HP 9000 Series 200 Computers U2 oiciaro

Pascal
System Designer’s Guide

Pascal 3.0

System Designer’s Guide
for the HP 9000 Series 200 Computers

Manual Part No. 98615-90074

© Copyright 1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

a
(]

Copyright 1980, Bell Telephone Laboratories, Inc.
[d

&

Copyright 1979, 1980, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California.

@

S

Copyright 1979, The Regents of the University of Colorado, a body corporate.

This document has been reproduced and modified with the permission of the Regents of the University of Colorado, a
body corporate.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

February 1985... Edition 1

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard computer sys-
tem products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days from the date of shipment.* Hewlett-
Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This warranty
includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be shipped
freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not provided by
Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninter-
rupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR
CONSEQUENTIAL DAMAGES.

HP 9000 Series 200

For the HP 9000 Series 200 family, the following special requirements apply. The Model 216 computer comes with a 90-day,
Return-to-HP warranty during which time HP will repair your Model 216, however, the computer must be shipped to an HP
Repair Center

All other Series 200 computers come with a 90-Day On-Site warranty during which time HP will travel to your site and repair
any defects. The following minimum configuration of equipment is necessary to run the appropriate HP diagnostic
programs: 1) 2 Mbyte RAM; 2) HP-compatible 32" or 54" disc drive for loading system functional tests, or a system install
device for HP-UX installations; 3) system console consisting of a keyboard and video display to allow interaction with the CPU
and to report the results of the diagnostics.

To order or to obtain additional information on HP support services and service contracts, call the HP Support Services Tele-
marketing Center at (800) 835-4747 or your local HP Sales and Support office.

* For other countries, contact your local Sales and Support Office to determine warranty terms.

Table of Contents

Chapter 1: Introduction

System Internals Documentation i 1
Fair Warning 2
How to Use This Documentation i, 4
Prerequisites e e e 5
Differences Among Pascal Releases i 6
System Distribution P 7
The CTABLE Programo .t 7
File System e 7
Object Code Incompatibility, 8
New Peripheral Support i e 9
MiSCellaneouso e 9
Software Tools Used for System Generatlon 10
Assembler and Librarian O 10
Pascal Compiler 10
Memory Allocation of Varlables ... 11
Chapter 2: The Booting Process
Introduction 13
Concepts of Linking and Loadmg .. 13
Overview of the Booting Process, 15
How the Boot Files are Chosen i, 17
Memory Map Development e e e e 18
Summary of the Booting Process i 28
The Pascal Kernel e 29
Refresher on Pascal Modules i 29
Modules in the Kernel O 32
Digression on a Trick O 34

Chapter 3: The File System

Introduction 35
Representation of File Varlables ... 36
High-Level File Operations it 37
The Access Methods e 38
The Unit Table 40
The Transfer Methods i 40
The Directory Access Methods i, 41
How the Access Method is Selected 42

Fieldsof a FIB PP 45
Variant Fields 51

The Unit Table 52
The Fields of a Unit Entry 53

Table of Contents iii

Chapter 4: File Support

INtroductiont e 59
Error Reporting by the File I/O Subsystems, 69
File System EXports 72
dOPrefixX .t 75
fanonfile 76
TDlOCKIO . oo 78
Thuflerrel . .. &0
FCl0SE . o e 81
FClOSEIt . oot e 82
feOf o 83
FEOIM o o 84
Bt o 85
=1/ 86
1-00] 70>: <2 87
FR P OPEN . .o 88
FpreSet .. o 91
Andvolumeo 93
ANt e 94
XTI . . e e e 95
fmaketype . ..o 96
B DOS .« . o 98
foverfile . ..o 99
fOVErPIINt ..o 101
DDaZE . o 102
BDOSIEION . ot 103
DUt o e 104
fread ... 105
freadbool ... o 106
freadbytes 107
freadchar ... o 108
freadenumm e 109
freadint e e e 110
freadln ... e e 111
freadpancot 112
freadreal 113
freadstr .o 114
freadstrbool ... 115
freadstrchar 116
freadstrenummn 117
freadstrinto e 118
freadstrpanco 119
freadstrreal e 120
freadstrstr ..o 121
freadstrword 122
freadword e 123
T <)< P 124
fSETIPNAINE . . oo 125
BWTIEE .o 126
TWTItEDOOl . .t e 127

iv Table of Contents

fwritebytes e 128

fwritechar e 129
fwriteenum 130
FWEIEEINt .. 131
BWIIbEIN .o 132
fWIItePa0C . . oo 133
fWritereal 134
fwritestr O 135
TWritestrbool . ..o 136
fwritestrchar 137
TWrIteStrenumo 138
TWIIEESEIINt . .. 139
fWIitestrpanc 140
fWritestrreal 141
2 911 5 =17 o R 142
TWrItestrword e 143
WL EWOTA . oo 144
SCANtItle . .. 145
SUIIX o 147
ZAPSPACES o vttt e e e 148

Chapter 5: Directory Access Methods

Reference Specification for Directory Access Methods (DAMs) 149
The Golden Rule for DAMS e 150
Calling DAMS ..o o, 150

The LIF Directory Access Method 158

Implementation of LIFMODULE 160
LIF Directory File Names i i 161
Routines within Procedure LIFDAM0t 162
Details on Various DAM Requests i, 167

Chapter 6: File Operations

Introduction 173
Filepack Examples 174
Function MIN ... 175
Function IOERRMSG 175
Procedure IOCHECK s 175
Procedure BADIO 176
Function UNITNUMBER 176
Function SAMEDEVICE e 176
Procedures ANYTOMEM and MEMTOANY 177
Procedure SETUPFIBFORFILE 180
Procedure CLOSEINFILE i 182
Procedure CLOSEQUTFILE e 183
Procedure FILECOPY 183
Procedure VOLUMES e 187
Procedure REPACK 188
Procedure OPENDIR e 188
Procedure CLOSEDIR e 189
Procedure CREATEDIR 189

Table of Contents v

Procedure MAKEDIR e 190

Procedure MAKEFILE e e e e e 191
Procedure ENDC AT ... e e 191
Procedure START CAT ... e e e e 192
Procedure CAT e 194
Procedure DUPLICATE e e e e e 195
Procedure REMOVE . .. e 196
Procedure CHANGE .. . e 196
Procedure END P ASS ..o 197
Procedure STAR T LIST PASS ... e e et 197
Procedure LISTATTRIBUTE e e e 198
Procedure LISTPASSWORD e e 199
Procedure CHANGEPASSWORD i 200
Procedure PREFIX ... e e 201

Chapter 7: CPU Interrupt Handling

Introduction 203
Hooking in Your Own ISR 208
A Cautionary NOtettt 209
Restrictions on Interrupt Service Routines 210
Error Conditions “Thrown Away” i, 210
The “ISR in an ISR” Mistake it 210

Chapter 8: The Keyboard

Introduction e e 211
Summary of Keyboard Controller Capabilities 212
Keyboard “Cooking” and “Raw” Data i, 214
Keyboard Access with the File System i 215
Echoing Read 215
Non-Echoing Read i 216
The Beepero 217
Easy-to-Use EXtensions 217
Avoiding “Hanging Reads” i 217
Timing with the System Clock i 218
Using the System Clock and Calender, 218
Remapping the Keyboard 219
Here is What You Want to Know 222
Gritty Details of the Keyboard i 229
About the EleCtronicsottt e e e 229
Keyboard Microcomputerottt 229
CLOCK ot 229
Circuits Common to the 98203 Keyboards 229
Protocol for Keyboard Handling i 230
Communication Addresses 230
Interrupting the 68xxx 230
Sending a Command to the 804x i 231
Processing an 804x Service Request i 231
Using the Four-Voice Sound Generator i, 233
“Black Box” Description of Functions i i 237
GeneTalltles ...\ttt e e 237

vi Table of Contents

Load Timer Output Buffer Commands 238

Data Request Commands o 239
Set-Up Commands 242
Trigger Commands 245
Keyboard Command Processingouuuueiuiaiii i, 246
Knob and Timer Details (8041) i i .. 251
The Keyboard at Power-up and Reset 251
Pascal Interface to the Keyboard 252
804x Code Revision and Features Identification 252
The Interface to HP-HIL Devicesoouuuuiuuuiiin . 253
The Interface 254
The New Keymap ... 261
Chapter 9: Displays
Introduction 265
“Alpha” Displays 266
Display Hardware Capabilitiescuieeeniinnnnn ... 267
Alpha Screen Driver Considerationsc.coouiieeuinn ... 275
“Bit-Mapped” Displayso i 276
Display Hardware Capabilities 0. 277
Alpha Screen Driver Considerationsouuiiie i . 278
Alpha Displays 278
Controlling the Model 237 Bit-Mapped Displaycooreenenn ... 282
The Replacement Rule i, 282
Using the Line-Mover 283
Model 237 Frame Buffer Allocation i ... 285
Caveats 286
Graphics Screen Driver Considerationsc. 0 uouiiii ... 287
Pascal Access to the CRT i 289
File System Operations i, 289
Scrolling 290
Lower-Level Access to the CRT i, 290
Cursor MOtIOn 290
Interrogating the Dimensions of the CRT 2901
Turning the Screens On and Off 291
Dumping the Alpha or Graphic Screens 291
Chapter 10: Internal Disc Drives
Floppy Control Board 293
Theory of Operation oo, 293
Status and Control Registerso o, 296
On-Board RAM (256-byte buffer) 299
Commands and Status 300
Type I Command Flags i 300
Type I Command Flags 301
Type IIl Command Flags 302
Type IV Command Flags 302
Type I Commands i 303
Type Il Commands 304
Type III Commands 305

Table of Contents vii

Type IV Commands i 306
Status Information e 306
Programming Considerationsooiiiiiiiiiiiiiiii 308

Chapter 11: The Boot ROMs

INtrodUCtION . .ottt e e 309
OV VIEW o ottt e e e e e e e e 310
Boot FOTTNats . ..ottt e e e e 312
ROM Headers ..ottt et e e e e e e 312
Boot Disc FOrmatsttt e e e e 316
LIF System File Format i 318
SDF Boot Area Format ouiiuni s 322
UNIX Boot Area Formatccoiiiii i 323
ROM/EPROM Pseudo-Disc Formatt 324
SRM System Files 324
Default Mass STOTAZEottt t ittt e et 325
CPU Board ID PROM ... e e e 329
Machine Configuration it 332
SY SFLAG oo 332
SY SF LAG oot 333
BAT T ERY ot 333
Device Configuration Identification i 334
CRTID, CRT Presence, Graphics Presencecoo... 335
Keyboard 338
N RIVES . o 338
Boot ROM Configuration and Revision 339
Power-Up OPtIONSottt e e i 340
Memory Test Length 340
Self-Test LOOPING . o oo vttt e e e e 340
50/60 Hz CRT o e 341
Configure Mode Software Override i 341
CPU State at Load e 343
Read Interface and Secondary Loading 344
Flexible Disc DIIVErS . ..ottt e s 350
System Switching i 357
ORTINI T e e e e e 359
NMI_DECODE .. e e 360
CRASH . 361
Character Table e 361
High RAM Map ..o e e 362
Low ROM Map Exception VECtOrs, 366
Using Boot ROM Routines from Pascal oot 369
Creating a Bootable System 370
Guidelines for System Creation it . 371
Rules for Using the Boot Commandt 372
An Example 372
Trap/Exception Vectors used in Pascal i 374

viii Table of Contents

Chapter 12: DGL Internals

Introduction e .. 375
The History and Philosophy of DGL 375
The Structure of DGL 376
IMPORT Hierarchy o e 378
DGL Modulesot 381
Changes From Previous Implementations 381

DGL Responsibilities 382
DGL’s Graphics Control Block 382

Other DGL Variables 383
DGL Initialization 383
DGL EITors 384
Locator Echoes 385
Specific DGL Taskso 386

GLE Responsibilities 388
What Is GLE? ... e 388
GLE’s Graphics Control Blocks 389
GLE Modules 391
GLE Initialization 392
Features of GLE 396
Example GLE Program 397

DIIIVers .o 404
Functional Description 404
Syntactical Description 405
Driver Data Structuresttt 406
HPGL Move Example i 407

Graphics System Initialization 409
GRAPHICS _INIT .. e 409
DISPLAY _INIT ..o e e 410
Raster Display Initialization 413

Chapter 13: Floating Point Card

Introduction 417
National’s Hardware i e 418
The Pascal Workstation’s Design and Interface 420
Talking to the Card 423
Writing Data to the Card 423
Removing Data from the Card 424
Performing Operations on the Card 425
Walting ... 426
Interrupts .. 427
Memory Map ... 428
Creating Pseudo-Instructionsot 429
Long Reals (Longs) 429
Short Reals (Floats) i 430
Register-Register Moving i i 430
Register-Memory Moving 431
Status and Control 434
Programming Examples 436
Powerup/Reset 436

Table of Contents ix

Error Handlingo o e 436

Bogus Reads 436
Moving Data Into the FPU 437
Moving Data Out of the FPU i 439
Saving and Restoring Contextt iiniiiiiiiiiiiiia. 440
On-Board FPU Operationsooouuiuimtmenetn e 441
Putting it All Together i 441
Operating System Modifications i i 442
Differencest e 442
DEbUGEING . . oot 443
Floating Point Instruction Recognition 443
Floating Point Instruction Knowledge o i 443
Reading and Altering The Floating Point Registers 444
Pseudo-Instruction Table i 445
Long-Real Operationsoouuiiiuniuiinniiiii i 445
Short-Real Operations oiiniiiinii i, 446
Conversion-Moves Between FPU Registers i, 450
Non-Conversion Moves Between FPU Registers 450
Moves Between 68xxx and FPU 451

Chapter 14: Object Code Format

Introductiont e 453
Purposes of the Object Code Format 453
Definitionst 453

Structure of a Library File 454
Library Directoryottt it e e e 454
Module Directoryt e 455

General Value or Address Record (GVR)o il 457
Flags .o e 458
Reference PoInteri ittt 459
How a GVR is evaluated i 460
EXT Table (External Symbol Table) i, 460
DEF Table (Definition Symbol Table) 461
Define SOUTCeottt e e e 461
TEXT Record e e e et ettt 462
REF Tables ... e e e e 462
Miscellaneous NOteSttt e e e 463

Chapter 15: Device I/0

Introduction e e e 465
The Hardware VIew e e e e 466
The Programmer VIEWttt 467
General Architecture i e 468
Main Data StIUCtULESottt e e e e 471
ISC _TABLE .. 471
Driver Read/Writeoioiiiii 474
Buffer Control Block i e e 476
DrIver StIUCtUTE ..ottt e e 478
High-Level Routinesottt e e 481
Execution Walkthrough 482

x Table of Contents

Power-Up .o e e 482

StOp Ky .o e 483
Program Compilation and Execution o i 483
Low-Level Drivers e e 485
HP-IB o 485
GPIO . e 486
DM A 486
Data Comm (98628A/98629A) ittt 488
I/O Examplest 490
Using Special Buffers 490
Remote Console DIivert e e e e 491
REMEKEY S TEX T . e e e e e e e e 497
REMO O R T, T X T e e e e e e e e 501
Removal of Drivers e e 508
Addition of a Driver e 509
A Specific Example e 509
Modification of a Driver it e 512
End-of-Transfer Procedures i 513
Interrupt Service Routine Procedures i 515
HP-IB Interruptso oo e e e 516
GPIO Interruptsttt e e e et e e e 522
Serial INterTUPES . ..ot 527

Table of Contents xi

Introduction

System Internals Documentation

You are reading the Pascal 3.0 System Designers’ Guide to the HP 9000 Series 200 Computers.
It is one part of the System Internals Documentation (SID). The Internals Documentation
includes:

System Designers’ Guide

Assembly Language Source Code Listings (Volume 1)
Pascal Source Code Listings (Volume II)
Utilities Disc

Accessory Development Guide

The System Designers’ Guide is a collection of engineering notes and reference specifications
describing the software interface to the hardware systems supported by Pascal 3.0. Inside you
will find detailed information covering a broad range of topics—to quote one of the designers,
“enough information to make you dangerous.” Reading the following warning may protect you
from costly mistakes.

The listings provide you with examples of the actual source code of the Pascal 3.0 Language
System.

Introduction 1

Fair Warning

If you use the information in this document, you are writing hardware-dependent and operating-
system-dependent programs which will, by definition, be hard to transport to other computers or
operating systems. The decision to do so, and the consequences thereof, are your responsibility.
Here are some suggestions and observations which may help protect your investment in HP
products.

Sometimes the competitive need to innovate will force system designers into really unpleasant
decisions which may invalidate code customers have written. Technologies are changing more
rapidly and radically than ever before; no one is wise enough to foresee or design for every even-
tuality, and really big steps like transparent remote file access (the Shared Resource Manager)
are bound to create transportability problems.

Even if your application is written in “vanilla” Pascal and has essentially no system depen-
dencies, you might have to recompile it to move to a new release. (We try hard to avoid this!
Recompilation is always necessary, however, if the “major revision” number—the digit to the
left of the decimal point—changes.) But there is an HP Pascal language standard; we do our
very best to stick to it in letter and in spirit.

If your application accesses modules of the OS and fiddles with system variables or calls system
routines, there is more danger of creating a serious problem some time in the future. However,
the module interfacing techniques used to build this system give considerable protection as long
as the program in question runs only under this operating system. So long as we aren’t forced
to change a module’s interface, your code should upgrade freely; even if we must change an
interface, you probably need only recompile. This is in sharp contrast to systems written in
assembly language, which are often dependent on addresses which change from release to release.

The Right Approach for Writing Assembly Language Routines

If you write an assembly language routine which accesses system variables, using hard-coded
displacements into the global area or some equally rigid arrangement, it is likely to create a hassle
someday. We encourage programmers—our own included—to approach assembly language this
way:

1. Write the whole application in Pascal first. Use system programming extensions if you
need to. Don’t worry about speed; most people are amazed by the computational perfor-
mance of the 68xxx processors.

2. If some part of the application is too slow, think carefully about the options to improve

it. For instance, suppose the program repeatedly reads a voltmeter and seems to take
longer than can be tolerated. If you are using the highest level of the I/O Library, you're
driving a luxury car. It is very easy to drive, but it wallows around the curves. You
might process the voltmeter readings as fixed-point numbers (scaled integers) instead of
floating-point numbers, and do character I/O directly by calling a lower level of the 1/O
Library, thus avoiding some overhead.
Going to a lower-level entry into the system is an option which doesn’t exist with most
interpreted language systems, such as BASIC. The advantage of this route is that by
directly importing the lower-level modules, you let the Compiler take care of resolving
the interfaces. If things move around, you need only recompile to adapt.

2 Introduction

3. If you decide you must write assembly code, design your routines so that they operate
only on parameters passed in, without side effects on variables in other modules. It is
often wise to use the information in the Assembler chapter of the Pascal 3.0 Workstation
System manual to make your assembly code look like code generated by the Compiler.

This warning is not intended to give you a warm, fuzzy feeling; it is intended to be fair. We

have had enough requests for this information to believe that it meets a need. But before diving
in, be sure you can afford the swim.

Introduction 3

How to Use This Documentation

This documentation consists of three books: the one you are reading, a volume of system listings
written in HP’s system programming dialect of Pascal, and a volume of assembly language code.
Both the listings volumes also include cross-references to Pascal or assembly language identifiers.

Be aware that these source listings are proprietary material and are protected by copyright.
They are provided for reference purposes only.

These listings are not complete—they cover those parts of the system which we wanted to
make accessible to customers; but suppress other parts. What is presented in detail is the
following: I/O drivers and underlying software support architecture; interrupt handling; object
code format and the process of linking and loading programs; memory maps and development
of the execution environment; DGL; floating-point math card (HP 98635A) support.

Other levels of the system are documented only at their interfaces. For instance, the file support
level (routines called by the compiler) is documented by specifying the procedures which can be
called, and what the stack should look like upon entry. This should simplify interfacing other
compilers to the OS.

Low-level manipulations of files are performed by calls to “Directory Access Methods” (DAMs)
and “Access Methods” (AMs). The architecture of this level is discussed, and there are detailed
examples showing how to program the most important operations.

The purpose of this document is to tell you how to write programs which “get inside” the machine
and make it do some very specialized things. The document is not primarily a hardware guide,
although there is some material on the hardware!. A typical reason for using the information
published here might be to write and install a device driver for a non-HP interface card.

We did not concentrate on documenting the Series 200 family at the lowest (hardware) level
primarily because we felt that most customers would be best served by building on the software
base we have created. We believe you will be better off, for instance, using our disc drivers than
trying to write your own. Ours were written by experts, and they protect you from ruining
expensive disc drives. Moreover, we have provided a uniform interfacing structure. If new mass
storage products are added and you are using the Pascal support structures, your programs
should be able to use the new products right away. Another example is the HP-IB interface.
It can be made to do some simple things fairly readily, but to explain all its idiosyncrasies and
strange states would take more doing than seems justified by the requests we have had for that
information.

1 For more in-depth information on the hardware, see the Series 200 Accessory Development Guide, also for the Series 200.

4 Introduction

NOTE

In this set of manuals, the term 68xxx, in reference to the CPU of the
Series 200 machine, means either the MC68000 or the MC68010, from
Motorola.

Also in this set of manuals, the term 804x, in reference to the keyboard
processor of the Series 200 machine, means either the 8041 or the 8042,
made by Intel.

Prerequisites

To use this material successfully, you must be a good Pascal programmer, acquainted with the
concepts of “system programming,” and familiar with OS design principles in general. You
should have read and understood the contents of:

e Pascal 3.0 Workstation System manual (concentrate on modules and system programming
language extensions);

® Pascal 3.0 Procedure Library manual (know the concepts of physical device I/O); and
e MC68000 User’s Manual (know your computer’s CPU).
e Many examples will also require you to understand 68xxx Assembly language.

Generally, this documentation has been written in a style that requires you to read it thoroughly
rather than just use it for reference.

Introduction 5

Differences Among Pascal Releases

The material in this manual describes the internal organization and specifications of release 3.0
of the Pascal language system for HP Series 200 desktop computers.

Pascal 3.0 is very similar to Pascal 2.x in most respects, the most notable differences being in
the human interface to the internal peripherals: the keyboard controller and CRT. Of course,
Pascal 3.0 supports more external peripherals than does Pascal 2.x.

Pascals 2.x and 3.0 are substantially the same; there are very substantial differences between
the internal structures of the 1.0 and 2.x releases. In either case, this material is not a good
guide to the innards of previous implementations; to use it that way would be very misleading.
Don’t try.
The main differences between the 1.0 and 2.x releases are:

e Organization of discs on which the system is distributed,

e Peripheral configuration (CTABLE Program),

e File system,

e Object code format,

e 1/0 Drivers,

e New peripheral support, and

e Miscellaneous.

The main differences between the 2.x and 3.0 releases are:
e Organization of discs on which the system is distributed,
e Built-in peripheral access,
e Peripheral configuration (CTABLE Program),

Some 1/O Drivers,

New peripheral support, and

e Miscellaneous.

Each of these issues is discussed in the following sections, with the exception of CTABLE, which
is covered in the Pascal 3.0 Workstation System manual.

6 Iniroduction

System Distribution

The Pascal 1.0 software was distributed on a set of four discs. The system library file contained
the entire complement of 1/0O, Graphics and OS interface modules. The system as booted up
by the user contained 1/O driver software for all supported peripheral devices.

Pascal 2.0 was distributed on six discs. The system library file is almost empty, and the 1/0,
Graphics and OS interface modules are supplied on a separate disc. The user can put just the
ones he wants into his system library. The system as supplied contains I/O driver software for
the most common peripherals but not for all; this was done to conserve memory for the average
user, since Pascal 2.0 supports many more peripheral devices. The less commonly needed drivers
are supplied on a separate disc.

Pascal 2.1 was also distributed on six discs. The system library file is almost empty, and the
I/0, Graphics and OS interface modules are supplied on a separate disc. The user can put just
the ones he wants into his system library. The less commonly needed drivers are supplied on a
separate disc.

Pascal 3.0 is distributed on ten discs. Again, the system library file is almost empty, and the
I/O, Graphics and OS interface modules are supplied on separate discs. Pascal 3.0 supports
more peripheral devices than Pascal 2.0 or 2.1. The less commonly needed drivers are supplied
on a separate disc.

Consequently, before compiling or running programs which do device I/O or graphics, the
required modules should be added to the system library. Similarly, to configure a system to use
certain peripherals, the Librarian must be used to install the required driver software.

Documentation is provided which explains how and when to install optional software into the
system library and the Operating System.

The CTABLE Program

Pascal 3.0 scans interfaces for various peripherals and automatically configures itself, similar to
Pascal 2.x. Auto-configuration is discussed in the Pascal 8.0 Workstation System manual.

File System

The Pascal 3.0 file system is very similar to the Pascal 2.x file system. For discussion on the file
system, see the Pascal 8.0 Workstation System manual.

Introduction 7

Object Code Incompatibility

Object code is incompatible—non-executable—between “major revisions.” That is, a program
or module compiled on one major revision will not run on another major revision; it is object
code imcompatible. However, it still may be source code compatible, which means that a simple
recompilation would suffice to port the program to the other major revision of the operating
system.

A “major revision” is a turn of the operating system such that the number to the left of the
decimal point changes. For example, the turn from Pascal 2.0 to Pascal 2.1 is not a major
revision, and thus, the object code is compatible between these two (non-major) revisions.
However, the turn from Pascal 2.1 to Pascal 3.0 s a major revision, and thus programs and
modules will at least have to be recompiled.

The loader enforces the rule about running code only from the same major revision of the
operating system. If you attempt to execute an object file which was compiled on another
major revision of the operating system, you will get the following message:

incorrect version number

There are several reasons (not all of which are listed here) which warrant a major revision:
e Changes in global constants, types, or variables; for example, CRTIREC.

e Entry points being added, deleted, or their functionality changed. For example, the
Pascal 2.x procedure KBDCOMMAND has been replaced by SENDCMD, SENDDATA, and CMD_READ_1
in Pascal 3.0.

e Other miscellaneous side effects. For example, cache memory in Pascal 3.0; it did not

exist in previous versions.

The 2.x and later Filer and Librarian can deal with code files from any major revision of the
operating system, and the 2.x and later Filer, Assembler, Compiler, and Editor can deal with
source files from any version although Pascal 3.0 introduced some new compiler directives.

8 Introduction

New Peripheral Support
The following peripherals are supported by Pascal 3.0.

e The CS-80 discs (7908 family) are supported, including the streaming backup tape drive.
Subset 80 mass storage devices: 913XD, 9122, etc.

The Shared Resource Manager is fully supported.
The 8920x and 9121 flexible disc drives are supported.

Several new versions of the 913x micro-Winchester disc are supported. They look like one
big medium instead of four smaller ones.

Certain more obscure features are supported, too. For instance, the 3.0 system can be tailored
by the customer to run from a terminal instead of the built-in CRT and keyboard.

Miscellaneous

Supervisor vs. User State

Pascal 1.0 ran all programs in the 68xxx’s “supervisor mode”. Since the 2.0 release, user
programs now run in “user mode,” using the USP (User Stack Pointer). Interrupts run in
“supervisor mode,” using the SSP (System Stack Pointer). This would affect programs which
were written to call routines in the Boot ROM. Since the Boot ROM entry points were not
documented in the 1.0 system, few, if any, customer programs will be affected. Many Boot
ROM calls require cache to be off.

SYSDEVS

One major difference between Pascal 2.x and Pascal 3.0 is the software interface to the internal
peripherals. The new module SYSDEVS contains export text and hooks for entry points for what
used to be 5 modules in Pascal 2.x (KBD, KEYS, CRT, BAT, and CLOCK). This is not a pure move
of export text, etc.; many additions, changes and deletions were made in the process. Module
KBD no longer exists in Pascal 3.0, and CRTB has been added. Also, none of the driver modules
has export text or even DEFs. They “hook themselves into the system” by pointing SYSDEVS
procedure variables at their entry points, and are executed solely through hooks. Data structures
that used to be “owned” by the modules are now exported from SYSDEVS in many cases.

Introduction 9

Software Tools Used for System Generation

Before wading into the deep water, some mention should be made of the software tools used to
generate Pascal 3.0.

Assembler and Librarian

The Assembler and Librarian supplied with your system are the same ones we ourselves used
to generate the system. At the end of the section of this document describing the Boot ROMs
is an example using the Assembler and Librarian to create a bootable disc.

Pascal Compiler

The compiler supplied with your system is not the same one we used; but we believe it will be
able to do everything you will need to do.

The compiler we used differs from the one you received in that it supports a few language ex-
tensions which are enabled by the directive $MODCAL$, standing for “modified Pascal.” “Modcal”
is the name of a system programming language used within Hewlett-Packard.

Most of the Modcal features can be enabled in your Compiler by the directive $SYSPROG$. These
system programming features are described in the Compiler chapter of the Pascal 3.0 Worksta-
tion System manual.

The remaining Modcal features (not enabled by $SYSPROG$) are used only where necessary?
in the Pascal 3.0 system. We don’t want to use them, if it can be avoided, because some of
these features are experimental or architecture-dependent and may not survive the tests of time,
acceptance and standardization.

In addition to information about $SYSPROG$ extensions, the Pascal 3.0 Workstation System
manual also discusses how Pascal uses the stack for parameter passing and access to non-local
variables. This is useful information if you want to call an assembly language routine. The
Assembler chapter in the Pascal 3.0 Workstation System manual has examples.

2 And we found it necessary well nigh everywhere. . .

10 Introduction

Memory Allocation of Variables

In a system programming context, sometimes it is useful to know how the Compiler will allocate
space for variables in memory. The 68xxx processor is sensitive to the address alignment of
variables in some cases. Here are the rules the Compiler follows in laying out variables.

Arrays: Alignment is always 2 (that is, arrays are aligned to even addresses—word bound-
aries).

Records: A record which is part of a packed structure is itself not packable; within the
containing structure, the record’s alignment will be 1 (any byte boundary) if the entire
record fits in a single byte, otherwise alignment will be 2. If the fields of the record are
themselves packed, its alignment will be 2.

Sets: Sets are not packable. Alignment is 2.

Pointers: Not packable, alignment is 2.

Chars: Packable, alignment is 1. Packed size is 8 bits.
Booleans: Packable, alignment is 1. Packed size is 1 bit.

Enumerated scalars needing less than 17 bits: Packable, alignment is 2. Unpacked size is
16 bits, packed size is number of bits needed.

Scalars needing 17 or more bits: Packable, alignment is 2. The packed field must be
accessible in one long (32-bit) move. This may force the packed field to be aligned on an
even-byte boundary. Unpacked size is 4 bytes.

Integers: Integers get 32 bits and are not packable. Alignment is 2.

The Compiler directive $TABLES$ causes the Compiler to print out a description of the space
allocated for types and variables in a program. Use it if in doubt.

When writing system code, it is usually perfectly reasonable to enable $DEBUG$ and use the
Debugger to step through your stuff. However, this won’t work well for interrupt routines!
Likewise $RANGE ON$ and $STACKCHECK ON$ are generally reasonable during debugging. In fact,
it may be undesirable to ever disable stack overflow checks.

You will almost surely want to specify $I0CHECK OFF$ in system code, so you can deal with [/O
€rTors your own way.

Introduction 11

12 Introduction

The Booting Process

Introduction

Pascal 3.0 is a single-task system in which user programs and code modules, as well as most
system capabilities appear as extensions to the Operating System kernel. This section describes
the components of the system and gives a high-level view of how they fit together. The system
booting process is also described.

You cannot make the best use of this material unless you have used and become familiar with
the Pascal system. The Compiler reference material in your Pascal 3.0 Workstation System
Manual is practically required reading, with special attention to the discussions of:

e The Pascal MODULE construct
e System Programming Language Extensions

e How Pascal Programs Use the Stack

Concepts of Linking and Loading

All object code files produced by the Compiler, Assembler, or Librarian are called “libraries.”
A library contains a directory describing one or more modules of object code. In the context of
libraries, the word “module” denotes any of the following:

e The output of one invocation of the Assembler.
e A unit of object code produced by compiling one Pascal MODULE.
e A program (something with an absolute start address).

e A linked combination of any of the above, produced by the Librarian.

Note that if you compile a program containing two Pascal MODULEs, the result will be a library
containing three distinct object code modules.

The format of object code modules is described elsewhere; for now you need to bear in mind
certain facts. Modules in this system are always relocatable, never absolute. Each module
consists of a global data segment, and one or more code segments. Both code and data are
relocated (assigned final locations in memory) when the module is loaded. Normally code is
emitted so that its relocation base is zero, which simply means that if the code were loaded,
unchanged, starting at byte zero of memory, it would run properly.

Code is never loaded at address zero; in fact, there is ROM at address zero in the Series 200
computers. It is possible to use the Librarian to change the relocation base of a module to any
address desired; this technique can be used to produce the logical equivalent of an absolute code
module. However, this is not done, with a single exception described later. Instead, the linking
loader, which is always resident in the system, performs all relocation as needed.

The Booting Process 13

Not only are modules relocatable, they are also normally unlinked. This means that as a module
resides on mass storage, it contains references to addresses internal or external to itself which
must be satisfied (filled in with final values) at load time. Even a “linked” module, which has
been passed through the linking process of the Librarian, may still contain unsatisfied references
which were not filled in by the linking operation.

All such references must be completed before the object code can execute properly; final linking
is performed by the linking loader. To satisfy external references, the loader follows a specific
search pattern. First it searches other modules in the library being loaded. Then it checks
modules which have previously been loaded. Last, it looks in the system LIBRARY file. If, to load
module “A”, the loader finds that “B” in the system library is also required, then “B” will also
be loaded automatically.

How is the linking loader able to link a newly loaded module to others which have been previously
loaded and reside in memory? Tables are kept of all the symbols defined in all the modules
which are loaded. Every such symbol (corresponding for instance to the name of a module, an
exported procedure or a program start address) has a value known to the loader for as long
as the module defining the symbol remains resident. The linking loader can even hook up a
new module to a module which is currently executing! This “dynamic linking” is in fact the
“induction rule” by which the system constructs itself at boot time.

By the way, the tables in memory are searched in the order, the most recently loaded first. This
means a module may override other, previously loaded symbols.

14 The Booting Process

Overview of the Booting Process

The booting operation occurs in several phases, which will be described briefly at first, then
again in more detail.

When the computer is first turned on, it is under control of the “boot ROM” (ROM stands for
Read-Only Memory). This read-only memory resides at address zero, and its first few bytes
contain the address of the first executable instruction of the boot ROM itself together with an
initial stack pointer value. The 68xxx always powers up by setting its Program Counter (PC)
and Stack Pointer (SP) registers to the values found in this ROM. Actually there are several
versions of the boot ROM; as of this writing, version 4.0 is the latest. Versions 3.0 and later
identify themselves to the user when the machine is turned on.

The code in the ROM executes a certain amount of self-test programming, then looks around
for an operating system. For 3.0 and later versions, the search pattern is a subject in its own
right! Later versions of the boot ROM are large programs which can boot from almost any HP
mass storage product. First the boot ROM tries to find a “soft” system (resident on a mass
storage device) on various mass storage devices such as the built-in minifloppy drive or a Shared
Resource Manager. Failing that, it looks for a hard (ROM resident) system such as BASIC or
HPL. If several candidates are found, the operator is given the option to pick one.

The Pascal “soft” system supplied to you is the file BOOT: SYSTEM_P; that is, on the volume called
BOOT:, it is the file called SYSTEM_P. This is an absolute load-image of the bare minimum core
of the OS, containing the linking loader and some support routines. There are no mass storage
drivers, the ones in the boot ROM are used for the nonce. The absolute load-image of the loader
was created by using the B (Boot) command of the Librarian.

In this system there is no “kernel” in the closed, absolute sense of an operating system such
as UNIX!. Rather, the system has an “open” design which allows modules of code providing
new capabilities to be added to the system—while it is running. The linking loader is a sort of
“induction rule” which allows the system to grow gracefully. Still, we do use the word “kernel”
in this document, meaning roughly the set of modules providing a minimum environment.

The loader begins execution by completing construction of the operating system. This is done
by loading the “initialization library” INITLIB from the mass storage where BOOT was found.
During this process you will see the message,

Loading ’INITLIB’

on the CRT. As modules are loaded, they are bound into the OS by the dynamic linking process
mentioned above. INITLIB contains such useful items as the I/O drivers and the floating-point
arithmetic package. You can use the Librarian to examine for yourself the contents of INITLIB.
The modules are loaded in order of appearance in the library. Several are programs—they have
a start address. After the loading is complete, each program is executed once. Programs in
INITLIB are referred to as “installation code”; their purpose is to properly initialize variables or
steal storage which will be used by the INITLIB modules.

! UNIX is a trademark of AT&T Bell Laboratories.

The Booting Process 15

By the way, you can delete certain modules to make INITLIB smaller, or add modules of your
own. You mustn’t change the order of the ones supplied, nor link them together (which would
result in the loss of the start addresses of installation code). More information on this subject
can be found in the Pascal 3.0 Workstation System manual, in the chapters on the Compiler and
Librarian. Once INITLIB is loaded and the installation code executed, the I/O driver subsystem
has found and identified all the interface cards, although no examination has been made of
peripheral devices.

The last piece of installation code in INITLIB is a program called LAST, which loads and executes
two programs called STARTUP and TABLE. STARTUP is loaded before TABLE if it resides on the boot
device; otherwise STARTUP is loaded from the system volume after TABLE executes.

TABLE configures the OS so that the fifty “logical units” of the Pascal file environment are
correctly related to the “physical units” attached to the 1/O interface cards. The general
subject of peripheral configuration is covered in the Pascal 8.0 Workstation System manual.

The logical units, designated #1: through #50:, are examined in detail in the File System
discussion. Essentially, they are represented as an array of records called the “Unitable” (unit
table). Each Unitable entry tells such information as the name of the unit and what Directory
Access Method (DAM) and Transfer Method (TM) must be used when accessing files on the
unit.

To properly initialize the Unitable, LAST executes the program called TABLE. This configuration
program is user alterable; in fact it must be altered and recompiled if you wish to create a
non-standard peripheral contiguration. It also selects the system volume. You will see the
messages,

Loading ’STARTUP’
Loading ’TABLE’
displayed on the CRT while LAST is executing.

After TABLE executes, a complete environment exists in which Pascal programs are executable.
The loader executes the previously loaded STARTUP program. This could be any Pascal program
at all, for instance one you write. The one we supply is referred to as the Command Interpreter;
it displays the outer-level Command prompt, loads or executes modules at your command, and
traps and reports errors. Our Command Interpreter never stops, but if you supply your own
STARTUP program and it ever terminates, the system will display the message:

SYSTEM FINISHED, RESET TO RESTART

For STARTUP to terminate is usually undesirable.

16 The Booting Process

How the Boot Files are Chosen

Various products are derived from the Pascal kernel, and these derivative products sometimes
need to be able to load “their own” specialized versions of INITLIB, TABLE and STARTUP without
interfering with the normal Pascal system. This is particularly true in the Shared Resource
Manager environment, where there may be many applications present in a node’s directory.
Many of these applications may look like stand-alone, bootable systems.

So the kernel needs to be able to chose different libraries. It does so based on the name of the
file being booted.

If the file name is SYSTEM_P then the standard Pascal system files INITLIB, TABLE and STARTUP
are chosen.

If the file name is SYSTEM_zzz where zzz is some three-character suffix, the chosen file names are
INITzzz, STARTzZzZ and TABLEzzZ.

If the file name is SYSzzzrzrr, the chosen file names are INITzzzrTrE, STARTZZITTTT and

TABLEzzzzrrr. The seven-character suffix is only useful when booting from the Shared Resource
Manager, since normal boot discs are in LIF format and only allow 10-character file names.

The Booting Process 17

Memory Map Development

To understand booting in more detail, you need to visualize the memory map of the computer
as it develops from power-up through the entire booting process.

The 68xxx processor has 23 word-address lines called BA1 through BA23. For byte operations,
two control lines BUDS (byte upper data strobe) and BLDS (byte lower data strobe) indicate which
byte(s) of the word are affected. Thus there is a 24-bit address or 16-megabyte address space.
On the other hand, the CPU uses 32 bits to store a physical address; the upper. byte is ignored.

An address in the highest 32K bytes of address space is often expressed as a negative number
because of the 68xxx’s short addressing mode. With this mode, a signed 16-bit number is sign-
extended to 32 bits, specifying an address in either the lowest 32K bytes (positive number) or
the highest 32K (negative number). The Pascal system conventionally leaves the upper byte of
addresses set to $FF, so that the decimal integer equivalent of the address of high memory is
the value —1 rather than 224—1. When writing addresses in hexadecimal, the leading $FF will
be dropped in this text.

In the Series 200 machines, the available 16 megabytes are partitioned into areas for ROM, I/O
interfaces, and RAM. The allowable boundaries of these areas are as follows:

$FFFFFF High memory

RAM Up to 8388608 bytes (in principle)
$800000
$7FFFFF

/0 Memory-mapped |/O interfaces

$400000
$3FFFFF 9837A Frame Buffer
$300000
$200000 Language System ROMs | On 16K-byte boundaries
$020000
$010000 Reserved
$000000 Boot ROM Low memory

RAM boards are installed from the high end of memory, downward. The boot ROM checks
for the presence of RAM in descending addresses from $FFFFFF. Some Series 200 machines have
“foating” RAM mounted on the CPU board. It is called floating RAM because its address is
not determined by hardware switches; instead, a special latching circuit causes it to respond to
the block of addresses immediately below the lowest-addressed RAM board in the backplane.
(If the RAM board switches are not set contiguously, the floating RAM fills in the first “hole”
in the address space as scanned downward from $FFFFFF.)

18 The Booting Process

The Series 200 machines are built so that accesses to non-present RAM will cause a Bus Error
exception. The floating RAM is simply latched to respond to the first address for which a bus
error occurs; the boot ROM is guaranteed to cause such an error during its search for the end
of real memory.

It is not possible to change the address of the floating RAM block after power-up. It is possible
to have non-contiguous RAM blocks, by incorrectly setting the switches on the memory boards.
The boot ROM will not “find” memory which is not contiguous with address $FFFFFF, so if you
were to set a machine up that way, the stray blocks would have to be accessed by tricks with
pointers or address registers.

The boot ROM resides at address $000000. There are at least four versions of boot ROM used
in various releases of the Model 216, 226, 236, 217, and 237 hardware. Pascal 3.0 is designed to
run with all of them, but some earlier versions of the boot ROM are limited as to what devices
they can boot from. The sizes of the boot ROMs range from 16K to 54K. Another section
of this manual describes the boot ROMs in detail, including such information as what device
drivers and useful support routines they contain.

Operating system ROMs may be located on 16K-byte boundaries beginning with address
$020000 and continuing up to $3FC000!. Such ROMs have special headers which are recog-
nized by the boot ROM during its search for an operating system. The section of this document
describing the boot ROM tells what ROM headers look like. Accesses to non-present ROM
locations do not cause Bus Error exceptions.

The 68xxx is designed so that when interrupts or exceptions occur, the processor saves (some
of) its state and does a kind of forced subroutine call to one of several routines whose addresses
are found in locations right above address $000000. Refer to the CPU manual for the precise
correspondence between these “interrupt vector” locations and the various interrupt priority
levels and exception conditions. Note: interrupt code runs in Supervisor mode, while programs
run in User mode, so different stacks are involved.

Series 200 family boot ROMs contain fixed addresses for the exception vectors; they point into
high memory right below $FFFFFF. The exact layout of the area below $FFFFFF is shown in the
discussion of the boot ROM; it is a mirror reflection of the ROM interrupt vectors themselves,
allowing six bytes—enough for a long JMP instruction—for each vector.

For instance, at address $00000C (vector 3) the vector content is $FFFFF4, so when an Address
Error exception takes place, the CPU will call whatever routine is at $FFFFF4. The boot ROM
initializes the RAM vector area with JMP instructions leading to an error reporting routine within
the boot ROM itself. Operating systems which subsequently run will change these values as
needed.

Below the RAM vectors there is some more memory which is used (and reserved permanently)
by the boot ROM. Below that is some memory which is used during the boot load but may be
used for data after booting.

1 Note that the Model 237 uses space from $300000 upward for a frame buffer.

The Booting Process 19

Version 4.0 and 3.0 of the boot ROM used more memory than previous versions. It not only
takes more space at the upper end of memory, it also may steal a little at the bottom of physical

memory. This only happens when booting from certain specialized devices such as the Shared
Resource Manager.

To find out how much space was taken at the bottom of memory, examine the integer addressed
20 bytes beyond the location addressed by the four-byte pointer stored in absolute location
$FFFED4 (—300). Got that?

type
Lrec= packed record
Filler: packed array [0..19] of char;
MemUsed: integer;
end;
var

Thing[-300] : “lrec; {pointer}

BottomﬁytesStolen:=Thing“.MemUsed;
But you should only do this if the machine has the Version 3.0 boot ROM or later. See the

chapter on the boot ROM for how to determine whether to do this. In the memory maps which
follow, we will indicate stolen space even though its size may be zero.

20 The Booting Process

So at the point when the boot ROM is about to find and load a system, the available memory
for the system to use is from the near the bottom of physical memory as determined by the
RAM board switches and floating RAM, up to a limit determined by the boot ROM.

$FFFFFF Permanently High memory
reserved by
$FFFDBC (-580) boot ROM
Reserved by
boot ROM User RAM boards
during load
$FFFBOO0 (-1280) —Highest code load location for
boot ROMs prior to version 3.0
$FFFACO (-1344) «——Highest code load location for

boot ROM versions 3.0 and 4.0

Available
to Floating RAM
$22222? system

May be stolen
by boot ROM «—RAM installed from here to $FFFFFF
Vacant address space

$800000

If the boot ROM finds a “soft” system somewhere (in our case Pascal), it now loads that system
into RAM. The soft system load is an absolute load; that is, the boot file consists of one or
more segments of code which are placed at specific locations in memory—the particular load
addresses are specified in the file itself.

This absolute image is not a standard Pascal object code file; it is in a different, much simpler,
format. Boot files are generated from linked, relocatable object code by the Librarian’s B (Boot)
command. The loader in the boot ROM is really dumb, so there can be no unsatisfied externals
in a boot file. It must be complete and ready to go. It is the responsibility of the programmer
generating the boot file to decide where in free RAM the system being loaded must be placed.
The Pascal 3.0 boot file is 13 674 bytes long and is loaded at —15400 ($FFC3D8).

The boot ROM runs in 68xxx Supervisor mode; most of Pascal runs in User mode. Generally we

will use the name “SP” to designate the User mode stack register, and “SSP” for the Supervisor
stack register.

The Booting Process 21

The Pascal kernel (the linking loader and minimal other support) is placed in this fashion.
Execution begins in LOADER, which will use drivers in the boot ROM to load INITLIB. LOADER
calls a small assembly language entry point (POWERUP) containing code for interrupt and trap
handling, as well as TRY/RECOVER and non-local GOTO processing. POWERUP performs these actions:

e Sets up a minimal Pascal execution environment consisting of a stack pointer (A7, also
called SSP register), stack frame base (A6, also called SF), global variable base pointer (A5),
and heap pointer.

e Sets the TRY/RECOVER chain and list of open files to empty.
e Sets some (not all!) of the RAM vectors to point to exception handlers within POWERUP.

At the moment POWERUP returns to LOADER, the memory map looks like this:

$FFFFFF RAM vectors High memory (correctly initialized)
Reserved
for use by
$FFFACO boot ROM
Loader
code «—Address of POWERUP code
$2227?? 5000 bytes of ~—SSP base of supervisor stack
supervisor (grows downward)
stack
Global ——Base of all global variables;
variables also A6 (stack frame pointer)

«——Don’t know where this is yet
Free space «—A5=32768 less than base of global variables

$27227?? «~—Heap pointer (lowest usable memory; grows
upward)

May be stolen
by boot ROM Bottom of real RAM

In this structure, if any interrupts occur, they will happen “on top of” the supervisor stack.

This arrangement may seem a little odd to you. Normally when Pascal code executes, the
stack grows downward through free space and the heap grows upward; if they collide, a “stack
overflow” error has occurred. Rest assured that the user stack pointer will be moved down
below the global variables and all will be well. But while the loader is executing, the stack is in
this funny place and it must never be allowed to get so big that it writes over the global variable
area.

22 The Booting Process

You may also be wondering why A5 points 32 768 bytes below the base of the global variable
area®. All globals are addressed using the mode “(displacement) (A5)”. Register A5 will never
move while Pascal code is running. To allow for full 64K of global space accessible by a 16-bit
displacement, the range of displacements used must be —32 768 through 32 767; so the base of
the global area is exactly 32766 (A5).

Later we will go through a more detailed commentary on the kernel’s modular structure. For
now it is useful to know that certain kinds of initialization occur which have the effect of
consuming some heap space to store system tables and variables including:

e Access method and file suffix tables
e Device driver tables

e The Unitable array

Also, the loader is initialized. This involves finding two pieces of information: how big is the
global variable area of the loader itself, and where is the SYSDEFS table.

The loader will allocate space for global variables of new modules, as they are loaded, by
extending the limit of the global area downward toward the heap. It must know where to start,
i.e., how much space is already taken up by the loader’s globals?

SYSDEFS is a trick played on the loader. Earlier it was mentioned that as modules are loaded,
the loader will keep their symbol tables around so other things can be linked to them later. But
the loader itself is not loaded by the loader; it is loaded by the boot ROM. So we must fake an
area of memory which “looks like” tables built by the loader, to describe the kernel itself. This
is called SYSDEFS and is part of the absolute kernel image.

2 This is a departure from the earlier Pascal 1.0 release, in which A5 addresses the beginning—the highest address—of the
global area. The 1.0 system could allow a maximum of only 32K bytes of global area. Since the space “above” A6 was
occupied by the system stack, only the negative displacements from A5 were usable. Unfortunately, some of the code in
the boot ROM and the BASIC language ROMs assume the convention of the Pascal 1.0 system; so in Pascal 2.0 and later
versions, ROM code must be accessed through the special interfacing routine ROMCALL.

The Booting Process 23

Now we are about to load INITLIB, and the memory map looks like this:

$FFFFFF RAM vectors High memory
Reserved
for use by
$FFFACO boot ROM
Loader
code «—Address of POWERUP code
$22727? 5000 bytes of ——Base of system stack
supervisor —Ab6=stack frame (SFP)
stack —S8SP=top of system stack (grows downward)
Global ——Base of all global variables
variables ~——Last global variable

——User stack base (USP) will be here
Free space —Ab5=global base-32768

——Heap pointer

Various
system Accessed through pointers in the global area
$22227?? tables ——Bottom of usable memory
May be stolen
by boot ROM Bottom of real RAM

The stack frame pointer (A6) got moved into the system stack area as a side effect of the normal
Pascal procedure entry mechanism. It always points to the base of the stack frame for the
currently executing procedure.

Now the loader loads INITLIB. All the modules are loaded. The code for each module is placed
in the system’s heap, that is, above the system tables. The globals for each module are added
to the system global area, which is growing down toward the heap.

Modules in INITLIB should have no external references which cannot be satisfied by linking
either to the kernel itself, or to other modules in INITLIB. This restriction is made because the
system has not yet located the system library, which could otherwise be used to satisfy external
references.

When INITLIB is completely loaded, all the programs it contained (modules with start addresses)
are executed in turn. This gives the various subsystems such as I/O drivers an opportunity to
install their names (addresses) in system tables, to steal heap space, and so forth. Installation
code runs not on the system stack, but in its “proper” stack area below the global variable area.
This moving of the stack pointer will occur any time a program is executed from now on.

24 The Booting Process

After the running of installation code in INITLIB is finished, the system memory map looks like

this:

$FFFFFF

$FFFACO

RAM vectors

Reserved
for use by
boot ROM

Loader
code

5000 bytes of
supervisor
stack

Loader

globals
and
INITLIB

globals

Free space

Heap space
stolen by
installation
routines

INITLIB
code modules

Various
system
tables

May be stolen
by boot ROM

High memory

~——Address of POWERUP code

——Base of supervisor stack (grows downward)
~—A6=current stack frame (SFP)

——Current SSP

~——Base of all global variables

«——Last global variable
——User stack base (USP) will be here

~——A5=global base-32768
(value unchanged)

«——Heap pointer

Such things as workspace required by
file system access methods

Includes loader symbol tables
for each module

Accessed through pointers in the global area
Bottom of usable memory

The pattern from here on should be clear. During loading operations, the loader runs its stack
in the small “system stack” area. It pushes code onto the heap, and allocates space for module
globals downward. When a program is to run, the user mode stack pointer for the program is

set up just below the last global variable.

The Booting Process 25

If a module or program is loaded permanently, the limits of the heap and global area are
permanently extended. Running a program which has been permanently loaded is particularly
easy since its code and global areas already exist. One need only switch the stack pointer to the
user stack area. If the module is to be loaded, executed, then removed to run another program,
the heap and global areas can be cut back after the program completes by the amount they
were extended.

The maximum allowable global area reaches from 32767 (A5) to -32768(A5). System globals are
mingled with program globals, and the sum can’t exceed 64K bytes.

To complete the Pascal boot process, it remains to load the the Command Interpreter program
STARTUP and the 1/O configuration program TABLE, and to execute them. If STARTUP is found on
the boot volume, it is loaded before table; otherwise STARTUP is loaded from the system volume
after TABLE executes. This sequence is caused by the last module of installation code in INITLIB,
a short program called LAST. The space consumed by TABLE is reclaimed before STARTUP runs.
Exactly how TABLE does its job is discussed elsewhere.

It has already been mentioned that STARTUP can be any program. The standard Command
Interpreter (CI) supplied with Pascal pulls one last trick. It begins execution in the usual way,
but the first thing it does is to switch to the Supervisor Stack register SSP, so it runs in the
small stack area above the global variables. This is done because the CI must be able to call the
loader to load programs. The loader would be unable to allocate global space for an incoming
program if the CI’s stack were in the way. So the system stack area was made big enough to
safely run not only the kernel but also the Command Interpreter. By the way—the little routine
called LAST at the end of INITLIB also does this, and for the same reasons!

A good way to think about all this is to consider that each module or program which is loaded
is bound into (becomes an extension of) the kernel.

This interpretation seems especially appropriate if one considers the capability to permanently
load programs or modules using the CI’s “P” command. Permanently loaded modules, whether
from INITLIB or loaded by the CI, can significantly extend the capabilities of the system. For
instance, a new I/O driver, or a directory access method of your own invention can easily be
added to the system and then accessed freely by other programs. As we will see in discussing
the File and 1/O subsystems, these new capabilities can be made part of the normal access
paths of Pascal programs.

26 The Booting Process

One last picture: here is what memory might look like after a number of modules have been
permanently loaded and while a program is running.

$FFFFFF

$FFFACO

RAM vectors

Reserved
for use by
boot ROM

Loader
code

5000 bytes
of
supervisor
stack

Permanent globals
(for kernel, INITLIB,
Cl, and p-loaded
modules/programs)

Temporary globals
(for running program)

Program stack

Free space

User heap

Program currently
running

P-loaded
code modules

Heap space
stolen by
installation
routines

INITLIB
code modules

Various
system
tables

May be stolen
by boot ROM

High memory

«—Address of POWERUP code

—Base of supervisor stack (grows downward)
~——Base of system/Cl stack
~——A6=current stack frame
«——Cl’s current stack pointer

«~—Base of all global variables

«~—Ab5=global base-32768 (unchanged)
«~—Last global variable
«——User program’s stack base

~——A®B (top stack frame)
«~—SP (top of user stack)

~—Heap pointer
Either programs or simple
modules may be here

Such things as workspace required by
file system access methods

Includes loader symbol tables
for each module

Accessed through pointers in the global area
«—Bottom of usable memory

Bottom of real RAM

The Booting Process 27

Summary of the Booting Process

The purpose of the booting process is to construct a complete operating environment from the
absolute memory image kernel and the contents of the relocatable library INITLIB. When this
process is complete, programs can be loaded and executed by the Command Interpreter.

To load a program, its code is put into system heap space (growing the heap upward) and its
global area is appended to the system global area (growing downward). The CI and Loader
execute out of a special “system stack” area, while a running program bases its stack just below
the last global variable.

The system now presents the operator with a simple structure in which subsystems are just
programs to be loaded and executed:

Memory resident portions Loadable subsystems
Kernel

File system

Debugger (optional)

User code from INITLIB

Command interpreter — Editor
Compiler
Assembler
Filer
Librarian
any executable program

Of course, the Command Interpreter provides a little creature comfort by allowing single-
keystroke commands to load the main subsystems, and by providing some automatic flow of
control for the process of editing, compiling and running a program. Workfiles and stream files
are also artifacts of the Command Interpreter.

28 The Booting Process

The Pascal Kernel

The word “kernel” is used advisedly. The Pascal system has no kernel in the closed sense of
operating systems such as UNIX, because Pascal has been designed in an open, dynamically
extensible way. Pascal boots in a linking loader, which is always resident thereafter. This loader
is a sort of “induction rule”, by means of which modules of code can be successively added to
the system—while it is running—to give it more capabilities. As used here the word “kernel”
roughly means a reasonable set of useful modules such as the File System, Directory Access
Methods and so forth.

The “important” code in the kernel is mostly concerned with two matters: file support and
the loading/linking of object code. However, there are a lot of miscellaneous details which
complicate the picture. The purpose of this section is to give a good overview, particularly of
the file system, so that you can more easily make sense of the code listings themselves.

Refresher on Pascal Modules

If you are quite familiar with Pascal modules, you may wish to skip this section, which describes
the relationship of the declared components of a module to entities in its object code form.

The Booting Process 29

A sample module:

module Charlie;
import Sue;

export
const
Low= 0;
High= 100;
type
Int= -32768..32767;
Index= Low. .High;
Arrae= array [Index] of Int;
var {beginning of CHARLIE’s globals}
Head,Tail: Index;
List: Arrae;

procedure AddToList(K: Int);
procedure TakeFromList(var K: Int);

implement {CHARLIE_CHARLIE (initialization for modules)}
var
LastValue: Int;
procedure HiddenProc; {no symbol if not exported}
begin
{body of "HiddenProc" omitted for clarity’}
end;
procedure AddToList(K: Int); {CHARLIE_ADDTOLIST: relative to the
beginning of module CHARLIE}
begin
{body of "AddToList" omitted for clarity’}
end;

procedure TakeFromList(var K: Int); <{CHARLIE_TAKEFROMLIST: relative to
the beginning of module CHARLIE}

begin
{body of "TakeFromList" omitted for clarity}
end;
end; {of module Charlie}

Module CHARLIE exports the identifiers LOW, HIGH, INT, INDEX, ARRAE, HEAD, TAIL, LIST, ADDTOLIST,
and TAKEFROMLIST. It is declared to be dependent on things imported from module SUE.

When CHARLIE is compiled, the Compiler will find the codefile containing SUE somewhere and
read its export text, so that references to objects of SUE’s can be verified syntactically. Similarly,
the final object code for CHARLIE will contain CHARLIE’s export text (with the reference to SUE).

”

The things declared after the keyword “implement” are said to be “hidden.” This means that
procedure HIDDENPROC and variable LASTVALUE are not visible to an importer of CHARLIE; only
code within the implement part of CHARLIE itself can access or change the hidden things. The
Compiler is responsible for enforcing this secrecy.

30 The Booting Process

In the final object code there will be DEFined the following load-time symbols, said to be the
load-time symbol table for the module. Notice that almost all the original Pascal identifiers,
especially names of constants, types and variables, are unknown to the loader.

CHARLIE (global VAR address)
CHARLIE_CHARLIE (module initialization)
CHARLIE_ADDTOLIST (exported procedure)
CHARLIE_TAKEFROMLIST (exported procedure)

CHARLIE is the symbol used to access any global variables of the module. When the loader
allocates space for the module’s globals, by extending the system global area downward, CHARLIE
will be assigned the address of the first even byte above the allocated global area. The variables
of the module are below the symbol CHARLIE. To assign the value zero to the INT variable called
HEAD, we might write in assembly language:

MOVE.W #0,CHARLIE-2(A5)

The move is word-wide (.W) because the Compiler was smart enough to use a single word to
represent a 16-bit subrange. Register A5 always points 32 768 bytes below the the top end of all
the globals ever allocated in the system, and CHARLIE is given by the loader a value equal to the
distance from where A5 points to the high end of CHARLIE’s global area. The offset —2 indicates
that HEAD is two bytes below the top end of CHARLIE’s globals.

CHARLIE_CHARLIE is the address of the module initialization body, a subroutine generated auto-
matically by the Compiler. Every compiled module gets one of these. Often it does nothing, but
in two circumstances it is vital. If the module contains any file variables hidden in its implement
part, they must be initialized to the “closed” state before use by the file system. If the module
imports other modules, their initialization bodies must in turn be called.

The whole chain of initializations is started by the main program, which automatically calls
the initialization bodies of any modules it imports. They go on to initialize whatever modules
they import. Note that initialization bodies are cleverly coded so that only the first call has
any effect. This is necessary because a module might be imported several times. This trick is
accomplished by taking advantage of the fact that a module’s global area is set to all zeroes
only once—when it is loaded.

CHARLIE_ADDTOLIST and CHARLIE_TAKEFROMLIST are exported procedures. These symbols get
the module-relative address of the corresponding Pascal procedures. That is, the value of
CHARLIE_ADDTOLIST is the distance from the first instruction of the module’s code segment to the
first instruction of procedure ADDTOLIST. No symbol is DEFined for a hidden procedure.

The Booting Process 31

Modules in the Kernel

The kernel is written as a set of (mostly) Pascal modules. In the usual style of modules, some of
them are dependent on (import) others. The result is a sort of “directed graph” of dependencies.
Not all these modules need be in a Pascal system; they are the ones required to give “complete”
support to a Pascal program. By removing modules from INITLIB, a rather smaller kernel can
be generated. The smallest possible kernel, consisting of only the linking loader, is about 20K
bytes in size.

Recall that in this system, it is possible to write assembly language modules which “look like”
compiled modules in that they include interface specification—EXPORT text—recognizable by the
compiler. The module ASM in the list below is such a case, while POWERUP is assembly code which
has no export text. All the other modules listed below are written in Pascal®. Actually there are
also some very specialized assembly language routines which are not defined as Pascal modules
but rather are accessed as EXTERNAL procedures (these specialized modules are not included in
the list below).

SYSGLOBALS Declares constants, variables, and types used throughout the system.

ASM Various high-speed functions such as moving bytes around. Includes the
entry point ASM_POWERUP referred to in the boot process, which contains
code to handle non-local GOTOs and RECOVER clauses.

INITLOAD Entry point into system. Calls POWERUP to get dirty work of machine initial-
ization done.

LOADER Defines directory of a code module, and internal symbol table structures.
Manages global and code space. Links and loads object code.

ISR Sets up and manipulates interrupt service routines.

A804XDVR Contains entry points for A804XDVR routines SENDCMD, SENDDATA, CMD_READ_1,
and others.

KEYS Code to handle the keyboard and character set mapping. This module
exports nothing, it just contains the actual keyboard TM and the ISR code.

NONUSKBD1 No export text. Supports non-U.S. keyboards by setting up character map-
ping. Handles Katakana for all keyboards.

NONUSKBD2 No export text. Supports non-U.S. keyboards by setting up character map-
ping.

CRT No export text. Contains CRT TM code and debugger window handler and
sets up character mapping for alpha displays.

CRTB No export text. Has Pascal and assembly components; contains CRT TM
code and debugger window handler for 9837A and sets up character map-
ping.

3 Although some INITLIB module listings show export text (c.g., “KEYS” exports “INITKEYS”), in the case of pure drivers, the
DEFs have been suppressed during linking, and will not be found in RAM. These pieces of code are inaccessible except via
procedure variables if they are currently assigned to the entry points.

32 The Booting Process

MISC

MINI
INITUNITS
FS

SETUPSYS

SYSDEVS

Error messages, directory access method for volumes with no directory, ac-
cess method for unbuffered transfers, access method for data files (general
purpose buffering), access method for serial devices (text). Fills in Access
Method, Suffix and EFT tables (explained elsewhere). Defines the general-
ized file catalogue entry type.

Driver for built-in minifloppies; calls code in boot ROM.

Generates the initial /O Unitable setup.

File system functions which are called by the Compiler to implement Pascal
file I/O. More of this in INITLIB.

Calls initialization routines for modules POWERUP, MISC, INITUNITS, LDR, and
FS.

This has entry points for clock, beeper, etc., as well as typeahead buffer
handlers, and keyboard and CRT TMs.

The dependencies of these modules on each other is shown using the convention that A «— B C
means Pascal module A directly imports modules B and C; or if A is in assembly language, it
somehow accesses things exported from B and C.

SYSGLOBALS
POWERUP

ASM

LOADER

ISR

MINI
BOOTDAMMODULE
INITLOAD

— nothing

— SYSGLOBALS, LOADER
— SYSGLOBALS, LOADER
— SYSGLOBALS, ASM

— SYSGLOBALS, ASM

— SYSGLOBALS, ASM

— SYSGLOBALS, ASM, MINI

— SYSGLOBALS, ASM, BOOTDAMMODULE, LOADER

Everything else also uses SYSGLOBALS and ASM. Moreover,

CRT

CRTB
KEYS
MISC

FS
INITUNITS
LDR

SETUPSYS

— SYSGLOBALS, ASM, MISC, SYSDEVS

— SYSGLOBALS, ASM, MISC, SYSDEVS

— SYSGLOBALS, ASM, MISC, SYSDEVS

— SYSGLOBALS, ASM,

— SYSGLOBALS, ASM, MISC

— SYSGLOBALS, ASM, MINI, FS

— SYSGLOBALS, ASM, MISC, FS, LOADER

— SYSGLOBALS, ASM, MISC, FS, LOADER, LDR, INITUNITS

The Booting Process 33

Digression on a Trick

All of these modules provide functionality which can be called from user programs by importing
the required modules. This seems like a good moment to explain a subtle point in that regard.

When a module is loaded, the loader keeps its load-time symbol table around. These loader
tables can be used to find the value of (i.e., the address of) exported procedures, global variable
areas, and so forth. This was alluded to in the explanation of the booting process, when we
noted that the structure called SYSDEFS provides the loader’s symbol tables for the absolute,
memory-image kernel. Thus, the loader can link references in a piece of compiled code to things
in the kernel.

However, in order to import a module, the Compiler must be able to find that module’s interface
text in the unlinked object code of the module. The loader doesn’t store interface text in
memory, just symbol values, because the interface text is only useful during compilation, not
during linking or loading. Also, it would consume a lot of RAM.

The kernel is supplied in a linked, absolute form. So where is its interface specification, that
it may be imported? We trick the system by putting the interface specification in modules
corresponding to the kernel modules listed above. These modules are dummies; there is no
code, since the code by definition is always resident in memory and available to the linking
loader. These dummy modules are found in the INTERFACE file on the LIB disc.

34 The Booting Process

The File System

Introduction

The purpose of the file system is to provide user programs with a clearly defined set of file
operations. These operations must behave uniformly over a variety of device types, directory
structures, and file structures. For instance, a program must be able to access or generate a
text file properly under any of the following representations:

e An unblocked stream of bytes, e.g., from the keyboard or going out to a printer.

e A sequence of bytes in a disc file, with ends of lines denoted by (carriage return) characters.

A file in the WS1.0 text file format, which includes leading blank compression and peculiar
blocking characteristics.

An ASCII file as specified by HP’s Logical Interchange Format (LIF) standard, where
lines are represented by a 16-bit length field followed by data.

The file system also supports several disc file directory formats, and more can be added by the
user without regenerating the kernel. The directory organizations in the 3.0 system are:

WS 1.0 Compatible with Pascal 1.0 file system.
LIF HP’s Logical Interchange Format for data exchange; supports contiguous files.
SRM The SRM (Shared Resource Manager) directory organization offers remote file

service with hierarchical directories and non-contiguous files.
Unblocked For devices without directories (like printers).

Boot Only used during boot process; won’t work after that.

Finally, the file system isolates the definition of the directory and data transfer operations from
the details of the physical driver routines which control operation of peripheral devices.

It was a challenge to unify all these features and at the same time allow flexibility for future
extensions such as the addition of new I/O device drivers or directory methods without the
necessity of regenerating the kernel. The scope and uniformity of the file system is the most
important difference between the 1.0 and 2.0 and later versions of Pascal, and is part of the
reason object code is incompatible between these systems.

Note that in this system there is a sharp distinction between file I/O and device 1/O. File I/0
is provided by the standard statements of Pascal such as RESET, REWRITE, GET and PUT. Device
I/O is provided by modules in INITLIB (or 10 on the LIB: disc). The reason for this distinction
is that there are many disorderly details of the control of physical I/O which do not properly
belong in a language definition, aren’t interesting to most applications, and vary significantly
from one computer family to another. However, the file system uses the physical I/O system to
actually perform operations to the physical devices.

The File System 35

Representation of File Variables

A File Information Block (FIB) is the data structure which represents a Pascal file variable.
It consists of three main parts: the file description, the file window (current record), and the
physical buffer. Sometimes the window and physical buffer are not present.

FIBs are Pascal records—complicated objects—whose full description is exported from module
SYSGLOBALS. Three particularly important fields of a FIB record are:

FKIND The file type.
AM The Access Method used by the file.
FUNIT The number of the logical unit on which the file resides.

Access Methods and logical units will be described momentarily.

Files are considered to have a type. There are presently seven recognized types of file, with
placeholders for nine more types in the future. The seven file kinds now are:

UNTYPEDFILE Used for directory entries

BADFILE Bad blocks on disc

CODEFILE Object code

TEXTFILE WS1.0 format text
ASCIIFILE HP LIF ASCII strings
DATAFILE Pascal “FILE OF (type)”
SYSFILE System boot file

36 The File System

High-Level File Operations

The highest, most unified level of the file system is called File Support (FS). This level consists
of the routines called by the Pascal Compiler as it translates program statements. The calls to
the FS level are calls to these procedures which are exported from modules FS and MFS! (“More

FS"):

FBUFFERREF
FBLOCKIO
FCLOSEIT
FEOF

FEOLN

FGET
FGOTOXY
FHPOPEN
FHPRESET
FMAXPOS
FOVERPRINT
FPAGE
FPOSITION
FPUT

FREAD
FREADBOOL
FREADCHAR
FREADENUM
FREADINT
FREADPAOC
FREADREAL
FREADSTR
FREADLN
FSEEK
FWRITE
FWRITEBOOL
FWRITECHAR

FWRITEENUM

Make sure file window F* is valid
UCSD block read/write

Close file

End of file?

End of text line?

Pascal GET

Position logical cursor

Open a file

Reset file

Where is end of file?

Reprint same line

Emit formfeed

What record are we at?

Pascal PUT

Read a record

Read a boolean value

Read one char

Read enumerated scalar by name
Read one integer

Read packed array of char from text
Read real number (in MFS)

Read a string

Flush out end-of-line

Position to record randomly
Write a record

Write a boolean value

Write one char

Write name of enumerated scalar

1 The code is actually in module REALS in INITLIB.

The File System 37

FWRITEINT Write one integer

FWRITELN Write end of line

FWRITEPAQOC Write packed array of char to text
FWRITEREAL Write real number (in MFS)
FWRITESTR Write a string

FWRITEWORD Write a 16-bit integer

Each of these routines requires a FIB as one parameter. See the chapter File Support for details
concerning these operations.

The Access Methods

The Access Methods are called by File Support to implement buffering or packing of data
into (unpacking of data from) the format of physical records on the disc storage medium. For
instance, an AM receives the data produced by formatted Pascal write statements to a text file
variable and generates the LIF representation of text lines as ASCII strings. Generally speaking,
there is an AM for each FILEKIND (type of file).

The things an AM can do are enumerated by a scalar type, AMREQUESTTYPE, declared in module
SYSGLOBALS. Note that not every AM is expected to be able to do all of these.

These are the components of the scalar type “AMREQUESTTYPE”:

READBYTES
WRITEBYTES
FLUSH
WRITEEOL
READTOEOL
CLEARUNIT
SETCURSOR
GETCURSOR
STARTREAD
STARTWRITE
UNITSTATUS

Each FIB has exactly one AM associated with it, in the form of a “procedure variable.” (See the
System Programming Language Extensions for details on procedure variables. Stated simply, a
procedure variable is a variable whose value is the name of a procedure which may be called.

Use of procedure variables confers a special flexibility on the file system, because their values
(names of particular procedures) need not be filled in until run-time. In fact, the procedures can
be ones which didn’t even exist at the time the kernel was built, as long as they have appropriate
parameter lists and supply the required functionality. This is one of the ways modules in INITLIB
can dramatically extend the capabilities of the kernel.

38 The File System

Formally, an AM is a procedure with the following parameter list:

type
amtype= procedure (fp: fibp;
request: amrequesttype;
anyvar buffer: window;
bufsize,
position: integer) ;

Where a FIBP is a pointer to a FIB, and a WINDOW is an array of bytes. There are several AMs
supplied with the system; you could add more if you wanted to.

UNBUFFEREDAM Expects to do a transfer directly to the device, using the Transfer Method
for the unit. Used for unblocked devices and for UCSD “untyped file”
construct. Find it in module MISC.

STANDARDAM General purpose buffering, used for Pascal data files (FILE OF (type)). In
MISC.

TEXTAM UCSD text file format (skip first 1K bytes, leading blank compression,
nulls at end of page). In UCSD_AM.

ASCIIAM HP LIF ASCII text files (16-bit length plus data for each line). In
ASCIIMODULE.

SRMAM Shared Resource Manager stream-of-bytes structure; similar to UNIX2

files. In SRMAM.

SERIALTEXTAM Converts the ASCII carriage return character to textfile EOLN conditions
for input serial devices such as the keyboard.

Some rules and facts about AM behavior: If a physical buffer is allocated by the Compiler to
the FIB (which is the case for all files except the UCSD UNTYPED file), then the AM must be
able to transfer any number of bytes to or from the buffer starting at any arbitrary memory
address (even or odd). The AM also must check for exceeding logical end of file. If the transfer
is an output which would exceed the physical end-of-file, the AM should call the DAM to try
to stretch the file to the required size. If the stretch fails, the AM must indicate an I/O error
by setting IORESULT.

2 UNIX is a trademark of AT&T Bell Laboratories.

The File System 39

The Unit Table

The “UNITABLE” [sic] is an array of up to 50 so-called logical units. A logical unit number
corresponds to the pound-sign notation used in file names, e.g., #31:. The purpose of the
table is to describe the physical characteristics of each device accessible through the file system.
Infornation in a unit entry includes (among other things):

DAM Procedure variable naming the Directory Access Method to be used for
this unit.

™ Procedure variable naming the Transfer Method (physical driver) to be
used for this unit.

sc Select code; where to find interface card.

BA HP-IB primary address, or SRM node address.

UISINTERACTIVE Indicates whether user can edit input.

UISBLKD Has a value of TRUE for discs, FALSE for byte-stream devices like printers.

UVID Name of the volume (if known).

UMEDIAVALID Media has had files opened on it, and has not been changed since.

UISFIXED The media is not removable.

UREPORTCHANGES If false, suppresses messages when drive door opened (the Filer uses this).

Types UNITENTRY and UNITABLETYPE are declared in module SYSGLOBALS. The actual unit table
itself resides in operating system heap space where it is allocated early in the kernel boot process.
It is accessed through a pointer called UNITABLE, also in SYSGLOBALS.

The Transfer Methods

Transfer methods are also called “low-level access methods” or “drivers”; they are the routines
called by AMs and DAMs to do physical input or output. A TM procedure variable is associ-
ated not with a FIB but with a particular logical unit (a UNITABLE entry). The TM uses the
information in the unit entry to decide what device to operate on and how to handle the device.

Most TMs ultimately do their work by calling routines available through the Pascal device I /O
library. It turns out that the types of TM request are described by the same scalar type as
the Access Method requests, and a TM procedure has the same parameter list form as an AM
procedure. There is no TMTYPE declaration; AMTYPE is used for both AMs and TMs.

The various TMs are best located by referencing the TEA_ procedure bodies in program CTABLE.
TMs are only required to be able to transfer to or from a disc starting on sector (256-byte)
boundaries. The driver may also require that the buffer memory address start on a word

boundary, and that the buffer length be an even number of bytes; some older HP disc drives
require this. TMs may round an odd number of bytes up to the next even number.

40 The File System

The driver should check that physical end-of-file (PEOF) is not violated. Drivers for unblocked
devices like printers will ignore this.

The driver should set UMEDIAVALID in the unit entry to FALSE if it detects that the disc drive
door has been opened, and it may refuse to read or write to a unit if UMEDIAVALID is false and
UREPORTCHANGE is true.

The Directory Access Methods

The association of a FIB with a physical file is made by a DAM, which encapsulates the orga-
nization and basic operations on a mass storage file directory. The DAM requests, listed in the
scalar “DAMREQUESTTYPE”, are:

e OPENVOLUME

e GETVOLUMENAME, SETVOLUMENAME

e GETVOLUMEDATE, SETVOLUMEDATE

e CHANGENAME

e PURGENAME

o CREATEFILE, OPENFILE, CLOSEFILE, PURGEFILE, STRETCHIT

e MAKEDIRECTORY, OPENDIRECTORY, CLOSEDIRECTORY, DUPLICATELINK, OPENPARENTDIR,
CATPASSWORDS, SETPASSWORDS, LOCKFILE, UNLOCKFILE

e CRUNCH
e CATALOG
e SETUNITPREFIX

A DAM is a procedure with the following parameter list:

type
dam= procedure(anyvar f: fib;
unum: unitnum;
request: damrequesttype) ;

Where UNUM is an index into the UNITABLE. Notice that DAMs want a FIB, whereas AMs want
a pointer to a FIB. Probably the reasons for this are historic, since passing a pointer by value
is the same as passing by reference the object to which it points.

As with TMs, each logical unit entry has an associated DAM. Any one unit can support only

one directory type, which is established by the TABLE program during boot-up or whenever TABLE
is explicitly executed by the user.

The File System 41

How the Access Method is Selected

The Pascal standard procedures RESET, REWRITE, and OPEN are calls at the File Support level,
generated by the Compiler. At the time a file is opened, the physical name (title) is examined
by file support. First it must be determined what logical unit is being selected. The logical unit
is designated by one of these notations:

’:? or no volume name The current “default volume” is used.

Pk’ or ki’ The system volume.

"#31:° The pound-sign notation gives unit number directly.
(volname): The UNITABLE must have a volume with the given name.

The FUNIT field of the FIB is set to reflect the unit selected.

If the file already exists, its type (which determines the appropriate AM) will be found in the
directory in which it resides. Otherwise the file type and hence the AM must be determined by
examining the suffix part of the file name, as follows.

The file name is examined for the presence of a suffix (a period followed by five or fewer
characters). The recognized suffixes are:

’ .BAD’ A file covering a bad block of disc.
' . TEXT’ UCSD format text file.

* .CODE’ Object code file.

' .ASC’ LIF ASCII text file.

' .SYSTM’ Boot file.

(no suffiz) Pascal “FILE OF (type)”.

42 The File System

Three variables—SUFFIXTABLE, AMTABLE and EFTTABLE—declared in SYSGLOBALS and initialized in
MISC, are involved in the AM selection process.

type
filekind= {known types}
(untypedfile,badfile,codefile,textfile,
asciifile,datafile,sysfile,

{room for expansion}
fkind7,fkind8,fkind9,fkind10,fkind11,
fkind12,fkind13,fkind14,lastfkind) ;

suffixtype= string[5];
amtype= procedure((AM procedure var type))
amtabletype= array [filekind] of amtype;
suftabletype= array [filekind] of suffixtype;
efttabletype= array [filekind] of shortint;
suftableptrtype= “suftabletype;
amtableptrtype= “amtabletype;
efttableptrtype= “efttabletype;

var
amtable: amtableptrtype;
suffixtable: suftableptrtype;
efttable: efttableptrtype;

The SUFFIXTABLE is searched for whatever suffix was stripped off the file name. If a match
is found, the index of the matching SUFFIXTABLE entry is the FILEKIND for the file, otherwise
FILEKIND is DATAFILE. The type is stored in the FKIND field of the FIB.

If the file is anonymous (the opening operation specified no external name) it is always treated
as a data file. Anonymous files declared as TEXT type in the program are given type FILE OF
CHAR. The outcome of this is that the FIB is assigned a FILEKIND value, which ultimately specifies
the Access Method.

The file opening routine now calls the Directory Access Method designated in the UNITABLE,
passing in the FIB. The DAM looks at the FIB and FKIND, and selects the AM as follows:

if not uisblkd then
if not fistextvar then am :
else am :

(*serial devicex)
tm (*non-TEXT filex)
serialtextamhook

else (*blocked devicex)
if not fbuffered then am := amtable” [untypedfile]
else
if not fistextvar then am :=
else am :

amtable~ [datafile]
amtable”[filekind];

The File System 43

Each DAM gets to make its own choices in selecting AM for a file type; as things happen, all
our standard DAMs make the same choices, but that is a fact rather than a regulation. Here is
a table summarizing the choices.

FKIND
Unblocked Blocked
FILE OF (type) ™ AMTABLE" [DATAFILE]
File Type TEXT SERIALAMTEXTHOOK AMTABLE" [FKIND]
FILE; ™ AMTABLE" [UNTYPEDFILE]

The “FILE;” entry corresponds to the UCSD untyped file, which may only be used for block
I/O operations.

We have not mentioned the External File Type table. Most file systems can keep a designation
of file type in the directory on disc. The EFTTABLE array can optionally be used to indicate what
this external file type is as a short integer. It is not a perfectly general mechanism, since the
same file type might require different type designators under different DAMs. The DAM may
have to perform a translation if this facility is used.

With this overview, we are now ready to discuss the data structures of the file system in more
detail.

(“UCSD Pascal” is a trademark of the Regents of the University of California.)

44 The File System

Fields of a FIB

Refer to the declaration of type FIB exported from module SYSGLOBALS. A FIB is a Pascal record
having the following fields.

FWINDOW: WINDOWP;

The “window” of a file F is the object pointed at by F~. It is treated by the file system as an
array of bytes, big enough to hold exactly one component of the type of the file. The window
is sometimes called the “buffer variable” (as distinct from the file’s buffer).

FWINDOW does not point into the file’s physical buffer; rather, the data is moved between the
buffer and the window, whose address doesn’t change while the file is open. The reason for this
technique is that all physical buffers are 512 or 1024 bytes long, and logical records may be
broken across physical record boundaries.

FWINDOW is nil for files declared with no type under the Pascal Compiler’s UCSD compatibility
mode. Such files can only be used for block I/O transfers.

This field is initialized by procedure FINITB in module FS; FINITB is called by code emitted by
the Compiler. Note that under certain circumstances FWINDOW may be used in ways unrelated
to the above description. Particularly in implementing DAMs, FWINDOW may be used with an
untyped FIB to access various types of data involved in handling directory entries. User-level
programs never see this.

FLISTPTR: FIBP;

All files which are in stack frames or global data areas (i.e., anywhere but in the heap) are linked
together as they are opened via the FLISTPTR field. The list is used to find and close open files
when exiting a program or procedure due to error, non-local GOTO, or normal exit.

FLISTPTR is initialized by code generated by the Compiler.

FRECSIZE: INTEGER;

This is the size of a logical record, that is, SIZEOF ({type)) in “FILE OF (type)”. The value is
zero for UCSD-compatible untyped files. Note that if FRECSIZE equals zero, the Compiler has
allocated a FIB of the variant with FBUFFERED=FALSE; no physical buffer and no file window.

Initialized by FINITB in module FS, according to a parameter passed by the Compiler.

FKIND: FILEKIND;

Indicates the type of the file UNTYPEDFILE, BADFILE, CODEFILE, TEXTFILE, ASCIIFILE, DATAFILE,
SYSFILE, etc. FKIND is initialized when the file is opened; see the detailed discussion How the
Access Method is Selected above.

FISTEXTVAR: BOOLEAN;

Indicates that the file was declared as type TEXT (as opposed to “FILE OF CHAR”. In some Pascals
the two are equivalent, but in HP Pascal implementations only things declared as TEXT may be
used with formatted reads and writes.)

Initialized by FINITB according to a parameter passed by the Compiler.

The File System 45

FBUFFERED: BOOLEAN;

Indicates whether the 512-byte physical buffer is present in the FIB. It is used by the DAM to
help select the correct Access Method. The AM could use FBUFFERED to determine whether the
Compiler allocated a physical buffer, however, proper selection of the AM by the DAM usually
insures that the buffer is there when it is needed.

Initialized by FINITB according to a parameter passed by the Compiler.

FANONYMOUS: BOOLEAN;

A file is anonymous if it was opened without a physical file name, e.g., REWRITE(F) as opposed
to REWRITE(F, *CHARLIE’). Anonymous files will not be LOCKed when closed, since they have no
valid name. The DAM is responsible for generating a random file name if the directory structure
can’t support nameless temporary files.

Initialized by the FS-level calls FHPRESET and FHPOPEN.

FISNEW: BOOLEAN;
This is TRUE if the physical file was created at this association of FIB to physical file.

Initialized by the DAM in the CREATENEW operation.

FREADABLE, FWRITEABLE: BOOLEAN;

Initialized, maintained and referenced by the File Support level, based on the particular opening
operation OPEN, RESET, APPEND or REWRITE. The Compiler passes the access rights to FHPOPEN. If
not (FREADABLE or FWRITEABLE), then the file is closed.

FREADMODE, FBUFVALID: BOOLEAN;

In vanilla Pascal, as long as a file is open, its window variable must be valid. This causes serious
problems for interactive files such as the keyboard, because it means at least one character must
be input just to open the file.

HP Pascal solves this problem with so-called “lazy I/O”, which means that the window isn’t
made valid until it is referenced by some programmatic operation. The validation of the win-
dow is automatic, caused by Compiler-emitted calls to an FS routine called FBUFFERREF. The
programmer never sees it, and programs written assuming “eager I/0” (buffer always valid)
will therefore execute properly.

FREADMODE and FBUFVALID are state variables used to control refilling of the window. They are
referenced only at the F'S level. The four states and their interpretations are:

FREADMODE | FBUFVALID | State Name Meaning
false false Write A GET must be done before F~ can be
filled with the current component.
false true Illegal Tsk!
true false Lazy F" will be filled if it is referenced.
true true LookAhead |F" has already been filled.

46 The File System

FEOLN: BOOLEAN;

Indicates end-of-line condition. Either the file is at its logical end, or the AM has determined
that a complete line has been processed.

FEOLN must always indicate whether the most recently read “character” was actually an EOL

marker. This requires special handling by text AMs which don’t use a visible character to
denote end-of-line.

FEOF: BOOLEAN;

The current file position is past the logical end of file. FEQF is valid only in “LookAhead” state.
Initialized, maintained and referenced by FS level.

FMODIFIED: BOOLEAN;

This is TRUE if some attribute of the file has changed which will require the DAM to access the
directory upon file closure. Usually this means the logical end of file has changed.

Initialized by FS routines to FALSE for an old (existing) file and TRUE for a new file. FMODIFIED
is set TRUE by F'S or the DAM when physical or logical end-of-file positions change.

FBUFCHANGED: BOOLEAN;
This flag may be used by the AM in any way it wants. Usually it indicates that the physical

buffer has been written into and needs to be flushed out to the disc before the file is closed.
Initialized to FALSE by the FS.

FPOS: INTEGER;

This field serves two purposes: indicating the requested size when creating a new file, and

indicating the current byte position in the file once open.

When creating a new file, three cases are distinguished:

FPOS>0 Requests BLOCKSx 512 bytes, where * [(blocks)]’ was appended to the file name.

FPOS=0 Means no size was specified. Some DAMs will interpret this as a hint to take the
largest space available on the disc.

FPOS<0 Means ’ [*]* was appended to the file name. Some DAM’s will take this as a hint
to use the second largest available space, or half the largest space, whichever is
larger.

The DAM will probably ignore the above conventions when opening an existing file, but the FS
may request the DAM to “stretch” the file later.

When OPENing or RESETing a file, the value of FPOS is set to zero; when opening for APPEND, FPOS is

set to the file’s logical end-of-file position. Also affected by SEEK, which does no I/O but merely
changes FPOS.

The File System 47

The AM must update FPOS after every transfer. When closing a file with the *CRUNCH’ option,
the logical end-of-file position recorded permanently in the directory will be the most recent
value of FP0OS. This can cause truncation of a file.

When the DAM is asked to stretch a file (extend its physical end-of-file), FPOS is used temporarily
to indicate what is the desired new physical end-of-file. The DAM should try to allocate at least
this much, but in any case it should grab a reasonably large piece.

FLEOF: INTEGER;

Logical end-of-file position. Initialized by the DAM to zero for a new file, or the size of an
existing file in bytes. Set by FS to zero on a REWRITE operation; and by AM to the maximum of
its initial value and any file positions obtained by writing to the file. Used by the DAM upon
file closure to determine the new permanent file size.

FPEOF: INTEGER;

Physical end-of-file position. Initialized and maintained by the DAM to reflect the actual size
of the file in bytes. Usually this is the number of bytes allocated to the file on the disc.

The Transfer Method looks at FPEOF to determine whether a transfer is legal.

The Access Method looks at it to determine whether FLEOF can safely be advanced. If the
desired FLEOF exceeds FPEOF, the AM must call the DAM to stretch the file. If FPEOF is still too
small after calling for a stretch, the AM sets IORESULT to IEOF.

FLASTPOS: INTEGER;

Previous file position. May be used by the AM in any way it wants. Usually indicates the
correspondence between the physical buffer and the file. FLASTPOS is initialized to minus one by
FS.

FREPTCNT: INTEGER;
A general purpose counter. May be used by the AM in any way it wants. Used to implement
blank compression in some text file access methods. Initialized to zero by Fs.

AM: AMTYPE;
The procedure variable indicating the Access Method to be used with the file. It is initialized
by the DAM, as described in more detail above (How the Access Method Is Selected).

Note: The Command Interpreter changes the AM of the system’s standard files INPUT and
KEYBOARD to accomplish streaming (interpretation of text file as keyboard input).

FSTARTADDRESS: INTEGER;

Execution address in boot file.

The extension word is a kluge in the definition of Logical Interchange Format directories; it is
an integer associated with each directory entry, which can be used in a way determined by the
file type (another 16-bit integer in the directory entry).

The LIF DAM uses the extension word in the following way: if the file type is DATA, the extension
indicated the logical end of file within the allocated physical space for the file. If the file is a
Boot file type, the extension word is taken to be the start address for the system being loaded
by the Boot ROM.

48 The File System

FVID: VID;

A string of up to sixteen characters, giving the name of the volume on which the file resides.
The file system uses this to choose which UNITABLE entry, hence which DAM, to use in opening
the file. See the description above.

The DAM should verify that the volume name is correct when the file is opened (that is, the
name on the volume label matches the name in the UNITABLE). After file opening, the DAM can
use FVID as it wishes, but usually it is used to verify the volume name on closing the file. This
is appropriate since not all HP discs can sense when the door has been opened and the medium
changed.

The SRM DAM uses FVID to store the master volume password for the SRM if the user ever
has occasion to offer it up.

FTID: TID;

A string of up to sixteen characters, giving the name of the file. It is initialized by combined
efforts of FS and the DAM. FS strips out volume specifier and size specifier; the DAM removes
pathnames and passwords.

FTID is used by the Command Interpreter to identify permanently loaded files; when asked to
execute a program, the stripped FTID is compared to those in memory. This means you can’t
execute from the disc any file whose FTID matches one which has been p-loaded; if you really
want to do this, you’ll have to p-load another copy, and then execute it, or change the name of
the code file, and then execute it.

PATHID: INTEGER;

Path identification token. May be used by the DAM in any way it pleases. The Shared Resource
Manager DAM uses it to identify the directory which is the immediate parent of the current file.
(Note that any open file or directory on the SRM is identified by a unique integer. If a given file
is opened twice, there will be two distinct integers referring to it. The SRM itself remembers
the logical mapping from these integer IDs onto physical files.)

PATHID is initialized to minus one by FS.

FILEID: INTEGER;
File identification token. Initialized by the DAM to whatever is appropriate for the TM. Used
by the TM (driver) to locate the physical file associated with the FIB.

For most local mass storage drivers, it is the byte offset from the beginning of the volume to the
start of the file. In this case, the TM adds FILEID to UNITABLE" [FUNIT] .BYTEOFFSET and divides
by 256 to compute the disc sector. To access a byte within the file, the TM must also add in
FPOS for the offset within the file.

Set to zero for “volume transfer” operations.

The File System 49

FUNIT: UNITNUM;

Unit number (index into the UNITABLE) for the logical unit on which the file resides. FS sets this
up according to the volume name, as described earlier. Knowing the unit number, the FS can
select the proper DAM, which then picks the right AM.

Also used by the TM to find the hardware description of the device; for example, the interface
select code or HP-IB address.

FBUSY: BOOLEAN;
Set TRUE by the TM checking a UNITSTATUS request if an overlapped I/O operation is in progress.

FEFT: SHORTINT;
This is the external file type. Would normally be set to EFTTABLE" [FKIND].

FANONCTR: SHORTINT;
Anonymous file counter. Some DAMs must invent a unique name for temporary, new or anony-
mous files.

FOPTSTRING: STRING255PTR;

This points to a string containing the optional third parameter to OPEN, REWRITE, or APPEND. Be
careful how you use this—the scope in which the actual string was declared could go away on
you!

FEOT: EOTPROC;

This is a procedure variable which will be called by the driver (TM) at the end of an overlapped
1/0 transfer. Presently the only calls which can specify that the I/O transfer be overlapped are
the UCSD UNITIO operations. The procedure whose name they store here does nothing. This
field is a hook for future use.

FFPW: PASSTYPE;
File password. This is set up by the SRM DAM when parsing file names.

FPURGEOLDLINK: BOOLEAN;
This field is assigned a value by the caller of the SRM DAM with a request to duplicate a file
link. If it is TRUE, the file’s link into its old directory will be purged at the same time.

FOVERWRITTEN: BOOLEAN;
SRM DAM sets this field up for the OVERWRITEFILE and CREATEFILE requests. It is used to decide
what to do when processing the CLOSEFILE request.

FLOCKABLE: BOOLEAN;

Set up by SRM DAM on OPENFILE, CREATEFILE, OVERWRITEFILE requests; it is TRUE if the optional
third parameter contained “LOCK” or “SAVE”. The default is false. It is used in conjunction with
FLOCKED by routines in module LOCKMODULE as well as by SRM DAM.

50 The File System

FLOCKED: BOOLEAN;

FLOCKED is the state variable which controls a workstation’s access to files opened LOCKABLE. No
file operations are allowed for a lockable file unless FLOCKED is TRUE (which is also the default
value even for non-SRM files).

This field is set by SRM DAM on OPENFILE requests and is changed by calls to LOCK, WAITFORLOCK
and UNLOCK in LOCKMODULE. When the file is locked, the FIB’s workstation-local copy of all file
state information is updated with information from the SRM. When the file is unlocked, the
SRM is updated and the physical buffer associated with the FIB is flushed. This mechanism
assures that at critical times the SRM’s state and the FIB’s state are in agreement.

FEXTRA: ARRAY [0..2] OF INTEGER;

Space set aside for future expansion.

FEXTRA2: SHORTINT;

Space set aside for future expansion.

FBO, FB1: BOOLEAN;

Space set aside for future expansion.

Variant Fields
The following fields may also be present (FIB is a variant record).

FTITLE: FID;

A string of up to 120 characters. This is the “original” file name, with volume name and size
specification removed. It is used by the DAM to extract the file name and other information
such as path name and passwords.

This field is invalidated as soon as the file is opened, since the variant is overlaid by FBUFFER.

FBUFFER: PACKED ARRAY [0..511] OF CHAR;

Allocated by the Compiler for all files except UCSD untyped files. If present, as indicated by
FBUFFERED, the area may be used in any way the AM wants. Usually it buffers one disc block
(2 sectors of 256 bytes) of data, since most drivers can only start reads or writes on sector
boundaries.

The File System 51

The Unit Table

Refer to the UNITABLE and related types exported from module SYSGLOBALS. Fields of the UNITABLE
are initialized by execution of the TABLE configuration program at bootup time.

”

Pascal file I/O is directed to files which reside on so-called “logical units.” The logical unit is
a number between one and fifty, called the unit number, which is an index into an array called
the UNITABLE. The UNITABLE was mentioned briefly in the File System overview, above. That
information is now repeated in more detail.

The logical units of file I/O are to be distinguished from interface “select codes.” A select
code is a number from zero to 31 from which can be calculated the memory-mapped address
of a peripheral’s interface circuitry. Be warned that the address calculation is not entirely
straightforward. Device I/O is discussed elsewhere.

The logical unit on which a file resides is determined from the “volume name” portion of the
file name specification. These forms of volume name are recognized:

(no volume name) If there is no colon in the file specification, or if there are no characters
preceding the colon, the volume name is taken to be the current default
volume. Otherwise the character sequence preceding the colon is stripped
out and becomes the volume name. This yields one of the next two

cases. . .

* Or *: Either of these is a synonym for the system volume.

#(unit number) If a notation like #31: is found at the beginning of the file specifi-
cation, the integer unit number is used directly to index into the
UNITABLE. The volume name for the file is taken to be the volume
label found on the addressed unit.

(volume name): If a notation like MYVOL: is found at the beginning of the file specification,

the name is extracted and the UNITABLE entries are searched for a volume
of that name. If it is found, the unit number is established; otherwise
IORESULT is set to INOUNIT, which is reported as “volume not found”.

:(file name) The volume is the default volume.
*(file name) The volume is the system volume.
*: (file name) The volume is the system volume.

A unit number for the FIB is thus established when the file is opened. The unit entry is accessed
by the AM and TM, and usually again when the file is closed.

52 The File System

const

maxunit= 50;

type
unitnum= 0. .maxunit; {zero indicates "no unit"}
unitentry= packed record

(ﬁeids of unit entry are discussed below.)

end;
unitabletype= array [unitnum] of unitentry;
unitableptr= “unitabletype;
var
unitable: unitableptr;

When we speak of the “nth” unit entry, we really mean “UNITABLE~[N]”. The table is allocated
out of system heap very early in kernel execution, by module INITUNITS which is in INITLIB.
Note: UNITABLE-[0] is used to hold the DAM procedure which will be associated with RAM
volumes.

The Fields of a Unit Entry

DAM: DAMTYPE;

This is the procedure variable specifying the Directory Access Method for the volume or device.
Initialized during the boot process, usually by execution of the TABLE configuration program
just before the Command Interpreter starts.

TM: AMTYPE;
A procedure variable specifying the TM (driver) for the physical device accessed through this
unit. Initialized during the boot process, usually by execution of TABLE.

SC: BYTE;
The “select code” for the device interface card. All I/O is memory-mapped. Knowing the select
code, one can calculate the address in memory of the interface circuitry.

There are 64 possible interface card address areas, each a block of 64K bytes, allocated above
$400000 in the 68000’s address space. The calculation of an interface address as a function of
select code is not straightforward for reasons having to do with compatibility with previous
generations of desktop machines (the 9825, 9835 and 9845). This matter is discussed under
Device I/0.

We have been asked (too often) how we decide what compatibility to try to preserve and what
we are willing to discard. The only honest answer is that compatibility decisions are made
in an evolutionary process. Each decision is constrained by previous ones, and it is hard to
create an elegant balance among history, innovation and progress. Decisions can be justified
instantaneously, but the overall result may be baffling.

The File System 53

BA: BYTE;
“Bus address.” Intended to record the HP-IB address of the device. Could be used for other
purposes by non-HP-IB drivers.

This should tell you that several UNITABLE entries may have the same interface select code, while
differing in the value of BA.

DU: BYTE;

“Disc Unit.” Selects one disc unit among several being managed by one controller addressed
through one select code. For instance, in a Model 236 the right minifloppy drive is unit zero
and the left is unit one.

This should also tell you that several UNITABLE entries may have the same select code and HP-IB
address. The 9134 micro-Winchester disc, for example, looks like four separate units all having
the same select code and bus address; they are distinguished only by the value of DU.

DV: BYTE;

“Disc volume.” In the Command-Set ’80 family of disc drives, the protocol allows still further
partitioning of a particular disc unit into “volumes”. These are not the same as Pascal volumes.
For such discs, in the future DV will specify the disc volume of interest.

Initialized by TABLE.

BYTEOFFSET: INTEGER;

Gives the byte offset from the start of the disc medium to the start of the volume. This is mainly
intended to allow creation of multiple directories on a single physical volume, and typically one
finds a volume directory at the start of the volume. In this usage, a volume is a single contiguous
area of disc, in which reside a directory and files; the files are accessed relative to the start of
volume, rather than start of disc.

A different mechanism is used for hierarchical directories. In fact, the Shared Resource Manager
itself keeps track of directory locations; a user “finds” them by name instead of by address.

BYTEOFFSET is initialized by the TABLE program.

DEVID: INTEGER;

“Device ID.” This is a misnomer. It is a driver-dependent field currently used in two ways. For
CS-80 disc drives DEVID contains the actual product number of the device, as returned by the
“describe” disc command. For local printers, it contains the printer byte timeout in milliseconds,
as specified by the option in CTABLE.

UVID: VID;

The unit’s volume ID, a string of up to sixteen characters. If the unit is a blocked mass storage
(disc) device, UVID gives the name read from the physical volume label; it will change if the disc
medium is changed. If the unit is a byte stream device (printer, CRT, keyboard, etc.) which
has no volume label, the UVID is put in by TABLE and never changes. Thus PRINTER: is the UVID
for the system print device.

54 The File System

DVRTEMP: INTEGER;

Most transfer methods need some working space to maintain state information. This state
information must be maintained with the unit entry rather than the driver module, since the
same driver may service several units.

DVRTEMP is a general-purpose variable with which drivers can work their will. For CS-80 and
Amigo drivers: while busy, DVRTEMP points to the background temporary space in use. While
not busy, contains the IORESULT of the last operation if performed in overlapped mode. For local
printers, this field contains the most recent character output, so it can be sent out again if a
printer timeout occurs.

LETTER: CHAR;

An archaeological oddity. For a while, within HP there was a plan to identify each type of disc
device by a letter, e.g., “F” for a 9885 floppy disc. Somewhere the plan got lost, because there
are too many kinds of disc.

The Series 200 tries to follow and extend the same letters used in the older 9835/9845 computers.
This letter is in fact examined by the device drivers. For instance, the same driver runs all the
Amigo discs; it tells them apart by their distinguishing letters in the unit entry.

LETTER Disc Selected

B Bubble memory

E EPROM

F 9885 8" single-sided floppy

G Shared Resource Manager

H 9895 8” double-sided floppy and 9134 micro-Winchester drive

J Any printer

K Streaming backup tape in CS-80 drives

M Internal 5.25” minifloppy

N 8290X family 5.25"” minifloppy and 5.25” minifloppy packaged with 9135 Winch-

ester and 3.5” microfloppy

Q CS-80 family mass storage devices

R RAM (memory-resident) volume

U 9134A or 9135A micro-Winchester disc (single volume 5-megabyte version)

v 9134B or 9135B micro-Winchester disc (reserved for 10-megabyte version)

w 9134C or 9135C micro-Winchester disc (reserved for 15-megabyte version)
#255 No device flag

The File System 55

There are several important uses for the drive letter:

1. MEDIAINIT uses it to know which medium initialization routine to reference, since there is
no TM request to initialize disc media.

2. When the same driver is used to support more than one version of device, the letter tells
the driver what to do.

3. A letter is returned by CTABLE’s scanning procedures to indicate device type during the
boot-up process.

4. A letter is returned by CTABLE’s GET_BOOTDEVICE_PARMS routine to indicate device param-
eters.

5. The letter “R” is noted by CTABLE to avoid overwriting existing RAM volumes. This is
relevant if CTABLE is executed by a user command after the system is “up”.

OFFLINE: BOOLEAN;

Indicates a blocked device which is absent or malfunctioning; used by drivers to avoid time-
consuming attempts at I/O—particularly attempts to find volume directories—on down devices.
This field is (and probably should be) ignored by drivers for byte-stream devices, because an
unblocked device doesn’t have to be accessible to determine its volume name.

OFFLINE is initialized to false at TABLE execution and by the I (Initialize) command invoked from
the main menu. In both instances, a UNITCLEAR is performed on all 50 units, and OFFLINE is set
TRUE for each blocked unit returning a non-zero IORESULT.

UISINTERACTIVE: BOOLEAN;
Indicates an input device which echoes its data, such as the standard keyboard/CRT or a
terminal. This field is usually initialized by TABLE at boot time.

It is referenced by KILLCHAR in module FS. (KILLCHAR assists in editing input data.)

It is referenced by STREAMING in the Command Interpreter to decide whether to “pseudo-echo”
the stream file to the screen.

It is referenced by FEOF to decide whether to read one character ahead. For instance, unit #1:
(CONSOLE: echoing standard input file INPUT) has UISINTERACTIVE true, while unit #2 (SYSTERM:
non-cchoing standard input file KEYBOARD) doesn’t. Thus the predicate EOF (KEYBOARD) will force
a onc-character look-ahead while EOF (INPUT) won’t.

UMEDIAVALID: BOOLEAN;

Indicates that open files on the medium in this unit are still valid. The TM (driver) will refuse
to read or write to a unit if this flag is FALSE and UREPORTCHANGE is TRUE.

Initialized to FALSE at bootup. Set FALSE by the Command Interpreter whenever recovering
from a fatal user program error, and by the I (Initialize) command from the main menu.

Set to FALSE by the DAM or TM whenever there is reason to believe that a removeable medium

has heen changed (door open bit). Set to TRUE by the DAM whenever it successfully opens or
creates any file on the current directory.

56 The File System

If this flag is FALSE when a DAM successfully opens or creates a file, the DAM must find and
destroy any temporary (improperly closed) files on the volume. This operation may be thought
of as cleaning up the directory of a disc which was removed from the drive while file operations
were active.

UISFIXED: BOOLEAN;

If FALSE, the medium is removeable and the driver probably ought to pay attention to whether
the disc drive door has been opened. (The driver will generate an ESCAPE(-10) with IORESULT
set to 50—ZMEDIUMCHANGED.) This is used by the Filer to avoid silly messages instructing the
operator to swap discs when the medium is not removeable.

UREPORTCHANGE: BOOLEAN;

If FALSE, the driver ignores UMEDIAVALID. This is used by the Filer to avoid error messages in file
copying sequences which require discs to be swapped in the same drive. It may also be used by
DAMs to suppress error reports in some circumstances.

UUPPERCASE: BOOLEAN;
Some directory methods want volume names to have no lower-case letters. This flag tells the
file specifier scanning routines what to do.

PAD: 0..1;
This bit is presently unused.

UISBLKD: BOOLEAN;
This variant tag field indicates that the device probably has the following characteristics:

e A directory.

e Randomly accessible.

e Can only read or write starting at sector (256 byte) boundaries.
Not all these characteristics need to hold perfectly. For example, no directory may have yet
been created on a blocked device. Some devices, such as the streaming backup tape in a 7908
disc drive are only “pseudo-random”, and there may be a severe performance or reliability

penalty for using such a device as if it were a disc. Likewise, the streaming backup tape works
in 1024-byte blocks, so the TM must simulate the behavior of smaller blocks.

UISBLKD is initialized at bootup, usually by TABLE.

The File System 57

UMAXBYTES: INTEGER;
The size in bytes of the volume. If there is only one volume on the disc drive, UMAXBYTES will be
the same as the medium size; if there are multiple volumes, each is sized separately.

For most units, this field is constant, having been set up by TABLE. However, for devices sup-
porting removeable media of differing sizes, life is more complex.

e 9885s and 9895s. The 9895 supports both double and single-sided discs. Double-sided
discs are always expected to have 150 useable tracks. Single-sided discs are a mess.
Depending upon the initializing host computer and the condition of the medium (spared
tracks), a single-sided disc may have 61 to 67 tracks, or 73 tracks!

For this reason, UMAXBYTES is normally not referenced directly; instead the integer function
UEOVBYTES is called passing the unit number. For everything except 9885s and 9895s
UMAXBYTES is returned. For 9885s and 9895s, UEOVBYTES actually attempts to access the
tracks at the end of the medium to determine exact size. For these two drive types,
UMAXBYTES contains the maximum possible medium size in bytes.

e For the streaming backup tape in CS-80 disc drives, attempting to access the device
through the file system is very inefficient and not recommended except for backup oper-
ations. However, at UNITCLEAR and medium-change times the CS-80 driver does put the
correct value (17 Mbytes or 67 Mbytes) into UMAXBYTES.

58 The File System

File Support

Introduction

This section describes the File Support calls issued by a Compiler to perform file operations. A
simple example program is presented, and the calls it issues are discussed. The purpose is to
give a better understanding of how program I/O actually takes place.

This chapter assumes that you have already read the previous chapter, File System. If this is
not the case, please read that first.

File Support 59

The sample program below creates a file of integers, locks the file, re-opens it for direct access,
and reads it in the order opposite to the way it was written, using the Pascal READDIR standard
procedure. Finally the file is purged.

What follows is a listing and disassembly of the program. After the disassembly is a commentary
on the code emitted by the Compiler, which is exactly what one should write to call the File
Support level routines from an assembly language program or any other environment.

Since the program was compiled with $DEBUG ON$, there is a TRAP #0 instruction followed by a
16-bit line number before the first instruction of each Pascal line.

1:D 0 $debug on$ (*Show line numbersx)
2:8

3:D 0 program filedemo (output);
4:D 1 type

5:D 1 ifile = file of integer;
6:D 1 var

7:D -666 1 f: ifile;

8:D -678 1 i,j,k: integer;

9:C 1 begin

10:8S

11xC 1 rewrite(f, ’INTFILE’);
12xC 1 for i :=1 to 100 do
13+C 2 write(f, (101-i));
14*C 1 close(f,’LOCK’);

15:8

16%C 1 open(f,’INTFILE’);

17xC 1 for i := 100 downto 1 do
18:C 2 begin

19xC 2 readdir(f,i,k);
20x%C 2 writeln(output, ’Record #’,1:3,’ = ’,k:3);
21:C 2 end;
22:8
23%C 1 close(f,’PURGE’)};
24xC 1 end.

No errors. No warnings.

60 File Support

The Librarian provided the following disassembly.

MODULE FILEDEMO Created 24-0ct-84
NOTICE: (none)
Produced by Pascal Compiler of 4-Jun-84
Revision number 3
Directory size 180 bytes

Module size 2660 bytes

Execution address Rbase+14

Code base 0 Size 474 bytes
Global base 0 Size 682 bytes
EXT block 4 Size 136 bytes

DEF block 2 Size 62 bytes

No EXPORT text

There are 1 TEXT records

DEF table of ’FILEDEMO’:

FILEDEMO Gbase
FILEDEMO_FILEDEMO Rbase+14
FILEDEMO__BASE Rbase

EXT table of ’*FILEDEMO’:

FS_FCLOSEIT
FS_FHPOPEN
FS_FINITB
FS_FREAD
FS_FSEEK
FS_FWRITE
FS_FWRITEINT
FS_FWRITELN
FS_FWRITEPAQGC

SYSGLOBALS
TEXT RECORD # 1 of ’FILEDEMO’:

TEXT start block 1 Size 474 bytes

REF start block 3 Size 156 bytes

LOAD address Rbase
0 000B dc.w 11 or dc.b 0,11 or dc.b >
2 0946 dc.w 2374 or dc.b 9,70 or dc.b > F°
4 494C dc.w 18764 or dc.b 73,76 or dc.b ’IL’
6 4544 dc.w 17732 or dc.b 69,68 or dc.b ’ED’
8 454D dc.w 17741 or dc.b 69,77 or dc.b ’EM’
10 4F20 dc.w 20256 or dc.b 79,32 or dc.b ’0 ’
12 0A0O dc.w 2560 or dc.b 10,0 or dc.b > ’

File Support 61

—————————————————————————— FILEDEMO_FILEDEMO

32 4EB9

38 41ED
42 216D

48 2B48
52 4E40
56 486D
60 3F3C
64 487A
68 487A
72 4EB9

78 4AAD
82 6702
84 4E43
86 4E40
90 42AD
94 52AD
98 4E40
102 486D
106 7065
108 90AD
112 4E76
114 2B40
118 486D
122 4EB9

128 4AAD
132 6702
134 4E43
136 O0CAD

144 6DCC
146 4E40
150 486D
154 487A
158 4EB9

164 4AAD

168 6702
170 4E43

62 File Support

000C
FD5A
FD5A
000D
FD66

FD5A
FD56
FD56
0000
FFEA
0000
FD5A
OO0OE
FD66
0122
0000

FFEA

link a6,#0

pea Gbase-666(a5)
pea Gbase-4(ab)
move.l #4,-(sp)

jsr FS_FINITB

lea Gbase-666(ab) ,a0l
move.l SYSGLOBALS-6(a5),4(a0)

move.l aQ,SYSGLOBALS-6(a5)

trap #0,#11 COMPILED LINE NUMBER 11
pea Gbase-666(ab)

move.w #1,-(sp)

pea Rbase+458

pea Rbase+440

jsr FS_FHPOPEN

tst.1 SYSGLOBALS-22(a5)

beq.s Rbase+86

trap #3

trap #0,#12 COMPILED LINE NUMBER 12
clr.1l Gbase-678(ab)

addq.1l #1,Gbase-678(ab)

trap #0,#13 COMPILED LINE NUMBER 13
pea Gbase-666(ab)

moveq #101,d0

sub.1l Gbase-678(ab),do0

trapv

move.l dO,Gbase-682(a5)

pea Gbase-682(ab)

jsr FS_FWRITE

tst.1l SYSGLOBALS-22(a5)
beq.s Rbase+136

trap #3

cmpi.l #100,Gbase-678(ab)

blt.s Rbase+94

trap #0,#14 COMPILED LINE NUMBER 14
pea Gbase-666(a5)

pea Rbase+446

jsr FS_FCLOSEIT

tst.1 SYSGLOBALS-22(a5)
beq.s Rbase+172
trap #3

172 4E40 0010 trap #0,#16 COMPILED LINE NUMBER 16

176 486D FD66 pea Gbase-666(a5)
180 3F3C 0002 move.w #2,-(sp)
184 487A 0110 pea Rbase+458
188 487A OOFA pea Rbase+440
192 4EB9 0000 jsr FS_FHPOPEN
0000
198 4AAD FFEA tst.1l SYSGLOBALS-22(a5)
202 6702 beq.s Rbase+206
204 4E43 trap #3
206 4FE40 0011 trap #0,#17 COMPILED LINE NUMBER 17
210 2B7C 0000 move.l #101,Gbase-678(ab)
0065 FDSA
218 53AD FD5A subq.l #1,Gbase-678(a5)
222 4E40 0013 trap #0,#19 COMPILED LINE NUMBER 19
226 486D FD66 pea Gbase-666(ab)
230 2F17 move.l (sp),-(sp)
232 2F2D FD5A move.l Gbase-678(a5),-(sp)
236 4EB9 0000 jsr FS_FSEEK
0000
242 4AAD FFEA tst.1l SYSGLOBALS-22(a5)
246 6702 beq.s Rbase+250
248 4E43 trap #3
250 486D FD62 pea Gbase-670(a5)
254 4EB9 0000 jsr FS_FREAD
0000
260 4AAD FFEA tst.1l SYSGLOBALS-22(a5)
264 6702 beq.s Rbase+268
266 4E43 trap #3
268 4E40 0014 trap #0,#20 COMPILED LINE NUMBER 20
272 2F2D FFA6 move.l SYSGLOBALS-90(a5),-(sp)
276 2F17 move.l (sp),-(sp)
278 487A 00BA pea Rbase+466
282 3F3C 0008 move.w #8,-(sp)
286 3F3C FFFF move.w #-1,-(sp)
290 4EB9 0000 jsr FS_FWRITEPAOC
0000
296 4AAD FFEA tst.1l SYSGLOBALS-22(ab)
300 6702 beq.s Rbase+304
302 4E43 trap #3
304 2F17 move.l (sp),-(sp)
306 2F2D FD5A move.l Gbase-678(a5),-(sp)
310 3F3C 0003 move.w #3,-(sp)
314 4EB9 0000 jsr FS_FWRITEINT
0000
320 4AAD FFEA tst.1l SYSGLOBALS-22(a5)
324 6702 beq.s Rbase+328

File Support 63

326 4E43 trap #3

328 2F17 move.l (sp),-(sp)
330 487A 006E pea Rbase+442
334 3F3C 0003 move.w #3,-(sp)
338 3F3C FFFF move.w #-1,-(sp)
342 4EB9 0000 jsr FS_FWRITEPAOC

0000
348 4AAD FFEA tst.1 SYSGLOBALS-22(a5)
352 6702 beq.s Rbase+356
354 4E43 trap #3
366 2F17 move.l (sp),-(sp)
3568 2F2D FD62 move.l Gbase-670(a5b),-(sp)
362 3F3C 0003 move.w #3,-(sp)
366 4EB9 0000 jsr FS_FWRITEINT

0000
372 4AAD FFEA tst.1l SYSGLOBALS-22(a5)
376 6702 beq.s Rbase+380
378 4E43 trap #3
380 4EB9 0000 jsr FS_FWRITELN

0000
386 4AAD FFEA tst.1l SYSGLOBALS-22(a5)
390 6702 beq.s Rbase+394
392 4E43 trap #3
394 OCAD 0000 cmpi.l #1,Gbase-678(ab)

0001 FD5A
402 6EOO0 FF46 bgt Rbase+218
406 4E40 0017 trap #0,#23 COMPILED LINE NUMBER 23
410 486D FD66 pea Gbase-666(ab)
414 487A 0024 pea Rbase+452
418 4EB9 0000 jsr FS_FCLOSEIT

0000
424 4AAD FFEA tst.1l SYSGLOBALS-22(a5)
428 6702 beq.s Rbase+432
430 4E43 trap #3
432 4E40 0018 trap #0,#24 COMPILED LINE NUMBER 24
436 4E5E unlk a6
438 4E75 Tts
440 0000 dc.w O or dc.b 0,0 or dc.b ’ ’
442 203D dc.w 8253 or dc.b 32,61 or dc.b ’ =’
444 2000 dc.w 8192 or dc.b 32,0 or dc.b ’ °’
446 044C dc.w 1100 or dc.b 4,76 or dc.b ’ L’
448 4F43 dc.w 20291 or dc.b 79,67 or dc.b ’0C’
450 4B00O dc.w 19200 or dc.b 75,0 or dc.b 'K’
452 0550 dc.w 1360 or dc.b 5,80 or dc.b ’ P’
454 5552 dc.w 21842 or dc.b 85,82 or dc.b 'UR’
456 4745 dc.w 18245 or dc.b 71,69 or dc.b ’GE’
458 0749 dc.w 1865 or dc.b 7,73 or dc.b ’ I’
460 4E54 dc.w 20052 or dc.b 78,84 or dc.b ’NT’
462 4649 dc.w 17993 or dc.b 70,73 or dc.b ’FI’
464 4C45 dc.w 19525 or dc.b 76,69 or dc.b ’'LE’
466 5265 dc.w 21093 or dc.b 82,101 or dc.b ’Re’
468 636F dc.w 25455 or dc.b 99,111 or dc.b ’co’
470 7264 dc.w 29284 or dc.b 114,100 or dc.b ’'rd’
472 2023 dc.w 8227 or dc.b 32,35 or dc.b ’ #’

64 File Support

In the following commentary, the notation [nn)] refers to Pascal source line number nn; the
notation @nn refers to byte offset nn from the beginning of the relocatable text segment. (Byte
offsets are the left-hand column of numbers in the disassembly.) The symbol “Gbase” is the
relocated base of the global variable area for this program; “Rbase” is the relocated base address
where the program’s code is ultimately loaded.

@18

Before the first line of user code, the Compiler emits a call to FS_FINITB, which initializes the
FIB properly. This must take place before any other operations using the FIB. The file has been
allocated 666 bytes of global area as follows: 4 bytes at Gbase-4 for the window variable (size
of an integer, which is the file type); 662 bytes for the FIB itself, including a 512-byte physical
buffer at the end of the FIB.

Since global areas “grow downward” but variable fields “grow upward”, Gbase-666(A5) is the
address of the first byte of the FIB while Gbase-4(A5) is the address of the file window variable.
The call pushes the address of the FIB, the address of the window, and the size of a record,
then calls FS_FINITB.

Then (@38) the FIB is pushed onto a linked list (a stack) of active files. This will enable
the system to find and close any open files if the program aborts; it is an optional but highly
recommended step. The pointer to the head of the file chain is at SYSGLOBALS-6(A5); it now
points to our FIB, and the second field of the FIB, FLISTPTR, is set to point to the next item in
the chain.

1:D 0 $debug on$ (*Show line numbersx)
2:5

3:D 0 program filedemo (output);
4:D 1 type

5:D 1 ifile = file of integer;
6:D 1 var

7:D -666 1 f: ifile;

8:D -678 1 i,j,k: integer;

9:C 1 begin

10:8

11%C 1 rewrite(f, ’INTFILE’);
12%C 1 for i :=1 to 100 do
13xC 2 write(f, (101-i));
14xC 1 close(f,’LOCK’);

16:8

16%C 1 open(f,’INTFILE’);

17xC 1 for i := 100 downto 1 do
18:C 2 begin

19%C 2 readdir(f,i,k);
20*C 2 writeln(output, ’Record #’,i:3,’ = ’,k:3);
21:C 2 end;
22:8
23%C 1 close(f,’PURGE’);

24xC 1 end.

No errors. No warnings.

File Support 65

[11] @52

This is the call to REWRITE, which opens the file for output. The address of the FIB is pushed, then
a literal value one (1) indicating write-only access, then the address of the string containing the
file name, then the address of a null string corresponding to the absent optional 3rd parameter
of the REWRITE statement. The routine called is FS_FHPOPEN, which performs all the legal file
opening operations.

There are four types of access, exported from module FS:

type
faccess= (readonly, writeonly, readwrite, append);

As with all Pascal enumerated scalars, the ordinal values corresponding to these types are 0, 1,
2,...

Note that the representation of a string has a leading byte telling the length; a length of 0 is
perfectly legal.

@78

The Compiler generates a check of the system variable IORESULT, because the program was
compiled with the default $I0CHECK ON$. The IORESULT variable is found at SYSGLOBALS-22(A5).
If it is 0, the operation was successful; otherwise a TRAP #3 is executed.

[13] @98
To write the value (101-I), the Compiler emits:
e Push address of FIB.

e Compute (101-I) and store in a global, “nameless” variable used for temporary storage.
The variable is at global Gbase-682(A5) because this is the main program; in a procedure
some local cell would have been used. If you look at the first page of the unassembly,
you will see that there are 682 bytes of globals, not, 678 as would be indicated by the
compilation listing.

o Push address of local variable.
e Call FS_FWRITE.

FWRITE only needs the address of the value to be written; the size of the component was stored
in the FIB by the call to FINITB. After the write, IORESULT is checked again.

[14] @146

Close the file with LOCK. The sequence is:
e Push address of FIB.
e Push address of string *LOCK’ telling what to do.
e Call FS_FCLOSEIT.

66 File Support

[16] @172
Open the file for direct access by the Pascal standard procedure OPEN. This translates into
another call on FS_FHPOPEN:

e Push FIB address.
Push literal 2, indicating FACCESS = READWRITE.

Push address of string containing file name.

Call FS_FHPOPEN.

[19] @222
The standard procedure READDIR is translated by the Compiler into a SEEK followed by a READ.

The original call was READDIR(F,I,K) meaning read the value of K from the Ith component of
file F:

Push FIB address for call to READ.

Push another copy of it for call to FSEEK.

Push the value of the record number (value of I).
Call FS_FSEEK.
(Optionally) test IORESULT.

Push address of variable K which will be read.
Call FS_FREAD.
Check IORESULT.

[20] ©@268-402

These calls are generated by the Pascal WRITELN to standard file OUTPUT. OUTPUT is a file like any
other file, which is to say it has a physical buffer and a window variable. However, the Compiler
happens to know that there is a pointer to the FIB for OUTPUT at address SYSGLOBALS-90(A5);
the value of this pointer is the address of the FIB.

The single write statement will translate into a sequence of calls on the appropriate output
editing routines to format the data. The FIB pointer is pushed once (@272) and then duplicated
on top of the stack as needed for each FS call which will be emitted.

The general form of argument list for textfile input and output routines is: FIB address, value or
address of object being read/written, one or two integers for formatting field width specification,
and a call to the appropriate routine. For instance, to write a quoted literal the Compiler
generates:

Push FIB address.

Push address of packed array of characters stored in the constant pool (some Rbase-relative
value).

Push the length of the packed array of characters.

Push the desired field width (—1 means use actual length of the array).
Call FS_FWRITEPAOC (Write Packed Array of Characters)

File Support 67

[23] @406
Closing the file with *PURGE’ is just like any other closing operation; a string is passed to indicate
the disposition.

Only one aspect of file handling was not demonstrated by this example, which is the removal of
the FIB from the chain of active FIBs. For global files this is not necessary, since the chain is
marked empty just before a program starts running. The Compiler will emit code at block exit to
remove from the chain any files whose scope is local to some procedure block. The routine called
by the Compiler for this purpose is ASM_CLOSEFILES, which is found in the assembly language
module POWERUP.

There is also an automatic removal process which occurs for non-local GOTOs and during
TRY/RECOVER processing if it deletes a procedure frame from the stack. ASM_CLOSEFILES is again

used.

Files allocated in the heap are not automatically closed, but they are closed if the space in which
they reside is DISPOSEd.

68 File Support

Error Reporting by the File 1/O Subsystems

There is a single, simple error reporting mechanism used for errors of file I/O. Exported from
module SYSGLOBALS is a variable called SYSIORESULT, also accessible as the “system function”
IORESULT, which is translated by the Compiler into a direct access to the system variable.

All Pascal statements which translate into FS-level calls (such as READ, WRITE, GET, RESET) are
handled specially by the Compiler. When the directive $I0CHECK ON$ is active (which is the
default case), code is emitted after every FS-level call to verify that IORESULT is 0. If it is
nonzero, an automatic call ESCAPE(-10) is generated, which will be reported as an 1/O error
unless it is trapped by TRY/RECOVER somewhere.

The FS, AMs, DAMs, and TMs are all compiled with $I0CHECK OFF$, and must explicitly check
for IORESULT where appropriate. If you write an AM, a DAM, or a TM, you will need to do
likewise.

The values of IORESULT are also exported from SYSGLOBALS. They are repeated here for easy
reference. Note that they are divided into two mutually exclusive groups: those beginning with
“Z” are reserved for low-level drivers, while those beginning with “I” are reserved for the higher
level routines.

0 INOERROR No error occurred on the last I/O call.
1 ZBADBLOCK CRC (Cyclic Redundancy Check) error; the disc could not be
successfully read even after several retries.
2 IBADUNIT Illegal unit number; valid numbers are 1 through 50.
3 ZBADMODE The TM doesn’t know how to do requested transfer.
4 ZTIMEQUT Device not responding.
5 ILOSTUNIT Volume name on unit doesn’t match any entry in the UNITABLE.
6 ILOSTFILE The file was purged while open to another FIB.
7 IBADTITLE Illegal syntax for file name in this DAM.
8 INOROOM No file space; can’t create or extend file.
9 INOUNIT Named volume not found.
10 INOFILE Named file not found.
11 IDUPFILE DAM doesn’t allow two files with same name.
12 INOTCLOSED Tried to open a file which was already open.
13 INOTOPEN Tried to close a file which was already closed.
14 IBADFORMAT Bad input data to formatted numeric read.
15 ZNOSUCHBLK Attempt to read or write past volume limits.

File Support 69

16 ZNODEVICE Device is offline.

17 ZINITFAIL Initialization of medium failed.

18 ZPROTECTED The medium is write-protected.

19 ZSTRANGEI Unexpected interrupt.

20 ZBADHARDWARE Hardware or medium failed.

21 ZCATCHALL Ouch—some kind of driver problem.

22 ZBADDMA DMA (Direct Memory Access) interface card failed.

23 INOTVALIDSIZE Specified file size incompatible with file type.

24 INOTREADABLE File not opened for reading.

25 INOTWRITEABLE File not opened for writing.

26 INOTDIRECT I'ile not opened for random access.

27 IDIRFULL The directory is full.

28 ISTROVFL String bound violation in STRWRITE or STRREAD.

29 IBADCLOSE Bad file disposition parameter to CLOSE.

30 IEOF Tried to read past logical end of file.

31 ZUNINITIALIZED Tried to use an uninitialized disc medium.

32 ZNOBLOCK Block not found on medium (usually, this means you are using a
bad disc).

33 ZNOTREADY Device not ready.

34 ZNOMEDIUM No storage medium mounted in drive.

35 INODIRECTORY No directory or directory not readable by this DAM.

36 IBADFILETYPE File type designator not recognized by AM.

37 IBADVALUE Some parameter is illegal or out of range.

38 ICANTSTRETCH File cannot be extended.

39 IBADREQUEST DAM or AM can’t perform requested service.

40 INOTLOCKABLE File not opened “lockable”.

41 IFILELOCKED File already in locked state.

42 IFILEUNLOCKED Attempted I/O on lockable but unlocked file.

43 IDIRNOTEMPTY Tried to remove non-empty SRM directory.

44 ITOOMANYOPEN SRM: too many open files on device.

45 INOACCESS Password required for this access.

46 IBADPASS Invalid password offered to SRM.

70 File Support

47
48
49

50
51
52

IFILENOTDIR
INOTONDIR

INEEDTEMPDIR

ISRMCATCHALL
ZMEDIUMCHANGED
ENDIOERRS

The file is not a directory.

Operation not allowed/supported on directory

Couldn’t create /WORKSTATIONS/TEMP_FILES, needed for temporary

files on SRM.
Unrecognized SRM error (this shouldn’t happen)

Drive door opened; medium may have been changed.

Placeholder for end of list.

File Support 71

File System Exports

The remainder of this chapter describes procedures and functions which are exported from the
modules FS and MFS. These routines are normally called by compiler generated code to perform
file operations (e.g., READ(TEXTFILE, SIZE, COLOR, DESCRIPTION);) and some string operations
(e.g., STRREAD, STRWRITE). Thus, these routines constitute the highest level of the workstation’s
file system support and are dependent on lower level support including the Directory Access
Methods, the Access Methods, and the Transfer Methods (drivers).

For each routine described, the following information will be given.

Pascal Declaration
The Pascal declaration of the routine.

Purpose
A brief description of what the routine is used for.

Parameters
A description of the parameters to the routine.

Stack

An illustration of the stack immediately after the routine is called (i.e., just after the JSR
instruction). This may be useful if these routines are to be called by code written in assembly
language. Parameters should be pushed as illustrated before the return address. The return
address is normally pushed by a JSR intruction. Where a symbol similar to this

—sp+10
—sp+8

parameter

appears, it indicates that the parameter on the stack occupies only the most significant byte of
the stack word.

Action
A brief description of the logic in the routine. In some cases this may be greatly abbreviated.

Errors
A summary of the expected error conditions encountered by the routine.

72 File Support

The following routines are explained.
doprefix
fanonfile

fblockio (function)
foufferref (function)

fclose
fcloseit

feof (function)
feoln (function)

fget
fgetxy
fgotoxy

fhpopen
fhpreset

findvolume (function)
finitb
fixname

fmaketype
fmaxpos (function)

foverfile
foverprint

fpage
fposition (function)
fput

fread

freadbool

freadbytes

freadchar

freadenum

freadint

freadln

freadpaoc

freadreal (mfs)
freadstr

freadstrbool

freadstrchar

freadstrenum

freadstrint (assembly)
freadstrpaoc

freadstrreal (mfs)
freadstrstr

freadstrword

freadword

fseek
fstripname

File Support 73

fwrite
fwritebool
fwritebytes
fwritechar
fwriteenum
fwriteint
fwriteln
fwritepaoc
fwritereal
fwritestr
fwritestrbool
fwritestrchar
fwritestrenum
fwritestrint
fwritestrpaoc
fwritestrreal
fwritestrstr
fwritestrword
fwriteword

scantitle

zapspaces

74 File Support

(mfs)

(assembly)
(mfs)

(function)

doprefix

Pascal Declaration

procedure doprefix(var dirname: fid;
var kvid: vid;
var kunit: integer;
findunit: boolean) ;

Purpose
To set the default (prefix) directory of a unit. Also returns the volume id and unit number of
the unit.
Parameters
DIRNAME Volume id and path name.
KVID Volume id returned.
KUNIT Unit number returned.
FINDUNIT If true, directory must be present or return IORESULT of INOUNIT.
Stack

ointer 10 dirname
p‘t o kvid «—sp+14

ointer 1o Kvi
P mior to kurit «—sp+10

ointer 1o kuni
? - —sp+6
findunit

«—spt+4

return address

« stack pointer

Action

1.
2.
3.

5.

Call SCANTITLE with DIRNAME.
Then call FINDVOLUME.

If the unit is found and has a directory, call its DAM with a SETUNITPREFIX request and
return the UVID and unit number.

If the unit had no directory (specified as #nn) and FINDUNIT is FALSE set KVID to #nn and
return.

Otherwise, set IORESULT to indicate error condition.

SCANTITLE failed, set IORESULT to IBADTITLE.
FINDUNIT TRUE but no unit or directory found, set IORESULT to INOUNIT.

FINDUNIT FALSE and no directory or unit found but pathname followed colon, set IORESULT
to IBADTITLE.

The DAM request may fail and set IORESULT.

File Support 75

fanonfile

Pascal Declaration

procedure fanonfile(anyvar f: fib;
var name: string;
kind: filekind,
size: integer);
Purpose

To open an anonymous file in a given directory (in name).

Parameters
F The FIB.
NAME This should include volume id but no filename is needed.
KIND The file kind to be created.
SIZE The size of the file to be created.
Stack
o to f —sp+20
ointer 10
pt —spt+16
strmax(name
- (t) —sp+14
ointer 1o name
P —sp+10
kind
- —sp+8
Size
—sp+4
return address

«— stack pointer

Action
1. Set FANONYMOUS to TRUE.
Call SCANTITLE to extract FVID and FTITLE from name.
Set FKIND to KIND.
Set FPOS to SIZE.
Set FOPTSTRING to ADDR(NULLSTRING) (a dummy value).
If FPOS > 0O, then set FPOS to FPOS*FBLKSIZE.
Set FEFT to EFTTABLE" [FKIND];
Set FISNEW to TRUE.

© 0 NSk W N

Set FREPTCNT to 0.

._.
e

Set FBUFCHANGED to FALSE.

[u—y
[u—y

. Set FLASTPOS to —1.

76 File Support

12. Set FSTARTADDRESS to 0.

13. Set PATHID to —1.

14. Set FNOSRMTEMP to TRUE.

15. Call FINDVOLUME with FVID and FALSE (no verify) to get unit.
16. Call the DAM with a CREATEFILE request.

17. If TORESULT is not INOERROR, call FINDVOLUME with TRUE (do verify) and call DAM with
CREATEFILE request again.

18. Set FMODIFIED to TRUE.

19. Set up file state as follows.

fpos 0
fbufvalid false
feof true
freadmode false
freadable false
fwriteable true
fleof 0
fmodified true
Errors

e If name is too long or SCANTITLE fails, set IORESULT to IBADTITLE.
e If FINDVOLUME returns unit 0, set IORESULT to INOUNIT.
e The DAM may set IORESULT.

File Support 77

fblockio

Pascal Declaration

function fblockio(var f: fib;
var buf: window;
nblocks,
rblock: integer;
doread: boolean): integer;
Purpose

To read or write blocks of data on block boundaries. The read or write may be relative to
current file position or from a specified position. Blocksize (FBLKSIZE) is 512 bytes.

Parameters
F The FIB.
BUF The data buffer.
NBLOCKS The number of blocks to be read or written.
RBLOCK The starting file position (in blocks) (RBLOCK < 0 indicates current file position).
DOREAD This is TRUE if reading, FALSE if writing.
Stack

—sp+26
function result

; o f —spt+22
ointer to
P tor o buf ~—sp+18
ointer 1o bu

pbl . —sp+14
NPRIOCKS

—sp+10
rblock

—sp+6
doread

—spt+4
return address

— stack pointer

Action

1. Calculate starting position as follows:
a. If RBLOCK >= 0, then set FPOS to RBLOCK*FBLKSIZE.

b. If RBLOCK < 0, then set FPOS to FPOS+(-FPOS) mod FBLKSIZE (i.e., round FPOS to block
boundary).

2. Calculate number of bytes to be read/written as follows:
BLOCKBYTES = NBLOCKS*FBLKSIZE.

3. If reading (DOREAD = TRUE), then if BLOCKBYTES > FLEOF— FPOS (the number of bytes
to the end of the file) then reduce BLOCKBYTES to FLEOF—FPOS and reduce NBLOCKS to
(BLOCKBYTES+(FBLKSIZE-1)) div FBLKSIZE. (In other words, don’t attempt to read past
end of file. Read to end of file, and return NBLOCKS as number of blocks that include all
bytes to end of file. The end of the last block will be uninitialized.)

78 File Support

4. Call the AM to read/write BLOCKBYTES bytes from/to the file at position FPOS.
5. If the IORESULT returned is INOERROR, return NBLOCKS. Otherwise, return 0.

Errors
e The AM may set IORESULT.
e If TORESULT is not INOERROR, O should be returned.

File Support 79

fbufferref

Pascal Declaration
function fbufferref(var f: fib): windowp;

Purpose
To return a valid file window.

Parameters
F The FIB.
Stack
. —sp+12
function result
inter to f —sp+8

ointe
P —spt+4
return address

— stack pointer
Action

1. If FREADMODE and not FBUFVALID and FLOCKED then call the AM to read FRECSIZE bytes
from the file at offset FPOS into FWINDOW".

2. If the AM call resulted in an end of file, set FEOF to TRUE, and if FEOLN is not already
TRUE, set FWINDOW"[0] to ’ ’, set FEOLN to TRUE, set FBUFVALID to TRUE, and set IORESULT
to INOERROR (i.e., create a “ghost” end of line).

3. If the AM call did not result in an EOF, set FBUFVALID to TRUE and FEQF to FALSE. Return
FWINDOW.

4. If the call to the AM was not necessary (i.e., the else for the first if above was activated),
just return FWINDOW.
Errors
e If not (FREADABLE or FWRITEABLE), set IORESULT to INOTOPEN.
o If not FLOCKED, set IORESULT to IFILEUNLOCKED.
e The AM call may set IORESULT.

80 File Support

fclose

Pascal Declaration
procedure fclose(var f: fib;
ftype: closetype);

Purpose
To close a file.

Parameters

F The FIB.

FTYPE The type of close (e.g., CNORMAL, PURGE, LOCK, CCRUNCH).
Stack

v —sp+10

ointer to

f «—sp+6
e

P —spt+4

return address

— stack pointer
Action
1. If the file is not open (not FREADABLE and not FWRITEABLE) don’t do anything.

2. If FANONYMOUS or (FTYPE = PURGE) or (FISNEW and (FTYPE = CCRUNCH)), call the DAM
with a purgefile request.

3. Otherwise, if the file is locked, call the AM to with a FLUSH request, set the logical end of

file to be the current file position if FTYPE = CCRUNCH (call DAM with STRETCHIT request
if this will extend the file) by setting FLEOF to FPOS.

4. Then call the DAM with a CLOSEFILE request.
5. In any case, set the FIB fields to their default (closed) state:

freadmode false
fbufvalid false
freadable false
fwriteable false
flockable false
flocked true
feoln true
feof true
Errors

e The DAM may set IORESULT.
e The AM may set IORESULT.
e In particular, the DAM may set IORESULT to ICANTSTRETCH.

File Support 81

fcloseit

Pascal Declaration

procedure fcloseit(var f: fib;
stype: string255);

Purpose
To close a file.

Parameters

F The FIB.

STYPE The type of close. (This is a string as in the second parameter of a Pascal CLOSE

call.)
Stack
or o | — Sp+ 12

ointer to

P o t —sp+8
ointer 1o stype

P P —sp+4

return address

— stack pointer
Action

1. Convert STYPE to a CLOSETYPE. Valid strings include ’NORMAL’, *TEMP’, ’LOCK’, ’SAVE’,
'CRUNCH’, and ’PURGE’ (’NORMAL’ is equivalent to *TEMP’ and ’LOCK’ is equivalent to
*SAVE’). Case is ignored.

2. Call FCLOSE with the CLOSETYPE constructed.

Errors
e If the file is not open (not FREADABLE and not FWRITEABLE), set IORESULT to INOTOPEN.
e If the STYPE cannot be converted to a CLOSETYPE, set IORESULT to IBADCLOSE.

82 File Support

feof

Pascal Declaration
function feof (var f: fib): boolean;

Purpose
To determine if file pointer is at end of file.

Parameters
F The FIB.
Stack
—sp+10

func. result

= p ~— sp+8

nter
pointer to — sp+4
return address

«— stack pointer
Action
1. If not (FREADABLE or FWRITEABLE) (i.e., if the file is closed) then return TRUE.
2. If FRECSIZE <= 0 (untyped files) then return TRUE if FPOS > FLEOF, FALSE otherwise.

3. If (FRECSIZE > 0) and FREADABLE and FWRITEABLE then return TRUE if FPOSITION(F)
> FMAXPOS(F), FALSE otherwise.

4. Otherwise, call FBUFFERREF if the unit is not interactive (to get proper FIB state), set
IORESULT to INOERROR if it was IEOF, and return F.FEQF.
Errors
e If not FLOCKED, set IORESULT to IFILEUNLOCKED.
e FBUFFERREF may set an IORESULT other than IEOF.

File Support 83

feoln

Pascal Declaration
function feoln(var f: fib): boolean;

Purpose
To determine if file pointer is at end of line.

Parameters
F The FIB.
Stack
func. result
- o —sp+8
ointer
P ° —sp+4
return address

« stack pointer

Action

1. Call FBUFFERREF (to get proper FIB state), set IORESULT to INOERROR if it was IEOF, and
return F.FEOLN.

Errors

e FBUFFERREF may set an IORESULT other than IEQF.

84 File Support

fget

Pascal Declaration
procedure fget (var f: fib);

Purpose
To position file pointer to next record.

Parameters
F The FIB.
Stack
———— —sp+8
ointer to
P «—sp+4
return address

«— stack pointer
Action

1. If FREADMODE and not FBUFVALID then call FREAD with F and F.FWINDOW" to get the next
record with the AM.

2. Otherwise, set the lazy I/O condition by setting FREADMODE to TRUE and FBUFVALID to
FALSE.
Errors
e If not (FREADABLE or FWRITEABLE), set IORESULT to INOTOPEN.
e Ifnot F READABLE, set IORESULT to INOTREADABLE.
e If not FLOCKED, set IORESULT to IFILEUNLOCKED.

File Support 85

fgetxy

Pascal Declaration

procedure fgetxy(anyvar f: fib;
var x,
y: integer) ;
Purpose

To fetch the position of the cursor of an interactive file.

Parameters
F The FIB.
X The x (column) coordinate of the cursor.
Y The y (row or line) coordinate of the cursor.
Stack
- —sp+16
pOfnter tof — sp+12
po!nter to x — sp+8
pointer to y — sp+d
return address

— stack pointer

Action
1. Call the AM with a SETCURSOR request.
2. Set X to FXPOS.
3. Set Y to FYPOS.

Errors
e The AM may set IORESULT (e.g., to IBADREQUEST).

86 Flile Support

fgotoxy

Pascal Declaration

procedure fgotoxy(anyvar f: fib;
x)
y: integer) ;

Purpose
To position the cursor of an interactive file.

Parameters
F The FIB.
X The x (column) coordinate of the cursor.
Y The y (row or line) coordinate of the cursor.
Stack
- ~—sp+16
pointer to f — sp+12
X —sp+8
y — sp+4
return address

«~ stack pointer
Action

1. Set FXPOS to X.

2. Set FYPOS to Y.

3. Call the AM with a SETCURSOR request.

Errors

e The AM may set IORESULT (e.g., to IBADREQUEST).

File Support 87

fhpopen

Pascal Declaration

procedure fhpopen(var f: fib;
typ: faccess;
var title,
option: string255) ;
Purpose

To open a file with a name and an optional third parameter (Pascal RESET, OPEN, APPEND, REWRITE
procedures); for example, RESET (F, TITLE, OPTION).

Parameters
F The FIB.
TYP The type of open (READONLY = RESET; READWRITE = OPEN; WRITEAPPEND = APPEND;
WRITEONLY = REWRITE.)
TITLE The file identifier.
OPTION The equivalent of the third parameter in the Pascal open call.
Stack
- —sp+18
pointer to f — sp+14
typ_ - —sp+12
po!nter to tltle. —sp+8
pointer to option — sp+a
return address

— stack pointer

Action
1. Call FCLOSE with F and CNORMAL.
Set FANONYMOUS to FALSE.
Call SCANTITLE to extract FVID and FTITLE and FKIND and FILESIZE from name.
Set FPOS to the FILESIZE extracted.
Set FOPTSTRING to ADDR (OPTION).
If FPOS > 0 then set FPOS to FPOS*FBLKSIZE.
Set FEFT to EFTTABLE" [FKIND].

If TYP = WRITEONLY, set FISNEW to TRUE, FALSE otherwise.

© ® N o o R e N

Set the following variables to these values:

88 File Support

freptcnt 0

fbufchanged false
flastpos -1
fstartaddress 0
pathid -1
fnosrmtemp true

10. For TYP = READONLY (RESET) do

a.
b.

C.

Call FINDVOLUME with FVID and FALSE (no verify) to get unit.
Call the DAM with a OPENFILE request.

If TORESULT is not INOERROR, call FINDVOLUME with TRUE (do verify) and call DAM
with OPENFILE request again.

11. For TYP = READWRITE (OPEN) and for TYP = WRITEAPPEND (APPEND) do:

a.
b.

Call FINDVOLUME with FVID and FALSE (no verify) to get unit.
Call the DAM with an OPENFILE request.

c. If IORESULT is not INOERROR and not INOFILE, call FINDVOLUME with TRUE (do verify)

and call DAM with OPENFILE request again.
If it fails again, set FISNEW to TRUE (revert to FMAKETYPE).

If OPENFILE request succeeds, then if FPOS > FPEQF, call the DAM with a STRETCHIT
request.
If the STRETCHIT request fails (if FPOS still > FPEOF), set IORESULT to ICANTSTRETCH.

If FISNEW (reverted to FMAKETYPE), call the DAM with a CREATEFILE request. If
IORESULT is not INOERROR, and the last FINDVOLUME call was not with TRUE (do verify),
call FINDVOLUME with TRUE and call DAM with CREATEFILE request again.

. Now that the hard stuff is done, if TYP is READWRITE and FISTEXTVAR is TRUE, call

the DAM to close the file and set IORESULT to IBADFILETYPE (not allowed to OPEN or
APPEND text files).

12. For TYP=WRITEONLY (REWRITE), do:

a.
b.

Call FINDVOLUME with FVID and FALSE (no verify) to get unit.
Call the DAM with a CREATEFILE request.

c. If IORESULT is not INOERROR, call FINDVOLUME with TRUE (do verify) and call DAM

with CREATEFILE request again.

13. Now for all values of TYP set FMODIFIED to FISNEW.

14. Set up file state as follows:

e For TYP = READONLY (RESET):

fpos 0

fbufvalid false
feof false
freadmode true
feoln true
freadable true
fwriteable false

File Support 89

e For TYP = READWRITE (OPEN):

fpos 0]

fbufvalid false
feof false
freadmode false
freadable true
fwriteable true

e For TYP = WRITEAPPEND (APPEND):

fpos fleof
fbufvalid false
feof true
freadmode false
freadable false
fwriteable true

e For TYP = WRITEONLY (REWRITE):

fpos 0

fbufvalid false
feof true
freadmode false
freadable false
fwriteable true
fleof 0

fmodified true

Errors
o If name is too long or SCANTITLE fails, set IORESULT to IBADTITLE.
o If FINDVOLUME returns unit O, set IORESULT to INOUNIT.
e The DAM may set IORESULT.

90 File Support

fhpreset

Pascal Declaration

procedure fhpreset(var f:

fib;
faccess);

To open (or reopen) a file without a name (i.e., no name was specified in the Pascal open call).
If the file is already open, just change the state of the FIB.

Parameters
F The FIB.
TYP The type of open (READONLY = RESET; READWRITE = OPEN; WRITEAPPEND = APPEND;
WRITEONLY = REWRITE.)
Stack
e ~—sp+10
ointer to
P — sp+6
t
yp ~—sp+4
return address

Action

« stack pointer

1. If the file is not already open, it must be created as follows.

a. Set the following variables to these values:

Q. o

fanonymous
fvid
fkind

fpos

foptstring
feft

fisnew
freptcent
fbufchanged
flastpos
fstartaddress
pathid
fnosrmtemp

true

the system volume

datafile

-1 (half the largest or second largest space,
whichever is largest)

O-length string (a dummy value)

efttable” [fkind]

true

0]

false

-1

0

-1

true

Call FINDVOLUME with FVID and FALSE (no verify) to get unit.

. Call the DAM with a CREATEFILE request.
. If TORESULT is not INOERROR, call FINDVOLUME with TRUE (do verify) and call DAM

with CREATEFILE request again.
e. Set FMODIFIED to TRUE.

2. Now for the old file or the one created above, set up file state as follows:

File Support 91

e For TYP = READONLY (RESET):

fpos 0

fbufvalid false
feof false
freadmode true
feoln true
freadable true
fwriteable false

e For TYP = READWRITE (OPEN)

fpos 0

fbufvalid false
feof false
freadmode false
freadable true
fwriteable true

e For TYP = WRITEAPPEND (APPEND)

fpos fleof
fbufvalid false
feof true
freadmode false
freadable false
fwriteable true

e For TYP = WRITEONLY (REWRITE)

fpos 0
fbufvalid false
feof true
freadmode false
freadable false
fwriteable true
fleof 0
fmodified true

Errors
e If name is too long or SCANTITLE fails, set IORESULT to IBADTITLE.
e If FINDVOLUME returns unit 0, set IORESULT to INQUNIT.
e The DAM may set IORESULT.

92 File Support

findvolume

Pascal Declaration
function findvolume (var fvid: vid;
verify: boolean): unitnum;

Purpose
To find the unit associated with the volume id FVID. With VERIFY TRUE or with FVID of the form
“#nn” FVID is also set to the actual volume name.

Parameters
FVID The volume id.
VERIFY Boolean to indicate whether DAM must be called if searching by name.
Stack
. —sp+12
function result
———— —sp+10
ointer 10 tvi
P - —sp+6
veri
y —spt+4
return address

«— stack pointer
Action

1. If FVID is of the form #nn, then call the DAM for unit nn with a GETVOLUMENAME request.
If a name is returned by the DAM, return nn.
2. If FVID is not of the form #nn then

a. Search the unit table (unit 50 to unit 1 since faster devices such as hard discs are
usually assigned to higher unit numbers) for UVID = FVID (uppercased if unit entry
so indicates).

b. If found and VERIFY is TRUE call the DAM for that unit with a GETVOLUMENAME request.
If the name returned by the DAM still matches FVID, set FVID to UVID and return
the unit number.

c. If no match, search again, but this time call DAM regardless of VERIFY or matches
to update UVID. If match is found set FVID to UVID and return the unit number as
above.

Errors
e FINDVOLUME may return 0 if the volume is not found.

e Note that if FVID passed in is of the form “#nn” and unit nn has no volume name,
FINDVOLUME will still return unit nn (not 0), but FVID will be unchanged.

File Support 93

finitb

Pascal Declaration

procedure finitb(var f: fib;
window: windowp;
recbytes: integer);
Purpose

To initialize a FIB.

Parameters
F The FIB to be initialized.
WINDOW The address for the file window.
RECBYTES The file record size. Note: —3 is passed to indicate type TEXT and to —1 to
indicate an untyped file.

Stack

; : —spt+16

ointer to
P —sp+12
window
vt —sp+8

recoytes

y —sp+4
return address :

— stack pointer

Action
1. Set the following FIB fields to their default values:

freadmode false
fbufvalid false
freadable false
fwriteable false
flockable false
flocked true
feoln true
feof true

. Set FWINDOW to WINDOW.

2

3. Set FISTEXTVAR to TRUE if RECBYTES = —3, FALSE otherwise.

4. If RECSIZE = —1 (untyped file), then set FWINDOW to nil and set FRECSIZE to O.
)

. If RECSIZE <= 0 (except —1) set FRECSIZE to 1 and initialize the first character of FWINDOW"
to chr(0).

. Otherwise, set FRECSIZE to RECBYTES.

o

7. Set FBUFFERED to TRUE if FRECBYTES > 0, and FALSE otherwise.

Errors
None.

94 File Support

fixname

Pascal Declaration

procedure fixname(var title: string;
kind: filekind);

Purpose
To put proper suffixes on file names. Also removes spaces and control characters.

Parameters
TITLE The file name to be fixed.
KIND The file type associated with the suffix.
Stack
: t'tI —sp+12
strmax(title
= (t t?tl —sp+10
ointer to title
P —sp+6
kind
—sp+4
return address

«— stack pointer
Action
1. Call ZAPSPACES with TITLE.
. If TITLE ends in ’:’, then do nothing.

2
3. If TITLE ends in ’ .’ then remove last character.
4

. Otherwise, if a call to suffix with TITLE returns DATAFILE (i.e., no suffix is already present)
then look up the suffix in SUFFIXTABLE (indexed by KIND), and, if it will fit, append the

suffix to TITLE. If the suffix does not fit, do nothing.

Errors
None.

File Support 95

fmaketype

Pascal Declaration

procedure fmaketype(anyvar f: fib;
var title,
option,
typestring: string) ;
Purpose

To make a file of a given type (i.e., disregard suffix of title).

Parameters

F The FIB.

TITLE The file identifier.

OPTION The equivalent of the third parameter in the Pascal open call.

TYPESTRING A string with a suffix corresponding to the file type desired.

Stack

. —sp+26
pointer t? f —sp+22
str.max(tltle? — sp+20
pointer to t.ltle —sp+16
str_max(optlon) —sp+14
pointer to optlc.)n —sp+10
snrnax(typestnng? —sp+8
pointer to typestring — sp+4
return address

— stack pointer

Action
1. Call FCLOSE with F and CNORMAL.
Set FANONYMOUS to FALSE.
Call SCANTITLE to extract FVID and FTITLE and FILESIZE from name.
Set FPOS to the FILESIZE extracted.
Call SUFFIX with TYPESTRING and set FKIND to the kind returned.
Set FOPTSTRING to ADDR(OPTION).
If FPOS > 0, then set FPOS to FPOS*FBLKSIZE.

® N e o W

Set the following variables to these values:

96 File Support

feft efttable” [FKIND]

fisnew true
freptcnt 0
fbufchanged false
flastpos -1
fstartaddress 0
pathid -1
fnosrmtemp true

9. Call FINDVOLUME with FVID and FALSE (no verify) to get unit.
10. Call the DAM with a CREATEFILE request.

11. If IORESULT is not INOERROR, call FINDVOLUME with TRUE (do verify) and call DAM with
CREATEFILE request again.

12. Set FMODIFIED to TRUE.

13. Set up file state as follows:

fpos 0
fbufvalid false
feof true
freadmode true
freadable false
fwriteable true
fleof 0
fmodified true
Errors

e If name is too long or SCANTITLE fails, set IORESULT to IBADTITLE.
e If FINDVOLUME returns unit 0, set TORESULT to INOUNIT.
e The DAM may set IORESULT.

File Support 97

fmaxpos

Pascal Declaration
function fmaxpos(var f: fib): integer;

Purpose
To determine the number of records in a file.

Parameters
F The FIB.
Stack
- —sp+12

function result

o to f —sp+8

ointer to

P —spt+4
return address

« stack pointer
Action

1. Return FLEOF div FRECSIZE.

Errors
e Return 0 on all errors.
e If not (FREADABLE or FWRITEABLE), set IORESULT to INOTOPEN.
e If not (FREADABLE and FWRITEABLE), set IORESULT to INOTDIRECT.
e If not FLOCKED, set IORESULT to IFILEUNLOCKED.

98 File Support

foverfile

Pascal Declaration

procedure foverfile (anyvar f: fib;
var title,
option,
typestring: string);
Purpose

To create a file of a given type (i.e., disregard suffix of title) which will “overwrite” another file
of the same name.

Parameters

F The FIB.

TITLE The file identifier.

OPTION The equivalent of the third parameter in the Pascal open call.

TYPESTRING A string with a suffix corresponding to the file type desired.

Stack

. — sp+26
pointer t.o f — sp+22
str.max(tltle? — sp+20
pointer to fltle — sp+16
strrnax(optlon? — sp+14
pointer to optlc.)n —sp+10
strrnax(typestrlng? —sp+8
pointer to typestring — sp+4
return address

«— stack pointer

Action
1. Call FCLOSE with F and CNORMAL.
Set FANONYMOUS to FALSE.
Call SCANTITLE to extract FVID and FTITLE and FILESIZE from NAME.
Set FPOS to the FILESIZE extracted.
Call SUFFIX with TYPESTRING and set FKIND to the kind returned.
Set FOPTSTRING to ADDR(OPTION).
If FPOS > 0, then set FPOS to FPOS*FBLKSIZE.

I B S

Set the following variables to these values:

File Support 99

feft efttable” [FKIND]

fisnew false
freptcnt 0

fbufchanged false
flastpos -1

fstartaddress 0

pathid -1

fnosrmtemp true

9. Call FINDVOLUME with FVID and FALSE (no verify) to get unit.

10. Call the DAM with an OVERWRITEFILE request.

11. If (IORESULT <> INOERROR) and (IORESULT <> INOFILE), call FINDVOLUME with TRUE (do ver-
ify) and call DAM with OVERWRITEFILE request again.

12. If it fails again, set FISNEW to TRUE (revert to FMAKETYPE).

13. If OVERWRITEFILE request succeeds, then if FPOS > FPEOF, call the DAM with a STRETCHIT
request.

14. If the STRETCHIT request fails (FPOS still > FPEOF), call the DAM with a PURGEFILE request
to clean up the temporary file and set IORESULT to ICANTSTRETCH.

15. If FISNEW (reverted to FMAKETYPE), call the DAM with a CREATEFILE request. If IORESULT is
not INOERROR, and the last FINDVOLUME call was not with TRUE (do verify), call FINDVOLUME
with TRUE and call DAM with CREATEFILE request again.

16. Set up file state as follows.
fmodified true
fpos 0
fbufvalid false
feof true
freadmode true
freadable false
fwriteable true
fleof 0
fmodified true

Errors

e If name is too long or SCANTITLE fails, set IORESULT to IBADTITLE.

o If FINDVOLUME returns unit O, set IORESULT to INOUNIT.

e The DAM may set IORESULT.

100 File Support

foverprint

Pascal Declaration
procedure foverprint(var t: text);

Purpose
To write an overprint command to a text file.

Parameters
T The text file.
Stack
——— —sp+8
ointer to
P —spt+4
return address

— stack pointer

Action

1. Write an eol (carriage return—chr(13)) to the text file. For printer files this will reposition
the print head to the beginning of the current print line.

Errors
None.

File Support 101

fpage

Pascal Declaration
procedure fpage (var t: text);

Purpose
To write a page eject sequence to a text file.

Parameters
T The text file.
Stack
————— —sp+8
ointer to
P —sp+4
return address

— stack pointer

Action

1. Write an eol (carriage return—chr(13)) and clear scr (formfeed—chr(12)) to the text file.

Errors
None.

102 File Support

fposition

Pascal Declaration
function fposition (var f: fib): integer;

Purpose
To determine the position of the file pointer.

Parameters
F The FIB.
Stack
—sp+12

function result

inter to fib —spt8

inter to
PO : —spt+4
return address

— stack pointer
Action
1. Return FPOS div FRECSIZE + 1 - ord(FBUFVALID).

Errors
e Return 0 on all errors.
e If not (FREADABLE or FWRITEABLE), set IORESULT to INOTOPEN.
o If not FLOCKED, set IORESULT to IFILEUNLOCKED.

fput

Pascal Declaration
procedure fput (var f: fib);

Purpose
To write the file window to the file.

Parameters
F The FIB.
Stack
——— —spt+8
nter to
pone —spt+4
return address

«~ stack pointer
Action
1. Call FWRITE with F and F.FWINDOW".

Errors
See FWRITE.

File Support 103

104 File Support

fread

Pascal Declaration

procedure fread(anyvar f: fib;
anyvar buf: window);

Purpose
To read a record from the file.

Parameters
F The FIB.
BUF The buffer into which to read the record.
Stack
——— —sp+12
ointer to
- ter to buf —sp+8
ointer to bu
P —sp+4
return address

« stack pointer

Action

1. If FBUFVALID and FLOCKED then move FRECSIZE bytes from FWINDOW~ to BUF and set lazy
I/O condition by setting FBUFVALID to FALSE. Otherwise, call the AM with a READBYTES

request to read FRECSIZE bytes into BUF from the file at position FPOS.

2. Set lazy 1/O condition by setting FREADMODE to TRUE and FBUFVALID to FALSE.

3. If the AM call resulted in an end-of-file and FISTEXTVAR and not FEOLN then set BUF [0] to
» . set FEOLN to TRUE, and set IORESULT to INOERROR (i.e., create the “ghost” end of line).

Errors

o If not (FREADABLE or FWRITEABLE), set IORESULT to INOTOPEN.

o If not FREADABLE, set IORESULT to INOTREADABLE.
e If not FLOCKED, set IORESULT to IFILEUNLOCKED.

File Support 105

freadbool

Pascal Declaration

procedure freadbool(var t: text;
var b: boolean);

Purpose
To read (formatted) a boolean from a text file (i.e., read an identifier and return the boolean
value).

Parameters
T The text file.
B The boolean value to be returned.
Stack
- —sp+12
ointer to t
P ——v— —sp+8
ointer to
P —sp+4
return address .
«— stack pointer

Action

1. Call FREADENUM with the address of a constant table of string values for the enumerated
type (FALSE,TRUE).

2. If the index (scalar) returned is 1, set B to TRUE. Otherwise set B to FALSE.

Errors
e FREADENUM may set IORESULT.

106 File Support

freadbytes

Pascal Declaration

procedure freadbytes(anyvar f: fib;
anyvar buf: window;
size: integer);
Purpose

To read SIZE bytes from BUF to the file.

Parameters
F The FIB.
BUF The buffer to be read into.
SIZE The number of bytes to be read.
Stack

- —sp+16
po!nter to f — sp+12
p-omter to buf _sp+8
size —sp+a
return address

«— stack pointer

Action

1. Call the AM with a READBYTES request to read SIZE bytes into BUF from the file at position

FPOS.

2. Set lazy 1/O condition by setting FREADMODE to TRUE and FBUFVALID to FALSE.

e If not (FREADABLE or FWRITEABLE), set IORESULT to INOTOPEN.

e If not FREADABLE, set IORESULT to INOTREADABLE.
e If not FLOCKED, set IORESULT to IFILEUNLOCKED.
e The AM may set IORESULT.

File Support 107

freadchar

Pascal Declaration

procedure freadchar(var t: text;
var ch: char);

Purpose
To read a character from a text file.

Parameters
T The text file.
CH The character to be read into.
Stack
S —sp+12
ointer to
P intor to o «— sp+8
ointer
P ° ~—sp+4
return address

«— stack pointer

Action
1. Call FREAD with T and CH.

Errors
See FREAD.

108 File Support

freadenum

Pascal Declaration

procedure freadenum(var t: text;
var i: shortint;
p: vptr);

Purpose
To read (formatted) an enumerated type from a text file, i.e., read an identifier and return the
scalar value.

Parameters
T The text file.
I The index into P.
P The compiler-generated table of string values for the enumerated type.
Stack
- —sp+16
pornter to t — sp+12
pointer to i —sp+8
L —sp+4
return address

«— stack pointer
Action

1. Using T~ (compiler generated call to FBUFFERREF), get (compiler generated call to FGET),
read (handle backspace and clearline if unit is interactive) and ignore all leading spaces,
and read all legal identifier characters (70’ to *9’, *A’ to ’Z’, ’a’ to 'z’ and *_° starting
with "A’ to ’Z’, *a’ to ’z’) up to the first illegal character into a string (maximum of
255 characters).

2. Call FREADSTRENUM to search the compiler-generated table for the constructed string and
return the index in I.
Errors
e T (compiler-generated call to FBUFFERREF) may set IORESULT.
o Get (compiler-generated call to FGET) may set IORESULT.
e FREADSTRENUM may set IORESULT or escape on failures.

File Support 109

freadint

Pascal Declaration

procedure freadint(var t: text;
var i: integer);

Purpose
To read (formatted) an integer from a text file.

Parameters
T The text file.
I The integer to be read into.
Stack
———— —spt+12
ointer to
P or o | — Sp+8
ointer to i
P —spt4
return address

« stack pointer

Action

1. Using T~ (compiler-generated call to FBUFFERREF), get (compiler-generated call to FGET),
read (handle backspace and clearline if the unit is interactive) and ignore all leading
spaces, and read at most 1 sign character (+ or -) and all digit characters (0’ to ’9’) up
to the next non-digit into a string (maximum of 255 characters).

2. Call STRREAD (compiler-generated call to FREADSTRINT) to convert the constructed string
to an integer (I).
Errors
e T~ (compiler-generated call to FBUFFERREF) may set IORESULT.
e Get (compiler-generated call to FGET) may set IORESULT.
e FREADSTRINT may set IORESULT or escape on failures.

110 File Support

freadin

Pascal Declaration
procedure freadln(var t: text);

Purpose
To read (and ignore) characters from a text file up to and including the next end-of-line marker.

Parameters
T The text file.
Stack
—— ~ sp+8
ointer to
P — sp+4
return address

— stack pointer

Action

1. While the text file is not at end-of-line, do GETs on the text file to skip characters (handle
backspace and clearline if unit is interactive).

2. Do one more GET on the text file to consume the end-of-line marker.

Errors
None.

File Support 111

freadpaoc

Pascal Declaration

procedure freadpaoc(var t: text;
var a: window;
aleng: shortint) ;
Purpose

To read (formatted) a packed array of characters from a text file.

Parameters
T The text file.
A The array to be read into.
ALENG The size of the array.
Stack

. —sp+14
po!nter tot — sp+10
pointer to a — sp+6
aleng — sp+a
return address

— stack pointer

Action

1. If the unit is interactive then, using T~ (compiler generated call to fbufferref), get (compiler
generated call to FGET), read (handle backspace and clearline if unit is interactive) a
maximum of ALENG characters into A starting at A[1] until the file is at end-of-line.

2. If the unit is not interactive (no need to read one character at a time to handle backspace
and clearline), read and save the lookahead character, call the AM with a READTOEOL
request to read a maximum of a ALENG—1 byte string into S starting at S[1] (this means
A[1] will hold the string length) and place the saved lookahead character (see above) in
A[1]. This may seem roundabout, but much of the code is also used in reading strings.

3. Fill the rest of the array with spaces.

Errors
o T~ (compiler-generated call to FBUFFERREF) may set IORESULT.
o Get (compiler-generated call to FGET) may set IORESULT.
¢ AM may set IORESULT.

112 File Support

freadreal

Pascal Declaration

procedure freadreal(var t: text;
var x: real);

Purpose
To read (formatted) a real from a text file.

Parameters
T The text file.

X The real to be read into.

Stack

—sp+12
~—sp+8
—sp+4

pointer to t
pointer to x
return address

« stack pointer
Action

1. Using T* (compiler-generated call to FBUFFERREF), get (compiler-generated call to FGET),
read (handle backspace and clearline if the unit is interactive) and ignore all leading
spaces, and read all valid characters that make up a real number representation (i.e.,
sign, digits, decimal point, exponent field) up to the next invalid character into a string
(maximum of 255 characters).

2. Call STRREAD (compiler-generated call to FREADSTRREAL) to convert the constructed string
to a real (X).
Errors
e T" (compiler-generated call to FBUFFERREF) may set IORESULT.
® Get (compiler-generated call to FGET) may set IORESULT.
e If T is at end-of-file, set IORESULT to IEOF.
e FREADSTRREAL may set IORESULT on failures.

File Support 113

freadstr

Pascal Declaration

procedure freadstr(var t: text;
var s: string);

Purpose
To read (formatted) a string from a text file.

Parameters
T The text file.
A The string to be read into.
Stack

- —sp+14
pointer to t — sp+10
str.max(s) — sp+8
pointer to s — sp+a
return address

— stack pointer

Action

1. If the unit is interactive, then, using T* (compiler-generated call to FBUFFERREF), get
(compiler-generated call to FGET), read (handle backspace and clearline if unit is interac-
tive) a maximum of 255 characters into S starting at 8[1] until the file is at end-of-line.
Set the length of the string to the number of characters read.

2. If the unit is not interactive (no need to read one character at a time to handle backspace
and clearline), read and save the lookahead character, call the AM with a READTOEOL
request to read a maximum of a 254-byte string into § starting at S[1] (this means S[1]
will hold the string length), set the length of 8 to S[1]+1, and place the saved lookahead
character (see above) in S[1]. This may seem roundabout but much of the code is also
used in reading packed arrays of characters.

Errors
e T (compiler-generated call to FBUFFERREF) may set IORESULT.
e Get (compiler-generated call to FGET) may set IORESULT.
o AM may set IORESULT.

114 File Support

freadstrbool

Pascal Declaration

procedure freadstrbool(var s: string2b5;
var p2: integer;
var b: boolean) ;
Purpose

To read (formatted) a boolean from a string, i.e., read an identifier and return the boolean
value.

Parameters

S The string.

P2 The index into the string. Initially where the read is to start. Finally one past

the last character read.
B The boolean value to be returned.
Stack
— —sp+16

ointer to s

P ——" —sp+12
ointer to

P tor 1 E —sp+8
omnter to

L —~sp+4

return address

«— stack pointer
Action

1. Call FREADSTRENUM with the address of a constant table of string values for the enumerated
type (FALSE,TRUE).

2. If the index (scalar) returned is 1, set B to TRUE. Otherwise set B to FALSE.

Errors
e FREADSTRENUM may set IORESULT.

File Support 115

freadstrchar

Pascal Declaration

procedure freadstrchar(var s: string255;
var p2: integer;
var ch: char);

Purpose
To read a character from a string.

Parameters
S The string.
P2 The index into the string. Initially where the read is to start. Finally one past
the last character read.
CH The character to be read into.
Stack
——— —sp+16
ointer 10 s
s e — sp+12
ointer 10
P — zh ~—spt+8
ointer 10
P —spt+4
return address .
— stack pointer

Action
1. Set CH to S[P2].
2. Increment P2 by 1.

Errors
o If (P2 < 1) or (P2 > strlen(S)), set IORESULT to ISTROVFL.

116 File Support

freadstrenum

Pascal Declaration

procedure freadstrenum(var s: string255;
var p2: integer;
var i: shortint;
P: vptr);
Purpose

To read (formatted) an enumerated type from a string, i.e., read an identifier and return the
scalar value.

Parameters
] The string.
P2 The index into the string. Initially where the read is to start. Finally one past
the last character read.
I The index into P.
P The compiler-generated table of string values for the enumerated type.
Stack
- —sp+20
pornter tos — sp+16
pOfnter to P2 sp+12
pointer to i — sp+8
P —sp+4
return address

« stack pointer

Action

1. Starting at s[P2] skip all leading spaces and copy all legal identifier characters (*0’ to
97, *A’ to ’Z’, ’'a’ to ’z’ and ’_’ starting with *A’ to *Z’, *a’ to 'z’) up to the first
illegal character into a string (maximum of 80 characters).

2. Add the number of characters skipped and copied to P2.
3. Search the table P for the identifier and set I to the index.

Errors
e If (P2 < 1) or (P2 > strlen(S)), set IORESULT to ISTROVFL.
e If the leading spaces extend to the end of S, set IORESULT to ISTROVFL.
o If the identifier does not start with A’ to *Z’ or ’a’ to ’z’, set IORESULT to IBADFORMAT.
e If the identifier is not found in the table P, set IORESULT to IBADFORMAT.

File Support 117

freadstrint

Pascal Declaration

procedure freadstrint(var s: string255;
var p2,
i: integer) ;
Purpose

To read (formatted) an integer from a string.

Parameters
S The string.
P2 The index into the string. Initially where the read is to start. Finally one past
the last character read.
I The integer to be read into.
Stack
— —spt+16
ointer 10 s
P v —sp+12
ointer 1o
ointer to i
P —sp+4
return address

«— stack pointer

Action
This routine is written in assembly for speed.

1. Starting at S[P2], skip spaces.

2. If the first non-space is a sign, remember it.
3. Initialize an accumulator value to 0.
4

. While the next character is a digit, get characters one at a time from S, and, for each one,
multiply the accumulator by ten and add the character’s numerical value to it.

5. Add the number of characters skipped and used to P2.

6. Adjust the sign of the accumulator and assign it to I.

Errors
o If (P2 < 1) or (P2 > strlen(S)), set IORESULT to IBADFORMAT.
e If not at least one digit, set IORESULT to IBADFORMAT.
e If number is too large (overflow), set IORESULT to IBADFORMAT.

118 File Support

freadstrpaoc

Pascal Declaration

procedure freadstrpaoc(var s: string2565;
var p2: integer;
var a: window;

aleng: shortint);

Purpose
To read (formatted) a packed array of characters from a string.

Parameters
S The string.
P2 The index into the string. Initially where the read is to start. Finally one past
the last character read.
A The packed array of characters to be written.
ALENG The size of the packed array of characters.
Stack
- ~sp+18
pognter tos — sp+14
po!nter to p2 — sp+10
pointer to a — sp+6
aleng — sp+4
return address

«- stack pointer
Action
1. Initialize A to all spaces.

2. Copy characters from S starting at S[P2] to A until ALENG characters have been copied or
until there are no more characters in 8.

3. Add the number of characters copied to P2.

Errors

e If (P2 < 1) or (P2 > strlen(S)), set IORESULT to ISTROVFL.

File Support 119

freadstrreal

Pascal Declaration

procedure freadstrreal(var s: string265;
var p2: integer;
var x: real);
Purpose

To read (formatted) a real from a string.

Parameters

S The string.

P2 The index into the string. Initially where the read is to start. Finally one past

the last character read.

X The real to be read into.

Stack

pointer to s sp+12
—

pointer to p2 sp+8
-

ointer to x
P —sp+4
return address

— stack pointer

Action
1. Starting at S[P2], skip spaces.

2. Read all valid characters for a real number (e.g., sign, digits, decimal point, exponent
field) up to the next invalid character.

3. Convert the characters read into a real (X).

4. Set P2 to one past the last character read.

Errors
e If (P2 < 1) or (P2 > strlen(S)), set IORESULT to ISTROVFL.
e If there is no valid real represented by the characters, set IORESULT to IBADFORMAT.

120 File Support

freadstrstr

Pascal Declaration

procedure freadstrstr(var t: string2b5;
var p2: integer;
var s: string);
Purpose

To read (formatted) a string from a string.

Parameters
T The string to be read from.
P2 The index into the string. Initially where the read is to start. Finally one past
the last character read.
S The string to be read into.
Stack
—— ~—sp+18
ointer to
P tor o 02 —sp+14
ointer 1o
pt P ~sp+10
strmax(s
- (t) —sp+8
ointer 10 s
P —sp+4
return address

« stack pointer

Action

1. Copy characters from T starting at T[P2] into S starting at S[1] until strmax(S) characters
are copied or until there are no more characters in T to copy.

2. Add the number of characters copied to P2.

Errors
o If (P2 < 1) or (P2 > strlen(T)), set IORESULT to ISTROVFL.

File Support 121

freadstrword

Pascal Declaration

procedure freadstrword(var s: string265;
var p2: integer;
var i: shortint) ;
Purpose

To read (formatted) a short (16-bit) integer from a string.

Parameters

S The string.

P2 The index into the string. Initially where the read is to start. Finally one past

the last character read.
I The short integer to be read into.
Stack
—— —sp+16

ointer 10 s

P T —sp+12
ointer to

P — p —sp+8
ointer 1o |

P —sp+4

return address

— stack pointer
Action
1. Call STRREAD (compiler-generated call to FREADSTRINT) to read an integer from the string.
2. If the integer is not in the range —32 768 to 32 767 then ESCAPE(-8). Otherwise, set I to
the integer read.
Errors
e FREADSTRINT may set IORESULT or escape on failures.

o If the integer is not in range, ESCAPE(-8).

122 File Support

freadword

Pascal Declaration

procedure freadword(var t: text;
var i: shortint);

Purpose
To read (formatted) a short (16-bit) integer from a text file.

Parameters
T The text file.
I The short integer to be read into.
Stack
- —sp+12
ointer to t
P —— ~—sp+8
ointer to i
P ~—sp+4
return address

« stack pointer
Action
1. Read (compiler-generated call to FREADINT) an integer (32-bit) from T.

2. If the integer is not in the range —32 768 to 32 767 then ESCAPE(-8). Otherwise, set I to
the integer read.

Errors
e The integer is out of range: ESCAPE(-8).
e FREADINT may set IORESULT.

File Support 123

fseek

Pascal Declaration

procedure fseek(var f: fib;
position: integer);

Purpose
To reposition the file pointer.

Parameters
F The FIB.

FPOSITION The desired record position of the pointer.

Stack

- —sp+12
p0|thf-3r tof — sp+8
position — sp+a
return address

— stack pointer

Action
1. If FPOSITION < 1, then set FPOS to 0. Otherwise, set FPOS to (POSITION-1)*FRECSIZE.
2. Put file in non-read mode condition by setting FREADMODE to FALSE and FBUFVALID to FALSE.

Errors
e If not (FREADABLE or FWRITEABLE), set IORESULT to INOTOPEN.
o If not (FREADABLE and FWRITEABLE), set IORESULT to INOTDIRECT.
e If not FLOCKED, set IORESULT to IFILEUNLOCKED.

124 File Support

fstripname

Pascal Declaration

procedure fstripname(s: fid;
var pvname,
ppath,
pfname: string);
Purpose

To remove passwords from file identifiers.

Parameters
S The file identifier.
PVNAME The volume name returned.
PPATH The path name returned.
PFNAME The file name returned.
Stack

- « sp+26
pointer to s —sp+22
strrnax(pvname) — sp+20
pointer to pvname — sp+16
str.max(ppath) —sp+14
pointer to ppath — sp+10
str.max(pfname) —sp+8
pointer to pfname — spt+4
return address

« stack pointer
Action
1. SCANTITLE is called with the FID passed in.
2. Then FINDVOLUME is called to find the volume indicated by the FID.
3. Then the DAM for that unit is called with the FID. The DAM then parses the FID into
three parts: volume name, pathname, and file name without passwords.
Errors
e If SCANTITLE fails IORESULT is set to IBADTITLE.
e If FINDVOLUME fails, IORESULT is set to INOUNIT.
e Otherwise, the DAM may set the IORESULT as appropriate (e.g., IBADTITLE, etc.).

File Support 125

fwrite

Pascal Declaration

procedure fwrite(anyvar f: fib;
anyvar buf: window) ;

Purpose
To write a record to the file.

Parameters
F The FIB.

BUF The record to be written.

Stack

—sp+12
—sp+8
—spt+4

«— stack pointer

pointer to f
pointer to buf
return address

Action
1. Call the AM with a WRITEBYTES request to write FRECSIZE bytes from BUF at position FPOS.
2. Set non-read mode condition by setting FREADMODE to FALSE and FBUFVALID to FALSE.

Errors
e If not (FREADABLE or FWRITEABLE), set IORESULT to INOTOPEN.
e If not FWRITEABLE, set IORESULT to INOTWRITEABLE.
e If not FLOCKED, set IORESULT to IFILEUNLOCKED.
o The AM may set IORESULT.

126 File Support

fwritebool

Pascal Declaration

procedure fwritebool(var t: text;
b: boolean;
rleng: shortint);

Purpose
To write (formatted) a boolean to a text file, i.e., write an identifier given the boolean value.

Parameters
T The text file.
B The boolean value.
RLENG The field width to be written into (maximum 255).
Stack
- —sp+12
pointer to t —sp+8
b —sp+6
rleng — sp+4
return address

— stack pointer
Action

1. Call FWRITEENUM with the ordinal value of B as the scalar, the address of a constant table
of string values for the enumerated type (FALSE,TRUE) and RLENG as the field width.

Errors
e FWRITEENUM may set IORESULT.

File Support 127

fwritebytes

Pascal Declaration

procedure fwritebytes(anyvar f: fib;
anyvar buf: window;
size: integer);

Purpose
To write SIZE bytes from BUF to the file.

Parameters
F The FIB.
BUF The buffer to be written.
SIZE The number of bytes to be written.
Stack

- —sp+16
pornter to f — sp+12
p.omter to buf —sp+8
size — sp+a
return address

«— stack pointer

Action
1. Call the AM with a WRITEBYTES request to write SIZE bytes from BUF at position FPOS.
2. Set non-read mode condition by setting FREADMODE to FALSE and FBUFVALID to FALSE.

Errors
o If not (FREADABLE or FWRITEABLE), set IORESULT to INOTOPEN.
e If not FWRITEABLE, set I0RESULT to INOTWRITEABLE.
e If not FLOCKED, set IORESULT to IFILEUNLOCKED.
e The AM may set IORESULT.

128 File Support

fwritechar

Pascal Declaration

procedure fwritechar(var t: text;
ch: char;
rleng: shortint);

Purpose
To write (formatted) a character to a text file.

Parameters
T The text file.
CH The character to be written.
RLENG The field width to be written into (maximum 255).
Stack
- ‘ —sp+12
pointer to t — sp+8
oh —sp+6
rleng —sp+4
return address

— stack pointer
Action
1. If RLENG < 1 then set RLENG to 1.

2. Construct a packed array of characters of RLENG-1 spaces followed by the character CH.

3. Call FWRITEBYTES to write RLENG characters from the packed array to the text file.

Errors
e RLENG > 255 will cause boundary error.
e FWRITEBYTES may set IORESULT.

File Support 129

fwriteenum

Pascal Declaration

procedure fwriteenum(var t: text;
i: shortint;
rleng: shortint;
p: vptr) ;
Purpose

To write (formatted) an enumerated type to a text file, i.e., write an identifier given the scalar
value.

Parameters
T The text file.
I The index into P (the scalar value).
RLENG The field width to be written into (maximum 255).
P The compiler generated table of string values for the enumerated type.
Stack
- —sp+16
F)Olnter tot — sp+12
' —sp+10
rleng —sp+8
P —spt+4
return address

«— stack pointer

Action
1. Call FWRITESTRENUM to write the identifier to a string (i.e., to do the hard part).
2. If IORESULT is INOERROR then call FWRITEBYTES to write the string to the file.

Errors
e FWRITESTRENUM may set IORESULT.
e FWRITEBYTES may set IORESULT.

130 File Support

fwriteint

Pascal Declaration

procedure fwriteint(var t: text;
i: integer;
rleng: shortint);
Purpose

To write (formatted) an integer to a text file.

Parameters
T The text file.
I The integer to be written.
RLENG The field width to be written into (maximum 255).
Stack
- —sp+14
Pomter tot — $p+10
: —sp+6
rleng —sp+4
return address

~— stack pointer

Action
1. Call STRWRITE (compiler-generated call to FWRITESTRINT) to write the integer to a string.
2. If TORESULT is INOERROR, call FWRITEBYTES to write the string to the text file.

Errors
e FWRITESTRINT may set IORESULT.
e FWRITEBYTES may set IORESULT.

File Support 131

fwriteln

Pascal Declaration
procedure fwriteln(var f: fib);

Purpose
To write an end of line marker to the file.

Parameters
F The FIB.
Stack
v —sp+8
r
pointer to —sp+a
return address

— stack pointer
Action
1. Call the AM with a WRITEEOL request at position FPOS.
2. Set non-read mode condition by setting FREADMODE to FALSE and FBUFVALID to FALSE.

Errors
e If not (FREADABLE or FWRITEABLE), set IORESULT to INOTOPEN.
e If not FWRITEABLE, set IORESULT to INOTWRITEABLE.
e If not FLOCKED, set IORESULT to IFILEUNLOCKED.
e The AM may set IORESULT.

132 File Support

fwritepaoc

Pascal Declaration

procedure fwritepaoc(var t: text;
var a: window;
aleng,
rleng: shortint);
Purpose

To write (formatted) a packed array of characters to a text file.

Parameters
T The text file.
A The string to be written (maximum length of 80).
ALENG The size of the array.
RLENG The field width to be written into. Note that this must be no more than 255 +
ALENG.
Stack
; «—sp+16
poTnter tot — sp+12
pointer to a sp+8
aleng — sp+6
rleng — spt+4
return address

«— stack pointer
Action

1. If RLENG < O, then set RLENG to the length of S. If RLENG > ALENG, call FWRITECHAR to write
a space in a field width of RLENG - ALENG (i.e., write that many spaces) and set RLENG to
the ALENG.

2. Call FWRITEBYTES to write ALENG bytes from the packed array of characters to the file.

Errors
e FWRITECHAR may set IORESULT.
e FWRITEBYTES may set IORESULT.

File Support 133

fwritereal

Pascal Declaration
procedure fwritereal(var t: text;

Purpose

X: real;
w,
d: shortint);

To write (formatted) a real to a text file.

Parameters
T The text file.
X The real to be written.
w The field width to be written into (maximum 255).
D The number of digits after the decimal point.
Stack
- o1 —sp+16
ointer to
P - " —sp+12
ointer to x
P —sp+8
w
" —sp+6
—spt+4
return address

Action

— stack pointer

1. Call STRWRITE (compiler-generated call to FWRITESTRREAL) to write the real to a string.

2. If IORESULT is INOERROR, call FWRITEBYTES to write the string to the text file.

Errors

e FWRITESTRREAL may set IORESULT.

e FWRITEBYTES may set IORESULT.

134 File Support

fwritestr

Pascal Declaration

procedure fwritestr(var t: text;
anyvar s: string80;
rleng: shortint);
Purpose

To write (formatted) a string to a text file.

Parameters
T The text file.
S The string to be written (maximum length of 80).
RLENG The field width to be written into. Note that this must be no more than 255 +
strlen(S).
Stack
mtor 1o 1 «— Sp+ 14
ointer 10
P «—sp+10
ointer to s
pl «—sp+6
ren
g «—sp+4
return address

«- stack pointer
Action
1. If RLENG < 0, then set RLENG to the length of S.

2. If RLENG > the length of S, call FWRITECHAR to write a space in a field width of RLENG -
strlen(S) (i.e., write that many spaces) and set RLENG to the length of S.

3. Call FWRITEBYTES to write the string to the file.

Errors
e FWRITECHAR may set IORESULT.
e FWRITEBYTES may set IORESULT.

File Support 135

fwritestrbool

Pascal Declaration

procedure fwritestrbool(var s: string;
var p2: integer;
b: boolean;

rleng: shortint);

Purpose
To write (formatted) a boolean to a string, i.e., write an identifier given the boolean value.

Parameters
S The string.
P2 The index into the string. Initially where the write is to start. Finally one past
the last character written.
B The boolean value.
RLENG The field width to be written into (maximum 255).
Stack
. —sp+18
strmax(s
- (t) —sp+16
ointer to s
0 - P —sp+12
ointer to
Fb) P —sp+8
: — Sp+6
rien
g —sp+4
return address .
«— stack pointer

Action

1. Call FWRITESTRENUM with the ordinal value of B as the scalar, the address of a constant
table of string values for the enumerated type (FALSE,TRUE) and RLENG as the field width.

Errors
e FWRITESTRENUM may set IORESULT.

136 File Support

fwritestrchar

Pascal Declaration

procedure fwritestrchar(var s: string;
var p2: integer;
ch: char;

rleng: shortint);

Purpose
To write (formatted) a character into a string.

Parameters
S The string.
P2 The index into the string. Initially where the write is to start. Finally one past
the last character written.

CH The character to be written.
RLENG The field width to be written into.
Stack

—sp+18
strrnax(s) — sp+16
pognter tos - sp+12
pointer to p2 — sp+8
oh «—sp+6
rleng —sp+d
return address

« stack pointer

Action
1. Convert CH to a string of length 1.
2. If RLENG < 1, then set RLENG to 1.
3. Call FWRITESTRSTR with 8, P2, the constructed string, and RLENG.

Errors
e FWRITESTRSTR may set IORESULT.

File Support 137

fwritestrenum

Pascal Declaration

procedure fwritestrenum(var s: string;
var p2: integer;
i,
rleng: shortint;
p: vptr) ;

Purpose
To write (formatted) an enumerated type to a string, i.e., write an identifier given the scalar
value.

Parameters
S The string.
P2 The index into the string. Initially where the write is to start. Finally one past
the last character written.
I The index into P (the scalar value).
RLENG The field width to be written into (maximum 255).
P The compiler-generated table of string values for the enumerated type.
Stack
— sp+22
strmax(s)
tor 1 —sp+20
ointer 10 s
P —— — sp+16
ointer 1o
P P —sp+12
|
rien
g — Sp+8
P —sp+4

return address

«— stack pointer

Action
1. Extract the identifier in table P indexed by I.
2. Call FWRITESTRSTR with S, P2, the identifier, and RLENG.

Errors
o If the index I is out of the range of the table, ESCAPE(-8).
e FWRITESTRSTR may set IORESULT.

138 Jile Support

fwritestrint

Pascal Declaration

procedure fwritestrint(var t: string;
var p2: integer;
i: integer;
rleng: shortint);
Purpose
To write (formatted) an integer to a string.
Parameters
T The string.
P2 The index into the string. Initially where the write is to start. Finally one past
the last character written.
I The integer to be written.
RLENG The field width to be written into.
Stack
: X ~—sp+20
strmax
- (t) ; —sp+18
ointer 1o
P T to 02 —sp+14
ointer 10
_p P —sp+10
|
| —sp+6
rien
2 —sp+4
return address

— stack pointer

Action
This routine is written in assembly for speed.

1. Remember sign of I.

2. By successively dividing by decreasing powers of ten the remainder of previous divisions,
determine the digits in order (left to right) and put them into a dummy string.

3. If RLENG > the length of the dummy string (41 if the sign is negative), put RLENG — the
length of the dummy string (—1 if the sign is negative) in S starting at S[P2].

4. If sign is negative, put a ’-’ after the spaces (if any).

5. After the sign, if any, put the dummy string.

6. If the length of S has changed, update S[0].

7. Add the number of characters written to S to P2.

Errors
o If (P2 < 1) or (P2 > strlen(S)+1), set IORESULT to ISTROVFL.
e If the write would extend the length of S past strmax(S), set IORESULT to ISTROVFL.

File Support 139

fwritestrpaoc

Pascal Declaration

procedure fwritestrpaoc(var s: string;
var p2: integer;
var a: window;
aleng,
rleng: shortint);
Purpose

To write (formatted) a packed array of characters into a string.

Parameters
S The string.
P2 The index into the string. Initially where the write is to start. Finally one past
the last character written.
A The packed array of characters to be written.
ALENG The size of the packed array of characters (maximum 255).
RLENG The field width to be written into.
Stack
— Sp+22
str.max(s) — sp+20
pornter tos sp+16
po!nter to p2 — sp+12
pointer to a —sp+8
aleng — sp+6
rleng —sptd
return address

« stack pointer
Action
1. Convert A into a string of length ALENG.
2. Call FWRITESTRSTR with S, P2, the constructed string, and RLENG.

Errors
e Boundary errors may arise if ALENG > 255.
e FWRITESTRSTR may set IORESULT.

140 File Support

fwritestrreal

Pascal Declaration

procedure fwritestrreal(var r: string;
var p2: 1integer;
X: real;
w,

d: shortint);

Purpose
To write (formatted) a real to a string.

Parameters
R The string.
P2 The index into the string. Initially where the write is to start. Finally one past
the last character written.
X The real to be written.
W The field width to be written into.
D The number of digits after the decimal point.
Stack
—sp+22
str.max(r) — sp+20
pOfnter tor — sp+16
po!nter to p2 — sp+12
pointer to x — sp+8
w —sp+6
d —sp+4
return address

« stack pointer
Action

1. Convert the real (X) to a string representation right justified in a field width of W with D
digits to right of the decimal point.

2. If it will fit, move this string representation into R starting at P2 and update the length
of R if necessary.

3. Set P2 to one past the character written.

Errors
e If (P2 < 1) or (P2 > strlen(S)+1), set IORESULT to ISTROVFL.
e If the write would extend the length of § past strmax(S), set IORESULT to ISTROVFL.

File Support 141

fwritestrstr

Pascal Declaration

procedure fwritestrstr(var s: string;
var p2: integer;
anyvar t: string2b5;
rleng: shortint);
Purpose

To write (formatted) a string into another string.

Parameters
S The string to be written into.
P2 The index into the string. Initially where the write is to start. Finally one past

the last character written.

T The string to be written.
RLENG The field width to be written into.
Stack

—sp+20
str_max(s) — sp+18
poTnter tos —sp+14
po!nter to p2 — sp+10
pointer to t — sp+6
rleng —sptd
return address

— stack pointer

Action
1. If RLENG < 0, then set RLENG to the length of T.

2. If RLENG > the length of T, replace S[P2] to S[P2+RLENG-(strlen(T))-1] with spaces and
add RLENG-(strlen(T)) to P2.

3. Copy RLENG characters of T into S starting at S[P2].
4. Add RLENG to P2.
5. If p2+strlen(T)-1 > strlen(S), set length of S to P2+strlen(T)-1.

Errors
o If (P2 < 1) or (P2 > strlen(S)+1), set IORESULT to ISTROVFL.

o If P2+RLENG (adjusted) -1 > strmax(S) (i.e., T won’t fit into S starting at S[P2]), set
IORESULT to ISTROVFL.

142 File Support

fwritestrword

Pascal Declaration

procedure fwritestrword(var s: string;
var p2: integer;
i,
rleng: shortint);

Purpose
To write (formatted) a short (16-bit) integer to a string.

Parameters
S The s