Application Program H20-0241-3

1130 Commercial Subroutine Package

(1130-SE-25X), Version 3

Program Reference Manual

The IBM 1130 Commercial Subroutine Package is for IBM
1130 users with a knowledge of FORTRAN. The package is
not intended to make FORTRAN a complete commercial
language, but to supply commercial capability to users of
IBM 1130 FORTRAN.

This manual is a combined user's, operator's, and system
manual.

Fourth Edition

This edition, H20-0241-3, is a major revision obsoleting H20-0241-2.

A form is provided at the back of this publication for reader’s comments.

If the form has been removed, comments may be addressed to IBM Corporation,

Technical Publications Department, 112 East Post Road, White Plains, N.Y, 10601

@ International Business Machines Corporation 1966, 1967, 1968

CONTENTS

Introduction ..ccccccoocooecoococas
Use of the Commercial Subroutine Package
Machine Requirements .. cccooeeooocco
Special Considerations-~Arithmetic .
Special Considerations--Input/Output

FORTRAN Format I/0 .

CSP Overlapped I/0 .

Data Formats Used . .

Al Format
A2 Format
A3 Format

D1 Format

D4 Format . .

Format Requirements,

Detailed Descriptions

ADD , .

AlA3 ...

A1DEC.

A3Al ., .

CARRY

DECA1l

DIV...

DPACK

DUNPK

°

11

12

13

15

18

21

24

26

28

31

34

EDIT . .

FILL. .

GET ...

ICOMP. , .

IOND....

KEYBD

MOVE . ..

MPY

NCOMP

NSIGN .

NZONE

PACK .

PRINT .

PUNCH

PUT ...

P1403 .

P1442 ,

READ .

R2501 .

SKIP ...

STACK

SUB. ...

51403, ..

TYPER

UNPAC

WHOLE .

e 2 0 @
° ° e
® o 0 0 @

36

41

42

45

47

48

50

52

54

56

58

60

62

64

66

68

70

73

76

79

81

82

84

86

89

91

Sample Problems.....

Problem 1l .,....
Problem2
Problem 3 ,.....
Flowcharts . « o v v v v
Listings . v o o0 v e oo
Appendix40 00
Core Allocation . .
EBCDIC Characters

Timing Data

¢ 08 08 00 08 8 8 00 90 0 O O

and Decimal Equivalents

® o 6 0 0 0 0 06 00 00 &0 0 0 0

Programmer's Reference Card

Operating Instructions. « « v o o o v v o0 0o 0o

Halt Listing

Bibliography . « « v v v ¢ v«

® & 00 ® 0 ¢ 5 00 00 0 0 0 0 @

93

93

104

116

124

152

190

190

192

193

195

197

198

199

INTRODUCTION

The 1130 Commercial Subroutine Package has been written to facilitate the use of
FORTRAN in basic commercial programming, Included in the package are the following
items:

The GET routine, which allows the programmer to decode input records after they
have been read. This eliminates the common FORTRAN-associated problem that
occurs when input cards enter the system in an unknown sequence. Input records
that vary in this way may be read with the Al format and converted to real numbers
(using GET) after the program has determined which type record was just read.

An editing routine, EDIT, for the preparation of output in special formats, With
EDIT it is possible to insert commas, supply leading blanks, float dollar signs,
display a CR symbol after negative numbers, etc. EDIT is especially useful in the
preparation of invoices, checks, and other commercial documents.

Code conversion routines for data manipulation and more efficient data packing:

GET - Al format to Real
PUT - Real to Al format
PACK - Al to A2 format
UNPAC -~ A2 to Al format
A1lA3 - Al to A3 format
A3A1l - A3 to Al format
DPACK -~ D1 to D4 format
DUNPK -~ D4 to D1 format
A1DEC - Al to decimal format
DECAl1 - Decimal to Al format

A variable-length decimal arithmetic package. In this system, all arithmetic is done
with integer or decimal numbers, with field lengths chosen by the user, This subset
of the Commercial Subroutine Package includes routines for variable-length decimal
add (ADD), subtract (SUB), multiply (MPY), divide (DIV), compare ICOMP), and
sign test (NSIGN).

Use of this system eliminates two of the arithmetic problems associated with
FORTRAN: the accuracy problem (the inexact representation of fractions) and the
magnitude problem (extended precision values limited to nine digits, etc.).

Subroutines for improved speed and control of I/0 devices. By taking advantage of
the 1130's cycle-stealing capability, the overlapped I/O routines can substantially
speed the throughput rates of many jobs. Subroutines are supplied for the

IBM 1442 Card Read Punch
IBM 1442-5 Card Punch
IBM 2501 Card Reader
IBM 1132 Printer

IBM 1403 Printer

Console Keyboard

Console Typewriter

In addition to input/output, subroutines are supplied for control of the 1132 and 1403
carriage and the 1442 stacker select mechanism,

e Several utility routines for common tasks:

NCOMP
MOVE
FILL
WHOLE
NZONE

for comparing two variable-length alphameric (Al) fields
for moving data from one area to another

to fill an area with a specified value

to truncate the fractional portion of a real number

for testing and modifying zone punches

USE OF THE COMMERCIAL SUBROUTINE PACKAGE

CSP is modular in design -- the user may use whichever routines he needs and ignore the
others.

The routines may be assembled on any 4K card 1130 system, but an 8K system will prob-
ably be required for any extensive usage. The desired subroutines may be inserted in the
FORTRAN execute deck (card systems) or stored in the Subroutine Library on the disk
cartridge. In addition, some of the CSP routines use certain parts of the IBM 1130 Sub-
routine Library. (See ""Core Allocation" in the Appendix.)

All of the routines are written in the 1130 Assembler Language.
The control statement
*ONE WORD INTEGERS
must be used in programs that call any of the Commercial subroutines.
The control statement
*EXTENDED PRECISION

must be used in any program that calls the GET or PUT subprograms. The other CSP
routines are independent of the real number precision.

In general, CSP will operate under either Version 1 or Version 2 of the 1130 Disk Monitor
System. The exceptions are P1403, 51403, P1442, and R2501, which use subroutines
supplied only with Version 2 (see the detailed descriptions for more particulars).

The use of the overlapped I/0 portion of CSP is an "either/or" proposition. For nondisk
I/0, the programmer must choose either the CSP overlapped routines or the standard
FORTRAN routines. The two systems cannot be intermixed within the same program.
Note the emphasis on nondisk. This exclusion does not apply to disk I/O, which may

be used regardless which of the two systems is selected.

Use of the overlapped 1/0 routines also excludes the employment of the TRACE feature
of FORTRAN, since it used portions of the FORTRAN package for output.

MACHINE REQUIREMENTS

For execution, an 8K 1130 system, with any card reader, is necessary. In addition, the
following 1/0 devices are supported:

1442 Card Read Punch, Model 6 or 7
1442 Card Punch, Model 5

2501 Card Reader, Model A1 or A2
1403 Printer, Model 6 or 7

1132 Printer

Console Keyboard

Console Typewriter

Other I/0 devices may be utilized through standard FORTRAN,

For assembly, any 1180 card system is sufficient. The subroutines may be card- or
disk-resident,

SPECIAL CONSIDERATIONS — ARITHMETIC

Real arithmetic. When using CSP, remember that the standard FORTRAN limitations
apply to all real numbers.

Extended precision numbers should not exceed *1,000,000,000. (or 9 digits).

Fractions must be avoided if exact results are desired, All critical arithmetic should be
done with whole numbers. For example, the extension

40.75 hours x $2.225 per hour
should be carried out as
4075. hundredths of hours x 2225, mills per hour
If this is not done, precision errors may appear in the results.
Decimal arithmetic. If the nine-digit or fractional limitations of FORTRAN prove burden-
some, the Decimal Arithmetic package may be used. In this system, all arithmetic is

done with whole numbers (no fractions), and the number of digits in each variable is
chosen by the user.

A number in decimal format may be as long as desired; there is no practical limit to
field length.

SPECIAL CONSIDERATIONS — IN PUT/OUTPUT

FORTRAN FORMAT 1/0

In general, CSP works with arrays in Al format -- one alphameric character per word,
For those routines that operate on other formats, conversion routines are supplied to
ease the translation between Al and the other format.

In this area, however, one complication may occur: the use of zone punches. In many
commercial applications, it is customary to X-punch the units position of a credit or neg-
ative field. Because the 11-0 Hollerith combination is not recognized by the conversion
routines used with FORTRAN READs, it is hecessary, when keypunching, to omit the 0-
punch when an 11-punch is present in the same column. This is not a problem with 1130~
produced cards that later serve as input to subsequent runs, No control X-punches, in
any positions, will be recognized when the underpunched digit is a zero. "Not recognized"
means that the character position is replaced with a blank., This is the case for both input
and output when standard FORTRAN READs and WRITEs are used,

A 12-punch is not recognized by the conversion routines with FORTRAN when the under-
punched digit is a zero, Therefore, a plus zero (12-0 Hollerith) will be expressed ag

only a 0-punch. For this reason, plus fields should be left unzoned rather than 12-punched
in the units position.

When the input routines supplied with this package are used, this problem does not exist,
All zone punches are recognized and are treated broperly.

CSP OVERLAPPED 1/0
The CSP overlapped I/0 routines have been provided to take advantage of the cycle-
stealing capability of the 1130. Because many allow processing to be resumed before the

1/0 is finished, their use will increase the throughput rates of many programs,

The table below summarizes the overlap capabilities of the routines:

This device is overlapped with this function
Card reader (1442 or 2501) Conversion from card code to A1 format
Card punch nothing (not overlapped)
Console keyboard nothing (not overlapped)
Console printer anything but the console keyboard
Printer (1132 or 1403) anything

The CSP 1/0 routines also permit the reading and punching of the 11-0 and 12-0 punches,
both of which must be avoided with standard FORTRAN 1/0,

The use of the overlapped I/0 portion of CSP is an "either/or" proposition. For nondisk
I/0, the programmer must choose either the CSP overlapped routines or the standard
FORTRAN routines. The two systems cannot be intermixed within the same program.
Note the emphasis on nondisk. This exclusion does not apply to disk I/O, which may be
used regardless which of the two systems is selected.

Use of the‘overlapped I/0 routines also excludes the employment of the TRACE feature
of FORTRAN, since it uses portions of the FORTRAN package for output.

The following routines are included in the CSP I/O group:

READ PRINT TYPER
PUNCH SKIP KEYBD
R2501 P1403 STACK
P1442 51403

If any of these routines are used, standard FORTRAN READ and WRITE commands may
not appear in the same program.

When using Version 1 of the 1130 Disk Monitor System, the programmer must place the
statement

CALL IOND

before any STOP or PAUSE statement. This will ensure that all pending I/0 interrupts
have been serviced before the CPU stops or pauses. IOND should not be called if Version
2 of the Monitor is in use.

P1403, S1403, P1442, and R2501 use parts of the subroutine library supplied with Version
2 of the 1130 Disk Monitor System. If they are to be used with a Version 1 Monitor, the
Version 2 subroutines must be loaded onto the Version 1 disk. See the detailed descrip-
tions of P1403, S1403, P1442, and R2501 for more particulars.

DATA FORMATS USED

Although most of the CSP routines are oriented toward use of the A1l format, several new
formats have been introduced. In addition, several of the standard formats must be con-
sidered in a different light.

Al FORMAT

A1l format consists of one character per 16-bit word, left-justified:

character blank

bits 0 78 15

The right-hand eight bits should always contain the blank character, which is 01000000 in
binary. This blank will always be inserted by the CSP routines and the standard FORTRAN
A1l format,

The sign of an A1 field is assumed to be carried as an 11- or 12-punch over the rightmost
character. An ll-punch is taken to signify a negative field; a 12-punch (or no-zone punch)
signifies a positive field.

A2 FORMAT

A2 format consists of two characters per word:

character character

bits 0 78 15

A3 FORMAT

Although A3 format exists in standard FORTRAN terminology, its use in this manual has
a different connotation. Here, A3 format means that one word contains three characters.

This can be done only by using a unique coding scheme. The user supplies a table of 40
characters. Then, the A1A3 and A3A1 subroutines may be used to translate from A1l to
A3 format and vice versa.,

The A3 format cannot be pictured graphically, since the three characters are combined
as a single integer or binary number,

The A3 format permits highly efficient packing of alphabetic data and may be used to save
considerable space on the disk,

Note, however, that only 40 characters may be used. This may not be enough for some
applications, For example, if the characters chosen were A through Z, 0 through 9, the
blank, comma, period, and dash, 40 would probably be ample for a name and address
file. It would not be sufficient for a product description file that also required slashes,
dollar signs, etc.

D1 FORMAT

D1 format consists of one digit per word, right-justified. Because the decimal arithroetic
routines operate on data in this format, D1 format is also called decimal format.

D1 format is as follows:

000000000000 digit

bits 0 78 15

\ decimal field is stored in an array in D1 format., The sign of the field will be carried
with the rightmost digit. For example, the six-digit field 001968 could be placed in the
12th through 17th position in the NUMBR array:

NUMBR (12) = 0
NUMBR (13) = 0
NUMBR (14) = 1
NUMBR (15) = 9
NUMBR (16) = 6
NUMBR (17) = 8

The same field, if it were negative, would be written as 001968, and the sign would be
reflected in the rightmost digit: ’

NUMBR (12) = 0
NUMBR (13) = 0
NUMBR (14) = 1
NUMBR (15) = 9
NUMBR (16) = 6
NUMBR (17)=-9

Note that NUMBR (17) is -9 rather than -8; this must be done because the 1130 cannot
represent a negative zero. The following scheme is used with negative numbers:

If the sign of the field is
negative and the rightmost The rightmost D1 digit
digit is a will be carried as a

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10

O O Ul WNHFHO

Usually, this need not concern the programmer, since the AIDEC and DECA1 routines
will automatically implement the special coding of negative fields. Setting up negative
constants, though, must be handled properly by the programmer.

D4 FORMAT

D4 format consists in general of four decimal digits per word, with each digit occupying
four bits of the word. However, since the sign digit (the rightmost one) carries the sign,

it is handled separately, and is placed by itself in the last word of the D4 field. This is
best illustrated by showing several examples:

The five-digit
number
+12345

The six-digit
number
+ 123456

The seven-digit
number
+1234567

first word

second word

1 2 3 4

+5

0001 0010 0011 0100|0000 0000 0000 0101
first word second word third word
1 2 3 4 |5 F F F +6
0001 0010 0011 0100|0101 1111 1111 1111 0000 0000 0000 0110
first word second word third word
1 2 3 4 5 6 F F +7

0001 0010 0011 0100

0101 0110 1111 1111

0000 0000 0000 0111 ‘

The filler consists of four 1 bits, the hexadecimal F. A more detailed description of D4
format may be found with the description of the DPACK routine.

-10-

FORMAT REQUIREMENTS

The requirements for each subroutine are as follows:

Format of Format of Format of Format of
Data before Data after Data before Data after
Subroutine Processing Processing Subroutine Processing Processing
ADD D1 format D1 format NSIGN D1 format Integer
' variable
Al1A3 Al format A3 format
NZONE Al format Integer
A1DEC Al format D1 format variable
A3A1l A3 format Al format PACK Al format A2 format
CARRY D1 format D1 format PRINT A1l format Al format
DECAl D1 format Al format PUNCH A1l format Al format
DIV D1 format D1 format PUT Real variable Al format
(extended
DPACK D1 format D4 format precision)
DUNPK D4 format D1 format P1403 Al format Al format
EDIT Al format Al format P1442 A1l format Al format
FILL Any integer Same as READ Al format Al format
- (A1, A2, D1, FILL
etc.) character R2501 Al format Al format
GET Al format Real variable SKIP . Decimal None
(extended constant
precision)
_ STACK None None
ICOMP D1 format Greater than,
equal to, or SUB | D1 format D1 format
less than zero !
IOND ' None None S$1403 ' Decimal None
constant
KEYBD Al format Al format
MOVE Any integer Same as TYPER Al format Al format
| (A1, A2, D1, before
- efc,) MOVE 1
» UNPAC | A2 format Al format
MPY D1 format D1 format
NCOMP | Al format Greater than, | WHOLE | Real variable | Real variable
' equal to, or | {any - (any
less than zero } precision) precision)

-11-

ADD
AlA3
A1DEC
A3A1l
CARRY
DECA1l
DIV
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

DETAILED DESCRIPTIONS

This section gives the general format and a description of each routine. Each description -
contains format, function, parameter description, detailed description, example, errors,
and remarks. The function describes the capabilities of the routine. The parameter
description explains in detail how the parameters, variables, and constants should be set
up. The detailed description tells exactly what the subroutine does and how it should be
used. Examples are given as an aid to the programmer. Certain specification and input
errors may occur when using the package, and these are explained. The remarks section
describes some peculiarities of the routine. Further information may be obtained from
the flowcharts and listings.

-12-

ADD
Format: CALIL ADD(JCARD,J,JLAST,KCARD,K,KLAST,NER)

Function: Sums two arbitrary-length decimal data fields, placing the result in the
second data field.

Parameter description:

JCARD

The name of a one-dimensional integer array defined in a DIMENSION
statement. This is the array which is added, the addend. The data must
be stored in JCARD in decimal format, one digit per word.

J - An integer constant, an integer expression, or an integer variable. This
is the position of the first digit to be added (the left-hand end of a field).

JLAST

An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the position of the last digit to be
added (the right-hand end of a field).

KCARD

The name of a one-dimensional integer array defined in a DIMENSION
statement. This is the augend, the array which is added to. It will con-
tain the result in decimal format, one digit per word.

K - An integer constant, an integer expression, or an integer variable., This
is the position of the first digit of KCARD (the left-hand end of a field).

KLAST

An integer constant, an integer expression, or an integer variable,
greater than or equal to K. This is the position of the last character of
KCARD (the right-hand end of a field).

NER - An integer variable. Upon completion of the subroutine, this variable
indicates whether arithmetic overflow occurred.

Detailed description: The corresponding digits, by place value, of JCARD and KCARD,
are summed and placed back in KCARD. This operation is from left to right, with both
fields being right-adjusted. Next, all carries are set in order. If overflow occurred,
it is indicated by NER being equal to KLAST. NER must be initialized and reset by the
user. More detailed information may be found in the ADD flowchart and listing.

-13-

—= ADD
AlA3
A1DEC
A3Al
CARRY
DECA1l
DIV
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN .
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

Example: ~ DIMENSION IGRND(12),ITEM(6)
N=0

CALL ADD(ITEM, 1, 6,IGRND, 1, 12, N)

Before:
IGRND 0007113665203 ITEM 102342
Position 1 5 10 Position 1 5
=0
After:
IGRND i)00713767545 ITEM is unchanged.
Position 1 5 10
N=0

The numeric data field ITEM, in decimal format, is ADDed to
the numeric data field IGRND, also in decimal format. Note
that the fields are both right-justified. The error indicator,

N, is the same, since there is no overflow out of the high-order
digit (left-hand end) of the IGRND field.

Errors: If the KCARD field is not large enough to contain the sum, that is, if there is a
carry out of the high-order digit, the error indicator, NER, will be set equal to KLAST,
and the KCARD field will be filled with 9s.

If the JCARD field is longer than the KCARD field, nothing will be done and the error in-
dicator will be equal to KLAST.,

Remarks: Conversion from EBCDIC to decimal is necessary before using this subroutine.
This may be accomplished with the A1DEC subroutine,

The length of the JCARD and KCARD fields is arbitrary, up to the maximum space
available.

Note that the error indicator is not reset by this subroutine, It is the responsibility of the
user to initialize, test, and reset the error indicator.

-14~

Al1A3
Format:

Function:

CALL A1A3(JCARD,J,JLAST,KCARD,K,ICHAR)

To convert from Al format (one character per word) to A3 format (three
characters per word).

Parameter description:

JCARD

JLAST

KCARD

ICHAR

The name of a one-dimensional integer array defined in a DIMENSION
statement. This array contains the field to be converted. Originally,
this field must be in Al format, one character per word.

An integer constant, an integer expression, or an integer variable. This
is the position of the first character of JCARD to be converted (the left-
hand end of a field).

An integer constant, an integer expression, or an integer variable. This
is the position of the last character of JCARD to be converted (the right-
hand end of a field).

The name of a one-dimensional integer array defined in a DIMENSION
statement. This is the array into which the data is converted, in A3
format, three characters per word.

An integer constant, an integer expression, or an integer variable. This
is the position of the first element of KCARD to receive the converted
characters (the left-hand end of a field).

The name of a one-dimensional integer array defined in a DIMENSION
statement. This array contains a table used in the conversion.

Detailed description: Three characters in Al format are taken, one at a time, from the

JCARD array. The relative position of each character is found in the table ICHAR.
Then these three relative positions are used to form an A3 integer as follows:

A3 INTEGER=(N1-20)* 1600+(N2*40)+N3

where N1 is the relative position of the first character in the ICHAR array, etc. The
A3 integer is then placed in the KCARD array, and the next group of three Al characters
is packed, and so on. Note that the relative position runs from 0 to 39, not 1 to 40.

-15-

ADD
—= AlA3
A1DEC
A3Al
CARRY
DECA1l
DIV
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

Example: Set up ICHAR as follows:

DIMENSION ICHAR(40)
READ(2, 1) ICHAR
1 FORMAT (40A1)

or

DIMENSION ICHAR(40)
CALL READ(ICHAR, 1, 40, N)

The card to be read is:

Content ETAOINbSHRDLUCMFWYP0123456789VBGKQJXZ , . &
Card column 1 5 10 15 20 25 30 35 40
Relative position 0 4 9 14 19 24 29 34 39

It is the user's responsibility to create the ICHAR array. It must always contain
40 characters.

AlA3 may be used as follows:

DIMENSION JCARD(21), KCARD(10),ICHAR(40)
CALL A1A3(JCARD, 1,21,KCARD, 1,ICHAR)

Before:
JCARD CUSTOMER NAME IS HERE
Position 1 5 10 15 20
KCARD 0123456789
Position 1 5 10
ICHAR is as above.
After:
JCARD is the same.
ICHAR is the same.
KCARD -10713 -30266 -31634 -23906 -31756 -20552 -31640 ;8?
Position 1 2 3 4 5 6 7 8910
S — - — Y e, o p—
Represents CUsS TOM ER6 NAM Eé6l S6H ERE

The large negative numbers at each of the first seven positions reflect A3 integers
(three A1l characters).

-16-

Errors: If a character does not appear in ICHAR, and does appear in JCARD, it will be
coded as a blank.

Remarks: It is the user's responsibility to create the ICHAR array. It mustalways
contain 40 characters. The arrangement shown in the example is, in general, the best,
since the characters appear in the order of their most frequent occurrence, and this
arrangement includes those characters (A-Z, 0-9, blank, comma, period, and ampersand)
commonly found in alphabetic files (names and addresses, etc.). The user may, however,
place any 40 characters in the ICHAR array, in any order.

If the field to be compressed consists primarily of numbers, for example, they should be
placed first in the ICHAR array.

Note that the A3 format discussed here is a special one and is not the same as the
FORTRAN A3 format.

-17-

ADD
AlA3

A1DEC

AIDEC <—Format: CALL A1DEC(JCARD,J, JLAST,NER)

A3A1
CARRY
DECA1
DIV
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
pUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
$51403
TYPER
UNPAC
WHOLE

Function: Converts a field from A1l format, one digit per word, to decimal format,
right-justified, one digit per word.

Parameter description:

JCARD - The name of a one-dimensional integer array defined in a DIMENSION
statement. This is the name of the field that will be converted. Orig-
inally, this field must be in A1 format, one character per word.

J - An integer constant, an integer expression, or an integer variable. This
is the position of the first character of JCARD to be converted (the left-
hand end of a field).

JLAST - An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the position of the last character of
JCARD to be converted (the right-hand end of a field).

NER - An integer variable. This variable will be equal to the position of the
last invalid (nonnumeric or nonblank) character encountered, except for
the JLAST position, which may contain a sign.

Detailed description: The subroutine operates from left to right. Each character is
checked for validity (digit or blank). Blanks are changed to zeros. If a character is
invalid, the error indicator, NER, is set equal to the position of the character. If the
character is valid, it is converted to decimal format and right-justified using the for-
mula

Decimal digit = (character+4032)/256

When all characters have been converted, the decimal field is signed. More detailed
information may be found in the A1DEC flowchart and listing.

-18-

Example: DIMENSION IFLD(20)
N=0

CALL A1DEC(IFLD,7,17,N)

Before: 7,17
A

[FLD AbBbCbDbEbFbbbbbbbbbobTb1b3b6b6bIbELNDD

Position 1 5 10 15 20
N=0
After: 7,17
T

IFLD AbBbCbDbEbFb00000713661EbNbDb

L

Position 1 5 20

N=0

Before execution, the field is shown in Al format, the character followed by a blank,
Therefore, the field to be converted is

bbbb071366J
After execution, the field has been converted, as is evident. There were no invalid

characters in the field, since N is the same.

Errors: If an invalid character (nonnumeric or nonblank) is encountered, the error
indicator is set equal to the position of that character, and processing of the field
continues.

Remarks: When the error indicator has been set, the character indicated is the last

invalid character. There may be other invalid characters in the field, occurring to
the left of the character noted.

-19-

Zone punches are used, at times, to indicate conditions (switches). These zones car be
removed with the NZONE subroutine. Following is an error routine to correct errors
of this type:

Main Line

1 CALL A1DEC(IFLD,J,JLAST,N)
IF(N) 2,2,3

2 Continue Main Line

3 Error Routine

CALL NZONE(IFLD,N,4,N1)
N1=0
CALL A1DEC(IFLD,N,N,N1)

IF(N1) 5,5,4

4 STOP 999

5 CALL DECAI(IFLD,J, JLAST,N)
N=0
GO TO 1

When an error of this type occurs, N will be greater than zero. Control would go to
statement 3. Using the NZONE routine, the zone is removed (if not a special character).
The invalid character is now converted with the A1IDEC routine. If the character is still
invalid, control goes to statement 4 and the program will STOP. If the character is now
valid, it has been converted and control goes to statement 5. However, there may have
been other invalid characters. Therefore, at statement 5 the field is converted back to
Al format and control returns to statement 1, where the field is again converted from
Al format to decimal format, This process continues until a truly invalid character
(special character) is encountered, or until the field is converted with no errors,

Note that the error indicator is not reset by this subroutine. It is the responsibility
of the user to initialize and reset the error indicator.

-20-

A3A1l ADD

AlA3
Format: CALL A3A1(JCARD,J,JLAST,KCARD,K,ICHAR) A1DEC
— A3Al
Function: To convert from A3 format (three characters per word) as created by the CARRY
A1A3 subroutine to Al format (one character per word). DECA1
DIV
Parameter description: DPACK
DUNPK
JCARD — The name of a one-dimensional integer array defined in a DIMENSION EDIT
statement. This array contains the field to be converted. Originally, FILL
this field must be in A3 format, three characters per word. GET
ICOMP
J - An integer constant, an integer expression, or an integer variable. KE{?{I]:]];
This is the position of the first element of JCARD to be converted (the MOVE
left~hand end of a field). MPY
. . X . NCOMP
JLAST - An integer constant, an integer expression, or an integer variable. NSIGN
This is the position of the last element of JCARD to be converted (the NZONE
right-hand end of a field). PACK
. PRINT
KCARD - The name of a one-dimensional integer array defined in a DIMENSION PUNCH
statement. This is the array into which the data is converted, in Al PUT
format, one character per word. P1403
P1442
K - An integer constant, an integer expression, or an integer variable, READ
This is the position of the first element of KCARD to receive the con- R2501
verted characters (the left-hand end of a field).
SKIP
STACK
ICHAR - The name of a one-dimensional integer array defined in a DIMENSION SUB
statement, This array contains a table used in the conversion, 81403
TYPER
Detailed description: A3 integers are taken, one at a time, from the JCARD array. Each UNPAC
is decoded into the three numbers of which it is composed, as follows: WHOLE
Ni= (A3 INTEGER/1600) + 20 if the A3 integer is positive
((A3 INTEGER + 32000)/1600) if the A3 integer is negative}

N2=(A3 INTEGER-(N1-20)*1600) /40
N3=A3 INTEGER-(N1-20)*1600~(N2%40)

The resulting integers, N1, N2, N3, are then used to locate their corresponding Al
characters in the ICHAR array. Each Al character is then placed in the KCARD array.

Note that each element of JCARD requires three elements in KCARD.

-21-

Example: Set up ICHAR as follows:
DIMENSION ICHAR(40)
READ(2,1) ICHAR
1 FORMAT (40Al)

or

DIMENSION ICHAR(40)
CALL READ(ICHAR, 1, 40, N)

The card to be read is:

Content ETAOINbSHRDLUCMFW YP0123456789VBGKQJIX7Z, . &
w Pt
column 1 5 10 15 20 25 30 35 40
Relative

position 0 4 9 14 19 24 29 34 39

It is the user's responsibility to create the ICHAR array. It must always contain 40
characters,

A3Al may be used as follows:
DIMENSION JCARD(21), KCARD(30), ICHAR(40)

CALL A3A1(JCARD,1,8, KCARD,1, ICHAR)

Before: JCARD -30076 -20556 -20547 -26800 -15765 =23397 -17088 -30237
i
Position 1 5
KCARD 012345678901234567890123456789
Position 1 5 10 15 20 25 30

ICHAR is as above.

After: JCARD is the same.
ICHAR is the same.
KCARD THIS IS CODED INFORMATIO456789

(A N S N |

Position 1 5 10 15 20 25 30

-92-

Errors: If JLAST is less than J, one element will be decoded into three characters.
Remarks: It is the user's responsibility to create the ICHAR array. It must always con-
tain 40 characters. The arrangement shown in the example is, in general, the best,

since it is in the order of the most frequent occurrence of the letters of the alphabet.

Note that the A3 format discussed here is a special one, and is not the same as the
FORTRAN A3 format.

-23-

ADD
AlA3
Al1DEC
A3A1l

CARRY

Format: CALL CARRY(JCARD,J,JLAST,KARRY)

CARRY <-Function: Resolve all carries within the specified field and indicate any high-order
carry out of the field. This routine will not normally be called by the user.

DECA1l
DIV
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
51403
TYPER
UNPAC
WHOLE

Parameter description:

JCARD

JLAST

KARRY

The name of a one-dimensional integer array defined in a DIMENSION
statement. This is the field that will be interrogated for carries. The
data must be in decimal format.

An integer constant, an integer expression, or an integer variable.
This is the position of the first digit of JCARD (the left-hand end of a
field).

An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the position of the last character
of JCARD (the right-hand end of a field).

An integer variable. This variable will contain any carry out of the
high-order position of the JCARD field. If there is no carry, KARRY
will be set to zero.

Detailed description: The routine operates from right to left, examining the low-order

digit first. The digit being examined is divided by ten. Since only integers are used,
the quotient of this division is the carry in that digit. Ten times the carry is subtracted
from the digit. If the digit is now negative, ten is added to the digit and one is sub-
tracted from the carry. At this point, or if the resultant digit was positive, the next
digit to the left is examined. First, the carry from the previous digit is added to this
digit. Then the process for the first digit, starting with division by ten, is carried out.
When all digits have been examined, from JCARD(JLAST) to J CARD(J) inclusive, the
final carry is set and the routine terminates. More detailed information may be found
in the CARRY flowchart and listing.

-24-

Example: DIMENSION NUMB(10)
CALL CARRY(NUMB,110,N)
Before:
NUMB ff7f?21_?i§11
Position 12 3 4 5 67 8 9 10
N=22
After:
NUMB 0723350211
Position 1 5 10
N=0

After an arithmetic operation the condition of the NUMB field is as shown at ""Before'.
The third, fifth and eighth positions appear as shown, because multiple arithmetic
operations have generated them. The object of the CARRY routine is to resolve this
type of problem.

Notice that a 1 has been borrowed from the seventh position to resolve the -8 condition.
Similarly, a 3 has been borrowed from the fourth position, and the 7 from 72 has gone
into the second position.

Errors: None

Remarks: This routine is used by the other routines in this package as a service routine.

In general, the user need not call this routine, since all carries are resolved by the
arithmetic routines themselves (ADD, SUB, MPY, DIV).

-95-

ADD DECA1l
AlA3
AI1DEC Format: CALL DECA1(JCARD,J,JLAST,NER)
A3Al
CARRY Function: Converts a field from decimal format, right-justified, one digit per word, to
DECAl—— A1l format, one character per word.
DIV
DPACK parameter description:
DUNPK
EDIT JCARD - The name of a one-dimensional integer array defined in a DIMENSION
FILL statement. This is the name of the field that will be converted. Origi-
ICgl\E/:I’g nally, this field must be in decimal format, one digit per word.
IOND J - An integer constant, an integer expression, or an integer variable.
Kﬁg‘B,]E) This is the position of the first digit of JCARD to be converted (the
MEY left-hand end of a field).
NCOMP
NSIGN JLAST - An integer constant, an integer expression, or an integer variable,
NZONE greater than or equal to J. This is the position of the last character
PACK of JCARD to be converted (the right-hand end of a field).
PRINT . . i . . -
PUNCH NER - An integer variable. This variable will be equal to the position of the
PUT last digit of JCARD which was negative or greater than 9, except for the
P1403 JLAST position, which can be negative (sign).
P1442
Detailed description: The subroutine operates from left to right. First the sigh is de-
READ g
R2501 termined. Then each digit, starting with JCARD(J), is converted to Al format using the
skip formula
STACK
SUB Character = 256 * (decimal digit) - 4032
T;ﬁ;); When all digits have been converted, the field is signed. More detailed information
UNPAC &y be found in the DECAL1 flowchart and listing.
WHOLE

-926-

Example: DIMENSION IFLD(20)
N=0

CALL DECAL(IFLD,7,17,N)

Before_: 7, 17
IFLD AbBbeDbEbe00000713661EbNbDb
Position 1 5 10 15 20

N=0

After: 7,17

AL —
IFLD AbBbCbDbEbFB0b0b0b0b0b7b1b3b6b6bIbEbNbDh

|

Position 1 5 10 15 20

N=0

Before execution the field is shown in decimal format. The field to be converted is
00000713661

After execution, the field has been converted to Al format, as is evident, the character
followed by a blank. There were no invalid digits in the field, since N is the same.

Errors: If an invalid digit (not 0 to 9, inclusive) is encountered, the error indicator is
set equal to the position of that character, and processing of the field continues.

Remarks: When the error indicator indicates an error, the digit indicated is the last
invalid digit. There may be other invalid digits in the field, occurring to the left of the
digit noted.

These errors should not occur, since the arithmetic routines (ADD, SUB, MPY, and
DIV) will resolve carries. However, if this does happen, the user's program should
indicate (possibly by STOPing) that this has occurred.

Note that the error indicator is not reset by this subroutine. It is the responsibility of
the user to initialize and reset the error indicator.

-27-

ADD
AlA3
A1DEC
A3A1l
CARRY
DECALl

DIv

Format: CALL DIV(JCARD,J,JLAST ,KCARD,K,KLAST ,NER)

Function: Divides one arbitrary-length decimal data field by another, placing the
quotient and remainder in the dividend.

DIV -—Parameter description:

DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

JCARD - The name of a one-dimensional integer array defined in a DIMENSION
statement. This array is the divisor. The data must be stored in
JCARD in decimal format, one digit per word.

J - An integer constant, an integer expression, or an integer variable.
This is the position of the first digit of the divisor (the left-hand end of
a field).

JLAST - An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the position of the last digit of the
divisor (the right-hand end of a field).

KCARD- The name of a one-dimensional integer array defined in a DIMENSION
statement. This array, thedividend, will contain the quotient and the
remainder, extended to the left, in decimal format, one digit per word.

K - An integer constant, an integer expression, or an integer variable.
This is the position of the first digit of the dividend (the left-hand end
of a field).

KLAST - An integer constant, an integer expression, or an integer variable,
greater than or equal to K. This is the position of the last digit of
the dividend (the right-hand end of a field). This is also the position
of the last digit of the remainder.

NER - An integer variable. Upon completion of the subroutine, this variable
indicates whether division by zero was attempted, or whether the
KCARD field is not long enough.

Detailed description: First the signs are cleared from both fields and saved. Then the
KCARD field is extended to the left the length of the JCARD field (JLAST-J+1), and
filled with zeros. If the KCARD field will be extended below KCARD(1), NER will be set
equal to KLAST and the routine will be terminated. Next, the JCARD field is scanned to
find the high-order significant digit. If no digit is found, the error indicator NER is set
to KLAST, and the result is the same as the input. When a digit is found, the division
begins. It is done by the method of trial divisors:

1. The high-order digit of the divisor is used as the trial divisor.

2. The trial divisor is divided into the next high-order digit of the dividend to generate
a digit of the quotient.

3. The digit of the quotient is multiplied by the trial divisor.

4. This product is subtracted from the corresponding number of digits in the high-
order portion of the dividend.

-28-

5. As long as the result is positive, the quotient digit is the next digit in the quotient.
A return is made to step 2.

6. When the result is negative, the product from step 3 is added back to the dividend,
1 is subtracted from the quotient digit, and the new quotient digit is placed in the
quotient as the next digit. Finally, the signs are generated for the quotient and
remainder and the sign is replaced on the divisor.

The quotient will be located in the KCARD field. The subscript of the first digit of the
quotient will be K-(JLAST-J+1), and the subscript of the last digit of the quotient will be
KLAST-(JLAST-J+1).

The remainder will also be located in the KCARD field. The subscript of the first digit
of the remainder will be KLAST-JLAST+J, and the subscript of the last digit of the re-
mainder will be KLAST.

KCARD QUOTIENT REMAINDER
N I 1
A K B C D

A is the position whose subscript is K-(JLAST-J+1).

K is the first position of the dividend, defined earlier.

B is the position whose subscript is KLAST-(JLAST-J+1).
C is the position whose subscript is KLAST-(JLAST-J).
D is the position whose subscript is KLAST.

More detailed information may be found in the DIV flowchart and listing.

Example: DIMENSION IDVSR(5),IDVND(15)
N=0
CALL DIV(IDVSR,1,5,IDVND,6,15,N)
Before:
IDVSR 0098? IDVND ABCDE0007136673
Position 1 5 Position 1 5 10 15
N=0
After:
IDVSR is unchanged. IDVND 000000726700479
Position 1 5 10 15

-29-

The numeric data field IDVND has been divided by the numeric data field IDVSR, the
quotient and remainder being placed in IDVND. Note that the IDVND field has been
extended to the left the length of the IDVSR field, five positions.

Errors: If division by zero is attempted, the only action is that KCARD is extended and
filled with zeros. The error indicator indicates that division by zero was attempted
(NER=KLAST).

If there is not enough room to extend the KCARD field to the left, NER will again be set
equal to KLAST, and the routine will terminate. None of the fields involved will be
modified.

Remarks: Conversion from EBCDIC to decimal is necessary before using this subroutine.
This may be accomplished with the A1DEC subroutine.

The length of the JCARD and KCARD fields is arbitrary, up to the maximum space
available.

The arithmetic performed is decimal arithmetic, using whole numbers only. No decimal
point alignment is allowed. For this reason numbers should have an assumed decimal
point at the right-hand end.

Space must always be provided in the KCARD field for expansion, The first position of
the dividend, K, must be at least JLAST-J+1 positions from the beginning of KCARD,
For example, if JCARD is seven positions, 1 through 7, the dividend in KCARD must
start at least seven positions (7-1+1=7) from the beginning of KCARD. This would have
K equal to 8.

-30-

DPACK ADD

AlA3

Format: CALL DPACK(ICARD, J, JLAST, KCARD, K) A1DEC
A3A1

Function: Information in D1 format, one digit per word, is packed into D4 format, four CARRY
digits per word. DECA1

DIV

Parameter description: —DPACK
DUNPK

JCARD - The name of a one-dimensional integer array defined in a DIMENSION EDIT
statement. This array contains the data to be packed, in D1 format, one FILL

digit per word. GET

ICOMP

J - An integer constant, an integer expression, or an integer variable. This IOND

is the position of the first character of JCARD to be packed (the left-hand =~ KEYBD

end of a field). MOVE

MPY

JLAST - An integer constant, an integer expression, or an integer variable greater ~NCOMP
than J. This is the position of the last character of JCARD to be packed NSIGN

(the right-hand end of a field). NZONE

PACK

KCARD - The name of a one-dimensional integer array defined in a DIMENSION PRINT
statement. This is the array into which the data is packed, in D4 format, PUI;S;I

four digits per word. P1403

. . . R . R P1442

K - An integer constant, an integer expression, or an integer variable. This READ

is the position of the first element of KCARD to receive the packed char- R2501

acters (the left~hand end of a field). SKIP

. s rs R s . STACK
Detailed description: Initially, the field to be packed (the JCARD array) is in D1 format. SUB
This consists of one digit per word, right-justified (occupying the rightmost four bits of S1403
the word). The sign of the field is carried with the rightmost or low-order digit. TYPER
UNPAC

The operation of the DPACK subroutine is as follows: Starting at JCARD(J), and working WHOLE
from left to right, each four-bit digit of the JCARD array is placed into four bits of the

KCARD array, four to the word, starting at KCARD(K). When JCARD(JLAST) is en-

countered, it is assumed to be the last D1 digit, and to carry the sign of the field, The

DPACK routine then places JCARD(JLAST), unpacked, in its entirety, into

KCARD((JLAST-J+7)/4), the last position in the KCARD array.

Any unused space in the preceding KCARD word is then filled with 1 bits. This bit
arrangement or format will be called D4 format.

For example, suppose a seven-position JCARD array is to be packed, and it contains 1,
2, 3,4,5,6, T

JCARD(1) = 1
JCARD(2) = 2
JCARD(3) = 3
JCARD(4) = 4

-31-

JCARD(5) = 5

JCARD(6) = 6

JCARD(T) = 7

JCARD(1) through JCARD(4) will be placed in KCARD(1) as 0001 0010 0011 0100.
JCARD(5) and JCARD(6) will be placed in KCARD(2) as 0101 0110 0000 0000,
JCARD(7) will be placed, without conversion, in KCARD(3) as 0000 0000 0000 0111,

Then the two unused four-bit areas in KCARD(2) will be filled with 1's as 0101 0110
1111 1111,

More detailed information may be found in the DPACK/DUNPK flowchart and listing.
The table below may be used to determine the number of words required for a field after
it is packed, For example, a twelve-digit decimal field will be packed into a four-word
field:

e First word: 1st, 2nd, 3rd, and 4th digits

e Second word: 5th, 6th, 7th and 8th digits

e Third word; 9th, 10th, and 11th digits, plus four 1 bits (filler)

e Fourth word: 12th digit carrying the sign of the field.

Field Length Field Length Field Length
Before After Before After Before After
Packing Packing Packing Packing Packing Packing

2 2 18 6 34 10
3 2 19 6 35 10
4 2 20 6 36 10
5 2 21 6 37 10
6 3 22 7 38 11
7 3 23 7 39 11
8 3 24 7 40 11
9 3 25 7 41 11
10 4 26 8 42 12
11 4 27 8 43 12
12 4 | 28 8 44 12
13 4 29 8 45 12
14 5 30 9 46 13
15 5 31 9 47 13
16 5 32 9 48 13
17 5 “ 33 9 49 13

-392-

Example: DIMENSION IUNPK(26), IPAKD(26)

CALL DPACK(IUNPK, 1, 10,IPAKD, 1)

Before:

IUNPK 123456789123

Position 1 5 10

IPAKD ABCDEFGHIJ

Position 1 5 10

After:
IUNPK is the same.

IPAKD 1284 5678 9FFF 0001 EFGHIJ

1 2 3 4 56 10
Position

Errors: None

Remarks: If JLAST is less than or equal to J, only one character of JCARD will be
packed, and it will be treated as the sign. A multiple of four characters in J CARD will
always be packed into KCARD, An equation for how much space is required, in ele-
ments, in KCARD is:

JLAST-J+7

Space in KCARD = 2

This result is rounded down at all times.

-33-

ADD
Al1A3
A1DEC
A3A1
CARRY
DECA1
DIV
DPACK
DUNPK =—
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

DUNPK

Format: CALL DUNPK(JCARD, J,JLAST, KCARD, K)

Function: Information in D4 format, four digits per word, is unpacked into D1 format,

one digit per word.

Parameter description:

JCARD - The name of a one-dimensional integer array defined in a DIMENSION
statement. This array contains the data to be unpacked, in D4 format,
four digits per word.

J - An integer constant, an integer expression, or an integer variable, This
is the position of the first element of JCARD to be unpacked (the left-hand
end of a field).

JLAST - An integer constant, an integer expression, or an integer variable greater
than J. This is the position of the last element of JCARD to be unpacked,
(the right-hand end of a field).

KCARD - The name of a one-dimensional integer array defined in a DIMENSION
statement. This is the array into which the data is unpacked, in D1 for-
mat, one digit per word.

K - An integer constant, an integer expression, or an integer variable. This
is the position of the first element of KCARD to receive the unpacked
characters (the left-hand end of a field).

Detailed description: See the detailed description of DPACK for an explanation of the D1

and D4 formats.
The JCARD field, in packed (D4) format, will be unpacked (converted to D1 format) and
placed in the KCARD field. Starting at JCARD(J), moving from left to right, each four-
bit digit is placed in the rightmost four bits of a word in the KCARD array, starting at
KCARD(K).
Filler bits (four 1's) are recognized as such and are ignored.
JCARD(JLAST), the last word to be converted, is not altered, but is moved to
KCARD(KLAST)., KLAST cannot be calculated exactly at this point, but KLAST-K+1
will be the same as JLAST-J+1 when the field was originally packed. In other words,
field lengths will not be changed by a DPACK and subsequent DUNPK.
The maximum value of KLAST can be calculated as

4*¥(JLAST-J)+1

However, it may be one, two, or three fewer positions in length.

-34-

More detailed information may be found in the DPACK/DUNPK flowchart and listing.

Example: DIMENSION IUNPK(26), IPAKD(26)

CALL DUNPK(IPAKD, 1, 3, IUNPK, 1)

Before:
IPAKD 1234 5678 0003 IUNPK FbIbLbLbbbIb Nbbb TbHbIbSb
—— N T
11! |
Position Position 1 5 10
After:
IPAKD is the same. IUNPK 123456783HbIbSb

Position 1 5 10

Errors: None

Remarks: I JLAST is less than or equal to J, only the first element of JCARD, JCARD(J)
will be unpacked and it will be treated as the sign.

-35-

ADD
AlA3
A1DEC
A3Al
CARRY
DECA1l
DIV
DPACK
DUNPK

EDIT

Format: CALL EDIT(JCARD, J, JLAST, KCARD, K, KLAST)

Function: Edits data from one array into another array, which contains the edit mask.

Parameter description:

JCARD -

EDIT -

FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

JLAST -

KCARD -

KLAST -

The name of a one-dimensional integer array defined in a DIMENSION
statement. This array contains the data to be edited, called the source
field, one character per word, in Al format,

An integer constant, an integer expression, or an integer variable. This
is the position of the first character of JCARD to be edited (the left-hand
end of a field).

An integer constant, an integer expression, or an integer variable, greater
than or equal to J. This is the position of the last character of JCARD to
be edited (the right-hand end of a field).

The name of a one-dimensional integer array defined in a DIMENSION
statement. This is the array into which data is edited; it contains the edit
mask before editing begins, stored one character per word, in Al format,
and is called the mask field.

An integer constant, an integer expression, or an integer variable. This
is the position of the first character of the edit mask (the left-hand end of
a field).

An integer constant, an integer expression, or an integer variable, greater
than K. This is the position of the last character of the edit mask (the
right-hand end of a field).

Detailed description: The following table gives the control characters for editing, the

characters used to make up the mask, and their respective functions:

Control Character Function

b (blank)

0 (zero)

This character is replaced by a character from the
source field.

This character indicates zero suppression and is replaced
by a character from the source field. The position of this
character indicates the rightmost limit of zero suppres-
sion (see description of operation below). Blanks are
inserted in the high-order nonsignificant positions of

the field.

-36-

Control Character Function

. (decimal point) This character remains in the mask field where placed. How-
ever, if zero suppressionis requested, it will be removed if
itis to the left of the last character to be zero-suppressed.

, (comma) This character remains in the mask field where placed.
However, if zero suppression is requested, it will be
removed if it is to the left of the last character to be
zero-suppressed.

CR (credit) These two characters can be placed in the two rightmost
positions of the mask field. They are undisturbed if the
source field is negative. (If the source field is positive,
the characters C and R are blanked out.) In editing
operations, a negative source field is indicated by an
11-zone over the rightmost character, Whether CR is
blanked out or not, no data will be edited into these
positions when CR is present, but rather into the edit
characters to the left.

The letters C and R may be used in the remainder of
the edit mask, where they will be treated as normal

alphabetic characters, without being subject to sign

control,

Only the R character is checked, so the C character may
be any legal character, and it will be treated as
described.

- (minus) This character is handled similarly to CR in the
rightmost position of the mask field.

* (asterisk) This character operates the same as the 0 (zero) for
zero suppression, except that asterisks rather than
blanks are inserted inthe high-order nonsignificant
positions of the field, providing asterisk check

protection.
$ (floating dollar This character has the same effect as the 0 (zero) for
sign) zero suppression, except that a $ is inserted to the left

of the first significant character found, or to the left
of the position that stopped the zero suppression.

The operation of the edit routine may be described in five steps:
1. Characters are placed in the mask field from the source field, moving from right
to left. The characters 0 (zero), b (blank), * (asterisk) and $ (dollar sign) are re-

placed with characters from the source field. No other characters in the mask
field are disturbed.

-37-

If all characters in the source field have not been placed in the mask field before the
end of the mask field is encountered, the whole mask is set to asterisks and editing
is terminated.

CR (credit) and ~ (minus) in the rightmost positions of the mask field are blanked if
the source field is positive (does not have an 11-zone over the rightmost character).

The zero suppression scan starts at the left end of the mask field and proceeds left
to right, replacing zeros (0), blanks (b's), decimal points (.), and commas (,). The
last position replaced will occur where the zero suppression character was located,
or one position to the left of where a significant character, not zero (0), blank (b},
decimal point (.), or comma (,), occurs. If the zero suppression character was an
asterisk (*), the replacement character is an asterisk. Otherwise, the replacement
character is a b (blank),

If the zero suppression character was a dollar sign ($), a dollar sign is placed in the
last replaced position in the zero suppression scan.

In order for the edit routine to work correctly and as described, five rules must be
followed in creating the mask field:

1.

There must be at least as many b's (blanks) in the mask field as characters in the
source field.

If the mask field contains zero (0), asterisk (*), or dollar sign ($), zero suppression
will be used and the first character in the mask field must be a b (blank).

The mask field must not contain more than one of the following, which may appear
only once:

0 (zero)

* (asterisk)

$ (dollar sign)
If the rightmost character in the mask field is an R, the next character to the left
shouldbea C, in order to edit with CR (credit). Both characters will be blanked if
the source field is positive. Ifthe rightmost character in the mask field is = (minus),
it will be blanked if the source field is positive.
All numeric, alphabetic, and special characters may be used in the mask field. All
characters that do not have special meaning will be left in their original position in

the mask field during the edit.

More detailed information may be found in the EDIT flowchart and listing.

-38-

Example: There are three common methods for creating a mask field such as b, bb$. bbCR:

Method 1 Method 2
DIMENSION MASK(10) DIMENSION MASK(10)

1 FORMAT(10A1) MASK(1)=16448

IN=2 MASK(2)=27456

READ(IN, 1)MASK MASK(3)=16448

MASK(4)=16448
MASK(5)=23360
MASK(6)=19264
MASK(7)=16448
MASK(8)=16448

MASK(9)=-15552

MASK(10)=-9920

Method 3

DIMENSION MASK(10)

DATA MASK/'b"l'l’lbi,'bl’f$1,I.T"b"'b"ICI’iRY/'

Method 1 creates the mask by reading it from a card. Method 2 creates the mask with
FORTRAN arithmetic statements, setting each position of the mask to the desired char-
acter. It uses the decimal equivalents of the various EBCDIC codes, as listed in the
APPENDIX. Method 3, using the DATA statement, is by far the shortest and simplest.
Note that each character requires a word of core storage, regardless of the method
employed.

-39-

The table of examples below illustrates how the EDIT routine works:

Source Field Mask Field Result
00123D bb, bb$.bbCR bbb$12. 34bb
00123M bb, bb$. bbCR bbb$12. 34CR
00123M bb, bb$. bb- bbb$12. 34~
00123D bb, bb$. bb- bbb$12. 34b

46426723 b, bbb, bb$. bbCR b$464, 267. 23bb
00200P b, bb*.bbCR ***20, 07CR
082267139 bbb-bb-bbbb 082-26-7139
01234567 bbbb$. bbCR HokokkokkokokoRk
0AB1234 bbbbb$. bbCR b$AB12, 34bb
-12345 bb, bb$. bb- $-,123,45b

Because the mask field is destroyed after each use, it is advisable to move the mask
field to the output area and perform the edit function in the output area.

Errors: If the number of characters in the source field is greater than the number of
blanks in the mask field, the mask field is filled with asterisks(*).

-40-

FILL ADD

Al1A3
Format: CALL FILL(JCARD,J,JLAST,NCH) A1DEC
o A3Al
Function: Fills an area with a specified character. CARRY
=0 DECA1
Parameter description: DIV
DPACK
JCARD - The name of a one-dimensional integer array defined in a DIMENSION DUNPK
statement. This array contains the area to be filled. EDIT
— FILL
J - An integer constant, an integer expression, or an integer variable. IC gﬁg
This is the position of the first character of JCARD to be filled (the

left-hand end of a field). IOND
KEYBD
: . : . . MOVE

JLAST - An integer constant, an integer expression, or an integer variable, MP
L - Y
greater than or equal to J. This is the position of the last character of NCOMP
JCARD to be filled (the right-hand end of a field). NSIGN
NZONE
NCH - An integer constant, an integer expression, or an integer variable. This PACK
is the code for the fill character. The Appendix contains a list of those PRINT
codes corresponding to the EBCDIC character set; however, NCH may PUNCH
be any integer. PUT
P1403
Detailed description: The area of JCARD, starting with J and ending with JLAST, is P1442
filled with the character equivalent to the NCH code, one character per word. More READ
detailed information may be found in the FILL flowchart and listing, R2501
’ SKIP
Example: CALL FILL (IPRNT,3,10,16448) ST‘;S%
: ‘s . S1403
Fill the area IPRNT from positions 3 through 10 with blanks. In other words, clear the TYPER
area. UNPAC
IPRNT: WHOLE

Before: ABCDEFGHIJKLMNOPQRSDb. ..

After: ABbbbbbbbbKLMNOPQRSDb. ..

L]

Position 1 5 10 15 20

Errors: None.

-41-

ADD
AlA3
A1DEC
A3A1l
CARRY
DECA1
DIV
DPACK
DUNPK
EDIT
FILL
GET e
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

GET

Format: GET (JCARD, J,JLAST, SHIFT)

Function: Extracts a data field from an array, and converts it to a real number. This
is a function subprogram.

Parameter description:

JCARD - The name of a one-dimensional integer array defined in a DIMENSION
statement. This array contains the data to be retrieved, stored one
digit per word, in Al format.

J - Aninteger constant, an integer expression, or an integer variable. This
is the position of the first character of JCARD to be retrieved (the left-
hand end of a field).

JLAST - An integer constant, an integer expression, or aninteger variable,
greater than or equal to J. This is the position of the last character of
JCARD to be retrieved (the right-hand end of a field).

SHIFT - A real constant, a real expression, or a real variable. If decimal places
are required, SHIFT is equal to 10"d, d being the number of decimal
places. When SHIFT is used as a scale factor, SHIFT is 10d, d being the
number of zeros. If a card contains 12345 and the value of SHIFT is
0.0001, the result will be 1.2345. The result will be 123450. if a value
10. 0 is assigned to SHIFT,

Detailed description: Using the formula

BINARY DIGIT = (EBCDIC CODE + 4032) / 256

the real digits are retrieved. Each binary digit is shifted left and summed, resulting in
a whole number decimal. The sum is multiplied by SHIFT to locate the decimal point.
The result is then placed in the real variable GET. If there are blanks in the data field,
they are treated as zeros. If a nonnumeric character, other than blank, appears in any
position other than the low-order position, the variable containing the result is zero.

If a special character, other than the - (minus), appears in the low-order position, the
resulting variable is set to zero.

For input and for output the sign must be placed over the low-order position as an
11-punch for minus and a 12 or no overpunch for plus. If the low-order position is zero
and the number is negative, the column must contain only an 11-punch. (The zero must
not be punched when FORTRAN I/0 is used.) If the low~order position is zero and the
number is positive, the column must contain only the zero punch., (The 12 row must not
be punched when FORTRAN I/0 is used.)

More detailed information may be found in the GET flowchart and listing.

—-42-

Example 1:

DIMENSION INCRD(80)

B=GET(INCRD,1,5,0.001)

Before: INCRD 0123456b. ..
Position 1 5
B=0.0
After: INCRD is the same.
B =1.234 (Approximately, since a fraction is present)
Example 2:
A = GET (INCRD,1,6,1,0) + GET (INCRD,7,12,1.,0)
GET (INCRD,13,18,1.0) + GET (INCRD, 19, 24,1, 0)
GET (INCRD, 25,30,1.0) + GET (INCRD, 31,36,1.0)
GET (INCRD, 37,42,1.0) + GET (INCRD, 43,48,1.0)
Before:
INCRD 001221 000070 145035 700357 161111 724368 120001 270124
1 A A
Position 1 6 12 18 24 30 36 42 48
A=0.0
After: INCRD is the same

A =2122287. (Exactly, since no fractions were generated)

The above example sums the six-digit fields found in the first 48 columns of a card.
Each data field has two decimal places. Any arithmetic operation can be performed
with GET () as an operand.

—43-

Errors: If a nonnumeric character, other than blank, appears in a position other than
the low-order position, the result is set to zero.

If a special character other than - (minus) appears in the low-order position, the result
is set to zero.

Remarks: The GET routine is a function subprogram. As such, it is used in an arith-
metic expression as shown in the example.

When using standard FORTRAN I/0, and the digit in the units position is a zero, a minus
sign is shown as an 11-punch only; a plus is shown as a zero-punch only.

In most cases the value of SHIFT should be 1.0, placing the decimal point at the right-
hand end of the number. (For dollars and cents calculations, the result of the GET would
be in cents.) This will eliminate precision errors from the calculations. The decimal
point may be replaced (moved to the left) with the EDIT routine for output.

If GET (or PUT) is used, the calling program must use extended precision.

-44 -

ICOMP ADD

: AlA3
Format: ICOMP (JCARD,J,JLAST,KCARD,K,KLAST) A1DEC
A3A1l
Function: Two variable-length decimal format data fields are compared. The result CARRY
is set to a negative number, zero, or a positive number. This is a function subprogram. DECA1l
DIV
Parameter description: DPACK
‘ DUNPK
JCARD - The name of a one-dimensional integer array defined in a DIMENSION EDIT
statement. This array contains the first data field to be compared, one FILL
digit per word, in decimal format. GET
—> ICOMP
J - An integer constant, an integer expression, or an integer variable. IOND
This is the position of the first character of JCARD to be compared KEYBD
(the left-hand end of a field). MOVE
MPY
JLAST - An integer constant; an integer expression, or an integer variable, NCOMP
greater than or equal to J. This is the position of the last character NSIGg
of JCARD to be compared (the right-hand end of a field). le)ggK
. PRINT
KCARD - The name of a one-dimensional integer array defined in a DIMENSION
- . - PUNCH
statement. This array contains the second data field to be compared, PUT
one digit per word, in decimal format. If the fields are unequal in P1403
length, the KCARD field must be the longer field. P1442
. X . . . READ
K - An integer constant, an integer expression, or an integer variable. R2501
This is the position of the first character of KCARD to be compared SKIP
(the left-hand end of a field). STACK
SUB
KLAST - An integer constant, an integer expression, or an integer variable, S1403
greater than or equal to K. This is the position of the last character TYPER
of KCARD to be compared (the right-hand end of a field). UNPAC
WHOLE

Detailed description: Since the fields are assumed to be right-justified, the first
operation is to examine the length of each field. If KCARD is longer than JCARD, the
leading digits of KCARD are examined. If any one of them is greater than zero the
result (ICOMP) is the opposite sign of KCARD. If they are all zero, or if the lengths

are equal, corresponding digits are compared. The routine operates from left to right.
The routine terminates when KCARD is longer than JCARD and a nonzero digit appears
in the high-order of KCARD, when JCARD and KCARD do not match, or when all digits
in JCARD and KCARD are equal. The following table shows the value of ICOMP,
depending on the relation of the JCARD field to the KCARD field:

ICOMP Relation

- (minus) JCARD is less than KCARD

0 (zero) JCARD is equal to KCARD

+ (plus) JCARD is greater than KCARD

-45-

More detailed information may be found in the ICOMP flowchart and listing.

Example: DIMENSION ITOT(10),ICTL(10)
IF (ICOMP(ICTL,1,10,ITOT,1,10)) 1,2,1

The control total is compared to the total calculated. Control goes to statement 1 if the
totals do not match (the calculated total is greater than or less than the control total).
Control goes to statement 2 if the calculated total is equal to the control total. The fields
compared are not changed.

ITOT 0007136673
ICTL 0007136688
ICOMP after is positive.

Errors: No errors are detected. However, the JCARD field must not be longer than the
KCARD field.

Remarks: ICOMP is a function subprogram and as such should be used in an arithmetic
expression.

If JLAST is less than J, or KLAST is less than K, the result is unpredictable.

—46-

IOND ADD

A1A3

Format: CALL IOND A1DEC
A3A1l

Function: Checks for I/0O interrupts and loops until no I/O interrupts are pending. CARRY
DECA1l

This subroutine should not be used in conjunction with Version 2 of the 1130 Disk Monitor DIV
System. It is unneeded; besides, it may not operate correctly. It (IOND) is required DPACK
only for programs operating under control of Version 1 of the Monitor. DUNPK
EDIT

Detailed description: The routine checks the Interrupt Service Subroutine Counter to see FILL
whether any I/O interrupts are pending. If the counter is not zero, the routine continues GET
to check it until it becomes zero. Then the routine returns control to the user. More ICOMP
detailed information may be found in the JOND flowchart and listing. — IOND
. KEYBD

Example: CALL IOND MOVE
MPY

PAUSE 777 NCOMP

NSIGN

The two statements shown will wait until all I/O interrupts have been serviced. Then the Ngggi
program will PAUSE. If an I/O interrupt is pending, and IOND is not used before a PRINT
PAUSE, the program will not PAUSE, PUNCH
PUT

P1442

Remarks: This statement must always be used before a STOP or PAUSE statement. READ
R2501

It may also be helpful in debugging programs. Sometimes, with more than one event SKIP
going on at the same time (PRINTing and processing) during debugging, difficulties can be STACK
encountered. The user may not be able to easily find the cause of trouble. The use of SUB
IOND after each I/O statement will ensure that only one I/O operation is going on at any 91403
given time. TYPER
UNPAC

WHOLE

-47-

ADD
AlA3
A1DEC
A3Al
CARRY
DECA1
DI1v
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD-«—
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
51403
TYPER
UNPAC
WHOLE

KEYBD
Format: CALL KEYBD(JCARD,J,JLAST)
Function: Reads characters from the keyboard.

Parameter description:

JCARD - The name of a one-dimensional integer array defined in a DIMENSION
statement. This array will contain the keyed information when reading
is finished. The information will be in A1 format, one character per
word.

J - An integer constant, an integer expression, or an integer variable.
This is the position of the first word of JCARD into which a character
will be keyed (the left-hand end of a field).

JLAST - An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the position of the last word of
JCARD into which a character will be keyed (the right-hand end of a
field). '

Detailed description: The keyboard is read and the information being read is printed on
the console printer. When the specified number of characters have been read, or when
EOF is encountered, the reading terminates. The characters read are converted from
keyboard codes to EBCDIC and placed in Al format, one character per word. Control is
now returned to the user. More detailed information may be found in the TYPER/
KEYBD flowchart and listing.

Example: DIMENSION INPUT(30)

CALL KEYBD(INPUT, 1, 27)

Before:

INPUT ABCDEFGHIJKLMNOPQRSTUVWXYZ0123

TTTTT

Position 1 15 20 25

After:
INPUT THE CUSTOMER NAME GOES HERE123

SRRy

Position 1 5 10
The array INPUT, from INPUT(1) to INPUT(27), has been filled

with information read from the keyboard.

—48-

Errors: The following WAITs may occur:

WAIT (loc) Accumulator (hex) Action
41 2xx0 Ready the keyboard.
41 2xx1 Internal subroutine error.

Rerun job. If error persists, verify
that the subroutine deck is accurate
using the listing in this manual. If the
deck is the same, contact your local
IBM representative. Save all output.

Only 60 characters at a time may be read from the keyboard.

If more than 60 characters are specified (J LAST-J+1 is greater than 60), only
60 characters will be read.

Remarks: The characters asterisked in Appendix D of IBM 1130 Subroutine Library
(C26-5929) will be entered into core storage and printed. All other characters will
be entered into core storage but will not be printed.

If this subroutine is used, all other I/O must use commercial routines.

-49-

ADD

AlA3
A1DEC
A3A1
CARRY
DECA1
DIV
DPACK
DUNPK
EDIT
FILL

GET
ICOMP
IOND
KEYBD
MOVE -~
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
51403
TYPER
UNPAC
WHOLE

MOVE

Format: CALL MOVE(JCARD,J,JLA ST,KCARD,K)

Function: Moves data from one array to another array.

Parameter description:

JCARD

JLAST

KCARD

The name of a one-dimensional integer array defined in a DIMENSION
statement. This is the array from which data is moved. The data may
be stored in JCARD in any format, one character per word.

An integer constant, an integer expression, or an integer variable. This
is the position of the first character of JCARD to be moved (the left-hand
end of a field).

An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the position of the last character of
JCARD to be moved (the right-hand end of a field).

The name of a one-dimensional integer array defined in a DIMENSION
statement. This is the array to which data is moved, one character per
word.

An integer constant, an integer expression, or an integer variable. This
is the position of the first character of KCARD to which data will be
moved (the left-hand end of a field).

Detailed description: Characters are moved, left to right, from the sending field,

.JCARD, starting with JCARD(J) and ending with JCARD(JLAST), to the receiving field

KCARD, starting with KCARD(K). More detailed information may be found in the MOVE
flowchart and listing.

-50-

Example: = DIMENSION INPUT(80),IOUT(120)
L=20
K=14

CALL MOVE(INPUT,6,L,JOUT,K)

Before:
INPUT IouT
bbbb12ABC45 ZYXPQR99S')Ab. .o bbbbbblbb77b6 ABCDEFGHIJKLMNOPD...
Position 1 15 20 Position 1 5 10 20
After:
INPUT is the same. I0UT

bbbbbb1bb77b62ABC45ZYXPQRI99PD. ..

BN

Positio 1 5 10 15 20 25 30

The field in the array INPUT, starting at INPUT(6) and ending at INPUT(20), is moved
to the field in the array IOUT, starting at IOUT(14). A total of 15 characters are moved.

Errors: None

-51-

ADD
AlA3
A1DEC
A3A1
CARRY
DECA1l
DIV
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY -
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

MPY
Format: CALL MPY(JCARD,J,JLAST,KCARD,K,KLAST,NER)

Function: Multiplies two arbitrary-length decimal data fields, placing the product in the
second data field.

Parameter description:

JCARD

The name of a one-dimensional integer array defined in a DIMENSION
statement. This array is the multiplier. The data must be stored in
JCARD in decimal format, one digit per word.

J - An integer constant, an integer expression, or an integer variable. This
is the position of the first digit that will multiply (the left-hand end of a
field).

JLAST An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the position of the last digit to mul-

tiply (the right-hand end of a field).

KCARD

The name of a one-dimensional integer array defined in a DIMENSION
statement. This array, the multiplicand, will contain the product, ex-
tended to the left, in decimal format, one digit per word.

K - An integer constant, an integer expression, or an integer variable. This
is the position of the first digit of the multiplicand (the left-hand end of a
field).

KLAST

An integer constant, an integer expression, or an integer variable,
greater than or equal to K. This is the position of the last character of
the product and the multiplicand (the right-hand end of a field).

NER - An integer variable. This variable will indicate whether the KCARD
field is not long enough.

Detailed description: First the signs are cleared from both fields and saved. Then the
KCARD field is extended to the left the length of the JCARD field (JLAST-J+1) and filled
with zeros. If the KCARD field will be extended below KCARD (1), NER will be set
equal to KLAST and the routine will be terminated. Next, the JCARD field is scanned to
find the high-order significant digit. If no digit is found, the result is set to zero. When
a digit is found, the actual multiplication begins. The significant digits in the JCARD
field are multiplied by the digits in the KCARD field, one at a time, starting with
KCARD(K) and ending with KCARD(KLAST). The preliminary results are summed,
shifting after each preliminary multiplication to give the correct place value to the pre-
liminary results. Finally, the correct sign is generated for the result, in KCARD, and
the sign of JCARD is restored. More detailed information may be found in the MPY
flowchart and listing.

-52-

Example: DIMENSION MPLR(5),MCAND(15)

N=0

CALL MPY(MPLR,1,5,MCAND,6,15,N)

Before:
MPLR 00982 MCAND ABCDEO0007136673
Position 1 5 Position 1 5 10 15
N=0
After:
MPLR is unchanged. MCAND 000007008212886
Position 1 5 10 15

The numeric data fields MPLR and MCAND are multiplied, the result being placed in
MCAND. Note that the MCAND field has been extended to the left the length of the
MPLR field, five positions, and that N has not been changed.

Errors: If there is not enough room to extend the KCARD field to the left, NER will be
set equal to KLAST, and the routine will terminate.

Remarks: Conversion from EBCDIC to decimal is necessary before using this subroutine.
This may be accomplished with the A1IDEC subroutine. The length of the JCARD and
KCARD fields is arbitrary, up to the maximum space available.

The arithmetic performed is decimal arithmetic, using whole numbers only.

Space must always be provided in the KCARD field for expansion. The first position of
the multiplicand, K, must be at least JLAST-J+1 positions from the beginning of
KCARD. For example, if JCARD is 7 positions, 1 through 7, then the multiplicand,

in KCARD, must start at least seven positions (7-1+1=7) from the beginning of KCARD.
This would have K equal to 8.

The product, located in the KCARD field, will begin at position K-(JLAST-J+1) of
KCARD, and end at position KLAST of KCARD.

-58-

ADD
A1lA3
A1DEC
A3Al
CARRY
DECA1
DIV
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP -
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

NCOMP
Format: NCOMP(JCARD,J,J LAST,KCARD,K)

Function: Two variable-length data fields are compared, and the result is set to a nega-
tive number, zero, or a positive number. This is a function subprogram.,

Parameter description;

JCARD

The name of a one-dimensional integer array defined in a DIMENSION
statement. This array contains the first data field to be compared, one
character per word, in Al format. '

J - An integer constant, an integer expression, or an integer variable. This
is the position of the first character of JCARD to be compared (the left-
hand end of a field).

JLAST

An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the position of the last character of
JCARD to be compared (the right-hand end of a field).

KCARD

The name of a one-dimensional, integer array defined in a DIMENSION
statement. This array contains the second data field to be compared,
one character per-word, in Al format.

K - An integer constant, an integer expression, or an integer variable. This
is the position of the first character of KCARD to be compared (the left-
hand end of a field).

Detailed description: Corresponding characters of JCARD and KCARD are compared
logically, starting with JCARD(J) and KCARD(K). The routine operates from left to
right. The routine terminates when JCARD and KCARD do not match, or when the char-
acter at JCARD(JLAST) has been compared. The following table shows the value of
NCOMP, depending on the relation of the JCARD field to the KCARD field:

NCOMP Relation
- (minus) JCARD is less than KCARD
0 (zero) JCARD is equal to KCARD
+ (plus) JCARD is greater than KCARD

More detailed information may be found in the NCOMP flowchart and listing.

-54-

Example: DIMENSION IN(80), MASTR(80)
IF (NCOMP(IN,1,20,MASTR,1))1,2,3

The field on the input card starting in column 1 and ending in column 20 is compared
with the master field. Control goes to statement 1 if the input card is less than the inas-
ter card. Control goes to statement 2 if the input card equals the master card. Control
goes to statement 3 if the input card is greater than the master card. The fields com-
pared are not changed.

IN 1234567bbbbbbbABCDEF

MASTR 1234567bbbbbbbABCDEF

NCOMP after is zero

Errors: None

Remarks: The collating sequence in ascending order is as follows:
A,B,C,D,E,F,G,H,I,/JK,LM,N,O,PQ,R,S,T,U,V,WX,Y,Z,0,1,2,3,4,5,6,7,8,9,
blank,.,<,(,+,8&,$,%,)s =y /s3> #,@, "5 =

The compare operation is terminated by the last character of the first data field, the data

field at JCARD, or by an unequal comparison. NCOMP is a function subprogram and as
such should be used in an arithmetic statement.

-55-

ADD NSIGN

Al1A3

A1DEC Format: CALL NSIGN(JCARD,J,NEWS,NOLDS)

A3A1l

CARRY Function: Interrogate the sign and return with a code as to what the sign is. Alsc,
DECA1 modify the sign as specified.

DIV

DPACK parameter description:

DUNPK

EDIT JCARD - The name of a one-dimensional integer array defined in a DIMENSION

FILL statement. This array contains the digit to be interrogated or modified,

GET in decimal (D1) format.
ICOMP
i?];\m J - An integer constant, an integer expression, or an integer variable. This
M OS‘{/,];D is the position of the digit to be interrogated or modified.
MPY NEWS - An integer constant, an integer expression, or an integer variable. This
NCOMP is the code specifying the desired modification of the si
NSIGN ~— is c specifying the desi modification of the sign.
NZONE
PACK NOLDS - An integer variable. Upon completion of the routine, this variable con-
PRINT tains the code specifying what the sign was.
PUNCH
gf:(‘)?’ Detailed description: The sign is retrieved and NOLDS is set as in the table below:
P1442 NOLDS is When the sign was
READ —_—
R2501 +1 positive
SKIP
STACK -1 negative
SUB
S1403 . .. (o .
TYPER Then a new sign is inserted, specified by NEWS, as shown in the table below:
UNPAC .
WHOLE NEWS Sign
+1 positive
0 opposite of old sign
~1 negative
NOLDS no change

More cietailed information may be found in the NSIGN flowchart and listing.

-56-

Example: DIMENSION INUMB(9)

CALL NSIGN(INUMB,9,0,N)

Before: N=0, INUMB(9)=7

After: N=1, INUMB(9)= -7

Errors: None

Remarks: The digit processed must be in decimal (D1) format. If it is not, the results
are meaningless.

57~

ADD NZONE

AlA3

A1DEC Format: CALL NZONE((JCARD,J,NEWZ,NOLDZ)

A3A1

CARRY Function: Interrogate the zone and return with a code as to what the zone is. Also,
DECA1 modify the zone as specified.

DIV

DPACK Parameter description:

DUNPK

EDIT JCARD - The name of a one-dimensional integer array defined in a DIMENSION
FILL statement. This array contains the character to be interrogated or
GET modified, in Al format.

ICOMP

IOND : ,
KEYBD J - An integer constant, an integer expression, or an integer variable. This
MOVE is the position of the character in JCARD to be interrogated or modified.
i}dggMp NEWZ - An integer constant, an integer expression, or an integer variable. This
NSIGN is the code specifying the modification of the zone.

NZONE -—

PACK NOLDZ - An integer variable. This variable contains the code specifying what the
PRINT Zone was.

PUNCH

PUT Detailed description: The zone is retrieved and NOLDZ is set as in the table below:
P1403

P1442 NOLDZ is When the character was

READ

R2501 1 A-I

SKIP

STACK ; 2 J-R

SUB

S1403 3 S-Z

TYPER

UNPAC 4 0-9

WHOLE

more than 4 special

Then a new zone is inserted, specified by NEWZ, as shown in the table below:

NEWZ Character

1 12 zone

2 11 zone

3 0 zone

4 no zone
more than 4 no change

-58-

When a special character is the original character, the zone will not be changed. More
detailed information may be found in the NZONE flowchart and listing.

Example: DIMENSION IN (80)

CALL NZONE(IN,1,2,J)

Before: J=0
IN(1) = a B (a 12,2 punch)

After: J=1
IN(1) = a K (an 11, 2 punch)

Errors: None

Remarks: The minus sign or dash (-, an 11-punch) is treated as if it were a negative
zero, not as a special character. This is the only exception.

The only modification performed on an input minus sign is that it may be transformed to
a digit zero with no zone (a positive zero).

-59-

ADD PACK

A1A3

A1DEC Format: CALL PACK(JCARD,J,JLAST,KCARD,K)

A3A1l

CARRY Function: Information in Al format, one character per word, is PACKed into A2 format,
DECA1 ~— two characters per word,

DIV

DPACK Parameter description:

DUNPK

EDIT JCARD - The name of a one-dimensional integer array defined in a DIMENSION
FILL statement. This is the input array, containing the data in Al format,
GET one character per word.

ICOMP

IOND J - An integer constant, an integer expression, or an integer variable. This
KEYBD is the position of the first character of JCARD to be PACKed (the left-
MOVE hand end of a field).

MPY

NCOMP JLAST - An integer constant, an integer expression, or an integer variable,
II:IIZI(()}II\;IE greater than J. This is the position of the last character of JCARD to
PACK ~— be PACKed (the right-hand end of a field).

PRINT

PUNCH KCARD - The name of a one-dimensional integer array defined in a DIMENSION
PUT statement. This is the array into which the data is PACKed, in A2 for-
P1403 mat, two characters per word.

P1442

READ K - An integer constant, an integer expression, or an integer variable. This
R2501 is the position of the first element of KCARD to receive the PACKed
SKIP characters (the left-hand end of a field).

STACK

SUB Detailed description: The characters in the JCARD array are taken in pairs, starting

S1403 with JCARD(J), and PACKed together into one element of KCARD, starting with

TvyPER KCARD(K). Since the characters are taken in pairs, an even number of characters will

UNPAC always be PACKed. If necessary, the character at JCARD(JLAST+1) will be used in

WHOLE order to make the last data PACKed a pair. More detailed information may be found in
the PACK/UNPAC flowchart and listing.

-60-

Example: DIMENSION IUNPK (26),IPAKD(26)

CALL PACK(IUNPK,1,25,IPAKD,1)

Before:

IUNPK AbBbCbDbEbFbGbHbIbJbKbLbMbNbObPbQbRbSbThUbVbWbXbYbZb

NN A R A

Position 1 5 10 15 20 25

IPAKD 0blb2b3b4b5b6b7b8b9b0b1b2b3b4b5b6b7b8b9b0b1lb2b3b4b5b

[R R

Position 1 5 10 15 20 25

After:
IUNPK is the same.
TIPAKD ABCDEFGHIJKLMNOPQRSTUVWXY Z3b4b5b6b7b8b9b0b1b2b3b4b5b
Position 1 5 10 15 20 25
Note that each two characters shown above represent one element of the array.

Also, after IUNPK has been PACKed, the twenty-sixth character, Z, has been
PACKed since 25 characters were specified (between J and JLAST).

Errors: None
Remarks: If JLAST is less than or equal to J, the first two characters of JCARD will be
PACKed. An even number of characters in JCARD will always be PACKed into KCARD.

An equation for how much space is required, in elements, in KCARD is

Space in KCARD = [JL_AS’zl‘itg]

This result is rounded down at all times.

-61-

ADD PRINT
AlA3

A1DEC Format: CALL PRINT(JCARD,J,JLAST,NER)

A3A1
CARRY Function: The printing of one line on the IBM 1132 Printer is initiated, and control
DECAl is returned to the user.
DIV
DPACK Parameter description:
DUNPK
EDIT JCARD - The name of a one-dimensional integer array defined in a DIMENSION
FILL statement. This array contains the information to be printed, on the
GET IBM 1132 Printer, in Al format, one character per word.
ICOMP
IOND J - An integer constant, an integer expression, or an integer variable. This
KEYBD is the position of the first character of JCARD to be printed (the left-
MOVE hand end of a field).
MPY
NCOMP JLAST - An integer constant, an integer expression, or an integer variable,
NSIGN greater than or equal to J. This is the position of the last character of
gzg?‘: JCARD to be printed (the right-hand end of a field).
P NER - An integer variable. This variable indicates carriage tape channel con-
I;UU¥CH ditions that have occurred in printing.
P1423 Detailed description: When the previous print operation is finished, if a print operation
P1442 was going on, the routine begins. The characters to be printed are packed and reversed.
READ g

9501 Since the characters are taken in pairs, an even number of characters is required. I
SRKIP necessary, the character at JCARD(JLAST+1) will be used to get an even number. Then

rinting is initiated and control is returned to the user. When printing is finished, the
STACK P
SUB printer spaces one line and the indicator, NER, is set as follows:
51403
TYPER NER is when
UNPAC
WHOLE 3 Channel 9 has been encountered
4 Channel 12 has been encountered

If channel 9 or channel 12 is not encountered, the indicator is not set.

If a WAIT occurs at location 41, one of the following conditions exists:

Condition Accumulator (hex)
Printer not ready or end of forms. 6xx0
Internal subroutine error. Rerun job. If 6xx1

error persists, verify that the subroutine
deck is accurate, using the listing in this
manual. If the deck is the same, contact
your local IBM representative. Save all out-

put.

-62-

All of the above WAITs require operator intervention.
Only one line can be printed at a time (JLAST-J+1 must be less than or equal to 120).

More detailed information may be found in the PRINT/SKIP flowchart and listing.

Example: DIMENSION IOUT (120)
N=0

CALL PRINT(IOUT,1,120,N)

IF(N-3) 1,2,3
2 Channel 9 routine
3 Channel 12 routine
1 Normal processing

The line in IOUT, from IOUT(1) through IOUT(120), is printed. The indicator is tested
to see whether (1) the line was printed at channel 9 or (2) the line was printed at channel
12. Appropriate action will be taken.

Notice that the test of the indicator is made after printing. The test should always be
performed in this way to see where the line has just been printed. If the indicator was
set, the line was printed at channel 9 or channel 12.

Errors: If JLAST is less than J, only one character will be printed. If more than 120
characters are specified (JLAST-J+1 is greater than 120), only 120 characters will be
printed.

Remarks: After each line is printed, the condition indicator should be checked for the
channel 9 or channel 12 indication. In doing this the same variable should always be used
for the indicator.

The indicator is not reset by the subroutine. It is the responsibility of the user to initial-
ize and reset this indicator.

If this subroutine is used, any other I/O must use commercial subroutines, with the
exception of disk, which must always use FORTRAN I/0.

-63-

ADD
AlA3
A1DEC
A3Al
CARRY
DECAl
DIV
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH-~«—
PUT
P1403

PUNCH

Format: CALL PUNCH(JCARD,J,JLAST,NER)

Function: Punches a card on the IBM 1442, Model 6 or 7. See Subroutine P1442 for
punching on the 1442 Model 5.

Parameter description:

JCARD

JLAST

NER

The name of a one-dimensional integer array defined in a DIMENSION
statement. This array contains the characters to be punched into a card,
in Al format, one character per word.

An integer constant, an integer expression, or an integer variable. This
is the position of the first character of JCARD to be punched (the left-
hand end of a field).

An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the position of the last character of
JCARD to be punched (the right-hand end of a field).

An integer variable. This variable indicates any conditions that have
occurred in punching a card, and the nature of these conditions.

Detailed description: The characters to be punched are converted from EBCDIC to card

P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

codes, one at a time. When all characters have been converted, the punching operation

is initiated. If an error occurs during the operation, the condition indicator is set, and

the operation is continued. The possible values of the condition indicator and their mean-
ing are listed below:

NER is when
0 Last card condition.
1 Feed or punch check.
Operator intervention
required.

If a WAIT occurs at location 41, one of the following conditions exists:

Conditions Accumulator (hex)
Punch not ready. 1xx0
Internal subroutine error. Rerun job. 1xx1

If error persists, verify that the sub-
routine deck is accurate, using the
listing in this manual. I the deck is
the same, contact your IBM repre-
sentative. Save all output.

All of the above WAITs require operator intervention.

-64-

Only one card can be punched at a time (JLAST-J+1 must be less than or equal to 80).

More detailed information may be found in the READ/PUNCH flowchart and listing.

Example: DIMENSION IOTPT (80)
=1

CALL PUNCH(IOTPT,1,80,N)

Before:
IOTPT NAME...ADDRESS. .. AMOUNT
Position 1 20 60

N=-1

After:
IOTPT is the same.
N=0

The information in IOTPT, from IOTPT(1) to IOTPT(80), has been punched into a card.
Since N=0, the information was punched correctly, and the card punched into was the

last card.

Errors: If a punch or feed check occurs, the condition indicator will be set equal to 1.
If an internal error occurs, the system will WAIT as specified above.

If more than 80 characters are specified (JLAST-J+1 is greater than 80), only 80 charac-
ters, one card, will be punched.

Remarks: After each card is punched, the condition indicator should be checked for the
last card indication. This will occur only after the last card has physically been

punched.

The condition indicator is not reset by the subroutine. It is the responsibility of the user
to initialize and reset this indicator.

If this subroutine is used, any other I/O must use commercial subroutines, with the ex-
ception of disk, which must always use FORTRAN I/0.

-65-

ADD
AlA3
Al1DEC
A3A1l
CARRY
DECAl
DIV
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT
P1403
P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

PUT

Format: CALL PUT(JCARD,J,JLAST,VAR,ADJST,N)

Function: Converts the whole portion of a real variable, VAR, to an EBCDIC integer
number, half-adjusting as specified, and places the result, after decimal

point alignment, in an array. An ll-zone is placed over the low-order,
rightmost position in the array if VAR is negative.

Parameter description:

JCARD - The name of a one-dimensional integer array defined in a DIMENSION
statement. This array will contain the result of the PUT routine,
EBCDIC coded information, in Al format, one digit per word.

J - An integer constant, an integer expression, or an integer variable. This
is the first position of JCARD to be filled with the result (the left-hand
end of a field).

JLAST - An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the last position to be filled with the
result (the right-hand end of a field).

VAR - A real constant, a real expression, or a real variable. This is the num-
ber whose whole portion will be PUT.

ADJST - A real constant, a real expression, or a real variable. This is added to
the variable, VAR, as a half-adjustment factor.

N - An integer constant, an integer expression, or an integer variable. This
specifies the number of digits to truncate from the right-hand end of the
number, VAR.

Detailed description: First, the half-adjustment factor is added to the real variable,
VAR. Then, each digit is retrieved using the formula

EBCDIC DIGIT = 256 (BINARY DIGIT) - 4032

and placed in the output area. Each binary digit is retrieved by subtracting the digits
already retrieved from VAR and multiplying by 10. The next digit is then retrieved and
placed in the output area. More detailed information may be found in the PUT flowchart
and listing.

-66-

Example: DIMENSION IPRNT(120)

CALL PUT(PRNT, 1,12,A,5.0,1)

Before:
A = 1234567.

IPRNT ABCDEFGHIJKLMNOPQRSb

Ny

Position 15
After:
A = 1234567,

IPRNT 000000123457MNOPQRSb

A

Position 1 5 10 15 20

Errors: None

Remarks: If the receiving field, JCARD, is not large enough to hold all of the output,
only the low-order digits are placed.

If JLAST is less than or equal to J, only one digit will be PUT.

It is necessary for the programmer to use the ADJST parameter in every PUT. For
example, assume that the number to be PUT is 123.00. Because the IBM 1130 is a binary
machine, the number may be represented in core storage as 122.999... JIf this number is
PUT with ADJST equal to zero, the result will be 122, However, with ADJST equal to
0.5, the preliminary result is 123.499; when PUT, the result is 123. The value of ADJST
should be a 5 in the decimal position one to the right of the low-order digit to be PUT.

The last two factors, ADJST and N, form a logical pair, and should usually appear as
either:

ADJST N
.5 and 0
or 5. and 1
or 50, and 2
or 500. and 3
ete. etc.

ADJST should never be less than .5, since this will introduce fraction inaccuracies.
From this it follows that N should never be negative.

If PUT (or GET) is used, the calling program must use extended precision.

-67-

ADD
AlA3
A1DEC
A3A1
CARRY
DECA1
DIV
DPACK
DUNPK
EDIT
FILL
GET
ICOMP
IOND
KEYBD
MOVE
MPY
NCOMP
NSIGN
NZONE
PACK
PRINT
PUNCH
PUT

P1403

Format: CALL P1403(JCARD,J,JLAST,NER)

Function: The printing of one line on the IBM 1403 Printer, Model 6 or 7, is initiated,
and control is returned to the user.

Parameter description:

JCARD The name of a one-dimensional integer array defined in a DIMENSION
statement. This array contains the information to be printed, on the

IBM 1403 Printer, in Al format, one character per word.

J - An integer constant, an integer expression, or an integer variable. This
is the position of the first character of JCARD to be printed (the left-hand
end of a field).

JLAST An integer constant, an integer expression, or an integer variable,
greater than or equal to J. This is the position of the last character of

JCARD to be printed (the right-hand end of a field).

NER - An integer variable. This variable indicates carriage control tape condi-
tions that have occurred in printing.

P1403 -—

P1442
READ
R2501
SKIP
STACK
SUB
S1403
TYPER
UNPAC
WHOLE

Detailed description: When the previous print operation is finished, if a print operation

was going on, the routine begins. The characters to be printed are converted to 1403
Printer codes and reversed so as to match the 1403 buffer mechanism. Since the char-
acters are taken in pairs, an even number of characters is required. If necessary, the
character at JCARD(JL