File No. 1130-01
Order No. GA26-5881-6

Systems Reference Library

IBM 1130 Functional Characteristics

Seventh Edition (April 1972)

This is a major revision of, and obsoletes GA26-5881-5 and Technical Newsletters GN34-0033 and
GN34-0009. Material related to the following subjects has been added: a description of the IBM 1131
Central Processing Unit Models 1C, 1D, 5B, 5C, and 5D; a hardware description and programming in-
formation for the IBM 2311 Disk Storage Drive Models 11 and 12; and programming information per-
taining to the IBM System/7 1130 Host Attachment. Other technical changes to the text and illustra-
tions are indicated by a vertical line to the left of the changes.

Changes are periodically made to the information herein; before using this publication in connection
with the operation of IBM systems, refer to the latest 1130 System SRL Newsletter, GN20-1130, for
the editions that are applicable and current.

Some illustrations in thig manual have a code number in the lower corner, This is a publishing control
number and is not related to the subject matter.

Requests for copies of IBM publications should be made to your IBM representative or the IBM branch
office serving your locality,

A form for readers’ comments is provided at the back of this publication. If the form has been removed,
send your comments to IBM Corporation, Systems Publications, Department 27T, P. O. Box 1328, Boca
Raton, Florida 33432. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1968, 1970, 1971, 1972

ii

Preface

Introduction

Applications and Programming
Central Processing Unit and Core Storage
1/O Devices . .
Card Readers and Punches .
Synchronous Communications Adapter (SCA) .
Disk Storage .
Graphic [/O . .
Optical Mark Reader
Paper Tape
Plotter
Printers .
Sensor Based Systems .

CPU Functional Characteristics

Data Formats .
Numeric Data Formats for Arrthmetlc 0peratrons .
Character Codes

Core-Storage Addresses . .

Reserved Core-Storage Locatrons

Instruction Formats .

Effective-Address Generation . .

Short-Instruction Address Generatron
Long-Instruction Address Generation
Summary of Addressing Concepts

Program Registers and Program Indicators

Miscellaneous Machine Registers

CPU Instructions

Symbols and Organization of Instruction Descriptions .

Load and Store Instructions
Load Accumulator .
Load Double
Store Accumulator .
Store Double
Load Index .
Store Index .
Store Status .
Load Status .
Arithmetic Instructions
Add . .
Add Double .
Subtract . .
Subtract Double
Multiply .
Divide .
Logical AND
Logical OR . .
Logical Exclusive OR
Shift Instructions .
Shift Left Accumulator (Or No-Operatron)
Shift Left Accumulator and Extension
Shift Left and Count Accumulator .
Shift Left and Count Accumulator and Extensron .
Shift Right Logical Accumulator .
Shift Right Accumulator and Extension .
Rotate Right Accumulator and Extension
Branch Instructions . .
Branch or Skip on Condrtron . .
Branch and Store Instruction Address Regrster .
Modify Index and Sklp
Wait

<

WWWWWWWWWWN— —

Contents

Execute [/O . .
Input/Output Control Commands (IOCC’s)

1/0 Interrupts

General Purpose of Interrupts .

Starting an I/O Operation .

Interrupt Action

Entering an Interrupt Subroutme

Saving Data Used by the Interrupted Program
Cause of Interrupt . .

Special Considerations for Level 5 Interrupt

Console

Introduction .
Console Printer .
Printing Speed
Data Coding .
Commands
Device Status Word Indrcators
Programming Considerations .
Keyboard Functional Description .
Keyboard Function Keys .
Manual Start Operating Procedure
Keyboard Programming
Console Display Panel
Indicator Displays
Mode Switch
Console Entry Switches
Console Function Lights and Swrtches
Function Lights .
Function Switches .
1131 CPU Usage Meter

Disk Storage .
Storage Capacity

| Disk Cartridge

Data Organization
Data Checking
Single Disk Storage Drive
Access Mechanism .
Timing .
IBM 2310 Disk Storage .
IBM 2311 Disk Storage Drive .
Access Mechanism .
Timing
Programming Disk Storage
I/0 Control Commands
DSW Indicators . . .
Programming Consrderatrons .
Usage Meter .

Punched Card Input/Output Devices .

IBM 1442 CARD READ PUNCH .
Data Coding .
Card Feeding
Card Reading
Card Punching
Program Load
Last Card Sequence
Programming .
1/0 Control Commands
DSW Indicators .
1442 Usage Meter

Contents

. 100
. 101

. 104

. 104
. 104
. 105
. 107
. 109
. 109
. 112

. 114

. 114
. 116
. 116
. 116
. 116
. 116
. 117
. 119
. 119
. 120
. 120
. 121
. 121
. 123
. 124
. 124
. 124
. 125
. 126

. 127

. 127
. 127
. 128
. 129
. 129
. 129
. 129
. 130
. 130
. 131
. 131
. 131
. 131
. 133
. 134
. 134

. 135

. 135
. 136
. 136
. 136
. 137
. 137
. 137
. 137
. 137
. 138
. 139

iii

IBM 2501 CARD READER

Functional Description
Programming

DSW Indicators .

Reader and System Tlmmg
2501 Usage Meter

Paper Tape Input/Output Devices .

Tape Specifications .
Character Code . . .
Program Load from 1134 .

Programming

1/0O Control Commands (IOCC’S) .
DSW Indicators . .

Printers

IBM 1132 PRINTER
Functional Description .

Forms Control
Data Format .

Programming

Printer I/O Control Commands
DSW Indicators .
Programming Notes

1132 Usage Meter

IBM 1403 PRINTER
Functional Description .

Printing .
Spacing and Sklppmg
Control Tape
Programming

DSW Indicators .
1403 Usage Meter

IBM 1627 Plotter

Functional Description .
Programming

I/O Control Commands (IOCC’s)
DSW Indicators .

IBM 1231 Optical Mark Page Reader .
Data Sheet

Data Sheet Termmology
Marking the Data Sheet

Functional Description .

Document Path .

Message Format .

Mark Recognition and Dlscrlmmatlon
Data Flow . . .

Field Checking . .

Alphabetic Coding .

Programming

iv

Program Control Sheet
System Programming
DSW Indicators .
1231 Usage Meter

. 139
. 139
. 140
. 141
. 141
. 142

. 143

. 143
. 143
. 144
. 144
. 144
. 145

. 146

. 146
. 146
. 146
. 146
. 147
. 147
. 147
. 148
. 148

. 149
. 149
. 149
. 149
. 149
. 150
. 150
. 151

. 152

. 152
. 153
. 153
. 153

. 154

. 154
. 154
. 155
. 185
. 185
. 155
. 155
. 156
. 157
. 157
. 158
. 158
. 159
. 160
. 161

IBM 2250 Display Unit .

Functional Description .
Displays .
Graphic Mode .
Character Mode .
Channel Interface Section .
Programming .
Input/Qutput Control Commands
DSW Indicators
IBM 2285 Display Copier .
Usage Meters . .
2250 Model 4 Usage Meter (SAC)
2250 Model 4 Usage Meter (SAC Iy .
1133 Usage Meter .

Storage Access Channel

Functional Description .
Cycle-Steal Priority .
Programming .
I/0 Control Commands .
Special Power Sequencing Cons1derat10ns

Synchronous Communications Adapter .

Binary Synchronous Communications (BSC)
Synchronous Transmit-Receive (STR)
Line Attachment . .
Half-Duplex Operatlon
Functional Description .
Timers
Synchronous Transmlt-Recelve (STR) Operatlon
Binary Synchronous Communications (BSC) Operation
Data Transmission—Binary Synchronous
Programming .
1/0O Control Commands (IOCC)
Timing for SCA Programming .

Overlapping Input/Output Operations and Throughput
Considerations . e e e e
Cycle-Stealing Concept
Direct Program Control (via Interrupt)
Exposure to Loss of Data . .
Device Priority . .
Service Request Lxmltatlons

IBM System/7
Programming .
1/O Control Commands (IOCC)
Interruptions to System/7 .
Interruptions to 1130 .
Appendix A. Character Codes
Glossary .

Index .

. 162

. 162
. 163
. 163
. 163
. 163
. 164
. 164
. 166
. 167
. 167
. 167
. 167
. 167

. 168

. 168
. 168
. 168
. 168
. 170

. 171
. 171

171
172
. 173
. 173
. 174
177
. 179
. 180
. 181
. 182

. 183

. 183
. 183
. 183
. 183
. 184

. 188
. 188
. 188
. 190
. 191
. 192
. 194

. 196

This reference manual contains CPU and I/O programming
information, as well as related capacity and speed data for
the IBM 1130 Computing System. Specific subjects de-
scribed are:

® CPU functional characteristics

® CPU instructions

e [nput/output interrupts

® Console functions

® Input/output devices

® Storage access channel

® Synchronous communications adapter

® Qverlapped input/output and throughput considerations

® Character codes

This publication is intended primarily for programmers who
need to know the functions of the machine instructions,
(related to the assembler language mnemonics), the functions
of attachable I/O devices, and the capacity and timing of
the IBM 1130 Computing System. Because programming
examples herein use 1130 assembler mnemonics, this manual
should be used in conjunction with the IBM 1130 Assembler
Language manual, Order No. GC26-5927, which describes
the syntax of the assembler language as used in the 1130
system.

The reader of this publication should have a working
knowledge of basic terminology and concepts of data pro-
cessing systems. He should also have some experience in a
programming language, preferably the assembler language.
The reader will probably find that a basic background in
communications terminology and concepts is necessary
before he can effectively use the section of this manual
dealing with the synchronous communications adapter.
Certain sections of this manual assume that the reader be
able to convert numbers that are represented in binary
symbols to equivalent numbers represented in hexadecimal
or decimal symbols. Such conversions are explained in
Number Systems, Order No. GC20-1618.

Operator procedures for the CPU console and the 1/0
devices attachable to the 1130 system are described in
IBM 1130 Operating Procedures, Order No. GA26-5717.

All 1130 system publications are listed and abstracted in
the IBM 1130 Bibliography, Order No. GA26-5916.
Basic IBM 1130 Systems Reference Library (SRL) publi-
cations are:

Preface

® General Information
IBM 1130 Configurator, GA26-5915
IBM 1130 System Summary, GA26-5917

® Machine System
IBM 1130 Operating Procedures, GA26-5717

e Input/Output
IBM 1231, 1232 Optical Mark Page Readers, GA21-9012
IBM 2250 Display Unit Model 4, GA27-2723
1BM 2285 Display Copier, GA27-2730
IBM 2501 Card Reader, Models Al and A2, GA26-5892

® Physical Planning Specifications
IBM 1130 Installation Manual—Physical Planning,
GA26-5914
1IBM 1130 Physical Planning Template, GX26-5997

® Programming Systems—General
IBM 1130 Card/Paper Tape Programming System
Operators Guide, GC26-3629

® Symbolic Assembly Systems
IBM 1130 Assembler Language, GC26-5927

¢ FORTRAN
1BM 1130/1800 Basic FORTRAN IV Language,
GC26-3715

® Report Program Generator
IBM 1130 RPG Language, GC21-5002

e Input/Output Control System
1BM 1130 Synchronous Communications Adapter
Subroutines, GC26-3706
IBM 1130 Subroutine Library, GC26-5929

® Monitors ‘
IBM 1130 Disk Monitor System, Version 2—System
Introduction, GC26-3709
IBM 1130 Disk Monitor System, Version 2—Program-
ming and Operator’s Guide, GC26-3717

® Systems Techniques
IBM 1130 FORTRAN Programming Techniques,
GC20-1642

® Reference Handbook
IBM 1130 Reference Summary, GX26-3566

Note. The IBM 1131 Models 4A and 4B, and the IBM 1132
Model 2, are available only in the United States and Canada.

Preface v

Introduction

This manual describes the IBM 1130 Computing System. fabrication, and assembly industries, the 1130 system can be
A brief summary of 1130 system facilities is presented first, be applied to the solution of such data-processing applica-
with more detailed information in subsequent sections. tions as:

e Complex mathematical problems
APPLICATIONS AND PROGRAMMING

The IBM 1130 Computing System is designed for general-
purpose computing, which encompasses engineering, com- e Estimating
mercial, and scientific data-processing applications. This
system is especially suited to individual operation by the
person who requires a solution to a data-processing problem ¢ Simulation

On the other hand, because of the availability both of a
wide variety of input/output (I/O) devices and of extensive e Job cost analysis
programming support, the 1130 system is capable of meet- In processing industries, some of the applications suitable
ing the processing requirements demanded by a broad range for the 1130 are:
of applications that do not require such direct interaction
between operator and computer.

e Operations analysis and scheduling

e Design of machines and other equipment

e Formula blending

IBM makes available control program and programming e Material balance
language facilities for the 1130 system. These facilities are .
basically the following: o Material evaluation
e The FORTRAN programming language, applicable to e Forecasting

engineering and scientific applications
o Unit operations

B

e The RPG programming language, applicable to commer

cial applications The preceding application lists are, of course, not exhaus-

tive; they merely point to some areas in which the 1130

o The assembler programming language, mainly for those system can be used successfully. Many other data process-
who desire more specific, direct control of machine ing jobs in such business activities as transportation, mar-
functions keting, finance, insurance, utility, and distribution are

applicable to solution by the 1130 system.

e A disk-monitor programming system (version 2) that For the availability, method of ordering, and cost infor-
lessens the application programmer’s task of specifying mation of IBM products, whatever the product — machine,
necessary system functions education course, or program — consult with your IBM

representative.

e A card ‘paper-tape programming system that lessens the
applisation programmer’s task of specifying system
functions in a card/paper-tape I/O environment where

For more specific details concerning the disk-monitor or
card/paper-tape programming systems, the FORTRAN,
RPG, or assembler languages, or other program facilities

the f'ull capabilities of the disk-monitor system are not that IBM makes available for use with the 1130 Computing
required System, refer to other System Reference Library publica-
IBM also makes available a variety of specific application tions. These publications are listed and abstracted in the
programs. In the aerospace, construction, engineering, IBM 1130 Bibliography, Order No. GA26-5916.

Introduction 1

CENTRAL PROCESSING UNIT AND CORE STORAGE

The principal unit in the 1130 Computing System is the
IBM 1131 Central Processing Unit (CPU). Very compact
and desk-like in appearance, the CPU (Figures 1 and 2)
houses the system console. The CPU contains core storage
and electronic circuits—circuits that implement such
functions as machine-instruction execution and interrup-
tion actions, and circuits necessary for the attaching of
input/output devices to the system. The console printer,
which operates at printing speeds up to 15.5 characters per
second, is also located on the CPU frame.

Core-storage capacities of the models of the 1131 CPU are
shown in Figure 3. The capacities are in words;a word is
made up of 16 binary-digit positions in the 1130 system.
(Other characteristics of data lengths, formats, and so forth
are in subsequent sections of this book.) Also, in Figure 3,
are listed the core-storage cycle times for the various models.
A core-storage cycle is the time required to read a word from

BR2682

Figure 2. IBM 1131 Central Processing Unit (Model 1C, 1D, 2C, 2D,
3B, 3C, 3D, 5B, 5C, and 5D)

or store a word into core storage. Core-Storage
In addition to the core-storage capacities listed in Figure 1131 CPU g:;::::r(ai?‘e Cycle Time Disk Storage
3, the 1131 Models 2, 3, and 4 (nor Models 1A, 1B, 1C, 1D, Model 16-bit words)*| ‘" mi°’°;*
5B, 5C, and 5D) contain a disk-storage drive that uses an IBM seconds)
2315 Disk Cartridge. This disk arrangement provides on-line 1A 4,096 3.6 No
storage for up to 512,000 words (1,024,000 bytes) of in- 2A, 4A 4,096 3.6 Yes
formation on a single 2315 cartridge. Cartridges, however, 1B 8,192 3.6 No
can be manually changed, thus allowing for unlimited off-line 28,48 8,192 3.6 Yes
storage of data ' 38 8,192 22 Yes
) 5B 8,192 2.2 No
I 1c 16,384 36 No
2C 16,384 3.6 Yes
3C 16,384 22 Yes
5C 16,384 22 No
1D 32,768 3.6 No
2D 32,768 3.6 Yes
3D 32,768 2.2 Yes
|| so 32,768 2.2 No

*The 16-bit word increment of information is accessed during
aread or write operation. This 16-bit word is equivalent to two
8-bit bytes, a term used to describe an increment of informa-
tion in other systems, Consequently, in terms of bytes, the avail-
able storage sizes in the 1130 system are 8,192, 16,384, 32,768,
and 65,536 bytes.

l **For Models 1, 2, 3, and 5, machine cycle time is the same as
storage cycie time. For Model 4, machine cycle time is 5.85 micro-
seconds. Machine cycle time is the time required for the CPU to
perform one step in the execution of an instruction.

BR2683

Figure 3. Storage Capacities and Cycle Times

Figure 1. IBM 1131 Central Processing Unit (Model 1A, 1B, 2A,
2B, 4A, or 4B)

1/0 DEVICES

IBM input and output devices that can be used in the 1130
Computing System are listed in this section. Consult with
your IBM representative for detailed information concerning
the installing of any 1130 system configuration.

Except for the console printer that comes as a part of the
CPU, an attachment feature or feature combination is re-
quired before any I/O device can be connected to and used
with the system. (Refer to the IBM 1130 Configurator,
Order No. GA26-5915.)

Card Readers and Punches

IBM 1442 Card Read Punch Model 6 or 7
IBM 1442 Card Punch Model 5

IBM 2501 Card Reader Model Al or A2

Synchronous Communications Adapter (SCA)

This adapter permits the 1130 system to function as a re-
mote processor terminal communicating with the following
terminals or systems:

e IBM System/360 Models 25, 30, 40, 50, 65, 67 (in
Model 65 mode), 75, or 85 by means of an IBM 2701
Data Adapter Unit or an IBM 2703 Transmission Control
Unit in binary-synchronous-communications (BSC) mode

e IBM System/360 Models 25, 30, 40, 50, 65, 67, 75, or
85 by means of an IBM 2701 Data Adapter Unit in
synchronous-transmit-receive (STR) mode

e IBM System/360 Model 25 by means of its integrated
communications attachment in BSC mode

o IBM System/360 Model 20 by means of its communica-
tions adapter in STR mode

e IBM System/360 Model 20 by means of its communica-
tions adapter in BSC mode

e Another IBM 1130 Computing System by means of that
system’s synchronous communications adapter in BSC
or STR mode

e IBM 1009 Data Transmission Unit in STR mode
e IBM 1013 Card Transmission Terminal in STR mode

o IBM 7702 Magnetic Tape Transmission Terminal in STR
mode

e IBM 7711 Data Communication Unit in STR mode
e IBM 2770 Data Communications System
e IBM 2780 Data Transmission Terminal

Disk Storage
Single Disk Storage (in 1131 CPU, Models 2, 3, and 4 only)

IBM 2310 Disk Storage Model B1 or B2 (up to four drives
on a system)

IBM 2311 Disk Storage Drive Models 11 and 12 (up to two
drives on a system)

Graphic 1/0
IBM 2250 Display Unit Model 4 .

IBM 2285 Display Copier (The 2285 does not require pro-
gram control. It provides paper copy of images displayed on
the 2250.)

Optical Mark Reader
IBM 1231 Optical Mark Page Reader Model 1

Paper Tape
IBM 1055 Paper Tape Punch
IBM 1134 Paper Tape Reader

Plotter
IBM 1627 Plotter Model 1 or 2

Printers

Console Printer (comes as a part of the 1131 CPU)
IBM 1132 Printer Model 1 or 2

IBM 1403 Printer Model 6 or 7

Sensor Based Systems

IBM System/7 (5010 Processor Module Models B2 through
B16)

Introduction 3

CPU Functional Characteristics

DATA FORMATS

In order to be accessible to the program during processing, data must be stored in core storage.
Thus, input job data is read by an input device, stored in core storage, and then processed. Results
(output data) are sent to an output device.

Input data can be represented in a variety of ways depending upon the input medium used. A
medium is the material on which data is recorded. For example, a card that is punched with holes
(which represent data) is a medium; the card can be read by a card reader. (Refer to subsequent
sections for descriptions of the various input devices and the media they use.)

In the 1130 system, data is read from or stored in core storage on a word basis. A word is made
up of sixteen positions, numbered 0 to 15.

Positon—=-0 1 2 3 4 56 6 7 8 9 10 11 12 13 14 15

The left-most position (0) is called the high-order position; the right-most position (15) is called the
low-order position.

Each position can be at a value of 0 (also called off) or 1 (also called on). For example, all 16
positions of a word can be:

Positon—=0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

Value——0 0 0 0 0 0 0 O 0 0 O O O O O O

Or:

Positon—=0 1 2 3 4 5 6 7 8 91011 12 13 14 15

Valug=——1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Or, any combination is possible:

Positon—~0 1 2 3 4 5 6 7 8 9101112131415

Value 10001101011 10001

e
-
(=]
o
-
-
-
-

Or 01 1 000O0TO

Or 1T11100001T1 110011

Each position within a word in core storage is called a biz. Numeric, alphabetic, special-character, or
logical information can be represented by the bit values in a word. Both the combination of the bits
in a word and the intention of the programmer who organizes the program and data in core storage
determine whether the data is numeric, alphabetic, special-character, or logical.

Numeric Data Formats for Arithmetic Operations

Numeric computations in the 1130 system are performed in binary arithmetic by the arithmetic
instructions. In other words, the 1130 operates on binary data to produce binary results.

Position O (the high-order position) of a word specifies whether the rest of the word contains a
positive or negative number. If position O is at a value of 0, then the number in the rest of the word
is positive; if position O is at a value of 1, then the number in the rest of the word is negative.

Position —— o 1 15

0

A value of
zero specifies
a positive number here.

Position ———= 0 1 15

1

L— A value of

one specifies
a negative number here,

The assumption has been made that the reader can when given a numeric value represented by the
symbols in the binary, hexadecimal, or decimal numbering system convert those symbols to an
equivalent numeric value in any of the same systems. For example, the reader should be able to
convert the binary symbols 11100010 to the hexadecimal symbols E2 or to the decimal symbols
226. The reader should also be able to do simple addition or subtraction with numeric values repre-
sented by binary or hexadecimal symbols. Refer to Number Systems, Order No. SC20-1618, for
basic information on binary and hexadecimal numbering systems.

Numeric data can be handled in either single or double precision. Single precision is the single
word binary format just described, where bit 0 is the sign bit and bits 1 through 15 contain a numeric
value.

When a binary number is contained in two successive words in core storage, with the sign in the
leftmost position of the leftmost word, then that number is in double precision format. The left-
most word of the pair of words must be at a core-storage location that has an even address.

Single Precision Format

Position—= 0 1 15

S
t—Sign bit

Double Precision Format

Position —»0 1 15. 0 15
S
L— Sign bit
Word at an even Word at an odd
‘ core-storage address * core-storage address

CPU Functional Characteristics 5

Programming Note: A double-precision number may be stored in core storage starting at an odd
address. But instructions that process double-precision operands use two successive words only if
an even address is specified. If an odd address is specified, the operation is performed with the odd
word twice. Anyone programming the machine to operate in this unusual manner should have an

intimate understanding of the internal workings of the 1131 CPU.

Notice that only one sign position is used out of the 32 available positions in the double-precision
format. In single precision, one position is used for the sign and 15 positions for the number. The
ranges of numeric values that can be represented in single and double precision formats are shown
in binary and decimal system symbology in Figure 4.

In Figure 4, negative numbers are in two’s-complement binary form; the sign position, at a value
of one, signifies the negative number. For example, the single precision number 1111 1111 1111
1111 is shown in Figure 4 as having an equivalent decimal value of -00001 (the left zeros are shown
merely to maintain consistency between the binary and decimal notation shown). But this binary
value is really the two’s complement of negative 1. The true form can be obtained as follows:

Invert {(change each position from 1 to 0):
1M1 11111111 1111
invert
0000 0000 0000 0000
Add 1 to the inverted number:
0000 0000 0000 0000
+1
0000 0000 0000 0001

Negative results are always produced in two’s-complement form.

Single Precision

Binary Decimal

Position Numeric Value
0 (Sign)

] 000 0000 0000 0000 00000
+ to to

0 111 1111 1111 111 32,767

1 000 0000 0000 0000 -32,768
. to to

1 M1 1111 1111 1111 -00001

Double Precision

Binary . Decimal

Position
0 (Sign) Numeric Value

0 000 0000 0000 0000 0000 0000 0000 0000 0000000000
+ to to

o] 1M1 1111 1111 111 1111 1111 1111 111 2,147,483,647

1 000 0000 0000 0000 0000 0000 0000 0000 -2,147,483,648

to to
1 1M1 1111 1111 1111 1111 1111 1111 111 -0000000001

Figure 4. Numeric Value Ranges for Single and Double Precision Operands

Even though the arithmetic instructions handle data only in the binary formats just listed, other
types of arithmetic operations can effectively be performed by use of arithmetic subroutines. These
subroutines are part of IBM programming systems and are described in IBM 1130 Subroutine
Library, Order No. GC26-5929.

Character Codes

There is no fixed internal character code in the 1131 CPU. Conversions from one bit pattern to
another must be performed, however, because many input/output devices are code sensitive. Such
conversions must be done by program routines.

In order to print the letter A, for example, a 1403 printer must receive a bit pattern of 1100100
in the output print record. Other bit patterns cause other characters to be printed. The bit pattern
to the printer comes from positions 1 through 7 or positions 9 through 15 of a word in core storage
(part of an output print record): :

Positon—=0 1 2 3 4 5 6 7 8 91011 12 13 14 15

1100100 110 0 1 00

“A’ to 1403 “A’” to 1403

Not
used used

If the preceding word is part of a print record to the 1403, then AA is printed at two adjacent
print positions.

On the other hand, consider that the bit pattern for the letter A is received in an input record
from the 1442 card reader. One core-storage word is required for each card column read by the
1442. The bit pattern for the A from the 1442 is stored into core storage as follows:

Position— 0 1 2 3 4 5 6 7 8 9 10 1 12 13
1 o0 0 1 0 0 0 0J]O O O O

14 15

“A" from 1442

Clearly, the bit pattern for the A from the 1442 must undergo some conversion before it can be
sent to the 1403 in an output print record.

But even if input data is from the 1442 card reader and output data goes to the 1442 card punch,
conversion of bit patterns may be necessary. Assume, as an example, that two fields in an input card
record are to be added together, and the result is to be punched into a card as output data. The
input data read from the card is in card code, not in binary. This input data must be converted to
binary format before the arithmetic instructions can handle it. (Arithmetic instructions operate
only on binary data.) Then, after the computation of adding the two numbers, the result must be
converted back to card code and sent in an output record to the 1442 card punch.

Note: Any peculiarities or restrictions related to the handling of bit patterns for the 1442, 1403,
or other 1/O devices are in sections in this book that are devoted to those devices. All conversions
of data from one format to another must be program-controlled. Data conversion subroutines are
in IBM programming systems for the 1130 system. For descriptions of the data conversion subrou-
tines, refer to IBM 1130 Subroutine Library, Order No. GC26-5929. Programming methods of con-
verting from one data code to another are not described in this functional-characteristics manual.

CPU Functional Characteristics 7

The various codes used in the 1130 system, via program conversion, are listed in chart form in
Appendix A. The Extended Binary Coded Decimal Interchange Code (EBCDIC) shown in Appendix
A is an eight-bit code that is given for reference because it is used in other IBM systems (for example,
the IBM System/360).

CORE-STORAGE ADDRESSES

Core-storage capacity is dependent upon the 1131 CPU model but, at a maximum, is 32,768 words
(see Figure 3). The address for any core-storage location in an 1131 CPU can be contained in a

16-bit word:
- ADDRESS

In Binary (16 Bits) In Hexadecimal in Decimal
0000 0000 0000 0000 0000 00000
0000 1111 1111 1111 OFFF 4, 095
0001 1111 1111 1111 1FFF 8, 191
0011 11111111 111 3FFF 16, 383
0111 11111111 111 7FFF 32, 767

The core-storage location specified by address 0000 (hexadecimal) is sequentially next to the
highest location in all 1131 models. This means that if a word address that is one greater than the
maximum for a particular system is specified, the location accessed is the location specified by
address 0000 (hexadecimal). This addressing peculiarity is called wraparound.

In fact, any 16-bit address accesses a core-storage location regardless of the core-storage capacity
of the system. The reason for this is that high-order (leftmost) address bits that specify addresses
above the capacity of the system are not used and are ignored. For example, in a system that has
4,096 word locations in core storage, the maximum address is:

0000 1111 1111 1111 (for location 4,095 in decimal notation)

The four leftmost bits (for a 4,096 word capacity system) are ignored during actual addressing.
Therefore, in this same capacity system, location 4,095 is addressed by all of the following addresses:

0000 1111 1111 1111

0001 1111 1111 1111

0100 1111 1111 1111
and so on.

If you use absolute addresses in conjunction with wraparound, you should be aware of the fact
that the core-storage capacity of the system determines the actual location accessed. For example,
assume that wraparound from location 4,095 to location 0000 is desired on a minimum capacity
system. Wraparound does not occur if the same addresses are used on any other system. On the
4,096-word capacity system, wraparound occurs as follows:

) Location
Binary Address Equivalent Decimal Address Accessed
0000 1111 1111 1111 4,095 4,095

add 1 for wraparound

0001 0000 0000 0000 4,096

For an 8,192-word or any larger capacity system, the same addresses result in accessing storage as

follows:

Location
Binary Address Equivalent Decimal Address Accessed
0000 1111 1111 1111 4,095 4,095
+1
0001 0000 0000 0000 4,096

Reserved Core-Storage Locations

All 1131 CPU’s have certain reserved locations in core storage. The reserved locations have the same
addresses regardless of the CPU model:

Core Storage Address

Hexadecimal Decimal Name of Reserved Locations
0001 00001 Index-Register 1 (XR1)
0002 00002 Index-Register 2 (XR2)
0003 00003 Index-Register 3 (XR3)
0008-000D 00008-00013 Interrupt Vectors
0020-0027 00032-00032 1132 Printer Scan Field

You should not use these locations for purposes other than the ones for which they are intended;
if you do, you may lose or destroy data. (Subsequent sections of this manual describe the items
named in the preceding list.)

INSTRUCTION FORMATS

There are only two instruction formats in the 1130. The short-instruction format requires 16 bit
positions; an instruction in the short-instruction format, therefore, requires one core-storage word
location:

Short Instruction

.

| Word

The long-instruction format requires 32 bit positions; an instruction in the long-instruction format,
therefore, requires two core-storage word locations:

Long Instruction

0 15,0 15

Word Word

CPU Functional Characteristics 9

Specifies instruction Format, Added (usually) to the contents of
the register specified by the T bits
to form the effective address of an
instruction or operand.

Specifies the OPeration to
be performed. always 0 in short format
instructions.

Bit
Positions ——

15

Displacement

opP

Tag bits specify a register, the
contents of which are (usually)
added to bits 8-15 (the displacement)
to form an operand or instruction
address. The registers that can be
specified are:

Bits

6 7 Specify

00 Instruction Address Register (IAR)
01 Index Register 1 (XR1)

10 Index Register 2 (XR2)

11 Index Register 3 (XR3)

Figure 5. Short-Instruction Format

A brief summary of what each group of bits represents in the short-instruction format is shown in
Figure 5. Similarly, the significance of bit positions in the long-instruction format is shown in
Figure 6. However, you should refer to the description of a specific instruction in order to find out
how the bits are used in that instruction. Bits 8 and 9 in the short format, for example, specify the
type of shift and not a displacement in certain instructions.

EFFECTIVE-ADDRESS GENERATION
The actual core-storage location at which specific data (or an instruction) is located is identified by
an effective address. In other words, the address of each core-storage location in the 1130 system is
called the effective address of that location. For example, the effective address of the data 0404 in

the following list is 0001.
Data (Hexadecimal) Core-Storage Word Address (Hexadecimal)
FEO1 0000

8424 0002
FFFF 0003

10

The term effective address is used because an address may be directly available or it may be com-
puted, depending upon the operation in progress. The methods of generating effective addresses
are different for short and for long format instructions.

Short-Instruction Address Generation

In the short-instruction format, the tag (T) bits specify a register as follows:

0 4. 5.6 7,8 : 15
OP F Displacement

1 l Specify Register
0 — Instruction Address Register {IAR)

0 1—Index Register 1 (XR1)
1 0— Index Register 2 (XR2)

1 1 — Index Register 3 (XR3)

The value of the displacement (bits 8 through 15 of the instruction) are added to the contents of
the specified register. The result of this addition is the effective address:

Specified Register Contents + Displacement = Effective Address

Specifies the OPeration Specifies instruction Format, The modifier bits have-
to be performed always 1 in long format various uses, depending upon

instructions. the instruction, Refer to the
individual instruction descriptions.

Bit
Positions :
oP F T |'a Modifier Bits Address
Tag bits specify a register, Indirect Addressing is Refer to the “Effective Address
the contents of which are (usually) specified when bit8 =1, Generation’’ section.
added to the value in the second (Refer to the ‘‘Effective Address
word (Address) to form an operand Generation” section of this manual.)
or next instruction address. The items When bit 8 = 0, indirect addressing
that can be specified are (but refer to is not used.
individual instruction descriptions
for details):
Bits
6 7 Specify
00 No Index Register
01 Index Register 1 {(XR1)
10 Index Register 2 (XR2)
11 Index Register 3 (XR3)

Figure 6. Long-Instruction Format

CPU Functional Characteristics 11

Tag Bits = 00 (Instruction Address Register)

The basic purpose of the instruction-address register is to point to each instruction that is to be
executed next. Effective size of the instruction-address register, which is dependent upon the core-
storage capacity of the system, is 12, 13, 14, or 15 bits long,

The maximum addresses in the instruction-address register for the various core-storage capacities
are:

Instruction Address Register Equivalent Core-
(Effective Size and Maximum Value) Storage Address in Decimal
12 bits
1M1 1111 11 4,095
13 bits
T 111 1111 111 8,191
14 bits
11 1111 1111 111 16,383
15 bits
111 1111 1111 111 32,767

When the tag bits specify the instruction-address register, the displacement (from the instruction)
is added to the current value in the instruction-address register in order to generate the effective
address. The instruction-address register at this time contains the address of the core-storage location
that immediately follows the instruction being executed.

For example, a short instruction from the core-storage location specified by address 0500 is being
executed (Figure 7). During execution of this instruction, the instruction-address register is updated
automatically to 0501, the address of the core-storage word immediately following the short instruc-
tion. The value in the instruction-address register is then 0501 when the effective address is generated.

Further assume that the displacement in the short instruction at location 0500 is:

Displacement

Binary Hexadecimal Equivalent

Bit 8 910 11 12 13 14 15
Positions 01111000 78

Short Format Instruction Value in

Being Executed Instruction
Core-Storage
Addressg Address Register
0 45 6 7 8 15 0
501
0500 oP 0j00 78

Displacement

Specify Instruction
Address Register

Effective

Address
0579 0 15
Addressed Core-Storage Word
Contents of Instruction . _ Effective
Address Register + Displacement = agdress
0501 + 0078 = 0579

Figure 7. Positive Displacement (Short-Instruction Address Generation)

Also assume that the core-storage capacity is 4,096 words, and, therefore, the instruction-address
register contains 12 bit positions. To form the effective address, the displacement is added to the
value in the instruction-address register:

Binary
0501 (Hex) from instruction-address register 0101 0000 0001
78 (Hex) from displacement in instruction + 0000 0000 0111 1000
Effective address 0579 (Hex) 0000 0101 0111 1001

The effective address is displaced by a value of 78 from the current value (0501) of the instruction-
address register. This is why bits 8 through 15 of the instruction are called the displacement.

In the preceding example, the value of the high-order (leftmost) bit of the displacement is propa-
gated to the left to form a 16-bit operand (0000 0000 0111 1000) and then added to the value
from the instruction-address register. This is a normal operation that determines whether the dis-
placement is positive or negative with respect to the value in the instruction-address register.

The eight available bits in the short instruction, which collectively form the displacement, provide
a range from -128 words (decimal) to +127 words (decimal) of addressing capability. Whether the
displacement is positive or negative is determined by the value of bit eight — the leftmost bit of the
displacement in the instruction. When bit 8 =0, the displacement is positive:

Positive Displacement Value

Binary Decimal Equivalent
Current value in instruction-address register + 0000 0000 000
' 1o to
0111 1111 127

CPU Functional Characteristics 13

14

When bit 8 = 1, the displacement is negative:

Positive Displacement Value

Binary Decimal Equivalent
Current value in instruction-address register + 1111 1111 -1
to to
1000 0000 -128

The value in the instruction-address register is always considered positive, even if its leftmost bit is
at a value of 1.

Tag Bits = 01, 10, or 11 (Index Register 1, 2, or 3)

When an index register is specified, address generation is similar to that used when the instruction-
address register is specified. Two basic differences, however, are:

1. Each index register occupies a 16-bit word in core storage. (Index-register 1 is in core-storage
word location 0001. Index-register 2 is in core-storage word location 0002. Index-register 3
is in core-storage word location 0003.)

2. Anindex register can be loaded under program control with any desired value.

Any index register can be loaded by the program with either a negative (bit 0 = 1) or a positive
(bit 0 = 0) value. For the addressing scheme described here, however, the value in the index register
is always considered positive; high-order, unused bits beyond the capacity of the system are ignored
(refer to “Core Storage Addresses”).

Figure 8 is an example of a negative displacement used with the contents of an index register to
form an effective address.

Long-Instruction Address Generation

Two types of addressing are defined for long-format instructions: direct and indirect addressing. An
effective address generated in the manner already described for short-format instructions is called a
direct address — short-format instructions, in fact, can perform only direct addressing.

The indirect address ;' A) bit (bit 8) in long-format instructions specifies whether addressing is
direct or indirect:

Indirect Address (1A bit 8) Type of Addressing
0 direct
1 indirect

Direct Addressing (1A Bit = 0)

Here the tag bits can specify an index register (1, 2, or 3) as in short-format addressing,
or no index register (0). The instruction register is not used to compute the
effective-address as it is in the short-format instructions.
When an index register is specified, the second word (address field) of the long-format instruction
is added (Figure 9) to the value in the index register to form the effective address.

Indirect Addressing (1A Bit=1)

In indirect addressing, some word location in core storage contains a value that is the effective
address. The desired effective address must be program-loaded into the word. This location, which
can be any word in core storage, is itself first addressed by direct addressing. Then the contents of
that word become the effective address (Figure 10). v

When the tag bits equal 00, as in direct addressing in long-format instructions, the core-storage
word that contains the effective address is located by the value in the address field in the instruction.

Core-Storage

Address
03C8 0 15
Addressed Core-Storage Word
Value in Index
Register 2
Displacement
0700 0 456 78 15 :
0447
opP o|10 81
Specifies Index
Register 2
Contents of Index + Displacement = Effective Address
0447 + FF81 = 03C8

The leftmost bit of displacement 81
(equals 1000 0001 in binary) is

propagated to the left to form FF81.

Addition then occurs in the CPU to
effectively subtract to produce the
results shown. (A complement
number has been added to the
contents of index register 2.)

Figure 8. Negative Displacement

CPU Functional Characteristics

15

16

Specifies Long Format | nstruction

Core-Storage i
Address B
0 456 789 15 0 15

op]1]0 1|o| | 0401

0200

1 Address

Value in Index
Register 1

Specifies | ndex
Register 1 B

Specifies

" Direct Addressing 0063

Effective Address :

0 15

Addressed Core-Storage Word

0464

Contents of Index Register 1 + Address Field = Effective Address

0063 + 0401 . =0464

Figure 9. Direct Addressing (Long-Format Instruction)

Summary of Addressing Concepts

Exceptions to the general schemes of addressing are shown in Figure 11.

Short-Format Instructions (F=0)

Tag Bits = Specified Register Effective Address (EA)

T=00 Instruction-Address Register (IAR) EA = |AR + Displacement
T=01 Index-Register 1 (XR1) EA = XR1 + Displacement
T=10 Index-Register 2 (XR2) EA = XR2 + Displacement
=11 Index-Register 3 (XR3) EA = XR3 + Displacement

The high-order (leftmost) bit of the displacement determines whether the displacement is effectively
added to or subtracted from the contents of the specified register:

Short Format Bit 8 Value Effective Operation
(Leftmost Bit of Displacement)

=0 Add displacement
=1 Subtract displacement (complement add)

The displacement range is -128 to +127 (decimal) word locations from the value in the specified
register. :

Long-Format Instructions (F=1)

Direct Addressing (14=0):
Tag Bits

T=00
T=01
T=10
T=11

Specified Register

None

Index-Register 1 (XR1)
Index-Register 2 (XR2)
Index-Register 3 (XR3)

Effective Address (EA)

EA = Address field

EA = XR1 + Address field
EA = XR2 + Address field
EA = XR3 + Address field

High-order (leftmost) bits in the generated effective address that are beyond the storage capacity
of the system are ignored.

Indirect Addressing (IA=1): A core-storage word location is specified. The contents of that word
are the effective address. The core-storage word is specified in the same manner as that just described
in direct addressing.

Long Format Index Register 1

Core-Storage
Address
0 15,0 Address Field 15
0400 oP 1 111 0700

Specifies
Indirect
Addressing

Value in Index
Register 1

0081

0781

0940

Effective Address

15

0940

Addressed Core-Storage Word

Figure 10. Indirect Addressing (Long-Format Instructions Only)

CPU Functional Characteristics 17

Instruction

Short Format

Long Format

LDS

The values of bits 14 and 15
of the instruction are used
to set/reset the carry and
overflow indicators.

LDX

The expanded displacement
(16 bits) is loaded into 1AR,
XR1, XR2, or XR3.

The address field is loaded
into AR, XR1, XR2, or
XR3.

The contents of the storage
location specified by the address
field are loaded into IAR, XR1,
XR2, or XR3.

MDX

The expanded displacement
(16 bits) is added to AR,
XR1, XR2, or XR3.

Tag=00: The expanded
displacement (16 bits) is
added to the contents of
the storage location spe-
cified by the address field.

Tag#00: The contents of
the address field are added
to the index register
specified.

Tag=00: The expanded displace-
ment (a 16-bit negative number)
is added to the contents of the
storage location specified by the
address field.

Tag#00: The contents of the
storage location specified by the
address field are added to the
index register specified.

Shift
Instructions

The number of shifted
positions is controlled by
the contents of the six
low-order bits of the .
displacement {or register,
if specified).

used.

STX The effective address The address field is the The contents of the storage
‘ is obtained by adding effective address. location specified by the address
the displacement to field is the effective address.
the 1AR.
WAIT The displacement isnot =~ | +c - o c oo

IAR

XR1

XR2

XR3

18

Instruction Address Register
Index Register 1
Index Register 2

Index Register 3

Figure 11. Exceptions to Effective Address Generation

PROGRAM REGISTERS AND PROGRAM INDICATORS

Instruction-Address Register

The instruction-address register holds the address of the next instruction to be executed. For exam-
ple, assume that the following instruction is being executed:

Core-Storage
Address

0500 Instruction

0501

Instruction Address Register

0501

The instruction-address register contains the address of the core-storage word immediately follow-
ing the instruction being executed. In most cases, this next word is the next instruction to be exe-
cuted. Sometimes, however, the contents of the instruction-address register are changed as a result
of the instruction being executed. Execution of a branch instruction, for example, can cause access-
ing of the next instruction from a core-storage location other than the one immediately following
the current instruction.

The effective size of the instruction-address register depends upon the core-storage capacity of

the system:
Effective Size of Instruction-
Address Register (Bits) Core-Storage Capacity (Words)
12 i 4,096 (decimal)
13 8,192
14 16,384
15 32,768

In short-format instructions when the tag bits equal 00, the contents of the instruction-address
register are used in effective address generation.

Index-Registers 1, 2, and 3

Index-registers 1, 2, and 3, each of which is a 16-bit word location in main storage, are used in
address generation during instruction execution. Refer to “Effective Address Generation” for a
description of addressing concepts.

Each index register, just as any other core-storage word, can contain a positive or negative number.
When bit 0 = 0, the number is positive; when bit 0 = 1, the number is negative.

CPU Functional Characteristics 19

20

Accumulator (ACC)

This 16-bit register is used in arithmetic, shift, logical, and I/O operations.

In arithmetic operations, the accumulator is program-loaded with one of the two operands. Next,
the operation is performed using one operand from core storage and the other from the value
loaded into the accumulator. The result is in the accumulator at the end of the operation. Loading
an operand into the accumulator and then specifying, in an arithmetic instruction, the operation
and the location of the other operand in core storage are program-controlled operations. Develop-
ment of the result in the accumulator is a machine function that is dependent upon the arithmetic
instruction that is executed. The process is summarized in Figure 12. For arithmetic operations
with 32-bit operands or 32-bit results, the accumulator and an accumulator extension are used
(see “Accumulator Extension”).

The accumulator can be loaded from any core-storage word by a load-accumulator instruction.
Contents of the accumulator can be stored into any core-storage word by a store-accumulator in-
struction.

Refer to the specific instruction descriptions for discussions of the ways in which the contents
of the accumulator can be manipulated in shift and logical operations.

The accumulator is also used during I/O operations to hold status information. The status infor-
mation indicates such conditions as:

o An interruption has occurred for a specific I/O device, or

e An [/O device is not ready

Status words are of two types: the interruption level status word (ILSW) and the device status
word (DSW). A status word, ILSW or DSW, is loaded into the accumulator under program control.
(The ILSW’s and DSW’s are described elsewhere in this manuai.)

Accumulator Extension {Q)

This 16-bit register is used in arithmetic operations when 32-bit operands are used or 32-bit results
are produced. The extension is to the right of the accumulator:

0 15.0 15

Accumulator Accumulator E xtension

L High-Order Position L Low-Order Position

For descriptions of how the accumulator and accumulator extension function together, refer to the
sections of this manual devoted to the following instructions:

Instruction Mnemonic
Add double AD
Divide D
Load double LDD
Multiply M
Rotate right ACC and EXT RTE
Shift left ACC and EXT SLT
Shift left and count ACC and EXT SLC
Shift right ACC and EXT SRT
Store double STD
Subtract double SD

Load one operand into accumulator.

Operand A

Operand B

CORE STORAGE

Operand A

Operand B

CORE STORAGE

e

Operand A

Operand B

CORE STORAGE

\

Figure 12. Use of the Accumulator in Arithmetic Operations

Accumulator

Operand A

Perform arithmetic operation (such as operand A plus operand B).

Accumulator

Operand A

Result of arithmetic operation appears in accumulator.

Accumulator

Result

\ Notice that operand A and

operand B are still in their
original core-storage locations.

CPU Functional Characteristics

21

Carry and Overflow Indicators

Operations that affect the carry and overflow indicators are summarized in Figure 13.

The overflow indicator specifies when results of arithmetic operations exceed the capacity of the
accumulator or accumulator plus accumulator extension.

The carry indicator is most useful in shift and logical operations. It can also be useful in program
routines where arithmetic results may exceed the capacity of the accumulator and its extension (in

double-precision arithmetic).

Instruction Carry Indicator Overflow Indicator
A Set to zero prior to execution; set to one by Set to one if sum is greater than the
a carry out of the high-order bit position of capacity of the accumulator. 1f the overflow
the accumulator. indicator is on before execution, its condi-
tion is not changed regardleis of the result.

AD Sameas A, Sameas A.

BSC or Not affected when tested. Reset when tested.

BOSC

BSH Not affected in short format; not reset if Not affected in short format; reset when

tested in long format. tested in long-format.

D Not set, not reset. Set to one when an attempt is made to
divide by zero, or set to one when a quotient
overflow occurs,

LDS Set to the value of bit 14 of the instruction. Set to the value of bit 15 of the instruction.

S Set to one when a borrow occurs beyond Same as A.

the high-order position of the accumulator.
Set to zero prior to execution of the
instruction.
SD Same asS. " Same as A.
SLA " Set to one if the last bit shifted out of the Not set, not reset.
high-order position of the accumulator is a
1; set to zero if the same bit isa 0.

SLC Same as SLCA. Not set, not reset.

SLCA Set to one if the shift is terminated by a Not set, not reset.

1-bit in the high-order position of the

accumulator; set to zero if the shift is

terminated by the count {in CCC) going

to zero (even if a 1-bit is in the high-order

position of the accumulator).
SLT Same as SLA. Not set, not reset.
STS Set to zero. Set to zero.

Note: Instructions not listed in this figure do not affect the carry and overflow indicators.

22

Figure 13. Effect of Instruction Execution on Carry and Overflow Indicators

The actual value of an arithmetic result that exceeds the capacity of the accumulator and its ex-
tension can be determined through combined testing of the carry and overflow indicators. In the
following illustrative examples, only four bit positions are used to demonstrate the principle (the
accumulator and its extension in reality hold 32 bits):

Example 1
Operation Operand Operand
Add 7 (hex) 7 (hex)
In binary notation: In hexadecimal notation:
0111 7
0111 +7
1110 E

In example 1, no carry occurs out of the high-order position. An overflow occurs because the
result is negative (indicated by a value of 1 in the sign bit — the leftmost bit). The desired result of
the addition, however, is a positive number. This can be achieved by appending (via programming)
a high-order zero to the answer: 01110. In this example, the overflow indicator is on as a result of
the operation, but the carry indicator is off.

Example 2
Operation Operand Operand
Add -8 -8
In binary notation: In hexadecimal notation:
1000 -8
+1000 +8
C 0000 -10

In example 2, both a carry-out (C) and an overflow occur. Therefore, both the overflow and carry
indicators are on as a result of the operation. Because the carry indicator is on, a high-order 1
should be appended to get the desired result (in two’s-complement form): 10000.

Example 3

Operation Operand Operand
Subtract -8 +7
In binary notation: In hexadecimal notation:
1000 -8
o 7
B 0001 -F

In example 3, a borrow (B) beyond the high-order position and an overflow occur. Therefore, a
high-order 1 should be appended to the result. (The result is in two’s-complement form.)

CPU Functional Characteristics 23

MISCELLANEOUS MACHINE REGISTERS

24

The registers described here are not under direct program control but function automatically as
required by the operation in progress. Contents of these registers can be displayed in indicators on
the system console. Figure 14 shows the position of the registers in the CPU data flow.

Arithmetic-Factor Register (AFR)

This 16-bit register holds one operand during arithmetic and logical operations. (The other operand
is in the accumulator.) The arithmetic-factor register is also referred to as the D register.

Cycle-Control Counter (CCC)

The cycle-control counter is a 6-bit register that is used primarily to count CPU cycles and control
shift operations.

Operation Register (OP)

This 5-bit register holds the operation code of the instruction being executed.

Storage-Address Register (SAR)

The storage-address register contains the address of each location that is accessed in main storage,
except for data transfers for cycle-steal I/O devices. Such devices provide main-storage addresses in
circuitry separate from the storage-address register. The storage-address register is 12, 13, 14, or

15 bit positions in size, depending upon the core-storage capacity of the system. The SAR is also
referred to as the M register.

Storage-Buffer Register (SBR)

This 16-bit register is the buffer between the CPU and core storage. Every word of data transferred
to or from core storage passes through the storage-buffer register. The storage-buffer register is
also called the B register.

Operation-Tag Register (TAG)

With a 3-bit capacity, the TAG register contains the F (format) and T (tag) bits of the instruction
being executed. The format bit determines the instruction length (short or long) and the tag bits
select the index register.

Temporary Accumulator (TAR)

This 16-bit register, which is the image of the accumulator, is used to store the contents of the
accumulator during effective-address computation. The temporary accumulator is also referred to
as the U register.

Cycle-Steal Control Address

Y

1/0 Output Box|

Core Storage
4K/8K/16K/32K

Storage 15

Address
Register
(SAR)

Y v

Iy [

A

Figure 14. CPU Controls and Data Flow

t 0 Storage 15 0 Instruction 15
¥ Buffer Address
Register Register
| (SBR) (IAR)
1/0 Input Box 4
i [\ Y \ {
0 Arithmetic 15 0 415 718 9|10 cycle 15[14 15
Factor Operation Flag Tag Modifier Control Carry/
Register (OP) (TAG) Counter Overfiow
(AFR) (CCC)
I 1
* j A\ l ‘
0 Temporary 15 0 150 15
Accumulator Accumulator | Accumulator
Register {ACC) Extension
(TAR) (Q)* *Also called EXT.
1/O Area
Function
Modifier

CPU Functional Characteristics 25

CPU Instructions

The 1130 CPU instruction set is made up of five general classes of instructions:

1. Load and store
2. Arithmetic

3. Shift

4. Branch

5. Input/output

Names, assembler mnemonics, and execution times of the instructions are listed in Figure 15.

The execution times can be used by the programmer to calculate whether time-dependent func-
tions can be performed — for example, whether there is sufficient time to execute a specific series
of instructions between the time that an input record is stored in core storage until the next record
from the same device is stored in core storage. Similarly, the execution times are used to calculate
which one of two or more equivalent series of instructions (for example, two or more equivalent
loops) can be executed faster, thus contributing to decreased program execution time.

26

1131 Models 1 and 2 Execution Times (in microseconds)

. Single Word (F = 0) Double Word (F = 1)
Binary
Instruction Mnemonic | OP Code T=00 T=01, 10, or 11 T=00 T=01,10,0r 11
Avg Max. Avg. Max. Avg.’ Max.! Avg.! Max.!
Load and Store
Load ACC LD 11000 7.6 — 11.2 - 10.8 — 148 -
Load Double LDD 11001 11.2 — 14.9 — 14.4 - 18.0 -
Store ACC STO 11010 7.6 — 11.2 — 10.8 — 14.8 -
Store Double STD 11011 11.2 - 14.9 — 14.4 — 18.0 -
Load Index LDX 01100 4.5 - 7.2 — 7.2 - 11.8 -
Store Index STX 01101 7.6 - 11.2 — 11.8 — 15.4 -
Load Status* LDS’ 00100 3.6 - 3.6 - — - - -
Store Status STS 00101 7.6 - 11.2 — 10.8 — 14.8 -
Arithmetic
Add A 10000 8.0 13.0 11.7 16.6 11.2 16.2 15.3 20.3
Add Double AD 10001 12.2 22.0 15.8 25.6 15.3 25.2 19.3 29.5
Subtract S 10010 8.0 13.0 11.7 16.6 11.2 16.2 15.3 20.3
Subtract Double SD 10011 12.2 22.0 15.8 - 256 15.3 25.2 19.3 29.5
Multiply M 10100 25.7 40.0 29.3 43.6 29.3 43.6 329 47.2
Divide D 10101 76.0 | 150.8 79.6 154.4 79.6 154.4 83.2 150.0
AND AND 11100 7.6 — 11.2 - 10.8 - 14.8 —
OR OR 11101 7.6 — 11.2 — 10.8 — 14.8 —
Exclusive OR EOR 11110 7.6 — 11.2 - 10.8 - 14.8 -
Shift Left*, Modifier Bits 8 & 9
No Operation NOP 00010 3.6 — - - - - - -
Shift Left ACC,00 SLA” 00010
Shift Left ACC and EXT,10 | SLT’ 00010
Shift Left and Count
ACC,01 SLCA” 8 00010
Shift Left and Count ACC
and EXT,11 sLC’ 8 00010 3 — 4 - - - — -
Shift Right*,Modifier Bits
8&9
Shift Right ACC,00 or 01 SRA’ 00011
Shift Right ACC and
EXT,10 SRT’ 00011
Rotate Right,11 RTE’ 00011 s 6
Branch
Branch and Store IAR BSI 01000 7.6 - 11.2 - 10.82 = 14.8 =
Branch or Skip on Condition| BSC 01001 3.6 - 3.6 - 7.22 - 11.2 -
Modify Index and Skip MDX 01110 4.5 9.9 11.2 16.2 18.5 234 18.5 234
Wait* WAIT? 00110° 3.6 - 3.6 - - - - -
Input/Output :
Execute 1/0 X10*° 00001 11.2 - 14.8 - 14.4 — 184 —

*Valid in short format only

Notes:

1. Indirect addressing, where applicable, adds one storage cycle

(3.6 usec) to execution time.
2. If branch is taken.

3. One storage cycle + 0.45(N-4). When N <4, only one storage

cycle is used.

4. Two storage cycles + 0.45(N-4), When N<4, only two storage

cycles are used,

5. N > 16: one storage cycle + 0.45(N-19).
N < 16: one storage cycle + 0.45(N-4).
When N = 16, only one storage cycle is used.

[N {el« LN

. N> 16: two storage cycles + 0.45(N-19).

N < 16: two storage cycles + 0.45(N-4).
where N = number of positions shifted,
When N = 16, only two storage cycles are used.

. Indirect addressing not allowed.
. If T =00, functions as SLA or SLT.
. All unassigned OP codes are defined as wait operations.
. If X10 read or write, add one storage cycle.

Figure 15 (Part 1 of 3). 1130 Instruction Set and Execution Times

CPU Instructions

27

1131 Models 3 and 5 Execution Times (in microseconds)

Single Word (F = 0)

Double Word (F = 1)

Binary
Instruction Mnemonic | OP Code T=00 T =01, 10, or 11 T =00 T =01, 10, or 11
Avg. | Max. Avg. Max. Avg.! Max.! Avg.! Max.!
Load and Store
Load ACC LD 11000 4.6 - 6.8 - 6.6 — 9.0 -
Load Double LDD 11001 6.8 - 9.1 - 8.8 - 11.0 -
Store ACC STO 11010 4.6 - 6.8 — 6.6 — 9.0 -
Store Double STD 11011 6.8 - 9.1 - 8.8 - 11.0 -
Load Index LDX 01100 2.7 - 4.4 - 4.4 - 7.2 -
Store Index STX 01101 4.6 — 6.8 - 7.2 - 9.4 T
Load Status* LDS’ 00100 2.2 - 2.2 - - - - -
Store Status STS 00101 4.6 - 6.8 - 6.6 - 9.0 -
Arithmetic
Add A 10000 4.9 7.9 71 10.1 6.8 9.9 9.4 124
Add Double AD 10001 75| 134 9.6 15.6 9.4 15.4 11.8 18.0
Subtract) 10010 4.9 7.9 7.1 10.1 6.8 9.9 9.4 124
Subtract Double SD 10011 75 | 13.4 9.6 15.6 9.4 15.4 20.1 26.1
Multiply M 10100 15.7 | 24.4 17.9 26.6 179 26.6 18.8 28.8
Divide D 10101 46.4 | 92.1 48.6 94.4 48.6 94.4 50.8 91.6
AND AND 11100 4.6 - 6.8 - 6.6 = 9.0 -
OR OR 11101 4.6 - 6.8 - 6.6 - 9.0 -
Exclusive OR EOR 11110 4.6 - 6.8 - 6.6 - 9.0 -
Shift Left*,Modifier Bits 8 & 9 :
No Operation NOP 00010 2.2 — - - - - - -
Shift Left ACC,00 SLA? 00010
Shift Left ACC and EXT,10 | SLT’ 00010
Shift Left and Count '
ACC,01 SLCA" 8 00010
Shift Left and Count
ACC and EXT,11 sLc? 8 00010 3 - 4 - - - - -
Shift Right*,Modifier
Bits 8 & 9
Shift Right ACC,00 or 01 SRA’ 00011
Shift Right ACC and
EXT,10 SRT’ 00011
Rotate Right,11 RTE’ 00011 5 6
Branch
Branch and Store 1AR BSI 01000 4.6 — 6.8 - 6.6 - 9.0 -
Branch or Skip on Condition | BSC 01001 2.2 - 2.2 - 4.4* - 6.8 -
Modify Index and Skip MDX 01110 2.7 6.0 6.8 9.9 11.3 14.3 11.3 14.3
Wait* WAIT? 00110° 2.2 — 2.2 - - - - -
Input/Output
Execute 1/O X101 00001 6.8 - 9.0 - 8.8 - 11.2 -

*Valid in short format only
Notes:

1. Indirect addressing, where applicable, adds one storage cycle

(2.2 usec) to execution time.

2. If branch is taken,

3. One storage cycle + 0.275(N-4), When N <4, only one storage

cycle is used.

4. Two storage cycles + 0.275(N-4). When N <4, only two

storage cycles are used.

5. N > 16: one storage cycle + 0.275(N-19).

N < 16: one storage cycle + 0.275(N-4).
When N = 16, only one storage cycie is used.

28

g)

N > 16: two storage cycles + 0.275(N-19).
N < 16: two storage cycles + 0.275(N-4),

where N = number of positions shifted.

When N = 16, only two storage cycles are used.
Indirect addressing not allowed.

If T =00, functions as SLA or SLT.
All unassigned OP codes are defined as wait operations.
If X10 read or write, add one storage cycle.

Figure 15 (Part 2 of 3). 1130 Instruction Set and Execution Times

1131 Model 4 Execution Times (in microseconds)**
. ’ Single Word (F = 0) Double Word (F = 1)
Binary
Instruction Mnemonic | Op Code| 1 _ g T=01,100r 11 T=00 T=01, 10, or 11
Avg. Max. Avg. Max. Avg.! Max.! Avg.’ Max.’
Load and Store
Load ACC LD 11000 121 - 18.0 - 17.5 — 23.8 —
Load Double LDD 11001 18.0 — 23.8 - 23.4 - 29.2 -
Store ACC STO 11010 121 - 18.0 — 17.5 - 23.8 —
Store Double STD 11011 18.0 — 23.8 - 23.4 — 29.2 -
Load Index LDX 01100 6.8 — 11.7 - 1.7 - 18.5 —
Store Index STX 01101 121 e 18.0 - 18.5 - 24.3 -
Load Status* LDS’ 00100 5.9 - 5.9 - — - — -
Store Status STS 00101 12.1 — 18.0 — 175 - 23.8 -
Arithmetic
Add A 10000 12.6] 19.8 18.4 25.6 18.0 25.2 24.3 315
Add Double AD 10001 189 355 24.8 415 24.3 409 30.6 a47.7
Subtract S 10010 126| 19.8 18.4 25.6 18.0 25.2 24.3 315
Subtract Double SD 10011 18.9| 355 24.8 415 24.3 409 30.6 47.7
Multiply M 10100 414 | 64.8 475 70.6 47.5 70.6 53.1 76.5
Divide D 10101 123.3]243.0 129.1 248.8 129.1 '248.8 135.0 2421
AND AND 11100 121 - 18.0 — 175 —_ 23.8 -
OR OR 11101 12.1 — 18.0 — 175 — 23.8 -
Exclusive OR EOR ‘11110 12.1 - 18.0 - 175 - 23.8 —
Shift Left*,Modifier Bits 8 & 9
No Operation NOP 00010 5.9 - — — - - - —
Shift Left ACC,00 SLA? 00010
Shift Left ACC and EXT,10 | SLT” 00010
Shift Left and Count
ACC,01 SLCA” 8 00010
Shift Left and Count
ACC and EXT,11 SLC? & 00010 3 — 4 - - - - -
Shift Right*, Modifier
Bits 8 & 9
Shift Right ACC,00 or 01 SRA’ 00011
Shift Right ACC and
EXT,10 SRT’ 00011
Rotate Right 11 RTE’ 00011 5 6
Branch
Branch and Store |AR BSI 01000 12.1 — 18.0 - 17.5% - 23.8 -
Branch or Skip on Condition| BSC 01001 5.9 - 59 - 11.7% — 18.0 —
Modify Index and Skip MDX 01110 68| 144 18.0 25.2 29.6 36.9 29.6 36.9
Wait* WAIT? 00110° 5.9 - 5.9 - — - - —
input/Output
Execute 1/0O X101 00001 18.0 — 238 - 23.4 - 295 -

*Valid in short format only

**Execution times are the same as for Models 1 and 2 when either interruption level O or 1 is active.

Notes:

1. Indirect addressing, where applicable, adds one storage
cycle (5.9 or 3.6 usec) to execution time.

2. If branch is taken.

3. One storage cycle + 0.45(N-4). When <4, only one
storage cycle is used.

4, Two storage cycles + 0.45(N-4). When <4, only two
storage cycles are used.,

5. N > 16: one storage cycle + 0.45(N-19).
N < 16: one storage cycle + 0.45(N-4).
When N = 16, only one storage cycle is used.

Figure 15 (Part 3 of 3).

-

6. N > 16: two storage cycles + 0.45(N-19).

© WO

N < 16: two storage cycles + 0.45(N-4),
where N = number of positions shifted.

When N = 16, only two storage cycles are used.
. Indirect addressing not allowed.
. If T=00, functions as SLA or SLT.
. All unassigned OP codes are defined as wait operations.
. If X10 read or write, add one storage cycle.

1130 Instruction Set and Execution Times

CPU Instructions 29

Symbols and Organization of Instruction Descriptions

The following instruction descriptions generally include:

1. The name of the instruction

2. Next, the assembler machine-language menomic

3. The bit structure for both the short and long formats, when applicable. Hexadecimal values
appear under the bit structures. Frequently, a range of values is shown when the instruction
can, in fact, have more than one bit structure for a particular field. (X represents any hexa-
decimal digit.)

4. A description of the function(s) and exceptional conditions of the instruction

5. Ashort paragraph, following the instruction description, that specifies how the carry and
overflow indicators are affected by the instruction.

6. Examples at the end of each instruction. Shown in these examples are the assembler language
coding and the hexadecimal value that is assembled (the X again represents any valid hexa-
decimal digit) with a brief description of the operation. For example, for the load-accumulator

instruction:
Assembler Language Coding
Hex\a/:ﬁf;mal Description of Instruction
Label Operation FIT
21 25 27 30 32{33 35 40
L |_l Dl] D| | sI p' COXX Contents of CSL at EA (I + DISP) are loaded into A

30

In this example, the contents of the core-storage location (CSL) specified by the effective address
(EA), which is determined by the contents of the instruction address register (I) plus the displace-
ment (DISP), are loaded into the accumulator (A). The description is condensed through use of the
abbreviated notation shown to the right of the hexadecimal value.

The symbols used in the instruction examples and the meanings of such symbols are:

Symbol Meaning

A Accumulator

Q Accumulator extension

ADDR or ADDRESS Contents of the address field of a long-format instruction
CSL Core-storage location

DISP Contents of the displacement field in a short-format instruction
EA Effective address (refer to “Effective-Address Generation™)
EA+1 The next word location after the one specified by the EA

I Contents of the instruction-address register

\' Value

XR1 Contents of index-register 1

XR2 Contents of index-register 2

XR3 Contents of index-register 3

X Any valid hexadecimal digit

Pictorial representations appear in the “Description” portion of text for most of the instructions.
The purpose of these illustrations is merely to clarify the main points of the operations. They are
not meant to present all the variations or exceptions that are discussed in the descriptive narrative.
In the pictorial representations, the outlined numerals (@) simply point out the order of the
steps within the illustration (not necessarily the order of steps within an instruction execution) so
that you may follow the presentation more easily; these outlined numerals have no other purpose.

This manual does not present a detailed explanation of assembler-language coding. Rules of assem-
bler-language coding are in IBM 1130 Assembler Language, Order No. GC26-5927, which should be
used with this functional-characteristics manual whenever reference to assembler-language rules is
required.

LOAD AND STORE INSTRUCTIONS LD WP Lowstore

Arith

Shift
Load Accumulator [>t
Branch
Mnemonic 1/0
LD

Short Format

0 OP F T Displacement 15

110000

1 1 11 1 11 P 1 1 1 I

N N R N~
Cc 0-3 X X

L.ong Format

0 OP F T 'A Modifiers 15 0 Address 15
1100 0|1 00000O0O
1 L 1 1 1 1 1 1 1 Ll 1.1 1] 1 b1 1] A 1 1 1.1 I3
S N S M- S S N— S
C 4-7 Oor8 0 X X X X
Description

The contents of the addressed core-storage location replace the contents of the accumulator. Con-
tents of the addressed core-storage location are unchanged by the operation.

Before LD Operation

Addressed Core-Storage Word Accumulator
S — et

ABCD XXXXI

After LD Operation [X = any hexadecimal digit]

Addressed Core-Storage Word Accumulator
P N e
A BCD A B CD
St

Unchanged by operation

There are no addressing exceptions for the load accumulator instruction; all forms of addressing
that are described under “Effective Address Generation” apply to the LD instruction.

Indicators: The carry and the overflow indicators are not affected during an LD operation.

CPU Instructions 31

Examples

21

32

-~

Hexadecimal
Value

Description of Instruction

=3
-

COXX

Contents of/CSL at EA (I + DISP) are loaded into A

-
~
o

CIXX

Contents of CSL at EA (XR1 + DISP) are loaded into A

e
o
-

C2XX

Contents of CSL at EA (XR2 + DISP) are loaded into A

N =

-
-

C3XX

Contents of CSL at EA (XR3 + DISP) are loaded into A

-
-

C400XXXX

Contents of CSL at EA (Addr) are loaded into A

CSO0XXXX

Contents of CSL at EA (Addr +XR1) are loaded into A

N |—

EJEJEJRIRIR IR

-
N
|

C600XXXX

Contents of CSI. at EA (Addr + XR2) are loaded into A

-
-
-

C700XXXX

Contents of CSL at EA (Addr + XR3) are loaded into A

-3
-
=
3

C480XXXX

Contents of CSL at EA (V in CSL at Addr) are loaded into A

e ||

> rlooloofR
O O[O CO]y |4t o=t o

CS80XXXX

Contents of CSL at EA (V in CSL at “Addr + XR1") are

=3
=
=3

-

loaded into A

o oo owwnxm

o [o[o[>

-

?-
ol oo

C680XXXX

Contents of CSL at EA (V in CSL at “‘Addr + XR2") are

loaded into A

Load Accumulator
Assembler Language Coding
Label Operation
27 30
i1 1 L101 1
L Lo, ,
L Lo, ,
11 LlDl 1
1 Lnon 1
1 i 1 LlDl i
d1_ 1 Ll°1 1
[| L|D| 1
A [l i LIDJ 1
Il 1 1 LIDJ A
A 1 y - LIDI 1
Il | _— L1 1
i1 1 LLDI 1

C780XXXX

Contents of CSL at EA (V in CSL at “‘Addr + XR3"") are

- Il

loaded into A

32

Load Double LDD . Load Store
Arith
Shift

Mnemonic
LDD

Branch
110

Short Format

0 OP F T Displacement 15
11001]|0
11 1 1 i M S I T A | 1
—— S~ S~ S——’
C 88 X X

Long Format

0 OoP F T Ia Modifiers 15 0 Address 15
1100 1|1 0000000O0
11 1 1 1 1 0 1.1 1 | W RS T U (U VO Y N NN (NN TR T Y W |
S Pp— N - R—— - PN N -~
o] C-F Oor8 0 X X X X
Description

The accumulator and accumulator extension are loaded with two consecutive words from core
storage. The two consecutive words in core storage are located by the effective address as follows:

1. The first word is at the location specified by the effective address generated during instruction
execution. The effective address should specify an even-word location.

2. The second word is at the word location immediately following the location specified by the
effective address.

L.DD Operation

Addressed Core-Storage

l— Location

Even Address Odd Address

A BCD E F 01

.Accumulator Accumulator E xtension

A B CD EF011

Contents of the two core storage words remain undisturbed as a result of the operation. The accu-
mulator and extension can contain any value before the LDD instruction is executed; however, the
value of the two core storage words appears in the accumulator and its extension at the end of the
operation.

Note: If an odd-word location is addressed first, then the contents of that location are loaded into
both the accumulator and its extension. For example, if an odd-word location contains DFEA
(hexadecimal), and that word is addressed first during execution of an LDD instruction, the DFEA
appears in both the accumulator and its extension. In normal operation, then, the effective address
generated as a result of execution of the LDD instruction should point to an even word location in
core storage.

CPU Instructions 33

There are no addressing exceptions for the LDD instruction; all forms of addressing that are
described under “Effective Address Generation” apply to the LDD instruction.

Indicators: The carry and overflow indicators are not affected during an LDD operation.

Examples

Load Double
Assembler Language Coding
Label Operation F|T Hexadecimal Description of Instruction
Pe Value
21 25| |27 30] |s2]as| s 40
11 L0,0, D,ISP Ly, | O8XX Contents of CSL at EA (1 + DISP) and EA + 1 are loaded into
'} | i 1
[L1 U T N S U AandQ
N L.D,0, I [0,ISP, , , , , |ooxx Contents of CSLat EA(XR1 + DISP) and EA + 1 are loaded
U 111 T T into A and Q
Ldd L,0,0, 2! [0,ISP, ,, , , |caxx Contents of CSL at EA (XR2 + DISP) and EA + 1 are loaded
1o 111 R R R T T into A and Q i
L. 1 JILoD, 3] [0, ISP, ., , , [cexx Contents of CSL at EA (XR3 + DISP) and EA+1 are loaded
S T .| 111 | WO W W S D W | into A and Q
L1 1 L ‘D R Dl L A 10 , DIR l* L4 ., | ccooxxxx Contents of CSL at EA (Addr) and EA+1 are loaded into
1 L1 1 1 1 4.1 1 1 I | 1 1 Aand Q
L L a L,D,D, L|1| JA,D,D.R, , , , , |CD0OXXXX | Contentsof CSL at EA (Addr +XRI) and EA*1 are loaded
P i1 U T S S U N U 1 into A and Q
Lo a1 JeoD, | L|2] [A,DDR, , , , , |CEOOXXXX | Contentsof CSLat EA (Addr +XR2) and EA+1 are loaded
L1 L1 T R O T Y into A and Q
L1 LD,D, L{3] [ADDR, ,, , ., [cPooxxxx | Contentsof CSL at EA (Addr +XR3) and EA+1 are
111 T .t L1 1 1 Lt a1 loaded into A and Q
L LDD, I ADDR, , , , , |CCBOXXXX | Contentsof CSL at EA(V in CSL at Addr) and FA+1 are
1
PE R L1 Ly 4 L 4 a1 4 loaded into A and Q
N (SRR I[I[[ADD,R, , , , , | cosoxxxx | Contentsof CSLat EA (V in CSL at ~Addr +XR1") and
L4 Lt AT T T FEA+1 are loaded into A and Q
Lo LDD, I(2] [ALDDR, , , , , |cEsoxxxx | ContentsofCSL atEA (VinCSLat* Addr +XR2")and
PN T L1 T EA+1 are loaded into A and Q
Cooa Lo, I/3] [ADDR, , , , , |crFsoxxxx | Contentsof CSL at EA (V in CSL at “Addr +XR3") and
PR L | [EA+1 are loaded into A and Q

34

Store Accumulator STO . Load Store
Arith
Shift
Branch
1/0

Mnemonic
STO

Short Format

0 OP F T Displacement 15
1 1 0 1 0 0
1 J R -] | T . |
"v-’ \.\,-./ S~ N
D 0-3 X X

Long Format

0 OP F T IA Modifiers 15 0 Address 15
110101 0000000
] i1 (]] 11 |
\-\z-—’ S—— “\r-/ \‘\f-’ \-w-’ \-w~" \-v-—“ S——
D 4-7 Oor8 0 X X X X
Description

The contents of the accumulator replace the contents of the addressed core-storage location. Con-
tents of the accumulator are unchanged by the operation.

Before STO Operation
Accumulator Addressed Core-Storage Location
S — et =
ABCD X X X X

[X = any hexadecimal digit]
After STO Operation '

Accumulator . Addressed Core-Storage Location
P, ANy P
ABCD A BCD
St

Unchanged by operation

There are no addressing exceptions for the load accumulator instruction; all forms of addressing
that are described under “Effective Address Generation” apply to the STO instruction.

Indicators: The carry and the overflow indicators are not affected during the STO operation.

CPU Instructions 35

Store Accumulator

Examples

Assembler Language Coding

Label Operation | [F|T He"v":l‘:f:'“" Description of Instruction
21 25| |27 30| |32f33| |ss 40

Ly 4 S,T7,0, 0,ISP, \ DOXX Contents of A are stored in CSL at EA (1 + DISP)
L L1 S.T .0, ' D. I .s 1P N N D1XX Contents of A are stored in CSL at EA (XR 1 +DISP)
L. a1 18T,0, 2| ID,ISP, | D2XX Contents of A are stored in CSL at EA (XR2+DISP)
L4 1 S,TJO | 3 D. I ls |P L . D3XX Contents of A are stored in CSL at EA (XR3+DISP)
Lo 18,70, L ADDR, , , D400XXXX | Contents of A are stored in CSL at EA (Addr)
Ly S,T,0, L|!] |JADDR, , , DSO0XXXX | Contents of A are stored in CSL at EA (Addr +XR1)
L. ..1157T0, L|2] |ADDR, , , D600XXXX | Contents of A are stored in CSL at EA (Adds +XR2)
L S,T.0, L{3] |JADDR, , , D700XXXX | Contents of A are stored in CSL at EA (Addr +XR3)

Ly ST0, I ADDR, | D48OXXXX | Contents of A are stored in CSL at EA (V in CSL at Addr)
L.l 1870, I{1{ [A,DDR, ,, DSB0XXXX | Contents of A are stored in CSL at EA (V in CSL at
Ly 4 . Ll s s “Addr +XR1")

L 4o | 1S, T.0, I[[2[ADDR, , , D680XXXX | Contents of A are stored in CSL at EA (V in CSL at “Addr
| 1 L) 11] i J | 1 i +XR2“)
L Ly S.T,0, I|3] [A,D,DR, , , D780XXXX | Contentsof A are stored in CSL at EA (V in CSL at “Addr
Ly L Ly +XR3")

36

Store Double STD . Load Store
Arith
Shift
Branch
1/0

Mnemonic
STD

Short Format

0 opP F T Displacement 15
11011)0

1 1) s I N S T T S |
N—— S N P—p—
D 8-8 X X

Long Format

0 OP F T 'A Modifiers 15 0 Address 15
110111 0000000O
11] 1 11 L1 1 j U W T WO S NN (NN NN U N N | L1
S~ N — N R N—— S S~ [—p—
D C-F Oor8 0 X X X X
Description

The contents of the accumulator and its extension are loaded into two consecutive words in core
storage. These two consecutive words in core storage are located by the effective address as follows:

1. The first word is at the location specified by the effective address generated during instruction
execution. The effective address should specify an even-word location.

2. The second word is at the word location immediately following the location specified by the
effective address.

STD Operation

Addressed Core-Storage

l_- Location

Even Address Odd Address

|o123 4567

Accumulator , Accumulator Extension

0123|4567

Contents of the accumulator and its extension remain undisturbed as a result of the operation.

Note: If an odd-word location is addressed first, the contents of the accumulator are stored into
that location, and the contents of the accumulator extension are not stored. In normal operation,
then, the effective address generated as a result of execution of the STD instruction should point to
an even-word location in core storage. If only the accumulator contents are to be stored into a core-
storage word, then the STO instruction should be used.

CPU Instructions 37

There are no addressing exceptions for the STD instruction; all forms of addressing described
under “Effective Address Generation” apply to the STD instruction.

Indicators: The carry and overflow indicators are not affected during execution of an STD instruction.

Examples

Store Double

Assembler Language Coding

Label Operation F Hex\a/l:;c;ml Description of Instruction
21 25 |27 20! ls2l3s 40

1 S$,T.0, D,ISP, ,, , . | psxx Contents of A and Q are stored in CSL at EA (I+DISP) and
1 1 L1 L1 1 'l 1 1 [1 1 ' J} EA*]
v oo L LIS TD, If ID,L ISP ., . . | poxx Contents of A and Q are stored in CSL at EA (XR1 +DISP)
[R 11 PR N R R W W and EA+1

v 1 .1 1S,T,0, 2 I0, ISP, ,, ,, | paxx Contents of A and Q are stored in CSL at EA (XR2 +DISP)
1 1 1 L1 1 At 1 3 1 1 1 1 and EA+1

e NS 3 0ISP . | vexx Contents of A and Q are stored in CSL at EA (XR3 +DISP)
| S . | | | T W T B N N N and EA+1
Ly 4 S,T,0, L ADDR, ,, . , | DCOOXXXX | Contents of A and Q are stored in CSL at EA (Addr) and

EA+1

A

I 5Th, [[ADDR .

DDOOXXXX | Contents of A and Q are stored in CSL at EA (Addr +XR1)

11 1 1 ['S N O S T I G and EA+1
b0 | ISTD, [JL]2] ADDR . | | bEoXXXX | Contentsof A and Q are stored in CSL a1 EA (Addr +XR2)
L1 L1 [S| and EA+1
e o L ISTD, | [L{3] [ADDR, |, | , | prooxxxx | Contentsof A and Q are stored in CSL at EA (Adds +XR3)
1 1 1 1 i 1 1 A1 1 1] A 1 A | and EA+]
DC80XXXX Contents of A and Q are stored in CSL at EA (V in CSL at
1 L L1 -1 i A I A 1 | i 1 1
1 1 | 1 I 1 1 L 1 1 1 1 1 1 1l Addl’) and EA*‘
L STD, T{I] [AADDR, , , , , | posoxxxx| Contentsof A and Q are stored in CSL at EA (V in CSL at
T B R | 11 'R WS WS G S T N | “Addr +XR1") and EA+1
Ly S.T.0, I12] JAD DR, , , | , | pEBOXXXX | Contentsof A and Q are stored in CSL at EA (V in CSL at
A ' 1 'l 1 1 1 1 1 1 1 1 i 1 1 “Addf *XRZ“) and EA+1
L S$.T.0, I[3] |JADO,R, , , , , | DF8oxXXX | Contentsof A and Q are stored in CSL at EA (V in CSL at
L1 [T | T U N U N “Addr +XR3") and EA+1

38

Load Index LDX . Load Store

Arith
Mnemonic Shift
LDX Branch

1/0

Short Format

0 OP F T Displacement 15
0 1 1 0 0j0
1
\-v—-’ \»—-’ \—v—’ \-w"
6 0-3 X X

Long Format

0 OP F T I, Modifiers 15 0 Address 15
011001 0000000
1.1 11t |
\"V'.’ \..V-/ \..v./ S \—\,-—' \.—\,./ \.\,-/ \._.\,./
6 4-7 Oor8 0 X X X X
Description

The purpose of this instruction is to load the instruction-address register or an index register with a
value. How this is done is dependent upon the format of the instruction. Whether the instruction-
address register or an index register is specified is dependent upon the T bits (in either the short or
the long format):

T Bits (bits 6 and 7 of the instruction) Register
00 Instruction address
01 Index-register 1
10 Index-register 2
1 Index-register 3

When the value is loaded into the instruction-address register, an unconditional branch occurs to
the address loaded.

CPU Instructions 39

For the short-instruction format, the specified register is loaded with an expanded displacement.
The displacement is from the displacement field in the instruction; the value of bit 8 in the instruc-
tion is propagated to the left to form the leftmost 8 bits of the word.

Before LDX Short Format Operation

Specified Register

A
r \ —
0 15

xxxxxxxxxxxxxxxx[x=00r1]

Short Format LDX Instruction
A

Op F T Displacement - 15
01 100|0/0 1]17000000TO0

Specifies index register 1.

After LDX Short Format Operation

Specified Register (for this example, index register 1)
- .\
0 15

11111 1110000000

Displacement (from LDX instruction)
A

4 N
1000000O00O0

Leftmost bit is propagated to the jeft.

For the long-instruction format, when indirect addressing is not specified, the specified register

is loaded with the value in the address field in the in

Before LDX Long Format Operation

Specified register

0 15

X X X X X X X X X X X x X X X X

Add

struction.

[x=00r1]

ress field from L.DX long format

instruction

15 0

Address Field 15

0 000O0O0OO}1 0101

01

111000001

Specifies direct addressing

After LDX Long Format Operation

Specified Register
0 o 15
1 0000O0T1TO01

o1 11

101

When indirect addressing is specified, the contents of the word addressed by the address field are

loaded into the specified register.

LDX Indirect Address Operation

15
Address
Core Storage Word
0
111100001111
kSpecified Register
0 15
111100001711 10000

CPU Instructions

41

Indicators: The carry and overflow indicators are not affected during execution of an LDX instruc-
tion.

Examples

Load Index
Assembler Language Coding
Label Operation FIT Hexva:';loceimal Description of Instruction
21 25 |27 30| |32]33] |35 40
11 1 3 L.Dlx 1 D JI ,s ,P 'L 1 1 60XX Load expanded DISP into the Instruction Register
e (R Il [0DISP, ., ,, |exx Load expanded DISP into Index Register 1
1 4 1 L|01x1 2 Dl I ,SIP. L1 1 62XX Load expanded DISP into Index Register 2
L 1 1 L,D,Xl 3 D.I ls lPl Ll 1 63XX Load expanded DISP into Index Register 3
11 L,0.X, L ADDR, ,, , , | 6400XXXX | Load Addr into the Instruction Register
2o o DX, L]l] [A,DDR, , , , , | 6500xxxx | Load Addrinto Index Register 1
Lo a1 Lox, L{2] |ADDR, , , , , | 6600xXxX | Load Addr into Index Register 2
L1 L,D, Xl L|3 A lD lDLR T 6700XXXX Load Addr into Index Register 3
L L1 L L D ‘X L I A N D R D lR Lol st 6480XXXX Load contents of CSL at Addr into the Instruction Register
Lo LD X, I[I] [A,DDR, , , , , | 6580XXXX | Load contents of CSL at Addr into Index Register 1
L1 L lD N X 1 I[2 A .D ,D 1R L1811 6680XXXX Load contents of CSL at Addr into Index Register 2
L LD X, I|3] JAD,DR, , , , , | 6780xxxxX | Load contents of CSL at Addr into Index Register 3

42

Store Index STX WP| towmstore
. Arith
Mnemonic L —
Shift
§TX Branch
1/0

Short Format

0 OP F T Displacement 15
011010
| I | 1 | W I T N S T |
N—— S - N N -
6 8-B X X

Long Format

0 OP F T lA Modifiers 15 0 Address 15
0110 1|1 0000000O0
| I | 1 | N T N N | ORI SN TN IR U VRS N TRV DU WU I T N A |
N S - S S S— o~ S—— - N
6 C-F Oor8 0 X X X X
Description

Contents of the specified register are stored in the addressed core-storage location. The T bits, in
the short or the long format, specify the register. ‘

T bits Register
00 Instruction address
01 Index-register 1
10 Index-register 2
1 Index-register 3

The contents of the register remain unchanged as a result of the operation.

For the short-instruction format, the addressed core-storage location is always specified by adding
the displacement to the contents of the instruction-address register. The contents of XR1, XR2, and
XR3 are never used to form the effective address in an STX operation.

CPU Instructions 43

44

Pictorially, a short-format STX operation can be shown as follows:

STX Operation (Short Format)

oP F T Displacement 15
01 10 1/0/0 1 7F (hex)

Specifies XR 1 el

Instruction Address Register

0040 (hex)
Core Stora:
Addressge Core Storage Word
15
00BF

11111110000

Stored into
) 15

0000111111110000

Index Register 1

For the long-instruction format, addressing is either direct or indirect in the normal manner. How-
ever, as in the short format of this same instruction, the index registers are not used to form the
effective address. Also, as is the case with other long-format instructions, the instruction-address
register is not used in the long format to form the effective address. The value in the instruction-
address register can, nevertheless, be stored in the specified storage location.

Along-format STX operation with indirect addressing can be represented pictorially as follows:

STX Operation (Long Format, Indirect Addressing)

0 F T 'A 15 0 Address 15
01101[1loo|l1/ 00 ocooo0o0 | 0140 (hex) |

£ Ppoints to

Core Storage ; e
" Address

0 15

o140
0ABO (hex)

Effective address
points to

H . Instruction Address
Core Storage Word Register
0 15 -

OBCD (hex) I

OABO
0BCD (hex)

Indicators: The carry and overflow indicators are not affected during execution of an STX instruc-
tion.

CPU Instructions 45

Examples

Store Index

Assembler Language Coding
Label Operation FlT Hexc:z‘c eimﬂ Description of Instruction
1 25| J27 30| [32]33] |35 40
s N AR DISP, ., ,, |xx | swretincsLaka aspise)

Ly S,T.X, I{ [0, ISP, ., , , [69xx Store XR1 in CSL at EA (I+DISP)
L S,TX, 2] I0,ISP | leaxx Store XR2 in CSL at EA (I+DISP)
L S T.X, 3| 0IsSP , ., |eexx Store XR3 in CSL at EA (I+DISP)

L 4, STX, L ADDR, , , , , |6COOXXXX | Store IinCSL at LA (Addr)
L S T.X, L{I| |JAADDR, , , , , |6D0OXXXX | Store XR1inCSL at EA (Addr)

N ECARS L|2] [ADDR, , , , , [6E0OXXXX [Store XR2inCSL at EA (Addr)
L S TX, L|3[[AADDR, , , , , |6F0OXXXX | Store XR3 inCSL at EA (Addr)

L S.Tin 1 Alo leRl Ly ., | 6C8OXXXX | Storel inCSLat EA (V inCSL at Addr)

Ly S TX, I{I]| [ADDR, , , , , |6D80XXXX| StoreXRIinCSLatEA (V inCSL at Addr)
L L LIST X, I[2] JAADDR, , , , , |6E80XXXX | Store XR2inCSL at EA (V in CSL at Addr)

e R ARY [/3] [ADDR, , , , , [ersoxxxx | store XR3inCSLatEA (V inCSL at Addr)

46

Store Status STS ’I Load Store

M R Arith
nemonic Shift
STS —

Branch
110

Short Format

0 OP F T Displacement 15
00101]|0
L1 1t 1 | S T TN S B S |
2 8-B X X

Long Format

0 OP F T IA Modifiers 15 0 Address 15
001011 000000O0
T | 1 | IO T T N . | | I R N WO N N Y I I N SN N T A |
N—— -~ N N—— N Ne—— - N —
2 C-F Oor8 0 X X X X
Description

The values of the carry and overflow indicators are stored in bits 14 and 15, respectively, of the

addressed core-storage word. Remaining bits of the addressed core-storage word are affected as
follows:

Bits Condition
0 through 7 Unchanged
8 through 13 Reset to zeros

The addressed core-storage word is usually a load-status instruction. Storing the values of the carry
and overflow indicators in this word provides for setting these indicators to the stored values when
the load-status instruction is subsequently executed. This procedure is used when, for example, a
program routine is temporarily interrupted so that some other routine can be executed. Then, before

a return to the interrupted routine, the load-status instruction can be executed to restore the carry
and overflow indicators to their previous values.

CPU Instructions 47

The STS operation can be shown pictorially as follows:

Indicators

Carry Overflow

x vy | [x=00r1;y=00r1.]

Addressed Core Storage
Word

0 op F T 8 13 14 15
oo100ofo1]/ooo0o0o0ofxly

Reset to all zeros.

Indicators are reset as a result of operation.

Carry Overflow

0 0

There are no addressing exceptions for the store-status instruction; all forms of addressing that are
described under “Effective Address Generation™ apply to the STS instruction.

Indicators: Both the carry and the overflow indicators are reset to zero as a result of execution of
the STS instruction.

Examples
Store Status
Assembler Language Coding |
Hexadecimal . .
Label Operation FIT Value Description of Instruction
21 2] |27 30| |32 40

L1 4 S TS, ISP ., , , |o2xx Store status of indicators in CSL at EA (1+DISP)
L a1 ISTS, I |0ISP , , , |2xx Store status of indicators in CSL at EA (XR 1+DISP)
L 1 2 s s ,T N s N 2 D N I .s lP T 2AXX Store statusof indicators in CSL at EA (XR2+DISP)
L.l ISTS, 3 [D,ISP ,,,, | 2xx Store status of indicators in CSL at EA (XR3+DISP)
Lo o L ISTS, L ADDR, ., . | | 2000xxxx | store status of indicators in CSL at EA (Addr)
L. 1 IS TS, L|I] [ADDR, , , , , | 2000xxxx | Store status of indicators in CSL at EA (Addr+XR1)
L . L ISTS, Li2] JADDR, , , , , | 2E00XXXX | Store status of indicators in CSL at EA (Addr+XR2)
L STS, L{3] JA,DD,R, , , , , | 2F00xxXxX | Store status of indicators in CSL at EA (Addr+XR3)
L 2 1 s 1T ls L I A JD lD lR L a 2C80XXXX Store status of indicators in CSL at EA (V in CSL at Addr)

N T35, II1] JALDDR, , , , , | 2080xXXX | Store status of indicators in CSL at EA (V in CSL at “Addr
S N T T | N T U B W U I ¥ +XR1™)

1.1 1 s IT ns 1 I 2 A lD .D .R L1l i 2E80XXXX Store status of indicators in CSL at EA (V in CSL at “‘Addr
PR L U N T U T | +XR2")
S s 1T ls 1 I 3 A .o .D JR L1 Lt 2F80XXXX Store status of indicators in CSL at EA (V in CSL at “*Addr
W S U | [| U U G T U G N | +XR3")

48

Load Status

Mnemonic

LDS

Short Format

0 OP

F T Displacement 15

00100
A

0{0 0]jJ0000O00O0
| S T S T

1 1]

D

This instruction sets or resets the carry and overflow indicators. Bits 14 and 15 of the instruction

N N S - N
2 0 0 0-3

escription

set or reset the indicators as follows:

Bit 14 Bit 15 Carry Indicator
0 0 reset (=0) reset (=0)
0 1 reset (=0) set (=1)
1 0 set (=1) reset (=0)
1 1 set (=1) set (=1)

Set or Reset

LDS WP,

Load Store

Overflow Indicator

Arith
Shift
Branch
110

This instruction is not valid in the long format. If an attempt is made to execute a load-status in-
struction in which the F bit = 1, the instruction is still treated as a short-format instruction by the
system.
A load-status instruction is usually the core-storage word addressed by a store-status instruction.
The load-status instruction is subsequently executed before a return to the routine originally inter-
rupted — the routine whose status was stored by the store-status instruction.

Core storage is not addressed as a result of execution of a load-status instruction.

Indicators: The carry and overflow indicators are affected as described under the description of
this instruction.

Exarhp/es

Load Status

Assembler Language Coding

Label Operation FIT Hm’"" Description of Instruction
21 35__27 30 2]33) 40

[S N L10n51 0. T B 1 2000 Set CARRY and OVERFLOW indicators OFF
L. 1 ILDs, N) Set OVERFLOW ON and CARRY OFF-
L. 1 ILps, T . Set OVERFLOW OFF and CARRY ON
L4 L.D.S, 3, L1 L 2003 Set CARRY and OVERFLOW indicator ON

CPU Instructions

49

50

Intentionally Blank

ARITHMETIC INSTRUCTIONS : Load Store
A Arith
Add ’T
Mnemonic Branch
A [I{e}

Short Format

0 opP F T Displacement 15
10000|0
1 L 1 1 1 L L 1 1 S 1
S—— e S S -
8 0-3 X X

Long Format

0 OP F T 'A Modifiers 15 0 Address 15
10000(1 00000O0O0
11 1 1 1 1§ 1 1 1 1 | SN W NN W N N SN U S S N | Ll
N S N N - S N S -
8 4-7 Oor8 0 X X X X

Description (Add)

The basic purpose of this instruction is to add two 16-bit operands. One of the operands must first
be loaded into the accumulator, such as by means of execution of a load-accumulator instruction.
The add instruction then provides the address of the other operand, which must be in main storage.
Addition takes place, and the result is placed in the accumulator:

(Sign bit 0 = O specifies + number.)

0000 0000 1001 1101 Contents of accumulator
+0 000 0010 0011 0101 Contents of storage location addressed by add instruction
00000010 1101 0010 = Result loaded into accumulator

Although the result replaces the contents of the accumulator, the contents of the addressed storage
location remain unchanged.

The result of the addition is either positive or negative, depending upon the magnitude of the values
used and whether the signs of the two operands are the same:

+plusa+=+
- plusa- =-
+ plus a- =sign of the larger operand
- plus a + = sign of the larger operand

The value in the accumulator is positive if the leftmost bit is at a value of O; the value in the accu-
mulator is negative if the leftmost bit is at a value of 1. Negative numbers are in two’s-complement
form.

There are no addressing exceptions for the add instruction; all forms of addressing that are described
under “Effective Address Generation™ apply to the A instruction.

Indicators: The carry indicator is automatically reset to O at the beginning of an add-instruction
execution. If, during the add-instruction execution, a carry-out of the high-order (leftmost)

position of the accumulator occurs, then the carry indicator is set to 1; if no such carry-out of the
high-order position occurs, the carry indicator remains at its reset condition of 0. It can subsequently
be set or reset by the various actions listed under “Carry and Overflow Indicators” (see Figure 13).

CPU Instructions 51

The overflow indicator must be reset to 0 if it is to be used during execution of an add instruction.
If the overflow indicator is at a value of 1 at the start of an add operation, it is not changed regard-
less of the result of the add operation. If the overflow indicator is at a value of zero at the start of an
add operation, it is set to a value of 1 if the addition produces a result that exceeds the capacity of
the accumulator. For example, when the following two 16-bit operands are added together,

S

0 100 0000 0000 0000 Operand in accumulator — a positive number
+0 100 0000 0000 0000 Operand in main storage — a positive number

1 000 0000 0000 0000 = Result in accumulator — a negative number

(S = Sign bit)

the result is greater than the capacity of the accumulator because the accumulator specifies a nega-
tive result (the leftmost bit is at a value of 1). In this case, the overflow indicator is set to 1. The
carry indicator, however, is not set to one because a carry-out of the high-order position of the
accumulator does not occur. Refer to “Carry and Overflow Indicators” for a discussion of how these
two indicators can be used together in certain arithmetic operations.

The maximum capacity of the accumulator is:

Power-of-2 Notation Decimal Notation Hexadecimal Notation
+215 .9 +32,767 + 7FFF
- 215 - 32,768 - 8000
Examples
Add

Assembler Language Coding . .

Label Operation FlT Hexvagz::enmal Description of Instruction

21 25| [27 30| |s2]33] s 40

Ly A |, D,ISP, ., , ,]soxx Add contents of CSL at EA (I+DISP) to A
Ly A il [0,L,S,P, ,, ., , |sxx Add contents of CSL at EA (XR 1+DISP) to A
L A 2| ID,I.SP, , , , ., |s&xx Add contents of CSL at EA (XR2+DISP) to A
Ly A 3] D ISP, ., , , , |sxx Add contents of CSL at EA (XR3+DISP) to A
Lo a] A L AD DR, , , , , |8400XXXX | Addcontentsof CSL at EA (Addr) to A
oo LA L[] [ADDR, |, |, | 8500XXXX | Add contents of CSL at EA (Addr+XR1) to A
Ly 4 A Li2] (A,D,D,R, , , , , | 8600XXXX | Add contentsof CSL at EA (Addr+XR2) to A
L4 L A L{3] |[A,D,D,R, , , , , |B8700XXXX | Add contentsof CSL at EA (Addr+XR3) to A _
Ly Al L I ALD DR, , , , , |8480XXXX | Add contentsof CSL at EA (V in CSL at Addr) to A

Ly A I{1] [A,D,D,R, , , , , |B8580XXXX | Add contentsof CSL at EA (V in CSL at “Addr+XR1") to A
oo, L A] [T[2] [AD,DR, , , , , | 8680XXXX | Addcontentsof CSL at EA (V in CSL at “Addr+XR2") to A
Loiaa A I{3] [ADDR, , , , , [8780xxxx | Addcontentsof CSL at EA (V in CSL at “Addr+XR3") to A

52

Add Double Load Store

. AD . Arith
Mnemonic T
AD

Branch
1/0

Short Format

0 OP F T Displacement 15
1000 1|0
1 1 1 A1 1 i I} 1 1 1 1 '
S—— S S S
8 8-B X X
Long Format
0 OP F T IA Modifiers 15 0 Address 15
1000 1|1 0000000
1 L 1 A 1 1 i 1 A 1 J L 1 1 i L 1 1 i 1 L 1 1 1 11
S N S e S N
8 C-F Qor8 0 X X X X

Description

The purpose of this instruction is to add two 32-bit operands. One of the operands must be loaded
into the accumulator and accumulator extension before the add-double operation is performed. A
load-double instruction can be used to do this.

0 15 0 15
0004 8900

" Accumulator Accumulator Extension

At an even

word-address 0 15 0 15

0004 8900

The add-double instruction addresses another operand in core storage; this operand must also be at
an even-word address, just as the leftmost word addressed by the load-double instruction.

Except for the size of the operands, the add-double operation proceeds in much the same manner
as the add operation:

1. The result of the add-double operation is placed in the accumulator and accumulator extension.
2. Result of the addition is either positive or negative:

+plusa+=+
- plusa- =-
+ plus a - = sign of the larger operand
- plus a + = sign of the larger operand

CPU Instructions 53

54

3. The value in the accumulator and accumulator extension has a sign as signified by bit 0 in the
accumulator. The leftmost bit of each operand determines that operand’s sign.

4. The operand in core storage is unchanged by the operation. Pictorially, the operation proceeds
as follows:

Add Double Operation

Operand in core storage
starts at an even word
address.

5050 0099

Accumulator
Accumulator Extension

0 15 0

15

0500099 + 00048900

Accumulator
Accumulator Extension

0 150 15

505 4 89909

If the add-double instruction addresses an operand starting at an odd address, the contents of that
single word are added to both the accumulator and to the accumulator extension.

There are no other addressing exceptions for the add-double instruction; all forms of addressing
that are described under “Effective Address Generation™ apply to the AD instruction.

Indicators: The carry indicator is automatically reset to O at the beginning of execution of an add-
double instruction. If, during the add-double execution, a carry occurs out of the leftmost position
of the accumulator, then the carry indicator is set to 1;if no such carry-out occurs, the carry indica-
tor remains reset. It can subsequently be set or reset by the various actions listed under “Carry and
Overflow Indicators™ (see Figure 13).

The overflow indicator must be reset to Q if it is to be used during execution of an add-double
instruction. If the overflow indicator is at a value of 1 at the start of an add-double operation, it is
not changed regardless of the result of the operation.

If the overflow indicator is at a value of zero at the start of an add-double operation, it is set to a
value of 1 if the addition produces a result that exceeds the capacity of the accumulator plus the
accumulator extension. For example, assume that the following two negative numbers are added
together:

S
1 000 0000 0000 0000 0000 0000 0000 0000

+1.000 0000 0000 0000 0000 0000 0000 0000
C 0 000 0000 0000 0000 0000 0000 0000 0000

(S =ssign bit; C = carry out of high-order position.)

This result is greater than the capacity of the accumulator plus accumulator extension because
adding the two largest negative numbers should not yield a positive zero, which is the result in the
accumulator plus its extension. In this case, the overflow indicator is set to 1. The carry indicator
would also be set to 1 because of the carry-out of the leftmost position of the accumulator. Refer
to “Carry and Overflow Indicators” for a discussion of how these two indicators can be used together
in certain arithmetic operations.

Maximum capacity of the accumulator and accumulator extension is:

Power of 2 Notation Decimal Notation Hexadecimal Notation
+221.1 2,147,483,647 7FFFFFFF
- 23 2,147,483,648 80000000
Examples
Add Double
Assembler Language Coding '
Hexadecimal . .
Label Operation FIT Value Description of Instruction
21 27 30| |32]33] a5 40
Ly AD, | D,ISP ., b, |88xx Add contents of CSL at EA (I+DISP) and EA+1 to A and Q
L AD, | I D,ISP ,, , , |8xx Add contents of CSL at EA (XR1+DISP) and EA+1 to A
L1 1 L1 1 A 1 Il i 11 1 1 .ﬂd Q
Ly AD, , 2| ID,LISP, , , , , |8Axx Add contents of CSL at EA (XR2+DISP) and EA+1 to A
11 1 [| | W VS U SR SN N S § and Q
L AD, ., 3] |0,LISP, , , , , |®BXx Add contents of CSL at EA (XR3+DISP) and EA+1 to A
1 I 1 A 1 1 i | N W i 1 1 1 and Q
Ly AD, | L ADDR, ,., , , |B8C00XXXX | Add contents of CSL at EA (Add) and EA+1 to A and Q
1.1
AD L ADDR \ . 8DO0OXXXX | Add contents of CSL at EA (Addr+XR1) and EA+1 to A
I S| 11 1 i Tl Bl T N | 1
and Q
Ll 1 1 1 1 i1 1 1 1 1 § 1
A D L L 2 A.D .DlR Ly s g SEQOXXXX Add contents of CSL at EA (Addr+XR2) and EA+] to A
1 1 i 1
1 1 1 U W | i1 1 | 12 1 1 and Q
L AD, , L|3| |ADD,R, , , , , |B8FOOXXXX | Add contents of CSL at EA (Addr+XR3) and EA+1 to A
1
L4 1 L1 1 | N U S W B S W | and Q
L AD, |, I ADDR, , , , , [8scsoxxxx | add contents of CSL at EA (V in CSL at Addr) and EA+1
1 Il 1 1 1 | W U U N S | 11 to A and Q
A [)1 . Il A l[) .D.R. U4 4, | 8D8OXXXX | Add contents of CSL at EA (V in CSL at “Addr+XR1") and
1 1 L 1
EA+]1 to A and Q
11 L j . | j W TN NS S B | 11
L AD | I[2] [AD.DR, |, , , | ®E80XXXX [Add contents of CSL at EA (V in CSL at “Addr+XR2")
L1 L1 P ST S S S S and EA+1 to A and Q
Ly AD, 1/3] JA,DDR, , , , ., | 8F80XXXX | Add contents of CSL at EA (V in CSL at “Addr+XR3")
NS L1 U S R S U A S | and EA+1 to A and Q

CPU Instructions 55

Subtract

Mnemonic
S

Short Format

0 OP F T Displacement 15

10010]|0

S—— N - S—— S
9 0-3 X X

Long Format

0 OP F T 'A Modifiers 15 0 Address 15
100101 0000000
1 A i i 1 1 1 1 1 i A 1 i 1 1 1 i 1 1 1 o L 1 i '
R— N pp— Rp— N N N - S
9 4-7 Oor8 0 X X X X

Description

The subtract instruction is used to subtract one 16-bit operand from the 16-bit operand in the
accumulator. The accumulator must first be loaded with the 16-bit value; then the subtract instruc-
tion addresses the other operand during execution of the subtract instruction. The operand in core
storage and the operand in the accumulator can have the same or different signs; negative numbers
are in two’s complement form.

Result of the subtraction is in the accumulator at the end of the operation. The operand addressed
in core storage by the subtract instruction is unchanged by the operation. Several examples are:

Example 1

0 000 0000 0000 0011 = Operand in accumulator
-0 000 0000 0000 0010 = Operand addressed by subtract instruction
0.000 0000 0000 0001 = Result placed in accumulator

(In decimal: 3-2=1)

Example 2

1 000 0000 0000 0011 = Operand in accumulator
-0 000 0000 0000 0010 = Operand addressed by subtract instruction
1 000 0000 0000 0001 = Result placed in accumulator

{In decimal: -32,765 - 2 =-32,767)

Example 3

1 000 0000 0000 0011 = Operanci in accumulator
-1 000 0000 0000 0000 = Operand addressed by subtract instruction
0 000 0000 0000 0011 = Result placed in accumulator

(In decimal: -32,765 - (-)32,768 = -32,765 + 32,768 = +3)

56

Load Store
S Arith

Shift

Branch
1/Q

The sign of the result is dependent upon the signs and magnitudes of both operands. Possible com-
binations (where operand B is always numerically greater than operand A, regardless of signs) are:

Operand in Accumulator Operand in Core Storage Sign of Result in Accumulator

+B - (+)A =

+B - (-)A = +
-B - (+)A = -
-B - (-)A = -
+A - (+)8 = -
+A - (-18 = +
<A - (+)B = -
-A - (-)8 = +

There are no addressing exceptions for the subtract instruction; all forms of addressing that are
described under “Effective Address Generation” apply to the S instruction.

Indicators: The carry indicator is automatically reset to O at the beginning of execution of a subtract
instruction. If, during execution of the subtract instruction, a borrow occurs beyond the leftmost
position of the accumulator, the carry indicator is set to 1 (on). It can subsequently be set or reset
by the various actions listed under “Carry and Overflow Indicators™ (see Figure 13).

The overflow indicator must be reset to 0 if it is to be used during execution of a subtract instruc-
tion. If the overflow indicator is at a value of 1 at the start of a subtract operation, it is not changed
regardless of the result of the subtract operation.

If the overflow indicator is at a value of O at the start of an add operation, it is set to a value of 1
if the subtraction produces a result that exceeds the capacity of the accumulator. For example,
assume that the following subtraction operation is performed:

S

1 000 0000 0000 0000 Operand in accumulator — a negative number
-0 000 0000 0000 0001 Operand in main storage — a positive number
01111111 11111111 Result in accumulator — a positive number

(S = sign bit)
In the first place, subtracting any positive number from any negative number should produce a nega-
tive result. But the sign bit is at a value of 0 in the result, and an overflow has occurred. The correct
answer is obtained by appending (via programming) a 1 to the left of the sign bit. The overflow indi-
cator is turned on (set to 1) for this operation. Refer to “Carry and Overflow Indicators” for a dis-
cussion of how these two indicators can be used together in certain arithmetic operations.

Maximum capacity of the accumulator is:

Power of 2 Notation Decimal Notation Hexadecimal Notation
+215 .9 +32,767 +7FFF
- 218 -32,768 - 8000

CPU Instructions 57

Examples

Subtract
Assembler Language Coding
Label Operation FIT Hexc:'ouc eimal Description of Instruction
21 25| |27 30| [32]33] Iss 40
L1 S, ., . 0,ISP ., , , b |ooxx Subtract contents of CSL at EA (I+DISP) from A
L4 S, , |1 [0,I,SP, , , , , [o1xx Subtract contents of CSL at EA (XR1+DISP) from A
L 4 S, ., 2| ID,LISP, , , , , |92xx Subtract contents of CSL at EA (XR2+DISP) from A
N N 3] D, ISP, , , , , [93xx Subtract contents of CSL at EA (XR3+DISP) from A
L1 1. S, ., , L AD DR, , , , , |9400XXxx | subtract contents of CSL at EA (Adds) from A
ool ds T ILf] [ADDR, , , , . |9500XXXX | Subtract contents of CSL at EA (Addr+XR1) from A
Ly S, ., L[2] |[ADDR, , , , || 9600XXXX | Subtract contents of CSL at EA (Addr+XR2) from A
e N L|3] [A,D,D,R, , , , , [9700XXXX | subtract contents of CSL at EA (Addr+XR3) from A
Ly 4 sLJ X 1 ADDR, , , , , [9480XXXX | Subtract contents of CSL at EA (V in CSL at Addr) from A
L S, .. I{I] |[A,D,D,R, , , , , [9580XxXxX | Subtract cantents of CSL at EA (V in CSL at “AddreXR1").
T T ' L1l U S N S W N | from A
e N T[2] [ADDR, , , , , |9680xxxx | subtract contents of CSL at EA (V in CSL at “Addr#XR2")
T ' L1 T T WS N T W A from A
e I/13] JADDR, , , , , |9780xxxx | sSubtract contents of CSL at EA (V in CSL at “Addr+XR3")
P N L4 N from A

58

Subtract Double | Load Store
Mnemonic SD | Arth

Shift
SD

Branch
t/0

Short Format

0 OP F T Displacement 15
10011]0

| I] A 1) 1 i

i
—— -~ N—— -
9 8-B X X

ang Format

0 OP F T IA Modifiers 15 0 Address 15
100111 00000O00O
1 R 1 i 1 i 1 1 1 I S 1) 1 11 1 L.l 11 1\
iV e e e e e o
9 C-F Oor8 0 X X X X
Description

Purpose of this instruction is to subtract a 32-bit operand that is in core storage from the contents

of the accumulator and accumulator extension. The accumulator and accumulator extension must

be loaded with the desired operand before the subtract-double operation is performed. A load-double
instruction can be used to load the accumulator and accumulator extension.

The operand addressed by the subtract-double instruction must start at an even-word address in
core storage. If an odd-word address is specified by the subtract-double instruction, the single word
at that address is subtracted from the accumulator and from the accumulator extension.

Except for the size of the operands, the subtract-double operation proceeds in much the same
manner as the subtract operation:

1. The result of the subtract-double operation is placed in the accumulator and accumulator
extension.

2. Result of the operation is either positive or negative, depending upon the magnitude and signs
of the participating operands. (For a list of the magnitude and size of operands that give the
sign of the result, see “Subtract Instruction™.)

3. The value in the accumulator and accumulator extension has a sign as signified by bit 0 in the
accumulator. The leftmost bit of each operand determines that operand’s sign.

4. The operand in core storage is unchanged by the operation.

CPU Instructions 59

60

Pictorially, the operation proceeds as follows:

Subtract Double Operation

Operand in core storage
starts at an even word

ac:dry

0 15 0 15

0000O0 0001

Accumulator
Accumulator Extension

15

0 150

Accumulator
Accumulator Extension

0 15 0 15

0000 0003

Except for the fact that the operand addressed should start at an even word address, there are no
addressing exceptions for the subtract-double instruction; all forms of addressing that are described
under “Effective Address Generation” apply to the SD instruction.

Indicators: The carry indicator is automatically reset to O at the beginning of execution of a subtract-
double instruction. If, during execution of the subtract-double instruction, a borrow occurs to the
left of the high-order (leftmost) position of the accumulator, then the carry indicator is set to 1 (on);
if no such borrow occurs, the carry indicator remains reset. It can subsequently be set or reset by the
various actions listed under “Carry and Overflow Indicators” (see Figure 13).

The overflow indicator must be reset to 0 if it is to be used during execution of a subtract-double
instruction. If the overflow indicator is at a value of 1 at the start of a subtract-double operation, it
is not changed regardless of the result of the operation. .

If the overflow indicator is at a value of zero at the start of a subtract-double operation, it is set
to a value of 1 if the subtraction produces a result that exceeds the capacity of the accumulator
plus the accumulator extension. For example, assume that the number 1 is subtracted from the
largest negative number that can be held in the accumulator and accumulator extension:

s
1 000 0000 0000 0000 0000 0000 0000 0000 In accumulator and extension

-0 000 0000 0000 0000 0000 0000 0000 0001 From core storage
0111 11111111 11111111 1111 1111 111

(S = sign bit)
The capacity of the accumulator and accumulator extension is exceeded because subtracting 1 from
a negative number should produce a negative number result that is 1 greater than the original num-

ber. But the result is clearly a positive number (bit O in the accumulator equals 0). Therefore, for
this operation, the overflow indicator is set on.

Power of 2 Notation

+231 4
. 931

Decimal Notation

2,147,483,647

- 2,147,483,648

Maximum capacity of the accumulator and accumulator extension is:

Hexadecimal Notation

JFFFFFFF
- 80000000

Refer to “Carry and Overflow Indicators™ for a discussion of how these two indicators can be used
together in certain arithmetic operations.

Examples

Subtract Double

Assembler Language Coding
Label Operation F|IT Hex 3::: ;mal Description of Instruction

21 25| |22 30| [a2]33] |ss 40
Ly S.D, | D,ISP, , ., 98XX Subtract contents of CSL at EA (I+DISP) and EA+1 from
U N L1 R S | Aand Q
Ca a1 IS, If {0,ISP, , ., 99XX Subtract contents of CSL at EA (XR1+DISP) and EA+1
L1 i JR | U S U S W | from A and Q
L.l IS0, 21 D,ISP, |, | 9AXX Subtract contents of CSL at EA (XR2+DISP) and EA+1
S S U 11 T W S N | from A and Q
T 3 D,LISP , . 9BXX Subtract contents of CSL at EA (XR3+DISP) and EA+1
L1 L) £ 010001 from A and Q

9CO0XXXX Subtract contents of CSL at EA (Addr) and EA+1 from A
i) i 1=1 1 i J udl | | |
AL 1 1 J -] | W S N N . | and Q
SD Lil| {A,DDR 9DOOXXXX | Subtract contents of CSL at EA (Addr+XR1) and EA+1

L1 1 1 111 1¥ 1% 70y 2 o1
11 11 11 1) U Y U S S | from A and Q
., .| IS0, | JLf2] ADDR , | 9EQOXXXX | Subtract contents of CSL at EA (Addr+XR2) and EA+1
L1 L1 [| from A and Q
.l ISD, L|3| ADDR, ,, 9FOOXXXX | Subtract contents of CSL at EA (Addr+XR3) and EA+1
- i1 Ll i | W U T SR W | from A and Q
Ly S0, , I ADDR, , , 9C80XXXX | Subtract contents of CSL at EA (V in CSL at Addr) and
[L1 | R T B EA+1 from A and Q
Ly a SD, , I[I] ADDR, , , 9DBOXXXX | Subtract contents of CSL at EA (V in CSL at “Addr+XR1")
L L1 L1 T and EA+1 from A and Q
o, .l ISD, 112 JADDR, , ., 9ESOXXXX | Subtract contents of CSL at EA (V in CSL at “Addr+XR2")
N L1 S | and EA+1 from A and Q

o, . L IsD, I[3] |A,DDR, , | 9FBOXXXX | Subtract contents of CSL at EA (V in CSL at “Addr+XR3")
Lol L1l Y 1 L L1 and EA+1 from A and Q

CPU Instructions 61

62

Multiply

Mnemonic
M

Short Format

0 OP F T Displacement 15
1 0 1 0 (1]
I T T I T T
\—\,-—/ \‘ﬁ/ N~ N
A 0-3 X X

Long Format

0 OP F T IA Modifiers 15 0 Address 15
10100|1 0000000
T I N | 1 I § TNUNS R T S N | VN S T N T S |
- N—— \-.\,_,/ \-\,_./ \-.\,../ N—— S - N
A 4-7 Oor8 0 X X X X
Description

Execution of this instruction results in multiplication of a 16-bit multiplicand (in core storage) by

a 16-bit multiplier (in the accumulator). The 32-bit product that is developed replaces the contents
of the accumulator and accumulator extension. The product is developed so that the more significant
bits are in the accumulator. (The sign of the product is indicated by bit 0 in the accumulator.) The
operation can be portrayed pictorially as follows:

Multiplication (in Hexadecimal Notation)

0002
X 0003
0006

Multiplicand in core storage

Multiplier in accumulator

: . Accumulator
Accumulator Extension

0 15 0 . 15

0000 0006 = Product

The multiplier must be loaded into the accumulator before the multiply operation is performed.
The multiplicand is addressed in the normal manner by the multiply instruction. The multiplicand
is unchanged in core storage as a result of the operation.

There are no addressing exceptions for the multiply instruction; all forms of addressing that are
described under “Effective Address Generation” apply to the M instruction.

The largest product that can be developed is 2°°. This product results from multiplying the largest
16-bit negative number (-2! %) by itself.

Indicators: The carry and overflow indicators are not affected during the M operation.

Load Store
M Arith

Shift
Branch
1/0

Examples

Note: There is only one multiply instruction. No separate multiply instruction exists for double-
precision operands.

Multiply

Assembler Language Coding
Label Operation FI T Hexc:r: :'mal Description of Instruction

21 25) |27 30| |32{33] |35 40
N I D,ISP ., |axx Multiply contents of CSL at EA (IDISP) by A
Lo M . I{ ID,I,SP, , , , , Jaxx Multiply contents of CSL at EA (XR1+DISP) by A
Ly g]M, L 2! ID,I,SP, , , , , [AXX Multiply contents of CSL at EA (XR2+DISP) by A
Ly d]M, L1 3 [D,ISP, , , , , |A3XX Multiply contents of CSL at EA (XR3+DISP) by A
L1 TM, L L ADDR, , , , , [|A400XXXX | Multiply contents of CSL at EA (Addr) by A
L g M, Lt ADDR, , , , , |AS00XXXX | Multiply contents of CSL at EA (Addr+XR1) by A
L4 M, |, Li2]| |AD,D,R, , , , , |A600XXXX | Multiply contents of CSL at EA (Addr+XR2) by A
L IMI Ly L|3] |ADDR, , , , , |A700XXXX | Multiply contents of CSL at EA (Addr+XR3) by A
L L) JM| L I A .D ,D,R 4 A480XXXX | Muitiply contents of CSL at EA (V in CSL at Addr) by A
L4 M, I1t] |A,D,D,R, , , , , [ASSOXXXX | Multiply contents of CSL at EA (V in CSL at “Addr+XR1")
1 1 1 1.1 1 A1 1 1 I} 1 1 1 by A
L M 1[2] JAD.DR, , , , , [A680XxXXX [Multiply contents of CSL at EA (V in CSL at "Addr+XR2")
Ll L1 T - T N S W T N W W | by A
Ly M , 1/13] |[ADDR, , , , | |A780XXXX | Multiply contents of CSL at EA (V in CSL at “Addr+XR3")
1 1) W | [il 1 Il A 11 f S} 1 1 1 by A

CPU Instructions 63

64

Divide
Mnemonic
D

Short Format

0 OP F T Displacement 15
101010

-~ N - -~
A 8-B X X

Long Format

0 OpP F T IA Modifiers 15 0 Address 15
101011 000000OC
S~ S— S—— - N S— S——~

A C-F Oor8 0 X X X X

Description

The divide instruction causes a 32-bit value to be divided by a 16-bit word from core storage. Result
of the operation is placed in the accumulator; the remainder is placed in the accumulator extension.
Before the divide operation is started, the 32-bit value must be loaded into the accumulator and

accumulator extension. (The units position is in bit 15 of the accumulator extension.) The divide

instruction then addresses a 16-bit word (in core storage) that is used as the divisor. Examples of the
arithmetic are:

Example 1
Remainder in
In Accumulator From Core Storage Accumulator Extension
—— o ——
0000 0008 -+ 0004 = 0002 0000
S—_—— =
In Accumulator In Accumulator
Extension
Example 2
Remainder in
In Accumulator From Core Storage Accumulator Extension
| —— N
0000 0008 — 0003 = 0002 0002
N’ S~
In Accumulator In Accumulator
Extension

The names of the values in the operation are:

Dividend Divisor Quotient Remainder
— i e, —— ——
00000008 — 0004 = 0002 0000

Load Store
D Arith
Shift

Branch
/0

The sign of the remainder is always the same as the sign of the original dividend. Before the oper-
ation, bit 0 of the accumulator specifies the sign of the dividend: bit 0 = 0 specifies a positive divi-
dend; bit 0 = 1 specifies a negative dividend. Therefore, the value of bit 0 of the accumulator exten-
sion (after the operation when the extension contains the remainder) is the same as the original
value of bit 0 of the accumulator (when it contained the original dividend).

The sign of the quotient is determined as follows:

Dividend + Divisor = Quotient
+ + + = +
- - + = —
+ + - = -
—_ + — = +

If a 16-bit dividend (in the accumulator) is the result of some prior operation, it must be shifted
to the right 16 places into the accumulator extension before the divide operation is performed.
(A shift-right-accumulator-and-ex tension instruction can be used for this purpose.)

There are no addressing exceptions for the divide instruction; all forms of addressing that are
described under “Effective Address Generation” apply to the D instruction.

The largest dividend that can be correctly operated on is 2% + 2'° — 1 (1,073,774,591 decimal)
if divided by the largest negative divisor, — 2'* (~ 32,768 decimal).

Indicators: The carry indicator is not affected during a divide operation. The overflow indicator

must be reset to 0 before the divide operation if it is to be used. When the overflow indicator is

initially at a value of 0, it is set to 1 during a divide operation for either of two conditions:

1. Anattempt is made to divide by zero. (The divisor, in core storage, has a value of 0000 0000
0000 0000.)

2. A quotient overflow occurs. A quotient overflow occurs when the quotient exceeds the range
=215 {5 +215 — 1. A quotient overflow causes the accumulator and accumulator extension to
be left in an undefined state.

CPU Instructions 65

Examples

Divide
Assembler Language Coding
Label Operation FIT Hexva:z'ceimal Description of Instruction
21 2| |27 30] ls2]3s| |as
L1 D, , , D,I.S.P, ASXX Divide A and Q by contents of CSL at EA (I+DISP)
e i{ |0,I,S,P, A9XX Divide A and Q by contents of CSL at EA (XR 1+DISP)
L 1 a. D, , ., 2] [D,I,S,P, AAXX Divide A and Q by contents of CSL at EA (XR2+DISP)
L1 0, , . 3] |D,L,S,P, ABXX Divide A and Q by contents of CSL at EA (XR3+DISP)
104 D, , L A.D, DR, ACO0XXXX | Divide A and Q by contents of CSL at EA (Adds)
Lo D, , . L{!] |A,D,DR, ADOOXXXX | Divide A and Q by contents of CSL at EA (Addr+XR1)
. D, | L|2] |[A,DDR, AEOOXXXX | Divide A and Q by contents of CSL at EA (Addr+XR2)
L L 0, , . L|3] |[A,D,D,R, AFO0XXXX | Divide A and Q by contents of CSL at EA (Addr+XR3)
L1 D, , | 1 A.D.D,R, AC80XXXX | Divide A and Q by contents of CSL at EA (V in CSL at
a1 114 [| Addr)
PR S S D. L1 I J A,D lD ,R N ADS0OXXXX | Divide A and Q by contents of CSL at EA (V in CSL at
L1 L1 L “Addr+XR1™)
e [I{2] [A,D,D,R, AEBOXXXX | Divide A and Q by contents of CSL at EA (V in CSL at
A1 11 [| L 11 1 “Addr+XR2")
L. D, ., , I{3] [A,D.DR, AF80XXXX | Divide A and Q by contents of CSL at EA (V in CSL at

“Addr+XR3")

66

Logical AND Load Store

AND B A

Mnemonic [shirt

AND [Branch
/o

Short Format

0 OP F T Displacement 15
1110010
W T] 1 | Y T W S U I 1
E 0-3 X X

Long Format

0 OP F T IA Modifiers 15 0 Address 15
11100]1 00000O0O0
' 1 1 I L A 1 1 1 i 1 I 1 'y 1 A 1 L 1 1 L ' 1
E 4.7 Oor8 0 X X X X

Description

The contents of the accumulator are ANDed, bit by bit, with the contents of the addressed core-
storage location. The result replaces the contents of the accumulator. ANDing occurs only between
corresponding bit positions in the accumulator and the core-storage word: bit 0 is ANDed only with
bit 0, bit 1 only with bit 1, and so on. The four possible ANDing results are:

Bit Values
From Core Storage Word From Accumulator Result in Accumulator
0 0 0
0 1 0
1 0 0
1 1 1

Contents of the addressed core-storage word are not changed as a result of the operation.
An example of ANDing is:

0101 0000 1111 1010 Word in accumulator
AND 10101111 1010 1111 Word from core storage
0000 0000 1010 1010 Result in accumulator

There are no addressing exceptions for the logical AND instruction; all forms of addressing that
are described under “Effective Address Generation™ apply to the AND instruction.

Indicators: The carry and overflow indicators are not affected during the AND operation.

Programming Note: The AND instruction is particularly useful in two applications.

1. It can be used to set a specific bit off as:
XXXX XXXX XXXX XXXX Word in accumulator
AND 1111 1101 1111 1111 Mask in storage
XXXX XX0X XXXX XXXX . Result in accumulator

2. It can be used to isolate a bit for testing as:
XXXX XXXX XXXX XXXX Word in accumulator
AND 0001 0000 0000 0000 Mask in storage
000X 0000 0000 0000 Resultin accumulator

CPU Instructions 67

Logical AND

Examples

Assembler Language Coding

Label Operation | [F| T H”‘v‘:f::"'" Description of Instruction
21 27 30| [32]a3] bs
- AND, D,ISP EOXX AND contents of CSL at EA (I+DISP) with A
L AND, i] 10,1,S,P, E1XX AND contents of CSL at EA (XR1+DISP) with A
L AN.D, 2| I0,1.5.P, E2XX AND contents of CSL at EA (XR2+DISP) with A
L1 AND, 3| D, ISP, E3XX AND contents of CSL at EA (XR3+DISP) with A
L1 AND, L ADDR, E400XXXX | AND contents of CSL at EA (Addr) with A
L 4 l‘_AJ[J D, Lil] |A,D,D.R, ESOOXXXX | AND contents of CSL at EA (Addr+XR1) with A
L AN L L|2 A lD_LQLR X E600XXXX | AND contents of CSL at EA (Addr+XR2) with A
L4 AN.D, L|3] |A,D.D,R, E700XXXX | AND contents of CSL at EA (Addr+XR3) with A
Ly AND, Il Al,D_;D¢R1 E480XXXX | AND contents of CSL at EA (V in CSL at Addr) with A
L AND, 1|1} |A,D,D,R, ESBOXXXX | AND contents of CSL at EA (V in CSL at “Addr+XR1")
L1 g L1 1 L 1 4 with A
L AND, I12] [AD,D.R, E680XXXX | AND contents of CSL at EA (V in CSL at “Addr+XR2")

L1 [| L L1y with A -
L AND, 113] |A,D,0,R, E780XXXX | AND contents of CSL at EA (V in CSL at “Addr+XR3")
L1 g L 1 L 11 with A

68

Logical OR Load Store
M . OR Arith
nemonic A
Shift
OR

Branch

1/0

Short Format

0 OP FT Displacement 15
11101}0
1 1 1 1 1 1 L 1 1 L 1 L
S S S S
E 8-B X X

Long Format

0 OP F T 'A Modifiers 15 0 Address 15
111011 000060O0O
1 A L 1 1 i 1 1 WL L L L i I 1 L 1 1 1 1 1 1 1 1
D e s e e Ve o Ve
E C-F Oor8 0 X X X X

Description

The contents of the accumulator are ORed, bit by bit, with the contents of the addressed core-
storage location. The result replaces the contents of the accumulator. ORing occurs only between
corresponding bit positions in the accumulator and the core-storage word: bit 0 is ORed only with
bit 0, bit 1 only with bit 1, and so on. The four possible ORing results are:

Bit Values
From Core Storage Word From Accumulator Result in Accumulator
0 0 0
0 1 1
1 0 1
1 1 1

Contents of the addressed core-storage word are not changed as a result of the operation.
An example of ORingis:

0011 0101 1111 1010 Word in accumulator
OR 0101 0001 1010 0000 Word from core storage
01110101 1111 1010 Result in accumulator

There are no addressing exceptions for the logical OR instruction; all forms of addressing that
are described under “Effective Address Generation” apply to the OR instruction.

Indicators: The carry and overflow indicators are not affected during the OR operation.

Programming Note: A common use of the OR instruction is in setting a particular bit to the
on (1) condition.

For example:

XXXX XXXX XXXX XXXX Word in accumulator
OR 0000 0010 0000 0000 Mask in storage
XXXX XX1X XXXX XXXX Result in accumulator

CPU Instructions 69

Examples

Logical OR
Assembler Language Coding
Label Operation Fl T} Hexva:'euc;mal Description of Instruction
21 25| |27 30| lsolss] lss 40
v 2 .| OR | DISP ., ., E8XX "OR contents of CSL at EA (+DISP) with A
110 OR , Il 0,ISP, ., E9XX OR contents of CSL at EA (XR1+DISP) with A
Lo .| OR 2| IDISP, , ., EAXX OR contents of CSL at EA (XR2+DISP) with A
L .| IOR | 3 0ISP ., EBXX OR contents of CSL at EA (XR3+DISP) with A
L1 OR, | L ADDR, , ., ECO0XXXX | OR contents of CSL at EA (Addr) with A
N I (L L{I] [ADDR, |, EDOOXXXX [OR contents of CSL at EA (Addr+XR1) with A
L. OR, | L2 A,DDR, , , EEOOXXXX | OR contents of CSL at EA (Addr+XR2) with A
v | OR, L3 ADDR, , , EFOOXXXX | OR contents of CSL at EA (Addr+XR3) with A
Loy OR, | I ADDR, , , EC80XXXX [OR contents of CSL at EA (V in CSL at Addr) with A
Lo LA I[I] A,DDR, , , EDBOXXXX | OR contents of CSL at EA (V in CSL at “Addr+XR 1™
T S ' | [| with A
L1 OR, |, I[2] JADDR, , , EEBOXXXX | OR contents of CSL at EA (V in CSL at “Addr+XR2")
U G S L L L1 1 1 1 with A
L 1.1 |OR, | I/3] JADDR, , , EFB0XXXX | OR contents of CSL at EA (V in CSL at “Addr+XR3")
L4 1 L1 T with A)

70

Logical Exclusive OR : Load Store
R EOR Arith

Mnemonic pn
t
EOR :

Branch
1/0

Short Format

0 OP F T Displacement 15

11110]|0

"v~’ ‘-v—/ \%/-’ \-\f-’
F 0-3 X X

Long Format

0 oP F T IA Modifiers 15 0 Address 15
1111 O 1 00000COCGO
‘\»-’ ‘-—\r-v’ N~ \"\x-’ ‘*-vv’ ‘ \—v-’ ‘*.v-’ \—v——’
F 4-7 Oor8 0 X X X X
Description

The contents of the accumulator are exclusive-ORed, bit by bit, with the contents of the addressed
core-storage location. The result replaces the contents of the accumulator. Exclusive-ORing occurs
only between corresponding bit positions in the accumulator and the core-storage word: bit 0 is
exclusive-ORed only with bit 0, bit 1 only with bit 1, and so on. The four possible exclusive-ORing
results are:

Bit Values
From Core Storage Word From Accumulator Result in Accumulator
o] 0 0
0 1 1
1 0 1
1 1 0

Contents of the addressed core-storage word are not changed as a result of the operation.
An examptle of exclusive-ORing is:

0000 1111 0000 1111 Word in accumulator
EOR 1111 0000 0000 1111 Word from core storage
1111 1111 0000 0000 Result in accumulator

There are no addressing exceptions for the logical exclusive-OR instruction; all forms of address-
ing that are described under “Effective Address Generation” apply to the EOR instruction.

Indicators: The carry and overflow indicators are not affected during the EOR operation.

Programming Note: Typical uses for the exclusive OR instruction are shown below.

1. Obtaining the complement of a number such as:
0000 0000 0000 1111 Accumulator = 15, ,
1M1 1111 1111 1111 Storage mask = -1,
1111 1111 1111 0000 EOR result =-16, ,
-1 1111 111 11 Subtract storage mask = -(-1,)
1111 1111 1111 0001 Accumulator value = -15, ,
2. Flipping and testing a switch such as:
LD SWITCH Accumulator = XXXX XXXX XXXX XXXX
EOR MASK Accumulator = XXXX XXZX XXXX XXXX
STO SWITCH Location switch = XXXX XXZX XXXX XXXX
AND MASK Accumulator = 0000 00Z0 0000 0000
BSC LA,Z Branch to a specified location (A) if bit 6 was O
0000 0010 0000 0000 Mask in storage
XXXX XXXX XXXX XXXX Switch value in storage

CPU Instructions 71

Examples

Logical Exclusive OR

Assembler Language Coding

Label Operation | | F| T He"va:'ff;ma' Description of Instruction
21 26(|27 30| |32f33| [as 40

L EOR, D,ISP, ., , FOXX EOR contents of CSL at EA (I+DISP) with A
L1 EOR, I{ [D,IS,P, ., FIXX -EOR contents of CSL at EA (XR 1+DISP) with A
Ly s EOR, 2/ I0,ISP, |, ., F2XX EOR contents of CSL at EA (XR2+DISP) with A
L1 EO,R, 3 ID,ISP, , , F3XX EOR contents of CSL at EA (XR3+DISP) with A
.| IEOR, L ADDR, , , F400XXXX | EOR contents of CSL at EA (Addr) with A
Ly EOR, Ljt|{ A,DDR, , , FS00XXXX | EOR contents of CSL at EA (Addr+XR1) with A
L. . +1 IEOR, L|2] [A,D,DR, , , F600XXXX | EOR contents of CSL at EA (Addr+XR2) with A
Yy EOR, L|3| [ADDR, , , F700XXXX | EOR contents of CSL at EA (Addr+XR3) with A
L E,O.R, I ADDR, ., , F480XXXX | EOR contents of CSL at EA (V in CSL at Addr) with A

L EOR, I|ij{ ADDR, ,, FSB0XXXX | EOR contents of CSL at EA (V in CSL at “Addr+XR1")
111 L A with A

L 1.1 [EOR, I1[12] |[ALDDR, , , F680XXXX | EOR contents of CSL at EA (V in CSL at “Addr+XR2")
L4 1 L1 [R with A
Ly EOR, IB{ [ALDDR, , , F780XXXX | EOR contents of CSL at EA (V in CSL at “Addr+XR3")
T L1 1141 1 with A

72

SHIFT INSTRUCTIONS

The purpose of each shift instruction is to shift an operand, bit by bit, to the right or to the left.
Direction of shift (left or right) is dependent upon the specific instruction. The operand to be
shifted must first be loaded into the accumulator (or accumulator and accumulator extension,
depending upon which shift instruction is to be executed). All shift instructions are in the short
format only; there are no long-format shift instructions.

The manner of shifting is dependent upon the specific shift instruction. In shift-left operations,
zeros are shifted into low-order vacated positions. For example:

Original Operand in Accumulator
1111 0000 1111 1011

After a Shift Left of One Position

@4——1110 0001 1111 0110 -—— Zero shifted in.

L High-order bit
value shifted out.

In shift right operations, bits that are shifted in can be:

1. Zeros — alogical shift right (SRA instruction)

2. The original value of the sign bit (always from bit 0 of the accumulator) — an arithmetic right
shift (SRT instruction)

3. The bits that are shifted out of the low-order position (bit 15) of the accumulator extension
(RTE instruction)

Depending upon the instruction being executed, shift operations can be ended in one or both of
two ways:

1. By aspecified count (the shift count) decrementing to zero. (Refer to the individual descrip-
tions for information about where a count is set up before a shift instruction is executed.)
2. Bya bit value of 1 shifting into the high-order position (bit 0) of the accumulator.

Refer to the individual descriptions for information about how a particular shift operation is ended.

CPU Instructions 73

74

Shift Left Accumulator (Or No-Operation)

Mnemonic
SLA
NOP

Short Format

0 oP F T Displacement 15
000 10|0 00
I 1 ' 1 1 i — | A 1 L L.
S~ R R R—
SLA: 1 0-3 0-3 X
NOP: 1 0 0 0
Description

Contents of the accumulator are shifted left, a bit at a time. Each bit value shifted out (from
accumulator position 0) is shifted into the carry indicator. Low-order bits shifted into accumulator-
position 15 (and then to the left) are always zeros. An example of a left shift of two positions is:

Carry Indicator Accumulator
0
Original Value .X 0100 0000 0000
Shifted out
0

After First Shift 0 1000 0000 0001

Shifted out

0

After Second Shift 1 0000 0000 0011

15
111

0 shifted in

/7

15
1110

0 shifted in

15
1100

The number of positions shifted is specified by a shift count. Location of the shift count is

determined by the T bits in the instruction:
T Bits (6and7) Shift Count Location

00 Low-order six bits of displacement (in the shift instruction)
01 Low-order six bits in index-register 1
10 Low-order six bits in index-register 2
1 Low-order six bits in index-register 3

A value must be put into the shift-count location before the operation is started. The operation
is ended when the specified number of shifts have been performed. The shift count, however, need
be set up only once. After the operation is ended, the original shift count (for example, a count in
index-register 1) is the same as its initial value. (Decrementing of the count is performed in separate

circuits.)

Load Store

Atith

SLA -
nop W12
110

The maximum shift count that can be specified is 63 (111111 in binary). A left-shift of sixteen,
however, puts zeros in all positions of the accumulator. In this case, the carry indicator, at the end
of the operation, is at the value that accumulator-bit 15 had at the start of the operation.

A shift count of zero (000000 in binary) causes this instruction to perform as a no-operation
(NOP): contents of the accumulator remain unchanged.

Core storage is not addressed during execution of the shift-left-accumulator instruction.

Indicators: Each bit value that is shifted out of accumulator-bit-position 0 is placed in the carry
indicator. The carry indicator holds only one bit. Consequently, the carry indicator, at the end of
the operation, is at the value of the last bit shifted out. If any shifting is to be performed, the carry
indicator need not be program-reset before the shift operation because the first left-shift sets or
resets the carry indicator to the first bit value shifted out. The carry indicator is not changed if the
initial shift count is zero.

The overflow indicator is not affected by a shift-left-accumulator operation.

Examples

Shift Left Accumulator

Assembler Language Coding
Label Operation FIT He;:/a:r::mal Description of Instruction

21 25 *27 30 32133 35 40
T W S.LLAJ D.I ,S lP LA L1 10*X Contents of A shift left the number of shift counts in DISP
L1 1 S,LlA, ' [O B 1100 Contents of A shift left the number of shift counts in XR1
L L ISLA 2l L, ..y, L200 Contents of A shift left the number of shift counts in XR2
L1 11 S ,L LA 1 3 T A 1300 Contents of A shift left the number of shift counts in XR3
Loa1 N|0|P| 0101 Loy 44 1000 Perform no operation

*This hexadecimal digit can be 0, 1, 2, or 3 depending upon the desired shift count.

CPU Instructions 75

76

Shift Left Accumulator and Extension

Mnemonic
SLT

Short Format

0 OP F T Displacement 15

00010|0 10

1] L L L 1 1 L4 1 11

e e v
1 0-3 8-B X

Description

Contents of the accumulator and accumulator extension are shifted left, a bit at a time, as if they
were a single 32-bit register. (The accumulator contains the leftmost 16 bits of the 32, the accumu-
lator extension contains the rightmost 16 bits.) Each bit value shifted out from accumulator-position
0is shifted into the carry indicator. Low-order bits shifted into accumulator-extension position 15
(and then to the left) are always zeros.

An example of a left shift of two positions is:

Carry Accumulator
Indicator Accumulator Extension

0 15 0 15
Original Vaiue X 0101111100001111 0101010100001111

Shifted out 0 shifted in
After First 0 15 0 15
Shift 0 1011111000011110 1010101000011110

Shifted out O shifted in
After Second 0 15 0 15
Shift 1 0111110000111101 0101010000111100

The number of positions shifted is specified by a shift count. Location of the shift count is deter-
mined by the T bits in the instruction:

T Bits (6 and 7) Shift Count Location

00 Low-order six bits of displacement (in the shift instruction)
01 Low-order six bits in index-register 1
10 Low-order six bits in index-register 2
1 Low-order six bits in index-register 3

A value must be put into the shift-count location before the operation is started. The operation is
ended when the specified number of shifts have been performed. The shift count, however, need be
set up only once. After the operation is ended, the original shift count (for example, a count in
index-register 1) is the same as its initial value. (Decrementing of the count is performed in separate
circuits.)

SLT WP

Load Stor

Arith
Shift

Branch

/0

Maximum shift count that can be specified is 63 (111111 in binary). A left shift of 32, however,
puts zeros in all positions of the accumulator and extension. In this case, the carry indicator, at the
end of the operation, is at the value that accumulator-extension bit 15 had at the start of the
operation.

A shift count of zero (000000 in binary) causes this instruction to perform as a no-operation:
contents of the accumulator and accumulator extension remain unchanged.

Core storage is not addressed during execution of the shift-left-accumulator-and-extension instruc-
tion.

Indicators: Each bit value that is shifted out of the accumulator bit-position 0 is placed in the carry
indicator. The carry indicator holds only one bit. Consequently, the carry indicator, at the end of
the operation, is at the value of the last bit shifted out. If any shifting is to be performed, the carry
indicator need not be program-reset before the shift operation because the first left-shift sets or
resets the carry indicator to the first bit value shifted out. The carry indicator is not changed if the
initial shift count is zero.

The overflow indicator is not affected by a shiftleft-accumulator-and-extension operation.

Examples

Shift Left Accumulator and Extension

Assembler Language Coding

Label Operation | [F| T H“\::l‘:;'“" Description of Instruction
21 251 |27 30| J3ej33] |35 40
[T A S.L .T \ D. I .S .P L1 81 10*X Contents of A and Q shift left the number of shift counts in
Lt 4 Lt PR WS S N U DISP
L4 s .L ,T . [T T Y 1180 Contents of A and Q shift left the number of shift counts in
L1 Lo Ll 1 1L L 1 I 1 [l XR1
L L L S 1 L,T 1 2 D L1 L g1y 1280 Contents of A and Q shift left the number of shift counts in
J R T W | 11 1 T I W U D S S | XR2
N S.LT, 3 L4y 4 4wy g | 1380 Contents of A and Q shift left the number of shift counts in

L

XR3

| N (N W GO S B T |

*This hexadecimal digit can be 8, 9, A, or B depending upon the desired shift count.

CPU Instructions 77

78

Shift Left and Count Accumulator

Mnemonic
SLCA

Short Format
0 OP F T Displacement 15
00010/0 01

1 0-3 4-7 X

Description

The purpose of this instruction is to shift the contents of the accumulator left, a bit at a time, as in
the shift-left-accumulator instruction. Zeros are shifted into position 15 of the accumulator and
then to the left in order to fill vacated positions. Execution of the shift-left-and-count-accumulator
instruction stops when:

1. A1-bit value is in bit-position O of the accumulator, or
2. The shift count is decremented to zero.

The location of the shift count is specified by the T bits of the instruction as follows:
T Bits (6 and 7) Shift Count Location

01 Low-order six bits in index-register 1
10 Low-order six bits in index-register 2
11 Low-order six bits in index-register 3

Note: When the T bits are 00, the shift-left-and-count-accumulator instruction is executed in
exactly the same manner as a shift-left-accumulator instruction (SLA) with its T bits set to 00.

When execution of a shift-left-and-count-accumulator instruction starts, the shift count is auto-
matically moved from the specified index register to CPU circuits that do the counting. When the
operation is ended, the specified index register is updated as follows:

Index-Register Bits Condition at End of Operation

0-7 Unchanged

8 Reset to O

9 Reset to O

10-15 Contain residual count

If the count is decremented to zero before a 1 is shifted into accumulator-bit 0, the residual count
is zero. If a 1 is shifted into accumulator-bit 0 before the count is decremented to 0, the operation
is ended. In this latter case, the remaining count value is loaded back into the index register. For
example:

Load Store
Arith

SLCA . Shift
Branch
/0
At start of shift left and count accumulator operation:
Accumulator Index Register 1
0 15 0 7 8 9 10 15
01 00000O0O0OO0OO0OOO0OO0" X X X x x x x x 11000011
Count =3
After the first left shift, the operation is ended:
Accumulator Index Register 1
0 15 0 7 8 9 10 15
1 000000O00O0O0OO0O0OT11TO X X X X X x x x 0000O0O0T10O0
1 N, N i Y
E

nds 0 shifted in Unchanged Count = 2
Operation

Automatically
set to 00.

In this example, the initial count is 3, but after one shift has occurred, a 1 is in accumulator bit-
position 0. This 1 ends the operation. One shift has occurred, so the residual count stored into the
index registeris 2 (3 -1 =2).

If the shift count is initially zero, the instruction performs as a no-operation, regardless of the
value of accumulator-bit 0. In this case, no shifting occurs, the carry indicator is not changed, and
none of the bits in the specified index register are altered.

If accumulator-bit O is initially at a value of 1 and the initial count does not equal zero, the carry
indicator is turned on. Also, bits 8 and 9 of the specified index register are reset to 00, but the count
is not changed. Again, shifting does not occur.

Core storage is not addressed during execution of a shift-left-and-count-accumulator instruction.

Programming Note: This instruction is particularly useful in determining specific device status
and interrupt conditions. After a device status word or interrupt-level status word has been loaded
into the accumulator, a shift-left-and-count-accumulator instruction can be executed so that the
first 1 into accumulator position O stops the operation. The residual count, stored back into the
specified index register, can then be used to index to the desired sub-routine. A unique subroutine
is then specified for each bit in the accumulator and is indexed by the residual count. Refer to
“1/O Interrupts™ for a general description of the device status words and the interrupt-level

status words. Specific device-status-word bit definitions are in each I/O device description.

Indicators: The carry indicator is set or reset differently for the shift-left-and-count-accumulator

instruction than it is for the shift-left-accumulator instruction. The carry indicator can have the
following values after execution of a shift-left-and-count-accumulator instruction:

CPU Instructions 79

Count Accumulator Bit 0 Equals Carry Indicator Equals

£0 1 1
=0 1 0
=0 0 0

The carry indicator is set or reset by bits shifted out of accumulator-bit 0 in the shift-left-
accumulator operation but not in the shift-left-and-count-accumulator operation. In the shift-left-
and-count-accumulator operation, the carry indicator is affected as shown in the immediately pre-
ceding table.

If, however, the T bits (in a shift-left-and-count instruction) are 00, the carry indicator is affected
exactly as described in the shift-left-accumulator instruction description.

The overflow indicator is not affected by the shift-left-and-count-accumulator operation.

Examples

Shift Left and Count Accumulator

Assembler Language Coding
Label Operation FIT He’;,a:::e'mal Description of Instruction
21 25 30 32|33 35 40
11 L S ,L .C ,A D, I ls |P Lo o4 g |1o*x Contents of A shift left the number of shift counts in DISP
L1 L s ,L lc ,A | Lot 1 1 1 4 1 g 1140 Contents of A shift left the number of shift counts in XR1**
L N S 1L IC .A 2 L1t 1 42 a4 1240 Contents of A shift left the number of shift counts in XR2**
L. 1 ISL,CA 3 Lo a4 |1340 Contents of A shift left the number of shift counts in XR3**

*This hexadecimal digit can be‘4, 5, 6, or 7 depending upon the desired count.
**If a 1 bit shifts into accumulator position 0, the operation ends regardless of shift counts specified.

80

For the four examples below, assume that the index register was previously loaded by an LDX
instruction. Only the low-order bit positions (10—15) of the index register (XR) are shown, and
only the high-order bit positions (0—5) of the accumulator (A) are shown. Those bit positions
containing an X can be 0 or 1.

Example Number 1 2 3 4
XR before SLCA 000011 000100 000101 000110
XR after SLCA 000000 000000 000001 000010
A before SLCA 00001X 00001X 00001 X 00001X
A after SLCA 01XXXX TXXXXX TXXXXX TXXXXX
Carry indicator

after SLCA OFF* OFF* ON** ON**

*If no 1 bits were contained in the field defined by the index register {(examples 1 and 2), the program can
determine the value of accumulator bit O only by testing the accumulator sign. (Carry indicator is OFF and the
index register is 0,)

**1f a 1 bit was contained in the field defined by the index register {examples 3 and 4), the SLCA instruction
was terminated when an attempt was made to shift the 1 out of the high-order position, leaving the carry in-
dicator ON and the index register at a nonzero condition. (The 1 bit remains in the high-order position.)

shift Left and Count Accumulator and Extension Load Store

Mnemonic Arith

sLC SLC . Shift

Branch
/O

Short Format

0 OP F T Displacement 15
00010}j0 11
\l‘\l’.l/ 1. \-\/-l/ 1 1 1 1 1 1 1
1 0-3 C-F X

Description

The purpose of this instruction is to shift the contents of the accumulator and accumulator exten-
sion left, a bit at a time, as if these two registers made up a single 32-bit register. Zeros are shifted
into position 15 of the accumulator extension and then to the left in order to fill vacated positions.
Bits shifted out of accumulator-extension position 0 are shifted to the left into accumulator-position
15. Execution of the shift-left-and-count-accumulator-and-extension instruction stops when:

1. A 1-bitis in bit position 0 of the accumulator, or
2. The shift count is decremented to zero.

Location of the shift count is specified by the T bits of the instru'ction as follows:

" TBits(6and7) Shift Count Location

01 Low-order six bits in index-register 1
10 Low-order six bits in index-register 2
11 Low-order six bits in index-register 3

Note: When the T bits are 00, the shift-left-and-count-accumulator-and-extension instruction is
executed in exactly the same manner as a shift-left-accumulator-and-extension instruction (SLT)
with its T bits set to 00.

When execution of a shift-left-and-count-accumulator-and-extension instruction starts, the shift
count is automatically moved from the specified index register to CPU circuits that do the counting.
When the operation is ended, the specified index register is updated as follows:

Index-Register Bits Condition at End of Operation

0-7 Unchanged

8 Reset to O

9 Reset to 0

10-15 Contain residual count

CPU Instructions 81

82

If the count is decremented to zero before a 1 is shifted into accumulator-bit 0, the residual
count is 0. If a 1 is shifted into accumulator-bit O before the count is decremented to 0, the opera-
tion is ended. The residual count value is loaded back into the index register. For example:

At start of shift left and count accumulator and extension operation:

Accumulator Accumulator Extension
0 15 0 15
0001 O0O0O0O0O0OO0OO0OO0OOOT1O0 1 0000O0OO0OO0OT11TT1TT1TI1T 111

Index Register 1

0 7 8 9 10 15
X X x x x x x x 1 0000100

Count =4
After the third left shift, the operation is ended:
Accumulator Accumulator Extension
4] 15 0 15
’L000000000010100I |0000011111111000
) — —
. 0's shifted in
Ends Index Register 1
Operation 0 789 10 15

X X x x x x x x 00 0O0O0OO 1

e R I
Unchanged Residual
Count = 1

Automatically
set to 00.

In this example, the initial count is 4, but after three shifts have occurred, a 1 is in accurnulator-
position 0. This condition ends the operation. Three shifts have occurred, so the residual count
stored into the index registeris 1 (4 -3 =1).

If the shift count is initially zero, the instruction performs as a no-operation, regardless of the
value of accumulator-bit 0. In this case, no shifting occurs, the carry indicator is not changed, and
none of the bits in the specified index register are altered.

If accumulator-bit O is initially at a value of 1 and the initial count does not equal zero, the carry
indicator is turned on. Also, bits 8 and 9 of the specified index register are reset to 00, but the
count is not changed. Again, shifting does not occur.

Core storage is not addressed during execution of a shift-left-and-count-accumulator-and-extension
instruction.

Indicators: The carry indicator is set or reset differently for the shift-left-and-count-accumulator-
and-extension instruction than it is for the shift-left-accumulator-and-extension instruction. The
carry indicator can have the following values after execution of a shift-left-and-count-accumulator-
and-extension instruction:

Count Accumulator Bit 0 Equals Carry Indicator Equals

£0 1 1
=0 1 0
=0 0 0

The carry indicator is set or reset by bits shifted out of accumulator-bit 0 in the shift-left instruc-
tion but not in the shift-left-and-count instruction. In the shift-left-and-count operation, the carry
indicator is affected as shown in the immediately preceding table.

If, however, the T bitsin a shift-left-and-count-accumulator-and-extension instruction are 00,
the carry indicator is affected exactly as described in the shift-left-accumulator-and-extension
instruction description.

The overflow indicator is not affected by the shift left and count accumulator and extension
operation.

Examples

Shift Left and Count Accumulator and Extension

Assembler Language Coding
Label Operation | |F| T Hexc:f::ma' Description of Instruction
21 25 27 30 32)33 35 40

L 11 S ,L,C 1 D ,I ,S 1P L o4a L1 10*X Contents of A and Q shift left the number of shift counts in
W W - - - I U TR U W S N T | DISP

L4 S ,L ,C N | T T 11Co Contents of A and Q shift left the number of shift counts in
Lt N \ VL4 111 XR1 unless 1 bit shifts into accumulator position 0
' S ,L ,C 1 2 T 12C0 Contents of A and Q shift left the number of shift counts in
L oa A \ Cord L 4 4L XR2 unless 1 bit shifts into accumulator position 0
L s lL lc N 3 Lol 4L L 13C0 Contents of A and Q shift left the number of shift counts in
L1 i L 1 T XR3 unless 1 bit shifts into accumulator position 0

*This hexadecimal digit can be C, D, E, or F depending upon the desired count.

For the four examples below, assume that the index register was previously loaded by an LDX in-
struction. Only the low-order bit positions (10—15) of the index register (XR) are shown and only
the high-order bit positions (0—5) of the accumulator (A) are shown. Those bit positions contain-
ingan X canbe O or 1.

Example Number 1 2 3 4
XR before SLC 000011 000100 000101 000110
XR after SLC 000000 000000 000001 000010
A before SLC 00001X 00001X 00001X 00001X
A after SLC 01XXXX IXXXXX IXXXXX IXXXXX
Carry indicator

after SLC OFF* OFF* ON** ON**

*1f no 1 bits were contained in the field defined by the index register (examples 1 and 2), the program can de-
termine the value of accumulator bit 0 only by testing the accumulator sign. (Carry indicator is OFF and the
index register is 0.)

**|f a 1 bit was contained in the field defined by the index register (examples 3 and 4), the SLCA instruction
was terminated when an attempt was made to shift 1 out of the high-order position, leaving the carry indicator
ON and the index register at a nonzero condition. (The 1 bit remains in the high-order position.)

CPU Inétructions 83

84

Shift Right Logical Accumulator
‘Mnemonic
SRA

Short Format

0 OP F T Displacement 15
0001 1|0 oo

1 8-B 0-3 X
Description

The contents of the accumulator are shifted right, a bit at a time. Zeros (one for each right-shifted
bit) are shifted into accumulator bit-position 0, regardless of the initial value of bit-position 0.

Bits are shifted out of accumulator-position 15 and lost. An example of a right shift of two positions
is:

Accumulator

Original Value: 0 15
1111 0000 1111 0001

O shifted in Bits shifted out are lost.
After First Shift: 0111 1000 0111 1000 1
0 shifted in
After Secﬁnd 0011 1100 0011 1100 0
Shift:

The number of positions shifted is specified by a shift count. Location of the shift count is deter-
mined by the T bits in the instruction:

T Bits (6 and 7) Shift Count Location

00 Lowe-order six bits of displacement (in the shift instruction)
o Low-order six bits in index-register 1
10 Low-order six bits in index-register 2
1 Low-order six bits in index-register 3

A value must be put into the shift-count location before the operation is started. The operation
is ended when the specified number of shifts have been performed. The shift count, however,
need be set up only once. After the operation is ended, the original shift count (for example, a
count in index-register 1) is the same as its initial value. (Decrementing of the count is performed
in separate circuits.)

The maximum shift count that can be specified is 63 (111111 in binary). A right-shift of sixteen,
however, puts zeros in all positions of the accumulator.

A shift count of zero (000000 in binary) causes this instruction to perform as a no-operation:
contents of the accumulator remain unchanged.

Core storage is not addressed during execution of the shift-right-accumulator instruction.

Load Store

Arith
SRA Shift
Branch
110
Indicators: The carry and overflow indicators are not affected during execution of the SRA
operation.
Examples
Shift Right Logical Accumulator
Assembler Language Coding
Hexadecimal o .
Label Operation FI T Value Description of Instruction
21 27 30 32| 33 35 40
L1 s 1R 1A N D N [,S lP L a1 18*X Contents of A shift right the number of shift counts in DISP
L S .R ‘A, | L 44 1900 Contents of A shift right the number of shift counts in XR1
L S lR lA . 2 e 1t L4 1A00 Contents of A shift right the number of shift counts in XR2
L 1L S .R 1A N 3 s 411 1B0O Contents of A shift right the number of shift counts in XR3
*This hexadecimal digit can be 0, 1, 2, or 3 depending upon the desired count.
CPU Instructions 85

Shift Right Accumulator and Extension

Mnemonic
SRT

Short Format

0 OP F T Displacement 15
0001140 10
L 1 1 1 1 ' I/—'l/ 1 1 A 1
1 8B 8-B X
Description

The contents of the accumulator and accumulator extension are shifted right, a bit at a time, as if
these two registers made up a single 32-bit register. Bits shifted out of extension-position 15 are
lost.

Bits shifted in the high-order end (bit 0) of the accumulator are the same value as the original
sign bit (that is, the value of the bit in position O at the start of the operation). This type of shifting
is called arithmetic shifting. An example of a right shift of two positions of a negative number is:

Original Accumulator Accumulator Extension
Value:
0 15 0 15
1111 0000 1111 0000 1111 0000 1111 0000
Sign value shifted Bits shifted out
to the right are lost.
After %
First 111171000 0111 1000 0111 1000 0111 1000 —0 <-——¢
Shift:

Sign value shifted

to the right
After G .
Second 111171100 0011 1100 0011 1100 0011 1100——(0 <+
Shift:

The number of positions shifted is specified by a shift count. Location of the shift count is deter-
mined by the T bits in the instruction:

T Bits (6 and 7) Shift Count Location

00 Low-order six bits of displacement (in shift instruction)
01 Low-order six bits in index-register 1
10 Low-order six bits in index-register 2

11 Low-order six bits in index-register 3

SRT W]

A value must be put into the shift-count location before the operation is started. The operation
is ended when the specified number of shifts have been performed. The shift count, however, need
be set up only once. After the operation is ended, the original shift count is the same as its initial
value. (Decrementing of the count is performed in separate circuits.)

The maximum shift count that can be specified is 63 (111111 in binary). A right-shift of 32
propagates the sign bit from accumulator-position O into all positions of the accumulator and the
accumulator extension.

A shift count of zero (000000 in binary) causes this instruction to perform as a no-operation:
contents of the accumulator and extension remain unchanged.

Core storage is not addressed during execution of the shift-right-accumulator-and-extension
instruction.

Indicators: The carry and overflow indicators are not affected during execution of the SRT
instruction.

Examples

Shift Right Accumulator and Extension

Load Store

Arith
Shift
Branch
1/0

Assembler Language Coding
Label Operation FlT Hexvagleuc:mal Description of Instruction
21 25) 127 30| (32|33 i35 40 ‘

N s ,R 1T 1 D 1 I .SJP. [N T Y 18*X Contents of A and Q shift right the number of shift counts
T S [U T N S S S U in DISP

T R WY s |R 1T 1 | PO S T U U I U1 1980 Contents of A and Q shift right the number of shift counts
O T | U U U W S S T | in XR1

11 11 51R LT | 2 R S N N W N U | 1A80 Contents of A and Q shift right the number of shift counts
T R S W T [S T W S U S U 1 in XR2

I T S.R.T i 3 [V U T N S A B 1B80 Contents of A and Q shift right the number of shift counts
[N | L1 [W TS U W U B in XR3

*This hexadecimal digit can be 8, 9, A, or B depending upon the desired count.

CPU Instructions 87

88

Rotate Right Accumulator and Extension

Mnemonic
RTE

Short Format

0 OoP F T Displacement 15
00011}0 11

N N 1 i IR IS T O WA S 1
N — N — N —

1 8-B C-F X

Description

The basic purpose of this instruction — indicated by the term rotate — is to take the bits shifted
out of accumulator-extension position 15 and shift them back into accumulator-position 0 (no
bits are lost). '

Original Value:

Accumulator Accumulator Extension

0 15 0 15
1111 1111 1111 111 0000 1111 0000 1010

After First Right Shift:

Rotate

0. 15 0 15
0111 1111 1111 1111 1000 0111 1000 0101

After Second Right Shift:

Rotate

0 15 0 15
1011 1111 1111 1111 1100 0011 1100 0010

The number of positions shifted is specified by a shift count. Location of the shift count is deter-
mined by the T bits in the instruction:

T Bits (6 and 7) Shift Count Location

00 Low-order six bits of displacement (in shift instruction)
01 Low-order six bits in index-register 1
10 Low-order six bits in index-register 2
1 Low-order six bits in index-register 3

A value must be put into the shift-count location before the operation is started. The operation
is ended when the specified number of shifts have been performed. The shift count, however, need
be set up only once. After the operation is ended, the original shift count is the same as its initial
value. (Decrementing of the count is performed in separate circuits.)

Load Store

Arith

RTE ” Shift

Branch

1/0
Maximum shift count that can be specified is 63 (111111 in binary). A count of 31 shifts the
value of accumulator-position 0 to extension-position 15; a count of 16 (or 48) reverses the posi-
tions of the two words — the one in the accumulator and the one in the accumulator extension:
Original Value:
Accumulator Accumulator Extension
0 15 0 15
1111 1111 1111 1M1 1000 0000 1000 0000
After Shift and Rotate 16:
Accumulator Accumulator Extension
0 15 0 15
1000 0000 1000 0000 1111 1111 1111 1111
A shift count of zero (000000 in binary) causes this instruction to perform as a no-operation:
contents of the accumulator and extension remain unchanged.
Core storage is not addressed during execution of the rotate-right-accumulator-and-extension
instruction.
Indicators: The carry and overflow indicators are not affected during execution of the RTE
instruction.
Examples
Rotate Right Accumulator and Extension
Assembler Language Coding
Label Operation FIT Hex\a;gzjc;mal Description of Instruction
21 250 127 30| [32]33] |35 40
L 11 R‘TIE N D‘I lS lP L 44 1 18*X Contents of A and Q rotate right the number of counts
[U L1 PR S Y NS S T in DISP
L 1 4 s R‘TlE ' | T 19Co Contents of A and Q rotate right the number of counts in XR1
Ly R,T.E, 2 i 4y 1ACO Contents of A and Q rotate right the number of counts in XR2)
L g RnT E, 3 Ll 1L 1BCO Contents of A and Q rotate right the number of counts in XR3

“This hcxadecimﬂ digit can be C, D, E, or ¥ depending upon the desired count.

CPU Instructions 89

BRANCH INSTRUCTIONS

Branch instructions provide the means for departing from a sequential series of instructions, by
testing to determine if a stated condition or combination of conditions exists, and returning to

the point from which the departure was made. Note the unique differences between the short- and
long-format instructions in the following descriptions.

Branch or Skip on Condi'tion

Mnemonic
BSC or BOSC

Short Format

0 OP F T Displacement 15
0100 1{0]0 0|0

Iy 1 1 1 L 1 1 1 1 1 N L
N N — N—— -

4 8 0-7 X

Long Format

0 oP F T lA Modifiers 15 0 Address 15
010011
M S 1 PR S VR T T N TN TN VU WY TN S TR N SN WA TN IO N 1
4 C-F X X X X X X

Short-Format Description

For the short format of the instruction, the action taken as a result of execution of the instruction
is one of the following:

1. Execute the word immediately following the branch-or-skip-on-condition (BSC) instruction
as the next instruction, or

2. Skip the word immediately following the BSC instruction. In this case, the next instruction
is at the location that starts two words after the BSC instruction.

BSC Instruction

Sequential
Core-Storage Single Word Skipped
Locations

: When skip occurs,
the next instruction
Next | nstruction Execute:l' executed is here.

I Can be a long format

instruction.

90

Load Store
Arith
BSC Shift

. Branch
BOSC

1/0

The next word must be a short format instruction. Otherwise, when the skip occurs, the second
word of a long-format instruction would be accessed, resulting in a programming error.

Whether the skip is taken is dependent upon what testable items are specified by the modifier
bits in the instruction and the conditions of these testable items:

Modifier Bit (When = 1} Specifies Testing of
15 Overflow indicator off
14 Carry indicator off
13 Accumulator even
12 Accumulator plus (greater than zero)
11 Accumulator negative
10 Accumulator zero

If any specified testable item is at the stated condition, the skip is taken; if no specified testable
item is at the stated condition, the skip is not taken.

For example, the carry-indicator-off and overflow-indicator-off conditions are to be tested
{modifier bits 14 and 15 in the instruction are on). If either or both indicators (carry or overflow)
are off, the skipped-to instruction is executed after the branch-or-skip-on-condition instruction.
If both of the indicators are on, however, the next word is the instruction executed after the BSC
instruction:

Skip Instruction

Sequential

Core-Storage Next Word |<=—————— Must be in short format.
Words

Skipped-To Instruction

L— Can be short or long format.

Examples of skipping for various combinations of specified testable items are shown in Figure 16.
A skip occurs only if a specified testable item is at the stated condition — for example, the carry
indicator off. (The long format of this instruction, on the other hand, operates in exactly the oppo-
site manner.)

Core storage is not explicitly addressed during execution of the branch-or-skip-on-condition
instruction. Either the very next word becomes the next instruction, or the skip is taken to the
second word.

CPU Instructions 91

92

Long-Format Description

The same testable items can be specified by the same modifier bits in the long-format of the branch-
or-skip-on-condition instruction as in the short format of the instruction. With the long format,
however, a branch occurs rather than a skip. The core storage location branched-to contains the
next instruction to be executed. Any core-storage location can be addressed for branching. The
branch, however, occurs only when none of the specified testable items are at the stated conditions.
The branch is to the location specified by the effective address, which is formed in the usual manner
(refer to “Long Instruction Address Generation”). If no condition is specified, the instruction per-
forms an unconditional branch.

For example, the accumulator-zero and carry-indicator-off testable items are specified (modifier
bits 10 and 14 are on). If the accumulator is not zero and if the carry indicator is on, a branch
occurs. Otherwise, the next sequential instruction (located immediately after the branch-or-skip-
on-condition instruction) is executed.

Examples of branching for various combinations of specified testable items are shown in Figure
16.

When the indirect-address bit (bit 8) is equal to 1, indirect addressing is specified. In this case,
the branch-or-skip-on-condition instruction enables the program to return to a mainline program
from a subroutine or interrupt routine. This is accomplished by making the effective address of
the instruction identical to the effective address of a previously executed branch-and-store-instruc-
tion-address-register instruction.

Programming Note: For an overall description of interrupts refer to “I/O Interrupts.” When an
interrupt request has been detected by a priority level, an interrupt occurs. The interrupt action
causes a forced CPU branch (and store instruction register) to an interrupt handling subroutine.
During execution of the subroutine, all interrupt requests of equal or lower priority status are pre-
vented from interrupting the subroutine. If a request for a higher priority interrupt is detected,
however, the program (subroutine) is immediately interrupted again.

At the completion of servicing any level of interrupt, the priority-status of the highest level is
reset. This reset permits lower priority requests that may have been temporarily prevented to be
accepted again. (Requests that have been made are recorded and are initiated again.) The reset to
the current priority level (made at the end of the subroutine) is effected through execution of a
branch-or-skip-on-condition instruction in which bit 9 = 1. A branch-or-skip-on-condition instruc-
tion with bit 9 = 1 is called a branch out of interrupts. (The mnemonic is BOSC.)

Bit Positions: 0 11 12 13 Skip Branch
ACC Conditions: Zero Minus Plus Even |(F =0) (F=1)
(1 1 1 0 Always | Never
0 0 (V] Never Always
0 0 1 0 Plus Not Plus
Test 1 10 0 | Notbius |Plus
Conditions < 0 1 0 0 Minus Not Minus
1 0 1 0 Not Minus| Minus
1 0 0 0 Zero Not Zero
0 1 1 0 Not Zero | Zero
0 0 0 1 Even Odd
0 0 1 1 Even or Odd and
Plus Minus
L 0 1 0 1 Even or Odd and
Minus Plus
Notes: 1. ACC Zero is not a plus condition.

2, Skip and Branch columns specify action or ACC condition
required for Skip or Branch.

3. Skip on Odd condition, Carry ON, or Overflow ON are
not possible,

Figure 16. Branch Examples for Branch or Skip on Condition Instruction

Branch or Skip On Condition

But the branch on condition is still conditional (if conditions are specified when bit 9 = 1).
Reset of the interrupt level occurs only if the branch or skip occurs. If the branch or skip does not
occur, the interrupt level is not reset. Branching or skipping is dependent upon the format, the
conditions tested, and the state of the conditions tested.

This programmed branch back from an interrupt subroutine should not be confused with a normal

linkage from one routine to another in which bit 9 equals O.

Indicators: The overflow indicator is reset when tested. The carry indicator is not reset when
tested. Contents of the accumulator are not changed by testing.

Examples

Assembler Language Coding |
Hexadecima L. .
Label Operation FI T Value Description of Instruction
21 25| |27 30| |32 35 40
11 41 B,SlC N C OJN ,D T 48*X Skip the next one-word instruction if ANY condition is
L1 o4 L4 1 ' S sensed
Ly 8,5,C, L AD, Dﬁ . +,C,0,N,D| 4c*xxxxx | Branch toCSL at EA (Addr) on NO condition
L1 8,5.C, Lit| [A,D,D,R,,,C,0,N,D| 4D*XXXXX | Branch toCSL at EA (Addr + XR1) on NO condition
L1 1 8,5,C, Lf2{ |A,0,D,R,,,C,0 N D[4E*XxxxXXX | Branch toCSL at EA (Addr + XR2) on NO condition
L. .. | 18SC, L|3] [A,D,D,R,, C,0 N D| 4F*xXXXX | Branch to CSL at EA (Addr + XR3) on NO condition
L 8,S,C, I A,D,D,R,,,C,0 N ,D| 4cXXxXX | Branch toCSL at EA (V in CSL at Addr) on NO condition
Dy B8,5,C, 1{1] |A,D,D,R,,,C,0 N ,D| 4D*XXXXX | Branch toCSL at EA (V inCSL at “Addr + XR1") on NO
S 11 P S N S T BN | condition
L g 8,S.C, 112] |A,D,0,R,, ,C,O,N D | 4E*XXXXX | Branch toCSL at EA (V in CSL at “Addr + XR2") on NO
L1 L1 P D T S T S | condition
L B8,S.C, 1/3] |[A,D.D,R,, ,C,O0 N D| 4rexxxxx | Branch toCSL at EA (V in CSL at “Adds + XR3") on NO
T | 'R U RN W U N U | condition

A BOSC can be used in any of the above examples instead of a BSC.

If COND is not specified:

1. In the short format, a skip is not taken.

2. In the long format, a branch is always taken.
COND represents a specified condition. The assembler codes are
specified in the 1130 Assembler Language Manual.

* This digit is determined by the desired

condition(s) spécified.

CPU Instructions

93

94

Branch and Store Instruction Address Register

Mnemonic
BSI

Short Format

0 OP F T Displacement 15
01000]|0
A N L

F R S W Y S N B |

N-—— S N S
4 0-3 X X

Long Format
0 oP F T 'A Modifiers 150 Address 15

01000}
A d TR T N T IO WU W T SN S | J S B |

N N - Ve d N N S— S -
4 47 X X X X X X

Short-Format Description

For the short format of this instruction, an unconditional branch always occurs, and the address

in the instruction-address register is stored at a specified core-storage location. The address stored

is that of the instruction immediately following the location of the branch instruction (BSI). This
address is stored at the location specified by the effective address generated as a result of execution
of the branch instruction. The instruction-address register is then loaded with the generated effec-
tive address plus one. Consequently, the location of the next instruction that is executed starts at
the word immediately following the location specified by the generated effective address. Pictorially,
the operation is as follows:

The contents of the instruction address register are stored at the location specified by the
effective address.

Core-Storage Instruction Address
Address Register
500 BSI Short Format 501 [(Hexadecimal)
501
points to
550 .:i 501
551

Arith
Shift

BSI Branch
1/0

The instruction address register is updated to the effective address plus one.

Instruction Address
Register

550 501

551 Next Instruction 551

Normal short format addressing applies to this instruction (refer to “Short Instruction Address
Generation™). Notice that the address stored (the address from the instruction-address register) is
that of the instruction located immediately after (in core storage) the branch-and-store-instruction-
address-register instruction.

Long-Format Description

In the long format, this instruction operates in a manner similar to the long-format branch-or-skip-
on-condition instruction (BSC). Two actions are conditional:

1. Storing of the address contents of the instruction-address register
2. Branching to the instruction at the location specified by the effective address plus one

The testable items are the same as those in the branch-or-skip-on-condition instruction:

Modifier Bit (When = 1) Specifies Testing of
15 Overflow indicator off
14 Carry indicator off
13 Accumulator even
12 Accumulator plus (greater than zero)
1 Accumulator negative
10 Accumulator zero

If any one or more of the specified items is at the stated condition, the branch is not performed,
and the contents of the instruction-address register are not stored. For example, if overflow-off is
to be tested and the overflow indicator is off, the branch is not performed and the address is not
stored.

On the other hand, if none of the testable items are at the stated condition (or if no condition is
specified):

1. The contents of the instruction-address register are stored at the location specified by the
effective address.
2. The next instruction executed is at the effective address plus one.

These two actions are done in the same manner as described for the short format of this instruction.
Addressing is performed in the normal manner (refer to “Long Instruction Address Generation”).

CPU Instructions 95

A branch-and-store-instruction-address-register instruction that specifies indirect addressing is
forced by the CPU during initiation of interrupt action. In this case, the branch instruction is not
in core storage but is forced into circuitry by the CPU. At the end of the interrupt subroutine, a
branch-or-skip-on-condition instruction (BOSC) should be executed to return to the stored address.
Instruction execution can then resume at the point at which the program was stopped when the
interrupt originally occurred. (Refer to “I/O Interrupts” for further details.)

Indicators: For the short-instruction format, neither indicator (carry or overflow) is affected. In
the long format, the overflow indicator is reset if tested. The carry indicator is not reset by testing.
Contents of the accumulator are not changed by testing.

Examples

Branch and Store Instruction Address Register

Assembler Language Coding
Label Operation Fl T He’%’:ﬁgm' Description of Instruction
21 25 27 30 32]33] |35 40

L 1 13 B .S 1 I \ D N I s S N P N T 40XX Store next sequential address in CSL at EA (I + DISP)
11 La U U U U U N N | and Branch to EA + 1
L. . .| IBS,I, Il [0,ISP, , , , . | a1xx Store next sequential address in CSL at EA (XR1 + DISP)
O B 111 PR W R U S U O and Branch to EA + 1
L aoa .1 18S T 2| |0, ISP, , , | exx Store next sequential address in CSL at EA (XR2 + DISP)

L1 11 W W W N N U and Branch to EA + 1
. .. BS.I, 3] IDISP, ,, , , | 43xx Store next sequential address in CSL at EA (XR3 + DISP)
Lo L1 [T T k and Branch to EA + 1
T B.S LI n L A ID lD lR N uc .0 1" . D 44*XXXXX If NO condition is true, store next sequential address in CSL
L L 11 L1 T at EA (Addr) and Branch to EA + |
L1 o1 B.S ,I 1 L]l A jD 1D LR \ jJc J0 1" lD 45*XXXXX | If NO condition is true, store next sequential address in CSL
U S 110 T T at EA (Addr + XR1) and Branch to EA + 1
L1 1 B,S N I 1 L2 A LD { D,R L2 ,c 1 0 .N lD 46*XXXXX | If NO condition is true, store next sequential address in CSL
L a L L1l N at EA (Addr + XR2) and Branch to EA + 1
. . .1 IBST, L|[3] |A.D.D,R,,,C,0 N D| 47oxxxxX | 1fNO condition is true, store next scquential address in CSL
L L1 O T at EA (Addr + XR3) and Branch to EA + 1
L1 11 B IS { I i I A ,D lD ,R 13 ,c .0 lN ‘D 44*XXXXX If NO condition is true, store next sequential address in CSL
L a1 L1 T A at EA (V in CSL at Addr) and Branch to EA + 1
L a4 B,S L I 1 Il A lD .D IR 12 1C .O ,'LD 45*XXXXX | If NO condition is true, store next sequential address in CSL
L. L 1 & 411 [N N N T | at EA (V in CSL at “Addr + XR1") and Branch to EA + 1
s 1 1 B ,S : I N I 2 A lD ,D lR ' ,c 10 .N ID 46*XXXXX If NO condition is true, store next sequential address in CSL
[T 11 U T S S N N B 1 at EA (V in CSL at “‘Addr + XR2") and Branch to FA + 1
L, .. 1881, 113] |ADDR,,.,C,0 N,Df 47+xxXXX | 1fNO condition is true, store next sequential address in CSL
I S L . PR R D U T S W at EA (V.in CSL at “‘Addr + XR3") and Branch to EA + 1

In the long format, if COND is not specified, the branch is always taken.

* This hexadecimal digit is determined by the testable items specified.

96

Modify Index and Skip

Load Store

Arith

Branch

Mnemonic
MDX Shift
MDX
1/0
Short Format
0 OoP F T Displacement 15
01110|0
S N - S—— -
7 0-3 X X
Long Format
0 OP F T IA Modifiers 15 0 Address 15
0ot110}1
j T T T | L PR R YN TR NN NS AN N N SR SO NN S SN W SO U SR S Rt
N - S— " N N, - S N S N
7 4.7 X X X X X X
The purpose of this instruction is:
1. Tomodify (increment or decrement) the contents of an index register (1, 2, or 3), the con-

) tents of the instruction-address register, or the contents of a word in core storage, and
2. To skip a word or to branch when the location being modified (except the instruction-
address register contents) either changes sign or is zero after the modification.

Note: In no case are the contents of the accumulator, its extension, the overflow indicator, or
the carry indicator modified or changed.

A skip causes the program to skip over the next word in storage and go to the second word in
sequence. This means that when this instruction could cause a skip it should be followed by a short-
format instruction. If a long-format instruction were to follow, a skip would send the program to
the second word in the instruction and a programming error would result. A skip does not occur
if the contents of the modified location do not change sign or do not go to zero as a result of the
modification.

Short-Format Description

The displacement is expanded to 16 bits by duplication of the sign bit eight positions to the left
of the high-order position. The expanded displacement is added to the register specified by the
tag bits of the instruction as follows:

Tag Bits Operation

00 Displacement added to instruction-address register
01 Displacement added to index-register 1
10 Displacement added to index-register 2
1" Displacement added to index-register 3

When the tag bits are 00, this instruction performs a no-operation or modifies the instruction-
address register, depending on the value of the displacement. Because the instruction-address
register contains the address of the next instruction, a displacement of zero accesses the next
instruction. Any displacement results in a branch to the modified address. The displacement can be
either positive or negative.

CPU Instructions 97

Modify Index and Skip

A typical operation is:

1. Assume:
a. Tag bits = 01, specifying index-register 1.
b. Index-register 1 contains FFFF (a minus one).
¢. The displacement is 04.
2. The expanded displacement is added to the contents of index-register 1:
FFFF From XR1
+0004 Expanded displacement
0003 Result in XR1

3. Askip of one word occurs because the sign of the contents of XR1 changes from negative to
positive.

Long-Format Description

Modification is accomplished according to the tag and modifier bits or indirect-address fields of

the instruction. If the tag bits are 00, the expanded displacement (bits 8 through 15 of the first
word of the instruction) is added to the contents of the storage location specified by the address
field in the instruction. The displacement is expanded to 16 bits by duplicating the sign bit eight
positions to the left of the high-order position. If the tag bits are not 00, the contents of the address
field of the instruction are added to the contents of the index register that is specified by the tag
bits.

Tag Bits Index Register
01 1
10 2
1 3

Indicators: The carry and overflow indicators are not affected by execution of a modify-index-
and-skip instruction.

Examples

Assembier Language Coding
Label Operation FI T Hex::r:eimal Description of Instruction
21 27 30| [32as| f3s 40
44 MD X, D,I.S P Ly, | TOXX Add expanded DISP to I (no skip can occur)
L1 IM,D X, IpI0IspP, ,, ,, |7nx Add expanded DISP to XR1
L., IM.D.X. 2 o1 spP, ., |7 Add expanded DISP to XR2
L IM@ X, 3| I ISP, , , |7 Add expanded DISP to XR3
L1 IM.D X i L A,D,D,R 4 a1 D. I ls N 74XXXXXX | Add expanded positive or negative DISP to CSL at Addr
111 1 1.1 11l Lt (Add to memory)
L IM,D X, L{I| |JADDR, , , , , | 7590XXXX | AddAddrtoXR1
L |M.D,X , L|2{ [ADDR, , , , , | 7600XXXX | AddAddrtoXR2
L TMLD,X‘ L{3] [ADDR. . . . [7700xxXX" | "Add Addr to XR3
L [M,D,X, I11] JAD.DR, , , , , | 7580XXXX | AddVinCSLat Addrto XR1
L M,D, X, 1/12] [A,DDR, , , , , | 7680xxxx | AddVinCSL at Addr to XR?
Lyt]M.D.X. 1[(3] [A,D.DR, , , , , | 7780XXXX | AddVinCSL at Addr to XR3

98

Wait

Mnemonic
WAIT

Short Format
0 OP F T Displacement 15

00110f0j00j00000000O
(| O I B

1
s el el
3 0 0 0

Description

WAIT B

This instruction is valid in the short format only. When a wait instruction is executed, the CPU
stops in a wait condition and can be restarted manually or by an interrupt. A manual restart (opera-

tion of the program-start key) causes resumption of the program with the next sequential instruc-
tion; an interrupt causes resumption at a point determined by the interrupt branch operation (exe-

cuted at the end of the interrupt subroutine). Cycle stealing operations for transfer of data to or
from main storage continue and are not affected by the wait condition.

t oad Store
Arith

Shift
Branch

1/0

Indicators: The carry and overflow indicators are not affected by execution of the wait instruction.

Example

Wait
Assembler Language Coding
Label Operation FIT I-Iexc:le: :mal Description of Instruction
21 27 30 32133 B35 40
Y W, A, I ,T oy 444 a 4 3005 WAIT until manual start or an Interrupt occurs

Immediate data

(determined by programmer)

CPU Instructions 99

EXECUTE 1/0

100

Mnemonic
XI10

Short Format

0 oP F T Displacement 15

0000 1|0

e e e VN
0 8-B X X

Long Format

0 OP F T 'A Modifiers 15 0- Address 15
0000 11 00000O00O0
J. 11 i L4 1 I 1 1 1 1 1 T | 1 1 1 1 1 L1 1 1
S N~ N— Se— - S - S S S
0 C-F Oor8 0 X X X X
Description

Execute 1/0is the only CPU instruction that can be used to service I/O devices. Operation for the
short format of the instruction is identical to operation for the long format, except for addressing,
which is performed in the normal manner (refer to “Effective Address Generation” for details).

The four basic types of I/O operations, which are initiated by an execute I/O instruction by means
of input/output control commands, are:

1. Write. Sending data from core storage to an output device.

2. Read. Receiving data into core storage from an input device.

3. Control. An operation (peculiar to the specific I/O device involved) that generally does not
involve data transfer. For example, moving the access mechanism in a disk-storage drive from
one cylinder to another cylinder is a control operation. In some cases, a control operation
prepares an 1/O device for subsequent data transfer to or from core storage.

4. Sense Status. Information that specifies the condition of an I/O device (such as the device
is ready to be used or a printer is out of paper forms) must be obtained from the device and
examined by the program so that subsequent operations can be carried out properly.

The execute I/O instruction does not in itself specify any of the preceding operations; they must be
specified by input/output control commands (IOCC’s).

The function of execute I/0 is to address the appropriate IOCC. Then the CPU uses the addressed ‘
IOCC to specify the operation to the desired device. The IOCC operation is automatic once an
I0CC has been accessed by an execute I/O instruction.

The I0CC must start at an even word address in core storage. Also, the contents of the accumula-
tor must be saved (via programming) before an execute I/O instruction is executed. The reason for
this is that the accumulator is used in the analysis of the IOCC; any data in the accumulator at the
start of this analysis is destroyed by the IOCC information.

Indicators: The carry and overflow indicators are not affected as a result of execution of an execute
I/O instruction.

Load Store
I Arith
Arith

Shift

Branch

x10 e

Input/Output Control Commands (I0CC’s)
The format of the IOCC is:

0 15 0 4 8 15

1 2 1 L 1 1 L 1 1 'l 1 1 1 1 1 1 ' Il 1 1 '} 1 1 i 1 1 1 i
~ e | N, et | N\, et | e, prm——
Address Device Function Modifier
|«—————FEven Location Odd Location r—ee————

The leftmost word of the IOCC is addressed during execution of the execute I/O instruction. The
effective address generated by the execute I/O must be even. Consequently, the leftmost word of
the IOCC must be located at an even-word location.

Specific fields in the IOCC are described in the following paragraphs. For descriptions of I0OCC’s
for the various I/O devices, refer to the I/O device descriptions in this manual.

Address Field

The function of this 16-bit field depends on both the operation and the device specified. During
data-transfer operations, the address field specifies the core-storage location of the word to be
transferred to or from an I/O device.

With respect to the use of the address field, data transfers may be performed in either of two
ways, depending upon the I/O device involved in the operation:

1. Cyclesteal
2. Direct program control

In cycle-steal operations, initial information is sent to the I/O device. This initial information is
sent as a result of an IOCC addressed by an execute I/O instruction. The cycle-steal I/O device

then accesses core storage as required by any data transfers involved in the operation. This cycle-
steal activity goes on independently of the program being executed in the CPU. Updating of the
storage address that specifies each sequential core-storage location for each word of input or output
data is handled independently of the CPU program. In the same manner, any data count that indi-
cates the amount of data to be transferred is decremented automatically as the cycle-steal opera-
tions proceed.

On the other hand, in direct-program-control operations, updating of any data count or data-
address information must be explicitly performed by the program. In other words, each time a data
word is to be transferred, the address in the IOCC must first be updated to point to the word loca-
tion in core storage that is to be used. Also, any data count must be program controlled so the
operation is stopped when the required amount of data has been transferred. In direct program
control, execution of an IOCC does not in itself cause automatic updating of either the data address
or any associated data count. Such direct-program-control operations are applicable to certain
devices that are not attached to the storage-access channel.

All devices attached to a storage-access channel (I or IT) transfer data on a cycle-steal basis. (They
do require direct program control, however, for control or sense operations.) Also, the single-disk
drive (in the 1131 CPU Models 2, 3, and 4 only), the 1132 Printer Model 1 and 2, and the 2501
Card Reader Model A1 or A2 use a cycle-steal, data-transfer method of operation. Refer to
descriptions of the individual I/O devices and the storage-access channel for further details.

CPU Instructions 101

102

Device Field

This five-bit field identifies the I/O device to which the IOCC is directed. This field is also called
device address, area code, or device code. The device-code assignments are:

Device Code (Binary)

00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01100
10001
10010
10011
10100
10101
10110
10111
11001

Function Field

Device

Console keyboard and console printer

1442 Card Read Punch

1134 Paper Tape Reader and Paper Tape Punch

CPU single disk storage

1627 Plotter

1132 Printer

Console entry switches, program stop key, and interrupt run mode
1231 Optical Mark Page Reader

2501 Card Reader

Synchronous Communications Adapter

1BM System/7

2310 Disk Storage, Drive 1, or 2311 Disk Storage Drive, Drive 1, Di;k 1
2310 Disk Storage, Drive 2, or 2311 Disk Storage Drive, Drive 1, Disk 2
2310 Disk Storage, Drive 3, or 2311 Disk Storage Drive, Drive 1, Disk 3
2310 Disk Storage, Drive 4, or 2311 Disk Storage Drive, Drive 1, Disk 4
1403 Printer

2311 Disk Storage Drive, Drive 1, Disk 5

2311 Disk Storage Drive, Drive 2, Disk 1 through &

2250 Display Unit

The primary I/O functions are specified by the three-bit function code:

Function Code

000
001

010

011

100

101

110

11

Function Specified

Not used

Write — transfers a single word from core storage to an 1/O unit. The address of the
storage location is provided by the address field of the I0CC.

Read — transfers a single word from an 1/0 unit to core storage. The address of the
storage location is provided by the address field of the 10CC.

Sense Interrupt — loads the accumulator with the interrupt-level status word (ILSW)
for the level being serviced at the time it is issued. This command is common to all

1/0 devices; therefore, no device code is needed. (Refer to ““1/0 Interrupts’ for a des-
cription of the ILSW's.)

Control — causes the selected device to interpret the modifier and/or address fields as
a specific control action.

Initiate Write — provides the ability to initiate a write operation on a device or unit
that subsequently makes data transfers from core storage via a data channel.

Initiate Read — provides the ability to initiate a read operation on a device or unit
that subsequently makes data transfers to core storage via a data channel.

Sense Device — loads the accumulator with the device-status word {DSW) from the
device that is addressed by the I0OCC. The status indicators (conditions) that can cause
interrupts are reset by modifier bits in the IOCC as follows: bit 15 (= 1) for the highest
level interrupt for the device; bit 14 {= 1) for the next highest level, and so on.

Note. When, during execution of a sense device command, the device field addresses a device that is
not in the system configuration, every position of the accumulator is set to zero (an all-zero device-
status word is in the accumulator). Normally, when a device is in the system, this all-zero condition
indicates that the device is ready and not busy. But, for a device that is not in the system, this indi-
cation is meaningless. No separate indication is given to indicate that a device is not in the system,

Modifier Field

This portion of the IOCC provides additional information for the device and function specified.
Where modifier bits affect a command, they are defined in the command-description section in
subsequent portions of this manual.

Examples
Execute 1/0
Assembler Language Coding .
Label Operation FIT Hexxf:;mal Description of Instruction
21 25| |27 30| f32]33] 35 40
L. IX1,0 D,ISP, ,, , , | osxx Execute I0CC in CSL at EA (I + DISP) and EA + 1
Ly X.I.0, Il [D,ISP, , , , , | o9xx Execute I0CC in CSL at EA (XR1 + DISP) and EA + |
Ly X.10, 2{ DISP, , , , , | oAxx Execute I0CC in CSL at EA (XR2 + DISP) and EA + 1
Ly, XI1.0, 3 I0D,I.SP, ,, , , | oBxx Execute I0CC in CSL at EA (XR3 + DISP) and EA + 1
Ly X.I0, L ADDR, , , , , | 0c00XXXX | ExecutelOCC inCSL at EA (Addr) and EA + 1
gy | IX,TL0, L{I| |IA,D,DR, , , , , | ODPOOXXXX | ExecuteIOCC inCSL at EA (Addr+ XR1)and EA + 1
Ly XI.0 Li2] |AD,D,R, ., , , , | OEOOXXXX | Execute1OCC inCSL at EA (Addr+ XR2)and EA + 1
R LR N L|3] |JAD,DR, , , , , | OF0OXXXX | ExecuteIOCC in CSL at EA (Addr+ XR3)and EA+1
Ly 4 XLI;O. I AD DR, , , , , | OCBOXXXX | ExecuteIOCC inCSL at EA (V iri CSL at Addr) and EA + 1
L s X.I.0 I[1] [A,D,0,R, , , , , | 9D80XXXX | Execute I0CCin CSL at EA (V in CSL at “Addr + XR1")
11 i1 L1 1 j W U N S S . U | and EA + 1
., | X 1,0, I12] [ADDR, , , , , | oEsoxxxx | Execute10CC inCSL atEA (V in CSL at “Addr + XR2")
P W S 1 Lt | | I I T W I T andEA + 1
e LA NN 1/3] [ADDR, , , , , | oF8oxxxx | Execute10CCinCSL at EA (V in CSL at “Addr + XR3")
L 1 1 Y 1y T and EA +]

CPU Instructions 103

1/0 Interrupts

This section is provided for those who require an understanding of the 1130 CPU interrupt scheme.
Normally, application programs (used in conjunction with the facilities of IBM-supplied programming
systems for the 1130) interact with the 1130 CPU interrupt scheme by means of subroutines. Sub-
routines are supplied by IBM for the 1130, or they may be written by the application programmer.

If IBM-supplied subroutines are used, it may not be necessary for the programmer to understand

how the interrupt scheme is implemented in the 1130 CPU.

General Purpose of Interrupts

The temporary stopping of the current program routine, in order to execute some higher priority
I/O subroutine, is called an interrupt. The interrupt mechanism in the CPU forces a branch out of
the current program routine to one of several subroutines, depending upon which level of interrupt
occurs.

I/O operations are started as a result of the execution of a program instruction. Once started, the
1/0O device continues its operation at the same time that the job program is being executed. Even-
tually the I/O operation reaches a point at which a program routine that is related to the I/O opera-
tion must be executed. At that point an interrupt is requested by the 1/O device involved. The
interrupt action results in a forced branch to the required subroutine.

In addition to the routine needed to start an I/O operation, subroutines are required to:

1. Transfer a data word between an I/O device and main storage (for write or read operations)
2. Handle unusual (or check) conditions related to the I/O device
3. Handle the ending of the I/O device operation

Note: Some I/O devices do not require program-instruction handling of data transfers to or from
core storage. These devices are described in subsequent sections of this book. Their method of
transferring data is called cycle steal and is not related to the interrupt program-subroutine method
of handling data described in this section.

In order to understand the interrupt scheme, first examine the start of an I/O operation. Then
contrast this operation with an interrupt occurrence, which in many respects is similar to the be-
ginning of the I/0 operation.

Starting an 1/0 Operation
Shown in the following diagram are:

1. The job program routine (which, for this discussion, includes those program steps not used
for I/O operation handling)

/O Program Routin

1/0 Device Operation /

Time

104

2. The I/O program routine that starts an I/O device
3. The I/O device operation (such as moving a punched card through the read feed of a card
reader)

Branching from the job routine to the I/O routine occurs at point A in the diagram. This branch is
a program-controlled operation that is started because the job program is at a point at which the
1/0 operation is required (such as the reading of a card in the card reader). Similarly, when the end
of the I/O routine is reached, a program-controlled branch is made back to the job routine (point B).
(Program-controlled means that the logical point at which the branch occurs is determined by the
program; no forcing is performed by the CPU.)

Because the CPU can execute only one instruction at a time, the I/O routine and the job routine
are not overlapped.

But the 1/O device operation is overlapped with program-instruction execution because the 1/O
device can perform its functions without using the CPU mechanism required for execution of
program instructions. In other words, the I/O device operation, once started, continues while
program-instruction execution takes place in the CPU.

In summary, the important points to notice about starting the I/O operation are:

1. Branching operations to the I/O routine and then back to the job routine are under program
control.

2. Once started, the I/O device operates at the same time as the current program routine (I/0
or job) is being executed.

Interrupt Action

Assume that the 1/O device in operation is the card reader (1442). The I/O device operation that
has been started, then, is the moving of a card past the read station. ’

/ Card moving past read station in the card reader \

Time

As soon as the card is moved far enough for one card column to be read, the card reader signals the
CPU. This signal to the CPU is an interrupt request. The interrupt, however, does not occur until
execution of the current instruction is completed. At that time, a forced branch occurs to an inter-
rupt-handling subroutine.

CPU Instructions 105

106

The interrupt action can be shown pictorially in the following way:

}¢——— “‘Forced’’ by CPU

Card column is read

! Card continues to move past the read station \

Time

Logical requirements of the interrupt subroutine are carried out before a return to the interrupted
program.

To return to the program routine that was in progress before the interrupt occurred, another
branch must be provided. This, however, is a program-controlled branch and, therefore, is not forced
by the CPU.

In summary,

1. Aninterrupt request occurs at the time that an I/O operation, which otherwise proceeds in-

dependently of the program, requires program intervention.

The interrupt occurs after the current instruction has been completely executed.

The CPU then forces execution of a branch instruction, which causes a branch to a subroutine.

4. At the end of the subroutine the program branches back to the program routine that was in
progress when the interrupt occurred.

w

As discussed, the two ways of branching into an I/O routine are:

1. Program-controlled branching
2. CPU-forced branching

In a program-controlled branch to an I/0 routine, a properly written program has address information
for the branch-to location and the return address, if needed. Similarly, when a CPU-forced branch
occurs, a way must be provided to branch to'the proper subroutine and return (via another branch)

to the interrupted program at the end of the subroutine. Therefore, the following information

must be available.

1. The core-storage address of the beginning of the interrupt subroutine
2. The core-storage address of the next instruction to be executed in the current program (that
is, the address of the place to return to after the interrupt routine is completed)

But at the time of the actual interrupt (after the current instruction is completely executed) the
address of the next instruction is in the instruction-address register.(The next instruction is the one
that would have been executed if the interrupt had not occurred.)

The next instruction address is stored into the first word of the interrupt-subroutine location.
Storing is performed during execution of the CPU-forced branch at the time of the interrupt. The
CPU-forced branch is a branch-and-store-IAR instruction (a BSIinstruction). Format of this forced
branch instruction is:

oop F T A 15 0 15.
BSI 1 00 |1 Address of Interrupt Vector Location I
Long -—T Llndirect Address
Format
No Index
Register

The beginning (first word) of the interrupt subroutine is specified by an address in the interrupt-
vector location, which is the location that contains the effective address used during execution of
the BSI instruction. The address field in the BSI instruction points to the interrupt vector. There
are several interrupt-vector, fixed locations in core storage because there are several levels of inter-
rupt. Interrupt levels and their associated vector locations are:

Interrupt Level interrupt Vector Location Device
(in core storage)

0 00008 (in decimal) 1442 Card Read Punch {column read, punch)

1 00009 1132 Printer, synchronous communications adapter

2 00010 Disk storage, storage access channel

3 00011 1627 Plotter, 2250 Display Unit, storage access channel,

) System/7

4 00012 1442 (operation complete), keyboard, console printer,
1134 Paper Tape Reader, 1055 Paper Tape Punch, 2501
Card Reader, 1403 Printer, 1231 Optical Mark Page
Reader, storage access channel

5 00013 Console (program stop switch and interrupt run), storage

access channel

Entering an Interrupt Subroutine

Suppose that an interrupt occurs at level 0. For this example, the address of the next instruction in
the current program is 0502. This value (0502) is in the instruction-address register (IAR) when the
CPU-forced branch occurs. Because the interrupt is at level 0, the CPU forces execution of the
following branch instruction.

oP F T IA 15 0 15

BSI 1 00 1 0008

Address of the interrupt |
vector location corresponding
to interrupt level O.
Execution of this instruction stores the contents (0502) of the instruction-address register into the

first word location of the interrupt subroutine. The contents are kept there until needed for branch-
ing back to the interrupted program after the interrupt has been handled.

CPU Instructions 107

108

The first word of the interrupt subroutine is at the core-storage location specified by the contents
of location 0008 (the interrupt-vector location for level 0). When the program is originally loaded
into the system, the appropriate subroutine addresses must be stored (via program control) into the
interrupt vectors. Therefore, for this example, the contents of core-storage location 0008 are 0600.
Core-storage address 0600 is the address of the first word of the interrupt subroutine for interrupt-
level 0. For this example, then, execution of the branch-and-store-IAR (the CPU-forced branch)

results in:

1. The conterzlts of the second word of the BSI instruction point to the core-storage location
(0008) that contains the effective address (0600) used during execution of the BSI instruction. .

BSI 1] 00 |1 0008
Core-Storage
Location 0008 —| 0600

Core Storage

Instruction Address
Register (IAR)

0502 | (Address of next
instruction in
current program)

2. The contents (0600) of location 0008 are an address that points to the first word of the
interrupt-level-0 subroutine. The value in the instruction-address register is stored at this

location.

Core-Storage
Location 0008 —

0600

Core StOV

Instruction Address
Register (IAR)

| 0502

0502 l _-—

— (Location 0600)

3. The instruction-address register is updated to the effective address plus 1 (the effective address
used during execution of the forced BSI — for this example, 0600).

Instruction Address
Core-Storage Register (IAR)

Location 0008 —| 0600

Core Storage

0502 | Inst (Locations 0600 and 0601)

4. Because the instruction-address register now points to 0601, the first instruction of the sub-
routine is taken from that location. This is normal operation for the BSI instruction.

Saving Data Used by The Interrupted Program

The interrupt subroutine must save the contents of certain index and machine registers (by storing
their contents into core storage) before such registers are used for data manipulation within the
subroutine. Only the contents of those registers that are used by the subroutine need be saved. The
data integrity of such registers must be maintained because the interrupted program may use the
same registers. At the end of the interrupt subroutine, the contents of the affected registers are
loaded back into the registers from core storage.

For example, the accumulator is used by all subroutines. Therefore, the contents of the accumula-
tor must be stored into core storage before the accumulator is used by the subroutine. At the end
of the subroutine, before a return to the interrupted program, the accumulator is loaded with the
data that is saved.

Cause of Interrupt
In general, two methods are used to determine what condition is causing an interrupt:

1. Examination of the device status word
2. Examination of the interrupt-level status word

The 1/O device causing an interrupt can be determined by examination (via programming) of the
interrupt-level status word, when necessary. (The following discussion indicates when this is not
necessary.) Then, after the device is known, the device-status word is examined to determine the
condition in the device that caused the interrupt to occur.

First consider a level-0 interrupt. An interrupt-level status word is not used at level 0. Only the
device status word need be examined at interrupt level O.

Either one of two conditions can cause level-0 interrupt to occur:

1. The card reader (1442) has a data word ready for storing into core storage during a read
operation.

2. Or the card punch (1442) is ready to accept data for punching a column during a punch
operation.

Because the 1442 can perform only a read or a punch operation at any one time, an interrupt at
level O is for either a read or a punch operation. The program must determine which operation
occurs. Clearly, sending a data word from core storage to the card punch during a read operation
would be inappropriate.

Determination of whether the reader or the punch caused the level-0 interrupt is done in the
following way: An execute 1/O instruction addresses a sense-device I/O control command. Execu-
tion of this command, which specifically addresses the 1442, results in the loading of the 1442
device status word into the accumulator. Also, bit 15 in the second word of the command is on
(that is, equals a value of 1). That bit, when on, causes a reset of the interrupt response. (The
interrupt response is the signal, from the 1442, that originally requested the level-0 interrupt.)

CPU Instructions 109

Bits 0 and 1 of the 1442 device status word specify which operation (punch or read) causes the
level-0 interrupt.

1442 Device Status Word

t——— Bit 1, when set to a value of 1, specifies a punch response.

Bit 0, when set to a value of 1, specifies a read response.

After the subroutine determines whether the interrupt is for a read or punch response, the appro-
priate action is taken:

1. For a read response, an execute I/O instruction addresses a read 1/O control command that
moves the data word from the 1442 to core storage.

2. For a punch response, an execute I/O instruction addresses a write I/O control command
that moves the data word from core storage to the 1442 punch.

At the end of the level-0 interrupt subroutine:

1. The saved contents of registers are loaded from core storage back into the registers.

2. Abranch (BOSC indirect) is made back to the interrupted program. (This resets the interrupt
level.) The branch is carried out through use of the address stored in the first word of the
subroutine. (Recall that the first word of the subroutine is loaded with the address of the
instruction that would have been executed if the interrupt had not occurred.)

Interrupt-level status words are defined for interrupt levels 1, 2, 3,4, and 5. During execution of
the subroutine, the interrupt-level status word for the level of interrupt can be put into the accumu-
lator by an execute I/O instruction and sense-interrupt command. The contents of the interrupt-
level status words at the various interrupt levels are:

interrupt Level Status Word - Level 1

01

I 1 Synchronous Communications Adapter (SCA)

] 1132 Printer

110

Interrupt Level Status Word - Level 2

0 45 15
NETEETE T B S S
N —
I— 11-15 Storage Access Channel (SAC) Device
10 2311 Disk Storage Drive, Drive 2, Disk 5
9 2311 Disk Storage Drive, Drive 2, Disk 4
8 2311 Disk Storage Drive, Drive 2, Disk 3
7 2311 Disk Storage Drive, Drive 2, Disk 2
6 2311 Disk Storage Drive, Drive 2, Disk 1
5 2311 Disk Storage Drive, Drive 1, Disk 5
4 2310 Disk Storage, Drive 4 or 2311 Disk Storage Drive, Drive 1, Disk 4
3 2310 Disk Storage, Drive 3 or 2311 Disk Storage Drive, Drive 1, Disk 3
2 2310 Disk Storage, Drive 2 or 2311 Disk Storage Drive, Drive 1, Disk 2
1 2310 Disk Storage, Drive 1 or 2311 Disk Storage Drive, Drive 1, Disk 1
0 Single Disk Storage
Interrupt Level Status Word - Level 3
01 345 15

5—15 —— SAC Device

4 2250 or System/7
1—3 —— SAC Device
0 1627 Plotter

Interrupt Level Status Word - Level 4

0 56 15

l—- 6-15 —— Storage Access Channel (SAC) Device
5 1231 Optical Mark Page Reader
4 1403 Printer
3 2501 Card Reader
2 1442 Card Read Punch
1 Console
0 1134 Paper Tape Reader and

1055 Paper Tape Punch

CPU Instructions 111

112

Interrupt Level Status Word - Level 5

01 15

S —— T ——

I—1-15

Storage Access Channel (SAC) Device

f Interrupt Run Mode
l or
Program Stop Key

After an interrupt-level status word is loaded into the accumulator, the contents of that word can
be inspected to determine the device causing the interrupt. For example, the procedure for level 1,
for either the 1132 printer or the synchronous communications adapter, involves branching on the
contents of the accumulator. If the value in the accumulator is negative (bit O set to a value of 1),
then the interrupt is for the 1132:

Interrupt Level Status Word (for Level 1) in the Accumulator

01 15

l " Bit 1 is at avalue of 1 for a Synchronous Communications
Adapter interrupt.

Bit O is at a value of 1 (and the accumulator contents are
negative) if the interrupt is for the 1132,

If bit 0 is not at a value of 1 during a level-1 interrupt, the interrupt must be for the synchronous
communications adapter because that is the only other device that can cause an interrupt at level 1.
After the device causing the interrupt has been determined, a sense-device-status command can
be executed (via an execute I/O instruction) to determine the condition within the device that

caused the interrupt.
Figure 17 contains a sample interrupt-recognition routine.

Special Considerations for Level-5 Interrupt

Programming for level-5 interrupts is different from normal interrupt programming. The major
difference for level 5 is the reset function in the sense-device-status-word command.

Program stop. The normally generated branch-and-store-instruction-address-register instruction
(BSI) is performed with an indirect branch via storage-location 000D (0013 in decimal). The exe-
cute 1/O and sense DSW sequence is then performed to determine what caused the interrupt.

At completion of the branch-out at the end of the routine (a BOSC) another level-5 interrupt is
requested, as if the program stop key were operated again. The request remains active until the
start key or the reset key is operated to turn off the program-stop interrupt request.

Interrupt Run Mode. The normally generated branch-and-store-instruction-address-register instruc-
tion (BSI) is performed with an indirect branch via storage location 000D (0013 in decimal). The
execute 1/0 and sense DSW sequence is then performed to determine what caused the interrupt.
The branch-out at the end of the routine (a BOSC) resets level-5 interrupt request and level-5
priority.

Interrupts at level 5 do not occur during other interrupt service routines. Therefore, interrupt
routines cannot be traced.

Sample Interrupt Recognition Procedure 2. At the conclusion of (D instruction, the CPU blocks the next program in-
struction and interposes a CPU-generated BS to start the Level O interrupt

The notes that follow are numbered to correspond to the reference numbers in the procedure.
procedure. Each reference number cited in text is circled, e.g., , to avoid
confusion with numbers necessary to the procedure, such as memory addresses. 3. IA of Level 0 BSI is 0008; EA at 0008 is 0600.
In the registers, instructions, and data words, only the necessary O-bits and
1-bits are shown. Op codes are shown in alphabetic symbols, and decimal num=- 4. IAR (0502) is stored ot EA (0600); IAR is then loaded with EA+1 (0601).
bers are used to identify memory locations. Binary notation, where used, is
obvious. IAR, ACC, and XR1 are shown only where needed for understanding of 5, First instruction of Level O interrupt subroutine. Subroutine must store status
the operation. of each register, all data, etc., that could be altered by execution of sub-
routine. Before leaving subroutine, program must restore all registers, data,
1. Mainline program instruction. During execution of this instruction, the 1442 etc., to condition that existed when interrupt occurred.

initiates a card read interrupt.
6. Last instruction of interrupt subroutine is a BSC instruction with Bit-9 valve

of 1, which resets the priority status so that interrupts of equal or lower
priority can be recognized. If no interrupt is waiting, return to interrupted
program is effected by the |A(0600) of the BSC being equal to the EA of the
Ref. Memory Contents of Location Contents CPU-generated BSI that initiated the interrupt routine, (9 . BSC is shown
No‘ Add ot Memory Address £ IAR as an unconditional branch (Bits 10-15 = 0); branch could have been condi-
* ress 0 4 4 8 3 tional, i.e., branch executed only if no conditions specified by Bits 10-15

15 3
1 0500-0501 | XXX [Ff T [u]] [J 0502 were frue. i

NOTE: The term interrupted program is used to designate either the main
0008' I a 02] program being executed or an interrupt subroutine of lower priority. For
05 example, the (D instruction could be in a routine to service a console
printer-keyboard, Level 4 interrupt. Thus, the mainline program can be
thought of as a routine with no priority, to which the CPU returns when no

...
.
=3

2 None [(8s1 [rJoo]

3 0600 interrupts are waiting.

7. EA (0502) is the location of the next mainline program instruction and is
4 osw Toaded into the 1AR.

8. To illustrate an interrupt with low priority occurring while o higher priority
5 0601-0602 I XXXH T N T J u °6°3J interrupt is being serviced, we assume the console printer-keyboord initiated
—_— a Lever4 interrupt while the card read interrupt was being serviced. We
B S assume no Level 0, 1, 2, or 3 interrupts are waiting ond the Level 4, CPU-

generated BS| can be interposed, as in @ for Level 0.
6 0729-0730 [BSC Jtbofijijocoooo] 0600] [{0731] ’
9. 1A (0012) of the BS| is the memory location assigned to Level 4 interrupts and

contains the EA (1500).
001 2] I 5 0502 11, First instruction of Level 4 subroutine, See ®) . Last housekeeping instruc-

7 0600

10. The IAR is stored ot the EA (1500) and then loaded with EA+1 (1501).
8 None BS1 [tjoof!
I l IO I I tion takes subroutine to

12, X1O instruction EA (4100) is the memory location of the IOCC. IAR contents
remain at 2302 because the IOCC controls an |/O device end is not a se-

quential program instruction.
101500 0502

13. 10CC function code of 011 (Sense Interrupt) causes the ILSW for Level 4 to
1 05

9 0012

be loaded into the ACC.

n o sor-1s02 [xxx [T IW

14, XR1 is loaded with a quantity equal to the number of response signals connected

e e ————————— to the ILSW.
" 15. SLCA instruction is terminated when the 1-bit associated with the console
12 2300-2301 I X109 |1|00|0| I il OOI u 23021 printer-keyboard interrupt is shifted into the high order position of the ACC.
0

XR1 is reduced by one.

4 8 15 ACC
ou1] 1 (X307 [erooofq) 16. BSC address is modified by XR1 (+2) to form the 1A (2307). A bit in the O-
position of the ILSW (paper tape reader and paper tape punch) results in an

XR1
XR1 of 3 and an IA of 2308. A bit in the 2-bit position (card read-punch)
. 2303 results in an XR1 of 1 and an |A of 2306.

13 4100

14 2302 Lox oo

—

XR1 ACC
| g | | 3 l I 5 I 17. An IA of 2306 has the EA 2500, which is the memory location of the first
15 2308 SLcA Emm- 0)0001 9, 2304] (1000030 insturction of the card read=punch interrupt subroutine.
2304~ 1 1 18. An IA of 2307 has the EA 2600, which is the memory location of the first
16 304-2305 l BSC l lO 1' IOI l 23051 [_g 2306] instruction of the console printer~keyboard interrupt subroutine.

2306 ’ 19. An A of 2308 has the EA 2700, which is the memory location of the first
17 3 2500 . 4 N
instruction of the paper tape reader and paper tape punch interrupt sub-
routine.
30 ' 20. First instruction of housekeeping seq for te printer~keyboard sub-
routine,
19 2308 2700 . . 5
21, X1O instruction EA (4102) is the memory location of the console printer-

keyboard 10CC.

| 2 2602

J 22, The IOCC Sense Device function code (111) causes the DSW of the console
printer-keyboard (00001) to be loaded into the ACC. The 1-bit in position
15 causes the response to be reset. The example shows 1-bits in positions 2

20 2600-2601 [XXX [F] T [u]

and 3 of the ACC (DSW), which indicate that the operator initiated an inter-
21 2800-2801 I X10 ll[OOIOI I il 02' W 2802] rupt request on the keybo,ord and that the console entry switches are to be
0 4 8 15 ACC read " A programmed subrouzine c;efermines the cause ﬁf the interrupt (Bit 2)
and the interrupting device (Bit 3). A routine then follows that reads the data
2. 402 [7 |0°°°)]] !]l lll [Z{ 2802J IOOI IOSSOI into memory, accomplishes any housekeeping required, and releases the CPU,
as shown in .
NS I
23. Procedure is the same as in &) and @ . 1A (1500) of the BSC instruction is
23 3200-3201{ BSC IIPOFNOOOOOOI ISOOI R(32 02I equal to EA of the CPU~generated BSI instruction that initiated the interrupt;

see® , 9, and .
24 1500 0502 24. EA (0502), located at 1500, is loaded into IAR.

25. The instruction at 0502 is the next one to be executed in the mainline program.
25 0502-0503 IYXX |F| T N T J l Ss °5°4l See (D for previous mainline instruction.

Figure 17. Sample Interrupt Recognition Program

CPU Instructions 113

Console

INTRODUCTION

The console is made up of several functional units (Figure
18):

e Console printer .
o Input keyboard

o Display panel

e Console entry switches

o Function switches and lights

Program control is required for the first two of these
units, the printer and the keyboard. Program control is
also required for certain console function switches, such as
for the program-stop key or for one type of data-entry
operation performed through the console entry switches.
See the descriptions of the individual units for further
details.

The console printer is a program-to-operator output
printer. Program control is needed for the following two
frequently performed operations:

1. Printing of output for program-to-operator communi-
cation :

2. Printing of input typed on the input keyboard for
verification of operator initiated input and for a
hard-copy record of keyboard input

BR2682

Figure 18. 1131 Console

The primary function of the input keyboard, which looks
like a typewriter keyboard (Figure 19), is to provide a means
for operator-to-system input. Operation of a character key
on the keyboard does not in itself cause printing at the
console printer; the keyboard and console printer combina-
tion do not automatically function like a typewriter; each
must be separately program-controlled.

The display panel is made up of visual indicators that can .
be examined to determine either the data contents of specific
registers or various conditions in the system. For example,
the wait (W) indicator is on when the CPU is in the wait-state.

REST # . $ 0 INT
K8 e % x < / REQ
+ —_) ¢ | 1 2 3 & .
Q w E R T Y U I o P F
> ; -/) 4 5 6 ERASE
—f—
A s D F G H J K L FIELD
= ! (8 9
NUM
z X C v] N , .

I SPACE BAR

Figure 19. 1131 Console Keyboard

114

Figure 20. Console Entry Switches

The term wait-state means that the CPU, when in that state,
is doing no instruction processing but is waiting for either

a manual or program-controlled start. (Refer to “Wait Instruc-
tion” for further details.)

Console entry switches are used to enter data (which can
be instructions) into core storage (see Figure 20). Each of
the 16 switches corresponds to a specific bit (0 to 15)in the
16-bit word. Two methods for entering data from these
switches are:

ON

ALARM SPARE
OFF

DISK FILE

UNLOCK READY

PARITY

RUN CHECK

K.B. FORMS
SELECT CHECK

Figure 21. Console Function Lights and Switches

1. Manual control (no programming) from the console,
which requires stopping the CPU

2. Program control, which can be done while applica-
tion programming is being executed without stopping
the CPU

Function switches and lights, which are located on both
sides of the input keyboard (Figure 21), have special uses
for various system operations. Refer to “Console Function
Lights and Switches” for descriptions of each light and
switch.

oN CONSOLE
POWER KEYBOARD
OFF KEYBOARD
PROGRAM MM
START STOP

PROGRAM

STOP RESET

LOAD PROGRAM
IAR LOAD

Console 115

CONSOLE PRINTER

Printing Speed

Data to be printed must be transferred from core storage
to the console printer under program control. Printing can
be performed at various rates up to a maximum of 15.5
characters per second.

Data Coding

Bit patterns for both data and control characters (such as

~Spact amd tabuate)y are sent to the printer by means of a

write IOCC. A separate write IOCC is required for each
character bit pattern that is sent to the printer.

Control- and data-bit patterns are sent to the printer in
the same manner. Therefore, control-character bit patterns
must be in the output print record. For example, the §’s in
the following example represent blank (or space) control
characters:

AFTERPEACHYWORDBAPBLANK

If these blank control characters are not in the output rec-
ord as shown, no spaces appear between the printed words.

The bit-pattern format that must be set up in each core-
storage word to be sent to the printer is:

Control

Upper/Lower Case
Character Code

Each word sent to the printer contains the bit pattern for
only one data or control character. Bit-positions 8 through
15 are not used. Bit 6 = 0 specifies lower case (LC); bit 6 = 1
specifies upper case (UC). When bit 7 = 0, the bit pattern
represents a data character; when bit 7 = 1, the bit pattern
represents a control character. The bit pattern for the data
and control characters are shown in hexadecimal notation
in Appendix A.

Commands

The console printer is programmed by means of two com-
mands (IOCC’s). The device code for the console printer in
these IOCC’s is 00001.

Write

[15 0 4
[cCore storage Address fo0 00100 1

116

The write command causes bits 0 through 7 of the addressed
core-storage data word to be sent to the printer. If, in the
addressed core-storage word, bit 7 = 0, the bit pattern repre-
sents a data character. If bit 7 = 1, the bit pattern represents
a control character. A separate write command must be
executed to send each data- or control-character bit pattern
to the printer.

Sense Device

The sense-device IOCC allows the program to examine the
device status word. Execution of the sense-device IOCC
places the device status word in the accumulator.

Device Status Word Indicators

The device status word for the console keyboard and con-
sole printer is loaded into the accumulator as the result of
execution of a sense-device IOCC with device-code 00001.

This device status word is for both the console keyboard
and console printer (Figure 22). Bit definitions for the con-
sole printer are in this section. Refer to “Console Keyboard”
for definitions of the other bits.

Note: There are two device status words for console opera-
tions. The one shown in Figure 22 is specified by device-"
code 00001. The other device status word, which is associa-
ted with interrupt-level 5, pertains to interrupt-run-mode and
program-stop-key operations. (These operations are described
under “Console Keyboard”.) The latter device status word

is loaded into the accumulator by means of execution of a
sense-device IOCC with device-code 00111.

01 23456

L 6 Keyboard Busy
5 Printer Not Ready
4 Printer Busy
3 { 0 Keyboard
1 Console Entry
2 Interrupt Request
1 Keyboard Response
0 Printer Response

Figure 22. Keyboard/Console Printer Device Status Word

Printer-Response Interrupt (Bit 0 = 1): Each time a print or
control function is completed, the console printer requests
alevel-4 interrupt. A sense-interrupt command is then needed
to load the level-4 ILSW into the accumulator. Examination
of this ILSW, for the interrupt under discussion, indicates
that bit 1 = 1, which specifies a console interrupt. A sense
device IOCC must then be executed for the console. This
sense-device IOCC, addressing the console printer, loads the
device status word into the accumulator. Bit 0, when equal
to 1 in this device status word, indicates that the printer is
available for the next print operation or control function.

Printer Busy (Bit 4 = 1): When bit 4 = 1, the console
printer is printing a character or performing a control func-
tion. A write command should not be sent to the printer
when the printer is busy. If a write command is sent to the
printer when bit 4 (printer busy) is on, the data sent to the
printer (either character or control data) is ignored, and no
further indication is given to the program.

Bit 4 (printer busy) is on from the time data is sent to
the printer until the printer has completed the required
print or control action.

Printer Not Ready (Bit 5 = 1): The printer is not ready
when bit 5 is on. The following two conditions must exist
in order for the printer to be made ready:

1. The printer must be properly loaded with forms.
2. The printer must not be busy.

If the two preceding conditions are both met, bit Sis ata
value of 0 in the device status word.

Programming Considerations

Program routines for console-printer control are available
in the 1130 Disk Monitor, Version 2, Programming System.
Such programming for the console printer is not described
here. Rather, this section provides a brief description of
factors that should be considered in writing programs for
the console printer.

Before any write operation is initiated for the console
printer, its device status word should be examined. If bit 5
(printer not ready) is on, a write operation or control opera-
tion cannot be performed. If bit 5 is off, the printer is ready.

If the printer is ready and an output print record is in
core storage, the first write command can be issued. Both
the address in the write IOCC and a data count (not in the
I0CC, but kept at some desired location in core storage)
must then be updated.

The data address in the IOCC must, at the beginning of
the output operation, point to the first word of the output
record. After the first word is sent, via a write command,
the address must be incremented by one; the address then
points to the next word in the output record. Incrementing
must be done by separate program control; it is not auto-
matic.

A desired data-count value can be used to end the opera-
tion (that is, branch out of the routine). The data count is
decremented by one for each word sent to the printer by a
write IOCC. This decrementing is not automatic but must
be provided separately by the program. When the count
equals 0, the last write IOCC has been executed and the
operation can be ended. If the write operation is dependent
upon operator input at the keyboard, the operation may
also be ended by the operator pressing the EOF key. Pro-
gramming must also be provided to handle this type of
ending.

A possible general procedure for handling printing or
control functions after the first print or control function
is shown in Figure 23. The procedure shown is general in
nature and is for informational purposes only; the proce-
dure is not meant to represent any specific application for
the printer.

After the first print or control function is performed, the
printer interrupts the CPU (see Figure 23). For this inter-
rupt, bit 1 =1 in the level-4 interrupt-level status word. A
sense-interrupt IOCC can be executed to load the interrupt
level status word in the accumulator.

A sense-device IOCC can then be executed (it must ad-
dress, with device-code 00001, the keyboard/console). As
a result, the printer device status word is loaded into the
accumulator. Because a printer-response interrupt has
occurred, bit 0 =1 in the device status word.

Finally, after determining that the console printer requires
service, the program can issue a write IOCC to the console
printer. The next bit pattern is then sent to the printer.
The operation continues in a similar manner until the data
count goes to zero (or the EOF key is pressed when printing
is dependent upon a keyboard input operation.)

Console 117

Interruption Request

Console printer
print or control
function comp-
lete.

Main -«
Program

Return to main
program via BOSC.

Y

Interrupt level
4 occurs in CPU.

Store registers and
indicators: accum-
- ulator, XR1, XR2,

XR3, carry, over-
flow, acc. ext.

!

Execute sense int-
errupt 10CC. Level
4 |LSW bit 1=1in
accumulator

Specifies a

Y

Execute sense dev-
ice |IOCC. (Bit 15=1
causes a reset of the
interrupt request.)
DSW bit 0=1 in
accumulator.

keyboard/printer interrupt.

Specifies a

Data
count=0

printer response interrupt.

Initialize data count
and address (in 1OCC)

Increment data
address, decrement
data count.

Execute write IOCC.

for next console
printer output oper-
ation.

4

Write operation is completed.

<

Y

Main
Program

Figure 23. General Procedure for Console Print Operation (for a Printer Response Interrupt)

118

Restore registers

and indicators: acc-
amulator, XR1, XR2,
XR3, carry, over-
flow, acc. ext.

KEYBOARD FUNCTIONAL DESCRIPTION The two-position console/keyboard switch indicates to

The input speed of the keyboard (Figure 24) is limited only tbe program the desired source of the console input data,
by the speed of the operator. either the keyboard or the console entry switches.

Keyboard entries are not automatically printed unless the
CPU s programmed to provide an output (of the entry) to
the printer. The keyboard sends a bit pattern to the CPU The numbers next to the descriptions are the same as the
for each key struck by the operator. The bit pattern is related numbers that point to the corresponding keys in Figure 24:
to IBM card coding (see the character code chart in Appen- 1. The REST KB (restore keyboard) key allows the

dix A). For example, operation of the A-character key results operator to restore the keys if they should become
in the following bit pattern in the addressed core-storage locked.

word: ' 2. The INT REQ (interrupt request) key initiates a key-
1001 0000 0000 0000 board restore and causes a level-4 interrupt in the
CPU. Bit 1 in the ILSW for level 4 is on as a result of
execution of a sense-interrupt IOCC. The DSW for the
keyboard/console should then be examined by means
of a sense-device IOCC. If the interrupt is due to
operation of the interrupt request key, bit 2 is on in

Keyboard Function Keys

This bit pattern is identical to that received into core stor-
age when the character A is read from a card column in
card code by the 1442 Card Reader. Other bit patterns are
listed in Appendix A. The bit definitions are:

the DSW.
Keyboard Data Format 3. The EOF (end of field) key places a word containing
. t_= only the 12-bit equal to 1 in a core-storage word. The
P program determines from the analysis of this word
|l‘_ " c°":°' . that no further characters are to be sent in the mes-
- rase Field
13 — Backspace (~—) sage.
12 — End of Field (EOF) 4. The =~(backspace) key places a word containing
0-11 — Character Code only the 13-bit equal to 1 in a core-storage word.

Analysis of this word allows the program to determine
that the last character received is to be replaced by
the next character to be entered.

' . $. —_ 0 INT
e % . < -_— / REQ

EOF

2 " = ! (7 8 9
NUM
6 z X c v B N M .)
l | SPACE BAR J \

Figure 24. 1131 Console Keyboard

Console 119

5. The ERASE FIELD key places a word containing
only the 14-bit equal to 1 in a core-storage word.
Analysis of this word allows the program to deter-
mine that the message being entered is to be deleted
and replaced by a corrected message.

6. The NUM (numeric) key places the keyboard in the
numeric mode. The numeric key must be held down
continuously while numeric data is being entered.

Manual Start Operating Procedure

The following manual-start procedure is a typical use of the
keyboard:

1. Press the interrupt-request key, which initiates a
request interrupt and places the keyboard in restored
status. When the CPU honors the request interrupt,
the program must determine that the keyboard is the
device that caused the interrupt. The program then
must issue a control command to select the keyboard.

2. When the keyboard is selected, the select light is turned
on to signal that a character can be entered.

3. Ifyou then press a character key, the keyboard initi-
ates a keyboard-response interrupt to the CPU. In
response to the interrupt, the program should execute
a read command. This command enters the character
into core storage and removes the keyboard from the
selected status. Before another character can be en-
tered, the program must issue another control com-
mand to select the keyboard.

Note: When the request is initiated by the program,

* the operation is basically the same but starts at the
issuance of the control command to select the key-
board.

If a read command is issued when the keyboard is not
selected, no bits are entered into core storage.

Keyboard Programming

The keyboard operates under direct program control of the
1130 Computing System.

1/0 Control Commands (/0CC’s)

The keyboard is addressed by the same device code used by
the console printer, 00001.

Read (010)
0 8 0 4
[[CoreStoroge Address o0 00 1[0 10

120

This command enters a single input character from the key-
board into the core-storage location specified by the address
of the IOCC. A control command must have been previously
executed to place the keyboard in a select status.

Sense Device (111)

0 15 0 4 [15

This command reads the keyboard/console printer device

“status word (Figure 22) into the ACC. Modifier bit 15 on

specifies that all keyboard/console printer responses are to
be reset.

Control (100)

This command places the keyboard in a select status so that
a character can be entered. The read command resets the
keyboard select status.

Special Keyboard Console Programming: Either the program
stop key or the interrupt run mode causes an interrupt on
level 5. The O-bit in the ILSW is set on. After determining
the interrupt is on level 5, the program must issue a sense
device (with area code 7). The following DSW is presented

to determine the cause of the interrupt.

0 1 23 4567 8 9100 12131415

Illlll‘lllllll

1 Interrupt Run Mode

0 Program Stop Key

DSW Indicators
Refer to Figure 22.

Keyboard Response (Interrupt): Bit 1 indicates an interrupt
which signals that a character key has been pressed and that
a character is ready to be entered into core storage.

Interrupt Request (Interrupt): Bit 2 indicates an interrupt
which is initiated by the request key located on the key-
board.

Keyboard/Console Entry. Bit 3 indicates to the program
the position of the keyboard/console switch. The two-posi-
tion keyboard/console switch indicates the desired source
of the console input data, either the keyboard or the con-
sole entry switches.

Keyboard Busy: Bit 6 indicates the keyboard is busy. This
bit is on from the time an XIO Control is issued to the key-
board until the next XIO Read is issued to the keyboard.
This bit is on any time the keyboard select light is on.

CONSOLE DISPLAY PANEL

The contents of the registers within the computer are dis-
played on the console panel (Figure 25) by means of small
incandescent lights. Each bit in each register position is re-
presented by a light. The light is on when the bit which it
represents is present in the word displayed.

Indicator Displays

The Instruction Address Indicator represents the status of
the 15 bits in the instruction address register. The instruc-
tion address register holds the address of the next sequen-
tial instruction.

The Storage Address Indicator represents the status of the
15 bits in the storage address register.

The storage address register contains the address of the
last reference to a core storage word.

The Storage Buffer Indicator represents the status of the
16 bits in the storage buffer register.

The storage buffer register is the buffer between the cen-
tral processing unit and core storage. Each word of data
transferred into or transferred out of core storage passes
through the storage buffer register.

The Arithmetic Factor Indicator represents the status of
the 16 bits in the arithmetic factor register.

The arithmetic factor register holds one of the two oper-
ands during arithmetic and logical operations.

The Accumulator Indicator represents the status of the 16
bits in the accumulator register.

Data can be loaded into the accumulator register from
core storage; conversely, data can be stored in core storage
from the accumulator register. Data in the register can also
be shifted to the right or to the left and can be manipulated
by arithmetic and logical instructions. The accumulator
register contains the binary number or expression resulting
from an arithmetic or logical operation.

Error conditions, which are generally not-ready conditions
or FORTRAN pause conditions, are indicated by the accum-
ulator indicator.

INSRUCTION | 5 5 [4 5 6 7 [25 10 11"12 13 1415 I 0T 2T T T T8 | e r ot 234 |
|5'°R“""’SE I 123 “ 4567 ” 8 9 10 n" 12 13 14 15] 12 X 1A El E2 E3 X7 |?_&RG§T'°N l £5 T6 17 M8 M9 I
STORAGE Io 123 “ 4567 " 89 10 n" 1213 1415 l P P2 w ADD ACSC | REGISTER I 123]
RTMETC To 123 [[as ez [las o uliz1as] As TC ZR | Lpvere [o v 2345
lACCUMULATOR! 01 23 " 4 5 6 7 " 89 101N ” 12 13 14 15 l 1T 2 3 4 5 6 7 8 |gé%‘,‘5T%RONTROL I 32 16 8 4 2 11
[ACCOMTATORT 0 v 23 [l 4 s 6 7 [l s o 10 11][1213 16 15 Jaov new vec 1sm orr ek o cp | ggm | ¢ o |

Figure 25. Console Panel

Console 121

The Accumulator Extension Indicator represents the status
of the 16 bits in the accumulator extension register. The
accumulator extension register and the accumulator register
are used as a 32-bit register. The 16-bit accumulator exten-
sion register is the low-order extension of the accumulator
register. The accumulator extension register receives the

data shifted to the right by the accumulator register or by

a load double command code. The accumulator extension
register is also used for multiplication and division operations
and double-word arithmetic.

10 through T7 Indicators represent the last clock step com-
pleted.

11, 12, IX, IA, El, E2, and E3 Cycle Indicators indicate the
type of machine cycle in process when in single step mode.
They indicate the machine cycle just completed when in any
other mode.

The X7 Indicator turns on when the cycle-steal clock is in
X7, that is, stopped.

The PI and P2 Indicators indicate the parity of the storage
buffer register. P1 is on when bits 0-7 contain an even num-
ber of bits, and P2 is on when bits 8-15 contain an even
number of bits.

The W (Wait) Indicator is on when the central processing
unit is in a wait condition. The following conditions turn
on the W indicator:

1. The machine executes a wait instruction or a
FORTRAN pause.-

2. The machine attempts to execute an operation code
that is illegal, particularly a blank (1).

When a W condition is indicated, the central processing
unit can be restarted at the next sequential instruction
(after the wait instruction) by pressing the program start
key.

The central processing unit is also restarted when an in-
terrupt occurs. This restart is under control of the program
and requires no operator intervention.

The requirements of the application being processed
determine when the operator should press the program
start key to resume program operation.

The ADD, AC, SC, AS, TC, and ZR Indicators indicate the
status of the following functions: add, arithmetic control,
shift control, accumulator sign, accumulator carry, and zero
remainder.

122

1 through 8 Indicators are used by the customer engineer.
Each lamp can be wired by a customer engineer to give a
visual indication of any condition in the machine.

The next eight indicators are associated only with the
synchronous communications adapter.

The RDY (Ready) Indicator turns on when the data set is
ready.

The ABL (Enable) Indicator turns on when the f)rogram has
enabled the adapter to respond to a ring indicator signal
from the data set.

The REC (Receive) Indicator turns on when the receive
trigger of the adapter is on.

The TSM (Transmit Mode) Indicator turns on when the
adapter is in the transmit mode.

The BFR (Buffer Loaded) Indicator turns on when the
buffer contains data.

The CLK (Clock) Indicator turns on when the receive clock
is running.

The DI (Data In) Indicator turns on when the receive data
line from the data set is at a zero or space level.

The CP (Character Phase) Indicator turns on when the
adapter is operating in character phase.

The Operation Register Indicator indicates the operation
in process when in single step (SS) mode or single machine
cycle (SMC) mode. The indicator indicates the operation
just completed when in any other mode.

Error conditions in the operation register generally occur
when the machine has executed (1) a wait condition, (2) a
FORTRAN pause, or (3) an invalid instruction such as all
blanks.

Ilfegal instructions are as follows:

00000 10110 00111 01010
0111101011 10111 11111

The Operation Flags Indicator indicates the status of the
format, tag, and modifier bits of the instruction shown in
the operation register.

The Index Register Indicator shows which one of the three
index registers is being used.

The Interrupt Levels Indicator shows the interrupt level
being serviced. The level indicator that is on aids in identify-
ing the device that is being serviced by the interrupt sub-
routine.

The following indicators aid in identifying 1130 system
devices:

1. 0 — 1442 Card Punch Model 5
1442 Card Read Punch Models 6 and 7
2. 1 — 1132 Printer Models 1 and 2
Synchronous communications adapter
3. 2*— Disk Drive
4, 3*— 1627 Plotter Models 1 and 2
2250 Display Unit Model 4, or System/7
5. 4*— 1055 Paper Tape Punch Model 1
1134 Paper Tape Reader
1231 Optical Mark Page Reader Model 1
1403 Printer Models 6 and 7
1442 Card Punch Model 5
1442 Card Read Punch Modeis 6 and 7
2501 Card Reader
Console interrupt request key
6. 5*— Program stop key
Console mode switch

The Cycle Control Counter Indicator represents the binary
value contained in the shift counter.

The Condition Register Indicator represents the status of
the carry indicator (C) and the overflow indicator (O).

Mode Switch

The mode switch (Figure 26) selects one of seven operating
modes:

The SS (Single Step) Setting with each depression and re-
lease of the start key, causes the 1131 clock to advance one
.step; for example, from T1 to T2.

* These interrupt levels may also have a Storage Access Channel
(SAC) device. '

The SMC (Single Memory Cycle) Setting, with each depres-
sion of the start key, causes the central processing unit to
advance one machine cycle; for example, I1 to I2.

The INT RUN (Interrupt Run) Setting causes a level 5 inter-
rupt after each mainline program instruction is completed.
This setting is convenient for program trace routines.

The RUN (Program Run) Setting causes the 1131 to advance
through its stored program when the start key is pressed.

The SI (Single Instruction) Setting causes the 1131 to inter-
pret and execute a single instruction when the start key is
pressed.

The DISP (Display Core Storage) Setting, after pressing the
start key, displays (in the storage buffer register) the core
storage word at the location specified by the address in the
instruction address register and advances the instruction
address register.

The LOAD (Load Core Storage) Setting, after pressing the
start key, loads the data from the console entry switches
into core storage at the location specified by the address in
the instruction address register and advances the instruction
address register. Pressing the LOAD IAR switch causes the
data from the console entry switches to be loaded into the
IAR.

Figure 26. Console Mode Switch

Console 123

CONSOLE ENTRY SWITCHES

These 16 toggle switches (Figure 27) are used to set up
data or instructions to be entered into core storage. Each
switch represents a bit position in a 16-bit word. The proce-
dures that follow provide for entering the information from
the console entry switches (CES) by means of manual con-
trol, keyboard interrupt, or XIO instruction.

Manual Branching: This procedure allows the operator to
begin processing from the instruction word located at any
point in the program.

1. Set the mode switch to LOAD.

2. Set the console entry switches to the binary core storage

address of the first instruction word to be executed.
3. Press the load IAR switch.
Set the mode switch to RUN.
5. Press the program start key.

>

Manual Entry: This procedure causes the bits set in the
console entry switches to be loaded into the word at the

core storage address in the instruction address register (IAR).

1. Set the mode switch to load

2. Set the CES to the binary core storage address where
the data is to be stored.

3. Press the load IAR switch.

Note: The parity indicators P1 and P2 may not show
correct parity.

4. Set the data word in the CES.
5. Press the program start key.

Keyboard Interrupt: This procedure requires an interrupt
subroutine to service a level 4 interrupt.

1. Set the console/keyboard switch to CONSOLE.

2. Press the keyboard interrupt request key.

3. Alevel 4 interrupt occurs. The subroutine must
analyze the ILSW to determine the interrupting de-
vice (keyboard). The keyboard/console printer DSW
is loaded into the ACC by a sense device command.

4. The DSW must be analyzed by the subroutine to
determine the cause of the interrupt. DSW bit 2 =1
indicates an operator interrupt request was initiated

6

‘0

|

by the interrupt request key on the keyboard. DSW
bit 3 =1 indicates to the interrupt subroutine that
the CES should be read by a read command.

5. Return to the mainline program is by the regular
method of a BOSC instruction.

Read (010)

0| 2 3 4 56 7 8 91011121314 150 4
loo11]on

I Core Storage Address
NS tah e hisrahae i

This command reads the settings of the CES. Each CES
that is on causes a 1-bit to be placed in the corresponding
location of the core storage word located at the address
specified by the address field of the IOCC. The area code
is 7 (00111).

CONSOLE FUNCTION LIGHTS AND SWITCHES

These lights and switches are located on both sides of the
keyboard (Figure 28).

Function Lights

The Disk Unlock Light turns on when the disk cartridge
can be removed from the disk drive.

The File Ready Light turns on when the disk storage is
available for reading and writing.

The Run Light turns on when the central processing unit is
operating and the meter is running.

The FParity Check Light turns on when a parity error is de-
tected in either half of a word read out of core storage.

The KB Select Light turns on when an instruction requests
input data from the keyboard.

The Forms Check Light turns on when the last form is de-
tected by the console printer forms contact.

8 9 W 1)1z 13 14 15 |
IS) 6y &) 5 &)

O I R B B B

Figure 27. Console Entry Switches

124

ON
ALARM SPARE
OFF

DIsk FILE
UNLOCK READY

PARITY

RUN CHECK

K.8. FORMS
SELECT CHECK

Figure 28. Console Function Lights and Switches

Function Switches

The Alarm On/Off Switch turns off the synchronous com-
munications adapter (special feature) alarm in the 1131. The
operator uses this switch to turn the alarm off only if the
program should fail to turn it off.

The Emergency Pull Switch, as the name of the switch im-
plies, should be initiated only under unusual circumstances.
Once the emergency pull switch is pulled, it is mechanically
locked so that system power cannot be brought up again
until the customer engineer has reset this switch. All power
— including that to all on-line input/output units — is drop-
ped without regard to sequencing. Therefore, the contents
of core storage may be partially destroyed during an emer-
gency pull operation. The customer engineer should be con-
tacted whenever system power cannot be maintained.

The Power On/Off Switch tuns on the electrical power to
the 1130 system.

The Keyboard Console/Keyboard Switch indicates (to the
program) the desired source of the console input data —
either the keyboard or the console entry switches.

The Program Start Switch causes the 1131 to take one clock
step or one machine cycle (and to continue taking additional
cycles), depending on the setting of the console mode

oN CONSOLE
POWER KEYBOARD
OFF KEYBOARD
PROGRAM IMM
START sToP
PROGRAM
sTop RESET
LoAD PROGRAM
1AR LOAD

switch. Eight clock steps complete one machine cycle, and
one or more machine cycles complete an instruction.

The IMM (Immediate) Stop Switch causes an immediate
stop of the processor interrupt, although the input/output
devices will finish their present cycle. Data from the devices
may be lost if they are operating when the IMM stop key is
pressed. A complete program restart is normally required.

The Program Stop Switch causes a level-5 interrupt. The
program must then provide the control to cycle down I/O
devices and stop the CPU. If routines that service this inter-
rupt are not in the program, loss of information may result
if the program stop switch is operated. Operational and pro-
gramming considerations are:

1. The program stop switch is pressed and a level-5
interrupt occurs. .

2. Bit 0 =1 in the console-keyboard device status word.
This DSW is accessed by area code 00111.

3. Auser-supplied wait loop is required to block main-
line operations until the operator intervenes.

4. The interrupt program routine should allow the pro-
gram to continue when the start switch is pressed.

5. Ifan overlapping (or malfunction) operation is in pro-
gress (such as printing or moving disk data), the pro-
gram operation must be completed or data and opera-
ting system integrity can be destroyed. (The preceding
factors must be considered in the program-stop inter-
rupt routine.)

Console 125

The Reset Switch resets all input/output and machine regis-
ters, cycle and control triggers, and status indicators.

The Load IAR (Instruction Address Register) Switch places
the status of the 16 console entry switches in the instruction
address register. The console mode switch must be set to
LOAD.

The Program Load Switch loads the first card or paper tape
record into core storage, beginning at 00000.

1131 CPU Usage Meter

This meter runs when either of the following conditions is
present:

1. When the 1131 clock is running or

126

2. When any of the attached I/O equipment is operating
to finish an instruction given by the 1131 program.

For the second condition the meter will run regardless of
the state of the clock, and will stop when the 1/O equipment
has finished the particular operation the instruction specified.

A customer engineering meter and key lock switch are
also provided in the 1131. When this key switch is turned
on it activates the CE meter and deactivates the 1131 usage
meter and all usage meters on the attached I/0 equipment.
This CE meter then records time in the same manner as
specified for the usage meter. The purpose of the CE meter
is to record system time during maintenance.

The 1131 usage meter provides the master time measure-
ment of useful work done by the 1130 computing system.
All 1/0 unit meters are interlocked by this meter running
and cannot record time if it is stopped. No I/O meter can
ever record more time than the 1131 usage meter.

Disk storage for the 1130 system offers random- or sequen-
tial-access data storage and consists of two units: a disk
cartridge (or disk pack) and a disk storage drive. (Note that
disk cartridge actually refers to the IBM 2315 Disk Cartridge
and disk pack refers to the IBM 1316 Disk Pack. To
eliminate dual references, disk cartridge will be used to refer
to both the 2315 and 1316 units.)

The disk cartridge’s storage medium is an oxide-coated
disk (or disks) that can store data magnetically. The disk
cartridge is mounted on a disk storage drive that rotates
the disk(s) and contains the necessary electrical and me-
chanical components to record data on and read data from
the disk cartridge. The disk cartridge can be removed from
the disk drive and interchanged with another disk car-
tridge of the same type, allowing almost unlimited, off-
line storage.

The 1130 system uses three types of disk storage drives:
the single disk storage drive; the IBM 2310 Disk Storage;
and the IBM 2311 Disk Storage Drive.

Two types of disk cartridges are used with the 1130
system: the IBM 2315 Disk Cartridge, and the IBM 1316
Disk Pack. The type of cartridge used depends on the type
of disk storage drive installed on the system. The single
disk storage drive and the 2310 drive use a 2315 Disk Car-
tridge; 2311 drives use a 1316 Disk Pack.

STORAGE CAPACITY

The amount of on-line disk storage capacity depends on
the 1130 system configuration. Off-line storage is virtually
unlimited because the disk cartridge is easily removed and
interchanged with another cartridge.

The 1131 Models 2, 3, and 4, include a single disk storage
drive capable of storing 512,000 sixteen-bit words.

Up to two 2310s (containing up to two disk storage
drives each) or up to two 2311 Disk Storage Drives, Models
11 or 12, in any model combination, can be attached to
the 1131 Models 1 (not 1A), 2, 3, and 5. (An 1130 system
can have either 2310 drives or 2311 drives but not both.)
Each drive within the 2310 is capable of storing 512,000
sixteen-bit words. Each 2311 Model 12 can store 1,536,000
sixteen-bit words; the model 11 can store 2,560,000
sixteen-bit words.

DISK CARTRIDGE

The IBM 2315 Disk Cartridge (Figure 29) is a single disk
completely enclosed in a protective housing. The recording
medium is an oxide-coated disk with two surfaces for the
magnetic recording of data. When the cartridge is mounted
on a storage drive, the disk rotates at 1,500 revolutions per
minute.

‘The IBM 1316 Disk Pack (Figure 30) contains 6 disks
mounted on a vertical shaft. The top surface of the top disk
and the bottom surface of the bottom disk cannot be used
for recording data, which leaves 10 recording surfaces.

BR2700

Figure 29. 2315 Disk Cartridge

. X BR2719
Figure 30, IBM 1316 Disk Pack

. Disk Storage 127

Data Organization

The disk access mechanism, located in the disk drive, is
moved back and forth by programmed commands and can
be placed in any one of 203 positions, from a point near
the periphery of the disk to a point near the center of the
disk. At each position, the heads can read or write in a
circular pattern on both surfaces of the disk, as it revolves.
The circular patterns of data are called tracks. The track
on the upper surface of the disk and the corresponding
track on the lower surface, both of which can be read or
written while the access mechanism is in the same position,
are called a cylinder. Figure 31 shows the innermost and
outermost cylinders of two tracks each. To complete the
picture, the 201 intermediate cylinders, or pairs of tracks
should be visualized; they were omitted for the sake of
clarity of the diagram.

For convenience in transferring data between the CPU core
storage and disk storage, each track is divided into four
equal segments called seczors. Sectors are numbered by the
cylinder, from O through 7, as shown in Figure 32. Sectors
0-3 divide, the upper surface track, and sectors 4—7, the
lower. A sector contains 321 data words and is the largest
segment of data that can be read or written with a single
instruction.

Innermost Cylinder

Upper Surface Track

Lower Surface Track

203 Two - Track

Qutermost Cylinder Cylinders

Upper Surface Track

Lower Surface Track

NOTE: The thickness of the disk has been greatly exaggerated in order to
show the relative positions of the upper and lower surface tracks.

Figure 31. 2315 Disk Storage Cylinder Schematic

Sec'tors 0-3
(Upper Disk Surface)

Sectors 4=7
(Lower Disk Surface)

Figure 32. Disk Storage Sector Numbers

128

In the programs and programming systems provided by
IBM, e.g., the monitor system and its programs, the first
word of a 321-word sector is used for the cylinder sector
number. Therefore, the first word of the sector cannot be
used by the programmer if the assembler program or other
components of the monitor system are to be used.

A disk storage word comprises 16 data bits and four check
and space bits.

Figure 33 shows the organizational components of disk
storage. Note that capacities are based on the 320-word
sector; also, the number of cylinders is 200 rather than
203. Three cylinders (24 sectors) are provided as alternates
to be used if a surface is defective.

The 1316 Disk Pack has 10 recording surfaces which the
1130 disk monitor system program considers to be either
three or five disks, depending on the model of 2311 Disk
Storage Drive the 1316 Disk Pack is used on. Model 11
drives are considered to be five disks; Model 12 drives are
considered to be three disks. The manner in which the
1316 Disk Pack is arranged for both drives is shown in
Figure 34. Note that disks 3 and 4 are not addressed when
used on Model 12 drives. Other than having four addition-
al disks, the 1316 Disk Pack has the same sector, track,
and cylinder format as that of the 2315 Disk Cartridge.

Word Sector Track Cylinder Disk
Bits 1

6 5,120 20,480 40,960 8,192,000
Data Words 320 1,280 2,560 512,000
Sectors 4 8 1,600
Tracks 2 400
Cylinders 200

Figure 33. Disk Storage Data Organization

Top surface (not used)

1st Disk «

2nd Disk (>
3rd Disk * \.;
4th Disk * .‘
5th Disk ‘

Bottom surface {not used) =
*Not used on the 2311 Disk Storage Drive Model 12.
Figure 34. Logical Disk Format of the 1316 Disk Pack

Data Checking

Data is checked on each data transfer between core storage
and disk storage. When writing on disk storage, the number
of 1-bits in each word is effectively divided by four, as the
word is shifted out of the file data register in the disk stor-
age attachment, by incrementing a two-position counter.
The number of bits necessary to make the division even
(modulo 4) is added to the end of the word as shown in
the following chart.

Number Of 0 1 2 3
Data Bits 4 5 6 7
Written 0-15 8 9 10 1

Modulo 4

Counter 00 | 01 10 1

Check Bits
16 0 1 1 1
17 0 1 1 0
18 0 1 0 0
19 0 0 0 0

The modulo 4 check is performed as each word is read
from disk storage. A word that is not modulo 4 causes the
data error bit to be set in the disk storage DSW.

The data checking provided in write operations only en-
sures that data was transferred correctly to the disk drive;
however, several factors—chipped or dirty disk, etc.—
could keep data from actually being recorded correctly on
the disk surface. For this reason, the programmer is encour-
aged to always perform a read-check operation immediately
after writing and while source data is still available.

SINGLE DISK STORAGE DRIVE

One single disk storage drive is.contained in the CPU cabinet
(1131 Model 2, Model 3, and Model 4) and is connected to
the CPU by a high-speed data channel. It is composed of
two components: the disk cartridge, and the drive assembly
and access mechanism.

Access Mechanism

The disk storage access mechanism has two horizontal arms.
Each arm has a magnetic read/write head, and each head is
positioned to read or write on the corresponding disk sur-
face as the access arms straddle the disk in the manner of a
large tuning fork. The entire assembly moves horizontally
forward and backward, so that the heads have access to the
entire recording area.

The access mechanism is positioned automatically at the
home position (outside cylinder) when the disk cartridge is
inserted.

Timing

Timing considerations of single disk storage operation in-
volve three elements: access time, reading and writing data,
and the time during which the CPU is tied up. (See the
section entitled Overlapping Input/Output Operations and
Throughput Considerations.)

Access: The access mechanism moves in increments of two
cylinders at the rate of 15 ms per increment. Thus, in the
formula that follows, the number of cylinders (N) must be
even. (The next higher even number is used if an odd num-
ber of cylinders is specified.) During the stabilization period
(22.5 ms) that follows the last incremental movement, a
read or write command can be given and will be started at
the end of the stabilization period.

Access time (ms) = 7.6N+T
Where T = 22,5 (£2.5)ms

Read/Write: Reading or writing of data in disk storage is
at the rate of 27.8 us. per word. Average rotational delay is
20 ms, based on 1,500 rpm, or 40 ms per revolution. Thus,
a sector can be read or written in an average of 30 ms. Al-
though there are no timing considerations for head switch-
ing, there are programming considerations in consecutive
sector operations because there is an interval of over 235 us.
between sectors; the interval is increased by 27.8 us. for
each word less than 321 read or written.

A full cylinder of eight 321-word sectors can be read or
written in 100 ms because the rotational delay is required
for only the first sector.

CPU Time: An interrupt in a disk storage operation occurs
only at the end of the seek, read, or write operations. This
means that once the instruction is initiated, disk storage
operation is virtually independent of the CPU. As data is
being read or written, a cycle is literally “stolen” from the
CPU operation in progress every 27.8 us. for the transmis-
sion of the next word.

Disk Storage 129

1BM 2310 DISK STORAGE

The IBM 2310 Disk Storage Model B, (Figure 35) provides
additional random-access storage capabilities for the 1130.
The 2310 Model B1 contains one single disk storage drive,
whereas the 2310 Model B2 contains two single disk storage
drives. A maximum of two 2310 Model B2s (containing 4
drives) may be attached to the 1130 via a channel multi-
plexer in the 1133. If two 2310s are attached, at least one
must be a model B2.

The functional description — that is, capacity, data organ-
ization, data checking, access mechanism, timing, etc. —
is the same as for the single disk storage drive just described.

BR2690

Figure 35. IBM 2310 Disk Storage Model B2

130

IBM 2311 DISK STORAGE DRIVE

The IBM 2311 Disk Storage Drive (Figure 36), provides the
1130 system with higher speed and greater storage capacity
than that of the 2310 Disk Storage. The 2311 Disk Storage
Drive is available in two models: Model 11 and Model 12.
The 2311 Model 11 can store 2,560,000 sixteen-bit words
(the equivalent storage of five 2310 drives); the 2311 Model
12 can store 1,536,000 sixteen-bit words (the equivalent
storage of three 2310 drives). Note that the 1130 system
can have either 2310 drives or 2311 drives installed, but not
both.

The 2311 Disk Storage Drives uses the 1316 Disk Pack for
its storage device. The adapter that attaches the drives to
the 1130 system is designed to make each 1316 Disk Pack
simulate either 3 or 5 single disk drives, depending on which
model of 2311 drive uses the disk pack. The 2311 Model 11
simulates 5 single disk drives and the model 12 simulates 3
single disk drives.

BR2679

Figure 36. IBM 2311 Disk Storage Drive

Access Mechanism

The access mechanism for the 2311 drives is a single, mul-
tiple-head unit. Therefore, when the access mechanism is
at a specified cylinder for one disk, it is at the same
cylinder for all of the other disks on that drive.

No access motion occurs at the time a control command
is issued to a drive; instead, the motion occurs when a read
or write command is issued to the drive and the access
mechanism is not at the specified cylinder. Cylinders do
not carry an identifying number. Therefore, the program
must maintain the necessary information relative to the
position of the access mechanism. Programs for the 1130
system regard each disk on a drive as independent of all
other disks on the same drive. For this reason, it is necessary
only to maintain relative position information for each disk
without regard to the actual cylinder location.

A control command can be issued only when the 2311 is
ready and not busy. The 2311 is busy to all commands when
a read or write command is being executed, so access mech-
anism motion and data transfer cannot be overlapped on
the same drive.

Timing
Reading or writing data on the disk is accomplished at a
rate of 16.0 microseconds per word, with an average
rotational delay of 12.5 milliseconds. Maximum rotational
delay is 25 milliseconds.

Average access time is 75 milliseconds, minimum time is
25 milliseconds, and maximum time is 135 milliseconds.

PROGRAMMING DISK STORAGE

The disk storage drives attached to the 1130 system are
controlled by I/O control commands (I0CC) provided by
the program in CPU core storage. Each of the installed
drives responds to its assigned device code. Each of the
disks for the 2311 Disk Storage Drive is individually
addressed. This requires the use of modifier bits to

address all disks on the second drive of a two-drive system,
The five-bit device codes and the modifier bits required for
each drive and disk are as follows:

Device Code Modifier Bits Device Location
9 10 11

00100 0 0 0 CPU

10001 0 0 0 2310 drive 1 or
2311 drive 1, disk 1

10010 0 0 0 2310 drive 2 or
2311 drive 1, disk 2

10011 0 0 0 2310 drive 3 or
2310 drive 1, disk 3

10100 0 0 0 2310 drive 4 or

2311 drive 1, disk 4

10110 0 0 0 2311 drive 1, disk 5
10111 0 0 0 2311 drive 2, disk 1
10111 0 0 1 2311 drive 2, disk 2
10111 0 1 0 2311 drive 2, disk 3
10111 0 1 1 2311 drive 2, disk 4
10111 1 0 0 2311 drive 2, disk 5

In the illustrations of IOCC’s that follow, bits 9, 10, and
11 are not shown.

1/O Control Commands

Initiate Read (110)

This command causes the number of words specified by
the word count to be read from the disk storage drive iden-
tified by the device code. The sector to be read is identified
by modifier bits 13-15.

0 15 0 4
\.No.rd.C?urln 1Address (WCA)

.........

Word Count ~<+—WCA
Data ~«—WCA +1
Data «— WCA + 2
Data ~— WCA +3

1
J +— WCA + N

T
|j Data

The address word of the command contains the word
count address (WCA), and modifier bit 8 determines whether
the command is a read command (0) or a read-check com-
mand (1).

A full sector, 321 words, is the maximum transmission
with one command. Succeeding sectors, or parts of sectors,
require the initiate read command for each one.

An operation-complete interrupt occurs when the number
of words in the word count has been transmitted.

Note for 2311 disk drives only: If the access mechanism
in the drive is not located at the cylinder specified by the
arm register, an access operation will occur before data
transfer begins. The arm register is specified by the area
code which is the same as for the disk addressed. The
address in the arm register is updated by a control in-
struction,

Disk Storage 131

Read (Bit 8 = (0): Beginning with the first word of the indi-
cated sector, data is read into core storage location WCA +
1 and ascending addresses. The word count, stored at the
location specified by the WCA, controls the number of
words transmitted and, consequently, the number of core
storage locations occupied by the disk storage data. For
example, assume that a word count of 152 is stored at WCA
1000. The 152 words read from disk storage would be
stored at addresses 1001 through 1152.

The programmer must be aware of the core storage loca-
tions required for incoming disk storage data so that useful
data is not written over and lost. '

Read-Check (Bit 8 = 1): Data is read from disk storage, as
in the read command, and the number of bits of each word
is checked for modulo 4. Unlike the read command, data is
not transferred into core storage. Therefore, a storage area
does not need to be provided, and no time demand is placed
on the CPU. Once the read-check command has been started,
the modulo 4 checking is independent of the CPU. If the
number of bits in a word, including check bits, is not even
when divided by four, the data error indicator is set in the
disk storage DSW. Neither disk storage nor core storage is
affected by the read-check command.

To achieve the maximum level of performance that the
disk storage is capable of providing, the program should
provide error recovery procedures. Errors are often due to
temporary conditions which can be successfully recovered
by re-executing the read or write command.

A write command which does not write correctly because
of temporary or intermittent conditions can be detected by
immediately verifying the data just written. In this way,
any such “soft” write error can be corrected while the data
is still available in core storage. If this write checking pro-
cedure is not followed, the “soft” write error becomes a
“hard” error, which can be corrected only by reconstruc-
tion or adjustment. In almost all cases, permanent data files
should be verified as soon as written, while for transient or
work files, verification may not always be required. The
programmer should weigh the possible reconstruction time
versus the time consumed in write verification before decid-
ing not to verify write data.

An initiate read with a word count of zero should not be
used. Recovery requires a console DC reset.

132

Initiate Write (101)

This command causes the number of words specified by the
word count to be written in disk storage, beginning at the
first word of the sector indicated by modifier bits 13-15.
The disk storage drive to be used is designated by the device
code, bits 0-4.

15 0 4
o xxxxx]1 01

0
l Word Count Address (WCA)_

Word Count <— WCA
Data ~— WCA +1
Dota -—— WCA + 2
Data ~— WCA +3
T T
' Data] ~—WCA+N

The address word of the command contains the address of
the word count. The data is transmitted from core storage
location WCA + 1 and ascending addresses until the number
of words specified by the word count has been written. If
the word count is less than 321 words, the remainder is
written with all 0’s. Succeeding sectors, or parts of sectors,
require an initiate write command for each one.

An operation-complete interrupt occurs when the number
of words in the word count has been transferred.

An initiate write command should be followed immedi-
ately by a read-check command to verify that data can be
read correctly. '

An initiate write command with a word count of zero
should not be used. Recovery requires a console DC reset.

Note for 2311 disk drives only: If the access mechanism in
the drive is not located at the cylinder specified by the arm
register, an access operation will occur before data transfer
begins. The arm register is specified by the area code which
is the same as for the disk addressed. The address in the arm
register is updated by a control instruction,

Control (100)

5 0 4
No. of Cylinders Ixxxxxllo :

PUR TS T S W W S

For 2310 Disk Storage: This command causes the access
mechanism of the drive designated by the device code to
move in increments of two cylinders for the number of
cylinders specified by the address word of the command. If
the number of cylinders is odd, the first increment consists
of one cylinder.

Modifier bit 13 controls the direction of movement: a 0
moves the access mechanism forward (toward the center of
the disk);a 1 moves it backward.

When the access mechanism has moved the number of
cylinders specified, an operation-complete interrupt occurs.

Note: Cylinders do not carry an identifying number. It is
the responsibility of the program, therefore, to maintain
the necessary information relative to the position of the
access mechanism. A control command which specifies an
access motion of zero cylinders is treated as a no-operation
and does not result in an operation-complete interrupt.

For 2311 Disk Storage Drives: This command causes the
hardware counter associated with each simulated disk
(addressed by the specific area codes) to be updated by the
number of cylinders specified by the address word of the
instruction. Modifier bit 13 = 1 causes the number of
cylinders specified to be subtracted from the address arm
register and the result to be placed back into the same
register. Modifier bit 13 = 0 causes a similar addition to
occur.

No arm movement takes place in the drive during a
control command. Accessing, if necessary, occurs when
the initiate read or initiate write command is issued and
before data transfer begins. An operation-complete
interrupt is requested at the end of the control command.

Sense Device (111)

This command causes the device status word (Figure 37) of
the disk storage identified by the device code to be read
into the ACC..

xxxxilll]

[Rt

Operation complete and data error (except select and un-
safe) indicators are reset if modifier bit 15isa 1.

01 2 34 1415

L Sector Counts

4 ___ Carrioge Home

3 —_ Disk Busy (R/W or Carriage)
2 . Disk Not Ready

| — Operation Complete

0 Data Error

Figure 37. Disk Storage Device Status Word

DSW Indicators

Operation Complete (Interrupt): This is the only interrupt
associated with disk storage, and is turned on at the end of
a read, read-check, write, or control (access) operation
(where there is access movement). It also occurs if the disk
storage is in a read, read-check, or write operation at the
leading edge of a sector pulse; this occurs if the word count
specified is greater than 321.

Data Error: This indicator is turned on when:

1. A modulo 4 error is detected during a read, read-check,
or write operation.

2. The disk storage is in a read or write mode at the lead-

ing edge of a sector pulse.

A seek-incomplete signal is received from the 2311.

4. A write select error has occurred in the disk storage
drive,

5. The power unsafe latch is set in the attachment.

w

Conditions 1, 2, and 3 are turned off by a sense device
command with modifier bit 15 set to 1. Conditions 4 and
5 are reset by turning off the disk storage drive, allowing
for the cartridge unlock indicator to light, turning on the
drive, and waiting until the disk ready indicator (heads
loaded for the 2310 or 2311) to light. Disk operation can
resume after this sequence of events.

Disk Not Ready: This indicator is turned on with disk not
ready or busy or disabled or off-line or power unsafe latch
set. Also included in the disk not ready is the write select
error, which can be a result of power unsafe or write select.
(Bit 0 and bit 2 will be turned on.)

Disk Busy (R/W or Carriage): This indicator is on during
execution of a disk storage command. It turns off when the

operation is completed.

Carriage Home: This indicator is on when the access
mechanism is at the home position (cylinder 000).

Sector Count: These bits represent the sector number of
the next available sector to be used for reading or writing.

Disk Storage 133

Programming Considerations

Disk Organization

It is important in planning a routine for loading disk storage
that the cylinder concept be taken into consideration. Re-
lated data should be grouped in the same cylinder, when
possible, to eliminate unnecessary seek operations. There-
fore, when disk addresses are assigned to a group of related
data, the disk locations made available should be limited to
the number required, plus an expansion factor. The most
frequently used data should be stored in the low-numbered
cylinders to minimize seek time.

Customer Error-Correction Routines

If an error is detected by the CPU circuitry, the following
procedure should be executed:

1. Re-seek the cylinder upon which the error was de-
tected

134

2. Re-execute the operation in which the error occurred.

This procedure should be executed from three to ten times
prior to establishing the occurrence of a disk error.

Note: 1BM-supplied disk subroutines perform standard
error recovery procedures.

Usage Meter

The usage meter for the 2310 or 2311 disk storage drives

will run when the following conditions are present:

1. The 1133 is in an enabled status.

2. The disk drive enable/disable switch is in the enable
position. The CPU must be stopped when the switch
is changed from one position to another to affect
the enable/disable status.

3. The 1131 usage meter is running, The disk drive meter
will run simultaneously with the 1131 meter until
the status is disabled or the 1133 status is disabled.

Eighty-column punched card input and output is provided
to the 1130 system by the IBM 1442 Card Read Punch,
Model 5, 6, or 7, and/or the IBM 2501 Card Reader.

IBM 1442 Card Read Punch

The IBM 1442 Card Read Punch (Figure 38), Model 6 or
Model 7, provides both card input and card output for the
1130. The 1442 Model 5 is a card punch only and is consid-
ered the companion unit to the 2501 to provide a separate
card path for card input and output. However, a model 6 or
7 may be installed with the 2501 in place of a model 5; in
this case the 2501 should be considered the primary input
unit. Functionally, the 1442 model 5 has the same punching
characteristics as the 1442 model 7.

The 1442 is a single unit that processes cards serially,
column by column, from a single supply hopper. All cards
first pass the read station (model 6 and 7), then the punch
station. This permits each card to be read, punched, or read
and punched. Reading and punching cannot occur simultan-
eously — that is, one card cannot be punched while the
following card is being read — because the reading and punch-
ing rates are different.

Maximum machine speeds are:

Card Reading

Model Cards per minute
6 300
7 400
Card Punching
Model Columns per second
5 160
6 80
7 160

Maximum reading rates are attained only when successive
start read commands arrive early enough to re-energize the
read clutch before the clutch latch point is reached. To
accomplish this, successive start read commands must arrive

Punched Card Input/Output Devices

BR2684

Figure 38, IBM 1442 Card Read Punch

within 35 milliseconds, model 6 (or 25 milliseconds, model
7) after the operation-complete interrupt is given by the
card read punch. If a start read command does not arrive
within this time, the maximum reading rate becomes 285
cards per minute for model 6 and 375 cards per minute for
model 7.

Punching rates depend on the position of the card when
the last column has been spaced or punched. The punching
speed ranges are:

Model 6 — 49 cpm to 262 cpm
Model 5 and 7 — 91 cpm to 355 cpm
The approximate time required to process a single card is:
Model 6 — 216 ms + 12.5 ms per card column spaced
or punched
Model 5 and 7 — 163 ms + 6.25 ms per-card column
spaced or punched

Punched Card Input/Output Devices 135

The following table shows the approximate punch cycle
times and cards-per-minute rates based upon the last column
punched.

Total Punch
Last Column | Punch Time (ms) Cycle Time (ms) Cards per Minute
Punched [\odel 6]Model 587 | Model ¢ Mede! 5&7 | Mode! 6 |Model 587
1 13 6 229 169 262 355
10 125 63 341 226 176 265
20 250 125 466 288 127 208
30 375 188 59N 351 102 7
40 500 250 716 413 84 145
50 625 313 841 476 71 126
60 750 375 966 538 62 112
70 875 438 109 601 55 100
80 1000 500 1216 663 49 91
Data Coding

The card read punch reads and punches IBM card image only.
Code translation must be done by the stored program. As
shown in Figure 39, the twelve rows (12—9)in a card column
correspond to the 0—11 bits, respectively, of a core storage

l word. Bits 12 through 15 are reset to zero. A 1-bit re-
presents a punched hole; a 0-bit represents a card position
not punched. Thus, the word in Figure 39 contains 1-bits

in bit positions 0 and 3 to represent the “A” read from the
card. For output, a 1-bit results in a hole punched in the re-
lated position of the card read column, :

A special load mode is initated by pressing the program
load key on the 1130 console. In the load mode data is split
(Figure 40) as it enters core storage to form the load pro-
gram,

Z15

Row AlJR

f/ .
ff(—:

VO NOL AWK ~oO

[2folof olo]ofofo]olo]o

0123 45678910N0

<Core Storage Word (containing "A"
code from card)

Figure 39. Normal Mode Read

136

Card Feeding

An initial feed cycle results when the 1442 start key is press-
ed; this feeds the first card into position at the read station
(sense station — 1442 Model 5). The initial feed cycle places
the 1442 in a ready condition, which is necessary before
reading or punching may begin.

A constant-speed drive moves the cards through the serial
path during a feed cycle. A feed cycle is initiated by a control
command with modifier bits designating feed cycle, start
read, or start punch. The feed cycle does three things:

1. It moves a card from the punch station to the stacker.
2. It moves a card through the read station and places it

in the punch station with column 1 under the punches.
3. It moves a card from the hopper to the read station.

An incremental drive moves the card through the punch
station for punching.

When the hopper is emptied, the operator can either re-
load the hopper and continue operations or he can initiate
a last-card sequence.

Card Reading

A control (start read) command initiates card reading. This
command causes columns 1-80 of the card to be read in one
continuous motion of the card. Each column of data is read,
checked, and placed in a buffer register. A read response
interrupt is given for each column read. Checking is accom-
plished automatically by reading each column twice and com-
paring the results bit by bit. This read-check-interrupt pro-
cess continues until all 80 columns have been read. The last
card indicator in the DSW is turned on if the card read is the
last card in the deck.

%
//(

VO NOL AN —~oO

I Il |I ~<— Core Storage Word
S 9101112 13 1415

'01234'

e e
Op Code Sign Displacement

Figure 40, Load Mode Read

Card Punching

A control (start punch) command initiates card punching.
As each column passes the punch station a punch response
interrupt is given.

Automatic checking is accomplished by comparing the
punch check echo data with the single-character punch
buffer, which contains the character from the CPU. Each
column punched is checked at the same time that the punch
response interrupt is given for the data of the next column
to be punched.

The card motion and punching process continues until the
punch data word contains a one in the 12-bit position (punch
data is in bits 0-11). When this end-punch bit is detected,
that column is punched and the card is moved to the next
column. An operation complete interrupt is given. No more
punch response interrupts are given. No further punching can
take place on the card.

Failure to have an end-punch bit 12 results in more than
80 columns being punched. No indication of this programm-
ing error is presented in the DSW.

A feed cycle is necessary to eject a punched card to the
stacker and can be initiated by either of the three control
commands: feed cycle, start read, or start punch.

A control command specifying start punch results in a
feed cycle if it has not been preceded by a control command
specifying feed cycle or start read.

Program Load

Program load can be initiated by pressing the program load
key on the 1130 console after a system reset and the “run
in” cycle of a load card. This load mode causes the load-card
data to be placed in 80 consecutive storage positions begin-
ning at 00000, then causes the CPU to go to position 00000
for its next instruction.

" Last Card Sequence

The last-card indicator is turned on in the 1442 DSW when
the last card passes the read station. The program determines
when to enter the last-card sequence by testing the indicator.

When the start key is pressed without cards in the hopper,
the 1442 is placed in the ready condition and allows two
more feed cycles to process the last card.

PROGRAMMING
The 1442 operates under direct program control of the CPU.

1/0 Control Commands

The card read punch is addressed by the 5-bit device code,
00010.

Read (010)

0

This command causes a card column image to be entered
from the card reader into the core storage location specified
by the address.

Write (001)

0 15 0 4
o |olo‘oll‘o|o‘o‘

] ?ore Skrrage Address

This command causes the data in the core storage location
specified by the address of the IOCC to be punched as a
column of the card.

Control (100)

This command causes the 1442 to perform the function
specified by the modifier.
Modifier bits that have significance are:

Bit 14 Feed Cycle — causes all cards in the feed path to
advance one station. Cards pass through the read
and punch stations without being processed.

Bit 13 Start Read — causes the card to move through the

read station. As each column is read and checked,
the card read punch initiates a read column response
interrupt.

Punched Card Input/Output Devices 137

Bit 15 Start Punch — starts the punching operation and
initiates a punch response interrupt. If a card is not
at the punch station, a card will feed past the read
station without being read.
Stacker Select — (model 6 or 7 only) causes the
card leaving the punch area to enter the alternate
stacker. This control applies only to the next card
leaving the punch station after this command has
been issued. Selection of the desired card will not
occur if the stacker select command is given while
the card is still being processed at the read station.
Modifier bits 13, 14, and 15 of this control command
should not be used in combination with each other.

Bit 8

Sense Device (111)

This command directs the 1442 to place its device status
word (Figure 41) into the ACC. Modifier bit 15 on resets
responses for level O; modifier bit 14 on resets responses
for level 4.

DSW Indicators

The three interrupts associated with the 1442 are divided
into two groups. The sense interrupt (011) command causes
the active ILSW to be loaded into the ACC.

01 234 7 1415 Interrupt
o S Level
S -

15 Not Ready or Busy
14___ Busy
7 — Feed Check (Read Station)

4 __ Operation Complete 4
3 — Lost Cord

2 __ Error Check

¥ —— Punch Response 0
0 — Read Response 0

Figure 41, 1442 Device Status Word

138

Level 0 Interrupt Indicator

Read Response (Interrupt): This indicates an interrupt
which signals that a column of data is ready to be entered
into core storage. This interrupt request must be serviced
within 800 us. for the 1442 model 6 and 700 us. for the
1442 model 7. Time from the start read to the first read
column request interrupt is 28.4 ms for the model 6 and
23.8 ms for the model 7.

Punch Response (Interrupt): This indicates an interrupt
which signals that a column of data must be transferred from
the CPU within 300 us. Time from the start punch command
to the first punch column response interrupt varies from
1.22 ms to 12.5 ms on the model 6 and 1.56 ms to 6.25 ms
on the model 5 and 7.

Level 4 Interrupt Indicator

Operation Complete (Interrupt): This indicates an interrupt
which occurs after a card has been processed. For reading, it
indicates that column 80 of the card has passed the read
station. This interrupt occurs 20.6 ms after column 80 for
the model 6 and 15.4 ms after column 80 for the model 7.

For punching, this interrupt occurs after the last column
to be punched has been punched and checked and the punch
drive has stopped. This occurs 12.5 ms after the terminating
end-punch has been detected for the model 6 and 6.25 ms
after the terminating end-punch for the model 5 and 7.

The operation complete interrupt is forced if a hopper
check, feed check, transport error, or feed clutch error
occurs while the 1442 is busy. This interrupt is also forced
by a read registration check or punch check. No subsequent
reading or punching can be done in the card that caused the
error. In most cases, intervention by the operator is neces-
sary to clear the error condition before card processing may
resume.

There is no time limit on the request for service of the
operation complete interrupt. However, to maintain rated
speed, the model 5 and 7 must be serviced within 25 ms;
the model 6 must be serviced within 35 ms if reading and
25 ms if punching.

Non-Interrupt Indicators

Not Ready: This indicator shows that the 1442 is either
busy or not ready. When the 1442 is not ready, manual
intervention is required. The following conditions must be
met to place the 1442 in a ready condition.

Power on.

Card registered at the read (sense for Model 5)
station (initially).

Cards in hopper or last-card sequence in progress.
Stacker not full.

Feed-check light off (no card jam or feed failure).
If the stop key has been pressed, the start key must
have been subsequently pressed.

7. Chip box not full or removed.

[

SAR I ol

Busy: This indicator shows that a command cannot be
started because an operation is already in progress.

Last Card: This indicator shows that column 80 of the last
card has passed the read station and the hopper is empty.
This indicator will be on when the operation complete
interrupt occurs.

Error Check: Indicates that any of several error conditions
exist on the 1442. Error conditions such as card feed failure
are indicated by lamps on the 1442 console.

Programming Note: The error indicator does not turn on
until after the operation complete interrupt is given. An
exception to this is an XIO start punch operation requiring
an automatic feed cycle. If another operation is initiated
before the error indicator is turned on, the error forces an
operation complete interrupt although no reading or writing
has taken place. A start punch requiring an automatic feed
cycle is treated as two operations: (1) feed cycle, and ?)
punch operation.

1442 Usage Meter

This meter will run when both of the following conditions
are present: ‘

1. The unit is selected for operation by program control.
2. The 1131 usage meter is running.

The meter will run simultaneously with the 1131 meter
until either a program controlled stop or manual nonprocess
runout is performed on the machine.

IBM 2501 Card Reader

The IBM 2501 Card Reader (Figure 42), Model Al and
Model A2, provides card input for the IBM 1130 Computing
System. Card reading is under direct program control.

Functional Description

The IBM 2501 model Al reads cards at a maximum rate of
600 cards per minute (cpm); the model A2 reads at a maxi-
mum rate of 1000 cpm.

Cards are read serially — that is, column by column —
beginning with column 1. Each column is read twice and
the two readings are compared to check reading accuracy.
Thus, off-punched and mispositioned cards are detected.

BR2685

Figure 42. IBM 2501 Card Reader

Punched Card Input/Output Devices 139

Data Coding

The 2501 reads punched cards in card image only. Any code
translation required must be done by the stored program

in the CPU. As shown in Figure 39, the twelve rows

(12-9) in a card column correspond to the 0—11 bits,
respectively, of a core storage word.

A special load mode is initiated by pressing the program
load key on the 1130 console. In the load mode, data is
split as it enters core storage to form the load program.
Refer to Figure 40,

Card Feeding

After the initial feed cycle (run in), card reading may begin.
Card feeding is initiated by an initiate read command. This
command causes the card to begin moving. If the data is to
be ignored (as in card feeding), the word count must be
Zero.

Card movement is as follows:

1. The card at the read station moves through the read
station to the stacker.
2. Acard moves from the hopper to the read station.

When the hopper is emptied, the 2501 leaves the ready
condition. The operator may reload the hopper and press
the start key to continue processing or the operator may
press the start key without reloading the hopper to initiate
the last card sequence.

Program Load

Program load may be initiated by pressing the program load
key on the 1131 console. This causes the load card data to
be loaded into the first 80 core storage locations. After the
card has been loaded the instruction address register is reset
to 00000 and the CPU goes to this address for its next in-
struction.

Card Reading

An initiate read (110) command causes the card to be read
in one continuous motion. The number of columns actually
transferred to core storage depends upon the word count in
the first word of the data table.

The data is read into a buffer register where it is checked.
Then a cycle steal request is given for each column to be
transferred. The checking is accomplished by reading the
data a second time and comparing it to the data previously
read into the buffer. After the last column (column 80) has
been read, an operation complete interrupt is requested.

Last Card Sequence

When the hopper becomes empty during a feed cycle, the
2501 is taken out of the ready status. Intervention by the

140

operator is required to continue processing cards. The oper-
ator may reload the hopper and press the 2501 start key to
continue processing or the operator may initiate the last

card sequence by pressing the 2501 start key with the hopper
empty.

The last card sequence places the 2501 in the ready condi-
tion for one more feed cycle and turns on the last card indi-
cator. An operation complete interrupt is given at this time.
The last card indicator remains on until a sense device com-
mand (111) is issued with bit 15 on.

Programming

The IBM 2501 Card Reader operates under the control of
the stored program in the CPU.

1/0 Control Commands

The 2501 is addressed by the five-bit device code 01001.

The address portion of the IOCC specifies the location in
core storage of the data table. The first word of the data
table designates the number of words to be read. This word
is called the word count. The word count is located in bit
positions 9 through 15 and should never exceed 80 (50
hexadecimal). If the word count exceeds 80, information in
succeeding core locations is destroyed.

Initiate Read (110)
0 18 0 4 8 15
Word Count Address (WCA) 01001|11 0
Word Count b g—— WCA
Data e——WCA+H
Data [e———WCA+2
Data ¢—WCA+3
Data WCAm

This code provides the ability to start a read operation,
which subsequently makes data transfers to core storage
via a data channel by means of cycle stealing.

Sense Device (111)

This command sets the accumulator with the device status
word (DSW) of the 2501. The DSW bits 3 and 4 (last card
and operation complete) are reset if bit 15 is on when this
command is executed.

DSW Indicators
Refer to Figure 43,

Not Ready or Busy: This indicates that the 2501 is not in a
ready condition, or that it has received an instruction and is
in the process of executing it.

Busy: This indicates that a card read is in progress and
therefore another read card cannot be initiated. This indica-
tor turns off when the operation complete interrupt occurs.

Operation Complete (Interrupt): This is the only interrupt
associated with the 2501. This interrupt occurs after column
80 has passed the read station and feed checking has been
completed. The operation complete interrupt is independent
of the word count and terminates further cycle steal requests.
The number of characters actually transferred to the CPU
depends upon the word count. The 2501 is assigned to
interrupt level 4. Bit 3 in ILSW 4 is turned on if the 2501
caused the interrupt. The sense interrupt (011) command
causes ILSW 4 to be loaded into the accumulator if level 4

is being serviced.

Last Card: This indicates that the last card has been fed
from the hopper, and the operator initiated a last-card
sequence. The indicator may be turned off by a sense de-
vice command with reset (bit 15) on.

Error Check: This indicates a feed check or a read check.

Reader and System Timing

There are two basic timing considerations of importance to
the user of a 2501 Card Reader attached to an IBM 1130
Computing System:

1. Card throughput in cards per minute (cpm).
2. Time available for other system operation.

System Operations

The 1131 is capable of performing operations (such as
reading, processing, and punching) simultaneously. After
an operation is initiated, the CPU is busy for only 288
microseconds. The remainder of the card read cycle is
available for other use.

__ Not Ready or Busy

— Busy

4 __ Operation Complete
3_ Laost Card
2 __ Eeror Check

Figure 43, 2501 Device Status Word

Card Throughput

The 2501 model A1 has a 100-ms card feed cycle; the model
A2 has a 60-ms card feed cycle. To maintain the rated speed,
an initiate read command must occur every 100 ms for the
model Al and every 60 ms for the model A2. A basic timing
consideration of importance to the user of the 2501 Card
Reader is the time between the feed check signal and the
feed cycle decision point. This timing is shown in Figure 44.
In order to maintain rated throughput, the read instruction
must be received with 18.3 ms (A1) and 3.0 ms (A2)
following an interrupt (feed check signal).

If an initiate read command misses the feed cycle decision
point, the card reader waits until the feed cycle decision
point of the next cycle before starting to execute the com-
mand. The result in this case is the throughput is about one-
half of the maximum.

Model Al - 600 CPM (All times shown are nominal at roted thruput.)

—— Start of Pickerknife Movement
End of Pickerknife Movement
Feed Cycle Decision Point
Feed Check Signal

Read Cols

le— 1-80]

38.8 ms 29.6 19.4ms

5.2 ms

100 ms —————————————

Model A2 - 1,000 CPM (All times shown are nominal at rated thruput.)

— Start of Pickerknife Movement

End of Pickerknife Movement —
Feed Cycle Decision Point ,

Feed Check Signal -

Read Cols

te— 1-80 ——o

38.8 ms leo+ 7 ms
5.5ms__1 ’
3.5ms

60 ms

5.2 ms o

Figure 44, 2501 Timing Schematic

Punched Card Input/OQutput Devices 141

2501 Usage Meter

This meter runs when both of the following conditions are
present: :

1. The unit is selected for operation by program control.
2. The 1131 usage meter is running,

The meter will continue to run simultaneously with the
1131 meter until either a last card routine is initiated by
program control or a manual nonprocess runout is performed.

142

The IBM 1055 Paper Tape Punch (Figure 45) and the IBM
1134 Paper Tape Reader (Figure 46) provide paper tape
1/0 for the 1130.

The 1134 and 1055 operate under direct program control.

The 1134 reads one-inch, eight-channel paper tape at a
maximum rate of 60 columns per second.

The 1055 is capable of punching eight-channel chad paper
tape or edge-punched documents that have prepunched feed
holes. The 1055 punches at the rate of 14.8 characters per
second.

Tape Specifications

Both the 1055 and the 1134 are capable of using paper
tape, Mylar* laminated paper tape, and Mylar coated alum-
inum tape that meet the specifications in Figure 47. Con-
tinual punching of Mylar tape causes excessive wear in the
tape punch unit; therefore, Mylar tape should not be used
exclusively.

Character Code

The 1134 reads input data into the core storage as an image
of the holes in the tape. One paper tape character is read
into each addressed core storage location. Any code trans-
lation must be made by programming.
Figure 48 indicates which bits of the word correspond to
the respective holes in the paper tape read by the 1134.
The 1055 punches data as an image of the data contained

in positions 0—7 of the core storage word as shown in Figure

48.

*Trademark of E. I. du Pont de Nemours & Co, (Inc.)

Paper Tape Input/Output Devices

BR2687

Figure 45. IBM 1055 Paper Tape Punch

BR2686

Figure 46. IBM 1134 Paper Tape Reader

Paper Tape Input/Output Devices 143

Typical Spacing

Edge of holes in line

= fe—.072" Dic. 1+00}
Non=accumulating +.003" ! :
100 % .002"—| — he—.100% ¢ ‘ ',/
K; i : | or of
—0000 [oX:] (o) . Number o
179-90 070 O 0 O Tape Width holes
O 000 06 0 00 © B 8
| O 5 o] O .046" Didt'gg%
O 00! 000 40 (o]) 000 O O —‘ ° 1+ ,003 inch 5
A -—-2000000000000000000000 00Q@OQ)oooo 7/8 £ ,003 inch 4
O o O 30 o 7/8 £+ ,003 inch 3
.392ui .003 0000020 0] O O O 11/16 + ,003 inch 2
+ 0O1 o] IO (o] (o] :
T i I
L0561 l l i
Channels be— g * -004 Accumulated — s

tolerance per 60 holes

Figure 47, Tape Specifications

Channel

01234847 18

Figure 48, Paper Tape/Core Storage Format

Program Load from 1134

An 1130 system that does not have card I/O will have the
program load feature added to the 1134. This feature oper-
ates by means of design logic rather than program control.
Four-bit paper tape characters are automatically assembled
into four-character groups to form 16-bit data words. The
program load feature then loads these words into core stor-
age beginning at location 00000.

Only the first four (1-4) tape channels are used. When a
channel § punch is encountered, program loading stops; the
TAR is reset to zero; and program control begins at 00000.
Delete characters are permitted at the beginning, but once
the program begins to load, the channel 5 in a delete charac-
ter will end the load.

144

PROGRAMMING

The IBM 1134 Paper Tape Reader and the IBM 1055 Paper
Tape Punch operate under direct program control with the
exception of the paper tape program load feature.

1/0 Control Commands (I0CC’s)

The 1134 and 1055 are addressed by the same five-bit de-
vice code, 00011.

Read (010)

0 15 0 4

|o_o_o‘|.|]o‘| 0

..........

This command reads one character from paper tape into
core storage.

The address word specifies the location in core storage
where the tape character is to be stored.

Write (001)

0 15 0 4] 13
Jo0o11]o0n

[Gors storoge Addres

U ST T T W Y

This command writes one character from core storage to
the paper tape punch. The address word specifies the loca-
tion in core storage where the tape character is stored.

Control (100}

This command must be given prior to each character to be
read from the 1134. Execution of this command causes:
(1) one character to enter the paper tape reader buffer, and
(2) the tape to be advanced one column. A reader service
response interrupt is initiated to indicate that a character
from paper tape can be read into the core storage location
specified by a subsequent read (paper tape) command.

Sense Device (111)

This command is used to enter the device status word
(Figure 49) into the ACC. Modifier bit 15 on indicates
that the responses are to be reset.

DSW Indicators

Reader Response (Interrupt): This indicates an interrupt
which occurs on level 4 when the reader has completed the
execution of a control command. This interrupt indicates
to the CPU that a character is available to be entered into
core storage.

Punch Response (Interrupt): This indicates an interrupt
which occurs on level 4 when the punch has completed
punching as directed by the execution of a write command.
It indicates that the punch can accept the next command.

Punch Not Ready: This indicator is on when the tape is
not feeding freely from the tape spool, when the tape pres-
sure roll holder is not down and holding the tape against
the feed wheel, or when tape is not present. Manual inter-
vention is required to clear these conditions. The indicator
is also on if the punch is busy. (See punch busy indicator.)
This indicator should always be tested by the program
before a write command is given. If a write command is
given while this indicator is on, loss of information will
probably occur. No indication is given of this loss.

Reader Not Ready: This indicator is on when the tape ten-
sion switch is open. This condition exists when the paper
tape is broken or not feeding freely. Manual intervention is
required to clear these conditions. This indicator is also on
if the reader is busy. (See reader busy indicator.)

The program should test this indicator before a read com-
mand is given. If a read command is given while this indi-
cator is on, erroneous data can be read into core storage.
No valid indication can be given as to whether the data -
read is correct or incorrect.

Punch Busy: This indicator is on for the total time the
punch is mechanically engaged and punching a character
(68 ms). During this time the punch should not be sent
another write command.

Reader Busy: This indicator is on from the time a control
command (start paper tape reader)is given until data is
available. A reader response interrupt signals that data is
available.

L_+ 7 — Punch Not Ready
L 6__PunchBusy

;— 5 Reader Not Ready

4 __ Reader Busy

3 __ Punch Response

I __ Reader Response

Figure 49, Paper Tape Device Status Word

Paper Tape Input/Qutput Devices 145

Printers

Two on-line printers are available for attachment to the
1130 system. A system may include an IBM 1132 Printer
Model 1 or Model 2 and/or an IBM 1403 Printer Model 6 -
or Model 7. The 1403 attachment also requires the attach-
ment of the IBM 1133 Multiplex Control Enclosure.

IBM 1132 Printer

The 1132 Printer Model 1 (Figure 50) provides printed
output for the 1130 system at maximum rates of 80 lines
per minute (Ipm) for alphameric printing and 110 lpm

for all-numerical printing. The 1132 Printer Model 2
provides maximum printing rates of 40 lpm for alphameric
printing and 55 Ipm for all-numerical printing. The print
line is 120 print positions long; horizontal spacing is ten
characters per inch. Vertical spacing, which is preselected by
the operator, is six or eight lines per inch.

BR2688

Figure 50, IBM 1132 Printer

146

FUNCTIONAL DESCRIPTION

Both models of the 1132 contain 120 printwheels, one for
each print position. Each printwheel contains a 48-character
alphabet consisting of 26 alphabetic characters, 10 numeric
characters, and 12 special characters. Special (FORTRAN)
characters are as follows:

&—'/'$,*()’+=

All printwheels rotate continuously and in synchronization
with each other. Each wheel moves forward to print when
the data in the output record specifies that the character to
be printed is in position. Thus, all similar characters for the
entire line are printed on the same cycle. Forty-eight cycles
(one for each character possible) are required to print a com-
plete line.

The 1132 uses interrupt circuitry and responds on level 1.

Forms Control

Forms control is provided through a tape-controlled carriage
that uses the standard IBM carriage tape. Channels 1 through
6,9, and 12 are available to the stored program.

Spacing is always performed one line at a time under con-
trol of the stored program in the CPU.

Carriage skipping is initiated by the stored program and
stopped by the program when the predetermined line is
reached. Skipping speed is 10 inches per second.

Note: A skip operation must not be less than four lines.

Data Format

The 1132 character code is shown in the appendix. Each
character occupies the first eight bits of a core storage word.
The data to be printed is assembled in core storage in the
same order, including spaces, as the line that is to be printed.
During each of the 48 cycles necessary to print all 48 char-
acters, the character next in position to print is read from
the character emitter and is compared with each character
of the output record, all by the CPU program. For each
equal comparison, the program places a 1-bit in the printer
scan field in the position corresponding to the printwheel

to be fired. The printer scans the field in a cycle-steal mode
and fires each printwheel whose position contains a 1-bit.
The printer scan field is located in core storage locations

32 through 39. The 16 bits of each of the first seven words
and bits O through 7 of the eighth word represent the 120
printwheels.

PROGRAMMING

The IBM 1132 Printer operates under direct program con-
trol of the CPU.

Printer 1/0 Control Commands
The 1132 is addressed by the binary device code of 00110.

Read Emitter (010)

] 150 4
~Jo0.1.1.0[01 0}

 Corg Storage Address,

This command causes the eight-bit EBCDIC code of the
next character emitted by the printer to be read into bits
0-7 of the core storage location specified. Bits 8-15 are
reset to zero.

Control (100)

15 0 4)
| ‘olllllolllo.o] X

This command causes the execution of the function speci-
fied by the modifier bit. A 1-bit in the position indicated it
parentheses after each command causes the operation
described.

Start Printer (Bit 8): This causes the printer to start taking
the printer scan field information. The printer continues to
take print scan cycles as required until it receives a stop
printer command. Each position that contains a 1-bit
causes the corresponding printwheel to print the character
in position on that cycle. After the field of eight words has
been scanned, a 1-bit is placed in bit position O of the 1132
device status word. (See Figure 51.) This causes an interrupt
when level 1 is the highest level waiting.

Stop Printer (Bit 9): This instruction causes the printer to
be put in a ready (not busy) state and inhibits subsequent

printer interrupts. The stop printer instruction should not

be given until all of the following conditions are met:

o Eighteen scan cycles have been completed after the com-
mand to print the last character.

e The carriage has stopped after a skip operation.
o The interrupt response from the last space command has

occurred.

Start Carriage (Bit 13): This command initiates a skip oper-
ation, which is haltgd by a stop carriage instruction.

Stop Carriage (Bit 14): This command stops the carriage
at the end of a skip operation. A punch in carriage control
tape channel 1, 2, 3,4, 5,6, 9, or 12 initiates an interrupt
request, identified by bit 1 of the DSW. When the desired
tape channel bit in the DSW is on, a stop carriage command
should be given.

Space (Bit 15): This command is given to space the carriage
one line. After the space operation, an interrupt is initiated
and a 1-bit is put in bit position 2 of the DSW to indicate
spacing is completed. Another space can now be initiated.

Sense Device (111)

This instruction causes the DSW of the 1132 Printer to be
placed in the ACC. The functions of the bit positions of
the DSW are shown in Figure 51.

If bit 15 contains a 1, the interrupt responses in the DSW
are reset.

DSW Indicators

Three interrupts are associated with the 1132, each on
level 1. The associated indicators are turned on in the DSW.

Read Emitter Response (Interrupt): After a start printer
command has been executed, the 1132 will interrupt the
CPU program each time the printwheels are aligned to
print another character. The read emitter command must
then be executed to determine the character to be printed.

0 | 23 45 67 8 9101 12131415

IllAlllllllll]l]

Carriage Control Tape
15 - Channel 12
——14 - Channel 9
13 - Channet 6
12 - Channel 5
11 - Channel 4
10 - Channel 3
9 - Channel 2
8 - Channel 1

6 - Printer Busy

5 « Not Ready

4 - Print Scan Check
3 - Corriage Busy

2 - Space Response

1 - Skip Response
0 - Read Emitter Response

Figure 51. 1132 Device Status Word

Printers 147

Skip Response (Interrupt): This indicates an interrupt
which is initiated by the 1132 each time the carriage brushes
detect a punch in the carriage tape while a skip operation is
in progress. The CPU program must test the DSW bits to
determine if the carriage is at the proper channel.

Space Response (Interrupt): This indicates an interrupt
which turns on at the completion of a space operation to
signal the CPU program.

Note: After an interrupt has been serviced, the level must
be reset by a BOSC instruction.

Carriage Busy: This indicator turns on when the 1132
begins carriage movement. It turns off when movement
stops.

Print Scan Check: This indicator is turned on when the
printer attachment addresses word 39 and there is not a
1-bit in position 15. A 0 in bit 15 indicates that the printer
subroutine did not finish setting up the print scan field.

Not Ready: This indicator is turned on by an out-of-forms
condition, motor power off, or at the end of the operation
in progress if the stop key is pressed.

Printer Busy: This indicator is turned on when an XIO
start printer instruction is executed for the 1132, It is
turned off by an XIO stop printer instruction to the 1132,
by a system reset, or by a CPU stop.

Carriage Control Channels: As each hole in the carriage
tape is read after a start carriage control command, the
associated indicator in the DSW is turned on.

Programming Notes

The status of the 1132 indicators should be checked before
a line is printed. This is accomplished by transferring the
printer DSW into the ACC with a sense device command.
The modifier bit (bit 15) of the sense device command
should be set to O to prevent reset of the DSW responses
and indicators. Bits 3, 5, and 6 of the DSW are tested and
if all three positions are 0, the printer is ready to print the
-next line. A start printer control command is then given to
start the sequence. A scan field transfer, using cycle steal
cycles, takes place under control of the printer. Therefore,

148

the scan field must be clear and have a 1-bit in position 15
of core storage word 39 before the start print command is
given.

After the code of the next character has been emitted by
the printer, a level 1 interrupt is given and the character is
read into core storage by a read emitter command. There
are 11.2 ms available to test each position of the output
record with the character read and set up the 1 bits in the
printer scan field. At the end of the 11.2 ms, the 1132
attachment begins its scan and fires each printwheel with a
corresponding 1-bit in the printer scan field. If the program
has been interrupted for a considerable period by higher
levels, the scan may not have been completed. To insure
that the program detects this condition, the first steps of
the printer subroutine for each character should clear the
printer scan field to 0’s and, upon completion of the pro-
grammed scan, place a 1 bit in position 15 of the eighth
word (39). When the printer attachment scans the field it
checks this position. If it is 0, the print scan check indica-
tor (bit 4 of the DSW) is turned on. The program can test
this indicator and branch to an error routine that provides
47 idle scan cycles and resumes programmed scanning at
the point where the scanning was interrupted. This results
in overprinting of the characters that were printed unless
the error routine keeps track of the positions that were
printed and does not set them up again on this scan.

After the final scan cycle for a line of printing, 16 idle
scan cycles must be taken before spacing or skipping is
started to allow time for completion of the mechanical
operation of printing the last character. If the operation is
a single or double space, the next scan cycle can be started
two scan cycles after the last space command is given.

During an idle scan cycle the printer scan field should be
set to 0’s, except for bit 15 of the eighth word (39), to
prevent the print scan check indicator from being turned on.

1132 Usage Meter

This meter starts when both of the following conditions
are present:

1. The unit is selected for operation by program control.
2. The 1131 usage meter is running.

The 1132 meter continues to run simultanecusly with
the 1131 meter unless a manual space or manual carriage
restore is initiated by the operator.

IBM 1403 Printer

The IBM 1403 Printer (Figure 52) greatly increases the
output capabilities of the IBM 1130 Computing System
while reducing the time that the CPU is required to print,
thus leaving more time for other functions. The 1403 is
available in two models for attachment to the 1130:

1. The model 6 has a maximum printing speed of 340
(or 210) lines per minute (Ipm), depending upon the
attachment feature specified in the 1133 Multiplex
Control Enclosure.

2. The model 7 has a maximum printing speed of 600
Ipm.

Each printer can print 48 different characters in 120 posi-
tions. There are 26 alphabetic, 10 numeric, and 12 special
characters.

Vertical spacing and skipping are initiated by the stored
program. Horizontal spacing is ten characters per inch.
Standard vertical spacing is six and eight lines per inch, con-
trolled manually by the operator. Skipping is about 33
inches per second.

FUNCTIONAL DESCRIPTION

Printing

The alphabetic, numeric, and special characters are assem-
bled in a chain. As the chain travels in a horizontal plane,
each character is printed as it is positioned opposite a mag-
net-driven hammer that presses the form against the chain.

Data to be printed must first be edited, translated to the
1403 binary code (see Appendix), and arranged in core
storage in exactly the form that it is to be printed. The data
format in core storage is two seven-bit characters per word
(Figure 53).

Spacing and Skipping

Spacing is always performed one line at a time under control
of the stored program in the CPU.

Carriage skipping is controlled by prepunched holes in a
paper or plastic tape that corresponds in length to the
length of one or more forms. Holes punched in the tape
stop the form when it reaches any predetermined position.

Note: A skip operation must not be less than two lines.

BR2689

Figure 52. IBM 1403 Printer

1st Data Character 2nd Data Character

0t 23 456 7 8 9 10111213 14 15

3216 8 4 2 1E" 6432168 4 2 1
L1 1 1 1 1 IR | I N W Y W |

Parity Bit

Parity Bit

Figure 53. 1403 Data Format Hexadecimal Bits

Control Tape

The control tape has 12 columns, indicated by vertical lines.
These positions are called channels. Holes can be punched in
each channel throughout the length of the tape. A maximum
of 132 lines can be used to control forms although, for
convenience, the tape blanks are slightly longer. Horizontal
lines are spaced six to the inch for the entire length of tape.
Round holes in the center of the tape are prepunched for
the pin-feed drive that advances the tape in synchronization
with the movement of a printed form through the carriage.
The effect is exactly the same as though the control holes
were punched along the edge of each form.

Printers 149

Programming

All operations of the 1403 are under control of the stored
program in the CPU.

Data to be printed must be edited, translated to the 1403
binary code, and arranged in core storage in exactly the
form that it is to be printed. The 1403 has a fixed length
data field of 120 characters or 60 words.

Initiate Write (101)

[50 4 18
Data Table Address (DTA) 1010 |]1 01

Dato le—— DTA
Data le—— DTA+!
Data te—— DTA+2
Data fe—— DTA#3

~ A

T T

L Data fe—— DrA+ 59

An injtiate write command transfers data from core storage
to the print buffer using the cycle steal method.

During data transfer each core location to be printed is
addressed twice. During the first cycle, bits 1-7 are trans-
ferred to an even address of the print buffer. During the
second cycle, bits 9-15 are transferred to the next higher
odd address of the print buffer.

The total time demand on the processor is dependent on
the core storage cycle time. Approximately 432 us. is re-
quired for the 3.6-us. core storage, and approximately 264
us. is required for the 2.2-us. core storage.

The printer does not interrupt the CPU until after the
120-position buffer is filled. It then initiates a transfer
complete interrupt on level 4.

After completion of printing the line a level 4 interrupt
is initiated to signal print complete.

Control (100)

0 15 0 4 8 15

An XIO control command initiates a single line space.

Write (007)

0 150 4
I Core Storage Address |1 010 1]0 0

TS S S T U S T

150

An XIO write command controls carriage skipping. This
command causes the carriage to skip even if it is at the
specified channel. It skips until that channel is detected
again. The carriage may be controlled to skip to any channel
1-12 by placing a 1-bit in positions 4-15 of the core loca-
tion specified by the address.

The carriage will stop only on an exact compare of all
corresponding bits. Therefore, if more than one channel is
punched on a line, the corresponding bits must be set in
bits 4-15 of the address word for the carriage to stop on
that line. Likewise, if no bit is present in bits 4-15, the
carriage will stop on the next line that has no channel
punches.

A carriage control command given prior to loading of the
print buffer causes immediate execution of the command..
If the command is given during loading of the buffer, the
command is not executed until after the line is printed.
The programmer must check to insure that the carriage is
not busy when the command is given.

Figure 54. Sense Device (1403)

An XIO sense device command (Figure 54) causes the 1403
DSW (Figure 55) to be placed into the accumulator. If bit
15 is on when the command is executed, the DSW interrupt
indicators and channel 9 and 12 indicators are reset.

DSW Indicators

Transfer Complete Interrupt: The 1403 requests this in-
terrupt when the 1403 buffer is full.

Print Complete Interrupt: This interrupt indicates the 1403
has completed printing a line.

Carriage Interrupt: This interrupt indicates the 1403 has
completed a skip or space operation.

In addition to the preceding interrupts, the following
status conditions are also indicated in the 1403 DSW.

Parity Check: This indicates an even bit count of the seven-
bit print buffer data word.

Print Check: This indicates an error occurred in modifica-
tion of the buffer address register.

Sync Check: This indicates that the print chain is not syn-
chronized with the compare counter.

1112 13 1415

Bit
Bit
Bit
Bit
Bit
Bit

Figure 55. 1403 Device Status Word

l_Bif 15
L Bit14
Bit 13
Bit 12
Bit 11

6

5
3
2
1
0

1403 Not Ready

Printer Busy

Carriége Busy

Carriage Channel 12
Carriage Channel ¢
Sync Check

Ring Check

Carriage Interrupt

Print Complete Interrupt
Transfer Complete Interrupt
Parity Check

Carriage Channel 9: This indicates the carriage passed a

channel 9 punch in control tape.

Carriage Channel 12: This indicates the carriage passed a

channel 12 punch (normally used for the last printing line

on a form) in the control tape.

Carriage Busy: This indicates that the carriage is performing
a space or skip operation. This bit goes off when bit 3 comes
on to signify completion.

Printer Busy: This indicates that the 1403 buffer is being
loaded or a line is being printed.

Not Ready: This indicates the 1403 is not ready. Printing,
spacing, or skipping under program control cannot occur
until the 1403 is ready.

1403 Usage Meter

This meter will run when the following conditions are
present:

1. The 1133 is in an enable status.
2. The 1403 is selected for operation by program control.
3. The 1131 usage meter is running.

This meter will run simultaneously with the 1131 meter
until either stopped by the operator or the 1133 is placed
in a disable status. !

Printers 151

IBM 1627 Plotter

Figure 56. IBM 1627 Plotter

BR2692

Model 1 Model 2
X, Y Increments 18,000 12,000
Speed Steps/Min Steps/Min
Pen Status Change 600 600
Operations/Min | Operations/Min
Increment .
Size 1/100 Inch 1/100 Inch
Width 12 Inches 31 Inches
ch Plotting Width 11 Inches 29 1/2 Inches
N art Length 120 Feet 120 Feet
aper Sprocket Hole « 130 Inch Dia . 188 Inch Dia
Dimensions on 3/8 Inch on 1 Inch
Centers Centers
Figure 57. IBM 1627 Operating Characteristics
Chart Paper Supply
- Pen and Carriage Spool

\

ya

X Axis Jg
Paper
Motion Y Axis -

. T
Pen Motion

Figure 58. Plotter Paper and Pen Movement

152

Take=up Spool

The IBM 1627 Plotter (Figure 56) provides an exceptionallyv
versatile, reliable, and easy-to operate plotting system for the
1130 system. The plotter converts tabulated digital informa-
tion into graphic form. Bar charts, flow charts, organization
charts, engineering drawings, and maps are among the many
graphic forms of data that can be plotted on the 1627.

Two models of the 1627 are available and the major char-
acteristics are as follows:

Model 1 Plotting area: 11 inches by 120 feet,
1/100 inch incremental-step size, up to
18,000 steps/minute.

Model 2 Plotting area: 29-% inches by 120 feet,

1/100 inch incremental-step size, up to
12,000 steps/minute. ;
See Figure 57 for more information. The 1627 is equipped
with a ball point pen, which lasts for about five or six hours
of continuous plotting. A liquid-flow ink pen is optional.

FUNCTIONAL DESCRIPTION

Data from core storage is transferred serially to the 1627
under direct program control, where it is translated into
1627 actuating signals. These signals are then converted
into drawing movements by the 1627.

The actual recording is produced by incremental move-

_ment of the pen on the paper surface (y-axis) and/or the

movement of the paper under the pen (x-axis). The pen is
mounted in a carriage that travels horizontally across the
paper. The vertical plotting motion is achieved by rotation
of the pin feed drum, which also acts as a platen (Figure 58)

The drum and the pen carriage are bidirectional; that is,
the paper moves up or down, and the pen moves left or
right. Control is also provided to raise or lower the pen from
or to the paper surface. The pen remains in the raised or
lowered position until directed to change to the opposite
status.

The drum and the pen-carriage movements and the pen
status are controlled by bits transferred to the 1627. Each
output word is decoded into a directional signal that causes
a 1/100 inch incremental movement of the pen carriage
(Figure 59) and /or paper, or a raise-pen or lower-pen move-
ment. The motion or action resulting from each word in the
output record is shown in Figure 60.

The time required for execution of raise-pen and lower-
pen commands is 100 ms. The time to plot a point is approx-
imately 3.3 ms model 1, or 5 ms model 2.

PROGRAMMING

The 1627 Plotter operates under direct program control of
the 1130 and responds on interrupt level 3.

1/0 Control Commands {10CC’s) ._/_'*__

The 1627 is addressed by the five-bit device code 00101. Start 7] [~ Finish

— [—1/100"

Write (001)
(assume pen in down status)
0 18 0 ‘

l(‘iofe .qurulge.Afidfesf L |o*o.]Ao‘|IO_O|I

Figure 59. Result of One Horizontal (y-axis) Movement

This command causes bit positions 0 through 5 of the word
in the core storage location specified by the address to be
sent to the 1627 to control the movement of the pen or 0 5

0 5 0 5
drum. (See Figure 60) dldclo} 010000ﬁ od010b§
i

Sense Device (111) +X+Y +X +X =Y

0 5 +Y -y 0 5
ololofo]1[off - > [ololof1folof

This command causes the 1627 device status word (Figure
61) to be placed into the accumulator. Modifier bit 15 on _ X4y
specifies reset for the plotter response.

-X X-Y

0 5 0 V 5

OO DGRl BRDTED

DSW Indicators

Plotter Response (Interrupt): This is the only interrupt o s o s
associated with the 1627. This interrupt occurs when the

0{0
1627 has completed the action specified by the last write l: a é@}
command. The 1627 is on interrupt level 3.

Figure 60. Plotter Command Codes

Not Ready: This indicates the 1627 is not ready to execute
commands. A write command issued to the plotter when
the not ready condition exists causes a plotter-response
interrupt even though the plotter has not executed the
command.

15 Not Ready
Busy: This indicates that the 1627 is in a busy status and 14 — Busy
cannot accept a character. After the first write command,

0 —— Plotter Response

the program should wait for succeeding plotter interrupts
to issue additional write commands. If a write command is Figure 61. 1627 Device Status Word
given while busy is on, loss of information will probably

occur. No indication is given of this loss.

IBM 1627 Plotter 153

IBM 1231 Optical Mark Page Reader

BR2693

Figure 62, IBM 1231 Optical Mark Page Reader

The IBM 1231 Optical Mark Page Reader (OMPR) represents
a breakthrough in source recording and data entry. The
OMPR provides a facility for recording the data at its source,
in a form that can be read directly into the IBM 1130
Computing System.

The 1231 (Figure 62) reads positional marks made by an
ordinary lead pencil on paper documents. The positional
marks are read directly into the IBM 1130 core storage.

Documents are read at a maximum rate of 2,000 sheets
per hour.

DATA SHEET

The document used as input to the Optical Mark Page
Reader is an 8-%5” x 117 sheet of paper called a “data
sheet.” The data sheet contains a maximum of 1,000 mark
positions. The mark positions are arranged in an many as
50 rows, each row containing a maximum of 20 mark
positions.

154

Each row is divided into two groups of ten mark positions
each. The ten mark positions are called “words.” Each word
is divided into two groups of five mark positions called
“segments.”” Consequently, each data sheet can have a max-
imum of 50 rows, 100 words, and 200 segments. A data
sheet normally contains five rows per inch but may have
less.

Timing marks are printed along the right-hand edge of
each data sheet. These marks are used to synchronize the
motion of the document with the sensing unit of the reader.
Each word on the data sheet has an associated timing mark.
For forms design information see the System Reference
Library publication IBM 1231, 1232 Optical Mark Page
Readers (Order No. GA21-9012).

Data Sheet Terminology

Timing Mark: A rectangular mark preprinted on the data
sheet in non-reflective ink. The timing mark is used to syn-
chronize the motion of the document with the sensing unit
of the 1231. Timing marks are located on the right-hand
side of the data sheet.

Mark Positions: Areas printed in reflective ink that desig-
nate where marks are to be placed. A non-reflective mark
in this area is read as a word or bit.

Word: Ten mark positions of a row. Words on the left half
of the data sheet are odd words; words on the right half of
the data sheet are even words.

Segments: Mark positions O through 4 and 10 through 14,
or 5 through 9 and 15 through 19, of any word.

Non-Reflective Ink: A type of ink that is sensed by the
1231. Usually, timing marks are the only non-reflective
printing on the data sheet. The recommended non-reflective
ink is black.

Reflective Ink: A type of ink not sensed by the 1231.
Reflective inks are used for headings, data sheet instruc-
tions, mark position outlines and any other data that is
not to be read.

Marking the Data Sheet

Marks that are to be read by the IBM 1231 must be dark
enough for positive machine reading, yet erase easily and
completely. For these reasons, a number 2 pencil is recom-
mended.

Marks made with a number 1 pencil, or an IBM ELEC-
TROGRAPHIC ® pencil are difficult to erase. Even after
an erasure is made a residue remains that could be read as
a mark by the machine.

Erasures should always be made carefully and completely.
Any incomplete erasure could be read as a mark.

When response positions are marked, the mark should be
made the full length of the mark position, and should fill at
least two-thirds of the space between the top and bottom
of the guide lines. A mark that extends no more than 1/16
inch past the ends of the response position is acceptable in

all but the last even-word position (next to the timing marks).

In this position, a mark must not extend beyond the right
end of the guide lines or it could be read as a timing mark.
This would result in erroneous reading of the rest of the data
sheet.

FUNCTIONAL DESCRIPTION

The 1231 uses sonic delay lines for storing controls and data.
Controls are marked on the regular data sheet and entered
into delay line storage during the program load cycle. This
data sheet is referred to as a program control sheet. The
program control sheet is automatically placed in the select
(upper) stacker during the load cycle.

As data sheets are read, data is stored in the delay lines
according to instructions from the program control sheet.
Each word to be stored on the delay line must be program-
med by the program control sheet.

When a data sheet passes under the photoelectric read
head, each word is tested for conditions, such as no-mark,
multi-mark, or other-than-one. Switches on the 1231 con-
trol panel in conjunction with the program control sheet
control the test of these conditions. Any word that does
not pass the requirements of the switch settings causes the
data sheet to be routed to the select stacker.

Document Path

The data sheet begins its movement through the optical
mark page reader when it is fed from the hopper by CPU
program control. The document then passes under a read
head and is next transported through the transport area,
past a selection station, and on into one of the two gravity
stackers.

Message Format

Each word transferred from the 1231 to the 1130 reads
into a single position of core storage. Words are transferred
one segment at a time to the A buffer and the B buffer in
the attachment; all odd segments (A buffer) enter positions
0-4 and 14, and all even segments (B buffer) enter positions
5—9 and 15 (Figure 63). If the 1231 is programmed for only
one segment, all segments enter positions 0-4 and 14. Words
with marks in positions 0, 1; 2, 3 or 4 transfer to core
storage as an odd segment and marks in positions 5, 6, 7, 8,
or 9 transfer to the 1130 as an even segment. Combinations
of the bits make up a valid character which must be transla-
ted by the 1130 stored program. Any or all of the marking
positions on the data sheet may contain marks.

Data is read by the 1231 from left to right, top to bottom,
arow at a time. Information from a data sheet is stored in
the following sequence:

1. Segment 1 of the first word programmed to read.

2. Segment 2 of the first word.

3. Segment 1 of the second word programmed to read.
4. Segment 2 of the second word.

If only one segment of any word is programmed to read,
then each segment goes into a separate core storage word.

Mark Recognition and Discrimination

During the reading of data sheets, the Optical Mark Page
Readers categorize marks according to their degree of light
reflectance (Figure 64). A mark falls into one of the follow-
ing categories:

1. Good

2. Poor

3. Uncertain

A good mark is recognized as a positive indication of a mark;
a poor mark (or good erasure) is not recognized as a mark,
and an uncertain mark (light mark or poor erasure) is one
whose light reflectance level comes somewhere in between

a good mark and a poor mark but cannot be positively
identified as either. The reading or rejection of uncertainties
can be customer-controlled.

[] 4 [} 1415

N |

Se?::‘r)\fl S men;Z |—LSegment2Pcrify Bit
even

Segment 1 Parity Bit

Figure 63, 1231 Data Format

IBM 1231 Optical Mark Page Reader 155

BLACK

{

il

WHITE

A: Good Mark
B: Light Mark or Poor Erasure
C: Poor Mark or Good Erasure (Marks in this area are not read)

Figure 64. Mark Reflectance Relationship

Three read-mode switches, each associated with a set of
field-checking switches, allow operator control of mark
discrimination on a field-by-field basis. Documents contain-
ing uncertainties can be selected for a visual check if desired.

Each of the three read-mode switches has four settings:
SING RESP (single response), MULT RESP (multiple res-
ponse), SING RESP SEL UNC (single response select uncer-
tainties), MULT RESP SEL UNC (multiple response select
uncertainties).

The setting of each read-mode switch affects mark discrim-
inaton as follows:

1. SING RESP:

a. Marks in area A are accepted.

b. Marks in area B that are not accompanied by a
mark in area A of the same word or segment are
accepted.*

c. Marks in area B that are accompanied by a mark
or marks in area A of the same word or segment
are not accepted.

2. SING RESP SEL UNC:

a. Marks in area A are accepted.

b. Marks in area B that are not accompanied by a
mark in area A of the same word or segment cause
the data sheet to be selected.

*Number of mark positions included in any one mark discrimination
test is determined by the setting SEGMENT or WORD of the check-
length switch.

156

¢. Marks in area B that are accompanied by a mark
in area A of the same word or segment are not
accepted as marks.
3. MULT RESP:
a. Marks in area A are accepted.
b. Marks in area B are accepted.
4. MULT RESP SEL UNC:
a. Marks in area A are accepted.
b. Marks in area B cause the document to be selected.

Whenever a data sheet is selected by the 1231, storage is
cleared and data from that data sheet is prevented from
being transferred to the computer.

Data Flow

Before the 1231 can act as an input device to a data process-
ing system, the controls for the internal functions must be
loaded and switches must be set to establish the conditions
required for the particular run.

Two storage devices (sonic delay lines) are used to store
and control the data as it is read from the data sheets. One
of these storage devices, the “master” line, is used to store
all the controls from the program control sheet. If the 1231
is equipped with the master mark special feature then
master-mark data and controls associated with master-mark
data are also stored.

The other storage line, the data line, is used to store infor-
mation from the data sheet. As the data sheet is read, the
two storage lines work concurrently and in synchronism.
The master line, which contains the program instructions,
determines which information from the data sheet is to be
retained.

The following sequence is used for entering data into a
fully equipped 1231 and for making this information avail-
able to the processing system (Figure 65).

1. Line mark and word mark bits are generated by inter-
nal circuitry to establish the starting point of the data
on the delay lines. These bits go into the data delay

line.

A B

Reg Reg

Program Control Bits — ———
—9——'—'___— Master | C » C —

Master Mark Data Line — —
’ A P A —>
B —»{8 —
—i e To CPU
1 i 1
Data 2 —> 2 |—p

Detail Data Line — —

——]

4 4 —

Figure 65. IBM 1231 Data Flow

2. Program control bits are loaded into the 1231 from
the program control sheet and go into the master line.

3. Master-mark information (if master-mark special
feature is installed and being used) is transferred the
same as detail data. It is up to the system to store
this information and merge it with each succeeding
data sheet until new master data is transferred.

4. Detail data reads into positions 12 through 111 of the
data line.

5. The first word of data (master or detail) is sent to the
1231 attachment buffer in the 1131. When this buffer
is loaded it causes an interrupt to be generated. The
1131 program must then issue a read command to
transfer this word into core storage. This process is
repeated until all the data is transferred.

Field Checking

In field checking, each word programmed to be read is
checked for mark conditions which may indicate invalid
data. Three switch-controllable mark conditions, each of
which will cause the document to be selected, can be check-
ed. These conditions are: multi-marks, no marks, or other-
than-one. The switch also has an off position.

Data sheets are usually designed with “fields” of similar
data in vertically consecutive words on the left or right sides
of the data sheet.

A field checking field differs from a data sheet field pri-
marily in functional grouping. A data sheet field groups
similar information for ease of marking and reference. A
field checking field may contain part of, or several, data
sheet fields. The primary requirement of field checking is
that all mark data within a field’s area of coverage be
checked for the same conditions (multi-mark, no mark, etc.).

The field checking fields on the data sheet are defined by
special codes (start-of-checking codes) which are entered
into 1231 storage from the program control sheet. A field
checking field can be from 1 to 100 words in length.

Three start-of-checking control codes allow any specific
area of the data sheet to be checked according to one of
three groups of field checking switches. The three groups of
field checking switches are labeled, field I, field I, and
field IIL

The checking of a field checking field by a particular group
of switches begins on the word in which the field checking
control code is recognized. On the program control sheet, a
mark in position 6 designates the start of data checking
according to conditions set up on field I switches; a mark in
position 7 designates the start of data checking according to
conditions set up in field II switches; marks in positions 6
and 7 designate the start of data checking according to field
IH switches.

Three switches are assigned to each field: (1) a read mode
switch, which determines how uncertain marks are handled,
(2) a check length switch, which determines whether infor-
mation is to be checked on a word or segment basis, and (3)
a select condition switch, which determines the conditions
for which a data sheet will be selected.

Because the data sheet is read from left to right, top to
bottom, row by row, field checking becomes an important
factor when a new data sheet is to be designed. If, for in-
stance, the data sheet is to be used for a yes or no survey,
the yes and no mark positions should be within one segment
or word in order to allow checking for both, either, or
neither answer.

The field checking feature can be summarized as follows:

1. Each of the three field-checking switches can be set to
one of the select conditions, or to the off position.

2. Unless programmed for another field, checking always
returns to field I at the start of a new data sheet.

3. Field checking by a given set of field checking switches
begins in the word programmed and continues (in all
words programmed to be read) until a new field check-
ing command has been recognized.

4. Afield can begin or end on either the left or the right
word. ;

5. Afield can be from 1 to 100 words in length.

6. Three conditions can be checked: other-than-one
(multi-mark and/or blank detection), no-mark (blank
detection only), and multi-mark (multi-mark detection
only).

When the data sheet is selected because of a field checking
condition, or because of an uncertain reading, the 1231
causes the delay line to be reset. Some data may have been
transferred. This data is considered to be invalid.

Alphabetic Coding

An alphabetic coding capability is necessary and desirable
in many applications. Three schemes of alphabetic coding
are illustrated in Figure 66.

Scheme 1: To code an alphabetic character, a mark must
appear in the appropriate marking position of both the odd
(left hand) and even (right hand) words of the same horizon-
tal row. For example, to indicate the letter K, one mark
must be made in the marking position immediately below
the caption “J” through “R” in the odd word, and one mark
must be made in the marking position immediately below
the caption “BKS” in the even word of the same horizontal
row. The odd word in this scheme represents the zone por-
tion of the character.

IBM 1231 Optical Mark Page Reader 157

P ——— —————————————
A J s . -
thry thru thry A) BKS cLur DMU ENV FOW GPX HQY RZ
i R z ser0) 2 3 4 5 6 7 8 s
___ —
-------------------- ¢ - Make two marks er horizontal row. T o e
SCHEME 1 Make one mark in the appropriate right hand (even) word. :
Mark the Appropriate Position B S S S . B SR ST SRS ' FEeY St
Bt gt S ST~ B S - SN ST - T S
SCHEME I —
zzzzz zz8zr zz¥or s s S SRS SLEEES CHEEE S
BRSNS SRS S S P B R RSS!
i
FOI’ Alph‘:b.eﬁc N Make two N\kas per word. IIZIz jrbutupued Izt pudpugiey pefusuiuied i pububuuing === Iz IIITts -
For Numeric - Make one mark per word. ABC FGH KIM PGR Uvw AFK BGL CHM DIN £JO e
DE_ 1 NO STZ XYz U RwW o SX O TY e
"b" -nl-- 2 3 4 5] 7 8 P —
SCHEME n Iz pubupuiuing Iz pudegedeges Iz IIzzz prgmtind oIz jutapait IIoIs -
L
Figure 66. Alphabetic Coding Schemes
Scheme 2: Each letter of the alphabet can be preprinted on PROGRAMMING

the data sheet in reflective ink. The letters and/or numbers
may be printed above, on, or below the mark positions. In
this approach, the identity of each character is determined
by its position in the matrix, which is programmable.

The entering of the marks is simple; however, considerable
space is required on the data sheet to represent all the alpha-
betic and numeric characters.

Scheme 3: Each letter of the alphabet, or digits O through
9, can be represented by using only one word. An alphabetic
character must be represented by a mark in each segment of
the word selected for this purpose. (Z is an exception.) To
indicate a K, marks in the 2-position of the left-hand seg-
ment and in the 5-position of the right-hand segment are
required.

158

Programming for the IBM 1231 Optical Mark Page Reader
depends upon two sources of control: controls stored within
the 1231 and controls received from the 1130. Controls
stored within the reader are entered into storage from a
program control sheet.

Program Control Sheet

A program control sheet is a data sheet with certain opera-
tional controls marked in the data areas. Each word from
the data sheet consists of ten positions. Each word in the
delay line storage consists of 16 positions: ten for the posi-
tions on the data sheet, and six for storing operational and
internal controls generated by circuitry of the 1231.

Every word that is to be retained for transferral to the
1130 must have an operational control marked in that word
on the program control sheet. When operational control
information is entered into storage, the controls go into
some of the six control positions associated with each word.

During the program load cycle, the mark positions used
as control positions are:

1. A markin position 8. This designates that a word is
" to be stored. This word is available later for readout
to the 1130 system. There must be two timing marks
for each row on the detail data sheet programmed to
read by the program control sheet.

2. A mark in position 0 and a mark in position 8. This
stores data from segment 1 only (bits 0-4 or 10-14 of
the data sheet).

3. Amarkin position 5 and a mark in position 8. This
stores data from segment 2 only. (Bits 5-9 or 15-19
of the data sheet).

4. A mark in position 6. This indicates the start of field
checking according to the settings of field I switches.

5. Amarkin position 7. This indicates the start of field
checking according to the settings of field II switches.

6. A markin position 6 and a mark in position 7. This
indicates the start of field checking according to the
settings of field III switches.

System Programming

Three 1/O commands are used with the 1231: control (100),
read (010), and sense device (111). In addition the control
command uses three modifier bits to expand the number of
commands.

The 1231 is addressed by the five-digit device code
(01000 = area code 8).

Control (100)

_llo‘olollio‘o[

This control command uses three modifier bits:

Read Start (bit 13): Causes the document to move through
the read station. Data is collected and placed on the delay
line controlled by the control sheet and switch settings. As
soon as the first word programmed for output is placed on
the delay line, it is made available to the processor.

I/0 Disconnect (bit 14): Terminates the read operation
from the document and clears the delay line storage by
signaling the 1231 that no more data is desired. This com-

mand should be given to prevent a read (overrun) error on
the next document if alt data from the previous document
is not cleared from the delay line storage.

Select Stacker (bit 8): Causes the document just read to
enter the select stacker. This command can be given within
40 ms after the last word is placed on the delay line. Indica-
tor bit 5 in the device status word is on if it is permissible
to select the document. This bit should be tested prior to
issuing the select command. If the bit is off and a command
is issued the command will be ignored.

Read (010)

0 150 4
I Core Storage Address]O 1000/010

TN VS WS W WY A WA S SN SN S YO S G 1 I

This command causes the next word in the 1231 attach-
ment buffer to be loaded into the core storage location
specified by the address.

Sense Device (111)

The sense device command causes the 1231 DSW (Figure 67)
to be placed in the accumulator. Modifier bit 15 resets the
responses.

01 23 4567 80910 13 14 18

|—15_Nor Ready
14__Busy

13—Read Busy

10—Check Stop

9 —Hopper Empty

8 __Test Timing Mark Chk Busy
7 —Document Selected by OMPR
6 __Feed Busy

5__OK to Select

4 __OP Complete Response

3 — Master Data

2 __Read Error

1 __Timing Mark Error

I ST S W S U N B |

0 __ Read Response

Figure 67. 1231 Device Status Word

IBM 1231 Optical Mark Page Reader 159

DSW Indicators

It is possible to read the last character of a document and
receive the end of transmission signal from the 1231 before
the timing mark check is made if the timing mark switch is
set to yes. This would turn on the operation complete inter-
rupt, which would then be serviced by the processor. If the
timing mark switch were set to YES, a timing mark error
could occur after the operation complete routine. Were
this to occur, the timing mark error indicator would be
turned on. This indicator would remain on until the 1231
was placed in the ready state. The operator would be aware
or this error either by program analysis or by visual inspec-
tion of the 1231 control panel.

Read Response (Interrupt): Bit O signals that a word (one
or two segments) has been loaded in the 1231 attachment
buffer and can be accepted by the CPU. An XIO sense DSW
command with bit 15 turns off the read request and loads
the 1231 DSW into the accumulator. An XIO read command
is needed to turn off the read busy indicator and transfer

the word to core storage.

Timing Mark Error (Interrupt): Bit 1 indicates there is a
timing mark error. Timing mark error turns on the opera-
tion complete interrupt. The error is dependent upon the
settings of two switches: timing mark check switch and
control timing mark switch. The timing mark check switch
is an 11-position rotary switch. It has an off position and
ten positions labeled O through 9. In the off position no
checking is performed. If checking is desired, the switch is
placed on the digit corresponding to the units value of the
number of timing marks on the documents. The control
timing mark switch has two positions labeled YES and NO.
The no position is used for documents having the normal
number of timing marks (100 or fewer); the yes position is
used for documents having 106 timing marks.

Read Error (Interrupt): Bit 2 indicates that a parity error
(even count) occurred, an overrun condition occurred, or
that no bits were entered onto one of the delay lines with
either a data sheet or a control sheet. The not ready and the
operation complete interrupt is turned on. The delay line
storage is cleared so that it is not necessary to give an I/0
disconnect.

160

Master Data: Bit 3 indicates that data to be transferred is
master data. A master data subroutine should place master
data in a reserved area. The indicator does not come on if
the master-mark switch is off.

Operation Complete (Interrupt): Bit 4 indicator is turned
on by the end of transmission and signifies that the last word
has been read by the CPU. It is also turned on by the timing
mark error or read character error. It is turned off by an XIO
sense device with bit 15 on.

Okay to Select: Bit 5 indicator comes on when a document
read is initiated and remains on for 40 ms after the document
has been read.

Feed Busy: Bit 6 indicator comes on when the XIO control
command with modifier bit 13 is executed. It remains on
until the first 1231 interrupt is turned off. Another start
feed command should not be given while this indicator is on.

Document Selected: Bit 7 is caused by either a mark count
reject or data uncertainty, according to the setting of the
field checking switches and the program control sheet. It is
turned off by an XIO sense device with bit 15 on. Document
feeding is not inhibited. When this indicator is turned on the
delay line storage is cleared of data and the transfer to the
processor is terminated. The operator must be flagged by the
program that this has happened. If the next feed command
has been issued it will be necessary to refeed two documents.
If the document selected indicator is turned on and serviced
before the next feed command, only the top sheet in the
select stacker should be processed. Data should not be pro-
cessed if this indicator is on.

Test Timing Mark Check: Bit 8 indicator comes on just
before the first character interrupt from the 1231 attach-
ment and remains on for 90 ms after the last word has been
placed on the delay line. If the control timing mark switch is
set to YES, the timing mark check is not made until the end
of the 90 ms period. If this indicator is to be tested, data
processing should not take place until the indicator goes off.

Hopper Empty: Bit 9 indicates that the 1231 hopper is
empty and turns on not ready.

Check Stop (Interrupt): Bit 10 indicates the 1231 has en-
countered: a double feed, a transport jam, a feed command
given but the documents are not being fed, or the 1130 pro-
gram has issued a start read command and a not ready con-
dition occurs before the 1231 responds.

Note: Not ready and hopper empty bits may appear in the
DSW when a read response interrupt is being serviced during
processing of the last document. Read response interrupts
will continue and data will be available after not ready and
hopper empty occur. Check stop interrupt is blocked until
the document has been read.

Read Busy: Bit 13 indicates that the 1231 attachment
buffer is full. It is turned off when the XIO read command
for the 1231 is given.

Busy: Bit 14 indicator comes on after the read start com-
mand has been issued and remains on until an operation com-
plete interrupt is received or an XIO disconnect command is
issued. This indicator being on indicates that a document is
being read.

Not Ready: Bit 15 indicator is off if the 1231 is ready to
accept instructions from the CPU program. The following
conditions are necessary for the 1231 to remain in a ready
condition:

Power on.

Off line/on line switch set to ON LINE.

Control sheet loaded.

Hopper loaded.

No read or feed errors.

Start key is depressed after the program load light on
the 1231 goes off after loading the control sheet.

ARl ol

1231 Usage Meter

This meter runs when both of the following conditions are
present:

1. The unit is selected for operation by program control.
2. The 1131 usage meter is running.

The meter continues to run simultaneously with the 1131
meter until either the 1231 hopper becomes empty or it is
stopped by the operator.

IBM 1231 Optical Mark Page Reader 161

IBM 2250 Display Unit

BR2691

Figure 68. IBM 2250 Display Unit Model 4

The IBM 2250 Display Unit, Model 4 (Figure 68) is a
cathode-ray tube display unit that attaches to the IBM 1130
Computing System. The 2250 Display Unit operates under
the control of a display order program and input/output
(1/0) control commands. The program and commands are
sent from the 1131 via the 1131 storage access channel
(SAC) or 1133 storage access channel II (SAC D).

The 1130 system and 2250 model 4 operate asynchron-
ously. The display program orders can be sent to the 2250
at a rate up to 40 frames per second (25 millisecond frame
time); however, the 2250 operation can be delayed while
the 1130 is servicing a device with a higher cycle-steal
priority.

This section provides a brief description of the IBM 2250
Display Unit, Model 4. For a more complete description of
the 2250 model 4 refer to the Systems Reference Library
publication IBM 1130 Computing System Component Des-
cription — IBM 2250 Display Unit, Model 4, Order No.
GA27-2723.

162

FUNCTIONAL DESCRIPTION

As soon as a 2250 operation is started by an I/O control
command, the 2250 addresses CPU storage to execute the
display program — stealing core storage cycles from the
CPU. Core storage cycle demands by the 2250, therefore,
always have higher priority than those of the CPU program.
Units that operate synchronously with the CPU are assigned
higher cycle-steal priority than the 2250, eliminating 2250
interference with synchronous operations.

The 2250 can generate images of vectors (straight lines),
points, and characters on the 21-inch cathode-ray tube. (The
usable display area is 144 square inches — 12 inches by 12
inches.) A visible display is produced when the electron
beam in the cathode-ray tube strikes the phosphor-coated
cathode-ray tube screen. The screen area struck by the beam
glows briefly. Normally, the glow fades within a fraction of
asecond — too rapid for human eye perception or recogni-
tion. For this reason, the display is continuously regenerated
at a discernible rate.

As soon as regeneration is started by an 1130 I/O control
command, the 2250 channel interface section — where stor-
age addressing is performed — continuously fetches orders
and data from the display program in storage. Orders are
decoded in this section. Deflection information is transferred
to the 2250 display section, where it is used to draw the
appropriate display. Regeneration is accomplished by con-
tinuously repeating the display program. Orders and data
in the display program can be modified during regeneration
— as directed by the CPU program or by the display pro-
gram itself — to update or change the display.

The 2250 display section, furthermore, performs various
nondisplay services by providing the interface between the
user and the problem program with three devices: the pro-
grammed function keyboard, the alphameric keyboard, and
the fiber-optics light pen. :

The programmed function keyboard provides communi-
cation between the user and a CPU program. The keyboard
consists of keys, indicators, and sensing switches for use
with replaceable descriptive overlays. The function of each
key and indicator is defined by the CPU program. Punches
in the top edge of each overlay identify the overlay to the
CPU program. To identify the key and indicator functions
to the operator, the key or indicator labels (or both) can be
placed on the overlay. Each key can be used by the program

to initiate a subroutine associated with the respective over-
lay, thereby performing the indicated function. For example,
depression of a key might result in the enlargement, reduc-
tion, or deletion of the display image.

The alphameric keyboard makes it possible for character
displays to be created, edited, or changed by the user. With
the typewriter-like keyboard, alphameric messages can be
entered into the display program for displaying and editing.
The alphameric keyboard key codes can be interpreted by
the CPU program and used for control purposes in a manner
similar to operations with the programmed function key-
board.

The light pen provides the means by which the display
program and the CPU program can identify the storage
address of the order that initiated the display of a vector,
point, or character. This information can be used for oper-
ations determined by the display program, by the alphameric
keyboard, or by the programmed function keyboard. The
user can identify a displayed image simply by pointing the
light pen at the image or by pressing the tip switch (the
point at the end of the light pen) against the image. The
method of identification is determined by the display pro-
gram.

DISPLAYS

Information positioning on the 2250 display area is con-
trolled by a display program in the 1131 core storage. This
program is sent to the 2250 (by a 16-bit word) via the 1131
storage access channel or 1133 storage access channel II.
Orders in this program specify electron beam deflection to
horizontal (X) and vertical (Y) coordinates on a square re-
ference grid. This grid is composed of the 1,024 possible
electron-beam-deflection end points.

Information can be displayed in the 2250 in either the
graphic mode or character mode.

Graphic Mode

Either vector or point operations can be performed by the
2250 in graphic mode. If no specific graphic mode has been
set previously by an order from the display program, the
vector mode is set automatically. In graphic mode, the 2250
can receive (from the display program) either electron-beam
positioning orders or an order to establish a different mode
of operation, such as to set point mode from vector mode
or to enter character mode from graphic mode.

Character Mode

The set of characters that can be displayed by the 2250 in
character mode is defined by the programmer. This charac-
ter set resides in 1130 storage as a subroutine of the display

program. The character set can comprise any number of
characters in any font. These characters can be modified at
any time during execution of the display program. Charac-
ters in this set can be displayed in either of two sizes —
basic or large, as determined by the character-mode order.

In character mode, the current X, Y position of the beam
on the 1,024-by-1,024 position display area becomes the
center of a basic- or large-size character area. This area is
maintained throughout one character mode operation. The
program places the beam at a starting position on the display
area (using a blanked point or vector) before a character
display operation is started.

CHANNEL INTERFACE SECTION

The 2250 channel interface section interfaces the storage
access channel (SAC) and the 2250 display section. It de-
codes and executes orders and commands, addresses CPU
storage, and handles data transferred to or from CPU storage.
Information transfer across the SAC/2250 interface is by a
16-bit word.

An address register in the 2250 channel interface section
specifies (to CPU storage) the location at which information
will be stored or from which it will be retrieved for 2250
operations. This address register is initially loaded by an
initiate write (start regeneration) command from the CPU
program. It can then be stepped automatically by the 2250,
altered by the display program, or reloaded by the CPU pro-
gram. Thus, display regeneration can be performed without
CPU intervention. '

The display program consists of display orders, associated
data for image generation, and control orders for various
nondisplay functions. Undefined order codes received by
the 2250 are treated as no-operation orders or are interpreted
as data if in the appropriate format.

The CPU program initiates 2250 operation by issuing an
execute input/output (XIO) instruction. The I/O control
command at the effective storage address specified by the
XIO is then sent to the 2250. If the [/O control command is
initiate write (start regeneration), the 2250 fetches display
program information from core storage starting at the
address specified by the I/O control command.

Display program information consists of orders and data.
Orders either initiate a 2250 operation or establish a mode.
Order-initiated operations include point and vector plotting,
branching, and CPU interrupt generation.

Data is defined as information that does not contain an
operation code. Character-stroke words are the only data
received by the 2250. Even though a character-stroke word
may contain one or more control bits, these bits are used
directly to perform an operation.

IBM 2250 Display Unit 163

PROGRAMMING

The 1131 Central Processing Unit (CPU) uses input/output
(I/0) control commands to control 2250 operations.

Input/Output Control Commands

The 2250 is selected by the five-bit device code 11001. The
three-bit function code specifies primary I/O functions. The
modifier portion of the command provides additional infor-
mation for the device and function specified. Command
modifier bits 11, 12, and 13 must be Q. Unassigned modifier
bits are not decoded. Unassigned functions codes are treated
as no-operation commands by the 2250. The execution time
of each command is equal to the XIO instruction time plus
one core storage cycle time for each cycle steal required for
data transfer. When an XIO instruction is executed, the odd
word of the I/O control command is sent to the 2250 via
the storage access channel before the even word.

The 1/0 control commands associated with the 2250 are
initiate write, initiate read, control, sense interrupt, and
sense device.

Initiate Write

The two modifiers of the initiate write command are start
regeneration (bit 8 = 0) and set programmed function indica-
tors (bit 8 = 1). Both modifiers cause the corresponding
even I/O control command word to be loaded into the 2250
address register. Words are then accessed from CPU storage
by cycle stealing, starting at this address. An initiate write
command can be executed only when the 2250 is not busy
(not regenerating), and is treated as a no-operation command
when the 2250 is busy. A control (reset display) command
can be used to stop regeneration.

Start Regeneration Command: Starts execution of the dis-
play program at the address specified in the even command
word.

0 15 0 4“5 718
I Core Storage Address II 1001 II 01fo0
NN RS S AT M ;

Regeneration continues under control of orders in the display
program until terminated by a control (reset display) com-
mand or by a 2250 interrupt. The busy bit in the device
status word is set during regeneration. (The device status
word contains one bit of information for each indicator with-

164

in the device.) The start regeneration command also clears
the interrupt status indicator (device status word bits 0-2);
if the keyboard interrupt bit is set, the command unlocks
the 2250 keyboards, resets the data available bit, and clears
initiate read command response word 4 and 5.

Set Programmed Function Indicators Command: Ts used
to load the programmed function keyboard indicators with
the contents of two consecutive words in CPU storage.

0 15 0 4 5 13 14 15

LE)re Storage Address || 1001 I] 01N
P PR LA

Y T S S S S T Y

78 9100

The first of these two words is specified by the address word
of this command. Two cycle-steal operations are performed.
Each bit in the two indicator words corresponds to one

programmed function keyboard indicator.

0 15 0 15
lOI Indicators 1-14 15M Indicators 17-30 |3l
| W WS W U TN T VU T NN S (N BN SN 1) TS T T T S SR N S T T S S

All 1-bits cause their associated indicators to light, and all
0-bits cause their associated indicators to be turned off, No
interrupts are generated.

All programmed function indicators are turned off by a
power-on reset (generated when 1130 power is turned on)
and by a manual reset (generated when the 1131 reset push-
button is pressed).

Initiate Read.

[150 4 5 7
o]1‘llo.oll]1) 0

l Core Storage Address

The initiate read command causes six words of 2250 status

" information to be placed, by cycle stealing, into CPU stor-

age starting at the address specified in the command. The
original contents of the 2250 address register are saved (as
the first word of status information) before the command
address word is loaded but are not restored after execution
of the command.

An initiate read command is normally issued immediately
after a sense interrupt command in response to a 2250
interrupt; however, it can be executed any time the 2250
is not busy. Interrupts are not generated by the initiate
read command, and the 2250 interrupt request is reset
(if set). The six words of status information read by this
command are as follows:

Stored EA Original Contents of 2250 Address Reg

EA+1 Device Status Word

EA +2 0 0 0 0 0[9| X Deflection Reg Contents
EA+3 0 0 0 0 0] Y Deflection Reg Contents
EA+4 |DA|0 0| PFKey Code Overlay Code

ea+5 |palo o [Ejc]Aalsks| A/NKey Code

o I 2 3 4 5 6 7 8 15
Legend: OX =X Overflow

OY =Y Overflow

DA = Dato Available

E =EndKey

C =Cancel Key

A = Advance Key

BK =Backspace Key

J =Jump Key

PF =Programmed Function Keyboard
A/N=Alphameric Keyboard

The words reflect the status of the address register, device
status word, X and Y deflection regjsters, programmed
function keyboard, and alphameric keyboard at the time
of the preceding interrupt. If a keyboard is not attached

to the 2250 or does not have data available, the appropriate
data available bit (bit 0) will be a 0. The device status word
contents are defined in the sense device command descrip-
tion. The address register contents in the first word of this
response, to be meaningful, may require modification as
specified by address displacement bits 14 and 15 in the
device status word.

Control
During control command execution, the 2250 address regis-

ter is not loaded by an address from the I/O control command.

Cycle steals are not used, and interrupts are not generated.
The two control modifiers are no-operation (bit 8 = 0) and
reset display (bit 8 =1).

No-Operation Command: Is ignored by the 2250. It is re-
served as a no-operation, and will not be assigned a function
in the future.

T8 9100

13 14 13

Reset Display Command: Stops regeneration immediately
and generates a unit reset in the 2250, causing all registers,
controls, and keyboards to be reset. Zero is the reset state
of all registers except the X and Y deflection registers,
which are reset to 512 each (the center of the reference
grid). The display mode is reset to graphic mode (vector),
light pen control is reset to the disable detects and defer
interrupts condition, all pending interrupts are cleared, and
the 2250 is made not busy.

In addition, the bit configuration in the even word of the
control (reset display) command (effective address) is
imaged twice in the programmed function indicators, once
in indicators 0-15 and again in indicators 16-31. Each 1-bit
lights two indicators, and each O-bit clears two.

13 14 18

78 9101

Sense Device

13 14 15

01

*Reset (R): If set to 1, couses interrupt request to be reset.

This command causes the 2250 to send a device status word
(Figure 69) to the 1131, where it is loaded into the accumu-
lator. Cycle steals are not used and interrupts are not gener-
ated. If the 2250 is regenerating (is busy), only bit 8 of the
device status word will be set. When the 2250 is not busy,
the device status word contents describe the control status
of the 2250, as follows:

5 6 7 8 91011 1213 1415

T L

0 12 3 4

~

L Bits 14 and 15 - Address Displacement

Bits 11, 12, ond 13 - Reserved
Bit 10 - Point Mode

Bit 9 - Character Mode

Bit 8 - Busy

Bit 7 - Light Pen Switch Status
Bit 5 and 6 - Reserved

Bit 4 - Detect Status

Bit 3 - Cycle - Steal Check
Bit 2 - Detect Interrupt

Bit 1 - Keyboard interrupt
Bit 0 - Order Controlled Interrupt

Figure 69. 2250 Device Status Word

IBM 2250 Display Unit 165

DSW Indicators

Order-Controlled Interrupt: Is generated when the 2250 is
executing either the unconditional or conditional interrupt
variation of the long branch/interrupt order. The conditional
interrupt variation can cause an interrupt only when the
light pen detect and/or light pen switch status bits are
tested successfully by the order. A 1 in device status word
bit 0 indicates the occurrence of an order-controlled inter-
rupt. .

Following execution of an initiate read command, the
address in the first word of status information points to
the second word of the long branch/interrupt order, which
may contain an address or other interrupt identification
data. Bits 4 and 7 of the device status word indicate the
light pen detect and light pen switch status at the time of
interrupt. However, 4 is reset after it is tested successfully.

Keyboard Interrupt: Is set when a key has been pressed
either on the alphameric keyboard or on the programmed

function keyboard, and the next start timer order is decoded.

An initiate read command reads the appropriate keyboard
(response word 4 or 5). Both keyboards are locked, and
light pen detects are inhibited at the time of interrupt and
remain in this condition until an initiate write (start regen-
eration) command is executed. A 1 in device status word
bit 1 indicates the occurrence of a keyboard interrupt.

If both keyboards are simultaneously activated, the
programmed function keyboard is given priority by the
2250 and causes the interrupt; in this case, the alphameric
keyboard is locked out. Bits 4 and 7 of the device status
word indicate the light pen detect and light pen switch status
at the time of interrupt.

Detect Interrupt: Is generated when the 2250 is enabled
for light pen interrupts and when a detect has occurred.
This interrupt is indicated by a 1 in device status word

bit 2. :

If the 2250 is enabled for light pen detects when a detect
occurs, the address in the first initiate read response word
depends on the type of data detected. Bits 9 and 10 of the
device status word identify the display mode as character,
vector, or point. Bits 14 and 15 of the device status word
specify a displacement. This displacement should be sub-
tracted from the initiate read response word 0 contents

166

to obtain the address of the graphic positioning order
causing display of the detected image, or the branch order
to the detected character. Light pen switch status at the
time initiate read was executed is indicated in device

status word bit 7. In addition, the contents of the X and

Y deflection registers (initiate read response words 2 and 3)
might be significant. Detect Status indicates that the light
pen has detected a point, vector, or character with interrupts
deferred. This bit is reset whenever it is tested successfully
or when device status word bit 2 is set.

Cycle-Steal Check Interrupt: Indicates the 2250 has stolen
32 consecutive cycles. This interrupt detects and stops a
runaway cycle-steal situation in the 2250 caused by either
2250 malfunction or program error. If 32 consecutive
cycles are stolen during any 2250 command, order, or
character generation, regeneration is stopped, the busy

bit is reset, cycle-steal requests are blocked, and an interrupt
is requested. If a read status command is issued in response
to this interrupt, no data is read since the cycle-steal
request is blocked. The sense DSW command must be used
following an unsuccessful read status command to examine
the DSW and identify this interrupt. A reset display com-
mand or a manual reset must be given to clear the 2250
and prepare it for restarting the display.

Light Pen Switch Status: Indicates that the light pen switch
was closed when last Start Timer order was executed.

Busy: Indicates that the display is currently regenerating
in cycle-steal mode. This bit is always 0 if interrupt has
occurred or display is not regenerating (or both).

Character Mode: s equal to 1 when in basic or large-
character mode; is equal to O when in graphic mode.

Point Mode: Is significant if bit 9 is equal to 0. Bit 10 is
equal to 1 for point mode, or 0 for vector mode.

Address Displacement: Indicates the number of locations
the address register (in first word of read status response)
is ahead of address of the order being executed when
detect interrupt occurred. Contains indeterminate value at
any other time. Reset to 01.

IBM 2285 Display Copier

The 2285 (Figure 70) attaches directly to any 2250 Display
Unit Model 4 that is equipped with the Display Copier
attachment feature. The 2285 provides an 8%-by-11-inch
paper copy output of the associated 2250 display upon
request by the 2250 operator. The 2285 obtains analog
signals and power from the 2250 to which it is attached
and requires no programming. For operation procedures

for the 2285, refer to the IBM 2285 Display Copier Com-
ponent Description, Order No. GA27-2730.

USAGE METERS

2250 Model 4 Usage Meter (SAC)

This meter will run when the following conditions are present:
1. The 2250 enable/disable switch is in the enable position.

2. The 1131 usage meter is running.

The meter will continue to run simultaneously with the
1131 meter until the enable/disable switch is placed in the
disable position. The condition required to change the
status of the 2250 is: the CPU clock must not be running
when the switch position is changed.

2250 Model 4 Usage Meter (SAC I1)

This meter will run when the following conditions are present:

1. The 1133 in an enabled status.

2. The 2250 enable/disable switch is in the enable position.

3. The 1131 usage meter is running.

The meter will continue to run simultaneously with the
1131 meter until the enable/disable switch is placed in the
disable position, or the 1133 is disabled. The condition
required to change the status of the 2250 is: the CPU must
be in the stopped or wait state when the switch position is

changed.

BR0002

Figure 70, IBM 2285 Display Copier

1133 Usage Meter

The 1133 meter runs when the following conditions are
present:

1. The enable/disable switch is in the enable position.

2. The 1131 usage meter is running. This meter will con-
tinue to run simultaneously with the 1131 meter
until the enable/disable switch is placed in the dis-
able position. The condition required for honoring
the switch in either the enable or disable position
is that the 1131 clock must be stopped. The status
of the 1133 cannot be changed (enable to disable
or disable to enable) while the 1131 clock is running.

IBM 2250 Display Unit 167

Storage Access Channel

The storage access channel (SAC) provides the 1130 with
additional 1/0 capability. If the 1403 Printer, 2311 disk
storage, or 2310 Disk Storage is included in the system, it
is necessary to attach the 1133 Multiplex Control En-
closure to the SAC. However, an additional channel
(SAC 1I) is provided by the 1133 as a special feature.

Through the facilities of SAC or SAC 11, the user may
attach his own device or the IBM 2250 Display Unit. The
customer device may interrupt on any level from 2 through
5. Any bit within ILSW’s 2 through 5 that has not been
previously assigned may be used. This is also true for the
assignment of area codes for the customer device. The
customer device may be assigned any area code that has
not been previously assigned.

FUNCTIONAL DESCRIPTION

The storage access channel feature allows external devices
or systems to communicate directly with the 1131 core
storage unit. The transfer of data to or from core storage
and the SAC takes place in one of two modes.

1. Cycle Steal Mode: An XIO instruction, initiate read
or initiate write, gives control of the data transfers
to the SAC. When the SAC transfers a word or words
to or from core storage, CPU cycles are stopped and
a cycle steal cycle or cycles are taken. The CPU pro-
gram has no control of or awareness of the cycle
steal cycles.

2. Interrupt Mode: The external device can cause an
interrupt of the CPU program by bringing up an
interrupt-request-level 2, 3, 4, or 5 line, which is
serviced by the CPU in the same manner as the basic
interrupts.

Because of the SAC’s ability to interrupt on levels 2, 3,
and 5, interrupt level status words for these levels, as well
as for level 4, are provided so that the CPU program may
determine which device caused the interrupt.

When an interrupt is caused by a basic device, the CPU
program must give an XIO sense interrupt command. The
attachment for the device places the ILSW bit for that de-
vice on the I/O input bus, and reads the bit into the B-
register and transfers to the accumulator. If a device on the
SAC causes an interrupt, the CPU program must give an
XIO sense interrupt command, and the device must decode
the command and place its ILSW bit on the I/O input bus
to be read into the B-register.

When an XIO sense device command is given to the SAC,
the device must decode the command and set the status
bits on the I/O input bus.

168

The customer must provide his own interrupt routines
and controlling programs.

The customer may assign to devices on the SAC any area
codes that are not already assigned to a basic device on his
system. The decoding of the area codes is done in the de-
vices on the channel.

The customer may assign any bit in the ILSW to a device
on the SAC that is not assigned to a basic device on his
system.

No change is made to the 1131 or the SAC attachment
in the assignment of area codes, interrupt levels or ILSW
bits.

Cycle-Steal Priority

There are four cycle-steal priority levels. The CPU Disk
Storage is on level 0; SAC is on level 1;the 1132 is on level
2;and the 2501 is on level 3. There is no polling of cycle
steal requests. That means the SAC, by keeping its request
active, may completely block the 1132 printer and other
lower priority devices.

PROGRAMMING

The storage access channel (SAC) operates on the IBM 1130
system under direct program control or cycle-steal control.

An XIO instruction addresses an I/0 control command
(IOCC) word, which is placed on the I/0O output bus.

The devices or systems on the SAC must decode the
I0CC area code to select one device or system for the oper-
ation.

The device or system selected must decode the function
field and control the transfer of data to or from core storage.

1/0 Control Commands

Sense Interrupt (011)

0 15 0 4 8

The sense interrupt IOCC is placed on the 1/0 output bus,
and the interrupt level being serviced is sent to SAC. The
device then sets its assigned bit on the /O input bus. The
CPU program then analyzes the ILSW and branches to

the subroutine for the device.

The customer assigns interrupt status bits for the devices
on the channel in his programs. The devices may being up
an interrupt status bit assigned by the customer. The
interrupt status bits may be any bits not used by a basic
device. :

Sense Device (111)

This command sets the JOCC on the 1/0 output bus. The
devices decode the area code and the selected device de-
codes the sense device function and sets the device status
word (DSW) bits on the I/O input bus to read into the
accumulator.

The conditions causing the interrupt are turned off by
setting the modifier bit 15 to 1. If the device interrupts
on more than one level, the conditions are turned off by
modifier bit 15 for the highest level, bit 14 for the next
highest level, etc.

Control (100)

This command sets the IOCC on the I/O output bus. The
devices decode the area code. The selected device decodes
the control function and sets controls in the device to
perform the action specified by the modifier bits (8-15)
of EA + 1 or EA (address word). The device and the cus-
tomer — provided programs control the function to be
performed. '

Read (010)

[150 4
o Ixxxxx o

I Core Storage Address
vtk b

This command sets the IOCC on the I/O output bus. The

devices decode the area code. The selected device decodes
the read function and sets a single word on the I/O input

bus.

Write (001)

0 15 0 4
[Core Storage Address \) IX‘X l)(X XIO 01

This command sets the IOCC on the I/O output bus. The
devices decode the area code. The selected device decodes

the write function and takes the word from the I/0 output
bus.

Initiate Read (110)
0 15 0 ‘
)N?rdl C::)ul"\t ‘Aqdr.ess. (\{VCiA). L X.X .X.X I)(1 .I l0
Word Count «——— WCA

Data «—— WCA+1
Data «—— WCA +2
Data -«—— WCA +3

L k-
Data | ——— wea+n

This command sets the IOCC on the I/O output bus. The
devices decode the area code. The selected device decodes
the initiate read function and sets the controls in the de-
vice for cycle-steal operation.
The word count address (WCA) is sent to the device.

_The first cycle-steal cycle is taken and the word count is
transferred to the device. The device then controls the
transfer of data to the CPU core storage by cycle-steal
level 1 cycles until the number of words specified by the
word count has been transferred.

Initiate Write (101)
0 15 0 4 8 5
‘.N?rd‘ C?ur.ﬁ :ll\d.drless. (V.VC‘A)‘ L XIX.X lX IX 1)]
Word Count «—— WCA
Data - WCA + 1
Data «—— WCA +2
Data “—— WCA +3
: :
I Data <~ —WCA+N

This command sets the IOCC on the 1/O output bus. The
devices decode the area code. The selected device decodes
the initiate write function and sets the controls in the de-
vice for cycle-steal operation.

The word count address (WCA) is sent to the device.

The first cycle-steal cycle is taken and the word count is
transferred to the device. The device then controls the
transfer of data from the CPU core storage to the device
by cycle-steal level 1 cycles until the number of words
specified by the word count has been transferred.

For additional information regarding SAC, refer to IBM
1130/1133/SAC, Original Equipment Manufacturers ’
Information, Order No. GA26-3645.

Storage Access Channel 169

Special Power Sequencing Considerations

Since no power sequencing is provided by the CPU, one of
the following procedures must be followed when powering
up or down of the I/O device attached to the SAC to avoid
possible loss of data:

1. Apply power to the I/O device. Then power up the
CPU. Reverse procedure for powering down.

-~ 2. If CPUhas power applied, hold dc reset depressed
while powering up or down the 1/O device.

3. CPUmust be in a halt condition. Turn console mode
switch to SS. I/O device may now be powered up or
down without affecting CPU operation. When de-
sired status of I/O device has been achieved, program
operation may resume. (Halt is defined as the CPU
stopped or in a wait condition with the run light out
and no I/O devices operating.)

170

The synchronous communications adapter special feature
enables the IBM 1130 Computing System to function as a
point-to-point station or multipoint data transmission ter-
minal, using either private or commercial common-carrier
(switched or non-switched) line transmission facilities. The
adapter sends data to or receives data from the line trans-
mission facilities under control of the stored program in the
1130. It operates on an interrupt request basis similar to
that used by other input/output devices in the IBM 1130
Computing System.

The synchronous communications adapter (SCA) provides
data interchange between remote locations and a central
data-processing location. The mode of communication may
be either binary synchronous or synchronous transmit-
receive and requires its own program. The mode is switch-
selected by the operator. IBM supplies subroutines to
support both modes.

The term “synchronous transmission” is used to describe
continuous bit-stream transmission, without start-of-charac-
ter identification. Thus, synchronous transmission is more
efficient than start/stop transmission because fewer control
bits are transmitted.

Binary Synchronous Communications (BSC)

The binary synchronous mode of data transmission provides
for point-to-point and multipoint operation. The 1130 may
be the primary station in a communication network or it
may serve as a secondary station to a larger computing
system. IBM programming systems provide primary and
secondary station support for point-to-point operation and
secondary station support for multipoint operation.

The capability of BSC mode to operate with any six-,
seven-, or eight-bit level code provides the 1130 with the
ability to communicate with a greater variety of devices. It
is no longer necessary for a device to adhere to an eight-bit
level code in order to communicate with the 1130 system.

Certain factors should be considered in selecting a charac-
ter set if the user does not use the IBM-supported character
sets. The six- and seven-bit codes provide a faster and more
efficient type of communication because the data sets are
rated in bits per second. Thus, the fewer number of bits to
make a character, the more characters may be transmitted
in any given segment of time. However, the number of sep-
arate characters that can be contained in a code is decreased,
proportionately, as the number of bits used to make a char-
acter is decreased.

IBM programming systems support for the SCA in the BSC
mode includes a subroutine for point-to-point operation and

Synchronous Communications Adapter

a subroutine for multipoint operation of a secondary station.
Using these programs, text may be transmitted in either nor-
mal text (extended binary-coded-decimal interchange code,
System/360 and 1130 internal code) or full-transparent
text. Full-transparent text uses EBCDIC communication
control characters. In normal text, data may not have the
same bit configuration as any control character. In full-
transparent text, control character recognition is handled
by a special procedure, thus making it possible to have data
with the same configuration as control characters. Full-
transparent text permits unrestricted coding of data within
messages, and is useful in transmitting binary data, decimal
data, and other data configurations.

A 2701 or 2703 Data Transmission Unit with the binary
synchronous feature (SDA-2) must be attached to
System/360 Models 30, 40, 50, 65, and 75 for communi-
cation in the BSC mode.

Synchronous Transmit-Receive (STR)

All synchronous transmit-receive (STR) devices use the four-
of-eight line transmission code shown in Figure 71. The
STR mode provides only point-to-point.communication. It
is used to communicate with the IBM 1009 Data Trans-
mission Unit, the IBM 7701 and 7702 Magnetic Tape Trans-
mission Terminals, the IBM 1013 Card Transmission Ter-
minal, the IBM 7710 and 7711 Data Communication Units,
and other STR devices.

The SCA provides the 1130 system with the ability to
communicate with the communications adapter (#2073) of
the Model 20 and with other System/360 configurations
which have the IBM 2701 Data Transmission Unit attached.
System/360 (other than Model 20) in the STR mode re-
quires a 2701 (with the SDA-1 feature) attached to
System/360.

LINE ATTACHMENT

The synchronous communications adapter is attached to
either private or commercial line transmission facilities
through a common-carrier data set. In the United States
the interface for this data set is defined by EIA (Electronic
Industries Association) Standard RS-232-B (voltage mode)
and requires a Western Electric data set model 201A3,

201 A4, 201B1, 201B2, 202C1, 202D1, or equivalent. Out-
side the United States the data set is defined by the CCITT
(Consultive Committee on International Telephone and
Telegraph) Standard and requires an IBM 3977 Modem or
equivalent.

Synchronous Communications Adapter 171

4 of 8 Code 4 of 8 Code
Graphic - Graphic

NXOR 8421 NXOR 8421
blank 1111 0000 F 01100110
¢ 0110 1010 G 1000 01111

1000 10111 H 0111 1000
< 0110 1100 | 0110 1001
(0101 0110 J 1101 0001
+ 0011 0110 K 11701 0010
Al 1000 110 L 1100 0011
& 1000 1110 M 1701 0100
! 11700 1010 N 11700 0101
$ 0100 10111 o 11700 0110
* 1100 1100 P 0100 0111
) 0101 11700 Q 11701 1000
; 0011 1100 R 11700 1001
- 0100 1101 none/ | 1010 1010
- 0100 1110 S 1011 0010
/ 1011 000 T 1010 0011
, 0010 1011 V] 1011 0100
% 1010 1100 v 1010 0101
— 0101 1010 w 1010 0110
> 0011 1010 X 0010 0111
? 0010 1101 Y 1011 1000
: 0010 1110 Z- 1010 1001
f 00071 10111 0 100t 101010
@ 1001 1100 1 11710 0001
! 0000 1111 2 1110 0010
= 0001 1110 3 1001 0011
" 0001 1101 4 117170 0100
A 0111 0001 5 1001 0101
B 0111 0010 6 1001 0110
C 0110 0011 7 0001 0111
D 0111 0100 8 11710 1000
E 0110 010 9 1001 1001
*This is correct for System/360 Progroms, but is not
consistent with certain other STR devices .
See the specific device manual .
**Group Mark
#Record Mark

Figure 71, STR 4-0f-8 Line Transmission Code

The SCA can operate in half-duplex mode using either
two-wire or four-wire line transmission facilities. Data rates,
selected by the machine operator, are 600, 1200, 2000, or
2400 baud (bits per second) in STR or BSC mode. In BSC
mode only, operation can be at 4800 baud.

172

The adapter can be jumper wired to allow the program to
control the data terminal ready condition in the data set
interface. This selection will allow the program to control
the disconnect of a switched data link. If the program-con-
trolled disconnect feature is used, any such disconnect will
prevent further operations with the data set until the
communication adapter is restored to transmit mode,
receive mode, or auto-answer enabled condition.

Half-Duplex Operation

Half duplex is a mode of operation wherein either terminal
can transmit or receive in conjunction with the remote »
terminal, but neither terminal can transmit and receive data
simultaneously. In effect, the operation is quite similar to

a normal telephone conversation; that is, one party talks
while the other party listens. During the course of the con-
versation, each party may alternate between talking and
listening as often as necessary.

Two-Wire Operation

Synchronous transmit-receive or binary synchronous opera-
tion with a two-wire half-duplex transmission system re-
quires a delay of approximately 200 milliseconds when the
adapter switches from receiving to transmitting data. This
turnaround delay allows the data set and the communica-
tion lines to reverse the direction of transmission and line
echo to settle. The amount of delay is therefore related to
the character of the line and data set. Line turnaround

time is controlled by the data set. When this turnaround is
completed, the data set signals the adapter. The adapter
does not transmit until the data set signals the completion
of line turnaround by activating the clear-to-send (CTS) line.

Four-Wire Operation

The adapter operates in four-wire mode with either half-
or full-duplex communications facility. Four-wire, half-
duplex operates the same as two wire. That is, request-to-
send is controlled by the adapter. The advantage of this
facility is that the 200-ms delay on turnaround is saved.

STR operation in a four-wire, full-duplex facility requires
that idle characters be transmitted on the pair of wires that
is not passing intelligent data. This allows the STR adapter
or STR device to maintain character phase and receive-
clock synchronism.

BSC operation on a four-wire, full-duplex facility elimin-
ates turnaround time. Unlike STR, the pair of wires that is
not being used at any given time does not pass idle on SYN
characters. BSC mode does not maintain continuous clock
synchronization but requires that the clocks be re-synchron-
ized each time the adapter is turned around.

FUNCTIONAL DESCRIPTION

The entire synchronous communications adapter is contain-
ed within the 1131 Central Processing Unit. The adapter
functions as an input/output control unit between the 1130
system and the transmission line. All data transfer is charac-
ter-synchronous. This means that once an initial synchron-
ous idle character is recognized, each subsequent character
is recognized as a group of incoming data bits timed by an
internal electronic clock for data terminal clocking or by
the data set clock for data set clocking. Continuous regula-
tion of the receiver’s clock is provided in the case of data
terminal clocking.

Incoming data from the transmission line is serial by bit
and serial by character. As the data comes in, it is stored,
one bit at a time, in the receive deserializer. When a complete
character has been assembled, the character is transferred
into the buffer register. Then the adapter initiates an inter-
rupt request to notify the CPU that a character is ready to
be read into core storage. When the interrupt request is
serviced, the character is read in parallel into the high-order
eight positions of a 16-bit word in core storage.

Outgoing data, from core storage to the transmission line,
is taken in parallel from the high-order eight positions of
the address location in core storage. The adapter initiates
an interrupt request to notify the CPU that the adapter is
ready to accept a character from core storage. When the
interrupt request is serviced, the character is transferred in
parallel to the adapter buffer register. Data from the register
is subsequently sent to the transmission line one bit at a
time.

Data transfer to or from the transmission line begins with
the low order position. Each eight-bit character is located
in bit positions 0-7 of a 16-bit core storage location as
follows:

Bit Transfer Sequence Bit Position in Core Storage

First 7
Second
Third
Fourth
Fifth
Sixth
Seventh
Eighth 0

The seventh and eighth (bit 6 and 7) bits are ignored when
using a six-bit level code. The eighth bit (bit 7) is ignored
when using a seven-bit level code (Figure 72).

=N W dhPOOO

Timers

There are three electronic timers in the SCA. Each timer is
adjustable. One timer is set for 3 seconds and another is set
for 1.25 seconds. The third timer (0.35 seconds) is available
for sync insertions in transparent mode, BSC.

In the STR mode the three-second timer is designated as
the receive timer and causes an interrupt and turns on DSW
bit 3 when in the receive mode to signal the end of the
listening period while establishing synchronization. This
interrupt also occurs in the transmit mode if a clear to send
is not received from the data set within a three-second
period. Clear to send is a signal from the data set when it
is ready.

The 1.25-second timer is used in the synchronize mode to
signal the end of the transmission of idle characters for syn-
chronization in the STR mode. It also causes an interrupt
with DSW bit 3 on. This timeout is always coincident with
a write response.

The third timer is inhibited in STR operation.

An XIO control (100) command with bit 10 on turns on
a timer trigger which inhibits the 1.25- and 3-second timers
when it is first issued. Issuing the command a second time
removes the inhibited status, leaving the timers free to run.
This command reverses the status of the timers each time
it is issued.

The timers may be restarted at any time by issuing a sense

device (111) command with bit 14 on if they are not inhibited.

In the BSC mode, the timers are set the same as for STR,
but they have a different function. The receive timer (3
seconds) starts to run when the program enters the receive
mode. The program should restart this timer when it detects
the synchronous idle sequence (Figure 76). The sending
station must transmit this sequence every 1.25 seconds. The
3-second timer also interrupts in the transmit mode if a
clear to send is not received from the data set within 3
seconds. In either case DSW bit 3 is turned on.

The 1.25-second timer is used in the synchronize mode to
signal the program that it is time to transmit the synchron-
ous idle sequence.

The third timer (designated the program timer) will inter-
rupt in either transmit or receive mode if it is allowed to run
by the timer trigger. The IBM-supplied subroutines use this
timer and therefore it is not available for customer use when
these subroutines are used.

L
Buffer Register ’,"—'
From jssfon 0 1 23 4567 €
line ——br L L To transmission line
* A A
Unused
FYYYY

Illlll T T S W |
01 23 4567 8 910112131415

Core Storage Word

Shaded areas show unused bit positions 6 and 7
for 6-bit and 7-bit codes respectively.

Figure 72. Communication Data Flow

Synchronous Communications Adapter 173

An X]O control (100) command with bit 10 on inhibits
the 1.25- and 3-second timers and starts the program timer.
If the program timer is allowed to time out it resets the
timer trigger and removes the inhibit condition from the
other timers. Issuing another control command with bit
10 on also resets the timer trigger. A sense device (111)
command with bit 14 on will restart any timer that is
running.

Synchronous Transmit-Receive (STR) Operation

In order to communicate with a STR device, the STR/BSC
switch msut be placed in the STR position, and the 1130
must contain a program to control the communication. The
program must use the four-of-eight code and must use STR
line-control conventions. IBM provides a subroutine to
control STR communication. This program is described in
IBM 1130 SCA Subroutines, Order No. GC26-3706.

STR line-control conventions are described below. Most
of the operations described are performed automatically
when the IBM subroutine is used. These operations are
described here for the user that wishes to write his own
routines, and to provide a general understanding of STR
communication.

IBM programming systems support for the SCA in the
STR mode of operation uses the four-of-eight code. Two
types of characters are used:

1. Control characters are used to control lir.. tunctions;
i.e., to acknowledge receipt of a message, v :cknow-
ledge synchronization, to signal the start ot a message
or the end of a transmission. The four-of-eight code,
used by STR devices, contains special characters
used to control line functions.

2. Data characters contain the information to be trans-
ferred to or from the adapter. The four-of-eight code
contains 64 valid data characters; however, some STR
devices do not utilize all of the 64 data characters.
The 1130 system can recognize any or all of the 64
data characters as directed by the stored program,
but the programmer should determine the character
set recognized by the remote STR to avoid sending
invalid characters.

Control Operations — STR

The four-of-eight code contains special characters which are
reserved for control functions. These control characters
and their bit structures are shown in Figure 73. Control
sequences are initiated by the 1130 program and are trans-
mitted to the remote terminal as data. The remote terminal
then has the responsibility of recognizing the control se-
quence and responding appropriately.

174

All operations of the adapter are controlled by the 1130
program. The program places the adapter in either the syn-
chronize, transmit, or receive mode. In addition the program
must initially store the idle character in the sync/idle regis-
ter and must generate the longitudinal redundancy check
(LRC) character, which is transmitted at the end of each
record.

The idle character is a special character which the adapter
transmits automatically to the receiving terminal when no
other data or control characters have been transferred to
the adapter for transmission. This condition occurs during
the synchronization mode at the start of each transmission,
and when the program responds too slowly to the adapters
request data. The idle character is not included in the LRC
character. At least one idle character must be transmitted
before each block of records. The adapter makes this trans-
mission automatically on line turnaround.

Control characters are used generally in two-character
sequences (Figure 74). Each sequence is made up of a
leader character and a trailer character. Two of the control
characters can be used as leaders of a control sequence.
These are the transmit leader (TL) character and the control
leader (CL) character. The special characters used as trailers
each have two possible meanings depending on whether the
TL or the CL character precedes them. For example, the
INQ/ERR character is interpreted as an INQ character when
preceded by the TL leader and is interpreted as an ERR
character when preceded by the CL leader. The end-of-
transmission sequence and the telephone sequence consist
of one control character followed by one of two data
characters. These data characters are interpreted as being
part of a control sequence only when they are preceded by
the CL character. When not preceded by the CL character,
they are interpreted as data.

The inquiry control sequence is used by a terminal when
it wishes to transmit a message. The terminal that is in con-
trol status may at any time send the inquiry control se-
quence, which notifies the other terminal of the desire to
transmit and asks for permission to do so. If the other ter-
minal is able to receive a message, it acknowledges the
inquiry control sequence with an acknowledge sequence.

The start-of-record control sequence is transmitted
immediately before each block of data. The start-of-record
1 (SOR 1) control sequence is transmitted before the first,
third, fifth, etc., record of each message, while the start-of-
record-2 (SOR 2) control sequence is transmitted before
the second, fourth, sixth, etc., record of each message.

This odd-even labeling of each record is used to ensure that
no records of a message are lost or duplicated.

The end-of-transmittal record control sequence is sent
immediately after each record of a message. The end-of-
transmittal record control sequence contains the LRC
character, which is used to check the validity of the trans-
mission.

4 of 8 Code
Control Characters N|[X|O|R|8]4]2}1
Buffer PoSitions ———gm o[1|2|3|4]|5{6]|7
idle olof1]1]t1]0{0O]1
Start of Record 1 or Acknowledge 1 ’
(SOR 1 0or ACK 1) ol1i0|1[{0)0f 1|1
Start of Record 2 or Acknowledge 2
(SOR 2 or ACK 2} ojoj{1|1|o|Of1]1

Transmit Leader {TL) olof1|1|(of1{0]1
Control Leader (CL) oj1|(o0|1|0]1|0]1
End of Transmission {(EOT)* ol1|o0f[1|1|Of1]0
Inquiry or Error (INQ or ERR) of1|0f1|1|0] 01
Teiephone* oj1]/o0|1j1}(1|0]O
Group Mark 1lolojol1]|t1]o0O}1
Longitudinal Redundancy Check {LRS}** | | | = | e} e | | = | =
* Also used as a data character
** This character has a O bit in each bit position that contained an

even number of 1 bits for that bit position in the data record. If

that bit position in the record had an odd number of 1 bits the

LRC character ranges from all Os to ali 1s and thus, is not in the

4 of 8 code.

Figure 73. STR Control Characters

One of the acknowledge control sequences is sent by the
receiving terminal after it correctly receives each block of
data. This control sequence indicates to the transmitting
terminal that it may proceed to send another record. The
acknowledge record 1 control sequence should be sent
after a record that began with the start-of-record-1 control
sequence is received, while the acknowledge record 2 con-
trol sequence should be sent after a record that began with
the start-of-record-2 control sequence is received. This
assures the sender that the receiver has not lost a record.
The last acknowledgment is always sent in response to an
inquiry.

The repeat last record (error) control sequence is sent by
a receiving terminal if it receives a block of data that is in
error. This sequence notifies the transmitting terminal that
it should repeat the transmission of the last record.

The end-of-transmission control sequence is sent by the
transmitting terminal after it has sent the last record of a
message. This indicates that the message has been sent com-
pletely. A receiving terminal answers the end-of-transmission
control sequence by sending back an end-of-transmission
control sequence, thereby notifying the transmitting ter-
minal that the receiving terminal has received the full mes-
sage. After the transmission of these two end-of-transmis-
sion control sequences, the two terminals return to syn-
chronize mode of operation and exchange end-of-file idle
sequence (handshake).

The telephone control sequence can be sent by either
terminal and indicates that the terminal operator desires
voice communication, via the handset, with the other
terminal operator.

Synchronize Mode — STR

The synchronize mode (entered by a synchronize IOCC,
with bit 11 = 1) provides a means of synchronizing the
transmitting and receiving terminals to ensure the proper
recognition of data bits and characters as they are trans-
mitted between terminals. The synchronize mode consists
of the transmission of a series of idle characters for 1.25
seconds, followed by a control sequence and then turning
around and listening for a similar series of characters from
the other terminal for 3 seconds. The time intervals for
transmit (1.25 seconds) and receive (3 seconds) are con-
trolled by timers in the adapter. The timers are under con-
trol of the program. The character used in the synchroniza-
tion sequence is called an idle character.

Control Character Sequence

Leader Trailer
Control Sequence Character Character
End of IDLE (EON)* CL 1 IDLE
Inquiry (Synchronized ?)* TL INQ
Acknowledge (Synchronized) CL ACK 2
Telephone Sequence * CL TEL
Acknowledge Telephone * CL TEL
Start of Record 1 (SOR 1)
1st or odd numbered record n SOR1
Start of Record 2 (SOR 2)
2nd or even numbered record b SOR 2
End of Transmittal Record (EOTR) TL LRC
Acknowledge Record 1 CL ACK 1
Acknowledge Record 2 CL ACK 2
Repeat Last Record (ERROR) CL ERR
Intermediate LRC** GM LRC
End of Transmission (EOT)* CL EOT
Acknowledge EOT * CcL i EOT

*These sequences are always preceded by a 1,25 second
transmission of IDLE characters.
** This sequence may be required on some
terminals i .e. 1013, 7701, 7702

Figure 74. Control Sequences

Synchronous Communications Adapter 175

At the end of the 1.25-second transmission time, the
transmitting terminal sends an end-of-idle control sequence
—a control leader (CL) followed by an idle character
(Figure 73). This control sequence signals the receiving
(remote) terminal to change from receive mode to transmit
mode. When the turnaround is completed (200 ms for two-
wire half-duplex) the remote terminal transmits the idle
character for 1.25 seconds. At the end of this time the re-
mote terminal sends the end-of-idle sequence. If neither
terminal has a message to transmit, the synchronization
sequence continues.

Transmit Mode — STR

When a terminal has a message to transmit, that terminal
sends 1.25 seconds of idle characters (caused by a synchron-
ize IOCC, with bit 11 = 1) followed by the inquiry sequence.
This sequence informs the remote terminal that a message

is about to be transmitted. The remote terminal, if it is in
synchronization and is ready to receive, sends an acknow-
ledge control sequence (ACK2). On receipt of the acknow-
ledge sequence, the transmitting terminal transmits its
message.

The first two characters of a message are the start-of-
record-1 sequence. This sequence is preceded by one or
more idle characters. This sequence is followed by the
message data characters for this record. Some terminals
may use or require an intermediate block check. (This
sequence is GM-LRC.) At the end of the record, the end-of-
transmittal-record (EOTR) sequence is sent. This sequence
consists of a TL character and a longitudinal redundancy
check (LRC) character. Two functions are performed by
this sequence: it indicates the end of the record, and pro-
vides (via the LRC character) the receiving terminal with a
method of checking for a complete message. The receiving
terminal acknowledges the EOTR by sending the acknow-
ledge 1 or 2 sequence (if LRC compares) or by the error
sequence (if LRC does not compare).

Messages which contain more than one record indicate
the start of the second record by sending a start-of-record-
2 sequence. The start-of-record-1 sequence is used each time
an odd-numbered record is transmitted, and the start-of-
record-2 sequence is used each time an even-numbered
record is transmitted. The use of the two different start-of-
record sequences enables detection of lost or duplicated
data records from a terminal.

When the receiving terminal has acknowledged the correct
receipt of the last record of a message, the transmitting
terminal sends the end-of-transmission sequence. This
sequence consists of a CL character and an end-of-trans-
mission (EOT) character. The receiving terminal acknow-
ledges the EOT sequence by returning the same sequence.
The terminals, if so programmed, return to the synchronize
mode. '

176

Receive Mode — STR

In the receive mode, the adapter accepts data from other
line devices and transfers it to the 1130 core storage. Prior
to the transfer of data, the transmitting and receiving ter-
minals must be synchronized.

In the receive mode, the adapter compares the incoming
data to the character in the idle register. After at least one
idle character has been recognized, the first non-idle char-
acter detected and all subsequent characters including
idles are transferred into core storage. Idle characters and
control sequences are not included in the LRC. When the
transmitting terminal signals the end of a record, the 1130
program checks the transmitted LRC character with the
one compiled from the received record. If the two LRC
characters are the same, the 1130 program generates the
appropriate acknowledgment, which is then sent from the
adapter to the transmitting terminal. If the LRC characters
are not the same, the 1130 program responds with an error
sequence which is then sent from the adapter to the trans-
mitting terminal. Normally, the 1130 program requests
that the previous record be transmitted again. The number
of transmission attempts is controlled by the programmer
and may vary.

Special Programming

Special programming techniques are required in STR when
an 1130 is used to communicate with a hardware device
such as a 1013, 1009, or 7702. The special technique is
required when either a 201 Data Set or an IBM 3977 Modem
is used in a two-wire operation. No idles are received from
these devices before the control leader (CL) or transmit
leader (TL). Since the 1130 SCA requires at least one re-
cognizable character before interrupting the CPU, the
following special technique should be used:

1. If the 1130 is the slave, it will be receiving records.
After writing the acknowledgment character (ACK 1,
ACK 2, or ERR), the program should load the sync/
idle register with the TL. Since the TL is now the
recognizable character, it is not loaded into the buffer

- for the CPU to read. The first character which inter-
rupts the CPU is the trailer. The program must indi-
cate to itself that the TL has already been received.
This should be done when the first read interrupt
occurs. If the 1130 times out, the remote station
may send a message beginning with a TL or it may
begin “handshaking” beginning with an idle character.
To cope with either possibility, after a time-out, the
1130 program loads the sync register with a TL, and
if another time-out occurs, the sync register is then
loaded with an idle character. Once character phase
is reestablished, the alternating of TL or idle charac-
ters ceases.

2. If the 1130 is the master, it is sending records. After
writing an INQ, the LRC character of an EOTR, or
the last character of an abort sequence (idle), the
program should load the sync/idle register with the
CL. Since the CL is now the recognizable character,
it is not loaded into the buffer for the CPU to read.
The first character which interrupts the CPU is again
the trailer. The program must indicate to itself that
the CL has already been received. This can be done
either at the time the sync/fidle register is loaded with
the CL or when the first read interrupt occurs.

For both cases (1 and 2), the sync/idle register
shouldbe reloaded with the idle character prior to
each transmission. An idle character should also
remain in the sync/idle register after the program
writes the idle of an end-of-idle sequence, or the
TEL character, or the EOT character.

Since the above technique works for all data sets
and STR devices, it is recommended that it be
followed.

Binary Synchronous Communications (BSC) Operation

In binary synchronous operation the receiving terminal’s
ability to interpret the data it receives is the prime consider-
ation in selecting the code to use for communication.

A variety of codes for communication is available. The
user may select any code of six, seven, or eight bits. IBM
programming systems for the 1130 use the extended binary-
coded-decimal interchange code (EBCDIC) communication
control characters for all BSC operations. Figure 75 shows
the control characters and Figure 76 shows the sequences
in which they are used. In full-transparent text, control
character recognition should be handled by a special proce-
dure, thus making it possible to have data with the same
configuration as control characters. All characters are trans-

ferred to core storage in the CPU for program interpretation.

(Refer to IBM 1130 Synchronous Communications Adapter
Subroutines, Order No. GC26-3706, for information con-
cerning terminals and character codes supported.)

In the selection of a code, care must be taken in selecting
the proper SYN character. If only two characters are used
for synchronization, the first bit of the SYN character must
be 0. A minimum of two characters are required for charac-
ter-phase synchronization. The first bit of the character
must be 0. The bit configuration must not be a repeating
bit pattern (that is, the first of each character must be
recognizable).

If the data set uses business machine clocking, several
preceding characters must be transmitted to establish bit
phase in the data set before the SYN characters mentioned
above can be transmitted. These characters can be of the
same bit configuration as the character-phase SYN charac-
ter. The prime requirement for the characters used to estab-
lish bit phase is that the total line transitions must be a min-
imum of 16 before the data set is ready to accept the SYN
characters for character phase.

SYN 00110010 32 Synchronous Idle

DLE 00010000 10 Data Link Escape

ENQ 00101101 2D Enquiry

SOH 00000001 0t Start of Heading

STX 00000010 02 Start of Text

ET8 00100110 26 End of Transmission Block

ETX 00000011 03 End of Text

EOT 00110111 37 End of Transmission

178 00011111 1F End of Intermediate Block

NAK 00111101 3D Negative Acknowledgement

*ACK 0 01110000 70 Positive Acknowledgement
(even record)

*ACK 1 01100001 61 Positive Acknowledgement
(odd record)

*RVI 01111100 7C Reverse Interrupt

TWACK orrorott * \I:izg:iszf:\r:klzwlﬂgtement

PAD 11111111 FF Transmission Trailer

* Control characters when preceded by DLE

Figure 75. Binary Synchronous EBCDIC Control Characters

Characters Meaning

ENQ Enquiry

SOH Start of Heading

STX Start of Text

DLE STX Start of Transparent Text

ETB CRC-16™ End of Block

DLE ETB CRC-16 End of Transparent Block

ETX CRC-16 End of Text

DLE ETX CRC-16 End of Transparent Text

DLEACK 1 Acknowledgement of Odd Record

DLEACK O Acknowledgement of Even Record

NAK Negative Acknowledgement

EOT End of Transmission

DLE EOT Disconnect Signal

SYN SYN Synchronous Idle (Normal)

DLE SYN Synchronous Idle (Transparent Text)

ITB CRC-16 End of Intermediate Block

DLE ITB CRC-16 End of Intermediate Transparent Block

DLE WACK Wait Before Transmit Positive

Acknowledgement

DLE RVI Reverse Interrupt

STX ENQ Temporary Text Delay

DLE DLE Data DLE in Transparent Mode

* CRC-16is a 16-bit cyclic check character accumulated
from text and heading data.

Figure 76. Binary Synchronous Control Sequences

Synchronous Communications Adapter

177

Control Operation — Binary Synchronous

The binary synchronous communications control procedures
are generally independent of the transmission code. Any
code having a fixed number of bits (six, seven, or eight) per
character may be used if the ten control characters are set
aside and a proper choice is made for the synchronous idle
character. The EBCDIC control sequences are presented in -
this manual (Figure 75).

The control sequences are initiated by the 1130 program
and transmitted to the remote terminal as data. The remote
terminal then has the responsibility of recognizing the con-
trol sequences and responding appropriately.

All operations of the adapter are controlled by the 1130
program. The program places the adapter in either the
synchronize (transmit) or the receive mode. In addition
the program must initially store the synchronous idle (SYN)
character in the sync/idle register. The program also accumu-
lates the block check character (CRC-16), which is trans-
mitted at the end of each record. Because the CRC is 16
bits long, two 8-bit characters must be transmitted and
received. ‘

In BSC, data may be transmitted in two modes: normal
(EBCDIC) text and full-transparent text. In normal text
mode, data may not have the same bit configuration as any
control character. In full-transparent text, data may contain
any bit configuration since control character recognition
is handled by a special procedure. Full-transparent text is
quite useful in transmitting machine language and other
codes that may contain control characters.

In full-transparent mode, the DLE STX sequence is a
special sequence that is transmitted prior to transmitting
full-transparent text. When a receiving terminal receives
this sequence it will stop checking for control characters
and treat all subsequent characters as transparent text. The
only control character that is recognized is another DLE
character. The detection of another DLE character switches
the mode back to normal text mode, and the receiving
terminal will start checking for control characters. If the
next character is DLE or SYN the receiving program will
treat the character as data or as synchronous idle and will
return to the transparent mode. Therefore, in full-trans-
parent text mode, all control characters, including SYN,
must be preceded by the DLE character to be recognized
by the receiving terminal. In full-transparent mode the
program must store the DLE character in the sync/idle
register. The SYN character must be stored after leaving
full-transparent text mode.

Line Turnaround

When a terminal wishes to transmit, it sends two SYN
characters followed by the ENQ character. Then the ter-
minal goes to the receive mode and waits for an acknow-
ledgment from the receiving terminal. The receiving ter-
minal detects the ENQ character as a request from the
transmitting terminal, goes to the transmit mode, and

178

replies with a positive acknowledgment (ACKO) if it is
ready to receive. When the transmitting terminal receives
the positive acknowledgment, it may start to transmit its
record. If the receiving terminal is not ready to receive,
it should respond with the NAK character (negative ac-
knowledgment). If the terminal is unable to respond,

the transmitting terminal will time out in 3 seconds.

Several of the control characters when detected by the
program should cause line turnaround; that is, the trans-
mitting terminal switches to the receive mode and the
receiving terminal switches to the synchronize (transmit)
mode.

Within the program, the end-of-block and the end-of-
text (ETB and ETX) characters (when transmitting with-
out checking), also cause line turnaround. IBM subroutines
always use the block check character. The acknowledgments
alternate: ACKI for the first record and all succeeding odd
records, and ACKO for the second record and all succeeding
even records. If the block check character is used, the line
turnaround follows it. When a station is through transmit-
ting, it may relinquish its right to transmit by sending the
end-of-transmission (EOT) character. The EOT character
does not require an acknowledgment. The right to transmit
reverts back to the master station or to contention if a
master station is not designated.

Multi-Point Operation

In multi-point, centralized operation, IBM programming ,
systems include subroutines that permit the 1130 to operate
only as a slave station. Programs to support noncentralized
operation must be supplied by the user. A slave station is
one that may respond to a call from the control (master)
station but cannot initiate the call. Initialization is performed
when the control station sends polling or selection addresses.
A particular polling address gives a unique station on the
line an opportunity to transmit to the control station. The
polled station responds with a positive response (data trans-
mission) or a negative response (EOT). Selection addresses
are used to request a particular station to receive data trans-
mission. A selected station responds. with its status, ready

to receive (ACKO) or not ready to receive (NAK).

A nonselected terminal should restart the timers and reset
character phase on recognition of all turnaround sequences
seen on the line.

In noncentralized operation, the operation is similar to
centralized operation except the selected station (after being
polled) must respond with its address and the address of
the station to which it wishes to transmit. The seiected
station must reply with its address and a positive acknow-
ledgment if it is ready to receive or a negative acknowledg-
ment if it cannot receive.

Receive Mode — Binary Synchronous

In the receive mode, the adapter accepts data from the trans-
mission line and transfers it to the 1130 core storage. Prior
to the transfer of data, the adapter must be synchronized

with the transmitting terminal. An initiate read command
(110) with all modifier bits (8-15) set to O places the adapter
in a receive mode.

In the receive mode, the adapter compares the incoming
data to the character in the sync/idle register. After at least
two SYN characters have been recognized, the first non-SYN
character detected and all subsequent characters including
SYN characters are transferred to core storage. The receive
mode is terminated by the program when it detects a valid
turnaround sequence.

For a slave station, if a receive time-out occurs, an end
operation command should be used to reset the clock and
character phase. The slave should issue an initiate read com-
mand immediately after the end operation command. If a
receive time-out occurs, the master should issue an initiate
write command to send ENQ.

Data Transmission — Binary Synchronous

Data sets (with business machine clocking) require a mini-
mum of 16 line transitions to establish bit phase. The IBM-
written program uses the normal SYN character (hexadeci-
mal 32) for this. However, any character may be used. The
16 line transitions must precede the two SYN characters
used to establish character phase in the SCA adapter. If
data-set clocking is utilized, these preceding line transitions
are not required.

In full-duplex operation, the SYN characters must be
preceded by a pad character. The pad character cannot be
another SYN character, but can be a marking line character
(hexadecimal FF).

When a terminal has a message to transmit, the terminal
sends the synchronous idle sequence followed by the enquiry
control character. The enquiry character informs the remote
terminal that a message is about to be transmitted. The re-
mote terminal, if it is ready, sends the SYN characters and
acknowledges by sending the acknowledge control sequence
(DLE ACKO). Upon receipt of the acknowledge control
sequence, the transmitting terminal transmits its message.
The entire message, including control characters and check
characters, is generated and transmitted from core storage
under control of the stored program in the CPU.

Synchronize Mode — Binary Synchronous

The synchronize mode in binary synchronous communica-
tion is a transmit mode which allows a timeout to occur if
the transmission is longer than 1.25 seconds. The program
must insert the synchronous idle sequence after this timeout
to ensure that the receiving terminal remains synchronized.
Data transmission may continue after the synchronous idle
sequence. The receiving terminal will time out if it does not
receive the synchronous idle sequence within 3 seconds. A
control command (100) with bit 11 set to 1 places the adap-
ter in the synchronize mode.

Transmit Mode — Binary Synchronous

The transmit mode may be used in binary synchronous oper-
ation in lieu of the synchronize mode where a time-out is
not required or desired. An initiate write command (101)
with bit 9 set to O places the adapter in the transmit mode.

Special Programming

Most binary synchronous communications equipment with
which the 1130 communicates generates block check
characters (CRC-16) and expects block check characters
following each line turnaround character. For this reason,
the 1130 must generate and transmit these characters any
time it communicates with such equipment. The block
check characters must be accumulated under program
control in the 1130.

The block check characters are formulated based upon
the division algorithm for polynomials over the field of
integers modulo two. In this field, addition and multipli-
cation are performed according to the following rules:

Addition (Exclusive OR) Multiplication

1+1=0 11 =1
0+0=0 0.0=0
oO+1=1 0«1=0
1+0=1 1-0=0

Operating under these rules, addition and subtraction are
the same; in other words,a+b=a—b.

The block check characters are formed as a 16-bit
remainder [R (x)] from the polynomial division:

B(x) *x!¢

BBt 1
where B(x) = bx™ + b, x4+ byx! + boxP.

The following equations illustrate the computation of the
block-check characters for the two-character transmission
G4:

Bits as transmitted: 1100 0111 1111 0100
B(x) = x15 + x™ + 0x13 + 0x™2 + Ox! +x10 +x? + x®
X7+ + x5+ + 03 +x2 +0x+0

B(x) » x = x®! +x30 + 0x? + 0x?® + O0x27 + x26 + x5
Fx2 +xB +x2 +x2! +x20 4 0x10 + x18
+0x!7 + 0x!® +0x™® +0x™ +0x" +0x"?
+0x™ +0x!° + 0x® + 0x® + Ox” + 0x®
+0x° +0x* +0x® +0x2 +0x + 0

B(x) «x1¢

=x15 4510 £ 4B 136 444 133 4y
+ 1 with a remainder R(x)
R(x) = 0x!% + 0x™* + 0x'3 + x'? + Ox!! + O0x!° + 0x® + Ox®
+Ox7+0xC + x5 +x* +0x® +x2 +x+1
Block check character = 0001 0000 0011. 0111

x® +xP +x% +1

Synchronous Communications Adapter 179

This 16-bit block check character is transmitted as two
8-bit characters by the transmitting station and compared
at the receiving station with block check characters
accumulated by the same algorithm, If the block check
characters are equal, the transmission is acknowledged as
correct by the receiving station.

Characters are included in the block check accumulation
under the following rules. In nontransparent mode:

1. The first SOH or STX character clears the count and
is not included in the accumulation.

2. All other characters after the initial SOH or STX
are included in the block check character accumula-
tion, except SYN.

3. An ITB character encountered in the message is
included in the accumulation. The block check
characters are transmitted (or received and compared)
immediately following the ITB character, The block
check characters are cleared and a new accumulation
starts with the next non-SYN character received.

4. An end of block line turnaround character (ETB or
ETX) is included in the block check character
summation. The block check characters are trans-
mitted (or received and compared) immediately
following the ETB or ETX. The block check
summation is ended by either of these line turn-
around characters and will not resume until a new
SOH or STX character is encountered.

In transparent mode:

1. The block check summation is initiated by the first
appearance of an SOH or an XSTX character. This
character clears the summation and is not included
in the summation.

2. All characters transmitted after the initial SOH or
XSTX are included in the block check summation
up to and including the first end of block line
turnaround character (XETB, XETX in transparent
blocks, ETB or ETX in nontransparent blocks). An
XSTX following an XITB is included as the first
character of the summation following clearing of the
summation after checking is performed.

3. Theidle character (XSYN) is not included in the
block check summation.

4. The DLE character used to designate that the control
character or transparent DLE character transmitted
is to be used as a control character is not included in
the block check summation except for the DLE STX
sequence following heading information, ITB, or’
XITB.

180

PROGRAMMING

All adapter operations are programmed using the 1130 XIO
instruction (see execute I/O description in this manual). The
effective address position of the XIO instruction specifies the
address of the two-word IOCC which is required for the
desired operation.

The adapter interrupts the 1130 system program on inter-
rupt level 1. Bit position 1 of this interrupt level status word
(ILSW) indicates that the interrupting device is the adapter.
The program then senses the device status word (DSW).

The DSW is generated by the adapter to indicate the cause
of the interrupt (Figure 77). The DSW bit positions
indicate the following conditions:

Bit 0 — The adapter is in receive mode (or diagnostic mode)
and the buffer register in the adapter contains a
data character which should be transferred into the
1130 core storage.
The adapter is in transmit mode (or diagnostic
mode) and requires a data character from the 1130
core storage for transmission.
This bit indicates an error condition: data overrun
or character gap.

Data overrun indicates that a character was still
in the buffer when another character came, either
from the transmission line (receive mode) or from
core storage (transmit mode). This condition results
in a loss of data. In the transmit mode, data overrun
is the result of a program sending another character
to the adapter without an interrupt request from the
the adapter. In the receive mode, this condition is
the result of a program operating too slow; that is,
a character is received from the transmission line
before the preceding character has been transferred
to core storage (interrupt not yet serviced).

Character gap indicates that the data characters
are being received by the buffer too slowly for
correct adapter operation. In the transmit mode, the
program is operating too slowly. (Note: The adapter
automatically transmits the character in the sync/
idle register.) In the receive mode, the program re-
quested another character from the adapter without
an interrupt request from the adapter.
In STR this bit indicates the end of the 1.25second
timeout for transmission of idle characters, or the
end of the three second listening time for synchron-
ization. In BSC this bit indicates it is time to insert
the synchronous idle sequence in synchronize mode,
or a receive time-out occurred in the receive mode
or a sync insertion is required in transparent mode.

Bit1l —

Bit2 —

Bit 3 —

01 2345678

L—-—— 8 - Receive Run

7 - Ready
6 - Enabled
5 = Busy

P

4 ~ Auto Answer Request

3 = Timeout

2 = Check

1 = Write Response

0 - Read Response

Figure 77. Device Status Word

Bit 4 — This bit indicates that the data-set phone is ringing.
Bit 4 is used only if the auto-answer feature is in
the data set.

Bit 5 — This bit indicates that the adapter is in either the
receive or transmit mode.

Bit 6 — This bit indicates that the adapter has been enabled
for an auto answer request interrupt. (See Bit 4.)

Bit 7 — This bit indicates that the data set is connected and
ready to receive, synchronize, or transmit data.

Bit 8 — This bit is used with two-wire half-duplex STR sys-

tems only. It indicates that the adapter is in the
“slave” mode. In slave mode the adapter transmits
the normal acknowledge responses but does not
transmit data records. Receive and transmit clocks
are tied together. The transmit clock is corrected
with the receive clock when correction is required.

1/0 Control Commands (IOCC)

The adapter is addressed by the five-bit (bits O through 4)
device (area) code in the IOCC. This code is 01010.

Write (001)

0 15 0 4
o]olllo‘1.o|o‘o*1

[Core Storage Address
Fiab et sl arab e

A write command without a modifier bit instructs the 1130
to transfer the contents of the specified core storage address
to the adapter buffer. The adapter then serializes the con-
tents of the buffer register onto the transmission line.

If modifier bit 13 is set, this command is used to set the
sync/idle register. The 1130 transfers the data to the sync/
idle register in the adapter. The idle character is transmitted
during the synchronize mode or when the adapter is in
transmit mode and has not received a data character for
transmission.

Modifier bit 14 turns on the audible alarm trigger in the
adapter.

Modifier bit 15 turns off the audible alarm trigger.

Read (010)

0 150 4 8
‘ IOII‘OAIIOIOAI.O

13 1415

| C?re S‘foroge Address

PO W R T T

The read command instructs the 1130 to transfer the contents
of the adapter buffer to the core storage location specified in
the address portion of the command. Modifier bits 14 and

15 must be 0’s in application programs. When on, they are
used for reading diagnostic words.

Control (100)

01 23456 78 910111221314150 4 8 9 10 11 1213 1419

010 10[100

llllllll

The control command is always used with a modifier bit.
This command causes the adapter to accomplish the functions
specified by the modifier. .

Modifier bit 8, when set to 1, enables the adapter for auto
answer operation. Auto answer allows the adapter to inter-
rupt the 1130 program in response to a telephone ring from
the remote terminal.

Modifier bit 9, when set to 1, disables the auto answer
operation and does not allow a telephone ring from the re-
mote terminal to interrupt the 1130 program.

Modifier bit 10 reverses the status of the timers from run
to inhibit or from inhibit to run.

Modifier bit 11 sets the adapter to the synchronize mode.
This is used to establish and maintain synchronization in the
STR mode with minimum program interruption. Idles are
transmitted without the program being interrupted until
transmit time-out occurs.

In binary synchronous mode, modifier bit 11 allows the
adapter to transmit in the synchronize mode. Write responses
occur normally. A transmission longer than 1.25 seconds
causes a time-out interrupt. The program must transmit the
synchronous idle sequence before continuing to transmit
data. The synchronous idle sequence is the only synchroniza-
tion necessary in BSC. This usually consists of two sync
characters.

If the SCA is not already in transmit mode when this com--
mand is given, a turnaround occurs. The turnaround, with a
1 in position 0, 1, 3, or 4 of the address word in the IOCC,
resets the corresponding position of the DSW.

The on condition of modifier bit 12 places the adapter in
a diagnostic condition. Bit 12 should be off for all applica-
tion programs. Because of the short time between interrupts
in this condition, the diagnostic program should be run alone.

Synchronous Communications Adapter 181

Modifier bit 13 is the end operation command. This com-
mand resets the adapter regardless of the mode of operation.
If the adapter is in the transmit mode, the reset is delayed

until a character gap of one character is detected. This allows

the last character to get through the data set before the
adapter is reset. It then resets the adapter and also resets

the timers used in the synchronization mode and discon-
nects the adapter from the communication line if a switched

network is used. In binary synchronous mode, this command

should be issued after a receive time-out to reset the clock.

Modifier bit 14 is used to set the adapter for a six-bit char-
acter frame. Setting bit 14 automatically resets the seven-
bit character mode.

Modifier bit 15 is used to set the adapter for a seven-bit
character frame. Setting bit 15 automatically resets the
six-bit character mode.

Both frame size modes are reset when the adapter leaves
both the receive and transmit mode. Thus it becomes nec-

essary to reenter the proper mode after each line turnaround.

Attempting to set both bit 14 and bit 15 with the same
instruction is ambiguous and may result in an error.

Initiate Write (101)

The initiate write command places the adapter in the transmit

mode of operation.

If the SCA is not already in transmit mode when this com-
mand is given, a turnaround occurs. The turnaround, with a
1 in position 0, 1, 3, or 4 of the address word in the IOCC,
resets the corresponding position of the DSW (i.e., read
response, write response, timeout, or auto answer request).
Initiate write with modifier bit 9 on resets all conditions in
the adapter.

Initiate Read (110)

8 910 111213 14 1%

The initiate read command places the adapter in the receive
mode of operation.

An initiate read command with modifier bi
the send/receive run trigger and places the adapter in slave
mode operation for STR operation. This mode of opera-
tion is used with two-wire half-duplex systems. In the slave
mode the adapter should not be programmed to transmit
data records to the master. The only transmissions that the
adapter will make are the normal responses to the inquiry
from the master and the normal acknowledgments. The

start-read command and a modifier bit 15 clears the send/

t 14 on sets

182

receive run trigger and removes the adapter from slave mode
operations. This clearing places the adapter in the master
mode, which is used for the transmission of data.

Sense Device (111)

The sense device command instructs the 1130 to sense the
device status word (DSW). The DSW is generated by the
adapter to indicate the cause of the interrupt. The DSW for
the adapter is shown in Figure 77.

Sense DSW with modifier bit 14 on will restart the timers.
If the synchronous idle sequence is received while in BSC
receive mode, the program should restart the timer, If the
timer is not reset within 3 seconds, the adapter will cause
a time-out interrupt. Sense DSW with modifier bit 15 on
resets the device status word responses.

TIMING FOR SCA PROGRAMMING

In order to prevent an overrun on receive a character must
be sent from the SCA buffer following a read response
interrupt within the period shown in Figure 78. Also to
prevent a character gap on transmission, a character must
be written to the SCA buffer following a write response
within the period shown in Figure 78.

Time Between Characters

Char.
Baud Size 6 Bit 7 Bit 8 Bit
600 10.0 ms 11.6ms 13.3ms
1200 5.0ms 5.8 ms 6.6 ms
2000 3.0ms 3.5ms 4.0ms
2400 25ms 29ms 3.3ms
4800* 1.25ms 1.45 ms 1.65ms

Character Rate

Char.
Baud Size 6 Bit 7 Bit 8 Bit
600 100 cps 86.7 cps 75 cps
1200 200 cps 171 cps 150 cps
2000 333.3¢cps 286 cps 250 cps
2400 400 cps 343 cps 300 cps
4300* 800 cps 686 cps 600 cps

*BSC mode only.

Figure 78. Transmission Timing

Overlapping Input/Output Operations And Throughput Considerations

The 1130 system permits input/output devices to operate
simultaneously; that is, to overlap their operation with other
functions of the CPU. Overlapping I/O operations provides
increased data throughput and more efficient utilization of
the central processing unit.

This section will aid the programmer wishing to maximize
I/O throughput in the 1130 system. A primary concern,
however, is the possible loss of data if the capabilities of the
system are saturated by overlapping too many operations.
Loss of data can occur only on an 1130 system which has
either a 1442, 1132, or synchronous communications adap-
ter, and then only if too many I/O operations are overlapped
with these devices.

The material provided here may be used by the programmer
to calculate the maximum throughput for his system without
loss of data.

Cycle-Stealing Concept

The cycle-stealing concept of the 1130 permits the CPU
program to start an operation on an I/O device and then
continue the mainline program while the I/O device is per-
forming its operation. Each I/O device that operates in this
manner takes (steals) a cycle from the CPU when it is needed.

The CPU is “tied up” only one cycle while a data character
is being transferred. The frequency at which devices steal
cycles depends on the type of device.

Since the CPU is much faster than any 1/O device on the
system, the CPU may be performing another function, such
as arithmetic, at the same time an I/O operation is being
performed. In fact, several I/O operations may be overlapped
with each other and with other CPU functions. For example,
the data transfer rate of a single disk storage drive is 27.8
us. per word. Thus, each disk storage drive read/write
operation requires one CPU cycle (3.6 or 2.2 us.) out of
each 27.8 us., leaving 25.6 or 24.2 us. of CPU time
available for other functions. If two single disk storage
drives are transferring data at the same time, then 23.4
or 20.6 us. is available for other CPU functions,

Direct Program Control (via Interrupt)

Direct program control applies to I/O devices that are
totally dependent upon the CPU program. These devices
interrupt the mainline program by requesting service. Once
the service request is honored, the actual transfer of data
also requires programmed commands. Servicing interrupt
requests generally requires several CPU instructions (a sub-
routine). The system programmer must calculate the time
of the I/O subroutines to determine the maximum data

throughput (without data loss) of his system configuration.
See IBM 1130 Subroutine Library, Order No. GC26-5929,
for the execution times for IBM-supplied subroutines.

Conditions causing I/Ointerrupt requests are preserved in
the device status word (DSW) of the I/O devices until the
interrupt is accepted by the CPU.

The sequence of events after an interrupt request is
received is:

1. Instruction in progress is allowed to continue to com-
pletion.

2. Interrupt request is accepted if higher level interrupt
is not in progress.

3. Branch to an appropriate interrupt subroutine to
service the request.

4. Housekeeping program routines must store all registers
and linkage addresses to allow mainline program to
continue after the interrupt is serviced.

5. Examine the interrupt level status work (ILSW) to
determine the interrupting device.

6. Examine the DSW of the interrupting I/O device to
determine the action required to service the request
and reset the interrupt response bit in the DSW.

7. Service the request and restore the necessary register
and address information to resume the mainline
program operation or to service other interrupts. Turn
off the interrupt level with a BOSC instruction (a
BSC instruction with a bit 9 set to 1).

Exposure to Loss of Data

Some direct program control devices and all non-buffered
cycle-steal devices are time-dependent (require service within
a specified time). Time-dependent devices are subject to
losing data if not serviced within specified times. These times
vary depending upon the device type and function being
performed.

A significant factor that must be considered by the pro-
grammer is the priority levels of the devices in his system
configuration and the times in which these devices must be
serviced.

Device Priority

Overlapping I/O operations in a computing system requires
that a priority sequence be established. In the 1130 system,
the priority levels for both cycle-steal and interrupt are
established for each device that can be attached to the sys-
tem.

Overlapping Input/Output Operations And Throughput Considerations 183

Cycle-Steal Priority

A cycle-steal request may be honored at the end of any core
storage cycle. Cycle stealing allows an external device to
intervene during the processing of a CPU operation and use
one or more core storage cycles in order to communicate
directly with CPU core storage. At the completion of the
cycle-steal operation, CPU operation is resumed at the point
where the cycle-steal request occurred.

CPU cycle-steal level 0 — Single Disk Storage (in the CPU)

CPU cycle-steal level 1 — SAC/2250 (see the multiplex levels below)
CPU cycle-steal level 2 — 1132 Printer

CPU cycle-steal level 3 — 2501 Card Reader

Cycle-steal level 1 is subdivided by the channel multi-
plexer (when the 1133 is attached to SAC) as follows:

Muttiplex level 0 — 2310 Disk Storage, drive 1 or 2311 Disk
Storage Drive, drive 1

Multiplex level 1 — 2310 Disk Storage, drive 2 or 2311 Disk
Storage Drive, drive 2

Multiplex level 2 — 2310 Disk Storage, drive 3

Muiltiplex level 3 — 2310 Disk Storage, drive 4

Multiplex level 4 — Reserved (RPQ)

Multiplex level 5 — Reserved {RPQ)

Multiplex level 6 —- SAC 11/2250

Multiplex level 7 — 1403 Printer

Multiplex level 9 — Reserved

Multiplex level 10 — Reserved

Multiplex level 11 — Reserved (RPQ)

The preceding assignments are given in consideration of
expansion for the user who may wish to expand his system
at a later date. The cycle-steal levels listed as “Reserved
(RPQ)” are for RPQ (Request for Price Quotation from
IBM) activity.

Interrupt Priority

Interrupts are caused by a request for service from an I/0
device or by the termination of an I/O operation. The inter-
rupt facility provides an automatic branch (to one of core
storage locations 8—13) from the normal program sequence
in order to react to an external request or conditon.

At the completion of any program instruction, any pending
interrupt requests are serviced if no higher level interrupt is
in progress.

Interrupts are assigned priority levels to allow the most
efficient use of all attached I/O devices in the system.

Level Device

0 1442 Card Read Punch {column read, punch)

1 1132 Printer, synchronous communications adapter

2 Disk storage, storage access channel (SAC)

3 1627 Plotter, SAC, 2250 Display Unit, or System/7

4 1442 (operation complete), keyboard, console printer;
1134 Paper Tape Reader, 1055 Paper Tape Punch,
2501 Card Reader, 1403 Printer, 1231 Optical Mark_
Page Reader, SAC

5 Console {program stop switch and interrupt run), SAC

184

Service Request Limitations

The I/O devices in the 1130 system are subject to loss of
data or extremely reduced throughput if service request,
either cycle-steal or interrupt, is not honored within times
given next. (Refer to Figure 79 for a summary of service
request times.)

Cycle-Steal Devices

Single Disk Storage Drives require one CPU cycle every 27.8
us. while an XIO initiate read/write operation is in progress.
The end of operation interrupt request may wait indefinitely
without losing data but should be completely serviced within
500 us. to gain maximum throughput. The disk storage
drives are assigned to the highest cycle-steal priority levels

in the system because of their fast data transfer rate.

2311 Disk Storage Drives require one CPU cycle every

16 us. while an XIO initiate read/write operation is in
progress. The end of operation interrupt request may wait
indefinitely without losing data but should be completely
serviced within 0.25 ms. to gain maximum throughput.
The disk storage drives are assigned to the highest cycle-
steal priority levels in the system because of their fast data
transfer rate.

1403 Printer requests one CPU cycle every 11 us. (model 7)
or every 18 us. (model 6) while an XIO initiate write is in
progress. However, the 1403 is fully buffered and is not
subject to losing data if its request remains unhonored. In
fact, the 1403 is designed to prevent it from interfering with
time-dependent devices on lower priority levels.

The programmer does not need to consider the 1403
regarding loss of data but should consider it regarding
throughput.

In order to maintain 340 lines per minute with model 6,
the space command (XIO control) must be issued within 117
ms following the transfer complete interrupt. Also, the print
complete interrupt must be serviced and the buffer loaded
for the next print line within 32 ms (the time required to
space one line). If the 1403 received all of its cycle-steal
requests without interference, 3 ms would be required to
load the model 6 buffer. Therefore, approximately 29 ms is
available to service the print complete interrupt.

In order to maintain 210 lines per minute with model 6,
the space command (XIO control) must be issued within
187 ms following the transfer complete interrupt. Also, the
print complete interrupt must be serviced and the buffer
loaded for the next print line within 72 ms (the time required
to space one line). if the 1403 received all of its cycle-steal
requests without interference, 3 ms would be required to
load the model 6 buffer. Therefore, approximately 69 ms is
available to service the print complete interrupt.

Timg allowable to Time allowable to
service 1/O request service |/O request Time allowable to Frequency of request
Device without data loss to maintain rated speed | service end of op-
eration interrupt to
maintain rated speed ti
Interrupt | Cycle-steal Interrupt | Cycle-steal "i' (t)errupt 'é\c/)cl e-steal Elrr‘\ggg::a ton
Single Disk Storage . 27.8 usec - 27.8 usec 500 usec . 27.8 usec 9ms
Drives
23,11 Disk Storage - 16 usec 16 usec 6.25 ms 16 usec 125 ms
Drives :
1403 Printer Mode! - - - 3 ms out of 29ms - 18 usec 176 ms
6 (340 Ipm) 32ms
1403 Printer Model - - - 3 ms out of 69 ms - 18 usec 285 ms
6 (210 ipm) 72ms
1403 Printer R . R 2 ms out of .
Model 7 19.9 ms 17 ms 11 usec 100 ms
1132 Printer 1.5ms 16 consecutive | 1.5 ms 16 consecutive 11.2ms |16 cycles -
Model 1 cycles within cycles within every 11.2
300 usec 300 usec ms
1132 Printer 22.2 ms* | 16 cycles
Model 2 every 22,2 -
ms*
2501 Card Reader - 466 usec - 466 usec 18.3 ms 482 usec 100 ms
Model A1
2501 Card Reader |[466 usec - 466 usec - 3.0ms 482 usec 60 ms
Model A2
2250 Display = - -
Unit
1442-6 Card Punch | 300 usec - 300 usec - 25 ms 125 ms 1216 ms
1442-5/7 Card 300 usec - 300 usec - 25 ms 6.25 ms - 663 ms
Punch
1442-6 Card Read 800 usec - 800 usec - 35 ms 25 ms - 200 ms
1442-7 Card Read | 700 usec - 700 usec - 25 ms 1.87 ms 150 ms
SCA (8-bit, 2400 3.3ms - 33ms - 200 ms (depends 3.3ms Depends on
baud) on line turn- number of
around) characters
per record
1231 OMPR - - 13.2ms 130 ms 13.2ms 2000 ms
1134 Paper Tape - 500 usec - 16 ms 16.7 ms - 16.7 ms
Reader
1055 Paper Tape - - 8ms 8ms 66.7 ms - 66.7 ms

*See description under ““Cycle Steal Devices.”

Figure 79. Table of 1/O Timing Requirements

Overlapping Input/Output Operations And Throughput Considerations

185

In order to maintain 600 lines per minute with the model
7, the space command must be issued within 72 ms follow-
ing the transfer complete interrupt. Also, the print complete
interrupt must be serviced and the buffer loaded for the
next print line within 19.9 ms. The model 7 takes about 2
ms to load the buffer. Therefore, approximately 17.9 ms is
available to service the print complete interrupt.

Note: If the space command is not issued until after the
print complete interrupt has occurred, the 1403 will not
maintain rated speed.

1132 Printer operates in both the cycle-steal mode and the
direct program control (interrupt) mode. The 1132 requires
16 consecutive CPU cycles within 300 us. following a read
emitter instruction. The 1132 Model 1 also requests an
interrupt (direct program control) every 11.2 ms. This
request must be honored within 1.5 ms. The 1132 Model 2
presents interrupt requests every 22.2 ms except:

1. When the read emitter instruction reveals that the
next character to be printed is X, the next interrupt
request is presented in 11.2 ms.

2. When the read emitter instruction reveals that the
next character to be printed is Z, the next interrupt
request is presented in 33.3 ms.

Any of these interrupt requests should be honored within
1.5 ms.

2501 Card Reader requires one CPU cycle every 466 us.
while an XIO initiate read operation is in progress. The end
operation interrupt request may wait indefinitely without
losing data but should be serviced within 18.3 ms (model A1)
or 3.0 ms (model A2) to maintain rated speed.

2250 Display Unit is designed to prevent interference with
the 1442, 1132, 2501, or synchronous communications
adapter by inhibiting cycle-steal request by the 2250 while
these devices are being serviced. In effect, this inhibiting
causes the 2250 to be on a priority level lower than any
device except the 1403. Because the 2250 is not subject to
losing data (actually, the brilliance of the screen could fade
on a 3.6-us. system), it may be overlapped with any or all
devices in the system.

The time demand from the 1131 CPU varies depending on
the mode (character or vector), the number of characters
displayed on the screen, the actual characters displayed, and
the state of the CPU (wait or processing). The greatest time
demand (CPU in the wait state) could be almost every CPU
cycle. The least time demand could be about two CPU cycles
every 25 ms.

The average interference with CPU processing is:

For 3.6 us. core storage — character mode 80% of CPU cycles;
vector mode 20% of CPU cycles

For 2.2 us. core storage — character mode 66% of CPU cycles;
vector mode 18% of CPU cycles

186

Program Control Devices

1442 Card Punch requires the punch interrupt request be
serviced within 300 us. (model 5, 6, and 7) to prevent loss
of data. The end operation interrupt should be serviced
within 25 ms to obtain rated speed.

1442 Card Read requires the read interrupt request be
serviced within 800 us. (model 6) or 700 us. (model 7) to
prevent loss of data. The end operation interrupt must be
serviced within 35 ms (model 6) or 25 ms (model 7) to
obtain rated speed.

Synchronous Communications Adapter operates at one of
several transmission speeds. The time between character
transfer interrupts depends on the speed selected by the
speed selection switch and the number of bits per character.
The times between characters (interrupts) for the various
combinations of bit speed and character size are shown in
the following chart: ‘

Char.

Baud "\ Size 6 Bit 7 Bit 8 Bit
600 10.0 ms 11.6 ms 13.3 ms
1200 5.0 ms 5.8 ms 6.6 ms
2000 3.0ms 3.5ms 4.0 ms
2400 25 ms 29ms 3.3ms
4800* 1.25ms 1.45 ms 1.65 ms

*BSC mode only.

Data may be lost if the SCA read request is not honored
within the times shown. If the 1130 is transmitting, data
will not be lost but fill characters will be automatically
inserted, thus reducing actual effective baud rate.

1231 Optical Mark Page Reader requests a read response
interrupt each time the one-character buffer in the attach-
ment is loaded. If the request is honored within 13.2 ms,
the requests occur every 13.2 ms until the entire data sheet
has been read. However, the 1231 has a sonic delay-line
buffer capable of storing all characters from a single data
sheet. Therefore, data will not be lost if the read response
interrupt request remains unhonored longer than 13.2 ms.
To maintain the rated throughput of 2,000 data sheets per
hour, the 1231 read response interrupt request should be
honored within 13.2 ms, and the read start command (XIO
control with bit 13 on) for the next data sheet should be
issued within 130 ms after the first read response interrupt
has been serviced. The programmer must be aware of the
possibility of a read error causing a data sheet to be selected
and the operation terminated before all characters have been

read and transferred to core storage. If data from data sheets
is directly related to the previous sheets (and assuming the
previous sheet has been read correctly), then the read start
must not be issued until after the operation complete inter-
rupt has occurred and the error indicators have been tested.

The 1231 is on interrupt level 4 and will not impact the
throughput of other devices on the system.

1134 Paper Tape Reader requests a read response 500 us.
after a feed command. A read command should be given to
accept the character stored in the paper tape attachment
buffer before the next feed command is issued. The continu-
ous read rate is 16.7 ms per character. A feed command must
be issued 16 ms after the response interrupt to maintain
rated speed. The 1134 is not subject to losing data unless
two feed commands are issued consecutively. The 1134 is on
interrupt level 4 and will not impact the speed of the other
devices on the system.

1055 Paper Tape Punch requests a punch response interrupt
every 66.7 ms if punching continuously and should be ser-
viced within 8 ms following the interrupt request to main-
tain rated speed. The 1055 is on interrupt level 4 and will
not impact the speed of other devices on the system.

Overlapping Input/Output Operations And Throughput Considerations

187

IBM System/7

The 1130 system can provide expanded facilities to the
IBM System/7 (a sensor based system described in IBM
System/7 System Summary, Order No, GA34-0002). To
the 1130, the sensor based system (Figure 80) appears to
be another I/O unit attached to the storage access channel
(SAC or SAC II). Communication between the System/7

and the 1130 is by means of 1130-initiated storage-to-storage

data transfers with a mutual interrupt system. The mutual
interrupt system allows either system to signal the other
that a transfer of data is either desired or completed.
Facilities are provided to alert the 1130 in case of interface
error or System/7 malfunction and to enable the 1130 to
determine the nature of the error or malfunction.

Standard 1130 execute I/O instructions are used to con-
trol the System/7. XIO control instructions are used to
transmit the beginning System/7 storage address .and the
word count of the number of words to be transmitted. (See
“Storage Access Channel.”) An XIO initiate read or initiate
write instruction is used to transfer data between the 1130
core storage and the System/7 main storage. An XIO sense
interrupt instruction is used to identify that the System/7
has interrupted the 1130. The System/7 interrupts on
interrupt level 3, interrupt level status word bit 4. An XIO
sense device instruction is used to obtain status indications
from the System/7. For details of the instruction formats
and programming considerations, refer to IBM System/7
Functional Characteristics, Order No. GA34-0003.

PROGRAMMING

The I0CC specifies the operation to be performed and the
device to which the operation is directed. For data transfer
operations, the IOCC also specifies the word count or ad-
dress of the data to be transferred.

1/0 Control Commands (10CC)

An I0CC must start at an even storage address in the 1131
processor and has the following format:

188

BRO712A

Figure 80. IBM System/7
The IOCC fields are described as follows:

Word Count Address: This field is used to pass the three
values required by the System/7 1130 host attachment in
order to perform a data transmission: (1) a transmission
word count, (2) a System/7 storage address, and (3) an
1130 storage address. The count specifies the number of
data words to be transferred. The addresses establish the
beginning of the data tables between which the data trans-
fer is to occur. The count and one of the addresses are
transferred to System/7 storage by two separate control
IOCC’s. The third value, an address, is transferred by the
1130 initiate read or initiate write IOCC.

Device: This 5-bit field identifies the I/O device to which the
I0CC is directed. In this case, a binary 01100 is the code
identifying the System/7.

Function (Fun): The 3-bit function code determines the
specific I/O operation to be performed.

Modifier: This 8-bit field provides additional information,
when necessary, for the function specified.

Control (100)

Initiate Read (110)

An XIO instruction with a control IOCC loads the System/7
1130 host attachment with one of two parameters necessary
before starting a data transfer operation between the
System/7 and the 1130. The two parameters are:

1. The System/7 storage address at which the data trans-
fer is to begin.

2. The count of the number of 16-bit data words to be
transferred.

The 1130 storage address involved in the data transfer
is indicated subsequently in either the 1130 initiate read
or initiate write IOCC. _

Since only one of the two parameters can appear in a
single control IOCC, two control IOCC’s are required (and,
hence, two XIO instructions) prior to performing the
actual data transfer. :

Modifier bits 14 and 15 signal which, if either, of the tw
parameters is contained in the control IOCC as follows:

Bit 14 =0 — Neither parameter being transferred
(ignore bit 15)
Bit 14 =1 — Perform function specified by bit 15
Bit 15 =0 — Word count being transferred to attachment
Bit 15=1 — System/7 storage address being transferred
to attachment

Modifier bits 12 and 13 of the control IOCC determine
the basic interruption controls to be established in the
attachment. To establish the basic control status, modifier
field bits 12 and 13 are set as follows:

Bit 12=0 — Ignore bit 13
Bit 12 =1 — Perform function specified by bit 13
Bit 13 =0 - Permit attention and power/thermal
interruptions
Prevent attention and power/thermal
interruptions

Bit 13 =1

Modifier field bit 14 serves a dual purpose in a control
IOCC. This bit also establishes a temporary interruption .
control status as follows:

Bit 14 =0 — No effect; return to basic control status
Bit 14 =1 — Prevent attention and power/thermal’
interruptions

The temporary control status is temporary only in the
sense that an initiate read command, an initiate write
command, or another control command, immediately
following such a control IOCC, can return the interruption
control status to the basic control status. '

An XIO instruction with an initiate read IOCC sends a
block of contiguous data from System/7 to 1130 storage.
The starting location of the System/7 data and the number
of words transferred must have been established by pre-
viously executed control IOCC’s. The address field of the
initiate read IOCC contains the starting location in 1130
storage for the data to be received.

Modifier field bit 15 is used to control interruptions as
follows (refer also to “Interruptions to System/ 7):

Bit 15=0 — Do not interrupt System/7 for operation end -
Bit 15=1 — Interrupt System/7 for operation end

Initiate Write (101)

An XIO instruction with an initiate write IOCC sends a
“block of contiguous data from 1130 storage to System/7
storage. The number of words transferred and the System/7
starting location into which they are stored must have been
established by previously executed control IOCC’s. The
address field of the initiate write IOCC contains the start-
ing location in 1130 storage for the data to be transmitted.
Modifier field bit 15 is used to control interruptions as

follows (refer also to “Interruptions to System/7”):

Bit 15=0 — Do not interrupt System/7 for operation end
Bit 15=1 — Interrupt System/7 for operation end

Electronic Initial Program Load (101)

An XIO instruction with this special initiate-write IOCC is
used to IPL the System/7 from the 1130. Modifier bit 14 in
this IOCC serves a dual purpose for the electronic initial
program load (EIPL) function. This bit also establishes a
temporary “prevent” status for attention and power/thermal
interruptions. Thus, the 1130 will not recognize an attention
or power/thermal warning interruption during a EIPL to

the System/7. The basic interruption status must be re-
established by a control command with modifier field

{ bit 14 = 0 or by an initiate read or initiate write command.

IBM System/7 189

The host attachment switch on the System/7 console must
be in the enable and IPL position for this command to per-
form the IPL. When the 1130 host attachment recognizes
the EIPL command, the System/7 does a system reset and
enters the wait state. The host attachment sets the System/7
address to 0 and proceeds with the EIPL as if it were a normal
initiate-write from the 1130.

For an error-free termination, the System/7 instruction
address register is set to a 0 value, priority level 3 is
activated, and System/7 begins to execute instructions
starting at location 0. A standard operation-end 1nterrupt
is also generated in the 1130.

For an error termination, the Systemi/7 is not informed
of the IPL termination, a standard operation-end interrupt
is generated in the 1130, and the error condition is
indicated by setting a corresponding status bit in the DSW
for the 1130,

A word count must be established in the 1130 host
attachment prior to attempting an EIPL operation from
the 1130. This word count is established by an XIO in-
struction with a control IOCC,

A System/7 address need not be established, since the
host attachment sets this address to 0.

Interruptions to System/7

The program in the 1130 can request an interruption to the
System/7 processor module. The interrupt priority level,
sublevel, and device address are fixed for the 1130 host
attachment. As directed by a bit in an initiate read or
initiate write [OCC, the request to the System/7 processor
is made on priority level 3 with a sublevel of 0. The in-
terruption request presented to the System/7 by the 1130
is handled the same as any other priority interruption re-
quest.

Sense Interrupt (011)

An XIO instruction with a sense interrupt IOCC loads the
1130 accumulator with the interrupt level status word
(ILSW) associated with the highest priority level that is on,
in order to determine the interrupting device. The sense
interrupt command is common to all 1130 I/O devices;
therefore, no device-code field is needed.

A System/7 interrupt request to the 1130 sets on ILSW
bit 4 for interruption level 3. (The System/7 and the IBM

2250 Display Unit are mutually exclusive on the 1130 SAC.)

190

Sense Device (111)

An XIO instruction with a sense device IOCC loads the
1130 accumulator with the DSW from the 1130 host
attachment in the System/7. The 1130 can determine the
cause of an interruption by analyzing these DSW bits.

Modifier field bit 15 has the following meaning in this
10CC:

Bit 15=0 — Do not reset DSW bits
Bit 15=1 — Reset DSW bits

DSW bits can also be reset by turning on System/7 power
or by the reset line in the 1130 SAC.

Device Status Word (DSW): The 16-bit device status word
associated with the 1130 host attachment has various bits
set on to indicate program operating status and detected
errors,

The significant bits in the DSW presented to the 1130
processor and their meanings are:

Significant Bits
0

Meaning

Attention. A System/7 set interrupt
command is directed to the 1130.
This is not an error.

1 Operation end. The word count equals
zero, or a power/thermal warning or
error was detected during a data trans-
fer operation.

Invalid storage address. The 1130 has
attempted to address a storage location
outside the installed capacity of the
System/7. This is an error.

Data check. A System/7 parity error
was detected by the 1130 host
attachment when fetching words from
System/7 storage. This is an error.

Count = 0. The word count register in
the 1130 host attachment is equal to
0. This is not an error.

Power or thermal warning. A power
failure or thermal warning condition
has occurred. This bit is not reset
by the sense-device IOCC.

Significant Bits Meaning

6 Storage control check. The 1130 host
attachment detected that System/7
storage has not responded to the
attachment’s request for a storage cycle,
sometimes referred to as an “overrun”
condition. This is an error.

14 Ready. The System/7 is on line and
power is good. This bit is not reset
by the sense-device IOCC. This is not
an error.

15 Busy. The 1130 host attachment is
performing a data transfer operation
between the attachment and System/7
storage. This bit is turned off as soon
as the operation-end bit (bit 1) is set
on. Any 1130 command (except sense-
device) to the 1130 host attachment is
ignored if the busy bit is on. This is
not an error.

Interruptions to 1130

The System/7 1130 host attachment presents interruptions
to the 1130 on its interruption level 3. Interruption requests
are made to the 1130 under any of the following conditions:

1. The DSW attention bit is set on because a System/7
set interrupt command is directed to the 1130 (if the
interruption controls do not inhibit the interruption
request).

2. The DSW operation-end bit is set on. (The count =0
DSW bit, the power/thermal warning bit, or an error
bit is also on for this interruption request.)

3. The DSW power/thermal warning bit is set on by
the corresponding condition (if the interruption
controls do not inhibit the interruption request). The
DSW ready bit remains on until the power actually
fails, If a data transfer operation is in progress when
the power/thermal warning bit comes on, the opera-
tion-end bit is also set on, requesting an interruption
to the 1130.

The interruption that occurs at the operation-end time of
a data transfer can be directed to the System/7 as well as to
the 1130. However, if an error is detected during the data
transfer, the operation is terminated and the interruption
is directed to the 1130 only (count = 0 DSW bit may or
may not be set on).

When the System/7 directs a set interrupt command to
the 1130 attachment, the DSW attention bit (bit 0) is set
on unless it is already on. If already on, condition code 2
is returned to the System/7. If the 1130 attachment is
busy, the attention bit is set on and indicated to the 1130
at the time an operation-end interrupt occurs for the
operation in progress. If the 1130 attachment is not busy,
the attention bit is set on and an interruption request is
made to the 1130 on its priority level 3 unless attention
interruptions are inhibited by the host attachment in-
terruption controls.

The host attachment interruption controls, which permit
or prevent attention and power/thermal interruptions to
the 1130, are determined by the setting of modifier field
bits 12 to 14 in an 1130 IOCC. Modifier bits 12 and 13
are the basic interruption control; bit 14 is a temporary
interruption control. Attention and power/thermal in-
terruptions are permitted only if the basic status is *“permit”
and there is no temporary “prevent.” If the basic status
prevents attention and power/thermal interruptions,
these interruptions are not permitted again until another
control IOCC that alters the basic interruption control status
is executed to permit the interruptions.

If interruptions are temporarily prevented as directed by
bit 14 in a control IOCC, they are not permitted again
until one of the following occurs:

1. The DSW is reset.

2. Another control IOCC is executed with bit 14
changing the previous temporary status.

3. An initiate read or initiate write IOCC is executed.

Following any of these events, the 1130 host attachment
returns to the basic interruption control status.

Attention and power/thermal interruptions to the 1130 are
also prevented by either a System/7 power-on reset or an
1130 storage access channel reset. These interruptions
are not permitted again until a control IOCC is executed
to establish a basic interruption control status.

IBM System/7 191

Appendix A. Character Codes

Rof.| EBCDIC | UM CordCode | Grophicsond |Comole] PTTC/8[1122]1403 Ref M Cord Code [y ong [Comsole [PTrc/8 J113zfracs
®' Binary [Mex Rows Hex | Control Nomes [Printer | Hex Hex| Hex No. Rows Hex | Control Nomes :l"iﬂ"' H‘é Hex |Hex
Hex ® @ X
0 [00000000{ 00 [12,0,9,8,1 [so30o| NuL 64 [No Punches | 0000(D] blank (space). | 21 (U L)] ¢ [7F
Ll A A
1 {00010 112,91 90101 SOH 65 12,0,9,) 8010
2 [| oow|o2 |12)9.2 8alo [sTx ® 2052 |aae
09, 67 12,0,9,3 |A4l0
3 0011| 03 [12,9,3 8410 ETX e 12,0,9,4 | A210
4 0100 04 12,9, 4 8210 PF Punch Off & 12,0.9,5 | A0
5*| | 00105 12;9,5 8110| HT HorizTab |41 () [6pUL) 4] 12,0,9,6 | A0%0
6*| | o110| 06 [12)9.6 8090 | LC Lower Case SEU/L) 7 12,0,9,7 | A0S0
7 01l oz7 h2,9,7 8050 | DEL Delete 7FHU) 72 12,0,9,8 AO30
8 1000} 08 [12,9,8 8030 3 12,8,1
7 -
9 10011 09 112,9,8,1 9030 74 12,8,2 8820 ¢ 02 |ou)
10 1010 ‘o8 75* 12,83 84 . (period) 00 ey |48 Jee
0A[12,9,8,2 8830 | SMM 12,84 < OE |02L)
" 1011 (08 12,9,8,3 8430 VT 12,8,5 81 (e sy |0 |s7
12 1100 oC 12,9,8,4 8230 | FF 12,8,6 80A04) + DA v) |« |60
:i :m o0 12,9,8,5 8130 | CR 12,8,7 8060@) 1(logical OR) | C6 33&»
OE 12,9,8,6 8080 | SO 12 ry “
15 | Y un|of izies,7 [eorof s 12,1,9,1 | DOIO bl Rl
16 [00010000[10 [12,11,9,8,1 |D030] DLE L b
17 0001 | 11 [11,9,0 5010 pc 12,11,9.4 | C210
18 001012 |n,9,2 4810 pc2 12,1,9,5 | Cio
;;. o011 13 |n,9,3 4410| pCa lz,l;,;,; €05
0100} 14 |11,9,4 4210/ RES Restore 05 (8) [4C(u/L) 12,11,9, €050
2*| | ow1]15 [11795 4110| NL New Line |81 () {DB(U/) 12,198 | co
22+ onof16 [11,9,6 4090 | BS Bockspace 11 (@ |sEu/y -8 S0
2| | oz [nlez 40501 IDL Idl .82 : b 4t
9, 3 1,8,3 - s 40 |s) | fe2
';’54 lgo lg 1,9,8 4030 | CAN 1,8,4 4220@)| * D6 |o8i) |5¢ |2
1001 19 [11,9,8,1 5030 | EM 11,8,5 4) F& |1 50 |2F
2% 1010{ 1A |11,9.8,2 [4830] cC 1.8,6 40A0Q)] ; D2 13(“3))
27 :4‘); :2 1,9,8,3 4430 cul 1,8,7 4060@)+(logical NOT)| F2 68(U)
28 1,9,8,4 4230 | FLS n 4000@)] - (dosh) 84 L) 1
29 | | noifiounielsls [4130] Gs 0,1 ool 7 3 Pl el]
0 { 1110] 1E 11,9,8,6 4080 [RDS 1,0,9,2 6810
3 W IF 1987 {407 us 1093 e
32 100100000| 20 [11,0,9,8,1 [7030] DS 11,0,9,5 6110
3 0001| 21 [0,9,1 3010(sos 1,0,9,6 | 6090
3 ooto] 22 |0,9,2 2810(Fs ”.g.:,; go
35 oon| 23 fo,9,3 2410 ,0,9, 0
3% | | o100] 24 (09,4 2210| BYP Byposs ® 0.8.i %20
a7+l | 00| 25 Jo,9,5 2110| LF Line Feed |03 §9)[30(U/L) s ‘
3+ | ono| 2 [0)9.6 2090 | EOB End of Block (/L) %83 Jaaod g leomma) | %0 ?:g;)) Ll A
» onif 270,97 2050 | PRE Prefix 0g's 2120@) (underscore) | BE | 40(U)
40 1000| 28 |0,9,8 2030 0,8,6 20404) S 4% |o7)
:; :g% 221 0,9,8,1 mzaao o~ 0,8,7 20606 ? 8 |31v)
0,9,8,2 12,11,0 £000
4 o1} 28 10,9,8,3 2430 | Cu2 12,11,0,9,1 | FO10
“ 1100(2C |o,9,8,4 2230 12,11,0,9,2 | €810
45 1101) 20 |o,9,8,5 2130 | enQ 12,11,0,9,3 | E410
4% 1110] 2¢ 0,9.8,6 2080 [ACK 12,11,0,9,4 | E210
47 | Y nu|*o,9,8,7 2070 | BEL }2’}{'8’3’2 538
48 [00110000] 30 [12,11,0,9,8, 1f FO30 12,11,0,9,7 | E050
49 [T 0001 31 |91 1010 ;2,‘n,o,9,a elgg
50 0010{ 32 |9,2 0810 SYN]
51 0011| 33 |9,3 0410 8,2 0820/ 82 | 04V)
52| | oi0) 34 19,4 0210| PN Punch On ® &3 420 5 Ol bt
53] | o101] 35 |9, 0110 RS Reader Stop | 09 (B)|0D(U/L) g ; ¥ (ooost 3
54 | ov10] 2 |9,6 0090 | UC Upper Case OE(U/L) :ji 0208 _ (oponteophe)| £ 0?23; 2=
55 om)azle,7 0500 | EOT End of Trans 8,7 0060@) * €2 [08(L)
56 1000| 38 (9,8 0030
57 1001| 39 |9,8,1 1030 # Any code other than those defined for the 1132 will be interpreted by the PRNT 1
58 1010| 3A [9,8,2 0830 subroutine as o blank.
59 1011 38 [9,8,3 0430 | cu3
60 1100 3¢ |9,8,4 0230 | DCA
61 1101{ 30 [9,8,5 0130 | NAK
62 4 mo| % |9,8,6 0080
63 mi| x [9,8,7 0070] SUB
@ Codes identified by * are recognized by all Monitor System i b

Codes that are not asterisked are recognized only by the SPEED subroutine ,
() U = Upper Case, L = Lower Cose; (3) EBCDIC sybset
\2) pe B)
@ Hexadecimal codes identified by @ can also be d from the le keyboard
Console Printer Codes: (5) Tabulate, (8) Shift to Black, (7) Carrier Retum

Shift to Red (3) Backspace Line Feed

192

1BM Cord Code Grophics and |Console]PTTC/8{ 1132|1403 1BM Card Code hicsand |ComolelPTTC/8[1132 [1403
R x| Centrol Nomes|Printer |He; Hex Y Hex K 4 IN° Printer |Hex Hex | Hex
ows ‘ ".“ @ ows @l ontro lomes Hex ®
:o 12,0,8,1 3020 Al (A*xovo) o/ oo | <1 | es
1 ,0,1 8000 [} 9000
82 [12,0,2 AB00 | b 8800 | B 18714 [62(0) | c2 | 25
83 112,03 A0 | ¢ 8400) C 1C/E [73(0) | C3 | 26
84 [12,0,4 A200 | d 8200} O 30732 |eau) | Ca | 67
85 [12,0,5 A100] o 8100)| E 34/36 175(U) | C5 | 68
86 |12,0,6 A0B0 | f 8080 &) F 10/12 |76(U) | C6 | 29
g es |l g sofle |welw (g8
12,0, Al
» ng,o,g Aol 8010@)] | 20/22 [790) | €9 | €
8A [12,0,8,2 | As20 9.8,2 |A830
, (12,083 |ad20| ¢ 12,0,9,8,3 |As30
5 :2'°‘g'§ :% 12,0,9,8,5 |A130
s Eages
& [12,0,8,7 | A0s0 ,0,9.8,
6000 | (~ zero)
9 112,11,8,1 0020
91 [12,11,1 D000 % i ;g/.u 2;23; g; ?g
92 2,112 coo | &
44003 L 5C/5 [43(u) | D3 | 1A
% |12,n1,3 ce00 | 1 prect (M 3572 |sao | 0
o4 [12,11,4 C200| m
4100 N 74/76 |45(u) | 05 | 1C
% 2,118 clo| n 4080Q) © 50752 |46(u) | D& | 5O
% [prvrd I 4040 P 54/56 |570) | D7 | 5€
L1, P Q 64756 |58(U) | D8 | IF
98 [12,11,8 C020 | q 4010 @) R 60/62 |49(V) | D9 | 20
» |12,11,9 coo | r
a H 1,9,8,2 |C830
12,11,8,2 | C820 1’983 |Ca30
o [12,1,8,3 |ca0| 3 Vo84 |c230
9C |12,11,8,4 C220 1,9.8,5 |C130
9 12,11,8,5 |<C120 1,9,8,6 |COBO
g- }g}}gg gg:g 12,11,9,8,7 |C070
’ "
A0 [11.,0,8,1 | 7020 2 Y IR £
Al f11,0,1 7000 2800@)| S 98/9A [32(0) | €2 | 0O
A2 |11,0,2 6800 | s 2400 @1 T 9c/% |23) | €3 | OE
A3 |11,0,3 6400 * v 2 |34U) | E4 | 4
A4111,0,4 6200 | v 2100@) V 84/86 |25(U) | ES | 10
AS [11,0,5 6100 | v 2080 @)Y W 90/92 |26(U) | E6 | 51
Rlhes =) may R |k
.0, x 6138(U
A8 [11,0,8 y 2010@| 2 A0/A2]29(U) | €9 | 54
Sliess || 1302 |2
8, ,9,8,
fees |un e (e
.0,8, ,9,8,5 613
AD |1,0,8,5 6120 | C 0,9,8,6 |6080
AE [11,0,8,6 | 600 0,9.8,7 |6070
AF 111,0,8,7] 600 240° | 11110000[FO [0 2000 @) 0 <t DA JFo | &
80]12,11,0,8,1 | F020 241* | T0001f F1 | 1 1000 @) FC oy |F1 | 40
81 |12,11,0,1" | Foo0 242+| | oo10[F2 f2 0800 &)} 2 o8 o) |F2 | O
82 [12,11,0,2 | E80O 243*| | oonfF3|3 0400 @) 3 oc [13(L [F3 |02
83 [12,11,0,3 | E400 244+| | 0100|F4 |4 0200 @) 4 FO U |Fa |43
84 [12,11,0,4 { €200 245*| | 0101|F5 |5 0100@)| 5 Fa 15 [F5 | 04
85 [12,11,0,5 | €100 245*| | o110{F6 [6 0080 @) 6 Do |1 [F6 | 45
86 [12,11,0,6 | €080 27+ | onif¢7|7 0040 @) 7 D4 lor(L) |F7 | 46
87 |12,11,0,7 | €040 248+ 1000/ F8 |8 0020 @) 8 E4 U |f8|o7
88 [12,11,0,8 |E 249* 1001{F9 |9 o010 @] 9 g0 1) |Fo | o8
89 |12,11,0,9 | €010 250 1010} FA | 12,11,0,9,8, 24 €830
8A |12,11,0,8,2 | €820 251 1011 F8 | 12,11,0,9,8, 3 €430
88 [12,11,0,8,3 | €420 252 noo|kc | 12,11,0,9,8, 4€230
sc [1211,0,8.4 | €220 253 101} o | 12,11,0.9,8, € 130
80 [12,11,0,8,5 | E120 | 3 254 10| FE | 12,11,0,9,8,6]£080
BE [12,11,0,8,6 | E0AD 255 nn|ef | 12,11,0,9,8,74€070
o [12,11,0,8,7 | E060

Appendix A. Character Codes 193

Glossary

Area Code. See Device Code.

Assembler Language. A programming language that is more
closely related to actual machine language than either RPG
or FORTRAN.

Baud. A communications term that specifies bits per second.

For example, 600 baud is the same as 600 bits per second.

Binary Synchronous Communication (BSC). A mode {(of the
synchronous communications adapter) that provides for
point-to-point or multipoint operation.

BSC. See Binary Synchronous Communications.

Byte. An increment of information that is made up of eight
bit positions (0 1 2 3 4 5 6 7). Each 1130 word location
(in core storage) is made up of two bytes.

Central Processing Unit (CPU). The central machine unit
(the 1131) in the 1130 System. Core storage is housed in
the CPU. The logical circuitry that causes execution of
program instructions is also in the CPU,

Core Storage. Core storage (also called storage) contains
programs being executed and input data to be processed.
Processed data is set up (by the program)in output areas
and then moved to one or more output devices.

CPU. See Central Processing Unit.

Cycle-Steal. The method of data transfer between certain
I/O devices and main storage. The I/O device “steals” a CPU
cycle, when necessary, to transfer a word to or from main
storage. The CPU program is slowed only to the extent of
the amount of cycles “stolen.”

Device Address. See Device Code.

Device Code. The binary field in input/output control com-

mands that specifies the I/O device involved in the operation.

(Also called area code or device address.)

Device Status Word (DSW). A 16-bit increment of informa-
tion that specifies the status or condition of an I/O device.
Each 1/0O device has one or more associated DSW’s.

Direct Address. A method of forming the effective address

from values in an instruction or from values in an instruction
in a register.

194

Direct Program Control. Refers to the need for program
control for each operation performed. Specifically, some
I/O devices require instruction and input/output control
command execution for each data character transferred to
or from main storage. Contrast with cycle steal.

Displacement. A field in short-format instructions that is
usually added to the contents of a register to obtain the
effective address. The displacement has other uses in certain
instructions.

Double Precision Format. A binary number format of 32
bits (two words). The arithmetic sign is the leftmost bit. See
sign bit.

DSW. See Device Status Word.

Effective Address (EA). The actual address of data or an
instruction in main storage. The effective address is derived
in various ways, depending upon the instruction and the
manner in which that instruction is executed.

FORTRAN. FORTRAN (FORmula TRANslation) is a high-
level programming language designed specifically for engineer-
ing and scientific data-processing applications.

Four-Wire Operation. A communications arrangement of
terminals that use two data paths. The paths are arranged so
that signals can be transmitted on one path only and received
on the other path. Four physical wires may or may not make
up the data paths.

Half-Duplex. A communications method of operation in
which each terminal can transmit or receive information
signals, but only one of these (transmit or receive) at a time.

ILSW. See Interrupt Level Status Word.

Indirect Address. In indirect addressing, the effective address
is the contents of a core-storage location which itself is
located by direct addressing.

Input/Output Control Command (IOCC). A 32-bit increment
of information that specifies the operation, data address,

I/0 device, etc. during I/O device operations. An IOCC is to
an I/O device what an instruction is to the CPU.

Interrupt. The temporary stopping of an operation in order
to perform some higher priority operation. Interrupts are

used to transfer data to or from I/O devices, handle unusual
1/0 device conditions, and terminate I/O device operations.

Interrupt Level Status Word (ILSW). A 16-bit increment of
information that specifies the I/O device(s) causing an inter-
ruption. There are six levels of interruption (0 through 5)
but only five ILSW’s (for levels 1 through 5).

Interrupt Vector. There are six interrupt-vector locations

in main storage. These locations point to the beginning of
the interrupt-handling subroutine for the associated interrupt
level. (The interrupt vectors must be program-loaded with
the desired addresses at program-loading time.)

IOCC. See Input/Output Control Command.

Multipoint. A private line arrangement in which more than
two communication terminals are capable of communication
among themselves but on the same line.

Point-to-Point. The transmission of data directly from one
terminal to another without the use of any intermediate
computer or terminal.

RPG. RPG (Report Program Generator) is a high-level
programming language that is mainly applicable to commer-
cial data-processing applications.

SAC. See Storage Access Channel.
SCA. FSee Synchronous Communications Adapter.

Sign Bit. The leftmost bit of a single- or double-precision
binary operand. When this bit is at a value of zero, the
binary operand is positive; when this bit is at a value of 1,
the binary operand is negative.

Single Precision Format. A binary number format of 16 bits
(one word). The sign is specified by the leftmost (high-order)
bit. See Sign Bit.

Storage. See Core Storage.

Storage Access Channel (SAC). This channel provides for
attaching certain I/O devices to the 1130 system.

STR. See Synchronous Transmit-Receive.

Synchronous Communications Adapter (SCA). A feature in
the 1130 that enables the system to function in a communi-
cations network in either point-to-point or multipoint oper-
ation. The term “‘synchronous” signifies that signal trans-
mission is continuous rather than start-stop for each charac-
ter. v

Synchronous Transmit-Receive (STR). A mode (of the
synchronous communications adapter) that provides for
point-to-point operation only.

Two-Wire Operation. A communications operation of ter-
minals that can transmit in either direction (from terminal
A to terminal B or from terminal B to terminal A) but not
both at the same time. '

Word. The amount (16 bits) of bit positions available for

data at each core-storage location. The positions of a word
are numbered 0 to 15, left to right.

Wraparound. Going sequentially from the highest core-stor-
age location to core-storage location 0000.

Glossary 195

196

Index

Where more than one page reference is given, the major reference is first.

A, accumulator symbol 30 busy
A instruction 51 single disk storage drives 133
ABL, enable, indicator 122 1231 161
AC indicator 122 1442 139
access mechanism 1627 153

single disk storage drives 129 2250 166

2311 Disk Storage Drives 131 I 2311 Disk Storage Drives 131
access time 2501 141

single disk storage drives 129
2311 Disk Storage Drives 131

accumulator (ACC) 20 capacity
accumulator extension (Q) 20 core storage 8
accumulator extension indicator 122 single disk storage drives 2, 127
accumulator indicator 121 I 2311 Disk Storage Drives 2, 127
AD instruction 53 card feeding
add double instruction 53 1442 136
ADD indicator 122 2501 140
add instruction 51 " card input/output devices 135
address, direct 14, 16 card, last, sequence (1442) 137
address displacement (2250) 166 card/paper tape programming system 1
address, effective, generation 10 card punching (1442) 137
address field (in instruction) 14 card read punch 135
address field (IOCC) 101 card reader (2501) 140
address, generation, exceptions 18 card reading
address generation (long instruction) 14 1442 136
address, indirect, bit 11 2501 140
address (instruction register specified) 10 card throughput (2501) 141
addresses (core storage) 8 cards per minute (1442) 135
addressing, instruction, summary 16, 17 carriage 152
AFR (arithmetic factor register) 24 carriage busy
alarm on/off switch 125 1132 148
alphabetic coding (1231) 157 1403 151
alphameric keyboard (2250) 163 carriage channel (1403) 151
AND, logical, instruction 67 carriage channel 12 (1403) 151 .
Appendix A. Character Codes 192 carriage control channels (1132) 148
applications and programming 1 carriage home (disk) 129
area code (IOCC) 102 carriage interrupt (1403) 150
arithmetic factor indicator 121 carriage skipping
arithmetic-factor register (AFR) 24 1132 146
arithmetic instructions 51 1403 149
AS indicator 122 carriage spacing
assembler 1 1132 146
1403 149
carry and overflow indicators 22
backspace key (console keyboard) 119 carry indicator (set for reset by LDS) 49
baud 172 cartridge, disk 2, 127
BFR (buffer loaded) indicator 120 case, upper (console printer) 116
binary synchronous communications (BSC) 171 cause of interrupt 109
bit, sign (in a word) S CCC (cycle control counter) 24
bit transfer sequence 173 central processing unit and core storage 2
blank detection (1231) 157 CES (console entry switches) 124
block check characters (BSC) 179 chain, print (1403) 149
BOSC (in interrupts) 110 channel interface (2250) 163
BOSC instruction 90 channel, storage access (SAC) 168
branch (forced CPU, interrupt) 104 channel, tape (1403) 149
branch and store instruction address register 94 channels, carriage control (1132) 148
branch instructions 90 character code (paper tape) 143
branch or skip on condition 90 character codes 7, 192
BSC character mode (2250) 163, 166
instruction 90 character phase (CP) indicator 122
operation 177 character-synchronous 173
special programming 179 characteristics of CPU 4
BSI instruction 94 characters
buffer (1231) 155 control (BSC) 177
buffer loaded (BFR) indicator 122 control (STR) 174, 175

Index 197

check bit chart
single disk storage drives 129
2311 Disk Storage Drives 129
check stop (1231) 161
checking, data (disk) 129
CLK (clock) indicator 122
code
area (IOCC) 102
character (paper tape) 143
EBCDIC 8 '
function (IOCC) 102
line transmission (4 of 8) 172
codes
character 7, 192
illegal op 122
coding, data
console 116
1442 136
2501 136
columns per second (1442 punch) 135
commands, I/O control, defined 101
(see also input/output control commands)
communication data flow 173
complement (two’s) 6
condition register indicator 123
console
display panel 121
entry switches 124
function lights and switches 124
introduction 114
keyboard 119
DSW 120
programming 120
speed 119
printer 116
data coding 116
DSW 116
I0CC’s 116
programming considerations 117
speed 116
console/keyboard switch 125
console mode switch 123
control (I0CCO), defined
paper tape 144
SAC 169
SCA 181
single disk storage drives 129
1132 147
1231 159
1403 150
1442 137
2250 165
2311 133
control characters
BSC 177
STR 174, 175
control commands, I/O (defined) 100
control, direct program 101
control operations
BSC 178
STR 174
control sequences
BSC 177
STR 175
control tape (1403) 149
core storage 2
addresses 8
capacity 8
cycle times 2
locations (reserved) 9
times (core storage cycle) 2
* correction, error, routines (disk) 134
count, shift (see shift count)
CP (character phase) indicator 122

198

CPU (central processing unit) 2
data flow 25
forced branch (interrupt) 104, 107
functional characteristics 4
instructions
(see also instructions, CPU) 26
usage meter 126
CSL (core-storage location) symbol 30
cycle (I1, I2, IX, E1, E2, E3) indicator 123
cycle-control counter (CCC) 24
cycle control counter indicator 123
cycle steal 101
check interrupt (2250) 166
devices 184
mode (SAC) 168
priority 168, 184
throughput 183
cycle-steal priority 168
cycle times (core storage) 2
cylinder (disk) 128

D instruction 64
data capacity

core storage 8

disk storage 2
data (character codes) 7
data checking (disk) 129
data coding

console printer 114

1442 136

2501 140
data error

single disk storage 133

2311 133
data flow

communication 173

CPU 25

1231 156
data formats 4

numeric .5

1132 146

1231 155
data in (DI) indicator 122
data loss 183
data organization (disk) 128
data saved for interrupted program 109
data sheet terminology (1231) 154
data transmission (BSC) 179
delay, rotational

single disk storage 129

2311 131
detect interrupt (2250) 166
device address (IOCC) 102
device code (IOCC) 102
device field 102
device priority 183, 184
device status word

console printer 116

interrupts 110

SCA 181

single disk storage 133

1132 147

1134/1055 145

1231 160

1403 150

1442 138

1627 153

2250 165

2311 133

2501 141

devices (1/0) list of 3

devices, cycle steal 184

DI (data in) indicator 122

direct addressing (IA bit = 0) 14

direct program control 101

direct program control (throughput) 183
discrimination, mark (1231) 155

disk monitor programming system 1
disk storage drives 127

capacity
single disk storage 129
2311 127

cylinder schematic 128
data checking 129
data organization 128
device status word
single disk storage 133
2311 133
disk access mechanism
single disk storage 129
2311 131
disk cartridge 127
disk check bit chart 129
disk pack 127

DSW indicators, single disk storage 133

carriage home 133
data error 133

disk busy (R/W or carriage) 133

disk not ready 133
operation complete 133
sector count 131

DSW indicators, 2311 133
carriage home 133
data error 133

disk busy (R/W or carriage) 133

disk not ready 133
operation complete 133
sector count 131

I/O control commands, single disk storage 131

control 133
initiate read 131
initiate write 132
read 130
sense device 133
1/O control commands, 2311 138
control 133
initiate read 138
initiate write 138
read 138
read check 138
sense device 133
programming considerations 134
sector. numbers 128
timing, 2311 131
usage meter 134
disk unlock light 124
DISP (display core storage) mode 123
displacement 11
DISP (displacement) symbol 30
expanded 40
negative 13
positive 13
range of 13
display copier (2285) 167
display core storage (DISP) mode 123
display panel, console 121
display unit (2250) 163
displays (2250) 163
divide instruction 64
document path (1231) 155
document selected (1231) 160
double precision 5
DPC (direct program control) 101
drive (disk storage) 2, 127

drum, pin-feed (1627) 152
DSW (see device status word)
DSW sense IOCC, defined 102
duplex 172

EA (effective address) symbol 30

EBCDIC 8

effective-address generation 10

effective address generation (exceptions) 18
ELECTROGRAPHIC pencil 155

emergency pull switch 125

enable (ABL) indicator 122

end of field (EOF) 119

entry switches, console 124

entry, manual 124

EOF (end of field) key 119

EOR instruction 71

ERASE FIELD key (console keyboard) 120
erasures (1231) 155

error check (1442) 139

error check (2501) 141

error-correction routines (disk) 134
examples, (instruction, format of) 30
exceptions to effective address generation 18
exclusive-OR instruction 71

execute I/O instruction 100

execution (instruction) times 26, 27
expanded displacement 40

exposure to loss of data 183

EXT (accumulator extension) 20

extended binary coded decimal mterchange code (EBCDIC)
extension (accumulator) 20

El indicator 122

E2 indicator 122

E3 indicator 122

F bit 10, 11
feed busy (1231) 160
feed cycle modifier (1442) 137
feeding, card
1442 136
2501 140
field checking (1231) 157
fields (instruction) 10, 11
forced CPU branch (interrupt) 104
format bit 10, 11
format of instruction examples 30
format, data 4

1132 146
1231 155
formats

instruction 9, 11

numeric data 5
forms check light 124
forms control (1132) 146
FORTRAN 1
four-of-8 line transmission code 172
four-wire operation 172
full-duplex 172
full-transparent text 171
function code (I0CC) 102
function field JOCC) 102
function lights and switches (console) 124
function switches (console) 125
functional characteristics (CPU) 4

generation (effective address) 10
glossary 194

graphic mode (2250) 163
gravity stackers (1231) 155

Index 199

half-duplex operation 172
head (read/write) disk 129
home position (disk) 129
hopper (1231) 155

hopper empty (1231) 160

I (instruction address register) symbol 30
I/O devices (list of) 3
I/O disconnect (1231) 159
I/O interrupts 104
I/O, overlapping 183
I/O timing requirements 185
IA (indirect address) bit 11
IA indicator 122
IAR 19
IBM System/7
introduction 3, 188
programming
control 189
device status word (DSW) 191

electronic initial program load (EIPL)

initiate read 189

initiate write 189

I0OCC 188

sense device 190

sense interrupt 190
IBM 1055 Paper Tape Punch 143

IBM 1055 Paper Tape Punch limitations 143

IBM 1131 Central Processing Unit 2
IBM 1132 Printer 146

IBM 1134 Paper Tape Reader 143

IBM 1231 Optical Mark Page Reader 154
IBM 1316 Disk Pack 127

IBM 1403 Printer 149

IBM 1442 Card Read Punch 125

IBM 1627 Plotter 152

IBM 1627 Plotter not ready limitation 153

IBM 2250 Display Unit 162
IBM 2285 Display Copier 167
IBM 2310 disk capacity 130
IBM 2310 Disk Storage 130
IBM 2311 Disk Storage Drive 130
IBM 2315 Disk Cartridge 2
IBM 2501 Card Reader 139
illegal instructions (op codes) 122
ILSW . 110
ILSW sense IOCC, defined 102
IMM (immediate) stop switch 125
index register (XR 1, 2, and 3)

indicator 123

locations 9

SAC 169

SCA 182

specified 11, 14

2250 164

2311 138
indicator displays (console keyboard) 121
indicators (carry and overflow) 22

indicators (carry and overflow) set or reset by LDS 49

indicators (program) 19
indirect address 14
indirect address (IA) bit 11
indirect addressing (IA bit = 1) 14
initiate read I0CC 102
initiate write IOCC 102

SAC 169

SCA 172

1403 150

2250 164

2311 138
ink (1231) 154

200

input/output control commands 101
console entry switches 124
console keyboard 120
console printer 116
paper tape 144
SAC 168
SCA 181
single disk storage 132
1132 147
1231 159
1442 137
1627 153
2250 164
2310 130
2311 138
2501 140

instruction (I/O) 100

instruction address indicator 121

instruction address register 11, 19

instruction address register (IAR) 19
load switch 126
size 12
specified by tag bits 11, 12

instruction addressing summary 16

instruction examples format 30

instruction fields 10, 11

instruction formats 9

instruction times 26, 27

instructions, arithmetic 51

instructions, branch 90

instructions, CPU 26
A 51
AD 53
AND 67
BOSC 90
BSC 90
BSI 94
D 64
EOR 71
LD 31
LDD 33
LDS 49
LDX 39
M 62
MDX 97
NOP 74
OR 69
RTE 88
S 56
SD 59
SLA 74
SLC 81
SLCA 78
SLT 76
SRA 84
SRT 86
STD 37
STO 35
STS 47
STX 43
WAIT 99
XI0O 101

instructions, illegal, op codes 122

instryctions, shift 73

instructions, store and load 31

INT REQ key 119

INT RUN (interrupt run) mode 123

interference (to CPU) 186

interrupt level status word 110

interrupt, I/O 104
cause 110
keyboard 124

interrupt, I/O (continued)

level 107

levels indicator 123

mode (SAC) 168

priority 184

program stop 112

request 119

request (console keyboard) 121

run (INT RUN) mode 123

run mode 112

sample program 113

sense IOCC defined 102

subroutines 104

vectors 9, 107
interruptions to System/7 190
interruptions to 1130 191
introduction 1

IOCC’s (see input/output control commands or specific device)

IX indicator 122
11 indicator 122
12 indicator 122

KB select light 124

keyboard (console) 119
busy 121
device status word 120
entry 121
interrupt 124
programming 120
response interrupt 120
speed 119

keyboard console/keyboard switch 125

keyboard interrupt (2250) 166

language (programming) 1

last card (1442) 137

last card (2501) 141

last card sequence (1442) 137

last card sequence (2501) 140

LD instruction 31

LDD instruction 33

LDS instruction 49

LDX instruction 39

level-5, special considerations 112
level, interrupt 107

levels, interrupt, indicator 123

light pen switch status (2250) 166
lights (functions) and switches (console) 124
limitations, program-controlled disconnect feature 172
limitations, service request 184

line attachment (SCA) 171

line transmission code (4 of 8) 172
line turnaround (BSC) 178

list of I/O devices 3

LOAD (load core storage) mode 123
load (program) switch 126

load accumulator instruction 31
load and store instructions 31

load double instruction 33

load IAR switch 126

load index instruction 39

load key (1131/1442) 137

load mode (1442) 137

load status instruction’ 49

load, program

1134 144
1442 137
2501 140

location (interrupt vectors) 9

location (1132 .printer scan field) 9

Jocation restriction (double precision operand) 6
locations (core storage) reserved 9

logical AND instruction 67

logical exclusive-OR instruction 71

logical OR instruction 69

long (instruction) format 9, 11
long-instruction address generation 14
longitudinal redundancy check (LRC) 176
loss of data 183

LRC 176

M instruction - 62
machine registers (miscellaneous) 24
magnitudes of numeric data 6
manual entry 124
mark (1231) 154
mark positions (1231) 154
mark recognition and discrimination (1231) 155
mark reflectance (1231) 156
marking the data sheet (1231) 155
master data (1231) 160
master line (1231) 156
MDX instruction 97
message format (1231) 155
meter, usage (see usage meters)
miscellaneous machine registers 24
mode
cycle steal (SAC) 168
interrupt (SAC) 168
interrupt run 112
load (1442) 137
receive (BSC) 178
receive (STR) 176
switch (console) 123
synchronize (BSC) 179
synchronize (STR) 175
transmit (BSC) 179
transmit (STR) 176
transmit indicator 122
modifier field (I0OCC) 103
modify index and skip 97
modulo 4 129
monitor (disk) programming system 1
multi-mark (1231) 157
multiple response (1231) 156
multiply instruction 62
multipoint 171
multipoint operation (BSC) 178

negative displacement 14, 15
negative numbers 5, 6
no-operation (NOP) instruction 74
no-operation command (2250) 165
non-reflective ink (1231) 154
normal text 171

not ready
single disk storage 133
1132 148
1231 161
1403 151
1442 138
1627 153
2311 133

not ready or busy (2501) 141

numbers (negative, positive) 5, 6

numeric (NUM) key (console keyboard) 120
numeric data formats for arithmetic operations 5

" okay to select (1231) 160

OMPR 154

one through eight (1—8) indicators 122
OP (operation register) 24

op codes (illega) 122

Index

201

operands (numeric), size of 6
operation codes (illegal) 122
operation complete

single disk storage 133

1231 160
1442 138
2311 133
2501 141

operation flags indicator 122

operation register (OP) 24

operation register indicator 122
operation-tag register (TAG) 24

Optical Mark Page Reader (1231) 154

OR, logical, instruction 69

order-controlled interrupt (2250) 166
organization (disk) 134

organization of instruction descriptions - 30
overflow indicator 22

overflow indicator (set or reset by LDS) 49
overlapping input/output operations and throughput 183

P (1 and 2) indicators 122
panel, display (console) 121
paper tape (card) programming system 1
paper tape input/output devices 143
parity check (1403) 150
parity check light 124
pen motion (1627) 152
pencil, ELECTROGRAPHIC 155
phase, character (CP), indicator 122
pin-feed drum (1627) 152
plotter (1627) 152
plotter response interrupt (1627) 153
point mode (2250) 166
point-to-point 172
positive displacement 13
positive numbers 5, 6
power on/off switch 125
power sequencing (SAC) 170
precision (single, double) 5
print chain (1403) 149
print check (1403) 150
print complete (1403) 150
print scan check (1132) 148
print speed
1132 146
1403 149
print wheel (1132) 146
printer
busy (console) 117
busy (1403) 151
console 116
data coding (console) 116
DSW (console) 116
I/O control commands (1132) 147
IOCC’s (console) 116
not ready (console) 117
programming considerations (console) 117
response interrupt (comsole) 117
scan field (1132) 9, 146
speed, console 116
1132 146
1403 149

inters 146
printers 146

printing (1403) 149

printing speed (console printer) 116
priority, cycle-steal 168, 184
priority, device: 183, 184

priority, interrupt 184

processing unit (CPU)

program control devices 186
program control sheet (1231) 158
program control, direct 101

202

program-controlled disconnect limitations
program load

switch - 126

1134 144

1442 137

2501 140
program registers and program indicators
program run (RUN) mode 123
program, sample interrupt 113
program start switch 125
program stop (interrupt) 112
program stop switch 125
programming :

BSC, special 179

console keyboard 120

console printer 117

disk 131

notes (1132) 148

paper tape 144

SAC 168

SCA 180

single disk storage 129

STR, special 176

1132 147

1231 158

1403 150

1442 137

1627 153

1627 not ready limitation 153

2250 164

2311 131

2501 140
programming (and applications) 1
programming language 1
programming system (card/paper tape) 1
programming system (disk monitor) 1
punch (card) read 135
punch busy (paper tape) 145
punch not ready (paper tape) 145
punch response (paper tape) 145
punch response interrupt (1442) 138
punch, paper tape (1055) 143
punched card input/output devices 135
punching, card (1442) 137

' Q (accumulator extension) symbol 30

range of displacement 13
range of values (numeric data) 6
RDY indicator 122
read (card) punch 135
read busy (1231) 161
read-check (single disk storage) 132
read-check (2311) 132)
read command 102
console entry switches 124
paper tape 144
SAC 169
SCA 181
single disk storage 132
1231 159
1442 137
2311 137
read emitter (1132) 147
read emitter response (1132) 147
read error (1231) 160
read response interrupt (1231) 160
read response interrupt (1442) 138
read start (1231) 159
read/write head (disk) 129
read/write time (single disk storage) 129
read/write time (2311) 131

172

19

reader and system timing (2501) 141
reader busy (paper tape) 145
reader not ready (paper tape) 145
reader, paper tape (1134) 143
reader response (paper tape) 145
reading, card (1442) 136
ready indicator 122
receive (REC) indicator 122
receive mode (BSC) 178
receive mode (STR) 176
recognition, mark (1231) 155
reflectance, mark (1231) 156
reflective ink (1231) 154
register
index, specified 11, 14
instruction address 19
instruction- address specified 11
instruction address, specified by T bits 12
registers
index 19
index locations 9
miscellaneous 24
program 19
report program generator (RPG) 1
request-to-send 172
reserved core-storage locations 9
reset display command (2250) 165
reset switch 126
response (1231) 156
restore keyboard (REST KB) 119
restriction (double precision operand location) 6
rotate right accumulator and extension 88
rotational delay (single disk storage) 129
rotational delay (2311) 131
row (1231) 154
RPG (report program generator) 1
RTE instruction 88
RUN (program run) mode 123
run light 124
run mode, interrupt 112

S instruction 56
SAC (storage access channel) 168
sample interrupt program 113
SAR (storage address register) 24
saving data used by interrupted program 109
SBR (storage buffer register) 24
SC indicator 122
SCA 171
scan field (1132) 9, 146
scan, print, check (1132) 148
SD instruction 59
sector count 131
sector count (2311) 131
sectors (disk) 128
segment (1231) 154
select stacker (1231) 159
sense device 102
paper tape 144

SAC 169

SCA 182

single disk storage 133
1132 147

1231 159

1403 150

1442 138

1627 153

1627 not ready limitation 153
2250 165

2311 133

2501 140

sense interrupt (SAC) 168
sense interrupt IOCC, defined 102

l sensor based system 3, 188

sequences, control 175
sequences, control (BSC) 177
sequencing, power (SAC) 170
service request limitations 184
set programmed function indicators command (2501)
sheet, data (1231) 154
shift count 73

NOP 75

RTE 88

SLA 74

SLC 81

SLCA 78

SLT 7S5, 76

SRA 84

SRT 86
shift instructions 73
shift left accumulator and extension 76
shift left accumulator instruction 74
shift left and count accumulator 78
shift left and count accumulator and extension 81
shift right accumulator and extension 86
shift right logical accumulator 84
short (instruction) format 9, 10
short-instruction address generation 11
SI (single instruction) mode 123
signs S

in add double operation 53

in add operation 51

in divide operation 65

in subtract operation 57
single disk storage (in 1131) 129
single disk storage, programming 131
single instruction (SI) mode 123
single memory cycle (SMC) mode 123
single precision §
single response (1231) 148
single step (SS) mode 123
size (IAR) 12, 19
size (instruction address register) 19
size (of numeric operands) 6
skip response (1132) 148

skipping
1132 146
1403 149

SLA instruction 74

SLC instruction 81

SLCA instruction 78

SLT instruction 76

SMC (single memory cycle) mode 123
sonic delay lines (1231) 155

space response (1132) 148

spacing
1132 146
1403 149

special considerations for level-5 interrupt 112
special keyboard console programming 120
special power sequencing considerations (SAC) 170
special programming (BSC) 179
special programming (STR) 176
specification of TAR 11
specification of index register 11
speed
console keyboard 119
console printer 116

1132 146
1231 154
1403 149
1442 135
1627 152
2250 162

SRA instruction 84
SRT instruction 86
SS (single step) mode 123

Index

164

203

stabilization period (disk) 129
stacker (1231) 155
stacker select modifier (1442) 138
start (program) switch 125
start carriage (1132) 147
start-of-checking codes (1231) 157
start printer (1132) 147
start punch modifier (1442) 138
start read modifier (1442) 137
start regeneration command (2250) 164
status word (DSW) 110
status word (ILSW) 110
STD instruction 37
steal, cycle 101
STO. instruction 35
stop (immediate) switch 125
stop (program) switch 125
stop carriage (1132) 147
stop printer (1132) 147
stop, program, interrupt 112
storage (core) 2
storage (core) addresses 8
storage (core) locations, reserved 9
storage (disk) organization 128
storage (disk) programming 131
storage access channel (SAC) 168
programming 168

control 169

initiate read 169

initiate write 169

read 169

sense device 169

sense interrupt 168

write 169

special power sequencing considerations 170

storage address indicator 121
storage-address register (SAR) 24
storage buffer indicator 121
storage-buffer register (SBR) 24
storage capacity (single disk storage) 128
storage capacity (2311) 127
storage cycle times 2
storage, disk 127
storage drive (single disk storage) 2
storage drive (2311) 3
store (and load) instructions 31
store accumulator instruction 35
store double instruction 37
store index instruction 43
store status instruction 47
STR 171
STR control operations 174
STS instruction 47
STX instruction 43
subroutines, interrupt 104
subtract double instruction 59
subtract instruction 56
summary of addressing concepts 16
symbols and organization of instruction descriptions
sync check (1403) 150
synchronize mode (BSC) 179
synchronize mode (STR) 175
synchronous communications adapter (SCA) 171

device status word 181

DSW indicators 181

I/O control commands 181
control 181
initiate read 182
initiate write 182
read 181
sense device 182
write 181

programming 180

204

synchronous transmission 171

synchronous transmit-receive (STR) 171
synchronous transmit-receive operation 174
system (card/paper tape programming) 1
system (disk monitor programming) 1
system programming (1231) 159

System/7 sensor based system 3, 188

T (0-7) indicators 122

T bits 11

T bits (specify IAR) 12

TAG (operation-tag register) 24

tag (T) bits 11

tag bits (specify IAR) 12

tag bits = 00 (instruction address register) 12

tag bits = 01, 10, or 11 (index register 1, 2, or 3) 14

tape (paper) specifications 143
tape, carriage, channels (1403) 149
tape, control (1403) 149

tape, Mylar, limitation 143

tape, paper, 1/0 devices 143

TC indicator 122

temporary accumulator (TAR) 24
terminology, data sheet (1231) 154
test timing mark check (1231) 160
throughput, card (2501) 141
throughput, I/O 183

timers (SCA) 173

times, instruction 26, 27

timing
1/0 requirements 185
SCA 182
single disk storage 129
1442 131
1627 152
2311 131
2501 141

timing mark (1231) 154
timing mark error (1231) 160
tracks, disk 128

transfer complete (1403) 150
transfer sequence, bit 173
transmit mode (BSC) 179
transmit mode (STR) 176
transmit mode indicator 122
transparent, full, text 171
TSM (transmit mode) indicator 122
turnaround, line (BSC) 178
two-wire operation 172

two’s complement (negative) 6

upper case (console printer) 116
usage meters

1131 126
1132 148
1231 161
1403 151
1442 139
2310 134
2311 131
2501 142

V (value) symbol 30
vector, interrupt - 107
vectors, interrupt, location 9

W (wait) indicator 122
wait instruction 99

WCA (disk) 131
WCA (SAC) 169
word (CPU) 2,4
word (1231) - 154
word count address (single disk storage) 131
word count address (2311) 131
wraparound 8
write 102
1/O control commands 160
paper tape 144
SAC 169
SCA 181
1403 150
1442 137
1627 153

XIO instruction 100
XR (index registers) 19
locations 9
specified 11, 14
X7 indicator 122

ZR indicator 122

1055 Paper Tape Punch 143
(see also 1134/1055 programming)
1055 Paper Tape Punch limitation 143
1130 instruction set 26
1130 word (definition) 4
1131 CPU 2, 4
single disk storage 129
usage meter 126
1132 Printer 146
data format 146
device status word 147
DSW indicators 147
carriage busy 148
carriage control channels 148
not ready 148
print scan check 148
printer busy 148
read emitter response interrupt 147
skip response interrupt 148
space response interrupt 148
forms control 146
1/O control commands 147
control 147
read emitter 147
sense device 147
space 147
start carriage 147
start printer 147
stop carriage 147
stop printer 149
printer scan field (location) 9
programming 147
programming notes 148
usage meter 148
1133 163
2250 163
1134 Paper Tape Reader 143
1134/1055 programming 144
character code 143
core storage format 144
device status word 145
DSW indicators 145
punch busy 145
punch not ready 145
punch response interrupt 145
reader busy 145
reader not ready 145
reader response interrupt 145

1134/1055 programming (continued)

1/O control commands 144
control 144
read 144
sense device 144
write 144

tape specifications 143

1231 Optical Mark Page Reader 154

alphabetic coding schemes 157, 158
data flow 156
data format 155
data sheet 154, 155
device status word 160
DSW indicators 160
busy 161
check stop 160
document selected 160
feed busy 160
hopper empty 160
master data 160
not ready 161
okay to select 160
operation complete 160
read busy 161
read error 160
read response interrupt 160
test timing mark check 160
timing mark error 160
field checking 157
1/O control commands 159
control 159
I/O disconnect 159
read 159
read start 159
select stacker 159
sense device 159
mark positions 155, 158
mark recognition 155
master mark 156
message format 155
program control sheet 158
programming 159
segments 154
timing mark 154
usage meter 161
word 154

| 1316 Disk Pack 127
1403 Printer 149

control tape 149
data format 149
device status word 150
DSW indicators 150
carriage busy 151
carriage channel 9 151
carriage channel 12 151
carriage interrupt 150
not ready 151
parity check 150
print check 146
print complete interrupt 150
printer busy 151
sync check 150
transfer complete interrupt 150
1/O control commands 150
control 150
initiate write 150
sense device 150
write 150
maximum printing speed 149
programming 150
spacing and skipping 149
usage meter 151

1442 Card Read Punch 135

card feeding 136
card punching 137

Indek

205

1442 Card Read Punch (continued)
card reading 136
data coding 136
device status word 138
DSW indicators
busy 139
error check 139
last card 139
not ready 138
operation complete interrupt 138
punch response interrupt 138
read response interrupt 138
I/O control commands
control 137
feed cycle 137
read 137
sense device 138
stacker select 138
start punch 138
start read 137
write 137
last card sequence 137
program load 137
programming 137
programming note 139
speeds 135
usage meter 139
1627 Plotter 152
carriage 152
device status word 153
drum 152
DSW indicators 153
busy 153
not ready 153
not ready limitation 143
plotter response interrupt 153
I/O control commands 153
sense device 153

write 153
pen 152
programming 153
speed 153

2250 Display Unit 162

alphameric keyboard 163

channel interface 163

character mode 163

device status word 165

displays 163

DSW indicators 166
address displacement 166
busy 166
character mode 166
cycle-steal check interrupt 166
detect interrupt 166
keyboard interrupt 166
light pen switch status 166
order-controlled interrupt 166
point mode 166

206

2250 Display Unit (continued)
graphic mode 163
input/output control commands 164
control 161
initiate read 164
initiate write 164
no-operation command 165
reset display command 165
sense device 165
set programmed function indicator command
start regeneration command 164
programming 164
usage meter 165
2285 Display Copier 167
2310 Disk Storage 130
(see also disk storage drives)
2311 Disk Storage Drive 130
(see also disk storage drives)
2315 Disk Cartridge 127
2501 Card Reader 139
card feeding 140
card reading 140
card throughput 141
data coding 140
device status word 141
DSW indicators 141
busy 141
error check 141
last card 141
not ready or busy 141
operation complete interrupt 141
I/O control commands 140
initiate read 140
sense device 140
last card sequence 140
program load 140
programming 140
reader and system timing 141
speed 139
timing schematic 141
usage meter 142

164

GA26-5881-6

BN

International Business Machines Corporation

Data Processing Division .

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

(10-0EL L) sonsuaoeIey) [euonsung ogL L gl

9-188G-9¢VD 'V’'S'N Ul parulig

GA26-5881-6

Your comments, please . . .

"This manual is part of a library that serves as a reference source for systems analysts,

programmers, and operators of IBM systems. Your comments on the other side of this

form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

First Class
Permit 40
Armonk

New York

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

N

IBM Corporation

Systems Publications, Dept 27T
P.O. Box 1328

Boca Raton, Florida 33432

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604

[U.S.A. only]
IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017

[International]

(10-0€L 1) sonsialdetey] jeuonnduny QELL NG|

_____._—__.___..—.__._..____—..—___—_—___.—_.__

—_— — — —— — — —— aubuoiy INY) — — —

9-1885-92VD "V'S'N Ul paulid

READER’S
IBM 1130 Functional Characteristics _ COMMENT
GA26-5881-6 FORM
Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments.)

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209

