
Native Language Support:
User's Guide

HP 9000
Computers

Native Language Support:
User's Guide

HP 9000 Computers

Fli..- HEWLETT
a:~ PACKARD

HP Part No. 82355-90036
Printed in USA August 1992

Third Edition
E0892

Legal Notices
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability or
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for direct, indirect, special, incidental or consequential
damages in connection with the furnishing or use of this material.

Copyright © 1983-92 Hewlett-Packard Company

Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend .. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in sub-paragraph
(c)(l)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs may
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

All rights reserved.

Copyright © 1980, 1984, 1986 UNIX System Laboratories, Inc.

UNIX® is a registered trademark of UNIX System Laboratories, Inc. in the
USA and other countries.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.)
The manual part number changes when extensive technical changes are
incorporated.

May 1990. First Edition

January 1991. Second Edition

• This edition updates the previous document called Native Language Support
Concepts and Tutorials. This edition includes corrections and additions for
the HP-UX 8.0 release. Major changes and additions include: An overview
of Native Language Support; improved organization to improve access to
information in a more logical sequence; addition of information on supported
codesets; expanded information on localizing international software; added
illustrations to simplify complex topics; and added depth and coverage on
may topics.

August 1992. Third Edition

• This edition documents the addition to NLS of World Portability Interface
(WPI), and its wide-character encoding. This is a standardized approach
(XPG4) and is the preferred approach.

iii

Contents

1. Overview
UNIX Background
The NLS Concept
The NLS Conceptual Model
U sing this Manual
Typographical Conventions in This Manual
Related HP-UX Manuals.

2. Introduction to NLS
Overview of Software Internationalization
Components of Internationalizing and Localizing with NLS .

Internationalization
Localization

Aspects of NLS Support
Character and Text Handling .

Data Integrity
Character Sets and Encoding
Character Type and Conversion

Local Customs and Conventions
Numeric Formatting.
Monetary Formatting
Display of Time
Display of Days, Weeks, Months
Collation.

Messages
Language Variations.

Comparing Strings and Comparing Characters
Regular Expressions

1-1
1-1
1-2
1-4
1-7
1-8

2-1
2-3
2-3
2-3 .
2-4
2-4
2-4
2-4
2-6
2-6
2-6
2-7
2-7
2-8
2-8
2-9

2-10
2-10
2-12

Contents-1

3. Using International Software
NLS Environmental Variables 3-1
Default Values 3-3
Setting your Environment 3-4
Setting Your Terminal 3-5
Reference Information for Internationalized Commands 3-5
Internationalized Messages 3-6
U sing Internationalized Commands 3-6

4. Administering International Software
Finding NLS Files
The Default User Environment
Installing Message Catalogs
Installing Optional Locales .
Peripheral Configuration . . .

5. Localizing International Software
Localizing the User Environment
Localizing Message Catalogs

The C Locale Messages
Translating Messages

Translation Problems
Installing Localized Messages

Creating a Locale
Script Requirements for localedef
localedef Syntax

LC_ALL Subcategories
LC_COLLATE Subcategories

Single-Character Element
Multi-character Element .
Ellipsis Symbol
UNDEFINED Symbol

LC_CTYPE Subcategories .
LC_MESSAGES Subcategories
LC_MONETARY Subcategories
LC_NUMERIC Subcategories
LC_TIME Subcategories

Installing a Language Definition Table .

Contents-2

4-2
4-3
4-3
4-4
4-4

5-2
5-2
5-3
5-3
5-4
5-4
5-5
5-7
5-8

5-10
5-11
5-12
5-12
5-13
5-13
5-15
5-20
5-21
5-24
5-25
5-27

6. Developing International Software
General Programming Issues . . .
Aspects of International Program Design .

Other Aspects
Initializing NLS.

Setting Program Locale . .
Retrieving Locale Information

Accessing Language Tables . .
Programming with the Worldwide Portability Interface

WPI Interfaces
Character and String Processing

Character Handling
Upshifting and Downshifting Characters .
Identifying Character Traits

Numeric Formatting.
Date and Time
Input and Output in Internationalized Programs

Printing Formatted Output
Reading Formatting Input
U sing Flexible Formatting
Example program using wide characters.

Conversion of Existing Programs
N on-WPI Interfaces

Character and String Processing
Character Handling

Upshifting and Downshifting Characters
Identifying Character Traits

Numeric Formatting .
Date and Time . . .
Monetary Formatting
String Comparisons .

Guidelines for Creating Internationalized Programs

6-1
6-2
6-4
6-6
6-6
6-8
6-8

6-12
6-12
6-13
6-13
6-14
6-15
6-16
6-16
6-17
6-17
6-17
6-18
6-20
6-21
6-22
6-22
6-22
6-22
6-24
6-25
6-26
6-26
6-28
6-29

Contents-3

7. The Message Catalog System
Creating and Using a Message Catalog System 7-2

Programming for Messages . 7-3
Opening a Message Catalog with catopen 7-3
Recommended Initialization 7-4

Search Path and Naming Conventions 7-6
Retrieving Messages . 7-7
Closing a Message Catalog 7-8
Default Messages 7-8
Compiling and Linking 7-9

Creating aNew Message Catalog 7-9
The Message Text Source File 7-9
Compiling a Message Catalog . 7-11
An Example of Programming with Message Catalogs 7-11

Special Considerations for Messaging 7-12
Libraries with Messages 7-15
Conversion of Existing Programs for NLS Messaging 7-16

Step 1. Finding Strings in a Program 7-17
Step 2. Removing Non-Messages from the Strings. 7-18
Step 3. Inserting catgets Calls 7-18
Step 4. Editing the Modified Source Program 7-20
Step 5. Editing the Message Text Source File. 7-20
Step 6. Creating a Message Catalog . 7-20

Testing a Message Catalog 7-21
Installing a Message Catalog 7-22
Source Code Management 7-22

Keeping nl_prog.c Files 7-22
Multi -file Programs 7-22
Adding a Message to a Messaging Program . 7-23
U sing "make" Files 7-24

Guidelines for Using Messaging 7-25

Contents-4

8. Advanced NLS Topics
Codeset Conversion

The Character Conversion Command-iconv(l) .
Conversion Routines-iconv(3C)

Processing Right- to-Left Languages .
Locale Information
Initialization

Special Locales
Special Message Catalogs
Default Message Catalogs
Programs That Call exec .

Messaging: printf/scanf Data Formatting

A. Special Topics for HP's 16-bit Interfaces
Aspects of Program Design ..
Code Sets
Data Integrity

Programming with Multi-byte Characters
Version # 1 (Single-Byte Codesets)
Version #2 (Code Set Independent) . .
Conversion of Existing Programs . . .

Guidelines for Processing Multi-byte Data

B. Example of Internationalized Software
Example Program Using NLS Routines - rtlcat

Include Files:
External Declarations: .
Forward References: ..
General Constants: . .
Limits:
Right-to-Left Terminal Constants: .
Error Message Numbers:
Error Message Strings: .
Types:
Global Variables:
Main Program: ..

Makefile Example ..

8-1
8-2
8-2
8-6 .

8-8
8-10
8-10
8-10
8-11
8-11
8-12

A-2
A-3
A-5
A-5
A-6
A-8
A-9

A-I0

B-1
B-2
B-2
B-3
B-3
B-3
B-3
B-3
B-4
B-4
B-4
B-4

B-15

Contents-5

C. NLS References

D. Previous Usage
Obsolete Routines.
Proprietary Commands and Interfaces .

E. Languages and Codesets
Displaying Character Sets on Your Terminal

F. LC_COLLATE Example for Spanish

Glossary

Index

Contents-6

D-2
D-5

E-5

Figures

1-1. NLS Conceptual Model
6-1. Retrieving the User's Environment
6-2. The Program Environment
7 -1. The Message Catalog System . . .
7-2. Naming and Locating Message Catalogs
7 -3. Using gencat 0 to Generate Message Catalog
7-4. Converting a Non-Internationalized Program . .
7-5. Using findstr to Locate String Constants .
7-6. Using the insertmsg Command
E-1. Roman8 Coded Character Set

1-3
6-5
6-8
7-5
7-6
7-9

7-16
7-17
7-19
E-4

Contents-7

Tables

1-1. Finding Information in the NLS User's Guide ..
2-1. Sorting Example: C vs. German
2-2. Sorting Example: C vs. Spanish
2-3. Sorting Example: C vs German .
3-1. NLS Environment Variables
4-1. NLS Directories and Files . . .
5-1. Primary Subdivisions of a Language Table
5-2. Header Keywords
5-3. LC_ALL Subcategories
5-4. LC_COLLATE Subcategories
5-5. LC_CTYPE Categories . . .
5-6. LC_MESSAGES Subcategories .
5-7. LC_MONETARY Subcategories
5-8. LC_NUMERIC Keywords . . .
5-9. LC_ TIME Subcategories
6-1. A Comparison of a "Standard" Application with its NLS

Version
6-2. Categories for setlocale
6-3. Locale parameters.
6-4. Parameters Defined for nl_Ianginfo
6-5. WPI Routines for Character and String Processing
6-6. Character and String Processing Routines
6-7. Character Identification Routines
6-8. Numeric Formatting Routines
6-9. Date and Time Routines

6-10. Multi-byte Character and String Conversions .
6-11. Character and String Processing Routines
6-12. Character Identification Routines
6-13. Numeric Formatting Routines
6-14. Date and Time Routines

Contents-8

1-5
2-10
2-11
2-11

3-2
4-2
5-7
5-8

5-10
5-11
5-15
5-20
5-21
5-24
5-25

6-3
6-7
6-7
6-9

6-13
6-14
6-15
6-16
6-16
6-19
6-23
6-24
6-25
6-26

7-1. Summary of NLSPATH Replacement Specifiers .
8-1. Conversion Routines.
A-I. Multi-byte Macros
C-1. HP-UX Reference NLS Entries
C-2. NLS Library Routines
C-3. NLS Commands
D-l. Obsolete Routines and Recommended Replacements
D-2. Proprietary Commands
D-3. Proprietary Library Calls
E-1. Language Codesets . . .

7-7
8-5

A-6
C-2
C-6

C-15
D-2
D-5
D-6
E-2

Contents-9

1
Overview

UNIX Background
The UNIX operating system was originally designed to be used with
terminals that generated seven bit ASCII characters. The primary users were
English-speaking Americans, so internationalizing the operating system was
not even considered. A number of years have passed since the creation of the
UNIX operating system; it grew to be used industry-wide and world-wide as an
application programming environment.

There became a need to handle characters from coded character sets other than
the standard ASCII codeset, some of which contain thousands of characters.
There became a need to provide interfaces that allow users to interact with
applications in their own language, rather than forcing them to use English
error messages and instructions. Native Language Support (NLS) was created
to do this in a manner which preserves the traditional UNIX operating system,
but is language independent.

The NLS Concept
NLS enhances the traditional UNIX operating system in a way that benefits
both the users and the application developers. It enables the design of flexible
applications that can support a variety of language environments. NLS consists
of a number of tools that help preserve the integrity of data across different
codesets, provide interfaces in the local language, and represent local customs
in software. Much existing software is designed for use only in the country
or locale for which it was originally written. This means the programmer
must redesign and recompile the software for every local language and local
environment.

Overview 1-1

1

1

However, the features of Hewlett-Packard's NLS enable the application designer
or programmer to create applications for an end-user's needs regardless of
the local language. NLS addresses an application's internal functions (such
as sorting and character handling) and the user interface (which includes
displayed messages, user inputs, and currency formats). An internationalized
program is really many programs in one, in that it uses and is supported by
tools that separate language-dependent features from the main program logic.

The NLS Conceptual Model
The NLS concept is a simple one. NLS allows one discrete program to
"speak" in a variety of languages. NLS consists of an extensive set of tools
and routines. All of its components support an "extended multi-language
application" consisting of three parts:

• A Language-Independent Program- The program displays messages in the
user's native language by using language-dependent features that are not a
fixed part of the program. The program does this in either of two ways:

o it processes the language-dependent data in a codeset-sensitive way; we
could call this the traditional NLS approach. Or,

o the program uses the Worldwide Portability Interface (WPI) to process
the language-dependent data. WPI's wide character encoding enables the
program to deal with data in a way that is codeset non-sensitive.

• Message Catalogs - There are no hard-coded messages in the source code.
Instead messages to the user (such as prompts and error messages) are stored
in external message catalogs with a version for each supported language.
For instance, instead of the source code containing the statement printf
("display this string"), the program calls a routine that opens a specific
message catalog containing the language-specific equivalent.

• Language Tables- This component of NLS contains language-specific
information and conventions unique to a particular locale (such as collation
sequence definitions and monetary conventions). Programs consult a
specific language table at run time according to the setting of the user's
environmental variables.

1-2 Overview

Message Catalogs

La ng u age -I ndependent

Program

#include ~nUypes.h>

setlocole(LC_ALL, "")

cotd=catopen("name", 0);

Figure 1·1. NLS Conceptual Model

1

Language Tables

Overview 1·3

1

Using this Manual

This manual is for people who are using, writing, or localizing programs for
international use and who will need to make use of the various elements of
Native Language Support (NLS).

Specific sections of this manual were written at a technical level appropriate
to general users, system administrators, NLS coordinators, or applications
programmers.

• General Users should read Chapters 2 and 3.

• System Administrators should read Chapter 4 and 5.

• Applications Programmers should read Chapter 5, 6, 7 and 8.

For further details, refer to the Appendices. For example, Appendix B provides
an example of internationalized programming. All of the NLS commands and
subroutines discussed in this manual are referenced in Appendix C and in the
Index.

1-4 Overview

1

Table 1-1. Finding Information in the NLS User's Guide

To find this information. . . Please see ...

Overview: This chapter provides a conceptual overview of NLS and Chapter 1
the internationalized application. This chapter also explains how the
manual is structured. This chapter explains the typographical
conventions used in this manual and identifies other related manuals.

futroduction to NLS(for the general user): This chapter presents a Chapter 2
basic description of the scope of Native Language Support,
localization, and internationalization, including general aspects of
character set handling, local conventions and messages.

Using futernational Software(for the general user): This chapter Chapter 3
shows how to run a localized application including terminal
configuration, environment setup, and selection of the language.

Administering futernational Software (for the system Chapter 4
administrator): This chapter identifies the HP-UX directories and
files, and explains how to set up the user environment, to install
message catalogs and optional locales, and to configure terminals
and peripherals.

Localizing futernational Software (for the system administrator and Chapter 5
the localizer): This chapter explains the details of localization for
special user requirements, localizing message catalogs, and creating
specialized locales.

Developing futernational Software(for the programmer): This Chapter 6
chapter describes the initialization process, character and string
processing, and gives a brief introduction to setting up the message
interface. This chapter focuses on the Worldwide Portability
Interface (WPI) approach to internationalizing software.

The Message Catalog System(for the programmer): This chapter Chapter 7
explains how to call message routines, create the message text
source file, and generate the message catalog.

Advanced NLS Topics (for the programmer): This chapter explains Chapter 8
about the NLS character- and string-processing tools, about
processing non-Latin character input/output, and about special
treatment of locales and message catalogs.

Overview 1-5

1

Table 1-1.
Finding Information in the NLS User's Guide (continued)

To find this information . . . Please see ...

Special Topics for HP's I6-bit Interfaces: This appendix provides Appendix A
the information necessary to maintain existing software that was
internationalized with HP's 16-bit Interface.

Examples of Internationalized Software: Character processing, Appendix B
collation, monetary formatting, messaging, and date/time format.

NLS References: An alphabetic listing of HP- UX Reference Appendix C
locations for all NLS commands and routines. Also lists the current
NLS library routines in alphabetic order, along with their associated
entry in the HP- UX Reference, and a description of the routine's
purpose.

Previous Usage: Tables of current and obsolete NLS commands and
routines.

Languages and Codesets: A listing of the native languages that are
supported by HP codesets.

LC_COLLATE Example: An example set-up of the LC_COLLATE
category.

Definitions: Major words and concepts used in this manual.

1-6 Overview

Appendix D

Appendix E

Appendix F

Glossary

Typographical Conventions in This Manual

Italics

New Terms

This typography indicates manual names and references
to manual pages in the HP- UX Reference. Italics are
also used for symbolic items either typed by the user or
displayed by the system, as discussed below under Variable
name. Italics are occasionally used to emphasize or stress
words.

This typography is used when an important new term is
introduced.

Computer literal This typography indicates literal input to, or output from,
the computer. Type the characters in this font exactly as
they appear on the page. For example:

Variable name

findstr prog.c > prog.str

This typography indicates that you need to "fill in the
blank" in a command line with your own word or data.
This font is used for names of variables and symbolic
names. For example:

cat file- name

means you type cat and substitute the appropriate
file_name to complete the command line.

This typography indicates a key on your keyboard. For
example, (Return) means to press the "Return" key. When
prefixed by (Shift), (CTRL), or (Extend char), press both keys
simultaneously. For example:

(CTRL)-©

means you press the (CTRL) key and continue to hold it
while you press the © key.

Overview 1-7

1

1

Related HP-UX Manuals
This manual may be used in conjunction with other HP-UX documentation.
References to these manuals are included, where appropriate, in the text. Also
refer to Appendix C for HP- UX Reference entries to NLS functionality.

• The HP- UX Reference contains the syntactic and semantic details of all
commands and application programs, system calls, subroutines, special files,
file formats, miscellaneous facilities, and maintenance procedures available
on the HP 9000 HP-UX Operating System. Unless otherwise stated, all
references in this manual such as "see langinfo(3C) for more details", refer to
entries in the HP- UX Reference manual.

• The HP- UX Portability Guide presents guidelines for writing portable
code, code that is easy to transfer between HP-UX systems or from HP-UX
to another system or vice versa. It also describes techniques for porting
programs in the HP-UX environment. Related to portability, this manual
describes how to call routines written in other programming languages across
HP-UX, for example, calling C routines from FORTRAN.

• The HP-UX System Administration Tasks manual provides step-by-step
instructions for installing and updating the HP-UX Operating System
software and for installing the NLS languages, if they are optional for your
system. It also explains procedures for system boot and login, and contains
guidance for implementing administrative tasks.

• The Terminal Control User's Guide contains valuable guidance for setting up
your terminal and configuring the softkey definitions.

• Finding HP- UX Information provides descriptions, and part numbers for
the Series 300, 400, 700, and 800 HP-UX manuals. (With the 9.0 release of
HP-UX, this reference is available online in HP-VUE's Helpview Help under
"HP-UX 9.0 Operating System Help.")

• HP Visual Users Environment User's Guide contains a task reference
for general users, as well as advanced users and system administrators.
This manual replaces both the HP VUE User's Guide and HP VUE System
Administration Manual for previous versions of HP VUE.

• Native Language Input/Output

1·8 Overview

o The Japanese NLIO Manual explains the overall usage of Japanese Native
Language I/O (NLIO). It includes details on both system administration
and operational tasks. This manual is a combined manual of the former
NLIO Access User's Guide, NLIO System Administrator's Guide and
the Japanese Input Method Guide. This manual is written in Japanese.
(B2200-90019)

o The Native Language I/O Access User's Guide explains how to use Native
Language I/O (NLIO). An overview of the NLIO theory and structure as
well as code mapping introduces the user to NLIO. The manual explains
NLIO commands in detail and provides information for programmers.
Separate sections lead the user through NLIO input methods for each of
the Asian languages. This manual is written in each local language.

B2204-90011 (Korean version)
B2212-90011 (Simplified Chinese version)
B2208-90011 (Traditional Chinese version)

o The Native Language I/O System Administrator's Guide tells system
administrators how to install the Native Language I/O (NLIO) subsystem
on the HP 9000 Series 400, Series 700 and Series 800 computers. Section 1
explains how to install Asian language-dependent printers and terminals.
Host computer hardware and software requirements are also covered.
Simplified Chinese, Traditional Chinese and Korean peripherals are
covered in separate sections. The following additional fonts are covered in
this manual: Traditional Chinese and Korean simplex fonts and Korean
designer fonts. This manual is written in each local language.

B2204-90002 (Korean version)
B2212-90002 (Simplified Chinese version)
B2208-90022 (Traditional Chinese version)

o The NLIO Input Method Guides explains details on using Native Language
I/O (NLIO) to input Asian language on to HP 9000 computers.

B2212-90003 (Simplified Chinese version)
92553-90001 (Traditional Chinese version)

Overview 1·9

1

2
Introduction to NLS

Overview of Software Internationalization
HP-UX users speak a variety of languages and observe many different cultural
practices. Local-language, processing capability is becoming a high priority
with the kinds of software products in use throughout the world. For this
reason, users need software which will easily accommodate local conventions.

To do so effectively, software products must preserve the integrity of data,
correctly handle the written conventions of a variety of languages, and provide
a message interface in the user's language. In addition, they must be versatile
in handling a variety of local data formatting conventions.

The two processes in the NLS approach that enhance software for international
use are: internationalizing, localizing .

• internationalizing software includes supporting the letters and symbols
required to read and write the user's language, processing characters and
text according to the rules of the user's language, providing the scheme
to process translated messages and prompts, and changing functions and
conventions to comply with local requirements. Such internationalization
must be accomplished with a minimum of change to existing program code.

• localizing adapts the software to a particular locale, including the translation
of messages and the use of appropriate language tables on the system.

Introduction to NLS 2-1

2

2
In general, then, the main requirements which Hewlett-Packard has addressed
to facilitate the international use of software are:

• Consistent preservation of data integrity

• Prop er handling of characters

• Effective communication interface in the user's language

• Proper representation of local customs in the software

HP Native Language Support provides an extensive set of tools and routines
for implementing language-independent software. Software can, with relatively
minor modifications, use language-dependent processing information which is
stored externally to the program code. At run time, the application accesses
the processing information appropriate for the language currently specified.
There are some unique advantages to this NLS strategy:

• Software is not duplicated in different versions for different languages. This
makes it easier to update and maintain the program.

• Because all language-dependent processing information is kept external
to the program source, programmers and localizers need not modify the
program source when modifying messages. The chance of "bugs" being
introduced into the software as a result of this process is eliminated.

• With the addition of the Worldwide Portability Interface (WPI) capability,
which is a standardized approach (XPG4) and the preferred approach,
especially for new development, the program no longer needs to deal with
data in a language-sensitive way. This makes the programming easier, and
provides for consistent treatment across languages because of the wide
character encoding.

• Since software can be localized more easily, the time and expense required by
localization is relatively low.

• Many users could simultaneously share the same copy of a program, with
each one potentially using a different language or set of language conventions.

HP has an ongoing test process to ensure compliance with applicable standards
of XPG3, POSIX, and ANSI-C.

2·2 Introduction to NLS

Components of Internationalizing and Localizing with NLS

NLS provides a number of features to aid international users and programmers:

• It permits users to specify the desired language at run time.

• It allows different users to use different languages on the same system.

• It provides the programmer with the ability to internationalize software.

Internationalization

NLS supports these features by providing language-dependent tables
for various locales and by program internationalization and localization.
Internationalization involves:

• Designing an application so that it uses a set of NLS routines that retrieve
and set the program's linguistic environment according to the user's needs.

• Using NLS tools for copying all hard-coded messages into external message
catalogs and for updating the message catalogs.

• Referencing language tables for language and locale sensitive information.

• Replacing some original HP-UX routines in an application with NLS versions
of the routines. For example, the routine etime would be replaced with the
NLS-enhanced version strftime or the WPI version we sf time.

• Using the WPI to enable the application to handle both single and
multi-byte character sets.

• Revising algorithms if necessary to preserve data integrity and provide
language-sensitive processing.

Localization

The internationalized application then can be adapted for use in a specific
linguistic environment through the process of localization. Localization
includes:

• Translating the text in the message catalogs into the local language.

• Installing message catalogs and language tables on the system.

• Creating or adapting language tables for locales with special requirements.

Introduction to NLS 2-3

2

2
• Providing the way to set up the user's environment in the local language,

such as special fonts for Asian languages.

Localization activities are supported by translators and system administrators.
Through the process of localization all aspects of the user interface are
"customized" to the users' requirements.

Internationalization is usually done by the software developer as part of the
application development or modification process. Localization can often be
facilitated by Localization Centers operated by various Hewlett-Packard
Country Product Organizations.

Aspects of NLS Support
There are three aspects of Native Language Support included in HP-UX
software:

• Character and text handling
• Local customs and conventions
• Messages and menus

Character and Text Handling

NLS provides the ability to identify and manipulate characters in a variety of
ways and to handle language-specific text processing.

Data Integrity

To say that software preserves data integrity means that the software must
allow users to input characters required for their native language without
corrupting those characters. For example, if a program prompts Muller to enter
his name, the program should neither convert the "u" to another character
(such as "0", with the name appearing as MOller) nor should it map the
character to an undefined value (such that "M ller" appears).

Character Sets and Encoding

In an HP-UX environment, the default local language character set is 7-bit
ASCII (or USASCII). All programs which are not internationalized, or those

2-4 Introduction to NLS

that are internationalized but in which the user has not enabled NLS, use this
character set. Note, however, that 7-bit ASCII is not sufficient even to span the
Latin-based alphabet used in many European languages.

For many Asian languages, character sets can contain several thousand
characters. This is more than can be encoded in the single 8-bit number which
is the conventional value used to represent character data. For this and other
reasons, NLS character handling has the following characteristics:

• The 8th bit of a character byte is never stripped or modified.

• The extra bit provides support for languages that have additional characters,
accented vowels, consonants with special forms, and special symbols.

• Multi-byte coded character sets may be used for character sets that contain
more than 256 members.

There are many implementations of non-ASCII character sets currently in use.
NLS permits users to define their own character sets and character properties.
However, Hewlett-Packard has already supported coded character sets that
permit the processing of many Eastern and Western European, Middle Eastern,
and Asian languages.

Every HP-supported 8-bit coded character set is a superset of ASCII. The
HP-supported 8-bit coded character sets for Western European languages are
ROMAN8 and the standard ISO 8859-1. Hewlett-Packard also supports ISO
8859-2 and ISO 8859-5 for Eastern European languages, including Cyrillic.
Other 8-bit coded character sets are defined for other locales. For a listing,
please refer to Appendix E, "Languages and Codesets".

For alphabets of more than 256 characters, such as Kanji (Japanese ideographic
characters), multi-byte character codes are required. Hewlett-Packard has
defined a multi-byte character encoding scheme, HP-15, which uses two bytes
(16-bits) to represent a character. Four sets are defined under this scheme,
which are used to represent Traditional Chinese, Simplified Chinese, Korean,
and Japanese.

In addition, Hewlett-Packard provides support for the EUC character encoding
scheme for up to 2 bytes. This scheme is used for data processing and storage.
For input and output, Hewlett-Packard uses a multi-byte character encoding
scheme called HP-16.

Introduction to NLS 2-5

2

2
Users may provide support for some non-HP-defined code and character sets
by using the localedef command. For more information on the localedef
command, see Chapter 5.

Character Type and Conversion

All sorting, case shifting, and type analysis of characters is done according to
the local conventions for the native language selected. While the ROMAN8
and IS 0 8859 coded character sets have uppercase and lowercase for most
alphabetic characters, some languages discard accents when characters
are shifted to uppercase. European French commonly discards accents in
uppercase, while Canadian-French does not. If there is no representation of
case in the user's language, as is the case in ideographic languages such as
Japanese, characters are not shifted at all.

Local Customs and Conventions

Certain aspects of NLS relate to the local customs or conventions of a
particular geographic area. These aspects, even when supported by a common
character set, can change from region to region. Consequently, number format,
currency information, date and time format, case shifting, and collation are
set according to the user's local conventions. In NLS, these environmental
characteristics collectively designate a "locale".

For instance, although Great Britain, the United States, Canada, Australia,
and New Zealand share the English language, aspects of data representation
differ according to local customs. Variations are encountered in the following
everyday matters:

• Representation of numbers (numeric formatting)
• Representation of currency units (monetary formatting)
• Display of time
• Display of days, weeks, months

Chapter 8 describes the library routines used to handle these local customs.

Numeric Formatting

In the representation of numbers, all the following depend on local customs:

2·6 Introduction to NLS

• The "radix" symbol which performs the decimal-indicating function (the
period in America).

• The thousands separator (the comma in America) which serves to separate
groups of digits.

• The convention for grouping digits (by three's in the american locale).

In the United States, a number is represented as follows:

2,345.678

But when representing the same number in France, the thousands separator is
blank, and the radix symbol is a comma:

2 345,678

Monetary Formatting

Currency units and how they are subdivided vary with region and country.
The symbol for a currency unit can change as well as the placement of the
symbol. It can precede the numeric value, follow it, or appear within it.

Between the currency conventions used by America and France, the currency
symbol string is transposed.

US$2,345.77

versus

2 345,77 FF

Display of Time

Computation and proper display of time, including 24-hour vs. 12-hour
clocks, must be considered. The HP-UX system clock runs on Coordinated
Universal Time (UTC). Corrections to local time zones consist of adding or
subtracting whole or fractional hours from UTC. Some regions, instead of
using the Western Gregorian calendar system, designate the years by seasonal,
astronomical, or historical events. One system which HP supports is the
Imperial system used in Japan for numbering years based on the reign of the
current emperor.

Introduction to NLS 2-7

2

2
Display of Days, Weeks, Months

N ames for days of the week and months of the year may vary with language, as
do rules for abbreviating these. The order of the year, month, and day, as well
as the separating delimiters also differ. For example, October 7, 1991 would be
represented in America as:

10/7/91

in Germany, it would be represented as:

7.10.1991

and in the U.K. as:

7/10/91

Chapter 6 describes the library routines used to handle these local customs.

Collation

Each language may use its own distinct "collating sequence"-the sequence in
which characters or words are ordered by the computer. Some language may
even have more than one set of collation rules. The ASCII collation order,
which is the default setting for HP-UX, while it is fast, is inadequate even
for the accuracy requirements of american locale dictionary sorting. Each
language may order the characters differently, and certain languages have
multiple acceptable orderings.

Chinese is an example in which the ideographic characters can be sorted in
order of:

• The numeric value of the character as represented in a computer character
set. (HP has implemented this method only.)

• The number of strokes required to represent the character.

• The radical (root) of the character.

• The pronunciation of the character.

2-8 Introduction to NLS

Messages

The ability to customize messages for different countries is an important aspect
of using NLS. NLS enables you to choose the language for prompts, responses
to prompts, and error messages. All of this can be done at run time. And,
since messages are kept in catalogs separate from the program code, it is not
necessary to recompile the source code when you are using the program in
another language.

It is, however, necessary to work closely with your translator to ensure that
the semantics of system or program messages are correctly conveyed in the
translation. In practice, the syntax of another language may force a change in
the sentence structure of a translated message.

For example, an English message for a given command might be interpreted
two ways in German.

The original in English is:

cannot read at directory

("at" is an HP-UX directory)

In German, this message could be interpreted as:

Kann das Verzeichnis nicht lesen.

(Literally: "cannot read the directory" , with "at" misinterpreted as an
untranslatable preposition)

If the meaning of "at" is pointed out to the translator in a "cookbook"
accompanying the message catalog, the message would be correctly translated
as:

at Verzeichnis nicht lesbar.

(Li terally: "c at' directory not readable." -the intended meaning.)

Handling messages in message catalogs helps ensure that the messages are
accessible for editing, updating, and translating into other languages, as
required.

For details on the use of message catalogs, see the section "Localizing Message
Catalogs" in Chapter 5.

Introduction to NLS 2-9

2

2

Language Variations

Comparing Strings and Comparing Characters

The order in which character strings are sorted is language-dependent. In
addition, there may be a discrepancy between a character's order within a
character set and true lexicographical (dictionary) order. Sorting based on
character code does not provide true lexicographical order even in the case of
the AS CII character set.

Lexicographical order sorts "a" after "A" and before "B", whereas
ASCII-based order sorts "a" after the entire set of uppercase letters. This
situation becomes more complex in an internationalized program that is
structured to handle many different, coded-character sets.

The following is an example of sorting the same list based on the C sorting
method, and based on a German sorting method. The table shows that while
"a" follows "b" in the coded character set ordering, it is sorted before "b"
when sorted according to lexicographical order. This situation makes sorting
based on the code of each character inappropriate when internationalizing
software. Even within the subset of lowercase values, character set order does
not coincide with lexicographical order. In addition, characters can no longer
be up-shifted or down-shifted as in ASCII by adding or subtracting a fixed
offset.

Table 2-1. Sorting Example: C vs. German

Sorted by Sorted by
C rules German rules

Airplane Airplane

Zebra apfel

bird bird

car car

apfel Zebra

Beyond the ordering of individual characters, some languages designate that
certain characters be treated in a special way. For example, in some languages
groups of characters are clustered and treated as a single character.

2-10 Introduction to NLS

In Spanish "11" is treated as a single character, and it is sorted after "1" and
before "m". Similarly, the "ch" in Spanish is treated as a single character, and
it is sorted after "c" but before "d":

Table 2·2. Sorting Example: C vs. Spanish

Sorted by Sorted by
C rules Spanish rules

chaleco cuna

cuna chaleco

dia dia

llava loro

loro llava

maiz maiz

When sorting strings in some languages, a single character is expanded and
treated as if it were really two characters. For example, when sorting strings in
German, :B (the "sharp s"), is treated as if it were "ss".

Table 2·3. Sorting Example: C vs German

Sorted by Sorted by
C rules German rules

Rosselenker Rosselenker

Rostbratwurst Rofihaar

RoBhaar Rost bratwurst

In some languages, certain characters such as "-" are ignored when collating
strings, and these also need to be taken into account .

• Data directionality. This is the spatial order in which data is displayed vs.
the order in which it is entered. Data directionality is not the same for all
languages. For example, some Middle Eastern languages are read from right
to left and may be mixed with insertions in left-to-right European languages.
NLS allows for processing of this type of character data. Currently, no
special provisions are made for top-to-bottom languages, such as Chinese,
which are handled in a left-to-right orientation.

Introduction to NLS 2·11

2

2
• Multi-byte characters. Finally, character handling also involves the correct

parsing of multi-byte character streams and the interpretation of multi-byte
characters. Multi-byte character streams may contain both single-byte and
multi-byte characters. To process this data, each byte must be identified
as either a single-byte character or as part of a multi-byte character. The
details of these and other aspects of character handling are discussed in
Appendix A.

Regular Expressions

HP-UX allows the specification of arbitrary character strings through the use of
regular expressions. For further details on their use, see the section, "Regular
Expressions", in The Ultimate Guide to the vi and ex Text Editors. The syntax
of regular expressions has been extended in HP -UX to allow use with other
character sets.

Here is one example of an internationalized regular expression:

h[[=e=]] Ip

This matches the word "help" spelled with any variation of the letter "e" (for
example, e, e, e, e).
The existing syntax of a range expression (e.g., "[a-z]") is not changed.
However, its meaning has been extended to mean "match any collating element
which falls between the two given collating elements based on the current
locale's LC_COLLATE collation sequence."

For multi-byte languages, the support in regular expressions is not as extensive.
For example, multi-byte characters are allowed as single character elements in
expressions, and they can be used in character ranges. However, the inverse of
a range ("[-a .. z]") is not allowed with multi-byte characters in general. This
is due to restrictions in the way the codesets are implemented. Moreover, some
new features are not allowed with multi-byte codesets simply because they have
no application to Asian languages.

2-12 Introduction to NLS

3
Using International Software

Read this chapter if you are: I> A general user of internationalized commands and
software.

This chapter covers information and tasks you will need to deal with in order
to use internationalized software successfully. The information and the tasks
are minimal because, in most situations, you will be receiving help from your
system administrator for the following tasks:

• Advising on optimal use of NLS features
• Ordering NLS software
• Installing and updating the operating system
• Configuring the system
• Installing and initializing additional software
• Maintaining system software

NLS Environmental Variables
As a user, you interact with NLS through the selection of a specific linguistic
environment. While in a non-internationalized program this environment
is static (defined by the programmer who developed the software), in an
internationalized program the linguistic environment is a variable (or a set of
variables) that you, the user, can select or change. Your environment is defined
by the environment variables shown in Table 3-1. By setting these variables
(or using the system default values), you indicate to the system your unique
requirements for various aspects of NLS capabilities.

Using International Software 3·1

3

3

LANG

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LC_MONETARY

LC_NUMERIC

LC_TIME

NLSPATH

LANG OPTS

Table 3·1. NLS Environment Variables
Specifies native language, local customs, and coded
character set and messages. LANG provides default values
for the below variables if they are not explicitly defined.

Specifies the behavior of all categories including:

• regular expressions
• NLS string collation functions
• character classification and conversion functions
• all routines which process multibyte characters
• functions which handle monetary values,
• the radix character in formatted input/output functions

and the string conversion functions
• numeric values found in the localeconv structure
• time conversion functions

Specifies string collation.

Specifies character classification and case conversion.

Specifies affirmative and negative response expressions.

Specifies currency symbol and monetary value format.

Specifies decimal number format.

Specifies date and time format and the names of days and
months.

Specifies search path for message catalogs.

Specifies data directionality for right-to-Ieft languages.

For additional information on the NLS environment variables and their use, see
environ(5) in the HP-UX Reference.

3·2 Using International Software

Default Values
Local system default values for the NLS environment variables are ordinarily
determined and set by your system administrator. When you log in, your
environment will be set to the system default values unless you specifically 3
set your environmental variables to something different in your . profile or
. login file.

To see the setting of your NLS environment variables type:

env

If none of the NLS environment variables is set or if you are not sure what NLS
environment you need, consult with your system administrator to determine
the appropriate settings for your locale.

Using International Software 3·3

3

Setting your Environment
If the local system default values are not satisfactory, you can use the locale
you need by setting the environment variables appropriately.

For example, if you need a French locale, run the Bourne or Korn shell
commands:

LANG=french ; export LANG

This is equivalent to the C shell command:

setenv LANG french

Add these commands to your . profile or . login file so that your preferred
environment will be set when you log in.

If you will be running applications that need an NLS environment different
from the system default and different from your individual environment, create
a shell script that sets the environment variables as needed for the application.

For example, to run the command prog in a special NLS environment, the
following sh script could be used:

: # run prog
set special NLS environment for prog
LANG=english ; export LANG
LC_TIME=italian ; export LC_TIME
LC_MONETARY=german ; export LC_MONETARY
LC_NUMERIC=french ; export LC_NUMERIC
run prog
prog file1 file2

Such a script could be installed by your system administrator in /usr/bin and
used to invoke your program as well as saving time in setting a special NLS
environment.

3-4 Using International Software

Setting Your Terminal
First, check your terminal to ensure that it is configured for transmitting
and receiving 8-bit data. This involves setting your terminal to 8 data bits
and no parity. Additionally, if you are using terminal emulator software on
a workstation or PC, it may be necessary to choose the proper font for the
character set you wish to work in.

To use international software, your terminal should also be set so that data is
not corrupted by system software that might otherwise attempt to interpret
the eighth bit of a byte. This bit is needed as part of the character code. To
disable such interpretation, run:

stty -istrip -parity

It is generally convenient to add this command to your . prof ile or .login
file.

Reference Information for Internationalized Commands

For any command you intend to use, consult the online man pages or the
appropriate page in the HP- UX Reference to determine the extent to which
it has been internationalized. The section "EXTERNAL INFLUENCES,
Environment Variables" in each man page indicates NLS environment variables
that affect the behavior of a command. For example, to see how LC_ TIME
affects the date command, run:

man date

Using International Software 3-5'

3

International ized Messages
A command that has been internationalized for messages will have, in the
HP-UX Reference section "EXTERNAL INFLUENCES, Environment

3 Variables," a comment such as "LANG determines the language in which
messages are displayed." Such a command, however, will not necessarily have
message catalogs installed on the system for all languages or even for any
language other than for a default locale.

When such a command is run, current locale messages will be displayed if
they are available. Otherwise, default locale messages will be displayed. The
command will, however, perform correctly for the current locale.

For example, sort will correctly sort data in all supported locales. Messages
issued by sort will be in the C locale (the default locale for HP-UX commands)
unless localized message catalogs have been provided and installed on the
system.

See Chapter 5 for more information on localizing message catalogs.

Using Internationalized Commands
To see what locales are installed on your system run nlsinfo. Then set LANG
to one of the installed locales and run date.

You should get a result with the format and naming conventions of the locale
specified by LANG.

To test this further, try:

cat file

where file is non-existent. If there is a localized message catalog for cat you
should get the cannot open message in the locale specified by LANG. If not, you
will get the message in the C locale.

If you do not get the expected results, check with your system administrator
to verify that the required language-specific files are properly installed on the
system. Otherwise, you should now be able to use internationalized commands
without further special action.

3-6 Using International Software

Note If you find that date works according to the current setting of
LANG, but cat does not, this means a message catalog for cat
has not been installed on your system for the selected language.
The date command relies on language tables and library
routines, rather than message catalogs, so not having a message
catalog installed for the selected language does not affect it.

Using International Software 3-7

3

4
Administering International Software

Read this chapter if you are: I> A System Administrator who supports the use or
development of NLS software. 4

This chapter covers information you will need to know and tasks you will need
to perform in order to ensure that users on your systems are able to use NLS
features successfully.

Administering International Software 4-1

4

Finding NLS Files
The NLS information used by HP-UX commands and libraries is located in the
following directories and files:

Table 4·1. NLS Directories and Files
Directory /Files

/usr/lib/nls

/usr/lib/nls/config

Type of NLS Information

This is the directory under which NLS
information is located.

This readable ASCII file identifies currently
installed locales, including user-defined locales
created by localedef. It contains locale
names and their corresponding locale-ID
numbers.

/usr/lib/nls/locale This directory is present for each installed
locale.

/usr/lib/nls/locale/locale.inf These files contain locale-dependent
processing information.

/usr/lib/nls/locale/locale. ext These files contain locale-dependent processing
information used by the WPI routines.

/usr /lib/nls/ locale / *. cat These are the localized message catalog files.

In the most general case, locale can be of the form: language_territory.codeset.
Either of the extensions _territory or .codeset may be omitted if not applicable,
and in general, both are omitted. If a locale has _territory or .codeset
extensions, there is a corresponding subdirectory for each extension. For
example, if /usr/lib/nls/config has entries:

german.iso88591
german_swiss
ge~an_swiss.iso88591

japanese
jap~ese.euc

4·2 Administering International Software

Then, you should expect to find the following directories:

/usr/lib/nls/german/iso88591
/usr/lib/nls/german/swiss
/usr/lib/nls/german/swiss/iso88591
/usr/lib/nls/japanese
/usr/lib/nls/japanese/euc

The Default User Environment
The NLS environment variables should have system default values appropriate
to the local user community. These values would ordinarily be determined by
the system administrator. You should include commands in /etc/profile and
/ etc/ csh .login that will set the user's environment variables to these default
values. Note that HP-UX does not set these variables, by default.

Installing Message Catalogs
Localized message catalogs should be installed in the appropriate location.
Message catalogs for HP-UX commands and libraries should be located in
/usr/lib/nls/ locale. If your system has territory or codeset specific locales
you will need to check additional directories. See discussion in "Finding NLS
Files" above.

Message catalogs for other applications can be put in any location that can
be referenced by the conventions of catopen and NLSPATH. The location and
naming of local message catalogs will generally be made by you in consultation
with the system administrator. This location and naming may require a change
to the system default value of NLSPATH. If it does, the system administrator will
determine the new value and make the required change to the NLSPATH setting
in / etc/profile and / etc/ csh . login. All users should be notified of this
change.

Administering International Software 4-3

4

4

Installing Optional Locales
The procedure for installing additional software such as an· NLS locale is
explained in detail in the section "Updating HP-UX" of HP-UX System
Administmtion Tasks.

Normally, HP-UX is shipped with all supported locales. Not all coded
character sets are supported on all peripherals, however, so peripherals which
support the desired character set must also be obtained. After a locale is
installed, the NLS locale-specific information can be used by any application
program requesting it.

Peripheral Configuration
When you purchase peripherals for use in a non-ASCII or multiple language
environment, you should consider the coded character sets that your
peripherals will need to support. Hewlett-Packard provides printers, plotters,
keyboards and terminals which support HP single- and multi-byte coded
character sets, as well other standards (such as the ISO 8859-1 coded character
set for Europe). In some cases, you may need special software in order to
operate these peripherals, such as the NLIO system for Asian peripherals.

4-4 Administering International Software

5
Localizing International Software

Read this chapter if you are:

This chapter:

I> A System Administrator who supports the use or
development of NLS software.

I> A programmer of internationalized software
I> A localizer who translates message catalog entries

into the native language.

• Covers information and tasks for localizing commands that have been
internationalized.

• Helps you determine local NLS needs.

• Describes how to create a language definition for a new locale through the
creation or modification of a localedef script.

• Explains how to install a new language definition on your system.

Localizing International Software 5-1

5

Localizing the User Environment
HP-UX does not automatically set NLS environment variables. HP-UX
commands, when run without NLS environment variables set, default to the
"C" locale. If this is the desired system default locale, no changes for the user
environment are needed.

To provide a different system default locale, specify the desired default values
for the NLS environment variables:

• LANG
• Le_categories
• NLSPATH
• LANGOPTS

The chosen values should be those most commonly used on your system. The
5 default values should be set in fete/profile and /ete/esh.login. You

should arrange to do this and advise users of any change to the system default.

Users who need an environment different from the system default can set their
own environment as needed in their . profile or . login file.

Localizing Message Catalogs
For applications that have message catalog support, you can provide a local
language interface. This involves:

• Obtaining a copy of the "C" locale messages.

• Translating the messages into a local language.

• Installing a message catalog containing the translated messages.

5-2 Localizing International Software

The C Locale Messages

To determine what HP-UX commands have message catalogs, run:

Is /usr/lib/nls/C/ *.cat

For each HP-UX command that has message catalog support, there will be a
file /usr/lib/nls/C/ command. cat listed.

To localize a message catalog, you need to first get a readable version of the
"C" locale messages. This is done with the dumpmsg command. For example,
to get a message text source file of the "C" locale messages for date, run:

dumpmsg /usr/lib/nls/C/date.cat >date.msg

The file date .msg is a copy of the messages and is ready for translation to a
native language.

Translating Messages

First you must set the LANG environmental variable to the locale you will be
translating in. You are now ready to translate the messages to the target
language:

vi date.msg

Note that date .msg is a message text source file in a format suitable for input
to gencat. You must preserve the format and you must leave the message
numbers and the set numbers unchanged.

If the message translated is longer than 80 bytes, don't start a new line or just
hit carriage return. Instead you can either:

• continue typing allowing the word to "wrap-around" to the new line, or
• type a \ (backslash) before the carriage return and continue typing at the

first column of the next line.

If you want to put a carriage return in the message when it is output to the
user, type \n. When the message is output to the user, the text following the
\n will begin on a new line.

Localizing International Software 5·3

5

5

Translation Problems

The developer should have provided a translator's "cookbook". Without this,
here are some possible translation problems you might encounter:

• The meaning of a message, or a substitution parameter, may be unclear or
ambiguous so that the desired translation is not apparent.

• There may be unspecified size constraints on the message. For example, it
may be displayed in a space with a fixed length.

• There may be parts of a message that should not be translated. For example,
messages for a command may contain the command name.

• Some messages might be used together and need to be translated as a pair.

Some possible solutions you might try:

• Experiment with the program to see if you can determine the intended
behavior.

• Ask the developer of the program.
• Ask someone who has localized the program.

Installing Localized Messages

Once the message text source file has been translated to the target language
you can generate a message catalog containing the newly translated messages.
First set the LANG environment variable to the locale you will be translating in.
To create a message catalog from the translated date .msg message text source
file, run:

gencat date. cat date.msg

The new message catalog date. cat can now be used for installation in the
appropriate locale.

Note that a message catalog contains no information to indicate the locale for
which it is intended. To help ensure that the message catalog is installed in
the proper directory, we recommend you deliver the catalog with a script that
will install the catalog in the correct locale. Once the new message catalog is
installed, be sure to verify the correct installation.

5-4 Localizing International Software

Creating a Locale
The standard locales cover most languages. If none of the existing locales are
appropriate, you can create a locale that meets your specific requirements.
This is most easily done if there is an existing locale that is similar to the one
you need. If there is, you can get a copy of the locale description in localedef
format, modify the description so that it conforms to your needs, then install it
as a new locale.

For example, suppose you need a locale that is the same as the american locale
except that it has a different date format.

For the american locale, date produces output of the form:

Fri, May 5, 1989 04:37:33 PM

Suppose the desired format is:

Fri, 5 May 1989, 04:37:33 PM

The format for date is controlled by the d_ t_fmt and d_fmt items of the
LC_ TIME category. You can change these to give the desired format.

To create the new locale, get a localedef script of the american locale by
executing:

localedef -d american > new_locale

You can now modify the localedef script to define the desired locale:

vi new_locale

Localizing International Software 5·5

5

5

The script will contain the following entries:

langname
lan~id 1

LC_TIME

"american"

d_t_fmt "Yea, Yeb Ye.1d, YeY YeI:YeM:YeS Yep"
d_fmt "Yea, Yeb Ye.1d, YeY"
t_fmt "YeI:YeM:YeS Yep"
daY:-1 "Sunday"

END LC_TIME

To get the desired formatting, change d_ t_fmt and d_fmt in the script to:

langname "locale_name"
langid locale_id

LC_TIME
d_t_fmt "Yea, Ye .1d Yeb YeY YeI:YeM:YeS Yep"
d_fmt "Yea, Ye.1d Yeb YeY"
t_fmt "YeI:YeM:YeS Yep"

END LC_TIME

5-6 Localizing International Software

Script Requirements for localedef

The above example shows how to modify an existing language script to create a
language definition for a new locale. This section describes the structure and
syntax of localedef in detail, making explicit the "rules" you must adhere to
when defining a new locale.

In general, the categories in Table 5-1 make up a language definition:

Table 5-1. Primary Subdivisions of a Language Table

Category Function

LC_COLLATE Affects the behavior of the regular expressions and the NLS
string collation functions.

LC_CTYPE Affects the behavior of character classification and conversion
functions.

LC_MESSAGES Affects affirmative and negative response expressions.

LC_MONETARY Affects the behavior of functions which handle monetary values.

LC_NUMERIC Affects the handling of the radix character in the formatted
input/output functions and the string conversion functions.

LC_TIME Affects the behavior of the time conversion functions.

LC_ALL Contains language-specific information which does not belong
to any of the above categories.

In creating or adapting a new language script, use the following general
principles:

• All information in a localedef script (except the language name, language
id, revision number, comment character, and escape character) belongs to
one of the above categories.

• The beginning of a category is identified by a "category tag" which has the
form LC_ category. All the values specified in the left side of the above table
constitute legal category tags.

• The end of each category is identified by an END Le_category category tag.

Localizing International Software 5-7

5

5

• Categories can be listed in any order in a localedef script .

• All category specifications are optional. If a category is not specified, "C"
locale is set up as the default for that category.

localedef Syntax
Table 5-1 outlined the basic structure of a localedef script. In addition to the
category, the syntax of your localedef script provides for the specification of
subcategories within each category. Introduce these subcategories through a
pre-defined keyword followed by one or more expressions that specify applicable
characteristics of the language. (These subcategories are described in later
sections). localedef also recognizes three keywords that do not belong to any
category. These keywords form a header for the language definition script,
uniquely identifying the language:

Table 5·2. Header Keywords

keyword Function

langname String identifying the name of the language. This keyword is
required by localedef if the command line invoking localedef
does not contain the locale_name. (See localedef(lM).)

langid Decimal number identifying the language ID. This keyword is
required by localedef if the command line invoking localedef
does not contain the locale_name (see localedef(lM)). The
language ID specified should be in the range of 1 to 999, and
any user-defined language should assign its language ID in the
range of 901 to 999.

revision String identifying the revision number of the locale. inf file.
The string is restricted to contain at most 6 characters, all
digits and one optional decimal point (.) character.

5·8 Localizing International Software

Table 5-2. Header Keywords (continued)

keyword Function

comment_char Single character indicating the character to be interpreted as
starting a comment within the script. The default
comment_char is #. All characters from a comment_char to the
next newline are ignored.

escape_char A single character indicating the character to be interpreted as
an escape character within the script. The default escape_char
is \. escape_char is used to escape localedef metacharacters to
remove special meaning and in the character constant decimal,
octal, and hexadecimal formats.

The following example shows the header of a localedef script for the
american locale:

langname "american"
langid 1
revision "nnn.nn"
comment_char '#'
escape_char '\'

Localizing International Software 5-9

5

5

LC_ALL Subcategories

The following key words belong to the LC_ALL category:

Table 5·3. LC_ALL Subcategories

Subcategory Function
Keyword

direction String indicating a text direction. If the null string or 0 is
specified, text direction is left-to-right; if 1 is specified, text
direction is right-to-left. In all cases, a top-to-bottom format is
assumed.

context String indicating if character context analysis is required. If the
null string or 0 is specified no context analysis is required. If 1
is specified, Arabic context analysis is required.

Below is an example of LC_ALL. Note that no context analysis is required and
text direction is from left to right. Comment lines begin with #. The script
follows C-language conventions; strings are enclosed in double quotes.

LC_ALL category

LC_ALL
direction ""
context ""

5·10 Localizing International Software

LC_COLLATE Subcategories

The following key words belong to the LC_COLLATE category:

Table 5·4. LC_COLLATE Subcategories

Subcategory Function
Keyword

collating-element Defines a multi-character, collating-element symbol composed of
two characters.

order-start Denotes the start of the list of collating-element entries that
define the collating sequence.

order-end Marks the end of the list of collating-element entries that define
the collating sequence.

A collation sequence defines the relative order between collating elements in the
locale. This order is expressed in terms of collation values that are assigned in
the order they occur (ascending), to each of the collating elements.

The collating element may be a single character or a multi-character (limited
to 2 bytes) element. The collating order is achieved by explicitly ordering the
collating elements between the order _start and order _end keywords. The
collating element entry is of the form

collating-identifier [primary-weight; [secondary-weight]]

where, collating-identifier is one of the following:

• a single character element

• a multi character element (two- to-one character code pair)

• ellipsis

• the special keyword "UNDEFINED"

(N ote that primary-weight and secondary-weight are optional.)

Localizing International Software 5·11

5

5

Single-Character Element

The single character collating element may consist of a character within single
quotes C), or it may consist of a hexadecimal, octal or decimal value. For
example:

'7' '7'; '7'
\x37 \x37;\x37
\d55 \d55;\d55
\067 \067;\067

character collating element
hexadecimal representation
decimal representation
octal representation

Multi-character Element

Multi-character collating elements are defined using the collating-element
keyword. This must be defined prior to the order _start keyword and takes
the form

collating-element <symbol> from" string"

this defines the symbol symbol for the multi-character string string, which will
collate as a single entity at the point where symbol appears in the collating
sequence.

The following is an example of LC_COLLATE code that defines a collating
sequence where the string Cl collates between the characters C and D.

collat ing-element <xx> from "C1"

'C' 'C'; 'C'
<xx> <xx>;<xx>
'D' 'D'; 'D'

A one-to-two character code pair, which consists of single characters that
occupy two adjacent positions in the collating sequence, may also be defined.
In the following example, the sharp s is collated as SS and occurs between S
and s in the collation sequence.

'S' 'S'; 'S'
\xde 'S' ;"SS"

'5' 'S'; '5'

5-12 Localizing International Software

Ellipsis Symbol

The ellipsis symbol (...) specifies that a sequence of characters collates
according to its encoded character values. This means that when an ellipsis is
used, all characters with a coded-character-set value greater than the value
of the character in the preceding line and less than the coded-character-set
value in the following line, will collate in between the two in ascending order,
according to their coded-character-set values.

In the following example, the ellipsis indicates that the characters B, C, D
and E (in the ASCII character set) will collate between A and F in the order
according to their values in the character set.

order_start

'A' 'A'; 'A'

'F' 'F'; 'F'
order_end

In this case the order is B, C, D and E. Please note that the use of the ellipsis
symbol ties the definition to a specific, coded-character set such as ASCII or
EBCDIC.

UNDEFINED Symbol

The symbol UNDEFINED is interpreted as "including all coded-character-set
values not specified explicitly or via the ellipsis symbol". Such characters
that are not specified, but belong to the character set, are inserted in the
character collation order at the point indicated by the symbol UNDEFINED, and
in ascending order according to their coded-character-set values.

In the following example, A to Z will collate before 1 to 9 and all characters
not defined (not between A-Z or between 1-9) will collate, according to their
coded-character-set values, between Z and 1.

order_start

'A' 'A'; 'A'

'Z' 'Z'; 'z'
UNDEFIlED

'1' '1';'1'

'9' '9'; '9'

Localizing International Software 5·13

5

5

The optional operands for each collation element are used to define the primary
or secondary weights for the collating element. Two or more elements can
be assigned the same primary weight. If this is done they are said to be in
the same equivalence class. Note that the following two collating-sequence
definitions are equivalent:

order_start

'A'
'B'
'C'
order_end

and

order_start

'A' 'A' j '1'
'B' 'B' j '8'
'C' 'C' j 'C'
order_end

In the following example definition, the letters A and a both belong to the
equivalence class A and collate before the character B. Similarly, the characters
Band b belong to the same equivalence class. However, a and b collate after A
and B respectively because their secondary weights are different.

order_start

'A' 'A' j '1'
'a' 'A' j 'a'
'8' 'B' j '8'
'b' 'B' j 'b'
order_end

If the keyword IGNORE is used as the secondary weight, it causes the collating
element to be ignored during comparisons, as if the string did not contain the
collating element.

Note An example of an LC_COLLATE sequence is in Appendix F.

5-14 Localizing International Software

LC_CTVPE Subcategories

• When using expressions to describe character traits, character-code ranges
can be specified by listing two constants defining the range, separated by an
ellipsis (...). The constant preceding the ellipsis must have a smaller code
value than the constant following the ellipsis. A range represents a set of
consecutive character codes.

• When using shift expressions a pair of character codes are enclosed by
left and right parentheses. For tolower, the first constant represents an
uppercase character and the second the corresponding lowercase character.
For toupper, the first constant represents a lowercase character, and the
second represents the corresponding uppercase character.

The LC_CTYPE category consists of the following keywords:

Table 5-5. LC_CTYPE Categories

Subcategory Keyword Character Code

upper Uppercase letters.

lower Lowercase letters.

digit Numeric characters.

space Spacing (delimiter) characters.

punct Punctuation characters.

cntrl Control characters.

blank Printable space characters. These must also be defined
III space.

xdigit Hexadecimal digits.

Localizing International Software 5-15

5

Table 5·5. LC_CTYPE Categories (continued)

Subcategory Keyword Character Code

alpha Character codes classified as alphabetic characters. If
omitted, this class is the concatenation of the upper
and lower classes.

print Character codes classified as printable characters. If
omitted this class is the concatenation of the upper,
lower, alpha, digit, xdigi t, and punct classes and
the space character.

graph Character codes classified as graphic characters. If
omitted, this class is all characters included in the
print class except the space character.

5 first First bytes of two-byte characters.

second Second bytes of two-byte characters.

toupper Lowercase to uppercase character relationships.

tolower Uppercase to lowercase character relationships.

bytes_char String containing the maximum number of bytes per
character for the character set used for a specific
language.

alt_punct String mapped into the ASCII equivalent string
b ! "#$%&' 0 *+ ,-./: ; <=>1<0 [\] - _ C { I } - , where b is a
blank.

code_scheme Specifies the multi-byte character encoding scheme
used. The operand should be a string. Currently,
HP-15 and EUC are recognized. If this keyword is not
specified, or the operand is a null string (""), the
encoding scheme is single-byte, or HP-15 if bytes_char
is 2.

cswidth Defines the number of bytes contained in a character,
and the number of columns per character displayed on
the output devices. This keyword should be specified if
the encoding scheme is "EUC".

5·16 Localizing International Software

The following example displays the LC_CTYPE category for the american locale:

Set up the LC_CTYPE category

upper 'A'; 'B'; 'C'; '0'; 'E'; 'F'; 'G'; 'H'; 'I'; 'J'; 'I'; 'L'; \
'M';'I';'O';'P';'Q';'R';'S';'T';'U';'V';'W';'I'; \
'Y';'Z';\xa1;\xa2;\xa3;\xa4;\xa5;\xa6;\xa7;\xad;\xae;\xb1; \
\xb4;\xb6;\xdO;\xd2;\xd3;\xd8;\xda;\xdb;\xdc;\xde;\xdf;\xeO; \
\xe1;\xe3;\xe5;\xe6;\xe7;\xe8;\xe9;\xeb;\xed;\xee;\xfO

lower 'a'; 'b'; 'c'; 'd'; 'e'; 'f'; 'g'; 'h'; 'i'; 'j'; 'k'; '1'; \
'm';'n';'o';'p';'q';'r';'s';'t';'u';'v';'w';'x'; \
'y';'z';\xb2;\xb5;\xb7;\xcO;\xc1;\xc2;\xc3;\xc4;\xc5;\xc6; \
\xc7;\xc8;\xc9;\xca;\xcb;\xcc;\xcd;\xce;\xcf;\xd1;\xd4;\xd5; \
\xd6;\xd7;\xd9;\xdd;\xde;\xe2;\xe4;\xea;\xec;\xef;\xf1

alpha 'A'; 'B'; 'C'; '0'; 'E'; 'F'; 'G'; 'H'; 'I'; 'J'; 'I'; 'L'; \
'M';'I';'O';'P';'Q';'R';'S';'T';'U';'V';'W';'I'; \
'Y';'Z';'a';'b';'c';'d';'e';'f';'g';'h';'i';'j'; \
'k'; '1'; 'm'; 'n'; '0'; 'p'; 'q'; 'r'; '8'; 't'; 'u'; 'v'; \
'w';'x';'y';'z';\xa1;\xa2;\xa3;\xa4;\xa5;\xa6;\xa7;\xad; \
\xae;\xb1;\xb2;\xb4;\xb5;\xb6;\xb7;\xcO;\xc1;\xc2;\xc3;\xc4; \
\xc5;\xc6;\xc7;\xc8;\xc9;\xca;\xcb;\xcc;\xcd;\xce;\xcf;\xdO; \
\xd1;\xd2;\xd3;\xd4;\xd5;\xd6;\xd7;\xd8;\xd9;\xda;\xdb;\xdc; \
\xdd;\xde;\xdf;\xeO;\xe1;\xe2;\xe3;\xe4;\xe5;\xe6;\xe7;\xe8; \
\xe9;\xea;\xeb;\xec;\xed;\xee;\xef;\xfO;\xf1

graph '!';'''';' #' ; , $' ; , %' ; , t' ; , , , ; , (, ; ,) , ; , *' ; , +' ; , , '; \
'-';'.';'/';'0';'1';'2';'3';'4';'5';'6';'7';'8'; \
'9';':';';';'<';'=';'>';'?';'@';'A';'B';'C';'0'; \
'E';'F';'G';'H';'I';'J';'I';'L';'H';'I';'O';'P'; \
'Q';'R';'S';'T';'U';'V';'W';'I';'Y';'Z';'[';'\'; \
'J';'-';'_';"';'a';'b';'c';'d';'e';'f';'g';'h'; \
'i';'j';'k';'l';'m';'n';'o';'p';'q';'r';'s';'t'; \
'u';'v';'w';'x';'Y';'z';'{';'I';'l';'-';\xa1;\xa2; \
\xa3;\xa4;\xa5;\xa6;\xa7;\xa8;\xa9;\xaa;\xab;\xac;\xad;\xae; \
\xaf;\xbO;\xb1;\xb2;\xb3;\xb4;\xb5;\xb6;\xb7;\xb8;\xb9;\xba; \
\xbb;\xbc;\xbd;\xbe;\xbf;\xcO;\xc1;\xc2;\xc3;\xc4;\xc5;\xc6; \
\xc7;\xc8;\xc9;\xca;\xcb;\xcc;\xcd;\xce;\xcf;\xdO;\xd1;\xd2; \
\xd3;\xd4;\xd5;\xd6;\xd7;\xd8;\xd9;\xda;\xdb;\xdc;\xdd;\xde; \
\xdf;\xeO;\xe1;\xe2;\xe3;\xe4;\xe5;\xe6;\xe7;\xe8;\xe9;\xea; \
\xeb;\xec;\xed;\xee;\xef;\xfO;\xf1;\xf2;\xf3;\xf4;\xf5;\xf6; \
\xf7;\xf8;\xf9;\xfa;\xfb;\xfc;\xfd;\xfe

print' ';'!';'''';'#';'$,;'%';'t';",;,(';,),;,*,;,+,; \

',';'-';'.';'/';'0';'1';'2';'3';'4';'5';'6';'7'; \
'8'; '9';':';';'; '<'; '='; '>'; '?'; '@'; 'A'; 'B'; 'C'; \

Localizing International Software 5-17

5

5

'D' j 'E' j 'F' j 'G' j 'H' j 'I'; 'J'; 'I'; 'L' j 'M' j 'I'; '0' j \
'P' j 'Q'; 'R' j '8' j 'T'; 'U'; 'V'; 'V'; 'X'; 'Y' j 'z' j' [' j \
'\'j']'j'-'j'_'j"'j'a';'b';'c';'d'j'e'j'f'j'g'; \
'h';'i'j'j';'k'j'l';'m';'n';'o';'p';'q';'r'j's'; \
't'j'U';'V';'W';'X'j'y';'z';'{';'I';'}';'-';\xa1; \
\xa2;\xa3j\xa4;\xa5j\xa6;\xa7;\xa8;\xa9;\xaa;\xab;\xac;\xad; \
\xae;\xafj\xbO;\xb1;\xb2;\xb3;\xb4;\xb5j\xb6;\xb7;\xb8;\xb9; \
\xba;\xbbj\xbc;\xbdj\xbe;\xbf;\xcO;\xc1;\xc2;\xc3;\xc4;\xc5; \
\xc6;\xc7;\xc8;\xc9;\xca;\xcb;\xcc;\xcd;\xce;\xcf;\xdO;\xd1; \
\xd2;\xd3j\xd4;\xd5j\xd6;\xd7;\xd8;\xd9;\xda;\xdb;\xdc;\xddj \
\xde;\xdf;\xeO;\xe1;\xe2;\xe3;\xe4;\xe5;\xe6;\xe7;\xe8;\xe9; \
\xea;\xeb;\xec;\xed;\xee;\xef;\xfO;\xf1;\xf2;\xf3j\xf4;\xf5j \
\xf6;\xf7;\xf8;\xf9;\xfa;\xfb;\xfc;\xfd;\xfe

digit '0';'1'; '2'; '3'; '4' j '5'; '6'; '7'; '8'; '9'

space \x9;\xa;\xb;\xc;\xd;' ,

punct '!' j ,,, , ; , #' j , $, j , 1.' ; , t' j , , , j , (, j ') , j , *' ; , +' ; , , '; \
'-';'.';'/';':';';'j'<';'='j'>'j'?'j'@'j'['j'\'j \
,] , ; , - , ; , _, ; , , , ; , { , ; , I ' ; ,} , ; , - , ; \xa8 ; \xa9; \xaa; \xab j \
\xacj\xafj\xbOj\xb3j\xb8j\xb9;\xba;\xbbj\xbc;\xbd;\xbe;\xbf; \
\xf2;\xf3;\xf4;\xf5j\xf6;\xf7;\xf8;\xf9j\xfa;\xfbj\xfc;\xfd; \
\xfe

cntrl \xOj\x1;\x2j\x3;\x4;\x5;\x6j\x7j\x8;\x9j\xaj\xbj \
\xc;\xdj\xe;\xfj\x10;\x11j\x12;\x13;\x14j\x15j\x16;\x17j \
\x18;\x19;\x1aj\x1b;\x1cj\x1d;\x1ej\x1fj\x7fj\x80;\x81;\x82j \
\x83;\x84j\x85;\x86;\x87j\x88;\x89j\x8aj\x8b;\x8c;\x8dj\x8ej \
\x8f;\x90j\x91;\x92;\x93j\x94;\x95j\x96j\x97;\x98;\x99;\x9a; \
\x9b;\x9c;\x9d;\xge;\x9f;\xff

blank \x9;' ,

xdigi t ' 0' ; , 1 ' ; , 2' ; , 3' ; , 4' ; , 5 ' ; , 6 ' ; , 7' ; , 8 ' ; , 9' ; , A' ; , B' j \
'C'; 'D' j 'E'; 'F'; 'a'; 'b'; 'c'; 'd'; 'e'; 'f'

t oupper (, a' , ' A ,) ; (, b' • ' B ') ; (, c ' , ' C') ; (, d' • ' D '); \
('e','E');('f','F');('g','G');('h','H'); \
<'i', '1'); <'j', 'J') j ('k', 'I'); <'1', 'L'); \
('m'.'M');('n'.'I');('o'.'O');('P'.'P'); \
('q' . ' Q') j (, r' , 'R') ; (, s' • ' S') ; (, t' , ' T'); \
('u','U');('v'.'V');('w','V');('x','X'); \
('y','Y')j('z'.'Z');(\xb2.\xb1);(\xb5.\xb4); \
(\xb7,\xb6); (\xcO,\xa2) j(\xc1,\xa4);(\xc2,\xdf); \
(\xc3,\xae);(\xc4,\xeO);(\xc5.\xdc);(\xc6.\xe7); \
(\xc7,\xed);(\xc8.\xa1);(\xc9,\xa3);(\xca,\xe8); \
(\xcb,\xad); (\xcc,\xd8) j(\xcd,\xa5);(\xce.\xda); \
(\xcf,\xdb); (\xd1.\xa6);(\xd4,\xdO); (\xd5,\xe5); \

5-18 Localizing International Software

(\xd6.\xd2);(\xd7.\xd3);(\xd9.\xe6);(\xdd.\xa7); \
(\xe2.\xel);(\xe4,\xe3);(\xea,\xe9);(\xec,\xeb); \
(\xef,\xee);(\xfl,\xfO)

to1ower ('A','a');('B','b')j('C','c')j('D','d')j \
<'E' ,'e')j('F' ,'f')j('G','g')j('H' ,'h')j \
<'I' ,'i');<'J' ,'j')j('K','k')j('L' ,'I'); \
<'M' ,'m')j<'R' ,'n')j('O','o')j('P' ,'p')j \
<'Q','q')j<'R','r')j('S','s')j('T','t')j \
('U' ,'u')j('V' ,'v')j('V','w')j('I' ,'x')j \
('Y','y')j('Z','z')j(\xal,\xcS)j(\xa2,\xcO)j \
(\xa3,\xc9) j(\xa4,\xcl) j(\xaS,\xcd)j (\xa6,\xdl)j \
(\xa7,\xdd) j(\xad,\xcb) j(\xae,\xc3)j(\xbl,\xb2)j \
(\xb4,\xbS) j(\xb6,\xb7) j(\xdO,\xd4)j(\xd2,\xd6)j \
(\xd3,\xd7)j(\xd8,\xcc)j(\xda,\xce)j(\xdb,\xcf)j \
(\xdc,\xcS) j(\xdf,\xc2) j(\xeO,\xc4)j (\xel,\xe2)j \
(\xe3,\xe4) j(\xeS,\xdS) j(\xe6,\xd9)j (\xe7,\xc6)j \
(\xe8,\xca);(\xe9,\xea);(\xeb,\xec);(\xed,\xc7)j \
(\xee,\xef)j(\xfO,\xfl)

bytes_char "1"
a1t_punct 1111

code_scheme ""
cswidth ""
ERD LC_CTYPE

Localizing International Software 5-19

5

5

LC_MESSAGES Subcategories

The following key words belong to the LC_MESSAGES category:

Table 5·6. LC_MESSAGES Subcategories

Subcategory Function
Keyword

yesexpr Expression identifying the affirmative response for yes/no
questions.

noexpr Expression identifying the negative response for yes/no
questions.

yesstr String identifying the affirmative response for yes/no questions.
This keyword is now obsolete and yesexpr should be used
instead.

nostr String identifying the negative response for yes/no questions.
This keyword is now obsolete and noexpr should be used
instead.

Following is an example for the LC_MESSAGES category:

##################11#################11#######11##

LC_MESSAGES category

LC_MESSAGES
yes expr ,,~ [yYJ "
noexpr "~[nIJ"

yesstr "yes"
nostr "no"
ERD LC_MESSAGES

5·20 Localizing International Software

LC_MONETARY Subcategories

The following keywords belong to the LC_MONETARY category and should be
placed between the category tags LC_MONETARY and END LC_MONETARY:

Table 5-7. LC_MONETARY Subcategories

Subcategory Description
Keyword

int_curr_symbol Four-character string specifying the international currency
symbol used. The first three characters are alphabetic,
specifying the international currency symbol. The fourth
character is the character used to separate the international
currency symbol from the monetary quantity.

currency_symbol Specifies the currency symbol applicable to the current locale.

mon_decimal_point Specifies the decimal point used to format monetary quantities.

mon_thousands_sep Specifies the separator used to group digits to the left of the
decimal point in monetary quantities.

m~n_grouping A semicolon-separated list of integers. The initial integer
defines the size of the group immediately preceding the decimal
delimiter 1 and the following integers define the preceding groups
(lconv item).

positive_sign Specifies the character used to indicate positive monetary
quantities.

negative_sign Specifies the character used to indicate negative monetary
quantities.

int_frac_digits Specifies the number of fractional digits displayed in an
internationally formatted quantity.

frac_digits Specifies the number of fractional digits displayed in a locally
formatted monetary quantity.

Localizing International Software 5-21

5

Table 5·7. LC_MONETARY Subcategories (continued)

Subcategory Description
Keyword

p_cs_precedes Specifies if currency _symbol precedes or follows a nonnegative
formatted monetary quantity. 1 indicates it precedes the value;
o that it follows it.

n_cs_precedes Specifies if currency _symbol precedes or follows a negative
formatted monetary quantity. 1 indicates it precedes the value;
o that it follows it.

n_sep_by_space A value of 1 indicates that the currency symbol is separated
by a space from a nonnegative formatted monetary value; a
value of 0 indicates that it is not.

5 p_sign_posn Specifies the string position of the positive_sign for a
non-negative formatted monetary quantity.

Value: Indicates:

0 Parentheses surround the quantity and currency
symbol.

1 The sign string precedes the quantity and currency
symbol.

2 The sign string succeeds the quantity and currency
symbol.

3 The sign string immediately precedes the currency
symbol.

4 The sign string immediately succeeds the currency
symbol.

n_sign_posn Specifies the position of the negative_sign in a negative
formatted monetary quantity. Values indicate the same as for
p_sign_posn above.

crncystr Symbol for currency precede by : - if it precedes the monetary
value, + if it follows the monetary value, and. if it replaces the
radix symbol in the monetary value.

5·22 Localizing International Software

The following example displays the Le_MONETARY category for the american
locale:

Le_MONETARY category

Le_MONETARY
int_curr_symbol "USD II

currency_symbol "$"
mon_decimal_point II II

mon_thousands_sep ","
mon_grouping 3
positive_sign 1111

negative_sign "_"
int_frac_digits 2
frac_digits 2
p_cs_precedes 1
p_sep_by_space 0
n_cs_precedes 1
n_sep_by_space 0
p_sign_posn 1
n_sign_posn 1
crncystr "-US$"
END Le_MONETARY

Localizing International Software 5-23

5

5

LC_NUMERIC Subcategories

The following keywords belong to the LC_NUMERIC category and should be
placed between the category tags LC_NUMERIC and END LC_NUMERIC.

Table 5-8. LC_NUMERIC Keywords

grouping Specifies the number of digits that are grouped together as a
unit in formatted non-monetary quantities.

decimal_point Specifies the radix character used to format non-monetary
quantities.

thousands_sep Specifies the character used to separate groups of digits to the
left of the decimal point character in formatted non-monetary
quantities.

alt_digit Specifies the string mapped into the ASCII equivalent string
0123456789b+-. ,eE, where b is a blank.

The following example displays the LC_NUMERIC category for the american
locale:

LC_NUMERIC category

LC_NUMERIC
decimal_point
thousands_sep
grouping
alt_digit
END LC_NUMERIC

II II

II II ,
3
1111

5-24 Localizing International Software

LC_ TIME Subcategories

The following keywords are defined for the LC_ TIME category and should be
placed between the category tags LC_ TIME and END LC_ TIME:

Table 5·9. LC_ TIME Subcategories

Keyword Function

d_t_fmt String specifying date and time format.

d_fmt String specifying date format.

t_fmt String specifying time format.

t_fmt_ampm Time representation in the 12-hour clock format with am_pm.

day Seven semicolon-separated strings giving names for the days of
the week beginning with Sunday; they correspond to langinfo
items day_1 through day_7.

abday Seven semicolon-separated strings giving abbreviated names for
the days of the week beginning with Sunday; they correspond to
langinfo items abday_1 through abday_7.

mon Twelve semicolon_separated strings giving names for the
months, beginning with January; they correspond to langinfo
items mon_1 through mon_12.

abmon Twelve semicolon_separated strings giving abbreviated names
for the months, beginning with January; they correspond to
langinfo items abmon_1 through abmon_12.

am_pm Two semicolon-separated strings giving the representations for
AM and PM.

year_unit Symbol for years.

mon_unit Symbol for month.

day_unit Symbol for day.

hour_unit Symbol for hour.

Localizing International Software 5·25

5

5

Table 5-9. LC_ TIME Subcategories (continued)

Keyword Function

min_unit Symbol for minute.

sec_unit Symbol for second.

era_d_fmt Default string for formatting the %E (Emperor/Era name and
year) directive of date(1) and strftime (3C) if an individual era
format is not specified for an era.

This example displays the LC_ TIME category for the american locale:

###################""""""",,#,,##,#,##,###,

LC_TIME category

LC_TIME
d_t_fmt "%a, %b %.ld, %Y %I:%M:%S %p"
d_:fmt "%a, %b %.ld, %Y"
t_:fmt "%I:1J1:%S"
t_:fmt_ampm "%I :1J1:%S %p"

day "Sunday" j "Monday" j "Tuesday"; "Wednesday" j "Thursday" j "Friday" j "Saturday"

abday "Sun"j"Mon"j"Tue"j"Wed"j"Thu"j"Fri"j"Sat"

mon "January" j "February" j "March" j "April" j "May" j" June" j \
"July" j"August" j"September" j "October" j"Rovember" j"Decem ber"

abmon "Jan"j"Feb"j"Mar"j"Apr"j"May"j"Jun"j "Jul"j"Aug"j"Sep"j \
"Oct"j"Rov"j"Dec"

aJlLpm "AM" j "PM"

year_unit
mon_unit
day_unit
hour_unit
min_unit
sec_unit
era_d_fmt

EID LC_TIKE

5-26 Localizing International Software

Installing a Language Definition Table
Before you install a language definition table, you need to determine
locale_name and locale_id. If you want to create a new locale, these must not
conflict with existing locales and the locale_id must be in the range 901-999.

After you have changed new_locale, you can install it in the system by
executing:

localedef -i new_locale

You may need to be root to do this or you can deliver new_locale to your
system administrator for installation.

To verify correct installation of the new locale:

• Run nlsinfo to see that the new locale is displayed.

• Examine /usr/lib/nls/config to see that locale_name is listed with
locale_id.

• Verify that a directory /usr/lib/nls/ locale_name exists.

• Verify that a file /usr/lib/nls/ locale_name/locale. inf exists.

• Set LANG to the locale_name locale and verify that date formats the date as
desired.

Localizing International Software 5-27

5

6
Developing International Software

Read this chapter if you are: t> A programmer of internationalized software

This chapter covers the standard programming issues for:

• Developing international software using standardized interfaces
• Internationalizing existing software

(For a discussion of special cases see Chapter 8.)

General Programming Issues 6

The programming issues your software must accommodate are:

• Initialization
• Preservation of data integrity
• Processing of characters and strings

Developing International Software 6-1

6

Aspects of International Program Design

Developing an internationalized application (or converting an existing program)
increases the flexibility of your application. For the purist, an internationalized
program is not without a certain aesthetic aspect due to its structural and
functional robustness. An internationalized program is engineered such that all
language dependent features are separate from the main program logic.

The WPI approach is the preferred approach, because you don't need any
knowledge of any language other than your own, and you don't even need to
be aware of the standard ways different languages and codesets can vary. The
linguistic capacity of your program transcends your own linguistic knowledge,
functioning "fluently" in many different linguistic environments. Screens,
prompts, and error messages are displayed in the user's language. Data is
processed according to the grammar of the user's language. All of this is
accomplished without altering your source code. Translators merely create
external message catalogs to interface with your program; language tables
installed on the system are referenced at run time, specifying language and
locale specific information.

Some advantages of an internationalized application are:

• Using message catalogs and language tables reduces the complexity and the
amount of time required to localize a program. Source code documents do
not have to be altered, which also eliminates the need to debug and re-test
software.

• Adapting the user interface to local needs is simplified. Translators work
with a discrete file containing the text to translate, instead of digging
through a voluminous amount of source code. This means localizers do not
have to be programmers.

• Using language tables consolidates the grammar and processing rules of each
language. Once installed, these tables will support any internationalized
program.

• Using message catalogs and language tables makes your software product
easier to manufacture, stock, and ship.

6-2 Developing International Software

This chapter will show you step-by step how create an internationalized
application. What does creating an internationalized program involve?
Table 6-1 contrasts a standard application with its internationalized
coun terp art.

Table 6·1.
A Comparison of a "Standard" Application with its NLS Version

Non-Internationalized NLS Version

Uses ASCII coded character set only. Support a variety of codesets necessary
for the languages of international users.
For example, Roman8 for Western
European and american locale users.

Supports only single-byte characters of Supports single-byte and multi-byte
the ASCII character set. characters.

Source code must be altered by One discrete program is structured to
programmers to create new support a variety of linguistic
language-specific versions of the program environments. Translators without
because messages are hard-coded into the programming knowledge can translate
source code. message catalogs to extend program

support; no alteration of source code is
required because there are no hard-coded
messages.

Restricts user to a single user-interface Displays screens in the native language of
due to hard-coded messages. the user by means of the message catalog

system.

Manipulates data according to rules of the Uses NLS tools to handle data in a
English language language sensitive way.

Displays data on the screen in a Displays data according to the text
left-to-right format direction of the user's language.

Restricted to one date, time, numeric, and Adapts the presentation of data, time,
monetary format. numeric, and monetary strings to the

user's unique requirements.

Developing International Software 6·3

6

6

To develop an internationalized program, you must:

• Use NLS routines to handle data in a language-sensitive way.

• Query language tables for locale-specific formatting conventions.

• Learn to use message catalogs.

When developing an international program, identify those areas of the program
that are language dependent. Structure your program so that it uses NLS
routines to query the language tables of the user's native language for language
dependent information. Use message catalogs instead of hard-coded messages,
(see Chapter 7).

Other Aspects

Designing an international program with NLS is usually a straightforward
process. Nevertheless, there are a number of special considerations. For
example, make sure you reserve enough space in arrays and other data
structures to accommodate wide characters. Since an international program
supports character sets that contain multi-byte characters, the number of
characters in a string is no longer equivalent to the number of bytes. You must
allocate additional space to accommodate the larger character size.

We mention these special considerations before delving into the details of NLS
in order to provide you with some of the "flavor" of international design. If you
prefer, you can deal with these issues later. Now that the scope of international
design has been outlined in general terms, it is time to begin the design
process in earnest. The first thing you must do is to provide the appropriate
initialization.

6-4 Developing International Software

The first step in the proper initialization is the retrieval of the user's
environment.

Note

c prog LANG = __ ,

export LANG;

Figure 6-1. Retrieving the User's Environment

The user and program environment are not automatically
identical.

Developing International Software 6-5

6

6

Initializing NLS

At run-time your program must activate a specific linguistic environment.
Users of your application set a series of NLS environmental variables according
to their unique language requirements. This information is not made available
to your program until you retrieve it. When you design international software,
it is always necessary to provide the appropriate NLS initialization.

There are two elements of NLS that must be initialized to activate the NLS
behavior of a program:

• The program locale
• The program messages

Two NLS routines are used to provide the appropriate initialization:

• The locale for a program is initialized by calling setlocale to make locale
information accessible to the program.

• The messages for a program are initialized by calling catopen to locate the
appropriate messages and make them accessible to the program.

Note The two initialization routines are independent. The routine
setlocale copies information from the appropriate language
tables onto the process heap. Your program can later reference
this information to provide language-sensitive processing.
catopen opens a message catalog, and thus affects aspects of
the user interface and not language-sensitive processing.

Setting Program Locale

To activate your program's locale, you must supply two parameters to the
setlocale routine:

setlocale (category, locale)

The category parameter specifies which areas of the program's NLS
environment you wish to set. The options you have for this parameter are
outlined in the following table.

6-6 Developing International Software

Table 6·2. Categories for setlocale

Category Option Description

LC_ALL Affects the behavior of all categories below.

LC_COLLATE Affects the behavior of regular expressions and the NLS string
collation functions.

LC_CTYPE Affects the behavior of regular expressions, character
classification and conversion functions, and all routines which
process multi-byte characters.

LC_MESSAGES Affects affirmative and negative response expressions.

LC_MONETARY Affects the behavior of functions which handle monetary values.

LC_NUMERIC Affects the handling of the radix character in the formatted
input/output functions, the string conversion functions, and the
numeric values found in the localeconv structure.

LC_TIME Affects the behavior of time conversion functions.

The locale parameter specifies the specific language table to use as a
template for the setting of the values for the selected category. To set the
program's locale for the specified category, setlocale will accept the following
parameters:

Table 6·3. Locale parameters

Option Description

locale name If locale is a valid locale name, setlocale will set that part of the
NLS environment associated with category as defined for that locale.

Cor POSIX If the value of locale is set to C, setlocale will set that part of the
NLS environment associated with category as defined for the "C"
locale. ("C" is a standard required by X/Open and POSIX).

"" (empty If the value of locale is the empty string, the setting of that part of
string) the NLS environment associated with category will depend on the

current settings of the user's environmental variables.

Developing International Software 6· 7

6

6

Local Definition Tables

!OOOmO!

Q
environment

COPY OF
LANGUAGE TABLE

collation sequence

character type info

shift info

locale info
L ____ _

PROCESS HEAP

'c' PROGRAM

mainO (

setiocale(LC _ALL,'"');

· • · catd=eatopen(lname",O);

· towupper(c);

iswalpha(c);

scanf(catget(...)x,y);

wcscmp(s1,s2)

printf(catgets(...)a,b);

catclose(...)

Figure 6·2. The Program Environment

Retrieving Locale Information

Accessing Language Tables

Message Catalogs

o

o

Each supported language has an associated language table that contains
locale-specific information.

You can also use the NLS nl_langinfo routine to programmatically retrieve
locale-specific information in your programs. To call nl_langinfo, you
. must supply a single parameter indicating the type of information you are
requesting:

nl_langinfoCtype);

6·8 Developing International Software

The parameter type may be any of the categories shown in Table 6-4.

Table 6·4. Parameters Defined for nLlanginfo

Item Description

D_T_FMT Date and time format string appropriate for the current
language.

D_FMT Date format string appropriate for the current language.

T_FMT Time format string appropriate for the current language.

DAY_n The name of nth day of the week, where n ranges from 1 to 7.

ABDAY_n The abbreviated name for the nth day of the week, where n
ranges from 1 to 7.

MON_n The name of the nth month in the Gregorian year, where n
ranges from 1 to 12.

ABMON_n The abbreviated name of the nth month in the Gregorian year,
where n ranges from 1 to 12.

RADIXCHAR Radix character ("decimal point" in English). 6

THOUSEP Separator for thousands ("comma" in English).

YESEXPR Affirmative response expression for yes/no questions.

NOEXPR Negative response expression for yes/no questions.

YESSTR Affirmative response for yes/no questions. [Note that this item
will be withdrawn in a future POSIX revision.]

NOSTR Negative response for yes/no questions. [Note that this item
will be withdrawn in a future POSIX revision.]

CRNCYSTR Symbol for currency preceded by: - (minus) if it precedes the
monetary value, + if it follows the monetary value, and. if it
replaces the radix symbol in the monetary value.

BYTES_CHAR Maximum number of bytes per character for the character set
used to represent the language.

Developing International Software 6·9

Table 6-4. Parameters Defined for nLlanginfo (continued)

Item Description

DIRECTION Value to indicate text direction. The values null and 0 indicate
the characters are arranged from left-to-right within a line and
lines are arranged from top-to-bottom. A value of "I" indicates
characters are arranged from right-to-Ieft within a line and lines
are arranged from top-to-bottom.

ALT_DIGIT A string of characters that are mapped into the ASCII
equivalent string 0123456789 +-. J aE. A null value for the
string indicates the language has no alternative digits.

ALT_PUNCT A string whose characters are mapped into the ASCII
equivalent string !"#%to*+-./:;<=>?<o[]-_'{I}- in
american locale usage. A null value for the string indicates the
language has no alternative punctuation characters.

AM_STR Equivalent symbols for AM (before noon). Used with 12-hour
time.

PM_STR Equivalent symbols for PM (after noon).
6

YEAR_UNIT Symbol for years.

MON_UNIT Symbol for month.

DAY_UNIT Symbol for day.

HOUR_UNIT Symbol for hours.

MIN_UNIT Symbol for minute.

SEC_UNIT Symbol for second.

ERA_D_FMT Default string for formatting the Emperor/Era name and year.

T_FMT_AMPM Appropriate time representation in the 12-hour clock format
with AM_STR and PM_STR.

6-10 Developing International Software

The following code segment prints the days of the week for the current locale.
To view different formats, set your LANG to various locales before running the
program.

#include <nl_types.h>
#include <langinfo.h>
#include <stdio.h>
#include <locale.h>

void display_days()
{

}

printf(lY.s\n", nl_langinfo(DAY_l));
printf(lY.s\n", nl_langinfo(DAY_2));
printf(lIY.s\n", nl_langinfo(DAY_3));
printf(lY.s\n", nl_langinfo(DAY_4));
printf(lY.s\n", nl_langinfo(DAY_5));
printf(lIY.s\n", nl_langinfo(DAY_6));
printf(lY.s\n", nl_langinfo(DAY_7));

mainO
{

}

if (!setlocale(LC_ALL,"II))
fprintf(stderr, "error: cannot set locale\n");

display_days();

Developing International Software 6·11

6

Programming with the Worldwide Portability Interface
One objective of international program design is to create an application that is
codeset independent. The Worldwide Portability Interface (WPI) automatically
converts data to/from its internal coding to/from wide characters, which keeps
the programmer from having to know anything about wide character sets.

For some applications, character processing may be more convenient
if multi-byte characters are represented as constant width characters­
so-called wide characters. (For more information on multi-byte characters see
Appendix A.)

For such situations, a set of routines is available to convert between multi-byte
characters and wide characters. The wide character representation is more
convenient because it offers a single data type for all languages.

WPllnterfaces

Use the following steps to internationalize an existing program with the WPI
In terfaces:

6 1. Convert char data types to wchar _ t.
2. Where parallel routines exist, change calls to the WPI versions.

Instead of this Use this
strcmp wcscmp
isdigit iswdigit
fgetc fgetwc

3. In cases where no parallel routine exists, you need to add code to convert
wide character data to multibyte, using wcstombs, for example. Then pass
multibyte data to "standard" routines.

6·12 Developing International Software

Character and String Processing

Character and string processing for international software must ensure that
local customs are observed in:

• Treating of accented characters
• Formatting date and time
• Formatting numeric and monetary quantities
• Comparing string data

Character Handling

Table 6-5 lists the WPI routines that are similar to the standard character and
string processing routines.

Table 6·5. WPI Routines for Character and String Processing

string(3C) Routine wcstring(3C) Routine (WPI)

char *strcat wchar_t *wcscat
char *strncat wchar_t *wcsncat
int strcmp int wcscmp
int strncmp int wcsncmp
char *strcpy wchar *wcscpy
char *strncpy wchar_t *wcsncpy
size_ t strlen size_ t wcslen
char *strchr char *wcschr
char *strrchr wchaLt *strrchr
char *strpbrk wchar *wcspbrk
size_ t strspn size_ t wcsspn
size_ t strcspn size_ t wcscspn
char *strstr wchaL t *wcswcs
char *strtok wchar_t *wcstok
int strcoll int wcscoll
size_t strxfrm size_ t wcsxfrm

Developing International Software 6·13

6

6

Upshifting and Downshifting Characters. The WPI provides the following
routines to upshift and downshift characters in a language-sensitive way. You
can obtain more information about this specific group of routines in conv(3C)
in the HP- UX Reference

Table 6·6. Character and String ProceSSing Routines

Routine Description

towupper(c) If c represents a valid lowercase letter for the current language,
towupper(c) returns the integer character code of the upshifted value
of c; otherwise towupper(c) returns c unaltered.

towlower(c) If c represents a valid uppercase letter for the current language
towlower(c) returns the integer character code of the downshifted
value of c; otherwise, towlower(c) returns c unaltered.

6·14 Developing International Software

Identifying Character Traits. The WPI provides tools to identify the traits of a
character. Non-internationalized versions of these routines have been a part
of the standard C offering for years; however, the enhanced NLS versions can
correctly identify the traits of characters in all supported languages (If the
correct environmental initialization has been successful).

All the routines included in this grouping return a non-zero integer if the
indicated condition is satisfied. For more information about these routines refer
to wctype(3C) in the HP- UX Reference

Table 6·7. Character Identification Routines

Routine Condition

iswalpha(c) Is a wide alphabetic character.

iswupper(c) Is a wide uppercase alphabetic character.

iswlower(c) Is a wide lowercase alphabetic character.

iswdigit(c) Is a wide decimal digit.

iswxdigit(c) Is a wide hexadecimal digit.

iswalnum(c) Is a wide alphanumeric character.

iswspace(c) Is a tab, new-line, space, or any wide character that creates
"white space" in displayed text.

iswpunct(c) Is a wide punctuation character.

iswprint(c) Is a wide printing character.

iswgraph(c) Is a wide character with a visible representation.

iswcntrl(c) Is a wide control character.

Developing International Software 6·15

6

6

Numeric Formatting

The numeric formatting routines (for example, printf, and fprintf) have
been internationalized and give locale-sensitive results for wide character data.

Table 6-8. Numeric Formatting Routines

Routine Description

wcstod Converts a wide character string to a double, correctly
interpreting the radix character according to the currently
active value of the LC_NUMERIC category.

wcstol Converts a wide character string to a long.

wcstoul Converts a wide character string to an unsigned long.

Date and Time

The ctime(3C) date and time routines: ctime and asctime always give C locale
results. To get locale-sensitive results, use we sf time.

Table 6-9. Date and Time Routines

Routine Description

wcsftime Like ctime, but accepts an optional format string
(which should be placed in a message catalog).

nl_langinfoCD_T_FMT) Returns a local time/date format string.

Note See "Input and Output in Internationalized Programs" for a
better understanding of time/ date format strings and their use.

6-16 Developing International Software

Input and Output in Internationalized Programs

In addition to the regular formatting of input and output strings and numeric
values, the WPI provides a flexible formatting feature to help you develop
applications supporting the diverse conventions of various languages and
locales.

Printing Formatted Output. The conversion character'!. may be replaced with
the sequence '!.n$, where n is a decimal digit in the range 1 to 9, specifying
which argument you want the conversion applied to. For instance, if stringl =
"there" and string2 = "hello", printf will perform as follows:

Statement:
Result:

printf("'!.2$s'!.1$s. II, stringl, string2);
hello there.

The following print routines also support the NLS flexible formatting feature:

fprintf (stream, format [arg list))
sprintf (s, format [arg list))

And there are the wide character conversion characters, C and S that can be
used with the printf(3C) routines:

Character
C
S

Conversion Function
format a single wide character
format a wide character string

Reading Formatting Input. The flexible formatting feature also applies to all
NLS-supported read routines. The conversion character'!. is replaced by the
sequence '!.n$, where n is in the range 1 to 9. The conversion is applied to the
nth argument rather than the next unused one.

The following read routines support the flexible formatting feature:

scanf(format [, pointer] ...)
fscanf(stream, format [, pointer] ...)
sscan(s, format [, pointer] ...)

And there are the wide character conversion characters, C and S that can be
used with the scanf(3C) routines:

Character
C
S

Conversion Function
format a single wide character
format a wide character string

Developing International Software 6-17

6

6

Using Flexible Formatting. The flexible formatting feature enables you to read
and write order-sensitive information for different locales. Examples of such
order-sensitive information include:

• Relative position of day and month in date.

• Position of the currency symbol.

• Radix symbol.

For instance, to print a locale-specific version of the date include the following
statement in your program:

printf((catgets(nlmsg,NL_SET,3,"%1$d%2$d/%3$d")), month,day,yr)

To handle the differences in conventions, each message catalog contains the
specific formatting option needed. For example, to print the date, an american
locale catalog contains the formatting string:

1 The date is: %1$d/%2$d/%3$d

A German catalog contains:

1 Heute ist: %2$d.%1$d.%3$d

Suppose month = 1 (Jan), day = 25, and year = 90 (1990). If LANG=german, the
following is printed:

25.1. 90

If LANG=american, then the following is printed:

1/25/90

If LANG is not set or if catopen failed during program initialization, the default
string included in the call to catgets is used.

Note It is enough to understand the general principle of flexible
formatting here. The specifics of messaging are explained in
Chapter 7 and flexible formatting is explained in greater detail
in Chapter 8.

6-18 Developing International Software

Table 6-10. Multi-byte Character and String Conversions

Routine Function

mblen If s is not a null pointer, the function examines the next n bytes. If
the next n or fewer bytes form a valid multi-byte character, the
number of bytes in the multi-byte character is returned. If they do
not form a valid multi-byte character, -1 is returned. If s points to
the null character, 0 is returned.

mbtowc Converts a multi-byte character pointed to by s to its wide character
representation, storing the result in the array pointed to by pwc. The
number of bytes in the original multi-byte character is returned; at
most n bytes are examined.

wctomb Converts a wide character pointed to by wchar to its multi-byte
representation, storing the result in the array pointed to by s. The
number of bytes in the converted character is returned.

mbstowcs Converts a sequence of multi-byte characters in the array pointed to
by s into a sequence of corresponding wide character codes, storing
the result in the array pointed to by pwcs, and stopping after n codes
are examined, or a null character is encountered.

6
wcstombs Converts a sequence of wide character codes in the array pointed to

by pwcs into a sequence of multi-byte characters codes and stores
them in the array pointed to by s, stopping after n bytes are
examined, or a null character is encountered.

Developing International Software 6-19

6

Example program using wide characters.. The following program uses wide
characters, and works for both HP-15 and EUC encoding schemes. The
program folds characters strings. A field size is specified defining the WIDTH
for text displayed on the screen. As a given string is printed, any character
whose display would fall outside the designated text region is "folded" onto the
next line.

For instance, if the WIDTH = 5 and the string is 0123456789, the result is:

01234
56789

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>
#include <n1_ctype .h>

#define WIDTH 5
#define MAX_MilLTI 100 /* Max number of bytes in

multi-byte array */

#define MAX_VCHAR (MAX_MULTI * (sizeof{vchar_t») /* Max number of bytes in
v_char array */

main{argc. argv)
int argcj
char **argvj
{

unsigned char mb_out_array[VIDTH * 2 + l]j / *array for output multi-byte
string */

unsigned char vc_array[sizeof{wchar_t)]j /* array to hold one wchar */
char *mb_in_ptrj /* pointer to input multi-byte

array */
vchar_t wc_in_array[MAX_VCHAR]j /* array for input wchar string */
vchar_t wc_out_array[VIDTH * (sizeof(vchar_t» + l]j

vchar_t *in_wc_ptr. *out_vc_ptr. vCi
int counter. screen_sizej

if (!setlocale(LC_ALL. 1111» {

/* array for output vchar
string */

/* set the locale */
fprintf(stderr."error: cannot set locale\n")i

}

mb_in_ptr = argv[l];

counter = OJ
in_vc_ptr = wc_in_arraYi

/* set pointer to beginning of
multi-byte string */

/* initialize counter to 0 */
/* set pointer to beginning of

input wc array*/

6-20 Developing International Software

}

/* set pointer to beginning o£
output ~c array */

mbsto~cs(~c_in_array, mb_in_ptr, MAX_MULTI);
/* convert input multi_byte

string to ~c array*/
~hile (~c = *in_~c_ptr++) { /* get a character £rom the ~c

}

array until '\0' encountered */
~ctomb(~c_array, ~c); /* convert ~c to a multi-byte

screen_size C_COLWIDTH(*~c_array);

i£ (counter + screen_size > WIDTH) {

}

puts(mb_out_array);
counter = 0;
out_~c_ptr = ~c_out_array;

counter += screen_size;

character */
/* get screen size o£ ~c */
/* i£ output array is complete

process it */
/* null terminate the output

array*/
MAX_MULTI} ;
/* convert the ~c array to a

multi-byte array */
/* output the multi-byte array */
/* reset counter to 0 */
/* reset ~c output pointer to

beginning of ~c array */

/* i£ output array not complete,
increment counter */

/* add ~c to the output array
and increment pointer */

out_~c_ptr = '\0'; / null terminate output array */
~cstombs(mb_out_array, ~c_out_array, MAX_MULTI);

/* convert ~c output array to
multi-byte */

/*output the multi-byte array*/

Conversion of Existing Programs

Converting existing programs is an ad hoc process. Use the grep command on
existing source code to find calls to routines, such as ctime and strcmp, which
may require changes.

Developing International Software 6·21

6

6

Non-WPI Interfaces
These standards-based interfaces were developed prior to the WPI and are still
used in many existing programs.

Character and String Processing

Character and string processing for international software must ensure that
local customs are observed in:

• Treating of accented characters
• Formatting date and time
• Formatting numeric and monetary quantities
• Comparing string data

Character Handling

Most character and string processing is provided by internationalized library
routines that give correct results for the currently active locale. Note that there
are restrictions in some library routines and minor program changes may be
needed.

Upshifting and Downshifting Characters. NLS provides the following routines to
upshift and downshift characters in a language-sensitive way. You can obtain
more information about this specific group of routines in conv(3C) in the
HP- UX Reference.

6-22 Developing International Software

Table 6-11. Character and String Processing Routines

Routine Description

toupper(c) If c represents a valid lowercase letter for the current language,
toupper(c) returns the integer character code of the upshifted value
of c; otherwise toupper(c) returns c unaltered. The domain of this
routine is -1 to 255

tolower(c) If c represents a valid uppercase letter for the current language
tolower(c) returns the integer character code of the downshifted
value of c; otherwise, tolower(c) returns c unaltered. The domain of
this routine is -1 to 255.

_toupper(c) This macro performs like toupper but is faster and has a restricted
domain of 0 to 255. c must be a valid lower case character.

_tolower(c) This macro performs like tolower but is faster and has a restricted
domain of 0 to 255. c must be a valid upper case character.

6

Developing International Software 6-23

6

Identifying Character Traits. NLS provides tools to identify the traits of a
character. Non-internationalized versions of these routines have been a part
of the standard C offering for years; however, the enhanced NLS versions can
correctly identify the traits of characters in all supported languages (If the
correct environmental initialization has been successful).

All the routines included in this grouping return a non-zero integer if the
indicated condition is satisfied. For more information about these routines refer
to ctype(3C) in the HP- UX Reference.

Table 6-12. Character Identification Routines

Routine Condition

isalpha(c) Is an alphabetic character.

isupper(c) Is an uppercase alphabetic character.

islower(c) Is a lowercase alphabetic character.

isdigit(c) Is a decimal digit.

isxdigit(c) Is a hexadecimal digit.

isalnum(c) Is an alphanumeric character.

isspace(c) Is a tab, new-line, space, or any character that creates
"white space" in displayed text.

ispunct (c) Is a punctuation character.

isprint(c) Is a printing character.

isgraph(c) Is a character with a visible representation.

iscntrl(c) Is a control character.

isascii(c) Is a ASCII character.

6-24 Developing International Software

Note Although the form of the new language-sensitive character
identification routines does not differ from the "ASCII only"
routines, the type of argument passed has changed from char
to into When passing 8-bit bytes to these routines, the data
should be unsigned char, or cast to it, to ensure correct sign
extension.

Numeric Formatting

The numeric formatting routines (for example, ecvt, gcvt, atof, printf,
and fprintf) have been internationalized and give locale-sensitive results for
single-byte and multi-byte data. For information about restrictions on the use
of multi-byte data, see ecvt(3C), strtod(3C), and printf(3C) in Section 3 of the
HP-UX Reference.

Table 6-13. Numeric Formatting Routines

Routine Description

atof Converts a string to a float, correctly interpreting the radix
character according to the currently active value of the
LC_NUMERIC category.

strtod Converts a string to a double, correctly interpreting the radix
character according to the currently active value of the
LC_NUMERIC category.

gcvt Converts a double to a string and places the correct radix
character according to the currently active value of the
LC_NUMERIC category.

Developing International Software 6-25

6

6

Date and Time

The ctime(3C) date and time routines: ctime and asctime always give C locale
results. To get locale-sensitive results, use strftime.

Table 6-14. Date and Time Routines

Routine Description

strftime Like ctime, but accepts an optional format string
(which should be placed in a message catalog).

nl_langinfo(D_T_FMT) Returns a local time/date format string.

Monetary Formatting

Generalized monetary formatting is more involved than numeric formatting
since in some countries the currency symbol is placed before the amount, while
in other countries it is placed within or after the amount. There are no library
routines that provide monetary formatting; you will have to provide your own.

The currency symbol and position information is available in the structure
returned by localconv (this information is also available through the slower
nl_langinfo call described shortly). The following example illustrates how
you may use this information to flexibly format monetary values for an
internationalized application.

The following example program prints a monetary value for the currently active
locale. The NLS library routine localeconv returns a structure containing
locale-specific numeric formatting conventions. Two members of this structure
are accessed:

#include <locale.h>
#include <stdio.h>
#include <stdlib.h>

main (argc, argv)
int argc;

Set to 1 if the currency symbol precedes a non-negative
monetary quantity; otherwise set to o.
Set to 1 if the currency symbol precedes a negative
monetary quantity; otherwise set to o.

6-26 Developing International Software

char **argv;
{

struct lconv *lconv_ptr;

float number;
char *cs_precedes, *cs_succeeds;

if (!setlocale(LC_ALL, ""»

/* pointer to structure returned by
localeconv*/

/* pointers for the preceding currency
symbol and the succeeding currency
symbol*/

/*set the locale*/
fprintf(sterr, "error: cannot set locale\n");

lconv_ptr = localeconv();
number = (float)atof(argv[l]); /* convert string to a float */

/* if the number is non-negative and the currency symbol precedes a
non-negative formatted monetary quantity OR if the number is
negative and the currency symbol succeeds a negative formatted
monetary quantity set the currency symbol precedes pointer to
the currency symbol */

<rev begin>
if (number >= 0 tt lconv_ptr->p_cs_precedes == 1 I I

number < 0 tt lconv_ptr->n_cs_precedes == 1) {
<rev end>

}

}

cs_precedes
cs_succeeds

lconv_ptr->currency_symbol;
1111. ,

/* otherwise set the currency symbol succeeds to the currency symbol */

else {
cs_precedes
cs_succeeds

}

1111;

lconv_ptr->currency_symbol;

printf("%s %6.2f %s\n", cs_precedes, number, cs_succeeds);

Other information in the lconv structure describes decimal point, thousands
separator, spaces used with the currency symbol, and other locale-specific
formatting information.

Developing International Software 6·27

6

6

String Comparisons

The string(3C) string comparison routines strcmp and strncmp always give C
locale results. To get locale-sensitive results use strcoll.

For some applications, in particular ones in which many strings are compared
against one constant string, you can improve performance by using strxfrm to
convert strings to a form that can be compared using strcmp. The following
program illustrates this application:

char *s1, *s2, *t1, *t2;
int nl, n2;

strxfrm(s1, t1, n1);
strxfrm(s2, t2, n2);

if (strcmp(t1, t2) > 0) {
1* == strcoll(s1, s2) *1

Note that error checking the conversion by strxfrm is omitted.

6-28 Developing International Software

Guidelines for Creating Internationalized Programs

• Whenever possible, use the WPI to handle character data. This allows
a single-compiled application to handle all system-supported single- and
multi-byte character encodings.

• Always maintain data integrity. Do not do any processing or examining of
character data if you do not have to. If you are simply passing data through
a routine or application, do not zero out the high bit of each byte, or pad it
into even-sized blocks, or substitute linefeeds for carriage returns, etc.

• Never use the 8th bit of a character byte as a flag. This was a practice that
grew out of the fact the ASCII is a 7-bit code. It is no longer acceptable.

• Never hardcode character constants. The run-time character set may be
different from the compile-time character set. Comparing against a character
constant may not work if the character has a different code in the run-time
environment than it did in the compile-time environment. This is especially
likely for characters not found in the ASCII set. If it is possible to put these
values in files, where they can be changed, do so. If not, at least assign
symbolic names to them (like slash) so it will be easy to track down and
change such codeset-dependent information later. Likewise, do not hardcode 6
numeric constants to represent characters (like decimal 32 for "space").

• Never use "ASCII" rules for character transformation or identification.
Upshifting characters by adding decimal 32, or testing for alphabetic
characters by comparing against numeric range, will probably not work
for non-ASCII character sets. Use system-supplied language/character-set
sensitive routines for identifying or up/down shifting characters.

• When sorting data for end-user viewing, do not use numeric comparisons
of strings or characters for collation. System routines exist for the
proper, language-sensitive, collation of text strings. The only cases where
comparisons based on character's numeric representations should be used
are when testing two strings for equality, or for hash tables, b-trees, etc.,
which are never directly viewed or accessed by end-users. In these cases the
higher-performing, numeric comparisons may be appropriate.

Developing International Software 6·29

7
The Message Catalog System

Read this chapter if you are: I> A programmer of internationalized software

This chapter covers the following programming issues related to using message
catalogs with internationalized software :

• Initialization
• Retrieving Messages
• Creating aNew Message Catalog
• Installing a Message Catalog

The Message Catalog System 7·1

7

Creating and Using a Message Catalog System
The HP -UX message catalog system allows program messages to be stored
separately from the logic of the program, to be translated into different
languages, and to be retrieved at run-time, according to the language
requirements of each user.

Program messages might be:

• Information to the user, e.g. file not found.

• Responses from the user, e.g. tomorrow as used by the at command.

• Strings used to format other messages, e.g. ~l$d Y.2$s\n.

These messages would ordinarily appear in the source program as quoted
strings, such as:

prin~f(lIfile not found\n");

if (.strcmp(s, "tomorrow") == 0) ...

To produce a program that is internationalized for messages, do the following:

1. Separate the program logic from program messages by using message routine
calls in place of quoted messages in the source program. The message
routines will retrieve message text at run-time.

7 2. Create a message text source file for localization. This file contains messages
that would ordinarily appear as quoted strings in the source program.

3. Generate a message catalog from the message text source file. This file
contains messages that are retrieved by the message routines.

Localized messages can then be provided by translating the strings in the
message text source file into another native language and then generating the
native language message catalog.

7 -2 The Message Catalog System

Programming for Messages

The programming tools for messaging are:

• The findmsg command extracts messages from a C program source file and
writes them to the standard output in a format suitable for input to gencat.

• The dumpmsg command extracts messages from a message catalog file created
by gencat. The messages are written to standard output in a format suitable
for editing and re-input to gencat.

• gencat(l); gencat produces a message catalog from message text source files.

• The catopen function, which locates a named message catalog and prepares
it for use by catgets and cat close.

• The catgets function, which retrieves messages from a message catalog
opened by a call to catopen.

• The cat close function, which closes a message catalog opened by catopen.

Opening a Message Catalog with catopen

catopen opens a message catalog for reading and returns a catalog descriptor
of type nl_catd. (Include nl _types.h at the beginning of your program to
use this type.) Call catopen by:

cat open (" name", oflag)

where:

name

oflag

is a file name enclosed in quotes, indicating the name of the
catalog to open.
is reserved for future use and should be set to o.

• catopen returns a message catalog descriptor if successful.

• Otherwise, a value of (nl_cat) -1 is returned.

The Message Catalog System 7-3

7

7

Note We recommend that you use the program name as the name
argument supplied to catopen. This provides a generic
descriptor of the message catalog to open. At run time your
program selects the particular message catalog supporting the
user's language according to the current setting of LANG and the
path(s) specified by environmental variable NLSPATH.

Recommended Initialization

Use setlocale and catopen to initialize your program. For most applications,
the following initialization is recommended:

#include <nl_types.h>

if (! setlocale(LC_ALL, 1111)) {

else

fputs("setlocale failed,
continuing with \"C\II locale.", stderr);

putenv(IILC_ALL=");
catd = (nl_catd)-l;
}

catd = catopen (" name", 0);

7 -4 The Message Catalog System

'include <nLtypes.h>
'include <stdio.h>
'include <Iocale.h>

mainO{
nLcatd nlms9_fd;
int month,day,year,nem_read;

setlocale(LC_ALL, .");
nlms9_fg • catopenrbirthday·,O);

printf(catgets(nlsmsgJd,NL _ SETN,2,·Please enter your birthday On the form MMlDDNY\n)"»;
num_read-nLscanf(catgets(nlms9_fd,NL_SETN,3,·%1$cJr»Al2$d/%d$d"),&month,&day,&year);
printf(catgets(nlmsg_fd,NL_SETN,4,·montha%1$d\n day=%2$d\n year=19%3$d\n\n"),month,day,year);}

C program
~-------T---------------I-------------t-----

________ I ______________ J_____________ -----1

: LANG = american LANG = gennan LANG = __ _

I 2. Please enter your birthday\n 2. Bitte, geben Sie Ihr 2.
I On the form MMlDDIVY);\n Geburtsdatum ein, \n 3. ----
I 3. %1$d/%2$d/%3$d Format, Tag(Nummer), 4.
I 4. month =%1d\n Monat(Nummer), ----
I day = %2$d\n year = 19%3$d Jahr(die letzten zwei Ziffern);\n
I 3. %2$d,%1$d,%3$d
I ~~~~~
I Monat ist % 1 $d\n
I ~_J_ah_r_is_t1_9_o/~~$_d ____________ ~

I Message Catalogs
~-------r--------------~-------------l-----

I _______ ~ ______________ J _____________ , _____ 1

Please enter your birthday
(In 1he form MM/DD/yv):
mon1h-__ _
day=-:-:::-__ _
year = 19 __ _

BMe; geben Sie Ihr Geburtsdatum ein.
Format: Tag(Nummer). Monat (Nummer).
Jahr(die leizten zwei Ziffem)
Tagist ~ __
Monatiri __ _
Jahr 1st 19 __ _

User Interface L ___ _

Figure 7-1. The Message Catalog System

The Message Catalog System 7-5

7

7

Note • The catalog descriptor catd is used by catgets and
consequently must be accessible to every catgets call.

• Use the program name as the name argument.

Search Path and Naming Conventions

NLSPATH is a series of paths identifying

where to search for a message Catalog:

NLSPATH=/_ /_ ... /%L/%N.cat:/_ /_ ... /%L/%N.cat:

%L ¢ SLANG

%N ¢ 'name' supplied to catopen()

Figure 7-2. Naming and Locating Message Catalogs

The names of message catalogs and their location in the file system can vary
from one system to another. Individual applications may choose to name or
locate message catalogs according to their own special needs.

The flexibility to allow general location and naming of message catalogs is
provided via the NLS environment variable NLSPATH which gives both the
location of message catalogs and the naming conventions. You can define
message catalog naming conventions by using substitution field descriptors that
permit the use of run-time information. For example:

NLSPATH=/usr/local/lib/1.L/1.N.cat:./1.N.cat

This specifies two paths, separated by :, to search for a message catalog. The
metacharacter, 1., in a search path introduces a substitution field descriptor,
where 1.N is replaced by the name parameter pasRed to catopen, and 1.L is
replaced by $LANG.

Thus, for the above value of NLSPATH, the call catopen(lIprog ll, 0) will
first attempt to open /usr/local/lib/$LANG/prog. cat. Failing this, it will

7 -6 The Message Catalog System

attempt to open. /prog. Note that if LANG is not set, the first path would be
/usr/1oca1/1ib/prog. cat and would probably result in a failure to find a
catalog.

If catopen can't find a message catalog with the path names specified in
NLSPATH, it searches the default path:

/usr/1ib/n1s/1.1/1.t/1.c/1.N.cat

where: 1.1 is replaced by the language element of LANG, 1.t is replaced by the
territory element of LANG, and 1.c is replaced by the codeset element of LANG.
This is summarized in the following table:

Table 7-1. Summary of NLSPATH Replacement Specifiers

Replacement Expansion by NLS
Specifiers

%L Replaced by the value of LANG.

%N Replaced by the name parameter passed to catopen.

%1 Replaced by the language element of LANG.

%t Replaced by the territory element of LANG.

%c Replaced by the codeset element of LANG.

For further details on LANG and NLSPATH, see environ(5) in the HP-UX
Reierence

Retrieving Messages

Once the message catalog is open, the program can retrieve messages from the
catalog using:

catgets(catd, set_num, msg_num, dei_str);

where catd is the catalog descriptor returned by catopen, seLnum and
msg_num identify the message to be retrieved, and dei_str ("default string")
is a string that is returned if the call fails. Ordinarily dei_str is the C locale
message.

The Message Catalog System 7-7

7

7

To retrieve messages, catgets uses an internal buffer that is overwritten
on each call. This is rarely a problem since a message is ordinarily used
immediately by being printed or tested. However, see "Special Considerations
for Messaging" later in this chapter.

Closing a Message Catalog

When the program no longer needs access to the message catalog, the .
catalog file should be closed. This can be done with the catclose call but
it is generally simpler to let exit close the catalog file when the program
terminates.

Default Messages

A program should make provision for the case when the message catalog is not
available. This could happen, for example, if the file system containing the
catalog is not mounted or if there is no catalog for the current language. Note
that catopen does not take a default action if a catalog cannot be opened.
Provisions for default messages must be made by the program. There are two
general strategies for handling this situation:

• The "standard" method is to include the default message as the del_str in
the catgets call. If the catopen call fails, it returns (nl_catd) -1, an invalid
file descriptor. This subsequently causes catgets to fail and return del_str,
the default message. This is the recommended method of handling default
messages.

• Alternatively, you can use a default message catalog. Note that even
the default message catalog may not be available (e.g., if the file system
containing it were not mounted). Commands using this method should
consider the probability of this situation for their application and plan
accordingly. Applications that use this method often use error message
numbers as the default string in catgets calls.

If a message catalog is missing, it is seldom useful to issue an error message
unless it is reasonable to expect the catalog to be available. If a message
catalog is missing and the catalog is critical to the successful execution of the
program, it may be best to issue a message and terminate the program.

7·8 The Message Catalog System

Compiling and Linking

There are no special requirements for compiling and linking. All messaging
routines are in standard libraries and will be linked with the usual compile/link
commands.

Creating a New Message Catalog

Creating a message catalog is a two step process:

1. Create the message text source file.

2. Use gencat to generate a message catalog from the message text source file.

gencat() Message

Source File

(Text) Q
Message

Catalog

(Binary)

Figure 7-3. Using gencat () to Generate Message Catalog

The Message Text Source File

A message text source file contains the messages from the source program.
Each message is numbered with the message number used in the corresponding
catgets call.

A simple message catalog text file might be:

$ Comment: a simple message text source file
1 text. for message 1
2 text for message 2

A message consists of a message number followed by a single space or tab
followed by the message text and terminated by a new-line. The message text
is a C string, including spaces, tabs and \ (backslash) escapes, but without
surrounding quotes. Message numbers are unsigned integers and must be in
ascending order but need not be consecutive. A line beginning with $ followed
by a single space or tab is treated as a comment. Note that comments in
the message text source file are not saved in the message catalog created by
gencat.

The Message Catalog System 7-9

7

7

For a large or complex group of messages it may be useful to arrange the
messages into groups called sets. Message sets allow the programmer to
group similar messages together within a catalog. For example, one set might
contain all prompts, and another set might contain all error messages. A
set is introduced by a $set directive. Messages belong to the set specified
by the most recently appearing $set directive. Like message numbers, set
numbers are unsigned integers and must be in ascending order but need not be
consecutive. Message numbers in different sets are independent.

A default set, NL_SETD is defined in <nl_types .h> for use in source programs.
If a $set directive does not appear in the message text source file, messages
will be assigned to set NL_SETD. Using the default set and directives in the
same message text source file is not recommended.

A message text source file with sets might look like the following:

$set 100
$ user prompts
1 Text of message number 1
4 Text of message number 4
9 Text of message number 9

$set 200
$ error messages
1 Text of message number 1
3 Te~t of message number 3

To make leading or trailing blanks visible, the $quote directive can specify a
quote symbol. For example:

$ show blanks
$quote "
1" leading blanks"
2 "trailing blanks "

For more details on the format of the message text source file see gencat(l).

7·10 The Message Catalog System

Compiling a Message Catalog

Once the message text source file is correct, a message catalog can be
generated. For example, if prog.msg contains the messages for prog. c, then
you would type the following:

gencat prog.cat prog.msg

This generates prog. cat, a message catalog for prog. c. This step is analogous
to compiling the source program: the message text source file is "compiled"
into a binary message catalog for use by the program at run-time.

An Example of Programming with Message Catalogs

To see how this all fits together, suppose prog. c is the standard sample
program:

mainO
{

printf("hello world\n");
}

When converted to use message catalogs, prog. c would look like this:

#include <nl_types.h>
maine)
{
nl_catd catd;
catd = catopen("prog", 0);
printf(catgets(catd, NL_SETD, 1, "hello world\n"));
}

The message text source file would be:

$ message catalog for hello world
1 hello world\n

The program would be compiled as:

cc -0 prog prog.c

and the message catalog would be generated as:

gencat prog.cat prog.msg

The Message Catalog System 7·11

7

For this example,

• We have used "standard" default message handling: default messages are the
default strings in catgets calls, and these will be returned as messages if
catopen fails.

• The program name is also the message catalog name so that catopen will
search the standard places when looking for a message catalog.

• The default set, NL_SETD, is used in the source program and the use of a set
directive in the message text source file is omitted.

Special Considerations for Messaging

• Messages in variables require special treatment. For example, the message in:

char.*msg = "message";

prin~f(msg);

would, given a "direct" conversion, result in:

char *msg = catgets(catd, set_num, msg_num, "message");

printf(msg);

7 This would generate a compile error. The required conversion is:

char *msg = "message";

printf(catgets(catd, seLnum, msg_num, msg));

• Messages in arrays require somewhat more elaborate treatment. Before
conversion, an original source might contain the following:

static char *msg_tbl[] = {
"message 1",
"me~sage 2",

"message N"

7 -12 The Message Catalog System

};

This would need conversion to:

printf (catgets (catd, seLnum, msg_num, msg_tbl[i]));

and set_num, msg_num and message index i must be synchronized. In
particular, note that msg_ tbl [0] is message 1 and that 0 is not a valid
message number .

• Multiple messages in a printf call might appear as:

printf ("message 1", "message 2");

But, because catgets overwrites its message string on each call, these cannot
be translated as:

printf(catgets(catd, set_num_l, msg_num_l, "message 1"));
catgets(catd, set_num_2, msg_num_2, "message 2"));

For this situation it is necessary to copy one of the messages:

char *m1 [N] ;

strcpy(m1, catgets(catd, set_num_l, msg_num_l, "message 1"));
printf(m1, catgets(catd, set_num_2, msg_num_2, "message 2"));

• Both catgets and gencat impose limits on the length of messages they can
handle. These limits may make it necessary to compose a large message,
such as a help screen, from several smaller messages. Nevertheless, realize
that splitting a message must be done with care as it can impose serious
difficulties on the translation process. If a message must be split, each part
should still express a complete sentence or idea. For further information, see
catgets(3C) and other references in the HP- UX Reference.

The Message Catalog System 7-13

7

7

• The message system does not check to see that the correct catalog is used
with a program. If an incorrect version of a message catalog is inadvertently
installed, your program will issue messages but they will probably not make
sense. You may wish to add validation messages that contains the program
revision code and the locale so the program can validate the message catalog
it uses. This could be done as follows:

char *p_rev =
"$Revision: 1.4 $";

char *c_rev;
char *p_loc =

"C";

/* program revision */
/* catgets 1 */
/* catalog revision */
/* program locale */
/* catgets 2 */
/* catalog locale */

c_rev = catgets(catd, IL_SETI, 1, p_rev);
if (strcmp(c_rev, p_rev) != 0) {

printf("program/message catalog revision mis-match\n");
catd = (nl_catd)-l;
}

p_loc = getenv("LARG");
c_loc = catgets(catd. IL_SETI, 2, p_loc);
if (strcmp(c_loc. p_loc) != 0) {

printf("program/message catalog locale mis-match\n");
catd = (nl_catd)-l;
}

This example uses an rcs(l) $Revision$ line (see discussion in co(l)) so
that the revision code can be updated automatically. The special comments
1* catgets 1 *1 and 1* catgets 2 *1 enable findmsg to find the validation
messages. See the discussion in the "Source Code Management" section of this
chapter.

The message text source file for this program would contain:

1 $Revision: 1.4 $
2 C

Note that both of these messages are potential problems for someone
attempting to localize the program. Message 1, the revision line must not
be localized. Message 2, specifying the locale, must be localized but the

7-14 The Message Catalog System

translation is not obvious to someone unfamiliar with the program. Comments
in the message text source file won't help since they are not saved in the
message catalog. See "Guidelines for Using Messaging" later in this chapter for
a description of a "cookbook" to help the translator avoid errors.

Libraries with Messages

Library routines, as well as programs, can use message catalogs. For example,
the C library routine perror(3C) uses a message catalog and can be used by a
program that also uses a message catalog. All the considerations for programs
apply to libraries. There are also some special considerations.

In general, the scope of variables of a library routine is restricted to the routine
so that they do not conflict with the variables of the main program. The
catalog descriptor must be declared so that there can be no conflict with the
main program, since the main program may also use a message catalog.

Since a library routine might be called several times by a program, some
consideration should be given to the way the message catalog file is opened.
There are two general strategies:

• The easy strategy is to open the catalog when it is needed and close it after
use. This uses a file descriptor only when it is needed .

• For cases in which the library routine is called frequently, it may be desirable
to avoid multiple opens/closes of the catalog. This can be done with the
following:

static nl_catd catd;
static int oflg = FALSE;

if (! oflg) {
oflg = TRUE;
catd = catopen(...);
}

catgets(catd, seLnum, msg_num, dei_str);

Once open, the file descriptor remains in use for the remainder of the program.
The catalog will be closed by exit at program termination. Note, however,

The Message Catalog System 7-15

7

7

that this method cannot be used if LANG can change between calls to the
routine.

Conversion of Existing Programs for NLS Messaging

The following diagram shows the process used to convert a non­
internationalized program.

I prog.c

I

-'
(findstr

t
I

I .. edit to remove
prog.str ..,

~

I ~ non-message strings
-l ry

(insertmsg J

" .,

I nLprOg.c~ edit to add I ... edit ,

other NLS routines
prog.msg .. messages J~

(comPile) gencat J

" "
prog .. messages prog.cat

Figure 7-4. Converting a Non-Internationalized Program

7-16 The Message Catalog System

The conversion of an existing program to use messages can be automated to a
substantial degree. Consequently, even when writing a new program you may
find it easier to write the program without messages and, when it is working,
convert it to use messages.

The conversion process is:

1. Find all quoted strings in the source program. Such strings may be
messages.

2. Review the list of quoted strings and remove any that are not messages.

3. Assign a message number to each message string and replace the string in
the source program by an appropriate call to catgets.

4. Generate a message catalog from the numbered message strings.

HP -UX commands are available that make this process fairly easy.

Step 1. Finding Strings in a Program

Use the findstr routine to extract strings and write them to an external file.

main()
• • •

C program

printfC Please enter your birthday (in the form MM/DD/VV:\n II); 7
• • •

num_read=scanf(lI%d/%d/%dll ,&month,&day,&year);

V
file

'Please enter your birthday (in the form MM/DD/YV) \ nil
lI%d/%d/%dll

Figure 7·5. Using findstr to Locate String Constants

The Message Catalog System 7·17

The command findstr will examine a C source program and find all string
constants (other than those that appear in comments). These strings, along
with their quotes, are written to standard output along with information
indicating the position of the string in the source file. A typical use would be:

findstr prog.c > prog.str

The string file prog. str would now contain a copy of each string found in
prog. c.

The findstr command expects the strings of your program to be syntactically
correct with the quotes properly matched. To ensure that this is the case, it is
a good policy to use f indstr only on tested programs.

Step 2. Removing Non-Messages from the Strings

Most of these strings in the string file are messages and would need to be
localized. Some of the strings, however, would never be localized. For example,
the type specifier for fopen is a string such as IIrll or IIW+ II . These strings
are not messages and would not be localized. Some format strings would be
localized but some would not. The string file must be reviewed and any entries
for non-message strings should be removed.

When editing the string file, take care not to modify the location information
for strings that are left in the file. Also, note that if the source file is changed,
the string file may be invalidated and should be re-generated.

7 Step 3. Inserting catgets Calls

Once the string file contains only the strings that will need localization, you are
ready to create a messaging version of your program.

This is done using the insertmsg command which takes care of a few
administrative details:

• It assigns a message number to each string in the string file and writes the
numbered messages to standard out in a format suitable for use by gencat.
This is the message text source file for the program .

• It creates a copy of the source program in which each string identified in the
string file is replaced by a catgets call with the assigned message number.
The name of the new source program file is the name of the original source
file with the prefix nl_.

7 -18 The Message Catalog System

A typical use would be:

insertmsg prog.str > prog.msg

If the prog. str file were created from the source file prog. c, the new source
file would then be nl_prog. c.

Selected 'c' Program Lines

prlntf (" Please enter your birthday (in the form MM/DD/yv); \ n ");

num_read = scanf ("%d/%d/%d", &month, &day, &year);

message no.
se number-

Pre - insertmsg

catalog _ default
,. string descriptor

" " " "
printf (catgets (nlmsg_fd, NL_SETN,2, "Please enter your birthday (in the form MM/DD/yv); \n "»;

Note

Post - insertmsg

Figure 7-6. Using the insertmsg Command

The findstr and the insertmsg command will not recognize
the problem cases identified in the "Special Considerations"
section in this chapter, and they will convert them without
comment. Some of these conversions will draw a syntax error
from the compiler; others will give incorrect results with no
indication. The recommended strategy is to let the compiler
find the syntax errors and to review the remaining conversions.

The Message Catalog System 7-19

7

Step 4. Editing the Modified Source Program

Your new source program will need some minor editing before it can be used.
A string such as:

• •• II string II •••

in the original source file, would have been changed to:

... catgets(catd, NL_SETN, msg_num,
"string") ...

The msg_num was assigned by insertmsg. You must provide definitions for
catd and NL_SETN. This can be done by adding the following lines near the
beginning of the program:

#include <nl_types.h>
#define NL_SETN 1

catd = catopen("name", 0);

The catopen call would ordinarily be part of the "standard" initialization.
(See the section "Recommended Initialization" in this chapter for additional
information.)

7 After these modifications, the new source program can be compiled and linked.

Step 5. Editing the Message Text Source File

For many cases, the message text source file, prog.msg in the above example,
will need no modification. However, if you are using sets, appropriate $set
directives must be inserted.

Step 6. Creating a Message Catalog

After any changes to the message text source file, the message catalog can be
created using gencat. As in the earlier example:

gencat prog.cat prog.msg

7 -20 The Message Catalog System

Testing a Message Catalog

Once you have an executable program and a message catalog, you can test the
program to be sure that it retrieves messages from the correct message catalog.

If you used the "standard" message initialization, the use of NLSPATH makes
testing easy. For the following example, we assume:

• The executable program is named prog.

• The catalog is opened by catopen ("prog" ,0) .

• The original messages are in prog.msg.

• The default value for LANG is null, i.e., unset.

The following script prepares test directories and catalogs:

Make a directory

mkdir ./french

Make a copy of the message text source file

cp prog.msg french.msg

Modify the messages to distinguish default messages from catalog messages

vi ~rench.msg

Generate a message catalog with the modified messages

gencat french/prog.cat french.msg

The catalog in directory ./french is now ready for testing.

The following script tests the program for default messages and "french"
messages.

Set NLSPATH:

NLSPATH=./YeL/YaN.cat
echo $NLSPATH

Test the default messages:

echo LANG = $LANG

export NLSPATH

The Message Catalog System 7·21

7

7

prog

Test the catalog messages:

LANG=french ; export LANG
echo LANG = $LANG
prog

Installing a Message Catalog

When you are satisfied that your messaging program correctly accesses
its message catalog, it can be installed. See "Administering International
Software" for more details.

Source Code Management

Following are some suggestions and comments on the management of messaging
source programs.

Keeping nLprog.c Files

There are two approaches regarding the modified source files:

• You can rename the nl_* files to the original names and keep the modified
version as the source program. This is the more commonly used approach.
It eliminates the need for reconversion but means the source files have the
catgets calls in them and are more awkward to read.

• Or you can keep the original source files and convert them whenever they
are modified. This eliminates the need to read the messaging statements
but means the source files must be converted whenever a change is needed.
This approach may be feasible only if editing of the string file and converted
source files is minimal or can be automated.

Multi·file Programs

If your program consists of a number of files, the conversion process is only
slightly more complex than for a single file. The findstr, insertmsg, and
gencat commands all take multiple file input and perform appropriately. For
more information, please see the appropriate pages in Section 1 of the HP-UX
Reference.

7 ·22 The Message Catalog System

Adding a Message to a Messaging Program

Once your program provides message catalog support, you may need to add a
message to the program. If you keep the original version of the source program
(without the message catalog calls), adding a new message is done simply by
adding the message to the source program and converting the program as
above.

If you keep the nl_ * version of the source program (with the message catalog
calls), adding a message means that you must assign a message number to the
new message and this new number must not conflict with those already used in
the message catalog. To assign new message numbers, you will need a list of
existing message numbers. These are available from two places: in the message
catalog and in the source program.

The dumpmsg command will list the messages in a message catalog:

dumpmsg prog.cat >prog.msg

If there are multiple versions of the program, be sure that the message catalog
and the source program are for the same version.

The findmsg command will list the messages in a source program:

findmsg prog.c >prog.msg

This method is generally preferred since it ensures that the message text
source file agrees with the source program. The messages found are the quoted
strings in cat gets calls in the source program. If a program uses messages
in variables, you must add special comments to the source program so that
findmsg can find these messages. For example, a message in a variable and its
corresponding catgets call would look like the following:

char *msg = "message"; 1* catgets msg_num *1

printf(catgets(catd, NL_SETN, msg_num, "message"));

Both of the message listing commands produce as output, a message text
source file in a form suitable for input to gencat.

The Message Catalog System 7·23

7

7

Once a message list is available, message numbers can be assigned to new
messages and the source program appropriately modified with new catgets
calls that have the newly assigned message numbers. The new messages can
then be added to the message text source file and a new message catalog
generated.

Although gencat can merge new messages into an existing message catalog, it
is just as easy and less error prone to re-create the complete message catalog.
Once the new catgets calls have been added to the source program, this can
be done as the following:

Remove previous message catalog to preclude update.

rm -f prog.cat

Generate a message text source file with the new messages.

findmsg prog.c >prog.msg

Generate the new catalog.

gencat prog.cat prog.msg

List the new messages for review.

dumpmsg prog.cat

Using "make" Files

With the .msg and . cat file suffix conventions, it is possible to use make to
automate message catalog creation. The following make file illustrates the
procedure:

SOURCE = prog.c sub.c

all: prog prog. cat

prog.msg $(SOURCE)
findmsg $(SOURCE) >$~

.msg.cat:
gencat $*.cat $*.msg

7 -24 The Message Catalog System

The command:

make prog.msg

will generate the message text source file prog.msg. The command:

make prog. cat

will generate the message catalog prog. cat from the message text source
file prog .msg. Also see the "make Example", in Appendix B for another
illustration of this procedure.

Guidelines for Using Messaging

Here are some overall guidelines which you should keep in mind when
programming for messages.

• Provide a cookbook for the translator which contains the numbered messages
and, carefully separated (e.g, by brackets), any additional explanatory
information or paraphrase they may need. A message that is obvious to you
may be a mystery to a translator. You should assume that the translator:

1. Has a different native language from yours.
2. Is hundreds or thousands of kilometers away from you.
3. Is doing the translation months or years after you finish the program.

• All text that needs to be localized should be put in the message catalog.
This includes: prompts, help text, error messages, format strings, softkey
definitions, and command names.

• Any text that will not be localized should not be put in the message catalog.
Including unnecessary text will not affect the program behavior but it may
be confusing to a translator.

• Provide a unique, unambiguous message for each situation. A single message
in your own language may appear to cover several different situations.
However, when the message is translated into another language, each
different situation may require a different local language translation.

• Do not split messages into separate messages in a message catalog unless
absolutely necessary. The messages could be untranslatable if the word order
changes when translated. If messages absolutely must be split, do so in a

The Message Catalog System 7-25

7

7

logical way. A large block of text, for example, should be split along sentence
boundaries .

• Allow at least 60% extra space in text buffers and screen layouts to allow for
text expansion when messages are translated. It may take more space to
convey information in another language. Define these buffers in a localization
cookbook or put them in comments at the beginning of each message catalog .

• Decide what to do if a message catalog cannot be found by your program. If
the local language is vital to the operation of the program, you may want
the program to issue a default error message and exit. If the local language
is not vital to this part of your program, you might allow the program to
continue to operate with a default language (such as C).

7 -26 The Message Catalog System

Advanced NLS Topics

Read this chapter if you are: I> A programmer or software developer who has
special requirements

I> Anyone in need of additional background
information on NLS

This chapter covers the following:

• Character and string processing in more detail
• Special requirements for localizing
• Special situations for messaging

Codeset Conversion

8

If you need to transport data between systems that use different codesets, you
will probably need to convert codesets. To assist this conversion, two codeset
conversion tools are available.

• The iconv command operates on files and converts characters from one
codeset to another. Conversion can be performed between HP codesets
and a number of widely-used non-HP codesets. See iconv(l) in the HP-UX
Reference for details. 8

• The iconv routines are intended for special situations not covered by the
conversion command. Using these routines, it is possible to provide special
treatment that may be needed in the conversion. See iconv(3C) in the
HP- UX Reference for details.

• NLIO provides some other routines for Asian languages. Please refer to
the appropriate NLIO manual for more information (see "Related HP -UX
Manuals" in Chapter 1).

Advanced NLS Topics 8-1

8

The Character Conversion Command-iconv(1)

The syntax for evoking the iconv command is:

iconv -f fromcode -t tocode [file ... }

where:

fromcode

tocode

[file ...]

Identifies the source codeset.

Identifies the target codeset.

Identifies input and output files, if any. If no arguments are
specified standard input and standard output are used.

For more information or HP defined values for fromcode and tocode see
iconv(l) in the HP-UX Reference.

Conversion Routines-iconv(3C)

When you convert codesets within an application you can avoid the overhead
involved in a command line call to a systems routine by using library routines
instead. These routines give you more control over the conversion process (for
example, you can specify your own default values for unmappable characters).
When you convert codesets using these routines, the first step is to determine if
a conversion table is needed. If a table is required, you must determine its size
so you can allocate enough memory. Use iconvsize to perform this function.
The syntax of the routine is:

#include <iconv.h>

int iconvsize (tocode, fromcode)
char *tocode;
char *fromcode;

This routine evaluates the requirements for converting the codeset specified by
fromcode to the codeset specified by tocode:

• If a conversion table is needed and exists, the size of the table in bytes is
returned.

• If a table is needed, but the table is nonexistent, then -1 is returned.

• If a conversion table is not needed, 0 is returned.

8-2 Advanced NLS Topics

Once you determine the size of the conversion table (if it is required and
exists), you must provide the necessary initialization. Use iconvopen to
provide all initializations necessary for converting characters from the codeset
specified by fromcode to the codeset specified by tocode. The initialization
process includes:

• The retrieval of the necessary table. (It is your responsibility to allocate
sufficient memory for the table based on the value returned by iconvsize) .

• The global initialization of default values for unmappable characters within
multi-byte codesets. Default characters are used with multi-byte characters
since multi-byte codesets usually do not have the same number of characters;
this makes a one-to-one mapping difficult. No default values are used with
single-byte codesets.

The syntax of the routine is as follows:

iconvd iconvopen (tocode, fromcode, table, d1, d2)
char *tocode;
char *fromcode;
unsigned char *table;
int d1, d2;

Where:

tocode

fromcode

table

dl

d2

iconvd

Identifies the target codeset.

Identifies the source codeset.

Points to the start of the conversion table if needed, otherwise
points to null.

Specifies a default character for a unmappable one-byte
character (within a multi-byte codeset).

Specifies a default character for an unmappable two-byte
character.

Acts as a conversion descriptor and function return value.

Two additional auxiliary routines are provided besides the conversion
routines (which will be explained shortly). These are iconvclose and, the
less frequently required, iconvertlock. iconvclose closes the conversion
descriptor cd, freeing it up for a subsequent iconvopen. A non-negative

Advanced NLS Topics 8-3

8

8

number is returned if the routine is successful; otherwise -1 is returned. The
syntax of this routine is:

int iconvclose(cd)
inconvd cd;

The routine iconvlock can be used to initialize lockshift information. This
routine is required by X/Open (For more information see iconv(3C) in the
HP-UX Reference.)

Once the preliminaries are performed (determination of table size and the
necessary initialization) you are ready to convert your codesets. Three
conversion routines are provided. The syntax of these routines is as follows:

int ICONV (cd, in char , inbytesleft, out char , outbytesleft)
iconvd cd;
unsigned char **inchar
int *inbytesleft;
unsigned char **outchar;
int *outbytesleft;

int ICONV1 (cd, to, from, buflen)
iconvd cd;
unsigned char
unsigned char
int buflen;

*to;
*from;

int ICONV2 (cd, to, from, buflen)
iconvd cd;
unsigned
unsigned
int

char *to;
char *from;
buflen;

8-4 Advanced NLS Topics

These routines perform as follows:

Table 8·1. Conversion Routines

Routine Action

ICONV Fetches a character from the buffer pointed to by inchar and converts
it to the target codeset, placing it plus any lock-shift information in
the buffer pointed to by outchar. The descriptor cd identifies the
conversion to perform. Inbytesleft and outbytesleft point to the
number of bytes left in the input and output buffers, respectively.
While conversions are done from the input buffer to the output buffer,
these variables are incremented or decremented to reflect the current
status of each buffer.

ICONV1 ICONV1 converts single-byte characters in from according to the
conversion identified by cd, placing the result in to. Use this routine
and the routine below when it is more efficient to handle single- and
multi-byte information separately. This routine does not check for
lock-shift information. Buflen specifies the number of bytes to convert.

ICONV2 Same as above, except ICONV2 assumes from contains only
double-byte characters.

For more information see iconv(3C) in the HP_ UX Reference

8

Advanced NLS Topics 8·5

8

Processing Right-to-Left Languages
Processing right-to-left languages requires the programmer to deal with issues
of data directionality that are not ordinarily a concern.

Directionality refers to two properties of the text:

• The direction the language is naturally read.
• The order of characters in a file.

Mode can be:

• Latin: left-to-right.
• Non-Latin: right-to-left.

Order can be:

• Keyboard: the order in which the user enters keystrokes.
• Screen: the order in which characters are displayed.

Some codesets contain Latin and non-Latin characters so that it is possible
to mix left-to-right and right-to-left text. If we use Li to indicate a Latin
character, Ni to indicate a non-Latin character, and i to indicate the order in
which the character is typed, the mixed text:

N1 N2 L3 L4 N5 N6 L7 L8

entered on a terminal configured for right-to-left display would appear as:

L7 L8 N6 N5 L3 L4 N2 N1

For additional information on directionality, see hpnls(5) in the HP- UX
Reference.

Two commands are available to manage data directionality. The command
forder allows users with screen data to use programs that do not support
screen order data. It converts the order of characters in a file from screen order
to keyboard order, or from keyboard to screen order. For example, sort cannot
sort screen order data. However, such data could be sorted by:

forder file1 I
sort I
forder > file2

8·6 Advanced NLS Topics

put in keyboard order for sort
sort it
put back in screen order

Data order and mode (Latin vs. non-Latin) information is specified by the
LANGOPTS environment variable. To set the LANGOPTS environment variable
using the Bourne or Korn Shell:

Where:

mode

order

LANGOPTS= [mode] [_order] export LANGOPTS

may be either 1 (for Latin) or n (for non-Latin). Non-Latin
mode is assumed for values other than 1 and n.

describes the data order of a file and may be either k (for
keyboard) or s (for screen) ..

For further details on the LANGOPTS environment variable, see environ(5).

Since most printers are designed for printing left-to-right languages, printing
right-to-left data requires special formatting. The command nljust provides
this special formatting. It aligns such data with the right margin and composes
the data in right-to-left print order. For example, nljust would typically be
used as a filter with the Ip and pr commands, such as in:

pr file I nljust - I Ip

As with forder, nljust also gets mode and order information from the
LANGOPTS variable.

For special situations that cannot be handled by data ordering commands, the
routine strord converts between screen order and keyboard order and can be
used to provide any special processing that may be needed. As a simplified
example, consider a program that reads data in either keyboard or screen
order, and writes it to a terminal in screen order. The relevant portions of the
program are:

Advanced NLS Topics 8·7

8

8

#include <nl_types.h>

char *lopts;

lopts = getenv(ILANGOPTS"); /* lim_oil m = mode, 0 = order */

fscanf(... , src, ...); /* read in current mode/order */
if (lopts[2] == 'k') /* if order is keyboard order */

strord(dst, src, lopts[O]); /* re-order before write */
fprintf(... , dst, ...); /* write data */

For an extended example of right-to-left processing, see Appendix B, "Example
of Internationalized Software", in this manual.

Locale Information

Locale information is available in various ways. The locale and nlsinfo
command provides selected portions of information for a specified locale.
Information is displayed in tabular form convenient for reference. The
localedef command -d option provides all information for a specified locale.
This information is displayed in localedef input format and may be used to
define a new locale.

You can use the locale command to display information about the current
locale or about available locales. Here are some examples that illustrate the use
of locale. LANG was set to french for all examples.

8·8 Advanced NLS Topics

The following example displays all items in the LC_ TIME category:

% locale -ck LC_TIME
LC_TIME
abday="Dim" j "Lun" j "Mar" j "Mer" j "Jeu" j "Ven" j "Sam"
day="Dimanche" j "Lundi"j "Mardi"; "Mercredi";"Jeudi"; \
"Vendredi"j"Samedi"
abmon="janv" j ":fevr" j "mars" j "avr" j "mai" j" juin" j "juil" j \
"aollt" j "sept" j "oct"; "nov" j "dec"
mon="janvier" j ":fevrier" j "mars" j "avril" j "mai" j "juin" j \
"juillet" j "aollt"; "septembre" ;"octobre" j "novembre" j "decembre"
d_t_:fmt="%A %.ld %B %Y %H:%M:%S"
d_:fmt="%A %.ld %B %Y"
t_:fmt="%H:%M:%S"
~pm='''';''''

t_:fmt_ampm="%H: YoM: %S"
year_unit=""
mon_unit=""
day_unit=""
hour_unit=""
min_unit=""
sec_unit=''''
era_d_:fmt=""
era=""

This example displays the value for the mon item:

% locale -ck mon
LC_TIME
mon="janvier"j ":fevrier"j "mars" j"avril" j"mai"j"juin"j \
"juillet" j" aollt" ; "septembre" j "octobre" ; "novembre" j "decembre"

This example displays the values for LANG and the LC_ * categories:

% locale
LAJlG=:french
LC_CTYPE=":french"
LC_COLLATE=":french"
LC_MOJlETARY=":french"
LC_JlUMERIC=":french"
LC_TIME=":french"
LC_MESSAGES=":french"
LC_ALL=

Programmatic access to information about the currently active locale is
provided by three library routines. The nl_langinfo routine provides access
to all locale information. The localeconv routine provides access to the locale
information that pertains to numeric formatting. The getlocale routine
provides access to setlocale status information. See setlocale(3C).

Advanced NLS Topics 8-9

8

8

Initialization
The following sections provide more detailed information on:

• Special locales
• Special message catalogs
• Default message catalogs
• Programs that call exec

Special Locales

The setlocale routine can set individual categories to specific locale values.
For example, to have a program run with French date and time conventions
and with Spanish sorting conventions, the following calls would establish the
desired locale:

#include <locale.h>

setlocale(LC_TIME,"french");
setlocale(LC_COLLATE,"spanish");

This use, however, defeats the adaptive nature of the NLS routines and is not
recommended. A preferred way to get the desired effect would be to use the
"standard" initialization and to set the NLS environment variables when the
program is run:

LC_TIME=french ; export LC_TIME
LC_COLLATE=spanish ; export LC_COLLATE

Special Message Catalogs

The catopen routine can specify a path for the message catalog, as in:

catd = catopen("/usr/special.cat" , 0);

This use, however, defeats the generality of catopen and is not recommended.
A preferred way to get the desired effect would be use the "standard"
initialization:

catd = catopen(" special", 0);

Then set the NLS environment variable when the program is run:

8-10 Advanced NLS Topics

NLSPATH=" lusr/y'N. cat II ; export NLSPATH

Default Message Catalogs

The "standard" default message handling is to use the C locale messages as the
default string in catgets calls. This ensures that the program will be able to
issue messages even if there is no message catalog available.

If your application must access a C message catalog for the default messages,
the following is suggested:

if (! setlocale (LC_ALL, 1111» {

else

fputs("Varning! call to setlocale failed\n", stderr);
fputs("Continuing processing using the \"C\" locale\n", stderr);
catd = (nl_catd)-1;
}

catd = catopen("name", 0);
if (catd == (nl_catd)-1) {

/* if necessary, user may save LANG at this point */
putenv("LANG=C") ;
/* try NLSPATH */
catd = catopen("name", 0);
/* if necessary, user may restore LANG at this point */
if (catd == (nl_catd)-1)

/* try hard-coded path */
catd = catopen(" /usr/lib/nls/C/name.cat", 0);

}

Programs That Call exec

For commands that exec other commands, we recommend that the first
command call setlocale. If the call is unsuccessful, use putenv to reset all the 8
NLS environment variables to ensure that the other commands don't repeat the
unsuccessful setlocale call and issue additional error messages.

Advanced NLS Topics 8-11

Messaging: printf/scanf Data Formatting
Messages that contain run-time data will often need to be rearranged for
display in different locales. For example, the following statement displays the
date in C locale format:

printf("'!.d/'!.d/'!.d\n", mo, dy, yr);

and would give the following result:

10/31/91

If this date were displayed in the U.K., the english locale, it would need to
appear as:

31/10/91

which could be done with a statement such as:

printf("'!.d/'!.d/'!.d\n", dy, mo, yr);

This solution, however, requires a change to the source program: the order of
the printf arguments must be changed.

To provide flexible formatting of data, the printf(3C) family of routines
permits a conversion specification of the form '!.n$ to indicate that conversion
should be applied to the nth argument. For the C locale, we can use:

printf("'!.1$d/'!.2$d/'!.3$d\n", mo, dy, yr);

and for the english locale, we can use:

printf("'!.2$d/'!.1$d/'!.3$d\n", mo, dy, yr);

This solution leaves the order of the printf arguments unchanged. It does
require a change to the format string but the format string can be treated as a

8 message and modified as needed for each locale. So our solution becomes:

printf((catgets(catd,NL_SETN,17, 1'!.1$d/'!.2$d/'!.3$d\n")), mo, dy, yr);

Then, the C locale message catalog would contain:

17 '!.1$d/'!.2$d/y'3$d\n

8-12 Advanced NLS TopiCS

And the english locale message catalog would contain:

17 Y.2$d/Y.l$d/Y.3$d\n

The Y.n$ conversion specification is also available in the scanf(3C) family of
routines.

Advanced NLS Topics 8·13

8

Special Topics for HP's 16-bit Interfaces

Read this appendix if you
are:

I> Maintaining an existing application with HP's
16-bit interfaces

I> Porting an application that uses HP's 16-bit
interfaces

A

The 16-bit macros described in nLtools_16(3c) are HP proprietary and are
not portable to other vendor's platforms. Thus, we recommend you use the
WPI interfaces, instead. We include information about the 16-bit interfaces
to enable programmers to maintain existing applications or port existing
applications to use the WPI interfaces.

Special Topics for HP's 16-bit Interfaces A-1

A

A

Aspects of Program Design
Designing an international program with NLS is usually a straightforward
process. Nevertheless, there are a number of special considerations. For
example, make sure you reserve enough space in arrays and other data
structures to accommodate the needs of all your users. Since an international
program supports character sets that contain multi-byte characters, the number
of characters in a string is no longer equivalent to the number of bytes. You
must allocate additional space to accommodate the larger character size in the
codesets for certain languages.

The existence of multi-byte characters also affects your code in a number of
other areas:

• Scanning for a character match - Suppose that you are writing an assembler
and your code searches for the character ":". With the existence of two-byte
characters, it is no longer possible to simply scan a data stream looking for a
byte whose bit pattern matches that of ASCII":". The byte that you match
may be the second half of a two-byte character. Your program must search
for character matches, not byte matches .

• Reading characters - Suppose that you allocate an 80 byte buffer for reading
data. You must be careful to truncate excess input on character boundaries.
Suppose that the 80th byte read into the buffer is the first half of a two byte
character. When the contents of another buffer are appended, the first byte
of the appended buffer will interpreted as the second half of the two byte
character. Thus, data is corrupted.

A-2 Special Topics for HP's 16-bit Interfaces

Code Sets
One objective of international program design is to create an application that
is codeset independent. To create a program that is sufficiently robust to
accept any kind of codeset, you must know how data is represented in different
languages and the potential problems you can encounter.

As a UNIX user, you are probably familiar with ASCII, the 7-bit codeset used
to support American English. All codesets supporting the diverse languages of
international users are supersets of the familiar ASCII. This ensures that these
codesets can communicate with the operating system, utilities, and applications
which have a dependency on ASCII.

The ISO 8859-1 and Roman8 codesets support Western European languages.
These 8-bit codesets support an additional 128 character codes beyond those
of ASCII. While this extension of the ASCII character set meets the needs of
Western European users, it is not large enough to support languages such as
Arabic and Greek that have alphabets completely different from those used in
Western Europe or the U.S. For these languages, other 8-bit codesets have been
designed such as ARABIC8 and GREEK8. ISO 8859-2 and ISO 8859-5 are
used for supporting Eastern European languages such as Polish and Russian
(a complete list of codesets and the languages they support is provided in
Appendix E).

8-bit codesets provide support to international users who speak and write
phonetic languages. A single byte, however, is not sufficient to represent the
symbols of users whose language is ideographic (for example, Traditional
Chinese which contains over 50,000 distinct ideographs). To provide for these
users, codesets that support multi-byte characters were introduced.

With the introduction of encoding schemes with multi-byte characters a
problem arose. Because users who read and write ideographics still need ASCII
(for communicating with the operating system and backwards compatibility),
it becomes possible to have a data stream consisting of a mixture of one and
two byte characters. The resulting problem is one of character interpretation:
How can a program interpret characters correctly, distinguishing between single
and multi-byte characters? A number of solutions to this problem have been
designed.

A group of 2-byte codesets were developed that adhere to a common definition
for interpreting a byte stream called HP15. All codesets that adhere to the

Special Topics for HP's 16-bit Interfaces A-3

A

A

HP15 definition use a set of bytes with the high bit set to differentiate between
8 and 16 bit data. If the high order bit is zero, then the byte represents a
one-byte ASCII character.

Otherwise, the current byte may represent the first byte of a two-byte character
or a one-byte non-ASCII character (correct interpretation is provided through
system tables). Since the high order bit acts as a flag bit, only 15 bits remain
for data, hence, the term HPI5. While this representation allows 8-bit data to
be distinguished from multi-byte data, there is one restriction. A byte stream
must be examined sequentially. For an "arbitrary" byte it is not possible to tell
if the byte represents a single byte-character or the second half of a two-byte
character.

In addition to HPI5, NLS defines support for EUC (for Extended UNIX Code),
an encoding scheme defined by AT&T UNIX Pacific, Ltd. The EUC encoding
scheme provides a general template for defining codesets and interpreting a
byte stream. EUC allows four distinct code sets (CSO through CS3) to co-exist
in a byte stream by restricting the legal bit patterns for each set to a specific
template. Under the EUC encoding scheme ASCII characters are uniquely
identified by a most significant bit of "0" and occupy CSO; the EUC template
restricts the most significant bit of all non-ASCII characters to a "1", even the
second byte of two-byte characters.

Currently HP-UX NLS supports japanese.euc (U JIS), a codeset that supports
the Japanese language. This support includes the 2 byte codesets: CSl, and
CS2.

A-4 Special Topics for HP's 16-bit Interfaces

Data Integrity
Data integrity means that in processing codeset data, the data must not be
corrupted. For single-byte codesets, the 8th bit must be preserved; it must
not be stripped or used by the program. For multi-byte codesets, single-byte
characters must be correctly distinguished from multi-byte characters.

HP's multi-byte codesets utilize an encoding scheme in which the single-byte
character codes for ASCII can be intermixed with the two-byte character codes
used to represent ideograms. In these codesets, it is possible for the second
byte of a two-byte character to have the same value as an ASCII character.

For an arbitrary byte, it is not possible to know if the byte is a single-byte
character or the second byte of a multi-byte character. This is the "byte
redefinition" problem in which the second byte of a multi-byte character may
be incorrectly interpreted as a one-byte character.

Even for those encoding schemes such as EVC that avoid much of the
byte-redefinition problem, an efficient way of dividing a byte stream along
character boundaries is needed.

To aid in processing multi-byte codesets and avoid the byte redefinition
problem, there are a number of routines available to the programmer. These
routines are described in the sections that follow.

Programming with Multi-byte Characters

For dealing with HP's multi-byte codesets, see nLtools_16(3C) in the HP-UX
Reference which describes a set of byte-status macros: FIRSTof2, SECof2,
BYTE_STATUS, and C_COLWIDTH. The syntax for the routines is:

#include <nl_type.h>
int c, laststatus;

FIRSTof2(c);
SECof2(c);
BYTE_STATUS(c,laststatus);
C_COLWIDTH(c);

Special Topics for HP's 16-bit Interfaces A-5

A

A

FIRSTof2

SECof2

BYTE_STATUS

C_COLWIDTH

Note

Table A-1. Multi-byte Macros

Evaluates a byte c and returns a non-zero value if c may be the first
byte of a 2-byte character according to the loaded NLS environment,
and zero if it cannot.

Evaluates a byte c and returns a non-zero value if c may be the
second byte of a 2-byte character according to the loaded NLS
environment, and zero if it cannot.

Reports whether a byte c represents a single-byte character, the first
byte of a 2-byte character, or the second byte of a 2-byte character
based on the value of the current byte in c and the status of the
previous byte interpreted in laststatus as returned by the last call
to BYTE_STATUS.
Evaluates a byte which is assumed to be either a one byte character,
or the first byte of a 2-byte character, and returns the number of
columns the character would occupy on a terminal display.

These macros are undefined for values of c less than -1 or
greater than 255. Also note, these are Hewlett-Packard
proprietary routines; do not use them if portability is an
issue (Use mblen described in "WPI Interfaces" in Chapter 6
instead).

The following example illustrates how a program may be adapted to handle
multi-byte as well as single-byte characters. The program is offered in two
versions: the first works only for single-byte codesets, while the second is
codeset independent.

Version #1 (Single-Byte Codesets)

The following program folds characters strings. A field size is specified defining
the WIDTH for text displayed on the screen. As a given string is printed,
any character whose display would fall outside the designated text region is
"folded" onto the next line. For instance, if the WIDTH = 5 and the string is
0123456789, the result is:

01234
56789

A-6 Special Topics for HP's 16-bit Interfaces

The following program works only for single-byte characters because two-byte
characters can potentially be split between bytes and treated as single-byte
codes.

#include <stdio.h>
#include <locale.h>

#define WIDTH 5

main (argc, argv)
int argc;
char **argv;
{

}

unsigned char output_array [WIDTH] , *output_ptr, *input_ptr;
int c, counter;

1* try to set the locale, even through it does not affect the program
because there are no calls to routines that are affected by the locale *1

if (! setlocale(LC_ALL,"I» {
fprintf(stderr,"error: cannot set locale\n");

}

input_ptr = argv[l];
counter = 0;
output_ptr = output_array;

while (c = *input_ptr++) {
if (counter >= WIDTH {

}

*output_ptr = '\0';
puts(output_array);
counter = 0;
output_ptr = output_array;

/* initialize the pointers and counter *1

1* get a char until end of string */
1* if output array is complete, process it *1

1* null terminate the output array */
1* print the output array */
1* reset counter */
1* reset output pointer to beginning

of array */

counter++; 1* if output array not complete
increment counter */

output_ptr++ = c; 1 set area pointed to by output_ptr
to c, then increment output_ptr */

}

*output_ptr = '\0';
puts(output_array);

1* null terminate the output array */
1* print the output array */

Special Topics for HP's 16-bit Interfaces A-7

A

A

Version #2 (Code Set Independent)

The following program also folds character strings to fit within a designated
text region. By using C_COLWIDTH, FIRSTof2, and SECof2 macros, the program
now operates correctly on single-byte and multi-byte data. This program works
for both HP15 and the EUC encoding schemes.

#include <stdio.h>
#include <locale.h>
#include <nl_ctype .h>

#define WIDTH 5

main (argc, argv)
int argcj
char **argvj
{

/* allocate additional array storage to accommodate multi-byte data */
unsigned char output_array[WIDTH * 2 + 1], *output_ptr, *input_ptrj
int c, counter, screen_sizej

if (!setlocale(LC_ALL,""» { /* set correct locale */
fprintf(stderr, "error: cannot set locale\n")j

}

input_ptr = argv[l]j

counter = 0
output_ptr = output_array

while (c = *input_ptr++) {
screen_size = C_COLWIDTH(c)j

of current character */

/* set input_ptr to beginning
of the string to be folded */

/* initialize character counter */
/* set output_ptr to beginning

of the output array */
/* get a char until end of string */
/* determine display column width

if (counter + screen_size > WIDTH) { /* if output array is complete,

}

process it */
output_ptr = '\O'j

array */
puts(output_arraY)j
counter = OJ
output_ptr = output_array

beginning of array */

counter += screen_size;
increment counter */

/* null terminate the output

/* print the output array */
/* reset counter */
/* reset output pointer to

/* if output array not complete,

output_ptr++ = Cj / set area pointed to by output_ptr
to c, then increment output_ptr */

if (FIRSTof2(c) & SECof2(*input_ptr» /* if valid two-byte character, */
*output_ptr++ = *input_ptr++j /* put second byte in output

array and increment input and

A-8 SpeCial Topics for HP's 16-bit Interfaces

}

Note

output ptr's */
}

output_ptr = '\0';
puts(output_array);

1* null terminate the output array *1
I*print the output array */

Although these macros seem transparent, observe that they
cannot determine byte status for an arbitrary byte within
a string. In general, multi-byte strings must be examined
sequentially from the beginning.

See nLtools_16(3C) in the HP-UX Reference for more information on
programming with multi-byte characters.

Conversion of Existing Programs

When internationalizing an existing program, use the following two steps to
preserve data integrity.

1. Convert program to handle 8-bit codesets.
2. Convert program to handle multi-byte codesets.

Be careful when converting software to handle 8-bit codesets. Some programs
use the 8th bit as a flag to indicate special treatment of the remaining 7-bit
character. In general, it may not be easy to determine whether a program does
this. Programs that use or remove the 8th bit must be changed. If the 8th bit
is used for data, you must put the 8th bit in a new data structure, and you
may need to design a new algorithm to access the new data structure.

Once a program is correct for 8-bit data, the conversion to multi-byte data
is usually straightforward. No structural changes are needed, but you must
add proper handling of multi-byte characters. There are exceptions to this,
however. For instance, backwards parsing is not compatible with mixed sized
characters in a string because evaluation of character boundaries depends on
sequential examination of a byte stream. If your program. parses backwards for
a character match, it must be restructured to accommodate multi-byte as well
as 8-bi t data.

Also, you can not test multi-byte data with routines such as isprint. In
general, it is necessary to examine each instance of byte processing to
determine whether special handling of multi-byte data is needed.

Special Topics for HP's 16-bit Interfaces A-9

A

A

In working with multi-byte data, 16-bit curses is available to facilitate display
design. More information is available in curses(3C) in the HP- UX Reference
and in the section on Curses in the Terminal Control User's Guide.

Guidelines for Processing Multi-byte Data

• Do not search for a single-byte character in multiple-byte data on a
byte-by-byte basis. A given byte may represent either a single-byte character
or part of a multiple-byte character. Either test the data byte-by-byte
while scanning to identify the multiple-byte characters, or convert the data
to a form where all characters have the same width, or use multiple-byte
character intrinsics. The first two techniques are generally used in C, the
third technique is generally used in other programming languages .

• Do not back-scan, truncate or substitute multiple-byte data byte-by-byte.
This is an extension of the rule above. Backscanning multiple-byte data
is difficult; this should be taken into account when designing algorithms.
Similarly, if a string is truncated be sure that a multiple-byte character is not
split at the end of the truncated string. Extra care must also be taken if
multiple-byte characters are being substituted for single-byte characters, or
vice-versa.

A·10 Special Topics for HP's 16-bit Interfaces

B
Example of Internationalized Software

Example Program Using NLS Routines - rtlcat
The following program is used to illustrate several internationalization features
including:

• message catalogs

• setlocale(3c) routines

• right-to-left processing

• some multi-byte programming in the get_basename section

Program Syntax:

rtlcat [options] [files ...]

Where the value for options can be:

-1

-n

-k

-s

force file mode to Latin.

force file mode to non-Latin.

force file order to keyboard.

force file order to screen.

This program does a right-to-left concatenation (cat). It reads the
concatenation of input files (or standard input if none are given) and displays
the input on standard output. If - appears as an input file name, rtlcat reads
standard input at that point. You can use -- to delimit the end of options.

The text orientation (mode) of a file can be right-to-left (non-Latin) or
left-to-right (Latin). This text orientation can affect the way data is arranged
in the file. The data arrangements that result are called screen order and
keyboard order.

Example of Internationalized Software 8-1

8

B

rtlcat determines the mode and order of the input files and the terminal.
The file mode and order comes from the LANGOPTS environment variable
(environ(5)). The terminal mode and order are obtained from the primary
and secondary status bytes that result when the terminal is asked about its
alpha-numeric capabilities. This inquiry is done only on HP 150 and HP 2392
terminals. rtlcat assumes the terminal is the stdout device.

If the input file mode and order and the terminal mode and order are the same,
then a simple copy is done. If the input file order and the terminal order are
different but their modes are the same, then the input file data is rearranged
by strord(3c) so it displays properly on the terminal screen. If the input file
mode and the terminal mode are different, rtlcat simply stops with an error
message. It is not defined what a non-Latin file should look like when it is
displayed on a terminal configured for Latin mode (or vice-versa).

Include Files:

#include l<stdio.h> /* input - output */
#include l<string.h> /* string function declarations */
#include l<varargs.h> /* variable arguments */
#include l<termio.h> /* for ioctl call */
#include l<nl_types.h> /* for nl_catd */
#include l<nl_ctype.h> /* for ADVAICE */
#include i<locale.h> /* for setlocale */
#include l<langinfo.h> /* for nl_langinfo */

External Declarations:

extern nl_catd catopen(); /* open message catalog */
extern char *catgets(); /* get message from catalog */
extern int catopen(); /* close message catalog */
extern char *_errlocale(); /* get bad locale settings */
extern void perror(); /* system error messages */
extern void exit(); /* leave */
extern int optind; /* argv index of next arg */
extern int opterr; /* error message indicator */
extern int errnOj /* error number */
extern int sys_nerr; /* max error number */
extern char *getenv(); /* get environment variable */
extern char *strord(); /* change data order */

B·2 Example of Internationalized Software

Forward References:

extern void Perror(); 1* local system print error message *1
extern void errore); 1* local system error message *1
extern char *get_basename(); 1* get basename of command name *1
extern int copy(); 1* copy file *1
extern int reorder(); 1* rearrange input file data *1

General Constants:

#define WARRIRG 0 1* varning error message *1
#define FATAL 1 1* fatal error message *1
#define GOOD 0 1* successful return value *1
#define BAD -1 1* unsuccessful return value *1
#define TRUE 1 1* boolean true *1
#define FALSE 0 1* boolean false *1

Limits:

#define HAX_ERR 256 1* max Perror message length *1
#define HAX_TBUF 128 1* max tbuf length *1
#define HAX_LIRE 1024 1* max input line length *1

Right-to-Left Terminal Constants:

#define an_cap "\033*s-1 A" 1* request alpha-numeric capabilities *1
#define sec_status "\033-" 1* secondary status *1
#define on_straps "\033tts1g1H" 1* strap G tt H on -- no handshake *1
#define off_straps "\033ttsOgOH" 1* strap G tt Hoff -- D1 *1

#define DISPLAY 2 1* alpha-num display byte *1
#define ORDER Ox10 1* alpha-num display ordering bit *1
#define RTL_SEC 8 1* 2nd status byte 13 *1
#define HODE Ox08 1* 2nd status mode bit *1

Error Message Numbers:

#define RL_SETR 1 1* message catalog set number *1
#define BAD_USAGE 1 1* usage error message *1
#define ROT_RTL_LANG 2 1* not a right-to-left language *1
#define ROT_RTL_TERM 3 1* not a right-to-left terminal *1
#define BAD_MODE 4 1* terminal/file mode disagreement *1

Example of Internationalized Software 8·3

8

B

Error Message Strings:

static char *Hessage[] = {
"usage: %s [-Inks] [files ...]\n". 1*
"\"Y.s\" not a right-to-Ieft language\n".
"\"Y.s\" not a right-to-Ieft terminal\n".
"mode of terminal and mode of file do not

}j

Types:

catgets 1 *1
1* catgets 2 *1
1* catgets 3 *1
agree\n". 1* catgets

typedef int (*PFI) ()j 1* ptr to function returning int type *1

Global Variables:

static char *Prognamej 1* program name */

4 *1

static char **Filenamej 1* ptr to ptr to current file name *1
static FILE *Input = stdinj 1* input file pointer (assume stdin) *1
static PFI Processj /* routine to do the process */
static nl_catd Catdj 1* message catalog descriptor *1
static nl_mode File~odej 1* mode of file (Latin or lon-Latin) */

Main Program:

/*
**
** mainO
**
** description:
** driver routine for program

**
** assumptions:
** all input come from stdin or named files
** all output goes to stdout
** all errors go to stderr
** the terminal screen is the stdout device
** mode and order of the input files is given in LAIGOPTS
**
** global variables:
** Input: FILE pointer to the current input file
** Filename: ptr to ptr to current file name
**
** return value:
** 0: everything vent ok
** -1: had some trouble
**

8·4 Example of Internationalized Software

main(argc. argv)
int argc; /* initial argument count */
char **argv; /* ptr to ptr to first program argument */
{

}

/* assume a successful return value*/
register int ret val = GOOD;

/* initialize. parse cmd line options, get input files, etc. */
if (start(argc, argv) == BAD) {
retval = BAD;

}

/* open and process input files one at a time */

for (; *Filename ; Filename++) {

/* open input file and get next if can't open */
if (! strcmp(*Filename, H_H» {

Input = stdin;
}

else if (! (Input = fopen (*Filename, HrH») {
Perror(HfopenH);
retval = BAD;
continue;

}

/* process the file */
if «*Process)() == BAD) {
retval = BAD;

}

/* close input file unless it's stdin */
if (Input != stdin) {
if (fclose(Input) EOF) {

}

}

}

Perror(HfcloseH);
retval = BAD;

/* end the program */
if (finish() == BAD) {
retval = BAD;

}

return retval;

Example of Internationalized Software B·5

B

8

1*
**
** startO
**
** description:
** set up language tables
** open message catalogs
** parse command line

** set up global variables
**
** global variables:
** Catd: nl_catd message catalog descriptor
** Progname: char pointer to the program name
** Filename: pointer to pointer to current file name
** File~ode: mode (Latin or lon-Latin) of the current input file

**
** return value:
** 0: everything ~ent ok
** -1: had some trouble
**
*1

static int
start(argc, argv)
int argcj 1* current argument count *1
char **argv; 1* ptr to ptr to current argument *1
{

nl_mode term~ode; 1* mode of terminal (Latin-lon-Latin *1
nl_order term_order; 1* order terminal (Key-Screen) *1
nl_order file_order; 1* order of file (Key-Screen) *1
char *termname j 1* terminal name from TEM *1
char *lopts; 1* language options from LAIGOPTS *1
int optcharj 1* option character for getopts(3c) *1
static char *deffiles[] = {"_", (char*) IULL}j

1* default input file name *1

1* get the program base name in case it is renamed via In(l) *1
Progname = get_basename(*argv);

1* get locale t initialize environment table *1
if (!setlocale(LC_ALL, 1111» {
1* bad initialization *1
(void) fputs(_errlocale(), stderr);
Catd = (nl_catd) -1;
(void) putenv(ILAIG=")j 1* for perror *1

}

else {
1* good initialization: open message catalog,

... use hardcoded name for first parameter,

8-6 Example of Internationalized Software

}

... keep on going if it isn't there *1
Catd = catopen("rtlcat". 0);

1* get file mode and order from LAIGOPTS *1
if(*(lopts = getenv("LAIGOPTS"» == '\0') {

}

1* if not set assume lon-Latin mode. keyboard order *1
lopts = "n_k";

1* and do a lazy parse *1
File~ode = lopts[O] == '1' ? IL_LATII : IL_IOILATII;
file_order = lopts[2] == 'k' ? IL_IEY : IL_SCREEI;

1* parse command line options
... and possibly override file mode and order *1

opterr = 0; 1* disable getopt error message *1
tlhile «optchar = getopt (argc. argv. "Inks"» != EOF) {
svitch (opt char) {
case '1': 1* force latin mode *1
File~ode = IL_LATII;
break;

case 'n': 1* force non-latin mode *1
File~ode = IL_IOILATII;
break;

case 'k': 1* force keyboard order *1
file_order = IL_IEY;
break;

case's': 1* force screen order *1
file_order = IL_SCREEI;
break;

case '?': 1* unrecognized option *1
errore FATAL. BAD_USAGE. Progname);

}

}

1* initialize process routine *1

if (strcmp(nLlanginfo(DIRECTIOI) • "1"» {
1* do not have a right-to-left language:

}

... print a varning and do a copy *1
char *langname;
if(*(langname = getenv("LAIG"» '\0') {

}

1* if not set assume C language *1
langname = "C";

errore VARIIIG. IOT_RTL_LAIG. langname);
Process = copy;

else if (! rtl_term{ tte~mode. tte~order. ttermname» {

Example of Internationalized Software B-7

B

B

}

1* do not have a right-to-left terminal:
... print a varning and do a copy *1

errore VARIIIG. IOT_RTL_TERK. termname);
Process = copy;

else if «File~ode == term~ode) tt (file_order == ter.M-order» {
1* mode the same. order the same: a regular copy *1
Process = copy;

}

else if «File~ode == term~ode) tt (file_order != term_order» {
1* mode the same. order different: must change the order *1
Process = reorder;

}

else {
1* Currently it is undefined what should happen vhen

.. the file mode and the terminal mode are different. *1
errore FATAL. BAD_KODE);

}

1* set up input file arguments *1
Filename = «argc - optind) < 1) ? deffiles argv + optind

return GOOD;
}

1*
**
** finishO

**
** description:
** get ready to leave: close message catalogs

**
** global variables:
** Catd: nl_catd message catalog descriptor

**
** return value:
** 0: everything vent ok
** -1: had some trouble

**
*1

static int
finishO
{

1* close the message catalog
... and do not complain about a missing catalog */

(void) catclose(Catd);

return GOOD;
}

B-8 Example of Internationalized Software

1*
************************************** •••••• * •••• ***.********.******.* •• **
** copyO
**
** description:
** Input file and terminal have the same mode and the same order.
** Just copy it to stdout.

**
** global variables:
** Input: FILE pointer to the current input file

**
** return value:
** 0: everything vent ok
** -1: had some trouble

***********************************.**.*************.**.******************
*1

static int
copyO
{

char line[MAX_LIBE];

vhile «fgets(line, MAX_LIBE, Input» != BULL) {
if (fputs(line, stdout) == EOF) {

}

}

}

Perror("fputs");
return BAD;

return GOOD;

1*
************.*********.*******************.*********.*********************
** reorderO
**
** description:
** Input file and terminal have the same mode but the order is
** different. Rearrange the input file line vith strord(3c) and
** copy it to stdout.

**
** global variables:
** Input: FILE pointer to the current input file
** File~ode: mode (Latin or Bon-Latin) of the current input file

**
** return value:
** 0: everything vent ok
** -1: had some trouble

*****************************.******.**********************************.**
*1

Example of Internationalized Software 8-9

8

8

static int
reorderO
{

}

char line[MAX_LIRE];
char nev_Iine[KAX_LIBE];

vhile«£gets(line, MAX_LIRE, Input» != lULL) {
i£ (£puts(strord(nev_Iine, line, File~ode), stdout)

== EOF) {

}

}

Perror("£puts");
return BAD;

return GOOD;

1*
**
** PerrorO
**
** description:
** set up string vith program name and the £ailed routine name
** display system error message on stderr using perror(3)
**
** assumption:
** perror string be£ore the colon viII not exceed MAX_ERR
**
** global variables:
** Progname: char pointer to the program name
**
** return value:
** no return value
**
*1

1* VARARGS 1 *1

static void
Perror(rname)
char *rname; 1* bad routine name *1
{

char pstr[MAX_ERR]; 1* perror string be£ore the colon *1

1* set up perror string *1
(void) sprint£(pstr, "%s (%s)", Progname, rname);

1* print the system message or errno *1
i£ (errno > 0 tt errno < sys_nerr) {
perror (pstr);

8-10 Example of Internationalized Software

}

else {

}

}

(void) fprintf(stderr. "%s: errno %d\n". pstr. errno)j

/*
**
** errorO
**
** description:
** display error message on stderr and leave if fatal
** get message from a message catalog (catgets(3c»
**
** assumptions:
** all errors go to stderr
**
** global variables:
** Progname: char pointer to the program name
** Message: array of char pointers to format string messages
** Catd: message catalog descriptor

**
** return value:
** no return value
**

/* VARARGS 2 */

static void
errore fatal. num. va_alist)
int fatalj /* Warning or Fatal error */
int numj /* message number */
va_dcl /* optional arguments */
{

register char *fmtj /* points to format string */
va_list argsj /* points to optional argument list */

/* set up the optional argument list */
va_start(args)j

/* sync stdout vith stderr */
if (fflush(stdout) == EOF) {
Perror("fflush")j

}

/* get the message format string */
fmt = catgets(Catd. BL_SETB. num. Message[num-l])j

Example of Internationalized Software 8-11

8

8

}

1* print the program name on stderr *1
ir (rprintr(stderr, "%s: ", Progname) < 0) {
Perror ("rprintrII) ;

}

1* print the error message on stderr *1
ir (vfprintr(stderr, rmt, args) < 0) {

Perror("vfprintr");
}

1* close dovn the optional argument list *1
va_end(args);

1* leave ir a ratal error *1
ir (ratal) {

(void) rinish();
ir (rclose(Input)
Perror("rclose");

}

exit(BAD);
}

EOF) {

1*
**
** get_basename()
**
** description:
** get the basename or the command
**
** assumptions:
** the command name may have multi-byte characters
**
** return value:
** ptr to start or base name

**
*1

static char *
get_basename(p)
char *p; 1* ptr to start or command name *1
{

char *slash; 1* pointer to char arter slash *1

ror (slash = p ; *p ; ADVANCE(p» {
ir (CHARAT(p) == 'I') {

}

}

slash = p + 1;

8-12 Example of Internationalized Software

return slashj
}

1*
**
** rtl_termO

**
** description:
** right-to-Ieft terminal
** If right-to-Ieft terminal get primary and secondary status
** and see ghat the mode of order to the terminal is.

**
** assumptions:
** only a hp150 or hp2392 can be a right-to-Ieft terminal
** TERM set to reflect the terminal type.

**
** return value:
** TRUE if right-to-Ieft terminal
** FALSE if not right-to-Ieft terminal

**
*1

static int
rtl_term(term~ode, term_order, term)
nl_mode *term-modej 1* mode of terminal *1
nl_order *term-orderj 1* order of terminal *1
char **termj 1* terminal name *1
{

char buf[MAI_TBUF]j 1* buffer for terminal information *1
struct termio tbufj 1* buffer for termio structure *1
struct termio tbufsavej 1* save old info *1

1* assume right-to-Ieft terminal is hp150 or hp2392 *1
*term = getenv("TERM")j
if (strncmp(*term, "hp150", 5) tt strncmp(*term, "hp2392", 6» {
return FALSE j

}

1* fetch t save current status of terminal driver *1
if (ioctlC 1, TCGETA, ttbuf) == -1) {
Perror("ioctl")j
return FALSE j

}

tbufsave = tbufj

1* turn off echo to prevent status bytes from appearing
on screen *1

tbuf.c_Iflag t= -ECHOj

Example of Internationalized Software 8·13

B

8

1* set status o£ terminal driver with echo o££ *1
i£ (ioctl(1, TCSETAF, ttbu£) == -1) {
Perror("ioctl");
return FALSE;

}

1* turn o££ handshaking (G t H straps on) *1
i£ (£puts(on_straps, stdout) == EOF) {
Perror("£puts");
return FALSE;

}

1* get alpha-numeric capabilities: ordering is byte 2, bit 4 *1
i£ (£puts(an_cap, stdout) == EOF) {
Perror("£puts");
return FALSE;

}

i£ (! £gets(buI, MAX_TBUF, stdin» {
Perror("£gets");
return FALSE;

}

*te~order = (bu£[D1SPLAY] t ORDER) ? IL_KEY IL_SCREEI;

1* get secondary status: mode is byte 13, bit 3 *1
i£ (£puts(sec_status, stdout) == EOF) {
Perror("£puts");
return FALSE;

}

i£ (! £gets(buI, MAX_TBUF, stdin» {
Perror("£gets");
return FALSE;

}

*te~mode = (bu£[RTL_SEC] t MODE) ? IL_IOILAT11 IL_LATII;

1* turn on D1 handshaking (G t H straps o££) *1
i£ (£puts(o££_straps, stdout) == EOF) {
Perror("£puts");
return FALSE;

}

1* restore status o£ terminal driver *1
i£ (ioctl(1, TCSETAF, ttbu£save) == -1) {
Perror("ioctl");
return FALSE;

}

return TRUE;
}

8-14 Example of Internationalized Software

Makefile Example
FIIDHSG
GEICAT
LIlT
RH

CFLAGS
LDFLAGS
IFLAGS
LIBS

SOURCE
OBJECT

all:

rtlcat:

rtlcat.cat:

/usr/bin/findmsg
/usr/bin/gencat
/usr/bin/lint
/bin/rm

-s

rtlcat.c
rtlcat.o

rtlcat rtlcat.cat

$ (OBJECT)
$(CC) -0 $@ $(OBJECT) $(LDFLAGS) $(LIBS)

rtlcat.msg

IL_SETI defined once in the first source file or
IL_SETI defined with different values for each source file

rtlcat.msg: $ (SOURCE)
$(FIIDMSG) $(SOURCE) > $@

.msg.cat:
$(GEICAT) $*.cat $*.msg

.c.o:
$(CC) -c $(CFLAGS) $(IFLAGS) $<

lint: $ (SOURCE)
$(LIIT) -u $(CFLAGS) $(IFLAGS) $(SOURCE) > lint

clean:
$(RM) -f *.0 *.msg lint

clobber: clean
$(RM) -f rtlcat *.cat

.SUFFIXES: .cat .msg

Example of Internationalized Software B-15

B

c
NLS References

This appendix provides two tables for NLS routines:

• The first table (Table C-l) is an alphabetical HP- UX Reference entry list
along with routines associated with each.

• The second table (Table C-2) is an alphabetical listing of current NLS library
routines with their associated entry in the HP- UX Reference along with a
description of the routine's purpose.

This appendix provides one table of NLS commands:

• The third table (Table C-3) is an alphabetical listing of NLS commands,
along with a brief description of each.

NLS References C-1

C

c
Table C-1. HP-UX Reference NLS Entries

HP-UX Reference Description Associated Routines
Entry

catgets(3C) Gets a program message.

catopen(3C) Open (catopen) and close catopen, catclose
(catclose) a message
catalog for reading.

ctime(3C) Convert date and time to ctime, localtime, gmtime,
string. mktime, difftime, asctime,

timezone, daylight, tzname,
tzset,nl_ctime,nl_cxtime,
nl_asctime,nl_ascxtime

ctype(3C) Classify character-coded isalpha, isupper, islower,
integer values according to isdigit, isxdigit, isalnum,
the rules of the coded isspace, ispunct, isprint,
character set. isgraph, iscntrl, isascii

ecvt(3C) Convert floating-point ecvt, fcvt,gcvt, nl_gcvt
number to a string.

environ(5) The user environment and
environment variables.

fgetws(3C) Get a wide character string
from a stream file.

findmsg(l) Create message catalog file findmsg,dumpmsg
for modification.

findstr(l) Find strings for inclusion
in message catalogs.

forder(l) Convert file data order.

fputws(3C) Put a wide character string
on a stream file.

gencat(l) Generate a formatted
message catalog file.

C-2 NLS References

C
Table C-1. HP-UX Reference NLS Entries (continued)

HP-UX Reference Description Associated Routines
Entry

getc(l) Get character or word from getchar, fgetc,getw
a stream file.

gets(l) Get a string from a stream. fgets

getwc(3C) Get a wide character from getwchar,fgetwc
a stream file.

hpnls(5) HP Native Language
Support (NLS) Model.

iconv(1) Code set conversion
command.

iconv(3C) Code set conversion iconvsize, iconvopen,
routines. iconvclose, iconvlock, ICONV,

ICONV1, ICONV2

insertmsg(l) Use findstr(l) output to
insert calls to catgets.

lang(5) Description of supported
languages.

langinfo(5) Language information
constants.

locale(l) Display current locale
environment.

localeconv(3C) Query the numeric
formatting conventions of
the current locale.

localedef(lM) Create or dump
locale. inf locales.

NLS References C-3

c
Table C-1. HP-UX Reference NLS Entries (continued)

HP-UX Reference Description Associated Routines
Entry

m ultibyte (3C) Multibyte characters and mblen,mbtowc,mbstowcs,
strings conversions. wctomb,wcstombs

nLlanginJo(3C) Language information.

nLtools-16(3C) Tools to process 16-bit firstof2, secof2, byte_status,
characters. c_colwidth,FIRSTof2, SECof2,

BYTE_STATUS, C_COLWIDTH,
CHARAT,ADVANCE, CHARADV,
WCHAR, WCHARADV,PCHAR,
PCHARADV

nljust(l) Justify lines, left or right,
for printing.

nlsinJo(l) Display native language
support information.

printJ(3C) Print formatted output. printf,nl_printf, fprintf,
nl_fprintf, sprintf,
nl_sprintf

putwc(3C) Put a wide character on a putwchar, fputwc
stream file.

setlocale(3C) Set and get the locale of a setlocale, getlocale
program.

strftime (3C) Convert date and time to
string.

string(3C) Character string strcat, strncat, strcmp,
operations. strncmp, strcpy, strncpy,

strdup, strlen, strchr,
strrchr, strpbrk, strspn,
strcspn, strstr, strtok,
strcoll, strxfrm,nl_strcmp,
nl_strncmp

C-4 NLS References

C
Table C-1. HP-UX Reference NLS Entries (continued)

HP-UX Reference Description Associated Routines
Entry

strord(3C) Convert string data order.

strtod(3C) Convert string to strtod, atof,nl_strtod,
double-precision number. nl_atof

ungetwc(3C) Push a wide character back
into an input stream.

wconv(3C) Translate wide characters. towupper ,towlower

wcsftime(3C) Convert date and time to
wide character string.

wcstod(3C) Convert wide character
string to double-precision
number.

wcstol(3C) Convert wide character wcstoul
string to long integer.

wctype(3C) Classify wide characters. iswalpha, iswupper, iswlower,
iswdigit, iswxdigit, iswalnum,
iswspace, iswpunct, iswprint,
iswgraph, iswcntrl, iswctype

NLS References C-5

c
Table C-2. NLS Library Routines

Routine HP-UX Description
Reference Entry

atof (consi char *siring) strtod(3C) Converts a string to a double.

byte_status (ini c, int nLtools_16(3C) Indicates if c is a one-byte character,
laststatus) first byte of a two-byte character, or

second byte of a two-byte character.

catopen(canst char catopen(3C) Opens a message catalog and returns a
*name, int ofiag) catalog descriptor. name specifies the

name of the message catalog being
opened. [ofiag is reserved for future use
and should be set to 0 (zero).]

catclose(nLcatd catd) catopen(3C) Closes message catalog catd.

catgets (nLcatd catd, int catgets(3C) Reads message msg_num in set
seLnum, int msg_num, seLnum from the message catalog
const char *dei_str) identified by catd, a catalog descriptor

returned from a previous call to
catopen(3C). dei_str points to a default
message string returned by catgets if
the call fails.

C_COLWIDTH(int c) nLtools_16(3C) Takes c, which is assumed to be either
a one-byte character or the first byte of
a two-byte character, and returns the
number of columns the character would
occupy on a terminal display.

fgetwc(FILE *stream) getwc(3C) Returns the next character from the
named input stream, converts that to
the corresponding wide character and
moves the file pointer ahead one
character in stream. fgetwc 0 is
defined only as a function.

C-& NLS References

Table C-2. NLS Library Routines (continued)

Routine HP-UX
Reference Entry

fgetws(wchar_t *ws, int fgetws(3C)
n, FILE *stream)

FIRSTof2(int c) nLtools_16(3C)

fprintf (FILE *stream, printf(3C)
const char *format, 1*
[arg,] *1 ...)

fputws(const wchar_t fputws(3C)
*ws, FILE *stream)

fscanf (FILE *stream, scanf(3C)
const char *format, 1*
[pointer ,] *1 ...)

gcvt (double value, ecvt(3C)
sizet ndigit, char *buf)

Description

Reads characters from the stream,
converts them into corresponding wide
characters and places them into the
array pointed to by ws, until n-l
characters are read, a new-line is read
and transferred to ws, or an end-of-file
condition is encountered. The wide
string is then terminated with a null
wide character.

Returns a non-zero value if c can be
the first byte of a two-byte character
according to the NLS environment
loaded, and zero if it cannot.

Places output in the named output
stream. Converts, formats, and prints
its [args] under control of the format.

Writes a character string corresponding
to the null-terminated, wide-character
string pointed to by ws to the named
output stream, but does not append a
new-line character or a terminating
null character.

Reads characters from the stream.
Interprets them according to the
control string format argument, and
stores the results in its [pointer]
arguments.

Converts value into a null-terminated
string in the array pointed to by buf
with ndigit significant digits, and
returns buf.

NLS References C-7

C

c
Table C-2. NLS Library Routines (continued)

Routine HP-UX Description
Reference Entry

getwc(FILE *stream) getwc(3C) Returns the next character from the
named input stream, converts that to
the corresponding wide character and
moves the file pointer ahead one
character in stream. getwc () is defined
both as a macro and a function.

getwchar(void) getwc(3C) Is defined as getwc(stdin), so it is
both a macro and a function.

isalnum(int c) ctype(3C) Indicates if c is alphanumeric (letters
or digits). Defined for range -1(EOF)
to 255.

isalpha(int c) ctype(3C) Indicates if c is a letter. Defined for
range -l(EOF) to 255.

isascii (int c) ctype(3C) Indicates if c is any ASCII character
code between 0 and 0177, inclusive.
Defined on all integer values.

iscntrl (int c) ctype(3C) Indicates if c is a control character (in
ASCII: character codes less than 040
and the delete character (0177)).
Defined for range -1(EOF) to 255.

isdigit(int c) ctype(3C) Indicates if c is a digit. (in ASCII:
characters [0-9]) Defined for range
-1(EOF) to 255.

isgraph(int c) ctype(3C) Indicates if c is a visible character.
Defined for range -1(EOF) to 255.

islower(int c) ctype(3C) Indicates if c is a lowercase alphabetic
character. Defined for range -1(EOF)
to 255.

isprint (int c) ctype(3C) Indicates if c is a printing character.
Defined for range -l(EOF) to 255.

c-a NLS References

e
Table C-2. NLS Library Routines (continued)

Routine HP-UX Description
Reference Entry

ispunct (int e) ctype(3C) Indicates if e is a punctuation
character (in ASCII: any printing
character except the space character
(040), digits, letters). Defined for range
-l(EOF) to 255.

isspace(int e) ctype(3C) Indicates if e is a character that creates
"white space" in displayed test (in
ASCII: space, tab, carriage return,
new-line, vertical tab, and form-feed).
Defined for range -l(EOF) to 255.

isupper(int e) ctype(3C) Indicates if e is an uppercase
alphabetic character. Defined -l(EOF)
to 255.

isxdigi t (int e) ctype(3C) Indicates if e is a hexadecimal digit (in
ASCII: characters [0-9], [A-F] or [a-f]).
Defined for range -l(EOF) to 255.

iswalnum(winLt we) wetype(3C) Indicates if we is an alphanumeric
(letters or digits).

iswalpha(winLt we) wctype(3C) Indicates if we is a letter.

iswdigit(winLt we) wctype(3C) Indicates if we is a decimal digit (in
ASCII: characters [0-9]).

iswcntrl(winLt we) wctype(3C) Indicates if we is a control character (in
ASCII: character codes less than 040
and the delete character (0177)).

iswctype(winLt wctype(3C) Indicates if we has the property defined
we, wetypet prop) by prop.

iswgraph(winLt we) wetype(3C) Indicates if we is a visible character (in
ASCII: printing characters, excluding
the space character (040)).

NLS References e-g

c
Table C-2. NLS Library Routines (continued)

Routine HP-UX Description
Reference Entry

iswlower(winLt we) wctype(3C) Indicates if we is a lowercase letter.

iswprint(winLt we) wctype(3C) Indicates if we is a printing character.

iswpunct(winLt we) wetype(3C) Indicates if we is a punctuation
character (in ASCII: any printing
character except the space character
(040), digits, letter.

iswspace(winLt we) wctype(3C) Indicates if we is a character that
creates "white space" in displayed text
(in ASCII: space, tab, carriage return,
new-line, vertical tab, and form-feed).

iswupper(winLt we) wetype(3C) Indicates if we is an uppercase letter.

iswxdigit(winLt we) wctype(3C) Indicates if we is a hexadecimal digit
(in ASCII: characters [0-9], [A-F], or
[a-f]).

mblen(eonst char multibyte (3C) Determines the number of bytes in the
*s,sizet n) multi-byte character pointed to by s.

mbtowc(wchar_t m ultibyte (3C) Determines the number of bytes in the
*pwe, eonst char multi-byte character pointed to by s,
*s,sizet n) determines the code for the value of

type wehar_t corresponding to that
multibyte character, and then stores
the result in the object pointed to by
pwe.

mbstowcs(wehar_t m ultibyte (3C) Converts a sequence of multi-byte
*pwes J eonst char characters from the array pointed to by
*s J sizet n) s into a sequence of corresponding

codes and stores these codes into the
array pointed toby pwes, stopping after
either n codes or a code with value zero
(a converted null character) is stored.

C-10 NLS References

C
Table C-2. NLS Library Routines (continued)

Routine HP-UX Description
Reference Entry

nl_langinfo (nLitem /anginfo(3C) Returns a pointer to a null-terminated
item) string containing information relevant

to a particular language or cultural
area defined in the program's locale
(see setlocale(3C)). The manifest
constant names and values of item are
defined in 1 anginf0 .h.

sprintf (char *s, const printf(3C) Places "output", followed by the null
char *format, 1* character (\0), in consecutive bytes
[arg,] *1 ...) starting at *s. [It is the user's

responsibility to ensure that enough
storage is available.] Converts, formats,
and prints its [arg] s under control of
the format.

sscanf (const char *s, scanf(3C) Reads characters from the character
const char *format, 1* string s. Interprets them according to
[pointer,] *1 ...) the control string format argument,

and stores the results in its [pointer]
arguments.

SECof2(int c) nLtoo/s-16(3C) Takes a byte c and returns a non-zero
value if it can be the second byte of a
two-byte character according to the
loaded NLS environment, and zero if it
cannot.

setlocale(category, setloca/e(3C) Sets the program environment for the
locale) specified category according to the

language definition table for the
specified locale.

strcoll(const char string(3C) Compares two strings, indicating if sl

*sl " const char *s2) is less than, greater than, or equal to
s2, according to the collating sequence
for the user's language.

NLS References C-11

c
Table C-2. NLS Library Routines (continued)

Routine HP-UX Description
Reference Entry

strftime(char *s, strftime (3C) Converts contents of a tm structure to
siZLt maxsize, const a formatted date and time string.
char *format, const Places characters into the array
struct tm *timeptr) pointed to by s as controlled by the

string pointed to by format. No more
than maxsize characters are placed into
the array. The appropriate characters
are determined by the program's locale,
by the values in the structure pointed
to by timeptr, and by the TZ (time
zone) environment variable.

strord(char *sl , const strord(3C) Converts the order of characters in sl
char *s2 , nL mode m) from screen to keyboard order or vice

versa and places the result in sl . The
arguments sl and s2 point to strings.
The conversion is based on mode
information indicated by the argument
m.

strtod(const char strtod(3C) Returns, as a double-precision
*str, char **ptr) floating-point number, the value

represented by the character string
pointed to by str. The string is
scanned (leading white-space characters
as defined by isspace are ignored) up
to the first unrecognized character. If
the value of ptr is not (char **) NULL ,
the variable to which it points is set to
point at the character after the last
number, if any, that was recognized. If
no number can be formed, *ptr is set
to str, and zero is returned.

C-12 NLS References

C
Table C-2. NLS Library Routines (continued)

Routine HP-UX Description
Reference Entry

strxfrrn(char *sl, const string(3C) Transforms the string pointed to by s2
char *s2, size_t n) and places the resulting string into the

array pointed to by sl. The
transformation is such that if the
strcrnpO function is applied to two
transformed strings, it returns a value
greater than, equal to, or less than
zero, corresponding to the result of the
strcoll () function applied to the
same two original strings. No more
than n bytes are placed into the
resulting string, including the
terminating null character.

tolower(int c) conv(3C) Returns the corresponding lowercase
letter if c points to an uppercase letter;
otherwise returns c unaltered.

toupper(int c) conv(3C) Returns the corresponding uppercase
letter if c points to a lowercase letter;
otherwise returns c unaltered.

towlower(winLt we) wconv(3C) Has as domain a winLt, the value of
which is representable as a wchar _t or
the value WEOF. Returns the
corresponding lowercase letter if we
points to an uppercase letter; otherwise
returns we unaltered.

towupper(winLt we) wconv(3C) Has as domain a win L t, the value of
which is representable as a wchar _ t or
the value WEOF. Returns the
corresponding uppercase letter if we
points to a lowercase letter; otherwise
returns we unaltered.

NLS References C-13

c
Table C-2. NLS Library Routines (continued)

Routine HP-UX Description
Reference Entry

wcstombs(char *s, const multibyte(3C) Converts a sequence of codes
wchar_t *pwcs, size_t n) corresponding to multibyte characters

from the array pointed to by pwcs into
a sequence of multibyte characters and
stores them into the array pointed to
by s, stopping if a multibyte character
exceeds the limit of n total bytes or if a
null character is stored.

wctomb (char *8, wchar_t multibyte(3C) Determines the number of bytes needed
wchar) to represent the multi-byte character

corresponding to the code whose value
is wchar and stores the multibyte
character representation in the array
object pointed to by s.

C-14 NLS References

C
Table C-3. NLS Commands

Command Description

dumpmsg Extracts messages and set declarations from a message catalog
and writes then to standard out.

findmsg Examines C source files and writes to standard output strings
embedded in catgets 0 calls and strings tagged with the
comment 1* catgets *1

findstr Examines C source files for double quoted strings, writing the
strings and additional information to standard output; the form
of the information is suitable as input to insertmsg.

forder Converts the order of character in a file from screen order to
keyboard order or from keyboard order to screen order.

gencat Creates a message catalog from one or more message catalog
source files, optionally merging the new catalog with an existing
catalog.

insertmsg Replaces double-quoted strings with catgets 0 calls in a C
program source file.

nljust Formats data with a right-to-Ieft orientation for printing. (Used
with the command pr and Ip).

NLS References C-15

D
Previous Usage

NLS is a relatively new technology. As a result of its recent introduction into
the UNIX industry, it is still in the process of development and refinement.
Industry-wide standards have not been firmly established, and thus there are
different implementations of NLS.

In keeping with HP-UX's standardization efforts, HP-UX has undergone some
changes. Some routines that HP-UX offers are HP-UX specific. Other NLS
interfaces are specified by different standards (X/Open, POSIX). The HP-UX
specific routines are currently supported, but will be withdrawn at some time
in the future. Use of the standard interfaces is recommended instead.

Previous Usage 0-1

D

Obsolete Routines

Obsolete routines have replacements that will provide similar or related
functionality. About half of the obsolete routines have an equivalent

D replacement; the only difference is the name of the routine. However, the
remaining routines do not have an equivalent replacement; instead, several
routines may need to be called or the parameter list may be slightly different.
Table D-llists these obsolete routines and their replacements.

Table 0-1. Obsolete Routines and Recommended Replacements

Obsolete Recommended Man Page Notes
Routine Routine Reference

buildlang localedef localedef(IM) no 1-1 replacement

catgetmsg catgets catgets(3C) no 1-1 replacement

catread catgets catgets(3C) no 1-1 replacement

currlangid none no longer needed

fprintmsg fprintf printf(3C)

getmsg catgets getmsg(3C) No 1-1 replacement. Removed
from lih.c due to name conflict
with Streams.

ICONV iconv iconv(3C) XPG4 interface coming

iconvclose iconv_close iconv(3C) XPG4 interface coming

iconvlock none iconv(3C)

iconvopen iconv_open iconv(3C) XPG4 interface coming

iconvsize none iconv(3C)

idtolang none no longer needed

langid none no longer needed

langinfo nl_langinfo nLlanginfo(3C)

langinit setlocale setlocale(3C)

0-2 Previous Usage

Table D-1.
Obsolete Routines and Recommended Replacements (continued)

Obsolete Recommended Man Page Notes
Routine Routine Reference

D
langtoid none no longer needed

msgbuf.h non-standard

n-computer C or POSIX lang(5) language name

nl_asctime strftime strftime (3C)

nl_ascxtime strftime strftime (3C)

nl_atof atof strtod(3C)

nl_catopen catopen catopen(3C)

nl_ctime strftime strftime(3C)

nl_cxtime strftime strftime (3C)

nl_fprintf fprintf string(3C)

nl_fscanf fscanf scanf(3S)

nl_gcvt gcvt ecvt(3C)

nl_init setlocale setlocale(3C)

nl_isalnum isalnum ctype(3C)

nl_isalpha isalpha ctype(3C)

nl_iscntrl iscntrl ctype(3C)

nl_isdigit isdigit ctype(3C)

nl_isgraph isgraph ctype(3C)

nl_islower islower ctype(3C)

nl_isprint isprint ctype(3C)

nl_ispunct ispunct ctype(3C)

Previous Usage D-3

Table D·1.
Obsolete Routines and Recommended Replacements (continued)

Obsolete Reconunended Man Page Notes

D
Routine Routine Reference

nl_isspace isspace ctype(3C)

nl_isupper isupper ctype(3C)

nl_isxdigit isxdigit ctype(3C)

nl_msg catgets catgets(3C)

nl_printf printf printf(3S)

nl_scanf scanf scanf(3S)

nl_sprintf sprintf printf(3S)

nl_sscanf sscanf scanf(3S)

nl_strcmp strcoll string (3C)

nl_strncmp strcoll string(3C) no 1-1 replacement

nl_strtod strtod strtod(3C)

nl_tolower tolower conv(3C)

nl_toupper toupper conv(3C)

nlsinfo locale locale(1) no 1-1 replacement

printmsg printf printf(3S)

sprintmsg sprintf printf(3S)

strcmp8 strcoll string(3C)

strcmp16 strcoll string(3C)

strncmp8 strcoll string (3C) no 1-1 replacement

strncmp16 strcoll string(3C) no 1-1 replacement

D·4 Previous Usage

Proprietary Commands and Interfaces
Table D-2 and Table D-3 list some NLS routines that exist only on HP-UX
systems. These routines may be obsoleted over time as standard commands
and interfaces emerge. Usage of these utilities and routines in applications may D
not be portable to other vendor's platforms.

Table D·2. Proprietary Commands

Utility Man Page
Name Reference

dumpmsg findmsg(l)

findmsg findmsg(l)

findstr findstr(l)

forder forder(l)

insertmsg insertmsg(l)

nljust nljust(l)

Previous Usage D·5

WPI should be used instead of the library calls listed in Table D-3.

Table D-3. Proprietary Library Calls

D Utility Man Page
Name Reference

ADVANCE nLtoolL16(3C)

advance nLtoolL16(3C)

BYTE_STATUS nLtoolL16(3C)

byte_status nLtoolL16(3C)

C_COLWIDTH nLtoolL16(3C)

c_colwidth nLtools_16(3C)

CHARADV nLtoolL16(3C)

CHARAT nLtoolL16(3C)

FIRSTOF2 nLtoolL16(3C)

firstof2 nLtools_16(3C)

PCHAR nLtoolL16(3C)

getlocale setlocale(3C)

ICONVl iconv(3C)

ICONV2 iconv(3C)

PCHARADV nLtools_16(3C)

SECOF2 nLtools_16(3C)

secof2 nLtools_16(3C)

strord strord(3C)

WCHAR nLtools_16(3C)

WCHARADV nL tools_16 (3C)

D-6 Previous Usage

E
Languages and Codesets

Following are native languages and the HP codesets that support them. Simply
find the language (or country) that you are interested in. The appropriate LANG E
environment variable is in the second column.

Note We recommend the use of ISO 8859 codesets for new
applications or applications that require a high degree of
portability. These codesets are based on a widely accepted
industry standard.

Languages and Codesets E·1

Table E-1. Language Codesets

lang-id LANG= Language Codeset

0 n-computer American English

101 american.iso88591 American English ISO 8859-1
1 american American English ROMAN8

51 arabic Arabic ARABIC8
52 arabic-w Western Arabic ARABIC8
301 arabic.iso88596 Arabic ISO 8859-6

E 181 bulgarian Bulgarian ISO 8859-5
99 C Computer

102 c-french.iso88591 French Canadian ISO 8859-1
2 c-french French Canadian ROMAN8

201 chinese-s Simplified Chinese PRC15
211 chinese-t Traditional Chinese ROC15
212 chinese-t.big5 Traditional Chinese BIG5

142 czech Czechoslovakian ISO 8859-2
103 danish.iso88591 Danish ISO 8859-1
3 danish Danish ROMAN8

104 dutch.iso88591 Dutch ISO 8859-1
4 dutch Dutch ROMAN8

105 english.iso88591 English ISO 8859-1

5 english English ROMAN8
106 finnish.iso88591 Finnish ISO 8859-1

6 finnish Finnish ROMAN8
107 french.iso88591 French ISO 8859-1

7 french French ROMAN8
108 german.iso88591 German ISO 8859-1

8 german German ROMAN8
61 greek Greek GREEK8

321 greek.iso88597 Greek ISO 8859-7

71 hebrew Hebrew HEBREW8
341 hebrew.iso88598 Hebrew ISO 8859-8
143 hungarian Hungarian ISO 8859-2

E-2 Languages and Codesets

Table E-1. Language Codesets (continued)

lang-id LANG= Language Codeset

114 icelandic.iso88591 Icelandic ISO 8859-1
14 icelandic Icelandic ROMAN8

109 italian.iso88591 Italian ISO 8859-1
9 italian Italian ROMAN8

222 japanese.euc Japanese JAPANEUC

221 japanese Japanese JAPAN15

41 katakana Katakana KANA8 E

231 korean Korean KOREA15
110 norwegian.iso88591 Norwegian ISO 8859-1

10 norwegian Norwegian ROMAN8

144 polish Polish ISO 8859-2

111 portuguese.iso88591 Portuguese ISO 8859-1

11 portuguese Portuguese ROMAN8

100 POSIX POSIX default

145 rumanian Rumanian ISO 8859-2
180 russian Russian ISO 8859-5

146 serbocroatian Ser bo-Croatian ISO 8859-2
148 slovene Slavic (Slovenia) ISO 8859-2

112 spanish.iso88591 Spanish ISO 8859-1

12 spanish Spanish ROMAN8

113 swedish.iso88591 Swedish ISO 8859-1
13 swedish Swedish ROMAN8

91 thai Thai THAI8

81 turkish Turkish TURKISH8

361 turkish.iso88599 Turkish ISO 8859-9

Languages and Codesets E-3

0 @ P

1 A a a

" 2 B R b
E

3 C S c
4 0 T d

5 E U e ·0

6 F V f

7 G W 9

8 H X h

9 I y 1

J Z j

K [k

12 FF FS < L \
13 CR GS - = M m

14 So RS > N A n

SI US ? 0

Figure E-1. Roman8 Coded Character Set

E-4 Languages and Codesets

Displaying Character Sets on Your Terminal

You can display a table of one-byte characters supported on a particular device
by directing the output of this program to that device.

#include <stdio.h>
main 0
{

}

int c1,c2,pchar;
printf(" \\ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15\n");

for (c1=0; c1<16; c1++){

}

printf("%3d ",c1);
for (c2=0; c2<16; c2++){

pchar=«(c2*16+c1)tOx7f»31)?(c2*16+c1):' ';
printf("%c ",pchar);

}

printf("\n");

Languages and Codesets E-5

E

F
LC_COLLATE Example for Spanish

##################################

Set up the LC_COLLATE category

LC_COLLATE
modifier "fold"
collating-element
collating-element
collating-element
collating-element
collating-element
collating-element
collating-element
collating-element

order_start , , , ,
\xaO \xaO
'0' '0'

'9' '9'
'A' 'A' j 'A'
\xd3 'A' j "AE"
'a' 'A' j 'a'
\xd7 'A' j"ae"
\xeO 'A' j\xeO
\xc4 'A' j\xc4
\xal 'A' j\xal
\xc8 'A' j\xc8
\xa2 'A' j\xa2
\xcO 'A' j\xcO
\xd8 'A' ;\xd8
\xcc 'A' j\xcc
\xdO 'A' ;\xdO
\xd4 'A' j\xd4
\xel 'A' ;\xel
\xe2 'A'; \xe2
'B' 'B'; 'B'
'b' 'B'; 'b'

<CH> from "CH"
<Ch> from "Ch"
<cH> from "cH"
<ch> from "ch"
<11> from "11"
<11> from "Ll"
<11> from "11"
<11> from "II"

LC_COLLATE Example for Spanish F-1

F

F

'C' 'C'; 'C'
'c' 'C'; 'c'
\xb4 'C' j\xb4
\xb5 'C'j\xb5
<CH> <CH>j<CH>
<Ch> <CH>j<Ch>
<cH> <CH>j<cH>
<ch> <CH>j<ch>
'D' 'D'j'D'
'd' 'D' j 'd'
\xe3 'D' j \xe3
\xe4 'D' j\xe4
'E' 'E'i 'E'
'e' 'E'; 'e'
\xdc 'E' j\xdc
\xc5 'E' j \xc5
\xa3 'E' j \xa3
\xc9 'E' j \xc9
\xa4 'E' j\xa4
\xcl 'E'j\xcl
\xa5 'E'; \xa5
\xcd 'E' j \xcd
'F' 'F' j 'F'

'f' 'F'; 'f'
'G' 'G' j 'G'
'g' 'G' j 'g'
'H' 'H'; 'H'
'h' 'H'j'h'
'I' '1'; 'I'
'i' '1'; 'i'
\xe5 'I'j\xe5
\xd5 '1' j\xd5
\xe6 'I';\xe6
\xd9 '1' j\xd9
\xa6 'I' j \xa6
\xdl '1' j \xdl
\xa7 '1' j \xa7
\xdd '1' j\xdd
'J' 'J'; 'J'
'j' 'J' j 'j'
'I' 'l'j'I'
'k' 'I'j'k'

'L' 'L' j 'L'
'1' 'L'; '1'
<LL> <11> j <LL>
<L1> <11> j <L1>
<11> <11> j <11>
<11> <11> j <11>
'II' 'lI'j'II'

F-2 LC_COLLATE Example for Spanish

'm' 'M';'m'
'II' 'B" ; 'B"

'n' 'B" ; 'n'
\xb6 \xb6;\xb6
\xb7 \xb6;\xb7
'0' '0'; '0'

'0' '0'; '0'
\xe7 '0' ;\xe7
\xe6 '0';\xe6
\xe8 '0' ;\xe8
\xea 'O';\xea
\xdf 'O';\xdf
\xe2 '0' ;\xe2
\xda '0' ;\xda
\xee '0' j\xee
\xe9 '0' ;\xe9
\xea 'O';\xea
\xd2 '0'j\xd2
\xd6 '0' ;\xd6

'P' 'P' j 'P'

'p' 'P'; 'p'
'Q' 'Q' j 'Q'

'q' 'Q'; 'q'
'R' 'R' ;'R'

'r' 'R'; 'r'
'S' 'S'; 'S'
\xde 'S'j"SS"

'8' 'S'; '8'
\xeb 'S'i\xeb
\xee 'S';\xee
'T' 'T'; 'T'

't' 'T'; 't'
'U' 'U'; 'U'
'u' 'U';'U'
\xed 'U'; \xed
\xe7 'U' j \xe7
\xad 'U'; \xad
\xeb 'U' j\xeb
\xae 'U'; \xae
\xe3 'U' j \xe3
\xdb 'U' ;\xdb
\xef 'U' ;\xef
'V' 'V'; 'V'

'V' 'V' j 'V'
'V' 'V'j'V'

'V' 'V';'v'
'1' '1'; '1'
'x' '1' j 'x'
'V' 'Y'; 'V'

F

LC_COLLATE Example for Spanish F-3

F

'y' 'v' j 'y'
\xee 'Y'j\xee

\xe:f 'Y' j \xe:f

'Z' 'Z' j 'Z'
'z' 'Z' j 'z'
\x:fO \x:fO j \x:fO

\x:fi \x:fO j \x:fi
\xbi \xbi
\xb2 \xb2
\x:f2 \x:f2

\x:f3\x:f3
\x:f4 \x:f4
\x:fS \x:fS
, (' '('
')' ')'

'[' '['

'J' 'J'
'{' '{'
,}, '}'
\x:fb \x:fb
\x:fd\x:fd
,<, ,<,
,>, ,>,

'=' '='
,+, '+'
,-, ,-,
\x:fe \x:fe
\x:f7 \x:f7
\x:f8 \x:f8
\xb3 \xb3

'%' '%'
'*' '*' , , , ,
',' ','
'j' 'j'
':' ':'
\xb9 \xb9

'7' '7'
\xb8 \xb8

'!' '!'
'I' 'I'
'\' ,\,
'I' 'I'
'@' '@'
't' 't'
'I' 'I'
\xbd \xbd

'$' '$'
\xb:f \xb:f

F-4 LC_COLLATE Example for Spanish

\xbb \xbb
\xa:f \xa:f
\xbc \xbc
\xbe \xbe
\xba \xba ,II, ,II,
,c, ,c,

'" '"

\xa8 \xa8
\xa9 \xa9
\xaa \xaa
\xab \xab
\xac \xac , , , ,
\x:f6\x:f6
\xbO \xbO
\x:f9\x:f9
\x:fa\x:fa
\x:fc \x:fc
\xO \xO
\xl \xl

\xl:f \xl:f
\x80 \x80

\x9:f \x9:f
\x7:f \x7:f
\x:f:f\x:f:f
order_end

modi:fier "no:fold"
collating-element
collating-element
collating-element
collating-element
collating-element
collating-element
collating-element
collating-element

order_start , , , ,
\xaO \xaO
'0' '0'

'9' '9'

F

<CH> :from "CH"
<Ch> :from "Ch"
<U> :from "U"
<Ll> :from "LI"
<cH> :from "cH"
<ch> :from "ch"
<lL> :from "lL"
<11> :from "II"

LC_COLLATE Example for Spanish F-5

F

'A' 'A'; 'A'
\xd3 'A'; "AE"
\xeO 'A'; \xeO
\xa1 'A'; \xa1
\xa2 'A' j \xa2
\xd8 'A' j \xd8
\xdO 'A' j \xdO
\xe1 'A' j \xe1

'B' 'B'
'C' 'C' j 'C'
\xb4 'C'; \xb4
<CH> <CH>;<CH>
<Ch> <CH> j <Ch>
'0' '0'; '0'
\xe3 'D';\xe3
'E' 'E' j'E'
\xdc 'E' j \xdc
\xa3 'E' j \xa3
\xa4 'E' j\xa4
\xaS 'E' j \xaS

'F' 'F'
'G' 'G'
'H' 'H'
'I' 'I' j 'I'
\xeS 'I' j\xeS
\xe6 'l'j\xe6
\xa6 'I' ;\xa6
\xa7 'I' j\xa7
'J' 'J'
'K' 'K'
'L' 'L'
<LL> <ll> j <LL>
<Ll> <ll> j <Ll>

'II' 'II'
'I' 'I'
\xb6 \xb6

'0' '0' j '0'
\xe7 '0'j\xe7
\xe8 '0'j\xe8
\xdf '0' j\xdf
\xda '0' j\xda
\xe9 '0' j \xe9
\xd2 '0' ;\xd2

'P' 'P'
'Q' 'Q'

'R' 'R'
'8' 'S' j '8'
\xeb '8'j\xeb

'T' 'T'

F-6 LC_COLLATE Example for Spanish

'U' 'U'j 'U'
\xed 'U' j \xed
\xad 'U' j \xad
\xae 'U' j\xae
\xdb 'U' j\xdb
'V' 'V'
'V' 'V'
'X' 'X'
'V' 'V' j 'V'
\xee 'Y'; \xee

'Z' 'Z'
\r.fO\r.fO
'a' 'a' j 'a'
\xd7 'a' ;"ae"
\xe4 'a' j\xe4
\xe8 'a' ;\xe8
\xeO 'a' j\xeO
\xee 'a' ; \xee
\xd4 'a' ;\xd4
\xe2 'a' ;\xe2

'b' 'b'
'e' 'e' j 'e'
\xb5 'e';\xb5
<eH> <eH>;<eH>
<eh> <eH>j<eh>
'd' 'd' j 'd'
\xe4 'd'; \xe4
'e' 'e' j 'e'
\xe5 'e'; \xe5
\xe9 'e';\xe9
\xei 'e' j\xei
\xed 'e';\xed

'f' 'f'
'g' 'g'
'h' 'h'
'i' 'i' j'i'
\xd5 'i'j\xd5
\xd9 'i'j\xd9
\xdi 'i' j \xdi
\xdd 'i'j\xdd
'j' 'j'

'k' 'k'
'1' '1'
<11> <11> j <11>
<11> <11>; <11>

'm' 'm'
'n' 'n'
\xb7 \xb7

'0' '0'; '0'

F

LC_COLLATE Example for Spanish F-7

F

\xc6 '0' ;\xc6
\xca '0' ;\xca
\xc2 '0' ;\xc2
\xce '0' ;\xce
\xea '0' ;\xea
\xd6 '0' ;\xd6
'p' 'p'
'q' 'q'
'r' 'r'
\xde \xde;"fiS"
, s ' \xde;' s '
\xec \xde;\xec

't' 't'
'u' 'u';'u'
\xc7 'u'; \xc7
\xcb 'u' ;\xcb
\xc3 'u' ;\xc3
\xcf 'u' ;\xcf

'V' 'V'
'w' 'w'
'X' 'X'
'y' 'y'; 'y'
\xef 'y' ;\xef
'z' 'z'
\xfi \xfi
\xbi \xbi
\xb2 \xb2
\xf2 \xf2
\xf3 \xf3
\xf4 \xf4
\xf5 \xf5
, (' ,(,
') , ') ,
, [' , [,

'] , ,] ,
'{' ,{,

'}' ,},

\xfb \xfb
\xfd\xfd
,<, ,<,
,>, ,>,
'=' '=' ,+, ,+,

\xfe \xfe

\xf7 \xf7
\xf8 \xf8
\xb3 \xb3

'Yo' 'Yo'

F-8 LC_COLLATE Example for Spanish

'*' '*' , , , ,
',' ','
';' ';'
':' ':'
\xb9 \xb9

\xb8 \xb8
, !' '!'

'I' 'I'
'\' '\'
'I' 'I'
'@' '@'
't' 't'
'I' 'I'
\xbd \xbd
'$' '$'
\xb:f \xb:f
\xbb \xbb
\xa:f \xa:f
\xbc \xbc
\xbe \xbe
\xba \xba
,II, ,II,

'" '"
'" '"
,~, ,~,

,-, ,-,
\xa8 \xa8
\xa9 \xa9
\xaa \xaa
\xab \xab
\xac \xac , , , ,
\x:f6\x:f6
\xbO \xbO
\x:f9 \x:f9
\x:fa\x:fa
\x:fc \x:fc
\xO \xO

\xl:f \xl:f
\x80 \x80

\x9:f \x9:f
\x7:f \x7:f
\x:f:f\x:f:f
order_end
KID LC_COLLATE

F

LC_COLLATE Example for Spanish F-9

Glossary

Note For additional information on terms used with HP-UX, please
see the Glossary section of the HP- UX Reference, vol. 1.

alternate character set
A code set used to represent special, ancillary characters.

application program
A program which performs a specific task for the end-user.

ARABIC8
The Hewlett-Packard supported 8-bit code set for the Arabic language.

ASCII
American Standard Code for Information Interchange. A 128-character
code set represented by 7-bit binary values. (ASCII does not define the
value of the eighth bit.) Also, referred to as USASCII.

base character set

Glossary

A code set consisting of the linguistic characters fundamental to a language.

BIG5

bit

The HP-supported 16-bit code set for BIG5 Traditional Chinese, the
language of the Republic of China.

A contraction of BInary digiT. A bit can have a value of 0 or 1.

byte
A unit of data storage consisting of 8 bits. A byte can represent one ASCII,
KANA8, GREEK8, TURKISH8, ARABIC8, or ROMAN8 character.

Glossary-1

byte redefinition
Corruption of a multi-byte character when anyone of its bytes is treated as
a 1-byte character.

C (locale)
An invented, artificial computer locale which specifies the minimal
environment for C translation. C locale is the default when natural
languages /10 cales are not installed or are not called by a program.

character
A series of one or more bytes representing a single graphic symbol or
control code.

coded character set
See code set.

code set
A set of unambiguous rules that establishes a one-to-one relationship
between each character of a character set and its byte value.

7-bit: A code set that uses seven bits to represent a collection of
Glossary characters, control codes, and the space character. A 7-bit code set allows

a maximum of 128 characters which does not accommodate international
languages. ASCII is an example of a 7-bit code set.

S-bit: A code set that uses all eight bits of a single byte to encode each
character in the code set. These code sets are designed so the range 0
through 127 are ASCII including the control codes and space character.
Non-ASCII characters appear in the range 128 through 255. (Note,
the KANA8 character set substitutes the yen symbol for the backslash
symbol, so it is not a superset of ASCII.)

multi-byte: A code set that uses two or more bytes to encode characters.
Languages such as Chinese, Japanese, and Korean require more than
256 characters, which is the maximum provided by 8-bit character
sets. Under different circumstances, 2 bytes can be interpreted as one
multi-byte value or two single-byte values.

single-byte: a 7-bit or 8-bit code set.

Glossary-2

collating sequence
The ordering sequence assigned to characters or a group of characters when
they are sorted and ordered by a computer.

command
A program which is executed by the shell command interpreter. Arguments
following the command name are passed to the command program. You can
write your own command programs, either as compiled programs or as shell
scripts (written in the shell command language).

command interpreter
A program that reads lines typed at the keyboard or from a file, and
interprets them as requests to execute other programs. The command
interpreter for HP-UX is called the shell.

comment
An expression used to document a program or routine that has no effect on
the execution of the program.

compiler
A program that translates a high-level language (source code) into a
machine-dependent form (object code or "binary").

context analysis
The process of determining the proper shape of a character based on its
position in the word. For some languages, a character can have a different
shape if it is at the start of a word, in the middle of a word, at the end of
a word, or standing alone. Currently, context analysis is defined for the
Middle Eastern and North African Arabic languages.

control character or control code
A nonprinting member of a character set that produces action in a device.
In ASCII, control characters are those in the code range 0 through 31, and
127. These values and the space character, with code value 32, are not

Glossary

used for any other purpose. Code values 128 through 160 and 255 are also
treated as control codes in some cases, except in ISO 8859 where 255 is a
valid character. Most control characters can be generated by simultaneously
pressing a displayable character key and (CTRL).

Glossary-3

data directionality
Refers to the direction text will appear on the screen; left-to-right or
righ t-to-left.

data ordering
Refers to the arrangement of data within a file, internal buffer, or during a
transfer to or from peripherals. The modes of data ordering are "keyboard
(phonetic) order" and "screen order".

default search path
The sequence of directory prefixes that sh, csh, and other HP -UX
commands apply when searching for a file known by an incomplete
path name. It is defined by PATH in environ. Log in sets PATH =
. : bin: /usr /bin, which means that your working directory is the first
directory searched, followed by /bin, followed by /usr/bin.

directionality
See data directionality.

downshifting

GI
The provision for producing lowercase letters by using the [Shift) key, or a

ossary . f h . 1 h converSIon 0 an uppercase c aracter to ItS owercase c aracter.

ECMA
The European Computer Manufacturers Association standards
organization.

encoding scheme
A set of rules for parsing a byte stream into a group of coded characters.

EUC
(Extended Unix Code) An encoding scheme defined by AT&T usa Pacific
to support multi-byte character sets. EUC comprises a primary code set
(CSO) which is 7 bit ASCII, and three supplementary code sets that can be
any character set that the user chooses. These code sets are distinguished
by the high bit of the code and the single-shift characters (SS2 and SS3).

external code
Character data that is used for system-to-system or system-to-peripheral
communications. Equivalent to transmission code.

Glossary-4

file code
Character data that the Operating Systems, subsystems, and application
software uses.

GREEKS
The Hewlett-Packard supported 8-bit code set for the Greek language.

HEBREWS
The HP-supported 8-bit code set for the Hebrew Language.

Hindi digits
An alternate representation of numbers used in some Arabic countries.
Other Arabic countries use the Latin representation of numbers.

HPS
HP proprietary implementations of several one-byte character sets. These
codes are suitable for ISO 2022 encoding.

HP15
The HP encoding scheme for multi-byte coded character sets. It is used
as file code. This encoding scheme is state independent. All code sets
which adhere to the HP15 definition use a set of bytes with the high bit Glossary
set to differentiate between 8 and 16 bit data. If the high order bit is zero,
then the byte represents a one-byte ASCII character. Otherwise, it may
represent the first byte of a two-byte character or a one-byte non-ASCII
character; this information is provided in system tables.

HP16
The HP encoding scheme for multi-byte code sets used for communicating
8 and 16-bit data between a peripheral and a computer. It is derived from
the IS 0 2022 character processing standard. This encoding scheme is state
dependent. It uses escape sequences to differentiate between single- and
multi-byte characters.

ideogram or ideograph
A pictographic symbol used to represent whole words or syllables.

internal code
Equivalent to file code.

Glossary-S

internationalization
Design and modification of products to make them localizable. For
example, modification of application programs before compilation to make
use of locale-independent library routines and to ensure that single-byte and
multi-byte data can be handled in a locale-sensitive way by hardware and
software.

IS07
International Standards Organization 7-bit character substitution, in which
the character graphics associated with some less-used ASCII codes are
changed to other characters needed for a particular language.

ISO 8859-1
ISO defined single byte code set for Latin alphabet No.1 characters,
or Latin-I. Used for most Western European languages and in many
North and South American languages. Based on Part 1 of the ISO 8859
International Standard.

ISO 8859-2
IS 0 defined single byte code set for graphic characters used in many

Glossary Eastern European countries. Based on Part 2 of the ISO 8859 International
Standard.

ISO 8859-5
ISO defined single byte code set of 191 graphic characters identified as the
Latin/Cyrillic alphabet. Based on Part 5 of the ISO 8859 International
Standard.

JAPAN15
The HP-supported 16-bit code set for the Japanese language. HP15
encoding scheme is used.

JAPANEUC
The HP-supported 16-bit code set for the Japanese language. EUC
encoding scheme is used.

KANA8
The HP-supported 8-bit code set for support of phonetic Japanese
(Katakana).

Glossary-6

Kanji
The Japanese ideographic characters based on Chinese characters. Kanji, as
Chinese, is an open character set; no one really knows how many characters
exist. The current JIS level 1 and 2 defines less than 10,000 characters.

Katakana
One of the sets of Japanese phonetic characters typically used for foreign
words in writing. The set consists of 64 characters, including punctuation.

keyboard order
Characters arranged the way they are entered from the keyboard.

KOREA15
The HP-supported 16-bit code set for the Korean language.

LANG
The HP-UX environment variable (LANGuage) that should be set to the
name of the locale corresponding to the native language to be used.

LANGOPTS
The HP-UX environment variable that defines the options for mode (Latin
or non-Latin) and data order (keyboard or screen). Glossary

language
Associated, as listed below, with computer, native, natural, programming,
or supported.

computer: An artificial language consisting of a set of characters and
rules, with specific functions for computer programming. The C language
is an example of a computer language.

native: The first language of the user. Alternatives are "national" or
"local" language.

natural: The spoken or written language used by humans.

programming: Alternative to "computer language".

supported: The computer-implemented version of a written or spoken
language. See /usr/lib/nls/config for a list of NLS-supported
languages.

Glossary-7

Latin mode
The mode where the terminal is configured so that the text display order is
from left to right.

library
A set of subroutines contained in a file that can be accessed by a user
program.

library routine
A subroutine contained in a library file used to perform a task.

literal
Computer code, displayed as it would appear in the output, or as it would
be typed in.

locale
That part of the environment of a process which contains international
data.

local environment files
Files external to the code of a software product containing locale-dependent

Glossary information such as messages, prompts, commands, icons, etc.

localizability
The attribute of a hardware or software product which allows it to be
localized through predefined steps (normally without redesign or recoding).
The outcome of the internationalization effort.

localization
The adaptation of an internationalized hardware/software system for
use in different countries or local environments.

localization center
An organization in a country or region that assists in providing software or
hardware products specifically tailored for use in that country or region.

message catalog
The external file containing prompts, responses to prompts, and error
messages that can be localized into a user's native language.

Glossary-8

message catalog system
A set of tools developed by Hewlett-Packard to extract print statements
from C programs and place them in, or retrieve them from, the message
catalog.

mode
The order in which text is displayed: Latin (left-to-right), or non-Latin
(right-to-left).

multi-bye character
See character.

n-computer (native-computer)
An invented, artificial computer locale which specifies the minimal
environment. Now replaced by the C locale.

non-Latin mode
The mode where the terminal is configured so that the text display order is
from right to left.

opposite language
When the terminal is in non-Latin mode, Latin characters are the "opposit~lossary
language" and when the terminal is in Latin, non-Latin characters are the
"opposite language". NLS allows both Latin and non-Latin characters to
appear on the same line. Opposite language characters are inserted on the
screen in the opposite direction by using an opposite language key.

order
The temporal order in which data is used: screen order (the order in which
characters are displayed) or keyboard order (the order in which the user
enters keystrokes).

path name
A sequence of directory names separated by slashes (/), and ending in any
type of file name.

phonetic order
The ordering of characters by the way they are read or spoken.

Glossary-g

PRCt5
The HP-supported 16-bit code set for Simplified Chinese, the language of
the People's Republic of China.

prelocalize; prelocalization
See internationalization.

process code
Character data that is used within a process.

radix character
The actual or implied character that separates the integer portion of a
number from the fractional portion.

ROCt5
The HP-supported 16-bit code set for Traditional Chinese, the language of
the Republic of China.

root directory

Glossary

The highest level directory of the hierarchical file system, in which other
directories are contained. In HP -UX, the "/" refers to the root directory.

routine
See library routine.

screen order
The order in which characters appear on the screen.

shell
The shell is both a command language and a programming language that
provides the user-interface to the HP-UX operating system.

shell script
A sequence of shell commands and shell programming language constructs,
usually stored in a text file, for invocation as a user command or program
by the shell.

single-byte character
A byte representing a single graphic symbol or control code.

Glossary-10

space
A blank character. In AS CII a space is represented by character code 32
(decimal).

standard input
The source of input data for a command or a program. The default
standard input is the terminal keyboard, but the shell may redirect the
standard input from a file or a pipe.

standard output
The destination of output data from a command or a program. The default
standard output is the terminal display, but the shell may redirect the
standard output to a file or a pipe.

syntax
The rules governing sentence structure in a spoken language, or statement
structure in a computer language such as that of a compiler program.

THAI8
The Hewlett-Packard supported 8-bit code set for the Thai language.

transmission code Glossary
Character data that is used for system-to-system or system-to-peripheral
communications.

TURKISH8
The HP-supported 8-bit code set for the Turkish language.

upshifting
The means by which the peripheral produces uppercase letters by using
the (Shift) key, or the conversion of a lowercase character to its uppercase
character.

USASCII
A less common name for ASCII, the American Standard Code for
Information Interchange.

variable
A storage location for data.

Glossary-11

working directory
The current directory where the user's files will be placed by default.

WPI
Worldwide Portability Interface (functions which allow programming in a
codeset independent manner). WPI is based upon the Multibyte Support
Extension (MSE) to ISO /IEe 9899-1990.

X/Open

Glossary

An international standards group dedicated to an open software standard.
The group is concerned with standards selection and adoption, using
International Standards where they exist.

Glossary-12

Index

1

16-bit interface, A-I

A

abday keyword, 5-25
abmon keyword, 5-25
accessing language tables, 6-8
activating program locale, 6-6
alpha keyword, 5-15
alt_digits keyword, 5-24
alt_punct keyword, 5-15
american locale, 5-5
am_pm keyword, 5-25
applications designer, 2-1, 2-3
array space, reserving, 6-4
ASCII character set, 2-4
atof, 6-25

B

blank keyword, 5-15
books

NLS related list, 1-8
byte redefinition, 6-12, A-3
bytes_char keyword, 5-15
byte_status, A-5
BYTE_STATUS macro, A-5

c
case, 2-6
catclose routine, 7-3, 7-8
categories in a language table, 5-7
catgets routine, 7-3, 7-7, 7-11

defaul t message, 7-8
catgetsroutine, 8-11
catopen routine, 6-6, 7-3 7-11 8-10 , , ,

8-11
C_COLWIDTH macro, A-5, A-8
character

16-bit, 2-5
8-bit, 2-5
clustered, 2-10
comparison, 2-10
conversion, 6-18, 8-2
expanded, 2-10
handling, 2-4
identify traits, 6-15, 6-23
multi-byte, 2-5, 2-11
processing, 6-13, 6-22
traits, 5-15

character handling, 2-6
character sets

7-bit, 8-bit, 16-bit, 2-5
EVC, 2-5
HP-16, 2-5
ideographic, 2-5
ISO 8859-1, 2-5
ISO 8859-2, 2-5
ISO 8859-5, 2-5
Kanji, 2-5
multi-byte, 2-5, 4-4
peripherals, for , 4-4
ROMAN8, 2-5
single-byte, 4-4

"C" locale

Index-1

Index

Index

as default, 8-11
messages, 5-3

clustered characters, 2-10
cntrl keyword, 5-15
code_scheme keyword, 5-15
.codeset, 4-2
codeset

multi-byte, A-3
codesets

codeset independent, 6-12
conversion, 8-1
HP, E-1
multi-byte, 6-12
multi-byte, programming with, A-5
support, E-1

collating-element keyword, 5-11
collating sequence, 2-10
collation

by encoded value, 5-13
order undefined, 5-13
sequence, 2-6, 2-8

commands, proprietary, D-5
comment_char, 5-9
comparing

characters, 2-10
strings, 2-10

compiling message catalogs, 7-11
concatenation

right-to-left, B-1
context keyword, 5-10
conventions

manual, 1-7
converSlOn

character, 6-18
codeset, 8-1
existing programs, 6-21
routines, 8-2, 8-5
specification %n$, 8-12
string, 6-18

conversion routines
iconv, 8-1, 8-2

Index-2

ICONV, 8-5
ICONV1, 8-5
ICONV2, 8-5

creating
a message catalog, 7-9
a message catalog system, 7-2
an internationalized application, 6-3
internationalized programs, guidelines,

6-29
crncystr keyword, 5-21
C Shell, 4-3
cswidth keyword, 5-15
ctime, 6-21
ctype(3C), 6-13, 6-23
currency, 2-7
currency_symbol keyword, 5-21

D

data
directionality, 2-11, 8-6
formatting, 8-12
integrity, 6-12, A-3
order, 8-6

data integrity, 2-4, A-5
preserving, A-9

date, 5-5
date. cat message catalog, 5-3
date display, 8-12
date, locale-sensitive, 6-26
day keyword, 5-25
days, display, 2-8
day_unit keyword, 5-25
decimal_point keyword, 5-24
default message

alternatives, 7-8
in catgets call, 7-8
in default message catalog, 7-8

default native language, 4-3
default string, 7-7
define language definition, 2-5

developing and internationalized
program, 6-3

d_fmt keyword, 5-25
digit keyword, 5-15
direc tionali t y

data, 8-6
direction keyword, 5-10
display of time, 2-7
d_ t_fmt keyword, 5-25
dumpmsg command, 5-3, 7-3, 7-23

E

symbol, 5-13
ellipsis symbol, 5-13
encoded value collation, 5-13
end-user, 2-3
environment changes, 3-3
environment variables

description, 3-1
example, 3-4
LANG, 3-1, 5-2, 7-21
LANGOPTS, 3-1, 4-3, 5-2
LC_ALL, 3-1
LC_categories, 5-2
LC_COLLATE, 3-1
LC_CTYPE, 3-1
LC_MESSAGES, 3-1
LC_MONETARY, 3-1
LC _NUMERI C, 3-1
LC_TIME, 3-1
NLSPATH, 3-1, 4-3, 5-2, 7-3, 7-6, 7-21,

8-10
setting, 3-1, 5-2

era_d_fmt keyword, 5-25
error messages, B-4
escape_char, 5-9
/etc/csh.login file, 4-3
/etc/profile file, 4-3
EUC (Extended UNIX Code) character

set, 2-5
exec

calls to, 8-11
expanded characters, 2-10

F

file hierarchy, 4-2
file system

finding, 4-2
organization, 4-2

finding information, 1-4, 1-6
findmsg command, 7-3, 7-14, 7-23
findstr command, 7-17, 7-19
first keyword, 5-15
firstof2, A-5
FIRSTof2 macro, A-5, A-8
flexible formatting, 6-18
folding character strings

example, A-6
fopen, 7-18
forder, 8-7
format of source message files, 7-9
formatted input, 6-17
formatted output, 6-17
formatting

date and time, 6-13, 6-22
monetary, 6-13, 6-22
numeric, 6-13, 6-22

fprintf, 8-7
frac_digits keyword, 5-21
fscanf, 8-7

G

gcvt, 6-25
gencat command, 7-3, 7-9, 7-11, 7-21,

7-24
example, 5-4

generating message catalogs, 7-11
getlocale function, 8-8
graph keyword, 5-15
Gregorian calendar, 2-7
grep, 6-21
grouping keyword, 5-24

Index-3

Index

Index

guidelines

H

for creating internationalized
programs, 6-29

for message catalogs, 7-25
for processing multi-byte data, A-10

hour _ unit keyword, 5-25
HP-16 character sets, 2-5
HP-UX commands

message catalogs, 5-3

iconv, 8-1, 8-2
ICONV, 8-5
ICONV1, 8-5
ICONV2, 8-5
identifying

character size, A-5
character traits, 6-15, 6-23

IGNORE keyword, 5-14
information, finding, 1-4, 1-6
initializing

a program, 6-2
NLS, 6-6
standard program, 6-2
with catopen, 7-4, 8-10
with setlocale, 7-4

input and output with WPI, 6-17
input, formatted, 6-17
insertmsg

command, 7-18, 7-19
example, 7-19

installing
language definition table, 5-27
locale, 5-27
optional locales, 4-4

int_curr_symbol keyword, 5-21
integrity of data, 2-4, A-5
interfaces

non-WPI, 6-22

Index-4

proprietary, D-5
internationalization, 2-1, 2-3, Glossary-6

creating applications, 1-2
creating applicationsg, 6-3
using WPI, 6-12

int_frac_digits keyword, 5-21
isalnum, 6-24
isalpha, 6-24
isascii, 6-24
iscntrl, 6-24
isdigit, 6-24
isgraph, 6-24
islower, 6-24
isprint, 6-24
ispunct, 6-24
isspace, 6-24
isupper, 6-24
iswalnum, 6-15
iswalpha, 6-15
iswcntrl, 6-15
iswdigi t, 6-15
iswgraph, 6-15
iswlower, 6-15
iswprint, 6-15
iswpunct, 6-15
iswspace, 6-15
iswupper, 6-15
iswxdigit, 6-15
isxdigit, 6-24
ISO 8859-1 coded character set, 2-5
ISO 8859-2 coded character set, 2-5
ISO 8859-5 coded character set, 2-5

K

Kanji character set, 2-5
keyboard order, 8-6
keyword IGNORE, 5-14
Korn Shell ksh, 4-3

L

LANG environment variable, 3-1, 5-2
supported values, E-l

langid, 5-8
langname, 5-8
LANGOPTS, 8-6, 8-7

environment variable, 3-1, 5-2
language

definition table, installing, 5-27
dependent, 1-2
independent, 1-2
name, 4-2
non-sensitive, 1-2
number (ID), 4-2
supported, 4-4
tables, accessing, 6-8
table subdivisions, 5-7

language table, 1-2
Latin mode, 8-6
LC_ALL

environment variable, 3-1
subcategories, 5-10

LC_categories environment variable, 5-2
LC_COLLATE

environment variable, 3-1
example, F-l
subcategories, 5-11

LC_CTYPE
environment variable, 3-1
subcategories, 5-15

LC_MESSAGES
environment variable, 3-1
subcategories, 5-20

LC_MONETARY
environment variable, 3-1
subcategories, 5-21

LC_NUMERIC
environment variable, 3-1
subcategories, 5-24

lconv, 6-26
LC_TIME

environment variable, 3-1
example, 5-26
subcategories, 5-25

libraries with messages, 7-15
library calls, proprietary, D-5
library routine

atof, 6-25
byte_status, A-5
catgets, 8-11
catopen, 8-10, 8-11
ctype(3C), 6-13, 6-23
firstof2, A-5
gcvt, 6-25
isalnwn, 6-24
isalpha, 6-24
isascii, 6-24
iscntrl, 6-24
isdigit, 6-24
isgraph, 6-24
islower, 6-24
isprint, 6-24
ispunct, 6-24
isspace, 6-24
isupper, 6-24
iswalnwn, 6-15
iswalpha, 6-15
iswcntrl, 6-15
iswdigit, 6-15
iswgraph, 6-15
iswlower, 6-15
iswprint, 6-15
iswpunct, 6-15
iswspace, 6-15
iswupper, 6-15
iswxdigit, 6-15
isxdigit, 6-24
mblen, 6-18
mbstowcs, 6-18
mbtowc, 6-18
nLctype(3C), 7-3
nl_fprintf, 6-25

Index

Index-5

Index

nl_langinfoCD_T_FMT),6-16, 6-25
nl_printf, 6-25
printf, 7-2
secof2, A-5
setlocale, 6-6, 8-10, 8-11
strftime, 6-15, 6-25
strtod, 6-25
_tolower, 6-22
tolower, 6-22
_toupper, 6-22
toupper, 6-22
towlower, 6-14
towupper, 6-14
wcsftime, 6-16
wcstod, 6-16
wcstombs, 6-18
wctomb, 6-18

local customs
character processing, 6-13, 6-22
conventions, 2-1, 2-4, 2-6
string processing, 6-13, 6-22

locale, 2-6
creating new , 5-5
default , 4-4
directories for, 4-2
displaying , 3-6
form of, 4-2
information, 8-8
localedef , 5-5
testing , 3-6
verifying installation , 5-27

localeconv
example, 6-26
function, 8-8

localedef command, 4-2
-d option, 8-8
example, 5-5
header keywords, 5-8
syntax, 5-8
using, 5-5

locale-sensitive

Index-6

date, 6-26
time, 6-26

localization, 2-1, 2-3
localizing international software, 5-1
. login file, 3-5, 4-3
lower keyword, 5-15

M

make; B-15
make files, 7-24
manual conventions, 1-7
manuals

NLS related list, 1-8
mblen, 6-18
mbstowcs, 6-18
mbtowc, 6-18
message catalogs

automated creation of, 7-24
C locale, 8-12
closing, 7-8
compiling, 5-4
compiling , 7-11
conversion of existing programs for,

7-16
cookbook, 2-9, 5-4, 7-25
creating, 7-9
date. cat, 5-3
default, 7-8, 8-11
default error messages, 7-25
external, 1-2
for HP-UX commands, 5-3
generating, 7-11
guidelines, 7-25
HP-UX, 3-5
(illustration), 7-5
installation, 4-3
installing, 5-4, 7-22
location, 4-3
message numbers, 7-25
opening, 7-3
opening and closing, 7-15

overview, 2-3, 2-9
programming example, 7-11, B-1
test directories, 7-21
testing, 7-21
translating, 5-3
updating, 7-23
using correct, 7-14
using gencat, 7-9
using revision code, 7-14

messages, 2-4, 2-9
conversion of existing programs for,

7-16
in arrays, 7-12
in variables, 7-12
numbers, 7-23
printf/scanf, 8-12
retrieving, 7-7

messaging, special considerations, 7-12
min_unit keyword, 5-25
mode, 8-6
mon_decimal_point keyword, 5-21
monetary formatting, 2-7, 6-26
mon_grouping keyword, 5-21
mon keyword, 5-25
mon_ thousands_sep keyword, 5-21
months, display, 2-8
mon_unit keyword, 5-25
multi-byte

character codes, 2-5
character conversions, 6-18
data processing, guidelines, A-I0
example, B-1
macros, A-5
processing, 6-12, A-3
program conversion, 6-12, A-9
programming with, A-5
routines, usage reference, D-2
string conversions, 6-18

multi-character element, 5-12

N

naming conventions, 7-6
native languages, 2-1

supported, E-l
n_cs_precedes keyword, 5-21
negative_sign keyword, 5-21
nLctype(3C) library routine, 7-3
nl_fprintf, 6-25
NLIO system, 4-4
nljust, 8-7
nl_langinfo

parameters, 6-9
routine, 6-8

nl_langinfo(D_T_FMT), 6-16,6-25
nl_printf, 6-25
NLS

aspects of, 2-4
concept, 1-2
conceptual model, 1-3
created, 1-1
definition, 2-1
documentation, 1-8
features, 2-3
obsolete routines, D-2
support, 2-1
vs standard application, 6-3

NL_SETD, 7-10
nlsinfo command, 8-8
NLSPATH

environment variable, 3-1, 5-2, 7-3,
7-6, 7-21, 8-10

replacement specifiers, 7-7
noexpr keyword, 5-20
non-ASCII string collation, 2-10
non-Latin mode, 8-6
non-WPI interfaces, 6-22
nostr keyword, 5-20
n_sep_by_space keyword, 5-21
n_sign_posn keyword, 5-21
number representation, 2-6
numeric formatting, 2-6, 6-16

Index-7

Index

Index

o
obsolete routines

NLS, D-2
X/Open, D-2

opening message catalogs, 7-3
order

data, 8-6
order-end keyword, 5-11
order-sensitive information, 6-18
order-start keyword, 5-11
output, formatted, 6-17

p

parameters for nl_langinfo, 6-9
parity, 3-5
p_cs_precedes keyword, 5-21
peripherals, 4-4

configuration, 4-4
phonetic order, 8-6
positive_sign keyword, 5-21
printf, 7-2, 7-12

conversion specification, 8-12
order of arguments, 8-12

print keyword, 5-15
processing order, B-1
. profile file, 3-5, 4-3
program environment, 6-8
program initialization

standard, 8-10
programmer, 2-1, 2-3
programming

example, B-1, B-4
for messages, 7-3

programs
conversion of existing, 6-21

proprietary
commands, D-5
interfaces, D-5
library calls, D-5

p_sign_posn keyword, 5-21
punct keyword, 5-15

Index-8

putenv, 8-11

Q

$quote directive, 7-10

R

reading formatted input, 6-17
recommended initialization, 7-4
regular expressions, 2-12
reserving array space, 6-4
retrieving

locale-specific information, 6-8
messages, 7-3
user environment, 6-5

revision, 5-8
revision code, 7-14
right-to-left

order, B-1
terminal, B-3

ROMAN8 coded character set, 2-5
rou tines, NLS, D-2

s
screen order, 8-6
script for 10 cal edef , 5-7
search path conventions, 7-6
secof2, A-5
SECof2 macro, A-5, A-8
second keyword, 5-15
sec_unit keyword, 5-25
$set, 7-23
$set directive, 7-10
setlocale, 6-6, 8-10, 8-11

categories, 6-6
example, B-1
parameters, 6-7
routine, 6-6

setting environment variables, 5-2
setting program locale, 6-6
shifting, 2-6
single-byte

codesets, A-6
program conversion, 6-12, A-9

single-character element, 5-12
software developer, 8-1
sorting, 2-6
sorting order, 2-8
source file

editing, 7-20
management, 7-22
multi-file management, 7-22

source message file format, 7-9
source program

editing, 7-19
special locales, 8-10
standard vs NLS application, 6-3
status, NLS routines, D-2
strcmp, 6-21

example, 6-28
strcoll, 6-28
strftime, 6-15, 6-25
string

comparison, 2-10, 6-28
conversion, 6-18
processing, 6-13, 6-22

string data
comparison of, 6-13, 6-22

string files
removing non-messages from, 7-18

strncmp, 6-28
strord

example, 8-7
strtod, 6-25
strxfrm

example, 6-28
support

aspects of, 2-4
system administrator, 2-4, 4-1, 5-4

tasks, 3-1

T

terminal
setting, 3-5
stty, 3-5

terminal constants
right-to-left, B-3

_territory, 4-2
t_fmt_ampm keyword, 5-25
t_fmt keyword, 5-25
thousands_sep keyword, 5-24
time

display, 2-7
locale-sensitive, 6-26

_tolower, 6-22
tolower, 6-22

keyword, 5-15
_toupper, 6-22
toupper, 6-22

keyword, 5-15
towlower, 6-14
townpper, 6-14
translating

problems and solutions, 5-3

U

UNDEFINED symbol, 5-13
UNIX operating system, 1-1
upper keyword, 5-15
usage, previous, D-2
USASCII character set, 2-4
user environment, retrieving, 6-5
using a message catalog system, 7-2
/usr/lib/nls/config directory, 4-2,

4-3
/usr/lib/nls/ language_name, 4-2

W

wcsftime, 6-16
wcstod, 6-16
wcstol, 6-16
wcstombs, 6-18

Index-9

Index

Index

wcstoul, 6-16
wctomb, 6-18
weeks, display, 2-8
wide character

example program, 6-20
sets, 6-12

Worldwide Portability Interface, 1-2,
6-12

WPI, 1-2, 6-12

Index-10

X

xdigi t keyword, 5-15

y

year_unit keyword, 5-25
yesexpr keyword, 5-20
yesstr keyword, 5-20

Reorder No. or
Manual Part No.
B2355-90036

r/i~ HEWLETT~
~~PACKARD

Copyright © 1992
Hewlett-Packard Company
Printed in USA E0892

Manufacturing
Part No.
B2355-90036

B2355-90036

