File No. 1620-36
Form C26-5774-1

IBM Systems Reference Library

IBM 1620 Monitor Il System
Reference Manual

This publication describes the 1620 Monitor II System, a
combined operating and programming system. This system
includes a Supervisor Program, a Disk Utility Program, an
sps 11-D Assembler, and a FORTRAN 11-p Compiler. The latter
three programs operate under control of the Supervisor
Program to provide continuous operation.

Also described is the 1620-1443 Monitor II System. This sys-
tem is designed to use the 1BM 1443 Printer as an integral
unit in the processing of source programs.

This is a reprint of an earlier publication (C26-5774-0) incor-
porating the following Technical Newsletters:

Form No. Pages Date

N26-0057 Cover, 3-4, 17-18, 21-22, 25-26, 1/20/64
29-30, 37-38, 49-50, 53-54,
55-56, '87-88, 107-108, 109-110,
113-114, 117-118, 123-124, 125-
126, 127-128, 131-132

N26-0064 Cover, iii-iv, 5-6, 93-94, 101- 2/20/64
102, 102.1-blank, 117-118, 119-
120, 121-122, 123-124, 125-126,
129-130, 131-132, 133-134, 135-
136, 143-144, 153-154

N26-0080 Cover, iii-iv, 135-135.1, 135.2- 5/22/64
135.3, 135.4-135.5, blank-136

N26-0091 135-135.1, 135.4-135.5, 135.6- 10/1/64
136 .

N26-0095 1-2, 3-4, 5-6, 11-12, 13-14, 23- 12/14/64

24, 24.1-blank, 35-36, 39-40, 49-
50, 55-56, 65-66, 67-68, 69-70,
71-72, 73-74, 77-78, 85-86, 89-
90, 90.1-blank, 111-112, 126.1-
blank, 131-132, 133-134, 135-
135.1, 135.6-136, 137-138

N26-0111 3-4, 7-8, 15-16, 23-24, 39-40, 83- 4/16/65
84, 107-108, 123-124, 129-130,
133-134, 135.4-135.5, 135.6-136,
155-156

The original publication and applicable newsletters are not obso-
lete.

Copies of this and other IBM publications can be obtained through IBM Branch Offices. A form has
been provided at the back of this publication for readers’ comments. If the form has been detached,
comments may be directed to: IBM, Programming Publications Dept. 234, San Jose, Calif. 95114

© International Business Machines Corporation 1963

i

IBM 1620 Monitor II System

Supervisor Program
Monitor Control Records

Stacked Input

Monitor Control Record Analyzer Routine

I1/0 Routine

I1/0 Error Routine

Error Count Retrieval Routine

Loader Routine ...

Monitor II System Communications Areasccccc....

Disk Utility Program
Write Addresses Routine

Alter Sector Routine

Disk-to-Output Routine
Load Programs Routine

Replace Programs Routine

Disk-to-Disk Routine

Delete Programs Routine

Define Parameters Routine

Define Disk Pack Label Routine

Define FORTRAN Library Subroutine Name

Error Detection and Correction

FORTRAN and SPS Output

1620 SPS II-D ...

Introduction

Symbolic Programming

Coding Sheet ..

Statement Writing

Operands

Types of Addresses Used as Operands -......cceccevenmeenenn
Programming the 1620/1710 Using SPS II-D

Declarative Operations

1620/1710 Imperative Operations
Processor Control Operations

1710 Product-Area Macro-Operations
1620 Subroutines

Classification of Subroutines

Subroutine Macro-Instructions

Floating-Point Arithmetic

Description of 1620 Subroutines

Adding Subroutines ..

i

Contents

Page

1/0 Macro-Statements 81
Linkages for GET, PUT, and SEEKccooviiiiiiivnnns 82
Linkages for CALL LINK and CALL LOAD 82
Linkage for CALL EXIT 82
Input/Output Declarative Statementscccocececvenceen. 82
SPS II-D Processor ... 84
Operating Procedures 84
On-Line Error Correction 87
Post Assembly Phase .. 87
Execution of SPS II-D Object Programsc..ccccceeceeee- 89
Rules of Relocatability 90
SPS II-D Modification Program 91
FORTRAN II-D_.... “ 93
FORTRAN II-D Language 93
Arithmetic Statements 98
Control Statements 99
Input/Output Statementsccoceee..... 103
Specification Statements 106
Library Functions 112
Arithmetic Statement Functionsccccccceceeiecenencccens 114
Subprogram Statements 115
FORTRAN II-D Processor 117
General Compilation Process 117
FORTRAN II-D Control Records 118
Entering the Source Program 119
Object Program Execution 126
Operating Procedure k 129
Adding Subroutines to the FORTRAN Library 131

FORTRAN Subprograms Written in SPS

Disk Storage Location of the FORTRAN Compiler 135
IBM 1620-1443 Monitor X Systemccccoeeeeee 135.1
Supervisor Program 135.1
Disk Utility Program 135.1
SPS II-D .. 135.1
FORTRAN II-D 135.4
Monitor II System Loader 136
Card Formats 136
Operating Procedures 136
Appendix A ... 138
Appendix B ... 154
Index 156

Preface

In data processing installations, a large amount of
computer idle time may be spent between jobs to set
up the computer for the next job. Programs must be
readied, data must be readied, etc. The amount of
time spent in these activities is greater in installations
where many different jobs are part of the daily sched-
ule. Because computer utilization is usually based
upon the time spent in executing a job, utilization may
appear to be low where multiple jobs increase setup
time.

To increase 1620 computer utilization, the user may
now adopt the 1620 Monitor Programming System.
The primary function of a monitor system is to pro-
vide continuous operation during a sequence of jobs
which might otherwise involve the manual loading of
several independent programming systems. To do this,
the Monitor coordinates computer activity by pro-
viding a communication region for independent pro-
gramming systems and by transferring control be-
tween them. Operation is continuous and setup time
is reduced. This effects a substantial time saving in
computer operation and allows greater flexibility in
programming. The monitor concept — to control the
operation of several unrelated routines and machine
runs so that the computer and computer time are
used advantageously — is not new. This concept, pre-
viously employed by other large-storage-capacity data
processing systems, is made possible for the 1620 by
the 1311 Disk Storage Drive.

Through the use of Monitor II, it is possible to
assemble, assemble and execute, compile, compile
and execute, and execute programs stored in disk
storage. In addition, the normal disk storage main-
tenance tasks, such as storing programs, can be per-
formed by the system.

A stacked input arrangement provides direction for
the system. This direction is given in the form of
control records, which are prepared prior to the
actual operation by the programmer and/or operator.

iv

These records direct the sequence of jobs without in-
terrupting continuous operation. A typical sequence
of jobs could be a compilation of FORTRAN programs,
assembly of sps programs, compilation and execution
of a FORTRAN program, execution of a disk-stored pro-
gram, and punching of a disk-stored program into
cards.

In addition to substantial saving of computer time,
Monitor II reduces the amount of programming time
required by the user. This is made possible through
the sharing of common subroutines by unrelated pro-
grams. For example, input and output for all sps ob-
ject programs can be performed by a common input/
output subroutine. Because most programs require a
subroutine of this nature, it has been made an integral
part of the Monitor II System, available to all 1620
user programs.

To use the Monitor System, the programmer must
pay particular attention to control records and stacked
input arrangements described in this publication. In
addition to directing the sequence of jobs, control
records allow the user the flexibility of assigning the
specifications for each job. Various jobs, each with its
own control record, are entered into the 1620 in the
stacked arrangement. Jobs are performed, in the order
in which they are encountered, under control of the
Monitor and without operator attention. However,
some messages generated by the Monitor regarding
the status of processing may require operator inter-
vention.

The 1M 1620 Monitor II System is comprised of
four separate programs:

Supervisor Program
Disk Utility Program
SPS 1I-D

FORTRAN II-D

The material contained in this publication is organ-
ized and presented under these headings.

Monitor II (Figure 1), a collective name for four dis-
tinct but interdependent programs — Supervisor, Disk
Utility, sps 11-p, and FORTRAN m-D programs — is a
powerful, combined operating and programming sys-
tem. Systems of this type have previously been avail-
able only on other large-storage capacity computers.
The 1311 Disk Storage Drive with two-million posi-
tione of storage makes possible the implementation of
such a system on the 1620. Although both sps and
FORTRAN are included with the Monitor System, either
may be deleted from the system, if desired.

The complete Monitor System resides in disk stor-
age and only those routines or programs required at
any one time are transferred to core storage for exe-
cution. This feature, which is common to a Monitor
System, minimizes core storage requirements and per-
mits segmenting of long programs. It makes any one
of many programs accessible to the computer with
minimum delay or manual operation.

Inclusion of sps and FORTRAN programming lan-
guages in the Monitor System facilitates development
of a library of user object programs. Programs can

1620
—— oo e Monitorl] == —m c— e c—
r System

1620
Supervisor
Program

Y Y Y
1620 1620/1710 1620

FORTRAN II-D SPS O-D Disk Utility
Compiler Assembler Program

R |

Figure 1. 1620 Monitor II System

IBM 1620 Monitor Il System

be stored in cards or paper tape, as they were stored
in the past. In addition, they can be stored in disk
storage without the necessity of assigning actual stor-
age areas, remembering or documenting the storage
assignments, and updating assignments and documen-
tation as conditions change. These disk-stored pro-
grams can be referred to by a name or number when
called for execution. If a program is added to the
user’s repertoire of programs, the storage locations of
the other programs may be adjusted to prevent the
overlapping of data in disk storage. An account of
available disk storage is kept for the user as adjust-
ments are made to disk storage.

To make effective use of disk storage, a common
disk working area is maintained for all facets of the
Monitor System. One use for this area is to store inter-
mediate output from FORTRAN compilations or sps
assemblies to speed up these operations.

Approximately 22 percent of disk module zero is
used for the Monitor System itself. The remainder
of disk storage, with the exception of a few sectors
on each additional disk module, can be used for user
programs and data records.

The use of disk storage is controlled by three disk-
stored tables. The first and major table is the Disk

~ Identification Map _known as pmm. Each disk-stored

item (program, data, or table) has a pimM entry which
contains information on where the item is stored,
how many disk sectors it occupies, and, if it is a
program, its core storage address. Thus, to refer to
an item, it is only necessary to use its pIM entry num-
ber. For those who prefer to use an alphabetic name
instead of a number, a second table, called Equiva-
lence table, lists the names and their equivalent pim
entry numbers. The third table, a Sequential Program
table, shows the assignment of disk storage by piM
entry numbers and the availability of unassigned
storage. Maintenance of these tables is performed
automatically by the Monitor without user supervision
or direction.

To examine the Monitor System, it is best to sum-
marize the functions of its various parts: Supervisor
Program, Disk Utility Program, sps, and FORTRAN.
Subsequent sections present the detailed information

IBM 1620 Monitor 11 System 1

required to program and operate. each one,
The four primary functions of the Supervisor Pro-
gram are:

® Input/output

® I/0 error detection and correction
® Program loading

¢ Control

Individual routines which perform these functions
follow. : .

Input/Output routine, which performs all I/0O
functions (card, paper tape, typewriter, or disk)
for the Monitor System.

I/0 Error routine, which provides for error detec-
tion and correction for all I/O operations per-
formed by the Input/Output routine.

Loader routine, which loads object programs into
core storage from card, paper tape, typewriter
or disk input.

Monitor Control Record Analyzer routine, which
records and interprets jobs to be performed, and
transfers control to other routines or programs
while maintaining communication so that control
may eventually be returned to itself.

Because all input/output is processed by the In-
put/Output routine, all data, programs, or control in-
formation from any input unit enter the 1620 cru
through this routine. The Input/Output routine is able
to segment the continuous flow of input information
into discrete jobs. Certain information is recognized
as control information. With the proper control infor-
mation, the Monitor could, for example, execute a
particular series of jobs consisting of (1) compiling
a FORTRAN program and executing it using supplied
data from any input source, (2) loading an sps object
program from disk storage and executing it using
data supplied from any input source. All of this can
proceed automatically from one task to the next
without stopping the machine for operator action.
Thus, ease of operation is achieved with increased
efficiency and throughput.

The Input/Output routine recognizes Monitor con-
trol information by two record marks (====). If the
first two columns of a card or tape record contain
record marks, the control information is examined by
the Monitor Control Record Analyzer routine to see
which one of twelve possible tasks is to be performed
next.

1. === joB, initiates a new job.

2. === sps, indicates that an sps source program(s)
is to be assembled.

3. === spsx, indicates that an sps source program
is to be assembled and executed.

4. ===F FoOR, indicates that a FORTRAN source pro-
gram(s) is to be compiled.

5. === FoRx, indicates that a FORTRAN source pro-
gram is to be compiled and executed.

6. === pup, indicates that a Disk Utility routine is
to be executed.

7. === TvPE, indicates the next control record is
to be entered from the typewriter by the opera-
tor.

8. === paus, allows operator action.

9. == xEQ, initiates loading and execution of an
sps object program,

10. 4==F xEQs, initiates loading and execution of
FORTRAN Or SPS object programs with subroutines.

11. ======, is used to indicate the end of a job.

12. ===, serves as a Comments record.

These control records can be classified as being one
of three types. Type 1 provides control information
which is used as instructions to the Supervisor Pro-
gram. Type 2 provides for loading and starting the ex-
ecution of user-written programs, using data from con-
trol records to initialize various subroutines used by
programs. Type 3 provides for functions similar to
type 2 except that the ForTRAN, sps or the Disk Utility
Program with its functional capabilities is also execut-
ed.

When FORTRAN, sps, or the Disk Utility Program
is executed, all input records are examined for
an asterisk (*) in the first position to determine
if they are control records. These records have two
functions: (1) they provide information about specific
Disk Utility jobs to be performed, (2) they provide
the specifications for FORTRAN compilations or sps
assemblies.

Ten Disk Utility Control records provide various
user options. Each of these control records transfers
control to an individual routine to perform the desired
function.

1. *pwraAp, indicates sector addresses are to be
written on a disk pack.

2. "pALTR, allows the operator to alter disk-stored
data from the typewriter.

3. "popumr, indicates disk-stored data or programs
are to be outputted in cards, paper tape or on
the typewriter.

4. "prLoap, indicates a program is to be loaded into
disk storage from cards, paper tape, or the work-
ing cylinders.

5. "pREPL, indicates a disk-stored program is to be
replaced by another.

6. ®*pcopy, indicates that data or programs are to
be copied into another area of disk storage.

7. "pELET, indicates a program is to be deleted
from disk storage.

8. *prINE, allows changes to be made to the Moni-
tor System specifications.

9. ®pLABL, is used to write identity labels on disk
packs.

10. *prrLis, allows names to be assigned to FORTRAN
library subroutines.

Examples of FORTRAN and sps asterisk control records
are:

FORTRAN SPs. Description
*poBJP4 *OUTPUT CARD Punch object program
into cards
*psTSN4 *PUNCH SYMBOL Punch Symbol Table
TABLE into cards

The many routines of the Disk Utility Program are
designed to perform the necessary but tedious disk
housekeeping functions. Items stored on the disk
or items to be stored on the disk can be referred to
symbolically; that is, by a symbolic name. The Moni-
tor System will allocate and keep track of disk storage
areas for the user.

The sps 11-p assembler translates programs written
in symbolic language into machine language. The
symbolic language is an extension of 1620/1710 sps.
Only one pass of the source statements is required be-
cause intermediate output is stored on the disks. Also,
the Symbol table is disk stored, thereby allowing for
assembly of programs with a great number of labels.
An additional symbol table, known as the System
Symbol table allows different sps source programs to
use common labels.

I/0 macro-instructions are provided in the sps
language to relieve the programmer of writing Input/
Output routines in source programs for card, paper
tape, or disk operations. Thus, all I/O functions in-
cluding error detection and correction can be stand-
ardized. Ger and PuT macro-instructions are used for
reading and writing. These instructions generate ap-
propriate linkages to the Input/Output routine which
does the actual reading or writing (card, paper tape,
or disk). :

To eliminate the necessity of having an entire ob-
ject program in core storage for execution at any one
time, a CALL macro-instruction is provided. This in-
struction enables an object program in core storage
to be overlayed with instructions from disk storage.
Thus, the size of an object program can be virtually
unlimited.

Immediately following assembly, an object program
is located in the disk working cylinders. It can be
stored in disk storage without outputting it in some
other form, thereby greatly reducing program loading
time. Program listings can be obtained in either card
or typewriter form. The program can also be immedi-
ately executed or punched out into cards or paper
tape for loading and executing at any later time.

Any library subroutine set may be used by an
object program. User-written relocatable programs
can be automatically added to the library subroutine
set, if desired.

The FORTRAN compiler translates programs written
in the FORTRAN 1-D language into 1620 machine lan-
guage. Because of the large storage capacity of the
1311, source programs are read into the computer
just once. Intermediate output is stored in the disk
work area to minimize input/output time. Following
compilation, an object program may be executed im-
mediately, punched into cards or paper tape, or stored
in disk storage for execution at a later time.

Statements are provided in the FORTRAN language
that permit the use of disk storage. These statements
provide for (1) defining the size and quantity of data
records to be stored, (2) reading and writing on disks,
(3) positioning the disk access mechanism for read-
ing or writing, (4) returning control to the Supervisor
after execution of a FORTRAN object program, (5) over-
laying programs in core storage with other programs
from disk storage and executing the overlaying pro-
grams.

Subprograms can reside in either core or disk stor-
age. Disk-stored subprograms can be called into core
storage only when needed. Thus very large problems
can be accommodated.

New floating-point and subscripting subroutines,
which use the Indirect Addressing feature and com-
piler algorithms, provide for efficient object program
execution. Subroutines written in sps 1-p language
can easily be added to the rORTRAN subroutine library.
Also, subprograms written in sps can be called for
execution by FORTRAN programs or subprograms.

Object programs, either sps or FORTRAN, can be
punched into cards or paper tape following assembly

IBM 1620 Monitor II System 3

or compilation, if desired. However, assembly or
compilation time is shortened if the object program
is stored in disk storage rather than cards or paper
tape. A standard System Output format, which may
be in absolute or relocatable form, is used to output
object programs. Only the programs outputted in the
standard format can be reloaded by the Monitor
System. . '

sps and FORTRAN source programs are assembled or
compiled using a given mantissa length, noise digit,
subroutine set, etc., specified in a common Communi-
cations Area. These given specifications are used for
all assemblies or compilations; however, the user may
change one or more of the specifications, such as
mantissa length, with control records for a particular
assembly or compilation.

SPS Or FORTRAN source programs can be entered into
the 1620 from cards, paper tape, or typewriter. Object
programs, however, can be entered from cards, paper
tape, or disk storage. Data, of course, can be entered
from any input source as directed by an object pro-
gram.

sps 11-p and FORTRAN II-D object programs will be
in a System Output format. System Output consists
of relocatable or absolute records. The relocatable
format allows the programmer to specify a different
core storage address for the start of a program each
time it is loaded. All addresses within a program that
are being relocated are adjusted relative to a new
starting address. The starting address (relocation ad-
dress) is specified by means of a control card at load
time. Absolute format, which can be generated by the
sps 1-D assembly program, is assembled to load to a
fixed core storage area. ‘

Machine Requirements

The Monitor II System operates on a 1620 System,
Model 2, which has a minimum of 20,000 positions of
core storage, a 1311 Disk Storage Drive, Model 3, and
index registers. In addition, the Automatic Floating-
Point Operations feature is required to execute FOR-
TRAN object programs.

Operation

The Monitor II System is available in either card or
paper tape versions, ready for loading to disk storage.
After either version is loaded, both cards and paper
tape may be used with the programs.

The system is self-loading, i.e., it contains the load-
ing instructions that enable it to load itself into disk
storage. For handling convenience, a sequence num-
“ber is punched in card columns 76-80 of card. input.

Disk storage drive 0 (address block 00000-19999) is
required for storing the Monitor System. A descrip-
tionr of the loading process, including operating pro-
cedures, is included under MONITOR 11 SYSTEM LOADER.

During operation of the Monitor System, the disk
pack containing the Monitor System can be on any
disk module. To begin operation of the Monitor Sys-
tem, load the Supervisor Program into core storage
from disk storage.

Note: Indirect Addressing must be selected on.

Loading the Supervisor Program is accomplished by
entering from the typewriter or a card, the following
instructions:

Core Storage

Address of

Instruction Instruction
00000 34 00032 00701
00012 36 00032 00702
00024 49 02402
00031 X
00032 Y1963611300102

X identifies the form of input for the Monitor Control
records: 1 for typewriter, 3 for paper tape, and 5 for
cards. Y specifies the disk drive code (1, 3, 5, 7) iden-
tifying the disk module where the Monitor II System is
loaded. (Any time the Monitor pack is moved to a
different drive, this sequence of instructions must be
repeated.)

When the Release and Start key or Load key is
depressed, the Supervisor Program is read into core
storage and the first Monitor Control card is read
in under control of the Supervisor Program by the
Monitor Control Record Analyzer routine.

This routine reads all control records and types them
out to inform the operator of the status of processing.
If operator intervention is required for any reason, the
routine will type a message and halt the 1620. Process-
ing can be resumed as explained in the section concern-
ing the MONITOR CONTROIL RECORD ANALYZER ROUTINE.

The Parity, I/0, and Overflow Program switches
should be on ProcraM to operate the Monitor II System.

Disk Storage Requirements

Portions of cylinders 24-25 and 78-99 of module 0 are
used by the Monitor System. Unused portions of
these cylinders can be listed using the Disk-to-Output
routine to obtain an availability list. A list of the as-
signed cylinders and piM entry numbers associated
with the programs, routines, and tables stored in this
disk area follows.

_Program/Table Cylinders DIM Numbers
Working Storage 00-23 1
DIM table 24 3
Equivalence table 25 2
FORTRAN Subprogram 80, 84 138, 147, 149,
Loader 150, 152, 157
FORTRAN Library Sub- 81 *10-39, 170-199
routines
SPS Library Subroutines 82-83 **40-130
FORTRAN 1/0 and Arithme- 78,79, 144-146, 200-202
tic Subroutines 84, 97
FORTRAN Compiler 79, 86-90 136-137, 153,
156, 203
Disk Utility Program 85,91-92 139-143, 154, 155
SPS Assembler 93-96 8, 9, 131, 132
SPS Subroutine Supervisor 85 133
Supervisor Program with 1/0O 98 134, 148
Routine
System Output Loader Routine 98 135
1440, 1401, 1410, Systems 99 166-169
Header Label Area ***
Monitor Disk Pack Label**#* 99 158-161
Mutual Disk Pack Identifica- 99 162-165
tion Label ***
Sequential Program table *** 99 4,5,6,7
System Area 99 151

*Only DIM entries 10-25 and 170-185 are in use when the
system is delivered.
**Only DIM entries 40-57, 70-87, 100-117, and 130 are in
use when the system is delivered.
***Present on all available modules.

Any program or routine not to be used may be de-
leted from disk storage using the Disk Utility Pro-
gram, Delete Programs routine. All areas are assigned
automatically to module 0 when the system is initially
loaded; however, certain assignments can be altered
by the user as described in the section concerning
1620 Disk Utility Program, under DEFINE PARAMETERS
(DFINE) cONTROL carp. With this entry it is possible
to utilize more than one disk storage drive and to
enlarge or shorten the tables used by the Monitor
System.

WORKING CYLINDERS

Cylinders 00-23, reserved for working storage, are
available to every program. This area is not available
for permanent storage of programs and data. This
area is identified by piM entry 0001.

The working cylinders may be thought of as a
“scratch pad”; i.e., an area for storing intermediate
results. These results should be moved to another disk
area if they are to be retained for further use. Be-
cause the Monitor System uses this area to perform
its function, the contents of the area are continually
changing. However, an object program will occupy
the area at the beginning of the working cylinders
immediately after compilation or assembly is com-
pleted.

EQUIVALENCE TABLE

When a user’s object program, identified by name,
is loaded into disk storage by its compiler or by the
DLOAD or DREPL routines of the Disk Utility Program,
its name as well as its piM entry number is entered in
the Equivalence table. Sixteen digit positions are re-
quired for each entry, twelve for the 6-character al-
phabetic name and four for the piM entry number
that starts with 0001. Eighty sectors with a capacity
of 500 program names are reserved to store the Equiv-
alence table immediately following the standard pim
table (cylinder 24).

When the Monitor System is delivered, the first 51
entries are reserved for the system, fifty for FORTRAN
library subroutine names and one for the sps 1-p
modification program. Unused names in the first 50
entries will be identified by a field of 16 nines.

When a name, other than a FORTRAN subroutine, is
added to the table, it is placed in the 16 positions fol-
lowing the last entry. When a name, other than a
name from the first 50 entries, is deleted from
the table, all entries in higher-numbered positions are
shifted left to overlay the deleted entry. Thus, the
table, with the exception of the first 50 entries, will
contain only those entries that are in force at any
one time. The rightmost position of the table is identi-
fied by a record mark.

DISK IDENTIFICATION MAP (DIM) TABLE

The Supervisor Program, Disk Utility Program, ses

assembler, and FORTRAN compiler use this table to find

subroutines, data areas, or tables in disk storage. The

piM table on cylinder 24 can accommodate up to 999

20-digit entries. One entry is required for each pro-

gram or data area permanently stored in disk storage.
The format of the 20-digit v entry follows:

DDDDDDSSSCCCCCEEEEE =+

poopop is the disk sector address of the program or
data.

Sss is the sector count.

&cece is the core address. If this field is all 9%, the
program is in System Output format (see sYSTEM
ourput FORMAT). If the units position is flagged,
the Subroutine Supervisor is used to Ioad the pro-
gram.

EEEEE is the entry address. This address is relative to
the load address (first core address to be loaded)
for programs in relocatable format.

==, %_, =, or =F is the rightmost character of a pmm
entry.

These characters indicate the following conditions

about a referenced program.

IBM 1620 Monitor II System 5

Character File Protected Permanently Assigned
=+ Yes No
£ Yes Yes
=+ No No
+ No Yes

Note: (1) That a file-protected program can be
read but not written because it has read-only flags
written in all (or any one) of the sector addresses in
the disk area which it occupies. If read-only flags are
written by a user’s program in sector addresses where
a program is stored, that disk storage area will not
be “file protected,” however, data cannot be written
in individual sectors which contain read-only flags.
(2) That a permanently assigned program cannot be
repositioned (moved) in disk storage because it has
been assigned to a given address by the user.

The Supervisor Program locates a piM entry in the
following manner:

1. It refers to the Equivalence table to find the

4-digit M entry number.

2. It doubles this number and adds the sum to

048000.

3. It uses the leftmost five digits of the result to

locate the disk sector of the pm table.

4. It uses the rightmost digit of the result to find

the particular pim entry.

The pim table can be expanded (see DEFINE PARAM-
ETERS ROUTINE) to contain up to 4995 pim entries, an
increase of 999 entries for each additional cylinder, 4
additional cylinders maximum.

SEQUENTIAL PROGRAM TABLE

The second through eighty-first sectors (80 sectors) of
cylinder 99 are reserved on each disk pack for a Se-
quential Program table which lists the programs,
tables, and data areas sequentially by piM numbers,
and available storage space by special coding. The
Sequential Program table is used by the 1620 Disk
Utility Program to determine the order of programs
and available storage space. When a program is add-
ed to or deleted from disk storage, the table is updat-
ed to reflect the new squence. Each 80-sector table
will accommodate up to 2000 4-digit entries. Three
types of entries are included in a table.

1. piM entry numbers for every program or data
area specified in the pim table.

2. Available sector count to indicate the number
of available sectors between programs or data
within cylinders.

3. Cylinder entry numbers to identify the beginning
of each cylinder.

Available sector numbers always begin with 9
(9xxx); the three rightmost digits denote the number
of consecutive available sectors. For example, 9021
indicates that 21 consecutive sectors are unused with-
in a cylinder. A maximum of 200 available sectors
can be represented by an entry.

Cylinder entry numbers always begin with 70
(70xx); the two rightmost digits represent the cylin-
der number. One hundred of these entries are con-
tained in the table, one for each of the 100 cylinders
numbered 00-99.

An example of how the three types of entries might
appear in a Sequential Program table for cylinders
48-52 follows: ‘

7048 0434 0435 7049 0436 9010 0437 7050 0437
7051 0437 7052 0437

where the programs identified by piM entry numbers
0434 and 0435 occupy all 200 sectors of cylinder 48,
and the programs identified by piM entry numbers
0436 and 0437 occupy all sectors of cylinders 49-52,
with the exception of 10 unused sectors between the
two programs in cylinder 49. Note that programs that
overlap cylinders will have the associated piM entry
number repeated for each cylinder on which it is
stored.

The length of the Sequential Program table is 80
sectors unless changed by a pFINE control record (see
DISK UTILITY PROGRAM). Fifty sectors should provide
sufficient space in the table if 1000 programs are to
be written on a disk pack. Therefore, the user may
want to lengthen or shorten the table for his particular
needs.

IBM 1440, 1401, 1410, Systems Header Label Area

To facilitate the processing of common disk packs, a
standard alphabetic identification label is created on
the 1401, 1410, or 1440 Systems. This label is not used
by the 1620 System. The disk storage area (first 19
sectors of the last disk track of the last cylinder) re-
served for this label can be released for other storage
purposes, using the peLer Disk Utility routine, if a
disk pack will be used with the 1620 only. The pmm
entries for the four modules that may be connected
to the system are 166, 167, 168, and 169.

Mutual Disk Pack Label

A 5-digit disk pack identification label that can be
used by the other systems (1440, 1401, or 1410) must
be written on the 32nd through 36th position on the
last sector of cylinder 99. This sector should be given
the sector address 00199 regardless of the addressing

scheme used on the remainder of the disk pack. The
sector can be labeled automatically using the Define
Disk Pack Label routine of the Disk Utility Program.

Monitor Disk Pack Label

The first sector of cylinder 99 is a label sector, that
is, it contains a label to identify the disk pack. Each
disk pack used by the Monitor System must include
this label. A 5-digit disk pack identification number
in the five leftmost positions of the sector constitutes
the label. This number is used to provide protection
for user’s records as explained in the section entitled
DISK PACK IDENTIFICATION NUMBERS. This file-protected
label must be generated using the Define Disk Pack
Label routine. The piM numbers for these labels are:
0158, 0159, 0160, and 0161 for packs placed on
modules 0, 1, 2, and 3, respectively.

Core Storage Requirements

The Monitor II System requires certain areas of core
storage in order to operate. Core storage positions
00100-02401 must be permanently assigned to the
Monitor II System; however, positions 00000-00099 and
02402-19999 are only temporarily assigned to the sys-
tem. A temporary area is available to the user for exe-
cution of object programs. The core storage layout for
the Monitor II System follows.

Inter~Phase ~ May be Used by Object Program

Arithmetic Table

System Communications

1/O Routine,

1/O Error Routine,
Loader Routine and
Initializing Routines.

Supervisor Program, Monitor

Control Record Analyzer

Routine, SPS Processor,

and FORTRAN Compiler,
(May be Used by Object Programs.)

Available Storage

——

00000 ~ 00099
00100 - 00400

00402 - 00439
00440 ~ 02401

02402 - 19999

IBM 1620 Monitor II System

7

Supervisor Program

The Supervisor Program performs the control func-
tions and Input/Output (1/0) functions for the 1620
Monitor System. The FORTRAN 1-p compiler and the
sps 11-D processor, under control of the Supervisor Pro-
gram, can be used to compile or assemble machine
language object programs. The Disk Utility Program,
also under control of the Supervisor Program, can be
used to write disk addresses, to alter a disk sector of
data from the typewriter, to load, update, and move
programs in disk storage, to delete programs from
disk storage, and to copy data, disk to disk.

SPS II-D Or FORTRAN II-D object programs can be
loaded from cards or paper tape into disk storage un-
der control of the Supervisor Program. Because the
I/O functions are performed by a routine contained
in the Supervisor Program, the programmer need not
concern himself with writing these routines in sps
source language. By use of a macro-instruction in the
sps source program, cards and paper tape can be
read and punched, data can be stored and retrieved
from disk storage, and data can be read and typed
from the typewriter under control of the I/O routine
in the Supervisor Program. When a macro-instruction
is encountered in a source program, linkage instruc-
tions, which provide an exit to an I/O routine, are
created in the object program. If desired, the user
may manually code linkage instructions without the
use of macro-instructions. Manually coded linkage
instructions offer certain input/output options, unob-
tainable with macro-instructions. Error checking and
correction procedures are a part of the I/O routine.
The Supervisor and Disk Utility Programs use the
1/0 routine to perform their assigned tasks.

Monitor Control Records

Although the Monitor Control records are described
in terms of cards, these records can be in paper tape
or typewriter form.

The input to the Supervisor Program consists of
one or more “job decks” (Figure 2). A job deck, as
the term is used in this manual, may be a program
to be compiled or assembled, a combination of these
two (including data); it may also be a series of Disk
Utility Program operations. The Processing of each

job deck is controlled by the Supervisor as specified
by the Monitor Control card that precedes it.

When a Monitor Control card is read, the program
required to do the job is read into core storage from
disk storage. The program then processes input until
the end of the job deck is reached, a new Monitor
Control card is encountered, or an error occurs. When
the end of a job deck is reached or a new Monitor
Control card is encountered, the Supervisor Program
is reloaded into core storage from disk storage, and
the process is repeated. If an error occurs, a message
will print to identify the error, and the remainder of
the job will be processed. If it is not possible for the
job to continue, the Supervisor Program will skip to
the next job. All Monitor Control records, with the
exception of those entered from the typewriter, will
be typed out on the 1620 console typewriter.

The 1620 Monitor II System uses eleven Monitor
Control cards to indicate the processing required of
the 1620 Supervisor Program. The manner in which
the Supervisor handles each of these cards is describ-
ed in Figure 3.

Operation Codes

An alphabetic pseudo operation code, left-justified in
columns 3-6, is used to identify each of the eleven
Monitor Control cards. By examining the operation
code, the Supervisor Program is able to determine
what processing action is required.

JoB

A joB operation causes (1) the description or operat-
ing instructions contained in the yoB Monitor Control
card to be typed, (2) meodifies the module, if re-
quired, and (3) checks to ensure that the proper disk
packs have been attached by the operator.

SPS

This operation causes the sps 1-p assembly program
to be read into core storage from disk storage and to
be executed. The assembled object program may be
stored in disk storage and an entry made in the piM
(Disk Identification Map) table.

X

2

h one exception: after the object program is as-
ibled, it is then executed.

3 spsx operation is similar to the sps operation,

t

FOR operation causes the FORTRAN 1-D compiler
gram to be read into core storage from disk stor-
» and to be executed. The object program can be
red in disk storage. If this occurs, an entry will be
de in the piM table.

X
e FORX operation is the same as the For operation,

FORTRAN

Source Program

Monitor
Control Card

itacked Input (Card,
or Paper Tape)

Monitor
Control Card

Job Decks

FORTRAN

Source Program

Monitor
Control Card

SPS Source
Program
Monitor Control
Card

with one exception: the object program is executed
after it is compiled.

XEQ

The XEQ operation causes the sps II-D object program,
identified by the Monitor Control card data, to be
read into core storage from the input device indicated
in column 27, and then to be executed. If the object
program requires any of the sps subroutines to oper-
ate, or if the object program is a FORTRAN compiled
program, the xEQs operation must be used instead of
the xeQ operation. Each disk-stored program, called
by the xEQ operation, must have a piM entry to enable
the Supervisor Program to find it.

1311 Drive 0

S_"'Pel'visor Program
Disk UriTir

5 FORTRAN TI-D
0] Isk Identification MS

RTRAN/SPS Work 51o°
User's Programs

T I —
Supervisor Program

Drive 1

ure 2. Processing Input Data Under Supervisor Control

Drive 2 Drive 3
Disk Storage 1/0O

Supervisor Program

Se
9uential Program Table

09%

Sential Progrom Toble Squential Program 109\° seqUenfial Program 1a9'

STACKED INPUT
(Monitor Control Cards,
Data Cards, SPS and

FORTRAN Source Cards,

Disk Utility Program
Control Cords)

1620
Supervisor *
with 1/O

Routine

Jos
Monitor Control
Card?

Type

Description

YPS or SPSX
Monitor Control
Card?

Lood SPS [I-D
Processor into

Core Storage
from Disk Storage
and Execute

FOR or FORX
Monitor Control

Cord?

Lood FORTRAN
[I-D Compiler into

Core Storage from
Disk Storage and
Execute

bur

Monitor Control
Card?

Loed Disk Utility
Program into Core

Storage from Disk
Storage and
Execute

TYPE

Monitor Control
Card?

Enter Succeeding
Monitor Control

Records from
Typewriter

PAUS
Monitor Control
Card?

HALT
Depress Start

Key to Resume
Processing

XEQ

Monitor Control
Card?

Object Program
. without Subroutines

Load $PS O-D

Y

into Core Storage
from Disk Storage
and Execute

XEQS

Monitor Control
Card?

| Progrom with Sub~

Load FORTRAN II-D
or SPS TI-D Object

routines into Core
Storoge from Disk
Storage and Execute

+ %
(End of Job)
Monitor Control
Card?

Pass Cards

to next

. Monitor
Control Card

Pass Cards to

Next Monitor
Job Card

Figure 3. Logic of Supervisor

XEQS

This operation causes an SPS II-D Or FORTRAN II-D
object program, identified in the Monitor Control
card, to be read into core storage from disk storage,
cards, or paper tape, and to be executed. If the object
program uses any of the sps subroutines, the XEQs
operation must be used. Each disk-stored program
called by the xEQs operation must have a pim entry
to enable the Supervisor Program to find it.

DUP

The pup operation causes the 1620 Disk Utility Pro-
gram to be read into core storage from disk storage
and to be executed.

TYPE

The TYPE operation causes a message — which re-
quests the operator to enter the next Monitor Control
record from the typewriter — to be typed and the
program to stop to await keyboard input. After the
operator enters the Monitor Control record, the Re-
lease and Start key should be depressed to resume
computer operation. All succeeding control records
must be entered from the Typewriter until a yoB Con-
trol record is entered to change the source of input.

PAUS

The pauUs operation halts the program to allow the
operator to change paper tapes, load input cards, etc.
Job processing is resumed by depressing the Start key.

=+=+ (END-OF-JOB)
The == == (end-of-job) operation causes the message
END OF JOB

to be typed, if a job has actually started, and control
is to be resumed by the Supervisor Program. An end-
of-job record must follow each job. If this record is
not present,erroneous results may be obtained.

Monitor Control Card Formats

JOB,
Columns 1-2 === (identification record
marks)
3-6 Operation (jos, left-justified).
7 Source of input,
5 = card.

3 = paper tape.
1 = typewriter.

8-11

12:31

32-80

Module change numbers (for
disk input only).

Disk pack identification num-
bers (for disk input only),
12-16 drive 0.

17-21 drive 1.

22-26 drive 2.

27-31 drive 3.

Description.

SPS, FOR, DUP, TYPE, PAUS.

Columns 1-2
3-6

7

SPSX.
Columns 1-2

3-6
7

*8-9

*10
*11-12

=== (identification record
marks).

Operation (sps, etc., left-justi-
fied).

Source of input, for sps, FOR, or
pur Monitor Control cards,

5 = card.

3 = paper tape.

1 = typewnriter.

=== (identification record
marks).

Operation (sPsx).

Source of input,

5 = card.
3 = paper tape.
1 = typewriter.

sps subroutine set identification
number.

N (Noise) digit.

Two digits for indicating length
of mantissa.

*Required only when the program to be executed
uses other than the standard operating specifications
(02 standard subroutine set, 0 standard N digit, 08
standard mantissa length).

FORX.
Columns 1-2
3-6
7
8
9-10
XEQ.
Columns 1-2

=== (identification record
marks).

Operation (FORX).

Source of input,

5 = card.
3 = paper tape.
1 = typewriter.

FORTRAN subroutine set identifi-
cation number.

Control card count (number of
LOCAL control cards).

=== (identification record

marks).

3-6
7-12

13-16

17-21

22-26

27

XEOQS.

Columns 1-2

3-6
7-12

13-16

17-21

22-26

Operation (xEQ, left-justified).
Name of user’s program, to be
executed (same name assigned
in Equivalence table).
piM (Disk Identification Map)
entry number.
Note that either the name or the
DIM entry number must be given
(if program is in disk storage),
but if both are given, the name
takes precedence.
Address where loading of user’s
program begins if program is not
in core image. If not supplied,
address 02402 is assumed.
Address where execution of
user’s program is to begin if pro-
gram is not in core image. This
address must be relative to the
start of the program if the pro-
gram is relocatable; otherwise,
the absolute entry address must
be supplied.
Source of input,

Blank — disk.

5 = card.

3 = paper tape.
(Note that card or paper tape
input must be in System QOutput
format).

=== (identification record
marks).

Operation (XEQS).

Name of user’s program to be
executed (same name assigned
in Equivalence table).

pim (Disk Identification Map)
entry number.

Note that either the name or the
DIM entry number must be given
(if program is in disk storage),
but if both are given, the name
takes precedence.

Address where loading of user’s
sps object program begins if pro-
gram is not in core image. If not
supplied, address 02402 is as-
sumed.

Address where execution of
user’s sps object program begins
if program is not in core image.

Supervisor Program 11

This address must be relative to
the start of the program if the
program is relocatable; other-
wise, the absolute entry address
must be supplied.
27 Source of input,
Blank = disk.
5 = card.
3 = paper tape.
(Note that card or paper tape
input must be in System Output
format.)
28 Subroutine set identification
number for FORTRAN programs
only.
Control card count (number of
rLocAL control cards) for For-
TRAN programs only.

29-30

sps subroutine set identification
number (e.g., 01 = fixed-length
subroutines, etc.).

"33 N (Noise) digit for sps subrou-
tines.

Two digits for indicating length
of mantissa for ses subroutines.

*31-32

*34-35

* Required only when the program to be executed
uses other than the standard operating specifications
(02 standard subroutine set, 0 standard N digit, 08
standard mantissa length).

=== (End-of-Job).
Columns 1-2 == (identification record

marks).
3-4 Operation (===, end-of-job).

Comments Records

Comments records —in card, paper tape, or type-
writer form —can be used to specify operating in-
structions and identify each job. Any number of these
records may be inserted in front of a job in the stack-
ed input. Usually they are inserted behind a joB
Monitor Control record. Comments records, unlike
Monitor Control records, have no control over the
Sup'ervisor. When Comments records are encountered
in the stacked input, they are typed out. The format
of the Comments record in terms of cards follows:

Columns 1-2 ==== (identification record
marks). '

3-6 Operation (blanks or any com-
bination of letters and/or digits
other than the eleven Monitor

12

pseudo operation codes, JOB, sPs,

SPsX, etc.).
7-80 Comments.

When the Supervisor Program reads a Comments
card, it will pass subsequent cards until another card
with == ==, columns 1-2, is encountered. Therefore a
Comments card should be followed by another Com-
ments card or a Monitor Control card. '

Module Change Numbers

Module change numbers, punched in card columns
8-11 of the joB Monitor Control cards, can be used
by the operation on 1620 Systems with more than one
1311 Disk Storage Drive to alter the normal assign-
ment of disk storage drives for any job. For example,
a job that uses drive 0 in the execution of its pro-
gram could use drive 1 instead of drive 0 by the
entry of a yoB Monitor Control card with the appro-
priate module change numbers.

Card columns 8, 9, 10, and 11 of the jos card
represent disk storage drives 0, 1, 2, and 3, respec-
tively. A change to the normal program assignment of
a disk storage drive is made by punching the number
of the substitute drive into the card column which
represents the normal drive. Therefore, in the preced-
ing example, a digit 1 would be punched into card
column 8 to alert the program that drive 1 should be
used for the job instead of drive 0. Card columns 9,
10, and 11 could be left blank because only the assign-
ment changes must be punched. The assignment of
disk storage drives, placed in effect by a yos card,
remains in effect until changed by a succeeding joB
card. If the system is redefined to use more than one
drive, a joB card with module change numbers
punched in columns 8-11 must be entered before the
additional drives will be accepted by the Supervisor
program.

To overlap the time required to change disk packs
for one job with the processing time for a different
job, the operator may choose to alternate the use of
disk storage drives from one job to the next. Alter-
nating drives is possible only when all drives are not
in use for any one job. For example, assume that job
A is to be followed by job B in the stacked input and
the programs for both of these jobs use disk storage
drives 0 and 1. Assume further that four disk storage
drives are available to the 1620 System that is to per-
form these jobs. By entering a module change number
in the yoB Monitor Control card for job B, the oper-
ator can use disk storage drives 2 and 3 for job B in
place of drives 0 and 1. Therefore, while job A is
being done, the operator could mount the disk packs
for job B on drives 2 and 3, thus saving valuable oper-
ating time. The joB card module change numbers

should be punched
Card columns l 8|l 9] 10 I 11|
Module change numbers | 2 | 3 | P

so drives 2 and 3 will be used in place of drives 0
and 1, respectively, for job B.

Disk Pack ldentification Numbers

Card columns 12-31 of the yoB Monitor Control card
can be punched with the four 5-digit disk pack identi-
fication numbers, one identification number for each
disk storage drive.

Disk Pack Disk Storage

Identification Number Drive
Card columns 12-16 0
17-21 1

22-26 2

27-31 3

The disk pack identification number from the yoB
card is compared with the identification numbers re-
corded on the respective disk packs. If the proper
disk packs are not attached by the operator, the
Supervisor will halt for operator instructions. If it is
desired to omit this check for any disk storage drive,
the card field representing the disk storage drive may
be left blank. When the operator enters a module
change number, no change to the disk pack identi-
fication numbers (card columns 12-31) is required.

Stacked Input

Stacked input consists of control records (Monitor,
Disk Utility Program, sps, and FORTRAN), source pro-
grams, object programs, and data arranged logically
by job. Each job consists of phases which must fit into
one of four categories:

1. sps source program(s) to be assembled.

2. FORTRAN source program(s) to be compiled.

3. Disk Utility routine(s) to be executed.

4. FORTRAN or sPs object program(s) to be called
from disk storage with subroutines and executed;
or sps program(s) to be called from disk storage
without subroutines and executed.

The order in which jobs are executed is not impor-
tant, ie., a Disk Utility routine may be executed be
fore a FORTRAN compilation or vice versa. Jobs are
executed in the order in which they are encountered
in the stacked input. Each job must be preceded by a
joB Monitor Control card and followed by an end-of-
job (=k=F====) Monitor Control card.

Job Arrangement

A Disk Utility, FORTRAN or sps job is always represent-
ed by at least three Monitor Control records.

Card Purpose

. JoB Monitor Control Identify beginning of
Record job.

2. DUP, SPS, SPSX, FOR, Transfer control to Disk
FORX, XEQ, Or XEQS, Utility Program, rog-
Monitor Control TRAN compiler, sps As-
record sembler, user’s object
program.,

Identify end of job.

—

3. End-of-job Monitor

Control record.

In addition to the Monitor Control records, there
may be one or more Disk Utility Program, sps or
FORTRAN system control records. These records are a
part of the input for the individual system.

TYPE or PAUS Monitor Control records may be insert-
ed immediately preceding any of the records in the
above sequence. Any number of Comments records
may be inserted in front of type 2 records. Source
programs or input data can be entered immediately
following type 2 records.

The following three points must be taken into con-
sideration when arranging the input for any job.

1. All Monitor Control records, with the exception
of Monitor records that follow a TYpE Monitor
Control record, must be read from the same in-
put source. The input source can only be chang-
ed at the beginning of each job or by a TyrE
Monitor Control record.

2. A job, with the exception of a Disk Utility job,
may consist of several system functions possibly
terminated by execution of a user’s program. Ex-
ecution of a user’s program is considered as the
end-of-job. If any cards remain in the stacked
input for a job when it is ended in this manner,
they will be passed without processing. Process-
ing resumes with the first Monitor Control card
of the next job in sequence.

3. If an error is detected in an sps assembly or
FORTRAN compilation, the resulting object pro-
gram or any programs that follow within the job
cannot be executed.

Examples of stacked jobs are given in Figure 4 and
Figure 5. In these examples:

Job A assembles two sps source programs and stores
the assembled programs in disk storage. The second
sps program is executed after assembly. This job in-
cludes Comments cards to instruct the operator and a
pAUs Monitor Control card to allow the operator to
intervene and change program switch settings.

Job B compiles and executes a FORTRAN source
program.

Job C replaces an existing object program in disk
storage with a new object program and copies a pro-

Supervisor Program 13

gram from disk-to-disk. Job D calls a program from

disk storage with subroutines and executes it.

Monitor Control Record Analyzer Routine

This routine, a part of the Supervisor Program, is used
to read the Monitor Control records and Comments

records, which are identified by === in columns
1-2, and to analyze these records, and to perform the
operations or transfer control as directed by the
pseudo operation codes. The first Monitor Control
record is read from the input source that is specified
by the operator when the Supervisor Program is orig-
inally loaded into core storage from disk storage to

+ + PAUS Monitor

+ ¥ + + Monitor
(End of Job)
7> A

""Date

*DATA FORTRAN
Control Record

Source Program -

*FORTRAN Control
Record i

4 3 FORX Monitor
[4 + PAUS Monitor

N

!
! Job "B"

P

r# + Comments I
[+ $ JO3 Monitor 'Ii

+ % + + Monitor
(End of Job) p

Data

[

Source Program

[

*SpS Control
Records

lt # SPSX Monitor

Jt + PAUS Monitor

L# 4+ Comments

A

Source Program

*NAME PAYROL

[*STORE CORE IMAGE

*OUTPUT CARD

*NOISE DIGIT 7

Job "A"

*SUBROUTINE SET 1

It 4 SPS Monitor
[¢ 4 PAUS Monitor

P

l# 4 Comments

4 $ JOB Monitor

]
SPS Control
Recerds

Figure 4. Stacked Input, SPS and FORTRAN Jobs

14

start the entire operation. Subsequent Monitor Con-
trol records and Comments records are read from the
same input source until a yoB Monitor Control record
changes the input source by specifying a different
“source of input” or a TYPE card is encountered. Read-
ing of Monitor Control records continues from the
new source until again changed by another yos Moni-
tor Control record. '

When the input source is the “typewriter,” the
Monitor Control Record Analyzer routine types the
message

ENTER MONITOR CONTROL RECORD

The operator may then enter the next control rec-
ord. The record is not typed out if the entry is made
by the typewriter.

If the operator makes a mistake while entering the
record, he may correct the error by turning on Pro-
gram Switch 4 and depressing the R-S key on the
typewriter. Switch 4 should then be turned off and
the entire record re-entered.

When an sps, spsx, FOR, FORX, DUP, XEQ, Or XEQS
Monitor Control record is read, control is transferred
from the Analyzer routine to the individual program
specified by the control record. Control is returned to
the Analyzer routine after the program is executed.
When control is returned, the Analyzer routine will
pass records, provided the input source is other than
the typewriter, until a Comments or Monitor Control
record is encountered in the stacked input. Therefore,
the last job to be executed should be followed by a
TYPE or PAus control card. If this control card is not
present, the 1620 will stop on a Read Select instruc-
tion, expecting another control card.

ERROR MESSAGES

During execution of the Monitor Control Record
Analyzer routine, certain error messages may be
typed. After typing a message, the 1620 will stop if
any operator action is required. A list of these mes-
sages, the conditions which. cause them, and the cor-
rective actions required of the operator, follows.

Message ERROR IN FIELD AT COL. XX.
SET SW4 TO IGNORE, OFF TO
RE-ENTER CARD '

Cause An illegal character has been de-
tected in a yoB Record data field.

Action To ignore the error turn Program

Switch 4 on and depress the Start
key. The message “CONDITION
IGNORED?” is typed and process-
ing continues. To correct the error,

Message

Cause

Action

Message
Cause

Action

Message

Cause

Action

Message
Cause

Action

Message
Cause

Action

turn Program Switch 4 off and de-
press the Start key. The Monitor
Control record input source will be
changed to the typewriter, and the
operator may then re-enter the
control record. If it is desired to
read succeeding records from the
original input source, column 7
must identify the input source.

PACK NUMBER. ERROR ON
MODULE X. SET SSW4 TO IG-
NORE OFF TO RECOMPARE
Disk pack identification numbers
compare “unequal.”

To ignore the error, turn Program
Switch 4 on and depress the Start
key. The message “CONDITION
IGNORED” is typed and process-
ing is resumed. To correct the error,
place the correct disk packs on the
disk drives and depress the Start
key. The disk pack identification
number will again be checked by
the program. If the pack involved
was a Monitor pack, the instruction
sequence previously described un-
der operation must be repeated.

END OF JOB
The end of a job has been reached.
(This message will not be typed, if
the input source is the typewriter.)
None required.

CANNOT RESTORE COMMON
—RESET AND START TO RETRY
Common area does not read into
core storage from disk storage cor-
rectly.

Depress Reset and Start keys to re-
try the read operation.

EXECUTION

Loading and execution of user’s ob-
ject program has started.

None required.

JOB CARD GROUP ONLY
Control Record Analyzer routine is
expecting a JOB, TYPE, or PAUS Moni-
tor Control record, but it does not
find one.

Enter joB, pAus, or TYPE, Monitor
Control record from typewriter and
depress the Release and Start keys.

Supervisor Program 15

Message ERROR IN FIELD AT COLUMN
XX. PHASE TERMINATED

Cause A Monitor Control record contains Action
an invalid code in the field start-
ing at column xx.

Action The phase is skipped and the su-
pervisor will pass records from the

Message
control record source until it en-
counters the next Monitor Control Cause
record.
Message EXECUTION IS INHIBITED Action
Cause An error has occurred within a job

which may prevent successful ex-

ecution of the user’s object pro-
gram.

None required. No user object pro-
gram can be executed until the
next JoB Monitor Control record
is encountered.

OBJECT DIM ERROR PHASE
TERMINATED

The Supervisor is unable to find
the pim entry specified by an xEQ
or xeQs control record.

None required. The phase in which
the error occurred is terminated
and processing continues.

l# % PAUS Monitor-

++++ Monitor
(End of Job)

¥

Data

+ + XEQS Menitor

|¢ + PAUS Monitor

It + Comments Monitor

[+ + JOB Monitor

¥+ + 4+ Monitor
(End of Job)

*DCOPY Control

%+ 3+ DUP Monitor

I

A=

L

+ + Comments Monitor

I Object Program < /

*DREPL Control

+ 4+ DUP Monitor

+ + PAUS Monitor

'+ $ Comments Monitor

+ %+ Job Monitor

Job "D"

Job "C"

Figure 5 Stacked Input, DUP,and XEQS Jobs

16

OBJECT NAME ERROR PHASE
TERMINATED

Message

The Supervisor is unable to find a
name in the Equivalence table
which corresponds to the name
supplied in an XEQ or XEQS control
record.

Cause

None required; the phase is termi-
nated.

Action

ENTER MONITOR CONTROL
RECORD

A “Z=== TypE” Monitor Control
record has been encountered.

Message
Cause

Enter a Monitor Control record
from the typewriter. (Monitor in-
put source is changed to the type-
writer.)

Action

SYSTEM DIM ERROR PHASE
TERMINATED

Message

Cause Supervisor is unable to find pim
entry for sps assembler, FORTRAN

compiler, or Disk Utility Program.

Action None required; the phase is termi-

nated.

1/0 Routine

The I/0 routine is designed to relieve programmers
of the necessity for writing input/output subroutines.
The 1I/0 function is performed automatically by the
I/0 routine. Therefore, the programmer can concen-
trate on describing his files and disregard the actual
operation of the I/O function. Provision is also made
in this routine for error detection and correction. If
Parity, Wrong-Length Record Check, or Address
Check disk errors occur in a disk operation, the routine
will repeat the operation which had the error, up to
nine times, in an attempt to correct the error. The
Monitor System uses this routine for I/O operations.

The I/0 functions performed by the I/O routine
include reading and punching cards or paper tape,
reading or writing typewriter, reading or writing disk
records, and seeking disk cylinders. These functions
may be used in an sps object program by entering
I/O macro-instructions (GET, PUT, SEEK, or CALL) in
the user’s source program. These macro-instructions,
as well as the associated declarative statements for de-
fining declarative constants (DTN, DTA, etc.), are de-
scribed in the section concerping SPs 11-D.

All linkages for I/O routines are generated auto-
matically through the use of macro-instructions in
sps source programs or the I/O statements (e.g., FIND,
RECORD, FETCH, PUNCH, READ, etc.) in FORTRAN
source programs. The data and addresses supplied in
a macro-instruction or the parameters in a FORTRAN
statement are incorporated into the linkage instruc-
tions where they are made available for use by the
I/0 routine.

Each time the I/O routine is entered as the result
of an sps macro-instruction or FORTRAN statement,
the read, write, and parity check indicators are turn-
ed off. If a read or write error occurs that cannot be
corrected without operator intervention, an error
message is typed and the program halts. A restart
procedure is specified for all error conditions (see 1/0
ERROR ROUTINE). An error count is maintained by the
1/0 routine for inspection by the user or for diagnos-
tic analysis by an 1M Customer Engineer.

In addition to using the I/0 routine with sps macro-
instructions and FORTRAN statements, the routine may
be used by coding the general form of I/O routine
linkage directly in the user’s program.

I/0 Routine Linkage
General Form.

TFM IORT, * 4 23
B ENTRY, DEF, 7

ort is the address (00565) of a 5-position stor-
age area in the I/0 routine.

ENTRY may be any one of the four possible entry points
in the I/O routine represented by the following
symbolic addresses:

Actual
Entry Point Address Function

IORBC 00520 Write record into disk stor-
age with Read-Back
Check.

10PT 00532 Write a record to an out-
put device.

I0SK 00554 Seek a disk record.

I0GT 00566 Read a record from an in-

put device.

pEF can be the address of any I/O declarative con-
stant (see 1/0 CONSTANTS).

CALL LINK or CALL LOAD Linkage. These link-
ages are usually used to call programs from disk stor-
age, with or without execution. Linkages may be in
either a short or long sequence form. Both forms are
alike with the exception that the long sequence form
contains a relocation address.

Supervisor Program 17

Short Sequence

TFM IORT, * 4+ 19
B7 IOCAL
DC 1, M,
DC
or } 1, M1
DSC
DSC 1,0
DC 5, IIII @
. Long Sequence
TFM IORT, * 4 19
B7 IOCAL
DC 1, M,
DC
or } 1, M,
DSC
DC 1,0
DC 4, IT1I
DSA LLLLL
DSC 1, @
IOCAL is an entry to the I/O routine (core storage
address 00716). '

M, M, is a constant 32 for cALL linkages, M, is flag-
ged for caLL LINK only.

i is the piM entry number of the program to be
called.

rrLLL is the relocation core storage address where the
program is to be loaded.

If the short sequence is used to call a relocatable
program, LirLL is assumed by the I/0 routine to be
the address contained in the “high” indicator field of
the Communications Area. If the long sequence is
used to call a core image program, the I/O routine
will disregard LrLLL.

Note: The contents of all index registers are destroyed
whenever the sps macro-instructions CALL LINK Or CALL
Loap are executed. Also, if the called program requires
subroutines, the “no index register” mode is selected;
thus, it is the user’s responsibility to turn the index
registers on again when needed.

CALL EXIT Macro-Instruction Linkage.
B7 MONCAL

MONCAL (core storage address 00796) is an entry
to the I/O routine which will call in the Monitor
Control Record Analyzer routine.

caLL exiT linkage is used at the end of the execution
of an object program to return control to the Moni-
tor Control Record Analyzer routine to read another
Monitor Control record. If, during execution of an
object program, an error is encountered which will
not allow normal exit to the Analyzer routine, the
operator may manually branch the program to
MoncArL (00796) to resume processing.

18

1/0 Constants

~ An I/O constant for card, paper tape, or typewriter

consists of eight digits.
CCCCC M, M, ==

ceeec is the address of an I/O area.
M, M; is one of the following codes which identifies
the operation:

00 Typewriter Numerical
02 Paper Tape Numerical
04 Card Numerical

06 Typewriter Alphameric
08 Paper Tape Alphameric
10 Card Alphameric

Disk I/O constants may be in any of the following
four forms:

1. M,M, DDDDD =

2. MoM; DDDDD LLLLL ==
3. MyM;0IIILLLLL 5

4. Mo M, 0TI =

Doopp is the address of the leftmost position of the
associated disk control field.

1LLLL is a relocation core storage address of a pro-
gram to be called.

T is the piM entry number of a program to be called.

M, and M, provide various disk options for the user.
A list of these codes and their associated options
follows.

M, (code) Option

0 Add the starting address of the
work cylinders from the Com-
munications Area (core positions
422-425) to the sector address
in the disk control field. (Used
with constant types 1 and 2
only.)

1 Same as option zero, except the
“high”indicator in the Commu-
nications Area will also be up-
dated for disk read operations
only. This indicator is merely a
field which contains the core
storage address of the highest
position to be loaded plus one.

2 Use the sector address in the disk
control field for the disk opera-
tion (SEEK, READ, Or WRITE).

3 Use the sector address in the disk
contro] field for the disk opera-
tion. Also, update the “high” in-
dicator in the Communications
Area for read operations only.

n A flag over the coden, (n =0, 1,2,
or 3) causes the read/write
heads to be repositioned to an
assigned cylinder (specified in
the Communications Area) after
any disk 1/O operation, except
seek.

M; (code) Option
0 Disk read or write in sector mode
with wrrc. Note: The user must
place a group mark ($) in the
core storage location following
the last character position of the
last sector of the record.

2 Disk read or write in sector mode
without wLRc.

4 Disk read or write in track mode
with wirc. Note: The user must
place a group mark (==) in the
core storage location following
the last character position of the
last sector of the record.

6 Disk read or write in track mode
without wLRc.

A flag over code Ai(n = 1, 2, 4,
or 6) causes the I/0O routine to
branch to a given address after
a disk read operation. The given
address will be the “execution
address” if an extended disk
control field is used. Otherwise,
it will be the “core address” of
the disk control field. If code n
is unflagged, the I/O routine
will branch to the first instruc-
tion following the disk opera-
tion calling linkage i the object
program. If the entry address is
not specified, the entry is made
to the (possibly relocated) first
card address of the deck to be
loaded.

[=1]

DISK CONTROL FIELD

The disk control field, associated with I/O constants,
types 1 and 2, may be in either of the following for-

mats:

DDDDDD §SS CCCCC =
DDDDDD SSS CCCCC EEEEE ==

ppppop is the first sector address of the data or pro-
gram.

sss is the number of sectors to be read or written.

cccce is the core address (must be an even-numbered
address) of the data or program.

EEEEE is the execution address where program execu-
tion is to continue after a disk read operation is
completed. The second disk control field, known as
an extended disk control field, is used when M; of
the I/0O constant is flagged.

Card 1/0O

Cards are read or punched in alphameric or numer-
ical form from a user-specified constant (generated
from an I/0 declarative statement) designated in
general linkage. If a punch error is detected during
a write instruction, the instruction is again executed
to correct the error. If the error persists or a parity
error occurs during a write operation, an error mes-
sage is typed and the program halts (see 1/0 ERROR
rOUTINES). Error messages will be typed for all read
errors.

Typewriter |/O

A specified 1I/0 declarative constant designated in
general linkage will be used by read or write type-
writer instructions (alphameric or numerical). If a
read error or a parity error occurs during reading, the
program will branch back to the read instruction and
await entry of data. The operator can then type in the
data and return control to the program. If a parity
error or write check occurs during writing, it will be
counted and the indicators will be turned off — but
the program will not halt. Control operations (rcry,
SPTY, TBTY) are not executed in the I/0 routine. These
must be handled in the main program coding.

Paper Tape 1/0

Paper tape is read or punched in alphameric or nu-
merical form from a specified I/O declarative con-
stant designated in general linkage. If a parity read
error occurs during a read operation, an error message
is typed and the program halts.

Disk Storage I/O

Disk storage will be read or written as specified by
the 1/O declarative constant designated in general

Supervisor Program 19

linkage. Also, disk seek operations will be initiated to
disk addresses contained in the I/O declarative con-
stant designated in general linkage. For a cALL macro-
instruction, disk data records or programs will be
written in the area of core storage designated by the
relocatable address in caLL linkage. If this address is
not present for a relocatable program, the processor
selects the address. If the relocation address is present
but the program is not relocatable (i.e., it is in either
Absolute or Core Image format), the relocation ad-
dress is ignored and the program is stored at the core
address specified by the piM entry.

Disk storage indicators are reset by the I/0O rou-
tine. If the Cylinder Overflow indicator (38) is turn-
ed on before the sector count reaches zero, a seek to
the next cylinder is initiated and reading or writing
is resumed. If read, write, or parity indicators, or in-
dicators 36 or 37 are turned on, the instruction associ-
ated with the error will again be executed up to nine
times. If the error persists, an error message is typed
and the program halts.

The seek only linkage

TFM IORT, * + 23
B IOSK, DEF, 7

will allow computing time and seek time to overlap.
DEF refers to any disk I/O constant.

The cylinder location of the arm on each drive is
entered into a list by the I/0 routine. Every time the
I/O routine executes a disk operation, the current
entry cylinder is compared to the previous cylinder
and the arm is instructed to seEk only if it is not al-
ready located at the current cylinder.

REPOSITIONING OF ACCESS ARMS

The I/O routine contains four 2-digit cylinder indi-
cators that can be used to reposition the access arm
on each of the four possible disk drives to a new
cylinder following a read or write operation. The four
cylinder indicator core storage locations and their
associated drives follow:

Indicator Addresses Drive
00512 - 00513 0
00514 - 00515 1
00516 - 00517 2
00518 - 00519 3

These indicator positions are reset to 00000000 by
the Monitor Control Record Analyzer routine. There-
fore, a program which uses other cylinders for re-
positioning must provide for changing the indicators.

Repositioning the access arm following a GET or
PUT macro-instruction is optional. If M, of the I/0
constant used by a ceT or pur is flagged, the read/
write heads will be repositioned.

20

FULL TRACK OPERATION

If any I/O operation is to be attempted with the
Write Address light on, the programmer must set a
flag at oLbpa 4 14 (core position 00455) before en-
tering the I/0 routine. The flag will prevent accumu-
lating error counts (which is a write disk sector oper-
ation). The flag must be cleared before terminating
the routine in which the Write Address light “on”
condition is present.

If an I/O operation is attempted with the Write
Address light on, no flag present at oLopa + 14, and
an indicator 06, 07, 16, 17, 36, 37, or 38 on or turned
on by the I/O operation, the program will stop with
the instruction at 00728. To save the error count, the
operator must (1) turn the Write Address light off,
(2) depress the stop/siE key, (3) turn the Write
Address light on, if desired, and (4) depress the Start
key to resume automatic operation.

1/0O Error Routine

Each time the I/0 routine begins execution, it tests
indicator 19 (any check) to determine if an error had
occurred prior to entry. If the indicator is on, the I/0
error routine will be called into core storage and ex-
ecuted. This routine records a count of errors by type
(for indicators 06, 07, 16, 17, 36, 37, and 38), and pro-
vides the necessary error messages and corrective op-
erating options. In addition the error routine turns
off the individual indicators (086, 07, 16, 17, 36, 37, and
38), by testing them.

After an I/O function is executed, indicator 19 is
again tested. If it is on, the I/O error routine is en-
tered to process the error.

Error Detection and Correction

During execution of the I/0O error routine, error mes-
sages are typed to describe errors and the operator is
allowed to intervene to decide how errors should be
treated by the program. A list of error correction
options available to the operator follows.

Error Correction

Code Option
00 Ignore the error. When this option
is used, the I/O routine will fin-
ish processing the I/O operation
as though the error had not oc-
curred.
05 Re-execute the I/O operation. If

an error recurs during the next
- execution, an error message is

again typed, the computer stops,
and the operator can exercise the
same option or another option.

10 Skip this phase of the job if error
occurs at system time (sps as-
sembly, FORTRAN compiling,
Disk Utility Program, or Super-
visor Program execution time)
and return control to the Mon-
itor Control Record Analyzer
routine and pass records to the
next Monitor Control record.

15 Discontinue execution and return
control to the Monitor Control
Record Analyzer routine and
pass records to the next joB
Monitor Control Record.

20 Continue processing by branching
to a specified core storage ad-
dress without further processing
of the I/O request. When this
option is exercised, the operator
enters the 5-digit branch ad-
dress from the typewriter.

After each error message is typed, the computer
halts. The operator then depresses the Start key, en-
ters a 2-digit error correction code from the type-
writer, and depresses the R-S key to resume pro-
cessing.

If an error is made while entering a 2-digit cor-
rection code, it may be corrected by turning Program
Switch 4 on, depressing the typewriter R-S key, turn-
ing Program Switch 4 off, and re-entering the 2-digit
code.

The I/0 error routine has the facility to handle any
of the following errors.

Entry Check
Typewriter write
Typewriter read
Paper tape read
Card write

Card read
Cylinder overflow
Write error count
Illegal pim entry
System
Unavailable disk drive
Control record trap

Error messages, conditions, and corrective operator
action associated with each type of error is described
as follows:

Entry Check. If indicator 19 (any check) is on,

when tested in the preprocessing phase, the message

ENT ERROR 06071617363738

is typed on the console typewriter. Each pair of in-
dicator numbers is flagged in the leftmost digit. If an
indicator was on when tested, the rightmost digit
will also be flagged.

Typewriter Write. For this error, no error message
is typed; however, the error is automatically indicated
by over-printing the error character(s) with a hori-
zontal line.

Typewriter Read. For this error, the message

TYP ERR

is typed.To restart the computer, the operator exer-
cises one of the error correction options.
Paper Tape Read. The message

PTR ERR

is typed. The operator must backspace the tape to the
beginning of the record before exercising error
option 05.

Card Write. For this error, the I/O error routine
retries the operation once for a write check error (indi-
cator 07). If the error is corrected by the retry, con-
trol is returned to the 1/0 routine; if the error is not
corrected, the message

CDP ERR

is typed. The error option can then be exercised by
the operator.

Card Read. For this error, the I/O error routine
retries the operation once for a read check error
(indicator 06). If the error is corrected by the retry,
control is returned to the I/0 routine; if the error is
not corrected, the message

CDR ERR

is typed. The error option can then be exercised by
the operator.

Cylinder Overflow. For this error, the 1/0 error
routine tests to determine if a legitimate overflow has
occurred during a disk read or write operation. For
a legitimate overflow, a seek operation to the next
cylinder is automatically initiated and reading or writ-
ing continues. A maximum of three seek operations
will be performed if sufficient core storage is available
to accommodate the data being read or written.

If the disk read or write operation results in an at-
tempt to read or write data beyond the highest sector

Supervisor Program 21

address of the addressed disk module, the message

DSK OFL

is typed. All error correction options, except 05, are
available to the operator. If 05 was inadvertently en-
tered, it would have the same effect as error correc-
tion option 00.

For a disk error, which is other than a legitimate
overflow, the disk read or write operation causing the
error is retried up to nine times; if this fails to cor-
rect the error, the message

DSK ERR XXXXX 06071617363738

is typed, where XXXXX is the 5-digit return ad-
dress to the object program. A flag is typed over the
leftmost position of each pair of indicator numbers.
The indicator(s) which identifies the type of error
will also be flagged in the rightmost position. If indi-
cator 38 is flagged in its rightmost position, it may
mean either of two things:

1. A legitimate overflow did occur, but another
type of error occurred in attempting to trans-
mit data to or from the succeeding cylinder.

2. A machine malfunction occurred.

If the operator exercises error correction option 05,
but this does not correct the error, he should turn the
Disk, Parity, and I/O Check switches to stop, and
again exercise option 05. The console lights may then
be examined to determine the nature of the error.

If a legitimate cylinder overflow condition occurs,
a seek operation to the next cylinder is automatically
initiated and reading or writing continues.

Write Error Count. If an error occurs while the I/0
error routine is writing the error count in disk stor-
age, the message

BAD DISK WRITE. RESET START

will be typed. In this case, the operator does not
exercise an error correction option, but he must:

1. Clear the Select-Lock light, if it is on.

2. Depress the Reset and Start keys.

Illegal DIM entry. If the user supplies an illegal
piM number (not in prM table) in a cALL statement,
the I/0 routine will transfer control to the I/0 error
routine and the message

MAP ERR XXXXX IIII

is typed, where xxxxx is the core storage position im-
mediately following the call linkage, and mm is the
illegal piM entry number, The operator then enters
error correction code 00 and depresses the Release
and Start keys. The computer will again halt. The

22

operator must then type in a corrected 4-digit pimM
entry number and depress the Release and Start keys.

System. If the 1/O error routine cannot interpret
the nature of the error, the message

IMP ERR

is typed and control is returned to the Monitor Control
Record Analyzer routine without stopping to allow
operator intervention.

In addition to the system error just described, the
computer may halt in the I/0 routine at core storage
address 00467 without typing a message. This halt
occurs if a read error occurs while the I/0 routine is
reading one of its subroutines from disk storage. To
retry the operation, the operator should

1. Clear the Select-Lock light if it is on.
2. Depress the Reset and Start keys.
If this error persists, it may mean either of two things.
1. The user inadvertently altered the I/O routine
in core storage.
2. A machine malfunction occurred.

Unavailable Disk Drive. If the programmer speci-
fies a logical module for which there is no physical
disk storage drive, the message

MOD ERR XXXXX

is typed, where xxxxx indicates the return address to
the object program. The operator must enter the error
correction code 00 and depress the Release and Start
keys. The computer will again halt. The operator
must then enter a corrected 1-digit drive code and
depress the Release and Start keys to continue.

Illegal Drive Code. If the user gives an illegal drive
code in the disk control field for a disk operation, the
message

MOD ERR XXXXX

is typed, where xxxxx is the 5-digit return address
to the object program. To continue, the operator
should enter an error correction code 00 and depress
the Release and Start keys. The computer will halt
to allow the operator to enter a corrected 1-digit
drive code from the typewriter. Depress the Release
and Start keys to resume operation.

Control Record Trap. To prevent the 1/O routine
from inadvertently reading a control record as a data
record, the I/0 routine is designed to trap control
records, if they are read from the Supervisor input
source. Each record read is tested for == == in its first
two positions. If present, control is transferred to the
I/0 error routine and the message

TRP ERR

is typed. If the control record was read in numerical

mode and it was not an end-of-job record (=======),
an additional message is typed:

MUST RELOAD

The operator then depresses the Start key and re-
enters the record. The Monitor Control Record Ana-
lyzer routine assumes control and processes the trap-
ped control record. If the control record was read in
alphameric mode, it is processed in the normal man-
ner by the Supervisor.

Error Count Retrieval Routine

Each time an error is detected by the I/0O error rou-
tine, an error count is incremented by one. An error
count is maintained for each of the following error
indicators:

06 Read Check
07 Write Check

16 MBR-E Check
17 MBR-0 Check
36 Address Check
37 WLR-RBC

38 Cylinder Overflow

The error counts can be typed out and reset to
zeros by entering the following instructions and data
from the typewriter:

34 00032 00701

36 00032 X0702

49 00070 0

11975400100046 (disk control field)

X is the drive code for the Monitor IT System.

The Release and Start keys are depressed to start
the operation. The seven indicator counts are then
typed in sequence in 14 consecutive positions with
a flag over the leftmost position of each count.

XX XX XX XX XX XX XX

The error counts are reset to zeros after the typeout.

Loader Routine

The Loader routine, a part of the Supervisor Program,
is used to load user’s object programs into core stor-
age from cards, paper tape and disk storage. To per-
form the loading function, the Loader routine is called
into core storage whenever an object program is to
be loaded into core storage. The user’s object program
could be any program in System Output format.

Programs are sequence checked as they are loaded
if input is from cards. This check is performed on the
last five digits of each input record. If any records
are out of sequence, an error message is typed and
the operator is allowed to intervene to correct the
sequence error. Patch cards may be interspersed with
other cards of an object program to be loaded.

The sequence number of card input appears in
columns 76-80. Sequence numbers start with 00001
and must have a flag over their leftmost position in
order to be sequence checked.

System Output Format

The general format in which FORTRAN 1-p and sps u-p
object programs will be outputted to paper tape, disk,
and cards is shown below:

Columns 1-5 Address of data.
6 Indicator code.
7-8 Length of data.
9-75 Data, indicator codes, etc.
76-80 Sequence number.

Patch cards should be prepared in the same format.
However, the sequence number must be all zeros
without flags. All patch cards must precede the card
that defines the end of a relocatable program (see
INDICATOR CODE 8). The entries shown above are de-
scribed as follows:

NotE: The descriptions given here will be in terms of
cards; however, paper tape and disk formats will be
the same with the exception of the sequence number.

Address of Data — This entry will always refer to
the location where the first digit of data on the card
is to be loaded. This entry will appear in columns
1 through 5 of a reloadable card. The address is an
absolute address, i.e., no relocation increment (pre-
suming this program is relocatable) has been added
yet.

Indicator Code — This 1-digit entry is used to either
define the type of data that is to follow or to con-
vey certain loading instructions to the loader. There
are thirteen different indicator codes that may be
used; some are applicable to sps 11-p only (see INDI-
CATOR CODES).

Length of Data — This field is used in conjunction
with certain indicator codes (1, 2, 2, 3,3, 4, 4) to
specify how many digits of data are to follow. With
other indicator codes, this field becomes part of a
larger field and assumes a different role.

Supervisor Program 23

Data — This field contains actual data to be loaded.
Data may be instructions, constants, etc., depend-
ing upon the indicator code. All instructions for re-
locatable programs will contain flags over O,, O,
of the operation code to specify if the P and Q ad-
dresses, respectively, should be incremented by the
relocation address. If patch cards are prepared,
these flags must be punched for addresses to be
adjusted. Instructions of programs in absolute for-
mat must not be flagged.

INDICATOR CODES

Although the output format is shown divided into
specific fields, these same fields do not always make
up the columns that are indicated. As will be seen
by the descriptions of the various indicator codes, the
format varies considerably as the type of data on the
card changes.

The indicator codes are described as follows:

Note: Those codes marked with an asterisk are used
in sps 1-p output only.

== — This digit indicates that a change is being
made in the sequence of loading addresses
for the program. The five digits that follow
the record mark denote the new address or
origin. After the 5-digit address, there will
be another indicator code to define the data
that follows.

= — This digit is used whenever the data that
follows is an instruction or relative address
which cannot be fully contained before the
seventy-fifth column of the card has been
reached.

* 0 — This digit is used when a TRA-TCD declara-
tive combination is assembled in any re-
locatable sps program. The five digits that

_follow the zero constitute a branch address
for entrance to a routine.

* 0 — This digit is used in the same manner as 0
above, except the flag denotes an sps pro-
gram with absolute addresses.

1 — This digit indicates that the data to follow
after the “length of data” field are instruc-
tions.

2 — This digit indicates that the data following
the “length of data” field are constants that
are to be relocated.

2 — This digit indicates that the data following
the “length of data” field are constants that
are not to be relocated.

3 — This digit indicates that the data following
the “length of data” field are relatlve ad-
dresses to be relocated.

24

® 3 — This digit indicates that the data following
the “length of data” field are relative ad-
dresses that are not to be relocated.

* 4 — This digit is used to supply numeric blanks
when a relocatable program is loaded. The
2-digit “length of data” field following the
indicator specifies how many numeric blanks
are desired. Thus a 412 will cause twelve
numeric blanks to be inserted into core stor-
age when loading,

®* 4 — This digit is used in the same manner as
the digit 4 above except that the flag indi-
cates the program is in “absolute” form.

6 — This digit indicates the end of a relocatable
program. In sps 1-p, the five digits immedi-
ately preceding a 6 or 6 (described below)
will be the number of core positions needed

" for this program. In sps or FORTRAN, the
card that follows a card containing a 6 or 6
will contain five 9s in columns 1-5.

* 6 — This digit indicates the end of an “absolute”
program.

Example
The first 35 columns contain the following:
01012112490036600000==0101920500428

Columns 36 through 75 are blank and columns 76-80
contain 00101.

Explanation

Columns Contents Description

1-5 01012 Loading address of first informa-
tion.

6 1 Code indicating the following in-

- formation is an instruction.

7-8 12 Length of the following informa-
tion.

9-20 490036600000 The information to be loaded,
which is a Branch instruction
with a relocatable P field.

21 + Code indicating a change in the

_ loading address sequence.

22-26 01019 Loading address of the following
information.

27 2 Code indicating the following in-
formation to be loaded is a re-
locatable constant.

28-29 05 Length of the followmg informa-
tion.

30-34 00428 The information to be loaded,
which is a relocatable constant.

35 + Code indicating nothing further
is to be loaded from this card.

76-80 00101 Sequence number.

With a relocation factor of 14000, the above data would be
loaded starting at location 15012. The data would- appear as:
491436600428.

Error Messages

If an error occurs during execution of the Loader rou-
tine, an error message will be typed and the 1620 will
stop to await operator action. A list of error messages,
the conditions which cause them, and the corrective
action required, follows.

Message — XXXXX LD1 (XXXXX is the sequence
number of the last card read in correct se-
quence).

Cause — Card sequence error.
Action — Correct the order of input cards, starting

with the card following XXXXX, and place them
in the card reader. Depress the Start key.

Message — LD2
Cause — Card read error.

Action — Reread card by depressing the Check
Reset and Start keys on the card read punch.

Message — LD 3
Cause — Disk read error.
Action — Depress Start key and retry.

Message — LD 4

24.1

Cause — Disk read error while reading Loader rou-
tine into core storage.

Action — Depress Start key to retry.

Monitor Il System Communications Areas

Core storage positions 402 through 439 and disk sector
19663 are reserved for use by the Supervisor Program,
sps assembler, FORTRAN compiler, Disk Utility Pro-
gram, and other programs as common communica-
tions areas. The Communications Areas are automat-
ically established when the Monitor system is load-
ed. Changes to the communications areas are made
as specified by control records (see DFINE CONTROL
carp) or by the Supervisor program itself. Care should
be taken by the user, so that the communications
areas are not inadvertently altered. A description of
each of the fields in the core storage and disk sector
communications areas follows.

Core Storage Area

Core Storage
Positions
402-421

Description
A 20-digit pim entry or a 14-digit
disk control field being used by
the 1/0 routine, Disk Utility Pro-
gram, or other programs.

422-425 Starting address of work cylinder.
Only the four leftmost positions
of the sector address are given.
This address will be 1000 (with
the flag) unless changed by a

DFINE control card.

426 Source of sps or FORTRAN source
program input,
1 = typewriter.
3 = paper tape.
5 = card.

427 If this position is flagged, loading
resumes after a Tcp at core stor-
age address 00000. If unflagged,
loading resumes at the core stor-
age address specified by posi-
tions 435-439 of this Communi-
cations Area.

428 Source of object program being
loaded,
= paper tape.
5 = card.
7 = disk.

A flag in this position indicates that
a DEND type entry starts execu-
tion of the object program. No
flag indicates that a TRA-TCD type
entry starts execution of the ob-
ject program.

429 Source of monitor control input,
1 = typewriter.
3 = paper tape.
5 = card.

A flag is present in this position if
library subroutines are to be
called with sps or FORTRAN ob-
jects programs.

430-434 “High” indicator, i.e., the core stor-
age address of the highest posi-
tion to be loaded plus one.

435-439 Address where loading is resumed

follcwing an sps TRA statement.
This address will always be one
of the following: 00000, 00075,
00150, or 00225.

Disk Sector Area (Sector 19663)

Disk Sector
Positions

00-19

Description
piM entry used by I/0 routine and
Supervisor program.

Not Used. Available for use by the
1620 user.

22 0 indicates that the program to be
loaded into disk storage is in
core image format; 1 indicates
that the program to be loaded
into disk storage is in relocatable

format.

20-21

23 0 indicates card output; 1 indicates
paper tape output.

24-35 Six-character alphabetic name of
user’s source program to be load-
ed into disk storage after as-

sembly.

36-39 Four-digit piM entry number of
user’s source program to be load-

ed after assembly.

40-41* Two digits (Xx) indicating length
of mantissa for sps subroutines.

(Standard mantissa length is 08.)

Supervisor Program 25

26

42-43*

45-46*

47-48*

49

50-72
73

74-75

76

Two-digit sps subroutine set identi-
fication number. (Standard set
number is 02.)

N (noise) digit for sps subrou-
tines. (Standard N digit is 0.)

Two digits (ff) indicating length
of mantissa for FORTRAN sub-
programs. (Standard mantissa
length is 08.)

Two digits (kk) indicate FORTRAN
fixed-point word length (04
standard length). ‘

Digit indicates number of disk
storage drives available to the
Monitor System.

Supervisor Program indicators.

Source of input, other than disk,
for ForTRAN subprograms (from
DFINE control record; 5 is stand-
ard, 3 = paper tape, 5 = card).

Number of control cards for ror-
TRAN at load time.

Object machine core size (from
DFINE control record; 1 when
system is delivered).

77

78-79

80-81

82

83*

84-88

89-93

94-98
99

N (noise) digit for sps subroutines
(from Noise Digit control rec-
ord).

Mantissa length for sps subrou-
tines (from Mantissa Length con-
trol record).

sps subroutine set identification
number (from Subroutine Set
control record).

FORTRAN A and I/O subroutine set
numbers (from FORX or XEQS con-
trol record).

FORTRAN A and I/O standard sub-
routine set number (from DFINE
control record; 1 when system is
delivered).

First core storage address of a re-
locatable object program.

Computed relocation address of a
relocatable object program.

Card sequence number.

A record mark (==).

* These items are the systems standards. See Define
Parameters under Disk Utility Program.

In every data processing installation there are certain
operations that must be performed frequently. These
operations may differ in detail, depending on the
user’s particular machine configuration and data for-
mat, but essential functions remain the same. Because
of their frequent use, the burden of programming
these operations can become a costly, time-consuming
task. Therefore, there is a need for generalized
routines which will satisfy specific functions and allow
the user the flexibility of assigning the specifications
for his particular problem.

The generalized routines, provided by 1M Pro-
gramming Systems, described in this publication, are
grouped under the heading Disk Utility Program.
They are designed to assist the user in the day-to-day
operation of his installation. By means of these rou-
tines, certain frequently required operations, such as
loading or unloading disk storage (data or programs)
from cards or paper tape, etc., can be performed with
minimum programming effort by the user.

The routines described in this publication are:

1. Write Addresses. This routine writes sector ad-
dresses on a disk pack as specified by the user.
Data on the disk pack can be replaced by zeros
or left unchanged.

9. Alter Sector. This routine uses the typewriter to
change data in a sector of disk storage. In most
cases, only the digits to be changed must be
typed.

3. Disk-to-Output. This routine unloads disk stor-
age containing data or programs into cards,
paper tape, or on the typewriter.

4. Load Programs. This routine loads one or more
programs from cards or paper tape to disk stor-
age at either a specified address or an address
selected by the load routine itself, and checks
for an overlap of previously stored programs.

5. Replace Programs. This routine implements the
changes or additions necessary to update a pro-
gram on disk storage. Input can be in either card
or paper tape form.

6. Disk-to-Disk. This routine copies data or pro-
grams from one area of disk storage to another.

7. Delete Programs. This routine effectively deletes
programs from the system by deleting their
associated piMm entries and Equivalence table

Disk Utility Program

entries without actually removing the programs
themselves.

8. Define Parameters. This routine redefines certain
essential parameters of the Monitor System.

9. Define Disk Pack Label. This routine writes the
“label sectors” (first and last sectors, cylinder 99)
and establishes a Sequential Program table on a
disk pack. It can be used to initialize new disk
packs.

10. Define FORTRAN Library Subroutine Name.
This routine generates an entry in the Equiva-
lence table for rorTRAN subroutines that have
multiple entries. Thus, a name can be assigned
to all entries in a subroutine.

Each routine can be entered and executed by
means of control records read by the Disk Utility
Program. In addition, the routines are used by
both sps 11-p and FORTRAN 1-D to output as-
sembled programs into cards or paper tape and
to load and replace programs in disk storage.

The Equivalence table, pim table, and Sequential
Program tables are used and modified by the Disk
Utility Program in the execution of its routines. These
tables are updated automatically for each disk stor-
age change when the user adds, deletes, or replaces
a program. Entries are created in the tables whenever
a new program is loaded to disk storage.

Operation

The Disk Utility Program, a self-loading program, is
loaded into disk storage along with the other pro-
grams that make up the Monitor II System. When a
pup Monitor Control card (=== pup in card columns
1-5) is recognized by the Supervisor Program, the
Disk Utility Program will take control and select the
appropriate Disk Utility routine as identified by the
next card in seqence, which should be a Disk Utility
Program Control card. This card is identified by an
asterisk in card column 1. Card columns 2-6 contain
a code word to identify the Disk Utility routine de-
sired: such as, Alter Sector, Load Programs, etc., and
the remaining card columns provide additional con-
trol information to be used by the Disk Utility routine
itself. The user supplies the control information which
describes the function he desires. Because the control

Disk Utility Program 27

information for each type of Disk Utility Program
Control card is different, the format of each is describ-
ed separately in the separate routine descriptions.
After the execution of a Disk Utility routine is com-
pleted, control is returned to the Monitor Control
Record Analyzer routine.

A pup Monitor Control card, as well as a Disk Utili-
ty Program Control card, is required each time a Disk
Utility routine is to be executed. These cards are
stacked with the other input cards to be processed by
- the Monitor System. This stacked input may be in
card or paper tape form or it may be entered from
the typewriter.

If the code word contained in a Disk Utility Pro-
gram Control card is not one of the ten legitimate
codes (DWRAD, DALTR, DDUMP, DLOAD, DREPL, DELET,
DFINE, DCOPY, DLABL Or DFLIB) an eITor mes-
sage will be typed and the computer will halt. This
message will be comprised of the data from the con-
trol card and a constant, ERR coNTrROL. When the
Start key is depressed, the Disk Utility routine will
return control to the Monitor Control Record Analyzer
routine which will pass all cards until the next Moni-
tor Control card is reached.

If the control record is entered from the typewriter,
the message

ENTER DUP CNTRL REC

is typed and the computer halts. The user may then
enter the next Disk Utility Control record from the
typewriter and depress the R-S key to continue pro-
cessing. Records are entered in the alphameric mode

The Disk Utility Program uses the I/O routine of
the Supervisor Program to perform its I/O functions
Therefore, error messages associated with that rou-
tine will be typed if an I/O error occurs. The I/O0
error messages, as well as operating options for I/0
errors, ave described under, 1/0 ERROR ROUTINE, in the
Supervisor Program section.

Whenever a Disk Utility routine is instructed by a
control record to write read-only flags with sector
addresses, the message

DUP * TURN ON WRITE ADDRESS KEY, START

is typed and the program halts. The operator should
turn on the Write Address key (to allow read-only
flags to be written) and depress the Start key to con-
tinue processing. After the program has been com-
pletely loaded, the message

DUP * TURN OFF WRITE ADDRESS KEY, START
is typed and the program again halts to allow the

28

operator to turn off the Write Address key.

Whenever a program of less than 200 sectors is
assigned to disk by any Disk Utility routine,
it will always be placed in consecutive sectors of one
cylinder. However, a program can be assigned by the
user, to any available disk storage area as described
under LOAD PROGRAMS RCUYINE.. Programs as large as
999 sectors long can be processed by the Disk Utility
Program.

After a program is loaded to disk by any Disk
Utility Program routine, the message

DK LOADED AAAAAA III DDDDDD
§ss Cceee EEEEE =

is typed to inform the user about the assigned pim

entry.

AAAAAA is the assigned program name, m is the as-
signed piM entry number and the remainder of the
message is the M entry itself.

Werite Addresses Routine

The Write Addresses routine is used to write sector
addresses on a disk pack. Addresses may be written
with or without read-only flags over the leftmost
positions. Data positions of each sector may be
changed to zeros or left unchanged.

When the Write Addresses routine is executed,
the Write Address key must be turned on. The mes-
sage:

DUP * TURN ON WRITE ADDRESS KEY, START

is typed to signal the operator to turn the switch on.
After the routine has been executed, the message:

DUP * TURN OFF WRITE ADDRESS KEY, START

is typed to signal the operator to turn the switch off.
The format of the control card follows.

Control Card (DWRAD).

Columns 1 Asterisk (*)

2-6 Code word, pwRAD.

7-12 Disk sector address where
writing is to start (seek ad-
dress).

17 Letter P if read-only flags
are to be written over ad-
dresses; otherwise leave

blank.

18 Letter Z if data positions
are to be changed to zeros;
letter S if data positions are
to remain unchanged.

21-26 Address to be written at sec-
tor where writing is to start.

27-32 Final address to be written.

When the pwrap Control card is read, control is
transferred to the Write Addresses routine and the
message

WRITE AND SAVE
SEEK START STOP
XXXXXX XXXXXX XXXXXX
or the message

WRITE AND ZERO
SEEK START STOP

XXXXXX XXXXXX XXXXXX
is typed to allow verification of control record data
and the computer is halted. (Note that the second
form of the message indicates that sector data posi-
tions are to be changed to zeros.) Six X’s indicate the
respective seek, start, and stop addresses. Depressing
the Start key causes execution of the routine. The
routine seeks the disk sector address specified in
columns 7-12. The address specified in columns 21-26
is written in that sector; the address is then increment-
ed by one and written in the next sector. Writing
continues in this manner until the incremented ad-
dress is equal to the final address (columns 27-32)
and the final address has been written.

If the program is unable to find the starting address
(columns 7-12), or any address that should be on the
specified track in disk storage, an error message ER
SK XXXXXX will be typed. XXXXXX is the disk
address on the last sector examined when no equal
comparison could be made with the sector addresses
that should be on the track that has been read. In
addition, the 20 sector addresses from the selected
track will be typed and the program will halt. When
the Start key is depressed, control is returned to the
Monitor Control Record Analyzer routine to read the
next Monitor Control record.

Alter Sector Routine

This routine allows the user to alter the data in any
selected sector of disk storage. The sector data to be
changed is typed out. All, or selected portions of the
sector may then be updated. After the changes have
been made, the old and the new data are typed out
for visual comparison and verification. If the changes
are satisfactory, the new data is stored on the disk
pack. As many sectors as desired may be altered each

time this routine is used. Control is transferred to
the Alter Sector routine when the control card is read.

Control Card (DALTR).
Columns 1 Asterisk (*)
2-6 Code word, pALTR.

After the control card is read, the message
SECTOR

is typed and the program halts.

The operator types in the 6-digit address of the
sector to be altered and depresses the Release and
Start key. If more or less than six digits are typed,
the message

SECTOR ADDRESS ILLEGAL,
START TO RE-ENTER *DALTR

is typed and the machine halts. Pushing the Start key
will restart all operations on the given sector. The
routine reads the sector and types it out in the fol-
lowing format.

Ist Half xxxxxxXxxX XXXXXXXXXX XXKXXXXXXX XXxXxxxxxx xxxxxxxxxx ORIGINAL

2nd Half xxxxxxxxxXx XXXXXXXXXX XXXXXXXXXX XXx0000xx xxxxxxxxxx ORIGINAL

Note that the two halves of the sector are identified by
the phrases, “Ist Half” and “2nd Half,” respectively.
(Typewriter margins must be at least 70 spaces apart
to permit this format.)

Each group of ten characters is assigned a section
number by the routine. The first five groups are as-
signed numbers 01-05; the last five groups are assigned
numbers 06-10. After the sector data is typed out, the
routine requests the number of the section in which
the first change will be made.

The message typed out is shown below:

SECTION
The user now types in one 2-digit section num-

ber between 01 and 10. After depressing the Release
and Start key, the message

SECTION NUMBER ILLEGAL,
START TO RE-ENTER *DALTR

is typed if the section number is greater than 10. If
the section number is correct (between 01 and 10),
the selected section is typed out for verification as
shown below.

XXXXXXXXXX TYPE CHANGE

The changes can now be entered directly under
the typed section. If a particular character does not

Disk Utility Program 29

- require changing, an “x” may be typed under that
character, or the character itself may be retyped.
Although only one section is typed out for any one
selection, succeeding sections may be altered by con-
tinuing to type changes. Spacing is optional except
that the number of characters (including spaces) can-
not exceed 100. Spaces (alpha blanks) will not be-
come part of the sector data. For example, assume that
section 3 is selected and is typed out as shown below:

3574246798

The operator desires to make some changes in section
3 and section 4. For this example, the typewritten
page may look like this:

3574246798 TYPE CHANGE
XXX7625X82 75234XX479

Typing may be terminated as soon as the last digit
to be changed is typed; that is, if the fifth digit in
section 4 (previous example) is the last change, the
last five digits of section 4 do not have to be typed in.
If the user does not type changes but simply de-
presses the Release and Start key, the message

CORRECTIONS HAVE NOT BEEN ENTERED

is typed and the computer will halt on a read alpha-
meric instruction to allow the user to enter the
changes.

If more digits are entered than the sector can con-
tain, the message

TYPE-IN EXCEEDS SECTOR LENGTH, START

is typed. Depressing the Start key allows the operator
to begin again and enter a new sector address. Spaces
are optional and do not become part of the sector
data; however, they are counted toward the maximum
allowable number of characters which is 100.

After all changes have been made, the operator
depresses the Release and Start key. The routine then
types out the original sector data along with the
changes that were typed in. The output appears as
shown below:

Ist Half 1234567890 1234567890 3574246798 8654213212 0987654321 ORIGINAL

Ist Half 1234567890 1234567890 3577625782 7523413479 0987654321 CORRECTED
2nd Holf 7265417623 0176421432 8543217290 5482797654 8243176521 ORIGINAL

2nd Half 7265417623 0176421432 8543417290 5482797654 8243176521 CORRECTED

30

At this point the routine will again type the word
SECTION

If other changes must be made, the operator enters
a new (or possibly the same) section number and de-
presses the Release and Start key. The secrron change
routine is now repeated. When all the changes prove
satisfactory, the operator enters a record mark instead
of a section number and depresses the Release and
Start key. The routine then writes the updated sector
back on the disk pack and types the message

DISK SECTOR DDDDDD CORRECTED

popppp is the sector address that was selected to be
changed. The routine then branches to the part of
the routine that types the message “secror” to allow
the user to choose another sector address and change
another sector.

When all desired sectors have been altered, this
routine is concluded by typing a record mark instead
of a sector address after the word secror has been
typed out. This will cause control to be returned to
the 1620 Supervisor Program, which will read another
1620 Monitor II control statement.

Operating Notes

When the routine is ready to accept the new data
(after the section number is typed in), it positions
the console typewriter in the “alphameric shift” mode.
Therefore, typing numerical data requires the opera-
tor to manually shift into numerical mode.

Flagged digits 1-9 may be inserted by typing the
corresponding alphabetic letters J-R. Flagged zeros,
numeric blanks, flagged record marks, and flagged
group marks may be entered by using minus (—) key,
@ key, W key, and G key, respectively. Alpha blanks
(spaces) do not become a part of the sector data.

Disk-to-Output Routine

The Disk-to-Output routine transfers data from se-
lected portions of disk storage to cards, paper tape,
or the typewriter. This routine enables the user to
preserve original records before they are updated or
changed, thus providing an audit trail. The card or
paper tape output will be in numerical form and will
contain record marks and group marks. Numerical
blanks result in blank card columns,

This routine can be used to obtain any of the fol-
lowing items of output as directed by the user.

1. Program or data identified by name.

. Program or data identified by piM number.

. Data between sector limits.

pim table.

Equivalence table.

. Availability list (extracted from Sequential Pro-
gram table).

7. Sequential Program table.

O Uk W

The routine is executed whenever a ppump control
card is read by the Disk Utility Program or wherever
a FORTRAN compilation or sps assembly requires
punching into cards or paper tape.

The Disk-to-Output routine can be used to trans-
mit any number of disk sectors to cards, paper tape,
or typewriter. Transmission will start with the first
sector specified in a piM entry or with a beginning
sector specified by the user. Transmission will end
when the sector count in the piM entry reaches zero
or when a specified ending sector is found. The out-
put following compilation or assembly is terminated
by a “9s” trailer record. The trailer record format is
five 9’s followed by a record mark, 69 zeros and a
sequence number. This record always follows all sps
and FORTRAN object programs. During execution of
the Disk-to-Output routine, resulting from pup control
records, error messages 01, 04, 06 or 20 may be typed
(see ERROR DETECTION AND CORRECTION).

The control card used to transfer control to the
Disk-to-Output routine is punched in the following
format.

Control Card (DDUMP).

Columns 1 Asterisk (*).

2-6 Code word, ppump.

7-12 Alphabetic name of pro-
gram or data to be punched
or typed (same name that
appears in Equivalence
table).
piM entry number of pro-
grams to be punched or
typed. (If the letter M is
present in column 18, either
a name or DIM eniry num-
ber must be present, but
both need not be present.)
17 Output device,

C = card
P = paper tape
T = typewriter

13-16

18 Identify output

I=Disk Identification
Map (pim).

E = Equivalence table

A = Avalability entries
from the sequential pro-
gram table from ' the
disk module specified
by column 19 (typed
output only).

S=Entire sequential
program table from the
disk module specified
by column 19.

M = Program identified
by columns 7-12 or 13-
16 of this card.

L = The sectors between
limits as specified by
columns 21-26 and 27-
32 of this card.

19 Module number (0, 1, 2, or
3) to be used if output
options S or A are exercised
(see column 18 above).

21-26 Beginning disk storage ad-
dress of output (lower lim-
it).

27-32 Ending disk storage address

of output (upper limit).

Output Format

CARD

Each 300 positions of disk storage (three sectors)
will be punched into four successive cards; 75 columns
of disk data followed by a five-column sequence num-
ber in each card. When 2 sectors are to be outputted,
3 cards are punched. When 1 sector is outputted, 2
cards are punched. Therefore, all disk data is punched
from 1 or 2 sector outputs.

A special trailer card containing 9’s in columns 1-5,
a record mark in column 6, zeros in columns 7-75, and
a sequence number in columns 76-80 will be punched
following the last output card. This record is used to
terminate loading when the output is reloaded by the
Load Programs routine or Replace Programs routine.
If the output deck is reloaded by the Load Programs
routine or Replace Programs routine, the trailer card
must remain behind the deck for control purposes.

DISK Utility Program 31

The 9’s trailer record will load into the work cylinders
along with the balance of the data; however, the
trailer record will not require extra disk storage posi-
tions if the data is moved to another disk location.
If the output is a program to be reloaded by the
loader routine, the entire program must be outputted.
The System Output Loader routine requires an entire
program, with all of its indicator codes, in order to
operate.

- When either the pim table or Equivalence table is
punched out, they will be in a loadable format; i.e.,
alphameric characters will be in 2-position alpha-
meric coding form.

PAPER TAPE

This output will be in standard loadable format, i.e.,
it may be reloaded to disk storage by the Replace
Programs routine. The output will be identical to the
card format described above, except that the sequence
number will not be punched with paper tape records.
The last output sector will be followed by a trailer
record for control in the event that the output is re-
loaded into disk storage.

TYPEWRITER

With the exception of the Availability list and Equiva-
lence table, all typewriter output will be in a standard
format. Each 100-character sector will be typed on
two lines as shown below.

Availability Lists. Availability lists are typed as
follows:

AAAAA

BBBBB CCCCC
BBBBB CCCCC
BBBBB CCCCC

AAAAA is the disk pack identification number.

BBBBB is the starting disk address of an unused area
of storage.

ccecc is thé ending disk address for the unused area.
These entries, one per line, are extracted from the

32

Sequential Program table by the Disk-to-Output

routine.

Equivalence Table. Equivalence tables are typed
in the following format with five entries per line.

NNNNNN T NNNNNN T NNNNNN T NNNNNN THENNNNNN T
NNNNNN T NNNNNNTHE NNNNNN T NNNNNN THENNNNNN T

NNNNNN is the alphameric name.

1 is the piM entry number. Available rorTraN library
entries will appear as RRRRRR 9999 in place
of NNNNNN IIII.

Load Programs Routine

The Load Programs routine is used initially to load
SPS II-D Or FORTRAN II-D object programs from the
working cylinders or programs previously dumped
by the Disk-to-Output routine, from cards or paper
tape into disk storage. Overlap of occupied areas of
disk storage is prevented by the routine. Programs
cannot be loaded in the work cylinders with this
routine. Programs will be loaded into areas of disk
storage selected by the routine itself, if the user
does not specify a storage area preference. If the
routine selects the storage area, it will always store
the program on a single cylinder, without overlapping
cylinders, unless it is longer than an entire cylinder.
If the user selects the storage area, it will be stored
in the selected area regardless of cylinder overlap
conditions. ‘

This routine provides the following program load-
ing options.
1. A name may be assigned to the program and
placed in the Equivalence table.
2. A piM entry may be assigned to the program.

. The disk storage location can be specified and

permanently assigned (fixed).

4. An entry address (execution address) can be
assigned in the pim entry to the program.

5. Read-only flags can be written in the sector ad-
dresses.

6. The disk storage location for the program can be
specified by cylinder(s) without causing perma-
nent assignment. Thus, several associated pro-
grams can be assigned to the same cylinder or
group of cylinders by the user without actually
specifying sector addresses.

w

7. Programs in either core-image or system output
formats can be loaded; and programs in system
output format can be converted to core image
while loading.

It is possible, by exercising option 3, to permanently
assign the sectors where the program is to be loaded
in disk storage. This capability is provided in this
routine only. When using this option, any programs
already in the specified load area, but not permanently
assigned, will be moved. The overlapped program
is moved to the area which immediately follows the
new program. If this in turn would result in additional
overlapping of other programs, the process of moving
programs continues until available space is found.
If any program, in this move, is a permanently
assigned program, or contains read-only flags in its
sector addresses, no programs are moved and the
new program will not be loaded.

A program is considered immovable if it is either
permanently assigned by the Load Programs routine
or if it contains read-only flags in any of its sector
addresses. Permanently assigned programs can be .

1. Deleted by the Delete Programs routine.

2. Copied by the Disk-to-Disk routine.

3. Changed by the Alter Sector routine.

4. Dumped into card or paper tape or printed on

the typewriter.

5. Read for any purpose with normal read com-
mands.

However, a permanently assigned program will not

be moved in disk storage by the Disk Utility Program.

Programs being loaded can be “file protected” by
writing read-only flags over the disk addresses of the
storage sectors. All loading options are indicated by
the control card.

Control Card (DLOAD).
Columns 1 Asterisk (*)

2-6 Code word, (pLOAD).

7-12 Alphabetic name (left-justi-
fied) of program to be load-
ed into disk storage.

1720 A piM entry number to be
given the program to be
loaded. (This number will
not be used by the routine
if it is already assigned to
another program.)

21-26 Beginning disk sector ad-
dress in the work cylinders
that contains the program to
be permanently loaded. The
first digit of the sector ad-
dress selected must be 1, 3,
3, or 7.

27-32

33-38

39-43

44-48

49

50

51

Ending disk address in the
work cylinders that contains
the program to be perma-
nently loaded. The first digit
of the sector address select-
ed must be 1, 3, 5, or 7.

Assigned disk storage ad-
dress of the program to be
loaded. (If this address is
included, the program will
be permanently assigned to
the given address.) The first
digit of the sector address
selected must be 1, 3, 5, or 7.

Core storage address for a
program that is placed in
disk storage in core-image
format. This address will be
placed in the CCCCC por-
tion of the associated pim
entry.
Entry address (address of
the first instruction to be ex-
ecuted) for a program that
is being loaded. This address
is placed in the EEEEE por-
tion of the associated pim
entry. This address is used .
for reading programs from
disk in core-image format
with the I/0 routine.
Input device,

C = card

P — paper tape.

D =disk storage work

cylinders.

Letter I, if program to be
loaded is in Core
Image format.

S, if program to be
loaded is in Sys-
tem Output for-
mat.

M, if program to be
loaded is in Sys-
tem Output for-
mat, and it is to be
converted to Core
Image format be-
fore loading to
disk storage.

‘Letter P, if read-only flags
are to be written over disk
addresses of storage sectors;

Disk Utility Program 33

otherwise leave blank.

52-54 Beginning cylinder (three
digits XYY, where X is the
module, 0, 1, 2, or 3, and YY
is the cylinder number 00-
99) to define lower limit
where program can be load-
ed.

55-57 Ending cylinder (three dig-
its XYY, where X is the
module 0, 1, 2, or 3, and YY
is the cylinder number 00-
99) to define upper limit
where program can be load-
ed. (Note that both the
upper and lower limits will
be ignored by the routine
if columns 33-38 of this card
are punched.)

60 Any non-blank character, if
program to be loaded is a
FORTRAN or sps object pro-
gram which requires sub-
routines.

Replace Programs Routine

The Replace Programs routine is used to replace pro-
grams in disk storage with updated, changed, or new
programs. Programs can be loaded to a disk storage
area from cards, paper tape, or from another assigned
disk storage area. In addition to loading disk stored
programs, identified by piM entries, programs can be
loaded from work cylinders.

A program can be given another name in the Equiv-
alence table by reloading the program over its original
assigned disk area using a different name. The pro-
gram can then be called by either name since both
names are maintained in the Equivalence table.

With this routine, it is possible to load a program
to itself adding read-only flags to the disk addresses.
A permanently assigned program in disk storage can-
not be replaced by this routine. To replace a perma-
nent program, (1) delete the program with the Delete
Programs routine and, (2) load the replacement pro-
- gram with the Load Programs routine.

The format of the control card for this routine fol-
lows. All fields are optional with the exception of
columns 1-6, 17-20, and 49,

Control Card (DREPL).

Columns 1 Asterisk (*).
2- 6 Code word, DREPL.
7-12 Alphabetic name of pro-

34

13-16

17-20

21-26

27-32

39-43

44-48

49

50

gram,.

The piM entry number
which identifies the program
to be loaded if the program
is from another assigned
disk storage area. (The pro-
gram to be loaded will be
deleted from its original disk
storage location.)

The piM entry number
which identifies the program
to be replaced.

Beginning disk sector ad-
dress if the program to be
loaded is in the work cylin-
ders. The first digit of the
sector address selected must
be 1, 3, 5, or 7.

Ending disk sector address
if the program to be loaded
is in the work cylinders. The
first digit of the sector ad-
dress selected must be 1, 3,
5, or 7.

Core storage address for a
program that is to be placed
in disk storage in core-image
format. This address will be
placed in the CCCCC por-
tion of the associated pim
entry.
Entry address (address of
the first instruction to be
executed) for a program
that is being loaded. This
address is placed in the
EEEEE portion of the asso-
ciated piM entry.
Input device,

C = card.

P — paper tape.

D = disk storage.
Letter I, if program to be

loaded is in Core
Image format.

S, if the program to
be loaded is in
System Output
format.

M, if program to be
loaded is in Sys-
tem Output for-
mat, and it is to
be converted to

core image format
before loading to
disk storage.

51 Letter P, if read-only flags
are to be written
on disk addresses
of storage sectors;
otherwise leave
blank.

60 Any non-blank character, if
program to be loaded is a
FORTRAN oOr SPS object pro-
gram which requires sub-
routines.

Disk-to Disk Routine

This routine can be used to copy data or programs in
disk storage to any available (unoccupied) disk stor-
age area including the work cylinders. A program to
be copied should be specified by a pim entry, an al-
phabetic name that is in the Equivalence table, or a
sector address given by the user. The program cannot
be copied into an area which is already identified by a
pIM entry number, except the work area (pmM entry
0001). Read-only flags may be written with the disk
sector addresses of the copy, except in work cylinders,
at the option of the user. When this routine is used,
the piM table and the original program remain un-
changed. It is not possible to copy a program over a
portion of that same program. It is not possible to
copy a program into the work cylinders if that pro-
gram exceeds the work cylinder limits. Data can be
copied from one portion of the work area to another;
however, no check will be made for overlapping of
data within the work area. If a program or data
to be copied is less than 100 sectors, there is no dan-
ger of overlap.

If any read-only flags are encountered in sector
addresses within the copy area, an I/O routine error
message is indicated. The program will be copied up
to the point of the error.

The options offered by this routine are identified
in the control card that follows.

Control Card (DCOPY).

Asterisk (*)

2-6 Code word, pcopy.
7-12

Columns 1

Alphabetic name of program to
be copied.

13-16 The b entry number which
identifies the program to be
copied.

21-26 Beginning sector address of pro-

gram or data to be copied.

27-32 Ending sector address of pro-
gram or data to be copied.
(Note that the beginning and

ending sectors will always be
used if present.)

33-38 Beginning disk sector address
of the new copy. This address
must be that of work cylinders
or available disk storage. This

field must always be punched.

51 Letter P, if read-only flags are
to be written on disk sector ad-
dresses at the new location of
the program; otherwise leave
blank.

The sectors that are to contain the copy must not
have read-only flags in the sector address initially or
an error will be indicated and copying will be termi-
nated.

After the data is successfully copied, the message

NNNNN SECTORS OF DATA
COPIED FROM XXXXXX TO YYYYYY

is typed, where NNNNN specifies the number of
copied sectors and xXxxxx and Y¥yvvy are the be-
ginning sector addresses of the From and To areas,
respectively. If the copied data is written with read-
only flags, an additional message is typed.

AND FILE PROTECTED

To move a program or data from one disk area to
another, it should be: (1) copied to the working cyl-
inders from the original area, (2) deleted from the
original area, and (3) loaded to the new area from
the working cylinders. This can be accomplished by
using the Disk-to-Disk, Delete Programs, and Load
Programs routines, in that order. Therefore, a *pcopy
control record is used to copy the program into work-
ing cylinders; a "pELET control record is used to
make the original storage area available by deleting
its oim entry and Equivalence table entry; and a
*pLoAD control record is used to load the program
to a specified sector address and to generate the
new piM entry and Equivalence table entry.

Disk Utility Program 35

Delete Programs Routine

This routine can be used to delete a program and its
associated pm entry, Sequential Program table entry,
and Equivalence table entry (if any) or entries
(where the program has more than one name) from
disk storage. When a program is deleted, read only
flags will be removed and programs in successively
higher disk storrage positions will not be moved up
to fill the vacated storage area.

* The format of the control card follows.

Control Card (DELET).
Columns 1 Asterisk (*)
‘ 2-6 Code word, pDELET.

7-12 Alphabetic name of program to
be deleted (same name that ap-
pears in Equivalence table).
pIM entry number of program
to be deleted. (Note that either
a Name or piM entry number
must be present, but not both.)

13-16

Define Parameters Routine

This routine can be used to alter the assignment of work
cylinders, pim table, Equivalence table, Sequential Pro-
gram table, or certain system specifications in the Sys-
tem Communications Area for the Monitor System.
The pim table may be lengthened or shortened, but may
notbe moved from cylinder 24. The Sequential Program
table may be shortened, but must remain on cylinder
99. The Equivalence table may be lengthened or short-
ened. It will always immediately follow the pmm table,
even if the pim table is altered in length. This routine
can also be used to indicate that more than one disk
storage drive is to be used with the 1620.

When the size of the prm table is changed, the Equiv-
alence table will be moved to immediately follow the
piM table. When redefinition of an area (working cyl-
inders, piM table, or Sequential Program table) is at-
tempted, the area must be available; i.e., it must not
be occupied by programs with assigned prm entries. If
an area is unavailable, it will not be redefined and the
following message will be typed.

DUP * ERROR 08

The normal assignment of disk storage for the above
mentioned tables is as follows.

Cylinder
Description Assignment
Work Cylinder 00-23
piM table 24
Equivalence table . 25 (first eighty sectors)
Sequential Program table 99 (second through
eighty-first sector)

36

To make any alterations to these assignments, or to
the system specifications, the user must enter a control
card containing the new parameters. Only the param-
eters to be changed need to be punched in the con-
trol card. The parameters from a control card are
processed from left to right by the routine. If any
parameter is invalid, those parameters to its right will
not be processed.

Control Card (DFINE).

Columns 1 Asterisk(*).

2-6 Code word, DFINE.

7-12 Beginning disk sector address of
work cylinders (must be first ad-
dress of a cylinder).

Number of cylinders to be re-
served for work cylinders (11
minimum, 99 maximum).

18 Number of disk storage drives on
system (1-4).

Number of sectors to be reserved
for pim table (35 minimum, 999
maximum),

Number of sectors to be reserved
for Equivalence table (9 mini-
mum, 999 maximum).

Number of sectors reserved for
Sequential Program table (80 sec-
tors maximum).

(Note that the same number of
sectors is reserved for each disk
storage drive on the system as
defined in column 18.)

Standard length of mantissa for
sps floating-point subroutines (disk
sector positions 40-41 of the Com-
munications Area; 08 when the
system is delivered). This value
may be any number between
02-45.

Standard sps subroutine set identi-
fication number (disk sector posi-
tions 42-43 of the Communications
Area; 02 when the system is de-

14-16

20-22

24-26

28-30

37-38

40-41

livered).

01 — Fixed length mantissa (08)
floating-point subroutines for
machines equipped with Au-

tomatic Divide feature.

02 — Variable-length mantissa
floating-point subroutines
for machines equipped

with the Automatic Divide
feature.

03 — Variable-length mantissa
floating-point subroutines
for machines equipped
with the Automatic Float-
ing-point feature.

Standard N (noise) digit (any
number 0-9) for ses subrou-
tines (disk sector position 44 of
Communications Area; 0 when
the system is delivered).

45-46 Standard length of mantissa

48-49

51

57

(any number 02-28) for For-
TRAN programs (disk - sector
positions 45-46 of Communica-
tions Area; 08 when the system
is delivered).

Standard fixed-point word
length (any number 04-10) for
FORTRAN programming system
(disk sector positions 47-48 of
Communication Area, 04 when
the system is delivered).

Source of Input, other than disk
input, for FORTRAN subpro-
grams (disk sector position 73
of Communications Area; 5
when the system is delivered).

—paper tape
5=card

Core storage capacity of object
machine (disk sector position
76 of Communications Area; 1
when the system is delivered).

1=20,000
3=40,000
5=60,000

FORTRAN Arithmetic and 1/0
subroutine set identification
number (disk sector position
83 of Communications Area; 1
when the system is delivered).

1 or 3 = disk storage version
for machines equipped
with the Automatic Float-
ing-Point feature.

2 or 4 = core storage version
for machines equipped

with the Automatic Float-
ing-Point feature.

The number of disk storage drives on the system
may be 1, 2, 3 or 4. The Supervisor Program and the
Disk Utility Program will need to know this number
in order to utilize all available disk storage. The sys-
tem will utilize only the first disk storage drive unless
additional drive availability is specified by a prINE
control card. Therefore, it may be necessary for the
user to process a DFINE control card immediately after
initially loading the Monitor System. When loading
programs and assigning addresses, the Monitor System
will start with the first available sector on the first
available disk drive and proceed sequentially higher
to available drives. Also, the user may want to change
some of the other parameters of the system before
any actual processing is initiated. If any errors are
found in any data on a DFINE control card, all data to
the left of the data in error will have been processed
and data to the right will be ignored. See ERROR DETEC-
TION AND CORRECTION for a description of possible
DFINE €ITOTS.

When the routine is used to enlarge or shorten the
tables or to change the number of disk storage drives
for the system, the *prFINE record should be followed
by a == =paus record. After the routine is executed,
== ==paUs record will halt the computer to allow the
operator to reinitialize the System; i.e., to reload the
Monitor System into core storage. The procedure for
calling the System into core storage from disk storage
is deserted under orEraTION in the Monitor II System
Section.

Define Disk Pack Label Routine

This routine can be used to initialize a new disk pack
for the Monitor System by writing the disk pack iden-
tification number in the label sectors (first and last
sectors of cylinder 99) and the Sequential Program
table in cylinder 99. All disk packs used by the Moni-
tor System must be labeled and must contain a Se-
quential Program table. The disk pack identification
number is written in the first five positions of the first
sector in cylinder 99 and a read-only flag is written
over the corresponding sector address. The same
number is also written in the 31st through 35th posi-
tions of positions 1-100 of the last sector of the disk
pack. This sector address is changed to 00199 regard-
less of the addressing scheme used for the remainder
of the disk pack.

Note that it is ne¢essary to initialize the disk pack
which contains the Monitor system because the sys-

Disk Utility Program 37

tem pack is not automatically initialized when the
system is loaded. Label sectors on a pack which con-
tains the Monitor System may be changed by this
routine; however, the Sequential Program table will
not be re-inijtialized. The Monitor System disk pack is
identified by 04800 in the sector address portion
of pim entry 3.
The format of the control card follows.

Control Card (DLABL)

Columns 1 Asterisk (*).
2-6 Code word, pDLABL,
7-11 Disk pack indentification num-
der to be assigned.
12 Disk drive number (0, 1, 2, or
3) of the disk drive that con-
tains the disk pack to be label-
ed.
Both a disk pack identification number and disk
drive number must be given. If either one is missing,
the message

DUP * ERROR 01

is typed and the computer halts without writing label
sectors. To correct the error, the operator may enter
a corrected control card in the stacked input. Depress-
ing the Start key will return control to the Monitor
Control Record Analyzer routine to read the next
Monitor Control record in the stacked input.

Only numerical characters may be entered for the
disk pack identification number. If this number is all
zeros or any position contains a letter or special char-
acter, the message

DUP * ERROR 10

is typed and the computer halts without writing a
label sector. The restart procedure is the same as
that given above for Error 01.

Define FORTRAN Library Subroutine Name

This routine permits the user to assign additional
names (synonyms) for the FORTRAN library subrou-
tines or to assign names to user-written library subrou-
tines. Any user-written library subroutine with more
than one entry will require this routine in order to
place the name of the additional entries in the Equiv-
alence table. These names are added to the Equiva-
lence table within the first 50 entries of the system
disk pack.

The control card format follows.

38

Control Card (DFLIB).

Columns 1 Asterisk (*).

2-6 Code word, DFLIB.

7-12 Name of library subroutine,
left-justified.
piM number. This number was
originally specified by the user
when the subroutine was added
to the system disk pack. The
abbreviated 2-digit oM num-
bers for the sixteen standard
library subroutines may be
found /in the rorTRAN m-p Li-
brary Subroutines table in the
FORTRAN section.

14-15

When a name is entered in the Equivalence table,
the message

FORTRAN LIB NAME ENTERED NNNNNNIIII

is typed, where NNNNNN is the name specified in col-
umns 7-12 and Tix is the piM number specified in
columns 14-15 (preceded by two zeros).

Both a Name and piM entry number must be given.
If either is omitted, error message 01 will be typed.

Error message 10 will be typed for any of the fol-
lowing conditions.

1. The Name is all numbers, its first character is not
alphabetical, or it contains special characters, in-
cluding nonterminating blanks.

2. Columns 7-15 contain a record mark or group
mark in any position or column 13 is not blank.

3. The prm number is outside the range 10-39 or it
contains letters or special characters.

Error message 54 will be typed if no space is
available for the Name within the first 50 entries of the
Equivalence table. Also, the Name itself will be typed.

Error message 51 will be typed if the name is a
duplicate of another name in the Equivalence table.
If operator action is required for any of the above
messages, refer to ERROR DETECTION AND CORRECTION.,

Error Detection and Correction

In addition to the messages described with the indi-
vidual Disk Utility routines, other numbered error
messages may be typed. These messages, described
here, may be common to more than one Disk Utility
Program as well as FORTRAN or sps output operations
that follow compilation or assembly. Table 1 indicates,
by message number, the error messages that may be
generated by each routine. A list of the error mes-
sages and their cause, and a list of operator actions
for the associated messages follow.

Error Messages
DUP * ERROR 01

DUP * ERROR 02

DUP * ERROR 03

DUP * ERROR 04

DUP * ERROR 05

DUP * ERROR 06

DUP * ERROR 07

Cause

Field missing from control
card.

“«, >

TO” DpIM entry number
specified in DREPL control
card is not in use in DIM
table.

“«, 4

70" DIM entry number,
specified in a DREPL con-
trol card refers to perma-
nently assigned program.

“FROM” DIM entry number
specifietd in a DpUMP,
DREPL, Or DCOPY control
card is not in use in the oM
table

Work cylinders illegally
specified for program stor-
age by DLOAD or DREPL
control card entry.

pIM entry number specified
in a DDUMP, DLOAD, DREPL,
DCOPY, Oor DELET control card
is out of range of piM table
entry capacity.

“FROM” DIM entry number
in a DREPL control card re-

DUP

DUP

DUP

DUP

DUP

DUP

DUP

DUP

Table 1. Numbered Error Messages Generated by Disk Utility Routines

ERROR 08

ERROR 09
ERROR 10

ERROR 11

ERROR 12

ERROR 13

ERROR 14

ERROR 15

fers to an immovable pro-
gram,

Insufficient available storage
space at location specified
by a pLOAD, DREPL, DCOPY,
DFINE control card.

pIM table is full.

Field in prLB, pcopy or
DLABL control card con-
tains invalid data.

Number of modules speci-
fied in pFINE control card
is greater than 4, or less
than 1.

Beginning disk sector ad-
dress of work cylinder, in
DFINE control card, is not
first address in cylinder.
Insufficient available stor-
age for specified work cyl-
inder (DFINE control card).
Number of sectors specified
by prFiNe control card for
Sequential Program table
exceeds 80 sectors.

Sector address is non-numeri-
cal in 2 DWRAD, DDUMP, DLOAD,
DREPL, DCOPY, Or DELET CON-
trol record.

ROUTINE

ERROR

12113114 51152]53454155] 56]57158(59160}6 1

Write Addresses (DWRAD)
Alter Sector (DALTR)
Disk-to-Output (DDUMP)
Load Programs (DLOAD)
Replace Programs (DREPL)
Disk-to-Disk (DCOPY)
Delete Programs (DELET)
Define Parameters (DFINE)

Define Disk Pack Label (DLABL)

Define FORTRAN Library Subroutine
Name (DFLIB)

FORTRAN or SPS Output

X} X} X} X} X

X XXX
XXX

X X

Disk Utility Program 39

DUP * ERROR 16

DUP * ERROR 17

DUP * ERROR 18

DUP * ERROR 19

DUP * ERROR 20

DUP * ERROR 21

DUP * ERROR 24

DUP * ERROR 51

DUP * ERROR 52

DUP * ERROR 53

AAAAAA

40

Storage location specified by
a pcopy control card
would cause program stor-
age to overlap work cylin-
ders if allowed.

Starting sector address is
greater than ending address
for DWRAD, DLOAD, DREPL, Or
pCcoPY control card.
Sequential Program table is
defined as less than required
by the present contents of
that table (pFINE control
card).

Core storage address of a
program to be placed in
disk storage in core image
format is less than 02302. A
blank address will be treat-
ed as 02402. If the program
is a Library function (pim
entries between 10 and
130), the message will not
be indicated.

Name specified by ppump,
DCOPY, Or DELET control card
is not used in Equivalence
table.

pIM number specified by
DELET control card is not in
use.

Cylinder limits specified in
®pLoAD control card are
greater than allowed by Sys-
tem parameters.

Name specified is a DLOAD,
DREPL, or DFLIB control card
or a FORTRAN or SPS control
card has been rejected be-
cause a duplication name
exists in the Equivalence
table.

“ro” pIM entry number spe-
cified in pLoAD control card
is in use in piM table (The
routine will load the pro-
gram and assign the bpiM
entry.)

Name specified in a pLOAD
or DREPL control card or a
FORTRAN or sps control card
has been rejected because
the Equivalence table (with
the exception of the first 50
entries) is full. AAAAAA is

DUP * ERROR 54
AAAAAA

DUP * ERROR 55
CARD SEQUENCE
NNNNN

DUP * ERROR 56

DUP * ERROR 57

DUP * ERROR 58

DUP * ERROR 59

DUP * ERROR 60

DUP * ERROR 61

Operator Action

the rejected name.

Name specified in a pLOAD,
DREPL, Or a DFLIB control
cord or a FORTRAN Or SPS
control card has been reject-
ed because the first 50 en-
tries of the Equivalence
table are full. AAAAAA is
the rejected name.
Sequence error has been
found while reading a pro-
gram to be loaded to disk
storage. NNNNN is the se-
quence number of the card
that is out of sequence.
Only cards with an eleven
punch over the leftmost po-
sition of the sequence num-
ber (column 76) are se-
quence checked; therefore,
patch cards are excluded
from the check.

piM number supplied in
FORTRAN or sps control card
is in use in piMm table, and
Name specified in the same
card has a different pmm
number in the Equivalence
table.

piM number supplied in
FORTRAN or sps control card
is in use in piM table, and
Name specified in the same
card has no matching name
in the Equivalence table.
“ro” piM entry number spe-
cified in FORTRAN or SPs con-
trol card refers to a per-
manently assigned program
storage area.

pIM entry number specified
in a FORTRAN or SPS control
card is out of range of pim
table entry capacity.
Insufficient available storage
space for a function specified
by FORTRAN or sps control
card.

piM table full.

Messages 1-24. After the message is typed, the com-
puter halts. The operator may then enter a corrected
control record. Depressing the Start key returns con-

trol to the Monitor Control Record Analyzer routine
to read the next Monitor Control record.

Message 51. No operator action required. The rou-
tine continues and loads the program without placing
the name in the Equivalence table.

Message 52. The routine continues and assigns a
pM entry and loads the program.

Messages 53, 54. No operator action required. The
routine continues and loads the program without
placing a name in the Equivalence table.

Message 55. After the message is typed the com-
puter halts. To restart:

1. Remove the cards from the hopper.

. Depress the Nonprocess Runout key.

2

3. Remove the last two cards from the stacker.

4. Rearrange cards from steps 1 and 3 in corrected
sequence and place them in the hopper.

5. Depress the Reader Start key. Note that paper
tape contains no sequence number, therefore,
it can never generate this type of error.

Message 56. No operator action required. The rou-
tine continues and loads the program, generating a
DIM entry, without placing the name in the Equiva-
lence table.

Message 57. No operator action required. The rou-
tine continues and loads the program, generating a
piM entry, and places the name in the Equivalence
table.

Messages 58, 59. No operator action required. The
routine continues generating a piM entry and loading
the program to disk storage.

Messages 60, 61. After the message types, the com-
puter halts without loading the programs, providing no
other output is requested. (If a FORTRAN or sps control
record is included with the source data to indicate
that the compiled or assembled object program is to
be punched, the program is outputted without halting
the computer.) To correct the error,”a DLOAD, DREPL,
or ppumP Monitor Control record can be entered in the
stacked input to load the program to a different loca-
tion from the work cylinders or to output the program.
Depressing the Start key returns control to the Moni-
tor Control Record Analyzer routine to read the next
Monitor Control record.

FORTRAN and SPS Ovutput

The Disk Utility Program contains the output routines
for both rForTRAN and sps. These routines load object
programs to disk storage and punch them out into
cards or paper tape.

Following compilation or assembly, the message

DK LOADED AAAAAA IIII DDDDDD

SSS CCCCC EEEEE =
is always typed to inform the user about the assigned
DIM entry. AAAAAA is the supplied name, i is the
piM entry number, and the remainder of the message
is the pim entry.

For programs being loaded into disk storage, the
user may select the piM entry and/or name. Names
and pim numbers are supplied in FORTRAN (*LDISK) or
sps (*NAME, *ID NUMBER) control records.

Processing of the Equivalence table and pmM table
and the actual loading is dependent upon whether
the user supplies a Name and piM number, Name
only, or piMm number only.

Name and number supplied by user.

1. If pim entry is in use in piM table.

a. and Name is already in Equivalence table.
1) If Name in table references number sup-

plied, replace old program with new
program.

2) If Name in table references another num-
ber, type error message 56, and load pro-
gram with available pim entry number
and no Name.

b. and Name is not in Equivalence table, type
error message 57 and load new program with
available piM entry number and add Name in
Equivalence table.

2. If piM entry is not in use in piM table.

a. and Name is already in Equivalence table,
type error message 51 and load program with
assigned piM entry number without assigning
Name.

b. and Name is not in Equivalence table, load
program and place Name in Equivalence
table.

Name only supplied by user.

1. If an identical Name is in the Equivalence table,
the program is loaded without the supplied name
(error 51 will be indicated).

2. If an identical Name is not in the Equivalence
table, the object program is loaded, an available
DIM entry is assigned, and the name is added
to the Equivalence table.

piM entry number only supplied by user.

1. Program is loaded. If number was in use, object
program replaces old programs. Names refer-
encing the old program are deleted from the
Equivalence table.

Disk Utility Program 41

SPS 1I-D

sps 1I-D is a disk-oriented assembly program designed to
simplify the preparation of programs for the M
1620 Data Processing System and the 1M 1710 Con-
trol System. The development of larger and more
versatile data processing systems like the 1620 and
1710 has resulted in a greater number of, and more
complex, machine language instructions. The diffi-
culties of coding in machine language — a tedious and
time-consuming task — have been recognized and one
of the efforts toward simplification is the system
known as Symbolic Programming.

A Symbolic Programming System (sps) permits
the programmer to code in a symbolic language that
is more meaningful and easy to handle than numeri-
cal machine language. sps 1-p automatically assigns
and keeps a record of storage locations and checks
for coding errors. By relieving the programmer of
these burdensome tasks, sps 1-p significantly reduces
the amount of programming time and effort required.

This section is intended to serve as a reference text
for the sps m-p Programming System. It assumes that
the programmer is familiar with the methods of data
handling and the functions of instructions used in the
1820 Data Processing System and the 1710 Control
System. For those without this knowledge, informa-
tion on 1620 and 1710 systems can be found in the
appropriate reference manuals. Refer to M 1620
Bibliography (Form A26-5692) and 1BMm 1710 Bibliog-
raphy (Form A26-5695).

Introduction

The sps u-p Programming System may be divided into
the symbolic language used in writing a program, the
library containing the subroutines and the linkage
instructions (macro-instructions) that may be incor-
porated into the program, and the processor program
that is used to assemble the user’s program.

Symbolic Language

Symbolic language is the notation used by the pro-
grammer to write (code) the program. The program
written in sps language is called a “source program.”
This language provides the programmer with mne-
monic operation codes, special characters, and other

42

necessary symbols. The use of symbolic names (la-
bels) makes a program independent of actual machine
locations. Programs and routines written in sps lan-
guage can be relocated and combined as desired.
Routines within a program can be written indepen-
dently with no loss of efficiency in the final program.
Symbolic instructions may be added or deleted with-
out reassigning storage addresses.

Macro-Instructions, Subroutines, and Subprograms

The macro-instructions that are written in a source
program are commands to the processor to generate
the necessary linkage instructions. Linkage instruc-
tions provide the path to a subroutine or subprogram
and a return path to the user’s program. These sub-
routines may be special subroutines prepared by the
user or any of seventeen 1BM Library subroutines,
such as floating divide, square root, and arctangent.
(Subprograms are user-written only.) The ability to
process macro-instructions simplifies programming and
reduces the time required to write a program.

SPS 11-D Processor

After a source program is written, it is punched into
cards, or into paper tape if the system is equipped
with an 1M 1621 Paper Tape Reader. It is then “as-
sembled” into a finished machine language program
known as the “object program.”

Assembly is accomplished by the sps 11-p processor
program which is stored on the disk. The function of
the processor program is to translate the symbolic
language of the programming system into the lan-
guage of the 1620 or 1710. The translation is one for
one — the processor produces one machine language
instruction for each machine instruction (except
macro-instructions) written in symbolic form.

Symbolic Programming

Symbolic programming may be defined as a method
wherein names, characteristics of instructions, or
closely related symbols are used to write programs.
The core of the symbolic language is the operation
code. sps 1-p permits the programmer to write
programs in a simple, familiar language. It does not

require a detailed knowledge of the machine because,
in coding the program, the programmer uses opera-
tion codes that are in easily remembered mnemonic
form rather than in the numerical language of the
machine. Operation codes are of three types: Declara-
tive, Imperative, and Control.

Declarative Operation Codes

Declarative operation codes are used for the assign-
ment of core storage for input areas, output areas,
and working areas. The assigned areas are utilized by
the object program and may contain the data to be
processed and/or the constants (numerical or alpha-
meric characters) required in the object program
when the data is processed. Declarative statements
never generate instructions in the object program, but
may generate constants that are assembled as part
of the object program.

Imperative Operation Codes

Imperative operation codes specify the operations or
instructions that the object program is to perform. In
this group are included all arithmetic, branching, and
input/output statements. Most statements on the cod-
ing sheet prepared by the programmer are of this
type. These statements are translated one for one
(except macro-instructions) and are assembled as

the machine language instructions of the object pro-

gram.

Control Operation Codes

Control operation codes are commands to the proces-
sor that provide the programmer with control over
portions of the assembly process. Instructions of this
type do not normally generate instructions in the ob-
ject program.

The actual and mnemonic operation codes within
these categories are presented under PROGRAMMING
THE 1620/1710 UsING sps Ii-D.

The statements or instructions in the source pro-
gram must be entered by the programmer in logical
sequence on the coding sheet.

Coding Sheet

The programmer enters all information relevant to
the coding of the source program and subsequent
assembly of the object program on a coding sheet,
Form X26-5627 (Figure 6). Figure 7 shows a sample
input card, Form J59692. The format of the input
card or paper tape record follows the headings on

the coding sheet. In paper tape, the first punching
position of a record is said to be column 1. The card
columns assigned to a single heading are referred to
as a field. The following is an explanation of the
headings in the order of their appearance on the
sheet.

Heading Line

Space is provided at the top of each page for the
name of the Program, Routine, Programmer, and for
the Date. This information does not constitute part
of the source program language and is not punched.

Page Number (Columns 1-2)

A 2-digit page number is entered to maintain the
order of the program sheets. This normally numeri-
cal entry becomes the first two digits of each state-
ment that is punched from the sheet.

Line Number (Columns 3-5)

A 3-digit line number is entered on the sheet to main-
tain the sequence of the statements coded. The first
20 lines on each sheet are prenumbered 010, 020, 030,
etc., through 200 At the bottom of the sheet, six
unnumbered lines are provided for inserts or for con-
tinuing the line numbering. The inserted statement
should be numbered so that it falls sequentially be-
tween the statements immediately preceding and
following it. The arrangement of the prenumbered
lines, 010, 020, etc., permits up to nine statements to
be inserted between any two statements. After the
cards for each of the lines are punched, they should
be placed in correct numerical order.

Label (Columns 6-11)

The label field represents the machine location of
either data or instructions. The field may be left blank
or may be filled with a symbolic address. Only the
data or instructions that are referred to elsewhere in
the program need a label.

A label may consist of up to six alphameric charac-
ters beginning at the leftmost position in the label
field. At least one of the characters must be alphabetic
or one of four permissible special characters, namely,
the equal sign (=), slash symbol (/), “at” sign (@),
and period (.). If the function of division is being
used for address adjustment, the slash symbol cannot
be uced as a label character. .

The best labels to select are those that are mnemon-
ically descriptive of the area or instructions to which

SPS. II-D 43

274

1620/1710 Symbolic Programming System

* Coding Sheet
Program: Date: Page No. L_.__| of
1 2

Routine: Programmer:

Line Label peration Operands & Remarks

3 516 11112 15416 20 25 30 35 40 45 50 55 60 65 70 75
OIIIO 1 1.1 i 1 i I S - 1 L L A i L 11 N W WY U S S SN S S 1 1 L1 1 & 1 L 1 J 'l 1 1 L 1 1 A 1 1 1 1 1 1 A Lt A 1 1 i L L
olzlo de A I 1 1 1 A N 11 11 L H 1 L 1 1 1 J - A) S 1 1 11 1 1 1 1 1 1 1 1 1 1 Lt 1 1.1 L | S | 1 1 1 1 l i Lt | L L 1 1 1 1 1 1
01310 i N S |) 11 | S R R S . L H 1 1 L. 1 1 1 1 11 i 11 1 11 1 1 J I N S N T S] 11 1 1 1 1 | S T N S U S S | I 1 1 - i
0,4,0 PURN SR R U U N T NN NN N SN N N GO TR WA SN B 1 YRS W N WY SN AN NN S N S N SN T WA SO SO SN SN WO A T WO SN SN NN TN ST UANY TN TN N SHON N N0 SO A S N N SN TN SAV U BT SRR I
0,5,0 I S | S | S WS WS S YOS A TN W N TV S VAN U S WU TS N T N U U TS N U WU N S N N S TR S N T N S SN T W T W Y S SN VNS G SN N SN NN NI SN NS S WS S S S
0:6,0 [| B S IO N U NN N DU IO U A | TR U U N WS WY N G WS SN NN S SN WA U NS SN NS SN TN VA NN NN (N UNNN SN SN S SN NN WA SNUN SN SN N SN W SN GO AN DA ST Y S N N A
01710 1 i i 1 L1 1 A 11 1 1 H 1 1 1 1 Il 1 i ' | L 1! I W T W I S] 1 11 1 | - 11)] 1 1 1l _ 1 1 i 1 1 1 | 1 Lt 4 1 1 | 1 1 1 1 1 L i 1
Lsno B I B S B) U U W VO DR WO NS U U SN T TN SN G W W S VR I SN N S S N W RN TS U SU SN S W W YA N S S U S0 S N S SO N U UUN SN UUN W SIS SR S SN NN SN SN NN T |
0,9,0 U N B B B PR WY SN S NN N S S A | TR RUN U U SN T UNUN NSNS TN SN SN GRS NN U (NS A (N TN WO SN NS TNV SN S DA SN SN UUNN N SN SN SHAE WY DN GO UUNN S N S S G G O SN N BN T
]Iolo } S T S L1 1 R A S U DU S N S S | | N SN W NS NN N VU (NN NN U N [TR [N VAU SO RO NN TS Y SO SR NN S N S DN S NN S N GRS DRI SN NN SN N SN SN SUN N NN SN SN S SR |
1,1,0 S W N SR FYRNS VU N UG WA W U S S ¥ U VOSSN NN WY WU NS SN SR SOU VNS VU WU SAN WA UHN U W GHNE SO0 G SN WA SN VN WU S W SN SR UUNE U WA S SN SN WA U WS MU S S NS N S WA
LILO 1 l 1 L 1 | I 1 L 1 L 1 1.1 1 i L i 1 i 1 i 1 H 1 I 1 i 1 11 1 1 1 1 1 1 1 L | I I S T N S | 2 1 1 A I 1 i 1 1 1 s i k. 1
1,3,0 T S G A b1 NI SN S NS SH VU N S S % TS S S WS NS TR S NN YN U SN SN SRS N SN NN SN SN N SN SN SN G WK SO SU SN SHUN S NN NN TN S NN S SN SR R WU N SN SR S W S A S
1,4,0 Lo 11t S T S T S S N U 1 FASES SE GA VUN VORS VHS WS VOO T T WS W U YOS S U U SN VAR A NS WS TS W WS S VU N S W SO T SN WO S N W VA WO NN S S Y S B WS
]JSJO 1 | 1 1 1 A1 1 1) S } N R S . |) 1 1 1 1 1 | 11 1 1 1 1 1 1 1 1 1k 1 1L i 1 H i 1 1 L 1 1 1 L] | S 11 1 I — 1 Ll i 1 H
]1610 11 1 1 L1 1 L1) N DN T W S S | 1 1 1 J I . 1 1 § SN S U SN S T S S | 1 4.1 i ! 1 1 L 1 1 L 1 1 i 1 L 1 | S — i 1 1 1 1 1 L 1 1 1 1
147,90 [1) [SS NN TN S S N S S [V RN TG S VU SO SN SN TN TR VAN W TN WA SN SN WA SOUNE AU NG Y NN SN WK VAR S NN N SO0t SURS VU VA WO WHOUN NS S S SN VA NS NS G N O T S N
1,80 Ll i1 T SRR ST S S | PSR U N TR NN R N N0 NN NN SN TR SO NN SUN SN SN NN ST SO N S (N NN S (N SRS WU VA SN IR OO (N0 SN SN0 SN NN SN DAY SN AN G U SN O BN A
1,9,0 Lol [[RS W I B | PO SN N N VUG NI TN O N S U TN S U A G U Y SO S S A N VNSO T Y SNS SN SN TN DU S NN G SN N SR NN (N W WY S M0 O A S
2,0,080 4 4 4 1§ L W S TS U O S N GO | ST N N ST S S S U OO VN N AT TR VAT NN ST S SN UHAN U S T WY WS VR ST S S AU S ST ST A R
11 b [1) | [I A TN N S NN SO SN NS NN NN WO N UG SN NN SN U N S U GHURN ST SN (N AN Y (NN U SN SN S NN NN WA S CUNN SN SO SR R NS NS RS SRR SN SO S
[[1 [N B S | T RN SN W TN S VOO NN NN SN WU SN CHN NUNY N U SN VAN N S U NN S WO INS S 1O S S TS NN SN S NN N NN NS NN S0 B WY B SO O
11 [R [N T T U W U S W | TSN W W WV TSN VO SN S NS VN SHN WS S AU SN S SN NS N U TOUNS UK WO WA UMY S O T T N W WO WO N WY U U NN S S A B VA O O O
L (IR Lo R S B S S S N | TS TN NS RN A O A SN U VY ISR A 1O A U S T T S N N U UA SN S TN S NN SN TN S SN SHY SN U NS N0 SV SN S0 N SO WY B B!
1 L1 i | I S T H NUUE R SR S | L 1 (1 ! H H L1 | | S Il 1 Lf) SR TN N S NN SRS TSNS NN DU SN RN S (U NN SN (NN SNNUU DN AN SN SN N S N R A S
At Lt i it L SO SO | [T [N G S W G VAN SN U U S G WU U S N G N S G U | TURENE TN VRIS N TN U VAN U WY SN S YN VRS S SAUR SN S SOUNE GRNE VUR WO W U S

Figure 6.

1620/1710 SPS Coding Sheet

PAGE] LINE LABEL OPER. OPERANDS AND REMARKS

PAGE [LINE | LABEL OPER. | OPERANDS AND REMARKS

- - o
-~
- o

0
‘
1

R~

00600000000/000200 020,

€ 7 8 9101112 13 14 15{16 17 18 19 20 21 22 20 24 25 26 27 28 29 30 31 32 33 34 35 35 37 36 39 40 4142 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 53 64 6566 67 68 69 20 71 72 73 14 75|

(AR RER R
2222222222222221221212

33/1333|1333333|333

IBM 1620 SYMBOLIC PROGRAMMING SYSTEM CARD

33333333333

48404144444 4044 0004880880080 ad8000800 80008 0ddadadaaddddddaddiddadadiadsdnssaasss
55(555/555555/5555(55

PAGE] LINE LABEL OPER. OPERANDS AND REMARKS

6i666/666666/66566666686 86

o
€0
oo
oo
ed

999999999
6 7 8 91011213 1415016
1M 59692

w D
- W
)

7 18 19

888086806 00[66060666066688650688800853006000000000086600006000000088860668606066858
9999290999999999989999399999999999999999995999999999399992 9

212223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10

©

7273747

3

Figure 7. SPS Source Program Card

they are assigned. Labels that have an obvious mean-
ing not only provide easily remembered references
for the original programmer but also assist others who
may assume responsibility for the program.

Operation (Columns 12-15)

The 4-position operation field contains the actual
2-digit numerical operation code or the mnemonic
representation of the operation code to be performed.
In either case, the first character of the operation code
must start in the leftmost position, column 12, of the
operation field. Listings of permissible mnemonic
codes and actual operation codes are shown under
PROCRAMMING THE 1620/1710 UsING SPS 1I-D.

Operands and Remarks (Columns 16-75)

The operands and remarks field is used to specify the
information that is to be operated upon and may con-
tain, if desired, any additional remarks concerning
the statement.

For declarative operation statements, the first oper-
and usually defines the length; the remaining oper-
ands, if present, specify constants, an address, and
remarks.

For imperative operation statements, the operands
and remarks field contains, at most, four items: three
of these are operands and the fourth, remarks. The
first two operands may be the symbolic or actual

addresses of data or instructions, i.e., the P and Q por-
tions of the instruction. The third operand, which
should be numerical, is called the flag indicator oper-
and and is used to set flags in the assembled instruc-
tion. The final item consists of the remarks associated
with each statement. Imperative statements need not
contain all four items. Any one or more than one may
be omitted. The two special characters which may not
be used in an operand are the right and the left paren-
thesis,) (.

A control operation statement normally contains
only one operand.

Statement Writing

Certain rules must be observed in writing or coding
the statements that make up the source program. This
section contains rules that apply to the statements and
their elements, rules governing the length and types
of statements, use of special characters, the flag indi-
cator operand and immediate (Q) operand, types of
addresses used as operands, and address adjustment
by arithmetic, a method that relieves the programmer
of considerable effort and reduces the number of
symbols required for a source program.

Statements

Symbolic statements are classed according to the op-
eration code they contain, and thus are designated
Declarative, Imperative, or Control statements. In

SPS II-D 45

addition to the page and line number, a statement
may contain a label, operation code, operands, and
remarks. No statement in the source program may
exceed 75 characters in length. Since page number,
line number, label, and operation require 15 positions,
the operands and remarks field may not exceed 60
characters. In the case of the paper tape sps, the
end-of-line character is considered to be part of the
operands and remarks field.

Use of Special Characters in Statement Writing

The comma, asterisk, end-of-line character, blank,
“at” (@) sign, and dollar sign are special characters
that possess distinct meanings in the writing of
source programs. Their use, as well as that of the
special characters used as operators for address ad-
justment, are explained in detail in this section.

Comma

The comma is normally used to separate items in a
statement. The term item refers here to parts of the
operands and remarks field, such as the P and Q
operands, the flag indicator operand, remarks, length,
constants, etc. An imperative statement may consist
of four items: the P and Q operands, the flag indicat-
or operand, and remarks, but need not contain all
four items. Any one or more than one may be omitted.

If one item is omitted and more items follow, the
comma that normally follows the omitted item must
be present. For example, if the flag indicator operand
is omitted but remarks are present in the instruction,
the format of the field will be:

Line Label ati Operands & Remarks

3__sls upiz L1 T} 2 Fi] 35 4 4 5

30
P B TF. . .prLJW.X,’ X2 TRANSMIT VALVE ., . ..

. L

All imperative statements that contain remarks must
include three commas in the operands field, even
when the operands are omitted. During assembly, the
omitted P or Q operands will be replaced by zeros in
the P or Q portion of the assembled instruction.

Commas indicating omission need not be present
in statements in which the last item(s) is omitted.
For example, in the statement in which both the flag
indicator operand and remarks are omitted, no com-
mas need be used following the second operand.

Line Labet afi . Operands & Remarks
3__sle nhz 150 2 2 £ s “ 4 0
ano..ultﬁ.lﬂfgf.ﬂ.)(v)(... e

46

EXAMPLES
Line Label IOperati Operands & Remarks
3 Slé npe 15]28 20] 30 a5] 43 9
vl s A L D HALT, INSTRYUCTION | (0000
o AL 16352,17865,,A0D FACTOR B 10 A .,

Statement 010 is a halt operation that requires
three commas (,,,) in front of the remarks; these take
the place of the P, Q, and flag indicator operands. In
statement 020, the first two commas set off the P and
Q operands, whereas the third comma takes the place
of the omitted flag indicator operand. The number
of commas required for declarative statements may
be one or two as explained under DECLARATIVE OPERA-
TIONS.

Asterisk

The asterisk has three uses: in writing comments,
as an operand or term of an operand, and in address
adjustment.

Lines of descriptive information may be inserted
in the program by placing an asterisk (*) in column
6 of the label field. Comments then may be written
in columns 7 through 75. Comments inserted in this
way will appear in the symbolic output, but will not
affect in any way the operation of the program. A
comment statement does not produce an entry in the
object program.

Operands & Remarks

Line Labe! fOperati
3 sls njiz 156 2 25 » 3) 4 50
Lo KREMARIKS, CIAN_BE WRITTEN IN_SUCH A MANNER SO ., .

PO T A B

w0 AS 710, DASCRIBE THE PROGRAM ., . .

I L1

PR SO0 SV S ST AT ST S S T N0 T S WA VOO S O G IO S O T S S B S

FOLLOWS P

e B SR

ool MAI M _PRAGRA

4y -

Statements 010, 020, and 030 are remarks that do not
generate instructions.

The asterisk can be used as the first character or
term of an operand in an imperative statement and is
interpreted by the program as the address of the high-
order (leftmost) position of the address of the instruc-
tion. It may also be used as any term of the operand to
indicate the high-order (leftmost) position of the
address of the instruction.

When the asterisk is used in address adjustment as
an operator, it indicates to the processor that a mul-
tiplication must be performed in order to adjust the
address.

Slash

The slash symbol (/) may be used as the divide oper-
ator for address adjustment, or if the address divide

feature is disabled, the slash may be used as a label
character.

Line Label Opevaﬁcnl Operands & Remarks

3 sls i 15]1 2 30 35 4 s 50

2
Lo i SIN$80/2,CTR _, e N

Parentheses

Parentheses are used to enclose the integer that speci-
fies which index register is to be used in modification
of the operand.

Line label [Operti Operands & Remarks

2

2.1, A

3 1 .5 50

15]16 20 25 3
hj\!?m@gn YTEMPCS) | N

End-of-Line Character

An end-of-line character E is required only on scurce
statements that are to be processed on paper tape.
Use of this character allows statements to be located
on the tape immediately adjacent to each other, with
no intervening blank characters. The statements are
in “free” form; that is, they are not assigned a fixed
number of positions.

Source statements that are to be processed in
punched card form do not require an end-of-line
character; the remainder of the line is left blank and
this is recognized by the processor as the end of the
statement.

When the end-of-line character is punched in a
card for off-line conversion to paper tape, it is rep-
resented by a 12-5-8 punch combination.

Blank Character

A blank character in operands of the source statement
is ignored by the processor except in DAC statements
(alphameric constants), in which blanks are consid-
ered valid characters. In effect, the statement is con-
densed before it is processed.

Because blanks are ignored by the processor, the
programmer, to achieve clarity on his coding sheets
and output listing, may write his statements in modi-
fied “fixed” form (see Figure 8).

In this example, columns 16, 36, and 57 are arbitrary
choices for the locations of the operands. The comma
following or replacing the P operand may be in any
column from 16 through 35.

Blanks are permitted in any position within a flag
indicator operand except between the 1 and 0 in num-

ber 10, and between the 1 and 1 in number 11. A
blank or blanks in the address operand of a declara-
tive statement, when set off by commas, is interpreted
by the processor as a zero address.

“AP” Sign

When the “at” sign ((@) is used as part of a constant
being defined by a pc, psc, or DAC statement, a record
mark (==) is created by the processor and inserted
into the constant in place of the @. Specific rules
for use of the (@ are covered under DECLARATIVE OP-
ERATIONS.

Dollar Sign

The dollar sign ($) is used in an operand to instruct
the processor that the symbolic address in an operand
has a specific heading character. The $ is written
between the heading character and the symbol. For
example, in an operand the heading character “5”
and the symbol “SUM” appear as 5$SUM. For addi-
tional information on the use of the $, refer to HEAD-
HEADING in the PROCESSOR CONTROL OPERATIONS SeC-
tion.

Operands

Flag Indicator Operand

The flag indicator operand specifies the positions that .
are to be flagged in the assembled instruction. These
positions are numbered from left to right, 0 through
11, and must be listed sequentially. For example, if
positions 2. 7, and 10 are to be flagged, the flag indi-
cator operand should be coded 2710, not 2107. All
positions may be flagged, if desired. The operand
then will be coded 01234567891011 and must be writ-
ten in that order. v

Normally, no flags are set when the flag indicator
operand is omitted. However, if the flag indicator op-
erand is omitted from immediate instructions
(except oM), a flag is automatically set in position
Q. If the operand is present, only the positions indi-
cated are flagged.

The flag indicator operand can be used to insert
a flag over the units position of the P and Q addresses.

Immediate (Q Operand)

With immediate-type instructions such as Add Im-
mediate (aM), Subtract Immediate (sM), and with
actual operation codes that begin with the digit 1,

SPS 1I-D 47

Line Label [Operation Operands & Remarks

3_ sl e she % 2 30 3 0 5 50 55 & 8 70 7;_I
0.1 ,0|SW2 1B JODDVN | | e e,
o200 ., . . 1A, JAREA ,\ s O TEMPL-4 , FO+FNE . . |
0,30 *‘ 1/n”‘/|Tl‘A|L:/ zAlTl/lalNl !Folkl |F|SAUB|0|DID1 PO WS WO Y S S SN ST ST SN NN YN S U DA U N S SN AT WAL S WA W W AN VA S S A WO WS W S A T A S
0,400 4 4 3 1 TIFLI l‘glalal”L RS S S S T H A B) d|p|€L|rAlxn TG A YN U S O TS Y A SO A O S G Y W T W0 B Y WA OO0 S S W N OO0 B WO
0,5,0 |||:xﬁFM WIUILI7.I+‘!('IIIIIl'lllllll,l4llllllllllIllllllll’lllollltlAlllllIIIALJ;

o0l v o ITDM (SW2HL, oy s e

047500 4 v 4 4 r:"-nx41616M4L11J1;1‘LAALLLLIJA_LL‘4|Jlnl:t.le--uJLxnJluxcll:JLLIJJLL
oo v, WO WTEMAS Ly W PELTAX L e
19,0 JJIIIAIIA7-IEIMIPI311\IAIlllllllll’lT'lfl”lplallllllllllllllllllIllllljllllllllll
ool vy M ASINME-IKL Ly e e e e e e
11,0|0DDVN WA, . ACCYM, oy W TEMPL L e
ol o M IXSUBN. o DTEMP3 e e
a0 o M6, IXSUBN L o NINES e e

144,08 4 043y III{I lsl/Mfl_l‘gA*lLllALJLA_lllllllIIIAJLIJILIJJLIJJLIIIlIlIllllllllllll
1;5,0 IMLJ7.:|M”\Ajclcaﬂ\\lllltllltllllIllllljll‘lllAIJlllllJLJLIJJLLIILIIIJLL
ll‘lolllllfLI‘aa Y S A A S S WA SN T SN NN UUY SN0 SHY SN SO S SN CHF Y SN SN TN WU ST WY SN ST SO SN AN SO TN VNN SOAS HNA TN AN TN SN WY SN WU S W ST WY S G VUL SO0 WS WY T

Figure 8. SPS Statements in Modified “Fixed” Form

the Q operand represents the actual data to be used
by the instruction. It may be absolute or symbolic as
previously defined. High-order zeros of absolute data
may be eliminated.

During assembly, the processor automatically places
a flag over position Q; of an immediate instruction
unless a flag indicator operand indicates otherwise.
For example, the statement

Label atior Operands & Remarks
npz 15016 2 2 E') 35) 5 50

|sm [ToracL, 10023 R

Line

01,00 4o+ 4y

a2 P S U S PP

causes the number 10023 to be subtracted from the
field called ToTaL because the flag that terminates
the field to be subtracted is automatically placed
over position Q;. However, the statement

Line Label POperati Operonds & Remarks
3 _sl¢ nj 5] 2] 30 35) 4 E]
Lo SM_ |TOTAL,10023,10., ., ..., .. —
T

will cause only the number 23 to be subtracted from
the field called ToraL because the flag indicator oper-
and directs that the field-terminating flag be placed
over position Qo rather than Q;. There is one excep-
tion to this rule: a transmit digit immediate instruc-
tion (TopM, code 15) does not require a flag; therefore,
none is automatically set by the processor.

48

Mask Digit Operand

A mask digit operand is required to specify the mask
digit for the Branch on Mask and Branch on Bit in-
structions. The D in the following examples shows
the position of the mask operand in the source state-
ment,

Line Label Operands & Remarks

fOperatior
3 516 nlp Is|e 2 25 30 35 40 45 50
0.1.0) 4oy 3.”/(IJ’.Q’A'f‘AG.'»coﬂ_ﬂ.f.lr* s PP S M

which assembles to: 91 PPPPP DQQQQ

Line Lobel eration] Operands & Remarks
3 sl ¢ uhiz 15416 20 2 3 35 40 4 50
vro| .. |PBT. [P0, D,F1A6, COMNENT .

which assembles to: 90 PPPPP DQQQQ

The mask operand may be symbolic or absolute.
The P, Q, and flag operands are processed in the same
manner as for other instructions. If the mask operand
is an absolute value, the units character replaces the
Q7 character of the Q operand. For example:

Given:

Line Label IOperati Operands & Remarks

3 sle ufiz is|ie 2 2 2 35 . 4 50
ool DS, |0.12345 e A
N N Y N

Then:
BAK BaBoBs o

will assemble to: 91 12345 13456

If the mask operand is a symbol, the units position
of the symbolic address will be inserted in the Q;
position of the assembled instruction. For example:

Given:

Line | Label |operation Operands & Remarks

3 518 NN EL 20 25 30 35 40 45 50
00fA . 1DS . |112345

0.2.0/8, DS 1s23456, . . A
o,o'”./(.DAL. S PSS P R R S ST

Then:

BMK 1A +.8.3 MKXD,

will assemble to: 91 12345 53456

Types of Addresses Used as Operands

Operands assembled by the processor may be of
three types: actual, symbolic, and asterisk. The indi-
vidual applications for a particular type of address
are described in the section PROGRAMMING THE
1620/1710 usING SPS II-D.

Actual Address

An actual address consists of five digits (00000-19999)
for a standard capacity machine and is, as the name
implies, the actual core storage address of a piece of
data or an instruction. High-order zeros of an actual
address may be eliminated. For example, the state-
ment

Line Label rati Operands & Remorks
3 Sl¢ nli2 15116 20 25 30 35 40 45 50
ve| . |A_|368e,02251

causes the data in storage location 12251 to be added
to the data in storage location 03684.

Symbolic Address

A symbolic address is the name assigned by the pro-
grammer to the location of an instruction or a piece
of data. A symbolic address is valid only if it is de-
fined (given an actual numerical value) by a declara-
tive statement somewhere in the source program, or if
it is used as the label of an instruction. Symbolic ad-
dresses may contain from one to six characters
(letters, digits, or special characters) with the follow-
ing restrictions:

1. At least one character must be nonnumerical.

2. The only permissible special characters are:
equal sign (=), slash symbol (/), “at” sign (@),
and period (.).

Blanks are permitted within a symbol; however,

they are ignored by the processor during assembly.

The example shown below contains both an actual

address and a symbolic address.

Line Labe! ati
3 sls 111 I3 ishis 2

25
'A \ 'ToLTAL.,lZZS,i

Operonds & Remorks
3 40 45 £l

0.1.9 o

In this example, the data in the field whose actual
address is 12251 is added to a field whose address is
the symbolic name TOTAL.

Asterisk Address

When the asterisk is used as the first character of an
operand in an imperative operation, it is interpreted
by the processor to be the address of the high-order
(leftmost) position of the instruction. For example,
the statement

Operands & Remarks
2 ® 3 4) ']

Line Label rati
3_sle uji2 5016

»
ool oo, |BNF |START,,»

— i P SRS

indicates to the processor that the Q portion of the
instruction should contain the address of the instruc-
tion. This instruction is assembled as 44 01234 01876,
where sTarT equals 1234 and the address assigned to
the instruction is 1876. Thus, when executed in the
object program, this instruction examines its own
leftmost position (1876) for a flag and either branches
to the instruction at location 01234 or continues, on
the basis of the examination, to the next instruction
located at 01888.

When an asterisk (*) address is used with either
declarative or control operations, it refers to the

SPS II-D 49

rightmost position of storage last assigned by the
location assignment counter of the processor — not to
the leftmost character of the instruction. For example,
the statements

Line Labe! i Operands & Remarks

3 516 12 15he 20 25 30 35 40 45 50
vof oo JTFM 12045570000 ., e s

I DC_ |La@% ., i T

produce the instruction
16 12045 7000=F

Since record marks can be defined only in declara-
tive operations, an imperative statement should be
followed by a pc statement when a record mark is
required in the instruction. The rightmost position
of the instruction is the rightmost position of storage
last assigned; therefore, it is also the position where
the == (constant) is stored.

Address Adjustment of Operands

Address adjustment is used to tell the processor to
arithmetically adjust the addresses in operands. It is
permitted with all types of addresses: actual, symbol-
ic, and asterisk, and is used to refer to a location that
is a given number of positions away from a specific
address. Use of this feature of the language reduces
the number of symbols necessary for a source pro-
gram.

By writing a 4 (plus sign) for addition, — (minus
sign) for subtraction, / (slash) for division, and *
(asterisk) for multiplication, immediately after the
first or subsequent term of an operand (an asterisk as
a term of an operand does not represent multiplication
but means the address of the instruction, as previously
explained), the programmer indicates to the processor
that the address is to be adjusted.

Arithmetically adjusted operands may take the form

/ / /
» »
A£xB=*xC=D

where the terms A, B, C, and D may be numerical
quantities. The number of terms in the operand is
limited only by the size of the operand and remarks
field. Thus the operand A + B * C — D may be fur-
ther adjusted by writing after the last term another
term, E, for example, A + B * C— D + E.

In arithmetically adjusted operands, the operation
or operations of multiplication and division are always
performed first, followed by the addition and sub-

50

traction required to calculate the adjusted address.
Intermediate results that are greater than ten digits
or a final result (adjusted address) that is over five
digits, cannot be calculated by the processor.
The following rules apply for address adjustment
division operations.
1. The result of an address division operation is the
whole number quotient. Any remainder is lost.
2. Division by zero gives the same result as division
by one.
3. The order of multiplications and divisions may
affect the result. For example:

1/2°2 = (1/2)°2 = (0)°2 = 0
2°1/2 = (2°1)/2 = (2)/2 = 1
9/1°2 = (2/1)%*2 = (2)*2 = 4

For the 1620 or 1710 with standard storage capaci-
ty (20,000 storage positions), addresses that exceed
19999 are comsidered errors; however, they will not
be detected as such. Therefore it is possible, with a
standard capacity machine, to assemble an object
program for a machine with 40,000 or 60,000 positions
of storage. For machines that have 40,000 or 60,000
positions of core storage, the processor is automatical-
lv modified to use the additional storage to enlarge
the size of the symbol table. In that case, addresses
that do not exceed 39999 or 59999, depending upon
the storage capacity, are considered valid addresses.

In using address adjustment, the programmer
should be careful that insertions or deletions do not
affect the adjusted address. For example, if a P oper-
and in a branch (B) instruction refers to an address
as * J48 (i.e., branch to the instruction that fol-
lows the next three sequentially higher instructions),
the programmer must ensure that no new instructions
are introduced within the three instructions to make
the * 448 incorrect. In this example, the asterisk (*)
is the leftmost position of the ‘instruction itself.

EXAMPLES

Line Label [Operation| ADJYSTED ARITHMETIC

3 sle nfiz nin 20 2 ADDRESS -0

91,0 . L ALPHAL40, . 0/040 = /000 +

ool o fn WLPAA+ A0 . 01020 = 1000 +(2)40)
03,00 v oy . WLPHA-30 00970 = /000 - 30

eanl s o L. ALPHAFIML . 0/008 = /(000 + (X4
sl v | [ALPHAKS ' 03000 = /000X 3

06.0) ool VALPHARL 04000 = /000 X 4

0,7,0) yn s L \s00+20%83-/,/ 00549 = 500+(20X3)-//
S 1/ 00#5+20%311.. 00549 = (ooX5)+(20X3)~//
erol s ion Lo egr2 . 02002 = 2000+/2

oo w32 ., /2000 = oo x3)x2

!

The operands shown will produce the adjusted ad-
dresses, as indicated, provided the location 1000 has
been assigned to the symbolic address ALPHA, the lo-

cation 4 has been assigned the symbolic address L,
and the instruction location (*) is equivalent to 2000.

Operand Modification with Index Registers

Any operand that can be indirectly addressed may be
modified with an index register. The index register
is specified by placing the number of the index regis-
ter in parentheses as shown in the following examples.

Line Label {Operatio Operands & Remarks

12 15]18 20 2 30 35 40 45 50
ool oo AL ADD.?‘.QQA)J@UAELQL#.#.L etea i a i i
A @ppp,-,s,(,u) ' SUBR(AG)

2,2,V IV OXNAOT, P Mt

on
S

.

Either of the preceding examples which will be as-
sembled as

21 XXXXX XXXXX

The number in parentheses must be an integer from
0 to 7. The processor decodes the number and places
the proper flags over the operands. In the second
example, the A in the index register portion of the
P operand is ignored by the processor, however, it
may be included by the programmer as an aid in
keeping track of the IX band currently selected. The
processor decodes the rightmost numerical character
within the parentheses as the index register number.
(See the note under CALL LINK Or CALL LOAD LINKAGES
in the Supervisor section.)

Branch Operands

In some instructions such as Branch and Branch Back,
the Q address is not used, although a zero (00000)
address is generated. Thus the instruction uses twelve
storage positions. By using an * address in the follow-
ing statements,

Line Label Operands & Remarks

30 35) 4 50

0,1.90 " " Bl T
o0} ., |DORG*-3 . ., .
03 o/NEXT, |TFM 12045,70000

T S T SO S A U 2 S ST B S R M |

the instructions are condensed, to eliminate four posi-
tions of the unused (zero) Q address, and are stored
as

49136680161204570000

whereas the statements

Line Label jOperation| Operands & Remorks
3 _sls nli s]ie 2 2) 35 4 45 50

ol ., B, (13668 .
o2 oNEXT |TFM (12045, 70000

are stored as

491366800000161204570000

because the unused Q address is not eliminated. In
the first example, only four positions of storage are
saved; however, a considerable amount of storage
can be saved in a program that contains many instruc-
tions where the Q or both the Q and P portions of
instructions are unused. Because the * in the porc
statements (see PROCESSOR CONTROL OPERATIONS) re-
fers to the rightmost position of storage last assigned
(Qq1 of the B instruction), * —3 is the address where
the next instruction starts.

To automatically eliminate the unused storage as-
signed to Branch or Branch Back instructions, the
following two imperative mnemonics are included in
the sps 1-p language:

Mnemonics Meaning
B7 Branch and adjust location
assignment counter
Branch Back and adjust lo-
cation assignment counter

BB2

These mnemonics are written left-justified in the
operation field of the statements as shown in the
following example.

Line Label [Operation| Operands & Remarks
3__sle nj e 2 25 30 3 40 s 50

ool ., . . IB7 (ADDR |

NEER

The first statement is equivalent to the following
symbolic instructions:

B ADDR
DORG *—4

where ADDR is the address used by the branch instruc-
tion (B). The second statement is equivalent to the

SPS 1I-D 51

following symbolic instructions:

BB

DORG * -9

For all imperative statements, except B7 and BB2,
the address assignment counter is incremented by 12.
For B7 and BB2 statements, the address assignment
counter is incremented by 7 and 2, respectively. A
label may be included with a B7 or BB2 statement.

Inserting Flags

By placing a minus sign in front of the first term of
an operand, a flag (minus sign) can be inserted
over the units position of the adjusted address. This
feature of address adjustment can be used for insert-
ing flags required for Indirect Addressing (special
feature). However, an operand written as —0 (minus
zero) does not insert the flag in the units position over
the zero. When the minus sign is written in front of
the first term of the operand in order to set a flag
over the units position, other signs following the first
term should be reversed so that the correct address
is obtained.

Programming the 1620/1710
Using SPS 1I-D

This section describes in detail the various steps to be
followed in writing a program for the 1620 or 1710
using sps 1-p. The material has been divided into
three categories: Declarative Operations, Imperative
Operations, and Processor Control Operations. The
imperative operations that apply to the 1710 only are
listed in Table 22 in the Appendix.

Declarative Operations

In programming the 1620 or 1710, all records, and any
other data that is to be processed by the program,
must be assigned storage areas. Normally, all records
and data to be processed consist of fields of known
length and arrangement. Unless otherwise specified,

52

areas are automatically assigned core storage locations
in the order in which they appear in the source
statements.

To assign addresses for instructions, constants, etc.,
the processor uses an address assignment counter.
This counter is adjusted for each assignment made by
the processor. If an address is assigned by the pro-
grammer, the counter is not adjusted.

The declarative statements provide the object pro-
gram with the input/output areas, work areas, and
constants it requires to accomplish its assigned task.
These statements do not produce instructions that are
executed in the object program. The entries, s, bss,
pas, and psB assign storage. The entries, pC, DSC, DVLC,
DAC, DSAC, DSA, DNB, DDA, bGM, and DMES usually assign
storage, and also produce, in the object program, both
the machine address of the area assigned and the con-
stants that are to be stored in this area. Constants
are then loaded with the object program.

Declarative statements may be entered at any point
in the source program. However, these statements
are normally placed by themselves, preferably at the
beginning or end of the program — not within the
instruction area. If not placed at the beginning or end,
the programmer is required to branch around an area
assigned to data so the program will not attempt to
execute what is in a data area as an instruction.

The declarative mnemonic operation codes and
their meanings follow:

Code Meaning

DS Define Symbol (Numerical)

DSS Define Special Symbol (Numerical)
DAS Define Alphameric Symbol

DC Define Constant (Numerical)

DSC Define Special Constant (Numerical)
DVLC Define Variable Length Constant
DAC Define Alphameric Constant

DSAC Define Special Alphameric Constant
DSA Define Symbolic Address

DSB Define Symbolic Block

DNB Define Numerical Blank

DDA Define Disk Address

DGM Define Group Mark

DMES Define Message (1710 Only)

DOT Define Octal Table

DS — Define Symbol (Numerical)

A ps statement may be used to define symbols used
in the source program (i.e., to assign storage address-
es or values to symbolic addresses or labels) and-to
assign storage for input, output, or working areas.

/

A ps statement does not cause any data to be loaded
with the object program.

The length of the field is defined by the first oper-
and. This operand must be positive and may be an
absolute value or a symbolic name. If a symbolic
name is used, the symbol must previously have been
defined as an absolute value, that is, it must have
appeared in the label field in a statement of the
source program preceding the one in which it is
used. Address adjustment may be used with this
operand.

The address in core storage of the field being de-
fined may be assigned by the programmer or the
programmer may let the processor assign the address.
If the processor assigns the address, the statement
is terminated after the first operand. If the program-
mer assigns the address, a second operand, which
may be symbolic, asterisk, or actual, is used to estab-
lish the address of the field. Since data fields are
addressed at their rightmost (low-order) digit, the
processor assigns this position as the address of the
field. Address adjustment may be used with the sec-
ond operand. If the second operand is symbolic, it
also must previously have been defined. Addresses
assigned by the programmer do not disrupt the se-
quence of addresses assigned by the processor.

A ps statement may also be used to define a symbol.
without assigning any storage, ie., to define it as an
absolute value. In this case, the first operand is omit-
ted (or written as 0) and the second operand
represents the value (may not exceed five digits in
length). The second operand may be an actual value
or a previously defined symbol. To define storage
which will not be referred to symbolically, the label
of the ps statement may be omitted.

The following statements define the field length
only. When remarks are added to the statement, the
field length must be followed by two commas.

Line Label i Operands & Remarks
sle nfa ish » » » » P - P

e lDELTARDS, |7, oy ot

vas|PELTANDS |7,.,TWO £ ONNAS _REGU) FoR._RENARKS

In the next example, the programmer assigns the
address of the field and excludes the field length (the
first operand) from the statement because it is with-
out significance, and replaces it with a comma. The

following statements cause the processor to associate
the address 12930 with the label sum:

Line Label rati Operands 8 Remorks
HO 141112 1511 20 25 0 35 0 45 50

olSUM . |p5 72830 T

2olS UM . |25 . |,12930,TN0_COMMAS_AGAIN REQUIRED . ..

Again, in this example, two commas are required
when remarks form part of the statement.

The following statement, which is similar o the
one previously given, is assigned a value that is other
than an address.

8

Line Label I Operands & Remarks
‘ ulz_ash) 3 ») “ a8 0
volfl, .TAS j2 172FLD LETH FOR SUBSEQUENT. STMTS .,

This statement defines the symbol rL as being equiva-
lent to the value 17. Subsequent uses of this symbol are
permitted because the symbol has been defined.

It should be noted that an area defined by the
processor for a ps statement is always addressed at
the rightmost position. However, to use this area for
input/output, the leftmost digit must be addressed.
This is done by using a pss statement in place of a
ps statement or by address adjustment with a bs
statement, which subtracts a number that is one less
than the length of the area from the address of the
area. In a previous example, where DELTAX was de-
fined as having a field length of 7, the operand of
another instruction to read numerical data into the
pELTAX field should be written as pELTAX —6.

DSS — Define Special Symbol (Numerical)

The pss statement is similar to the ps statement with
one exception: when the second operand is omitted,
the processor assigns the leftmost position as the ad-
dress of the field. If the second operand is assigned
by the programmer, this address is assumed to be
equivalent to the leftmost position of the field. A
Dss statement is normally used to define a storage area
for input/output. The data in such an area may be
moved during execution of the object program by a
Transmit Record instruction which requires that an
address assigned to an area must be that of the left-
most position.

SPS 1I-D 53

DAS — Define Alphameric Symbol

The pas statement is similar to the ps statement with
two exceptions:

1. The length specified by the first operand is auto-
matically doubled by the processor to allow for
alphameric data. Each alphameric character re-
quires two storage positions.

2. The address of the field, if generated by the proc-
essor, is the leftmost position of the field plus
one. The position is always odd-numbered, as it
must be with any alphameric field.

The following example illustrates a pas statement.

Line Label IOperati Operands & Remarks

3__sis 12 15]16 2 2 3 3 4 s 50

0o\ TLE |DAS 13,0

P " P sy P

.........

20T/ TLE |DAS, 30., 7R£MAA’A’S REQUIRE Th’O COMMAS, |

This statement defines an area for input/output that
can contain 30 alphameric characters. The processor
assigns 60 positions in core storage to accommodate
alphameric coding. The output listing indicates this
by typing 60 when this statement is assembled and
listed. The omission of the second operand causes the
processor to assign an address. During internal trans-
mission of a field which utilizes an input-output area
that is defined with a pas, the area must be addressed
at its rightmost position. In the example, the address
may be achieved through address adjustment, i.e.,
TITLE + 2 * 30 — 2.

DC — Define Constant (Numerical)

The pc statement may be used to enter numerical
constants into the object program, and, for ease of
reference, to assign names to the constants. The label
field contains the name by which the constant is
known. pc statements consist of three operands. The
first operand, which must be positive, indicates the
length of the constant field; the second, the actual
constant; the third, the storage address of the con-
stant. The third operand is not used when the pro-
grammer prefers to let the processor assign the
storage address. The assigned address is the rightmost
storage position of the constant. The leftmost storage
position is the position over which the processor
places a flag.

Whenever remarks form a part of a pc statement,
three commas must be included in the statement.
The first and third operands may be symbolic or
actual. They are subject to address adjustment. A

54

symbolic address must previously have been defined
to be valid.

If the first operand (length of constant) is smaller
than the constant, an invalid condition results (see
Error 10). If it is larger than the constant, zeros are
inserted to the left of the constant so that the num-
ber of zeros plus the number of positions in the con-
stant equals the length of the field (first operand).

A constant that is a positive number will be stored
in the form of an upsigned integer; a negative num-
ber, in the form of a signed integer. A negative num-
ber has the minus sign written in front of the con-
stant as part of the second operand. During assembly,
a negative number produces a flag (minus sign) over
the units position of the constant.

If the constant 0100000 and —0004337769 are re-
quired, they may be defined as follows:

Line Label atior Operands & Remarks

s nl 15l 2 3 3 35 4 45 50

1 ocoﬂsuoq 72400000

Lt L, N T I A R W e s
PRI
Y

0.2 o&Q/V.SJ. LY ml 00000’ ’.3 COM/‘MS FOR Rfﬂﬂ"’(ﬂ. s

oralCONSTADE |10,-4337769 . ..

Lo

0,4,0)CONST 2 D:C‘

Al a1 aaa

7024337769 523 COMMAS. £OR REMARKS. .

In both cases, constant 1 and constant 2, the length of
the field is greater than the constant and the address
of these constants is assigned by the processor. These
constants will appear in the object program as

0100000 _
0004337769

A record mark may be used in a constant but must
be in the units position and must be written as the
character (@. The following example contains state-
ments that:

1. Store a record mark by itself as a constant.

2. Store a constant 6 and record mark.

3. Store a minus 0773 and record mark.

Line Lobel otion| Operonds & Remarks

3 5l¢ 11112 15|16 20 35 45 50
o PMARK DL, | |1,@,, ,‘sragt AjECORD .HAXK ouy

2)6,&1 257’.01?[4 S,/X AM RECORD, MJ&(N
15,7730 27 5T ORE A_MINYS._ 775 _AND_RM ..

2.2,0JCONSTXIOC, |

L

».5.0/CONSTYDE,

These constants appear in the object program as:

(=1} o:l.H_
S

=+

A constant 7 with a flag (7) is generated by either
of the following statements:

Line Label Operati Operands & Remorks

35l njz)ig 0 % ® » % 5 50
Vo |CONSTZADPC, |15-721sSTORE A 7 WITH A FLAG

0,2,0)CONSTADE 143,752, STORE. A 7 WITH A FLAG .,

A flag is always placed over a 1-digit constant (except
a record mark) regardless of the sign (positive or
negative). Therefore, the programmer must use two
positions to define a positive 1-digit constant.

Constants may not exceed 50 characters. The fol-
lowing statement generates a constant containing 50
ZEros.

Operonds & Remarks
4 50

Line Label [Operat
3 sle ulz e » 2) » ©
01 0|ZERO, | IDE "50:01.:570&5 FIFTY ZEROS .,

To store a zero with a flag at location 401, the fol-
lowing statement can be used:

Line Label o
3. sle N 18l 2

2] 3 40 4
sel o, DC 110-0,400, STORE A ZERO. WITH A FLA

6.

Operands & Remarks
E)

DSC — Define Special Constant (Numerical)

This statement is similar to the pc statement in that
the first, third, and fourth operands are written in
the same manner as a pc statement. The second oper-
and (the constant itself) is assigned an address that
corresponds to the leftmost digit of that constant. The
constant may contain digits, flagged digits, and the @
character. The (@ character is translated by the proc-
essor into a record mark and may appear only as
the low-order character of the constant. The high-
order digit of the constant is not automatically flagged
by the processor. Flagged digits in the constant are
specified by J-R for 1-9. A flagged zero is indicated by
an 11-0 punch (card only). A flagged zero may not be
used when input is from the paper tape reader or
from the typewriter.

DVLC — Define Variable Length Constant

The pvLc statement permits the programmer to speci-
fy one or more constants of the same or different
lengths with one statement. The statement requires a
minimum of three operands; the first specifies the
address of the low-order position of the first con-
stant; the second, which must be positive, specifies the
length of the first constant; the third specifies the con-
stant itself. Each constant after the first will require
two operands, one for the length and one for the
constant. All operands may be actual or symbolic
and may be arithmetically adjusted.

The first operand is used only if the programmer
wishes to specify an address. If it is omitted, the
processor will assign the address of the first constant.
The total length of all constants must not exceed 50
digits.

Constants are flagged in the high-order position.
The address of the low-order position of the ﬁr#t
constant (third operand) is assigned to the label of
the statement. Negative constants should be preceded
by a minus sign. Symbols used in the constant oper-
and need not have been previously defined, but may:
have appeared as labels in any part of the program.
No remarks or @ characters are permitted within
this statement.

The constant operands are treated as normal psa
operands. This means that the constant, if specified as
an actual number, may not exceed five digits. How-
ever, in a pvLc statement, address adjustment may be
used within the constant operand to obtain an output
of up to ten significant digits. If the address adjust-
ment results in a number greater than ten digits in
length, only the ten right-most digits will be retained.

The following statement defines a constant of
10000 which can be referred to by two different la-
bels:

Line Label rati Operands & Remarks

njn 15016 2 3) 4 50

s 25
10 |CONST. |DVL AME ;5310000

PR ey "

DAC — Define Alphameric Constant

To define a constant consisting of alphameric data, the
operation code pac is used. The DAC statement is sim-
ilar to the pc statement with three exceptions:
1. The first operand (length) is automatically
doubled by the processor to allow two storage
positions for each alphameric character.

SPS II-D 55

'2.. The storage address of the constant is the ad-
dress of the leftmost position plus one. This
address must be an odd-numbered address to
comply with the requirements for alphameric data
storage. An odd-numbered address will auto-
matically be assigned, if it is assigned by the
processor. If it is specified by the programmer
(as in line 020 of the following example), the
processor assigns the specified address and pro-
vides that the constant is stored beginning one
position to the left of the specified address. In
the latter case, the processor makes no test of
whether or not the address is odd-numbered or
whether the address (or the position to the left)
has been previously assigned.

3. High-order zeros are not automatically inserted
in the constant by the processor, as is the case
with a pc statement when the field length ex-
ceeds the number of characters. The number of
characters, including blank characters, should not
be greater or less than the specified length
(first operand). When the rightmost position or
positions of the constant are blank characters,
they should be followed by a comma or end-of-
line character. For card input, the rightmost
position must be followed by a comma or a
record mark.

Note: Only pac and pNB instructions may be
used to insert blank characters into storage.

Operands & Remarks
50

Line Label [Operatio
3 516 1412 15]16 25 30 35 40

20 45
1o INOTEL |DAC [17,DECH 3478 PUNCHED, ,END MESSAGE,

R S R T MR SR

DAL, 16, .. 9901, STORE, 6 ALPHA BLKS .,

......

0,2,00 4 3o

o.3.0[RMARK IDAC |1,@,,,ALPHA RM FOR OUTPUT AREA
||||| NI Y 1

o.ea]CONST IDAC. 1.3, DELT AX=,0..000@,, ST.ORE, .CNS.T,RH_.

AT TR FA W R

In the example shown:
1. Statement 010 uses 34 storage positions to store
the 17-position constant (deck 3478 punched)
2. Statement 020 places 6 alphameric blanks into
storage locations 900 through 911. Also, a flag is
set in location 900.
3. Statement 030 records an alphameric record mark
in storage.
4. Statement 040 places a 13-position constant, in-
cluding a record mark, in storage.
A 50-character alphameric constant (maximum allow-
able) occupies 100 positions of storage. A flag is set

56

over the leftmost position of the field. Addressing
this constant for internal field transmission requires
the address ourpur 450 * 2—2, where outpur is the
symbol (label) which represents the leftmost address
plus one.

DSAC — Define Special Alphameric Constant

This statement is similar to the pac statement with
one exception. The constant in a DsAc statement is
addressed by the low-order digit of the field. The
high-order digit of the field is flagged as in a pac
statement.

DSA — Define Symbolic Address

The psa statement may be used to store a series
of up to ten addresses as constants, as part of the
object program. These addresses can be used for in-
struction modification or for setting up a table of
addresses through which the programmer may index
to modify a routine.

Each entry (symbolic or actual) in the operands
field, with the exception of the last entry, is followed
by a comma. The equivalent machine address of each
entry is stored as a 5-digit constant. The constants
are stored adjacent to each other with a flag over the
high-order position of each. The label field of this
statement must contain the symbolic name by which
the table of constants may be referred to. An address
at which this table is stored in core storage may not
be assigned by the programmer nor may any re-
marks be included in the psa statement. The address
assigned by the processor is the address at which the
rightmost digit of the first constant will be located.

Norte: If the last operand is followed by a comma, an
additional zero address (00000) is assembled in the
table.

In the example that follows, symbols ALPHA, ORIGIN,
and ourpuT are equivalent to addresses 3200, 3600,
and 15000, respectively.

Line Labet i Operands & Remarks
3 sle njiz 1she 2 23 ® 3) P 50
0.1.0|TABLE |PSA |ALPHA ORI G.INs 3234,OUTPYT-50 , ., .. .,

The constants are stored as
03200036000323414950

(06200)
(06204)

If the leftmost digit of these four constants is located
at 06200, then the address equivalent to TaBLE will be
06204, the location of the rightmost digit of AvLrHA.

DSB — Define Symbolic Block

A psB statement is used to define an area of storage
for storing a numerical array. A psB statement does not
cause any data to be loaded with the object program.
The label of this statement is converted to the address
at which the first element of the array is stored (i.e.,
the rightmost position of the first element). The first
operand indicates the size of each element; the sec-
ond, the number of elements. Both operands must be
positive.

Either or both operands may be symbolic or actual.
If symbolic, the symbol must have been previously de-
fined. A third operand is required if the programmer
wishes to assign the address. For example, to store
an array of 75 elements, with each element containing
15 digits, the statement used would be:

Operands & Remarks

Line | tobel Joperati
3 5] 12 15116 2 25 30 35 40 45 50
01 ,0/ARRAY, ?.5.3;;15047.5.' AR A

In this example, the array begins at location 07500
(leftmost position of the first 15-digit element). ARRAY
is equivalent to 07514 (address of the first element).

DNB — Define Numerical Blank

A DNB statement is used to define a field of numerical
blanks. (The 8-4 card code denotes a numerical
blank.) Up to 99 blanks may be specified in each
DNB statement. In addition to a label, two operands
can be assigned by the programmer. The first of
these specifies the number of blank characters desired
(field length). This number must be positive. The sec-
ond operand specifies the rightmost address of the
field where the blanks are stored in the object pro-
gram.

If the second operand is omitted and the statement
is labeled, the address assigned to the label by the
processor is the rightmost storage position of the
blank field. The blank field does not contain a flag
in its leftmost position.

If the programmer wishes to move a blank field in
core storage, he must either define a single-digit
constant with a flag bit in the position in front of the
leftmost position of the blank field, or a record mark
in the position following the rightmost position of
the blank field.

If six numerical blanks are required, they may be
defined as follows:

Line Labet ration| Operands & Remarks
10 njiz 13 2 2 30 3 40 45 %
Lo\BLANKSDNB 16 , .\ ..
t t

The processor assigns the storage address of the six
blank positions to the label BLaNks. In the example
that follows, the programmer assigns the storage ad-
dress as 08625.

Operands & Remarks
a5 50

Line Label Operat
sl npe __ishe 0 2 2 35 “
o.0)BLA NAK)SJDMB '6, 8625, STORE SIX NUMERICAL BLANKS, .

In a pNB statement, two commas are required when-
ever remarks are included in the statement; the first
after the length operand and the second after, or in
place of, the address operand.

DDA — Define Disk Address

The ppa statement allows the programmer to define
the disk control field for a seek, read, write, or check
operation. This field is assembled as a 14-digit con-
stant divided into fields as shown below.

E;I\ilXIXWXIXI*IXIXL*IXIXIX]XJ

Drive Se;tor Sector Core
Code Address Count Address

The statement requires five operands, each of which
may be actual or symbolic and may use address
adjustment.

1. The first operand specifies the address of the
high-order position (drive code) of the disk
control field. This address must be even. If the
operand is omitted, the processor assigns the next
valid address. A comma indicating the end of
the operand must be present.

2. The second operand specifies the module (drive)
to be acted upon by the input/output or control
instruction that addresses the disk control field.
During assembly, this operand becomes the first
digit of the 14-digit constant. If the digit is even
or zero, the module to be used by the instruction
is determined by the second digit (high-order

SPS II-D 57

digit of the sector address) of the constant; if it
is odd, the module is determined by the digit
itself. When the operand is in symbolic form, the
low-order digit of the equivalent numerical value
of the symbol becomes the first digit of the
assembled 14-digit constant. See Example 1
(EX1).

3. The third operand specifies the 5-digit sector
address (00000-79999) where reading, writing,
or checking begins. From this address the com-
puter determines the correct cylinder, head, and
sector. It also determines the drive module un-
less overridden by the second operand.

4. The fourth operand indicates the number of sec-
tors (1 to 200) to be read, written, or checked.

5. The last operand specifies the 5-digit core stor-
age address used for data transfers to and from
disk storage. Reading or writing begins at the
specified address and extends into successively
higher-numbered core storage locations. This
address must be even.

Each of the last three operands assembles with a
flag over the high-order digit. If a label is used with
this mnemonic, it is assigned the address of the drive
code.

EXAMPLES

M=02
DISK=14540
SECT=150
CORE=10000

Assume:

Operands & Remarks

Line Label IOperation|
3 Slé 11]12 15116 20 25 30
[oJEXL, DA | MoD./SK,SELT, CORE,

=T 4

35 0 45 50

P S

I R

e
ok v W el ol ¥ = L IR

0,20/ ELD DDA ICY.LD M9 16250, 5ECT 2, CORE , |

For these examples, the assembled output (disk
control field) would appear as follows:

21454015010000
21625015210000
M

Address of FIELD and CYLD

All ppa statements that will be used by the Monitor
I/O Routine must be followed by a record mark
(DC 1, @).

DGM — Define Group Mark

A poMm statement is used to place a group mark at
some specific address in core storage. It needs only

58

one operand; the address where a group mark is de-
sired. The operand can be actual, symbolic, or arith-
metically adjusted. If no operand is specified, a group
mark is Placed in the next available core storage lo-
cation. Only one group mark may be defined with
each poM statement.

y

DMES — Define Message (1710 Only)

The pMEs instruction aids the 1710 user in program-
ming the output control codes of the Serial Input/Out-
put Channel (SIOC). With one pmEs statement, a
complete message of alphabetic, numerical, or mixed-
mode data can be specified. Although this mnemonic
is oriented to the SIOC output printer, it may be used
to program other devices which are wired to accept
the control codes of SIOC.

The pMmeEs statement requires three operands; ad-
dress, starting mode, and message. Remarks are not
permitted.

1. The address operand may be used by the pro-
grammer to assign an address to a message, in
which case he assumes the responsibility of cor-
rectly positioning the message if alphabetic out-
put is indicated. If no particular address is de-
sired, a comma must be placed in lieu of the.
address operand. The processor will then assign
a valid address. ‘

2. The second operand specifies the starting mode;
an A indicates the alphabetic mode, the omission
of the operand indicates the numerical mode.
Even though this operand may specify an alpha-
betic starting mode, the correct positioning of
the message is still dependent upon the address
operand.

3. The message operand consists of alphabetic, nu-
merical, or mixed-mode data, and special charac-
ters which have been assigned to the control
functions for use in a DMES statement (see Table
2).

The special characters are enclosed in parentheses
and inserted into the message wherever they are
needed. (NoTE: Parentheses are not permitted in the
“data” portion of a message operand.)

If information is to be placed into a message some-
time after it is stored, the space must be reserved by
the programmer when the statement is written. This
is normally done by writing zeros in the message in
place of the data which is to be inserted later.

The length of the message need not be specified
by the programmer; however, if the number of core
storage locations needed to contain the message ex-
ceed 100, an error is indicated. Note: Control charac-
ters require two core locations when in numerical

Table 2. DMES Representation of Output Printer Control

Codes
ASSEMBLED
CONTROL CODE

DMES
CHAR=- | ALPHA- [NUMER-
ACTER | MERIC ICAL FUNCTION

P) 0%71 *1 Type numerical period

(M) 0%72 *2 Change mode

©) 0#%73 *3 Type numerical comma

(B) 0%74 +4 Shift printer ribbon to black

Shift printer ribbon to red (Alert)

Tabulate printer carriage

A) 0%75 | #5
(M 0%76 | #*6
(s) 0%77 | #7

Space printer carriage one position

(R) 0%78 *8 Return printer carriage and advance
one line

(F) 0*79 *9 Advance printing form to next form
feed stop

(E) 0%0% ¥+ | End of message

mode and four locations when in alphabetic mode.)

Flagged digits can be placed into a numerical mes-
sage by subsituting the letter J-R for 1-9. A flagged
zero is indicated by a 0 (card only).

Some examples of pmEs statements are shown in
Figure 9. In the example of alphabetic mode, notice
that the programmer has assigned the symbolic ad-
dress mesac and therefore is responsible for the cor-
rect positioning of the entire message. Since the mes-
sage begins in the alphabetic mode, the address
assigned to MESAG corresponds to the second digit of
the stored data.

In the example of a mixed-mode message, zeros
were placed in the message to reserve space for tem-
perature and pressure readings. These are normally

inserted in the message before it is typed out.

INVALID MODE CHANGES

Since the 1BM 1717 Output Printer and the 1M 1620
console typewriter both require alpha messages to
start at even core addresses, an invalid message can
be created when programming a change from numeri-
cal to alphabetic mode. The invalid mode change
occurs when the alphabetic characters following the
change are assigned addresses starting at an odd core
location instead of an even core location. Such an
assignment is incorrect and is indicated as an error.

DOT Declarative Statement

A declarative statement has been included for the
generation of an octal power table: por (Define Octal
Table). An octal power table is required for the two

1620 Model 2 instructions, Octal to Decimal conver-
sion (OTD-96) and Decimal to Octal conversion
(DTO-97).

The por declarative has two operands: the first
operand specifies the highest power-of-eight required
in the table — this number must be equal to or less
than 13. The second operand specifies the address
of the table-ending record mark — if the second oper-
and is omitted, the location of the octal table will be
assigned by the processor. If the por statement is
labeled, the label refers to the table-ending record
mark as shown in the following example.

Assembled Data
327684096512640801==
9600499xxxXXX

Source Statement

TABLE DOT 5, 00500
OTD TABLE—1, DATA

Note: The Octal to Decimal (orp) instruction re-
quires that the P address refer to the units digit of
the power-of-eight table (TABLE—1 in the example
above). From this it can be seen that if the user does
not assign the table address (either symbolically or
with the absolute address) he must use a label for
the por statement.

The Decimal to Octal (pTo) instruction requires
that the Q address refer to the units digit of the high-
est power-of-eight number necessary for a successful
conversion. The following example shows the correla-
tion of the powers-of-eight table to the pot, pro, and
oTp statements.

Assembled Data
2621443276840965126408014
(assume == address of 10000

assigned by processor)
OTD TABLE-1, DATA 9609999xxxXX
DTO P, TABLE—-19 97xxxxx09981

Source Statement

TABLE DOT 6

The power-of-eight number specified in the pot
statement and the corresponding address arithmetic
for the Q address symbol of the pro statement are
shown in the following list.

Octal Power Address Arithmetic

80 = TABLE-1
8 - = TABLE—3
82 = TABLE-5
83 = TABLE-7
8¢ = TABLE-10
85 = TABLE-14
8¢ = TABLE-19
87 = TABLE-25
88 = TABLE-32
8° = TABLE—40

SPS II-D 59

8o = TABLE—49
81 = TABLE-59
812 = TABLE—69
813 = TABLE—-80

With a first operand of 13, 14 power-of-eight numbers
are generated for the table (8° through 8'3). The
user must supply any required number greater than 8
to the 13th power.

Summary of Declarative Operations

As stated earlier, areas being defined by the processor
are assigned core storage locations in the order in
which they are processed. To do this, the processor
program uses a location assignment counter to keep
track of the address of the last assigned storage loca-
tion. Table 15 in the Appendix shows the amount add-
ed to the location assignment counter for each instruc-
tion and summarizes the coding and operation of each
declarative mnemonic.

Numerical Mode

1620/1710 Imperative Operations

Imperative operations may be divided into five classes:
1. Arithmetic
Internal data transmission
Branch
Input/Output and control
. Miscellaneous
Thls section describes the five classes of imperative
operations and gives some examples of statements
written in symbolic language. For a detailed descrip-
tion of the function of each machine language in-
struction, refer to the appropriate machine reference
manual.

o @

Arithmetic

Arithmetic operations are those that involve adding,
subtracting, multiplying, or dividing. Table 16 in the
Appendix is a list of all arithmetic mnemonics and
a brief description of their P and Q address functions.

Line Label Operation| Operands & Remarks
3 s)e il 1516 2 25 30 35 40 45 50 55 &0
LW UM . IDMES], s (R).00000(71.).185(5)000(5)72(RIB2T(E). .. \\..

CORE STORAGE

TYPED QUTPUT 00000

827

185 000 72

Alphabetic Mode

+8 00000 +6 185 #7000 7 72 £+8 827% #

Line Label

3 5]¢ nh2 15118

IOperation

Operands & Remarks

A.LPHA,

a0

D‘MLESMESA@ A._R)START P;?O.&(QLATLCP)5987(E

CORE STORAGE
(Address of ALPHA and MESAG) ———’

R

78626341596300575956470+7741630478757978770+0

TYPED OUTPUT START PROG AT
5987
Mixed Mode
Line Label KCperation) Operands & Remarks
3 _sls nj2 15016 45 50 55 50
oM/ XED |DMES| ¢ (/e.)re P, 000(pP)0 (5.),0000 (.
CORE STORAGE MOWZ 7000#10% 8'#2575945620*72#70000';#/
TEMP 000.0
TYPED OUTPUT PRES 0000

Figure 9. Examples SPS DMES Statements

60

Some examples of arithmetic statements written in
symbolic language follow:

Line Label [Operatior Operonds & Remarks
3__sls 1] IV 1sfig 2 3 £ 42 a5 0

01.0) 4, A, COSTL,‘LABOR‘ e

. GOST» LABOR.,.H“’D. LABOR 70 ,COST

s
"
T S NI N S TR S SN SN S
1

L |SM | STOA’[+4 2,40 ,

0,2,0 I |

IS N U i S S A S R SR

I
Pl S A S S A N SRS |
"
"

5
o
L FE O}

L Y

o T AN 188,05, 10, AALE-ADTUST POSITIVE ANT
cal D 197,DDND
oeel oD 86LDVR

These statements cause the following operations
to be performed:

Line 010 — Add labor amount to cost amount.

020 — Same as line 010 except three commas
are required for remarks.

030 — Subtract a constant 02 from the field
located at sTtore pLUs 4.

040 — Add a constant 05 to the field at storage
location 00088.

050 — Move ppNp (dividend) to the product
area (storage location 00097).

060 — Divide the dividend by successive sub-
tractions of the pvr (divisor) starting
in storage location 00086.

Internal Data Transmission

Internal data transmission operations are those that
cause the movement of data from one core storage
location to another. They require both a P and a Q
address. Table 17 in the Appendix lists all internal
data transmission mnemonics and their P and Q
functions.

Some examples of internal data transmission state-
ments written in symbolic language follow:

Line Label ot Operands & Remarks

3 516 npiz 15]16 30 35 40 45 50
ol o 7D, /"/[Z,D,,D/G/T L

02,0 .T.DN.FIflﬁya A

TF |STORELRATEL 1, MOVE. RATE. 1. .70 ST.ORE. ..

10340

L L
Lo g P RIS SR Lt
s "
1 L

il IVET A I B 1

Y TN [STORE 3525, 2 MOVE 03525 70 STORE .

T ST BTt

o TFM - 11,.41,10.,cm;£ Pefv DP coof ro NoP

e

sl [TNS |A2BrrCONVERT FLD A 70 NUMER CODING. .

TN 62D 11 CONVERT FLD D .70 ALPHA CODING. .

These statements cause the following instructions
to be executed:

Line 010 — A numerical digit at the location called
picit is moved to the location called

FIELD.,

020 — A digit 3 is moved to the location called
FIELD.

030 — Rate 1 is moved to the field called
STORE.

040 — A constant 3525 is moved to the loca-
tion called sTORE.

050 — A constant 41 is moved to the Oy and O,
positions of the preceding instruction in
the object program.

060 — Field A is moved to field B and con-
verted from alphameric coding (2 digits
per character) to numerical coding (1
digit per character).

070 — Field D is moved to field C and con-
verted from numerical coding to alpha-
meric coding.

Branch

Branch operations are used to alter the normal se-
quence of instruction execution. They may be con-
ditional or unconditional. Table 18 in the Appendix
lists the branch mnemonics and their P and Q address
functions. Also listed in this table are the two com-
pare mnemonics. Compare operations, though arith-
metic in nature, perform a distinctly logical function.

Some examples of branch and compare statements
written in symbolic language follow:

Opelonds & Remarks

Line Lobel JOperati
3 516 1412 A U1} 2 25 30 35 50
R .

3 A19,COMPARE _FIELD A n’/T/'/ F/ELD B

..... PR PRy

ool 1B ISTART.,.».»BRANCH .70 LABEL START.
el 1BT ISTART; 1007, 1F SH] O BR. .70 _START ..
ool |BCI|START. 23SAME AS, 'z'/Nz'ngggJ_;;' o

050l vy o |BNC/STARTA3%22905 .\, .

N
N

PSR BTSN ST UVI DA U S ST S S S S S S U0 S I S W R
"

! , IBﬂ

n
PRI S S RN TS ST S Y
s
N

P

These statements cause the following operations to
be performed in the object program.
Line 010 — Compare field A with field B.
020 — Branch to an instruction labeled
START.

SPS 1I-D 61

030 — If Program Switch 1 is on, branch
to the instruction labeled starr.

040 — Same as line 030 with the exception
that the unique mnemonic operation
code used does not require a Q
address.

050 — If Program Switch 1 is not on, branch

to the third instruction following the
one labeled sTaArT.

060 — Branch unconditionally to an in-
struction whose address is saved in
IR-2 or PR-1.

Input/Output and Control

Input/Output operations enable the transfer of data
between core storage and various I/0 units; control
operations do not affect data, but rather pertain to
electro-mechanical operations of I/O units. Table 19
in the Appendix lists the input/output and control
mnemonics and their P and Q functions.

Some examples of input/output and control state-
ments_written in symbolic language follow:

Line Lobel Operoti Operands & Remarks

3 sle nfiz 1sie 2 25 3 3 40 4 50
ool oo WA WOUTPUT 100 i

o0l ooy WATNOUTPYT . 0.0 SANE AS LINE 010, . . ., "
losod o iy, W\ 19001L5,0,SAME, AS LINE 040 , .\ "
(T3] SPTYL v

These statements cause the following operations to
be performed in the object program:

Line 010 — Type out alphameric data from a stor-
age location called ourpuT.

020 — Same as line 010; however, a unique
mnemonic is used. ’

030 — Single space on the typewriter.

040 — Same as line 030; however, a unique
mnemonic is used.

Miscellaneous

Miscellaneous operations are those that do not fall
into any of the operations described previously. Table
20 in the Appendix lists the miscellaneous mnemonics
and their P and Q functions.

62

Some examples of miscellaneous statements written
in symbolic language follow:

Line Lobel Operati Operands & Remarks
3__Sls 12 15)16 20 25 30 35 40 a5 50
YRS PP CF._ |OUTPUT-5, NS

PSS B PO T U S S S A U S S S S S VO S S WA S S T A A S Y
0,2,0 .,.‘./W,F‘.3.3.5,2.9.2.6.9»4:.}., O SR U YT T A W S SR W B S N ST R 1
FENTS EETRFERIE EFEFETIS BRI S ST VU SN S T RTEE U S U ST S S A S0 S S SR
FTER I P HALT L

" PRSI U I A S SRS SN ST S A E A S S S S S T U W0 I S SR
VRS P VOF

These statements cause four different operations to
be performed in the object program as follows:
Line 010 — Clear a flag at the storage location,
OUTPUT minus 5.
020 — Move a flag from storage location 2694
to storage location 3352.
030 — Cause the program to halt.
040 — Perform no operation but proceed to
the next sequential instruction.

Processor Control Operations

The sps language includes the following five control
operations:

por¢ Define Origin
pEND Define End
Heap Heading

TCD Transfer Control and Load
TRA Transfer to Return Address

These operation codes are orders to the processor
that give the programmer control over portions of the
assembly process. Specifically, porc gives the pro-
grammer control over the placement of his program
in storage. pEND, TCD, and TRA order the processor to
produce unconditional branches to locations specified
by the programmer. HEAD assigns unique characters
to labels or symbols used within a source program.

With the exception of TrRA and poOrc, none of the
preceding operations may be labeled.

DORG — Define ORiGin

The porG statement instructs the processor to over-
ride its automatic assignment of storage and to begin
the assignment of succeeding entries at the particular
location specified by the programmer. In this way,

the programmer is able to control assignment of stor-
age to instructions, constants, and data.
A define origin statement is coded as follows:

Line Labe! IOperatiol Operands & Remarks
3 5]é 12 15116 20 25 30 35 40 45 50
YN BT DORG7820.\ i

This statement directs the processor to reset its loca-
tion assignment counter to the particular address spe-
cified in the operand (actual or symbolic). This
causes the assignment of succeeding entries to begin
at this address. When an actual address is entered by
the programmer, care must be taken to avoid inad-
vertent overlapping of areas assigned by the proc-
€ssor.

If the operand is left blank, assignment of storage
starts with an address of 00000. Since the Monitor 11
System occupies locations 00000 through 02401, con-
stants and instructions at object time cannot occupy
these storage locations.

If a symbolic address is entered, it must appear as
a label earlier in the program sequence. An * address
refers to the current contents of the location assign-
ment counter. A define origin statement can take any
of the following individual forms:

Line Lobe! ratis Operands & Remarks

3 5ls 1112 15116 20 25 30 35 40 45 50
ol L oREXYZ .

n.m0.&L6.U’D.0RﬂX.Y.Zt5.0. N,

0.0.0/0R1.GIMDORG¥+50, LOCAT.1 ON_ASSIEN_ COUNTER?SD. . ..

If xyz (label) is previously defined as 7002, the
first entry directs the processor to begin the assign-
ment of succeeding entries at location 7002. The sec-
ond entry directs the processor to begin the assign-
ment of succeeding entries at the location that has
been assigned to the symbol xyz plus 50. The symbol
ORIGIN can be used at any point in the program to
refer to that address. The third entry directs the proc-
essor to begin the assignment of succeeding entries
at the address specified by the current contents of the
location assignment counter plus 50. A comma must
follow the operand when remarks are included in the
DORG statement.

DEND — Define END

The pEND statement is the last statement entered in
the source program; it informs the processor that all
statements of the source program have been process-
ed. The pEND statement requires the presence of an
operand representing the starting address of the pro-
gram. The operand may be actual or symbolic.

The following statement illustrates a DEND statement.

Line Label [Operatior

3__sls npiz 1518 2 30 3 40 45 . 50

Operands & Remarks

20
ol . |DENDSTART .

HEAD — HEADing

It is frequently convenient, and sometimes necessary,
to write a source program piecemeal and to assemble
these pieces into the total program. Parts of the pro-
gram may be written by different programmers, or by
the same programmer at different times with consid-
erable time lapses between.

Suppose, in such a situation, that a program block,
say Bj, has been written; that another program block,
B,, is in the course of being written; and that B; and
B, eventually are to be joined to compose a single
program. Certain symbols may already have been
used to write block B;, and certain symbols, varying
from the symbols used in B;, may be used to write
block Bs;. To avoid duplication of symbols in each
block, the programmer writing block B, must be con-
cerned with the symbols used in B;.

Symbols used in block Bs can duplicate those in
B,, provided they are less than six characters in length
and have been prefaced by a HEAD statement. The
programmer can completely ignore the symbols in B,
by prefacing Bs with, the following control statement:

Line tabel IOperatior Operands & Remarks
3__sle nhz 1shhe 2 2 k') 35 40 4 %
| L JHEAPK e e

where the single character X may be any one of the
characters A to Z, 0 to 9, or blank.

The control statement, HEAD X, generates no in-
structions or data in the object program. When the
processor encounters a HEAD statement, it treats the
symbols in the label or operands fields of the follow-
ing statements, provided the symbols are less than six

SPS II-D 63

characters in length, as though they were headed by
the character X. The processor continues to do this
until it encounters another head statement.

Thus, the symbols used in block B; which contain
less than six characters cannot possibly conflict with
the symbols used in block Bs. Six-character symbols
are not affected, that is, a 6-character label, comMoN,
following the control statement HEAD 9 is not treated
as 9 commMoN, for it would be a 7-character symbol,
and only a maximum of six characters can be handled
by the symbol table.

A symbol is said to be “unheaded” if, and only if,
its representation uses exactly six characters. The sym-
bol comMoN, for example, is unheaded. The symbol
ALPHA whose length is less than six characters is con-
sidered to be headed, whether under a BEAD control
statement or not. If ALPHA is under control of HEAD x,
then ALPHA is said to be “headed by x.” If ALPHA is
not under control of any HEAD statement, then ALPHA

is said to be “headed by blank.”

A symbol, arpHA, headed by the character x, is not
identical to the symbol xavpua. The heading char-
acter is essentially on a different level from the char-
acters which make up the symbol. However, ALPHA
headed by a blank should be regarded as identical to
the symbol aLpHA used without a heading statement.

If a HEAD statement with a nonblank character does
not occur in the entire source program, all considera-
tions of heading can be ignored. This is the reason
for not introducing the concept of headed symbols
earlier.

A HEAD statement with a blank character must be
used if the programmer desires to modify the heading
process in the example. Note that the statement HEAD
and the statement HEAD O are quite different. For ex-
ample, if blocks B, and B; are to be joined in one pro-
gram, and B, must be nested somewhere in the middle
of Bi, as follows:

Operation Operands
' .\ irst part of block B
HE']AD X
: block B,
H].EAD
second pait of block B,

The entire program might have been prefaced by
a HEAD statement with a blank character operand. As

64

implied previously, however, such a HEAD instruction
is superfluous, since the symbols in the first part of
block B; are automatically headed by blank, being
under the control of no HEAD instruction at all.

Often it is inconvenient to refer to a symbol that is
defined in another headed region because of the
requirement that the symbol be six characters in
length. To facilitate cross referencing between headed
blocks, the following convention can be used:

Suppose that a symbol, say sum, under HEAD 1, has
been defined by some instruction. Suppose further
that this symbol is to be referred to in an instruction -
under the control of the instruction HeAD 2. Then the
desired reference can be made by writing 1$sum as it
appears in the following instruction.

Line { Label foperation Operands & Remarks
sls npez 15116 20 25 30 35 40 45 50
oo AL 'ZQKAA.I‘L’,S-UM e e R

In general, if the two characters “C$,” where C is
any allowable heading character, are placed in front
of the headed reference symbol sum, then the result
is sum headed by C. To specify sum headed by

-blank, one simply writes $sum, with no character

preceding the $ character.

If the processor finds an operand containing a 6-
character symbol plus a head character, such as
9commoN, the processor will produce an error mess-
age indicating that the symbolic address contains
more than six characters.

If a label is used in a HEAD statement, it is ignored.

TCD — Transfer Control and loaD

The 1CD statement may be used to cause the loader
to execute an unconditional branch instruction. When
this statement is encountered during the loading of
the object (machine language) program, it causes the
loader to break the normal loading process and to
branch to the location (apbRr) specified in the operand.

Line Lobel ati Operands & Remarks
a_sle nliz 1she 2 2 k') 35) 4 %
ol 0o, |TCP ADDR , e

PR P "

ADDR may be actual or symbolic.

This statement allows programs which are too large
to fit into core storage to be loaded and executed
piecemeal, by terminating each piece with a TRra
statement. In effect, a Tcp instruction can be used in

conjunction with a DORG statement to execute portions
of the program that have already been loaded into
storage and to overlap these with other instructions.
During assembly, the Tcp instruction does not affect
the location assignment counter or alter the symbol

table.

TRA — Transfer to Return Address

The TRA statement causes the normal loading se-
quence of an object program to be resumed once it
has been broken by a Tcp statement.

This processor control operation increments the
location assignment counter by 42. The last statement
of that part of a source program that is executed, when
loading is interrupted by a Tcp statement, must be a
TRA statement. When the TrA instruction equivalences
are encountered in the object program, the normal
loading process is resumed. The TRA statement, which
takes the following form, uses no operands.

Line Label atio Operands & Remarks
3 sle nfiz - ishe) 2% » 3) 5 50

PR BN T.R’A'

s,

The following example illustrates the use of the
TCD and TRA mnemonics. -

Line Labe! IOperati
3 5] iz 15016 k] ki3 30 3 40 45 %

Operands & Remorks

0. 1.0|S,TART | (First |instructien)
90,2.00 1 4 * * .
'] SUUPIS SPLAE AP

0,4,0 L1 2 P

. L
0,8,0 4 4 44y e TR

R R RO

06,0T.R.A A L
IR BT 7LD, START s
ool . |DORGSTART,

020l oy, |(Bemaiping Ie-'t'“

D
1,008 0 a0 0y FON A

AFUIT] BT

o e
......

LT3 SRR SRS RS

The Tcp statement causes a branch to the location
assigned to the symbol starr, followed by the execu-
tion of instructions from start through the TRA state-
ment. The TRA statement causes a branch to the load
program, which resumes loading the remainder of the
object program beginning with the location labeled
START.

1710 Product-Area Macro-Operations

Two mnemonics, SAVE and BSTR, are provided to allow
1710 interrupt programs to make use of the product
area (locations 00080 through 00099) during their

operation, even though that area was being used by
the main program when the interrupt occurred. The
save mnemonic should be inserted at the beginning
of the interrupt routine where it will generate in-line
instructions to store the contents of the product area
in a specified location. The interrupt routine may
then use the area but must restore the original con-
tents (rsTR) before returning control to the main pro-
gram. The P and Q operands of these statements may
be actual or symbolic and may be arithmetically ad-
justed.

SAVE

EXAMPLE

XFER SAVE A, B

where xFER is the address of the first instruction gen-
erated by the use of the save mnemonic.

A is the symbolic address of the leftmost position
in the temporary storage area. This area can be re-
served with a pss statement. The length of the area
must be N + 1 digits where N is the number of digits
in the product area to be saved.

If Loca is the label of the first digit of a 26- dlglt
area in core storage, the statement:

AlO SAVE LOCA, 75

will cause the contents of the product area from ad-
dress 00075 to 00099 to be stored in the first 25 loca-
tions reserved at roca. A record mark will be placed
in the 26th location.

If LocB is the label of the first digit of a 21-digit
area in core storage, the statement:

Al100 SAVE LOCB

will store the contents of the product area from ad-
dress 00080 through 00099 and a record mark in the
21 locations reserved at -rocs. The savE mnemonic
generates the following instructions:

TDM 00100,0
DC 1.@,°
TR LOCB, 00080
TDM 00100, 0
RSTR
EXAMPLE
XFER RSTR A, B

where x¥ER is the address of the first instruction gen-
erated by the RsTR mnemonic. A represents the loca-
tion in the product area into which the leftmost digit
of the temporarily stored information is placed. This
address should always be less than 99. If it is left

SPS II-D 65

blank, the product area between 00080 and 00099
will be filled in with the stored data.

B represents the address of the leftmost digit in the
record - of information to be returned to the product
area.

If Loca is the label of the first digit of an area
where locations 75-99 have been stored by a save
instruction, the statement:

RSTR 75, LOCA

will cause the product area from addresses 00075
through 00099 to be restored with the information in
the first 25 locations reserved at Loca.

If Locs is the label of the first digit of an area where
locations 80-99 have been stored by a save instruc-
tion, the statement:

RSTR , LOCB

will return the information which was stored in the
21 locations reserved at Locs to product area address-
es 00080 through 00099.

The rsTR mnemonic generates the following instruc-
tions:

TR 00080, LOCB
TDM 00100, O

Since each of these two mnemonics generate in-line
instructions, care should be taken when using address
adjustment in the same areas where these mnemonics
are used.

1620 Subroutines

A program or routine consists of a set of coded in-
structions arranged in logical sequence; it is used to
direct the 1620, 1710, or any 1BM data processing sys-
tem to perform a desired operation or series of oper-
ations. Generally, programs contain one or more short
sequences of instructions that are parts or subsets of
the entire program, and that are used to solve a par-
ticular part of a problem. These parts of the program
or routine are called subroutines.

Usually, a subroutine performs a specific function,
is common to a number of programs, and may be
executed several times during the course of the pro-

66

gram of which it is a part (main program). For ex-
ample, a subroutine that extracts the square root of
a number may be required during the execution of a
pipe stress analysis program. The same subroutine
may be used to extract a square root in a bridge and
truss design program.

Classification of Subroutines

An efficient programming procedure is obviously one
in which all necessary subroutines are coded only
once, are retained on file, and are incorporated into a
program whenever the operation performed by the
subroutine is required. 1BM Programming Systems has
developed, for the sps 1m-p Symbolic Programming
System, a group of subroutines that are more fre-
quently required because of their general applicabil-
ity. Seventeen subroutines are available; they fall into
three general categories: arithmetic, data transmission,
and functional.

Arithmetic subroutines
Floating-Point Add
Floating-Point Subtract
Floating-Point Multiply
Floating-Point Divide
Fixed-Point Divide

Data Transmission subroutines
Floating Shift Right
Floating Shift Left
Transmit Floating
Branch and Transmit Floating

Functional subroutines
Floating-Point Square Root
Floating-Point Sine
Floating-Point Cosine
Floating-Point Arctangent
Floating-Point Exponential (natural)
Floating-Point Exponential (base 10)
Floating-Point Logarithm (natural)
Floating-Point Logarithm (base 10)

The methods used by the functional floating-point
subroutines to evaluate the functions of drguments
are shown in Table 3.

The. subroutines are written in machine language
and are provided in card or paper tape form for
floating-point numbers with either a fixed-length or
variable-length mantissa. The terms “variable length”
and “fixed length,” as applied to subroutines in this
manual, refers to-the number of digits (L) in the
mantissa, not to the length of the subroutine itself.

Table 3. SPS Subroutine Method of Evaluating Arguments

METHOD
SUBROUTINE FIXED LENGTH VARIABLE LENGTH
Square Root Odd integer Odd integer
Sine and Based on Hastings' Series approximation
Cosine approx imation*
Arctangent Truncated series Series approximation for
arctangent
Exponential Hastings' approximation]Series approximations of
(natural and IOB. IOB is converted IOB and convert to eB
base 10)
toe
Logarithm Truncated series for Series approximation of
(natural and In B. In B is converted |in B and convert to log B
base 10) to log 108

*Hastings, Cecil Jr., Approximations for Digital Computers,
Princeton University Press, Princeton, New Jersey. The
Rand Corporation, 1955,

The three sets of subroutine card decks or paper
tapes with their identifying set numbers follow.

Subroutine Set Set Number
Fixed-length subroutines 01
Variable-length subroutines 02
Variable-length subroutines for 03

machines equipped with the Auto-
matic Floating-Point feature

A pick subroutine is included at object time when
any of the seventeen subroutines previously mention-
ed have been called by the object program. This sub-
routine performs the function of obtaining the data
specified for a subroutine, storing the result produced
by that subroutine, and furnishing a return address
to the mainline program.

In addition to the Library subroutines, the user
may include up to twelve subroutines of his own. The
method used to incorporate these routines into the
proper subroutine set on disk is explained under
ADDING SUBROUTINES. Subroutines appear with the ob-
ject program only at execution time.

Subroutine Macro-Instructions

All linkages for the 1620 subroutines are generated au-
tomatically through the use of certain macro-instruc-
tions. The programmer places the macro-instruction,
related to a particular subroutine, in the source pro-
gram at the point where the subroutine is desired.

This causes the sps 11-D processor, during assembly, to
generate linkage to the desired subroutine. In addi-
tion, the processor arranges for the subroutine to be
added to the object program at object time.

The data and addresses required by the subroutine
and supplied in the macro-instruction are incorporat-
ed into the linkage instructions where they are made
available for use. In this way, the subroutine obtains
the information it requires to perform its given task
and also to compute a return address to the main
program. Control is returned to the main program
at the completion of the subroutine by transferring to
the return address (first instruction after the macro-
instruction). The macro-instruction statement related
to each subroutine is as follows:

Arithmetic Subroutines

Line | Llobel JOperai Operonds & Remarks

3 Sle np2 15116 2 25 ~_—4§~.——2—
ool .. L IFA [AVB | , (Flosting Add)

ool 0. L |FS ANB L, , (Floating Subtract) s

ool o IFM AWB , (Floating moltiply) -

ool L, . |FD JAsB | | (Floating Divide) ey

0,5,0 .. |D1v |AsB,A ’}1 (Divide) et e

Data Transmission Subroutines

Line Lobel IOperatior Operands & Remarks

3 sle w2 qu » s P
PSS . |F.SRSIAL B, | (Floating Shift Right) o
o0l .., [F.SLSIAB i (Floating Shift LeFt) i
00l s TFLSIAS B | (Transmet Floating) s
oo ..., |BTFSA,B | (Branch and Transmit F/oa?lbs) o s

Functional Subroutines

Line | Lobel [operati Operands & Remorks
3 516 e 1516 2 40 45 0
0uwl .. JFSQRIA, B (Floating Sguare Root) .
ozt IFSINA,. B , (Floating Sine) .
o0l |FCOS[A, B {Floating Costne) e N
00l ... IFATMA,B | (Floating Arctangent) N
I FEX |A,B ., (Floating Exponential, Natural) |

... |FEXTIA,B . (Floating Exponential, Base 0))

ool v J|FLN 1A, B, (Floating Logdrithm, Natvral) =

sol .. |FLOGA,B | (Floating Logarithm; Base 10)

In the arithmetic statements, the B operands repre-
sent the addresses of quantities to be added, subtract-
ed, etc. For the fixed-point divide routine, two addi-
tional operands, Al and Bl are required. These oper-
ands, as well as the A and B operands for data trans-
mission statements, are explained in greater detail
under each macro-instruction as it is described.

In the case of functional subroutine macro-instruc-
tions, the B operand represents the address of the
argument to be evaluated, while the A operand repre-
sents the address where the result is placed in storage.

When using a macro-instruction, the programmer
must code the exact number of operands required for

SPS II-D 67

that macro-instruction. Every macro-instruction used
with subroutines supplied by M Library Services
has at least two operands. Added subroutines may
have macro-instructions with up to nine operands.
Remarks and flag operands are not permitted in
macro-instructions. Omitted operands require the in-
sertion of commas as in imperative statements.

All operands in macro-instructions may be symbolic
or actual; all are subject to address adjustment. If an *
is used as an operand, its address is that of the left-
most position of the first linkage instruction.

Many subroutines have been paired (i.e., add and
subtract, sine and cosine, natural and base 10 ex-
ponential, natural and base 10 logarithm) into single
subroutines to conserve storage by sharing those pro-
gram steps common to both. The individual subrou-
tines within each pair are distinguished from each
other solely by the point at which they are entered.
The correct entry point is obtained through the use
of the macro-instruction pertaining to the particular
subroutine desired.

All subroutines are identified by a 5-digit code. This
code identifies the subroutine as follows:

!X Xl]5__)5_[X
Set Number

Subroutine Number

Number of Entries

Table 4 shows the pairing arrangements of the
subroutines together with their respective identifica-
tion numbers and their sequence in core when used by
an object program.

Note: The location of the pick routine is determined
by the last address assigned by the sps processor dur-
ing assembly. All other required subroutines will fol-
low pick (in core) in the sequence of Table 4. Sub-
routines not required are omitted.

The assigned address may be determined by in-
serting a DORG statement, with the desired address,
immediately preceeding the DEND statement.

Linkage

For each macro-instruction statement in a source pro-
gram, two machine language linkage instructions,
a 5-digit address for each operand, and a record
mark are generated by the processor in the object
program. These linkage instructions replace the
macro-instruction, which never appears in the object
program. A label written with a macro-instruction

68

Table 4. SPS Subroutine Group and Identification Numbers

IDENTIFICATION NUMBERS
FIXED VARIABLE
SUBROUTINE | LENGTH LENGTH
Without Without With
Automatic | Automatic | Automatic
Floating Floating F|°'~‘{“ﬂ9
Point Point Point
PICK 01001 02001 03001
DIV 01011 02011 03011
FA
01022
FS
02024 03024
FM 01041
FD 01051
FSQR 01061 02061 03061
FCOS
01072 02072 03072
FSIN
FATN 01091 02091 03091
FEXT
01102 02102 03102
FEX
FLOG
01122 02122 03122
FLN
FSRS 01141 02141
FSLS 01151 02151
TFLS 01161 02161
BTFS 01171 02171

references the leftmost position of the first linkage
instruction generated. If the programmer wishes to
use this label in address adjustment, he must remem-
ber that the location of the instruction following a
macro-instruction is not LABEL + 12.

The linkage instructions generated by the processor
for a macro-instruction are equivalent to the follow-
ing series of symbolic instructions:

Line Label ationy Operands & Remar«s
3 5]é uh2 1514 20 30 35 40 45 50
gl oo, JTFMIPCK+10, "’9- N i N
0200 44y 57, SUBRHGL " A
DSA 4 B
Y I S ey
DcC @
008 v T J O T S U SR S I RV AR S S U SR W S SR S U

In this sequence of instructions,
PcK is the address of a fixed work area that is used
to contain the operands of the macro-instruction.

suBr is a fixed location that contains the address of
the desired subroutine.

A, B... are the 5-digit addresses that are equivalent
to the operands specified in the macro-instruction.

Floating-Point Arithmetic

Scientific and engineering computations frequently in-
volve lengthy and complex calculations necessitating
the manipulation of numbers that may vary widely in
magnitude. To obtain a meaningful answer, prob-
lems of this type usually require retention of as many
significant digits as possible during calculation, and
correct positioning of the decimal point at all times.
When the computer is used for such problems, several
factors must be considered, the most important of
which is the location of the decimal point.

In general, a computer does not recognize the pres-
ence of a decimal point in any quantity during cal-
culation. A product of 414154 results whether the fact-
ors are 9.37 x 44.2, 93.7 x .442, or 937 x 4.42, etc. The
programmer must be cognizant of the location of the
decimal point during and after the calculation and
arrange the program accordingly. In adding, the
decimal points of all numbers must be lined up to
obtain the correct sum. The programmer facilitates
this arrangement by shifting the quantities as they
are added. In the manipulation of numbers that vary
greatly in magnitude, it is conceivable that the result-
ing quantity could exceed allowable working limits.

Processing numbers which are expressed in ordinary
form, e.g., 427.93456, 0.0009762, 5382, --623.147,
3.1415927, etc., can be accomplished on a computer
only with extensive analysis to determine the size and
range of intermediate and final results. The percent-
age of time required for this analysis and subsequent
number scaling is frequently much larger than the
percentage of time required to perform the actual
calculation. Moreover, number scaling requires com-
plete and accurate information regarding the bounds
on the magnitude of all numbers that come into the
computation (input, intermediate, output). Since pre-
diction of the size of all numbers in a given calcula-
tion is not always possible, analysis and number scal-
ing are sometimes impractical.

To alleviate this programming problem, a system
must be employed which provides information re-
garding the magnitude of all numbers in the calcula-
tion along with the quantities in the calculation. Thus,
if all numbers are represented in some standard pre-
determined format that instructs the computer in an
orderly and simple fashion as to the location of the
decimal point, and if this representation is acceptable

to the routine that performs the calculation, then
quantities that range from minute fractions having
many decimal places to large whole numbers having
many integer places can be handled. The arithmetic
system most commonly used, in which all numbers are
expressed in a format that has these characteristics,
is called “floating-point arithmetic.”

The notation used in floating-point arithmetic is
basically an adaptation of the scientific notation that
is widely used today. In scientific work very large or
very small numbers are expressed as a number, be-
tween one and ten, times a power of ten. Thus,

427.93456 is written as 4.2793456 x 102
and
0.0009762 is written as 9.762 x 10-¢

In the 1620 floating-point arithmetic system, the
range of the fractional part of the number is modified
to extend between .10000000 and .99999999, that is,
the decimal point of all numbers is placed to the left
of the high-order (leftmost) nonzero digit. Hence, all
quantities may be thought of as a decimal fraction
times a power of ten. For example,

427.93456 becomes .42793456 x 103
and

0.0009762 becomes .97620000 x 10-3

where the fraction is called the mantissa, and the
power of ten, indicating the number of places the dec-
imal point was shifted, is called the exponent. The
use of floating-point numbers during processing, be-
sides offering advantages inherent in scientific nota-
tion, eliminates the need for analyzing operations in
order to determine the positioning of the decimal
point in intermediate and final results, since the deci-
mal point is always immediately to the left of the
high-order, nonzero digit in the mantissa.

Format

In 1620 floating-point operations, a floating-point
number is a field consisting of a' variable-length or
fixed-length mantissa and a 2-digit exponent. The ex-
ponent is in the two low-order positions of the field,
and the mantissa is in the remaining high-order posi-
tions, as shown: ' '

For the subroutines, the variable-length mantissa
may have a minimum of two digits and a maximum of

SPS II-D 69

45 digits. Two operand fields that are added together
must have mantissas of the same length. A flag over
the high-order digit marks the extremity of the field.
A fixed-length mantissa must have eight digits.

The exponent is established on the premise that the
mantissa is less than 1.0 and equal to or greater than
0.1. The exponent always consists of two digits rang-
ing between —99 and +99. A flag over the high-order
(tens) digit defines the exponent.

The high-order digit of the mantissa and the high-
order digit of the exponent must contain flag bits to
operate properly with floating-point subroutines.

The mantissa and the exponent, if negative, must
have an algebraic sign, represented by a flag, over the
units position of the respective fields; if they are posi-
tive, they are not flagged. A floating-point number
with a negative mantissa and a negative exponent is
represented as follows:

Sign control of the results of all computations is
maintained according to the standard rules of arith-
metic operations.

Normalizing

In all floating-point numbers, the decimal point is
assumed to be at the left of the high-order digit,
which must be a nonzero digit. Such a number is
referred to as normalized. When a number has one
or more high-order zeros, it is considered to be un-
normalized, unless the number itself is zero. An un-
normalized number resulting from a floating-point
subroutine computation is normalized automatically,
but unnormalized terms are not recognized as such
when entered as data. Therefore, it is necessary for
all data to be entered in normalized form. Although
unnormalized numbers will be processed, correct re-
sults cannot be assured. For example, the number
0682349405 should be entered as 6823494004, assum-
ing the fixed-point number is 6823.494 and an 8-digit
mantissa is required.

The following examples demonstrate the conversion
of numbers in ordinary form to 1620 floating-point
notation for an 8-digit mantissa.

1620

Number Normalized Floating Point
123.45678 12345678 x 103 1234567803
00765438 76543800 x 102 7654380002
—.12348693 —.12348693 x 10° 1234869300
—.00000070 —.70000000 x 10-¢ 7000000006
~.00000000 .00000000 x 10-9° 0000000099

70

NOTE: A zero mantissa is associated with a 99 expon-
ent. With any other representation of zero, accuracy
cannot be assured.

The result of a floating-point operation is normaliz-
ed automatically. For example, the result .00123456
when normalized becomes 123456NN02, where N is
an inserted digit (0 through 9) and 02 is the expon-
ent. The value of the N digit (sometimes referred to
as a noise digit) is determined by the programmer,
who in most cases will choose to use zero. At object
time the noise digit can be found at location 02401.

Effects of Normalizing

In normalizing, certain low-order digits in the man-
tissa may lose significance. To recognize these. digits,
the floating-point arithmetic can be performed twice,
using a different N digit for each run, e.g., zero for
the first run and nine for the second run. The sig-
nificance of these digits can be readily distinguished
by comparing the two results. For example, if the
programmer compares the following:

Mantissa Exponent
Result, 1st run 12345000 04
Result, 2nd run 12345099 04

he will see that the two low-order positions of the
mantissa have lost significance because they are sig-
nificantly different.

When intermediate floating-point results enter into
additional floating-point calculations, inserted digits
may become a part of the result of the additional
calculation.

In the case of lengthy computations using floating-
point results, precision gradually decreases because
of truncation. The magnitude of the truncation error
depends on the individual computation process and
cannot be predicted without a knowledge of the
process in question. However, the truncation error in
such cases is usually no greater than the degree of
error present in a rounded amount. Results in floating-
point subroutines are not rounded. The maximum
truncation error for a fixed-length mantissa will not
exceed 10® or, for a variable-length mantissa, 10°L,
except under certain conditions described in the ex-
planation of floating-point functional subroutines.

Exponent Overflow and Underflow

In the 1620 floating-point subroutines, numbers with
a magnitude equal to or greater than 10% create a
condition called exponent overflow; those with a mag-

nitude of less than 10%® create a condition called
exponent underflow.

If either of these conditions is generated as a result
of an arithmetic operation, the resultant field is set to
the most reasonable value under the circumstances,
and operation is resumed (see Table 5). The pro-
grammer is not given a visual indication when an
error occurs; however, a core storage location (00401)
is set to reflect the type of error. The programmer can
interrogate this location for the following digits:

= — no error
1 — exponent overflow
1 — exponent underflow
0 — value cannot be calculated
0 — loss of accuracy in FSIN or FCos, or negative
input argument to FSQR or FLN

Location 00401 is reset to the “no error condition”
(=) by the pick subroutine; therefore if it is to be
interrogated, the interrogation must be done before a
new subroutine is entered.

When the digit in location 00401 indicates that an
error has occurred, the user will most likely initiate

Table 5. SPS Subroutine Errors

some corrective action. The information that follows
should be of some assistance if this situation arises.

Symbolic Addresses Description of Data

PCK + 10 Return address of mainline pro-
gram

PCK + 15 Address of A operand data (re-
sult)

PCK + 20 Address of B operand data

PCK + 33 Mantissa length in use

PCK + 36 Noise digit in use

Note: rck = 02365, a fixed location in core storage at
object time.

Overflow and/or underflow conditions can arise in
only six of the floating point subroutines presented in
this manual, namely, the four arithmetic subroutines
and the two exponential functional subroutines.

Arithmetic Indicators

During the execution of arithmetic subroutines, the
overflow, high/positive, and equal/zero indicators are

CONTENTS
DESCRIPTION OF ERROR OF 00401 RESULTANT FIELD
FA or FS, exponent overflow 1 99. . .99
FA or FS, exponent underflow 1 00. . .0%
FM, exponent overflow 1 99. . .9%
FM, exponent underflow 1 00. . .0%
FD, exponent overflow 1 99. . .9%
FD, exponent underflow 1 00. . .0%%
FD, attempt to divide by zero 0 £ 0 Jn :

mantissa of dividend unchanged,
exponent of dividend = E + 99.
If0/0 :

mantissa of dividend unchanged,
exponent of dividend = -99

FSQR, input argument is negative 0 Vix|

FSIN or FCOS, input argument has

exponent value greater than the - - —

mantissa length 0 00. . .099

FSIN or FCOS, input argumeny has

exponent value (stuch that 03=X=1,

where L is the mantissa length 0 SIN (X) or COS (X)
FEX or FEXT, exponent overflow i 99. . .99

FEX or FEXT, exponent underflow | 00. . .09

FLN or FLOG, attempt to take log - - -

of zero : 0 99. . .999

FLN or FLOG, input argument is

negative 0 LN (Ix])or LOG (|x])

SPS II-D 71

used. The overflow indicator is always reset at the
beginning of each arithmetic subroutine. If it is desir-
ed to determine its status prior to the execution of an
arithmetic subroutine, the indicator must be tested
and its condition stored before the linkage instruc-
tions are executed. The high/positive and equal/zero
indicators are set according to the mantissa of the
result. Whenever a zero mantissa results (0..... 099),
the equal/zero indicator is turned on.

At the conclusion of a functional subroutine, the

status of the high/positive, equal/zero, and overflow
indicators does not necessarily reflect the result of the
operation, because the indicators are disturbed during
the execution of a functional subroutine. Therefore,
their status at the conclusion of a functional sub-
routine should not be assumed to be the same as it
was prior to the execution of the subroutine.

Description of 1620 Subroutines

In this section the various subroutines are described
together with examples of how the associated macro-
instructions are written. For average execution times
of all subroutine macros, refer to Table 23 in the
Appendix.

PICK

This subroutine is common to all fixed-length and
variable-length subroutines. The pick subroutine, dur-
ing execution of the object program:

1. Sets up A and B operands to be operated upon,
calculates the return address to the mainline pro-
gram, and then returns to the user’s subroutine.

2. Resets location 00401 to “no error condition”

(=)

3. Stores the calculated result in the proper storage
area and branches back to the mainline program.
This function is used as required by the indi-
vidual subroutine.

4. Provides constants and working storage for the
other subroutines.

The average execution time for the pick subroutine
can be determined by the formula:

Average time (in usec) = 15 L 4 695

where L = the length of the mantissa. The numbers
are expressed in microseconds. Therefore, an 8-digit

72

mantissa (same as fixed-length mantissa) requires
815 usec.

15x8 = 120
695

815 usec
or less than 1 millisecond.

Note: For the variable length subroutines used with
the Automatic Floating-Point feature:

Average time (in usec) = 15 L 4 695

Floating Add

Macro-instruction

Line tobel Operatio Operands & Remarks
sle n! 2 2 2 33 © 4 30

The A and B addresses refer to the units position of
the exponent of the fields:

MMMMMMMMEE

address of field

where the E’s represent digits of the exponent and
the M’s represent digits of the mantissa. Neither A
nor B should reference any location within the Prod-
uct Area (i.e., the area used to contain products and
quotients).

Operation. Field B is added to field A. The floating-
point sum replaces field A; field B remains unchanged.

Floating Subtract

Macro-instruction

Line Lobel Operands & Remarks
3]s nhz_sh) 23 2 3 o . %0
Y TESLJ'A‘).B " - Aia i " PO

The A and B addresses refer to the units position of
the exponent of the fields. Neither A nor B should
reference any location within the Product Area.

Operation. Field B is subtracted from field A. The
floating-point difference replaces field A; field B re-
mains unchanged.

Floating Multiply

Macro-instruction

Line Labet Pperoti Operands & Rymarks
- 1) nbiz asfie E.] -3 2 3) s E')

| ML AE

My " a

The A and B addresses refer to the units position of
the exponents of the fields. Neither A nor B should
reference any location within the Product Area.

Operation. Field A is multiplied by field B. The
floating-point product replaces field A; field B re-
mains unchanged.

Floating Divide

Macro-instruction

Line Label i Oparands & Remarks
s 1z 5] b 25 30 35 » 45 50
19 it ‘FD.H"‘B.. P N PR " .

Operation. Field A is divided by field B. The float-
ing-point quotient replaces field A; field B remains
unchanged. Neither Anor Bshould reference any location
within the Product Area.

3

Fixed-Point Divide

Macro-instruction

Line Lobel Operands & Remarks
2S¢ nha L U k. » k] ») 4“8 30

PN IV, |A, B, AL, BE |

s PN A Ay

In addition to the A and B operands, which represent
the addresses of the dividend and divisor, the divide
macro-instruction requires two additional operands;
one specifies the number of zeros to be inserted to the
right of the dividend (Al operand) and the other,
the shift factor needed by the subroutine (Bl oper-
and). Specifically,

A operand is core storage address of dividend
(must not reference Product Area).

B operand is core storage address of divisor (must
not reference Product Area).

Al operand is 00099 minus the number of zeros de-
sired to the right of the units position of the
dividend.

Bl operand is 00100 minus the length of the quo-
tient. The quotient must be at least two digits
in length.

Note: The quotient address after the division is ex-
ecuted will be equal to 00099 minus the length of the
divisor.

Prior to the divide operation, the divide subroutine
always resets to zeros (clears) positions 00080
through 00099, the product area where the 20-digit
quotient and remainder are developed. For variable-
length mantissa subroutines, the divide subroutine
clears core storage positions 00001-00099 to zeros.
When the quotient plus the remainder exceeds the
number of positions cleared to zeros, positions lower
than the last position cleared must be reset to zeros
by programming. One additional position should also
be cleared to allow for a possible overdraw. For ex-
ample, if 25 positions are required for the quotient
and remainder in a fixed-length mantissa subroutine,
00074-00079 should be reset to zeros before the divide
macro-instruction is given.

The fixed-point divide macro-instruction may be
used with any of the subroutine sets. Whenever it is
used, the fixed-point divide subroutine will be incor-
porated into the object program at object time. The
fixed-point divide subroutine uses automatic divide
in performing its operation. Coding of the macro-
instruction is the same for all of the subroutine sets.

Operation. The area to be cleared is automatic-
ally reset to zeros. The dividend (A address) is trans-
mitted to the product area (Al address), beginning
at the low-order dividend digit and terminating at
the flag bit marking the high-order position of the
dividend field. The Al address is 00099 minus the
number of zero positions desired to the right of the
dividend.

The algebraic sign of the dividend is automatically
placed in location 00099, regardless of where the
rightmost dividend digit is placed by the Al address.
A flag bit automatically marks the high-order digit
of the dividend.

The divisor (B address) is successively subtracted
from the dividend. The B1 address of the divide macro-
instruction positions the divisor for the first subtrac-
tion from the high-order position(s) of the dividend,
as in manual division. The Bl address is determined
by subtracting the number of digits in the quotient
from 100.

The quotient and remainder replace the dividend
in the product area. The address of the quotient is
00099 minus the length of the divisor. The algebraic
sign of the quotient (determined by the signs of the
dividend and divisor) is automatically placed in the
low-order position of the quotient. The address of the

SPS II-D 73

remainder is 00099; a flag bit is automatically placed
in the high-order position of the remainder. The re-
mainder has the sign of the dividend and the same
number of digits as the divisor.

The high/positive indicator is on if the quotient is
positive and not zero; the equal/zero indicator is on
if the quotient is zero. Neither indicator is on if the
quotient is negative.

The quotient must be at least two digits in length.
This is the minimum field length that the 1620 will
accept.

EXAMPLES

1. The macro-instruction
DIV A, B, 99, 96

will perform the division for 0273 §—3972 and
store the result 0014 in storage locations 00092
through 00095.

2. The macro-instruction
DIV A, B, 96, 93

will perform the division for 0273)3972.000 and
store the result 0014.549 in storage locations
00089 through 00095.

Norte: In examples 1 and 2, A represents the address
of the dividend 3972, and B represents the address of
the divisor 0273.

Incorrect Positioning of Divisor. The following
error conditions are caused by an incorrect Bl
address.

1. An incorrectly positioned divisor can cause more
than nine successful subtractions and an incor-
rect quotient. The divide operation is terminated,
the Overflow indicator and Overflow Arithmetic
Check light are turned on, but processing will
not stop unless the Overflow Check switch is
set to stop. A divide by zero (K/0) causes the
same error conditions just described.

2. The high-order digit of the dividend is assumed
by the 1620 to be one position to the left of the
high-order digit of the divisor. The high-order
digits of the dividend are lost if the divisor is
positioned too far to the right. Processing con-
tinues with no indication of an incorrect quotient.

3. If the B address is less than 10000, i.e., between
00100 and 00999, the divide operations will ter-
minate when a subtraction occurs at 0XX99. This,

74

in effect, restricts the size of the dividend to
10,020 digits if only 20,000 positions of core stor-
age are installed.

Floating Shift Right

Macro-instruction

Line Label i Operands & Remarks
sle njz 15)1e x 2 k'] 35 “ 45 50

0.0.0] 4 4y FS;PS|A 'AB n

The effect of this macro-instruction is to shrink the
mantissa by shifting it to the right and truncating the
low-order digits. The A address is normally the units
position of the mantissa.

MMMMMMMMEE

units position of mantissa

The B address specifies the digit of the mantissa
which will become the low-order digit of the mantissa.

Operation. The field at the B address (the portion
of the mantissa to be retained) is shifted right to the
location specified by the A address. The exponent is
not moved or altered. For example, the macro-instruc-
tion

FSRS 00097,00093
causes the mantissa

30590011325701

Storage T Storage
Address Address

00093 00097

to be shifted, producing the following result

00003059001101
Storage Storage
Address Address
00093 00097

Vacated high-order positions are set to zeros, an exist-
ing flag at the A address is retained for algebraic sign,
and the field flag bit is transmitted with the high-
order digit of the B field.

Floating Shift Left

Macro-instruction

Line Label [Operation; Operands & Remarks
3506 iz 1516 2 25 30 s) s 50
00,08 vy sy F.S.L;s1ﬂ)] B PR S |

The effect of this macro-instruction is to expand the
mantissa by shifting it to the left and filling the vacat-
ed positions with zeros. It is important to note that
the B address is the low-order position of the field
moved, and the A address is the high-order position
of the resultant field.

Operation. The field at the B address, which is the
low-order digit of the mantissa, is shifted left so that
the high-order digit is moved to the location specified
by the A address. The exponent is not moved or alter-
ed. For example, the macro-instruction:

FSLS 00090,00097

causes the mantissa

0011325701
Storage Storage
Address Address
00090 00097

to be shifted, producing the following result

1132570001
Storage Storage
Address Address
00090 00097

An existing flag bit at the Q address is retained for
algebraic sign; the field flag bit is transmitted with
the high-order digit of the Q field.

Transmit Floating

Macro-instruction

Line Labe! [Operotion) Operands & Remarks

3 sle i 15[16 20 2 30 3 “© 45 50

TFLS|A, B

S Y S Y S G S S SV U S S U S R

The B address refers to the low-order digit of the
floating-point field exponent, whereas the A address
refers to the low-order position to which the field is
transmitted.

Operation. The field at the B address is transmitted
to the location specified by the A address. The B field
remains unchanged in storage. Flag bits in the three
low-order positions of the B field are also transmitted.
Starting with the fourth low-order position, only one
additional flag bit is transmitted, and it stops trans-
mission.

Branch and Transmit Floating

Macro-instruction

Line Lobet peratior

Operands & Remarks
3 sl uhi2 T 2 2 30 s a0 4 50

[S S S S E I ST

The B address is normally the low-order position of
the floating-point field exponent, whereas the A ad-
dress is the leftmost position of the next instruction to
be executed.

Operation. The address of the instruction following
the macro-instruction is saved at a storage location
in the BTFSs subroutine, and the field at the B address
is transmitted to the A address minus one. The normal
exit of a routine which is entered by a BTFs is a Branch
Back (BB) instruction. The instruction at the A ad-
dress is the next one executed. The B field remains
unchanged in core storage. Any flag bits in the three
low-order positions of the B field are transmitted.
Starting with the fourth low-order position, only one
additional flag is transmitted, and it stops trans-
mission. ‘

Floating Square Root

Macro-instruction

Line Label afion Operands & Remarks
3 5|6 npz 15|16 2 25 30 35 4 45 50
ol L JFSERALEB L .

The A and B addresses refer to the units position of
the exponents of the fields. o

Operation. The square root of argument B is ex-
tracted and the result, in floating point form, is stored
at A. The argument, which must be in floating-point
form, is unchanged by the operation.

The floating-point square root subroutine accepts all
numbers within the floating-point range that are
greater than or equal to zero. If the argument is less
than zero, a 0 is placed in location 00401 and A is set
equal to SQR |A].

SPS II-D 75

Floating Sine

- Macro-instruction

Line Label i Operands & Remarks
sle 1hz 5] 2 2] 3 ') 4 0
[TAI] I ‘_S.I l‘,uB..... N P S " N P

The A and B addresses refer to the units position ot
the exponents of the fields.

Operation. The sine of argument B is computed and
the result, in floating-point form, is stored at A. The
argument must be in radians and in floating-point
form. The computation does not disturb the original
value of the argument.

The floating-point sine subroutine accepts all num-
bers of floating-point range up to and including ex-
ponent 08 (fixed length mantissa) or L (variable
length mantissa). _

For arguments with exponents less than 03, the
magnitude of the maximum truncation error in the
mantissa of the result does not exceed 10-L. Accuracy
in the mantissa of the result decreases as the size of
the argument (exponent of 03 or greater) increases.
For error codes, see Table 5.

Floating Cosine

Macro-instruction

Line Label rati Operands & Remarks
sie uliz 1sie 2 2 ') k] ']) 50
| L JFCos B .

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The cosine of argument B is computed
and the result, in floating-point form, is stored at A.
The argument must be in radians and in floating-
point form. The computation does not disturb the
original value of the argument.

The allowable range of the argument, maximum
accuracy, etc., for the cosine subroutine is the same
as that previously described for the sine subroutine.

Floating Arctangent
Macro-instruction

T
Line Labe! i Operonds & Remarks
sle nha___ ash 2 2%)] o 4 50
ol oy, JFATNALE A, .,
t t

P P A SRR R i

The A and B addresses refer to the units position of
the exponents of the fields.

76

Operation. The floating-point value of the arctan-
gent of B is computed and the result is stored at A.
The argument must be in floating-point form; the re-
sult in radians will also be in floating-point form.

The arctangent subroutine accepts any number
within the floating-point range. During the evalua-
tion of the arctangent of B, use will be made of the
divide subroutine.

The maximum truncation error in the mantissa of
the result is =10'L, except for results having an ex-
ponent less than or equal to 02 (E=02). The maxi-
mum error for these results is = 1 in the (L--1)th
decimal place. L = 08 for the fixed length mantissa.

Floating Exponential (Natural)

Macro-instruction

Line Label ot Operands & Remarks
3 sle uli 1540 2 2 ® 3 ©) 50

ol oo JFEX JALB |

Operation. The A and B addresses refer to the units
position of the exponents of the fields. The value of
the eB, where B is in floating-point form, is computed
and the result, also in floating-point form, is stored
at A. An input value that exceeds

927.955924206mn n(227955924206n n03)

causes an exponent overflow, and one which is less
than

—9297.955924206n n(227955924206n n03)

causes an exponent underflow. Depending on the type
of error, a 1 or 1 is placed in location 00401.

For negative arguments, the subroutine uses the
absolute value of the argument to evaluate the func-
tion and then finds the reciprocal value.

For positive and negative arguments, the maximum
truncation error in the mantissa of the result is =10-L,

Floating Exponential (Base 10)

Macro-instruction

Line Label i Operands & Remarks

Sle nhz 18516 2 ki3 k] 35 Q£ 45 50

) EXTIALB |
T T

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The value of 10B is in floating-point
form; it is computed and the result, also in floating-
point form, is stored at A. An input value that exceeds

98.9n...n(98%n...n02)

causes an exponent overflow, and one which is less

than
—989n...n(98%n . ..n02)

causes an exponent underflow.

This subroutine handles negative arguments in the
same manner as they are handled by the natural ex-
ponential subroutine. Maximum accuracy is the same.

Floating Logarithm (Natural)
Macro-instruction

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The floating-point value of the In B is
computed and stored at A. Input arguments must be
in floating-point form.

This subroutine accepts all arguments greater than

zero within the floating-point range. For error codes,
see Table 5.

Floating Logarithm (Base 10)
Macro-instruction

Line Lobel i Operands & Remarks
3 sle 0 u 2 2 2 3) L] 2
1.0 4, FLQ_lA‘,B P "

PRSP P S e
i

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The floating-point value of the log 10B
is computed and stored at A. Input arguments must
be in floating-point form.

This subroutine accepts all arguments greater than
zero within the floating-point range. For error codes
see Table 5.

Adding Subroutines

The user may add from one to twelve subroutine
macros to subroutine sets 01, 02, and 03. Each new
subroutine may use from two to nine operands. Al-
though the minimum number of operands allowed is
two, both the A and B operands may be the same.
To add a subroutine, it is necessary to:
1. Modify the Op Code table to include the new
mnemonic (see SPS II-D MODIFICATION PROGRAM).
2. Write the subroutine in sps language, keeping in
mind certain factors regarding pick, mantissa
length (L), and modifications with regard to the
subroutine itself.
3. Assemble the subroutine in relocatable form, and
store it on the disk.

Modifying the Op Code Table

The Op Code table is modified by executing the
sps -0 Modification Program. This program is part
of the Monitor system; it is described later in the
manual.

Writing a Subroutine

When writing a subroutine, the programmer should
be aware of certain information concerning Ppick,
namely: the functions of pick, Pck area, linkages,
common work areas in pick, and the means of signi-

fying operands that are relative to pick and/or are a
function of mantissa length.

FUNCTIONS OF PICK

pIck is common to all subroutines in, the subroutine
set. Therefore, it is to the advantage of the subroutine
writer to make use of pick. The listing of the appro-
priate PIcK subroutine (furmished with the Library
package) should be studied. Briefly, picx performs
the following operations:

1. Resets location 00401 (subroutine error digit).

2. Moves A and B operands into pck 4 15 and
pck + 20, respectively. If more than two oper-
ands are used, all should be handled by the
user’s subroutine.

3. Calculates the return address to the mainline
program. However, if a subroutine uses more
than two operands, the return address must be
calculated by the subroutine itself. To calculate
the return address, use the following formula:

(PCK +10) + 5n 4 1 if n is even, or
(PCK +10) 4 5n + 2 if nis odd

SPS I1I-D 77

where pcx 4 10 (before entering the rick sub-
routine) is the address of the high-order digit
of the first operand, and n is the number of
operands.

If pick calculates the return address (two oper-
ands), eleven is added to pcx + 10.

4. Moves the B operand (mantissa and exponent)
into working area beta. If the A operand is also
used by the subroutine for calculation, it (the
A operand) must be moved by the subroutine
itself. This requires one instruction:

TFL ALPHA, PICK +4- 15, 11

5. Sets error indicator 00401 for overflow and
underflow.

6. Stores the computed floating-point result in the
location specified by the A operand.

The functions of pick are not mandatory, but are
under control of the user. When a subroutine is call-
ed, the object program branches directly to the sub-
routine. If the functions of pick are desired, the user
may branch to pick via the following linkage:

TFM PCK + 5, * 4 20
B7 PCK, , 6

OPERANDS THAT ARE FUNCTIONS OF PICK AND/ OR
MANTISSA LENGTH

Whenever pick is used, the programmer must use
instructions in his subroutine which make reference to
the pick subroutine. (All references to prck must be
written as relocatable quantities.) The operands of
these instructions are then adjusted to make them
correspond to the actual addresses of pick in the ob-
ject program. This is done by using a pseudo constant
(pc statement). The constant does not become a part
of the object program; its only function is to indicate
that the instructions that follow are to be modified.

One pc statement can modify up to 25 instructions.
Each instruction, whether it is to be modified or not,
requires two digits in the pseudo constant, one for
the P operand and one for the Q operand. The state-
ment itself consists of three operands: the first speci-
fies the length of the constant which may not be
greater than 50 nor less than 2; the second, the actual
constant; the third, the storage address of the con-
stant. This address must be specified as an absolute
address of 00350. The P and Q operand modifier con-
stants follow. '

78

P and Q Operand

Modifiers Modification

No Modification

AddL

Subtract L

Add 2L

Subtract 2L

Modify with respect to PIck,

no L modification

Modify with respect to PICK,

add L

7 Modify with respect to PICK,
subtract L

8 Modify with respect to pick,
add 2L

9 Modify with respect to Pick,

subtract 2L

UL QLN =

[=>]

The following example shows how a variable-
length mantissa subroutine may be modified by the
use of modifier constants.

DC 6, 527005, 350

TF SAVE, 98
SF SAVE

TFL PCK 4 15, SAVE, 6
B7 PCK + 10, , 6

Norte: (1) Intervening porc statements and constants
between instructions are never modified in this manner,
(2) save is a relocatable quantity.

Assembling a Subroutine

When a subroutine is assembled, it must be “Assem-
bled Relocatable;” stored in relocatable format, and
must have the following items defined:

1. Disk Identification Map (piM) entry

2. Subroutine identification number

3. Desired entry points

SUBROUTINE DIM ENTRY

A subroutine piM entry is in the same general format
as that described in the Supervisor section of this
manual. However, the last two 5-digit fields specify
the length of the subroutine and the subroutine identi-
fication number instead of a core address and a start-
ing or entry address. ,

Subroutine piM entries occupy fixed locations in
the pim table. There are 30 entries reserved for sub-
routine sets 01, 02, and 03 (this includes an entry for

PICK in each set). The 30 entries are needed for the
17 subroutines (plus pick) provided by mm plus 12
subroutines that may be added by the user.

To calculate the piMm entry number for a new sub-
routine, add the new subroutine number (18-29) to
the base piM number for the applicable subroutine
set. The base numbers for each set are as follows:

Base Number Subroutine Set

100 Fixed Length - 01
70 Variable Length - 02
40 Automatic Floating Point - 03

For example, the piM entry number for the first
user-written subroutine to be added to the variable
length set would be 70 4+ 18 = 88.

A piMm entry number is assigned to a subroutine by
including an “m NumBER” control record when the
subroutine is assembled (see sPs CONTROL RECORDS).

SUBROUTINE LENGTH

The length of a particular subroutine is automatically
placed in its respective piM entry when an LIBR con-
trol record (see sps CONTROL RECORDS) precedes the
subroutine source program.

SUBROUTINE ' IDENTIFICATION NUMBER

As stated previously, all subroutines are identified by
a 5-digit code number. When a subroutine is being
added, this number must be supplied by the user.
The number is composed of two digits for “subroutine
set number” (01, 02, 03), two digits for “subrou-
tine number” (01-29), and one digit for “number of
entry points” (1-9). The number will automatically be
loaded to its proper position in the pim table if it is
used as the address operand of the pEND statement
that terminates the subroutine source program.

Example DEND 02182

This code number identifies subroutine number 18,
a “2-entry point subroutine” that is to be placed in
the variable-length subroutine set (02).

SUBROUTINE ENTRY POINTS

Each subroutine requires at least one entry point but
may have as many as nine entry points. These must
be specified at the beginning of the user’s source
program. Two records of data are needed:

ORIGIN DSA ENTRY1, ENTRYZ, etc.
DORG ORIGIN-4

In the preceding statements, orRiGIN is any label not
otherwise used in the subroutine; ExTRY1 is the label
of the first entry point; ENTRY2 is the label of the sec-
ond entry point. The porc is needed to ensure that
the subroutine will begin at relocatable 00000.

SUMMARY OF ASSEMBLY PROCEDURE
By inserting a psa for entry points and placing the
subroutine identification number in the pEND state-
ment of the source program, it is possible through the
use of proper control records to assemble a subroutine
and have it loaded to disk and ready to use all in
one operation. Of course, the mnemonic of the added
subroutine must be defined in the Op code table prior
to assembly of a program that uses it.

Example

This example illustrates how a subroutine is added to
the subroutine library of the Monitor System. In
this example, the new subroutine is assembled along
with a mainline program and both are then executed
(Figure 10). The example assumes that the Super-
visor program is already in core storage.

GIVEN: Macro — EXCH A, B
Function— to exchange floating-
point numbers between A
and B
Identity — Subroutine No. 18,
Set No. 02
PROCEDURE:

1. Modify Op Code table by
loading the following rec-
ords;

Monitor Control — xEQ specifying spsLiB
spsLiB Control DEFINE OP CODE
ExcH — 181 (Col. 12-19)
ENDLIB

NotEe: The above four records must be entered from
the same input unit.

2. Precede the source subroutine

(Figure 11) in the stacked
input with the following
control records:

Monitor Control — joB

SPS

ASSEMBLE RELOCATABLE

LIBR

> NUMBER 0088

STORE RELOADABLE

LIST CARD

ERROR STOP

sps Control —

SPS II-D 79

P

Data

Source Mainline

+ SPSX502506

r Source Subroutine
ITERROR STOP
* LIST CARD

* STORE RELOADABLE

* 1D NUMBER 0088 AN B B

* LIBR \

* ASSEMBLE RELOCATABLE \

+4SPS !
\ SPS Control Records

$++JOBS \
!

¥EEE N /

1

*ENDLIB . B /

!
EXCH-181 [
|— /

*DEFINE OP CODE

/
!
=

++ XEQ SPSLIB

\ Monitor Control Records
!

++JOBS

Figure 10. Stacked Input for “Adding SPS Subroutine Example”

80

Line Label IOperation| Operands & Remarks J
3 516 1112 15{16 20 25 30 35 40 45 50 55 40 65 70 75
ol o IDSA ENTRY, o v e e e
o200l 1, DSA /S USED T0 DEFINE SUBROUTINE ENTRY., POINT + \ \ t ottt ittt i
03,0 ZlEJEAOJ 1 DIOLPIG*I-14I I IR A A A S S A A N S ST 1D1£|;1//V1£15:1 lgéléolglﬂLZlﬂjélljé 1ZJ£L@01 oLy
0;4,0 Blflrlgl I AR AN SR B B! l.lzl£lglol+l/1?I6l RIL T IDIEIFL/I”IEISJ IPJ€ILJOICJﬂj7jlglail£L£J lsnynﬁzanonli PN SRS
os0fPCX WOS |, ., 92365 . ., DEFINES ABSOLUTE SYMBOL,....
s ENTRY N\TAM PCKSHS, | 9%#20, | | it e e
ozl v 1B7 WPCK e 26 LINKAGE TO PICK e
080l 4 L |TFL PEKtR20 | s PCK#IS | 361 /9 MOVE A T0 B | . e
0,900 4 4 4 1 DICL L 21 NI S 1441L0éL1_L I 1’13A§101’4 lszjélt/lpJol Jcngnﬂlgrxﬂﬂnz: TSR WA SN S S TR TR T WY SN O B WS SOY
voo) v |TFL PCKHLS, | 0 BETA 269, MOVE B 7O A e
el v BT PEKAIO, 8 360 RETURN, T0 MAIN LINE |
ool o, |DENDORZ U8 40 MDD FOR SUBR e

Figure 11. Source Program for “Adding SPS Subroutine Example”

1/0 Macro-Statements

The I/O macro-statements are provided to relieve
the programmer of the task of writing his own I/0O
subroutine in a source program each time he wants to
read or punch cards or tape, read or write disk stor-
age, or read or write typewriter. I/O macro-statements
may be inserted anywhere in the user’s program.
When an I/O macro-statement is encountered in the
source program during assembly, linkage instructions
to the I/0 routine (part of the Supervisor program)
are generated in the object program.

The macro-instruction mnemonic operation codes
and their meanings follow:

Mnemonic Meaning

GET Read card, paper tape, typewrit-
er, or disk.

PUT Punch card, paper tape, or write
typewriter, or write disk rec-
ords with or without read-
back check.

SEEK Seek disk record.

CALL Read disk stored subprogram

and execute (requires LINK
operand), or read disk stored
subprogram or data without
execution (requires LOAD oper-

and), or return control to
Supervisor (requires EXIT
operand).

The six types of macro-statements that use the I/0
routine are written as follows:

Label ati Operands & Remarks
6 np2 15])4 20 25 30 35 40 4S5 50
. [eET[vEF. . . o o o ————
N A)
L JPUTIDEF, REC e
o PEEMDEF
o |CALI[LIN K, DINENT RELOC . :
. CALL|LINK, NAME, RELOC._ s
L |CALLLOAD, DIMENT, RELDE. .
T TeALL|LOAD NANE ,RELOC o
o CALEXT T

A label and remarks may be included with each of
these statements. The address associated with the
label will be that of the first instruction in the gen-
erated linkage. The operands mBC, LINK, LOAD, and
exit are fixed symbols, i.e., they must be written ex-
actly as given. The symbol per is the address of the
associated I/O constant generated by an I/0 declara-
tive statement. DIMENT is the piM entry number of a

SPS II-D 81

program to be called from disk storage; reLoc is the
relocation core storage address of a program to be
called; and ~aMmE is the name of a program (as it
appears in the Equivalence table) to be called. pEF,
DIMENT, and RELOC may be in actual or symbolic form.

PUT statements may be specified with or without
read-back check (®Bc), as shown. Either a pim entry
number or the program name can be given with caLL
LINK Or CALL LOAD statements. Also, the relocation ad-
dress is optional with these statements, i.e., the pro-
grammer does not have to include a relocation
address.

A caLn Exir statement should be included in the
user’s source program. This statement, when executed
at the end of the object program, causes control to
be returned to the Supervisor program.

All linkages for I/0 routines are generated auto-
matically through the use of macro-instructions. The

data and addresses supplied in the macro-instruction .

are incorporated into the linkage instructions where
they are made available for use by the 1/0 routine.
The linkage instructions generated in an object pro-
gram for macro-instructions by the processor are
equivalent to the following series of symbolic instruc-
tions.

Linkage for GET, PUT, and SEEK

TFM IORT, * 4 23
B ENTRY, DEF, 7

10RT is the address of a 5-position storage area in the
1/0 routine.

ENTRY is one of the four possible entry points in the
I/0 routine (see 1/0 ROUTINE LINKAGES).

DEF is the address of the I/O constant.

Linkages for CALL LINK and CALL LOAD

Without a relocation address

TFM IORT, * -+ 19
B IOCAL

DORE * — 4

DC 1, M,

DSC 1, M,

DSC 1,0

DC 5, III@

82

With a relocation address

TFM IORT, * + 19
B IOCAL

DORG * — 4

DC 1, M,

DSC 1, M,

DSC 1,0

DC 4, TIII

DSA LLLLL

DSC 1, @

I0CAL is an entry to the I/O routine (core storage ad-
dress 00716).

M, M; is a constant 32 for call linkages.
mir is the piM entry number of the program to be
called.

LLLLL is the relocation core storage address where the
program is to be loaded.

Norte: See note under CALL EXIT Or CALL LOAD LINK-

AGES in Supervisor section.

Linkage for CALL EXIT

B MONCAL
DORG *—4

MONCAL is an entry (core storage address 00796) to
the 1/0 routine which will call in the Monitor
Control Record Analyzer routine.

NortE: See note under CALL EXIT Or CALL LOAD LINK-
AGESs in Supervisor section.

Input/Output Declarative Statements

Input/output core storage areas to be used by a pro-
gram for reading or punching cards, reading or punch-
ing tape, reading or writing disk storage, and reading
or writing typewriter must be allotted by the program-
mer. These I/0O areas may be allotted and defined
using pss or pas declarative statements. Each 1/0
area used by an I/O macro-statement (GET or PUT)
must be identified by an I/0 declarative statement.

The 1/0 declarative mnemonic operation codes and
their meanings are as follows:

Code Meaning

DTN Define Typewriter Numerical
DTA Define Typewriter Alphameric
DCN Define Card Numerical

DCA Define Card Alphameric
DPTN Define Paper Tape Numerical
DPTA Define Paper Tape Alphameric
DDW Define Disk with WLRC

DD Define Disk without WLRC

DTN, DTA, DCN, DCA, DPTN, and DPTA Statements

These statements may be used in the source program
to identify numerical or alphameric typewriter, card,
or paper tape 1/O areas. Each statement causes an
8-digit I/O constant to be generated in the object pro-
gram. Two operands are required for each statement.
The first operand is used to specify the address where
the I/0 constant is to be loaded into core storage.
The operand may be an absolute value or a symbolic
name. If a symbolic name is used, the symbol must
have been previously defined as an absolute value;
that is, it must have appeared in the label field of a
statement preceding the statement in which it is used.
If the first operand is omitted, the processor assigns
the address to which the constant will be loaded in
core storage.

The second operand, which may be symbolic or
actual, is the leftmost core storage address of an as-
signed 1/0 area for the numerical statements or the
leftmost position plus 1 for alphameric statements.
This address will be included in the constant in the
object program. Remarks are permitted following the
second operand. Items (operands or remarks) of a
statement must be separated by commas. Address
adjustment may be used with either operand.

If a label is included with the statement, the storage
address assigned to it will be that of the leftmost
position of the 8-position I/O constant.

The following example illustrates a pcN statement.

Line Lobe! i
35 2 15]s

$ 2 25 30 35 £
[CARDIOIDSS 80, DEFINE,_CARD_170_AREA

Operands & Remorks
45 50

v1.oDEF. . |DCN |, CARDIO, IDENTIEY CARD 170 AREA

........

The first statement defines an 80-position numerical
card I/O area and the second statement identifies it.
The I/O constant generated in the object program
for the pcN statement is equivalent to the following
symbolic instructions,

- DEF DS P41
DSA CARDIO
DC 2, 04
DGM

where the label pEr is the leftmost address of this 8-
position constant and carpro is the address of the
associated I/0O area. The code 04 is generated for a

DCN statement only. A complete list of the codes gen-
erated for each type of statement follows:

DTN 00 (Typewriter Numerical)
DTA 06 (Typewriter Alphameric)
DCN 04 (Card Numerical)

DCA 10 (Card Alphameric)
DPTN 02 (Paper Tape Numerical)
DPTA 08 (Paper Tape Alphameric)

DDW and DD Statements

These statements are used to specify the disk control
field (defined by a ppa statement) to be used for a
disk operation (SEEK, GET, or pur) and to specify cer-
tain options. Each statement (ppw or pp) is assembled
as an 8- or 13-digit I/O constant depending upon the
number of given operands.

A minimum of two operands is required with a ppw
or pp declarative statement. The first operand, which
may be symbolic or actual, is used to specify the
address where the generated I/O constant is to be
loaded into core storage. If this operand is omitted,
the processor will assign the address.

The second operand is the address of the leftmost
position of the disk control field (defined by a ppa
statement). The operand may be in actual or sym-
bolic form.

The third operand, which is optional, specifies a
relocation core storage address of a program or data
to be read into core storage from disk storage (when
the object program is executed). It may be in actual
or symbolic form. If the programmer does not want
to include a relocation address, and another operand
or remark is to follow, a comma must be present.

The fourth operand, also optional, can cause the
read/write heads to be repositioned to an assigned
cylinder (specified in the System Communications
Area) after a disk read or write instruction is execut-
ed as a result of a GET or PuT input/output macro-
instruction. The operand letter “R” causes reposition-
ing. If the operand is a blank or a letter “N,” no re-
positioning takes place. If the programmer does not
enter a letter N or R, and another operand or remark
is to follow, a comma must be present.

The fifth operand, also optional, may be the letter
A or a blank. If it is the letter A, the sector address
in the disk control field will be used for the disk oper-
ation initiated by a SEEX, GET, or PUT macro-instruc-
tion. If the operand is blank, an effective sector ad-
dress, produced by adding the sector address to the

SPS II-D 83

address of the beginning work cylinder, is used for
the disk operation.

If this operand does not contain the letter A and
remarks are to follow, the operand must be a comma.

Address adjustment may be used with any of the
first three operands. If a label is given with a ppw or
pD statement, the associated address in the assembled
object program will be that of the leftmost position
of the resulting I/0 constant.

The following example illustrates a ppw statement.

This declarative statement:

1. Identifies the address of the disk control field

by the symbol pcrrr.

2. Indicates by the letter “R” that the read/write
heads are to be repositioned to a previously
assigned cylinder after a GET or pUT is executed.

3. Indicates by the letter “A” that the sector ad-
dress in the disk control field is to be used for
the disk operation.

The 1/0 constant generated in the object program
for a pow or pp statement is equivalent to the follow-
ing symbolic instructions:

For statements without a relocation address (third
operand)

DEF DSC 1, M,
DSC 1, M,
DSA DCTRL
DC lL,@
For statements with a relocation address
DSC 1, M,
DSC 1, My
DSA DCTRL
DSA RELOC
DC 1, @

where M, and M; are codes generated by the pro-
cessor for use by the I/O routine when the object
program is executed. pcrr. is the address of the
disk control field. reLoc is the relocation core stor-
age address.

All disk I/O options are specified by the codes in
positions My M;. Only certain options are utilized by
the pp and ppw statements. A complete list of options
available to the user by hand coding M, and M; are

given under 1/0 CONSTANTS in the Supervisor Program
section.

84

SPS 1I-D Processor

The 1620/1710 sps 1-p processor, available in either
card or paper tape form, is designed to use the M
1311 Disk Storage Drive as an integral unit in the as-
sembling of user-written source programs. By using
the large storage capacity of the disk drive, program
assembly can be accomplished quickly and efficiently.

A typical assembly procedure might proceed as
follows:

1. The source program is loaded together with the
applicable Monitor Control records and sps 11-p
Control records (see SPS II-D CONTROL RECORDS).

2. The source input is read into core storage, one
statement at a time. During assembly, the work
cylinder area of disk storage is used for inter-
mediate output.

3. If a program listing (typewriter) or a list deck
(cards) has been requested, the output will ap-
pear after all statements have been read.

4. After assembly, the object program is stored or
outputted - as directed by the sps 1-p control
statements that were loaded with the source in-
put. Subroutines used by an object program and
subprograms are not stored or outputted as part
of the object program.

Operating Procedures
These operating procedures assume that the sps 1m-p

processor and all subroutine sets are already on disk
storage.

Assembly Set-Up

To assemble an sps 1-p source program, proceed as
follows: Load the source program preceded by the
applicable Monitor Control record (sps or spsx) and
the desired sps 1-p control records. The source pro-
gram must end with a DEND statement. Following
the DEND statement is either the first card of the next
“job,” or data if the program is to be executed imme-
diately after assembly.

The loading procedure for sps programs is more
fully described in the Supervisor section of this
manual.

SPS 1I-D Control Records

sps control records must be provided to control the
assembly of sps programs. These records may be
in card, paper tape, or typewritten form, and are in-
serted in the stacked input behind the Monitor Con-
trol record (sps or spsx) to control the specified sps
assembly. sps control records are typed out when
they are encountered in the stacked input. The for-
mat of an sps control record in terms of cards is as
follows:

Columns 1 ®
2-75 Control statement

Only one control statement may be entered in each
control card. The control statements must be writ-
ten exactly as given, except for blanks which are per-
mitted anywhere in the control statement (TwWo Pass
MODE, OBJECT CORE n, etc.). Control statements may be
followed by remarks. Any statement, other than those
listed below (e.g., an identification statement) will
be typed, but will have no effect on the assembly. The
processor will indicate an identification statement by
typing (ID) to the right of such a statement.

Intervening blanks between the letters of a control
statement do not invalidate the statement.

TWO PASS MODE. This control statement causes
the object program to be produced by entering the
source program twice (two passes). Two passes are
required when the space allotted for work storage
is too small to contain the intermediate output from
the assembly. (The space required for one-pass opera-
tion is approximately one sector per source state-
ment.) If one-pass assembly is attempted with too
large a source program, an error message is typed
out.

OBJECT CORE n. This statement specifies the core
storage capacity (20,000, 40,000, or 60,000) of the
object machine (machine on which the object pro-
gram will be run). If the storage capacity of the as-
sembly machine (machine on which the object pro-
gram will be assembled) and the object machine are
the same, this statement is not needed. The n digit of
the statement is one of the coded digits 2, 4, or 6
which represent 20,000, 40,000, and 60,000, respective-

ly.

SUBROUTINE SET nn. This statement specifies a
subroutine set number, 01, 02, or 03. When the
program being assembled is to be executed, this set
number will be used to load the proper subroutines

into core storage. This subroutine set specification can
be overridden, however, by specifying a different
number in the xeQs Monitor Control card (see SUPER-
VISOR PROGRAM) when the program is executed. If no
subroutine set control statement is present at assembly
time or at execute time, the assembler will use the set
number that was previously stored in the System Com-
munication Area (see section on Supervisor Program).

MANTISSA LENGTH nn. This statement specifies
the mantissa length (02 to 45) for subroutines sets 02
or 03. The mantissa length that will ultimately be used
for execution purposes is determined in the same
manner as the subroutine set number described above.

NOISE DIGIT n. This statement specifies the noise
digit (0-9) to be used by the subroutines. The noise
digit that will ultimately be used for execution pur-
poses is determined in the same manner as the sub-
routine set number described above.

ERROR STOP. This statement instructs the proces-
sor to stop whenever a source statement containing an
error is encountered. When this occurs, an error mes-
sage will be typed (see ERROR MESSAGES). The operator
can then enter a corrected source statement and con-
tinue assembly (see ON-LINE ERROR CORRECTION). If an
Error Stop control statement is omitted, the processor
will not stop for erroneous source statements; how-
ever, an error message will still be typed.

ASSEMBLE RELOCATABLE. This statement
causes the processor to assemble a relocatable object
program in System Output format. If this statement
is omitted, the processor will produce an “absolute,”
nonrelocatable program.

BEGIN CARD INPUT, BEGIN PAPER TAPE IN-
PUT, BEGIN TYPEWRITER INPUT. These three
statements cause the loading program to begin read-
ing input from the newly designated unit. These state-
ments can be used as “last” control statements when
the source program is to be entered from a different
input medium than were the control statements.

TYPE SYMBOL TABLE. This statement causes the
symbol table to be typed after all source statements
have been read (see TYPEOUT OF SYMBOL TABLE).

PUNCH SYMBOL TABLE. This statement causes
the symbol table to be punched into cards after all
source statements have been read. These cards may
be listed 80-80 on an M 407 to obtain a printed
symbol table.

SPS II-D 85

LIST TYPEWRITER. This statement causes a pro-
gram listing (containing both source and object data)
to be typed as the program is being assembled.

LIST CARD. This statement causes the program to
‘be punched into cards which may be used to make a
program listing (1M 407 80-80). If desired, both the
LIST TYPEWRITER and LIST CARD statements may be
used in one assembly.

OUTPUT CARD. This statement causes the object
program to be punched into cards in a reloadable
format (see sYSTEM OUTPUT FORMAT in the Supervisor
section). This output will occur after any symbol
table and listing outputs.

OUTPUT PAPER TAPE. This statement causes the
object program to be punched into paper tape in a
reloadable format (see sYSTEM OUTPUT FORMAT in the
Supervisor section). Either an ouTPUT CARD Or an ovT-
PUT PAPER TAPE statement may be used for an assem-

bly, but not both.

STORE CORE IMAGE. This statement causes an
assembled program to be permanently stored on the
disk in a format that is identical to the format of an
executable program in core storage. Subroutines re-
quired by the program, however, remain in relocat-
able format until the program is executed. For a
method of storing subroutines in core image format
with the main program, while overcoming other
limitations inherent in this statement, refer to the
section entitled, CONVERTING SPs OBJECT PROGRAMS TO
core IMAGE. The Store Core Image statement may
be used in an assembly that also contains an Assemble
Relocatable statement.

STORE RELOADABLE. This statement causes the
assembled program to be stored on the disk in a re-
loadable format. This format is identical to that de-
scribed under systEM ouTtpur FORMAT. If neither
STORE CORE IMAGE NOI' STORE RELOADABLE is specified,
the assembled program will not be permanently stored
on the disk. However, the program will remain in the
work cylinders until destroyed by another job.

SYSTEM SYMBOL TABLE. This statement allows
the source program to use symbols stored in the Sys-
tem Symbol table without defining them in the source
program itself. There is a provision in sps m-p for
defining user symbols in the System Symbol table
(see sPS II-D MODIFICATION PROGRAM).

NO SYMBOLIC DIVIDE. This statement may be
used to provide compatibility with previous assembly
programs which treated the slash symbol as a valid
label character. When used, the Address Adjustment

86

Divide programming feature is disabled and the slash
symbol may be used as a label character.

NO SUBROUTINES. This statement is used, when
assembling subprograms for a mainline program, to
prevent subroutines from being called with subpro-
grams. When the mainline program is assembled, it
must specify or call the subroutines used by it, as well
as those used by its subprograms.

ID NUMBER dddd. This statement assigns a 4-
digit prm entry number (dddd) to a program being
assembled. Exactly four digits, including leading
zeros, must be entered.

NAME aaaaaa. This statement can be used to assign
a Name in the Equivalence table for an assembled
program which is to be stored in disk storage. aaaaaa
is a 6-character alphameric name. At least one of these
characters must be alphameric.

LIBR. This statement must be entered when as-
sembling a user-written subroutine that is to be added
to the library subroutines.

PUNCH RESEQUENCED SOURCE DECK. This
statement causes the processor to punch a new source
deck in sequence by page and line number. The page
and line field will contain a 53-digit number starting
with 00010 and will increase by ten for each succes-
sive card, e.g., 00010, 00020, etc. The resequenced
deck is punched while the old source cards are being
read. The output appears in the punch stacker ahead
of any other punched output. When operating in two-
pass mode, the resequenced source deck should be
used for the second pass. Corrections to source state-
ments made from the typewriter will not appear in a
resequenced source deck.

Assembly Error Messages

The error message codes that might be typed out on
the typewriter during an assembly are listed in Table
6. Error messages take the following general form:
PPPPP ALABEL + CCCC ERn
where ppppP is the page and the line number of the
statement in error, ALABEL is the last label used, and

ccec is the number of statements from that label to
the statement in error.

When ERS5 (see Table 6) is typed out, the errone-
ous symbol is also typed.

Table 7 shows what the processor will do about
each error if no Error Stop control statement has
been included in the assembly.

On-Line Error Correction

One-Pass Mode. If the operator wishes to correct
source program errors during the assembly process,
he must use the Error Stop control statement. When
an error occurs, the appropriate error message is
typed out along with one of the following instructions
to the operator:

RE-ENTER STATEMENT or
RE-ENTER OPERANDS

At this point, the processor returns the typewriter
carriage and types the full erroneous source state-
ment. If only the operands are to be re-entered, the
processor will then retype the source statement up
to the operand field. The processor at this point re-
quires that the operator enter either an entire correct-
ed source statement or a corrected operand field. The
operator should use the previously typed original
statement as a guide to the positions of the Page,
Line, Label, Op code, and Operand fields.

Two-Pass Mode. The error correction procedure in
two-pass mode is identical with that of the one-pass
mode, with one exception. During the second pass,
the processor might type an error message containing
“ER xx.” This message always refers to a statement
corrected during the first pass. The operator should
scan the typewritten record of the corrections made
during the first pass to find the one identical in page
and line number, label, and increment. When the
processor types RE-ENTER STMT and returns the car-
riage the operator must re-enter the entire corrected
statement, exactly duplicating the statement entered
during the first pass.

Post Assembly Phase

After assembly is completed and listings, if desired,
have been outputted, the following messages are

typed:

END OF ASSEMBLY
XXXXX CORE POSITIONS REQUIRED
XXXXX STATEMENTS PROCESSED

In the above typeouts, xxxxx is a 5-digit number.
In the case of CORE POSITIONS REQUIRED, any needed
subroutines are included in the count of core posi-
tions. If, during assembly, the ASSEMBLE RELOCATABLE
control record is used, the message PLUS RELOCATION

INCREMENT follows the CORE POSITIONS REQUIRED mes-
sage.

SYMBOL TABLE OUTPUT

If either of the statements TYPE SYMBOL TABLE or
PUNCH SYMBOL TABLE are present in an assembly, the
symbol table will be typed or punched during as-
sembly. This output, if punched, will precede the list
deck in the punch stacker.

All 6-character labels are listed first in reverse
alphameric order, i.e., 9 to 0, Z to A. All other labels
follow in normal alphameric order with their head
characters. In the case of an assembly in which the
number of symbols exceeds 235 (some symbols will
then have to be stored on disk), the listing is broken
into two or more blocks, each of which is sorted as
described above.

The format of the symbol table output is as follows:

Typewriter. The typed output lists all labels and
their numerical equivalences, five to a line. The for-
mat is as shown.

Label Equivalence
LLLLLL AAAAA(—)

Here rriiri refers to a 6-character label or a 5 or
fewer character label with a head character.

AAAAA refers to the numerical equivalence of the sym-
bol. The minus sign, if present, denotes a negative
quantity. If the program is being “assembled relo-
catable,” the minus sign is replaced by an R to
denote a relocatable quantity.

Card. The card output format of the symbol table
is as follows:

Columns 1-13 1st label plus equivalence

17-29 2nd label plus equivalence
33-45 3rd label plus equivalence
49-61 4th label plus equivalence
65-77 5th label plus equivalence

FORMATS OF TYPEWRITER LISTING AND PUNCHED DECK

If desired, the operator can obtain a typewriter list-
ing and/or a punched list deck of an assembled pro-
gram. The formats of each type of output are de-
scribed here.

Typewriter. A typewriter listing consists of a source
statement together with its associated assembled ma-
chine language instruction.

SPS II-D 87

Form C26-5774-0
Page Revised 1/20/64
By TNL N26-0057

Table 6. Description of SPS Error Codes

ERROR

CODE CAUSE OF ERROR

ER1 The capacity of the machine on which the object pro-

gram is to be executed has been exceeded. The proc-

essor does not take subroutines into account when
determining this error.

ER2 Invalid label or record mark is in a label field.

ER3 Invalid OP code or record mark is in on OP code field.

ER4 A label is defined more ‘than once.

ERS 1. A symbolic address contains more than six
characters.

2. An actual address contains more than five digits.

3. An undefined symbolic address is used in an
operand.

4. A HEAD character ($) is impmﬁerly specified.

5. Improper position of left or right parenthesis.

6. IX > 7specified.

7. Non-numeric IX specified.

ER6 A DSA statement has more than ten operands.

ER7 A DSB statement has the second operand missing.

ER8 1. A DC, DSC, or DAC has a specified length greater
than 50.

2. A DVLC hes a length greater than 50.

3. A DMES has a length greater than 100.

4. A DNB has a length greater than 99.

ER9 A DC, DSC, DAC, DVLC, or DMES statement has no

constant specified.

ER10 1. A DC or DSC statement has a specified length
which is less than the number of digits in the
constant itself.

2. A DAC statement hos a specified length which is
less than or greater than the number of digits in the
constant itself.

ER11 An invalid character is used as a HEAD character in a

HEAD statement.

ER12 A HEAD operand contains more than one character.

ER13 A DMES statement contains an invalid starting mode

character.

ER14 1. A DMES statement contains a control character
which is incorrectly specified.

2. A DMES statement has an invalid format, i.e.,
stray parenthesis, etc.

ER15 | A DMES statement contains an alpha character in a

numerical field.

ER16 A DMES statement contains an invalid mode change.
ER17 1. Arelocatable assembly contains either a relocation
error (see Rules of Relocatability) or,

2. A DORG with an absolute operand.

ER18 | ‘A symbolic name used in a CALL LINK or CALL LOAD

statement is not in the Equivalence table.

ER19 | The storage area allotted for the symbol table has been

exceeded.

ER20 Intermediate output has exceeded disk storage work

area (program requires two passes).

ER21 Object output has exceeded disk storage work area.

ER22 Improper “select" operand is in a CALL statement; i.e.,

neither LINK, LOAD, nor EXIT is specified.

88

Table 7. Disposition of SPS Errors When no Error Stop

Statement is used

ERROR

CODE DISPOSITION

ER1 No disposition.

ER2 The label is ignored.

ER3 A NOP is assembled.

ER4 The second definition of the label is ignored; the first
definition of the label is used in the assembly .

ER5 1-5. The operand is assembled as an absolute 00000.
6. Operand is assembled but no IX flags are set.

7. Operand is assembled. Numerical portion of
units character is used to define IX flags.

ER6 The first ten operands are assembled; any remaining
operands are ignored.

ER7 The number of elements is set to 1.

ER8 1. Length is set to 50.

2. Length is set to 50.
3. Length is set to 100.
4, Length is set to 99.

ER9 A field of zeros is generated, equal to the size of the
length operand for the DC, DSC, DAC, or DVLC
constant. In the case of a DMES, an end of message
(# #) is assembled and the address counter is increased
by 100.

ER10 For a DC or DSC, the length of the constant is used as
the length operand; for a DAC, the specified length is
used, and the programmer-assigned csaress, if present,
is ignored.

ER11 The HEAD character is set to blank.

ER12 The first character of the operand is used as the HEAD
character.

ER13 The starting mode is assembled os the alphabetic mode.

ER14 An end of message (+¥) is inserted into the constant.

ER15 An end of message ($3) is inserted into the constant.

ER16 | A Ois placed in the next available location following
the mode change.

ER17 1. The operand is assembled as an absolute 00000.
2. The DORG is ignored.

ER18 A DIM number of 0000 is assembled.

ER19 Processing continues but no more labels are stored.
After completion of the intermediate phase, processing
stops, the following message is typed, and control
returns to the Supervisor Program.

DISK AREA TOO SMALL. ASSEMBLY DELETED

ER20 Processing continues, but no more intermediate data is
sent to disk storage. After completion of the inter-
mediate phase, processing stops, the following message
is typed, and control returns to the Supervisor Program.

DISK AREA TOO SMALL. ASSEMBLY DELETED

ER21 Processing stops immediately and control is returned to
the Supervisor Program.

ER22 The statement is ignored.

NOTE: Assembly and outputting continue in
all cases except ER19, 20, and 21,

Card. A card list deck usually consists of one card
for each source statement. The format is as follows:

Columns 1-5 Page and line number.

6 Blank

7-12 Label as on source card.

13 Blank.

14-17 Op mnemonic as on source
card.

18 Blank.

19-78 Operand fields as on source

card. If the fields extend be-
yond column 59, the object
information (normally
found in columns 61-80 of
first card) is placed on a
subsequent card or cards.
Actual address of assembled
instruction or constant.

66 Blank.

Note: The data in columns 67-80 is peculiar to the
type of statement assembled.

61-65

Imperative Statements.
Columns 67-68 Op code in machine lan-

guage.

69 Blank.

70-74 P operand in machine lan-
guage.

75 Blank.

76-80 Q operand in machine lan-
guage.

Non-imperative Statements.

Columns 67-71 Length of assembled data.
72 Blank.
73-80 If these columns are punch-
ed , they will contain actual
assembled data.

POST ASSEMBLY ERROR MESSAGES

The following error messages are applicable after
assembly.

EXCEEDED SPECIFIED CAPACITY BY XXXXX

The above message indicates that the object pro-
gram together with applicable subroutines would ex-
ceed the available core storage if the program were
to be executed. The available core storage is deter-
mind by the user’s Object Core control card.

This error does not invalidate the assembly, how-
ever, since a different set of subroutines may be speci-
fied at execution time. A different subroutine set

might occupy less core storage; therefore, the error
may no longer apply.

NO DIM ENTRY FOR SUBROUTINE

The above message is typed out when the pim entry
which corresponds to a called subroutine cannot be
found in the map. This would indicate that the entry
was either deliberately deleted from the map or other-
wise destroyed. The assembly will continue, however,
and the object program will be stored. But if execu-
tion was planned immediately after assembly (sps
card), assembly would be deferred and control would
return to the Supervisor program.

MORE THAN 5 CYLINDERS OF
RELOADABLE OUTPUT SSW4
ON TO DUMP OUTPUT OFF
TO CONTINUE, NO OUTPUT

The above message is typed when the reloadable
object output would occupy more than 999 sectors on
disk storage (approximately 5 cylinders). This situ-
ation is an error because programs greater than 999
sectors cannot be specified in the Disk Identification
Map.

After the message is typed out, the computer halts.
At this time the user can either turn Program Switch 4
on and depress START to have the program outputted
on a pre-chosen output unit, or turn Program Switch 4
off and depress sTART to continue, in which case the
program is not outputted. In either case the program
is not stored on disk storage.

Execution of SPS II-D Object Programs

When sps 1-p object programs are to be executed,
they are read into core storage from disk storage,
paper tape, or cards by the use of Monitor Control
records. The subroutines which are called for in the
program are loaded from disk storage at execution
time. Neither subroutines nor subprograms are ever
a part of the mainline object program. They are stored
on disk in relocatable form and brought into core
storage if needed. The selection of proper subroutines
at execution time is made by referring to an “indicator
record” which is stored with the mainline object pro-
gram. This record, generated at assembly time, con-
tains a 1-digit location for each of the subroutines in
a set. At assembly time, as the individual subroutine

SPS II-D 89

macro-instructions are encountered in the source pro-
gram, a 1 is placed in the 1-digit location that corres-
ponds to the subroutine being called. The record is
then a “map” of the subroutines needed for the par-
ticular mainline object program.

Execution Time Error Messages

The following error messages are applicable at execu-
tion time. Their occurrence terminates loading and
returns control to the Supervisor program.

CORE CAPACITY EXCEEDED
BY XXXXX LOCATIONS
PROGRAM IS TERMINATED

The above message is typed out when the total core
storage required for the object program and all ap-
plicable subroutines exceeds the available core stor-
age. Note that there is a similar message at assembly
time if available core storage is exceeded. However,
it is possible to get the message at execution time
without having gotten it at assembly time. This could
happen if a different subroutine set is specified at
execution time (in xEQs card) than that which was
assembled with the source program.

SUBR NOT LOCATED IN SUBROUTINE MAP

The above message occurs if a subroutine that is
specified in the “indicator record” of the object pro-
gram cannot be found in the subroutine section of the
Disk Identification Map.

IMPROPER IND CODE IN SUBR XXXX

The above message occurs when an invalid “reload-
able indicator code” (see SYSTEM OUTPUT FORMAT in
- Supervisor section) is found in the object output of
a subroutine. In this message, xxxx are the first four
digits of the subroutine identification number; two
_digits are for the set number, and two digits are for
the subroutine number.

Rules of Program Relocatability

When a program is relocated, as specified by an
ASSEMBLE RELOCATABLE statement, certain addresses
within the program are adjusted relative to the relo-
cation (starting) address. Only relocatable quantities
are adjusted. Absolute quantities are not adjusted.

90

Examples of both relocatable and absolute quantities
follow:

relocatable
— e

B * 124
absolute
— e

AM X, 12345

The processor recognizes relocatable and absolute
quantities by applying the following rules:

1. An integer (e.g., 1, 12345, etc.) is an absolute
value.

2. A processor-assigned address, which is associated
with a label (i.e., the address of an instruction
or constant with an associated label), is a relo-
catable quantity. An asterisk address (*) is also
relocatable.

3. A symbol defined as equal to some quantity has
the same relocation property as the associated
quantity. An example follows:

SYMBOL DS ;QUAN

4. The product of two absolute quantities is an ab-
solute quantity.

5. The sum or difference of two absolute quantities
is an absolute quantity.

6. The sum or difference of a relocatable quantity
and an absolute quantity is a relocatable quanti-
ty.

7. The difference between two relocatable quanti-
ties is an absolute quantity.

The processor will recognize any of the following
situations as “relocation errors.”

1. The sum of two relocatable quantities.

2. The product of a relocatable quantity and any
other quantity.

3. An operand below the relocatable address of
00000. For example, rReLoc —~10000, where reLoc
is a relocatable quantity of less than 10000.

Note: The exact negative of a valid relocatable
quantity is a valid relocatable quantity.

Although the quantity defined by an operand may
be either positive or negative, a symbol may be equiv-
alent to a positive quantity only. If a symbol is de-
fined equal to a negative quantity, any reference to
that symbol by the assembler will produce the abso-
lute value of the quantity.

Converting SPS Object Programs to Core Image

Two methods of storing object programs in core image
have been described in this manual. One is by using the
disk utility routines pLoAD and DREPL (see DISK UTILITY
PROGRAM), and the other is by using a STORE CORE
IMAGE control card when the program is assembled.
Both of these methods have the following limitations:

e Subroutines cannot be converted and stored with
the main program.

¢ The core storage limits of the program image do
not extend beyond the last processor-assigned
statement. Thus, an address assigned by the pro-
grammer, e.g., DC 1, @, 19999, would not be in-
cluded unless it fell within the addresses assigned
by the processor.

® No TRA-TCD sequences are allowed.

® A program which requires subroutines and is as-
sembled with an ®ASSEMBLE RELOCATABLE control
record cannot be converted to core image using the
methods mentioned above.

A procedure which will overcome all these limitations
is outlined below.

1. End the source program with a sequence of in-
structions which will dump the program into the
work cylinders when it is called for execution.
When the program is called the first time, only the
special instructions will be executed. An assembly
of this type is shown in the following example:

£ [OB

- == SPS
*NAME TEMP

*STORE RELOADABLE

*Other control records — listings, symbol table,
etc.

START XX etc.

end of regular source program

STORE PUT X, RBC

CALL EXIT

X DD , XDDA |

XDDA DDA , 1,00000, SSS, CCCCC
DC 1, e

DEND STORE

In the special sequence of instructions, sss is a
sector count sufficient to store the entire core
image program with applicable subroutines. The
transfer into the work cylinders will start from
core address cccce. If subroutines are used, cccec
should be 02276 so as to include the subroutine
transfer vector area.

. Assemble the program.

. Call the program as if it were to be executed. This

will cause the special sequence of instructions to
be executed, thereby dumping the program and
subroutines into the work cylinders in core image
format.

. Using the disk utility routine, pLOAD or pREPL, load

the program from the work cylinders into per-
manent disk storage. If pLoaD is used, give the
program a different name and delete the old name,
so as not to duplicate names in the prm table. The
parameters for the pLOAD or DREPL operation can
be obtained either from the listing or from the
messages typed out after the assembly; e.g., xxxxx
CORE POSITIONS REQUIRED gives the highest proces-
sor-assigned address, including subroutines. An
example of how to implement steps 3 and 4 is
shown below.

+ 4 JOB

+ =+ XEQS NAME
= JOB

+ 4 DUP

*DLOAD or *DREPL

j?)?LI;:[TJPNAME}n"t necded If DREFL is used

To call and execute a core image program
which has been converted by this method, use
an xEQ control record.

90.1

SPS II-D Modification Program

This program allows the user to modify the sps 1-p
assembler by: (1) Adding or deleting operation codes
from the System Op code table, and (2) Adding or
deleting symbols from the System Symbol table. The
sps 11-p Modification program is loaded into disk stor-
age as part of the Monitor II system. It is identified in
the Equivalence table by the name “spsvLis.”

An xEQ Monitor Control record with the assigned
name spsLIB punched in columns 7-12 is used to call
the modification program for execution. To specify
the type of modification desired, the user places modi-
fication control records following the xEQ record.
These records and any other input data to the Modi-
fication program must be entered from the same input
device that was used to enter the xEQ record.

Modification program control records, in terms of
cards, use the same format as that used for sps control
records. The five modification control statements must
be written exactly as given (DEFINE OP CODE, DELETE
OP CODE, DEFINE SYSTEM SYMBOL TABLE, LIST OP CODE,
ENpLIB. Only one statement may be included in a
control record. These statements are typed when they
are read. A description of the five control statements
follows.

DEFINE OP CODE. This statement causes user-
assigned Op (operation) codes, specified in Op code
definitions cards, to be added to the sps 1-p System
Op code table. The Op code definition card(s) must
follow the control record in the stacked input. The
format of the Op code definition card follows:

Columns 12-15 New mnemonic Op code (left
justified).

A 3-digit code which determines
the instruction generated by the
Op code. (The code may be
preceded by a minus sign.)
The allowable 3-digit codes that may be entered in
columns 16-75 are shown in Table 8.

The digits X and Y may be any number 0-9. A sep-
arate Op code definition card should be entered for
each Op code that is to be defined. If an attempt is
made to define an Op code that is already present
in the Op code table, the message

ALREADY DEFINED

16-75

will be typed and the new Op code will be ignored.
If space is unavailable in the Op code table for a
new Op code, the message

NO ROOM IN TABLE

will be typed and the new Op code will be ignored.

DELETE OP CODE. This statement causes Op
codes, specified in Op definition cards, to be de-
leted from the sps u-p System Op code table. The Op
code definition card(s), which must follow the control
record in the stacked input, specifies in columns 12-15
the code to be deleted; columns 16-75 may be blank.
Only one Op code may be specified per card. If an
attempt is made to delete an Op code that is not in
the Op code table, the message

NOT IN TABLE

will be typed and no change will be made to the
table.

DEFINE SYSTEM SYMBOL TABLE. This state-
ment is used to modify the System Symbol table. The
System Symbol table consists of certain symbols that
were defined when the Monitor System was assembled
plus any symbols the user adds by means of the pEFINE
SYSTEM SYMBOL TABLE statement. Any symbol that is in
the System Symbol table may be used in any assembly
without defining the symbol within the program being
assembled. When used, the Define System Symbol
Table statement first causes all user-defined symbols
to be deleted from the table. Then all symbols which
follow the Define System Symbol Table statement
are added to the System Symbol table. Symbols to be
added are defined in the Symbol Definition record.
The format of this record in terms of cards is as fol-
lows:

Columns 6-11 Symbol to be defined (left justi-
fied).

An operand, symbolic or actual,
but not asterisk. (If a symbolic
operand is used, it must have
been previously defined in the
System Symbol table.)

16-75

If a symbolic operand, contained in the operand field
(columns 16-75) of a Symbol Definition card, cannot
be matched with a previously defined symbol in the
System Symbol table, the message

UNDEFINED SYMBOL XXXXX

is typed out, where xxxxx is the undefined symbolic
operand; no change is made to the System Symbol
table. Up to 150 user-defined symbols may be added
to the System Symbol table. Any attempt to insert
more symbols causes an error message to be typed
and control to be returned to the Supervisor program,
thus terminating the add-to-symbol-table function.
Symbols that have less than six characters will be de-
fined with a blank “heading character” in the System

SPS II-D 91

Symbol table. Symbols defined as positive quantities
will be treated as positive-absolute quantities in both
absolute and relocatable assemblies. Negative quanti-
ties will be treated as negative-absolute quantities in
an absolute assembly and positive-relocatable quanti-
ties in a relocatable assembly.

LIST OP CODE. This statement causes the proces-
sor to type a listing of the Op code table. All Op codes
are listed in tabular form with their associated 3-digit
codes.

ENDLIB. This statement causes control to be re-
turned to the Supervisor program. In the stacked in-
put, it must follow other control statements which
utilize the modification program.

IBM Defined System Symbols

The following symbols will be available to the user
in the System Symbol table.

Symbol Equivalence Description

9RCYLO 00513 These are the low-order posi-

9RCYL1 00515 tions of four 2-digit fields

9RCYL2 00517 which contain the numbers of

9RCYL3 00519 cylinders (00-99), where the
disk access arm is repositioned

after a disk operation in which
a reposition has been request-
ed. The four fields refer to
drives 0, 1, 2, and 3, respec-
tively.

92

9CCYLO
9CCYL1
9CCYL2
9CCYL3

02132
02134
02136
02138

These are the low-order posi-
tions of four 2-digit fields, sim-
ilar to the previous four. How-
ever, these positions contain
the cylinder numbers of the
current access arm positions
(the position of the arm after
the last disk IORT operation).

Table 8. Codes and Assembled Data for SPS Modification

Program

CODE ASSEMBLED DATA USE
XYO0 XY PPPPP QQQQQ Any instruction
=XY1 | Macro=~instruction sub= Subroutine Macros
routine linkage to sub-
routine XY
-XY2* | :8X PPPPP YQQQQ SIOC instructions
-XY4 | 4X PPPPP QO0QY Mask and Unmask
instructions
-XYé 3X PPPPP Q34QQ Binary I/O
XY2 3X PPPPP QO7QY Disk instructions
XY3 3X PPPPP QOYQQ 1/O instructions
XY4 34 PPPPP QOXQY Control instructions
XYé 46 PPPPP QXYQQ Branch Indicator instruc-
tions
XY7 47 PPPPP QXYQQ Branch No Indicator
instructions
XY9 6X PPPPP QQQQY Branch Select Instruction

*|f the first character of the Op code contained in columns 12-15
is the letter "R, " position O] of the assembled instruction will be

flagged.

The FORTRAN I-D programming system consists of
the FORTRAN 1-D language and the processor. The
FORTRAN II-D language is comprised of a number of
types of statements that the programmer may use in
defining the problem to be solved. The FORTRAN 1-D
processor is a program that accepts the source pro-
gram statements as input and produces, as output, a
machine language program, known as the object pro-
gram. The FORTRAN n-D processor can operate only
under control of the Monitor System and the object
programs it produces can be reloaded only by the
Monitor Input/Output routine. It is possible for the
user to remove the FORTRAN portion of Monitor II and
still utilize the remainder of the system. It is also pos-
sible to remove some of the ForTrAN library subrou-
tines that are supplied and still utilize the remainder
of the FORTRAN system (see DISK STORAGE LOCATION
OF THE FORTRAN COMPILER).

FORTRAN II-D Language

The FORTRAN 1-D source program consists of a num-
ber of statements. Each statement deals with one
aspect of the problem; that is, it may cause data to
be fed into the computer, calculations to be perform-
ed, decisions to be made, results to be printed, etc.

Some statements do not cause specific computer
action, but rather provide information to the process-
or program.’

FORTRAN II-D statements are arranged in five groups:
Arithmetic statements which specify the mathematical
calculations to be performed.

Control statements which govern the sequence in
which the statements will be followed.

Subprogram statements that enable the programmer
to define and use subprograms.

Input/Output statements that read data into the pro-
gram or print or punch the results of the program.
Specification statements that provide information
about the data that the object program is to process.

The above statement types are explained in detail
later in this manual.

FORTRAN II-D statements are written on a standard
FORTRAN Coding Form which is designed to organize
the statements into the special format required by the
processor program. All statements and comments of
the source program are written on this form.

The function of each portion of the coding form
shown in Figure 12 is explained below.

FORTRAN Ii-D

Space is provided at the top of each page for the
name of the program, date, etc. This information does
not constitute part of the source program and is not
punched into cards.

The series of numbers (1, 5, 6, 7, 10, ..., 72)
across the top of the form indicates the card column
that the information is punched into.

Comments to explain the program are written in
columns 2-72 of a line with a C in column 1. The letter
C must be followed by two spaces for paper tape or
typewriter input. A comment line is not processed by
the FORTRAN 11-D program but is listed when the source
program cards are listed.

Columns 2 through 5 are used for the statement
number. Any number from 1 through 9999 may be
used as a statement number. Statement numbers are
used for cross reference within a program (see ex-
planations of po and o TO statements) or may be
used merely as a means of identifying statements.
Statements should be numbered only when they are
referenced by another statement and no two state-
ments can have the same number. Also, there is no
requirement that every statement must have a num-
ber, nor that statements must be numbered in
sequence. ‘

Column 6 of the initial line of a statement must be
blank or zero. If a statement is too long to be written
on one line it can be continued on as many as four
“continuation lines.” Continuation lines are written by
placing in column 6 any character or any number
from 1 through 9 (zero allowed only for initial line).
The normal method is to number the initial line zero,
the second line one (first continuation line), the third
line two, etc. A statement other than a comment state-
ment may not consist of more than 330 characters
(i.e., 5 lines).

Norte: Continuation lines are not allowed when input
is from the typewriter or paper tape, i.e., statements
up to 330 characters in length are entered in one
group.

The body of the statements themselves are written
in columns 7 through 72. Blank columns for the most
part are ignored by the processor and may be used
freely to improve the readability of the source pro-
gram listing.

Columns 73 through 80 are not processed and
therefore may contain any identifying information.

The information on each written line in the state-
ment section of a coding form is punched into a card.

FORTRAN II-D 93

A standard rForTRAN card is shown in Figure 13.

After the cards are punched, they should be veri-
fied to lessen the chances of clerical errors causing
source and object program errors.

Arithmetic Mode

Quantities used in the FORTRAN statements may be ex-
pressed in either fixed-point or floating-point form.
Numbers expressed as integers (whole numbers) are
considered fixed-point. Thus, the integers 3, 57, and
1008 are fixed-point numbers.

Floating-point arithmetic is a technique used to
eliminate the complex programming required for cor-
rect placement of the decimal point in arithmetic
operations. Floating-point numbers are represented
in a standard format which specifies the location of
the decimal point. With this method, quantities which

range from minute fractions to large numbers may be
handled by the computer. Floating-point numbers
are expressed as decimal fractions times a power of
ten. For example:

3.14159 is expressed as .314159 x 10!
4800.0 is expressed as .48 x 10*
0.0187 is expressed as .187 x 10!

The numerical part of the floating-point number is
called the mantissa and the power of ten is called the
exponent. For a floating-point number, the decimal is
always moved to the left of the high-order nonzero
digit. This is called normalizing the number.

In rorTRAN H-D, fixed-point or floating-point num-
bers can be used, subject to the rules described under
ARITHMETIC STATEMENTS.

IBM Form X28-7327-3
FORTRAN CODING FORM Printed in U.5.A.
Program
Coded By Date :
Checked By Identification Page of
| P N |
|~ C FOR COMMENT 73 8o
Yo K FORTRAN STATEMENT
1 5167 10 15 20 25 30 35 40 45 50 55 60 65 70 72
i 1 1 1 1 1 1 1 1 1 i 1 1
1 1 1 1 1 1 1 1 1 1 1. 1 1
[l 1 1 1 1 1 1 1 A 1 1 1. al
| 1 A 1 1 1 1 1 1 1 . 1 1
i 1 . 1 L 1 al . 1 L 1l i i
" i 1 1 1 1 i . . 1 1 1 i 1 1
1 1 a 1 1 1 1 i 1 e 1 1 1. il L
1 J P 1 PN - B, P i i} S 1 1 1 1 P
A ST | i P | _ 1 . 1 " P T Y A il i 1 i . | 1
| 1 | 1 1 1 1 1 1 1 I L. 1
1 B T /] 1 1 [l 1 i 1 1 . 1 1
1 1 1 'l 1 i A 1 1 1 i i 1
1 1 " 1 ¥ '} 1 i 1 1 1 | 1 al
P § 1] i . 1 1 i 1 d_ 1. L 1
1 1 1 1 1 1 i 1 1 1 I8 1 1
1 1 1 1 1 1 1 1 L 1 1 1 !
1 1 1 L i] 1 1 i 1 L i 1
1 1 1 1 i 1 1 1 1 1 i i 1
1 1 1 1 [§ [| 1 | i 1 1 I 1
L 1 1 1 i | 1 1 i | 1 | . 1 i
i 1 1 1 § 1 1 1 1 1 L. . . | 1

Figure 12. FORTRAN Coding Form

94

b

rOR
/ C"couutnv

ILRRR
i

l

|

98999/9189999999993959999939
aslell e e s N R
"Y1

K 2 nx 3IAIIB

z

Py FORTRAN STATEMENT I0ENTIFICATION

NUMBER §

07000 0[0[000600000000000000000000000[00000000

||2 34 51617 8 901N 12121415161718192021 222324292627 28.29 30313233 3435363738 394041 424 44 4546 47 484950515253 54555657 58 596061 626I 646566 6768697071 72/73 1415161778 9 00
(NERRRRRRRR R R R R R R R R R R R R AR AR R

22222(222022222222
3133333033
RO AN A A
515555(5/55
666 61616 6 6 66660666 666666866666666666666666666666666666666666666656666666666666658
MITPNITIII771011977707017 7710710 1017017011111710 177211771 71717111711171111717711)0111117117
B0888868088830880886936808888888886808808808088080806868088880880806880888880888888
99999999999999999
4252621 282330 K N

4

999999999999999999999999999999899999999
14243 4445 0847 4840 50 51 5253 54 56 58 57 38 59 B0 01 B2 63 B4 CS 66 67 68 60 1071 123 14 15 1617 18 79 0

Figure 13. FORTRAN Source Program Card

Constants, Variables, Subscripts, and Expressions

Mathematical problems usually contain some data
that does not change throughout the entire problem,
and other data that may change many times during
calculation. These two kinds of data are referred to
as constants and variables, respectively. Both con-
stants and variables can be used in FORTRAN 11-D, but
they must be written so the processor can distinguish
one from the other.

Constants

A constant is any number which is used in computa-
tion without change from one execution of the pro-
gram to the next. A constant appears in numerical
form in the source statement. For example, in the
statement

J=3+K
3 is a constant, since it appears in actual numerical
form. Two types of constants may be written in
FORTRAN 1I-D: fixed-point (restricted to integers), and
floating-point (characterized by being written with a
decimal point).
FIXED-POINT CONSTANT
A fixed-point constant is an integer consisting of 1 to
10 numerical characters (see ARITHMETIC PRECISION).
A preceding plus sign is optional for positive num-
bers. An unsigned constant is assumed to be positive.

EXAMPLES

3

+1
—28987

FLOATING-POINT CONSTANT
A floating-point constant may be in either of two
forms:

1. Any number consisting of 1 to 28 decimal digits
with a decimal point at the beginning, at the
end, or between two digits (see ARITHMETIC
PRECISION). A preceding plus sign is optional for
positive numbers. Zeros to the left of the decimal
point are permissible.

EXAMPLES

17.
5.0
—.0003
0.0

2. An integral decimal exponent preceded by an E
may follow a floating-point constant. The magni-
tude thus expressed must be between the limits
of 1019 and 10 or must be zero (see ARITH-
METIC PRECISION),

EXAMPLES
5.0E3 = (5.0 x 10%)
50E +3 = (5.0 x 10®)
3.14E = (3.14 x 10°)
Variables

A FORTRAN variable is a symbolic name which will as-
sume a value during execution of a program. This
value may change either for different executions of
the program or at different times within the program.

FORTRAN II-D 95

- For example, in the statement
A=30+B

both A and B are variables. The value of B will be
assigned by a preceding statement and may change
from time to time, and A will change whenever this
computation is performed with a new value of B.

As with constants, a variable may be in fixed-point
or floating-point form.

FIXED-POINT VARIABLES

A fixed-point variable is named by using 1 to 6 alpha-
betic or numerical characters (not special characters)
of which the first must be I, J, K, L, M, or N.

EXAMPLES

I
M2
JOBNO1

A fixed-point variable can assume any integral value
provided the magnitude is less than the maximum
size as defined through the use of a control record as
stated under ArrrHMETIC PRECISION. (If not defined,
the maximum size will be 4 decimal positions for
fixed-point numbers.)

FLOATING-POINT VARIABLES

A floating-point variable is named by using 1 to 6
alphabetic or numerical characters (not special char-
acters), of which the first is alphabetic but not I, J,
K, L, M, or N.

EXAMPLES

A
B7
DELTA

A floating-point variable may assume any value ex-
pressible as a normalized floating-point number, i.e.,
zero or any number between 1010 and 10°. The
number of mantissa characters may be from 2 to 28
(see aARITHMETIC PRECISION). If not defined, the maxi-
mum size will be 8 characters for the mantissa.

Arithmetic Precision

The precision of the quantities used in the calculation
is an important consideration in most types of scien-
tific computation. For example, the computation of
7.19 x 3.14 would not be as precise as 7.19286 x
3.14159. ‘ '

In the FORTRAN 11-D system, the variable-field length
capacity of the 1620 is used to allow varying the de-
gree of precision from one program to another, The

96

user has the ability to define the precision to which
fixed-point and floating-point values should be car-
ried. Floating-point precision, denoted in this publica-
tion as f, may be varied from 2 to 28 places; fixed-
point precision, denoted by k, may be varied from 4
to 10 places.

The precision of the values may be changed by the
use of a control record which must precede the source
program (see FORTRAN II-D CONTROL RECORDS, FANDK)
or the values may be changed by use of the Disk
Utility Program perFINE control record. If not redefin-
ed (by either of these methods), the value of f is 8
and k is 4.

Values for f and k must be the same for subpro-
grams and link programs called by the main program.

Subscripts

An array is a group of quantities. It is often advan-
tageous to be able to refer to this group by one name
and to refer to each individual quantity in this group
in terms of its place within the group. For example,
assume the following is an array named NEXT:

15

12

18

42

19
If .it were desired to refer to the second quantity in
the group, the ordinary mathematical notation would
be NEXT.. In FORTRAN this becomes

NEXT (2)
The quantity in parentheses is called a subscript. Thus

NEXT (2) has the value of 12
NEXT (4) has the value of 42

The ordinary mathematical notation might be NExTy,
to represent any element of the array NExT. In FOR-
TRAN, this is written

NEXT (I)

where I equals 1, 2, 3, 4, or 5. A program may also
use two or three-dimensional arrays. For example, the
following is a two-dimensional array named MRATE.

Columnl Column2 Column 3
Row 1 14 12 8
Row 2 48 88 4
Row 3 29 25 17
Row 4 1 3 43

To refer to the quantity in Column 2, Row 4, the
FORTRAN statement would be written as MRATE (2,4).
The value of MRATE (2, 4) is 3. '

The value of MraTE (3, 3) is 17.
Thus, subscripts are positive fixed-point quantities
whose values determine the member of the array to
which reference is made.

GENERAL FORM

Let v represent any fixed-point variable and ¢ (or ¢’)
any fixed-point constant. Then, a subscript is an ex-
pression in one of the following forms.

v, ¢, v4c¢, v—c, ¢*v,
c*v4-¢ or c*v—c

(The symbol * denotes multiplication.)

EXAMPLES
I
3
MU -+ 2
5¢]J
5%]-2

The variable in a subscript must not itself be sub-
scripted.

Subscripted Variables

A fixed or floating-point variable may be subscripted
by enclosing up to three fixed-point subscripts in par-
entheses to the right of the variable.

EXAMPLES

A(1)
K(3)
BETA (5°]-2, K+2, L)

The commas separating the subscripts are required
punctuation. Note that subscript arithmetic may take
place as shown in the third example above. For in-
stance, if] is equal to 20, the first subscript will be
98. (The symbol * denotes multiplication.)

The value of a subscript (including the added or
subtracted constant, if any) must be greater than
zero and not greater than the corresponding array
dimension. Each subscripted variable must have the
size of its array (i.e., the maximum values which its
subscripts can attain) specified in a pDIMENSION state-
ment preceding the first appearance of the variable
in the source program.

Expressions

An expression in FORTRAN language is any sequence
of constants, variables (subscripted or not subscript-
ed), and functions (explained later), separated by

operation symbols, commas, and parentheses, which
comply with the rules for constructing expressions.
Expressions appear on the right-hand side of arith-
metic statements.
In arithmetic-type operations, the following opera-
tion symbols are used:
+ addition
— subtraction
* multiplication
/ division
** exponentiation (i.e., raising to
a power)

RULES FOR CONSTRUCTING EXPRESSIONS

Since constants, variables, and subscripted variables
may be fixed-point or floating-point quantities, ex-
pressions may contain either fixed-point or floating-
point quantities; however, the two types may appear
in the same expression only in certain ways. (In the
following description, no mention is made of the rules
for using fixed-point and floating-point quantities in
functions. These rules will be stated when functions
are discussed and will be considered as addenda to
the following rules.)

1. The simplest expression consists of a single con-
stant, variable, or subscripted variable. If the
quantity is an integer quantity, the expression
is said to be in the fixed-point mode. If the
quantity is a floating-point quantity, the expres-
sion is said to be in the floating-point mode.

EXAMPLES
Expression Type of Quantity Mode of Expression
3 Fixed-Point Fixed Point
constant
3.0 Floating-Point Floating Point
constant
I Fixed-Point Fixed Point
variable
A Floating-Point Floating Point
variable
(I Fixed-Point Fixed Point
subscripted
variable
A(]) Floating-Point Floating Point
subscripted
variable

In the last example, note that the subscript, which
must be a fixed-point quantity, does not affect
the mode of the expression. The mode of the
expression is determined solely by the mode of
the quantity itself.

FORTRAN II- D 97

2. Exponentiation of a quantity does not affect the
mode of the quantity; however, a fixed-point
quantity may not be given a floating-point ex-
ponent. The following are valid:

I*#y Fixed Point
A**] Floating Point
A**B Floating Point

The following is not valid:
I**A (Violates the rule that a

fixed-point quantity must not

have a floating-point exponent)

Note: The expression A**B**C is not permitted. It
must be written A**(B**C) or (A**B)**C,
whichever is intended.

3. Quantities may be preceded by a 4 or a — or
connected by any of the operators (4, —, *, /,
**) to form expressions, provided:

a. No two operators appear consecutively.

b. Quantities so connected are all of the same
mode. (Exception: floating-point quantities
may have fixed-point exponents.)

The following are valid:

—A4B
B4-C-D
/]

K*L

The following are not valid expressions:

A+—-B (must be written as A+ (—B)

A1 (variables are of different modes)

3] (must be written as 3 * J if multipli-
cation is intended)

4. The use of parentheses in forming expressions
does not affect the mode of the expression. Thus,
A, (A), and (((A))) are all floating-point
expressions.

5. Parentheses may be used to specify the order of

operations in an expression. Where parentheses
are omitted, the order is taken to be from left
to right as follows:

Order Symbol Operation
1 i Exponentiation
2 * and / Multiplication and Division
3 -+ and — Addition and Subtraction

For example, the expression

A+B*C/D+E**F-G

98

will be taken to mean

B*C
A+ D

+ EF — G

Using parentheses, the expression could be written
(A+B)*C/D+4-E**F-G
which would be taken to mean

ﬁ_i?r)“g +EF-G

A valid expression will be evaluated when the object
program is executed. An invalid expression may re-
sult in an error message from the FORTRAN I-D pro-
cessor or may result in inaccurate object program
results.

Arithmetic Statements

GENERAL FORM
A=8B
where A is a variable (subscripted or not subscript-

ed) and B represents an expression.

EXAMPLES

Q
Il

K-+1
2(I) + SINF (C(I))

Il

A(I)

The numerical calculations to be performed in the
object program are defined by arithmetic statements.
FORTRAN arithmetic statements closely resemble con-
ventional arithmetic formulas. They contain a variable
to be computed, followed by an equal (=) sign, fol-
lowed by an arithmetic expression. In FORTRAN lan-
guage, the equals sign means “is to be replaced by’
rather than “is equivalent to.” For example, the arith-
metic statement

Y = N — LIMIT (J-2)
means that the value in the storage area assigned to
Y is to be replaced by the value of N—LIMIT (J-2).

The equal sign description can be emphasized more
with the example of

=141

which means that the variable I is to be replaced with
its old value plus one.

The result of the expression is stored in fixed-point
form if the variable on the left of the equals sign is a
fixed-point variable, or in floating-point form if it is
a floating-point variable.

If the variable on the left is in fixed-point form and
the expression on the right is in floating-point form,
the result is first computed in floating-point, then
truncated (the fractional value is dropped) and con-
verted to a fixed-point number. Thus, if the result of
an expression is 3.872, the fixed-point number stored
is 3, not 4. Likewise, the statement

] = A/B

where the value of A is 7,
and the value of B is 4,
produces a result of 1.

If the variable on the left is in floating-point form
and the expression on the right is in fixed-point form,
the expression will be computed in fixed-point and
then converted to floating-point before it is stored as
the new value of the variable.

Example Meaning

A =B Store the value of B in A.

I1=8 Truncate B to an integer, convert to
fixed point, and store in I.

A=1 Convert I to floating-point, and store
in A.

A = 3.0"B Replace A with 3 times B.

A =1I*B Not permitted. The expression is mix-
ed, ie., contains both fixed-point
and floating-point variables.

A =3*B Not permitted. The expression is

mixed.

Control Statements

The second class of FORTRAN 1I-D statements is com-
prised of control statements that enable the program-
mer to state the flow of the program. Normally, state-
ments may be thought of as being executed sequen-
tially. That is, after one statement has been executed,
the statement immediately following is executed. How-
ever, it is often undesirable to proceed in this man-
ner. The following descriptions discuss statements
which may be used to alter the sequence of a program.

GO TO Statement (Unconditional)

This statement interrupts the sequential execution of
statements, and specifies the number of the next state-
ment to be performed.

GENERAL FORM

GO TOn

where n is a statement number.,

EXAMPLES

GO TO 1009
GO TO3

A coding sample is shown below:

—= C_FOR COMMENT

Fstarmnt]e
NUMBER [S

FORTRAN STATEMENT
' sle]” 1 15 20 25 0) 2 4

hd 1 P 1 1 1 1 1 {
=41, [J Ll it L L |

=7) L il ' i P L

. GO 10 6 \ e i e o L
A8 [6=3. %4 ey) L . ;
6 |C=3-%8 L L L a1 ! L 1

A 1 1 L 1 1 P Il

1 1 1 1 1 i 1 1

The co TO statement transfers the program to state-
ment 6 where the result 21 is obtained.

Computed GO TO

This statement also indicates the statement that is to
be executed next. However, the statement number
that the program is transferred to can be altered dur-
ing the program.

GENERAL FORM

GO TO (nl, No, .

‘s nm>> i

where ny, ns . ., n, are statement numbers and i is
a non-subscripted fixed-point variable.

The parentheses enclosing the statement numbers,
the commas separating the statement numbers, and
the comma following the right parenthesis are all re-
quired punctuation,

This command causes transfer of control to the 1st,
2nd, 3rd, etc., statement in the list depending on
whether the value of i is 1, 2, 3, etc.

The variable i must never have a value greater than
the number of items in the list.

FORTRAN II-D 99

EXAMPLES

Meaning
(If L is 1, transfer to
statement 3.

If L is 2, transfer to
statement 4.

If L is 3, transfer to

L statement 5.

~If J is 1 or 2, transfer
to statement 4.

If J is 3, transfer to
statement 5.

If J is 4, transfer to

L statement 2.

GO TO (3,4,5), L

GO TO (4,4,5,2),]

Further examples of the Computed co To and the
Unconditional co 1o statements are illustrated below:

4——= C FOR COMMENT

FORTRAN STATEMENT

] slel” [15 20 23 30 33 0 e

ystatimint]e
NumBER S

1 1
=3 1 ! L 2 1 L L
B=4. 1 L L s 1 1 !
c=5., ! 2 s | v| 1 L
K”'l 1 ol 1 $] 1 1
J| K2 K+1 1 L it . L L 2
Ea 70 (10,20,30).K e e
[i L I 1 L aad

hd 1 1 s ! L I 1 1

30 |F=A-8 . .]) \ . ,
60 70 12 . L 1 L L .
2 f‘ﬂﬂc Il I -
0 .70 1
14 p=8-C

Go_T0 .1

12 .

F R OFOF R
-

In the example, D, E, F are computed in that order,
and the program is transferred to statement 12. This
is a simplified example and if these were the only
computations in the program, the programmer would
simply list the arithmetic statements to compute D, E,
and F in any désired order without using the Com-
puted co 1O statement.

IF Statement

This statement permits the programmer to change the
sequence of the statement execution, depending upon
the value of the arithmetic expression.

100

GENERAL FORM
IF (a)ny, ng, ng

where a is an expression and n;, ng, ng are statement
numbers.

The expression must be enclosed in parentheses and
the statement numbers must be separated by commas.
The expression may be in either fixed or floating
mode.

Control is transferred to statement number n;, ne, ng
depending on whether the value of a is less than,
equal to, or greater than zero, respectively.

EXAMPLE .
IF (A — B) 10,5, 7

which means “If the value of A minus B is less than
zero, transfer to statement 10. If the value of A minus
B is equal to zero, transfer to statement 5. If ... A
minus B is greater than zero, transfer to statement 7.”

Suppose a value, X, is being computed. Whenever
this value is negative or positive, it is desired to pro-
ceed with the program. Whenever the value is zero,
an error routine is to be followed. This may be coded
as:

o = C FOR COMMENT

o FORTRAN STATEMENT

1 s]el’ 1C 15 20 25 30 35 40 45

hd L L 1 1. i 1 1 I
IX=(B+C/FaxE)-Z/C | . N . .

IF (X)10,40,10, L !)) .

1 M Lo aad o, 1 1 2 L L a

1 I X 1 1 1 ~L . 1 1

hd L P N L I 1 1 L L

40 ° 1. (ERRD{ NU””? 1 1 1 L i

IF (SENSE SWITCH) Statement

This statement permits the program to transfer to a
particular statement depending on the setting of any
one of the four Console Program Switches.

GENERAL FORM
IF (SENSE SWITCH i) ny, n.

where i is the number of one of the Console Program
Switches, and n;, n, are statement numbers.

The parentheses enclosing the words SENSE swiTcH,
and the commas separating the statement numbers
are required punctuation.

The program transfers to the statement number n,
when the designated Program switch is on, or to the
statement numbered n, when it is off.

EXAMPLE

IF (SENSE SWITCH 3) 14, 10

which means, “If Sense Switch 3 is on, transfer to
statement 14, otherwise transfer to statement 10.”

iF (OVERFLOW) Statement

This statement permits the program to transfer to a
particular statement depending on the on or off con-
dition of the Arithmetic Overflow Check indicator.

GENERAL FORM
IF (OVERFLOW) n,, ne

where n; and n, are statement numbers. The paren-
theses enclosing the word overrLow, and the comma
separating the statement numbers are required punc-
tuation.

The program transfers to the statement numbered
n, if the Arithmetic Overflow indicator is oN, or to the
statement numbered n; if it is orr. When the indicator
is on, it is turned off by the interrogation.

EXAMPLE
IF (OVERFLOW) 5, 21

which means, “If the Arithmetic Overflow indicator is
on, transfer to statement 5, otherwise transfer to state-
ment 21.”

IF (EXPONENT CHECK) Statement

This statement permits the program to transfer to a
particular statement depending on the on or off con-
dition of the Exponent Check indicator.

GENERAL FORM
IF (EXPONENT CHECK) ny, ns

where n; and n, are statement numbers. The paren-
theses enclosing the words EXPONENT cHECK, and the
comma separating the statement numbers are required
punctuation. The space.between the words EXPONENT
and CHECK is optional.

The program transfers to the statement n; if the
Exponent Check indicator is oN, or to the statement
numbered ny when it is orr. When the indicator is on,
it is turned off by the interrogation.

EXAMPLE
IF (EXPONENT CHECK) 7, 15

which means, “If the Exponent Check indicator is on,
transfer to statement 7, otherwise transfer to state-
ment 15.”

DO Statement

GENERAL FORM
DOni=m;, my
or
DO ni=m;, my, mg

where n is a statement number, i is a non-subscripted
fixed-point variable, and m;, m,, and m; are either an
unsigned fixed-point constant or a non-subscripted
fixed-point variable. If ms is not stated, it is under-
stood to be 1.

EXAMPLES

DO30J =1, 10
DO30J=1K3

The po statement is a command to repeatedly exec-
cuate the statements that follow, up to and including
the statement with statement number n ., i.e., it forms
a program loop.

The statements are executed with i = m, the first
time. For each succeeding execution, i is increased
by m;. After the statements have been executed with
i equal to my (or as near as possible without exceed-
ing m), control passes to the statement following the
last statement in the range of the po.

DO Range

The range of a po is that set of statements which are
executed repeatedly; i.e., it is the sequence of con-
secutive statements immediately following the po, up
to and including the statement numbered n.

DO Index

The index of a po statement is the fixed-point variable
i, which is controlled by the po in such a way that its
value begins at m;, and is increased each time by mj,
up to, but not including the value which exceeds m;.
Throughout the range, the i-value is available for
computation, either as an ordinary fixed-point variable
or as the variable of a subscript. After the last execu-
tion of the range, the po is said to be “satisfied.”

Suppose for example, that control has reached
statement 10 of the program:

10DO 111 =1, 10
1ILA(I) =1°N ()
12...

FORTRAN II-D 101

The range of the po is statement 11, and the index
is I. The po sets I to 1 and control passes into the
range. The value of 1 * N(1) is computed, converted
to floating-point and stored in location A(1). Since
statement 11 is the last statement in the range of the
po and the po is unsatisfied, I is increased to 2 and
control returns to the beginning of the range, state-
ment 11. The value of 2 * N(2) is then computed and
stored in location A(2). The process continues until
statement 11 has been executed with I = 10. Since
the po is satisfied (m; = m;), control then passes to
statement 12.

DO’s Within DO's

There may be other po statements among the state-
ments in the range of a po. When this is so, the fol-
lowing rule must be observed. '

If the range of a DO includes one or more other
DO’s, then all of the statements in the range of the
latter must also be in the range of the former.

A set of pO’s satisfying this rule is called a “nest of
po’s.” This rule is illustrated in the drawing below.

(Brackets are used to illustrate the range of a po).

Permitted Not Permitted
D0
DO
DO
0
o e

DO

DO I

Transfer of Control and DO’s

Transfers of control from and into the range of a po
are subject to the following rule:

No transfer is permitted into the range of any DO
from outside its range. Thus, 1, 2, and 3 are allowable
transfers in the drawing below, but 4, 5, and 6 are not.

Preservation of Index Values. When control leaves
the range of a po in the ordinary way (i.e., when

102

DO

- 1>4
— 2

5

)

A4

the po becomes satisfied and control passes on to
the next statement after the range) the exit is said
to be a normal exit. After a normal exit from a o
occurs, the value of the index controlled by that po
is not defined, and the index cannot be used again
until it is redefined. However, if the exit occurs by
virtue of a transfer out of the range, the current
value of the index remains available for any sub-
sequent use. If the exit occurs because of a transfer
which is in the ranges of several po’s, the current
values of all the indexes controlled by those po’s
are preserved for any subsequent use.

Exits. When a cALL statement (see CALL STATEMENT)
is executed in the range of a po, care must be taken
that the called subprogram does not alter the po
index or indexing parameters. This applies as well
when a FORTRAN function is called for in the range
of a po.

Restrictions on Statements in the Range of a DO.
A statement which redefines the value of the index
or of any of the indexing parameters (m’s) is the
only type of statement not permitted in the range
of a po. In other words, the indexing of a po loop
must be completely set before the range is entered.
The first statement in the range of a po must not be
a non-executable statement, such as END, CONTINUE,
and FORMAT statements. Also a po loop cannot end
with a transfer statement.

CONTINUE Statement

CONTINUE is a dummy statement which results in no
instructions in the object program. It is most fre-
quently used as the last statement in the range of a
Do to provide a transfer address for 1r and co TO
statements that are intended to begin another repeti-
tion of the po loop.

EXAMPLE

CONTINUE

As an example of a program which requires a
CONTINUE, consider the table search:

10 DO 12 1 = 1, 100

IF (ARG-VALUE (I)) 12, 20, 12
12 CONTINUE
13 ...

This program causes a scan of the 100-entry VALUE
table until it finds an entry that equals the value of
the variable arc, whereupon it exits to statement 20
with the value of I available for fixed point use; if no
entry in the table equals the value of ArG, a normal

exit occurs to the statement (13) following the
CONTINUE.

PAUSE Statement

GENERAL FORM
PAUSE or PAUSE n

where n is an unsigned fixed-point constant.

EXAMPLES

PAUSE
PAUSE 33333

This statement halts the machine. Depressing the
Start key causes the program to resume execution of
the object program with the next statement. In a
PAUSE n statement, where n is a 5-digit number within
the range of valid 1620 addresses, the n can be dis-
played on the 1620 console in OR-2.

102.1

CALL EXIT Statement

This statement is used at the end of a FORTRAN pro-
gram to return control to the Monitor Control Record
Analyzer routine.

EXAMPLE

CALL EXIT

STOP Statement

GENERAL FORM

STOP or STOP n
where n is an unsigned fixed-point constant.

EXAMPLES

STOP
STOP 33333

When the object program is executed, the machine
types sTop on the console typewriter, halts, and n can
be displayed as it is for the pausE n statement. De-
pressing the Start key causes control to be returned
to the Monitor Control Record Analyzer routine.

END Statement

GENERAL FORM
END or END (Il, 12, 13, 14, 15)

where Iis 0, 1, or 2.
EXAMPLES

END
END (1,2,0,1,1)

This statement differs from the previous control state-
ments in that it does not affect the flow of control in
the object program being compiled. Its application is
to the FORTRAN 1-D processor during compilation. An
END statement will generate a halt and branch (to the
Monitor Control Record Analyzer routine) in the
object program. The statement Exp (1, Ip, I, Iy, Is)
is acceptable; however, the Is specified are meaning-
less in 1620 FORTRAN II-D.

The ENDp statement must be the last statement
(physically) of the source program.

Input/Output Statements

Input statements are used to read data into core stor-
age and output statements are used to print or punch
or store data. The READ, ACCEPT, ACCEPT TAPE, PUNCH,

PUNCH TAPE, PRINT, and TYPE statements require the
use of the FORMAT statement which is described under
the section entitled SPECIFICATION STATEMENTS.

In addition to the statements listed above, the
RECORD and FETCH statements also must include an
ordered list of the quantities to be transmitted (see
SPECIFYING LISTS OF QUANTITIES).

All FORTRAN 11-D Input/Output statements cause the
object program to make use of the Supervisor 1/0
routine (see section entitled 1/0 rouTINES under su-
PERVISOR PROGRAM).

Specifying Lists of Quantities

The input/output statements that call for transmission
of data must include an ordered list of the quantities
to be transmitted. The listed order must be the same
as the order in which the words of information exist
(for input), or the desired order for the output. *

The formation and meaning of a list is best de-
scribed by an example. Assume that the value of K
has been previously defined.

A, B(3), (C(I), D(L K), I = 1, 10)
((E(L]), I = 1, 10, 2), F(J, 3),] = L, K)

If this list is used with an output statement, the infor-
mation will be written on the output medium in this
order:

A, B(3), C(1), D(1, X), C(2), D(2,K), . .,

C(10), D(10, K), E(L 1), E(31), . . ., E (9,1),
F(1, 3),

E(L 2), B(3,2), ..., E(9 2), F(2, 3),

E(L K), E(3,K), . .., E(9, K), F(K, 3)

Similarly, if this list is used with an input statement,
the successive values, as they are read from the ex-
ternal medium, are placed into core storage in the
indicated order. The list reads from left to right with
repetition for variables enclosed within parentheses.
Only variables, not constants, may be listed.

If such a list is used, the execution is exactly that
of a po loop. It is as though each opening parenthesis
(except subscripting parentheses) were a po, with
indexing given immediately before the matching clos-
ing parenthesis, and with the po range extending up
to that indexing information. The order of the above
list can thus be considered the equivalent of the fol-
lowing “program”:

1. OUTPUT A

9. OUTPUT B(3)
3. DO51=1,10
4. OUTPUT C(I)

FORTRAN II-D 103

5. OUTPUT D(I, K)
6. DO9J =1,K

7. DO 8I=1,10,2
8. OUTPUTE (L,])
9. OUTPUTF (], 3)

Note that indexing information, as in po’s, consists of
three constants or fixed-point variables, and that the
last of these may be omitted, in which case, it is
assumed to be 1.

For a list of the form K, A(K) or of the form X,
(A(I), I = 1, K), where an index or indexing para-
meter itself appears earlier in the list of an input state-
ment, the indexing will be carried out with the newly
read-in value.

Input/Output in Matrix Form

As outlined in a previous section, FORTRAN II-D treats
variables according to conventional matrix practice.
Thus, the input/output statement

READ L ((A (L]),I=12),]=13)

causes the reading of I x J (in this case, 2 x 3) items
of information. The data items are read into storage
in the same order as they are found on the input
medium.

INPUT/OUTPUT OF ENTIRE MATRICES

When input/output of an entire matrix is desired,
an” abbreviated notation may be used for the list of
the input/output statement; only the name of the
array need be given and the indexing information
may be omitted.

Thus, if A has previously been listed in a pIMENSION
statement, the statement,

READ 1, A

is sufficient to read in all the elements of the array.
The elements of the array are stored in successively
higher storage locations. (If A has not previously ap-
peared in a DIMENSION statement, only the first ele-
ment would be read in.)

Lists for the Recorp and FETCH statements must be
formed in the following manner:

1. Matrix Lists
If any item in the list is a matrix, all items in the
list must be matrices. All matrices will start at
the beginning of a record. Matrices written with
a matrix list must be read with a matrix list.

104

2. Element Lists
An element list may consist of any one or more

of the following types (assume K previously
defined).

b B(1)
c C(1, K)
d. (B(I),D (I,X),I=1,10)
e. ((E(L]),1=110,2),F(],3),] =LX)
3. The mode and order of lists must be the same
for the reading and writing of the same data.

Arrangement of Arrays in Storage

Arrays are stored “column-wise,” with the first of their
subscripts varying most rapidly, and the last varying
least rapidly. Arrays which are 1-dimensional are sim-
ply stored sequentially. A 2-dimensional array named
A would be stored sequentially in the order Al

Agpseos AM'I, A1,2’ T Ayn- A 3-dimensional
array named T would be stored in the order
Tl,l,l’ T2,1,1’ T3,1,1’ et TM,l,l’ Tl,?,l’ tt TM,N,I’ T1,1,2’
Tor0-e e

The storage of arrays is in ascending order, i.e., the
elements are stored sequentially in locations with
ascending addresses.

READ Statement

The READ statement is used to read data into core
storage from the 1622 Card Read-Punch.

GENERAL FORM
READ n, List

where n is the statement number of a FORMAT state-
ment and List is a list of the quantities to be read.

EXAMPLES

READ 8§, A, B, C
READ 211, VOLT (I), OHM (])

The READ statement causes data to be read from a
card and causes the quantities from the card to be-
come the values of the variables named in the list.
Successive cards are read until the complete list has
been “satisfied,” i.e., all data items have been read,
converted, and stored in the locations specified by the
list of the READ statement. The FORMAT statement to
which the Reap refers, describes the arrangement of
information on the cards and the type of conversion
to be made.

ACCEPT TAPE Statement

The accepT TAPE statement is used to cause data
to be read into core storage from the 1621 Paper Tape
Reader.

GENERAL FORM

ACCEPT TAPE n, List

where n is the statement number of a FORMAT
statement, and List is as described under mwpur/
OUTPUT STATEMENTS.

EXAMPLE
ACCEPT TAPE 30, K, A (J)

The AcCEPT TAPE statement causes the object program

to read information from the paper tape reader. Rec-

ord after record is brought in, in accordance with

the ForMaT statement, until the complete list has
been satisfied.

ACCEPT Statement

The accepr statement is used to allow data to be
read in from the console typewriter.

GENERAL FORM

ACCEPT n, List

where n is the statement number of a FORMAT state-
ment, and List is as described under Nput/OUTPUT
STATEMENTS.

EXAMPLE
ACCEPT 20, A, B, C, D (3)

The Accepr statement causes the object program to
return the carriage of the console typewriter to await
the entrance of data. The information is entered in
accordance with the FORMAT statement until the com-
plete list has been satisfied.

PUNCH Statement

The puncH statement is used to cause data to be

punched out in cards by the 1622 Card Read-Punch.
GENERAL FORM

PUNCH n, List

where n is the statement number of a FoRMAT state-
ment, and List is as described under iNnpur/ouTPUT
STATEMENTS.

EXAMPLE

PUNCH 40, (A (J),] = 1, 10)

The puncH statement causes the object program to
punch cards in accordance with the FORMAT statement
until the complete list has been satisfied.

PRINT and TYPE Statements

The pRINT statement and the TYPE statement are
used to type out data on the console typewriter.
GENERAL FORM

PRINT n, List
TYPE n, List

where n is the statement number of a FORMAT
statement and List is as described under inpuT/0OUTPUT
STATEMENTS.

EXAMPLE

PRINT 2, (A (J),] = 1, 10)

The PRINT and TYPE statements cause output data to
be typed on the console typewriter. A carriage return
occurs and successive lines are typed in accordance
with the rorMAT statement, until the complete list
has been satisfied.

PUNCH TAPE Statement

The puncuH TAPE statement is used to cause data to
be punched by the 1624 PAPER TAPE PUNCH.

GENERAL FORM

PUNCH TAPE n, List

where n is the statement number of a FORMAT state-
ment, and List is as described under iNnpuT/OUTPUT
STATEMENTS.

EXAMPLE
PUNCH TAPE 25, (A (J),] = 1, 10)

The PUNCH TAPE statement causes information to be
punched by the paper tape punch.

Successive records are punched in accordance with
the FORMAT statement until the complete list has been
satisfied.

FIND Statement

This statement is used to position the disk access arm
over a cylinder.

FORTRAN II-D 105

GENERAL. FORM
FIND (I)

where I specifies the record number where reading or
writing will start. The parameter I must be either:
1. A nonsubscripted fixed-point variable.

EXAMPLE
| FIND (IMAX)
or
2. A subscripted fixed-point variable.
EXAMPLE

FIND (IMAX(3))

The FIND statement causes the disk access arm to be
positioned over a cylinder which will subsequently
be read from or written on. The FiND statement may
precede a FETCH or RECORD statement that contains
the same I parameter, and, in this manner, takes ad-
vantage of additional processing time while the access
arm is moving,.

The record numbers (I) start at 1, and correspond
to every sector if one-sector records are specified in
the DEFINE DIsk statement; if two-sector records are
specified, the record numbers correspond to every
second sector.

Only areas of disk storage within the area defined
by a DEFINE DISK statement can be specified by a
FIND.

FETCH Statement

This statement is used to read data from the 1311
Disk Storage Drive.

GENERAL FORM
FETCH (I) List

where I specifies the record number and List is as
described under INPUT/OUTPUT STATEMENTS.

EXAMPLE
FETCH (IMAX (3)) (A (J),] = 1, 10)

The rETCH statement may be preceded by a FIND
statement containing the same I parameter. When the
FETCH statement is executed, a check is performed to
deterinine if the access arm is positioned over the
proper cylinder. If the access arm is properly position-
ed, reading begins; if it is not, a seek is initiated
(seek time is not available for computation).

The data designated by the list is read from the
record specified by (I). If the list specifies more items
than can be obtained from one record, then the value

106

of (I) is incremented by one and reading proceeds
from the next sequential record. This procedure con-
tinues until either the list has been “satisfied,” i.e.,
until the data for all the variables in the list has been
read in, or until the end of the area specified by N,
(see pEFINE pisk) has been reached. At the conclusion
of a read operation, the value of I is one greater than
the number of the last record read. The parameter
(I) is the same as described for the Finp (I) state-
ment.

The compiled instructions for the rFErcH statement
cause control to be transferred to the Monitor Input/
Output routine (see Supervisor section).

RECORD Statement

This statement is used to write data on the 1311 Disk
Storage Drive.

GENERAL FORM

RECORD (I) List

where I specifies the record number and List is as
described under INPUT/OUTPUT STATEMENTS.

EXAMPLE
RECORD (IMAX (3)) (A (]),] = 1, 10)

The RrECORD statement may be preceded by a FinD
statement containing the same I parameter. When the
RECORD statement is executed, a check is performed
to determine if the access arm is positioned over the
proper cylinder. If the access arm is properly position-
ed, writing begins; if it is not, a seek is initiated (seek
time is not available for computation).

The data designated by the list is written in the
record specified by (I). If the list specifies more items
than can be contained in one record, then the value
of (I) is incremented by one and writing proceeds to
the next sequential record. This procedure continues
until either all items in the list have been written or
until the end of the area specified by N, (see DEFINE
pisk) has been reached. At the conclusion of a write
operation, the value of 1 is one greater than the num-
ber of the last record written. The parameter (I) is
the same as described for the Finp (I) statement.

The compiled instructions for the RECORD statement
cause control to be transferred to the Monitor Input/
Output routine (see Supervisor section).

Specification Statements

The sPECIFICATION statements supply necessary infor-
mation to the FORTRAN processor, or information to in-
crease program efficiency. No executable instructions
are created in the object program for a sPECIFICATION
statement.

DIMENSION Statement

The DIMENSION statement provides the information
necessary to allocate storage for arrays in the object
program.

GENERAL FORM

DIMENSION v, v, v, . ..

where each v is the name of a variable, subscripted
with 1, 2, or 3 unsigned fixed-point constants. Any
number of v’s may be given.

EXAMPLE
DIMENSION A(10), B(5, 15), CVAL (3, 4, 5)

Each variable which appears in subscripted form
in a program or subprogram must appear in a DIMEN-
SION statement of that program or subprogram; the
DIMENSION statement must precede the first appear-
ance of that variable. The DIMENSION statement lists
the maximum dimensions of arrays; in the object pro-
gram, references to these arrays must never exceed
the specified dimensions.

The above example indicates that B is a two-dimen-
sional array for which the subscripts never exceed 5
and 15. The piMENSION statement, therefore, causes
75 (i.e., 5 x 15) fields to be set aside for the array B.

A single DIMENSION statement may specify the di-
mensions of a number of arrays. The maximum num-
ber is limited by the number of continuation cards
permitted. A program must not contain a DIMENSION
statement which includes the name of the program it-
self, or any program which it calls. If any of the sub-
scripts in a DIMENSION statement exceeds 9999, an
error will be indicated.

EQUIVALENCE Statement

The EQUIVALENCE statement provides one method of
controlling the allocation of data storage in the object
program.

GENERAL FORM

EQUIVALENCE (a, b,c,...), (d, e, £ ...),..

where a, b, ¢, d, e, f, . .
subscripted with constants only.

EXAMPLE
EQUIVALENCE (A, B(1),C(5)), (D (17), E(3))

When the logic of the program permits, the number
of storage locations used can be reduced by causing

. are variables that may be -

locations to be shared by two or more variables. The
EQUIVALENCE statement should not be used to obtain
mathematical equality between two or more elements.
If fixed-point and floating-point variables are equiva-
lenced, their word lengths must be the same, i.e.,
f + 2 must equal k.

An EQUIVALENCE statement may be placed anywhere
in the source program, except as the first statement in
the range of a po. Each pair of parentheses of the
statement list encloses the names of two or more
quantities which are to be stored in the same loca-
tions during execution of the object program; any
number of equivalences may be given.

In an EQUIVALENCE statement, a term such as C(p)
can be defined as p>0 to mean the pth location of
the C array. For example, C(5) would be the fifth
location in the C array. Note that in an EQUIVALENCE
statement a two- or three-dimensional array must be
referenced by a linear subscript (a single subscript
notation which denotes the element of an array re-
gardless of how the array is dimensioned). If p is not
specified, it is understood to be 1.

Thus, the example indicates that the A, B, and C
arrays are to be assigned storage locations such that
the elements A(1), B(1), and C(5) are to occupy the
same location. In addition, it specifies that D(17) and
E(3) are to share the same location.

Quantities or arrays which are not mentioned in an
EQUIVALENCE statement are assigned unique locations.

COMMON Statement

Variables, including arrays, appearing in COMMON
statements are assigned to speciﬁc storage Jocations,
Storage is assigned separately for each program
compiled.

GENERAL FORM
COMMON A,B...

where A, B . . . are the names of variables and non-
subscripted array names.

EXAMPLE
COMMON X, ANGLE, MATA, MATB

The comMoN storage area may be shared by a pro-
gram and its subprograms. In this way, the common
statement enables a data storage area to be shared
between programs in a way analogous to that by
which the EQUIVALENCE statement permits data stor-
age-sharing within a single program. Where the logic
of the programs permits, this can result in a large
saving of storage space.

Array names appearing in the comMon statement
must previously have appeared in a DIMENSION state-
ment in the same program.

FORTRAN II-D 107

The coMMoON storage area is located at the high end
of core storage, starting with address 19999, 39999 or
59999. Variables in a coMMoON statement are assigned
storage locations in descending sequence. For ex-
ample:

COMMON A, B, C

With f = 10, A, B, and C would be stored in locations
19999, 19987, and 19975 and similarly for 40,000 or
60,000 positions. If C is dimensioned as C(10), then
19975 is the address of C(10), which is the last ele-
ment in the array, and 19867 is the address of C(1).

The comMoN statement takes precedence over the
EQUIVALENCE statement. Due to the complex interac-
tion of these two statements, the programmer must
adhere to the following two rules:

1. Variables which are to be placed in common
storage must be assigned prior to any EQUIVA-
LENCE statement containing these variables. For
example,

COMMON A
EQUIVALENCE (A, B, C)

The order in which the variables appear in the
EQUIVALENCE statement is irrevelent and rule 1
applies if the comMoN variable is B or C.

2. Within an EQuUIVALENCE list there may be no
more than one variable which previously has
been:

a. equivalenced, or
b. placed in comMON.

The following sequence of statements is invalid:

EQUIVALENCE (A, B, C)
EQUIVALENCE (X, Y, Z)
EQUIVALENCE (A, Z)
COMMON D
EQUVALENCE (D, X, P)

Violates (a) above

Violates combina-
tion of (a) and

(b)

The sharing of storage locations desired in the
above statements can be achieved by writing the
statements as follows:

COMMON D
EQUIVALENCE (D, X,
EQUIVALENCE (

EQUIVALENCE (

or

COMMON D
EQUIVALENCE (D, A, P,B,C, X, Y, Z)

P)
A, B, G, X)
X, Y, Z

108

A diagnostic error message results if either Rule
1 or 2 is violated.

Arguments in Common Storage

COMMON statements may be used as a medium for
transmitting arguments from the calling program to
the called rorTRAN function or SUBROUTINE subpro-
gram. In this way, they are implicitly, rather than
explicitly transmitted as when listed in the parentheses
following the subprogram name.

To obtain implicit arguments, it is necessary to have
only the corresponding variables in the two programs
occupy the same location. This can be accomplished
by having them occupy corresponding positions in
COMMON statements of the two programs. For ex-
ample, (A, B, C) and (E, F, G) become implicit ar-
guments when the calling program contains the state-
ment comMmMoN A, B, C, and the called subroutine
contains the statement comMmon E, F, G.

NoTEs:

1. To force correspondence in storage locations be-
tween two variables in different programs which
otherwise would occupy different relative posi-
tions in coMMON storage, it is valid to place
dummy variable names in a comMoON statement.
These dummy names, which may be dimension-
ed, will cause reservation of the space necessary
to cause correspondence.

2. While implicit arguments can take the place of
all arguments in caLL-type subroutines, there
must be at least one explicit argument in a
FORTRAN function. Here, too, a dummy variable
may be used for convenience.

When one variable is EQUIVALENCED to a sec-
ond variable which appears in a coMmMoN state-
ment, the first variable is also located in comMon
storage.

DEFINE DISK Statement

The DEFINE DIsK statement specfies to the FORTRAN
processor the size and quantity of data records that
will be used with a particular program and its associ-
ated subprograms. This statement must appear in the
main program (or link program) and may appear only
once in that program, when Disk I/0O statements ap-
pear in any part of the program or subprograms.
Thus, all subprograms used by that main program or
link program must use the same size record defined
in the statement.

GENERAL FORM

DEFINE DISK (Nj, Ns)

where the parameters N; and N. are defined as
follows:

N; — a fixed-point constant which specifies the
number of words contained in a record of data.
The value chosen for N; depends upon two
things: (1) the word length (w) specified when
the program was compiled, and (2) whether the
user wants the length of a record of data to be
one or two physical sectors.

The value (N,) is determined by following two rules:
If w times (N;) = 100, then the record length
will be one disk sector.

If w times (N;) is more than 100 and = 200,
then the record length will be two disk sectors.

For example, assume that the word lengths specified
at compile time were 8 for floating-point numbers (f)
and 4 for fixed-point numbers (k). Since a record
might contain all floating-point or all fixed-point num-
bers (words), the larger of the two specified word
lengths must be used to determine w. In this ex-
ample, the floating-point length is the larger of the
two word lengths; its total length is 10 (word length
= f + 2). Therefore, if a data record is to be con-
tained in one physical disk sector (100 disk locations),
then N; must be in the range of 1 to 10. An N; of 10
would be making the most efficient use of the avail-
able disk storage. In this example, if the length of a
data record is to be two physical disk sectors, then
N; would be in the range of 11 to 20. A data record
may not be greater than 2 sectors (200 digits).

If arrays are read or written, the variables are not
moved to a buffer area before going to or coming
from the disk provided that both f and k are even in
length. In this case, a group mark is placed at the
end of the array before writing to disk. If 10-digit
variables are used, the most efficient use of the disk
would be with arrays containing 9, 19, 29, 39, etc.
variables, so that the group mark is placed in the
same sector as the variables to be recorded.

N. — a fixed-point constant which specifies the num-
ber of data records that will be used by this main
program and its associated subprograms. N, is used
by the compiler to reserve a portion of the specified
work cylinder area (see DEFINE PARAMETERS ROUTINE

in the pIsk UTILITY PROGRAM section of this man-
ual) for the purpose of transferring data to and
from disk storage. The number of sectors that the
compiler will reserve depends upon the record
length specified by N;. If one-sector records are
specified, then N, sectors will be reserved; if two-
sector records are specified, then 2 times N, sectors
will be reserved.

FORMAT Statement

The ForRMAT statement is used to describe the format
of data being transmitted to and from the typewriter,
card, or paper tape units.

GENERAL FORM

FORMAT (sy, . ., sn)

where s; is a format specification. The FORMAT speci-
fications must be separated by commas, slashes, or
left parentheses.

EXAMPLE

FORMAT (I2/ (E124, F104))

The Input/Output statements, in addition to the
list of quantities to be transmitted, contain the state-
ment number of a FORMAT statement describing the
information format to be used. The ForRMAT statement
also specifies the type of conversion to be performed
between the internal machine language and the ex-
ternal notation. FORMAT statements are not executable:
their function is merely to supply information to the
object program. Therefore they may be placed any-
where in the source program (except as the first state-
ment in the range of a po).

For the sake of clarity, examples given in this sec-
tion are for typing on the console typewriter. How-
ever, the description is valid for any input/output
unit simply by generalizing the concept of “typewrit-
ten line” to that of the unit record in the selected
input/output unit. Thus, a unit record may be:

1. A typewritten line with a maximum of 87 char-

acters.

2. A punched card with a maximum of 80 char-
acters.

3. A paper tape record with a maximum of 87
characters. (The input record length may be
variable up to 87; the output record length is
fixed at 87.)

FORTRAN II-D 109

Numerical Fields

Three forms of conversion for numerical data are
available:

FROM/TO TO/FROM
INTERNAL TYPE EXTERNAL
Floating-point E Floating-point
variable number with
exponent
Floating-point F Floating-point
variable number without
exponent
Fixed-point I Integer
variable

These types of conversion are specified in the forms:
Ew.d, Fw.d, and Iw.

where w and d are unsigned fixed-point constants.

Format specifications are used to describe the input
and output format. The format is specified by giving,
from left to right, beginning with the first character
of the record;

1. The control character (E, F, or I) for the field.

2. The width (w) of the field. The value of w must
be large enough to include the field d, plus
spaces for a sign and the decimal point. In ad-
dition, four spaces for the exponent are needed
in E-type conversion. The width specified may
be greater than required to provide for spacing
between numbers.

3. For E- and F-type conversions, the number of
decimal positions (d) (of the field) which ap-
pear to the right of the decimal point.

Specifications for successive fields are separated by
commas. No format specification should be given that
. provides for more characters than the input/output
unit record. Thus, a FORMAT statement for typewriter
output should not provide for more than 87 characters
per line, including blanks. For example: the state-
ment ForRMAT (12, E12.4, F10.4) might cause the fol-
lowing line to be typed:

12 E12.4 F10.4
—~— e pad

b7-92.3100E+00bbbb-.0076

(In these examples, b is included to indicate blank
spaces.)

110

Alphameric Fields

FORTRAN II-D provides a method by which alphameric
information may be read or written.

The specification for this purpose, wH, is followed
in the FORMAT statement by w alphameric characters.
For example:

24H THIS IS ALPHAMERIC DATA

Note that blanks are considered alphameric characters
and must be included as part of the count w.

Information handled with the H specification is not
given a name and may not be referred to or manipu-
lated in storage in any way. ,

The effect of wH depends on whether it is used

with input or output.

1. Input, w characters are extracted from the input
record and replace the w characters included
with the specification.

2. Output. The w characters following the speci-
fication, or the characters which replaced them,
are written as part of the output record. Blanks
are not ignored in an H specification as they are
elsewhere.

For example: The statement rormMAT (3HXY =

F8.3) could produce any of the following lines:

XY = b—93.210
XY = b999.999
XY = bb28.768

Another alphameric specification, Aw, causes w
alphameric characters to be read into or written from
a variable or array name. Since each alphameric char-
acter is represented in core storage by two decimal
digits, w must be less than, or equal to, the largest
whole number resulting from k/2 or /2, depending
on whether the variable or array name is fixed or
floating. If k or f is odd, a zero will be supplied as the
least significant digit for the field in core storage. To

| facilitate manipulation of alphameric fields which are

stored as floating-point numbers, the numbers will
have zero as an exponent. This will have no effect on
input/output. However, if the first character in a field
is a blank, decimal point, or close parenthesis, the
field will be treated as zero in the floating-point arith-
metic subroutines.

Blank Fields

Blank characters may be provided in an output rec-
ord, and characters of an input record may be skip-
ped, by means of the specifications wX where 0= w =
87 (w is the number of blanks provided or characters
skipped). When the specification is used with an in-

put record, w characters are considered to be blank,
regardless of what they actually are, and are skipped
over.

Repetition of Field Format

It may be desired to print n successive fields within
one record, in the same fashion. This may be speci-
fied by giving n (where n is an unsigned fixed-point
constant which must be <99) before E, F, I, or A.
Thus, the statement rormat (12, 3E12.4) might result
in:

27 — 92.3100E + 00b75.8000E — 02b55.3600E — 02

Repetition of Groups

A limited parenthetical expression is permitted in or-
der to enable repetition of data fields according to
certain format specifications within a longer FORMAT
statement specification. Thus, rormat (2(F10.6,
E102), I4) is equivalent to rormar (F10.6, E10.2,
F10.6, £10.2, 14). The number of repetitions is limit-
ed to a maximum of 99.

Scale Factors

The E-type specification implies a scale factor. There-
fore, E16.8 for an output field will result in the print-
ing or punching of a maximum of ten significant digits
in the form (—)XX.XXXXXXXXE(—)XX. A maxi-
mum of f digits can be placed to the right of the
decimal point if the d specification is greater than f.
In this case, d—f low-order zeros will be inserted to
satisfy the d specification. The following guide may
be used when working with E-type specifications.

1. If § (floating-point precision) = w—6, then f
significant digits will be printed or punched.

2. If f >w—6, then w—6 significant digits will be
printed or punched. For example, if f = 10 and the
floating-point number is stored as 123456789135, it
will be printed as —12.34567891E—37, according to
specification E16.8.

The F-type specification also implies a scale factor.
Therefore, F16.8 for an output field will result in the
printing or punching of a maximum of fourteen sig-
nificant digits in the form (—)XXXXXX.XXXXXXXX.
However, a maximum of f digits will be placed to
the right of the decimal point and the result will be

right justified in the output field. If f is larger than
w—2, only w—2 digits will appear in the output.

The X specification should be used to space fields
in the E-type format. In the statement

El6.8, 1X, E16.8, 1X, E16.8

a space will be provided between adjacent fields.
A field read according to the E-type format need
not have the exponent E(—)XX; i.e., it may actually
take the same form as the F-type format.
The P-scale factor may be used in a specification
but it will be ignored by the FORTRAN 11-D processor.

Multiple Record Formats

To deal with a block of more than one typewritten
line, a FORMAT specification may have several differ-
ent one-line formats, separated by a slash (/) to indi-
cate the beginning of a new line. Thus, ForRMAT
(3F9.2, 2F10.4/8E14.5) specifies a multiline typewrit-
ten block in which line 1 has format 3F9.2 and 2F10.4,
and line 2 has format 8E14.5.

If a multiple-line format is desired, such that the
first two lines are typed according to a special format
and all remaining lines are typed according to an-
other format, the last line specification should be en-
closed in a second pair of parentheses; e.g., FORMAT
(12, 3E12.4/2F10.3, 3F9.4/(10F124)). If data items
remain to be transmitted after the last line format spe-
cification has been completely satisfied, the format
repeats from the last left parenthesis.

As these examples show, both the slash and the
closing parenthesis of the rorRMAT statement indicate
a termination of a record.

Blank lines may be introduced into a multiline
FORMAT statement by listing consecutive slashes.

Format and Input/Output Statement Lists

The FORMAT statement indicates, among other things,
the maximum size of each record to be transmitted. In
this connection it must be remembered that the
FORMAT statement is used in conjunction with the list
of some particular input/output statement, except
when a FORMAT statement consists entirely of alpha-
meric fields. When the rorMAT statement is used
with the list, control in the object program switches
back and forth betwen the list (which specifies wheth-
er data remains to be transmitted) and the FOrRMAT
statement (which gives the specifications for trans-
mission of that data).

FORTRAN II-D 111

Avutomatic Fix/Float

During execution of input/output statements, it is
permissible to read a fixed-point argument into a
floating-point field or a floating-point argument into
a fixed-point field, and to write from a floating-point
field in a fixed-point format or from a fixed-point field
in floating-point format. During reading, the format
specification dictates the data conversion, and the
list designation controls the mode of storing the argu-
ment. During writing, the format specification dic-
tates the mode of the field printed or punched.

Ending a Format Statement

During input/output of data, the object program
scans the FORMAT statement to which the relevant
input/output statement refers. When a specification
for a numerical field is found and list items remain to
be transmitted, input/output takes place according
to the specification, and scanning of the FORMAT state-
ment resumes. If no items remain, transmission ceases
and execution of that particular input/output state-
ment is terminated. Thus, a numerical input/output
operation will be brought to an end, when a specifica-
tion for a numerical field or the end of the FoRMAT
statement is encountered, and there are no items re-
maining in the list.

Data Input to the Object Program

Input data to be read when the object program is ex-
ecuted must be in essentially the same format as given
in the previous examples. Thus, a card to be read ac-
cording to rormaT (I2, E124, F104) might be
punched:

27b-0.9321Eb02bbb-0.0076

Within each field, all information must appear at
the extreme right. Plus signs may be omitted or in-
dicated by a b (blank) or --. Blanks in numerical
fields are regarded as zeros, but zeros may not be
substituted for blanks. For example, a sign cannot
be preceded by zeros. Numbers for E-type and F-type
conversion may contain any number of digits, but only
the high-order f digits are retained. Numbers for
I-type conversion may not contain more than k sig-
nificant digits. The concept of f and k is treated
in this manual under CONSTANTS, VARIABLES, SUBSCRIPTS,
AND EXPRESSIONS.

To permit economy in punching, certain relaxations
in input data format are permitted.

1. Numbers of E-type conversion need not have

four columns devoted to the exponent field. The

112

start of the exponent field must be marked by an
E, or if the E is omitted, by a + or — (not a
blank). Thus E2, E02, 4-2, 02, Eb02, and E-4-02
are all permissible exponent fields. Blanks are
not permitted between characters in the expon-
ent field except for the optional blanks which
may replace a plus sign. Numbers for E-type
conversion must be right-justified in the data
record field.

2. Numbers for E-type or F-type conversion need
not have their decimal points punched. If not
punched, the rormar specification will supply
them; for example, the number —093214-2 with
the specification E12.4 will be treated as though
the decimal point has been punched between the
0 and the 9. If the decimal point is punched in
the card, its position overrides the indicated posi-
tion in the rorMAT specification.

Library Functions

There are seven library functions (which are a part
of 16 rortraN relocatable subroutines) included in
the 1620 Monitor II system. These subroutines are
selected for loading only when called for in the object
program. The functions are:

TYPE OF FUNCTION FORTRAN NAME

Logarithm (natural) LOGF

Exponential EXPF

Cosine of an angle given COSF
in radians

Sine of an angle given SINF
in radians

Arctangent of an angle ATANF
given in radians

Square Root SQRTF

Absolute Value ABSF

The name of the library function is followed by the
argument enclosed in parentheses. The argument can
be a variable (subscripted or not subscripted), or an
expression.

EXAMPLES
A = COSF (B)
A = SQRTF (BETA)
Y = A — SINF (B® SQRTF (C))

For the last example, the assembled instructions of
the object program will:

1. Branch to the square root subroutine to compute
the value of C.

2. Multiply the square root value of C (obtained
in step 1) by B.

3. Branch to the sINF subroutine to compute the
sine of the value obtained from step 2.

4. Subtract the value computed so far from the
variable A.

5. Replace the present value of the variable Y with
the value of the complete expression.

Approximation Method and Estimated Errors

Results of the library subroutines are truncated, and,
in general, errors are no greater than one in the last
digit of the mantissa. Approximation methods and
errors for functional subroutines are described in
greater detail in the following paragraphs.

1. Logarithm. The natural logarithm of the frac-
tional part of the positive argument is evaluated
by using a power series expansion. The exponent
of the argument is multiplied by In 10. The prod-
uct is added to the logarithm of the fraction, and
the sum is the logarithm of the argument. For
an argument with its value A in the range
99< A = 1.01, the leading digits of its logarithm
will be zeros, and the result will contain less
than f significant digits because of normalization.
The maximum truncation error in the result is
=+ 10,

2. Exponential. The value of e* where A is the
value of the argument, is calculated by using a
series approximation for 104. For |A| =
227.955924206. . . an exponent overflow will re-
sult for A>0 or exponent underflow for A<O0.
The value of A is multiplied by log e and the
product separated into an integer and a fraction-
al part. The integer becomes the exponent of the
result and the fractional part is used to produce
its mantissa by series approximation. If A is
greater than zero, the maximum error in the re-
sult is =5 x 10-1.

3. Cosine-Sine. The cosine and sine functions of an
argument with value A in radians are computed
by using a series approximation for cosine A with
sine A = cosine (m — A). The value A is re-

2
duced to within the range — 7 = A = 7. For
2)

arguments with exponents less than 03, the mag-
nitude of the maximum truncation error in the
mantissa of the result does not exceed 10~ Ac-
curacy in the mantissa of the result decreases as
the size of the argument (exponent 03 or great-
er) increases.

4. Arctangent. The arctangent function of an argu-
ment with value A is evaluated by using a series

approximation. The result is given in radians.
The maximum truncation error in the mantissa
of the result is =101, except for results with an
exponent less than or equal to —2. The maximum
error for these results is =1 in the (f+4-1) deci-
mal place.

5. Square Root. The square root is derived by the
odd integer method. The result is accurate to 1
in the last digit of the mantissa.

6. A ** B. AP is evaluated as EXPF (B*LOGF
(A)). Three subroutines, logarithm, multiply,
and exponential, are involved. An error in one
of these subroutines may propagate other errors
or increase the error in a succeeding subroutine.
Normally, the magnitude of the error does not
exceed 101

Additional Library Functions

Up to fourteen additional functions can be added to
the library of subroutines. These functions are defined
(written) in machine language or sps (see ADDING
SUBROUTINES TO FORTRAN LIBRARY).

GENERAL FORM

NAME (A)

where NAME is 1 to 6 alphabetic or numerical char-
acters (no special characters) of which the first is
alphabetic, and A is the argument enclosed in paren-
theses.

EXAMPLE
TIME (A)

The mode of the additional library function is deter-
mined by its argument.

EXAMPLE

TIME (ABLE) Floating point
TIME (LABEL) Fixed point

Library functions can be called by means of an arith-
metic expression that includes the name of the func-
tion. The appearance of the name in the arithmetic
expression serves to call the function; the value (a
single numerical quantity) of the function is then
computed, using the argument which is supplied in
the parentheses following the function name. Only
one value is produced by a given Library function.
The mode of a Library subroutine is determined by
its argument.

FORTRAN II-D 113

EXAMPLES

COS (A) Floating point
COSH (I) Fixed point

The relocatable Library subroutines supplied with the
1620 rorTRAN u-D System, with the exception of Ab-
solute Value Function (aBsF), will not accept fixed-
point arguments.

Arithmetic Statement Functions

These functions are defined by a single FORTRAN 1I-D

arithmetic statement and apply only to the particular

program in which they appear. They are named in

the same manner as the Library functions:
The name of the function consists of 1 to 6 alpha-
betic or numerical characters (not special char-
acters) of which the first must be alphabetic. The
name of the function is followed by parentheses
enclosing the arguments, which are separated by
commas.

The function statement is defined as follows:

GENERAL FORM
NAME (ARG) = E

where NAME is a function name followed by paren-
theses enclosing its arguments (which must be
non-subscripted variables) separated by commas,
and E is an expression which does not involve
subscripted variables. Any functions appearing in E
must be available to the program or already defined
by preceding arithmetic statements. The function
names in the main program must agree with those de-
fined in the arithmetic statements and FUNCTION
statements.

EXAMPLES

FRSTF (X) = A®*X+B

SCNDF (X,B) = A®*X+B

THRDF (D) = FRSTF(E)/D

FRTHF (F, G) = SCNDF (F, THRDF (G))
FFTHF (I, A) = 3.0°A**I

SXTHF (J) =] 4+ K

As is the case with the Library functions, the ap-
pearance of the name in the arithmetic statements
serves to call the function. The value of the function
(a single numerical quantity) is then computed, using
the arguments which are supplied in the parentheses
following the function name. Only one value is pro-
duced by a given arithmetic statement function.

114

In 1620 FORTRAN 1-D, the mode of the value is de-
termined by the function name, e.g., if the function
name begins with I through N, the mode will be fixed
point.

The right-hand side of a function statement may be
any expression not involving subscripted variables that
meets the requirements specified for expressions. In
particular, functions may be used freely, provided that
any such functions, if it is not a Library function, has
been defined in a preceding function statement. No
function can be used as an argument of itself.

As many as desired of the variables appearing in
the expression on the right-hand side may be stated
on the left-hand side as arguments of the function.
Since the arguments are really only dummy variables,
their names are unimportant (except insofar as they
indicate fixed-point or floating-point mode) and they
may even be the same as names appearing elsewhere
in the program.

Those variables on the right-hand side which are
not stated as arguments are treated as parameters
Thus, if FRSTF is defined in a function statement as
FRSTF(X) = A®X-+4B then a later reference to
FRTSF(Y) will cause ay-+b, based on the current
values of g, b, and y, to be computed. The naming of
parameters, therefore, must follow the normal rules
of uniqueness.

A function defined by a function statement may be
used in the same way as any other function. Its argu-
ments may be expressions and may involve subscript-
ed variables; thus, a reference to FRSTF (Z-4-Y(I)),
as a result of the previous definition of FRSTF, will
cause a(z+Yy;) + b to be computed on the basis of
the current values of a, b, y;, and z.

Functions defined by arithmetic statements are al-
ways compiled as closed subroutines.

All the arithmetic statements defining functions to
be used in a program must precede the first execut-
able statement of the program.

FORTRAN Functions and Method of | Method of | Method of
Subprograms Naming | Defining Calling
N
Library (closed) function Individual
Same
Arithmetic Statement function s Individual for
ame h
} for three
FUNCTION subprogram four Same
for
two
SUBROUTINE subprogram J Individual

Dummy Variables within an Arithmetic
Statement Function

A variable appearing as a dummy argument within an
arithmetic statement function must not previously
have been defined except as a dummy argument in a
previous arithmetic statement function. After the vari-
able is used as a dummy argument, it may appear
elsewhere in the program.

Subprogram Statements

Subroutines which are referred to by other rorTrRAN
I-D programs can be written as subprograms in the
FORTRAN II-D language. A subroutine is considered to
be any sequence of instructions that performs a de-
sired operation. A subprogram is defined as a program
written in FORTRAN language that is referred to or
used by another FORTRAN source program.

Two types of FORTRAN 11-p coded subprograms are
available: the FuncrioN subprogram and the susrou-
TINE subprogram. Four statements, SUBROUTINE, FUNC-
TION, CALL, and RETURN, are necessary for their defini-
tion and use.

Although runcrion subprograms and SUBROUTINE
subprograms are treated together and may be viewed
as similar, it must be remembered that they differ in
two fundamental respects:

1. The runcrioN subprogram, which results in a
FORTAN function, as defined under FuncriONS, is
always single-valued, whereas the SUBROUTINE
subprogram may be multivalued.

2. The ruNcTiON subprogram is called or referred
to by the arithmetic expression containing its
name; the sUBROUTINE subprogram can only be
referred to by a caLL statement (see CALL STATE-
MENT).

Subprograms of each of these two types are coded

in FORTRAN II-D language. In all respects, they con-
form to the rules for FORTRAN programming.

FUNCTION Statement

The FuNcTION statement, always first in a FuNcTION
subprogram, defines it as a FORTRAN FUNCTION sub-
program.

GENERAL FORM

FUNCTION Name (ay, a,, ..., an)

where Name is the symbolic name of a single-valued
function, and each argument a,, a,, ..., a, of which
there must be at least one, is a nonsubscripted variable
name.

The function name consists of 1 to 6 alphabetic or
numerical characters, the first of which must be al-
phabetic.

EXAMPLES

FUNCTION ARCSN (RADS)
FUNCTION ROOT (B, A, C)
FUNCTION INTRT (RATE, YEARS)

In a FuNcriON subprogram, the name of the func-
tion must appear either in an input statement list, or
at least once as the variable on the left-hand side of
an arithmetic statement. An example of the latter is:

FUNCTION NAME (A, B)

NAME=Z-+B

RETURN

The value of the function is returned to the calling
program. The mode of a function subprogram is de-
termined by its name.

EXAMPLES

FUNCTION AMAST (A, K) Floating point
FUNCTION IAMAST (A, K) Fixed point

The arguments following the name in the FuNcTION
statement may be considered as “dummy” variable
names, that is, during object program execution other
actual arguments are subsituted for them. Therefore,
the arguments which follow the function reference in
the calling program must agree in number, order, and
mode with those in the FunNcrioN statement in the
subprogram. Furthermore, when a dummy argument
is an array name, the corresponding actual argument
must also be an array name. Each of these array
names must appear in similar DIMENSION statements
within its respective program. None of the dummy
variables may appear in EQUIVALENCE statements
in the FUNCTION subprogram.

SUBROUTINE Statement

GENERAL FORM

SUBROUTINE Name (a;, @z, ..., 8a)

where Name is the symbolic name of a subprogram,

FORTRAN II-D 115

and each argument, a,, a,,...,a,, if any, is a non-
subscripted variable name. The name of the subpro-
gram consists of 1 to 6 alphabetic or numerical char-
acters, the first of which must be alphabetic.

EXAMPLES

SUBROUTINE MATMP (A, N, M, B, L, C)
SUBROUTINE QDRT (B, A, C, ROOT 1, ROOT 2)

The sUBROUTINE statement, always first in a suBrou-
TINE subprogram, defines it as a SUBROUTINE subpro-
gram. A subprogram introduced by the suBROUTINE
statement must be a FORTRAN program and may con-
tain any FORTRAN II-D statements except FUNCTION,
DEFINE DISK, or another SUBROUTINE statement.

A SuBROUTINE subprogram must be referred to by
a CALL statement in the calling program. The caLL
statement specifies the name of the subprogram and
its arguments.

Unlike the runcrioN subprogram which results in
the calculation of only a single numerical value, the
SUBROUTINE subprogram uses one or more of its argu-
ments to return results. Therefore, the arguments so
used must appear on the left side of an arithmetic
statement in the subprogram (or alternately, in an
input statement list within the subprogram).

The arguments of the sUBROUTINE statements are
dummy names that are replaced, at the time of execu-
tion, by the actual arguments supplied in the caLL
statement. There must, therefore, be correspondence
in number, order, and mode, between the two sets
of arguments. Furthermore, when a dummy argument
is an array name, the corresponding actual argument
must also be an array name. Each of these array
names must appear in similar DIMENSION statements
within its respective program.

For example, the subprogram headed by
SUBROUTINE MATMP (A, N, M, B, L, C)

could be called by the main program through the
CALL statement

CALL MATMP (X, 5, 10, Y, 7, Z)

where the dummy variables, A, B, C, are the names
of matrices. A, B, C must appear in a DIMENSION
statement in subprogram MATMP, and X, Y, Z must
appear in a DIMENSION statement in the calling pro-
gram. The dimensions assigned must be the same in
both statements.

None of the dummy variables may appear in
EQUIVALENCE statements in the SUBROUTINE subpro-
programs. These subprograms may be independently

116

compiled or used in a multiple compilation with
others.

CALL Statement

The caLL statement refers only to the SUBROUTINE sub-
program, whereas the RETURN statement is used by
both the FuncrioN and SUBROUTINE subprograms.

GENERAL FORM

CALL Name (a;, 22, ..., ay)

where Name is the name of a SUBROUTINE subprogram,
and a,, as, . . ., a, are arguments.

EXAMPLES

CALL MATMP (X, 5, 10, Y, 7, Z)
CALL QDRT (P°®9.732, Q/4.536, R-S*%20, X1, X2)

This statement is .used to call suBROUTINE subpro-
grams; the caLL transfers control to the subprogram
and presents it with the parenthesized arguments.
Each argument may be one of the following types:

1. Fixed-point constant.

2. Floating-point constant.

3. Fixed-point variable, with or without subscripts.

4. Floating-point variable, with or without sub-

scripts.
5. Arithmetic expression.

The arguments presented by the caLL statement
must agree in number, order, mode, and array size
with the corresponding arguments in the SUBROUTINE
statement of the called subprogram, and none of the
arguments may have the same name as the susrov-
TINE subprogram being called.

RETURN Statement

EXAMPLE
RETURN

This statement terminates any subprogram of the
type headed by either a SUBROUTINE or a FUNCTION
statement, and returns control to the calling program.
A RETURN statement must, therefore, be the last exe-
cuted statement of the subprogram. It need not be
the last statement of the subprogram physically, but
can be any point reached by a path’ of control. Any
number of RETURN statements may be used.

CALL LINK Statement

This statement is used to call a new program from
disk storage and transfer to the first executable state-
ment in that program.

GENERAL FORM
CALL LINK (NAME)

where NAME is the name of a FORTRAN program as
contained in the Equivalence table. The program
name must be formed with one to six alphabetic or
numerical characters (no special characters) of which
the first is alphabetic.

EXAMPLES

CALL LINK (JOE)
CALL LINK (PROGIS)

The caLL LNk statement is used to call another pro-
gram into core storage. The program that is called will
cause all subprograms and library subroutines that
it references to be read into core storage (the arith-
metic and I/O subroutines are also reloaded). Any
program called by using the cALL LINK statement must
be in disk storage or it is assumed that the “link” pro-
gram is the first mainline program encountered by
the system input unit. If the logic of the program
allows one of several links to possibly be called, it
is necessary that the link programs be on disk storage.
If a subprogram is not available (in disk storage)
that the “link” program references, the ForTrAN load-
er will request that the missing subprogram be load-
ed into core from cards or paper tape.

Only 50 links that call LocaL subprograms can ap-
pear in any one FORTRAN job.
. The comMoN area is not destroyed during the
loading of the link programs. If the size of common
differs (between the calling program and the link pro-
gram being called), the comMoN area size will be the
size defined for the new program.

FORTRAN 11-D Processor

The 1620 FORTRAN 11-D Processor program is used to
change a user-written FORTRAN source program into
an object program of 1620 machine language instruc-
tions. All programs are compiled in relocatable for-
mat, i.e., the program instruction addresses are com-
piled relative to a starting address of 00000. The in-
struction addresses must be modified before execution
can take place.

The processor operates under control of the Moni-
tor Supervisor program. It can be called into opera-
tion only by use of the For or Forx Monitor Control
records.

The Monitor II system permits the following For-
TRAN operations;

1. FORTRAN source program compilation.

2. FORTRAN source program compilation and imme-
diate execution of the compiled program. From
the programmer’s point of view, this is equiva-
lent to entering a source program into the ma-
chine as an object program.

3. Object programs may be placed in disk storage
after compilation and/or they may be punched
in cards or paper tape.

4. Execution of FORTRAN object programs that are
in disk storage or are in cards or paper tape.

5. Execution of programs in “links,” a procedure
necessary where the total program is too large
to fit into core storage at one time. A “link” is a
section of the total program (see cALL LINK
STATEMENT).

General Compilation Process

Although the process of compiling an object program -
is a continuous one, there are two phases through
which the source statements pass before an object
program is compiled. The user enters the source state-
ments using cards, paper tape, or typewriter input
and obtains output in cards, paper tape, or on the
typewriter or disk storage. The input and output
units are selected by the use of control records. The
object program may be placed permanently on disk
and it may be punched out in either paper tape or
cards.

The source statements are analyzed during Phase
I and broken apart into instruction generating ele-
ments that are strings of 5-digit codes. These strings
are then written on disk storage for use by Phase II,
which outputs the 1620 coding in relocatable format.
Errors are indicated on the console typewriter as
they are detected. The final output of any compilation
is a single program or subprogram. Unless this pro-
gram is an independent entity, capable of being
executed without other programs or library functions,
the user will need to load the other programs before
execution can take place. To initiate the loading
process, the user may (1) call the compiler with a
rorx Control record, or (2) call the compiled pro-
gram using an xeQs Control record (see MONITOR It
CONTROL RECORDS). A program loaded by means of a
Forx or xeQs Control record will also have all associ-
ated subroutines and subprograms loaded with it.
(All associated subprograms are loaded except those
defined as “load-on-call”; see LOCAL CONTROL RECORD).

FORTRAN II-D 117

The arrangement for stacked input to process
source program is shown in Figure 14. the ror or
Forx Monitor Control record is followed by optional
FORTRAN Control records, followed by the source pro-
gram. The inclusion of a paus Monitor Control record
will allow the operator to set the Console Program
switches to the desired position (options for Program
switches are shown in Table 9.) After setting the
switches, the operator depresses sTarT and the Super-
visor reads the ¥or or rorx record, the ForRTRAN Con-
trol records, if any, and begins compilation of the
source program.

During Phase I (reading the source program and
creating instruction generating elements, the Phase
I source program errors that are listed in Table 10 may
be detected. The Phase I errors are of two types:
Type I, compilation continues, but outputting of
intermediate output is stopped; Type II, compilation
and outputting both continne.

When all source statements have been read and the
instruction generating elements entered in the tempor-
ary storage area, Phase II of the processor takes con-
trol. If the program uses subscripts, Phase II uses in-
dex registers in the generated instructions to save
subscript calculations for reuse when possible. Phase
IT converts the Phase I instruction codes into machine
language instructions and places the instructions in a
temporary disk storage area. In-line instructions such
as FAapD are generated wherever possible. When all
intermediate output is processed, a message denoting
the end of compilation is printed. Depending on the
FORTRAN Control records loaded with the source pro-
gram, any of the following options can occur:

$+4+4 % (End of job)

ISource Program

>
*
I 43 FOR
1 +4 PAUS
43 JOB FORTRAN 11 = D
Conrrol/ Records
ity
MONITOR
Comro! Records
________ /
Figure 14. Typical Stacked Input for FORTRAN Compilation

118

1. Control is returned to the Supervisor. Control
records for output were not used; compilation
was apparently for editing only of source pro-
gram.

2. Object program is loaded to permanent area of
disk storage and/or outputted in cards or paper
tape.

3. Object program is executed using data from
input unit or disk storage.

The compiled object program contains a header
record which specifies various parameters and infor-
mation needed when it is to be loaded for execution,
such the program name, length of the program, f
and k, FORTRAN program constant, and indicators to
specify the Library subroutines used.

Subprogram identification records, consisting of 18
digits of name and address information, are created
for each subprogram called by a program. Up to 100
subprograms may be used with any one FORTRAN main
program or Link program.

FORTRAN I1-D Control Records

The rorrran Compiler can utilize four control records
that specify output options, etc. When they are used,
these records may be in any order but they must be
read in between the ror or rorx Control record and
the source program statements as shown in Figure 15.

The rorTRAN Control records must have an asterisk
in column 1 and the Name must be punched begin-
ning in column 2. If a control record (* in column
1) is read and is not a legally named record, the
message shown below is typed and the program halts.

ERROR, INVALID CONTROL RECORD

The operator must correct the invalid record in
the input unit and depress START.

The prescribed format and specific function of each
control record is described below.

FANDK. The rortraN 1-p Compiler, as delivered
to the user, will process an object program with a
floating-point word length of 10 digits (f of 08 +
2=10) and a fixed-point word length of 4 digits. The
operator may vary these lengths, at compilation time,
by using the FANDK control record. The format of the
rFANDK Control record is as follows:

Columns 1-6 * FANDK
' 7-8 ff
9-10 kk
11-80 not used

where ff is the floating-point mantissa length and kk
is the fixed-point word length.

FO RTRAN Source Program

* FANDK
(Define f and k)

* L DISK
(Load Object Program to Disk)

* POBJP
(Punch Object Program)

* PSTSN
(Punch Symbol Table & Statement No.)

FOR or FORX
Monitor Control Record

Figure 15. FORTRAN II-D Control Records

If entry is from the console typewriter, the same
format must be followed.

The range of f is 2 through 28, of k, 4 through 10.
If f or k is out of the prescribed range, the following
message is typed:

ERROR, F OR K OUTSIDE RANGE

PSTSN. This control record causes the symbol table
and addresses of numbered statements to be punched.
The format is as follows:

Columns 1-6 *PSTSN
7 n
8-80 not used

where n is 2 if paper tape output is desired or 4 for
card output. See NotE below.

POBJP. The rosyp Control record causes the object
program to be punched following compilation. The
format is as follows:

Columns 1-6 *POBJP
7 n
8-80 not used

where n is the same as for the psTsN Control record.

The format of the processor output (object pro-
gram) is given under LOADER ROUTINE of the SUPER-
visoR section of this publication,

Note: If n is not 2 or 4 in the pstsn or poByP Control
records, the following message is typed out on the
console typewriter, and the program halts.

ERROR, INVALID OUTPUT UNIT CODE

The operator must correct the record that contains
the error and depress the 1620 Start key.

LDISK. The wpisk Control record causes the object
program to be moved to a permanent area of disk
storage following compilation. The format for the
LDISK control statement is:

Columns 1-6 *LDISK
7-12 Name (optional)
13-16 Number (optional)
17-80 not used

where Name is the left-justified program name, and
Number is a 4-digit piM entry number not already
in use. If a prM entry number is not supplied, the Disk
Utility Program will assign one.

After compilation, the Disk Utility Program will
load the programs to disk and create a pim entry for
the program. At that time, the Name supplied (in the
Loisk record) will be placed in the Monitor Equiva-
lence table. It is not necessary to supply the name
of a FUNCTION or SUBROUTINE subprogram. The name
used in the FUNCTION or SUBROUTINE statement is the
name placed in the Equivalence table.

Entering the Source Program

The source program can be entered in the form of a
punched paper tape, a deck of punched cards, or a list
of statements to be typed in at the console typewriter.
This entry option is specified in the For or Forx Moni-
tor Control record.

OPERATING PROCEDURES

All of the following operations may be performed be-
fore the processor is called, except possibly items 1
and 3. If the operation taking place just prior to the
compilation of a source program required the Console
Program switches to be set differently than the desired
settings for compiling a Monitor paus Contrpl record
should have been inserted before the ¥or or rorx
record. This will allow time for the operator to change
the switches.

The operations required to process a source pro-
gram are as follows:

1. Set the Console Program switches for the desired
compilation operations (see Table 9).

2. Set all check switches to PROGRAM.

3. If punching is to take place, ready the paper
tape punch with feed code leader or, ready the
card punch by loading blank cards and depress-
ing the Punch Start key.

4. Place a For or Forx Control record in the input
unit (see the Monitor II Control Records section
for format).

FORTRAN II-D 119

Table 9. Program Switch Settings for FORTRAN II-D

SWITCH ON OFF
[Source statements are typed | Source statements are not
on the console typewriter | listed

as they are processed.

Source statement errors
are typed in the form SSSS
and CCCC ERROR n. *

Source statement errors
are typed in the form
ERROR n.*

At the end of Phase 1,
symbol table and statement
numbers are typed out.

Symbol table and statement
numbers are not typed out.

Trace instructions for
arithmetic statements are
not compiled.

2 Trace instructions for
arithmetic statements are
compiled but no additional
instructions are generated.

Trace instructions for IF
statements are nof com=
piled.

3 A trace instruction is com=
piled to trace the value of
the expression generated
in an IF statement. An
additional instruction is
generated in the object
program for every IF state-
ment,

4 Errors made while typing
source statements can be
corrected by
a. turning on switch 4 c. tuming off switch 4,
b. pressing the Release rd. retyping statement.
and Start keys,

Address of first instruction
for each statement is not

typed.

At the end of Phase 1, the
address of the first
instruction generated for
each statement is typed.
(Switch 1 must also be on).

*See description under Phase 1 Errors.

5. Place any desired ForTRAN Control records in the
input unit (see FORTRAN II-D CONTROL RECORDS).
6. Place the source program statements in the input
unit (specified in the FOR or FORx record).
To resume machine operation, if the machine was
stopped to allow the operator to perform any of the
above operations, depress the Start key.
Typewriter Input. If source statements are entered
by way of the console typewriter, each statement
must be terminated with a record mark. After a state-
ment is typed, the operator must depress the R-S key
to process that statement. As soon as a statement is
processed, the carriage returns to await entry of the
next statement. A statement of up to 330 characters
may be typed with no intervening punctuation, spac-
ing, etc. ‘
Normally card format need not be followed, how-
ever, in a comment statement the C must be followed
by at least two blanks (spaces) before the comment

is typed.

120

Phase | Errors

During Phase I of compilation, a number of tests are
made for source program errors. If an error is found
in a source statement and Program Switch 1 is on, a
message in the form

ERROR n

is typed, where n is the error code (see Table 10). If
switch 1 is off, the error message is in the form

SS§SS 4+ CCCC ERROR n

where ssss is the last statement number encountered
by the program prior to the error, and cccc is the
number of statements following the last numbered
statement. ssss 4+ cccc is the statement that contains
the error. For example, the message

0509 4 0012 ERROR 1

means that the twelfth statement following the state-
ment numbered 509 is incorrect. If an error occurs
before a statement number is encountered, ssss will
be 0000. Errors detected after processing the END
statement reference the END statement. Comment
cards, blank cards, and continuation cards are not
included in the statement count.

If any Type I errors (see Table 10) are found during
Phase I, no attempt is made to process the source
program through Phase II. At the completion of Phase
I, control is returned to the Monitor Supervisor pro-
gram (Monitor Control Record Analyzer routine).

If a Type II error is found (other than Error 60),
compilation continues on through Phase II. However,
any FORTRAN Control records specifying output that
were included with the source program will be dis-
regarded and control will transfer to the Supervisor
program at the completion of Phase II. If Error 60
is encountered, normal processing is continued since
N; and N; can be corrected when loading the object
program (see SUBROUTINE ERROR CHECKS).

Phase Il Errors

During processing of the intermediate output, cer-
tain checks are performed which were impossible to
perform during Phase I. If an error is detected, an
error message in one of the following forms is typed:

$SSS4+-CCCC SYMBOL TABLE FULL
$SSS+CCCC IMPROPER DO NESTING
S§SSS+CCCC DO TABLE FULL
§§SS+4-CCCC MIXED MODE

Table 10. FORTRAN Phase I Source Program Errors

TYPE 1: Compilation continues but outputting of intermediate output is stopped. Only one error of this type is detected in any one statement.

Error No. Condition Error No. Condition

1 Undeterminable, misspelled, or incorrectly 22 Dimensioned variable used within an
formed statement. arithmetic statement function.

2 Syntax error in a nonarithmetic statement 23 More than four continuation cards .
{exception: DO statements). 24 Statement number in a DO statement

3 Dimensioned variable used improperly, appeared on a previous statement.
i.e., without subscripting, or subscripting 25 Syntax error iri a DO statement,
appears on a variable not previously
dimensioned. 26 FORMAT number missing in an input/

) output statement .
4 Symbol table full (processing may not be

27 Statement number in on input/output
statement oppeared previously on a state-
ment other thon a FORMAT stotement, or

continued).

t subscript.
3 Incorrect subscrip o number on a FORMAT statement appeared
6 Same statement number assigned to more in other than an input/output statement.
than one satement. 28 Syntax emor in input/output tist or an
7 Control transferred to FORMAT statement . invalid list element.
29 Synt: in CALL stat t
8 Z/;rirg‘l:::r:ume greater than 6 alphameric irzl:o?iz Zr:;:"“zm' statement, or an
Lo} .
i . . 30 SUBROUTINE or FUNCTION statement
9 Variable name used both as a nondimensioned not the first statement in a subprogram.
variable name and as a Subroutine or Function)
name . 31 Syntax error or invalid parameter in a
SUBROUTINE or FUNCTION statement.
10 Invalid variable within an EQUIVALENCE
statement. 32 Syntax error or invalid variable in a
COMMON statement.
1 Subroutine or Function name or dummy var- . A . .
iable used in an EQUIVALENCE state- 3 Variable in a Common list previously

ment (subprogram only). placed in Common or previously equivalenced.
34 Library function name appeared to the left

of an equal sign or in a COMMON,
EQUIVALENCE, DIMENSION, or input/

12 k not equal to f + 2 for equivalence of
fixed point to floating point variables.

13 Within an Equivalence list, plocement of ?u|t|pu1 sdto;emen'ﬂ; or funcﬁt‘ior.\ name not
two varicbles previously in Common, or one ollowed by a left parenthesis.
variable previously equivalenced and 35 Synt in FORMAT
another either equivalenced or placed in Jyniax emor in AT statement, or
Comman invalid FORMAT specifications.
X L 36 Invalid expression to the left of an equal
14 Sense Switch number missing in an IF sign in an arithmefic expression.
(Sense Switch n) statement.
37 Arithmetic statement function preceded
15 Statement number or numbers missing, by the first executable statement.
not separated by commas, or nonnumerical . .
in a transfer statement. 38 Invalid expression in an IF or CALL state-
ment, or invalid expression to the right of
16 Index of a computed GO TO missing, an equal sign in an arithmetic statement.
invali ded .
invalid, or not preceded by a comma 39 Unbalanced parenthesis.
17 Fixed point number greater than k digits. 40 Invalid argument used in calling an
. . . Arithmetic statement function or Function
18 Invalid floating point number. subprogram.
9 t subscripti ithin o DIMENSION
L :r:::‘:‘:".s" cripting within a 41 Syntax error in disk |/O statement.
20 First character of a nome not alphabetic. 42 Disk 1/O list omitted.
43 Disk 1/O list contains both simple variables
21 Variable within @ DIMENSION statement and array nomes.
previously used as a nondimensioned
variable, or previously dimensioned or 44 COMMON exceeds core storage size. (May
used as a Subroutine or Function name. occur when large array is defined,)
TYPE 2: Compilation of intermediate output continues.
Error No. Condition Error No. Condition
51 DO loop ended with a transfer statement,
57 RETURN statement appeared in program
52 No statement number for next executable other than a subprogfg (;raiemz:;gignored).
statement following a tronsfer statement.
) . 58 RETURN statement not contained in o Sub-
53 Improperly ended nonarithmetic statement. routine or Function subprogram.
54 Unnumbered CONTINUE statement. 59 Statement number not defined. See note at
end of Table,
55 Number of Common addresses assigned in
excess of storage capacity because of 60 Syntax error in DEFINE DISK statement,

Equivalence. See note at end of Table. invalid use of, or DEFINE DISK stotement

56 Statement number or subscript greater than missing.
9999 (only first 4 significant digits are retained).

NOTE: Errors 55 ond 59 are not detected if Type | errors occur during compilation.

FORTRAN II-D 121

where ssss is the last statement number, encountered
by the program prior to the error, and ccce is the
number of statements following the last numbered
statement. ssss 4 cccc is the statement that contains
the error. Comment cards, blank cards, and continua-
tion cards are not counted in the statement count.

If an IMPROPER DO NESTING Or MIXED MODE Message
occurs, compilation is continued, but only to check
for other errors. The rortrAN Control records, psTsN,
poByP, and rLoisk will be disregarded. the object pro-
gram will not be executed and control will be return-
ed to the Supervisor program.

Compilation stops immediately after the symsoL
TABLE FULL Or DO TABLE FULL message is typed and
control is returned to the Supervisor program. The
approximate allowable number of symbols differs
with the core storage size .of the source machine.
For a 1620 with 20,000 positions, approximately
200 symbols are allowed. For a 1620 with 40,000 or
60,000 positions, the number of symbols allowed is
approximately 1200 or 2200, respectively.

End of Compilation

When all of the intermediate output is processed, the
following messages are printed:

nnnnn LENGTH
aaaaa NEXT COMMON
END OF COMPILATION

where nnnnn is the number of core positions the
object program requires (object program and data
areas except COMMON), and aaaaa is the next avail-
able core storage position of the coMMON area, (aaaaa
+ 1 is the last used position of comMON).

If rortrRAN Control records specifying output are
included with the source program, the outputting
takes place following' the END OF COMPILATION
message.

Identification Data
When a program (or subprogram) is compiled, it is
headed with an identification record that will be used
when the program is to be loaded into core storage
for execution.

Both main program and subprogram header identi-
fication records are shown and described as below:

Mainline or Link

Word First Next Subroutine
IOOI(X) 2J67J 587898 NI | NZ_LLpngfh[Leng?h {Length f kk | Core { Common y Indicators
5 1 2 6 2 5 2 3 5 22 5 5 30
Digits
Subprogram
Address Next Subroutine

- - - - gabpfogr En
00100 2147, 987898 | Name) Length lfkaIq Less Six | Common | Indicators }
5 12 é 12 5 22 5 5 30

122

00100

67

987898

Subprogram Name

N1

N2

Word Length

Rec. Length

Length

ff and kk

Entry Address Less
Six

First Core

The address of the origin of
the program less 100.

An indicator to the relocating
loader that a constant to be
relocated is forthcoming.

The number of digits in the
forthcoming constant.

An arbitrarily chosen constant
to identify this as a header
record for a FORTRAN pro-
gram.

The name of the program in
double digit representation
(left-justified). Used only
in subprograms and ror-
TRAN function headers.

The number of words per disk
record. (From the DEFINE
DISK FORTRAN statement.)
This field is present only for
mainline programs and
links.

The number of logical records
in the disk, as used by the
FORTRAN program. (From
the DEFINE DISK FORTRAN
statement.) This field is
only present in mainline
program and link header
records.

The number of digits in the
words used to determine a
logical record. This value is
the larger of the floating
word and the fixed word
length.

The number of sectors to be
used when reading or writ-
ing logical records. This

. value is limited to the num-
bers 1 and 2.

The length of the program
(This must be an even
number) B

The length of the mantissa
and the fixed point words
in this program.

The first location in the sub-
program, less six, to enter
the subprogram.

The first location in the pro-
gram to begin execution.
Present only. for mainline
or link programs.

The next location available in
coMMoON. This must be an
even address (e.g., 19998)
so that comMMoN can cor-
rectly be written on disk
during operation of the
FORTRAN loader. Subpro-
grams do not use this value,

A digit position for each li-
brary subroutine in the
FORTRAN system.

The identification record occupies one whole sector
when it is on the disk. The format for the balance
of this sector, if the program is in relocatable format,
is shown below:

0000021701234567891234567

Next comMmon

Sub. Indicators

Subprograms Called by FORTRAN

The names of the subprograms called by a program
are stored at the end of the program. The address
within the calling program where the address of the
subprogram will be placed is also stored along with
the name of the subprogram. These 18-digit name
and address records are created for the subprograms
called and the last record is followed by a record
mark. Up to 100 subprograms may be used with any
one FORTRAN main program or link (50 can be loaded
with the program; 50 can be called on an as-needed
basis, i.e., LOCAL).

L Name | Address | 0 §
12 Digits 5 !

The names.and addresses of the subprograms called
are moved to the FORTRAN loader work area when the
subprogram is loaded. This FOrRTRAN loader will de-
termine which of the subroutines called by the sub-
program have not already been loaded, and will load
those routines (exception: LOCAL subprograms cannot
call a new subroutine; see OBJECT PROGRAM EXECU-
TION). The proper addresses are placed within the
calling programs to link them with the subroutines
that they call.

Trace Feature

Under program switch control, instructions can be
compiled into the object program to enable the opera-
tor to trace the flow of the program when it is execut-
ed. During execution of the object program, the trace
output is under control of Program Switch 4 as de-
scribed under OBJECT PROGRAM EXECUTION.

The trace output contains the value of the left-hand
side of each executed arithmetic statement and/or,
the value of the expression calculated in an ¥ state-
ment.

Subroutines

The subroutines for 1620 FORTRAN 1-p are divided into
two types: (1) Library subroutines and (2) Arith-
metic and Input/Output subroutines.

LIBRARY SUBROUTINES

Sixteen relocatable subroutines are included in 1620
FORTRAN 1I-p (see Table 11).

The Library subroutines are loaded only when they
are used in a program, “link” program, or subprogram,
i.e., they are loaded before any execution of the call-
ing program takes place but they are loaded only if
required by the calling program. During compilation
of a program, a 30-digit field of zeros is created (in
the header record). When a subroutine is called for
by a source statement or “required for use,” a 1 is
inserted in the proper location of the subroutine indi-
cator field. The position in the field corresponds direct-
ly to the subroutine number given in Table 11.

“Required for use” means that even though the
user has not directly called a specific subroutine it
may be required by the system. For example, the
LocrF and EXPF subroutines are used to compute the
values of floating-point roots and powers in arithmetic
statements. They are loaded, if required, before execu-
tion of the program that requires them. Likewise, the
Subscripting routines (library numbers 3 and 4), and
the disk routines (library numbers 5-11), though never
directly called, will be loaded if required. Sections
of library routines 5-11 are loaded to disk storage
Cylinder 1 (relative to the start of the disk work area)
and the specific section required is loaded from the
disk to core storage only when it is needed. All read-
ing and writing of even arrays (f and k even) will
be done without loading additional instructions from
disk storage.

The FORTRAN statements FIND, RECORD, and FETCH
are processed by relocatable subroutines numbered
5 through 11. These routines are loaded into core
storage only if the disk FORTRAN statements are utiliz-
ed in the object program. Different routines may be
used to RECORD (or FETCH) an array. The routines
that will write out or read in an entire array with
one disk instruction will be wused if both the
fixed word length and the floating word length are
even (not necessarily equal). If either of these varia-
bles was defined as odd in length, the array will be
split into records that are the same length as those
used when reading or writing lists of variables. The
maximum speed in reading and writing of data from
and to the disk is attained with even values for f and
k (for example: 8 and 4).

FORTRAN II-D 123

Table 11. FORTRAN II-D Library Subroutines

Storage Requirements
sSuB- DIM
. VARIABLE FIXED
sYMBOLIC | ROUTINE ENTRY TRANSFER
TYPE OF FUNCTION N NUMBERS DDRESS WORD WORD
NAME UMBER UMBER ADDRESS | \ENGTH | LENGTH
VAR, | FIXED (f=8) (f=8
Logarithm (natural) LOGF 1 10 170 02248 814 650
Exponential EXPF 2 1 171 02253 978 662
Subscripting (2 dimensions) ENTSC2 3 12 172 02258
Subscripting (3 dimensi ENTSC3
' pting (3 dimensions) 4 13 173 02263 474 474
Routine to load or unload
disk buffer (fixed) ENTSDX 5 14 174 02268
FIND ENTFID 6 15 175 02273
RECORD ENTREC 7 16 176 02278
FETCH ENTFET 8 17 177 02283
Routine to load or unload
disk buffer ENTSWD 9 18 178 02288 1530 1530
Routine to write or read arrays ENTARR 10 19 179 02293
Routine to complete FETCH
or RECORD ENTCPT n 20 180 02298
Cosine COSF 12 21 181
: 02303 1154 742
Sine SINF 13 2 182 02308
Arctangent ATANF 14 23 183 02313 938 518
Square Root SQRTF 15 24 184 02318 470 376
Absolute Value ABSF 16 25 185 02323 58 - 58

The rinND subroutine is used to position the access
arm in the disk storage drive in advance of a FETCH or
RECORD. It may be necessary for the FORTRAN system
to change the position of the arm after a FIND opera-
tion has been initiated. If this is the case, the same
location for the arm as specified in the FIND statement
will be sought again after the FORTRAN system opera-
tion is complete. This automatic repositioning to the
FIND cylinder will occur after every arm disturbance
until the next FETCH or RECORD statement has been
executed.

The FORTRAN statements that use two or three di-
mensions of subscripting are handled by the subrou-
tines numbered 3 and 4 (this is actually one routine
with two entry points).

Two forms of the supplied library routines are in-
cluded with rorTRAN 1-D. Both forms make use of the
Automatic Floating Point Operations feature, and both
forms are stored to disk storage when the Monitor II
System is initially loaded.

One set requires that the value of f be equal to 8,
and is termed the fixed word length set. The other set
is used when the value of f is not equal to 8, and this

124

form is termed the variable word length set. The value
of k may range from 4 to 10 with either set.

The operation of the fixed word length routines is
faster and in most cases requires fewer positions of
storage (see Table 11).

The only way to make the selection of the fixed
word length or the variable word length library sets
is through the value assigned to f. If f equals 8, the
FORTRAN loader automatically selects the fixed word
length set; likewise, if f is not equal to 8, the variable
word length set is selected.

The user may add up to 14 subroutines to either set
of the rorTRAN library. The procedures for adding
subroutines and information for writing subroutines is
given under ADDING SUBROUTINES TO THE FORTRAN
LIBRARY.

ARITHMETIC AND INPUT/OUTPUT ROUTINES

The arithmetic and input/output subroutines, includ-
ing constants and working areas, are basic routines
needed for proper execution of the object program.
They are loaded without being specifically called for

by the object program. Besides performing the funda-
mental tasks of adding, subtracting, etc., these rou-
tines also perform some diagnostic testing on the data
being manipulated.

Two sets of the arithmetic and input/output sub-
routines are provided, and — just as with the library
subroutines — one set is a fixed word length set and the
other is a variable word length set. The rorTrAN load-
er automatically selects the fixed or variable word
length set, depending on the value of f. When the
value of f is 8, the fixed word length set is selected;
when the value of f is not 8, the variable word length
set is selected.

Both the fixed word length set and the variable
word length set are supplied in two forms. One form
'of each set is sectionalized to create groups of the
arithmetic and input/output routines. Each group
contains several routines and is loaded to core storage
only when required by the program being executed.
The routines overlay one another which provides a
substantial savings in core storage area.

The second form of each set provides that all rou-
tines be in core storage at one time. This form requires
more core storage, naturally, but allows for faster op-
eration of the program as there is no time lost in read-
ing a routine in that is not already present in core
storage.

The routines to be read from-disk-when-required
are placed in the first cylinder of the disk work area
just prior to beginning execution of a program that
will utilize them. The first cylinder of the disk work
area is cylinder zero unless the user redefines the
working cylinder. (See DEFINE PARAMETERS ROUTINE
in the Disk Utility Program section.)

When the Monitor IT System is delivered, the rou-
tines that read-in-when-required are designated as
standard (since the value of f is designated as 8, it is
the fixed word length set). These standards may be
changed through the use of the pup pFINE control
card. The selection of the in-core or the read-in-as-re-
quired form can be made when a program is called
for execution by placing the proper digit in the xEQs
control statement (column 28). The digits that may
be placed in this column are:

1 or 3 — read-in-as-required

2 or 4 — in-core

Any digit higher than 4 will result in an error mess-
age of:

ERROR LS8

After this message the FORTRAN loader selects the sys-
tem standard form and continues operation.

The following core storage addresses are the first
positions available for use by FORTRAN object pro-
grams, depending upon the set and form selected.

Fixed Word Length

In-core — 11200
Fixed Word Length
Read-in-as-required — 07500
Variable Word Length

In-core — 13000
Variable Word Length
Read-in-as-required — 07500

The arithmetic and input/output subroutines pro-
vided are listed in Table 12. The absolute addresses
can be found by referring to their symbolic names in
the program listing. '

Symbol Table Listing

If Program Switch 1 is in the oN position during the
FORTRAN compilation, the storage addresses of the
symbol table will be listed in the following order and
form.

1. Floating-point constants Fixed-point constants
XXXXX MMMMMMMMCC XXXXX FFFFF

where XXXXX is the low-order address of the
constant.

Table 12. FORTRAN Arithmetic and Input/Output
Subroutines

Subroutine Symbolic Name Operation

Floating Point Arithmetic

Reverse Subtract FSBR
Reverse Divide FDVR

A = FAC —» FAC
A/ FAC —= FAC

Set FAC to zero ZERFAC 0 ——= FAC
Fixed Point Arithmetic

Reverse Subfract FXSR 1- FAC —» FAC

Multiply FXM FAC x 1 —»FAC

Divide FXD FAC/1—»FAC

Reverse Divide FXDR 1/ FAC —»FAC

Common Subroutines

- FAC —=~FAC

Reverse Sign of FAC RSGN
FIX (FAC) == FAC

Fix a Floating Point Number | FIX

Float a Fixed Point Number | FLOAT FLOAT (FAC) -=~FAC
Exponentiation

Fixed Point J ** | FIXI FAC **] —~FAC

Floating Point A ** () FAXI FAC ** (+]) —»=FAC

Floating Point A ** (1B) FAXB FAC ** (3 B) —=FAC
Input/Qutput

Read Card | RACD

Read Tape RAPT

Read Typewriter RATY

Write Card WACD

Write Tape WAPT

Write Typewriter WATY

FAC - simulated accumulator
A &B - floating point variables
1&J =~ fixed point variables
—» =~ storein

FORTRAN II-D 125

MMMMMMMMCC is a floating-point con-
stant.
FFFFF is a fixed-point constant.
2. Simple variable Dimensioned variables

XXXXX NAME XXXXX NAME YYYYY

where XXXXX for simple variables is the address
at object time where the value for NaME will be
stored.

XXXXX for dimensioned variable is the ad-
dress at object time of the first element in the
array, NAME,

YYYYY is the address of the last element in
the array, NAME.

If NaMmE® is typed, this indicates a dummy
parameter within an arithmetic statement func-
tion.

3. Called subprograms

XXXXX NAME

where XXXXX is the location at which the start-
ing address of the subprogram will be stored.
4. Statement numbers

XXXXX SSSS

where XXXXX is the address of the first instruc-

tion generated for the statement numbered SSSS.

The address of the first generated instruction for

each statement is typed with Program switches 1 and

4 in the on position. If the statement number pertains

to a FORMAT statement, the location of XXXXX will
be the actual address of the FormAT specification.

Symbol Table Listing for Subprograms

When compiling a subprogram, the dummy argu-
ments are listed after statement numbers, as follows:

XXXXX NAME

where XXXXX is the location at which the actual ad-
dress of the variable in the mainline program, cor-
responding to the argument, namE, will be stored
upon entering the subprogram. This same form is also
used for simple and dimensioned variables.

The addresses listed are not the actual addresses at
object time. Since programs are relocated upon load-
ing, the listed addresses have to be adjusted relative
to the starting location of the program or subprogram.

Object Program Execution

A 1620 FORTRAN II-D program may consist of three
parts: a main program, a group of subprograms, and
the library subroutines utilized by the main program
and subprograms. The main program exercises control
over the entire operation being performed. In addition
to the normal execution of instructions, it has the

126

ability to call subprograms and subroutines.

Subprograms, defined with a FUNCTION or SUBROU-
TINE subprogram statement at compilation time, can
be placed into two groups (which have nothing to
do with the way they were defined at compilation).
For execution, subprograms are either:

1. Loaded into core along with the main program

(or link program) that calls them, or,

2. They may be left on disk storage and brought

into core storage only when called.

The user must determine which subprograms are
to be loaded into core storage prior to execution and
which are to be loaded when called for immediate
execution. The subprograms that are to be loaded
when called are defined by using a rocar Control
record. The subprograms that are named in the LocAL
record will be loaded to the work area of disk storage
prior to execution of the main program or link pro-
gram that calls them.

A subprogram requires no changes in order to be a
LocAL subprogram. A subprogram written for use in
core with the main program can be used instead as a
LOCAL subprogram merely by naming it in a LOCAL
control record. However, a LocAL subprogram cannot
call an “in core” subprogram that is not called from
either (1) the main program, or, (2) another “in core”
subprogram, and a rLocaL subprogram can never call
another LocaL subprogram.

The following illustration shows the layout of core
storage during execution of a typical FORTRAN
program.

Multiply and Add Tables

Supervisor Routines

02218

Arithmetic and 1/O Routines

07500 or 11200 or 13000

Mainline Program

In=Core Subprograms

Library Subroutines

Routine Linkage Area and Loader Routine

LOCAL Subprogram Read=in Area

COMMON

Converting FORTRAN Object Programs to Core Image

FORTRAN object programs which are stored on disk are
in System Output format. When called for execution,
these programs must first be converted to core image
format before they can be executed. In cases where the
main program and/or the in-core subprograms are very
long, the conversion time might become excessive. To
eliminate this conversion each time a program is exe-
cuted, the user can convert main programs and in-core
subprograms to core image format and permanently
store them on disk in that form.

The means of conversion is the Replace Programs
routine, a disk utility function described earlier in this
manual. A procedure for converting to core image for-
mat follows:

1. Clear core storage to zeros.
2. Load the Supervisor program to core storage.
3. Read in the following sequence of cards:

== JOB
-+ -= DUP

*DREPL. NAME DIM1
Col 7 13 17 39
Columns 1-6 Code word *DREPL.
7-12 Alpha name of program.
13-16 DIM entry number of new pro-
gram.
DIM entry number of program to
be replaced. This will be the same
as the number punched in Column
13-16.
Fixed core storage address where
program will be loaded when
called for execution.
49 Input unit (D for disk).
50 M denotes conversion from System
Output format to core image for-
mat.
60 Any non-blank character.
NortE: This procedure must be followed in its entirety
each time the prepL function is used with FORTRAN
programs.

DIM2 CORE DM F
49 50 60

17-20

39-43

126.1

LOCAL Control Record

Subprograms that are to be loaded when needed are

defined at load time by a LocaL Control record. The

format of the LocaL Control record is as follows:
Columns 1-6 ® LocAL

7-80 Main program name, comma,
Subprogram name, comma,
Subprogram name, comma,

etc.

The main program may be identified in either of
two ways. If it has a name in the system Equivalence
table, that name may be used. If no name is in the
Equivalence table to identify the main program, the
name may be omitted. In this event, the comma nor-
mally following the program name must be retained.
Blanks may not be included between names and
commas. The commas must be placed between sub-
program names. When more than one card or tape
record is needed to identify all LocaL subprograms,
a comma must be placed following the last name on
each record that is followed by another LocaL record.
The name of the main program is omitted from all
continued LoCAL records, but they must contain the
asterisk and code word LocAL.

EXAMPLES

* LOCAL MLNAME, SUBI, SUB2, SUB3,
* LOCAL SUB4

* LOCAL LNKNAM, SUB2, SUB6

* LOCAL LNK2, SUB2, SUB6, SUB7

Up to 100 subprograms (50 maximum, in core; 50
maximum, LOCAL) may be called by a main program
or link,

LOCAL records to be entered into the system must
follow the FORTRAN source program when compiling
and executing a program (see Figure 16). The number
of LocAL records to be read must be placed in col-
umns 9-10 of the Forx record or columns 29-30 of the
xeQs Control record. When typing the rocavr record,
no more than 79 columns may be used. When the
LOCAL record is in paper tape, only 79 positions may
be used and the positions used must be followed by
a blank.

Library subroutines to be loaded at load time are
selected by interrogation of the subroutine indicators
in the header record that precedes each program, link,
and subprogram. Each indicator, one for each sub-
routine, must be a numerical 1 if the corresponding
subroutine is to be loaded to core storage at load time.
All subroutines are loaded if called in the main pro-
gram or if called in subprograms that are loaded to
core storage. A LOCAL subprogram must not call for
a subroutine that was not called for by the main pro-
gram or a subprogram loaded to core storage (see
Table 13).

DATA Control Record

The purpose of the pATA control record is to indicate
to the ForTRAN loader that all segments of the pro-
gram have been loaded prior to beginning execution.

input Data for Program

J*DA
IﬁJsNAM
| + LocaL

lﬁ)RTRAN Source Program

* Control Records
(detailed in Figure 15)

Input Data for Program

*DATA

SUBNAM

PLOCAI.

33 FORX \
Monitor Control Record

3+ XEQS
Monitor Control Record

Figure 16. Positioning of LOCAL and DATA Control Records in FORTRAN Stacked Input

FORTRAN II-D 127

The rules for inclusion of the paTa control record

are:

1. If the mainline or link program, or any of its
associated subprograms are loaded from the
paper tape reader or card reader, a pATA control
record must be included in the stacked input
whether or not any data is to be read by the
program.

2. If the mainline or link program, and its associat-

ERROR
CODE MEANING, REASON RESULT

L1 Invalid LOCAL control record Typeout JOB ABAN~
Word LOCAL misspelled, mis- | DONED, branch to
placed, or no asterisk MONCAL*

L2 Invalid name in LOCAL record Typeout JOB ABAN-
Not formed according to DONED; branch to
FORTRAN rules MONCAL*

L3 Multiple name in LOCAL record Typeout JOB ABAN-
Same subprogram name appears | DONED; branch to
more than once for some pro- MONCAL*
gram or link, or program or link
name appears more than once

L4 LOCAL subprogram table full Typeout JOB ABAN-
Greater than 50 LOCAL sub- DONED; branch to
programs per link not allowed | MONCAL*

Mainline table (link names) full
More than 50 links calling
LOCALS not allowed

L5 Invalid header record Branch to MONCAL*
Does not conform to standard
FORTRAN header record

L6 Unequal F or K Subprogram not
Subprogram F and/or K does loaded
not compare with main program
ForK

L7 New subroutine called from LOC- | Subprogram loaded;

AL subprogram subroutine not loaded
LOCAL subprogram cannot call
new subroutine
L8 Invalid arithmetic and input/output | Set defined as system
subroutine set standard is loaded,
Not defined as 1, 2, 3, or 4 depending on group
loaded

L9 In-core subprogram table full Ignore above 50th
Greater than 50 subprograms subprogram
not allowed

L10 { New subprogram called from LOC~ | LOCAL subprogram

AL subprogram loaded; new sub-
LOCAL subprogram cannot call | program not loaded
new subprogram

L11 | LOCAL subprogram disk storage LOCAL subprogram

area overlaps reserved disk work is not loaded
area

*MONCAL is the symbolic name for Monitor Control Record
Analyzer routine.

Table 13. FORTRAN Loader Errors

128

ed subprograms are all loaded from disk a pata
control record must not be included in the stack-
ed input.
The format for the para Control record is as
follows:

Card
Columns 1-5 *DATA
6-80 must be blank
Paper Tape

75 zeros ——--*|
* DATA00000000000000000000®)

When the pata record is recognized by the loading
routine, a check is made to determine which subpro-
grams have not yet been loaded. If there are any
such subprograms they are listed on the console type-
writer, the machine halts; and the operator must then
see that these subprograms are made available for the
loading routine to load before depressing the Start
key. If all subprograms have been loaded, any remain-
ing data in the input unit will be skipped until the
DATA record is read.

Console Program Switch Settings

Switch 1. When switch 1 is on, a list of the pro-
grams being loaded is typed on the console type-
writer. The format of the list is:

XXXXXX NNNNN LLLLL LOADED

where xxxxx is the name of the program or subpro-
gram or the number of the subroutine, NNNNN is the
beginning core storage address, and ririL is the
length of the program.

Switch 4. When switch 4 is on, and trace instruc-
tions have been compiled into the object program,
the trace output is listed on the console typewriter.
The trace output contains the value of the left-hand
side of each executed arithmetic statement and/or, the
value of the expression in an 1F statement.

If the typewriter input is called for by the object
program the operator must:

1. Type in the required data.

2. Turn Console Program Switch 4 to the oFF posi-
tion.

3. Depress the Release key.

4. Depress the Single Instruction key 7 times.

5. Turn Console Program Switch 4 to the ox posi-
tion.
6. Depress the Start key.

If the operator makes a mistake when typing the input
data it is necessary only to depress the R-S key and
retype the required data.

Operating Procedure

To execute a previously compiled FORTRAN program,
the following items must be placed in the input unit.

1. yoB Control record.

2. xEQs Control record.

3. rocaL Control records (if required).

4. Main program (if not previously loaded to disk
storage).

5. Subprograms (if required and not previously
loaded to disk storage).

6. pata Control record. Note: This must be sup-
plied even if data has been loaded to disk stor-
age.

7. Input data (if not previously loaded to disk stor-
age).

8. Job End Control record.

When called for execution, the main program is
converted from relocatable format and loaded into
core storage (see LOADER ROUTINE in Supervisor sec-
tion of this manual for a description of operation and
errors). Following the loading of the main program
the “in-core” subprograms are loaded. If any subpro-
grams are not available the message

LOAD SUBNAM

is typed, where suBNaM is the name of the subpro-
gram that must be loaded in the input unit.

When all “in-core” subprograms are loaded, the
library ‘subroutines needed by the main program
and “in-core” subprograms are loaded into core stor-
* age. Following the loading of the subroutines, if any
subprograms have been defined as rocarL subpro-
grams, an “object-time read-in routine” is loaded and
following it a linkage area is reserved for each LocaL
subprogram.

Then, the first LocaL subprogram is loaded into core
storage. The address to which this subprogram is
loaded will be the input address for all LocarL sub-
programs. The first LocaL subprogram is then moved
to the top end of the work area of disk storage and
the next LocaL subprogram is loaded to core storage.
LOCAL subprograms may be loaded to the system by
way of the input unit, however they must be stacked
following any “in-core” subprograms to be loaded.

If a prM entry for a particular subroutine cannot be
found in the map, the following message is typed out.

NO ENTRY FOR SUBROUTINE nn
JOB ABANDONED

This would indicate that the entry was either delib-
erately deleted from the map, never entered into the
map, or otherwise destroyed. After the message is
typed, the rorTraN Loader branches to MoNCAL (sym-
bolic name for the Monitor Control Record Analyzer
routine),

OVERLAP Errors

During the loading of the main program, subpro-
grams, subroutines, or the read-in routine or the pro-
gram linkage areas, the available core storage area
may be exceeded.

If a main program or link program would exceed
the available area the following message is typed
and control is transferred to the Supervisor program
(see MONITOR CONTROL RECORD ANALYZER ROUTINE).

NAME XXXXX OVERLAP
JOB ABANDONED

NAME is the name of the program or link program,
Xxxxx is the number of core storage positions re-
quired by that program. If the program has no as-
signed name, MAIN is printed for NAME.

If a subprogram would exceed the available area
the NAME Xxxxx OVERLAP message is typed and the
named program is not loaded. Subprograms following
the “overlap subprogram” are loaded if possible.

If a subroutine would overlap the available core
storage area the message

NN XXXXX OVERLAP

is typed, where NN is the library subroutine number
and Xxxxx is the length of the subroutine. The sub-
routine is not loaded.

If the LocaL subprogram read-in routine or program
linkage areas exceed the available core storage areas,
the message

FLIPER XXXXX OVERLAP

is typed. FLIPER is the name assigned to represent the
read-in routine and Xxxxx is the length of the routine
and linkage area required. The read-in routine and
the linkage area are not loaded.

After all possible programs are loaded, and there
is any error — overlap or others — the message

EXECUTION INHIBITED

is typed and a branch to MoncaL is executed.
(MoNcAL is the symbolic name for the entry point to
the Monitor Control Record Analyzer routine.)

During loading of a FORTRAN program, the errors
listed in Table 13 may appear.

FORTRAN II-D 129

Subroutine Error Checks
A number of error checks have been built into the

library subroutines. The basic philosophy in the dis-

position of an error is to type an error message, set

the result of the operation to the most reasonable

value under the circumstances, and continue the
program (note error D1 exception, described below).
Subroutine error codes, the natire of the error, and
the value of the result in Fac (symbolic name of the
accumulator in which arithmetic operations are per-
formed) are listed in Table 14.

The error printout is in the form
ER XX
where xx is the error code in the table.

Table 14. FORTRAN Subroutine Error Codes

ERROR CODE ERROR RESULT IN FAC
D1 Disk I/O used without a DEFINE
DISK statement.
D2 Logical record specified exceeds
N2,
D3 No group mark found at end of
an array that was read from disk.
El Zero division in FXD or FXDR 999.....
E2 Overflow in FIX 99.eeen.
F1 Loss of all significance in FSIN - -
or FCOS 000..... 099
F2 Zero argument in FLN 9..e... 999
F3 Negative argument in FLN In/x/
F4 Overflow in FEXP 99......999
F5 Underflow in FEXP 00...... 099
Fé6 Negative argument in FAXB /A/a
Negative argument in FSQR SQR/%/
F7 Input data in incorrect form or
outside the allowable range
F8 Output data outside the allow-
able range
F9 Input or output record longer
than 80 or 87 characters (which-
ever is applicable to the I/O
medium being used)
Gl Zero to minus power in FIXI 999...
G2 Fixed-point number to negative | _
power in FIXI 000. .
G3 Overflow in FIXI| 999 ceen
G4 Floating-point zero to negative - -
power in FAXI 99......999
G5 Overflow in FAXI 99...... 999
Gé6 Underflow in FAXI 00...... 099
G7 Zero to negative power in FAXB 99.0uu.. 999

130

If errqr D1 occurs, the machine halts, the typewrit-
er carriage returns, and the operator must enter the
DEFINE DISK statement parameters by means of the
typewriter in the form of

NNXXXXX

where NN corresponds to N, and xxxxx corresponds
to N, as described for the pEFINE pIsk statement. Error
D1 will be indicated until the values of N; and N,
are within the correct range.

The rorTrRAN loader further checks the value of N,
(number of data records as specified in the DEFINE
pIsK statement) to see if the N, disk work area would
be overlaid by operation of the ForTRAN loader. The
FORTRAN loader uses the disk working area (starting
from the high-order positions) for tables, comMoN
save area, and LOCAL subprograms. Also. the first
(low-order) 218 sectors of the disk work area are
reserved to store the short form groups of the arith-
metic and input/output subroutines. If N, times
Record length plus 218 is greater than the lowest
disk address used by the rorTrRAN loader, N, will be
redefined as

X218
Record Length

where X is the lowest disk address used by the ror-
TRAN loader. The user is notified of this action by the
following message:

MAX N2 ALLOWABLE XXXXX

where Xxxxx is the maximum allowable value for N,
Loading and execution of the programs continues.

If Error D2 occurs, the specified record will not
be written (or read), and the index value (I) may
be incorrect.

If Error F7 occurs, the field which is incorrect is
replaced by zeros, and processing continues.

The exponent portion of an E-type input data field
must be right-justified in that field and may contain
only one sign. Deviations from this rule are not check-
ed. For exponents greater than 99 (absolute value),
the value is reduced modulo 100.

If Error F8 occurs, the incorrect field is set to
blanks in the output record, and an additional record
is typed. This record contains the incorrect field in

the form

E (f + 6). f
I (k4 1)

This additional record is also produced on the output
unit (card punch, tape punch, or typewriter) called
for by the source statement.

If Error F9 occurs, the incorrect field is ignored
and processing continues. However, a remote possi-
bility exists that part of the subroutines and the object
program may have been destroyed by the abnormal
record. In this case, the program may inexplicably
halt at some later point in its execution.

for floating-point numbers, and
for fixed-point numbers.

Object Program Subroutine Linkage

The linkage generated by the FORTRAN 1-p compiler
is in the form

BTM SUBR, A

where suBR is the name of the entry point for the sub-
routine and A is the address of the operand. For the
relocatable library subroutines, an indirect address is
used in the linkage. The actual address of the library
subroutine entrance is stored at locations 02244-02248,
02249-02253, etc. The FORTRAN object program linkage
for entrance to the first library subroutine will ap-
pear as,

BTM—-02248, A

Adding Subroutines to the FORTRAN Library

The user may write library subroutines in ses lan-
guage and have them placed in the ForTRAN library.
The subroutine must be assembled using the sps n-p
program, and may be loaded to disk storage at as-
sembly time or at a later time -using the Disk Utlity
program.

Special prm entry numbers are reserved exclusively
for the ForTRAN library subroutines. When the Mon-
itor IT System is delivered, the variable word length
library set uses pim entry numbers 10 through 25.
Numbers 26 through 39 are available for user-written
routines. The fixed word length library set uses pmm
entry numbers 170 through 185, with numbers 186
through 199 available for user-written routines. If
desired, the last 5 of the 16 subroutines in each set
may be replaced with user-written routines.

When a subroutine has multiple-entry points, a pim
entry is required for each entry point. No subroutine
may have more than 9 entry points. The symbolic name
of each entry point must be specified in a psa state-
ment at the beginning of the source program. Also, the

number of entry points must be specified in a special
DEND statement.

The user must provide a 5-position area immedi-
ately preceding each entry point. This space will be
used to contain the address of the parameter when
the subroutine is entered.

In installations where both the fixed and variable
word length library subroutine sets are used, any ad-
ditional subroutine must be added to both sets. The
procedure for accomplishing this is described under
LOADING THE LIBRARY SUBROUTINE.

When selecting the proper routine (before execu-
tion) the rorTRAN program decodes the name and
finds the proper piM number for the variable word
length subroutine. If the fixed length routines are
called for, a constant 160 is added to the pim number.
There must, therefore, be correspondence in numbers,
names, and the number of entry points between the
fixed and variable word length subroutines to be
added.

If only the variable word length set or only the
fixed word length set is to be used, it is not necessary
to add additional subroutines to both sets. (See LoAD-
ING THE LIBRARY SUBROUTINE for examples.)

Working Areas

In writing the subroutine, the programmer may first
move the argument into one of the working areas
such as FAC, BETA, or SAVE. In arithmetic subroutines,
the exponent of a floating point result is usually stored
in save before being moved to FAC. A careful study
of the arithmetic subroutines may reveal that the relo-
catable subroutine to be added can share the normali-
zation, sign determination, overflow, underflow, and
error typeout sections. The value calculated by the
subroutine must be left in Fac. Even if no value is
calculated, it is advisable to place a constant in Fac.

When programming a subroutine with variable
length floating-point numbers, it may be necessary
to use certain addresses and constants available in
the arithmetic and input/output subroutines. A refer-
ence to the listings of these subroutines will yield the
information on these addresses and constants. As the
mode of operation (fixed or floating point) is deter-
mined by the argument of the subroutine, the rFor-
TRAN 1-D Processor does not distinguish fixed-point
from floating-point subroutines. It is up to the user
to have a thorough knowledge of the added subrou-
tines and to use them correctly.

Loading the Library Subroutine

Additional subroutines can be added to the FORTRAN
library directly at the time of assembly, or after
assembly.

FORTRAN II-D 131

The following examples illustrate adding a subrou-
tine with two entry points (at assembly time).

EXAMPLE 1.

#+JOB
+# SPS WRITTEN LIBR SUBR FOR FIXED SET
++SPS
*LIBR
*ASSEMBLE RELOCATABLE
*STORE RELOADABLE
*ID NUMBER 0186
START DSA ONEENT, TWOENT
DORG START-4

FAC DS ,2492
DC 5,0,, (See Explanation
ONEENT NOP ,,, Following
TFM FAC,0, Example 2)
BB2
DC 5,0
TWOENT NOP
TFM FAC,0
BB2
DEND 2

The above source statements make use of piM entries
186 and 187; note that no names are actually assigned.
In the following example, which adds the same rou-
tines to the variable word length set, the name oNEENT
is added at assembly time; the second entry point
(named TwoENT) is added by the Disk Utility prLs
operation. (See ADDITIONAL ENTRIES AND SYNONYMS.)

EXAMPLE 9

#++JOB
++ SPS WRITTEN SUBR FOR VARIABLE SET
++SPS
*LIBR
*NAME ONEENT
*ASSEMBLE RELOCATABLE
*STORE RELOADABLE
*ID NUMBER 0026
START DSA ONEENT, TWOENT
DORG START-4

FAC DS 52492
DC 5,0,, (See Explanation
ONEENT NOP ,,, Following
TFM FAC,0,, This Example)
BB2
DC 5,0
TWOENT NOP
TFM FAC,0
BB2
DEND 2
##DUP

*DFLIBTWOENT 27

An explanation of each of the source program state-
ments follows.

DSA The name of each entry point must be
listed in a psa statement at the beginning
of the source program. It is labeled so it

can be referenced by the pore statement.

132

DORG This eliminates the core requirements of

the psa statement.
DS Allows for symbolic reference to the
Floating Accumulator area.
DC Provides space for BT™M address when the
subroutine is entered during execution.
A 5-position area must precede each
entry point.
The nop will be replaced by the user-
written statements of the subroutine to
be added.
This illustrates the recommended restor-

NOP

TFM

ing of the Floating Accumulator area. If
a value is to be returned, a TF or TFL
would be used in place of the TFM™.

BB2 Last executable statement. BB can also

be used.
DEND Last source statement as with normal
sps assembly except for the special num-
ber in the operand field which denotes

the number of entry points.

The procedure for assembling and adding a subrou-
tine to the variable word length set only is as follows.

#JOB
+##SPS
*LIBR
*ASSEMBLE RELOCATABLE
*STORE RELOADABLE

*ID NUMBER 0026
*NAME

START (Subroutine instructions

including those required as
. shown in Examples 1 and 2)
DEND n

If the subroutine contains more than one entry point,
the name and piM entry number for each entry must

‘be provided in a prLIB control statement as described

under ADDITIONAL ENTRIES AND SYNONYMS.

The procedure for assembleing and adding a sub-
routine to the fixed word length set only is the same
as that for the variable word length set, except that
no NAME statement is included. (Also, the range of
the pim entry for the 10 NUMBER statement is from
0186 to 0199.) All names of the entry points are added
with DFLIB statements using the corresponding variable
set piM entry numbers. For example; the 1 NUMBER
statement could specify pim entry 0187 but the prLiB
statement would specify (and name) pmM entry 0027.

The Disk Utility program can be utilized to load the
subroutine to the library sets, in which case, the
NAME, STORE RELOADABLE, and ID NUMBER statements
must be omitted, while an ouTPUT cARD or OuTPUT
PAPER TAPE statement should be included.

*DFLIB

Source Program

* STORE RELOADABLE

* NAME

* 1D NUMBER

l * ASSEMBLE RELOCATABLE

* LIBR

+ $ SPS \

Monitor Control Record

T+ DUP

Object Program
Output from Assembly

* DLOAD

Used to Define

Additional Entry
Point Nlames and
Synonyms.

+ $DUP \
Monitor Control Record

Figure 17. Adding Subroutines for FORTRAN Subroutine Library

The following example illustrates the necessary in-
formation to be included in the proap control record
for a subroutine named wcos to be added to the vari-
able word length set.

*DLOAD HCOS 0026 0101200002 C 1
A A A A A A
Col. 7 17 39 44 49 50

Columns 1-6 Code word *pLOAD.

7-12 Alpha name of program to be
used in FORTRAN arithmetic state-
ments.

1720 piM entry number.
39-43 The length of the subroutine. This
number must be even.
44-48 The number of entry points.
49 Input unit (C for card, P for paper
tape).
50 Core image format.

Other options, such as read-only protection, are
available if they are desired. (See DLOAD CONTROL
RECORD in the Disk Utility Program section of this
manual.)

Additional Entries and Synonyms

A prLB Control record must be entered if the subrou-
tine contains more than one entry point, or if one
entry point is to be called by more than one name.
The format of the prLiB Control record follows.

Columns 1-6 *prLIB
7-12 User-assigned name, left-justified.
13 Not used (must be blank)

14-15 pM entry number
16-80 Not used.

The piM entry number must be between 21 and 39
and must correspond sequentially with the entry point
names of the source program psa statement. For ex-
ample; assume the following psa statement of a sub-
routine to be added to the FORTRAN library.

START DSA ONE, TWO, THREE
If the D NUMBER statement contained:

0026 the prLB Control cards must assign Two
as 27, and THREE as 28.

0188 the prriB Control cards must assign Two
as 29, and THREE as 30.

As delivered, the system makes use of pim entry
numbers 10 through 25, and 170 through 185 for
FORTRAN library subroutines. The last 5 of each set
may be removed, if desired. If no subroutines are re-
moved from the rortRAN library sets, the available
piM entry numbers for additional library subroutines
are 26 through 39, and 186 through 199. The prLB
Control card can only use the piM numbers of 26
through 39.

Typical input sequences to assemble and load a sub-
routine are shown in Figure 17.

FORTRAN Subprograms Written in SPS

The FORTRAN user is able to create subprograms using
sps and having these subprograms available immedi-
ately for call by FortraN programs. To accomplish

FORTRAN 1I-D 133

this he must follow the writing specifications outlined
here.

The Indicator Record

Each subprogram to be called by a FORTRAN program
must contain a header record to identify the routine
and to provide other essential information. The sps
instructions necessary to create this record are shown
below.

S DS , *4-101
DC 6, 987898, 5-S
DAC 6, NAMEbb, 7-S
DVLC 22-S§, 5, LENGTH, 2, ff, 2, kk, 5,
Entry Address—8, 5, 0, 30, 0
DSC 17,00
DORG S-100

where LENGTH is the address of a == or the first digit of
a subprogram name in the call list (see CALLING OTHER
SUBPROGRAMS).

Calling Library Subroutines

If the subprogram or function is to call FORTRAN li-
brary subroutines, the user must write out the pvic
operand that contains the 30 zeros in the indicator
record example. The position that corresponds to the
subroutine must contain a one instead of a zero. The
correspondence between the positions in this field and
the standard library subroutines are presented in
Table 11 so that the user may select any subroutine
in the library. To effect a transfer to any library sub-
routine from the sps written subprogram, the user
must write the following instructions: BT™M —SUBR,
PARAM, where PArRAM is the address of the parameter
required by the subroutine and —susr is the address
for the subroutine entry shown in Table 11. The sub-
routine entry address must be indirect.

Calling Other Subprograms

If the user wishes to call other subprograms from an
sps written subprogram, he may do so. To do this the
user must code:

BTM NAMESP, ®-11
DSA AB,...,Z
for each transfer to another subprogram, and must
include the name of the subprogram called. This is
equivalent to the ForTrRAN coding of:

CALL NAMESP (A, B, ..., Z)

Each called subprogram must have a 5-digit BT™M- -

address-field reserved in the subprogram just prior to
the entry point. Also, the names of the subprograms
to be called must be placed (in double-digit form)

134

at the end of the calling subprogram along with the
address of the reserved address field with the sub-
program. These names and addresses must follow the
last location of the subprogram. They can be coded
as follows.

DAC 6, NAM1bb, This coding will cause the
two subprograms mnamed
DVLC NILOC NAMI1 and NAM2 to be
DAC 6, NAM2bb, called out and made avail-
able when the sps routine
DVLC N2LOC that requires them is load-
DC 2,0 @ ed.

where nluoc is the low-order address of the P field of
the Br™M instruction that calls this subprogram. For
example;

BTM XXXXX,
NI1LOC

° 111

The record mark must follow the list of names in the
next even location available. When no subprograms
are called, the record mark must be placed in the next
even location following the last statement.

Writing FORTRAN Subprograms in SPS

In addition to the header record described above,
linkage to obtain the subprogram parameters must
be included in the subprogram. If no parameters are
needed, or if the subprogram knows the location of
the parameters, the user writes:

DC 50
SUBNAM AM SUBNAM-1,1,10
The
subprogram
B SUBNAM-1, , 6
DC 1, @

If one parameter is needed, and this subprogram is
never nested within any other function or subpro-
gram, the user writes:

DC 5, 0
SUBNAM AM SUBNAM-1, 5, 10
TF INSUB, SUBNAM-I1, 11
AM SUBNAM-1, 2
The
subprogram
B SUBNAM-1,, 6
DC 1, @

If several parameters are to be moved to the subpro-
gram, a loop may be utilized to conserve core storage.
The parameters must be stored in the subprogram in

consecutive order. An example of the coding to ac-
complish this for three parameters is shown below:

INSUB DSA 0,0,0
DC 1, @
DC 5,0
SUB TFM TF46, INSUB—4
AM TF--6, 4, 10
AM SUB—1, 5, 10
TF CF-+11, SUB—1, 11
BNF ®1 36, CF4+11
CF CF CF+11
TF CF-11, CF4+11,711
TF TF INSUB, CF--11
AM TF+6, 1, 10
BNR SUBL12, TF+8, 11
AM SUB—1, 2, 10 (1)
B SUB-L, , 6 (2)
DC 1, @

The instructions that constitute the body of the sub-
programs are placed between number 1 and 2 above,
Instruction 1 must add “two” if the number of para-
meters is an odd number, or “one” if this number is
even. The record mark must be in the first even loca-
tion following the subprogram.

The instruction numbered 2 (B SUB-1, ,6) returns
control to the calling program. When writing subpro-
grams in sps the user must place this instruction at
every point that a return is required.

The following example shows a sample subroutine-
type subprogram written in sps.

+HJOB
+SPS
*ASSEMBLE RELOCATABLE
*NAME REVABS
*STORE RELOADABLE
* SPS WRITTEN SUBPROGRAM WHICH REVERSES THE TWO ARGUMENTS|
*AND ABSOLUTES THE RESULT. NOTE CALL TO LIBR SUBR ABSF.
*IF NO LIBR SUBS ARE CALLED, DVLC WOULD BE
*DVLC 22-8, 5, LENGTH, 2, 8, 2, 4, 5, ENTRY-6, 5, 0, 30, 0
s DS ,*+101
DC 6,987898,5-S
DAC 6,REVABS,7-8
DVLC 22-S,5, LENGTH, 2, 8,2, 4,5, ENTRY-, 5, 0, 15,0, 1,1, 14, 0
DSC 117,0,0
DORG S-100
FAC DS ,2492
ABSF DS ,2323
TEMP DC 5,0
TEMP1 DC 10,0
TEMP2 DC 5,0
DC 5,0,,SPACE FOR BTM PARAMETER
ENTRY AM ENTRY-1,5,10,GET ADDRESS OF 1ST ARG
TF TEMP, ENTRY-1,11, BUFFER ADDR OF 18T ARG
AM ENTRY-1,5,10,GET ADDR OF 2ND ARG
TF TEMP2, ENTRY-1, 11, BUFFER ADDR OF 2ND ARG
TFL TEMPI, TEMPZ, 11, SAVE ARGUMENT B
TFL TEMP2, TEMP, 611, REPLACE B WITH A
TFL TEMP, TEMP1, 6, REPLACE A WITH B
BTM -ABSF,-TEMP,, ABSOLUTE A
TFL -TEMP, FAC,, ABSF LEAVES VALUE IN FAC
BTM -ABSF,-TEMP2,, ABSOLUTE B
TFL -TEMP2, FAC,, ABSF LEAVES VALUE IN FAC
AM ENTRY-1,1,10,COMPUTE RETURN ADDRESS
B ENTRY-1,,6,RETURN
LENGTHDC 1,@,,RECORD MARK IN EVEN LOCATION
DEND

Writing FORTRAN FUNCTION Subprograms in SPS

The user must add one instruction to the set required
for suBROUTINE subprograms written in sps in order to
write FORTRAN FUNCTION subprograms (subroutines
normally produced by rorTRAN statements preceded
by a FuncrION statement). This statement is TFL FAc,
ANS. FAC is the simulated floating accumulator and ANs
is the location where the result of the subroutine cal-
culation is stored. Prior to a return to the main pro-
gram, this instruction must be executed. The actual
address of FAc is constant and is available in the
FORTRAN II-D listing.

Disk Storage Location of the FORTRAN
Compiler

The rorTRAN compiler and operating system is an
integrated part of the Monitor system. It is possible,
however, to eliminate the programs that constitute the
FORTRAN portion of the Monitor, and still utilize the
remainder of the system. It is also possible to delete
specific FORTRAN library subroutines and to utilize the
remainder of the FORTRAN system. The procedure to
follow in order to delete any program from the disk
is described in the pup section. The piM entry num-
bers that may be specified for deletion are shown
below.

Disk
DIM No. Location
ForTRAN Compiler 136, 137, 153, Cylinder 79,886,
156, 203 87, 88, 89, 90
FORTRAN Subprogram 138, 147,149, Cylinder 80,
Loader 150,152,157 84
FORTRAN Arithmetic 144, 145, 146, Cylinder 78,79,
and I70 200, 201, 202 84,85
FORTRAN Library #1039, Cylinder 81
Subroutines 170—-199

If the FORTRAN system is deleted using the pup rou-
tines, the portion of the disk which it occupies will
become available for assignment of other user writ-
ten programs.

*When the system is delivered, 10 through 25 and 170
through 185 are in use. The symbolic names of the
subroutines that may be deleted are cosr, SINF, ATAN,
sQrtF, and ABsr.The other subroutines may be deleted
only if the complete FORTRAN system is deleted.

FORTRAN II-D 135

IBM 1620-1443 Monitor Il System

A printer-oriented Monitor II System is available for
1620 Systems that are equipped with an mm 1443
Printer. This system is an extension of the standard
Monitor II System described in the preceding pages of
this publication. Only the differences between the
standard system and the printer-oriented system are
described here. Specifications and operating proced-
ures pertaining to the standard system are valid for
the printer-oriented system if no specific mention is
made of them in this section.

General Description

The 1620-1443 Monitor II System requires that an 1BM
printer be included in the 1620 system configuration.
Of course, any other applicable input/output units,
special features, etc., may also be attached to the
system. -

The principle advantage of a printer-oriented system
is that it provides a convenient and relatively fast
means of obtaining listings of assembled or compiled
programs, symbol tables, and any other data that
might be desired. The component programs of the
Monitor II System have been modified to make the
best possible use of the printer. The console typewrit-
er is used only for messages which must be acted
upon immediately by the operator.

The following paragraphs were written under the
assumption that the reader has a practicable knowl-
edge of the 1Bm 1443 Printer. Those without such
knowledge should read the publication, 18M 1443 On-
Line Printer for 1620/1710 Systems (Form A26-5730).

Supervisor Program

The I/0 routine of the Supervisor Program has been
modified to handle printer output for both sps and
FORTRAN object programs. This was accomplished
without changing entry points, linkages, or core stor-
age requirements. The language used to gain access to
the 1/0 routine is described in the respective sps and
FORTRAN portions of this section.

Printer Errors .
If a printer error (indicator code 25) occurs, the
message

PRT ERR XXXXX

is typed out, and control is returned to core address
xxxxx in the calling program. In addition, the error is
recorded in a printer error counter which has been
added to the error counters used in the standard sys-
tem. Whenever the error indicators or error counters
are typed out, they will be in the following sequence:

0607161725363738

135.1

The only change is the addition of the Printer Check
indicator (code 25).

Nore: If a halt occurs at address 00467, either with or
without a prior error message, the program can be re-
sumed by pressing the Reset and Start keys.

Programming Considerations
1. The Printer Busy indicator (code 35) is not test-
ed by the I/0 routine; therefore, if the test is
desired, the user must perform it before execut-
ing a call to the printer.
2. Carriage control operations must be handled in
the user’s program.

Disk Utility Program

Two Disk Utility Program routines have been modi-
fied to use the printer: Disk-to-Output and Define
Parameters.

Disk-to-Output Routine

The Disk-to-Output routine has been modified to use
the printer for all output that was formerly typed out
on the typewriter. To specify the printer as an output
unit, the user must punch the letter L in column 17
of the ppump control card.

The format of the printed output is 100 characters
(1 sector) per line, with the exception of the Availa-
bility List and the Equivalence Table which retain
the format used in the standard system.

Define Parameters Routine

The Define Parameters routine has been modified to
allow FORTRAN 1I-D to be set for either 120 or 144
print position usage of the 1443 Printer during com-
pilation and execution of the object program. The
user may put a zero in column 59 of the DFINE con-
trol record for 120 print position operation, or a one
for 144 position operation. This indicator is set in
position 65 of the Communications Area on disk.
(When the system is delivered, this indicator is set
to zero.)

SPS II-D

The sps 11-p assembly program has been modified to
include twelve printer-oriented imperative mnemon-
ics, two printer declarative mnemonics, and three new
sps control statements.

Printer Imperative Mnemonics

The imperative mnemonics included in the printer-
oriented Monitor II System are listed in Table 14.1.

Table 14.1. Imperative Printer Mnemonics

OPERATION CODE OPERANDS
OPERATION MNEMONIC ACTUAL P ADDRESS Q ADDRESS
Printer Dump PRD 35 Storage address from None Required
which leftmost (first)
numerical character is
written
Printer Dump and Suppress PRDS 35 Same as Printer Dump None Required
Spacing
Print Numerically PRN 38 Same as Printer Dump None Required
Print Numerically and PRNS 38 Same as Printer Dump None Required
Suppress Spacing
Print Alphamerically PRA 39 Storage address from None Required
which leftmost Alpha~
meric character is
written (odd numbered
address)
Print Alphamerically and PRAS 39 Same as Print Alpha- None Required
Suppress Spacing merically
Skip Immediate SKip 34 Not used Control Code
Skip after Printing SKAP 34 Not used Confrol Code
Space Immediate SPIM 34 Not used Control Code
Space after Printing SPAP 34 Not used Control Code
Branch on channel 9 BCH9 46 Address branched to if indi- | None Required
cator 33 ison, This indica-~
tor is tumed on by the detecH
tion of a hole in channel 9
of the carriage tape.
Branch on channel 12 BCOV 46 Address branched to if indi- | None Required
cator 34 is on. This indica=
tor is tumed on by the detec-
tion of a hole in channel 12
of the carriage tape.

Also shown are the actual op codes generated,and the
P and Q address functions. Table 14.2 shows the Q-
address modifiers that are generated in the object
program.

Some examples of printer statements are shown
below:

Lobel Operation] Operands & Remarks
I3 2 15118 20 2 30 35 40 45 50 55 &0
PRN_DATA,; PRINT NUHER]CALLY — ,
. IPRNSDATA,, . PRINT NUMERICALLY, AND SUPPRESS SPACING

SKIP,2,,5K1p_IMMEDIATE 70 CARRIAGE CHANNEL 2. .

s

KAP| 5 3 73K1P AFTER PRINTING T0. CARRIAGE CHANNEL 3

SPIN,3.,, MOVE CARRIAGE. 3 SPACES IMMEDIATE . .

5PAP], 3, MOVE CARRIAGE 3 SPACES AFTER PRINTING ...

In these examples, the operand paTa represents the
core storage address of the data to be printed; the nu-
merical operands (2, 5, 3, 3) are either channel num-
bers for skip operations or the number of spaces for
space operations. Table 14.3 shows the Q operands to
be placed in the skip and space statements for all
possible skip and space operations.

Printer Declarative Statements

Two printer declarative mnemonics are included in the
printer-oriented Monitor II System. Descriptions of
the mnemonics follow, together with the two-digit
code that is generated for the 1/0 constant. Note the
two forms of each declarative.

IBM 1620-1443 Monitor II System 135.2

Table 14.2. OP Codes and Q Modifiers Generated for Printer

Table 14.3.Q Operands and Q Modifiers for Skip and Space

Mnemonics Operations
Q MODIFIERS ACTUAL QIO' Q” MODIFIERS
o]
MNEMONIC OPERATION |cODE | Ugf Q9 [Q40 [AFTER PRINTING
CONTROL CODES IMMEDIATE (DELAY)
PRD i 0
R Printer Dump R Skip fo Channel 1 7 4
PRDS Printer Dump and (SKIP or SKAP)
Suppress Spacing 5101 9 N 1 2 72 42
of
PRN Print Numerically 38 | 0] 9 Jused| O 3 73 s
PRNS Print Numerically and 4 74 “
Suppress Spacing 38 (0] 9 1 5 75 45
‘ PRA Print Alphamerically 39101 ¢ 0 6 76 4%
PRAS Print Alphamerically
and Suppress Spacing 39 10} ¢ 1 7 77 47
BCH9 Branch on Channel 9 4 | 3] 3 8 78 48
BCOV [Branch on Overflow 4 {31} 4 9 7 49
10 70 40
SKIP Skip Immediate 4 |1]0}] 9 *
1 33 03
SKAP Skip After Printing 4 10| 9 *
12 34 04
SPIM Space Immediate 34 10 9 *
" .
SPAP Space After Printing 4]0] ¢ Number of Spaces | 51 21
(SPIM or SPAP) 52 @
*Modifiers which specify the particular skip or space operation
(see Table 14,3), For a detailed description of these modifiers, 3 53 &3
refer to the publication entitled 1BM 1443 On-Line Printer for

1620/1710 Systems (Form A26-5730),

Mnemonic Code Name

DPRN 14 Define Printer Numerical

DPRN, , S 92 Define Printer Numerical —
Suppress Spacing

DPRA I8 Define Printer Alphameric

DPRA,, S 96 Define Printer Alphameric —

Suppress Spacing

These declarative operations generate an 1/0 con-
stant in the object program which can be used by a
pUT I/0 macro-instruction to print data under control
of the I/0 routine. When used in the source program,
they identify the output record area. Three operands
are required for each statement. The first operand is
used to specify the address where the I/0 constant is
to be loaded into core storage. This operand may be an
absolute value or a symbolic name. If a symbolic name
is used, the symbol must previously have been defined
as an absolute value. If the operand is omitted, the
processor will assign the address to which the con-
stant will be loaded in core storage.

The second operand, which may be symbolic or ac-
tual, is the address of the output record area. This ad-
dress will be included in the I/O constant in the object
program. The third operand may be the letter S or it

135.3

may be omitted. If the letter S is present, the auto-
matic single space after printing will be suppressed
whenever the associated output record is printed. Re-
marks are permitted following the third operand.

If a label is included with this statement, the storage
address assigned to it will be that of the leftmost posi-
tion of the generated I/0 constant.

The statements which follow show how a prra de-
clarative statement is used with a pur I/O macro-state-
ment to print a 110-alphameric character record under
control of the Supervisor I/0 routine. In this example,
the first two statements define the output area where
the record is stored.

Lobel [Operation|
] 12 15116 2 3 k] 35) 45 50
|RECORDDAS |I 105, DEFINE ALPAAMERIC OUTPUT RECORD
e DAC |/ @y o MUST FOLLOW Wi TH RECORD MARK . X
PRNIR DPRA, RECORD ;1 I DENTIFY PRINTER OUTPUT RECORD .
. |PUT |PRNTR,,WRI.TE OUTPUT REC AS SPECIFIED BY DPRA .

Operands & Remarks

The declarative statements are usually written pre-
ceding or following the program; however, the macro-
statement is entered in the program at the point where
printing is to take place.

Printer Control Records

In the printer-oriented Monitor II System, there are
three sps control records that pertain to printer opera-
tions. The first two described here are modifications of
sps control records used in the standard system; the
third is a new control record.

*LIST PRINTER — This record replaces the visT
TYPEWRITER record used in the standard system. It
causes a listing to be printed by the printer during
assembly.

The format of the listing is as follows: page and line
number, label, op code, operands, remarks, core loca-
tion, and object instruction.

*PRINT SYMBOL TABLE — This record replaces
the TYPE symBoL TABLE record used in the standard
system. It causes the symbol table to be printed by
the printer following assembly.

#EXXXXXXXXXXX — This record is used to print a
heading above listings and/or symbol table printouts.
The data (signified by Xs above) that follows the two
asterisks is printed at the top of the respective print-
outs. When this record is printed during assembly, it is
shown as an Identification record with the code (ID)
printed to the left of the two asterisks. This is also true
of all Identification records used in the printer-orient-
ed system; that is, the code (ID) is printed to the left
of the record instead of to the right as in the standard
system.

IBM-Defined System Symbols

In the printer-oriented system, the following system
symbols are available to the user. Notice that the sym-
bols are the same as those used in the standard system,
but some of the equivalences are changed.

Symbol Equivalence Description
9RCYLO 00513 These are the low-order po-
9RCYL1 00515 sitions of four 2-digit fields
9RCYL2 00517 which contain the numbers
9RCYL3 00519 of cylinders (00-99) where
the disk access arm is repo-
sitioned after a disk opera-
tion in which a reposition
has been requested. The
four fields refer to drives 0,
1, 2, 3, respectively.
9CCYLO 02124 These are the low-order po-
9CCYL1 02126 sitions of four 2-digit fields,
9CCYL2 02128 similar to the previous four.
9CCYL3 02130 However, these positions

contain the cylinder num-
bers of the current access
arm positions (the position

of the arm after the last
disk 1orT operation).

Assembly Errors

In addition to the sps 11-p error codes and descriptions
listed in a previous section of this manual, the follow-
ing error conditions will cause an error typeout:

1. A space specification that is either 0 or greater

than 3
2. A skip specification that is either 0 or greater
than 12
Either of the above conditions will be indicated by
the error code ERS5.

If no Error Stop control record is included in the
assembly, the processor will cause an erroneous space
or skip specification to be set to 1.

Error messages will appear on the typewriter, not
on the printer.

FORTRAN II-D

The FORTRAN 11-D compiler has been modified to take
advantage of the printer while compiling object pro-
grams. Although the basic ForRTRAN language remains
unchanged, the specifications of two FORTRAN output
statements have been modified, and five new control
records have been added. Also, the printer has re-
placed the console typewriter as the basic printed-
output medium.

Language

PRINT — In the printer-oriented system, a PRINT
statement is used to print data on the 1443 Printer. A
TYPE statement is still used to type data on the con-
sole typewriter.

FORMAT — A rorMAT statement, when used in con-
junction with a PRINT statement, can provide for up
to 120 characters for each printed line (or 144 char-
acters if the system has been properly defined using
the pup Define Parameters routine). A FORMAT state-
ment used with a TYpE statement is still limited to
87 characters for each typed line.

CARRIAGE CONTROL

Each time a line of print is called for, the print output
routine will initiate a carriage space or skip operation.
The type of operation that is initiated is determined
by the first digit (carriage control digit) in the record
of data to be printed. The carriage operations that re-
sult from the carriage control digit are as follows:

blank — single space before printing
0 — double space before printing
1.9 — immediate skip to channels 1-9

The carriage control digit is not printed. Therefore,
to ensure that all of the data specified by the prinT

IBM 1620-1443 Monitor II System 135.4

statement is printed out, the user should insert a 1H
specification in the corresponding FORMAT statement
wherever a new line of print is called for.

ExamEle
PRINT 2,A, B,]
2 FORMAT (1HO, F8.2, F8.3,18)

This specification will cause the printer to space
twice before printing any data. Since the printer does
not automatically space before printing, a single blank
line will appear between the line being printed and
the previous printed line.

If more than one line of print is specified in the
same FORMAT statement, the carriage control specifica-
tion might appear as follows:

5 FORMAT (1HO, F8.2/1H0, E14.6)

Control Records
The five new control records that have been added to
FORTRAN II-D for the printer-oriented Monitor system
are:
“* LIST PRINTER

* ARITHMETIC TRACE

* IF TRACE

* ALL STATEMENT MAP

XXXXXXXXX

The first four in the list are compile-time options
previously available through console switch settings.
The last record is a means of obtaining a heading at
the top of each printed page.

The format of these records is the same as described
in the section entitled FORTRAN 1I-D CONTROL RECORDS.
* LIST PRINTER — This record will cause program

listings and symbol table output to be printed.

* ARITHMETIC TRACE — This record will cause
trace instructions to be compiled for arithmetic
statements.

* IF TRACE — This record will cause trace instruc-
tions to be compiled for the purpose of tracing the
value of the expression generated in an IF statement.

* ALL STATEMENT MAP — This record will cause
the address of the first instruction generated for
each statement to be printed.

XXXXXXXXX — This record will cause a heading
to be printed at the top of each printed page. The
Xs represent the heading. Up to 78 characters may
be specified.

Listings and Symbol Table Output

Listings and symbol table output will appear on the
printer instead of the console typewriter. The control
records used to obtain these outputs are described
above. The formats of the outputs have been changed

135.5

to take advantage of the characteristics of the printer.
The loader map also appears on the printer.

Error Messages

All error messages will appear on the printer; in ad-
dition, error message D1 will also appear on the con-
sole typewriter. Instructions to the operator, for ex-
ample, Loap suBNaM, will appear on the console
typewriter.

Subroutine error code F9 has been modified to in-
clude any printer records that exceed 120-characters,
or 144-characters if using the 144-print position sub-
routines.

Trace Routine

If the trace routine is used, its output will appear on
the printer. If the 144-print position subroutines are
used, floating variables will appear in E-type format
and fixed variables will appear in I-type format.

Carriage Control Tape

The carriage control tape, when used for assembling
and compiling, should be punched in channel 1 to
indicate the beginning of a page, and punched in
channel 12 to indicate the end of a page. When the
program senses the hole in channel 12, it automati-
cally executes a skip to the channel 1 hole, which indi-
cates the beginning of the next page.

Arithmetic and 1/0 Subroutines

The arithmetic and I/O subroutine sets used in the
1620-1443 Monitor II System are longer than the sets
used in the standard 1620 Monitor II System. This
means that the starting addresses of FORTRAN object
programs are higher in the printer-oriented systems,
as shown below:

120 Print
Standard Position
System System

144 Print
Position
System

Using in-core variable
length arithmetic
and I/O sub-
routines.

Using out-of-core
variable length
arithmetic and I/0
subroutines.

Using in-core fixed
length arithmetic
and I/O sub-
routines.

Using out-of-core
fixed length arith-
metic and I/0 sub-
routines.

13000 13300 13500

07500 07800 08000

11200 11500 11700

07500 07800 08000

The 120-print position subroutines are a standard
part of the 1620-1443 Monitor II System. If the 144-
print position subroutines are desired, program num-
ber 1620-LM-052 (card) or 1620-LM-053 (tape)
should be loaded to disk in place of the standard set.
The 144-print position subroutines can be loaded over
the standard 120-print position routines. Care should
be taken at this point to define the system for 144-

print positions as previously described. After loading
the 144-print position subroutines, the System Table
Editor program must be executed due to the differ-
ences in piMm Table entries between the 120- and 144-
print position subroutines. If the 120-print position
subroutines are later re-loaded, System Tables must
also be loaded.

IBM 1620-1443 Monitor 11 System’: 135.6

Monitor Il System Loader

This program is used initially to load the Monitor I
System from cards or paper tape into disk storage.
Cards contain 75 columns of data followed by a 5-
position sequence number. Sequence numbers are not
present with tape data.

The system to be loaded, in card or paper tape
form, is comprised of several blocks of data, each
with a unique deck number, a Heading Control rec-
ord, and a 9’s trailer record. With this arrangement
it is possible to load each new block of data to a
different area of disk storage as specified by the
Heading Control records. For card input, the cards
within a data block must be consecutively numbered
in ascending sequential order.

The combined input data, i.e., all data blocks, must
be preceded by the Loader Program itself. This pro-
gram is contained in approximately forty cards. If the
sequence of the first four cards is inadvertently altered,
the program may not operate correctly. The loader
program is deck number 00, columns 30-31. All input
cards, with the exception of the first four cards of deck
00, are sequence checked by the loader.

Card Formats

Heading Control
Asterisk (*).

2-7 Code word, LDCNTR.
9-14

Columns 1

Name of data block (program,
table, etc.) to follow.

Address of first sector to be loaded.
Address of last sector to be loaded.

Deck number. This number, com-
bined with the two positions 79-80,
constitutes the sequence number.
Blanks are interpreted as zeros.
Therefore, the number 55 and a
blank in columns 30-32 are inter-
preted as sequence number 55000.
The first card of the data block
must then begin with the sequence
number 55001 in columns 76-80.

16-21
23-28
30-32

136

Data

Columns 1-75 Data to be loaded to disk storage.
76-80 Sequence number.
Trailer
Columns 1-5 99999
6 =+
7-8 00

Operating Procedures

Switches

The Disk, Parity, I/O and OFLOW check switches
should be in the PrRoGRAM position for either card or
tape loading. For card or tape input, the program will
halt after each trailer card if Program Switch 1 is off.
If the switch is on, all data blocks are loaded without
stopping the computer. Therefore, the user can stack
input, if desired.

Paper Tape Loading

1. Ready the paper tape reader with the Loader
tape reel.

Enter 36 00000 00300 from the typewriter.
Depress the Release and Start keys.

Ready the tape reader with the Data tape reel.
Depress the 1620 Start key.

Return to step 4 to load successive Data tapes.

S o

Note: When loading with Switch 1 on, the Loader
will continue to read more data after each data group
has been loaded. Therefore, several such data input
groups may be present on one input reel.

Card Loading

1. Ready the card reader with deck number 00,
Loader Program. The remaining decks may be
stacked behind deck 00 as explained under

SWITCHES.
2. Depress the 1622 Load key.

Messqges FOR CARD LOADER ONLY

Message/Cause/Operator Action
FOR BOTH PAPER TAPE AND CARD LOADERS
SEQ. This message will type and the program will
halt if any of the cards in the loader program,
with the exception of the first four cards, is out of

- - sequence. To resume loading, (1) restore the cards
AAAAAA LOADED FROM FFFFFF TO LLLLLL, to their correct sequence and place them in the

where AAAAAA is the name of a data block, F_FFFFF
is the address of the first sector loaded, and LLLLLL

is the address of the last sector loaded. This message _
will type following each successful deck loading. If NNNNN CARD SEQ ERROR, CORRECT AND

Program Switch 1 is on, it is an indication to the START, where NNNNN is the sequence number of
operator to load the next deck. the first data card out of consecutive ascending se-

. quence. After the message is typed, the program
DISK RD WR ERRQR’ S,TART TO RETRY. This will halt. To restart the computer, (1) restore the
message will type if a disk write error occurs that

. sequence of data cards, starting with the card in
cann9t be corrected by one automatic r.etry. De- error, (2) place the resequenced cards in the card
pressing the Start key will cause the write opera-

read hopper, (3) depress the Start keys on both
tion to be retried twice. If the error is not correct- pper, (3) dep Y

the card reader and 1620 console.
ed by the retries, the message will again be typed.
NO TRAILER REC. CORRECT, RE-LOAD COM-

RDER. ThiS message Wil]. type if a paper tapQ or Cal'd PLETE DECK WITH CNTR REC, AND BR TO
reading error occurs. To correct the error, ready the 70/ This messa ge will type and the program will
reader with the corrected record and depress the halt if a 9’s trailer record is missing following any
Start key. (An error card will be located next to the data block. To restart the computer, the user
last card.in the stacker when a halt occurs for a should (1) restack the cards in the card reader so
card reading error.) as to restart card reading with the Header card of

CONTROL STATEMENT INVALID, RE-ENTER. the data block which had the missing trailer rec-

Message/Cause/Operation Action

card hopper, (2) depress the Start keys on both
the card reader and 1620 console.

This message will type if any of the following con- ord. (2) Depress the Reset and Insert keys. (3) En-
ditions are encountered in Heading Control record ter 49 07404 from the typewriter. (4) Depress the
data. Release and Start keys. (5) Depress the card read-
1. A misspelled code word. er Start key.
2. A record mark in column 6. TRAILER CARD SEQ ERROR, CORRECT AND
3. First sector to be loaded is greater than last START. This message will be typed if the sequence
sector to be loaded. The user must supply a number on the trailer card is incorrect. The pro-
corrected control record and depress the 1620 cedure for restarting as the same is for any other
Start key. card sequence error.

Monitor System Loader 137

Appendix A

Table 15. Summary of SPS Declarative Operations

NOTE: Except for the constants in DC, DSC, and DAC, all operands may be actual or symbolic. All symbolic length and address

operands must be previously defined. All operands may use address adjustment.

Remarks may follow operands except in DSA and DVLC

statements. "Alpha Record Address” in the table refers to the leftmost position plus one of an alphameric field, whereas "Field Address"
refers to the rightmost position of a field. The term "Numerical Record Address" refers to the leftmost position of a field.

DECLARATIVE STATEMENT | AMOUNT ADDED TO LOCA- | VALUE STORED IN SYMBOL DATA FIELDS WHICH ARE
FORMATOP ART5E] TION ASSIGNMENT COUNTER TABLE AS EQUIVALENT LOADED AS A PART OF
LABEL 1 el O IF ADDRESS (A) IS BLANK TO "SYMBOL" THE OBJECT PROGRAM
SYM DS LA L (length). A address. If A is blank, the None.
If Lisblank, 0 is added. field address from the location
assignment counter is stored.
SYM DSS LA L (length). A address. If Ais blank, the None.
If L is blank, 0 is added. numerical record address from
the location assignment counter
is stored.
SYM DAS LA 2 x L is added. If L is blank, A address must be odd. If A is None.
0 is added. blank, the alpha record address
from the location assignment
counter is stored.
SYM DC L,C,A L is added. A address. If A is blank, the C, the (numerical) constant .
field address from the location
assignment counter is stored.
SYM DSC L,C,A L is added. A address. If A is blank the C, the (numerical) constant,
numerical record address from
the location assignment counter
is stored.
SYM DVLC | A,L,C, L is added. First C address. C, C, etc., the (numerical)
L,C, etc. constants.,
SYM DAC L,C,A 2 x Lis odded. A address must be odd. If A is C, the (alphameric) constant.
blank, the alpha record address
from the location assignment
counter is stored.
SYM DSA D,E,F,G, | 5 x (number of addresses) is Field address of the first address | A list of the actual addresses
H, I, J, K,} added. on list. that correspond to D, E,F, etc.
LM
SYM DSB L,N,A Length of each element times A oddress. If A is blank, field None.
the number of elements is added .| address of the first element is
stored .
SYM DNB LA L is added. A address. If A isblank, the Number of blank characters
field address from the location that equal L.
assignment counter is stored.
SYM DDA A,D,F,S, 14, length of a disk control (Same as DSC) . D,F,S,M.
M field.
SYM DGM | A 1 A address or location counter. ¥ (Group Mark) .
SYM DOT | P, A Length of table. A address or location Octal table of powers
counter. to P followed by

138

Table 16. Summary of SPS Arithmetic Instructions

NOTE: |ndirect Addressing and indexing are allowable with all P address operands listed below. An * to the
left of the Q operand indicates these features may be used with it.

OPERATION OPERATION CODE OPERANDS
MNEMONIC | ACTUAL P ADDRESS Q ADDRESS
Add A 21 Storage address of units position | *Storage address of units
of augend position of addend
Add Immediate AM 1 Same as code 21 Q) of instruction is units
position of addend
Subtract S 22 Storage address of units position | *Storage address of units
of minuend position of subtrahend
Subtract SM 12 Same as code 22 Q1 of instruction is units
Immediate position of subtrahend
Multiply M 23 Storage address of units position | *Storage address of units
of multiplicand position of multiplier
Multiply MM 13 Same as code 23 Q1 of instruction is units
Immediate position of multiplier
Load Dividend LD 28 Storage address in product area *Storage address of units
to which units position of field position of dividend
(dividend) is to be transmitted
Load Dividend LDM 18 Same as code 28 Qj of instruction is units
position of dividend
Divide D 29 Storage address at which first *Storage address of units
subtraction of the divisor occurs | position of divisor
Divide DM 19 Same as code 29 Qq of instruction is units
Immediate position of divisor
Floating Add FADD 01 Storage address of units position | *Storage address of units
(special feature) of exponent of augend position of exponent of addend
Floating Sub- FSUB 02 Storage address of units position | *Storage address of units
tract (special of exponent of minuend position of exponent of sub-
feature) trahend
Floating FMUL 03 Storage address of units position | *Storage address of units
Multiply of exponent of multiplicand position of exponent of
(special feature) multiplier
Floating DIV 09 Storage address of units position | *Storage address of units
Divide (special of exponent of dividend position of exponent of divisor
feature)

Appendix

139

Table 17. Summary of SPS Internal Data Transmission Instructions

NOTE: Indirect Addressing and indexing are allowable with all P address operands listed below. An * to the
left of the Q address operand indicates these features may be used with it.

Octal Conver~
sion (special
feature)

position of the highest power-of-
eight required

OPERATION OPERATION CODES OPERANDS
MNEMQNIC ACTUAL P ADDRESS Q ADDRESS
Transmit Digit ™ 25 Storage address to which single *Storage address of single digit
digit is transmitted to be transmitted
Transmit Digit TDM 15 Same as code 25 Q1 of instruction is the single
Immediate digit to be transmitted
Transmit Field TF 26 Storage address to which units *Storage address of units
position of field is transmitted position of field to be trans=
mitted
Transmit Field TFM 16 Same as code 26 Q11 of instruction is the units
Immediate position of the field to be trans~
mitted
Transmit Record TR 31 Storage address to which high- *Storage address of high-order
order position of the record is position of the record to be
transmitted transmitted
Transmit Record TRNM 30 Same as code 31 *Same as code 31
No Record Mark
Transfer TNS 72 Storage address of rightmost *Storage address of the units
Numerical Strip position of alphameric field to position of the numerical field
be transmitted
Transfer TNF 73 Storage address of rightmost *Srorage address of the units
Numerical Fill position of alphameric field position of the numerical field to
be transmitted
Floating Shift FSR 08 Storage address to which units *Storage address (rightmost) digit
Right (special (rightmost) digit of mantissa is of mantissa to be transmitted
feature) transmitted
Floating Shift FSL 05 Storage address to which high= *Storage address of low=-order
Left (special order digit of the mantissa is digit of mantissa to be trans-
feature) transmitted mitted
Transmit TFL 06 Storage address to which units *Storage address of units position
Floating position of exponent is transmitted| of exponent of field to be trans~
mitted
Move Address MA 70 Storage address of units position | *Storage address of units position
(special feature of 5=digit field to which data of 5-digit field to be transmitted
is transmitted
OR to Field ORF 92 Storage address of leftmost *Storage address of leftmost
(special feature) position of first field for OR position of second field for OR
logic input logic input
AND to Field ANDF 93 Storage address of leftmost *Storage address of leftmost
(special feature) position of first field for AND position of second field for AND
logic logic
Exclusive OR EORF 95 Storage address of leftmost *Storage address of leftmost
to Field (specia position of first field for position of second field for
feature) Exclusive OR logic Exclusive OR logic
Complement CPLF 94 Storage address of leftmost *Storage address of leftmost
Octal Field position of field to which data position of field to be comple-
(special feature) is transmitted mented
Octal to o1 96 Storage address of the units *Storage address of leftmost
Decimal Con- position of the power~of-eight position of field to be converted
version (special table
feature)
Decimal to DTO 97 Storage address of the units *Storage address of leftmost

position of field to be converted

140

Table 18. Summary of SPS Logic (Branch and Compare) Instructions

NOTE: Both the Bl (Branch Indicator) and BNI {Branch No Indicator) instructions require one of the switch
or indicator codes listed in Table 21 as a Q address. The code indicates the switch or indicator to be inter=
rogated for status. To relieve the programmer of having to code a Q oddress, unique mnemonics are included
in SPS language for both Bl= and BNI=type instructions, For a unique mnemonic, the processor generates the
actual machine language code 46 (Branch Indicator) or 47 (Branch No Indicator) and the Q address that
represents the switch or indicator.

Indirect Addressing and indexing are allowable with all P address operands listed below except Branch Back.
An * to the left of the Q address operand indicates these features may be used with it.

OPERATION OPERATION CODES OPERANDS
MNEMONIC | ACTUAL P ADDRESS Q ADDRESS
Compare C 24 Storage address of units position | *Storage address of units
of the field to which another position of the field to be
field is compared compared with the field at the
P address
Compare M 14 Same as code 24 Q1) of instruction is units
Immediate position of the field to be
compared with the field ot the
P address
Branch B 49 Storage oddress of the leftmost Not used
digit of the next instruction to
be executed
Branch and B7 49 Storage address of the leftmost Not used. However, these five
Adjust Assign- digit of the next instruction to locations gre used by the next
ment Counter be executed instruction in sequence
Branch BNF 44 Storage address of the leftmost *Storage address to be
No Flag digit of next instruction to be interrogated for presence of a
executed if branch occurs flag bit
Branch No BNR 45 Same as code 44 *Storage address to be
Record Mark interrogated for presence of a
record mark character
Branch No BNG 55 Same as code 44 *Storage address to be
Group Mark interrogated for presence of a
group mark character
Branch on BD 43 Same as code 44 *Storage address to be
Digit interrogated for a digit other
than zero
Branch BI 46 Storage address of leftmost Qg and Qg of instruction
Indicator position of next instruction to specify the program switch or
be executed if indicator tested indicator to be interrogated
is on (see Table 21)
Unique Branch
Indicator
Mnemonics:
Branch High BH 46 Same as Bl None required
Branch Positive BP 46 Same as Bl None required
Branch Equal BE 46 Same as Bl None required
Branch Zero BZ 46 Same as Bl None required
Branch Over- BV 46 Same as Bl None required
flow
Branch Any BA 46 Same as Bl None required
Data Check

Appendix

141

Table 18. Summary of SPS Logic (Branch and Compare) Instructions (cont’d.)

OPERATION OPERATION CODE OPERANDS
MNEMONIC| ACTUAL P ADDRESS Q ADDRESS

Branch Not BNL 46 Same as Bl None required

Low

Branch Not BNN 46 Same as Bl None required

Negative

Branch Band BBAS 46 Same as Bl None required

A Selected

Branch Band BBBS 46 Seme as Bl None required

B Selected

Branch Neither BNBS 46 Same as BI None required

Band Selected

Branch Console BC1 46 Same as Bl None required

Switch 1 On

Branch Console BC2 46 Same as Bl None required

Switch 2 On

Branch Console BC3 46 Same as Bl Nene required

Switch 3 .On

Branch Console BC4 46 Same as Bl None required

Switch 4 On

Branch Last BLC 46 Same as Bl None required

Card

Branch Expon= BXV 46 Same as Bl None required

ent Check

(special feature)

Branch No BNI 47 Storage address of leftmost Qg and Qg of instruction

Indicator position of next instruction to specify program switch or
be executed if indicator tested indicator to be interrogated
is off (see Table 21)

Unique Branch
No Indicator
Mnemonics:

Branch Band A BANS 47 Same as BNI None required
Not Selected

Branch Band B BBNS 47 Same as BNI None required
Not Selected

Branch Either BEBS 47 Same as BNI None required
Band Selected

Branch Not BNH 47 Same as BN| None required
High :

Branch Not BNP 47 Same as BNI None required
Positive

Branch Not BNE 47 Same as BNI None required
Equal

Branch Not BNZ 47 Same as BNI None required
Zero

142

Table 18. Summary of SPS Logic(Branch and Compare) Instructions (cont'd.)

OPERATION OPERATION CODE OPERANDS
MNEMONIC | ACTUAL P ADDRESS Q ADDRESS
Branch No BNV 47 Same as BNI None required
Overflow
Branch Not Any] BNA 47 Same as BNI None required
Data Check
Branch Low BL 47 Same as BNI None required
Branch BN 47 Same as BNI None required
Negative
Branch Console BNC1 47 Same as BN1 None required
Switch 1 Off
Branch Console BNC2 47 Same as BNI None required
Switch 2 Off
Branch Console BNC3 47 Same as BNI None required
Switch 3 Off
Branch Console BNC4 47 Same as BN None required
Switch 4 Off
Branch Not BNLC 47 Same as BNI None required
Last Card
Branch Not BNXV 47 Same as BNI None required
Exponent Check
(special feature)
Branch and 8T 27 P address minus one is the *Storage address of units
Transmit storage address to which the units| position of the field to be
position of the Q field is trans= | transmitted
mitted. P address is leftmost
digit of the next instruction to
be executed
Branch and BTM 17 Same as code 27 Q) of instruction is units
Transmit position of field to be trans=
Immediate mitted
Branch and BTA 20 Same as code 27 Storage address of units
Transmit position of the field to be
Address transmitted
Branch and BTAM 10 Same as code 27 Q11 of instruction. is units
Transmit Address| position of field to be trans~
Immediate mitted
Branch Back BB 42 Not used Not used
Branch Back BB2 42 Not used. However, these Not used. However, these
and Adjust five locations gre used by five locations gre used by
Assignment the next instruction in the next instruction in
Counter sequence sequence
Branch and BTFL 07 P address minus one is the *Storage oddress of units
Transmit storage oddress to which the position of exponent of field to
Floating units position of the exponent be transmitted
portion of the Q field is trans=
mitted, P is the storage address
of the leftmost digit of the next
instruction to be executed
Branch and BS 60 Storage address of the leftmost Qy specifies condition to be
Select position of the next instruction selected
Unique Branch
and Select
Mnemonics:
Branch and . BSIA 60 Same as BS None required
Select Indirect
Addressing

Appendix

143

Table 18. Summary of SPS Logic (Branch and Compare) Instructions {(cont’d.)

OPERATION OPERATION CODE OPERANDS
MNEMONIC] ACTUAL P ADDRESS Q ADDRESS

Branch and BSNI 60 Same as BS None required

Select No I/A

Branch and BSBA 60 Same as BS None required

Select Band A

(special feature)

Branch and BSBB 60 Same as BS None required

Select Band B

(special feature)

Branch and BSNX 60 Same as BS None required

Select No Index

Register (special

feature)

Branch and BX 61 Same as BS **Storage address of units

Modify Index position of field to be added to

Register (special selected index register

feature)

Branch and BXM 62 Same as BS **Five digits of Q field are

Modify Index added to selected index register

Register

Immediate

(special feature)

Branch BCX 63 Same os BS if (after modification) | Same as BX

Conditionally, IX sign has not changed or

Modify Index result is not’ zero

Register (special

feature)

Branch BCXM 64 Same as BCX Same as BXM

Conditionally,

Modify Index

Register

Immedidte

(special feature)

Branch and Load BLX 65 Same as BS **Storage address of units

Index Register position of 5-digit field to be

{special feature) loaded to selected index register|

Branch and BIXM 66 Same as BS **Five digits of Q field are

Load Index loaded to selected index register

Register

Immediate

(special feature) |

Branch and BSX 67 Same as BS **Storage address of units

Store Index position of field where selected

Register index register data is to be

(special feature) stored

Branch on Bit BBT 90 Storage address of the leftmost | *Qg.|} specifies storage address

(special feature) position of next instruction if of units position of field to be
comparison is.successful compared with bits of the Q7

digit

Branch on Mask BMK 91 Same as code 90 *Qg. 1} specifies storage address

(special feature) of units position of field to be

‘ compared with Q7 digit

**Specific index register is selected by flags over the Qg_}q positions of the instruction,

144

Table 19. Summary of SPS Input and Output Instructions

NOTE: Indirect Addressing and indexing are allowable with all P address operands, where a P operand is
required. None of the Q operands shown may be used with Indirect Addressing or Index Registers.

OPERATION

OPERATION

CODE

OPERA

NDS

MNEMONIC

ACTUAL

P ADDRESS

Q ADDRESS

Read
Numerically

Unique Read
Numerically
Mnemonics:

Read
Numerically
Typewriter

Read
Numerically
Paper Tape

Read
Numerically
Card

RN

RNTY

RNPT

RNCD

36

36

36

36

Storage address at which leftmost
(first) numerical character is
stored

Same as RN

Same as RN

Same as RN

Qg and Qg of instruction

specify input unit

None required

None required

None required

Write
Numerically

Unique Write
Numerically
Mnemonics:

Write
Numerically
Typewriter

Write
Numerically
Paper Tape

Write
Numerically

Card

WN

WNTY

WNPT

WNCD

38

38

38

38

Storage address from which left=
most (first) numerical character
is written

Same as WN

Same as WN

Same as WN

Qg and Qg of instruction

specify output unit

None required

None required

None required

Dump
Numerically

Unique Dump
Numerically
Mnemonics:

Dump
Numerically
Typewriter

Dump
Numerically
Paper Tape

Dump
Numerically
Card

DN

DNTY

DNPT

DNCD

35

35

35

35

Same as WN

Same as WN

Same as WN

Same as WN

Same as WN

None required

None required

None required

Read)
Alphamerically

RA

37

Storage address ot which numeri=
cal digit of leftmost (first)
character is stored. (Zone digit
of first character is ot P minus
one)

Qg and Qg of instruction
specify input unit

Appendix

145

Table 19. - Summary of SPS Input and Output Instructions (cont’'d.)

OPERATION OPERATION CODE OPERANDS
) MNEMONIC [ACTUAL ‘P ADDRESS Q ADDRESS

Unique Read

Alphamerically

Mnemonics:

Read Alpha= RATY 37 Same as RA None required

merically

Typewriter

Read Alpha= RAPT 37 Same as RA None required

merically

Paper Tape

Read Alpha- RACD 37 Same as RA None required

merically Card

Read Binary RBPT 37 Same os RA None required

Paper Tape

(special feature)

Write Alpho=~ WA 39 Storage address of numerical Qg and Qg of instruction specify

merically digit of leftmost (first) character | output unit

to be written, (Zone digit of
first character is at P minus one)

Unique Write

Alphamerically

Mnemonics:

Write Alpha= WATY 39 Same as WA None required

merically

Typewriter

Write Alpha= WAPT 39 Same as WA None required

merically

Paper Tape

Write Alpha= WACD 39 Same as WA None required

merically Card

Write Binary WBPT 39 Same as WA None required

Paper Tape

(special feature)

Control K 34 Not used Qg and Qg specify input/output
unit. Qq; specifies control
functions

Unique Control

Mnemonics:

Backspace BKTY 34 | Not used None required

Typewriter

Tabulate TBTY 34 Not used None required
Typewriter

Index Type= IXTY 34 Not used None required
writer

Return Carriage RCTY 34 Not used None required
Typewriter) :

Space Type~ SPTY 34 Not used None required
writer

146

Table 19. Summary of SPS Input and Output Instructions (cont’d.)

OPERATION OPERATION CODE OPERANDS
MNEMONIC | ACTUAL P ADDRESS Q ADDRESS
Seek SK 34 Storage address of disk control X07X1
field

Read Disk/ RDGN 36 Same as SK X07X0
WLRC

Write Disk/ WDGN 38 Same as SK X07X0
WLRC

Check Disk/ CDGN 36 Same as SK X07X1
WLRC

Read Disk RTGN 36 Same as SK X07X4
Track/WLRC

Write Disk WTGN 38 Same as SK X07X4
Track/WLRC

Check Disk CTGN 36 Same as SK X07X5
Track/WLRC

Read Disk RDN 36 Some as SK X07X2
Write Disk WDON 38 Same as SK X07X2
Check Disk CDN 36 Same as SK X07X3
Read Disk RTN 36 Same as SK X07X6
Track

Write Disk WTN 38 Same as SK X07X6
Track

Check Disk CTN 36 Same as SK X07X7
Track

Table 20. Summary of SPS Miscellaneous Instructions

NOTE: Indirect Addressing and indexing are allowable with all P or Q address operands that are marked with

*

an ",
OPERATION QPERATION CODE OPERANDS
MNEMONIC | ACTUAL P ADDRESS Q ADDRESS

Set Flag SF 32 *Storage address at which flag Not used
bit is placed

Clear Flag CF 33 *Storage address from which flag{ Not used
bit is cleared

Move Flag MF 71 *Storage address to which flag *Storage address of flag bit to
bit is moved be moved

Halt H 48 Not used Not used

No Operation NOP 41 Not used Not used

Appendix

147

Table 21. 1620/1710 Indicator Codes for SPS BI-BNI

Instructions

NOTE: This table lists only those indicators that do not have unique

mnemonics.

INDICATOR

Q ADDRESS

Q, Qg Q, Q, Q

Operator Entry

Teminal Address Selector (TAS)
Check

Function Register Check
Analog Output (AO) Check
Mask

Customer Engineer (CE) Interrupt
Analog Output Setup
Multiplexer Busy

Multiplex Complete
Analog Output Setup Interrupt
One Minute Interrupt

One Hour Inferrupt

Any SIOC Interrupt

Process Interrupt 1

Process Interrupt 2

Process Interrupt 3

Process Interrupt 4

Process Interrupt 5

Process Interrupt 6

Process Interrupt 7

Process Interrupt 8

Process Interrupt 9

Process Interrupt 10

Process Interrupt 11

Process Interrupt 12

Process Branch Indicator 1
Process Branch Indicator 2
Process Branch Indicator 3
Process Branch Indicator 4
Process Branch Indicator 5
Process Branch Indicator 6
Process Branch Indicator 7

INDICATOR Q ADDRESS
Q; Qg 9 Qp Q)

Read Check 0)
Write Check 0 7
MAR Check 0 8
MBR-E Check » 1 é
MBR-O Check 1 7

1 8

N N NN NN NOOG OGO O OO OO, aese & bbb dNMNNMDNMNMNDNMDNDDN
O hWN —~ O VENOCOWLAWN=OWVWOOLGE W—O0 VOO WN -~

Process Branch Indicator 8
Process Branch Indicator 9
Process Branch Indicator 10
Process Branch Indicator 11
Process Branch Indicator 12
Process Branch Indicator 13
Process Branch Indicator 14
Process Branch Indicator 15
Process Branch Indicator 16
Process Branch Indicator 17
Process Branch Indicator 18
Process Branch Indicator 19
Process Branch Indicator 20
SIOC Output Error

Alert

SIOC Unit 1 Response
SIOC Unit 2 Response
SIOC Unit 3 Response
SIOC Unit 4 Response
SIOC Unit 5 Response
SIOC Unit 6 Response
SIOC Unit 7 Response
SIOC Unit 8 Response
SIOC Unit 9 Response
SIOC Unit 10 Response
SIOC Unit 11 Response
SIOC Unit 12 Response
SIOC Unit 13 Response
SIOC Unit 14 Response
SIOC Unit 15 Response
SIOC Unit 16 Response
SIOC Unit 17 Response
SIOC Unit 18 Response
SIOC Unit 19 Response
SIOC Unit 20 Response
Disk Address Check
WLR/RBC

Cylinder Overflow

Any Disk Check

Seek Complete

7

@ @ 0 0 M @ 0 N N

NV ONOCOOOOCO OO O0OO0OO0CO0OOCO0OO0OO0O0 OO0 O OO VeNO®ULAEWN-—OWVWO®N
© O @ 0 ®®OMOMDO®MSNSNSN-NSNSN-SNN-NN® &
CONOULUAEWNS=OWOVW®E®NOGOULAEAWN=OOOW W

BWWWW OO OO0 00> O ®

148

Table 22.

1710 SPS Operation Codes

OPERATION OPERATION CODE OPERANDS
MNEMONIC JACTUAL P ADDRESS Q_ADDRESS

Select Address SAO 84 Not used Q7 specifies operation;

and Operate Qg - Qj specify a
terminal address

Unique Select

Address and

Operate

Mnemonics:

Select Address SA 84 Same as SAO Q7=1 Q¢ - Q)
spec:fy termmol uddras
of analog input point

Select Address SACO 84 Some as SAQ Q7=2 Q¢ - Qy,

and Contact specnfy termmaI oddras

Operate of contact point

Select Analog SAQOS 84 Same as SAO Q7=3; Q¢- Qy,

Output Signal specufy termmal address
of analog output
channel

Select Read SLRN 86 Depends upon particular | Depends upon particular

Numerically operation operation

Unique Select

Read Numeri-

cally

Mnemonics:

Select TAS SLTA 86 Core location where Q7=1; Qg- Qyj are

high-order position of | not used
TAS is transferred
Select ADC SLAR 86 Core location where Q7=2 Qo- Q)
Register high-order position of specnfy analog input
ADC register is trans- address
ferred
Select Contact SLCB 86 Core location where Q7=7; Q¢ - Q
Block status of the first contact speclfles the contact
scanned is stored block address where
reading begins
Select Real- SLTC 86 Core location where Q7=4; Qg - Qy are
Time Clock high-order digit of RTC | not used
is transferred

Select ADC SLAD 86 Core location where Q7=6; Qg - Q) are

and Increment high-order position of | not used

(1711 Model 1) ADC is transferred

Select Manual SIME 86 Core location where Q7=8 Qg -Qqare

Entry Switches high-order digit of not used

Manual Entry switches
is transferred

Branch Out Of 8O 47 Address to be placed in |Qg =~ Qg =00; Q) =0

Noninterrup~ IR-3

tible Mode

Branch Out Of BOLD 47 Address to be placed in | Qg ~ Qg =00; Q) = |

Noninterrup= IR-1

tible Mode and

Load

Mask MK 46 Not used Qg-Q9=00; Q;; =1

Unmask UMK 46 Not used Qg-Q9=00; Q) =0

Select Input sLIC 86 Not used Q Q

Channel 10 = Q11 specify the

‘| oddress of an S1OC input

unit

Appendix

149

Table 22.

1710 SPS Operation Codes (cont’d.)

OPERATION OPERATION CODE OPERANDS -
MNEMONIC { ACTUAL P ADDRESS Q ADDRESS
Read Numerical RNIC 86 Core storage location Qy=35; Qg - Q) not
Input Channel where data is to be read| used |
Read Alpha- RAIC 87 Same as RNIC Same as RNIC
meric Input
Channel
Write Numerical WNOC 88 Core storage location Q10 - Q) specify an
Output Channel from which data is to SIOC output unit
be written
Write Alpha- WAOC 89 | Same as WNOC Same as WNOC
meric Output
Channel
Unique SIOC
Branch Indicator
Mnemonics;
Branch Output BOR 46 Core storage address of | None required
Record Mar leftmost position of next
instruction to be exe-
cuted if indicator tested
is on :
Branch End of BRE 46 Same as BOR Same as BOR
Message
Branch Mode BMC 46 Same as BOR Same as BOR
Shift
Branch Data BIR 46 Same as BOR Same as BOR
Ready
Branch SIOC BCNB 46 Same as BOR Same as BOR ‘
Not Busy
Unique SIOC
Branch No
Indicator
Mnemonics:
Branch No BNOR 47 Core storage oddress of | None required
OurEuf Record leftmost position of next
Mar! instruction to be exe-
cuted if indicator tested
is off *
Branch No End BNRE 47 Same as BNOR Same as BNOR
of Message
Branch No BNMC 47 Same as BNOR Same as BNOR
Mode Shift .
Branch No BNIR 47 Same as BNOR Same as BNOR
Data Ready
Branch No BCB 47 Same as BNOR Same as BNOR
SIOC Not Busy

150

Table 23. SPS Subroutine Macro-instruction Execution Times

NOTE: These execution times depict the total time from the encountering of a Macro-statement to returning to the calling program.

SUBROUTINE

AVERAGE EXECUTION TIME

Floating Add

Fixed length
Average time = 4, 100 psec,
Variable length

Average time (in ps) =70L + 3420 where L = length of mantissa

Floating Subtract

Fixed length

Average time = 4,200 psec,
Variable length

Average time (in ps)= 70L + 3500

Floating Multiply

Fixed length
Average time =5,300 psec.
Variable length
Average time (in ps) = 36.6 L2 + 48L + 3240

Floating Divide

Fixed length
Average time =10,900 psec.
Variable length
Average time (in ps) = 98.5L2 + 200L + 3490

Floating Shift Right

Fixed length ond variable length
Average time (in ps) = 2270 + 45 (A-B)

Floating Shift Left

Fixed length and variable length

Average time (in ps) = 3830 + 350 (B-A) + 7.5 (8-A)2

Transmit Floating

Fixed length and variable length
Average time (in ps) -~ 530 + 15L

Branch and Transmit Floating

Fixed length and variable length
Average time (in ps) = 645 + 15L

Floating Square Root

Fixed length
Average time = 29 ms
Variable length
Average time (in s) = 100L2 + 2000L + 5500

Floating Sine

Fixed length
Average time = 33,3 ms
*Variable length
Average time (in ps) =513 +320L2 + 3100L + 4900

Floating Cosine

Fixed length
Average time = 33,3 ms
*Variable length
Average time (in ps) = 513 + 29612 + 2950L + 5400

Floating Arctangent

Fixed length
Average time =31,7 ms
Variable length
Average time (in us) =35L3 + 570L2 + 400L + 7500

Floating Exponential (Natural)

Fixed length
Average time = 38 ms
NOTE: Add 11.4 ms to the average time if the argument is negative.
**Variable length
Average time (in ps) = 2113 + 24012 + 6000L - 1300

Floating Exponential (Base 10)

Fixed length N
Average time = 39.8 ms
NOTE: Add 11.4 ms to the average time if the argument is negative.,
**Variable length 3 2
Average time (in ps) = 2317 + 240L° + 6050L - 1300

Floating Logarithm (Natural)

Fixed length
Average time 51.7 ms
Variable length
Average length (in ps) = 36,513 + 59012 + 1500L + 8600

Floating Logarithm (Base 10)

Fixed length
Average time = 56,6 ms
Variable length 3 2
Average time (in ps)=33,5L" +680L + 2100L + 5900

*NOTE: These execution times are for arguments less than 2r.

range, Therefore, the time required to perform these subtractions should be odded to the average time required for an argumenr less than 2% .

** Add time for VL Divide if the argument is negative.

Arguments greater than 2 are reduced by subtractions of 2r until within

Appendix

151

Table 24.

1620 Character Coding

Character Input Core Storage Output
Typewriter Tape Card Alpha Num Typewriter Tape Card
(Blank) (Space) C (Blank) C C (Space) C (Blank)
. (Period) . X0821 12,3,8 c| 3 . X0821 12,3,8
)) X0C84 12,4,8 c| 4 |) X0C84 12,4,8
+ + X0C 12 1 C + Xoc 12
$ $ XC821 1,3,8 1| 3 $ XC821 11,3,8
* * X84 11,8,4 1| 4 * X84 11,4,8
- (Hyphen) | - X n 2 | ¢ - X n
/ / oc1 0,1 2 |1 / oc1 0,1
, (Comma) | , 0c821 0,3,8 2 |3 , 0c821 0,3,8
ALPHAMERIC ((084 0,4,8 2 | 4 (084 0,4,8
MODE = = 821 3,8 3 |3 - 821 3,8
@ @ Cc84 4,8 3 4 @ c84 4,8
A-l A-l X0, 1-9 12,1-9 4 | 1-9 A-l X0,1-9 | 12,1-9
0 (=) (None) (None) 11,0 5 C - (Hyphen) X 11,0
J=R J-R X, 1-9 1,1-9 5 | 1-9 J-R X, 1-9 11,1-9
1-9 (=) J-R X,1-9 1,1-9 5] 1-9 J-R X, 1-9 1,1-9
4 §-Z 0,2-9 0,2-9 6 | 2-9 5-Z 0,2-9 0,2-9
0 0 0 Oor 12,0 7 1c¢C 0 0 0
1-9 4 1-9 1-9 1-9 7 | 1=9 1-9 1-9 1-9
+ * 082 0,2,8 C | c82 (Stop) EOL 0,2,8
(Blank) (Space) C (Blank) C 0 0 0
0+ 4 0 0 0 C 0 0 0
0() 0 X, X0C 11,0 F 0 X n
1-9 (9 1-9 1-9 1-9 1-9 -9 1-9 1-9
1-9 (=) 7-9 X, 1=9 11,1-9 F, 1-9 1-9 X, 19 11,1-9
NUMERICAL
MODE * * 082 0,2,8 c82 (Stop, WN)| EOL(WN) | 0,2,8
$ON) 082 (DN)
¥ * X82 11,8,2 F82 * X82 11,8,2
¥ £ 08421 0,7,8 *C8421 #F 08421 0,7,8
Fy i X842 12,7,8 F8421 F xe421 | 12,7,8
Num
Blank @ c84 4,8 c84 @ c84 (Blank)

t For Card Format Use Only
* Recorded as 0,8,4,2, 1 in disk storage

152

Table 25. Core Storage Data Resulting From Reading Alphameric Card
Data with RN Instruction

Alpha Bits Entered ifno Core Stora.ge Alpha Bits Entered iI.I!() Core Sl()l“.l}.{l‘
Character by Read Numerically Instruction Character by Read Numerically Instruction

C F 8 4 2 1 . C F 8 4 2]

A X 0 X

B X 1 X

C X X X 2 X

D X 3 X X X

E X X X 4 X

F X X X 5 X X X

G X X X 6 X X X

H X 7 X X X

1 X X X 8 X

J X X X 9 X X X

K X X X _/ X

L X X X '. (period) X X X

M X X X ', (comma)| X X X

N X X X [X X | X

(0] X X X (X X X

P X X X X X) X X X

Q X X X l== X X X

R 1 X | X X * X | X[X

S X - X

T X X | X * X

U X Card 13,0 X

\Y% X X X gr(l)ly 12,0 X

w X X X % X X X

X X| XX '$ X| X | x X | X

Y X Blank X

Z_ X X X ! Interpreted as Record Mark on WN and TR instructions.

Appendix 153

Appendix B

Alphabetic Listing of All Messages

Message

XXXX DO TABLE FULL

XXXX IMPROPER DO NESTING

XXXX MIXED MODE

XXXX SYMBOL TABLE FULL

© XXXXX ALABEL + XXXX ERN
(see Table 6)

XXXXX CARD SEQ ERROR,

_ CORRECT AND START

XXXXX CORES USED
XXXXX NEXT COMMON
END OF COMPILATION

XXXXX LD1

XXXXX NAME

XXXXX SECTORS OF DATA
COPIED FROM XXXXXX TO
XXXXXX

XXXXXX LOADED FROM
XXXXXX TO XXXXXX

XX XXXXX OVERLAP

XXXXXXXXXX TYPE CHANGE

XXXXXX XXXXX XXXXX LOADED

XXXX + XXXX ERROR N

ALREADY DEFINED

AND FILE PROTECTED

BAD DISK WRITE. RESET
START

CANNOT RESTORE COMMON -
RESET AND START TO RETRY

CDP ERR '

CDR ERR

CONDITION IGNORED

CONTROL STATEMENT INVALID,

RE-ENTER

CORE CAPACITY EXCEEDED BY
XXXXX LOCATIONS PROGRAM
IS TERMINATED

CORRECTIONS HAVE NOT
BEEN ENTERED

DISK RD WR ERROR, START

TO RETRY

DISK SECTOR XXXXXX
CORRECTED

DK LOADED XX XX

DSK ERR XXXXX 06 07 16 17 36
37 38

DSK OFL

DUP * ERROR 01 (01 through 24)

DUP * ERROR 51 (51 through 61)

DUP * TURN OFF WRITE
ADDRESS KEY, START

-, 154

Program

Pages

FORTRAN
FORTRAN
FORTRAN
FORTRAN

SPS

Loader

FORTRAN
Supervisor
FORTRAN

DuUP

Loader
FORTRAN
DUP
FORTRAN
FORTRAN
SPS

DUP

Supervisor
Supervisor
Supervisor
Supervisor

Supervisor

Loader

SPS
DUP
Loader

DUP
DUP

Supervisor
Supervisor
DUP
DUP

DUP

120
120
120
120

86
137
122

24
126

35
137
129

29
128
120

91

35

22

15

21

21

15

137

90
30
137

30
28, 41

21
21

38, 39, 40

40

28

Message

DUP # TURN ON WRITE
ADDRESS KEY, START

END OF ASSEMBLY
XXXXX CORE POSITIONS
REQUIRED XXXXX
STATEMENTS PROCESSED

END OF JOB _ _ _ _ _

ENTER DUP CNTRL REC

ENTER MONITOR CONTROL
RECORD

ER D1 (D1 through G7)

ERROR L1 (L1 through L10)

ERROR X ,

ERROR IN FIELD AT COL. XX.
SET SW 4 TO IGNORE, OFF TO
RE-ENTER CARD

ERROR IN FIELD AT COLUMN
XX. PHASE TERMINATED

ERROR, INVALID CONTROL
RECORD

ERROR, INVALID OUTPUT
UNIT CODE

EXCEEDED SPECIFIED
CAPACITY BY XXXXX

EXECUTION

EXECUTION INHIBITED

EXECUTION IS INHIBITED

ERROR, F OR K OUTSIDE RANGE
FORTRAN LIBR NAME ENTERED

- XXXXXXXXXX

FLIPER XXXXX OVERLAP

IMP ERR

IMPROPER IND CODE IN
SUBR XXXX

JOB ABANDONED

JOB CARD GROUP ONLY

LD 2

LD 3

LD 4

LOAD SUBNAM

MAP ERR XXXXX XXXX

MAX N2 ALLOWABLE XXXXX

MOD ERR XXXXX

MORE THAN 5 CYLINDERS OF
RELOADABLE OUTPUT SSW 4
ON TO DUMP OUTPUT, OFF
TO CONTINUE, NO OUTPUT

MUST RELOAD

NAME XXXXX OVERLAP

Program

DUP

SPS
Supervisor
Supervisor
DUP

Supervisor

FORTRAN
FORTRAN
FORTRAN

Supervisor
Supervisor
FORTRAN
FORTRAN

SPS
Supervisor
FORTRAN
Supervisor
FORTRAN

DUP
FORTRAN
Supervisor

SPS
FORTRAN
Supervisor
Supervisor
Supervisor
Supervisor
FORTRAN
Supervisor
FORTRAN

Supervisor

SPS
Supervisor
FORTRAN

Pages

28

87
10, 15
21
28

15, 17
130
128
120

15
16
118
119
89
15
1129

119

89
23
129

Message Program Pages

NO DIM ENTRY FOR

SUBROUTINE SPS 89
NO ENTRY FOR SUBROUTINE FORTRAN 129
NO ROOM IN TABLE SPS 91
NO TRAILER REC. CORRECT,

RELOAD COMPLETE DECK

WITH CNTR REC, AND BR TO

7404 Loader 137
NOT IN TABLE SPS 91
OBJECT DIM ERROR PHASE

TERMINATED Supervisor 16
OBJECT NAME ERROR PHASE

TERMINATED Supervisor 17
PACK NUMBER. ERROR ON

MODULE X. SET SSW4 TO

IGNORE OFF TO RECOMPARE Supervisor 15
PTR ERR XXXXX 06 07 16 17 36

3738 o Supervisor 21
PTP ERR XXXXX 06 07 16 17 36

37 38 Supervisor 21
RDER Loader 137
RE-ENTER STATEMENT SPS 87
RE-ENTER OPERANDS SPS 87
SECTION DuUp 29, 30

NOTE: X’s represent variable characters.

Message

SECTOR

SECTION NUMBER ILLEGAL,
START TO RE-ENTER * DALTR

SECTOR ADDRESS ILLEGAL
START TO RE-ENTER * DALTR

SEQ

SUBR NOT LOCATED IN
SUBROUTINE MAP

SYSTEM DIM ERROR PHASE
TERMINATED

TRAILER CARD SEQ ERROR,
CORRECT AND START

TRP ERR

TRP ERROR MUST RELOAD

TYP ERR XXXXX 06 07 16 17 36
37 38

TYPE-IN EXCEEDS SECTOR
LENGTH, START

UNDEFINED SYMBOL XXXXX

WRITE AND SAVE (SEEK
START STOP)

WRITE AND ZERO (SEEK
START STOP)

Program Pages
DuUp 29
DUP 29
DUP 29
Loader 137
SPS 90
Supervisor 17
Loader 137
Supervisor 22
Supervisor 23
Supervisor 21
DUP 30
SPS 91
DUP 29
DUP 29

Appendix B 155

Index

Page

Absolute format ... 4
ACCEPT statement 105
ACCEPT TAPE statement ... 105
Add (A) instruction 61, 139
Add Immediate (Al) instruction . 61, 139
Adding macro-instructions t0 Processorcc.c...... 77, 91
Adding subroutines
" FORTRAN ' .. 131

SPS .77
Address

actual, ... eeeetemaeeteeneemeaeeneeteeaeens 49

adjustment ... 50

ASEETISK oot e e e e ettt ee et ea e eme e rane 49

equivalents for PICK, ... 71

symbolic, 49

types of, used as operands 49
Address Check indicator 23
Altering assignment of disk storage drivescccccoeeneee. 12
Alter Sector routine 29
Analog Output Check code . 148
Analog Output Setup code -.ooooeooinresioieieececce e 148
And to Field (AND F) instruction 140
Arguments (FORTRAN) . 108
Arithmetic Instructions summary . . 139
Arithmetic mode 94
Arithmetic precision (FORTRAN) 96
Arithmetic statement functions 114
Arithmetic statements 98
Arithmetic™ subroutines

FORTRAN .. . 124

SPS .. . emeareenannaen 66
Arithmetic subroutine macro-instructionsc.cocc....... 67
Arrays .. 96, 104

Assignment of DIM entries and/or names, rules for
ASSEMBLE RELOCATABLE, SPS Control record
Assignment of System DIM numbers

Asterisk

FORTRAN e 97

SPS ... 46, 49
At(@)sign (special character) 47, 49
Automatic Fix/Float ..o 113
Availability list ..o 32
Backspace Typewriter (BKTY) instructioncccoooenee. 146
BEGIN CARD INPUT, SPS Control record 85
BEGIN PAPER TAPE INPUT, SPS Control record 85
BEGIN TYPEWRITER INPUT, SPS Control record 85
Blank charactercoocooeeiieieeeenn. 47

headed by, .o 64
Branch and Adjust ASSIgnment counter (B7) 51, 141
Branch and Load Index Register (BLX) instruction 144
Branch and Load Index

Register Immediate (BLXM) instructiono.......... 144
Branch and Modify Index Register (BX) instruction 144

156

Page

Branch and Modify Index
Register Immediate (BXM) instructionc..cccoveeeenens 144
Branch and Select (BS) instructioncoocoiimeeeniincnnene 143
Branch and Select Band A (BSBA) instruction 144
Branch and Select Band B (BSBB) instruction 144

Branch and Select.

Indirect Addressing (BSIA) instructionccceeeneee
Branch and Select No I/A (BSNI) instruction
Branch and Select

No Index Register (BSNX) instructioncececeeeeeae 144
Branch and Store Index Register (BSX) instruction 144
Branch and Transmit (BT) instruction ... 143
Branch and Transmit Floating

instruction (BTFL) oot eeens 143

subroutine (BTFS) .. 15
Branch and Transmit Immediate (BTM) instruction 143
Branch Any Data Check (BA) instructionc..... 141

Branch Back and Adjust Assignment Counter (BB2) 51, 143
Branch Back (BB) instruction .
Branch Band A Not Selected (BANS) instruction
Branch Band B Not Selected (BBNS) instruction
Branch Band A Selected (BBAS) instructioncccee...
Branch Band B Selected (BBBS) instructionceccceee.n
Branch Conditionally, Modify Index

Register (BCX) inStructionc.ccccooooorninaronamierescaeenas 144
Branch Conditionally, Modify Index
Register Immediate (BCXM) instructioncccceeeee. 144

Branch Console Switch instructions
(BC1, BC2, BC3, BC4) 142, 143

Branch Data Ready (BIR)-instruction 150
Branch End of Message (BRE) instructionoccceeereen. 150
Branch Equal (BE) instruction 141
Branch Exponent Check (BXV) mstructlon 142
Branch High (BH) instruction 141
Branch Indicator (BI) instruction 141

Indicator Codes summary 148
Branch instructions -.......ccccocoocceecneees 61, 141-143

142

Branch Last Card (BLC) instruction
Branch Low (BL) instruction
Branch Mode Shift (BMC) instruction ...
Branch Negative (BN) inStructionocccceceevececnanes
Branch No Data Ready (BNIR) instruction
Branch No End of Message (BNRE) instruction .
Branch No Flag (BNF) instructioncoccoomne
Branch No Group Mark (BNG) instruction
Branch No Indicator (BNI) instruction
Indicator Codes summaryocccocoeeeenne
Branch No Mode Shift (BNMC) instruction

Branch No Output Record Mark (BNOR) instruction 150
Branch No Overflow (BNV) instructionccocoowceeeeceee 143
Branch No Record Mark (BNR) instructioncc....... 141
Branch No SIOC Not Busy (BCB) instruction 150
Branch Not Any Data Check (BNA) instruction 143
Branch Not Equal (BNE) instructioncccce..... . 142
Branch Not Exponent Check (BNXV) instruction 143
Branch Not High (BNH) instruction 142

Branch Not Last Card (BNLC) instructioncc.cceceeen-e. 143
Branch Not Low (BNL) instructionccecccecoeoeeivcceeceens

Branch Not Negative (BNN) instruction ..
Branch Not Positive (BNP) instruction

Branch Not Zero (BNZ) instruction
Branch on Bit (BBT) instruction
Branch on Mask (BMK) instruction
Branch on Digit (BD) instruction
Branch Operands
Branch Out of Noninterruptible Mode (BO) instruction 149
Branch Out and Load (BOLD) instructioncceceoee
Branch Output Record Mark (BOR) instruction ...
Branch Overflow (BV) instruction ..ceeeoeecececoecmeeecicinesacacecs 141
Branch Positive (BP) instructionccccccoomiemnns 141
Branch SIOC Not Busy (BCNB) instructionccceceeeeve. 150
Branch Zero (BZ) instructionoooooooiiioieienicneens 141
CALL EXIT lnKage ...cccccceceoceoercereriieminceneneemecensaseenenes 18
CALL EXIT statement
FORTRAN . . 103
SPS eeeeememeeteeneteeneaneanaaeanaeneaeras . 81
CALL LINK linkage -..... . .17
CALL LINK statement
FORTRAN e eemnene e 117
SPS . . eereenenaens 81
CALL LOAD
linkage . .17
macro-statement . - . . 81
CALL statement
FORTRAN oo eee et eeeemem e e anememamsan s naracaess
SPS
Card 1/O e

Card read error ...
Card write error
Check Disk (CDN) instruction

Check Disk Track (CTN) instructioncccccooooioommseenas 147
Check Disk Track/WLRC (CTGN) instruction 147
Check Disk/WLRC (CDGN) instruction
Clear Flag (CF) instruction ..o.ccoeoeoeiicnmnimnecenes:
Coding sheet
FORTRAN oo eeeieseae e ese e e sn e ennnensasanas 94
PSS ot ee 44
COIMAS emeeeeeeeeeeeeieeameemeearmeemee e e meemteeamee e erenananasaassnnennesancenas 46
Comments
FORTRAN o ooeeeeeeeeeme et esseme e an e reas 93
SPS
With aSterisK ...oeooeoeoeie e eee et e 46
see Remarks
Comments Monitor Control recordooocomioirmmncencencas 12
COMMON SEAEEMENT ..oooeeeeeeeeeeeenneeeeereccacmenmmesmmenaraseaneneseeas 107
Communications AYeascccoceoceoeeecerenes 25, 36, 37
Compare Immediate (CM) instruction ... 141
Compare (C) inStIUCHON ...eoeoeceuruimecemrseesaceseerecccameneaeeneaes 141
Complement Octal Field (CPLF) instruction
Compilation PrOCESSooeoreeueoirceceiemeuerersscaseanmscsmecemsoreennaes
Constants
FORTRAN oot erme s e eee e eme e nnaneas 95
SPS
Y - + OO 47
Define Alphameric Constant (DAC) 55
Define Constant (DC) instructionccccccccccomnerenenn. 54
Define Special Alphameric Constant (DSAC) 56
Define Special Constant (DSC) ..o 55

Page
Define Variable-Length Constant (DVLC)c...cc.... 55
CONTINUE statementcoocoiiiimieiieieieeeeeeeeereeeeeeeaee 102
Control (K) instructionccooiiiiiiieieeeeees 146
Control Card Formats ..o ceeees 10
Control operation
COABS e enes 43, 146
Control record trap erToro..oceoiooiviioeiieieeieeeeeeeeenaans 22

Control records
DU P et
FORTRAN
MONITOR
B 2 TS

Control statements (FORTRAN) ..o
Core storage requirementsccc......
Customer Engineer (CE) Interrupt code
Cylinder Overflow Errorccocoocoooieeeeoeeceieeeeeeeenenne
Cylinder Overflow indicator

DALTR, DUP control recordo.oooooooeciieaeeeeeecaaeeeees 29
DATA control record ... 127
Data transmission subroutine macro-instructions 67
Data transmission subroutinescocooiiiciiiiiinns 66
DCOPY, DUP control record 35
DDUMP, DUP control record 31
Decimal Octal Conversion (DTO) instructionc..cceeec.c. 140
Declarative operations
card format (list) ..o s 87
codes 43, 52
SUIMINALY cevoioetieiraereeeeemeeeesseeeeemseeeeemense e e eameeneaane e meoammeseenas 138
Define Alphameric Constant (DAC) statement 55
At SLEN o 47
blank characterocooooovoiieiceeee e 47
Define Alphameric Symbol (DAS) statementccc.... 54
Define Card Alphameric (DCA) ..ooooieoiveeeeceeeeeeeeeeaee 83
Define Card Numerical (DCN) ..o 83
Define Disk without WLRC (DD). ..o 83
Define Disk with WLRC (DDW) 83
Define Constant (DC) statementccococoooooeiiveececnen. 54
at sign 47
Define Disk Address (DDA) statementccccccoeceoenen. 57
Define Disk Pack Label Routineccooooiomiiiicecieennenn. 37

DEFINE DISK statement

Define END (DEND) statementocccoooooeeoeioieeeiivernenss 63
Define FORTRAN Library Subroutine Name routine 38
Define Group Mark (DGM) statementocccoeeeenee. 58
Define Message (DMES) statementcccccoooovvvveeeeeconen.ne. 58
Define Numerical Blank (DNB) statementccc....... 57
DEFINE OP CODE, SPS Modification Control record 91
Define Origin (DORG) statementocecoevoeoceerecmeraeene 62
Define Paper Tape Alphameric (DPTA)ccooivieieeeneen. 43
Define Paper Tape Alphameric (DPTA) 83
Define Paper Tape Numerical (DPTN) 83
Define Parameters routine e eeeeaeeeeveeeeteeeneeeeneeenneas 36
Define Special Constant (Numerical) DSC statement 55

Define Special Symbol (Numerical) DSS statement 53

Define Symbol (Numerical) DS statement ... 52
Define Symbolic Address (DSA) statement -... ... 56
Define Symbolic Block (DSB) statementcccooceeceunc... 57
DEFINE SYSTEM SYMBOL TABLE, SPS Modification
Control record91
Define Typewriter Alphameric (DTA) 83

Define Typewriter Numerical (DTN)
Define Variable-Length Constant (DVLC) statement 55

Index 157

DELET, DUP control recordcccooooiioiooieiiiiieeeeaeennne 36
DELETE OP CODE, SPS Modification Control record 91
Delete Programs routine ...o..o..oooeooceveoeeremceemeeeeeeiceneeeeeeeenns 36
DFINE, DUP control record et 36
DFLIB, DUP control recordcccooomiiieiiiiieeiieiaeanes 38
DIM entry -

DIM numbers for Monitor SyStemccceeceeemeiieevecenns 5
DIM table ..ol

DIMENSION statement .

Disk control fleldc.coooiiiiie e
Disk I/O conStantsocoooooiiieicoeeeeeeeei e eeeeeeeanens
Disk I/O optionscccccceeeeeeceeeenenn..

Disk pack identification numbersoccoocooeeeeeenn. 13, 37
Disk pack label ... 6, 7, 37
Disk storage I/O 19

Disk storage requirements
Disk Utility Program
Disk-to-Disk routine
Disk-to-Output routine
Divide (D) instruction
Divide Immediate (DM) instruction ..
Divide subroutine ..o .. 73

Divisor, incorrect positioning 74
DLABL, DUP control record ... 38
DLOAD, DUP control record 33
DO statementccoooooeoieiieeee e 101
Dollar sign (special character) ... 47, 64
DOT Declarative Statementcoooocoooeoievercoeiceneceneee. 59
DREPL, DUP control record 34
Drive code ..coeoeieiieieieeieenee. 4 12 20 58
Dummy variables ..o 115, 116
Dump Numerically Card (DNCD) instructioncceceee..

Dump Numerically (DN) instructionccccoceeeeeeeiiacnecn.

Dump Numerically Paper Tape (DNPT) instruction:
Dump Numerically Typewriter (DNTY) instruction
DUP, Monitor Control recordcccoooveeeeveieeieieiecennen.
Duplicate symbols (labels)
DWRAD, DUP control recordocoomiiiiioeeeeceeene, 28

END statementoocooooiiimiieiceeeeece e eeeaes
End-of-Job Monitor Control recordc.cccooviveeieennenn.
End-of-line character ...
ENDLIB, SPS Modification Control record
Entry Check error
Entry points of I/O routineoocoooieeeeeeeeceeeeeeaenn
Equal sign (SPS special character) .
EQUIVALENCE statementcco.cecoooieieeieieeeeiceieeeenenes
Equivalence table ...
Error checking, FORTRAN ..o
Error correction (SPS)

assembly eooooooioiiie e 86
Error correction codes, I/O Error routine ..
Error Count Retrieval routinecccooceeoevieecceriecenanceee.
Error detection and correction, DUPccoocovioimiiieceneee
Error Messages — (see Appendix B)
ERROR STOP, SPS control record
Evaluation of arguments (subroutines)

FORTRAN e 113

P S e e a e e maaene 67
Exclusive OR to Field (EORF) 1nstruct10n 140
Execution times (SPS subroutines)ccccocemeeeecennn. 151
Exponents

FORTRAN e enen 94

158

Page

SPS e
Expressions, FORTRAN ...
FANDK Control record ...
FETCH statementccoccoooiiimmoiiieeiiceieeeeeeeeeneeeeeeeeeeeans
File protected pProgramso.cooooooioiiooiieieieeeeieeeeaes 6
FIND statement
Fixed-length mantissa subroutines (SPS)cccceurennne. 67
Fixed-Point Divide (FD) subroutinec..ccooooeveeeennne. 73
Fixed-point variables (FORTRAN) 96
Flag indicator operandocooooooiimiiiiiieeieeeieeeennn. 47

in immediate InStructionso..cccooeiiieiceieeieeen 47

in indirect addressing ... 47
Flags, St oo e 47
Floating Add

instruction (FADD) ...,

subroutine (FA)
Floating Arctangent (FATN) subroutine ..

Floating Cosine (FCOS) subroutineccccocoommmeeii
Floating Divide

instruction (FDIV) .o 139

subroutine (FD)oooiieeeeeeeeeeeee e 73
Floating Exponential (Base 10) FEXT subroutine 76
Floating Exponential (Natural) FEX subroutine 76
Floating Logarithm (Base 10) FLOG subroutine 77
Floating Logarithm (Natural) FLN subroutine 77

‘Floating Multiply

instruction (FMUL) .o eeeaeees
subroutine (FM)
Floating-point arithmetic
Floating-point variables (FORTRAN) ..o, 96
Floating Shift Left
instruction (FSL)
subroutine (FSLS)
Floating Shift Right
instruction (FSR)
subroutine (FSRS)

Floating Sine (FSIN) subroutine ... 76
Floating Square Root (FSQR) subroutine 75
Floating Subtract
instruction (FSUB) ..o, 139
subroutine (FS) ..cococooveiieceeenne e T2
FOR Monitor Control record9 11
Format of DIM entrycccoceoeeuenen.. e B

FORMAT Statement 109
FORTRAN and SPS Output .. 41
FORTRAN Control records ... 118
FORTRAN II-D 93
FORTRAN II-D language 93
FORTRAN subroutine error codescccooovooeeoeeecveeeencs 130
FORX Monitor Control record9, 11
Full track disk operation 20
Function Register Check Indicator codec.cccooeieeeeiieeneen. 148
FUNCTION statement e 115
Functional subroutinescoecoooeeiooiiieieeceeeeee e 67
GET macro-statementcco.coocooeeeieieeieeeeeaecneceaeeneeaes 81
GO TO statements _....cooeecieeeeieeeeeeeeeee e ceeneneenaens 99
Halt (H) instruction ..o ceeeeesenanns
Halt at core address 00467 ...

Head character ..o

Head statemento..ocoooocooooeiemieeieeeeeeeee e eeesaenenees

Page

Heading
for combining programscccceeciiiieieeneeeeene 63
in nesting ... desaseraansasasasenresonsassrssassennn 64
High indicatorcocooeeioeieeeceeeeeeet e eeenes 25

I/0 CONSEANES <. e eee et e e eee e e eaeeen
I/0 Declarative statementscccocooervuceeoemeeemeceeene
1/0 Etror routine
I1/0 routineoo.oooeoeeeeeeieaaaaaen,

ID NUMBER dddd, SPS control record
Identification records, FORTRAN ..o
IF statementococcviioiieieiiinienn,
IF (SENSE SWITCH) statement
Immediate-type instructions

Imperative operations ...
arithmetic .
branch ..o et aneaen
card format (list)
codes, 1710
input/output . ;
internal data transmissionce.ccceeoocereecerieenens
miscellaneous

Index, DO

Index Register

Index Typewriter (IXTY) inStructioncoocoeeeveeceeeieeeeeeeeeens

Indicator codes ...

Indicator codes (1620/1710)

Indirect addressing

Initializing the Monitor System .

Input/Output OPIONS ..oeooemieceiereceeeeee e e

Input/Output statements (FORTRAN)ccoooveeviieveecenns 103
Input instructions 145, 146
Internal Data Transmission instructions 61, 140
1/0 declarative statements erereeteenenne 80
I/0 macro-statementsco.ccceeoeereemeereeceeceeceeneseeeeaeeneeneseens 81

Job arrangement
JOB Monitor Control record

Label (SPS)

characters permitted in 43
five characters or less, headed 63
Symbol table . . 87

table, see Symbol table
Label, disk pack

1401, 1410, 1440 rereeeeeeneeeateaneanne 6
Monitor 7, 41
MUtual oo amneene 6
LDISK Control record 119
LIBR, SPS control record
Library functions (FORTRAN) ..ocoooiiviviiieeceeeeeeeeeamaneas
additional et

writing in SPS
Link program
Linkage instructionseeceeocoeemovececocccoeecneenns.
Linkage for CALL LOAD and CALL LINK

Linkage for CALL EXIT : 82
Linkage for GET, PUT and SEEK 82
Linkages for Supervisor I/O routine . 17
LIST CARD, SPS control record ... 86
LIST OP CODE, SPS Modification Control record 91
LIST TYPEWRITER, SPS control recordcccooveveemnnnee 86
LIST (FORTRAN) 111

Page

Load Programs routineccceceeceeceeeeemecrrcereenes 32
Load Dividend Immediate (LDM) instruction 139
Load Dividend (LD) instruction 139
Load-on-call subprogramscc.cccoeeeeeeiieveecnnnn. 117 126, 127
Loader, Systemc..ccccoceereenenn... 136
Loader TOUNEccoeeeeeveoeemeieieeeecceeeece e eee e e ne e aresneaenes 23
Loading the Monitor System to dlSk storage 136
LOCAL Control 1ecordcccocoeeoreceimscrceeneneneerecesecnecas 127
Location assignment counter (SPS)cccoooeeiveeene. 60, 63, 138
Logic instructions 141
Machine requirementsccc.ioeoieeeicieiieeieeeeeceee e 4
Macro-instructions (see Subroutines)

operation Of ..o e 67

rules for COAINE ...ooooeireeeiee e 72
Mantissa

FORTRAN oo 37, 94, 118

P e 36, 69, 85
MANTISSA LENGTH nn, SPS control record 85

Manual restart
MAR Check Indicator code
Mask Digit Operand
Mask Indicator COde .-..ooooeeiooieicoeeicenieie e cecceees
Mask Interrupts (MK) instruction
Matrix Input/Output (FORTRAN)
MBR-E Check indicator
MBR-O Check indicator
Miscellaneous instructions (SPS)cccoooeveieeccenne
Mode of expressions (FORTRAN)

Modification of variable-length subroutine T8
Modification program, SPS II-D ..o 91
Modifier ConStantscocccoeoemieiireeceecee et aeeenas 78
Module change numbers 12
Monitor Control Record Analyzer routine 14

Monitor Control Records .
Monitor Disk Pack label
Monitor System Loadercccocoviiieoioeoiiomeeieeceeeeenn.
Move Address (MA) instruction
Move Flag (MF) instruction
Multiplexer Complete, code ..
Multiply Immediate (MM) instruction
Multiply (M) instruction
Mutual Disk Pack Labels

NAME aaaaaa, SPS Control recordccocoooviicrieeeenenn. 86
N (noise) digit, defined . eemeneneereateenenreseetestetenenrasanne 70
NOISE DIGIT n, SPS Control record FRUUOUUURUP RN - 1>
No Operation (NOP) instructioncccccooeeveeecueeeveveeecas 147
Normalizing ..o 70
NO SUBROUTINES, SPS control recordoocovioeruveenennnn. 86
NO SYMBOLIC DIVIDE, SPS control record R 86
OBJECT CORE n, SPS Control recordcccoccoeeeecevencancnc 85
Object deck formatcocciiieecneee. reeeemeeeeeneeneaneeas 41
Object program execution (FORTRAN)ccoooveieinvieeennsn. 126
Octal Power Table 59
Octal to Decimal (OTD) .o.ooveeeeceeeeeeeeeeeee e 140
OPEraNd ..ot et eee e e nennan 47

address adjustment ofccoooiieiiiieiiieeennn. 50

asterisk, use Of ..ooooeieceiieeceeen 46, 49

at (@) sign, use of ..o, 47

blank in . 47

COMMA, USE OF .evereeieeeeeeeeeeeee et e e e eee e e e e 46

Index 159

dollar sign, use Of ..o 47
end-of-line character, use of-46
flag indicator ..o e 47
modification : g 51
special characters in 46
types of addresses used as - 49

see also P and Q operands .
Operating procedures (FORTRAN) ... S
Operating procedures, FORTRAN obJect programs .
Operating procedures (SPS) eeaetmnenaoieieita e nasas e an
Operation code :

coding sheet field ... 45

Controlccooeee...
Declarative
Imiperative
Operation of Monitor Systemoocooooovoeeiieeeeeeenn. 4, 136
Operation symbolsoooooieoooiiieeeeee e 97
Operator Entry Indicator codecocoooooiooioeoeeeeeeeeeee. 148
Operators
FORTRAN
SPS e
Or to Field (ORF) instruction
OFZIN oot
OUTPUT CARD, SPS Control record ...

Output format ..o

<73 Jc SRS

paper tape .

typewriter
OUTPUT PAPER TAPE, SPS Control recordccc........ 86
Output Printer (1710) control codesocooveeoecciececnnne 58
Output unit codes ..o e 145, 146, 147
Qutput inStructionscccccceeeeeieeeeeeeeeeeeeeeeeeeenees 145, 146, 147
Output listing (SPS) ... 87
Overflow, exponent 70
Overlap errors (FORTRAN) ..o 129

P ooperand ..o
modifier constants
see also Operands

Paper tape I/O e 19
Paper tape read €rror ..o 21
Parentheses
FORTRAN e 98
P S e et 47
PAUS Monitor Control record ...

PAUSE statementcoocoooioiii oo 102
Period (special character), 43
Permanently assigned programs .
Pick SUBrOUtineoooooooieiiiiiieeieeeeeeeeeeeeaien
address equivalents for teeressareeneaseenseareraianennn 71
POBJP Control record
PRINT statement
Process Branch Indicators 1-20, codescoooomeoooenaeeeenn. 148
Process Control Operations
Process Interrupts 1-12, codes
Processor (SPS) ...
Product area ...
MNEMOICS oeoovieeeniennne
Programming SPS II-D
Program switch settings
FORTRAN oo 128
Loader
Monitor

160

" PSTSN Control record 119

PUNCH RESEQUENCED SOURCE DECK, SPS Control

record

PUNCH SYMBOL TABLE, SPS Control record .
PUNCH TAPE statement
PUT macro-statement

Q operand ... eeeoeeeieie e e SR 45, 51
in Immediate instructionso...ociiceoieooiiceesieeennanes 47
see Operands

Range, DO . 101
Read Alphamerically Card (RACD) instruction 146
Read Alphamerically Paper Tape (RAPT) instruction 146
Read Alphamerically Typewriter (RATY) instruction 146
Read Alphamerically (RA) instructionc.ccccceeeeee. 145

Read Binary Paper Tape (RBPT)ocoooiiiiiiiiiieiieiene 146
Read check indicatorccoocoee. 21, 23
Read Disk (RDN) instructionc..coceoceooeioreeicceeeieens 147
Read Disk Track (RTN) instructionococooeoomerees 147
Read Disk Track/WLRC (RTGN) instruction 147
Read Disk/WLRC (RDGN) instructionccecoveeevuene... 147
Read Numerically Card (RNCD) instruction 145
Read Numerically Paper Tape (RNPT) instruction 146
Read Numerically (RN) instructionocceooeoeeoreeecncennns 145
Read Numerically Typewriter (RNTY) instruction 146
READ statementococooooioiiiieieei e ee e 104
Record mark

RECORD statementccoccoooioioieiiicieeecceeeeeeeee e eeemeas 106
Relocatable program ... 4
Relocatability, rules ... 90
Remarks ..o JO OO 45
Replace Programs routineo.ocoecceeoceeeiiceeciieeeeiecoeeiceennaneas 34
Repositioning of DISK access arms ... 20
Restart, manual ... 18
Restore (RSTR) statementccccecoooeeeeoceeesceeeeneenn. 65
Return Carriage Typewriter (RCTY) instruction 146
RETURN statementcoooooioiiemieeceeecemeeeeeeeee e 116
Rules for assignment of DIM entries and/or names 41

Rules for constructing expressions
Rules for statement writing (SPS)

Save (SAVE) statementccooooooeiiooniiieeeieceerecescneecenne 65
Save error count procedure . 20
Scale factorsoooooooioeiiieie e 111

Sector, disk

address ...oocooiieeeeiieee

count ..o
Seek (SK) 1nstruct10n ..
SEEK macro-statementc.occooeoioeenrevcnnenaannns
Select ADC and Increment (SLAD) instruction
Select ADC Register (SLAR) instructionccocooeeo..
Select Address and Contact Operate (SACO) instruction 149
Select Address and Operate (SAO) instruction
Select Address (SA) instructioneeeoceoceoooesiaeeenens
Select Analog Output and Signal (SAOS) instruction
Select Contact Block (SLCB) instructioncececeeu.e..

Select Manual Entry Switches (SLME) instruction
Select Read Numerically (SLRN) instruction -
Select Real-Time Clock (SLTC) instructioncccco.....
Select TAS (SLTA) instructionocooooeoeiiiimmeeeeen. .
Sequential Program table

Page

Set Flag (SF) instructionocceeeooooeeimeiicecceeieceeiceenes 147
Sign control in floating-point arithmetic (SPS) 70
Slash symbol

FORTRAN e e 97

SPS
Source program

FORT RAN e e e meemee e e emeeaan 117

P S et aane 84
Space Typewriter (SPTY) instructionoccoooeoieeeeee. 146
Special characters

for statement writing ...

permitted in labels ...,
Specification statements ...
SPS Control records

SPS Monitor Control record ...
SPSX Monitor Control record
Stacked input

Statements
FORTRAN e, e a e e
SPS .
STOP statement
STORE CORE IMAGE, SPS Control recordcocc...._.. 86
STORE RELOADABLE, SPS Control record 86
Subprogram statements e 115
SUBROUTINE statementccooooooiieemeeeeeceeeieeeeaee 115
Subroutines
FORTRAN
HBOIary et
adding to ...
Arithmetic and I/0
SUBROUTINE statementoccoooooimmimeiiiiiieeee. 115
SPS i
AAAING e 77
arithmetico.ccooooiii. 66
data transmission, 66
entry POIMES oo 79
equal/zero indicator ..o 71
functional 66
high/positive indicatorccococomrrierrmreuorieecaeenenes 72
identification number ... 68, 79
linkage 68
overflow indicator ... 72
PAITING, oo 68
sets 68
WITHNG, o 77
see macro-instructions
SUBROUTINE SET nn, SPS Control recordoccco...... 85
Subscripted variables ...
SUDSCIIPES e

Subtract Immediate (SM) instruction
Subtract (S) instruction
Supervisor program
Symbol table
FORTRAN
SPS et em et e 86, 87
system _........
SYStem €ITOT oooooooe e
System header label area, 1401, 1410, 1440 .
System Output format
indicator codes
System Symbol table
SYSTEM SYMBOL TABLE, SPS Control record

Page

Tables
1. Numbered error Messages Generated
by Disk Utility Routinesccooooimmoaiiioeeeeees 39
2. DMES Representation of Output Printer Control
COAES e m et s eneeas 59
3. SPS Subroutine Method of Evaluating Arguments .. 67
4. SPS Subroutine Group and Identification Numbers 68
5. SPS Subroutine Errors I 71
6. Description of SPS Error Codescoceoeemvcencacanas 88
7. Disposition of SPS Errors when no Error
Stop Statement is uS€doocoooerieieeieieeeeeeean 88
8. Codes and Assembled Data for SPS
Modification Programcccoeooceeeeeeereeereeeeeeeeens 92
9. Program Switch Settings for FORTRAN II-D
Compilation ... 120
10. FORTRAN Phase 1 Source Program Errors 121
11. FORTRAN II-D Library Subroutinesc....... 124
12. FORTRAN Arithmetic and Input/Output
SUDTOUINES -.eeecceeeceeeceeeieiie e e e e e s e e eeneas
13. FORTRAN Loader EITorsccocoooeeemeevcomeeceeenacenen
14. FORTRAN Subroutine Error Codesc.cccocooooen...
15. Summary of SPS Declarative Operations
16. Summary of SPS Arithmetic Instructions 139
17. Summary of SPS Internal Data Transmission
INStructions woooooeiooe e 140
18. Summary of SPS Logic (Branch and Compare)
INSEIUCHONS e e e emeeaas 141
19. Summary of SPS Input and Output Instructlons ... 145
20. Summary of SPS Miscellaneous Instructions 147
21. 1620/1710 Indicator Codes for SPS BI-BNI
Instructionscoccoovieeiceiceeee .
22. 1710 SPS Operation Codes
23. SPS Subroutine Execution Times ...
24. 1620 Character Coding -.....eceeceeereoomieeieeeeceeeeene.

25. Core Storage Data Resulting from Reading
Alphameric Card Data with RN Instruction
Tabulate Typewriter (TBTY) Instruction
Trace feature, FORTRAN _....eeeeeeeeeeees
Transfer Control and Load statementccocoooeeeeeeenenee.
Transfer and Return Address statement
Transfer Numerical Fill (TNF) instruction
Transfer Numerical Strip (TNS) instruction
Transmit Digit (TD) instructioncc.cc....
Transmit Digit Immediate (TDM) instruction
Transmit Field (TF) instruction

Transmit Field Immediate (TFM) instruction
Transmit Floating
instruction (TFL) oo 140
Subroutine (TFLS) ettt 75
Transmit Record (TR) instructionoooocooomeioereee.. 142
Transmit Record, No Record Mask (TRNM)ocoeeeveeeeee 140

TWO PASS MODE, SPS Control record
TYPE Monitor Control record
TYPE statement .

TYPE SYMBOL TABLE, SPS Control record ... 85
Typewriter 1/O oo 19
Typewriter read €Irorooocooooooeooooeoeeooee 21
Typewriter Write €ITOTo.ooooooiiviioomieeeeeeeeeeeeeeeeen 21
Unavailable disk drive error -.....o.oooooooooooooooeoeiee 22

Underflow, exponent 70
Unmask Interrupts (UMK) instruction ..
Unnormalized numbers

Index 161

Page
Variable length, defined .. . 66
Variables (FORTRAN) .. . 96
Variable-length mantissa subroutines (SPS)c.cccoce..e. 67
WLR-RBC check indicatoro.ccccoeeeeeireemireeeeeececeeenens 23
Working areas, subroutine
FORTRAN ... eeeremneeiae—— . 131
SPS et . 78

Working cylinders ..o,
Write Addresses routine . .
Write Alphamerically Card (WACD) instruction

Write Alphamerically Paper Tape (WAPT) instruction 146
Write Alphamerically Typewriter (WATY) instruction 146
Write Alphamerically (WA) instructionccccccoeveieiecinces 146

162

Write Binary Paper Tape (RBPT) 146
Write check indicator 21, 23
Write Disk (WDN) instruction 147
Write Disk Track/WLRC (WTGN) instruction 147

Write Disk Track (WTN) instructionc.......
Write Disk/WLRC (WDGN) instruction
Wirite error count €rror

Write Numerically Card (WNCD) instruction 145
Write Numerically Paper Tape (WNPT) instruction 145
Write Numerically Typewriter (WNTY) instruction 145
Write Numerically (WN) instructionc.ccccoceeeevieneuene. 145
XEQ Monitor Control record . - e 9, 11

XEQS Monitor Control record .

C26-5774-1

BM
International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, New York

READER’S COMMENT FORM

IBM 1620 Monitor II System C26-5774-1

Reference Manual prTOAAM YHOL O
JQIQ YOO AR FTUNHMOD

® Your comments, accompanied by answers tdf Hu‘e("J f?lloWin “’(’i‘dégtions help us produce better
"“ AN y ves "
publications for your use. If your answer %‘] a‘;q&?spom 15;, Q‘ or requires qualification,

comments will be handled on a non-confiden-

please explain in the space provided below.
tial basis.

® Does this publication meet your needs?
® Did you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for. your technical level?

ooooo OF
ooooo Oz

® What is your occupation?
® How do you use this publication?
As an introduction to the subject? Il As an instructor in a class? [
For advanced'knowledge of the subject? O As a student in a class? O
For information about operating procedures? [] As a reference manual? O
Other ,
® Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C26-5774-1

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY . ..

“IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 234

BN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

0zoL wal

L4/8:982 'V 'S ‘N ul pdjuliy

