IBM 1130 MONITOR PROGRAMMING SYSTEM
PROGRAM LOGIC MANUAL

This publication describes the internal logic of the IBM 1130

- Monitor Programming System. The contents are intended for use
by persons involved in program maintenance, and for system
programmers who are altering the program 'design. Program
logic information is not necessary for the use and operation of
the program; therefore, distribution of this manual is limited to
those who are performing the aforementioned functions.

RESTRICTED DISTRIBUTION -- SEE ABSTRACT

Z26-3752-0

Program Logic

PREFACE

Effective use of this publication requires an under-
standing of the IBM 1130 Computing System and the
appropriate programming system. Publications re-
lating to the 1130 System are listed in the IBM 1130
Bibliography (Form A26-5916).

The contents of this publication describe the in-
ternal structure of the programs comprising the 1130
Disk Monitor System. The publication is divided into
seven sections, the first of which is an introduction.
Following this are sections which describe each of
the Monitor programs:

e Supervisor

e Disk Utility Program
e Assembler Program
e FORTRAN Compiler

e Subroutine Library

o System Loader

Each section consists of a general description of
the program and includes flowcharts depicting the
major program components. The component names
are the same as those used in the program listings
supplied by the Programming Systems Department.

It has been necessary to define many terms in
order to describe the 1130 Disk Monitor System.
Included in this publication is a glossary of special
terms. It is recommended that the reader familiar-
ize himself with these terms before attempting to
read the rest of the publication.

As an aid to the reader, actual core addresses
have been specified in the text and on core maps;
actual disk sector addresses have also been specified
where useful. These addresses are accurate at the
time of publication of this manual. However, they
are subject to change and must not be construed as
applicable at all times and in all cases.

Copies of this and other IBM publications can be obtained through IBM Branch Offices. A form has
been provided at the back of this publication for reader’s comments, If the form has been detached,
comments may be directed to: IBM, Programming Publications Dept. 452, San Jose, Calif. 95114

© International Business Machines Corporation 1966

SECTION 1: INTRODUCTION . . .

SECTION 2: SUPERVISOR
Introduction .« . ¢« . 0 . . o0
Area Description « « « « « « + &

Control Functions « + ¢ « + & « o+ &
Resident Routines « .
Phases « ¢ o« ¢ o o o o o o o &
The Loader . « » « &« + v o & &
Disk System Format Loading . . .
Core Image Format Loading . . .
Subroutines Used by the Loader .
The Load-Time Transfer Vector .
The Flipper-Table
The Object-Time TV . + « + . .
System Overlay Scheme

SECTION 3: DISK UTILITY PROGRAM (DUP).
Introduction « « « ¢ ¢ o « ¢ ¢ o o
DUP Functions and Routines . « « + + .

DUPI/O¢ ¢ o o ¢ o ¢ » o « o o
DUP I/O Routines « + ¢« o + « &

SECTION 4: ASSEMBLER PROGRAM
Program Operation + « « « « « &
Relocatability « « « « « « o & &
Notes « « « o o o o o o o o o &
Storage Layout « « « & +» & & « «
Output Format and Error Codes . .
Tables and Buffers « « « « « « .
Phase Descriptions « « « ¢ o « &
Assembler Input-Output Routines .

SECTION 5: FORTRAN

Program Purpose

General Compiler Description - -
Phase Objectives + « « « « + « &
Control Records « s + « » + o »

.

00 W NN NDNDIN

e
Ul A WwwDN

17
17
18
41
41

45
45
46
47
47
49
51
53
74

76
76
76
76
77

iii

CONTENTS

Core Storage Layout. « + + & ¢ o o o o &
Phase Descriptions « ¢ ¢ « « ¢ ¢ + ¢ ¢ o o

SECTION 6: SUBROUTINE LIBRARY =+ « - » -
Card Subrouting(CARD1) « « ¢ « ¢ « « « »
Keyboard, Console Printer or Operator Request
Subroutine (TYPEO) + + » + ¢ ¢ o ¢ o o =«
Console Printer or Operator Request

Subroutine (WRTYO) C e e e e e

Paper Tape Subroutine (PAPT1) « « « ¢ « «
Paper Tape Subroutine (PAPTN) =« - « « « »
Plot Subroutine (PLOTL) + « « « « « o « « =«
The IBM 1132 Printer Subroutine (PRNT1) - -

Disk Subroutines (DISK1) =« + + o « « + o « &

Flipper Routines (FLIPO, FLIP1) « + « « + .« .
FORTRANT/O « ¢ » + o o v o s s v o »

SECTION 7: SYSTEM LOADER/EDITOR FOR

THE 1130 MONITOR SYSTEM « .« « « « « « &
System Loader/Editor Input « « « « « . o &
General Description » « ¢« ¢ ¢ s ¢ o o o &
Routine Descriptions « « « « « « ¢ « o « &

SECTION 8: THE SYSTEM MAINTENANCE
PROGRAM + « + ¢ o v o o o v v v o u v

FLOWCHARTS ¢ ¢ ¢ ¢ o o ¢ o s s s s o o »

APPENDIX A. EXAMPLES OF FORTRAN
OBJECT CODING « » « + + o »

APPENDIX B, DIAGNOSTIC AIDS -« - « « » « + -

APPENDIX C, DISKMAP =+ ¢ + « « o ¢ o o &

GLOSSARY ¢ « o o = o o o o o & & s s o »

INDEX® * * ® ¢ ¢ * ¢+ ¢ s o o o o o o oo

4

- 82

+ 119
+ 119

+ 120

. 0121
. 0122

£ 122
+123

. 124

o .

+ 126
127
« 127

. 134

. 0134

.« .

.

» 138

. 143

. 147

. 149

. 245

» 254

+ 256

« 257

+ 262

ILLUSTRATIONS

Chart AA.
Chart AB.
Chart AC.

Chart AD.
Chart AE.
Chart AF.
Chart AG.
Chart AH.
Chart AJ.
Chart AK.
Chart BA.
Chart BB.
Chart BC.
Chart BD.
Chart BE.
Chart BF.
Chart BG.
Chart BH.
Chart BI.
Chart BJ.
Chart BK.
Chart BL.
Chart BM.
Chart BN.
Chart BO.
Chart BP.
Chart BQ.
Chart BR.
Chart BS.
Chart BT.
Chart BU.
Chart BV,
Chart BW.
Chart BX.
Chart BY.
Chart BZ.
Chart CA.
Chart CB.
Chart CC.
Chart CD.
Chart CE.
Chart CF.
Chart CG.
Chart CH.
Chart CI.
Chart CJ.
Chart CK.
Chart CL.
Chart CM.
Chart CN.
Chart CO.
Chart CP.

The 1130 Monitor System
The Supervisor e

The Skeleton Supervisor, Presupervisor,

and Cold Start Routine

The Supervisor - Phase A
The Supervisor - Phase B
The Supervisor - Phase C
The Supervisor - Phase D
The Fupervisor - Phase E

The Loader - Disk System Format Load
The Loader - Core Image Format Load

DUP Functions
DUP-DUPCO
DUP-DCTL PR
DUP-DUMP C e e e
DUP-DELETE
DUP-DELETE
DUP-STORE
DUP-STOREMOD
DUP-DUMPLET
DUP-DWADR
DUP-DEFINE e e e .

General Assembler Flowchart

The Assembler - Phase O
The Assembler - Phase O
The Assembler - Phase 1
The Assembler - Phase 1A
The Assembler - Phase 2
The Assembler - Phase 3
The Assembler - Phase 4
The Assembler - Phase 5
The Assembler - Phase 5
The Assembler - Phase 6
The Assembler - Phase 6
The Assembler - Phase 7
The Assembler - Phase 7
The Assembler - Phase 7
The Assembler - Phase 7
The Assembler - Phase 8
The Assembler - Phase 8
The Assembler - Phase 8
The Assembler - Phase 9
The Assembler - Phase 9
The Assembler - Phase 9
The Assembler - Phase 9
The Assembler - Phase 9
The Assembler - Phase 9
The Assembler - Phase 9
The Assembler - Phase 9
The Assembler - Phase 9
The Assembler - Phase 9
The Assembler - Phase 9
The Assembler - Phase 10

.

. 149

150

151
152
153
154

. 1585

156
157

. 158

159

. 160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

. 182

183
184
185
186

. 187
. 188

189
190
191
192
193
194
195
196
197

. 198

199
200

iv

Chart CQ.
Chart CR.
Chart CS.
Chart CT.
Chart DA.
Chart DB.
Chart DC.
Chart DD.
Chart DE.
Chart DF.
Chart DG.
Chart DH.
Chart DJ.
Chart DK.
Chart DL.

Chart DM.

Chart DN.
Chart DP.
Chart DQ.
Chart DR.
Chart DS.
Chart DT.
Chart DU.
Chart DV,

Chart DW.

Chart DX.
Chart DY.
Chart DZ.
Chart EA.
Chart EB.
Chart EC.
Chart ED.
Chart EE.
Chart EF.
Chart EG,
Chart EH.
Chart FA.
Chart FB.
Chart FC.
Chart FD.
Chart FE.
Chart FF.
Chart FG.
Chart FH.

Figure 1.
Figure 2.
Figure 3.

Figure 4.
Figure 5.

The Assembler - Phase 11+ + + -
The Assembler - Phase 12 -« + +
The Assembler - Phase 12 .« - +
The Assembler - Phase 12A « « « .
FORTRAN - Phase 1 e e e e
FORTRAN - Phase 2 o v 0w e

FORTRAN - Phase 3

FORTRAN - Phase4 + . « «» . .

FORTRAN - Phase 5 e e e e

FORTRAN - Phase 5 e e e e
FORTRAN - Phase 6 C e e e e
FORTRAN - Phase 6 + « + « +
FORTRAN - Phase 7 v e e e e s
FORTRAN - Phase 7 c e e e e
FORTRAN - Phase 8 e e e e e
FORTRAN - Phase 9 e e e e
FORTRAN - Phase 10« + « « +
FORTRAN - Phase 11
FORTRAN - Phase 12
FORTRAN - Phase 13
FORTRAN - Phase 14
FORTRAN - Phase 15
FORTRAN - Phase 16
FORTRAN - Phase 17
FORTRAN - Phase 18
FORTRAN - Phase 19

FORTRAN - Phase 20
FORTRAN - Phase 21
FORTRAN - Phase 22
FORTRAN -Phase23
FORTRAN - Phase 24
FORTRAN -~ Phase 25

FORTRAN - Phase 26

FORTRAN - Phase 27
FORTRAN - Phase 28 .+ + « « . &

FORTRAN - Dump Phase
FORTRANI/O
System Loader/Editor - Phase E1
System Loader/Editor - Phase E2 .
System Loader/Editor - Phase E2 .
System Loader/Editor - Phase E2 .
System Maintenance Program . . .
System Maintenance Program . . .
System Maintenance Program . . .

Supervisor Phases and Areas . . .
Layout of the LOCAL and NOCAL

Control Record Areas .« « « + o =«
Layout of the FILES Control Record
Area -« - e v s 4 e e e e
Storage Map of the Loader

Storage Layout at Object - Time .

201
202
203
204
205
206

. 207

208

. 209
+ 210

211
212
213
214

. 215
. 216

217

. 218

219
220
221
222
223
224
225

. 226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

12

Figure 6.
Figure 7,

Figure 8.
Figure 9.
Figure 10.
Figure 11,
Figure 12,
Figure 13.
Figure 14.
Figure 15.
Figure 16,
Figure 17,

Figure 18,
Figure 19.
Figure 20.

Layout of the Object - Time TV Area
Format of the CALL TV for System

Overlays + ¢« « +
Storage Layout of DUP

Storage Layout of DUPCO

Assembler 1/O Flow

Assembler Storage Layout .
FORTRAN Input (Card Form) . .

Layout of Storage During Compilation

DO Table

.

.

.

.

.

Subscript Expression Table . . .

Scan Example . . .

»

.

.

Organization of System Loader/Editor

Inmput . « +» . « . .

Loader/Editor Control Records

ISS Subroutines . .
The Bootstrap Loader

.

15

16
17
18
46
48
76
77
101
103
106

135
135
136
141

Figure 21.
Figure 22,
Figure 23,
Figure 24.
Figure 25,
Figure 26,

Table 1.
Table 2,
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.

Phase E1 « « « ¢ v ¢« « v « v 0 o
Phase E2 - PartI . . . « . + « « . .
Phase E2 -Part Il . . . «
Phase E2 with the Skeleton Supervisor .
Phase E2 with DUPCO« . .

Storage Layout During Execution of the
System Maintenance Program

I/0 Code Conversion Table . . + . .
Format of the I/Q Buffer
Assembler Error Codes « » + ¢ « + +
Location Assignment Counter
FORTRAN Communications Area . . .
Symbol Table IDWord
Statement ID Word Type Codes . . .
Output Code of FORMAT Specification

.141
.142
.142
.142
.142

.147

. . 49

. 50
. 51
. 79
. 80

. . 81

. 95

The major characteristic of a non-process control
monitor is that it allows continuous operation of
stacked input jobs. It operates in a static environ-
ment in that control is regulated by the input data,
not by external stimuli. It differs from a process
control monitor in that the supervisory section
relinquishes complete control to the program
whose operation has been requested,

In the 1130 Disk System Monitor, the JOB control
record defines the starting and ending points of the
job; however, the total job can consists of many sub-
jobs. The Assembler Program, the FORTRAN com-
piler, the Disk Utility Program, and the user's pro-
grams can be called for operation by the ASM, FOR,
DUP, and XEQ control records, respectively. These
are each considered subjobs, and the successful com-
pletion of the job depends on the successful completion
of each subjob. In most cases all subjobs subsequent
to the unsuccessful completion of a given subjob are
bypassed.

The Monitor, which resides totally on disk,
allows the storage and retrieval of user programs on
disk by a referenced name, and it provides a work
storage area on disk which can be used by both Moni-
tor programs and user programs. A directory of
programs is maintained to keep track of all programs
which reside on the disk.

The overall flowchart of the Monitor is shown in
Chart AA.

Supervisor

The Supervisor performs the control and loading
functions of the Monitor. Monitor control records,
which are used to direct the sequence of jobs without
operator intervention, are included in a stacked input
arrangement and are processed by the Supervisor,
which decodes the control records and calls the prop-
er Monitor program to perform the desired operation.

Disk Utility Program

The Disk Utility Program (DUP) is a group of rou-
tines that automatically allocate disk storage as re-
quired by each program stored on the disk and make

SECTION 1: INTRODUCTION

these programs available in card or paper tape for-
mat, in addition to providing printed records of the
status of User Storage and Working Storage. By
means of DUP, the required operations of disk main-
tenance can be performed with minimum effort.

Assembler Program

The Assembler Program receives program source
statements written in the 1130 Assembly Language
and produces a machine-language program as output.
The input can be in either card or paper tape format.

At the conclusion of the assembly process, the
assembled program resides in Working Storage. It
may also have been outputted on the principal I/0 de-
vice. Assembler control records are used to specify
options and to provide instructions concerning the
assembly process.

FORTRAN Compiler

The FORTRAN compiler accepts statements written
in the FORTRAN language as input and produces a
machine-language program as output. It provides for
calling the necessary subroutines at execution time.

Subroutine Library

The subroutine library consists of a group of sub-
routines designed to aid the programmer in making
efficient use of the machine system. The library
contains input/output, data conversion, arithmetic,
functional, and selective dump subroutines. The user
can delete undesired subroutines from the library as
well as add subroutines of his own.

System Loader

The System Loader is a program that must be used
initially to load the Monitor onto the disk pack. The
Monitor is supplied to the user on cards or paper
tape, which, with the aid of some control records
(IBM-supplied in the case of Paper Tape Systems,
user-supplied in the case of Card Systems), must
be loaded to the disk pack before operation of the
Monitor can begin.

Section 1: Introduction 1

SECTION 2: SUPERVISOR

INTRODUCTION

The Supervisor performs the control and loading
functions for the 1130 Disk Monitor System. In order
to accomplish the control functions, the program is
divided into several segments, which are a combina-
tion of core-resident logic (Skeleton Supervisor) and
separate core load phases. See Chart AB.

The relocating and loading-to-core storage func-

tions are performed for the Supervisor by the Loader.

AREA DESCRIPTIONS

The following descriptions summarize the contents
or purpose of the areas in core which contain or are
used by the Supervisor. See Figure 1.

COMMA: This area is used and reserved by all Moni-
tor programs. Among other things, it contains the
Monitor indicators and switches, the LET/FLET
parameters, and the Disk IOCS indicators.

Skeleton Supervisor: This area contains the Skeleton
Supervisor segment of the Supervisor. The Skeleton
Supervisor is located in this area except during the
execution of either a FORTRAN core load or an As-
sembler core load which uses the DISKZ routine.

I/0O Area (low-core): This area holds the I/O rou-
tines (Card or Paper Tape, Disk, and Console Print-
er) that are used by the Supervisor. The zero, e.g.,
CARDO, versions of the I/0 routines are used by the
Supervisor (except for paper tape, in which case
it uses PAPT1.)

This area is overlaid by the user Disk 1/0 and/or
the user's core load at load time.

Presupervisor: This area may also be overlaid by
the user's core load. It contains the Presupervisor
segment of the Supervisor and a routine which gives
DISKO the ability to process multiple sectors.

Phase Area: This area contains the phases of the
Supervisor during its execution.

I/O Area (high-core): This area contains the char-
acter code conversion routines, the 1132 Printer
routine, and the I/0 buffer. This area may also be
overlaid by the user's core load at load time.

Hardware Area
/ 0028
Communications Area (COMMA)
/ 0090
Skeleton Supervisor / 00F4
Low Core |/O Area: DISKO,
TYPEQ, CARDO/PAPTI
/ 0460
Presupervisor / 055C
Phase Area
/ 09C4
High Core 1/O Area: Conversion
Routines, Buffers, Printer Routine
/ OFFF
Figure 1. Supervisor Phases and Areas
CONTROL FUNCTIONS
RESIDENT ROUTINES
Skeleton Supervisor
Chart: AC
e Calls the Presupervisor on CALL EXIT or CALL
LINK.

e Completes the loading of the user's core load
and transfers control to that program.

Upon a CALL EXIT or a CALL LINK from a suc-
cessfully completed user mainline or upon the
return of a Monitor program to the Supervisor, the
Skeleton Supervisor calls the Presupervisor, which
determines whether the return was due to a CALL
EXIT or a CALL LINK,

When entered from the Loader, the Skeleton
Supervisor reads the first sector of user's core
load into core and transfers control to it.

When entered via CALL LINK or CALL EXIT,
the Skeleton Supervisor waits for all interrupts to
be serviced before continuing,

The Master IL routine, which handles all 1I/0
interrupts during Supervisor execution, is contained
within the Skeleton Supervisor (00E0 1 6-00F316).

Presupervisor
Chart: AC
e Initializes the Master IL routine,

e Saves the areas above and below the Pre-
supervisor on the CIB,

e Loads the I/0 routines used by the Supervisor,

e Calls Phase A,

For all CALL LINK entries, before reading the
Supervisor into core, the Presupervisor saves
core from core location 256 to core location 4095
on the CIB, except for locations 1216 - 1536, which
are saved by the Skeleton Supervisor before the
Presupervisor is read in,

Contained within the Presupervisor is a routine
which enables DISKO to read or write more than 320
words, Thus, the Presupervisor can use whatever
disk routine happens to be in core at the time it
gains control to load its own disk I/O routine,

The Presupervisor then reads DISKO into the
Disk I/O area, followed by CARDO or PAPT1, and
TYPEO.

Phase A is read into core by the Presupervisor
to analyze the Monitor control record.

Input/Output Subroutines

e Perform the servicing functions for the 1/0
devices.

The Supervisor makes use of the I/0 routines DISKO,
TYPEO, and either CARDO or PAPT1, depending
upon the system configuration. These routines are
used by all phases of the Supervisor. They are
loaded into the low core I/O area, between the
Skeleton Supervisor and the Presupervisor,

These routines are identical to the corresponding
I/0 routines in the Subroutine Library but are not
taken from the Subroutine Library. They are wholly
incorporated in the Supervisor itself.

A fourth I/0 routine is used by the Supervisor
to perform required printing on the 1132 Printer,
This routine is loaded into the I/O area in high core,

See the Subroutine Library portion of this

manual, Section 6.

1/0 Conversion Routines

e Perform the I/O character code conversions.

These routines provide the interface between the
internal character representation and the I/O devices.
The routine EBPRT converts from EBCDIC either to
Console Printer code or to hexadecimal (for the 1132
Printer). The routine HOLEB converts EBCDIC to
IBM card code and vice-versa, The routine PAPEB
converts EBCDIC to Paper Tape code and vice-versa.

During Supervisor execution these routines
reside in the high-core I/O area. They are identical
to the routines in the Subroutine Library of the same
names, However, they are a part of the Supervisor
and are not loaded from the Subroutine Library.

PHASES

Phase A

Chart: AD
e Initializes for the principal print device.
e [Initializes for the principal I/0 device.

o Reads the input record.

e Analyzes each Monitor control record and calls
the requested Monitor program.

Section 2: Supervisor 3

e Prints the Monitor control records,
e Calls Phase B if an XEQ record is encountered,

Phase A is the Monitor Control Record Analyzer and
Director. For each type of Monitor control record,
Phase A initiates and calls the requested Monitor
program, In the case of an XEQ record, additional
phases of the Supervisor are required to complete
the processing before the Loader can be called,
Phase A prints the error messages for the remain-
ing phases of the Supervisor,

SUP1: Tests to determine the type of entry into the
Skeleton Supervisor. Entry from a CALL LINK
causes the program to transfer into the routine that
analyzes the XEQ control record. An entry from a
Cold Start or a CALL EXIT causes the program to
transfer into the routine that reads the input control
record.

OKSUP: Detects and prints comments record.
PRNT2: Prints the control records.

NAME 1: Places the control record name in the
accumulator,

NAME 2: Tests for the type of control record;
branches to JOB1, ASM1, FOR1, XEQ1, DUP1,
PAUS1, TYP1, or TEND1 on a valid type; prints
an error message on an invalid Monitor control
record and returns to SUP1,

JOB1: Indicates the end of one job and the beginning
of the next, Switches are initialized and the Monitor
control record (// JOB) is printed. The control

data from the Monitor // JOB record is stored and
is used to modify the disk input/output control words.

PAUS1: Causes the system to enter the WAIT state
to allow for operator intervention. The routine
branches to SUP1 to read the next record in the
stack when the PROGRAM START key is pressed,

TYP1: Causes the input mode to be switched from the
principal I/0 device to the keyboard for succeeding
Supervisor control records. This allows the

operator to type in the control records.

TEND1: Causes the input mode to be switched from
the keyboard to the principal 1/0 device for succeed-
ing control records.

ASM1: Causes Phase A to initialize and read the
first sector of the Assembler Program into core for
execution, This is the Assembler caller routine.

FOR1l: Causes Phase A to initialize and read the
first sector of the FORTRAN compiler into core for
execution. This is the FORTRAN Compiler caller
routine.

DUP1: Causes Phase A to initialize and read the
first sector of the Disk Utility Program (DUP) into
core for execution. This is the Disk Utility Program
caller routine.

NONDP: Prevents DUP from being read if the non-
DUP switch is set. A FORTRAN Compiler or
Assembler diagnostic, among other things, sets the
non-DUP switch. If it is set, an error message is
printed and the program returns to SUP1.

XEQ1: Causes Phase A to continue the Supervisor
processing by calling Phase B if either an XEQ
Monitor control record is encountered or an entry to
the Supervisor by a CALL LINK occurs. However,
a FORTRAN Compiler or Assembler Program
diagnostic sets the non-XEQ switch, If XEQ1 finds
this switch set, an error message is printed and the
program returns to SUP1,

Phase B
Chart: AE

e Converts the mainline name to modified EBCDIC
and compresses it into name code.

e Stores the count of *LOCAL, *NOCAL, and
*FILES records.

e Searches LET/FLET for the sector address of
the mainline.

e Determines the format of the program: Core
Image or Disk System format,

e Calls either Phase C or the Loader.

Phase B is initialized and brought into core storage
when Phase A detects an XEQ Monitor control record.
The information contained inthe XEQ recordis ana-
lyzed and processed. PhaseC is called ifthe XEQrec-
ord indicates that * LOCAL,*NOCAL and/or *FILES

Supervisor control records follow. Otherwise, the
Loader is called to load the program to be executed.

RITE: Looks up a single character in the EBCDIC
table (TAB1). When the input character is verified,
it is left-justified and truncated into modified
EBCDIC code. VERT1 contains the converted
character.

LIMIT: Determines if the converted character falls
within a range of decimal 0 through 9. If so, it is
right-justified and stored in VERTI1. Otherwise,

it is considered an invalid character,

GOXEQ: Stores each character of the mainline
name in a separate word for conversion to modified
EBCDIC; compresses the name into name code,

LOKUP: Performs the LET/FLET look-up. The
routine NAME initializes for the LET search;
FLTLK initializes for the FLET search, The equiv-
alent address for the mainline name is obtained
from either of these two tables. It is an error if

the name is not located.

HIT: Analyzes the indicator bits in the located table
entry to determine which Loader entry point to use
for loading the program. The possible bit combina-
tions are:

1, 00 Disk System Format Load

2. 01 An error condition: Program is considered
not to be in loadable form

3. 11 An error condition: Program is considered
not to be in loadable form

4, 10 Core Image Load

TST2 and TST3 routines specify that the Core
Image and Disk System Format entry points, respect-
ively, are required,

CPROC: Initializes and calls Phase C into core
storage. Phase C is executed repeatedly just after
the mainline name is converted from EBCDIC to
name code until all of the *LOCAL, *NOCAL and/or
*FILES records have been processed. Then the
remainder of Phase B is executed.

Phase C
Chart: AF

e Initializes for processing *L.OCAL, *NOCAL
and/or *FILES records.

e Calls Phase D to process *LOCAL or *NOCAL
control records and Phase E to process *FILES
control records.

Phase C is initialized and brought into core storage
if Phase B detects a count in the XEQ record, The
count indicates the number of Supervisor control
records that follow,

Phase C reads and prints the first Supervisor
control record, Then, depending upon the control
record type, Phase C calls either Phase D or
Phase E. Phase D processes *LOCAL and *NOCAL
control records; Phase E processes *¥*FILES control
records. These phases process control records
until a type change is detected. All the Supervisor
control records of each type MUST be processed
before the type change is made. The Supervisor
control record types can be processed in any order,
A type change causes Phase C to be recalled.

Phase C in turn calls the phase to process the new
type control record.

BLNK1l: Reads and prints the *-type record,

LTST: Tests for the name LOCAL in a Supervisor
control record.

NTST: Tests for the name NOCAL in a Supervisor
control record,

FTST: Tests for thé name FILES in a Supervisor
control record,

LOCAL: Initializes and calls Phase D for *LOCAL
or ¥*NOCAL processing,

FPROC: Initializes and calls Phase E for *FILES
processing.

Phase D

Chart: AG

[Converts the mainline and subroutine names to
name code and stores these names.

® Writes the ¥LOCAL and ¥*NOCAL records on the
disk,

e Reads and prints all *LOCAL or *NOCAL
records (after the first).

e Calls Phase C at a type change or Phase B at
the end of the Supervisor control records.

Section 2: Supervisor S

Phase D is initialized and called by Phase C to proc~
ess *LOCAL and *NOCAL records. A separate pass
is made for each type.

Phase D extracts from the control records the
mainline and subprogram names, converts them to
name code, and stores them in the disk output area.
Upon detection of a control record type change, or
the end of the Supervisor control records, Phase D
writes the disk output area on the LOCAL/NOCAL
control record area of disk.

Figure 2 shows the layout of the LOCAL and
NOCAL control record areas. Two sectors are al-
lotted for each area. The word count is the number
of words used to store (1) the 1-word word count,

(2) the 2-word mainline name, and (3) the names of
the LOCAL/NOCAL subprograms applying to the
mainline name, each two words. This format is
repeated for each mainline name encountered in the
*LOCAL and *NOCAL records.

Phase D then re-calls Phase C if a type change
was detected or Phase B if the last of the Supervisor
control records was detected.

Phase D, once loaded, reads and prints the
Supervisor control records until a type change or
the last control record is detected,

CAL: Initializes the disk output area pointers and
switches; contains a routine to read, print, and
test the record type of the input record.

NAMEA: Edits and stores the mainline name in the
disk output area; adjusts the pointers, switches, and
counts for the disk output area and the record input
area,

SUB: Edits and stores the subroutine name in the
disk output area; adjusts the pointers, switches,
and counts for the disk output area and the record
input area, If the next character is not a comma or
a blank, it is invalid. A blank indicates the end of
the subroutine names applying to the current main-
line name. If a comma is followed by a blank, the
routine looks for a continuation record, Otherwise,
it branches to SUB to process the next subroutine
name,

NAMER: Stores each character of the mainline or
subroutine name in a separate word for conversion to
modified EBCDIC; compresses the name into name
code.

RIGHT: Looks up a single character in the EBCDIC
table (TAB1). When the input character is verified,
it is left-justified and truncated into modified EBCDIC
code. VERT1 contains the converted character,

DOFLO: Detects a disk buffer overflow, If the
number of words used to store ¥*NOCAL or *LOCAL
records exceeds 640, an error is indicated by a
printed message and the program returns to Phase A.

WNDUP: Initializes to write the disk output area to
disk storage; initializes to read Phase C back into
core storage and to re-enter Phase C at L'TST.

ENDUP: Initializes to write the disk output area on
disk storage; initializes to read Phase B back into
core storage and to re-enter Phase B at SAVA,
Phase E

Chart: AH

e [Edits and converts the file number to binary
and stores the number,

e Converts the file name to name code and stores
the name,

e Writes the file names and numbers on the disk.

e Reads and prints all FILES records (after the
first),

e Calls Phase C at a type change or Phase B at
the end of the Supervisor control records.

Phase E is initialized and called by Phase C to pro-
cess *¥*FILES records.

The file name is extracted and converted to
name code and stored in the disk output area, The

Word Name Word Name
Count Mainline Name Name Count Mainline Name
i No.l | No. 1 A LOCAL/NOCAL | LOCAL/NOCAL | g % | No.2 i No. 2 i LOCAL/NOCAL 1r
\

Figure 2, layout of the LOCAL and NOCAL Control Record Areas

file number is also extracted, converted to binary,
and then stored in the disk output area. Upon detec-
tion of a control record type change or the end of the

Supervisor control records, Phase E writes the disk
output area (the file names and numbers) in the

FILES control record area of disk.

Figure 3 shows the layout of the FILES control
record area. Two sectors are allotted for this area.
The word count is the number of words used to store
(1) the 1-word word count, (2) a 1-word file number
for each file designated, and (3) a 2-word file name
for each file designated.

Phase E then recalls Phase C if a type change
was detected or Phase B if the last of the control
records was detected.

Phase E, once loaded, reads and prints the
Supervisor control records until a type change or
the last control record is detected.

FILES: Initializes the disk output area pointers and
switches; contains a routine to read, print, and test
the record type of the input record.

NUMER: Edits each position of the file number.
Each character is verified as numeric and the re-
quired left parenthesis is detected. The number is
converted to binary and is stored in the disk output
buffer.

NAME: Edits each position of the file name. Each
character is verified as valid alphameric and the re-
quired right parenthesis is detected. The individual
characters are converted to a modified EBCDIC and
then are compressed into name code. The com-
pressed name is stored in the disk output buffer.

NTBLN: Indicates an error if the position following
the right parenthesis is other than a comma or blank,
An appropriate message is printed and the program
returns to Phase A, A comma followed by a blank
indicates a continuation record and the program
branches back into the FILES routine. A comma
followed by a left parenthesis branches the program
back within NUMER to process the next entry.

SLDR: Right-justifies the file number before it is
converted to binary.

DOFLO: Detects a disk buffer overflow. If the num-
ber of words used to store the file names exceeds 640,
an error is indicated by a printed message and the
program returns to Phase A. '

Word File File File File File File
(Count, No. , Name , No., Name | No. | Name

{
)

Figure 3, Layout of the FILES Control Record Area

WNDUP: Initializes to write the disk output area to
disk storage; initializes to read Phase C back into
core storage and to re-enter Phase C at LTST.

ENDUP: Initializes to write the disk oufput area on
disk storage; initializes to read Phase B back into
core storage and to re-enter Phase B at SAVA.

THE LOADER

There are two entry points to the Loader, one for Disk
System format loads and the other for Core Image for-
mat loads. The format in which the object program is
stored on the disk (Disk System format or Core Image
format) determines which of these entry points will
be entered from the Supervisor or DUP.

The appropriate entry point is selected either by
Phase B of the Supervisor after detection of a XEQ
Monitor control record or by the Disk Utility Pro-
gram (DUP) after detection of a *STORECI DUP con-
trol record. Detection of either of these control
records causes the controlling program to perform
the following operations prior to the calling and exe-
cution of the loading program:

An XEQ control record causes the Supervisor to
store in COMMA the mainline name, the code for the
disk I/0 version requested, and the indicator which
causes the Loader to print a storage map.

A *STORECI control record causes DUP to
store in COMMA the mainline name and the code for
the requested version of disk I/0. In addition, the
DUP program sets switches in COMMA which cause
the Loader to print a storage map and to return to
DUP after the core load is built.

The Supervisor writes *LOCAL, *NOCAL, and
*FILES records in a special area on the disk. (See
the Supervisor, Phase C, for the format of these
records.) If DUP detects a *LOCAL record, an
error message will be printed.

If the mainline name appears in the control rec-
ord, it is located in LET/FLET (Location Equivalence

Section 2: Supervisor 7

Table). The mainline name must appear in the
*STORECI control record. The mainline name must
appear in the XEQ control record if the program to
be loaded is in Core Image format or is located in
User Storage. Hence, if the mainline name does not
appear in the XEQ control record, it is assumed that
the program is located in Working Storage and is in
Disk System format. From LET/FLET the disk
block address is computed and stored in COMMA.
Also, the format, i.e., Core Image or Disk System,
of the mainline program is determined.

The CIB

Upon every entry to the CALL LINK entry in the
Skeleton Supervisor, the contents of core storage
between locations 256 and 4095 are saved on the

CIB. This area is assumed by the Supervisor to be
COMMON. This constitutes exactly twelve 320-word
sectors, which are written on sectors three through
fourteen of the CIB.

As a core load is built, the first sector of the
CIB is used by the Loader to build up the Core Image
Header record during a DSF load. In this same type
of load the first word of the core load, if it is to re-
side below core location 4096, is placed in the first
word of the second sector of the CIB, followed by
consecutive words of the core load until the core load
is complete, except for those words which should
reside (at execution time) at core locations greater
than 4095. The Loader, in building the core load,
overlays as necessary the saved COMMON, sectors
three through fourteen.

Thus, at the end of the loading process, the CIB
contains the Core Image Header Record, that part of
the core load which is to reside below core location
4096, and any part of COMMON which is to reside
below core location 4096.

If the core load was built as a result of an XEQ
control record, Phase 8 will first convert the number
of words of COMMON in the CIB to a sector count,
rounding the count up by one if there is not an integral
number of sectors. This number of 320-word sectors
will then be read directly into core storage from the
disk, thus restoring COMMON. Then the core load
itself is read directly into core storage from the CIB,
except for the contents of the second sector of the
CIB, which is read in by the Skeleton Supervisor.

To take an example, suppose that a link to a pro-
gram with an object program of 626 words has occur-
red. The object program is to reside at core location
450, and the object-time transfer vector is 25 words
long. A COMMON of 3004 words has been defined.
Consequently, the core load consists of 641 words
(626+25), which is two full sectors plus one word.

COMMON occupies ten sectors (3004+320=9+=10).
Phase 8 will first read the fifth to the fourteenth sec-
tors of the CIB into core, beginning at core location
896 (COMMON actually begins at location 1092).
Next, all 320 words of the third sector and one word
of the fourth sector will be read into core, beginning
at location FF0. At this point all COMMON has been
restored (locations 1092-4095) and all but the first
320 words of the core load have been read into core
(locations FF0-1091). The Skeleton Supervisor per-
forms the last step of the process, which is to read
the second sector of the CIB into core locations 450-
F69 and to transfer control to the object program.

Figure 4 shows relative allocation of core storage
during Loader execution.

DISK SYSTEM FORMAT LOADING

Loading (relocating) from Disk System format re-
quires nine phases of the Loader (0 thru 8) plus the
routines to print error messages and a storage map

Hardware
Area
/ 0028
Communications
Area
(COMMA) / 0090

Skeleton Supervisor / O0F4

Disk /O Routine

(DISKO0)
/ 026A
Buff
/0578 [0 L Phase 8
/ 0630 fPhase O
Phase 1
/ 0944
/ OAAO
Phases 4-7
/ OBBC Phase 2 and all
/ OBFC Map and
Phase 3. essage
; 0D50 ase Routines
0DD4
Load~time TV Area / 1000

_/—\J

Figure 4. Storage Map of the Loader

(see Chart AJ). The mainline to be relocated can
reside in either Working Storage or User Storage.

Phase 0 (When entered for Disk System format loads)

The entry point is BP100.

This phase simply loads

Phase 1 and transfers control to it.

Phase 1

LK

RH

GP

BT

LS

PM

Initializes the processing of the *LOCAL and
*NOCAL records.

Builds the load-time TV and stores the first
entry, the TV entry for the requested disk I/0

routine.

Processes the mainline header record.

Controls the reading of a given number of
words from disk storage to core storage.
Fetches the next data word in sequence from
the data buffer and, if required, reads the
next sequential sector.

Reads into the data buffer the sector con-
taining the header record for both mainline
and subprograms.

Reads or writes one disk sector. The oper-
ation to be performed, i.e., GET or PUT,
is determined by the entry point to the
routine.

Builds the load-time transfer vector (TV).
The first entry is always for the disk 1/0
routine requested. Following this, as LIBF
and CALL statements are encountered by
the Loader, additional entries are made to
the TV.

The first entry in the TV occupies words
4086-4089. Subsequent entries are stored
in successively descending blocks of four
words each (see Load-Time TV).

Searches LET/FLET for program and data
file names. I the name is not found, the
load is terminated. If the name is found,
the output from this subroutine is the disk
block address of the program or data file.
For core image programs the execution ad-
dress, the loading address, and the word
count are also a part of the output.

Prints the storage map if requested. Error
messages are printed as errors are encoun-
tered during the loading functions.

TL

EX

MC

LN

Phase 2

Exits to the Monitor call routine or to the

DUP program, depending upon the entry point:

used.

Exits through routines PM and TL. This
routine is entered for those errors which
cause the Loader to terminate the loading
process.

Extracts from the mainline header record
the addresses, counts, and indicators re-
quired for loading a mainline program. This
routine utilizes the BT routine to make the
initial entry in the load-time TV, a LIBF
entry to the disk I/0O routine requested by
the user (DISKZ, DISK1, etc.). If no speci-
fic version is requested, DISKZ is used.
After all *LOCAL and *NOCAL records have
been processed, the routine reads in and
transfers control to Phase 2.

Examines all *LOCAL and *NOCAL records
in the LOCAL/NOCAL sectors and enters the
subprogram names in the load-time TV. All
LOCAL subprogram types are checked to
determine if they are valid for LOCALs, i.e.
the LOCALs are not mainlines or interrupt
level (IL) subroutines.

e Relocates and converts the mainline and all sub-
routines and subprograms from Disk System for-
mat to Core Image format.

MC

Controls the operation of Phases 3 through 8.
After the execution of Phase 6, this routine
returns to DUP if the Loader was called by
DUP as the result of a *STORECI control

_ record. Otherwise, this routine calls Phase

RL

7, executes it, and then calls the Phase 8
and transfers control to it.

y

Controls the conversion of all programs com-

prising a core load from Disk System format
to Core Image format.
verted, the absolute address of each entry
point is placed in the third word of its load-
time TV entry. LIBFs within the program
are replaced by a short BSI instruction with
a tag of 3 and a displacement to the corres~
ponding LIBF TV entry. CALLs within the
program are replaced by a long indirect BSI
instruction, the second word of which is the
execution-time address of the corresponding
CALL TV entry.

Section 2: Supervisor 9

As a program is con-

TR

WR

XC

MV

DF

10

The RL routine replaces DSA (define
sector address) statements with a sector
address, word count, and entry point (this
will be zero for data files) from LET/FLET.
In addition, the absolute addresses of device
servicing routines are inserted into all IL
subroutines required by the particular core
load.

Places the core load being built, one word
at a time, into the Core Image Buffer (CIB)
or into core storage. If the address at
which a word is to be stored is greater than
4095, the word is placed directly into stor-
age. IHf this address is greater than the
capacity of the machine, an error message
is printed. If the address at which a word
is to be stored is 4095 or less, the word is
stored in the Core Image Buffer. Thus the
core load can be entirely in core storage,
entirely in the Core Image Buffer, or divid-
ed between the two.

Writes the core load being built, one sector
at a time, on the CIB. A disk write occurs
when the address at which a word is to be
stored falls outside the limits of the one~
sector buffer which is contained in core.
This subroutine also writes LOCALs and
SOCALs in Working Storage.

Places the core address of the LIBF TV
entry associated with a subprogram entry
point into the exit control cell for that entry
point. For all entry points referenced by
LIBF statements the address of the exit con-
trol cell is the address of the subprogram
entry point +2. For example: if the entry
point FLOAT is located at the address
100010 and the corresponding LIBF TV
entry is located at the address 40754, then
the XC routine places the address 40751
into location 10021g. This operation pro-
vides for execution time return linkage
through the link word contained in the LIBF
TV.

Moves the DEFINE FILE table to a process-
ing area (see DF) and, when processing is
complete, saves the table in the Core Image
Buffer.

Places into the table entry for a given De-
fined File the sector address assigned to
that file. This address can be an absolute
sector address taken from LET/FLET or

a sector address relative to the beginning of
Working Storage. In the latter case the ad-
dress is calculated and assigned by the DF
routine.

If the DEFINE FILE table specifies a
disk block count for a file defined in User
Storage that is greater than the disk block
count for that file contained in LET/FLET,
the count from LET/FLET replaces the count
in the DEFINE FILE table.

If only one file is defined in Working
Storage and if the disk block count for that
file exceeds the available Working Storage,
the count in the DEFINE FILE table is re-
duced to the length of Working Storage. If
multiple files are defined in Working Storage
and if the total disk block count exceeds the
available Working Storage, the core load will

" not be executed.

CK

ML

Phase 3

Checks to ensure that COMMON does not
extend into the area to be used by Phase 8.
An overlap results in an error message.
Loading continues, but the non-XEQ and non-
DUP switches are set.

Checks to ensure that the loading address for
the mainline is greater than the highest core
location occupied by the requested version of
Disk 1/0.

o Controls the loading of subprograms by class.

® Processes the program header record of all rou-
tines named in the load-time TV.

e Selects and controls the loading of required IL
subroutines.

IL

HR

CC

TY

sv

Selects and relocates the IL subroutines
associated with each of the required interrupt
levels within a particular core load.

Extracts the data required for loading (e.g.,
precision, type, and entry point names) from
the header records of both mainline programs
and subprograms.

Controls the loading of subprograms by
class. The in-core routines are loaded
first, followed by LOCALs and then
SOCALs. The latter routines will be
loaded according to system overlay level

if system overlays are used. See System
Overlay Scheme.

Checks that subprograms requiring an LIBF
reference are referenced by LIBFs and that
subprograms requiring a CALL reference
are referenced by CALLs.

Scans the load-time TV twice, first to en-
sure that the routine has not been previously

loaded and then to find any other entry
points to the routine being relocated.

The first scan examines the entry
points in the load-time TV which precede
the current one. If another entry point to
the same routine is found, the routine has
been loaded and the absolute address of the
current entry point in that routine is placed
in the third word of its load-time TV entry.
The routine is not loaded a second time.

If no other entry points are found in this
scan, the routine is loaded.

The second scan examines the entry
points following the current one. If other
entry points to the routine being relocated
are found, the absolute addresses of each of
those entry points are stored into the third
word of their respective load-time TV
entries.

Phase 4

ET

Checks to see if the core load built in Phase 3
fits into core storage.

If LOCALSs are used, computes the size of the
Flipper table and decides which of the two Flip-
per routines is required, i.e., FLIPO or FLIP1.

Initiates the attempt to fit oversize core loads
into core storage through the use of overlays.

Calculates the amount of storage required
for the core load. If the core load fits into
the available storage, control is returned to
Phase 2 (MC) which reads in Phase 6 to con~
struct the object-time TV.

If the core load does not fit, further
processing is required.

See System Overlay Scheme.

Phase 5

Outputs the Flipper table and Flipper routine if
LLOCALs are present.

If SOCALs are required, outputs a special TV
for any 2-word calls (functionals) which are a
part of SOCALs.

Establishes the class code for loading SOCAL
subroutines.

LT

ST

ER

LD

(Executed if LOCALSs are present) outputs
the Flipper table (parameters required for
loading and execution of LOCALSs) and then
outputs the selected Flipper routine. LT
sets an indicator which causes Phase 2 to
to load the LOCAL subprograms. Phase 2
scans the load-time TV and adds to the core
load all LOCAL subprograms referenced.
(Executed if no LOCALs are present or if
they have already been processed) returns
to Phase 2 if no SOCALs are required. If
SOCALSs are required, this routine sets an
indicator to cause the loading of the next
SOCAL by class code.

See System Overlay Scheme.

Phase 6

Builds the object-time LIBF and CALL TVs.

Ensures the odd boundary for the Floating Accu-
mulator (FAC).

Completes the Core Image Header record.

Builds one object-time TV for LIBFs and
one for CALLs. (See Object-time TV.)
The Flipper table address is placed in the
TV entry of all LOCALs.

If it is necessary, a dummy entry is

made in the CALL TV by this routine in order

to make the address of the rightmost word of

the Floating Accumulator (FAC) an odd address.

The Core Image Header record is com-
pleted by this routine and is then stored in
the first sector of the Core Image Buffer.

Phase 7

Loads the requested disk I/O routine into core.

Saves part of the Skeleton Supervisor and COMMA
on the disk if DISKZ has been requested.

Moves the interrupt TV for the core load to be
executed into the Hardware Area in low core.

Tests an indicator in COMMA which indi-
cates the user-requested version of disk 1I/0

Section 2: Supervisor 11

and then reads that disk routine into core.
If DISKZ is requested, part of the Skeleton
Supervisor and COMMA is written on the
disk in order to allot more storage to the
mainline program. That portion of the
Skeleton Supervisor and COMMA which was
overlayed is restored before control is re-
turned to the Monitor after execution. No
disk I/0 loading occurs if DISKO is called,
because this routine is used by the loader
and therefore is already in the disk I/0
area.

NOTE: Phase 7 has its own disk I/O sub-
routine for reading the user's disk I/0
routine into the disk I/O area.

Ehase 8

The description of this phase is identical to that
which is given in the section on Core Image Format
loads except that, for DSF loads, Phase 8 reads into
core storage only that part of the core load which is
in the CIB, including COMMON, before transferring
control to the Skeleton Supervisor.

NOTE: Phases 7 and 8 are used in Disk System Format

Loads only when the relocated program is to be exe-
cuted. See routine MC in Phase 2.

CORE IMAGE FORMAT LOADING

For loading programs in Core Image format only
three phases of the Loader are required: Phase 0,
Phase 7, and Phase 8 (see Chart AK). Phase 0 proc-
esses the Core Image Header record and controls the
fetching and transfer to Phases 7 and 8. Phase 7
returns control to Phase 0, whereas Phase 8 returns
to the Skeleton Supervisor.

Phase 0 (When entered for Core Image format loads)
The entry point is BP200.

LK Controls the reading of a given number of
words from disk storage to core storage.

GET Performs the disk read function.

BP Extracts the parameters from the Core
Image Header record and transfers them to
COMMA. It fetches Phase 7 and transfers
control to it. It then fetches Phase 8 and
relinquishes control to it.

12

Phase 7 (Same description as in the section Disk
System, Format Loading.)

Phase 8

First restores COMMON from the CIB, if any, if
the program being loaded is a CALL LINK, Its other
function is to read all but the first sector of the core
load into core. It sets up the sector address and
word count of the first sector and relinquishes con-
trol to the Skeleton Supervisor, which it has supplied
with the necessary information for moving the object-
time TV into its execution-time location. The Skele-
ton Supervisor then completes the loading process
and transfers control to the object program.

Figure 5 shows the relative allocation of core
storage at user execution time.

Hardware Area

Communications Area (COMMA)

Skeleton Supervisor

Disk 1/0

User Mainline

In-core Subroutines

Flipper Table

Flipper Program

LOCAL Area

SOCAL Area

IL Subroutines

Available Core

LIBF TV

CALL TV

COMMON

Figure 5. Storage Layout at Object-Time

SUBROUTINES USED BY THE LOADER

Most phases of the Loader use the following routines.
These routines are located on the disk, and when
called are loaded into the LET search buffer. This
buffer occupies the first 320 words of the Loader.

1132/Console Printer Print Routine - Performs
any printing by the Loader -storage map,
error messages, etc.- on the principal
print device. The 1132 Print Routine is
loaded at system load time only with systems
having an 1132 Printer; otherwise the Con-
sole Printer Print Routine is loaded.

Error Message Routines - Set up the appropriate
error messages for printing. See the publi-
cation IBM 1130 Monitor System Reference
Manual (Form C26-3750) for a listing of
these messages and conditions which cause
them to be printed.

Map Routines - Set up the titles, messages, etc.
required for the printing of the storage map.

THE LOAD-TIME TRANSFER VECTOR

The load-time TV consists of an entry for:

1. The Disk I/0 routine specified by the user on
the XEQ or STORECI record.

2. Each LOCAL and NOCAL entry point specified
on a *LOCAL or *NOCAL record.

3. Each different CALL or LIBF reference in the
relocated core load.

4. If System overlays are employed, one special
entry for each overlay.

Each entry in the load-time TV is four words in
length. The first entry is stored in locations 4086-
4089, the second in 4082-4085, etc.

Bit O
Bit 1
Program
30-Bit Class
Entry Point Absolute Code or,
Name Entry for LOCALs,
r A N Point the Flipper
A i 1 Address A Table Address |
Word 1 Word 2 Word 3 Word 4

During the first load-pass, the first two words
of each TV entry contain the symbolic name of the
entry point associated with the entry. This 30-bit
name is right-justified in the 32 bit positions of the
two words. LOCALs are flagged in the TV by setting
bit zero in the 32-bit name. Bit one is set to indicate
NOCALs and those entry points referenced by CALL
statements.

NOTE: All subprograms indicated as NOCALs must
be type 4 or 6 routines.

Phase 1 makes the TV entries for the Disk I/O
routine (in routine MC) and for LOCAL and NOCAL
subprograms (in LN). The entry for the Disk 1/0
version is made, even if the program contains no
LIBTF statements to a Disk I/0 routine. Phase 1 also
sets bits zero and one of each entry (as necessary)
as the entry point name is added to the TV.

The third word of each load-time TV entry, initi-
ally zero, ultimately contains the absolute core ad-
dress at which the corresponding entry point will
found at execution time.

A non-zero value in this word indicates to the
Loader that the routine associated with this TV entry
has already become a part of the core load and thus
is not to be loaded a second time. This absolute ad-
dress is added by either Phase 2 (routine RL) or
Phase 3 (routine SV).

The fourth word, also initially zero, is reserved
for the class code of the routine to which the load-
time TV entry corresponds. This code is used in
determining the order in which subprograms will be
loaded if SOCALs are employed. This code is in-
serted by Phase 3 (routine SV).

The class 0 subprograms are subtype 0 sub-
routines of types 3, 4, 5, and 6. See the publication
IBM 1130 Monitor System Reference Manual (Form

C26-3750) for descriptions of the type and subtype
specification.

These subprograms are termed "in-cores"
because they are loaded with all mainlines. The IL
subroutines are also "in-cores' but they are never
a part of any overlay and they technically do not be-
long to a class.

The class 1 subprograms (System Overlay 1) are
the Arithmetic and Functional subprograms, which
comprise the first SOCAL.

The class 2 subprograms (System. Overlay 2) are
the FORTRAN I/0, and I/0 conversion routines
which comprise the second SOCAL.

Disk FORTRAN I/0 is the only class 3 subpro-
gram. It, along with a 320-word buffer, comprises
the third SOCAL.

Section 2: Supervisor 13

On the first load-pass the mainline is loaded,
followed by the subprograms in the order of their
appearance in the TV. If the core load fits and no
LOCALs are specified, the core load is established
as it is. Phase 2 then calls Phase 6 to build the
object-time TV.

If the core load does fit and if LOCALs are speci-
fied, a second load-pass is made. In this case, all
subprograms except the LOCALs are considered as
class 0 subprograms. Thus, the mainline is loaded,
followed by the class 0 (all) subprograms, followed
by the Flipper table and Flipper routine. The
LOCALs are written out on Working Storage follow-
ing any Defined Files.

If the core load does not fit into the available
storage as determined by Phase 4, a second load-
pass is made. In this case, during the second load-
pass, the mainline is loaded, followed by the class 0
subprograms. If LOCALs are present,the Flipper
table and Flipper program are loaded next,followed
by the LOCAL subprograms, which are written out
on Working Storage. After this, the remaining sub-
programs are loaded, i.e., written out on Working
Storage following the LOCALs, by class code. See
System Overlay Scheme.

For a LOCAL subprogram the fourth word of the
TV entry contains the address of the Flipper table
entry for that LOCAL. Phase 5 places word three
of the TV entry into the corresponding Flipper table
entry. Phase 6 then moves word four of the TV
entry into word three. Thus, at execution time, the
TV entry causes control to pass to the Flipper rou-
tine through the Flipper table rather than to the
called subprogram (see Flipper Table).

THE FLIPPER TABLE

The Flipper table and Flipper routine become part
of a core load only if LOCAL subprograms are speci-
fied by the user for that core load.

The Flipper table consists of a 6-word entry for
each of the entry points specified in an *LOCAL
record which is referenced by a CALL statement
and a 5-word entry for each entry point referenced
by an LIBF statement.

The word count, sector address, and absolute
entry point are computed and inserted into each
Flipper table entry by the Loader (Phase 5) as it
processes each LOCAL. Phase 5 also builds the
linkage to the Flipper routine (a long BSI instruction)
and, for CALL entry points, a linkword.

The LOCAL subprograms are placed into the
Working Storage area on the disk following the De-
fined Files, if there are any.

14

The Flipper routine is the subroutine which, at
object-time, using the parameters of the Flipper
table entry, reads a LOCAL subprogram when it is
called from Working Storage into the LOCAL overlay
area, and transfers control to it.

A special Flipper table is created for SOCALs if
the System Overlay scheme is employed. See System
Overlay Scheme.

THE OBJECT-TIME TV

Phase 6 of the Loader builds two separate
object-time TVs: the CALL TV and the LIBF TV.

Each CALL TV entry is a single word con-
taining the absolute address of a subprogram
entry point. However, in the case of a LOCAL
subprogram referenced by a CALL statement,
the absolute address is the address of the cor-
responding Flipper table entry instead of the sub-
program entry point.

Each LIBF TV entry is comprised of three
words. Word one is the linkword. Words two and
three contain a long BSC instruction to the subpro-
gram entry point. However, in the case of a LOCAL
subprogram referenced by an LIBF statement, words
two and three contain a long BSC instruction to the
corresponding Flipper table entry instead of the
subprogram entry point.

The LIBF TV is preceded by two special entries,
each three words in length. The first is the Float-
ing Accumulator (FAC). The address of the first
word of FAC must be an odd address. Therefore,
if necessary, a dummy entry is made in the CALL
TV by Phase 6 in order to make FAC begin at an
odd address.

The second special entry is one 3-word entry
for use by certain subroutines to indicate overflow,
underflow, and divide check.)

If the System Overlay scheme is employed, the
object-time LIBF TV contains special entries for
SOCAL subprograms referenced by LIBF statements.
These entries transfer indirectly either to the refer-
enced subprogram if the overlay containing the sub-
program is presently loaded or to the SOCAL Flip-
per in order to load the required overlay and trans-
fer to the referenced subprogram. See System
Overlay Scheme.

The object-time CALL TV does not contain
entries for SOCAL subprograms referenced by
CALL statements, i.e., functionals, if a System
Overlay is employed. See System Overlay Scheme.

Figure 6 shows the layout of the object-time
TVs. :

Dummy one ~ word entry in CALL TV
(if necessary) to ensure odd address

for FAC

Last First Disk Indicators FAC Last Second First

LIBF LIBF 1/0 CALL CALL CALL
C L 1 (C | I | | | | | |] | (|
J 1 V7 1 I I I 1 | 7 J 1 | | 7 J 1

End of Core
Low Core High Core
— I v T)
LIBF TV CALL TV COMMON
\ ~ J
Object - time TV
Figure 6. Layout of the Object-Time TV Area

SYSTEM OVERLAY SCHEME

If, after the first load-pass, Phase 4 determines
that the core load will not fit into the available stor-
age, and if the mainline is an Assembly-written pro-
gram, loading is terminated and a message is printed
indicating by how much the core storage capacity has
been exceeded.

If the mainline is a FORTRAN program, Phase 4
initiates a second load-pass. Phase 2 reloads the
mainline program and the class 0 or "in-core'' sub-
programs. If LOCAL subprograms are present,
Phase 5 (routine LT) indicates their presence to
Phase 2 which then loads the Flipper table, the Flip-
per routine, and the LOCALs. Phase 4 then attempts
to make the core load fit by overlaying the class 1
SOCALs (the arithmetics and functionals), the class
2 SOCALs (FORTRAN I/0, I/0, and I/O conversion
routines) and the class 3 SOCALs (Disk FORTRAN
1/0 plus a 320-word buffer). (This third overlay is
made only if Disk FORTRAN I/0 is called.)

If Phase 4 finds that the core load can be made
to fit, it actually causes the Loader to create the
overlays described above. Otherwise loading is
terminated and an error message printed out.

A special Flipper table is created for SOCALs.
This table, in conjunction with the DISKZ routine,
performs the same function for SOCAL subprogram
references as do the standard Flipper table and Flip-
per routine for LOCAL subprograms. However, this
Flipper table is contained within the DISKZ routine
in the disk I/O area.

The CALL TV does not contain entries for
SOCAL subprograms referenced by CALL statements,

i.e., functionals. The one-word CALL TV entries
are attached to the front of the System overlay in
which the corresponding subprograms appear. Since
the subprograms in overlays 2 (FORTRAN 1/0, I/0,
and I/0 conversion routines) and 3 (Disk FORTRAN
I/0 routines) can be referenced only by LIBF state-
ments, the one-word entries preceding these over-
lays all cause a return to the SOCAL Flipper to

load the arithmetic/functional overlay.

Suppose a core load (1) contained a FORTRAN~-
written main-line, (2) required all three System
Overlays to fit into core, and (3) contained references
to FSQR and SIN. Then each overlay would start with
a special CALL TV two words in length, one word for
FSQR and the other for SIN. Any user-written rou-
tines referenced by CALL statements would be repre-
sented in the normal CALL TV which is found just to
the left of COMMON. The two words of the CALL TV
for System Overlay 1 would contain the actual core
addresses of the entry points FSQR and SIN. The
two words of the CALL TV for System Overlays 2 and
3 would contain the addresses of the SOCAL flipper
entries for FSQR and SIN. All CALL FSQR/SIN state-
ments would have been replaced with long, indirect
BSI instructions to the address of the corresponding
special CALL TV entry. Thus, at execution time
whenever a CALL FSQR/SIN is encountered, a branch
will be made to either FSQR/SIN or to the SOCAL
flipper. In the latter case the flipper would first
read System Overlay 1 into the overlay area and then
re-execute the branch to FSQR/SIN. In either case
FSQR/SIN would be entered and executed,

Figure 7 shows the CALL TV for the above
example.

Section 2: Supervisor 15

System Overlay 1

Subroutine Subroutine
FSQR SIN
| | 1)Y 1)) J
O L

[—1-word TV: XEQ address for SIN

T-word TV: XEQ address for FSOQR

System Overlay 2

FORTRAN 1/0, 1/0O, and
/O Conversion Routines

l 1 |))

L

T~l-word TV: address of the SOCAL
Flipper entry for SIN

1- word TV: address of the SOCAL Flipper entry for FSQR

System Overlay 3

FORTRAN Disk 1/O and
1/O Buffer

L] | 2)
. —) { O

I

Figure 7. Format of the CALL TV for System Overlays

Same as System Overlay 2

16

INTRODUCTION

The Disk Utility Program is designed to accomplish
the following:

e Automatically allocate disk storage to each pro-
gram assembled or compiled.

e Make these programs available in card or paper
tape format.

e Print out programs and certain other predeter-
mined areas from disk storage.

e Provide automatically printed records of the
status of the size of the User Area and Work
Storage Area.

e Provide automatic file protection for all areas
other than Working Storage.

e Provide the facility to delete the Assembler
Program and/or FORTRAN, and to specify and
enlarge the Fixed Area of Disk Storage.

° Provide various other disk and core maintenance
operations.

The Disk Utility Program (DUP) is called into opera-
tion when the Supervisor recognizes a // DUP record.
One sector of DUP, DUP Common (DUPCO), is
brought into core storage. DUPCO calls in DUP Con-
trol (DCTL). DCTL calls in the principal print de-
vice routine (VIPX or TYPX) to print as required.
Following this, DCTL calls in the principal input
device routine (CARDX or PTX) to read the next
record, which should be a DUP control record.

The DUP control record is then printed, decoded,
and checked for accuracy. Switches are set in
DUPCO in accordance with information obtained from
the control record. The required DUP function is
then called from disk, overlaying the core area of
DCTL as required.

When DCTL transfers control to other DUP
functions, LETAR, the buffer used in the LET/FLET
search, contains the sector of LET/FLET last read
from disk storage; i.e., the portion of LET/FLET
containing the entry involved.

Control is turned over to the DUP function which
performs its assigned tasks according to the informa-
tion that was extracted from the DUP control record.

Upon completion, the function returns to DUPCO,
which calls DCTL back in. DCTL calls in the princi-
pal print routine and prints the DUP EXIT message.

SECTION 3: DISK UTILITY PROGRAM (DUP)

The principal input/output device routine is called in
to read the next record.

This sequence of events is repeated until the
principal input device reads a Monitor control record,
in which case control is returned to the Supervisor.
The Supervisor now examines the Monitor control
record and acts accordingly.

Figure 8 shows the layout of storage during the
execution of DUP. Chart BA is an overall flowchart
of the DUP functions.

Hardware Area
/ 0028
Communications Area (COMMA)
/ 0090
Skeleton Supervisor / 00F4
Disk 1/O Routine
/ 0272
DUP Common (DUPCO)
/ 03B4
DUP Control (DCTL)
or
DUP Function required
/ 0828
CARDX/PTX
/ 0B10
LETAR Buffer
/ 0C42
VIPX/TYPX
/ OF22
Card and Print Buffers / OFFF

Figure 8. Storage Layout of DUP

Section 3: Disk Utility Program (DUP) 17

DUP FUNCTIONS AND ROUTINES

DUP Common (DUPCO) Routine

Chart: BB

e Provides entry for Supervisor to DUP.

e Provides common conclusion of all DUP functions.

e Provides for the return of the Loader to DUP
after performing a Disk System Format Load.

e Provides Disk multi-sector read/write capabili-
ties for DUP.

e Provides common system check '"WAIT' for DUP.

e Provides a common call and linkage to a DUP
error message routine (TERRC/PERRC).

° Provides and initializes switches available for
all of DUP.

e Initializes the Interrupt Transfer Vector for DUP.

e Calls in the Store Core Image function of DUP.

e Provides Interrupt Level routines for DUP I/0
routines.

e Calls in DUP Control (DCTL).

DUPCO is a one sector routine that is resident in
core all the time that DUP is in control, except while
the Loader is converting a Disk System format pro-
gram into Core Image format for DUP.

Switches and routines that are common to many
of the DUP functions are kept available in core at all
times. Because of this, DUPCO provides many entry
points from other DUP functions as well as from the
Supervisor and the Loader.

An initialized DUPCO is read in by the Super-
visor when a DUP control record is read and the non-
DUP Switch (word 641¢) is zero.

A non-initialized DUPCO (DUPCO that is written
to the disk before calling the Loader) is read back in
by the Loader to continue the Store Core Image
function.

If DUPCO is entered with a BSI to REST, REST
is non-zero and an exit message will be printed. If
the entry is a BSC to REST +1, the message will be
inhibited.

18

All DUP disk read/write operations are done
through the multi~sector routine in DUPCO. This
provides a maximum word count of 320 words to the
DISKO routine and keeps supplying word counts until
the original word count requested by the DUP routine
has been transmitted.

NOTE: IOAR Header, used throughout this descrip-
tion of DUP, refers to the two words required to be
in front of all core areas at the time they are used as
buffers for Disk I/0O operations. These two words are
the word count and the sector address respectively.

Figure 9 shows the storage layout of the DUPCO
routine.

Entry Points

NYETC Selects blank record. Exit to RDCTL.
Calling address in NYETC.

SUPDC Supervisor entry to DUPCO. Supervisor
has read DUPCO to core from disk.
Exit to SEPT.

REST DUP functions return to this point in

DUPCO after completing required opera-
tions. Exit to REST2. Return address
in REST if valid DUP function completed.

/ 0272
IOAR Header / 0274
DUPCO Entry Points
/ 0291
DUP Switches
/ 0287
Multi -sector Routine
/ 02F4
Initialization
/ 0328
Patch Area
/ 0336
DUP ILS Routines
/ 0383
Patch Area
/ 03B4

Figure 9. Storage Layout of DUPCO

REST+1

LDRDC

PUT

GET

SYSCK

SEXIT

Multi-sector

PUT2

GOMUL

SAVER

Entry point generally from error point
routines whenever a DUP function is not
completed successfully. Printing of the
exit message is inhibited when REST is
left zero. Exit to REST2.

Loader entry after converting the pro-
gram, requested by DUP, to Core Image
format and leaving the Core Image Pro-
gram in the Core Image Buffer (CIB)
and/or core storage. Exit to RLEPT.
DUP system entry to multi-sector rou-~
tine for writing information to disk.

All DUP functions except DWADR ‘use
this entry for writing to disk. Requires
even address for IOAR Header. XR3
must contain address of IOAR Header.
Return Address in PUT. Exit to PUT2.
DUP system entry to multi-sector rou-
tine for reading information from disk.
All DUP functions use this entry for
reading from disk. Requires even ad-
dress for IOAR Header. XR3 must con-
tain address of IOAR Header. Sets up
disk call for read operation. Moves
return address to PUT. Exit to GOMUL.
DUP system entry if an error has occur-
red that may require such drastic action
as reloading the pack. Used primarily
for debugging. Will stop absolutely re-
gardless of interrupts. Interrupts will,
however, be serviced in the normal
manner. Return address in SYSCK.
DUP system error entry to call error
message routine. Move print error
routine (PERR/TERR) from disk to core.
Relative entry point in PERR or TERR
for requested message in SEXIT. Exit
to PERRC + 2 or TERRC + 2.

Routine

Lifts file protection and sets disk call
for a write operation. Exit to GOMUL.
Stores original word count and sector
address, also checks for buffer ad-
dress being even. Exit to SYSCK if

not even, otherwise exit to SAVER.
Saves the two words where the IOAR
Header will be placed. Inserts the ad-
dress of the IOAR Header into the disk
call. A check is made to see if Work-
ing Storage is exceeded. If it has been
exceeded, an error message is printed.
Exit to MMORE if the word count is
still more than 320. If the count is less

OouT2

RSTRE

MMORE

REFPA

than 320, load IOAR Header information
to the accumulator. Exit to OUT2.
Completes the storing of the IOAR Head-
er and does required disk call operation
and loops until ICNT has gone to zero.

Exit to RSTRE.

Restores the two words previously saved
to the IOAR Header area. Decrements
the word count requested by 320. Exit
to REFPA if zero word count. If the
word count is still positive, the sector
address is incremented by one. The
location of the next IOAR header is ad-
justed by 320. Exit to SAVER.

Forces a count of 320 into the IOAR
Header setup (the requested count is
still greater than 320). Exit to OUT2.
Restores original file protection and
restores original setting of XR3. Exit
to the address in PUT.

Initializing Routine

REST2

RELPT

SEPT

RDCTL

FIRST

Clears switches and indicators that are
in DUPCO with the exception of ZEST,
L,and those that precede L. Exit to
SEPT.

Initializes the Interrupt Transfer Vector
(ITV) for DUP using closed subroutine
FIRST. Calls in the Store Core Image
function of DUP. Exit to the address
specified in CISW (in Store Core Image
Function).

Uses routine FIRST tfo initialize the ITV.
Exits to RDCTL.

Inserts the proper IOAR Header and
calls in DUP Control. Exit to DUCTL
in DUP Control.

Closed subroutine to initialize Interrupt
Transfer Vector (ITV). The address of
the calling program is in FIRST. Exit
to calling routine.

Interrupt Level Subroutines (ILS)

These routines contain the addresses that are put in
the Interrupt Transfer Vector (ITV). The routines
exit to the respective I/0 routines, and, upon return-
ing, turn off the interrupt level and return control to
the instruction that was interrupted.

DUP Control (DCTL) Routine

Chart: BC

e Calls in the principal print device routine toprint.

Section 3: Disk Utility Program (DUP) 19

e DPrints the DUP control record (ENTRY message).

e Prints the location and size of the program or
area on which a DUP function was performed
(EXIT message).

e Controls paper spacing after EXIT message.

e (Calls in principal input device routine to read
and punch.

° Reads DUP control records.
e Decodes DUP control records.

e Calls and searches LET and FLET for the name
on the DUP control record.

e Calls in required DUP Function to complete
action requested.

e Detects errors on DUP control records and
prints the appropriate error messages.

® Returns control to the Supervisor when Monitor
control record is recognized.

o Selects excess blank cards following a DUMP.

e Passes excess data cards following a STORE or
STOREDATA.

DCTL is called in by DUPCO to determine what DUP
is being asked to do. The principal print device
routine is read from disk. The principal I/O device
routine is also read from disk.

The DUP control record is then read from the
principal input device and decoded. The function
and the "FROM'" and "TO" fields are converted from
IBM card code to DUPCO switch settings. The
NAME field is encoded from IBM card code to name
code. The COUNT field is encoded from decimal to
hexadecimal.

If the named function is DUMP, STORE or
DELETE, a LET/FLET search for the name is
done. An exit to SYSCK may occur if DCOM and
COMMA or LET/FLET and COMMA don't agree.
This situation can occur if manual intervention or
a hardware failure interrupts some DUP operations
while the table areas are being modified by DUP.

If STORE Core Image is requested, the sub-
routine FILEQ is called from disk to read, check,
and record the following *FILES records, if any.
The STORE function is then called directly from the
FILEQ subroutine.

20

If no detectable errors occur, the required DUP
function is read, overlaying DCTL, and control is
turned over to the function.

If detectable errors occur, error messages are
called from disk and the proper message is selected
and printed using VIPX or TYPX. Then control
passes back to DUPCO thru REST+1.

Entry Point
DUCTL Enter from DUPCO. Call principal
print device routine from disk into core
storage. Exit to RDIO if BYESW is
zero. Exit to PGMA.

I/0O Operations

PGMA Go to PRTBI to print EXIT message and
return. Clear BYESW to inhibit EXIT
message unless DUP operation com-
pleted. Control paper spacing.depend-
ing on status of RPSW.

RDIO Bring principal I/0 device routine into
core. Exitto FAKE.
FAKE Requests the principal I/0 device rou-

tine to read a record and convert its
contents to packed EBCDIC code. The
result is checked for blanks from right
to left. If the entire record is blank,
the exit is made to NYET9., The count
of 80 minus non-blanks defines the
number of characters that is to be
printed in the ENTRY message. If
columns 1 and 2 contain *D or *S, then
exit will be to ELIM; otherwise exit to
NYET.

ELIM Goes to PRTEB to print the packed
EBCDIC control record. Go to PRTCR
before and after the printing of the con-
trol record to provide spacing the car-
riage before and after printing. Exit to
DCODE.

NYET If columns 1 and 2 are not //, exit to

NYET2. Set Monitor non-read switch

(word 6674) to a negative number. Exit

to SUPER; i.e., to the Skeleton Super-

visor.

Check columns 1 through 6 for *EDIT

blank. If not present exit to FAKE,

otherwise exit to CALLE.

NYET3,4,56 Select appropriate error message ad-

NYET 7, dress. Exit to NYETS.

Fand T

NYET2

NYETS

NYET9

Insert error message address into
print EBCDIC macro. Go to GET to
bring in ERM to core from disk and
return., (ERM contains Error Messages
coded in EBCDIC for DCTL function
only.) Print EBCDIC message by
branching to PRTEB, then return and
re-initialize the switches in DUPCO
except for L, and those preceding L.
Exit to Rest + 1 of DUPCO.

Select stacker. Address of calling rou-
tine in NYET9., Exit to FAKE to read
next control record.

Decode DUP Control Record Function Field

DCODE

DDCTL

If columns 1 and 2 of the control record
contain *D, exit to DDCTL. If they
contain *S, then exit to STCTL. Other-
wise exit to NYET.

Scan columns 3 and 4 of the control
record and exit to:

DFCTL if EF;

DLCTL if EL;

WACTL if WA;

NYETS3 if not UM (invalid function field).
Examine columns 5 and 6 and exit to:
DPCTL if P blank;

DACTL if PD;

LECTL if PL;

LET2 if PF.

In none of the above exit to NYET3
(invalid function field).

Decode STORE Function

STCTL

SCI

Scan columns 3 through 6 of DUP con-
trol record. Exit to NYET3 if not
TORE. Set STSW in DUPCO. Decode
column 11 for SOCAL information.
Store numeric value of column 11 in
T3MSW. Scan columns 7 and 8 for
store modifiers. Check columns 7 and
8 and exit to:

SC13 if blank;

SCI if CI;

SDATA if DA;

SMOD if MO.

Otherwise exit to NYET3.

Set Core Image switch in DUPCO.
Force Loader to print core map. Set
DTYPE in COMMA in accordance with
type of Disk I/0 specified in column 9.

SDATA

SMOD

SC13

SC15

FRPT

FRIN

SC17

SC17A

SC17B

Exit to NYETS if not legitimate charac-
ter. Go to DACNT to record the number
of *FILES records immediately following
the *STORECI DUP control record, and
return. Exit to SC13.

Exit to NYETS3 if columns 9 and 10 not
TA. Go to DACNT to put count in DATSW,
and return. Exit to NYET7 if count field
is blank. Otherwise exit to SC13.

Exit to NYET3 if not D blank in columns
9 and 10. Set SMODSW. Go to CKTMP to
inhibit if in temporary mode, and return.
Check FROM field for card/paper tape

or Working Storage. Check columns 13
and 14 and exit to:

FRIN if CD and Card is principal 1/0,
FRPT if CD and Paper Tape is principal
1/0.

FRPT if PT.

NYET4 if not Working Storage.

Set Working Storage switch (WSSW). Con-
vert contents of DATSW to disk blocks.
If DATSW is zero then exit to SC15. Put
contents of DATSW into COM69 (disk
block count of program in Working Storage).
Exit to SC15.

Put contents of COM69 into COM54 (disk
block count of program being stored).
Exit to NYET4 if zero disk block to be
stored. Exit to SC17.

Set paper tape switch. Go to RIOCS to
bring in required paper tape 1/0 routine,
and return. Exit to FRIN.

Set principal I/O switch. Clear disk
block count of program in Working Stor-
age (COM69). Exit to SC17.

Scan the TO field for Working Storage,
Fixed Area, or User Area indication.
Check columns 17 and 18 and exit to:
SC17A if not Working Storage.

NYETS5 if Working Storage indication in
both FROM and TO fields.

Set Working Storage switch. Exit to
VALST.

Check columns 17 and 18 and exit to:
SC17B if neither Working Storage or
Fixed Area. Set Fixed Area switch.
Exit to NYETS5 if no Fixed Area defined.
Go to CKTMP and return if not tempor-
ary mode. Exit to SC21.

Exit to NYETS5 if not User Area (invalid
TO field). Set UASW in DUPCO. Exit
to SC21.

Section 3: Disk Utility Program (DUP) 21

SC21 Go to SNAME to convert and store name
into COM51 and COM53 of COMMA. Go
to LETSR to do a LET search and re-
turn. Exit to VALST if name was not
found or if name was found and mod
switch has been set; otherwise, restore
the disk block count. Exit to NYET6
(invalid NAME field).

Decode DUMP Function

This routine decodes the balance of the function field,
columns 7 through 12, as well as the FROM field,

the TO field, the NAME field, and the COUNT field,
as required.

DACTL If balance of name data is not in the
function field, exit to NYETS; otherwise,
exit to DACNT to set DATSW with the
actual sector count as punched in the
card. Convert DATSW value to disk
block count and store in DATSW. Exit
to NYET?7 if COUNT field was invalid.
Put contents of DATSW into COM54
(disk block count of program to be
dumped). Exit to DPCTL.

DPCTL Scan columns 13 and 14 and exit to:
FRWS if from Working Storage.

FRUA if from User Area.
NYET4 if invalid FROM field.
Set FXSW in DUPCO. Exit to SCN17.

FRUA Set UASW in DUPCO. Exit to SCN17.

FRWS Convert WS/SAD to disk blocks. Set
WSSW in DUPCO. Set disk block ad-
dress of program to Working Storage
address. Exit to SCN17 if Dumping
Data. Put disk block count of program
in Working Storage into disk block count
of program to be dumped. Exit to
SCN17.

SCN17 Scan the TO field for WS. If present,
set WS switch negative. Exit to DNAME.
If WS not present, set I/0 switch. If
PR present, set principal print switch
and restore page switch. Skip 1 line.
Exit to DUDA if from Working Storage
to printer indicated; otherwise, exit to
DNAME. Exit to DNAME if CD in col-
umns 17 and 18 and card is principal
input device. If CD in TO field, exit to
DNAME. Exitto TOPT if PT in columns
17 and 18 or CD in same columns and PT
is principal input. Exit to NYETS5 if in-
valid TO field.

22

TOPT

DNAME

DUDA

DUUA

VALDU

Set paper tape switch. Go to RIOCS to
get the required paper tape I/0 routine
from disk to core and return. Exit to
DNAME.

Go to SNAME to convert and store the
name in name code (5 characters in 2
words) in COM51 and COM53 of COMMA.
If dumping from Working Storage, then
exit to VALDU; otherwise, go to LETSR
to search LET for a name in LET. If
name was not found, exit to NYET6
(invalid NAME field). If dumping to
printer, then exit to DUDA; otherwise,
exit to DUUA.

If data format has been forced, then
enter COM54 (disk block length of pro-
gram) into DATSW; otherwise, insert
contents of DATSW into COM54 (disk
block length of program). In either case,
if dumping from Working Storage, exit to
VALDU. Exit to DUUA.

Set up XR2 to permit entering dump pro-
gram at DWSC + 2. Exit to PLUS2.
Adjust XR2 to enter dump routine at
DWSC + 3. Exit to PLUSX.

Decode DELETE and DEFINE Functions

DLCTL

DFCTL

If function field not DELETE, then exit
to NYET3 (improper function field)., Go
to SNAME to convert and store name in
name code in COM51 and COM53 of
COMMA. Go to LETSR to Search LET
for the name and return. If name was
not found, then exit to NYET6 (invalid
NAME field). Exit to CDEL to call
DELETE from disk.

If DEFINE FIXED AREA in function
field, exit to DACNT to set the cylinder
count from the control record into
DATSW. Return. Exitto DFXA2, (call
DEFINE from disk). If DEFINE VOID
FORTRAN is in function field, exit to
DVFOR, (call DEFINE from disk). If
DEFINE VOID ASSEMBLER is in the
function field, exit to DVASM, (to call
DEFINE from disk). If none of the three
above, exit to NYET3 (improper function
field).

Call Required DUP Function

RIOCS

A closed subroutine to read the paper
tape I/0 routine from disk to core. The

VALST

NOIO

DACAL

CALST

CICAL
TFILE
CFILQ

FILEQ

CICAL

FILES

paper tape routine will overlay the card
I/0 routine in core. Address of calling
routine is in RIOCS. Exit to calling
routine.

XR1 is set to the entry point address of
the store routine. XR2 is set for the
size of the LET entry. If the program
is to be stored from an I/0 device,

exit to TFILE. Exit to NOIO if Stor-
ing Data. Go to GET for first eleven
words of program from Working Stor-
age. Exit to SEXIT if TYPE field zero.
Exit to NOIO if NAME Field blank.

Exit to SEXIT if not same NAME. Exit
to NOIO.

Exit to CICAL if Storing Core Image.
Exit to DACAL if Storing Data. Exit to
CICAL if Storing to Fixed Area without
specifying CI or Data. Exit to DACAL.
Adjust entry point into Store by +4 for
I/0 not required. Exit to CALST.

Save LET entry length in LREQD. In-
sert required entry address of STORE
block into GET, and set XR3 to point at
the IOAR Header address of STORE
block. Exitto GET+1 to get STORE
block from disk.

Adjust entry point into Store for 1/0
required and CI. Exit to CFILQ.

Exit to CALST if not CI. Exit to CFILQ..
Insert entry point in FILEQ routine into
GET. Exitto GET to call FILEQ from
disk to core.

Subroutine. Called by DCTL when
storing a mainline program in Core
Image format. Entry Point is CICAL.
Set up COM52 and COM48 (in COMMA)
to specify source of DSF program to be
converted to Core Image and force a
core map to be printed by the Loader.
Initialize Supervisor Control Record
Area of disk to indicate no Supervisor
control records. Go to FILES, if
*FILES records are to follow *STORECI
DUP control record, and return. Exit
to GET + 1, to read the STORE Func-
tion from disk to core and enter at lo-
cation specified by STSW (in DUPCO).
This will be either WSD (I/0 required)
or WSD + 2 (I/O not required).

Uses a subroutine (INPUT) to blank the
input buffer, read a record and print
that record. Decoding will then pro-
ceed giving error messages if record

LECTL

LET2

CDEL

DVASM

DVFOR

DFXA2

DFOUT

VASTM

CALLE

WACTL

PLUS2

PLUSX

is not properly identifiable as to type,
character sequence, or if too many files
are defined. The number of the file is
decoded and converted to binary. The
name is decoded and stored in name
code. Scan continues until all of the
card has been scanned. If another rec-
ord is required, it is read and printed
and scanning is repeated until record
count (in COUNT field of STORECI DUP
control record) is satisfied. The accu-
mulated output is written on the fifth
sector of the Supervisor Control Record
Area. Return to calling routine.

If function field not DUMPLET, exit to
NYETS3 (invalid function name).

Set DUMPLET switch, principal print
switch and I/0 required switch. Set
XR2 with the IOAR Header address of
DUMPLET. Exitto PLUS2.

Go to CKTMP and return if the Monitor
is not in temporary mode. Set XR2 to
IOAR Header for DELETE. Exit to
PLUS2.

Set VOID ASSEMBLER switch in DUPCO.
Exit to DFOUT.

Set VOID FORTRAN switch in DUPCO.
Exit to DFOUT.

Convert cylinder count that is in DATSW
to disk block count and store in Fixed
switch (FXSW) in DUPCO. Exit to
DFOUT.

Go to CKTMP and return if the Monitor
is not in temporary mode. Load XR2
with IOAR Header address of DEFINE
block. Exit to PLUS2 to call in DEFINE
block.

Go to CKTMP and return if the Monitor
is in temporary mode.

Load XR2 with IOAR Header of EDIT
block. Exit to PLUS2 to get EDIT block
from disk.

Go to CKTMP and return if not in tempo-
ary mode. Exit to NYET3 if DWADR not
in function field. Load XR2 with IOAR
Header of DWADR function. Exit to
PLUS2.

Save XR2 (IOAR Header address).
Adjust entry address by +2. Exit

to PLUSX.

Store required entry address to GET.
LOAD XR3 with required IOAR Header
address. Exit to GET+1 to get required
DUP function.

Section 3: Disk Utility Program (DUP) 23

CKTMP Subroutine to check operational mode of
the Monitor. Exit to NYETT if in tem~
porary mode. Return to calling routine

if not JOBT status,

Decode DUP Control Record COUNT Field

A closed subroutine to read the decimal
value from columns 27 through 30 of the
control record and enter it into DATSW
in hexadecimal. If non-numeric char-
acter encountered, exit to NYET7 (in-
valid COUNT field). XR1 and XR3 are
used as they are and are not altered.
XR1 is pointing to columns 3 and 4 of
the control record and XR3 is pointing
to L in DUPCO. Address of calling
routine is in DACNT.

DACNT

Convert NAME to Name Code

SNAME Convert name from packed EBCDIC to
name code. The converted name will
be stored in COM51 and COM53 of
COMMA. If the first character of the
name is numeric, exit to NYET6 (in-
valid NAME field). XR2 is saved and
restored. While in the routine, XR2
points to COMMA. XR1 points to card
image columns 3 and 4 and is left un-
moved. Address of calling routine is
in SNAME. After conversion is com-
plete, exit to calling routine.

A closed routine that will compare a
name in COM51 and COM53 of COMMA
with each LET entry in turn until a
match or end of LET has been found.
The search of LET will always include
a search of FLET if a Fixed Area has
been defined. If the name is found,
the first three words of LET entry are
stored in COMMA and the disk block
address of the program is stored in
PGMAD. The name switch (NAMSW)
is also set. If the name was not found
then the disk block address of the last
program stored is available in COMMA
(COM12). If COM12 does not agree
with the calculated disk block address
(COM52), then exit to SYSCK. SAD of
the last LET sector is inserted into
LETSA. The program disk address is
stored in PGMAD. The word prior to
the LET entry is stored in the delete

LETSR

24

switch, XR2 and XR3 are saved. XR2
is used to point to COMMA, while XR3
is used to point to LET entries minus 1.
Address of the calling routine is in
LETSR. When the LET search is com-
pleted, exit to the calling routine.

DUMP Function

Chart: BD

e Moves programs and data from the User Area or
Fixed Area to Working Storage.

e Dumps programs and data from Working Storage
to the principal I/0 device.

e Performs required data format conversions.

The DUMP function is comprised of two basic sub-
functions. One subfunction obtains a Data file or
program in Core Image or Disk System format from
the User or Fixed Area and moves it to Working
Storage.

The other subfunction, using the DUP I/0 rou-
tines, outputs the data or program from Working
Storage to the specified I/O device. This subfunction
converts the program or data in Working Storage
from the format of the FROM field to the format of
the TO field. The individual I/O routines convert
the DUMPed information to the character codes ap-
propriate to the devices they service.

The operation of the DUMP function is entirely
controlled by switches and parameters in DUPCO,
set up by DCTL according to the DUP control record
(*DUMP) and the LET search. The contents of the
FROM and TO fields in the control record determine
whether only one of the two or both of the DUMP sub-
functions are to be executed.

Entry Points

DWSC+2 Entry point for dumping programs or
data from User/Fixed areas to Working
Storage. Exit to DWS.

DWSC+3 Entry point for dumping programs or

data from Working Storage to I/0 de-
vice. Exit to WSIO.

Dump User or Fixed Area to Working Storage
DWS Entry point from DUP Control. Calcu-

lates parameter required to GET first
block of program from disk. Calculates

parameter required for first block to
be put on disk. Calculates parameters

required to check for last block. Checks

disk blocks of program not yet moved.
Reduces size of block if too large. Sets
ENDSW if balance is to be moved. Gets

required block from User Area. Trans-

fers information from Program Header
for COMMA. Puts block to Working
Storage. Calculates parameters for
next block to be moved. When the last
block has been moved, sets Working
Storage Indicator, COM69, to indicate
that Working Storage is occupied. If

1/0 output is not required, exit to REST

in DUPCO; otherwise exit to WSIO.
DUMP Working Storage to Principal I/0 Device

WSIO XR3 points to disk sector buffer. XR2
points to the Communication Area
(COMMA). If principal print device
required, exit to PRPDF; otherwise,
get first block from disk. Initialize
the sequence number and, if a Core
Image program or data to be dumped,
exit to CDDF. Process Program
Header and set up DFPNT point at the
second data header word. During the
dump from Working Storage to I/0,
the DFPNT will always point in front
of an indicator word. The data header
will be saved in CTL and CTL+1. Fill
in the Program Header with required
information from COMMA; the effective
length of the program, the length of the
program (in disk blocks required), the
name of the program, and, if word 12
of the program header is 0, fill in the
execution address from COM56. Other-
wise fill in COM56 with word 12 of the
Program Header. Decode the type
field (word 3) of the Program Header,
and using the branch sector in TYPV,
branch to the proper routine to handle
the particular type of program that is
being dumped. This provides for the
punching of the C~type records in front
of the header and in back of the header.

NOTE: In its distributed form, the DUMP function
will not output the Loader overlay and Loader re-
store records of an 1130 Card/Paper Tape System
program which has been stored on the disk with
these records included.

However, if the user wishes to output these records,
the following change must be made to the DUMP
function:

This pair of instructions

TYP3 MDX ML2
BSC L SPGMX

must be replaced by this pair of instructions

TYP3 STO CSW
LDX L3 /0E00

This change will permit the outputting of the
Loader overlay and restore records. If this change
is made the following holds true.

The various C-type Loader overlay cards have
been recorded and are stored on disk in the DUP
working block. For type 3 or 4 programs, three
Loader overlay records will be punched prior to the
header record followed by three Loader restore rec-
ords. For type 5 or 6, four Loader overlay records
will be punched prior to the header, then the header,
and then the Loader restore records. For type 7,
there will be one Loader overlay card punched prior
to the header record, followed by the header record
and the three Loader restore records. If the pro-
gram is a type 1 or type 2 then the Program Header
card will be punched out without any Loader overlay
records or Loader restore records. Exit to SPGMX.

MOVE Move the number of words specified
by MCNT from the location specified
by XR3 to RD1 buffer. Zero the header
check sum word. Exit to PCHOT to
punch the record and return. Address
of calling routine is in MOVE. Exit to
calling routine. XR2 is left set at

RD1-1.

SPGMX Sets XR2 to RD1-1 (start of output).
Exit to CONV.

CONV Converts Disk System format data

words to Card System format data
words, includes the proper indicator
words and forms the new data headers
as required. If end of program data
header, exit to EOP. Load XR1 with
the contents of DFPNT. This now
points at word count field of next
data header. If sufficient words to
require only one card, then exit to
SMALL, otherwise, exit to CLEAR to
clear 60 word buffer at RD1 and re-
turn. Decrement CTL by 45 data
words. Set CNTI equal to 5. Increment

Section 3: Disk Utility Program (DUP) 25

CLEAR

DATCD

SUBT9

BUMP

BUMPA

26

cycle by 1 for type and count of data

words and store in word 3 of card image.

Exit to DATCD.

A closed subroutine that clears 60 word
buffer at RD1 to zeros. Uses XR2 and
XR3. Saves and restores both index
registers after 60 words are cleared.
The first word of card image is filled
from CTL which contains the core loca-
tion of the first data word on the card.
The A and Q registers are cleared. The
calling routine address is in CLEAR.
Exit to the calling routine.

Moves indicator bits and data words
from Disk System format to Card Sys-
tem format based on an eight-card
cycle. The eight-card cycle may be
broken into three basic subdivisions.
The first case is when the last indicator
bits saved were from cards 1, 2, 4, 5
or 7; the second case is when the last
bits saved were from cards 3 or 6; and
the third case is if the last card cycle
was number 8 where no bits had to be
saved. Indicator bits are saved in
SVIND and are shifted appropriately

on each card cycle. The indieator bits
are also checked to see if LIBF sub-
routines are indicated; if so, the core
load address is decremented for the
next data header. The movement of the
data words from Disk System format to
Card System format is also based on
the eight-card cycle, with the three
same subdivisions. The data words
saved from the previous block process
are moved into the card image. A nom-
inal 40 words are then moved from the
Disk System format to Card System
format buffer. The data words are con-
sidered in blocks of 8 and any data
words that are not needed to fill the
card will be saved, in DWRD1. Exit to
BUMP.

Decrement DFPNT by 9. Reset card 3
or 6 switch. Exit to BUMPA.

If second card or fifth card completed,
exit to SET36. If third or sixth card
completed, exit to SUBT9. Exit to
BUMPA.

Increment DFPNT by 54. If remaining
data word count is not more than 3,
then decrement DFPNT by 1. Exit to
PCHOT to punch a record and return.
Exit to SPGMX.

SET36 Set card 3 or 6 switch. Exit to BUMPA.

PCHOT Closed subroutine to punch out a data
card. XR2 and XR3 saved and restored.
Exit to CHKCD to check for blank record
and return. Exit to CDPCH to punch a
card or paper tape record. If DFPNT
has moved past the sector boundary of
the Disk System format, then decrement
DFPNT by 320. Exit to GETX to get
next sector from Working Storage and
return. Restore XR2 and XR3. Address
of calling routine is in PCHOT. Exit to
calling routine.

Blank Card/Monitor Control Record Test

CHKCD Closed subroutine with calling routine
address at CHKCD. If paper tape, re-
turn to address at CHKCD. Exit to
GETCD to read a card and return with
card converted to packed EBCDIC in
CRBUF-40. If non-blank, exit to NONBL.
After 80 columns checked, exit to call-
ing routine.

NONBL Exit to SEXIT to bring in error print
package and return. Continue to RDRDY.
RDRDY Check to see if reader ready. Loop

until it is; then return to CHKCD+1 to
test next card for blanks.

Building One Complete Card or Less

SMALL Number of data words left is insufficient
to fill more than one full card; therefore,
DFPNT is preceding data header by the
count in DATAC. If words required to
complete card image are less than those
saved, exit to MVEPT. Calculate num-
ber of indicator words and number of
data words actually left available for this
card image. Move DFPNT to end of next
data header. Exit to CLEAR to clear 60
words of buffer at RD1 and return. Save
new data header in CTL and CTL+1.
Fill in word 3 of card image with type
and word count. If more than the saved
words are available, exit to BRARD.
Enter indicator bits from SVIND to card
image. Enter data words from DWRD1
to card image. Exit to CLRCY.

MVEPT Adjust count of saved data words to 2.
Exit to ZROWD.

BRARD Handles cases where words saved do not
extend to the data header and therefore
more words must be moved into the card

GETX

EOP

image, likewise more indicator bits.
Put indicator bits from SVIND and from
Disk System format into card image.
Move data words left over from DWRD1
into front end of card image. Move re-
maining Disk System format data words
preceding new data header to the card
image. Clear CYCLE and card 3 or 6
switch. Exit to BUMP2.

Sets XR3 to point at IOAR Header for
buffer. Increments sector address by
1. Exit to GET to read indicated words
from disk to buffer indicated by XR3
and return. Address of calling routine
in GETX. Exit to calling routine.

Set XR2 to point at RD1-1. Exit to
CLEAR to clear a 60 word buffer at
RD1 and return. Fill first word of end
of program card from first word of end
of program data header (effective length
of program). Insert into word 3 of card
image at the end of program type. Ob-
tain the execution address from COMS56,
and insert into word 4 of card image.
Exit to PCHOT for punching records and
return. Exit to REST (DUMP complete).
Return to DUPCO (print exit message).

Format Data Input for Punching

CDDF

CDDFI

NEWCD

FFAFF

GOGO
DCNT

PRPDF

Obtain disk block count of program from
DATSW. If disk block count zero, branch
to GOGO.

Exit to DCNT to convert disk block
count to a word count and return.

If the word count is equal to or less than
54 words, exit to FFAFF; otherwise,
set XR2 to point to RD1-1. Exit to
MOVE to move 54 words, punch a rec-
ord, and return. If sector of data com-
pleted, exit to GETY; otherwise return
to NEWCD.

If ENDOJ not equal to zero, and last
card punched, exit to REST. If ENDOJ
zero, return to CDDF1. DUMP com-
plete return to DUPCO; otherwise,
reset XR1 to RD1-1, exit to CLEAR

and return. Exit to MOVE and return.
Exit to REST (DUPCO).

A closed subroutine that supplies CDDF
routine with a maximum of 2160 words
to punch.

If zero word count, exit to REST.

Insert count of 320 into IOAR Header
for getting sector from disk. Exit to

GET to get specified count from disk.
TIOAR Header core location is specified
by XR3. Convert disk block count of
program to word count and insert in
count field of print binary call. Set XR3
to IOAR Header for principal print I/0
routine. Exit to GET to get the required
words from disk and return. Exit to
PRTBI to print the entire program in
binary as specified in word four of the
calling sequence and return. Exit to
REST. When the DUMP to the printer
is complete, give control to DUPCO to
print out exit message.

DELETE Function

Chart: BE, BF

e DELETEs programs from either the User or
Fixed Area.

e Updates and packs LET/FLET if required.

e Packs programs in the User Area.

e Updates DCOM (on disk).

e Updates COMMA (in core).

o Provides a System Check if DCOM and COMMA
do not agree.

DELETE Program From User Area
The program is divided into two phases:

Phase I packs LET by the number of words made
available by the deleted LET entry. This packing
will take place in the sector containing the entry to be
deleted and all subsequent sectors, except that six-
word entries or multiple entries are not split across
a sector boundary. Only when room for a complete
entry exists will that entry be moved across a sector
boundary. The LET sector that contains the program
entry to be deleted is assumed to be in core and
DELSW is assumed to be pointing to the first word
prior to the LET entry that is to be deleted. PGMAD
is assumed to contain the disk block address of the
program.

Phase I also calculates and stores the necessary
parameters for Phase II.
Phase II packs the programs into the User Area by the
size of the deleted program. Disk System format pro-
grams are moved by an exact number of disk blocks
until the first Core Image program or Data file is
encountered.

Section 3: Disk Utility Program (DUP) 27

Then the programs are packed only to the nearest
sector boundary since Core Image programs and Data
files must start at a sector boundary. A program in
Working Storage will also be moved so that it still
begins at the start of Working Storage, if this boundary
moves.

DCOM (on disk) and COMMA (in core) are up-
dated, Control is returned to DUPCO which initial-
izes and causes DCTL to print out the exit message.

Entry Points

There is only one entry point, DELC+2, which is the
first word of the first sector of DELETE. Control
is passed to DELETE from DCTL after reading a
DELETE control record and finding the program en~
try in LET/FLET. This sector of LET/FLET is
left in core for use by DELETE.

Phase I - Packs LET

DELOO Exit to SEXIT if Working Storage will
be exceeded when moving programs.
Exit to WSOK if Working Storage not
exceeded.

Exit to DELO01 if program to be deleted
is in User Area. Turn on FXSW. Exit
to DELO1.

Use XR1 to point to first word of LET
entry to be deleted. Use XR2 to point
to delete constants. Compute number
of entries yet to check in this LET sec-
tor and store the number in CNTE.
Exit to DFL00 if program to be deleted
is in Fixed Area. If name specified is
other than the prime entry, then scan
backwards until prime entry is located.
Obtain number of disk blocks to be de-
leted, including padding, and store in
DELDB. Compute new User Area disk
block address, and store in NEWUA.
Exit to DEL04 if three-word entry.
Calculate actual disk block count pro-
gram required and the new padding re-
quired for the Core Image program or
Data file. Exit to DEL04, ‘

Go to DELO05 and return. Exit to DELI1S8.
A closed subroutine to scan for multiple
entries being deleted to determine the
number of words to be shifted left in
LET. Exitto DELO9 if last entry of
sector is encountered during search;
otherwise, after first LET entry that
is not to be deleted has been located,

go to DEL10 to scan LET for the first

WSOK

DELO1

DEL04
DELO05

28

DEL09

DEL10

DEL16

DEL18

DEL20

Core Image program entry that follows.
Record the pertinent information and
return. Exit to DEL09.

Record the disk block count until the next
Core Image program or Data file has been
encountered. If there is no Core Image
program or Data file following, return to
calling routine. Record the first available
address for a Disk System format program,
Core Image program, or Data file that may
follow the deleted program. Calculate
the adjusted amount of padding that would
occur before a Core Image program or
Data file. Return to calling routine.
Closed subroutine to search for Core
Image program entry in LET sector.
Calling routine address in DEL10. Exit
to calling routine if Core Image program
or Data file previously located. If next
entry is not Core Image program then
add the disk block count of program to
the accumulated disk block count. Exit
to calling routine. If the six-word LET
entry is located, set the Core Image
switch (CISW) to indicate a Core Image
program or Data file. Go to DEL16 to
find the actual disk block count required
by the program and return. Compute
and record sectors by which the User
Area must be adjusted. Compute and
record new User Area disk block ad-
dress. Compute and record the new
total disk block count for the Core Image
program or Data file. Exit to calling
routine.

Closed subroutine to calculate the actual
disk block count used by the Core Image
program or Data file. Address of the
calling routine is in DEL16. If Core
Image format program, the number of
disk blocks required equals the word
count of the Core Image program divided
by 20. For a data file the actual disk
block required is in word 6 of the LET
entry. Record the actual disk blocks
required in DBPGM. Exit to calling
routine.

Set up to move required LET entries
from next sector. If last LET sector,
set ENDSW and exit to DEL32.

Get next LET sector from disk and put
into core starting 4 words after end of
first LET sector. Set XR1 at first word
of LET header in current LET sector.

DEL22,
DEL30

DEL32

DEL38

DELS39

DEL41

DELA42
DEL43

DEL44

DEL46

DELA47
DEL48

Move LET entries from Sector N+1 to
sector N until number of words in sector
N is less than the size of the next entry
to be moved in from sector N+1. Six-
word LET entries and multiple entry
programs may not be split over sectors.
Prepare LET sector for writing. Ad-
just words in header of LET sector N.
Move entries required across the sector
boundaries from sector N+1 to sector N.
Exit to DEL41 (write this sector).
Initialize to process next sector, includ-
ing the exchange of LET buffers.
NOTE: LET buffers are exchanged by
merely reversing the addresses of buf-
fer 1 and 2 with a Load Double (LDD),
Rotate (RTE) 16, and Store Double
(STD). The symbolic references to the
addresses are THIS and NEXT. If a
Core Image program was encountered,
exit to DEL18; otherwise restore XR1
and XR2, Exit to DELO8 (only systems
format).

Set LMISW to zero since the last sector
of LET is not deleted.

Write disk routine. If a LET sector is
deleted, then rewrite the needed LET
sector header. If all programs in User
Area have been deleted, exit to DEL39.
If the previous LET sector not already
in core, read previous LET sector and
update header. Exit to DEL42.

Update header of previous LET sector.
Calculate number of words to write and
sum the disk blocks referenced in this
sector. Put the previous sector to disk
using PUT.

Exit to DEL38 if more updating of LET
is required. Exit to DEL48 if end of
LET. Exitto DEL47 if Core Image
program or Data file already encoun-
tered. Exit to DE146.

Go to DELO5 to search for Core Image
program or data file and return. If
Core Image program or Data file
processed, then exit to DEL47; other-
wise, read next LET sector and exit to
DE146.

Write updated LET sector.

Exit to DEL50 if LET is not shorter.
Adjust number of words in LET.

DELS50

Exit to DFL60 if deletion from Fixed
Area; otherwise, exit to DEL60 (go to
Phase II, Phase I has been completed).

Phase II - Packs User Area and Updates DCOM and

COMMA.,

DEL60

DEL76

DELS6

DELSS8

DEL90

Set up parameters for MOVER subrou-
tine to move programs by disk blocks.
Go to MOVER and return. Exit to DEL76
if any programs to move by sectors.
Exit to DELS6.

Set up parameters for MOVER subrou-
tine to move programs by sectors. Go
to MOVER and return. Exit to DELS86.
Get Disk Communication sector (DCOM)
from disk. Set XR1 to point at Core
Communication Area (COMMA). Set XR2
to point at delete parameters. Set XR3
to point at Disk Communication Area
just brought into core. Update COM4
(word address of next LET entry) both
in COMMA and DCOM. Exit to SYSCK
(system check) if the two are not equal.
Adjust COM10 (word address of next
LET entry adjusted) both for COMMA
and DCOM. Exit to SYSCK (system
check) if both do not agree. Update
COMS6 (first available disk block address
in User Area base) of both COMMA and
DCOM. Exit to SYSCK (system check)
if they do not agree. Update COM12
(next available disk block address of
User Area adjusted) in both COMMA and
DCOM. Exit to SYSCK (system check) if
both are not the same. Update file pro-
tect address in both DCOM and COMMA.
Exit to SYSCK (system check) if the
DCOM and COMMA do not agree.

Update FPA and FPAD (File Protect
Address Base and Adjusted); i.e., the
beginning of Working Storage on one
disk. Rewrite DCOM back to disk. Exit
to DEL90.

Exit to REST (return to DUPCO).

DELETE Program From the Fixed Area

Phase I replaces the program entry by a dummy

entry. If there is an adjacent dummy entry, the
dummy entries are combined to form a single dummy

Section 3: Disk Utility Program (DUP) 29

entry and FLET is shrunk by 6 or 12 words depend-
ing whether there were 1 or 2 adjacent dummy en-
tries. Phase II - The programs in the fixed area
are not moved. Only DCOM and COMMA are up-
dated and control is returned to DCTL which reads
the next control record. Phase I - updates FLET.
DFLO00 Convert FLET program entry to dummy
entry. Exit to DFL30 if not first entry
in sector. Exit to DFL40 if first FLET
sector. Read previous FLET sector.
Exit to DFL40 if first entry on previous
sector is not a dummy entry. Combine
dummy entries. Exit to DFL35.

Exit to DFL40 if previous FLET entry
not a dummy. Combine dummy entries.
Increment SHR by 6 (number of words
to shrink FLET).

Exit to DFLO05 if not last entry in sector.
Exit to DFL20 if last entry in FLET.
Exit to SYSCK (system check) if next
FLET sector address is missing from
this sector header. Read next FLET
sector. Exit to DFL20 if first entry is
not a dummy entry. Combine dummy
entries. Exit to DFL15.

Exit to DFL20 if next FLET entry is not
a dummy entry. Combine following
dummy with this dummy entry.
Increment SHR by 6 (number of words
to shrink FLET).

Exit to DFL50 if FLET not condensed.
Shrink FLET by SHR words. This is
accomplished by using the LET updating
part of Phase I for deleting routines

DFL30

DFL35

DFL40

DFL05

DFL15

DFL20

(DEL18 thru DEL50) from the User Area.

The following parameters are set for
that purpose: DEL34+1, TO, CISW,
CNTE. Go to DEL18 to shrink FLET
by SHR words and return to DFL60.
Rewrite uncondensed, but updated,
FLET sector.

DFL50

Phase II - Updates DCOM and COMMA.,

DFL60 Read DCOM from disk. Update COMS5
in DCOM and COMMA by the number of
words in FLET. Exit to DEL88 to
write DCOM back on to the disk.

Exit

If no system checks occur then DELETE exits to
DUPCO which initializes and causes DCTL to print
the exit message.

30

STORE Function

Chart: BG

® Stores card input in Working Storage, including
any required data format conversion.

o Transfers control to the Loader, which converts
to Core Image format and returns control to
STORE.

o Updates LET/FLET as required.
e Updates DCOM as required.

e Calls in the Loader to convert DSF programs to
CI format when STORE CI has control.

e Stores Working Storage in either the User or
Fixed Area, including any required data format
conversion.

The STORE function is comprised of two basic sub-
functions. One subfunction, using the DUP I/0 rou-
tines, inputs a Data file or program from a specified
1/0 device to Working Storage. The I/O routines
convert the information to be STORED from the char-
acter codes of the I/O devices to packed EBCDIC.
This subfunction converts the program or data from
the format of the FROM field to the format of the TO
field.

The other subfunction moves a program or Data
file from Working Storage to the User or Fixed Areas.
Upon completion of the STORE, this subfunction up-
dates LET/FLET and DCOM to reflect changes to
the User and Fixed Areas.

The operation of the STORE function is entirely
controlled by switches and parameters set up by
DCTL according to the DUP control record (*STORE,
*STORECI, or *STOREDATA) and the LET/FLET
search. The contents of the FROM and TO fields in
the control record determine whether only one of the
two or both of the STORE subfunctions are to be exe-
cuted.

The Working Storage to User/Fixed Area routines
precede the I/0 to Working Storage routines in core
so that they may expand and use part of the I/0 to
Working Storage routine area as a buffer.

Entry Points

WSD Entry point from DCTL function when
I/0 is required; i.e., Card or Paper
Tape to Work Storage, User Area, or
Fixed Area. If storing in Core Image

format to either User Area or Fixed
Area then this entry is from DCTL
function through the called FILEQ
routine. Exit is to IOWS,

Entry point from DCTL function through
the called FILEQ routine when Storing
Core Image and I/0 is not required.
Entry point from IOWS (STORE function)
if Core Image and I/0 was required.
Exit is to CICAL.

Entry point from DCTL function when
not Storing Core Image and I/0 is not
required. Entry point from IOWS
(STORE function) if not Core Image and
I/0 was required. Entry point from
Loader thru DUPCO when conversion

to Core Image has been completed.

WSD+2

WSDP-+4

Card System Format
Records are read, check summed, and examined for:

Loader Overlays-Checks length of header and creates
Program Header with required
words saved in COMMA..

-Indicator bits and data words are
converted to Disk System format
with data headers inserted as re-
quired.

F-type Record -Terminates reading from I/0

device. Furnishes information for
Program Header and last (EOP)
data header; forces transfer of
Disk System format program from
core to Working Storage.

Data Records

NOTE: If core buffer fills before F-type record is
read, the buffer is transferred from core to Work-
ing Storage and then the reading and conversion of

records continues.

Card Data Format

Records of 54 words are read and transferred to
core in sequence until the number of records speci-
fied on the DUP control record are read or until the
buffer in core is filled. In either case, the buffer
is then written to Working Storage without any con-
version. This process continues until the record
count has been satisfied.

Termination for Both

Return control to DUPCO for initialization and call
of DCTL to print exit message if Storing to Working

Storage only. Exit to WSD+2 if Storing Core Image.
Exit to WSD+4 if Storing Data or Disk System format.

Card to Working Storage Routines

Records are read from the I/0 device in Card System
or Card Data Format.

Assume that LET has been searched for name
and, if name found, then all words of the LET entry
have been saved and name switch is set. If no name
found, then sector and word addresses where an entry
may be made are made available.

Multiple entry point names will be checked when
going from Working Storage to User/Fixed Area.

Working Storage to User/Fixed Area

In general, this picks up the program from Working
Storage and transfers it to either the User Area or
the Fixed Area, filling in program headers from
COMMA.

If the program is a multi-entry subroutine, then
a LET search is done for each of the secondary entry
points. This is accomplished by calling an overlay
(SRLET) from disk.

The program may be in Working Storage either
from a previous STORE from I/O to Working Stor-
age, a compilation, an assembly, or a DUMP from
User Area to Work Storage. Parameters generated
by the FORTRAN compiler or the Assembler, after
the header has been written, are written by them
into COMMA. It is these parameters that are se~
lected from COMMA and placed into the program
header as it is stored from Working Storage to disk,
User or Fixed Area.

NOTE: I Storing to the User Area, the program in
Working Storage is partially overlayed.

As the program is moved from Working Storage
to the User Area, LET and COMMA are adjusted in
the following sequence:

1. GET X-1 (nominal) sectors from Working Stor-
age where X is the number of sectors in Disk
System format buffer.

Get the sector containing the start of the last
program in User Area.

Fill in program header from COMMA.

Put X sectors into the User Area.

Add program name and length to LET.

Adjust COMMA and DCOM.

Exit to REST in DUPCO function.

Do

SN o0k w

Section 3: Disk Utility Program (DUP) 31

IOWS

32

Enter from DUP Control. Record file
protect address in working constant M.
Compute buffer size required for IOWS
to allow one more card than integral
number of 320-word sectors, and put
word count of IOWS buffer into L2.

Exit to DAFMT if storing data. Exit to
CDGET to read binary and pack into
CD+1 through CD+54. Set XR2 to point
to DF+1; i.e., the disk buffer. Go to
MOV54 to move 51 words from card
buffer to disk buffer, and return. This
saves the maximum length of Program
Header. Set XR1 to DF+13 (the position
of the disk data header for mainline
programs). Decode type of header
card. Calculate displacement for
branch instruction that permits adjust-
ments required by each header type.

If type 3 or 4, then Program Header
length is 9 plus number of entry points.
If the program is not type 1 or 2, then
there may be some Loader overlay cards
preceding the header and some Loader
restore cards following the header. I
they are present, they will be read and
stored on disk in the proper locations
to permit punching them out when the
program is dumped. Types 3 and 4
have three Loader overlay cards and
three Loader restore cards, while types
5 and 6 have four Loader overlay cards

and the same three Loader restore cards.

Type 7 has one Loader overlay card and
the same three Loader restore cards.
Loader overlays for types 3 and 4 are
placed in the DUP working block at C1D,
while the Loader overlay cards for type
5 and 6 are placed in C2D. The Loader
overlay cards for type 7 are placed at
C3D, and the Loader restore cards are
placed at C4D. Each one of these

areas is one sector long. When a dump
is to be done for these respective types,
the proper Loader overlay cards and re-
store cards could be dumped out in the
required sequence coming from this
area. The branch table (BR) is used to
determine the branch location for the
various types. There are 16 words and
16 types. Exit to HDEND, if type 1,
mainline, absolute. Exit to HDEND, if
type 2, mainline, relocatable. Exit to
TY348, if type 3, (Non-ISS LIBF) library

TY348

TYP56

NAME

TYP7

WRTC

READ?2

TEOP

TESTC

function, one word LIBF. Exit to TY348,
if it is type 4, (Non-ISS CALL) it is sub-
program, two-word call. Exit to TYP56,
if it is type 5, one-word LIBF, ISS rou-
tine. Exit to TYP56, type 6, two-word
call, ISS routine. Exit to TYP7, type 7,
is ILS routine. Exit to SEXIT, if type A
data is not legitimate at this time. Exit
to CTYPE, type C automatic load card.
Types D and E are automatic load cards.
Exit to AREAD, which in effect ignores
them. Exit to SEXIT if type F, end of
program caxd, is invalid at this time.
Exit to SEXIT, (print error message)
types 0, 8, 9 and B, which are reserved
for system expansion.

Exit to SEXIT if a type C record was
omitted (not three type C records read).
Set up to write three records to disk on
one sector. Exit to NAME.

If a type C record was omitted (not four
type C records read), exit to SEXIT.
Set up to write four type C records to
disk in one sector. EXxit to NAME.
Compare name on control record and
Program Header. Exit to SEXIT if no
match (print NAME error message).
Exit to WRTC.

If more than one type C record read,
then exit to SEXIT (print error message).
Set up to store one record in one sector
on disk. Exit to WRTC.

Go to PUT to write on disk and return.
(Type C records read will be written.)
Calculate special length for Program
Header types 3, 4, 5, 6, and 7. Exit to
SEXIT if header length invalid. Exit to
READ?2.

Go to CDGET read binary non-header
records, pack (at CARD) and return.
Set XR1 to point at buffer for Working
Storage. Set XR2 to point at packed
record input. Exit to SEXIT (Invalid
Type) if type not greater than 9. Exit to
TEOP if type greater than.9.

Branch vector type F exits to EOPCD.
Type A exits to DATRC. Type C, D and
E exit to TESTC. Type B exits to SEXIT
(Invalid Type).

If type D or E, exit to READ2. I type
C, set XR2 to point to output buffer.

Go to MOV54 to move 54 words from
card input buffer to locations specified
by XR2 and return. Adjust pointer and

CTYPE

MOV54

DATRC

NONC

LWRIT

EOP

EOP3

count C-type cards. Exit to READ2 WRAP
(get another record).

Set XR2 pointing to output buffer. Go

to MOV54 to move 54 words from card
input buffer to location specified by XR2
and return. Adjust pointer and count of
C-type cards. Exit to AREAD (get an-
other record).

A closed subroutine to move 54 words
from card input buffer to locations
specified by XR2. Calling routine ad-
dress is in MOV54. Set XR1 to count
words to move from input buffer. Exit
to calling routine.

IF mainline program, exit to DATCD.
Exit to NONC if no Loader restore rec-
ords. Exit to SEXIT (Invalid Type) if
not 3 Loader restore records. Initialize
count and sector address for writing
Loader restore records to disk. Go to
PUT to write to disk from IOAR speci-
fied by XR3 (Loader restore records).
Turn off C-type switch. Exit to DATCD.
Increment Sector Address. Move words
in excess of IOWS block size. Exit to
calling routine.

A closed subroutine to set COM52 of
COMMA to address of Work Storage.

Go to PUT to write last part of program
to disk and return. Load word count of
last part written. Set XR1 to point at
COMMA. Return to calling routine.
Move XEQ address from card image to
COM56 in COMMA. Exit to EOP3.
Entry point for end-of-program record
processing. If non-mainline program,
COMS56 already contains address of en-
try point 1. Compute words required to
be written in Working Storage and new
sector address. Update COM60 with GCIB
effective length of program, and insert

into first word of end-of-program data

header. Set second word of end-of-

program data header to 0. Go to

LWRIT to write last parts of program

CICAL

DAFMT

to disk and return. Convert word count GCIB2
to disk blocks required by program.

Insert disk blocks required into COM54

in COMMA, (disk block count of pro-

gram being stored) and COM59 (disk MOVER

block count of program in Working
Storage).

If Working Storage switch not zero, then
exit to REST (job complete return to
DUPCO). Exit to CICAL if Storing Core
Image. Exit to WSDP4 if data or storing
to User Area.

Put sector of DUPCO to a temporary
disk sector (on the DUP working cylin-
der). Loader will return saved sector
to core when Core Image conversion
complete. Read one sector of Loader to
RLDC. Branch to LOENT. Loader will
convert program in Working Storage, in
Disk System format, to program in Core
Image Buffer, in Core Image, then get
DUPCO and enter at RLEPT. Address
of RLEPT is in COM44 of COMMA to
signal DUP call of Loader. STORE
entry address from DUPCO is in CISW.
DUPCO will recall STORE to core and
exit to the address in CISW.

Assumes data switch contains the record
count. Go to CDGET to read and pack
binary data records and return. Set
XR2 to point at buffer. Go to MOV54 to
to move 54 word blocks into disk buffer
and return. Increment disk buffer
pointer by 54. If buffer is full, go to
WRITE to write buffer and return.
Decrement card count by 1. If not last
card, exit to READD to get another card;
otherwise, insert sector address. Cal-
culate word count required. Go to
LWRIT to write last part of program to
Working Storage and return. Compute
number of full sectors. Put disk block
count of program into COM54 of COMMA.
Put disk block count of program in Work-
ing Storage into COM69 of COMMA. Exit
to WRAP.

Exit to SEXIT if non-DUP switch on.
Calculate words of Core Image program
now in the CIB and upper core. Exit to
GCIB2 if Storing Core Image to Fixed
Area. Exit to SEXIT if Core Image pro-
gram will exceed Working Storage.

Go to GET to read the Core Image header
from the first sector of the CIB, and re-
turn. Exit to FXA if storing to Fixed
Area. Exit to CIFX.

Closed subroutine to move words from
location specified by XR1 to location
specified by XR2 and number of words

Section 3: Disk Utility Program (DUP) 33

CIGO

WSDP4

34

specified by XR3. Address of calling FXA
routine in MOVER. Exit to calling
routine.
Calculate core address and word count
of last sector written on disk. Go to
MOVER to move those words to front
of buffer, and return. Go to MOVER
to move words in upper core next to
words remaining from last sector
written, and return. Go to MOVER to
move words of Core Image header to
output buffer, and return. Go to PUT
to write last sector plus excess words
in core, and Core Image header to
disk, and return. Exit to DOLET.
Enter from DUP Control, STORE, or
DUPCO. Exit to SEXIT if Working
Storage will be exceeded by program
specified. Initialize by setting WDPGM
to program disk block count times 20,
that is, the word count. Set WDUA to
16 minus DBADJ all multiplied by 20;
i.e., the words previously written in
the last sector that will be brought back
down to core. CNT is the maximum
number of words in the Disk System
format buffer.
NOTE: Compute SAD, SADP, CAD,
CADP, CNT, CNTP as required for
initial GET from Working Storage;
also for PUT considering disk blocks
already in use and sector containing
first disk block of the location where
the next program will be stored in the
User Area.

CAD is set to Disk System format

buffer minus 1.
CADP is set to Working
Storage address.
SAD is set to Working Storage
address.
SADP is also set to Working Storage
address initially.

Exit to GCIB if Storing Core Image.
Exit to FXA if Storing to Fixed Area.
Exit to DOLET if Storing Data file.
Increment CAD by number of words in
User Area (WDUA). CNT is set for 3
full sectors (960 words, 3CO Hex
Words). SADP is decremented by one
sector. Exit to GETWS.

GETWS

LENSR

MULSR

SRLET

Compute sector address in Fixed Area
and enter into SADP. Compute padding
required for FLET entry and record in
DBADJ. Move FLET parameters for
updating FLET., Exit to SEXIT if insuf-
ficient room in Fixed Area for specified
program. Exit to CIFX.

Adjust CNTP to reflect either the Disk
System format buffer size or the words
in the program, whichever is smaller.
Set WDPGM to zero if last part to be
written now. Get block from Working
Storage using CAD as the core address
of the IOAR header, CNT as the word
count, and SAD as the sector address
from which to obtain it. Exit to PUTUA
if omitting Program Header routine.
Set XR2 to point to the words, minus 1,
brought down from Working Storage.
This permits the operand of instructions
using XR2 to refer to the actual word
being called. Insert the required words
from COMMA into the Program Header
just read from Working Storage to core.
Exit to LENSR if not type 3 or 4; other-
wise, OR the SOCAL class code (type 3
modification) with type 3 and with word
count. Exit to LENSR.

Set LREQD to the value in word 6 of the
header record. This is considered the
nominal length of the LET entry. Set
PGMHL to LREQD + 9. This is the
actual Program Header length. Exit to
MULSR if program is type 3 or 4. Exit
to SPHA if types 1, 2, 5, 6, or 7.

If only one entry point, then exit to SPH;
otherwise call store overlay closed sub-
routine (SRLET) which overlays a portion
of IOWS. Exit to SRLET (Search LET)
to check that multiple entry points of
this program do not already appear in
LET, then return. If none of the entry
point names have been found in LET or
FLET, exit to SPH.

Closed subroutine called from disk by
STORE, and entered from STORE when
storing a subprogram with multiple en-
try points. Go to GET to read each
sector of LET and FLET from disk and
return. Compare secondary entry
points with each name in LET and FLET.

SPHA

SPH

CIFX

GETUA

PUTUA

NDCK

CI50

GFLET

Exit to calling routine if secondary
names not found in LET or FLET.

Print error message with name of

entry point found in LET or FLET.

Exit to Rest + 1 in DUPCO.

Set the size of LET entry, which is 3,
into LREQD. Exit to SPH.

Save Program Header at location of
IOWS to permit updating LET at a later
time. Exit to GETUA when last sector
of User Area still has some disk blocks
that may be used; otherwise, the move
of the program is not required as it is
already located where it will be stored.
Put just the header sector on disk by
setting CNTP equal to 320 words, CADP
equal to CAD, and SADP equal to Work-
ing Storage address. Exit to PUTUA.
Common exit for both CI and Fixed
Area routines. Set header switch to
skip Program Header routine. Indicate
zero words required from User Area.
Exit to GETWS.

Get the last partial sector from the User
Area and put it into core at the front end
of the Disk System format buffer. This
data brought in from the User Area does
not overlay any of the program which
was previously brought in from Working
Storage. Exit to PUTUA.

Put block to User Area or Fixed Area.
This utilizes CADP for the core address
of the IOAR header, CNTP for the word
count to be put to disk, and SADP for
the sector address to be written to disk.
Exit to NDCK if all words of the pro-
gram have been written. Exit to CI50,
if Storing Core Image or Storing to
Fixed Area. Step the sector address
(SAD) by two sectors. Increment SADP
by the same sector count written. Ad-
just CADP 320 words (1 sector) higher.
Zero words in User Area (WDUA). Set
CNTP equal to two sectors. Exit to
GETWS.

Exit to CI60 if Storing Core Image.

Exit to DOLET.

Step SAD and SADP by 4 sectors. This
permits storing of data or Core Image pro-
grams in 4 sector parts. Exit to GETWS.
A closed subroutine to get the current
LET or FLET sector from disk. Call-
ing routine address is in GFLET. After
the sector is completely on disk, return
to calling routine.

NEWHD

DOLET

ENT1

WwD123

WD456

A closed subroutine to adjust last LET
or FLET sector header, setting the
second word non-zero and the fifth word
LET sector address plus 1. This rou-
tine also writes the last LET sector to
the disk. The calling routine address is
in NEWHD.

NOTE: LET sector header is made up
as follows. Word 1 is sector number
0-7 if LET, and 16-23 if FLET. Word

2 is last LET sector or last FLET sec-
tor if 0. Word 3 is the disk block ref-
erenced by this LET sector. Word 4
contains the number words in the LET
sector available for LET. Word 5 con-
tains the sector address of the next LET
or FLET sector. This will be zero if
this is the last sector to be searched.
Exit to calling routine.

Go to GFLET to GET required LET or
FLET sector and return. Set index to
first word of the next new entry. Exit to
FXAL1 if storing to Fixed Area. EXit to
ENT1 if enough words are available in
this LET sector to contain the words re-
quired for this LET entry (nominally 3
per entry point). Go to NEWHD to adjust
header words of LET, write current
sector on disk, and initialize next LET
sector header, returning when complete.
Go to WD123 to insert three-word LET
entry and return. Exit to PGM if Disk
System format program. Go to WD456
to insert LET entry for Data file and
return. Decrement words available in
LET sector by 3. Exit to ADJHD (adjust
sector header).

A closed subroutine to insert a three-
word entry into LET or FLET. The
entry contains the name from COM51
and COMS53 in name code and the disk
block count from COM54. Restore disk
block count into DBADD. Calling rou-
tine address is in WD123., Exit to call-
ing routine.

A closed subroutine to process Data file
and Core Image program LET/FLET
entries. Modify words 1, 2, 3 as required
and insert words 4, 5, and 6 for Data files,
In word 1, set first two bits to ones (11)
to indicate a Data file. Word 3 is incre-
mented by the number of disk blocks of
padding required for sectorization.
Words 4 and 5 are reset to zero. Word
6 is the disk block sectorized length of

Section 3: Disk Utility Program (DUP) 35

FXA1l

PFXA

MORQD

WDATS

ADJHD

36

data in disk blocks. Calling routine
address is in WD456. Exit to calling
routine.

Sectorize program length and insert to
COM54. Exit to MORQD if a new dummy
entry is required (disk blocks available
are greater than sectorized program
disk block length plus padding). Go to
WD123 to enter first three words of
FLET entry and return. Go to WD456
to enter words 4, 5, and 6 of data pro-
gram FLET entry and return. Exit to
PFXA.

Go to PFLET to write FLET sector and
return. Exit to FXAL.

Go to MVBY®6 to move balance of FLET
entries by 6 words, so that the new
FLET entry may be inserted and return.
Go to WD123 to insert first three words
of FLET entry and return. Go to WD456
to insert last three words of six-word
FLET entry for Data file, modify first
three words as required, and return.
Reduce the disk block count of dummy
entry by the disk block count of the
inserted program. Reduce the number
of disk blocks referenced in the FLET
header word 3, by the number of disk
blocks in the entry that was shifted

(off the end of disk FLET sector) by
MVBY6.

Decrement sector header word 4 (words
available this sector) by the length of the
inserted entry (6 words). Exit to PFXA
if more words available in this sector.
Exit to NEWFL,

XR1 points to COMMA. XR2 points to
word 1 (first available LET entry).

XR3 points to IOAR of LET sector.
Decrement word 4 of LET sector header
(words available this sector) by 3 words.
Increment sector header word 3 (disk
blocks referenced by this LET sector)
by disk blocks of program being stored.
Calculate exact word count for this sec-
tor and insert into IOAR header. Go to
PUT for writing LET sector to disk and
return after sector has been completely
written. Go to GCOMM to get DCOM
from disk, and return after DCOM is in
core. Exit to UPDTE.

PFLET

MVBY6

NEWFL

MORFL

SAVE6

PGM

A closed subroutine to write a sector of
LET or FLET to the disk with the exact
word count required. Exit to SEXIT,
(D94), if this entry causes a cylinder
overflow of LET or FLET. Calling rou-
tine address is in PFLET. Go to PUT
(in DUPCO) and return when last word
has been written. Exit to calling routine.
A closed subroutine to shift FLET entries
six words, to permit insertion of a new
entry. WORDS contains the number of
words of this FLET sector which are to
be shifted right by 6 words. Calling
routine address is in MVBY6. Return

to calling routine when move completed.
Insert into FLET header word 4, three
words available. Exit to MORFL if not
last sector of FLET. Go to NEWHD to
make final adjustments of sector header
and write it to disk, returning after ini-
tializing for next sector. Increment
number of words in FLET (COMS5) by the
size of the next FLET sector header

(5 words). Insert leftover (shifted)

entry and adjust header. Exit to SAVEG.
Go to PFLET to write FLET sector and
return. Increment sector address in
IOAR header. Go to GFLET to get next
FLET sector and return. Exit to SAVEG.
Save the six words beyond the end of this
FLET sector. Go to MVBY®6 to shift
right all entries in this FLET sector by
six words, and return. Insert the six
words, previously saved from last FLET
sector, into the beginning of this FLET
sector. Adjust FLET sector header word
3 by disk blocks of the entry just inserted
and subtract the disk blocks of the entry
that has been shifted out of this sector.
NOTE: If this is a partial sector, then
zeros will be in the shifted entry and thus
zero disk blocks will be subtracted.

Exit to WDATS.

XR1 set to Program Header word zero.
XR2 points to word 1 (first available
LET entry). XR3 set at word 1 of LET
entry just filled. Adjust word 3 of the
LET entry to reflect the disk blocks
required by the Disk System format
program being stored. I this program
has multiple entries, then enter into

LET an additional LET entry of three
words for each additional entry point:
Exit to ADJHD (adjust sector header of
LET).

A closed subroutine to get DCOM from
disk. Calling routine address in
GCOMM. Go to GET, in DUPCO, to
read sector from disk. Exit to calling
routine.

Exit to PGM2 if neither Core Image
program nor Data file. Sectorize disk
block address of Core Image program
or Data file. Exit to PGM2

Record disk block address of program
for exit message. Update disk block
address of User Area, sector address
of Working Storage, and the relative
address of the next LET entry, both for
COMMA and DCOM. Zero length of
program in Working Storage. Exit to
PCOMM if in temporary mode. Update
the base values.

Go to PUT (in DUPCO) to write adjusted
DCOM to disk and return. Exit to REST
(return to DUPCO for writing exit mes-
sage; Job complete).

Go to GCOMM to read DCOM from disk
and return. Update COMMA and DCOM
for Fixed Area operation. Exit to
PCOMM (to put DCOM to disk and exit).

GCOMM

UPDTE

PGM2

PCOMM

FXAL

STOREMOD (STMOD) Function

Chart: BH

e Stores a program or data on the disk overlaying
another program or data of the same name.

This function accomplishes the replacement of a pro-
gram or data stored on the disk by a new program or
data without having to perform a DELETE function.

It is assumed that the replacing program and the pro-
gram to be replaced are in the same format. The
word count of a new Core Image program is placed
into the LET/FLET entry for that program. How-
ever, no change is made to LET/FLET when pro-
grams in Disk System format or Data files in Disk
Data format are being stored.

The first sector of the User or Fixed Area which
contains the program to be replaced is read into the
output buffer. The first sector of Working Storage is
read into the input buffer. The output pointer is made
to point to the first word of the program to be re-
placed. The input pointer is made to point to the
first word of the replacing program.

The input buffer is moved one word at a time to
the output buffer until either the input buffer is empty
or the output buffer is full.

When the output buffer is full, it is written onto
the disk in the User or Fixed area. The next sector
of the program to be replaced is read from the User
or Fixed Area into the output buffer and the word for
word replacement continues.

When the input buffer is emptied, the next sector
of the replacing program is read into it from Working
Storage and the word for word replacement continues.

This move and overlay sequence is repeated until
all of the replacing program in Working Storage has
been written onto the disk overlaying the program to
be replaced.

This function then returns to DUPCO for initiali-
zation and the printing of the exit message.

Entry Point

SMODC+2 Exit to STMOV if not a Core Image pro-
gram, Adjust the word count of the re-

quired entry in LET and write to disk.

Routines

STMOV Save starting sector address and initial-
ize output buffer, Initialize the move
counters., Exit to STM4,

Initialize the input buffer and pointer.
Exit to STM3,)

Move 1 word from input to output buffer.
Exit to STM1 if more room in output
buffer, If output buffer full, then write
buffer to disk, Reinitialize the output
buffer and pointer. Exit to STM1.

Exit to STM2 if more words of this disk
block still to be moved. Decrement
count of disk blocks to be moved. Exit
to STM2 if more disk blocks required to
to be moved. Exit to REST (in DUPCO)
if all words of output written back to disk.
Write last output buffer to disk. Exit to
REST (in DUPCO).

Exit to STM3 if there are more words in
the input buffer. Exit to STM4.

STM4

STM3

STM1

STM2

DUMPLET Function

Chart: BI

o Restores the carriage before printing LET/FLET
title.

e Prints title LET/FLET with a six-word or three-
word header respectively.

Section 3: Disk Utility Program (DUP) 37

e Prints one LET/FLET entry per line.

° Prints a five-word sector header for each sector
after it is read into core.

® Prints the Location Equivalence Table (LET)
and/or the Fixed Location Equivalence Table
(FLET) on the principle print device.

° Returns control to DCTL, after last LET sector
is printed, for printing an exit message.

When DUMPLET is first brought into core from disk,
it determines whether LET, or both LET and FLET
are to be printed. When printing LET, it first prints
the title 'LET'. It then prints six words from
COMMA as a header. These six words are: FPA,
FPAD, COM6, COM12, COM4, COM10. After the
first header is printed, a sector of LET is read from
disk.

Within each sector of LET, there are five sector
header words.

These five words are printed after each sector
is read into core. These words include:

1. the sector ID number.

2. the last sector indicator.

3. the number of disk blocks used by the programs
represented in this sector of LET.

4. the number of words that are available for entries
in this sector.

5. the next LET or FLET sector address, or if this
is the last LET or FLET sector, zero (0).

A LET entry can be either a three-word entry or
a six-word entry. DUMPLET next determines wheth-
er itis pointing to a three-or six-word entry, If it is
a three-word entry, it checks to see if it is a primeor
non-prime entry. For a three-word prime entry, the
disk block address is calculated by accumulating the
previous disk block counts and adding them to COM6
(the base disk block address of the User Area). One
LET entry will be printed per line onthe print device.
A printed prime entry will contain the program name,
the disk block count of the program, and the starting
disk block address of the program on disk. A non-
prime LET entry will just have its entry name
printed. For the six-word LET entries, a printed
line will have the name of the entry, the disk block
count, the disk block address, the core load address,
the core execution address, and the actual disk
block count of the program or Data file,

After the last LET sector is printed, control is
given back to DUP Control, and a two-word exit

38

message is printed., The first word of this message
is the User Area base address. The second word is
the accumulated disk block count of all the programs
whose entries are in the LET table.

If it was determined from the DUMPLET control
record that FLET was to be printed also at this time,
DUP Control will return to DUMPLET and FLET will
then be printed.

FLET, which is the map of the Fixed Area on disk
contains only six-word entries, These entries will be
printed as described above for six-word LET entries.

The title 'FLET' is printed first, followed by a
three-word header. The three words are obtained
from COMMA words COM2, COM37, and COM5.

As in LET, there will also be a five-word sector
header. This header will be printed after each new
sector is brought into core.

At the completion of dumping FLET to the princi-
pal print device, control is given back to DUP Control,
whereby the exit message is printed, similar to the
one after dumping LET. Then a new control card is
read and decoded.

t4

Entry Point

DLETC+2 Branch to START.

Routines
START This sets the LET/FLET header words
switch (SCDSW) which is tested in the
print I/O routine. Go to PRTRP to
restore paper, and return. Set up the
disk block address of the User Area
base and initialize the exit message
words. Check for FLET or LET print-
ing. Exit to DFLT, if printing FLET;
otherwise, go to PRTCR to space a line
and return. Go to PRTEB to print the
title '"LET' and return. Go to PRTCR
to space a line and return. Set up for
the five header words from COMMA.
Go to PRTBI to print header words and
return. Go to CLRBF-1 to clear LET
buffer and return. Exit to SETUP.

Set up the disk I/O buffer area
LETAR with the word count and sector
address of the LET sector. Exit to
GTLET.

Go to GET to get next sector of LET
and return. Go to PRTCR to space one
line and return. Check to see if this is
a FLET sector; if so, exit to FLTHD.
Exit to LTSKT.

SETUP

GTLET

LTSKT

ENLUP

BYPSS

TSTLT

MNONY

CLRBF

SETFL

LSTSK

ENT6

Prepare sector header words for print-
ing, and set the SCDSW switch. Go to
PRTBI to print sector header words
and return. Reset SCDSW. Go to
CLRBF-1 to clear LET entry buffer
and return. Go to PRTCR to space a
line and return. Set up the number of

words of the present sector to be printed.

Exit to LSTSK if this is the last LET
sector. Exit to SETLF if last LET sec-
tor, but there is a FLET to be printed.
Exit to ENLUP if neither of these last
LET sector conditions exists.

Exit to ENT6 if a six-word entry. Move
the two-word entry name to the LET
buffer LTBUF. Exit to MNONY if a non-
prime entry. Calculate the disk block
address of the current entry and place
it in the LET buffer LTBUF along with
the disk block count. Also update the
second word of the exit message with
the current entry's disk block count.
Continue to BYPSS.

Exit to PRLET to print this entry, and
return. Go to CLRBF-1 to clear LET
entry buffer and return. Return to
ENLUP if all entries in current sector
have not been printed. Otherwise exit
to TSTLT.

Exit to ENDMG if last LET sector.

Exit to ENDMG if dump FLET indicator
is on (RPSW). If neither condition above
exists, restore XR3. Return to GTLET.
Set the name only switch JSTNM.

A closed routine to clear the LET entry
data buffer LTBUF. Return to calling
routine.

Set the print FLET indicator (RPSW).
Exit to ENLUP.

Set the last sector indicator (LSTSW).
Exit to ENLUP.

Set the six-word entry indicator (SIXSW)
and move the entry name to the LET
buffer LTBUF. Disk block address of
current LET entry is adjusted and
moved to LET buffer LTBUF. Disk
block address for next entry is calcu-
lated. Second word of exit message is
updated. Exit to' DATAN if this is a data
entry name. Calculate CI program disk
block count and move to LET buffer
LTBUF. Exitto LST3.

DATAN

NODUM

LST3

FLTHD

ENDMG

DFLT

Exit to NODUM if this is not a 1IDUMY
entry. For a 1DUMY entry, move disk
block count from third word of entry to
LET buffer LTBUF. Exit to NODUM+1.
Move disk block from sixth word of data
entry to LET buffer LTBUF. Exit to
LST3.

This moves the last remaining three
words of a six-word entry to the LTBUF
area. Reset SCDSW. Go to PRLET to
print one LET entry and return. Reset
SIXSW. Go to CLRBF-1 to clear LET
entry buffer, and return. If all entries
have been printed, exit to TSTL; if not,
return to ENLUP.

Go to PRTEB to print title FLET and
return. Go to PRTCR to space one line
and return. Set up the FLET header
words. Go to PRTBI to print FLET
header words from COMMA and return.
Go to PRTCR to space one line and re-
turn. Reset the FLET header switch
FHDSW and return indirectly through
FLTHD.

Go to PRTCR to space one line, and
return. Exit to REST (return control
to DUPCO).

Set up the disk I/O buffer (word count
and sector address) to get FLET sec-
tors. Initialize the base disk block
address of the Fixed Area, and reset
the print FLET switch (RPSW). Set
the FLET Header switch (FHDSW) and
exit to GTLET.

Disk Write Address (DWADR) Function

Chart: BJ

o Rewrites sector addresses in Working Storage.

e Writes D1204¢ into the first word of all sectors.
Writes 266316 into the second word of all

sectors.

e Writes the next 238 words containing AXXX
(where XXX = sector address in hexadecimal).

e Writes zeros in the remainder of the sector.

e Writes the above information on every sector
from the start of Working Storage through Sector
1599 decimal (63F16).

Section 3: Disk Utility Program (DUP) 39

Entry Point

WADRC+2

Routines

ADSAD

PUSAD

NUCYL

Enter from PLUS2 routine of DUP Con-
trol. Insert the address of the last sec-
tor of the User Area into SAD.

NOTE: SAD is used for the sector ad~
dress. Exit to GET to read last sector
of User Area and return. Thus the arm
is positioned just one sector in front of
Working Storage. Exit to ADSAD.

Step SAD by one to obtain sector address
of next sector to be written. Exit to
NUCYL if this is a new cylinder. Exit
to PUSAD.

Format the sector; i.e., proper sector
address, first two special words and the
address ORed with A000 and filled out
with zeros. Exit to the Disk I/0 rou-
tine in the Skeleton Supervisor to cause
the sector to be written and then return.
Exit to ADSAD.

If last sector of Working Storage has
been written, exit to REST (return con-
trol to DUPCO). Use disk I/O to do a
direct seek of plus 1 cylinder. Exit to
PUSAD if not a defective track; other-
wise, add seven to sector address in
SAD. Exit to ADSAD.

DEFINE Function

Chart: BK

DEFINE consists of three basic segments which per-
form the following:

e Define a Fixed Area.

e Void the Assembler.

e Void FORTRAN.

To provide a Fixed Area or to increase its size, the
Core Image Buffer, LET, and the User Area must be
moved toward, and partly into, Working Storage.

Working Storage will be reduced by the increased size
of the Fixed Area.

The corresponding addresses in

COMMA and DCOM are updated. The elimination of
FORTRAN or the Assembler will cause all programs,
Core Image Buffer, and LET to be moved away from
Working Storage and thus Working Storage will be ex-
panded by the size of the eliminated program.

40

Both COMMA and DCOM must be updated accord-
ingly. Once FORTRAN or the Assembler have been
eliminated, neither can be restored without reloading
the entire disk pack including all the programs in the
User or Fixed Area that are still of value to the user.

Likewise, after a Fixed Area has been defined it
cannot be reduced in size without a complete pack

reload.
Entry Point

DEFC+2

Routines

MVDSK

DKMVD

FINSH

PRVFA

Enter from DUP Control. Exit to
VDASM if voiding Assembler. Exit to
VDFOR if voiding FORTRAN. Exit to
print error message if not sufficient
number of cylinders requested (at least
2 if no previous Fixed Area, at least 1
if Fixed Area present). Exit to print
error message if defining requested
number of cylinders would exceed Work~
ing Storage. Set up addresses of first
sector to be moved FROM and TO, using
FPAD as a base address. Exit to
MVDSK.

Move sectors on disk left, until the
FROM address is equal to the old CIB
sector address (COM2). Exit to DKMVD.
Update most of COMMA. Exit to PRVFA
if there was a previous Fixed Area.
Assign a FLET sector address (from
old CIB). Exit to SHDR to set up the
FLET sector header, and return. Exit
to DUMMY to produce a dummy entry,
and return. Write FLET sector to disk.
Exit to FINSH.

Exit to UPDLT to update LET sectors.
Exit to UPDCM to update DCOM. Exit
to REST (return control to DUPCO for
exit message and next DUP control
record).

Finds the address of the last sector of
FLET. Reads the sector into core and
locates the position of the iast entry. If
the last entry is a dummy entry, adds

to it the number of disk blocks being
defined (PDMY). If the last entry is not
a dummy entry, checks if there is room
for another (dummy) entry in this FLET
sector. If yes, corrects the header and
creates a dummy entry, using the closed
subroutine DUMMY. If no, modifies the
header and COMMA, writes the sector
of FLET in core back onto the disk,

VDASM

VDFOR

DUMMY

UPDLT

UPDCM

UDCOM

MOVE

builds a new sector header using closed
subroutine SHDR, and creates a new
dummy entry. Writes the sector onto
the disk. Exits to FINISH.

Print error message if Fixed Area pres-
ent, or if Assembler is not present.
Compute FROM, TO addresses of first
sectors to be moved. Use closed sub-
routine MOVE to do all of the moving.
Use closed subroutine UDCOM to update
COMMA. TUse closed subroutine UPDLT
to update the LET sectors. Use closed
subroutine UPDCM to update the DCOM
sector. Exit to REST (return control

to DUPCO).

Print error message if Fixed Area pres-
ent or if FORTRAN is not present. Com-
pute the FROM and TO of first sectors
to be moved.

Use MOVE to do the moving.

Use UDCOM to update COMMA.

Use UPDLT to update the LET sectors.
Use UPDCM to update the DCOM sector.

Exit to REST (return control to DUPCO).
A closed subroutine that inserts dummy
entry into FLET. Set into words 1 and
2 the name code of 1DUMY. Set word 3
equal to the disk block count of the un-
used Fixed Area. Set words 4-6 to 0.
Exit to calling routine.

A closed subroutine to update all the
LET sectors. Get each LET sector.
Modify word 5 of the sector header;

that is, the sector overflow address.
Put each LET sector back to disk in
turn. Exit to calling routine.

A closed subroutine to update DCOM.
Get DCOM from disk. Insert into DCOM
the corresponding values from COM2,
COM5, COM6, COM12, COM35, COMS36,
COM37, COM52, COM54, FILE, FPA,
FPAD, ASAD, and FSAD. Put DCOM
back to disk. Exit to calling routine.

A closed subroutine to update COMMA.
Alter COM2, COM6, COM12, COM35,
COM36, FILE, FPA, and FPAD by the
required amount. Exit to calling routine.
A closed subroutine to move specified
sectors from sector whose address is
contained in FAD2 to sector whose ad-
dress is contained in TAD2 and continue
moving until last sector to be moved has
been moved. Exit to calling routine.

DUP 1/0

Because of the variety of I/0 devices and formats
required, specialized I/0 routines are used in DUP.
These routines consist of the basic Read and Write
IOCS, the normal device code conversion routines,
and the special formatting routines.

At system load time, the System Loader/Editor
selects the required I/0 routines based on the system
configuration records. These I/O routines are loaded
to the disk in specified sectors. The ILS routines
required by these I/0 routines are grouped within
DUPCO to ensure they are in core during a DUP oper-
ation. In addition, since it is desirable to permit
paper tape output while the principal I/0 is cards,
the paper tape I/O routine (PTX) is loaded in the

" auxiliary IOCS cylinder regardless of which I/0 rou-

tine is loaded in the principal IOCS cylinder.

Thus, at DUP execution time, any DUP function
requiring I/0 specifies a word count and transfers to
an I/0 entry point determined by the format to which
the data or program is to be converted. That entry
point in any DUP I/O routine accomplishes the re-
quired conversion and the formatting of the data or
program as dictated by the entry point.

Table 1 shows the I/O code conversions accom-
plished within the DUP 1/0 routines. See the publica-
tion IBM 1130 Monitor System Reference Manual
(Form C26-3750) for detailed descriptions of the
various formats handled by the DUP functions.

DUP I/0 ROUTINES
DISKO Routine
e Performs all the disk I/O functions for DUP.

This routine is described in the publication IBM 1130
Subroutine Library (Form C26-5929).

CARDX Routine

e Performs the card I/O functions for DUP includ-
ing the required conversions.

Entry Points
GETCD A closed routine to read a card in IBM
card code. Store a count of 80 into
core I/0 area, read one card, using
card I/0 routine, into CRBUF. Con-
vert the 80 characters into 40 packed

EBCDIC words in CRBUF-40 using
the Speed Routine.

Section 3: Disk Utility Program (DUP) 41

Table 1, 1/O Code Conversion Table
Disk Input or Output Output
Representation Card Paper Tape 1132 Printer Console Printer
1 word (16 bits) 2 columns 4 frames 2 alphameric | 2 alphameric

packed EBCDIC

(2 characters)

PTTC/8 code

(2 characters)

IBM card code

characters

characters

(via Rotate/Tilt code)

Convert LET

Convert entry

Exit

If the end of

1 word (16 bits) 1-1/3 columns 2 frames 4 alphameric | 4 alphameric
binary binary binary characters- characters-
hex number hex number
(via Rotate/Tilt code)
CDGET Routine to read a binary coded card. TYPX Routine
Read 72 columns into DF-81 through
DF-10. Pack the 72 words into 54 bi- e Performs the output functions to the Console
nary words at DF-81. If the card is a Printer for DUP including conversions.
data card (DATSW # 0), skip the check
sum routine. Check sum routine: I Entry Points
check sum word in card is zero, don't
do check sum. If check sums don't PRLET A closed subroutine to print LET. Set
compare, exit to SEXIT (error exit in up for TRUEB and PRTBI.
DUPCO). Exit to calling routine. entry from name code to fine EBCDIC
CDSEL A closed subroutine to pass non-DUP, characters using TRUEB. If entry con-
non-SUP cards. Stacker select the last tains a name only, type name using
card read. Exit to calling routine. PRTEB and exit to calling routine. If
CDPCH A closed subroutine to punch binary entry is more than just a name, set up
cards. The card ID is in core in name for EBPRT conversion.
code. Convert ID to IBM card code from EBCDIC to printer code using
and store in card area. If cardis a BINHX and HOLPR. Set up to print bi-
data card, -skip check sum; otherwise nary. Print entry using PRTBI.
calculate the check sum and store it in to calling routine.
word 2 of the card area. Convert se- PRTBI A closed subroutine to print binary. Set
quence number from binary to IBM up and convert data using BINHX. If the
card code and store in card area. Ex- correct number of words has been print-
pand binary to 12-bit words. Punch 80 ed, go to PTLN and then exit to calling
columns. Update sequence number for routine. PTLN converts data to printer
next card. Exit to calling routine. code using HOLPR and prints the line.
If the end of the sector being printed is
reached, get next sector.
Buffera a four-word group is reached, put in an
extra space and check for a full line.
DF-82 Binary card input. If line is full, go to PTLN,then back to
CRBUF IBM card code input. start of PRTBI; otherwise, go to set up
CRBUF-40 Packed EBCDIC card buffer. and convert with BINHX,
PCH1 Binary card output (12 bit). PRTCR Set up for carriage return. Go to WRTY,
RD1 Binary card output (16 bit). then exit to page restore routine.

42

PRTRP
PRTEB

Buffers

RD2+1

RD3

PRNTB+40

Go to PRTCR 10 times, then exit.

A closed subroutine to print packed
EBCDIC. Go to PRTCR to return car-
riage. Set up and convert data using
EBPRT. Print a line using WRTY
routine, then exit to calling routine.

Packed EBCDIC in TRUEB; IBM card
code in BINHX.

Output buffer for Console Printer code
when printing LET and binary.

Buffer for Console Printer code when
printing EBCDIC.

VIPX Routine

e Performs the output functions to the 1132 Printer
for DUP including conversions.

Entry Points

VPSP

VPSK

VPET

VPBI

VPEB

Buffers

RD3+16

A routine to set up a carriage space.
Check for 1132 ready and not busy.

XIO to start carriage space. Exit to
calling routine.

A closed subroutine to set up a carriage
restore. Check for 1132 ready and not
busy. XIO to start carriage skip. Exit.
Routine to print LET. Set up TRUEB
and convert LET entry from name code
to EBCDIC. If entry contains a name
only, print the name using VPEB and
exit. If entry contains more than just

a name, set up and convert rest of line.
Print entry using VPBI. Exit to calling
routine.

Routine to print binary. Set up and con-
vert data using BINHX. If the correct
number of words has been printed, go
to PTLN, then exit (PTLN prints the
line). At end of a sector, space two
extra lines. If a four-word group is
complete, put in an extra space. Check
for a full line. If full, go to PTLN then
back to BINHX.

Routine to print packed EBCDIC. Ex-
pand packed EBCDIC to EBCDIC. Print
lines using VIP printer special. Exit
to calling routine.

Output buffer for unpacked EBCDIC.

RD3

PTX Routine

Output buffer for printing LET and bi-
nary.

e Performs all paper tape I/0 functions for DUP
including conversions.

Entry Points

GETPT

PTGET

PTSEL

PTPCH

Buffers

CRBUF
CRBUF-40
DF-82
RD1-2

A closed routine to read PTTC/8 record.
Sets word count for paper tape read to

80. Reads one record, with check,

using PAPT1. Sets character count for
paper tape conversion to 160. Converts
from PTTC/8 to packed EBCDIC using
PAPEB. Conversion will stop after DD
(new line) code. Return to calling
routine.

A closed routine to read a binary record.
Reads one word, with check, which brings
in hexadecimal 00 word count (WC). Reads
WC words without check. If record is not
a data record (DATSW = 0), do a check
sum on record, then compare the check
sums.

Dummy entry point corresponding to
CDSEL in CARDX routine.

Routine to punch binary records. If
record is a data record, set the word

count to 54 and skip check sum routine.
If record is not a data record, determine

the word count (WC) by closing off blanks
from the right; calculate a check sum.
Punch hexadecimal 7F followed by tne
record. Exit to calling routine.

PTTC/8 control record input.
EBCDIC area after conversion.
Binary tape record input.
Binary tape record output.

Error Message Routine (PERRC/TERRC)

e Prints the appropriate error message.

o Terminates the DUP function.

To perform the printing of the error messages, the
routine PERRC is present in those systems having the

1132 Printer.

is present.

In all other systems the routine TERRC

The routines function identically. The

System Loader selects the required routine at system

load time.

Section 3: Disk Utility Program (DUP) 43

Entry Point

There is only one entry point, PERRC+2/TERRC+3,
which is the first word of the first sector of PERRC/
TERRC. Control is passed to the error message
routine after a DUP function has requested an error
message by way of a long BSI instruction to SEXIT.
The BSI is followed by a DC containing the error
parameter.

PERRC/TERRC

Using the error parameter, this routine calculates
(1) the word count of the message which is placed
into XR1, (2) the error message number which is
placed into XR2, and (3) the return address. The
print routine contained within PERRC/TERRC prints
the requested error message and returns to the ad-
dress specified.

44

Exits

If the message printed is ""D03 Invalid Header Length",
then the calling DUP function was DUMP or STORE.

In this case, control is not returned to DUMP or
STORE. Instead, records are read until either (1) a
Monitor control record is encountered and a call to the
Monitor is effected after setting the non-read switch or
(2) a DUP control record is encountered, in which case
an exit is made to REST+1 in DUPCO which initializes
the DUP function specified in the control record read.

If the message printed is "D72 Load Blank Cards",
control is returned to the calling DUP function, DUMP,
which then continues after more blank cards have been
loaded.

In all other cases, control is returned to REST+1
in DUPCO, the exit message is thus inhibited, and
DUPCO initializes for the next DUP function.

See the publication IBM 1130 Monitor System
Reference Manual (Form C26-3750) for a list of the
error messages, their meanings, and the routines
from which they are called.

This section contains descriptions of the internal
structure and operation of the 1130 Monitor System
Assembler.

The 1130 Monitor System Assembler is designed
to translate the statements of a source program
written in 1130 Assembler Language into a format
which may be dumped and/or stored by DUP or
executed directly from Working Storage.

Basically, the functions of the Assembler are:

1. Convert the mnemonic to machine language
(except for Assembler control records).

2. Assign addresses to statement labels,

3. Insert the format and index register bits into the
instruction if applicable.

4, Convert the instruction operands to addresses
or data.

PROGRAM OPERATION

Phase 0 of the Assembler Program is read into core
storage by the Supervisor whenever the Supervisor
encounters an ASM Monitor control record, Control
is then transferred to the Assembler Program,

The source program is read and processed (one
statement at a time) twice during each assembly.
The source statements are normally read into core
storage from the principal I/0 device, processed, and
stored on disk during the first Pass (Pass 1).

During the second Pass (Pass 2) the statements
are read from the disk for processing. When the
source program is read in only once, the assembly
is said to be in one pass mode. In some cases, the
source program is read through the principal I/0
device on Pass 1 and Pass 2, The assembly is then
said to be in two pass mode.

Pass 1

The Supervisor reads the first sector (Phase 0) of
the Assembler Program into core storage and
transfers control to it. Phase 0 then reads in the
principal I/0 and principal printer subroutines and
a level 4 ILS, sets up the Interrupt Transfer Vector
(ITV), reads in the non-overlay section (Phase 9) of
the Assembler and then overlays a part of itself with
the Control Record Phase (Phase 1), The control
records are read, analyzed, and listed. Switches
are set for the various options specified by the

SECTION 4: ASSEMBLER PROGRAM

control records. When the first non-control record
statement is encountered, Phase 1A is read in over-
laying Phase 1, If the principal input device is the
paper tape reader, Phase 1A moves the source
record previously read 20 character positions to the
right in the input buffer. It then initializes the bound-
ary conditions for the Symbol Table. When this is
completed, Phase 2 is read in, and statement process-
ing begins,

As the statements are processed, a table is
built which contains the symbols found in the Label
Fields. This table is called the Symbol Table. Each
valid label used in the program along with the ad-
dress assigned to the label is entered into the Symbol
Table. The format, contents, and use of the Symbol
Table are described in detail later in this section.
The building of the Symbol Table is the major objec-
tive of the Assembler during Pass 1.

Pass 2

At the end of Pass 1, the Assembler initializes itself
for Pass 2. Phase 1 is read in; S1A +2 is the entry
point for Pass 2. If the Assembler is operating in
one pass mode, Pass 2 begins automatically, using
the source program stored on the disk during the
first pass, If the Assembler is in two pass mode, the
source program must be reloaded to begin Pass 2,
During Pass 2, object oufput in the form of hexa-
decimal digits and/or error codes is generated. The
object output is stored on the disk in Disk System
Format and an on-line listing may be obtained. If

a list deck or paper tape object program is desired,
the Assembly must be made in two pass mode.

When the input is from cards and a list deck is
specified, the output is punched into the first 19
columns of each source card, The object output
consists only of error codes if the List Deck I option
is specified,

When the input is from paper tape, the entire
source statement is punched into the new tape in
addition to the object data. (This simulates the opera-
tion of the 1442 Card Reader Punch,)

1/0 Data Flow
The input to the Assembler is from cards or paper

tape. The output depends upon the mode of assembly.
(See Figure 10.)

Section 4: Assembler Program 45

One Pass Mode: In Pass 1, source program state-
ments are read into storage and stored on the disk.
The data in the 1/0 area is packed 2 EBCDIC char-
acters per word, beginning with the first position of
the label field if the label field is not blank, or with
the first position of the operation field if the label field
is blank. A prefix word which indicates the word
‘count and the starting point of the record (Col. 21 or
27) is added before placing the statement on disk,

During Pass 2, the statements are read from
disk, unpacked, and processed. The output object
data is stored on disk in Disk System Format. In
addition, a printed listing of the object program and/
or the Symbol Table may be obtained by specifying
these options with control records.

Two Pass Mode: The card or paper tape source
program must be read into core storage on Pags 1
and Pass 2, During Pass 2,object data are stored on
the disk, A list deck, not compressed, or tape and/
or a listing will be generated if specified by an
Assembler control record. A listing of the Symbol
Table and/or Symbol Table deck may also be obtained
if specified by Assembler control records,

Source Program

=
N

Source Program Source Program PASS 1

‘ i Card or Paper Tape

Two Pass MOd/
-~
I i Card or

Source and Object Output {optional)

Two Pass Mode

PASS 2

Figure 10, Assembler I/O Flow

46

Paper Tape

RELOCATABILITY

The Assembler Program will assemble programs in
either absolute or relocatable mode. All subroutines
must be assembled in relocatable mode.

Absolute Mode

An absolute program is one that is loaded into a
predetermined area of core storage for execution,
The core locations used at execution time are the
same as those specified in the source program,

In an absolute assembly, all values assigned
to labels are absolute and all operands are absolute,

Relocatable Mode

A relocatable program is one that can be loaded, by

the Loader, into (and executed from) an area of core
independent of the addresses assigned to instructions
and constants during assembly.

Source Program

One Pass Mode

Source Program

Disk

Listing (optional)

(Intermed. 1/0)

Both Modes

1132 Printer Disk

Console Printer

Object Output
(Disk System format)

Labels

When labels are entered into the Symbol Table and
the assigned value is relocatable, a bit signifying that
it is relocatable is also entered, All labels except
EQU statement labels are relocatable, EQU state-
ment labels are absolute if the operand is absolute
and relocatable if the operand is relocatable.

Operands

Operands that are assembled to become the second
word of a two-word instruction or an address con-
stant may be assembled relocatable, These words
will be modified by the Loader at load time.

The Loader will modify the second word of re-
locatable long instructions and the value of relocat-
able constants by the difference between the address
assigned to an instruction and the address that the
instruction will actually occupy. Operands that
must be relocatable in a relocatable program are:

1, The operand of the second word of a two-word
instruction when it represents the address of
an instruction, a constant, or data that is con-
tained within the program.

2. The operand of a short instruction if the dis~-
placement is to be added to the TIAR contents
to yield the effective address at execution time,
This includes all instructions assembled with
blank format and tag fields except LDX, LDS,
and any shift instruction,

3. The operand of a DC statement when it repre-
sents the address of an instruction, a constant,
or data contained with the program; for example,
a constant that represents the address used by
an indirect addressing instruction,

4, The operand of an ORG, ENT, or END
statement,

5, The operand of an EQU statement if it is the
label of a relocatable statement,

All other operands must be absolute.

Determining Relocatability: The Assembler adds
one to a counter for each relocatable element that
is added in the operand and subtracts one for each
element that is subtracted. When two or more
elements are multiplied (only one of which is

relocatable) the value of the absolute element (or
product of the absolute elements) is added to (or
subtracted from) the counter. When all operand
elements have been processed, the counter must
be equal to +1 (relocatable) or 0 (absolute). Any
other value will result in a relocation error.
Relocatable elements in operands are:

1. A symbol that is defined by means of the
Location Assignment Counter (see Tables
and Buffers).

2. The asterisk symbol when used as an
element,

Absolute elements in operands are:

1. Decimal and hexadecimal integers.

Character values,

3. Symbols which have been equated to an ex-
pression which has an absolute relocation

property,

[\

NOTES

1. A symbol that has been equated (by means of the
EQU Assembler instruction) to an expression
assumes the same relocation property as that
expression,

2. The difference of two relocatable quantities is
an absolute quantity.

3. A relocatable quantity plus or minus an absolute
quantity is a relocatable quantity.

4, The sum or difference of any number of absolute
quantities is an absolute quantity.

5. Relocatable elements cannot be multiplied by
relocatable elements.,

6. In an absolute assembly, all symbols and the
asterisk value are defined as absolute; therefore,
no relocation errors are possible.

STORAGE LAYOUT

Figure 11 illustrates the layout of core storage during
an assembly, The addresses listed are approximate
and should not be construed as the final address
assignments. For the actual addresses, refer to

the program listing using the symbolic labels.

Section 4: Assembler Program 47

Address Segment

Skeleton Supervisor: including
0000 1TV, COMMA, Disk ILS, DISKO
025C DBUF=Card or P.T. |/O; object output buffer (one pass mode)
03F4 BUFI-Intermediate 1/O buffer or object output buffer (two pass mode)
0542 11504, DISK1, multi-sector subroutine, FLIPR

Overlay Area
0582 1. Phase O Assembler Loader

2. Phase 1 Control records

3. Phase 1A

4. Phase 2 First card group

5. Phase 5, or 6, or 7, or 8, or 12

6. Phase 12A

7. Phase 3 Symbol Table Output

8. Phase 4 Last phase
g;g; g;;o);“(SM Non-overlaid Mainline (Phase 9)
07D6 GETSé
07D8 GETS7
07DA GETS8
070C GETS2
07DE GETS5
07E0 GTS12
07E1 End of Phase 3
07F7 SCAN
0925 BEGOP
09E0 SAREA (80 word input buffer)
0A67 B4HEX
QA6F ERFLG
0AB3 LDLBL
0B42 LABCK
0892 DFOUT
0BE9 STSCH
0C81 STADD Overlayed by DTHDR and WRDFOQ (Phase 10)
0DOB INTI Overlayed by iINT2 (Phase 11)
0DDB Optional Print Routine: Console Printer

or
1132 Printer

OEB2* One sector buffer for Symbol Table overflow
End of In-Core Symbo! Table
Core

*Other possible lower limits for Symbol Table
1. 0DD8: No listing, one pass mode
2. 0D74: No listing, two pass mode

Figure 11. Assembler Storage Layout

48

OUTPUT FORMAT AND ERROR CODES

Table 2 lists the contents of character positions 1-16
(each character position corresponds to one word in
the 1I/0 buffer) of the I/0 buffer. The contents are
inserted during Pass 2 in hexadecimal format, Just
prior to the optional print and/or punch operation,
the buffer contents are converted to the proper
output format for the output devices.

Table 2. Format of the I/0O Buffer

Character positions 18 and 19 of the I/O buffer
are used for error codes. The code for the first
error detected in an erroneous statement is inserted
into position 18. The code for any remaining errors
is inserted into position 19. Note that if three or
more errors are detected within one statement,
only the first (in position 18) and the last (in
position 19) are indicated. The error codes are
listed in Table 3.

Statement 1/0 Buffer
Type Position* 1/0O Buffer Value in Hexadecimal
ABS 1-16 Blank.
BSS, BES 1-4 Location assigned fo the labe!, if any.
9-12 Number of reserved words {operand value).
CALL 1-4 Location assigned to the branch instruction built by the Loader.
6-7 30 (special relocation code for a CALL).
9-16 Subroutine name in packed EBCDIC form.
DC 1-4 Location assigned to the constant.
6 Relocation code for the constant (0 = absolute, 1 = relocatable).
9-12 Value of the constant.
DEC 1-4 Location of the left-most word of the constant (always at an even location).
6-7 00 (both words are absolute).
DSA 1-4 Same as CALL.
6-7 31 (special relocation code for a DSA).
9-16 Same as CALL.
EBC 1-4 Location of the left-most word of the operand.
9-12 Number of core positions reserved for the operand.
END 1-4 Next available even location after this program.
9-12 Starting address if mainline program.
ENT 1-4 Location of the entry point.
9-12 Name of relative entry point.
EPR 1-16 Blank.
EQU 1-4 16-bit operand value.
EXIT 1-4 Location assigned to the label.
6 0.
9-12 60XX (XX is the address of the EXIT entry point to Skeleton Supervisor; i.e., 6038).
HDNG 1-16 Blank,
All Imperative 1-4 Location of the left-most instruction word.
Instructions 6 Relocation code for word 1 {always zero).
7 Relocation code for word 2 (blank for ashort instruction; 0 = absolute, 1 = relocatable).
9-12 Machine=-language OP code, F and T, and Displacement,
13-16 Word 2 of long instructions.
ISS 1-16 Same as ENT.
LIBF 1-4 Same as CALL.
6-7 20 (special relocation code for an LIBF).
8-16 Same as CALL.
LIBR 1-16 Blank.
LINK 1-4 Location assigned to label, if any.
6-7 00.
9-13 Same as CALL.
ORG 1-4 Location assigned to the label, if any.
SPR 1-16 Blank.
XFLC 1-6 Location of the left-most mantissa word.
6-7 Value of the exponent.
9-16 Value of the mantissa.

*Buffer positions correspond directly with card columns in the List Deck.
Unlisted positions are always blank.

Section 4: Assembler Program 49

Table 3. Assembler Error Codes

An Undefined symbol is found in an operand.

Error Code Error Description Error Procedure

A Address Error The displacement is set to zero.

An attempt has been made to specify a displacement,
directly or indirectly, outside the range +127 to -128
C Condition Code Error The displacement is set to zero.
A character other than +, -, Z, E, C, or O (Alpha)
has been encountered in a condition operand.

F Format Error The instruction is processed as a long instruction if the
A character other than a blank, X, L, or | has been instruction is valid in the long form. Otherwise, it is
used in the format field or an L or | format has been processed as though an X format code had been specified.
specified for an OP code valid in short form only.

L Label Error The label is ignored.

An invalid symbol has been used as a label.

M Multiply —defined Symbol Error The first occurrence of the symbol defines the value in
More than one statement has the same symbol in the the Symbol Table. Subsequent occurrences of the same
label field. symbol are ignored. Note: this error will appear in

statement referencing the multiply-defined symbol.

o OP Code Error The Location Assignment Counter is incremented by two.
The mnemonic OP code is not in the OP code table. The statement is freated as comments (except for the
Header type statements are incorrectly positioned in the error code),
source program.

R Relocation Error
The operand is neither absolute nor relocatable, or two The effective operand value is set to zero.
relocatable operand elements are multiplied by each
other.

The operand is absolute in a relocatable assembly The displacement is set to zero.

when the displacement had to be modified or the

operand is relocatable when the displacement did not

require modification.

The operand of an ENT or ISS statement is absolute. The effective operand value is set to zero.
The operand of an ORG statement is absolute in a The operand value is ignored.

relocatable assembly.

The operand of a BSS or BES statement is relocatable. The effective operand value is set to zero.

S Syntax Error The affected operand is given a value of absolute zero.
Illegal syntax in the operand field (e.g. invalid sym-
bols, adjacent operators, illegal characters in an
integer, no 'before character values).

Mainline program entry point not specified in an END Positions 9-12 of the |/O buffer are left blank.
statement of a mainline program.

Incorrect syntax in a DEC or XFLC operand (e.g. Illegal Constant set to 0 or 0.0.

character, loss of high order bits, exponent overflow).

T Tag Error The Tag field is set to zero and the statement is proc-
The Tag field in an instruction contains a character essed as though the Tag field were zero.
other than a blank, 0,1,2, or 3.

U Undefined Symbol Error The affected expression is given the value of absolute

zero,

50

TABLES AND BUFFERS addresses to the program statements. It always
contains the next available address.

Operation Code Table (BEGOP) The counter is initially set to zero and is set
differently or incremented according to the state-
The operation code table contains three words for ment type as shown in Table 4.

each mnemonic entry. The first two words of each

entry contain the four characters of the op code Secondary Location Assignment Counter

(packed 2 EBCDIC characters per word), The third The secondary Location Assignment Counter (ADCW2)
word contains the binary machine-language op code is used to detect breaks in sequence in Disk System
and information used by the routine that processes Format output. It is incremented by one in the DFOUT
the particular op code. The format of the third subroutine for every data word entered in the output
word is as follows. buffer (except the first word of an LIBF entry point
name).

19,1,2,3,4)5,6,7,8/9,10,11,12,13,14,154 Table 4. Location Assignment Counter

[——— pu———

Op code Code for

statement

One indi= processing Statement

cates roufine Type Effect

LIBF state -

ment S::f;:' ABS Set to the lowest loadable core address.

Ones indicate valid in (Address obtained from the symbolic location

CALL statement short LDRND.)

form

One indicates —! only BSS, BES Incremented by the value of the operand.

diSP":li:emeﬂf 5 | (If E-format and the counter is odd, increment

must be ne indicates

modified by displacement one more.)

Location As~- must not be

signment modified by DC,LIBF Incremented by one.

Counter Location As- DEC Incremented by two. (If the Location Assign-

23:::::' ment Counter is odd, increment one more.)

DSA, XFLC Incremented by three.
Modification bits for

shift instructions EBC Incremented by one-half the number of operand
characters. (An odd character count is incre-
mented by one before the count is halved.)

The statement-processing routine code (bits 12-

. END] ted b if the Location Assi t
15) is used to branch to a branch table at the begin- Coonters odd, e 11 The focation Assignmen
ning of each i.nstrlfmtlol?.—p_rocessu?g oYeI.'lay. If th; LINK Incremented by four.
overlay requlrfad or this 1nstruct1or} ?s in c?re, the ORG Set to the value of the operand.
branch table will branch to the specific routine, EXIT | b
Otherwise the branch is to the mainline to set-up neremented by one.
the read of the required overlay. See Figure 11, 'o";"é'dd Incremented by two.
ode
Instruction Buffer (INSBF) Machine
Instruction
The instruction buffer is a one-word work area used Statements
when instructions are being formed. It contains only SLL'O” Incremented by one.
. . ops . . o]
the first word of long instructions. Initially, it is ,ngﬁe o Incremented by two.

loaded with the op code (bits 0-4) and the modification
bits (bits 8-9) for shift instructions (derived from the
third word of the op code table). As the instruction

is being processed,the format, tag, indirect address-

ing, and displacement bits are inserted. Symbol Table

At the end of the DISP routine, the contents of the
instruction buffer are saved in the one-sector DSF out- The Symbol Table is a table containing the source
put buffer and then are converted to four EBCDIC char- statement labels and their assigned values. There
acters (four bits per character) and stored in positions are also bit positions to indicate that the label is
9-12 of the I/0 buffer. relocatable or multiply-defined.

All symbols defined in the program are entered

. . "
Location Assignment Counter in the Symbol Table, Symbols that appear in the

The Location Assignment Counter (named address label field of Assembler instructions which do not
counter in the listings; symbolic; ADCOW) is a one- use labels (for example, ABS, END, ENT) are not
word counter used to assign sequential storage entered.

Section 4: Assembler Program 51

The Symbol Table begins at the high address end
of core and extends toward one of three lower limits
(see Figure 11):

1. The end of the print routine when LIST option se-
lected. The Console Printer and 1132 Printer
routines are not the same length, but the lower
limit will be adjusted for the print routine loaded
at assembly time.

2. The end of Phase 11 when LIST option is not
selected. The Symbol Table is allowed to
overlay the print routine.

3. The end of Phase 10 when LIST option is not
selected and there is no intermediate I/0 (two
pass mode).

Symbols are added to the Symbol Table in alpha-
numeric order with higher values (Z9999) toward the
lower address end. If the lower limit is reached, a
one-sector buffer is written on the disk to allow more
symbols to be added. This buffer is at the low address
end of the table. Each overflow sector is therefore
ordered; however, there is no ordering between over-
flow sectors. There may be up to 32 overflow sectors.

Symbol Table Size (Approximate)

Size of Core | .. No LIST No LIST L:{Zxxmz;flh
(Words) 1PASS 2PASs MY
4096 111 184 217 3609
8192 1476 1549 1582 4974

Each entry in the Symbol Table requires three
words. The format of a Symbol Table entry is:

Word 1 Word 2 Word 3
101142 15,0 15,0 15,
A [v J \ v S

Label (packed EBCDIC Value

5 char. max.)

Relocation bit

L—— Multiplydefined bit

52

During Pass 1, labels are entered into the
Symbol Table by the Symbol Table Add Routine
(STADD). As each label is processed, the partially
built Symbol Table is searched to determine if the
label has been previously defined, If it has been
previously defined, the multiply-defined bit (of the
first entry) is set, and the label is not entered.

If the label has not been previously defined, it
is entered along with the current value of the label
value buffer,

If the program is being assembled in relocatable
mode (no ABS statement), the relocation bit is set
for each relocatable label., (See Relocatability.)

The Symbol Table is used during Pass 2 when
evaluating an operand containing symbols. The
symbol in the operand field is given the value of the
symbol in the Symbol Table. If the multiply-defined
bit was set, an M (multiply-defined error code) is
entered in the 1/0 buffer.

Card Code Input Conversion Table

Conversion from IBM Card Code to EBCDIC is done
by table lookup. The conversion table contains two
EBCDIC characters per word with all 256 characters
represented, The leftmost eight bits of each word
represent the card code characters that can be
formed with 12 through 8 punches; the right-most
eight bits of each table word represent the card

code characters that can be formed with 12 through 9
punches. Thus, if the input character contains a 9
punch, the right half of a conversion table word will
be used. Conversely, if the input character does
not contain a 9 punch, the left half of a conversion
table word will be used. (In searching for the
proper word, the 12-8 punches are used to decide
which word; the 9 punch is used to determine which
half of the chosen word.) (See TLU subroutine
description.)

Paper Tape Input Conversion Table

The conversion of paper tape input to EBCDIC is
performed by table lookup. The input character
is used as the argument to perform a table search
for the equivalent EBCDIC character.

The conversion table contains only valid
PTTC/8 characters (73 total) and the EBCDIC
equivalent, Bits 0-7 of each table word contain
the EBCDIC character code and bits 8-15 contain
the equivalent PTTC/8 character code.

PHASE DESCRIPTIONS

The generalized logic flow of the Assembler is shown
in Chart BL, The labels beside the chart symbols
correspond to the labels used in the program listings.

The following phase descriptions are divided into
the routines represented in Chart BL. Subroutines
are described with the phase in which they reside.

When the Supervisor encounters a ASM Monitor
control record, Phase 0 of the Assembler is read into
core storage and control is transferred to it. Phase
0 sets up the ITV for the principal printer and 1/0
device and reads in the ISS subroutines for these
devices. It also initializes the Symbol Table limits,
initializes the heading sector on CIB, makes sure
there are 33 sectors of Working Storage available,
reads in Phase 9, and reads in Phase 1, which over-
lays part of Phase 0,

Phase 0 also contains a level 4 ILS subroutine,
a routine that is used with the DISKO subroutine to
enable it accomodate word counts exceeding 320,
and a flipper routine that uses the disk routine to
read in overlay phases. These routines remain in
core throughout the assembly.

Phase 1 reads and processes control records,
sets switches for each control record specified, and
executes a branch to the print routine to print each
control record, When the first non-control record
is encountered, Phase 1A is read in, overlaying
Phase 1. Phase 1A modifies the I/O area if paper
tape input is used, and during Pass 1 determines the
lower limit of the Symbol Table on a basis of the
options specified by the control records, Phase 2
is then read in, overlaying Phase 1A, Phase 2
processes ABS, ENT, ISS, ILS, LIBR, EPR, SPR,
and HDNG statements. When any other type of
statement is encountered, Phase 6 is read in, and
a branch to Phase 9 is executed,

Phase 3 is used to save the Symbol Table
(optional) and to print and/or punch the Symbol Table
(optional), It is read in from the disk at the end of
the Pass 2 processing of the END statement, Upon
conclusion of Phase 3, FLIPR is set up to read
Phase 4 from the disk.

Phase 4 is used to print the closing message of
the number of errors in the assembly and to move
the object program output back 4 cylinders (to the
beginning of Working Storage). This phase is read
from the disk at the end of Phase 3 and returns to
the Monitor entry point in the Skeleton Supervisor
when completed.

Phase 5 processes ORG, EQU, HDNG, BSS, and
BES statements, It also contains the subroutine used
to print the heading at the top of each new page of the
listing. The phase is always in core as a result of

one of the above statement types, except when
brought in as a result of a Channel 12 condition
on the 1132 Printer.

Phase 6 processes all imperative instructions
(hardware mnemonic op codes) and the DC statement.
The phase is always in core as a result of an im-
perative instruction or a DC statement,

Phase 7 processes DEC and XFLC statements,
The phase is always in core as a result of encounter-
ing a DEC or XFLC constant.

Phase 8 processes CALL, LIBF, DSA, LINK,
EXIT, and EBC statements, The phase is always
in core if one of the above statements is encountered,

Phase 9 checks the mnemonic op code for all
statements except ABS, ENT, ISS, ILS, LIBR, EPR,
and SPR statements, and executes a branch to the
branch table contained in each statement processing
phase. If the required phase is in core, the state-
ment is processed. If the required phase is not in
core, it is read in, and the statement is processed.
Phase 9 also contains subroutines that are common
to all phases of the Assembler,

Phase 10 consists of two subroutines used during
Pass 2 to control the generation of the Disk System
Format output, This phase is an overlay which is
read over the Symbol Table Add portion of Phase 9
during Pass 1 of the END statement processing.

Phase 11 contains a subroutine that is used to
read the source statements from the disk during
Pass 2 if the assembly is in one pass mode. It is
read in when the END statement is processed during
Pass 1 and overlays the subroutine used to save the
source statements on the disk during Pass 1.

Phase 12 is brought into core when the END
statement is encountered. This Phase is used in
Pass 1 to build the program header record, read
in Phase 10 to replace the STADD section of Phase 9,
and read in Phase 11 to replace a section of Phase 9
(one pass mode only), and then overlay with Phase 1
after the first record for Pass 2 is in the I/O buffer,
In Pass 2, Phase 12 reads in Phase 12A to process
the END statement, finishes the DSF output, and
then Phase 12A is overlaid.

Phase 0 (Initialization Phase)

Chart: BM, BN

e Contains the non-overlay routines, ILS04, DISK1,
and FLIPR.

e Reads in non-overlay phase (Phase 9).

e Reads in ISS subroutines for the principal
printer and I/0 device.

Section 4: Assembler Program 53

e Initializes: ITV, Symbol Table Limits, and the
listing page heading on the first sector of the
CIB.

e Checks Working Storage available on disk,
Non-Overlay Section of Phase 0

ILS04: Interrupt level subroutine for level 4. This
subroutine senses the interrupt level status work
(ILSW) for level 4 to determine which device on this
level is responding. When this is determined, a BSI
instruction is executed to the interrupt service entry
point in the ISS subroutine for the device. When the
ISS subroutine returns to I1.S04, the interrupt is
reset and the routine returns control to the mainline
program.

DISK1: Multiple sector read/write subroutine. This
routine is used with DISKO to read and write more than
320 words at a time. The two words preceding the
I/O area are saved and 320 is subtracted from the
word count. If the word count is greater than 320,
320 is used as word count and a read or write of one
sector is performed. If the word count is less than
320, the specified amount is used and the read or
write operation is executed. When the disk operation
is completed, the two previously saved words are
restored. If the last word count was not less than
320, the subroutine sector address is incremented
by 1, the next two words are saved, and a read or
write function is executed. This process is repeated
until the word count indicates that all data has been
read or written,

DSKER: Disk error exit,
TV3 (Pseudo-transfer Vector Entry): Replaces the

need for an LIBF statement. Branches to the stand-
ard entrance in the Print subroutine.

FLIPR (Overlay Flipper): Uses DISK1 to read in
overlay phases. The sector address and word count
are set up before entering FLIPR,

BRBCK (Branch Back): A long branch that is modi-~
fied to branch to the correct location in the branch
table of an overlay phase.

OVRLY (Overlay): Contains the word count and
sector address of the overlay phase now in core or
to be read into core,

54

Overlay Section of Phase 0

STRTO: Start of Phase 0 execution, Also corre-
sponds to the loading address of all instruction-
processing phases.

1. Save the settings of non-XEQ and non-DUP
switches and set them on temporarily.

2. Set up interrupt level addresses for levels
0, 2, and 4 (words 8, 9, and 12 of the ITV).

3. Use the DISK1 routine to read in Phase 9.
Use the DISK1 routine to read in the ISS sub-
routine for the principal printer and the principal
I/0 device.

5, Set the HIEND and LOEND of the Symbol Table,

6. Use the DISK1 routine to write a listing page
heading containing EBCDIC blanks on the first
sector of the CIB.

7. Make sure there are at least 33 sectors of
Working Storage available,

8. Read in Phase 1 overlaying Phase 0.

LSS33: Less than 33 sectors of Working Storage.
Branches to print an error message (A 01) and

returns control to the Supervisor.

Phase 1 (Control Records)

Chart: BO

e Reads a source record,

e Processes Control Records.

e Sets switches for specified options.

e Prints control record read,

e Overlays Phase 1 with Phase 1A.

Operation

Phase 1 reads in and processes control records; the
data on each control record is compared with data
stored in core. When the data in the control record
matches the string of data in core, a switch is set
indicating the options specified. When a non-control
record is encountered, Phase 1A is read in over-

laying Phase 1.

S1A: Entry Point for Phase 1: Uses the read card
(RDCRD) subroutine to read one card or paper tape

record. If the record is not a control record, go

to ENDCC. XR1 is set to the first word of the input
record. XR2 is set to the number of words in the
string in core containing a control record. XR3 is
set to the address of the first word of the string

in core.

CKBLN (Check Blank): Check the input record
(character by character) for blanks., If all 70 char-
acters are blank, go to NXSTR. When a non-blank
character is found, go to PSTBL.,

PSTBL (Past Blank): Compare the input character
with the character in the string stored in core. If
they do not match, go to NXSTR. If they match,
return to CKBLN to process the next character,

If all characters in the input record match the char-
acters in the string in core and a blank follows the
last character, go to the routine servicing the record
type. If the input record does not match any string
in core or if the character following a matching
record is not blank, go to NOCTL.

NXSTR (Next String): Update counters and index
registers to scan the next string, If the input record
has been checked with each string and no matching
string is found, go to NOCTL.

INTCC: Initializes to scan all strings, This is done
after one control record has been completed and
before the next record is read,

COMN1: Go to CLCTN to compute size of COMMON,
Save the size of COMMON in SCOMN and go to
CCCOM.

DEFINE (Define File Size): Set FILSW indicating a
FILE control record. Go to CLCTN to obtain the
number of sectors required by the program at object
time. Store the number of sectors at FILSZ (File
Size). Increment ADCOW by 7. Note that when

*FILE is used, the first data word that would normally

have been assigned to relocatable address zero will
now be assigned to relocatable address seven.

INTLV (Interrupt Level): Go to CLCTN to obtain the
interrupt level number, Save the interrupt level
number and decrement the interrupt level count by 1.

CLCTN: Used by DFINE, COMN1, and INTLYV to
obtain numeric information from control records.
Sets up the SCAN routine to allow only the processing

of numeric information and then use the SCAN
routine to evaluate the number of sectors or the
interrupt level number contained in the control
record, The value will be returned in the accum-
ulator. Any error will cause an exit to NOCTL.

PRTST (Print Symbol Table): Sets bit 0 in STOPT
(Symbol Table option) switch when a PRINT SYMBOL
TABLE control record is processed,

LIST: Set bit 0 in LSTOP (list option) switch when
a LIST control record is processed.

PCHST (Punch Symbol Table): Sets bit 15 in STOPT
switch when a PUNCH SYMBOL TABLE control
record is processed,

TWOPS (Two Pass Mode): Sets PSMDE (Pass Mode)
switch to zero when a TWO PASS MODE control
record is processed,

LSTDK (List Deck): Sets bit 0 in LDKOP (List Deck
option) when a LIST DECK control record is
processed,

EDIT: Sets bit 15 in LDKOP when a LIST DECK E
control card is processed.

SAVST (Save Symbol Table): Sets SAVSW (Save
Symbol Table) switch on (non-zero) when a SAVE
SYMBOL TABLE control record is encountered.

SYSTB (System Symbol Table): Reads the System
Symbol Table into the Symbol Table area. The
System Symbol Table resides in the Assembler area
on the disk, The first word will be a count of the
symbols in the System Symbol Table. This will be
used to initialize the symbol count (CTSYM) and
position the lower limit of the Symbol Table
(LOEND).

CCCOM (Current Control Record Common): Use the

principal printer to print the control record and go
to INTCC to initialize for the next control record.

NOCTL (NOT Control Record): InsertID into the
input buffer before listing the control record. This
record has an * in the first position indicating a
control record, but was not recognizable or was an
illegal Level or File record.

ENDCC (End Control Record): Read in Phase 1A,

Section 4: Assembler Program 55

Phase 1A
Chart: BP

e Move record right 20 positions if input is from
paper tape.

e Initialize the Symbol Table limits according to
the options specified.

e Read in Phase 2,

The current record is not a control record. Restore
SCAN and go to CRDIO if input is from cards, If the
input is from paper tape, move the current record
over 20 positions and set the read-in address for
position 21 of the I/0O area.

CRDIO (Card 1/0): If Pass 2, go to FTCH2; other-
wise initialize for Symbol Table overflow. Compute
the End of Symbol Table address (ENDST) on a basis
of the options specified by the control records. Set
up a word count of 320 and a sector address of 0
(relative to start of Working Storage) at ENDST-2
and ENDST-1 respectively. Go to FTCH2.

FTCH2 (Fetch Phase 2): Use the DISK1 routine to
read in Phase 2 overlaying Phase 1,

Phase 2 (Header Statement Processing)

Chart: BQ

e Process ABS, ENT, ISS, ILS, EPR, SPR, LIBR,
statements.

e Initiate reading of Phase 5.
e Initiate reading of Phase 6.
e Transfer control to Phase 9.

This routine is entered at STRT2 when entered from
Phase 1A.

STRT2: Initialize ENTCT to allow 14 entry points,
If Save Symbol Table option is in effect, set reloca-
tion mode (RLMDE) to 0 for absolute and allow only
ABS and HDNG in Program Header group.

S2000: Bypass a comment record (* in postion 21),

82003: Pack and save op code. Look up op code in
small op code table. If op code not in table, go to
SZOUuT.

56

OPVC2: Transfer Vector DC Table for Program
Header group. Sections of code for a particular op
code are reached by an indexed, indirect branch,
where an entry in the table becomes the effective
address of the branch,

TB2ST: Beginning of small op code table. Includes
following mnemonics: ABS, ENT, LIBR, ISS, EPR,
SPR, and ILS,

ENT1: ENT processing. Assembly relocation
mode must be relocatable.

§2006: Op code error code entered in buffer. This
error will occur if mutually exclusive op codes of the
Program Header group are in the same source pro-
gram, i,e,, ABS and ENT.

§2008: ENT must not be preceded by ISS or ILS.
Up to 14 ENTs allowed, Each ENT increases word
6 of the Program Header (Length of Header -9) by
three. In Pass 2, S2100 is used to collect the entry
point name and to look up the address of the entry
point.

I1SS1: ISS processing. The relocation mode of the
assembly must be relocatable. An ISS cannot be
preceded by an ENT, ILS, or another ISS. Set up
SCAN to allow only numeric operand. SCAN is then
used to evaluate the ISS number in positions 32-33
of the ISS record. If Pass 2, S2100 is used to set up
scan for symbolic operand and collect entry point
and evaluate its address.

LIBR1: LIBR processing., Assembly relocation
mode must be relocatable. LIBR not permitted if
no entry point in source program (ENT, ILS, or ISS).

ABS1: ABS processing. Must not be preceded by
LIBR, ENT, ILS, or ISS. RLMDE (Relocation mode)
is set to 0 for absolute assembly, and the primary
(ADCOW) location counter and secondary (ADCW2)
location assignment counter are set equal to ADCNI
(Resident Supervisor with DISKN).

IL.S1: ILS processing, The relocation mode of the
assembly must be relocatable, Only one ILS
statement is permitted and it must not be preceded
by an ENT or 1SS statement, The interrupt level
(positions 32 and 33 of the I/O buffer) is stored in
ISSNO until the program header is constructed in
Phase 12.

EPR1: EPR processing. Must not be preceded
by SPR.

SPR1: SPR processing. Must not be preceded
by DPR.

$2100: Subroutine used by ENT and ISS during
Pass 2 to collect entry point name and evaluate its
address. Since the pass mode (PSMDE) determines
the object output buffer, S2100 will store the entry
point name and address in the program header in
DFBUF or BUFI for one pass mode or two pass
mode, respectively., The name and address of the
first entry point will also be stored in COMMA.,

HDNGA: The HDNG op code is permitted anywhere
in the source program. When Phase 2 is in core,
Phase 5 must be read in to process the HDNG
statement and then Phase 2 is restored. Further
Phase 2 type op codes may then still be processed.

S20UT: Phase 2 exit. Set up FLIPR to uncondition-
ally read in Phase 6 and transfer to BGASM in Phase
9 to process the current source statement,

Phase 3

Chart: BR

e Save the Symbol Table (optional).
e Print the Symbol Table (optional).
e Punch the Symbol Table (optional).
e Setup FLIPR to read in Phase 4,

S3A: Phase 3 begins at this address. If the SAVE
SYMBOL TABLE option was not selected, the
Assembler branches to S3A2, If there were any
assembly errors (ERCNT non-zero), the Symbol
Table cannot be saved, If the number of entries in
the Symbol Table exceeds the count contained in the
constant at D100, the Symbol Table cannot be saved
(STPSV set non-zero).

SV1: Set up the word count and sector address to
‘save the Symbol Table. Insert the symbol count
(CTSYM) as the first data word of the System
Symbol Table (next word after the sector address).
Temporarily set the file protect address to zero to
allow the System Symbol Table to be written in the
Assembler area on disk.

WRTST: Write the System Symbol Table and then
restore the file protect address.

S3A2: Save the relative sector address of the disk
sector of DSF output, and save the relocation mode
of the assembly, If any condition causes an inhibit
of the Symbol Table save (STPSV non-zero), use
GETER to read the error print routine from Disk,
and print error message (A 04).

S3A3: Go to S3OUT if no symbols in Symbol Table
(CTSYM = 0). Move the Symbol Table that may reside
in the area of the principal print routine and in Phase
11 to Phase 9.

LIPH3: Loop to make move described above. Set up
the word count and sector address to read the prin-
cipal I/0 routine and the principal print routine from
the disk, Go to RSTIO if print routine already in core
(LIST option selected); otherwise, read principal
print routine.

RSTIO: Read principal I/0O routine. Use the PLNIO
routine to blank the I/O buffer. If no Symbol Table
output (print or punch), go to S30UT. Go to NOPRT
if PUNCH SYMBOL TABLE only. Use RPAGE to
restore the page (printer), and then print a blank line
(space). Move the words 'SYMBOL TABLE' to the
1/0 buffer (centered), and print, Print a blank line
to provide a space after the title.

BLNIO: Subroutine to move eighty blanks into the
1/0 buffer.

NOPRT: Common point for print and punch. Start
output of table at the high-core end.

L4: Use SUDMP to print and/or punch a record of
five symbols. If the output is complete, go to
S30UT; if the output address (PARA1) has gone

below the low-end address of the table (LOEND), go
to DOSTO, If the output address is within 14 words
of the breakpoint address caused when part of the
Symbol Table was moved to Phase 9, the disconti ~uity
must be corrected. If it is not within 14 words, go
back to L4, In correcting the discontinuity caused

by the move, the LOEND value will have to be changed
to the address in Phase 9 of the last in-core symbol.
The number of words in the discontinuity (one to
fourteen) are movea to adjoin to the table moved to
Phase 9. The table output now continues from the
part of the table that is now in the Phase 9 area,

L5: Use SUDMP to output a record of five symbols.
If there are any overflow sectors, go to L5A; if
there are no more symbols, go to S30UT; other-
wise, go back to L5,

Section 4: Assembler Program 57

L5A: If the output address (PARA1) has gone below
the value of LOEND, go to DOSTO. Go back to L5
if another complete record of five symbols can be
outputted, Otherwise, set the temporary symbol
count (TCONT) for the exact number of symbols

left in the in-core table., SUDMP will then cause a
record of fewer than five symbols to be outputted.
Set LOEND to a large value before returning to L5,
This will cause the test at L5A to go to DOSTO,

SUDMP: Subroutine to set up the conversion routine
called DUMP, and to print and/or punch the record,
If the punch option has been selected, go to S3PCH
to read (if card). If printing the Symbol Table and
the principal printing device is the 1132, restore
page if printer on channel 12.

S53065: Set-up DUMP to output five symbols if more
than five to go. Otherwise, set-up DUMP to do the
exact number left, Use DUMP to convert to output
format from symbol format,

S3TPR: Print output record and go to S3PC2 to
punch the record if this option is also selected.

S3PC2: Punch the output record. Branch here for
punch only, or after print if print and punch.

DOSTO: Output overflow sectors of table. Set
TCONT equal to 106 for each sector of overflow,

L8: Read overflow sector.

L9: Use SUDMP to output a record of five. First
time through the output address (PARA1) is at high-
core end of overflow sector. If the sector is com-
pleted, decrement the overflow sector count
(OFCNT) by one, and go to 83040 if overflow sectors
remain. If sector is not complete, return to 1.9 to
continue. When overflow sectors are completed,

go to S30UT,

$3040: Set-up for next overflow sector, and return
to L8. Note that each overflow sector consisting of
106 symbols is outputted as 21 records of five sym-
bols and one record of one symbol,

DUMP: Subroutine to convert from name code to
EBCDIC. An M is inserted in front of each symbol
that is multiply-defined, and an A is inserted in
front of a symbol whose value is absolute in a re-
locatable assembly.

NOTE: The characters mentioned should not be

considered to be Error Flag Indicators (see Table 3).

58

Phase 4
Chart: BS
e Print the number of errors in the assembly.

® Move the Disk System format output to the
beginning of Working Storage.

e Return control to the Supervisor.
S4A: Start of Phase 4.

SPCE4: Space printer (or typewriter). Go to
ERMSG if no assembly errors, and go to ONER if
only one assembly error. Use routine starting at
BCO06 to convert the error count from binary to a
sign and five decimal positions starting at OUTP4,

S4110: Move decimal error count into the output
message string (MSG4).

ERMSG: Move error message into I/O buffer. When
there are no assembly errors, the word 'NO' is used
instead of an error count. Print message and go to
S4A2,

ONER: Replace the S in '"ERRORS' by a blank, and
move an EBCDIC one (1) into the error count position
of the message. Go to ERMSG.

S4A2: Move the DSF output down four cylinders to
the beginning of Working Storage. The number of
sectors moved is rounded to the nearest number of
half-cylinders of DSF output, since the move takes
place by half-cylinders.

READD: Loop to read in one sector of DSF output
from its sector position during the assembly, and
then write it with its sector address reduced by 32
(four cylinders). When all sectors of DSF output
have been moved in this fashion, the non-XEQ

switch and the non-DUP switches are restored from
TXQSW and TDPSW respectively. These two tempor-
ary values reflect the effect of assembly errors (if
any) before returning to the Skeleton Supervisor.

Phase 5
Chart: BT, BU

@ Processes OR, EQU, HDNG, BSS, and BES
statements. '

a. Sets the Location Assignment Counter equal
to the operand value of an ORG statement.

b. Assigns the value of the operand to the label
of an EQU statement,

c. Reserves a number of words in core equal
to the operand value for a BSS or BES
statement.

e Prints the heading when a channel 12 indicator
is sensed.

ORGA: Branch table causes ORG processing to
begin here. The SCAN routine is used to evaluate
the operand, and then the ORGBS subroutine (common
to ORG and BSS) is set-up for an ORG entry. ORGBS
will under certain conditions insert an error code in
position 18 of the I/0O buffer. If error M (multiple
definition), simply use first value to change the
Location Assignment Counter. If any other error,
ORG has no effect on the Location Assignment
Counter,

ORGER: Use LDLBL routine to load label in Pass 1
(if any). The label of an ORG will have the value of
the Location Assignment Counter before the ORG
changed it, In Pass 2, the output options will be
performed by going to LDLBL. Return to BGASM
in Phase 9 to process the next statement.

BSSA: Branch table starts BSS (or BES) processing
here. The label value (LABVL) is made even if odd
when an E is present in position 32,

NALGN: The SCAN routine is used to evaluate the
operand, and the ORGBS subroutine is set-up for a
BSS entry. The value of the operand (number of
words reserved by BSS or BES) is added to the label
value and the sum is stored in the Location Assign-
ment Counter. If BES statement (OPCNT --third
word of op code table entry), the label value is set equal
to the new value of the Location Assignment Counter
(last reserved word plus one). The number of words
reserved (Hex) is inserted into positions 9-12 of the
I/0 buffer. Exit at ORGER.

ORGBS: Common subroutine for BSS and ORG proc-
essing. If no error as a result of the operand scan,
go to NOER. If error is present in Pass 2, go to
ER2, otherwise use ERADD to enter the internal
statement number (INTSN) in the 25 word error
table (ERTBL).

ER2: If assembly is absolute, go to NOER2, In a
relocatable assembly, an ORG operand must be
relocatable, and a BSS operand must be absolute.

AB: Modified instruction. Conditional BSC tests for
the condition tested in ER2. The condition codes are
modified by ORG or BSS processing. Conditions are
plus and minus for ORG (branch on condition zero)
and zero for BSS (branch on condition non-zero), If
operand relocation is valid, go to NOER2; otherwise
insert an R (relocation error) in the I/0O buffer and
set the operand value to zero.

NOER: If Pass 1, go to ER2. In Pass 2 use ERSCH
to determine if the internal statement number for this
statement was added to ERTBL in Pass 1. If it was,
insert a U (undefined error) in the I/0 buffer.

NOER2: ORGBS exit.

EQUA: Branch table starts EQU processing here.
Use SCAN to evaluate operand and store the value
returned in the label value word (LABVL). If Pass 2,
go to EQU2, If operand contained an undefined sym-
bol, go to EQUER.

EQLBL: Save relocation value returned from SCAN
in label relocation word (LABRL).

EQUER: Use ERADD to enter the internal statement
for this statement in the error table.

EQU2: Use ERSCH to determine if the internal
statement for this statement was added to the error
table in Pass 1, If it was, insert U (undefined error)
in the I/0 buffer, and set the label value equal to
Zero.

EQUXT: Use LDLBL to enter label in Symbol Table
or to do output options. Return to BGASM in Phase 9
to process next statement.

ERADD: Since any symbol in the operand of an ORG,
BSS, BES, or EQU statement must be previously
defined, a table is built during Pass 1, containing the
internal statement numbers of the above statements
whose operands were undefined. This table, known
as ERTBL is 25 words long, and the address of the
last entry is known as ERPTR,

ERSCH: This subroutine is used to search ERTBL.
If the internal statement number is found in the table,
a switch known as ERSW is set non-zero.

HD5: The GTHDG routine in Phase 9 reads Phase 5
into core and transfers to this label. An entry is
made into the print routine at RPAGE to restore the
page on the printer (dummy entry if print routine is
for Console Printer). When the page restore is

Section 4: Assembler Program 59

finished, the heading is read into the print area
(PAREA) from the first sector of the CIB.

L1: The binary page count (PGCNT) is converted to
decimal and stored in positions 78-80 of the print
buffer. Leading zeros in the page number are
suppressed.,

OUTVP: Increment the page count by one. Set up
the print routine pseudo-transfer vector (TV3) to
enter the print routine beyond the section which
moves the 1/0 buffer to the print buffer, Print the
heading line. Restore the pseudo-transfer vector for
normal entry, and clear the page restore switch
(EJECT). Restore the phase which was in core
before GTHDG read in Phase 5, Return to GTHXT
in Phase 9 to exit GTHDG routine.

HDNG5: 1If Pass 2, and LIST option selected, the
HDNG statement is processed. The HDNG statement
is punched (optional), and then the HDNG operand is
centered, and written on the first sector of the CIB.
If typewriter is print device, the heading line is
typed, preceded, and followed by a line feed. If the
1132 is the print device, GTHDG is used to perform
the new page routine. If HDNGS5 entry is from
Phase 2, Phase 2 is restored, ‘

Phase 6
Chart: BV, BW

e Processes DC statements and all imperative
instruction statements,
a. Converts the operand of a DC statement to
its binary value.
b. Builds machine-language instructions for
all imperative instruction statements.

INSTA: Branch table starts imperative instruction
processing here. The five-bit op code obtained
from the op code table is saved in the instruction
buffer (INSBF). The tag position (33) is examined,
and if it is blank, a branch is made to INST2. A
non-blank tag is tested for validity. If it is nota
0, 1, 2, or 3, a T (tag error) is inserted in the
1/0 buffer. The tag bits, 6-7, are inserted in
INSBF (zero if tag error).

INST2: The format position (32) is examined, and
if it is blank or X a branch is made to SINST. If
the long form of this instruction is not valid (con-
trolled by third word of op code entry), go to FCER
to insert F (format error) in 1/0 buffer and process

60

as a short instruction. If format is I, go to IINST to
process an indirect instruction, and if format is L,
go to LINST to process a long instruction. Any other
format is an error, but since instruction is valid in
the long form, after error is inserted in the I/0O
buffer, Assembler branches to LINST to process as
a long instruction,

SINST: If Pass 2, go to SI2ND; otherwise increment
Location Assignment Counter by one and go to INSXT.

SI2ND: Save the Location Assignment Counter
(TTEMP plus 2), because it must be incremented
before going to SCAN and then restored before going
to DFOUT. The Location Assignment Counter is then
incremented by one (points to next instruction).

DISP: If instruction uses special operand (condition
codes), go to SPOND, Use SCAN to evaluate operand,
If format is non-blank, go to NOMOD (no modification).
If op code is STX, go to MOD (displacement modifi-
cation). If instruction is LDX, LDS, any shift in-
struction, or WAIT, go to NOMOD. For any other
instruction, the tag bits are checked, and if they are
zero, the Assembler branches to NOMOD.

MOD: Displacement modification. The value of the
Location Assignment Counter is subtracted from the
value of the operand and relocation value is made
absolute.

NOMOD: No displacement modification, The dis-

placement must be absolute or an R is inserted in

the 1/0 buffer and the displacement is set equal to
zero. The displacement must be in the range of
minus 128 to plus 127 or an A (addressing error) is
inserted in the I/0 buffer and the displacement is
set equal to zero.

INST3: The displacement is inserted in INSBF, and
the Location Assignment Counter is restored from
ITEMP plus 2. A zero (relocation code for the first
word of a long instruction, or the code for a short
instruction) is inserted in position 6 of the I/0
buffer. INSBF is outputted in hexadecimal to posi-
tions 9-12 of the I/0 buffer, and in binary to the
object output buffer by DFOUT. The Location
Assignment Counter is incremented by one, and if
this is a long instruction, the Assembler goes to
LI3RD (TWOSW non-zero).

INSXT: Uses LDLBL in Pass 1 to load label (if any),
and in Pass 2 to do 1/O options. Returns to BGASM
in Phase 9 to process the next statement,

SPOND: Special (conditional) operand processing.
This section checks each operand character for the
condition codes shown below, and inserts the corre-
sponding condition bits into INSBF for those it finds.
It returns to INST3 when it reaches a blank, or when
it detects an erroneous condition code (C inserted in
1/0 buffer). Shown below is a table of the condition
codes and the bit each sets:

Bit Position Set Condition Indicated

10 Zero (Z)

11 Minus (-)

12 Plus (+ or &)
13 Even (E)

14 Carry (C)

15 Overflow (O)

IINST: Indirect instruction. Inserts indirect ad-
dressing bit (8) in INSBF,

LINST: Long instruction. Inserts long instruction
bit (5) in INSBF. If Pass 2, go to LI2ND; otherwise,
increment Location Assignment Counter by one and
return to SINST plus four to increment (ADCOW) for
second word.

LI2ND: Turn on TWOSW to indicate a long instruc-
tion (for later use). Save Location Assignment
Counter as in short instruction processing, and use
SCAN to evaluate operand. Insert relocation prop-
erty (0 or 1) in position 7 of the I/O buffer and save
relocation bits with the operand value in ITEMP

(2 words). If instruction may have condition codes
(BSC), go to SPOND. Otherwise, return to DISP
plus two to output first word of this instruction.

Note that after the first word is outputted, if TWOSW
is set, the Assembler will branch to LI3RD to output
the second word,

LI3RD: Set TWOSW equal to zero to return to one-
word mode, Output second word (saved in ITEMP)
in hexadecimal to positions 13-16 of the I/O buffer,
and use DFOUT to output the second word and its
relocation indicator bits. Return to INSXT in the
short instruction processing section. '

DCA: Branch table starts DC statement processing
here. If Pass 2, go to DC2ND; otherwise increment
Location Assignment Counter by one and use LDLBL
to load label (if any). Return to BGASM in Phase 9
to process the next statement,

DC2ND: Save the Location Assignment Counter in
DCCN plus 1 before incrementing it by one (it must

point to location of the DC plus one before entering
SCAN), Use SCAN to evaluate operand and then
restore the Location Assignment Counter from DCCN
plus 1, Insert the relocation value of the constant in
position 6 of the I/0 buffer (0 or 1). Output the value
of the constant in hexadecimal to positions 9-12 of
the 1/0 buffer and use DFOUT to insert the binary
value with its relocation indicator bits into the object
output. Go back to DCA plus 4 to exit.

Phase 7
Charts: BX, BY, BZ, CA
) Processes DEC statements,

a, Converts decimal integers to a 31-bit binary
value.

b. Converts fixed-point numbers to a 31-bit
binary value,

c. Converts floating point numbers to a 23-bit
binary value plus an exponent.

° Processes XFLC statements.

a. Converts floating point numbers to a 31-bit
binary value plus an exponent,

DECA1l: The branch table starts DEC processing
here. If this statement is an XFLC, go to XFLCA.
If the Location Assignment Counter value is now odd,
go to ADJCT.

STOLB: Store the Location Assignment Counter in
the label value. If Pass 2, go to DECIN; otherwise
increment the Location Assignment Counter by two
and go to DECCN-4 to exit to LDLBL,

ADJCT; Add one to the Location Assignment Counter
to make it even. Go to STOLB to revise label value.

DECIN: Use FLOTD to evaluate DEC operand. Go to
DECA if non-integer constant, and to DEFXP if inte-
ger, Treat integer as fixed point with a binary place
value of 31,

DECA: If B-value specified, go to DEFXP, Other-
wise form two-word constant in DECBF for output at
DEOUT. (Convert negative constant to complement
form,)

DEFXP: Fixed point section of DEC. Compute the
shift count; go to FLERR if minus; if shift count is
more than 31 go to FLZER. If sign of constant is

plus, shift constant by the first shift count and go to

Section 4: Assembler Program 61

DEOUT. If sign of constant is minus, remove sign
bit, shift right by shift constant, and convert to
two's complement,

DEOUT: Output section of DEC. Insert relocation
code (0) in positions 6-7. Output first word in hex-
adecimal to positions 9-12 of I/0 buffer, and then
use DFOUT to output in binary to Disk System
format. Increment Location Assignment Counter
by one and then output word two of constant in hex-
adecimal to positions 13-16 of I/O buffer. Use
DFOUT to output word two in binary to DSF, and
then increment Location Assignment Counter by
one. Use LDLBL to load label (if any) in Pass 1
and to do I/0 options in Pass 2, Return to BGASM
in Phase 9 to process the next statement,

XFLCA: If Pass 2, go to XFLIN, otherwise incre-
ment the Location Assignment Counter by three and
exit at DECCN-4 to LDLBL,

XFLIN: Use FLOTD to evaluate XFLC operand, If
any B-value specified, go to FLERR. Convert mag-
nitude and sign to complement form., Use DFOUT to
insert the binary characteristic as the first word of
the constant in the DSF, and then convert to hexa-
decimal and insert in positions 6-7 of the I/O buffer.
Increment the Location Assignment Counter by one,
and go to DEOUT plus 5 to output words two and
three.

FLOTD — Floating Decimal: The FLOTD subroutine
converts the operand of a decimal integer, fixed, or
floating point number to their binary equivalents.

A floating point number represented in powers of 10
will be converted to powers of 2, The FLOTD sub-
routine contains a scanning process which converts
the operand to its binary equivalent and a post scan-
ning process which converts from powers of 10 to
powers of 2, Buffers FLE10 - BUF5 are initialized
to zero upon entry to FLOTD; XR3, which is used to
count digits to the right of the decimal point, is also
set to zero,

Scanning Process: This portion of the FLOTD sub-
routine does the following:

1. Converts the decimal integer or the mantissa of
a fixed or floating point number to its binary

equivalent,
(a) If the decimal integer or mantissa is

negative, a /8000 is stored in the FLSGN
buffer (the decimal integer or mantissa is
processed as a positive number.

62

(b) If a decimal point is included in the operand,
a minus one is added to XR3 for each digit
to the right of the decimal point (the operand
is treated as an integer).

(¢) The binary value of the decimal integer or
mantissa is stored into a 5-word buffer
(BUF5) for further processing.

2. The value of a power of 10 exponent (E-type) is
converted to its binary value and stored in
FLE10.

3. The value of a binary point identifier (B-type) is
converted to its binary value and stored in FLB2.

Assume an operand of 4.500 E-1; at the end of

the scanning process the contents of buffers would be:

BUF5
Word 1 Word 2 Woxd 3 Word 4 Word 5

0000 0000 0000 0000 7194
XR3 =-3 FIE10 = -1
FFFD FFFF

At the end of the scanning process, the power of 10
representation is:

(a) A binary mantissa representing an integer
in BUF5,

(b) A binary power of 10 exponent (FLE10).

(c) A binary value equal to the number of digits
to the right of the decimal point (XR3).

The objective of the post scanning process is:

(a) A binary fraction (left-justfied to the binary
point identifier),
(b) A binary exponent using 128 as the zero
© point. Positive exponents will range from
129 (+1) to 255 (+127), and negative exponents
will range from 127 (-1) to zero (-128),

The post scan processing is initialized to convert
to a power of 2 by:

(1) Combining the values of XR3 and FLE10 to
obtain the effective value of the power of 10
exponents. The result is stored in FLE10,

(2) Moving the binary point identifier (decimal
point) from the end of word 5 to the end of
word 2. This is effectively raising the power
of 2 exponent +64,

(3) Set XR3 to represent the initial power of 2
exponent, This is 128 (zero) plus 64 (step b)
or 192,

(4) Shift the mantissa left (normalized) until the
high-order bit is in bit position zero of
word 2., Decrement XR3 by 1 for each bit
position shifted.

After initializing for the post scan processing,
the buffers contain:

BUF5
Word 1 Word 2 Word 3 Word 4 Word 5

0000 8CA0 0000 0000 0000
XR3 = 192 FLE10 = -4
00CO FFFC

The following steps are performed, during the post-
scan process, to convert from a power of 10 to a
power of 2,

1. Reduce the power of 10 exponent (FLE10) toward
zero by:
(a) Dividing the mantissa by 10 if the exponent
is negative and multiplying the mantissa by
10 if the exponent is positive.
(b) Add a1 to FLE10 for each division and sub-

tract a 1 from FLE10 for each multiplication,

2. Normalize the mantissa by shifting the high-
order bit to bit position 0 of word 2,
3. Determine the effective power of 2 exponent by:
(a) Adding a 1 to XR3 for each bit position
shifted to the right,
(b) Subtracting one for each bit position shifted
to the left,
4. Repeat steps 1to 3 until FLE10 is equal to zero,
At the end of the post-scan process the buffers
show:

BUF5
Word 1 Word 2 Word 3 Word 4 Word 5

0000 9000 0000 0000 0000
XR3 = 131 FLE10
0083 0000

Prior to returning to the DEC or XFLC routines, the
contents of word 2 and word 3 are loaded into the
accumulator and extension, and shifted right one to
clear bit position 0 of the accumulator before per-
forming an OR of the sign bit, The mantissa and
sign are then stored in the FLBMN (Binary Mantissa)
buffer,

The contents of XR3 are stored in the FLBCH
(binary characteristic) buffer,

The output of the FLOTD subroutine is:

FLBMN (Mantissa)
4800[/0000

FLBCH (Binary characteristic)

The scanning portion of the FLOTD subroutine is
entered at FLOTD from the DEC or XFLC statement
processing routines.

FLOTD Initializes subroutine.

(a) Resets buffers and switches.

(b) Sets FLSGN equal to /8000 if the
mantissa is negative.

Converts the mantissa to its binary value

and stores the binary value in BUF5,

(a) Checks each digit to determine if
it is numeric and if it is not, goes
to FLSSC.

(b) Converts character by character,
beginning with the high-order digit.

(c) If a decimal point is encountered,
add a -1 to XR3 for every digit to
the right of the decimal point.

(The instruction at FLLP will be
changed from a NOP to an ADD by
the FLSSC routine.)

(d) If BUFS5 overflows indicating the
mantissa is too large, go to FLERR.

Analyzes non-numeric operand characters.

(a) Branch to FLBSC if the character is
a B (binary point identifier).

(b) Branch to FLESC if the character is
an E (power of 10 indicator).

(¢) Modify the instruction at FLLP2 to
ADD if the character is a decimal
point,

(d) Branch to FLFIN when a blank is
found,

(e) Branch to FLERR if the character
is not one of the above.

FLLP

FLSSC

Section 4: Assembler Program 63

FLBSC

FLESC

FL2

FLFIN

FLFNL

FLFNX

64

Initializes for the processing of B-type

exponents.

(a) Set FLNIS to non-zero.

(b) Load the address of FLB2 to
FL3+1.

(c) Go to step (c) of FLESC,

Initializes for the processing of E-type

exponents and processes E and B-type

exponents.

(a) Set FLNIS to non-zero,

(b) Load the address of FLE10 into
FL3+1,

(c) Modify the instruction at FL4 to
ADD if the exponent is positive and
to SUBTRACT if the exponent is
negative,

(d) Go to FL2,

Converts exponents to their binary

value.

(a) If the exponent is an E-type,
convert it to its binary value and
store in FLE10,

(b) If the exponent is a B-type, convert
itto its binary value and store it in
FLB2,

(c) Exit to FLSSC when a character
other than numeric is found.

The post-scan processing is entered at

FLFIN from FLSSC of the scanning

process.

Initializes for the post-scan processing.

(a) Add XR3 and FLE10 and store in
FLE10,

(b) Load XR3 with 192 (128 + 64).

(c) Check BUF5 for a zero condition
and branch to FLZER if zero or
FLFNL is not zero.

This routine determines the direction

of shift and if necessary shifts the

mantissa right.

(a) Check word 1 of BUF 5; if zero, go
to FLFNX,

(b) Branch to the SRT subroutine to
shift the entire contents of BUF5
one position to the right.

(c) Add a1 to XR3.

(d) Repeat steps (b) and (c) until word
1 is zero,

This routine determines if word 2 of

BUFS5 is negative and, if necessary,

shifts mantissa left,

(a) Check word 2 of BUF5; if negative,
go to step (c).

FLFEX

FLXXX

FLZER

FLERR

Phase 8

(b) Branch to the SLT subroutine to
shift the entire contents of BUF5
one position to the left,

(c) Subtract 1 from XR3.

(d) Repeat steps (b) and (c) until
word 2 is negative.

(e) Check the value of FLE10 and if
negative or zero go to step (h).

(f) Subtract 1 from FLE10,

() Branch to the multiply (MPY) sub-
routine to multiply the contents of
BUF5 by 10 and return to FLFNL,

(h) Check FLE10 and branch to FLFEX
if zero.

(i) Add a 1to FLE10,

(j) Branch to the Divide (DIV) sub-
routine to divide the contents of
BUFS5 by 10 and return to FLFNL,

This routine stores the mantissa and

exponent into buffers to be used by the

DEC or XFLC routines.,

(a) Store the contents of XR3 into
FLBCH (binary characteristic).

(b) Load words 2 and 3 of BUF5 into
the accumulator and extension.
Shift right one and insert the
mantissa sign bit. (FLSGN containg
a /8000 if the mantissa is negative.)
Store in FLBMN (binary mantissa).

(¢) Check the binary exponent to
determine if it is greater than 256
or less than 0, If it is, branch to
FLERR. If not, go to FLXXX,

Load XR2 with the address of FLBMN,

Exit via the return address at FLOTD.

Floating zero routine.

(a) Clear buffers and switches.

(b) Set data in FLNIS,

(¢) Go to FLXXX,

ERROR Routine.

(a) Load S (syntax error) into position
18 or 19 of the I/0 buffer.

(b) Go to FLZER.

Charts: CB, CC, CD

® Processes CALL, LIBF, DSA, LINK, EXIT,
and EBC statements.

a.

Converts the operand (subroutine name) to
name code for CALL and LIBF statements.

b. Reserves three words in the program (these
will be filled by the Loader) for a DSA,

c. Generates four words in the object program.
Words 1 and 2 are a long BSI to MONCL +1,
Words 3 and 4 are the program name in
name code for a LINK.

d. Generates a short LDX, tag 0, to MONCL
for an EXIT statement.

e. Reserves the needed storage for the operand
of EBC,

LIBFA Statement: Beginning of LIBF processing.
This label is reached from CALL processing on the
basis of information contained in the third word of
the op code table entry. The relocation bits (in
hexadecimal) are 20 and are saved in INDBT, If
Pass 2, go to CA2ND; otherwise, increment the
Location Assignment Counter by one and go to
CLLXT to exit.

CALLA: Branch table starts CALL processing at this
point. If LIBF (see above), go to LIBFA. Setre-
location indicator bits (in hexadecimal) to 30 and
save in INDBT,

CALLC: 1If Pass 2, go to CA2ND; otherwise, in-
crement the Location Assignment Counter by two
and go to CLIXT to exit,

CA2ND: Use CLLCT subroutine to collect the

name of the call. The name is returned in the
accumulator and extension and, if it is blank
(accumulator equal zero), the Location Assighment
Counter is incremented by one (LIBF) or two (CALL)
before going to CLLXT to exit.

COP: CALL (or LIBF) output. The relocation code
(3 or 2) is inserted in position 6 of the 1/0 buffer
for word one of the call name. The first word of the
name (in hexadecimaljis inserted in positions 9-12,
and DFOUT is used to enter word one (in binary)
with it relocation indicator bits into the DSF. The
Location Assignment Counter is incremented by one
if this is a CALL statement. A zero is inserted into
position 7 of the I/0 buffer, and word two of the
name is inserted into positions 13-16, DFOUT is
used to insert word two of the name into the DSF.
The Location Assignment Counter is then incremented
by one.

CLLXT: Use LDLBL to load label (if any) during
Pass 1, and to do output options during Pass 2,
Return to BGASM in Phase 9 to process the next
statement,

DSAA: Branch table starts DSA processing here., If
Pass 2, go to DS2ND, otherwise increment the
Location Assignment Counter by three, and go to
DSA2-4 to exit.

DS2ND: Relocation code for word one is three and for
word two, one. Use CLLCT routine to collect the
name, Go to DSA2 if the name is all right; otherwise,
increment the Location Assignment Counter by three
and go to DSA2-4 to exit.

DSA2: Insert 3, relocation code for word one of name,
into position 6 of the I/O buffer. Output the first

word of the name (in hexadecimal) to positions 9-12,
and use DFOUT to insert word one (in binary) with its
relocation indicator bits into the