Assembly

The following error messages are applicable after assembly.

EXCEEDED SPECIFIED CAPACITY BY XXXXX

The above message indicates that the object program would exceed the available core
storage if the program were to be executed. The available core storage is determined
by the user's Object Core control card.

MORE THAN 5 CYLINDERS OF
RELOADABLE OUTPUT SSW4
ON TO DUMP OUTPUT OFF
TO CONTINUE, NO OUTPUT

The above message is typed when the reloadable object output would occupy more
than 999 sectors on disk storage (approximately 5 cylinders). This situation is an error
because programs greater than 999 sectors carmot be specified in the Disk Identification
Map.

After the message is typed out, the computer halts. At this time the user can
either turn Program Switch 4 on and depress START to have the program outputted on
a pre-chosen output unit, or turn Program Switch 4 off and depress START to continue,
in which case the program is not outputted. In either case the program is not stored on
disk storage.

Rules of Relocatability

When a program is relocated, as specified by an Assemble Relocatable statement,
certain addresses within the program are adjusted relative to the relocation (starting)
address. Only relocatable quantities are adjusted. Absolute quantities are not adjusted.
Examples of both relocatable and absolute quantities follow:

relocatable

r "' B * + 24
absolute

~
AM X, 12345

The processor recognizes relocatable and absolute quantities by applying the
following rules:

1. An integer (e. g. , 1, 12345, etc.) is an absolute value.
2. A processor-assigned address, which is associated with a label (i. e. , the

address of an instruction or constant with an associated label), is a relo
catable quantity. An asterisk address (*) is also relocatable.

3. A symbol defined as equal to some quantity has the same relocation property
as the associated quantity. An example follows:

SYMBOL DS , QUAN

4. The product of two absolute quantitites is an absolute quantity.
5. The sum or difference of two absolute quantities is an absolute quantity.
6. The sum or difference of a relocatable quantity and an absolute quantity is a

relocatable quantity.
7. The difference between two relocatable quantities is an absolute quantity.
The processor will recognize any of the following situations as "relocation errors. "
1. The sum of two relocatable quantities.
2. The product of a relocatable quantity and any other quantity.
3. An operand below the relocatable address of 00000. For example, RELOC -

10000, where RELOC is a relocatable quantity of less than 10000.

NOTE: The exact negative of a valid relocatable quantity is a valid relocatable quantity.

Although the quantity defined by an operand may be either positive or negative, a
symbol may be equivalent to a positive quantity only. If a symbol is defined equal to a
negative quantity, any reference to that symbol by the assembler will produce the
absolute value of the quantity.

FORTRAN Executive Assembly Program

133

134

FEAP MODIFICATION PROGRAM

This program allows the user to modify the SPS ll-D assembler by: (1) Adding or deleting
operation codes from the System Op code table, and (2) Adding or deleting symbols from
the System Symbol table. The FEAP Modification program is loaded into disk storage as
part of the Monitor System. It is identified in the Equivalence table by the name "SPSLIB".

An XEQ Monitor Control record with the assigned name SPSLIB punched in columns
7-12 is used to call the modification program for execution. To specify the type of mod
ification desired, the user places modification control records following the XEQ record.
These records and any other input data to the Modification program must be entered from
the same input device that was used to enter the XEQ record.

Modification program control records, in terms of cards, use the same forma,t as
that used for SPS control records. The five modification control statements must be
written exactly as given (DEFINE OP CODE, DELETE OP CODE, DEFINE SYSTEM
SYMBOL TABLE, LIST OP CODE, ENDLIB). Only one statement may be included in a
control record. These statements are typed when they are read. A description of the
five control statements follows.

DEFINE OP CODE. This statement causes user-assigned Op (operation) codes, spec
ified in Op code definitions cards, to be added to the System Op code table. The Op
code definition card(s) must follow the control record in the stacked input. The format
of the Op code definition card follows:

Columns 12-15
16-75

New mnemonic Op code (left-justified)
A 3-digit code which determines the instruction generated
by the Op code. (The code may be preceded by a minus
sign.)

The allowable 3-digit codes that may be entered in columns 16-75 are shown in Table 19.

Table 19. FEAP Modification Program Codes

CODE ASSEMBLfD DATA USE

XYO XY PPPPP Q"QQQQ Any instruction

-XY2* ax PPPPP YQQQQ SIOC instructions

-XY4 4X PPPPP QOOQY Mask and Unmask instruc-
tions

XY2 3X PPPPP Q07QY Disk instructions

XY3 3X PPPPP QOYQQ I/O instructions

XY4 34 PPPPP QOXQY Control instructions

XY6 46 PPPPP QXYQQ Branch Indicator instruc-
tions

XY7 47 PPPPP QXYQQ Branch No I ndi cator
ins truc ti ons

*If the first character of the Op code contained in columns 12-15
is the letter IIR,II position 0 I ci the assembled instruction wi 1/ be
flagged •

The digits X and Y may be any number 0-9. A separate Op code definition card
should be entered for each Op code that is to be defined. If an attempt is made to
define an Op code that is already present in the Op code table, the message

ALREADY DEFINED

will be typed and the new Op code will be ignored. If space is unavailable in the Op code
table for a new Op code, the message

NO ROOM IN TABLE

will be typed and the new Op code will be ignored.

DELETE OP CODE. This statement causes Op codes, specified in Op definition cards,
to be deleted from the System Op code table. The Op code definition card(s), which must
follow the control record in the stacked input, specifies in columns 12-15 the code to be
deleted; columns 16-75 may be blank. Only one Op code may be specified per card. If
an attempt is made to delete an Op code that is not in the Op code table, the message

NOT IN TABLE

will be typed and no change will be made to the table.

DEFINE SYSTEM SYMBOL TABLE. This statement is used to modify the System Symbol
table. The System Symbol table consists of certain symbols that were defined when the
Monitor System was assembled plus any symbols the user adds by means of the ~
System Symbol Table statement. Appendix F contains a listing of the System Symbol
table when the system is delivered. Any symbol that is in the System Symbol table may
be used in any assembly without defining the symbol within the program being assembled.
When used, the Define System Symbol statement first causes all user-defined symbols to
be deleted from the table. Then all symbols which follow the Define System Symbol state
ment are added to the System Symbol table. Symbols to be added are defined in the Symbol
Definition record. The format of this record in terms of cards is as follows:

Columns 6-11
16-75

Symbol to be defined (left-justified).
An operand,symbolic or actual, but not asterisk. (If a
symbolic operand is used, it must have been previously
defined in the System Symbol table.)

If a symbolic operand, contained in the operand field (columns 16-75) of a Symbol
Definition card, cannot be matched with a previously defined symbol in the System
Symbol table, the message

UNDEFINED SYMBOL XXXXX

is typed out, where XXXXX is the undefined symbolic operand; no change is made to the
System Symbol table. Up to 66 user-defined symbols may be added to the System Symbol
table.- Any attempt to insert more symbols causes an error message to be typed and
control to be returned to the Supervisor program, thus terminating the add-to-symbol
table function. Symbols that have less than six characters will be defined with a blank
"heading character" in the System Symbol table. Symbols defined as Rositive quantities
will be treated as positive-absolute quantities in both absolute and relocatable assemblies.
Negative quantities will be treated as negative-absolute quantities in an absolute assem
bly and positive-relocatable quantities in a relocatable assembly.

FORTRAN Executive Assembly Program

13S

136

LIST OP CODE. This statement causes the processor to type a listing of the Op code
table. All Op codes are listed in tabular form with their associated 3-digit codes.

ENDLIB. This statement causes control to be returned to the Supervisor program.
In the stacked input, it must follow other control statements which utilize the modification
program.

MONITOR LOADER PROGRAM

This program is used initially to load the Monitor System (DUP, FORTRAN, FEAP,
SUPERVISOR) from cards or paper tape into disk storage. Cards contain 75 columns
of data followed by a five-position sequence number. Sequence numbers are not
present with tape data.

The system to be loaded, in card or paper tape form, is comprised of several
blocks of data, each with a unique deck number, a Heading Control record, and a 9's
trailer record. With this arrangement it is possible to load each new block of data to a
different area of disk storage as specified by the Heading Control records. For card
input, the cards within a data block must be consecutively numbered in ascending
sequential order.

The combined input data, i. e. , all data blocks, must be preceded by the Loader
program itself. This program is contained in approximately forty cards. If the
sequence of the first four cards is inadvertently altered, the program may not operate
correctly. The loader program is deck number 00, columns 30-31. All input cards,
with the exception of the first four cards of deck 00, are sequence~checked by the loader.

NOTE: The on-line Input/Output routine is a self-loading program that does not require
the use of the loader program. It may be loaded any time before it is required for
execution.

CARD FORMATS

Heading Control

Columns

Columns

Trailer

Columns

1
2-7
9-14

16-21
23-28
30-32

1-75
76-80

1-5
6

7-8

Asterisk(*).
Code word, LDCNTR.
Name of data block (program, table, etc.) to follow.
Address of first sector to be loaded.
Address of last sector to be loaded.
Deck number. This number combined with the two
positions 79-80, constitutes the sequence number. Blanks
are interpreted as zeros. Therefore, the number 55 and
blanks in columns 30-32 are interpreted as sequence
number 55000. The first card of the data block must then
begin with the sequence number 55001 in columns 76-80.

Data to be loaded to disk storage.
Sequence number.

99999
=t=

00

Monitor Loader Program

137

138

OPERATING PROCEDURES

Switches

The Parity, I/o, and O'FLOW check switches should be in the PROGRAM position for
either card or tape loading. For card or tape input, the program will halt after each
trailer card if Program Switch 1 is off. If the switch is on, all data blocks are loaded
without stopping the computer. Therefore, the user can stack input ~ if desired.

Paper Tape Loading

1. Ready the paper tape reader with the Loader tape reel.
2. Enter 36 00000 00300 from the typewriter.
3. Depress the Release and Start keys.
4. Ready the tape reader with the Data tape reel.
5. Depress the 1620 Start key.
6. Return to step 4 to load successive Data tapes.

NOTE: When loading with Switch 1 on, the Loader will continue to read more data after
each data group has been loaded. Therefore, several such data input groups may be
present on one input reel.

Card Loading

1. Ready the card reader with deck number 00, Loader Program. The remaining
decks may be stacked behind deck 00 as explained under Switches.

2. Depress the 1622 Load key.

Loader Messages

For Both Paper Tape and Card Loaders:

Message/ Caus~/ Operation Action

AAAAAA LOADED FROM FFFFFF TO LLLLLL, where AAAAAA is the name of a data
block, FFFFFF is the address of the first sector loaded, and LLLLLL is the address of
the last sector loaded. This message will type following each successful deck loading.
If Program Switch 1 is on, it is an indication to the operator to load the next deck.

DISK RD WR ERROR, START TO RETRY. This message will type if a disk write error
occurs that cannot be corrected by one automatic retry. Depressing the Start key will
cause the write operation to be retried twice. If the error is not corrected by the retries,
the message will again be typed.

~. This message will type if a paper tape or card reading error occurs. To correct
the error, ready the reader with the corrected record and depress the Start key. (An
error card will be located next to the last card in the stacker when a halt occurs for a
card reading error.)

CONTROL STATEMENT INVALID, RE-ENTER. This message will type if any of the
follOwing conditions are encountered in Heading Control record data.

1. A misspelled code word.
2. A record mark in column 6.
3. First sector to be loaded is greater than last sector to be loaded. The user must

supply a corrected control record and depress the 1620 Start key.

For Card Loader Only:

Message/ Cause/ Operator Action

SEQ. This message will type and the program will halt if any of the cards in the loader
program, with the exception of the first four cards, is out of sequence. To resume loading,
(1) restore the cards to their correct sequence and place them in the card hopper, (2) depress
the Start keys on both the card reader and 1620 console.

NNNNN CARD SEQ ERROR, CORRECT AND START, where NNNNN is the sequence number
of the first data card out of consecutive ascending sequence. After the message is typed,
the program will halt. To restart the computer, (1) restore the sequence of data cards,
starting with the card in error, (2) place the resequenced cards in the card read hopper,
(3) depress the Start keys on both the card reader and 1620 console.

NO TRAILER REC. CORRECT. RE-LOAD COMPLETE DECK WITH CNTR REC, AND
BR TO 7404. This message will type and the program will halt if a 9's trailer record
is missing following any data block. To restart the computer, the user should (1) restack
the cards in the card reader so as to restart card reading with the Header card of the data
block which had the missing trailer record, (2) depress the Reset and Insert keys, (3)
enter 49 07404 from the typewriter, (4) depress the Release and Start keys, (5) depress
the card reader Start key.

TRAILER CARD SEQ ERROR. CORRECT AND STARTo This message will be typed if the
sequence number on the trailer card is incorrect. The procedure for restarting is the
same as for any other card sequence error.

Monitor Loader Program
139

140

EXECUTIVE ASSEMBLY AND LOADING PROCEDURES

All Executive Control programs are unassembled when received to allow the user to tailor
each program to fit his particular application. This is accomplished by assigning addresses
or constants to labels that are used throughout the individual Executive Control programs and
user's programs. A Define System Symbol Table operation (See FEAP) is used for this pur
pose.

The procedure is to punch the Define System Symbol Table statements in cards or tape
and enter them using the FEAP SPSLIB program. This section describes the purpose of each
label that must be defined before assembling the programs. Only those programs required
by the user should be assembled. All a~semblies must be done using FEAP and the FORTRAN
Executive pack to be used while controlling the process. The advantage of this method is that
labels placed in the FEAP System Symbol table need not be defined in each program that uses
them (see FEAP-System Symbol Table section).

NOTE: Before assembling any programs with this system, the user should be sure that he has
defined his system parameters (see DUP DFINE). The mantissa length (ff) are fixed word
length (KK), the FORTRAN subroutine set, the starting address for the mainline core loads,
and the work area portion of the disk should be set as desired for the particular system. If
the size of the Interrupt Save area, the Mainline Save area or the SIOC Message area (in disk)
is to be changed, the changes must be made at this time (see the section on Changing or De
leting Disk Area). These parameters, along with all other such parameters, should be defined
before assembling the Executive Control programs described in this section.

System Symbols Defined by the User

A complete list of all symbols to be defined by the user is shown below. The cards needed to
enter the selected operands are included with the system. After punching the specifications
as described in the succeeding sections into these cards, the user must enter all of them using
the SPSLIB program described in the FEAP section of this manual. All labels must be entered
before any Executive programs are assembled.

CTVT
SHORTF
AOIND
SIIND
AIIND
DEBUG
PIN01
through
PIN15
NPIN

DCTVT
MAN LIN
TIME
OVOPT1
OVOPT2
OVOPT3
K

AOTBAD
AOSLEW
AOTRIM
AOPRDK
NOSPP
AOTBDK
N1
N2

NUMDEV
PRPRES
NUMPRT
NUMBUF
LOFCAR
NUMMES

DEV70
through
DEV89

MASTER INTERRUPT CONTROL

The following labels are used with the Master Interrupt Control (MIC) program.

CTVT xxxxx Core address of the Executive Transfer Vector area. This address
once established, must not be changed without reassembling all
Executive Control programs. The choices for XXXXX are 07600
if FORTRAN Subroutine set 1 or 3 is used, 09100 if set 4 is used,
or 09700 if set 2 is used.

The next five labels are for the purpose of decreasing the core storage requirements of
the MIC program when certain items are not used. A zero in the units position of the operand
caus es appropriate instructions to be eliminated.

SHORTF

AOIND

SIIND

AIIND

DEBUG

{ ~
{

00000
00001

{
00000
00001

{
00000
00001

{
00000

00001

FORTRAN Subroutine sets 1 or 3 are not used.
FORTRAN Subroutine sets 1 or 3 are used.
The Analog Output Setup interrupt is not used.
The Analog Output Setup interrupt is used.
The SIOC program is not used.
The SIOC program is used.
The ADC program not used.
The ADC program is used.
The trace feature is not to be incorporated in the object output
of this program.
The trace feature is to be incorporated in the object output of
this program. (For a description of the trace feature, see
Trace Option under Diagnostic Aids.)

Assigning Process Interrupts and Timed Interrupts

Since the number of Process interrupts and Timed interrupts used is entirely up to the user,
the MIC program must be provided with a label-versus-indicator assignment for each of these
interrupts that are used. For the purpose of this assignment, the Timed interrupts and
Operator Entry interrupt are treated like Process interrupts. The information supplied here
is used to establish the user's Interrupt Indicator table.

The labels to be used for this assignment are PIN01 through PIN15. The 15 labels must
be defined even if all 15 interrupts are not used. For example, if only six interrupts are used,
the labels PIN01 through PIN06 would be assigned to the six interrupts, in any order, while
the remaining PINXX labels would be defined with zeros in the address operand.

The label assignment below indicates that eight Process interrupts and the two Timed
interrupts are being used.

Label
PiNOi
PIN02
PIN03
PIN04
PIN05
PIN06
PIN07
PIN08
PIN 0 9
PIN10
PIN11
PIN12
PIN13
PIN14
PIN15

Indicator Number
48
49
50
51
52
53
54
55
43
44
00
00
00
00
00

Process interrupt indicator 48
Process interrupt indicator 49
Process interrupt indicator 50
Process interrupt indicator 51
Process interrupt indicator 52
Process interrupt indicator 53
Process interrupt indicator 54
Process interrupt indicator 55
One Minute interrupt indicator 43
One Hour interrupt indicator 44
Unused indicator
Unused indicator
Unused indicator
Unused indicator
The order or priority in which the interrupts above will be
interrogated is specified by the number in the last two posi
tions of the label. If the user wishes interrupt 54 to be
tested before any other process interrupt, he must assign
the label PINO 1 to that indicator. The Interrupt Subroutine

NOTE: The label-versus-indicator assignment above does not have to be in any particular order.

Executive Assembly and Loading Procedures

141

142

Identification Map (ISIM) will be set up in the sequence
specified by the numbers in the labels described here. In
addition, one ISIM entry for the user's SIOC manual entry
and sense switch enter interrupt and one IS1M entry for th
CE interrupt will be set up before any process interrupts
in this table. The CE interrupt service routine is supplie l

with the system. The user will write his own SIOC enter
interrupt routine. Both of these IS1M entries must be de
fined even if the user does not utilize the SIOC feature.
(NOTE: the order of the user's ISIM entries will be the
same as the order of his Interrupt Indicator Table (lIT).
The SIOC enter interrupt indicator has been arbitr.arily
selected as 45 in the lIT).

The following label is used to define the number of combined Process interrupts and Time
interrupts that are to be used. If SIOC is used in the system, an additional interrupt must be
included in the count. In the label assignment above, the number would be 10 if SIOC was not
on the system or 11 if it was.

NPIN
AOPRDK

oooxx

{
o AO program on disk
1 A 0 program not on disk

PROGRAM SCHEDULE CONTROL

The following System Symbols are used with the PSC program

CTVT
MANLIN

9999Z

DCTVT

TIME

SIIND

DEBUG

xxxxx
XXXXX

xxxxx

xx

XXYY

{
00000
00001

{
00000
00001

Core address of the Executive Transfer Vector (ETV).
Core address of the user's mainline program. This can
be any even hundreds core address after the last ExecutivE
Control Program to be used (i. e. , after the Skeleton
Executive Program).
This label is not assigned by the user. It is the core addre
of the start of the in-core portion of PSC. This is placed
in the permanent system symbol table when the PSC portio
of the Skeleton Executive is loaded. It is used by the disk
portion of PSC, which must be assembled after the Skeleto:
Executive is loaded since the symbol is not equated to a
number until the in-core portion of PSC is loaded. NOTE:
it is necessary to assemble the entire PSC program if a
change is made to the in-core portion.
The core address of the user's Executive Transfer Vector
divided by one hundred. The user enters this symbol. It
will be 76, 97 or 91 according to which subroutine set is
used. Sets 1 and 3 require 76, set 2 requires 97, and set
4 requires 91.
Desired time interval between logging operations. If no
logging is desired. This field must contain zeros. XX
is hours and YY is tenths and hundredths of hours.
SIOC not used.
SIOC used.
The trace feature is not to be incor'porated with the PSC.
The trace feature is desired.

ANALOG-DIGITAL CONTROL

The following System Symbol statements are used with Analog-Digital Control (ADC) program.

DEBUG

OVOPT1

OVOPT2

OVOPT3

{

00000

00001

The trace feature is not to be incorporated in the object
output of this program.
The trace feature is to be incorporated in the object output
of this program. (For a description of the trace feature,
see Trace Option under Diagnostic Aids.)
Do not use ADC overload option 1
Use ADC overload option 1
Do not use ADC overload option 2
Use ADC overload option 2
Do not use ADC overload option 3
Use ADC overload option 3

These options are described in the Analog-Digital section.

K xx

ANALOG OUTPUT CONTROL

Where XX is. the length of the fixed-point variable to be
used with the ADC program. The value of XX must be
from 04 to 10 as defined for the FORTRAN programs.

The following System Symbol Table statements are used with Analog Output Control (AOC)
program.

CTVT XXXXX
AOTBAD XXXXX

AOSLEW XXX

AOTRIM XXX

NOSPP XX

AOTBDK {~

{ 0'0000
DEBUG

00001

Core address of the ETV area.
Core storage location (first digit) of the Analog Output
table if the Analog Output table is maintained in core.
Three-digit terminal address for selection of a slew
operation.
Three-digit terminal address for selection of a trim
operation.
Number. of set point positioner.
AO record stored on disk with AO program.
AO record not stored on disk with AO program.
The trace feature is not to be incorporated in the object
output of this program.
The trace feature is to be incorporated in the object output
of this program.

Two versions of the Analog Output program are supplied. Version 1 resides in core as
a part of the Skeleton Executive and Version 2 resides entirely on disk. Only the version to
be used should be assembled. If the disk stored version is not used, the user may delete the
disk reservation for it from the disk using DIM number 0047 in a *DELET control card. This
will make sectors 00084 through 00116 available for other use. If the disk version is used, the
core version must not be loaded with the Skeleton Executive. To omit the core version, the
user must not assemble it (see Loading Procedure). When using the AO-in-core version, it
must be loaded to core after all other Executive programs.

Contact Operate,Contact Sense, Clock Read, Manual Entry Read Subprograms, and Exception
Core Load .

These programs do not include the DEBUG feature. They are assembled by the user in order

Executive Assembly and Loading Procedures

143

! 144

to obtain the values for the FORTRAN fixed-point word and floating-point mantissa. These
values must be the same as the corresponding values used with the mainline that calls them.
The values for F and K in the system communication sector will be used if the user does not
specify different values in the SUER statement.

The user may load the exception core load provided using the procedure described under
Loading Core Loads, or he may substitute his own exception core load, if desired.

SERIAL INPUT/OUTPUT CONTROL

The following System Symbol Table labels are used with the Serial Input/Output Control (SIOC)
program.

CTVT
9999X
9999Y

xxxxx:
xxxxx:
xxxxx:

Core address of the E TV area
Core address of the in-core message directory.
Core address of the in-core portion of the SlOC program.

The labels 9999X and 9999Y are in the permanent System Symbol Table and are equivalent
to core addresses of in-core portions of the SIOC when the Skeleton Executive is loaded.

NOTE: It is necessary to assemble the entire SIOC program if a change is made in the in-core
portion.

NUMDEV
DEV70
through
DEV89

PRPRES

NUMPRT
NUMBUF

NUMMES

DEBUG

OOOXX
WWXXY

00000
00001
OOOXX
OOOXX

OOOXX

00000

00001

Total number of SIOC units (01-20)
Labels DEV70 through DEV89 are used to show which unit
response indicators (6070-6089) are associated with the
various SIOC units. The numbers (70-89) in the label
correspond to indicators 6070-6089. For output printers
that have secondary printers, WW is used to specify the
numbers (70-89) of the backup printer. otherwise WW
must be 00. XX is the lowest-numbered (first) address
of the associated unit and Y is a code that deSignates the
type of unit.

o = output printer
1 = digital display
2 = sense switch
3 = manual entry

Output printers are not used.
Output printers are used.
Number of output printers used
Number of 100-digit core buffers used for outputting printer
messages. The number of buffers may range from 1 to 10.
The total number of messages to be stored on disk for all
output printers together. This value can range from 01 to
99 if printers are used. If no printers are used, the value
should be zero. If the number of messages speCified has
already been stored and another output printer call is
executed, the SIOC program will continue to print, but in
the masked mode until a message printed is complete.
The trace feature is not to be incorporated in the object
output of this program.
The trace feature is to be incorporated in the obj ect output
of this program.

LOFCAR o o XXX Length of printed line (output printers). This program will
automatically return the carriage after the specified number
of characters have been printed (second and succeeding
lines only).

SYSTEM ALERT CONTROL

The following System Symbol Table symbols are used with the System Alert Control (SAC)
program.

CTVT xxxxx

DEV70-DEV89 wwxx.y

Core Address of the ETV area.
Two portions of the SAC program are provided and must be
assembled. These assemblies can be done at the same time.
(See SIOC assembly description.) In SAC these labels are
used to determine the output printers in the system. These
printers will receive end-of-message operations when a
restart is required.

Subroutine Identification Map

The Subroutine Identification map is loaded by DUP in a manner similar to that used to make
up the Core Load map; however, the sequence of records in the subroutine map must follow
this pattern:

Record 1

Record 2
Record 3

Record N

Manual Entry and Sense Switch Execute Interrupt routine
(SIOC)
CE Interrupt Subroutlne
Process Interrupt or Timed Interrupt

Process Interrupt or Timed Interrupt

NOTE: Record 1 and 2 must be in the order above. All other ISIM entries are ordered
by the user when the Interrupt Indicator table is created. (See MIC) There must not be
any blanks in the Subroutine Iderrtification map. If any of the interrupt routines have not
been loaded to disk, a routine to indicate that situation with a typeout at execute time will
be referenced by the ISIM entry.

Loading Procedure

The following System Symbol Table statements are used with the assembly that causes the
Skeleton Executive to be created.

Nl
N2

The number of variables in one FORTRAN disk record.
The number of FORTRAN disk records that may be used by the system.
(See FORTRAN DEFINE DISK Statement.)

The user has been provided with a small deck of cards (or a tape) which consist of the
following:

Monitor card
Monitor card
FEAP control card
FEAP control card
FEAP control card
FEAP control card

=1= * JOB * * SPS * STORE RELOADABLE
* SYSTEM SYMBOL TABLE
* NAME SKELTN
* OBJE CT CORE 2

Executive Assembly and Loading Procedures

145

(a) FEAP

Monitor card
Monitor card

Control
Cards
for Skeleton
Loader

Monitor card
Monitor card
DUP
Monitor card
Monitor card

START

END

CALLR

LDR
IORT
lOCAL

MAlN
TDM
DSC
TR
BD
AM
B7
SM
TF
TFM
TFM
B7
DC
DC
DC
DC
DSA
DSC
DS
DS
DS
DEND
=t==t=JOB

N 1, N2
0, 11100
1, t, *-1
19999, START +7, 2
END, 0
START +18,20000,7
START +12
START +18, 3099, 7
CALLR, START +18
LDR, START
IORT, * +19
lOCAL
1, 2
1, 2
1, 0
4, 0087
00000
1 t ,
,3339
,565
,716
START

=t==t= XEQS SKELTN
*CCEND
*LDCOR MIC
*LDCOR PSC
*LDCOR ADC
*LDCOR SAC
*LDCOR SIOC
*LDCOR AOC
*DKSTR 0133
=t==t=JOB
=t==t=DUP
*DELET SKELTN
=t==t==t==t=
=t==t=PAUS SKELETON EXECUTIVE IS ON DISK

The user must have loaded the System Symbol Table with the values for N1 and N2 that
are referenced in the card identified here with (a). N1 and N2 are explained in the FORTRAN
section.

The user must have previously assembled the Executive programs that must be included
with the Skeleton Executive as instructed in the previous section. Any program that is not
named in the Equivalence table will not be loaded. Since the name will only be placed in the
Equivalence table if the program is assembled, the user must not assemble programs that
he does not desire with the Skeleton Executive. Only the programs in the LDCOR control
cards listed above will be looked for in the Equivalence table when the Skeleton Executive is
loaded.

The MIC program must be loaded first and the AOC program last of the Executive Control
programs. If SIOC is used, the SIOC program must be loaded just before AOC, if AOC is in
core, or. last-if AOC is not in core. The SAC program must be loaded just before SIOC, if
SIOC is in use. The SKELTN program will load even if it reads LDCOR control statements
for programs that have not been assembled and loaded to disk. If any such control statement
is read by the loader, the message below will be printed and the loading will resume with the
next Executive program named in the following control statement:

PROGRAM NOT LOADED

If a control statement is found to contain a record mark in columns 1-13, the message:

RECORD MARK COL. 1-13
INVALID CONTROL CARD

is printed and the loading is abandoned. If the first six columns do not contain an *LDCOR or
*DKSTR, the message:

INV ALID CONTROL CARD

is printed and the loading is abandoned.
If the control record is a valid LDCOR record, columns 1-13 are printed and a search for

the name of these columns is made in the System Equivalence Table.
If the name is found in the Equivalence table, the program is loaded using the system out

put loader. The first and last core address loaded are printed in the message format given
below:

Xxxxx to Xxxxx

If a valid DKSTR control record is recognized, the message:

TURN SWITCH 1 ON TO INITIALLY LOAD 181M, OFF TO RETAIN PRESENT IS1M

is printed and the loader halts. If Program Switch 1 is turned on to initially load the ISIM, the
loader checks to determine if any ISIM exists on disk. If an 181M is found (at a location that
is consistent with the FORTRAN subroutine set that is in use), the Indicator Table for Interrupts
and all of the entries in that ISIM are printed before the initialized ISIM is placed on disk over
the previous one. If no such ISIM is found, the message

NO ISIM FOUND ON DISK

is printed, the initialized ISIM is placed on disk, and no other data is printed.
After creating the Skeleton Executive, the user must assemble the disk portions of PSC

and of SIOC (if SIOC is used).

STARTING PROCEDURE

After all data is loaded, the Executive System can be started by the following procedure.

Depress the Reset key on the computer console and enter the following data from any
available input unit:

34 00034 00701
36 00034 00702
49 19400 III
11735700619400

The last line contains the disk address, sector count, and core address of the Skeleton
Executive loader.

The instructions will cause the Skeleton Executive to be loaded to core storage and the
Core Load specified by ill to be loaded by PSC and executed. If ill is flagged in the units
position, the core load is entered in the masked mode.

Executive Assembly and Loading Procedures
147

148

When the starting procedure described above is executed, the following initialization
operations will take place:

1. The interval for logging will be initialized to the value chosen at assembly time.
2. If Console Switch 1 is on, all interrupt indicators will be turned off. If Console

Switch 1 is off, all interrupt indicators that are on will be le:ft on.
3. Instruction Register 3 will be loaded with the address of MIC.
4. The computer will be returned to operation using Instruction Register 1.

Changing or Deleting Disk Areas

Eight special areas on disk have been reserved for various purposes in connection with the
FORTRAN Executive. These areas are listed below.

Sector Sector DIM
Address Count Number

1. Interrupt Exchange Area 00694 106 0053
2. Diagnostic Program and Recorded

Interrupt Exchange Area 00500 100 0054
3. Core Contents Exchange Area for

use during PSC Special Call 00800 200 0055
4. SIOC Output Printer Message Area 01000 100 0058
5. Arithmetic Routines Exchange Area 00617 043 0051
6. Arithmetic Routines Exchange Area

for use when AO on Disk is being
executed 00117 033 0048

7. Arithmetic Routines Exchange Area
for use when SAC is being executed 01500 033 0068

8. Disk Utility Program System Area
(used only in non-process operation) 19881 095 0151

Any of the areas that are not needed (i. e. , Number 6 when AO is in core) may be deleted
using the Disk Utility program. The DIM number must be specified.

The first four areas in the list are areas that might be changed to meet the particular
requirements of the user's system. These changes, if any, should be made before assembling
the Executive Programs. In other terms, the changing of these areas is a part of defining the
system.

If the SIOC message area on disk is relocated, the user must select a disk address that
ends in three zeros (i. e. , 121000, 005000, etc.).

Procedure for Changing the Disk Areas Defined by DIMs

The following procedure should be used when redefining any disk areas for the FORTRAN
Executive system.

1. Select the DIM for the area that is to be redefined. (i. e. , DIM 0058 for the SIOC Output
Printer Message Area).

2. Punch a DUP DELET control card with the DIM number selected.
3. Follow the DUP DE LET procedure.
4. Punch a DUP DLOAD control card to load to the selected DIM with enough sectors

(limit 999) from the work cylinders and to the sector address that is the first sector of
the desired area. (It is also possible in most cases to permit DUP to determine the
location of the new area.)

5. Follow the DUP DLOAD procedure.

Program Areas and Special Areas that may be Deleted if not Required with the 1710 System

Sector Sector
Address Count DIM

DKIO for Flip Version Sets 2 and 4 00000 020 0043
Arithmetic Routine s for Sets 1 and 3 00020 033 0044
DKIO, FIX, FLOAT for Sets 1 and 3 00053 031 0045
Analog Output Routine and AO Records Area for Sets

1, 2, 3 and 4 (may be deleted if core version
of AO or if no version of AO is used). 00084 033 0047

Analog Output Exchange area while performing disk
version of AO. 00117 033 0048

DKIO for Flip Ver sion Sets 1 and 3 00150 020 0080
DKIO for Flip Version Sets 1 and 3 00170 030 0081
*FORTRAN Nondisk I/O 00200 135 0088
Routines for A **1, I**J and ATNF for flip version Set s

1 and 3. 00335 030 0046
Routines for A**B, LNF and EXPF for flip version Sets

1 and 3. 00365 030 0050
Routines for SQRTF, COSF and SINF for flip version

Sets 1 and 3. 00600 017 0049
Arithmetic Routines for Sets 1 and 3 (duplicate) 00660 033 0052
**Special Interrupt Core Load for use when another ICL

is deleted. 00693 001 0086
***Exchange Area for Mainline during PSC special call 00800 200 0055
SIOC Output Printer Message Buffer 01000 100 0058
Routines for DKIO & subscripting used with Sets 2 and 4 01100 033 0056
Routines for A **1, I**J, and ATANF for Sets 2 and 4 01133 033 0057
Routines for A**B, LNF and EXPF for Sets 2 and 4 01166 033 0059
Routines for SQRTF, SINF and COSF for Sets 2 and 4 01200 024 0090
SIOC Formatting Routines 01224 145 0060
SIOC Manual Entry, Sense Switch and Digital Display 01375 025 0061
SIOC Store Message Routine and SIOC Error Routines 01400 060 0062
SIOC End of Message Routine 01460 040 0063
****Skeleton Loader 17370 030 0087
DUP DCOPY 16511 042 0141
DUP DALTR 16553 039 0142
DUP DFINE 16592 039 0070
DUP DFINE 16631 075 0079
DUP DREPL (Phase 2) 16706 074 0075
DUP DLABL 16780 020 0140
DUP DREPL (Phase 1) 18399 041 0072
DUP DWRAD 19342 029 0154
DUP DFLIB 19371 029 0155

* FORTRAN Nondisk input-output must not be used if these routines are deleted.
** May be deleted after all Interrupt Core Loads are permanently loaded.
*** May be deleted if no PSC scecial calls are performed.
**** May be deleted after the Skeleton Executive is permanently loaded.

Any other area not used may be deleted.

Executive Assembly and Loading Procedures
149

150

SEQUENTIAL PROGRAM LIST EDIT ROUTINE

The SP List Edit Routine will check the DIM entries and the Sequential Program List on the
Monitor pack. If more than one DIM entry describes any disk area on the Monitor pack, the
higher-numbered DIM entry that defines the area will be removed. An SP List will be created
during the DIM edit and compared against the existing SP List at the conclusion of the edit.
The user may print the old SP List if it is incorrect. A correct SP List will always result.
If any DIM entries were removed, the numbers of those entries will be printed at the end of
the execution of the routine. If any DIM entries with incorrect form are found, they will be
typed along with the number of the entry, and then removed from the DIM table.

Operation

Place the cards (tape) in the input unit. Precede with a JOB control record.

Results:

1. DIM Table Edit
If a DIM entry is in error, the message "DIM FORMAT ERROR", the DIM number and
the DIM entry are typed. This entry will be deleted from the DIM Table and any names
which refer to that DIM number will be replaced, in the Equivalence table, with an entry
of all 8's.

2. Sequential Program List Creation
If the new Sequential Program List, which is built up from the DIM entries, compares
equally with the one on the disk, the message, "S. p. LIST IS CORRECT" is typed. If
the Lists do not compare equally, the message, TIS. Po LIST IS INCORRECT" is typed
and the program halts. Turning Console Switch 1 on and pressing Start will dump the
incorrect list (the one that was on the disk) onto the typewriter. In either case, the new
list will be written on the disk when the Start key is pressed.

Any DIM numbers which are typed after the SP List message has been typed have
been deleted from the DIM Table and replaced by 8's in the Equivalence Table. These
8's will not interfere with the correct handling of the SP List by the DUP routines.

FORTRAN STATEMENTS:

Control Statements

CALL EXIT
CONTINUE
DO n i = ml, m2

or
DO n i = m l' m2' m3
END or END (It, 12, 13, 14, 15)
GO TO n
GO TO (nl' n2, .. , llm), i
IF (a)nl' n2, n3
IF (SENSE SWITCH i) nl, n2
PAUSE or PAUSE n
STOP or STOP n

Input/Output Statements

ACCEPT n, List
ACCEPT TAPE n, List
FETCH (1) List
FIND (1)
PRINT n, List
PUNCH n, List
READ n, List
RECORD (1) List
TYPE n, List

Specification Statements

COMMON A, B ..
DE FINE DISK (N 1, N 2)
DIMENSION v, v, v, ...
EQUIVALENCE (a, b, c, ...), (d, e, f, ...) , ...
FORMAT (Sl,' • , Sn)

Subprogram Statements

CALL LINK (Name)
CALL Name (aI' a2, ... , an)
FUNCTION Name (aI' a2,'" ,an)
SUBROUTINE Name (aI, a2,· .. ,an>
RETURN

APPENDIX A

Appendix A

151

152

APPENDIX B: FEAP MNEMONICS

Summary of FEAP Declarative Operations

NOTE: Except for the constants in DC, DSC, and DAC, all operands may be actual or symbolic. All symbolic length and address operands
must be previously defined. All operands may use address odjustme"nt. Remarks may follow operands except in DSA ond DVLC statements.
"Alpha Record Address" in the table refers to the leftmost position plus one of on alphameric field, whereas "Field Address" refers to the
rightmost position of a field. The term "Numerical Record Address" refers to the leftmost position of a field.

DECLARATIVE STATEMENT AMOUNT ADDED TO LOCA-
FORMAT

VALUE STORED IN SYMBOL
TABLE AS EQUIVALENT

TO "SYMBOL"
LABEL MNE- OPERANDS TlON ASSIGNMENT COUNTER

MONIC IF ADDRESS (A) IS BLANK

SYM

SYM

SYM

SYM

SYM

SYM

SYM

SYM

SYM

SYM

SYM

SYM

SYM

SYM

DS L,A

DSS L,A

DAS L,A

DC L,C,A

DSC L,C,A

DVLC A, L,C,
L,C, etc.

DAC L,C,A

L (length).
If L is blank, 0 is added.

L (length).
If L is blank, 0 is added.

2 x L is added. If L is blank,
o is added.

L is added.

L is added.

L is added.

2 x L is added.

A address. If A is blank, the
field address from the location
assignment counter is stored.

A address. If A is blank, the
numerical record address from
the location assignment counter
is stored.

A address must be odd. If A is
blank, the alpha record address
from the location assignment
counter is stored.

A address. If A is blank, the
field address from the location
assignment counter is stored.

A address. If A is blank the
numerical record address from
the location assignment counter
is stored.

First C address.

A address must be odd. If A is
blank, the alpha record address
from the location assignment
counter is stored.

DSA D,E,F,G, 5 x (number of addresses) is Field address of the first address
on list.

D5B

DNB

DDA

DGM

DSCI

DFLC

H, I, J, K, added.
L,M

L,N,A

L,A

A, D,F, 5,
M

A

D,E,F,G,
H,I,J,K,
L,M

L,C,A

Length of each element times A address. If A is blank, field
the number of elements is added. address of the first element is

stored.

L is added.

14, length of a disk control
field.

5 times the number of addresses
is added.

L (mantissa length) + 2
If L is blank, f f (mantissa
length) + 2 is ~dded

A address. If A is blank, the
field address from the location
assignment counter is stored.

(Same as DSC) .

A address or location counter.

Addresses of leftmost position
of the generated constant.

A address. If A is blank, the
field address from the location
assignment counter is used.

DATA FIELDS WHICH ARE
LOADED AS A PART OF
THE OBJECT PROGRAM

None.

None.

None.

C, the (numerical) constant.

C, the (numeri cal) constant.

C, C, etc., the (numerical)
constants .

C, the (alphameric) constant.

A list of the actual addresses
thCJtcorrespond to D,E,F, etc.

None.

Number of blank characters
that equal L.

D,F,S,M.

" (Group Mark) .

A list of the channel addresses
(5-digits for each address) that
correspond to D, E, F, G, etc.

C, the (floating point)

constant.

Summary of FEAP Arithmetic Instructions

NOTE: Indirect Addressing and indexing are allowable with all P address operands listed below. An * to the
left of the Q operand indicates these features may be used with it.

OPERA liON OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Add A 21 Storage address of units position 'Storage address of units
of augend position af addend

Add Immediate AM 11 Same as code 21 . Q 11 of instruction is units
position of addend

Subtract S 22 Storage address of units position 'Storoge address of units
of minuend position of subtrahend

Subtract SM 12 Same as code 22 Qll of instruction is units
Immediate position of subtrahend

Multiply M 23 Storage address of units position 'Storoge address of units
of multiplicand position of multiplier

Multiply MM 13 Same as code 23 Q 11 of instruction is units
Immediate position of multiplier

Load Dividend LD 28 Storage address in product area 'Storage address of units
to which units position of field position of dividend
(dividend) is to be transmitted

Load Dividend LDM 18 Same as code 28 Q 11 of instruction is units
position of dividend

Divide D 29 Storage addr~ss at which first 'Storage address of units
subtraction of the divisor occurs position of divisor

Divide DM 19 Same as code 29 Ql1 of instruction is units
Immediate position of divisor

Floating Add FADD 01 Storage address of units position *Storage address of units
of exponent of augend position of exponent of addend

Floating Sub- FSUB 02 Storage address of units position *Storage address of units
tract of exponent of minuend position of exponent of sub-

trahend

Floating FMUL 03 Storage address of units position 'Storage address of units
Multiply of exponent of multiplicand position of exponent of

mu"ltiplier

Floating FDIV 0;> Storage address of units posit ion 'Storage address of units
Divide of exponent of dividend position of exponent of divisor

Appendix B

153

154

Summary of FEAP Internal Data Transmission Instructions

NOTE: Indirect Addressing and indexing are olkwulJle witl; all P address operands listed below. An * to the
left of the Q address operand indicates these features may be used with it.

OPERATION OPERATION CODES OPERANDS
MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Transmit Digit TO 25 Storage address to which single *Storage address of single digit
digit is transmitted to be transmitted

Transmit Digit TOM 15 Some as code 25 Q 11 of instruction is the single
Immediate digit to be transmitted

Transmit Field TF 26 Storage address to which units *Storage address of units
position of field is transmitted position of field to be trans-

mitted

Transmit Field TFM 16 Some as code 26 Q 11 of instruction is the units
Immediate position of the field to be trans-

mitted

Transmit Record TR 31 Storage address to which high- *Storage address of high-order
order position of the record is position of the record to be
transmitted transmitted

Transmit Record TRNM 30 Same as code 31 *Same as code 31
No Record Mark

Transfer TNS 72 Storage address of rightmost *Storage address of the units
Numerical Strip position of alphameric field to position of the numerical field

be transmitted

Transfer TNF 73 Storage address of rightmost *Storage address of the units
Numerical Fi II position of alphameric field position of the numerical field to

be transmitted

Floating Shift FSR 08 Storage address to which units *Storage address (rightmost) digit
Right (rightmost) digit of mantissa is of mantissa to be transmitted

transmitted

Floating Shift FSL 05 Storage address to which high- *Storage address of low-order
Lp.ft order digit of the mantissa is digit of mantissa to be trans-

transmitted mitted

Transmit TFL 06 Storage address to which units *Storage address of units position
Floating position of exponent is transmitted of exponent of field to be trans-

mitted

Move Address MA 70 Storage address of units position *Storoge address of units position
of 5-digit field to which data of 5-digit field to be transmitted
is transmitted

OR to Field ORF 92 Storage address of leftmost *Storage address of leftmost
position of first field for OR position of second field for OR
logic input logic input

AND to Field ANDF 93 Storage address of leftmost *Storage address of leftmost
position of first field for AND position of second field for AND
logic logic

Exclusive OR EORF 95 Storage address of leftmost *Storage address of leftmost
to Field position of first field for position of second field for

Exclusive OR logic Exclusive OR logic

Complement CPLF 94 Storage address of leftmost *Storage address of leftmost
Ocial Field position of field to which data position of field to be camp le-

is transmitted mented

Octal to OTO 96 Storage address of the units *Storage address of leftmost
Decimal Con- position of the power-of-eight p.Jsition of field to be converted
version table

Decimal to DTO 97 Storage address of the un its *Storage address of leftmost
Octal Conver- position of the highest power-of- position of field to be converted
sian eight required

Summary of FEAP Logic (Branch and Compare) Instructions

NOTE: Both the BI (Branch Indicator) and BNI (Branch No Indicator) instructions require one of the switch
or indicator codes listed in Table 21 as a 0 address. The code indicates the switch or indicator to be inter
rogated for status, To relieve the programmer of having to code a 0 address, unique mnemonics are included
in SPS language for both BI- and BNI-type instructions. For a unique mnemonic, the processor generates the
actual machine language code 46 (Branch Indicator) or 47 (Branch No Indicator) and the 0 address that
represents the switch or indicator.

Indirect Addressing and indexing are allowable with all P address operands listed below except Branch Back.
An * to the left of the 0 address operand indi cates these features may be used with it.

OPERATION OPERATION CODES OPERANDS

MNEMONIC ACTUAL P ADDRESS o ADDRESS

Compare C 24 Storage address of units position *Storage address of units
of the field to which anather position of the field to be
fi e Id is compared compared with the fie Id ot the

P address

Compare CM 14 Same as code 24 011 of instruction is units
Immediate position of the field to be

compared with the field at the
P address

Branch B 49 Storage address of the leftmost Not used
digit of the next instruction to
be executed

Branch and B7 49 Storage address of the leftmost Not used. However, these five
Adjust Assign- digit of the next instruction to locations ~ used by the next
ment Counter be executed instruction in sequence

Branch BNF 44 Storage address of the leftmost *Storage address to be
No Flag digit of next instruction to be interrogated for presence of a

executed if branch occurs flag bit

Branch No BNR 45 Same as code 44 *Storage address to be
Record Mark interrogated for presence of a

record mark character

Branch No BNG 55 Same as code 44 *Storage address to be
Group Mark interrogated for presence of a

group mark character

Branch on BD 43 Same as code 44 *Storage address to be
Digit interrogated for a digit other

than zero

Branch BI 46 Storage address of leftmost °08 and 09 of instruction
Indicator position of next instruction to specify the program switch or

be executed if indicator tested indicator to be interrogated
is on

Unique Branch
Indicator
Mnemonics:

Branch High BH 46 Same as BI None required

Branch Positive BP 46 Same as BI None required

Branch Equal BE 46 Same as BI None required

Branch Zero BZ 46 Same as BI None required

Branch Over- BV 46 Same as BI None required
flow

Branch Any BA 46 Same as BI None required
Data Check

Appendi~ B

155

Summary of FEAP Logic (Branch and Compare) Instructions (cont'd.)

OPERATION OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Branch Nat BNl 46 Same as BI None required
Low

Branch Not BNN 46 Same as BI None required
Negative

Branch Band BBAS 46 Same as BI None required
A Selected

Branch Band BBBS 46 Same as BI None required
B Selected

Branch Neither BNBS 46 Same as BI None required
Band Selected

Branch Console BCI 46 Same as BI None required
Switch I On

Branch Console BC2 46 Same as BI None required
Switch 2 On

Branch Console BC3 46 Same as BI None required
Switch 3 On

Branch Console BC4 46 Same as BI None required
Switch 4 On

Branch last BlC 46 Same as BI None required
Card

Branch Expon- BXV 46 Same as BI None required
ent Check

Branch No BNI 47 Storage address of leftmost Q8 and 09 of instruction
Indicator position of next instruction to specify program switch or

be executed if indicator tested indicator to be interrogated
is off (see Table 21)

Unique Branch
No Indicator
Mnemonics:

Branch Band A BANS
Not Se lected

47 Same as BNI None required

Branch Band B BBNS 47 Same as BNI None required
Not Selected

Branch Either BEBS
Band Se lected

47 Same as BNI None required

Branch Not BNH 47 Same as BNI None required
High

Branch Not BNP
Positive

47 Same as BNI None required

Branch Not BNE 47 Same as BNI None required
Equal

Branch Not BNZ 47 Same as BNI None required
Zero

156

Summary of FEAP Logic (Branch and Compare) Instructions (cont'd.)

OPERATION OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Branch No BNV 47 Same as BNI None required
Overflow

Branch Not Any BNA 47 Some as BNI None required
Data Check

Branch Low BL 47 Some as BNI None requ ired

Branch BN 47 Some as BNI None required
Negative

Branch Console BNCI 47 Some as BNI None required
Switch 1 Off

Branch Console BNC2 47 Some as BNI None required
Switch 2 Off

Branch Console BNC3 47 Some as BNI None required
Switch 3 Off

Branch Console BNC4 47 Some as BNI None required
Switch 4 Off

Branch Not BNLC 47 Some as BNI None required
Last Card

Branch Not BNXV 47 Some as BNI None req u ired
Exponent Check

Branch and BT 27 P address minus one is the *Storage address of units
Transmit storage address to which the units position of the field to be

position of the Q field is trans- transmitted
mitted. P address is leftmost
digit of the next instruction to
be executed

Branch and BTM 17 Same as code 27 Q 1 1 of instruction is units
Transmit position of field to be trans-
Immediate mitted

Branch Back BB 42 Nat used Not used

Branch Back BB2 42 Not used. However, these Not used. However, these
and Adjust five locations ore used by five locations are used by
Assignment the next instruction in the next instruction in
Counter sequence sequence

Branch and BTFL 07 P address minus one is the *Storoge address of units
Transmit storage addre:is to which the position of exponent of field to
Floating units position of the exponent be transmitted

portion of the Q field is trans-
mitted. P is the storage address
of the leftmost digit of the next
instruction to be executed

Branch and BS 60 Storage address of the leftmost Q /1 specifies condition to be
Select position of the next instruction se ected

Unique Branch
and Select
Mnemonics:

Branch and BSIA 60 Same as BS None required
Select Indirect
Addressing

'--.

Appendix B

157

Summary of FEAP Logic (Branch and Compare) Instructions (cont'd.)

OPERATION OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS o ADDRESS

Branch and bSNI 60 Same a~ BS Nane required
Se lect No I/A

Branch and BSBA 60 Same as BS None required
Select Band A

Branch and BSBB 60 Same as BS None required
Se lect Band B

Branch and BSNX 60 Same as BS None required
Select Na Index
Register

Branch and BX 61 Same as BS **Storage address of units
Madify I~dex position of field to be added to
Register selected index register

Branch and BXM 62 Same as BS **Fi"e digits of 0 field are
Modify Index added to selected index register
Register
Immediate

Branch BCX 63 Same as BS if (after modification) Some as BX
Conditionally, IX sign has not changed or
Modify Index result is not zero·
Register

Branch BCXM 64 Same as BCX Same as BXM
Conditionally,
Modify Index
Register
Immediate

Branch and Load BLX 65 Same as BS **Storage address of units
Index Register position of 5-digit field to be

loaded to selected index register

Branch and BLX 66 Same as BS **Five digits of 0 field are
Load Index 100<jed to selected index register
Register
Immediate

Branch and BSX 67 Same as BS **Storage address of units
Store Index position of field where selected
Register index register data is to be

stored

Branch on Bit BBT 90 Storage address of the leftmost *08-11 specifies storage address
position of next instruction if of units position of field to be
comparison is successful compared with bits of the 07

digit

Branch on Mask BMK 91 Same as code 90 *08-11 specifies storage address
of units position of field to be
compared with 07 digit

**Specific index register is selected by flags over the 08-10 positions of the instruction.

158

Summary of FEAP Input and Output Instructions

NOTE: Indirect Addressing and indexing are allowable with all P address operands, where a P operand is
required. None of the 0 operands shown may be used with Indirect Addressing or Index Registers.

OPERATION OPERATION CODE OPERANDS
MNEMONIC ACTUAL P ADDRESS o ADDRESS

Read RN 36 Storage address at which leftmost 0 8 and 09 of instruction
Numerically (first) numerical character is specify input unit

stored

Unique Read
Numerically
Mnemonics:

Read RNTY 36 Same as RN Nane requ ired
Numerically
Typewriter

Read RNPT 36 Same as RN Nane required
Numeri cally
Paper Tape

Read RNCD 36 Same as RN None required
Numerically
Card

Write WN 38 Storage address from which left- 0 8 and 09 of instruction
Numerically most (first) numerical character specify output unit

is written

Unique Write
Numerically
Mnemonics:

Write WNTY 38 Same as WN None required
Numeri co II y
Typewriter

Write WNPT 38 Same as WN None required
Numerically
Paper Tape

Write WNCD 38 Same as WN None required
Numerically
Card

Dump ON 35 Same as WN Same as WN
Numerically

Unique Dump
Numerically
Mnemonics:

Dump DNTY 35 Same as WN None required
Numerically
Typewriter

Dump DNPT 35 Some as WN None requ ired
Numerically
Paper Tape

Dump DNCD 35 Same as WN None required
Numerically
Card

Read RA 37 Storage address at which numeri- 08 and 09 of instruction
Alphamerically cal digit of leftmost (first) specify input un it

character is stored. (Zone digit
of first character is at P minus
one)

Appendix B

159

Summary of FEAP Input and Output Instructions (cont'd.)

OPERATION OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Unique Read
Alphamerically
Mnemonics:

Read Alpha- RATY 37 Same as RA None required
merically
Typewriter

Read Alpha- RAPT 37 Same as RA None required
merica"y
Paper Tape

Read Alpha- RACD 37 Same as RA None required
merically Card

Read Binary RBPT
Paper Tape

37 Same as RA None required

Write Alpha- WA 39 Storage address of numerical Q8 and Q9 of instruction specify
merically digit of leftmost (first) character output unit

to be written. (Zone digit of
first character is at P minus one)

Unique Write
Alphamerically
Mnemonics:

Write Alpha- WATY 39 Same as WA None required
merically
Typewriter

Write Alpha- WAPT 39 Same as WA None required
merically
Paper Tape

Write Alpha- WACO 39 Same as WA None required
merically Card

Write Binary WBPT 39 Same as WA None required
Paper Tape

Control K 34 Not used Q8 and Q9 specify input/output

unit. Q 11 specifies control
functions

Unique Control
Mnemonics:

Backspace BKTY 34 Not used None required
Typewriter

Tabulate TBTY 34 Not used None required
Typewriter

Index Type- IXTY 34 Not used None required
writer

~

Return Carriage RCTY 34 Not used None required
Typewriter

Space Type- SPTY 34 Not used None required
writer

160

Summary of FEAP Input and Output Instructions (cont'd.)

OPERATION OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Se.ek SK 34 Storage address of disk control X07Xl
field

Read Disk/ RDGN 36 Same as SK XOlXO
WLRC

Write Disk/ WDGN 38 Same as SK X07XO

WLRC

Check Disk/ CDGN 36 Same as SK XOlXl
WLRC

Read Disk RTGN 36 Same as SK XOlX4
Track/WLRC

Write Disk WTGN 38 Same as SK X07X4
Track/WLRC

Check Disk CTGN 36 Same as SK XOlX5
Track/WLRC

. Read Disk RDN 36 Same as SK XOlX2

Write Disk WDN 38 Same as SK X07X2

Check Disk CDN 36 Same as SK X07X3

Read Disk RTN 36 Same as SK XOlX6
Track

Write Disk WTN 38 Same as SK X07X6
Track

Check Disk CTN 36 Same as SK XOlX7
Track

Summary of FEAP Miscellaneous Instructions

NOTE: Indirect Addressing and indexing are allowable with all P or Q address operands that are marked with
an *.

OPERATION OPERATION CODE OPERANDS
MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Set Flag SF 32 *Storage address at which flag Not used
bit is placed

Clear Flag CF 33 *Storage address from .which flag Not used
bit is cleared

Move Flag MF 71 *Storage address to which flag *Storage address of flag bit to
bit is moved be moved

Halt H 48 Not used Not used

No Operation NOP 41 Not used Not used

Appendix B

161

1710 FEAP Operation Codes

OPERATION OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Se lec t Address SAO 84 Not used Q7 specifies operation;
and Operate Q9- Q II specify a

terminal address

Unique Select
Address and
Operate
Mnemonics:

Select Address SA 84 Same as SAO Q7=I;Q9- Q II
specify terminal address
of analog input point

Select Address SACO 84 Same as SAO Q 7 = 2; Q9 - Q I I
and Contact specify terminal address
Operate of contact point

Select Analog SAOS 84 Same as SAO Q7=3;Q9- Q II
Output Signal specify terminal address

of analog output
channel

Select Read SLRN 86 Depends upon particular Depends upon porticular
Numerically operation operation

Unique Select
Read Numeri-
cally
Mnemonics:

SelectTAS SLTA 86 Core location where 07 = I; Q8- QII are
high-order position of not used
T AS is transferred

Select ADC SLAR 86 Core location where Q 7 = 2; Q 9 - Q I I
Register high-order position of specify analog input

ADC register is trans- address
ferred

Se lec t Contac t SLCB 86 Core location where Q7=7;Q9- Q II
Block status of the first contact specifies the contact

scanned is stored block address where
reading begins

Select Real- SLTC 86 Core location where Q7 = 4; Q8 - Q II are
Time Clock high-order digit of RTC not used

is transferred

Select ADC SLAD 86 Core location where Q7=6;Q8- Q llare
and Increment high-order position of not used
(1711 Model I) ADC is transferred

Select Manual SLME 86 Core location where Q7=8;Q8- Q llare
Entry Switches high-order digit of not used

Manual Entry switches
is transferred

Branch Out Of BO 47 Address to be placed in Q8 - Q9 = 00; Q I I = 0
Noninterrup- IR-3
tible Mode

Branch Out Of BOLD 47 Address to be placed in Q8 - 09 = 00; Q II = J
Noninterrup- IR-I
tible Mode and
Load

Mask MK 46 Not used Q8 - 09 = 00; Q II = I

Unmask UMK 46 Not used Q 8 - Q9 = 00; Q 11 = 0

Select Input SLiC 86 Not used Q JO - Q 11 specify the
Channel address of an S IOC input

unit

162

1710 FEAP Operation Codes (cont'd.)

OPERATION OPERA TlON CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS o ADDRESS

Read Numerical RNIC 86 Core storage location 07 = 5; 08 - 011 not
Input Channel where data is to be read used

Read Alpha- RA1C 87 Same as RNIC Same as RN1C
meric Input
Channel

Write Numerical WNOC 88 Core storage location 010 - 0 11 specify an
Output Channel from which data is to S10C output unit

be written

Write Alpha- WAOC 89 Same as WNOC Same as WNOC
meric Output
Channel

Unique SIOC
8ranch Indicator
Mnemonics:

Branch Output BOR 46 Core storage address of None required
Record Mark leftmost position of next

instruction to be exe-
cuted if indicator testec'
is on

Branch End of BRE 46 Same as BOR Same as BOR
Message

Branch Mode BMC 46 Same as BOR Same as BOR
Shift

Branch Data BIR 46 Same as BOR Same as BOR
Ready

Branch SIOC BCNB 46 Same as BOR Same as BO R
Not Busy

Unique SIOC
Branch No
Indicator
Mnemonics:

Branch No BNOR 47 Core storage address of None requ ired
Outpu t .Record leftmost position of next
Mark instruction to be exe-

cuted if indicator tested
is off

Branch No End BNRE 47 Same as BNOR Same as BNOR
of Message

Branch No BNMC 47 Same as BNOR Same as BNOR
Mode Shift

Branch No BNIR 47 Same as BNOR Same as BNOR
Data Ready

Branch No BCB 47 Same as BNOR Same as BNOR
SIOC Not Busy

Appendix B

163

1710 FEAP Operation Codes (cont'd)

OPERATION OPERATION CODE OPERANDS
MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Reset. Timer RT 84 Not usea. Qf = 4, Q8 - Q 11
no used.

Read Pulse RPC 86 Core storage location Q7=3,Q~-Qll
Counter where contents of specify nex pulse

Pulse Counter Register counter address.
are placed.

Read Pulse RPCR 86 Same as RPC Q7=9,Q~-Qll
Counter, Reset specify nex pulse

counter address.

Scan Synchro- SCNS 86 Core storage location Q
7

= 6, Q
9

= 1
nized where digital value of

analog signal is placed.

Scan Free SCNF 86 Same as SCNS Q
7

= 6, Q
9

= 0

Select latching SlCO 88 Core storage location Q 7 ~ 7, Q 11 specifies
Contact Operate where the status of first matrix row number.

2 contacts is placed.

Set Real Time SRTC 88 Core storage location Q
7

=4
Clock of leftmost position of

data that is set into the
RTC.

Select Digital SlDI 86 Core storage location Q7~O,QlO-Q11
Input of leftmost position of specify terminal

field where data is to address where reading
be stored. is to begin.

164

1620/1710 Indicator Codes for BI-BNI Instructions

NOTE: This table lists only those indicotors that do not have unique
mnemonics.

INDICATOR Q ADDRESS

Q
7

Q
8

Q
9 QIO Q"

Read Check 0 6

Write Check 0 7

MAR Check 0 8

MBR-E Check I 6

MBR-O Check I 7

Operator Entry I 8

Terminal Address Selector (TAS)
Check 2 I

Function Register Check 2 2

Analog Output (AO) Check 2 3

Mask 2 6

Customer Engineer (CE) Interrupt 2 7

Analog Output Setup 2 8

Multiplexer Busy 2 9

Multiplex Complete 4 0

Analog Output Setup Interrupt 4 I

One Minute Interrupt 4 3

One Hour Interrupt 4 4

Any SIOC Interrupt 4 5

Process Interrupt I 4 8

Process Interrupt 2 4 9

Process Interrupt 3 5 0

Process Interrupt 4 5 I

Process Interrupt 5 5 2

Process Interrupt 6 5 3

Process Interrupt 7 5 4

Process Interrupt 8 5 5

Process Interrupt 9 5 6

Process Interrupt 10 5 7

Process I nterrupt I I 5 8

Process Interrupt 12 5 9

Process Branch Indicator I 7 0

Process Branch Indicator 2 7 I

Process Branch Indicator 3 7 2

Process Branch Indicator 4 7 3

Process Branch Indicator 5 7 4

Process Branch Indicator 6 7 5

Process Branch Indicator 7 7 6

INDICATOR

Process Branch Indicator B

Process Branch Indicator 9

Process Branch Indicator 10

Process Branch Indicator I I

Process Branch Indicator 12

Process Branch Indicator 13

Proce~s Branch Indicator 14

Process Branch Indicator 15

Process Branch Indicator 16

Process Branch Indicator 17

Process Branch Indicator 18

Process Branch Ind icator 19

Process Branch Indicator 20

SIOC Output Error

Alert

SIOC Unit I Response

SIOC Unit 2 Response

SIOC Unit 3 Response

SIOC Unit 4 Response

SIOC Unit 5 Response

SIOC Unit 6 Response

SIOC Unit 7 Response

SIOC Unit 8 Response

SIOC Unit 9 Response

SIOC Unit 10 Response

SIOC Unit II Response

SIOC Unit 12 Response

SIOC Unit 13 Response

SIOC Unit 14 Response

SIOC Unit 15 Response

SIOC Unit 16 Response

SIOC Unit 17 Response

SIOC Unit 18 Response

SIOC Unit 19 Response

SIOC Unit 20 Response

Disk Address Check

WLR/RBC

Cylinder Overflow

Any Disk Check

Seek Complete

Q ADDRESS
Q

7
Q

8 °9 QIO 0"
7 7

7' 8

7 9

8 0

8 I

8 2

8 3

8 4

8 5

8 6

8 7

8 8

8 9

6 0 4 3

6 0 4 5

6 0 7 0

6 0 7 I

6 0 7 2

6 0 7 3

6 0 7 4

6 0 7 5

6 0 7 6

6 0 7 7

6 0 7 8

6 0 7 9

6 0 8 0

6 0 8 I

6 0 8 2

6 0 8 3

6 0 8 4

6 0 8 5

6 0 8 6

6 0 8 7

6 0 8 8

6 0 8 9

3 6

3 7

3 8

3 9

4 2

Appendix B

165

166

APPENDIX C

EXECUTIVE SUMMARY AND LOADING SEQUENCE

The following summary is intended to assist the user in preparing to use the FORTRAN
Executive System. This section presumes that the reader is familiar with the other sections
of the manual. It serves to tie the various segments together by showing a chronological
sequence of events with control card examples where appropriate.

1. Load the system using the System Loader provided (see Monitor Loader).

NOTE: On-line IORT is a self-loading program.

2. Define the following system parameters using the DUP *DFINE card (see DUP DFINE
a. 1.' and.k, keeping in mind that.,! and ~ must be the same in all process-control

programs.
b. Core size of object machine.
c. The subroutine set to be used.
d. Mainline origin (MANLIN). The first time the system is assembled this must be

estimated by use of the following table.
Base Address Short Form (Sets 1 or 3)
Base Address Long Form (Set 2)
Base Address Long Form (Set 4)
Analog Input (ADC)
Analog Output in Core (AOC)
SIOC
PSC
MIC
SAC

7600
9700
9100

950
1400
2800

600
2680

500

Add the base address to the sum of the other routines used, (PSC, SAC, MIC are always
used) and adjust to the next higher even hundred address.

Example
=t==t=JOB
=t= =t=D UP
*DFINE 08 05 5 1 15000

3. Punch the System Symbol Table cards as explained in the Assembly and Loading
Procedure Section

Example

=t==t=JOB
=t==t=XE Q SPSLIB
*DEFINE SYSTEM SYMBOL TABLE
(Columns 6-11 and 16-75)

CTVT 7600
DEBUG 1
SHORTF 1
AOIND 1
STIND 1
AIIND 1
PIN01 48

PIN02
PIN03
PIN04
PIN05
PIN06
PIN07
PIN08
PIN09
PINI0
PINll
PIN12
PIN13
PIN14
PIN15
NPIN
AOPRDK
MAN LIN
DCTVT
TIME
OVOPTI
OVOPT2
OVOPT3
K
AOTBAD
AOSLEW
AOTRIM
NOSPP
AOTBDK
NUMDEV
DEV70
DEV71
DEV72
DEV73
DEV74
DEV75
DEV76
DEV77
DEV78
DEV79
DEV80
DEV81
DEV82
DEV83
DEV84
DEV85
DEV86
DEV87
DEV88
DEV89
PRPRES
NUMPRT
NUMBUF
NUMMES
LOFCAR

Nl
N2

*ENDLIB

49
50
51
52
53
43
44
18
54
47
o
o
o
o
12
1
15000
76
o
o
o
1
4
o
50
51
4
1
00005
70000
00501
00242
00333
74100
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00001
00002
00002
14
00087
19
1598

Appendix C
167

168

4. Assemble the following Executive Control programs. (See table below for required
control cards.)
a. Skeleton Loader
b. MIC
cO PSC Core
d. SAC Core
e. ADC (if used)
f. SAC Disk
g. SIOC Core (if SIOC is used)
h. AOC Core or Disk (if used; only the program to be used should be assembled)

NOTE: PSC Disk and SIOC Disk cannot be assembled until after Step 5 is performed.

Deck/
Tape
Number Name Control Cards Required

14 MIC {core} =t==t=JOB
15 PSC {core} =t==t=SPS
16 ADC {core} *ASSEMBLE RELOCATABLE
17 SAC {core} *STORE RELOADABLE
18 SIOC {core} *SYSTEM SYMBOL TABLE
19 AOC {core} *NAME aaaaaa

*BEGIN PAPER TAPE INPUT {tape only}

21 SIOC Store Message Routine =t==t=JOB
22 SIOC End of Message Routine =t==t=SPSX
23 SIOC Error Routine *SYSTEM SYMBOL TABLE
24 SIOC ME, SS, DD *BEGIN PAPER TAPE INPUT {tape only}
25 AOC
26 PSC
27 SAC

20 Mainline for loading Skeleton =t==t=JOB
Executive * =t=S PS

28 Exception Core Load *ST OR E R ELOADABLE
29 Manual Entry Subprogram *OBJECT CORE
30 Real-Time Clock Subprogram *SYSTEM SYMBOL TABLE
31 Contact Sense Subprogram *BEGIN PAPER TAPE INPUT {tape only}
32 Contact Operate Subprogram

33 Control records to form =t==t=XEQS SKELTN
Skeleton ~xecutive *CCEND

34 FEAP Sample Program =t==t=JOB
=t==t=SPSX

35 FORTRAN II-D Sample =t==t=JOB
Program =t==t=FORX

*CCEND {tape only}

5. Load the Skeleton Executive by using the deck of cards provided. Cards for those
programs that do not apply for your system may be left in the deck. These programs
must not be assembled, however.

Example
=t==t=JOB
=t==I=XE QSSKE LTN
*CCEND
*LDCOR MIC
*LDCOR PSC
*LDCOR ADC
*LDCOR SAC
*LDCOR SIOC
*LDCOR AOC
*DKSTR0133

NOTE: SAC must preceed SIOC and AOC. AO Core, if used, must be loaded last. At this
point, the loading typeout should be examined to insure that the Skeleton Executive will not
overlay the start of the mainline programs as defined in the *DFINE card and the MANLIN
card in the System, Symbol Table.

Example
SKELTN 07600
*LDCOR MIC
*LDCOR PSC
*LDCOR ADC
*LDCOR SAC
*LDCOR SIOC
*LDCOR AOC

00048 LOADED
07600 to 10279
10280 to 10879
10880 to 11829
11830 to 12229
12330 to 15129

PROGRAM NOT LOADED
*DKSTR 0133
END OF JOB

6. Compile and load logging routine (if used).
7. Assemble PSC and SIOC DISK. This must be done after the Skeleton Executive is

loaded.
8. Compile all FORTRAN-written mainline programs using 1710 FORTRAN II-D. The

mainlines may be loaded to disk using an *LDISK Control Record. (Include the
Exception Core Load provided).

Example
=I==I=JOB
=1==1= FOR
*LDISKMAINI

END
9. Compile all FORTRAN-written subprograms.
Example

=1==1= JOB
=t=:f::FOR
*LDISK

SUBROUTINE NAME (A, B)

END

Appendix C

169

170

10. Compile all FORTRAN-written Interrupt Core Loads.
Example
=#==t=JOB
=#==#=FOR
*INTER
*LDISKPRINI

.CALL RTMIEC

END
11. Compile all Interrupt In-Core routines.

Example
=t==#=JOB
=#==#=FOR
*LDISKINCOR
*INTER

SUBROUTINE INCOR

RETURN

END

NOTE: ALL LOCALS that service interrupts are considered to be interrupt in-core routines.
If any recorded interrupts are used in the system, all in-core interrupt routines must also be
compiled as interrupt core loads.

12. Prepare the Mainline Core Loads.

Example
=#==t=JOB
44DUP
*DLOADSIOCML 0302 M S 3035013010
* FORLDMAIN2 1
*LIBCRLOGF, EXPF, DKIO, SINCOS, ATANF, SQRTF
*INTCRPI122/50, PI123/51, P5HRI/ 43
*LOCAL MAIN 2 , LOCS1, LOCS2
*CCEND

13. Prepare the Interrupt Core Loads.
Example
=#==t=DUP
=t==#=JOB
*DLOADHRINT 0406 I S44
*FORLDHOUR 1
*CCEND

14. If any of the Executive Programs (MIC, PSC,ADC,SAC,SIOC or AOC) are reassemblec
the user must reload the Skeleton Executive as in Step 5 and 6.

15. Prepare' a "cold start" card as indicated below. XXX is the dim number of the first
mainline program to be executed. (If the units position of XXX is flagged, the main
line specified will be entered in the masked mode).

Example
3400034007013600034007024919400XXX11735700619400

16. Each Mainline Core Load must execute a PSC call to enter the next mainline core load.

APPENDIX D

OFF-LINE STARTING PROCEDl,JRE

To begin operation of the off-line Monitor System, the Supervisor program must be
loaded into core storage from disk storage. This can be accomplished by entering
from the typewriter or a card, the following instructions:

Core Storage
Address of
Instruction.

00000
00012
00024
00031
00032

Instruction

34 00032 00701
36 00032 00702
49 02402
X
Y1963611300102

X identifies the form of input for the Monitor Control records; 1 for typewriter,
3 for paper tape, and 5 for cards. Y speCifies the disk drive code (1, 3, 5, 7)
identifying the disk module where the system is loaded.

When the Release and Start key or Load key is depressed, the Supervisor
program is read into core storage and the first Monitor Control card is read in
under control of the Supervisor program by the Monitor Control Record Analyzer
routine.

The Parity, 110 and Overflow Program switches should be on Program to operate
the off-line Monitor.

ON-LINE STARTING PROCEDURE

After all data is loaded, the Executive System can be started by the following
procedure.

Depress the Reset key on the computer console and enter the following data
from any available input unit:

34 00034 00701
36 00034 00702
49 19400 III
11735700619400

The last line contains the disk address, sector count, and core address of the
Skeleton Executive loader.

These instructions will cause the Skeleton Exective to be loaded to core storage
and the Core Load specified by III to be loaded by PSC and executed. If III is
flagged in the units position, the core load is entered in the masked mode.

If console switch 1 is off, all interrupt indicators will be turned off. If console
switch 1 is on, all interrupt indicators that are on will be left on.

Appendix D
171

172

APPENDIX E

Error Message Listing

Message

NOTE: X's represent variable characters

60XX49XXXXX· . .
XxXxXx XX
XxxXxxXxxXxx .
XXXXXXXXXX TYPE CHANGE·
XXXX + XXXX ERROR X
XXXXXX XXXXX XXXXX LOADED
XXXXXX XXXXX OVERLAP
xx XXXXX OVERLAP • • .
XXXXX CARD SEQ ERROR, CORRECT AND START
XXXXX CORES USED· • • . . .
XXXXX LD1•.........•.••.
XXXXX LOADED FROM XXXXXX TO XXXXXX
XXXXX NEXT COMMON • . . • . • . • . . . • • •
XXXXX SECTORS OF DATA COPIED FROM XXXXXX TO XXXXXX
XXXX DO TABLE FULL •.••.
XXXX IMPROPER DO NESTING • .
XXXX MIXED MODE •••••••.
XXXX SYMBOL TABLE FULL· •
ADC OVLD OXXX •
AI •••••••.•••
AIC •••..•••••
ALREADY DEFINED
AND FILE PROTECTED
AO .•••.•.•.
AOC •....•••
BAD DISK WRITE. RESET START

.55

.62
· .62

.94

.22, 23
· •. 38
· .. 37

.37

.139
· .• 24

.89

.138

.24
• •• 103

• .22
.22
.22
.22

• •• 43
.63

• .63
• .135
· .103

• •• 63
• •••• 63

• .85
CALL IBM•...... .65
CANNOT RESTORE COMMON - RESET AND START TO RETRY. . . .75
CDP ERR 06071617363738 • . . . • . • • • • • • • •• 83
CDR ERR 06071617363738 . . • • • • . . •. 84
CHANGE SIOC UNIT STATUS. YES, INSERT 1, NO, O. RS. . . • . .59
CHANGE STATUS OF AODOWN DIGIT YES, INSERT 1. NO, O. RS• 59
CONDITION IGNORED .75
CONTROL STATEMENT INVALID, RE-ENTER.138
CORRECTIONS HAVE NOT BEEN ENTE~ED . .94
CSC . • . . • . . • • 63
DCP COMPLETED XXXXXX • . . • •
DIM FORMAT ERROR•.....
DISK AREA TOO SMALL. ASSEMBLY DELETED

· .. 65
· .. 150

.130

DISK RD WR ERROR, START TO RETRY
DISK SECTOR XXXXXX CORRECTED • . • • . . .
DK LOADBD XXXXXX XXXX XXXXXX XXX XXXXX XXXXX
DK OVLA ER .•.....•....
DSK ERR XXXXX 06071617363738
DSK OFL•.....•.
DUP* ERROR 01 (01 through 62) •.
OUP* TURN OFF WRITE ADDRESS KEY, START.
DUP* TURN ON WRITE ADDRESS KEY, START •.
E1 . . • • . . . • . . . •••..
E2 (2 through 8) •
E9 • . . • • •..
E10
Ell
E12
E13
E14
E15
E16
E17
E18
E20 . '.' •.
END OF ASSEMBLY xXxxx CORE POSITIONS REQUffiED

XXXXX STATEMENTS PROCESSED.
END OF COMPILATION .•...•••..•...
END OF JOB•..•.
ENT ERROR 06071617363738 •
ENTER DUP CNTRL REC . . • .

.' .

ENTER MONITOR CONTROL RECORD . . . • . .
ENTER SECONDARY PRINTER NUMBER 70-89. NONE 00. RS.
ENTER UNIT NUMBER 70-89 RS
ER1 (1 through 22) ...
ER D1 (D1 through G7) .
ER Ll (Ll through L16) ..
ER SK XXXXXX.
ERR XXXXX . . . XXX.
ERR ENTER DCP. • • . .
ERROR X ...••...
ERROR, F OR K OUTSIDE; RANGE •.
ERROR IN FIELD AT COL. XX SET SW4 TO IGNORE, OFF

TO RE-ENTER CARD •••••••.••.•••.•••.•
ERROR IN FIELD AT COLUMN XX. PHASE TERMINATED .•
ERROR, INVALID CONTROL RECORD • • • • • .
ERROR, INVALID OUTPUT UNIT CODE. • • • • • •
EXCEEDED SPECIFIED CAPACITY BY XXXXX.
EXECUTION •••••••
EXECUTION INHIBITED . • • . • • • • • • ~ • •

Form C26-S879-1
Page Revised 5/14/65

By TNL N26-0120

.138
· .• 95

.91, 110

.65
· .84
· .84

.106, 108-110
· •• 91, 92

.91,92
..••.•• 86

.85

.83

• .84
• .84
• .83
• .83

.84

.85.1

.86
•.•• 85

· •• 85
• •• 103

.131
· .24

.69, 75

.83

.91

.75, 76

.59

.59

.130

.30

.33

.92

.57,

.65

.22,

.19

.75

.76
• .19

• •• 20
• •• 132

• .75
.38

Appendix E

58

23

17~

174

Form C26-5879-1
Page Revised 5/14/65
By TNL N26-0120

EXECUTION IS INHIBITED.
FLIPER XXXXX OVERLAP.
~ORTRAN LIB NAME ENTERED
IMP ERR ••••••••••••••
INSERT 1 TO DISCONNECT OR 0 TO REACTIVATE RS ••
INVALID CONTROL RECORD
JOB ABANDONED • • • •

. JOB CARD GROUP ONLY.
LD2 (2 through 4) • • • • •
LOAD XXXXXX ••••••••
MAP ERR XXXXX XXXX •
MAX N2 ALLOW ABLE XXXXX . • • • • •

• .76
.37

• .107
.85.1
.59

••••• 147
• .37

.76

.89

• .36
.85

• .31
MOD ERR XXXXX ••••••.•. • • • • • • • .86
MORE THAN 5 CYLINDERS OF RELOADABLE OUTPUT SSW4 ON TO

DUMP OUTPUT OFF TO CONTINUE, NO OUTPUT
MUST RELOAD ..••.
N2 (2 through 8) •.•••
NO ISIM FOUND ON DISK
NO RESPONSE UNIT XX .
NO ROOM IN TABLE.•••
NO TRAILER REC. CORRECT, RELOAD COMPLETE DECK WITH

CNTR REC, AND BR TO 7404.
NOT IN TABLE • • • •
OBJECT'DIM ERROR PHASE TERMINATED ••
OBJECT NAME ERROR PHASE TERMINATED •.
PACK NUMBER ERROR ON MODULE X. SET .SSW 4 TO IGNORE

OFF TO RECOMPARE ..
PROGRAM NOT LOADED.
PSC .•••.•..••••.
PTP ERR 06071617363738
PTR ERR 06071617363738
RDER •••••.•••••
RE-ENTER OPERANDS •
RE-ENTER STATEMENT .•••••
RECORD MARK COL. 1-13 INVALID CONTROL CARD.
SOl (01 through 21) •••••
SAC
S. P. LIST IS INCORRECT
S. P. LIST IS CORRECT • •
SECTION •••••••••
SECTION NUMBER ILLEGAL, START TO RE-ENTER * DALTR.
SECTOR ••• _ .•••••.••••••••.•••••••••••
SECTOR ADDRESS ILLEGAL, START TO RE-ENTER * DALTR.
SEQ
SI .
SIC.
SYSTEM DIM ERROR PHASE TERMINATED

• .133
... 86

.83
· •• 147

.55
· •• 135 .

· •. 139
· .135
• .76
· .76

• .75
· .147
• .63
• .83

.83
• •• 138

.131
• .131

.147

• .50
.87
.150
.150
.93,~5

.93
• •• 93

.93

.139

.63
• •. 63

.•••• 76

THREE ERRORS ON ALERT MESSAGE ••• • • • • •.•
TO DISCONNECT UNIT ENTER 1, CONNECT O. RS •••
TRAILER CARD SEQ ERROR, CORRECT, AND START .•
TRP ER& .•••••••••• • ••••••• • • • • ••
TURN SWITCH 1 ON TO INITIALLY LOAD ISIM, OFF

TO RETAIN PRESENT ISIM • • • • . • • • •
TYP ERR 0607I6I7:l637~8 •••••••••••••
TYPE-IN EXCEEDS SECTOR LENGTH, START.
UNDEFINED SYMBOL XXXXX ••• • •
UNIT CODE OUT OF LIMITS. • • • • • •
UNIT CONNECTED XX • . • .. • • • . • •
WRITE AND SAVE (SEEK START STOP) ••
WRIT·E AND ZERO (SEEK START STOP) •.

Other Error Indication

Form C26-5879-1
Page Revised 5/14/65
By TNt N26-0120

.55
• •• 59

.139

·86

• • ·147
• .83
• .94
• ·135

• • ·59
· •• 59

·92
• ~92

Halt with 00467 in MAR •85

Appendix E
175

APPENDIX F

Permanent System Symbol Table Listing

Symbol Address Symbol Address Symbol Address
9CCYLO 02111 · FIXI 04124 · RSGN 03496

·9CCYLI 02113 · FLOAT 03532 · SAVE 03712
9CCYL2 02115 · FMFAC 03210 · SIX 02337
9CCYL3 02117 · FMP 03448 · SLASH 06588
9RCYLO 00513 o FSB 03412 .SWC 06078
9RCYLI 00515 · FSBR 03436 · TAN6 02346
9RCYL2 00517 · FTYPE 04628 · TEN34 02356
9RCYL3 00519 · FX1 03913 · TOFAC 03198
ft.,.TANF 02996 o FX9 02380 o TRACE 03222

. COSF 02986 · FXA 03400 · TWOPI 02301
DKARAY 02976 o FXD 03376 o TWOZ 02291
DKEND 02981 o FXDR 03388 o WACD 04412
DKLIST 02971 · FXM 03364 o WAPT 04388
ENTSCI 02946 · FXS 03340 o WATY 04364
ENTSC2 02951 o FXSR 03352 o XTYPE 04224
ENTSC3 02956 · FXZ 03903 · ZERO 03893
EXPF 02941 · HTYPE 04676 · ZRFAC 02638
FETCH 02966 · INTER 02921
LoGF 02936 o ITYPE 04508
RECORD 02961 oK 03085
SINF 02991 o LN2 02239
SQRTF 03001 · LN4 02250
.9SCPF 02388 · LN8 02261
.9SPF 02226 · LN10 02272
.ABSF 03484 · LOGE 02282
.ATYPE 04604 · MATRX 06430
• BETA 03750 .ONEZ 02364
• CMPLT 06808 .OVLAI 02469
.ETYPE 04652 • PAR 03290
.F 03083 • PI 02311
.FAC 03639 • PIOV2 02321
• FAD 03424 · PIOV4 02329
.FAXB 04244 .RACD 04484
• FAX! 04148 • RAPT 04460
.FDV 03460 .RATY 04436
.FDVR 03472 • REDO 06828
• FINDI 02898 .REP 04076
• FIX 03520 • REP3 06928

176

A - specification
i~ assembler language

in SIOC

ACCEPT statement, assembly language simulation
Adding Op Codes (FEAP)
Adding subroutines to library

Additional entry points to Library subroutines

Alter Sect"r routine
Altering assignment of diskstorage drives
Analog-Digital Control program
Analog Output Contr.ol program
Analog output setup interrupt
Analog output table
Any Check Interrupt
AODOWN status digit
Arithmetic and Input/Output Subroutines

(see also Table 5)

Arrangement of stacked input
Arrays

ASSEMBLE RELOCA TABLE control record
Assembly program (FEAP)

BEGIN CARD INPUT control record

BEGIN PAPER. TAPE INPUT control record

BEGIN TYPEWRITER INPUT control record
BETA

Blanks

Spaces (SIOC)

Lines (SIOq

CALL ADC
CALL ADC statement

CALL AO statement

CALL AOC statement

CALL DIAG statement

CALL EXIT
linkage

statement
CALL LINK or CALL LOAD linkage
CALL LINK statement

CALL MASK statement
CALL PSC
CALL R TMIEC statement
CALL SIOC statement
CALL statement
CALL UNMASK state·ment

Calling Executive Control Programs from FEAP programs
CCEND control record

CE interrupt
Changing disk address
Changing disk data
Checking errors in interrupt routines
Comments records

. COMMON

Disk Error Indication

SIOC variable
Communications Areas

. Disk Identification Map

126

51

124
134
120

122

93

71,72
43
44

6
45

56, 6
57
27
29

74
116
128
112

128

128

128

121

51

51

43
16

46
16

65

78
15

77
15
16

42

40, 42, 15
47

116
16

117
36

56, 6
92, 148

93
62

71, 74
25

85

48
3-13

3, 104

Disk Pack Label

Disk Sector Area

Form C26-5879-1

Page Revised 5/14/65
By TNL N26-0120

INDEX

13, 73, 106

12

IBM 1440, 1401, 1410 Systems Header Label Area

Equivalence Table 5,

13
104

Interrupt Indicator Table
Interrupt Subprogram Identification Map

Mainline Core Load Map

Mutual Disk Pack Label

Permanent Core Storage Area (off-line)
Permanent Core Storage Area (on-line)

Sequential Program Table

Status Table for interrupts

COMN statement
Compilation switch setting
Contact operate subprogram

Contact sense subprogram
Control codes (SIOC printer)
Control Record Analyzer Routine

Control record trap
Control records

ASSEMBLE RELOCA TABLE

BEG IN CARD INPUT
BEGIN PAPER TAPE INPUT
BEGIN TYPEWRITER INPUT

CCEND
DALTR
DATA

DCOPY

DDUMP
DEFINE OP CODE

DEFINE SYSTEM SYMBOL TABLE

DELET
DELETE OP CODE

DFINE

DFLIB

DLABL
DLOAD

I DREPL
DUP

DWRAD

End-of-job
ENDUB
ERROR STOP

FAN OK

FOR

FORLD

FORX
ID NUMBER
INTCR
INTER

INTPR

JOB
LOCNTR
LDISK
UBCR
UBF
LIBR

6
6

5

13

7
8

4, 104

6

116
21

17
16
53

74

86

128
128
128
128

36
93
34

102

96
134

135
104

135

105

107

106
100

101.1
69
92

69, 71
136
127

19

69

33

69
128

33
20
34

67, 70
137

20, 24
35

115
129

177

Form C26-5879-1
Page Revised 5/14/65
By TNL N26-0120

LIST.OP CODE
LIST TYPEWRITER
LOCAL
NAME
OBJECT CORE
OFFLN

OUTPUT CARD
OUTPUT PAPER TAPE
PAUS

POBJP
PSTSN
PUNCH RESEQUENCED SOURCE DECK
PUNCH SELF -LOADING CARDS
PUNCH SELF-LOADING TAPE

PUNCH SYMBOL TABLE
SPS

SPSX

STORE CORE IMAGE
STORE RELOADABLE
SYSTEM SYMBOL TABLE
TWO PASS MODE
TYPE
TYPE SYMBOL TABLE
XEQ
XEQS

Conversion specifications
Alphameric (SIOC)
Numerical (SIOC)

Core load
Control records
Definition
Map
Scheduling

COlTective procedures (SAC program)
C'IVT label

DAL TR control record
DA TA control record
DCOPY control record
DDUMP control record

Define Disk Pack Label routine
Define Floating Constant (DFLC) instruction
Define FORTRAN library subroutine name routine
Define Scan Image (DSCI) instruction

DEFINE OP CODE control record
Define Parameters routine
DEFINE SYSTEM SYMBOL TABLE control record
DELET control record
Delete Program routine
DELETE OP CODE control record
Deleting Disk Areas
Deleting Op Codes
DFINE Control record
DFUB Control record
Diagnostic Aids
Diagnostic control program
Digital Display Unit
DIM table normal location
Disconnect routine (SIOC)
Disk Identification Map
Disk I/O assembly language simulation
Disk Pack Identification numbers
Disk Pack Label

178

135
128
35

129
127

19
128
128
69

20, 24
19, 24

129
129

129
128

68, 70
68, 70

128
128
128
127

69, 70
128

69, 70
69, 71 .

51
49

33-36
32

5, 41
41

60
8, 140, 142-145

93
34

102

96
106
114
107
112

134

104
135
104
103
135

148, 149
135
105
107

63
64
49

104
59

3
124

73, 106
13

Disk Sector Area (Sector 19663) .
Disk Utility Progrilm
Disk-to-disk routine

Disk-to-Output routine
DlABL control record
DLOAD control record
DREPL control record
DUP control record
DUP error detection and correction
DWRAD, control record

E-conversion
In assembler language

SIOC
End-of-job control record
ENDUB control record
Entering the FORTRAN source program
Equivalence Table
Equivalence table normal location
Error count retrieval
Error count retrieval routine
Error detection and correction (I/O)
Error messages
ERROR STOP control record

E'IV area
Exception core load
Executive Control programs
Executive Transfer Vector

F specification

FAC

In assembler language
SIOC

F ANDK control record
FEAP error messages
FEAP Modification Program
FEAp symbol table output
FEAP output
FEAP calls to Executive routines
FETCH

statement
assembly language simulation

FIND statement
Fixed word length, how to define
Fliper routine
Floating accumulator (FAC)
Floating point mantissa, how to define
FOR control record
FORLD control record
Format error codes (SIOC)
FORMAT statement (SIOC)
FORMAT assembly language simulation
FORTRAN II-D

Compilation switch settings
control records
Entering the source program
Loading Switch settings
source program error codes (Table 3)

FORTRAN Executive Assembly Program (FEAP)
FORTRAN output
FORX control record

H-specifica tion
In assembler language
SIOC

12

90

102

95
106
100
101.1
69

107
92

126

51, 52
69,71

136
20

5, 35
104

62
87
82

172
127
44
60
39
41

126
51, 52

121
19

129
134
131
110
117

15
124

15

105, 115
37

121

105, 115
69, 70

33
50
49

125.
14
21

19, 20
20

138
23

112

69, 70

125
51

C26-5879-1

~~~ 
International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10B01 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085.0
	085.1
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100.0
	100.1
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179

