
HP-UX Reference
Volume 2

HP 9000
Computers

HP-UX Reference
Volume 2: Sections 2 and 3

HP 9000 Computers

HP-UX Release 9.0

FliD'l HEWLETT
~~ PACKARD

HP Part No. 82355-90033
Printed in USA August 1992

Third Edition
E0892

Legal Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard Company makes no warranty of any kind with regard to this manual, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard Company shall not be liable for errors contained herein or direct, indirect, special,
incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.

Warranty: A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

© Copyright Hewlett-Packard Company 1983-1992

This documentation and software contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without written permission is prohibited
except as allowed under the copyright laws.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227 -7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

© Copyright 1980, 1984, 1986 UNIX. System Laboratories, Inc.

© Copyright 1986-1992 Sun Microsystems, Inc.

© Copyright 1979, 1980, 1983, 1985-1990 The Regents of the University of California

This software and documentation is based in part on the Fourth Berkeley Software Distribution
under license from the Regents of the University of California.

© Copyright 1985, 1986, 1988 Massachusetts Institute of Technology

© Copyright 1986 Digital Equipment Corp.

© Copyright 1990 Motorola, Inc.

© Copyright 1990, 1991, 1992 Cornell University

© Copyright 1988 Carnegie Mellon

© Copyright 1982 Walter F. Tichy

UNIX is a trademark of UNIX. System Labs Inc. in the U.S. and other countries.

NFS is a trademark of Sun Microsystems, Inc.

ii

Printing History
The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. However, minor changes may be made at reprint without changing
the printing date. The manual part number changes when extensive changes are made.

To ensure that you receive new editions of this manual when changes occur, you may subscribe to
the appropriate product support service, available through your HP sales representative.

August 1992. Third Edition. This edition is an update to the Second Edition and is valid for
HP-UX Release 9.0 on all HP 9000 systems. Replaces Second Edition, HP part number B2355-
90004.

June 1991. Second Edition. Update to the First Edition for HP-UX Release 8.05 on Series 700
systems. Also valid for HP-UX Release 8.0 on Series 300/400 and Series 800 systems. Replaces
First Edition, HP part number BI864-90000.

January 1991. First Edition. Replaces manual part number 09000-90013. Valid for HP-UX
Release 8.0 on Series 300/400, 700, and Series 800 systems. The Networking Reference was
merged into this manual at Release 8.0.

New Features
This edition contains several new features.

Typography has been changed to conform to style used in other HP manuals as well as
industry standards (conversion complete execpt for parts of Volume 3). Command names,
argument names, and such appear on the printed page in exactly the same form as when they
are typed in commands or applications, eliminating much confusion regarding capitalization of
letters, which items are literals or otherwise, etc.

Progressive bleed tabs in each section are positioned vertically on the page edge according to
the first letter in the name of the manual entry for easier access.

As part of an on-going effort to improve the quality and usability of this manual, several
entries have been expanded and rewritten for better clarity and many examples have been
added or expanded in many entries. Many changes are a direct result of comments, requests,
and suggestions from users outside ofHP.

Manual is expanded considerably to conver new functionality from Open Software Foundation
and several other sources as well as newer versions of NFS Services and other software
contained in previous releases.

Do You Have Comments or Suggestions?
Comments and suggestions from users about this manual are always welcome because they
are an important part of our on-going process of improving the HP-UX Reference.

Internal HP users send electronic mail to:

hpuxref@fc.hp.com

Other users, please use the reply card provided in the manual or send a note or letter by
ordinary mail to:

HP-UX Reference Comments, MS 11
Hewlett-Packard Company
3404 East Harmony Road
Fort Collins, CO 80525-9988, U.S.A.

iii

Notes

iv

Table of Contents
for

Volume 2

Section 2: System Calls

Table of Contents
Volume 2

Entry Name(Sectlon): name Description
intro(2): .. introduction to system calls
accept(2): accept () ... accept connection on a socket
access(2): access () ... determine accessibility of a file
acct(2): acct () .. enable or disable process accounting
alarm(2): alarm () .. set a process's alarm clock
atexit(2): at exit () .. register a function to be called at program termination
audctl(2): audctl () ... start or halt auditing system; set or get audit files
audswitch(2): audswitch() .. suspend or resume auditing on current process
audwrite(2): audwrite () .. write audit record for self-auditing process
bind(2): bind () .. bind address to a socket
brk(2): brk (), sbrk () .. change data segment space allocation
bsdproc(2): killpg (), getpgrp (), setpgrp () , sigvec (),

signal () .. 4.2 BSD-compatible process control facilities
chdir(2): chdir () .. change working directory
chmod(2): chInod (), fchInod () ... change access mode of file
chown(2): chown(), fchown() ... change owner and group ofa file
chroot(2): chroot () ... change root directory
close(2): close ()close a file desbriptor
cnodeid(2): cnodeid() .. get the cnode ID of the local machine
cnodes(2): cnodes () ... get a list of active nodes in cluster
connect(2): connect () ... initiate connection on a socket
creat(2): creat () .. create a new file or rewrite an existing one
dup2(2): dup2 () ... duplicate an open file descriptor to a specific slot
dup(2): dup () .. duplicate an open file descriptor
errno(2): errno () ... error indicator for system calls
exec(2): execl () , execv (), execle () , execve (), execlp () , execvp () execute a file
execle () : execute a filesee exec(2)
execl (): execute a filesee exec(2)
execlp () : execute a filesee exec(2)
execve () : execute a filesee exec(2)
execv () : execute a filesee exec(2)
execvp () : execute a filesee exec(2)
exit(2): exit (), _exit () ... terminate process
f chdir (2) : change working directory .. see chdir(2)
fchmod(): change access mode offile .. see chmod(2)
f chown () : change owner and group of a file .. see chown(2)
fcntl(2): fcntl () .. .file control
fgetacl (): get access control list (ACL) information ... see getacl(2)

fork(2): fork () .. .create a new process
fpathconf () : get configurable pathname variables ... see pathconf(2)
fsctl(2): fsctl ()file system control
fsetacl (): set access control list (ACL) information .. see setacl(2)
fstatfs (): get file system statistics .. see statfs(2)
fstat () : get file status .. .see stat(2)
fsync(2): fsync () ... synchronize a file's in-core state with its state on disk
ftime(2): ftime () .. get date and time more precisely
ftruncate () : truncate a file to a specified length .. see truncate(2)
getaccess(2): getaccess () ... get a user's effective access rights to a file
getacl(2): getacl () , fgetacl () ... get access control list (ACL) information
getaudid(2): getaudid () .. get the audit ID (aid ()) for the current process
getaudproc(2): getaudproc () .. get audit process flag for calling process
getcontext(2): getcontext () return the process context for context dependent file search
getdirentries(2): getdirentries () get entries from a directory in a file system-independent format
getdomainname(2): getdomainname (), setdomainname () get/set name of current NIS domain
getegid (): get effective group ID ... see getuid(2)
geteuid () : get effective user group ID .. see getuid(2)

Table of Contents: Volume 2 v

Table of Contents
Volume 2

Entry Name(Section): name Description
getevent(2): get event () .. get events and system calls currently being audited
getth(2): get fh () .. return file handle for file on remote node.
getgid () : get real group ID .. see getuid(2)
getgroups(2): getgroups () .. get group access list
gethostname(2): gethostname () ... get name of current host
getitimer(2): getitimer (), setitimer () ... getJset value of interval timer
getpeername(2): getpeername () .. get address of connected peer
getpgrp2: get process group ID of specified process .. see getpid(2)
getpgrp (): 4.2 BSD-compatible process control facilities .. see bsdproc(2)
getpgrp () : get process group ID .. see getpid(2)
getpid(2): getpid (), getpgrp (), getppid (), getpgrp2 get process, process group, and parent process ID
getppid () : get parent process ID ... see getpid(2)
getpriority(2): getpriority, setpriority ... get or set process priority
getpriority: get process priority ... see getpriority(2)
getrlimit(2): getrlimit (), setrlimit () .. control consumption of system resources
getsockname(2): getsoekname () ... get socket address
getsockopt(2): getsoekopt (), setsoekopt () .. get or set options on sockets
gettimeofday(2): gettimeofday(), settimeofday() ... getJset date and time
getuid(2): getuid(), geteuid(), getgid(),

getegid () ... get real user, effective user, real group, and effective group IDs
gtty(): control device .. .8ee stty(2)
ioctl(2): ioetl ()control device
ipcconnect(2): ipeeonneet () 0 ... request connection to another process
ipccontrol(2): ipeeontrol () 0 .. perform special operations on NetIPC sockets
ipccreate(2): ipeereate () 0 .. create a call socket
ipcdest(2): ipedest () 0 ... create a destination descriptor
ipcgetnodename(2): ipegetnodename () .. obtain NetIPC node name of current host
ipclookup(2): ipelookup () 0 ... obtain a destination descriptor
ipcname(2): ipename () 0 .. associate name with call socket or destination call socket
ipcnamerase(2): ipenamerase () 0 delete name associated with a call socket or destination call socket
ipcrecv(2): ipereev () 0 .. establish or receive data on NetIPC virtual circuit connection
ipcrecvcn(2): ipereeven () 0 .. receive connection request on a call socket
ipcselect(2): ipeseleet () () .. determine status of call socket or VC socket
ipcsend(2): ipesend () 0 ... send data on a virtual circuit connection
ipcsetnodename(2): ipesetnodename () ... set NetIPC node name of host CPU
ipcshutdown(2): ipeshutdown () 0 .. release a descriptor
kill(2): kill (), raise () .. send a signal to a process or a group of processes
killpg () : 4.2 BSD-compatible process control facilities .. see bsdproc(2)
link(2): link () ... link to a file
listen(2): listen () ... listen for connections on a socket
lockf(2): loekf () ... provide semaphores and record locking on files
lseek(2): lseek () ... move read/write file pointer; seek
lstat (): get file status .. .8ee stat(2)
lsyne () : update super-block .. see sync(2)
madvise(2): madvise .. advise system of process' expected paging behavior
mkdir(2): mkdir () ... make a directory file
mknod(2): mknod() ... make a directory, or a special or ordinary file
mkrnod () - make a cnode-specific special file .. see mknod(2)
mmap(2): InIna.p ... map object into virtual memory
mount (2): mount () ... mount a file system
mprotect(2): mproteet ... modify memory mapping access protections
msem_init(2): msem_init initialize semaphore in mapped file or anonymous memory region
msem_lock(2): msem_loek .. .lock a semaphore
msem_remove(2): msem_remove remove semaphore in mapped file or anonymous region
msem_unlock(2): msem_unloek ... unlock a semaphore
msgget(2): msgget () .. get message queue
msgop(2): msgsnd () , msgrev () .. message operations

vi Table of Contents: Volume 2

Table of Contents
Volume 2

Entry Name(Section): name Description
msgrcv () : message operations ... see msgop(2)
mstctl(2): msgctl () .. message control operations
msync(2): msync .. synchronize a mapped file
munmap(2): munmap .. unmap a mapped region
nfssvc(2): nfssvc (), async_daemon ... NFS daemons
nice(2): nice () ... change priority of a process
open(2): open () ... open file for reading or writing
pathconf(2): pathconf (), fpathconf () .. get configurable pathname variables
pause(2): pause () ... suspend process until signal
pipe(2): pipe () .. create an interprocess channel
plock(2): plock () .. .lock process, text, or data in memory
poll(2): poll- monitor I/O conditions on multiple file descriptors
prealloc(2): prealloc () .. preallocate fast disk storage
pro:fil(2): profil () .. execution time profile
ptrace(2): ptrace () ... process trace
quotactl(2): quotactl () ... manipulate disk quotas
raise () - send a signal to a process or a group of processes .. see kill(2)
read(2): read () , readv ()read input
readlink(2): readlink () .. read value of a symbolic link
readv () : read inputsee read(2)
reboot(2): reboot ()boot the system
recv(2): recv(), recvfrom() recvmsg () .. receive message from a socket
recvfrom () : receive message from a socket ... see recv(2)
recvmsg () : receive message from a socket ... see recv(2)
rename(2): rename () ... change the name of a file
rmdir(2): rmdir () .. remove a directory file
rtprio(2): rtprio () ... change or read real-time priority
sbrk () : change data segment space allocation ... see brk(2)
select(2): select () ... synchronous I/O multiplexing
semctl(2): semctl () ... semaphore control operations
semget(2): semget () ... get set of semaphores
semop(2): semop () .. semaphore operations
send(2): send () , sendto () ... send message to a socket
sendmsg (): send message to a socket ... see send(2)
sendto () : send message to a socket ... see send(2)
setacl(2): setacl (), fsetacl () .. set access control list (ACL) information
setaudid(2): setaudid () .. set audit ID (aid (» for current process
setaudproc(2): setaudproc () ... set or clear auditing on calling process
setevent(2): setevent () ... set current events and system calls to be audited
setgid () : set group ID .. see setuid(2)
setgroups(2): setgroups () .. set group access list
sethostname(2): sethostname () .. set name of host cpu
setitimer () : set value ofinterval timer ... see getitimer(2)
setpgid(2): setpgid (), setpgrp2 ... set process group ID for job control
setpgrp2: set process group ID .. see setpgid(2)
setpgrp (): 4.2 BSD-compatible process control facilities ... , see bsdproc(2)
setpgrp () - create session and set process group ID ... see setsid(2)
setpriority: set process priority ... see getpriority(2)
setresgid(): set real, effective, and saved group IDs .. see setresuid(2)
setresuid(2): setresuid (), setresgid () set real, effective, and saved user and group IDs
setrlimit () - control consumption of system resources ~ .. see getrlimit(2)
setsid(2): setsid (), setpgrp () ... create session and set process group ID
setsockopt (): set options on sockets .. see getsockopt(2)
settimeofday(): set date and time ... see gettimeofday(2)
setuid(2): setuid (), setgid () .. set user and group IDs
shmctl(2): shmctl () ... shared memory control operations
shmdt () : shared memory operations .. see shmop(2)

Table of Contents: Volume 2 vii

Table of Contents
Volume 2

Entry Name(Section): name Description

shmget(2): shmget () .. get shared memory segment
shmop(2): shmat () , shmdt () ... shared memory operations
shutdown(2): shutdown () .. shut down a socket
sigaction(2): sigaction () .. examine and change signal action
sigblock(2): sigblock () .. hlock signals
sighold () : signal management .. see sigset(2V)
sigignore () : signal management ... see sigset(2V)
signal(2): signal () ... specify what to do upon receipt of a signal
signal (): 4.2 BSD-compatible process control facilities .. see bsdproc(2)
sigpause(2): sigpause () ... atomically release blocked signals and wait for interrupt
sigpause () : signal management ... see sigset(2V)
sigpending(2): sigpending () .. examine pending signals
sigprocmask(2): sigprocmask () ... examine and change blocked signals
sigrelse (): signal management ... see sigset(2V)
sigset(2V): sigset (), sighold(), sigrelse (), sigignore (), sigpause () signal management
sigsetmask(2): sigsetmask () .. set current signal mask
sigspace(2): sigspace () .. assure sufficient signal stack space
sigstack(2): sigstack () .. set and/or get signal stack context
sigsuspend(2): sigsuspend() .. wait for a signal
sigvec (): 4.2 BSD-compatible process control facilities .. see bsdproc(2)
sigvector(2): sigvector () .. software signal facilities
socket(2): socket () ... create an endpoint for communication
socketpair(2): socketpair () .. create a pair of connected sockets
stat(2): stat (), lstat (), fstat () ... get file status
statfs(2): statfs (), fstatfs () ... get file system statistics
stime(2): stime () .. .set time and date
stty(2): stty(),gtty()controldevice
swapon(2): swapon () ... add a swap device for interleaved paging/swapping
symlink(2): symlink () .. make symbolic link to a file
sync (2): sync (), lsync () ... update super-block
sysconf(2): sysconf ... get configurable system variables
time(2): time () .. get time
times(2): times () .. get process and child process times
truncate(2): truncate () , ftruncate () .. truncate a file to a specified length
ulimit(2): ulimit () .. get and set user limits
umask(2): umask () ... set and get file creation mask
umount(2): umount () ... unmount a file system
uname(2): uname () ... get name of current HP-UX system
unlink(2): unlink .. remove directory entry; delete file
ustat(2): ustat () ... get file system statistics
utime(2): utime () .. set file access and modification times
vfork(2): vfork () .. spawn new process (use fork () intead)
vfsmount(2): vfsmount () .. mount a file system
wait(2): wait (), wait3 () .. wait for child or traced process to stop or terminate
wait3 (): wait for child or traced process to stop or terminate ... see wait(2)
waitpid (): wait for child or traced process to stop or terminate .. see wait(2)
write(2): write (), writev() .. write on a file
writev (): write on a file .. .see write(2)

viii Table of Contents: Volume 2

Section 3: Library Routines

Table of Contents
Volume 2

Entry Name(Section): name Description
a641(3C): a64l (), l64a () ... convert between long integer and base-64 ASCII string
intro(3): intro () ... introduction to subroutines and libraries
AAudioString(3X): AAudioString () get name of audio controller (string) passed to AOpenAudioO
ABestAudioAttributes(3X): ABestAudioAttributes () get best audio attributes for specified controller
abort(3C): abort () .. generate a software abort fault
abs(3C): abs (), abe () .. :return integer absolute value
ACalculateLength(3X): ACalculateLength () return the size in bytes of converted data
ACheckEvent(3X): ACheckBvent () .. get first event found in audio event queue
ACheckMaskEvent(3X): ACheckMaskBvent () get first event in audio event queue that matches mask
AChooseAFileAttributes(3X): AChooseAFileAt tributes () select attributes for creating new file
AChoosePlayAttributes(3X): AChoosePlayAttributes () select attributes for playing file or stream
AChooseSourceAttributes(3X): select attributes associated with existing file or stream
aclentrystart () : convert pattern string form to access control list (ACL) structure see strtoacl(3C)
ACloseAudio(3X):ACloseAudio () ... close connection to specific audio server
acltostr(3C): acltostr () .. convert access control list (ACL) structure to string form
AConnectionNumber(3X): AconnectionNumber () get audio server connection number
AConnectRecordStream(3X):AConnectRecordStream() connect socket to TCP socket address
AConvertAFile(3X): AConvertAFile () ... convert audio file data format
AConvertBuffer(3X): AConvertBuffer () .. convert a buffer of data
acosdf () : trigonometric arccosine function (float, degrees) .. see trigd(3M)
acosd(): trigonometric arccosine function (degrees) ... see trigd(3M)
acosf (): trigonometric arccosine function (float) ... see trig(3M)
acosh () : inverse hyperbolic cosine function .. see sinh(3M)
acos () : trigonometric arccosine function .. see trig(3M)
ACreateSBucket(3X): ACreateSBucket () create empty sound bucket and return pointer to it
ADataFormats(3X): ADataFormats () get list of data formats supported by audio controller
addexportent () - access exported file system information ... see exportent(3N)
addmntent (): get file system descriptor file entry .. see getmntent(3X)
addopt(3N): addopt () ... add argument and data to NetIPC option buffer
ADestroySBucket(3X): ADestroySBucket () .. destroy specified sound bucket
ADVANCE (): process 16-bit characters .. see nl_tools_16(3C)
advance () : regular expression compile and match routines .. see regexp(3X)
AEndConversion(3X): AEndConversion () ... finish stream data conversion
AEventsQueued(3X): AEventsQueued () get number of events in queue for specified server connection
AGetAFileAttributes(3X): AGetAFileAttributes () get file attributes of specified file
AGetASilenceValue(3X): AGetSilenceValue () ~ ... get a silence value
AGetChanneIGain(3X): AGetChannelGain ... get transaction channel gain
AGetDataFormats(3X): AGetDataFormats () get data formats for a specified file format
AGetErrorText(3X):AGetBrrorText () .. copy error description into specified buffer
AGetGain(3X):AGetGain () ... get play volume or record gain of specified transaction
AGetSBucketData(3X): AGetSBucketData tbpy audio data in sound bucket to buffer; return number of bytes
AGetSystemChanneIGain(3X): AGetSystemchannelGain() get system or monitor channel gain
AGetTransStatus(3X):AGetTransStatus () .. get status of specified transaction
AGMGainRestricted(3X):AGMGainRestricted() find out if audio controller restricts gain entries
AGrabServer(3X): AGrabServer () ... acquire exclusive use of audio server
AInputChannels(3X):AlnputChannels () get list of AID input channels on current hardware
AInputSources(3X):AlnputSources () get types ofinput sources existing on current hardware
almanac(3X): almanac () .. return numeric date information in MPE format
ALoadAFile(3X):ALoadAFile () copy audio file into new sound bucket with data conversion
alphasort () - sort a directory pointer array ... see scandir(3C)
AMaskEvent(3X):AMaskEvent () ... get first matching event in audio event queue
AMaxlnputGain(3X) :AMaxlnputGain () get maximum input gain supported by audio controller
AMaxOutputGain(3X):AMaxOUtputGain () get maximum output gain supported by audio controller
AMinlnputGain(3X):AMinlnputGain() get minimum input gain supported by audio controller
AMinOutputGain(3X):AMinOUtputGain () get minimum output gain supported by audio controller

Table of Contents: Volume 2 Ix

Table of Contents
Volume 2

Entry Name(Section): name Description
ANextEvent(3X):ANextBvent () ... dequeue and return first event in audio event queue
ANumDataFormats(3X): ANumDataFormats () data formats, number supported by audio controller
ANumSamplingRates(3X): ANUmSamplingRates () number of sampling rates supported by audio controller
AOpenAudio(3X) :AOpenAudio () ... open connection to specified audio server
AOutputChannels(3X):AOUtputChannels () get D/A output channels existing on current hardware
AOutputDestinations(3X):AOutputDestinations () output destinations types on current hardware
APauseAudio(3X): APauseAudio () .. pause the specified audio transaction
APeekEvent(3X): APeekBvent () return but do not dequeue first event in audio event queue
APlaySBucket(3X): APlaySBucket () play specified sound bucket and return transaction ID
APlaySStream(3X):APlaysStrea.m() initiate transaction and return transaction ID and SStream structure
AProtocoIRevision(3X):AProtocolRevision () get minor revision number of protocol used by audio server
AProtocoIVersion(3X): AProtocolVersion() get major version number of protocol used by audio server
APutBackEvent(3X): APutBackBvent () ... push event onto head of audio event queue
APutSBucketData(3X): APutSBucketData () copy audio data from buffer to sound bucket
AQLength(3X): AQLength () ... return number of events on audio event queue
AQueryAFile(3X):AQueryAFile () .. get file format of specified file
ARecordAData(3X): ARecordAData () .. read audio data into sound bucket
ARecordSStream(3X):ARecordSStrea.m() . initiate transaction; return transaction ID and SStreams structure
AResumeAudio(3X): AResumeAudio () .. resume specified audio transaction
ASamplingRates(3X):ASamplingRates () return list of sampling rates supported by audio controller
ASaveSBucket(3X):ASavesBucket () write sound bucket data into file with data conversion
asctime () : convert date and time to string ... see ctime(3C)
ASelectInput(3X):Aselect:Input () ... request report of specified audio events
AServerVendor(3X): AServerVendor () get vendor name of audio server for this connection
ASetChanneIGain(3X): ASetChannelGain () .. set transaction channel gain
ASetCloseDownMode (3X) : .. set close-down mode to destroy or complete transactions on specified connection
ASetErrorHandler(3X): ASetErrorHandler () replace default error handler with specified handler
ASetGain(3X) :ASetGain () .. set play volume or record gain of specified transaction
ASetIOErrorHandler(3X): ASet:IOBrrorHandler () replace default 110 error handler with specified handler
ASetSystemChanneIGain(3X): ASetSystemChannelGain () set system or monitor channel gain
ASetSystemPlayGain(3X):ASetSystemPlayGain () ... set system play volume
ASetSystemRecordGain(3X):AsetSystemRecordGain () ... set system record gain
ASetupConversion(3X): ASetupConversion () perform setup required for stream data conversion
ASimplePlayer(3X):ASimplePlayer () .. return gain matrix of basic play device
ASimpleRecorder(3X):ASimpleRecorder () return gain matrix of basic recording device
asindf (): trigonometric arcsine function (float, degrees) ... see trigd(3M)
asind () : trigonometric arcsine function (degrees) ... see trigd(3M)
asinf (): trigonometric arcsine function (float) ... see trig(3M)
asinh(3M): asinh () , acosh () , atanh () ... inverse hyperbolic functions
asin(): trigonometric arcsine function .. see trig(3M)
ASoundBitOrder(3X): ASoundBitOrder () get bit order used for one-bit-per-sample data
ASoundByteOrder(3X): get byte order of audio data accepted by audio controller for this connection
assert (3X): assert () ... verify program assertion
AStopAudio(3X): AStopAudio () .. stop specified audio transaction
AtAddCallback(3X) :AtAddCallback () .. add callback procedure for the toolkit
atan2df () : trigonometric arctangent-and-quadrant function (float, degrees) see trigd(3M)
atan2d () : trigonometric arctangent-and-quadrant function (degrees) .. see trigd(3M)
atan2f (): trigonometric arctangent-and-quadrant function (float) .. see trig(3M)
atan2 (): trigonometric arctangent-and-quadrant function ... see trig(3M)
atandf () : trigonometric arctangent function (float, degrees) ... see trigd(3M)
at and (): trigonometric arctangent function (degrees) ... see trigd(3M)
atanf () : trigonometric arctangent function (float) .. see trig(3M)
atanh () : inverse hyperbolic tangent function .. see sinh (3M)
atan() : trigonometric arctangent function ... see trig(3M)
AtInitialize(3X):At:Initialize () ... add audio event handler for this connection
atof () : convert string to double-precision number .. see strtod(3C)
AtRemoveCallback(3X): AtRemoveCallback () .. set callback to NULL

x Table of Contents: Volume 2

Table of Contents
Volume 2

Entry Name(Section): name Description
AuCreatePlay(3X): AUCreatePlay() .. create an audio play widget
AuCreateRecord(3X): AuCreateRecord() .. create an audio record widget
AuinvokePlaY(3X): AUlnvokeP lay ()initiate a widget play operation
AuinvokeRecord(3X): AuInvokeRecord () .. initiate an audio widget record operation
AUngrabServer(3X): AUngrabServer () release server from exclusive use by this connection
AUpdateDataLength(3X): AUpdateDataLength() ... update a file's header
AuPlayWidget(3X): AuPlayWidget () .. audio play widget
AuRecordWidget(3X): AuRecordwidget () .. audio record widget
AuSaveFile(3X): AuSaveFile () .. save sound bucket data created by record widget
AVendorRelease(3X): AVendorRelease () get vendor release number of audio server for this connection
AWriteAHeader(3X): AWriteAHeader () ... write a header for an audio file
bcmp () : memory operations .. see memory(3C)
bcopy () : memory operations .. see memory(3C)
bessel(3M): jO (), jl (), jn(), yO (), yl (), yn() .. Bessel functions
bindresvport(3N): bindresvport () ... bind a socket to a privileged IP port
blclose () - terminal block-mode library interface ... see blmode(3C)
blget () - terminal block-mode library interface .. see blmode(3C)
blmode(3C): blmode () ... terminal block-mode library interface
blopen () - terminal block-mode library interface .. see blmode(3C)
blread () - terminal block-mode library interface .. see blmode(3C)
blset () - terminal block-mode library interface .. see blmode(3C)
bsearch(3C): bsearch() .. binary search a sorted table
byteorder(3N): htonl (), htons (), ntohl (), ntohs () .. convert values between host and network byte order
byte_status () , BYTE_STATUS (): process 1S-bit characters .. see nCtools_16(3C)
bzero () : memory operations .. see memory(3C)
cabs () - complex absolute value function .. see hypot(3M)
cachectl(3C): cachectl () .. flush and/or purge the cache
calendar(3X): calendar () .. return the MPE calendar date
calloc: main memory allocator ... see malloc(3C)
catclose () : close NLS message catalog for reading ... see catopen(3C)
catgetmsg(3C): catgetmsg () .. get message from a message catalog
catgets(3C): catgets () .. get a program message
catopen(3C): catopen (), catclose () .. open or close NLS message catalog for reading
catread(3C): catread() ... MPEIRTE-style message catalog support
cbrt () : cube root function .. see exp(3M)
cbrtf (): cube root function (float version) .. see exp(3M)
c_colwidth () , C_COLWIDTH () : process 1S-bit characters .. see nl_tools_16(3C)
ceil () : ceiling function ... see floor(3M)
cfget ispeed () : get tty intput baud rate .. see cfspeed(3C)
cfgetospeed () : get tty output baud rate ... see cfspeed(3C)
cfsetispeed(): set tty intput baud rate .. see cfspeed(3C)
cfsetospeed () : set tty output baud rate ... see cfspeed(3C)
cfspeed(3C): cf getospeed () , cf s etospeed () , cf get ispeed () , cf s et ispeed () ... tty baud rate functions
CHARADV(): process 1S-bit characters .. 8ee nl_tools_16(3C)
CHARAT () : proce8s IS-bit characters .. see nl_tools_16(3C)
chownacl(3C): chownacl () ... change owner and/or group in access control list (ACL)
clearenv(3C): clearenv ... clear the process environment
clearerr: stream status inquiries ... see ferror(3S)
clock(3C): clock () .. report CPU time used
clock(3X): clock () ... return the MPE clock value
closedir () : directory operations .. see directory(3C)
closelog () : control system log ... see syslog(3C)
compile () : regular expression compile and match routines .. see regexp(3X)
confstr(3C): confstr () ... get string-valued configuration values
conv(3C): toupper () , to lower () , _toupper, _to lower, toascii () translate characters
copysign (), copysignf () : copysign manipulations ... see ieee(3M)
copysignf (), copysign(): copysign manipulations ... see ieee(3M)

Table of Contents: Volume 2 xi

Table of Contents
Volume 2

Entry Name(Section): name Description
cosdf () : trigonometric cosine function (float, degrees) ... see trigd(3M)
cosd(): trigonometric cosine function (degrees) ... see trigd(3M)
cosf (): trigonometric cosine function (float) ... see trig(3M)
coshf () : hyperbolic cosine function (float version) ... see sinh(3M)
cosh () : hyperbolic cosine function .. see sinh (3M)
cos () : trigonometric cosine function , .. see trig(3M)
cpacl(3C): cpacl (), fcpacl () .. copy access control list (ACL) to another file
crtO(3): crtO. 0, mcrtO. 0, frtO. 0, mfrtO. 0•...........••••.....•..•..........•.•....•.•.•.••••.•.•. execution startup routines
crtO.o: execution startup routines ... see crtO(3)
crypt(3C): crypt () , s etkey () , encrypt () , generate hashing encryption
ctermid(3S): ctermid () ... generate file name for terminal
ctime(3C): ctime (), nl_c:x:time (), localtime (), gmtime (), asctime (), nl_asc:x:time () , timezone (),

daylight (), tzname (), tzset () , nl_ctime (), nl_asctime () convert date and time to string
ctime () : convert date and time to string ... see ctime(3C)
ctype(3C): ,isalpha (), isupper (), islower (), isdigit (), is:x:digit (), isalnum(), isspace (),

ispunct (), isprint () , isgraph () , iscntrl (), isascii () classify characters
currlangid(): NLS information about native languages .. see langinfo(3C)
curses(3X): curses () ... CRT screen handling and optimization package
cuserid(3S): cuserid () .. get character login name of the user
cvtnum(3C): cvtnum () ... convert string to floating point number
datalock(3C): datalock () lock process into memory after allocating data and stack space
daylight () : convert date and time to string ... see ctime(3C)
dbm(3X): dbminit (), fetch (), store (), delete (), firstkey (),

ne:x:tkey(), dbmclose () .. database subroutines
dbDL.clearerr: database subroutines .. see ndbm(3X)
dbmclose () : database subroutines ... see dbm(3X)
dbDL.close: database subroutines ... see ndbm(3X)
dbDL.delete: database subroutines ... see ndbm(3X)
dbDL.error: database subroutines ... see ndbm(3X)
dblll..fetch: database subroutines ... see ndbm(3X)
dbDL.firstkey: database subroutines .. see ndbm(3X)
dbminit (): database subroutines ... see dbm(3X)
dbDL.ne:x:tkey: database subroutines ... see ndbm(3X)
dblll..open: database subroutines ... see ndbm(3X)
dbDL.store: database subroutines ... see ndbm(3X)
delete () : database subroutines .. see dbm(3X)
devnm(3): devnm() .. map device ID to file path
dial(3C): dial (), undial () ... establish an out-going terminal line connection
difftime (): difference between calendar times .. see ctime(3C)
directory(3C): opendir () , readdir () ,

telldir (), seekdir () , rewinddir () , closedir () .. directory operations
div(3C): div(}, ldiv(} ... integer division and remainder
dn_COInP, (in_e:x:pand, - resolver routines .. see resolver(3N)
drand48(3C): drand48 (), erand48 (), lrand48 (), nrand48 (), mrand48 (), jrand48 (), srand48 (),

seed48 () , lcong48 () .. generate uniformly distributed pseudo-random numbers
drem () : remainder manipulations ... see ieee(3M)
ecvt(3C): ecvt () , fcvt (), gcvt (), nl_gcvt () convert floating-point number to string
edata: last locations in program ... see end(3C)
encrypt () : generate hashing encryption ... see crypt (3 C)
end(3C): end, ete:x:t, edatalast locations in program
endccent () : get cluster configuration entry .. see getccent(3C)
ende:x:portent () - access exported file system information ... see exportent(3N)
endfsent (): get file system descriptor file entry .. see getfsent(3X)
endgrent () : get group file entry ... see getgrent(3C)
endhostent () : get network host entry .. see gethostent(3N)
endmntent (): get file system descriptor file entry .. see getmntent(3X)
endnetent () : get network entry .. see getnetent(3N)

xii Table of Contents: Volume 2

Table of Contents
Volume 2

Entry Name(Sedion): name Description

endprotoent () : get protocol entry .. see getprotoent(3N)
endpwent () : get password file entry ... '" see getpwent(3C)
endpwent () : get secure password file entry .. see getspwent(3C)
endservent (): get service entry .. see getservent(3N)
endusershell () - close legal user shells file .. see getusershell(3C)
endutent () : access utmp file entry '" ... see getut(3C)
erand4S () : generate pseudo-random numbers .. see drand48(3C)
erf(3M): erf (), erfc () .. error function and complementar.f error function
erfc (): error function and complementary error function .. see erf(3M)
errno: system error messages .. see perror(3C)
error_$intro(3): error_$intro .. error text database operations
error_$c-,et_text(3): error_$c_get_text () return subsystem, module, and error texts for a status code
error_$c_text(3): error_$c_text () ... return an error message for a status code
etext: last locations in program ... see end(3C)
exp(3M): exp () , log () , log10 (), log2 () , pow () , sqrt (), cbrt (), expf (), logf (),

log10f (), log2f (), powf (), sqrtf () .,. exponential, logarithm, power, square root, cube root functions
expf () : exponential function (float version) .. see exp(3M)
exportent(3N): exportent (), getexportent (), setexportent (), addexportent (), remexportent (),

endexportent (), getexportopt () ... access exported file system information
fabs (): absolute value function ... see :8oor(3M)
fabsf (): absolute value function (float version) ... see :8oor(3M)
fclose(3S): fclose (), fflush() .. close or flush a stream
fcpacl (): copy access control list (ACL) to another file .. see cpacl(3C)
fcvt () : convert floating-point number to string ... see ecvt(3C)
fdopen () : associate a stream with a file descriptor ... see fopen(3S)
feof: stream status inquiries .. see ferror(3S)
ferror(3S): ferror, feof, clearerr, fileno ... stream status inquiries
fetch(): database subroutines .. see dbm(3X)
fflush () : flush a stream ... see fclose(3S)
f f s () : memory operations ... see memory(3C)
fgetccent () : get cluster configuration entry .. see getccent(3C)
fgetc () : get character from a stream file ... see getc(3S)
fgetgrent () : get group file entry ... see getgrent(3C)
fgetpos(3S): fgetpos (), fsetpos () save or restore file position indicator for a stream
fgetpwent () : get password file entry ... see getpwent(3C)
fgetpwent () : get secure password file entry .. see getspwent(3C)
fgets (): get a string from a stream ... see gets(3S)
fgetwc () : get wide character from a stream file ... see getwc(3C)
fgetws () : get a wide string from a stream .. see getws(3C)
fileno(3S): fileno () .. map stream pointer to file descriptor
finitef (), finite (): floating-point classification functions .. see ieee(3M)
finite (), finitef (): floating-point classification functions .. see ieee(3M)
firstkey () : database subroutines ... see dbm(3X)
firstof4 (), PIRSTOf2 (): process 16-bit characters ... see nCtools_16(3C)
:8oor(3M): floor (), ceil (), fmod (), fabs (),

fabsf (), rint () .. floor, ceiling, remainder, absolute value functions
fmodf () : remainder function (float version) .. see :8oor(3M)
fmod () : remainder function ... '"see :8oor(3M)
fnmatch(3C): fnmatch () ... match filename patterns
fopen(3S): fopen(), freopen(), fdopen() open or re-open a stream file; convert file to stream
fpclassifY(3M): fpclassify(), fpclassifyf () floating-point classification functions
fpclassifyf () : floating-point classification function (float version) see fpclassify(3M)
fpgetcontrol (), fpsetcontrol () : floating-point control register functions see fpgetround(3M)
fpgetfastmode (), fpsetfastmode () : floating-point underflow mode functions see fpgetround(3M)
fpgetmask (), fpsetmask () : floating-point exception trap enables functions see fpgetround(3M)
fpgetround(3M): fpgetround () , fpsetround () , fpgetmask () , fpsetmask () , fpgetsticky (),

fpsetsticky(),fpgetcontrol(),fpsetcontrol(),fpgetfastmodee),

Table of Contents: Volume 2 xiii

Table of Contents
Volume 2

Entry Name(Section): name Description
fpsetfastmode (), fpsetdefaults () ... floating·point mode control functions

fpgetsticky (), fpsetsticky () : floating.point exception flags functions see fpgetround(3M)
fprintf () : print formatted output ... see printf(3S)
fprintmsg () : print formatted output with numbered arguments .. see printmsg(3C)
fpsetcontrol (), fpgetcontrol () : floating·point control register functions see fpgetround(3M)
fpsetdefaults (): floating.point control register defaults functions see fpgetround(3M)
fpsetfastmode (), fpgetfastmode (): floating.point underflow mode functions see fpgetround(3M)
fpsetmask (), fpgetmask () : floating·point exception trap enables functions see fpgetround(3M)
fpsetround (), fpgetround () : floating·point rounding mode functions see fpgetround(3M)
fpsetsticky (), fpgetsticky () : floating.point exception flags functions see fpgetround(3M)
fputc () : put character on a stream .. see putc(3S)
fputs () : put a string on a stream ... see puts(3S)
fputwc () : put wide character on a stream .. see putwc(3C)
fputws () : put a wide string on a stream ... see putws(3C)
fread(3S): fread(), fwrite () ... buffered binary input/output to a stream file
free: main memory allocator .. .see malloc(3C)
freopen () : re·open a stream file; convert file to stream ... see fopen(3S)
frexp(3C): frexp, ldexp, modf .. split floating·point into mantissa and exponent
frtO .0: execution startup routines ... see crtO(3)
f scanf () : formatted input conversion, read from stream file ... see scanf(3S)
fseek(3S): fseek, rewind, ftell .. reposition a file pointer in a stream
f setaclentry () : add, modify, or delete access control list entry .. see setaclentry(3C)
fsetpos () - restore file position indicator for a stream .. see fgetpos(3S)
fstatfsdev(): get file system statistics ... see statfsdev(3C)
ftell: reposition a file pointer in a stream .. see fseek(3S)
ftok () - standard interprocess communication package ... see stdipc(3C)
ftw(3C): ftw, ftwh ... walk a file tree
ftwh: walk a file tree .. .see ftw(3C)
fwrite () : buffered binary output to a stream file .. see fread(3S)
gamma(3M): gamma (), 19amma (), signgam() .. .log gamma function
gcrtO .0: execution startup routines ... see crtO(3)
gcvt () : convert floating.point number to string ... see ecvt(3C)
getc(3S): getc () , getchar (), fgetc () , getw () get character or word from a stream file
getcccid () : get cluster configuration entry .. see getccent(3C)
getccent(3C): getccent (), getcccid(), getccnam(), setccent (),

endccent () , fgetccent () .. get cluster configuration entry
getccnam () : get cluster configuration entry .. see getccent(3C)
getcdf(3C): getcdf () , hidecdf () ... manipulate CDF path names
getchar () : get character from a stream file ... see getc(3S)
getclock(3C): getclock .. get current value of system·wide clock
getcwd(3C): getcwd () , gethcwd () .. get path.name of current working directory
getdate(3C): getdate () .. convert user format date and time
getdiskbyname(3C) :getdiskbyname () ... get disk description by its name
getenv(3C): getenv () .. return value for environment name
getexportent () - access exported file system information ... see exportent(3N)
getexportopt () - access exported file system information ... see exportent(3N)
getfsent(3X): getfsent (), getfsspec (), getfsfile (), getfstype (),

se~fsent (), endfsent () ... get file system descriptor file entry
getfsent (): get file system descriptor file entry .. see getfsent(3X)
getfsfile (): get file system descriptor file entry .. see getfsent(3X)
getfsspec (): get file system descriptor file entry .. see getfsent(3X)
getfstype (): get file system descriptor file entry .. see getfsent(3X)
getgrent(3C): getgrent (), getgrgid(), getgrnam(), setgrent (),

endgrent (), fgetgrent () ... get group file entry
getgrgid () , getgrnam () : get group file entry ... see getgrent(3C)
gethcwd () : get path·name of current working directory ... see getcwd(3C)
gethostbyaddr () : get network host entry ... see gethostent(3N)

xiv Table of Contents: Volume 2

Table of Contents
Volume 2

Entry Name(Section): name Description
gethostbyname () : get network host entry ... see gethostent(3N)
gethostent(3N): gethostent (), gethostbyaddr (), gethostbyname () ,

sethostent () , endhostent () ... get network host entry
gethostent () : get network host entry .. see gethostent(3N)
get locale (): get the locale of a program ... see setlocale(3C)
getlogin(3C): get login () ... get login name
getmntent(3X): getmntent () , setmntent (), addmntent (),

endmntent () , hasmntopt () ... get file system descriptor :file entry
getnetbyaddr () : get network entry ... see getnetent(3N)
getnetbyname () : get network entry ... see getnetent(3N)
getnetent(3N): getnetent () , getnetbyaddr () , getnetbyname () ,

setnetent () , endnetent () ... get network entry
getnetent () : get network entry .. see getnetent(3N)
getnetgrent(3C): getnetgrent (), setnetgrent (), endnetgrent (), innetgr () get network group entry
getopt(3C): getopt () , optarg, optind, opterr get option letter from argument vector
getpass(3C): getpass ()read a password
getprotobyname () : get protocol entry ... see getprotoent(3N)
getprotobynumber () : get protocol entry ... see getprotoent(3N)
getprotoent(3N): getprotoent (), getprotobynumber (), getprotobyname (),

setprotoent () , endprotoent () ... get protocol entry
getprotoent () : get protocol entry .. see getprotoent(3N)
getpw(3C): getpw() ... get name from UID
getpwent(3C): getpwent (), getpwuid (), getpwnam (), setpwent (),

endpwent (), fgetpwent () ... get password file entry
getpwent () : get password file entry .. see getpwent(3C)
getpwent (): get secure password file entry .. see getspwent(3C)
getrpcent(3C): getrpcent (), getrpcbyname (), getrpcbynumber () ... get rpc entry
getrpcport(3N): getrpcport () .. get RPC port number
gets(3S): gets (), fgets () .. get a string from a stream
getservbyname () : get service entry .. see getservent(3N)
getservbyport () : get service entry .. see getservent(3N)
getservent(3N): getservent (), getservbyport (), getservbyname (),

setservent (), endservent () ... get service entry
getservent () : get service entry .. see getservent(3N)
getspwaid(): get secure password file entry .. see getspwent(3C)
getspwent(3C): getpwent (), getpwuid(), getpwnam(), setpwent (),

endpwent (), fgetpwent () ... get secure password file entry
getsubopt(3C): getsubopt () ... parse suboptions from a string.
gettimer(3C): gettimer ... get value of a per-process timer
getusershell(3C): getusershell () , setusershell () , endusershell () get legal user shells
getut(3C): getutent (), getutid () , getutline (), pututline (), setutent (),

endutent (), utJnpname () ... access utmp file entry
getutent () : access utmp file entry ... see getut(3C)
getwc(3C): getwc (), getwchar (), fgetwc () .. get wide character from a stream file
getwchar (): get wide character from a stream file .. see getwc(3C)
getw () : get word from a stream file ... see getc(3S)
getws(3C): getws () , fgetws () ... get a wide string from a stream
glob(3C): glob () , globfree () ... file name generation function
globfree () - file name generation function ... see glob(3C)
gmtime (): convert date and time to string ... see ctime(3C)
gpio-Jfet_status(3U: gpio_get_status .. return status lines of GPIO card
gpio_set_ctl(3I): gpio_set_ctl ... set control lines on GPIO card
gs ignal () : software signals ... see ssignal(3C)
hasmntopt () : get file system descriptor file entry .. see getmntent(3X)
hcreate () : manage hash search tables ... see hsearch(3C)
hdestroy () : manage hash search tables .. see hsearch(3C)
herror - resolver routines ... see resolver(3N)

Table of Contents: Volume 2 xv

Table of Contents
Volume 2

Entry Name(Sedion): name Description
hidecdf () - manipulate context-dependent file path names ... see getcdf(3C)
hpib_abort(3I): hpib_abort () ... stop activity on specified HP-IB bus
hpib_address_ctl(3I): hpib_address_ct1 () ... set HP-IB bus address for an interface
hpib_atn_ctl(3D: hpib_atn_ct1 () ... control Attention line on HP-IB
hpib_bus_status(3I): hpib_bus_status () ... return status of HP-IB interface
hpib_card-ppoIL-resp(3I): hpib_card...Ppo11_resp () control response to parallel poll on HP-IB
hpib_eoCctl(3I): hpib_eoi_ct1 () ... control EO! mode for HP-IB file
hpib_io(3I): hpib_io () .. perform I/O with an HP-IB channel from buffers
hpib-parity_ctl(3I): hpib....parity_ct1 () enable/disable odd parity on ATN commands
hpib--pass_ctl(3I): hpib....pass_ct1 () ... change active controllers on HP-IB
hpib--ppoll(3I): hpib""ppo11 () .. conduct parallel poll on HP-IB bus
hpib--ppoll_resp_ctl(3I): hpib""ppo11_resp_ct1 () define interface parallel poll response
hpib_ren_ctl(3I): hpib_ren_ct1 () ... control the Remote Enable line on HP-IB
hpib_rqst_srvce(3I): hpib_rqst_srvce () allow interface to enable SRQ line on HP-IB
hpib_send_cmnd(3I): hpib_send_cmnd () ... send command bytes over HP-IB
hpib_spoll(3I): hpib_spo11 () ... conduct a serial poll on HP-IB bus
hpib_status_wait(3I): hpib_status_wait () wait until the requested status condition becomes true
hpib_wait_on-ppoll(3I): hpib_wait_on""ppo11 () wait until a particular parallel poll value occurs
hppac(3X) ... Series 800 HP 3000-mode packed decimal library
hsearch(3C): hsearch(), hcreate (), hdestroy() .. manage hash search tables
hton1 () , htons () : convert values from host to network byte order .. see byteorder(3N)
hypot(3M): hypot () , cabs () .. Euclidean distance, complex absolute value function
iconv(3C): iconvc1ose (), iconvopen (), iconvsize (), iconv1ock (),

ICONV, ICONV1, ICONV2 •••••••••.••••••••••••.•••.••• code set conversion routines
idto1ang () : NLS information about native languages .. see langinfo(3C)
ieee(3M): copysign(), copysignf (), drem(), finite (), finitef (),

10gb (), sca1b () ... copysign, remainder, classification, exponent manipulations
index () : BSD portability string routine ... see string(3C)
inet(3N): inet_addr (), inet_network (), inet_ntoa (),

inet_makeaddr (), inet_1naof () , inet_netof () Internet address manipulation routines
inet_addr () : Internet address manipulation routines .. see inet(3N)
inet_1naof (): Internet address manipulation routines .. see inet(3N)
inet_makeaddr () : Internet address manipulation routines ... see inet(3N)
inet_netof () : Internet address manipulation routines .. see inet(3N)
inet_network () : Internet address manipulation routines ... see inet(3N)
inet_ntoa () : Internet address manipulation routines .. see inet(3N)
initgroups(3C): initgroups () .. initialize group access list
initopt(3N): initopt () ... initialize a NetIPC option buffer
io_burst(3I): io_burst () perform low-overhead I/O on an HP-IB/GPIO/parallel channel
io_dma_ctl(3D: io_dma_ct1 () .. control DMA allocation for an interface
io_eoCctl(3I): io_eo1_ct1 ... set up read termination character on special file
io~et_term_reason(3I): io_get_terJILreason() determine how last read terminated
io_interrupt_ctl{3I): io_interrupt_ct1 () enable/disable interrupts for the associated eid
io_lock(31): io_1ock, io_un1ock .. .lock and unlock an interface
io_on_interrupt(3I): io_on_interrupt () ... device interrupt (fault) control
io_reset(3I): io_reset () ... reset an I/O interface
io_speed_ctl(3D: io_speed_ct1 () ... inform system of required transfer speed
io_timeout_ctl(3I): io_timeout_ct1 () ... establish a time limit for I/O operations
io_un1ock: lock and unlock an interface .. see io_lock(3I)
io_width,..ctl(3I): io_width_ct1 () .. set width of data path
ipcerrmsg(3N): ipcerrmsg (), ipcerrstr () provide text describing NetIPC error number
ipcerrstr () - provide text describing NetIPC error number .. see ipcerrmsg(3N)
is_680 1 O""present: check for presence of hardware capabilities see is_hw--present(3C)
is_68881-present: check for presence of hardware capabilities see is_hw--present(3C)
is_98248A-present: check for presence of hardware capabilities see is_hw--present(3C)
is_98635A-present: check for presence of hardware capabilities see is_hw-present(3C)
isa1num(): classifY characters .. see ctype(3C)

xvi Table of Contents: Volwne 2

Table of Contents
Volume 2

Entry Narne(Section): name Description
isalpha () : classify characters .. see ctype(3C)
isascii () : classify characters .. see ctype(3C)
isat ty () : find name of a terminal ... see ttyname(3C)
iscntrl (): classify characters .. see ctype(3C)
isdigit () : classify characters .. see ctype(3C)
isgraph () : classify characters .. see ctype(3C)
is_hw-present(3C): is_68010-present, is_68881-present,

is_98635A-present, is_98248A-present check ior presence ofhardwal'e capabilities
isinf(3M): isinf (), isinff () ... test for INFINITY
isinff (): test for INFINITY (float version) .. see isinf(3M)
is lower (): classify characters .. see ctype(3C)
isnan(3M): isnan () , isnanf () ... test for NaN
isnanf (): test for NaN (float version) .. see isnan(3M)
isprint () : classify characters .. see ctype(3C)
ispunct () : classify characters .. see ctype(3C)
isspace () : classify characters .. see ctype(3C)
isupper () : classify characters .. see ctype(3C)
iswalnum: classify wide characters .. see wctype(3C)
iswalpha: classify wide characters .. see wctype(3C)
iswcntrl: classify wide characters .. see wctype(3C)
iswdigit: classify wide characters .. see wctype(3C)
iswgraph: classify wide characters .. see wctype(3C)
iswlower: classify wide characters .. see wctype(3C)
iswprint: classify wide characters .. see wctype(3C)
iswpunct: classify wide characters .. see wctype(3C)
iswspace: classify wide characters .. see wctype(3C)
iswupper: classify wide characters .. see wctype(3C)
iswxdigit: classify wide characters .. see wctype(3C)
isxdigit (): classify characters .. see ctype(3C)
j 0 () : Bessel function ... see bessel(3M)
j 1 () : Bessel function ... see bessel(3M)
j n () : Bessel function ... see bessel(3M)
j rand48 () : generate pseudo-random numbers .. see drand48(3C)
13tol(3C): l3tol (), lto13 () ... convert between 3-byte integers and long integers
l64a: convert between long integer and base-64 ASCII string .. see a641(3C)
langinfo(3C): langinfo (), langtoid (), idtolang (), currlangid () native language NLS information
langinit () : initialize the NLS environment of a program ... see nCinit(3C)
langtoid () : NLS information about native languages .. see langinfo(3C)
lcong48 () : generate pseudo-random numbers .. see drand48(3C)
Idcvt(3C): _ldecvt () , _ldfcvt () , _ldgcvt () convert long double floating-point number to string
_ldecvt () - convert long double floating-point number to string ... see Idcvt(3C)
ldecvt () Cldecvt ()) - convert long double floating-point number to string see Idcvt(3C)
ldexp: split floating-point into mantissa and exponent ... see frexp(3C)
_ldfcvt () - convert long double floating-point number to string ... see Idcvt(3C)
ldfcvt () Cldfcvt (» - convert long double floating-point number to string see Idcvt(3C)
_ldgcvt () - convert long double floating-point number to string ... see Idcvt(3C)
ldgcvt () Cldgcvt ()) - convert long double floating-point number to string see Idcvt(3C)
ldiv () : long integer division and remainder ... see div(3C)
lfind (): linear search and update .. ; ... see lsearch(3C)
19amrna () : log gamma function .. see gamma(3M)
localtime (): convert date and time to string ... see ctime(3C)
loglO () : common logarithm function .. see exp(3M)
loglO f () : common logarithm function (float version) .. see exp(3M)
log2 () : base 2 logarithm function .. see exp(3M)
log2 f () : base 2 logarithm function (float version) ... see exp(3M)
10gb (), scalb () : exponent manipulations .. see ieee(3M)
logf (): natural logarithm function (float version) ... see exp(3M)

Table of Contents: Volume 2 xvii

Table of Contents
Volume 2

Entry Name(Section): name Description
logname(3C): logname () ... return login name of user
log () : natural logarithm function , ... see ex:p(3M)
longjmp () : restore stack environment for non-local goto ... see setjmp(3C)
lrand48 () : generate pseudo-random numbers .. see drand48(3C)
Isearch(3C): lsearch (), If ind () .. .linear search and update
1 toa () : long to ASCII decimal .. , see Itostr(3C)
lto13 (): convert between 3-byte integers and long integers .. see 13tol(3C)
Itostr(3C): ltostr (), ultostr (), ltoa (), ultoa () .. convert long integers to strings
mallinfo: main memory allocator .. see malloc(3C)
malloc(3C): malloc, free, realloc, calloc,

mallopt, mallinfo, memorymap ... main memory allocator
mallopt: main memory allocator .. see malloc(3C)
matherr(3M): matherr () .. error-handling function
mblen () : multibyte characters and strings conversions ... see multibyte(3C)
mbstowcs () : multibyte characters and strings conversions ... see multibyte(3C)
mbtowc () : multibyte characters and strings conversions ... see multibyte(3C)
mcrtO .0: execution startup routines ... see crtO(3)
memccpy () : memory operations .. see memory(3C)
memchr () : memory operations .. see memory(3C)
memcInP () : memory operations .. see memory(3C)
memcpy () : memory operations .. see memory(3C)
memmove () : memory operations .. see memory(3C)
memory(3C): memccpy () , memchr () , memcmp () , memcpy () , memset () memory operations
memorymap: main memory allocator ... ; see malloc(3C)
memset () : memory operations .. see memory(3C)
mfrtO .0: execution startup routines ... see crtO(3)
mkfifo(3C): mkfifo () .. make a FIFO special file
mktemp(3C): mkteInP () ... make a unique file name
mktime () : create calendar time value ... see ctime(3C)
mktimer(3C): mktimer .. allocate a per-process timer
modf: split floating-point into mantissa and exponent ... see frex:p(3C)
monitor(3C): monitor () ... prepare execution profile
mount(3N): mount () .. keep track of remotely mounted file systems
mrand48 () : generate pseudo-random numbers .. see drand48(3C)
multibyte(3C): mblen (), mbtowc (), mbstowcs (), wctomb (),

wcstombs () .. multibyte characters and strings conversions
ndbm(3X): dbm_open,dbm_close,dbm_fetch,dbm_store,dbm_delete,dbm_firstkey,

dbm_nextkey, dbm_error, dbm_clearerr ... database subroutines
net_aton(3C): net_aton () , net_ntoa () network station address string conversion routines
net_ntoa () : network station address string conversion routines ... see net_aton(3C)
nextkey(): database subroutines ... see dbm(3X)
nlappend(3X): nlappend () append appropriate language identification to valid MPE file name
nl_asctim() e: convert date and time to string .. see ctime(3C)
nl_ascxtime () : convert date and time to string .. see ctime(3C)
nl_atof: convert string to double-precision number .. see strtod(3C)
nlcollate(3X}: nlcollate () compare strings using MPE language-dependent collating sequence
nl_conv(3C): nl_toupper () , nl_tolower () .. translate characters for use with NLS
nlconvclock(3X): nlconvclock () check and convert time string to MPE internal format
nlconvcustdate(3X): nlconvcustdate () convert date string to MPE packed date format
nlconvnum(3X): nlconvnum() convert MPE native language formatted number to ASCII number
nl_ctime (): convert date and time to string ... see ctime(3C)
nl_ctype(3C): nl_isalpha (), nl_isupper () , nl_islower (), nl_isdigit () , nl_isxdigit () ,

nl_isalnum() , nl_isspace(),nl_ispunct(),nl_isprint(), nl_i sgraph(),
nl_iscntrl () ... classifY characters for use with NLS

nl_cxtime () : convert date and time to string ... see ctime(3C)
nlfindstr(3X): nlfindstr () search for string in another string using MPE character set definition
nlfmtcal(3X): nlfmtcalendar () .. format MPE packed date using localized format

xviii Table of Contents: Volume 2

Table of Contents
Volume 2

Entry Name(Sectlon): name Description
nlfmtclock(3X): nlfmtclock () .. format MPE time of day using localized format
nlfmtcustdate(3X): nlfmtcustdate () .. format MPE packed date using custom date
nlfmtdate(3X): nlfmtdate () ... format MPE date and time in localized format
nlfmtlongcal(3X): nlfmtlongcal () format MPE packed date using long calendar format
nlfmtnum(3X): nlfmtnum() convert ASCII number to MPE language-specific formatted number
nl_fprintf () : print formatted output .. see printf(3S)
nl_fscanf: formatted input conversion, read from stream file ... see scanf(3S)
nl_gcvt (): convert floating-point number to string .. see ecvt(3C)
nlgetlang(3X): nlgetlang () .. return current user, data, or system default language
nlinfo(3X): nlinfo () .. return MPE language-dependent information
nl_init(3C): nl_init (), langinit () .. initialize the NLS environment of a program
nl_isalnum(): classify characters for use with NLS ... see nl_ctype(3C)
nl_isalpha () : classify characters for use with NLS ... see nl_ctype(3C)
nl_iscntrl (): classify characters for use with NLS ... see nl_ctype(3C)
nl_isdigit (): classify characters for use with NLS ... see nl_ctype(3C)
nl_isgraph () : classify characters for use with NLS ... see nl_ctype(3C)
nl_islower () : classify characters for use with NLS ... see nl_ctype(3C)
nl_isprint () : classify characters for use with NLS ... see nl_ctype(3C)
nl_ispunct () : classify characters for use with NLS ... see nl_ctype(3C)
nl_isspace (): classify characters for use with NLS ... see nl_ctype(3C)
nlist(3C): nlist () .. get entries from name list
nl_isupper () : classify characters for use with NLS ... see nl_ctype(3C)
nl_isxdigit (): classify characters for use with NLS ... see nl_ctype(3C)
nljudge(3X): nljudge () judge whether character is one- or multi-byte Asian using MPE character table
nlkeycompare(3X):

nlkeycompare () compare character arrays (keyI, key2) using MPE collation table
nl_nl_langinfo(3C): nl_langinfo () ... NLS information about native languages
nlnumspec(3X): nlnumspec () return number convert/format information for MPE routines
nl..,printf () : print formatted output .. see printf(3S)
nlrepchar(3X): nlrepchar () replace non-displayable characters MPE character set table
nl_scanf: formatted input conversion, read from stream file ... see scanf(3S)
nlscanmove(3X): nlscanmove () move, scan and case shift character strings using MPE character set table
nl_sprintf (): print formatted output .. see printf(3S)
nl_sscanf: formatted input conversion, read from stream file ... see scanf(3S)
nl_strcmp, nl_strncmp: character string operations ... see string(3C)
nl_string(3C): strcmp8 (), strncmp8 (), strcmp16 () , strncmp16 () non-ASCII string collation
nl_strtod: convert string to double-precision number .. see strtod(3C)
nlsubstr(3X): nlsubstr () ... extract substring using MPE character set table
nlswitchbuf(3X): nlswitchbuf () convert string screen order using MPE character set table
nl_tolower (): translate characters for use with NLS .. see nl_conv(3C)
nl_tools_16(3C): firstof2 (), secof2 (), byte_status (), c_colwidth(),

PIRSTOf2(),SBCof2(),BYTB_STATUS(),C_COL~DTH(),CHARAT(),

ADVANCB 0 , CHARADV 0, WCHAR (), WCHARADV 0 .. tools to process I6-bit characters
nl_toupper (): translate characters for use with NLS .. see nl_conv(3C)
nltranslate(3X): nltranslate () .. translate ASCII EBCDIC using MPE conversion table
nrand48 (): generate pseudo-random numbers .. see drand48(3C)
ntohl () , ntohs () : convert values from network to host byte order .. see byteorder(3N)
opendir () : directory operations .. see directory(3C)
openlog () : control system log .. see syslog(3C)
optarg: get option letter from argument vector .. see getopt(3C)
opterr: get option letter from argument vector .. see getopt(3C)
optind: get option letter from argument vector .. see getopt(3C)
optoverhead(3N): opt overhead () retu rn number of bytes needed by aN etIPC option
pclose (): initiate pipe 110 to/from a process ... see popen(3S)
perror(3C): perror (), errno (), sys_errlist () , sys_nerr () system error messages
pfm_$intro(3): pfm_$introfault management
pfm_$cleanup(3): pfm_$cleanup () ... establish a cleanup handler

Table of Contents: Volume 2 xix

Table of Contents
Volume 2

Entry Name(Section): name Description
pfm_$enable(3): pfllL$enable () .. enable asynchronous faults
pfm_$enable_faults(3): pfm_$enable_faults () .. enable asynchronous faults
pfm_$inhibit(3): pfllL$inhibit () ... inhibit asynchronous faults
pfm_inhibit(3): pfm_inhibit .. pointer entry for conflicting online manual entries
pfm_$inhibit_faults(3): pfm_$inhihit_faults tnhibit asynchronous faults; allow time-sliced task switching
pfm_$init(3): pfm_$init () .. initialize the process fault manager package
pfm_$reset_cleanup(3): pfm_$reset_cleanup .. reset a cleanup handler
pfm_$rls_cleanup(3): pfm_$rls_cleanup () ... release a cleanup handler
pfm_$signal(3): pfllL$signal () ... signal the calling process
pgm_$intro(3): pgIll..$intro .. program management
pgm_$exit(3): pgm_$exit () .. exit a program
popen(3S): popen () , pclose () .. initiate pipe I/O to/from a process
powf () : power function (float version) .. see exp(3M)
pow () : power functionsee exp(3M)
printf(3S): printf () , nl...,printf () , fprintf () , nl_fprintf () ,

sprintf (), nl_sprintf () ... print formatted output
printmsg(3C): printmsg () , fprintmsg (), sprintmsg () print formatted output with numbered arguments
ptsname(3C): ptsname ... get the name of a slave pty
putc(3S): putc (), put char () , fputc (), putw () ... put character or word on a stream
put char () : put character on a stream .. see putc(3S)
putenv(3C): putenv () .. change or add value to environment
putpwent(3C): putpwent () .. write password file entry
puts(3S): puts (), fputs () ... put a string on a stream
putspwent(3C): putspwent () .. write secure password file entry
...,pututline () : access utmp file entry ... see getut(3C)
pututline () : access utmp file entry ... see getut(3C)
putwc(3C): putwc () , putwchar () , fputwc () , putw () put wide character on a stream
putwchar () : put wide character on a stream ... see putwc(3C)
putw () : put word on a stream .. see putc(3S)
putws(3C): putws (), fputws 0 .. put a wide string on a stream
qsort(3C): qsort () ... quicker sort
rand(3C): rand () , srand () ... simple random-number generator
rcmd(3N): rcmd () , rresvport () , ruserok () ... return a stream to a remote command
readdir () : directory operations .. see directory(3C)
readopt(3N): readopt () .. obtain option code and data from NetIPC option buffer
realloc: main memory allocator .. see malloc(3C)
regcmp(3X): regcmp (), regex () ... compile and execute regular expression
regcomp(3C): regcomp () , regerror (), regexec () , regfree () regular expression matching routines
reg error () - regular expression matching routines ... see regcomp(3C)
reg ex () : compile and execute regular expression .. see regcmp(3X)
regexec () - regular expression matching routines ... see regcomp(3C)
regexp(3X): compile (), step () , advance () regular expression compile and match routines
regfree () - regular expression matching routines ... see regcomp(3C)
reltimer(3C): reltimer ... relatively arm a per-process timer
remexportent () - access exported file system information ... see exportent(3N)
remove(3C): remove () .. .remove a file
res_init, res_mkquery, res_query, res_search, res_send, - resolver routines see resolver(3N)
resolver(3N): res_init, res_mkquery, res_query, res_search, res_send, dn_comp,

dn_expand, herrorresolver routines
rewinddir () : directory operations .. see directory(3C)
rewind: reposition a file pointer in a stream .. , see fseek(3S)
rexec(3N): rexec () ... return stream to a remote command
rindex () : BSD portability string routine ... see string(3C)
rint () : round-to-nearest function .. see ftoor(3M}
rmtimer(3C): rmtimer .. .free a per-process timer
rnusers(3N): rnusers (), rusers () return information about users on remote machines
rpc(3C): rpc ()library routines for remote procedure calls

xx Table of Contents: Volume 2

Table of Contents
Volume 2

Entry Name(Sectlon): name Description
rrasvport () - return a stream to a remote command .. see rcmd(SN)
rstat(SN): rstat (), havedisk() ... get performance data from remote kernel
ruserok () return a stream to a remote command .. see rcmd(SN)
rwall(SN): rwa11 () ... write to specified remote machines
scalb (), 10gb () : exponent manipulations .. see ieee(SM)
scandir(SC): scandir (), a1phasort () ... scan a directory
s0!1!'..f(3S): sC!lnf (); fsc!lnf (), secanf (), nl_ecanf,

n1_fscanf, n1_sscanf ... formatted input conversion, read from stream file
secof2 () , SBCof2 (): process I6-bit characters .. see nl_tools_16(SC)
seed48 () : generate pseudo-random numbers ... see drand48(SC)
seekdir (): directory operations .. see directory(SC)
setaclentry(SC): setac1entry(), fsetac1entry() add, modify, or delete access control list entry
setbuf(SS): setbuf () , setvbuf () .. assign buffering to a stream file
setccent () : get cluster configuration entry .. see getccent(SC)
setclock(SC): setc10ck .. set value of system-wide clock
setexportent () - access exported file system information ... see exportent(SN)
setfsent (): get file system descriptor file entry .. see getfsent(SX)
setgrent () : get group file entry ... see getgrent(SC)
sethostent () : get network host entry .. see gethostent(SN)
setjmp(SS): setjmp (), longjmp () .. save/restore stack environment for non-local goto
_setjmp () : save stack environment for non-local goto ... see setjmp(SC)
setkey () : generate hashing encryption ... see crypt(SC)
setlocale(SC): set locale () , get locale () ... set and get the locale of a program
setlogmask () : control system log ... see syslog(SC)
setmntent (): get file system descriptor file entry .. see getmntent(SX)
setnetent () : get network entry .. see getnetent(SN)
setprotoent () : get protocol entry .. see getprotoent(SN)
setpwent () : get password file entry .. see getpwent(SC)
setpwent () : get secure password file entry .. see getspwent(SC)
setservent (): get service entry .. see getservent(SN)
setusershe11 () - rewind legal user shells file ... see getusershell(SC)
setutent () : access utmp file entry ... see getut(SC)
setvbuf () : assign buffering to a stream file ... see setbuf(SS)
sgetl (): access long integer data in a machine-independent fashion .. see sputl(SX)
sh1_definesym() - define new symbol for shared libraries .. see shCload(SX)
sh1_f indsym () - explicit load of shared libraries ... see shl_load(SX)
shl_f indsym () - get information about shared libraries .. see shl_load(SX)
shl_gethand1e () - get shared library information ... see shl_load(SX)
shl_load(SX): sh1_1oad () , sh1_f indsym () , shl_un1oad (), shl--9'et () explicit load of shared libraries
sh1_1oad () - explicit load of shared libraries ... see shl_load(SX)
shl_un1oad () - unload shared libraries .. see shl_load(SX)
sigaddset (): initialize, manipulate, and test signal sets .. see sigsetops(SC)
sigde1set (): initialize, manipulate, and test signal sets .. see sigsetops(SC)
sigemptyset () : initialize, manipulate, and test signal sets .. see sigsetops(SC)
sigfi11set (): initialize, manipulate, and test signal sets .. see sigsetops(SC)
sigismember () : initialize, manipulate, and test signal sets .. see sigsetops(SC)
s igngam () : log gamma function .. see gamma(SM)
sigsetops(SC): sigemptyset (), sigfi11set (), sigaddset (),

sigde1set (), sigismember () .. initialize, manipulate, and test signal sets
sindf (): trigonometric sine function (float, degrees) ... see trigd(SM)
sind (): trigonometric sine function (degrees) .. see trigd(SM)
sinf (): trigonometric sine function (float) .. see trig(SM)
sinh(SM): sinh (), cosh(), tanh (), sinhfO, coshf (), tanhf () .. hyperbolic functions
sinhf (): hyperbolic cosine function (float version) ... see sinh(SM)
sin () : trigonometric sine function ... see trig(SM)
sleep(SC): sleep () .. suspend execution for interval
spray(SN): spray ... scatter data for network checking

Table of Contents: Volume 2 xxi

Table of Contents
Volume 2

Entry Name(Section): name Description
sprintf () : print formatted output ... see printf(3S)
sprintmsg () : print formatted output with numbered arguments .. see printmsg(3C)
sputl(3X): sputl (), sgetl () access long integer data in a machine-independent fashion
sqrtf () : square root function (float version) .. see exp(3M)
sqrt () : square root function ... see exp(3M)
srand48 () : generate pseudo-random numbers .. see drand48(3C)
srand () : simple random-number generator .. see rand(3C)
sscanf (): formatted input conversion, read from stream file ... see scanf(3S)
ssignal(3C): ssignal (), gsignal () .. software signals
statfsdev(3C): statfsdev(), fstatfsdev() .. get file system statistics
stdio(3S): stdio () ... standard buffered input/output stream file package
stdipc(3C): ftok () ... standard interprocess communication package
step (): regular expression compile and match routines .. see regexp(3X)
store () : database subroutines .. see dbm (3X)
strcat (), strncat (): character string operations ... see string(3C)
strchr (), strrchr () : character string operations ... see string(3C)
strcmp8 (), strcrnp16 (): non-ASCII string collation ... see nCstring(3C)
strcmp (), strncrnp () : character string operations ... see string(3C)
strcoll () : character string operations ... see string(3C)
s trcpy (), s trncpy () : character string operations ... see string(3C)
strerror () : system error messages ... see perror(3C)
strftime(3C): strftime () ... convert date and time to string
string(3C): strcat (), strncat (), strcmp (), strncmp (), strcpy (), strncpy (), strlen (),

strchr(),strrchr(),strpbrk(),strspn(),strcspn(),
strtok (), nl_strcrnp, nl_strncmp ... character string operations

strlen(): character string operations ... see string(3C)
strncrnp8 (), strncmp16 (): non-ASCII string collation .. see nCstring(3C)
strord(3C): s'trord() .. convert string data order
strpbrk () : character string operations ... see string(3C)
strrstr () : character string operations ... see string(3C)
strspn(), strcspn(): character string operations ... see string(3C)
strstr (): character string operations ... see string(3C)
strtoacl(3C): strtoacl (), strtoaclpatt () convert string form to access control list structure
strtoaclpatt (): convert pattern string form to access control list (ACL) structure see strtoacl(3C)
strtod(3C): strtod (), atof (), nl_strtod, nl_atof convert string to double-precision number
strtok (): character string operations ... see string(3C)
strtold(3C): s trtold () , ... convert string to long double-precision number
strxfrm () : character string operations ... see string(3C)
swab (3C): swab ()swap bytes
sys_errlist: system error messages ... see perror(3C)
syslog(3C): syslog (), openlog (), closelog (), setlogmask () ... control system log
sys_nerr: system error messages ... see perror(3C)
system(3S): system() issue a shell command
tandf (): trigonometric tangent function (float, degrees) .. see trigd(3M)
tand () : trigonometric tangent function (degrees) .. see trigd(3M)
tanf () : trigonometric tangent function (float) .. see trig(3M)
tanhf (): hyperbolic tangent function (float version) ... see sinh(3M)
tanh () : hyperbolic tangent function ... see sinh(3M)
tan () : trigonometric tangent function ... see trig(3M)
tcattribute(3C): tcgetattr (), tcsetattr () .. control tty device
tccontrol(3C): tcsendbreak (), tcdrain(), tcflush(), tcflow() tty line control functions
tcdrain () : tty line control functions .. see tccontrol(3C)
tcf low () : tty line control functions .. see tccontrol(3C)
tcflush () : tty line control functions .. see tccontrol(3C)
tcgetat tr () : get tty device attributes .. see tcattribute(3C)
tcgetpgrp(3C): tcgetpgrp () .. get foreground process group ID
tcsendbreak () : tty line control functions ... see tccontrol(3C)

xxii Table of Contents: Volume 2

Table of Contents
Volume 2

Entry Name(Sectlon): name Description
tcsetattr (): set tty device attributes ... see tcattribute(3C)
tcsetpgrp(3C): tcsetpgrp () .. get foreground process group ID
tdelete () : manage binary search trees ... see tsearch(3C)
telldir (): directory operations .. see directory(3C)
ternpnam(): create a name for a temporary file ... see tmpnam(3S)
termcap(3X): tgetent (), tgetnum(), tgetflag (), tgetstr (),

tgoto (), tputs () ... emulate /etc/termcap access routines
t find () : manage binar-y search trees ... see tsearch(3C)
tgetent (): emulate /etc/termcap access routines ... see termcap(3X)
tgetflag (): emulate /etc/termcap access routines ~ ... see termcap(3X)
tgetnum(): emulate /etc/termcap access routines ... see termcap(3X)
tgetstr (): emulate /etc/termcap access routines ... see termcap(3X)
tgoto (): emulate /etc/termcap access routines ... see termcap(3X)
timezone (): convert date and time to string ... see ctime(3C)
tmpfile(3S): tmpfile () ... create a temporary file
tmpnam(3S): tmpnam(), tempnam() .. create a name for a temporary file
toascii (): translate characters ... see conv(3C)
tolower () ,_tolower: translate characters ... see conv(3C)
toupper () ,_toupper: translate characters ... see conv(3C)
tow lower () : translate wide characters .. see wconv(3C)
towupper () : translate wide characters .. see wconv(3C)
tputs (): emulate /etc/termcap access routines ... see termcap(3X)
trig(3M): sin(), cos (), tan(), asin(), acos (), atan(), atan2 (), sinf (), cosf (), tanf (),

asinf (), acosf (), atanf (), atan2f () ... trigonometric functions
trigd(3M): sind(), cosd(), tand(), asind(), acosd(), at and (), at an2d(),

sindf(),cosdf(),tandf(),asindf(),acosdf(),atandf(),
atan2df () .. degree-valued trigonometric functions

tsearch(3C): tsearch (), tfind (), tdelete (), twalk () manage binary search trees
ttyname(3C): ttyname (), isatty() ... find name of a terminal
ttyslot(3C): ttyslot () .. find the slot in the utmp file of the current user
twalk () : manage binary search trees ... see tsearch(3C)
tzname () : convert date and time to string ... see ctime(3C)
tzset (): convert date and time to string ... see ctime(3C)
ultoa (): unsigned long to ASCII decimal ... see Itostr(3C)
ultostr () : unsigned long to ASCII .. see Itostr(3C)
undial () : establish an out-going terminal line connection ... see dial(3C)
ungetc(3S): ungetc () ... push character back into input stream
ungetwc(3C): ungetwc () ... push wide character back into input stream
utmp file entry .. .see getut(3C)
utmpname (): access utmp file entry ... see getut(3C)
vfprintf () : print formatted output of a varargs argument list ... see vprintf(3S)
vfscanf (): formatted input conversion to a varargs argument ... see vscanf(3S)
vprintf(3S): vprintf (), vfprintf (), vsprintf () print formatted output of a varargs argument list
vscanf(3S): vscanf (), vfscanf (), vsscanf () formatted input conversion to a varargs argument
vsprintf () : print formatted output of a varargs argument list ... see vprintf(3S)
vsscanf (): formatted input conversion to a varargs argument ... see vscanf(3S)
WCHARADV () : process 16-bit characters .. see nl_tools_16(3C)
WCHAR () : process 16-bit characters .. see nl_tools_16(3C)
wconv(3C): towupper (), towlower () ... translate wide characters
wcscat, wcsncat: wide character string operations .. see wcstring(3C)
wcschr, wcsrchr: wide character string operations .. see wcstring(3C)
wcscmp, wcsncmp: wide character string operations .. see wcstring(3C)
wcscoll: wide character string operations ... see wcstring(3C)
wcscpy, wcsncpy: wide character string operations .. see wcstring(3C)
wcsftime(3C): wcsftime () ... convert date and time to wide-character string
wcslen: wide character string operations ... see wcstring(3C)
wcspbrk: wide character string operations ... see wcstring(3C)

Table of Contents: Volume 2 xxiii

Table of Contents
Volume 2

Entry Name(Section): name Description
wcsspn, wcscspn: wide character string operations .. see wcstring(3C)
wcstod(3C): wcstod () ... convert wide character string to double-precision number
wcstok: wide character string operations ... see wcstring(3C)
wcstring(3C): wcscat, wcsncat, wcscmp, wcsncmp, wcscpy, wcsncpy, wcslen, wcschr, wcsrchr,

wcspbrk, wcRsspn, wcscspn, wcstok, nl_wcscmp, nl_wcsncmp wide character string operations
wcswcs: wide character string operations ... see wcstring(3C)
wcswidth: wide character string operations ... see wcstring(3C)
wctomb () , wctombs () : multibyte characters and strings conversions see multibyte(3C)
wctype(3C): iswalpha, iswupper, iswlower, iswdigit, iswxdigit, iswalnum, iswspace,

iswpunct, iswprint, iswgraph, iswcntrl .. classify wide characters
wcwidth: wide character string operations ... see wcstring(3C)
wordexp 3C: wordexp, wordfree - perform word expansions
xdr(3C): xdr ()library routines for external data representation
yO () : Bessel function ... see bessel(3M}
yl () : Bessel function ... see bessel(3M}
yn () : Bessel function ... see bessel(3M}
yp_all () - Network Information Service client interface .. see ypclnt(3C)
yp_bind () - Network Information Service client interface .. see ypclnt(3C)
ypclnt(3C): ypclnt (), yp_all (), yp_bind(), yp_first (), yp_get_default_domain(),

yp_master(),yp_match(),yp_next(),yp_order(), yp_unbind() ,
yperr_string () , ypprot_err () ... Network Information Service client interface

yperr_s tring () - Network Information Service client interface ... see ypclnt(3C)
yp_first () - Network Information Service client interface ... see ypclnt(3C)
yp~et_default_domain () - Network Information Service client interface see ypclnt(3C)
yp_master () - Network Information Service client interface ... see ypclnt(3C)
yp_match () - Network Information Service client interface ... see ypclnt(3C)
yp_next () - Network Information Service client interface .. see ypclnt(3C)
yp_order () - Network Information Service client interface ... see ypclnt(3C)
yppasswd(3N): yppasswd () ... update user password in Network Information Service
ypprot_err () - Network Information Service client interface ... see ypclnt(3C)
yp_unbind () - Network Information Service client interface ... see ypclnt(3C)

xxiv Table of Contents: Volume 2

Section 2:
System Calls

intro(2) intro(2)

NAME
intro - introduction to system calls

DESCRIPTION
This section describes all of the system calls. All of these calls return a function result. This result indi­
cates the status of the call. Typically, a zero or positive result indicates that the call completed successfully,
and -1 indicates an error. The individual descriptions specify the details. An error number is also made
available in the external variable errno (see errno(2)). Note: errno is not cleared on successful calls.
Therefore, it should be tested only after an error has been indicated.

SEE .ALSO
intro(3), errno(2), hier(5).

The introduction to this manual.

HP-UX Release 9.0: August 1992 -1- 1

I

I

accept(2) accept (2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/socket.h>

AF _CCITT only:
#include <x2S/x2Saddrstr.h>

int accept(int s, void *addr, int *addrlen);

DESCRIPTION
accept () is used with connection-based socket types, such as SOCK_STREAM. Argument s is a socket
descriptor created using socket () , bound to an address by bind (), and listening for connections after a
listen(j. accept (j extracts the first connection on the queue of pending connections, creates a new
sock~t with the same properties as s, and allocates a new file descriptor, ns, for the socket. If no pending
connections are present on the queue and non-blocking mode has not been enabled using the
O_NONBLOCK or O_NDELAY fcntl () flags or the FIOSNBIO ioctl () request, accept () blocks
the caller until a connection is present. (O_NONBLOCK and O_NDELAYare defined in <sys/fcntl.h>;
see fcntl(2) fcntl(5), and socket(7). FIOSNBIO and the equivalent request FIONBIO are defined in
<sys/ioctl.h>, although use of FIONBIO is not recommended; see ioctl(2), ioctl(5), and socket(7).) If
the socket is marked non-blocking and no pending connections are present on the queue, accept ()
returns an error as described below. The accepted socket, ns, cannot be used to accept more connections.
The original socket s remains open. It is possible to determine whether a listening socket has pending con­
nection requests ready for an accept () call by using select () for reading.

The argument addr should point to a local socket address structure. The accept () call fills in this struc­
ture with the address of the connecting entity, as known to the underlying protocol. The format of the
address depends upon the protocol and the address-family of the socket s. addrlen is a pointer to an int; it
should initially contain the size of the structure pointed to byaddr. On return, it contains the actual length
(in bytes) of the address returned. If the memory pointed to by addr is not large enough to contain the
entire address, only the first addrlen bytes of the address are returned.

Since both the fcntl () O_NONBLOCK flag and FIOSNBIO ioctl () request are supported, some
clarification on how these features interact is necessary. If the O_NONBLOCK flag has been set,
accept () requests behave accordingly, regardless of any FIOSNBIO requests. If the O_NONBLOCK
flag has not been set, FIOSNBIO requests control the behavior of accept (). AF _CCITT only: The addr
parameter to accept () returns addressing information for the connecting· entity, except for the
x2 Sifname [] field of addr which contains the name of the local X.25 interface through which the connec­
tion request arrived. Call-acceptance can be controlled with the X2S_CALL_ACPT~PPROVAL
ioct 1 () call described in socketx25(7).

RETURN VALUE
Upon successful competion, accept () returns a non-negative integer which is a descriptor for the
accepted socket. If an error occurs, accept () returns -1 and sets errno to indicate the cause.

DIAGNOSTICS

2

accept () fails if any of the following conditions are encountered:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

[EFAULT]

[EWOULDBLOCK]

[EMFILE]

[ENFILE]

The file descriptor s is invalid.

The file descriptor s references a file, not a socket.

The socket referenced by s is not of type SOCK_STREAM.

The addr parameter is not in a valid pointer.

Non-blocking 110 is enabled using O_NDELAYor FIOSNBIO and no con­
nections are present to be accepted.

The maximum number of file descriptors for this process are already
currently open.

The system's table of open files is full and no more accepts can be
accepted at this time.

-1- HP-UX Release 9.0: August 1992

accept (2)

[ENOBUFS]

[EINVAL]

[EAGAIN]

[EINTR]

AUTHOR

accept(2)

No buffer space is available. The accept () cannot complete. The
queued socket connect request is aborted.

The socket referenced by s is not currently a listen socket or has been
shutdown (). A listen() must be done before an accept () is
allowed.

Non-blocking 110 is enabled using O_NONBLOCK and no connections are
present to be accepted.

The call was interrupted by a signal before a valid connection arrived.

accept () was developed by the University of California, Berkeley.

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2) socketx25(7).

HP-UX Release 9.0: August 1992 -2- 3

I

I

access(2) access(2)

NAME
access - determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access (char *path, int amode};

DESCRIPTION
path points to a path name naming a file. access () checks the named file for accessibility according to
the bit pattern contained in amode, using the real user ID instead of the effective user ID and the real group
ID instead of the effective group ID. The value of amode is either the bit-wise inclusive OR of the access per­
missions to be checked or the existence test. The following symbolic constants, defined in <unistd.h>,
test for permissions:

R_OK read
W_OK write
X_OK execute (search)
F _OK check existence of file

Access Control Lists (ACLs)
Read, write and execute/search permissions are checked against the file's access control list. Each mode is
checked separately since different ACL entries might grant different permissions. The real user ID is com­
bined with the process's real group ID and each group in its supplementary groups list, and the access con­
trollist is searched for a match. Search proceeds in order of specificity and ends when one or more match­
ing entries are found at a specific level. More than one u.g or %.g entry can match a user if that user has a
non-null supplementary groups list. If any matching entry has the appropriate permission bit set, access is
permitted.

access () reports that a shared text file currently open for execution is not writable, regardless of its
access control list. It also reports that a file on a read-only file system is not writable. However,
access () does not report that a shared text file open for writing is not executable, since the check is not
easily done.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS

4

Access to the file is denied if one or more of the following is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[ENOENT]

[EACCES]

[EROFS]

[ETXTBSY]

[EACCES]

[EFAULT]

[ELOOP]

Read, write, or execute (search) permission is requested for a null path name.

The named file does not exist.

Search permission is denied on a component of the path prefix.

Write access is requested for a file on a read-only file system.

Write access is requested for a pure procedure (shared text) file that is being exe­
cuted.

The access control list does not permit the requested access and the real user ID is not
a user with appropriate privileges.

path points outside the allocated address space for the process. The reliable detection
of this error is implementation dependent.

Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

The owner of a file has permission checked with respect to the "owner" read, write, and execute mode bits.
Members of the file's group other than the owner have permissions checked with respect to the "group"

-1- HP-UX Release 9.0: August 1992

access(2) access(2)

mode bits, and all others have permissions checked with respect to the "other" mode bits.

access () reports that a file currently open for execution is not writable, regardless of the setting of its
mode.

WARNINGS
If the path is valid and the real user ID is super-user, and the access requested is not X_OK, access ()
always returns o. If X_OK access is requested for a valid path and the real user ID is super-user and the
file is a directory, access always returns o. If X_OK access is requested for a valid path which is not a
directory and the real user ID is super-user, access returns 0 only if at least one execute bit (for user, group,
or other) is set in the file's mode.

Access Control Lists
Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

SEE ALSO
chmod(2), setacl(2), stat(2), acl(5), unistd(5).

STANDARDS CONFORMANCE
access () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -2- 5

•

I

acct(2) acct(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
#include <sys/acct.h>

int acct(const char *path);

DESCRIPTION
acct () is used to enable or disable the system's process accounting routine. If the routine is enabled, an
accounting record is written on an accounting file for each process that terminates. Termination can be
caused by one of two things: an exit () call or a signal; see exit(2) and signal(5). The effective user ID of
the calling process must be super-user to use this call.

path points to a path name naming the accounting file. The accounting file format is described in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during the system call. It is dis­
abled if path is zero and no errors occur during the system call.

When the amount of free space on the file system containing the accounting file falls below a configurable
threshold, the system prints a message on the console and disables process accounting. Another message is
printed and the process accounting is re-enabled when the space reaches a second configurable threshold.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
acct () fails ifone or more of the following is true:

[EPERM] The effective user ID of the calling process is not super-user.

[EBUSY] An attempt is being made to enable accounting when it is already enabled.

[ENOTDIR]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

A component of the path prefix is not a directory.

One or more components of the accounting file path name do not exist.

The file named by path is not an ordinary file.

The named file resides on a read-only file system.

path points to an illegal address. The reliable detection of this error simplementation
dependent.

[ETXTBSY] path points to a text file which is currently open.

[ENAMETOOLONG]

[ELOOP]

The accounting file path name exceeds PATH_MAX bytes, or the length of a component of
the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in effect.

Too many symbolic links were encountered in translating the path name.

DEPENDENCIES
Series 300/400

The system's process accounting routine ignores any locks placed on the process accounting file.

If the size of the process accounting file reaches 5000 blocks, records for processes terminating after
that point will be silently lost. However, in that case the turnacct command would still sense that
process accounting is still enabled. This loss of records can be prevented by the use of ckpacct (see
acctsh(lM».

SEE ALSO
acct(1M), acctsh(lM), exit(2), acct(4), signal(5).

STANDARDS CONFORMANCE
acct () : SVID2, XPG2

6 -1- HP-UX Release 9.0: August 1992

alarm(2) alarm(2)

NAME
alarm - set a process's alarm clock

SYNOPSIS
#include <unistd.h>

unsigned int alar.m(unsigned int sec);

DESCRIPTION
alar.m() instructs the alarm clock of the calling process to send the signal SIGALRM to the calling process
after the number of real-time seconds specified by sec have elapsed; see signal(5). Specific implementations
might place limitations on the maximum supported alarm time. The constant MAX_ALARM defined in
<sys /param. h> specifies the implementation-specific maximum. Whenever sec is greater that this max­
imum, it is silently rounded down to it. On all implementations, MAX_ALARM is guaranteed to be at least
31 days (in seconds).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.

If sec is 0, any previously made alarm request is canceled.

Alarms are not inherited by a child process across a fork () , but are inherited across an exec () .

On systems that support the getitimer() and setitimer() system calls, the timer mechanism
used by alar.m () is the same as that used by ITIMER_REAL. Thus successive calls to alar.m (), geti­
timer (), and seti timer () set and return the state of a single timer. In addition, alar.m () sets the
timer interval to zero.

RETURN VALUE
alar.m() returns the amount of time previously remaining in the alarm clock of the calling process.

WARNINGS
In some implementations, error bounds for alarm are -1, +0 seconds (for the posting of the alarm, not the
restart of the process). Thus a delay of 1 second can return immediately. The setitimer () routine can
be used to create a more precise delay.

SEE ALSO
sleep(1), exec(2), getitimer(2), pause(2), signal(5), sleep(3C).

STANDARDS CONFORMANCE
alar.m(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 7

I

I

atexit(2) atexit(2)

NAME
atexit - register a function to be called at program termination

SYNOPSIS
#include <stdlib.h>

int atexit(void (*func)(void»;

DESCRIPTION
atexit () registers the function tunc to be called, without arguments, at normal program termination.
Functions registered by atexit () are called in reverse order of registration.

An atexi t () call during exit processing is always unsuccessful.

The number of registered functions should not exceed ATEXIT_MAX as specified in <1 imi t s .11>.

RETURN VALUE
atexit () returns zero ifthe registration is successful; non-zero if unsuccessful.

SEE ALSO
exit(2).

STANDARDS CONFORMANCE
atexit (): AES, XPG4, ANSI C

8 -1- HP-UX Release 9.0: August 1992

audct1(2) audct1(2)

NAME
audctl- start or halt the auditing system and set or get audit files

SYNOPSIS
#include <sys/audit.h>

int audctl(int cmd, char *cpath, char *npath, mode_t mode};

DESCRIPTION
audctl () sets or gets the auditing system "current" and "next" audit files, and starts or halts the audit­
ing system. This call is restricted to superusers. cpath and npath hold the absolute path names of the
"current" and "next" files. rrwde specifies the audit file's permission hits. cmd is one oi the iollowing
specifications:

HP-UX Release 9.0: August 1992

The caller issues the AUD_ON command with the required "current" and "next"
files to turn on the auditing system. If the auditing system is currently off, it is
turned on; the file specified by the cpath parameter is used as the "current"
audit file, and the file specified by the npath parameter is used as the "next"
audit file. If the audit files do not already exist, they are created with the rrwde
specified. The auditing system then begins writing to the specified "current" file.
An empty string or NULL npath can be specified if the caller wants to designate
that no "next" file be available to the auditing system. If the auditing system is
already on, no action is performed; -1 is returned and e rrno is set to EBUSY.

The caller issues the AUD GET command to retrieve the names of the "current"
and "next" audit files. If the auditing system is on, the names of the "current"
and "next" audit files are returned via the cpath and npath parameters (which
must point to character buffers of sufficient size to hold the file names). rrwde is
ignored. If the auditing system is on and there is no available "next" file, the
"current" audit file name is returned via the cpath parameter, npath is set to an
empty string; -1 is returned, and errno is set to ENOENT. If the auditing
system is off, no action is performed; -1 is returned and errno is set to EAL­
READY.

The caller issues the AUD_SET command to change both the "current" and
"next" files. If the audit system is on, the file specified by cpath is used as the
"current" audit file, and the file specified by npath is used as the "next" audit
file. If the audit files do not already exist, they are created with the specified
rrwde. The auditing system begins writing to the specified "current" file. Either
an empty string or NULL npath can be specified if the caller wants to designate
that no "next" file be available to the auditing system. If the auditing system is
off, no action is performed; -1 is returned and errno is set to EALREADY.

The caller issues the AUD_SETCURR command to change only the "current"
audit file. If the audit system is on, the file specified by cpath is used as the
"current" audit file. If the specified "current" audit file does not exist, it is
created with the specified mode. npath is ignored. The auditing system begins
writing to the specified "current" file. If the audit system is off, no action is per­
formed; -1 is returned and errno is set to EALREADY.

The caller issues the AUD_SETNEXT command to change only the "next" audit
file. If the auditing system is on, the file specified by npath is used as the "next"
audit file. cpath is ignored. If the "next" audit file specified does not exist, it is
created with the specified mode. Either an empty string or NULL npath can be
specified if the caller wants to designate that no "next" file be available to the
auditing system. If the auditing system is off, no action is performed; -1 is
returned, and errno is set to EALREADY.

The caller issues the AUD_SWITCH command to cause auditing system to
switch audit files. If the auditing system is on, it uses the "next" file as the new
"current" audit file and sets the new "next" audit file to NULL. cpath, npath,and
rrwde are ignored. The auditing system begins writing to the new "current" file.
If the auditing system is off, no action is performed; -1 is returned, and
errno is set to EALREADY. If the auditing system is on and there is no

-1- 9

I

I

audct1(2) audct1(2)

available "next" file, no action is performed; -1 is returned, and errno is set
toENOENT.

The caller issues the AUD_OFF command to halt the auditing system. If the
auditing system is on, it is turned off and the "current" and "next" audit files are
closed. cpath, npath, and mode are ignored. If the audit system is already off,
-1 is returned and errno is set to EALREADY.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, -1 is returned and the global variable
errno is set to indicate the error.

EXAMPLES
In the following example, audctl () is used to determine whether the auditing system is on, and to
retrieve the names of the audit files that are currently in use by the system.

char c_file[PATH_MAX+1], x_file[PATH_MAX+1];
int mode=0600;

if (audctl(AUD_GET, c_file, x_file, mode»
switch (errno) {

case ENOENT:
strcpy(x_file,lI-none- II

);

break;
case EALREADY:

printf (liThe auditing system is oFF\n");
return 0;

case default:
fprintf(stderr, "Audctl failed: errno=%d\n", errno);
return 1;

printf("The auditing system is ON: c_file=%s x_file=%s\n", c_file, x_file
return 0;

ERRORS
audctl () fails ifone of the following is true:

[EPERM] The caller does not have superuser privilege, or one or both of the given files are
not regular files and cannot be used.

[EALREADTI TheAUD_OFF,AUD_SET,AUD_SETCURR,AUD_SETNEXT,AUD_SWITCH,or

[EBUSY]

[EFAULT]

[EINVAL]

[ENOENT]

AUD_GET cmd was specified while the auditing system is off.

User attempt to start the auditing system failed because auditing is already on.

Bad pointer. One or more of the required function parameters is not accessible.

The cpath or npath is greater than PATH_MAX in length, the cpath or npath
specified is not an absolute path name.

No available "next" file when cmd is AUD_GETNEXT or AUD_SWITCH.

AUTHOR
audctl () was developed by HP.

SEE ALSO
audit(5), audsys(1M), audomon(lM).

10 -2- HP-UX Release 9.0: August 1992

audswitch (2) audswitch(2)

NAME
audswitch - suspend or resume auditing on the current process

SYNOPSIS
#include <sys/audit.h>

int audswitch(int atlag);

DESCRIPTION
audswi tch () suspends or resumes auditing within the current process. This call is restricted to
superusers.

One of the following aflags must be used:

AUD_SUSPEND Suspend auditing on the current process.

AUD_RESUME Resume auditing on the current process.

audswi tch () can be used in self-auditing privileged processes to temporarily suspend auditing during
intervals where auditing is to be handled by the process itself. Auditing is suspended by a call to
audswi tch () with the AUD_SUSPEND parameter and resumed later by a call to audswi tch () with
the AUD_RESUME parameter.

An audswi tch () call to resume auditing serves only to reverse the action of a previous audswitch ()
call to suspend auditing. A call to audswi tch () to resume auditing when auditing is not suspended has
no effect.

audswi tch () affects only the current process. For example, audswi tch () cannot suspend auditing
for processes exec'ed from the current process. (Use setaudproc (see setaudproc(2» to enable or dis­
able auditing for a process and its children).

RETURN VALUE
Upon successful completion, audswitch() returns O. If an error occurs, -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
audswi tch () fails if one of the following is true:

[EPERM] The user is not a superuser.

[EINVAL] The input parameter is neither AOD_RBSUMB nor AUD_SUSPEND.

AUTHOR
audswi tch () was developed by HP.

SEE ALSO
audit(5), setaudproc(2), audusr(1M), audevent(lM).

HP-UX Release 9.0: August 1992 -1- 11

•

I

audwrite(2) audwrite(2)

NAME
audwrite - write an audit record for a self-auditing process

SYNOPSIS
#include <sys/audit.h>

int audwrite(const struct self_audit_rec *audrec-p);

DESCRIPTION
audwri te () is called by trusted self-auditing processes, which are capable of turning off the regular
auditing (using audswitch(2)) and doing higher-level auditing on their own. audwri te () is restricted to
superusers.

audwri te () checks to see if the auditing system is on and the calling process and the event specified are
being audited. If these conditions are met, audwrite () writes the audit record pointed to byaudrec-p
into the audit file. The record consists of an audit record body and a header with the following fields:

u_long ah_time; /* Date/time (tv_sec of time val) */
u_short ah-pid; /* Process ID */
u_short ah_error; /* Success/failure */
u_short ah_event; /* Event being audited */
u_short ah_len; /* Length of variant part */

The header has the same format as the regular audit record, while the body contains additional information
about the high-level audit event. The header fields ah_error, ah_event, and ah_len are specified by
the calling process. audwrite () fills in ah_time and ah-pid fields with the correct values. this is
done to reduce the risk of forgery. After the header is completed, the record body is attached and the entire
record is written into the current audit file.

RETURN VALUE
If the write is successful, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the reason for the failure.

ERRORS
audwrite () fails if one of the following is true:

[EPERM]

[EINVAL]

The caller is not a superuser.

The event number in the audit record is invalid.

WARNINGS
If audwrite causes a file space overflow, the calling process might be suspended until the file space is
cleaned up. However a returned call with the return value of 0 indicates that the audit record has been
successfully written.

AUTHOR
audwri te () was developed by HP.

SEE ALSO
audswitch(2), audit(4).

12 -1- HP-UX Release 9.0: August 1992

bind(2) bind(2)

NAME
bind - bind an address to a socket

SYNOPSIS
#include <sys/socket.h>

AF _INET only:
#include <netinet/in.h>

AF_UNIX only:
#include <sya/un.h>

AF _CCITT only:
#include <x25/x25addrstr.h>

int bind(int s, const void *addr, int addrlen)i

DESCRIPTION
bind () assigns an address to an unbound socket. When a socket is created with socket (), it exists in
an address space (address family) but has no address assigned. bind () causes the socket whose descrip­
tor is s to become bound to the address specified in the socket address structure pointed to by addr.

addrlen must specify the size of the address structure. Since the size of the socket address structure varies
between socket address families, the correct socket address structure should be used with each address
family (for example, struct sockaddr_in for AE'_INET, and struct sockaddr_un for
AE'_UNIX). Typically, the sizeof () function is used to pass this value in the bind() call (for exam­
ple, sizeof (struct sockaddr_in»).

The rules used in address binding vary between communication domains. For example, when binding an
AE'_UNIX socket to a path name (such as /tmp/mysocket), an open file having that name is created in
the file system. When the bound socket is closed, that file still exists unless it is removed or unlinked.
When binding an AE'_INET socket, sin-port can be a port number, or it can be zero. If sin-port is zero, the
system assigns an unused port number automatically.

RETURN VALUE
Upon successful completion, bind() returns 0; otherwise it returns -1 and sets errno to indicate the
error.

DIAGNOSTICS
bind () fails if any of the following conditions are encountered:

[EBADF] s is not a valid descriptor.

[ENOTSOCK] s is not a socket.

(EADDRNOTAVAIL] The specified address is bad or not available from the local machine, or for
AE' _CCITT sockets which use "wild card" addressing, the specified address
space overlays the address space of an existing bind.

[EADDRlNUSE] The specified address is already in use.

[EINV AL] The socket is already bound to an address, the socket has been shut down,
addrlen is a bad value, or an attempt was made to bind () an AE' _UNIX
socket to an NFS-mounted (remote) name.

AF_CCITT: The protocol-ID length is negative or greater than 8, or the X.121
address string contains an illegal character, or the X.121 address string is
greater than 15 digits long.

[EAFNOSUPPORT] Requested address does not match the address family of this socket.

[EACCES] The requested address is protected, and the current user has inadequate per­
mission to access it. (This error can be returned by AF _INET only.)

[EFAULT] addr is not a valid pointer.

[EOPNOTSUPP] The socket whose descriptor is s is of a type that does not support address bind­
ing.

HP-UX Release 9.0: August 1992 -1- 13

I

I

bind(2)

AUTHOR

[ENOBUFS]

[ENETUNREACH]

[EDESTADDREQl

[ENODEV]

[ENETDOWN]

bind(2)

Insufficient buffer memory is available. The bind () cannot complete.

The X.25 Level 2 protocol is down. The X.25 link is not working: wires might be
broken, or connections are loose on the interface hoods at the modem, or the
modem failed, or noise interfered with the line for an extremely long period of
time.

No addr parameter was specified.

The x25ifname field name specifies a non-existent interface. (This error can be
returned by AF_CCITTonly.)

The x25ifname field name specifies an interface that was shut down, or never
initialized, or whose Level 2 protocol indicates that the link is not working:
wires might he broken, the interface hoods on the modem are broken, the
modem failed, the phone connection failed (this error can be returned by
AF _CCITT only), noise interfered with the line for a long period of time.

bind () was developed by the University of California, Berkeley)

SEE ALSO

14

connect(2), getsockname(2), listen(2), socket(2), aCccitt(7F), inet(7F), socketx25(7), tcp(7P), udp(7P),
unix(7P).

-2- HP-UX Release 9.0: August 1992

brk(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
#include <unistd.h>

int brk(const void *endds);

void *sbrk(int incr);

DESCRIPTION

brk(2)

brk () and sbrk () are used to chango dynamically the amount of space allocated for the calling process's
data segment; see exec(2). The change is made by resetting the process's break value and allocating the
appropriate amount of space. The break value is the address of the first location beyond the end of the data
segment. The amount of allocated space increases as the break value increases. The newly allocated space
is set to zero.

brk () sets the break value to endds and changes the allocated space accordingly.

sbrk () adds incr bytes to the break value and changes the allocated space accordingly. incr can be nega­
tive, in which case the amount of allocated space is decreased.

ERRORS
brk () and sbrk () fail without making any change in the allocated space if one or more of the following
are true:

[ENOMEM] Such a change would result in more space being allocated than is allowed by a system­
imposed maximum (see ulimit(2)).

[ENOMEM] Such a change would cause a conflict between addresses in the data segment and any
attached shared memory segment (see shmop(2)).

[ENOMEM] Such a change would be impossible as there is insufficient swap space available.

WARNINGS
The pointer returned by sbrk () is not necessarily word-aligned. Loading or storing words through this
pointer could cause word alignment problems.

Be very careful when using either brk or sbrk in conjunction with calls to the malloc(3C) library routines.
There is only one program data segment from which all three of these routines allocate and deallocate pro­
gram data memory.

RETURN VALUE
Upon successful completion, brk () returns a value of 0 and sbrk () returns the old break value. Other­
wise, a value of -1 is returned and e rrno is set to indicate the error.

AUTHOR
brk () and sbrk () were developed by AT&T and HP.

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C), malloc(3C).

STANDARDS CONFORMANCE
brk(): XPG2

sbrk () : XPG2

HP-UX Release 9.0: August 1992 -1- 15

I

I

bsdproc(2) bsdproc(2)

NAME
killpg, getpgrp, setpgrp, sigvec, signal - 4.2 BSD-compatible process control facilities

SYNOPSIS
#include <signal.h>

int killpg(int pgrp, int sig);

int getpgrp(int pid);

int setpgrp(int pid, int pgrp);

int sigvec{

) ;

int sig,
struct sigvec *vec,
struct sigvec *ovec

void (*signal(int sig, void (*func) (int») (int);

DESCRIPTION
These calls simulate (and are provided for backward compatibility with) functions of the same name in the
4.2 Berkeley Software Distribution.

This version of setpgrp () is equivalent to the system call setpgid(pid,pgrp) (see setpgid(2».

This version of getpgrp () is equivalent to the system call getpgrp2 (pid) (see getpid(2».

ki llpg () is equivalent to the system call ki 11 (-pgrp, sig) (see kill (2».

sigvec () is equivalent to the system call sigvector (sig, vee, ovec) (see sigvector(2», except for the
following:

When SIGCHLD or SIGCLD is used and vec specifies a catching function, the routine acts as if the
SV _BSDSIG flag were included in the sv _f lags field of vee .

The name sv_onstack can be used as a synonym for the name of the sv_flags field of vee and
ovec.

If vec is not a null pointer and the value of (vec->svJlags & 1) is "true", the routine acts as if the
SV _ONSTACK flag were set.

If ovee is not a null pointer, the flag word returned in ovec->svJlags (and therefore the value of
ovec->sv_onstack) will be equal to 1 if the system was reserving space for processing of that signal
because of a call to sigspaee(2), and 0 if not. The SV _BSDSIG bit in the value placed in
ovec->svJlags is always clear.

If the reception of a caught signal occurs during certain system calls, the call will always be restarted,
regardless of the return value from a catching function installed with sigvee (). The affected calls
are wait(2), senwp(2), msgsnd(2), msgrcv(2), and read(2) or write(2) on a slow device (such as a termi­
nal or pipe, but not a file). Other interrupted system calls are not restarted.

This version of signal () has the same effect as sigvec(sig, vec, ovec) , where vec->sv_handler is
equal to func, vec->sv_mask is equal to 0, and vec->svJlags is equal to o. signal () returns the value
that would be stored in ovec->sv _handler if the equivalent s igvee () call would have succeeded. Other­
wise, signal () returns -1 and errno is set to indicate the reason as it would have been set by the
equivalent call to sigvec ().

These functions can be linked into a program by giving the -lBSD option to ld(l).

WARNINGS
While the 4.3 BSD release defined extensions to some of the interfaces described here, only the 4.2 BSD
interfaces are emulated by this package.

bsdproc () should not be used in conjunction with the facilities described under sigset(2V).

AUTHOR
bsdproc () was developed by HP and the University of California, Berkeley.

16 -1- HP-UX Release 9.0: August 1992

bsdproc(2) bsdproc(2)

SEE ALSO
Id(1), kill(2), getpid(2), msgsnd(2), msgrcv(2), read(2), semop(2), setpgid(2), setsid(2), sigvector(2), wait(2),
write(2), sigset(2V), sigstack(2), signal(5).

HP-UX Release 9.0: August 1992 -2- 17

I

I

chdir(2) chdir(2)

NAME
chdir, fchdir - change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char *path);

int fchdir(int fildes);

DESCRIPTION
chdir () and fchdir () cause a directory pointed to by path or fildes to become the current working
directory, the starting point for path searches of path names not beginning with /. path points to the path
name of a directory. fildes is an open file descriptor of a directory.

For a directory to become the current working directory, a process must have execute (search) access to the
directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
chdir () fails and the current working directory remains unchanged if one or more of the following are
true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EFAULT]

[ENOENT]

[ENAMETOOLONG]

[ELOOP]

A component ofthe path name is not a directory.

The named directory does not exist.

Search permission is denied for any component of the path name.

path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

path is null.

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

Too many symbolic links were encountered in translating the path name.

fchdir () fails and the current working directory remains unchanged if one or more of the following are
true:

[EACCES]

[EBADF]

[ENOTDIR]

Search permission is denied for fildes .

fildes is not an open file descriptor.

The open file descriptor fildes does not refer to a directory.

AUTHOR
chdir () and fchdir () were developed by AT&T Bell Laboratories and HP.

SEE ALSO
cd(1), chroot(2).

STANDARDS CONFORMANCE
chdir (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

18 -1- HP-UX Release 9.0: August 1992

chmod(2)

NAME
chmod, fchmod - change access mode of file

SYNOPSIS
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fildes, mode_t mode);

DESCRIPTION

chmod(2)

cl:iJ.uod () and f cr..:mod () set the access permission portion of the file's mode according to the bit pattern
contained in mode. path points to a path name naming a file. fildes is a file descriptor.

The following symbolic constants representing the access permission bits are defined with the indicated
values in <sys / s ta t • h> and are used to construct the mode argument. The value of mode is the bit-wise
inclusive OR of the values for the desired permissions.

S_ISUID 04000 Set user ID on execution.
S_ISGID 02000 Set group ID on execution.
S_ENFMT 02000 Record locking enforced.
S_ISVTX 01000 Save text image after execution.
S_IRUSR 00400 Read by owner.
S_IWUSR 00200 Write by owner.
S_IXUSR 00100 Execute (search) by owner.
S_IRGRP 00040 Read by group.
S_IWGRP 00020 Write by group.
S_IXGRP 00010 Execute (search) by group.
S_IROTH 00004 Read by others (that is, anybody else).
S_IWOTH 00002 Write by others.
S_IXOTH 00001 Execute (search) by others.

To change the mode of a file, the effective user ID of the process must match that of the owner of the file or a
user with appropriate privileges.

If the effective user ID of the process is not that of a user with appropriate privileges and the file is a regular
file, S_ISVTX (mode bit 01000, save text image on execution) is cleared.

If the effective user ID of the process is not that of a user with appropriate privileges, and the effective group
ID of the process does not match the group ID of the file and none of the group ID s in the supplementary
groups list match the group ID of the file, S_ISGIDR, S_ENFMT (mode bit 02000, set group ID on execu­
tion and enforced file locking mode) is cleared.

The set-group-ID on execution bit is also used to enforce file-locking mode (see lockf(2) and fcntl(2)) on files
that are not group executable. This might affect future calls to open (), creat (), read (), and
write () on such files (see open(2), creat(2), read(2), and write(2)).

If an executable file is prepared for sharing, S_ISVTX (mode bit 01000) prevents the system from aban­
doning the swap-space image of the program-text portion of the file when its last user terminates. Then,
when the next user of the file executes it, the text need not be read from the file system but can simply be
swapped in, thus saving time.

If mode S_ISVTX (mode bit 01000) is set on a directory, an unprivileged user cannot delete or rename oth­
ers' files in that directory.

Access Control Lists
All optional entries in a file's access control list are deleted when chmod () is executed. (This behavior
conforms to the IEEE Standard POSIX 1003.1-1988.) To preserve optional entries in a file's access control
list, it is necessary to save and restore them using getacl () and setacl () (see getacl(2) and
setacl(2)).

To set the permission bits of access control list entries, use setacl () instead of chmod () .

For more information on access control list entries, see acl(5).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is

HP-UX Release 9.0: August 1992 -1- 19

I

I

chmod(2) chmod(2)

set to indicate the error.

ERRORS
chInod () and fchmod () fail and the file mode is unchanged if one or more of the following is true:

[EACCES] Search permission is denied on a component of the path prefix.

[EFAULT] path points outside the allocated address space of the process. The reliable detection
of this error is implementation dependent.

[ELOOP] Too many symbolic links are encountered in translating path.

[ENAMETOOLONG]

[ENOENT]

[ENOENT]

[ENOTDIR]

[EPERM]

[EROFS]

[EINVAL]

A component of path exceeds NAME_MAX bytes while POSIX_NO_TRUNC is in
effect or path exceeds PATH_MAX bytes.

A component of path does not exist.

The file named by path does not exist.

A component of the path prefix is not a directory.

The effective user ID does not match that of the owner of the file, and the effective
user ID is not that of a user with appropriate privileges.

The named file resides on a read-only file system.

Attempted to make a root directory into a context-dependent file (see DEPENDEN­
CIES).

WARNINGS
Access Control Lists

Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

DEPENDENCIES
HP Clustered Environment:

If the file is a directory, the access permission bit S_CDF (04000) indicates a hidden directory
(context-dependent file - see cdf(4». A root directory cannot be made into a context-dependent file.

NFS fchInod () is not supported on remote files.

AUTHOR
chInod () was developed by AT&T, the University of California, Berkeley, and HP.

fchmod () was developed by the University of California, Berkeley.

SEE ALSO
chmod(l), chown(2), creat(2), fcntl(2), read(2), lockf(2), mknod(2), open(2), getacl(2), setacl(2), write(2),
cdf(4), acl(5).

STANDARDS CONFORMANCE
chInod{): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

f chInod () : AES

20 -2- HP-UX Release 9.0: August 1992

chown(2) chown(2)

NAME
chown, fchown - change owner and group of a file

SYNOPSIS
#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION
chown () changes the user and group ownership of a file. path points to a path name naming a file. fildes
is a file descriptor. chown () and fchown () set the owner ID and group ID of the file to the numeric
values contained in owner and group respectively. A value of UlD_NO_CHANGE or GlD_NO_CHANGE
can be specified in owner or group to leave unchanged the file's owner ID or group ID respectively. Note that
owner and group should be less than UlD_MAX (see limits(5».

Only processes with effective user ID equal to the file owner or a user having appropriate privileges can
change the ownership of a file. If privilege groups are supported, the owner of a file can change the owner­
ship only if he is a member of a privilege group allowing CHOWN, as set up by the setprivgrp command
(see setprivgrp(lM.». All users get CHOWN privileges by default.

The group ownership of a file can be changed to any group in the current process's access list or to the real
or effective group ID of the current process. If privilege groups are supported and the user is permitted the
CHOWN privilege, the file can be given to any group.

If chown () is invoked on a regular file by other than the super-user the set-user-ID and set-groupoID bits
of the file mode are cleared. Whether chown () preserves or clears these bits on files of other types is
implementation dependent.

Access Control Lists (ACLs)
A user can allow or deny specific individuals and groups access to a file by using the file's access control list
(see acl(5». When using chownO in conjunction with ACLs, if the new owner and/or group does not have an
optional ACL entry corresponding to u • % and/or %.g in the file's access control list, the file's access permis­
sion bits remain unchanged. However, if the new owner and/or group is already designated by an optional
ACL entry of u • % and/or % .g, chown () sets the file's permission bits (and the three basic ACL entries) to
the permissions contained in that entry.

ERRORS
chown () fails and the owner and group of the file remain unchanged if one or more of the following is true:

[EBADF] fildes is not a valid file descriptor.

[ENOTDIR]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

A component of the path prefix is not a directory.

The file named by path does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID is not a user having appropriate privileges and one or more of the fol­
lowing conditions exist:

The effective user ID does not match the owner of the file.

When changing the owner of the file, the owner of the file is not a member of a privilege
group allowing the CHOWN privilege.

When changing the group of the file, the owner of the file is not a member of a privilege
group allowing the CHOWN privilege and the group number is not in the current process's
access list.

The named file resides on a read-only file system.

path points outside the allocated address space of the process. The reliable detection of this
error will be implementation dependent.

[ENAMETOOLONG]
A component of path exceeds NAME_MAX bytes while _POSlX_NO_TRUNC is in effect, or
path exceeds PATH_MAX bytes.

HP-UX Release 9.0: August 1992 -1- 21

I

I

chown(2) chown(2)

[ELOOP]

[EINVAL]

Too many symbolic links were encountered in translating path.

Either owner or group is greater than or equal to UID_MAX.

DEPENDENCIES
Series 300, 400, and 700:

If the path given to chown () contains a symbolic link as the last element, this link is traversed and path­
name resolution continues. chown () changes the owner and group of the symbolic link's target, rather
than the owner and group of the link.

HP Clustered Environment:
chown () does not clear the set-user-ID bit of a directory because that bit indicates that the directory is
hidden (see cd/(4)).

When chown () is called from a cluster client node, the priy..!.Jege g-tOUps checked are the ones set up
on the cluster server.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

WARNINGS
Access Control Lists

Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

AUTHOR
chown() was developed by AT&T.
fchown () was developed by the University of California, Berkeley.

SEE ALSO
chown(I), setprivgrp(lM), chmod(2), setacl(2), acl(5), limits(5), limits(5).

STANDARDS CONFORMANCE
chown(): AES [Series 3001400/700 only], SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

fchown () : AES

22 -2- HP-UX Release 9.0: August 1992

chroot(2) chroot(2)

NAME
chroot - change root directory

SYNOPSIS
#include <unistd.h>

int chroot(const char *path);

DESCRIPTION
chroot () causes the named directory to become the root directory, the starting point for path searches for
path names beginning with /. path points to a path name naming a directory. The user's working direc­
tory is unaffected by the chroot (j system call.

The effective user ID of the process must be a user having appropriate privileges to change the root direc­
tory.

The •• entry in the root directory is interpreted to mean the root directory itself. Thus, •• cannot be
used to access files outside the subtree rooted at the root directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
chroot () fails and the root directory remains unchanged if one or more of the following is true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist or a component of the path does not
exist.

SEE ALSO

[EPERM]

[EFAULT]

[ENAMETOOLONG]

[ELOOP]

chroot(1M), chdir(2).

STANDARDS CONFORMANCE

The effective user ID is not a user who has appropriate privileges.

path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

The length of the specified path name exceeds PATH_MAX bytes, or the
length of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

Too many symbolic links were encountered in translating the path name.

chroot () : AES, SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 23

I

I

close (2) close (2)

NAME
close - close a file descriptor

SYNOPSIS
#include <unistd.h>

int close(int fildes);

DESCRIPTION
close () closes the file descriptor indicated by fildes. fildes is a file descriptor obtained from a creat (),
open (), dup (), fcntl (), or pipe () system call. All associated file segments which have been locked
by this process with the lockf () function al"e released (i.e., unlocked).

RETURN VALUE
Upon successful completion, close () returns a value of 0; otherwise, it returns -1 and sets errno to
indicate the error.

ERRORS
close () fails if the any of following conditions are encountered:

[EBADF] fildes is not a valid open file descriptor.

[EINTR]

[ENOSPC]

An attempt to close a slow device or connection was interrupted by a signal. The file
descriptor still points to an open device or connection.

Not enough space on the file system. This error can occur when closing a file on an
NFS file system. [When a write () system call is executed on a local file system and
if a new buffer needs to be allocated to hold the data, the buffer is mapped onto the
disk at that time. A full disk is detected at this time and write () returns an error.
When the write () system call is executed on an NFS file system, the new buffer is
allocated without communicating with the NFS server to see if there is space for the
buffer (to improve NFS performance). It is only when the buffer is written to the
server (at file close or the buffer is full) that the disk-full condition is detected.]

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), lockft2), open(2), pipe(2).

STANDARDS CONFORMANCE
close (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

24 -1- HP-UX Release 9.0: August 1992

cnodeid(2)

NAME
cnodeid - get the cnode ID of the local machine

SYNOPSIS
#include <cluster.h>

cnode_t cnodeid(void);

DESCRIPTION
cnodeid () returns the cnode ID of the local machine.

SEE ALSO
cnodes(l), cnodes(2), getcontext(2), getccent(3C).

AUTHOR
cnodeid was developed by HP.

HP-UX Release 9.0: August 1992 -1-

cnodeid(2)

I

25

I

cnodes(2) cnodes(2)

NAME
cnodes - get a list of active nodes in cluster

SYNOPSIS
#include <cluster.h>

tnt cnodes(cnode_t *buf);

DESCRIPTION
cnodes () determines the number of active cnodes in the cluster, including the cnode on which it is
invoked. If bufis not a null pointer, it must point to an array of type cnode_t with at least MAX_CNODE
elements. In this case, the values of the cnode IDs of the nodes currently in the cluster are stored in the
array, terminated by the cnode ID O.

RET1JRN VALUE
Upon successful completion, cnodes () returns the current number of active cnodes. If the value 0 is
returned, the machine is not a member of a cluster. In case of an error, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
cnodes () may fail if:

[EFAULT] bur is not a null pointer and points to an illegal address. Reliable detection of this
error is not guaranteed.

SEE ALSO
cnodes(l), cnodeid(2), getcontext(2), getccent(3C).

AUTHOR
cnodes was developed by HP.

26 -1- HP-UX Release 9.0: August 1992

connect (2) connect (2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/socket.h>

AF _INET only:
#include <netinet/in.h>

AF _UNIX only:
#include <sys!un.h>

AF_CCITr only:
#include <x2S/x2Saddrstr.h>

int connect(int s, const void *addr, int addrlen);

DESCRIPTION
connect () initiates a connection on a socket.

The parameter s is a socket descriptor. addr is a pointer to a socket address structure containing the
address of a remote socket to which a connection is to be established. addrlen is the size of this address
structure. Since the size of the socket address structure varies among socket address families, the correct
socket address structure should be used with each address family (for example, struct sockaddr_in
for AF_lNET, and struct sockaddr_un for AF_UNIX). Typically, the sizeof () function is used
to pass this value (for example, si zeof (struct sockaddr_in».

If the socket is of type SOCK_DGRAM, connect () specifies the peer address to which messages are to be
sent, and the call returns immediately. Furthermore, this socket can only receive messages sent from this
address.

If the socket is of type SOCK_STREAM, connect () attempts to contact the remote host in order to make
a connection between the remote socket (peer) and the local socket specified by s. The call normally blocks
until the connection completes. If non-blocking mode has been enabled using the O_NONBLOCK or
O_NDELAY fcntl () flags or the FIOSNBIO ioctl () request and the connection cannot be com­
pleted immediately, connect () returns an error as described below. In these cases, select () can be
used on this socket to determine when the connection has completed by selecting it for writing.

O_NONBLOCK and O_NDELAY are defined in <sys/fcntl.h> and explained in fcntl(2), fcntl(5), and
socket (7). FIOSNBIO is defined in <sys / ioct 1. h> and explained in ioctl(2), ioctl(5), and socket(7).

If s is a SOCK_STREAM socket that is bound to the same local address as another SOCK_STREAM socket,
connect () returns EADDRINUSE if addr is the same as the peer address of that other socket. This situa­
tion can only happen if the SO_REUSEADDR option has been set on an AF _INET socket (see get­
sockopt(2».

If the AF _INET socket does not already have a local name bound to it (see bind(2»), connect () also binds
the socket to a local address chosen by the system.

Generally, stream sockets may successfully connect only once; datagram sockets may use connect ()
multiple times to change the peer address. For datagram sockets, a side effect of attempting to connect to
some invalid address (see DIAGNOSTICS below) is that the peer address is no longer maintained by the sys­
tem. An example of an invalid address for a datagram socket is addrlen set to 0 and addr set to any value.

AF _CCITr only:
Use the x2Saddrstr struct for the address structure. The caller must know the X.121 address of the
DTE to which the connection is to be established, including any sub-addresses or protocol-IDs that may be
needed. Refer to af_ccitt(7F) for a detailed description of the x2Saddrstr address structure. If address­
matching by protocol-ID, specify the protocol-ID with the X2S_WR_USER_DATA ioctl () call before
issuing the connect () call. The X2S_WR_USER_DATA ioctl () call is described in socketx25(7).

DEPENDENCIES
AF_CCITr:

The SO_REUSEADDR option to setsockopt () is not supported for sockets in the AF_CCITT address
family.

HP-UX Release 9.0: August 1992 -1- 27

I

I

connect(2) connect(2)

RETURN VALUE
Upon successful completion, connect () returns 0; otherwise it returns -1 and sets errno to indicate
the error.

DIAGNOSTICS
connect () fails if any of the following conditions are encountered:

28

[EBADF]

[ENOTSOCK]

[EADDRNCYI'AV AIL]

[EAFNOSUPPORT]

[EALREADY]

[EISCONN]

[EINVAL]

[ETIMEDOUT]

[ECONNREFUSED]

[ENETUNREACH]

[EADDRINUSE]

[EFAULT]

[EINPROGRESS]

[ENODEV]

[ENOSPC]

[ENETDOWN]

[ENOBUFS]

s is not a valid file descriptor.

s is a file descriptor for a file, not a socket.

The specified address is not available on this machine, or the socket is a
TCP or UDP socket and the zero port number is specified.

For datagram sockets, the peer address is no longer mainiained by ihe sys­
tem.

Addresses in the specified address family cannot be used with this socket.

For datagram sockets, the peer address is no longer maintained by the sys­
tem.

Non-blocking 110 is enabled using O_NONBLOCK, O_NDELAY, or
FIOSNBIO, and a previous connection attempt has not yet completed.

The socket is already connected.

The socket has already been shut down, or has a listen() active on it;
addrlen is a bad value; an attempt was made to connect () an AF_UNIX
socket to an NFS-mounted (remote) name; the X.121 address length is zero,
negative, or greater than fifteen digits.

For datagram sockets, if addrlen is a bad value, the peer address is no
longer maintained by the system.

Connection establishment timed out without establishing a connection.
backlog may be full (see listen(2)).

The attempt to connect was forcefully rejected.

The network is not reachable from this host.

For AF_CCITT only: X.25 Level 2 is down. The X.25 link is not working:
wires might be broken, or connections are loose on the interface hoods at
the modem, or the modem failed, or noise interfered with the line for an
extremely long period of time.

The address is already in use.

For datagram sockets, the peer address is no longer maintained by the sys­
tem.

addr is not a valid pointer.

Non-blocking 110 is enabled using O_NONBLOCK, O_NDELAY, or
FIOSNBIO, and the connection cannot be completed immediately. This is
not a failure. Make the connect () call again a few seconds later.
Alternatively, wait for completion by calling select (), selecting for
write.

The x25ifn,ame field refers to a non-existent interface.

All available virtual circuits are in use.

The :x.25 interface specified in the addr struct was found or but was not in
the initialized state. x25ifn,ame field name is an interface which has been
shut down or never initialized or suffered a power failure which erased its
state information.

No buffer space is available. The connect () has failed.

-2- HP-UX Release 9.0: August 1992

connect (2)

[EINTR]

[EOPNOTSUPP]

AUTHOR

connect (2)

The connect was interrupted by delivery of a signal before the connect
sequence was complete. The building of the connection still takes place,
even though the user is not blocked on the connect () call.

A connect () attempt was made on a socket type which does not sup­
port this call. Under X.25 an attempt was made to issue a connect ()
calIon a listen () socket.

connect () was developed by the University of California, Berkeley.

SEE ALSO
accept(2), select(2), socket(2), getsockname(2), socket(7), socketx25(7), aCccitt(7F).

HP-UX Release 9.0: August 1992 -3- 29

I

I

creat(2) creat(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
#include <fcntl.h>

int creat(const char *path, mode_t mode);

DESCRIPTION
creat () creates a new regular file or prepares to rewrite an existing file named by the path name pointed
to by path.

If the file exists, its length is truncated to 0, and its mode and owner are unchanged. Otherwise, the file's
owner ID is set to the effective user ID of the process. If the set-group-ID bit of the parent directory is set,
the file's group In is set to the group In of the parent directory. Otherwise, the file's group In is set to the
process's effective group ID. The low-order 12 bits of the file mode are set to the value of mode modified as
follows:

• All bits set in the process's file mode creation mask are cleared (see umask(2».

• The "save text image after execution" bit of the mode is cleared (see chmod(2».

Upon successful completion, the file descriptor is returned and the file is open for writing (only), even if the
mode does not permit writing. The file offset is set to the beginning of the file. The file descriptor is set to
remain open across exec () system calls (see fcntl(2». No process can have more than OPEN_MAX files
open simultaneously. This is discussed in open(2). A new file can be created with a mode that forbids writ­
ing.

Access Control Lists (ACLs)
On systems that support access control lists, three base ACL entries are created corresponding to the file
access permission bits. An existing file's access control list is unchanged by creat () (see setacl(2),
chmod(2), and acl(5».

ERRORS

30

creat () fails if one or more of the following is true:

[EACCES] Search permission is denied on a component of the path prefix.

[EACCES] The file does not exist and the directory in which the file is to be created does not permit
writing.

[EACCES] The file exists and write permission is denied.

[EAGAIN]

[EDQUaI']

[EFAULT]

[EISDIR]

[ELOOP]

[EMFILE]

The file exists, enforcement mode file and record locking is set and there are outstanding
record locks on the file.

User's disk quota block or inode limit has been reached for this file system.

path points outside the allocated address space of the process. The reliable detection of this
error is implementation dependent.

The named file is an existing directory.

Too many symbolic links were encountered in translating the path name.

More than the maximum number of file descriptors are currently open.

[ENAMETOOLONG]

[ENFILE]

[ENOENT]

[ENOSPC]

[ENOTDIR]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a com­
ponent of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in
effect.

The system file table is full.

The named file does not exist (for example, path is null, or a component of path does not
exist).

Not enough space on the file system.

A component of the path prefix is not a directory.

-1- HP-UX Release 9.0: August 1992

ere at (2) ere at (2)

[ENXIO] The named file is a character special or block special file, and the device associated with
this special file does not exist.

[EROFS]

[ETXTBSY]

RETURN VALUE

The named file resides or would reside on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

Upon successful completion, a non-negative integer, namely the file descriptor, is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

WARr.."INGS
Access Control Lists

Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), lockf(2), Iseek(2), open(2), read(2), setacl(2), truncate(2), umask(2),
write(2), acl(5).

STANDARDS CONFORMANCE
creat (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.l

HP-UX Release 9.0: August 1992 -2- 31

I

I

dup(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int fildes);

DESCRIPTION

dup(2)

fildes is a file descriptor obtained from a crea t (), open () , dup () , f cnt 1 () ,or pipe () system call.
dup () returns a new file descriptor having the following in common with the original:

• Same open file (or pipe).

• Same file pointer (i.e., both file descriptors share one file pointer).

• Same access mode (read, write or read/write).

• Same file status flags (seefcntl(2), F_DUPFD).

The new file descriptor is set to remain open across exec () system calls. See fcntl(2).

The file descriptor returned is the lowest one available.

RETURN VALUE
Upon successful completion, the file descriptor is returned as a non-negative integer. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

ERRORS
dup () fails if one or more of the following is true:

[EBADF] fildes is not a valid open file descriptor.

[EMFILE] Request violates the maximum number of open file descriptors.

AUTHOR
dup () was developed by AT&T and HP.

SEE ALSO
close(2), creat(2), dup2(2), exec(2), fcntl(2), open(2), pipe(2).

STANDARDS CONFORMANCE
dup(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

32 -1- HP-UX Release 9.0: August 1992

dup2(2)

NAME
dup2 - duplicate an open file descriptor to a specific slot

SYNOPSIS
#include <unistd.h>

int dup2(int fildes, int fildes2);

DESCRIPTION

dup2(2)

fildes is a file descriptor obtained from a creat (), open (), dup (), fcntl (), or pipe () system call.

fildes2 is a non-negative integer less than the maximum value allovrad for file descriptors.

dup2 () causes fildes2 to refer to the same file as fildes. If fildes2 refers to an already open file, the open
file is closed first.

The file descriptor returned by dup2 () has the following in common withfildes:

• Same open file (or pipe).

• Same file pointer (that is, both file descriptors share one file pointer.)

• Same access mode (read, write or read/write).

• Same file status flags (see fcntl(2), F _DUPFD).

The new file descriptor is set to remain open across exec () system calls. See fcntl(2).

This routine is found in the C library. Programs using dup2 () but not using other routines from the
Berkeley importability library (such as the routines described in bsdproc(2)) should not give the -lBSD
option to Id(1).

RETURN VALUE
Upon successful completion, dup2 () returns the new file descriptor as a non-negative integer, fildes2.
Otherwise, it returns -1 and sets errno to indicate the error.

ERRORS
dup2 () fails if the following is true:

[EBADF] fildes is not a valid open file descriptor or fildes2 is not in the range of legal file descriptors.

[EINTR] An attempt to close fildes2 was interrupted by a signal. The file is still open.

SEE ALSO
close(2), creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

STANDARDS CONFORMANCE
dup2 (): AES, SVID2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 33

I

I

errno(2) errno(2)

NAME
errno - error indicator for function calls

SYNOPSIS
#include <errno.h>

extern int errno;

DESCRIPTION

34

Many functions in the HP-UX operating system indicate an error condition by returning an otherwise out­
of-range value (usually -1). Most of these functions set the external variable errno to a non-zero code
value that more specifically identifies the particular error condition that was encountered.

All errors detected and the corresponding error code values stored in errno are documented in the
ERRORS section on manual pages for those functions that set it.

The value of errno is zero immediately after a successful call to any of the functions described by exec(2)
and ptrace(2), but it is never set to zero by any other HP-UX function. Functions for which the use of
errno is not described may nevertheless change its value to a non-zero value.

Since errno is not cleared on successful function calls, its value should be checked or used only when an
error has been indicated and when the function's ERRORS section documents the error codes.

Applications should not attempt to take the address of errno, because it may be converted to a macro in a
future release.

The following is a complete list of the error codes. The numeric values can be found in <e rrno • h> but
they should not be used in an application program because they can vary from system to system.

E2BIG Arg list too long. An argument and or environment list longer than maximum supported
size is presented to a member of the exec () family. Other possibilities include: message
size or number of semaphores exceeds system limit (msgop, semop), or too many
privileged groups have been set up (setprivgrp).

EACCES Permission denied. An attempt was made to access a file or IPC object in a way forbidden
by the protection system.

EADDRINUSE Address already in use. Only one usage of each address is normally permitted.

EADDRNOTAV AIL
Cannot assign requested address. Normally results from an attempt to create a socket
with an address not on this machine.

EAFNOSUPPORT

EAGAIN

EALREADY

EBADF

EBUSY

ECHILD

Address family not supported by protocol family. An address incompatible with the
requested protocol was used. For example, you should not necessarily expect to be able to
use PUP Internet addresses with ARPA Internet protocols.

No more processes. A fork () failed because the system's process table is full or the user
is not allowed to create any more processes, or a semop () or msgop () call would have
to block.

Operation already in progress. An operation was attempted on a non-blocking object which
already had an operation in progress.

Bad file number. Either a file descriptor refers to no open file, a read (respectively write)
request is made to a file which is open only for writing (respectively reading), or the file
descriptor is not in the legal range of file descriptors.

Device or resource busy. An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active file (open file, current
directory, mounted-on file, active text segment). It will also occur if an attempt is made to
enable accounting when it is already enabled. The device or resource is currently unavail­
able, such as when a non-shareable device file is in use.

No child processes. A wait () was executed by a process that had no existing or
unwaited-for child processes.

-1- HP-UX Release 9.0: August 1992

errno(2) errno(2)

ECONNABORTED
Software caused connection abort. A connection abort was caused internal to your host
machine.

ECONNREFUSED
Connection refused. No connection could be made because the target machine actively
refused it. This usually results from trying to connect to a service that is inactive on the
foreign host.

ECONNRESET Connection reset by peer. A connection was forcibly closed by a peer. This normally results
from the peer executing a shutdown () call (see shutdQwn.(2)),

EDEADLK Resource deadlock would occur. A process which has locked a system resource would have
been put to sleep while attempting to access another process' locked resource.

EDESTADDRREQ
Destination address required. A required address was omitted from an operation on a
socket.

EDOM Math argument. The argument of a function in the math package (3M) is out of the domain
of the function.

EEXIST File exists. An existing file was mentioned in an inappropriate context; e.g., link () .

EFAULT Bad address. The system encountered a hardware fault in attempting to use an argument
of a system call; can also result from passing the wrong number of parameters to a system
call. The reliable detection of this error is implementation dependent.

EFBIG File too large. The size of a file exceeded the maximum file size (for the file system) or
ULIMIT was exceeded (see ulimit(2», or a bad semaphore number in a semop () call (see
semop(2».

EHOSTDOWN Host is down. A socket operation encountered a dead host. Networking activity on the
local host has not been initiated.

EHOSTUNREACH

EIDRM

EILSEQ

No route to host. A socket operation was attempted to an unreachable host.

Identifier Removed. This error is returned to processes that resume execution due to the
removal of an identifier from the file system's name space (see msgctl(2), semctl(2), and
shmctl(2».

Illegal byte sequence. A wide character code has been detected that does not correspond to
a valid character, or a byte sequence does not form a valid wide character code.

EINPROGRESS Operation now in progress. An operation that takes a long time to complete was attempted

EINTR

EINVAL

EIO

EISCONN

EISDIR

ELOOP

on a non-blocking object (see ioctl(2) and fcntl(2».

Interrupted system call. An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is resumed after processing
the signal, it will appear as if the interrupted system call returned this error condition
unless the system call is restarted (see sigvector(2».

Invalid argument. Some invalid argument (such as unmounting a. device that is not
currently mounted, mentioning an undefined signal in signal () or kill (), or reading
or writing a file for which lseek () has generated a negative pointer). Also set by the
math functions described in the (3M) entries ofthis manual.

110 error - some physical 110 error. This error may in some cases occur on a call following
the one to which it actually applies.

Socket is already connected. A connect () request was made on an already connected
socket, or, a sendto () or sendmsg () request on a connected socket specified a desti­
nation other than the connected party.

Is a directory. An attempt to open a directory for writing.

Too many levels of symbolic links. A path name search involved more than MAXSYM­
LINKS symbolic links. MAXSYMLINKS is defined in <sys /param. h>.

HP-UX Release 9.0: August 1992 -2- 35

I

I

errno(2) errno(2)

36

EMFILE

EMLINK

Too many open files. No process may have more than a system-defined number of file
descriptors open at a time.

Too many links. An attempt to make more than the maximum number of links to a file.

EMSGSIZE Message too long. The socket requires that the message be sent atomically, and the size of
the message to be sent made this impossible.

ENAMETOOLONG

ENETDOWN

ENETRESET

ENETUNREACH

ENFILE

ENOBUFS

ENODEV

ENOENT

ENOEXEC

ENOLCK

ENOMEM

File name too long. A path specified exceeds the maximum path length for the system. The
maximum path length is specified by PATH_MAX and is defined in <limits.h>.
PATH_MAX is guaranteed to be at least 1023 bytes. This error is also generated if the
length of a path name component exceeds NAME_MAX and the _POSIX_NO_TRUNC
option is in effect for the specified path. Currently, _POSIX_NO_TRUNC is in effect only
for HFS file systems configured to allow path name components up to 255 bytes long (see
convertfs(lM» and therefore only path names referring to such file systems can generate
the error for this case. The values of NAME_MAX, PATH_MAX, and _POSIX_NO_TRUNC
for a particular path name can be queried by using the pathconf () system call (see
pathconf(2».

Network is down. A socket operation encountered a dead network.

Network dropped connection on reset. The host you were connected to crashed and
rebooted.

Network is unreachable. A socket operation was attempted to an unreachable network.

File table overflow. The system's table of open files is full, and temporarily no more
open () s can be accepted.

No buffer space available. An operation on a socket was not performed because the system
lacked sufficient buffer space.

No such device. An attempt was made to apply an inappropriate system call to a device
(such as read a write-only device).

No such file or directory. This error occurs when a file name is specified and the file should
exist but does not, or when one of the directories in a path name does not exist. It also
occurs with msgget (), semget (), and shmget () when key does not refer to any
object and the IPC_CREAT flag is not set.

Exec format error. A request is made to execute a file which, although it has the appropri­
ate permissions, does not start with a valid magic number (see a.out(4», or the file is too
small to have a valid executable file header.

System lock table is full. Too many files have file locks on them, or there are too many
record locks on files, or there are too many instances of a reading or writing process sleep­
ing until an enforcement mode lock clears. This error may also indicate system problems in
handling a lock request on a remote NFS file. This error is also currently returned for all
attempts to perform locking operations on a remote NFS file that has its locking enforce­
ment mode bit set, since the stateless nature of NFS prevents maintaining the necessary
lock information.

Not enough space. During a system call such as exec (), brk (), fork (), or sbrk (), a
program asks for more space than the system is able to supply. This may not be a tem­
porary condition; the maximum space size is a system parameter. The error can also occur
if the arrangement of text, data, and stack segments requires too many segmentation regis­
ters, or if there is not enough swap space during a fork ().

ENOMSG No message of desired type. An attempt was made to receive a message of a type that does
not exist on the specified message queue; see msgop(2).

ENOPROTOOPT Protocol not available. A bad option was specified in a get sockopt () or set­
sockopt () call (see getsockopt(2».

-3- HP-UX Release 9.0: August 1992

errno(2)

ENOSPC

ENOSYM

ENOSYS

ENOTBLK

errno(2)

No space left on device. During a write () to an ordinary file, there is no free space left
on the device; or no space in system table during msgget (), semget (), or semop ()
while SEM_UNDO flag is set.

Symbol does not exist in executable. The dynamic loader was unable to resolve a symbolic
reference in a shared library during a call to one of the dynamic loader interface routines
(see shCload(3X). The program may be in an inconsistent state and should be terminated
immediately.

Function is not available. The requested function or operation is not implemented or not
configured in the system_

Block device required. A non-block file was mentioned where a block device was required,
such as in mount ().

ENOTCONN Socket is not connected. A request to send or receive data was disallowed because the
socket was not connected.

ENOTDIR Not a directory. A non-directory was specified where a directory is required, such as in a
path prefix or as an argument to chdir ().

ENOTEMPTY Directory not empty. An attempt was made to remo.ve a non-empty directory.

ENOTSOCK Socket operation on non-socket. An operation was attempted on something that is not a
socket.

ENOTTY Not a typewriter. The (ioctl ()) command is inappropriate to the selected device type.

ENXIO No such device or address. I/O on a special file refers to a sub device that does not exist, or
is beyond the limits of the device. It can also occur when, for example, a tape drive is not
on line or no disk pack is loaded on a drive.

EOPNOTSUPP Operation not supported. The requested operation on a socket or NFS file is either invalid
or unsupported. For example, this might occur when an attempt to accept () a connec­
tion on a datagram socket fails.

EPERM Not owner. Typically, this error indicates an attempt to modify a file in some way forbid­
den except to its owner or the super-user, such as to change its mode. It is also returned for
attempts by ordinary users to do things for which they need, but lack, a special privilege.

EPFNOSUPPORT
Protocol family not supported. The protocol family has not been configured into the system
or no implementation for it exists. The socket is not connected.

EPIPE Broken pipe. Data has been written to a pipe for which the other (reading) end has been
closed. This most often occurs when the reading process exits before the writing process.
This condition also generates the signal SIGPIPE; the error is returned if the signal is
ignored.

EPROTONOSUPPORT
Protocol not supported. The protocol has not been configured into the system or no imple­
mentation for it exists.

EPROTOTYPE Protocol wrong type for socket. A protocol was specified that does not support the seman­
tics of the socket type requested. For example, ARPA Internet UDP protocol cannot be used
with type SOCK_STREAM.

ERANGE Result too large. The value of a function in the math package (3M) is not representable
within machine precision, or a semop () call would cause either a semaphore value or a
semaphore adjust value to exceed it system-imposed maximum.

EROFS Read-only file system. An attempt to modify a file or directory was made on a device
mounted read-only.

ESHUTDOWN Cannot send after socket shutdown. A request to send data was disallowed because the
socket had already been shut down with a previous shutdown () call.

ESOCKTNOSUPPORT
Socket type not supported. The support for the socket type has not been configured into the

HP-UX Release 9.0: August 1992 -4- 37

I

I

errno(2) errno(2)

system or no implementation for it exists.

ESPIPE Illegal seek. An lseek () was issued to a pipe.

ESRCH No such process. No process can be found corresponding to that specified by pid in
kill (), rtprio (), or ptrace (), or the process is not accessible.

ETIMEDOUT Connection timed out. A connect () request failed because the connected party did not
properly respond after a period of time (timeout period varies, depending on the communi­
cation protocol).

ETXTBSY Text file busy. An attempt to execute an executable file which is currently open for writing
(or reading). Also, an attempt to open for writing an otherwise writable file which is
currently open for execution.

EWOULDBLOCK

EXDEV

Operation would block. An operation which would cause a process to block was attempted
on an object in non-blocking mode (see ioctl(2) and fcntl(2».

Cross-device link. A link to a file on another device was attempted.

DEPENDENCIES
The following NFS errors are also defined:

EREFUSED The same error as ECONNREFUSED. The external variable errno is defined as ECONNRE­
FUSED for NFS compatibility.

EREM<YrE Too many levels of remote in path. An attempt was made to remotely mount an NFS file
system into a path which already has a remotely mounted NFS file system component.

ESTALE Stale NFS file hanaIe. A client referenced an open file, bllt the file was previously deleted.

Series 700/800:
In the definition of error ENOMEM, the term "segmentation registers" is invalid.

STANDARDS CONFORMANCE
errno: AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

38 -5- HP-UX Release 9.0: August 1992

exec(2) exec(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
#1nc1ude <un1std.h>

extern char **env1ron;

1nt exec1(

) ;

const char *path,
const char *argO,
/* const char *argl,

const char *argn,
(char *)0 */

1nt execv(const char *path, char * const argyl]);

1nt exec1e(

) ;

const char *path,
const char *argO,
/* const char *argl, ... ,

const char *argn,
(char *)0,
char * const envp[] */

1nt execve(const char *f11e, char * const argyl], char * const envp[]);

1nt exec1p(

) ;

const char *f11e,
const char *argO,
/* const char *argl,

const char *argn,
(char *)0 */

1nt execvp(const char *f11e, char * const argyl]);

DESCRIPTION
exec () , in all its forms, loads a program from an ordinary, executable file onto the current process, replac­
ing the current program. The path or file argument refers to either an executable object file or a file of data
for an interpreter. In this case, the file of data is also called a script file.

An executable object file consists of a header (see a.out(4», text segment, and data segment. The data seg­
ment contains an initialized portion and an uninitialized portion (bss). For exec 1p () and execvp ()
the shell (lbinlsh) can be loaded to interpret a script instead. A successful call to exec () does not return
because the new program overwrites the calling program.

When a C program is executed, it is called as follows:

ma1n (argc, argv, envp)
1nt argc;
char **argv, **envp;

where argc is the argument count and argv is the address of an array of character pointers to the argu­
ments themselves. As indicated, argc usually has a value of at least one, and the first member of the array
points to a string containing the name of the file. (Exit conditions from main are discussed in exit(2).)

path points to a path name that identifies the executable file containing the new program.

file (in exec 1p () or execvp (» points to a file name identifying the executable file containing the new
program. The path prefix for this file is obtained by searching the directories passed as the environment
line PATH = (see environ(5». The environment is supplied by the shell (see sh(1». If file does not have an

HP-UX Release 9.0: August 1992 -1- 39

I

I

exec(2) exec(2)

40

executable magic number (magic(4», it is passed to /bin/sh as a shell script.

argO, argJ, ... , argn are pointers to null-terminated character strings. These strings constitute the argu­
ment list available to the new program. By convention, at least argO must be present and point to a string
identical to path or path's last component.

argv is an array of character pointers to null-terminated strings. These strings constitute the argument list
available to the new program. By convention, argv must have at least one member, and must point to a
string that is identical to path or path's last component. argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings constitute the environment
in which the new program runs. envp is terminated by a null pointer. For exec () and execv (), the C
run-time start-off routine places a pointer to the environment of the calling program in the global cell:

extern char **environ;

and it is used to pass the environment ofthe calling program to the new program.

Open file descriptors remain open, except for those whose close-on-exec flag is set (see (cntl(2». The file
offset, access mode, and status flags of open file descriptors are unchanged.

Note that normal executable files are open only briefly when they start execution. Other executable file
types can be kept open for a long time, or even indefinitely under some circumstances.

The processing of signals by the process is unchanged by exec (), except that signals caught by the pro­
cess are set to their default value (see signal(2».

If the set-user-ID mode bit of the executable file pointed to by path or file is set (see chmod(2», exec ()
sets the eft'ective-user-ID of the new process to the user ID of the executable file. Similarly, if the set-group­
ID mode bit of the executable file is set, the effective-group-ID of the process is set to the group ID of the exe­
cutable file. The real-user-ID and real-group-ID of the process are unchanged. Note that the set­
user(group)-ID function does not apply to scripts; thus, if execlp () or execvp () executes a script, the
set-user(group)-ID bits are ignored, even if they are set.

The saved-user-ID and saved-group-ID of the process are always set to the effective-user-ID and effective­
group-ID, respectively, of the process at the end of the exec, whether or not set-user(group)- ID is in effect.

The shared memory segments attached to the calling program are not attached to the new program (see
shmop(2».

Text and data segment memory locks are not passed on to the new program (see plock (2».

Profiling is disabled for the new process; see profil(2).

The process also retains the following attributes:

• current working directory
• file creation mode mask (see umask(2»
• file locks (see (cntl(2», except for files closed-on-exec
• file size limit (see ulimit(2»
• interval timers (see getitimer(2»
• nice value (see nice(2»
• nice value (see parent process ID
• pending signals
• process ID
• process group ID
• real user ID
• real group ID
• real-time priority (see rtprio(2»
• root directory (see chroot(2»
• semadj values (see semop(2»
• session membership
• signal mask (see sigvector(2»
• supplementary group IDs
• time left until an alarm clock signal (see alarm(2»
• trace flag (see ptrace(2) PT_SETTRC request)

-2- HP-UX Release 9.0: August 1992

exec(2) exec(2)

• tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))

The initial line of a script file must begin with #! as the first two bytes, followed by zero or more spaces,
followed by interpreter or interpreter argument. One or more spaces or tabs must separate interpreter and
argument. The first line should end with either a new-line or null character.

#! interpreter
#! interpreter argument

When the script file is executed, the system executes the specified interpreter as an executable object file.
Even in the case of execlp () or execvp (), no path searching is done of the interpreter name.

The argument is anything that follows the interpreter and tabs or spaces. If an argument is given, it is
passed to the interpreter as argv [1], and the name of the script file is passed as argv [2]. Otherwise,
the name of the script file is passed as argv [1]. The argv [0] is passed as specified in the exec ()
call, unless either argv or argv [0] is null as specified, in which case a pointer to a null string is passed
as argv [0]. All other arguments specified in the exec () call are passed following the name of the
script file (that is, beginning at argv [3] ifthere is an argument; otherwise at argv [2]).

If the initial line of the script file exceeds a system-defined maximum number of characters, exec () fails.
The minimum value for this limit is 32.

Set-user-ID and set-group-ID bits are honored for the script but not for the interpreter.

RETURN VALUE
If exec () returns to the calling program, an error has occurred; the return value is -1 and errno is set
to indicate the error.

ERRORS
exec () fails and returns to the calling program if one or more of the following is true:

[E2BIG]

[EACCES]

[EACCES]

[EACCES]

[EACCES]

[EFAULT]

[EFAULT]

[EINVAL]

[ELOOP]

The number of bytes in the new program's argument list is greater than the system­
imposed limit. This limit is at least 5120 bytes on HP-UX systems.

Read permission is denied for the executable file or interpreter, and trace flag (see ptrace(2)
request PT_SETTRC) of the process is set.

Search permission is denied for a directory listed in the executable file's or the interpreter's
path prefix.

The executable file or the interpreter is not an ordinary file.

The file described by path or file is not executable. The super-user cannot execute a file
unless at least one access permission bit or entry in its access control list has an execute bit
set.

path, argv, or envp point to an illegal address. The reliable detection of this error is imple­
mentation dependent.

The executable file is shorter than indicated by the size values in its header, or is otherwise
inconsistent. The reliable detection of this error is implementation dependent.

The executable file is incompatible with the architecture on which the exec () has been
performed, and is presumed to be for a different architecture. It is not guaranteed that
every architecture's executable files will be recognized.

Too many symbolic links are encountered in translating the path name.

[ENAMETOOLONG]

[ENOENT]

[ENOENT]

[ENOEXEC]

The executable file's path name or the interpreter's path name exceeds PATH_MAX bytes,
or the length of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

path is null.

One or more components of the executable file's path name or the interpreter's path name
does not exist.

The exec () is not an execlp () or execvp (), and the executable file has the
appropriate access permission, but there is neither a valid magic number nor the

HP-UX Release 9.0: August 1992 -3- 41

I

I

exec(2) exec(2)

[ENOEXEC]

[ENOMEM]

[ENOTDIR]

[ETXTBSY]

characters # 1 as the first two bytes of its initial line.

The number of bytes in the initial line of a script file exceeds the system's maximum.

The new process requires more memory than is available or allowed by the system-imposed
maximum.

A component of the executable file's path prefix or the interpreter's path prefix is not a
directory.

The executable file is currently open for writing.

WARNINGS
Access Control Lists

Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

DEPENDENCIES
Series 700/800

Unsharable executable files (EXEC_MAGIC magic number produced via the -N option of Id(l» are not
supported.

SEE ALSO
sh(l), alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2), ulimit(2), umask(2), a.out(4),
acl(5), environ(5), signal(5).

STANDARDS CONFORMANCE

42

environ: AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execl (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execle (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execlp (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execv(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execve () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execvp () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

-4- HP-UX Release 9.0: August 1992

exit(2) exit(2)

NAME
exit, _exit - terminate process

SYNOPSIS
#include <stdlib.h>

void exit(int status);

#include <unistd.h>

void _exit (int status);

DESCRiPTION
exi t () terminates the calling process and passes status to the system for inspection, see wait(2). Return­
ing from main in a C program has the same effect as exit () ; the status value is the function value
returned by main (this value is undefined if main does not take care to return a value or to call exit ()
explicitly).

exi t () cannot return to its caller. The result of an exi t () call during exit processing is undefined.

The functions exit () and _exit (), are equivalent, except that exit () calls functions registered by
atexit () and flushes standard 110 buffers, while _exit () does not. Both exit () and _exit ()
terminate the calling process with the following consequences:

AUTHOR

Functions registered by a texi t () (see atexit(2» are called in reverse order of registration.

All file descriptors open in the calling process are closed.

All files created by tmpf ile () are removed (see tmpfile(3S».

If the parent process of the calling process is executing a wait () , wai t3 () , or wai tpid () , it is
notified of the calling process's termination, and the low-order eight bits; i.e., bits 0377 of status are
made available to it (see wait(2».

If the parent process of the calling process is not executing a wai t (), wa it 3 (), or wai tp id () ,
and does not have SIGCLD set to SIG_IGN, the calling process is transformed into a zombie pro­
cess. A zombie process is a process that only occupies a slot in the process table. It has no other
space allocated either in user or kernel space. Time accounting information is recorded for use by
times () (see times(2».

The parent process ID is set to 1 for all of the calling process's existing child processes and zombie
processes. This means the initialization process (proc1) inherits each ofthese processes.

Each attached shared memory segment is detached and the value of shm....;....nat tach in the data
structure associated with its shared memory identifier is decremented by 1 (see shmop(2».

For each semaphore for which the calling process has set a semadj value (see semop(2», that semadj
value is added to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock () is performed, see plock (2).

An accounting record is written on the accounting file if the system's accounting routine is enabled
(see acct(2».

A SIGCHLD signal is sent to the parent process.

If the calling process is a controlling process, the SIGHUP signal is sent to each process in the fore­
ground process group of the controlling terminal belonging to the calling process. The controlling ter­
minal associated with the session is disassociated from the session, allowing it to be acquired by a
new controlling process.

If the exit ofthe calling process causes a process group to become orphaned, and if any member of the
newly-orphaned process group is stopped, all processes in the newly-orphaned process group are sent
SIGHUP and SIGCONT signals.

If the current process has any child processes that are being traced, they are sent a S I GKILL signal.

exit () was developed by HP, AT&T, and the University of California, Berkeley.

HP-UX Release 9.0: August 1992 -1- 43

I

exit(2) exit(2)

SEE ALSO
Exit conditions ($1) in sh(1),
acct(2), plock(2), semop(2), shmop(2), times(2), vfork(2), wait(2), signal(5).

STANDARDS CONFORMANCE
ex! t () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

_ex! t (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

I

44 -2- HP-UX Release 9.0: August 1992

fcntl(2) fcnt1(2)

NAME
fcntl - file control

SYNOPSIS
#include <fcntl.h>

int fcntl(int fildes, int cmd, .•. /* arg */)i

DESCRIPTION
fcntl () provides for control over open files. fildes is an open file descriptor.

The following are possible values for the emd argument:

F _DUPFD Return a new file descriptor having the following characteristics:

F_GETFD

F_GETFL

• Lowest numbered available file descriptor greater than or equal to argo val.

• Same open file (or pipe) as the original file.

• Same file pointer as the original file (that is, both file descriptors share one
file pointer).

• Same access mode (read, write or read/write).

• Same file status flags (that is, both file descriptors share the same file status
flags).

• The close-on-exec flag associated with the new file descriptor is set to remain
open across exee(2) system calls.

Get the close-on-exec flag associated with the file descriptor fildes. If the low-order bit
is 0 the file will remain open across exee(2), otherwise the file will be closed upon exe­
cution of exee(2).

Set the close-on-exec flag associated with fildes to the low-order bit of argo val (see
F_GETFD).

Get file status flags and access modes; see fentl(5).

Set file status flags to arg. val. Only certain flags can be set; see fentl(5). It is not
possible to set both O_NDELAYand O_NONBLOCK.

Get the first lock that blocks the lock described by the variable of type struct
flock pointed to by arg. The information retrieved overwrites the information
passed to fcntl () in the flock structure. If no lock is found that would prevent
this lock from being created, the structure is passed back unchanged, except that the
lock type is set to F_UNLCK.

Set or clear a file segment lock according to the variable of type struct flock
pointed to by arg .loekdes (see fentl(5». The emd F_SETLK is used to establish read
(F _RDLCK) and write (F _WRLCK) locks, as well as to remove either type of lock
(F_UNLCK). If a read or write lock cannot be set, fcntl () returns immediately
with an error value of -1.

F _SETLKW This emd is the same as F _SETLK except that if a read or write lock is blocked by
other locks, the process will sleep until the segment is free to be locked.

A read lock prevents any other process from write-locking the protected area. More than one read lock
can exist for a given segment of a file at a given time. The file descriptor on which a read lock is being
placed must have been opened with read access.

A write lock prevents any other process from read-locking or write-locking the protected area. Only
one write lock may exist for a given segment of a file at a given time. The file descriptor on which a
write lock is being placed must have been opened with write access.

The structure flock describes the type (l_type), starting offset (l_whence), relative offset
(l_start), size (l_len), and process ID (l-pid) of the segment of the file to be affected. The pro­
cess ID field is only used with the F_GETLK emd to return the value of a block in lock. Locks can
start and extend beyond the current end of a file, but cannot be negative relative to the beginning of
the file. A lock can be set to always extend to the end of file by setting l_len to zero (0). If such a

HP-UX Release 9.0: August 1992 -1- 45

I

I

fcnt1(2) fcnt1(2)

lock also has I_start set to zero (0), the whole file will be locked. Changing or unlocking a segment
from the middle of a larger locked segment leaves two smaller segments for either end. Locking a seg­
ment already locked by the calling process causes the old lock type to be removed and the new lock
type to take effect. All locks associated with a file for a given process are removed when a file descrip­
tor for that file is closed by that process or the process holding that file descriptor terminates. Locks
are not inherited by a child process in a fork (2) system call.

When enforcement-mode file and record locking is activated on a file (see chmod(2», future read ()
and wr i t e () system calls on the file are affected by the record locks in effect.

NETWORKING FEATURES
NFS The advisory record-locking capabilities of fcntl(2) are implemented throughout the network by the

"network lock daemon" (see lockd(1M)). If the file server crashes and is rebooted, the lock daemon
attempts to recover all locks associated with the crashed server. If a lock cannot be reclaimed, the pro­
cess that held the lock is issued a SIGLOST signal.

Record locking, as implemented for NFS files, is only advisory.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL

F_SETFL

F_GETLK

F_SETLK

F_SETLKW

A new file descriptor.

Value of close-on-exec flag (only the low-order bit is defined).

Value other than -1.

Value of file status flags and access modes.

Value other than -1.

Value other than -1.

Value other than -1.

Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS

46

f cnt 1 () fails if any of the following conditions occur:

[EBADF] fildes is not a valid open file descriptor, or was not opened for reading when setting a
read lock or for writing when setting a write lock.

[EMFILE]

[EMFILE]

[EMFILE]

[EMFILE]

[EINVAL]

[EINVAL]

[EINVAL]

[EINTR]

[EACCES]

[ENOLCK]

cmd is F _DUPFD and the maximum number of file descriptors is currently open.

cmd is F _SETLK or F _SETLKW, the type of lock is a read or write lock, and no more
file-locking headers are available (too many files have segments locked).

cmd is F _DUPFD and arg • val is greater than or equal to the maximum number of
file descriptors.

cmd is F _DUPFD and arg • val is negative.

cmd is F_GETLK, F_SETLK, or F_SETLKW, and arg .lockdes or the data it points to
is not valid, or fildes refers to a file that does not support locking.

cmd is not a valid command.

cmd is F _SETFL and both O_NONBLOCK and O_NDELAY are specified.

cmd is F _SETLKW and the call was interrupted by a signal.

cmd is F _SETLK, the type of lock (I_type) is a read lock (F _RDLCK) or write lock
(F_WRLCK) and the segment of a file to be locked is already write-locked by another
process, or the type is a write lock (F _WRLCK) and the segment of a file to be locked
is already read- or write-locked by another process.

cmd is F _SETLK or F _SETLKW, the type of lock is a read or write lock, and no more
file-locking headers are available (too many files have segments locked), or no more
record locks are available (too many file segments locked).

-2- HP-UX Release 9.0: August 1992

fcnt1(2)

[ENOLCK]

[ENOLCK]

[EDEADLK]

[EAGAIN]

[EFAULT]

AUTHOR

fcnt1(2)

cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is a read lock
(F _RDLCK) or write lock (F _WRLCK) and the file is an NFS file with access bits set
for enforcement mode.

cmd is F _GETLK, F _SETLK, or F _SETLKW, the file is an NFS file, and a system error
occurred on the remote node.

cmd is F _SETLKW, when the lock is blocked by a lock from another process and sleep­
ing (waiting) for that lock to become free. This causes a deadlock situation.

cmd is F_SETLK or F_SETLKW, and the file is mapped in to virtual memory via the
mmap () system call (see mmap(2».

cmd is either F_GETLK, F_SETLK, or F_SETLKW, and arg points to an illegal
address.

fcntl () was developed by HP, AT&T and the University of California, Berkeley.

APPLICATION USAGE
Because in the future the external variable errno will be set to EAGAIN rather than EACCES when a sec­
tion of a file is already locked by another process, portable application programs should expect and test for
either value, for example:

SEE ALSO

flk->l_type = F_RDLCK;
if (fcntl(fd, F_SETLK, flk) == -1)

if «errno == EACCES) I I (errno == EAGAIN»
/*
* section locked by another process,
* check for either EAGAIN or EACCES
* due to different implementations
*/

else if
/*
* check for other errors
*/

lockd(lM), statd(1M), chmod(2), close(2), exec(2), lockft:2), open(2), read(2), write(2), fcntl(5).

FUTURE DIRECTIONS
The error condition which currently sets errno to EACCES will instead set errno to EAGAIN (see also
APPLICATION USAGE above).

STANDARDS CONFORMANCE
fcntl (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -3- 47

I

I

fork (2) fork(2)

NAME
fork - create a new process

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
fork () causes the creation of a new process. The new process (child process) is an exact copy of the cal­
ling process (parent process). This means that the child process inherits the following attributes from the
parent process:

• Real, effective, and saved user ID. •
Real, effective, and saved group ID.

• List of supplementary group IDs (see getgroups(2».
• Process group. ID
• Environment.
• File descriptors.
• Close-on-exec flags (see exec(2».
• Signal handling settings (SIG_DFL, SIG_IGN, address).
• Signal mask (see sigvector(2».
• Profiling on/off status (see profil(2».
• Command name in the accounting record (see acct(4».
• Nice value (see nice(2».
• All attached shared memory segments (see shmop(2».
• Current working directory
• Root directory (see chroot(2».
• File mode creation mask (see umask(2».
• File size limit (see ulimit(2».
• Real-time priority (see rtprio(2».

Each of the child's file descriptors shares a common open file description with the corresponding file descrip­
tor of the parent. This implies that changes to the file offset, file access mode, and file status flags of file
descriptors in the parent also affect those in the child, and vice-versa.

The child process differs from the parent process in the following ways:

The child process has a unique process ID. The child process ID also does not match any active process
groupID.

The child process has a different parent process ID (which is the process ID ofthe parent process).

The set of signals pending for the child process is initialized to the empty set.

The trace flag (see ptrace(2)PT_SETTRC request) is cleared in the child process.

The AFORK flag in the ac_flags component of the accounting record is set in the child process.

Process locks, text locks, and data locks are not inherited by the child (see plock (2».

All semadj values are cleared (see semop(2».

The child process's values of tms_utime, tms_stime, tms_cutime, and tms_cstime are set
to zero (see times(2».

The time left until an alarm clock signal is reset to 0 (clearing any pending alarm), and all interval
timers are set to 0 (disabled).

The vfork(2) system call can be used to fork processes more quickly than fork (), but has some restric- \
tions. See vfork(2) for details.

If a parent and child process both have a file opened and the parent or child closes the file, the file is still
open for the other process.

RETURN VALUE

48

Upon successful completion, fork() returns a value of 0 to the child process and returns the process ID
of the child process to the parent process. Otherwise, a value of -1 is returned to the parent process, no

-1- HP-UX Release 9.0: August 1992

fork (2) fork(2)

child process is created, and errno is set to indicate the error.

The parent and child processes resume execution immediately after the fork () call; they are dis­
tinguished by the value returned by fork.

ERRORS
fork () fails and no child process is created if one or more of the following is true:

[EAGAIN]

[ENOMEM]

WARNINGS

The system-imposed limit on the total number of processes under execution would be
exceeded.

The system-imposed limit en the total number of processes under execution by a sin­
gle user would be exceeded.

There is insufficient swap space and/or physical memory available in which to create
the new process.

Standard I/O streams (see stdio(3S» are duplicated in the child. Therefore, iffork is called after a buffered
110 operation without first closing or flushing the associated standard 110 stream (see fclose(3S», the
buffered input or output might be duplicated.

AUTHOR
fork () was developed by AT&T, the University of California, Berkeley, and HP.

SEE ALSO
acct(2), chroot(2), exec(2), exit(2), fcntl(2), getgroups(2), lockf(2), nice(2), plock(2), profil(2), ptrace(2),
rtprio(2), semop(2), setuid(2), setpgrp(2), shmop(2), times(2), ulimit(2), umask(2), vfork(2), wait(2),
fclose(3S), stdio(3S), acct(4), signal(5).

STANDARDS CONFORMANCE
fork () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -2- 49

I

I

fsct1(2) fsct1(2)

NAME
fsctl - file system control

SYNOPSIS
#include <sys/fsctl.h>

int fsctl(

) ;

tnt fildes,
tnt command,
void *outbuf,
size_t out len

DESCRIPTION

50

fsctl (j provides access to file-system-specific information. fildes is an open file descriptor for a file in the
file system of interest. The possible values for command depend on the type of file system. Currently,
defined commands exist only for the CDFS file system (see sys / cdf sdi r • h).

outbuf is a pointer to the data area in which data is returned from the file system. outlen gives the length
of the data area pointed to by outbuf.

The CDFS commands are:

CDFS_DIR_REC Returns the directory record for the file or directory indicated by fildes. The record
is returned in a structure of type cddir, defined in <sys/cdfsdir. h>.

Returns the extended attribute record, if any, for the file or directory indicated by
fildes. Because the size of an extended attribute record varies, be sure outbuf
points to a data area of sufficient size. To find the necessary size, do the following:

1. Use statfs(2). to get the logical block size of the CDFS volume.

2. Use an fsctl () call with the CDFS_DIR_REC command to get the
extended attribute record size (in blocks) for the file or directory of
interest. The mincdd xar len field in the returned structure con­
tains the size of the ext;nded ~ttribute record in logical blocks. (If this
field is zero, the file or directory has no extended attribute record.)

3. Multiply mincdd_xar_Ien by the logical block size obtained in step
1 to get the total space needed.

4. Once you get the extended attribute record, cast outbuf into a pointer to
a structure of type cdxar_iso (defined in <sys/cdfsdir.h».
This enables you to access those fields that are common to all extended
attribute records. (See EXAMPLES below for an example of this pro­
cess.)

If the extended attribute record contains additional system use or
application use data, that data will have to be accessed manually.

CDFS_AFID Returns the abstract file identifier for the primary volume whose root directory is
specified by fildes, terminated with a NULL character. Note that the constant
CDMAXNAMLEN defined in <sys/cdfsdir .h> gives the maximum length a file
identifier can have. Thus, CDMAXNAMLEN + 1 can be used for outlen and the size
ofoutbuf.

CDFS_BFID Returns the bibliographic file identifier for the primary volume whose root direc­
tory is specified by fildes, terminated with a NULL character. CDMAXNAMLEN +
1 can be used for the value of outlen and the size of outbuf.

CDFS_CE:ID Returns the copyright file identifier for the primary volume whose root directory is
specified by fildes, terminated with a NULL character. CDMAXNAMLEN + 1 can
be used for the value of outlen and the size of outbuf.

CDFS_VOL_ID Returns the volume ID for the primary volume specified by fildes, terminated with
a NULL character. The maximum size of the volume ID is 32 bytes, so a length of
33 can be used for outlen and the size of utbuf.

-1- HP-UX Release 9.0: August 1992

fsctl(2) fsctl(2)

CDFS_VOL_SET_ID
Returns the volume set ID for the primary volume specified by tildes, terminated
with a NULL character. The maximum size of the volume set ID is 128 bytes, so a
length of 129 can be used for outlen and the size of outbuf.

EXAMPLES
The following code fragment gets the extended attribute record for a file on a CDFS volume. The filename is
passed in as the first argument to the routine. Note that error checking is omitted for brevity.

#inc1ude <sys/types.h>
#includa <syslvfs.h>
#inc1ude <fcnt1.h>
#inc1ude <sys/cdfsdir.h>
main (argc, argv)
int argc;
char *argv[];
(

int fildes, size = 0;
char *ma11oc(), *outbuf;
struct statfs buf;
struct cddir cdrec;
struct cdxar_iso *xar;

statfs(argv[l], &buf); /* get logical block size */

fi1des = open(argv[l], O_RDONLY); /* open file arg */

/* get directory record for file arg */
fsct1(fi1des, CDFS_DIR_REC, &cdrec, sizeof(cdrec»;

1* compute size */

if(size) (/* if size != 0 then there is an xar */
outbuf = ma11oc(size); /* ma110c sufficient memory */

fsct1(fi1des, CDFS_XAR, outbuf, size); /* get xar */

./

xar = (struct cdxar_iso *)outbuf; /* cast outbuf to access fields */

RETURN VALUE //
f s ct 1 () returns the number of bytes read if succ~ssful. If an error occurs, -1 is returned and e rrno is
set to indicate the error.

ERRORS
fsct1 () fails ifany of the following conditions are encountered:

[EBADF] tildes is not a valid open file descriptor.

[EFAULT]

[ENOENT]

outbuf points to an invalid address.

The requested information does not exist.

HP-UX Release 9.0: August 1992 -2- 51

I

I

fsctl(2)

SEE ALSO

[EINVAL]

[EINVAL]

fsctl(2)

command is not a valid command.

outlen is negative, or fildes does not refer to a CDFS file system.

statfs(2), cdfs(4), cdfsdir(4), cdnode(4), cdrom(4).

52 -3- HP-UX Release 9.0: August 1992

fsync(2) fsync(2)

NAME
fsync - synchronize a file's in-core state with its state on disk

SYNOPSIS
#include <unistd.h>

int fsync(int fildes);

DESCRIPTION
f sync () causes all modified data and attributes of fildes to be moved to a permanent storage device. This
normally results in all in-core modified copies of buffers for the associated file to be written to a disk.
f sync () applies to ordinary files, and applies to block special devices on systems which permit I/O to block
special devices.

fsync () should be used by programs that require a file to be in a known state; such as when building a
simple transaction facility.

RETURN VALUE
fsync () returns 0 on success or -1 if an error error occurs, and sets errno to indicate the error.

ERRORS
(sync fails if any of the following conditions are encountered:

[EBADF]

[EINVAL]

fildes is not a valid descriptor.

fildes refers to a file type to which f sync () does not apply.

WARNINGS
The current implementation of this function is inefficient for large files.

AUTHOR
f sync () was developed by the the University of California, Berkeley and HP.

SEE ALSO
fcntl(2), fcntl(5), open(2), select(2), sync(2), sync(1M).

STANDARDS CONFORMANCE
f sync () : AES, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 53

I

I

ftime(2) ftime(2)

NAME
fUme - get date and time more precisely

SYNOPSIS
#include <sys/timeb.h>

int ftime(struct timeb *tp};

REMARKS
This facility is provided for backwards compatibility with Version 7 systems. Either time () or get­
timeofday(} should be used in new programs.

DESCRIPTION
ftime () fills in a structure pointed to by its argument, as defined by <sys/timeb .ll>:

/*
* Structure returned by ftime system call
*/

struct timeb {
time_t time;

} ;

unsigned short millitm;
short timezone;
short dstflag;

The structure contains the time in seconds since 00:00:00 UTC (Coordinated Universal Time), January 1,
1970, up to 1000 milliseconds of more-precise interval, the local timezone (measured in minutes of time
westward from UTC), and a flag that, if nonzero, indicates that Daylight Saving time applies locally during
the appropriate part of the year. Consult gettimeofday(2) for more details on the meaning of the timezone
field.

This function can be accessed by giving the -1 V7 option to the ld command (see ld(1».

ft ime () can fail for exactly the same reasons as gettimeofday(2).

SEE ALSO
date(1), gettimeofday(2), stime(2), time(2), ctime(3C).

WARNINGS

54

The millisecond value usually has a granularity greater than one due to the resolution of the system clock.
Depending on any granularity (particularly a granularity of one) renders code non-portable.

-1- HP-UX Release 9.0: August 1992

getaccess(2) getaccess (2)

NAME
getaccess - get a user's effective access rights to a file

SYNOPSIS
#include <sys/getaccess.h>

int getaccess(

) ;

const char *path,
uid_t uid,
int ngroups,
conet aid_t *gidset:
void *label,
void *privs

DESCRIPTION
getaccess () identifies the access rights (read, write, execute/search) a specific user ID has to an existing
file. path points to a path name of a file. If the call succeeds, it returns a value of zero or greater,
representing the specified user's effective access rights (modes) to the file. The rights are expressed as the
logical OR of bits (R_OK, W_OK, and X_OK) whose values are defined in the header <unistd.h>. A return
of zero means that access is denied.

The uid parameter is a user !D. Special values, defined in <sys / getacces s • h>, represent the calling
process's effective, real, or saved user ID:

UlD_EUlD Effective user !D.
UlD_RUlD Real user ID.
UlD_SUlD Saved user ID.

ngroups is the number of group IDs ingidset, not to exceed NGROUPSJ(AX + 1 (NGROUPS_MAX is defined
in <limits .h». If the ngroups parameter is positive, thegidset parameter is an array of group ID values
to use in the check. If ngroups is a recognized negative value, gidset is ignored. Special negative values of
ngroups, defined in <sys/getaccess .h>, represent various combinations of the process's effective, real,
or saved user !D and its supplementary groups list:

NGROUPS_EGlD
NGROUPS_RGlD
NGROUPS_SGlD
NGROUPS_SUPP
NGROUPS_EGlD_SUPP
NGROUPS_RGlD_SUPP
NGROUPS_SGlD_SUPP

Use process's effective group ID only.
Use process's real group ID only.
Use process's saved group ID only.
Use process's supplementary groups only.
Use process's effective group ID plus supplementary groups.
Use process's real group ID plus supplementary groups.
Use process's saved group ID plus supplementary groups.

The label andprivs parameters are placeholders for future extensions. For now, the values of these param­
eters must be (void *) O.

The access check rules for access control lists are described in acl(5). In addition, the W_OK bit is cleared
for files on read-only file systems or shared-text programs being executed. Note that as in access(2), the
X_OK bit is not turned off for shared-text programs open for writing because there is no easy way to know
that a file open for writing is a shared-text program.

If the caller's user!D is 0, or if it is UlD_EUlD, UlD_RUlD, or UlD_SUlD (see <sys/getaccess .h»
and the process's respective user ID is 0, R_OK and W_OK are always set except when W_OK is cleared for
files on read-only file systems or shared-text programs being executed. X_OK is set if and only if the file is
not a regular file or the execute bit is set in any of the file's ACL entries.

getacces s () checks each directory component of path by first using the caller's effective user !D,
effective group !D, and supplementary groups list, regardless of the user ID specified. An error occurs, dis­
tinct from "no access allowed," if the caller cannot search the path to the file. (In this case it is inappropri­
ate for the caller to learn anything about the file.)

Comparison of access(2) andgetaccess(2)
The following table compares various attributes of access () and getaccess ().

HP-UX Release 9.0: August 1992 -1- 55

I

I

getaccess(2) getaccess(2)

access() getaccess()
checks all AUL entrIes same
uses real uid, real gid, and uses specified uid and groups list;
supplementary groups list macros available for typical values
checks specific mode value, returns all mode bits, each on or off
returns succeed or fail
checks path to file using caller's effective IDs same
W _OK false if shared-text file same
currently being executed
W_OK false if file on same
read-only file system
X_OK not modified for file same
currently open for writing
R_OK and W_OK always true for superuser same
(except as above)
X_OK always true for superuser X_OK true for super-user if file is not a regular

file or execute is set in any ACL entry

RETURN VALUE
Upon successful completion, getaccess () returns a non-negative value representing the access rights of
the specified user to the specified file. If an error occurs, a value of -1 is returned and errno is set to
indicate the error.

ERRORS
getaccess () fails if any of the following conditions are encountered:

[EACCES] A component of the path prefix denies search permission to the caller.

[EFAULT] path or gidset points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

[EINVAL]

[EINVAL]

[EINVAL]

ngroups is invalid; ngroups is either zero, an unrecognized negative value, or a value
larger than NGROUPS + 1.

gidset contains an invalid group ID value.

The value of label or privs is not a null pointer.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

[ENOENT] The named file does not exist (for example, path is null or a component of path does
not exist).

[ENOTDIR] A component of the path prefix is not a directory.

[EOPNOTSUPP] getaccessO is not supported on some types of remote files.

EXAMPLES

56

The following call determines the caller's effective access rights to file "test," and succeeds if the user has
read access:

#include <unistd.h>
#include <sys/getaccess.h>

int mode;
mode = getaccess ("test", UID_EUID, NGROUPS_EGID_SUPP,
(int *) 0, (void *) 0, (void *) 0);

if «mode >= 0) && (mode & R_OK» •••

Here is one way to test access rights to file Itmp/hold for user ID 23, group ID 109:

-2- HP-UX Release 9.0: August 1992

getaccess(2) getaccess(2)

int gid = 109;
int mode;

mode = getaccess (II/tmp/hold ll
, 23, 1, & gid,

(void *) 0, (void *) 0);

Should the need arise, the following code builds a gidset that includes the process's effective group ID:

#include <limits.h>

int gidset [NGROUPS_MAX + 1];
int ngroups;

gidset [0] = getegid();
ngroups = 1 + getgroups (NGROUPS_MAX, & gidset [1]);

AUTHOR
getaccess () was developed by HP.

SEE ALSO
access(2), chmod(2), getacl(2), setacl(2), stat(2), acl(5), unistd(5).

HP-UX Release 9.0: August 1992 -3- 57

I

I

getac1(2) getacl(2)

NAME
getacl, fgetacl - get access control list (ACL) information

SYNOPSIS
#include <sys/acl.h>

int getacl(

) ;

const char *path,
int nentries,
struct aCl_entry *acl

int fgetacl(int fildes, int nentries, struct acl_entry *acl);

DESCRIPTION
getacl () returns a complete listing of all ACL entries (uid.gid, mode) in an existing file's access control
list. path points to a path name of a file.

Similarly, fgetacl () returns a complete listing of all ACL entries for an open file known by the file
descriptor fildes .

nentries is the number of entries being reported on, and is never more than the constant NACLENTRIES
defined in <sys / ac 1 • h>. If nentries is non-zero, it must be at least as large as the number of entries in
the file's ACL, including base entries (see setacl(2». getacl () returns the number of entries in the file's
ACL, as well as the ACL entries themselves in the array of structures acl declared by the calling program.

If nentries is zero, getacl () returns the number of entries in the file's ACL, including base ACL entries,
and acl is ignored.

Entries are reported in groups of decreasing order of specificity (see setacl(2», then sorted in each group by
user ID and group ID. The content of array entries beyond the number of defined entries for the file is
undefined.

RETURN VALUE
Upon successful completion, getacl () and fgetacl () return a non-negative value. If an error
occurs, a value of -1 is returned, and errno is set to indicate the error.

ERRORS
getacl () or f getacl () fail to modify the acl array if any of the following is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist (for example, path is null or a component of path does
not exist).

[EBADF]

[EACCES]

[EFAULT]

[EINVAL]

fildes is not a valid file descriptor.

A component of the path prefix denies search permission.

path or a portion of acl to be written points outside the allocated address space of the
process.

nentries is non-zero and less than the number of entries in the file's ACL, or it is
greater than NACLENTRIES;

[EOPNOTSUPP] getacl () is not supported on remote files by some networking services.

[ENFILE] The system file table is full.

[ENAMETOOLONG]

[ELOOP]

The length of path exceeds PATH_MAX bytes, or the length of a component of path
exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in effect.

Too many symbolic links were encountered in translating the path name.

EXAMPLES
The following call returns the number of entries in the ACL on file /users/bi 11 /mcf ile.

#include <sys/acl.h>

58 -1- HP-UX Release 9.0: August 1992

getacl(2) getacl(2)

entries = getacl (II/users/bill/mcfile ll
, 0, (struct aCl_entry *) 0);

The following call returns in acl all entries in the ACL on the file opened with file descriptor 5.

#include <sys/acl.h>

int nentries;
struct acl_entry acl [NACLENTRIES);

entries = fgetacl (5, NACLENTRIES, acl);

DEPENDENCIES
NFS getacl () and fgetacl () are not supported on remote files.

AUTHOR
getacl () and fgetacl () were developed by HP.

SEE ALSO
access(2), chmod(2), getaccess(2), setacl(2), stat(2), unistd(5).

HP-UX Release 9.0: August 1992 -2- 59

I

I

getaudid(2)

NAME
getaudid - get the audit ID (aid) for the current process

SYNOPSIS
#include <sys/audit.h>

int getaudid(void);

DESCRIPTION

getaudid(2)

getaudid () returns the audit ID (aid) for the current process. This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, the audit ID is returned; otherwise, a -1 is returned.

ERRORS
getaudid () fails if the following is true:

[EPERM] The caller is not super-user.

AUTHOR
getaudid () was developed by lIP.

SEE ALSO
setaudid(2).

60 -1- HP-UX Release 9.0: August 1992

getaudproc(2) getaudproc (2)

NAME
getaudproc - get the audit process flag for the calling process

SYNOPSIS
#include <sys/audit.h>

int getaudproc(void)i

DESCRIPTION
getaudproc () returns the audit process flag for the calling process. The audit process flag (u_audproc)
determines whether the process run by a given user should be audited. The process is audited if the
returned flag is 1. If the returned flag is 0, the process is not audited. This cail is restricted to the super­
user.

RETURN VALUE
Upon successful completion, the audit process flag is returned; otherwise, a -1 is returned and errno is
set to indicate the error.

ERRORS
getaudproc () fails if the following is true:

[EPERM] The caller is not the super-user.

AUTHOR
getaudproc () was developed by HP.

SEE ALSO
setaudproc(2).

HP-UX Release 9.0: August 1992 -1- 61

I

I

getcontext(2) getcontext (2)

NAME
getcontext - return process context for context-dependent file search

SYNOPSIS
#include <unistd.h>

int getcontext(char *contextbuf, size_t length};

DESCRIPTION
getcontext () reads the per-process context (see context(5)) into the buffer pointed to by contextbuf. The
context is returned as a null-terminated string containing a blank-separated list of names. The function
value returned by getcontext () is the length of this string, including the null terminator. If this
string, including the null terminator, is less than length bytes, a truncated, null-terminated string of length
bytes is returned. In particular, if length is zero, only the function value is returned.

RETURN VALUE
Upon successful completion, the length of the context string, including the null terminator, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
getcontext () may fail if the following is true:

[EFAULT] contextbufpoints to an illegal address. Reliable detection of this error is not guaranteed.

EXAMPLES
In the following example getcontext () is called once with a length parameter of zero to determine the
size of a buffer to allocate for the context.

int length;
char *contextbuf;

length = getcontext «char *}O, O);
contextbuf = malloc (length);
(void) getcontext (contextbuf, length);

AUTHOR
getcontext () was developed by HP.

SEE ALSO
getcontext(l), cnodeid(2), cnodes(2), cdf(4), context(5).

62 -1- HP-UX Release 9.0: August 1992

getdirentries (2) getdirentries (2)

NAME
getdirentries - get entries from a directory in a file system-independent format

SYNOPSIS
#include <ndir.h>

int getdirentries{
int fildes,

) ;

struct direct *buf,
size_t nbytes,
off_t ~basep

DESCRIPTION
getdirentries () places directory entries from the directory referenced by the file descriptor fildes into
the buffer pointed to by bur, in a filesystem-independent format. Up to nbytes of data are transferred.
nbytes must be greater than or equal to the block size associated with the file; see stat(2). Smaller block
sizes can cause errors on certain file systems.

The data in the buffer consists of a series of direct structures, each containing the following entries:

unsigned long d_fileno;
unsigned short d_reclen;
unsigned short d_namlen;
char d_name [MAXNAMLEN + 1];

The d_fileno entry is a number unique for each distinct file in the file system. Files linked by hard
links (see link(2» have the same d_fileno. The d_reclen entry identifies the length, in bytes, of the
directory record. The d_name entry contains a null-terminated file name. The d_namlen entry
specifies the length of the file name. Thus the actual size of d_name can vary from 2 to MAXNAMLEN + 1.
Note that the direct structures in the buffer are not necessarily tightly packed. The d_reclen entry
must be used as an offset from the beginning of a di rect structure to the next structure, if any.

The return value of the system call is the actual number of bytes transferred. The current position pointer
associated with fildes is set to point to the next block of entries. The pointer is not necessarily incremented
by the number of bytes returned by getdirentries (). If the value returned is zero, the end of the
directory has been reached.

The current position pointer is set and retrieved by lseek () (see lseek(2). getdirentries () writes
the position of the block read into the location pointed to by basep. The current position pointer can be set
safely only to a value previously returned by lseek (), to a value previously returned in the location
pointed to by basep, or to zero. Any other manipulation of the position pointer causes undefined results.

RETURN VALUE
If successful, the number of bytes actually transferred is returned. Otherwise, -1 is returned and e rrno
is set to indicate the error.

ERRORS
getdirentries () fails if any ofthe following conditions are encountered:

[EBADF] fildes is not a valid file descriptor open for reading.

Either bur or basep points outside the allocated address space. [EFAULT]

[EINTR] A read from a slow device was interrupted by the delivery of a signal before any data
arrived.

[EIO] An I/O error occurred while reading from or writing to the file system.

AUTHOR
getdirentries () was developed by Sun Microsystems, Inc.

SEE ALSO
open(2), Iseek(2).

HP-UX Release 9.0: August 1992 -1- 63

•

•

getdomainname(2) getdomainname(2)

NAME
getdomainname, setdomainname - get/set name of current Network Information Service domain

SYNOPSIS
int getdomainname(char *name, int namelen);

int setdomainname(char *name, int namelen);

DESCRIPTION
getdomainname () returns the name of the Network Information Service (NIS) domain for the current
processor, as previously set by setdomainname (). The parameter namelen specifies the size of the name
array. The returned value is null-terminated unless the area pointed to by name is not large enough to
hold the domain name plus the null byte. In this case, only the namelen number of bytes is returned.

setdomainname () sets the domain of the host machine to name, which has a length of namelen. This
call is restricted to the super-user and is normally used only when the system is booted.

These Network Information Service domains enable two distinct networks with common host names to
merge. Each network is distinguished by having a different domain name. Currently, only the Network
Information Service uses these domains.

RETURN VALUE
If the call succeeds, a value of 0 is returned. If the call fails, a value of -1 is returned and errno is set to
indicate the error.

ERRORS
getdomainname () and setdomainname () fail if any of the following conditions are encountered:

[EFAULT] name points outside the accessible address space.

[EPERM] The caller is not super-user. This error only applies to setdomainname ().

WARNINGS
The length of the name array should be at least 65; NIS domain names can be up to 64 characters long.

NIS servers use the NIS domain name as the name of a subdirectory of /usr/etc/yp. Since the NIS
domain name can be as long as 64 characters, the domain name set with setdomainname () can exceed
the maximum :file name length allowed on the local file system. If that length is exceeded, the name of the
subdirectory is the truncated NIS domain name.

AUTHOR
getdomainname was developed by Sun Microsystems, Inc.

SEE ALSO
domainname(l), ypserv(lM), yp:files(4).

64 -1- HP-UX Release 9.0: August 1992

getevent(2)

NAME
getevent - get events and system calls that are currently being audited

SYNOPSIS
#include <sys/audit.h>

int getevent(

) ;

struct aud_type *a_syscall,
struct aud_event_thl *a_event

DESCRIPTION

getevent (2)

getevent () gets the events and system calls being audited. The events are returned in a table pointed
to by a_event. The system calls are returned in a table pointed to by a_syscall. This call is restricted to the
super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned; otherwise, a -1 is returned and errno is set to indi­
cate the error.

ERRORS
get event () fails if the following is true:

[EPERM] The caller is not super-user.

AUTHOR
getevent () was developed by HP.

SEE ALSO
setevent(2), audevent(lM).

HP-UX Release 9.0: August 1992 -1- 65

I

I

getfh(2) getfh(2)

NAME
getfh - return file handle for file on remote node

SYNOPSIS
#include <time.h>
#include <rpc/rpc.h>
#include <errno.h>
#include <nfs/nfs.h>

int getfh(char *path, fhandle_t *fhp);

DESCRIPTION
getfh () returns a file handle in the struct pointed to by /hp for the file pointed to by path. This informa­
tion is used to perform an NFS mount for a remote node. getfh () is executed on the remote node;
results are passed back to the program doing the NFS mount. The caller should never examine the file han­
dle contents. The file handle only identifies a file to the node that produced the file handle. (The term "file
handle" refers to an NFS concept.)

Only the super-user can invoke getfh () .

RETURN VALUE
Upon successful completion, getfh () returns 0; otherwise it returns -1 and sets errno to indicate the
error.

ERRORS
getfh () fails if any of the following conditions are encountered:

[EPERM]

[ENOENT]

[EINVAL]

(EREMOTE]

The effective user ID is not super-user.

File or directory specified by path does not exist.

Invalid argument, or the file or directory has not been exported by exportfs (see
export{s(lM».

The file or directory specified by path is a remote file or directory.

WARNINGS
This call should be used only by HP-supplied commands and is not recommended for use by non-HP­
supplied programs.

AUTHOR
Sun Microsystems, Inc.

SEE ALSO
exportfs(lM), mount(1M), vfsmount(2).

66 -1- HP-UX Release 9.0: August 1992

getgroups (2) getgroups (2)

NAME
getgroups - get group access list

SYNOPSIS
#include <unistd.h>

int getgroups(int ngroups, gid_t gidset[]);

DESCRIPTION
getgroups () gets the current group access list of the user process and stores it in the array gidset. The
parameter ngroups indicates the number of entries which may be placed ingidset. No more than NGROUPS,
as defined in <sys /param. h>, is ever returned.

As a special case, if the ngroups argument is zero, getgroups () returns the number of group entries for
the process. In this case, the array pointed to by the gidset argument is not modified.

EXAMPLES
The following call to getgroups(2) retrieves the group access list of the calling process and stores the group
ids in array mygidset:

int ngroups = NGROUPS;
gid_t mygidset[NGROUPS];
int ngrps;

ngrps = getgroups (ngroups, mygidset);

RETURN VALUE
If successful, get groups () returns a non-negative value indicating the number of elements returned in
gidset. If an error occurs, a value of -1 is returned and errno is set to indicate the type of error.

ERRORS
getgroups () fails if any of the following conditions are encountered:

[EFAULT] gidset specifies an invalid address. The reliable detection of this error is implementation
dependent.

[EINVAL] The argument ngroups is not zero and is less than the number of groups in the current
group access list of the process.

AUTHOR
getgroups () was developed by HP and the University of California, Berkeley

SEE ALSO
setgroups(2), initgroups(3C)

STANDARDS CONFORMANCE
getgroups () : AES, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 67

I

I

gethostname(2) gethostname (2)

NAME
gethostname - get name of current host

SYNOPSIS
#1nclude <un1std.h>

1nt gethostname(char *hostname, size_t size);

DESCRIPTION
gethostname () returns in the array to which hostname points, the standard host name for the current
processor as set by sethostname () (see sethostname(2». size specifies the length of the hostname array.
hostna,me is null-terminated unless insufficient space is provided.

RETURN VALUE
gethostname () returns 0 if successful. Other.,vise, it returns -1 and sets errnc to indicate the error.

ERRORS
gethostname () can fail if the following is true:

[EFAULT] hostname points to an illegal address. The reliable detection of this error is implement a:
tion dependent.

AUTHOR
gethostname () was developed by the University of California, Berkeley.

SEE ALSO
hostname(l), uname(l), sethostname(2), uname(2).

68 -1- HP-UX Release 9.0: August 1992

geti timer (2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include <time.h>

int getitimer(int which, struct itimerval *value);

int setitimer(

) ;

int which,
const struct itimerval *value,
struct itimerval ~ovalue

DESCRIPTION

getitimer (2)

The system provides each process with three interval timers, defined in <time .h>. getitimer ()
returns the current value for the timer specified in which, whereas setitimer () call sets the value of a
timer (optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval
struct timeval

} ;

it_interval;
it_value;

/* timer interval */
/* current value */

If it_value is non-zero, it indicates the time to the next timer expiration. If iCinterval is non-zero, it
specifies a value to be used in reloading it_value when the timer expires. Setting iCvalue to 0 disables a
timer. Setting iCinterval to 0 causes a timer to be disabled after its next expiration (assuming iCvalue is
non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution. The
machine-dependent clock resolution is 11HZ seconds, where the constant HZ is defined in
<sys /param. h>. Time values larger than an implementation-specific maximum value are rounded down
to this maximum. The maximum values for the three interval timers are specified by the constants
MAX_ALARM, MAX_ VTALARM, and MAX_PROF defined in <sys /param. h>. On all implementations,
these values are guaranteed to be at least 31 days (in seconds).

The which parameter specifies which timer to use. The possible values are ITIMER_REAL,
ITIMER_VIRTUAL, and ITIMER_PROF.

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this timer
expires.

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when the process is exe­
cuting. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is running on
behalf of the process. It is designed to be used by interpreters in statistically profiling the execution of
interpreted programs. Each time the ITIMER_PROF timer expires, the SIGPROF signal is delivered.
Since this signal can interrupt in-progress system calls, programs using this timer must be prepared to res­
tart interrupted system calls.

Interval timers are not inherited by a child process across a fork (), but are inherited across an exec ().

Three macros for manipulating time values are defined in <t ime • h>:

timerclear

timerisset

Set a time value to zero.

Test if a time value is non-zero.

timercmp Compare two time values. (Beware that >= and <= do not work with the
timercmp macro.)

The timer used with ITIMER_REAL is also used by alarm () (see alarm(2». Thus successive calls to
alarm(), getitimer (), and seti timer () set and return the state of a single timer. In addition, a
call to alarm () sets the timer interval to zero.

HP-UX Release 9.0: August 1992 -1- 69

I

I

getitimer(2) getitimer (2)

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, -1 is returned, and errno is set to indicate
the error.

ERRORS
get! timer () or seti timer () fail if any of the following conditions are encountered:

[EFAULT]

[EINVAL]

[EINVAL]

The value structure specified a bad address. Reliable detection of tl'-Js error is imple­
mentation dependent.

A value structure specified a microsecond value less that zero or greater than or equal
to one million.

which does not specify one of the three possible timers.

EXAMPLES
The following call to setitimer() sets the real-time interval timer to expire initially after 10 seconds
and every 0.5 seconds thereafter:

struet itimerval rttimer;
struet itimerval old_rttimer;

rttimer.it_value.tv_see
rttimer.it value.tv usee
rttimer.it=interval:tv_see
rttimer.it_interval.tv_usee

10;
0;
0;
500000;

setitimer (ITlMER_REAL, &rttimer, &old_rttimer);

AUTHOR
get!timer() was developed byt~e University of California, Berkeley.

SEE ALSO
alarm(2), exec(2), gettimeofday(2), signal(5).

70 -2- HP-UX Release 9.0: August 1992

getpeername (2) getpeername (2)

NAME
getpeername - get address of connected peer

SYNOPSIS
#include <sys/socket.h>

AF _CCITT only:
#include <x25/x25addrstr.h>

int getpeername(int s, void *addr, int *addrlen);

DESCRIPTION
getpeername () returns the address of the peer socket connected to the socket indicated by s, where s is
a socket descriptor. addr points to a socket address structure in which this address is returned. addrlen
points to an object oftype int, which should be initialized to indicate the size of the address structure. On
return, it contains the actual size of the address returned (in bytes). If addr does not point to enough space
to contain the whole address of the peer, only the first addrlen bytes of the address are returned.

AF _CCITT only:
The addr struct contains the X.25 addressing information of the remote peer socket connected to socket s.
However, the x2 5ifname [] field of the addr struct contains the name of the local X.25 interface through
which the call arrived.

RETURN VALUE
Upon successful completion, getpeername () returns 0; otherwise it returns -1 and sets errno to indi­
cate the error.

ERRORS
getpeername () fails if any of the following conditions are encountered:

[EBADF] The argument s is not a valid file descriptor.

AUTHOR

[ENOTSOCK]

[ENOTCONN]

[ENOBUFS]

[EFAULT]

[EINVAL]

[EOPNOTSUPP]

The argument s is a file, not a socket.

The socket is not connected.

Insufficient resources were available in the system to perform the operation.

The addr or addrlen parameters are not valid pointers.

The socket has been shut down.

Operation not supported for AF _UNIX sockets.

getpeername () was developed by the University of California, Berkeley.

SEE ALSO
bind(2), socket(2), getsockname(2), inet(7F), aCccitt(7F).

HP-UX Release 9.0: August 1992 -1- 71

I

I

getpid(2) getpid(2)

NAME
getpid, getpgrp, getppid, getpgrp2 - get process, process group, and parent process ID

SYNOPSIS
#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgrp2(pid_t pid);

DESCRIPTION
The following functions return the inform.ation indicated:

Process ID of the calling process.

Process group ID of the calling process.

Parent process ID of the calling process.

getpid()

getpgrp()

getppid()

getpgrp2 () Process group ID of the specified process. If pid is zero, the call applies to the
current process. For this to be allowed, the current process and the referenced
process must be in the same session.

ERRORS
getpgrp2 fails if any of the following conditions are encountered:

[EPERM]

[ESRCH]

The current process and the specified process are not in the same session.

No process can be found corresponding to that specified by pid.

AUTHOR
getpid (), getppid (), getpgrp (), and getpgrp2 () were developed by HP, AT&T, and the
University of California, Berkeley.

SEE ALSO
exec(2), fork(2), setpgrp(2), setpgid(2), signal(5).

STANDARDS CONFORMANCE

72

getpid () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getpgrp () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getppid () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

-1- HP-UX Release 9.0: August 1992

getpriority (2) getpriority (2)

NAME
getpriority, setpriority - get and set process priorities

SYNOPSIS
#include <sys/resource.h>

int getpriority{int which, int who);

int setpriority{int which, int who, int priority);

DESCRIPTION
getpriori ty () returns the priority of the indicated processes.

setpriority () sets the priority ofthe indicated processes to priority.

The processes are indicated by which and who, where which can have one of the following values:

PRIO PROCESS
- Get or set the priority of the specified process where who is the process ID. A who of

o implies the process ID of the calling process.

PRIO_PGRP Get or set the priority of the specified process group where who is the process-group
ID, indicating all processes belonging to that process-group. A who of 0 implies the
process-group ID of the calling process.

PRIO_USER Get or set the priority of the specified user where who is the user ID, indicating all
processes owned by that user. A who of 0 implies the user ID of the calling process.

If more than one process is indicated, the priority returned by getpriori ty () is the smallest valued
priority of all the indicated processes, and setpriori ty () sets the priority of all indicated processes.

priority is a value between -20 and 20, where smaller values indicate better priorities. The default priority
for a processes is 0, and negative priorities require appropriate privileges.

RETURN VALUE
On success, getpriority () returns an integer in the range from -20 to 20, and setpriority ()
returns O. Otherwise, both return -1 and set errno to indicate the error. See WARNINGS below.

ERRORS
getpriority{) and setpriority{) failifany ofthe following conditions are encountered:

[ESRCH] Processes indicated by which and who cannot be found.

[EINV AL] which is not one of the choices listed above.

[EACCES] The calling process does not have access rights to change one or more of the indicated
processes. All processes for which access is allowed are still affected.

[EPERM] The calling process attempted to change the priority of a process to a negative value
without having appropriate privileges.

WARNINGS
Note that getpriori ty () can return -1 when it successfully finds a priority of -1, and when it fails. To
determine whether a failure occurred, set errno to 0 before calling getpriority{) then examine
errno after the call returns.

AUTHOR
setpriority{ l and getpriority{) were developed by the University of California, Berkeley.

SEE ALSO
nice(I), renice(I), nice(2).

HP-UX Release 9.0: August 1992 -1- 73

I

I

getprivgrp (2) getprivgrp (2)

NAME
getprivgrp, setprivgrp - get and set special attributes for group

SYNOPSIS
#include <sys/privgrp.h>

int getprivgrp(struct privgrp_map *grplist);

int setprivgrp(gid_t grpid, const int *mask);

DESCRIPTION
setpri vgrp () associates a kernel capability with a group ID. This allows sub setting of super-user-like
privileges for members of a particular group or groups. setprivgrp () takes two arguments: the
integer group id and a mask of permissions. The mask is created by treating the access types defined in
<sys/pr!vgrp .h> as bit numbers (using 1 for the least significant bit). Thus, privilege number 5 would
be represented by the bit 1«(5-1) or 16. More generally, privilege p is represented by:

mask[«p-1) / BITS_PER_INT)] & (1 « «P-1) % BITS_PER_INT».

As it is possible to have more than word s i z e distinct privileges, mask is a pointer to an integer array of
size PRIV_MASKSIZ.

setprivgrp () privileges include those specified in the file <sys/privgrp.h>. A process can access
the system call protected by a specific privileged group if it belongs to or has an effective group ID of a group
having access to the system call. All processes are considered to belong to the pseudo-group
PRIV _GLOBAL.

Specifying a grpid of PRIV _NONE causes privileges to be revoked on all privileged groups having any of
the privileges specified in mask. Specifying a grpid of PRIV_GLOBAL causes privileges to be granted to
all processes.

The constant PRIV _MAXGRP S in <sys /pr i vgrp. h> defines the system limit on the number of groups
that can be assigned privileges. One of these is always the psuedo-group PRIV_GLOBAL , allowing for
PRIV_MAXGRPS -1 actual groups.

getpri vgrp () returns a table of the privileged group assignments into a user supplied structure. grplist
points to an array of structures of type pri vgrp_map associating a groupid with a privilege mask.
Privilege masks are formed by ORing together elements from the access types specified in
<sys/privgrp.h>. The array may have gaps in it distinguished as having a priv_groupno field of
PRIV _NONE. The group number PRIV _GLOBAL gives the global privilege mask. Only information about
groups which are in the user's group access list, or about his real or effective group id, is returned to an
ordinary user. The complete set is returned to the privileged user.

EXAMPLES
The following example prints out PRIV_GLOBAL and the group IDs of the privilege groups to which the
user belongs:

#include <sys/types.h>

struct privgrp_map pgrplist[PRIV_MAXGRPS];
int i;
gid_t pgid;

getprivgrp (pgrplist);
for (i=O; i<PRIV_MAXGRPS; i++) {

if «pgid = pgrplist[i] .priv_groupno) != PRIV_NONE)
if (pgid == PRIV_GLOBAL)

printf (II (PRIV_GLOBAL) II);
printf (llprivilege group id = %d\nll, pgid);

NOTES
Only users with the #idfefBl setprocident privilege

74 -1- HP-UX Release 9.0: August 1992

getrlimit(2) getrlimit (2)

NAME
getrlimit, setrlimit - control consumption of system resources

SYNOPSIS
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);

int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
setrlimi t () sets a limit on consumption of system resources by the current process and each process it
creates. getrlimi t () is used to obtain the value of the current limit.

Each call to either getrlimit () or setrlimit () identifies a specific resource to be operated upon as
well as a resource limit. A resource limit is a pair of values: one specifying the current (soft) limit, the
other a maximum (hard) limit. Soft limits can be changed by a process to any value that is less than or
equal to the hard limit. A process can irreversibly lower its hard limit to any value that is greater than or
equal to the soft limit. Only users with appropriate privileges can raise a hard limit. Both hard and soft
limits can be changed in a single call to setrlimit (), subject to the constraints described above.

The resource parameter selects the system resource limits to be set or retrieved. The possible values for
resource are defined in <sys/resource .h>. Currently, only the following values are supported:

RLIMIT_NOFILE the maximum number of files a process can have open. The soft limit for this
resource is the same as the value returned by
sysconf(_SC_OPEN_MAX).

RLIMIT_OPEN_MAX defined to be the same as RLIMIT_NOFILE.

The rlp argument points to an object of type struct rlimit, which is defined in <sys/resource.h>, and
includes the following members:

int rlim_cur
int rlim_max

Current (soft) limit
Hard limit

For getrlimit (), the system stores the two limits on the specified resource in the structure to which rlp
points.

For setrlimit (), the system reads new values for the two limits on the specified resource from the
structure to which rlp points.

RETURN VALUE
Upon successful completion, getrlimit () and setrlimit () return a value of O. Otherwise, a value
of -1 is returned, the limits on the resource and the rlp structure are unchanged, and errno is set to indi­
cate the error.

ERRORS
getrlimit () and setrlimit () failif:

[EFAULT] The address specified for rlp is invalid. Reliable detection of this error is implementa­
tion dependent.

[EINVAL]

setrlimit fails if:

[EPERM]

[EINVAL]

[EINVAL]

[EINVAL]

The number specified for resource is invalid.

The rlp argument specified a hard or soft limit higher than the current hard limit
value, and the caller does not have appropriate privileges.

A user with appropriate privileges has attempted to raise rlp->rlim_cur or
rlp->rlim_max to a value greater than the system is capable of supporting.

The value of rlp->rlim_cur is less than the number of file descriptors the process
already has allocated.

The value ofrlp->rlim_max is less than the current soft limit.

HP-UX Release 9.0: August 1992 -1- 75

I

I

getrlimit(2) getrlimit(2)

AUTHOR
getrlimit () and setrlimit () were developed by HP, AT&T, and the University of California,
Berkeley.

SEE ALSO
sysconf(2).

76 -2- HP-UX Release 9.0: August 1992

getsockname (2) getsockname (2)

NAME
getsockname - get socket address

SYNOPSIS
#include <sys/socket.h>

AF _CCITT only:
#include <x2S/x2Saddrstr.h>

int getsockname(int s, void *addr, int *addrlen);

DESCRIPTION
getsockname () returns the address of the socket indicated by s, where s is a socket descriptor. addr
points to a socket address structure in which this address is returned. addrlen points to an int which
should be initialized to indicate the size of the address structure. On return it contains the actual size of
the address returned (in bytes). If addr does not point to enough space to contain the whole address of the
socket, only the first addrlen bytes of the address are returned.

AF_CCITT only:
The x2S_host [] field of the addr struct returns the X.25 addressing information of the local socket s.
The x2 5 i fname [] field of the addr struct contains the name of the local X.25 interface through which the
call arrived.

RETURN VALUE
Upon successful completion, getsockname () returns 0; otherwise, it returns -1 and sets errno to indi­
cate the error.

ERRORS
getsockname () fails if any of the following conditions are encountered:

AUTHOR

[EBADF]

[ENOTSOCK]

[ENOBUFS]

[EFAULT]

[EINVAL]

[EOPNOTSUPP]

s is not a valid descriptor.

s is a file, not a socket.

Insufficient resources were available in the system to perform the operation.

The addr or addrlen parameters are not valid pointers.

The socket has been shut down.

Operation not supported for AF _UNIX sockets.

getsockname () was developed by the University of California, Berkeley.

SEE ALSO
bind(2), socket(2), getpeername(2), inet(7F), aCccitt(7F).

HP-UX Release 9.0: August 1992 -1- 77

I

I

getsockopt (2) getsockopt (2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/socket.h>

int getsockopt(
int s,
int level,
int optname,
void *optval,
int *optlen);

int setsockopt(
int s,
int level,
int optname,
const void *optval,
int optlen);

DESCRIPTION

78

getsockopt () and setsockopt () manipulate options associated with a socket. The socket is
identified by the socket descriptor s. Options can exist at multiple protocol levels, and they are always
present at the uppermost "socket" level (see socket(2».

When manipulating socket options, the level at which the option resides (level) and the name of the option
(optname) must be specified. To manipulate options at the "socket" level, level is specified as
SOL_SOCKET.

There are two kinds of options: boolean and non-boolean. Boolean options are either set or not set and also
can use optval and optlen (see below) to pass information. Non-boolean options always use optval and
optlen to pass information.

To determine whether boolean option optname is set, the return value of getsockopt () must be exam­
ined. If the option is set, getsockopt () returns without error. If the boolean option is not set, get­
sockopt () returns -1 and errno is set to indicate the error.

For setsockopt (), the parameters optval and optlen are used to pass option information from the sys­
tem to the calling process. optval is the address of a location in memory that contains the option informa­
tion to be passed to the system. optlen is an integer that specifies the size in bytes of the option informa­
tion.

For getsockopt (), optval and optlen are used to pass option information from the system to the calling
process. optval is the address of a location in memory that contains the option information to be passed to
the calling process, or (char *) NULL if the option information is not of interest and not to be passed to the
calling process. optlen is an address of an integer initially used to specify the maximum number of bytes of
option information to be passed. If optval is not (char *) NULL, optlen is set on return to the actual number
of bytes of option information passed. If the get sockopt () call fails, no option information is passed.

optname and any specified options are passed uninterpreted to the appropriate protocol module for interpre­
tation. The include file <sys / socket. h> contains definitions for "socket" level options (see socket(2».
Options at other protocol levels vary in format and name. Consult the appropriate entries in Section 7P,
such as tcp(7P).

The "socket" level options defined in the include file <sys / socket. h> are explained below:

SO_DEBUG (boolean option) no functionality; included only for compatibility.

(boolean option; SOCK_STREAM sockets only) causes outgoing messages to
bypass standard routing facilities and to be routed by the network portion
of the Internet address.

returns the current contents of the variable so_error for this socket and
then clears the variable (so_error is defined in <sys / socketvar . h>.
The contents match those found in errno.

-1- HP-UX Release 9.0: August 1992

getsockopt (2)

SO_REUSEADDR

SO_KEEP ALIVE

SO_BROADCAST

SO_RCVBUF

getsockopt (2)

(boolean option; AF _INET sockets only) allows local address reuse.

(boolean option; SOCK_STREAM and AF _INET «««< getsockopt.2 sockets
only) keeps otherwise idle connections active. If a connection has been idle
for two hours, transmissions are forced every 75 seconds until a response is
received or 10 minutes expires, whichever occurs first. If 10 minutes
expires with no response, the connection is dropped.

(boolean option; SOCK_STREAM and AF _INET sockets only) lingers on close
if data is present. For SO_LINGER, opt val points to a struct linger
, defined in lusr/include/sys/socket.h. The linger structure
contains an integer boolean flag to toggle behavior on/off and an integer
linger value. .

(boolean option; SOCK_DGRAM and AF _INET sockets only) toggles permis­
sion to transmit broadcast messages.

(non-boolean option) For stream sockets it changes the buffer size of a
socket's receive socket buffer. For datagram sockets it changes the max­
imum size message a socket can receive. A stream socket's buffer size can
be increased at any time but decreased only prior to establishing a connec­
tion. For datagram sockets, the inbound maximum message size can be
increased or decreased at any time. The default and maximum values for
SO_RCVBUF are protocol-specific. Refer to the appropriate entries in Sec­
tions 7F and 7P.

(non-boolean option) For stream sockets, it changes the buffer size of a
socket's send socket buffer. For datagram sockets it changes the maximum
size message that can be sent. A stream socket's buffer size can be
increased at any time but decreased only prior to establishing a connec­
tion. For datagram sockets, the maximum outbound message size can be
increased or decreased at any time. The default and maximum values for
SO_SNDBUF are protocol-specific. Refer to the appropriate entries in Sec-
tions 7F and 7P. .

(boolean option) no functionality; included only for compatibility.

None of the boolean options are supported for SOCK_DGRAM sockets.

If SO_DONTROUTE is set, the system does not use the network routing tables when determining which
interface to use to send an outbound message. Instead, the system sends the message out through the
interface that has a configured address matching the address to which the message is intended to be sent.
If SO_DONTROUTE is not set, the system uses the network routing tables.

SO_REUSEADDR indicates the rules used in validating addresses supplied in a bind () call should allow
reuse of local addresses. This allows multiple SOCK_STREAM sockets to be bound to the same local address,
as long as all existing sockets at the desired address are in a connected state before the bind () is done on
the new socket. The SO_REUSEADDR option has no effect on SOCK_DGRAM sockets.

The SO_KEEPALIVE option defaults to off. If SO_KEEPALIVE is set on and the connection has been idle
for two hours, TCP sends a packet to the remote socket to acknowledge that it is still alive. If the remote
socket does not respond within 75 seconds, TCP sends another packet. If TCP sends a total of 8 packets
without response from the remote socket (Le., 10 minutes have passed), TCP drops the connection. The
next socket call (e.g., recv (» returns an error, and errno is set to ETIMEDOUT.

SO_LINGER controls the actions taken when unsent messages are queued on a SOCK_STREAM socket and a
close(2) is performed. If SO_LINGER is toggled on with a non-zero linger interval, the system blocks the
process on the close () attempt until it is able to transmit the data or until it decides it is unable to
deliver the information. If SO_LINGER is toggled on with a linger interval of zero, the connection is
immediately terminated on the close () of the socket, and any unsent data queued on the connection is
lost. If SO_LINGER is toggled off (default upon socket creation) and a close () is issued, the call
returns immediately. The system still gracefully brings down the connection by transmitting any queued
data, if possible. SO_LINGER can be toggled on/off at any time during the life of an established connec­
tion. Toggling SO_LINGER does not affect the action of shutdown () •

HP-UX Release 9.0: August 1992 -2- 79

I

I

getsockopt (2) getsockopt (2)

The SO_BROADCAST option requests permission to send Internet broadcast datagrams on the socket.

For stream sockets, SO_RCVBUF and SO_SNDBUF can be used with getsockopt () to find the current
sizes (in number of bytes) of the socket's receive and send buffers, respectively. If supported by the protocol,
SO_RCVBUF and SO_SNDBUF can also be used with setsockopt () to set the sizes (in number of
bytes) of the socket's receive and send buffers, respectively. The sizes are passed as integer values using
optval and optlen. You can increase a socket's buffer size at any time, but you can decrease it only prior to
establishing a connection. The default and maximum buffer sizes are protocol-specific. See the appropriate
entries in Sections 7F and 7P for more information.

For datagram sockets, SO_RCVBUF and SO_SNDBUF can be used with getsockopt () to find the
current maximum datagram size (in number of bytes) in the inbound and outbound direction, respectively.
SO_RCVBUF and SO_SNDBUF can also be used with setsockopt () to set the maximum datagram
size. The default and maximum datagram sizes are protocol-specific. See the appropriate entries in Sec­
tions 7F and 7P for more information.

AF_CCITT
SO_SNDBUF and SO_RCVBUF are the only options supported for sockets of the AF_CCITT address family.

RETURN VALUE
Upon successful completion, getsockopt () and setsockopt () return 0; otherwise, they return -1
and set errno to indicate the error.

DIAGNOSTICS
getsockopt () and setsockopt () fail if any of the following conditions are encountered:

[EBADF]

[EOPNOTSUPP]

[ENOBVFS]

[ENOTSOCK]

[ENOPROTOOPT]

[EINVAL]

[EFAULT]

The argument s is not a valid descriptor.

The option is not supported by the protocol in use by the socket.

No buffer space is available.

The argument s is a file, not a socket.

In getsockopt (), the requested option is currently not set.

The option is unknown at the socket level or the socket has been shut down.

The optval or, in the case of getsockopt (), optlen parameters are not valid
pointers.

AUTHOR
getsockopt () was developed by the University of California, Berkeley.

SEE ALSO
socket(2), getprotoent(3N), aCccitt(7F), tcp(7P), udp(7P), unix(7P).

80 -3- HP-UX Release 9.0: August 1992

gettimeofday (2) gettimeofday (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <time.h>

int gettimeofday(

) ;

struct timeval *tp,
struct timezone *tzp

int settimeofday(

) ;

const struct timeval *tp,
const struct timezone *tzp

DESCRIPTION
gettimeofday () returns and settimeofday () sets the system's notion of the current Coordinated
Universal Time (UTC) and the system's notion of the current time zone. Time is expressed in seconds and
microseconds since midnight January- 1, 1970.

The structures pointed to by tp and tzp are defined in <t ime • h> as:

struct timeval {
unsigned long
long

} ;

struct timezone

tv_sec;
tv_usec;

int tz_minuteswest;
int tZ_dsttime;

};

/* seconds since Jan. 1, 1970 */
/* and microseconds */

/* of UTe */
/* type of DST correction to apply */

The timezone structure indicates the local time zone (measured in minutes of time westward from UTC),
and a flag that, if nonzero, indicates that Daylight Savings Time applies locally during the appropriate part
of the year. Programs should use this timezone information only in the absence of the TZ environment vari­
able.

Only users with appropriate privileges can set the time of day.

EXAMPLES
The following example calls gettimeofday () twice. It then computes the lapsed time between the calls
in seconds and microseconds and stores the result in a timeval structure:

struct timeval first,
second,
lapsed;

struct timezone tzp;

gettimeofday (&first, &tzp);

/* lapsed time */

gettimeofday (&second, &tzp);

if (first.tv_usec > second.tv_usec)

second.tv_usec += 1000000;
second.tv_sec--;

lapsed.tv_usec = second.tv_usec - first.tv_usec;
lapsed. tv_sec = second. tv_sec - first.tv_sec;

RETURN VALUE
gettimeofday () and settimeofday () return 0 on success; otherwise, if an error occurs, they
return -1 and set errno to indicate the error.

HP-UX Release 9.0: August 1992 -1- 81

I

I

gettimeofday (2) gettimeofday (2)

ERRORS
gettimeofday () and settimeofday () fail if any of the following conditions are encountered:

[EF AULT] An argument address referenced invalid memory. The reliable detection of this error
will be implementation dependent.

[EPERM] A user lacking appropriate privileges attempted to set the time.

WARNINGS
The microsecond value usually has a granularity much greater than one due to the resolution of the system
clock. Relying on any granularity (particularly of one) will render code non-portable.

DEPENDENCIES
Series 300/400

gett imeofday () has a granularity of 4 microseconds.

Clustered Systems
In an HP Clustered Environment, setting the time of day sets the date and timezone on all systems in the
cluster.

AUTHOR
get t imeofday () was developed by the University of California, Berkeley.

SEE ALSO
date(l), stime(2), time(2), ctime(3C), privilege(5).

82 -2- HP-UX Release 9.0: August 1992

getuid(2) getuid(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and effective group IDs

SYNOPSIS
#include <unistd.h>

uid_t getuid(void);

uid_t geteuid(void);

gid_t getgid(void);

gid_t getegid(void);

DESCRIPTION
The following functions return the information indicated:

getuid () Real-user-ID of the calling process.

geteuid()

getgid()

getegid()

Effective-user-ID of the calling process.

Real-group-ID of the calling process.

Effective-group-ID of the calling process.

No means is available for ascertaining the saved-user-ID or saved-group-ID of a process.

SEE ALSO
setuid(2).

STANDARDS CONFORMANCE
getuid () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getegid () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

geteuid () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getgid (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 83

I

I

ioctl(2) ioctl(2)

NAME
ioctl - control device

SYNOPSIS
#inelude <sys/ioetl.h>

int ioetl(int fildes, int request, ••• /* arg */);

DESCRIPTION
ioet 1 () performs a variety of functions on character special files (devices). The write-ups of various dev­
ices in Section (7) discuss how ioetl () applies to them. The type of arg is dependent on the specific
ioetl () call, as described in Section (7).

request is made up of several fields which encode the size and direction of the argument (referenced by arg),
as wen as the desired command. ~J. enumeration of the request fields are:

Argument is read by the driver (meaning that the argument is copied from the
application to the driver).

Argument is written by the driver (meaning that the argument is copied from
the driver to the application). Ignored if an error occurs.

Number of bytes in the passed argument. A nonzero size indicates that arg is a
pointer to the passed argument. A zero size indicates that arg is the passed
argument (if the driver wants to use it), and is not treated as a pointer.

The request command itself.

When both IOC_IN and IOC_OUT are zero, it can be assumed that request is not encoded for size and
direction, for compatibility purposes. Requests that do not require any data to be passed and requests that
use arg as a value (as opposed to a pointer), have the IOC_IN bit set to one and the IOCSIZE_MASK
field set to zero.

The following macros are used to create the request argument. x and y are concatenated ((x< < 8) I y) to
form lOCCMD and shifted into the proper location according to lOCCMD_MASK. t is the type (e.g.
struet hpib_emd) of the actual argument that the request references, and its size is taken and shifted
into the appropriate place according to I OCSI ZE_MASK.

_lOR (x, y, t) Sets IOC_OUT and initializes the values at IOCCMD_MASK and
IOCSIZE_MASK accordingly.

_IOW(x,y,t)

_IOWR(x,y,t)

Sets lOC_IN and initializes the values at IOCCMD_MASK and
IOCSIZE_MASK accordingly.

Sets both IOC_IN and IOC_OUT and initializes the values at
IOCCMD_MASKand IOCSIZE_MASK.

Note: any data structure referenced by arg must not contain any pointers.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

ioet 1 () fails if one or more ofthe following are true: IOe_OUT is ignored if an error occurs.

[EBADF] fildes is not a valid open file descriptor.

[ENOTTY]

[EINVAL]

[EINTR]

[EPERM]

The request is not appropriate to the selected device.

request or arg is not valid.

A signal was caught during the ioet 1 () system call.

Typically this error indicates that an ioctl request was attempted that is forbidden in
some way to the calling process.

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector(2) can
affect the behavior described on this page.

AUTHOR
ioetl () was developed by AT&T and HP.

84 -1- HP-UX Release 9.0: August 1992

ioctl(2)

SEE ALSO
ioctl(5), termio(7).

STANDARDS CONFORMANCE
loct 1 () : SVID2, XPG2

HP-UX Release 9.0: August 1992

ioctl(2)

I

-2- 85

I

ipcconnect (2) ipcconnect (2)

NAME
ipcconnect - initiate a connection to another process

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcconnect(
ns_int_t calldesc,
ns_int_t destdesc,
ns_int_t *flags,
short opt[],
ns_int_t *vcdesc,
ns_int_t *result);

DESCRIPTION
ipcconnect () is used to initiate a virtual circuit on which data can be sent and received. When
ipcconnect () returns, a connection is not yet established; a successful return only indicates that a con­
nection request was sent without error. Actively establishing a virtual circuit with NetIPC calls is a two­
step process:

• ipcconnect () is called to request a connection, then

• ipcrecv{3N) is called to find out if a connection initiated with ipcconnect () was successfully
established.

The opt parameter can be used to specify the number of bytes you expect to send and receive on the connec­
tion. The default for both sending and receiving is 100 bytes. This information is passed to the underlying
protocol. When TCP is the underlying protocol, it limits the number of bytes that can be queued on a socket
to the specified value.

PARAMETERS
calldesc (input parameter)

destdesc

flags

opt

vcdesc

result

NS_NULL_DESC should be specified. A valid call socket descriptor can be specified to
ensure backward compatibility.

(input parameter)
A destination descriptor obtained by calling ipclookup () or ipcdest () (see
ipclookup{3N) and ipcdest{3N».

(input parameter)
Either 0 or a pointer to o. All other values are reserved for future use.

(input parameter)
Options for this call. If no options are used, this parameter can be null. Otherwise, see
below.

(output parameter)
A pointer to a virtual circuit number that can be used in subsequent NetIPC calls to refer-
ence the connection.

(output parameter)
See ERRORS below.

OPTION PARAMETER
NSO_MAX_SEND_SIZE (optioncode = 3) (datalength = 2) A two-byte integer specifying the maximum

number of bytes that can be sent with a single ipcsend () calIon this con­
nection (see ipcsend{3N». Range: 1 to 32000 bytes. Default: 100 bytes.

NSO_MAX_RECV _SIZE (optioncode = 4) (datalength = 2) A two-byte integer specifying the maximum
number of bytes that can be received with a single ipcrecv () call on this con­
nection (see ipcrecv{3N». Range: 1 to 32,000 bytes. Default: 100 bytes.

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS

86 -1- HP-UX Release 9.0: August 1992

ipcconnect(2)

[NSR_DUP _OPTION]

[NSR_FLAGS]

[NSRJGND_AND_PROTOCOL]

[NSR_MSGSIZE]

[NSR_NO_ERROR]

[NSR_NO_FILE_AV AILABLE]

[NSR_NO_MEMORY]

[NSR_NOT_ALLOWED]

[NSR_NOT_CALL_SOCKET]

[NSR_OPT_OPTION]

[NSR_OPT_SYNTAX]

[NSR]ROTOCOL]

[NSR_SIGNAL_INDICATION]

AUTHOR

ipcconnect(2)

The protocol address specified by the destination descriptor is 0, which is
illegal for connection establishment, OR there is no available interface to
the destination network.

A length or offset value in the option parameter is illegal or one of the
pointer arguments is invalid.

The calldesc argument is not NSR_NULL_DESC or a valid socket descrip­
tor, or the destdesc argument is not a valid destination descriptor.

The network or host specified by the destination descriptor is unreachable
from this host at this time.

A particular option is defined more than once in the opt parameter.

An unsupported flag is set in the flags parameter.

The requested protocol is not supported in the default domain.

The value specified in
NSO_MAX_RECV_SIZE is invalid.

or

The process exceeded the system-defined number of file and socket descrip­
tors that can be open at a time (see getrlimit(2)).

The call was successful.

The system cannot allocate a file structure at this time.

Sufficient system memory is not available to execute this call at this time.

An unsupported flag is set in the flags parameter.

The calldesc argument is not an NS_CALL socket.

An option in the opt parameter is unknown or unsupported.

A length or offset value in the opt parameter is invalid.

The requested protocol is not supported.

The call aborted due to a signal.

ipcconnect () was developed by HP.

SEE ALSO
getrlimit(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992 -2- 87

I

I

ipccontrol (2) ipccontrol (2)

NAME
ipccontrol- perform special operations on a NetIPC socket

SYNOPSIS
#include <sys/ns_ipc.h>

void ipccontrol(
ns_int_t descriptor,
ns_int_t request,
const void *wrtdata,
ns_int_t wlen,
void *readdata,
ns_int_t *rlen,
ns_int_t *flags,
ns_int_t *result);

DESCRIPTION

88

ipccontrol () is used to manipulate NetIPC sockets. The type of request is specified in the request
parameter. Some parameters are optional and not used in all requests. If wrtdata is not used, wlen must
be zero. Ifreaddata is unused, rlen must be zero.

All processes that own descriptors for a particular socket are affected by ipccontrol () operations per­
formed on that socket. For example, one process can change a socket's read or write threshold, synchronous
timeout interval, or synchronous/asynchronous mode while another process is reading, writing, or selecting
on that socket. Exactly when the process that is sharing the socket will be affected by these operations can­
not be reliably predicted. Reads, writes, and selects in progress may complete after using either the previ­
ous, new, or a combination of the previous and new values.

Parameters
descriptor

request

wrtdata

wlen

readdata

rlen

/lags

result

(input parameter)
The descriptor that refers to the socket to be manipulated.

(input parameter)
Request code. Defines which operation is to be performed. See below.

(input parameter)
A data buffer used to pass timeout and threshold information.

(input parameter)
Length in bytes of the wrtdata data buffer.

(output parameter)
A data buffer used to contain any data returned by the call.

(input/output parameter)
The length in bytes of the readdata data buffer. On output, this parameter contains the
total number of bytes returned to the process.

(input parameter)
Reserved for future use. This parameter should be 0 or a pointer to o.
(output parameter)
The error code returned. See ERRORS below for more information.

Request Parameter
NSC_NBIO_ENABLE (request code 1)

Place socket referenced by descriptor in asynchronous mode.

(request code 2)
Place socket referenced by descriptor in synchronous mode.

(request code 3)
Change the referenced socket's synchronous timeout. The default timeout
value is SO seconds. The timeout value is specified in tenths of seconds (for
example, a value of 1200 indicates 120 seconds). The new timeout value is
treated as a IS-bit signed integer, and must be placed in the first two bytes
of the wrtdata parameter. The timeout value must be in the range of zero

-1- HP-UX Release 9.0: August 1992

ipccontrol (2)

NSC_TlMEOUT_GET

ipccontrol (2)

to 32767. Negative values have no meaning and will result in an error. A
value of zero sets the timeout to infinity. The timeout is not reset if the
referenced socket is switched to asynchronous mode then back to synchro­
nous mode.

(request code 4)
Return the synchronous timeout value for the socket referenced in the
descriptor parameter. The timeout value is treated as a 16-bit signed
integer, and is returned in the readdata parameter.

IiSC_REC'~_THRESH_RESET (request code 1000)
Change the read threshold of the VC socket referenced in descriptor param­
eter. Read thresholds are one byte by default. The descriptor parameter
must reference a VC socket descriptor. The new read threshold value must be
placed in the first two bytes of the wrtdata parameter.

NSC_SEND_THRESH_RESET (request code 1001)
Change the write threshold of the VC socket referenced in the descriptor
parameter. Write thresholds are one byte by default. The descriptor
parameter must reference a VC socket descriptor. The new write threshold
value must be placed in the first two bytes of the wrtdata parameter.

NSC_RECV _THRESH_GET (request code 1002)
Return the current write threshold for the VC socket referenced in the
descriptor parameter. The descriptor parameter must reference a VC
socket descriptor. The write threshold is treated as a 16-bit signed integer,
and is returned in the readdata parameter.

NSC_SEND_THRESH_GET (request code 1003)
Return the current read threshold for the VC socket referenced in the
descriptor parameter. The descriptor parameter must reference a VC
socket descriptor. The read threshold is treated as a 16-bit signed integer,
and is returned in the readdata parameter.

NSC_ GET_NODE_NAME (request code 9008)
Obsolescent. Usegetnodename(2) instead.

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS
[NSR_BOUNDS_ VIO]

[NSR_DESC]

[NSR_DLEN]

[NSR_NO_ERROR]

[NSR_REQUEST]

[NSR_TIMEOUT_ VALUE]

[NSR_THRESH_ VALUE]

AUTHOR

One of the pointer arguments is invalid.

The argument descriptor is not a valid NetIPC socket descriptor.

The specified wlen or rlen parameter is invalid.

The call was successful.

The request was unknown.

An illegal timeout value was specified.

An illegal threshold value was specified.

ipccontrol () was developed by HP.

SEE ALSO
ipcconnect(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnamerase(2),
ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992 -2- 89

I

I

i pccreate (2) ipccreate(2)

NAME
ipccreate - create a call socket

SYNOPSIS
#include<sys/ns_ipc.h>

void ipccreate(
ns_int_t Bocketkind,
ns_int_t protocol,
ns_int_t *flags,
short opt[],
ns_int_t *calldesc,
ns_int_t *result);

DESCRIPTION
ipccreate is used to create a call socket for use with subsequent NetIPC calls to establish a virtual cir­
cuit connection between two processes.

A process can have a system-defined maximum number of descriptors open at a time (see getrlimit(2».
ipccreate () returns an error if a process attempts to exceed this limit. This limit includes file descrip­
tors, as well as socket descriptors and destination descriptors. These descriptors may reference sockets
and/or files inherited by or otherwise opened by the process.

The NSO_PROTOCOL_ADDRESS option (code 128) can be used to create a call socket with a specific proto­
col address. The peer process, which must have a priori knowledge of this protocol address, can call
ipcdest () with this address to obtain a destination descriptor that will enable ipcconnect () to con­
nect to this call socket.

PARAMETERS
socketkind (input parameter) Must be NS_CALL. Other values are reserved for future use.

protocol

flags

opt

calldesc

result

Opt Parameter

(input parameter) Indicates the protocol module that the calling process wants to access.
Must be NSP _TCP or zero. Other values are reserved for future use.

(input parameter) Must be 0 or a pointer to O. Other values are reserved for future use.

(input parameter) See below.

(output parameter) Call socket descriptor. Refers to the newly-created call socket.

(output parameter) See diagnostics section below for more information.

See ini topt and add opt for more information on NetIPC option buffers.

NSO_MAX_CONN_REQ_BACK
(optioncode = 6) (datalength = 2)
A two-byte integer specifying the maximum number of unreceived connection requests that
can be queued to a call socket. If this value is not specified, the default maximum is used.
Default: One request. Range: 1 to 20. (Note that a queue limit of one may be too few if
many processes attempt to initiate connections to the call socket simultaneously. If this
occurs, some connection requests will be automatically rejected.)

NSO_PROTOCOL_ADDRESS
(optioncode = 128) (datalength = 2)
A two-byte integer specifying a protocol-specific address to be used by the newly-created
call socket. If this option is not specified, or if zero is specified, N et.SM IPC dynamically
allocates an address. You must have super-user capability to request protocol addresses
less than 1024. Recommended Range: 30767 through 32767. If the protocol isTCP then
this option specifies the TCP port.

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS
[NSR_BOUNDS_ VIO] One of the pointer arguments is invalid.

90 -1- HP-UX Release 9.0: August 1992

ipccreate (2)

[NSR_DUP _OPTION]

[NSR_FLAGS]

ipccreate (2)

The protocol address specified in the NSO_PROTOCOL_ADDRESS option is in
use.

A particular option is defined more than once in the opt parameter.

The flags parameter was not 0 or a pointer to O.

[NSR_KIND_AND_PROTOCOL]
The requested protocol is not supported in the default domain.

[NSR_MAX_CONNECTQ] The NSO_MAX_CONN_REQ_BACK option must be greater than 0 and less than
20.

[NSR_NO_DESC_AV AILABLE]
The process exceeded the system-defined number of file and socket descriptors
that can be open at a time (see getrlimit(2)).

The call was successful.

[NSR_NO]ILE_AV AILABLE]
The system cannot allocate a file structure at this time.

[NSR_NO_MEMORY] Sufficient system memory is not available to execute this call at this time.

[NSR_NOT~LOWED] The protocol address specified via the NSO_PROTOCOL_ADDRESS option was
less than 1024 and the program did not have super-user capability.

[NSR_OPT_OPTION]

[NSR_OPT_SYNTAX]

[NSR_PROTOCOL]

AUTHOR

An option specified in the opt parameter is unknown or unsupported.

A length or offset value in the opt parameter is invalid.

The combination of the protocol parameter and socketkind parameter could not
be satisfied. At least one is incorrect.

ipccreate () was developed by HP.

SEE ALSO
getrlimit(2), ipcconnect(2), ipccontrol(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992 -2- 91

I

I

ipcdest(2) ipcdest(2)

NAME
ipcdest - create a NetIPC destination descriptor

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcdest(
ns_int_t socketkind,
const char *nodename,
ns_int_t node len,
ns_int_t protocol,
short *protoaddr,
ns_int_t proto len,
ns_int_t -flags,
short opt[],
ns_int_t *destdesc,
ns_int_t *result);

DESCRIPTION
ipcdest () creates a destination descriptor which the calling process can use to establish a connection to
another process.

ipcdes t () can be used to obtain a destination descriptor for a call socket with a particular protocol
address. To create a call socket with a particular address, use ipccreate () with the
NSO_PROTOCOL_ADDRESS option (see ipccreate(3N)).

ipcdes t () does not verify that the remote endpoint described by the input parameters exists. This
evaluation is delayed until the destination descriptor is used in a subsequent ipcconnect () call.

Parameters
socketkind

nodename

nodelen

protocol

protoaddr

protolen

flags

opt

destdesc

(input parameter) Defines the type of socket. Must be NS_CALL or 3 to specify a call
socket. Other values are reserved for future use.

(input parameter) The ASCII-coded name that identifies the node where the call socket
with protoaddr resides. Default: The organization, organization and domain, or all
parts of the node name can be omitted. When organization or organization and
domain are omitted, they default to the local organization and/or domain. If the
nodelen parameter is set to zero, this parameter is ignored and the node name
defaults to the local node.

(input parameter) The length in bytes of the nodename parameter. Zero indicates
that the nodename parameter is ignored, and the node name defaults to the local
node. A fully-qualified node can be up to 50 bytes long.

(input parameter) Defines the Transport Layer protocol to· be used. Must be
NSP _TCP or 4 to indicate the Transmission Control Protocol (TCP). Other values are
reserved for future use.

(input parameter) A data buffer that contains a TCP protocol address.

(input parameter) The length in bytes of the protocol address. TCP protocol addresses
are two bytes long.

(input parameter) This parameter is reserved for future use. All bits must be clear
(not set).

(input parameter) No options are defined for this call. You must set this parameter to
zero (0) or pass the constant (C programs only) NSO_NULL.

(output parameter) Destination descriptor. Can be used in a subsequent ipccon­
nect call to establish a connection to the call socket with protoaddr.

result

RETURN VALUE

(output parameter) See ERRORS below.

None. Errors are returned in the result parameter.

92 -1- HP-UX Release 9.0: August 1992

ipcdest(2)

ERRORS
[NSR_NO_ERROR]

[NSR_BOUNDS_ VIO]

[NSR_NOT_CALL_SOCKET]

[NSR_FLAGS]

[NSR_OPT_OPTIONJ

[NSR_PROTOCOLJ

[NSR_KIND_AND_PROTOCOL]

[NSR_ADDR_OPTJ

[NSR_NLENJ

[NSR_NODE_NAME_SYNTAXJ

[NSR_NO_NODE]

[NSR_NO_MEMORYJ

[NSR_PATH_REPORT]

[NSR_DEST _UNREACHABLE]

[NSR_NO_FILE_AV AIL]

[NSR_NO_DESC_AVAIL]

AUTHOR

The call was successful.

A parameter address is invalid.

The socketkind parameter is not NS_CALL.

The value in the flags parameter is invalid.

ipcdest(2)

An option specified in the opt parameter is unknown or unsupported.

The protocol of the specified socket is not supported by the local system.

The socketkind and protocol parameters are not compatible.

The value in the protolen parameter is invalid.

The value in the nodelen parameter is invalid.

The node specified in the nodename parameter is invalid.

The specified node is unknown to the local host.

Sufficient system memory is not available to execute this call at this time.

The path report could not be interpreted.

The path report contained no usable paths.

No file table entries are available at this time.

The process exceeded the system-defined number of file and socket descrip­
tors that can be open at a time (see getrlimit(2)).

ipcdest () was developed by HP.

SEE ALSO
getrlimit(2), ipcconnect(2), ipccontrol(2), ipccreate(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992 -2- 93

I

I

ipcgetnodename (2) ipcgetnodename (2)

NAME
ipcgetnodename - obtain NetIPC node name of current host

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcgetnodename(
char *nodename~
ns_int_t *size,
ns_int_t *result);

DESCRIPTION
ipcgetnodename () returns the NetIPC node name for the current processor as set by setno­
dename () in the array to which nodename points (see setnodename(2».

Parameters
nodename

size

result

(input parameter) A pointer to a character array in which the ASCII-coded NetIPC node name
is to be returned.

(input/output parameter) The length in bytes of the nodename array on input and the length of
the returned NetIPC node name on output.

(output parameter) See ERRORS below.

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS
[NSR_NO_ERROR] The call was successful.

[NSR_NLEN]

[NSR_BOUNDS_ VIO]

The value of the size parameter is not large enough for the NetIPC node name.

Output parameter address is invalid.

AUTHOR
ipcgetnodename was developed by HP.

SEE ALSO

94

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipclookup(2), ipcname(2), ipcnamerase(2), ipcrecv(2),
ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

-1- HP-UX Release 9.0: August 1992

ipclookup(2) ipclookup(2)

NAME
ipclookup - obtain a NetIPC destination descriptor

SYNOPSIS
#include <sys/ns_ipc.h>

void ipclookup(
const char *socketname,
ns_int_t nlen,
const char *nodename,
ns_int_t nodelen.
ns_int_t *flags,
ns_int_t *destdesc,
ns_int_t *protocol,
ns_int_t *socketkind,
ns_int_t *result);

DESCRIPTION
ipclookup () is used to obtain a destination descriptor for a named call socket. When supplied with
valid socket and node names, ipclookup () looks up the call socket in the socket registry at the node
specified in the nodename parameter and returns a destination descriptor that can be used by subsequent
NetIPC calls to locate the call socket. A destination descriptor is required by the ipcconnect () call to
provide the information necessary to direct a connection request to the proper node and call socket and thus
initiate a connection.

When a process attempts to look up a socket name in the appropriate socket registry, the name must be
there or an NSR_NAME_NOT_FOUND error is returned to the calling process. When two processes are run­
ning concurrently, it may be difficult to ensure that a socket name is placed in the socket registry prior to
being "looked up" by another process. This problem is referred to as a race condition because the two
processes are "racing" to see which one accesses the socket registry first.

In order to avoid a race situation, the process that calls ipclookup () can test for a
NSR_NAME_NOT_FOUND error in the call's result parameter. If this error is returned, the process can try
again by entering a loop and repeating the ipclookup () call for a specified number of times. The pro­
cess should also call sleep () to suspend execution for an interval (see sleep (3 C), then repeat the
ipclookup () call.

Parameters
socketname

nlen

nodename

nodelen

/Zags

destdesc

protocol

socketkind

(input parameter) The name of the call socket to be "looked up". Uppercase and
lowercase characters are treated as equivalent.

(input parameter) The length of the socketname parameter in characters. Maximum
length is 16 characters.

(input parameter) The ASCII-coded name that that identifies the node where the
socket specified in the socketname parameter resides. Default: organization, organi­
zation and domain, or all parts of the node name can be omitted. When organization
or organization and domain are omitted, they default to the local organization and/or
domain. If the entire parameter is omitted, the node name defaults to the local node.

(input parameter) The length in bytes of the nodename parameter. If zero is specified,
NetIPC searches the local node's socket registry (see nodename parameter above for
more information).

(input parameter) This parameter is reserved for future use. All bits must be clear
(not set).

(output parameter) Destination descriptor. Refers to the descriptor that indicates the
location of the named call socket. Can be used in subsequent NetIPC calls.

(output parameter) This parameter is reserved for future use. Zero (0) is always
returned in this parameter.

(output parameter) Identifies the socket's type. Can be used in an ipccreate ()
call to create a socket of the appropriate type.

HP-UX Release 9.0: August 1992 -1- 95

•

•

ipclookup(2) ipclookup(2)

result (output parameter) See ERRORS below.

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS
[NSR_NO_ERROR] The call was successful.

[NSR_BOUNDS_ VIO]

[NSR_FLAGS]

[NSR_PROTOCOL]

[NSR_NODE_NAME_SYNTAX]

[NSR_NO_NODE]

[NSR_NO_MEMORY]

[NSR_PATH_REPORT]

A parameter address is invalid.

The value in the flags parameter in invalid.

The protocol of the socket specified by socketname is not supported by the
local system.

The value in the nodelen parameter is not valid.

The string pointed to by nodename is invalid.

nodename is unknown to the local host.

Sufficient system memory is not available to execute this call at this time.

The path report could not be interpreted.

[NSR_NAME_NOT_FOUND] The specified socketname was not found in the socket registry.

[NSR_CANT_CONTACT_SERVER] The ipclookup () request could not be sent to the remote socket regis­
try server.

[NSR_NO_REG_RESPONSE]

[NSR_ VERSION]

[NSR_NO_FILE_AV AIL]

[NSR_NO_DESC_A VAIL]

No response was received from the remote socket registry server.

The reply from the remote socket registry indicates a version error
occurred.

A corrupt reply message was received from the remote socket registry
server.

No file table entries are available.

The process exceeded the system-defined number of file and socket descrip­
tors that can be open at a time (see getrlimit(2».

AUTHOR
ipclookup () was developed by HP.

SEE ALSO

96

getrlimit(2), ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), optoverhead(3N), readopt(3N), sleep(3C).

-2- HP-UX Release 9.0: August 1992

ipcname(2) ipcname(2)

NAME
ipcname - associate a name with a call socket or destination descriptor

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcname(
ns_int_t descriptor,
const char *socketname,
ns_int_t nlen,
ns_int_t *result)1

DESCRIPTION
ipcname () associates a name with a call socket and adds this information to the local node's socket regis­
try. The name a process associates with a call socket must be known to its peer process so that the peer
process can look up the name with an ipclookup () call. This can be accomplished by hard-coding the
name into both processes or by passing the name from one process to another.

The name associated with a call socket can be user-defined or randomly generated by NetIPC, and must be
unique to your node (Le., it cannot be simultaneously associated with two descriptors). For example, if a
call to ipcname () assigns the name Li z to a call socket, a subsequent call with Li z results in an
error. To ensure that the name being assigned to a call socket is unique, use the random name generating
feature of ipcname () (see the men parameter below for more information). A call socket can be listed
under multiple names.

ipcname () always enters its listings into the local node's socket registry. ipclookup (), by contrast,
can look up socket names at both the local node and at a remote node. Since "long distance" look-ups take
longer than local look-ups, it may be helpful to use ipcname () to name a destination descriptor associ­
ated with a remotely named call socket. When a process names a destination descriptor, the name of the
destination descriptor is placed in the local socket registry (the socket registry at the node where the calling
process resides). This allows other processes to look up the name in the local socket registry rather than
calling ipclookup () to look up the name in a socket registry at a remote node where the call socket
resides.

Using ipcname () to name a destination descriptor is less reliable than looking up the socket name at the
remote node because destination descriptors can become outdated. As a precaution, locally stored destina­
tion descriptors should be refreshed periodically.

ipcname () cannot be used to name VC sockets.

PARAMETERS
descriptor

socketname

nlen

result

RETURN VALUE

(input parameter) The descriptor that references the call socket to be named. Can be
a call socket descriptor or a destination descriptor.

(input/output parameter) The ASCII-coded name to be associated with the descriptor.
Uppercase and lowercase characters are treated as equivalent. NetIPC can also
return a randomly-generated name in this parameter (see the nlen parameter).

(input parameter) The length in characters of the socketname parameter. Maximum
length is 16 characters. If zero is specified, NetIPC returns a random, eight-byte name
in the socketname parameter. The eight-byte length is not returned in the nlen
parameter.

(output parameter) See ERRORS below.

None. Errors are returned in the result parameter.

ERRORS
[NSR_NO_ERROR] The call was successful.

The descriptor parameter corresponds to a VC socket and naming of VC sockets is
not allowed.

The descriptor parameter does not correspond to a NetIPC socket.

HP-UX Release 9.0: August 1992 -1- 97

•

•

ipcname(2) ipcname(2)

[NSR_NLEN]

[NSR_DUP _NAME]

[NSR_NO_MEMORY]

[NSR_BOUNDS_ VIO]

The value specified in the nlen parameter is invalid.

The specified socketname already exists in the local socket registry.

Sufficient system memory is not available to execute this call at this time.

The output parameter address is invalid.

AUTHOR
ipcname () was developed by HP.

SEE ALSO

98

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcnamerase(2),
ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), optoverhead(3N), readopt(3N) .

-2- HP-UX Release 9.0: August 1992

ipcnamerase (2) ipcnamerase (2)

NAME
ipcnamerase - delete a name associated with a NetIPC call socket or destination descriptor

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcnamerase(
const char *socketname,
ns_int_t nlen,
ns_int_t *result);

DESCRIPTION
ipcnamerase () can be called to remove listings from the local node's socket registry. Only the owner of
a call socket or destination descriptor can remove the socket's name from the local socket registry.

If a call socket descriptor or destination descriptor is destroyed by ipcshutdown () or if its last owner
terminates, any listings for it that exist at the local socket registry are automatically purged.

If multiple processes have descriptors for the same socket, the first ipcnameras e () call succeeds; subse­
quent calls fail.

Parameters
socketname (input parameter) The ASCII-coded name that was previously associated with a call

socket descriptor or destination descriptor via ipcname (). Uppercase and lower­
case characters are treated as equivalent.

nlen (input parameter) The length in bytes of the specified name. Maximum length is 16
bytes.

result

RETURN VALUE

(output parameter) See ERRORS below.

None. Errors are returned in the result parameter.

ERRORS
[NSR_NO_ERROR]

[NSR_NLEN]

[NSR_NAME_NOT_FOUND]

[NSR_NO_OWNERSHIP]

AUTHOR

The call was successful.

The value specified in the nlen parameter is invalid.

The name specified by socketname does not exist in local socket registry.

The caller is not the owner of the named socket.

ipcnamerase () was developed by HP.

SEE ALSO
ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcrecv(2),
ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992 -1- 99

I

I

ipcrecv(2) ipcrecv(2)

NAME
ipcrecv - establish an NetIPC virtual circuit connection or receive data on an established connection

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcrecv(
ns_int_t vcdesc;
void *data,
ns_int_t *dlen,
ns_int_t *flags,
short opt[],
ns_int_t *result);

DESCRIPTION
ipcrecv () serves two purposes:

• Establish a virtual circuit connection that was initiated with ipcconnect () (see ipcconnect(2)),

• Receive data on a previously established virtual circuit connection.

After a program calls ipcconnect (), it must call ipcrecv () to complete the connection. When
ipcrecv () is called to finish establishing a connection, no data is returned in the data parameter and the
dlen parameter is ignored. An exception ipcselect () (see ipcselect(2)) can be performed to determine
whether connections are pending on a call socket.

When ipcrecv () is called to receive data queued on a established connection, several different alterna­
tives are available:

• Normal reading: Data is moved from the connection queue into the user's buffer.

• Preview reading: This alternative is specified by setting the NSF _PREVIEW bit (bit 30) of the flags
parameter. When this bit is set, data is copied into the process's buffer, but still remains in the
connection queue. Consequently, the next ipcrecv () call reads the same data.

• Vectored or "scattered" reading: The calling process can pass a data vector argument that
describes one or more locations. Received data is then placed into these locations. This alternative
can be used with both the normal and the preview read described above, and is specified by setting
the NSF_VECTORED bit (bit 31) of the flags parameter.

For vectored reads an iovec structure contains the data vector. An iovec structure can be defined as:

struct iovec {
char
unsigned

} ;

*iov_base;
iov_len;

and the normal type for the data argument can be replaced by:

struct iovec *data;

Each iovec entry specifies the base address and length of an area in memory where data should be placed.
ipcrecv () always fills one area completely before proceeding to the next area.

ipcrecv () behavior varies, depending on whether the socket referenced is in synchronous or asynchro­
nous mode. A socket is in synchronous mode by default. It can be placed in asynchronous mode by calling
ipccontrol () (see ipccontrol(2)). By default, calls that block reach their timeout limit in 60 seconds.
The length of the timeout period can be changed by calling ipccontrol (). Refer to ipccontrol(2) for
more information.

If the socket referenced by ipcrecv () is in synchronous mode and no data is queued on the connection,
the call blocks until data arrives or the socket timer expires.

If the socket referenced by ipcrecv () is in asynchronous mode and no data is queued on the connection,
NSR_WOULD_BLOCK is returned in the result parameter.

Parameters
vcdesc (input parameter) "virtual circuit" socket descriptor. Refers to a socket that:

100 -1- HP-UX Release 9.0: August 1992

ipcrecv(2)

data

dlen

/Zags

opt

result

Flags Parameter

ipcrecv(2)

• Is the endpoint of a virtual circuit connection that has not yet been esta­
blished,or

• Is the endpoint of an established virtual circuit on which data will be
received.

(output parameter) A pointer to a data buffer for holding the received data, or a
pointer to an array of data vectors describing the locations where the data is to be
placed.

(input/output parameter) If data is a data buffer, dlen is the maximum number of
bytes that can be received. If data is a data vector, dlen refers to the length of the
data vector in bytes. As a return parameter, dlen indicates how many bytes were
actually received. If ipcrecv () is used to establish a connection (not to receive
data), dlen is meaningless on input and a value of zero (0) is returned on output.

(input/output parameter) See below.

(input parameter) A pointer to a NetIPC options buffer. See below.

(output parameter) The error code returned. Refer to ERRORS below for more infor­
mation.

Flags are only valid on an established connection.

NSF_DATA_WAIT (bit 20)

NSF _MORE_DATA (bit 26)

(input parameter) This flag exists for backward compatibility. Existing
programs that use this flag may suffer performance degradation due to
network congestion avoidance algorithms in the networking protocol code.
This flag should be removed from those programs.

(output parameter) This bit is always set for backwards compatibility.

NSF_PREVIEW (bit 30) (input parameter) When this bit is set, data queued on the connection may
be previewed. Data is placed in the data parameter but not removed from
the connection queue. Since the data remains in the queue, the next
ipcrecv () call reads the same data.

NSF_VECTORED (bit 31) (input parameter) When set, this bit indicates that data is a data vector
and not a data buffer.

Opt Parameter
Options are only valid when ipcrecv () is issued against an established connection.

NS O_DATA_OFF SET (optioncode = 8) (datalength = 2) A two-byte integer that defines a byte
offset from the beginning of a data buffer where NetIPC is to begin placing
data. This option is valid only if data is a data buffer and not a data vec­
tor.

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS
[NSR_BOUNDS_ VIa]

[NSR_DESC]

[NSR_DLEN]

[NSR_DUP _OPTION]

[NSR_MESSAGE_SIZE]

HP-UX Release 9.0: August 1992

A length or offset value in the opt parameter is illegal, or one of the pointer
arguments is invalid.

The vcdesc argument is not a valid socket descriptor

The specified dlen parameter is invalid.

A particular option is defined more than once in the opt parameter.

The value in the dlen exceeds the maximum limit for this socket. The
default maximum is 100 bytes. You can use ipccontrol () to alter this
value.

-2- 101

I

I

ipcrecv(2) ipcrecv(2)

[NSR_NO_ERROR]

[NSR_NOT_CONNECTION]

[NSR_OPT _OPTION]

[NSR_OPT_SYNTAX]

[NSR_REMOTE_RELEASED]

[NSR_SIGNAL_INDICATION]

[NSR_SOCKET_TIMEOUT]

[NSR_TOO_MANY_ VECTS]

[NSR_VECT_COUNT]

[NSR_WOULD_BLOCK]

The call was successful.

The vcdesc parameter did not reference a VC socket.

An option specified in the opt parameter is unknown or unsupported.

A length or offset value in the opt parameter is invalid.

The connection vias aborted due to an action by the peer.

The connection was released due to action by the peer.

The call aborted due to a signal received.

The socket timer expired:

• Before the connection completed (first call to ipcrecv () and
the socket is in synchronous mode),

• Before any data arrived (connection established, socket in syn­
chronous mode, NSF _DATA_WAIT flag not set), or

• Before the requested amount of data arrived (connection esta-
blished, socket in synchronous mode, NSR_DATA_WAIT flag set).

The number of data vectors exceeds the maximum limit of 16.

A negative data length was specified in the iovec.

The connection is still pending; the data present is less than requested, the
socket in asynchronous mode, and the NSF_DATA_WAIT flag is set; or no
data is present, and the socket is in asynchronous mode with the
NSF_DATA_WAIT flag not set.

AUTHOR
ipcrecv () was developed by HP.

SEE ALSO

102

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

-3- HP-UX Release 9.0: August 1992

ipcrecvcn (2) ipcrecvcn (2)

NAME
ipcrecvcn - receive a connection on a call socket

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcrecvcn(
ns_int_t calldesc,
ns_int_t *vcdesc,
ns_int_t *flags,
short opt[];
ns_int_t *result);

DESCRIPTION
Before calling ipcrecvcn (), ipccreate () must be called to create a new call socket. When
ipcrecvcn () is invoked against a call socket that has queued connection requests, it returns a virtual
circuit (VC) socket descriptor to the calling process. The VC socket descriptor can be used with subsequent
NetIPC calls to send and receive data.

When a socket is created, it is placed in synchronous mode by default. A socket can be placed in asynchro­
nous mode by calling ipccontrol (). When the call socket is in synchronous mode, ipcrecvcn ()
blocks until a connection request arrives or the synchronous socket timer expires. The timeout value can be
altered by calling ipccontrol (). When the call socket is in asynchronous mode, ipcrecvcn ()
returns NSR_WOULD_BLOCK if no connection requests are queued for the call socket.

An exception ipcselect () can be performed on the referenced call socket to determine if connections
are pending on a call socket.

Parameters
calldesc

vcdesc

/Zags

opt

result

Opt Parameter

(input parameter) Socket descriptor. Refers to a call socket owned by the calling pro-
cess.

(output parameter) VC socket descriptor. Refers to a VC socket that is the end-point of
an established virtual circuit connection.

(input parameter) Must be O. Other values are reserved for future use.

(input parameter) See below.

(output parameter) The error code returned. Refer to ERRORS below for more infor­
mation.

NSO_MAX_SEND_SIZE (optioncode = 3) (datalength = 2) A signed two-byte integer that specifies the
maximum number of bytes you expect to send with a single ipcsend () (see
ipcsend(2» calIon the VC socket. Range: 1 to 32000 bytes. Default: 100 bytes.

NSO_MAX_RECV_SIZE (optioncode = 4) (datalength = 2) A signed two-byte integer that specifies the
maximum number of bytes you expect to receive with a single ipcrecv () (see
ipcrecv(2» calIon this connection. Range: 1 to 32000 bytes. Default: 100
bytes.

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS
[NSR_DESC]

[NSR_BOUNDS_ VIa]

[NSR_DUP _OPTION]

[NSR_MSGSIZE]

[NSR_NO_ERROR]

[NSR_NOT_CALL_SOCKET]

HP-UX Release 9.0: August 1992

calldesc is not a valid socket descriptor.

A length or offset value in the opt parameter is invalid.

A particular option is defined more than once in the opt parameter.

The value specified in
NSO_MAX_RECV_SIZE is invalid.

The call was successful.

calldesc is not a call socket.

-1-

or

103

I

I

ipcrecvcn(2) ipcrecvcn (2)

[NSR_OPl'_OPTION]

[NSR_OPl'_SYNTAX]

[NSR_SIGNAL_INDICATION]

[NSR_SOCKET_TIMEOUT]

The option in opt parameter is unknown or unsupported.

A length or offset value in the opt parameter is invalid.

A signal was received before a connection request arrived.

The socket timer expired before a connection request arrived.

The socket is in asyncllronous mode and no connection requests are pend­
ing.

AUTHOR
ipcrecvcn () was developed by HP.

SEE ALSO

104

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

-2- HP-UX Release 9.0: August 1992

ipcselect(2) ipcselect(2)

NAME
ipcselect - determine status ofNetIPC socket

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcselect(
ns_int_t *sdbound,
int readmap [],
int writemap[],
lot exceptionmap[]~
ns_int_t timeout,
ns_int_t *result);

DESCRIPTION
ipcselect () enables a process to detect and/or wait for the occurrence of any of several events across
any of several sockets. A process should call ipcselect () with map elements set for descriptors that it
owns. Ifa process attempts to perform a select on a closed or invalid descriptor, an error is returned. Per­
forming a select on a destination descriptor has no meaning and should be avoided.

ipcselect () reports three types of information:

• Whether any of the referenced sockets are readable. A VC socket is considered readable if it can
immediately satisfy an ipcrecv () (see ipcrecv(2» request for a number of bytes greater than or
equal to its read threshold. The read threshold is one byte by default and can be modified by cal­
ling ipccontrol () (see ipccontrol(2». Read selecting on a call socket has no meaning and
should be avoided.

• Whether any of the referenced sockets are writeable. A VC socket is considered writeable if it can
immediately accommodate an ipcsend () (see ipcsend(2» request that involves a number of
bytes greater than or equal to the socket's write threshold. The write threshold is one byte by
default and can be modified by calling ipccontrol (). Write selecting on a call socket has no
meaning and should be avoided.

• Whether any of the referenced sockets are exceptional. A VC socket is exceptional if it is not con­
nected. A call socket is exceptional if it has a connection queued on it (i.e., if a subsequent call to
ipcrecvcn () can succeed).

When a socket is shared (Le., more than one process has a descriptor for the same socket), an ipcsend ()
call may return an NSR_WOULD_BLOCK error even if a previous ipcselect () call indicated that the
socket was writeable. For example, this would occur if another process (with a descriptor for the same
socket) called ipcsend () after the original process called ipcselect () and before it called
ipcsend() .

The following are examples of read selecting, write selecting, and exception selecting using ipcselect ().

Detecting Connection Requests
By setting bits in the exception map parameter, a process can determine whether incoming connection
requests are queued to certain call sockets. For example: Process A must determine whether certain
call sockets have received connection requests. To do this, Process A calls ipcselect () with the
exceptionmap map elements set to correspond to these sockets. Assuming that the timeout interval is
long enough (set by timeout parameter), ipcselect () completes after at least one connection has
been established and has been queued on one of the sockets specified in exceptionmap. When the call
completes, only those elements remain set that correspond to sockets which have queued connections;
the other elements will have been cleared.

Performing a Read Select
By setting elements in the readmap parameter, a process can determine whether certain VC sockets
are readable. For example: Process A must determine which of its VC sockets have data queued to
them. To do this, Process A performs a read select on those sockets by setting elements in the read­
map parameter to correspond with the desired VC sockets. Upon completion of the call, only the ele­
ments that represent readable sockets remain set; the other elements will have been cleared. Process
A can call ipcselect () with a zero-length timeout to determine the status of a socket immedi­
ately, or with a non-zero timeout if it is willing to wait for data to arrive.

HP-UX Release 9.0: August 1992 -1- 105

I

I

ipcselect(2) ipcselect(2)

Performing a Write Select
By setting bits in the writemap parameter, a process can determine whether certain VC sockets are
write able. For example: Process A must determine which of its VC sockets can accommodate a new
ipcsend () request, and which of its call sockets can accommodate a new ipcconnect () request
(see ipcsend(2) and ipcconnect(2)). To do this, it can perform a write select on these sockets by setting
elements in the writemap parameter to correspond with the desired VC and call sockets. Upon comple­
tion of the call, only the elements that represent writeable sockets will remain set; the other elements
will have been cleared. Process A can call ipcselect () with a zero-length timeout to determine
the status of a socket immediately, or with a non-zero timeout if it is willing to wait before sending
data on the connection.

Exception Selecting
By setting bits in the exceptionmap parameter, a process can determine whether certain connections
have been aborted. VC sockets that reference aborted connections always exception select as "true"
(their elements are set when the call completes). Exception selecting on VC sockets can also be useful
when the connection associated with the socket is not fully established. For example: Process B has
successfully created a VC socket via a call to ipcconnect (), but cannot know whether the connec­
tion associated with the socket is established until it calls ipcrecv (). If Process B calls
ipcrecv () before the connection is established or before it becomes known that the connection can­
not be established, it will block if the VC socket is in synchronous mode, or return a
NSR_WOULD_BLOCK error if the vc socket is in asynchronous mode. Process B can avoid blocking in
the synchronous case, or polling in the asynchronous case, by performing an exception select on the
new VC socket. The socket selects as true if the connection has become "established" but
ipcrecv () has not yet been called or if the attempt to connect has failed.

Parameters
sdbound (input/output parameter) Specifies the upper ordinal bound on the range of descrip­

tors specified in the read map , writemap, and exception map parameters. An
ipcselect () call is most efficient if sdbound is set to the ordinal value of the
highest-numbered socket descriptor specified in the map parameters. As an output
parameter, sdbound contains the upper ordinal boundary of all of the descriptors that
met the select criteria. The maximum number of file and socket descriptors that a
process can open at a time is a system-defined number (see getrlimit(2)).

readmap

writemap

exceptionmap

timeout

result

(input/output parameter) A bit map indexed with NetIPC socket descriptors. On
input, this parameter specifies the socket descriptors to be examined for readability.
If zero is passed, no sockets are examined. On output, readmap describes all readable
sockets. Readability is described above.

(input/output parameter) A bit map indexed with NetIPC socket descriptors. On
input, this parameter specifies the socket descriptors to be examined for writeability.
If zero is passed, no sockets will be examined. On output, writemap describes all
writeable sockets. Writeablity is described above.

(input/output parameter) A bit map indexed with NetIPC sockets descriptors. On
input, this parameter specifies the socket descriptors to be examined for exceptions. If
zero is passed, no sockets will be examined. On output, exceptionmap describes all
exceptional sockets. Exception conditions are described above.

(input parameter) The number of tenths of seconds to wait. If no sockets are select­
able, ipcselect () blocks for this amount of time. Valid values are zero, -1, or any
positive integer. If timeout is set to zero, the call will not block. If timeout is set to -1,
the call blocks until some event occurs. NOTE: If timeout is set to -1 and no bits are
set in any of the bit maps, ipcselect () blocks indefinitely.

(output parameter) The error code returned. Refer to ERRORS below for more infor­
mation.

EXAMPLES

106

In the C programming language, the readmap, writemap, and exceptionmap parameters can be declared as
int arrays. The size of the map arrays must be large enough to accommodate sdbound+1 bits. Thus, each
map array must contain at least the following number of elements (where BITS_PER_INT is the number
of bits in an int variable):

-2- HP-UX Release 9.0: August 1992

ipcselect (2) ipcselect(2)

(sdbound + BITS_PER_INT) / BITS_PER_INT

The bits can be set to correspond to specific call or VC socket descriptors in the appropriate map parameter.
The following example can be used to set a bit in the array. (The socket descriptor is represented by the
variable sd, and the number of bits in an int variable is 32.)

readmap[sd/32] 1= (unsigned)Ox80000000 » (sd % 32);

The next example can be used after an ipcselect () call completes to check whether or not a certain bit
is set:

readmap[sd/32] « «unsianed)Ox80000000 » (sd % 32»

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS
[NSR_BOUNDS_ VIO]

[NSR_DESC]

[NSR_NO_ERROR]

[NSR_SIGNAL_INDICATION]

[NSR_SOCKET _TIMEOUT]

[NSR_TIMEOUT_ VALUE]

AUTHOR

One of the pointer arguments is invalid.

A socket descriptor specified in a bitmap is not valid.

No error occured.

A signal caused the call to abort.

The timer expired before an exception was detected.

The value specified in the timeout parameter is invalid.

ipcselect () was developed by HP.

SEE ALSO
getrlimit(2), ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2),
ipcname(2), ipcnamerase(2), ipcrecv(2), ipcrecvcn(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2),
addopt(3N), initopt(3N), ipcerrmsg(3N), optoverhead(3N), readopt(3N)'

HP-UX Release 9.0: August 1992 -3- 107

I

I

ipcsend(2) ipcsend(2)

NAME
ipcsend - send data on a NetIPC socket

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcsend(
ns_int_t vcdesc~
const void *data,
ns_int_t dlen,
ns_int_t *flags,
short opt[],
ns_int_t *result);

DESCRiPTION
ipcsend () is used to send data on an established connection. The data can be sent as a single contigu­
ous buffer or as a scattered data vector. If the data is vectored, NetIPC gathers all the referenced data
before sending it.

For vectored writes an iovec structure contains the data vector. An iovec structure can be defined as:

struct iovec {
char
unsigned

};

*iov_base;
iov_len;

and the normal type for the data argument can be replaced by:

struct iovec *data;

Each iovec entry specifies the base address and length of an area in memory where data should be accessed.
ipcsend () always fills-in one area completely before proceeding to the next area.

ipcsend () behaves differently, depending on whether the referenced socket is in synchronous or asyn­
chronous mode. These differences are as follows:

Synchronous 110.
Send requests issued against sockets in synchronous mode may block. ipcsend () blocks if it cannot
immediately obtain the buffer space needed to accommodate the data. The call resumes after the required
buffer space becomes available or after the socket timer expires. Timeouts are 60 seconds by default, and
can be altered by calling ipccontrol () .

Asynchronous 110.
Send requests issued against sockets in asynchronous mode never block. If the buffer space required to
accommodate the data is not immediately available, a NSR_WOULD_BLOCK error (code 56) is returned.
After receiving this error, the process can try the call again later or determine when the socket is writeable
by calling ipcselect ().

PARAMETERS
vcdesc

data

dlen

{lags

opt

result

FLAGS PARAMETER

108

(input parameter) Socket descriptor. Refers to the virtual circuit (VC) socket endpoint
of the connection through which the data will be sent. A VC socket descriptor is
obtained by calling ipcconnect () or ipcrecvcn () .

(input parameter) A buffer to hold the data being sent, or a data vector that describes
where the data to be sent is located.

(input parameter) If data is a data buffer, dlen is the length in bytes of the data in the
buffer. If data is a data vector, dlen is the length in bytes of the data vector.

(input parameter) See below.

(input parameter) An array of options and associated information. See below.

(output parameter) The error code returned. Refer to ERRORS below for more infor­
mation.

-1- HP-UX Release 9.0: August 1992

ipcsend(2) ipcsend(2)

NSF_MORE_DATA (bit 26) (input parameter) When this bit is set, the underlying network protocol can
temporarily delay sending data for efficiency reasons.

NSF_VECTORED (bit 31) (input parameter) When this bit is set, the data parameter refers to a data
vector and not to a data buffer.

OPT PARAMETER
NSO_DATA_OFFSET

(optioncode = 8) (datalength = 2) A two-byte integer that indicates a byte offset from
the beginning of the data buffer where the data to be sent actually begins. Only valid
if the data parameter is a data buffer.

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS
[NSR_BOUNDS_ VIO]

[NSR_DESC]

[NSR_DLEN]

[NSR_DUP _OPTION]

[NSR_FLAGS]

[NSR_MSGSIZE]

[NSR_NOT_CONNECTION]

[NSR_OPT _OPTION]

[NSR_OPT_SYNTAX]

[NSR_SIGNAL_INDICATION]

[NSR_SOCKET _TIMEOUT]

[NSR_TOO_MANY_ VECTS]

[NSR_ VECT_COUNT]

[NSR_ WOULD_BLOCK]

AUTHOR

An address parameter is invalid.

The vcdesc parameter is not a valid descriptor.

The value specified in the dlen parameter is invalid.

The opt array contains duplicate information.

An illegal flag was specified.

An illegal data length was specified. By default, data transfer is limited to
a 100 byte maximum. You can alter this limit by calling ipccontrol ()

The vcdesc parameter is not a valid VC socket.

An option in the opt parameter in unknown or invalid.

A length or offset value in the opt parameter is invalid.

The call aborted due to a signal.

The socket timer expired before the data could be transfered. By default,
the socket timer is 60 seconds. This value can be altered by calling
ipccontrol () .

The maximum number of data vectors was exceeded. The limit is 16.

An incorrect data length was specified for vectored data.

The requested data cannot be sent at this time.

ipcsend () was developed by HP.

SEE ALSO
ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992 -2- 109

I

I

ipcsetnodenarne(2)

NAME
ipcsetnodename - set NetIPC node name of host CPU

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcsetnodename(
const char *nodename,
ns_int_t namelen,
ns_int_t *result);

DESCRIPTION

ipcsetnodenarne (2)

ipcsetnodename () sets the NetIPC node name of the host processor to nodename, which has a length of
namelen characters.

Super-user capability is required to use this call.

Parameters
nodename (input parameter) The ASCII-coded name that is to be assigned to this host.

namelen (output parameter) The length in bytes of the nodename parameter.

result (output parameter) See ERRORS below.

RETURN VALUE
None. Errors are returned in the result parameter.

AUTHOR
ipcsetnodname was developed by HP.

ERRORS
[NSR_NO_ERROR] The call was successful.

[NSR_NOT_ALLOWED]

[NSR_BOUNDS_ VIO]

[NSR_NLEN]

[NSR_NODE_NAME_SYNTAX]

The caller does not have super-user capability.

The input parameter address is invalid.

The value of the namelen parameter is invalid.

The syntax of the nodename parameter is illegal.

AUTHOR
ipcsetnodename () was developed by HP.

SEE ALSO

110

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

-1- HP-UX Release 9.0: August 1992

ipcshutdown(2) ipcshutdown (2)

NAME
ipcshutdown - release a NetIPC descriptor

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcshutdown(
ns_int_t descriptor,
ns_int_t *flags,
short opt[],
ns_int_t *resultj;

DESCRIPTION
ipcshutdown() is used to release a descriptor. The referenced descriptor can be a call socket descriptor,
virtual circuit (VC) socket descriptor, or destination descriptor. Once a descriptor has been realeased, the
descriptor can no longer be used by the calling process. Since the descriptor may be shared between
processes, it is destroyed only if the calling process is the last process referencing it.
When a call socket, VC socket, or destination descriptor is destroyed, all resources are released and the
descriptor name(s) in the local socket registry are removed. Shutting down a VC socket does not affect any
call sockets, and shutting down a call socket does not affect any VC sockets created using the call socket.
All of the data in transit on a VC socket, including any data that has already been queued on the destina­
tion VC socket, may be destroyed when the connection is shut down unless the
NSF_GRACEFUL_RELEASE flag is set. If a process sends important data to its peer process just prior to
shutting that process down, it is recommended that the calling process receive a confirmation from the peer
process before calling ipcshutdown () or exiting, or use the NSF _GRACEFUL_RELEASE flag to ensure
that the data was received.

PARAMETERS
descriptor

/lags
opt

result

(input parameter) The descriptor to be released. Can be a call socket descriptor, VC
socket descriptor, or destination descriptor.
(input parameter) Must be 0 or NSF _GRACEFUL_RELEASE. See below.
(input parameter) No options are defined for ·this call. Can be 0 or a pointer to an
empty NetIPC option buffer.
(output parameter) The error code returned. Refer to ERRORS below for more infor­
mation.

Flags Parameter
NSF_GRACEFUL_RELEASE

RETURN VALUE

If this flag is set, the underlying network protocol can continue to transmit data after
the calling process exits.

None. Errors are returned to the result parameter.
ERRORS

[NSR_DESC]

[NSRYLAGS]
[NSR_NO_ERROR]
[NSR_OPI'_OPTION]
[NSR_OPI'_SYNTAX]

AUTHOR

The descriptor parameter is not a valid VC socket descriptor, call socket descriptor, or
destination descriptor.
The flags parameter is illegal or unsupported.
The call was successful.
An unsupported option was specified.
A length or offset within the opt parameter is invalid or unsupported.

ipcshutdown () was developed by HP.
SEE ALSO

ipcconnect(2), ipccontro1(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992 -1- 111

I

I

kill(2) kill(2)

NAME
kill, raise - send a signal to a process or a group of processes

SYNOPSIS
#include <signal.h>

int kill(pid_t pid, int sig);

int raise(int sig);

DESCRIPTION
kill () sends a signal to a process or a group of processes. The process or group of processes to which the
signal is to be sent is specified by pid. The signal to be sent is specified by sig and is either one from the list
given in signal(2), or o.
raise () sends signal sig to the executing program. The signal to be sent is specified by sig and is either
one from the list given in signal(2), or o.
If sig is 0 (the null signal), error checking is performed but no signal is actually sent. This can be used to
check the validity of pid.

The real or effective user ID of the sending process must match the real or saved user ID of the receiving
process unless the effective user ID of the sending process is a user who has appropriate privileges. As a
single special case, the continue signal SIGCONT can be sent to any process that is a member of the same
session as the sending process.

The value KILL_ALL_OTHERS is defined in the file <sys/signal.h> and is guaranteed not to be the
ID of any process in the system or the negation of the ID of any process in the system.

If pid is greater than zero and not equal to KILL_ALL_OTHERS, sig is sent to the process whose process ID
is equal to pid. pid can equal 1 unless sig is SIGKILL or SIGSTOP.

If pid is 0, sig is sent to all processes excluding special system processes whose process group ID is equal to
the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not a user who has appropriate privileges. sig is sent
to all processes excluding special system processes whose real or saved user ID is equal to the real or
effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is a user who has appropriate privileges, sig is sent to all
processes excluding special system processes.

If pid is KILL_ALL_OTHERS, kill () behaves much as when pid is equal to -1, except that sig is not
sent to the calling process.

If pid is negative but not -lor KILL_ALL_OTHERS, sig is sent to all processes (excluding special system
processes) whose process group ID is equal to the absolute value of pid, and whose real and/or effective user
ID meets the constraints described above for matching user IDs.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS

112

ki 11 () fails and no signal is sent if one or more of the following is true:

[EINVAL] sig is neither a valid signal number nor zero.

[EINV AL] sig is SIGKILL or SIGSTOP and pid is 1 (proc1).

[EPERM] The user ID of the sending process is not a user who has appropriate privileges and its
real or effective user ID does not match the real or saved user ID of the receiving pro­
cess.

[EPERM] The sending and receiving processes are not in the same session.

[ESRCH] No process or process group can be found corresponding to that specified by pid.

raise () fails and no signal is sent if the following is true:

-1- HP-UX Release 9.0: August 1992

kill(2) kill(2)

[EINVAL] sig is not a valid signal number or zero.

AUTHOR
kill () was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
kill(l), getpid(2), setpgrp(2), signal(2), privilege(5).

STANDARDS CONFORMANCE
kill (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

ra i s e () : AES, XPG4, .AJ.~SI C

I

HP-UX Release 9.0: August 1992 -2- 113

I

link(2) link(2)

-~

link - link to a file

SYNOPSIS
#include <unistd.h>

int link(const char *pathl, const char *path2);

DESCRIPTION
link () creates a new link (directory entry) for the existing file. path! points to a path name naming an
existing file. path2 points to a path name naming the new directory entry to be created.

RETURN VALUE
Upon successful completion, link () returns 0; otherwise, it returns -1 and sets errno to indicate the

ERRORS
link () fails and no link is created if one or more of the following is true:

[EACCES] A component of either path prefix denies search permission.

[EACCES] The requested link requires writing in a directory that does not permit

[EDQUOT]

[EEXIST]

[ENOENT]

[ENOENT]

[ENOENT]

[ENOSPC]

[ENOTDIR]

[EPERM]

[EXDEV]

[EROFS]

[EFAULT]

[ENOENT]

[EMLINK]

[ENAMETOOLONG]

[ELOOP]

writing.

User's disk quota block limit has been reached for this file system.

The link named by path2 exists.

The file named by path! does not exist.

A component of either path prefix does not exist.

path2 points to a null path name.

The directory to contain the file cannot be extended.

A component of either path prefix is not a directory.

The file named by path! is a directory and the effective user ID is not a
user who has appropriate privileges.

The link named by path2 and the file named by path! are on different logi­
cal devices (file systems).

The requested link requires writing in a directory on a read-only file sys­
tem.

path points outside the allocated address space of the process. The reliable
detection ofthis error is implementation dependent.

pathl or path2 is null.

The maximum number of links to a file would be exceeded.

Either specified path exceeds PATH_MAX bytes, or a component of either
specified path exceeds NAME_MAX while POSIX_NO_TRUNC is in effect.

Too many symbolic links were encountered in translating either path
name.

DEPENDENCIES
Series 300, 400, and 700:

If path2 names a symbolic link, 1 ink () fails without creating the link, -1 is returned, and errno is set
to:

[EEXIST] path2 names a symbolic link.

SEE ALSO
cp(1), link(lM), symlink(2), symlink(4), unlink(2).

STANDARDS CONFORMANCE
link () : AES [Series 300/400/700 only], SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

114 -1- HP-UX Release 9.0: August 1992

listen(2) listen(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
int listen(int s, int backlog);

DESCRIPTION
To accept connections, a socket is first created using socket (), a queue for incoming connections is
specified using listen (), and then connections are accepted using accept (). listen () applies
only to unconnected sockets of type SOCK_STREAM. If the socket has not been bound to a local port before
listen () is invoked, the system automatically binds a local port for the socket to listen on (see inet(7F».
For sockets in the address family AF _CCITT, the socket must be bound to an address by using bind ()
before connection establishment can continue, otherwise an EADDREQUIRED error is returned.

The listen queue is established for the socket specified by the s parameter, which is a socket descriptor.

backlog defines the maximum allowable length of the queue for pending connections. If a connection
request arrives when the queue is full, the client receives an ETIMEDOUT error.

backlog is currently limited (silently) to be in the range of 1 to 20. If any other value is specified, the system
automatically assigns the closest value within range.

DEPENDENCIES
AF_CCITT:

Call-acceptance can be controlled by the X2S_CALL_ACPT_APPROVAL ioctl () call described in
RETURN VALUE Upon successful completion, listen() returns 0; otherwise, it returns -1 and sets
errno to indicate the error.

ERRORS
listen () fails if any of the following conditions are encountered:

The argument s is not a valid descriptor.

No bind address was established.

The argument s is not a socket.

The socket is not of a type that supports the listen() operation.

[EBADF]

[EDESTADRREQ]

[ENOTSOCK]

[EOPNOTSUPP]

[ENOBUFS] (Series 300/400 only) No buffer space is available. listen () cannot be
started at this time.

[EINVAL] The socket has been shut down or is already connected (see socketx25(7».

AUTHOR
listen () was developed by the University of California, Berkeley.

SEE ALSO
accept(2), connect(2), socket(2), socketx25(7), aCccitt(7F), inet(7F).

HP-UX Release 9.0: August 1992 -1- 115

I

I

lockf(2) lockf(2)

NAME
lockf - provide semaphores and record locking on files

SYNOPSIS
#include <unistd.h>

int lockf(int fildes, int function, off_t size);

DESCRIPTION

116

lockf () allows regions of a file to be used as semaphores (advisory locks) or restricts access to only the
locking process (enforcement-mode record locks). Other processes that attempt to access the locked resource
either return an error or sleep until the resource becomes unlocked. All locks for a process are released
upon the first close of the file, even if the process still has the file opened, and all locks held by a process are
released when the process terminates.

fildes is an open file descriptor. The file descriptor must have been opened with write-only permission
(O_WRONLY) or read-write permission (O_RDWR) in order to establish a lock with this function call (see
open (2».

If the calling process is a member of a group that has the PRIV_LOCKRDONLY privilege (see set­
privgrp(2», it can also use lockf () to lock files opened with read-only permission (O_RDONLY).

function is a control value that specifies the action to be taken. Permissible values for function are defined
in <unistd.h> as follows:

#define F_ULOCK
#define F_LOCK
#define F_TLOCK
#define F_TEST

o
1
2
3

/* unlock a region */
/* lock a region */
/* test and lock a region */
/* test region for lock */

All other values of function are reserved for future extensions and result in an error return if not imple­
mented.

F_TEST is used to detect whether a lock by another process is present on the specified region. lockf ()
returns zero if the region is accessible and -1 if it is not; in this case errno is set to EACCES. F_LOCK
and F_TLOCK both lock a region of a file if the region is available. F_ULOCK removes locks from a
region of the file.

size is the number of contiguous bytes to be locked or unlocked. The resource to be locked starts at the
current offset in the file, and extends forward for a positive size, and backward for a negative size (the
preceding bytes up to but not including the current offset). If size is zero, the region from the current offset
through the end of the largest possible file is locked (that is, from the current offset through the present or
any future end-of-file). An area need not be allocated to the file in order to be locked, because such locks can
exist past the end of the file.

Regions locked with F _LOCK or F _TLOCK can, in whole or in part, contain or be contained by a previ­
ously locked region for the same process. When this occurs or if adjacent regions occur, the regions are com­
bined into a single region. If the request requires that a new element be added to the table of active locks
but the table is already full, an error is returned, and the new region is not locked.

F _LOCK and F _TLOCK requests differ only by the action taken if the resource is not available: F _LOCK
causes the calling process to sleep until the resource is available, whereas F _TLOCK returns an EACCES
error if the region is already locked by another process.

F_ULOCK requests can, in whole or part, release one or more locked regions controlled by the process.
When regions are not fully released, the remaining regions are still locked by the process. Releasing the
center section of a locked region requires an additional element in the table of active locks. If this table is
full, an EDEADLK error is returned, and the requested region is not released.

Regular files with the file mode of S_ENFMT, not having the group execute bit set, will have an enforcement
policy enabled. With enforcement enabled, reads and writes that would access a locked region sleep until
the entire region is available if O_NDELAY is clear, but return -1 with errno set if O_NDELAY is set.
File access by other system functions, such as exec (), are not subject to the enforcement policy. Locks on
directories, pipes, and special files are advisory only; no enforcement policy is used.

A potential for deadlock occurs if a process controlling a locked resource is put to sleep by accessing the
locked resource of another process. Thus, calls to fcntl (), lockf (), read (), or wri te () (see

-1- HP-UX Release 9.0: August 1992

lockf(2) lockf(2)

(cntl(2), lock{(2), read(2), and write(2)) scan for a deadlock prior to sleeping on a locked resource. Deadlock
is not checked for the wait () and pause () system calls (see wait(2) and pause(2)), so potential for
deadlock is not eliminated. A creat () call or an open () call with the O_CREATE and O_TRUNC
flags set on a regular file returns error EAGAIN if another process has locked part of the file and the file is
currently in enforcement mode.

NETWORKING FEATURES
NFS

The advisory record-locking capabilities of lockf () are implemented throughout the network by the "net­
work lock daemon" (see lockd(lM)). If the file server crashes and is rebooted, the lock daemon attempts to
recover all locks associated with the crashed server. If a lock cannot be reciaimed, the process that held the
lock is issued a SIGLOST signal.

Only advisory record locking is implemented for NFS files.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
lockf () fails if any of the following occur:

[EACCES] function is F _TLOCK or F_TEST and the region is already locked by another pro­
cess.

[EBADF]

[EDEADLK]

[EAGAIN]

[EINTR]

[EINVAL]

[EINVAL]

[ENOLCK]

[ENOLCK]

WARNINGS

fildes is not a valid, open file descriptor.

A deadlock would occur or the number of entries in the system lock table would
exceed a system-dependent maximum. HP-UX guarantees this value to be at least 50.

function is F _LOCK or F _TLOCK and the file is mapped in to virtual memory via
the mmap () system call (see mmap(2)).

A signal was caught during the lockf () system call.

function is not one of the functions specified above.

size plus current offset produces a negative offset into the file.

function is F _TLOCK or F _LOCK and the file is an NFS file with access bits set for
enforcement mode.

The file is an NFS file and a system error occurred on the remote node.

Deadlock conditions may arise when either the wait () or pause () system calls are used in conjunction
with enforced locking; see wait(2) and pause (2) for details.

File and record locking using file descriptors obtained through dup () or link () may not work as
expected (see dup(2) or link(2)). For example, unlocking regions that were locked using either file descrip­
tor may also unlock regions that were locked using the other file descriptor.

Unexpected results may occur in processes that use buffers in the user address space. The process may
later read or write data which is or was locked. The standard 110 package, stdio(3S), is the most common
source of unexpected buffering.

In a hostile environment, locking can be misused by holding key public resources locked. This is particu­
larly true with public read files that have enforcement enabled.

It is not recommended that the PRIV _LOCKRDONLY capability be used because it is provided for back­
ward compatibility only. This feature may be modified or dropped from future HP-UX releases.

Locks default to advisory mode unless the setgid bit of the file permissions is set.

APPLICATION USAGE
Because in the future the variable errno will be set to EAGAIN rather than EACCES when a section of a
file is already locked by another process, portable application programs should expect and test for either
value. For example:

HP-UX Release 9.0: August 1992 -2- 117

I

I

lockf(2)

SEE ALSO

if (lockf(fd, F_TLOCK, siz) == -1)
if «errno == EAGAIN) I I (errno == ACCES»
/*
* section locked by another process
* check for either EAGAIN or EACCES
* due to different implementations
*/
else if
/*
* check for other errors
*/

lockf(2)

lockd(Uvi), statd(lM), chmod(2), close(2), creat(2), fcntl(2), open(2), pause(2), read(2), stat(2), wait(2),
write(2), unistd(5).

FUTURE DIRECTIONS
The error condition that currently sets errno to EACCES will instead set errno to EAGAIN (see also
APPLICATION USAGE above).

STANDARDS CONFORMANCE
lockf () : SVID2, XPG2

118 -3- HP-UX Release 9.0: August 1992

Iseek(2)

NAME
lseek - move read/write file pointer; seek

SYNOPSIS
#include <unistd.h>

off_t Iseek(int fildes, off_t offset, int whence);

DESCRIPTION
Iseek () sets the file pointer associated with the file descriptor as follows:

If whence is SEEK_SET, the pointer is set to olfset bytes.

• If whence is SEEK_CUR, the pointer is set to its current location plus offset.

• Ifwhence is SEEK_END, the pointer is set to the size of the file plus offset.

These symbolic constants are defined in <un! std. b>.

RETURN VALUE

Iseek(2)

When Iseek () completes successfully, it returns an integer, which is the resulting file offset as measured
in bytes from the beginning of the file. Otherwise, a value of -1 is returned and e rrno is set to indicate
the error.

For all files that are not character or block special files, the integer returned on successful completion is
non-negative. For character or block special files that correspond to disk sections larger than 2 gigabytes, a
non-negative integer is returned for successful seeks beyond 2 gigabytes. This value is the resulting file
offset as measured in bytes from the beginning of the file, when taken as an unsigned value. -1 always
indicates an error return, even when encountered on greater than 2 gigabyte disk sections.

ERRORS
Iseek () fails and the file offset remains unchanged if one or more of the following is true:

[EBADF] fiIdes is not an open file descriptor.

[ESPIPE] fiIdes is associated with a pipe or FIFO.

[EINVAL] whence is not one of the supported values.

[EINV AL] The resulting file offset would be negative.

WARNINGS
Some devices are incapable of seeking. The value of the file offset associated with such a device is
undefined.

Using Iseek () with a whence of SEEK_END on device special files is not supported and the results are
not defined.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2), unistd(5).

STANDARDS CONFORMANCE
Iseek (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 119

I

I

madvise(2) madvise(2)

NAME
madvise - advise the system of a process' expected paging behavior

SYNOPSIS
#include <sys/mman.h>

int madvise(
caddr_t addr,
size_t len,
int behav);

DESCRIPTION
madvise permits a process to advise the system about its expected future behavior in referencing a
mapped file or anonymous memory region. Certain implementations may use tr..is information to optimize
use of resources.

addr and len specify the address and length in bytes of the region to which the advice refers. If these are
not the address and length of a region created by a successful call to mmap (), madvi se () fails with an
EINVAL error.

The behav argument is constructed from the bitwise inclusive OR of one or more of the following flags
defined in the header <sys /mman. h>:

MADV_NORMAL
MADV_RANDOM
MADV_SEQUENTIAL
MADV_WILLNEED
MADV_DONTNEED
MADV_SPACEAVAIL

No further special treatment.
Expect random page references.
Expect sequential page references.
Will need these pages.
Will not need these pages.
Ensure that resources are reserved.

IMPLEMENTATION NOTES
The current implementation of madvise () is a null operation.

RETURN VALUE
madvise () returns 0 upon success; otherwise, it returns -1 and sets errno to indicate the error.

ERRORS
madvise () fails if any of the following conditions are encountered:

[EFAULT] The range specified by (addr, addr+len) is invalid for a process' address space.

[EINV AL] addr is not a multiple of the page size as returned by
sysconf (_SC_PAGE_SIZE), or behav contains invalid values or incompatible
combinations of flags.

[EINV ALl The address range specified by addr and len was not created by a successful call to
mmap() .

AUTHOR
madvise () was developed by HP and OSF.

SEE ALSO
mmap(2), sysconf(2).

STANDARDS CONFORMANCE
madvise () : AES

120 -1- HP-UX Release 9.0: August 1992

mkdir(2) mkdir(2)

NAME
mkdir - make a directory file

SYNOPSIS
#include <sys/stat.h>

int mkdir{const char *path, mode_t mode);

DESCRIPTION
mkdir () creates a new directory file named by path. The file permission bits of the new directory are ini­
tialized from mode, and are modified by the process's file mode creation mask. For each bit set in the
process's file mode creation mask, the corresponding bit in the new directory's mode is cieared (see
umask(2».

The directory's owner ID is set to the process's effective-user-ID. If the set-group-ID bit of the parent direc­
tory is set, the directory's group ID is set to group ID of the parent directory. Otherwise, the directory's
group ID is set to the process's effective-group-ID. The set-group-ID bit of the new directory is set to the
same value as the set-group-ID bit of the parent directory.

Symbolic constants defining the access permission bits are found in the <sys/stat .h> header and are
used to construct the argument mode. The value of the argument mode is the bit-wise inclusive OR of the
values of the desired permissions.

S_IRUSR Read by owner.
S_IWUSR Write by owner.
S_IXUSR Execute (search) by owner.
S_IRGRP Read by group.
S_IWGRP Write by group.
S_IXGRP Execute (search) by group.
S_IROTH Read by others (that is, anybody else).
S_IWOTH Write by others.
S_IXOTH Execute (search) by others.

Access Control Lists (ACLs)
On systems implementing access control lists, the directory is created with three base ACL entries,
corresponding to the file access permission bits (see acl(5».

RETURN VALUE
Upon successful completion, mkdir () returns a value of 0; a return value of -1 indicates an error, and
an error code is stored in errno.

ERRORS
mkdi r () fails and no directory is created if any of the following is true:

[EACCES] A component of the path prefix denies search permission.

[EACCES]

[EEXIST]

[EFAULT]

[EIO]

The parent directory of the new directory denies write permission.

The named file already exists.

path points outside the process's allocated address space. The reliable detection of this
error is implementation dependent.

An I/O error occurred while writing to the file system.

[ELOOP] Too many symbolic links are encountered in translating the path name.

[EMLINK] The maximum number of links to the parent directory, {LINK_MAX}, would be exceeded.

[ENAMETOOLONG]

[ENOENT]

[ENOSPC]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a com­
ponent of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in
effect.

A component of the path prefix does not exist.

Not enough space on the file system.

HP-UX Release 9.0: August 1992 -1- 121

•

I

mkdir(2)

A component of the path prefix is not a directory.

The named file resides on a read-only file system.

mkdir(2)

[ENOTDIR]

[EROFS]

[EDQUaI'] User's disk quota block or inode limit has been reached for this file system.

WARNINGS
Access Control Lists

Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

AUTHOR
mkdi r () was developed by the University of California, Berkeley.

SEE ALSO
chmod(2), setacl(2), stat(2), umask(2), acl(5), limits(5).

STANDARDS CONFORMANCE
mkdir (): AES, SVID2, XPG3, XPG4, FIPS 151-2, POSIX.1

122 -2- HP-UX Release 9.0: August 1992

mknod(2)

NAME
mknod, mkrnod - make a directory, or a special or regular file

SYNOPSIS
#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev)i

int mkrnod(

) i

const char *path,
mode_t mode,
dev_t dev,
cnode_t cnodeid

DESCRIPTION

mknod(2)

mknod () creates a new file named by the path name pointed to by path. The mode of the new file is
specified by the mode argument. mkrnod () is the same as mknod () but is used to make device files
that can be accessed from a different cnode in the cluster as identified by the additional parameter cnodeid.
A cnodeid value of 0 creates a "generic" device file that can be accessed by any cnode.

Symbolic constants defining the file type and file access permission bits are found in the <sys/stat.lD
header file and are used to construct the mode argument. The value of the mode argument should be the
bit-wise inclusive OR of the values of the desired file type, miscellaneous mode bits, and access permissions.
See stat(5) for a description of the components of the file mode.

The owner ID of the file is set to the effective-user-ID of the process. If the set-groupoID bit of the parent
directory is set, the new file's group ID is set to the group ID of the parent directory. Otherwise, the new
file's group ID is set to the effective-groupoID ofthe process.

The file access permission bits of mode are modified by the process's file mode creation mask: for each bit
set in the process's file mode creation mask, the corresponding bit in the file's mode is cleared (see
umask(2».

The new file is created with three base access-control-list (ACL) entries, corresponding to the file access per­
mission bits (see acl(5».

The dev argument is meaningful only if mode indicates a block or character special file, and is ignored oth­
erwise. It is an implementation- and configuration-dependent specification of a character or block I/O dev­
ice. The value of dev is created by using the makedev () macro defined in <sys /mknod. h>. The mak­
edev () macro takes as arguments the major and minor device numbers, and returns a device
identification number which is of type dev_t. The value and interpretation of the major and minor device
numbers are implementation-dependent. For more information, see mknod(5) and the System Administra­
tion manuals for your system.

Only users having appropriate privileges can invoke mknod () for file types other than FIFO files.

WARNINGS
Proper discretion should be used when using mkrnod () to create generic device files in an HP Clustered
Environment. A generic device file accessed from different cnodes in a cluster applies to different physical
devices. Thus the file's ownership and permissions might not be appropriate in the context of every indivi­
dual cnode in the cluster.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
mknod () fails and the new file is not created if:

[EACCES]

[EACCES]

[EEXIST]

The directory in which path would be created denies write permission, mode is for a
FIFO file and the caller does not have appropriate privileges.

A component of the path prefix denies search permission.

The named path already exists.

HP-UX Release 9.0: August 1992 -1- 123

I

I

mknod(2) mknod(2)

[EFAULT]

[ELOOP]

The path argument points outside the process's allocated address space. The reliable
detection of this error is implementation dependent.

Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]

[ENOENT]

[ENOENT]

[ENOSPC]

[ENOTDIR]

[EPERM]

[EROFS]

[EDQUOT]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

The path argument is null.

A component of the path prefix does not exist.

Not enough space on the file system.

A component of the path prefix is not a directory.

The effective-user-ID of the process does not match that of a user who has appropriate
privileges, and the file type is not FIFO special.

The directory in which the file is to be created is located on a read-only file system.

User's disk quota block or inode limit has been reached for this file system.

AUTHOR
mknod () was developed by AT&T and HP.

SEE ALSO
mknod(1M), chmod(2), exec(2), mkdir(2), setacl(2), umask(2), cdf(4), fs(4), acl(5), mknod(5), stat(5), types(5),
privilege(5).

STANDARDS CONFORMANCE
mknod () : SVID2, XPG2

124 -2- HP-UX Release 9.0: August 1992

mmap(2) mmap(2)

NAME
mmap - map object into virtual memory

SYNOPSIS
#include <sys/mman.h>

caddr_t mmap(
caddr_t addr,
size_t len,
int prot,
int flags,
int fildes,
off_t off);

DESCRIPTION
mmap () creates a new memory mapped file or anonymous memory region. The format of the call is as fol­
lows:

pa = mmap (addr, len, prot, flags, fildes, off) ;

mmap () establishes a mapping between the process's address space at an address pa for len bytes to an
object represented by the file descriptor fildes at offset off for len bytes, or to an anonymous region of physi­
cal memory of size len bytes. A successful mmap () call returns pa as its result, where pa is an
implementation-dependent function of the requested starting address and length for the new region, addr
and len, as further described below.

If len is not a multiple of the page size returned by sysconf (_SC_PAGE_SIZE), then references are
permitted to an address between pa +len and the next higher address that is an integer multiple of the page
size; however, the results of any such references are undefined.

The flags argument specifies the attributes of the region. Values of the flags argument are constructed by
bitwise-inclusive ORing flags from the following list of symbolic names defined in <sys /mman. h>:

MAP_FILE Create a mapped file region.

MAP_ANONYMOUS

MAP_VARIABLE

MAP_FIXED

MAP_SHARED

Create an unnamed memory region.

Place region at implementation-computed address.

Place region at specified address.

Share changes between processes and underlying file object, if any.

MAP_PRIVATE Changes are private to a process.

The MAP _FILE and MAP _ANONYMOUS flags control whether the region to be mapped is a mapped file
region or an anonymous shared memory region. Exactly one of these flags must be selected.

If MAP_FILE is set in flags:

• A new mapped file region is created, mapping the file associated with fildes.

• off specifies th~ file byte offset at which the mapping starts. This offset must be a multiple of the
page size returned by sysconf (_SC_PAGE_SIZE).

• If the end of the mapped file region is beyond the end of the file, any reference to an address in
the mapped file region corresponding to an offset beyond the end of the file results in the delivery
of a SIGBUS signal to the process, unless the address lies in the last partial page corresponding
to the range beyond the end of the file. The last partial page mapping the range beyond the end
of the file is always initialized to zeros, and any modified portions of the last page of a file which
are beyond its end are not written back to the file.

If MAP _ANONYMOUS is set in flags:

• A new memory region is created and initialized to all zeros. This memory region can be shared
only with descendants of the current process.

• If the fildes argument is not -1, an EINV AL error is generated.

HP-UX Release 9.0: August 1992 -1- 125

I

I

mmap(2) mmap(2)

126

The value of off is meaningless because there is no underlying file object for the memory region.

The MAP_VARIABLE and MAP_FIXED flags control the placement of the region as described below.
Exactly one of these flags must be selected.

If MAP _VARIABLE is set in flags:

If the requested address is NULL, or if it is not possible for the system to place the region at the
requested address, the region is placed at an address selected by the system. If the requested
address is not a multiple of the page size returned by sysconf (_SC_PAGE_SIZE), the sys­
tem treats the address as ifit were rounded up to the next larger page size multiple.

If MAP _FIXED is set in flags:

If it is not possible for the system to place the region at the requested address, the mmap ()
function fails.

addr must be a multiple of the page size returned by sysconf (_SC_PAGE_SIZE).

A region is never placed at an address where it would overlap with an existing region or a portion of the
process address space that is already in use or reserved for other purposes. A region is always placed at a
starting address that is an exact multiple of the page size returned by sysconf (_SC_PAGE_SIZE).

The MAP _PRIVATE and MAP _SHARED flags control the visibility of modifications to the mapped file or
anonymous memory region. Exactly one of these flags must be selected.

If MAP _SHARED is set in flags:

Modifications to the region are visible to other processes which have mapped the same file using
MAP_SHARED.

If the region is a mapped file region, modifications to the region are written to the underlying
file.

If MAP _PRIVATE is set in flags:

Modification to the mapped region by the calling process is not visible to other processes which
have mapped the same region using either MAP _PRIVATE or MAP _SHARED. Modifications are
not visible to descendant processes that have inherited the mapped region across a fork ().

If the region is a mapped file region, modifications to to the region are not written to the underly­
ing file.

It is unspecified whether modifications by processes that have mapped a file using MAP _SHARED are visi­
ble to other processes that have mapped the same file using MAP_PRIVATE.

The prot argument specifies the mapped region's access permissions. Header file <sys /mman. h> defines
the following access permissions:

PROT_READ Region can be read
PROT_WRITE Region can be written
PROT_EXEC Region can be executed
PROT_NONE Region cannot be accessed

The prot argument can be PROT_NONE, or any combination of PROT_READ, PROT_WRITE , and
PROT_EXEC OR-ed tQgether. If PROT_NONE is not specified, the system may grant other access permis­
sions to the region in addition to those explicitly requested, except that write access will not be granted
unless PROT_WRITE is specified.

mmap () cannot create a mapped file region unless the file descriptor used to map the file is open for read­
ing. For a mapped file region that is mapped with MAP _SHARED, mmap () grants write access permission
only if the file descriptor is open for writing. If a region was mapped with either MAP_PRIVATE or
MAP_ANONYMOUS, mmap () grants all requested access permissions.

After the successful completion of mmap () , fildes can be closed without effect on the mapped region or on
the contents of the mapped file. Each mapped region creates a file reference, similar to an open file descrip­
tor, that prevents the file data from being deallocated.

Whether modifications made to the file using write () are visible to mapped regions, and whether
modification to a mapped region are visible with read () , is undefined except for the effect ofmsync () .

-2- HP-UX Release 9.0: August 1992

mmap(2) mmap(2)

If an enforcement-mode file lock is in effect for any range of a file, a call to nunap () to map any range of
the file with access rights that would violate the lock fails. The msem_lock () and msem_unlock ()
semaphore interfaces can be used to coordinate shared access to a region created with the MAP_SHARED
flag. The advisory locks of the lockf () or fentl () interfaces have no effect on memory mapped
access, but they can be used to coordinate shared access to a MAP _SHARED mapped file region.

For a memory mapped file, the st_atime and st_mt!me values returned by stat () are updated
when a page in the memory mapped region is read from or written to the file system.

After a call to fork () , the child process inherits all mapped regions with the same data and the same
sh8l'ing and protection attributes as in the p8l'ent process. Each mapped file and anonymous memory
region created with mmap () is unmapped upon process exit, and by a successful call to any of the exec
functions.

A SIGBUS signal is delivered to a process when a write reference to a mapped file region would cause a file
system error condition such as exceeding quota or file system space limits.

A SIGBUS signal is delivered to a process upon a write reference to a region without PROT_WRITE pro­
tection, or any reference to a region with PROT_NONE protection.

A call to mmap () with PROT_EXECUTE specified, but without PROT_WRITE specified for a
MAP_SHARED I MAP_FILE mapping is treated by the system as the execution of the underlying file. This
implies that such a call fails if the file is currently open for writing or mapped with
MAP_SHARED I PROT_WRITE options by any process, and that if the call succeeds, the file cannot be
opened for writing or subsequently mapped with MAP _SHARED I PROT_WRITE options as long as such
mappings are present. A file's status as an active executable file is determined only at the time of an
exec (), ex! t (), or nunap () operation. mprotect () operations on a MAP_FILE I MAP_SHARED
mapping have no effect on the underlying file's status as an active executable file.

IMPLEMENTATION NOTES
Only regular files (not directories, named pipes, or device special files) can be mapped.

System swap resources are reserved for all mappings created with either MAP _PRIVATE or
MAP_ANONYMOUS.

RETURN VALUE
Upon successful completion, mmap () returns the address at which the mapping was placed. Otherwise,
nunap () returns -1 and sets errno to indicate the error.

ERRORS
nunap () fails if any of the following conditions are encountered:

[EACCESS] The file referred to by fildes is not open for read access, or the file is not open for write
access and PROT_WRITE was set for a MAP_SHARED mapping operation, or
PROT_EXECUTE was set for a MAP_SHARED mapping operation and the underlying
file does not have execute permission.

[EBADF] fildes is not a valid file descriptor.

[EINVAL] flags or prot is invalid, or addr (with MAP_FIXED set) or off(with MAP_FILE set) is
not a multiple of the page size returned by sysconf (_SC_PAGE_SIZE).

[ENODEV]

[ENOMEM]

[ENXIO]

[EAGAIN]

[ETXTBSY]

fildes refers to an object that cannot be mapped, such as a terminal.

There is not enough address space to map len bytes, or MAP_FIXED was set and
part of the address space range [addr, addr+len) (from, and including, addr to, but
not including, addr+len) is not available for use.

The addresses specified by the range [off, off+len) (from, and including, of{to, but not
including, off +len) are invalid for fildes.

The file represented by fildes has enforcement-mode file locking in effect for some
range in the file. (see lockf(2), or fcntl(2».

MAP_SHARED and MAP _FILE are set, and PROT_EXECUTE is set and
PROT_WRITE is not set, and the file being mapped is currently open for writing.

HP-UX Release 9.0: August 1992 -3- 127

•

•

mmap(2) mmap(2)

DEPENDENCIES
Series 700/800

Because the PA-RISC memory architecture utilizes a globally shared virtual address space between
processes, and discourages multiple virtual address translations to the same physical address, all con­
currently existing MAP _SHARED mappings of a file range must share the same virtual address offsets and
hardware translations. PA-RISC-based HP-UX systems allocate virtual address ranges for shared memory
and shared mapped files in the range Ox80000000 t:hrough Oxefffffff. This address range is used globally for
all memory objects shared between processes.

This implies the following:

• Any single range of a file cannot be mapped multiply into different virtual address ranges.

• After the initial MAP _SHARED mmap () of a file range, all subsequent MAP _SHARED calls to
mmap () to map the same range of a file must either specify MAP _ VAR IABLE in flags and
inherit the virtual address range the system has chosen for this range, or specify MAP _FIXED
with an addr that corresponds exactly to the address chosen by the system for the initial map­
ping. Only after all mappings for a file range have been destroyed can that range be mapped to
a different virtual address.

•

•

In most cases, two separate calls to mmap () cannot map overlapping ranges in a file. The vir­
tual address range reserved for a file range is determined at the time of the initial mapping of
the file range into a process address space. The system allocates only the virtual address range
necessary to represent the initial mapping. As long as the initial mapping exists, subsequent
attempts to map a different file range that includes any portion ofthe initial range may fail with
an ENOMEM error if an extended contiguous address range that preserves the mappings of the
initial range cannot be allocated.

Separate calls to mmap () to map contiguous ranges of a file do not necessarily return contigu­
ous virtual address ranges. The system may allocate virtual addresses for each call to mmap ()
on a first available basis.

• The use of MAP _FIXED is strongly discouraged because it is not portable. Using MAP _FIXED
is generally unsuccessful on this implementation, and when it is successful, it may prevent the
system from optimally allocating virtual address space.

The following combinations of protection modes are supported:

PROT_NONE
PROT_READ
PROT_READ I PROT_EXECUTE
PROT_READ I PROT_WRITE
PROT_READ I PROT_WRITE I PROT_EXECUTE

If a MAP_PRIVATE mapping is created of a file for which a MAP_SHARED mapping exists, a separate
copy of a page for the MAP _PRIVATE mapping is created at the time ofthe first access to the page through
the private mapping.

Series 300/400

128

The following combinations of protection modes are supported:

PROT_NONE
PROT_READ
PROT_READ I PROT_EXECUTE
PROT_READ I PROT_WRITE
PROT_READ I PROT_WRITE I PROT_EXECUTE

In addition, for protection modes that do not explicitly have PROT_EXECUTE set, individual pages within
the region can be promoted to include PROT_EXECUTE permissions simply by executing code located
within the region.

If a MAP_PRIVATE mapping is created of a file for which a MAP_SHARED mapping exists, a separate
copy of a page for the MAP _PRIVATE mapping is created at the time of the first write reference to the page
through the private mapping.

-4- HP-UX Release 9.0: August 1992

mmap(2) mmap(2)

HP Clustered Environment
In a clustered environment, modifications to a MAP _SHARED mapped file region on one cluster node may
not be visible to other processes on other cluster nodes that have the same file mapped with the
MAP_SHARED option.

AUTHOR
mmap () was developed by HP, AT&T, and OSF.

SEE ALSO
fcntl(2), fork(2), ftruncate(2), lockf(2), madvise(2), mprotect(2), msem_init(2), msem_Iock(2),
msem_unlock(2), msync(2), munmap(2), sysconf(2), mman(5), stat(5).

STANDARDS CONFORMANCE
mmap (): AES [Series 300/400/700 only]

HP-UX Release 9.0: August 1992 -5- 129

I

I

mount (2) mount (2)

NAME
mount - mount a file system

SYNOPSIS
#1nclude <sys/mount.h>

1nt mount(const char *spec, const char *dir, int rwflag);

DESCRIPTION
mount () requests that a removable file system contained on the block special device file identified by spec
be mounted on the directory identified by dir. spec and dir are pointers to path names.

Upon successful completion, references to the file dir refer to the root directory on the mounted file system.

The low-order bit ofrw{lag is used to control write permission on the mounted file system. If it is 1, writing
is forbidden; otherwise, writing is permitted according to individual file accessibility.

mount () can be invoked only by a user who has appropriate privileges.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
mount () fails if one or more of the following is true:

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EFAULT]

[EBUSY]

[EBUSY]

[EBUSY]

[ENOENT]

[EACCES]

The effective user ID is not a user who has appropriate privileges.

The named file does not exist (for example, path is null or a component of path does
not exist).

A component of a path prefix is not a directory.

spec is not a block special device.

The device associated with spec does not exist.

dir is not a directory.

spec or dir points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

dir is currently mounted on, is someone's current working directory, or is otherwise
busy.

The device associated with spec is currently mounted.

There are no more mount table entries.

spec or dir is null.

A component of the path prefix denies search permission.

[ENAMETOOLONG]

[ELOOP]

The length of a specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

Too many symbolic links were encountered in translating either path name.

WARNINGS
If mount () is called from the program level (Le. not called from mount(lM», the table of mounted devices
contained in /etc/mnttab is not updated. Updating of /etc/mnttab is performed by mount(lM) and
syncer(lM). See corresponding manual entries for more information.

In the HP Clustered environment, the spec and dir arguments should always be fully expanded pathnames.

SEE ALSO
mount(lM), syncer(lM), umount(2).

STANDARDS CONFORMANCE
mount () : SVID2, XPG2

130 -1- HP-UX Release 9.0: August 1992

mprotect (2)

NAME
mprotect - modify access protections of memory mapping

SYNOPSIS
#include <sys/mman.h>

int mprotect{
caddr_t addr,
size_t len,
int prot);

DESCRIPTION

mprotect (2)

mprotect () modifies the access protection of the memory mappings specified by the address range start­
ing at addr and continuing for len bytes, rounded up to the next multiple of the page size, to be that
specified by prot. If the address range does not correspond to one created by a successful call to mmap () ,
mprotect () returns an error. prot determines whether read, write, execute, or some combination of
accesses are permitted to the data being mapped. Legitimate values for prot are the same as those permit­
ted for mmap () (see mmap(2».

If the address range being modified corresponds to a mapped file that was mapped with MAP_SHARED,
mprotect () grants write access permission only if the file descriptor used to map the file was opened for
writing. If the address range corresponds to a mapped file that was mapped with the MAP _PRIVATE or
the MAP_ANONYMOUS flag, mprotect () grants all requested access permissions.

If mprotect () fails under a condition other than that specified by EINVAL, the access protection of some
of the pages in the range [addr, addr+len) (from, and including, addr to, but not including, addr+len) may
have been changed. For example, suppose an error occurs on some page at an addr2; mprotect () may
have modified the protections of all whole pages in the range [addr,addr2].

RETURN VALUE
mprotect () returns 0 upon success; otherwise, it returns -1 and sets errno to indicate the error.

ERRORS
mprotect () fails if any of the following conditions are encountered:

[EACCES] prot specifies a protection that conflicts with the access permission set for the underly­
ing file.

[EINVAL]

[ENOMEM]

AUTHOR

prot is invalid, or addr is not a multiple of the page size as returned by
sysconf{_SC_PAGE_SIZE).

The range specified by [addr, addr+len) (from, and including, addr to, but not
including, addr+len) is invalid for a process' address space, or the range specifies one
or more unmapped pages.

mprotect () was developed by HP, AT&T, and OSF.

SEE ALSO
mmap(2), sysconf(2).

STANDARDS CONFORMANCE
mprotect () : AES

HP-UX Release 9.0: August 1992 -1- 131

I

I

NAME
msem_init - initialize a semaphore in a mapped file or anonymous memory region

SYNOPSIS
#include <sys/mman.h>

msemaphore *msem_init(msemaphore *sem, int initial_value);

DESCRIPTION
msem_ini t () allocates a new binary semaphore and initializes the state of the new semaphore.

sem points to an msemaphore structure in which the state of the semaphore is to be stored.

If initiaCvalue is MSEM_LOCKED, the new semaphore is initialized in the locked state. If initiaCvalue is
MSEM_UNLOCKED, the new semaphore is initialized in the unlocked state.

The msemaphore structure must be located within a mapped file or anonymous memory region created
by a successful call to mmap () and have both read and write access.

If a semaphore is created in a mapped file region, any reference by a process that has mapped the same file,
using a (struct msemaphore *) pointer that resolves to the same file offset is interpreted as a refer­
ence to the same semaphore. If a semaphore is created in an anonymous memory region, any reference by a
process sharing the same region by use of a (struct msemaphore *) pointer that resolves to the
same offset from the start of the region is interpreted as a reference to the same semaphore.

Any previous semaphore state stored in the msemaphore structure is be ignored and overwritten.

IMPLEMENTATION NOTES
In order to ensure that an msemaphore structure is entirely contained in a single memory page, sem
must be at an address that is an exact multiple of s izeof (structmsemaphore). The size of the
msemaphore structure is guaranteed to prevent semaphores that cross page boundaries given the above
restriction.

For a memory mapped file region, the system deallocates memory that corresponds to a range of the file
that has been truncated with ftruncate () or truncate (). If a semaphore is located in memory so
deallocated, the effect is equivalent to an msem_remove () on the semaphore.

RETURN VALUE
msem_init () returns the address of the initialized msemaphore structure; otherwise, it returns NULL
and sets errno to indicate the error. NOTE: This error return value may change to -1 in a future HP-UX
release. For portability, applications should check for a zero or negative value for error returns.

ERRORS
msem_ini t () fails if any of the following conditions are encountered:

[EINVAL] sem points to an msemaphore structure that is not located in a mapped region
created by mmap () and with read and write access, or initiaCvalue is not valid.

[ENOMEM]

[EFAULT]

A new semaphore could not be created.

sem is an invalid pointer.

AUTHOR
msem_ini t () was developed by HP and OSF.

SEE ALSO
mmap(2),msem_Iock(2),msem_remove(2),msem_unlock(2),mman(5).

STANDARDS CONFORMANCE
msem_ini t () : AES

132 -1- HP-UX Release 9.0: August 1992

NAME
msem_Iock -lock a semaphore

SYNOPSIS
#include <sys/mman.h>

int msem_Iock(msemaphore *sem, int condition);

DESCRIPTION
ms em_I ock () attempts to lock a binary semaphore.

sem points to an msemaphore structure which specifies the semaphore to be locked.

If the semaphore is not currently locked, it becomes locked and the function returns successfully.

If the semaphore is currently locked, and condition is MSEM_IF_NOWAIT, then the function returns with
an error. If the semaphore is currently locked and condition is zero, the function does not return until
either the calling process is able to successfully lock the semaphore, or an error condition occurs.

All calls to msem_Iock () and msem_unlock () by multiple processes sharing a common msema­
phore structure behave as if the calls were serialized.

If the msemaphore structure contains any value not resulting from a call to msem_init () followed by
a (possibly empty) sequence of calls to ms em_I ock () and msem_unlock (), the results are undefined.
The address of an msemaphore uniquely identifies the semaphore. If the msemaphore structure con­
tains any value copied from an msemaphore structure at a different address, the result is undefined.

IMPLEMENTATION NOTES
If blocked on a locked semaphore, msem_I ock() suspends the calling process at a priority such that the
process can be interrupted by a signal.

The system attempts to ignore or recover from invalid values written to the msemaphore structure, but
this is not guaranteed for all cases.

ms em_I ock () successfully acquires a semaphore that is locked by a process that has exited.

RETURN VALUE
Upon success, msem_Iock () returns zero; otherwise, it returns -1 and sets errno to indicate the error.

ERRORS
msem_Iock () fails if any of the following conditions are encountered:

[EAGAIN] MSEM_IF_NOWAIT was specified and the semaphore was already locked.

[EINV AL] sem points to an msemaphore structure that has been removed, or condition is
invalid.

msem_Iock () was interrupted by a signal that was caught. [EINTR]

[EDEADLK] The semaphore is currently locked, condition is zero, and waiting to lock the sema­
phore would create a deadlock.

[EFAULT] sem is not a properly aligned address or is otherwise an invalid pointer.

AUTHOR
ms em_I ock () was developed by HP and OSF.

SEE ALSO
msem_init(2), msem_remove(2), msem_unlock(2), mman(5).

STANDARDS CONFORMANCE
ms em_I ock () : AES

HP-UX Release 9.0: August 1992 -1- 133

•

I

NAME
msem_remove - remove a semaphore in mapped file or anonymous region

SYNOPSIS
#include <sys/mman.h>

int *msem_remove(msemaphore *sem);

DESCRIPTION
msenLremove () removes a binary semaphore.

sem points to an msemaphore structure that specifies the semaphore to be removed. Any subsequent use
of the msemaphore structure before it is again initialized by calling msem_ini t () produces undefined
results.

msa..'1l_re.iTLOVe () also causes any process waiting in the msem_lock () r~nction on the remo'{ed sema­
phore to return with an error.

If the msemaphore structure contains any value not resulting from a call to msem_init () followed by
a (possibly empty) sequence of calls to msem_lock () and msem_unlock () , the results are undefined.
The address of an msemaphore uniquely identifies the semaphore. If the msemaphore structure con­
tains any value copied from a msemaphore structure at a different address, the result is undefined.

RETURN VALUE
Upon success, msem_remove () returns zero; otherwise, it returns -1 and sets errno to indicate the
error.

ERRORS
msem_remove () fails if any of the following conditions are encountered:

[EINVAL]

[EFAULT]

sem points to an msemaphore structure that has been removed.

sem is an invalid pointer.

AUTHOR
ms em_remove () was developed by HP and OSF.

SEE ALSO
msem_init(2), msem_lock(2), msem_remove(2), mman(5).

STANDARDS CONFORMANCE
msem_remove () : AES

134 -1- HP-UX Release 9.0: August 1992

msem_unlock (2)

NAME
msem_unlock - unlock a semaphore

SYNOPSIS
#include <sys/mman.h>

int msem_unlock(msemaphore *sem, int condition);

DESCRIPTION
msem_unlock () unlocks a binary semaphore.

msem_unlock(2)

sem points to an mS9.1'!laphore stru.cture that specifies the semaphore to be unlocked.

If the condition argument is zero, the semaphore will be unlocked, whether or not any other processes are
currently attempting to lock it. If the condition argument is MSEM_IF _WAITERS, and some other process
is waiting to lock the semaphore or the implementation cannot reliably determine whether some process is
waiting to lock the semaphore, the semaphore is unlocked by the calling process. If the condition argument
is MSEM_IF _WAITERS, and no process is waiting to lock the semaphore, the semaphore is not unlocked
and an error is returned.

All calls to msem_lock () and msem_unlock () by multiple processes sharing a common msema­
phore structure behave as if the calls were serialized.

If the msemaphore structure contains any value not resulting from a call to msem_ini t () followed by
a (possibly empty) sequence of calls to msem_lock () and msem_unlock (), the results are undefined.
The address of an msemaphore uniquely identifies the semaphore. If the msemaphore structure con­
tains any value copied from a msemaphore structure at a different address, the result is undefined.

IMPLEMENTATION NOTES
The system attempts to ignore or recover from invalid values placed in the msemaphore structure, but
this is not guaranteed for all cases.

RETURN VALUE
Upon success, msem_unlock () returns zero; otherwise, it returns -1 and sets errno to indicate the
error.

ERRORS
msem_unlock () fails if any of the following conditions are encountered:

MSEM_IF_NOWAIT was specified and there were no waiters. [EAGAIN]

[EINVAL] sem points to an msemaphore structure that has been removed, or condition is
invalid.

[EFAULT] sem is an invalid pointer.

AUTHOR
msem_unlock () was developed by HP and OSF.

SEE ALSO
msem_init(2), msem_Iock(2), msem_remove(2), mman(5).

STANDARDS CONFORMANCE
msem_unlock (): AES

HP-UX Release 9.0: August 1992 -1- 135

I

I

msgctl(2) msgctl(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

DESCRIPTION
msgctl () provides a variety of message control operations as specified by cmd. The following cmds are
available:

Place the current value of each member of the data structure associated with msqid
into the structure pointed to by bur. The contents of this structure are defined in
glossory(9).

Set the value of the following members of the data structure associated with msqid to
the corresponding value found in the structure pointed to by bur:

msg..,l>erm.uid
msg..,l>erm.gid
msg..,l>erm.mode /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a process that has an effective user ID equal to either that of super-user
or to the value of either msg..,l>erm. uid or msg..,l>erm. cuid in the data structure associated with
msqid. Only super-user can raise the value ofmsg_qbytes.

IPC RMID
Re~ove the message queue identifier specified by msqid from the system and destroy the message queue
and data structure associated with it. This cmd can only be executed by a process that has an effective
user ID equal to either that of super-user or to the value of either msg-perm. uid or
msg-perm. cuid in the data structure associated with msqid.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
msgctl () fails if one or more of the following is true:

[EINVAL] msqid is not a valid message queue identifier.

[EINVAL]

[EACCES]

[EPERM]

[EPERM]

[EFAULT]

cmd is not a valid command.

cmd is equal to IPC_STAT and Read operation permission is denied to the calling process
(see message operation permissions in glossary (9».

cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling process is
not equal to that of a user who has appropriate privileges and it is not equal to the value of
either msg-perm.uid or msg-perm.cuid in the data structure associated with
msqid. .

cmd is equal to IPC_SET, an attempt is being made to increase to the value of
msg_qbytes, and the effective user ID of the calling process is not equal to that of super­
user.

bur points to an illegal address. Reliable detection of this error is implementation depen­
dent.

SEE ALSO
ipcrm(1), ipcs(1), msgget(2), msgop(2), stdipc(3C).

STANDARDS CONFORMANCE
msgctl () : SVID2, XPG2, XPG3, XPG4

136 -1- HP-UX Release 9.0: August 1992

msgget(2) msgget(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/msg.h>

int msgget(key_t key, int msgflg);

DESCRIPTION
msgget () returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure are created for key if one of
the following is true:

key is equal to IPC_PRIVATE. This call creates a new identifier, subject to available resources. The
identifier will never be returned by another call to msgget () until it has been released by a call to
msgctl (). The identifier should be used among the calling process and its descendents; however, it
is not a requirement. The resource can be accessed by any process having the proper permissions.

key does not already have a message queue identifier associated with it, and (msgflg & IPC_CREAT)
is "true".

Upon creation, the data structure associated with the new message queue identifier is initialized as follows:

msg-perm.cuid, msg-perm.uid,msg-perm.cgid, and msg-perm.gid are set equal to the
effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg-perm.mode are set equal to the low-order 9 hits ofmsgflg.

msg_qnum, msg_lspid, msg_Irpid, msg_stime, and msg_rtime are set equal to O.

msg_ctime is set equal to the current time.

msg_qbytes is set equal to the system limit.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a message queue identifier, is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
msgget () fails if one or more of the following is true:

[EACCES] A message queue identifier exists for key, but operation permission as specified by the low­
order 9 bits of msgflg would not be granted.

[ENOENT]

[ENOSPC]

[EEXIST]

SEE ALSO

A message queue identifier does not exist for key and (msgflg & IPC_CREAT) is "false".

A message queue identifier is to be created but the system-imposed limit on the maximum
number of allowed message queue identifiers system wide would be exceeded.

A message queue identifier exists for key but ((msgflg & IPC_CREAT) && (msgflg &
IPC_EXCL)) is ''true''.

ipcrm(1), ipcs(1), msgctl(2), msgop(2), stdipc(3C).

STANDARDS CONFORMANCE
msgget () : SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 137

I

I

msgop(2) msgop(2)

NAME
msgsnd, msgrcv - message operations

SYNOPSIS
#include <sys/msg.h>

int msgsnd(

) ;

int msqid,
const void *msgp,
size_t msgsz,
int msgflg

int msgrcv(

) ;

int msqid,
void *msgp,
size_t msgsz,
long msgtyp,
int msgflg

DESCRIPTION

138

msgsnd () is used to send a message to the queue associated with the message queue identifier specified
by msqid.

msgp points to a user-defined buffer that must contain first a field of type long that specifies the type of
the message, followed by a data portion that will hold the data bytes of the message. The structure below is
an example of what this user-defined buffer might look like:

long
char

mtype;
mtext[];

/* message type */
/* message text */

mtype is a positive integer that can be used by the receIVIng process for message selection (see
msgrcv () below). mtext is any text of length msgsz bytes. msgsz can range from 0 to a system­
imposed maximum.

msgflg specifies the action to be taken if one or more of the following is true:

The number of bytes already on the queue is equal to msg_qbytes (see message queue identifier in
glossary(9».

The total number of messages on all queues system-wide is equal to the system-imposed limit.

These actions are as follows:

If (msgflg &: IPC_NOWAIT) is ''true'', the message is not sent and the calling process returns
immediately.

If (msgflg &: IPC_NOWAIT) is "false", the calling process suspends execution until one of the follow­
ing occurs:

The condition responsible for the suspension no longer exists, in which case the message is
sent.

msqid is removed from the system (see msgctl(2». When this occurs, errno is set equal to
EIDRM, and a value of -1 is returned.

The calling process receives a signal to be caught. In this case the message is not sent and the
calling process resumes execution in the manner prescribed in signal(5).

Upon successful completion, the following actions are taken with respect to the data structure associated
withmsqid:

msg_qnum is incremented by 1.

msg_lspid is set equal to the process ID of the calling process.

msg_stime is set equal to the current time.

-1- HP-UX Release 9.0: August 1992

msgop(2) msgop(2)

msgrev () reads a message from the queue associated with the message queue identifier specified by
msqid and places it in the structure pointed to by msgp. This structure is composed of the following
members:

long
ehar

mtype;
mtext[];

/* message type */
/* message text */

mtype is the received message's type as specified by the sending process. mtext is the text of the mes­
sage. msgsz specifies the size in bytes ofmtext. The received message is truncated to msgsz bytes if it is
larger than msgsz and (msgflg &:B MSG_NOERROR) is "true". The truncated part of the message is lost
and no indication of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

msgtyp = 0 First message on the queue is received.

msgtyp > 0 First message of type msgtyp is received.

msgtyp < 0 First message of the lowest type that is less than or equal to the absolute value of
msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on the queue. These are as fol­
lows:

(msgflg &: IPC_NOWAIT) is ''true'':
Calling process returns immediately with a return value of -1 and errno set to ENOMSG.

(msgflg &: IPC_NOWAIT) is "false":
Calling process suspends execution until one of the following occurs:

• A message of the desired type is placed on the queue.

• msqid is removed from the system. When this occurs, errno is set equal to EIDRM,
and a value of -1 is returned.

• The calling process receives a signal that is to be caught. In this case, a message is not
received and the calling process resumes execution in the manner prescribed in sig­
nal(5».

Upon successful completion, the following actions are taken with respect to the data structure associated
withmsqid.

msg_qnum is decremented by 1.

msg_lrpid is set equal to the process ID of the calling process.

msg_rtime is set equal to the current time.

RETURN VALUES
Upon successful completion, the return value is as follows:

msgsnd () returns a value of O.

msgrev () returns a value equal to the number of bytes actually placed into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
msgsnd () fails and no message is sent if one or more of the following is true:

msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

mtype is less than 1.

[EINVAL]

[EACCES]

[EINVAL]

[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg &:

[EINVAL]

[EFAULT]

IPC_NOWAIT) is "true".

msgsz is less than zero or greater than the system-imposed limit.

msgp points to an illegal address. The reliable detection of this error is implementa­
tion dependent.

HP-UX Release 9.0: August 1992 -2- 139

I

I

msgop(2) msgop(2)

[EIDRM]

[EINTR]

The message queue identifier msqid has been removed from the system.

msgsnd () was interrupted by a signal.

msgrcv () fails and no message is received if one or more of the following is true:

[EINVAL] msqid is not a valid message queue identifier.

[EACCES]

[EINVAL]

[E2BIG]

[ENOMSG]

[EFAULT]

[EIDRM]

[EINTR]

Operation permission is denied to the calling process.

msgsz is less than o.
mtext is greater than msgsz and (msgflg &: MSG_NOERROR) is "false".

The queue does not contain a message of the desired type and (msgflg &:
IPC_NOWAIT) is ''true''.

msgp points to an illegal address. The reliable detection of this error is implementa­
tion dependent.

The message queue identifier msqid has been removed from the system.

The function msgrcv () was interrupted by a signal.

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector(2) can
affect the behavior described on this page.

SEE ALSO
ipcs(1), msgctl(2), msgget(2), signal(5), stdipc(3C).

STANDARDS CONFORMANCE
msgrcv () : SVID2, XPG2, XPG3, XPG4

msgsnd () : SVID2, XPG2, XPG3, XPG4

140 -3- HP-UX Release 9.0: August 1992

msync(2) msync(2)

NAME
msync - synchronize a mapped file

SYNOPSIS
#include <sys/mman.h>

int msync(caddr_t addr,size_t len, int flags);

DESCRIPTION
msync controls the caching operations of a mapped file region. msync () writes all modified pages in the
region to the file's underl~..ng storage device, and ensures the visibility of modifications made to the region
with respect to file system operations.

addr and len specify the region to be synchronized. If these are not the address and length of a region
created by a previous successful call to mmap (), msync () returns an error. The behavior of msync ()
upon a region created with the MAP_ANONYMOUS or MAP _PR IVATE flags is undefined.

flags is constructed from the bitwise inclusive OR of one or more of the following flags defined in
<sys /mman. 11>:

MS_SYNC
MS_ASYNC
MS_INVALIDATE

Perform synchronous writes
Perform asynchronous writes
Invalidate cached pages

If MS_SYNC is specified, msync () does not return until the system completes all 110 operations. If
MS_ASYNC is specified, msync () returns after the system schedules all 110 operations. Either
MS_SYNC or MS_ASYNC can be set in flags, but not both.

If MS_INVALIDATE is specified, msync () invalidates all cached copies of the pages. Subsequent refer­
ences to the mapped data is obtained from the file's permanent storage locations. If either MS_SYNC or
MS_ASYNC is also specified, a page is invalidated after it has been written to the file.

Mter a successful call to msync () with MS_SYNC specified, all previous modifications to the mapped
region are visible to processes using read (). Previous modifications to the file using write () may be
lost.

Mter a successful call to msync () with only MS_INVALIDATE specified, all previous modifications to
the file using write () are visible to the mapped region. Previous direct modifications to the mapped
region may be lost.

RETURN VALUE
msync () returns 0 upon success; otherwise, it returns -1 and sets errno to indicate the error.

ERRORS
msync () fails if any of the following conditions are encountered.:

AUTHOR

[EIO]

[ENOMEM]

[EINVAL]

[EINVAL]

An I/O error occurred while reading from or writing to the file system.

The range specified by [addr, addr+len) (from, and including, addr to, but not
including, addr+len) is invalid for a process' address space, or the range specifies one
or more unmapped pages.

addr is not a multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE).

The address range specified by addr and len was not created by a successful call to
mmap() .

msync () was developed by HP, AT&T, and OSF.

SEE ALSO
mmap(2), sysconf(2).

STANDARDS CONFORMANCE
msync () : AES

HP-UX Release 9.0: August 1992 -1- 141

I

I

munmap(2) munmap(2)

NAME
munmap - unmap a mapped region

SYNOPSIS
#include <sys/mman.h>

int munmap(caddr_t addr, size_t len);

DESCRIPTION
munmap () unmaps a mapped file or anonymous memory region.

munmap () unmaps pages in the address range starting at addr and continuing for len bytes rounded up to
the next multiple of the page size. Further references to these pages result in the delivery of a SIGSEGV
signal to the process.

If the address range specified by addr and len was not created by a successful call to mmap (), munmap ()
returns an error.

If the specified address range was created by multiple calls to mmap (), munmap () succeeds in unmap­
ping all of the specified regions, provided they form a contiguous address range.

If the region was created with the MAP _PRIVATE option, any modifications made to the region are dis­
carded.

RETURN VALUE
munmap () returns 0 upon success; otherwise, it returns -1 and sets errno to indicate the error.

ERRORS
munmap () fails if any of the following conditions are encountered:

[EINV AL] addr is not a multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE).

[EINVAL] The address range specified by addr and len was not created by a successful call to
mmap() .

AUTHOR
munmap () was developed by HP, AT&T, and OSF.

SEE ALSO
mmap(2), sysconf(2).

STANDARDS CONFORMANCE
munmap () : AES

142 -1- HP-UX Release 9.0: August 1992

nfssvc(2) nfssvc(2)

NAME
nfssvc, async_daemon - NFS daemons

SYNOPSIS
int nfssvc(int sock);

void async_daemon();

DESCRIPTION
nfssvc () starts an NFS daemon listening on socket sock. The socket must be AF_INET and SOCK_DGRAM
(protocol UDP/lP). The system call returns only if the process is killed.

async _daemon implements the NFS daemon that handles asynchronous 110 for an NFS client. The system
call never returns.

ERRORS
nfssvc () fails if any of the following conditions is encountered, and sets errno accordingly:

[EBADF] sock is not a valid socket descriptor.

[EINVAL] sock refers to a socket that is not an AF _INET and SOCK_DGRAM socket.

async_daemon fails if the following condition is encountered, and sets errno accordingly:

[ENOMEM] There are not enough resources to create the process.

WARNINGS
This call should be used only by HP-supplied commands and is not recommended for use by non-HP­
su pplied programs.

These two system calls allow kernel processes to have user context.

AUTHOR
nfssvc () was developed by Sun Microsystems, Inc.

SEE ALSO
mountd(lM), nfsd(lM).

HP-UX Release 9.0: August 1992 -1- 143

I

I

nice(2) nice(2)

NAME
nice - change priority of a process

SYNOPSIS
#include <unistd.h>

int nice(int priority_change);

DESCRIPTION
nice () adds the value of priority_change to the nice value of the calling process. A process's nice value
is a positive number for which a more positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system. Requests for
values above or below these limits result in the nice value being set to the corresponding limit.

RETURN VALUE
Upon successful completion, nice () returns the new nice value minus 20. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Note that nice () assumes a user process priority value of 20. If a user having appropriate privileges has
changed the user process priority value to something less than 20, certain values for priority _change can
cause nice () to return -1, which is indistinguishable from an error return.

ERRORS
[EPERM] nice () fails and does not change the nice value if priority_change is negative or greater

than 40, and the effective user ID of the calling process is not a user having appropriate
privileges.

SEE ALSO
nice(l), renice(l), exec(2).

STANDARDS CONFORMANCE
nice () : AES, SVID2, XPG2, XPG3, XPG4

144 -1- HP-UX Release 9.0: August 1992

open(2) open(2)

NAME
open - open file for reading or writing

SYNOPSIS
#include <fcntl.h>

int open (

j ;

const char *path,
int of lag, ••.
f* mode_t mode *f

DESCRIPTION
open () opens a file descriptor for the named file and sets the file status flags according to the value of
oflag. path points to a path name naming a file, and must not exceed PATH_MAX bytes in length. oflag
values are constructed by OR-ing flags from the list below.

Exactly one ofthe flags O_RDONLY, O_WRONLY, or O_RDWR must be used in composing the value of oflag.
If none or more than one is used, the behavior is undefined. Several other flags listed below can be changed
by using fcntl () while the file is open. Seefcntl(2) andfcntl(5) for details.

O_RDONLY Open for reading only.

O_WRONLY

O_RDWR

O_NDELAY

Open for writing only.

Open for reading and writing.

This flag might affect subsequent reads and writes. See read(2) and write(2).

When opening a FIFO with O_RDONLYor O_WRONLY set:

If ° NDELAY is set:
-An open () for reading-only returns without delay. An open () for

writing-only returns an error if no process currently has the file open for
reading.

If O_NDELAYis clear:
An open () for reading-only does not return until a process opens the file for writing. An
open () for writing-only does not return until a process opens the file for reading.

When opening a file associated with a communication line:

If ° NDELAY is set:
-The open () returns without waiting for carrier.

If O_NDELAYis clear:
The open () does not return until carrier is present.

O_NONBLOCK
Same effect as O_NDELAY for open(2), but slightly different effect in read(2) and write(2). Only one of
O_NONBLOCK and O_NDELAY can be specified.

O_APPEND
If set, the file offset is set to the end of the file prior to each write.

O_CREAT
If the file exists, this flag has no effect, except as noted under O_EXCL below. Otherwise, the owner ID
of the file is set to the effective user ID of the process, the group ID ofthe file is set to the effective group
ID of the process if the set-group-ID bit of the parent directory is not set, or to the group ID of the parent
directory if the set-group-ID bit of the parent directory is set. The file access permission bits of the file
mode are set to the value of mode modified as follows (see creat(2»:

• For each bit set in the file mode creation mask of the process, the corresponding bit in the new
file's mode is cleared (see umask(2».

• The "save text image after execution" bit of the mode is cleared. See chmod(2).

• On systems with access control lists, three base ACL entries are created corresponding to the file
access permissions (see acl(5».

HP-UX Release 9.0: August 1992 -1- 145

I

I

open(2) open(2)

° TRUNC
IT the file exists, its length is truncated to 0 and the mode and owner are unchanged.

O_EXCL
If O_EXCL and O_CREAT are set, open () fails ifthe file exists.

° NOCTTY
If set, and path identifies a terminal device, open (j does not cause the terminai to become the control-
ling terminal for the process.

° SYNC IT a file is opened with O_SYNC or if that flag is set with the F_SETFL option of fcntl (), file system
writes for the file are done through the cache to the disk as soon as possible, and the process blocks until
the data is written to the buffer cache. This flag is ignored by all 110 calls except write (), and is
ignored for files other than ordinary files and block special devices on those systems that permit 110 to
block special devices.

The name O_SYNCIO is a synonym for O_SYNC, and is defined for backward compatibility in
<fcntl.h>.

The file pointer used to mark the current position within the file is set to the beginning of the file.

The new file descriptor is set to remain open across exee system calls; see fentl(2).

EXAMPLES
The following call to open () opens file inputfile for reading only and returns a file descriptor for inputfile.
For an example of reading from file inputfile, see the read(2) manual entry.

int myfd;

myfd = open (II inputfile ll , O_RDONLY);

The following call to open () opens file outputfile for writing and returns a file descriptor for outputfile.
For an example of pre allocating disk space for outputfile, see the prealloe(2) manual entry. For an exam­
ple of writing to outputfile, see the write(2) manual entry.

int outfd; outfd = open (Jloutputfile II, O_WRONLY);

RETURN VALUE
Upon successful completion, the file descriptor is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS

146

open () fails and the file is not opened if any of the following conditions are encountered:

[EACCES] opag permission is denied for the named file.

[EACCES]

[EACCES]

[EAGAIN]

[EAGAIN]

[EDQUOT]

[EEXIST]

[EFAULT]

[EINTR]

[EINVAL]

[EINVAL]

A component of the path prefix denies search permission.

The file does not exist and the directory in which the file is to be created does not per­
mit writing.

One or more segments of a pre-existing file have been locked with lockf or fentl by
some other process, and O_TRONC is set.

The file exists, enforcement mode file/record locking is set, and there are outstanding
record locks on the file (see ehmod(2».

User's disk quota block or inode limit has been reached for this file system.

O_CREAT and O_EXCL are set and the named file exists.

path points outside the allocated address space of the process.

A signal was caught during the open () system call, and the system call was not
restarted (see signal(5) and sigveetor(2».

opag specifies both O_WRONLY and O_RDWR.

opag specifies both O_NONBLOCK and O_NDELAY.

-2- HP-UX Release 9.0: August 1992

open(2)

[EISDIR]

[ELOOP]

[EMFILE]

The named file is a directory and oflag is write or read/write.

Too many symbolic links are encountered in translating the path name.

The maximum number of file descriptors allowed are currently open.

open(2)

[ENAMETOOLONG]

[ENFILE]

[ENOENT]

[ENOTDIR]

[ENXIO]

[ENODEV]

[EROFS]

[ETXTBSY]

DEPENDENCIES

The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

The system file table is full.

The named file does not exist (for example, path is null or a component of path does
not exist, or the file itself does not exist and O_CREAT is not set).

A component of the path prefix is not a directory.

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process has the
file open for reading.

The named file is a character special or block special file, and the device associated
with this special file either does not exist, or the driver for this device has not been
configured into the kernel.

The named file resides on a read-only file system and oflag is write or read/write.

The file is open for execution and oflag is write or read/write. Normal executable files
are only open for a short time when they start execution. Other executable file types
can be kept open for a long time, or indefinitely under some circumstances.

HP Clustered Environment:
Attempting to open a device file with a serenade value that does not match the cnode ID of the
machine on which the calling process is running (or 0) fails with an EOPNOTSUPP error.

WARNINGS
Access Control Lists

Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

AUTHOR
open () was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
chmod(2), close(2), creat(2), dup(2), fcntl(2), lockf(2), Iseek(2), read(2), select(2), setacl(2), umask(2), write(2),
acl(5), fcntl(5), signal(5).

STANDARDS CONFORMANCE
open (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -3- 147

I

I

pathconf(2) pathconf(2)

NAME
pathconf(), fpathconft) - get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long pathconf(const char *path, int name);

long fpathconf(int fildes, int name);

DESCRIPTION
pathconf () and fpathconf () provide a method for applications to determine the value of a
configurable limit or option associated with a file or directory (see limits(5) and <uni s td • h».

For pathconf (), the path argument points to the path name of a file or directory.

For fpathconf (), the fildes argument is an open file descriptor.

For both functions, the name argument represents the variable to be queried regarding the file or directory
to which the other argument refers.

The following table lists the configuration variables available from pa thconf () and fpa thconf () ,
and lists for each variable the associated value of the name argument:

Variable Value of name
LINICMAX
MAX_CANON
MAX_INPUT
NAME_MAX
PATH_MAX
PIPE_BUF

_PC_LINICMAX
_PC_MAX_CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC_PATH_MAX
_PC_PIPE_BUF

Notes
1
2
2
3,4
4,5
6

_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7,8
_POSIX_NO_TRUNC _PC_NO_TRUNC 3,4
_POSIX_VDISABLE PC V DISABLE 2

The variables in the table are defined as constants in < 1 imi t s • h> or <un i s td • h> if they do not vary
from one pathname to another. The associated values of the name argument are defined in <unistd .h>.

RETURN VALUE

148

The following notes further qualify the table above.

1. If path or fildes refers to a directory, the value returned applies to the directory itself.

2. If the variable is constant, the value returned is identical to the variable's definition in
<limits.h> or <unistd.h> regardless of the type of fildes or path. The behavior is
undefined if path or fildes does not refer to a terminal file.

3. If path or fildes refers to a directory, the value returned applies to the filenames within the direc­
tory.

4. If path or fildes does not refer to a directory, pathconf () or fpathconf () returns -1 and
sets e rrno to EINV AL.

5. If path or fildes refers to a directory, the value returned is the maximum length of a relative path
name when the specified directory is the working directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned applies to the pipe or
I FIFO itself. If path or fildes refers to a directory, the value returned applies to any FIFOs that

exist or can be created within the directory. If PIPE_BUF is a constant, the value returned is
identical to the definition of PIPE_BUF in <limits. h> regardless of the type of fildes or
path. The behavior is undefined for a file other than a directory, FIFO, or pipe.

7. If path or fildes refers to a directory, the value returned applies to files of any type, other than
directories, that exist or can be created within the directory.

8. _POSIX_CHOWN_RESTRICTED is defined if the privilege group PRIV_GLOBAL has been
granted the CHOWN privilege (see getprivgrp(2) and chown(2)). In all other cases,
_POSIX_CHOWN_RESTRICTED is undefined and pathconf or fpathconf returns -1 without
changing errno. To determine if chown can be performed on a file, it is simplest to attempt the

-1- HP-UX Release 9.0: August 1992

pathconf(2) pathconf(2)

chown () operation and check the return value for failure or success.

If the variable corresponding to name is not defined for path or fildes, the pathconf and fpathconf functions
succeed and return a value of -1, without changing the value of errno.

Upon any other successful completion, these functions return the value of the named variable with respect
to the specified file or directory, as described above.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
pathconf and fpathconf fail if any of the following conditions are encountered:

[EACCES] A component of the path prefix denies search permission.

[EBADF] The fildes argument is not a valid open file descriptor.

[EF AULT] path points outside the allocated address space of the process.

[EINV AL] The value of name is not valid or the implementation does not support an associ­
ation of the variable name with the specified file.

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ENOENT] The file named by path does not exist (for example, path is null or a component
of path does not exist).

[ENOTDIR] A component of the path prefix is not a directory.

EXAMPLES
The following example sets val to the value of MAX_CANON for the device file being used as the standard
input. If the standard input is a terminal, this value is the maximum number of input characters that can
be entered on a single input line before typing the newline character:

if (isatty(O})
val = fpathconf(O, _PC_MAX_CANON}i

The following code segment shows two calls to pathconf, one to determine whether a file name longer than
NAME_MAX bytes will be truncated to NAME_MAX bytes in the /tmp directory, and if so, another call to
determine the actual value of NAME_MAX so that an error can be printed if a user-supplied file name
stored in filebuf will be truncated in this directory:

extern int errnOi
char *filebufi

errno = 0i /* reset errno */
if (pathconf (II /tmp" _PC_NO_TRUNC) == -1 } {

/* _POSIX_NO_TRUNC is not in effect for this directory */
if (strlen(filebuf) > pathconf("/tmp", PC_NAME_MAX» {

fprintf(stderr, "Filename %s too long.\n", filebuf)i
/* take error action */

else
if (errno) {

perror ("pathconf II) i
/* take error action */

/* otherwise, POSIX_NO_TRUNC is in effect for this directory */
if «fd = open(filebuf, O_CREAT, mode» < 0)

DEPENDENCIES
NFS

perror(filebuf)i

The following error can occur:

HP-UX Release 9.0: August 1992 -2- 149

I

I

pathconf(2) pathconf(2)

[EOPNOTSUPP] path or tildes refers to a file for which a value for name cannot be determined. In par­
ticular, _PC_LINK_MAX, _PC_NAME_MAX, _PC_PATH_MAX, _PC_NO_TRUNC,
and _PC_CHOWN_RESTRICTED, cannot be determined for an NFS file.

AUTHOR
pathconf () and fpathconf () were developed by HP.

SEE ALSO
errno(2), chown(2), limits(5), unistd(5), termio(7).

STANDARDS CONFORMANCE
pathconf (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.2

fpathconf () : AES, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.2

150 -3- HP-UX Release 9.0: August 1992

pause(2) pause(2)

NAME
pause - suspend process until signal

SYNOPSIS
#include <unistd.h>

int pause (void) ;

DESCRIPTION
pause () suspends the calling process until it receives a signal. The signal must be one that is not
currently set to be ignored or blocked (masked) by the calling process.

If the signal causes termination of the calling process, pause () does not return.

If the signal is caught by the calling process and control is returned from the signal-catching function (see
signal(5)), the calling process resumes execution from the point of suspension; with a return value of -1
from pause () and errno set to EINTR.

WARNING
Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvec­
tor () can affect the behavior described on this page.

SEE ALSO
alarm(2), kill(2), sigvector(2), wait(2), signal(5).

STANDARDS CONFORMANCE
pause () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.l

HP-UX Release 9.0: August 1992 -1- 151

I

I

pipe(2) pipe(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe(int fi1des[2]);

DESCRIPTION
pipe () creates an 110 mechanism called a pipe and returns two file descriptors, jildes[O) and jildes[1).
jildes[O) is opened for reading and jildes[1) is opened for writing.

A read-only file descriptor jildes[O) accesses the data written to jildes[1) on a first-in-first-out (FIFO) basis.
For details of the 1/0 behavior of pipes see read(2) and write(2).

EXAMPLES
The following example uses pipe () to implement the command string 1s I sort:

#inc1ude <sys/types.h>
pid_t pid;
int pipefd[2];

1* Assumes file descriptor 0 and 1 are open */
pipe (pipefd);

if «pid = fork(» == (pid_t)0) {
c1ose(1); /* close stdout */
dup (pipefd[l]);
close (pipefd[O]);
exec1p (lls", 11s", (char *)0);

else if (pid > (pid_t)0) {
c1ose(0); /* close stdin */
dup (pipefd[O]);
close (pipefd[l]);
exec1p ("sort", "sort", (char *)0);

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
pipe () fails if one or more of the following is true:

[EMFILE] NFILE - 1 or more file descriptors are currently open.

[ENFILE] The system file table is full.

[ENOSPC] The file system lacks sufficient space to create the pipe.

SEE ALSO
sh(1), read(2), write(2), popen(3S).

STANDARDS CONFORMANCE
pipe () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

152 -1- HP-UX Release 9.0: August 1992

plock(2) plock(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock(int op);

DESCRIPTION
plock () allows the calling process to lock the text segment of the process (text lock), its data segment
(data lock), or both its text and data segment (process lock) into memory. Locked segments are immune to
all routine swapping. plock. () also allows these segments to be unlocked. To use this call, the calling
process must be a member of a privilege group allowing plock () (see setprivgrp () ongetprivgrp(2»
or the effective user ID of the calling process must be a user having appropriate privileges. op specifies the
following:

PROCLOCK lock text and data segments into memory (process lock)

TXTLOCK

DATLOCK

UNLOCK

EXAMPLES

lock text segment into memory (text lock)

lock data segment into memory (data lock)

remove locks

The following call to plock () locks the calling process in memory:

plock (PROCLOCK);

RETURN VALUE
Upon successful completion, plock () returns 0 to the calling process. Otherwise, it returns -1 and sets
errno to indicate the error.

ERRORS
plock () fails and does not perform the requested operation if any of the following conditions are encoun­
tered:

SEE ALSO

[EPERM]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

[ENOMEM]

The effective user ID of the calling process is not super-user and the user does not
have the PRIV _MLOCK privilege.

op is equal to PROCLOCK and a process lock, a text lock, or a data lock already exists
on the calling process.

op is equal to TXTLOCK and a text lock or process lock already exists on the calling
process.

op is equal to DATLOCK and a data lock, or process lock already exists on the calling
process.

op is equal to UNLOCK and no type of lock exists on the calling process.

op is not equal to either PROCLOCK, TXTLOCK, DATLOCK, or UNLOCK.

plock () not allowed in [vfork, exec] window (see vfork(2».

There is not sufficient lockable memory in the system to satisfy the locking request.

exec(2), exit(2), fork(2).

STANDARDS CONFORMANCE
plock(): SVID2, XPG2

HP-UX Release 9.0: August 1992 -1- 153

I

I

poll(2) Series 300, 400, and 700 Only poll(2)

NAME
poll - monitor 110 conditions on multiple file descriptors

SYNOPSIS
#include <poll.h>

int poll(

) ;

struct pollfd fds[],
int nfds,
int timeout

DESCRIPTION
poll () provides a general mechanism for reporting 110 conditions associated with a set of file descriptors
and ior waiting until one or more specified conditions becomes true. Specified conditions include the ability
to read or write data without blocking, and error conditions.

Arguments
{ds Points to an array of pollfd structures, one for each file descriptor ofinterest.

Specifies the number of pollfd structures in the {ds array.

154

n{ds

timeout Specifies the maximum length of time (in milliseconds) to wait for at least one of the
specified conditions to occur.

Each pollfd structure includes the following members:

int fd File descriptor
short events Requested conditions
short revent s Reported conditions

The fd member of each pollfd structure specifies an open file descriptor. The poll () function uses
the events member to determine what conditions to report for this file descriptor. If one or more of
these conditions is true, poll () sets the associated revents member.

poll () ignores any pollfd structure whose fd member is negative. If the fd member of all
pollfd structures is negative, poll () returns 0 and has no other results.

The events and revents members of the pollfd structure are bit masks. The calling process sets
the events bit mask, and poll () sets the revents hit masks. These bit masks contain ORed com­
binations of condition flags. The following condition flags are defined:

POLL IN

POLLNORM
POLLPRI

POLLOUT

POLL ERR
POLLHUP

POLLNVAL
POLLRDNORM

POLLRDBAND

Data can be read without blocking. For streams, this flag means that a mes­
sage that is not high priority is at the front of the stream head read queue.
This message can be of zero length.
Synonym for POLLIN
A high priority message is available. For streams, this message can be of zero
length.
Data can be written without blocking. For streams, this flag specifies that nor­
mal data (not high priority or priority band> 0) can be written without being
blocked by flow control. This flag is not used for high priority data, because it
can be written even if the stream is flow controlled.
An error has occurred on the file descriptor.
The device has been disconnected. For streams, this flag in revents is
mutually exclusive with POLLOUT, since a stream cannot be written to after a
hangup occurs. This flag and POLLIN, POLLPRI, POLLRDNORM, POLLRD­
BAND, and POLLMSG are not mutually exclusive.
fd is not a valid file descriptor.
A non-priority message is available. For streams, this flag means that a nor­
mal message (not high priority or priority band > 0) is at the front of the
stream head read queue. This message can be of zero length.
A priority message (priority band> 0) is at the front of the stream head read
queue. This message can be read without blocking. The message can be of
zero length.

-1- HP-UX Release 9.0: August 1992

poll(2)

POLLWRNORM
POLLWRBAND

POLLMSG

Series 300, 400, and 700 Only poll(2)

Same as POLLOUT
Priority data (priority band> 0) can be written without being blocked by flow
control. Only previously written bands are checked.
A M_SIG or M_PCSIG message specifying SIGPOLL has reached the front
of the stream head read queue.

The conditions indicated by POLLNORM and POLLOUT are true if and only if at least one byte of data
can be read or written without blocking. The exception is regular files, which always poll true for
POLLNORM and POLLOUT. Also, streams return POLLNORM in revents even if the available message
is of zero length,

The condition flags POLLERR, POLLHUP, and POLLNVAL are always set in revents if the conditions
they indicate are true for the specified file descriptor, whether or not these flags are set in events.

For each call to poll () , the set of reportable conditions for each file descriptor consists of those condi­
tions that are always reported, together with any further conditions for which flags are set in events. If
any reportable condition is true for any file descriptor, poll () returns with flags set in revents for
each true condition for that file descriptor.

If no reportable condition is true for any of the file descriptors, poll () waits up to timeout milliseconds
for a reportable condition to become true. If, in that time interval, a reportable condition becomes true for
any of the file descriptors, poll () reports the condition in the file descriptor's associated revents
member and returns. If no reportable condition becomes true, poll () returns without setting any
revents bit masks.

If the timeout parameter is a value of -1, po 11 () does not return until at least one specified event has
occurred. If the value of the timeout parameter is 0, poll () does not wait for an event to occur but
returns immediately, even if no specified event has occurred. The behavior of poll () is not affected by
whether the O_NONBLOCK flag is set on any ofthe specified file descriptors.

RETURN VALUES
Upon successful completion, poll () returns a nonnegative value. If the call returns 0, poll () has
timed out and has not set any of the revents bit masks. A positive value indicates the number of file
descriptors for which poll () has set the revents bit mask. If poll () fails, it returns -1 and sets
errno to indicate the error.

ERRORS
poll () fails if any of the following conditions are encountered:

[EAGAIN]. Allocation of internal data structures failed. A later call to poll () may complete
successfully.

[EINTR] A signal was delivered before any of the selected for conditions occurred or before the
time limit expired.

timeout is a negative number other than -1, or nfds is negative. [EINVAL]

[EFAULT] The fds parameter in conjunction with the nfds parameter addresses a location out­
side of the allocated address space of the process. Reliable detection of this error is
implementation -dependent.

EXAMPLES
Wait for input on file descriptor 0:

#include <poll.h>
struct pollfd fds;

fds.fd = 0;
fds.events = POLLNORM;
poll (&fds, 1, -1);

Wait for input on ifd1 and ifd2, output on ofd, giving up after 10 seconds:

#include <poll.h>
struct pollfd fds[3];
int ifdl, ifd2, ofd, count;

fds[O).fd = ifdl;

HP-UX Release 9.0: August 1992 -2- 155

I

I

poll(2) Series 300, 400, and 700 Only

fds[O).events = POLLNORM;
fds[l).fd = ifd2;
fds[l).events = POLLNORM;
fds[2).fd = ofd;
fds[2).events = POLLOUT;
count = poll(fds, 3, 10000);
if (count == -1) {

}

perror (llpoll failed");
e:x:it(l);

if (count==O)
printf("No data for reading or writing\n");

if (fds[O).revents & POLLNORM)
printf("There is data for reading fd %d\n", fds[O).fd);

if (fds[l).revents & POLLNORM)
printf("There is data for reading fd %d\n", fds[l).fd);

if (fds[2).revents & POLLOUT)
printf("There is room to write on fd %d\n", fds[2).fd);

Check for input or output on file descriptor 5 without waiting:

#include <poll.h>
struct pollfd fds;

fds.fd = 5;
fds.events = POLLNORMIPOLLOUT;
poll (&fds, 1, 0);
if (fds.revents & POLLNORM)

printf (IIThere is data available on fd %d\n", fds. fd);
if (fds.revents & POLLOUT)

printf("There is room to write on fd %d\n", fds.fd);

Wait 3.5 seconds:

#include <stdio.h>
#include <poll.h>

poll«struct pollfd *) NULL, 0, 3500);

Wait for a high priority, priority, or normal message on streams file descriptor 0:

#include <poll.h>

WARNINGS

struct pollfd fds;

fds.fd = 0;
fds.events = POLLINIPOLLPRI;
poll (&fds, 1, -1);

In some countries, electioneering is illegal within one hundred feet of a polling place.

SEE ALSO
read(2), write(2), select(2), getmsg(2), putmsg(2), streamio(7).

STANDARDS CONFORMANCE
poll (): AES, SVID2

poll(2)

156 -3- HP-UX Release 9.0: August 1992

prealloc (2) prealloc (2)

NAME
prealloc - preallocate fast disk storage

SYNOPSIS
#inelude <unistd.h>

int prealloe(int fildes, off_t size);

DESCRIPTION
prealloe () is used to preallocate space on a disk for faster storage operations.

fildes is a file descriptor obtained from a ereat (), pen (), dup (), or fentl () system call for an ordi­
nary file of zero length. It must be opened writable, because it will be written to by prealloe (). size is
the size in bytes to be preallocated for the file specified by fildes. At least size bytes will be allocated. Space
is allocated in an implementation-dependent fashion for fast sequential reads and writes. The EOF in an
extended file is left at the end of the preallocated area. The current file pointer is left at zero. The file is
zero-filled.

Using prealloe () on a file does not give the file an attribute that is inherited when copying or restoring
the file using a program such as ep or tar (see cp(1) and tar(1». It simply ensures that disk space has
been preallocated for size bytes in a manner suited for sequential access. The file can be extended beyond
these limits by write () operations past the original end of file. However, this space will not necessarily
be allocated using any special strategy.

EXAMPLES
Assuming a process has opened a file for writing, the following call to prealloe () preallocates at least
50 000 bytes on disk for the file represented by file descriptor outfd:

prealloe (outfd, 50000);

DEPENDENCIES
Since the exact effect and performance benefits obtainable by using this call vary with the implementation
of the file system, performance related details are described in the system administrator manuals for each
specific machine.

RETURN VALUE
Upon successful completion, prealloe () returns 0; otherwise, it returns -1 and sets errno to indicate
the error.

ERRORS
prealloe () fails and no disk space is allocated if any of the following conditions are encountered:

[EBADF]

[EDQUOT]

[EFBIG]

fildes is not a valid open file descriptor opened for writing.

User's disk quota block limit has been reached for this file system.

size exceeds the maximum file size or the process's file size limit. See ulimit(2).

[ENOSPC] Not enough space is left on the device to allocate the requested amount; no space was
allocated.

[ENOTEMPTY] fildes not associated with an ordinary file of zero length.

AUTHOR
prealloe () was developed by HP.

SEE ALSO
prealloc(1), creat(2), dup(2), fcntl(2), open(2), read(2), ulimit(2), write(2).

WARNINGS
Allocation of the file space is highly dependent on current disk usage. A successful return does not tell you
how fragmented the file actually might be if the disk is nearing its capacity.

HP-UX Release 9.0: August 1992 -1- 157

I

I

profil(2) profil(2)

NAME
profil- execution time profile

SYNOPSIS
#include <time.h>

void profile

) ;

unsigned short lnt *buff;
size_t bufsiz,
size_t offset,
unsigned int scale

DESCRIPTION
prof i 1 (j controls profiling, by which the system maintains estimates of the amount of time the calling
program spends executing at various places in its address space.

The buff argument must point to an area of memory whose length (in bytes) is given by bufsiz. When
profiling is on, the process's program counter (pc) is examined each clock tick (CLK_TCK times per second),
offset is subtracted from the pc value, and the result is multiplied by scale. If the resulting number
corresponds to an element inside the array of unsigned short ints to which buff points, that element
is incremented.

The number of samples per second for a given implementation is given by CLK_TCK, which is defined in
<time.h>.

The scale is interpreted as an unsigned, sixteen bit, fixed-point fraction with binary point at the left:
0177777 (octal) gives a one-to-one mapping of pc's to words in buff; 077777 (octal) maps each pair of instruc­
tion words together. 02(octal) maps all instructions onto the beginning of buff (producing a non­
interrupting core clock).

Profiling is turned offby giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of o. Profiling
is turned off when one of the exec () functions is executed, but remains on in child and parent both after
a fork (). Profiling is turned off if an update in buff would cause a memory fault.

RETURN VALUE
No value is returned.

SEE ALSO
prof(!), monitor(3C).

STANDARDS CONFORMANCE
prof i I () : SVID2, XPG2

158 -1- HP-UX Release 9.0: August 1992

ptrace(2) ptrace(2)

NAME
ptrace - process trace

SYNOPSIS
#lnclude <sys/ptrace.h>

lnt ptrace(

) ;

REMARKS

lnt request,
pld_t pld,
lnt addr,
int data,
lnt addr2

Much of the functionality of this capability is highly dependent on the underlying hardware. An application
that uses this system call should not be expected to be portable across architectures or implementations.

DESCRIPTION
ptrace () provides a means by which a process can control the execution of another process. Its primary
use is for the implementation of breakpoint debugging; see adb (1). The traced process behaves normally
until it encounters a signal (see signal(2) for the list), at which time it enters a stopped state and the trac­
ing process is notified via walt () (see wait(2». When the traced process is in the stopped state, the trac­
ing process can examine and modify the "core image" using ptrace (). Also, the tracing process can cause
the traced process either to terminate or continue, with the possibility of ignoring the signal that caused it
to stop.

The request argument determines the precise action to be taken by ptrace () and is one of the following:

PT_SETTRC This request must be issued by a child process if it is to be traced by its parent. It
turns on the child's trace flag which stipulates that the child should be left in a
stopped state upon receipt of a signal rather than the state specified by func; see sig­
nal(2). The pid, addr, data, and addr2 arguments are ignored, and a return value is
not defined for this request. Peculiar results occur if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the tracing process. For each, pid is the process ID of
the process being traced, which must be in a stopped state before these requests are made.

PT_RIUSER,PT_RDUSER
With these requests, the word at location addr in the address space of the traced
process is returned to the tracing process. If instruction (1) and data (D) space are
separated, request PT_RIUSER returns a word from I space, and request
PT_RDUSER returns a word from D space. If I and D space are not separated,
either request PT_RIUSER or request PT_RDUSER can be used with equivalent
results. The data and addr2 arguments are ignored. These two requests fail if
addr is not the start address of a word, in which case a value of -1 is returned to the
tracing process and its errno is set to EIO.

PT_RUAREA With this request, the word at location addr in the USER area of the traced process
in the system's address space (see <sys/user.h» is returned to the tracing pro­
cess. Addresses in this area are system dependent, but start at zero. The limit can
be derived from <sys /user • h>. The data and addr2 arguments are ignored.
This request fails if addr is not the start address of a word or is outside the USER
area, in which case a value of -1 is returned to the tracing process and its errno is
set to Ero.

PT_WIUSER,PT_WDUSER
With these requests, the value given by the data argument is written into the
address space of the traced process at location addr. Request PT_WIUSER writes
a word into I space, and request PT_WDUSER writes a word in D space. Upon suc­
cessful completion, the value written into the address space of the traced process is
returned to the tracing process. The addr2 argument is ignored. These two
requests fail if addr is not the start address of a word, or if addr is a location in a

HP-UX Release 9.0: August 1992 -1- 159

•

•

ptrace(2) ptrace(2)

pure procedure space and either another process is executing in that space or the
tracing process does not have write access for the executable file corresponding to
that space. Upon failure a value of -1 is returned to the tracing process and its
e rrno is set to EIO.

PT_WUAREA With this request, a few entries in the traced process' USER area can be written.
data gives the value that is to be written and addr is the location of the entry. The
addr2 argument is ignored. The few entries that can be written are dependent on
the architecture of the system, but include the user data registers, auxiliary data
registers, and status register (the set of registers, or bits in registers, that the user's
program could modify).

PT_CONT1N This request causes the traced process to resume execution. If the data argument is
0, ail pending signals, including the one that caused the traced process to stop, are
canceled before it resumes execution. If the data argument is a valid signal
number, the traced process resumes execution as if it had incurred that signal, and
any other pending signals are canceled. The addr argument must be equal to 1 for
this request. The addr2 argument is ignored. Upon successful completion, the
value of data is returned to the tracing process. This request fails if data is not 0 or
a valid signal number, in which case a value of -1 is returned to the tracing process
and its errno is set to EIO.

PT_EX1T This request causes the traced process to terminate with the same consequences as
exi t (). The addr, data, and addr2 arguments are ignored.

PT_S1NGLE This request causes a flag to be set so that an interrupt occurs uponthe completion
of one machine instruction, and then executes the same steps as listed above for
request PT_CONT1N. If the processor does not provide a trace bit, this request
returns an error. This effectively allows single stepping of the traced process.

Whether or not the trace bit remains set after this interrupt is a function of the
hardware .

PT_ATTACH This request stops the process identified by pid and allows the calling process to
trace it. Process pid does not have to be a child of the calling process, but the
effective user ID of the calling process must match the real and saved uid of process
pid unless the effective user ID of the tracing process is super-user. The calling pro­
cess can use the wait () system call to wait for process pid to stop. The addr,
data, and addr2 arguments are ignored.

PT_DETACH This request detaches the traced process pid and allows it to continue its execution
in the manner ofPT_CONT1N.

To forestall possible fraud, ptrace () inhibits the set-user-ID facility on subsequent exec () calls. If
a traced process calls exec () , it stops before executing the first instruction of the new image showing
signal S1 GTRAP.

ERRORS
In general, ptrace () fails if any of the following conditions are encountered:

[EIO]

[EPERM]

[ESRCH]

request is an illegal number.

The specified process cannot be attached for tracing.

pid identifies a process to be traced that does not exist or has not executed
a pt race () with request PT_SETTRC.

DEPENDENCIES
Series 300/400

160

The following additional requests are available:

PT_RFPREGS With this request, the child's floating-point accelerator register set is returned to the
parent process in addr. addr must be the address of a buffer of at least 136 bytes.
The first 128 bytes contains the 16 double-precision floating-point registers and the
next 8 bytes contains the status and control registers. The data argument is ignored.
This request fails if the child process is not using the floating-point accelerator, in

-2- HP-UX Release 9.0: August 1992

ptrace(2) ptrace(2)

which case a value of -1 is returned to the parent process and the parent's errno is
set to EIO. This request also fails if addr is a bad address, in which case a value of-1
is returned to the parent process and the parent's errno is set to EFAULT.

PT_WFPREGS With this request, the child's floating-point accelerator register set is written from the
buffer pointed to by addr. addr must be the address of a buffer of at least 136 bytes.
The first 128 bytes contains the new values for the 16 double-precision floating point
registers and the next 8 bytes contains the new values for the status and control
registers. The data argument is ignored. This request fails if the child process is not
using the floating-point accelerator, in which case a value of -1 is returned to the
parent process and the parent's errno is set to EIO. This request also fails if addr is
a bad address, in which case a value of -1 is returned to the parent process and the
parent's errno is set to EFAULT.

Series 700/800
The request PT_WUAREA is not supported. Therefore, it returns -1, sets errno to EIO and does not affect
the USER area of the traced process.

If the addr argument to a PT_CONTIN or PT_SINGLE request is not 1, the Instruction Address Offset
Queue (program counter) is loaded with the values addr and addr+4 before execution resumes. Otherwise,
execution resumes from the point where it was interrupted.

If the addr argument to a PT_DETACH request is not 1, the Instruction Address Offset Queue is loaded
with the values addr and addr2.

Additional requests are available:

SEE ALSO

PT_RUREGS With this request, the word at location addr in the save_state structure at the
base of the per-process kernel stack is returned to the tracing process. addr must be
word-aligned and less than STACKSIZE * NBPG (see <sys/param. h> and
<Ina.chine/param.h». The save_state structure contains the registers and
other information about the process. The data and addr2 arguments are ignored.

PT_WUREGS The save_state structure at the base of the per-process kernel stack is written as
it is read with request PT_RUREGS. Only a few locations can be written in this way:
the general registers, most floating-point registers, a few control registers, and certain
bits of the interruption processor status word. The addr2 argument is ignored.

PT_RDTEXT,PT_RDDATA
These requests are identical to PT_RIUSER and PT_RDUSER, except that the data
argument specifies the number of bytes to read and the addr2 argument specifies
where to store that data in the tracing process.

PT_WRTEXT , PT_WRDATA
These requests are identical to PT_WIUSER and PT_WDUSER except that the data
argument specifies the number of bytes to write and the addr2 argument specifies
where to read that data in the tracing process.

adb(l), exec(2), signal(2), wait(2).

STANDARDS CONFORMANCE
ptrace (): SVID2, XPG2

HP-UX Release 9.0: August 1992 -3- 161

I

I

quotactl (2) quotactl (2)

NAME
quotactl - manipulate disk quotas

SYNOPSIS
#lnclude <sys/quota.h>

lnt quotactl(lnt cmd, const char *special, uid_t uid, void *addr);

DESCRIPTION
quotactl () manipulates disk quotas. cmd indicates a command to be applied to the user ID uid.
Parameter special is a pointer to a null-terminated string containing the path name of the block special dev­
ice for the file system being manipulated. The block special device must be mounted as an hfs file system
(see mount(2)). The parameter addr is the address of an optional, command-specific, data structure which
is copied in or out of the system. The interpretation of addr is explained with each command below:

O_OUOTAON Turn on quotas for a file system. The parameter addr points to the path name of file
containing the quotas for the file system. The quota file must exist; it is normally
created using the quotacheck command (see quotacheck(lM)). The uid parameter
is ignored. This call is restricted to users having appropriate privileges.

O_OUOTAOFF Turn off quotas for a file system. The addr and uid parameters are ignored. This call
is restricted to the user with appropriate privileges.

O_GETOUOTA Get disk quota limits and current usage for user uid. addr is a pointer to a dqblk
structure (defined in <sys/quota .h». Only users having appropriate privileges
can get the quotas of a user other than himself.

O_SETOUOTA Set disk quota limits and current usage of files and blocks for user uid. addr is a
pointer to a dqblk structure (defined in <sys/quota .h». This call is restricted
to users with appropriate privileges.

O_SETOLIM Set disk quota limits for user uid. The parameter addr is a pointer to a dqblk
structure (defined in <sys/quota.h». This call is restricted to users with
appropriate privileges.

Update the on-disk copy of quota usages for a file system. If special is null, all file
systems with active quotas are synced. The parameters addr and uid are ignored.

RETURN VALUE
Upon successful completion, quotact 1 () returns 0; otherwise, it returns -1 and sets errno to indicate
the error.

ERRORS

162

quotactl () fails when any of the following occurs:

[ENOSYS] The kernel has not been configured with the disk quota subsystem.

[EINVAL]

[ESRCH]

[EPERM]

[ENODEV]

[ENOTBLK]

[EACCES]

[EBUSY]

[ENOENT]

[EFAULT]

[EDQUOT]

The parameter cmd is invalid.

No disc quota is found for the indicated user or quotas have not been turned on for
this file system.

The call is privileged and the calling process does not have appropriate privileges.

The parameter special is not a mounted HFS file system.

The parameter special is not a block device.

(O_OUOTAON) The quota file pointed to by addr exists but is either not a regular file
or is not on the file system pointed to by special.

O_OUOTAON attempted while another O_OUOTAON or O_OUOTAOFF is in progress.

The file specified by special or addr does not exist.

The addr or special parameter points to an invalid address. Reliable detection of this
error is implementation-dependent.

User's disk quota block limit has been reached for this file system.

-1- HP-UX Release 9.0: August 1992

quotactl (2) quotactl (2)

WARNINGS
The quotactl () system call is incompatible with the 4.2/4.3BSD implementation of Melbourne quotas
which uses a different system call interface and on-disk data structure.

AUTHOR
quotactl () was developed by lIP and Sun Microsystems, Inc.

SEE ALSO
quota (1), edquota (1M), rquotad (1M), quotacheck (1M), quotaon (1M), mount (2), quota (5), privilege(5).

HP-UX Release 9.0: August 1992 -2- 163

I

I

read(2) read(2)

NAME
read, readv - read input

SYNOPSIS
#include <unistd.h>

size_t read(int fildes, void *buf, size_t nbyte);

#includa <sys/uio.h>

ssize_t readv(
int fildes,

) ;

const struct iovec *iov,
size_t iovcnt

DESCRIPTION

164

read () attempts to read nbyte bytes from the file associated with the file descriptor into the buffer pointed
to by bur. ready () performs the same action, but scatters the input data into the iovcnt buffers specified
by the elements of the iovec array: iov[O], iov[l], ... , iov[iovcnt - 1].

For ready () ,the iovec structure is defined as:

struct iovec {
caddr_t iov_base;
int iov_len;

} ;

Each iovec entry specifies the base address and length of an area in memory where data should be
placed. ready () always fills one area completely before proceeding to the next area. The iovec array
can be at most MAXIOV long.

On devices capable of seeking, the read () starts at a position in the file given by the file offset associated
with fildes. Upon return from read () , the file offset is incremented by the number of bytes actually read.

Devices incapable of seeking always read from the current position. The value of a file offset associated
with such a device is undefined.

When attempting to read from a regular file with enforcement-mode file and record locking set (see
chmod(2)), and the segment of the file to be read is blocked by a write lock owned by another process, the
behavior is determined by the O_NDELAYand O_NONBLOCK file status flags:

• If O_NDELAYor O_NONBLOCK is set, read () returns -1 and errno is set to EAGAIN.

• If O_NDELAY and O_NONBLOCK are clear, read () does not return until the blocking write
lock is removed.

When attempting to read from an empty pipe (or FIFO):

• If no process has the pipe open for writing, the read returns a o.
• If some process has the pipe open for writing and O_NONBLOCK is set, the read returns -1 and

errno is set to EAGAIN.

• If O_NDELAY is set, the read returns a o.
• If some process has the pipe open for writing and O_NDELAYand O_NONBLOCK are clear, the

read blocks until data is written to the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data currently available:

• If O_NONBLOCK is set, the read returns -1 and errno is set to EAGAIN.

• If O_NDELAY is set, the read returns o.
• If O_NDELAYand O_NONBLOCK are clear, the read blocks until data becomes available.

If read () is interrupted by a signal after it has successfully read some data, it returns the number of
bytes actually read and placed in the buffer before the interrupt occurred. If read () is interrupted
before any data is successfully read, read () returns -1 and sets errno to EINTR.

-1- HP-UX Release 9.0: August 1992

read(2) read(2)

RETURN VALUE
Upon successful completion, read () returns the number of bytes actually read and placed in the buffer;
this number may be less than nbyte if:

• The file is associated with a communication line (see ioctl(2) and termio(7», or

• The number of bytes left in the file is less than nbyte bytes.

• read () was interrupted by a signal after it had successfully read some, but not all of the data
requested.

When an end-of-file is reached, a value of 0 is returned. Otherwise, a -1 is returned and errno is set to
indicate the error.

ERRORS
read () fails if any of the following conditions are encountered:

[EBADF] fildes is not a valid file descriptor open for reading.

[EINTR] A signal was caught before any data was transferred (see sigvector(2».

[EAGAIN]

[EDEADLK]

[EFAULT]

[EIO]

[EIO]

[EISDIR]

[ENOLCK]

Enforcement-mode file and record locking is set, O_NDELAYor O_NONBLOCK is set,
and there is a blocking write lock.

A resource deadlock would occur as a result of this operation (see lockf(2) and
fcntl(2».

buf points outside the allocated address space. Reliable detection of this error is
implementation dependent.

The process is in a background process group and is attempting to read from its con­
trolling terminal, and either the process is ignoring or blocking the SIGTTIN signal
or the process group of the process is orphaned.

An I/O error occurred while reading from the device corresponding to fildes.

An attempt was made to read a directory on an NFS file system using the read ()
system call.

The system record lock table is full, preventing the read from sleeping until the block­
ing write lock is removed.

In addition, ready () can return one of the following errors:

[EFAULT] iov _base or iov points outside of the allocated address space. The reliable detection
of this error is implementation dependent.

iovcnt is less then or equal to 0, or greater than MAXIOV. [EINVAL]

[EINVAL] The sum of iov_len values in the iov array exceeded UINT_MAX defined in
<11m1 ts .11> (see limits(5».

EXAMPLES
Assuming a process opened a file for reading, the following call to read(2) reads BUFS IZ bytes from the file
into the buffer pointed to by mybuf:

#1nclude <stdio.h> /* include this for BUFSIZ definition */

char mybuf[BUFSIZli
int nbytes, fildesi

nbytes = read (fildes, mybuf, BUFSIZ)i

WARNINGS
Record locking might not be enforced by the system, depending on the setting of the file's mode bits (see
lockf(2».

Character-special devices, and raw disks in particular, apply constraints on how read () can be used. See
the specific Section (7) entries for details on particular devices.

Check all references to signal(5) for appropriateness on systems that support sigvector(2). s igvector ()
can affect the behavior described on this page.

HP-UX Release 9.0: August 1992 -2- 165

I

•

read(2) read(2)

In general, avoid using read () to get the contents of a directory; use the readdir () library routine
(see directory(3C».

DEPENDENCIES
NFS

When obtaining the contents of a directory on an NFS file system, the readdir () library routine must be
used (see directory(3C». read () returns with an error ifused to read a directory using NFS.

AUTHOR
read () was developed by lIP, AT&T, and the University of California, Berkeley.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2), lockft2), open(2), pipe(2), select(2), ustat(2), tty(7), directory(3C).

STANDARDS CONFORMANCE
read () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

166 -3- HP-UX Release 9.0: August 1992

readlink(2) readlink (2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
#include <sy.mlink.h>

ssize_t readlink(
const char *path,
char *buf,
size_t bufsiz

) ;

DESCRIPTION
readl ink () obtains the path name pointed to by the symbolic link, path. This path name is placed in
the buffer buf, which has size bUfsiz.

RETURN VALUE
If readl ink () succeeds, it returns the count of characters placed in the buffer. If an error occurs, it
returns -1 and sets errno to indicate the error.

ERRORS
readl ink () fails if any of the following conditions is encountered:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[ELOOP]

[EINVAL]

A component of path exceeds bytes while is in effect, or path exceeds bytes.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the path name.

The named file is not a symbolic link.

[EFAULT] buf points outside the process' allocated address space. Reliable detection of this
error is implemenation dependent.

DEPENDENCIES
Series 300,400, and 700:

If the length of the path name string is less than bufsiz, the string will be null terminated when returned.
If the length of the path name string is exactly bufsiz, the string will not be null terminated when returned.
If the length of the path name string exceeds bufsiz, readlink () returns -1 and sets errno to:

[ERANGE] The length of the path name string read from the symbolic link exceeds bufsiz.

Series 800:
The path name is not null terminated when returned.

AUTHOR
readl ink () was developed by the University of California, Berkeley.

SEE ALSO
stat(2), Istat(2), symlink(2), symlink(4).

STANDARDS CONFORMANCE
readlink (): AES [Series 300/400/700 only]

HP-UX Release 9.0: August 1992 -1- 167

I

I

reboot (2) reboot (2)

NAME
reboot - boot the system

SYNOPSIS
#include <sys/reboot.h>

int reboot (int howto, •.•
1* const char *device_file,

const char *filename,
const char *filename,
const char *server_linkaddress */

) i

DESCRIPTION
reboot () causes the system to reboot. howto is a mask of reboot options (see <sys/reboot .lD),
specified as follows:

RB_NEWDEVICE

RB_NEWFILE

RB_NEWSERVER

A file system sync is performed (unless RB_NOSYNC is set) and the processor is
rebooted from the default device and file.

The processor is simply halted. A sync of the file system is performed unless the
RB_NOSYNC flag is set. RB_HALT should be used with caution.

A sync of the file system is not performed.

The deviceJile argument is used as the file name of the device from which to
reboot.

The filename argument is used as the name of the file being rebooted.

The additional optional parameter, server _linkaddress, specifies the ETHERNET
link address of a new boot server. The server _linkaddress is a 12-character hex-
adecimal number that has the same format as the machine ID field of
/etc/clusterconf. The Ox prefix is optional.

This allows a standalone system or HP cluster server to reboot and join an HP
cluster as a client node, or for an existing client to join a different HP cluster.

deviceJile specifies the "boot device", the device from which the reboot occurs. deviceJile must be a block
or character special file name and is used only if the RB_NEWDEVICE option is set.

If the RB_NEWFILE option is set, filename specifies the "boot file", the name of the file being rebooted.
This file is loaded into memory by the bootstrap then control is passed to it.

If the RB_NEWSERVER option is set, reboot(2) does not verify that server _linkaddress is a valid ETHER­
NET address, nor that the specified server is valid or provides the required service.

If the boot device is not a LAN device, the server _linkaddress information is ignored. The boot device is
considered a LAN device if the previous boot was from a LAN device or if a LAN device is specified via the
RB_NEWDEVICE option.

Unless the RB_NOSYNC flag has been specified, reboot(2) unmounts all mounted file systems and marks
them clean so that it will not be necessary to run fsck(1M) on these file systems when the system reboots.

Only users with appropriate privileges can reboot a machine.

RETURN VALUE
If successful, this call never returns. Otherwise, a -1 is returned and errno is set to indicate the error.

ERRORS

168

reboot () fails if any of the following conditions are encountered:

[EFAULT] deviceJile points outside the allocated address space of the process.

[ENAMETOOLONG] the path name specified by deviceJile exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[EINVAL] deviceJile is not a block or a character device.

-1- HP-UX Release 9.0: August 1992

reboot(2) reboot(2)

[ENET]

[ENOENT]

[ENOTDIR]

[ENXIO]

[EPERM]

DEPENDENCIES
Series 300/400

The device specified by device-1ile is remote.

The file specified by deviceJi,le does not exist.

A component of the path prefix specified by deviceJi,le is not a directory.

The device named by deviceJi,le does not exist.

The effective user ID of the caller is not a user with appropriate privileges.

filename must be one of the files listed by the boot ROM at power-up.

The default device, file, and server for RB_AUTOBOOT are those from which the system was previously
booted.

If the RB_NEWDEVICE option is used and deviceJi,le specifies a LAN device, the RB_NEWSERVER option
and server _linkaddress parameter must also be used.

If an invalid server _linkaddress is specified with the RB_NEWSERVER option, or if the requested server
does not respond, the Series 300/400 boot ROM displays the message BOOTING A SYSTEM and retries
indefinitely, or until the requested server responds, or the system is rebooted manually.

Series 700/800
The RB_NEWDEVICE, RB_NEWFILE, and RB_NEWSERVER options and the deviceJi,le, filename and
server _linkaddress parameters are ignored. Therefore, none of the errors associated with them are
returned.

The default file and device for RB_AUTOBOOT are /hp-ux on the current root device.

AUTHOR
reboot () was developed by HP and the University of California, Berkeley.

SEE ALSO
reboot(1M), clusterconf(4).

HP-UX Release 9.0: August 1992 -2- 169

I

I

recv(2) recv(2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

int recv(int s, void *buf, int len, int flags};

int recvfrom(
int s,
void *buf,
int len,
int flags,
void *from:
int *fromlen};

int recvmsg(int s, struct msghdr msg[], int flags};

DESCRIPTION

170

recv () , recvf rom () ,and recvmsg () are used to receive messages from a socket.

s is a socket descriptor from which messages are received. bufis a pointer to the buffer into which the mes­
sages are placed. len is the maximum number of bytes that can fit in the buffer referenced by buf.

If the socket uses connection-based communications, such as a SOCK_STREAM socket, these calls can only be
used after the connection has been established (see connect(2». For connectionless sockets such as
SOCK_DGRAM, these calls can be used whether a connection has been specified or not.

recvfrom () operates in the same manner as recv () except that it is able to return the address of the
socket from which the message was sent. For connected datagram sockets, recvfrom () simply returns
the same address as getpeername () (see getpeemame(2». For stream sockets, recvfrom ()
retrieves data in the same manner as recv (), but does not return the socket address of the sender. If
from is non-zero, the source address of the message is placed in the socket address structure pointed to by
from. fromlen is a value-result parameter, initialized to the size of the structure associated with from, and
modified on return to indicate the actual size of the address stored there. If the memory pointed to by from
is not large enough to contain the entire address, only the first fromlen bytes of the address are returned.

The length of the message is returned.

For message-based sockets such as SOC}LDGRAM, the entire message must be read in a single operation. If
a message is too long to fit in the supplied buffer, the excess bytes are discarded. For stream-based sockets
such as SOCK_STREAM, there is no concept of message boundaries. In this case, data is returned to the user
as soon as it becomes available, and no data is discarded. See the AF _CCITT section below for a list of the
exceptions to this behavior for connections in the address family AF _CCIT!'.

recvms g () performs the same action as recv (), but scatters the read data into the buffers specified in
the msghdr structure. This structure is defined in <sys / socket. 11>, and has the following form:

struct msghdr
caddr_t
int
struct
int
caddr_t
int

msg_name;
msg_namelen;
iovec *msg_iov;
msg_iovlen;
msg_accrights;
msg_accrightslen;

/* optional address */
/* size of address */
/* scatter array for data */
/* # of elements in msg_iov */
/* access rights */
/* size of msg_accrights */

msg_name is the destination address if the socket is unconnected; msg_name may be a null pointer if no
name is specified. msg_iov is the location of the scatter/gather data. msg_accrights specifies a buffer to
receive any access rights sent along with the. message. Access rights are limited to file descriptors of size
into If access rights are not being transferred, set the msg_acccrights field to NULL. Access rights are sup­
ported only for AF _UNIX.

If no data is available to be received, recv () waits for a message to arrive unless non-blocking mode is
enabled. There are three ways to enable non-blocking mode:

-1- HP-UX Release 9.0: August 1992

recv(2) recv(2)

• With the FIOSNBIO ioctl () request,
• With the O_NONBLOCK fcntl () flag,
• With the O_NDELAY fcntl () flag.

If non-blocking 110 is enabled using FIOSNBIO or the equivalent FIONBIO request (defined in
<sys/ioct1.h> and explained in ioctl(2), ioctl(5) and socket(7), although use of FIONBIO is not
recommended), the recv () request completes in one of three ways:

• If there is enough data available to satisfy the entire request, recv () completes successfully,
having read all of the data, and returns the number of bytes read.

• If there is not enough data availabie to satisfy the entire request, reCV () complete success­
fully, having read as much data as possible, and returns the number of bytes it was able to read.

• If there is no data available, recv () fails and errno is set to EWOULDBLOCK.

If non-blocking 110 is disabled using FIOSNBIO, recv () always executes completely (blocking as neces­
sary) and returns the number of bytes read.

If the O_NONBLOCK flag is set using fcntl () (defined in <sys/fcntl.h> and explained infcntl(2)
and fcntl(5», POSIX-style non-blocking 110 is enabled. In this case, the recv () request completes in one
of three ways:

• If there is enough data available to satisfy the entire request, recv () completes successfully,
having read all the data, and returns the number of bytes read.

• If there is not enough data available to satisfy the entire request, recv () completes success­
fully, having read as much data as possible, and returns the number of bytes it was able to read.

• If there is no data available, recv () completes, having read no data, and returns -1 with
errno set to EAGAIN.

If the O_NDELAY flag is set using fcntl () (defined in <sys/fcntl. h> and explained infcntl(2) and
fcntl(5», non-blocking 110 is enabled. In this case, the recv () request completes in one of three ways:

• If there is enough data available to satisfy the entire request, recv () completes successfully,
having read all the data, and returns the number of bytes read.

• If there is not enough data available to satisfy the entire request, recv () completes success­
fully, having read as much data as possible, and returns the number of bytes it was able to read.

• If there is no data available, recv() completes successfully, having read no data, and returns
O.

If the O_NONBLOCK or O_NDELAY flag is cleared using fcntl (), the corresponding style of non­
blocking I/O, if previously enabled, is disabled. In this case, recv () always executes completely (block­
ing as necessary) and returns the number of bytes read.

Since both the fcntl () O_NONBLOCK and O_NDELAY flags and ioctl () FIOSNBIO request are
supported, some clarification on how these features interact is necessary. If the O_NONBLOCK or
O_NDELAY flag has been set, recv () requests behave accordingly, regardless of any FIOSNBIO
requests. If neither the O_NONBLOCK nor O~DELAY flag has been set, FIOSNBIO requests control
the behavior of recv (). The default is that non-blocking I/O is not enabled.

select () can be used to determine when more data arrives by selecting the socket for reading.

The [lags parameter can be set to MSG_PEEK, MSG_OOB, both, or zero. If it is set to MSG_PEEK, any
data returned to the user still is treated as if it had not been read. The next recv () re-reads the same
data. The MSG_OOB flag is used to alert the other process with an urgent message, using a logically
independent transmission channel associated with a pair of connected stream sockets. Refer to SEE ALSO
below for details. For stream-based TCP SOCK_STREAM sockets, both the MSG_PEEK and MSG_OOB
flags can be set at the same time. The MSG_OOB flag value is supported for stream-based TCP
SOCK_STREAM sockets only. MSG_OOB is not supported for AF _UNIX sockets.

A read () call made to a socket behaves in exactly the same way as a recv () with [lags set to zero.

AF _ CCITT only:
Connections in the address family AF _CCITT support message-based sockets only. Although the user
specifies connection-based communications (SOCK_STREAM), the X.25 subsystem communicates via

HP-UX Release 9.0: August 1992 -2- 171

I

I

recv(2) recv(2)

messages. This address family does not support SOCK_DGRAM socket types.

Normally, each reev () returns one complete X.25 message. If the socket IS In non-blocking mode,
reev () behaves as described above. Note that if the user specifies len less than the actual X.25 message
size, the excess data and no error indication is returned. The size of the next available message as well as the
state ofMDTF, D, and Q bits can be obtained with ioetl (X2S_NEXT_MSG_STAT).

Connections of the address fa ;ly AF _CCITT receive data in the same way as message-based connections
described above, with the following additions and exceptions:

• reevfrom () is supported; however, the from and fromlen parameters are ignored (that is, it
works in the same manner as reev ()).

• To receive a message in fragments of the complete X.25 message, use
ioetl (X2 5_SET_FRAGMENT_SIZE). The state of the 1'.1:DTF bit is 1 on all except the last frag­
ment of the message.

• The MSG_OOB flag is supported.

• The MSG_PEEK flag is supported; the two flags can be combined.

• If a message is received that is larger than the user-controlled maximum message size (see
aLccitt(7F)), the X.25 subsystem RESETs the circuit, discards the data, and sends the out-of-band
event OOB_VC_MESSAGE_TOO_BIGto the socket.

DEPENDENCIES
AF_CCITT

reevfrom () is supported; however, the from and fromlen parameters are ignored (i.e., it works in the
same manner as reev ()).

The O_NDELAY fentl () call is not supported overX.25 links. Use the FIOSNBIO ioetl () call
instead to enable non-blocking I/O.

RETURN VALUE
upon successful completion, reev () returns the number of bytes received. Otherwise, it returns -1 and
sets errno to indicate the error. reev() returns 0 if the socket is blocking and the transport connec­
tion to the remote node fails.

DIAGNOSTICS

172

The call to reev () or reevfrom () fails if any of the following conditions are encountered:

[EBADF]

[ENOTSOCK]

[EWOULDBLOCK]

[EINTR]

[EFAULT]

[EMSGSIZE]

[ETIMEDOUT]

[ENOTCONN]

[EINVAL]

[EOPNOTSUPP]

The argument s is an invalid descriptor.

The argument s is not a socket.

The socket is marked non-blocking and the receive operation would block.

The receive was interrupted by delivery of a signal before any data was avail­
able for the receive.

An invalid pointer was specified in the buf, from, or fromlen parameter, or in
the msghdr structure.

A length in the msghdr structure is invalid.

The connection timed out during connection establishment, or due to a transmis­
sion timeout on active connection.

Receive on a SOCK_STREAM socket that is not yet connected.

The len parameter or a length in the msghdr structure is invalid; or no data is
available on receive of out of band data.

The MSG_OOB flag was set for a UDP SOCK_DGRAM message-based socket; or
MSG_OOB or MSG_PEEK was set for any AF _UNIX socket. The MSG_OOB flag
is only supported for stream-based TCP SOCK_STREAM sockets. Neither
MSG_PEEK nor MSG_OOB is supported for AF _UNIX sockets.

AF _CCITT Only: reev () was issued on ali s t en () socket.

-3- HP-UX Release 9.0: August 1992

recv(2)

AUTHOR

[ENOBUFS]

[ECONNRESET]

recv(2)

Insufficient resources were available in the system to perform the operation.

A connection was forcibly closed by a peer.

recv () was developed by the University of California, Berkeley

SEE ALSO
getsockopt(2), read(2), select(2), send(2), socket(2), aCccitt(7F), inet(7F), socket(7), socketx25(7), tcp(7P),
udp(7P), unix(7P).

HP-UX Release 9.0: August 1992 -4- 173

I

I

rename(2) rename (2)

NAME
rename - change the name of a file

SYNOPSIS
#lnclude <stdlo.h>

lnt rename(const char *source, const char *target);
DESCRIPTION

rename () causes file source to be renamed to target. If target exists, it is first removed. Both source and
target must be of the same type (that is, either directories or non-directories), and must reside on the same
file system.

If target can be created or if it existed before the call, rename () guarantees that an instance of target will
exist, even if the system crashes in the midst of the operation.

If the final component of source is a symbolic link, the symbolic link is renamed; not the file or directory to
which the symbolic link points.

RETURN VALUE
If the operation succeeds, rename () returns 0; otherwise it returns -1 and sets errno to indicate the
reason for the failure.

ERRORS

174

rename () fails and neither file is affected if any of the following conditions are encountered:

[EACCES] A component of either path prefix denies search permission.

[EACCES]

[EBUSY]

[ED QUOT]

[EEXIST]

[EFAULT]

[EINVAL]

[EISDIR]

[ELOOP]

[ENAMETOOLONG]

[ENOENT]

[ENOSPC]

[ENOTDIR]

[ENOTDIR]

[EPERM]

[EROFS]

[EXDEV]

The requested link requires writing to a directory without write permission.

target or source is an existing directory that is the mount point for a mounted
file system.

User's disk quota block or inode limit has been reached for this file system.

target is a directory and is not empty.

source or target points outside the allocated address space of the process. Reli­
able detection of this error is implementation dependent.

source is a parent directory of target, or an attempt is made to rename • or ••.

target is a directory, but source is not.

Too many symbolic links were encountered in translating either path name.

A component of either path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect, or the entire length of either path name
exceeds PATH_MAX bytes.

A component of the source path does not exist, or a path prefix of target does not
exist.

The destination directory cannot be extended because of a lack of space on the
file system containing the directory.

A component of either path prefix is not a directory.

source is a directory, but target is not. [EPERM] The directory containing source
has the sticky bit set, and neither the containing directory nor the source are
owned by the effective user ID.

The target file exists, the directory containing target has the sticky bit set, and
neither the containing directory nor the target are owned by the effective user
!D.

The requested link requires writing in a directory on a read-only file system.

The paths named by source and target are on different logical devices (file sys­
tems).

-1- HP-UX Release 9.0: August 1992

rename(2)

AUTHOR
rename () was developed by the University of California, Berkeley.

SEE ALSO
open(2).

STANDARDS CONFORMANCE
rename () : AES, XPG3, XPG4, FIPS 151-2, PO SIX. 1, ANSI C

HP-UX Release 9.0: August 1992 -2-

rename (2)

I

175

I

rmdir(2) rmdir(2)

NAME
rmdir - remove a directory file

SYNOPSIS
int r.mdir(const char *path);

DESCRIPTION
rmdir() removes a directory file ,..,hose name is given by path. The directory must be empty (except for
files • and ••) before it can be removed.

RETURN VALUE
rmdir() returns 0 if the directory removal succeeds; otherwise, it returns -1 and sets errno to indicate
the error.

ERRORS
rmdi r () fails and the directory is not removed if any of the following conditions are encountered:

[EACCES]

[EACCES]

[EBUSY]

[EEXIST]

[EFAULT]

[EINVAL]

[ELOOP]

[ENAMETOOLONG]

[ENOENT]

[ENOTDIR]

[EPERM]

[EROFS]

AUTHOR

A component of the path prefix denies search permission.

Write permission is denied on the directory containing the link to be removed.

The directory to be removed is the mount point for a mounted file system.

The named directory is not empty. It contains files other than • and ••.

path points outside the process's allocated address space. The reliable detection
of this error is implementation dependent.

The path is •.

Too many symbolic links were encountered in translating the path name.

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

The named file does not exist.

A component of the path is not a directory.

The directory containing the directory to be removed has the sticky bit set and
neither the containing directory nor the directory to be removed are owned by
the effective user !D.

The directory entry to be removed resides on a read-only file system.

rmdi r () was developed by the University of California, Berkeley.

SEE ALSO
mkdir(2), unlink(2).

STANDARDS CONFORMANCE
rmdi r () : AES, SVID2, XPG3, XPG4, FIPS 151-2, POSIX.1

176 -1- HP-UX Release 9.0: August 1992

rtprio(2) rtprio(2)

NAME
rtprio - change or read real-time priority

SYNOPSIS
#inc1ude <sys/rtprio.h>

int rtprio(pid_t pid, int prio);

DESCRIPTION
rtprio () is used to set or read the real-time priority of a process. If pid is zero, it names the calling pro­
cess; otherwise it gives the pid of the process. When setting the real-time priority of another process, the
real or effective user ID of the calling process must match the real or saved user ID oi the process to be
modified, or the effective user ID of the calling process must be that of a user having appropriate privileges.
The calling process must also be a member of a privilege group allowing rtprio () (see getprivgrp(2» or
the effective user ID of the calling process must be a user having appropriate privileges. Simply reading
real-time priorities requires no special privilege.

Real-time scheduling policies differ from normal timesharing policies in that the real-time priority is used
to absolutely order all real-time processes; this priority is not degraded over time. All real-time processes
are of higher priority than normal user and system processes, although some system processes may run at
real-time priorities. If there are several eligible processes at the same priority level, they are run in a round
robin fashion as long as no process with higher priority intervenes. A real-time process receives CPU service
until it either voluntarily gives up the CPU or is preempted by a process of equal or higher priority. Inter­
rupts can also preempt a real-time process.

Valid real-time priorities run from zero to 127. Zero is the highest (most important) priority. This real-time
priority is inherited across fork () s and exec () s.

prio specifies the following:

0-127

RTPRIO_NOCHG

EXAMPLES

Set process to this real-time priority.

Do not change real-time priority. This is used for reading the process real-time
priority.

Set this process to no longer have a real-time priority. It resumes a normal
timesharing priority. Any process, regardless of privilege, is allowed to tum off
its own real-time priority using a pid of zero.

The following call to rtprio () sets the calling process to a real-time priority of90:

rtprio (0, 90);

RETURN VALUE
If no error occurs, rtprio () returns the pid's former (before the call) real-time priority. If the process
was not a real-time process, RTPRIO_RTOFF is returned. If an error occurs, rtprio () returns -1 and
sets e rrno to indicate the error.

ERRORS
rtprio () fails if any of the following conditions are encountered:

[EINVAL] prio is not RTPRIO_NOCHG, RTPRIO_RTOFF, or in the range of 0 through 127.

[EPERM]

[EPERM]

[ESRCH]

DEPENDENCIES
Series 800:

The calling process is not a user having appropriate privileges, and neither its
real or effective user-id match the real or saved user ID of the process indicated
by pid.

The group access list of the calling process does not contain a group having
PRIV_RTPRIO capability and prio is not RTPRIO_NOCHG, or
RTPRIO_RTOFF with a pid of zero.

No process can be found corresponding to that specified by pid.

Because processes executing at real-time priorities get scheduling preference over a system process execut­
ing at a lower priority, unexpected system behavior can occur after a power failure on systems that support

HP-UX Release 9.0: August 1992 -1- 177

I

I

rtprio(2) rtprio(2)

power-fail recovery. For example, when init(lM) receives the powerfail signal SIGPWR, it normally reloads
programmable hardware such as terminal multiplexers. If a higher-priority real-time process is eligible to
run after the power failure, running of ini t is delayed. This condition temporarily prevents terminal
input to any process, including real-time shells of higher priority than the eligible real-time process. To
avoid this situation, a real-time process should catch SIGPWR and suspend itself until init has finished
its powerfail processing.

AUTHOR
rtprio () was developed by lIP.

SEE ALSO
rtprio(1), getprivgrp(2), nice(2), plock(2), privilege(5).

WARNINGS

178

Normally, compute-bound programs should not be run at real-time priorities, because all time sharing work
on the CPU would come to a complete halt.

-2- HP-UX Release 9.0: August 1992

select (2)

NAME
select - synchronous 110 multiplexing

SYNOPSIS
#include <time.h>

int select(

) ;

size_t nfds,
int *readfds,
int *writefds,
int *exceptfds,
const struct timeval *timeout

DESCRIPTION

select(2)

select () examines the file descriptors specified by the bit masks readfds, writefds, and exceptfds. The
bits from 0 through nfds-1 are examined. File descriptor f is represented by the bit 1<<f in the masks.
More formally, a file descriptor is represented by:

fds[(f / BITS_PER_INT)] & (1 « (f % BITS_PER_INT))

When select () completes successfully it returns the three bit masks modified as follows: For each file
descriptor less than nfds, the corresponding bit in each mask is set if the bit was set upon entry and the file
descriptor is ready for reading or writing, or has an exceptional condition pending.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to complete. If
timeout is a zero pointer, the select waits until an event causes one of the masks to be returned with a valid
(non-zero) value. To poll, the timeout argument should be non-zero, pointing to a zero valued timeval struc­
ture. Specific implementations may place limitations on the maximum timeout interval supported. The
constant MAX_ALARM defined in <sys/param. h> specifies the implementation-specific maximum (in
seconds). Whenever timeout specifies a value greater than this maximum, it is silently rounded down to
this maximum. On all implementations, MAX_ALARM is guaranteed to be at least 31 days (in seconds).
Note that the use of a timeout does not affect any pending timers set up by alarm () or set it imer ()
(see alarm(2) or setitimer(2)).

Any or all of readfds, writefds, and except{ds can be given as 0 if no descriptors are of interest. If"all the
masks are given as 0 and timeout is not a zero pointer, select () blocks for the time specified, or until
interrupted by a signal. If all the masks are given as 0 and timeout is a zero pointer, select () blocks
until interrupted by a signal.

Ordinary files always select true whenever selecting on reads, writes, and/or exceptions.

EXAMPLES
The following call to select () checks if any of 4 terminals are ready for reading. select () times out
after 5 seconds if no terminals are ready for reading. Note that the code for opening the terminals or read­
ing from the terminals is not shown in this example. Also, note that this example must be modified if the
calling process has more than 32 file descriptors open. Following this first example is an example of select
with more than 32 file descriptors.

#def ine MASK (f) (1 < < (f))
#define NTTYS 4

int tty[NTTYS];
int ttymask[NTTYS];
int readmask = 0;
int readfds;
int nfound, i;
struct timeval timeout;

/* First open each terminal for reading and put the
* file descriptors into array tty[NTTYS]. The code
* for opening the terminals is not shown here.
*/

for (1=0; i < NTTYS; i++) {
ttymask[1] MASK(tty[i]);

HP-UX Release 9.0: August 1992 -1- 179

I

I

select (2) select (2)

180

readmask 1= ttymask[i];

timeout. tv_sec = 5;
timeout.tv_usec = 0;
readfds = readmask;

/* select on NTTYS+3 t1le descriptors if stdin, stdout
* and stderr are also open
*/

if «nfound = select (NTTYS+3, &readfds, 0, 0, &timeout» -1)
perror ("select failed");

else if (nfound == 0)
printf (llselect timed out \n");

else for (i=O; i < NTTYS; i++)
if (ttymask[i] & readfds)

/* Read from tty[i]. The code for reading
* is not shown here.
*/

else printf ("tty[%d] is not ready for reading \n",i);

The following example is the same as the previous example, except that it works for more than 32 open
files. Definitions for howmany, fd_set, and NFDBITS are in <sys/types. h>.

#include <sys/param.h>
#include <sys/types.h>
#include <sys/time.h>

#define MASK (f) (1 « (f»
#define NTTYS NOFILE - 3
#define NWORDS howmany(FD_SETSIZE, NFDBITS)

int tty[NTTYS];
int ttymask[NTTYS];
struct fd_set readmask, readfds;
int nfound, i, j, k;
struct timeval timeout;

/* First open each ter.minal for reading and put the
* file descriptors into array tty [NTTYS] • The code
* for opening the ter.minals is not shown here.
*/

for (k=O; k < NWORDS; k++)
readmask.fds_bits[k] = 0;

for (i=O, k=O; i < NTTYS && k < NWORDS; k++)
for (j=O; j < NFDBITS && i < NTTYS; j++, i++) {

ttymask[i] = MASK(tty[i]);
readmask.fds_bits[k] 1= ttymask[i];

timeout.tv_sec = 5;
timeout.tv_usec = 0;
for (k=O; k < NWORDS; k++)

readfds.fds_bits[k] = readmask.fds_bits[k];

/* select on NTTYS+3 file descriptors if stdin, stdout
* and stderr are also open
*/

if «nfound = select (NTTYS+3, &readfds, 0, 0, &timeout» -1)
perror ("select failed");

else if (nfound == 0)
printf ("select timed out \n");

else for (i=O, k=O; i < NTTYS && k < NWORDS; k++)

-2- HP-UX Release 9.0: August 1992

select(2) select(2)

for (j=Oi j < NFDBITS && i < NTTYSi j++, i++)
if (ttymask[i) & readfds.fds_bits[k)

/* Read from tty[i). The code for reading
* is not shown here.
*/

else printf ("tty[%d) is not ready for reading \n",i)i

RETURN VALUE
select () returns the number of descriptors contained in the bit masks, or -1 if an error occurred. If the
time li .. ·ydt expires, select () returns 0 and all the masks are cleared.

ERRORS
select () fails if any of the following conditions are encountered: i

[EBADF] One or more of the bit masks specified an invalid descriptor.

[EINTR] A signal was delivered before any of the selected for events occurred or before the
time limit expired.

[EFAULT] One or more of the pointers was invalid. The reliable detection of this error is imple­
mentation dependent.

[EINVAL]

[EINVAL]

WARNINGS

Invalid timeval passed for timeout.

The value ofnfds is less than zero.

Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector(2) can
affect the behavior described on this page.

The file descriptor masks are always modified on return, even if the call returns as the result of a timeout.

DEPENDENCIES
Series 300/400

select () supports the following devices and file types:

• pipes
• fifo special files (named pipes)
• All serial interfaces
• All ITEs (internal terminal emulators) and HP-HIL input devices
• pty(7) special files
• sockets
• HP 98643 LAN interface card driver

File types not supporting select () always return true.

Series 700/800
select () supports the following devices and file types:

• pipes
• fifo special files (named pipes)
• all serial devices
• AlIITEs (internal terminal emulators) and HP-HIL input devices
• hpib(7) special files
• gpio(7) special files (Series 800 Only for Release 8.0)
• lan(7) special files
• pty(7) special files
• sockets

The convention for device files that do not support select () is to always return true for those condi­
tions the user is selecting on.

Consult individual device manual entries to determine the extent to which any particular driver sup­
ports select.

HP Clustered Environment
In a clustered environment, select () is not supported for distributed fifos; i.e., fifos that are
open simultaneously on multiple machines. In this case an error ofEINVAL is returned.

HP-UX Release 9.0: August 1992 -3- 181

I

select (2) select (2)

AUTHOR
select () was developed by HP and the University of California, Berkeley.

SEE ALSO
fcntl(2), read(2), write(2).

I

182 -4- HP-UX Release 9.0: August 1992

semctl(2) semctl(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sysfsem.h>

int semctl(int semid,
int semnwn,
int cmd, •.•
f* arg *f
) ;

DESCRIPTION
s emc t 1 () provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid and semnum:

GETVAL Return the value of semval (see semaphore identifier in glossary (9)). Requires Read
permission.

SETVAL

GETPID

GETNCNT

GETZCNT

Set the value of semval to arg, where arg is the fourth argument of semctl ()
taken as an into When this cmd is successfully executed, the semadj value
corresponding to the specified semaphore in all processes is cleared. Requires Alter
permission.

Return the value of sempid. Requires Read permission.

Return the value of semncnt. Requires Read permission.

Return the value of semzcnt. Requires Read permission.

The following cmds return and set, respectively, every semval in the set of semaphores.

GETALL Place semvals into array pointed to by arg, where arg is the fourth argument of
semctl () taken as a pointer to unsigned short into Requires Read per­
mission.

SETALL Set semvals according to the array pointed to by arg, where arg is the fourth argu­
ment of semctl () taken as a pointer to unsigned short into When this
cmd is successfully executed, the semadj values corresponding to each specified
semaphore in all processes are cleared. Requires Alter permission.

The following cmds are also available:

Place the current value of each member of the data structure associated with semid
into the structure pointed to by arg, where arg is the fourth argument of
semctl () taken as a pointer to struct semid_ds. The contents of this struc­
ture are defined in glossary (9). Requires Read permission.

Set the value of the following members of the data structure associated with semid
to the corresponding value found in the structure pointed to by arg, where arg is
the fourth argument of semctl () taken as a pointer to struct semid_ds:

sem-perm. uid
sem-perm.gid
sem-perm.mode f* only low 9 bits *f

This cmd can only be executed by a process that has an effective user ID equal to either that of super­
user or to the value of either sem-perm. uid or sem-perm. cuid in the data structure associated
withsemid.

IPC_RMID
Remove the semaphore identifier specified by semid from the system and destroy the set of sema­
phores and data structure associated with it. This cmd can only be executed by a process that has an
effective user ID equal to either that of super-user or to the value of either sem-perm. uid or
sem-perm. cuid in the data structure associated with semid.

EXAMPLES
The following call to semctl () initializes the set of 4 semaphores to the values 0, 1, 0, and 1 respectively.

HP-UX Release 9.0: August 1992 -1- 183

I

I

semctl(2) semctl(2)

This example assumes the process has a valid semid representing a set of 4 semaphores as shown in the
semget(2) manual entry. For an example of performing "P" and "V" operations on the semaphores below,
refer to semop(2).

ushort semarray[4];

semarray[O] 0;
semarray[l] 1;
semarray [2] 0 ;
semarray[3] 1;

semetl (mysemid, 0, SETALL, semarray);

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

GETVAL The value of semval.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
GETPID The value ofsempid.

All others return a value ofO.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
semetl () fails if any of the following conditions are encountered:

[EACCES]

[EFAULT]

[EINVAL]

[EINVAL]

[EINVAL]

[EPERM]

[ERANGE]

Operation permission is denied to the calling process (see semaphore operation per­
missions in glossary (9).

cmd is equal to GETVAL, SETVAL, GETALL, SETALL, I PC_STAT, or IPC_SET,
andarg.

semid is not a valid semaphore identifier.

semnum is less than zero or greater than or equal sem_nsems.

cmd is not a valid command.

cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling pro­
cess is not equal to that of super-user and it is not equal to the value of either
sem-perm. uid or sem-perm.euid in the data structure associated with semid.

cmd is SETVAL or SETALL and the value to which semval is to be set is greater
than the system imposed maximum.

SEE ALSO
ipcrm(1), ipcs(l), semget(2), semop(2), stdipc(3C).

STANDARDS CONFORMANCE
semetl () : SVID2, XPG2, XPG3, XPG4

184 -2- HP-UX Release 9.0: August 1992

semget(2) semget(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg};

DESCRIPTION
semget () returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores are created for
key ifone of the following is true:

key is equal to IPC_PRIVATE. This call creates a new identifier, subject to available resources. The
identifier is never returned by another call to semget () until it has been released by a call to
semctl (). The identifier should be used among the calling process and its descendents; however, it
is not a requirement. The resource can be accessed by any process having the proper permissions.

key does not already have a semaphore identifier associated with it, and (semflg & IPC_CREAT) is
"true".

Specific behavior can be requested by ORing the following masks into semflg.

IPC_CREAT: Create a semaphore identifier if one does not already exist for key.

IPC_EXCL: If IPC_CREAT is specified and key already has a semaphore identifier associated with
it, return an error.

The low-order 9 bits ofsemflg are the semaphore operation permissions which are defined inglossary(9).

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:

In the operation-permission structure, sem-perm. cuid and sem-perm. uid are set equal to the
effective-user-ID of the calling process, while sem-perm.cgid and sem-perm. gid are set to the
effective-group-ID of the calling process.

The low-order 9 bits of sem-perm .mode are set equal to the low-order 9 hits of semflg.

sem_nsems is set equal to the value ofnsems.

sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

EXAMPLES
The following call to semget () returns a semid associated with the key returned by ftok ("myfile",
I A I). If a semid associated with the key does not exist, a new semid, set of 4 semaphores, and associated
data structure will be created. If a semid for the key already exists, the semid is simply returned.

int semid;
mysemid = semget (ftok(lmyfile",'A'), 4, IPC_CREAT I 0600);

RETURN VALUE
Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
semget () fails if one or more of the following is true:

[EINVAL]

[EACCES]

[EINVAL]

[ENOENT]

[ENOSPC]

nsems is either less than or equal to zero or greater than the system-imposed limit.

A semaphore identifier exists for key, but operation permission as specified by the
low-order 9 bits of semflg would not be granted.

A semaphore identifier exists for key, but the number of semaphores in the set associ­
ated with it is less than nsems, and nsems is not equal to zero.

A semaphore identifier does not exist for key and (semflg & IPC_CREAT) is "false".

A semaphore identifier is to be created, but the system-imposed limit on the max­
imum number of allowed semaphore identifiers system wide would be exceeded.

HP-UX Release 9.0: August 1992 -1- 185

I

I

semget(2) semget(2)

[EEXIST] A semaphore identifier exists for key but ({semflg& IPC_CREAT) && (semflg &
IPC_EXCL)) is "true".

SEE ALSO
ipcrm(l), ipcs(l), semctl(2), semop(2), stdipc(3C).

STANDARDS CONFORMANCE
semget () : SVID2, XPG2, YJ>G3, XPG4

186 -2- HP-UX Release 9.0: August 1992

semop(2) semop(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/sem.h>

int semop(

) ;

int semid,
struct sembuf *sops,
unsigned int nsops

DESCRIPTION
semop () is used to atomically perform an array of semaphore operations on the set of semaphores associ­
ated with the semaphore identifier specified by semid. sops is a pointer to the array of semaphore-operation
structures. nsops is the number of such structures in the array. The contents of each structure includes the
following members:

ushort
short
short

sem_num;
sem_op
sem_flg;

/* semaphore number */
/* semaphore operation */
/* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding semaphore specified by
semid and sem_num. Semaphore array operations are atomic in that none of the semaphore operations are
performed until blocking conditions on all of the semaphores in the array have been removed.

sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following occurs:

If semval (see semaphore identifier in glossary(9» is greater than or equal to the absolute value
of sem_op, the absolute value of sem_op is subtracted from semval. Also, if (semJlg &
SEM_UNDO) is ''true", the absolute value of sem_op is added to the calling process's semadj value
(see glossary(9) and exit(2» for the specified semaphore.

If semval is less than the absolute value of sem_op and (semJlg & IPC_NOWAIT) is "true",
semop () returns immediately.

If semval is less than the absolute value of sem_op and (semJlg & IPC_NOWAIT) is "false",
semop () increments the semncnt associated with the specified semaphore and suspend execu­
tion of the calling process until one of the following conditions occur:

semval becomes greater than or equal to the absolute value of sem_op. When this occurs,
the value of semncnt associated with the specified semaphore is decremented, the absolute
value of sem_op is subtracted from semval and, if (semJlg & SEM_UNDO) is ''true'', the
absolute value of sem_op is added to the calling process's semadj value for the specified
semaphore.

The semid for which the calling process is awaiting action is removed from the system (see
semctl(2». When this occurs, errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the value of
semncnt associated with the specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal(5).

If sem_op is a positive integer, the value of sem_op is added to semval and, if (semJlg & SEM_UNDO) is
''true'', the value of sem_op is subtracted from the calling process's semadj value for the specified sema­
phore.

If sem_op is zero, one of the following occurs:

If semval is zero, semop () proceeds to the next semaphore operation specified by sops, or returns
immediately if this is the last operation.

If semval is not equal to zero and (semJlg & IPC_NOWAIT) is "true", semop () returns immedi­
ately.

HP-UX Release 9.0: August 1992 -1- 187

I

I

semop(2) semop(2)

If semval is not equal to zero and (semJlg & IPC_NOWAIT) is "false", semop () increments the
semzcnt associated with the specified semaphore and suspends execution of the calling process until
one of the following occurs:

semval becomes zero, at which time the value of semzcnt associated with the specified sema­
phore is decremented.

The semid for which the calling process is awaiting action is removed from the system. When
this occurs, errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the value of
semzcnt associated with the specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal (5).

EXAMPLES
The following call to semop () atomically performs a "P" or "get" operation on the second semaphore in the
semaphore set and a "V" or "release" operation on the third semaphore in the set. This example assumes
the process has a valid semid which represents a set of 4 semaphores as shown on the semget(2) manual
page. It also assumes that the semvals of the semaphores in the set have been initialized as shown in the
semctl(2) manual entry.

struct SemDuf sops[4];

sops[O].sem_num
sops[O].sem_op
sops [0] .sem_fIg
sops[l].sem_num
sops[l].sem_op
sops [1] .sem_fIg

1;
-1;
0;
2;
1;

0;

semop (mysemid, sops, 2);

/* P (get) */

/* V (release) */

RETURN VALUE
If semop () returns due to the receipt of a signal, a value of -1 is returned to the calling process and
errno is set to EINTR. If it returns due to the removal of a semid from the system, a value of -1 is returned
and errno is set to EIDRM.

Upon successful completion, a non-negative value is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS

188

semop () fails if one or more of the following is true for any of the semaphore operations specified by sops:

[EINVAL]

[EFBIG]

[E2BIG]

[EACCES]

[EAGAIN]

[ENOSPC]

[EINVAL]

[ERANGE]

semid is not a valid semaphore identifier.

sem_num is less than zero or greater than or equal to the number of semaphores in
the set associated with semid.

nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process (seeglossary(9».

The operation would result in suspension of the calling process but (semJlg &
IPC_NOWAIT) is "true".

The limit on the number of individual processes requesting an SEM_UNDO would be
exceeded.

The number of individual semaphores for which the calling process requests a
SEM_ UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed limit.

[ERANGE] An operation would cause a semadj value to overflow the system-imposed limit.

[EFAULT] sops points to an illegal address. The reliable detection of this error will be imple­
mentation dependent.

Upon successful completion, the value of sempid for each semaphore specified in the array pointed to
by sops is set equal to the process ID of the calling process. The value of sem_otime in the data

-2- HP-UX Release 9.0: August 1992

semop(2) semop(2)

structure associated with the semaphore identifier will be set to the current time.

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector(2) can
affect the behavior described on this page.

SEE ALSO
ipcs(1), exec(2), exit(2), fork(2), semctl(2), semget(2), stdipc(3C), signal(5).

STANDARDS CONFORMANCE
semop () : SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -3- 189

I

I

send(2) send(2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/socket.h>

int send(int s, const void *msg, int len, int flags);

int sendto(
int s,
const void *msg,
int len,
int flags,
const void *to,
int tolen);

int sendmsg(int s, const struct msghdr msg[], int flags);

DESCRIPTION

190

send () , sendto (), and sendmsg () are used to transmit a message to another socket. send () can
be used only when the socket is in a connected state, whereas sendto () and sendmsg () can be used
at any time. sendmsg () allows the send data to be gathered from several buffers specified in the
msghdr structure. See recv(2) for a description ofthe msghdr structure.

s is a socket descriptor that specifies the socket on which the message will be sent. msg points to the buffer
containing the message.

If the socket uses connection-based communications, such as a SOCK_STREAM socket, these calls can only be
used after the connection has been established (see connect(2». In this case, any destination specified by to
is ignored. For connectionless sockets, such as SOCK_DGRAM, sendto () must be used unless the destina­
tion address has already been specified by connect (). If the destination address has been specified and
sendto () is used, an error results if any address is specified by to.

The address of the target is contained in a socket address structure pointed at by to, with tolen specifying
the size of the structure.

If a sendto () is attempted on a SOC~DGRAM socket before any local address has been bound to it, the
system automatically selects a local address to be used for the message. In this case, there is no guarantee
that the same local address will be used for successive sendto () requests on the same socket.

The length of the message is given by len, in bytes. The length of data actually sent is returned. If the
message is too long to pass atomically through the underlying protocol, the message is not transmitted, -1 is
returned, and errno is set to EMSGSIZE. For SOC~DGRAM sockets, this size is fixed by the implementa­
tion (see the DEPENDENCIES section below). Otherwise there is no size limit.

No indication of failure to deliver is implicit in a sendlsendto. Return values of -1 indicate some locally­
detected errors.

If no buffer space is available to hold the data to be transmitted, send () blocks unless non-blocking mode
is enabled. There are three ways to enable non-blocking mode:

• With the FIOSNBIO ioctl () request,

• With the 0 _NONBLOCK flag, and

• With the O_NDELAY fcntl () flag.

If non-blocking 110 is enabled using FIOSNBIO or the equivalent FIONBIO request (defined in
<sys/ioctl.h> and explained in ioctl(2) ioca(5), and socket(7», although use of FIONBIO is not
recommended, the send () request completes in one of three ways:

• If there is enough space available in the system to buffer all the data, send () completes suc­
cessfully, having written out all of the data, and returns the number of bytes written.

• If there is not enough space in the buffer to write out the entire request, send () completes
successfully, having written as much data as possible, and returns the number of bytes it was
able to write.

-1- HP-UX Release 9.0: August 1992

send(2) send(2)

• If there is no space in the system to buffer any of the data, send () fails, having written no
data, and errno is set to EWOULDBLOCK.

If non-blocking I/O is disabled using FIOSNBIO, send () always executes completely (blocking as
necessary) and returns the number of bytes written.

If the O_NONBLOCK flag is set using fcntl () (defined in <sys/fcntl. h> and explained in fcntl(2)
and fcntl(5», POSIX-style non-blocking I/O is enabled. In this case, the send () request completes in
one of three ways:

• If there is enough space available in the system to buffer all the data, send () completes suc­
cessfully, having written out all of the data, and returns the number of bytes written.

• If there is not enough space in the buffer to write out the entire request, send () completes
successfully, having written as much data as possible, and returns the number of bytes it was
able to write.

• If there is no space in the system to buffer any of the data, send () completes, having written
no data, and returns -1, with errno set to EAGAIN.

If the O_NDELAY flag is set using fcntl () (defined in <sys/fcntl. h> and explained in fcntl(2)
and fcntl(5», non-blocking I/O is enabled. In this case, the send () request completes in one of three
ways:

• If there is enough space available in the system to buffer all the data, send () completes suc­
cessfully, having written out all of the data, and returns the number of bytes written.

• If there is not enough space in the buffer to write out the entire request, send () completes
successfully, having written as much data as possible, and returns the number of bytes it was
able to write.

• If there is no space in the system to buffer any of the data, send () completes successfully,
having written no data, and returns O.

If the O_NDELAY flag is cleared using fcntl (), non-blocking I/O is disabled. In this case, the
send () always executes completely (blocking as necessary) and returns the number of bytes written.

Since both the fcntl () O_NONBLOCK and O_NDELAY flags and FIOSNBIO ioctl () request are
supported, some clarification on how these features interact is necessary. If the O_NONBLOCK or
O_NDELAY flag has been set, send () requests behave accordingly, regardless of any FIOSNBIO
requests. If neither the O_NONBLOCK nor O_NDELAY flag has been set, FIOSNBIO requests con­
trol the behavior of send(). If the O_NDELAY flag has not been set, FIOSNBIO requests control the
behavior of send () .

The default is that non-blocking I/O is not enabled.

The supported values for flags are zero, or MSG_OOB (to send out-of-band data). A write() call made
to a socket behaves in exactly the same way as send () with flags set to zero. MSG_OOB is not sup­
ported for AF _UNIX sockets.

The select(2) call can be used to determine when it is possible to send more data.

AF _CCITT only:
Sockets of the address family AF _CCITT operate in message mode. Although they are specified as
connection-based (SOCK_STREAM) sockets, the X.25 subsystem communicates via messages. They require
that a connection be established with the connect () or accept () calls.

The O_NDELAY flag is not supported, use FIOSNBIO requests to control non-blocking I/O. If the avail­
able buffer space is not large enough for the entire message, and the socket is in non-blocking mode, the
error EWOULDBLOCK is returned. If the amount of data in the send () exceeds the maximum outbound
message size, EMSGSIZE is returned.

The sendto () call is not supported.

Each call sends either a complete or a partial X.25 message. This is controlled by the setting of More-Data­
To-Follow (MDTF) bit. If the user wants to send a partial message, MDTF should be set to 1 before the
send () call. The MDTF bit should be cleared to 0 before sending the final message fragment.

HP-UX Release 9.0: August 1992 -2- 191

I

I

send(2) send(2)

Message fragment length may range from 0 bytes up to the size of the socket's send buffer (see af_ccitt(7F».
The MDTF bit and multiple send () calls can be combined to transmit complete X.25 packet sequences
(i.e., zero or more DATA packets in which the More Data bit is set, followed by one DATA packet in which the
More Data bit is clear) of arbitrary length. Note that a O-byte message is not actually sent, but may be
necessary to flush a complete X.25 message if the user is controlling the MDTF bit.

Sockets of the .A.F _ccrIT address family can send 1 byte of out"of"band data (lr,.novm as INTERRl.JPT Data
packet in X.25 terminology), or up to 32 bytes if the X.25 interface is configured for 1984 CCITT X.25 recom­
mendations. INTERRUPT data packets sent in blocking mode cause the process to block until confirmation
is received. INTERRUPT data packets sent with the socket in non-blocking mode do not cause the process to
block; instead, an out-of-band message is queued to the socket when the INTERRUPT confirmation packet is
received (see recv(2».

DEPENDENCIES
UDP messages are fragmented at the IP level into Maximum Transmission Unit (MTU) sized pieces; MTU
varies for different link types. These pieces, called IP fragments, can be transmitted, but IP does not
guarantee delivery. Sending large messages may cause so many fragments to be created that some of them
overrun a receiver's ability to receive them, and hence are dropped. If this happens, even if most of the
fragments ultimately arrive at the destination, the complete message cannot be re-assembled. This affects
the apparent reliability and throughput of the network, as viewed by the end-user.

Default and maximum buffer sizes are protocol-specific. Refer to the appropriate entries in Sections 7F
and 7P for details. The buffer size can be set by calling setsockopt () with SO_SNDBUF.

AF_CCITT
If the receiving process is on a Series 700/800 HP-UX system and the connection has been set up to use the
D-bit, data sent with the D-bit set is acknowledged when the receiving process has read the data. Other­
wise, the acknowledgement is sent when the firmware receives it.

If the receiving process is on a Series 300/400 HP-UX system, data sent with the D-bit set is acknowledged
when the data reaches the X.25 interface card, but D-bit acknowledgement from a Series 300/400 does not
imply that the receiving process has read the data.

RETURN VALUE
Upon successful completion, send (), sendto (), and senCiInsg () return the number of bytes sent.
Otherwise, they return -1 and set errno to indicate the error.

DIAGNOSTICS

192

send () , sendto (), and senCiInsg () fail if any of the following conditions are encountered:

[EACCES]

[EBADF]

[ENOTSOCK]

[EFAULT]

[EMSGSIZE]

[EWOULDBLOCK]

[ENOBUFS]

[EINTR]

[EINVAL]

Process doing a send () of a broadcast packet does not have broadcast capa­
bility enabled for the socket. Use setsockopt () to enable broadcast capa­
bility.

An invalid descriptor was specified.

The argument s is not a socket.

An invalid pointer was specified in the msg or to parameter, or in the msghdr
structure.

A length in the msghdr structure is invalid. The socket requires that mes­
sages be sent atomically, and the size of the message to be sent made this
impossible. SOCK_DGRAM/AF _INET and/or SOCK_STREAMIAF _CCITT Only:
The message size exceeded the outbound buffer size.

The socket is in non-blocking mode and the requested operation would block.

Insufficient network memory resources were available in the system to per­
form the operation.

The operation was interrupted by a signal before any data were sent. (If some
data was sent, send () returns the number of bytes sent before the signal,
and EINTR is not given.)

The len or tolen parameter, or a length in the msghdr structure is invalid. A
sendto () system call was issued on an X.25 socket, or the connection is in

-3- HP-UX Release 9.0: August 1992

send(2)

AUTHOR

[EDEST ADDRREQ]

[ENOTCONN]

[EISCONN]

send(2)

its reset sequence and cannot accept data.

The to parameter needs to specify a destination address for the message. This
is also given if the specified address contains unspecified fields (see inet(7F».

A send () on a socket that is not connected, or a send () on a socket that
has not completed the connect sequence with its peer, or is no longer con-
nected to its peer.

An address was specified by to for a SOCK_DGRAM socket which is already con­
nected.

[EAFNOSUPPORT] Requested address does not match the address family of this socket.

[EPIPE] and SIGPIPE signal
An attempt was made to send on a socket that was connected, but the connec­
tion has been shut down, either by the remote peer or by this side of the con­
nection. Note that the default action for SIGPIPE, unless the process has
established a signal handler for this signal, is to terminate the process.

[EIO] A timeout occurred.

[ENETDOWN] The interface used for the specified address is "down" (see ifconfig(lM», or no
interface for the specified address can be found, (SOJ)ONTROUTE socket
option in use), or the X.25 Level 2 is down.

[EOPNOTSUPP] The MSG_OOB flag was specified; it is not supported for AF _UNIX sockets.

[ENETUNREACH]

[ECONNRESET]

(LAN) All encapsulations (e.g., ether, ieee) have been turned off (see also
lanconfig(1M), and ifconfig(lM».

(X.25) The X.25 Level 2 is down. The X.25 link layer is not working (wires
might be broken, or connections are loose on the interface hoods at the
modem, or the modem failed, or the packet switch at the remote end lost
power or failed for some reason, or electrical noise interfered with the line for
an extremely long period of time).

A connection was forcibly closed by a peer.

send () was developed at the University of California, Berkeley.

SEE ALSO
lanconfig(1M), ifconfig(lM), getsockopt(2), recv(2), select(2), setsockopt(2), socket(2), aCccitt(7F), inet(7F),
socket(7), socketx25(7), tcp(7P), udp(7P), unix(7P).

HP-UX Release 9.0: August 1992 -4- 193

I

I

setacl(2) setacl(2)

NAME
setacl, fsetacl - set access control list (ACL) information

SYNOPSIS
#inelude <sys/ael.h>

int setael(

) ;

canst char *path,
size_t nentries,
eonst struet ael_entry *ael

int fsetael(

) ;

int fildes,
size_t nentries,
eonst struet ael_entry *ael

DESCRIPTION
setael () sets an existing file's access control list (ACL) or deletes optional entries from it. path points to
a path name of a file.

Similarly, f setael () sets an existing file's access control list for an open file known by the file descriptor
fildes.

The effective user ID ofthe process must match the owner of the file or be the super-user to set a file's ACL.

A successful call to setael () deletes all of a file's previous optional ACL entries (see explanation below),
if any. nentries indicates how many valid entries are defined in the acl parameter. If nentries is zero or
greater, the new ACL is applied to the file. If any of the file's base entries (see below) is not mentioned in
the new ACL, it is retained but its access mode is set to zero (no access). Hence, routine calls of setael ()
completely define the file's ACL.

As a special case, ifnentries is negative (that is, a value of ACL_DELOPT (defined in <sys/ael.h», the
acl parameter is ignored, all of the file's optional entries, if any, are deleted, and its base entries are left
unaltered.

Some of the miscellaneous mode bits in the file's mode might be turned off as a consequence of calling
setael (). See chmod(2).

Access Control Lists

194

An ACL consists of a series of entries. Entries can be categorized in four levels of specificity:

(u .g, mode) applies to user u in group g
(u • %, mode) applies to user u in any group
(%.g, mode) applies to any user in group g
(%. %, mode) applies to any user in any group

Entries in the ACL must be unique; no two entries can have the same user ID (uid) and group ID (gid) (see
below). Entries can appear in any order. The system orders them as needed for access checking.

The <sys/ael.h> header file defines ACL_NSUSER as the non-specific uid value and ACL_NSGROUP
as the non-specificgid value represented by % above. Ifuid in an entry is ACL_NSUSER, it is a %.g entry.
If gid in an entry is ACL_NSGROUP, it is au. % entry. If both uid and gid are non-specific, the file's entry
is %. %.

The <unistd.h> header file defines meanings of mode bits in ACL entries (R_OK, W_OK, and X_OK).
Irrelevant bits in mode values must be zero.

Every file's ACL has three base entries which cannot be added or deleted, but only modified. The base ACL
entries are mapped directly from the file's permission bits.

«file's owner> . ACL_NSGROUP, <file's owner mode bits»
(ACL_NSUSER. <file's group>, <file's group mode bits»
(ACL_NSUSER. ACL_NSGROUP, <file's other mode bits»

In addition, up to 13 optional ACL entries can be set to restrict or grant access to a file.

-1- HP-UX Release 9.0: August 1992

setacl(2) setacl(2)

Altering a base ACL entry's modes with setael () changes the file's corresponding permission bits. The
permission bits can be altered also by using ehmod () (see chmod(2» and read using stat () (see
stat(2».

The number of entries allowed per file (see NACLENTRIES in <sys/ael.h» is small for space and per­
formance reasons. User groups should be created as needed for access control purposes. Since ordinary
users cannot create groups, their ability to control file access with ACLs might be somewhat limited.

RETURN VALUE
Upon successful completion, setael () and fsetael () return a value of zero. If an error occurs, they
return -1, the file's ACL is not modified, and errno is set to indicate the error.

ERRORS
setael () and f setael () fail if any of the following conditions are encountered:

A component of the path prefix is not a directory. [ENOTDIR]

[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist).

fildes is not a valid file descriptor.

A component of the path prefix denies search permission.

[EBADF]

[EACCES]

[EPERM] The effective user ID does not match the owner of the file and the effective user
ID is not super-user.

The named file resides on a read-only file system. [EROFS]

[EFAULT] path or acl points outside the allocated address space of the process, or acl is not
as large as indicated by nentries.

[EINVAL] There is a redundant entry in the ACL, or acl contains an invalid uid, gid, or
mode value.

[E2BIG]

[EOPNOTSUPP]

[ENOSPC]

[ENFILE]

An attempt was made to set an ACL with more than NACLENTRIES entries.

setael () is not supported on remote files by some networking services.

Not enough space on the file system.

System file table is full.

[ENAMETOOLONG] The length of path exceeds PATH_MAX bytes, or the length of a component of
path exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[EDQUOT] User's disk quota block or inode limit has been reached for this file system.

EXAMPLES
The following code fragment defines and sets an ACL on file •• / shared which allows the file's owner to
read, write, and execute or search the file, and allows user 103, group 204 to read the file.

#inelude <unistd.h>
#inelude <sys/stat.h>
#inelude <sys/ael.h>

ehar *filename = " •• /shared";
struet ael_entry ael [2];
struet stat statbuf;

if (stat (filename, & statbuf) <
error (••.);

ael [0] uid statbuf . st_uid;
ael [0] gid ACL_NSGROUP;
ael [0] mode R_OK I W_OK I X_OK;

ael [1] uid 103 ;
ael [1] gid 204 ;

HP-UX Release 9.0: August 1992 -2-

/* file owner */

195

I

I

setacl(2)

ael [1] • mode = R_OK;

if (setael (filename, 2, ael»
error (•.•);

The following call deletes all optional ACL entries from file1:

setael (lfile1", ACL_DELOPT, (struet ael_entry *) 0);

DEPENDENCIES
NFS

setael () and fsetael () are not supported on remote files.

AUTHOR
setael () and f setael () were developed by HP.

SEE ALSO
access(2), chmod(2), getaccess(2), getacl(2), stat(2), acl(5), unistd(5).

setacl(2)

196 -3- HP-UX Release 9.0: August 1992

setaudid (2)

NAME
setaudid - set the audit ID (aid) for the current process

SYNOPSIS
#include <sys/audit.h>

int setaudid{aid_t audid}i

DESCRIPTION

setaudid(2)

setaudid {} sets the audit ID (aid) for the current process. This call is restricted to the super-user.

RETURN VAL1JE
Upon successful completion, setaudid {} returns a value of 0; otherwise, it returns -1 and sets errno
to indicate the error.

ERRORS
setaudid {} fails if any of the following conditions are encountered:

[EPERMl The caller is not a superuser.

[EINV ALl The audit ID (au did) is invalid.

AUTHOR
setaudid {} was developed by HP.

SEE ALSO
getaudid(2).

HP-UX Release 9.0: August 1992 -1- 197

I

I

setaudproc(2) setaudproc (2)

NAME
setaudproc - controls process level auditing for the current process and its decendents

SYNOPSIS
#include <sys/audit.h>

int setaudproc(int aflag);

DESCRIPTION
setaudproc () controls process level auditing for the current process and its decendents. It accomplishes
this by setting or clearing the u_audproc flag in the u area of the calling process. When this flag is set,
the system audits the process; when it is cleared, the process is not audited. This call is restricted to super­
users.

One of the following aflags must be used:

AUD_PROC
AUD_CLEAR

Audit the calling process and its decendents.
Do not audit the calling process and its decendents.

The u_audproc flag is inherited by the descendents of a process. consequently, the effect of a call to
setaudproc () is not limited to the current process, but propagates to all its decendents as well. For
example, if setaudproc () is called with the AUD_PROC flag, all subsequent audited system calls in the
current process and its decendents are audited until setaudproc () is called with the AUD_CLEAR flag.

Further, setaudproc () performs its action regardless of whether the user executing the process has
been selected to be audited or not. For example, if setaudproc () is called with the AUD_PROC (or the
AUD_CLEAR) flag, all subsequent audited system calls will be audited (or not audited), regardless of
whether the user executing the process has been selected for auditing or not.

Due to these features, setaudproc () should not be used in most self-auditing applications.
audswi tch () should be used (see audswitch(2» when the objective is to suspend auditing within a pro­
cess without affecting its decendents or overriding the user selection aspect ofthe auditing system.

RETURN VALUE
Upon successful completion, setaudproc () returns 0; otherwise, it returns -1 and sets errno to indi­
cate the error.

AUTHOR
setaudproc () was developed by lIP.

SEE ALSO
getaudproc(2), audswitch(2), audusr(lM), audevent(lM), audit(5).

198 -1- HP-UX Release 9.0: August 1992

seteven t (2)

NAME
setevent - set current events and system calls which are to be audited

SYNOPSIS
#include <sys/audit.h>

int setevent(

) ;

const struct aud_type a_syscall[],
const struct aud_event_tbl a_event[]

DESCRIPTION

setevent(2)

setevent () sets the events and system calls to be audited. The event and system call settings in the
tables pointed to bya_syscall and a_event become the current settings. This call is restricted to the super­
user.

RETURN VALUE
Upon successful completion, setevent () returns 0; otherwise, it returns -1 and sets errno to indicate
the error.

ERRORS
setevent () fails if the following condition is encountered:

[EPERM] The caller is not super-user.

AUTHOR
setevent () was developed by :a:P.

SEE ALSO
getevent(2), audevent(lM).

HP-UX Release 9.0: August 1992 -1- 199

I

I

setgroups (2) setgroups (2)

NAME
setgroups - set group access list

SYNOPSIS
#lnclude <unlstd.h>

lnt setgroups(lnt ngroups, const gld_t *gldset);

DESCRIPTION
setgroups () sets the group access list of the current user process according to the array gidset. The
parameter ngroups indicates the number of entries in the array and must be no more than NGROUPS, as
defined in <sys/param.h>.

Only super-user can set new groups by adding to the group access list of the current user process; any user
can delete groups from it.

RETURN VALUE
Upon successful completion, setgroups () returns 0; otherwise it returns -1 and sets errno to indicate
the error.

ERRORS
setgroups () fails if any of the following conditions are encountered:

[EPERM]

[EFAULT]

The caller is not super-user and has attempted to set new groups.

The address specified for gidset is outside the process address space. The reliable
detection of this error is implementation dependent.

[EINVAL]

[EINVAL]

ngroups is greater than NGROUPS or not positive.

An entry ingidset is not a valid group ID.

AUTHOR
setgroups () was developed by the University of California, Berkeley.

SEE ALSO
getgroups(2), initgroups(3C)

STANDARDS CONFORMANCE
setgroups () : AES

200 -1- HP-UX Release 9.0: August 1992

sethostname (2) sethostname (2)

NAME
sethostname - set name of host cpu

SYNOPSIS
#include <unistd.h>

int sethostname(const char *name, size_t namelen};

DESCRIPTION
sethostname () sets the name of the host processor to name, which has a length of name len characters.
sethostname () is normally executed by hostname (see hostname(1» in the /etc/rc script at sys­
tem boot time. Host names are limited to MAXHOSTNAMELEN characters, as defined in
<sys /param. h>.

RETURN VALUE
Upon successful completion, sethostname () returns 0; otherwise it returns -1 and sets errno to indi­
cate the error.

ERRORS
sethostname () fails if any of the following conditions are encountered:

It is not executed by a user having appropriate privileges. [EPERM]

[EFAULT] name points to an illegal address. The reliable detection of this error is implementa­
tion dependent.

AUTHOR
sethos tname () was developed by the University of California, Berkeley.

SEE ALSO
hostname(1), uname(1), gethostname(2), uname(2), privilege(5).

HP-UX Release 9.0: August 1992 -1- 201

I

I

setpgid(2) setpgid(2)

NAME
setpgid, setpgrp2 - set process group ID for job control

SYNOPSIS
#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

int setpgrp2(pid_t pid, pid_t pgid);

DESCRIPTION
setpgid () or setpgrp2 () causes the process specified by pid to join an existing process group or
create a new process group within the session of the calling process. The process group ID of the process
whose process ID is pid is set to pgid. If pid is zero, the process ID of the calling process is used. If pgid is
zero, the process ID of the indicated process is used. The process group ID of a session leader does not
change.

setpgrp2 () is provided for backward compatibility only.

RETURN VALUE
Upon successful completion, setpgid () and setpgrp2 () return zero; otherwise, they return -1 and
set ermo to indicate the error.

ERRORS
setpgid () and setpgrp2 () fail and no change occurs if any of the following conditions are encoun­
tered:

[EACCES]

[EINVAL]

[EPERM]

[EPERM]

[EPERM]

[ESRCH]

The value of pid matches the process ID of a child process of the calling process and
the child process has successfully executed one of the exec(2) functions.

The value of pgid is less than zero or is outside the range of valid process group ID
values.

The process indicated by pid is a session leader.

The value of pid is valid but matches the process ID of a child process of the calling
process, and the child process is not in the same session as the calling process.

The value of pgid does not match the process ID of the process indicated by pid and
there is no process with a process group ID that matches the value of pgid in the same
session as the calling process.

The value of pid does not match the process ID of the calling process or of a child pro­
cess of the calling process.

AUTHOR
setpgid () and setpgrp2 () were developed by HP and the University of California, Berkeley.

SEE ALSO
bsdproc(2), exec(2), exit(2), fork(2), getpid(2), kill(2), setsid(2), signal(2), termio(7).

STANDARDS CONFORMANCE
setpgid (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

202 -1- HP-UX Release 9.0: August 1992

setresuid (2)

NAME
setresuid, setresgid - set real, effective, and saved user and group IDs

SYNOPSIS
#include <unistd.h>

int setresuid(uid_t ruid, uid_t euid, uid_t suid);

int setresgid(gid_t rgid, gid_t egid, gid_t sgid);

DESCRIPTION
setresuid () sets the real, effective andior saved user ID of the calling process.

setresuid (2)

If the current real, effective or saved user ID is equal to that of a user with having appropriate privileges,
setresuid () sets the real, effective and saved user IDs to ruid, euid, and suid, respectively. Otherwise,
setresuid () only sets the real, effective, and saved user IDs if ruid, euid, and suid each match at least
one of the current real, effective, or saved user IDs.

If ruid, euid, or suid is -1, setresuid () leaves the current real, effective or saved user ID unchanged.

setresgid () sets the real, effective and/or saved group ID of the calling process.

If the current real, effective or saved user ID is equal to that of a user having appropriate privileges,
setresgid () sets the real, effective, and saved group IDs to rgid, egid, and sgid, respectively. Other­
wise, setresgid() only sets the real, effective and saved group IDs ifrgid, egid, and sgid each match at
least one of the current real, effective or saved group IDs.

If rgid, egid, or sgid is -1, setresgid () leaves the current real, effective or saved group ID unchanged.

RETURN VALUE
Upon successful completion, setresuid () and setresgid () return 0; otherwise, they return -1 and
set errno to indicate the error.

ERRORS
setresuid () and setresgid () fail if any of the following conditions are encountered:

AUTHOR

[EINVAL]

[EPERM]

ruid, euid, or suid (rgid, egid, or sgid) is not a valid user (group) ID.

None of the conditions above are met.

setresuid() and setresgld() were developed by HP.

SEE ALSO
exec(2), getuid(2), setuid(2).

HP-UX Release 9.0: August 1992 -1- 203

I

I

setsid(2) setsid(2)

NAME
setsid, setpgrp - create session and set process group ID

SYNOPSIS
#include <unistd.h>

pid_t setsid(void);

pid_t setpgrp(void);

DESCRIPTION
If the calling process is not a process group leader, setsid () or setprgp () creates a new session. The
calling process becomes the session leader of this new session, becomes the process group leader of a new
process group, and has no controlling terminal. The process group ID of the calling process is set equal to
the process ID of the calling process. The calling process is the only process in the new process group, and
the only process in the new session.

setprgp () is provided for backward compatibility only.

RETURN VALUE
setprgp () returns the value of the process group ID of the calling process.

Upon successful completion, sets id () returns the value of the new process group ID of the calling pro­
cess. Otherwise, a value of -1 is returned, and errno is set to indicate the error.

ERRORS
No change occurs if any of the following conditions are encountered. In addition, sets id () fails when
any of the following conditions occur:

[EPERM]

[EPERM]

The calling process is already a process group leader.

The process group ID of a process other than the calling process matches the process
ID of the calling process.

AUTHOR
setprgp () and sets id () were developed by HP and AT&T.

SEE ALSO
exec(2), exit(2), fork(2), getpid(2), kill(2), setpgid(2), signal(2), termio(7).

STANDARDS CONFORMANCE
setsid (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

setpgrp () : SVID2, XPG2

204 -1- HP-UX Release 9.0: August 1992

setuid(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
#include <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);

DESCRIPTION

setuid(2)

setuid () sets the real~user-ID (ruid),elfective-user-ID (euid), and/or saved-user-ID (suid) of the calling
process. The super-user's euid is zero. The following conditions govern setuid's behavior:

• If the euid is zero, setuid () sets the ruid, euid, and suid to uid.

• If the euid is not zero, but the argument uid is equal to the ruid or the suid, setuid () sets the
euid to uid; the ruid and suid remain unchanged. (If a set-user-ID program is not running as
super-user, it can change its euid to match its ruid and reset itself to the previous euid value.)

• If euid is not zero, but the argument uid is equal to the euid, and the calling process is a member
of a group that has the PRIV_SETRUGID privilege (see privgrp(4», setuid () sets the ruid to
uid; the euid and suid remain unchanged.

setgid () sets the real-group-ID (rgid), effective-group-ID (egid), and/or saved-group-ID (sgid) of the cal­
ling process. The following conditions govern setgid () 's behavior:

• If euid is zero, setgid () sets the rgid and egid to gid.

• If euid is not zero, but the argument gid is equal to the rgid or the sgid, setg id () sets the egid
to gid; the rgid and sgid remain unchanged.

• If euid is not zero, but the argument gid is equal to the egid, and the calling process is a member
of a group that has the PRIV_SETRUGID privilege (see privgrp(4», setgid () sets the rgid to
gid; the egid and sgid remain unchanged.

RETURN VALUE
Upon successful completion, setuid () and setgid () returned 0; otherwise, they return -1 and set
errno to indicate the error.

ERRORS
setuid () and setgid () fail and return -1 if any of the following conditions are encountered:

[EPERM] None of the conditions above are met.

[EINVAL] uid (gid) is not a valid user (group) ID.

WARNINGS
It is recommended that the PRIV _SETRUGID capability be avoided, as it is provided for backward compa­
tibility. This feature may be modified or dropped from future HP-UX releases. When changing the real user
ID and real group ID, use of setresuid() and setresgid() (see setresuid(2» are recommended
instead.

AUTHOR
setuid () was developed by AT&T, the University of California, Berkeley, and HP.

setgid () was developed by AT&T.

SEE ALSO
exec(2), getprivgrp(2), getuid(2), setresuid(2) privgrp(4).

STANDARDS CONFORMANCE
setuid () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

setgid (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 205

I

I

shmctl (2) shmctl (2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION
shmctl () provides a variety of shared memory control operations as specified by cmd. The following
cmds are available:

Place the current value of each member of the data structure associated with shmid
into the structure pointed to by bur. The contents of this structure are defined in the
glossary.

Set the value of the following members of the data structure associated with shmid to
the corresponding value found in the structure pointed to by bur:

shm-perm. uid
shm-perm.gid
shm-perm.mode 1* only low 9 bits *1

This cmd can only be executed by a process that has an effective user ID equal to either that of a user hav­
ing appropriate privileges or to the value of either shm-perm. uid or shm-perm. cuid in the data
structure associated with shmid.

IPC RMID
Re~ove the shared memory identifier specified by shmid from the system and destroy the shared memory
segment and data structure associated with it. If the segment is attached to one or more processes, then
the segment key is changed to IPC_PRIVATE and the segment is marked removed. The segment disap­
pears when the last attached process detaches it. This cmd can only be executed by a process that has an
effective user ID equal to either that of a user with appropriate privileges or to the value of either
shm-perm. uid or shm-perm. cuid in the data structure associated with shmid.

SlIM_LOCK
Lock the shared memory segment specified by shmid in memory. This cmd can only be executed by a pro­
cess that either has an effective user ID equal to that of a user having appropriate privileges or has an
effective user ID equal to the value of either shm-perm. uid or shm-perm. cuid in the data struc­
ture associated with shmid and has PRIV_MLOCK privilege (see setprivgrp () description, get­
privgrp(2».

SlIM UNLOCK
Unl~ck the shared memory segment specified by shmid. This cmd can only be executed by a process that
either has an effective user ID equal to a user having appropriate privileges or has an effective user ID
equal to the value of either shm-perm. uid or shm-perm. cuid in the data structure associated with
shmid and has PRIV _MLOCK privilege (see setpri vgrp () description, getprivgrp(2».

RETURN VALUE
shmctl () returns a value of 0 upon successful completion; otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS

206

shmctl () fails if any of the following conditions are encountered (see DEPENDENCIES):

[EINV AL] shmid is not a valid shared memory identifier.

[EINVAL]

[EACCES]

[EPERM]

cmd is not a valid command.

cmd is equal to IPC_STAT and Read operation permission is denied to the calling
process (see shared memory operation permissions inglossary(9».

cmd is equal to IPC_RMID, IPC_SET, SlIM_LOCK, or SmLUNLOCK and the
effective user ID of the calling process is not equal to that of a user having appropriate
privileges and it is not equal to the value of either shm-perm. uid or
shm-perm.cuidin the data structure associated withshmid.

-1- HP-UX Release 9.0: August 1992

shmctl(2)

[EPERM]

[EINVAL]

[EFAULT]

[ENOMEM]

EXAMPLES

shmctl(2)

cmd is equal to SlIM_LOCK or SmCUNLOCK and the effective user ID of the calling
process is not equal to that of a user having appropriate privileges and the calling
process does not have PRIV_MLOCK privilege (see setprivgrp () description,
getprivgrp(2».

cmd is equal to SlIM_UNLOCK and the shared-memory segment specified by shmid is
not locked in memory.

bur points to an illegal address. The reliable detection of this error is implementation
dependent.

cmd is equai to SlIM_LOCK and there is not sufficient lockable memory to fill the
request.

The following call to shmctl () locks in memory the shared memory segment represented by myshmid.
This example assumes the process has a valid shmid, which can be obtained by calling shmget(2).

shmctl (myshmid, SlIM_LOCK, 0);

The following call to shmctl () removes the shared memory segment represented by myshmid. This
example assumes the process has a valid shmid, which can be obtained by calling shmget () (see
shmget(2).

shmctl (myshmid, IPC_RMID, 0);

DEPENDENCIES
Series 300/400

An additional error condition can occur on Series 300/400 systems:

[EACCES] shmid is the id of a shared memory segment currently being used by the system to
implement other features (see graphics (7) and iomap(7».

AUTHOR
shmctl () was developed by AT&T and HP.

SEE ALSO
ipcrm(1), ipcs(1), shmget(2), shmop(2), stdipc(3C).

STANDARDS CONFORMANCE
shmctl () : SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -2- 207

I

I

shmget(2) shmget(2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

DESCRIPTION
shmget () returns the shared memory identifier associated with key .

A shared memory identifier and associated data structure and shared memory segment of size size bytes
(see glossary(9» are created for key if one of the following is true:

• key is equal to IPC_PRIVATE. This call creates a new identifier, subject to available resources.
The identifier will never be returned by another call to shmget () until it has been released by a
call to shmct 1 (). The identifier should be used among the calling process and its descendents;
however, it is not a requirement. The resource can be accessed by any process having the proper
permissions.

• key does not already have a shared memory identifier associated with it, and (shmflg &
IPC_CREAT) is ''true''.

Upon creation, the data structure associated with the new shared memory identifier is initialized as fol­
lows:

• shm...J;>erm.cuid, shm...J;>erm.uid, shm...J;>erm.cgid, and shm-perm.gid are set equal to
the effective user ID and effective group ID, respectively, of the calling process.

• shm...J;>erm. cuid, The low-order 9 bits of shm-perm.mode are set equal to the low-order 9
bits ofshmflg. shm_segsz is set equal to the value of size.

• shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to O.

• shm_ctime is set equal to the current time.

EXAMPLES
The following call to shmget () returns a unique shmid for the newly created shared memory segment of
4096 bytes:

int myshmid;

myshmid = shmget (IPC_PRIVATE, 4096, 0600);

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

ERRORS

208

shmget () fails if any of the following conditions are encountered:

[EINVAL] size is less than the system-imposed minimum or greater than the system-imposed
maximum.

[EACCES]

[EINVAL]

[ENOENT]

[ENOSPC]

[ENOMEM]

[EEXIST]

A shared memory identifier exists for key but operation permission (see glossary(9»
as specified by the low-order 9 bits of shmflg would not be granted.

A shared memory identifier exists for key but the size of the segment associated with
it is less than size and size is not equal to zero.

A shared memory identifier does not exist for key and (shmflg & J:PC_CREAT) is
"false".

A shared memory identifier is to be created but the system-imposed limit on the max­
imum number of allowed shared memory identifiers system wide would be exceeded.

A shared memory identifier and associated shared memory segment are to be created,
but the amount of available physical memory is not sufficient to fill the request.

A shared memory identifier exists for key but ((shmflg & IPC_CREAT) && (shmflg &
IPC_EXCL» is ''true''.

-1- HP-UX Release 9.0: August 1992

shmget(2) shmget(2)

SEE ALSO
ipcrm(l), ipcs(1), shmctl(2), shmop(2), stdipc(3C).

STANDARDS CONFORMANCE
shmget () : SVID2, XPG2, XPG3, XPG4

I

HP-UX Release 9.0: August 1992 -2- 209

I

shmop(2) shmop(2)

NAME
shmat, shmdt - shared memory operations

SYNOPSIS
#include <sys/shm.h>

char *shmat(int shmid, void *shmaddr, int shmflg);

int shmdt(void *shmaddr);

DESCRIPTION
shmat () attaches the shared memory segment associated with the shared memory identifier specified by
shmid to the data segment of the calling process.

Series 700/800 Systems
If the shared memory segment is not already attached, shmaddr must be specified as zero and the
segment is attached at a location selected by the operating system. That location is identical in all
processes accessing that shared memory object.

If the shared memory segment is already attached, a non-zero value of shmaddr is accepted, provided
the specified address is identical to the current attach address of the segment.

Series 300/400 Systems
shmaddr can be specified as a non-zero value as a machine-dependent extension (see DEPENDENCIES
below). However, those systems do not necessarily guarantee that a given shared memory object
appears at the same address in all processes that access it, unless the user specifies an address.

The segment is attached for reading if (shmflg & SHM_RDONLY) is "true"; otherwise it is attached for
reading and writing. It is not possible to attach a segment for write only.

shmdt () detaches from the calling process's data segment the shared memory segment located at the
address specified by shmaddr.

RETURN VALUE
Upon successful completion, the return value is as follows:

shma t () returns the data segment start address of the attached shared memory segment.

shmdt () returns a value of 0; otherwise, a value of -1 is returned and errno is set to indicate the
error.

ERRORS
shmat () fails and does not attach the shared memory segment if any of the following conditions are
encountered (see DEPENDENCIES):

[EINVAL]

[EACCES]

[ENOMEM]

[EINVAL]

shmid is not a valid shared memory identifier.

Operation permission is denied to the calling process.

The available data space is not large enough to accommodate the shared memory seg­
ment.

shmaddr is not zero and the machine does not permit non-zero values or shmaddr is
not equal to the current attach location for the shared memory segment.

[EMFILE] The number of shared memory segments attached to the calling process exceed the
system-imposed limit.

shmdt () fails and returns -1 if the following condition is encountered:

[EINV AL] shmaddr is not the data segment start address of a shared memory segment.

EXAMPLES

210

The following call to shmat attaches the shared memory segment to the process. This example assumes the
process has a valid shmid, which can be obtained by callinS shmget(2).

char *shmptr, *shmat();
shmptr = shmat(myshmid, (char *)0, 0);

The following call to shmdt () then detaches the shared memory segment.

-1- HP-UX Release 9.0: August 1992

shmop(2)

shmdt (shmptr);

DEPENDENCIES
Series 300/400

shmop(2)

shmaddr can be non-zero, and if it is, the segment is attached at the address specified by one of the follow­
ing criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as selected by the system.
The selected value varies for each process accessing that shared memory object.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is "true", the segment is attached at the address
given by (shmaddr - (shmaddr % SHMLBA». The character % is the C language modulus operator.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is "false", the segment is attached at the address
given by shmaddr.

This form of shma t () fails and does not attach the shared memory segment if any of the following condi­
tions are encountered:

[EACCES]

[EINVAL]

[EINVAL]

[ENOMEM]

Series 700/800

shmid is the ID of a shared memory segment currently being used by the system to
implement other features (see graphics (7) and iomap(7».

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr % SHMLBA» is
an illegal address.

shmaddr is not equal to zero, (shmflg & SHM_RND) is ''false", and the value of
shmaddr is an illegal address.

The calling process is locked (see plock (2» and there is not sufficient lockable memory
to support the process-related data structure overhead.

shmat () fails and returns -1 if the following is encountered:

[EINV ALl The calling process is already attached to shmid.

SEE ALSO
ipcs(l), exec(2), exit(2), fork(2), shmctl(2), shmget(2), stdipc(3C).

STANDARDS CONFORMANCE
shmat (): SVID2 [Series 300/400 only], XPG2, XPG3, XPG4

shmdt () : SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -2- 211

I

I

shutdown (2) shutdown (2)

NAME
shutdown - shut down a socket

SYNOPSIS
int shutdown(int s, int how);

DESCRIPTION
The shutdown () system call is used to shut down a socket. In the case of a full-duplex connection,
shutdown () can be used to either partially or fully shut down the socket, depending upon the value of
how:

how Interpretation
o Further receives are disallowed
1 Further sends are disallowed
2 Further sends and receives are disallowed

The s parameter is a socket descriptor for the socket to be shut down.

Once the socket has been shut down for receives, all further recv () calls return an end-of-file condition.
A socket that has been shut down for sending causes further send () calls to return an EPIPE error and
send the SIGPIPE signal. After a socket has been fully shut down, operations other than recv() and
send () return appropriate errors, and the only other thing that can be done to the socket is a close () .

Multiple shutdowns on a connected socket and shutdowns on a socket that is not connected might not
return errors.

A shutdown () on a connectionless socket, such as SOCK_DGRAM , only marks the socket as unable
to do further send () or recv () calls, depending upon how. Once this type of socket has been disabled
for both sending and receiving data, it becomes fully shut down. For SOCK_STREAM sockets, if how is 1
or 2, the connection begins to be closed gracefully in addition to the normal actions. However, the
shutdown () call does not wait for the completion of the graceful disconnection. The disconnection is
complete when both sides of the connection have done a shutdown () with how equal to 1 or 2. Once
the connection has been completely terminated, the socket becomes fully shut down. The SO_LINGER
option (see socket(2)) does not have any meaning for the shutdown () call, but does for the close ()
call. For more information on how the close () call interacts with sockets, see socket(2).

If a shutdown () is performed on a SOCK_STREAM socket that has a listen () pending on it, that
socket becomes fully shu~ down when how = 1.

AF _CCITT only:
The how parameter behaves differently if the socket is of the the AF_CCITT address family. If how is set
to 0 the specified socket can no longer receive data. The SVC is not cleared and remains intact. However,
if data is subsequently received on the SVC, it is cleared. The connection is not completely down until either
side executes a close () or shutdown () with how set to 1 or 2.

If how is set to 1 or 2, the SVC can no longer send or receive data and the SVC is cleared. The socket's
resources are maintained so that data arriving prior to the shutdown () call can still be read.

RETURN VALUE
Upon successful completion, shutdown () returns 0; otherwise it returns -1 and errno is set to indicate
the error.

ERRORS
shutdown () fails if any of the following conditions are encountered:

[EBADF] s is not a valid descriptor.

[ENOTSOCK] s is a file, not a socket.

[EINV AL] The specified socket is not connected.

AUTHOR
shutdown () was developed by the University of California, Berkeley.

SEE ALSO
close(2), connect(2), socket(2).

212 -1- HP-UX Release 9.0: August 1992

sigaction (2) sigaction (2)

NAME
sigaction - examine and change signal action

SYNOPSIS
#include <signal.h>

int sigaction (

\ .
J ,

int sig,
const struct sigaction *act,
struct sigaction *oact

DESCRIPTION
sigaction() allows the calling process to examine and specify the action to be taken on delivery of a
specific signal. The argument sig specifies the signal; acceptable values are defined in <signal. h>. More
details on the semantics of specific signals can be found in the signal(5) manual entry.

The sigaction structure and type sigset_t are defined in <signal. h>.

act and oact are pointers to sigaction structures that include the following elements:

void (*sa_handler) () ;
sigset_t sa_mask;
int saJl,ags;

Unless it is a null pointer, the argument act points to a structure specifying the action to be taken when
delivering the specified signal. If the argument oact is not a null pointer, the action previously associated
with the signal is stored in the location pointed to by oact. If the argument act is a null pointer, signal han­
dling is unchanged; thus s igact ion () can be used to inquire about the current handling of a given sig­
nal.

The sa_handler member of the sigaction structure is assigned one of three values: SIG_DFL,
SIG_IGN, or a function address. The actions prescribed by these values are as follows:

SIG_DFL Execute default action for signal.
Upon receipt of the signal sig, the default action (specified on signal(5)) is per­
formed. The default action for most signals is to terminate the process.

A pending signal is discarded (whether or not it is blocked) if sigaction () is
set to SIG_DFL for a pending signal whose default action is to ignore the signal
(as in the case of SIGCHLD).

SIG_IGN Ignore the signal.
Setting a signal action to SIG_IGN causes a pending signal to be discarded,
whether or not it is blocked.

The SIGKILL and SIGSTOP signals cannot be ignored.

function address Catch the signal.
Upon receipt of the signal sig, the receiving process executes the signal-catching
function pointed to by sa_handler. The signal-catching function is entered as a C­
language function call. Details on the arguments passed to this function can be
found in the signal(5) manual entry.

The signals SIGKILL and SIGSTOP cannot be caught.

When a signal is caught by a signal-catching function installed by sigaction, a new mask is calculated
and installed for the duration of the signal-catching function, or until a call is made to sigproc­
mask () or sigsuspend () (see sigprocmask(2) and sigsuspend(2)). This mask is formed by taking
the union of the current signal mask, the signal to be delivered, and unless the SA_RESETHAND flag
is set (see below), the signal mask specified in the sa_mask field of the sigaction structure associ­
ated with the signal being delivered. If and when the signal-catching function returns normally, the
original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is explicitly
requested, or until one of the exec(2) functions is called.

HP-UX Release 9.0: August 1992 -1- 213

I

I

sigaction (2) sigaction (2)

If the previous action for sig was established by signal(2), the values of the fields returned in the
structure pointed to by oact are unspecified; in particular, oact->sa_handler is not necessarily the
same value passed to signal (). However, if a pointer to the same structure or a copy thereof is
passed to a subsequent call to sigaction () via the act argument, handling of the signal is rein­
stated as if the original call to signal () were repeated.

The set of signals specified by the sa_mask field of the sigaction structure pointed to by the act
argument cannot block the SIGKILL or SIGSTOP signal. This is enforced by the system without
causing an error to be indicated.

The saJl,ags field in the sigaction structure can be used to modify the behavior of the specified
signal. The following flag bits, defined in the <signal. h> header, can be set in saJl,ags:

SA_NOCLDSTOP Do not generate SIGCHLD when untraced children stop (see ptrace(2».

SA_ONSTACK Use the space reserved by sigspace () for signal processing.

Use the semantics of signal (). The signal mask specified by the
sa_mask field is not used when setting up the effective signal mask for the
signal handler. If the signal is not one of those marked "not reset when
caught" (see signal(5», the default action for the signal is reinstated when
the signal is caught, prior to entering the signal-catching function. The
"not reset when caught" distinction is insignificant when sigaction ()
is called and SA_RESETHAND is not set.

RETURN VALUE
Upon successful completion, sigaction() returns 0; otherwise it returns -1 and sets errno to indicate
the error.

ERRORS
s i gact ion () fails and no new signal-catching function is installed if any of the following conditions is
encountered:

[EINVAL]

[EFAULT]

The value of the sig argument is not a valid signal number, or an attempt is
made to supply an action other than SIG_DFL for the SIGKILL or SIGSTOP
signal.

act or oact points to an invalid address. The reliable detection of this error is
implementation dependent.

AUTHOR
sigact ion () was derived from the IEEE POSIX 1003.1-1988 Standard.

SEE ALSO
ptrace(2), sigprocmask(2), sigpending(2), sigspace(2), sigsuspend(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigaction(): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

214 -2- HP-UX Release 9.0: August 1992

sigblock(2) sigblock(2)

NAME
sigblock - block signals

SYNOPSIS
#include <signal.h>

long sigblock(long mask);

DESCRIPTION
sigblock () causes the signals specified in mask to be added to the set of signals currently being blocked
from delivery. Signal i is blocked if the i-th bit in mask is 1, as specified with the macro sigmask(i).

It is not possible to block signals that cannot be ignored, as documented in signal(5); this restriction is
silently imposed by the system.

Use s igsetmask () to set the mask absolutely (see sigsetmask(2».

RETURN VALUE
sigblock () returns the previous set of masked signals.

EXAMPLES
The following call to sigblock() adds the SIGUSR1 and SIGUSR2 signals to the mask of signals
currently blocked for the process:

long oldmask;

oldmask = sigblock (sigmask (SIGUSR1) I sigmask (SIGUSR2»;

WARNINGS
Do not use sigblock () in conjunction with the facilities described under sigset(2V).

AUTHOR
sigblock () was developed by the University of California, Berkeley.

SEE ALSO
kill(2), sigprocmask(2), sigsetmask(2), sigvector(2).

HP-UX Release 9.0: August 1992 -1- 215

I

I

signa1(2) signal (2)

NAME
signal- specify what to do upon receipt of a signal

SYNOPSIS
#include <signal.h>

void (*signal(int sig, void (*action) (int») (int);

DESCRIPTION
signal () allows the calling process to choose one of three ways to handle the receipt of a specific signal.
sig specifies the signal and action specifies the choice.

Acceptable values for sig are defined in <signal. h>. The specific signals are described in full in the sig­
nal(5) manual entry.

The value of the action argument specifies what to do upon the receipt of signal sig, and should be one of
the following:

SIG_DFL Execute the default action, which varies depending on the signal. The default action for
most signals is to terminate the process (see signal(5».

A pending signal is discarded (whether or not it is blocked) if action is set to SIG_DFL
but the default action of the pending signal is to ignore the signal (as in the case of
SIGCLD).

SIG_IGN Ignore the signal.
When signal () is called with action set to SIG_IGN and an instance of the signal
sig is pending, the pending signal is discarded, whether or not it is blocked.

SIGKILL and SIGSTOP signals cannot be ignored.

address Catch the signal.
Upon receipt of signal sig, reset the value of action for the caught signal to SIG_DFL
(except signals marked with "not reset when caught"; see signal (5», call the signal­
catching function to which address points, and resume executing the receiving process at
the point where it was interrupted.

The signal-catching function is called with the following three parameters:

sig The signal number.

code A word of information usually provided by the hardware.

scp A pointer to the machine-dependent structure sigcontext defined in
<signal.h>.

Depending on the value of sig, code can be zero and/or scp can be NULL. The meanings of code and scp
and the conditions determining when they are other than zero or NULL are implementation dependent
(see DEPENDENCIES below). It is possible for code to always be zero, and scp to always be NULL.

The pointer scp is valid only during the context of the signal-catching function.

The signals SIGKILL and SIGSTOP cannot be caught.

RETURN VALUE
Upon successful completion, signal () returns the previous value of action for the specified signal sig.
Otherwise, a value of SIG_ERR is returned and errno is set to indicate the error.

ERRORS
signal () fails if the following is true:

[EINVAL] sig is an illegal signal number, or is equal to SIGKILL or SIGSTOP.

EXAMPLES
The following call to signal () sets up a signal-catching function for the SIGINT signal:

void myhandler();

(void) signal(SIGINT, myhandler);

216 -1- HP-UX Release 9.0: August 1992

signa1(2) signal(2)

WARNINGS
signal {} should not be used in conjunction with the facilities described under bsdproc(2), sigaction(2),
sigset(2V), or sigvector(2).

signal {} does not detect an invalid value for action, and if it does not equal SIG_DFL or SIG_IGN, or
point to a valid function address, subsequent receipt of the signal sig causes undefined results.

DEPENDENCIES
Series 300/400

The code word is always zero for all signals except SIGILL and SIGFPE. For SIGILL, code has the fol­
lo\ving values:

o illegal instruction;
6 check instruction;
7 TRAPV;
8 privilege violation.

Refer to the MC6800xx processor documentation for more detailed information about the meaning of the
SIGILL errors.

For SIGFPE, code has the following values:

o software floating point exception;
5 integer divide-by-zero.

Ox8xxxxxx any value with the high-order bit set indicates an exception while using the
HP98248 floating-point accelerator. The value of (code &- Ox8000000) is the value of
the HP98248 status register. Refer to the HP98248 documentation for more detailed
information.

other any other value indicates an exception while using the MC68881 or MC68882
floating-point coprocessor. The value of code is the value of the MC68881 or MC68882
status register. Refer to the MC68881 documentation for more detailed information.

Series 700/800
The structure pointer scp is always defined.

The code word is always zero for all signals except SIGILL and SIGFPE. For SIGILL, code has the fol­
lowing values:

8 illegal instruction trap;
9 break instruction trap;
10 privileged operation trap;
11 privileged register trap.

For SIGFPE, code has the following values:

12 overflow trap;
13 conditional trap;
14 assist exception trap;
22 assist emulation trap.

As defined by the IEEE POSIX Standard, HP-UX on Series 700/800 systems does not raise an exception on
floating-point divide by zero. The result of floating-point divide by zero is infinity which can be checked by
isinf(3M).

AUTHOR
signal {} was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
kill(l), init(lM), exit(2), kill(2), Iseek(2), pause(2), sigaction(2), sigvector(2), wait(2), abort(3C), setjmp(3C),
signal(5).

STANDARDS CONFORMANCE
signal {}: AES, SVID2, XPG2, XPG3, XPG4, ANSI C

HP-UX Release 9.0: August 1992 -2- 217

I

I

sigpause(2) sigpause(2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
#include <signal.h>

long sigpause(long mask);

DESCRIPTION
sigpause () blocks signals according to the value of mask in the same manner as sigsetmask(2), then
atomically waits for an unmasked signal to arrive. On return s! gpause () restores the current signal
mask to the value that existed before the s!gpause () call. When no signals are to be blocked, a value of
OL is used for mask.

In normal usage, a signal is blocked using sig-block () (see sigblock(2». To begin a cl'itical sect;ion, vari­
ables modified on the occurrence of the signal are examined to determine that there is no work to be done,
and the process pauses, awaiting work by using s !gpause () with the mask returned by s !gblock () .

RETURN VALUE
s!gpause () terminates when it is interrupted by a signal. When s!gpause () terminates, it returns -1
and sets errno to EINTR.

EXAMPLES
The following call to s igpause () waits until the calling process receives a signal:

s!gpause (OL);

The following example blocks the SIGIO signal until s!gpause () is called. When a signal is received at
the s!gpause () statement, the signal mask is restored to its value before s!gpause () was called:

long savemask;
savemask = s!gblock (s!gmask (SIGIO»;
1* critical section *1
s!gpause (savemask);

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector() can
affect the behavior described on this page.

Do not use s !gpa us e () in conjunction with the facilities described under sigset(2V).

AUTHOR
s!gpause () was developed by the University of California, Berkeley.

SEE ALSO
sigblock(2), sigsetmask(2), sigsuspend(2), sigvector(2).

218 -1- HP-UX Release 9.0: August 1992

sigpending(2)

NAME
sigpending - examine pending signals

SYNOPSIS
#include <signal.h>

int sigpending(sigset_t *set);

DESCRIPTION

sigpending(2)

sigpending () stores sets of signals that are blocked from delivery and are pending to the calling pro­
cess, at the location pointed to by set.

RETURN VALUE
Upon successful completion, sigpending () returns a value of 0; otherwise it returns -1 and sets
errno to indicate the error.

ERRORS
sigpending () fails if the following condition is encountered:

[EFAULT] set points to an invalid address. The reliable detection of this error is implementation
dependent.

AUTHOR
sigpending () was derived from the IEEE POSIX 1003.1-1988 Standard.

SEE ALSO
sigaction(2), sigsuspend(2), sigprocmask(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigpending (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 219

I

I

sigprocmask (2) sigprocmask (2)

NAME
sigprocmask - examine and change blocked signals

SYNOPSIS
#include <signal.h>

int sigprocmask(

) ;

int hel'1,
const sigset_t *set,
sigset_t *oset

DESCRIPTION
sigprocmask () allows the calling process to examine and/or change its signal mask.

Unless it is a null pointer, the argument set points to a set of signals to be used to change the currently
blocked set.

The argument how indicates how the set is changed, and consists of one of the following values (see
<signal.h»:

SIG_BLOCK The resulting set is the union of the current set and the signal set pointed to by
set.

SIG_UNBLOCK The resulting set is the intersection of the current set and the complement of the
signal set pointed to by set.

SIG_SETMASK The resulting set is the signal set pointed to by set.

If the argument oset is not a null pointer, the previous signal mask is stored in the location pointed to by
oset. If set is a null pointer, the value of the argument how is insignificant and the process's signal mask is
unchanged; thus the call can be used to inquire about currently blocked signals.

If any pending unblocked signals remain after the call to sigprocmask (), at least one of those signals
is delivered before the call to sigprocmask () returns.

It is impossible to block the SIGKILL or SIGSTOP signal. This is enforced by the system without caus­
ing an error to be indicated.

The process's signal mask is not changed if s igprocmask () fails for any reason.

RETURN VALUE
Upon successful completion, sigprocmask () returns 0; otherwise it returns -1 and sets errno to indi­
cate the error.

ERRORS
sigprocmask () fails if any of the following conditions are encountered:

[EINVAL]

[EFAULT]

The value of the how argument is not equal to one of the defined values.

set or oset points to an invalid address. The reliable detection of this error is imple­
mentation dependent.

AUTHOR
sigprocmask () was derived from the IEEE POSIX 1003.1-1988 Standard.

SEE ALSO
sigaction(2), sigsuspend(2), sigpending(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigprocmask (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

220 -1- HP-UX Release 9.0: August 1992

sigset(2V) sigset(2V)

NAME
sigset, sighold, sigrelse, sigignore, sigpause - signal management

SYNOPSIS
#inc1ude <signa1.h>

void (*sigset(int sig, void (*func) (int») (int);

int sigho1d(int sig);

int sigre1se(int sig);

int sigignore(int sig);

int sigpause(int sig);

DESCRIPTION
The system defines a set of signals that can be delivered to a process. The set of signals is defined in sig­
nal(5), along with the meaning and side effects of each signal. An alternate mechanism for handling these
signals is defined here. The facilities described here should not be used in conjunction with the other facili­
ties described under signal (2), sigvector(2), sigblock(2), sigsetmask(2), sigpause(2) and sigspace(2).

sigset () allows the calling process to choose one of four ways to handle the receipt of a specific signal.
sig specifies the signal and func specifies the choice.

sig can be anyone of the signals described under signal(5) except SIGKILL or SIGSTOP.

func is assigned one of four values: SIG_DFL, SIG_IGN, SIG_HOLD, or a function address. The actions
prescribed by SIG_DFL and SIG_IGN are described under signal (5). The action prescribed by
SIG_HOLD and function address are described below:

SIG_HOLD Hold signal.
The signal sig is held upon receipt. Any pending signal of this signal type remains held.
Only one signal of each type is held.

Note: the signals SIGKILL, SIGCONT, and SIGSTOP cannot be held.

function address
Catch signal.
func must be a pointer to a function, the signal-catching handler, that is called when signal
sig occurs. s igset () specifies that the process calls this function upon receipt of signal
sig. Any pending signal of this type is released. This handler address is retained across
calls to the other signal management functions listed here. Upon receipt of signal sig, the
receiving process executes the signal-catching function pointed to by tunc as described
under signal(5) with the following differences:

Before calling the signal-catching handler, the system signal action of sig is set to
SIG_HOLD. During a normal return from the signal-catching handler, the system signal
action is restored to func and any held signal of this type is released. If a non-local goto
aongjmp(3C» is taken, sigre1se () must be called to restore the system signal action to
func and release any held signal of this type.

sigho1d() holds the signal sig. sigre1se () restores the system signal action of sig to that specified
previously by sigset (). sigho1d () and sigre1se () are used to establish critical regions of code.
s i gho 1 d () is analogous to raising the priority level and deferring or holding a signal until the priority is
lowered by sigre1se ().

sigignore () sets the action for signal sig to SIG_IGN (see signal(5».

sigpause () suspends the calling process until it receives an unblocked signal. If the signal sig is held, it
is released before the process pauses. s igpause () is useful for testing variables that are changed when
a signal occurs. For example, sigho1d () should be used to block the signal first, then test the variables.
If they have not changed, call s i gpa us e () to wait for the signal.

These functions can be linked into a program by giving the -1 V3 option to the 1d command (see ld(1».

RETURN VALUE
Upon successful completion, sigset () returns the previous value of the system signal action for the
specified signal sig. Otherwise, a value of SIG_ERR is returned and errno is set to indicate the error.

HP-UX Release 9.0: August 1992 -1- 221

I

I

sigset(2V) sigset(2V)

BIG_ERR is defined in <signal. 11>.

For the other functions, a 0 value indicates that the call succeeded. A -1 return value indicates an error
occurred and errno is set to indicate the reason.

ERRORS
s i gs et () fails and the system signal action for sig is not changed if any of the following occur:

[EFAULT] The tunc argument points to memory that is not a valid part of the process
address space. Reliable detection ofthis error is implementation dependent.

sigset (), sighold (), sigrelse (), sigignore (), and sigpause () fail and the system signal
action for sig is not changed if any of the following occur:

[EINVAL]

[EINVAL]

sig is not a valid signal number.

An attempt is made to ignore, hold, or supply a handler for a signal that can­
not be ignored, held, or caught; see signal(5).

sigpause returns when the following occurs:

[EINTR] A signal was caught.

WARNINGS
These signal facilities should not be used in conjunction with bsdproc(2), signal(2), sigvector(2), sigblock(2),
sigsetmask(2), sigpause(2) and sigspace(2).

SEE ALSO
kill(1), kill(2), signal(2), pause(2), wait(2), abort(3C), setjmp(3C), signal(5).

STANDARDS CONFORMANCE
sigset: SVID2

222

sighold: SVID2

sigignore: SVID2

sigpause: SVID2

sigrelse: SVID2

-2- HP-UX Release 9.0: August 1992

sigsetmask (2) sigsetmask (2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
#include <signal.h>

long sigsetmask(long mask);

DESCRIPTION
sigsetmask () sets the current signal mask (those signals that are blocked from delivery). Signal i is
blocked if the i -th bit in mask, as specified with the macro sigmas k (i L is a 1.

It is not possible to mask signals that cannot be ignored, as documented in signal(5); this restriction is
silently imposed by the system.

sigblock () can be used to add elements to the set of blocked signals.

RETURN VALUE
The previous set of masked signals is returned.

EXAMPLES
The following call to s igsetmask () causes only the SIGUSRl and SIGUSR2 signals to be blocked:

long oldmask;

oldmask = sigsetmask (sigmask (SIGUSR1) I sigmask (SIGUSR2»;

WARNINGS
Do not use s igsetmask () in conjunction with the facilities described under sigset(2V).

AUTHOR
sigsetmask () was developed by the University of California, Berkeley.

SEE ALSO
kill(2), sigblock(2), sigpause(2), sigprocmask(2), sigvector(2).

HP-UX Release 9.0: August 1992 -1- 223

I

I

sigspace(2) sigspace(2)

NAME
sigspace - assure sufficient signal stack space

SYNOPSIS
#include <signal.h>

size_t sigspace(size_t stacksize);

DESCRIPTION
sigspace () requests additional stack space that is guaranteed to be available for processing signals
received by the calling process.

If the value of stacksize is positive, it specifies the size of a space, in bytes, which the system guarantees to
be available when processing a signal. If the value of stacksize is zero, any guarantee of space is removed.
If the value is negative, the guarantee is left unchanged; this can be used to interrogate the current
guaranteed value.

When a signal's action indicates that its handler should use the guaranteed space (specified with a sigac­
tion (), sigvector (), or sigvec () call (see bsdproc(2)), the system checks to see if the process is
currently using that space. If the process is not currently using that space, the system arranges for that
space to be available for the duration of the signal handler's execution. If that space has already been made
available (due to a previous signal) no change is made. Normal stack discipline is resumed when the signal
handler first using the guaranteed space is exited.

The guaranteed space is inherited by child processes resulting from a successful fork () system call, but
the guarantee of space is removed after any exec () system call (see fork (2) and exec(2)).

The guaranteed space cannot be increased in size automatically, as is done for the normal stack. If the
stack overflows the guaranteed space, the resulting behavior of the process is undefined.

Guaranteeing space for a stack can interfere with other memory allocation routines in an implementation­
dependent manner.

During normal execution of the program the system checks for possible overflow of the stack. Guaranteeing
space might cause the space available for normal execution to be reduced.

Leaving the context of a service routine abnormally, such as by longjmp () (see setjmp(3C)), removes the
guarantee that the ordinary execution of the program will not extend into the guaranteed space. It might
also cause the program to lose forever its ability to automatically increase the stack size, causing the pro­
gram to be limited to the guaranteed space.

RETURN VALUE
Upon successful completion, sigspace () returns the size of the former guaranteed space. Otherwise, it
returns -1 and sets errno to indicate the error.

ERRORS
sigspace () fails and the guaranteed amount of space remains unchanged if the following occurs:

[ENOMEM] The requested space cannot be guaranteed, either because of hardware limita­
tions or because some software-imposed limit would be exceeded.

WARNINGS
The guaranteed space is allocated using malloc(3C). This use might interfere with other heap management
mechanisms.

Methods for calculating the required size are not well developed.

Do not use s igspace () in conjunction with the facilities described under sigset(2V).

Do not use s igspace () in conjunction with sigstack(2).

DEPENDENCIES
Series 300/400

The kernel overhead taken in the reserved space is 608 bytes on Series 300/400 systems. This overhead
must be included in the requested amount. These values are subject to change in future releases.

AUTHOR
sigspace () was developed by lIP.

224 -1- HP-UX Release 9.0: August 1992

sigspace (2) sigspace (2)

SEE ALSO
sigaction(2), sigstack(2), sigvector(2), malloc(3C), setjrnp(3C).

I

HP-UX Release 9.0: August 1992 -2- 225

I

sigstack(2) sigstack (2)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include <signal.h>

int sigstack(

) ;

const struct sigstack *ss,
struct sigstack *oss

DESCRIPTION
sigstack () allows the calling process to indicate to the system an area of its address space to be used for
processing signals received by the process,

The correct use of s i gs tack () is hardware dependent, and therefore is not portable between different
HP-UX implementations (see DEPENDENCIES below). sigspace () is portable between different HP-UX
implementations and should be used when the application does not need to know where the signal stack is
located (see sigspace(2». sigstack () is provided for compatability with other systems that provide this
functionality. Users should note that there is no guarantee that functionality similar to this is even possi­
ble on some architectures.

If the value of the ss argument is not a null pointer, it is assumed to point to a struct sigstack struc­
ture, which includes the following members:

int ss_onstack; Non-zero when signal stack is in use.
void *ss_sp; Signal stack pointer.

The value of the ss_onstack member indicates whether the process wants the system to use a signal stack
when delivering signals; the value of the ss_sp member indicates the desired location (see DEPENDEN­
CIES) of the signal stack area in the process's virtual address space.

If the ss argument is a null pointer, the current signal stack context is not changed.

If the oss argument is not a null pointer, it should point to a variable of type struct sigstack; the
current signal stack context is returned in that variable. The value stored in the ss_onstack member tells
whether the process is currently using a signal stack, and if so, the value stored in the ss_sp member is
the current stack pointer for the stack in use.

If the oss argument is a null pointer, the current signal stack context is not returned.

When a signal's action indicates its handler should execute on the signal stack (specified by calling
sigaction (), sigvector (), or sigvec () (see bsdproc(2»}, the system checks to see if the process
is currently executing on that stack. If the process is not currently executing on the signal stack, the sys­
tem arranges a switch to the signal stack for the duration of the signal handler's execution.

The signal stack context is inherited by child processes resulting from a successful fork() system call,
but the context is removed after an exec () system call (see fork (2) and exec(2».

RETURN VALUE
Upon successful completion, s igstack () returns 0; otherwise, it returns -1 and sets errno to indicate
the error.

ERRORS
sigstack () fails and the signal stack context remains unchanged if the following is true:

[EFAULT] Either of ss or oss is not a null pointer and points outside the allocated address
space of the process. The reliable detection of this error is implementation
dependent.

WARNINGS

226

Do not use sigstack(2) in conjunction with sigspace(2).

User-defined signal stacks do not grow automatically, as does the normal process stack. If a signal stack
overflows, the resulting behavior of the process is undefined.

Methods for calculating the required stack size are not well developed.

-1- HP-UX Release 9.0: August 1992

sigstack(2) sigstack (2)

Leaving the context of a service routine abnormally, such as by longjmp () (see setjmp(3C», might
remove the guarantee that the ordinary execution of the program does not extend into the guaranteed
space. It might also cause the program to lose forever its ability to automatically increase the stack size,
causing the program to be limited to the guaranteed space.

DEPENDENCIES
Series 300/400

Stack addresses grow from high addresses to low addresses; therefore the signal stack address provided to
sigstack(2) should point to the end of the space to be used for the signal stack. This address should be
aligned to a four-byte boundary,

Series 700/800
Stack addresses grow from low addresses to high addresses; therefore the signal stack address provided to
sigstack(2) should point to the beginning of the space to be used for the signal stack. This address should
be aligned to an eight-byte boundary.

AUTHOR
sigstack () was developed by lIP and the University of California, Berkeley.

SEE ALSO
sigspace(2), setjmp(3C).

HP-UX Release 9.0: August 1992 -2- 227

I

I

sigsuspend (2) Series 300/400 Only sigsuspend (2)

NAME
sigsuspend - wait for a signal

SYNOPSIS
#include <signal.h>

int sigsuspend(const sigset_t *sig.mask);

DESCRIPTION
sigsuspend () replaces the process's current signal mask with the set of signals pointed to by sigmask,
then suspends the process until delivery of a signal that either executes a signal handler or terminates the
process.

If the signal terminates the process, s igsuspend () never returns. If the signal executes a signal
handler, sigsuspend (j returns after the signal handler returns, and restores the signal mask to the set
that existed prior to the sigsuspend () call.

It is impossible to block the SIGKILL or SIGSTOP signal. This is enforced by the system without caus­
ing an error to be indicated.

RETURN VALUE
Since sigsuspend () suspends a process indefinitely, there is no successful completion return value. If a
return occurs, a value of -1 is returned and errno is set to indicate the error.

ERRORS
s i gs us pend () fails if any of the following conditions are encountered:

[EINTR] sigsuspend () was interrupted by receipt of a signal.

[EFAULT] sigmask points to an invalid address. The reliable detection of this error is
implementation dependent.

AUTHOR
sigsuspend () was derived from the IEEE POSIX 1003.1-1988 Standard.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigseiops(3C), signal(5).

STANDARDS CONFORMANCE
sigsuspend (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

228 -1- HP-UX Release 9.0: August 1992

sigvector(2) sigvector (2)

NAME
sigvector - software signal facilities

SYNOPSIS
#include <signal.h>

int sigvector(

) ;

int sig,
const struct sigvec *vec,
struct sigvec *ovec

DESCRIPTION
The system defines a set of signals that can be delivered to a process. The set of signals is defined in sig­
nal(5), along with the meaning and side effects of each signal. This manual entry, along with those for sig­
bloek(2), sigsetmask(2), sigpause(2), and sigspaee(2), defines an alternate mechanism for handling these sig­
nals that ensures the delivery of signals and the integrity of signal handling procedures. The facilities
described here should not be used in the same program as signal(2).

With the sigvector () interface, signal delivery resembles the occurrence ofa hardware interrupt: the
signal is blocked from further occurrence, the current process context is saved, and a new one is built. A
process can specify a handler function to be invoked when a signal is delivered, or specify that a signal
should be blocked or ignored. A process can also specify that a default action should be taken by the system
when a signal occurs. It is possible to ensure a minimum amount of stack space for processing signals using
sigspace () (see sigspaee(2».

All signals have the same priority. Signal routines execute with the signal that causes their invocation to
be blocked, although other signals can yet occur. A global signal mask defines the set of signals currently
blocked from delivery to a process. The signal mask for a process is initialized from that of its parent (nor­
mally 0). It can be changed with a sigblock(), sigsetmask(), or sigpause () call, or when a sig­
nal is delivered to the process.

A signal mask is represented as a long, with one bit representing each signal being blocked. The following
macro defined in <s ignal. h> is used to convert a signal number to its corresponding bit in the mask:

#define sigmask(signo) (lL« (signo-l»

When a signal condition arises for a process, the signal is added to a set of signals pending for the process.
If the signal is not currently blocked by the process, it is delivered to the process. When a signal is
delivered, the current state of the process is saved, a new signal mask is calculated (as described below),
and the signal handler is invoked. The call to the handler is arranged so that if the signal handling rou­
tine returns normally, the process resumes execution in the same context as before the signal's delivery.
If the process wishes to resume in a different context, it must arrange to restore the previous context
itself.

When a signal is delivered to a process, a new signal mask is installed for the duration of the process' sig­
nal handler (or until a sigblock () or sigsetmask () call is made). This mask is formed by taking
the current signal mask, computing the bit-wise inclusive OR with the value of vee .sv_mask (see below)
from the most recent call to sigvector () for the signal to be delivered, and, unless the
SV _RESETHAND flag is set (see below), setting the bit corresponding to the signal being delivered. When
the user's signal handler returns normally, the original mask is restored.

s igvector () assigns a handler for the signal specified by sig. vee and ovee are pointers to sigvee struc­
tures that include the following elements:

void (*sv_handler) () i
long sv _mask i
long sv Jl,ags i

If vee is non-zero, it specifies a handler routine (sv_handler), a mask (sv_mask) that the system should
use when delivering the specified signal, and a set of flags (svJl,ags) that modify the delivery of the signal.
If ovee is non-zero, the previous handling information for the signal is returned to the user. If vee is zero,
signal handling is unchanged. Thus, the call can be used to enquire about the current handling of a given
signal. If vee and ovee point to the same structure, the value of vee is read prior to being overwritten.

HP-UX Release 9.0: August 1992 -1- 229

I

I

sigvector (2) sigvector(2)

230

The svJlags field can be used to modify the receipt of signals. The following flag bits are defined:

SV_ONSTACK Use the sigspace () allocated space.
SV_BSDSIG Use the Berkeley signal semantics.
SV_RESETHAND Use the semantics ofsignal(2).

If SV _ONSTACK is set, the system uses or permits the use of the space reserved for signal processing in
the sigspace (j system call.

If SV_BSDSIG is set, the signal is given the Berkeley semantics. The following signal is affected by this
flag:

SIGCLD In addition to being sent when a child process dies, the signal is also sent when any
child's status changes from running to stopped. This would normally be used by a
program such as csh (see csh(l» when maintaining process groups under Berkeley
job control.

If SV _RESETHAND is set, the signal handler is installed with the same semantics as a handler installed
with signal(2). This affects signal mask set-up during the signal handler (see above) and whether the
handler is reset after a signal is caught (see below).

If SV _RE SETHAND is not set, once a signal handler is installed, it remains installed until another
s igvector () call is made or an exec () system call is performed (see exec(2». If SV _RESETHAND is
set and the signal is not one of those marked "not reset when caught" under signal(5), the default action is
reinstated when the signal is caught, prior to entering the signal-catching function. The "not reset when
caught" distinction is not significant when sigvector () is called and SV _RESETHAND is not set.

The default action for a signal can be reinstated by setting sv-'wndler to SIG_DFL; this default usually
results in termination of the process. If sv_handler is SIG_IGN the signal is usually subsequently
ignored, and pending instances of the signal are discarded. The exact meaning of SIG_DFL and
SIG_IGN for each signal is discussed in signal(5).

Certain system calls can be interrupted by a signal; all other system calls complete before the signal is
serviced. The scp pointer described in signal(5) is never null if s igvector () is supported. scp points
to a machine-dependent sigcontext structure. All implementations of this structure include the fields:

int sc_syscall;
char sc_syscalCaction;

The value SYS_NOTSYSCALL for the sc_syscall field indicates that the signal is not interrupting a sys­
tem call; any other value indicates which system call it is interrupting.

If a signal that is being caught occurs during a system call that can be interrupted, the signal handler is
immediately invoked. If the signal handler exits normally, the value of the sc_syscalCaction field is
inspected; if the value is SIG_RETURN, the system call is aborted and the interrupted program continues
past the call. The result of the interrupted call is -1 and errno is set to EINTR. If the value of the
sc_syscalCaction field is SIG_RESTART, the call is restarted. A call is restarted if, in the case of a
read () or write () system call (see read(2) or write(2», it had transferred no data. If some data had
been transferred, the operation is considered to have completed with a partial transfer, and the sc_syscall
value is SYS_NOTSYSCALL. Other values are undefined and reserved for future use.

Exiting the handler abnormally (such as with longjmp () - see setjmp(3C» aborts the call, leaving the
user responsible for the context of further execution. The value of scp->sc_syscalCaction is ignored when
the value of scp->sc_syscall is SYS_NOTSYSCALL. scp->sc_syscalCaction is always initialized to
SIG_RETURN before invocation of a signal handler. When an system call that can be interrupted is
interrupted by multiple signals, if any signal handler returns a value of SIG_RETURN in
scp->sc_syscalCaction, all subsequent signal handlers are passed a value of SYS_NOTSYSCALL in
scp->sc_syscall.

Note that calls to read (), write (), or ioctl () on fast devices (such as disks) cannot be interrupted,
but 110 to a slow device (such as a printer) can be interrupted. Other system calls, such as those used for
networking, also can be interrupted on some implementations. In these cases additional values can be
specified for Programs that look at the values of scp->sc_syscall always should compare them to these
symbolic constants; the numerical values represented by these constants might vary among implementa­
tions. System calls that can be interrupted and their corresponding values for scp->sc_syscall are listed
below:

-2- HP-UX Release 9.0: August 1992

sigvector(2) sigvector (2)

Call sc_syscall value
read (slow devices) SYS_RBAD
readv (slow devices) SYS_RBADV
write (slow devices) SYS_WRITB
writev (slow devices) SYS_WRITBV
open (slow devices) SYS_OPBN
ioctl (slow requests) SYS_IOCTL
close (slow requests) SYS_CLOSB
wait SYS_WAIT
select SYS_SBLBCT
pause SYS_PAUSB
sigpause SYS_SIGPAUSB
semop SYS_SBMOP
msgsnd SYS_MSGSND
msgrcv SYS_MSGRCV

These system calls are not defined if the preprocessor macro _XPG 2 is defined when <s i gnal • h> is
included. This is because the XI Open Portability Guide, Issue 2 specifies a different meaning for the sym­
bol SYS_OPEN (see limits(5».

After a fork () or vfork () system call, the child inherits all signals, the signal mask, and the
reserved signal stack space.

exec(2) resets all caught signals to the default action; ignored signals remain ignored, the signal mask
remains unchanged, and the reserved signal stack space is released.

The mask specified in vec is not allowed to block signals that cannot be ignored, as defined in signal(5).
This is enforced silently by the system.

If sigvector () is called to catch SIGCLD in a process that currently has terminated (zombie) chil­
dren, a SIGCLD signal is delivered to the calling process immediately, or as soon as SIGCLD is
unblocked if it is currently blocked. Thus, in a process that spawns multiple children and catches
SIGCLD, it is sometimes advisable to reinstall the handler for SIGCLD after each invocation in case
there are multiple zombies present. This is true even though the handling of the signal is not reset by the
system, as with signal(2), because deaths of multiple processes while SIGCLD is blocked in the handler
result in delivery of only a single signal. Note that the function must reinstall itself after it has called
wai t () or wai t3 (). Otherwise the presence of the child that caused the original signal always causes
another signal to be delivered.

RETURN VALUE
Upon successful completion, s igvector () returns 0; otherwise, it returns -1 and sets errno to indi­
cate the reason.

ERRORS
sigvector () fails and no new signal handler is installed if any of the following conditions are encoun­
tered:

[EFAULT]

[EINVAL]

[EINVAL]

WARNINGS

Either vec or ovec points to memory that is not a valid part of the process
address space. Reliable detection ofthis error is implementation dependent.

sig is not a valid signal number.

An attempt was made to ignore or supply a handler for a signal that cannot be
caught or ignored; see signal(5).

Restarting a select(2) call can sometimes cause unexpected results. If the select () call has a timeout
specified, the timeout is restarted with the call, ignoring any portion that had elapsed prior to interruption
by the signal. Normally this simply extends the timeout and is not a problem. However, if a handler
repeatedly catches signals, and the timeout specified to select () is longer than the time between those
signals, restarting the select () call effectively renders the timeout infinite.

sigvector () should not be used in conjunction with the facilities described under sigset(2V).

AUTHOR
sigvector () was developed by HP and the University of California, Berkeley.

HP-UX Release 9.0: August 1992 -3- 231

•

I

sigvector(2) sigvector (2)

SEE ALSO
klll(1), kill(2), ptrace(2), sigblock(2), signal(2), sigpause(2), sigsetmask(2), sigspace(2), setjmp(3C), signal(5),
termio(7).

232 -4- HP-UX Release 9.0: August 1992

socket (2) socket(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/socket.h>

AF _CCITT only:
#include <x25/x25ccittproto.h>

int socket(int af, int type, int protocol);

DESCRiPTiON
socket () creates an endpoint for communication and returns a descriptor. The socket descriptor
returned is used in all subsequent socket-related system calls.

The at parameter specifies an address family to be used to interpret addresses in later operations that
specify the socket. These address families are defined in the include files <sys / socket. h> and
<x2 5 / cci ttproto. h>. The only currently-supported address families are:

AF _INET (DARPA Internet addresses)
AF_UNIX (path names on a local node)
AF _CCITT (CCITT X.25 addresses)

The type specifies the semantics of communication for the socket. Currently defined types are:

SOCK_STREAM
SOCK_DGRAM (for AF _I NET only)

A SOCK_STREAM type provides sequenced, reliable, two-way-conneclion-based byte streams. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a fixed, typically small,
maximum length).

protocol specifies a particular protocol to be used with the socket. Normally, only a single protocol exists
to support a particular socket type using a given address family. However, many protocols may exist, in
which case a particular protocol must be specified. The protocol number to use depends on the communi­
cation domain in which communication is to take place (see services(4) and protocols (4)). protocol can be
supplied as zero, in which case the system chooses a protocol type to use.

Sockets of type SOCK_STREAM are byte streams similar to pipes except that they are full-duplex instead
of half-duplex. A stream socket must be in a connected state before any data can be sent or received on it.
A connection to another socket is created with a connect () or accept () call. Once connected, data
can be transferred using some variant of the send () and recv () or the read () and write ()
calls. When a session has been completed, a close () can be performed.

TCP, the communications protocol used to implement SOCK_STREAM for AF _I NET sockets, ensures that
data is not lost or duplicated. If a peer has buffer space for data and the data cannot be successfully
transmitted within a reasonable length of time, the connection is considered broken and the next
recv() call indicates an error with errno set to ETIMEDOUT. If SO_KEEPALIVE is set and the con­
nection has been idle for two hours, the TCP protocol sends "keep alive" packets every 75 seconds to deter­
mine whether the connection is active. These transmissions are not visible to users, and cannot be read
by a recv () call. If the remote system does not repond within 10 minutes (Le., after 8 "keep alive" pack­
ets have been sent), the next socket call (e.g., recv (») returns an error sets errno to ETIMEDOUT. A
SIGPIPE signal is raised if a process sends on a broken stream; this causes naive processes that do not
handle the signal to exit. An end-of-file condition (zero bytes read) is returned if a process tries to read on
a broken stream.

SOCK_DGRAM sockets allow sending of messages to correspondents named in send () calls. It is also
possible to receive messages at such a socket with recv () .

The operation of sockets is controlled by socket level options set by the setsockopt () system call
described by the getsockopt(2) manual entry. These options are defined in the file <sys/socket. h>
and explained in the getsockopt(2) manual entry.

x.25 only:
Socket endpoints for communication over an X.25/9000 link can be in either address family AF _INET or
AF _CCITT. If the socket is in the AF _INET family, the connection will behave as described above. TCP
is used if the socket type is SOCK_STREAM; UDP is used if the socket type is SOCK_DGRAM. In both cases,

HP-UX Release 9.0: August 1992 -1- 233

I

I

socket (2) socket (2)

Internet Protocol (IP) and the X.25-to-IP interface module are used. If the socket is in the AF _CCITT
address family, only the SOCK_STREAM socket type is supported. Refer to the topic Comparing X25 Level
3 Access to IP in the X25 Programmers Guide for more details on the difference between programmatic
access to X.25 via IP and X.25 Level 3.

If the socket is of the AF _CCITT family, the connection and all other operations pass data directly from
the application to the X.25 Packet Le\1el (level 3) \vithout passing through a TCP or tJDP protocol. Connec­
tions of the AF _CCITT family cannot use most of the socket level options described in the getsockopt(2)
manual entry. However, AF_CClTJ' connections can use many X.25-specific ioctl () calls, described by
socketx25 (7).

DEPENDENCIES
AF_CCITT

Only the SOCK_STREAM type is supported.

RETURN VALUE
Upon successful completion, socket () returns a valid file descriptor referencing the socket. Otherwise,
it returns -1 and sets errno to indicate the error.

ERRORS
socket () fails if any of the following conditions are encountered:

[EHOSTDOWN]

[EAFNOSUPPORT]

[ESOCKTNOSUPPORT]

[EPROTONOSUPPORT]

[EMFILE]

[ENOBUFS]

[ENFILE]

[EPROTOTYPE]

[ETIME DOUT]

[EINVAL]

The networking subsystem has not been started up.

The specified address family is not supported in this version of the system.

The specified socket type is not supported in this address family.

The specified protocol is not supported.

The per-process descriptor table is full.

No buffer space is available. The socket cannot be created.

The system's table of open files is temporarily full and no more socket () calls
can be accepted.

The type of socket and protocol do not match.

Connection timed-out.

SOCK_DGRAM sockets currently not supported for AF _UNIX address family.

AUTHOR
socket () was developed by the University of California, Berkeley.

SEE ALSO

234

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2), select(2), send(2),
shutdown(2), aCccitt(7F), socket(7), socketx.25(7), tcp(7P), udp(7P), unix(7P).

-2- HP-UX Release 9.0: August 1992

socketpair (2) socketpair (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/socket.h>

int socketpair(int af, int type, int protocol, int sv[2]);

DESCRIPTION
socketpair () creates an unnamed pair of connected sockets and returns two file descriptors in sv[O]
and sU[l]. The two sockets are indistinguishable. at specifies the address family. See socket(2). type
specifies the semantics of communication for the socket. protocol specifies a particular protocol to be used.
protocol can be supplied as zero, in which case the system chooses a protocol type to use.

RETURN VALUES
Upon successful completion, socketpair () returns 0; otherwise, it returns -1 and sets errno to indi­
cate the error.

ERRORS
socketpair () fails if any of the following conditions are encountered:

[EMFILE] The per-process file descriptor table is full.

[ENFILE] The system file table is temporarily full.

[EAFNOSUPPORT]

[EPROTONOSUPPORT]

[EOPNOSUPPORT]

[EFAULT]

The specified address family is not supported in this version of the system.

The specified protocol is not supported in this version of the system.

[ENOBUFS]

DEPENDENCmS

The specified protocol does not support creation of socket pairs.

The sv parameter is not valid.

Insufficient resources were available in the system to perform the opera­
tion.

This call is supported only for AF _UNIX.

AUTHOR
socketpair () was developed by the University of California, Berkeley.

SEE ALSO
read(2), write(2), socket(2).

HP-UX Release 9.0: August 1992 -1- 235

I

I

stat(2) stat(2)

NAME
stat, lstat, fstat - get file status

SYNOPSIS
#include <sys/stat.h>

int stat(const char *path, struct stat *buf);

int lstat(const char *path, struct stat *buf);

int fstat(int fildes, struct stat *buf);

DESCRIPTION

236

stat () obtains information about the named file.

path points to a path name naming a file. Read, write, or execute permission of the named file is not
required, but all directories listed in the path name leading to the file must be searchable.

Similarly, f stat () obtains information about an open file known by the file descriptor fildes, obtained
from a successful open(), creat (), dup (), fcntl (), or pipe () system call (see open(2), creat(2),
dup(2), fcntl(2), or pipe (2».

lstat () is similar to stat () except when the named file is a symbolic link, in which case lstat ()
returns the information about the link, while stat () returns information about the file to which the link
points.

bufis a pointer to a stat () structure into which information is placed concerning the file.

The contents of structure stat () pointed to by bufinclude the following members. Note that there is no
necessary correlation between the placement in this list and the order in the structure.

ushort

ushort
ushort
uid_t
gid_t
dev_t

off_t
time_t
time_t
time_t

uint

st_ino;
st_fstype;

st_mode;

st_basemode
st_nlink;

st_uid;
st_gid;
st_rdev;

st_size;
st_atime;
st_mtime;
st_ctime;

Field contents are as follows:

/* ID of device containing a */
/* directory entry for this file */
/* Inode number */
/* Type of filesystem this file */
/* is in; see vismount(2) */
/* File type, attributes, and */
/* access control summary */
/* Permission bits (see chmod(l» */
/* Number of links */
/* User ID of file owner */
/* Group ID of file group */
/* Device ID; this entry defined */
/* only for char or blk spec files */
/* File size (bytes) */
/* Time of last access */
/* Last modification time */
/* Last file status change time */
/* Measured in secs since */
/* 00:00:00 GMT, Jan 1, 1970 */
/* Set if the file has optional */
/* access control list entries */

st_atime Time when file data was last accessed. Changed by the following system calls:
creat (), mknod (), pipe (), read (), ready () (see read(2», and ut ime (). If a
file is mapped into virtual memory, accesses of file data through the mapping may also
modify st_mtime. See mmap(2).

st_mtime Time when data was last modified. Changed by the following system calls: creat (),
truncate (), ftruncate (), (see truncate(2», mknod (), pipe (), prealloc (),
utime (), write (), and wri tev () (see write(2». Also changed by close () when
the reference count reaches zero on a named pipe (FIFO special) file that contains data.
If a file is mapped into virtual memory, updates of file data through the mapping may
also modify st_mtime. See mmap(2).

-1- HP-UX Release 9.0: August 1992

stat(2) stat(2)

st_ctime Time when file status was last changed. Changed by the following system calls:
chmod() , chown() , creat(), fchmod(), fchown(), truncate(), ftrun­
cate (), (see truncate(2», link(), mknod(), pipe (), prealloc (), rename (),
setacl (), unlink (), utime (), wri te (), and wri tev () (see write(2».

The touch command (see touch(l) can be used to explicitly control the times of a file.

st_mode The value returned in this field is the bit-wise inclusive OR of a value indicating the file's
type, attribute bits, and a value summarizing its access permission. See mknod(2).

For ordinary users, the least significant nine bits consist of the file's permission bits
modified to reflect the access granted or denied to the caller by optional entries in the
file's access control list.

For users with appropriate privileges
the least significant nine bits are the file's access permission bits. In addition, the
S_IXUSR (execute by owner) mode bit is set if the following conditions are met:

• The file is a regular file,
• No permission execute bits are set, and
• An execute bit is set in one or more of the file's optional access control list

entries.

The write bit is not cleared for a file on a read-only file system or a shared-text program file that is
being executed. However, get access () clears this bit under these conditions (see getaccess(2).

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to indicate the
error.

ERRORS
stat () and lstat () fail if any of the following conditions are encountered:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[EACCES]

[EFAULT]

The named file does not exist (for example, path is null or a component of path
does not exist).

Search permission is denied for a component of the path prefix.

bur or path points to an invalid address. The reliable detection of this error is
implementation dependent.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

f s ta t () fails if any of the following conditions are encountered:

fildes is not a valid open file descriptor. [EBADF]

[EFAULT] bur points to an invalid address. The reliable detection of this error is imple­
mentation dependent.

DEPENDENCIES
HP Clustered Environment

The contents of the stat () structure include the following additional members:

cnode_t st_cnode; /* cnode ID of machine */
/* where the inode lives */

cnode_t st_rcnode /* cnode ID where this */
/* device file can be used */

dev_t st_realdev; /* Real device number of device */
/* containing the inode for this file */

The ID number for the volume on which the inode exists. This number mayor may not
be the device number for the device containing the volume. Device numbers are not

HP-UX Release 9.0: August 1992 -2- 237

I

I

stat(2) stat(2)

unique throughout a cluster, but the value of st_dev is guaranteed to be unique
among all volumes currently mounted in the file system. The device number for the
volume can always be found in the field st_realdev, which, together with st_cnode,
fully specifies the device containing the volume.

CD-ROM
The st_uid and st_gid fields are set to -1 if they are not specified on the disk for a given file.

NFS
The st_basemode and st_acl fields are zero on files accessed remotely.

WARNINGS
Access Control Lists

Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

AUTHOR
stat () and fstat () were developed by AT&T. lstat () was developed by the University of Califor­
nia, Berkeley.

SEE ALSO
touch(!), chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), rename(2), setacl(2), time(2), trun­
cate(2), unlink(2), utime(2), wrlte(2), acl(5), stat(5), privilege(5).

STANDARDS CONFORMANCE

238

stat () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

fstat (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

lstat (): AES

-3- HP-UX Release 9.0: August 1992

statfs(2) statfs(2)

NAME
statfs, fstatfs - get file system statistics

SYNOPSIS
#include <sys/vfs.h>

int statfs(const char *path, struct statfs *buf);

int fstatfs(int fildes, struct statfs *buf);

DESCRIPTION
statfs () returns information about a mounted file system. path is the path name of any file within the
mounted file system.

bufis a pointer to a statfs () structure into which information is placed concerning the file system. The
contents of the structure pointed to by bur include the following members:

long f_bavail; /* free blocks available to non-superuser */
long f_bfree; /* free blocks */
long f_blocks; /* total blocks in file system */
long f_bsize; /* fundamental file system block size in bytes */
long f_ffree; /* free file nodes in file system */
long f_files; /* total file nodes in file system */
long f_type; /* type of info, zero for now */
fsid_t f_fsid /* file system ID. f_fsid[l] is MOUNT_UFS,

MOUNT_NFS, or MOUNT_CDFS */

A file node is a structure in the file system hierarchy that describes a file. For mounted HP-UX volumes, file
node is an HP-UX inode. For other types of mounts, file node is defined by the system embodying the file
pointed to by path.

Fhillds that are undefined for a particular file system are set to -l.

fstatfs () returns similar information about an open file referred to by file descriptor fildes.

RETURN VALUE
statfs () and fstatfs () return 0 upon successful completion; otherwise, they return -1 and set
errno to indicate the error.

ERRORS
statfs () fails if any of the following conditions are encountered:

[EACCES]

[EFAULT]

[EIO]

Search permission is denied for a component of the path prefix.

bur or path points to an invalid address.

An 110 error occurred while reading from or writing to the file system.

Too many symbolic links are encountered in translating the path name. [ELOOP]

[ENAMETOOLONG] A component of path exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is
in effect, or path exceeds PATH_MAX bytes.

[ENOENT]

[ENOTDIR]

The named file does not exist.

A component of the path prefix is not a directory.

fstatfs () fails if any of the following conditions are encountered:

[EBADF] fildes is not a valid open file descriptor.

AUTHOR

[EFAULT]

[EIO]

bur points to an invalid address.

An 110 error occurs while reading from or writing to the file system.

statfs () and fstatfs () were developed by Sun Microsystems, Inc.

SEE ALSO
df(lM), stat(2), ustat(2).

HP-UX Release 9.0: August 1992 -1- 239

I

stime(2) stime(2)

NAME
stime - set time and date

SYNOPSIS
#include <time.h>

int stime(const time_t *tp);

DESCRiPTiON
stime () sets the system's idea of the time and date. tp points to the value of time as measured in seconds
from 00:00:00 UTC (Coordinated Universal Time) January 1,1970.

RETURN VALUE
Upon successful completion, st ime () returns a value of 0; otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM] stime () fails if the effective user ID of the calling process is not super-user.

DEPENDENCIES
HP Clustered Environment

On systems that are members of a cluster, setting the time sets the time and date for all systems in
the cluster.

SEE ALSO
date(I), gettimeofday(2), time(2).

STANDARDS CONFORMANCE
stime (): SVID2, XPG2

240 -1- HP-UX Release 9.0: August 1992

stty(2)

NAME
stty, gtty - control device

SYNOPSIS
#include <sgtty.h>

int stty(int fildes, const struct sgttyb *argp);

int gtty(int fildes, struct sgttyb *argp);

REMARKS

stty(2)

These system calls are preserved for backward compatibility with Bell Version 6. They provide as close an
approximation as possible to the old Version 6 functions. All new code should use the TCSETA and
TCGETA ioct 1 () calls described in termio(7).

DESCRIPTION
For certain status settings and status inquiries about terminal devices, the functions stty () and
gt ty () are equivalent to

ioctl(fildes, TIOCSETP, argp)

and

ioctl(fildes, TIOCGETP, argp)

respectively; see termio(7).

RETURN VALUE
stty () returns zero if the call was successful or -1 if the file descriptor does not refer to the kind of file for
which it was intended.

SEE ALSO
stty(1), exec(2), sttyV6(7), tty(7), termio(7).

HP-UX Release 9.0: August 1992 -1- 241

I

I

swapon(2) swapon(2)

NAME
swapon - add swap space for interleaved paging/swapping

SYNOPSIS
#include <unistd.h>

int swap on (
const char *path,
/* [int min,

int limit,
int reserve,]
int priority */

);

DESCRIPTION
H path names a block device file:

swap on () makes it available to the system at the specified priority for allocation for paging and
swapping.

In this form, swapon () takes only two arguments: the path to the block device file, and the priority.

The device associated with path can be a device already known to the system, defined at system
configuration time, or it can be a previously unspecified device.

If the device was already defined at system configuration time and also has a start and/or size defined
for that swap device, these values are used.

Otherwise, if a filesystem exists on the device, swap is added following the file system, or if no filesys­
tern exists, the complete device is used for swap.

See the appropriate system administrator's manual for information on how the size of the swap area
is calculated.

H path names a directory:
swap on () makes the blocks on the file system rooted at path, available for paging and swapping.

The min, limit, and reserve arguments are passed and used only if the path argument names a direc­
tory.

min indicates the number of file system blocks to take from the file system when swapon () is
called.

limit indicates the maximum number of file system blocks the swap system is allowed to take from the
file system.

reserve indicates the number of file system blocks that are saved for file system use only.

priority indicates the order in which the swap space from this device or file system is used. Space is taken
from the lower-priority systems first.

swapon () can be used only by users who have appropriate privileges.

ERRORS

242

swapon () fails if any of the following conditions are encountered:

[EALREADy]

[ENXIO]

[EBUSY]

[ENODEV]

[EPERM]

[ELOOP]

[ENOTBLK]

The device or directory associated with path already has swap turned on.

The device associated with path could not be opened.

The device associated with path is already in use.

The device associated with path does not exist.

The effective user ID is not a user with appropriate privileges.

Too many symbolic links were encountered in translating the path name.

The path argument is not a block special file or the root directory of a file sys­
tem.

-1- HP-UX Release 9.0: August 1992

swapon(2)

[ENOENT]

[ENOSPC]

[EINVAL]

[ENOSYS]

[EEXIST]

[EIO]

[EROFS]

[EFAULT]

[ENAMETOOLONG]

WARNINGS

swapon(2)

The system-imposed limit on the number of swap file entries has been reached.

There is is not enough available space on the specified file system or device.

The node (see cluster(lM» attempting to add swap had no swap configured at
boot time.

The device associated with path was specified at system configuration time to
add swap following the file system, but no file system was found.

The device associated with path was specified at system configuration time to
add swap at a specified location, but that location is within an existing file sys­
tem on the device.

Unable to read the device associated with path.

The device associated with path is read-only.

The LIF header on the device associated with path contains inconsistent direc­
tory data.

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

No means is available to stop swapping to a device.

The system allocates no less than the amount specified in min. However, to make the most efficient use of
space, more than the amount requested might be taken from the file system. The actual amount taken will
not exceed the number of file system blocks indicated in reserve.

Swapping to a file system is usually slower than swapping to a device.

AUTHOR
swapon () was developed by the University of California, Berkeley.

SEE ALSO
swapon(lM), privilege(5).

HP-UX Release 9.0: August 1992 -2- 243

I

I

symlink(2) symlink(2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
#include <symlink.h>

int symlink(const char *namel, const char *name2);

DESCRIPTiON
syml ink () creates a file name2, which is a symbolic link to namel. Either name can be an arbitrary
path name. The files need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is stored in errno
and a -1 value is returned.

ERRORS
The symbolic link is made unless one or more of the following is true:

[ENOTDIR] A component of the name2 prefix is not a directory.

[ENAMETOOLONG] A component of either path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect, or the entire length of either path name
exceeds PATH_MAX bytes.

[ENOENT]

[EACCES]

[EDQUOT]

[ELOOP]

[EEXIST]

[EIO]

[EROFS]

[ENOSPC]

[ENOSPC]

[ENOSPC]

[EIO]

[EFAULT]

A component of the name2 prefix does not exist.

A component of the name2 path prefix denies search permission.

User's disk quota block or inode limit has been reached for this file system.

Too many symbolic links were encountered in translating the path name.

name2 already exists.

An I/O error occurred while making the directory entry for name2, allocating the
inode for name2, or writing out the link contents of name2 .

The file name2 resides on a read-only file system.

The directory in which the entry for the new symbolic link is being placed can­
not be extended because there is no space left on the file system containing the
directory.

The new symbolic link cannot be created because there is no space left on the
file system that will contain the symbolic link.

There are no free inodes on the file system on which the symbolic link is being
created.

An I/O error occurred while making the directory entry or allocating the inode.

namel or name2 points outside the process' allocated address space. The reli­
able detection of this error is implementation dependent.

AUTHOR
symlink () was developed by the University of California, Berkeley.

SEE ALSO
cp(1), link(2), readlink(2), unlink(2), symlink(4).

STANDARDS CONFORMANCE
syml ink () : AES

244 -1- HP-UX Release 9.0: August 1992

sync(2)

NAME
sync, lsync - update super-block

SYNOPSIS
#include <unistd.h>

void sync(void);

void lsync(void);

DESCRIPTION

sync(2)

sync () causes all information in memory that should be on disk to be written out. This includes modified
super blocks, modified inodes, and delayed block 110.

It should be used by commands and programs that examine a file system, such as f sck, df, etc. It is man­
datory before a shutdown.

The writing, although scheduled, is not necessarily complete upon return from sync.

In some HP-UX systems, sync () may be reduced to a no-op. This is permissible on a system which does
not cache buffers, or in a system that in some way ensures that the disks are always in a consistent state.

In the HP Clustered Environment, sync () causes updates of all file systems in the cluster to be written
out, while lsync () performs only a local sync (); that is, local buffers are flushed to disk and to remote
nodes of the cluster, but remote nodes do not flush their own pages.

AUTHOR
sync () was developed by HP and AT&T Bell Laboratories. lsync () was developed by HP.

SEE ALSO
sync(1M), fsync(2).

STANDARDS CONFORMANCE
sync () : SVID2, XPG2

HP-UX Release 9.0: August 1992 -1- 245

I

I

sysconf(2) sysconf(2)

NAME
sysconf - get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

int CPU_IS_HP_MC68K(long cpuvers);

DESCRIPTION

246

sysconf () provides a way for applications to determine the current value of a configurable limit or vari­
able.

The name argument represents the system variable being queried.

The following table lists the configuration variables whose values can be determined by calling sys­
conf (), and for each variable, the associated value of the name argument and the value returned:

Variable Value of name Value Returned
AES_OS_VERS:ION _SC_AES_OS_VERS:ION Version number ofOSF/AES OSC supported

ARG_MAX

ATEX:IT_MAX

BC_BASE_MAX

BC_D:IM_MAX

BC_SCALE_MAX

BC_STR:ING_MAX

CH:ILD_MAX

CLK_TCK

CLOCKS PER_SEC

COLL_WE:IGHTS_MAX

_SC_ARG_MAX

_SC_ATEX:IT_MAX

- SC_BC_BASE_MAX

- SC_BC_D:IM_MAX

_SC_BC_SCALE_MAX

_SC_BC_STR:ING_MAX

_SC_CH:ILD_MAX

_SC_CLK_TCK

SC CLOCKS PER_SEC

_SC_COLL_WE:IGHTS_MAX

-1-

Maximum total length of the arguments for
exec () in bytes, including environment data
(see exee(2»

Maximum number of functions that can be
registered with atexi t () (see atexit(2»

Maximum ibase (input number radix) and
obase (output number radix) allowed by be
(see be(l»

Maximum number of elements in an array
permitted by be (see be(l»

Maximum scale factor (number of digits to the
right of the decimal point) allowed by be (see
be(l»

Maximum length of strings allowed by be
(see be(l»

Maximum number of simultaneous processes
per user ID (see fork(2»

Number of clock intervals per second for
times () (see times(2»

Number of clock ticks per second for
clock () (see eloek(3C»

Maximum number of weights that can be
assigned to an entry of the LC_COLLATE
order keyword in a localedef input file
(see localedef{lM»

Version of CPU architecture (see below)

Maximum parenthesis nesting level for expr
expressions (see expr(l»

Type of I/O drivers the kernel supports (see
below)

Maximum number of bytes in an input line
(including the newline) for POSIX.2 utilities

HP-UX Release 9.0: August 1992

sysconf(2)

PAGE_SIZE _SC_PAGE_SIZE

PASS_MAX _SC_PASS_MAX

POSIX2_C_BIND _SC_2_C_BIND

POSIX2_C_DEV _SC_2_C_DEV

POSIX2_C_VBRSION _SC_2_C_VBRSION

POSIX2_FORT_DEV _SC_2_FORT_DEV

POSIX2_FORT_RUN _SC_2_FORT_RUN

POSIX2_LOCALEDEF _SC_2_LOCALEDEF

POSIX2_SW_DEV _SC_2_SW_DEV

POSIX2_UPE _SC_2_UPE

POSIX2_VBRSION _SC_2_VBRSION

RE_DUPJfAX _SC_RE_DUP_MAX

SECURITY_CLASS _SC_SECURITY_CLASS

STREAM_MAX _SC_STREAM_MAX

HP-UX Release 9.0: August 1992 - 2 -

sysconf(2)

Maximum number of simultaneous supple­
mentary group IDs per process

Maximum number of files that one process can
have open at one time

Kernel memory page size

Maximum number of significant bytes in a
password

PosiHvA ;f t.hA ~v~tem ~unnorts POSIX iob con-
trol; -.:. i -oth~;~i;e- - --- '"-' ~

Positive if each process has a saved set-user­
ID and a saved set-group-ID; -1 otherwise

Approval date of the POSIX.1 . Standard (such
as 199009 for POSIX.1-1990) to which the system
conforms. This value indicates the year (first four
digits) and month (next two digits) that the standard
was approved by the IEEE Standards Board.

Equal to 1 if the POSIX.2 C Language Bind­
ings Option is available through the c89 util­
ity; -1 otherwise

Equal to 1 if the POSIX.2 C Language
Development Utilities Option is supported; -1
otherwise

Current version of the POSIX.2 C Language
Binding Option supported (same format as
_POSIX_VERSION); -1 otherwise.

Equal to 1 if the POSIX.2 FORTRAN Develop­
ment Utilities Option is supported; -1 other­
wise

Equal to 1 if the POSIX.2 Fortran Runtime
Utilities Option is supported; -1 otherwise

Equal to 1 if locales can be created with the
POSIX.2 localedef utility; -1 otherwise

Equal to 1 if the POSIX.2 Software Develop­
ment Utilities Option is supported; -1 other­
wise

Equal to 1 if the POSIX.2 User Portability
Utilities Option is supported; -1 otherwise

Current version of POSIX.2 (same format as
_POS IX_VERSI ON)

Maximum number of repeated occurrences of
a regular expression permitted when using
the interval notation \ {m,n \} (see
regcomp(3C))

DoD security level (see below)

Maximum number of stdio streams that one
process can have open at one time

Maximum number of bytes in a timezone
name for the TZ environment variable

247

I

I

sysconf(2) sysconf(2)

Equal to 1 if the XlOpen Encryption Feature
Group is supported; -1 otherwise

Equal to 1 if the XlOpen Enhanced Interna­
tionalization Feature Group is supported; -1
otherwise

Equal to 1 if the XiOpen Shared Memory
Feature Group is supported; -1 otherwise

Issue number of X/Open Portability Guide
supported

Some of the variables in the table are defined as constants in <1 lml t s .11> (see limits(5)). The associated
values of the name argllment are defined in <unis td. h>.

The SECURITY_CLASS variable (returned by sysconf (_SC_SECURITY_CLASS)) can have the fol­
lowing possible values with meanings as indicated:

Value
SEC_CLAS S_NONE

SEC_CLASS_C2

SEC_CLASS_Bl

Meaning
No DoD security level supported

DoD C2 level security

DoD B 1 level security

The possible values of the IO_TYPE variable (returned by sysconf (_SC_IO_TYPE)) and their mean­
ings are:

Value
:IO_TYPE_WS:IO

:IO_TYPE_S:IO

Meaning
Workstation I/O (used by Series 300/4001700)

Server I/O (used by Series 800)

Since the Series 700 instruction set is compatible with Series 800 but its I/O system differs, IO_TYPE can
be used to detect which I/O system is present in a single executable program that can be run on either a
Series 700 or a Series 800.

The possible values of the CPU_VERSION variable (returned by sysconf (_SC_CPU_VERSION») and
their meanings are:

Value Meaning
CPU_PA_R:ISC1_0
CPU_PA_R:ISC1_l

lIP Precision Architecture RISC Version 1.0
lIP Precision Architecture RISC Version 1.1

CPU_HP_MC68020 Motorola MC68020
CPU_HP_MC68 03 0 Motorola MC68030
CPU_HP_MC68040 Motorola MC68040

The CPU_IS_PA_RISC(} and CPU_IS_HP_MC68K(} functions classify cpuvers, a value of the
CPU_VERSION variable, as to its processor family.

RETURN VALUE
Upon successful completion, sysconf () returns the value of the named variable. If the value of name is
not valid, sysconf () returns -1 and sets errno to indicate the error. If the variable corresponding to
name is not defined, sysconf () returns -1, but does not change errno.

CPU_IS_PA_RISC () returns positive non-zero if cpuvers is an HP PA-RISC processor; zero ifnot.

CPU _I S _HP _MC 6 8 K () returns positive non -zero if cpuvers is a "Motorola MC680xO" processor; zero if not.

ERRORS
sysconf () fails if:

[EINV ALl The value of name is not valid.

EXAMPLES
The following example determines the number of times the system clock ticks each second:

248 -3- HP-UX Release 9.0: August 1992

sysconf(2)

#include <unistd.h>

long ticks;

ticks = sysconf(_SC_CLK_TCK);

The following example determines whether the current processor is an HP PA-RISC machine:

#include <unistd.h>

if (CPU_IS_PA_RISC(sysconf(_SC_CPU_VERSION»)

WARNINGS
CPU_IS_PA_RISC () and CPU_IS_HP _MC68K () are implemented as macros.

sysconf(2)

Normally, the values returned from sysconf () do not change during the lifetime of the calling process.
However, the value of the symbolic constant _POSIX_VERSION and thus the value of
sysconf (_SC_ VERSION) can vary under certain circumstances. If either of the feature test macros
_POSIX1_1988 or _XPG3 is defined by the programmer prior to including <unistd.h>, the value of
_POS IX_VERS ION is defined as 198808, in conformance with POSIX.1-1988, FIPS 151-1, and XPG3. Oth­
erwise, the value of _POSIX_VERSION is defined as 199009, in conformance withpOSIX.1-1990.

Similarly, the value of the symbolic constant _XOPEN_VERSION and thus the value of
sysconf (_SC_XOPEN_VERSION) can vary under certain circumstances. If the feature test macro
_XPG3 is defined by the programmer prior to including <unistd.h>, the value of _XOPEN_VERSION is
defined as 3, in conformance with XPG3. Otherwise, the value of _XOPEN_VERSION is defined as 4, in
conformance with XPG4.

See stdsyms(5) for more information about these feature test macros.

AUTHOR
sysconf () was developed by HP and PO SIX.

CPU_IS_PA_RISC 0 and CPU_IS_HP_MC68KO were developed byHP.

SEE ALSO
getconf(l), atexit(2), exec(2), fork(2), getrlimit(2), pathconf(2), times(2), clock(3C), regcomp(3C), limits(5),
stdsyms(5), unistd(5), x_open(5).

STANDARDS CONFORMANCE
sysconf (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.2

HP-UX Release 9.0: August 1992 -4- 249

I

I

time (2) time(2)

NAME
time - get time

SYNOPSIS
#include <time.h>

time_t time(time_t *tloc);

DESCRiPTiON
time () returns the value of time in seconds since the Epoch.

Iftloc is not a null pointer, the return value is also assigned to the object to which it points.

RETURN VALUE
Upon successful completion, time () returns the value of time. Otherwise, a value of (time_t)-1 is
i'eturned and errno is set to indicate the error.

ERRORS
[EFAULT] time () fails if tloc points to an illegal address. The reliable detection of this error is

implementation dependent.

SEE ALSO
date(1), gettimeofday(2), stime(2), ctime(3C), strftime(3C).

STANDARDS CONFORMANCE
time (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

250 -1- HP-UX Release 9.0: August 1992

times(2) times(2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/times.h>

clock_t times(struct tms *buffer);

DESCRIPTION
times () fills the structure pointed to by buffer with time-accounting information.
in <sys It imes • h> is as follows:

The structure defined

struct tms {
clock_t
clock_t
clock_t
clock_t

} ;

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

1* user time *1
1* system time */11
1* user time, children *1
1* system time, children *1

This information comes from the calling process and each of its terminated child processes for which it has
executed a wait (), wait3 (), or waitpid(). The times are in units of lICLK_TCK seconds, where
CLK_TCK is processor dependent The value of CLK_TCK can be queried using the sysconf () function
(see sysconf(2)).

tms_utime is the CPU time used while executing instructions in the user space of the calling process.

tms _s time is the CPU time used by the system on behalf of the calling process.

tms_cutime is the sum of the tms_utimes and tms_cutimes ofthe child processes.

tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes.

RETURN VALUE
Upon successful completion, times () returns the elapsed real time, in units ofl/CLK_TCK of a second,
since an arbitrary point in the past (such as system start-up time). This point does not change from one
invocation of times () to another. If times () fails, -1 is returned and errno is set to indicate the
error.

ERRORS
[EFAULT] time s () fails if buffer points to an illegal address. The reliable detection of this error is

implementation dependent.

SEE ALSO
time(l), gettimeofday(2), exec(2), fork(2), sysconf(2), time(2), wait(2).

WARNINGS
Not all CPU time expended by system processes on behalf of a user process is counted in the system CPU
time for that process.

STANDARDS CONFORMANCE
times (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 251

I

I

truncate (2) truncate (2)

NAME
truncate, ftruncate - truncate a file to a specified length

SYNOPSIS
#include <unlstd.h>

int truncate(const char *path, size_t length);

int ftruncate(lnt fildes, size_t length);

DESCRIPTION
truncate () causes the file named by path or referenced by fd to have a size of length bytes. If the file
previously was larger than this size, the extra data is lost. If it was previously shorter, bytes between the
old and new lengths are read as zeroes. With ftruncate (), the file must be open for writing; for trun­
ca te () the user must have write permission for the file.

RETURN VALUES
truncate () returns a value of 0 if successful; otherwise a -1 is returned, and errno is set to indicate
the error.

ERRORS
truncate () fails if any of the following conditions are encountered:

[ENOTDIR]

[EACCES]

[EACCES]

[EINVAL]

[EISDIR]

[EROFS]

[ETXTBSy]

[EFAULT]

A component of the path prefix of path is not a directory.

A component of the path prefix denies search permission.

Write permission is denied on the file.

length was greater than the maximum file size.

The named file is a directory.

The named file resides on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

path points outside the process's allocated address space. The reliable detection of
this error is implementation dependent.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]

[EDQUOT]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

User's disk quota block limit has been reached for this file system.

ftruncate () fails if any of the following conditions are encountered:

[EBADF]

[EINVAL]

[EDQUOT]

fd is not a valid file descriptor.

fd references a file that was opened without write permission.

User's disk quota block limit has been reached for this file system.

AUTHOR
truncate () was developed by the University of California, Berkeley.

SEE ALSO
open(2).

STANDARDS CONFORMANCE
truncate () : AES

ftruncate (): AES

252 -1- HP-UX Release 9.0: August 1992

ulimit(2) ulimit(2)

NAME
ulimit - get and set user limits

SYNOPSIS
#1nclude <ulim1t.h>

long ul1m1t(1nt cmd, •••);

DESCRIPTION
ul 1m1 t () provides for control over process limits. Available values for cmd are:

ERRORS

Get the file size limit of the process. The limit is in units of 512-byte blocks and
is inherited by child processes. Files of any size can be read. The optional
second argument is not used.

Set the file size limit of the process to the value of the optional second argument
which is taken as a long. Any process can decrease this limit, but only a process
with an effective user ID of super-user can increase the limit. Note that the limit
must be specified in units of 512-byte blocks.

Get the maximum possible break value (see brk(2)). Depending on system
resources such as swap space, this maximum might not be attainable at a given
time. The optional second argument is not used.

ul 1m1 t () fails if one or more of the following conditions is true.

cmd is not in the correct range. [EINVAL]

[EPERM] ul 1m1 t () fails and the limit is unchanged if a process with an effective user ID
other than super-user attempts to increase its file size limit.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Errors return a -1, with errno set to indi­
cate the error.

SEE ALSO
brk(2), write(2).

STANDARDS CONFORMANCE
ul 1m1 t () : AES, SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 253

I

I

umask(2) umask(2)

NAME
umask - set and get file creation mask

SYNOPSIS
#include <sys/stat.h>

mode_t umask(mode_t cmask);

DESCRIPTION
umas k () sets the process's file mode creation mask to umas k () and returns the previous value of the
mask. Only the file access permission bits of the masks are used.

The bits set in cmask specify which permission bits to turn off in the mode of the created file, and should be
specified using the symbolic values defined in stat(5).

EXAMPLES
The following creates a file named pa th in the current directory with permISSIOnS
S_IRWXU I S_IRGRP I S_IXGRP, so that the file can be written only by its owner, and can be read or exe­
cuted only by the owner or processes with group permission, even though group write permission and all
permissions for others are passed in to crea t () .

#include <sys/types.h>
#include <sys/stat.h>

int fildes;

(void) umask(S_IWGRPIS_IRWXO);
fildes = creat("path", S_IRWXUIS_IRWXGIS_IRWXO);

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh(l), mknod(lM), chmod(2), creat(2), mknod(2), open(2).

STANDARDS CONFORMANCE
umask(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

254 -1- HP-UX Release 9.0: August 1992

umount(2) umount(2)

NAME
umount - unmount a file system

SYNOPSIS
#include <sys/mount.h>

int umount(const char *name);

DESCRIPTION
umount () requests that a previously mounted file system contained on the block special device identified
by name be unmounted. name is a pointer to a path name. After unmounting the file system, the directory
upon which the file system was mounted reverts to its ordinary interpretation.

umount () can also request that a file system mounted previously on the directory identified by name be
unmounted. After unmounting the file system, name reverts to its ordinary interpretation.

umount () can be invoked only by the user with the appropriate privilege.

NETWORKING FEATURES
NFS

path must indicate a directory name when unmounting an NFS file system.

RETURN VALUE
If successful, umount () returns a value of O. Otherwise, it returns a value of -1 and sets errno to
indicate the error.

ERRORS
umount () fails if one or more of the following are true:

[EPERM] The effective user ID of the process is not that of a user with appropriate privileges.

name does not exist.

name is not a block special device.

name is not mounted.

A file on name is busy.

[ENOENT]

[ENOTBLK]

[EINVAL]

[EBUSY]

[EFAULT] name points outside the allocated address space of the process. Reliable detection of this
error is implementation dependent.

[ENXIO]

[ENOTDIR]

[ENOENT]

The device associated with name does not exist.

A component of name is not a directory.

name is null.

[ENAMETOOLONG]
name exceeds PATH_MAX bytes, or a component of name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[EACCES]

[ELOOP]

WARNINGS

A component of the path prefix of name denies search permission.

Too many symbolic links were encountered in translating the path name.

If umoun t () is called from the program level (that is, not from the mount(1M) level), the table of mounted
devices contained in /etc/mnttab is not updated automatically. Updating of /etc/mnttab is per­
formed by the mount and syncer commands (see mount(lM) and syncer(lM) for more information).

DEPENDENCIES
HP Clustered Environment:

When umount () is called from a client node and path refers to a directory on which is mounted a
UFS file system (as opposed to an NFS file system; see vfsmount(2», an EINVAL error is returned. This
behavior is subject to change in future releases, and its use in applications is not recommended.

SEE ALSO
mount(lM), syncer(lM), mount(2), vfsmount(2).

HP-UX Release 9.0: August 1992 -1- 255

•

I

umount(2)

STANDARDS CONFORMANCE
wnount () : SVID2, XPG2

256

umount(2)

-2- HP-UX Release 9.0: August 1992

uname(2)

NAME
uname, setuname - get/set name of current HP-UX system

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *name};

int setuname(const char *name, size_t namelen};

DESCRIPTION

uname(2)

uname () stores information identifying the current HP-UX system in the structure pointed to by name.

uname () uses the structure defined in <sys/utsname .h> whose members are:

#define UTSLEN 9
#define SNLEN 15

char sysname[UTSLEN];
char nodename[UTSLEN];
char release[UTSLEN];
char version[UTSLEN];
char machine[UTSLEN];
char idnumber[SNLEN];

uname () returns a null-terminated string in each field. The sysname field contains HP-UX. Similarly,
the nodename field contains the name by which the system is known on a communications network. The
release field contains the release number of the operating system, such as 8.0 or 8.0.1. The ver­
sion field contains additional information about the operating system. The first character of the ver­
sion field is set to:

Character Series 700/800
A two-user system
B 16-user system
C 32-user system
D 64-user system
E 8-user system
U unlimited-users system

Series 300/400
two-user system
unlimited-users system

(Note that the contents of the version field might change on future releases as AT&T license agreement res­
trictions change.) The machine field contains a standard name that identifies the hardware on which the
HP-UX system is running. The idnumber is a unique identification number within that class of
hardware, possibly a hardware or software serial number. This field returns the null string to indicate the
lack of an identification number.

setuname () sets the nodename field in the utsname structure to name, which has a length of
namelen characters. This is usually executed by /etc/rc at system boot time. Names are limited to
UTSLEN - 1 characters; UTSLEN is defined in <sys /utsname .h>.

ERRORS
[EPERM] setuname () was attempted by a user lacking the appropriate privileges.

[EFAULT] name points to an illegal address. The reliable detection of this error is implementation
dependent.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, -1 is returned and errno is set
to indicate the error.

AUTHOR
uname () was developed by AT&T and HP.

SEE ALSO
hostname(1), uname(1), gethostname(2), sethostname(2), privilege(5).

STANDARDS CONFORMANCE
uname (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 257

I

I

unlink(2) unlink(2)

NAME
unlink - remove directory entry; delete file

SYNOPSIS
#include <unistd.h>

int unlink(const char *path);

DESCRIPTION
unlink () removes the directory entry named by the path name pointed to by path.

When all links to a file have been removed and no process has the file open, the space occupied by the file is
freed and the file ceases to exist. If one or more processes have the file open when the last link is removed,
only the directory entry is removed immediately so that processes that do not already have the file open
cannot access the file. .A..fter all processes close their references to the file, if there are no more links to the
file, the space occupied by the file is then freed and the file ceases to exist.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
The named file is unlinked unless one or more of the following are true:

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES]

[ENOTDIR]

[ENOENT]

[EPERM]

[EBUSY]

[ETXTBSY]

[EROFS]

[EFAULT]

Write permission is denied on the directory containing the link to be removed.

A component of the path prefix is not a directory.

The named file does not exist (for example, path is null or a component of path does not
exist).

The named file is a directory and the effective user ID of the process is not a user with
appropriate privileges.

The entry to be unlinked is the mount point for a mounted file system.

The entry to be unlinked is the last link to a pure procedure (shared text) file that is being
executed.

The directory entry to be unlinked is part of a read-only file system.

path points outside the process's allocated address space. The reliable detection of this
error is implementation dependent.

[ENAMETOOLONG]

[ELOOP]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a com­
ponent of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in
effect.

Too many symbolic links were encountered in translating the path name.

WARNINGS
If unlink () is used on a directory that is not empty (contains files other than • and ••), the directory is
unlinked, the files become orphans, and the directory link count is left with an inaccurate value unless they
are linked by some other directory.

If unlink () is used on a directory that is empty (contains only the files • and ••), the directory is
unlinked, but the parent directory's link count is left with an inaccurate value.

In either of the above cases, the file system should be checked using fsck (see fsck(lM)). To avoid these
types of problems, use rmdi r () instead (see rmdir(2».

SEE ALSO
rm(l), close(2), link(2), open(2), rmdir(2), privilege(5).

STANDARDS CONFORMANCE
unlink () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

258 -1- HP-UX Release 9.0: August 1992

ustat(2) ustat(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <ustat.h>

int ustat(dev_t dev, struct ustat *buf);

DESCRIPTION
ustat () returns information about a mounted file system. dev is a device number identifying a device
containing a mounted file system. bur is a pointer to a ustat structure (defined in <ustat .h» that
includes the following elements:

daddr_t f_tfree;
ino_t f_tinode;
char f_fname[61;
char f_fpack[61;
int f_blksize;

/* Total free blocks */
/* Number of free inodes */
/* Filsys name */
/* Filsys pack name */
/* Block size */

The values of the f_tfree and f_blksize fields are reported in fragment size units.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
ustat () fails if one or more of the following is true:

dev is not the device number of a device containing a mounted file system. [EINVAL]

[EFAULT] bur points outside the process's allocated address space. The reliable detection of this error
is implementation dependent.

AUTHOR
ustat () was developed by AT&T and HP.

SEE ALSO
touch(1), stat(2), fs(4).

STANDARDS CONFORMANCE
ustat (): SVID2, XPG2

HP-UX Release 9.0: August 1992 -1- 259

I

I

utime(2) utime(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <utime.h>

int utime(const char *path, const struct utimbuf *times);

DESCRIPTION
utime () sets the access and modification times of the file to which the path argument refers.

If times is a null pointer, the access and modification times of the file are set to the current time. A process
must be the owner of the file or have write permission on the file to use utime () in this manner.

If times is not a null pointer, times is interpreted as a pointer to a utimbuf structure and the access and
modification times are set to the values contained in the designated structure. Only the owner of the file or
users having appropriate privileges can use ut ime () this way.

The following times in the ut imbuf structure defined in <ut ime .11> are measured in seconds since
00:00:00 UTC (Universal Coordinated Time), Jan. 1, 1970.

time_t actime;
time_t modtime;

/* access time */
/* modification time */

RETURN VALUE
Upon successful completion, a value of 0 is returned.. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
ut ime () fails if one or more of the following is true:

[ENOENT] The named file does not exist.

[ENOTDIR]

[EACCES]

[EPERM]

[EACCES]

[EROFS]

[EFAULT]

[EFAULT]

A component of the path prefix is not a directory.

Search permission is denied by a component of the path prefix.

The effective user ID is not a user with appropriate privileges. and not the owner of
the file, and times is not a null pointer.

The effective user ID is not a user with appropriate privileges, and not the owner of
the file, times is a null pointer, and write access is denied.

The file system containing the file is mounted read-only.

times is not a null pointer, and points outside the process's allocated address space.
The reliable detection ofthis error is implementation dependent.

path points outside the process's allocated address space. The reliable detection of
this error is implementation dependent.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

DEPENDENCIES
NFS: utime () may return EPERM when invoked on a remote file owned by the super-user, even if the

invoking user has write permission on the file.

SEE ALSO
touch(l), stat(2).

STANDARDS CONFORMANCE
utime (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

260 -1- HP-UX Release 9.0: August 1992

vfork(2) vfork(2)

NAME
vfork - spawn new process; share virtual memory

SYNOPSIS
#include <unistd.h>

pid_t vfork(void);

REMARKS
vfork () is a higher performance version of fork () that is provided on some systems where a perfor­
mance advantage can be attained.

vfork() differs from fork() only in that the child process can share code and data with the calling pro­
cess (parent process). This speeds cloning activity significantly at a risk to the integrity of the parent pro­
cess if vfork () is misused.

The use of vfork () for any purpose except as a prelude to an immediate exec () or exit () is not
supported. Any program that relies upon the differences between fork () and vfork () is not portable
across HP-UX systems.

All HP-UX implementations must provide the entry vfork (), but it is permissible for them to treat it
identically to fork. On some implementations the two are not distinguished because the fork () imple­
mentation is as efficient as possible. Other versions may do the same to avoid the overhead of supporting
two similar calls.

DESCRIPTION
vfork () can be used to create new processes without fully copying the address space of the old process. If
a forked process is simply going to do an exec () (see exec(2)), the data space copied from the parent to the
child by fork () is not used. This is particularly inefficient in a paged environment, making vfork is
particularly useful. Depending upon the size of the parent's data space, vfork () can give a significant
performance improvement over fork ().

vf ork () differs from fork () in that the child borrows the parent's memory and thread of control until a
call to exec () or an exit (either by a call to exit () or abnormally (see exec(2) and exit(2)). The parent
process is suspended while the child is using its resources.

vfork () returns 0 in the child's context and (later) the pid of the child in the parent's context.

vf ork () can normally be used just like fork (). It does not work, however, to return while running in
the child's context from the procedure which called vfork () since the eventual return from vfork ()
would then return to a no longer existent stack frame. Be careful, also, to call _exit () rather than
exi t () if you cannot exec () ,since exit () flushes and closes standard 110 channels, thereby damag­
ing the parent process's standard 110 data structures. (Even with fork() it is wrong to call exit ()
since buffered data would then be flushed twice.)

The [vfork,exec] window begins at the vfork () call and ends when the child completes its exec ()
call.

RETURN VALUE
Upon successful completion, vfork () returns a value of 0 to the child process and returns the process ID
of the child process to the parent process. Otherwise, a value of -1 is returned to the parent, no child pro­
cess is created, and errno is set to indicate the error.

ERRORS
vfork () fails and no child process is created if any of the following conditions are encountered:

[EAGAIN]

[EAGAIN]

DEPENDENCIES
Series 800

The system-wide limit on the total number of processes under execution would be
exceeded.

The system-imposed limit on the total number of processes under execution by a sin­
gle user would be exceeded.

Process times for the parent and child processes within the [vfork,exec] window may be inaccurate.

Parent and child processes share the same stack space within the [vfork,exec] window. If the size
of the stack has been changed within this window by the child process (return from or call to a

HP-UX Release 9.0: August 1992 -1- 261

•

I

vfork(2) vfork(2)

AUTHOR

function, for example), it is likely that the parent and child processes will be killed with signal SIG­
SEGVor SIGBUS.

In the [vfork,exec] window, a call to signal () (see signal(2) that installs a catching function
can affect handling of the signal by the parent. The parent is not affected if the handling is being set
to SIG_DFL or SIG_IGN, or if either sigaction () or sigvector () is used (see sigaction(2)
and siguector(2».

vf ork () was developed by the University of California, Berkeley.

SEE ALSO
exec(2), exit(2), fork(2), wait(2).

262 -2- HP-UX Release 9.0: August 1992

vfsmount(2) vfsmount (2)

NAME
vfsmount - mount a file system

SYNOPSIS
#include <sys/mount.h>

int vfsmount(

) ;

int type,
const char *dir,
int flags,
caddr_t data

DESCRIPTION
vf smount () attaches a file system to a directory. After a successful return, references to directory dir
refer to the root directory of the newly mounted file system. dir is a pointer to a null-terminated string con­
taining a path name. dir must exist already, and must be a directory. dir cannot be a context-dependent
file (see cd{(4». Its old contents are inaccessible while the file system is mounted. vfsmount () differs
from mount () (see mount(2» in its ability to mount file system types other than just the UFS type.

type indicates the type of the file system. It must be one of the types described below. vfsmount () does
not check that the file system is actually of type type; if type is incorrect, vfsmount () may cause the pro­
cess to hang. To prevent such problems, statfsdev () (see stat{sdev(3c» should be called before
vfsmount () to check the file system type, which statfsdev () places in the f_fsid [1] field of the
statfs structure it returns.

The [lags argument determines whether the file system can be written to (functionally identical to the
rwflag argument in mount(2) in this regard). It also controls whether programs from the mounted file
system are allowed to have set-uid execution. Physically write-protected and magnetic tape file systems
must be mounted read-only. Failure to do so results in a return of -1 by vfsmount () and a value ofEIO
in errno. The following values for the [lags argument are defined in <sys /mount • h>:

M_RDONLY Mount done as read-only.

M_NOSUID Execution of set-uid programs not permitted.

data is a pointer to a structure containing arguments specific to the value contained in type. The follow­
ing values for types are defined in <sys /mount • h>:

MOUNT_UFS Mount a local HFS file system. data points to a structure of the following for­
mat:

struct ufs_args {
char *fspec;

} ;

(spec points to the name of the block special file that is to be mounted. This is identical in use and func­
tion to the first argument for mount(2).

MOUNT_CDFS Mount a local CD-ROM file system. data points to a structure of the following
format:

NETWORKING FEATURES
NFS

struct cdfs_args {
char *fspec;

} ;

{spec points to the name of the block special file that is to be mounted.

An additional value for the type argument is supported.

MOUNT_NFS Mount an NFS file system. data points to a structure of the following format:

HP-UX Release 9.0: August 1992

#include <nfs/nfs.h>
#include <netinet/in.h>

-1- 263

I

I

vfsmount (2)

struct nfs_args {
struct sockaddr_in
fhandle_t

} ;

int flags;
int wsize;
int rsize;
int
int
char
int
int
int
int

ti:m.eo;
retrans;
*hostname;
acregmin;
acregmax;
acdirmin;
acdirirLax;

*addr;
*fh;

vfsmount(2)

Elements in the structure as as follows:

addr

fh

flags

264

Points to a local socket address structure (see inet(7)), which is used by the system to
communicate with the remote file server.

Points to a structure containing a file handle, an abstract data type that is used by
the remote file server when serving an NFS request.

Bit map that sets options and indicates which of the following fields contain valid
information. The following values of the bits are defined in <nfs/nfs .h>:

NFSMNT_WSIZE

NFSMNT_RSIZE

NFSMNT_TIMEO

Specify whether the mount is a soft mount or a hard
mount. If set, the mount is soft and will cause requests to
be retried ret rans number of times. Otherwise, the
mount is hard and requests will be tried forever.

Set the write size.

Set the read size.

Set the initial timeout value.

NFSMNT_RETRANS Set the number of request retries.

NFSMNT_HOSTNAME
Set a hostname.

NFSMNT_INT Set the option to have interruptible I/O to the mounted file
system.

NFSMNT_NODEVS Set the option to deny access to local devices via NFS device
files. By default, access to local devices via NFS device files
is allowed.

NFSMNT_IGNORE Mark the file system type as ignore in /etc/mnttab.

NFSMNT_NOAC Turn off attribute caching. By default NFS caches attri­
butes of files and directories to speed up operations on NFS
files by not always getting the attributes from the server.
Names are also cached to speed up path name lookup.
However it does allow modifications to files on the server to
not be immediately detectable on the clients. Setting
NFSMNT_NOAC turns off attribute caching and name
lookup caching. NFS caches attributes for a length of time
proportional to how much time has elapsed since the last
modification. The time length is subject to acregmin,
acregmax, acdirmin, and acdirmax described below.

Cached attributes are flushed when a NFS file is opened
unless this option is specified. This option is useful where
it is known that the files will not be changing as is the case
for a CD-ROM drive.

-2- HP-UX Release 9.0: August 1992

vfsmount(2) vfsmount(2)

NFSMNT_ACREGMIN
Use the acregmin value. See acregmin below.

NFSMNT_ACDIRMIN
Use the acdirmin value. See acdirmin below.

NFSMNT_ACREGMAX
Use the acregmax value. See acregmax below.

NFSMNT_ACDIRMAX
Use the acdi rmax value. See acdi rmax below.

wsize
Can be used to advise the system about the maximum number of data bytes to use for a single outgo­
ing protocol (such as UDP) message. This value must be greater than o. Default wsize is 8192.

rsize
Can be used to advise the system about the maximum number of data bytes to use for a single incom­
ing protocol (such as UDP) message. This value must be greater than o. Default rsize is 8192.

timeo
Can be used to advise the system on the time to wait between NFS request retries. This is in units of
0.1 seconds. This value must be greater than o. Default t imeo is 7.

retrans
Can be used to advise the system about the number of times the system will resend a request. This
value must be 0 or greater. Default retrans is 4.

hostname
A name for the file server that can be used when any messages are given concerning the server. The
string can be of length from 0 to 32 characters.

acregmin
can be used to advise the system the minimum number of seconds to cache attributes for a non­
directory file. If this number is less than 0, it means to use the system defined maximum of 3600
seconds. The number specified can not be O. If the number is greater than 3600, 3600 will be used.
Default acregmin is 3. is ignored if NFSMNT_NOAC is specified.

acdirmin
can be used to advise the system the minimum number of seconds to cache attributes for a directory.
If this number is less than 0, it means to use the system defined maximum of 3600 seconds. The
number specified can not be O. If the number is greater than 3600, 3600 will be used. Default
acdirmin is 30. acdirmin is ignored if NFSMNT_NOAC is specified.

acregmax
can be used to advise the system the maximum number of seconds to cache attributes for a non­
directory file. If this number is less than 0, it means to use the system defined maximum of 36000
seconds. The number specified cannot be O. If the number is greater than 36000, 36000 is used.
Default acregmax is 60. acregmax is ignored if NFSMNT_NOAC is specified.

acdirmax can be used to advise the system the maximum number of seconds to cache attributes for a
directory. If this number is less than 0, it means to use the system defined maximum of 36 000 seconds.
The number specified cannot be O. If the number is greater than 36000, 36000 will be used. Default
acdirmax is 60. acdirmax is ignored if NFSMNT_NOAC is specified.

RETURN VALUE
Upon successful completion, vf smount () returns a value of O. Otherwise, no file system is mounted, a
value of -1 is returned, and errno is set to indicate the error.

ERRORS
vfsmount () fails when one of the following occurs:

[EBUSy] dir is not a directory, or another process currently holds a reference to it.

No space remains in the mount table. [EBUSy]

[EBUSY] The super block for the file system had a bad magic number or an out-of-range block size.

HP-UX Release 9.0: August 1992 -3- 265

I

I

vfsmount(2) vfsmount (2)

[EBUSYl

[EFAULT]

[EINVAL]

[EIO]

[EIO]

[ELOOP]

Not enough memory was available to read the cylinder group information for the file sys­
tem.

data or dir points outside the allocated address space of the process.

dir is a context-dependent file (see cdf(4).

A...n I/O error occlJ.rred while reading from or writing to the file system.

An attempt was made to mount a physically write protected or magnetic tape file system as
read-write.

Too many symbolic links were encountered while translating the path name of file system
referred to by data or dir.

[ENAME'I'OOLONGj

[ENOENT]

[ENOENT]

[ENOTBLK]

[ENOTDIR]

[ENOTDIR]

[ENXIO]

The path name of the file system referred to by data or dir is longer than PATH_MAX
bytes, or the length of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

The file system referred to by data or dir does not exist.

The file system referred to by data does not exist.

The file system referred to by data is not a block device. This message can occur only dur­
ing a local mount.

A component of the path prefix in dir is not a directory.

A component of the path prefix of the file system referred to by data or dir is not a direc­
tory.

The major device number of the file system referred to by data is out of range (indicating
that no device driver exists for the associated hardware).

[EOPNOI'SUPP] vf smount () of a remote device was attempted.

[EPERM] The caller does not have appropriate privileges.

DEPENDENCIES
NFS: vfsmount () fails when one of the following occurs, and returns the error indicated:

[EFAULT] A pointer in the data structure points outside the process's allocated address space.

[EINV AL] A value in a field of data is out of proper range.

[EREMOTE) An attempt was made to remotely mount a file system that was already mounted from
another remote node.

See get{h(2), inet(7), and mountd(lM) for more information.

HP Clustered Environment:
vfsmount () of a local CDFS file system (MOUNT_CDFS) is not supported from a cluster client.
Such a call returns an EINV AL error.

WARNINGS
Use of mount(lM) is preferred over vfsmount () because mount(lM) supports all mounting options that
are available from vfsmount () directly, plus mount(lM) also maintains the /etc/mnttab file which
lists what file systems are mounted.

In the HP Clustered environment, the spec and dir arguments should always be fully expanded pathnames.

AUTHOR
vf smount () was developed by HP and Sun Microsystems, Inc.

SEE ALSO
mount(2), umount(2), mount(lM).

266 -4- HP-UX Release 9.0: August 1992

wait(2) wait(2)

NAME
wait, waitpid, wait3 - wait for child or traced process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

pid_t wait(int *stat_loc);

pid_t waitpid(pid_t pid, int *stat_loc, int options);

pid_t wait3(int *stat_loc, int options, int *reserved);

DESCRIPTION
wai t () suspends the calling process until one of the immediate children terminates or until a process
being traced stops because that traced process has hit a break point. A process being traced can be either a
child or a process attached by the ptrace () request PT_ATTACH (see ptrace(2». The wait () system
call returns prematurely if a signal is received. If a child or traced process stops or terminates prior to the
calIon wai t, return is immediate.

If staCloc is not a null pointer, status information is stored in the location pointed to by staCloc. The
status can be used to differentiate between stopped and terminated processes. If the process terminates,
the status identifies the cause of termination and passes useful information to the calling process. This is
accomplished using the following macros defined in <sys /wai t • h>, with the status value stored at
*staCloc as an argument:

WIFEXITED{staCval) If the process terminated because of an exit () or _exit () system
call, this macro evaluates to a non-zero value.

WEXITSTATUS (staCval)

WIFSIGNALED (staCval)

If the value of WIFE XI TED (staCval) is non-zero, this macro evaluates to
the low-order 8 bits of the argument that the process passed to exit () or
_exit () (see exit(2».

If the process terminated due to the default action of a signal (see sig­
nal(5», this macro evaluates to a non-zero value.

WTERMSIG (stat_val) If the value ofWIFSIGNALED (stat_val) is non-zero, this macro evaluates
to the number of the signal that caused the termination.

WCOREDUMP (staCval) If the value ofWIFSIGNALED (staCval) is non-zero, this macro evaluates
to a non-zero value if a "core image" was produced (see signal(5».

WIFSTOPPED (staCval) If the process is stopped, this macro evaluates to a non-zero value.

WSTOPSIG (staCval) If the value ofWIFSTOPPED (staCval) is non-zero, this macro evaluates
to the number of the signal that caused the process to stop.

As a single special case, the value stored in *stat_loc is zero if and only if status is being returned from a
terminated process that called exit () or _exit () with a value of zero.

If the information stored at the location pointed to by staCloc was stored there by a call to one of the
wai t () functions, exactly one of the macros WIFEXITED (*staCloc) , WIFSIGNALED (*staCloc) , or
WIFSTOPPED (*staCloc) evaluates to a non-zero value.

The wai tpid () function behaves identically to wait () if pid has a value of -1 and options has a
value of zero. Otherwise its behavior is modified by the values of the pid and options arguments.

The pid argument specifies the set of processes for which status is requested. waitpid returns only the
status of a child process from this set.

• If pid is equal to -1, status is requested for any child process or attached process. In this
respect, wai tp id () is then equivalent to wa it () .

• If pid is greater than zero, it specifies the process ID of a single child or attached process for
which status is requested.

• If pid is equal to zero, status is requested for any child or attached process whose process group
ID is equal to that of the calling process.

HP-UX Release 9.0: August 1992 -1- 267

I

I

wait(2) wait(2)

• Ifpid is less than -1, status is requested for any child or attached process whose process group
ID is equal to the absolute value of pid.

The options argument is constructed from the bit-wise inclusive OR of zero or more of the following flags:

WNOHANG If this flag is set, waitpid () or wai t3 () is prevented from suspending the cal­
ling process. A value of zero is returned indicating that no child or traced processes
have stopped or died.

WUNTRACED If and only if this flag is set, wai tpid () or wai t3 () returns information on
child or attached processes that are stopped but not traced (withptrace(2» because
they received a SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal, and whose
status has not yet been reported. Regardless of this flag, status is returned for
child or attached processes that have terminated or are stopped and traced and
whose status has not yet been reported.

Calling wait3 () is equivalent to calling wai tpid () with the value of pid equal to zero. The third
parameter to wait3 () is currently unused and must always be a null pointer.

If a parent process terminates without waiting for its child processes to terminate, the parent process ID
of each child process is set to 1. This means the initialization process inherits the child processes.

Notes
Earlier HP-UX versions documented the bit encodings of the status returned by wait () rather than the
macros WI FEXI TED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, and
WSTOPSIG. Applications using those bit encodings will continue to work correctly. However, new applica­
tions should use the macros for maximum portability.

In earlier HP-UX versions, the macros WIFSTOPPED, WIFSIGNALED, and WIFEXITED have the same
definitions as the correspondingly named macros in the BSD 4.3 and earlier systems. Existing applications
that depend on these definitions will continue to work correctly. However, if the application is recompiled,
the feature test macro _BSD must be turned on for the compilation so that the old definitions of these mac­
ros are obtained. New definitions of these macros are in effect by default. The only difference between the
old and new definitions is the type of the argument. Type union wait is used in the BSD definitions
while type int is used in the default definitions.

ERRORS
wait () fails ifone or more of the following is true:

[ECHILD] The calling process to wait () or wait3 () has no existing child or traced
processes, or the calling process to wai tpid () has no existing unwaited-for child or
traced processes that match the pid argument.

[ECHILD]

[EFAULT]

[EINVAL]

[EINVAL]

[EINTR]

For wa it p i d () , the process or process group specified by pid does not exist or is not
a child of the calling process.

staCloc points to an illegal address. The reliable detection of this error is implemen­
tation dependent.

The options argument to wai tpid () or wai t3 () is invalid.

wait3 () was passed a non-null pointer value for its third argument.

The function was interrupted by a signal. The value of the location pointed to by
staCloc is undefined.

RETURN VALUE
If wait () returns due to the receipt of a signal, a value of -1 is returned to the calling process and
errno is set to EINTR. If wait () returns due to a stopped or terminated child or traced process, the pro­
cess ID of that process is returned to the calling process. If waitpidO or wait30 is called, the WNOHANG
option is used, and there are no stopped or terminated child or traced processes (as specified by pid in the
case of waitpidO), a value of zero is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

WARNINGS

268

The behavior of wait (), waitpid (), and wait3 () is affected by setting the SIGCLD signal to
SIG_IGN. See WARNINGS section of signal (5). Signal handlers that cause system calls to be restarted can

-2- HP-UX Release 9.0: August 1992

wait(2) wait(2)

affect the EINTR condition described above (see sigaction(2), sigvector(2), and bsdproc(2)).

AUTHOR
wait (), waitpid (), and wait3 () were developed by HP, AT&T, and the University of California,
Berkeley.

SEE ALSO
Exit conditions ($?) in sh(1), exec(2), exit(2), fork(2), pause(2), ptrace(2), signal(5).

STANDARDS CONFORMANCE
wait (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

waitpid(): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -3- 269

I

I

write (2) write (2)

NAME
write, writev - write on a file

SYNOPSIS
#inelude <unistd.h>

ssize_t write(int fildes, eonst void *buf, size_t nbyte);

#inelude <sys/uio.h>

ssize_t writev(

) ;

int fildes,
eonst struet iovee *iov,
size_t iovent

DESCRIPTION

270

write () attempts to write nbyte bytes from the buffer pointed to by but to the file associated with the file
descriptor fildes. writev() performs the same action, but gathers the output data from the iovlen
buffers specified by the elements of the iovee array: iov[O], iov[1], ... , iov[iovcnt-1].

The iovee structure for wri tev () is defined as follows:

struet iovee {
eaddr_t iov_base;
int iov_len;

};

Each iovee entry specifies the base address and length of an area in memory from which data should be
copied. The iovee array can be at most MAXIOV long.

On devices capable of seeking, the actual writing of data proceeds from the position in the file indicated by
the file offset. Upon return from wr i t e (), the file offset is incremented by the number of bytes actually
written.

On devices incapable of seeking, writing always takes place starting at the device's current position. The
value of a file offset associated with such a device is undefined.

If the O_APPEND file status flag is set, the file offset is set to the end of the file prior to each write.

For ordinary files, if the O_SYNC flag of the file status flags is set, the write does not return until both the
file data and the file status are physically updated. For block special files, if O_SYNC is set, the write does
not return until the data is physically updated. How the data reaches the physical media is
implementation- and hardware-dependent.

lfthe number of bytes requested by write () exceeds the allotted capacity (see ulimit(2» or the physical
end of a medium, only the allotted number of bytes are actually written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512 bytes returns 20. The next write of
a non-zero number of bytes fails (except as noted below).

A write to an ordinary file is prevented if enforcement-mode file and record locking is set, and another pro­
cess owns a lock on the segment of the file being written:

If O_NDELAYor O_NONBLOCK is set, the write returns -1 and sets errno to EAGAIN.

If O_NDELAYand O_NONBLOCK are clear, the write does not complete until the blocking record
lock is removed.

If the file being written is a pipe (or FIFO), the system-dependent maximum number of bytes that it can
store is given by PIPSIZ (defined in <sys/ inode. h». The minimum value of PIPSIZ on any HP-UX
system is 8192. When writing a pipe, the following conditions apply:

lfthe O_NDELAYor O_NONBLOCK file status flag is set:

If nbyte is less than or equal to PIPSIZ and sufficient room exists in the pipe or FIFO, the
wri te () succeeds and returns the number of bytes written;

If nbyte is less than or equal to PIPSIZ but insufficient room exists in the pipe or FIFO, the
wri te () returns having written nothing. If O_NONBLOCK is set, -1 is returned and errno

-1- HP-UX Release 9.0: August 1992

write(2) write(2)

is set to EAGAIN. If O_NDELAY is set, 0 is returned.

If nbyte is greater than PIPSIZ and the pipe or FIFO is full, the write returns having written
nothing. If O_NONBLOCK is set, -1 is returned and errno is set to EAGAIN. If O_NDELAY is
set, 0 is returned.

Ifnbyte is greater than PIPSIZ, and some room exists in the pipe or FIFO, as much data as fits
in the pipe or FIFO is written, and write () returns the number of bytes actually written, an
amount less than the number of bytes requested.

If the O_NDELAYand O_NONBLOCK file status flags are clear:

The write () always executes correctly (blocking as necessary), and returns the number of
bytes written.

If write () is interrupted by a signal after it successfully writes some data, it returns the number of
bytes written before the interrupt occurred. If write () is interrupted before any bytes are written,
wri te () returns -1 and sets errno to EINTR.

write () clears the SUID, SGID, and sticky bits on all non-directory type files if the write is performed by
any user other than the owner or a user who has appropriate privileges. For directories, write () does
not clear the SUID, SGID, and sticky bits.

RETURN VALUE
Upon successful completion, the number of bytes actually written is returned. Otherwise, -1 is returned
and e rrno is set to indicate the error.

ERRORS
wr i t e () fails and the file offset remains unchanged if any of the following conditions is true:

[EBADF] fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal]
An attempt is made to write to a pipe that is not open for reading by any process.

[EINTR] A signal was caught before any data was transferred (see sigvector(2).

[EDEADLK] A resource deadlock would occur as a result of this operation (see lockf(2) and
fcntl(2)).

[EDQUOT]

[EAGAIN]

[ENOLCK]

[EIO]

[EIO]

[ENOSPC]

User's disk quota block limit has been reached for this file system.

Enforcement-mode file and record locking was set, O_NDELAY was set, and there
was a blocking record lock. .

The system record lock table is full, preventing the write from sleeping until the
blocking record lock is removed.

The process is in a background process group and is attempting to write to its control­
ling terminal, TOSTOP is set, the process is neither ignoring or blocking the SIGTTOU
signal, and the process group of the process is orphaned.

An 110 error occurred while writing to the device corresponding to fildes.

Not enough space on the file system.

In addition, writev () might return one of the following errors:

[EFAULT]

[EINVAL]

[EINVAL]

[EINVAL]

iov_base or iov points outside of the allocated address space. The reliable
detection ofthis error is implementation dependent.

iovcnt is less than or equal to 0, or greater than MAXIOV.

One of the iov_len values in the iov array was negative.

The sum of iov _len values in the iov array overflowed a 32-bit integer.

wr it e () or wr i tev () fails, the file offset is updated to reflect the amount of data transferred, and
errno is set accordingly if one of the following conditions is true:

[EFBIG] An attempt was made to write a file that exceeds the process's file size limit or the
maximum file size. See ulimit(2).

HP-UX Release 9.0: August 1992 -2- 271

I

I

write (2) write(2)

[EFAULT] buf points outside the process's allocated address space. The reliable detection of
this error is implementation dependent.

EXAMPLES
Assuming a process opened a file for writing, the following call to write(2) attempts to write mybufsize bytes
to the file from the buffer to which mybufpoints.

#include <string.h>

int mybufsize, nbytes, fildes;
char *mybuf = "aeiou and sometimes y";
mybufsize = strlen (mybuf);
nbytes = write (fildes, mybuf, mybufsize);

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector(2) can
affect the behavior described on this page.

Character special devices, and raw disks in particular, apply constraints on how write () can be used.
See specific Section (7) manual entries for details on particular devices.

AUTHOR
write () was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
creat(2), dup(2), lockf(2), Iseek(2), open(2), pipe(2), ulimit(2), ustat(2).

STANDARDS CONFORMANCE
write (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

272 -3- HP-UX Release 9.0: August 1992

Section 3:
Library Functions

intro(3) intro(3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
#ine1ude <stdio.h>

#ine1ude <math.h>

DESCRIPTION
This section describes functions found in various libraries, other than those functions that directly invoke
HP-UX system primitives, which are described in Section (2) of this volume. Certain major collections are
identified by a letter after the section identifier (3):

(3C) These functions, together with the Operating System Calls and those marked (3S), consti­
tute the Standard C Library which is automatically loaded by the C compiler, cc(l). The
link editor ld(l) searches this library if the -le option is specified. Declarations for some
of these functions can be obtained from #ine1ude files indicated in the appropriate
entries.

(3G) These functions constitute the graphics library, and are documented in separate manuals.

(31) These functions constitute the instrument support (Device I/O) library.

(3M) These functions constitute the Math Libraries, 1ibm. a and 1ibM. a. All of the functions
are in both libraries except for matherr (see matherr(3M) for more details). The HP-UX
operating system provides two different libraries due to to conflicts between Issue 2 of the
SVID specification and the ANSI C standard. If behavior conforming to SVID Issue 2 is
desired, 1ibm.a should be used. If behavior conforming to the ANSI C standard is
desired, 1ibM.a should be used. The libm. a library is automatically linked as needed
by the FORTRAN compiler (see f77(1». Neither is automatically loaded by the C compiler
(see cc(l»; however, the link editor searches this library if the -1m (for 1 ibm. a) or -1M
(for 1 ibM. a) option is specified. Declarations for these functions are available in the
header file <ll\ath. h>. Several generally useful mathematical constants are also defined
there (see math(5».

(3N) These functions are applicable to the Internet network, and are part of the standard C
library, 1ibe .a.

(3S) These functions constitute the "standard I/O package" (see stdio(3S». These functions are
in the library 1ibe, already mentioned. Declarations for these·functions can be obtained
from the #ine1ude file <stdio .h>.

(3X) Various specialized libraries. The files in which these libraries are found are specified in
the appropriate entries.

Definitions
The word character is used to refer to a bit representation that fits in a byte and represents a single
graphic character or control function. The null character is a character with value 0, represented in the C
language as \ O. A character array is a sequence of characters. A null-terminated character array is
a sequence of characters, the last of which is the null character. A string is a designation for a null­
terminated character array. The null string is a character array containing only the null character. A
null pointer is the value that is obtained by casting 0 into a pointer. The C language guarantees that two
null pointers always compare equal, and a null pointer always compares unequal to a pointer to any object
or function. Consquently, many functions that return pointers return a null pointer to indicate an error.
The. macro NULL expands to a null pointer constant and is defined in <stddef.h> and certain other
headers.

Many groups of FORTRAN intrinsic functions have generic function names that do not require explicit or
implicit type declaration. The type of the function is determined by the type of its argument or arguments.
For example, the generic function max returns an integer value if given integer arguments (maxO), a real
value if given real arguments (amaxl), or a double-precision value if given double-precision arguments
(dmaxl).

DIAGNOSTICS
Functions in the C and Math Libraries, (3C) and (3M), may return the conventional values 0 or
±HUGE_VAL (the largest-magnitude double-precision floating-point numbers; HUGE_VAL is defined in the

HP-UX Release 9.0: August 1992 -1- 273

I

I

intro(3) intro(3)

<math. 11> header file) when the function is undefined for the given arguments or when the value is not
representable. Functions in the Math Libraries may also return ±INFINITY or NaN. In these cases, the
external variable errno (see errno(2)) is set to the value EDOM or ERANGE. As many of the FORTRAN
intrinsic functions use the routines found in the Math Library, the same conventions apply.

WARNINGS
Library routines in 11bc. a and 11bm. a often call other routines in these libraries. Prior to HP-UX
release 7.0, a user could define a function having the same name as one of these library routines, and this
function would be linked in instead of the library version. In this way, a user could effectively replace a
library routine with his own (see matherr(3M) for a supported example of this). More often, this type of
linkage would occur unintentionally, causing unexpected behavior which was difficult to debug.

Starting at Release 7.0, object names in libraries have been modified such that they are much less likely to
collide with user names, Therefore, calis to libra....-y routines from within other library routines are much
more likely to call the actual library routine. (matherr(3M) is the only exception to this.)

In spite of these changes, it is still remotely possible for name conflicts to occur. The lint(l) program
checker reports name conflicts of this kind as "multiple declarations" of the names in question. Definitions
for Sections (2), (3e), and (3S) are checked automatically. Other definitions can be included by using the
-1 option (for example, -1m includes definitions for the Math Library, 11bm.a. Use of lintel) is highly
recommended.

FILES
Ilib/libc.a

Ilib/libc.sl

Ilib/libcurses.sl

Ilib/libm.a

Ilib/libm.sl

llib/libM.a

llib/libM.sI

/usr/lib/libF77.a

/usr/lib/libF77 .sl

Standard I/O, operating system calls, and general purpose routines archive library.

Standard I/O, operating system calls, and general purpose routines shared library.

CRT screen handling shared library.

SVID2 compliant math archive library.

SVID2 compliant math shared library.

XPG3, POSIX.l, ANSI-C compliant math archive library.

XPG3, POSIX.l, ANSI-C compliant math shared library.

General FORTRAN 77 routines archive library.

General FORTRAN 77 routines shared library.

SEE ALSO
intro(2), stdio(3S), math(5), hier(5), ar(l), cc(l), f'77(l), ld(l), lint(l), nm(l).

The introduction to this manual.

Device I/O Library, tutorial in Device I/O Users Guide .

274 -2- HP-UX Release 9.0: August 1992

a64l(3C)

NAME
a641(), 164a() - convert between long integer and base-64 ASCII string

SYNOPSIS
#lnc1ude <std1lh.h>

long lnt a641(const char *s);

char *164a(long lnt 1);

DESCRIPTION

a641(3C)

These fhnciions are used to maintain numbers stored in base-64 ASCII characters. This is a notation by
which long integers can be represented by up to six characters; each character represents a "digit" in a
radix-64 notation.

The characters used to represent "digits" are • for 0, / for 1, 0 through 9 for 2-11, A through Z for
12-37, and a through z for 38-63.

The leftmost character is the least significant digit. For example,
aO = (38 x 64°) + (2 x 641

) = 166

a641 () takes a pointer to a null-terminated base-64 representation and returns a corresponding long
value. If the string pointed to by s contains more than six characters, a641 () uses the first six.

164a () takes a long argument and returns a pointer to the corresponding base-64 representation. If
the argument is 0, 164 a () returns a pointer to a null string.

WARNINGS
The value returned by 164a () is a pointer into a static buffer, the contents of which are overwritten by
each call.

STANDARDS CONFORMANCE
a641 (): SVID2

164a (): SVID2

HP-UX Release 9.0: August 1992 -1- 275

I

I

AAudioString(3X) Series 700 Only AAudioString(3X)

NAME
AAudioString - get name of audio controller (string) passed to AOpenAudioO

SYNOPSIS
#include <audio/Alib.h>

char *AAudioString (Audio *audio);

DESCRIPTION
AAudioString () returns the audio_name (string) that was passed to AOpenAudio () • If audio_name
was NULL, the value of the AUDIO variable was used, and that is the value returned.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successful completion, AAudioString () returns the audio_name (string) that was passed to
AOpenAudio (). If audio_name is NULL, the value of the AUDIO variable is used, and that is the value
returned.

ERRORS
AAudioString () does not return an error status.

EXAMPLES
The following call to AAudioString gets the name of the audio controller (string) that was passed to
AOpenAudio () .

char *ac_name; 1* name of audio
Audio *audio; 1* audio connection */11

1* get audio controller name *1
ac_name = AAudioString(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AAudioString () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

276 -1- HP-UX Release 9.0: August 1992

ABestAudioAttributes (aX) Series 700 Only ABestAudioAttributes (ax)

NAME
ABestAudioAttributes - get best audio attribute setting for specified controller

SYNOPSIS
#include <audio/Alib.h>

AudioAttributes *ABestAudioAttributes (Audio *audio);

DESCRIPTION
ABestAudioAttributes () returns a pointer to an AudioAttributes structure containing the
optimal attributes for the audio controller associated with the audio connection. The application can use
the returned attributes pointer directiy in subsequent audio operation calls.

Changes should not be made to the AudioAttributesstructure; rather, the application should copy the
structure and make changes in the copy, as shown in the example below.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successful completion, ABestAudioAttributes () returns a pointer to an AudioAttri­
butes structure.

ERRORS
ABestAudioAttributes () does not return an error status.

EXAMPLES
The following example shows a call to ABestAudioAttributes () to get the pointer to the best audio
attributes.

Audio *audio; 1* audio connection */11
AudioAttributes *bestAttr; 1* best attributes */11

1* get best audio attributes *1
bestAttr = ABestAudioAttributes (audio);

This example shows how to get a copy of the best attributes and make a change to a field in the copy. The
program assigns the contents at the returned pointer (the audio attributes) to myAttr and then sets the
value of the sampled_attr field in myAttr to ASAFBi tPerSample.

Audio *audio; 1* audio connection *1
AudioAttributes myAttr; 1* my copy of best attributes *1

1* get copy of audio attributes; change the copy *1
myAttr = *ABestAudioAttributes (audio);
myAttr.attr.sampled_attr.data_format = ADFALaw

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ABestAudioAttributes () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 277

I

I

abort(3C) abort (3C)

NAME
abort() - generate a software abort fault

SYNOPSIS
#include <stdlib.h>

void abort(void);

DESCRIPTION
abort () first closes all open files, streams, directory streams, and message catalogue descriptors, if possi­
ble, then causes the signal SIGABRT to be sent to the calling process. This may cause a core dump to be
generated (see signal(2».

If the signal SIGABRT is caught, the handling function is executed. If the handling function returns, the
action for SIGABRT is then reset to IG_DFL, and the signal SIGABRT is sent again to the process to
ensure that it terminates.

RETURN VALUE
abort () does not return.

ERRORS
No errors are defined.

APPLICATION USAGE
S I GABRT is not intended to be caught.

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current directory is writable, a core dump is produced
and the message abort - core dumped is written by the shell.

SEE ALSO
adb(1), exit(2), kill(2), signal(2). signal(5).

STANDARDS CONFORMANCE
abort (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

278 -1- HP-UX Release 9.0: August 1992

abs(3C) abs(3C)

NAME
abs(), labs() - return integer absolute value

SYNOPSIS
#1nclude <std11b.h>

1nt abs(1nt 1);

long 1nt labs(long 1nt 1);

DESCRIPTION
abs () returns the absolute value of its integer operand.

labs () is similar to abs (), except that the argument and the returned value each have type long into

The largest negative integer returns itself.

WARNINGS
In two's-complement representation, the absolute value of the negative integer with largest magnitude is
undefined. Some implementations trap this error, but others simply ignore it.

SEE ALSO
floor(3M).

STANDARDS CONFORMANCE
abs (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

labs () : AES, XPG4, ANSI C

HP-UX Release 9.0: August 1992 -1- 279

I

I

ACalculateLength (3X) ACalculateLength (3X)

NAME
ACalculateLength - return the size in bytes of converted data

SYNOPSIS
#include <audio/Alib.h>

long ACalculateLength
Audio
long
AudioAttributes
AudioAttributes
long

(
*audio,
buffer I_size,
* buffer I_attributes,
* buffer2_attributes,
* status]etum) ;

DESCRIPTION
ACalculateLength () returns the size in bytes of the data in buffer 1 after it is converted to the attri­
bu tes of buffer2_attributes.

audio

buffer I_size

buffer I_attributes

buffer2_attributes

status]eturn

specifies the Audio structure associated with this connection.

specifies the length in bytes of the data in buffer 1.

specifies the attributes of the data in buffer 1.

specifes the attributes of the data in buffer 2.

receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, ACalculateLength () returns the size in bytes of the data which will be
produced by converting a source buffer whose size in bytes is specified in bufferl_size and whose attributes
are specified in buffer I_attributes to the attributes specifed in buffer2_attributes.

ERRORS
If status]etum is not set to NULL, the following is returned in status]etum:

o AENoError

EXAMPLE
For an example, see /usr/audio/examples/splayer.c

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware installed. To find out whether or not your sys­
tem has audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ACalculate Length () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

280 -1- HP-UX Release 9.0: August 1992

ACheckEvent (aX) Series 700 Only ACheckEvent (ax)

NAME
ACheckEvent - get first event found in audio event queue

SYNOPSIS
#include <audio/Alib.h>

Boolean
ACheckEvent (Audio *audio, AEvent *event_return, long

DESCRIPTION
ACheckEvent () dequeues and returns the first event in the queue and returns TRUE. If the queue is
empty, the function returns FALSE immediately. This behavior contrasts with APeekEvent () which
finds but does not dequeue the first event on the queue, and which blocks, if the queue is empty, until an
event is received.

audio specifies the Audi 0 structure associated with this connection.

event]eturn is the first event found in the queue.

status]eturn receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, ACheckEvent () returns TRUE or FALSE.

ERRORS
If status]eturn is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio

EXAMPLES
The following example sets up event to receive event data and status]eturn to receive status data.

Boolean first_event; /* first event on queue */

Audio *audio;

AEvent event_return;

long status;

/* audio connection */

/* event_return */

/* error status */

/* check event queue */
first_event = ACheckEvent(audio, &event_return, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ACheckEvent () was developed by HP.

SEE ALSO
ACheckMaskEvent(3X), AEventsQueued(3X), AMaskEvent(3X), ANextEvent(3X), APeekEvent(3X),
APutBackEvent(3X), AQLength(3X), ASelectlnput(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 281

I

I

ACheckMaskEvent (3X) Series 700 Only ACheckMaskEvent (3X)

NAME
ACheckMaskEvent - get first event in audio event queue that matches mask

SYNOPSIS
#include <audio/Alib.h>

Boolean
AChec~~aBkEvent (

) ;

Audio *audio,
AEventMask event_mask,
AEvent *event_return,
long *status_return

DESCRIPTION
ACheckMaskEvent () dequeues and returns the first event in the queue that matches the mask and
returns TRUE. If no match is found, the function returns FALSE immediately. Unlike AMaskEvent (), it
does not block if no match is found.

audio is the Audio structure associated with this connection.

evenCmask is the mask specifying what type(s) of event to look for.

even(feturn is the first event found in the queue.

status]eturn receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, ACheckMaskEvent () returns TRUE or FALSE.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio
3 AEBadValue

EXAMPLES
The following example sets the event mask to check for errors and transaction started events, and sets up
event]eturn to receive event data and status]eturn to receive status data.

Boolean first_match; /* match found*/
Audio *audio; /* audio connection
AEventMask emask; /* event mask */
AEvent event_return; /* event return*/
long status; /* error status */

/* check event queue for mask match */
emask = (AErrorMask I ATransStartedMask);

*/

first_match = ACheckEventMask(audio, emask, &event_return, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ACheckMaskEvent () was developed by HP.

SEE ALSO
ACheckEvent(3X), AEventsQueued(3X), AMaskEvent(3X), ANextEvent(3X), APeekEvent(3X),
APutBackEvent(3X), AQlength(3X), ASelectInput(3X).

Using the Audio Application Program Interface.

282 -1- HP-UX Release 9.0: August 1992

AChooseAFileAttributes (aX) AChooseAFileAttributes (ax)

NAME
AChooseAFileAttributes - select attributes to use when creating a new file

SYNOPSIS
#include <audio/Alib.h>

void
AChooseAFileAttributes (

Audio *audio,
AudioAttributes *src_attributes,
AFileForrnat file_for.mat,
AudioAttrMask user_mask,
AudioAttributes *attributes,
AByteOrder *byte_order,
long *status_return

) ;

DESCRIPTION
AChooseAFileAttributes () selects attributes to use when creating a new file.

specifies the Audio structure associated with this connection.

specifies the audio attributes of the source stream.

specifes the target file format.

audio

src_attributes

fileJormat

user_mask specifies which of the audio attributes in the attributes structure have been supplied
by the user (mask bit set to 1). These attributes are checked for validity, but are not
changed.

attributes contains user-supplied attributes (if any) as indicated by user_mask.
AChooseAFileAttributes () writes appropriate values to those attributes not
supplied by the user.

byte_order

status]eturn

ERRORS

receives byte ordering for the audio file.

receives the returned status of the operation, unless it is set to NULL.

If status]etum is not set to NULL, one ofthe following is returned in status]eturn:

o AENoError
6 AEBadDataFormat
7 AEBadFileFormat

EXAMPLES
The following example chooses attributes for use when creating a new SunlNeXT file.

Audio * audio; /* audio connection */
AudioAttributes

* src_attribs; /* source stream attributes */
AFileFormat dest_file_format; /* file format */
AudioAttrMask dest_mask; /* attributes set by user */
AudioAttributes

AByteOrder
long

dest_attribs; /* returned attributes */
dest_byte_order; /* returned byte order */
status; /* status */

AFFSun;

/* Get the attribute structure for the target file. */
/* Specify MuLaw data format and 8k samples/second */
dest_attribs.type = ATSampled;
dest_attribs.attr.sampled_attr.data_format = ADFMuLaw;
dest_attribs.attr.sampled_attr.sampling_rate = 8000;

HP-UX Release 9.0: August 1992 -1- 283

I

I

AChooseAFileAttributes (aX) AChooseAFileAttributes (ax)

dest_mask = ASDataFor.matMask I ASSampling Rate Mask;
AChooseAFileAttributes(audio, src_attribs, dest_file_format,

dest_mask, &dest_attribs, &dest_byte_order, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a S~Tstem that has audio hardvlare. To find out \vhether or not y'our sjFstem has
audio hardware, refer to the hardware manual shipped with your system.

AUTHOR
AChooseAFileAttributes () was developed by lIP.

SEE ALSO
U sin.g the Audio Application Program Interface.

284 -2- HP-UX Release 9.0: August 1992

AChoosePlay Attributes (aX) AChoosePlay Attributes (aX)

NAME
AChoosePlayAttributes - select hardware-supported attributes to use when playing an existing file or a
stream

SYNOPSIS
#include <audio/Alib.h>

void
AChoosePlayAttributes

Audio
AudioAttributes
AudioAttrMask
AudioAttributes
AByteOrder
long

) ;

DESCRIPTION

*audio,
*src_attributes,
user_mask,
* attributes,
* byte_order,
* status_return

AChoosePlayAttributes () selects hardware-supported attributes to use when playing an existing
file or a stream.

ERRORS

audio Specifies the Audio structure associated with this connection.

src_attributes Specifies the audio attributes of the source stream.

user _mask Specifies which of the audio attributes in the attributes structure have been supplied
by the user (mask bit set to 1). These attributes are checked for validity, but are not
changed.

attributes Contains user-supplied attributes (if any) as indicated by user_mask.
AChoosePlayAttributes Writes appropriate values to those attributes not sup­
plied by the user.

byte_order Receives the byte ordering for hardware.

status]eturn Receives the returned status ofthe operation, unless it is set to NULL.

If status]eturn is not set to NULL, the following is returned in status]eturn:

o AENoError

EXAMPLE
For an example, see /usr/audio/examples/splayer.c

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AChoosePlayAttributes () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 285

•

I

AChdoseSourceAttributes (aX) AChooseSourceAttributes (ax)

NAME
AChooseSourceAttributes - select attributes to associate with an existing file or a stream

SYNOPSIS
#include <audio/Alib.h>

<stdio.h>

AFileFormat
AChooseSourceAttributes

Audio * audio,
char * pathname,
FILE * audiofile,
AFileFcrmat fileJorrr~t,
AudioAttrMask user_mask,
AudioAttributes * attributes,
long * offset,
long * data_length,
AByteOrder * byte_order,
long * status]eturn);

DESCRIPTION
AChooseSourceAttributes () selects attributes to associate with an existing file or a stream.

audio

pathname

audiofile

fileJormat

user_mask

attributes

offset

data_length

byte_order

status]eturn

specifies the Audio structure associated with this connection.

specifies the pathname of the audio file. Ignored if audiofile is NULL.

specifies the file pointer if the source is a file. If the source is a stream, such as stdin,
set audiofile to NULL.

specifies the format of the file. May be AFFUnknown.

specifies which of the audio attributes in the attributes structure have been supplied
by the user (mask bit set to 1). These attributes will be checked for validity, but will
not be changed.

contains user-supplied attributes (if any) as indicated by user_mask.
AChooseSourceAttributes will write appropriate values to those attributes not
supplied by the user.

receives the location, in bytes, where the audio data begins.

receives the length, in bytes, of the audio data.

receives the byte ordering of the data in the file.

receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, AChooseSourceAttributes () returns the format of the file if the
source is a file. If the source is a stream or the file format cannot be determined, AFFUnknown is returned.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio
6 AEBadFileFormat
7 AEBadDataFormat
11 AEBadFileHdr
17 AEOutOfMemory

EXAMPLE
For an example, see /usr/audio/examples/splayer.c

DEPENDENCIES

286

This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has

-1- HP-UX Release 9.0: August 1992

AChooseSourceAttributes (3X) AChooseSourceAttributes (3X)

audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR I
AChooseSourceAttributes () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 287

I

ACloseAudio (aX) Series 700 Only ACloseAudio (ax)

NAME
ACloseAudio - close connection to specified audio server

SYNOPSIS
#include <audio/Alib.h>

void ACloseAudio (Audio *audio, long *status_return);

DESCRIPTION
ACloseAudio () closes the connection to the server specified by audio and deallocates the Audio struc­
ture memory.

ACloseAudio () waits for the audio server to acknowledge that the audio connection is closed before
returning. After the connection has been closed, it cannot be resumed or used in any other way.

audio specifies the Audi 0 structure associated with this connection.

status]eturn receives the returned status of the operation unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn.

o AENoError
2 AEBadAudio

EXAMPLES
The following example closes the connection to audio and sets up status to receive status data.

Audio *audio; /* audio connection */
long status; /* error status */

/* close audio connection */
ACloseAudio(audio, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ACloseAudio () was developed by HP.

SEE ALSO
AOpenAudio(3X).

Using the Audio Application Program Interface.

288 -1- HP-UX Release 9.0: August 1992

acltostr (3C) acltostr (3C)

NAME
acltostrO - convert access control list (ACL) structure to string form

SYNOPSIS
#inc1ude <ac11ih.h>

char *ac1tostr(int nentries, const struct ac1_entry *ac1, int for.m);

Remarks:
To ensure continued conformance with emerging industry standards, features described in this manual
entry are likely to change in a future release.

DESCRIPTION
ac1tostr () converts an access control list from structure form to string representation. ac1tostr ()
takes a pointer to the first element of an array of ACL entries (ac1), containing the indicated number (nen­
tries) of valid entries (zero or more), and the output form desired (FORM_SHORT or FORM_LONG). It
returns a pointer to a static string (overwritten by the next call), which is a symbolic representation of the
ACL, ending in a null character. The output forms are described in acl(5). In long form, the string returned
contains newline characters.

A user ID of ACL_NSUSER and a group ID of ACL_NSGROUP are both represented by %. As with the ls
command (see ls(l», if an entry contains any other user ID or group ID value not listed in / etc/passwd
or /etc/group, ac1 tostr () returns a string equivalent of the ID number instead.

Just as in routines that manage the /etc/passwd file, ac1 tostr () truncates user and group names
to eight characters.

Note: ac1 tostr () is complementary in function to strtoac1 ().

RETURN VALUE
If ac1tostr () succeeds, it returns a pointer to a null-terminated string. Ifnentries is zero or less, the
string is of zero length. If nentries is greater than NACLENTRIES (defined in <sys/ac1.h», or ifform
is an invalid value, the call returns (char *) NULL.

EXAMPLES
The following code fragment reads the ACL on file /users/ggd/test and prints its short-form represen­
tation.

#inc1ude <stdio.h>
#inc1ude <ac11ih.h>

int nentries;
struct ac1_entry ac1 [NACLENTRIES];

if «nentries = getac1 ("/users/ggd/test", NACLENTRIES, ac1» < 0)
error (...);

fputs (ac1tostr (nentries, ac1, FORM_SHORT), stdout);

AUTHOR
ac1tostr () was developed by HP.

FILES
/etc/passwd
/etc/group

SEE ALSO
getacl(2), setacl(2), cpacl(3C), chownacl(3C), setaclentry(3C), strtoacl(3C), acl(5).

HP-UX Release 9.0: August 1992 -1- 289

I

I

AConnectionNumber(ax) Series 700 Only AConnectionNumber(aX)

NAME
AConnectionNumber - get connection number for specified audio server connection

SYNOPSIS
#include <audio/Alib.h>

long AConnectionNumber (Audio *audio);

DESCRIPTION
AConnect ionNumber () gets the number for the audio server connection specified by audio.

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Uoon successful comnletion. AConnectionNumber () returns the connection number for the specified
audio server connecti~n. '

ERRORS
AConnectionNumber does not return an error status.

EXAMPLES
The following example gets the number for the audio connection specified by audio.

Audio *audio; 1* audio connection *1"
long conn; 1* connection number *1"

1* get number of audio connection *1
conn = AConnectionNumber(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AConnectionNumber () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

290 -1- HP-UX Release 9.0: August 1992

AConnectRecordStream(3X) Series 700 Only AConnectRecordStream(3X)

NAME
AConnectRecordSStream - connect socket to TCP socket address; return transaction ID

SYNOPSIS
#include <audio/Alib.h>

ATransID AConnectRecordSStream
Audio *audio,

} ;

SStream *remote_sstream,
SSRecordParams *rp,
long *status_return

DESCRIPTION
AConnectRecordSStream () is used by an application that is preparing to send a record sound stream
to a server on another system. After creating a socket, the application calls AConnec­
tRecordSStream () to connect it to the other server at the TCP socket address contained in
remote_stream, the pointer to which it obtains from the application that controls the other server. The call
returns a transaction ID for the operation.

audio specifies the Audio structure associated with this application's connection to its own
server.

remote_sstream is a structure containing a TCP socket address, audio attributes, and the maximum block
size, in bytes, of each transfer of audio data over the connection.

rp is the structure containing the record gain, pause_first toggle, gain matrix, and the mask
for event notification.

status]eturn receives the returned status of the operation unless it is set to NULL.

RETURN VALUE
Upon successful completion, AConnectRecordSSt ream () returns a transaction ID.

ERRORS
If status]eturn is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio

10 AEBadGainMatrix
21 AEBadSoundStream

EXAMPLES
The following example connects a socket to another server's TCP socket address and returns a transaction
ID for the operation.

ATransID xid;
Audio *audio;
SSt ream *r_sstream;
SSRecordParams *ss_rp;
long status;

/* transaction ID */
/* audio connection */
/* remote stream descrip */
/* sstream record params */
/* error status */

/* connect to TCP socket addr and get transID */
xid = AConnectRecordSStream(audio, r_sstream, ss_rp, &status};

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AConnectRecordSStream () was developed by HP.

SEE ALSO
APlaySStream(3X), ARecordSStream(3X).

HP-UX Release 9.0: August 1992 -1- 291

I

AConnectRecordStream(ax) Series 700 Only AConnectRecordStream(aX)

I Using the Audio Application Program Interface.

292 -2- HP-UX Release 9.0: August 1992

AConvertAFile (3X) Series 700 Only AConvertAFile (3X)

NAME
AConvertAFile - convert audio file data format

SYNOPSIS
#inc1ude <audio/A1ib.h>

void AConvertAFi1e(
Audio *audio,
char *src-pathname,
AFi1eFormat src_fi1e_format,
char *dest...,patr.LIla..-ne,
AFi1eFormat dest_fi1e_format,
AudioAttrMask dest_attr_mask,
AudioAttributes *dest_attributes,
long *status_return

) ;

DESCRIPTION
AConvertAFi1e () converts the data in srcyathname according to the format specified in
des(lileJormat and the attributes in desCattributes. The results are written to destyathname.

Arguments
audio

src yathname

src JileJormat

dest yathname

destJileJormat

desCattr _mask

desCattributes

status]eturn

ERRORS

Audio structure associated with this connection.

Pathname of the source file.

File format of the source file. If this parameter is set to AFFUnknown, the conversion
utility attempts to determine the file format from the filename extension, if one exists,
or from the file contents.

If there is no determinable file format, an error is returned; there is no default.

Valid file type extensions are:

.u

.a1

.au

.wav

.snd

.116

.18

.108

Mulaw
Alaw
Sun (NeXT)
Riff
NeXT
Linear16
Linear8
Linear80ffset

If you have a "Mac" file, try treating it as a raw data file in Linear80ffset with a sam­
pling rate of 22k or another sampling rate.

Pathname of the destination file.

File format of the destination file.

Audio attributes to be used in desCattributes. The mask is a bitwise inclusive OR of
the values defined in AudioAttrMask. If this mask is set to 0, values are used
from the source file wherever they are appropriate for files of type dest.fileJormat.

Attributes that are affected by the mask. If set to NULL, the attribute mask is
cleared, and values are used from the source file wherever they are appropriate for
files of type dest.fileJormat. For attributes to be valid, type must be set, separate
from the mask.

Receives the returned status of the operation, unless it is set to NULL.

If status]etum is not set to NULL, one ofthe following is returned in statusJeturn:

o AENoError
2 AEBadAudio
6 AEBadFileFormat

HP-UX Release 9.0: August 1992 -1- 293

I

I

AConvertAFile (3X) Series 700 Only AConvertAFile (3X)

7 AEBadDataFormat
8 AEFileNotFound

11 AEBadFileHdr
12 AEUnrecognizableFormat
13 AEBadAttribute
16 AECantDetermineFormat

EXAMPLES
The following example converts the data in /mydi r / audf i 1 e • way to a 30-second Sun (NeXT) format
"mono" Mulaw file, sampled at 8000 samples per second, and writes the result in /mydir/audfile .au.

Audio *audio;
AFileFormat src_fmt;
AFileFormat dest_fmt;
AudioAttrMask a_mask;
AudioAttributes dest_attr;
long status;

/* convert audio file */

/* audio connection */
/* source file format */
/* destination file format */
/* audio attributes mask */
/* destination attributes */
/* error status */

static char s_name[] = {"/mydir/aufile.wav"};
src_fmt = AFFUnknown; /* let AAPI determine file type */
static char d_name[] {"/mydir/aufile.au"};
dest_fmt = AFFSun; /* Sun (NeXT) format */
a_mask = 0;
dest_attr.type = ATSampled; /* must set this */
dest_attr.attr.sampled_attr.data_format ADFMulaw;
a_mask = a_mask I ASDataFormatMask;
dest_attr.attr.sampled_attr.sampling_rate = 8000;
a_mask = a_mask I ASSamplingRateMask;
dest_attr.attr.sampled_attr.channels = 1;
a_mask = a_mask I ASChannelsMask;
dest_attr.attr.sampled_attr.duration.type = ATTMilliseconds;
dest_attr.attr.sampled_attr.duration.milliseconds = 30000;
a_mask = a_mask I ASDurationMask;
AConvertAFile(audio, s_name, src_fmt, d_name, dest_fmt,

a_mask, &dest_attr,&status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AConvertAFile () was developed by HP.

SEE ALSO
ALoadAFile(3X), ASaveSBucket(3X).

Using the Audio Application Program Interface.

294 -2- HP-UX Release 9.0: August 1992

AConvertBuffer(3X) AConvertBuffer (3X)

NAME
AConvertBuffer - convert a buffer of data

SYNOPSIS
#include <audio/Alib.h>

void
AConvertBuffer

Audio
AConvertParams
char
long
char
long
long
long
long

DESCRIPTION

* audio,
* convert..,param-'3,
* src_buffer,
src _buffer _size,
* desCbuffer,
desCbuffer _size,
* bytesJead,
* bytes_written,
* statusJeturn) i

AConvertBuffer () converts the data in src_buffer according to the attributes specified in
conver(..Params and puts the results in desCbuffer. Conversion will stop when either all the data in the
source buffer has been converted or the destination buffer is full. If the destination buffer fills up before all
the source data is converted, bytesJead will be less than src_buffer _size. If the source buffer empties before
the destination buffer is full, bytes_written will be less than desCbuffer _size

audio

conver("params

src_buffer

src _buffer _size

desCbuffer

desCbuffer _size

bytesJead

bytes_written

statusJeturn

specifies the Audio structure associated with this connection.

Pointer to a structure describing conversion source and destination; returned by
ASetupConversion.

data to be converted.

size in bytes of the source buffer, src_buffer.

the destination buffer; receives the converted data.

size in bytes of the destination buffer.

receives the number of bytes read.

receives the number of bytes written.

receives the returned status of the operation, unless it is set to NULL.

HP-UX Release 9.0: August 1992 -1- 295

I

I

AConvertBuffer (aX) AConvertBuffer (ax)

ERRORS
If statu8]etum is not set to NULL, one of the following is returned in status]eturn:

EXAMPLE

o AENoError
13 AEBadAttribute
17 AEOutOfMemory

For an example, see /usr/audio/examples/splayer.o

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hard\1I1are, refer to the hardware manual that accompanies your system.

AUTHOR
AConvert Buffer () was developed by HP.

SEE ALSO
ASetupConversion(3X), AEndConversion(3X)

Using the Audio Application Program Interface.

296 -2- HP-UX Release 9.0: August 1992

ACreateSBucket (3X) Series 700 Only ACreateSBucket (3X)

NAME
ACreateSBucket - create empty sound bucket and return pointer to it

SYNOPSIS
#include <audio/Alib.h>

SBucket *
ACreateSBucket (
Audio *audio,
AudioAttrMask attr_mask,
AudioAttributes *audio_attribute8;
long *status_return

) ;

DESCRIPTION
ACreateSBucket () creates an empty sound bucket to receive recorded data, associates it with audio
attributes, and returns the pointer to it.

specifies the Audio structure associated with this connection.

is the mask used to select attributes

audio_attributes
is the structure containing the audio type and attributes. Audio type must be set.

status]eturn receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, ACreateSBucket () returns a pointer to a sound bucket.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]etum:

o AENoError
2 AEBadAudio
7 AEBadDataFormat

13 AEBadAttribute
17 AEOutOfMemory
19 AEBadSamplingRate

EXAMPLES
The following example creates sound bucket sb and selects Bit Per Sample and Duration attributes:

SBucket *sb; /* sound bucket */
Audio *audio; /* audio connection */
AudioAttrMask amask; /* audio attributes mask */
AudioAttributes *attr; /* audio attributes */
long status; /* error status */

/* create sound bucket */
amask = (ASAFBitPerSample I ASAFDuration);
sb = ACreateSBucket{audio, amask, attr, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ACreateSBucket () was developed by HP.

SEE ALSO
ADestroySBucket(3X), AGetSBucketData(3X), ALoadAFile(3X), APlaySBucket(3X), APutSBucketData(3X),
ARecordAData(3X), ASaveSBucket(3X).

HP-UX Release 9.0: August 1992 -1- 297

I

ACreateSBucket (3X) Series 700 Only ACreateSBucket (3X)

I Using the Audio Application Program Interface.

298 -2- HP-UX Release 9.0: August 1992

ADataFormats (3X) Series 700 Only ADataFormats (3X)

NAME
ADataFormats - get list of data formats supported by audio controller

SYNOPSIS
#include <audio/Alib.h>

ADataFormat *ADataFormats (Audio *audio);

DESCRIPTION
ADataFormats () returns a pointer to a list of the data formats that are supported by the audio con­
troller associated with the audio connection. The length of the list is returned by ANumDataFormats ().

audio specifies the Audio structure associated with this connection.

RETURN VALUE
On successful completion, ADataFormats () returns a pointer to a list of data formats that are sup­
ported by the audio controller.

EXAMPLES
The following example gets a list of data formats that are supported by the audio controller associated with
audio.

ADataFormat *list_fmts;
Audio *audio;

/* list of data formats */
/* audio connection */

/* get list of data formats */
list_fmts = ADataFormats{audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ADataFormats () was developed by HP.

SEE ALSO
ANumDataFormats(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 299

I

I

addopt(3N) addopt(3N)

NAME
addopt() - add argument and data to NetIPC option buffer

SYNOPSIS
#include <sys/ns_ipc.h>

void addopt(
short opt[j,
short argnum,
short optioncode,
short datalength,
short datal],
short *result);

DESCRIPTION
addopt () adds an argument and its associated data to a NetIPC opt buffer. A NetIPC option buffer is a
data array structured and used by NetIPC. The size of the data array can be determined by calling opt­
overhead () (see optoverhead(3N». The buffer must be initialized by calling ini topt () (see
initopt(3N» .

Parameters
opt (input parameter) The opt buffer to which you want to add an argument.

argnum

optioncode

datalength

data

result

(input parameter) The number of the argument to be added. The first argument is number
zero.

(input parameter) The option code of the argument to be added. These codes are described
in each NetIPC system call opt parameter description.

(input parameter) The length in bytes of the data to be included. This information is pro­
vided in each NetIPC system call opt parameter description.

(input parameter) An array containing the data associated with the argument.

(output parameter) The result code returned. Refer to "Diagnostics" below for more infor­
mation.

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS
[NSR_ADDR_OPT] An unknown or illegal option number was specified.

[NSR_NO_ERROR] The call was successful.

[NSR_OPT_DATA_LEN] The length of the opt parameter is less than o.
[NSR_OPT_ENTRY_NUM] Option index is less than 0 or greater than the option buffer for which it was ini­

tialized. If an option buffer is initialized for 3 options, number the options as 0,
1, and 2. In this example, the number 3 is illegal.

AUTHOR
addopt () was developed by HP.

SEE ALSO

300

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

-1- HP-UX Release 9.0: August 1992

ADestroySBucket (aX) Series 700 Only ADestroySBucket (ax)

NAME
ADestroySBucket - destroy specified sound bucket

SYNOPSIS
#include <audio/Alib.h>

void ADestroySBucket (
Audio * audio,
SBucket *sb,
long *status_return

) ;

DESCRIPTION
ADestroySBucket () destroys the specified sound bucket and frees the space allocated for the sound
bucket and its audio data.

audio

sb

specifies the Audi 0 structure associated with this connection.

specifies the sound bucket to be destroyed.

status]eturn receives the returned status of the operation, unless it is set to NULL.

Once it has been destroyed, a sound bucket cannot be used to play or record.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio

20 AEBadSoundBucket

EXAMPLES
The following example destroys the sound bucket sb and frees its allocated space.

Audio *audio; /* audio connection */
SBucket *sb; /* sound bucket */
long status; /* error status */

/* destroy sound bucket */
ADestroySBucket(audio, sb, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ADestroySBucket () was developed byHP.

SEE ALSO
ACreateSBucket(3X), AGetSBucketData(3X), ALoadAFile(3X), APlaySBucket(3X), APutSBucketData(3X),
ARecordAData(3X), ASaveSBucket(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 301

I

I

AEndConversion (3X) AEndConversion (3X)

NAME
AEndConversion - finish stream data conversion

SYNOPSIS
#include <audio/Alih.h>

void
AEndConversion

Audio
AConvertParams
char
long
long
long

* audio,
* convert-params,
* desCbuffer,
desCbuffer _size,
* bytes_written,
11 status]eturn) ;

DESCRIPTION

302

AEndConversion () converts any data remaining in the conversion pipeline to the attributes specified
in convert-params and puts the results in desCbuffer. The amount of data written is returned in
bytes_written. AEndConversion also frees the structure, convert-params.

audio specifies the Audio structure associated with this connection.

convert-params

desCbuffer

desCbuffer _size

bytes_written

statusJeturn

pointer to a structure describing conversion source and destination; returned by
ASetupConversion.

the destination buffer; receives the converted data.

size in bytes of the destination buffer.

receives the number of bytes written.

receives the returned status of the operation, unless it is set to NULL.

-1- HP-UX Release 9.0: August 1992

AEndConversion (3X) AEndConversion (3X)

ERRORS
If status]etum is not set to NULL, one of the following is returned in statusJeturn:

o AENoError

EXAMPLE
For an example, see /usr/audio/examples/splayer.c

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
au~~o .serv,er must ~~ o~ a ~ystem that has audio hardware: To find out whether or not your system has
auCUo hard.Ware, reler to tne nardwal'e manual that accompames your system.

AUTHOR
AEndConversion () was developed by HP.

SEE ALSO
ASetupConversion(3X), ACon vertBufi'er(3X),

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 303

I

I

AEventsQueued(aX) Series 700 Only AEventsQueued(aX)

NAME
AEventsQueued - get number of events in queue for specified server connection

SYNOPSIS
#include <audio/Alib.h>

long AEventsQueued (

) ;

Audio *audio, AQueueCheckMode mode,
long *status_return

DESCRIPTION
AEvent sQueued () returns the number of events in the queue for the specified audio server, depending
on mode.

audio specifies the Audi 0 structure associated with this connection.

mode is AQueuedAlready or AQueuedAfterReading.

If the mode is AQueuedAlready, the call returns the number of events in the queue
including zero. If the mode is AQueuedAfterReading and there are no events on the
queue, the function tries to determine whether the server has more events for this connec­
tion, and returns the number it finds. If there are none, it returns zero.

status]eturn receives the returned status of the operation unless it is set to NULL.

RETURN VALUE
Upon successful completion, AEventsQueued () returns the number of events in the queue for the
specified server connection, depending upon the mode.

ERRORS
If status]etum is not set to NULL, one of the following is returned in statusJeturn:

o AENoError
2 AEBadAudio
3 AEBadValue

EXAMPLES
The following example gets the number of events on the queue for the audio server connection specified by
audio and sets up status to receive an error status. The mode is set to AQueuedAlready so that the call
will return zero if there are no events in the queue.

long e_num; /* number of events in q */
Audio *audio; /* audio connection */
AQueueCheckMode mode; /* check mode */
long status; /* error status */"

/* check event queue */
mode = AQueuedAlready;
e_num = AEventsQueued(audio, mode, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AEventsQueued() was developed byHP.

SEE ALSO

304

ACheckEvent(3X) ACheckMaskEvent(3X), AMaskEvent(3X), ANextEvent(3X), APeekEvent(3X),
APutBackEvent(3X), AQLength(3X), ASelectInput(3X).

Using the Audio Application Program Interface.

-1- HP-UX Release 9.0: August 1992

AGetAFileAttribu tes (3X) Series 700 Only AGetAFileAttributes (3X)

NAME
AGetAFileAttributes() - get file attributes of specified file

SYNOPSIS
#include <audio/Alib.h>

AFileFormat AGetAFileAttributes
Audio *audio,
char *name,
long *offset,
long *data_length;
AByteOrder *file_byte_order,
AudioAttrMask *mask,
AudioAttributes *file_attr,
long *status_return
) ;

DESCRIPTION
AGetAFileAttributes () returns the file format of the file specified in name.
audio specifies the Audio structure associated with this connection.
name the pathname of the audio data file to be queried.
offset receives the number of bytes into the file where the audio samples begin.
data_length receives the length (in bytes) of the audio data.
file_byte_order receives the byte order (relevant only for 116 data).
mask receives the information indicating which attributes were determined from file header

or file extension (mask bits set to 1). A mask bit set to 0 indicates that the attribute

file_attr
status]eturn

RETURN VALUE

was determined by inference.
attribute structure that receives requested attribute information.
receives the returned status of the operation, unless it is set to NULL.

Upon successful completion, AGetAFileAttributes () returns the file type of the file specified in
name. It also returns the length, the byte order, the attributes, and a mask that indicates how the attri­
bute values were derived. AFFUnmown is returned if the format type cannot be determined.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status Jeturn:

o AENoError
2 AEBadAudio
8 AEFileNotFound

11 AEBadFileHdr
13 AEBadAttribute
16 AECantDetermineFormat

EXAMPLES
The following example queries the file attributes of the file /myhome/a_dir /a_f ile.

AFileFormat file_fmt; /* file format */
Audio *audio; /* audio connection */
long offset; /* offset where data begins */
long data_length; /* returned data length */
AByteOrder byte_order; /* returned byte order */
AudioAttrMask attr_mask; /* attr found in hdr or .ext */
AudioAttributes attribs; /* returned attributes */
long status; /* status */

/* get attributes of /myhome/a_dir/a_file */
charfname[] = /myhame/a_dir/a_file ;
file_fmt = AGetAFileAttributes(audio, fname, &offset, &data_len,
&byte_order, &attr_mask, &attribs, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The

HP-UX Releas~ 9.0: August 1992 -1- 305

I

I

AGetAFileAttributes (aX) Series 700 Only AGetAFileAttributes (ax)

audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGetAFileAttributes () was developed by HP.

SEE ALSO
Using the Audio A.pplication Program Interface.

306 -2- HP-UX Release 9.0: August 1992

AGetChannelGain(ax) Series 700 Only AGetChannelGain (ax)

NAME
AGetChannelGain - get transaction channel gain

SYNOPSIS
#inc1ude <audio/A1ib.h>

void AGetChanne1Gain
Audio *audio,
ATransID xid,
AChType channel,
AGa1nDB *gain_return,
long *status_return

) ;

DESCRIPTION
AGetChanne1Gain () Returns the transaction gain value.

audio the Audio structure associated with this connection.

xid the transaction ID.

channel the type of channel: ACTMono, ACTLeft, or ACTRight.

gain]eturn receives the returned gain value.

status]eturn receives the returned status of the operation, unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in statusJetum.

o AENoError
2 AEBadAudio
3 AEBadValue

EXAMPLES
The following example returns the transaction left channel gain value.

Audio *audio; /* audio connection */
AChType *chtype; /* type of channel */
AGainDB chgain_ret; /* transaction gain va1ue*/
long status; /* error status */

/* get xid left channel gain */
chtype = ACTLeft
AGetChanne1Gain(audio, xid, chtype, &chgain_ret, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGetChanne1Gain () was developed by HP.

SEE ALSO
AGetGain(3X), AGetSystemChanneIGain(3X), AGMGainRestricted(3X), AInputChannels(3X),
AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X), AMinInputGain(3X),
AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X), ASetChannelGain(3X),
ASetGain(3X), ASetSystemChanneIGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 307

I

I

AGetDataFormats (aX)

NAME
AGetDataFormats - get data formats for a specified file format

SYNOPSIS
#include <audio/Alih.h>

long
AGetDataFormats

AFileFormat

DESCRIPTION

AGetDataFormats (ax)

AGetDataFormats () returns a mask of supported data formats for the file format specified in
fileJormat. The returned mask is a long, whose hits correspond to the enum "ADataFormat' defined in
Alih.h.

The encoding is:

/* *dataFormatNames[]

Unknown, 0
MuLaw, 1
ALaw, 2
Lin16, 3
Lin8, 4
Lin80ffset,

5
*1

fileJormat specifies the file format of interest.

RETURN VALUE

308

Upon successful completion, AGetDataFormats () returns a long integer mask of the valid data for­
mats for the given file format. If the file format itself is invalid, AGetDataFormats returns zero.

-1- HP-UX Release 9.0: August 1992

AGetDataFormats (3X) AGetDataFormats (3X)

EXAMPLE
The following example gets the data formats for a SunlNeXT file.

long data_formats_msk; /* supported data formats */

/* determine valid data formats for a Sun/NeXT file */
data_formats_msk = AGetDataFormats (AFFSun);

j- determine if MuLaw is supported *1
if (data_formats_msk & (1 « ADFMuLaw »

/* Mulaw is a supported data type */

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGetDataFormats () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 309

I

I

AGetErrorText (3X) Series 700 Only AGetErrorText (3X)

NAME
AGetErrorText - copy error description into specified buffer

SYNOPSIS
#include <audio/Alib.h>

void AGetErrorText
Audio *audio~
AError error,

) ;

char *buffer_return,
int buffer_length

DESCRIPTION
AGetErrorText () copies the description for the error specified in error to the buffer specified in
buffer Jeturn. The error description is a null-terminated string.

audio specifies the Audio structure associated with this connection.

error specifies the type of error.

buffer Jeturn receives the error description.

buffer _length specifies the size of buffer Jeturn.

ERRORS
AGetErrorText () does not return an error status.

EXAMPLES
The following example gets the error description for AEBadOff set and returns it in buffer Jeturn:

#define TEXT_LENGTH 256
Audio *audio; /* audio connection */
AError err; /* type of error */
char buffer_return[TEXT_LENGTH]; /* buffer for description */

/* get error description */
err = AEBadOffset
AGetErrorText(audio, err, &buffer_return, TEXT_LENGTH);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGetErrorText () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

310 -1- HP-UX Release 9.0: August 1992

AGetGain (3X) Series 700 Only AGetGain (3X)

NAME
AGetGain - get play volume or record gain of specified transaction

SYNOPSIS
#include <audio/Alib.h>

void AGetGain (
Audio *audio,
ATransID xid,
AGainDB *gain_return
long *status_return);

DESCRIPTION
AGetGain () returns the play volume or record gain of the transaction specified in xid.

audio specifies the Audio structure associated with this connection.

xid specifies the transaction ID.

gainJeturn receives the returned gain value.

statusJeturn receives the returned status of the operation unless it is set to NULL.

ERRORS
If statusJetum is not set to NULL, one of the following is returned in status]etum.

o AENoError
2 AEBadAudio

15 AEBadTransactionID

EXAMPLES
The following example gets the gain for the xid transaction and sets up status to receive an error status.

Audio *audio; /* audio connection */
TransID xid; /* transaction ID */
AGainDB gain_return; /* gain return */
long status; /* error status */

/* get gain for xid returned by prior call */
AGetGain(audio, xid, &gain_return, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGetGain () was developed by HP.

SEE ALSO
AGMGainRestricted(3X), AGetSystemMonitorGain(3X), AGetSystemPlayGain(3X),
AGetSystemRecordGain(3X), AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X),
AMaxOutputGain(3X), AMinlnputGain(3X), AMinOutputGain(3X), AOutputChannels(3X),
AOutputDestinations(3X), ASetGain(3X), ASetSystemMonitorGain(3X) ASetSystemPlayGain(3X),
ASetSystemRecordGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 311

I

I

AGetSBucketData (aX) Series 700 Only AGetSBucketData (ax)

NAME
AGetSBucketData - copy audio data in sound bucket to buffer; return number of bytes

SYNOPSIS
#include <audio/Alib.h>

unsigned long AGetSBucketData
Audio *audio,
SBucket *sb,
unsigned long start_offset,
char *buffer,
unsigned long bUf_len,

long *status_return
) ;

DESCRIPTION
AGetSBucketData () copies the audio data in the specified sound bucket to the specified buffer and
returns the number of bytes copied.

audio

sb

start_offset

specifies the Audi 0 structure associated with this connection.

specifies the sound bucket containing the data to be copied.

specifies the starting point of the copy, given as the byte offset from the beginning of the
data.

specifies the buffer to receive the copied data.

specifies the maximum length of the buffer, in bytes.

status]eturn receives the returned status of the operation, unless it is set to NULL.

This call is used only when the application needs to manipulate the sound bucket data directly.

RETURN VALUE
Upon successful completion, AGetSBucket () returns the byte count of the copied data.

ERRORS
If status]eturn is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio

20 AEBadSoundBucket

EXAMPLES
The following example copies the audio data contained in sb to the buffer at bufp and returns the number of
bytes that were copied. In this example, we allocate 80 000 bytes for the buffer, and pass this size value in
bullen.

unsigned long datalen_g; /* copied get_data
Audio *audio; /* audio connection */
SBucket *sb; /* sound bucket*/
unsigned long startoff; /* start offset
char *bufp; /* ptr to buffer
unsigned long buflen; /* length of
long status; /* error status */

/* copy sound bucket data to buffer */
startoff = 0;
bufp = malloc(80000);
buflen = 80000;
datalen_g = AGetSBucketData(audio, sb, startoff, bufp, buflen, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The

312 -1- HP-UX Release 9.0: August 1992

AGetSBucketData (3X) Series 700 Only AGetSBucketData (3X)

audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGetSBucketData () was developed by HP.

SEE ALSO
ACreateSBucket(3X), ADestroySBucket(3X), ALoadAFile(3X), APlaySBucket(3X), APutSBucketData(3X),
ARecordAData(3X), ASaveSBucket(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 313

I

I

AGetSilence Value (3X) AGetSilence Value (3X)

NAME
AGetSilence Value - get a silence value

SYNOPSIS
#include <audio/Alib.h>

long
AGetSilenceValue

Audio
ADataFormat
long
long

* audio,
dataJormat,
* significanCbytes]etum,
* status_return) ;

DESCRIPTION
AGetSilenceValue () returns the appropriate "silence" value for the given data format. (Some data
formats do not use zero to correspond to silence.) The silence value can be used for clearing or padding an
audio file or buffer.

audio

dataJormat

specifies the Audio structure associated with this connection.

the data format for which a silence value will be returned.

significanCbytes]eturn

status]eturn

indicates the number of bytes of the returned long that constitute the actual silence
value. Currently, all silence values are one byte in length. The application will thus
need to cast the silence value to an unsigned char before using it.

receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE

314

Upon successful completion, AGetSilenceValue () returns a long integer containing the silence value
in the least significant bytes.

-1- HP-UX Release 9.0: August 1992

AGetSilence Value (aX) AGetSilence Val ue (aX)

ERRORS
If status]etum is not set to NULL, the following is returned in status]etum:

o AENoError

EXAMPLE
The following example gets the silence value for MuLaw data.

Audio * aUdio; /* audio connection */
ADataFormat data_format; /* data for.mat of interest */
long signif icant_bytes; /* number val id bytes in returned

long *1
unsigned char silence_value; /* pads audio file or buffer with

silence */
long status; /* status */

/* get silence value for MuLaw data */
data_format = ADFMulaw;
silence_value = (unsigned char)AGetSilenceValue(audio, data_for.mat,

&:significant_bytes, &:status);.\..

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGetSilenceValue () was developed byHP.

SEE ALSO
Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 315

I

I

AGetSystemChannelGain(ax) Series 700 Only AGetSystemChannelGain (ax)

NAME
AGetSystemChannelGain - get system or monitor audio channel gain

SYNOPSIS
#include <audio/Alib.h>

void AGetSystemChannelGain(
Audio *audio,
ASystemGainType gain_type,
AChType channel,
AGainDB *gain_return,
long *status_return

) ;

DESCRIPTION
AGetSystemChannelGain () returns the current monitor or system gain.

audio

gain_type

channel

gainJeturn

status]eturn

Audi 0 structure associated with this connection.

Type of operation: ASGTPlay, ASGTRecord, or ASGTMoni tor. If this field is set to
ASGTMoni tor, the channel specification must be ACTMono.

Type of channel: ACTMono, ACTLeft, or BR ACTRight . Ifgain_type is ASGTMonitor,
this field must be ACTMono.

Receives the returned gain value.

Receives the returned status of the operation unless it is set to NULL.

ERRORS
If statusJetum is not set to NULL, one of the following is returned in status]eturn.

o AENoError
2 AEBadAudio
3 AEBadValue

EXAMPLES
The following example gets the system monitor gain:

Audio *audio; /* audio connection */"
ASystemGainType *sgtype; /* type of operation
AChType * chtype; /* type of channel
AGainDB chgain_ret; /* gain value*/"
long status; /* error status */"

/* get monitor gain */
sgtype = ASGTMonitor
chtype = ACTMono
ASetSystemChannelGain(audio, sgtype, chtype, &chgain_ret, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGetSystemChannelGain () was developed by HP.

SEE ALSO
AGetChanneIGain(3X) AGetGain(3X), AGMGainRestricted(3X), AInputChannels(3X), AInputSources(3X),
AMaxInputGain(3X), AMaxOutputGain(3X), AMinlnputGain(3X), AMinOutputGain(3X),
AOutputChannels(3X), AOutputDestinations(3X), ASetChanneIGain(3X), ASetGain(3X),
ASetSystemChanneIGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

316 -1- HP-UX Release 9.0: August 1992

AGetSystemChannelGain(ax) Series 700 Only AGetSystemChannelGain (aX)

Using the Audio Application Program Interface. •

HP-UX Release 9.0: August 1992 -2- 317

I

AGetTransStatus (ax) Series 700 Only AGetTransStatus (ax)

NAME
AGetTransStatus - get status of specified transaction

SYNOPSIS
#include <audio/Alih.h>

void AGetTransStatus
Audio *audio,
ATransID xid,
ATransStatus *trans_status_return,
long *status_return);

DESCRIPTION
AGetTransStatus () gets the status of the transaction specified inxid.

audio

xid

specifies the Audio structure associated with this connection.

specifies the ID of the transaction.

trans_statusJeturn receives the returned status valae.

statusJeturn receives the returned status of the operation unless it is set to NULL. If set to NULL,
the transaction status is returned as an AETTransStatus event which can be read
by ANextEvent () , ACheckEvent () ,or ACheckMaskEvent ()

ERRORS
If statusJetum is not set to NULL, one of the following is returned in statusJetum.

o AENoError
2 AEBadAudio

15 AEBadTransactionID

EXAMPLES
The following example gets the status for the xid transaction and sets up trans_stat to receive the transac­
tion status and status to receive an error status.

Audio *audio; /* audio connection */
ATransStatus trans_stat; /* transaction status return */
long status; /* error status */

/* get status for xid returned from prior call */
AGetTransStatus(audio, xid, &trans_stat, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGetTransStatus () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

318 -1- HP-UX Release 9.0: August 1992

AGMGainRestricted (ax) Series 700 Only AGMGainRestricted (ax)

NAME
AGMGainRestricted - find out if audio controller restricts gain entries

SYNOPSIS
#include <audio/Alib.h>

Boolean AGBGainRestricted (Audio *audio);

DESCRIPTION
AGBGainRestricted () returns TRUE if gain is restricted to AUni tyGain or AZeroGain. It returns
FALSE if other values can be used for gain entries.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon succesful completion, AGBGainRestricted () returns TRUE if the audio controller restricts gain
entries to AUni tyGain or AZeroGain. It returns FALSE if other values can be used for gain entries.

ERRORS
AGBGainRestricted () does not return an error status.

EXAMPLES
The following example queries the audio controller to see if gain entries are restricted:

Boolean restricted; /* gain restricted */
Audio *audio; /* audio connection */

/* find out if gain values are restricted */
restricted=AGMGainRestricted(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGMGainRestricted () was developed by HP.

SEE ALSO
AGetChanneIGain(3X) AGetGain(3X), AGetSystemChanneIGain(3X), AInputChannels(3X),
AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X), AMinInputGain(3X),
AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X), ASetChanneIGain(3X),
ASetGain(3X), ASetSystemChanneIGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 319

I

I

AGrabServer(3X) Series 700 Only AGrabServer (3X)

NAME
AGrabServer - acquire exclusive use of audio server

SYNOPSIS
#include <audio/Alib.h>

Boolean AGrabServer (Audio *audio, long *status_return);

DESCRIPTION
AGrabServer () acquires exclusive use of the audio server for this connection and returns TRUE unless
the server has already been grabbed, in which case it returns FALSE. When the server is grabbed, all
requests from other connections are interrupted; they are resumed when the server is released. To release
(ungrab) the server, call AUngrabServer () .

audio specifies the Audi 0 structure associated with this connection.

status]eturn receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, AGrabServer () returns TRUE; if the server is already grabbed, the return
is FALSE.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]etum.

o AENoError
2 AEBadAudio

EXAMPLES
The following example grabs the server for the connection associated with audio and sets up status to
receive an error status.

Boolean grab;
Audio *audio;
long status;

/* server acquired */
/* audio connection */
/* error status */

/* grab server for audio connection */
grab = AGrabServer(audio, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AGrabServer () was developed by HP.

SEE ALSO
AUngrabServer(3X).

Using the Audio Application Program Interface.

320 -1- HP-UX Release 9.0: August 1992

AInputChannels (3X) Series 700 Only AIn putChannels (3X)

NAME
AInputChannels - get list of AID input channels on current hardware

SYNOPSIS
#include <audio/Alih.h>

AlnputChMask AlnputChannels (Audio *audio);

DESCRIPTION
AlnputChannels () returns a mask showing the Analog and/or Digital input channels that exist on the
current hardware. Each bit in the returned AlnputChMask correponds to one input channel.

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon successful completion, AlnputChannels () returns a mask showing the input channels that exist
on the current hardware: mono, left, or right input. Each bit in the returned AlnputChMask correponds
to one type of input channel.

ERRORS
AlnputChannels () does not return an error status.

EXAMPLES
The following example gets the types of input channels that exist on the current hardware.

AlnputChMask in_channels; /* mask showing existing input channels */
Audio *audio; /* audio connection */

/* get input channels */
in_channels = AlnputChannels(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AlnputChannels () was developed by HP.

SEE ALSO
AGetChannelGain(3X) AGetGain(3X), AGetSystemChannelGain(3X), AGMGainRestricted(3X),
AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X), AMinInputGain(3X),
AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X), ASetChannelGain(3X),
ASetGain(3X), ASetSystemChannelGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 321

I

I

AInputSources (ax) Series 700 Only AInputSources (ax)

NAME
AInputSources - get types of input sources existing on current hardware

SYNOPSIS
#include <audio/Alib.h>

AlnputSrcMask AlnputSources (Audio *audio);

DESCRIPTION
AlnputSources () returns a mask showing the types of input sources that exist on the current
hardware. Each bit in the returned AlnputSrcMask correponds to one type of input source.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successfui completion, AlnputSources () returns a mask showing the types oiinput sources that
exist on the current hardware: mono, left, or right microphone input jacks, and mono, left, or right auxili­
ary input jacks. Each bit in the returned AlnputSrcMask correponds to one type of input source.

ERRORS
AlnputSources () does not return an error status.

EXAMPLES
The following example gets the types of input source that exist on the current hardware.

AlnputSrcMask sources; 1* input source mask *1
Audio *audio; 1* audio connection *1

1* get input sources *1
sources = AlnputSources(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AlnputSources () was developed by HP.

SEE ALSO
AGetChannelGain(3X) AGetGain(3X), AGetSystemChannelGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AMaxInputGain(3X), AMaxOutputGain(3X), AMinInputGain(3X),
AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X), ASetChannelGain(3X),
ASetGain(3X), ASetSystemChannelGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

322 -1- HP-UX Release 9.0: August 1992

almanac (3X)

NAME
almanacO - return numeric date information in MPE format

SYNOPSIS
void almanac(

unsigned short int date,
unsigned short int err[2],
short int *pyear,
short int *pmonth,
short int *pday,
short lnt *pweekday

) ;

DESCRIPTION

almanac(3X)

almanac () returns numeric date information for a date in the packed date format returned by the
calendar () routine (see calendar(3X)). The returned information is:

year of the century
month of the year
day of the month
day of the week

The arguments to almanac () are used as follows:

date An unsigned short containing the date about which information is to be returned. The year
of the century is packed into bits 0 through 6, and the day of the year is packed into bits 7
through 15. The packed date format is:

err

pyear

pmonth

pday

pweekday

WARNINGS

Bits 0 6 7 15

Year of Century Day of Year

The first element of this array contains the error number. The second element is always
zero. If the call is successful, both elements contain zero.

Error # Meaning

1 No parameters are present in which to return values: pday, pmonth, pyear, and
pweek all point to zero.

2 Day of the year is out of range.
3 Year of the century is out of range.

A pointer to a short in which the year of the century is returned.

A pointer to a short in which the month of the year is returned (for example, January is
represented by 1 and December is represented by 12).

A pointer to a short in which the day of the month is returned.

A pointer to a short in which the weekday is returned.
Note that 1 is returned for Sunday and 7 for Saturday.

This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use of this routine. Refer to hpnls(5) for information about Native Language Sup­
port routines used in C programs in the HP-UX NLS environment.

AUTHOR
almanac () was developed by HP.

SEE ALSO
calendar(3X), nlfmtdate(3X), ctime(3C), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -1- 323

I

I

ALoadAFile (ax) Series 700 Only ALoadAFile (ax)

NAME
ALoadAFile - copy audio file into new sound bucket with data conversion

SYNOPSIS
#inc1ude <audio/A1ib.h>

SBucket * ALoadAFi1e(

\ .
I ,

Audio *audio,
char *pathname,
AFi1eFor.mat fi1e_for.mat,
AudloAttrMask attr_mask,
AudioAttributes *sb_attributes,
long *status_return

DESCRIPTION

324

ALoadAFi1e () copies the audio data inpathname into a new sound bucket and returns the pointer to the
sound bucket. The data is converted according to the specified attributes. The HP-UX kernel configuration
sets a data size restriction. If the audio data file exceeds this size, the function returns a OutOfMemory
error.

When the sound bucket is no longer needed, call ADestroySBucket () to deallocate the space.

audio

pathname

fileJormat

is the audio structure associated with this connection.

specifies the file containing the audio data.

must be set to a valid enumerated value, or else an error is returned.

If this parameter is set to AFFUnknown, the conversion utility checks for an exten­
sion on pathname. Extensions can be appended to the filename as follows:

name.sampling]ate·file_type.

Valid sampling rate extensions are .n and .nk where .nk is typically 8k to 22k.

Valid file type extensions are:

.u Mulaw

.a1 Alaw

.au Sun (NeXT)

.wav Riff

.snd NeXT

.116 Linear 16

.18 Linear8

.108 Linear80ffset

If no recognizable extension exists, the utility checks the header on the pathname file. If file format is
not valid or is not determinable, an error is returned.

If you have a "Mac" file, try treating it as a raw data file in Linear80ffset with a sampling rate of 22k
or another sampling rate.

attr _mask specifies the audio attributes to associate with the new sound bucket. The mask is a bit­
wise inclusive OR of values defined in AudioAttrMask.

If this value is set to 0 or if sb_attributes is set to NULL, the pathname attributes are used if
the controller supports them. If there is an unsupported attribute, the attribute returned
by ABestAudioAttributes () is used.

If the mask is set, the new attributes are used without checking for controller support. This
allows ALoadAFi1e () to be used purely for conversion purposes.

NOTE: If ASDurat ionMask is set, the pathname audio data is truncated or padded with
zeros to match the length specified in
audio_attributes.samp1ed_attr.duration.

sb_attributes specifies the attributes that are affected by the mask. Audio type must be set, separate
from the mask. If the attribute is different from the one used by pathname, the data is

-1- HP-UX Release 9.0: August 1992

ALoadAFile (aX) Series 700 Only ALoadAFile (ax)

converted.

status]eturn receives the returned status of the operation unless it is set to NULL.

RETURN VALUE
Upon successful completion, ALoadAFile () returns a pointer to the new sound bucket.

ERRORS
If status]eturn is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio
6 AEBadFileFormat
7 AEBadDataFormat
8 AEFileNotFound

11 AEBadFileHdr
16 AECantDetermineFormat
17 AEOutOfMemory

EXAMPLES
The following example copies the file /myhome/a_dir/a_file into the new sound bucket and specifies
AFFRawALaw for the file format. Specifying zero for a_mask and NULL for myAttr means that the path­
name attributes will be used if the controller supports them; if there is an unsupported attribute, the attri­
bute returned by ABestAudioAttributes () will be used:

SBucket *sb; /* sound bucket*/ Audio *audio; /* audio connection */
char a_name[30]; /* file name */ AFileFormat file_fmt; /* file format
* / AudioAttrMask a_mask; /* audio attributes mask* / AudioAttributes
myAttr; / audio attributes * / long status; /* error status * /

/* load file into new sound bucket */ a_name
= II/myhome/a_dir/a_file ll

; file_fmt = AFFRawALaw; a_mask = 0; myAttr =
1111; sb = ALoadAFile(audio, a_name, file_fmt, a_mask, myAttr, &:status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ALoadAFile () was developed by HP.

SEE ALSO
ACreateSBucket(3X), ADestroySBucket(3X), AGetSBucketData(3X), APlaySBucket(3X),
APutSBucketData(3X), ARecordAData(3X), ASaveSBucket(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 325

I

I

AMaskEvent (3X) Series 700 Only AMaskEvent (3X)

NAME
AMaskEvent - get first matching event in audio event queue

SYNOPSIS
#include <audio/Alib.h>

void AMaskEvent(
Audio *audio,
AEventMask event_mask,
AEvent * event_return,
long *status_return);

DESCRIPTION
AMaskEvent () dequeues and returns the first event in the queue that matches the mask. If no match is
found, AMaskEvent () blocks until a matching event is received. This behavior is unlike ACheck­
MaskEvent () which does not block and returns FALSE immediately if no match is found.

audio is the Audi 0 structure associated with this connection.

event_mask is the mask specifying what type(s) of event to look for.

eventyeturn is the first event found in the queue.

status]eturn receives the returned status of the operation, unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in statusyeturn:

o AENoError
2 AEBadAudio
3 AEBadValue

EXAMPLES
The following example sets the event mask to select errors and transaction started events, and sets up
eventyeturn to receive event data and statusyeturn to receive status data.

Audio *audio; /* audio connection */
AEventMask emask; /* event mask */
AEvent event_return; /* event return */
long status; /* error status */

/* check event queue for mask match */
emask = (AErrorMaskIATransStartedMask);
AMaskEvent(audio, emask, &event_return, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AMaskEvent () was developed by HP.

SEE ALSO

326

ACheckEvent(3X), ACheckMaskEvent(3X), AEventsQueued(3X), ANextEvent(3X), APeekEvent(3X),
APutBackEvent(3X), AQlength(3X), ASelectlnput(3X).

Using the Audio Application Program Interface.

-1- HP-UX Release 9.0: August 1992

AMaxInputGain (aX) Series 700 Only AMaxInputGain (ax)

NAME
AMaxInputGain - get maximum input gain supported by audio controller

SYNOPSIS
#include <audio/Alih.h>

AGainDB AMaxlnputGain(Audio *audio);

DESCRIPTION
AMaxlnputGain () gets the maximum input gain, in decibels, supported by the audio controller associ­
ated with the audio connection. If the application specifies a gain higher than this, the maximum sup­
ported value is used.

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon successful completion, AMaxlnputGain () returns the maximum input gain, in decibels, that the
audio controller supports.

ERRORS
AMaxlnputGain does not return an error status.

EXAMPLES
The following example gets the maximum input gain supported by the audio controller:

AGainDB max_in; /* max input gain */
Audio *audio; /* audio connection */

/* get max input gain */
max_in = AMaxlnputGain(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AMaxlnputGain () was developed by HP.

SEE ALSO
AGetChanneIGain(3X) AGetGain(3X), AGetSystemChanneIGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AInputSources(3X), AMaxOutputGain(3X), AMinInputGain(3X),
AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X), ASetChanneIGain(3X),
ASetGain(3X), ASetSystemChanneIGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 327

I

AMaxOutputGain (3X) Series 700 Only AMaxOutputGain (3X)

NAME
AMaxOutputGain - get maximum output gain supported by audio controller

SYNOPSIS
#include <audio/Alib.h>

AGainDB AMaxOutputGain(Audio *audio);

DESCRIPTION
AMaxOutputGain () returns the maximum output gain, in decibels, supported by the audio controller
associated with the audio connection. If the application specifies a gain higher than this, the supported
maximum value is used.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successful completion, AMaxOutputGain () returns the maximum output gain, in decibels, that
the audio controller supports.

ERRORS
AMaxOutputGain does not return an error status.

EXAMPLES
The following example gets the maximum output gain supported by the audio controller:

AGainDB max_out; /* max output gain */
Audio *audio; /* audio connection */

/* get max output gain */
max_out = AMaxOutputGain(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AMaxOutputGain () was developed by HP.

SEE ALSO
AGetChannelGain(3X) AGetGain(3X), AGetSystemChannelGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X), AMinInputGain(3X),
AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X), ASetChannelGain(3X),
ASetGain(3X), ASetSystemChannelGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

328 -1- HP-UX Release 9.0: August 1992

AMinInputGain (3X) Series 700 Only AMinInputGain (3X)

NAME
AMinlnputGain - get minimum input gain supported by audio controller

SYNOPSIS
#include <audio/Alib.h>

AGainDB AMinlnputGain(Audio *audio);

DESCRIPTION
AMinlnputGain () returns the minimum input gain supported by the audio controller associated with
the audio connection. If the application specifies a gain lower than this, the gain is set to AZeroGain,
which results in no sound.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successful completion, AMinlnputGain () returns the minimum input gain, in decibels, that the
audio controller supports.

ERRORS
AMinlnpu tGain () does not return an error status.

EXAMPLES
The following example gets the minimum input gain supported by the audio controller:

AGainDB min_in; /* min input gain */
Audio *audio; /* audio connection */

/* get min input gain */
min_in = AMinlnputGain(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AMinlnputGain () was developed by HP.

SEE ALSO
AGetChanneIGain(3X) AGetGain(3X), AGetSystemChanneIGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X),
AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X), ASetChanneIGain(3X),
ASetGain(3X), ASetSystemChanneIGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 329

•

I

AMinOutputGain (3X) Series 700 Only AMinOutputGain (3X)

NAME
AMinOutputGain - get minimum output gain supported by audio controller

SYNOPSIS
#include <audio/Alib.h>

AGainDB AMinOutputGain(Audio *audio);

DESCRIPTION
AMinOutputGain () returns the minimum output gain, in decibels, supported by the audio controller
associated with the audio connection. If the application specifies a gain lower than this, the gain is set to
AZeroGain, which results in no sound.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successful completion, AMinOutputGain () returns the minimum output gain, in decibels, that
the audio controller supports.

ERRORS
AMinOutputGain () does not return an error status.

EXAMPLES
The following example gets the minimum output gain supported by the audio controller:

Audio *audio; /* audio connection */
AGainDB min_out; /* min output gain */

/* get min output gain */
min_out = AMinOutputGain(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AMinOutputGain () was developed by HP.

SEE ALSO
AGetChanneIGain(3X) AGetGain(3X), AGetSystemChanneIGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X),
AMinInputGain(3X), AOutputChannels(3X), AOutputDestinations(3X), ASetChanneIGain(3X),
ASetGain(3X), ASetSystemChanneIGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

330 -1- HP-UX Release 9.0: August 1992

ANextEvent (3X) Series 700 Only

NAME
ANextEvent - dequeue and return first event in audio event queue

SYNOPSIS
#include <audio/Alib.h>

void ANextEvent(

j ;

Audio *audio,
AEvent * event_return,
long *status_return

DESCRIPTION

ANextEvent(3X)

ANextEvent () dequeues and returns the first event in the audio event queue. If no match is found, the
function blocks until an event is received. (This behavior is unlike ACheckEvent () and ACheck­
MaskEvent () which do not block if there is no event or matching event, respectively.)

audio specifies the Audio structure associated with this connection.

even(feturn is the first event found in the queue.

statusJeturn receives the returned status of the operation, unless it is set to NULL.

ERRORS
If statusJeturn is not set to NULL, one of the following is returned in statusJeturn:

o AENoError
2 AEBadAudio

EXAMPLES
The following example sets up eventJeturn to receive event data and statusJeturn to receive an error
status:

Audio *audio; /* audio connection */
AEvent event_return; /* event return */
long status; /* error status */

/* check event queue */
ANextEvent(audio, &event_return, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ANextEvent () was developed by HP.

SEE ALSO
ACheckEvent(3X), ACheckMaskEvent(3X), AEventsQueued(3X), AMaskEvent(3X), APeekEvent(3X),
APutBackEvent(3X), AQlength(3X), ASelectInput(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 331

I

I

ANumDataFormats(3X) Series 700 Only ANumDataFormats(3X)

NAME
ANumDataFormats - return number of data formats supported by audio controller

SYNOPSIS
#include <audio/Alib.h>

long ANumDataFormats (Audio *audio);

DESCRIPTION
ANumDataFormats () returns the number of data formats supported by the audio controller associated
with the connection specified by audio.

A list of the data formats is obtained using the function ADataFormats ().

audio specifies the Audio structu.re associated with t}!is connection.

ERRORS
ANumDataFormats () does not return an error status.

EXAMPLES
The following example gets the number of data formats supported by the audio controller associated with
audio.

long dfnum;
Audio *audio;

/* number of supported data formats */
/* audio connection */

/* get number of data for.mats supported by controller */
dfnum = ANumDataFor.mats(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ANumDataFor.mats () was developed byHP.

SEE ALSO
ADataFormats(3X).

Using the Audio Application Program Interface.

332 -1- HP-UX Release 9.0: August 1992

ANumSamplingRates(3X) Series 700 Only ANumSamplingRates (3X)

NAME
ANumSamplingRates - return number of sampling rates supported by audio controller

SYNOPSIS
#include <audio/Alib.h>

long ANumSamplingRates (Audio *audio);

DESCRIPTION
ANumSamplingRates () returns the number of sampling rates supported by the audio controller associ­
ated with the connection specified by audio. Zero is returned if sampled data is not supported by the con­
troller.

A list of the supported sampling rates is obtained using the function ASamplingRates ().

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon successful completion, ANumS amp 1 ingRates () returns the number of sampling rates supported
by the audio controller associated with the connection specified by audio.

ERRORS
ANumSamplingRates () does not return an error status.

EXAMPLES
The following example gets the number of sampling rates supported by the audio controller associated with
audio.

long srnum;
Audio *audio;

/* number of supported sampling rates */
/* audio connection */

/* get number of sampling rates supported by controller */
srnum = ANumSamplingRates(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ANumSamplingRates () was developed by HP.

SEE ALSO
ASamplingRates(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 333

I

I

AOpenAudio (ax) Series 700 Only AOpenAudio(aX)

NAME
AOpenAudio - open connection to specified audio server

SYNOPSIS
#include <audio/Alih.h>

Audio *AOpenAudio(char *audio_name, long *status_return);

DESCRIPTION
AOpenAudio () opens a connection to the server for the specified audio controller and returns a pointer to
an Audio structure. The audio library allocates the Audio structure to hold information that supports
the controller. The structure acts as the information connection between the application and the server; the
application passes the Audio pointer to subsequent audio library function calls to identify which connec­
tion the call should affect.

NOTE: If the audio server is not active, this function returns a NULL and sets status]etum to AEOpen­
Failed. For this reason, the application should use statusJeturn (not set it to NULL) and should check it
before proceeding.

where:

specifies the audio controller name as a string. If audio_name is specified NULL, the value
of the AUDIO environment variable is used.

The string format is hostname : number

hostname specifies the name of the host machine on which the audio controller is
physically installed.

number specifies the audio server number on that host machine. Each audio server
services one audio controller. More than one audio controller can be
installed in a machine. The audio servers are numbered starting with o.

statusJeturn receives the returned status of the operation unless it is set to NULL.

One successful call to AOpenAudio () must precede all other audio operation function calls pertaining to
a connection.

To close the connection, use ACloseAudio () .

EXTERNAL INFLUENCES
If audio_name is specified NULL, the value of the AUDIO environment variable is used.

RETURN VALUE
Upon successful completion, AOpenAudio () returns a pointer to an Audio structure. Otherwise, it
returns a NULL.

ERRORS
If statusJetum is not set to NULL, one of the following is returned in statusJeturn:

o AENoError
1 AESystemCall
4 AEHostNotFound
5 AENoSuchAudioNumber

17 AEOutOfMemory
18 AEOpenFailed
23 AEllbdNotStarted

AOpenAudio () does not generate error events.

EXAMPLES

334

The following example sets the audio name argument, a_name, to NULL, causing the value of the AUDIO
environment variable to be used; status is set up to receive an error status.

Audio *audio; /* audio connection */ char a_name; /* audio
name */ long status; /* error status */
/* open audio connection */ a_name 1111; audio = AOpenAudio(a_name,
&status);

-1- HP-UX Release 9.0: August 1992

AOpenAudio (3X) Series 700 Only AOpenAudio (3X)

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AOpenAudio () was developed by lIP.

SEE ALSO
ACloseAudio(3X).

Using the Audio Application Program Interrace.

HP-UX Release 9.0: August 1992 -2- 335

I

I

AOutputChannels(ax) Series 700 Only AOutputChannels (ax)

NAME
AOutputChannels - get D/A output channels existing on current hardware

SYNOPSIS
#include <audio/Alih.h>

AOutputChMask AOutputChannels(Audio *audio);

DESCRIPTION
AOutputChannels () returns a mask showing the Digital and/or Analog output channels that exist on
the current hardware. Each bit in the returned AoutputChMask correponds to one output channel.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successful completion, AOutputChannels () returns a mask showing the output channels that
exist on the current hardware: mono, left, or right output. Each bit in the returned AOutputChMask
correponds to one type of output channel.

ERRORS
AOutputChannels () does not return an error status.

EXAMPLES
The following example gets the types of output channels that exist on the current hardware.

AOutputChMask out_channels; /* output channel mask */
Audio *audio; /* audio connection */

/* get output sources */
out_channels = AOutputChannels(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AOutputChannels () was developed by HP.

SEE ALSO
AGetChanneIGain(3X) AGetGain(3X), AGetSystemChanneIGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X),
AMinInputGain(3X), AMinOutputGain(3X), AOutputDestinations(3X), ASetChanneIGain(3X),
ASetGain(3X), ASetSystemChanneIGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

336 -1- HP-UX Release 9.0: August 1992

AOutputDestinations (3X) Series 700 Only AOutputDestinations (3X)

NAME
AOutputDestinations - get types of output destinations existing on current hardware

SYNOPSIS
#include <audio/Alib.h>

AoutputDstMask AOutputDest inat ions (Audio *audio);

DESCRIPTION
AOutputDestinations () returns a mask showing the types of output destinations that exist on the
current hardware. Each hit in the returned AoutputDstMask correponds to one type of output destina­
tion.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successful completion, AOutputDest inat ions () returns a mask showing the output destina­
tions that exist on the current hardware: mono, left, or right headphone jacks, and mono, left, or right
internal speakers. Each hit in the returned AoutputDstMask correponds to one type of output destina­
tion.

ERRORS
AOutputDestinations () does not return an error status.

EXAMPLES
The following example gets the types of output destination that exist on the current hardware.

AOutputDstMask dests; /* output destination mask */
Audio *audio; /* audio connection */

/* get output destinations */
dests = AOutputDestinations(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AOutputDestinations () was developed by HP.

SEE ALSO
AGetChanneIGain(3X) AGetGain(3X), AGetSystemChanneIGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X),
AMinInputGain(3X), AMinOutputGain(3X), AOutputChannels(3X), ASetChanneIGain(3X), ASetGain(3X),
ASetSystemChanneIGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 337

I

I

APauseAudio(3X) Series 700 Only APauseAudio (3X)

NAME
APauseAudio - pause the specified audio transaction

SYNOPSIS
#include <audio/Alib.h>

void APauseAudio (
Audio tiaudio,
ATransID xid,

) ;

ATransStatus *trans_status_return,
long *status_return

DESCRIPTION
APauseAudio () pauses the transaction specified in xid. To continue with the operation, call
AReswneAudio () .

While one transaction is paused, another transaction can play or record.

To stop the transaction so that it cannot be resumed, call AStopAudio ().

audio

xid

specifies the Audio structure associated with this connection.

specifies the transaction ID.

To use APauseAudio () on a series oflinked transactions, specify the first transac­
tion in the linked list. The pause affects the current transaction. A call to
ARe sumeAudi 0 () resumes the transaction and continues through the linked list.

trans_statusJeturn receives the returned status value. Setting this argument to NULL prevents the data
from being collected and returned, which may enhance performance.

statusJeturn receives the returned status of the operation, unless it is set to NULL.

ERRORS
If statusJeturn is not set to NULL, one of the following is returned in statusJeturn.

o AENoError
2 AEBadAudio

15 AEBadTransactionID

EXAMPLES
The following example pauses the transaction identified by xid, sets trans_stat to 0, and sets up status to
receive an error status.

Audio *audio; 1* audio connection *1"
ATransID xid; 1* transaction ID *1"
ATransStatus trans_stat_return; 1* transaction status return
long status; 1* error status *1"

1* pause transaction - xid returned by prior call *1
trans_stat = 0;
APauseAudio(audio, xid, &trans_stat_return, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardwar~ manual that accompanies your system.

AUTHOR
APauseAudio () was developed by HP.

SEE ALSO
AResumeAudio(3X), AStopAudio(3X).

338 -1- HP-UX Release 9.0: August 1992

APauseAudio (aX) Series 700 Only APauseAudio (ax)

Using the Audio Application Program Interface. I

HP-UX Release 9.0: August 1992 -2- 339

I

APeekEvent(ax) Series 700 Only APeekEvent (ax)

NAME
APeekEvent - return but do not dequeue first event in audio event queue

SYNOPSIS
#include <audio/Alib.h>

void APeekEvent (

) ;

Audio *audic,
AEvent *event_return,
long *status_return

DESCRIPTION
APeekEvent () returns, but does not dequeue, the first event in the audio event queue .. If no match is
found, this function blocks until a matching event is received. This behavior is unlike ACheckEvent (),
ACheckMaskEvent (), and ANextEvent () , which dequeue an event from the queue when they return
it, and ACheckEvent () , and ACheckMaskEvent () , which do not block if there is no event or match­
ing event, respectively.

audio specifies the Audio structure associated with this connection.

event]eturn is the first event in the audio event queue.

status]eturn receives the returned status of the operation, unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in statusJeturn:

o AENoError
2 AEBadAudio

EXAMPLES
The following example sets up event to receive the event copy and status]eturn to receive an error status.

Audio *audio;
AEvent event_return;
long status;

/* audio connection */
/* event_return */
/* error status */

/* copy first event on queue */
APeekEvent(audio, &event_return, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
APeekEvent () was developed by HP.

SEE ALSO

340

ACheckEvent(3X), ACheckMaskEvent(3X), AEventsQueued(3X), AM askEvent(3X) , ANextEvent(3X),
APutBackEvent(3X), AQlength(3X) ASelectlnput(3X).

Using the Audio Application Program Interface.

-1- HP-UX Release 9.0: August 1992

APlaySBucket (aX) Series 700 Only APlaySBucket (ax)

NAME
APlaySBucket - play specified sound bucket and return transaction ID

SYNOPSIS
#include <audio/Alib.h>

ATransID APlaySBucket
Audio *audio,
SBucket *sb,
SBPlayParams *pp,
long *status_return

) ;

DESCRIPTION
APlaySBucket () plays the audio data in the specified sound bucket on the specified server connection
and returns a transaction ID.

audio specifies the Audio structure associated with this connection.

sb specifies the sound bucket to be played.

pp specifies the play parameters associated with the play operation.

status]eturn receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, APlaySBucket () returns the transaction ID.

ERRORS
If status]eturn is not set to NULL, one of the following is returned in status..Jeturn:

o AENoError
2 AEBadAudio

10 AEBadGainMatrix
20 AEBadSoundBucket

EXAMPLES
The following example plays the audio data contained in the sound bucket specified by sb and returns a
transaction ID.

ATransID xid;
Audio *audio;
SBucket *sb;
SBPlayParams *pparams;
long status;

/* play sound bucket */

/* transaction ID ~/
/* audio connection */
/* sound bucket*/
/* play parameters */
/* error status */

xid = APlaySBucket(audio, sb, pparams, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
APlaySBucket () was developed by HP.

SEE ALSO
ACreateSBucket(3X), ADestroySBucket(3X), AGetSBucketData(3X), ALoadAFile(3X),
APutSBucketData(3X), ARecordAData(3X), ASaveSBucket(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 341

I

I

APlaySStream (3X) Series 700 Only APlaySStream (3X)

NAME
APlaySStream - initiate transaction and return transaction ID and SStream structure

SYNOPSIS
#include <audio/Alib.h>

ATransID APlaySStream(

, .
I I

Audio *audio,
AudioAttrMask attr_mask,
AudioAttributes *audio_attributes,
SSPlayParams *pp,
SSt ream *sstream_return,
long *status_return

DESCRIPTION
AP layS st re am () initiates a play sound stream transaction and returns a transaction ID and an
Sstreams structure that contains a TCP socket address.

The application connects the socket it has created to the TCP address. The play operation begins as soon as
there is data on the sound stream. The play stream transaction can be controlled using APauseAudio (),
AResumeAudio(),andAStopAudio().

audio

attr_mask

specifies the Audio structure associated with this connection.

specifies which elements of the audio_attributes structure to use; it is the bitwise inclusive
OR of the valid audio attribute masks.

Ifattr_mask is zero, the values in the AudioAttributes structure returned by ABes­
tAudioAttributes () are used.

audio_attributes
contains values for type and sampled attributes. Type must be set, separate from the
mask.

If audio_attributes is NULL, the values in the AudioAttributes structure returned by
ABestAudioAttributes () are used; values in this structure are also used for
unspecified attributes.

pp is the pointer to the play parameters associated with the play operation.

statusJeturn receives the returned status of the operation unless it is set to NULL.

RETURN VALUE
Upon successful completion, APlaySStream() returns a transaction ID.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio
7 AEBadDataFormat

10 AEBadGainMatrix
13 AEBadAttribute

EXAMPLES

342

The following example starts a play stream transaction and sets up sstream to receive the SStream struc­
ture and status to receive an error status return.

ATransID xidi
Audio *audioi
AudioAttrMask a_mask;
AudioAttributes *attribsi
SSPlayParams SS-PPi
SSt ream sst ream;
long status;

/* transID */
/* audio connection */
/* audio attribute mask */
/* audio attributes*/
/* sstream play parameters */
/* sstream structure */
/* error status */

-1- HP-UX Release 9.0: August 1992

APlaySStream(3X) Series 700 Only APlaySStream(3X)

/* play sstream */
xid = APlaySStream(audio, a_mask, attribs, ss-pp, &sstream, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
APlaySStream() was developed by HP.

SEE ALSO
AConnectRecordSStreamO, ARecordSStreamO.

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 343

I

I

AProtocolRevision (aX) Series 700 Only AProtocolRevision (ax)

NAME
AProtocolRevision - get minor revision number of protocol used by audio server

SYNOPSIS
#include <audio/Alih.h>

long AProtocolRevision(Audio *audio);

DESCRIPTION
AProtocolRevision() returns the minor revision number of the protocol used by the audio server for
the connection specified by audio.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successful completion, AProtocolRevision () returns the minor revision number of the protocol
for the audio server associated with this connection.

ERRORS
AProtocolRevision() does not return an error status.

EXAMPLES
The following example returns the minor revision number of the protocol associated with the audio server
for the connection specified by audio.

long p_rev; /* minor protocol revision */
Audio *audio; /* audio connection */

/* get minor protocol revision */
p_rev = AProtocolRevision(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AProtocolRevis ion () was developed by HP.

SEE ALSO
AProtocoIVersion(3X), AServerVendor(3X), A VendorRelease(3X).

Using the Audio Application Program Interface.

344 -1- HP-UX Release 9.0: August 1992

AProtocolVersion (3X) Series 700 Only AProtocolVersion (3X)

NAME
AProtocolVersion - get major version number of protocol used by audio server

SYNOPSIS
#include <audio/Alih.h>

long AProtocolVersion (Audio *audio);

DESCRIPTION
AProtocol Version () returns the major version number of the protocol used by the audio server for the
connection specified by audio,

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon successful completion, AProtocol Vers ion () returns the major version number of the protocol
for the audio server associated with this connection.

ERRORS
AProtocol Version () does not return an error status.

EXAMPLES
The following example returns the major version number of the protocol associated with the audio server
for the connection specified by audio.

long p_version; /* major protocol version */
Audio *audio; /* audio connection */

/* get major protocol version */
p_version = AProtocolVersion(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AProtocol Version () was developed by HP.

SEE ALSO
AProtocoIRevision(3X), AServerVendor(3X), AVendorRelease(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 345

I

I

APutBackEvent (3X) Series 700 Only APutBackEvent (3X)

NAME
APutBackEvent - push event onto head of audio event queue

SYNOPSIS
#include <audio/Alih.h>

void APutBackEvent
Audio *audio,
AEvent *event,
long *status_return

) ;

DESCRIPTION
APutBackEvent () pushes event onto the head of the audio event q-ueue for the server specified by audio.

audio specifies the Audio structure associated with this connection.

event is the event to put on the queue.

status]eturn receives the returned status of the operation, unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in statusJeturn:

o AENoError
2 AEBadAudio

EXAMPLES
The following example puts event at the head of the audio event queue and sets up status]eturn to receive
an error status.

Audio *audio;
AEvent *event;
long status;

/* audio connection */
/* event */
/* error status */

/* put event at head of queue */
event = event_return; /* use event_return value from prior call */
APutBackEvent(audio, event, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
APutBackEvent () was developed by HP.

SEE ALSO

346

ACheckEvent(3X), ACheckMaskEvent(3X), AEventsQueued(3X), AMaskEvent(3X), ANextEvent(3X),
APeekEvent(3X), AQLength(3X), ASelectlnput(3X).

Using the Audio Application Program Interface.

-1- HP-UX Release 9.0: August 1992

APutSBucketData (aX) Series 700 Only APutSBucketData (ax)

NAME
APutSBucketData - copy audio data from buffer to sound bucket

SYNOPSIS
#include <audio/Alib.h>

unsigned long APutSBucketData
Audio *audio,

SBucket *sb,

) ;

unsigned long start_offset,
char *buffer.
unsigned long length,
long *status_return

DESCRIPTION
APutSBucketData () copies the data from a buffer to a sound bucket.

audio specifies the Audi 0 structure associated with this connection.

sb specifies the sound bucket to receive the data.

starCoffset specifies where to start writing the copied data, given as the byte offset from the beginning
of the sound bucket.

buffer specifies the buffer containing the data to copy.

length specifies the length of the data in the buffer, in bytes.

status]eturn receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, APutSBucketData () returns the byte count of the copied data.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio

20 AEBadSoundBucket

EXAMPLES
The following example copies the audio data from the buffer buff to the sound bucket sb and returns the
number of bytes that were copied. The data is placed starting at the beginning of the sound bucket (offset
0). In this example, we assume that we are returning data from the buffer at burp that was written there
by AGetSBucketData (). We use the datalen-£ value returned by AGetSBucketData () as the
length of the data.

unsigned long datalen-p;
Audio *audio;
SBucket *sb;
unsigned long startoff;
char *bufp;
long status;

/* copied data length */
/* audio connection */
/* sound bucket*/
/* start offset */
/* ptr to buffer */
/* error status */

/* copy data from buffer to sb */
startoff = 0;
datalen-p = APutSBucketData(audio, sb, startoff, bufp, datalen_g, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

HP-UX Release 9.0: August 1992 -1- 347

I

I

APutSBucketData (3X) Series 700 Only APutSBucketData (3X)

AUTHOR
APutSBucketData () was developed by HP.

SEE ALSO
ACreateSBucket(3X), ADestroySBucket(3X), AGetSBucketData(3X), ALoadAFile(3X), APlaySBucket(3X),
ARecordAData(3X), ASaveSBucket(3X).

Using t}t.,e lludio llpplication Program Interface.

348 -2- HP-UX Release 9.0: August 1992

AQLength (3X) Series 700 Only

NAME
AQLength - return number of events on audio event queue

SYNOPSIS
#include <audio/Alib.h>

int AQLength (Audio *audio);

DESCRIPTION

AQLength (3X)

AQLength () returns number of events on the audio event queue for the audio server connection specified
by audio.

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon successful completion, AQLength () returns the number of events on the audio event queue for the
audio connection.

ERRORS
AQLength () does not return an error status.

EXAMPLES
The following example gets the number of events on the audio event queue.

int e_num; /* number of events */
Audio *audio; /* audio connection */

/* get number of events on queue */
e_num = AQLength(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AQLength () was developed by HP.

SEE ALSO
ACheckEvent(3X), ACheckMaskEvent(3X), AEventsQueued(3X), AMaskEvent(3X), ANextEvent(3X),
APeekEvent(3X), APutBackEvent(3X), ASelectInput(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 349

•

•
AQueryAFile(ax) Series 700 Only AQueryAFile (ax)

NAME
AQueryAFile - get file format of specified file

SYNOPSIS
#include <audio/Alih.h>

AFileFormat AQueryAFile(Audio *audio, char *name, long *status_return);

DESCRIPTION
AQueryAFile () returns the file format of the file specified in name.

audio

name

status]eturn

specifies the Audio structure associated with this connection.

is the pathname of the audio data file to be queried.

receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, AQueryAFi le () returns the file format of the file specified in name.
AFFUnknown is returned if the format type cannot be determined.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio
8 AEFileNotFound

16 AECantDetermineFormat

EXAMPLES
The following example queries the file format of the file /myhome/a_dir/a_file:

ift .ft 4 AFileFormat file_fmt; /* file format */ Audio *audio; /* audio connection */ long status;
1* status */ . 1* load file into new sound bucket *1 charfname[] =
"/myhome/a_dir/a_file"; filejmt = AQueryAFile(audio, fname, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AQueryAFile () was developed by HP.

SEE ALSO
AGetAFileAttributesO Using the Audio Application Program Interface.

350 -1- HP-UX Release 9.0: August 1992

~ecord)U)ata(3X) Series 700 Only ~ecord)U)ata(3X)

NAME
ARecordAData - read audio data into sound bucket

SYNOPSIS
#include <audio/Alib.h>

ATransID ARecordAData
Audio *audio,
SBucket *sb,
SBRecordParams *rp,
long *status_return

) ;

DESCRIPTION
ARecordAData () reads audio data from the specified server connection into the specified sound bucket
and returns a transaction ID. ARe co rdAData () does not block until the record is complete, and so it
can not be followed immediately by a call to ASaveSBucket (). See ASaveSBucket(3X) for suggested pro­
gram actions.

audio specifies the Audio structure associated with this connection.

sb specifies the sound bucket to receive the data.

rp specifies the record parameters associated with the record operation.

status]eturn receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, ARecordAData () returns the transaction ID.

ERRORS
If status]etum is not set to NULL, one of the following is returned in statusJeturn:

o AENoError
2 AEBadAudio

10 AEBadGainMatrix
20 AEBadSoundBucket

EXAMPLES
The following example reads data from the connection associated with audio into the sound bucket specified
by sb and returns a transaction ID.

TransID xid; /* transID */
Audio *audio; /* audio connection */
SBucket *sb; /* sound bucket*/
SBRecordParams rparams; /* record parameters */
long status; /* error status */

/* start record transaction */
xid = ARecordAData(audio, sb, &rparams, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ARecordAData () was developed by HP.

SEE ALSO
ACreateSBucket(3X), ADestroySBucket(3X), AGetSBucketData(3X), ALoadAFile(3X), APlaySBucket(3X),
APutSBucketData(3X), ASaveSBucket(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 351

I

I

ARecordSStream (ax) Series 700 Only ARecordSStream (ax)

NAME
ARecordSStream - initiate transaction; return transaction ID and SStreams structure

SYNOPSIS
#include <audio/Alib.h>

ATransID ARecordSStream(

, .
J ,

Audio *audio,
AudioAttrMask attr_mask,
AudioAttributes *audio_attributes,
SSRecordParams *rp,
SStream *sstream_return,
long *status_return

DESCRIPTION
ARecordSStream () initiates a sound stream record transaction and returns a transaction ID and an
SStream structure that contains a TCP socket address.

The application connects the socket it has created to the TCP address. The record operation begins immedi­
ately or in pause mode, depending on the pauseJirst field in SSRecordParams. The record stream tran­
saction can be controlled using APauseAudio () , AResumeAudio () , and AStopAudio () .

audio specifies the Audi 0 structure associated with this connection.

specifies which elements of the audio_attributes structure to use; it is the bitwise inclusive
OR of the valid audio attribute masks.

Ifattr_mask is zero, the values in the. AudioAttributes structure returned by ABes­
tAudioAttributes () are used.

audio_attributes

rp

contains values for type and sampled attributes. Type must be set, separate from the
mask.

If audio_attributes is NULL, the values in the AudioAttributes structure returned by
ABestAudioAttributes () are used; values in this structure are also used for
unspecified attributes.

specifies the record parameters associated with the record operation.

sstreamJeturn receives the returned SSt ream structure.

statusJeturn receives the returned status of the operation unless it is set to NULL.

RETURN VALUE
Upon successful completion, ARecordSStream() returns a transaction ID.

ERRORS
If statusJetum is not set to NULL, one of the following is returned in statusJeturn:

o AENoError
2 AEBadAudio
7 AEBadDataFormat

10 AEBadGainMatrix
13 AEBadAttribute

EXAMPLES

352

The following example starts a record stream transaction, setting up sstream to receive the SStream
structure and status to receive an error status return.

ATransID xid;
Audio *audio;
AudioAttrMask a_mask;
AudioAttributes attribs;
SSRecordParams ss_rp;
SSt ream sstream;
long status;

/* transID */
/* audio connection */
/* audio attribute mask */
/* audio attributes*/
/* sstream record parameters */
/* sstream structure */
/* error status */

-1- HP-UX Release 9.0: August 1992

ARecordSStream (3X) Series 700 Only ARecordSStream (3X)

/* record sstream */
xid = ARecordSStream(audio, a_mask, &attribs, &ss_rp, &sstream, &status};

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ARecordSStream () was developed by HP.

SEE ALSO
AConnectRecordSStreamO, APlaySStreamO.

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 353

I

I

AResumeAudio (3X) Series 700 Only AResumeAudio(3X)

NAME
AResumeAudio - resume specified audio transaction

SYNOPSIS
#include <audio/Alib.h>

void AResumeAudio
Audio *audio,
ATransID xid,
ATransStatus *trans_status_return,
long *status_return

) ;

DESCRIPTION
AResumeAudio () resumes the specified transaction iithe transaction was paused by APauseAudio (j.

audio

xid

specifies the Audio structure associated with this connection.

specifies the transaction ID.

To use ARe sumeAudi 0 () on a paused series oflinked transactions, specify the first
transaction in the linked list. The resume affects the current (paused) transaction.

trans_status]eturn receives the returned status value. Setting this argument to NULL prevents the data
from being collected and returned, which may enhance performance.

status]eturn receives the returned status of the operation unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]etum:

o AENoError
2 AEBadAudio

15 AEBadTransactionID

EXAMPLES
The following example resumes the transaction identified by xid, sets trans_stat to NULL, and sets up status
to receive an error status.

Audio *audio;
ATransID xid;
long status;

/* audio connection */
/* transaction ID */
/* error status */

/* resume transaction - xid returned from prior call */
AResumeAudio(audio, xid, NULL, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AResumeAudio () was developed by HP.

SEE ALSO
APauseAudio(3X), AStopAudio(3X).

Using the Audio Application Program Interface.

354 -1- HP-UX Release 9.0: August 1992

ASamplingRates (ax) Series 700 Only ASamplingRates (ax)

NAME
ASamplingRates - return array of sampling rates supported by audio controller

SYNOPSIS
#include <audio/Alib.h>

unsigned long* ASamplingRates(Audio *audio);

DESCRIPTION
ASampl ingRates () returns a pointer to an array of sampling rates supported by the audio controller
associated with the audio connection.

The number of sampling rates in the array is obtained using the function ANumSampl ingRates () .

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon successful completion, ASamplingRates () returns a pointer to an array of sampling rates sup­
ported by the audio controller associated with the connection specified by audio.

ERRORS
ASamplingRates () does not return an error status.

EXAMPLES
The following example returns an array containing the sampling rates supported by the audio controller
associated with audio.

unsigned long *s_rates, first_rate; /* supported sampling rates */
Audio *audio; /* audio connection */

/* get pointer to array of sampling rates */
s_rates = ASamplingRates(audio);
/* get first sampling rate */
first_rate = s_rates[O];

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASamplingRates () was developed by HP.

SEE ALSO
ANumSamplingRates(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 355

•

•
ASaveSBucket (aX) Series 700 Only ASaveSBucket (ax)

NAME
ASaveSBucket - write sound bucket data into file with data conversion

SYNOPSIS
#include <audio/A1ib.h>

void ASaveSBucket(

) ;

Audio *audio,
SBucket *sb,
char *pathname,
AFi1eFormat file_format,
AudioAttrMask attr_mask,
AudioAttributes *target_attributes,
1\"' *_4=4= __
.a. "'0 V.L.&..I:J'C",",

AWriteMode mode,
long *status_return

DESCRIPTION

356

ASaveSBucket () writes the data in sb into the file specified by pathname after making conversions
according to the specified attributes.

ARecordADa ta () does not block until the record operation is complete, so calling ASaveSBucket ()
immediately after ARecordAData () usually results in an error. To avoid the error, the application pro­
gram can set up its own wait loop, or wait on a transaction-stopped or transaction-completed event. See the
program /usr/audio/examp1es/recorder.c for an example of waiting either for a transaction­
stopped event or for the user to terminate the record operation by pressing [Return].

When the sound bucket is no longer needed, call ADestroySBucket () to deallocate the space.

audio

sb

pathname

fileJormat

is the audio structure associated with this connection.

is the sound bucket that contains the audio data and associated attributes.

specifies the file to receive the data. If the file does not exist, it is created.

specifies the file format to use for the write. If this parameter is not set to a valid
enumerated value, an error is returned.

If this parameter is set to AFFUnknown, the conversion utility checks for an exten­
sion on pathname. Extensions can be appended to the filename as follows:

name.samplingJate./ile_type.

Valid file type extensions are:

.u Mulaw

.a1 Alaw
• au Sun (NeXT)
.wav Riff
.snd NeXT
.116 Linear 16
.18 Linear8
.108 Linear80ffset

If no recognizable extension exists and pathname is an existing file, the utility checks
the header on the existing file. If there is no determinable file format, an error is
returned; there is no default.

If this parameter specifies a different format than the one indicated by an existing file
in pathname, (unless mode is AWMTruncateAppend and offset is 0), an error is
returned.

specifies the audio attributes to associate with the data written to the file; conversion
occurs where necessary. The mask is a bitwise inclusive OR of the values defined in
AudioAttrMask. This mask is cleared iftargeCattributes is set to NULL.

-1- HP-UX Release 9.0: August 1992

ASaveSBucket (3X) Series 700 Only ASaveSBucket (3X)

When a mask bit is set to 0 and pathname is an existing file, the conversion utility
checks the existing file type in the file header and uses a value that is compatible with
it.

When a mask bit is set to 0 and pathname is not an existing file, the conversion utility
checks the file type indicated by the pathname extension, if any, and uses a value that
is compatible with it. If no value can be determined, the sound bucket value for the
attribute is used.

When a mask bit is set to 1 and pathname is not an existing file, the specified attri­
bute is checked for compatibility with the existing fi1e- An error is returned if there is
a discrepancy.

When a mask bit is set to 1 and a file does not exist in pathname, the specified attri­
bute is used.

NOTES: If ASDurationMask is set, the sound bucket data is truncated or padded
with zeros to match the length specified in
audio_attributes.sampled_attr.duration.

If ASSamplingRateMask is set, it is used without checking the file name exten­
sion. If sampling]ate is not specified, the file name is checked for an extension. Sam­
pling rate attributes can be specified in a filename extension as follows:

name .samplingJate • file_type

targeCattributes

Valid sampling rate extensions are .n and .nk where .nk is typically 8k to 22k.

specifies the attributes that are affected by the mask. If set to NULL, attr _mask is
cleared and attributes are determined according to compatibility with pathname and
sb (see attr _mask). Audio type must be set (separate from the mask).

offset

mode

specifies where to begin writing in the destination file, given in ATimeType units
(ATTSamples, ATTMilliSeconds, or ATTFullLength) from the beginning of
the audio data, excluding the header.

If pathname is not an existing file and offset is not 0, the new file is padded with zeros
up to the offset.

If pathname is an existing file and offset is· greater than the length of the audio data,
zeros are appended to the audio data until its length is equal to offset.

specifies how the data should be written into the file:

AWMOverWrite specifies that data from the sound bucket sb overwrites the data in
pathname starting at offset. Data that precedes or follows the overwritten region
remains unchanged. If necessary, the length of the file is increased to accommodate
the new data.

AWMTruncateAppend specifies that the data inpathname is truncated at offset and
the write begins at that point. If necessary, the length of the file is increased or
decreased to accommodate the new data.

AWMlnsert specifies that data from the sound bucket sb is inserted in the file path­
name starting at offset. The length of the file is increased to accommodate the new
data.

status]eturn receives the returned status of the operation, unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in statusJeturn:

o AENoError
2 AEBadAudio
6 AEBadFileFormat
7 AEBadDataFormat
8 AEFileNotFound

HP-UX Release 9.0: August 1992 -2- 357

•

I

ASaveSBucket (aX) Series 700 Only ASaveSBucket (ax)

11 AEBadFileHdr
13 AEBadAttribute
14 AEBadOffset
16 AECantDetermineFormat
20 AEBadSoundBucket

EXAMPLES
The following example copies the data from sound bucket sb to existing file /myhome/a_dir/a_file,
starting at offset 1668. The file format and audio attributes of the existing file are to be used, so fileJmt is
set to AFFUnknown, NULL is passed for audio attributes, and the attribute mask is set to o.
The mode is set to AWMOverwrite so that data that precedes or follows the overwrite region will not be
affected. If necessary, the length of the file will be increased to accommodate the new data.

Audio *audio; /* audio connection */
SBucket *sb; /* sound bucket */
AFileFormat file_fmt; /* file format */
AudioAttrMask a_mask; /* audio attributes mask */
ATime startoff; /* start offset */
AWriteMode mode; /* write mode */
long status; /* error status */

/* save sound bucket data */
staticchara_name[] = {"/myhome/a_dir/a_file"};
file_fmt = AFFUnknown;
a_mask = 0;
startoff.type = ATTSamples;
startoff.u.samples = 1668;
mode = AWMOverwrite; /* overwrite without truncate */
ASaveSBucket(audio, sb, a_name, file_fmt, a_mask, NULL, &startoff,
mode, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASaveSBucket () was developed by HP.

SEE ALSO

358

ACreateSBucket(3X), ADestroySBucket(3X), AGetSBucketData(3X), ALoadAFile(3X), APlaySBucket(3X),
APutSBucketData(3X), ARecordAData(3X).

Using the Audio Application Program Interface.

-3- HP-UX Release 9.0: August 1992

ASelectlnput (3X) Series 700 Only ASelectlnput(3X)

NAME
ASelectlnput - request report of specified audio events

SYNOPSIS
void ASelectlnput(

) ;

Audio *audio,
ATransID xid,
AEventMask event_mask,
long *status_return

DESCRIPTION
ASelectlnput () requests the report of the audio events specified by the event mask.

audio is the Audi 0 structure associated with this connection.

xid specifies the ID of the transaction whose events are ofinterest.

evenCmask specifies the events for which a report is requested. Each bit in the mask corresponds to
one type of audio event. The mask is the bitwise inclusive OR of the masks for the indivi­
dual event types.

status]eturn receives the returned status of the operation unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio
3 AEBadValue

EXAMPLES
The following example sets the event mask to request record monitor and transaction pause events, and
sets up status]eturn to receive an error status.

Audio *audio; /* audio connection */
TransID xid; /* transaction ID */
AEventMask emask; /* event mask */
long status; /* error status */

/* request input event reports */
emask = (AETRecordMonitor I AETransPaused)
ASelectlnput(audio, xid, emask, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASelectlnput () was developed by lIP.

SEE ALSO
ACheckEvent(3X), ACheckMaskEvent(3X), AEventsQueued(3X), AMaskEvent(3X), ANextEvent(3X),
APeekEvent(3X), APutBackEvent(3X), AQlength(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 359

I

I

AServerVendor(ax) Series 700 Only AServerVendor(aX)

NAME
AServerVendor - get vendor name of audio server for this connection

SYNOPSIS
#include <audio/Alih.h>

char* AServerVendor (Audio *audio);

DESCRIPTION
AServerVendor () returns a pointer to the name of the vendor of the audio server for the connection
specified by audio.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successful completion, AServerVendor () returns a pointer to the name of the vendor of the the
audio server associated with this connection.

ERRORS
AS erverVendor () does not return an error status.

EXAMPLES
The following example returns a pointer to the name of the vendor of the audio server for the connection
specified by audio.

char* *vendor_name;
Audio *audio;

/* server vendor name */
/* audio connection */

/* get server vendor name */
vendor_name = AServerVendor(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AServerVendor () was developed by HP.

SEE ALSO
AProtocolRevision(3X), AProtocoIVersion(3X), AVendorRelease(3X).

Using the AudioApplication Program Interface.

360 -1- HP-UX Release 9.0: August 1992

ASetChannelGain (3X) Series 700 Only ASetChannelGain (3X)

NAME
ASetChannelGain - set transaction channel gain

SYNOPSIS
#include <audio/Alib.h>

void ASetSystemChannelGain(
Audio *audio,

} ;

ATransID xid,
AChType channel,
AGainDB gain,
long *status_return

DESCRIPTION
ASetChannelGain () sets the transaction gain to the value ingain.

audio Audi 0 structure associated with this connection.

xid Transaction ID.

channel Type of channel: ACTMono, ACTLeft, or ACTRight.

gain Specifies the volume: AUni tyGain, AZeroGain, or a number of decibels.

status]eturn Receives the returned status of the operation unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn.

o AENoError
2 AEBadAudio
3 AEBadValue

EXAMPLES
The following example sets the transaction right channel gain to-6.

Audio *audio;
AChType *chtype;
AGainDB chgain;
long status;

/* audio connection */
/* type of channel */
/* gain specification*/
/* error status */

/* set xid right channel gain to -6 */
chtype = ACTRight
chgain = -6;
ASetChannelGain(audio, xid, chtype, chgain, &status};

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASetChannelGain () was developed by HP.

SEE ALSO
AGetChanneIGain(3X) AGetGain(3X), AGetSystemChanneIGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X),
AMinInputGain(3X), AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X),
ASetGain(3X), ASetSystemChanneIGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0; August 1992 -1- 361

•

•
ASetCloseDownMode (3X) Series 700 Only ASetCloseDownMode (3X)

NAME
ASetCloseDownMode - set close-down mode to destroy or complete transactions on specified connection

SYNOPSIS
#include <audio/Alib.h>

void ASetCloseDownMode (
Audio *audio,
ACloseDownMode close_mode,
long *status_return

) ;

DESCRIPTION
ASetCloseDownMode () sets the close-down mode to keep or destroy active and pending transactions on
the connection associated with audio.

audio specifies the Audio structure associated with this connection.

close_mode specifies one of two modes: ADestroyAll causes all active and pending transactions for
this connection to be stopped and destroyed when the connection is closed; associated
storage is freed immediately; AKeepTransact ions prevents transactions for this con­
nection from being destroyed and allows them to complete before the close.

status]eturn receives the returned status of the operation unless it is set to NULL by the application.

ERRORS
If status]etum is not set to NULL by the application, one of the following is returned in status]eturn:

o AENoError
2 AEBadAudio
3 AEBadValue

EXAMPLES
The following example sets the close-down mode to allow transactions to complete, and sets up status to
receive an error status.

Audio * aUdio; /* audio connection */
ACloseDownMode close_mode; /* close down mode */
long status; /* error status */

/* set close-down mode */
close_mode = AKeepTransactions;
ASetCloseDownMode(audio, close_mode, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASetCloseDownMode () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

362 -1- HP-UX Release 9.0: August 1992

ASetErrorHandler(3X) Series 700 Only ASetErrorHandler(3X)

NAME
ASetErrorHandler - replace default error handler with specified handler

SYNOPSIS
#include <audio/Alib.h>

AErrorHandler ASetErrorHandler (AErrorHandler handler);

DESCRIPTION
ASetErrorHandler () replaces the default error handler with the handler specified in handler, and
returns a pointer to the handler that was previously in effect. The new error handler should return
AENoError, if the error should be ignored. If the error should not be ignored and the handler cannot
correct it, the handler should return the error code.

handler is the pointer to an application-supplied handler function.

RETURN VALUE
Upon successful completion, ASetErrorHandler () returns a pointer to the handler that was previ­
ously in effect.

ERRORS
ASetErrorHandler () does not return an error status.

EXAMPLES
The following example replaces the default error handler with a handler named myhandler.

)
{

long myhandler(
Audio *audio,
AErrorEvent *err_event

char errorbuff[132];
AGetErrorText(audio, err_event->error_code, errorbuff, 131);
printf (IlError is %s\nll, errorbuff);
return (err_event->error_code);
}

AErrorHandler prev_handler;
AErrorHandler myhandler;

/* ptr to previous handler */
/* this data type is a function*/

/* replace default error handler */
prev_handler = ASetErrorHandler(myhandler);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASetErrorHandler () was developed by lIP.

SEE ALSO
ASetIOErrorHandler(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 363

•

•
ASetGain (3X) Series 700 Only ASetGain (3X)

NAME
ASetGain - set play volume or record gain of specified transaction

SYNOPSIS
#include <audio/Alih.h>

void ASetGain(

) ;

Audio *audio,
ATransID xid,
AGainDB gain,
long *status_return

DESCRIPTION
ASetGain () sets the play volume or record gain of the transaction specified inxid.

audio specifies the Audio structure associated with this connection.

xid specifies the ID of the transaction that was returned by ACreateSBucket () or
ALoadAFi Ie () .

gain specifies the new values for the play volume or record gain.

statusJeturn receives the returned status of the operation unless it is set to NULL.

ERRORS
If statusJetum is not set to NULL, one of the following is returned in statusJetum.

o AENoError
2 AEBadAudio

15 AEBadTransactionID

EXAMPLES
The following example sets the gain for the xid transaction to be AUni tyGain (unchanged) and sets up
status to receive an error status:

Audio *audio;
ATransID xid;
AGainDB gain;
long status;

/* audio connection */
/* transaction ID */
/* gain */
/* error status */

/* set gain for xid returned from prior call */
gain = AUnityGain;
ASetGain(audio, xid, gain, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASetGain () was developed by HP.

SEE ALSO
AGetChannelGain(3X) AGetGain(3X), AGetSystemChannelGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X),
AMinInputGain(3X), AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X),
ASetChannelGain(3X), ASetSystemChannelGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

364 -1- HP-UX Release 9.0: August 1992

ASetIOErrorHandler(3X) Series 700 Only ASetlOErrorHandler(3X)

NAME
ASetIOErrorHandler - replace default I/O error handler with specified handler

SYNOPSIS
#include <audio/Alib.h>

AIOErrorHandler ASetIOErrorHandler (AIOErrorHandler handler);

DESCRIPTION
ASet IOErrorHandler () replaces the default 110 error handler with the handler specified in handler,
and returns a pointer to the handler that was previously in effect. When the new handler exits via return,
the application program exits.

handler is the pointer to an application-supplied 110 handler function.

RETURN VALUE
Upon successful completion, ASetIOErrorHandler () returns a pointer to the handler that was previ­
ously in effect.

ERRORS
ASetIOErrorHandler () does not return an error status.

EXAMPLES
The following example replaces the default 110 error handler with a handler named my_io_handler.

long my_io_handler(Audio *audio) {
printf ("An I 10 Error Occurred! \n") ;
return 0; } AIOErrorHandler

prev_io_handler; 1* ptr to previous handler *1 AIOErrorHandler
my_io_handler; 1* this data type is a function* I

1* replace default I/O error handler *1 prev_io_handler =
ASetIOErrorHandler(my_io_handler);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASet IOErrorHandler () was developed by HP.

SEE ALSO
ASetErrorHandler(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 365

I

I

ASetSystemChannelGain (3X) Series 700 Only ASetSystemChannelGain (3X)

NAME
ASetSystemChannelGain - set system or monitor audio channel gain

SYNOPSIS
#include <audio/Alih.h>

void ASetSystemChannelGain(
Audio *audio,
ASystemGainType gain_type,
AChType channel,
AGainDB gain,
long *status_return

) ;

DESCRiPTiON
ASetSystemChannelGain() sets the system gain to the value ingain. Ifgain_type is ASGTMonitor,
the setting controls how much of the record input signal is fed to the internal speaker or auxiliary output.
This ability to monitor the input is particularly useful when the recording input is not from a microphone.

audio Audi 0 structure associated with this connection.

gain_type Type of operation: ASGTPlay, ASGTRecord, or ASGTMoni tor. If this field is set to
ASGTMoni tor, the channel specification must be ACTMono.

channel Type of channel: ACTMono, ACTLeft, or ACTRight. If gain_type is ASGTMonitor,
this field must be ACTMono.

gain Specifies the volume: AUni tyGain, AZeroGain, or a number of decibels.

status]eturn receives the returned status of the operation unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn.

o AENoError
2 AEBadAudio
3 AEBadValue

EXAMPLES
The following example sets the gain on the monitor to -6.

Audio *audio; 1* audio connection '* /
ASystemGainType *sgtype; /* type of operation */
AChType *chtype; /* type of channel */
AGainDB chgain; /* gain specification*/
long status; /* error status */

/* set monitor gain to -6 */
sgtype ASGTMonitor
chtype = ACTMono
chgain = -6;
ASetSystemChannelGain(audio, sgtype, chtype, chgain, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASetSystemChannelGain () was developed by HP.

SEE ALSO
AGetChanneIGain(3X)
AInputChannels(3X),
AMinInputGain(3X),

366

AGetGain(3X), AGetSystemChanneIGain(3X),
AInputSources(3X), AMaxInputGain(3X),

AMinOutputGain(3X), AOutputChannels(3X),

AGMGainRestricted(3X),
AMaxOutputGain(3X),

AOutputDestinations(3X),

-1- HP-UX Release 9.0: August 1992

ASetSystemChanneIGain(3X) Series 700 Only ASetSystemChannelGain (3X)

ASetChanneIGain(3X), ASetGain(3X), ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 367

I

I

ASetSystemPlayGain (aX) Series 700 Only ASetSystemPlayGain (ax)

NAME
ASetSystemPlayGain - set system play volume

SYNOPSIS
#include <audio/Alib.h>

void ASetSystemPlayGain(
Audio *aud!o;
AGainDB gain,
long *status_return

) ;

DESCRIPTION
ASetSystemPlayGain () sets the system play volume to the value ingain.

audio specifies the Audi 0 structure associated with this connection.

gain specifies in decibels the new value for the play volume.

status]eturn receives the returned status of the operation unless it is set to NULL by the application.

ERRORS
If status]etum is not set to NULL by the application, one of the following is returned in status]eturn.

o AENoError
2 AEBadAudio

EXAMPLES
The following example sets the system play volume to -6. This reduces the play volume by a factor of 4,
relative to AUni tyGain.

Audio *audio;
AGainDB spvol;
long status;

/* audio connection */
/* sys play vol */
/* error status */

/* set system play volume */
spvol = -6;
ASetSystemPlayGain(audio, spvol, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASetSystemPlayGain () was developed by HP.

SEE ALSO

368

AGetGain(3X), AGetSystemMonitorGain(3X), AGetSystemPlayGain(3X), AGetSystemRecordGain(3X),
AGMGainRestricted(3X), AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X),
AMaxOutputGain(3X), AMinlnputGain(3X), AMinOutputGain(3X), AOutputChannels(3X),
AOutputDestinations(3X), ASetGain(3X), ASetSystemMonitorGain(3X), ASetSystemRecordGain(3X),
ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

-1- HP-UX Release 9.0: August 1992

ASetSystemRecordGain (3X) Series 700 Only ASetSystemRecordGain (3X)

NAME
ASetSystemRecordGain - set system record gain

SYNOPSIS
#include <audio/Alib.h>

void ASetSystemRecordGain(

Audio *audio,
AGainDB gain,
long *status_return

) ;

DESCRIPTION
ASetSystemRecordGain () sets the system record gain to the value ingain.

audio specifies the Audio structure associated with this connection.

gain specifies the new value for the record gain.

status]eturn receives the returned status of the operation unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]etum.

o AENoError
2 AEBadAudio

EXAMPLES
The following example sets the system record gain to -6.

Audio *audio; /* audio connection */
AGainDB srgain; /* sys record gain */
long status; /* error status */

/* set system record gain */
srgain = -6;
ASetSystemRecordGain(audio, srgain, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASetSystemRecordGain () was developed by HP.

SEE ALSO
AGetGain(3X) AGetSystemMonitorGain(3X), AGetSystemPlayGain(3X), AGetSystemRecordGain(3X),
AGMGainRestricted(3X), AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X),
AMaxOutputGain(3X), AMinlnputGain(3X), AMinOutputGain(3X), AOutputChannels(3X),
AOutputDestinations(3X), ASetGain(3X), ASetSystemMonitorGain(3X), ASetSystemPlayGain(3X),
ASimplePlayer(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 369

I

I

ASetupConversion (aX) ASetupConversion (ax)

NAME
ASetupConversion - perform setup required for stream data conversion

SYNOPSIS
#include <audio/Alib.h>

AConvertParams*
ASetupConversion

Audio
AudioAttributes
AByteOrder
AudioAttributes
AByteOrder
long

* audio,
* src_a ttrib utes,
* src_byte_order,
* desCattributes,
* desCbyte_order,
* status]eturn) ;

DESCRIPTION
ASetupConversion () performs initialization for stream data conversion. The user specifies the source
stream attributes and byte order and the desired destination stream attributes. ASetupConversion
returns a pointer to an AConvertParams structure, which will be used by AConvertBuffer to perform
the stream conversion.

audio

src _attributes

src_byte_order

dest _attributes

desCbyte_order

status]eturn

specifies the Audio structure associated with this connection.

specifies the attributes of the source stream.

specifies the byte ordering of the source stream.

specifies the attributes of the destination stream.

specifies the byte ordering of the destination stream.

receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE

370

Upon successful completion, ASetupConversion () returns a pointer to the conversion parameter
structure AConvertParams. To free the space allocated for this structure, use AEndConvers ion.

-1- HP-UX Release 9.0: August 1992

ASetupConversion (aX) ASetupConversion (ax)

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn:

o AENoError
17 AEOutOfMemory

EXAMPLE
For an example, see /usr/audio/examples/splayer.c

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASetupConversion () was developed by HP.

SEE ALSO
AConvertBuffer(3X), AChooseSourceAttributes(3X), AChoosePlayAttributes(3X),
AEndConversion(3X)

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 371

I

I

ASimplePlayer(ax) Series 700 Only ASimplePlayer(aX)

NAME
ASimplePlayer - return gain matrix of basic play device

SYNOPSIS
#include <audio/Alib.h>

AGainMatrix ASimplePlayer(Audio *audio);

DESCRIPTION
ASimplePlayer () returns the gain matrix of the basic audio play device supported by the audio con­
troller associated with the connection specified by audio.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon succesful completion, AsimplePlayer () returns the gain matrix of the basic audio play device
su pported by the audio controller associated with the connection specified by audio.

ERRORS
ASimplePlayer () does not return an error status.

EXAMPLES
The following example gets the gain matrix of the basic audio play device supported by the audio controller
associated with the connection specified by audio.

AGainMatrix *spmatrix; /* simple play gain matrix */
Audio *audio; /* audio connection */

/* get the simple record gain matrix */
spmatrix = ASimplePlayer(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASimplePlayer () was developed by HP.

SEE ALSO

372

AGetChanneIGain(3X) AGetGain(3X), AGetSystemChanneIGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X),
AMinInputGain(3X), AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X),
ASetChanneIGain(3X), ASetGain(3X), ASetSystemChanneIGain(3X), ASimpleRecorder(3X).

Using the Audio Application Program Interface.

-1- HP-UX Release 9.0: August 1992

ASimpleRecorder (3X) Series 700 Only ASimpleRecorder(3X)

NAME
ASimpleRecorder - return gain matrix of basic recording device

SYNOPSIS
#include <audio/Alib.h>

AGainMatrix ASimpleRecorder(Audio *audio);

DESCRIPTION
ASimpleRecorder () returns the gain matrix of the basic audio recording device supported by the audio
controller associated with the connection specified by audio.

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon succesful completion, ASimpleRecorder () returns the gain matrix of the basic audio recording
device supported by the audio controller associated with the connection specified by audio.

ERRORS
ASimpleRecorder () does not return an error status.

EXAMPLES
The following example gets the gain matrix of the basic audio recording device supported by the audio con­
troller associated with the connection specified by audio.

AGainMatrix *sr.matrix; /* simple record gain matrix */
Audio *audioi /* audio connection */

/* get the simple record gain matrix */
srmatrix = ASimpleRecorder(audio)i

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AS impleRecorder () was developed by HP.

SEE ALSO
AGetChanneIGain(3X) AGetGain(3X), AGetSystemChanneIGain(3X), AGMGainRestricted(3X),
AInputChannels(3X), AInputSources(3X), AMaxInputGain(3X), AMaxOutputGain(3X),
AMinInputGain(3X), AMinOutputGain(3X), AOutputChannels(3X), AOutputDestinations(3X),
ASetChanneIGain(3X), ASetGain(3X), ASetSystemChanneIGain(3X), ASimplePlayer(3X),

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 373

I

I

asinh(3M) asinh(3M)

NAME
asinh, acosh, atanh - inverse hyperbolic functions

SYNOPSIS
#1nclude <math.h>

double asinh(double x);

double acosh(double x);

double atanh(double x);

DESCRIPTION
as inh (), acosh (), and a tanh () return respectively the designated inverse hyberbolic sine, cosine,
and tangent of their argument.

When x is ±INFINITY, asinh () returns ±INFINITY respectively.

When x is +INFINITY, acosh () returns +INFINITY.

ERRORS
Ilibllibm.a

asinh(), acosh() , and atanh() return NaN and set errno to EDaM when x is NaN. In addi­
tion, a message indicating DOMAIN error is printed on the standard error output.

acosh() also returns NaN and sets errno to EDaM if x < 1.0.

atanh () also returns NaN and sets errno to EDaM if Ix I ~ 1.0.

These error-handling procedures can be changed with the function matherr () (see matherr(3M».

/libllibM.a
No error messages are printed on the standard error output.

asinh(), acosh() , and atanh() return NaN and set errno to EDaM when x is NaN.

acosh () also returns NaN and sets errno to EDaM if x < 1.0.

atanh () also returns NaN and sets errno to EDaM if Ix I ~ 1.0.

These error-handling procedures can be changed by using the _matherr () function (see matherr(3M».
Note that _matherr () is provided in order to assist in migrating programs from libm. a to libM. a
and is not a part of XPG3, ANSI C, or POSIX.

DEPENDENCIES
Series 300/400

as inh (), acosh (), and atanh () are not supported on Series 300/400 systems.

Series 700/800
as1nh (), acosh (), and atanh () are not specified by any standard. They are provided in the PA1.l
versions of the math library only. The +DA1.l linker option (default on Series 700 systems) links in a
PA1.l version automatically. A PA1.llibrary can also be linked in explicitly. For more information, see the
HP-UX Floating-Point Guide.

SEE ALSO
exp(3M), matherr(3M).

374 -1- HP-UX Release 9.0: August 1992

ASoundBitOrder(3X) Series 700 Only ASoundBitOrder(3X)

NAME
ASoundBitOrder - get hit order used for one-hit-per-sample data

SYNOPSIS
#include <audio/Alib.h>

ABitOrder ASoundBitOrder (Audio *audio);

DESCRIPTION
ASoundBi tOrder () returns the hit order that will he used if data is one hit per sample.

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon successful completion, ASoundBitOrder () returns the hit order that will he used if data is one hit
per sample.

ERRORS
ASoundBi tOrder () does not return an error status.

EXAMPLES
The following example returns the hit order that will be used if the data is one bit per sample.

ABitOrder bit_order; /* bit order */
Audio *audio; /* audio connection */

/* get bit order */
bit_order = ASoundBitOrder(audio};

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AS oundBi tOrder () was developed by HP.

SEE ALSO
ASoundByteOrder(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 375

I

I

ASoundByteOrder(ax) Series 700 Only ASoundByteOrder(aX)

NAME
ASoundByteOrder - get byte order of audio data accepted by audio controller for this connection

SYNOPSIS
#include <audio/Alib.h>

AByteOrder ASoundByteOrder (Audio *audio);

DESCRIPTION
ASoundByteOrder () returns the byte order of audio data accepted by the audio controller associated
with the audio connection.

audio specifies the Audi 0 structure associated with this connection.

RETURN VALUE
Upon successful completion, ASoundByteOrder () returns the byte order of audio data accepted by the
audio controller associated with this connection.

ERRORS
ASoundByteOrder () does not return an error status.

EXAMPLES
The following example returns the byte order accepted by the audio controller associated with the connec­
tion specified by audio.

AByteOrder byte_order;
Audio *audio;

/* acceptable byte order */
/* audio connection */

/* get acceptable byte order */
byte_order = ASoundByteOrder(audio);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ASoundByteOrder () was developed by HP.

SEE ALSO
ASoundBitOrder(3X).

Using the Audio Application Program Interface.

376 -1- HP-UX Release 9.0: August 1992

assert (3X)

NAME
assert() - verify program assertion

SYNOPSIS
#include <assert.h>

int assert(int expression);

DESCRIPTION

assert (3X)

This macro is useful for putting diagnostics into programs. When it is executed, if expression is false (zero),
assert () prints:

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of the source file and nnn
the source line number of the assert () statement.

Compiling with the preprocessor option -DNDEBUG (see cpp(l)), or with the preprocessor control statement
#define NDEBUG ahead of the #include <assert .h> statement, stops assertions from being com­
piled into the program.

WARNINGS
The expression argument used by assert () in compatibility mode cannot contain string literals or dou­
ble quotes without escapes.

SEE ALSO
cpp(l), abort(3C).

STANDARDS CONFORMANCE
assert (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -1- 377

I

I

AStopAudio (aX) Series 700 Only AStopAudio (ax)

NAME
AStopAudio - stop specified audio transaction

SYNOPSIS
#include <audio/Alib.h>

void AStopAudio (
Audio • ""'audio,
ATransID xid,
AStopMode mode,
ATransStatus *trans_status_return,
long *status_return

) i

DESCRIPTION
AStopAudio () stops the transaction specified in xid. A stopped transaction cannot be resumed.

audio

xid

mode

specifies the Audio structure associated with this connection.

specifies the transaction ID that was returned by ACreateSBucket () or
ALoadAFile ().

specifies the stop mode: ASMLinkedTrans, ASMThisTrans, or ASMEndLoop.

To stop the current and subsequent transactions in a linked list, use ASMLink­
edTrans and specify the first transaction in the linked list as xid. The current and
subsequent transactions in the linked list cannot be resumed after this stop.

To stop only the current transaction in a linked list, use ASMThisTrans. The
specified transaction stops immediately, even if it is in the middle of a loop, and the
remaining transactions in the linked list continue immediately.

To stop a looping transaction, use ASMEndLoop. The specified transaction stops at
the end of the current loop. If the loop transaction is in a linked list, the remaining
transactions continue.

If xid is not in a linked list, ASML inkedTrans () has the same effect as ASMThi s­
Trans.

trans_statusJeturn receives the returned status value. Setting this argument to NULL prevents the data
from being collected and returned, which may enhance performance.

statusJeturn receives the returned status of the operation unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn

o AENoError
2 AEBadAudio
3 AEBadValue

15 AEBadTransactionID

EXAMPLES

378

The following example stops the transaction identified by xid, sets mode to stop the specified transaction,
passes NULL for trans_stat, and sets up status to receive an error status.

Audio *audioi /* audio connection */
ATransID xidi /* transaction ID */
AStopMode smodei /* stop mode */
long statusi /* error status */

/* stop transaction - xid returned from prior call */
smode = ASMThisTransi
AStopAudio(audio, xid, smode, NULL, &status)i

-1- HP-UX Release 9.0: August 1992

AStopAudio (3X) Series 700 Only AStopAudio (3X)

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AStopAudio () was developed by HP.

SEE ALSO
APauseAudio(3X), AResumeAudio(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 379

I

I

AtAddCallback (aX) Series 700 Only AtAddCallback (ax)

NAME
AtAddCallback - add callback procedure for audio toolkit

SYNOPSIS
#include <audio/Alib.h>

void AtAddCallback(
Widget widget,

) ;

char *event,
XtCallbackProc proc,
XtPointer client_data

DESCRIPTION
AtAddCallback () adds a callback for the audio toolkit to use. When the toolkit receives an event, it
checks to see if a callback procedure has been entered for the event. If a procedure has been entered, the
toolkit calls it.

Note that a callback for AuNdataAvailable must be added for a record stream widget operation to
work, and a callback for AuNda taNeeded must be added for a play stream widget operation to work.

widget Name of the widget

event

proc

clienCdata

Event type of the callback. Acceptable values are:

AuNstarted
AuNstopped
AuNpaused
AuNresumed
AuNcompleted

AuNerror
AuNmonitor
AuNpreempted
AuNdataAvailable

AuNdataNeeded
AuNloopstarted
AuNloopstopped
AuNbrokenConnection

Note: AuNBrokenConnection indicates that the connection to the server has been
severed. A callback for this event should arrange for the application to exit gracefully.

Name of the callback procedure.

Data that the client wants to use; can be NULL.

ERRORS
AtAddCallback () does not return an error status.

DEPENDENCIES
This function belongs to the Audio Application Program Interface toolkit. The audio server must run on a
system equipped with audio hardware. To find out whether or not your system has audio hardware, refer
to the hard ware manual provided with your system.

AUTHOR
AtAddCallback () was developed by HP.

SEE ALSO
AtlnitializeO, AuCreatePlay(), AuCreateRecordO, AuInvokePlay(), AuInvokeRecordO.

Using the Audio Application Program Interface.

380 -1- HP-UX Release 9.0: August 1992

Atlnitialize (3X) Series 700 Only Atlnitialize(3X)

NAME
AtInitialize - add audio event handler for this connection

SYNOPSIS
#include <audio/Alib.h>

void Atlnitialize(Audio *a_connection};

DESCRIPTION
Atlnitialize () adds the audio event handler for the specified server connection. The graphical toolkit
must be initialized and AOpenAudio () must be called before calling Atlnitialize () because
AOpenAudio () returns the pointer to the Audio structure for the connection, and Atlnitialize ()
calls XtAddlnput ().

The audio toolkit cannot be used without the graphical toolkit.

a_connection specifies the Audio structure associated with this connection.

ERRORS
Atlnitialize () does not return an error status.

DEPENDENCIES
This function belongs to the Audio Application Program Interface toolkit. The audio server must run on a
system that has audio hardware. To find out whether or not your system has audio hardware, refer to the
hardware manual that accompanies your system.

AUTHOR
Atlnitialize () was developed by HP.

SEE ALSO
AtAddCallbackO, AtRemoveCallbackO, AuCreatePlayO, AuCreateRecordO, AuInvokePlay(),
AtPlayWidgetO, AtRecordWidgetO, AuInvokeRecordO.

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 381

•

•
AtRemoveCallback (3X) Series 700 Only AtRemoveCallback (3X)

NAME
AtRemoveCallback - set callback to NULL

SYNOPSIS
#include <audio/Alib.h>

void AtRemoveCallback(Widget widget, char *event);

DESCRIPTION
AtRemoveCallback () sets to NULL a callback that was added by AtAddCallback () • The
clienCdata field is also set to NULL.

widget Name of the widget.

event Event type of the callback. Acceptable values are:

AuNstarted
AuNstopped
AuNpaused
AuNresumed
AuNcompleted

AuNerror
AuNmonitor
AuNpreempted
AuNdataAvailable

AuNdataNeeded
AuNloopStarted
AuNloopStopped
AuNbrokenConnection

ERRORS
AtRemoveCallback () does not return an error status.

DEPENDENCIES
This function belongs to the Audio Application Program Interface toolkit. The audio server must run on a
system equipped with audio hardware. To find out whether or not your system has audio hardware, refer
to the hardware manual provided with your system.

AUTHOR
AtRemoveCallback () was developed by HP.

SEE ALSO

382

AtInitializeO, AuCreatePlayO, AuCreateRecordO, AuInvokePlayO, AuInvokeRecordO, AuPlayWidgetO,
AuRecordWidgetO.

Using the Audio Application Program Interface.

-1- HP-UX Release 9.0: August 1992

AuCreatePlay(3X) Series 700 Only

NAME
AuCreatePlay - create an audio play widget

SYNOPSIS
#include <audio/Play.h>

extern Widget AuCreatePlay(
Widget parent,

) ;

String *name,
ArgList *arglist,
Cardinal argcount

DESCRIPTION
AuCreatePlay () creates a play widget.

AuCreatePlay(3X)

If you use the streams facility, the toolkit creates a file descriptor in connectFd during AuInvokePlay () .
After calling AuInvokePlay (), retrieve the file descriptor by calling XtSetArg (args [0], AuN­
connectFd, &stream_fd); and then call XtGetValue (playWidget, args, 1) i. Then, use the
select (), read (), and write () system calls.

Call AStopAudio () to stop the transaction. A callback routine for AuNStopped can close () the
file descriptor.

Note that for a play streams operation to work, a callback routine for AuNdataNeeded must be added
using AtAddCallback () .

To enable an application to use a widget after it is created, bind the widget library with the application as
follows:

ldmyJile.o ... -lAt -lAlib

Arguments
parent

name

arglist

Name of the parent widget

Name for this widget

The argument list for the widget

argcount The number of arguments in arglist.

arglist can contain the following:

gain

fileFormat

dataFormat

duration Type

duration

fileName

Volume, in percent of total gain. Acceptable values are from 0 to 100. Default
is system dependent.

Audio file format. Acceptable values are:

AuFAlaw
AuFMulaw
AuFLinear8

AuFLinear80ffset
AuFLinear16
AuFRiff

Default is AuFUnknown.

Audio data format. Acceptable values are:

AuDMulaw AuDLinear16
AuDAlaw AuDLinear8

Default is AuDUnknown .

Duration units. Acceptable values are:

AuSamples AuFullLength

Default is AuFullLength.

AuF Sun
AuFUnknown

AuDLinear80ffset
AuDUnknown

AuMilliseconds

Number of units to play. Acceptable values are -1 to MAX_INT. Default is
-0 (-1, play until notified).

Name of the file to play (must be set prior to invocation of the play widget).
There is no default value.

HP-UX Release 9.0: August 1992 -1- 383

I

I

AuCreatePlay(3X)

384

startTimeType

startTime

pause

stop

audioConnection

streamOrFile

SStream

connectFd

reserved

speaker

link

loop Count

priority

channels

samplingRate

Series 700 Only AuCreatePlay(3X)

Type of start time unit. Acceptable values are AuSamples and AuMil­
liseconds. Default is AuMilliseconds.

Number of units into the file to begin recording. Acceptable values are 0 to
MAX_INT. Default value is 0 (BOF).

Start in paused state. Acceptable values are ON or OFF. Default is OFF.

Stop mode. Acceptable values are:

AuStopLinkTrans
AuStopThisTrans

Default is AuStopNone.

AuStopEndLoopTrans
AuStopNone

Pointer to Audio structure for this connection, returned by AOpenAudio (j.
Specifying a valid pointer for this argument is mandatory; the default value is
NULL, which causes the program to fail.

Source of audio data. Acceptable values are AuStream or AuFile. Default is
AuFile.

Pointer to SStream structure for this AuStream-type widget. Specifying a
valid pointer for this argument is mandatory; the default value is NULL, which
causes the program to fail.

File descriptor ofthe non-blocking connection made for the stream by the toolkit;
created during AuInvokeRecord () .

Speaker choice. Acceptable values are AuInternal or AuExternal.
Default is AuInternal.

name of another play widget; when link is finished playing, the current widget
starts immediately and automatically. Default is NULL.

The link feature enables two or more play widgets to be linked into a continuous
play operation. Follow these steps to link two or more widets:

1. Create widget A with pause ON and with NULL specified in link.

2. Create widget B with pause ON and with A's name specified in link.

3. Repeat step 2 for as many widgets as you want in the chain (creating
C with B's name in link, and so on).

4. Invoke widget A.

Number of times to play this widget. Acceptable values are -1 to MAX INT.
Default is O. Note that a value of -1 specifies an infinite loop.

Priority level of play request. Acceptable values are:

AuUrgent AuNor.ma1 AuHigh AuLow

Default is AuNor.mal.

Number of channels. Acceptable values are 1 or 2. Default is 1.

Number of cycles per second. Most Series 700 systems support the following
values:

5512
8000

Default is 8000.

11025
16000

22050
32000

44100
48000

To double-check the values that your system supports, use ASam­
plingRates ().

Values between 0.995 and 1.0125 times any of the supported values are handled
at the supported rate. Rates outside these tolerances are converted by sound

-2- HP-UX Release 9.0: August 1992

AuCreatePlay(3X)

leftChannel

rightChannel

RETURN VALUE

Series 700 Only AuCreatePlay(3X)

bucket transactions to the nearest supported rate but cause streams transac­
tions to fail and return AEBadSamplingRate.

Gain, in %. Acceptable values are 1 through 100. Default is system depen­
dent.

Gain, in %. Acceptable values are 1 through 100. Default is system depen­
dent.

Upon successful completion, AuCreatePlay () returns the widget ID.

ERRORS
AuCreatePlay () does not return an error status.

DEPENDENCIES
This function belongs to the Audio Application Program Interface widget library. The audio server must
run on a system that has audio hardware. To find out whether or not your system has audio hardware,
refer to the hardware manual that accompanies your system.

AUTHOR
AuCreatePlay () was developed by HP.

SEE ALSO
AtAddCallback(3X), AtInitialize(3X), AtRemoveCallback(3X), AuCreateRecord(3X), AuInvokePlay(3X),
AulnvokeRecord(3X), AuPlayWidget(3X), AuRecordWidget(3X), AuSaveFile(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -3- 385

I

I

AuCreateRecord(3X) Series 700 Only AuCreateRecord(3X)

NAME
AuCreateRecord - create an audio record widget

SYNOPSIS
#include <audio/Record.h>

extern Widget AuCreateRecord(
l'lidget parent,

) ;

String *name,
ArgList *arglist,
Cardinal argcount

DESCRIPTION
AuCreateRecord () creates a record widget.

If the record operation is file-based, the AuNdataAvailable event is returned when all of the data has
been saved in the file. To use this information, add a callback routine for AuNdataAvailable using
AtAddCallback() .

If you use the streams facility, the toolkit creates a file descriptor in connectFd during Aulnvok­
eRecord (). After calling AulnvokeRecord (), retrieve the file descriptor by calling

XtSetArg(args[O], AuNconnectFd, &stream_fd);

and then call

XtGetValue(recordWidget,args,l);.

Then, use the select (), read (), and write () system calls.

After calling AStopAudi0 () to stop the transaction, the application program must retrieve all the data
in the buffer and close () the file descriptor. A callback routine for AuNStopped can include all of
these operations.

Note that for a record streams operation to work, a callback routine for AuNdataAvailable must be
added using AtAddCallback () .

To enable an application to use a widget after it is created, bind the widget library with the application as
follows:

ld my---file .0... -lAt -lAlib

Arguments
parent Name of the parent widget

386

name Name for this widget

arglist The argument list for the widget

argcount The number of arguments in arglist.

arglist can contain the following:

gain Volume, in per cent of total gain. Acceptable values are from 0 through 100.
Default is system-dependent.

fileFormat Audio file format. Acceptable values are:

AuFMulaw AuF Sun
Au FA law AuFLinear8
AuFLinear16 AuFRiff

Default is AuFUnknown.

dataFormat Audio data format. Acceptable values are:

AuDMulaw AuDLinear16
AuDAlaw AuDLinear8

Default is AuDUnknown •

-1-

AuFLinear80ffset
AuFUnknown

AuDLinear80ffset
AuDUnknown

HP-UX Release 9.0: August 1992

AuCreateRecord (3X) Series 700 Only AuCreateRecord (3X)

durationType

duration

fileName

start Time Type

startTime

pause

stop

Duration units. Acceptable values are:

AuSamples AuMilliseconds AuFullLength

Default is AuFullLength.

Number of units to record. Acceptable values are -1 to MAX_INT. Default is
.... 0 (-1, record until notified).

Name of the file to receive the data (must be set prior to invocation of the record
widget). There is no default value.

Type of start time unit. Acceptable values are AuSaJ.Llples and AuMil­
liseconds. Default is AuMilliseconds.

Number of units into the file to begin writing (when the recorded file is saved).
Acceptable values are 0 to MAX_INT. Default value is 0 (BOF).

Start in paused state. Acceptable values are ON or OFF. Default is OFF.

Stop mode. Acceptable values are:

AuStopLinkTrans
AuStopThisTrans

Default is AuStopNone.

AuStopEndLoopTrans
AuStopNone

audioConnection Pointer to Audio structure for this connection, returned by AOpenAUdio ().
Specifying a valid pointer for this argument is mandatory; the default value is
NULL, which causes the program to fail.

streamOrFile

SStream

connectFd

reserved

writeMode

channels

samplingRate

leftChannel

rightChannel

audioln

Source of audio data. Acceptable values are AuStream or AuFi leo Default is
AuFile.

Pointer to SSt ream structure for this AuStream.type widget. Specifying a
valid pointer for this argument is mandatory; the default value is NULL, which
causes the program to fail.

File descriptor of the non-blocking connection made for the stream by the toolkit;
created during AuInvokeRecord () .

Mode for saving data. Acceptable values are:

AuOVerWrite AuInsert
AuTruncAppend

Default is AuOVerWrite.

Number of channels. Acceptable values are 1 or 2. Default is 1.

Number of cycles per second. Most Series 700 systems support the following values:

5512
8000

Default is 8000.

11025
16000

22050
32000

44100
48000

To double check on the values that your system supports, use ASamplingRates () .

Values between 0.995 and 1.0125 times any of the supported values are handled at
the supported rate. Rates outside these tolerances are converted by sound bucket
transactions to the nearest supported rate, but cause streams transactions to fail and
return AEBadSamp 1 ingRate.

Gain, in %. Acceptable values are 1 through 100. Default is system-dependent.

Gain, in %. Acceptable values are 1 through 100. Default is system-dependent.

Line in or monaural microphone. Acceptable values are AuMicrophone or
AuLineIn. Default is AuMicrophone.

HP-UX Release 9.0: August 1992 -2- 387

•

•
AuCreateRecord(3X) Series 700 Only AuCreateRecord (3X)

RETURN VALUE
Upon successful completion, AuCreateRecord () returns the widget ID.

ERRORS
AuCreateRecord () does not return an error status.

DEPENDENCIES
This function belongs to the Audio Application Program Interface widget llbl'alY. The audio server must
run on a system that has audio hardware. To find out whether or not your system has audio hardware,
refer to the hardware manual that accompanies your system.

AUTHOR
AuCreateRecord () was developed by HP.

SEE ALSO
AtAddCallbackO, AtlnitializeO, AtRemoveCallbackO, AuCreatePlay(), AulnvokePlayO, AulnvokeRecordO
AuPlayWidget, AuRecordWidget, AuSaveFileO.

Using the Audio Application Program Interface.

388 -3- HP-UX Release 9.0: August 1992

AulnvokePlay(3X) Series 700 Only AulnvokePlay(3X)

NAME
AuInvokePlay - initiate a widget play operation

SYNOPSIS
#include <audio/Play.h>

extern void AulnvokePlay(Widget widget);

DESCRIPTION
Au InvokeP lay () initiates a widget play operation. A play widget must be created before it can be
invoked. If the application calls AulnvokeP lay () more than once, set up callbacks for AuNs topped
and AuNcompleted. Use these notifications to avoid ovel'lapping with a trailsaction that is still active
from a prior AulnvokeP lay () .

widget the name of a play widget.

ERRORS
AulnvokePlay () does not return an error status.

DEPENDENCIES
This function belongs to the Audio Application Program Interface widget library. The audio server must
run on a system that has audio hardware. To find out whether or not your system has audio hardware,
refer to the hardware manual that accompanies your system.

AUTHOR
AulnvokePlay () was developed by HP.

SEE ALSO
AtAddCallbackO, AtInitializeO, AtRemoveCallback, AuCreatePlayO, AuCreateRecordO, AuInvokeRecordO,
AuPlayWidget, AuRecordWidget, AuSaveFileO.

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 389

I

I

AulnvokeRecord (3X) Series 700 Only AulnvokeRecord(3X)

NAME
AuInvokeRecord - initiate a widget record operation

SYNOPSIS
#include <audio/Record.h>

extern void AulnvokeRecord(Widget widget);

DESCRIPTION
AulnvokeRecord () initiates a widget record operation. A record widget must be created before it can
be invoked. If the application calls this function more than once, set up callbacks for AuNstopped and
AuNcompleted. Use these notifications to avoid overlapping with a transaction that is still active from a
prior AulnvokeRecord () .

widget the name of a record ''1idget.

ERRORS
AulnvokeRecord () does not return an error status.

DEPENDENCIES
This function belongs to the Audio Application Program Interface widget library. The audio server must
run on a system that has audio hardware. To find out whether or not your system has audio hardware,
refer to the hardware manual that accompanies your system.

AUTHOR
AulnvokeRecord () was developed by HP.

SEE ALSO

390

AtAddCallbackO, AtInitializeO, AtRemoveCallbackO, AuCreatePlayO, AuCreateRecordO, AuInvokePlay(),
AuPlayWidget, AuRecordWidget, AuSaveFileO.

Using the Audio Application Program Interface.

-1- HP-UX Release 9.0: August 1992

AUngrabServer(3X) Series 700 Only AUngrabServer(3X)

NAME
AUngrabServer - release server from exclusive use by this connection

SYNOPSIS
#include <audio/Alib.h>

void AUngrabServer (Audio *audio, long *status_return);

DESCRIPTION
AUngrabServer () releases the server from exclusive use by this connection (exclusive use established
by AGrabServer ()).

audio specifies the Audio structure associated with this connection.

status]eturn receives the returned status of the operation unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]etum:

o AENoError
2 AEBadAudio

EXAMPLES
The following example releases the server for general use and sets up status to receive an error status.

Audio *audio; 1* audio connection *1
long status; /* error status */

/* release server for general use */
AUngrabServer(audio, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AUngrabServer () was developed by HP.

SEE ALSO
AGrabServer(3X).

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 391

I

I

AUpdateDataLength (3X) AUpdateDataLength (3X)

NAME
AUpdateDataLength - update a file's header

SYNOPSIS
#include <audio/Alih.h>

void
AUpdateDataLength

Audio
char
AFileFormat
long

* audio,
* pathname,
fileJormat,
* status]eturn) ;

DESCRIPTION
AUpdateDataLength () opens the file specified by pathname (if the specified fileJormat requires data
length or file length information in its header), determines the relevant lengths, writes them to the
appropriate fields and closes the file. If the specified file format does not require a header with a data or file
length field, AUpdateDataLength returns without doing anything.

audio

pathname

fileJormat

status]eturn

specifies the Audio structure associated with this connection.

the pathname of the audio file.

the format of the audio file at pathname.

receives the returned status of the operation, unless it is set to NULL.

ERRORS
If status]etum is not set to NULL, one of the following is returned in status]eturn:

o AENoError
1 AESystemCall
6 AEBadFileFormat
17 AEOutOfMemory

392 -1- HP-UX Release 9.0: August 1992

AUpdateDataLength (3X) AUpdateDataLength (3X)

EXAMPLE
The following example updates header of the SunlNeXT file at /myhome/a_dir/a_file.

AFileFormat
Audio
long

file_fmt;
* audio;
status;

/* file format */
/* audio connection */

/* status */

/* update file header of /myhome/a_dir/a_file with relevant lengths */
file_fmt = AFFSun;
char fname[] = /myhome/a_dir/a_file ;
AUpdateDataLength(audio, fname, file_fmt, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AUpdateDataLength () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -2- 393

•

•
AuPlayWidget (3X) Series 700 Only AuPlayWidget (3X)

NAME
AuPlayWidget - audio play widget

SYNOPSIS
#include <audio/Play.h>

DESCRIPTION
The audio play widget is a member of a new Audio subclass of the X Core widget class.
AuCreatePlay () creates a play widget.

If you use the streams facility, the toolkit creates a file descriptor in connectFd during AuInvokePlay ().
After calling AuInvokePlay (), retrieve the file descriptor by calling

XtSetArg(args[O], AuNconnectFd, &stream_fd)i

then call

XtGetValue(playWidget,args,l)i

The select (), read (), and write () system calls can then be used in the usual manner.

Call AStopAudi0 () to stop the transaction. A callback routine for AuNStopped may close the file
descriptor.

Note that for a play streams operation to work, a callback routine for AuNdataNeeded must be added
using AtAddCallback () .

To enable an application to use a widget after it is created, bind the widget library with the application as
follows:

ld my Jile .0... -lAt -lAl ib

RESOURCES

394

gain

fileFormat

dataFormat

durationType

duration

fileName

startTimeType

start Time

pause

stop

Volume, in per cent of total gain. Acceptable values are from 0 to 100. Default is
system-dependent.

Audio file format. Acceptable values are:

AuFMulaw AuFLinear16 AuFLinear8 AuFLinear80ffset
AuFAlaw AuFSun AuFRiff AuFUnknown

Default is AuFUnknown.

Audio data format. Acceptable values are:

AuDMulaw AuDLinear16 AuDLinear80ffset
AuDAlaw AuDLinear8 AuDUnknown

Default is AuDUnknown.

Duration units. Acceptable values are:

AuSamples AuMilliseconds

Default is AuFullLength.

AuFullLength

Number of units to play. Acceptable values are -1 to MAX_INT. Default is -0 (-1,
play until notified).

Name of the file to play (must be set prior to invocation of the play widget). There is
no default value.

Type of start time unit. Acceptable values are AuSamples and AuMil­
liseconds. Default is AuMilliseconds.

Number of units into the file to begin recording. Acceptable values are 0 to
MAX_I NT . Default value is 0 (BOF).

Start in paused state. Acceptable values are ON or OFF. Default is OFF.

Stop mode. Acceptable values are:

-1- HP-UX Release 9.0: August 1992

AuPlayWidget (3X)

audioConnection

streamOrFile

SStream

connectFd

reserved

speaker

link

loopCount

priority

channels

samplingRate

le{tChannel

rightChannel

Series 700 Only

AuStopLinkTrans
AuStopThisTrans

Default is AuStopNone.

AuStopEndLoopTrans
AuStopNone

AuPlayWidget(3X)

Pointer to Audio structure for this connection, returned by AOpenAudio (). Speci­
fying a valid pointer for this argument is mandatory; the default value is NULL, which
causes the program to fail.

Source of audio data. Acceptable values are AuStream or AuFile. Default is
AuFile,

Pointer to SStream structure for this AuStream-type widget. Specifying a valid
pointer for this argument is mandatory; the default value is NULL, which causes the
program to fail.

File descriptor of the non-blocking connection made for the stream by the toolkit;
created during AulnvokeRecord () .

Speaker choice. Acceptable values are Aulnternal or AuExternal. Default is
Aulnternal.

name of another play widget; when link is finished playing, the current widget starts
immediately and automatically. Default is NULL.

The link feature enables two or more play widgets to be linked into a continuous play
operation. Follow these steps to link two or more widets:

1. Create widget A withpause ON and with NULL specified in link.

2. Create widget B with pause ON and with A's name specified in link.

3. Repeat step 2 for as many widgets as you want in the chain (creating C
with B's name in link, and so on).

4. Invoke widget A.

Number of times to play this widget. Acceptable values are -1 to MAX_INT.
Default is o. Note that a value of -1 specifies an infinite loop.

Priority level of play request. Acceptable values are:

AuUrgent AuNor.mal
AuHigh AuLow

Default is AuNormal.

Number of channels. Acceptable values are 1 or 2. Default is 1.

Number of cycles per second. The values that are supported by most Series 700 sys­
tems are:

5512
8000

11025
16000

Default is 8000.

22050
32000

44100
48000

To double check on the values that your system supports, use ASamplingRates ().
Values between 0.995 and 1.0125 times any of the supported values are handled at
the supported rate. Rates outside these tolerances are converted by sound bucket
transactions to the nearest supported rate, but cause streams transactions to fail and
return AEBadSampl ingRate.

Gain, in percent. Acceptable values are 1 through 100. Default is system­
dependent.

Gain, in percent. Acceptable values are 1 through 100. Default is system­
dependent.

HP-UX Release 9.0: August 1992 -2- 395

•

•
AuPlayWidget (3X) Series 700 Only AuPlayWidget (3X)

DEPENDENCIES
This widget belongs to the Audio Application Program Interface widget library. The audio server must run
on a system that has audio hardware. To find out whether or not your system has audio hardware, refer to
the hardware manual that accompanies your system.

SEE ALSO

396

AtAddCallbackO, AtInitializeO; AtRemoveCallbackO, AuCreateRecordC), AuInvokePlayO, Aulnvok­
eRecordO, AuRecordWidget, AuSaveFileO.

Using the Audio Application Program Interface.

-3- HP-UX Release 9.0: August 1992

AuRecordWidget (ax) Series 700 Only AuRecordWidget (ax)

NAME
AuRecordWidget - audio record widget

SYNOPSIS
#include <audio/Record.h>

DESCRIPTION
The audio record widget is a member of the new Audio subclass of the X Core widget class.

If the record operation is file-based, the AuNdataAvailable event is returned when all of the data has
been saved in the file. To use this information, add a callback routine for AuNdataAvailable using
AtAddCallback () .

If you use the streams facility, the toolkit creates a file descriptor in connectFd during AuInvok­
eRecord (). After calling AuInvokeRecord (), retrieve the file descriptor by calling

XtSetArg(args[O], AuNconnectFd, &stream_fd);

then call

XtGetValue(recordWidget,args,l);.

The select (), read (), and write () system calls can then be used in the usual manner.

Mter calling ASt opAudi 0 () to stop the transaction, the application program must retrieve all the data
in the buffer and close () the file descriptor. A callback routine for AuNStopped can include all of
these operations.

Note that for a record streams operation to work, a callback routine for AuNdataAvailable must be
added using AtAddCallback () .

To enable an application to use a widget after it is created, bind the widget library with the application as
follows:

ld myJile.o ... -lAt -lAlib

RESOURCES
gain

fileFormat

dataFormat

duration Type

duration

fileName

startTimeType

startTime

Volume, in percent of total gain. Acceptable values are from 0 to 10 O. Default is
system-dependent.

Audio file format. Acceptable values are:

AuFMulaw AuFLinear16 AuFLinear8
AuFAlaw AuFSun AuFRiff

Default is AuFUnknown.

Audio data format. Acceptable values are:

AuFLinear80ffset
AuFUnknown

AuDMulaw AuDLinear16 AuDLinear80ffset
AuDAlaw AuDLinear8 AuDUnknown

Default is AuDUnknown.

Duration units. Acceptable values are:

AuSamples AuMilliseconds AuFullLength

Default is AuFullLength.

Number of units to record. Acceptable values are -1 to MAX_INT. Default is ... 0 (-
1, record until notified).

Name of the 'file to receive the data (must be set prior to invocation of the record
widget). There is no default value.

Type of start time unit. Acceptable values are AuSamples and AuMil­
liseconds. Default is AuMilliseconds.

Number of units into the file to begin writing (when the recorded file is saved).
Acceptable values are 0 to MAX_INT. Default value is 0 (BOF).

HP-UX Release 9.0: August 1992 -1- 397

I

I

AuRecordWidget (3X) Series 700 Only AuRecordWidget (3X)

pause

stop

audioConnection

stream Or File

SStream

connectFd

reserved

writeMode

channels

samplingRate

leftChannel

rightChannel

audioIn

Start in paused state. Acceptable values are ON or OFF. Default is OFF.

Stop mode. Acceptable values are:

AuStopLinkTrans AuStopEndLoopTrans
AuStopThisTrans AuStopNone

Default is AuStopNone.

Pointer to Audio structure for this connection, returned by AOpenAUdio (). Speci­
fying a valid pointer for this argument is mandatory. The default value is NULL,
which causes the program to fail.

Source of audio data. Acceptable values are AuStream or AuFile. Default is
AuFile.

Pointer to sstream structure for this AuStream-type widget. Specifying a valid
pointer for this argument is mandatory. The default value is NULL, which causes the
program to fail.

File descriptor of the non-blocking connection made for the stream by the toolkit;
created during AulnvokeRecord () .

Mode for saving data. Acceptable values are:

AuOverWrite AuTruncAppend Aulnsert

Default is AUOverWri te •

Number of channels. Acceptable values are 1 or 2. Default is 1.

Number of cycles per second. Hardware-supported values are

5512
8000

11025
16000

Default is 8000.

22050
32000

44100
48000

Values between 0.995 and 1.0125 times any of the supported values are handled at
the supported rate. Rates outside these tolerances are converted by sound bucket
transactions to the nearest supported rate, but cause streams transactions to fail and
return AEBadSampl ingRate.

Gain, in percent. Acceptable values are 1 through 1 00. Default is system­
dependent.

Gain, in percent. Acceptable values are 1 through 100. Default is system­
dependent.

Line in or mono microphone. Acceptable values are AuMicrophone or AuLineln.
Default is AuMicrophone.

DEPENDENCIES
This widget belongs to the Audio Application Program Interface widget library. The audio server must run
on a system that has audio hardware. To find out whether or not your system has audio hardware, refer to
the hardware manual that accompanies your system.

SEE ALSO

398

AtAddCallbackO, AtInitializeO, AtRemoveCallbackO, AuCreatePlayO, AuInvokePlayO, AuInvokeRecordO,
AuPlayWidget, AuSaveFileO.

Using the Audio Application Program Interface.

-2- HP-UX Release 9.0: August 1992

AuS ave File (aX) Series 700 Only AuSaveFile (aX)

NAME
AuSaveFile - save sound bucket data created by record widget

SYNOPSIS
#include <audio/Record.h>

extern void AuSaveFile(Widget widget);

DESCRIPTION
AuSaveFi Ie () saves into a file the sound bucket data created by a record widget.

After recol'ding, prepare for the AuSaveFile () call by calling XtSetAra () and XtSetValue ().
For example:

XtSetArg(args[O], AuNfileName, path_name);
XtSetValue(recordWidget,args,l);

widget The name of a record widget.

ERRORS
AuSaveFile () does not return an error status.

DEPENDENCIES
This function belongs to the Audio Application Program Interface widget library. The audio server must
run on a system that has audio hardware. To find out whether or not your system has audio hardware,
refer to the hardware manual that accompanies your system.

AUTHOR
AulnvokePlay () was developed by HP.

SEE ALSO
AtAddCallbackO, AtlnitializeO, AtRemoveCallbackO, AuCreatePlayO, AuCreateRecordO, AulnvokePlay(),
AulnvokeRecordO, AuPlayWidgetO, AuRecordWidgetO.

Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 399

I

I

AVendorRelease(3X) Series 700 Only AVendorRelease(3X)

NAME
AVendorRelease - get vendor release number of audio server for this connection

SYNOPSIS
#include <audio/Alib.h>

int AVendorRelease (Audio *audio);

DESCRIPTION
AVendorRelease () returns the vendor release number of the audio server for the connection specified
by audio.

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon successful completion, AVendorRelease () returns the vendor release number of the the audio
server associated with this connection.

ERRORS
AVendorRelease () does not return an error status.

EXAMPLES
The following example returns the vendor release number of the audio server for the connection specified by
audio.

int vendor_rel;
Audio *audio;

/* vendor release number for server */
/* audio connection */

/* get vendor release number for server */
vendor_rel = AVendorRelease(audio};

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AVendorRelease () was developed by HP.

SEE ALSO
AProtocolRevision(3X), AProtocoIVersion(3X), AServer Vendor(3X).

Using the Audio Application Program Interface.

400 -1- HP-UX Release 9.0: August 1992

AWriteAFileHeader(3X) AWriteAFileHeader(3X)

NAME
AWriteAFileHeader - write a header for an audio file

SYNOPSIS
#include <audio/Alib.h>

long
AWriteAFileHeader

Audio
char
AFileFormat

*audio,
*pathname,
lileJormat,

AudioAttributes
long

* audio_attrib utes ,
* status_return

) ;

DESCRIPTION
AWr i teAF i 1 eHeade r () opens the specified file (truncating it to zero if it exists, or creating it if it does
not exist), and writes a file header suitable for the specified file format and attributes.

audio

pathname

fileJormat

audio _attributes

status]eturn

RETURN VALUE

specifies the Audi 0 structure associated with this connection.

the pathname of the audio data file for which a header will be written.

specifies format of the file for which the header will be written. Must be a valid
format (not AFFUnknown).

specifies attributes of the audio file for which the header will be written. Must
be a complete audio attributes structure. The header's data length will be writ­
ten as zero if the duration field of audio_attributes is set to ATTFullLength.

receives the returned status of the operation, unless it is set to NULL.

Upon successful completion, AWri teAFi leHeader () returns the length of the file header.

HP-UX Release 9.0: August 1992 -1- 401

•

•
AWriteAFileHeader(ax) AWriteAFileHeader(ax)

ERRORS
If status]eturn is not set to NULL, one of the following is returned in status]eturn:

o AENoError
1 AESystem Call
6 AEBadFileFormat
7 AEBadDataFormat
17 AEOutOFMemory

EXAMPLE
The following example writes a file header to the file /myhome/a_d1r /a_f 1le. au .

AFileFormat file_fmt; /* file format */
Audio * audio; /* audio connection *1
long header_len; /* length of header */
AudioAttributes

attribs; /* previously defined attributes */
long status; /* status */

/* write a Sun/NeXT file header to /myhome/a_dir/a_file */
char fname[] = /myhome/a_dir/a_file.au ;
file_fmt = AFFSun;
header_len = AWriteAFileHeader(audio, fname, file_fmt,

&attribs, &status);

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AWri teAFileHeader () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

402 -2- HP-UX Release 9.0: August 1992

bessel(3M) bessel(3M)

NAME
jO, j1, jn, yO, y1, yn - Bessel functions

SYNOPSIS
#include <math.h>

double j 0 (double x) ;

double jl (double x) ;

double jn(int n, double x);

double yO (double x) ;

double yl(double x) ;

double yn(int n, double x);

DESCRIPTION
j 0 () and j 1 () return Bessel functions of x of the first kind of orders 0 and 1 respectively.
returns the Bessel function of x of the first kind of order n.

yO () and yl () return the Bessel functions of x of the second kind of orders 0 and 1 respectively.
returns the Bessel function of x of the second kind of order n. The value of x must be positive.

ERRORS
Ilibn.ibm.a

jn()

yn()

Non-positive arguments cause yO (), yl (), and yn () to return the value -HUGE_VAL and to set
errno to EDOM. They also cause a message indicating DOMAIN error to be printed on the standard error
output.

Arguments too large in magnitude cause j 0 (), j 1 (), j n (), yO () , yl () ,and yn () to return 0.0 and
set errno to ERANGE. In addition, a message indicating TLOSS error is printed on the standard error out­
put.

j 0 (), j 1 (), jn (), yO (), yl (), and yn () return NaN and set errno to EDOM when x is NaN or
±INFINITY. In addition, a message indicating DOMAIN error is printed on the standard error output.

These error-handling procedures can be changed with the function matherr(3M).

llibllibM.a
No error messages are printed on the standard error output.

Non-positive arguments cause yO (), yl (), and yn () to return the value NaN and to set errno to
EDOM.

Arguments too large in magnitude cause j 0 (), j 1 (), j n (), yO () , yl () , and yn () to return 0.0 and
set errno to ERANGE.

jOe), jl(), jn(), yo(), yl(), and yn() return NaN and set errno to EDOM when x is NaN or
±INFINITY.

These error-handling procedures can be changed by using the _matherr () function (see matherr(3M)).
Note that _matherr () is provided in order to assist in migrating programs from libm.a to libM.a
and is not a part ofXPG3, ANSI C, or PO SIX.

SEE ALSO
isinf(3M), isnan(3M), matherr(3M).

STANDARDS CONFORMANCE
j 0 () in libm.a: AES, SVID2, XPG2, XPG3
j 0 () in libM.a: AES, XPG3, XPG4

j 1 () in libm.a: AES, SVID2, XPG2, XPG3
j 1 () in libM.a: AES, XPG3, XPG4

j n () in libm.a: AES, SVID2, XPG2, XPG3
jn () in libM.a: AES, XPG3, XPG4

yO () in libm.a: AES, SVID2, XPG2, XPG3
yO () in libM.a: AES, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 403

I

I

bessel(3M)

404

yl () in !ibm.a: AES, SVID2, XPG2, XPG3
yl () in !ibM.a: AES, XPG3, XPG4

yn () in !ibm. a: AES, SVID2, XPG2, XPG3
yn () in libM.a: AES, XPG3, XPG4

bessel(3M)

-2- HP-UX Release 9.0: August 1992

hindresvport (3N) bindresvport(3N)

NAME
bindresvport() - bind socket to privileged IP port

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <netinet/in.h>

int bindresvport(int sd, struct sockaddr_in *sin);

DESCRIPTION
bindresvport () is used to bind a socket descriptor to a privileged IP port; that is, a port number in the
range 0 to 1023. sd is a socket descriptor that was previously defined by a successful call to socket(2). Upon
successful completion of bindresvport () , the sinyort field in the struct pointed to by sin contains the
number of the privileged port bound to the sd socket. Due to the need to protect the port numbers used by
various networking commands, bindresvport () only returns a port number within a smaller subrange
in the range of 0 to 1023.

Only the super-user can bind to a privileged port; this call fails for any other users.

RETURN VALUE
bindresvport () returns 0 if successful. Otherwise it returns -1 and sets errno to indicate the cause
of the error.

ERRORS
bindresvport fails if any of the following conditions are encountered:

[EPFNOSUPPORT] The value specified in the sinJamily field of the sockaddr _in struct was not
AF_lNET.

AUTHOR

[EBADF]

[ENOTSOCK]

[EADDRNOTAV AIL]

[EADDRlNUSE]

[EINVAL]

[EAFNOSUPPORT]

[EACCESS]

[EOPNOTSUPP]

[ENOBUFS]

sd is not a valid descriptor.

sd is not a socket.

The specified address is bad or not available from the local machine.

The specified address is already in use.

The socket is already bound to an address, or the socket has been shut down.

Requested address does not match the address family ofthis socket.

The requested address is protected, and the current user has inadequate per­
mission to access it.

The socket whose descriptor is sd is of a type that does not support address
binding.

Insufficient buffer memory is available.

bindresvp () was developed by Sun Microsystems, Inc.

SEE ALSO
bind(2), socket(2).

HP-UX Release 9.0: August 1992 -1- 405

I

I

blmode(3C) Series 800 Only blmode(3C)

NAME
blopen(), blclose(), blread(), blget(), blset() - terminal block-mode library interface

SYNOPSIS
#include <sys/blmodeio.h>

tnt b1open(int fildes);

int b1close(int bfdes);

int b1read(int bfdes, char *buf, size_t nbyte);

int blget(int bfdes, struct blmodeio *arg);

int b1set(int bfdes, const struct blmodeio *arg);

DESCRIPTION
This terminal library interface allows support of block-mode transfers with HP terminals. Block mode only
affects input processing. Therefore, data is written with the standard write () interface (see write(2».

In character mode, the terminal sends each character to the system as it is typed. However, in block mode,
data is buffered and possibly edited locally in the terminal memory as it is typed, then sent as a block of
data when the [Enter] key is pressed on the terminal. During block-mode data transmissions, the incom­
ing data is not echoed by the interface and no special character processing is performed, other than recog­
nizing a data block terminator character. For subsequent character mode transmissions, the existing ter­
mio state (see termio(7» continues to determine echo and character processing.

Block-mode protocol has two component parts: block-mode handshake and block-mode transmission.

Block-Mode Handshake
At the beginning of a read, a trigger character is sent to the terminal to notify it that the system wants a
block of data (the trigger character, if defined, is sent at the beginning of all reads, whether in character- or
block-mode. It is necessary for block-mode reads to work correctly).

After receiving the trigger character, and when the user has typed all the data into the terminal's memory
and pressed the [Enter] key, the terminal sends an alert character to the system to notify it that the termi­
nal has a block of data to send.

The system might then send user-definable cursor-positioning or other data sequences to the terminal, such
as for cursor-home or lock-keyboard.

The system then sends a second trigger character to the terminal. In response, the terminal transmits the
data block as described in the Block-Mode Transmission section.

Block-Mode Transmission
The second part of the block-mode protocol is the block-mode transmission. After the block-mode
handshake has successfully completed, the terminal transmits the data block to the system. During this
transmission of data, the incoming data is not echoed by the system and no special character processing is
performed, other than recognizing the data block termination character. It is possible to bypass the block­
mode handshake and have the block-mode transmission occur after only the first trigger character is sent,
see CB_BMTRANS below.

It is possible to internlix both character-mode and block-mode data transmissions. If CB_BMTRANS (see
below) is set, all transfers are block-mode transfers. When is not set, character mode transmissions are pro­
cessed as described in termio(7). In this case, if an alert character is received anywhere in the input data,
the transmission mode is automatically switched to block mode for a single transmission. Any data
received before the alert is discarded. The alert character can be escaped with a backslash (\) character.

XONJXOFF Flow Control
To prevent data loss, XONIXOFF flow control should be used between the system and the terminal. The
IXOFF bit (see termio(7» should be set and the terminal strapped appropriately. If flow control is not used,
it is possible for incoming data to overflow and be lost. (Note: some older terminals do not support
XONIXOFF flow control.)

Read Requests

406

Read requests that receive data from block-mode transmissions do not return until the transmission is com­
plete (the terminal has transmitted all characters). If the read is satisfied by byte count or if a data
transmission error occurs, all subsequent data is discarded until the transmission is complete. The read

-1- HP-UX Release 9.0: August 1992

blmode(3C) Series 800 Only blmode(3C)

waits until a terminator character is seen, or until a time interval specified by the system has passed that is
longer than necessary for the number of characters specified.

The data-block-terminator character is included in the data returned to the user, and is included in the byte
count. If the number of bytes transferred by the terminal in a block-mode transfer exceeds the number of
bytes requested by the user, the read returns the requested number of bytes and the remaining bytes are
discarded. The user can determine if data was discarded by checking the last character of the returned
data. If the last character is not the terminator character, then more data was received than was requested
and data was discarded.

The Ero errol' can be caused by several events, including errors in transmission, framing, parity, break, and
overrun, or if the internal timer expires. The internal timer starts when the second trigger character is
sent by the computer, and ends when the terminating character is received by the computer. The length of
this timer is determined by the number of bytes requested in the read and the current baud rate, plus an
additional ten seconds.

User Control of Handshaking
If desired, the application program can provide its own handshake mechanism in response to the alert char­
acter by selecting the OWNTERM mode (see CB_OWNTERM below). With this mode selected, the driver
completes a read request when the alert character is received. No data is discarded before the alert, and
the alert is returned in the data read. The alert character may be escaped with a backslash (\) character.
The second trigger is sent when the application issues the next read.

blmode Control Calls
First, the standard open () call to a tty device must be made to obtain a file descriptor for the subsequent
block-mode control calls (an open () is done automatically by the system for s tdin on the terminal).

int bfdes;

bfdes = blopen (int fildes)
A call to blopen () must be made before any block-mode access is allowed on the specified file
descriptor. blopen () initializes the block-mode parameters as described below. The return
value from blopen () is a block-mode file descriptor that must be passed to all subsequent
block-mode control calls.

int blclose (int bfdes)
A call to blclose () must be issued before the standard close () to ensure proper closure
of the device (see close(2)). Otherwise unpredictable results can occur. The argument bfdes is
the file descriptor returned from a previous blopen () system call.

int blread (int bfdes, char *buf, size_t nbyte)
The blread () routine has the same parameters as the read () sytem call (see read(2)). At
the beginning of a read, the cb_triglc character (if defined) is sent to the device. If
CB_BMTRANS is not set, and no cb_alertc character is received, the read data is processed
according to termio(7). If CB_:SMTRANS is set, or if a non-escaped cb_alertc character is
received, echo is turned off for the duration of the transfer, and no further special character pro­
cessing is done other than that required for the termination character. The argument bfdes is
the file descriptor returned from a previous blopen () system call.

int blget (int bfdes, struct blmodeio *arg)
A call to blget () returns the current values of the blmodeio structure (see below). The
argument bfdes is the file descriptor returned from a previous blopen () system calL

int blset (int bfdes, const struct blmodeio *arg)
A call to blset () sets the block-mode values from the structure whose address is argo The
argument bfdes is the file descriptor returned from a previous blopen () system calL

blmode Structure
The two block-mode control calls, blget () and blset (), use the following structure, defined in
<sys/blmodeio.h>:

#define NBREPLY
struct blmodeio

unsigned long
unsigned char

HP-UX Release 9.0: August 1992

64
{

cb_flags;
cb_triglc;

-2-

1* Modes */
/* First trigger *1

407

I

I

blmode(3C) Series 800 Only blmode(3C)

unsigned char cb_trig2c; /* Second trigger */
unsigned char cb_alertc; /* Alert character */
unsigned char cb_termc; /* Terminating char */
unsigned char cb_replen; /* cb_reply length */
char cb_reply[NBREPLY]; /* optional reply */

} ;

The ch_flags field controls the basic block-mode protocol:

CB_BMTRANS 0000001 Enable mandatory block-mode transmission.
CB_OWNTERM 0000002 Enable user control of handshake.

If CB_BMTRANS is set, all transmissions are processed as block-mode transmissions. The block-mode
handshake is not required and data read is processed as block-mode transfer data. The block-mode
handshake can still be invoked by receipt of an alert character as the first character seen. A blread ()
issued with the CB_BMTRANS bit set causes any existing input buffer data to be flushed.

If CB_BMTRANS is not set, and if the alert character is defined and is detected anywhere in the input
stream, the input buffer is flushed and the block-mode handshake is invoked. The system then sends the
cb_trig2c character to the terminal, and a block-mode transfer follows. The alert character can be
escaped by preceding it with a backslash (\).

If CB_OWNTERM is set, reads are terminated upon receipt of a non-escaped alert character. No input
buffer flushing is performed, and the alert character is returned in the data read. This allows application
code to perform its own block-mode handshaking. If the bit is clear, a non-escaped alert character causes
normal block-mode handshaking to be used.

The initial cb_flags value is all-bits-cleared.

There are several special characters (both input and output) that are used with block mode. These charac­
ters and the initial values for these characters are described below. Any of these characters can be
undefined by setting its value to 0377.

cb_triglc (default DCI) is the initial trigger character sent to the terminal at the beginning of a read
request.

cb_trig2c (default DCI) is the secondary trigger character sent to the terminal after the alert charac­
ter has been seen.

cb_alertc (default DC2) is the alert character sent by the terminal in response to the first trigger char­
acter. It signifies that the terminal is ready to send the data block. The alert character can
be escaped by preceding it with a backs lash ("\").

cb_termc (default RS) is sent by the terminal after the block-mode transfer has completed. It
signifies the end of the data block to the computer.

The cb_replen field specifies the length in bytes ofthe cb_reply field. If set to zero, the cb_reply
string is not used. The cb_replen field is initially set to zero.

The cb_reply array contains a string to be sent out after receipt of the alert character, but before the
second trigger character is sent by the computer. Any character can be included in the reply string. The
number of characters sent is specified by cb_replen. The initial value of all characters in the
cb_reply array is NULL.

RETURNS
If an error occurs, all calls return a value of -1 and errno is set to indicate the error. If no error is
detected, blread () returns the number of characters read. All other calls return 0 upon successful com­
pletion.

During a read, it is possible for the user's buffer to be altered, even if an error value is returned. The data
in the user's buffer should be ignored as it is not complete. The following errors can be returned by the
library calls indicated:

blopenO
[ENOTTy] The file descriptor specified is not related to a terminal device.

blcloseO

408 -3- HP-UX Release 9.0: August 1992

blmode(3C)

[ENOTI'Y]

blreadO
[EDEADLK]

blgetO

blsetO

[EFAULT]

[EINTR]

[EIO]

[ENOTTY]

[ENOTTY]

[EINVAL]

[ENOTTY]

WARNINGS

Series 800 Only blmode(3C)

No previous blopen has been issued for the specified file descriptor.

A resource deadlock would occur as a result ofthis operation (see lockf(2)).

buf points outside the allocated address space. The reliable detection of this error is
implementation dependent.

A signal was caught during the read system call.

An I/O error occured during block-mode data transmissions.

No previous blopen has been issued for the specified file descriptor.

No previous blopen has been issued for the specified file descriptor.

An illegal value was specified in the structure passed to the system.

No previous blopen has been issued for the specified file descriptor.

Once blopen has been called with a file descriptor and returned successfully, that file descriptor should
not subsequently be used as a parameter to the following system calls: close (), dup (), dup2 (),
fcntl (), ioctl (), read(), or select () until a blclose is called with the same file descriptor as
its parameter. Additionally, scanf (), fscanf (), getc (), get char (), fgetc (), and fgetw()
should not be called for a stream associated with a file descriptor that has been used in a blopen () call
but has not been used in a blclose () call. These functions call read (), and calling these routines
results in unpredictable behavior.

AUTHOR
blopen (), blclose (), blread(), blget (), and blset () were developed by HP.

SEE ALSO
termio(7).

HP-UX Release 9.0: August 1992 -4- 409

I

I

bsearch (3C) bsearch (3C)

NAME
bsearch() - binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch(

) ;

const void *key,
const void *base,
size_t nel,
size_t size,
int (*compar) (const void *, const void *)

DESCRIPTION
bsearch () is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a pointer
into a table indicating where a datum may be found. The table must be previously sorted in increasing
order according to a provided comparison function. key points to a datum instance to be sought in the table.
base points to the element at the base of the table. nel is the number of elements in the table. size is the
size of each element in the table. compar is the name of the comparison function, which is called with two
arguments that point to the elements being compared. The function must return an integer less than,
equal to, or greater than zero indicating that the first argument is to be considered less than, equal to, or
greater than the second.

NOTES
The pointers to the key and the element at the base of the table should be of type pointer-to-element, and
cast to type pointer-to-void.

The comparison function need not compare every byte, so arbitrary data can be contained in the elements
in addition to the values being compared.

Although declared as type pointer-to-void, the value returned should be cast into type pointer-to-element.

RETURN VALUE
A NULL pointer is returned if the key cannot be found in the table.

EXAMPLES

410

The example below searches a table containing pointers to nodes consisting of a string and its length. The
table is ordered alphabetically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and prints out the string and
its length, or prints an error message.

#include <stdio.h>

#define TABSIZE 1000

struct node { /* these are stored in the table */
char *string;
int length;

} ;
struct node table[TABSIZE]; /* table to be searched */

struct node *node-ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into */

node.string = str_space;
while (scanf("%s", node. string) 1= EOF) {

-1- HP-UX Release 9.0: August 1992

bsearch (3C) bsearch (3C)

node-ptr = (struct node *)bsearch«void *) (&node),
(void *)table, TABSIZE,
sizeof(struct node), node_compare); I

if (node-ptr != NULL) {
(void)printf("string = %20s, length = %d\n",

node-ptr->string, node-ptr->length);
else {

(void)printf("not found: %s\n", node.string);

}
1* This routine compares two nodes based on an

alphabetical ordering of the string field. *1
int
node_compare (nodel, node2)
struct node *nodel, *node2;
{

return strcmp(nodel->string, node2->string);

WARNINGS
If the table being searched contains two or more entries that match the selection criteria, a random entry is
returned by bsearch () as determined by the search algorithm.

SEE ALSO
hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C).

STANDARDS CONFORMANCE
bsearch (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -2- 411

I

byteorder (3N) byteorder (3N)

NAME
htonl(), htons(), ntohl(), ntohs() - convert values between host and network byte order

SYNOPSIS
#include <netinet/in.h>

unsigned long htonl(unsigned long hostlong);

unsigned short htons(unsigned short hostshort);

unsigned long ntohl(unsigned long netlong);

unsigned short ntohs(unsigned short netshort);

DESCRIPTION
These routines convert 16- and 32-bit quantities between network byte order and host byte oi~der. On HP·
UX systems, network and host byte orders are identical, so these routines are defined as null macros in the
include file <netinet/in.h>.

These routines are most often used in conjunction with Internet addresses and ports as returned by
gethostent () and getservent () (see gethostent(3N) and getservent(3N)). Use these routines to
write portable programs.

AUTHOR
byteorder () was developed by the University of California, Berkeley.

SEE ALSO
gethostent(3N), getservent(3N).

412 -1- HP-UX Release 9.0: August 1992

cachectl (3C) Series 300/400 Only cachectl (3C)

NAME
cachectIO - flush and/or purge the cache

SYNOPSIS
#include <sys/cache.h>

int cachectl(int cachecmd, void *address, size_t length);

DESCRIPTION
cachectl () permits a program to flush or purge data in the data and/or instruction caches. The features
provided by cachectl () are not needed by most programs. It is primarily used for programs that do
dynamic loading or contain self-modifying code. Programs that do dynamic loading or contain self­
modifying code can use the CC_IPURGE request, after the new code has been written to memory, to
ensure that the correct code will be fetched by the instruction cache during execution. The CC_FLUSH,
CC...;..,.PURGE, and CC_EXTPURGE requests should only be used by applications that are highly hardware
dependent and which have detailed knowledge of hardware internals.

The cachecmd parameter specifies what operations to carry out on the cache or chaches. cachecmd should
contain one of the following values, which are defined in <sys / cache. h>:

CC_FLUSH

Purge the cache. Dirty cache entries are discarded without being written to
memory. A "dirty" cache entry is an entry that has been modified, but has not
been written back to the corresponding memory location.

Flush the cache. Dirty cache entries are copied back to the corresponding memory
locations. This operation is the same as CC_PURGE on models that do not have a
copyback cache.

Flush any dirty data cache entries, then purge any instruction cache entries which
are "stale". A "stale" instruction cache entry is an entry that is older than the
corresponding memory location. This can happen if the corresponding memory
location was written to (via the data cache). This operation is useful for self­
modifying code.

The following mask, defined in <sys I cache. h>, can be ORed together with one of the above values in
order to purge the external cache (if one exists) at the same time.

CC_EXTPURGE Purge the external cache (if any).

The address parameter specifies the start address of the area to be flushed and/or purged. If the specified
start address is a null pointer, the operation is applied to the entire cache or caches specified by the
cachecmd parameter. Selective flushing and/or purging is not supported on all models. Some models have
restrictions on the legal values for the address parameter. See DEPENDENCIES for details about specific
hardware.

The length parameter is used only when a start address is specified. It controls the length of the area to be
flushed or purged.

EXAMPLES
The following call to cachectl () requests that the entire data cache be flushed, followed by a purge of
the instruction cache.

cachectl (CC_IPURGE, 0, 0);

RETURN VALUE
cachectl () returns 0 if the operation succeeds. Otherwise it returns -1. The semantics of
cachectl (), when the address parameter contains a bad address, is subject to change and may vary
from machine to machine.

ERRORS
cachectl () fails and sets errno to the value indicated if:

[EINVAL]

DEPENDENCIES
Series 300/400

cachecmd is not a a valid request.

The MC68020 and MC68030 processors do not have a copyback cache. Selective purging is not supported for
the MC68020 and MC68030 processors. Selective purging and flushing is supported on the MC68040 processor,

HP-UX Release 9.0: August 1992 -1- 413

I

I

cachectl (3C) Series 300/400 Only cachectl (3C)

but only under the following conditions:

• If the length parameter is 16, the cache line which includes address is flushed and/or purged (Le.,
the 4 least significant bits of the address are ignored).

• If the length parameter is 4096, the page which includes address is flushed and/or purged (Le., the
12 least significant bits of the address are ignored). If the length parameter is not 16 or 4096, the
operation is applied to the entire cache or caches specified by the cachecmd parameter.

On the MC68040 microprocessor, CC_PURGE instead performs a CC_PLUSH if the length parameter
is not 16 or 4096.

AUTHOR
cachectl () was developed by HP.

414 -2- HP-UX Release 9.0: August 1992

calendar(3X)

NAME
calendar() - return the MPE calendar date

SYNOPSIS
#include <portnls.h>

unsigned short calendar(void);

DESCRIPTION
This routine returns the calendar date in the format:

Bits 0 6 7 15

Year of Century Day of Year

RETURN VALUE
An unsigned short integer containing the calendar format.

WARNINGS

calendar (3X)

This routine is provided for compatibility with MPE, another HP operating system. See portnls(5) for more
information on the use of this routine. Use the Native Language Support routines for C programmers
described on hpnls(5) for HP-UX NLS support.

AUTHOR
calendar () was developed by HP.

SEE ALSO
portnls(5).

HP-UX Release 9.0: August 1992 -1- 415

I

I

catgetmsg(3C)

NAME
catgetmsg() - get message from a message catalog

SYNOPSIS
#include <nl_types.h>

char *catgetmsg(
nl_catd catd,
int set_num,
int msg_num,
char *buf,
size_t buflen

) ;

DESCRIPTION

catgetmsg (3C)

catgetmsg () reads message msg_num in set seCnum from the message catalog indentified by catd, a
catalog descriptor returned from a previous call to catopen () (see catopen(3C». The return message is
stored in bur, a buffer of length buflen bytes.

A message longer than buflen - 1 bytes is silently truncated. The return message is always terminated with
a null byte.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

RETURN VALUE
If successful, catgetmsg () returns a pointer to the message in bur. Otherwise, catgetmsg ()
returns a pointer to an empty (null) string and sets errno to indicate the error. If buflen is greater than
zero, the pointer returned is bur.

ERRORS
catgetmsg () fails and errno is set to the value indicated if one ofthe following conditions is true:

[EBADF]

[EINVAL]

[EINVAL]

[EINVAL]

[EINTR]

[EFAULT]

[ENOMSG]

[ERANGE]

catd is not a valid catalog descriptor.

buflen is less than 1.

set_num is not in the message catalog.

The message catalog identified by catd is corrupted.

A signal was caught during the read () system call.

bur points outside the allocated address space. The reliable detection of this error is
implementation dependent.

msg_num is not in the message catalog.

A message longer than buflen - 1 bytes was truncated.

AUTHOR
catgetmsg () was developed by HP.

SEE ALSO
catopen(3C), catgets(3C), read(2).

STANDARDS CONFORMANCE
catgetmsg (): XPG2

416 -1- HP-UX Release 9.0: August 1992

catgets(3C)

NAME
catgets() - get a program message

SYNOPSIS
#include <nl_types.h>

char *catgets(
nl_catd catd,
int set_num,
int msg_num,
const char *daf_str

) ;

DESCRIPTION

catgets (3C)

catgets () reads message msg_num in set seCnum from the message catalog identified by catd, a catalog
descriptor returned from a previous call to catopen () (see catopen(3C)). def_str points to a default mes­
sage string returned by catgets () if the call fails.

A message longer than NL_TEXTMAX bytes is truncated. The returned message string is always ter­
minated with a null byte. NL_TEXTMAX is defined in <limits .h>.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

RETURN VALUE
If the call is successful, ca tget s () returns a pointer to an internal buffer area containing the null­
terminated message string. If the call is unsuccessful, catgets () returns a pointer to deLstr.

ERRORS
catgets () fails and sets errno if the following condition is encountered:

[EBADF]

[EINTR]

[EINVAL]

[ENOMSG]

[ERANGE]

catd is not a valid catalog descriptor.

A signal was caught during the read(2) system call.

The message catalog identified by catd is corrupted.

Message identified by seCnum or msg_num is not in the message catalog.

A message longer than NL_TEXTMAX bytes was truncated.

catgets () fails and errno if any of the following conditions are encountered:

WARNINGS
ca tget s () returns a pointer to a static area that is overwritten on each call.

AUTHOR
catgets () was developed by HP.

SEE ALSO
catopen(3C), catgetmsg(3C).

STANDARDS CONFORMANCE
catgets (): AES, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 417

I

I

catopen(3C) catopen(3C)

NAME
catopenO, catcloseO - open and close a message catalog for reading

SYNOPSIS
#include <nl_types.h>

nl_catd catopen(const char *name, int oflag)i

1nt catclose(nl_catd catd)i

DESCRIPTION
catopen() opens a message catalog and returns a catalog descriptor. name specifies the name of the
message catalog being opened. A name containing a slash U) specifies a path name for the message cata­
log. Otherwise, the environment variable NLSPATH is used (see environ(5». If NLSPATH specifies more
than one path, ca topen () returns the catalog descriptor for the first path on which it is able to success­
fully open the specified message catalog. If NLSPATH does not exist in the environment, or if a message
catalog cannot be opened for any NLSPATH-specified path, catopen () uses a system-wide default path.
The default is affected by the setting of LANG. name must not contain %N.

A message catalog descriptor remains valid in a process until the process closes it, or until a successful call
to one of the exec () functions. A change in the setting of LANG category has no effect on existing open
catalogs.

If a file descriptor is used to implement message catalog descriptors, the FD_CLOEXEC flag will be set; see
<fcntl.h>.

opag is reserved for future use and should be set to zero (0). The results of setting this field to any other
value are undefined.

catclose () closes the message catalog catd, a message catalog descriptor returned from an earlier suc­
cessful call to ca topen () .

RETURN VALUE
catopen() returns a message catalog descriptor if successful. Otherwise, a value of (nCcatd)-l is
returned and errno is set to indicate the error.

catclose () returns 0 if successful. Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS
ca topen () fails, no message catalog is opened, and e rrno is set for the last path attempted if any of the
following conditions is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[ENOENT]

[EACCES]

[EACCES]

[EMFILE]

[ENAMETOOLONG]

[ENFILE]

The named catalog does not exist.

The path is null.

A component of the path prefix denies search permission.

Read permission is denied for the named file.

The maximum number of file descriptors allowed are currently open.

The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

The system file table is full.

[ENOTDIR] A component of the path prefix is not a directory.

catclose () fails if the following is true:

[EBADF] catd is not a valid open message-catalog descriptor.

WARNINGS
When usingNLSPATH, catopen () does not provide a default value for LANG.

NOTES
catgets () can be used to provide default messages when called following a failed catopen() (see

418 -1- HP-UX Release 9.0: August 1992

catopen(3C) catopen(3C)

catgets(3C)). catgets () returns its def_str parameter ifit is passed an invalid catalog descriptor.

AUTHOR
catopen () was developed by HP.

FILES
lusr 11 ib Inls Message catalog default path. I

SEE ALSO.
catgets(3C), environ(5), <fcntl.h>, <nLtypes.h>.

STANDARDS CONFORMANCE
ca topen () : AES, XPG2, XPG3, XPG4

catclose (): AES, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -2- 419

I

catread(3C) catread (3C)

NAME
catread() - MPEIRTE-style message catalog support

SYNOPSIS
#lnclude <portnls.h>

lnt catread(

\ .
J ,

int fd,
int set_num,
int msg_num,
char *msg_buf,
int buflen,
/* arg, */ ••.

DESCRIPTION
catread () reads message number msg_num of set seCnum in the message catalog identified by fd, a file
descriptor returned from a previous call to open () (see open(2». The return message is stored in buf, a
buffer of length buflen bytes.

The message read from the catalog can have embedded formatting information in the form I [digit]. Excla­
mation marks must be all numbered or all unnumbered. If exclamation marks are numbered, an exclama­
tion mark followed by digit n is replaced by the nth arg. If exclamation marks are unnumbered, they are
replaced by the args in serial order. If there are fewer args than exclamation marks, the results are
undefined. If there are more args than exclamation marks, the excess args are ignored.

A character in a message can be quoted (that is, made to stand for itself) by preceding it with a tilde (-). To
use the special characters I or - in a message, preceed the special character with -.

A message longer than buflen- 1 bytes is silently truncated. The return message is always terminated with
a null byte.

cat read () is provided to support message catalog applications from The HP MPE and RTE operating sys­
tems.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

RETURN VALUE
If successful, catread () returns the length, in bytes, of the formatted message in msg_buf. Otherwise,
if seCnum or msg_num is not found in the catalog, cat read () returns a negative integer.

ERRORS
ca tread () succeeds, but sets errno if the following condition is true:

[ERANGE] Formatted message exceeds buflen -1 bytes.

AUTHOR
catread() was developed by HP.

SEE ALSO
gencat(l), getmsg(3C), hpnls(5).

420 -1- HP-UX Release 9.0: August 1992

cfspeed(3C) cfspeed (3C)

NAME
cfgetospeedO, cfsetospeedO, cfgetispeedO, cfsetispeedO - tty baud rate functions

SYNOPSIS
#include <ter.mios.h>

speed_t cfgetospeed{const struct ter.mios *ter.mios-p);

int cfsetospeed{struct ter.mios *ter.mios-p, speed_t speed);

speed_t cfgetispeed{const struct ter.mios *ter.mios-p);

1nt cfsetispeed(struct ter.mios *ter.mios-p, speeo_t speed);

DESCRIPTION
These functions set and get the input and output speed codes in the termios structure referenced by
termios-p. The termios structure contains these speed codes representing input and output baud rates as
well as other terminal related parameters. Setting the parameters on a terminal file does not become
effective until tcsetattr () is successfully called.

cfgetospeed () returns the output speed code from the termios structure referenced by
termios-p.

cf setospeed () sets the output speed code in the termios structure referenced by termios-p to
speed. The speed code for a baud rate of zero, BO, is used to terminate the con­
nection. If BO is specified, the modem control lines are no longer asserted,
which normally disconnects the line.

cf get i speed () returns the input speed code from the termios structure referenced by termios-p.

cfsetispeed{) sets the input speed code in the termios structure referenced by termios-p to
speed.

RETURN VALUE
cfgetospeed () returns the output speed code from the termios structure referenced by termios-p.

cf get i speed () returns the input speed code from the termios structure referenced by termios-p.

cfsetispeed () and cfsetospeed{) return zero upon successful completion. Otherwise, they return
-1 and set errno to indicate the error.

ERRORS
cf set i speed () and cf setospeed () fail when the following condition is encountered:

[EINVAL] The value of speed is outside the range of possible speed codes as specified in
<ter.mios • h>.

WARNINGS
cf set i speed () and cf setospeed () can be used to set speed codes in the termios structure that are
not supported by the terminal hardware.

SEE ALSO
tcattribute(3C), termio(7).

STANDARDS CONFORMANCE
cfgetispeed{): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

cfgetospeed (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

cfsetispeed{): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

cfsetospeed{): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 421

I

I

chownacl(3C) chownacl (3C)

NAME
chownaclO - change owner and/or group represented in a file's access control list (ACL)

SYNOPSIS
#lnclude <aclllh.h>

vold chownacl(
int nentries,
const struct ac1_entry *ac1,
uid_t o1duid,
gid_t o1dgld,
uid_t newuid,
gid_t newgid

) ;

Remarks:
To ensure continued conformance with emerging industry standards, features described in this manual
entry are likely to change in a future release.

DESCRIPTION
This routine alters an access control list (ACL) to reflect the change in a file's owner or group ID when an old
file is copied to a new file and the ACL is also copied. chownac1 () transfers ownership (that is, it
modifies base ACL entries) in a manner similar to chown () (see chown(2». The algorithm is described
below and also in acl(5).

The nentries parameter is the current number of ACL entries in the ac1 [] array (zero or more; a negative
value is treated as zero). The olduid and oldgid values are the user and group IDs of the original file's
owner, typically the st_uid and st_gld values from stat () (see stat(2». The newuid and newgid
values are the user and group IDs of the new file's owner, typically the return values from geteuld ()
and getegld () (seegeteuid(2) andgetegid(2».

If an ACL entry in ac1 [] has a uid of olduid and a gid of ACL_NSGROUP (that is, an owner base ACL
entry), chownac1 () changes uid to newuid (with exceptions - see below). If an entry has a uid of
ACL_NSUSER and agid of oldgid (that is, a group base ACL entry), chownac1 () changes gid to newgid.
In either case, only the last matching ACL entry is altered; a valid ACL can have only one of each type.

As with chown(2), if the new user or group already has an ACL entry (that is, a uid of newuid and a gid of
ACL_NSGROUP, or a uid of ACL_NSUSER and a gid of newgid), chownac1 () does not change the old
user or group base ACL entry; both the old and new ACL entries are preserved.

As a special case, if olduid (oldgid) is equal to newuid (newgid), chownac1 () does not search ac1 [] for
an old user (group) base ACL entry to change. Calling it with both olduid equal to newuid and oldgid equal
to newgid causes chownac 1 () to do nothing.

Suggested Use
This routine is useful in a program that creates a new or replacement copy of a file whose original was (or
possibly was) owned by a different user or group, and that copies the old file's ACL to the new file. Copying
another user's and/or group's file is equivalent to having the original file's owner and/or group copy and
then transfer a file to a new owner and/or group using chown (). This routine is not needed for merely
changing a file's ownership; chown () modifies the ACL appropriately in that case.

If a program also copies file miscellaneous mode bits from an old file to a new one, it must use chmod ()
(see chmod(2». However, since clunod () deletes optional ACL entries, it must be called before
setac1 () (see setacl(2». Furthermore, to avoid leaving a new file temporarily unprotected, the
clunod () call should set only the file miscellanous mode bits, with all access permission mode bits set to
zero (that is, mask the mode with 07000). The cpac1 () library call encapsulates this operation, and han­
dles remote files appropriately too.

EXAMPLES

422

The following code fragment gets stat () information and the ACL from oldf l1e, transfers ownership of
newf i 1 e to the caller, and sets the revised ACL to newf i 1 e.

#inc1ude <sys/types.h>
#inc1ude <sys/stat.h>
#include <sys/ac1.h>

-1- HP-UX Release 9.0: August 1992

chownacl (3C) chownacl (3C)

AUTHOR

int nentries;
struet ael_entry ael [NACLENTRIES];
struet stat statbuf;

if (stat ("oldfl1e", & statbuf) < 0)
error (•••);

if «nentries = getael ("oldfile", NACLENTRIES, acl» < 0)
error (•••);

chownael (nentrles, acl, statbuf.st_uld, statbuf.st_gld,
geteuid(), getegid(»;

if (setael ("newfile", nentries, acl»
error (•••);

ehownac 1 () was developed by HP.

SEE ALSO
chown(2), getacl(2), getegid(2), geteuid(2), setacl(2), stat(2), acltostr(3C), cpacl(3C), setaclentry(3C),
strtoacl(3C), acl(5).

HP-UX Release 9.0: August 1992 -2- 423

I

I

clearenv(3C) clearenv (3C)

NAME
clearenv - clear the process environment

SYNOPSIS
#include <stdlib.h>

int clearenv(void)i

DESCRIPTION
clearenv () clears the process environment. No environment variables are defined immediately after a
call to clearenv ().

clearenv () modifies the value of the pointer environ. This means that copies of that pointer are invalid
after a call to clearenv ().

RETURN VALUE
Upon successful completion, clearenv() returns zero; otherwise, it returns -1 and sets errno to indi­
cate the error.

ERRORS
clearenv () fails if the following condition is encountered:

[ENOMEM] Failed to free or reallocate memory for the process environment.

SEE ALSO
environ(5), getenv(3C), putenv(3C), <stdlib.h>.

STANDARDS CONFORMANCE
clearenv () : AES

424 -1- HP-UX Release 9.0: August 1992

clock(3C) clock (3C)

NAME
clockO - report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock(void);

DESCRIPTION
clock () returns the amount of CPU time (in microseconds) used since the first call to clock (). The
time reported is the sum of the user and system times of the calling process and its terminated child
processes for which it has executed wait () or system (j (see wait(2) and bj'stem(3S». To determine
the time in seconds, the value returned by clock () should be divided by the value of the macro
CLOCKS_PER_SEC.

The resolution of the clock varies, depending on the hardware and on software configuration.

If the processor time used is not available or its value cannot be represented, the function returns the value
(clock_t)-l.

WARNINGS
The value returned by clock () is defined in microseconds for compatibility with systems that have CPU
clocks with much higher resolution. Because of this, the value returned wraps around after accumulating
only 2147 seconds of CPU time (about 36 minutes).

DEPENDENCIES
Series 300/400

The clock resolution is 20 milliseconds.

Series 700/800
The default clock resolution is 10 milliseconds.

SEE ALSO
times(2), wait(2), system(3S).

STANDARDS CONFORMANCE
clock () : AES, SVID2, XPG2, XPG3, XPG4, ANSI C

HP-UX Release 9.0: August 1992 -1- 425

I

I

clock (3X)

NAME
clockO - return the MPE clock value

SYNOPSIS
#include <portnls.h>

unsigned int clock(void};

DESCRIPTION
This routine returns the clock value in the MPE format.

RETURN VALUE
clock () returns an unsigned int in the format:

Bits 0 7 8 15

Hour of Day I Minute of Hour

Bits 16 23 24 31

Seconds Tenths of Seconds

WARNINGS

clock(3X)

This routine is provided for compatibility with the HP MPE operating system. See portnls(5) for more infor­
mation on the use of this routine. Use the Native Language Support routines for C programmers described
in hpnls(5) for HP-UX NLS support.

AUTHOR
clock () was developed by HP.

SEE ALSO
nlconvclock(3X), nlfmtclock(3X), portnls(5).

426 -1- HP-UX Release 9.0: August 1992

confstr(3C) confstr(3C)

NAME
confstrO - get string-valued configuration values

SYNOPSIS
#include <unistd.h>

size_t confstr(int name, char *buf, size_t len);

DESCRIPTION
confstr () provides a method for applications to get configuration-defined string values. Its use and pur­
pose are similar to sysconf () (see sysconf(2» function, except that it is used where string values rather
than numeric values are returned.

The name parameter can take on the following name values, which are defined in <uni std. lD.

A default value for the PATH environment variable which can be used to locate com­
mands in Section 1 of the HP-UX Reference and utilities defined in the POSIX.2 stan-
dard that are currently implemented in the HP-UX operating system.

If len is not zero, and if name is known and has a configuration-defined value, confstr () copies that
value into the len-byte buffer pointed to by buf. If the string to be returned is longer than len bytes, includ­
ing the terminating null, confstr () truncates the string to len -1 bytes and null-terminates the result.
The application can detect that the string was truncated by comparing the value returned by confstr ()
with len.

If len is zero and buf is NULL, conf s t r () returns the integer value as defined below, but does not return
a string. If len is zero but buf is not NULL, the result is unspecified.

RETURN VALUE
If name is invalid, confstr () returns zero and sets errno to EINVAL.

If name does not have a configuration-defined value, confstr () returns 1 and returns a null string in
buf.

If name has a configuration-defined value, confstr () returns the size of buffer that would be needed to
hold the entire configuration-defined value. If this return value is less than len, the string returned in buf
has been truncated.

FILES
/usr/include/unistd.h

EXAMPLES
The following code fragment calls confstr() to determine the correct buffer size for _CS_PATH, allo­
cates space for this buffer, then gets the configuration value for _CS_PATH.

#include <unistd.h>
#include <stddef.h>

size_t bufsize;
char *buffer;

bufsize=confstr(_CS_PATH,NULL, (size_t)O);
buffer=(char *)malloc(bufsize);
confstr(_CS_PATH,buffer,bufsize);

AUTHOR
confstr () was developed by HP.

SEE ALSO
getconf(1), errno(2), sysconf(2), pathconf(2), fpathconf(2), malloc(3C).

STANDARDS CONFORMANCE
confstr (): XPG4, POSIX.2

HP-UX Release 9.0: August 1992 -1- 427

I

I

conv(3C) conv(3C)

NAME
tou pper(), tolower(), _tou pper(), _tolower(), toascii() - translate characters

SYNOPSIS
#!ne1ude <etype.h>

tnt toupper(!nt e);

tnt tolower(!nt e);

tnt _toupper(!nt e);

tnt _to1ower(!nt e);

tnt toase!!(!nt e);

DESCRIPTION
toupper () and to1ower () have as domain the range of getc(3S): the integers from -1 through 255. If
the argument of toupper () represents a lowercase letter, the result is the corresponding uppercase
letter. If the argument of t610wer () represents an uppercase letter, the result is the corresponding
lowercase letter. All other arguments in the domain are returned unchanged. Arguments outside the
domain cause undefined results.

The macros _toupper () and _to1ower () perform the same translations as toupper () and
to1ower (), but have restricted domains and are faster. The domains of _toupper () and
_t 01 ower () are the integers from 0 through 255. Arguments outside of the domain cause undefined
results.

toase!! () yields its argument with all bits turned off that are not part of a standard 7-bit ASCII charac­
ter; it is intended for compatibility with other systems.

WARNING
toase!! () is supplied both as a library function and as a macro defined in the <etype. h> header. Nor­
mally, the macro version is used. To obtain the library function, either use a #undef to remove the macro
definition or, if compiling in ANSI C mode, enclose the function name in parenthesis or take its address.
The following examples use the library function for toas e!! () :

or

#!ne1ude <etype.h>
#undef toase!!

main ()
(

e1 toase!!(e);

#!ne1ude <etype.h>

maine)
{

tnt (*eonv_fune)();

e1 = (toase!!)(e);

eonv_fune = toase!!;

EXTERNAL INFLUENCES
Locale

The LC_CTYFE category determines the translations to be done.

International Code Set Support
Single-byte character code sets are supported.

428 -1- HP-UX Release 9.0: August 1992

CODv(3C)

AUTHOR
conv () was developed by AT&T and HP.

SEE ALSO
ctype(3C), getc(3S), setlocale(3C), lang(5).

STANDARDS CONFORMANCE
_tolower () : AES, SVID2, XPG2, XPG3, XPG4

_toupper (): AES, SVID2, XPG2, XPG3, XPG4

toascii (): AES, SVID2, XPG2, XPG3, XPC-4

tolower (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

toupper () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -2-

conv(3C)

I

429

I

cpacl(3C) cpacl(3C)

NAME
cpacl(), fcpacl() - copy the access control list (ACL) and mode bits from one file to another

SYNOPSIS
#inc1ude <ac11ih.h>

int cpac1(

) ;

const char *fromf11e,
const char *tofi1e,
mode_t frommode,
uid t fromuid,
gid=t fromgid,
uid_t touid,

int fcpac1(
int fromfd,
int tofd,
mode_t frommode,
uid_t fromuid,
gid_t fromgid,
uid_t touid,
gid_t togid

) ;

Remarks:
To ensure continued conformance with emerging industry standards, features described in this manual
entry are likely to change in a future release.

DESCRIPTION
Both cpac1 () and fcpac1 () copy the access control list and mode bits (that is, file access permission
bits and miscellaneous mode bits; see chmod(2» from one file to another, and transfer ownership much like
chown(2). cpac1 () and fcpac1 () take the following parameters:

• Path names (from/ile and tofile) or open file descriptors (fromfd and tofd).

• A mode value (frommode, typically the st_mode value returned by stat () - see stat(2» con­
taining file miscellaneous mode hits which are always copied, and file access permission bits which
are copied instead of the access control list if either file is remote.

• User ID and group ID of the file (fromuid, touid and fromgid, togid) for transferring ownership.
(Typically fromuid and fromgid are the st_uid and st_gid values returned by stat (), and
touid and togid are the return values from geteuid () and getegid () - see geteuid(2) and
getegid(2).)

When both files are local, the cpac1 () routines copy the access control list and call chownac1 () (see
chownacl(3C» to transfer ownership from the fromfile to the tofile, if necessary.

cpac1 () (fcpac1 (» handles remote copying (via NFS) after recognizing failures of getac1 ()
(fgetacl (» or setac1 () (f setac1 (» (see setacl(2». When copying the mode fromfromfile (fromfd)
to tofile (tofd), cpac1 () copies the entire frommode (that is, the file miscellaneous mode bits and the file
access permission bits) to tofile (tofd) using chmod () (f chmod (». Some of the miscellaneous mode bits
can be turned off; see chmod(2).

cpac 1 () (f cpac 1) can copy an access control list from fromfile (fromfd) to tofile (tofd) without transfer­
ring ownership, but ensuring error checking and handling of remote files. This is done by passing fromuid
equal to touid and fromgid equal to togid (that is, four zeros). For remote files, fromuid, touid, fromgid,
and togid are ignored.

RETURN VALUE

430

If successful, cpacl () and fcpac1 () return zero. If an error occurs, they set errno to indicate the
cause of failure and return a negative value, as follows:

--1 Unable to perform getacl () (fgetacl (» on a localfromfile (from{d).

-1- HP-UX Release 9.0: August 1992

cpac1(3C) cpac1(3C)

--2 Unable to perform ehmod () (fehmod (») on to/ile (tofd) to set its file miscellaneous mode bits.
epael () (fepael (») attempts this regardless of whether a file is local or remote, as long as
fromfile (fromfd) is local.

--3 Unable to perform setael () (f setael (») on a local tofile (tofd). As a consequence, the file's
optional ACL entries are deleted, its file access permission bits are zeroed, and its miscellaneous mode
bits might be altered.

--4 Unable to perform ehmod () (fehmod (») on tofile (tofd) to set its mode. As a consequence, if
fromfile (fromfd) is local, tofile's (tofd's) optional ACL entries are deleted, its access permission bits are
zeroed, and its file miscellaneous mode bits IT'ight be altered, regardless of whether the file is local or
remote.

EXAMPLES
The following code fragment gets stat information on oldfile and copies its file miscellaneous bits and
access control list to newfile owned by the caller. If either file is remote, only the st_mode on old­
file is copied.

AUTHOR

#inelude <sys/types.h>
#inelude <sys/stat.h>

struet stat statbuf;

if (stat ("oldfile", & statbuf) <
error (•••);

if (epael ("oldfile", newfile , statbuf.st_mode,
statbuf.st_uid, statbuf.st_gid, geteuid(), getegid(» < 0)

error (•.•);

epael () and fepael () were developed by HP.

SEE ALSO
chown(2), getacl(2), getegid(2), geteuid(2), setacl(2), stat(2). acltostr(3C), chownacl(3C), setentry(3C),
strtoacl(3C), acl(5).

HP-UX Release 9.0: August 1992 -2- 431

I

I

crtO(3) crtO(3)

NAME
crtO.o, gcrtO.o, mertO.o, frtO.o, gfrtO.o, mfrtO.o - execution startup routines

DESCRIPTION
The C and Pascal compilers link in files crtO .0, gcrt 0.0, or mcrt 0.0 to provide startup capabilities
and environment for program execution. All are identical except that gcrt 0 • 0 and mcrt 0 .0 provide
additional functionality for gprof(1) and prof(1) profiling support respectively, Similarly, the FORTP~"u"l" com~
piler links in either frtO .0, gfrtO .0, ormfrtO .0.

The following symbols are defined in these routines:

__ argc _val ue A variable of type int containing the number of arguments.

__ argv _val ue An array of character pointers to the arguments themselves.

_environ An array of character pointers to the environment in which the program will
run. This array is terminated by a null pointer.

_SYSTEM_ID A variable of type int containing the system id value for an executable program.

DEPENDENCIES
Series 300/400

The symbols above are shown as they are visible from C. To access them from assembly language, add an
additional underscore to the beginning of the symbol. For example, an assembly language program refers
to __ argc_value as ___ argc_value.

Series 300/400 startup files also define the following symbols which are listed as when used from assembly
language. The state of these variables can be determined from C by using other library routines (see
is_hw -present (3 C».

flag_680l0

float_loc

flag_6888l

fpa_Ioc

A variable of type short. Non-zero if the processor is a 68010; zero if not.

A variable of type short. Zero if the HP 98635 floating-point card is present;
non-zero if it is not present.

A constant defining the location in memory of the HP98635 floating-point card.

A variable of type short. Non-zero if the HP68881 floating-point coprocessor is
present; zero if it is not present.

A variable of type short. Non-zero if the HP98248 floating-point card is
present; zero if it is not present.

A constant defining the location in memory of the HP 98248 floating-point card.

Series 700/800

432

All compilers on Series 700 and 800 use the crtO.o, gcrtO.o, or mcrtO.o file; the files frtO.o,
gf rt 0 .0, and mfrt 0 • 0 do not exist.

The Series 700 and 800 start-up files also define the following additional symbols:

$START$ Execution start address.

_start A secondary startup routine for C programs, called from $START$, which in
turn calls main. This routine is contained in the C library rather than the
crtO.o file. For Pascal and FORTRAN programs, this symbol labels the begin­
ning of the outer block (main program) and is generated by the compilers.

$global$ The initial address of the program's data pointer. The startup code loads this
address into general register 27.

$UNWIND_START The beginning ofthe stack unwind table.

$UNWIND_END The end of the stack unwind table.

$RECOVER_START The beginning of the try/recover table.

$RECOVER_END The end of the try/recover table.

The crtO. 0 file defines a null procedure for _mcount, so programs compiled with profiling can be linked
without profiling.

-1- HP-UX Release 9.0: August 1992

crtO(3)

The linker defines the following two symbols:

AUTHOR

__ text_start
__ data_start

The beginning address of the program's text area.
The beginning address of the program's data area.

The features described in this entry originated from AT&T UNIX System III.

SEE ALSO
ec(l), f77(1), Id(l), pe(l), prof(l), gprof(l), pe(l), profil(2), exee(2), is_hw_present(3C), monitor(3C).

HP-UX Release 9.0: August 1992 -2-

crtO(3)

I

433

I

crypt (3C) crypt (3C)

NAME
crypt, setkey, encrypt - generate hashing encryption

SYNOPSIS
#include <unistd.h>

char *crypt(const char *key, const char *salt);

yoid setkey(const char *key);

void encrypt (char block[64], int edflag);

DESCRIPTION
crypt():

crypt () is the password encryption function. It is based on a one way hashing encryption algorithm with
variations intended (among other things) to frustrate use of hardware implementations of a key search.

key is a user's typed password. salt is a two-character string chosen from the set [a-zA-ZO-9. /]; this
string is used to perturb the hashing algorithm in one of 4096 different ways, after which the password is
used as the key to encrypt repeatedly a constant string. The returned value points to the encrypted pass­
word. The first two characters are the salt itself.

setkeyO and encryptO:
The version of the encrypt () function currently shipped on standard HP-UX systems fails when
edflag is non-zero (for decryption) and errno is set to ENOSYS in order to comply with industry stan­
dards and u.s. government regulations. However, fully functional versions are available from HP in certain
geographic areas, and behave as described below:

setkey () and encrypt () provide (rather primitive) access to the actual hashing algorithm. The argu­
ment to setkey () is a character array of length 64 containing only the characters with numerical value
o and 1. If this string is divided into groups of 8, the low-order bit in each group is ignored; this gives a 56-
bit key which is set into the machine. This is the key that is used with the hashing algorithm to encrypt or
decrypt the string block with the function encrypt ().

The block argument to encrypt () is a character array of length 64 containing only the characters with
numerical value 0 and 1. The argument array is modified in place to a similar array representing the bits
of the argument after having been subjected to the hashing algorithm using the key that was set by set­
key (). If ed/lag is zero, the argument is encrypted; if non-zero it is decrypted.

SEE ALSO
crypt(l), login(l), passwd(l), getpass(3C), passwd(4).

WARNINGS
The return value points to static data whose content is overwritten by each call.

STANDARDS CONFORMANCE

434

crypt () : SVID2, XPG2, XPG3, XPG4

encrypt () : SVID2, XPG2, XPG3, XPG4

setkey () : SVID2, XPG2, XPG3, XPG4

-1- HP-UX Release 9.0: August 1992

ctermid (3S) ctermid (3S)

NAME
ctermid() - generate file name for terminal

SYNOPSIS
#include <stdio.h>

char *ctermid(char *s);

DESCRIPTION
ctermid () generates a string that, when used as a pathname, refers to the the controlling terminal for
the current process.

If s is a NULL pointer, the string is stored in an internal static area, the contents of which are overwritten
at the next call to ctermid () , and the address of which is returned. Otherwise, s is assumed to point to a
character array of at least L_ctermid elements; the path name is placed in this array and the value of s
is returned. The constant L_ctermid is defined in the <stdio. h> header file.

If the process has no controlling terminal, the pathname for the controlling terminal cannot be determined,
or some other error occurs, ctermid () returns an empty string.

NOTES
The difference between ctermid () and t tyname () is that t tyname () must be handed a file
descriptor and returns the actual name of the terminal associated with that file descriptor, while cter­
mid() returns a string (fdev/tty) that refers to the terminal if used as a file name. (see ttyname(3C)).
Thus ttyname () is useful only if the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

STANDARDS CONFORMANCE
ctermid () : SVID2, XPG2, XPG3, POSIX.1, FIPS 151-1

HP-UX Release 9.0: August 1992 -1- 435

I

I

ctime(3C) ctime(3C)

NAME
ctimeO, localtimeO, gmtimeO, mktimeO, difftimeO, asctimeO, timezoneO, daylightO, tznameO, tzsetO,
nLctimeO, nLcxtimeO, nl_asctimeO, nLascxtimeO - convert date and time to string

SYNOPSIS
#include <time.h>

char *asctime(const struct tm *timaptr};

char *ctime(const time_t *timer)i

double difftime(time_t time1, time_t timeO)i

struct tm *gmtime(const time_t *timer);

struct tm *localtime(const tims_t *timar);

time_t mktime(struct tm *timeptr)i

extern long timezonei

extern int daylighti

extern char *tzname[2]i

void tzset(void)i

char *nl_asctime(const struct tm *timeptr, const char *format, int langid)i

char *nl_ascxtime(const struct tm *timeptr, const char *format)i

char *nl_ctime(const time_t *timer, const char *format, int langid)i

char *nl_cxtime(const time_t *timer, const char *format)i

DESCRIPTION
asctime () Convert the broken-down time contained in the structure pointed to by timeptr and

return a pointer to a 26-character string in the form:

436

Sun Sep 16 01:03:52 1973\n\0

All the fields have constant width.

ct ime () Convert the calendar time pointed to by timer, representing the time in seconds since
the Epoch, and return a pointer to the local time in the form of a string. Equivalent to:

asctime(localtime(timer»

gmt ime () Convert directly to Coordinated Universal Time (UTe), the time standard used by the
HP-UX operating system. gmtime () returns a pointer to the tm structure described
below.

localtime () Correct for the time zone and any summer time zone adjustments (such as Daylight
Savings Time in the USA), according to the contents of the TZ environment variable (see
Environment Variables below). local time () returns a pointer to the tm structure
described below.

difftime () Return the difference in seconds between two calendar times: timel- timeO.

mktime () Convert the broken-down time (expressed as local time) in the structure pointed to by
timeptr into a calendar time value with the same encoding as that of the values
returned by time(2). The original values of the tm_wday and tmJday components
of the structure are ignored, and the original values of the other components are not res­
tricted to the ranges indicated below.

A positive or zero value for tm_isdst causes mktime () to initially presume that
Daylight Saving Time respectively is or is not in effect for the specified time. A negative
value for tm_isdst causes mktime () to attempt to determine whether Daylight
Saving Time is in effect for the specified time.

Upon successful completion, all the components are set to represent the specified calen­
dar time, but with their values forced to the ranges indicated below. The final value of

-1- HP-UX Release 9.0: August 1992

ctime (3C) ctime (3C)

tm_mday is not set until tm_mon and tmJear are determined. mkt ime ()
returns the specified calendar time encoded as a value of type time_to

If the calendar time cannot be represented, the function returns the value (time_t)-
1 and sets errno to ERANGE. Note the value (time_t)-l also corresponds to the
time 23:59:59 on Dec 31, 1969 (plus or minus time zone and Daylight Saving Time
adjustments). Thus it is necessary to check both the return value and errno to reli­
ably detect an error condition.

tzset () Sets the values of the external variables timezone, daylight, and tzname according to
the contents of the TZ environment variable (independent of any time value), The
functions localtime(), mktime(), ctime(), nl_ctime(), nl_cxtime(),
asctime (), nl_asctime (), nl_ascxtime (), and strftime () (see
strftime(3C» call tzset () and use the values returned in the external variables
described below for their operations. t z s et () can also be called directly by the user.

The <t ime .11> header file contains declarations of all relevant functions and externals. It also contains
the tm structure, which includes the following members:

int tm_sec; /* seconds after the minute - [0,61] */
int tm_min; /* minutes after the hour - [0,59] */
int tm_hour; /* hours - [0,23] */
int tm_mday; /* day of month - [1,31] */
int tm_mon; /* month of year - [0,11] */
int tmJear; /* years since 1900 */
int tm_wday; /* days since Sunday - [0,6] */
int tmJday; /* days since January 1 - [0,365] */
int tm_isdst; /* daylight savings time flag */

The value of tm_isdst is positive if a summer time zone adjustment such as Daylight Savings
Time is in effect, zero if not in effect, and negative if the information is not available.

The external variable timezone contains the difference, in seconds, between UTe and local standard time
(for example, in the u.s. Eastern time zone (EST), timezone is 5*60*60). The external variable day­
light is non-zero only if a summer time zone adjustment is specified in the TZ environment variable. The
external variable t zname [2] contains the local standard and local summer time zone abbreviations as
specified by the TZ environment variable.

EXTERNAL INFLUENCES
Locale

The LC_TIME category determines for the functions nl_cxtime (), nl_ctime (), nl_ascxtime (),
and nl_asctime () the characters to be substituted for the directives described in strteime(3C) as being
from the locale. It also determines the default output format used when a null format string is supplied to
these functions.

The LC_CTYPE category determines the interpretation of the bytes within format as single anellor multi­
byte characters.

Environment Variables
The tzset () function uses the contents of TZ to set the values of the external variables timezone,
daylight , and tzname. TZ also determines the time zone name substituted for the %Z and %z
directives and the time zone adjustments performed by localtime (), mktime (), ctime (),
nl_ctime (), and nl_cxtime (). Two methods for specifying a time zone within TZ are described in
environ(5).

International Code Set Support
(~,,~),~ Single- and multi-byte character code sets are supported.

··W~NINGS
"~I' Return values point to static data whose contents is overwritten by each call.

,~ .~

The range of tm_sec ([0, 61]) extends to 61 to allow for the occasional one or two leap seconds. How­
ever, the "seconds since the Epoch" value returned by time(2) and passed as the timer argument does not
include accumulated leap seconds. The tm structure generated by local time () and gmtime () will
never reflect any leap seconds. Upon successful completion, mkt ime () forces the value of the tm_sec

HP-UX Release 9.0: August 1992 -2- 437

I

I

ctime(3C) ctime(3C)

component to the range [0,59].

ctime (), nl_cxtime (), nl_ctime (), asctime (), nl_ascxtime (), and nl_asctime () are
considered obsolescent and may be removed in a future release. Use of str{time(3C) is recommended in
their stead.

AUTHOR
ctime () was developed by AT&T and HP.

SEE ALSO
time(2), nLinit(3C), getdate(3C), setlocale(3C), strftime(3C), tztab(4), environ(5), hpnls(5), Iang(5), Ian­
ginfo(5).

STANDARDS CONFORMANCE

438

otime (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
asctime (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

daylight: AES, SVID2, XPG2, XPG3, XPG4
difftime (): AES, XPG4, ANSI C

gmtime (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
localtime (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

mktime (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
nl_ascxtime():XPG2

nl_cxt ime () : XPG2
timezone: AES, XPG2, XPG3, XPG4

tzname: AES, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
tzset (): AES, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

-3- HP-UX Release 9.0: August 1992

ctype(3C) ctype(3C)

NAME
isalphaO, isupper(), islowerO, is digitO , isxdigit(), isalnumO, isspaceO, ispunctO, isprintO, isgraphO,
iscntrl(), isascii() - classify characters

SYNOPSIS
#include <ctype.h>

int isalnum(int C)i
int isalpha(int C)i
int iscntrl(int C)i
int isdigit(int c};
int isgraph(int c);
int islower(int c);
int isprint(int C)i
int ispunct(int C)i
int isspace(int C)i
int isupper(int C)i
int isxdigit(int C)i
int isascii(int C)i

DESCRIPTION
These functions classify character-coded integer values according to the rules of the coded character set
identified by the last successful call to set locale () (see setlocale(3C)). Each function is a predicate
returning non-zero for true, zero for false.

If set locale () has not been called successfully, characters are classified according to the rules of the
default ASCII 7 -bit coded character set (see setlocale(3C)).

isascii () is defined on all integer values; the other functions are defined for the range -1 (EOF)
through 255.

The functions return non-zero under the following circumstances; zero otherwise:

isalpha (c) c is a letter.

isupper(c)

islower(c)

isdigit (c)

isxdigit (c)

isalnum(c)

isspace (c)

ispunct (c)

isprint (c)

isgraph(c)

iscntrl (c)

c is an uppercase letter.

c is a lowercase letter.

c is a decimal digit (in ASCII: characters [0-9]).

c is a hexadecimal digit (in ASCII: characters [0-9], [A-F] or [a-f)).

c is an alphanumeric (letters or digits).

c is a character that creates "white space" in displayed text (in ASCII: space, tab,
carriage return, new-line, vertical tab, and form-feed).

c is a punctuation character (in ASCII: any printing character except the space
character (040), digits, letters).

c is a printing character.

c is a visible character (in ASCII: printing characters, excluding the space character
(040)).

c is a control character (in ASCII: character codes less than 040 and the delete
character (0177)).

isascii (c) c is any ASCII character code between 0 and 0177, inclusive.

If the argument to any of these functions is outside the domain of the function, the result is undefined.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the classification of character type.

International Code Set Support
Single-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -1- 439

I

I

ctype(3C) ctype(3C) .

WARNINGS
These functions are supplied both as library functions and as macros defined in the <ctype .h> header.
Normally, the macro versions are used. To obtain the library function, either use a #undef to remove the
macro definition or, if compiling in ANSI-C mode, enclose the function name in parenthesis or take its
address. The following example uses the library functions for isalpha (), isdigit (), and
isspace ():

#include <ctype.h>
#undef isalpha

main()
(

int (*ctype_func) ();

if isalpha(c»

if (isdigit) (c)

ctype_func = isspace;

AUTHOR
ctype () was developed by AT&T and HP.

SEE ALSO
setlocale(3C), ascii(5).

STANDARDS CONFORMANCE

440

isalnum(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
isalpha (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

isasci i () : AES, SVID2, XPG2, XPG3, XPG4
iscntrl (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

isdigi t (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
isgraph(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

is lower () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
isprint (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

ispunct (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
isspace (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

isupper (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
isxdigit (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

-2- HP-UX Release 9.0: August 1992

curses (3X) curses (3X)

NAME
curses() - CRT screen handling and optimization package

SYNOPSIS
#include <curses.h>

cc [flags] file ... -lcurses [libraries]

DESCRIPTION
These routines provide a method for updating screens with reasonable optimization. To initialize curses
routines, initscr () must be called before calling any other routine that deals with windows and
screens. endwin () should be called before exiting. To get character-at-a-time input without echoing,
(most interactive, screen oriented-programs need this) after calling initscr () the program should call:

nonl(); cbreak(); noecho();

The full curses interface permits manipulation of data structures called "windows", which can be
thought of as two-dimensional arrays of characters representing all or part of a CRT screen. A default win­
dow called stdscr is supplied, and others can be created using newwin. Windows are referred to by
variables declared WINDOW *, the type WINDOW is defined in <curses. 11> to be a C structure. These
data structures are manipulated by using functions described below, among which the most basic are
move (), and addch (). (More general versions of these functions are included. Their names begin with
w, allowing the programmer to specify a window. Routines not beginning with waffect stdscr.) Then
refresh () is called, telling the routines to make the user's CRT screen resemble stdscr.

Mini-Curses is a subset of curses which does not allow manipulation of more than one window. To invoke
this subset, use -DKINICURSES as an option to the cc(1) command. This level is smaller and faster than
full curses.

If the environment variable TERKINFO is defined, any program using curses checks for a local terminal
definition before checking in the standard place. For example, if the standard place is
/usr/lib/terminfo, and TERM is set to vt100, the compiled file is normally found in
/usr/lib/terminfo/v/vtlOO (the v is copied from the first letter of vt100 to avoid creation of
huge directories). However, if TERKINFO is set to /usr /mark/myterms, curses first checks
/usr/mark/myterms/v/vt100, then, if that fails, checks /usr/lib/terminfo/v/vt100. This
is useful for developing experimental definitions, or when write permission in /usr /lib/terminfo is
not available.

Functions
All routines listed here can be called when using the full curses. Those marked with an asterisk can be
called when using Mini-Curses.

addch(ch)*

addstr (str) *
attroff (attrs) *
attron (attrs) *
attrset (attrs) *
baudrate () *
beep{) *
box (win, vert, hor)

clear()
clearok(win, bf)
clrtobot ()
clrtoeol ()
cbreak()*
delay_output (ms)*
delch()
deleteln()
delwin (win)
doupdate()
echo () *

HP-UX Release 9.0: August 1992

Add a character to stdscr (similar to put char (); wraps to next line
at end ofline).
Call addch () with each character in str
Turn off attributes named
Turn on attributes named
Set current attributes to attrs
Current terminal speed
Sound beep on terminal
Draw a box around edges of win. vert and hor are chars to use for
vertical and horizontal edges of box
Clear stdscr
Clear screen before next redraw of win
Clear to bottom of stdscr
Clear to end of line on stdscr
Set cbreak mode
Insert ms millisecond pause in output
Delete a character
Delete a line
Delete win
Update screen from all wnooutrefresh ()
Set echo mode

-1- 441

I

I

curses (3X) curses (3X)

442

endwin () *
erase()
erasechar ()
fixterm()
flash()
f1ushinp () *
getch(j
getstr (str)
gettmode()
getyx(win, y, x)
has_ic ()
has_il ()
idlok (win, bn *
inch ()
initscr () *
insch(e)
insertln()
intrflush (win, bf)
keypad (win, bf)
killchar()
leaveok(win, /lag)

End window modes
Erase stdser
Return user's erase character
Restore tty to "in-curses" state
Flash screen or beep
Throwaway any type-ahead characters
Get a char from tty
Get a string through stdser
Establish current tty modes
Get (y, x) co-ordinates
True if terminal can do insert character
True if terminal can do insert line
Use terminal's insertideieie line if bf i= 0
Get char at current (y, x) co-ordinates
Initialize screens
Insert a char
Insert a line
Interrupts flush output if btis TRUE
Enable keypad input
Return current user's kill character
Permissible to leave cursor anywhere after refresh if flag !=O for win;
otherwise cursor must be left at current position.

longname () Return verbose name of terminal
meta (win, /lag) * Allow meta characters on input ifflag != 0
move (y , x) * move to (y, x) on stdser
mvaddch (y, x, eh) move (y, x) then addch (eh)
mvadds t r (y, x, str) Similar ...
mvcu r (oldrow, oldeol, newrow, neweol)

mvdelch (y, x)
mvgetch (y, x)
mvgetstr (y, x)
mvinch (y, x)
mvinsch(y, x, c)
mvprintw(y, x, (mt, args)
mvscanw(y, x, (mt, args)
mvwaddch(win, y, x, eh)
mvwaddstr (win, y, x, str)
mvwdelch(win, y" x)
mvwgetch(win, y" x)
mvwgetstr(win, y" x)
mvwin(win, by" bx)
mvwinch(win, y" x)
mvwi nsch (win, y I x, c)
mvwprintw(win, y, x, (mt, args)
mvwscanw(win, y, x, (mt, args)
newpad (nlines, neols)
newt erm (type, out{d, in{d)

Low-level cursor motion
Similar to delch () , but move (y, x) first
etc.

Create a new pad with given dimensions
Set up new terminal of given type to output on out{d, using input (if
needed) from in{d

newwin (lines, eols, begin-y, begin_x)

n1 () *
nocbreak () *
node lay (win, bf)
noecho () *
nonl ()*
no raw ()*
over lay (win!, win2)

Create a new window
Set new-line mapping
Unset cbreak mode
Enable nodelay input mode through getch ()
Unset echo mode
Unset new-line mapping
Unset raw mode
Overlay win! on win2

-2- HP-UX Release 9.0: August 1992

curses (3X) curses (3X)

overwrite (winl, win2) Overwrite winl on win2
pnoutrefresh (pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)

Similar to prefresh () but with no output until doupdate ()
called

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
Refresh from pad starting with given upper left corner of pad with

printw({mt, argl, arg2, ...)
raw () *

output to given portion of screen
printf () on stdscr
Set raw mode

refresh () * Make current screen look like stdscr
resetterm() * Set tty modes to "out of curses" state
resetty () * Reset tty flags to stored value
saveterm () * Save current modes as "in curses" state
savet ty () * Store current tty flags
scanw({mt, argl, arg2, ...) scanf () throughstdscr
scroll (win) Scroll win one line
scrollok (win, flag) Allow terminal to scroll if/lag != 0
set_term (new) Switch to terminal new
setscrreg (t, b) set user scrolling region to lines t through b
setterm(type) Establish terminal with given type
setupterm(term, (ilenum, errret)
standend () * Clear standout mode attribute
standout () * Set standout mode attribute
subwin(win, lines, cols, beginy, begin_x)

create a subwindow
touchwin (win) Change all of win
traceoff () Turn off debugging trace output
traceon () Turn on debugging trace output
typeahead ({d) Use file descriptor (d to check type-ahead
unctrl (ch) * Printable version of ch
waddch (win, ch) Add char to win
waddstr (win, str) Add string to win
wattroff (win, attrs) Turn off attrs in win
wa t t ron (win, attrs) Turn on attrs in win
wattrset (win, attrs) Set attrs in win to attrs
wclear (win) Clear win
wclrtobot (win) Clear to bottom of win
wclrtoeol (win) Clear to end of line on win
wdelch (win, c) Delete char from win
wdeleteln (win) Delete line from win
werase (win) Erase win
wgetch (win) Get a char through win
wgetstr (win, str) Get a string through win
winch (win) Get char at current (y, x) in win
winsch (win, c) Insert char into win
winsertln (win) Insert line into win
wmove (win, y, x) Set current (y, x) co-ordinates on win
wnoutrefresh (win) Refresh but no screen output
wprintw(win, (mt, argl, arg2, ...)

printf () on win
wrefresh (win) Make screen look like win
wscanw(win, (mt, argl, arg2, ...)

wsetscrreg (win, t, b)
ws tandend (win)
wstandout (win)

Terminfo Level Routines

scanf () through win
Set scrolling region of win
Clear standout attribute in win
Set standout attribute in win

These routines should be called by programs that need to deal directly with the termin{o(4) database. Due
to the low level ofthis interface, its use is discouraged. Initially, setupterm() should be called to define

HP-UX Release 9.0: August 1992 -3- 443

I

I

curses (3X) curses (3X)

the set of terminal-dependent variables defined in terminfo(4). The header files <curses .h> and
<term. h> should be included to get the definitions for these strings, numbers, and flags. Parameterized
strings should be passed through tparm () to instantiate them. All terminfo(4) strings (including the out­
put oftparm(») should be printed with tputs () or putp (). Before exiting, resetterm() should be
called to restore the tty modes. (Programs desiring shell escapes or suspending with control-Z can call
resetterm () before the shell is called and f ixterm () after returning from the shell.)

fixterm() Restore tty modes forterminfo use (called by setupterm (»)

resetterm()

setupterm(term, fd, rc)

tparm(str, pI, p2, ... , p9)

tputs (str, affcnt, putc)

putp (str)

vidputs (attrs, putc)

vidattr (attrs)

set_curterm(term)

del_curterm(term)

Reset tty modes to state before program entry

Read in database. Terminal type is the character string term, all out­
put is to HP-UX System file descriptor fd. A status value is returned
in the integer pointed to bv rc: 1 is normal. The simplest call would
be set upt erm (0, 1, -0) which uses all defaults. -

Instantiate string str with parms Pi'

Apply padding info to string str. affcnt is the number of lines affected,
or 1 if not applicable. putc () is a putchar-like function to which
the characters are passed, one at a time.

A handy function that calls t pu t s (str, 1, putchar) .

output the string to put terminal in video attribute mode attrs, which
is any combination of the attributes listed below. Chars are passed to
putchar-like function putc ().

Like vidputs but outputs through putchar

Set the database pointed to by term

Free the space pointed to by term

Termcap Compatibility Routines
These routines were included as a conversion aid for programs that use termcap. Calling parameters are
the same as for termcap. They are emulated using the terminfo(4) database. Their use in new software is
not recommended because they might be deleted in future HP-UX releases.

tgetent (bp, name) look up termcap entry for name
tgetflag (id) get boolean entry for id
tgetnum(id) get numeric entry for id
tgetstr (id, area) get string entry for id
tgoto (cap, col, row) apply parms to given cap
tputs (cap, affcnt, fn) apply padding to cap calling fn as putchar

Attributes
The following video attributes can be passed to the functions attron (), attroff (), and attrset ().

A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM
A_BOLD
A_BLANK
A_PROTECT
A_ALTCHARSET

Terminal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extra bright or bold
Blanking (invisible)
Protected
Alternate character set

NLS Attributes
The following NLS attributes might be returned by inch () :

A_FIRSTOF2 First byte of 16-bit character
A_SECOF2 Second byte of 16-bit character

Function Keys

444

The following function keys could possibly be returned by getch if keypad has been enabled. Note that not
all of these are currently supported due to lack of definitions in terminfo or the terminal not transmitting a

-4- HP-UX Release 9.0: August 1992

curses (3X) curses (3X)

unique code when the key is pressed.

Name Value
KEY_BREAK 0401
KEY_DOWN 0402
KEY_UP 0403
KEY_LEFT 0404
KEY_RIGHT 0405

Key name
break key (unreliable)
The four arrow keys ...

KEY_HOME 0406 Home key (upward+left arrow)
KEY_BACKSPACE 0407 backspace (unreliable)
KEY_FO 0410 Function keys. Space reserved for up to 64 keys.
KEY_F(n) (KEY_FO+(n»

KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

0510
0511
0512
0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

Window-Change Signal Support

Formula for fn.
Delete line
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send (unreliable)
soft (partial) reset (unreliable)
reset or hard reset (unreliable)
print or copy
home down or bottom (lower left)

All curses routines except the min-curses subset provide SIGWINCH support. Applications that are linked
with curses routines immediately redraw the screen in response to window size changes. The environmen­
tal variables LINES and COLUMNS are also updated so that children processes work with the correct win­
dow size.

If there is a window size reduction, part of the application display is trimmed. The trimmed portion is
saved in internal memory at the time of resize. Moreover, this portion is not affected by the application as
long as it stays invisible. If the application's cursor is trimmed, unexpected behavior results.

On the other hand, if the window is enlarged, any previously trimmed area is re-displayed (and re­
activated). If the window is enlarged beyond its initial size, the extra area is padded with blank spaces.

The default SIGWINCH support can be disabled by installing a custom SIGWINCH signal handler via the
sigvector command (see sigvector(2)).

WARNINGS
HP supports only terminals listed on the current list of HP-supported devices. However, the terminfo(4)
database may contain information for other terminals besides those that are officially supported. If you use
such unsupported terminals, they may not work correctly.

The endwin () routine does not release memory allocated by the ini t ser () routine.
Repeated calls to ini t se r () can cause a program to use more memory than was intended.

Some of these routines call malloe () to allocate memory (see malloc(3C)) and can therefore fail for any
of the reasons described in the malloc(3C) manual entry.

SEE ALSO
sigvector(2), terminfo(4).

HP-UX Release 9.0: August 1992 -5- 445

•

curses (3X) curses (3X)

Using Curses and Terminfo, tutorial in Terminal Control User's Guide.

STANDARDS CONFORMANCE
curses () : SVID2, XPG2, XPG3, XPG4

I

446 -6- HP-UX Release 9.0: August 1992

cuserid(3S) cuserid (3S)

NAME
cuseridO - get character login name of the user

SYNOPSIS
#1nclude <std10.h>

char *cuser1d{char *s);

Remarks:
Because this function behaved differently in previous releases of HP-UX, and behaves differently on other
systems, its use is not recommended. It is provided only for conformance to current industry standards,
and is subject to withdrawal in future releases ofHP-lJX.

For portability and security, application writers and maintainers should search their existing code and
replace references to cuser1d () with equivalent calls to getpwu1d {getu1d ()),
getpwu1d {geteu1d ()), or get log1n (), depending on which user name is desired.

DESCRIPTION
cuser1d () generates a character-string representation of the user name corresponding to the effective
user ID of the process. If 8 is a NULL pointer, this representation is generated in an internal static area, the
address of which is returned. Otherwise,8 is assumed to point to an array of at least L_cuser1d charac­
ters; the representation is left in this array. The constant L_cuser1d is defined in the <std10.h>
header file.

DIAGNOSTICS
If the login name cannot be found, cuser1d () returns a NULL pointer; if 8 is not a NULL pointer, a null
character (\0) is placed at 8[0].

SEE ALSO
geteuid(2), getlogin(3C) getpwuid(3C).

STANDARDS CONFORMANCE
cuser1d () : AES, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 447

I

I

cvtnum(3C) Series 800/400 Only cvtnum(3C)

NAME
cvtnumO - convert string to floating point number

SYNOPSIS
#1nclude <cvtnum.h>

int cvtnum(

, .
I ,

const unsigned char
unsigned char *dst,
int typ,
int rnd,
unsigned char **ptr,
1nt *inx

DESCRIPTION
cvtnum () converts an ASCII character string to a number in one of four floating-point formats: single pre­
cision, double precision, extended precision, or packed decimal string.

The string pointed to by src is the string representation of a standard number, an infinity, or a not-a­
number. A standard number begins with an optional plus or minus sign followed by a string of digits
optionally containing a decimal point. It can then have an optional e or E followed by an optional sign fol­
lowed by an integer. Infinities are represented by INF preceded by an optional plus or minus sign. The
string for a not-a-number is an optional sign followed by NaN followed by any number of hexadecimal
digits enclosed in parentheses.

The result is moved to dst and will be of the size and format as defined for the MC68881 floating-point
coprocessor.

typ indicates the type of conversion to be done. It may be one of four values: C_SNGL, C_DBLE, C_EXT, or
C_DPACK, indicating single precision, double precision, extended precision and packed decimal string,
respectively.

roo specifies the type of rounding mode and can be one of four values: C_NEAR, C_POS_INF,
C_NEG_INF, or C_TOZERO, indicating round to nearest, to positive infinity, to negative infinity, or to zero,
respectively.

If the value of *ptr is not (char **)NULL, a pointer to the character terminating the scan is returned in the
location pointed to by ptr. If no number can be formed, * ptr is set to str.

If inx is not (int *)NULL, cvtnum () uses this to return an indication of the inexactness of the conversion.
A zero indicates exact; a non-zero value, inexact.

RETURN VALUE
If no errors occur or no non-standard conversions are done, cvtnum () returns O. Otherwise, it returns
one of the following:

[C_BADCHAR] Illegal character or unexpected end of string

[C_OVER] Overflow

[C_UNDER]

[C_INFl

[C_QNANl

[C_SNANl

Underflow

Infinity

Quiet NaN

Signalling NaN

cvtnum () does not use errno when reporting errors.

SEE ALSO
scanft3S), strtod(3C), strtol(3C).
MC 68881 Floating-Point Coprocessor User's Manual.

448 -1- HP-UX Release 9.0: August 1992

datalock (3C) datalock(3C)

NAME
datalock() - lock process into memory after allocating data and stack space

SYNOPSIS
#include <sys/lock.h>

int datalock(size_t datsiz, size_t stsiz);

DESCRIPTION
datalock () allocates at least datsiz bytes of data space and stsiz bytes of stack space, then locks the pro­
gram in memory. The data space is allocated by malloc () (see malloc(3C)). After the program is locked,
this space is released by free () (see maUoc(3C)), making it available for use. This allows the calling pro­
gram to use that much space dynamically without receiving the SIGSEGV signal.

The effective user In of the calling process must be super-user or be a member of or have an effective group
ID of a group having PRIV _MLOCK access to use this call (see setprivgrp(2)).

EXAMPLES
The following call to datalock () allocates 4096 bytes of data space and 2048 bytes of stack space, then
locks the process in memory:

datalock (4096, 2048);

RETURN VALUE
datalock () returns -1 if malloc () cannot allocate enough memory or if plock () returned an error
(see plock (2)).

WARNINGS
Multiple datalocks cannot be the same as one big one.

Methods for calculating the required size are not yet well developed.

AUTHOR
datalock () was developed by lIP.

SEE ALSO
getprivgrp(2), plock(2).

HP-UX Release 9.0: August 1992 -1- 449

I

I

dbm(3X) dbm(3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey, dbmclose - database subroutines

SYNOPSIS
1nt dbmclose(vo1d);

DESCRIPTION
These functions maintain key/content pairs in a database. They handle 'lery large (a billion blocks (block =
1024 bytes» databases and can locate a keyed item in one or two file system accesses. This package is
superseded by the newer ndbm(3X) library, which can manage mUltiple databases. The functions can be
accessed by giving the -ldbm option to ld(l) or cc(l).

key and content parameters are described by the datum type. A datum specifies a string of dsize bytes
pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The database is
stored in two files. One file is a directory containing a bit map of keys and has • di r as its suffix. The
second file contains all data and has • pag as its suffix.

Before a database can be accessed, it must be opened by dbmini t. At the time of this call, the files
file .dlr and file .pag must exist. (An empty database is created by creating zero-length .d1r and
.pag files.)

Once open, data stored under a key is accessed by fetch, and data is placed under a key by store. Storing
data on an existing key replaces the existing data. A key (and its associated contents) is deleted by
delete. A linear pass through all keys in a database can be made, in (apparently) random order by using
firstkey and nextkey. firstkey returns the first key in the database. With any key, nextkey
returns the next key in the database. The following code can be used to traverse the database:

for (key = firstkey(); key.dptr != NULL; key = nextkey(key»

A database can be closed by calling dbmclose. A currently open database must be closed before opening
anew one.

DIAGNOSTICS
All functions that return an int indicate errors with negative values and success with zero. Functions
that return a datum indicate errors with a null dptr.

WARNINGS
The dbm functions provided in this library should not be confused in any way with those of a general­
purpose database management system such as ALLBASElHP-UX SQL. These functions do not provide for
multiple search keys per entry, they do not protect against multi-user access (in other words they do not
lock records or files), and they do not provide the many other useful data base functions that are found in
more robust database management systems. Creating and updating databases by use of these functions is
relatively slow because of data copies that occur upon hash collisions. These functions are useful for appli­
cations requiring fast lookup of relatively static information that is to be indexed by a single key.

The • pag file will contain holes so that its apparent size is about four times its actual content. Some older
UNIX systems create real file blocks for these holes when touched. These files cannot be copied by normal
means (such as cp(l), cat(l), tar(l), or ar(l» without expansion.

dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 1024 bytes).
Moreover, all key/content pairs that hash together must fit on a single block. store returns an error if a
disk block fills with inseparable data.

delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by f 1rstkey and next key depends on a hashing function, not on anything
interesting.

A store or delete during a pass through the keys by firstkeyand nextkey may yield unex­
pected results.

AUTHOR
dbm(3X) was developed by the University of California, Berkeley.

SEE ALSO
ndbm(3X).

450 -1- HP-UX Release 9.0: August 1992

devnm(3) devnm(3)

NAME
devnm - map device ID to file path

SYNOPSIS
#include <devnm.h>

int devnm (
mode_t devtype,
dev_t devid,
char *path,
size_t pathlen,
int cache
) i

DESCRIPTION
Given a device type, a device ID, and a string in which to return the result, devnm () maps the type and ID
to a block or character special file (device file) name by searching / dey. It returns in path the full path
name of the first special file encountered with a matching device type and ID. It searches / dey and all its
subdirectories recursively in unspecified order.

The parameters are:

devtype One of the file type values S_IFBLK or S_IFCHR documented in stat(5). Bits other than
those in the S_IFMT set are ignored. Hence the value can be, for example, an st_mode
value returned by stat () (see stat(2».

devid A device ID (major/minor) such as returned by stat () in the st_dev or st_rdev
field.

path Pointer to the buffer in which to return the path name result.

pathlen Tells the available length of the path string, including the NUL terminator character. If
path is too short to hold the full path name, only the first pathlen-1 characters are
returned in a null-terminated string, and the return value is altered (see below).

cache A flag that tells devnm() whether to save file information inmalloc ()'d memory, and
later, whether to use that saved information instead of searching /devagain. A subse­
quent call with cache non-zero can be much faster, especially if / dey is a large tree. How­
ever, the first call with cache true might be slower because devnm() must read all of the
/ dey tree once to create the cache, rather than returning immediately upon finding a
matching file. Any call with cache set to zero ignores the cache, if any, and reads the direc­
tory.

To allow for possible future enhancements, cache should be restricted to the values 0 and l.

There is no way to tell devnm () to free its cached memory.

devnm () ignores unreadable directories and files for which s ta t () fails.

devnm () does not examine alternate (hidden) elements of context-dependent files (CDFs).

RETURN VALUE
devnm () returns one of the following values:

o Successful. The result is in path.

-1 ftw() failed. errno contains the value returned from ftw(). path might be altered if
cache is set. If cache was set for the first time, devnm () freed any memory allocated by the
current call.

-2 No matching special file was found. errno is undefined. path is unaltered.

-3 A matching special file was found, but the name was truncated to fit in path. errno is
undefined.

If malloc () fails, devnm () silently abandons the attempt to do caching in the current or any later call
with cache true, and frees any memory allocated by the current call.

HP-UX Release 9.0: August 1992 -1- 451

I

devnm(3) devnm(3)

AUTHOR
devmn () was created by HP.

SEE ALSO
devnm(lM), stat(2), ftw(3), malloc(3), ttyname(3), stat(5).

I

452 -2- HP-UX Release 9.0: August 1992

dial(3C) dial(3C)

NAME
dial(), undial() - establish an out-going terminal line connection

SYNOPSIS
#include <dial.h>

int dial(CALL call);

void undial(int fd);

DESCRIPTION
dial () returns a file-descriptor for a terminal line onen for read/write. The argument to dial () is a
CALL structure (defined in the <dial.h> header file).A

When finished with the terminal line, the calling program must invoke undial () to release the sema­
phore that has been set during the allocation of the terminal device.

The definition of CALL in the <dial. h> header file is:

typedef struct {
struct tennio
int

*attri
baud;
speedi
*line;
*telno;
modemi
*device;

/* pointer to termio attribute struct */
/* transmission data rate */

int
char
char
int
char

int

CALLi

/* 212A modem: low=300, high=1200 */
/* device name for out-going line */
/* pointer to tel-no digits string */
/* specify modem control for direct lines */
/* Will hold the name of the device used

to make a connection */
/* The length of the device used to

make connection */

CALL elements are as follows:

speed

baud

line

telno

modem

attr

Intended only for use with an outgoing dialed call, in which case its value should be
either 300 or 1200 to identify the 113A modem, or the high- or low-speed setting on the
212A modem. Note that the 113A modem or the low-speed setting of the 212A modem
transmits at any rate between 0 and 300 bits per second. However, the high-speed set­
ting of the 212A modem transmits and receives at 1200 bits per second only.

Desired transmission baud rate. For example, one might set baud to 110 and speed to
300 (or 1200). However, if speed set to 1200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name should be
placed in the line element in the CALL structure. Legal values for such terminal device
names are kept in the Devices file. In this case, the value of the baud element need
not be specified as it will be determined from the Devices file.

A pointer to a character string representing the telephone number to be dialed. Such
numbers can consist only of symbols described below. The termination symbol is sup­
plied by the dial () function, and should not be included in the telno string passed to
dial () in the CALL structure.

Permissible codes
0-9 dial 0-9
* or: dial *
or; dial #

4-second delay for second dial tone
e or < end-of-number
w or = wait for secondary dial tone
f flash off hook for 1 second

Specifies modem control for direct lines. Set to non-zero if modem control is required.

Pointer to a termiostructure, as defined in the <termio .h> header file. A NULL
value for this pointer element can be passed to the dial () function, but if such a

HP-UX Release 9.0: August 1992 -1- 453

I

I

dial(3C) dial(3C)

structure is included, the elements specified in it are set for the outgoing terminal line
before the connection is established. This is often important for certain attributes such
as parity and baud-rate.

device

de v_len

RETURN VALUE

Holds the device name (cuI..) that establishes the connection.

Length of the device name that is copied into the array device.

On failure, a negative value indicating the reason for the failure is returned. Mnemonics for these negative
indices as listed here are defined in the <dial. 11> header file.

INTRPT -1 /* interrupt occurred */
D_HUNG -2 /* dialer hung (no return from write) */
NO_ANS -3 I. no answer within 10 seconds */ I

ILL_BD -4 /* illegal baUd-rate */
A_PROB -s /* automatic call unit (acu) problem (open() failure)
L_PROB -6 /* line problem (openO failure) */
NO_Ldv -7 /* can't open LDEVS file */
DV_NT_A -8 /* requested device not available */
DV_NT_K -9 /* requested device not known */
NO_BD_A -10 /* no device available at requested baud */
NO_BD_K -11 /* no device known at requested baud */

WARNINGS
Including the <dial. h> header file automatically includes the <termio. 11> header file.

The above routine uses <stdio. 11>, which causes unexpected increases in the size of programs that other­
wise do not use standard 110.

DEPENDENCIES
HP Clustered Environment

dial () is not supported on client nodes of an HP Cluster.

Series 300/400
An alarm () (see alarm(2)) system call for 3600 seconds is made (and caught) within the dial ()
module for the purpose of "touching" the LCK.. file and constitutes the device allocation semaphore for
the terminal device. Otherwise, uucp(l) may simply delete the LCK •• entry on its 90-minute clean-up
rounds. The alarm may go off while the user program is in a read () or wr i te () system call, causing
an apparent error return. If the user program expects to be around for an hour or more, error returns from
reads should be checked for (errno==EINTR), and the read possibly reissued.

FILES
/usr/lib/uucp/Devices
/usr /spool/uucp/LCK . • tty-device

SEE ALSO
uucp(1), alarm(2), read(2), write(2), termio(7).

UUCP tutorial in Remote Access User's Guide.

454 -2- HP-UX Release 9.0: August 1992

*/

directory (3C)

NAME
opendir(), readdir(), telldir(), seekdir(), rewinddir(), closedir() - directory operations

SYNOPSIS
#include <dirent.h>

DIR *opendir(const char *dirname};

struct dirent *readdir(DIR *dirp};

long int telldir(DIR *dirp};

void seekdir(DIR *dirp, long 1nt loc};

void rewinddir(DIR *dirp};

int closedir(DIR *dirp);

DESCRIPTION

directory (3C)

This libraty package provides functions that allow programs to read directory entries without having to
know the actual directoty format associated with the file system. Because these functions allow programs
to be used port ably on file systems with different directory formats, this is the recommended way to read
directory entries.

opendir () opens the directory dimame and associates a directory stream with it. opendir ()
returns a pointer used to identify the directory stream in subsequent operations. open­
dir () uses malloe(3C) to allocate memory.

readdir () returns a pointer to the next directory entry. It returns a NULL pointer upon reaching the
end of the directory or detecting an invalid seekdir () operation. See dirent(5) for a
description of the fields available in a directory entry.

telldir () returns the current location (encoded) associated with the directory stream to which dirp
refers.

seekdir () sets the position of the next readdir () operation on the directory stream to which dirp
refers. The loe argument is a location within the directory stream obtained from
telldir (). The position of the directory stream is restored to where it was when
telldir () returned that loe value. Values returned by telldir () are valid only
while the DIR pointer from which they are derived remains open. If the directory stream
is closed and then reopened, the telld1r () value might be invalid.

rewinddi r ()
resets the position of the directory stream to which dirp refers to the beginning of the direc­
tory. It also causes the directory stream to refer to the current state of the corresponding
directory, as a call to opendir () would have done.

closedir () closes the named directory stream, then frees the structure associated with the DIR
pointer.

RETURN VALUE
opendir (), upon successful completion, returns a pointer to an object of type DIR referring to an open

directory stream. Otherwise, it returns a NULL pointer and sets the global variable
errno to indicate the error.

readdir (), upon successful completion, returns a pointer to an object of type struct dirent
describing a directory entry. Upon reaching the end of the directory, readdir () returns
a NULL pointer and does not change the value of errno. Otherwise, it returns a NULL
pointer and sets errno to indicate the error.

telldir (), upon successful completion, returns a long value indicating the current position in the
directory. Otherwise it returns -1 and sets errno to indicate the error.

seekdir () does not return any value, but if an error is encountered, errno is set to indicate the
error.

closedir (), upon successful completion, returns a value of O. Otherwise, it returns a value of -1 and
sets errno to indicate the error.

HP-UX Release 9.0: August 1992 -1- 455

I

I

directory (3C) directory (3C)

ERRORS
opendir () fails if any of the following conditions are encountered:

[EACCES]

[EFAULT]

[ELOOP]

[EMFILE]

[ENAMETOOLONG]

[ENFILE]

[ENOENT]

[ENOMEM]

[ENOTDIR]

Search permission is denied for a component of dirname, or read permission is
denied for dirname.

dirname points outside the allocated address space of the process. The reliable
detection oi this error is implementation dependent.

Too many symbolic links were encountered in translating the path name.

Too many open file descriptors are currently open for the calling process.

A component of dirname exceeds PATH_MAX bytes, or the entire length of dir­
name exceeds PATH_MAX - 1 bytes while _POSIX_NO_TRUNC is in effect.

Too many open file descriptors are currently open on the system.

A component of dimame does not exist.

malloe () failed to provide sufficient memory to process the directory.

A component of dimame is not a directory.

[ENOENT] The dirname argument points to an empty string.

readdir () might fail if any of the following conditions are encountered:

[EBADF] dirp does not refer to an open directory stream.

[ENOENT] The directory stream to which dirp refers is not located at a valid directory
entry.

[EF AULT] dirp points outside the allocated address space of the process.

telldir () might fail if any of the following conditions are encountered:

[EBADF] dirp does not refer to an open directory stream.

[ENOENT] dirp specifies an improper file system block size.

seekdir () might fail if the following condition is encountered:

[ENOENT] dirp specifies an improper file system block size.

elosedir () might fail if any of the following-conditions are encountered:

[EBADF] dirp does not refer to an open directory stream.

[EFAULT] dirp points outside the allocated address space of the process.

rewinddi r () might fail if any of the following conditions are encountered:

[EBADF] dirp does not refer to an open directory stream.

[EFAULT] dirp points outside the allocated address space of the process.

EXAMPLES

456

The following code searches the current directory for an entry name:

DIR *dirp;
struet dirent *dp;

dirp = opendir(".");
while «dp = readdir(dirp» 1= NULL) {

}

if (stremp(dp->d_name, name) 0)
(void) elosedir(dirp);
return FOUND;

(void) elosedir(dirp);
return NOT_FOUND;

-2- HP-UX Release 9.0: August 1992

directory (3C) directory (3C)

WARNINGS
readdi r () and getdi rent r i es () (see getdirentries(2) are the only ways to access remote NFS direc­
tories. Attempting to read a remote directory via NFS by using read () returns -1 and sets errno to
EISDIR (see read(2».

APPLICATION USAGE
The header file required for these functions and the type of the return value from readdir () has been
changed for compatibility with System V Release 3 and the X/Open Portability Guide. See ndir(5) for a
description of the header file <ndir. h>, which is provided to allow existing HP-UX applications to compile
unmodified.

New applications should use the <di rent. h> header file for portability to System V and XlOpen systems.

AUTHOR
directory was developed by AT&T, HP, and the University of California, Berkeley.

SEE ALSO
close(2), getdirentries(2), Iseek(2), open(2), read(2), dir(4), dirent(5), ndir(5).

STANDARDS CONFORMANCE
closedir () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
opendir (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

readdir (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
rewinddir (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

seekdir () : AES, XPG2, XPG3, XPG4
telldir (): AES, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -3- 457

I

I

div(3C) div(3C)

NAME
div(), ldiv() - integer division and remainder

SYNOPSIS
#include <stdlib.h>

div_t div(int numer, int denom)i

ldiv_t ldiv(long int numer, long int denom)i

DESCRIPTION
dive)

ldiv()

WARNINGS

Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the sign of the resulting quotient is that of
the algebraic quotient, and the magnitude of the resulting quotient is the largest integer
less than the magnitude of the algebraic qllotient. If the result can be represented, the
result is returned in a structure of type div_t (defined in <stdlib.h» having
members quot and rem for the quotient and remainder respectively. Both members have
type int and values such that quot x denom + rem = numer. If the result cannot be
represented, the behavior is undefined.

Similar to di v () , except that the arguments each have type long int and the result is
returned in a structure of type ldiv_t (defined in <stdlib.h» having long int
members quot and rem for the quotient and remainder respectively.

Behavi()r is undefined if denom is zero.

SEE ALSO
floor(3M).

STANDARDS CONFORMANCE
di v (): AES, XPG4, ANSI C

ldi v () : AES, XPG4, ANSI C

458 -1- HP-UX Release 9.0: August 1992

drand48 (3C) drand48(3C)

NAME
drand48(), erand48(), Irand48(), nrand48(), mrand480, jrand48(), srand48(), seed48(), Icong48() - gen­
erate uniformly distributed pseudo-random numbers

SYNOPSIS
#include <stdlib.h>

double drand48(void);

double erand48(unsigned short int xsubi[3]);

long lnt Irand48{void),

long int nrand48(unsigned short int xsubi[3]);

long int mrand48(void);

long int jrand48(unsigned short int xsubi[3]);

void srand48(long int seedval);

unsigned short int *seed48 (unsigned short int seed16v[3]);

void lcong48(unsigned short lnt param[7]);

DESCRIPTION
This family of functions generates pseudo-random numbers using the well-known linear congruential algo­
rithm and 48-bit integer arithmetic.

In the following discussion, the formal mathematical notation [0.0, 1.0) indicates an interval including 0.0
but not including 1.0.

drand48 () and erand48 () return non-negative double-precision floating-point values uniformly distri­
buted over the interval [0.0, 1.0).

lrand48 () and nrand48 () return non-negative long integers uniformly distributed over the interval
[0, 231

).

mrand48 () and j rand4 8 () return signed long integers uniformly distributed over the interval
[_231 , 231).

srand48 (), seed48 (), and lcong48 () are initialization entry points, one of which should be invoked
before either drand4 8 (), lrand48 (), or mrand48 () is called. (Although it is not recommended prac­
tice, constant default initializer values are supplied automatically if drand48 (), lrand48 (), or
mrand48 () is called without a prior call to an initialization entry point.) erand48 () , nrand48 () , and
j rand4 8 () do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi' according to the linear
congruential formula

Xn+l = (aXn +c) mod m n~O

The parameter m=248
; hence 48-bit integer arithmetic is performed. Unless lcong48 () has been

invoked, the multiplier value a and the addend value c are given by

a = 5DEECE66D 16 = 273673163155 8

C = B 16 = 13 8 ,

The value returned by any of the functions drand48 (), erand48 (), lrand48 (), nrand48 (),
mr and4 8 (), or j r and4 8 () is computed by first generating the next 48-bit Xi in the sequence. Then the
appropriate number of bits, according to the type of data item to be returned, are copied from the high-order
(leftmost) bits of Xi and transformed into the returned value.

The functions drand48 () , 1 rand4 8 () ,and mrand48 () store the last 48-bit Xi generated in an inter­
nal buffer; that is why they must be initialized prior to being invoked. The functions erand48 () ,
nrand48 (), and j rand4 8 () require the calling program to provide storage for the successive Xi values
in the array specified as an argument when the functions are invoked. That is why these routines do not
have to be initialized; the calling program merely has to place the desired initial value of Xi into the array
and pass it as an argument. By using different arguments, erand48 () , nrand48 (), and j rand4 8 ()
allow separate modules of a large program to generate several independent streams of pseudo-random

HP-UX Release 9.0: August 1992 -1- 459

I

I

drand48 (3C) drand48 (3C)

numbers; i.e., the sequence of numbers in each stream do not depend upon how many times the routines
have been called to generate numbers for the other streams.

The initializer function srand48 () sets the high-order 32 bits of X; to the 32 bits contained in its argu­
ment. The low-order 16 bits of Xi are set to the arbitrary value 330E16•

The initializer function seed48 () sets the value of Xi to the 48-bit value specified in the argument array.
In addition, the previous value of Xi is copied into a 48-bit internai buffer, used oniy by seed48 (), and a
pointer to this buffer is the value returned by seed4 8 (). This returned pointer, which can just be ignored
if not needed, is useful if a program is to be restarted from a given point at some future time - use the
pointer to get at and store the last Xi value, and then use this value to reinitialize via seed48 () when
the program is restarted.

The initialization function lcong4 8 () allows the user to specify the initial 1(, the multiplier value a, and
the addend value c. Argument array elements param[0-2] specify Xi' param[3-5] specify the multiplier a,
andparam[6] specifies the 16-bit addend c. After lcong48 () has been called, a subsequent call to either
srand48 () or seed48 () restores the "standard" multiplier and addend values, a and c, specified above.

SEE ALSO
rand(3C).

STANDARDS CONFORMANCE

460

drand48 () : AES, SVID2, XPG2, XPG3, XPG4
erand48 () : AES, SVID2, XPG2, XPG3, XPG4

j rand4 8 () : AES, SVID2, XPG2, XPG3, XPG4
lcong48 () : AES, SVID2, XPG2, XPG3, XPG4

lrand48 () : AES, SVID2, XPG2, XPG3, XPG4
mrand48 () : AES, SVID2, XPG2, XPG3, XPG4

nrand48 () : AES, SVID2, XPG2, XPG3, XPG4
seed48 () : AES, SVID2, XPG2, XPG3, XPG4

srand48 () : AES, SVID2, XPG2, XPG3, XPG4

-2- HP-UX Release 9.0: August 1992

ecvt(3C) ecvt(3C)

NAME
ecvt(), fcvt,() gcvt,() nl...,gcvt() - convert floating-point number to string

SYNOPSIS
char *ecvt(double value, size_t ndigit, int *decpt, int *sign);

char *fcvt(double value, size_t ndigit, int *decpt, int *sign);

char *gcvt(double value, size_t ndigit, char *buf);

char *nl_gcvt(double value, size_t ndigit, char *buf,

DESCRIPTION

int langid);

ecvt ()

fcvt ()

gcvt ()

nl_gcvt ()

Converts value to a null-terminated string of ndigit digits and returns a pointer to the string.
The high-order digit is non-zero, unless the value is zero. The low-order digit is rounded. The
position of the radix character relative to the beginning of the string is stored indirectly
through decpt (negative means to the left of the returned digits). The radix character is not
included in the returned string. If the sign of the result is negative, the word pointed to by
sign is non-zero, otherwise it is zero.

One of three non-digit characters strings could be returned if the converted value is out of
range. A - - or + + is returned if the value is larger than the exponent can contain, and is
negative, or positive, respectively. The third string is returned if the number is illegal, a zero
divide for example. The result value is Not A Number (NAN) and would return a ? character.

Identical to ecvt () , except that the correct digit has been rounded for printf %f (FORTRAN
F-format) output of the number of digits specified by ndigit.

Converts the value to a null-terminated string in the array pointed to by bur and returns bur.
It produces ndigit significant digits in FORTRAN F-format if possible, or E-format otherwise. A
minus sign, ifrequired, and a radix character is included in the returned string. Trailing zeros
are suppressed. The radix character is determined by the currently loaded NLS environment
(see setlocale(3C». If set locale () has not been called successfully, the default NLS
environment, "C", is used (see lang(5». The default environment specifies a period (.) as the
radix character.

differs from gcvt () only by first calling langinit () (see nCinit(3C» to load the NLS
environment according to the language specified by langid.

EXTERNAL INFLUENCES
Locale

The LC_NUMERIC category determines the value of the radix character within the current NLS environ­
ment.

WARNINGS
The values returned by ecvt () and fcvt () point to a single static data array whose content is
overwritten by each call.

nl_gcvt () is provided for historical reasons only; its use is not recommended.

AUTHOR
ecvt () and fcvt () were developed by AT&T. gcvt () was developed by AT&T and HP.
nl_gcvt () was developed by HP.

SEE ALSO
setlocale(3C), printf(3S), hpnls(5), lang(5).

STANDARDS CONFORMANCE
ecvt () : XPG2

fcvt () : XPG2

gcvt () : XPG2

HP-UX Release 9.0: August 1992 -1- 461

I

I

end(3C) end(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern void *_end, *end, *_etext, *etext, *_edata, *edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of the s~ym­
boIs _etext and etext is the first address above the program text, the address of _edata and
edata is the first address above the initialized data region, and the address of _end and end is the first
address above the uninitialized data region.

The linker defines these symbols with the appropriate values if they are referenced by the program but not
defined. The linker issues an error if the user attempts to define _etext, _edata, or _end.

When execution begins, the program break (the first location beyond the data) coincides with _end, but the
program break can be reset by the routines of brk(2), malloc(3C), standard inputJoutput (stdio(3S», the
profile (-p) option of cc(l), and so on. Thus, the current value of the program break should be determined
by sbrk (0) (see brk(2».

WARNINGS
In C, these names must look like addresses. Thus, use &end instead of end to access the current value of
end.

DEPENDENCIES
Series 700 and 800:

The linker defines the following two symbols:

SEE ALSO

_text_start

_data_start

The beginning address of the program's text area.

The beginning address of the program's data area.

cc(l), ld(l), brk(2), crtO(3), malloc(3C), stdio(3S).

STANDARDS CONFORMANCE
end:XPG2

462

edata:XPG2

etext:XPG2

-1- HP-UX Release 9.0: August 1992

erf(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf(double x);

double erfc(double x);

DESCRIPTION
erf () returns the error function of x, defined as:

_7:- Je-t' dt.
'i1t 0

erf(3M)

erfc (), which returns 1.0 - erf (x), is provided because of the extreme loss of relative accuracy if
erf (x) is called for large x and the result subtracted from 1.0 (for example, for x = 5, twelve places are
lost).

erf () returns 1.0 when x is +INFINITY ,or -1.0 when x is-INFINITY .

erfc () returns 0.0 when x is +INFINITY , or 2.0 when x is -INFINITY .

ERRORS
erf () and erfc () return NaN and set errno to EDOM when x is NaN.

SEE ALSO
isinf(3M), isnan(3M), exp(3M).

STANDARDS CONFORMANCE
erf () in libm.a: AES, SVID2, XPG2, XPG3
erf () in libM.a: AES, XPG3, XPG4

erfc () in libm.a: AES, SVID2, XPG2, XPG3
erfc () in libM.a: AES, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 463

I

I

NAME
error_$c...,get_text - return subsystem, module, and error texts for a status code

SYNOPSIS
C Syntax

void error_$c_get_text(
status_$t status,
char *subsys,
long subsysmax,
char * module,
long modulemax,
char * error ,
long errormax)

Pascal Syntax
procedure error_$c_get_text(

in status: status_$t;
out subsys: univ char;
in subsysmax: integer32;
out module: uni v char;
in modulemax: integer32;
out error: univ char;
in errormax: integer32);

Remarks
To view this manual entry via the man(l) command, use the function name shown above without the "$"
character.

DESCRIPTION
The error_$c_get_text () call returns predefined text strings that describe the subsystem, the
module, and the error represented by a status code. The strings are null terminated.

status
A status code in status_$t format.

subsys
A character string. The subsystem represented by the status code.

subsysmax
The maximum number of bytes to be returned in subsys.

module
A character string. The module represented by the status code.

modulemax
The maximum number of bytes to be returned in module.

error
A character string. The error represented by the status code.

errormax
The maximum number of bytes to be returned in error.

EXAMPLE
The following statement returns text strings for the subsystem, module, and error represented by the status
code st:

error_$c_get_text (st, subsys, MAX, module, MAX, error, MAX);

SEE ALSO
error_$c_text(3).

464 -1- HP-UX Release 9.0: August 1992

NAME
error_$c_text - return an error message for a status code

SYNOPSIS
C Syntax

char *error_$c_text(
status_$t status,
char * message,
int messagemax)

Pascal Syntax
procedure error_$c_text(

in status: status_$t;
ou t message: uni v char;
in messagemax: integer32);

Remarks
To view this manual entry via the man(1) command, use the function name shown above without the "$"
character.

DESCRIPTION
error_$c_text () returns a null-terminated error message for reporting the completion status of a call.
The error message is composed from predefined text strings that describe the subsystem, the module, and
the error represented by the status code.

status A status code in status_$t format.

message A character string. The error message represented by the status code.

messagemax The maximum number of bytes to be returned in message.

EXAMPLE
The following statement returns an error message for reporting the status code s t:

error_$c_text (st, message, MAX);

SEE ALSO
error_$c~eCtext(3).

HP-UX Release 9.0: August 1992 -1- 465

I

I

error_$intro (3) error_$intro(3)

NAME
error_$intro - error text database operations

Remarks
To view this manual entry via the man(l) command, use the function name shown above without the "$"
character.

DESCRIPTION
error_$ () calls convert status codes into textual error messages, and include:

error_$c_get_text()
Return subsystem, module, and error texts for a status code.

error_$c_text ()
Return an error message for a status code.

There is no header file for the error_$ () calls. They can be declared as follows:

extern void error_$c_get_text();
extern char *error_$c_text(};

error_$ () calls use the status_$t data type, which is defined in <idl/c/nbase .h>.

Data Types
error_$ () calls take as input a status code in status_$t format.

status_$t A status code. Most Nes calls supply their completion status in this format. The
status_$t type is defined as a structure containing a long integer:

all

fail

subsys

modc

code

struct status_$t
long all;
}

However, the calls can also use status_$t as a set of bit fields. To access the
fields in a returned status code, assign the value of the status code to a union defined
as follows:

typedef union {
struct {

} s;

unsigned fail : 1,
subsys : 7,
modc : 8;

short code;

long all;
status_u;

All 32 bits in the status code. If all is equal to status_$ok, the call that sup­
plied the status was successful.

If this bit is set, the error was not within the scope of the module invoked, but
occurred within a lower-level module.

This indicates the subsystem that encountered the error.

This indicates the module that encountered the error.

This is a signed number that identifies the type of error that occurred.

SEE ALSO
error_$c...,get_text(3), error_$c_text(3).

466 -1- HP-UX Release 9.0: August 1992

exp(3M) exp(3M)

NAME
exp, log, log10, log2, pow, sqrt, cbrt - exponential, logarithm, power, square root, cube root functions

SYNOPSIS
#include <math.h>

double exp(double x);

double log(double x);

double loglO(double x);

double log2(double x);

double pow (double x, double y) ;

double sqrt (double x);

double cbrt (double x);

float expf (float x);

float logf (float x);

float loglOf(float x);

float log2f (float x);

float powf(float x, float y) ;

float sqrtf(float x) ;

float cbrtf(float x) ;

DESCRIPTION
exp () returns eX.

log () returns the natural logarithm of x. The value of x must be positive.

loglO () returns the logarithm base ten of x. The value of x must be positive.

log2 () returns the logarithm base two of x. The value of x must be positive.

pow () returns'!. If x is 0.0, y must be positive. If x is negative, y must be an integer.

sqrt () returns the non-negative square root of x. The value of x must not be negative.

cbrt () returns the cube root of x. The value of x must not be negative.

expf (), logf (), loglOf (), log2 f (), powf (), sqrtf (), and cbrtf () are float versions of
exp (), log (), loglO (), log2 (), pow (), sqrt (), and cbrt (); they take float arguments and
return float results. Their performance is significantly faster than that of the double versions of the
functions. Programs must be compiled in ANSI mode (with the -Aa option) in order to use these functions;
otherwise, the compiler promotes the float arguments to double, and the functions return incorrect
results.

DEPENDENCIES
Series 300/400

log2 (), cbrt (), expf (), logf (), loglOf (), log2f (), powf (), sqrtf (), and cbrtf () are
not supported on Series 300/400 systems.

Series 700/800
log2 (), cbrt (), expf (), logf (), loglOf (), log2f (), powf (), sqrtf (), and cbrtf () are
not specified by any standard (however, the float functions are named in accordance with the conven­
tions specified in the "Future Library Directions" section of the ANSI C standard). These functions are pro­
vided in the PA1.l versions of the math library only. The +DA1.l option (default on Series 700 systems)
links in a PA1.l version automatically. A PA1.l library can also be linked in explicitly. For more informa­
tion, see the HP-UXFloating-Point Guide.

Ilibllibm.a
exp () returns:

HP-UX Release 9.0: August 1992 -1- 467

I

I

exp(3M) exp(3M)

• +INFINITY when x is +INFINITY,

• 0.0 when x is -INFINITY.

log (), log2 (), and loglO () return +INFINITY when x is +INFINITY.

pow() returns +INFINITY when:

• Absolute 'falue of x is greater than 1.0 andy is +Ir-.wlr-~ITY,

• Absolute value of x is less than 1.0 and y is -INFINITY,

• x is +INFINITY andy is greater than 0.0, or

• x is -INFINITY andy is an even integer.

pow () returns -INFINITY when x is -INFINITY andy is an odd integer.

pow () returns 0.0 when:

• Absolute value of x is greater than 1.0 andy is -INFINITY,

• Absolute value ofx is less than 1.0 andy is +INFINITY,

• x is +INFINITY andy is less than 0.0.

sgrt () and cbrt () return +INFINITY when x is +INFINITY.

llibllibM.a
exp () returns:

• +INFINITY when x is +INFINITY,

• 0.0 when x is -INFINITY.

log (), log2 (), and loglO () return +INFINITY when x is +INFINITY.

pow () returns 1.0 when x andy are both 0.0.

pow () returns +INFINITY when:

• Absolute value of x is greater than 1.0 andy is +INFINITY,

• Absolute value of x is less than 1.0 and y is -INFINITY,

• x is +INFINITY andy is greater than 0.0, or

• x is -INFINITY and y is an even integer.

pow () returns -INFINITY when x is -INFINITY andy is an odd integer.

pow () returns 0.0 when:

• Absolute value of x is greater than 1.0 andy is -INFINITY,

• Absolute value ofx is less than 1.0 andy is +INFINITY,

• x is +INFINITY andy is less than 0.0.

sgrt () and cbrt () return +INFINITY when x is +INFINITY.

ERRORS
Ilibllibm.a

468

exp () returns HUGE_VAL when the correct value would overflow, or 0.0 when the correct value would
underflow, and sets errno to ERANGE. NaN is returned and errno is set to EDOM when x is NaN.

log (), log2 (), and loglO () return -HUGE_VAL and set errno to EDOM when x is non-positive.
NaN is returned and errno is set to EDOM when x is NaN or -INFINITY. A message indicating DOMAIN
error (or SING error when x is 0.0) is printed on the standard error output in these cases.

pow () returns 0.0 and sets errno to EDOM when x is 0.0 andy is negative, or when x is negative andy is
not an integer. NaN is returned and errno is set to EDOM when x or y is NaN. In these cases a message
indicating DOMAIN error is printed on the standard error output. When the correct value for pow () would
overflow or underflow, pow () returns ±HUGE_VAL or 0.0 respectively, and sets errno to ERANGE.

-2- HP-UX Release 9.0: August 1992

exp(3M) exp(3M)

sqrt () returns NaN and sets errno to EDOM when x is negative, NaN or -INFINITY. A message indi­
cating DOMAIN error is printed on the standard error output.

cbrt () returns 0.0 and sets errno to EDOM when x is negative. NaN is returned and errno is set to
EDOM when x is NaN. In these cases a message indicating DOMAIN error is printed on the standard error
output. When the correct value for cbrt () would overflow or underflow, cbrt () returns ±HUGE_VAL or
0.0 respectively, and sets errno to ERANGE.

These error-handling procedures can be changed with the matherr () function (see matherr(3M».

llibllibM.a
No error messages are printed on the standard error output.

exp () returns HUGE_VAL when the correct value would overflow, or 0.0 when the correct value would
underflow, and sets errno to ERANGE. NaN is returned and errno is set to EDOM when x is NaN.

log (), log2 (), and loglO () return NaN and set errno to EDOM when x is negative, -INFINITY, or
NaN. -HUGE_VAL is returned and errno is set to EDOM when x is 0.0.

pow() returns -HUGE_VAL and sets errno to EDOM when x is 0.0 and y is negative. NaN is returned
and errno is set to EDOM when x is negative and y is not an integer or when x or y is NaN. When the
correct value for pow() would overflow or underflow, pow () returns ±HUGE_VAL or 0.0 respectively, and
sets errno to ERANGE.

sqrt () returns NaN and sets errno to EDOM when x is negative, NaN or -INFINITY.

cbrt () returns NaN and sets errno to EDOM when x is negative or when x is NaN. When the correct
value for cbrt () would overflow or underflow, cbrt () returns ±HUGE_VAL or 0.0 respectively, and sets
errno to ERANGE.

These error-handling procedures can be changed by using the _matherr () function (see matherr(3M».
Note that _matherr() is provided in order to assist in migrating programs from l!bm.a to l!bM.a
and is not a part ofXPG3, ANSI C, or POSIX.

SEE ALSO
isinf(3M), isnan(3M), matherr(3M).

STANDARDS CONFORMANCE
exp () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
exp () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

log () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
log () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

loglO () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
loglO () in libM.a: AES, XPG3, XPG4, FIPS 151-2, PO SIX. 1, ANSI C

pow () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
pow () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

sqrt () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
sqrt () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -3- 469

I

I

exportent(3N) exportent(3N)

NAME
exportent(), getexportent(), setexportent(), addexportent(), remexportent(), endexportent(), getexportopt()
- access exported file system information

SYNOPSIS
#include <stdio.h>
#include <exportent.h>

FILE *setexportent();

struct exportent *getexportent(FILE *fildep);

int addexportent(FILE *filep, char *dirname, char *options);

int remexportent(FILE *filep, char *dirname);

char *getexportopt(struct exportent *xent, char *opt);

void endexportent(FILE *filep);

DESCRIPTION
These routines access the exported file system information in / etc/xtab.

setexportent () Open the export information file and return a file pointer to use with getexpor­
tent (), addexportent (), remexportent (), and endexportent () .
Returns NULL if the file is locked or if an error is encountered in opening the file.

getexportent()

addexportent ()

remexportent ()

getexportopt()

Read the next line from filep and return a pointer to an object with the following
structure containing the broken-out fields of a line in file /etc/xtab. The fields
have meanings described in exports(4).

#define ACCESS_OPT
#define ROOT_OPT
#define RO_OPT
#define ANON_OPT
#define ASYNC_OPT

"access"
"root"
"ro"
"anon"
"async"

/* machines that can mount fs */
/* machines with root access to fs */
/* export read-only */
/* uid for anonymous requests */

/* all mounts will be aynchronous */

struct exportent {
char *xent_dirname; /* directory (or file) to export */
char *xent_options; /* options, as above */
} ;

getexportent () returns NULL if it encounters end of file.

Add the exportent to the end of the open file filep. It returns 0 if successful and -1
on failure.

Remove the indicated entry from the list. Returns 0 on success and -1 on failure.

Scans the xent_opt ions field of the exportent structure for a substring that
matches opt. Returns the string value of opt, or NULL if the option is not found.

endexportent()

RETURN VALUE

Close the file.

setexportent (), getexportent (), and getexportopt () return a NULL pointer on EOF or
error.

addexportent () and remexportent () return -1 if they fail.

WARNINGS
The returned exportent structure points to static information that is overwritten in each call.

AUTHOR
exportent, getexportent(), setexportent(), addexportent(), remexportent(),
endexportent () ,and getexportopt () were developed by Sun Micro systems , Inc.

FILES
/etc/exports /etc/xtab

470 -1- HP-UX Release 9.0: August 1992

exportent (3N) exportent(3N)

SEE ALSO
exportfs(lM), exports(4).

I

HP-UX Release 9.0: August 1992 -2- 471

I

fclose(3S) fclose(3S)

NAME
fclose(), fHush() - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose(FILE *stream);

int fflush(FILE *stream);

DESCRIPTION
fclose () causes any buffered data for the named stream to be written out, and the stream to be closed.
Buffers allocated by the standard inputJoutput system may be freed.

fclose () is performed automatically for all open files upon callingexit(2).

If stream points to an output stream or an update stream in which the most recent operation was output,
ff 1 ush () causes any buffered data for the stream to be written to that file; otherwise any buffered data is
discarded. The stream remains open.

If stream is a null pointer, fflush () performs this flushing action on all currently open streams.

RETURN VALUE
Upon successful completion, fclose () and fflush () return O. Otherwise, they return EOF and set
errno to indicate the error.

ERRORS
fclose () and fflush() failif:

[EAGAIN]

[EBADF]

[EFBIG]

[EINTR]

[EID]

[ENOSPC]

[EPIPE]

The O_NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the write operation.

The file descriptor underlying stream is not valid.

An attempt was made to write a file that exceeds the process's file size limit or the
maximum file size (see ulimit(2».

fclose () or fflush () was interrupted by a signal.

The process is in a background process group and is attempting to write to its control­
ling terminal, TOSTOP is set, the process is neither ignoring nor blocking the
SIGTTOU signal, and the process group of the process is orphaned.

There was no free space remaining on the device containing the file.

An attempt was made to write to a pipe that is not open for reading by any process. A
SIGPIPE signal is also sent to the process.

Additional errno values may be set by the underlying write (), lseek(), and close () func­
tions (see write(2), lseek(2) and close (2».

SEE ALSO
close(2), exit(2), lseek(2), write(2), fopen(3S), setbuf(3S).

STANDARDS CONFORMANCE
fclose (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

fflush(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

472 -1- HP-UX Release 9.0: August 1992

ferror(3S)

NAME
ferrorO, feof(), clearerrO - stream status inquiries

SYNOPSIS
#include <stdio.h>

int ferror(FILE *stream);

int feof(FILE *stream);

void clearerr(FILE *stream);

ferror(3S)

DESCRIPTION
ferror () Returns non-zero when an 110 error has previously occurred reading from or writing to the

named stream, otherwise zero. Unless cleared by clearerr (), or unless the specific
stdio routine so indicates, the error indication lasts until the stream is closed.

feof () Returns non-zero when EOF has previously been detected reading the named input stream,
otherwise zero.

clearerr () Resets the error indicator and EOF indicator on the named stream to zero.

WARNINGS
All these routines are implemented both as library functions and as macros. The macro versions, which are
used by default, are defined in <stdio. 11>. To obtain the library function, either use a #undef to
remove the macro definition or, if compiling in ANSI-C mode, enclose the function name in parentheses or
use the function address. The following example illustrates each of these methods:

SEE ALSO

#include <stdio.h>
#undef ferror

main ()
{

int (*find_error(» ();

return_val=ferror(fd);

return_val = (feof) (fdl);

find_error = feof;
};

open(2), fopen(3S).

STANDARDS CONFORMANCE
ferror (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

clearerr () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

feof () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -1- 473

I

I

fgetpos (3S) fgetpos (3S)

NAME
fgetposO, fsetposO - save and restore a file position indicator for a stream

SYNOPSIS
#include <stdio.h>

int fgetpos(FILE *stream, fpos_t ~pos);

int fsetpos(FILE *stream, const fpos_t *pos);

DESCRIPTION
fgetpos{) Store the current value of the file position indicator for the stream pointed to by stream in

the object pointed to by pos. The value stored contains information usable by f set­
pos () for repositioning the stream to its position at the time of the call to fgetpos ().

fsetpos () Set the file position indicator for the stream pointed to by stream according to the value of
the object pointed to by pos, which must be a value set by an earlier call to fgetpos () on
the same stream.

A successful call to f setpos () clears the end-of-file indicator for the stream and undoes
any effects ofungetc(3S) on the same stream. After a fsetpos () call, the next operation
on a update stream can be either input or output.

RETURN VALUE
If successful, these functions return zero; otherwise non-zero.

WARNINGS
Failure can occur if these functions are used on a file that has not been opened via f open (). In particu­
lar, they must not be used on a terminal or on a file opened via popen(3S).

fsetpos () has no effect on streams that are open for append (see {open (3S».

SEE ALSO
fseek(3S), fopen(3S), popen(3S), ungetc(3S).

STANDARDS CONFORMANCE
fgetpos () : AES, XPG4, ANSI C

fsetpos (): AES, XPG4, ANSI C

474 -1- HP-UX Release 9.0: August 1992

fgetws(3C)

NAME
fgetws() - get a wide character string from a stream file

SYNOPSIS
#include <wchar.h>

wchar_t *fgetws(wchar_t *ws, int n, FILE *stream);

Remarks:

fgetws(3C)

This function is compliant with the XPG4 Worldwide Portability Interface wide-character 110 functions. It
parallels the 8-bit character 110 function defined ingets(3S).

DESCRIPTION
fgetws () Reads characters from the stream, converts them into corresponding wide characters, and

places them into the array pointed to by ws, until n - 1 characters are read, a new-line
character is read and transferred to ws, or an end-of-file condition is encountered. The
wide string is then terminated with a null wide character.

The definition for this functions and the type wchar_t are provided in the <wchar. h> header.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines how wide character conversions are done.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
Upon successful completion, f getws () returns ws. If the stream is at end-of-file, the end-of-file indicator
for the stream is set and a null pointer is returned. If a read error occurs, the error indicator for the stream
is set, errno is set to indicate the error, and a null pointer is returned.

ferror () and feof () can be used to distinguish between an error condition and an end-of-file condition.

ERRORS
fgetws () fails if data needs to be read into the stream's buffer, and:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the pro­
cess would be delayed in the read operation.

[EBADF]

[EINTR]

[EIO]

The file descriptor underlying stream is not a valid file descriptor open for reading.

The read operation was terminated due to the receipt of a signal, and either no data
was transferred or the implementation does not report partial transfer for this file.

The process is a member of a background process and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking the S IGTTIN sig-
nal or the process group of the process is orphaned.

[EILSEQ] The data obtained from the input stream do not form a valid wide character string.

Additional errno values can be set by the underlying read () function (see read(2».

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getwc(3C), fputws(3C), scanf(3S).

STANDARDS CONFORMANCE
fgetws () : XPG4

HP-UX Release 9.0: August 1992 -1- 475

I

I

fileno(3S) fileno(3S)

NAME
fileno() - map stream pointer to file descriptor

SYNOPSIS
#include <stdio.h>

int fileno(FILE *stream);

DESCRIPTION
f i lena () returns the integer file descriptor associated with the named stream; see open(2).

The following symbolic values in <uni std. h> define the file descriptors associated with stdin, stdout,
and stderr when a program is started:

STDIN_FILENO Value of zero for standard input, stdin.
STDOUT_FILENO Value of 1 for standard output, s tdou t.
STDERR_FILENO Value of2 for standard error, stderr.

RETURN VALUE
Upon error, f i leno () returns-l.

SEE ALSO
open(2), fopen(3S).

STANDARDS CONFORMANCE
f i lena () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

476 -1- HP-UX Release 9.0: August 1992

fioor(3M) fioor(3M)

NAME
floor, ceil, fmod, fabs, rint, fabsf, fmodf - floor, ceiling, remainder, absolute value, and round-to-nearest func­
tions

SYNOPSIS
#include <math.h>

double floor (double x) ;

double ceil (double x) ;

double fmcd(double ... , double ... , .. .z J ,

double fabs(double x) ;

double rint(double x) ;

float fabsf(float x) ;

float fmodf(float x, float y) ;

DESCRIPTION
floor () returns the largest integer (as a double-precision number) not greater thanx.

ce i 1 () returns the smallest integer not less than x.

fmod () returns the floating-point remainder (f) of the division of x ,by y, where f has the same sign as x,
such that x =iy +ffor some integer i, and If I < Iy I.

fabs () returns the absolute value of x, Ix I.

rint () returns the integer (represented as a double precision number) nearest x in the direction of the
prevailing rounding mode.

fabsf () and fmodf () are float versions of fabs () and fmod (); they take float arguments
and return float results. Their performance is significantly faster than that of the double versions.
Programs must be compiled in ANSI mode (with the -Aa option) in order to use these functions; otherwise,
the compiler promotes the float arguments to double, and the functions return incorrect results.

DEPENDENCIES
Series 300/400

fabsf (), fmodf (), and rint () are not supported on Series 300/400 systems.

Series 700/800
fabsf (), fmodf (), and rint () are not specified by any standard (fabsf () and fmodf () are, how­
ever, named in accordance with the conventions specified in the "Future Library Directions" section of the
ANSI C standard). These functions are provided in the PA1.l versions of the math library only. The
+DA1.l linker option (default on Series 700 systems) links in a PA1.l version automatically. A PA1.l
library can also be linked in explicitly. For more information, see the HP-UX Floating-Point Guide.

Ilibllibm.a
When x is ±INFINITY, floor (), ceil (), and rint () return ±INFINITY respectively.

fabs () returns +INFINITY when x is ±INFINITY.

fmod () returns x if y is 0.0, if x/y would overflow, or if x/y would underflow (including when y is ±INFIN­
ITY).

llibllibM.a
No error messages are printed on the standard error output.

When x is ±INFINITY, floor (), ceil (), and rint () return ±INFINITY respectively.

fabs () returns +INFINITY when x is ±INFINITY.

fmod () returns 0.0 if x/y would overflow, or x if x/y would underflow (including wheny is ±INFINITY).

NOTES
In the default rounding mode (round to nearest), on a machine that conforms to the IEEE-754 standard,
rint (x) is the integer nearest x with the additional stipulation that if I rint (x) -x I =112, then
rint (x) is even. Other rounding modes can make rint () act like floor (), or like ceil (), or round

HP-UX Release 9.0: August 1992 -1- 477

I

floor(3M)

toward o.
Another way to obtain an integer near x is to declare (in C):

double x; int k; k = x;

floor (3M)

The HP C compiler rounds x toward 0 to get the integer k. Note that if x is larger than k can accommo­
date, the value of k and the presence or absence of an integer overflow are hard to predict.

ERRORS
Ilibllibm.a

floor () and ceil () return NaN and set errno to EDOM when x is NaN. I fmod () returns NaN and sets errno to EDOM when x or y is NaN, or when x is ±INFINITY.

fabs () returns NaN and sets errno to EDOM when x is NaN.

llibllibM.a
floor() and ceil() return NaN and set errnotoEDOMwhenxisNaN.

fmod () returns NaN and sets errno to EDOM when y is 0.0, when x or y is NaN, or when x is ±INFINITY.

fabs () returns NaN and sets errno to EDOM when x is NaN.

SEE ALSO
abs(3C), isinf(3M), isnan(3M), ieee(3M).

STANDARDS CONFORMANCE

478

floor () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
floor () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

ceil () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
ceil () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

fabs () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
fabs () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

fmod () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
fmod () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

-2- HP-UX Release 9.0: August 1992

fnmatch (3C) fnmatch(3C)

NAME
fnmatchO - match filename patterns

SYNOPSIS
#include <unistd.h>

int fnmatch(const char *pattern, const char *string, int flags}i

DESCRIPTION
fnmatch(} performs pattern matching as described in regexp(5) under PATI'ERN MATCHING NOTATION.
By default, the rule qualifications for filename expansion do not apply; i.e., periods (dots) and slashes are
matched as ordinary characters. This default behavior can be modified by using the flags described below.

The flag argument modifies the interpretation of pattern and string. If FNM_PATHNAME, which is defined
in <uni s td. 11>, is set in flag, a slash character in string must be explicitly matched by a slash in pattern;
it cannot be matched by either the asterisk or question mark special characters or by a bracket expression.

If FNM_PERIOD is set in flag, a leading period (.) must be explicitly matched. It will not be matched by a
bracket expression, question mark or asterisk. By default, a period is leading if it is the first character in
string. If FNM_PATHNAME is set in flag, a period is leading if it is the first character in string or immedi­
ately follows a slash.

If FNM_NOESCAPE is not set in flag, a backslash character (\) in pattern followed by any other character
matches that second character in string. In particular, \ \ matches a backslash in string. If
FNM_NOESCAPE is set, a backslash character is treated as an ordinary character.

If flag is zero, the slash character and the period are treated as regular characters. If flag has any other
value, the result is undefined.

RETURN VALUE
If string matches the pattern specified by pattern, fnmatch () returns zero. Otherwise, fmnatch ()
returns non-zero.

EXAMPLE
The following excerpt uses fmnatch () to check each file in a directory against the pattern * • c:

pattern = H*.CHi

while(dp = readdir(dirp}}{
if«fnmatch(pattern, dp->d_name,O}} O}{

/* do processing for match */

} }

SEE ALSO
sh(1), glob(3c).

STANDARDS CONFORMANCE
fnma tch () : XPG4, POSIX.2

HP-UX Release 9.0: August 1992 -1- 479

•

I

fopen(3S) fopen(3S)

NAME
fopen(), freopen(), fdopen() - open or re-open a stream file; convert file to stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char *pathname, const char *type);

FILE *freopen(const char *pathname, const char *type, FILE *stream);

FILE *fdopen(int fildes, const char *type);

DESCRIPTION
fopen() Opens the file named by pathname and associates a stream with it.

pointer to the FILE structure assodated with the stream,
f open () returns a

freopen () substitutes the named file in place of the open stream. The original stream is closed,
regardless of whether the open ultimately succeeds. freopen () returns a pointer to the
FILE structure associated with stream and makes an implicit call to clearerr () (see
ferror(3S».

fdopen()

pathname

type

freopen() is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files.

associates a stream with a file descriptor. File descriptors are obtained from open () ,
dup (), creat (), or pipe () (see open(2), dup(2), creat(2), andpipe(2», which open files
but do not return pointers to a FILE structure stream. Streams are necessary input for
many of the Section (3S) library routines. The type of stream must agree with the mode of
the open file. The meanings of type used in the fdopen () call are exactly as specified
above, except that w, W+, wb, and wb+ do not cause truncation of the file.

Points to a character string containing the name of the file to be opened.

Character string having one of the following values:

r

w

a

rb

wb

ab

r+

w+

a+

r+b or rb+

w+b or wb+

a+b or ab+

open for reading

truncate to zero length or create for writing

append; open for writing at end of file, or create for writing

open binary file for reading

truncate to zero length or create binary file for writing

append; open binary file for writing at end-of-file, or create binary file

open for update (reading and writing)

truncate to zero length or create for update

append; open or create for update at end-of-file

open binary file for update (reading and writing)

truncate to zero length or create binary file for update

append; open or create binary file for update at end-of-file

When a file is opened for update, both input and output can be done on the resulting stream. However, out­
put cannot be directly followed by input without an intervening call to ff 1 ush () or to a file positioning
function (f seek (), f setpos () , or rewind ()), and input cannot be directly followed by output without
an intervening call to a file positioning function unless the input operation encounters end-of-file.

When a file is opened for append (Le., when type is a or a+), it is impossible to overwrite information
already in the file. All output is written at the end of the file, regardless of intervening calls to f seek () .
If two separate processes open the same file for append, each process can write freely to the file without fear
of destroying output being written by the other. Output from the two processes will be intermixed in the
file in the order in which it is written.

RETURN VALUE
Upon successful completion, fopen (), fdopen (), and freopen () return a FILE * pointer to the

480 -1- HP-UX Release 9.0: August 1992

fopen(3S) fopen(3S)

stream. Otherwise, a null pointer is returned and errno is set to indicate the error.

ERRORS
fopen (), fdopen (), and freopen () fail if:

[EINV AL] The type argument is not a valid mode.

[ENOMEM] There is insufficient space to allocate a buffer.

fopen () and freopen () fail if:

[EACCES] Search permission is denied on a component of the path prefix, or the file exists and the
permissions specified by type are denied, or the file does not exist and write permission is
denied for the parent directory of the file to be created.

[EINTR] A signal was caught during fopen () or freopen (). function.

[EISDIR] The named file is a directory and type requires write access.

[EMFILE] The calling process has attempted to exceed its open file limit.

[ENAMETOOLONG]
The length of the pathname string exceeds PATH_MAX or a pathname component is longer
than NAME_MAX while POSIX_NO_TRUNC is in effect.

[ENFILE] The system file table is full.

The named file does not exist or the pathname argument points to an empty string. [ENOENT]

[ENOSPC] The directory or file system that would contain the new file cannot be expanded, the file
does not exist, and it was to be created.

A component of the path prefix is not a directory. [ENOTDIR]

[ENXIO] The named file is a character special or block special file, and the device associated with the
special file does not exist.

[EROFS] The named file resides on a read-only file system and type requires write access.

Additional errno values can be set by the underlying open () call made from the fopen () and freo­
pen () functions (see open(2)).

NOTES
HP-UX binary file types are equivalent to their non-binary counterparts. For example, types r and rh are
equivalent.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S), popen(3S), setvbuf(3S).

STANDARDS CONFORMANCE
fopen (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

fdopen () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

freopen(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -2- 481

I

I

fpclassify (3M) fpclassify (3M)

NAME
fpclassifyO, fpclassifyfO - floating-point operand classification functions

SYNOPSIS
#include <math.h>

int fpclassify(double x);

int fpclassifyf(float x);

DESCRIPTION
fpclassify () and fpclassifyf () return a non-negative integer value that specifies the IEEE
operand class to which the argument x belongs. The value returned is one of the following macros which
are defined in <Ina th . h>:

#define FP_PLUS_NORM 0 /* Positive normalized */
#define FP_MlNUS_NORM 1 /* Negative normalized */
#define FP_PLUS_ZERO 2 /* Positive zero */
#define FP_MlNUS_ZERO 3 /* Negative zero */
#define FP_PLUS_INF 4 /* Positive infinity */
#define FP_MlNUS_INF 5 /* Negative infinity */
#define FP_PLUS_DENORM 6 /* Positive denormalized */
#define FP_MlNUS_DENORM 7 /* Negative denormalized */
#define FP_SNAN 8 /* Signalling NaN */
#define FP_QNAN 9 /* Quiet NaN */

Every possible argument value falls into one of these ten categories, so these functions never result in an
error.

fpclassifyf () is the float version of fpclassify (). Programs must be compiled in ANSI mode
(with the -Aa option) in order to use this function; otherwise, the compiler promotes the float argument
to double, and the function returns incorrect results.

DEPENDENCIES
Series 300/400

fpclassify () and fpclassifyf () are not supported on Series 300/400 systems.

Series 700/800
fpclassify () and fpclassifyf () are provided in the PA1.l versions of the math library only. The
+DA1.l option (default on Series 700 systems) links in a PA1.l version automatically. A PA1.l library can
also be linked in explicitly. For more information, see the HP-UX Floating-Point Guide.

These functions are not specified by any standard. However, they implement the class () function sug­
gested in the "Recommended Functions and Predicates" appendix of the IEEE-754 floating-point standard.
Also, fpclassifyf () is named in accordance with the conventions specified in the
"Future Library Directions" section of the ANSI C standard.

SEE ALSO
isnan(3M), isinf(3M), ieee(3M).

482 -1- HP-UX Release 9.0: August 1992

fpgetround (3M) fpgetround(3M)

NAME
fpgetround(), fpsetround(), fpgetmask(), fpsetmask(), fpgetsticky(), fpsetsticky(), fpsetdefaults(), fpgetcon­
trol(), fpsetcontrol(), fpgetfastmode(), fpsetfastmode() - floating-point mode-control functions

SYNOPSIS
#include <math.h>

fp_rnd fpgetround(void);

fp_rnd fpsetround(fp_rnd mode);

fp_except fpgetmask(void);

fp_except fpsetmask(fp_except value);

fp_except fpgetsticky(void);

fp_except fpsetsticky(fp_except value);

int fpgetfastmode(void);

int fpsetfastmode(int value);

void fpsetdefaults(void);

fp_control fpgetcontrol(void);

fp_control fpsetcontrol(fp_control value);

DESCRIPTION
The fpget round () suite of functions allows programmers to manipulate the floating-point control regis­
ter (also called the floating-point status register).

fpgetround () returns the current rounding mode. The type of the returned value, fp_rnd, is defined
as follows in <Ina th • h>:

typedef enum
FP_RZ=O,
FP_RN,
FP_RP,
FP_RM,
} fp_rnd;

/* Round toward zero */
/* Round to nearest */
/* Round toward positive infinity */
/* Round toward negative infinity */

The default value is FP _RN. Round-to-nearest mode rounds to the representable value closest to the true
value. If two representable values are equally close to the true value, the system chooses the one whose
least significant bit is zero.

fpsetround () sets the rounding mode to the specified value of type fp_rnd and returns the previous
rounding mode.

There are five floating-point exceptions: divide-by-zero, overflow, underflow, imprecise (inexact) result, and
invalid operation. If a floating-point exception occurs and the corresponding exception trap enable bit is set
to 1, the trap takes place. If an exception occurs and the exception trap enable bit is set to 0, the
corresponding exception flag is set to 1 and no trap takes place. The exception-trap-enable bits are some­
times called mask bits; the exception flags are sometimes called sticky bits. The routines fpgetmask ()
and fpgetsticky() return the current settings of these bits. To change the settings of these bits, use
fpsettnask () and fpsetsticky ().

fpgetmask () returns the current exception trap enable bits. The type of the returned value,
fp_except, is defined as int in <Inath.h>. The floating-point exception types are defined as follows in
<Inath.h>:

#define FP_X_INV
#define FP_X_DZ
#define FP_X_OFL
#define FP_X_UFL
#define FP_X_IMP
#define FP_X_CLEAR

HP-UX Release 9.0: August 1992

OxlO
OxOS
Ox04
Ox02
OxOl
OxOO

/* invalid operation exception */
/* divide-by-zero exception */
/* overflow exception */
/* underflow exception */
/* imprecise (inexact result) */
/* simply zero to clear all flags */

-1- 483

I

I

fpgetround(3M) fpgetround (3M)

fpsetmask () sets or clears the exception trap enable bits and returns the previous setting. The argu­
ment is an expression of type fp_except. (To set or clear the exception trap enable bits at compile time,
use the compiler option +FPstring).

fpgetsticky () returns the current exception flags.

fpsetsticky () sets or clears the exception flags and returns the previous setting. The argument is an
expression of type fp_except.

fpgetfastmode () and fpsetfastmode () allow the programmer to change the way the system han­
dles underflow. Fast underflow mode, also known as fastmode, is an alternative to IEEE-754-compliant
underflow mode. On Series 700/800 systems, underflow involves a fault into the kernel, where the IEEE­
mandated conversion of the result into a denormalized value or zero is accomplished by software emulation.
On some PA1.l-based systems, fastmode causes the hardware to simply substitute a zero for the result of an
operation, with no fault occurring. This may be a significant performance optimization for applications that
underflow frequently. Fastmode also causes denormalized floating-point operands to be treated as if they
were true zero operands.

fpgetfastmode () returns the current fastmode setting: 1 iffastmode is set, 0 if the default IEEE-754-
compliant underflow mode is set. On systems that do not support fastmode, this function returns an
undefined value.

On systems that support fastmode, fpsetfastmode () sets fastmode to either 1 (fastmode) or 0 (IEEE-
754-compliant underflow mode) and returns the previous setting. On systems that do not support fast­
mode, this function has no effect.

fpsetdefaults () changes the default environment on Series 700 workstations, which is

Round to nearest (FP _RN)
All exception flags cleared (FP _X_CLEAR)
All exception traps disabled
Fast underflow mode disabled

fpsetdefaults () changes these defaults to more useful values. Specifically, it enables traps for the
invalid operation, divide-by-zero, and overflow exceptions, while leaving the underflow and inexact-result
exception traps disabled. It sets the environment as follows:

Round to nearest (FP _RN)
All exception flags cleared (FP _X_CLEAR)
All exception traps enabled except underflow and inexact result (FP _X_INV+FP _X_DZ+FP ~_OFL)
Fast underflow mode enabled (if the system supports it)

fpgetcontrol () and fpsetcontrol () access fpO, the floating-point unit's control register (also
called the status register).

fpgetcontrol () returns the value offpO. The type ofthe returned value, fp_control, is defined as
long in <math.h>.

fpsetcontrol () sets the value of fpO and returns the previous value. For the format of fpO, see the
HP-UX Floating-Point Guide or the PA-RISC 1.1 Architecture and Instruction Set Reference Manual.

DEPENDENCIES
Series 300/400

These functions are not supported on Series 300/400 systems.

Series 700/800
All of these functions are provided in the PA1.1 versions of the math library only. The +DA1.l linker
option (default on Series 700 systems) links in a PAl.l version automatically. A PAl.llibrary can be linked
in explicitly. For more information, see the HP-UX Floating-Point Guide.

WARNINGS

484

fpsetsticky () modifies all exception flags. fpsetmask () modifies all exception trap enable bits.

Both C and FORTRAN require truncation (rounding to zero) for floating-point to integer conversions. The
current rounding mode has no effect on these conversions.

-2- HP-UX Release 9.0: August 1992

fputws(3C)

NAME
fputws() - put a wide character string on a stream file

SYNOPSIS
#1nclude <wchar.h>

1nt fputws(const wchar_t *ws, FILE *stream);

Remarks:

fputws(3C)

This function is compliant with the XPG4 Worldwide Portability Interface wide-character 110 functions. It
parallels the 8 bit character 110 function defined in puts(3S) .

DESCRIPTION
fputws () writes a character string corresponding to the null-terminated wide-character string pointed to
by ws to the named output stream, but does not append a new-line character or a terminating null charac­
ter.

The definition for this function, the type wchar_t and the value WEOF are provided in the <wchar. 11>
header.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines how wide character conversions are done.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
Upon successful completion, fputws () returns a non-negative number. Otherwise it returns WEOF, sets
the error indicator for the stream, and sets errno to indicate the error.

ERRORS
fputws () fails if either the stream is unbuffered, or stream's buffer needed to be flushed causing an
underlying wr1 te () call to be invoked, and:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the pro­
cess would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for writing.

[EFBIG]

[EINTR]

[EIO]

[ENOSPC]

[EPIPE]

An attempt was made to write to a file that exceeds the process's file size limit or the
maximum file size (see ulimit(2)).

A signal was caught during the wr 1 t e () system call.

The process is in a background process group and is attempting to write to its control­
ling terminal, TOSTOP is set, the process is neither ignoring nor blocking the
SIGTTOU signal, and the process group of the process is orphaned.

There was no free space remaining on the device containing the file.

An attempt is made to write to a pipe or FIFO that is not open for reading by any pro­
cess. A SIGPIPE signal is also sent to the process.

[ElL SEQ] A wide character in ws does not correspond to a valid character.

Additional errno values may be set by the underlying wr1 te () function (see write(2)).

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putwc(3C).

NOTES
fputws () does not append a new-line character.

STANDARDS CONFORMANCE
fputws () : XPG4

HP-UX Release 9.0: August 1992 -1- 485

I

I

fread(3S) fread(3S)

NAME
fread(), fwrite() - buffered binary input/output to a stream file

SYNOPSIS
#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);

DESCRIPTION
fread () copies, into an array pointed to by ptr, nitems items of data from the named input stream, where
an item of data is a sequence of bytes (not necessarily terminated by a null byte) oflength size. fread ()
stops appending bytes if an end-of-file or error condition is encountered while reading stream, or if nitems
items have been read. fread () leaves the fJe pointer in stream, if defined, pointing to the byte following
the last byte read if there is one. f read () does not change the contents of stream.

fwri te () appends at most nitems items of data from the array pointed to by ptr to the named output
stream. fwri te () stops appending when it has appended nitems items of data or if an error condition is
encountered on stream. fwr it e () does not change the contents of the array pointed to by ptr.

The argument size is typically sizeo!(*ptr) where the pseudo-function sizeo! specifies the length of an item
pointed to by ptr. Ifptr points to a data type other than char it should be cast into a pointer to char.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S), puts(3S), scanf(3S).

RETURN VALUE
fread () and fwri te () return the number of items read or written. If size or nitems is non-positive, no
characters are read or written and 0 is returned by both fread () and fwri te () .

STANDARDS CONFORMANCE
fread () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

fwri te () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, PO SIX. 1, ANSI C

486 -1- HP-UX Release 9.0: August 1992

frexp(3C) frexp(3C)

NAME
frexp(), ldexp(), modf'() - split floating-point into mantissa and exponent

SYNOPSIS
DESCRIPTION

Every non-zero number can be written uniquely as x * 2n , where the "mantissa" (fraction) x is in the range
0.5 s; I x I < 1.0, and the "exponent" n is an integer.

frexp () returns the mantissa of a double value, and stores the exponent indirectly in the location
pointed to by eptr. If value is zero, both results returned by frexp are zero.

returns the quantity value * 2exP
• ldexp ()

modf () returns the signed fractional part of value and stores the integral part indirectly in the
location pointed to by iptr.

DIAGNOSTICS
If Idexp () would cause overflow, ±HUGE is returned (according to the sign of value), and errno is set
toERANGE.

If Idexp () would cause underflow, zero is returned and errno is set to ERANGE.

STANDARDS CONFORMANCE
frexp (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

Idexp (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

modf () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -1- 487

I

I

fseek(3S) fseek(3S)

NAME
fseekO, rewindO, ftellO - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek(FILE *stream, long int offset, int whence);

void rewind(FILE *stream);

long int ftell(FILE *stream);

DESCRIPTION
fseek() sets the file-position indicator for stream. The new position, measured in bytes from the begin­
ning of the file, is obtained by adding offset to the position specified by whence. The specified position is the
beginning of the file for SEEK_SET, the current position for SEEK_CUR, or end-of-file for SEEK_END.

If the most recent operation, other than ftell () ,on the stream is fflushO, the file offset in the underly­
ing open file description is adjusted to reflect the location specified by the f seek () •

rewind (stream) is equivalent to fseek (stream, OL, SEEK_SET), except that no value is
returned.

fseek () and rewind () undo any effects ofungetc(3S).

After fseek () or rewind (), the next operation on a file opened for update can be either input or out­
put. fseek () clears the EOF indicator for the stream. rewind () does an implicit clearerr () call
(see ferror(3S».

ftell () returns the offset of the current byte relative to the beginning of the file associated with the
named stream.

RETURN VALUE
fseek () returns zero if it succeeds. Otherwise it returns -1 and sets errno to indicate the error.

ftell () returns the current value of the file position indicator for the stream measured in bytes from the
beginning of the file. Otherwise, ftell () returns -1 and sets errno to indicate the error.

rewind () does not return a value. Therefore, any application that needs to detect errors should clear
errno before calling rewind (). Then, upon completion, if errno is non-zero, it should assume an error
has occurred.

ERRORS

488

fseek (), ftell (), and rewind () fail if the stream is unbuffered or the buffered data needs to be
flushed, or if any of the following conditions are encountered:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the process would be delayed
in the write operation.

[EBADF] The underlying file is not open for writing.

[EFBIG]

[EINTR]

[EIO]

[ENOSPC]

[EPIPE]

An attempt was made to write a file that exceeds the process's file size limit or the
maximum file size. See ulimit(2).

A signal was caught during the write operation.

The process is in a background process group and is attempting to write to its control­
ling terminal, TOSTOP is set, the process is neither ignoring nor blocking the
SIGTTOU signal, and the process group of the process is orphaned.

There was no free space remaining on the device containing the file.

An attempt was made to write to a pipe that is not open for reading by any process. A
SIGPIPE signal is also sent to the process.

[ESPIPE] A seek operation was attempted and the file descriptor underlying stream is associ­
ated with a pipe.

f seek () also fails if:

-1- HP-UX Release 9.0: August 1992

fseek(3S) fseek(3S)

[EINVAL] The whence argument is invalid, or the file-position indicator would be set to a nega­
tive value.

Additional errno values may be set by the underlying write () and 1seek(} functions (see write(2)
and lseek(2».

WARNINGS
On HP-UX systems, the offset returned by fte11 () is measured in bytes and it is permissible to seek to
positions relative to that offset. However, when porting to non-HP-UX systems, fseek () should be used
directly without relying on any offset obtained from fte11 () because arithmetic cannot meaningfully be
performed on such an offset if it is not measured in bytes on a particular operating system.

fseek(} and rewind (} have no effect on streams that have been opened in append mode (see I
fopen(3S».

SEE ALSO
Iseek(2), write(2), ferror(3S), fopen(3S), fgetpos(3S), ungetc(3S).

STANDARDS CONFORMANCE
fseek (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

fte11 (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

rewind () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -2- 489

I

ftw(3C) ftw(3C)

NAME
ftw, ftwh, nftw, nftwh - walk a file tree

SYNOPSIS
#include <ftw.h>

int ftw (char *path, int (*fn) (),

1nt ftwh (char *path, 1nt (*fn) (),

int nftw (char *path, int (*fn)(),

int nftwh (char *path, int (*fn) (),

DESCRIPTION

490

ftw() recursively descends the directory hierarchy rooted in path. For each object in the hierarchy;
ftw () calls tn, passing it a pointer to a null-terminated character string containing the name of the object,
a pointer to a stat structure containing information about the object (see stat(2)), and an integer. Possi­
ble values of the integer, defined in the <ftw • h> header file, are:

FTW_F The object is a file.

FTW_D The object is a directory,

The object is a directory without read permission. fn will not be called for any of its
descendants.

stat () could not successfully be executed on the object. The contents of the stat
structure is undefined. If the stat () failure is because the object is in a directory
without search permission, fn is called and the walk continues. If stat () fails for
any other reason, ftw () does not call tn, sets errno, and returns -1.

Tree traversal continues until the tree is exhausted, an invocation of fn returns a nonzero value, or some
error is detected within ftw() (such as an I/O error). If the tree is exhausted, ftw() returns zero. Iffn
returns a non-zero value, ftw() stops its tree traversal and returns whatever value was returned by tn.
If ftw () detects an error, it returns -1 and sets the error type in errno.

ftw() visits a directory before visiting any of its descendants.

ftw() , ftwh() , nftw() , and nftwh() use one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors that can be used. If depth is 0 or negative, the effect is the
same as if it were 1. depth must not be greater than the number of file descriptors currently available for
use. For best performance, depth should be at least as large as the number of levels in the tree.

ftwh () is eqivalent to ftw() except that ftwh () also traverses hidden directories (context dependent
files - see cdf(4)).

nf tw () is similar to ft w () except that it takes the additional argument flags. The flags field is the
inclusive OR of the following values, as defined in the <ft w .11> header file:

FTW_PHYS nftw () does a physical walk. It does not follow symbolic links. nftw () fol­
lows hard links but does not walk down any path that crosses itself. If
FTW_PHYS is not specified nftw () follows symbolic and hard links but does
not walk a path that crosses itself.

The walk does not cross a mount point. This means the walk does not visit any
files that reside on a device other than the one where the walk started. It does
not cross NFS mount points.

nftw () performs a depth-first search. This means that a directory's contents
are visited before the directory itself is visited.

The walk does a chdir () (see chdir(2)) to each directory before reading it.

The walk traverses hidden directories (context dependent files - see cdf(4)).

The walk normally terminates and returns -1 if stat () fails for any reason.
If FTW_SERR is specified and a stat () failure is encountered, fn is called,
and the walk continues.

-1- HP-UX Release 9.0: August 1992

ftw(3C) ftw(3C)

nftw () calls {n with four arguments for each file and directory visited. The first argument is the path­
name of the file or directory, the second is a pointer to a stat structure (see stat(2)) containing informa­
tion about the object, and the third is an integer giving additional information as follows:

FTW_F The object is a file.

The object is a directory.

The object is a directory and subdirectories have been visited. This can be passed to
{n only if FTW_DEPTH is specified ..

The object is a symbolic link. This can be passed to {t" only if FT.'CPHYS is specified.

The object is a directory that cannot be read. (n is not called for any of its descen­
dants.

stat () failed on the object. The contents of the stat structure passed to (n are
undefined. If the stat () failure occured because the object is in a directory without
search permission, errno is set, and nftw() returns -1 after calling tn. Note that
this behavior differs from ftw(). If stat () fails for any other reason, nftw()
does not call fn, sets errno, and returns -1. This behavior can be altered by
specifing the FTW_SERR flag.

The fourth argument is a structure FTW which contains the following members:

int base;
int level;

The value of base is the offset from the first character in the pathname to where the basename of the object
starts; this pathname is passed as the first argument to tn. The value of level indicates depth relative to
the start of the walk, where the start level has a value of zero.

nftwh () is equivalent to nftw () except that nftwh () also traverses hidden directories (context
dependent files - see cd{(4». nftwh () is equivalent to calling nftw () with the FTW_CDF flag
specified.

ERRORS
ftw (), ftwh (), nftw (), and nftwh () fail if any of the following conditions are encountered:

[EACCES] If a component of the path prefix denies search permission or read permission is
denied for path, andfn returns -1 and does not reset errno.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

[ENOENT]

[ENOTDIR]

[EINVAL]

path points to the name of a file that does not exist, or points to an empty string.

A component of path is not a directory.

The value of the depth argument is invalid.

In addition, if the function pointed to by (n encounters system errors, e rrno may be set accordingly.

WARNINGS
On Series 300, 400 and 700 systems, ftw () uses lstat () instead of stat () to get the structure con­
taining information about the object (ftw () uses stat () on Series 800 systems). See stat(2).

Because these functions are recursive, it is possible for them to terminate with a memory fault when
applied to very deep file structures.

ftw() , ftwh() , nftw(), and nftwh() use malloc() to allocate dynamic storage during their
operation. If they are forcibly terminated (such as if longjmp () is executed by (n or an interrupt rou­
tine) the calling function will not have a chance to free that storage, causing it to remain allocated until the
process terminates. A safe way to handle interrupts is to store the fact that an interrupt has occurred, and
arrange to have (n return a nonzero value at its next invocation.

AUTHOR
ftw(), ftwh (), nftw(), and nftwh were developed by AT&T and lIP.

HP-UX Release 9.0: August 1992 -2- 491

I

ftw(3C) ftw(3C)

SEE ALSO
stat(2), malloc(3C), cd:tt4).

STANDARDS CONFORMANCE
ftw(): AES, SVID2, XPG2, XPG3, XPG4

I

492 -3- HP-UX Release 9.0: August 1992

gamma (3M)

NAME
gamma(), 19amma(), signgam() - log gamma function

SYNOPSIS
#include <math.h>

double gamma(double x};

double 19amma(double x};

extern int signgam;

DESCRIPTION
gamma () and 19amma () return In (I r (x) I } , where r (x) is defined as

je-ttX-ldt.
o

gamma(3M)

The sign ofr(x) is returned in the external integer signgam. The argument x must not be a non-positive
integer. (gamma () is defined over the reals excluding the non-positive integers).

The following C program fragment can be used to calculate r:

if «y = gamma(x)} > LN_MAXDOUBLE}
errore };

y = signgam * exp(y};

where ify is greater than LN_MAXDOUBLE, as defined in the <values.h> header file, exp () returns a
range error (see exp(3M».

ERRORS
Ilibllibm.a

For non-positive integer arguments, gamma () and 19amma () return HUGE_VAL and set errno to
EDOM. A message indicating SING error is printed on the standard error output.

If the correct value would overflow, gamma () and 19amma () return HUGE_VAL and set errno to
ERANGE.

gamma () and 19amma () return NaN and set errno to EDOM when x is NaN, or return +INFINITY and
set errno to EDOM when x is ±INFINITY. A message indicating DOMAIN error is printed on the standard
error output.

These error-handling procedures can be changed by using the matherr () function (see matherr(3M».

llibllibM.a
No error messages are printed on the standard error output.

For non-positive integer arguments gamma () and 19amma () return HUGE_VAL and set errno to
EDOM. A message indicating SING error is printed on the standard error output.

If the correct value would overflow, gamma () and 19amma () return HUGE_VAL and set errno to
ERANGE.

gamma () and 19amma () return NaN and set errno to EDOM when x is NaN, or return +INFINITY and
set errno to EDOM when x is ±INFINITY.

These error-handling procedures can be changed by using the _matherr () function (see matherr(3M».
Note that _ma therr () is provided in order to assist in migrating programs from 1 ibm. a to 1 ibM. a
and is not a part ofXPG3, ANSI C, or POSIX.

SEE ALSO
exp(3M), isinf(3M), isnan(3M), matherr(3M), values(5).

STANDARDS CONFORMANCE
gamma () in libm.a: AES, SVID2, XPG2, XPG3
gamma () in libM.a: AES, XPG3, XPG4

19amma () in libm.a: AES, XPG3
19amma () in libM.a: AES, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 493

I

I

gamma (3M)

494

signgam in libm.a: AES, SVID2, XPG2, XPG3
s i gngam in libM.a: AES, XPG3, XPG4

gamma (3M)

-2- HP-UX Release 9.0: August 1992

getc(3S) getc(3S)

NAME
getc(), getchar(), fgetc(), getw() - get character or word from a stream file

SYNOPSIS
#inelude <stdio.h>

int gete(FILE *stream);

int getehar(void);

int fgete(FILE *stream);

int getw(FILE *stream);

DESCRIPTION
gete ()

fgete ()

getw()

RETURN VALUE

Returns the next character (i.e., byte) from the named input stream, as an unsigned charac­
ter converted to an integer. It also moves the file pointer, if defined, ahead one character in
stream. getehar () is defined as gete (stdin) . gete () and getehar () are
defined both as macros and as functions.

Same as gete (), but is a function rather than a macro. f gete () is slower than
gete (), but it takes less space per invocation and its name can be passed as an argument
to a function.

returns the next word (Le., int in C) from the named input stream. getw () increments
the associated file pointer, if defined, to point to the next word. The size of a word is the
size of an integer and varies from machine to machine. getw () assumes no special
alignment in the file.

Upon sucessful completion, gete (), getehar (), and fgete () return the next byte from the input
stream pointed to by stream (stdin for getehar (»). If the stream is at end-of-file, the end-of-file indica­
tor for the stream is set and EOF is returned. If a read error occurs, the error indicator for the stream is set,
errno is set to indicate the error, and EOF is returned.

Upon sucessful completion, getw() returns the next word from the input stream pointed to by stream. If
the stream is at end-of-file, the end-of-file indicator for the stream is set and getw () returns EOF. If a
read error occurs, the error indicator for the stream is set, and getw () returns EOF and sets errno to
indicate the error.

ferror () and feof () can be used to distinguish between an error condition and an end-of-file condition.

ERRORS
gete () , getehar () , getw (), and fgete () fail if data needs to be read into the stream's buffer, and:

[EAGAIN]

[EBADF]

[EINTR]

The O_NONBLOCK flag is set for the file descriptor underlying stream and the pro­
cess would be delayed in the read operation.

The file descriptor underlying stream is not a valid file descriptor open for reading.

The read operation was terminated due to the receipt of a signal, and either no data
was transferred or the implementation does not report partial transfer for this file.

[EIO] The process is a member of a background process and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking the SIGTTIN sig­
nal or the process group of the process is orphaned.

Additional errno values may be set by the underlying read () function (see read(2».

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), read(2), scanf(3S).

WARNING
gete () and getehar () are implemented both as library functions and macros. The macro versions,
which are used by default, are defined in <s tdio . h>. To obtain the library function either use a #undef
to remove the macro definition or, if compiling in ANSI-C mode, enclose the function name in parenthesis or
use the function address. The following example illustrates each of these methods:

HP-UX Release 9.0: August 1992 -1- 495

I

i

getc(3S) getc(3S)

#include <stdio.h>
#undef getc

main ()
{

int (*get_char (» ();

return_val=getc(c,fd);

return_val = (getc) (c,fdl);

get_char = getchar;
} ;

If the integer value returned by getc (), getchar (), or fgetc () is stored into a character variable
then compared against the integer constant EOF, the comparison may never succeed because sign-extension
of a character on widening to integer is machine-dependent.

The macro version of getc () incorrectly treats a stream argument with side effects. In particular,
getc (*f++) does not work sensibly. The function version of getc () or fgetc () should be used
instead.
Because of possible differences in word length and byte ordering, files written using putw() are machine­
dependent, and may be unreadable by getw() on a different processor.

STANDARDS CONFORMANCE

496

getc () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

fgetc (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

getchar(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

getw () : AES, SVID2, XPG2, XPG3, xpG4

-2- HP-UX Release 9.0: August 1992

getccent (3C) getccent (3C)

NAME
getccentO, getcccidO, getccnamO, setccentO, endccentO, fgetccentO - get HP Cluster configuration entry

SYNOPSIS
#include <cluster.h>

struct cct_entry *getccent(void);

struct cct_entry *getcccid(cnode_t cid);

struct cct_entry *getccnam(const char *name);

void setccent(voidj;

void endccent(void);

struct cct_entry *fgetccent(FILB *stream);

DESCRIPTION
getccent (), getccc id (), and getccnam () each return a pointer to an object with the following
structure containing the broken-out fields in the /etc/clusterconf file. The file contains a list of
cct_entry structures, defined in the <cluster .h> header file. The cct_entry structure includes
the following fields:

u_char machine_id[M_IDLEN); /* Unique machine ID */
cnode_t cnode_id; /* cnode ID */
char cnode_name[lS]; /* cnode name */
char cnode_type; /* 'r'=cluster server

'c'=all other cluster nodes */
cnode_t swap_serving_cnode; /* swap cnode */
int kcsp; /* default number of CSPs

to create see csp(lM) */

The constant M_IDLEN is defined in <cluster .h>.

getccent ()

getcccid()

getccnam()

setccent()

endccent()

fgetccent()

RETURN VALUE

When first called, getccent () opens the cluster configuration file
/etc/clusterconf and returns a pointer to the first cct_entry structure in
the file. Thereafter, it returns a pointer to the next cct_entry structure in the file.
Successive calls can be used to search the entire file.

Searches from the beginning of the file until an entry whose cnode ID matches cid is
found, and returns a pointer to the particular structure in which it was found.

Searches from the beginning of the file until a cnode name matching name is found
and returns a pointer to the particular structure in which it was found. If an EOF or
an error is encountered on reading, these functions return a NULL pointer.

Has the effect of rewinding the cluster configuration file to the beginning of the file to
allow repeated searches.

Can be called to close the cluster configuration file when processing is complete.

Returns a pointer to the next cct_entry structure in the stream stream, which
matches the format of /etc/clusterconf.

A NULL pointer is returned on EOF or error.

WARNINGS
The above routines use <stdio .h>, which causes them to increase the size of programs not otherwise
using standard If 0, more than might be expected. '

All information is contained in a static area that is overwritten with each call; thus information must be
copied if it is to be saved.

AUTHOR
getccent () was developed by HP.

FILES
/etc/clusterconf

HP-UX Release 9.0: August 1992 -1- 497

I

getccent (3C) getccent (3C)

SEE ALSO
csp(lM), clusterconf(4).

I

498 -2- HP-UX Release 9.0: August 1992

getcdf(3C)

NAME
getcdf\), hidecdf\) - manipulate CnF path names

SYNOPSIS
#include <unistd.h>

char *getcdf(const char *path, char *buf, size_t size);

char *hidecdf(const char *path, char *buf, size_t size);

DESCRIPTION

getcdf(3C)

getcdf () and bidecdf () manipulate path names possibly containing CDF (hidden directory) com­
ponents.

getcdf() Returns a pointer to the expanded path matching the path name in path. The path argu­
ment can be a context dependent file (CDF) in which case a path name with all hidden direc­
tories expanded is returned. If path is not a CDF, a copy of the original path name is
returned.

hidecdf () Returns a pointer to the simplified path corresponding to path. Any context-dependent
components in the original path that match the current context (see context(5)) are removed
from the resulting path.

The value of size must be at least one greater than the length of the path name to be returned.

If bur is not a NULL pointer, getcdf () and hidecdf () copy the expanded path name into array bur.
If bur is a NULL pointer, getcdf () and h1decdf () obtain size bytes of space using malloc () (see
malloc(3C)). In this case, the pointer returned by getcdf () and hidecdf () can be used as an argu­
ment in a subsequent call to free () (see malloc(3C)).

RETURN VALUE
Upon successful completion, getcdf () and hidecdf () return a pointer to the resulting path name.
Otherwise, a value of NULL is returned and errno is set to indicate the error.

ERRORS
If either getcdf () or hidecdf () fails, it will set errno to one of the following values:

A component of path does not exist. [ENOENT]

[EACCES]

[ENAMETOOLONG]

Read or search permission is denied for one of the directories given inpath.

size is not large enough to hold the resulting path.

EXAMPLES
#include <stdio.h>

char *path, *cdf, *getcdf();
int size;

if «cdf = getcdf(path, NULL, size»
perror("getcdf");

AUTHOR

exit(l);

printf("%s\n", cdf);
free(cdf);

getcdf () and hidecdf () were developed by HP.

SEE ALSO
showcdf\l), malloc(3C), cdf\4), context(5).

HP-UX Release 9.0: August 1992 -1-

NULL) {

499

I

I

getclock (3C) getclock (3C)

NAME
getclock - get current value of system-wide clock

SYNOPSIS
#include <sys/timers.h>

int getclock(int clock_type, struct timespec *tp);

DESCRiPTiON
getclock () gets the current value tp of the specified system-wide clock, clock_type.

getc lock () supports a clock_type of TlMEOFDAY, defined in <sys It imers • h> which clock represents
the time-of-day clock for the system. For this clock, the values returned by getclock () represent the
amount of time since the Epoch.

RETURN VALLiE
getclock () returns a value of zero if successful; otherwise it returns a value of -1 and sets errno to
indicate the error.

ERRORS
getclockO fails if any of the following conditions are encountered:

[EINV ALl clock_type does not specify a known system-wide clock.

[EIO] An error occurred while accessing the clock device.

SEE ALSO
gettimer(3C), setclock(3C), <sysltimers.h>.

STANDARDS CONFORMANCE
getclock () : AES

500 -1- HP-UX Release 9.0: August 1992

getcwd(3C)

NAME
getcwd(), gethcwd() - get pathname of current working directory

SYNOPSIS
#include <unistd.h>

char *getcwd(char *buf, size_t size);

char *gethcwd(char *buf, size_t size);

DESCRIPTION

getcwd(3C)

getcwd () places the absolute pathnrune of the current working directory in the array pointed to by bur,
and returns bur. The value of size must be at least one greater than the length of the pathname to be
returned.

If bur is a NULL pointer, getcwd () obtains size bytes of space using malloe () (see malloc(3C». In this
case, the pointer returned by getcwd () can be used as the argument in a subsequent call to free ()
(see malloc(3C». Invoking getcwd () with bur as a null pointer is not recommended because this func­
tionality may be removed from the HP-UX operating system in a future release.

gethcwd () works the same as getcwd () except the returned directory pathname lists all hidden direc­
tories (context dependent files (see cdr(4».

RETURN VALUE
Upon successful completion, getewd () returns a pointer to the current directory pathname. Otherwise, it
returns NULL with errno set if size is not large enough, or if an error occurs in a lower-level function.

ERRORS
getcwd () fails if any of the following conditions are encountered:

[ElNV AL] The size argument is zero or negative.

[ERANGE] The size argument is greater than zero, but is smaller than the length of the
pathname.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

getcwd () may fail if any of the following conditions are encountered:

[EACCES] Read or search permission is denied for a component of pathname.

[EFAULT] bur points outside the allocated address space of the process. getcwd() may
not always detect this error.

[ENOMEM] malloc () failed to provide size bytes of memory.

EXAMPLES

AUTHOR

char *cwd, *getcwd();
char buf [PATH_MAX + 1];

if «cwd = getcwd«buf *)NULL, PATH_MAX+1»
perror ("pwd");
ex1t(1);

}
puts(cwd);

NULL) {

getcwd () was developed by AT&T. gethewd () was developed by HP.

SEE ALSO
pwd(1), malloc(3C), cdf(4).

STANDARDS CONFORMANCE
getcwd () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 501

I

I

getdate (3C) get date (3C)

NAME
getdate() - convert user format date and time

SYNOPSIS
#include <time.h>

struct tm *getdate(const char *string);

extern int getdate_err;

DESCRIPTION

502

getdate () converts user definable date and/or time specifications pointed to by string into a struct
tm. The structure declaration is in the <t ime • h> header file (see ctime(3C».

User-supplied templates are used to parse and interpret the input string. The templates are text files
created by the user and identified via the environment variable DATEMSK. DATEMSK should be set to
indicate the full pathname of the template file. The first line in the template that matches the input
specification is used for interpretation and conversion into the internal time format. Upon successful com­
pletion, getdate () returns a pointer to a struct tm; otherwise, it returns NULL and the external
variable getdate_err is set to indicate the error.

The following field descriptors are supported:
%% same as %
%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c locale's appropriate date and time representation
%d day of the month (01 through 31; the leading 0 is optional)
%e same as %d
%D date as 9-om/%d/%y
9-oh abbreviated month name
%H hour (00 through 23)
%I hour (01 through 12)
%In month number (01 through 12)
%M minute (00 through 59)
%n same as \n
%p locale's equivalent of either AM or PM
%r time as %I: 9-oM: %S %p
%R time as %H: 9-oM
%S seconds (00 through 59)
%t insert a tab
%T time as %H:9-oM:%S
%w weekday number (Sunday = 0 through Saturday = 6)
%x locale's appropriate date representation
%X locale's appropriate time representation
%y year without century (00 through 99)
%Y year as ccyy (e.g., 1986)
%z time zone name or no characters if no time zone exists

Month and weekday names can consist of any combination of uppercase and lowercase letters. The user
can request that the input date or time specification be in a specific language by setting the LC_TlME
category (see setlocale(3C».

For descriptors that allow leading zeros, leading zeros are optional; not required. However, the number of
digits used for those descriptors must not exceed two, including leading zeros. Extra whitespace in either
the template file or in string is ignored.

The field descriptors %c, %x, and %X are not supported if they include unsupported field descriptors.

The following example shows the possible contents of a template:

%In
%A %B %d, %Y, 9-oH:9-~:%S

%A

-1- HP-UX Release 9.0: August 1992

getdate(3C) get date (3C)

%B
%n/%d/%y %I %p
%d,%n,%Y %H:9-oM
at %A the %dst of %B in %Y
run job at %I %p, %B %dnd
9-oA den %d. %B %Y %H.%M Uhr

The following are examples of valid input specifications for the above template:

getdate("10/1/87 4 PM");
getdate ("Fridayll) ;
getdate("Friday September 18,1987,10:30:30");
getdate(1I24,9,1986 10:30");
getdate("at monday the 1st of december in 1986");
getdate("run job at 3 PM, december 2nd");

If the LC_TIME category is set to a German locale that includes freitag as a weekday name and
oktober as a month name, the following would be valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr");

This example shows how local date and time specification can be defined in the template:

Invocation Line in Template
getdate("11/27/86'') %mI%dI%y
getdate ("27 .11. 86") %d.%m.%y
getdate{"86-11-27") %y-%m-%d
getdate ("Friday 12: 00: 00") %A %H:%M:%S

The following rules apply when converting the input specification into the internal format:

• If only the weekday is given, today is assumed if the given day is equal to the current day, and
next week if it is less.

• If only the month is given, the current month is assumed if the given month is equal to the current
month, and next year if it is less and no year is given (the first day of the month is assumed if no
day is given).

• If no hour, minute and second are given, the current hour, minute and second are assumed.

• If no date is given, today is assumed if the given hour is greater than the current hour and tomor­
row is assumed if it is less.

The following examples help to illustrate the above rules assuming that the current date is Mon Sep 22
12: 19: 47 EDT 1986, and the LC_TIME category is set to the default "C" locale.

Line in
Input Template Date

Mon %a Mon Sep 22 12:19:47 EDT 1986
Sun %a Sun Sep 2812:19:47 EDT 1986
Fri %a Fri Sep 26 12: 19:47 EDT 1986
September %B Mon Sep 112:19:47 EDT 1986
January %B Thu Jan 112:19:47 EST 1987
December %B Mon Dec 112:19:47 EST 1986
Sep Mon %b %a Mon Sep 112:19:47 EDT 1986
Jan Fri %b %a Fri Jan 212:19:47 EST 1987
Dec Mon %b %a Mon Dec 112:19:47 EST 1986
Jan Wed 1989 %b %a %Y WedJan412:19:47 EST 1989
Fri 9 %a %H Fri Sep 26 09:00:00 EDT 1986
Feb 10:30 %b %H:%S Sun Feb 110:30:00 EST 1987
10:30 %H:9-oM Tue Sep 23 10:30:00 EDT 1986
13:30 %H:9-oM Mon Sep 22 13:30:00 EDT 1986

ERRORS
Upon failure, getdate () returns NULL and the variable getdate_err is set to indicate the error.

HP-UX Release 9.0: August 1992 -2- 503

I

I

getdate(3C)

The following is a complete list of the getdate_err settings and their interpretation:

1 the DATEMSK environment variable is null or undefined,

SEE ALSO

2 the template file cannot be opened for reading,

3 failed to get file status information,

4 the template file is not a regulw' file,

5 an error is encountered while reading the template file,

6 memory allocation failed (not enough memory available),

7 there is no line in the template that matches the input,

8 invalid input specification (example: February 31).

ctime(3C), ctype(3C), setlocale(3C), strftime(3C).

get date (3C)

504 -3- HP-UX Release 9.0: August 1992

getdiskbyname (3C) getdiskbyname (3C)

NAME
getdiskbyname{) - get disk description by its name

SYNOPSIS
#include <disktab.h>

struct disktab *getdiskbyname(const char *name);

DESCRIPTION
getdiskbyname () takes a disk name (such as hp7959B) and returns a pointer to a structure that
describes its geometry information and the standard disk partition tables. All information is obtained from
the disktab database file (see disktab(4».

The contents of the structure disktab include the following members. Note that there is not necessarily
any correlation between the placement in this list and the order in the structure.

char *d_name; /* drive name */
char *d_type; /* drive type */
int d_secsize; /* sector size in bytes */
int d_ntracks; /* # tracks/cylinder */
int d_nsectors; /* # sectors/track */
int d_ncylinders; /* # cylinders */
int d_rpm; /* revolutions/minute */
struct partition {

int
short
short

p_size;
p_bsize;
p_fsize;

} d-partitions[NSECTIONS];

/* #sectors in partition */
/* block size in bytes */
/* frag size in bytes */

The constant NSECTIONS is defined in <disktab. h>.

DIAGNOSTICS
A NULL pointer is returned in case of an error, or if name is not found in the disktab database file.

AUTHOR
getdiskbyname () was developed by HP and the University of California, Berkeley.

SEE ALSO
disktab(4)

HP-UX Release 9.0: August 1992 -1- 505

I

I

getenv(3C) getenv(3C)

NAME
getenv() - return value for environment name

SYNOPSIS
#include <stdlih.h>

char *getenv(const char *name);

DESCRIPTION
getenv () searches the environment list (see environ(5» for a string of the form name=value, and returns
a pointer to the value in the current environment if such a string is present, otherwise a NULL pointer.
name can be either the desired name, null-terminated, or of the form name=value, in which case
getenv () uses the portion to the left of the = as the search key.

WAR~,,]NGS

getenv () returns a pointer to static data which can be overwritten by subsequent calls.

SEE ALSO
exec(2), putenv(3C), environ(5).

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of characters in name as single- and/or multi-byte
characters.

International Code Set Support
Single- and multi-byte character code sets are supported.

STANDARDS CONFORMANCE
getenv () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

506 -1- HP-UX Release 9.0: August 1992

getfsent(3X) getfsent(3X)

NAME
getfsent(), getfsspec(), getfsfile(), getfstype(), setfsent(), endfsent() - get file system descriptor file entry

SYNOPSIS
#inc1ude <check1ist.h>

struct checklist *getfsent(void);

struct checklist *getfsspec(const char *spec);

struct checklist *getfsfi1e(const char *fi1e);

struct checklist *getfstype(const char *type)i

int setfsent(void);

int endfsent(void);

Remarks:
These routines are included only for compatibility with 4.2 BSD. For maximum portability and improved
functionality, new applications should use the getmntent(3X) library routines.

DESCRIPTION
getfsent (), getfsspec (), getfsfl1e (), and getfstype () each returns a pointer to an object
with the following structure containing the broken-out fields of a line in the letc/check1ist file. The
structure is declared in the <checklist .h> header file:

struct checklist {
char *fs_speci
char *fs_bspeci
char *fs_dir;
char *fs_type;
int fs-passno;
int fs_freqi

} ;

1* special file name *1
1* block special file name *1
1* file sys directory name *1
1* type: ro, rw, sw, xx *1
1* fsck pass number *1
1* backup frequency *1

The fields have meanings described in checklist(4). If the block special file name, the file system directory
name, and the type are not all defined on the associated line in letc/check1ist, these routines return
pointers to NULL in the fs_bspec, fs_dir, and fs_type fields. If the pass number or the backup fre­
quency field are not present on the line, these routines return -1 in the corresponding structure member.
fs_freq is reserved for future use.

getfsent () Reads the next line of the file, opening the file if necessary.

setfsent()

endfsent()

getfsspec ()

getf sf i1e ()

DIAGNOSTICS

Opens and rewinds the file.

Closes the file.

Sequentially searches from beginning of file until a matching special file name is
found, or until EOF is encountered.

Sequentially searches from the beginning of the file until a matching file system file
name is found, or until EOF is encountered. get f s type () Sequentially searches
from the beginning of the file until a matching file system type field is found, or until
EOF is encountered.

A null pointer is returned on EOF, invalid entry, or error.

WARNINGS
Since all information is contained in a static area, it must be copied to be saved.

AUTHOR
getf sent () was developed by HP and the University of California, Berkeley.

FILES
letc/check1ist

SEE ALSO
checklist(4).

HP-UX Release 9.0: August 1992 -1- 507

•

I

getgrent(3C) getgrent(3C)

NAME
getgrentO, getgrgidO, getgrnamO, setgrentO, endgrentO, fgetgrentO - get group file entry

SYNOPSIS
#include <grp.h>

struct group *getgrent(void);

struct group *getgrgid(gid_t gid);

struct group *getgrnam(const char *name);

void setgrent(void);

void endgrent(void);

struct group *fgetgrent(FILE *stream);

DESCRIPTION
getgrent (), getgrgid(), and getgrnam() locate an entry in the letclgroup file, and return a
pointer to an object of type struct group.

The group structure is defined in <grp • h> and includes the following members:

char *gr_name; 1* the name of the group *1
char *gr-passwd; 1* the encrypted group password *1
gid_t gr_gid; 1* the numerical group ID *1
char **gr_mem; 1* nUll-terminated array of pointers

to member names *1
getgrent () When first called, getgrent () returns a pointer to the first group structure in

the file; thereafter, it returns a pointer to the next group structure in the file. In
this way, successive calls can be used to search the entire file. getgrent () opens
the letclgroup file prior to doing its work and leaves the file open afterward;

setgrent ()

endgrent ()

getgrgid ()

getgrnam()

Has the effect of rewinding this file to allow repeated searches;

Can be called to close the file when processing is complete.

Searches from the beginning of the file until a numeric group ID matching gid is
found, and returns a pointer to the particular structure in which it was found.

Searches from the beginning of the file until a group name matching name is found,
and returns a pointer to the particular structure in which it was found.

fgetgrent () Returns a pointer to the next group structure in the standard 110 stream stream,
which should be open for reading, and its contents should match the format of
letclgroup.

NETWORKING FEATURES
NFS

If an entry beginning with a plus sign (+) or a minus sign (-) is found, these routines try to use the N et­
work Information Service network database for data. See group (4) for proper syntax and operation.

RETURN VALUE
getgrent (), getgrgid (), getgrnam(), and fgetgrent () return a NULL pointer if an end-of-file
or error is encountered on reading. Otherwise, the return value points to an internal static area containing
a valid group structure.

WARNINGS
The above routines use <stdio .h> and the Network Information Service library. This causes them to
increase the size of programs that do not otherwise use standard I/O and Network Information Service more
than might ordinarily be expected.

The value returned by these functions points to a single static area that is overwritten by each call to any of
the functions. It must be copied if it is to be saved.

DEPENDENCIES
NFS:

FILES

508 -1- HP-UX Release 9.0: August 1992

getgrent(3C)

/ete/yp/domainname/group.byname
/ete/yp/domainname/group.bygid

SEE ALSO:
ypcat(1).

FILES
/ete/group

SEE ALSO
getgroups(2), getpwent(3C), stdio(3S), group(4).

STANDARDS CONFORMANCE
getgrent () : SVID2, XPG2
endgrent () : SVID2, XPG2

fgetgrent () : SVID2, XPG2
getgrgid () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getgrnam () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
setgrent () : SVID2, XPG2

HP-UX Release 9.0: August 1992 -2-

getgrent(3C)

•

509

I

gethostent (3N) gethostent(3N)

NAME
gethostent(), gethostbyaddr(), gethostbyname(), sethostent(), endhostent() - get network host entry

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#!nclude <netdb.h>

extern int h_errno;

structhostent *gethostent(void);

struct hostent *gethostbyname(const char *name);

struct hostent *gethostbyaddr(
const char *addr,
int len,
int type);

int sethostent(int stayopen);

int endhostent(void);

DESCRIPTION
gethostent (), gethostbyname (), and gethostbyaddr () each return a pointer to a structure of
type hostent, defined as follows in <netdb. h>:

struct hostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_Iength;
char **h_addr_Iist;

} ;
#define h_addr h_addr_Iist[O]

The members of this structure are:

h_name

h_aliases

h_addrtype

h_length

h_addr_list

h_addr

The official name of the host.

A null-terminated array of alternate names for the host.

The type of address being returned; always AF _INET.

The length, in bytes, of the address.

A null-terminated array of network addresses for the host.

The first address in h_addr_list; this is for compatibility with previous HP-UX
implementations where a struct hostent contains only one network address per
host.

Name Server Operation
If the local system is configured to use the named name server (see named(1M)):

gethos tent () Always returns a NULL pointer.

sethostent (),

endhostent()

gethostbyname()
gethostbyaddr()

Requests the use of a connected stream socket for queries to the name server
if the stayopen flag is non-zero. The connection is retained after each call to
gethostbyname() orgethostbyaddr().

Closes the stream socket connection.

Each retrieves host information from the name server. Names are matched
without respect to uppercase or lowercase. For example, berkeley. edu,
Berkeley. EDU , and BERKELEY. EDU all match the entry for
berkeley. edu.

NIS Server Operation
If the local system is not configured to use the name server, but is running ypserv, the Network

510 -1- HP-UX Release 9.0: August 1992

gethostent (3N)

Information Service server:

gethostent()

sethostent()

endhostent()

gethostbyname()
gethostbyaddr()

Non-Server Operation

gethostent (3N)

Returns the next entry in the NIS database.

Initializes an internal key for the NIS database. If the stayopen flag is non­
zero, the internal key is not cleared after calls to endhostent ().

Clears the internal NIS database key.

Each retrieves host information from the NIS database. Names are matched
without respect to uppercase or lowercase. For example, berkeley. edu,
Berkeley.EDU and BERKELEY.EDU all match the entry for
berkeley. edu.

If the local system is using neither the local name server nor the Network Information Service server:
I

gethostent () Reads the next line of /ete/hosts, opening the file if necessary.

sethostent() opens and rewinds the file. If the stayopen flag is non-zero, the host data
base is not closed after each call to gethostent () (either directly or
indirectly through one of the other gethost calls).

endhos tent () Closes the file.

gethos tbyname () Sequentially searches from the beginning of the file until a host name
(among either the official names or the aliases) matching its name parameter
is found, or until EOF is encountered. Names are matched without respect to
uppercase or lowercase, as described above in the name server case.

gethostbyaddr () Sequentially searches from the beginning of the file until an Internet address
matching its addr parameter is found, or until EOF is encountered.

In calls to gethostbyaddr (), the parameter addr must point to an Internet address in network order
(see byteorder(3N». The parameter len must be the number of bytes in an Internet address; that is,
sizeof (struet in_addr). The parameter type must be the constantAF_INET.

RETURN VALUE
If successful, gethostbyname (), gethostbyaddr () and gethostent () return a pointer to the
requested hostent struct. gethostbyname () and gethostbyaddr () return NULL if their host or
addr parameters, respectively, cannot be found in the database. If /ete/hosts is being used, they also
return NULL if they are unable to open /ete/hosts. gethostbyaddr () also returns NULL if either
its addr or len parameter is invalid. gethostent () always returns NULL if the name server is being
used.

ERRORS
If the name server is being used and gethostbyname () or gethostbyaddr () returns a NULL
pointer, the external integer h_errno contains one of the following values:

HOST_NOT_FOUND No such host is known.

NO_RECOVERY

NO_ADDRESS

This is usually a temporary error. The local server did not receive a response
from an authoritative server. A retry at some later time may succeed.

This is a non-recoverable error.

The requested name is valid but does not have an IP address; this is not a
temporary error. This means another type of request to the name server will
result in an answer.

If the name server is not being used, the value of h_ errno may not be meaningful.

WARNINGS
All information is contained in a static area so it must be copied if it is to be saved.

AUTHOR
gethos tent () was developed by the University of California, Berkeley.

FILES
/ete/hosts

HP-UX Release 9.0: August 1992 -2- 511

•

gethostent (3N) gethostent (3N)

SEE ALSO
named(lM), ypserv(lM), resolver(3N), ypclnt(3C), hosts(4), ypfiles(4) .

•

512 -3- HP-UX Release 9.0: August 1992

getlogin (3C) getlogin (3C)

NAME
getlogin() - get login name

SYNOPSIS
#include <unistd.h>

char *getlogin(void);

DESCRIPTION
getlogin () returns a pointer to the login name as found in /etc/utmp. It can be used in conjunction
with getpwnam () to locate the correct password file entry when the same user ID is shared by several
login names.

If getlogin () is called within a process that is not attached to a terminal, it returns a NULL pointer.
The recommended procedure to obtain the user name associated with the real user ID of the calling process
is to call getlogin (), and if that fails to call getpwuid (). The function cuserid () can be used to
obtain the user name associated with the effective user ID of the calling process.

ERRORS
getlogin () fails if any of the following is true:

[EBADF] An invalid file descriptor was obtained.

[EMFILE] Too many file descriptors are in use by this process.

[ENFILE] The system file table is full.

FILES
/etc/utmp

SEE ALSO
getgrent(3C), getpwent(3C), cuserid(3S), utmp(4).

DIAGNOSTICS
getlogin () returns the NULL pointer if name is not found.

WARNINGS
Return values point to static data whose content is overwritten by each call.

STANDARDS CONFORMANCE
getlogin () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 513

•

I

getmntent(3X) getmntent (3X)

NAME
getmntent(), setmntent(), addmntent(), endmntent(), hasmntopt() - get file system descriptor file entry

SYNOPSIS
#include <mntent.h>

FILE *setmntent(const char *path, char *type);

struct mntent *getmntent(FILE *stream);

int addmntent(FILE *stream, struct mntent *mnt);

char *hasmntopt(struct mntent *mnt, const char *opt);

int endmntent(FILE *stream);

DESCRIPTION

514

These routines replace the obsolete getf sent () routines (see getfsent(3X» for accessing the file system
description file letc/checklist. They are also used to access the mounted file system description file
letc/mnttab.

setmntent () Opens a file system description file and returns a file pointer which can then be used
with getmntent (), addmntent (), or endmntent (). The type argument is the
same as in fopen(3C).

getmntent()

addmntent ()

hasmntopt()

endmntent ()

Reads the next line from stream and returns a pointer to an object with the following
structure containing the broken-out fields of a line in the file-system description file,
<InIltent .11>. The fields have meanings described in checklist(4).

struct mntent (

} ;

char *mnt_fsname; 1* file system name *1
char *mnt_dir; 1* file system path prefix *1
char *mnt_type; 1* hfs, nfs, swap, or xx *1
char *mnt_opts; 1* ro, suid, etc. *1
int mnt_freq; 1* dump frequency, in days *1
int mnt-passno; 1* pass number on parallel fsck *1
long mnt_time; 1* When file system was mounted; *1

1* see mnttab(4). *1
cnode_t mnt_cnode; 1* Cnode id from stat of mnt_fsname *1

1* (0 for NFS) *1

In the HP Clustered environment, the mnt_cnode field contains the cnode ID associ­
ated with the file system name named in the mnt_f sname field unless the specified
file system is of NFS type in which case the mnt_cnode field is set to O.
getmntent () obtains the mnt_cnode field for non-NFS type file systems by exe­
cuting the s tat () system call and using the s t _rcnode field ofthe stat structure
(see stat(2».

Adds the mntent structure mnt to the end of the open file stream. Note that stream
must be opened for writing.

Scans the mnt_opts field of the mntent structure mnt for a substring that
matches opt. It returns the address of the substring if a match is found; 0 otherwise.

Closes the file.

The following definitions are provided in <lDIltent • h>:

#define MNT CHECKLIST II letc/checklist II
#define MNT=MNTTAB II/etc/mnttab ll

#define MNTMAXSTR

#define MNTTYPE_HPS
#define MNTTYPE_CDPS
#define MNTTYPE_NFS

128 1* Max size string in mntent *1

IIhfsll 1* HPS file system *1
IIhfsll 1* CD-ROM file system *1
IInfsll 1* Network file system *1

- 1- HP-UX Release 9.0: August 1992

getmntent(3X) getmntent (3X)

#define MNTTYPE_SWAP "swap" 1* Swap device *1
#define MNTTYPE_SWAPFS "swapfs" 1* File system swap *1
#define MNTTYPE_IGNORE "ignore" 1* Ignore this entry *1

#define MNTOPT_DEFAULTS "defaults" 1* Use all default options *1
#define MNTOPT_RO "ro" 1* Read only *1
#define MNTOPT_RW "rw" 1* Read/write *1
#define MNTOPT_SUID "suid ll 1* Set uid allowed *1
#define MNTOPT_NOSUID "nosuid" 1* No set uid allowed *1
#define MNTOPT_QUOTA "quota" 1* Enable disk quotas *1
#define MNTOPT_NOQUOTA "noquota" 1* Disable disk quotas *1

The following definition is provided for device swap in <mntent . h>:

#define MNTOPT_END "end ll 1* swap after end of file system,
Series 300/400/700 only *1

The following definitions are provided for file system swap in <mntent. h>:

#define MNTOPT_MIN "min" 1* minimum file system swap *1
#define MNTOPT_LIM "lim" 1* maximum file system swap *1
#define MNTOPT_RES "res" 1* reserve space for file system *1
#define MNTOPT_PRI IIpri" 1* file system swap priority *1

NETWORKING FEATURES
NFS

The following definitions are provided in <mntent . h>:

#define MNTOPT_BG "bg" 1* Retry mount in background *1
#define MNTOPT_FG "fg" 1* Retry mount in foreground *1
#define MNTOPT RETRY "retry" 1* Number of retries allowed *1
#define MNTOPT=RSIZE "rsize" 1* Read buffer size in bytes *1
#define MNTOPT WSIZE IIwsize" 1* Write buffer size in bytes*1
#define MNTOPT=TIMEO "timeo ll 1* Timeout in 1/10 seconds *1
#define MNTOPT RETRANS "retrans" 1* Number of retransmissions *1
#define MNTOPT=PORT "port" 1* Server's IP NFS port *1
#define MNTOPT SOFT "soft" 1* Soft mount *1
#define MNTOPT=HARD "hard" 1* Hard mount *1
#define MNTOPT INTR "intr" 1* Interruptable hard mounts *1
#define MNTOPT=NOINTR "nointr" 1* Uninterruptable hard mounts*1
#define MNTOPT DEVS "devs" 1* Device file access allowed *1
#define MNTOPT=NODEVS "nodevs" 1* No device file access allowed *1

RETURN VALUE
setmntent()

getmntent()

addmntent()

endmntent()

WARNINGS

Returns a null pointer on error.

Returns a null pointer on error or EOF. Otherwise, getmntent () returns a pointer
to a mntent structure. Some of the fields comprising a mntent structure are optional
in letc/checklist and letc/mnttab. In the supplied structure, such missing
character pointer fields are set to NULL and missing integer fields are set to -l.

Returns 1 on error.

Returns 1.

The returned mntent structure points to static information that is overwritten in each call.

AUTHOR
addmntent (), endmntent (), getmntent () , hasmntopt (), and setmntent () were developed
by The University of California, Berkeley, Sun Microsystems, Inc., and HP.

FILES
letc/checklist
letc/mnttab

HP-UX Release 9.0: August 1992 -2- 515

I

getmntent(3X) getmntent (3X)

SEE ALSO
checklist(4), getfsent(3X), mnttab(4).

I

516 -3- HP-UX Release 9.0: August 1992

getnetent (3N) getnetent (3N)

NAME
getnetent(), getnetbyaddr(), getnetbyname(), setnetent(), endnetent() - get network entry

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

struct netent *getnetent(void);

struct netent *getnetbyname(const char *name);

struct netent *getnetbyaddr(int net, int type);

int setnetent(int stayopen)i

int endnetent(void)i

DESCRIPTION
getnetent (), getnetbyname (), and getnetbyaddr () each return a pointer to a structure of type
netent containing the broken-out fields of a line in the network data base, / etc /networks.

The members of this structure are:

n_name The official name of the network.

n_aliases A null-terminated list of alternate names for the network.

n_addrtype The type of the network number returned; always AF _INET.

The network number.

Functions behave as follows:

getnetent () Reads the next line of the file, opening the file if necessary.

setnetent () opens and rewinds the file. If the stayopen flag is non-zero, the network data
base is not closed after each call to getnetent () (either directly or indirectly
through one of the other getnet * calls).

endnetent () Closes the file.

getnetbyname () Sequentially searches from the beginning of the file until a network name
(among either the official names or the aliases) matching its parameter name is
found, or until EOF is encountered.

getnetbyaddr () Sequentially searches from the beginning of the file until a network number
matching its parameter net is found, or until EOF is encountered. The parame­
ter net must be in network order. The parameter type must be the constant
AF _INET. Network numbers are supplied in host order (see byteorder(3N».

If the system is running Network Information Service (NFS), getnetbyname () and getnet­
byaddr () obtain their network information from the NIS server (see ypserv(lM) andypfiles(4».

RETURN VALUE
getnetent (), getnetbyname (), and getnetbyaddr () return a null pointer (0) on EOF or when
they are unable to open /etc/networks. getnetbyaddr () also returns a null pointer if its type
parameter is invalid.

WARNINGS
All information is contained in a static area so it must be copied if it is to be saved.

AUTHOR
getnetent () was developed by the University of California, Berkeley.

FILES
/etc/networks

SEE ALSO
ypserv(lM), networks(4), ypfiles(4).

HP-UX Release 9.0: August 1992 -1- 517

I

I

getnetgrent (3C) getnetgrent(3C)

NAME
getnetgrent(), setnetgrent(), endnetgrent(), innetgr() - get network group entry

SYNOPSIS
int innetgr(

) ;

char *netgroup,
char *machine,
char *user,
char *domain

int setnetgrent(char *netgroup);

int endnetgrent();

int getnetgrent(
char **machinep,
char **userp,
char **domainp

) ;

DESCRIPTION
innetgr()

getnetgrent()

setnetgrent()

Returns 1 if netgroup contains the machine, user, and domain triple as a member.
Otherwise, it returns o. If machine, user, or domain is NULL, innetgr interprets
NULL to mean, any machine, user, or domain respectively. Refer to netgroup(4) for a
description of netgroup membership criteria.

Returns the next member of a network group. After the call, machinep contains a
pointer to a string containing the name of the machine part of the network group
member. Pointers userp and domainp behave in a manner similar to machinep. If
any of these pointers are returned with a NULL value, they are interpreted as wild
cards. getnetgrent () allocates space for the names. This space is released
when an endnetgrent () call is made. getnetgrent () returns 1 if it suc­
ceeded in obtaining another network group member, 0 if it reached the end of the
group.

Establishes the network group from which getnetgrent () obtains members, and
also restarts calls to getnetgrent () from the beginning of the list. If the previ­
ous setnetgrent () call was to a different network group, a endnetgrent ()
call is implied.

endnetgrent () Frees the space allocated during getnetgrent () calls.

AUTHOR
getnetgrent () was developed by Sun Microsystems, Inc.

FILES
/etc/netgroup

SEE ALSO
netgroup(4).

518 -1- HP-UX Release 9.0: August 1992

getopt(3C) getopt(3C)

NAME
getopt(), optarg, optind, opterr - get option letter from argument vector

SYNOPSIS
#include <unistd.h>

int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;

extern int optind, opterr, optopt;

DESCRIPTION
getopt () returns the next option letter in argv (starting from argv [1]) that matches a letter in optstring.
argc and argv are the argument count and argument array as passed to mainO. optstring is a string of
recognized option characters; if a character is followed by a colon, the option takes an argument which may
or may not be separated from it by white space.

opt ind is the index of the next element of the argv [] vector to be processed. It is initialized to 1 by the
system, and getopt () updates it when it finishes with each element of argv[].

getopt () returns the next option character from argv that matches a character in optstring, if there is
one that matches. If the option takes an argument, getopt () sets the variable optarg to point to the
option-argument as follows:

• If the option was the last character in the string pointed to by an element of argv, then optarg
contains the next element of argv, and optind is incremented by 2. If the resulting value of
opt ind is greater than or equal to argc, this indicates a missing option argument, and
get opt () returns an error indication.

• Otherwise, optarg points to the string following the option character in that element of argv,
and optind is incremented by l.

If, when getopt () is called, argv[optind] is NULL, or the string pointed to by argv[optind] either does
not begin with the character - or consists only of the character -, getopt () returns -1 without chang­
ing optind. If argv[optind] points to the string - -, getopt () returns -1 after incrementing optind.

If getopt () encounters an option character that is not contained in optstring, it returns the question­
mark (?) character. If it detects a missing option argument, it returns the colon character (:) if the first
character of optstring was a colon, or a question-mark character otherwise. In either case, getopt () sets
the variable optopt to the option character that caused the error. If the application has not set the variable
opterr to zero and the first character of optstring is not a colon, getopt () also prints a diagnostic mes­
sage to standard error.

The special option - - can be used to delimit the end of the options; -1 is returned, and - - is skipped.

RETURN VALUE
get opt () returns the next option character specified on the command line. A colon (:) is returned if
getopt () detects a missing argument and the first character of optstring was a colon (:).

A question-mark (?) is returned if getopt () encounters an option character not in optstring or detects a
missing argument and the first character of optstring was not a colon (:).

Otherwise, getopt () returns -1 when all command line options have been parsed.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of option letters as single and/or multi-byte charac­
ters.

International Code Set Support
Single- and multi-byte character code sets are supported with the exception of multi-byte character file
names.

EXAMPLES
The following code fragment shows to process arguments for a command that can take the mutually
exclusive options a and b, and the options f and 0, both of which require arguments:

HP-UX Release 9.0: August 1992 -1- 519

I

I

getopt(3C) getopt(3C)

#include <stdio.h>
#include <unistd.h>
main (int argc, char *argv[])
{

}

int c;
int bflg, aflg, errflg;
extern char *optarg,
extern int optind, optopt;

while ({c = getopt{argc, argv, lI:abf:o:II» 1= -1)
switch (e) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else {
bflg++;
bproc ();

}
break;

case 'f':
ifile = optarg;
break;

case '0':

ofile = optarg;
break;

case :: /* -f or -0 without arguments */
fprintf{stderr, IIOption -%c requires an argument\nll,

optopt);
errflg++;
break;

case '?':

}

fprintf{stderr, IIUnrecognized option: - %c\nll,
optopt);

errflg++;

if (errflg) {
fprintf (stderr, lIusage: • . . II);
exit (2);

for (; optind < argc; optind++)
if (access{argv[optind], 4»

WARNINGS

520

Options can be any ASCII characters except colon (:), question mark (?), or null (\ 0). It is impossible to dis­
tinguish between a ? used as a legal option, and the character that get opt () returns when it
encounters an invalid option character in the input.

-2- HP-UX Release 9.0: August 1992

getopt(3C)

SEE ALSO
getopt(l).

STANDARDS CONFORMANCE
getopt () : AES, SVID2, XPG2, XPG3, XPG4, POSIX.2

optarg: AES, SVID2, XPG2, XPG3, XPG4, POSIX.2

opterr: AES, SVID2, XPG2, XPG3, XPG4, POSIX.2

optind: AES, SVID2, XPG2, XPG3, XPG4, POSIX.2

HP-UX Release 9.0: August 1992 -3-

getopt(3C)

I

521

I

getpass (3C) getpass (3C)

NAME
getpass() - read a password

SYNOPSIS
#include <unistd.h>

char *getpass(const char *prompt);

DESCRIPTION
getpass () reads up to a newline or EOF from the file /dev/tty, after prompting on the standard error
output with the null-terminated string prompt and disabling echoing. A pointer is returned to a null­
terminated string of at most 8 characters. If /dev/tty cannot be opened, a NULL pointer is returned.
An interrupt terminates input and sends an interrupt signal to the calling program before returning.

FILES
/dev/tty

SEE ALSO
crypt(3C).

WARNING
The above routine uses <stdio. h>, which causes it to increase, more than might be expected, the size of
programs not otherwise using standard 110.

WARNINGS
The return value points to static data whose content is overwritten by each call.

STANDARDS CONFORMANCE
getpass (): AES, SVID2, XPG2, XPG3, XPG4

522 -1- HP-UX Release 9.0: August 1992

getprotoent(3N) getprotoent (3N)

NAME
getprotoent(), getprotobynumber(), getprotobyname(), setprotoent(), endprotoent() - get protocol entry

SYNOPSIS
#include <netdb.h>

struct protoent *getprotoent(void);

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobynumber(int proto)i

int setprotoent(int stayopen)i

int endprotoent(void);

DESCRIPTION
getprotoent (), getprotobyname (), and getprotobynumber () each return a pointer to a
structure of type protoent containing the broken-out fields of a line in the network protocol data base,
/etc/protocols.

The members of this structure are:

p_name The official name of the protocol.

p_aliases A null-terminated list of alternate names for the protocol.

p-proto The protocol number.

Functions behave as follows:

Reads the next line of the file, opening the file ifnecessary. getprotoent ()

setprotoent() Opens and rewinds the file. If the stayopen flag is non-zero, the protocol
data base is not closed after each call to getprotoent () (either
directly or indirectly through one of the other getproto* calls).

endprotoent () Closes the file.

getprotobyname () Sequentially search from the beginning of the file until a matching proto­
getprotobynumber () col name (among either the official names or the aliases) or protocol

number is found, or until EOF is encountered.

If the system is running Network Information Service (NFS) services, getprotobyname () and
getprotobynumber () get the host information from the NIS server (see ypserv(lM) and
ypfiles(4».

RETURN VALUE
getprotoent (), getprotobyname (), and getprotobynumber () return a null pointer (0) on
EOF or when they are unable to open /etc/protocols.

WARNINGS
All information is contained in a static area so it must be copied if it is to be saved.

AUTHOR
getprotoent () was developed by the University of California, Berkeley.

FILES
/etc/protocols

SEE ALSO
ypserv(lM), protocols(4), ypfiles(4).

HP-UX Release 9.0: August 1992 -1- 523

I

I

getpw(3C) getpw(3C)

NAME
getpw() - get name from DID

SYNOPSIS
#include <pwd.h>

int getpw(uid_t uid, char *buf);

DESCRIPTION
getpw () searches the password file for a user ID number that equals uid, copies the line of the password
file in which uid was found into the array pointed to by bur, and returns O. getpw () returns non-zero if
uid cannot be found. The line is null-terminated.

This routine is included only for compatibility with prior systems, and should not be used; see getpwent(3C)
for routines to use instead.

NETWORKING FEATURES
NFS

This routine is implemented using getpwuid () (see getpwuid(3C» and therefore uses the Network
Information Service network database as described inpasswd(4).

RETURN VALUE
getpw() returns non-zero on error.

WARNINGS
The above routine uses <stdio. 11>, which causes it to increase, more than might be expected, the size of
programs not otherwise using standard 110.

AUTHOR
getpw () was developed by AT&T and HP.

FILES
/etclpasswd

SEE ALSO
getpwent(3C), passwd(4).

STANDARDS CONFORMANCE
getpw () : XPG2

524 -1- HP-UX Release 9.0: August 1992

getpwent(3C) getpwent(3C)

NAME
getpwent(), getpwuid(), getpwnam(), setpwent(), endpwent(), fgetpwent() - get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent(void);

struct passwd *getpwuid(uld_t uid);

struct passwd *getpwnam(const char *name);

vold setpwent(vold);

void endpwent(vold);

struct passwd *fgetpwent(FILE *stream);

DESCRIPTION
getpwent (), getpwuid (), and getpwnam() locate an entry in the /etc/passwd file, and return
a pointer to an object of type struct passwd.

The pas swd structure is defined in <pwd. h> and includes the following members:

char
char
lnt
int
char
char
char
char
char
long
lnt

*pw_name;
*pw-passwd;
pw_uld;
pw_gld;
*pw_age;
*pw_comment;
*pw_gecos;
*pw_dir;
*pw_shell;
pw_audld;
pw_audflg;

The pw_comment field is unused; the others have meanings described inpasswd(4).

getpwent () When first called, getpwent () returns a pointer to the first passwd structure in
the file. Thereafter, it returns a pointer to the next passwd structure in the file. In
this way, successive calls can be used to search the entire file. getpwent () opens
the / etc/passwd file prior to doing its work and leaves the file open afterward;

setpwent()

getpwuld()

getpwnam()

fgetpwent()

SECURITY FEATURES

Has the effect of rewinding this file to allow repeated searches; endpwent () Can be
called to close the file when processing is complete.

Searches from the beginning of the file until a numeric user ID matching uid is found,
and returns a pointer to the particular structure in which it was found.

searches from the beginning of the file until a login name matching name is found,
and returns a pointer to the particular structure in which it was found.

returns a pointer to the next pas swd structure in the standard I/O stream stream,
which should be open for reading, and its contents should match the format of
/ etc/passwd.

If the secure password file U. secure/etc/passwd) exists on the system and the calling process has
permission to access it, the getpwent () routines fill in the encrypted password, audit ID, and audit flag
from the corresponding entry in that file.

If the secure password file exists but the caller does not have permission to read it, the encrypted password
field is set to * and the audit ID and audit flag are set to-l.

If the secure password file does not exist, the encrypted password in /etc/passwd is returned and the
audit ID and audit flag are set to -l.

In situations where it is not necessary to get information from the regular password file, get spwent () is
significantly faster because it avoids unnecessary searches of the regular password file (see getspwent(3C)),

HP-UX Release 9.0: August 1992 -1- 525

I

I

getpwent (3C) getpwent (3C)

and does not use the Network Information Service database.

putpwent () affects only /etc/passwd; the audit ID and audit flag in the password structure are
ignored. putspwent () must be used to modify /. secure/etc/passwd (see putspwent(3C».

NETWORKING FEATURES
NFS

If an ent!"/ beginning ... /ith a plus sign (+) or a minus sign (-) is found, these routines try to use the Network
Information Service network database for data. See passwd(4) for proper syntax and operation.

RETURN VALUE
getpwent () , getpwuid (), getpwnam () , and fgetpwent () return a NULL pointer if an end-of-file
or error is encountered on reading. Otherwise, the return value points to an internal static area containing
a valid pas swd structure.

WARNINGS
The above routines use <stdio. 11> and the Network Information Service library, which causes them to
increase the size of programs, not otherwise using standard 110 and Network Information Service, more
than might be expected.

The value returned by these functions points to a single static area that is overwritten by each call to any of
the functions, so it must be copied if it is to be saved.

The following fields have numerical limitations as noted:

• The user ID is an integer value between -2 and illD_MAX inclusive.

• The group ID is an integer value between 0 and illD_MAX inclusive.

If either of these values are out of range, the getpwent(3C) functions will reset the associated ID value to
(illD_MAX+1).

DEPENDENCIES
NFS

Files:
/etc/yp/domainname/passwd.byname
/etc/yp/domainname/passwd.byuid

See Also:
ypcat(l).

AUTHOR
getpwent (), getpwuid (), getpwnam (), setpwent (), endpwent (), and fgetpwent () were
developed by AT&T and HP.

FILES
/etc/passwd

SEE ALSO
ypcat(l), cuserid(3S), getgrent(3C), getlogin(3C), getspwent(3C), stdio(3S), putspwent(3C), passwd(4),
spasswd(4), limits(5).

STANDARDS CONFORMANCE
getpwent () : SVID2, XPG2
endpwent () : SVID2, XPG2

fgetpwent () : SVID2, XPG2
getpwnam () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

526

getpwuid () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
setpwent () : SVID2, XPG2

-2- HP-UX Release 9.0: August 1992

getrpcent (3C) getrpcent (3C)

NAME
getrpcent(), getrpcbyname(), getrpcbynumber() - get rpc entry

SYNOPSIS
#include <netdb.h>

struct rpcent *getrpcent{);

struct rpcent *getrpcbyname{char *name);

struct rpcent *getrpcbynumber{int number);

int setrpcent{int stayopen);

int endrpcent{);

DESCRIPTION
getrpcent (), getrpcbyname (), and getrpcbynumber () each return a pointer to an object with
the following structure containing the broken-out fields of a line in the rpc program number data base,
/etc/rpc.

struct rpcent {
char *r_name;
char **r_aliases;
int r_number;

/* name of server for this rpc program */
/* NULL ter.minated list of aliases */
/* rpc program number for this service */

} ;

Functions
getrpcent()

setrpcent()

endrpcent()

getrpcbyname{)

getrpcbynuffiber()

RETURN VALUE

Read the next line of the file, opening the file if necessary.

Open and rewind the file. If the stayopen flag is non-zero, the rpc database is
not closed after each call to getrpcent () (either directly or indirectly
through one of the other getrpc* () calls).

Close the file.

Sequentially search from the beginning of the file until a matching rpc program
name is found, or until EOF is encountered.

Sequentially search from the beginning of the file until a matching rpc program
number is found, or until EOF is encountered.

getrpcent (), getrpcbyname (), and getrpcbynumber () return a null pointer (0) on EOF or
when unable to access the information in /etc/rpc either directly or through a Network Information
Service database.

WARNINGS
All information is contained in a static area so it must be copied if it is to be saved.

AUTHOR
getrpcent () was developed by Sun Microsystems, Inc.

FILES
/etc/rpc

SEE ALSO
rpcinfo(lM), rpc(4).

HP-UX Release 9.0: August 1992 -1- 527

I

I

getrpcport (3N)

NAME
getrpcport() - get RPC port number

SYNOPSIS
int getrpcport(

char *host,
int prognum,
int versnum,
int proto

) ; ..
DESCRIPTION

getrpcport (3N)

getrpcport () returns the port number for version versnum of the RPC program prognum running on
host and using protocol proto. It returns 0 if it cannot contact portmap or if prognum is not registered. If
prognum is registered but not with version versnum, it returns the port number of the last registered (prog­
num,proto) pair.

WARNING
User applications that call this routine must be linked with /usr/ include/librpcsvc. a. For exam­
ple,

cc my_source.c -lrpcsvc

AUTHOR
getrpcport () was developed by Sun Microsystems, Inc.

SEE ALSO
portmap(lM).

528 -1- HP-UX Release 9.0: August 1992

gets(3S) gets(3S)

NAME
gets(), fgets() - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE *stream);

DESCRIPTION
gets(}

fgets ()

RETURN VALUE

Reads characters from the standard input stream, s tdin. into the array pointed to by s,
until a new-line character is read or an end-of-file condition is encountered. The new-line
character is discarded and the string is terminated with a null character.

Reads characters from the stream into the array pointed to by s, until n-l characters are
read, a new-line character is read and transferred to s, or an end-of-file condition is encoun­
tered. The string is then terminated with a null character.

Upon sucessful completion, fgets () and gets () return s. If the stream is at end-of-file, the end-of-file
indicator for the stream is set and a null pointer is returned. If a read error occurs, the error indicator for
the stream is set, errno is set to indicate the error, and a null pointer is returned.

ferror () and feof () can be used to distinguish between an error condition and an end-of-file condition.

ERRORS
fgets () and gets () fail if data needs to be read into the stream's buffer, and:

SEE ALSO

[EAGAIN]

[EBADF]

[EINTR]

[EIO]

The O_NONBLOCK flag is set for the file descriptor underlying stream and the pro­
cess would be delayed in the read operation.

The file descriptor underlying stream is not a valid file descriptor open for reading.

The read operation was terminated due to the receipt of a signal, and either no data
was transferred or the implementation does not report partial transfer for this file.

The process is a member of a background process and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking the S I GTT IN sig­
nal or the process group of the process is orphaned.

Additional errno values can be set by the underlying read () function (see
read (2)).

ferror(3S), fopen(3S), fread(3S), getc(3S), puts(3S), scanit3S).

STANDARDS CONFORMANCE
gets () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

fgets (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -1- 529

I

I

getservent(3N) getservent (3N)

NAME
getservent(), getservbyport(), getservbyname(), setservent(), endservent() - get service entry

SYNOPSIS
#include <netdb.h>

struct servent *getservent(void);

struct servent *getservbyname(
const char *name,
const char *proto);

struct servent *getservbyport(int port, const char *proto);

int setservent(int stayopen);

int endservent(void);

DESCRIPTION
getservent (), getservbyname (), and getservbyport () each return a pointer to a structure of
type servent containing the broken-out fields of a line in the network services data base, / etc/ services.

The members ofthis structure are:

s_name The official name of the service.

s_aliases A null-terminated list of alternate names for the service.

s-port The port number at which the service resides.

s-proto The name of the protocol to use when contacting the service.

Functions behave as follows:

getservent()

setservent()

endservent ()

getservbyname()
getservbyport()

Reads the next line of the file, opening the file if necessary.

Opens and rewinds the file. If the stayopen flag is non-zero, the services
data base is not closed after each call to getservent () (either directly
or indirectly through one of the other getserv* calls).

Closes the file.

Sequentially search from the beginning of the file until a matching service
name (among either the official names or the aliases) or port number is
found, or until EOF is encountered. If a non-NULL protocol name is also
supplied (such as tcp or udp), searches must also match the protocol.

If the system is running Network Information Service (NFS), get­
servbyname () gets the service information from the NIS server (see
ypserv(lM) andypfiles(4)).

RETURN VALUE
getservent (), getservbyname (), and getservbyport () return a null pointer (0) on EOF or
when they are unable to open /etc/services.

WARNINGS
All information is contained in a static area so it must be copied if it is to be saved.

AUTHOR
getservent () was developed by the University of California, Berkeley.

FILES
/etc/services

SEE ALSO
ypserv(lM), services(4), ypfiles(4).

530 -1- HP-UX Release 9.0: August 1992

getspwent (3C) getspwent (3C)

NAME
getspwentO, getspwuid(), getspwaidO, getspwnam(), setspwent(), endspwentO, fgetspwentO - get secure
password file entry

SYNOPSIS
#include <pwd.h>

struct s-passwd *getspwent(void);

struct s-passwd *getspwuid(uid_t uid);

struct s-passwd *getspwaid(aid_t aid);

struct s-passwd *getspwnam(const char *name);

void setspwent(void);

void endspwent(void);

struct s-passwd *fgetspwent(FILE *stream);

DESCRIPTION
These privileged routines provide access to the secure password file in a manner similar to the way
getpwent(3C) routines handle the regular password file, (/etc/passwd).

These routines are particularly useful in situations where it is not necessary to get information from the
regular password file. getspwent(3C) routines run significantly faster than getpwent(3C) routines because
they avoid unnecessary scanning of the password file and use of Network Information Service.

getspwent (), getspwuid (), getspwaid (), and getspwnam () each return a pointer to an object.
The s-passwd structure is written in the /. secure/ etc/passwd file, and consists of five fields per
line, as follows:

struct s-passwd {
char *pw_name;
char *pw-passwd;
char *pw_age;

/* login name */
/* encrypted password */
/* password age */

int pw_audid; /* audit ID */
int pw_audflg; /* audit flag l=on, O=off */

} ;

Since the s -pas swd structure is declared in the <pwd. h> header file, it is unnecessary to redeclare it.

getspwent () When first called, getspwent () returns a pointer to each s-passwd structure in
/ • secure/ etc/passwd in sequence. Subsequent calls can be used to search the
entire file.

getspwuid()

getspwnam()

setspwent()

endspwent

fgetspwent

RETURN VALUE

Searches each entry from the beginning of the file until it finds a numerical user ID
matching uid. It then returns a pointer to the particular structure in which uid is
found. getspwaid () Similarly searches for a numerical audit ID matching aid
and returns a pointer to the particular structure in which aid is found (see spasswd(4)
for details on this field).

Searches from the beginning of the file until a login name matching name is found.
Returns a pointer to the particular structure in which name is found.

Resets the file pointer to the beginning of the /. secure/etc/passwd file to allow
repeated searches.

Can be called to close the secure password file when processing is complete.

Returns a pointer to the next s-passwd structure in the stream stream, which
matches the format of / • secure/ etc/passwd.

getspwent () returns a NULL pointer if any of these routines encounter an end-of-file or error while
searching, or if the effective user ID of the calling process is not zero.

WARNINGS
The above routines use <stdio .h>, which causes them to increase the size of programs by more than

HP-UX Release 9.0: August 1992 -1- 531

I

I

getspwent(3C) getspwent(3C)

might otherwise be expected.

Since all information is contained in a static area, it must be copied to be saved.

AUTHOR
getspwent () was developed by HP.

FILES
/.secure/etc/passwd

SEE ALSO
ypcat(1), getgrent(3C), getlogin(3C), getpwent(3C), putspwent(3C), passwd(4), spasswd(4).

532 -2- HP-UX Release 9.0: August 1992

getsu bopt (3C) getsubopt (3C)

NAME
getsubopt() - parse suboptions from a string.

SYNOPSIS
#include <unistd.h>

int getsubopt(char **optionp, char *tokens[], char **valuep);

DESCRIPTION
getsubopt () parses suboptions in a flag argument that were initially parsed by getopt () (see
getopt(3C)). These suboptions are separated by commas, and may consist of either a single token, or a
token-value pair separated by an equal sign. Because commas deiimii suboptions in the option string, they
are not allowed to be part of the suboption or the value of a sub option. Similarly, because the equal sign
separates a token from its value, a token must not contain an equals sign. An example command that uses
this syntax is mount. mount allows parameters to be specified with the -
switch as follows:

mount -0 rW,hard,bg,wsize=1024 speed:/usr /usr

In this example there are four suboptions: rw, hard, bg, and wsize, the last of which has an associated
value of 1024.

getsubopt () takes the address of a pointer to the option string, a vector of possible tokens, and the
address of a value string pointer. It returns the index of the token that matched the suboption in the input
string or -1 if there was no match. If the option string at *optionp contains only one suboption, getsu­
bopt () updates *optionp to point to the null at the end of the string, otherwise it isolates the suboption
by replacing the comma separator with a null, and updates *optionp to point to the start of the next subop­
tion. If the suboption has an associated value, getsubopt () updates *valuep to point to the value's first
character. Otherwise it sets *valuep to NULL.

The token vector is organized as a series of pointers to NULL-terminated strings. The end of the token vec­
tor is identified by NULL.

When getsubopt () returns, if *valuep is not NULL then the suboption processed included a value. The
calling program can use this information to determine if the presence or lack of a value for this sub option is
an error.

Additionally, when getsubopt () fails to match the suboption with the tokens in the tokens array, the
calling program should decide if this is an error, or if the unrecognized option should be passed on to
another program.

EXAMPLES
The following code fragment shows how options can be processed to the mount command by using get­
subopt() •

char *myopts[] =
#define READONLY

#define READWRITE

#define WRITESIZE

o
"ro" ,
1
"rw" ,
2

#define READSIZE
"wsize",
3
"rsize" ,
NULL} ;

main (int argc, char **argv)
{

int sc, c, errflag;
char *options, *value;
extern char *optarg;
extern int optind;

HP-UX Release 9.0: August 1992 -1- 533

•

•

getsubopt (3C) getsubopt (3C)

while «c = getopt(argc, argv, "abf:o:"» != EOF)
switch (c) {

}

case 'a': /* process 'a' option */
break;

case 'b': /* process 'b' option */
break;

case 'f'i
ofile = optarg;
break;

case '?':
errflag++;
break;

case \oJ.
options = optarg;
while (*options != '\0') {

switch(getsubopt(&options, myopts, &value»
case READONLY: /* process ro option */

break;
case READWRITE: /* process rw option */

break;
case WRITESIZE: /* process wsize option */

if (value == NULL) {
error_no_arg();
errflag++;

}
else

write_size = atoi(value);
break;

case READSIZE: /* process rsize option */
if (value == NULL) {

error_no_arg();
errflag++;

}
else

read_size
break;

atoi(value);

default:

break;

/* process unknown token */
error_bad_token(value);
errflag++;
break;

if (errflg) (

}

fprintf(stderr, "usage: .•• ");
exit (2);

for (; optind < argc; optind++) {
/* process remaining arguments */

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of option letters as single and/or multi-byte

534 -2- HP-UX Release 9.0: August 1992

getsubopt (3C) getsubopt (3C)

characters.

International Code Set Support
Single- and multi-byte character code sets are supported with the exception of multi-byte-character file
names.

SEE ALSO
getopt(3C).

STANDARDS CONFORMANCE
getsubopt (): SVID3

HP-UX Release 9.0: August 1992 -3- 535

I

I

gettimer(3C) Series 300, 400, and 700 Only gettimer (3C)

NAME
gettimer - get value of a per-process timer

SYNOPSIS
#include <sys/timers.h>

int gettimer(timer_t timerid, struct itimerspec *value)i

DESCRIPTION
gettimer () returns an itimerspec structure value to the value argument. The iCvalue member of the
structure represents the amount of time in the current interval before the timer expires for the timer
specified in timerid, or zero if the timer is disabled. The iCinterval member has the value last set by rel­
timer () (see reltimer(3C». The members of value are subject to the resolution of the timer (see
mktimer(3C».

The behavior of this function is undefined if value is NULL.

RETURN VALUE
Upon successful completion, get timer () returns zero; otherwise, it returns -1 and set errno to indi­
cate the error.

ERRORS
gettimerO fails if any of the following conditions are encountered:

[EINVAL]

[EIO]

timerid does not correspond to an ID returned by mkt imer () .

An error occurred while accessing the clock device.

SEE ALSO
reltimer(3C), mktimer(3C), <sys/timers.h>.

STANDARDS CONFORMANCE
gettimer (): AES

536 -1- HP-UX Release 9.0: August 1992

getusershell (3C) getusershell (3C)

NAME
getusershell(), setusershell(), endusershell() - get legal user shells

SYNOPSIS
#include <unistd.h>

char *getusershell(void)i

void setusershell(void)i

void endusershell(void)i

DESCRIPTION
getusershell () Returns a pointer to the first legal user shell as defined in the file

/etc/shells (see shells(4». If /etc/shells does not exist or is not read­
able, getusershell () returns the following standard system shells:

/bin/sh
/bin/rsh
/bin/ksh
/bin/rksh
/bin/csh
/bin/pam
/usr/bin/keysh
/bin/posix/sh

as if they were contained in /etc/shells. The file is left open so that the next call returns the next
shell. A null pointer (0) is returned on EOF or error.

setusershell()
Rewinds the file.

endusershell()
Closes the file.

WARNINGS
All information is contained in a static area and therefore must be copied if it is to be saved.

AUTHOR
getusershell () was developed by HP and the University of California, Berkeley.

FILES
/etc/shells

SEE ALSO
shells(4).

HP-UX Release 9.0: August 1992 -1- 537

•

•

getut(3C) getut(3C)

NAME
getutentO, getutidO, getutlineO, pututlineO, _pututlineO, setutentO, endutentO, utmpnameO - access
utmp file entry

SYNOPSIS
#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(struct utmp *id);

struct utmp *getutline(struct utmp *line);

struct utmp *-pututline(const struct utmp *utmp);

void pututline(const struct utmp *utmp);

void setutent(void);

void endutent(void);

void utmpname(const char *file);

DESCRIPTION

538

getutent (), getutid (), and getutline () each return a pointer to a structure of the following
type:

struct utmp {
char ut_user[8];
char ut_id[4];

/* User login name */
/* /etc/inittab id (usually line #) */
/* device name (console, lnxx) */ char ut_line[12];

pid_t ut-pid; /* process id */
short ut_type;
struct exit_status {

/* type Qf entry */

short e_termination;
short e_exit;
} ut_exit;

/*
/*
/*
/*

Process termination status */
Process exit status */
The exit status of a process */
marked as DEAD_PROCESS. */

unsigned short ut_reservedl; /* Reserved for future use */
time entry was made */ time_t ut_time; /*

char ut_host[16]; /* host name, if remote; NOT SUPPORTED */
Internet addr of host, if remote */ unsigned long ut_addr; /*

};

getutent ()

getutid()

getutline ()

pututline ()

Reads in the next entry from a utmp-like file. If the file is not already open, getu­
tent () opens it. If it reaches the end of the file, getutent () fails.

Searches forward from the current point in the utmp file until it finds an entry with a
ut_type matching id->uCtype if the type specified is RUN_LVL, BOOT_TIME,
OLD_TIME, or NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, getutid() returns
a pointer to the first entry whose type is one of these four, and whose ut_id field
matches id->ut_id. If end-of-file is reached without a match, getutid () fails.

Searches forward from the current point in the utmp file until it finds an entry of type
LOGIN_PROCESS or USER_PROCESS that also has a ut_line string matching
the line->uCline string. If end-of-file is reached without a match, getutline ()
fails.

Writes out the supplied utmp structure into the utmp file. pututline () uses
getutid () to search forward for the proper location if it is not already there. It is
normally expected that the application program has already searched for the proper
entry by using one of the getut () routines before calling pututline (). If the
search as already been made, pututline () does not repeat it. If pututline ()
does not find a matching slot for the new entry, it adds a new entry to the end of the
file.

-1- HP-UX Release 9.0: August 1992

getut(3C) getut(3C)

J>ututline() Performs the same actions as pututline (), except that it returns a value useful
for error checking.

setutent () Resets the input stream to the beginning of the file. This should be done before each
search for a new entry if it is desired that the entire file be examined.

endutent () Closes the currently open file.

utmpname () Allows the user to change the name of the file being examined from /etc/utmp to
any other file. The other file is usually / etc/wtmp. If the file does not exist, its
absence is not discovered until the first subsequent attempt to reference the file.
utmpname () does not open the file - it merely closes the old file if it is cun:ently
open, and saves the new file name.

The most current entry is saved in a static structure. Multiple accesses require that the structure be copied
before further accesses are made. During each call to either getutid() or getutline (), the static
structure is examined before performing more I/O. If the contents of the static structure match what the
routine is searching for, no additional searching is done. Therefore, if using getutline () to search for
multiple occurrences, it is necessary to zero out the static structure after each success; otherwise getut-
1 ine () simply returns the same pointer over and over again. There is one exception to the rule about
removing the structure before a new read: The implicit read done by put u t 1 ine () (if it finds that it is
not already at the correct place in the file) does not alter the contents of the static structure returned by
getutent (), getutid (), or getutline () if the user has just modified those contents and passed
the pointer back to pututline ().

RETURN VALUE
These functions return a NULL pointer upon failure to read (whether for permissions or having reached
end-of-file), or upon failure to write. They also return a NULL pointer if the size of the file is not an integral
multipleofsizeof(struct utmp).

J>ututline () behaves the same as pututline (), except that it returns a pointer to a static location
containing the most current utmp entry if the J>ututline () call succeeds. The contents of this struc­
ture is identical to the contents of the supplied utmp structure if successful. If J>ututline () fails, it
returns a NULL pointer.

WARNINGS
Some vendors' versions of getutent () erase the utmp file if the file exists but is not an integral multiple
of sizeof (struct utmp). Given the possiblity of user error in providing a name to utmpname (such
as giving improper arguments to who(l», HP-UX does not do this, but instead returns an error indication.

FILES
/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

STANDARDS CONFORMANCE
endu tent () : SVID2, XPG2

getutent (): SVID2, XPG2

getutid (): SVID2, XPG2

getutline (): SVID2, XPG2

pututline (): SVID2, XPG2

setutent (): SVID2, XPG2

utmpname (): SVID2, XPG2

HP-UX Release 9.0: August 1992 -2- 539

•

•

getwc(3C) getwc(3C)

NAME
getwc(), getwchar(), fgetwc() - get a wide character from a stream file

SYNOPSIS
#include <wchar.h>

wint_t getwc(FILE *stream);

wint_t getwchar(void);

wint_t fgetwc(FILE *stream);

Remarks:
These functions are compliant with the XPG4 Worldwide Portability Interface wide-character 110 functions.
They parallel the 8 bit character 110 functions defined ingetc(3S) .

DESCRIPTION
getwc () Returns the next character from the named input stream, converts that to the correspond­

ing wide character and moves the file pointer ahead one character in stream.
getwchar () is defined as getwc (s tdin) . getwc () and getwchar () are defined
both as macros and as functions.

fgetwc () Behaves like getwc (), but is a function rather than a macro.

Definitions for these functions, the types wint_t, wchar_t and the value WEOF are provided in header
file <wchar • h>.

RETURN VALUE
Upon successful completion, getwc (), getwchar (), and fgetwc () return the next wide character
read from stream (stdin for getwchar (» converted to a type wint_t. If the stream is at end-of-file,
the end-of-file indicator for the stream is set and WEOF is returned. If a read error occurs, the error indica­
tor for the stream is set, errno is set to indicate the error, and WEOF is returned.

ferror () and feof () can be used to distinguish between an error condition and an end-of-file condi­
tion.

ERRORS
getwc (), getwchar (), and fgetwc () fail if data needs to be read into the stream's buffer, and:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the pro­
cess would be delayed in the read operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for reading.

[EINTR] The read operation was terminated due to the receipt of a signal, and either no data
was transferred or the implementation does not report partial transfer for this file.

[EIO] The process is a member of a background process and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking the S I GTT IN sig­
nal or the process group of the process is orphaned.

[EILSEQ] The data obtained from the input stream does not form a valid wide character.

Additional errno values may be set by the underlying read () function (see read(2».

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines how wide character conversions are done.

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNINGS

540

getwc () and getwchar () are implemented both as library functions and macros. The macro versions,
which are used by default, are defined in <wchar .h>. To obtain the library function, either use a
#undef to remove the macro definition or, if compiling in ANSI-C mode, enclose the function name in
parenthesis or use the function address. The following example illustrates each of these methods:

#include <wchar.h>
#undef getwc

-1- HP-UX Release 9.0: August 1992

getwc(3C)

main ()
{

return_val=getwc(c,fd);

return_val=(getwc) (c,fdl);

} ;

getwc(3C)

If the value returned by getwc (), getwchar (), or fgetwc () is stored into a type wchar_t variable
then compared against the constant WEOF, the comparison may never succeed because extension of a
wchar_t to a wint_t is machine-dependent.

The macro version of getwc () incorrectly treats a stream argument with side effects. In particular,
getwc (*f ++) does not work sensibly. The function version of getwc () or fgetwc () should be used
instead.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), fgetws(3C), putwc(3C), read(2), scanf(3S).

STANDARDS CONFORMANCE
getwc () : XPG4

fgetwc () : XPG4

getwchar () : XPG4

HP-UX Release 9.0: August 1992 -2- 541

I

•

glob(3C) glob (3C)

NAME
glob(), globfree() - file name generation function

SYNOPSIS
#include <glob.h>

int glob (

) ;

const char *pattern,
int flags,
int (*errfunc) (const char *, int),
glob_t *pglob

void globfree(glob_t *nalob):

DESCRIPTION

542

glob () is a pathname generator. pattern is a pointer to a pathname pattern to be expanded. If pattern
contains any of the special characters *, ?, or [, pattern is matched against all accessible pathnames. In
order to have access to a pathname, glob () requires:

• Search permission on every component of a path except the last.

• Read permission on each directory of any filename component of pattern that contains any of the
above special characters.

globO stores the number of matched pathnames in pglob -> gtpathc and a pointer to a sorted list of
pathnames in pglob - >gl-pathv. The first pointer after the last pathname is a NULL pointer.

It is the caller's responsibility to allocate space for the structure pointed to by pglob. glob () allocates
other space as needed, including the memory pointed to by gl-pathv. globfree () frees any space asso­
ciated withpglob from a previous call to glob ().

The {lags argument is used to control the behavior of glob (). The value of {lags is the bit-wise inclusive
OR of the following constants defined in <glob. h>:

GLOB_NOESCAPE Disable backslash escaping.

GLOB_ERR Causes glob () to return when it first encounters a directory that it cannot
open or read. Ordinarily, glob () continues to find matches.

GLOB_MARK Each pathname that matches pattern and is a directory has a / appended.

GLOB_NOSORT Ordinarily, glob () sorts the matching pathnames according to the currently
active collation sequence as defined by the LC_COLLATE category. When this
flag is used, the order of pathnames returned is unspecified.

GLOB_NOCHECK If pattern does not match any pathname, glob () returns a list consisting of
only pattern, and the number of matched pathnames is 1.

GLOB_DOOFFS Make use of pglob -> gl_offs. If this flag is set, pglob -> gCoffs is used to specify
how many NULL pointers to add to the beginning of pglob -> gl-pathv. In other
words, pglob -> gl-pathv points to pglob -> gCoffs NULL pointers, followed by
pglob ->gl-pathc pathname pointers, followed by a NULL pointer.

GLOB_APPEND Append pathnames generated to the ones from a previous call to glob () .

If GLOB_APPEND is specified in {lags, the following rules apply:

• If the application set GLOB_DOOFFS in the first call to glob (), then it also sets it in all
subsequent calls to glob (), as long as the same glob_t structure is used for appending.

• If the application did not set GLOB_DOOFFS in the first call to glob (), then it does not set
it in any subsequent calls to glob (), as long as the same glob_t structure is used for
appending.

• If GLOB_DOOFFS is set, the value of pglob -> gCoffs must not be modified between calls to
glob() .

• After the second call, pglob -> gl-pathv points to a list containing the following:

-1- HP-UX Release 9.0: August 1992

glob(3C) glob (3C)

• Zero or more NULLs, as specified by GLOB_DOOFS andpglob ->gCoffs.

• Pointers to the pathnames that were in the pglob -> g(pathv list before the call, in
the same order as before.

• Pointers to the new pathnames generated by the second call, in the specified order.

• The count returned inpglob ->g(pathc is the sum of the number ofpathnames matched in the previ-
ous and current calls to glob () .

• The application does not modify pglob -> g(pathc or pglob -> glyathv between calls to glob () .

If, during the search, a directory is encountered that cannot be opened or read and errfunc is not NULL,
glob () calls (*errfunc)O with two arguments:

• A pointer to the path that failed.

• The value of errno from the failure.

If errfunc is called and returns non-zero, or if the GLOB_ERR flag is set in {lags, glob () stops the scan
and returns GLOB_ABORTED after setting gl-pathc and gl-pathv in pglob to reflect the paths
already scanned. If GLOB_ERR is not set and either errfunc is NULL or (*errfunc)() returns zero, the error
is ignored.

Pattern Matching Notation
The form of the patterns is the Pattern Matching Notation as qualified for Filename Expansion (see
regexp(5» with the following exceptions:

• Tilde (...) expansion is not performed.

• Variable expansion is not performed.

If a filename component ends with a plus sign (+) (indicating a context-dependent file), the plus sign must
be explicitly matched by a plus sign in the pattern; it cannot be matched by either the asterisk or question
mark special characters, or by bracket expressions.

EXTERNAL INFLUENCES
Locale

The LC_COLLATE category determines the collating sequence used in compiling and executing regular
expressions, and also the order of the returned paths if GLOB_NO SORT is not selected.

The LC_CTYPE category determines the interpretation of text as single and/or multi-byte characters, and
which characters are matched by character class expressions in regular expressions.

International Code Set Support
Single- and multi-bye character code sets are supported.

RETURN VALUE
If glob () terminates due to an error, it returns one of the following constants (defined in <glob. h»;
otherwise, it returns zero.

An attempt to allocate memory failed.

GLOB_NOMATCH

The scan was stopped because GLOB_ERR was set or (*errfunc)() returned
non-zero.

The pattern does not match any existing pathname, and GLOB_NOCHECK was
not set in {lags.

In any case, the argument pglob -> glyathc returns the number of matched pathnames and the argument
pglob ->glyathv contains a pointer to a null-terminated list of matched and sorted pathnames.

However, if pglob -> glyathc is zero, the content of pglob -> glyathv is undefined.

If the pattern argument passed to glob () is badly constructed, glob () returns zero and sets
gl-pathc to zero unless GLOB_NOCHECK was set, in which case pattern is returned and gl-pathc is
set to 1.

WARNINGS
GLOB_APPEND must not be set in an initial call to glob ().

HP-UX Release 9.0: August 1992 -2- 543

•

•

glob(3C)

AUTHOR
glob () and globfree () were developed by HP.

SEE ALSO
ed(1), grep(1), sh(1), fnmatch(3C), malloc(3C), malloc(3X), regexp(5).

STANDARDS CONFORMANCE
glob (): XPG4, POSIX.2

globfree () : XPG4, POSIX.2

544 -3-

glob(3C)

HP-UX Release 9.0: August 1992

gpio~et_status (31) Series 300, 400, 800 Only gpio~et_status(3I)

NAME
gpio...,geCstatus - return status lines of GPIO card

SYNOPSIS
#include <dvio.h>

int gpio_get_status(int eid};

DESCRIPTION
gpio_get_status () reads the status register of the GPIO interface associated with the device file
identified by eid. eid is an entity identifier of an open GPIO device file obtained from an open () , dup () ,
fcnt 1 (), or creat () call (see open(2), dup(2), fcntl(2), or creat(2». The current state of each status line
on the interface card is mapped to the value returned, with STS 0 mapped to the least significant bit. Only
x least-significant bits are used, where x is the number of status lines available on the hardware interface
being used.

DEPENDENCIES
Series 300/400

For the HP98622A, x is 2.

Series 800
For the HP27114A, x is 2.

For the HP27114B, x is 6.

For the HP28651A, x is 5.

RETURN VALUE
gpio_get_status () returns the value of the status register of the GPIO interface associated with eid,
and -1 if an error was encountered.

ERRORS
gpio_get_status () fails if any of the following conditions are encountered and sets errno accord­
ingly:

[EBADF] eid does not refer to an open file.

[ENOTl'Y] eid does not refer to a GPIO device file.

HP-UX Release 9.0: August 1992 -1- 545

•

I

Series 300, 400, 800 Only

NAME
gpio_set_ctl - set control lines on GPIO card

SYNOPSIS
#1nclude <dv10.h>

1nt gp1o_set_ctl(1nt e1d, 1nt value);

DESCRIPTION
gp1o_set_ctl () sets the control register of a GPIO interface. eid is an entity identifier of an open GPIO
device file obtained from an open () , dup (), fcnt 1 (), or creat () call (see open(2), dup(2), fcntl(2),
and creat(2». value is the value to be written into the control register of the GPIO interface associated with
eid.

value is mapped onto the control lines on the interface card, \vith the least significant bit mapped to CTLO.
Only the x least significant bits are used, where x is the number of control lines available on the hardware
interface being used.

DEPENDENCIES
Series 300/400

For the HP 98622A, x is 2.

Series 800
For the HP27114A, x is 3.

For the HP27114B, x is 6.

For the HP28651A, x is 5.

RETURN VALUE
gp1o_set_ctl () returns 0 if successful and -1 if an error was encountered.

ERRORS
gp1o_set_ctl () fails if any of the following conditions are encountered, and sets errno accordingly:

546

[EBADF]

[ENOTI'y]

eid does not refer to an open file.

eid does not refer to a GPIO device file.

-1- HP-UX Release 9.0: August 1992

Series 300, 400, 800 Only

NAME
hpib_abortO - stop activity on specified HP-IB bus

SYNOPSIS
#include <dvio.h>

int hpib_abort{int eid);

DESCRIPTION
hpib_abort () terminates activity on the addressed HP-IB bus by pulsing the IFC line. eid is an entity
identifier of an open HP-IB raw bus device file obtained from an open (), dup (), fcntl (), or creat ()
call.

hpib_abort () also sets the REN line and clears the ATN line. The status of the SRQ line is not affected.
The interface must be the system controller of the bus.

RETURN VALUE
hp ib _abort () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
hpib_abort () fails under the following circumstances, and sets errno (see errno(2» to the value in
square brackets:

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

the specified interface is not the system controller (see DEPENDENCIES below).

a timeout occurred.

[EBADF]

[ENOTTy]

[EIO]

[ETIMEDOUT]

[EACCES] The interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see io_lock(3I».

DEPENDENCIES
Series 300/400:

The HP 98625AIB and HP 25560A HP-IB interfaces do not clear the ATN line. EIO is returned if a timeout
occurs.

Series 800:
If the interface is not currently the system controller, hpib_abort () sets errno to [EACCES] instead of
to [EIO].

AUTHOR
hpib_abort () was developed by HP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2).

HP-UX Release 9.0: August 1992 -1- 547

I

I

, Series 300, 400 Only

NAME
hpib_address_ctl() - set the HP-IB bus address for an interface

SYNOPSIS
#include <dvio.h>

int hpih_address_ctl(int eid, int ha);

DESCRIPTION
hpih_address_ctl () sets the HP-IB bus address of the interface associated with eid to ba. eid is an
entity identifier of an open HP-IB raw bus device file obtained from an open (), dup (), fcntl (), or
creat () call. ba is an integer and must be in the range of [0-30].

The new bus address remains in effect until a reboot, an io_reset () call, or another
hpib_address_ctl () call occu.rs. When a reboot () or io_reset () call occurs, the HP ... IB bus
address reverts to its powerup value.

RETURN VALUE
hpih_address_ctl () returns 0 (zero) if successful or -1 if an error was encountered.

ERRORS
hpih_address_ctl () fails under the following circumstances and sets errno (see errno(2)) to the
value in square brackets:

[EBADF] eid does not refer to an open file.

[ENO'ITy]

[EIG]

[EINTR]

[EINVAL]

eid does not refer to an HP-IB raw bus device file.

a timeout occurred.

the request was interrupted by a signal.

ba is not in the range of 0-30.

AUTHOR
hpih_address_ctl () was developed by HP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2), io_reset(3I).

548 -1- HP-UX Release 9.0: August 1992

Series 300, 400 Only

NAME
hpib_atn_ctl() - control the Attention line on HP-IB

SYNOPSIS
#include <dvio.h>

int hpib_atn_ctl(int eid, int flag);

DESCRIPTION
hpib_atn_ctl () enables/disables the Attention (ATN) line, depending on the value of flag. eid is an
entity identifier of an open HP-IB raw bus device file obtained from an open (), dup (), fcntl (), or
creat () call. flag is an integer which, if non-zero, enables the A'I'N line, and otherwise disables it.

RETURN VALUE
hpib_atn_ctl () returns 0 (zero) if successful or -1 if an error was encountered.

ERRORS
hpib_atn_ctl () fails under the following circumstances, and sets errno (see ermo(2» to the value in
square brackets:

AUTHOR

[EBADF]

[ENOTTy]

[EIO]

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

the interface is not the active controller or a timeout occurred.

hpib_atn_ctl () was developed by HP.

HP-UX Release 9.0: August 1992 -1- 549

I

I

Series 300, 400, 800 Only

NAME
hpib_bus_status() - return status of HP-IB interface

SYNOPSIS
#include <dvio.h>

int hpib_bus_status(int eid, int status);

DESCRIPTION
hpib_bus_status () obtains status information about an HP-IB channel. eid is an entity identifier of
an open HP-IB raw bus device file obtained from an open (), dup (), fcntl (), or creat () call. status
is an integer determining what status information is returned for a particular call. The values defined for
status and their associated meanings are:

SRQ_STATUS

NDAC_STATUS

SYS_CONT_STATUS

ACT_CONT_STATUS

TALKER_STATUS

LISTENER_STATUS

Is the channel Cllrrently in remote state?

What is the current state of the SRQ line?

What is the current state of the NDAC line?

Is the channel currently system controller?

Is the channel currently active controller?

Is the channel currently addressed as talker?

Is the channel currently addressed as listener?

CURRENT_BUS_ADDRESS
What is the channel's bus address?

The remote-state status is not defined when the interface is the active controller, although reading
remote-state status in such a situation is not an error. Determining the status of the NDAC line is not
available on all machines, and its use is therefore discouraged to ensure compatibility among various sys­
tems. Machines that do not support sensing the NDAC line return an error.

RETURN VALUE
The value returned by hpib_bus_status () depends upon the value of status. If status is
CURRENT_BUS_ADDRESS, the return value is either the HP-IB bus address or -1 if an error occurred. If
status is any of the other values, the return value is a if the condition is false (the line is clear), 1 if the con­
dition is true (the line is set), or -1 if an error occurred.

ERRORS
hpib_bus_status () fails under the following conditions, and sets errno (see errno(2» to the value in
square brackets:

[EBADF]

[ENOTTY]

[EINVAL]

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

status is not one of the values specified above.

DEPENDENCIES
Series 300/400:

The status of signal lines being driven by the interface is undefined, although reading them in such a situa­
tion is not an error. Non-active controllers cannot sense the SRQ line. Active listeners cannot sense the
NDAC line.

The HP 98625AIB HP-IB interface cannot determine the current state of the NDAC line. Attempts to read this
line fail and set errno (see errno(2» to EINVAL.

AUTHOR
hpib_bus_status () was developed by HP.

550 -1- HP-UX Release 9.0: August 1992

Series 300, 400, 800 Only

NAME
hpib_card_ppoILresp() - control response to parallel poll on HP-IB

SYNOPSIS
#include <dvio.h>

int hpib_card-ppoll_resp(int eid, int flag);

DESCRIPTION
hpib_card-ppoll_resp () enables or disables an interface for parallel polls. It also controls the
sense, and determines the line on which the response is sent. This provides a means for the interface to
ignore or respond to a parallel poll according to whether it is enabled to respond.

eid is an entity identifier of an open HP-IB raw bus device file obtained from an open (), dup () ,
fcntl (), or creat () call. flag is an integer having one of the following bit patterns:

Bit Pattern Meaning

10000 Disable parallel poll response.

OSPPP Enable parallel poll response, where

S = sense of the response, and

PPP = 3-bit binary number specifying the line on which the response is sent where
the octal values 0 through 7 correspond to lines DIOI through DI08.

RETURN VALUE
hpib_card-ppoll_resp () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
hpib_card-ppoll_resp () fails under the following circumstances, and sets errno (see ermo(2)) to
the value in square brackets:

[EACCES] The interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see io_lock(3I)).

[EBADF] eid does not refer to an open file.

[ENOTTY] eid does not refer to an HP-IB raw bus device file.

[EINV AL] the device cannot respond on the line number specified by flag.

[ETIMEDOUT] a timeout occurred.

DEPENDENCIES
Series 300/400:

The HP 98625AIB and HP 25560A HP-IB interfaces support only enabling and disabling the parallel poll
response (bit 4 of flag). The sense and response line number are not programmable on this card.

EIO is returned if a timeout occurs.

Series 800:
Since the sense and response line number are not programmable on the HP27110B HP-IB interface, the
equivalent parallel poll configuration commands are sent over the HP-IB to the interface. Therefore, this
function fails if the interface is not active controller.

AUTHOR
hpib_card-ppoll_resp () was developed by HP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2), hpib_ppoll(3I), hpib_ppoILresp_ctl(3I).

HP-UX Release 9.0: August 1992 -1- 551

I

I

Series 800, 400, 800 Only

NAME
hpib_eoi_ctl() - control EOI mode for HP-IB file

SYNOPSIS
#include <dvio.h>

int hpih_eoi_ctl(int eid, int flag);

DESCRIPTION
hpih_eoi_ctl () enables you to turn EO! mode on or off. eid is an entity identifier of an open HP-IB raw
device file obtained from an open (), dup (), fcntl (), or creat () call. flag is an integer which, if
non-zero, enables EO! mode, and otherwise disables it.

EO! mode causes the last byte of all subsequent write operations to be written out with the EO! line
asserted, signifying the end of the data transmission. By defauit, EOI mode is disabied when the device fiie
is opened.

Entity identifiers for the same device file obtained by separate open () requests have their own EO! modes
associated with them. Entity identifiers for the same device file obtained by dup () or inherited by a
fork () request share the same EO! mode. In the latter case, if one process enables EO! mode, then EO!
mode is in effect for all such entity identifiers.

RETURN VALUE
hpih_eoi_ctl () returns a 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
hpih_eoi_ctl () fails under any of the following circumstances and sets errno (see ermo(2» to the
value in square brackets:

[EBADF] eid does not refer to an open file.

[ENOTI'Y]

DEPENDENCIES
Series 800:

eid does not refer to an HP-IB device file.

EO! mode is enabled when the device file is first opened.

AUTHOR
hpih_eoi_ctl () was developed by HP.

552 -1- HP-UX Release 9.0: August 1992

Series 300, 400, 800 Only

NAME
hpib_io() - perform I/O with an HP-IB channel from buffers

SYNOPSIS
#include <dvio.h>

int hpib_io(int eid, struct iodetail *iovec, size_t iolen);

DESCRIPTION
hpib_io () performs and controls read and/or write operations on the specified HP-IB bus. eid is an entity
identifier of an open HP-IB raw bus device file obtained from an open (), dup (), fcntl (), or creat ()
call.

Parameters are as follows:

iovec Pointer to an array of structures of the form:

struct iodetail {
char mode;

} ;

char terminator;
int count;
char *buf;

The iodetail structure is defined in the include file <dvio .h>.

iolen
Specifies the number of structures in iovec.

iodetail Structure
Elements in the iodetail structure are:

mode Describes what is to be done during 110 on the buffer pointed to by bur. mode is con­
structed by OR-ing flags from the following list:

One and only one of the following two flags must be specified:

HP IBREAD Perform a read of the HP-IB bus, placing data into the accom­
panying buffer.

HPIBWRITE
Perform a write to the HP-IB bus, using data from the accom­
panying buffer.

The following flags can be used in most combinations (not all combinations are valid), or not at all:

HPIBATN Data is written with ATN enabled.

,HPIBEOI Data written is terminated with EO! (this flag is ignored when HPIBATNis enabled).

HPIBCHAR Data read is terminated with the character given in the terminator element ofthe iode-
tail structure.

terminator
Describes the termination character, if any, that should be checked for on input. count is an integer
specifying the maximum number of bytes to be transferred.

A read operation terminates when either count is matched, an EO! is detected, or the designated termina­
tor is detected (if HPIBCHAR is set in mode).

A write operation terminates when count is matched, and the final byte is sent with EO! asserted (if HPI­
BEOI is set in mode).

If HPIBATN is set in mode, write operations occur with ATN enabled. Setting HPIBATN for a read
operation is ignored and has no effect.

The members of the iovec array are accessed in order.

RETURN VALUE
If all transactions are successful, hpib_io () returns a zero and updates the count element in each

HP-UX Release 9.0: August 1992 -1- 553

I

I

Series 300, 400, 800 Only

structure in the iovec array to reflect the actual number of bytes read or written.

If an error is encountered during a transaction defined by an element of iovec, hpib_io () returns
without completing any transactions that might follow. In particular, if an error occurs, hpib_io ()
returns a -1, and the count element of the transaction that caused the error is set to -l.

ERRORS
hp!b_io () fails under any of the follo\ving cITC"umstances, and sets errno (see errno(2)) to the value
indicated:

[EBADF] eid does not refer to an open file.

[ENOTl'Y] eid does not refer to an HP-IB raw bus device file.

[ETIMEDOUT] a timeout occurred.

[EID] eid is not the active controller.

DEPENDENCIES
Series 300/400:

EIO is returned if a timeout occurs.

Series 800:
If the interface is not currently the active controller, hpib_io () sets errno to [EACCES] instead of to
[EIO].

AUTHOR
hpib_io () was developed by HP.

554 -2- HP-UX Release 9.0: August 1992

Series 300, 400 Only

NAME
hpib_parity_ctIO - enable/disable odd parity on ATN commands

SYNOPSIS
#include <dvio.h>

int hpib-parity_ctl(int eid, int flag);

DESCRIPTION
hpib-parity_ctl () enables/disables the sending of odd parity for ATN command sequences depending
upon the value of flag. eid is an entity identifier of an open HP-IB raw bus device file obtained from an
open () , dup (), fcnt 1 (), or creat () call. flag is an integer which, if non-zero, enables odd parity
and otherwise disables it.

Entity identifiers for the same device file obtained by separate open () requests have their own parity
flags associated with them. Entity identifiers for the same device file obtained by dup () or inherited by a
fork () request share the same parity flag. In the latter case, if one process changes the parity flag, the
new parity flag is in effect for all such entity identifiers.

RETURN VALUE
hpib-parity_ctl () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
hpib-parity_ctl () fails under the following circumstances, and sets errno (see ermo(2)) to the
value in square brackets:

AUTHOR

[EBADF]

[ENOTTY]

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

hpib-parity_ctl () was developed by HP.

I

HP-UX Release 9.0: August 1992 -1- 555

I

I

Series 300, 400, 800 Only

NAME
hpib_pass_ctl() - change active controllers on HP-IB

SYNOPSIS
#include <dvio.h>

int hpib-pass_ctl(int eid, int ba};

DESCRIPTION
hpib-pass_ctl () passes control of a bus to an inactive controller on that bus. The inactive controller
becomes the active controller of that bus. eid is an entity identifier of an open HP-IB raw bus device file
obtained from an open (), dup (), fcntl (), or creat () call. ba is the bus address of the intended
device.

Not all devices can accept control. Pass control passes only active control of the bus; it cannot pass system
control of the bus. The specified interface must be the current active controller but need not be the system
controller. The pass control operation does not suspend program execution if the inactive controller does
not take active control of the bus. However, the interface is no longer active controller.

RETURN VALUE
hpib-pas s_ct 1 () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
hpib-pass_ct1 () fails under any of the following circumstances, and sets errno (see ermo(2)) to the
value in square brackets:

[EBADF] eid does not refer to an open file.

[ENOTTY] eid does not refer to an HP-IB raw bus device file.

[EIO] the interface is not the active controller.

[ETIMEDOUT] a timeout occurred.

[EINV AL] ba is not a valid HP-IB bus address.

[EACCES] The interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see io_lock(3I)).

DEPENDENCIES
Series 300/400:

EIO is returned if a timeout occurs.

Series 800:
If the interface is not currently the active controller, hpib-pass_ctl () sets errno to [EACCES]
instead of to [EIO].

AUTHOR
hpib-pass_ctl () was developed by HP.

556 -1- HP-UX Release 9.0: August 1992

hpib_ppoll (31) Series 300, 400 Only hpib_ppoll(31)

NAME
hpib_ppoll() - conduct parallel poll on HP-IB bus

SYNOPSIS
#ine1ude <dvio.h>

int hpib-ppo1(int eid);

DESCRIPTION
hpib-ppo11 () conducts a parallel poll on an HP-IB bus. eid is an entity identifier of an open HP-IB raw
bus device file obtained from an open (), dup (), fent1 (), or ereat () call.

Devices enabled to respond that are in need of service can then assert the appropriate DIO line. This
enables the controller to determine which devices, if any, need service at a given time. hpib-ppo11 ()
delays for 25 microseconds before returning with the response. The interface must be the active controller
to conduct a parallel poll.

RETURN VALUE
hpib-ppo11 () returns an integer value whose least significant byte corresponds to the byte formed by
the eight data input/output (DIO) lines. Devices enabled to respond to a parallel poll do so on the appropri­
ate DIO line. DIO line 1 corresponds to the least significant bit in the response byte; line 8 to the most
significant bit. A return value of -1 indicates that an error occurred.

ERRORS
hpib-ppo11 () fails under the following situations, and sets errno (see errno(2» to the value in square
brackets:

AUTHOR

[EBADF]

[ENOTTY)

[EIO]

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

the interface is not current the active controller.

hpib-ppo11 () was developed by the Hewlett-Packard Company.

HP-UX Release 9.0: August 1992 -1- 557

I

I

Series 300, 400, 800 Only

NAME
hpib_ppolCresp_ctlO - define interface parallel poll response

SYNOPSIS
#include <dvio.h>

int hpib-ppoll_resp_ctl(int eid, int response);

DESCRIPTION
hpib-ppo1 l_resp_ct1 () defines a response to be sent when an active controller performs a parallel
poll on an HP-IB interface. eid is an entity identifier of an open HP-IB raw bus device file, obtained from an
open (), dup (), fcntl (), or creat () call.

The value of response indicates whether this computer does or does not need service. A non-zero response
value indicates that service is required. This statement only sets up a potential response; no actual
response is generated when the statement is executed. The sense of the response and the line number to
respond on are set by hpib_card-ppoll_resp () (see hpib_card-ppollJesp(3I)) or by the active con­
troller.

RETURN VALUE
hpib-ppoll_resp_ct 1 () returns 0 if the response is successfully set, or -1 if an error has occured.

ERRORS
hpib-ppoll_resp_ctl () fails under the following situations, and sets errno (see errno(2)) to the
value in square brackets:

[EBADF]

[ENOTTY]

[EACCES]

eid does not refer to an open file.

eid does not refer to a raw HP-IB device file.

The interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see io_lock(3I)).

AUTHOR
hpib-ppoll_resp_ctl () was developed by HP.

SEE ALSO
hpib_ppoll(3I), hpib_card_ppoll]esp(3I)

558 -1- HP-UX Release 9.0: August 1992

Series 300, 400, 800 Only

NAME
hpib_ren_ctl() - control the Remote Enable line on HP-IB

SYNOPSIS
#include <dvio.h>

int hpib_ren_ctl(int eid, int flag);

DESCRIPTION
hpib_ren_ctl () enables/disables the Remote Enable (REN) line depending upon the value of flag. eid is
an entity identifier of an open HP-IB raw bus device file obtained from an open (), dup (), fcntl (), or
creat () call. flag is an integer which, ifnon-zero, enables the REN line, and otherwise disables it.

hpib_ren_ctl () can be used in conjunction with hpib_send_cmnd () to place devices into the
remote state or local state. The REN line is normally enabled at all times, and is in this state at power-up.
Only the system controller can enable or disable the REN line.

RETURN VALUE
hpib_ren_ctl () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
hpib_ren_ctl () fails under the following circumstances, and sets errno (see errno(2)) to the value in
square brackets:

AUTHOR

[EBADF]

[ENOTl'Y]

[EIO]

eid does not refer to an open file.

eid does not refer to an HP-IB raw bus device file.

the interface is not the system controller.

hpib_ren_ctl () was developed by HP.

HP-UX Release 9.0: August 1992 -1- 559

I

I

Series 300, 400, 800 Only

NAME
hpib_rqst_srvce() - allow interface to enable SRQ line on HP-IB

SYNOPSIS
#inelude <dvio.h>

int hpib_rqst_srvee(int eid, int eV)i

DESCRIPTION
hpib_rqst_srvee () specifies a response byte to be sent by the interface when it is serially polled by
the active controller. eid is an entity identifier of an open HP-IB raw bus device file obtained from an
open (), dup (), fentl (), or ereat () call. cu is an integer control value representation of the desired
response byte.

hpib_rqst_srvee () optionally enables the SRQ line depending upon the response byie. If hit 6 of the
response byte is set, the SRQ line is enabled. It remains enabled until the active controller conducts a serial
poll or until the computer executes the request function with bit 6 cleared. However, the SRQ line is not
enabled as long as the interface is active controller. If bit 6 is set, the interface remembers its response
byte, and enables the SRQ line when control is passed to another device on the bus.

The response byte is structured as follows:

Bit Meaning
o SPOLL bit (least significant bit of response byte)
1 SPOLL bit
2 SPOLL bit
3 SPOLL bit
4 SPOLL bit
5 SPOLL bit
6 SRQ line
7 SPOLL bit (most significant bit of response byte)

RETURN VALUE
hpib_rqst_srvee () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
hpib_rqst_srvee () fails under the following circumstances, and sets errno (see ermo(2» to the
value in square brackets:

[EBADF] eid does not refer to an open file.

[ENOTTY] eid does not refer to an HP-IB raw bus device file.

[ETIMEDOUT] a timeout occurred:

[EACCES] The interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see io_lock(3I».

DEPENDENCIES
Series 300/400:

The HP98625AIB and HP25560A HP-IB interface cards allow only bit 6 to be set. All other bits are cleared.

EIO is returned if a timeout occurs.

Series 800:
The HP27110B HP-IB interface card allows only bit 6 to be set. All other bits are cleared.

AUTHOR
hpib_rqst_srvee () was developed by HP.

560 -1- HP-UX Release 9.0: August 1992

Series 800, 400, 800 Only

NAME
hpib_send_cmnd() - send command bytes over HP-IB

SYNOPSIS
#include <dvio.h>

int hpib_send_amnd(int eid, const char *ca, int length);

DESCRIPTION
hpib_send_cmnd () sends specified arbitrary bytes of information on the HP-IB with the ATN line
asserted, providing a means to configure and control the bus. eid is an entity identifier of an open HP-IB
raw bus device file obtained from an open (j, dup (), fcntl (), or creat () call. ca is a character
pointer to a string of bytes to be written to the HP-IB bus as commands. length is an integer specifying the
number of bytes in the string pointed to byca.

The interface must currently be the active controller in order to send commands over the bus.

Note that for all HP-IB interfaces, both built-in and plug-in, the most significant bit of each byte is overwrit­
ten with a parity bit. All commands are written with odd parity.

RETURN VALUE
hpib_send_cmnd () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
hpib_send_cmnd () fails under the following circumstances, and sets errno (see errno(2)) to the value
in square brackets:

[EBADF] eid does not refer to an open file.

[ENOTTy] eid does not refer to an HP-IB raw bus device file.

[EIO] the interface is not currently the active controller.

[ETIMEDOUT] a timeout occurred.

[EACCES] The interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see io_lock(3I)).

[EINV AL] The value specified for length is invalid, either less than or equal to 0 or greater than
MAJCHPIB_COMMANDS as defined in <dvio. b.>.

DEPENDENCIES
Series 300/400:

EIO is returned if a timeout occurs.

Series 800:
If the interface is not currently the active controller, hpib_send_amnd () sets errno to [EACCES]
instead of [EIO].

AUTHOR
hpib_send_amnd () was developed by HP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2), hpib_parity _ctl(3I).

HP-UX Release 9.0: August 1992 -1- 561

I

I

Series 300, 400, 800 Only hpih_spoll (31)

NAME
hpib_spoll() - conduct a serial poll on HP-IB bus

SYNOPSIS
#include <dvio.h>

int hpih_spoll(int eid, int hal;

DESCRIPTiON
hpih_spoll () conducts a serial poll of the specified device. eid is an entity identifier of an open HP-IB
raw bus device file obtained from an open (), dup (), fcnt 1 (), or creat () call. ba is the bus address
of the intended device.

hpih_spoll () Polls a single device for its response byte. The information stored in the response byte is
device specific with the exception of bit 6. If bit 6 of the response byte is set, the addressed device has
asserted the SRQ line, and is requesting service (note that the least significant bit of the response byte is bit
0).

Not all devices respond to the serial poll function. Consult device documentation. Specifying a device that
does not support serial polling may cause a timeout error or suspend your program indefinitely. The inter­
face cannot serial poll itself. The interface must be the active controller.

RETURN VALUE
If hpih_spol1 () is successful, the device response byte is returned in the least significant byte of the
return value. Otherwise, -1 is returned, indicating an error.

ERRORS
hpih_spoll () fails under the following circumstances, and sets errno (see ermo(2» to the value in
square brackets:

[EBAD] eid does not refer to an open file.

[ENOTTY] eid does not refer to an HP-IB raw bus device file.

[EIO] the interface is not the active controller.

[ETlMEDOUT] the device polled did not respond before timeout.

[ElNV AL] ba is the address of the polling interface itself.

[EACCES] The interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see io_lock(3I».

DEPENDENCIES
Series 300/400:

EIO is returned if a timeout occurs.

Series 800:
If the interface is not currently the active controller, hpih_spoll () sets errno to [EACCES] instead of
to [EIO].

AUTHOR
hpih_spoll () was developed by HP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2), hpib_rqst_srvce(3I).

562 -1- HP-UX Release 9.0: August 1992

hpib_status_ wait (31) Series 300, 400, 800 Only

NAME
hpib_status_waitO - wait until the requested status condition becomes true

SYNOPSIS
#include <dvio.h>

int hpib_status_wait(int eid, int status); #include <dvio.h>

DESCRIPTION
hpib_status_wait () waits until a specific condition has occurred before returning. eid is an entity
identifier of an open HP-IB raw bus device file obtained from an open (), dup (), fcntl (), or creat ()
call. status is an integer specifying whai iniormation is returned. The possible values for status and their
associated meanings are:

WAIT_FOR_SRQ

WAIT_FOR_CONTROL

WAIT_FOR_TALKER

WAIT_FOR_LISTENER

Wait until SRQ line is enabled.

Wait until this channel is active controller.

Wait until this channel is addressed as talker.

Wait until this channel is addressed as listener.

The wait is subject to the current timeout in effect. If a timeout occurs before the desired condition occurs,
the function returns with an error.

RETURN VALUE
hpib_status_wait () returns zero when the condition requested becomes true. A value of -1 is
returned if an error occurs. A -1 is also returned if a timeout occurs before the desired condition becomes
true.

ERRORS
hpib_status_wai t () fails under the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

[EBADF] eid does not refer to an open file.

[ENOTI'Y] eid does not refer to an HP-IB raw bus device file.

[ETIMEDOUT] a timeout occurred.

[EINV AL] status contains an invalid value.

[EACCES] the interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see io_lock(3l)).

DEPENDENCIES
Series 300/400:

EIO is returned if a timeout occurs.

The following error is also defined:

[EIO] the device is active controller and status specifies WAIT_FOR_TALKER or
WAIT_FOR_LISTENER.

AUTHOR
hpib_status_wait () was developed by HP.

HP-UX Release 9.0: August 1992 -1- 563

I

I

Series 300, 400, 800 Only

NAME
hpib_ wait_on_ppoll() - wait until a particular parallel poll value occurs

SYNOPSIS
#include <dvio.h>

int hpib_wait_on-ppoll(int eid, int mask, int sense);

DESCRIPTION
hpib_wai t_on-ppoll () waits for a parallel poll response to occur on one or more lines. eid is an
entity identifier of an open HP-IB raw bus device file.

The mask argument specifies on which lines the parallel poll response is expected. The value of mask is
treated as an eight-bit binary number where the least ~ignificant bit corresponds to line DIOI; the most
significant hit to DIOB. For example, if you want to wait for a response on lines DI02 and m06, the
corresponding binary number is 00010010, so a hexadecimal value of 12 should be passed as the mask
argument.

The sense argument specifies what response is expected on the selected lines. The value of sense is con­
structed in the same way as mask; eight bits for eight lines. If a bit in sense is set, the function returns
when the line corresponding to that bit is cleared. If a bit in sense is clear, the function returns when the
corresponding line is set. Using the previous example, if mask is Ox12 and sense is 00000010 (Ox02 hexade­
cimal), the function returns when line DI05 is set, or when line DI02 is clear.

RETURN VALUE
hpib_wai t_on-ppoll () returns a value of -1 if an error or timeout condition occurs. Upon successful
completion, the function returns the response byte XOR-ed with the sense value and AND-ed with the mask.

ERRORS
hpib_wai t_on-ppoll () fails and sets errno to indicate the error if any of the following is true:

[EACCES] The interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see iojock(3I».

[EBADF]

[ENOTrY]

[EINVAL]

[EIO]

[EIO]

[ETIMEDOUT]

The eid argument is not a valid open entity identifier.

The eid argument does not refer to an HP-IB raw bus device file.

An invalid mask is received.

The interface is not currently the active controller.

A timeout occurred (Series 300/400 only).

A timeout occurred (Series 800 only).

DEPENDENCIES
Series 300/400:

[EIO] is returned if a timeout occurs.

Series 800:
If the interface is not currently the active controller, hpib_wa it_on-ppo 1 1 () sets errno to [EACCES]
instead of to [EIO].

AUTHOR
hpib_wait_on-ppoll () was developed by lIP.

564 -1- HP-UX Release 9.0: August 1992

hppac(3X) Series 800 Only hppac(3X)

NAME
HPPACADDD, HPPACCMPD,HPPACCVAD, HPPACCVBD, HPPACCVDA,HPPA CCVDB,HPPACDIVD,HPPACLONG.
DIVD, HPPACMPYD, HPPACNSLD, HPPACSLD, HPPACSRD, HPPACSUBD· 3000-mode packed-decimal library

SYNOPSIS
#include <hppac.h>

void HPPACADDD(

) ;

unsigned char *operand2,
int op2digs,
unsigned char *operandl j

int opldigs,
enum HPPAC_CC *compcode,
int *pacstatus

void HPPACCMPD(

) ;

unsigned char *operandl,
int opldigs,
unsigned char *operand2,
int op2digs,
enum HPPAC_CC *c ompc ode ,
int *pacstatus

void HPPACCVAD(

) ;

unsigned char *target,
int targetdigs,
unsigned char *source,
int sourcedigs,
enum HPPAC_CC *compcode,
int *pacstatus

void HPPACCVBD(

) ;

unsigned char *target,
int targetdigs,
unsigned short *source,
int sourcewords,
enum HPPAC_CC *compcode,
int *pacstatus

void HPPACCVDA(

) ;

unsigned char *target,
int targetdigs,
unsigned char *source,
int sign_control,
enum HPPAC_CC *compcode,
int *pacstatus

void HPPACCVDB(

) ;

unsigned short *target,
unsigned char *source,
int sourcedigs,
enum HPPAC_CC *compcode,
int *pacstatus

void HPPACDIVD(
unsigned char *operand2,
int op2digs,

HP-UX Release 9.0: August 1992 -1- 565

•

hppac(3X) Series 800 Only hppac(3X)

unsigned char *operandl,
int opldigs,
enum HPPAC_CC *compcode,
int *pacstatus

) ;

void HPPACLONGDIVD(
unsigned char *operand2,
int op2digs,
unsigned char *operandl,
int opldigs,
enum HPPAC_CC *compcode,
int *pacstatus

) ;

I void HPPACMPYD(
unsigned char *operand2,
int op2digs,
unsigned char *operandl,
int opldigs,
enum HPPAC_CC *compcode,
int *pacstatus

) ;

void HPPACNSLD(
unsigned char *operand2,
int op2digs,
unsigned char *operandl,
int opldigs,
int *shift_amt,
enum HPPAC_CC *compcode,
int *pacstatus,
int *carry

) ;

void HPPACSLD(
unsigned char *operand2,
int op2digs,
unsigned char *operandl,
int opldigs,
int shift_amt,
enum HPPAC_CC *compcode,
int *pacstatus,
int *carry

) ;

void HPPACSRD(
unsigned char *operand2,
int op2digs,
unsigned char *operandl,
int opldigs,
int shift_amt,
enum HPPAC~CC *compcode,
int *pacstatus

) ;

void HPPACSUBD(
unsigned char *operand2,
int op2digs,
unsigned char *operandl,
int opldigs,
enum HPPAC_CC *compcode,

566 -2- HP-UX Release 9.0: August 1992

hppac(3X) Series 800 Only hppac(3X)

int *paestatus
) ;

DESCRIPTION
This set of calls invokes the library functions for emulating 3000-mode (MPE VIE) packed-decimal opera­
tions. These functions are in library libel which is searched when the option -lel is used withcc(l) or
ld(l).

HPPACADDD()
Performs packed-decimal addition.

HPPACCMPD ()
Compares two packed-decimal numbers.

HPPACCVAD()
Converts an ASCII representation to packed-decimal.

HPPACCVBD()
Converts a binary representation to packed-decimal.

HPPACCVDA()
Converts a packed-decimal number to ASCII.

HPPACCVDB()
Converts a packed-decimal number to binary.

HPPACDIVD()
Performs packed-decimal division.

HPPACLONGDIVD()
Performs packed-decimal division (alternate routine).

HPPACMPYD()
Performs packed-decimal multiplication.

HPPACNSLD()
Performs a packed-decimal normalizing left shift.

HPPACSLD () Performs a packed-decimal left shift.

HPPACSRD () Performs a packed-decimal right shift.

HPPACSUBD()
Performs packed-decimal subtraction.

For all operations, the value returned in the variable to which the compcode argument points is one of the
following values of type enum HPPAC_CC:

HPPAC_CCG Result> a or operandl > operand2

HPPAC_CCL Result < a or operand1 < operand2

HPPAC_CCE Result == a or operandl == operand2

For all operations, the value returned in the variable to which the pacstatus argument points is one of the
following values of type enum HPPAC_STATUS. Their meanings are intended to be obvious:

AUTHOR

HPPAC_NO_ERROR

HPPAC_DECIMAL_OVERFLOW

HP PAC_INVAL I D_ASC I I_DIGIT

HPPAC_INVALID_PACKED_DECIMAL_DIGIT

HPPAC_INVALID_SOURCE_WORD_COUNT

HPPAC_INVALID_DECIMAL_OPERAND_LENGTH

HPPAC_DECIMAL_DIVIDE_BY_ZERO

The HPPAC library was developed by HP.

HP-UX Release 9.0: August 1992 -3- 567

I

hppac(3X) Series 800 Only hppac(3X)

SEE ALSO
Compiler Library /XL Reference Manual

I

568 -4- HP-UX Release 9.0: August 1992

hsearch (3C) hsearch(3C)

NAME
hsearch(), hcreate(), hdestroy() - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch{ENTRY item, ACTION action};

int hcreate{unsigned nell;

void hdestroy{void};

DESCRIPTION
hsearch () is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It returns a pointer
into a hash table indicating the location at which an entry can be found. item is a structure of type ENTRY
(defined in the <search. h> header file) containing two pointers: points to the comparison key, and points
to any other data to be associated with that key. (Pointers to types other than character should be cast to
pointer-to-character.) action is a member of an enumeration type ACTION indicating the disposition of the
entry if it cannot be found in the table. ENTER indicates that the item should be inserted in the table at
an appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is indicated
by the return of a NULL pointer.

hcreate {} allocates sufficient space for the table, and must be called before hsearch {} is used. nel is
an estimate of the maximum number of entries that the table will contain. This number can be adjusted
upward by the algorithm in order to obtain certain mathematically favorable circumstances.

hdestroy {} destroys the search table, and can be followed by another call to hcreate {}.

EXAMPLE
The following example reads in strings followed by two numbers and stores them in a hash table, discard­
ing duplicates. It then reads in strings and finds the matching entry in the hash table and prints it out.

#include <stdio.h>
#include <search.h>

struct info {
int age, room;

} ;

/* this is the info stored in the table */
/* other than the key. */

#define NUM_EMPL

main { }
{

5000 /* # of elements in search table */

/* space to store strings */
char string_space[NUM_EMPL*20];

/* space to store employee info */
struct info info_space[NUM_EMPL];

/* next avail space in string_space */
char *str-ptr = string_space;

/* next avail space in info_space */
struct info *info-ptr = info_space;
ENTRY item, *found_item, *hsearch(};
/* name to look for in table */

char name_to_find[30];
int i = 0;

/* create table */
{void} hcreate{NUM_EMPL};
while (scanf{lI%s%d%d ll

, str..J)tr, &info-ptr->age,
&info..J)tr->room) 1= EOF && i++ < NUM_EMPL) {

HP-UX Release 9.0: August 1992 -1- 569

I

I

hsearch(3C) hsearch (3C)

/* put info in structure, and structure in item */
item. key = str-ptr;

}

item.data = (char *)info-ptr;
str-ptr += strlen(str-ptr) + 1;
info-ptr++;

/* put item into table *i
(void) hsearch(item, ENTER);

/* access table */
item. key = name_to_find;
while (scanf(!!%s!!, item.keyj 1= EOF) {

if «found_item = hsearch(item, FIND» != NULL)

/* if item is in the table */
(void)printf("found %s, age = %d, room = %d\n",

found_item->key,
«struct info *)found_item->data)->age,
«struct info *)found_item->data)->room);

} else {
(void)printf ("no such employee %s\n",

name_to_flnd);

RETURN VALUE
hsearch () returns a NULL pointer if either the action is FIND and the item could not be found or the
action is ENTER and the table is full.

hcreate () returns zero if it cannot allocate sufficient space for the table.

WARNINGS
hsearch () and hcreate () use malloc () to allocate space (see malloc(3C)).

Only one hash search table can be active at any given time.

SEE ALSO
bsearch(3C), Isearch(3C), malloc(3C), string(3C), tsearch(3C).

STANDARDS CONFORMANCE

570

hsearch () : AES, SVID2, XPG2, XPG3, XPG4

hcreate () : AES, SVID2, XPG2, XPG3, XPG4

hdestroy () : AES, SVID2, XPG2, XPG3, XPG4

-2- HP-UX Release 9.0: August 1992

hypot(3M) hypot(3M)

NAME
hypot(), cabs() - Euclidean distance function, complex absolute value

SYNOPSIS
#include <math.h>

double hypot(double x, double y);

double cabs(struct {double x, y;} z);

DESCRIPTION
hypot () and cabs () return sqrt (x*x+y*y) , taking precautions against unwarranted overflows.

hypot () and cabs () return +INFINITY when x or y is ±INFINITY.

ERRORS
Ilibllibm.a

When the correct value would overflow, hypot () and cabs () return HUGE_VAL and set errno to
ERANGE.

hypot () and cabs () return NaN and set errno to EDOM when x or y is NaN.

These error-handling procedures can be changed with the matherr () function (see matherr(3M».

llibllibM.a
No error messages are printed on the standard error output.

When the correct value would overflow, hypot () and cabs () return HUGE_VAL and set errno to
ERANGE.

hypot () and cabs () return NaN and set errno to EDOM when x or y is NaN.

These error-handling procedures can be changed by using the _matherr () function (see matherr(3M».
Note that _ma therr () is provided in order to assist in migrating programs from 1 ibm. a to 1 ibM. a
and is not a part ofXPG3, ANSI C, or POSIX.

SEE ALSO
isinit3M), isnan(3M), matherr(3M).

STANDARDS CONFORMANCE
hypot () in libm.a: AES, SVID2, XPG2, XPG3
hypot () in libM.a: AES, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 571

•

I

iCODV(3C) iCODV(3C)

NAME
iconvsize, iconvopen, iconvclose, iconvlock, ICONV, ICONV1, ICONV2 - code set conversion routines

SYNOPSIS
#include <iconv.h>

int iconvsize(const char *tocode, const char *fromcode);

iconvd iconvopen(const char *tocode, const char *fromcode,
unsigned char *table, int dl, int d2);

int iconvclose(iconvd cd);

int iconvlock(iconvd cd, int direction, int lock, const char *s);

tnt ICO~~I(iccnvd cd, const unsigned char **inchar, size_t
*inpytesleft, unsigned char **outchar, size_t *outbytesleft);

int ICONV1(iconvd cd, unsigned char *to,
unsigned char *from, size_t buflen);

int ICONV2(iconvd cd, unsigned char *to,
unsigned char *from, size_t buflen);

Remarks
For conformance to standards currently under development, the interfaces described in this manual entry
may be replaced with others in a future release. To make migration easier, application writers should take
care to isolate use of these functions.

DESCRIPTION
iconvsize() Find the size of a table if one is needed to convert characters from the code set specified

by the fromcode argument to the code set specified by the tocode argument. If a conver­
sion table is needed and the table exists, the size of the table in bytes is returned. If a
table is needed and the table does not exist, -1 is returned. If a conversion table is not
needed, 0 is returned.

iconvopen()

iconvclose()

572

Perform all initializations that have to be done to convert characters from the code set
specified by the fromcode argument to the code set specified by the tocode argument and
return a conversion descriptor of type iconvd that identifies the conversion. Up to
MAJeeD conversions can be open simultaneously. See iconv(1) for HP-supplied from­
code and tocode names and their corresponding code sets. For conversions that require
a table, the table argument is a pointer to the start of the conversion table. It is the
caller's responsibility to allocate sufficient memory for the table which is given by
iconvsize (). For conversions that do not require a table, the table argument must
be a NULL pointer. iconvsize () can be used to determine whether a table is
needed. For multi-byte code sets, a "converted from" character is mapped to a default
character (dl or d2) if it does not have an equivalent in the "converted to" code set.
Currently supported multi-byte code sets can have character lengths of one or two bytes.
If a one-byte character is unmapped, the default one-byte character dl is used. Simi­
larly, if a two-byte character is unmapped, the default two-byte character d2 is used.
Default characters are used since different multi-byte code sets typically do not have the
same number of characters which makes a one-to-one mapping difficult. Also, unused
sections in multi-byte code sets are usually reserved for future use. A different
approach is taken with single-byte code sets. For single-byte code sets, it is assumed
that the translation table forces a one-to-one mapping between the "from" and "to" char­
acters. No default characters are used with single-byte code sets. This one-to-one map­
ping guarantees that the conversion is reversible. For example, if the output of a
ROMAN8-to-ISO 8859/1 conversion is converted back to ROMAN8, the result of this double
conversion is the same as the original data.

Close the conversion descriptor cd freeing it up for a subsequent iconvopen (). It is
the caller's responsibility to de-allocate any table associated with the cd conversion
descriptor.

If needed, code set lock-shift information for the conversion identified by cd can be ini­
tialized by iconvlock (). If direction is 0, string s is used as a lock-shift sequence for

-1- HP-UX Release 9.0: August 1992

iconv(3C)

ICONV()

iconv(3C)

the "converted from" or input data. If direction is 1, string s is used as a lock-shift
sequence for the "converted to" or output data. Currently, three lock-shift sequences can
be used in a conversion: lock-shift 0, lock-shift 1 and lock-shift 2. These are identified
by the lock parameter values 0, 1 and 2. iconvlock () also resets any state infor­
mation to the initial shift state.

Fetch a character in the "converted from" code set from an input buffer, convert the
character to the "converted to" code set and place it plus any lock-shift information into
an output buffer. The descriptor cd identifies the conversion. The contents of inchar
points to a single- or multi-byte character in the input buffer and inbytesleft points to
the number of bytes from the input character to the end of the buffer. The contents of
outchar points to the next available space in the output buffer and outbytesleft points to
the number of the bytes from the next available space to the end of the buffer. While
conversions are done from the input buffer to the output buffer, the contents of in char ,
inbytesleft, outchar, and outbytesleft are incremented or decremented to reflect the
current status of the input and output buffers.

ICONVl () and :rCONV2 () are used where it is more efficient to handle single- and multi-byte characters
separately. These routines do not check for lock-shift information.

ICONVl () Convert single~byte characters in from according to the conversion identified by cd and
return the converted value in to. ICONVl () assumes from contains only single-byte
characters.

ICONV2 () Similarly convert double-byte characters in from according to the conversion identified
by cd and return the converted value in to. ICONV2 () assumes from contains only
double-byte characters.

The buflen argument in both ICONVl () and ICONV2 () specifies the number of bytes that will be con­
verted.

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

RETURN VALUES
iconvsize () Returns the size of the conversion table in bytes if a table is needed and it exists. The

function returns -1 if a table is needed and it does not exist. The function returns 0 if a
table is not needed.

iconvopen () Returns a conversion descriptor if successful. Otherwise, a (iconvd) -1 is returned.

iconvclose () Returns a non-negative number if successful. Otherwise a -I is returned.

ICONV () returns 0 if all characters from the input buffer are successfully converted and placed
into the output buffer. ICONV () returns 1 if a multi-byte input character or a lock­
shift sequence spans the input buffer boundary. No conversion is attempted on the
character and the contents of inchar points to the start of the truncated character
sequence. ICONV () returns 2 if an input character does not belong to the "converted
from" character set. No conversion is attempted on the character and the contents of
inchar points to the start of the unidentified input character. ICONV() returns 3 if
there is no room in the output buffer to place the converted character. The converted
character is not placed in the output buffer and the contents of inchar points to the start
of the character sequence that caused the output buffer overflow.

ICONVl ()
ICONV2 () Both return the number of bytes converted if successful. Otherwise they return -1.

EXAMPLES
int
convert (tocode, fromcode, dl, d2)
char *tocode;
char *fromcode;
int dl;
int d2;

HP-UX Release 9.0: August 1992

/* tocode name */
/* fromcode name */
/* one-byte default character */
/* two-byte default character */

-2- 573

•

•

iconv(3C) iconv(3C)

574

extern void error();

iconvd cd;
int size;
unsigned char *table;
int bytesread;
unsigned char inbuf[BUFSIZ];
unsigned char *inchar;
int inbytesleft;
unsigned char outbuf[BUFSIZ];
unsigned char *outchar;
int outbytesleit;

/* create conversion table */

/* local error message */

/* conversion descriptor */
/* size of translation table */
/* ptr to translation table */
i* num bytes read into input buffer *i
/* input buffer */
/* ptr to input character */
/* num bytes left in input buffer */
/* output buffer */
/* ptr to output character */
i* num bytes left in output buffer *i

if ((size = iconvsize(tocode, fromcode»
error (FATAL, BAD_SIZE);

BAD) {

else if (size == 0) {
table = (unsigned char *) NULL;

else if ((table=(unsigned char *)malloc((unsigned int)size»==(unsigned char *)NULL)
error (FATAL, BAD_CREATE);

/* start up a conversion */
if ((cd = iconvopen(tocode, fromcode, table, d1, d2»

error (FATAL, BAD_OPEN);
(iconvd) BAD) {

inchar = inbuf;
inbytesleft = 0;
out char = outbuf;
outbytesleft = BUFSIZ;

/* translate the characters */
for (;;) {

switch (ICONV(cd, &inchar, &inbytesleft, &outchar, &outbytesleft» {
case 0:
case 1:

/*
** Done with buffer, empty buffer or character spans
** input buffer boundary. Move any remaining stuff
** to start of buffer, get more characters and
** reinitialize input variables. If at EOF, flush
** output buffer and leave; otherwise, continue to
** convert the characters.
*/
strncpy(inbuf, inchar, inbytesleft);
if ((bytesread=read(Input, inbuf+inbytesleft, BUFSIZ-inbytesleft» < 0) ,

perror ("prog") ;
return BAD;

if (! (inbytesleft += bytesread» {
if (write(l, outbuf, BUFSIZ - outbytesleft) < 0) {

perror ("prog") ;
return BAD;

goto END_CONVERSION;

-3- HP-UX Release 9.0: August 1992

iCODV(3C)

}

AUTHOR

case 2:

case 3:

inchar
break;

inbuf;

error (FATAL, BAD_CONVERSION);

/*
** Full buffer or output character spans output buffer
** boundary. Send the output buffer to stdout,
** reinitialize the output va~iah19s.
*/
if (write (1, outbuf, BUFSIZ - outbytesleft) < 0) {

perror ("prog") ;
return BAD;

outchar = outbuf;
outbytesleft = BUFSIZ;

/* end conversion & get rid of the conversion table */
if (iconvclose(cd) == BAD) {

error (FATAL, BAD_CLOSE);
}

if (size) {
free«char *) table);

return GOOD;

iconv () was developed by HP.

SEE ALSO
iconv(l).

HP-UX Release 9.0: August 1992 -4-

iCODV(3C)

•

575

•

ieee (3M) ieee(3M)

NAME
copysign(), copysignf(), drem(), finite(), finitef(), logb(), scalb() - exponent manipulations

SYNOPSIS
#lnclude <math.h>

double copyslgn(double x, double y);

double drem(double x, double y);

Int finite(double x);

double logb(double x);

double scalb(double x, int n);

float copyslgnf(float x, float y);

int finitef(float x);

DESCRIPTION
These functions are required for, or recommended by, the IEEE-754 standard for floating-point arithmetic.

copysign () returns x with its sign changed to y's.

dram () returns the remainder r=x-n*y where n is the integer nearest the exact value of x/y; moreover, if
In-x/y I = 112, then n is even. Consequently the remainder is computed exactly and Ir I s Iy 1/2. But
dram (x , 0) is exceptional; see below under ERRORS.

f Inl te () returns 1 only when -INFINITY < x < +INFINITY. Otherwise it returns 0 (i.e., when I x I =
INFINITY or x is NaN).

10gb () returns x's exponent n, a signed integer converted to double-precision floating point and chosen
such that 1 S Ix 112**n < 2 unless x = 0 or (only on machines that conform to the IEEE-754 standard) Ix I =
INFINITY or x lies between 0 and the underflow threshold.

scalb () returns x*(2**n) computed, for integer n, without first computing 2**n.

copysignf () and finitef () are float versions of copyslgn() and finite (). They are
named in accordance with the conventions specified in the "Future Library Directions" section of the ANSI C
standard. Programs must be compiled in ANSI mode (use the -Aa option) in order to use these functions;
otherwise, the compiler promotes the float arguments to double, and the functions return incorrect
results.

DEPENDENCIES
Series 300/400

These functions are not supported on Series 300/400 systems.

Series 700/800
These functions are provided in the PA1.l versions of the math library only. The +DA1.l option (the
default on Series 700 systems) links in a PA1.l version automatically. A PA1.llibrary can be linked in expli­
citly. For more information, see the HP-UXFloating-Point Guide.

ERRORS
The IEEE-754 standard defines drem (x, 0) and dram (INFINITY, y) to be invalid operations that pro­
duce a NaN.

The IEEE-754 standard defines 10gb (±INFINITY) = +INFINITY and 10gb (0) = -INFINITY, and
requires the latter to signal a division-by-zero exception.

SEE ALSO
isnan(3M), isinf(3M), fpclassify(3M).

576 -1- HP-UX Release 9.0: August 1992

inet(3N) inet(3N)

NAME
inet_addr(), inet_network(), inet_ntoa(), inet_makeaddr(), ineClnaof(), inet_netof() - Internet address
manipulation routines

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_addr(const char *cp);

unsigned long inet_network(const char *CP)i

char *inet_ntoa(struct in_addr in);

struct in_addr inet_makeaddr(int net, int Ina);

int inet_lnaof(struct in_addr in);

int inet_netof(struct in_addr in);

DESCRIPTION
inet_addr ()
inet_network ()

Interpret character strings representing numbers expressed in the Internet stan­
dard "dot" notation.

inet_addr () returns numbers suitable for use as Internet addresses.

inet_network () returns numbers suitable for use as Internet network
numbers>

Return values can be assigned to a struct in_addr (defined in
/usr / inc 1 ude /net inet / in. h) by using a technique similar to the following:

struct in_addr addr;
char *cp;

addr.s_addr = inet_addr(cp);

Take an Internet address and return an ASCII string representing the address in "."
(dot) notation.

inet_makeaddr () Take an Internet network number and a local network address and construct an
Internet address from it.

inet_netof ()

inet_lnaof()

Break apart Internet host addresses, returning the network number part.

Break apart Internet host addresses, returning the local network address part.

All Internet addresses are returned in network order (bytes ordered from left to right). All network
numbers and local address parts are returned as machine-format integer values. Bytes in HP-UX systems
are ordered from left to right.

Internet Addresses:
Values specified using dot notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the
four bytes of an Internet address.

When a three-part address is specified, the last part is interpreted as a 16-bit quantity and placed in the
right-most two bytes of the network address. This makes the three-part address format convenient for
specifying Class B network addresses as in 128 .net .host.

When a two-part address is supplied, the last part is interpreted as a 24-bit quantity and placed in the
right-most three bytes of the network address. This makes the two-part address format convenient for
specifying Class A network addresses as in net. host.

HP-UX Release 9.0: August 1992 -1- 577

•

•

inet(3N) inet(3N)

When only one part is given, the value is stored directly in the network address without any byte rear­
rangement.

All numbers supplied as parts in dot notation can be decimal, octal, or hexadecimal, as specified in the C
language (i.e., a leading Ox or OX implies hexadecimal; a leading 0 implies octal; otherwise, the number is
interpreted as decimal).

RETL"RN V ALL'E
inet_addr () and inet_network () return -1 for malformed requests.

WARNINGS
The string returned by inet_ntoa () resides in a static memory area and must be saved if needed for
later use.

AUTHOR
These inet routines were developed by the University of California, Berkeley.

SEE ALSO
gethostent(3N), getnetent(3N), hosts(4), networks(4) .

578 -2- HP-UX Release 9.0: August 1992

ini tgroups (3C) initgroups(3C)

NAME
initgroupsO - initialize group access list

SYNOPSIS
#include <unistd.h>

int initgroups(const char *name, gid_t basegid);

DESCRIPTION
initgroups () reads the login group file, /etc/logingroup, and sets up the group access list for the
user specified by name, using the setgroups(2) system call. If the value of basegid is zero or positive, it is
automaticaily induded in the groups list. 'Typically this value is given as the group number from the pass­
word file. If the login group file does not exist or is empty, basegid is the only member of the list.

RETURN VALUE
ini tgroups () returns -1 if it was not invoked by a user with appropriate privileges.

WARNINGS
initgroups () uses the routines based ongetgrent(3C). If the invoking program uses any of these rou­
tines, the group structure is overwritten by the call to initgroups (). Subsequent calls to init­
groups () with the same name parameter override the actions of previous calls.

On many systems, no one seems to keep /etc/logingroup up to date.

NETWORKING FEATURES
NFS

If /etc/logingroup is linked to /etc/group, initgroups () tries to use the Network Informa­
tion Service (NIS) for entries beginning with a plus sign (+). If group membership for name is managed by
NIS, and no NIS server is able to respond, a call to initgroups () does not return until a server does
respond. This causes commands such as login(1) and su(1) to wait indefinitely.

See group (4) for proper syntax and operation.

AUTHOR
initgroups () was developed l?y the University of California, Berkeley.

FILES
/etc/logingroup login group file

SEE ALSO
login(l), sue!), getgroups(2), setgroups(2), group(4).

HP-UX Release 9.0: August 1992 -1- 579

I

I

initopt(3N) initopt (3N)

NAME
initoptO . initialize a NetIPC option buffer

SYNOPSIS
#include <sys/ns_ipc.h>

void initopt(short opt[], short maxoptions, short *result);

DESCRIPTION
initopt () must be used to intitialize a NetIPC option buffer. Options can be added to the buffer by cal­
ling addopt () and read by calling readopt () (see addopt(3N) and readopt(3N».

The maxoptions parameter specifies the maximum number of options that can be placed in the buffer. For
example, if maxoptions specifies one, then one option can be added to the buffer. If three is specified then
three options can be added. Options are indexed starting from zero.

Each time a NetIPC options buffer is to be used, it should be initialized to the number of options to be
added. If fewer options are added than the buffer is initialized for, a resulting unitialized option may cause
an error. A given buffer can be reused, but should be reinitialized before each use.

A NetIPC option buffer consists of space for overhead and space for options. opt overhead () returns
the number of bytes needed in a buffer for a given number of options (see optoverhead(3N». The bytes
needed for option data depends upon the number and type of the options to be added, and must be calcu­
lated by the programmer. An option buffer can be larger than necessary.

Parameters
opt (input parameter)

The address of the buffer to be initialized.

maxtoptions (input parameter)
The maximum number of options to be added to the buffer.

result (output parameter)
The result code returned. Refer to diagnostics section below for more information.

RETURN VALUE
None. Errors are returned in the result parameter.

DIAGNOSTICS
initopt () sets result to the value indicated when the following conditions are encountered:

[NSR_ADDR_OPrl The options parameter is null.

[NSR_NO_ERRORl The call was successful.

The num_entries parameter is negative.

AUTHOR
initopt () was developed by HP.

SEE ALSO

580

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(2).

-1- HP-UX Release 9.0: August 1992

Series 300, 400 Only

NAME
io_burst() - perform low-overhead I/O on an HP-IB/GPIO channel

SYNOPSIS
#include <dvio.h>

int io_burst(int eid, int flag);

DESCRIPTION
io_burst () is used to perform low-overhead burst transfers on the specified HP-IB, or GPIO interface. eid
is the entity identifier for an open HP-IB or GPIO device file returned by a previous call to open () , dup () ,
creat (), or fcntl () with an FDUPD command option. flag is an integer which, if non-zero, enables
burst mode or, if zero, disables it.

In burst mode, memory-mapped I/O address space assigned to the interface card select code is mapped
directly into user space such that data can be transferred directly between user memory and the interface
card, eliminating the need for kernel calls and the associated overhead. Burst mode affects only read () ,
write(), gpio_get_status(), gpio_set_ctl(), hpib_io(), and hpib_send_cmd() calls.
All other operations are unaffected. When burst mode is enabled, the interface is locked so that no other
process can access it until burst mode is disabled. When burst mode is disabled, the interface is reset (see
io]eset(3I)).

RETURN VALUE
io_burst () returns zero if successful or -1 if an error is detected.

ERRORS
io_burst () fails under any of the following circumstances and sets errno (see errno(2)) to one of the
following values:

[EBADF]

[ENOTTY]

[EIO]

eid does not refer to an open file.

eid does not refer to an HP-IB or GPIO device special file.

A timeout occurred during the call to ioburst () (Series 300/400 only).

Enabling burst mode locks the interface from all other processes, so it should never be used with any inter­
face that supports a system disk or swap device.

Timeouts for read(), write(), gpio_get_status(), gpio_set_ctl(), hpib_io(), and
hpib_send_cmd () do not work while in burst mode, but these commands can be interrupted by signals.

AUTHOR
io_burst () was developed by HP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2), read(2), write(2), gpio..get_status(3I), gpio_set_ctl(3I), hpib_io(3I),
hpib_send_cmd(3I), i03eset(3I).

HP-UX Release 9.0: August 1992 -1- 581

I

I

Series 300, 400 Only

NAME
io_dma_ctlO - control DMA allocation for an interface

SYNOPSIS
#include <sys/dil.h>

int io_dma_ctl(int eid, int mode);

DESCRIPTION
io_dma_ctl () is used to control system DMA allocation for a specific interface. eid is the entity identifier
for an open HP-IB, Centronics-compatible parallel, or GPIO device file returned by a previous call to
open (), dup (), creat (), or fcntl () with an FDUPD command option.

The nwde parameter describes what type ofDMA allocation the system should use for the interface associ­
ated with eid. mode is determined by selecting one offiags from the following list in <sysiail. h>:

One and only one of the following flags must be specified:

DMA_ACTIVE Inform the DMA subsystem that this interface intends to use DMA and
requires higher priority than slow devices. This is the level of DMA alloca­
tion used by CS/SO, Amigo, and SCSI devices.

DMA_UNACTIVE

DMA_RESERVE

DMA_UNRESERVE

DMA_LOCK

DMA_UNLOCK

Remove the effect of a previous DMA_ACTlVE.

Guarantee that a DMA channel will remain unlocked for future requests
for DMA by all devices on this interface.

Remove the effect of a previous DMA_RESERVE.

Lock a DMA channel for exclusive use by all devices on this interface.

Unlock a DMA channel locked by this interface.

RETURN VALUE
io_dma_ctl () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
io_dma_ctl () fails under the following circumstances, and sets errno (see errno(2» to the value indi­
cated:

[EBADF]

[ENOTI'Y]

[EID]

[EINTR]

[EINVAL]

eid does not refer to an open file.

eid does not refer to a Device I/O Library-compatible device file.

A timeout occurred (Series 300/400 only).

Request was interrupted by a signal.

Interface was unable to reserve or lock a DMA channel.

WARNINGS
Series 300/400 systems have only two DMA channels. Use of DMA_LOCK could limit access to DMA
resources by system disks, resulting in lower system performance.

AUTHOR
io_dma_ctl () was developed by HP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2).

582 -1- HP-UX Release 9.0: August 1992

Series 300, 400, 800 Only

NAME
io_eol_ctIO - set up read termination character on special file

SYNOPSIS
#include <dvio.h>

int io_eol_ctl(int eid, int flag, int match);

DESCRIPTION
io_eol_ctl () specifies a character to be used in terminating a read operation from the specified file
(entity identifier).

eid is an entity identifier of an open HP-IB raw bus, Centronics-compatible parallel, or GPIO device file
obtained from an open (), dup (), fcntl (), or creat () call. flag is an integer that enables or disables
character-match termination. A non-zero value enables character-match termination, while a zero value
disables it. match is an integer containing the numerical equivalent of the termination character. match is
ignored if flag is zero. When in 8-bit mode, the lower 8 bits of match are used as the termination character.
In 16-bit mode, the lower 16 bits are used.

Upon opening a file, the default condition is character-match termination disabled. When enabled, the
character specified by match is checked for during read operations. The read is terminated upon receipt of
this character, or upon any of the other termination conditions normally in effect for this file. Examples of
other conditions are satisfying the specified byte count, and receiving a character when the EO! line is
asserted (HP-IB). When the read is terminated by a match character, this character is the last character
returned in the buffer.

Entity identifiers for the same device file obtained by separate open () calls have their own termination
characters associated with them. Entity identifiers for the same device file inherited by a fork () call
share the same termination character. In the latter case, if one process changes the termination character,
the new termination character is in effect for all such entity identifiers.

RETURN VALUE
io_eol_ctl () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
io_eol_ctl () fails under the following circumstances, and sets errno (see errno(2» to the value indi­
cated:

AUTHOR

[EBADF]

[ENOTTY]

eid does not refer to an open file.

eid does not refer to a channel device file.

io_eol_ctl () was developed by lIP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2), io_width_ctl(3I).

HP-UX Release 9.0: August 1992 -1- 583

I

I

io~et_ter1ll.-reason (31) Series 300, 400, 800 Only

NAME
io~et_tel'IILreasonO - determine how last read terminated

SYNOPSIS
#include <dvio.h>

int io_get_ter.m_reason(int eid);

DESCRIPTION
io_get_ter.m_reason () returns the termination reason for the last read made on this entity id. eid is
an entity identifier of an open HP-IB raw bus, Centronics-compatible parallel interface, or GPIO device file
obtained from an open (), dup (), fcntl (), or creat () call.

All entity identifiers descending from an open () request (such as from dup () or fork (» set this
status. For example, if the calling process had opened this entity identifier and later forked, the status
returned would be from the last read done by either the calling process or its child.

RETURN VALUE
io_get_ter.m_reason () returns a value indicating how the last read on the specified entity identifier
was terminated. This value is interpreted as follows (note that combinations are possible):

Value
-1
o

1
2
4

Description
An error was encountered while making this function request.
Last read encountered some abnormal termination reason not covered by any
of the other reasons.
Last read terminated by reading the number of bytes requested.
Last read terminated by detecting the specified termination character.
Last read terminated by detecting some device-imposed termination condi­
tion. Examples are: EO! for HP-IB, PSTS line on GPIO, or some other end-of­
record condition, such as the physical end-of-record mark on a 9-track tape.

ERRORS
io_get_ter.m_reason () fails under the following circumstances, and sets errno (see ermo(2)) to the
value indicated:

[EBADF]

[ENOTTy]

eid does not refer to an open file.

eid does not refer to a channel device file.

DEPENDENCIES
Series 300/400:

For the GPIO interface, PSTS is checked only at the beginning of a transfer. An interrupt caused by an EIR
also terminates a transfer. The value of the termination reason in this case is also 4.

For the Centronics-compatible parallel interface, a termination reason value of 4 indicates that the transfer
terminated becliuse the peripheral asserted the ACK line.

AUTHOR
io_get_ter.m_reason () was developed by HP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2), read(2), io_eol_ctl(3I).

584 -1- HP-UX Release 9.0: August 1992

Series 300, 400, 800 Only

NAME
io_interrupt_ctlO - enable/disable interrupts for the associated eid

SYNOPSIS
#include <dvio.h>

int io_interrupt_ctl(int eid, int enable_flag);

DESCRIPTION
eid is the entity identifier of an open HP-IB raw bus, Centronics-compatible parallel, or GPIO device file
obtained from an open (), dup (), fcntl (), or creat () call. flag is an integer which enables or dis­
ables interrupts for the associated eid. A non-zero value enables interrupts.

Interrupts can be disabled or enabled as desired. When an interrupt occurs for a given eid the interrupts
associated with this eid are automatically disabled from recurring. To re-enable interrupts for this eid, use
io_interrupt_ctl().

RETURN VALUE
io_interrupt_ctl () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
io_interrupt_ctl () fails under the following situations, and sets errno (see ermo(2» to the value
indicated:

AUTHOR

[EBADF]

[ENOTI'Y]

[EINVAL]

eid does not refer to an open file.

eid does not refer to a device that supports interrupts.

No interrupt conditions were specified for this eid.

io_interrupt_ctl () was developed by HP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2), io_on_interrupt(3I).

HP-UX Release 9.0: August 1992 -1- 585

•

I

Series 300, 400, 800 Only

NAME
io_lock, io_unlock - lock and unlock an interface

SYNOPSIS
#include <dvio.h>

int io_lock(int eid)i

int io_unlock(int eid)i

DESCRIPTION
iolock () attempts to lock the interface associated with an entity identifier for the requesting process.
Locking an interface gives exclusive use of the interface associated with the eid to the requesting process,
thus avoiding unintended interference from other processes during a series of separate 110 requests. All
locks for a process are removed \vhen the process closes the file or terminates.

eid is an entity identifier of an open HP-IB, Centronics-compatible parallel, or GPIO device file, obtained
from an open (), dup (), fcntl (), or creat () call (see open(2), dup(2), fcntl(2), and creat(2».

Other processes that attempt to access or lock a locked interface either return an error or sleep until the
interface becomes unlocked. The action taken is determined by the current setting of the O_NDELAY flag
(see open(2). If the O_NDELAY flag is set, accesses to a locked interface fail and set errno to indicate the
error. If the O_NDELAY flag is not set, accesses to a locked interface block until the interface is unlocked,
the current timeout expires, or the request is interrupted by a signal.

A lock is associated with a process, not with an eid. Locking an interface with a particular eid does not
prevent the process that owns the lock from accessing the interface through another eid. A lock associated
with an eid is not inherited by a child process during a fork () (see fork (2».

Nested locking is fully supported. If a process owns a locked interface and calls a generic subroutine that
does a lock and unlock, the calling process does not lose its lock on the interface. Locking requests produced
by a given process for an interface already locked by the same process increment the current lock count for
that interface.

io_unlock() allows a process to remove a lock from the interface associated with the eid. A locked
interface can be unlocked only by the process that directly owns the lock. When an unlock operation is
applied to an eid that is currently multiply locked, the unlock operation decrements the current lock
counter for that interface, and the interface remains locked until the count is reduced to zero.

RETURN VALUE
io_lock () and i~_unlock () return the integer value of the current lock count if successful. A lock
count greater than zero indicates that the interface is still locked. A lock count of zero indicates that the
interface is no longer locked. A -1 indicates that an error has occured.

ERRORS
io_lock () and i~_unlock () fail in the following situations, and set errno (see errno(2» to the
value indicated:

[EACCES]

[EBADF]

[EINTR]

[EINVAL]

[ETIMEDOUT]

[ENOTI'Y]

[EPERM]

An attempt was made to lock an interface locked by another process with O_NDELAY
set.

eid does not refer to an open file.

A signal was caught while attempting to perform the lock with O_NDELAY clear.

an attempt was made to unlock when the interface is not locked.

A timeout occured while attempting to perform the lock with O_NDELAY clear.

eid does not refer to a channel device file.

An attempt was made to unlock when lock is not owned by this user.

WARNINGS
io_lock () provides a mandatory lock enforced by the system, and should not be used with any interface
supporting a system disk or swap device.

Series 800:
Processes that lock HP-IB or GPIO interfaces should clear all locks before exiting. The driver attempts to

586 -1- HP-UX Release 9.0: August 1992

Series 300, 400, 800 Only

clear them if the process terminates unexpectedly; however, a lock might be left outstanding if the locker
dies after creating new file descriptors (via fork () or dup (» that refer to the same device file. Ensuring
that all open file descriptors on a given interface are closed remedies the situation.

DEPENDENCIES
Series 300/400:

io_lock () and io_unlock () return [EIO] if a timeout occurs.

AUTHOR
io_lock () and io_unlock () were developed by HP.

SEE ALSO
io_timeout_ctl(3I), open(2).

HP-UX Release 9.0: August 1992 -2- 587

I

I

Series 300, 400, 800 Only

NAME
io_on_interruptO - device interrupt (fault) control

SYNOPSIS
#include <dvio.h>

int (*io_on_interrupt(
int eid,
struct interrupt_struct *causevec,
int (*handler) (int, struct interrupt_struct *)

» (int, struct interrupt_struct *);

DESCRIPTION
eid is an entity identifier of an open HP-IB raw bus, Centronics-compatible parallel interface, or GPIO device
file, obtained from an open () , dup (), fcnt 1 (), or creat () call.

causevec is a pointer to a structure of the form:

struct interrupt_struct
integer cause;
integer mask;

};

The interrupt_struct structure is defined in the file dvio .h.

cause is a bit vector specifying which of the interrupt or fault events can cause the handler routine to be
invoked. The interrupt causes are often specific to the type of interface being considered. Also, certain
exception (error) conditions can be handled using the i~_~n_interrupt () capability. Specifying a
zero valued cause vector effectively turns off the interrupt for that eid.

The mask parameter is used when an HP-IB parallel poll interrupt is being defined. mask is an integer that
specifies which parallel poll response lines are of interest. The value of mask is viewed as an 8-bit binary
number where the least significant bit corresponds to line DIOI; the most significant bit to line DIOS. For
example, to activate an interrupt handler when a response occurs on lines 2 or 6, the correct binary number
is 00100010. Thus a hexadecimal value of22 is the correct argument value for mask.

When an enabled interrupt condition on the specified eid occurs, the receiving process executes the
interrupt-handler function pointed to by handler. The entity identifier eid and the interrupt condition
cause are returned as the first and second parameters, respectively.

When an interrupt that is to be caught occurs during a read (), wri te (), open (), or ioctl () system
calIon a slow device such as a terminal (but not a file), during a pause () system call, a sigpause ()
system call, or a wai t () system call that does not return immediately due to the existence of a previously
stopped or zombie process, the interrupt handling function is executed and the interrupted system call
returns -1 to the calling process with errno set to EINTR.

Interrupt handlers are not inherited across a fork (). eids for the same device file produced by dup ()
share the same handler.

An interrupt for a given eid is implicitly disabled after the occurrence of the event. The interrupt condition
can be re-enabled by using io_interrupt_ctl () (see io_interrupCctl(3I)).

When an event specified by cause occurs, the receiving process executes the interrupt handler function
pointed to by handler. When the handler returns, the user process resumes at the execution point where
the event occurred.

Two parameters are passed to handler: the eid associated with the event, and a pointer to a causevec
structure. The cause of the interrupt can be determined by the value returned in the cause field of the
causevec structure (more than 1 bit can be set, indicating that more than 1 interrupting condition has
occurred). If the interrupt handler was invoked due to a parallel poll interrupt, the mask field of the
causevec structure contains the parallel poll response byte.

HP-IB Interrupts

588

This section describes interrupt causes specific to an HP-IB device. For an HP-IB device, the cause is a bit
vector which is used as follows. To enable a given event, the appropriate bit (in cause), shown below, must
be set to 1:

-1- HP-UX Release 9.0: August 1992

SRQ
TLK
LTN
TCT
IFC
REN
DCL
GET
PPOLL

GPIO Interrupts

Series 300, 400, 800 Only

SRQ and active controller
Talker addressed
Listener addressed
Controller in charge
IFC has been asserted
Remote enable
Device clear
Group execution trigger
Parallel poll

This section describes interrupt causes specific to a GPIO device. For a GPIO device, cause is a bit vector
which is used as follows. To enable a given event, the appropriate bit (in cause), shown below, must be set
to 1:

EIR
SIEO
SIE1

External interrupt
Status line 0
Status line 1

Parallel Interrupts
This section describes interrupt causes specific to a Centronics-compatible parallel device. For a
Centronics-compatible parallel device, cause is a bit vector which is used as follows. To enable a given
event, the appropriate bit (in cause), shown below, must be set to 1:

NERROR Nerror interrupt
SELECT Select interrupt
PE Paper error interrupt

RETURN VALUE
io_on_interrupt () returns a pointer to the previous handler if the new handler is successfully
installed; otherwise it returns a -1 and sets errno to indicate the error.

ERRORS
io_on_interrupt () fails for any of the following reasons and sets errno to the value indicated:

[EACCES] The interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see iolock(3I».

[EBADF]

[ENOTTY]

[EFAULT]

[EFAULT]

DEPENDENCIES
Series 300/400:

eid does not refer to an open file.

eid does not refer to a GPIO, Centronics-compatible parallel, or a raw HP-IB device file.

handler points to an illegal address. The reliable detection of this error is implemen­
tation dependent.

causevec points to an illegal address. The reliable detection of this error is implemen­
tation dependent.

For the HP98622 GPIO interface, only the EIR interrupt is available. For the HP 98265AIB HP-IB interface,
the IFC and GET interrupts are not provided.

Series 800:
For the HP 27114 AFI interface, only the EIR interrupt is available.

AUTHOR
io_on_interrupt () was developed by HP.

SEE ALSO
dup(2), creat(2), fcntl(2), open(2), pause(2), sigpause(2), io_interrupt_ctl(3I).

HP-UX Release 9.0: August 1992 -2- 589

I

I

Series 300, 400, 800 Only

NAME
io_resetO - reset an I/O interface

SYNOPSIS
#include <dvio.h>

int io_reset(int eid)i

DESCRIPTION
io_reset () resets the interface associated with the device file that was opened. It also pulses the peri­
pheral reset line on the GPIO interface, or the IFC line on the HP-IB. eid is an entity identifier of an open
HP-IB, Centronics-compatible parallel interface, or GPIO device file obtained from an open (), dup () ,
fcntl (), or creat () call.

io_reset () also causes an interface to go tr..rough its self-test, and returns a failure indication if the
interface fails its test.

RETURN VALUE
io_reset () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
io_reset () fails under the following circumstances, and sets errno (see errno(2» to the value indi­
cated:

[EBADF]

[ENOTTy]

[EIO]

[EACCES]

eid does not refer to an open file.

eid does not refer to a channel device file.

Interface could not be reset or failed self-test.

The interface associated with this eid is locked by another process and O_NDELAY is
set for this eid (see io_lock(3I).

DEPENDENCIES
Series 300/400:

When an HP-IB interface is reset, the interrupt mask is set to 0, the parallel poll response is set to 0, the
serial poll response is set to 0, the HP-IB address is assigned its powerup default value, the IFC line is
pulsed (if system controller), the card is put on line, and REN is set (if system controller).

When a GPIO interface is reset, the peripheral reset line is pulled low, the PCTL line is placed in the clear
state, and if the DOUT CLEAR jumper is installed, the data out lines are all cleared. The interrupt enable
bit is also cleared.

Interface self-test is not supported.

AUTHOR
io_reset () was developed by HP.

590 -1- HP-UX Release 9.0: August 1992

Series 300,400,800 Only

NAME
io_speed_ctlO - inform system of required transfer speed

SYNOPSIS
#include <dvio.h>

int io_speed_ctl(int eid, int speed);

DESCRIPTION
io_speed_ctl () selects the data transfer speed for a data path used for a particular interface. The
transfer method (Le., DMA or fast-handshake) chosen by the system is determined by the speed require­
ments.

eid is an entity identifier of an open HP-IB raw bus, Centronics-compatible parallel, or GPIO device file
obtained from an open (), dup () , fcnt 1 (), or creat () call. speed is an integer specifying the data
transfer speed in Kbytes per second (one Kbyte equals 1024 bytes).

RETURN VALUE
io_speed_ctl () returns 0 if successful, and -1 otherwise.

ERRORS
io_speed_ctl () fails under the following condition, and sets errno to the value indicated:

[ENO'ITY]

[EBADF]

DEPENDENCIES
Series 300/400:

eid does not refer to channel device file.

eid does not refer to an open file.

For values of speed less than 7, the system uses an interrupt transfer. For larger values, DMA is used if
available; otherwise, the system uses an interrupt transfer. The default transfer method is DMA.

Series 800:
DMA is the only supported transfer method.

AUTHOR
io_speed_ctl () was developed by lIP.

HP-UX Release 9.0: August 1992 -1- 591

I

I

Series 300, 400, 800 Only

NAME
io_timeout_ctIO - establish a time limit for va operations

SYNOPSIS
#include <dvio.h>

int io_timeout_ctl(int eid, long time);

DESCRIPTION
io_timeout_ctl () assigns a timeout value to the specified eid (entity identifier). eid is an entity
identifier of an open HP-IB raw bus, auto-addressed, Centronics-compatible parallel, or GPIO device file
obtained from an open () , dup () , f cn t 1 () , or c rea t () call. time is a long integer value specifying the
length of the timeout in microseconds. A value of 0 for time specifies no timeout (infinity).

This timeout applies to fhture read and write requests on this eid. If a read or write request, does not com­
plete within the specified time limit, the request is aborted and returns an error indication. If an operation
is aborted due to a timeout, errno is set to ETIMEDOUT.

Although the timeout value is specified in microseconds, the resolution of the timeout is system-dependent.
For example, a particular system might have a resolution of 10 milliseconds, in which case the specified
timeout value is rounded up to the next 10 msec boundary. A timeout value of zero means that the system
never causes a timeout. When a file is opened, a zero timeout value is assigned by default.

Entity identifiers for the same device file obtained by separate open () calls have their own timeout
values associated with them. Entity identifiers for the same device file obtained by dup () or inherited by
a fork () call share the same timeout value. In the latter case, if one process changes the timeout, the
new timeout is in effect for all such eids.

RETURN VALUE
io_timeout_ctl () returns 0 (zero) if successful, or -1 if an error was encountered.

ERRORS
io_timeout_ctl () fails under the following circumstances, and sets errno (see errno(2)) to the value
indicated:

[EBADF]

[ENOTTy]

DEPENDENCIES
Series 300/400:

eid does not refer to an open file.

eid does not refer to a channel device file.

System timeout resolution is 20 msec.

Era is returned if an operation is aborted due to a timeout.

AUTHOR
io_timeout_ctl () was developed by HP.

692 -1- HP-UX Release 9.0: August 1992

Series 300, 400, 800 Only

NAME
io_width_ctl- set width of data path

SYNOPSIS
#include <dvio.h>

int io_width_ctl(int eid, int width);

DESCRIPTION
io_width_ctl () enables you to select the width of the data path to be used for a particular interface.
eid is an entity identifier of an open HP-IB, Centronics-compatible parallel interface, or GPIO device file
obtained from an open (), dup (), fcntl (), or creat (j call. width is an integer specifying the width
of the data path in bits.

An error is given if an invalid width is specified. Specifying a width with this function sets the width for all
users of the device file associated with the given entity id. When first opened, the default width is S bits.

For the GPIO interface only widths of Sand 16 bits are currently supported. For the HP-IB and Centronics­
compatible parallel interfaces, only a width ofS bits is supported.

RETURN VALUE
io_width_ctl () returns 0 if successful, and -1 if an error was encountered.

ERRORS
io_width_ctl () fails under the following circumstances and sets errno (see ermo(2» to the value
indicated:

AUTHOR

[EBADF]

[ENOTTY]

[EINVAL]

eid does not refer to an open file.

eid does not refer to a channel device file.

the specified width is not supported on this device file.

io_width_ctl () was developed by HP.

HP-UX Release 9.0: August 1992 -1- 593

I

I

ipcerrmsg (3N) ipcerrmsg(3N)

NAME
ipcerrmsg(), ipcerrstrO - provide text describing a NetIPC error number

SYNOPSIS
#include<sys/ns_ipc.h>

char *ipcerrstr(int error);

void ipcerrmsg(
int error,
char *buffer,
int *len,
int *result);

DESCRIPTION
ipcerrstr ()

ipcerrmsg ()

Takes as input a NetIPC error number and returns a pointer to a NULL-terminated
string describing the error. If the error is unknown, NULL is returned.

Copies an error message for a NetIPC error into a supplied buffer. It copies len-l
bytes into the buffer to ensure that the result is null-terminated.

ipcerrmsg () parameters are as follows:

error

buffer

len

result

(input parameter) The NetIPC error number to be described.

(input parameter) A data buffer into which the description is to be
copied.

(input/output parameter) A pointer to the length of the buffer. On
output it contains the length of the description.

(output parameter) The result code returned. Refer to ERRORS
below for more information.

RETURN VALUE
ipcerrstr () returns NULL if the error number is unknown.

ipcerrmsg () returns results in the result parameter.

ERRORS
ipcerrmsg () sets result to the value indicated when any of these conditions are encountered:

[NSR_NO_ERROR]

[NSR_ERRNUM]

The call was successful.

An unknown error number was passed to ipcerrmsg.

AUTHOR
ipcerrmsg () was developed by HP.

SEE ALSO

594

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), optoverhead(3N), readopt(3N).

-1- HP-UX Release 9.0: August 1992

Series 300 Only

NAME
is_68010_presentO, is_68881_presentO, is_98635A_presentO, is_98248A_presentO - check for presence of
hardware capabilities

SYNOPSIS
#include <unistd.h> int is_68010-present(void);

int is_68881-present(void);

int is_9863SA-present(void);

DESCRIPTION
Each function checks for the presence of a specified hardware capability, returning 1 if it exists or 0 if it
does not.

RETURN VALUE
The value 1 is returned by:

is_68010-present()

is_68881-present()

is_9863SA-present()

if the system has an MC68010 as its cpu.
if an MC68881 floating-point coprocessor is present.

if an HP98635A floating-point accelerator has been installed.

is_9 824 8A-present () if an HP98248A floating-point accelerator has been installed.

AUTHOR
is_hw-present () was developed by HP.

HP-UX Release 9.0: August 1992 -1- 595

I

I

isinf(3M) isinf(3M)

NAME
isinf(), isinff() - test for INFINITY functions

SYNOPSIS
#include <math.h>

int isinf(double x);

int isinff(float x);

DESCRIPTION
is inf () returns a positive integer if x is +INFINITY, or a negative integer if x is -INFINITY. Otherwise it
returns zero.

isinff () is the float version of isinf (). It is named in accordance with the conventions specified
in the HFuture Library Directions" section of the ANSI C standard. Programs must be compiled in ANSI
mode (use the -Aa option) in order to use this function; otherwise, the compiler promotes the float
argument to double, and the function returns incorrect results.

DEPENDENCIES
Series 300/400

isinff () is not supported on Series 300/400 systems.

Series 700/800
isinff () is provided in the PA1.1 versions of the math library only. The +DA1.l option (the default on
Series 700 systems) links in a PA1.1 version automatically. A PA1.llibrary can be linked in explicitly. For
more information, see the HP-UX Floating-Point Guide.

SEE ALSO
isnan(3M), fpclassify(3M), ieee(3M).

596 -1- HP-UX Release 9.0: August 1992

isnan(3M)

NAME
isnan(), isnanf() - test for NaN functions

SYNOPSIS
#include <math.h>

int isnan(double x};

int isnanf(float x};

DESCRIPTION
isnan {) returns :l nonzero integer if x is Na..l\f (not-a-number), Otherwise it returns zero.

isnan(3M)

isnanf () is the float version of isnan (). Programs must be compiled in ANSI mode (use the -Aa
option) in order to use this function; otherwise, the compiler promotes the float argument to double,
and the function returns incorrect results.

DEPENDENCIES
Series 300/400

isnanf () is not supported on Series 300/400 systems.

Series 700/800
isnanf () is not specified by any standard; however, it is named in accordance with the conventions
specified in the "Future Library Directions" section of the ANSI C standard. It is provided in the PA1.l ver­
sions of the math library only. The +DA1.l option (the default on Series 700 systems) links in a PA1.l ver­
sion automatically. A PA1.l library can be linked in explicitly. For more information, see the HP-UX
Floating-Point Guide.

SEE ALSO
isinf(3M), fpclassify(3M), ieee(3M).

STANDARDS CONFORMANCE
isnan () in libm.a: AES, XPG3
isnan () in libM.a: AES, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 597

I

I

13tol(3C)

NAME
13tol{), ltoI3{) - convert between 3-byte integers and long integers

SYNOPSIS
#include <stdlib.h>

void l3tol(long int *lp, const char *cp, int n)i

void Itol3(char *cp, const long int *lp, int n)i

13tol(3C)

DESCRIPTION
l3tol () Convert a list of n three-byte integers packed into a character string pointed to by cp into a

list of long integers pointed to by lp.

ltol3 () Perform the reverse conversion from long integers (lp) to three-byte integers (cp).

These functions are useful for file-system maintenance where the block numbers are three bytes long.

SEE ALSO
fs(4).

WARNINGS
Because of possible differences in byte ordering, the numerical values of the long integers are machine­
dependent.

STANDARDS CONFORMANCE
l3tol (): XPG2

ltol3():XPG2

598 -1- HP-UX Release 9.0: August 1992

langinfo (3C)

NAME
langinfoO, langtoidO, idtolangO, currlangidO - NLS information about native languages

SYNOPSIS
#include <langinfo.h>

char *langinfo(int langid, nl_item item);

int langtoid(const char *langname);

char *idtolang(int langid);

1nt currlangid(void);

DESCRIPTION

langinfo (3C)

Note: All functions defined on this page are obsolete. Use of nClanginfo(3C) is recommended as a replace­
ment for langinfo ().

lang info () returns a pointer to a null-terminated string containing information relevant to a particular
language or cultural area defined in the program's locale (see setlocale(3C». lang info () effectively
calls langini t () (see nl_init(3C» to load the program's locale according to the language specified by
langid. Iflangid or item (or both) is bad, langinfo () returns a pointer to a NULL string.

currlangid () looks for a LANG string in the user's environment. If it finds one, currlangid ()
returns the corresponding integer listed in lang(5). Otherwise, it returns 0 to indicate a default to native­
computer, the method used before NLS was available.

idtolang () takes the integer langid and attempts to return the corresponding character string defined
in lang(5). If langid is not found, an empty string is returned.

langtoid () is the inverse of idtolang (): it attempts to convert a string to a language ID, returning 0
to indicate native-computer if no match is found.

EXTERNAL INFLUENCES
Locale

The string returned by langinfo () for a particular item is determined by the locale category specified
for that item in langinfo(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNINGS
langinfo () returns a pointer to a static area that is overwritten on each call.

AUTHOR
langinfo () was developed by lIP.

SEE ALSO
nCinit(3C), nLlanginfo(3C), setlocale(3C), hpnls(5), lang(5), langinfo(5).

HP-UX Release 9.0: August 1992 -1- 599

I

I

Idcvt(3C) Idcvt(3C)

NAME
_ldecvtO, _ldfcvtO, _ldgcvtO - convert long-double floating-point number to string

SYNOPSIS
#include <stdlib.h>

char *_ldecvt(long_double value, size_t ndigit, int *decpt, int *sign);

char *_ldfcvt(long_double value, size_t ndigit, int *decpt, int *sign);

char *_ldgcvt(long_double value, size_t ndigit, char *buf);

DESCRIPTION
_ldecvt() converts value to a null-terminated string of ndigit digits and returns a pointer to the

string. The high-order digit is non-zero, unless the value is zero. The low-order digit is
rounded. The position of the radix character relative to the beginning of the string is stored
indirectly through deept (negative means to the left of the returned digits). The radix char­
acter is not included in the returned string. If the sign of the result is negative, the word
pointed to by sign is non-zero; otherwise it is zero.

_ldfcvt() is identical to _ldecvt (), except that the correct digit has been rounded for printf %Lf
(FORTRAN F-format) output of the number of digits specified by ndigit.

_ldgcvt () Convert the value to a null-terminated string in the array pointed to by bur and return bur.
It produces ndigit significant digits in FORTRAN F-format if possible, or E-format otherwise.
A minus sign, if required, and a radix character are included in the returned string. Trail­
ing zeros are suppressed. The radix character is determined by the currently loaded NLS
environment (see setloeale(3C». If setlocale () has not been called successfully, the
default NLS environment, "C" is used (see lang(5». The default environment specifies a
period (.) as the radix character.

RETURN VALUE
NaN is returned for Not-a-Number, and ±INFINITY is returned for Infinity.

WARNINGS
The values returned by _ldecvt () and _ldfcvt () point to a single static-data array whose content is
overwritten by each call.

AUTHOR
_ldecvt () , _ldf cvt (), and _ldgcvt () were developed by HP.

SEE ALSO
setlocale(3C), printf(3S), hpnls(5), lang(5).

EXTERNAL INFLUENCES
Locale

The LC_NUMERIC category determines the radix character.

International Code Set Support
Single-byte character code sets are supported.

600 -1- HP-UX Release 9.0: August 1992

localeconv(3C) localeconv (3C)

NAME
localeconv() - query the numeric formatting conventions of the current locale

SYNOPSIS
#inc1ude <loca1e.h>

struct 1conv *loca1econv(void);

DESCRIPTION
loca1econv () sets the components of an object of type struct 1conv (defined in <locale. 11»
with values appropriate for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the program's current locale (see setlocale(3C».

The members ofthe structure with type char * are strings, any of which (except decimaLpoint) can point
to 1111 (the empty string) to indicate that the value is not available in the current locale or is of zero length.
The members with type char are non-negative numbers, any of which can be CHAR_MAX (defined in
<1 imi t s .11» to indicate that the value is not available in the current locale. The members include the
following:

char *decima1-point
The decimal point character used to format non-monetary quantities. This is the same value as
that returned by a call to nl_1anginfo () with RAnIXCHAR as its argument (see
nClanginfo(3C».

char *thousands_sep
The character used to separate groups of digits to the left of the decimal point character in for­
matted non-monetary quantities. This is the same value as that returned by a call to
nl_1anginfo () with THOUSEP as its argument (see nClanginfo(3C».

char *grouping
A string where the numeric value of each byte indicates the size of each group of digits in format­
ted non-monetary quantities.

char *int_curr_sy.mbo1
The international currency symbol applicable to the current locale. The first three characters
contain the alphabetic international currency symbol in accordance with those specified in ISO
4217 Codes for the Representation of Currency and Funds. The fourth character (immediately
preceding the null character) is the character used to separate the international currency symbol
from the monetary quantity.

char *currency_sy.mbo1
The local currency symbol applicable to the current locale. This value along with positioning
information is returned by a call to n1_1anginfo () with CRNCYSTR as its argument (see
nClanginfo(3C».

char *mon_decima1-point
The decimal point used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits to the left of the decimal point in formatted monetary quanti­
ties.

char *mon_grouping
A string where the numeric value of each byte indicates the size of each group of digits in format­
ted monetary quantities.

char *positive_sign
The string used to indicate a non-negative-valued formatted monetary quantity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those to the right of the decimal point) to be displayed in an
internationally formatted monetary quantity.

HP-UX Release 9.0: August 1992 -1- 601

I

I

localeconv(3C) localeconv (3C)

char frac_digits
The number of fractional digits (those to the right of the decimal point) to be displayed in a
locally formatted monetary quantity.

char p_cs-precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a non­
negative formatted monetary quantity.

char p_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by a space from the
value for a non-negative formatted monetary quantity.

char n_cs-precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a nega­
tive formatted monetary quantity.

char n_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by a space from the
value for a negative formatted monetary quantity.

char p_sign-posn
Set to a value indicating the positioning of the positive_sign for a non-negative formatted
monetary quantity.

char n_sign-posn
Set to a value indicating the positioning of the nega t i ve_s ign for a negative formatted
monetary quantity.

The numeric value of each byte of grouping and mon_grouping is interpreted according to the follow­
ing:

other

No further grouping is to be performed.

The previous byte is to be repeatedly used for the remainder of the digits.

The value is the number of digits that comprise the current group. The next byte is
examined to determine the size of the next group of digits to the left of the current
group.

The value of p_sign-posn and n_sign-posn is interpreted according to the following:

o Parentheses surround the quantity and currency_symbol.

1 The sign string precedes the quantity and currency_symbol.

2 The sign string succeeds the quantity and currency_symbol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeeds the currency_symbol.

localeconv() behaves as ifno library function calls localeconv ().

EXTERNAL INFLUENCES
Locale

The LC_NUMERIC category influences the decimal-point, thousands_sep, and grouping
members of the structure referenced by the pointer returned from a call to localeconv ().

The LC_MONETARY category influences all of the other members ofthis structure.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
localeconv () returns a pointer to the filled-in struct lconv.

EXAMPLES
The following table illustrates the formatting used in five languages for monetary quantities.

602 -2- HP-UX Release 9.0: August 1992

localeconv(3C) localeconv(3C)

Country Positive format Nej!ative format International format
american $1,234.56 -$1,234.56 USD 1,234.56
italian L.1.234 -L.1.234 ITL.1.234
dutch F 1.234,56 F -1.234,56 NLG 1.234,56
norwegian kr1. 234,56 kr1.234,56- NOK 1. 234,56
portuguese 1,234$56 -1,234$56 PTE 1,234$56

For these five languages, the respective values for the monetary members of the structure returned by
localeconv () are:

american italian dutch norwegian portu~ese

int curr symbol USD ITL. NLG NOK PTE
currency_symbol $ L. F kr $
mon_decimal-point 1111 , , $
mon_thousands sep , ,
mon_grouping \3 \3 \3 \3 \3
positive_sign 1111 1111 1111 1111 1111

negative_sign - - - - -
int_frac_digits 2 0 2 2 2
frac_digits 2 0 2 2 2
p_cs-precedes 1 1 1 1 0
p_sep_by_space 0 0 1 0 0
n cs-precedes 1 1 1 1 0
n_sep_by space 0 0 1 0 0
p_sign-posn 1 1 1 1 1
n_sign-posn 4 1 4 2 1

WARNINGS
The structure returned by localeconv () should not be modified by t4e calling program. Calls to set­
locale () with categories LC_ALL, LC_MONETARY, or LC_NUMERIC can overwrite the contents of the
structure that localeconv () points to when it returns (see setlocale(3C)).

AUTHOR
localeconv () was developed by HP.

SEE ALSO
buildlang(lM), langinfo(3C), nLlanginfo(3C), setlocale(3C), hpnls(5).

STANDARDS CONFORMANCE
localeconv () : AES, XPG4, ANSI C

HP-UX Release 9.0: August 1992 -3- 603

I

I

logname (3C)

NAME
logname() - return login name of user

SYNOPSIS
#lnclude <unlstd.h>

char *logname(vold);

DESCRIPTION

logname (3C)

logname () returns a pointer to the null-terminated login name; it extracts the $LOGNAME variable from
the user's environment.

WARNINGS
logname () returns a pointer to static data that is overwritten by each subsequent call.

This method of determining a login name is subject to forgery.

FILES
fete/profile

SEE ALSO
env(l), login(l), profile(4), environ(5).

STANDARDS CONFORMANCE
logname () : SVID2, XPG2

604 -1- HP-UX Release 9.0: August 1992

lsearch (3C) lsearch (3C)

NAME
IsearchO, lfindO -linear search and update

SYNOPSIS
#include <search.h>

void *lsearch(
const void *key,
void *base,
size_t *nelp,
size_t width,
int (*compar) (const void *, const void *)

) ;

void *lfind(
const void *key,
const void *base,
size_t *nelp,
size_t width,
int (*compar) (const void *, const void *)

) ;

DESCRIPTION
lsearch() is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a pointer

into a table indicating where a datum may be found. If the datum does not occur, it is
added at the end of the table.

key Points to the datum to be sought in the table.

lfind ()

base

nelp

compar

Points to the first element in the table.

Points to an integer containing the current number of elements in the
table. The integer is incremented if the datum is added to the table.

Name of the comparison function which the user must supply
(strcmp (), for example). It is called with two arguments that point
to the elements being compared. The function must return zero if the
elements are equal and non-zero otherwise.

Same as lsearch () except that if the datum is not found, it is not added to the table. Instead, a NULL
pointer is returned.

Notes
The pointers to the key and the element at the base of the table should be of type pointer-to-element, and
cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be contained in the elements
in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be cast into type pointer-to­
element.

EXAMPLES
This code fragment reads in:S" TABSIZE strings of length:S" ELSIZE and stores them in a table, eliminat­
ing duplicates.

#include <stdio.h>

#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab [TABSIZE] [ELSIZE], *lsearch();
unsigned nel = 0;
lnt strcmp ();

HP-UX Release 9.0: August 1992 -1- 605

•

•

lsearch (3C)

SEE fl...LSO

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

bsearch(3C), hsearch(3C), tsearch(3C).

RETURN VALUE

Isearch(3C)

If the searched-for datum is found, both lsearch () and lfind () return a pointer to it. Otherwise,
lfind() returns NULL and lsearch () returns a pointer to the newly added element.

Wft...RNINGS
Undefined results can occur if there is not enough room in the table to add a new item.

STANDARDS CONFORMANCE
lsearch () : AES, SVID2, XPG2, XPG3, XPG4

lfind(): AES, SVID2, XPG2, XPG3, XPG4

606 -2- HP-UX Release 9.0: August 1992

Itostr(3C)

NAME
ItostrO, ultostrO, ItoaO, ultoaO - convert long integers to strings

SYNOPSIS
#include <stdlib.h>

char *ltostr(long n, int base);

char *ultostr(unsigned long n, int base);

char *ltoa(long n);

char *ultoa(unsigned long n);

DESCRIPTION

Itostr(3C)

ltostr () Convert a signed long integer to the corresponding string representation in the specified
base. The argument base must be between 2 and 36, inclusive.

ul tostr () Convert an unsigned long integer to the corresponding string representation in the
specified base. The argument base must be between 2 and 36, inclusive.

ltoa () Convert a signed long integer to the corresponding base 10 string representation, returning
a pointer to the result.

ul toa () Convert an unsigned long integer to the corresponding base 10 string representation,
returning a pointer to the result.

These functions are smaller and faster than using sprintf () for simple conversions (see sprintf(3C».

ERRORS
If the value of base is not between 2 and 36, ltostr () and ultostr () return NULL and set the exter­
nal variable errno to ERANGE.

WARNINGS
The return values point to static data whose content is overwritten by each call.

AUTHOR
ltostr(),ultostr(), ltoa(), and ultoa() were developed by HP.

SEE ALSO
printit3C), strtol(3C).

HP-UX Release 9.0: August 1992 -1- 607

I

I

malloc(3C) malloc(3C)

NAME
malloc(), free(), realloc(), calloc(), mallopt(), mallinfo(), memoryma p() - main memory allocator

SYNOPSIS
#include <stdlib.h>

void *malloc(size_t size);

void *calloc(size_t nelem, size_t elsize);

void *realloc(void *ptr, size_t size);

void free(void *ptr);

void memorymap(int show_stats);

SYSTEM V SYNOPSIS
#include <malloc.h>

char *malloc(unsigned size);

void free(char *ptr);

char *realloc(char *ptr, unsigned size);

char *calloc(unsigned nelem, unsigned elsize);

int mallopt(int cmd, int value);

struct mallinfo mallinfo(void);

Remarks
The functionality in the old malloc(3X) package has been incorporated into malloc(3C). The library
(jusr/lib/libmalloc .a) corresponding to the -lmalloc linker option is now an empty library.
Makefiles that reference this library will continue to work. Applications that used the malloc(3X) package
should still work properly with the new malloc(3C) package. If the old versions must be used, they are pro­
videdinfiles /usr/old/libmalloc3x.a and /usr/old/libmalloc3c.o for Release 8.07 only.

DESCRIPTION

608

The functions described in this manual entry provide a simple, general-purpose memory allocation package:

malloc () allocates space for a block of at least size bytes, but does not initialize the space.

ca 11 oc () allocates space for an array of nelem elements, each of size elsize bytes, and initializes
the space to zeros.

realloc () changes the size of the block pointed to by ptr to size bytes and returns a pointer to
the (possibly moved) block. Existing contents are unchanged up to the lesser of the
new and old sizes. If ptr is a NULL pointer, realloc () behaves like malloc ()
for the specified size. If size is zero and ptr is not a NULL pointer, the object it points
to is freed and NULL is returned.

free () deallocates the space pointed to by ptr (a pointer to a block previously allocated by
malloc (), realloc (), or calloc (» and makes the space available for further
allocation. If ptr is a NULL pointer, no action occurs.

mallopt () provides for control over the allocation algorithm and other options in the malloc(3C)
package. The available values for cmd are:

M_MXFAST Set maxfast to value. The algorithm allocates all blocks below
the size of maxfast in large groups, then doles them out very
quickly. The default value for maxfast is zero (0).

Set numlblks to value. The above mentioned ''large groups"
each contain numlblks blocks. numlblks must be greater than
1. The default value for numlblks is 1 00.

Set grain to value. The sizes of all blocks smaller than maxfast
are considered to be rounded up to the nearest multiple of
grain. grain must be greater than zero. The default value of
grain is the smallest number of bytes that can accommodate

-1- HP-UX Release 9.0: August 1992

malloc(3C) malloc(3C)

alignment of any data type. value is rounded up to a multiple of
the default when grain is set.

Preserve data in a freed block until the nextmalloc (), real­
loc (), or calloc (). This option is provided only for compa­
tibility with the old version of malloc () and is not recom­
mended.

Block all blockable signals in malloc (), realloc (), cal­
loc (), and free (). This option is provided for those who
need to write signal handlers that allocate memory. When set,
the malloc(3C) routines can be called from within signal
handlers (they become re-entrant). Default action is not to
block all blockable signals.

Do not block all blockable signals in malloc (), realloc (),
calloc (), and free (). This option cancels signal blocking
initiated by the M_BLOCK option.

These values are defined in the <malloc • h> header file.

mallopt () can be called repeatedly, but must not be called after the first small block is allocated
(unless cmd is set to M_BLOCK or M_UBLOCK).

mall info ()
provides instrumentation describing space usage, but cannot be called until the first small block is allo­
cated. It returns the structure:

struct mallinfo
int arena; /* total space in arena */
int ordblks; /* number of ordinary blocks */
int smhlks; /* number of small blocks */
int hblkhd; /* space in holding block headers */
int hblks; /* number of holding blocks */
int us:mhlks; /* space in small blocks in use */
int fs:mhlks; /* space in free small blocks */
int uordblks; /* space in ordinary blocks in use */
int fordblks; /* space in free ordinary blocks */
int keepcost; /* space penalty if keep option is used */

This structure is defined in the <malloc • h> header file.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer coercion)
for storage of any type of object.

memorymap ()

RETURN VALUE

can be used to display the contents of the memory allocator. A list of addresses and
block descriptions is written (using printf (» to standard output. If the value of
the show _stats parameter is 1, statistics concerning number of blocks and sizes used
will also be written. If the value is zero, only the memory map will be written.

The addresses and sizes displayed by memory map may not correspond to those
requested by an application. The size of a block (as viewed by the allocator) includes
header information and padding to properly align the block. The address is also
offset by a certain amount to accomodate the header information.

Upon successful completion, malloc (), realloc (), and calloc () return a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of object. Otherwise, they return a NULL
pointer. If realloc () returns a NULL pointer, the memory pointed to by the original pointer is left
intact.

mallopt () returns zero for success and non-zero for failure.

HP-UX Release 9.0: August 1992 -2- 609

•

I

malloc(3C) malloc(3C)

ERRORS
[ENOMEM] malloe (), realloe (), and ealloe () set errno to ENOMEM and return a NULL

pointer when an out-of-memory condition arises.

[EINVAL] malloe (), realloe (), and ealloe () set errno to EINVAL and return a NULL
pointer when the memory being managed by malloe () has been detectably corrupted.

DIAGNOSTICS
malloe (), realloe (), and ealloe () return a NULL pointer if there is no available memory, or if the
memory managed by malloe () has been detectably corrupted. This memory may become corrupted if
data is stored outside the bounds of a block, or if an invalid pointer (a pointer not generated by ma 11 oe () ,
realloe (), or calloc() is passed as an argument to free () or realloe ().

If mallopt () is called after any allocation of a small block and cmd is not set to M_BLOCK or
M_UBLOCK or if cmd or value is invalid, non-zero is returned. Otherwise, it returns zero.

WARNINGS
malloe functions use brk () and sbrk () (see brk(2» to increase the address space of a process. There­
fore, an application program that uses brk () or sbrk () must not use them to decrease the address
space, because this confuses the malloe functions.

free () and realloe () do not check their pointer argument for validity.

If free () or realloe () is passed a pointer that was not the result of a call to malloe (), real­
loe (), or ealloe (), or if space assigned by an allocation function is overrun, loss of data, a memory
fault, bus error, or an infinite loop may occur at that time or during any subsequent call to malloe (),
realloe (), ealloe (), or free ().

The following actions are not supported and cause undesirable effects:

• Attempting to free () or realloe () a pointer not generated as the result of a call to mal­
loe (), realloe (), or ealloe ().

The following actions are strongly discouraged and may be unsupported in a future implementation of
malloc(3C):

• Attempting to free () the same block twice.

• Depending on unmodified contents of a block after it has been freed.

Undocumented features of earlier memory allocators have not been duplicated.

COMPATIBILITY
The only external difference between the old malloc(3X) allocator and the malloc(3C) allocator is that the
old allocator would return a NULL pointer for a request of zero bytes. The malloc(3C) allocator returns a
valid memory address. This is not a concern for most applications.

Although the current implementation ofmalloc(3C) allows for freeing a block twice and does not corrupt the
contents of a block after it is freed (until the next call to realloe (), ealloe (), or malloe (», support
for these features may be discontinued in a future implementation of malloc(3C) and should not be used.

SEE ALSO
brk(2), errno(2).

STANDARDS CONFORMANCE

610

malloe () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
ealloe () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

free () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
mallinfo (): SVID2, XPG2

mallopt (): SVID2, XPG2
realloe (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

-3- HP-UX Release 9.0: August 1992

rna therr (3M)

NAME
matherr() - error-handling function

SYNOPSIS
#include <math.h>

int matherr(struct exception *x)
{

/* your math error handling here */

DESCRIPTION

rnatherr(3M)

matherr () is invoked by functions in the Math Library when errors are detected. Programmers can
define their own procedures for handling errors by including a function named matherr () in their pro­
grams. matherr () must be of the form described above. When an error occurs, a pointer to the excep­
tion structure x is passed to the user-supplied matherr () function. This structure, which is defined in
the <math. 11> header file, is as follows:

struct exception
int type;
char *name;
double argl, arg2, retval;

} ;

The element type is an integer describing the type of error that has occurred, from the following list of
constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that incurred the error. The
variables argl and arg2 are the arguments with which the function was invoked. retval is set to
the default value that will be returned by the function unless the user's matherr () sets it to a different
value. If there is only one argument, argl is set to it, and arg2 is undefined.

If the user's matherr () function returns non-zero, no error message is printed, and errno is not set.

If matherr () is not supplied by the user, the default error-handling procedures (described with the math
functions involved) are invoked upon error. These procedures are also summarized in the table below. In
every case, errno is set to EDOM or ERANGE and the program continues.

When matherr () is called from a float type math function (for example, expf () or logf (»), the
argument(s) and default return value (argl, arg2, and retval) are converted to double. If an argu­
ment is a NaN, it is converted to a double NaN, without trapping, even if it is a signaling NaN. If a
user-supplied matherr () function modifies retval, the value is converted to float when math­
err () returns. If that conversion fails, then a signal is generated. Therefore, it is the responsibility of the
user-supplied matherr () to select values for retval that can be successfully converted to float.

DEPENDENCIES
llibllibM.a

In /lib/libM.a, matherr() has been renamed to _matherr() and no error messages are printed
to the standard error output. _matherr () is provided in /lib/libM.a in order to assist in migrat­
ing programs from 1 ibm. a to 1 ibM. a and is not a part ofXPG3, ANSI C, or POSIX.

EXAMPLES
#include <math.h>

int
matherr(x)
register struct exception *x;
{

switch (x->type)

HP-UX Release 9.0: August 1992 -1- 611

•

I

matherr(3M) matherr(3M)

case DOMAIN:
/* change sqrt to return sqrt(-argl), not 0 */
if (!strcmp(x->name, "sqrt"» {

x->retval = sqrt(-x->argl);
return (0); /* print message and set errno */

}
else if (! strcmp (x- >ncuu9, !! sqrtf "» {

x->retval = sqrtf(-x->argl);
return (0); /* print message and set errno */

}
case SING:

/* all other domain or sing errors, print message and abort */
fprintf (stderr, "domain error in %s\nll, x->na...ue);
abort ();

case PLOSS:

}

/* print detailed error message */
fprintf{stderr, "loss of significance in %s(%g) %g\n",

x->name, x->argl, x->retval);
return (l); /* take no other action */

return (0); /* all other errors, execute default procedure */

DEFAULTS
DEFAULT ERROR HANDLING PROCEDURES

Types of Errors
type DOMAIN SING OVERFLOW UNDERFLOW

errno EDOM EDOM ERANGE ERANGE

BESSEL:

yO, yl, yn (arg <= 0) M,-R

EXP: R 0

LOG, LOGlO:

(arg < 0) M,-R
(arg = 0) M,-R

POW:

neg ** non-int ±H 0

0** non-pos M,O

SQRT: M,O

GAMMA: M,H R

HYPOT: R

SINH: ±H
COSH: R

SIN, COS, TAN:

ASIN, ACOS, ATAN2: M,O

ABBREVIATIONS
As much as possible of the value is returned.

M Message is printed (EDOM error)
(except for Series 700/800 libM.a).

H HUGE is returned.
-H -HUGE is returned.
±H HUGE or -HUGE is returned.
o 0 is returned.

STANDARDS CONFORMANCE

612

matherr () in libm.a: SVID2, XPG2, XPG3
matherr () in libM.a: XPG3

-2-

TLOSS PLOSS

ERANGE ERANGE

M,O *

M,O *

HP-UX Release 9.0: August 1992

memory(3C) memory(3C)

NAME
memccpyO, memchrO, memcmpO, memcpyO, memmoveO, memsetO, bcopyO, bcmpO, bzeroO, ffsO -
memory operations

SYNOPSIS
#include <string.h>

void *memccpy(void *sl, const void *s2, int c, size_t n)i

void *memchr(const void *s, int c, size_t n)i

int memcmp(const void *sl, const void *s2, size_t n);

void *memcpy(void *sl, const void *s2, size_t n)i

void *memmove(void *sl, const void *s2, size_t n)i

void *memset(void *s, int c, size_t n)i

#include <strings.h>

int bcmp(const char *sl, const char *s2, int n)i

void bcopy(const char *sl, char *s2, int n)i

void bzero(char *s, int n)i

int ffs(int i)i

Remarks:
bcmp (), bcopy (), bzero (), ffs (), and <strings. h> are provided solely for portability of BSD
applications, and are not recommended for new applications where portability is important. For portable
applications, use memcmp (), memmove (), and memset (), respectively. ffs () has no portable
equivalent.

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of characters bounded by a
count, not terminated by a null character). They do not check for the overflow of any receiving memory
area.

Definitions for all these functions, the type size_t, and the constant NULL are provided in the
<string. h> header file.

memccpy () Copy characters from the object pointed to by 82 into the object pointed to by 81, stopping
after the first occurrence of character c has been copied, or after n characters have been
copied, whichever comes first. If copying takes place between objects that overlap, the
behavior is undefined. memccpy () returns a pointer to the character after the copy of c
in 81, or a NULL pointer if c was not found in the first n characters of 82.

memchr () Locate the first occurrence of c (converted to an unsigned char) in the initial n charac­
ters (each interpreted as unsigned char) of the object pointed to by 8. memchr ()
returns a pointer to the located character, or a NULL pointer if the character does not occur
in the object.

memcmp () Compare the first n characters of the object pointed to by 81 to the first n characters of the
object pointed to by 82. memcmp () returns an integer greater than, equal to, or less than
zero, according to whether the object pointed to by 81 is greater than, equal to, or less than
the object pointed to by 82. The sign of a non-zero return value is determined by the sign of
the difference between the values of the first pair of characters (both interpreted as
unsigned char) that differ in the objects being compared.

memcpy () Copy n characters from the object pointed to by 82 into the object pointed to by 81. If copy­
ing takes place between objects that overlap, the behavior is undefined. memcpy ()
returns the value of 81.

memmove () Copy n characters from the object pointed to by 82 into the object pointed to by 81. Copying
takes place as if the n characters from the object pointed to by 82 are first copied into a tem­
porary array of n characters that does not overlap the objects pointed to by 81 and 82, and
then the n characters from the temporary array are copied into the object pointed to by 81.

HP-UX Release 9.0: August 1992 -1- 613

I

I

memory(3C) memory (3C)

memset()

bcopy()

bcmp()

bzero ()

ffs ()

memmove () returns the value of 81.

Copy the value ofe (converted to an unsigned char) into each of the first n bytes of the
object pointed to by 8. memset () returns the value of 8.

copies n bytes from the area pointed to by 81 to the area pointed to by 82.

Compare the first n bytes of the area nointed to bv 81 with the area nointed to bv 82.
bcopy () returns zero· if they are identi~al; non-zero·otherwise. Both are~s are assu~ed to
be n bytes in length.

Clear n bytes in the area pointed to by 8 by setting them to zero.

Find the first bit set (beginning with the least significant bit) and return the index of that
bit. Bits are numbered starting at one. A return value of 0 indicates that i is zero.

International Code Set Support
These functions support only single-byte character code sets.

WARNING
The functions defined in <string .h> were previously defined in <memory. h>.

SEE ALSO
string(3C)

STANDARDS CONFORMANCE

614

memccpy () : AES, SVID2, XPG2, XPG3, XPG4
memchr () : AES, SVID2, XPG2, XPG3, XPG4, ANSI C

memcmp () : AES, SVID2, XPG2, XPG3, XPG4, ANSI C
memcpy () : AES, SVID2, XPG2, XPG3, XPG4, ANSI C

memmove () : AES, XPG4, ANSI C
memset () : AES, SVID2, XPG2, XPG3, XPG4, ANSI C

-2- HP-UX Release 9.0: August 1992

mkfifo(3C) mkfifo(3C)

NAME
mkfifo() - make a FIFO file

SYNOPSIS
#include <sys/stat.h>

int mkfifo(char *path, mode_t mode);

DESCRIPTION
mkfifo () creates a new FIFO (first-in-first-out) file, at the path name to which path points. The file per­
mission bits of the new file are initialized from the mode argument, as modified by the process's file creation
mask: for each bit set in the process's file mode creation mask, the corresponding bit in the new file's mode
is cleared (see umask(2». Bits in mode other than the file permission bits are ignored.

The FIFO owner ID is set to the process's effective-user-ID. The FIFO group ID is set to the group ID of the
parent directory if the set-groupoID bit is set on that directory. Otherwise the FIFO group ID is set to the
process's effective group ID.

For details of the 110 behavior of pipes see read(2) and write(2).

The following symbolic constants are defined in the <sys/stat .h> header, and should be used to con­
struct the value of the mode argument. The value passed should be the bitwise inclusive OR of the desired
permissions:

S_IRUSR
S_IWUSR
S_IRGRP
S_IWGRP
S_IROTH
S_IWOTH

Read by owner.
Write by owner.
Read by group.
Write by group.
Read by other users.
Write by other users.

RETURN VALUE
mkf i f 0 () returns 0 upon successful completion. Otherwise, it returns -1, no FIFO is created, and e rrno
is set to indicate the error.

ERRORS
mkf i f 0 () fails and the new file is not created if any of the following conditions are encountered:

SEE ALSO

[EACCES] A component of the path prefix denies search permission.

[EEXlST] The named file already exists.

[EFAULT] The path argument points outside the process's allocated address space. The reliable
detection of this error is implementation dependent.

[ELOOP] Too many symbolic links encountered in translating the path name.

[ENAMETOOLONG]

[ENOENT]

[ENOENT]

[ENOSPC]

[ENOTDIR]

[EROFS]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX~O_TRUNC
is in effect.

A component of the path prefix does not exist.

The path argument is null.

Not enough space on the file system.

A component of the path prefix is not a directory.

The directory in which the file is being created is located in a read-only file system.

chmod(2), mknod(2), pipe(2), stat(2), umask(2), cdft:4), fs(4), mknod(5), stat(5), types(5).

AUTHOR
mkfifo () was developed by HP.

STANDARDS CONFORMANCE
mkfifo (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 615

I

I

mktemp(3C) mktemp(3C)

NAME
mktemp(), mkstemp() - make a unique file name

SYNOPSIS
#include <unistd.h>

char *mktemp(char *tempIate};

int mkstemp(char *tempIate);

Remarks:
These functions are provided solely for backward compatibility and importability of applications, and are
not recommended for new applications where portability is important. For portable applications, use
tmpf ile () instead (see tmpfile(3S».

DESCRIPTION
mktemp () replaces the contents ofthe string pointed to by template by a unique file name, and returns the
address of template. The string in template should look like a file name with six trailing Xs; mktemp ()
replaces the XS with a letter and the current process ID. The letter is chosen such that the resulting name
does not duplicate the name of an existing file. If there are fewer than six Xs, the letter is dropped first, fol­
lowed by dropping the high-order digits of the process ID.

mks temp () makes the same replacement to the template, but also returns a file descriptor for the tem­
plate file after opening the file for reading and writing. mkstemp () thus prevents any possible race con­
dition between testing whether the file exists and opening it for use.

RETURN VALUE
mktemp () returns its argument except when it runs out of letters, in which case the result is a pointer to
the empty string

mkstemp () returns an open file descriptor upon successful completion, or -1 if no suitable file could be
created.

SEE ALSO
getpid(2), open(2), tmpfile(3S), tmpnam(3S).

WARNINGS
It is possible to run out of letters.

mktemp () and mkstemp () do not check to determine whether the file name part of template exceeds the
maximum allowable file name length.

STANDARDS CONFORMANCE
mktemp () : SVID2, XPG2

616 -1- HP-UX Release 9.0: August 1992

mktimer(3C) Series 300, 400, and 700 Only mktimer (3C)

NAME
mktimer - allocate a per-process timer

SYNOPSIS
#include <sys/timers.h>

timer_t mktimer(int clock_type, int notify_type, void *itimercbp);

DESCRIPTION
mktimer () is used to allocate a per-process timer using the specified system-wide clock as the timing
base. mkt imer () returns an unique timer ID of type timer _t used to idnetify the timer in timer requests
(see gettimer(3C». dock_type specifies the system-wide clock to be used as the timing base for the new
timer. nofity_type specifies the mechanism by which the process is to be notified when the timer expires.

mktimer () supports one per-process timer with a clock_type of TlMEOFDAY and notify_type of
DELIVERY_SIGNALS.

If notify_type is DELIVERY_SIGNALS, the system causes a SIGALRM signal to be sent to the process
whenever the timer expires.

For clock_type TIMEOFDAY, the machine-dependent clock resolution and maximum value are 11HZ and
MAX_ALARM seconds respectively. These constants are defined in <sys/param.h>.

RETURN VALUE
Upon successful completion, mktimer () returns a timer_t which can be passed to the pecprocess
timer calls. If unsuccessful, mktimer () returns a value of (timer_t)-l and sets errno to indicate
the error.

ERRORS
mktimer () fails if any of the foll~wing conditions are encountered:

[EAGAIN] The calling process has already allocated all of the timers it is allowed.

[EINVAL] clock_type is not defined, or does not allow the specified notification mechanism.

SEE ALSO
getclock(3C), gettimer(3C), reltimer(3C), rmtimer(3C), setclock(3C), <sysltimers.h>, <sys/param.h>.

STANDARDS CONFORMANCE
mktimer (): AES

HP-UX Release 9.0: August 1992 -1- 617

•

I

monitor(3C) monitor(3C)

NAME
monitor() - prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor(

) ;

"P" ~ A (*, ,,~.'""',.. \ I \
".., ""'" \ .L.V'"b''-''J \11

void (*highpc) (),
WORD *buffer,
int bufsize,
int nfunc

DESCRIPTION
An executable program created by cc -p automatically includes calls for monitor () with default
parameters; monitor () need not be called explicitly except to gain fine control over profiling.

moni tor () is an interface to profil(2). low pc and highpc are the addresses of two functions; buffer is the
address of a (user-supplied) array of bufsize WORDs (defined in the <Inon.h> header file). monitor ()
arranges to record in the buffer a histogram of periodically sampled values of the program counter, and of
counts of calls of certain functions. The lowest address sampled is that of lowpc and the highest is just
below highpc. lowpc must not equal 0 for this use of monitor. Not more than nfunc call counts can be kept;
only calls of functions compiled with the profiling option -p of cc(l) are recorded. (The C Library and Math
Library supplied when cc -p is used also have call counts recorded.)

For results to be significant, especially where there are small, heavily used routines, it is suggested that the
buffer be no more than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor «int (*)(»2, «int(*)(»& etext, buf, bufsize, nfunc);

etext lies just above all the program text (see end(3C».

To stop execution monitoring and write the results on file mon. ou t, use

moni tor « int (*) ()) 0, (int (*) ()) 0, 0, 0, 0);

prof(l) can then be used to examine the results.

FILES
/lib/libp/libc.a
/lib/libp/libm.a
mon.out

SEE ALSO
cc(I), prof(I), profil(2), end(3C).

STANDARDS CONFORMANCE
moni tor () : SVID2, XPG2

618 -1- HP-UX Release 9.0: August 1992

mount(3N)

NAME
mountO - keep track ofremotely mounted filesystems

SYNOPSIS
#lnclude <rpcsvc/mount.h>

DESCRIPTION
program number:

MOUNTPROG

Following are the xdr routines provided:
xdr_exporthody(xdrs, ex)

XDR*xdrs;

procs:

struct exports *exj
xdr_exports(xdrs, eX)j

XDR*xdrs;
struct exports **exj

xdr_fhandle(xdrs, fh);
XDR*xdrsj
fhandle_t *fpj

xdr_fhstatus(xdrs, fhs)j
XDR*xdrsj
struct fhstatus *fhs;

xdr-W'oups(xdrs, gr)j
XDR*xdrs;
struct groups *grj

xdr_mountbody(xdrs, ml)
XDR*xdrs;
struct mountlist *mlj

xdr_mountlist(xdrs, ml);
XDR*xdrs;
struct mountlist **mlj

xdr_path(xdrs, path)j
XDR*xdrsj
char **path;

MOUNTPROC_MNT
argument ofxdr_path, returns fhstatus.
Requires unix authentication.

MOUNTPROC_DUMP
no args, returns struct mountlist

MOUNTPROC_UMNT
argument ofxdr_path, no results.
requires unix authentication.

MOUNTPROC_UMNTALL
no arguments, no results.
requires unix authentication.
umounts all remote mounts of sender.

MOUNTPROC_EXPORT
MOUNTPROC_EXPORTALL

no args, returns struct exports

versions:
MOUNTVERS_ORIG

structures:
struct mountlist { 1* what is mounted *1

char *ml_namej
char *ml_path;
struct mountlist *ml_nxt;

1;

HP-UX Release 9.0: August 1992 -1-

mount(3N)

I

619

I

mount (3N)

AUTHOR

struct fhstatus {

};
1*

int fhs_status;
fhandle_t fhs_fh;

* List of exported directories
'" An export entry with ex-,groups
* NULL indicates an entry which is exported to the
* world.
*1
struct exports {

};

dev_t ex_dev; 1* dev of directory *1
char *ex_name; i* name of directory *i
struct groups *ex-,groups; 1* groups allowed to *1

1* mount this entry *1
struct exports *ex_next;

struct groups {
char *g_name;
struct grou ps *g_next;

};

mount () was developed by Sun Micro~stems, Inc.

SEE ALSO
mount(lM), mountd(lM), showmount(lM).

620 -2-

mount (3N)

HP-UX Release 9.0: August 1992

multibyte(3C) multibyte (3C)

NAME
mblenO, mbtowcO, mbstowcsO, wctombO, wcstombsO - multibyte characters and strings conversions

SYNOPSIS
#include <stdlih.h>

int mblen(const char *s, size_t n);

int mbtowc(wchar_t *pwc, const char *s, size_t n);

int wctomb(char *s, wchar_t wchar);

size_t mbstowcs(wchar_t *pwcs, conet char *s, size_t n}i

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

DESCRIPTION
A multibyte character is composed of one or more bytes that represent a "whole" character in a character
encoding. A wide character (type ofwchar_t) is composed of a fixed number of bytes whose code value can
represent any character in a character encoding.

mblen () Determine the number of bytes in the multibyte character pointed to by s. Equivalent to:

mbtowc«wchar_t *)0, s, n)i

If s is a null pointer, mblen returns a nonzero or zero value, depending on whether the multi­
byte character encodings do or do not have state-dependent encodings, respectively. Since no
character encodings currently supported by HP-UX are state-dependent, zero is always
returned in this case. However, for maximum portability to other systems, application pro­
grams should not depend on this.

If s is not a null pointer, mblen returns the number of bytes in the multibyte character if the
next n or fewer bytes form a valid multibyte character, or return -1 if they do not form a valid
multibyte character. If s points to the null character, mblen returns O.

mbtowc () Determine the number of bytes in the multibyte character pointed to by s, determine the code
for the value of type wchar_t corresponding to that multibyte character, then store the code
in the object pointed to by pwc. The value of the code corresponding to the null character is
zero. At most n characters are examined, starting at the character pointed to by s.

If s is a null pointer, mbtowc () returns a non-zero or zero value, depending on whether the
multibyte character encodings do or do not have state-dependent encodings, respectively.
Since no character encodings currently supported by HP-UX are state-dependent, zero is always
returned in this case. However, for maximum portability to other systems, application pro­
grams should not depend on this.

If s is not a null pointer, mbtowc () returns the number of bytes in the converted multibyte
character if the next n or fewer bytes form a valid multibyte character, or -1 if they do not form
a valid multibyte character. If s points to the null character, mbtowc () returns O. The
value returned is never greater than n or the value of the MB_CUR_MAX macro.

wctomb () Determine the number of bytes needed to represent the multibyte character corresponding to
the code whose value is wchar and store the multibyte character representation in the array
object pointed to by s. At most MB_CUR_MAX characters are stored.

If s is a null pointer, wctomb () returns a nonzero or zero value, depending on whether the
multibyte character encodings do or do not have state-dependent encodings, respectively.
Since no character encodings currently supported by HP-UX are state-dependent, zero is always
returned in this case. However, for maximum portability to other systems, application pro­
grams should not depend on this.

If s is not a null pointer, wctomb () returns the number of bytes in the multibyte character
corresponding to the value of wchar, or -1 if the value of wchar does not correspond to a valid
multibyte character. The value returned is never greater than the value of the MB_CUR_MAX
macro.

mbstowcs ()
Convert a sequence of multibyte characters from the array pointed to by s into a sequence of

HP-UX Release 9.0: August 1992 -1- 621

I

I

multibyte(3C) multibyte (3C)

corresponding codes and store these codes into the array pointed to by pwcs, stopping after
either n codes or a code with value zero (a converted null character) is stored. Each multibyte
character is converted as if by a call to mbtowc (). No more than n elements are modified in
the array pointed to by pwcs.

If an invalid multibyte character is encountered, mbstowcs () returns (size_t)-l. Other­
wise, mbstowcs () returns the number of array elements modified, not including a terminat­
ing zero code, if any. The array is not null- or zero-terminated if the value returned is n. If
pwcs is a null pointer, mbstowcs () returns the number of elements required for the wide­
character-code array.

wcstombs ()
Convert a sequence of codes corresponding to multibyte characters from the array pointed to
by ..owes into a sequence of multibyte characters and store them into the aITay pointed to by s,
stopping if a multibyte character exceeds the limit of n total bytes or if a null character is
stored. Each code is converted as if by a call to wctomb (). No more than n bytes are
modified in the array pointed to by s.

If a code is encountered that does not correspond to a valid· multibyte character,
wcstombs () returns (size_t)-l. Otherwise, wcstombs () returns the number of bytes
modified, not including a terminating null character, if any. The array is not null- or zero­
terminated if the value returned is n. If s is a null pointer, wcstombs () returns the
number of bytes required for the character array.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the behavior of the multibyte character and string functions.

ERRORS
mblen(), mbstowcs (), mbtowc (), wcstombs () and wctomb () may fail and errno is set if the
following condition is encountered:

[EILSEQ] An invalid multibyte sequence or wide character code was found.

WARNINGS
With the exception of ASCII characters, the code values of wide characters (type ofwchar_t) are specific to
the effective locale specified by the LC_CTYPE environment variable. These values may not be compatible
with values obtained by specifying other locales that are supported now, or which may be supported in the
future. It is recommended that wide character constants and wide string literals (see the C Reference
Manual) not be used, and that wide character code values not be stored in files or devices because future
standards may dictate changes in the code value assignments of the wide characters. However, wide char­
acter constants and wide string literals corresponding to the characters of the ASCII code set can be safely
used since their values are guaranteed to be the same as their ASCII code set values.

AUTHOR
The multibyte functions in this entry were developed by HP.

SEE ALSO
setlocale(3C), nLtools_16(3C), wctype(3X).

STANDARDS CONFORMANCE
mblen(): AES, XPG4, ANSI C
mbstowcs (): AES, XPG4, ANSI C

622

mbtowc () : AES, XPG4, ANSI C
wcstombs():AES,XPG4,ANSIC

wctomb () : AES, XPG4, ANSI C

-2- HP-UX Release 9.0: August 1992

ndbm(3X) ndbm(3X)

NAME
dbm_open, dbm_close, dbm3etch, dbm_store, dbm_delete, dbm_firstkey, dbm_nextkey, dbm_error,
dbm_clearerr - database subroutines

SYNOPSIS
#include <ndbm.h>

DBM *dbm_open(const char *file, int flags, int mode);

void dbm_close(DBM *db);

dat~~ dbm_fetch(DBM *db~ datum key);

int dbm_store(DBM *db, datum key, datum content, int flags);

int dbm_delete(DBM *db, datum key);

datum dbm_firstkey(DBM *db);

datum dbm_nextkey(DBM *db);

int dbm_error(DBM *db);

.int dbm_clearerr(DBM *db);

DESCRIPTION
These functions maintain key/content pairs in a database. They handle very large (a billion blocks (block =
1024 bytes)) databases and can access a keyed item in one or two file system accesses. This package
replaces the earlier dbm(3X) library, which managed only a single database. The functions can be accessed
by giving the -lndbm option to ld(1) or cc(1).

key and content parameters are described by the datum type. A datum specifies a string of dsize bytes
pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The database is
stored in two files. One file is a directory containing a bit map of keys and has • dir as its suffix. The
second file contains all data and has • pag as its suffix.

Before a database can be accessed, it must be opened by dbm_open. This will open andlor create the files
file. di r and file. pag depending on the {lags parameter (see open(2)).

Once open, the data stored under a key is accessed by dbm_f et ch and data is placed under a key by
dbm_store. The {lags field can be either DBM_INSERT or DBM_REPLACE. DBM_INSERT can only
insert new entries into the database, and cannot change an existing entry having the same key.
DBM_REPLACE replaces an existing entry if it has the same key. A key (and its associated contents) is
deleted by dbm_delete. A linear pass through all keys in a database can be made in (apparently) ran­
dom order by use of dbm_f irs tkey and dbm_next key. dbm_f ir s t key returns the first key in the
database. dbm_nextkey returns the next key in the database, The following code can be used to
traverse the database:

for (key = dbm_firstkey(db); key.dptr 1= NULL; key = dbm_nextkey(db»

dbm_error returns non-zero when an error has occurred reading or writing the database.
dbm_clearerr resets the error condition on the named database.

DIAGNOSTICS
All functions that return an int indicate errors with negative values and success with zero. Functions
that return a datum indicate errors with a null dptr. If dbm_store is called with a {lags value of
DBM_INSERT and finds an existing entry with the same key, a value of 1 is returned.

WARNINGS
The ndbm functions provided in this library should not be confused in any way with those of a general­
purpose database management system such as ALLBASEIHP-UX SQL. These functions do not provide for
multiple search keys per entry, they do not protect against multi-user access (in other words they do not
lock records or files), and they do not provide the many other useful database functions that are found in
more robust database management systems. Creating and updating databases by use of these functions is
relatively slow because of data copies that occur upon hash collisions. These functions are useful for appli­
cations requiring fast lookup of relatively static information that is to be indexed by a single key.

The • pag file will contain holes so that its apparent size is about four times its actual content. Some older
UNIX systems create real file blocks for these holes when touched. These files cannot be copied by normal

HP-UX Release 9.0: August 1992 -1- 623

I

I

ndbm(3X) ndbm(3X)

means (such as cp(1), cat(1), tar(1), or ar(1)) without expansion.

dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 1024 bytes).
Moreover, all key/content pairs that hash together must fit on a single block. dbm_store returns an
error in the event that a disk block fills with inseparable data.

dbI1Ldelete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by dbm_firstkeyand dbm_nextkey depends on a hashing function, not
on anything interesting.

A dbm_store or dbm_delete during a pass through the keys by dbm_firstkey and
dbm_nextkey may yield unexpected results.

AUTHOR
ndbm (3X) was developed by the University of California, Berkeley.

SEE ALSO
dbm{3X).

624 -2- HP-UX Release 9.0: August 1992

NAME
net_atonO, net_ntoaO - network station address string conversion routines

SYNOPSIS
#include <sys/netio.h>

char *net_aton(char *dstr, const char *sstr, int size);

char *net_ntoa(char *dstr, const char *sstr, int size);

DESCRIPTION
net_at on () and net_ntoa () translate station addresses between hexadecimal, octal or decimal, and
binary formats:

net_at on () converts a hexadecimal, octal or decimal address to a binary address;

net_ntoa () converts a binary address to an ASCII hexadecimal address.

Both routines are provided in the standard C library and are loaded automatically during compilation.

net_aton Parameters
The following parameters are used by net_a ton () :

dstr Pointer to the binary address returned by the function.

sstr Pointer to a null-terminated ASCII form of a station address (Ethernet or IEEE 802.3). This
address can be an octal, decimal, or hexadecimal number as used in the C language (in
other words, a leading Ox or OX implies hexadecimal; a leading 0 implies octal; otherwise,
the number is interpreted as decimal).

size Length of the binary address to be returned in dstr. The length is 6 for EthernetiIEEE 802.3
addresses.

net_ntoa Parameters
net_ntoa () converts a 48-bit binary station address to its ASCII hexadecimal equivalent. The following
parameters are used by net_ntoa ():

dstr Pointer to the ASCII hexadecimal address returned by the function. dstr is null-terminated
and padded with leading zeroes if necessary. dstr must be at least (2 x size + 3) bytes long
to accommodate the size of the converted address.

sstr Pointer to a station address in its binary form.

size Length of sstr .

RETURN VALUE
net_at on () and net_ntoa () return NULL if any error occurs.

EXAMPLES
#include <netio.h>
#define destination_addr IIOxOODD0002ADOO II

struct fis arg;
char str[16];

(void) net_aton{arg.value.s, destination_addr, 6);
/* arg.value.s = 1I<48-bit binary value>1I */

(void) net_ntoa(str, arg.value.s, 6);
/* str = IIOxOODD0002ADOO II */

AUTHOR
net_at on () was developed by HP.

SEE ALSO
lan(7).

HP-UX Release 9.0: August 1992 -1- 625

I

I

NAME
nLtoupper(), nl_tolower() - translate characters for use with NLS

SYNOPSIS
#include <nl_ctype.h>

int nl_toupper(int c, int langid);

lnt nl_tolowerCint c, int langid);

DESCRIPTION
nl_toupper () and nl_tolower () are extensions oftheir counterparts in the conv(3C) manual entry.
They function in the same way, but have a langid parameter (see lang(5» whose value represents a sup­
ported language. If langid is not valid, or if the NLS environment corresponding to langid is not available,
n-computer, the default NLS environment associated with lang-ini t (), is used (see nl_init(3C)).

WARNINGS
These routines are provided for historical reasons only. Use of the alternate functions listed by conv(3C)
which provide for international support via setlocale(3C) is recommended.

nl_toupper () and nl_tolower () effectively call langinit () to load the NLS environment
according to the language specified by langid.

AUTHOR
nl_conv () was developed by the HP.

SEE ALSO
conv(3C), nl_init(3C), hpnls(5), lang(5).

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the translations to be done.

International Code Set Support
Single-byte character code sets are supported.

626 -1- HP-UX Release 9.0: August 1992

NAME
nl_isalpha(), nLisu pper(), nLislower(), nl_isdigit(), nLisxdigit(), nljsalnum(), nLisspace(), nLispunct(),
nl_isprint(), nl_isgraph(), nl_iscntrlO - classify characters for use with NLS

SYNOPSIS
#1nc1ude <n1_ctype.h>

1nt n1_1sa1pha(1nt c, 1nt 1ang1d);

DESCRIPTION
These routines classify character-coded integer values by table lookup. langid corresponds to a particular
NLS environment (see lang (5». Each is a predicate returning nonzero for true, zero for false. All are
defined for the range -1 to 255. If langid is not defined, or if the NLS environment corresponding to langid
is not available, n-computer, the default NLS environment associated with 1ang1n1t (), is used (see
nCinit(3C».

nl_1salpha ()

n1_1 supper ()

n1_1s1ower()

n1_1sd1g1t()

nl_1sxd1g1t()

n1_1 sa1num ()

n1_1sspace()

n1_1spr1nt()

n1_1sgraph ()

DIAGNOSTICS

c is a letter.

c is an uppercase letter.

c is a lowercase letter.

c is a decimal digit (in ASCII: characters [0-9]).

c is a hexadecimal digit (in ASCII: characters [0-9], [A-F] or [a-f]).

e is an alphanumeric (letters or digits).

e is a character that creates "white space" in displayed text (in ASCII: space, tab,
carriage return, new-line, vertical tab, and form-feed).

c is a punctuation character (in ASCII: any printing character except the space
character (040), digits, letters.)

e is a printing character.

c is a visible character (in ASCII: printing characters, excluding the space char­
acter (040».

e is a control character (in ASCII: character codes less than 040 and the delete
character (0177».

If the argument to any of these is not in the domain ofthe function, the result is undefined.

WARNINGS
These macros are provided for historical reasons only. Use of the macros in ctype(3C), which now provide
for international support via setlocale(3C), is recommended.

Macros described in this manual entry call 1ang1n1t () to load the NLS environment according to the
language specified by langid.

AUTHOR
n1_ctype () was developed by the HP.

SEE ALSO
ctype(3C), nl_init(3C), hpnls(5), lang(5).

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the classification of character type.

International Code Set Support
Single-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -1- 627

I

I

NAME
nLinitO, langinitO - initialize the NLS environment of a program

SYNOPSIS
#include <langinfo.h>

int nl_init(const char *langname);

int langinit(const char *langname);

DESCRIPTION
nl_ini t () Initializes the NLS (Native Language Support) environment of a program to the

language specified by langname. If langname is null or points to an empty string, the
default-mode language, n-computer (see lang (5»), is initialized.

nl_init () affects the behavior of the macros and routines defined in conv(3C),
ctime(3C), ctype(3C), ecvt(3C), langinfo(3C), multibyte(3C), nClanginfo(3C),
nCstring(3C), nCtools_16(3C), print{(3S), printmsg(3C), scanf(3S), strftime(3C),
string(3C), strtod(3C), and vprintf(3S).

Typically, nl_ini t () is used to bind program operation to the end-user's specified
language requirements. For example,

nl_ini t (getenv ("LANG II
)) ;

Prior to successfully calling nl_ini t () , functions supporting NLS operate as though the default-mode
language n-computer had been initialized.

langinit ()
Performs the same initialization of the environment control areas as does nl_ini t (). However,
nl_ini t () and langini t () differ in the action taken when the requested language environment
cannot be initialized (see ERRORS below).

RETURN VALUE
nl_ini t () and lang ini t () return 0 if the environment is successfully initialized to the requested
language. Otherwise, they return -1.

ERRORS
nl_ini t () fails if the string specified by langname does not identify a valid language name (see
lang(3C), or the language is not available on the system.

If nl_ini t () fails but had previously succeeded, operation continues with the environment initialized by
the last successful call. If nl_ini t () fails and has never been called successfully, the environment
reverts to the default-mode language n-computer.

If langinit () fails, the environment reverts to the default-mode language n-computer.

WARNINGS
nl_ini t () and langini t () are provided for historical reasons only. Use set locale () instead
(see setlocale(3C»). The default processing language for set locale () is "C"; the default processing
language for nl_init () is n-computer. This is maintained for backward portability.

langinit () is implicitly called by the macros and routines which use a langid parameter (see ctime(3C),
langinfo(3C), nCconv(3C), nCctype(3C), nCstring(3C), and strtod(3C)). Using any langid parameter rou­
tine or macro initializes the environment of the associated language name, thus affecting the behavior of
other routines that interact with the NLS environment. For maximum portability and performance, use of
macros and routines without the langid parameter is recommended.

AUTHOR
nl_ini t () was developed by HP.

SEE ALSO
conv(3C), ctime(3C), ctype(3C), ecvt(3C), langinfo(3C), multibyte(3C), nLconv(3C), nl_ctype(3C),
nl_Ianginfo(3C), nl_string(3C), nl_tools_16(3C), printf(3S), printmsg(3C), scanf(3S), string(3C), strtod(3C),
vprintf(3S), environ(5), hpnls(5), lang(5), nLlanginfo(5).

STANDARDS CONFORMANCE
nl init (): XPG2

- 0

628 -1- HP-UX Release 9.0: August 1992

nl_Ianginfo(3C) nl_Ianginfo (3C)

NAME
nl_Ianginfo() - language information

SYNOPSIS
#include <langinfo.h>

char *nl_langinfo(nl_item item);

DESCRIPTION
nl_langinfo () returns a pointer to a null-terminated string containing information relevant to a par­
ticular language or cultural area defined in the program's locale (see setlocale(3C)). The manifest constant
names and values of item are defined in <lang info. h>. For example:

nl_langinfo(ABDAY_l }

returns a pointer to the string "Dom" if the language identified by the current locale is Portuguese, and
"Sun" if the identified language is Finnish.

If an invalid item is specified, a pointer to an empty string is returned. An empty string can also be
returned for a valid item if that item is not applicable to the language or customs of the current locale. For
example, a thousands separator is not used when writing numbers according to the customs associated with
the Arabic language.

EXTERNAL INFLUENCES
Locale

The string returned for a particular item is determined by the locale category specified for that item in lan­
ginfo(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

WARNINGS
nl_langinfo () returns a pointer to a static area that is overwritten on each call.

AUTHOR
nl_langinfo () was developed by HP.

SEE ALSO
localeconv(3C), setlocale(3C), hpnls(5), langinfo(5).

STANDARDS CONFORMANCE
nClanginfo: XPG2, XPG3

HP-UX Release 9.0: August 1992 -1- 629

I

I

nl_string(3C) nl_string(3C)

NAME
strcmp80, strncmp80, strcmpl60, strncmpl6() - non-ASCII string collation

SYNOPSIS
#inc1ude <n1 _types.h>

int strcmp8 (
const unsigned char *_1

D.J..,

const unsigned char *s2,
int 1angid,
int *status

) ;

int strncmp8(
const unsigned char *sl,
const unsigned char *s2,
size_t n,
int langid,
int *status

) ;

int strcmp16(
const unsigned char *sl,
const unsigned char *s2,
const unsigned char *fi1e_name,
int *status

) ;

int strncmp16(
const unsigned char *sl,
const unsigned char *s2,
size_t n,
const unsigned char *file_name,
int *status

) ;

DESCRIPTION
strcmp8 () Compares string sl and s2 according to the collating sequence of the NLS environment

specified by langid (see lang(5». If langid is invalid, or if the NLS environment
corresponding to langid is unavailable, n-computer, the default NLS environment
associated with langinit () is used (see nCinit(3C». An integer greater than,
equal to, or less than 0 is returned, depending on whether sl is, respectively, greater
than, equal to, or less than s2. Trailing blanks in strings sl and s2 are ignored.

strncmp8 ()

strcmp16 ()

Same as strcmp8 (), but looks at a maximum ofn characters.

Compares strings sl and s2 and returns an integer greater than, equal to, or less than
o depending on whether sl is, respectively, greater than, equal to, or less than s2.
Strings sl and s2 can contain 16-bit characters mixed with 7 -bit and 8-bit characters
(see hpnls(5». Strings sl and s2 are compared, with 8-bit characters collating before
16-bit characters.

strncmp16 () Same as strcmp16 (), but looks at a maximum ofn characters.

nl_init () must be called before the first call to strcmp16 () or strncmp16 () (see nCinit(3C».

ERRORS

630

If an error condition is encountered, the integer pointed to by status is set to one of the non-zero values
(listed below) defined in <langinfo.h>. For ENOCFFILE and ENOLFILE, errno indicates that a file
system call failed.

[ENOCFFILE] Attempt to access file /usr /lib/nls/config has failed.

[ENOCONV] The entry for the language sought is not in the:file /usr/lib/nls/config.

-1- HP-UX Release 9.0: August 1992

nl_string (3C) nl_string (3C)

[ENOLFILE] Access to the NLS environment corresponding to langid or file_name has failed.

WARNINGS
These routines are provided for historical reasons only. Use strcoll. () instead (see string(3C)). How­
ever, note that all characters are significant to strcoll (), whereas strcmp8 () and strncmp8 ()
ignore trailing blanks.

strcmp16 () and strncmp16 () do not support a collation sequence table. (A null string must be
passed as file_name to maintain the correct argument count.)

strcmp8 () and strncmp8 () call langini t () (see nCinit(3C)) to load the NLS environment accord­
ing to the language specified by langid.

AUTHOR
nl_string () was developed by HP.

SEE ALSO
nCinit(3C), string(3C), hpnls(5), lang(5).

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of the bytes within the string arguments to
strcmp8 (), strncmp8 (), strcmp16 () , and strncmp16 () as single- and/or multi-byte charac­
ters.

The LC_COLLATE category determines the collation ordering used by the strcmp8 () and
strncmp8 (). See hpnls(5) for a description of supported collation features. See nlsinfo(l) to view the col­
lation used for a particular locale.

International Code Set Support
Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -2- 631

I

I

NAME
firstof2(), secof20, byte_statusO, c_colwidthO, FIRSTof20, SECof20, BYTE_STATUSO, C_COLWIDTHO,
CHARATO, ADV ANCEO, CHARADVO, WCHARO, WCHARADVO - tools to process 16-bit characters

SYNOPSIS
#include <nl_ctype.h>

lnt firstof2(int c);

int secof2(int c);

int byte_status(int c, int laststatus);

int c_colwidth(int c);

int FIRSTof2(int C)i

int SECof2(int c);

int BYTE_STATUS(int c, int laststatus);

int C_COLWIDTH(int c);

int CHARAT(const char *p);

int ADVANCE(const char *p);

int CHARADV(const char *p);

int WCHAR(wchar_t wc, char *p);

int WCHARADV(wchar_t wc, char *p);

void PCHAR(int c, char *p);

void PCHARADV(int c, char *p);

Remarks
All interfaces listed above whose names begin with a capital letter are implemented as macros; the others
are functions.

DESCRIPTION

632

The following macros and routines perform their operations based upon the loaded NLS environment (see
setlocale(3C».

FIRSTof2 ()

SECof2 ()

Takes a byte and returns a non -zero value if it can be the first byte of a two-byte char­
acter according to the NLS environment loaded, and zero if it cannot.

Takes a byte and returns a non-zero value if it can be the second byte of a two-byte
character according to the loaded NLS environment, and zero if it cannot.

BYTE_STATUS () Returns one of the following values based on the value ofthe current byte in c and the
status of the previous byte interpreted in laststatus as returned by the last call to
BYTE_STATUS (). These are the status values as defined in <nl_ctype .11>:

ONEBYTE Single-byte character
SECOF2 Second byte of two-byte character
FIRSTOF2 First byte of two-byte character

To validate a two-byte character, both the first and second bytes must be valid. If the value of laststatus
is FIRSTOF2 but SECof 2 (c) returns false, BYTE_STATUS (c, laststatus) returns ONEBYTE.

C_COLWIDTH ()
Takes a byte which is assumed to be either a one-byte character or the first byte of a two-byte character,
and returns the number of columns the character would occupy on a terminal display.

For the macros FIRSTof2 (), SECOof2 (), BYTE_STATUS () , and C_COLWIDTH () results are
undefined for values of c less than -1 (EOF) or greater than 255.

CHARAT()
Takes as an argument a pointer p, which is assumed to be pointing at either a one-byte character or the
first byte of a two-byte character. In either case, CHARAT () returns the wchar_t value that

-1- HP-UX Release 9.0: August 1992

corresponds to the character pointed to by p.

ADVANCE()
Advances its pointer argument by the byte width of the character it is pointing at (either one or two
bytes).

CHARADV()
Combines the functions of CHARAT () and ADVANCE () in a single macro. It takes as an argument a
pointer p, which is assumed to be pointing at either a one-byte character or the first byte of a two-byte
character. In either case CHARADV () returns the wchar_t value that corresponds to the character
pointed to by p, and advances p beyond the last byte of the character.

WCHAR()
Converts the wchar_t value we into the corresponding one or two byte character, and writes it at the
location specified by p. WCHAR () returns the wchar_t value we.

WCHARADV()
Combines the functions of WCHAR () and ADVANCE () in a single macro. It converts the wchar_t
value we into the corresponding one or two byte character, and writes it at the location specified by p,
then advances p past the last byte. WCHARADV () returns the wchar_ t value we.

firstof2 ()
secof2 ()
bjUQBtiUlI(mi;)ons of the corresponding macros. These functions can be called from languages other
ct...laml<llzidth ()

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of single and/or multi-byte characters.

WARNINGS
For maximum portability, use the routines documented in the multibyte(3C) manual entry for multi-byte
character processing.

Other macros listed in this manual entry cannot be used as the first argument to WCHAR () or
WCHARADV (). For example,

*t++ = *f++

cannot be replaced by

WCHARADV (CHARADV (f) , t) .

Instead, use a method such as

int c; ... c = CHARADV (f), WCHARADV (c, t).

WCHAR () and WCHARADV () may produce a "null effect" warning from lintel) if not used as part of
another expression or as part of a statement. This does not affect the functionality of either macro.

Note that WCHAR () and WCHARADV () are not "replace_char" macros. They do not prevent the second
byte of a two-byte character from being left dangling if WCHAR () or WCHARADV () overwrite the first byte
of the two-byte character with a single-byte character.

CHARAT () , ADVANCE (), and CHARADV () do not examine the byte following the location pointed to by
the argument to verify its validity as a SECof2 byte.

AUTHOR
nl_tools_16 () was developed by HP.

SEE ALSO
setlocale(3C), multibyte(3C), wconv(3X), wctype(3X), hpnls(5).

HP-UX Release 9.0: August 1992 -2- 633

I

I

nlappend(3X)

NAME
nlappendO - append the appropriate language identification to a valid MPE file name

SYNOPSIS
#include <portnls.h>

void nlappend(

) ;

char *fl1ename,
short int langid,
unsigned short int err[2]

DESCRIPTION

nlappend (3X)

nlappend () replaces the first three blan..l{s found in filename "-/ith the language number. Its purpose is
to identify the language of a file in an operating system-independent manner.

Arguments to nlappend () are used as follows:

filename

langid

err

A string of up to eight ASCII characters terminated by three blanks.

A short integer specifying the language !D.

The first element contains the error number. The second element is always zero. If
the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
4 Filename is not terminated by 3 blanks.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use of this routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlappend () was developed by HP.

SEE ALSO
portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and mult~-byte character code sets are supported.

634 -1- HP-UX Release 9.0: August 1992

nlcolla te (3X) nlcollate (3X)

NAME
nlcollate() - compare two character strings according to the MPE language-dependent collating sequence

SYNOPSIS
#include <portnls.h>

void nlcollate(

) ;

const char *string1,
const char *string2,
short int length,
short *rssult,
short int langid,
unsigned short int err[2],
const char *collseq

DESCRIPTION
nlcollate collates two character strings according to the collating sequence of the specified language. This
routine's purpose is to determine a lexical ordering. It is not intended to be used for searching or matching.

If the collseq parameter points to the null address, and langid is specified as (or defaults to) a language in
which binary collation is appropriate, the binary collation is used to compare the two indicated strings.
Otherwise, the collseq array is used to determine the string-compare operation (note that this may be a
binary collation).

Arguments to nlcollate () are as follows:

One of the character strings to be collated.

The second character string to be collated.

The length of the string segments to be collated.

string1

string2

length

result The result of the character collation is stored in the short integer variable to which
result points.

o If string 1 collates equal to string2.
-1 If string 1 collates before string2.

1 If string 1 collates after string2 .

langid
The language ID indicating the collating sequence to be used for the collation.

err
The first element of this array contains the error number. The second element is always zero. If the call
is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid collating table entry.
4 Invalid length parameter.

collseq
An array containing the collating sequence to be used, as returned from a call to nlinfo(3X)'s item­
number 11.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlcollate was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

HP-UX Release 9.0: August 1992 -1- 635

I

I

nlcollate(3X)

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

636 -2-

nlcollate (3X)

HP-UX Release 9.0: August 1992

nlconvclock(3X)

NAME
nlconvclockO - check and convert time string to MPE internal format

SYNOPSIS
#include <portnls.h>

unsigned int nlconvclock(
const char *instr,

) ;

short int leninstr,
short int langid,
unsigned short int err[2j

DESCRIPTION

nlconvclock (3X)

nlconvclock () converts instr to a general time format as returned by nlinfo(3X) itemnumber 3. This
routine is the inverse of nlfmtclock(3X). Note that the seconds and tenths of seconds are always set to zero.

The arguments to nlconvclock () are used as follows:

instr

leninstr

langid

A character buffer containing the time to be converted.

An unsigned short specifying the length of the buffer.

A short containing the language ID.

err The first element of this array contains the error number. The second element is
always zero. If the call is successful, both elements contain zero.

RETURN VALUE

Error # Meaning

2
3
4

Specified language is not configured.
Invalid time format.
Invalid length.

nlconvclock () returns the time in the format:

Bits 0 7 8 15

Hour of Day Minute of Hour

Bits 16 23 24 31

Seconds Tenths of Seconds

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlconvclock () was developed by HP.

SEE ALSO
clock(3X), nlfmtclock(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -1- 637

I

I

nlconvcustdate (aX)

NAME
nlconvcustdate() - convert date string to MPE packed date format

SYNOPSIS
#include <portnls.h>

unsigned short nlconvcustdate(
const char *instr,
short int leninstr,
short int langid,
unsigned short int err[2]

) ;

DESCRIPTION

nlconvcustdate (ax)

nlconvcustda () converts instr to a packed date format. This routine is the inverse of
nlfmtcustdate(3X).

Arguments to nlconvcustda () are as follows:

instr

leninstr

langid

err

A character buffer containing the date to be converted.

A positive integer specifying the length of the string (in bytes).

A short containing the language ID number.

The first element of this array contains the error number. The second element is
always zero. If the call is successful, both elements contain zero.

Error # Meaning

2
3
4

Specified language is not configured.
Invalid date format.
Invalid string length.

RETURN VALUE
The routine returns the date as an unsigned integer in the format:

Bits 0 6 7 15

Year of Century Day of Year

WARNINGS
This routine is provided for compatibility with MPE, another HP operating system. See portnls(5) for more
information on the use of this routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlconvcustda () was developed by HP.

SEE ALSO
calendar(3X), nlfmtcustdate(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

638 -1- HP-UX Release 9.0: August 1992

nlconvnum(3X) nlconvnum(3X)

NAME
nlconvnumO - convert MPE native-language formatted number to ASCII number

SYNOPSIS
#include <portnls.h>

void nlconvnum(

) ;

short int langid,
const char *instr,
short int leninstr,
char *outstr,
short int *plenoutstr,
unsigned short int err[2],
const char *numspec,
short int fmtmask,
short int *pdecimals

DESCRIPTION
nlconvnum() converts a native-language formatted number to an ASCII number, with an n-computer
decimal separator (.) and thousands separator (,), to use for further conversion to INTEGER, REAL, etc.

This routine converts the decimal separator and the thousands separators to the n-computer equivalent, or
strips them, according to the value of fmtmask. If fmtmask and M_NUMBERSONLY is not zero, instr is
validated as a number. If it is null, no validation takes place.

For languages using an alternate set of digits (currently only arabic, which uses HINDI digits),
nlconvnum() also converts these digits to ASCII digits so they can be recognized and used as numeric
characters.

Arguments to nlconvnum() are as follows:

langid A language ID number.

instr

leninstr

outstr

plenoutstr

err

numspec

A character buffer containing the native language formatted number to convert.
Leading and trailing spaces are ignored.

Length, in bytes, of instr.

Output buffer; an array containing the converted output. The output is left-justified
in the buffer, and plenoutstr contains the actual length of the converted number. out­
string may refer to the same address as instr.

A pointer to the length, in bytes, of outstr. After a successful call to nlconvnum, the
short integer to which plenoutstr points contains the actual length of the converted
number.

The first element of this array contains the error number. The second element is
always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid length specified (leninstr or plenoutstr).
4 Invalid number specified (instr).
7 Truncation has occurred (outstr is left partially formatted).
8 Invalid numspec parameter.
9 Invalid fmtmask parameter.

A character buffer, as returned from nlnumspec, containing information about correct formatting. If
this parameter is not null, langid is ignored and performance is improved (see the description of
nlnumspec).

fmtmask
An unsigned short specifying how to format the number. The default value is zero, which means substi­
tution only, convert thousands separators, convert decimal separators, and that instr can contain any

HP-UX Release 9.0: August 1992 -1- 639

I

I

nlconvnum(3X)

character.

Value

M_STRIPTHOU
M_STRIPDEC
M_NUMBERSONLY

pdecimals

Description

Strip thousands separators.
Strip decimal separators.
instr contains a number.

nlconvnum(3X)

Pointer to a variable in which the number of decimal places in the input number is returned.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS SUppOl't.

AUTHOR
nlconvnum() was developed by HP.

SEE ALSO
nlfmtnum(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

640 -2- HP-UX Release 9.0: August 1992

nlfindstr (3X)

NAME
nlfindstr() - search for a string in another string using the MPE character set definition

SYNOPSIS
#include <portnls.h>

short int nlfindstr(
short int langid,
const char *stringl,
short int lengthl,
const char *string2~
short int length2,
unsigned short int err[2],
const char *charset

) ;

DESCRIPTION

nlfindstr (3X)

nl f indst r () searches for the first occurrence of a given string of characters in another character string.

Arguments to nlfindstr () are:

langid The ID number of the desired language.

stringl A pointer to the character buffer to be searched. It can contain single-byte and two­
byte characters.

lengthl

string2

length2

Length (in bytes) of string 1 .

The character buffer for which to search.

Length (in bytes) of string2. length2 must be less than or equal to lengthl.

err The first element of this array contains the error number. The second element is
always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid lengthl parameter.
4 Invalid length2 parameter.

charset
A byte buffer containing the character set definition for the language to be used, as returned by
nlinfo(3X)'s itemnumber 12.

RETURN VALUE
offset is a short integer that holds the number of bytes into stringl where string2 was found.
nlfindstr () returns -1 if the string is not found.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use of this routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlfindstr () was developed by HP.

SEE ALSO
nlinfo(3X), mpnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -1- 641

I

I

nlfmtcal (aX)

NAME
nlfmtcalendarO - format an MPE packed date using a localized format

SYNOPSIS
#include <portnls.h>

void nlfmtcalendar(
unsigned short tnt date,
char *outstr,
short int langid,
unsigned short int err[2]

) ;

DESCRIPTION

nlfmtcal (ax)

nlfmtcal () formats the specified date in the localized custom version of the date format, but with no
time information (see nlfmtclock(3X». For example:

FRI, OCT 2, 1987

Arguments to nlfmtcal () are used as follows:

date An unsigned short indicating the date in the packed date format:

Bits 0 6 7 15

Year of Century Day of Year

outstr
A character buffer in which the formatted date is returned. This buffer is 18 bytes long, and padded
with blanks if necessary.

langid
A short integer specifying the language whose custom is to be used.

err
The first element of this array contains the error number. The second element is always zero. If the call
is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid date format.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlfmtcal () was developed by lIP.

SEE ALSO
calendar(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

642 -1- HP-UX Release 9.0: August 1992

nlfmtclock (3X)

NAME
nlfmtclockO - format MPE time of day using localized format

SYNOPSIS
#include <portnls.h>

void nlfmtclock(

) ;

unsigned int time,
char *outstr,
short int langid,
unsigned short int err[2]

DESCRIPTION

nlfmtclock (3X)

nl fmtc lock () formats the time of day obtained with the clock routine, according to the clock format
defined for the specified language.

Arguments to nlfmtclock () are used as follows:

time An unsigned int obtained from the clock routine:

Bits 0 7 8 15

Hour of Day Minute of Hour

Bits 16 23 24 31

Seconds Tenths of Seconds

outstr
An 8-byte buffer in which the formatted time of day is returned.

langid
A short integer specifying the language whose clock format is to be used.

err
The first element of this array contains the error number. The second element is always zero. If the call
is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid time format.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use of this routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlfmtclock () was developed by HP.

SEE ALSO
clock(3X), nlconvclock(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -1- 643

•

•

nlfmtcustdate (3X) nlfmtcustdate (3X)

NAME
nlfmtcustdateO - format an MPE packed date using a custom date

SYNOPSIS
#include <portnls.h>

void nlfmtcustdate(

) ;

unsigned short int date,
char *outstr,
short int langid,
unsigned short int err[2]

DESCRIPTION
nlfmtcustdate () converts the packed date format to the language-dependent custom date as specified
in the language definition file. A custom date has an abbreviated format such as 10/21/87 or
87.10.2l.

Arguments to nlfmtcustdate () are used as follows:

date An unsigned short containing the date in the packed date format:

Bits 0 6 7 15

I Year of Century I Day of Year

outstr
A 13-byte buffer in which the formatted date is returned .

langid
A short integer of the language whose custom date specification is to be used for the format.

err
The first element of this array contains the error number. The second element is always zero. If the call
is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid date format.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlfmtcustdate () was developed by HP.

SEE ALSO
calendar(3X), nlconvcustdate(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

644 -1- HP-UX Release 9.0: August 1992

nlfmtdate (3X) nlfmtdate (3X)

NAME
nlfmtdate() - format MPE date and time in a localized format

SYNOPSIS
#include <portnls.h>

void nlfmtdate(
unsigned short int date,
unsigned long int time,
char *outstr,
short tnt langid,
unsigned short int err[2]

) ;

DESCRIPTION
nlfmtdate () formats the specified date and time in a localized custom version. For example:

SUN, FEB 7, 1988 9:00 AM

Arguments to nlfmtdate () are used as follows:

date An unsigned short indicating the date to be formatted in the packed date format:

Bits 0 6 7 15

Year of Century .\ Day of Year

time
An unsigned int indicating the time to be formatted. The double word is in the clock format:

Bits 0 7 8 15

Hour of Day Minute of Hour

Bits 16 23 24 31

Seconds Tenths of Seconds

outstr
A 28-byte buffer in which the formatted date is returned.

langid
A short containing the language ID indicating the custom to be used.

err
The first element of this array contains the error number. The second element is always zero. If the call
is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid date format.
4 Invalid time format.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlfmtdate () was developed by HP.

SEE ALSO
calendar(3X), clock(3X), nlfmtcal(3X), nlfmtclock(3X), portnls(5).

HP-UX Release 9.0: August 1992 -1- 645

I

I

nlfmtdate(3X)

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

646 -2-

nlfmtdate (3X)

HP-UX Release 9.0: August 1992

nlfmtlongcal (aX)

NAME
nlfmtlongcalO - format an MPE packed date using a long calendar format

SYNOPSIS
#include <portnls.h>

void nlfmtlongcal(

) ;

unsigned short int date,
char *outstr,
short int langid,
unsigned short int err[2]

DESCRIPTION

nlfmtlongcal (3X)

nlfmtlongcal () formats the supplied date according to the long calendar format. The formatting is
done according to the template returned by nlin{o(3X), itemnumber 30.

Arguments to nlfmtlongcal () are used as follows:

date A short integer value containing a date in the packed date format:

Bits 0 6 7 15

I Year of Century I Day of Year I

outstr
A 36-byte buffer to which the formatted long calendar date is returned, padded with blanks if necessary.

langid
An ID number specifying which language-specific format is to be used.

err
The first element ofthis array contains the error number. The second element is always zero. If the call
is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid date format.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlfmtlongcal () was developed by HP.

SEE ALSO
calendar(3X), nlfmtcalendar(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -1- 647

I

I

nlfmtnum(3X) nlfmtnum(3X)

NAME
nlfmtnum() - convert an ASCII number to an MPE language-specific formatted number

SYNOPSIS
#include <portnls.h>

void nlfmtnum(

) ;

short int langid,
const char *instr,
short int leninstr,
char *outstr,
short int *plenoutstr,
unsigned short int err[2],
canst char *n~~spec,
short int fmtmask,
short int decimals

DESCRIPTION

648

nl fmtnum () converts a string containing an ASCII number to a language-specific formatted number using
the currency name/symbol, decimal separator, and thousands separators defined for the language. The
string may contain the n-computer decimal separator (.), thousands separator (,), and a dollar sign ($).

This routine operates in two modes: substitution mode and formatting mode. The substitution mode (if
fmtmask is zero) substitutes the native equivalent for • and , and, for arabic, the alternate set of digits
for ASCII digits. The input is not validated as a number, and can contain several individual numbers. No
justification takes place, and the output is left-truncated if outstr is shorter than instr (for example,
1,234.56 becomes 234, 56).

If fmtmask is not zero, the formatting mode formats the input according to fmtmask in addition to perform­
ing the substitution. In this mode the input is validated as a number and only ASCII digits and -, +, $, .,
and , are allowed. Only one sign and one $ is allowed and they must be the first character(s) in instr.
Even if insertion (of thousands separators, etc.) is specified in fmtmask, thousands separators and a
decimal separator are still valid characters in the input. In this case they are substituted. If no
justification is specified, the output is right-justified with the same number of trailing spaces as the input.
Note that for languages written right-to-left, trailing spaces in the input are preserved as leading spaces in
the output. If the output is truncated, it is left-truncated (for example, 1,234.56 becomes. 234,56).

Arguments to nl fmtnum () are used as follows:

langid A language ID number specifying which language's formatting specifications to use for
the formatting.

instr

leninstr

outstr

plenoutstr

err

A byte array containing the n-computer formatted ASCII number to be converted, for
example, 123,456.78. Leading and trailing spaces are allowed.

Length, in bytes, of instr .

A byte buffer where the language-specific formatted number is returned. The decimal
separator, thousands separator, and currency symboVname are replaced according to
the language definition, if present or inserted, or if specified by fmtmask. outstr can
reference the same address as instr.

Length, in bytes, of outstr. Mter a successful call, if specified by fmtmask (the two
bits starting with bit 12 (from highest to lowest) are equal to 3), plenoutstr returns
the actual length, in bytes, of the formatted number.

The first element of this array contains the error number. The second element is
always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured,
3 Invalid length specified (leninstr or *plenoutstr).
4 Invalid number specified (instr).

-1- HP-UX Release 9.0: August 1992

nlfmtnum(3X) nlfmtnum(3X)

numspec

5
6
7
8
9
10

Invalid decimal point in number specified (instr).
Invalid thousand separators in number specified (instr).
Truncation has occurred (outstr is left partially formatted).
Invalid numspec parameter.
Invalid fmtmask parameter.
Invalid decimals parameter.

A byte array, as returned from nlnumspec (), containing formatting specifications for the specified
language (currency symbol/name, decimal separator, etc.). If this parameter is not null, langid is
ignored, and performance is improved. (See nlnumspec(3X».

fmtmask
A short integer value specifying any formatting to be done on the input. The default value is zero,
which means a simple substitution.

Value Description

NULL Do not insert thousands separators.
Do not insert decimal separator.
No justification of the output.

Insert thousands separators.
Insert decimal separator.
Insert currency name/symbol.
The output is left-justified.
Right-justify the output.

M_INSTHOU
M_INSDEC
M_CURRENCY
M_LEFTJUST
M_RIGHTJUST
M_RETLENGTH Left-justify the output and return the actual length of the formatted number

in plenoutstr

decimals
An integer specifying where to insert the decimal separator. The value is ignored if fmtmask and
M_INSDEC are zero, or a decimal separator is present in the number.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlfmtnum() was developed by HP.

SEE ALSO
nlconvnum(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -2- 649

•

•

nlgetlang(ax) nlgetlang(ax)

NAME
nlgetlang() - return the current user, data, or system default language

SYNOPSIS
#include <portnls.h>

short int nlgetlang(short int function, unsigned short int err[2]);

DESCRIPTION
nlgetlang () looks for a LANG string in the user's environment. If it finds it, it returns the correspond­
ing integer as described in lang(5). Otherwise, or if the value of function is not valid, it returns 0 and sets
the err parameter.

Arguments to nlgetlang () are used as follows:

function A short integer that specifies which language is returned.

Value Description

1 User language
2 Data language
3 System default language

err
The first element of this array contains the error number. The second element is always zero. If the
call is successful, both elements contain zero.

Error # Meaning
1 Native Language Support file(s) not found
2 Specified language not configured
3 Invalid function value
4 No language specified for nlgetlang () to access

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

RETURN VALUE
nlgetlang () returns the language ID as a short integer. In case of error, zero is returned.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use of this function. Use the Native Language Support routines for C program­
mers described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlgetlang () was developed by HP.

SEE ALSO
getenv(3C), currlangid(3C), portnls(5).

650 -1- HP-UX Release 9.0: August 1992

nlinfo(3X) nlinfo(3X)

NAME
nlinfo() - return MPE language-dependent information

SYNOPSIS
#inc1ude <portn1s.h>

void n1info(

) ;

short int itemnumber,
int *itemva1ue,
short int *1angid,
unsigned short int err[2j

DESCRIPTION
n1 info () returns such information as the format of the date, the radix character, the direction of the
language, etc.

The itemnumber indicates the type of information the user has requested. The data is passed back in item­
value.

The arguments to n1info () are used as follows:

itemnumber A short integer of the item desired. This number specifies which item value is to be
returned. See below for a list of item numbers.

itemvalue

langid

err

Item numbers

A pointer to an integer that contains the value of the item specified by the correspond­
ing item number. The data type of the item value depends on the item itself.

A pointer to a short integer containing the language ID or, for itemnumber 22, the
location in which the language ID is returned.

The first element of this array contains the error number. The second element is
always zero. If the call is successful, both elements contain zero.

Error # Meaning

1 Native Language Support file(s) not found
2 Specified language is not configured.
3 Specified character set is not configured.
10 itemnumber is out of range.

The following is a list of the currently defined item numbers and the information returned.

itemnumber

1

2

3

4

5

6

7

8

Description

An 18-byte buffer in which the calendar format is returned.

A 13-byte buffer in which the custom date format is returned.

An 8-byte buffer in which the clock specification is returned.

A 48-byte buffer in which the month denotation abbreviation table is returned. The abbre­
viation of each month is 4 bytes long (with blank padding if necessary). The first 4 bytes
are the abbreviation for January.

A 144-byte array in which the month denotation table is returned. Each month denotation
is 12 bytes long. The table starts with January.

A 21-byte array in which the day of the week denotation abbreviation table is returned.
Each weekday abbreviation is three bytes long. The first three bytes are the abbreviation
for Sunday.

An 84-byte array in which the day of the week denotation table is returned. Each weekday
denotation is 12 bytes long. The table starts with Sunday.

A 12-byte array in which the YES/NO responses are returned. The first 6 bytes contain the
(upshifted) "YES" response; the second 6 bytes contain the (upshifted) 'NO" response.

HP-UX Release 9.0: August 1992 -1- 651

I

I

nlinfo(3X) nlinfo(3X)

652

9 A 2-byte array in which the symbols for decimal point and thousands indicator are
returned. The first byte contains the decimal point, the second contains the thousands
indicator.

10 A 6-byte array in which the currency signs are returned. The first byte contains the
currency sign used in the business formats, the second byte is either a numeric zero, which
indicates that the currency symbol precedes the value, or a one, wl-..ich indicates that a SYlll­

bol follows the value. The next 4 bytes contain the fully qualified currency sign.

11

12

An array in which the collating sequence table is returned. To determine the size of this
array, the length must be determined by a call to nlinfo () with itemnumber.27.

A 256-byte array in which the character set definition is returned. Each byte has numeric
identification of the character type:

o Numeric character
1 Alphabetic lowercase character
2 Alphabetic uppercase character
3 Undefined graphic character
4 Special character
5 Control code
6 First byte of a two-byte character

15
A 256-byte array in which the upshift table is returned.

16
A 256-byte array in which the downshift table is returned.

17
An array of unsigned shorts in which the language numbers of all configured languages are returned.
The first element of this array contains the number of configured languages. The second word contains
the language number of the first configured language, etc. The system default language is returned (the
langid parameter, if specified, is insignificant).

18
A short int in which true (-1) is returned if the specified language is supported (configured) on the sys­
tem. Otherwise, false (0) is returned.

21
A 16-byte array in which the (uppercase) name of the specified language is returned. If the name con­
tains less than 16 bytes, it is padded with blanks.

22
The itemvalue contains a byte buffer containing a language name or language number (ASCII digits) ter­
minated by a blank. The array must contain less than or equal to 16 bytes. The langid (third) parame­
ter is assigned the associated language ID number.

26
A short integer in which the class number of the specified language is returned.

27
An integer in which the length (in two-byte units) of the collating sequence table corresponding to the
specified language is returned.

28
A short integer in which the length (in two-byte units) of the national dependent information table is
returned. If no national table exists for the specified language, an error is returned.

29
A byte buffer in which the national-dependent information table is returned. To determine the size of
this array, the length must be obtained via a prior call to nl inf 0 () with itemnumber 28.

30
A 36-byte array in which the long calendar format is returned. It may contain arbitrary text as well as
the following descriptors:

-2- HP-UX Release 9.0: August 1992

nlinfo(3X) nlinfo(3X)

D
W
M

1 through 3 of these are to be replaced by that many bytes from the day abbreviation.
1 through 12 of these are to be replaced by that many bytes from the day of the week.
1 through 4 of these are to be replaced by that many bytes from the month abbrevia­
tion.

o
mm
yy
yyyy
Nyy

1 through 12 of these are to be replaced by that many bytes from the month of the year.
Numeric month of the year.
Numeric year of the century.
Numeric year of the century.
National year.

In addition, a special literal character - (tilde) can be used to indicate that the following character
should be taken literally in the format, even if it is one of the special characters above.

For example, a format could be:

IIWWWWWWWWW, 000000000 dd, A.-D. yyyy

This format in n-computer would result in the following:
IIWEDNESDAY, NOVEMBER 21, A.D. 1984 ..

31
A 16-byte array in which the currency name is returned.

32
An 8-byte array, containing information about an Alternate set of digits (currently only used by ara­
bic).

33

Byte

0-1

2
3
4
S
6
7

Description

Alternate digit indicator
o -No Alternate digits defined
1 - Alternate digits defined

The Alternate digit 0
The Alternate digit 9
The + used with Alternate digits
The - used with Alternate digits
The decimal separator used with Alternate digits
The thousands separator used with Alternate digits

A 4-byte array, containing information about the direction of the language.

34

Byte Description

o 1

2
3

Language direction
o -Direction is "left-to-right"
1 - Direction is "right-to-Ieft"

The "right-to-Ieft" space
Undefined

An unsigned short that returns the data ordering of the language.

o Keyboard order
1 Left-to-Right screen order
2 Right-to-Left screen order

3S
An unsigned short that returns the size of the character used by the language.

o One-byte characters (8 bits)
1 Two-byte characters (16 bits)

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use of this routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UXNLS support.

HP-UX Release 9.0: August 1992 -3- 653

I

I

nlinfo(3X)

AUTHOR
n1 inf 0 () was developed by HP.

SEE ALSO
hpnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

654 -4-

nlinfo(3X)

HP-UX Release 9.0: August 1992

nlist(3C) nlist(3C)

NAME
nlist() - get entries from name list

SYNOPSIS
#include <nlist.h>

int nlist(const char *file_name, struct nlist *nl);

Remarks
The use of symbol table type and value information is inherently non-portable. Use of nlist () should
reduce the effort required to port a program that uses such information, but complete portability across all
HP-ux implementations cannot be expected.

DESCRIPTION
nlist () examines the name list in the executable file whose name is pointed to by file_name, and selec­
tively extracts a list of values and puts them in the array of nlist () structures pointed to by nl. The
array of nlist () structures initially contains only the names of variables. Once nlist () has been
called, the variable names are augmented with types and values. The list is terminated by a null name,
which consists of a null string in the variable-name position of the structure. The name list of the file is
searched for each variable name. If the name is found, type and value information from the file is inserted
into the name list structure. If the name is not found, type and value fields are set to zero. The structure
nlist is defined in the include file <nlist.h>. See a.out(4) and nlist(4) for further description of the
symbol table structure.

The file must have the organization and symbol table described for an a. out file in a.out(4). The informa­
tion is extracted from the symbol table used by the loader, ld(1).

On machines that have such a file, this subroutine is useful for examining the system name list kept in file
/hp-ux. In this way programs can obtain system addresses that are up to date.

RETURN VALUE
All nlist structure fields are set to 0 if the file cannot be found or if it is not a valid object file containing a
linker symbol table.

nl ist () returns -1 upon error; otherwise it returns O.

WARNINGS
The <nlist . h> header file is automatically included by <a. out. h> for compatibility. However, includ­
ing <a. out .h> is discouraged if the only information needed from <a. out .h> is for use by nlist (). If
<a. out. h> is included, the line #undef n_name may need to follow it.

SEE ALSO
a.out(4), nlist(4).

STANDARDS CONFORMANCE
nlist: SVID2

HP-UX Release 9.0: August 1992 -1- 655

I

I

nljudge(3X) nljudge(3X)

NAME
nljudge() - judge whether a character is a one-byte or multi-byte Asian character using MPE character
definition table

SYNOPSIS
#include <portnls.h>

short int nljudge(
short int langid,
const char *instr,
short int length,
char *judgeflag,

) i

unsigned short int err[2],
const char *charset

DESCRIPTION
nljudge () judges whether or not a character is a one-byte or multi-byte Asian character. If it is a multi­
byte character,judgeflag is set to lor 2. Ifit is a one-byte character,judgeflag is set to o.
Any language number can be specified as the langid parameter. However, if the language specified uses
only one-byte characters (see nlinfo(3X)'s itemnumber 35), thejudgeflag returns all zeroes.

Arguments to nl judge () are used as follows:

err

langid The ID number for the desired language.

instr The character buffer to be judged.

length

judgeflag

A short integer value specifying the number of bytes in instr.

A pointer to a char whose value is set to:

o One-byte character
1 First byte of a two-byte character
2 Second byte of a two-byte character
3 Invalid two-byte character

The first element of this array contains the error number. The second element is always zero. If the
call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid string length.
7 Invalid characters found in instr.

charset
A character buffer containing the character set definition for the language to be used, as returned by
nlinfo(3X)'s itemnumber 12. If it doesn't point to a null address, the langid parameter is ignored, and
this routine is more efficient.

RETURN VALUE
nljudge () returns the number of multi-byte Asian characters that could be used to check if a string of
character contains any Asian characters.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use of this routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nljudge () was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

656 -1- HP-UX Release 9.0: August 1992

nljudge (3X)

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -2-

nljudge(3X)

I

657

I

nlkeycompare (aX) nlkeycompare (ax)

NAME
nlkeycompareO - determine if a character array (key1) is almost equal to another (key2) using the MPE
language-dependent collation table

SYNOPSIS
#include <portnls.h>

void nlkeycompare(

) i

const char *keyl,
short int lengthl,
const char *key2,
short int length2,
short int *presult,
short int langid,
unsigned short err[2],
const unsigned short *collseq

DESCRIPTION
nlkeycompare () determines if a character array (key1) is almost equal to another character array
(key2). Two character arrays are considered almost equal when they differ only in case or accent priorities.
For example, the arrays ABC and aBc are almost equal in English.

nlkeycompare () determines if a given character array can be collated before or after another character
array of a different length. For example, nlkeycompare () examines the records in a file sorted in a
given language and determines if the character array keyl can be found later on in the file as the leading
substring of the sort key, if the value of the last record read is key2.

Arguments to nlkeycompare () are used as follows:

key 1 A byte array being compared to key2.

lengthl The length in bytes of key l. lengthl must be less than length2.

key2 A byte array containing a character array to which to compare keyl .

length2 The length in bytes of key2. length2 must be greater than lengthl .

presult A pointer to a short integer variable in which to return the result of the comparison.

o The retrieved key2 matches the keyl.
1 The retrieved key2 does not match the keyl. It is different only in

case or accent priority.
2 The retrieved key2 is less than the key1 (its collating order is before

the desired one).
3 The retrieved key2 is greater than the key1 (it collates after the

desired key).

langid
The language ID number indicating the collating sequence to be used for the compare.

err
The first element of this array contains the error number. The second element is always zero. If the
call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid collating table entry.
4 Invalid length parameter.
7 lengthl is greater than length2.

collseq
An array containing the collating sequence table as returned by nlinfo(3X)'s itemnumber 11.

WARNINGS

658

This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers

-1- HP-UX Release 9.0: August 1992

nlkeycompare (3X)

described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlkeycompare () was developed by lIP.

SEE ALSO
nlcollate(3X), nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -2-

nlkeycompare (3X)

I

659

I

nlnumspec (3X) nlnumspec(3X)

NAME
nlnumspec() - return information needed by MPE routines for formatting and converting numbers

SYNOPSIS
#include <portnls.h>

void nlnumspec(short int langid, char *numspec, unsigned short err[2]);

DESCRIPTION

660

nlnumspec () returns the information needed for formatting and converting numbers. It combines
several calls to nlinfo () in order to simplify the use of native language formatting. By calling
nlnumspec () once, and passing the obtained information to nlfmtnum() and nlconvnum(), impli­
cit calls to nlnumspec () from nlfmtnum() and nlconvnum() are avoided and performance is
improved.

nlnumspec () combines the functions of nlinfo(3X)'s itemnumbers 9, 10,31, 32, and 33. The information
is formatted where needed. For example, any spaces in the currency symbol/name are included. The
currency symbol/name is the shortest non-blank descriptor, as returned from nlinfo(3X) itemnumbers 10
and 31.

nlnumspec () does not, apart from the mentioned formatting, provide any information not obtainable
with nlinfo (), but is included for the convenience of the user. For efficiency, the user of this routine
calls it once, saves the result, and then calls nl fmtnum () and/or nl convnum () multiple times.

Arguments to nlnumspec () are used as follows:

err

langid The ID number of the desired language.

numspec A character buffer of at least 60 bytes in which the following information is returned:

Byte Description

00- 01 Language ID number.
02 - 03 Alternate Digit Indicator:

o -No Alternate digits exist.
1 - Alternate digits exist.

04- 05 Language Direction Indicator.

06-07
08
09
10
11
12
13
14
15
16-17

18-19
20-37
38-39
40-41
42-59

0- The Language is "left-to-right".
1 - The Language is "right-to-Ieft".

The Alternate digit range ("0", "9").
Decimal separator (ASCII-digits).
Decimal separator (Alternate-digits).
Thousands separator (ASCII-digits).
Thousands separator (Alternate-digits).
"+" Alternate-digits.
"-" Alternate-digits.
''Right-to-Ieft'' space.
Reserved.
Currency place.

0- Currency symbol precedes the number.
1- Currency symbol follows the number.
2 - Currency symbol replaces the decimal separator.

Length of Currency symbol (including any spaces).
Currency symbol (including any spaces).
Data ordering of the language.
Size of character used by the language.
Reserved.

The first element of this array contains the error number. The second element is always zero. If the
call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.

-1- HP-UX Release 9.0: August 1992

nlnumspec (3X) nlnumspec(3X)

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use of this routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlnumspec () was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -2- 661

I

I

nlrepchar(3X) nlrepchar (3X)

NAME
nlrepcharO - replace non-displayable characters of a string using the MPE character set table

SYNOPSIS
#include <portnls.h>

void nlrepchar(

) ;

const char *instr;
char *outstr,
short int length,
char repchar,
short int langid,
unsigned short int err[2],
const char *charset

DESCRIPTION
nlrepchar () replaces all non-displayable characters in the input character buffer with the replacement
character. Non-displayable characters are those of types 3 and 5, as returned by nlinfo(3X), itemnumber
12. Native language characters of the supported character set are not replaced.

Arguments to nl repchar () are used as follows:

instr

outstr

length

repchar

langid

err

charset

A character buffer in which the non-displayable characters must be replaced.

A character buffer to which the replaced character string is returned.

A short integer specifying the length (in bytes) of instr .

A byte specifying the replacement character to be used.

A short integer value specifying the language ID number of the language that deter­
mines the character set to be used.

The first element of this array contains the error number. The second element is
always zero. If the callis successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid replacement character.
4 Invalid length parameter.
S The value of outstr would overwrite instr .
10 Invalid Asian character.

Contains the character set definition for the language to be used, as returned in nlinfo(3X)'s item­
number 12. If this parameter is supplied (i.e., not NULL), langid is ignored and this routine is much
more efficient.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlrepchar () was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character.code sets are supported.

662 -1- HP-UX Release 9.0: August 1992

nlscanmove (3X) nlscanmove (3X)

NAME
nlscanmove() - move, scan and case-shift character strings using the MPE character set definition table

SYNOPSIS
#include <portnls.h>

short int nlscanmove(
const char *instr,
char *outstr,
short int flags,
int length,
short int langid,
unsigned short int err[2],
const char *pcharset,
const char *pshift

) ;

DESCRIPTION
nlscanmove () moves, scans and case-shifts character strings.

Arguments to nl scanmove () are used as follows:

A character buffer that acts as the source string of the scan or move functions. instr

outstr A character buffer that acts as the target. Note that if outstr is equal to instr, this
routine will act as scan. Otherwise, a move will be performed; see err below.

flags

length

A flag defining the options for the routine invocation. This parameter defines the end
condition for the scan or move.

Description

Select lowercase alphabetic characters.

M_U Select uppercase alphabetic characters.

M_N Select numeric characters.

M_S Select special characters.

M_WU By default nlscanmove () scans or moves characters while
the character currently being scanned is one of those selected
(i.e. upper, lower, numeric, special). If M_WU is used,
nlscanmove () scans or moves characters until the character
currently being scanned is one of those selected.

M_US Shift scanned or moved characters to the uppercase.

M_DS Shift scanned or moved characters to the lowercase.

M_OB Select one-byte characters.

M_TB Select two-byte (Asian) characters.

M_OB or M_TB
Select both one- and two-byte characters.

A short integer indicating the maximum number of valid bytes to be acted upon during the indicated
option.

langid
A short integer containing the language ID number which implies the both the character set definitions
of character attributes and the language specific shift.

err
The first element of this array contains the error number. The second element is always zero. If the
call is successful, both elements contain zero.

HP-UX Release 9.0: August 1992 -1- 663

I

I

nlscanmove (aX) nlscanmove (ax)

Error # Meaning

2 Specified language is not configured.
3 Overlapping strings, instr overwrites outstr.
4 Invalid length parameter.
7 The reserved part of flags is not zero.
S Both upshift and downshift request.
9 Invalid table element.
10 Invalid Asian character.

pcharset
A pointer to a character buffer containing the character set definition for the language to be used, as
returned nlinfo(3X)'s itemnumber 12. If not zero, the langid parameter is ignored, and this routine is
much more efficient. This parameter is required for calls in which hits (12:4) of /lags is neither 0 nor
15.

pshift
A pointer to a character buffer containing shift information for a desired upshift or downshift (e.g., as
returned in nlinfo(3X)'s itemnumber 15 or 16). This parameter is used when bits (9:2) of flags is not o.

RETURN VALUE
A short containing the number of bytes acted upon in the scan or move operation.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlscanmove () was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

664 -2- HP-UX Release 9.0: August 1992

nlsubstr(3X) nlsubstr(3X)

NAME
nlsubstrO - extract substring of a string using the MPE character set definition table

SYNOPSIS
#include <portnls.h>

void nlsubstr(
const char *instring,
short int inlength,
char *outstring,
short *poutlength,
short int start,
short int move length,
short int langid,
short int flags,
unsigned short int err[2],
const unsigned short int *charset

) ;

DESCRIPTION
nl subs t r () extracts a substring from instring and places the result in outstring .

Arguments to nlsubstr () are used as follows:

instring

inlength

outstring

poutlength

start

movelength

langid

flags

The byte buffer from which the substring is extracted. The string can contain both
one-byte and two-byte (Asian) characters.

Length, in bytes, of instring

Where the sub-string is placed.

Length, in bytes, of outstring. After a successful call, the variable to which poutlength
points contains the actual length of the sub-string moved to outstring.

The offset into instring where the sub-string starts. A value of zero is the beginning
point.

Length, in bytes, of the sub-string.

The ID number of the desired language.

This flag word is used primarily with Asian languages. It is meaningless with one­
byte oriented languages. [lags is used to indicate the treatment of the case when the
first byte of the sub-string is the second byte of a two-byte Asian character and in the
case where the last byte in the sub-string is the first byte of a two-byte Asian charac­
ter.

Selection of nlsubstr () 's behavior if the first character is the second byte of an
Asian character:

Value Description

F _RETURNERR Return an error condition.

F_SPPl

F_SPMl

F_SPBL

Start from start +1.

Start from start-l.

Start from start, but replace the character with a blank in out­
string.

Start from start, regardless of the value of the first character.

Selection ofnlsubstr () 's behavior if the last character is the first byte of an Asian character:

Value Description

HP-UX Release 9.0: August 1992

Move until movelength+1 is reached.

Move until movelength-1 is reached.

-1- 665

I

I

nlsubstr (3X) nlsubstr(3X)

err

Move until mouelength is reached, but replace the character with a blank in out­
string.

Move until mouelength is reached, regardless of the value of the last byte.

The first element of this array contains the error number. The second element is always zero. If the
call is successful, both elements contain zero.

charset

Error # Meaning

2 Specified language is not configured.
7 Invalid inlength.
8 In valid start.
9 Invalid ilwvelength.
11 Invalid value in {lags bits (8:4).
12 Invalid value for {lags bits (12:4).
13 The start position is the second byte of an Asian character, or an underflow condition

occurred because of {lags.
14 The end position is the first byte of an Asian character, or an overflow condition

occurred because of (lags.

. An array containing the character set definition for the language to be used, as returned by
nlinfo(3X)'s itemnumber 12.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use of this routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nlsubstr () was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

666 -2- HP-UX Release 9.0: August 1992

nlswitchbuf(3X) nlswitchbuf(3X)

NAME
nlswitchbuf() - convert a string of characters between phonetic order and screen order using the MPE char­
acter set definition table

SYNOPSIS
#include <portnls.h>

void nlswitchbuf(
short int langid,
const char *instr,

) ;

char *outstr,
short int length,
unsigned short int lefttoright,
unsigned short int err[2]

DESCRIPTION
nlswitchbuf () is useful for handling data from languages written from right-to-left (e.g., Middle
Eastern languages). It is used by a program to convert a buffer that is in phonetic order (Le., the order in
which the characters would be typed at a terminal or spoken by a person) to screen order (i.e., the order in
which the characters are displayed on a terminal screen or piece of paper), or vice-versa. Screen order is
defined as right-to-Ieft if the primary mode of the terminal or printer is from right-to-Ieft (as when it is used
principally for entering or displaying data from a right-to-Ieft language). Otherwise, screen order is defined
as left-to-right.

Phonetic order and screen order are, in general, not the same if USASCII text is mixed with that from a
right-to-Ieft language. The relationship between phonetic order and screen order is further complicated by
the Hindi digits in Arabic, which playa third role intermediate between ASCII characters and characters of
the right-to-Ieft language.

Note that this is a somewhat special-purpose native language support routine. nlswi tchbuf () is use­
ful only for languages that are written from right-to-Ieft, and which may occasionally mix left-to-right text
(e.g., English) with right-to-Ieft. Nonetheless, it can be used by a general-purpose (not specifically for han­
dling right-to-Ieft data) program. Such a program calls nlswi tchbuf () to convert data from phonetic
order to screen order and back again (for example, an editor that wants to track cursor movement on a ter­
minal against a buffer of text in memory needs to do this). If the data is not that of a right-to-Ieft language,
this routine simply returns the same text unchanged, since for all other languages phonetic order and
screen order are the same.

Arguments to nl swi t chbuf () are:

langid The ID number for the desired language.

instr

outstr

length

lefttoright

err

WARNINGS

The character buffer in phonetic order to be converted to screen order.

The buffer in which the result of the conversion to screen order is returned. outstr
and instr can reference the same address.

The length, in characters, of the buffer to be converted.

An unsigned short integer that specifies whether the implied primary mode of the
data (i.e., the way it would be displayed on a terminal) is left-to-right (TRUE) or right­
to-left (FALSE). This determines what the opposite language is and, therefore, strings
of which characters get switched.

The first element of this array contains the error number. The second element is
always zero. If the call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid string length.

This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

HP-UX Release 9.0: August 1992 -1- 667

I

nlswitchbuf(3X) nlswitchbuf(3X)

AUTHOR
nlswi tchbuf () was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Coda Set Support

Single- and multi-byte character code sets are supported.

I

668 -2- HP-UX Release 9.0: August 1992

nltranslate(3X)

NAME
nltranslate() - translate ASCII strings to EBCDIC using MPE con version table

SYNOPSIS
#include <portnls.h>

void nltranslate(
short int code,
const char *instr,
char *outstr,
short tnt length.
short int langid,

) ;

unsigned short int err[2],
const char *table

DESCRIPTION

nltranslate (3X)

nl translate () translates a string of bytes from EBCDIC to ASCII or ASCII to EBCDIC, using the
appropriate native language table.

Arguments to nl translate () are used as follows:

code Specifies type of conversion:

Value Meaning

1 Convert EBCDIC to ASCII.
2 Convert ASCII to EBCDIC.

instr
Byte buffer containing the input string to be translated.

outstr
Byte buffer where the translated string is to be returned. instr and outstr can specify the same array.

length
A short integer specifying the number of bytes of instr to be translated.

langid
A short integer containing the ID number of the language whose translation tables are to be used.

err
The first element of this array contains the error number. The second element is always zero. If the
call is successful, both elements contain zero.

Error # Meaning

2 Specified language is not configured.
3 Invalid code specified.
4 Invalid length parameter.

table
A 256-byte array that holds a translation table. Each byte contains the translation of the byte whose
value is its index. This table is provided by the user.

WARNINGS
This routine is provided for compatibility with MPE, a proprietary HP operating system. See portnls(5) for
more information on the use ofthis routine. Use the Native Language Support routines for C programmers
described by hpnls(5) for HP-UX NLS support.

AUTHOR
nl translate () was developed by HP.

SEE ALSO
nlinfo(3X), portnls(5).

EXTERNAL INFLUENCES
International Code Set Support

Single- and multi-byte character code sets are supported.

HP-UX Release 9.0: August 1992 -1- 669

I

I

optoverhead(3N) optoverhead(3N)

NAME
optoverhead() - return number of bytes needed by a NetIPC option

SYNOPSIS
#include <sys/ns_ipc.h>

int optoverhead(short eventualentries, short *result);

DESCRIPTION
optoverhead returns the number of bytes needed by the opt parameter, excluding the data area.

PARAMETERS
eventualentries (input parameter) The number of option entries that will be placed in the opt parame­

ter.

result (output parameter) The result code returned. See "Diagnostics" below for more infor­
mation.

RETURN VALUE
Upon successful completion, opt overhead () returns a 16-bit integer value indicating the number of
bytes requires for the opt parameter, not including the data portion of the parameter.

ERRORS
[NSR_NO_ERROR] The call was successful.

The num_entries parameter is negative.

AUTHOR
optoverhead was developed by HP.

SEE ALSO

670

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam­
erase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), readopt(3N).

-1- HP-UX Release 9.0: August 1992

perror(3C)

NAME
perrorO, strerror(), errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS
#include <errno.h>

void perror(const char *s);

char *strerror(int errnum);

extern int errno;

extern char *sys_errlist[];

extern int sys_nerr;

DESCRIPTION

perror(3C)

perror () writes a language-dependent message to the standard error output, describing the last error
encountered during a call to a system or library function. The argument string s is printed first, followed by
a colon, a blank, the message, and a new-line. To be most useful, the argument string should include the
name of the program that incurred the error. The error number is taken from the external variable errno,
which is set when errors occur but not cleared when non-erroneous calls are made. The contents of the
message is identical to those returned by the strerror () function with errno as the argument. If
given a NULL string, the perror () function prints only the message and a new-line.

To simplify variant formatting of messages, the strerror () function and the sys_errlist array of
message strings are provided. The strerror () function maps the error number in errnum to a
language-dependent error message string and returns a pointer to the string. The message string is
returned without a new-line. errno can be used as an index into sys_errlist to get an untranslated
message string without the new-line. sys_nerr is the largest message number provided for in the table;
it should be checked because new error codes might be added to the system before they are added to the
table. strerror () must be used to retrieve messages when translations are desired.

EXTERNAL INFLUENCES
Environment Variables

The language of the message returned by strerror () and printed by perror () is specified by the
LANG environment variable. If the language-dependent message is not available, or if LANG is not set or
is set to the empty string, the default version of the message associated with the "C" language (see lang(5»
is used.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
perror () returns no value.

If the errnum message number is valid, strerror () returns a pointer to a language-dependent message
string. The array pointed to should not be modified by the program, and might be overwritten by a subse­
quent call to the function. If a valid errnum message number does not have a corresponding language­
dependent message, strerror () uses errnum as an index into sys_errlist to get the message
string. If the errnum message number is invalid, strerror () returns a pointer to a NULL string.

SEE ALSO
errno(2), lang(5), environ(5).

STANDARDS CONFORMANCE
perror () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

strerror () : AES, XPG3, XPG4, ANSI C

sys_errlist (): SVID2, XPG2

sys_nerr () : SVID2, XPG2

HP-UX Release 9.0: August 1992 -1- 671

•

I

pfm_$cleanup (3) pfm_$cleanup(3)

NAME
pfm_$cleanup - establish a cleanup handler

SYNOPSIS (C)
C Syntax

#include <idl/c/base.h>
#include <ppfm.h>

status_$t pfm_$cleanup(
pfm_$c leanup_rec * clean up_record)

Pascal Syntax
%include '/sys/ins/base.ins.pas'i
%include '/sys/ins/ppfm.ins.pas'i

function pfm_$cleanup(
out cleanup_record: pfm_$cleanup_rec): status_$ti

Remarks
To view this manual entry via the man(1) command, use the function name shown above without the "$"
character.

DESCRIPTION
pfm_$cleanup () establishes a cleanup handler that is executed when a fault occurs. A cleanup handler
is a piece of code executed before a program exits when a signal is received by the process. The cleanup
handler begins where pfm_$cleanup () is called; the pfm_$cleanup () call registers an entry point
with the system where program execution resumes when a fault occurs. When a fault occurs, execution
resumes after the most recent call to pfm_$cleanup ().

There can be more than one cleanup handler in a program. Multiple cleanup handlers are executed con­
secutively on a last-inlfirst-out basis, starting with the most recently established cleanup handler and end­
ing with the first cleanup handler.

On Apollo systems, a default cleanup handler is established at program invocation. The default cleanup
handler is always called last, just before a program exits, and releases any system resources still held
before returning control to the process that invoked the program.

On other systems, there is no default cleanup handler.

When called to establish a cleanup handler, pfm_$c leanup () returns the status
pfm_$cleanup_set to indicate that the cleanup handler was successfully established. When the
cleanup handler is entered in response to a fault signal, pfm_$cleanup () effectively returns the value
of the fault that triggered the cleanup handler.

See the reference description of pfm_$init () for a list of the C signals that the PFM package intercepts.

cleanupJecord Is a record of the context when pfm_$cleanup () is called. A program should treat this
as an opaque data structure and not try to alter or copy its contents. It is needed by
pfm_$rls_cleanup () and pfm_$reset_cleanup () to restore the context of the calling process at
the cleanup handler entry point.

NOTE

672

The pfm_$cleanup () call implicitly performs a pfm_$inhibit (). Cleanup handler code hence runs
with asynchronous faults inhibited. When pfm_$cleanup () returns something other than
pfm_$cleanup_set (), indicating that a fault has occurred, there are four possible ways to leave the
cleanup code:

• The program can call pfm_$signal () to start the next cleanup handler with a fault signal you
specify.

• The program can call pgm_$exi t () to start the next cleanup handler with a status of
status_$ok.

• The program can continue with the code following the cleanup handler. It should generally call
pfm_$enable () to re-enable asynchronous faults. Execution continues from the end of the
cleanup handler code; it does not resume where the fault signal was received.

-1- HP-UX Release 9.0: August 1992

pfm_$cleanup (3) pfm_$cleanup(3)

• The program can re-establish the cleanup handler by calling pfm_$reset_cleanup () (which
implicitly performs a pfm_$enable (») before proceeding.

SEE ALSO
pfm_$init(3), pfm_$signal(3).

HP-UX Release 9.0: August 1992 -2- 673

I

I

pfm_$enable (3) pfm_$enable (3)

NAME
pfm_$enable - enable asynchronous faults

SYNOPSIS
C Syntax

#include <idl/c/base.h>
#include <ppfm.h>

void pfm_$enable(void)

Pascal Syntax
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/pfm.ins.pas';

procedure pfm_$enable;

Remarks
To view this manual entry via the man(1) command, use the function name shown above without the "$"
character.

DESCRIPTION
pfm_$enable () enables asynchronous faults after they have been inhibited by a call to
pfm_$inhibit (); pfm_$enable () causes the operating system to pass asynchronous faults on to the
calling process.

While faults are inhibited, the operating system holds at most one asynchronous fault. Consequently, when
pfm_$enable () returns, there can be at most one fault waiting on the process. If more than one fault
was received between calls to pfm_$inhibit () and pfm_$enable (), the process receives the first
asynchronous fault received while faults were inhibited.

SEE ALSO
pfm_$enable_faults(3), pfm_$inhibit(3).

674 -1- HP-UX Release 9.0: August 1992

NAME
pfm_$enablejaults - enable asynchronous faults

SYNOPSIS
C Syntax

#include <idl/c/base.h>
#include <ppfm.h>

void pfm_$enable_faults(void)

Pascal Syntax
%include :isysiinsibase.ins.pas:i
%include '/sys/ins/pfm.ins.pas'i

procedure pfm_$enable_faultsi

Remarks
To view this manual entry via the man(l) command, use the function name shown above without the "$"
character.

DESCRIPTION
The pfm_$enable_faults () call enables asynchronous faults after they have been inhibited by a call
to pfm_$inhibi t_faul ts (); pfm_$enable_faul ts () causes the operating system to pass asyn­
chronous faults on to the calling process.

While faults are inhibited, the operating system holds at most one asynchronous fault. Consequently, when
pfm_$enable_faul ts () returns, there can be at most one fault waiting on the process. If more than
one fault was received between calls to pfm_$inhibit_faults () and pfm_$enable_faults (),
the process receives the first asynchronous fault received while faults were inhibited.

SEE ALSO
pfm_$enable(3), pfm_$inhibit_faults(3).

HP-UX Release 9.0: August 1992 -1- 675

•

•

pfm_$inhibit (3) pfm_$inhibit (3)

NAME
pfm_$inhibit - inhibit asynchronous faults

SYNOPSIS (C)
#include <idl/c/base.h>
#include <ppfm.h>

void pfm_$inhibit(void);

SYNOPSIS (PASCAL)
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/pfm.ins.pas';

procedure pfm_$inhibit;

Remarks
To view this manual entry via the man(1) command, use the function name shown above without the "$"
character.

DESCRIPTION
pfm_$inhibit () prevents asynchronous faults from being passed to the calling process. While faults
are inhibited, the operating system holds at most one asynchronous fault. Consequently, a call to
pfm_$ inhib it () can result in the loss of some signals. For that and other reasons, it is good practice to
inhibit faults only when absolutely necessary.

On systems with Concurrent Programming Support (CPS), pfm_$inhibit () also disables time-sliced
task switching. It does not prevent task switching due to voluntary task yielding, either explicitly via
task_$yield () or implicitly via other functions that yield. Do not use pfm_$inhibit () for critical
region concurrency control; use the mutex_ facility instead.

See the reference description of pfm_$init () for a list of the C signals that the PFM package intercepts.

NOTE
This call has no effect on the processing of synchronous faults such as floating-point and overflow excep­
tions, access violations, and so on .

SEE ALSO
pfm_$enable(3), pfm_$inhibitjaults(3), pfm_$init(3).

Concurrent Programming Support Reference.

676 -1- HP-UX Release 9.0: August 1992

NAME
pfm_$inhibit3aults - inhibit asynchronous faults but allow time-sliced task switching

SYNOPSIS
C Syntax:

#include <idl/c/base.h>
#include <ppfm.h>

void pfm_Sinhibit_faults(void);

Pascal Syntax
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/pfm.ins.pas';

procedure pfm_Sinhibit_faultsi

Remarks
To view this manual entry via the man(1) command, use the function name shown above without the "$"
character.

DESCRIPTION
pfm_Sinhibit_faults () prevents asynchronous faults (except for time-sliced task switching) from
being passed to the calling process. While faults are inhibited, the operating system holds at most one
asynchronous fault. Consequently, a call to pfm_Sinhibit_faults () can result in the loss of some
signals. For that and other reasons, it is good practice to inhibit faults only when absolutely necessary.

See the reference description of p fm_S ini t () for a list of the C signals that the PFM package intercepts.

NOTE
This call has no effect on the processing of synchronous faults such as floating-point and overflow excep­
tions, access violations, and so on.

SEE ALSO
pfm_$enable_faults(3), pfm_$inhibit(3), pfm_$init(3).

HP-UX Release 9.0: August 1992 -1- 677

I

I

pfm_inhihit (3) pfm_inhihit(3)

NAME
pfm_inhibit - pointer entry to conflicting online manual entries

DESCRIPTION

678

This manual entry is provided for accessing manual entries whose online versions have conflicting
filenames due to maximum name length imposed by short-filename (14-character maximum) systems.

The following message is provided for online manual users:

NOTE

You have selected a name that conflicts with one or more other names. To display the manual entry
you want, enter the man command again as follows:

To view this entry: Use this command:

pfm_inhibit man pfm_inhib

pfm_inhibit3aults man pfm_inhib3

-1- HP-UX Release 9.0: August 1992

NAME
pfm_$init - initialize the process fault manager (PFM) package

SYNOPSIS
C Syntax

#include <idl/c/base.h>
#include <ppfm.h>

void pfm_$init(
uns i gned long flags)

Remarks
To view this manual entry via the man(l) command, use the function name shown above without the "$"
character.

DESCRIPTION
pfm_$ini t () initializes the PFM package. The {lags parameter indicates which initialization activities to
perform.

Currently, only one {lags value is valid:

pfm_$init_signal_handlers()
Intercept C signals and convert them to PFM signals. The following HP-UX signals are
intercepted: SIGINT, SIGILL, SIGFPE, SIGTERM, SIGHUP, SIGQUIT, SIGTRAP,
SIGBUS, SIGSEGV, and SIGSYS. On MS-DOS systems, the first four of these, plus
SIGABRT, are intercepted.

On Apollo systems, the PFM package does not require initialization, and pfm_$ ini t () is a no-op. On
all other systems, applications that use the PFM package should invoke pfm_$ ini t () before invoking
any other NCS calls.

HP-UX Release 9.0: August 1992 -1- 679

I

I

NAME
pfm_$intro - fault management

SYNOPSIS (C)
C Syntax

#include <idl/c/base.h>
#include <ppfm.h>

Pascal Syntax
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/ppfm.ins.pas';

Remarks
To view this manual entry via the man(l) command, use the function name shown above without the "$"
character.

DESCRIPTION
pfm_$ () calls allow programs to manage signals, faults, and exceptions by establishing cleanup handlers.

NCS software products include a portable subset of the Apollo Domain/OS pfm_$ () calls:

pfm_$cleanup () Establish a cleanup handler.

pfm_$enable () Enable asynchronous faults.

pfm_$enable_faults()
Enable asynchronous faults after faults have been inhibited via
pfm_$inhibit_faults().

pfm_$inhibit () Inhibit asynchronous faults.

pfm_$inhibit_faults()
Inhibit asynchronous faults but allow time-sliced task switching.

pfm_$ini t () Initialize the PFM package.

pfm_$reset_cleanup()
Reset a cleanup handler.

pfm_$rls_cleanup()
Release cleanup handlers.

pfm_$signal () Signal the calling process.

Cleanup Handlers
A cleanup handler is a piece of code that allows a program to terminate gracefully when it receives an error.
A cleanup handler begins with a pfm_$cleanup () call and usually ends with a call to
pfItL$signal () or pgm_$exit (), though it can also simply continue back into the program after the
cleanup code.

Include Files in NCS Software

680

This section describes the include files for the pfm_ interface provided with NCS software.

Version 1.1 ofNCK and NIDL, contained a <pfm.h> include file that supports the std_$call () calling
convention of Apollo SR9 system software, whereby all parameters of a call are passed by reference rather
than by value. For example, a call in C source code to pfm_$reset_cleanup () resembles:

pfm_$reset_cleanup (crec, st)

even though both crec and st are passed by reference to the implementation of
pfm_$reset_cleanup (). On Apollo SR9 systems, the C compiler treats these parameters as though
each was preceded by the address operator &. On SunOS, ULTRIX, and VMS systems with Version 1.1 of
NCK or NIDL, the <pfm.h> file defines macros that convert these parameters to &crec and &st.

In Version 1.5.1 ofNCK and NIDL, a new include file for the pfm_$ () calls, <ppfm. h>, is provided. This
is the include file for the "portable PFM" interface, an interface in the style of ANSI C. When an application
invokes a call through this interface, all output parameters must be preceded by an explicit &. For exam­
ple, a call to pfm_$reset_cleanup () resembles:

-1- HP-UX Release 9.0: August 1992

pfm_$intro (3) pfm_$in tro (3)

pfm_$reset_cleanup (&crec, &st)

since cree and st are output parameters passed by reference. This calling convention is more natural to
most C programmers.

The previous include file, <pfm. h>, is still available, providing backward compatibility for programs coded
according to the std_$call () convention. However, new programs should include <ppfm. h>.

Include Files in Apollo SRI0 Domain/OS Software
In Apollo SRlO system software, the include file <apollo/pfm.h>, defines the pfm_ interface in the
style of ANSI C.

Beginning at SRlO.2, the file <apollo/ppfm.h>, which includes <apollo/pfm.h> is also provided;
/usr/include/ppfm.h is a symbolic link pointing to /usr/include/apollo/ppfm.h.

Thus, the directive

#include <ppfm.h>

can be used both on Apollo SRlO.2 systems and on other systems with Version 1.5.1 ofNCK or NIDL (includ­
ing HP-UX Releases 8.0 and 8.05).

The signatures for pfm_$reset_cleanup () and pfm_$rls_cleanup () in the SR10.0 and SR10.1
versions of <apollo/pfm.h> are incorrect. They have been corrected at SR10.2. These corrections may
require you to modify an application developed on SR10.0 and SR10.1 Apollo systems in order to compile it
on an SR10.2 Apollo system. See the reference descriptions of these calls for details.

Constants
pfm_$init_signal_handlers

A constant used as the {lags parameter to pfm_$init (), causing C signals to be intercepted and
converted to PFM signals.

Data Types
pfm_$cleanup_rec

An opaque data type for passing process context among cleanup handler calls.

status_$t
A status code. Most NCS calls supply their completion status in this format. The status_$t type
is defined as a structure containing a long integer:

struct status_$t
long all;
}

However, the calls can also use status_$t as a set of bit fields. To access the fields in a returned
status code, assign the value of the status code to a union defined as follows:

typedef union {
struct {

unsigned fail : 1,
subsys : 7,
modc : 8;

short
} s;
long all;

status_u;

code;

where:

all All 32 bits in the status code. If all is equal to status_$ok, the call that supplied
the status was successful.

fail If this bit is set, the error was not within the scope of the module invoked, but occurred
within a lower-level module.

subsys This indicates the subsystem that encountered the error.

modc This indicates the module that encountered the error.

HP-UX Release 9.0: August 1992 -2- 681

•

•

pfm_$intro (3) pfm_$intro (3)

code This is a signed number that identifies the type of error that occurred.

Status Codes
pfm_$bad_rls_order

Attempted to release a cleanup handler out of order.

pfm_$cleanup_not_found
There is no pending cleanup handler.

pfm_$cleanup_set
A cleanup handler was established successfully.

pfm_$cleanup_set_signalled
Attempted to use pfm_$cleanup_set as a signal.

pfm_$1nvalid_cleanup_rec
Passed an invalid cleanup record to a call.

pfm_$no_space
Cannot allocate storage for a cleanup handler.

status_$ok
The call was successful.

SEE ALSO
pfm_$cleanup(3), pfm_$enable(3), pfm_$enablejaults(3), pfm_$inhibit(3), pfm_$inhibitjaults(3),
pfm_$init(3), pfm_$reset_cleanup(3), pfm_$rls_cleanup(3), pfm_$signal(3) .

682 -3- HP-UX Release 9.0: August 1992

NAME
pfm_$reset_cleanup - reset a cleanup handler

SYNOPSIS
C Syntax

#include <idl/c/base.h>
#include <ppfm.h>

void pfm_$reset_cleanup(
pfm_$cleanup_rec *cleanup_record,
status_$t *status) -

Pascal Syntax
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/pfm.ins.pas'i

procedure pfm_$reset_cleanup(

Remarks

in cleanup_record: pfm_$cleanup_rec i
out status: status_$t);

To view this manual entry via the man(l) command, use the function name shown above without the "$"
character.

DESCRIPTION
pfm_$reset_cleanup () re-establishes the cleanup handler last entered so that any subsequent errors
enter it first. This procedure should only be used within cleanup handler code.

A implicitly performs a thereby undoing the implicit that performs.

cleanuPJecord A record of the context at the cleanup handler entry point. It is supplied by
pfm_$cleanup when the cleanup handler is first established.

status The completion status.

NOTE
This note concerns use of pfm_$reset_cleanup () on Apollo systems.

In the SRlO.O and SR10.1 versions of <apollo/pfm.h>, the first argument of
pfm_$reset_cleanup () is incorrectly preceded by an ampersand (&). In the SRlO.2 version, the first
argument is correctly preceded by an asterisk (*).

Programs compiled under SRlO.O or SR10.1 will continue to run correctly, since the implementation of
pfm_$reset_cleanup () has not changed, but you may need to modify these programs in order to com­
pile them under SR10.2. Invocations of pfm_$reset_cleanup () that resembled:

pfm_$reset_cleanup(crec, &st)

when compiled under SR10.0 and SR10.1 must be modified to

pfm_$reset_cleanup(&crec, &st)

when compiled under SR10.2.

HP-UX Release 9.0: August 1992 -1- 683

•

I

NAME
pfm_$rls_cleanup - release a cleanup handler

SYNOPSIS
C Syntax

#include <idl/c/base.h>
#include <ppfm.h>

void pfm_$rls_cleanup(
pfm_$cleanup_rec *cleanup_record,
status_$t *status)

Pascal Syntax
%include risysiinsibase.ins.pas';
%include '/sys/ins/pfm.ins.pas';

procedure pfm_$rls_cleanup(
in cleanup_record: pfm_$cleanup_rec;
out status: status_$t);

Remarks
To view this manual entry via the man(1) command, use the function name shown above without the "$"
character.

DESCRIPTION
pfm_$rls_cleanup () releases the cleanup handler associated with cleanup_record ().

On Apollo systems, this call releases the specified cleanup handler and all cleanup handlers established
after it.

On other systems, this call releases only the specified cleanup handler, and only the most recently esta­
blished cleanup handler can be released.

If you are concerned about portability, use pfm_$rls_cleanup () only to release the most recent
cleanup handler.

cleanupJecord specifies the cleanup record to be released by the cleanup handler.

status is the completion status.

ERRORS
pfm_$bad_rls_order

The caller attempted to release a cleanup handler other than the one most recently established. On
Apollo systems, this status is only a warning; the specified cleanup handler is released, along with
any established after it. On other systems, this status probably indicates a user programming error;
no cleanup handlers are released, and continued execution may result in more serious errors.

NOTE

684

This note concerns use of pfm_$rls_cleanup () on Apollo systems.

In the SR10.0 and SR10.1 versions of <apollo/pfm.h:>, the first argument of pfm_$rls_cleanup ()
is incorrectly preceded by an ampersand (&). In the SR10.2 version, the first argument is correctly preceded
by an asterisk (*).

Programs compiled under SR10.0 or SR10.1 will continue to run correctly, since the implementation of
pfm_$rls_cleanup () has not changed, but you may need to modify these programs in order to compile
them under SR10.2. Invocations of pfm_$rls_cleanup () that resembled:

pf~$rls_cleanup(crec, &st)

when compiled under SRlO.O and SRlO.1 must be modified to:

pfm_$rls_cleanup(&crec, &st)

when compiled under SR10.2.

-1- HP-UX Release 9.0: August 1992

pfm_$signal (3)

NAME
pfm_$signal - signal the calling process

SYNOPSIS
C Syntax

#include <idl/c/base.h>
#include <ppfm.h>

void pfm_$signal (status_$t faulCsignal)

C Syntax
%include '/sys/ins/base.lns.pas';
%include '/sys/ins/pfm.ins.pas';

procedure pfm_$signal (in faulCsignal: status_$t);

Remarks

pfm_$signal (3)

To view this manual entry via the man(l) command, use the function name shown above without the "$"
character.

DESCRIPTION
pfm_$signal () signals the fault specified by fault_signal to the calling process. It is usually called to
leave cleanup handlers.

fault_signal A fault code.

NOTE
This call does not return when successful.

HP-UX Release 9.0: August 1992 -1- 685

I

I

NAME
pgm_$exit() - exit a program

SYNOPSIS
C Syntax

#include <idl/c/base.h>
#include <ppfm.h>

void pg.m_$exit(void)

Pascal Syntax
%include '/sys/ins/base.ins.pas'i
%include '/sys/ins/pg.m.ins.pas'i

procedure pgm_$exit;

Remarks
To view this manual entry via the man(l) command, use the function name shown above without the "$"
character.

DESCRIPTION
pgm_$exi t () exits from the calling program.

Any cleanup handlers that have been established are executed in sequence from the most recently esta­
blished to the first.

On Apollo systems, this call invokes pfm_$signal () with a fault code equal to the last severity level set
by pgm_$set_severity(), or pg.m_$ok() if pgm_$set_severity() was not called.

On other systems, this call invokes pfm_$signal () with a fault code of status_$ok.

SEE ALSO
pfm_$cleanup(3), pfm_$signal(3).

686 -1- HP-UX Release 9.0: August 1992

pgm_$intro (3)

NAME
pgm_$intro() - program management

SYNOPSIS
C Syntax

#include <idl/c/base.h>
#include <ppfm.h>

Pascal Syntax
%include '/sys/ins/base.ins.pas'i
%include '/sys/ins/pg.m.!ne.pae';

Remarks

pgm_$intro (3)

To view this manual entry via the man(1) command, use the function name shown above without the "$"
character.

DESCRIPTION
A portable version of the Apollo Domain/OS pgItL$exi t () call is supplied with Nes software products.
The include file for the "portable PFM" interface contains a declaration for this call.

HP-UX Release 9.0: August 1992 -1- 687

I

I

popen(3S) popen(3S)

NAME
popen(), pclose() - initiate pipe I/O to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen(const char * command, const char *type);

int pclose(FILE *stre~);

DESCRIPTION
popen () creates a pipe between the calling program and a command to be executed by the POSIX shell,
/bin/pos ix/ sh (see sh-posix(1)).

The arguments to popen () are pointers to null-terminated strings containing, respectively, a shell com·
mand line and an I/O mode, either r for reading or w for writing.

popen () returns a stream pointer such that one can write to the standard input of the command if the I/O
mode is w by writing to the file stream; and one can read from the standard output of the command if the
I/O mode is r by reading from the file stream.

A stream opened by popen () should be closed by pclose (), which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type r command can be used as an input filter and a type w command as
an output filter.

RETURN VALUE
popen () returns a NULL pointer if files or processes cannot be created. The success of the command exe­
cution can be checked by examining the return value of pc lose ().

pc lose () returns -1 if stream is not associated with a popen () ed command, or 127 if
/bin/posix/sh could not be executed for some reason.

WARNINGS
If the original and popen () ed processes concurrently read or write a common file, neither should use
buffered I/O because the buffering will not work properly. Problems with an output filter can be forestalled
by careful buffer flushing, e.g., with fflush (); seefclose(3S).

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

STANDARDS CONFORMANCE
popen () : AES, SVID2, XPG2, XPG3, XPG4, POSIX.2

pclose () : AES, SVID2, XPG2, XPG3, XPG4, POSIX.2

688 -1- HP-UX Release 9.0: August 1992

printf(3S) printf(3S)

NAME
printf(), nl_printfO, fprintf(), nl_fprintf(), sprintf(), nl_sprintf() - print formatted output

SYNOPSIS
#inc1ude <stdio.h>

int printf(const char *format, /* [arg,] */ •.• };

int n1-printf(const char *format, /* [arg,] */ ••• };

int fprintf(FILE *stream, const char *for.mat, /* [arg,] */ •.• };

int n1_fprintf(FILE *stream, const char ~for.mat, i* [arg,] */

int sprintf(char *s, const char *format, /* [arg,] */ ••• };

int n1_sprintf(char *s, const char *format, 1* [arg,] *1 ... };
DESCRIPTION

printf () and n1-printf () place output on the standard output streamstdout.

fprintf () and n1_fprintf () place output on the named output stream.

\ .
• • • I I

sprintf () and n1_sprintf () place "output", followed by the null character (\ 0), in consecutive
bytes starting at *s. It is the user's responsibility to ensure that enough storage is available.

Each function converts, formats, and prints its args under control of the format. format is a character
string containing two types of objects: plain characters that are copied to the output stream, and conver­
sion specifications, each of which results in fetching zero or more args. The results are undefined if there
are insufficient args for the format. If the format is exhausted while args remain, excess args are ignored.

Each conversion specification is introduced by the character % or 9-011,$, where n is a decimal integer in the
range 1 through {NL_ARGMAX} (NL_ARGMAX is defined in <1 imi t s .11». The 9-011, $ construction indi­
cates that this conversion should be applied to the nth argument, rather than to the next unused one.

An argument can be referenced by a %n$ specification more than once. The two forms of introducing a
conversion specification, % and 9-011,$, cannot be mixed within a single format string. Improper use of%n$
in a format string results in a negative return value.

Mter the % or %n $, the following appear in sequence:

1. Zero or more flags, which modify the meaning of the conversion specification.

2. An optional string of decimal digits to specify a minimum field width in bytes. If the converted
value has fewer characters than the field width, it is be padded on the left (or right, if the left­
adjustment flag (-), described below, has been given) to the field width. If the field width is pre­
ceded by a zero, the string is right adjusted with zero-padding on the left (see the leading-zero
flag (0) described below).

3. A precision that gives the minimum number of digits to appear for the d, i, 0, U, x, or X conver­
sions, the number of digits to appear after the radix character for the e and f conversions, the
maximum number of significant digits for the g conversion, or the maximum number of bytes to
be printed from a string in the s conversion. The precision takes the form of a period (.) fol­
lowed by a decimal digit string; a null digit string is treated as zero.

4. An optional 1 (the letter "ell"), specifying that a following d, i, 0, u, X, or X conversion charac­
ter applies to a long integer arg; an optional 1 specifying that a following n conversion charac­
ter applies to a pointer to a long integer arg; an optional h, specifying that a following d, i, 0, u,
x, or X conversion character applies to a short integer arg; an optional h specifying that a fol­
lowing n conversion character applies to a pointer to a short integer arg; an optional L specify­
ing that a following e, E, f, g, or G conversion character applies to a long double arg. An 1, h
or L before any other conversion character is ignored.

5. A conversion character that indicates the type of conversion to be applied.

A field width or precision can be indicated by an asterisk (*) instead of a digit string. In this case, an
integer arg supplies the field width or precision. The arg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width, or precision, or both must appear in that
order before the arg, if any, to be converted. A negative field width is taken as a - flag followed by a

HP-UX Release 9.0: August 1992 -1- 689

I

I

printf(3S) printf(3S)

690

positive field width. A negative precision is taken as if the precision were omitted. Format strings con­
taining 9-011,$ conversion specifications can also indicate a field width or precision by the sequence *n$.
The n indicates the position of an integer argo With the *n $ sequence, the args specifying field width or
precision can appear before or after the arg to be converted.

The flag characters and their meanings are:

+
blank

a

The resulting conversion is left=justificd "("vi thin the field.

The resulting signed conversion always begins with a sign (+ or -).

If the first character of a signed conversion is not a sign, a blank is prefixed to the result.
This implies that if the blank and + flags both appear, the blank flag is ignored.

This flag specifies that the value is converted to an ((alternateform". For c, d, i, s, n,
and u conversions, the flag has no effect. For ° conversion, it increases the precision to
force the first digit of the result to be a zero. For x or X conversion, a non-zero result
has Ox or OX prefixed to it. For a p conversion, a non-zero result has Ox prefixed to
it. For e, E, f, g, and G conversions, the result always contains a radix character, even
if no digits follow the radix (normally, a radix character appears in the resulting conver­
sions only if followed by a digit). For g and G conversions, trailing zeroes are not
removed from the result (which they normally are).

Leading zeros (following any indication of sign or base) are used to pad to the field width
for all conversion characters. No space padding is performed. If both the 0 and -
appear, the 0 flag is ignored. For d, i, 0, u, p, x, and X, conversions, if a precision is
specified, the 0 flag is ignored.

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d and i are identical), unsigned
octal (0), decimal (u), or hexadecimal notation (x and X), respectively; the letters
abcdef are used for x conversion and the letters ABCDEF for X conversion. The
precision specifies the minimum number of digits to appear; if the value being con­
verted can be represented in fewer digits, it is expanded with leading zeroes. (For
compatibility with older versions, padding with leading zeroes can alternatively be
specified by inserting a zero in front of the field width. This does not imply an octal
value for the field width.) The default precision is 1. The result of converting a
zero value with a precision of zero is a null string.

f The double arg is converted to decimal notation in the style [-]dddrddd, where r
is the radix character. The number of digits after the radix character is equal to
the precision specification. If the precision is missing, six digits are output. If the
precision is explicitly zero, no radix character appears.

e,E The double arg is converted in the style [-]drddde±ddd, where r is the radix
character. There is one digit before the radix character and the number of digits
after it is equal to the precision; when the precision is missing, six digits are pro­
duced; if the precision is zero, no radix character appears. The E format code pro­
duces a number with E instead of e introducing the exponent. The exponent
always contains at least two digits.

g,G

c

C

The double arg is printed in style f or e (or in style E in the case of a G format
code), with the precision specifying the number of significant digits. The style used
depends on the value converted: style e is used only if the exponent resulting from
the conversion is less than - 4 or greater than or equal to the precision. Trailing
zeroes are removed from the fractional part of the result; a radix character appears
only if it is followed by a digit.

The int arg is converted to an unsigned char, and the resulting character is printed.

The wchar_t arg is converted to an array of bytes representing the single wide
character according to the setting of LC_CTYPE. Resulting bytes are printed. If
the precision is given, it is ignored. If the field width would otherwise cause the
wide character to be split, the wide character is printed and the field width is
adjusted upward.

-2- HP-UX Release 9.0: August 1992

printf(3S) printf(3S)

s

s

p

n

The arg is taken to be a string (character pointer) and characters from the string
are printed until a null character (\ 0) is encountered or the number of bytes indi­
cated by the precision specification is reached. If the precision is missing, it is
taken to be infinite, so all characters up to the first null character are printed. A
NULL value for arg yields undefined results.

The arg is taken to be a pointer to a wide character string (wchar_t *). Wide
characters from the string are converted to an array of bytes representing the
string of wide characters according to the setting of LC_CTYPE. Resulting bytes
are printed until a null wide character «wchar_t) 0) is encountered or the
number of bytes indicated by the precision is reached. If the precision is missing, it
is taken to be infinite, so all wide characters up to the first null wide character are
printed. If the field width would otherwise cause the last multibyte character to be
split, the last wide character is not printed. A NULL value for arg yields undefined
results.

The value of a pointer to void arg is printed as a sequence of unsigned hexadecimal
numbers. The precision specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits, it is expanded with lead­
ing zeroes. The default precision is 1. The result of converting a zero value with a
precision of zero is a null string.

A pointer to an integer arg is expected. This pointer is used to store the number of
bytes printed on the output stream so far by this call to the function. No argument
is converted.

% Print a %; no argument is converted.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a conversion
is wider than the field width, the field is expanded to contain the conversion result.

Characters generated by printf (), fprintf (), nlJ)rintf (), and nl_fprintf () are printed
as if putc () had been called (see putc(3S».

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category affects the following features:

• Plain characters within format strings are interpreted as single and/or multi-byte characters.

• Field width is given in terms of bytes. As characters are placed on the output stream, they are
interpreted as single or multi-byte characters and the field width is decremented by the length of
the character.

• Precision is given in terms of bytes. As characters are placed on the output stream, they are inter­
preted as single or multi-byte characters and the precision is decremented by the length of the
character.

• The return value is given in terms of bytes. As characters are placed on the output stream, they
are interpreted as single or multi-byte characters and the byte count that makes up the return
value is incremented by the length of the character.

The LC_NUMERIC category determines the radix character used to print floating-point numbers.

International Code Set Support
Single-byte character code sets are supported. Multi-byte character code sets are also supported as
described in the LC_CTYPE category above.

RETURN VALUE
Each function returns the number of bytes transmitted (excluding the \0 in the case of sprintf () and
nl_sprintf {», or a negative value if an output error was encountered. Improper use of 9-on $ in a for­
mat string results in a negative return value.

ERRORS
printf (), fprintf (), nlJ)rintf (), and nl_fprintf () fail if either the stream is unbuffered or
stream's buffer needed to be flushed causing an underlying write () call to be invoked (see write(2», and:

HP-UX Release 9.0: August 1992 -3- 691

I

I

printf(3S) printf(3S)

[EAGAIN]

[EBADF]

[EFBIG]

LEINTR]

[EIO]

[ENOSPC]·

[EPIPE]

The O_NONBLOCK flag is set for the file descriptor underlying stream and the pro­
cess would be delayed in the write operation.

The file descriptor underlying stream is not a valid file descriptor open for writing.

An attempt was made to write to a file that exceeds the process's file size limit or the
maximum file size (see ulimit(2)).

A signal was caught during the wr it e () system call.

The process is in a background process group and is attempting to write to its control­
ling terminal, TOSTOP is set, the process is neither ignoring nor blocking the
SIGTTOU signal, and the process group of the process is orphaned.

There was no free space remaining on the device containing the file.

An attempt is made to write to a pipe or FIFO that is not open for reading by any pro­
cess. A SIGPIPE signal is also sent to the process.

Additional errno values can be set by the underlying write () function (see write(2)).

EXAMPLES
To print a date and time in the form "Sunday, JUly 3, 10:02", where weekday and month are pointers to
null-terminated strings:

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

To print 1t to 5 decimal places:

printf("pi = %.5f", 4 * atan(1.0»;

To create a language-independent date-and-time printing routine write:

printf{format, weekday ,month,day ,hour,min,2,2);

For American usage, format would point to the string:

"%l$s, %2$s %3$d, %4$*6$.*7$d:%5$*6$.*7$d"

and result in the output:

II Sunday, July 3, 10:02"

For German usage, the string:

"%l$s, %3$s %2$d, %4$*6$.*7$d:%5$*6$.*7$d"

results in the output:

Sonntag, 3 Juli 10:02

WARNINGS
nl""'printf (), nl_fprintf (), and nl_sprintf () are provided for historical reasons only. Their
use is not recommended. Use printf (), fprintf (), and sprintf () instead.

Notice that with the c conversion character, an int arg is converted to an unsigned char. Hence, whole
multi-byte characters cannot be printed using a single c conversion character.

A precision with the s conversion character might result in the truncation of a multi-byte character.

AUTHOR
printf (), fprintf (), and sprintf () were developed by AT&T and HP. nl.....printf (),
nl_fprintf (), and nl_sprintf () were developed by HP.

SEE ALSO
ecvt(3C), setlocale(3C), putc(3S), scanf(3S), stdio(3S).

STANDARDS CONFORMANCE

692

printf () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
fprintf (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

nl_fprintf (): XPG2
nl--printf (): XPG2

-4- HP-UX Release 9.0: August 1992

printf(3S) printf(3S)

nl_sprintf():XPG2
sprintf (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

I

HP-UX Release 9.0: August 1992 -5- 693

I

printmsg(3C) printmsg(3C)

NAME
printmsgO, fprintmsg(), sprintmsg() - print formatted output with numbered arguments

SYNOPSIS
#include <stdio.h>

int printmsg(const char *format, /* [arg,] */ •••)i

int fprintmsg(FILE *stream, const char *format, /* [arg,] */ •••)i

int sprintmsg(char *s, const char *format, /* [arg,] */ •••)i

DESCRIPTION
printmsg (), fprintmsg (), and sprintmsg () are derived from their counterparts in the printf(3S)
manual entry. The conversion character % can be replaced by %digits $. digits are decimal digits
representing a number n in the range (1- {NL_ARGMAX}) (NL_ARGMAX is defined in <limits .h», and
indicates that this conversion should be applied to the nth argument, rather than to the next unused one.
All other aspects of formatting are unchanged. All conversion specifications must contain the <?odigits $
sequence and the user must ensure correct numbering. All parameters must be used exactly once.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category affects the following features:

• Plain characters within format strings are interpreted as single and/or multi-byte characters.

• Field width is given in terms of bytes. As characters are placed on the output stream, they are
interpreted as single or multi-byte characters and the field width is decremented by the length of
the character.

• Precision is given in terms of bytes. As characters are placed on the output stream, they are inter­
preted as single or multi-byte characters and the precision is decremented by the length of the
character.

• The return value is given in terms of bytes. As characters are placed on the output stream, they
are interpreted as single- or multi-byte characters and the byte count that makes up the return
value is incremented by the length of the character.

The LC_NUMERIC category determines the radix character used to print floating-point numbers.

International Code Set Support
Single-byte character code sets are supported. Multi-byte character code sets are also supported as
described in the LC_CTYPE category above.

EXAMPLES
To create a language-independent date and time printing routine, use

printmsg(format, weekday, month, day, hour, min)i

For American usage format would point to the string:

%l$s, %2$s %3$d, %4$d:%S$.2d

resulting in the output:

Sunday, July 3, 10:02

For German usage, the string:

%l$s, %3$d %2$s %4$d:%S$.2d

results in the following output:

Sonntag, 3 Juli 10:02

provided the proper strings have been read.

WARNINGS

694

These routines are provided for historical reasons only. Use of the print{(3S) equivalent routines printf,
fprintf (), and sprintf () is recommended.

-1- HP-UX Release 9.0: August 1992

printmsg(3C) printmsg(3C)

AUTHOR
printmsg () was developed by lIP.

SEE ALSO
catgetmsg(3C), setlocale(3C), printf(3S), hpnls(5).

I

HP-UX Release 9.0: August 1992 -2- 695

I

ptsname (3C) ptsname (3C)

NAME
ptsname - get the name of a slave pty

SYNOPSIS
char *ptsname(int fildes);

Remarks:
pt sname () is usefi..ll only on systems that follow the insf(lM) naming conventions for ptys.

DESCRIPTION
The passed parameter, fildes, is a file descriptor of an opened master pty. ptsname () generates the
name of the slave pty corresponding to this master pty. This means that their minor numbers will be the
same.

RETURN VALUE
Upon successful completion, ptsname () returns a string containing the the full path name of a slave pty.
Otherwise, a NULL pointer is returned. The return value may point to static data which is overwritten with
each call to pt sname () , so it should be copied if it is to be saved.

ERRORS
ptsname () fails and returns a NULL pointer under the following conditions:

• File descriptor does not refer to an open master pty.

• Request falls outside pty name-space.

• Pty device naming conventions have not been followed.

• pt sname () failed to find a match.

EXAMPLES
The following example gets the path of a slave pty corresponding to a master pty obtained through a pty
clone open.

int fd_master;
char *path;

fd_master = open("/dev/ptym/clone", O_RDONLY);
path = ptsname (fd_master);·

AUTHOR
ptsname () was developed by HP.

SEE ALSO
insf(1M), devnm(3), pty(7).

696 -1- HP-UX Release 9.0: August 1992

putc(3S) putc(3S)

NAME
putc(), putchar(), fputc(), putw() - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc(int c, FILE *stream);

int putchar(int c);

int fputc(int c, FILE *stream);

int putw(int w, FILE *stream);

DESCRIPTION
putc () Writes the character c onto the output stream at the position where the file pointer, if

defined, is pointing. put char (c) is defined as putc (c, stdout). putc () and
putchar () are defined both as macros and as functions.

fputc () Same as putc (), but is a function rather than a macro, and can therefore be used as an
argument. fputc () runs more slowly than putc (), but takes less space per invoca­
tion, and its name can be passed as an argument to a function.

putw () Writes the word (i.e., int in C) w to the output stream (at the position at which the file
pointer, if defined, is pointing). The size of a word is the size of an integer and varies from
machine to machine. pu tw () neither assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr, are by default buffered if the
output refers to a file and line-buffered if the output refers to a terminal. The standard error output
stream, stderr, is by default unbuffered, but use of freopen () (see fopen(3S» causes it to become
buffered or line-buffered. setbuf () or setvbuf () (see setbuf(3S» can be used to change the stream's
buffering strategy.

RETURN VALUE
On success, putc (), fputc (), and putchar () each return the value they have written. On failure,
they return the constant EOF, set the error indicator for the stream, and set errno to indicate the error.

On success, putw () returns o. Otherwise, a non-zero value is returned, the error indicator for the stream
is set, and errno is set to indicate the error.

ERRORS
putc (), putchar (), fputc (), and putw() fail if, either the stream is unbuffered or stream's buffer
needed to be flushed causing an underlying write () call to be invoked, and:

[EAGAIN]

[EBADF]

[EFBIG]

[EINTR]

[EIO]

[ENOSPC]

[EPIPE]

The O_NONBLOCK flag is set for the file descriptor underlying stream and the pro­
cess would be delayed in the write operation.

The file descriptor underlying stream is not a valid file descriptor open for writing.

An attempt was made to write to a file that exceeds the process's file size limit or the
maximum file size (see ulimit(2».

A signal was caught during the wr it e () system call.

The process is in a background process group and is attempting to write to its control­
ling terminal, TOSTOP is set, the process is neither ignoring nor blocking the
SIGTTOU signal, and the process group of the process is orphaned.

There was no free space remaining on the device containing the file.

An attempt is made to write to a pipe or FIFO that is not open for reading by any pro­
cess. A SIGPIPE signal is also sent to the process.

Additional errno values can be set by the underlying write () function (see write(2)).

WARNINGS
The putc () and putchar () routines are implemented as both library functions and macros. The
macro versions, which are used by default, are defined in <stdio .h>. To obtain the library function
either use a #undef to remove the macro definition or, if compiling in ANSI-C mode, enclose the function
name in parentheses or use the function address. The following example illustrates each of these methods:

HP-UX Release 9.0: August 1992 -1- 697

I

I

putc(3S) putc(3S)

#inc1ude <stdio.h>
#undef putc

main()
{

int (*put_char (» ();

return_va1=putc(c,fd);

return_va1=(putc) (c,fdl);

put_char = putchar;
} ;

Line buffering may cause confusion or malfunctioning of programs that use standard I/O routines but use
read () themselves to read from standard input. When a large amount of computation is done after print­
ing part of a line on an output terminal, it is necessary to ff1ush () (see (close(3S» the standard output
before beginning the computation.

The macro version of putc () incorrectly treats the argument stream with side effects. In particular, the
following call may not work as expected:

putc(c, *f++);

The function version of putc () or fputc () should be used instead.

Because of possible differences in word length and byte ordering, files written using put w () are machine­
dependent, and may not be readable by getw () on a different processor.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), getc(3S), fread(3S), printf(3S), puts(3S), setbuf(3S).

STANDARDS CONFORMANCE

698

putc (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
fputc (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

putchar (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
pu tw () : AES, SVID2, XPG2, XPG3, XPG4

-2- HP-UX Release 9.0: August 1992

putenv(3C) putenv(3C)

NAME
putenv() - change or add value to environment

SYNOPSIS
#ine1ude <std1ib.h>

int putenv(eonst ehar *string);

DESCRIPTION
string points to a string of the form name=value. putenv () makes the value of the environment vari­
able name equal to value by altering an existing variable or creating a new one. In either case, the string
pointed to by string becomes part of the environment, so altering the string changes the environment. The
space used by string is no longer used once a new string-defining name is passed to putenv ().

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of characters in string as single- and/or multi-byte
characters.

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
putenv () returns non-zero if it was unable to obtain enough space via ma110e () for an expanded
environment; otherwise it returns zero.

WARNINGS
putenv () manipulates the environment pointed to by environ, and can be used in conjunction with
getenv (). However, envp (the third argument to main) is not changed.

This routine uses ma110e () to enlarge the environment (see malloc(3C)).

Mter putenv () is called, environmental variables are not in alphabetical order.

A potential error is to call putenv () with an automatic variable as the argument, then exit the calling
function while string is still part of the environment.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

STANDARDS CONFORMANCE
putenv (): AES, SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 699

I

I

putpwent(3C) putpwent (3C)

NAME
putpwent() - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent(const struct passwd *p, FILE *f);

DESCRIPTION
putpwent () is the inverse of getpwent () (see getpwent(3C». Given a pointer to a passwd structure
as created by getpwent () (or getpwuid () or getpwnam (», putpwent () writes a line on the
streamf, which matches the format of /etc/passwd.

putpwent () ignores the audit ID and audit flag in the passwd structure; and does not create the
corresponding entries used in the secure password file U. secure/etc/passwd). put.spwent. ()
which produces entries that match the secure password file format, must be used to create these entries.

DIAGNOSTICS
putpwent () returns non-zero if an error was detected during its operation; otherwise it returns zero.

SEE ALSO
getpwent(3C), putspwent(3C), passwd(4), spasswd(4).

STANDARDS CONFORMANCE
putpwent (): SVID2, XPG2

700 -1- HP-UX Release 9.0: August 1992

puts(3S) puts(3S)

NAME
putsO, fputsO - put a string on a stream

SYNOPSIS
#inc1ude <stdio.h>

int puts (const char *s);

int fputs(const char *s, FILE *stream);

DESCRIPTION
puts () writes the null-terminated string pointed to by s, followed by a new-line character, to the standard
output stream stdout.

fputs () writes the null-terminated string pointed to by s to the named output stream, but does not
append a new-line character.

Neither function writes the terminating null character.

RETURN VALUE
Upon successful completion, puts () and fputs () return a non-negative number. Otherwise they
return EOF, set the error indicator for the stream, and set errno to indicate the error.

ERRORS
puts () and fputs () fail if, either the stream is unbuffered or stream's buffer needed to be flushed caus­
ing an underlying write () call to be invoked, and:

[EAGAIN] The flag is set for the file descriptor underlying stream and the process would be
delayed in the write operation.

[EBADF]

[EFBIG]

[EINTR]

[EIO]

The file descriptor underlying stream is not a valid file descriptor open for writing.

An attempt was made to write to a file that exceeds the process's file size limit or the
maximum file size (see ulimit(2)).

A signal was caught during the wr i t e () system call.

The process is in a background process group and is attempting to write to its control­
ling terminal, TOSTOP is set, the process is neither ignoring nor blocking the
SIGTTOU signal, and the process group of the process is orphaned.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by any pro­
cess. A SIGPIPE signal is also sent to the process.

Additional errno values may be set by the underlying wr i t e () function (see write(2)).

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
puts () appends a new-line character; fputs () does not.

STANDARDS CONFORMANCE
puts (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

fputs (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -1- 701

I

I

putspwent (3C) putspwent (3C)

NAME
putspwent() - write secure password file entry

SYNOPSIS
#include <pwd.h>

int putspwent(const struct s-passwd *p, FILE *f);

DESCRIPTION
putspwent () is the inverse of getspwent () (see getspwent(3C». Given a pointer to a s-passwd
structure, as created by getspwent (), putspwent () writes a line on the stream{, which matches the
format of / • secure/ etc/passwd.

RETURN VALUE
putspwent () returns non-zero if it detects an error during its operation; otherwise it returns a value of
zero.

AUTHOR
putspwent () was developed by HP.

SEE ALSO
getpwent(3C), getspwent(3C), putpwent(3C), spasswd(4).

702 -1- HP-UX Release 9.0: August 1992

putwc(3C)

NAME
putwcO, putwcharO, fputwcO - put a wide character on a stream file

SYNOPSIS
#inelude <wehar.h>

wint_t putwe(wint_t we, FILE *stream);

wint_t putwehar(wint_t we);

wint_t fputwe(wint_t we, FILE *stream);

Remarks:

putwc(3C)

These functions are compliant with the XPG4 Worldwide Portability Interface wide-character I/O functions.
They parallel the 8-bit character I/O functions defined in pute(3S) .

DESCRIPTION
putwe () Writes the character corresponding to the wide character we onto the output stream at the

position where the file pointer is pointing. putwehar (we) is defined as putwe (we,
stdout). putwe () and putwehar () are defined both as macros and as functions.

fputwe () Behaves like putwe (), but is a function rather than a macro, and can therefore be used as
an argument.

Output streams, with the exception of the standard error stream stderr, are by default buffered if the
output refers to a file and line-buffered if the output refers to a terminal. The standard error output
stream, stderr, is by default unbuffered, but use of freopen () (see (open(3S» causes it to become
buffered or line-buffered. setbuf () or setvbuf () (see setbu{(3S» can be used to change the stream's
buffering strategy.

Definitions for these functions, the type winCt and the value WEOF are provided in the <wehar. h:>
header.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines how wide character conversions are done.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
On success, putwe (), fputwe (), and putwehar () each return the wide character corresponding to
the value they have written. On failure, they return the constant WEOF, set the error indicator for the
stream, and set errno to indicate the error.

ERRORS
putwe (), putwehar (), and fputwe () fail if either the stream is unbuffered, or stream's buffer needed
to be flushed causing an underlying write () call to be invoked, and:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the pro­
cess would be delayed in the write operation.

[EBADF]

[EFBIG]

[EINTR]

[EIO]

[ENOSPC]

[EPIPE]

[EILSEQ]

The file descriptor underlying stream is not a valid file descriptor open for writing.

An attempt was made to write to a file that exceeds the process's file size limit or the
maximum file size (see ulimit(2».

A signal was caught during the wr it e () system call.

The process is in a background process group and is attempting to write to its control­
ling terminal, TOSTOP is set, the process is neither ignoring nor blocking the
SIGTTOU signal, and the process group of the process is orphaned.

There was no free space remaining on the device containing the file.

An attempt is made to write to a pipe or FIFO that is not open for reading by any pro­
cess. A SIGPIPE signal is also sent to the process.

The wide character we does not correspond to a valid character.

HP-UX Release 9.0: August 1992 -1- 703

I

I

putwc(3C) putwc(3C)

Additional errno values can be set by the underlying wri te () function (see write(2)).

WARNINGS
putwc () and putwchar () are implemented both as library functions and as macros. The macro ver­
sions, \l/hich are used by default, are defined in ,v;rcnar. h>. To obtaitJ. the library function either use a
#undef to remove the macro definition or, if compiling in ANSI-C mode, enclose the function name in
parentheses or use the function address. The following example illustrates each of these methods:

#include <wchar.h>
#undef putwc

main ()
{

return_val=putwc(wc,fd);

return_val = (putwc) (wc,fdl);

put_wchar = putwchar;
} ;

Line buffering may cause confusion or malfunctioning of programs that use wide character 1/0 routines but
use read () themselves to read from standard input. When a large amount of computation is done after
printing part of a line on an output terminal, it is necessary to fflush () (see fclose(3S)) the standard
output before beginning the computation.

The macro version of putwc () incorrectly treats the argument stream with side effects. In particular, the
following call may not work as expected:

putwc(wc, *f++);

The function version of putwc () or fputwc () should be used instead.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), getwc(3C), fread(3S), printf(3S), fputws(3C), setbuf(3S).

STANDARDS CONFORMANCE
putwc (): XPG4

fputwc (): XPG4

pu twchar () : XPG4

704 -2- HP-UX Release 9.0: August 1992

qsort(3C)

NAME
qsort() - quicker sort

SYNOPSIS
#include <stdlib.h>

void qsort(
void *base,
size_t nel,
size_t size,
int (*compar) (const void *, const void *)

) ;

DESCRIPTION
qsort () is an implementation of the quicker-sort algorithm. It sorts a table of data in place.

base

nel

size

Pointer to the element at the base of the table.

Number of elements in the table.

Size of each element in the table.

qsort(3C)

compar Name of the comparison function, which is called with two arguments that point to the
elements being compared. The function passed as compar must return an integer less
than, equal to, or greater than zero, according to whether its first argument is to be con­
sidered less than, equal to, or greater than the second. s t rcmp () uses this same
return convention (see strcmp(3C)).

NOTES
The pointer to the base of the table should be of type pointer-to-element, and cast to type pointer-to-void.

The comparison function need not compare every byte; thus, arbitrary data can be contained in the ele­
ments in addition to the values being compared.

The order in the output of two items which compare as equal is unpredictable.

SEE ALSO
sort(1), bsearch(3C), Isearch(3C), string(3C).

WARNINGS
If size is zero, a divide-by-zero error might be generated.

STANDARDS CONFORMANCE
qsort (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -1- 705

•

•

rand(3C) rand(3C)

NAME
rand(), srand() - simple random-number generator

SYNOPSIS
#include <stdlib.h>

int rand (void) ;

void srand(unsigned int seed);

DESCRIPTION
rand () uses a multiplicative, congruential, random-number generator with period 232 that returns succes­
sive pseudo-random numbers in the range from 0 to 215_l.

srand () can be called at any time to reset the random-number generator to a random starting point. The
generator is initially seeded with a value of l.

NOTE
The spectral properties of rand () leave a great deal to be desired. drand48 () provides a much better,
though more elaborate, random-number generator (see drand48 (3C».

SEE ALSO
drand48(3C).

STANDARDS CONFORMANCE
rand () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

srand(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

706 -1- HP-UX Release 9.0: August 1992

rcmd(3N) rcmd(3N)

NAME
rcmdO, rresvportO, ruserokO - return a stream to a remote command

SYNOPSIS
int rcmd(

char **ahost,
unsigned short inport,
const char *locuser,
const char *remuser,
const char *cmd,
int ~fd2p);

int rresvport(int *port);

int ruserok(
const char *rhost,
int superuser,
const char *ruser,
const char *luser);

DESCRIPTION
rcmd()

rresvport ()

ruserok()

A routine used by privileged programs to execute cmd on the remote host *ahost
using an authentication scheme based on reserved port numbers. rcmd () returns
a file descriptor for the socket to which the standard input and standard output of
cmd are attached. A command level interface to rcmd () is provided by remsh (see
remsh(l)), which is the same command as BSD rsh.

Returns a descriptor to a socket with an address in the privileged port space.

Used by servers to authenticate clients requesting service with rcmd ().

Any program using rcmd () or rresvport () must be run as super-user.

The name of the remote host can be either an official host name or an alias as understood by gethost­
byname (); (see gethostent(3N), named (lM), and hosts (4)). rcmd () looks up the host *ahost using
gethostbyname (), returning -1 if the host does not exist. Otherwise *ahost is set to the standard
name of the host and a connection is established to a server residing at the Internet port inport. If the con­
nection is refused after five tries, or if it was refused for a reason other than the port being in use, rcmd ()
returns -1.

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the remote com­
mand as stdin and stdout. If fd2p is non-zero, an auxiliary connection to a control process is set up,
and a descriptor for it is placed in *fd2p. The control process returns diagnostic output from the command
on this connection, and also accepts bytes on this connection as UNIX signal numbers, to be forwarded to the
process group of the command. If the auxiliary port cannot be set up, rcmd () returns -1. If fd2p is 0,
stderr of the remote command is made the same as stdout, and no provision is made for sending arbi­
trary signals to the remote process.

The protocol is described in detail by remshd(lM).

rresvport()

ruserok()

is used to obtain a socket with a privileged address bound to it. This socket is suitable
for use by rcmd () and several other routines. Privileged addresses consist of a port
in the range a to 1023. Only the super-user is permitted to bind an address of this
sort to a socket.

verifies that ruser on rhost is authorized to act as Zuser on the local host. The
superuser parameter to ruserok () is an integer flag that should be non-zero if the
local user name corresponds to the super-user. If the superuser flag is not set,
ruserok () first checks the file / etc/hosts. equi v to authenticate the request
for service. If this check succeeds, ruserok () returns O. If the superuser flag is
set, or if there is no file /etc/hosts.equiv, or if the check fails, ruserok()
then checks a file • rhosts (if there is one) in the local user's home directory.
ruserok () returns a if this check succeeds. Otherwise it returns-1.

Typically, the file /etc/hosts .equiv contains a list of host names, and users'
. rhosts files contain host-name/user-name pairs. A remote user is authenticated

HP-UX Release 9.0: August 1992 -1- 707

•

•

rcmd(3N) rcmd(3N)

by ruserok () if the remote host name appears in /etc/hosts. equiv and the
remote user name and local user name are the same, or if the remote host name and
the remote user name appear together in • rhosts in the home directory of the local
user.

For a complete explanation of the syntax understood by ruserok (), see
hosts.equiv(4).

DIAGNOSTICS
rcmd Diagnostic Messages

rcmd () returns the following diagnostic messages:

hostname: Unknown hos t
gethostbyname was unable to find an entry in the hosts database matching the name of the
server (see gethostent(3N) and hosts(4».

Next step: Have the system administrator of your host check whether the remote host's entry is
in the hosts database (see hosts(4».

connec t: hostname: •••
Unable to establish a connection to the reserved port. A message that specifies the reason for
the failure is appended to this diagnostic message.

write: Setting up stderr
Error writing to the socket connection set up for error message transmission.

system call: •••
Error executing the system call. Appended to this error is a message specifying the reason for
the failure.

socket: Protocol failure in circuit setup
Socket connection not established on a reserved port or socket address not of the Internet family
type.

read: hostname: •••
Error in reading information from the standard socket connection. Appended to this error is a
message explaining the reason for the error.

Connection timeout
The remote host did not connect within 30 seconds to the secondary socket set up as an error
connection.

Lost connection
The program attempted to read from the socket and failed. This means the socket connection
with the remote host was lost.

message ...
An error message can be transmitted through the socket connection from the daemon. That
message will be sent to stderr.

primary connection shutdown
While waiting for the secondary socket to be set up, rcmd () had its primary connection shut
down. This may have been caused by an inetd security failure.

recv: •••
While trying to set up the secondary (stderr) socket, rcmd () had an error condition on its
primary connection.

accept: Interrupted system call
While trying to set up its secondary socket, rcmd () ran out of some resource that caused the
accept to be timed out.

Next step: Repeat the command.

rcmd and rresvport Diagnostic Messages

708

The diagnostic messages associated with rresvport () can also appear in rcmd () since rcmd () calls
rresvport () :

-2- HP-UX Release 9.0: August 1992

rcmd(3N) rcmd(3N)

system call: • • •
Error in executing the system call. The error message returned by the system call is appended
to the message.

socket: All ports in use
All reserved ports in use. If a timeout occurs, check whether the ARPA Services are installed and
inetd is running.

EXAMPLES
To execute the date command on remote host hpxzgy using the remote account chm, use rcmd () as
shown below. This program requires super-user privileges, and the remote account must be equivalent (see
hosts.equiv(4» to the local account that runs the program.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <pwd.h>

struct passwd *getpwuid();
char *host [] = {lIhpxzgyll } ;
char *cmd = IIdate ll ;
char *ruser = IIchm";

main(argc,argv)
int argc;
char **argv;

struct servent *sp;
struct passwd *pwd;
FILE *fp;
char Chi
int rem;

sp = getservbyname (" shell ", "tcpll) ;
pwd = getpwuid(getuid(»;
rem = rcmd(host, sp->s-port, pwd->pw_name, ruser, cmd, 0);
if (rem < 0)

exit(l); /* rcmd outputs its own error messages */
fp = fdopen(rem, "r");

WARNINGS

while «ch = getc(fp» != EOF)
putchar(ch) ;

There is no way to specify options to the socket () call that rcmd () makes. Since rcmd () replaces
the pointer to the hostname (*ahost) with a pointer to the standard name of the host in a static data area,
this value must be copied into the user's data area if it is to be used later. Otherwise unpredictable results
will occur.

AUTHOR
rcmd () was developed by the University of California, Berkeley.

SEE ALSO
login(l), rlogin(1), remsh(1), named(lM), remshd(1M), rexecd(lM), gethostent(3N), rexec(3N),
hosts.equiv(4).

HP-UX Release 9.0: August 1992 -3- 709

•

I

readopt (aN) readopt (3N)

NAME
readopt() - obtain option code and data from NetIPC option buffer

SYNOPSIS
#include <sys/ns_ipc.h>

void readopt(
short opt[],
short argnum,
short *optioncode,
short *datalength,
short data[],
short *result);

DESCRIPTION
readopt () extracts an option from an option buffer and copies it into a user-supplied data buffer.

readopt () recognizes the following parameters:

opt (input parameter) The opt parameter to be read.

argnum

optioncode

datalength

data

result

(input parameter) The number of the argument to be obtained. The first argument is
number zero.

(output parameter) The option code or constant definition (C programs only) associ­
ated with the argument. These codes are described in each NetIPC call opt parameter
description.

(input/output parameter) The length of the data buffer into which the argument
should be read. On output, this parameter contains the length of the data actually
read. The length of the data associated with a particular option code is provided in
each NetIPC call opt parameter description.

(output parameter) A data buffer which will contain the data read from the argument.

(output parameter) The result code returned. Refer to "Diagnostics" below for more
information.

RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS
readopt () fails and sets result to the value indicated if any of the following conditions are encountered:

[NSR_ADDR_OPT] The opt buffer pointer is null.

[NSR_NO_ERROR]

[NSR_OPT_CANTREAD]

[NSR_OPT_DATA_LEN]

[NSR_OPT_ENTRY_NUM]

The call was successful.

Data in the option buffer has been corrupted and cannot be read.

The supplied buffer is not large enough to receive the option.

The option index is negative or larger than the number of options in the opt
buffer.

AUTHOR
readopt () was developed by HP.

SEE ALSO

710

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcerrmsg(3N), ipcgetnodename(2), ipcloolrup(2),
ipcname(2), ipcnamerase(2), ipcrecv(2), ipcrecvcn(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshut­
down(2), addopt(3N), initopt(3N), optoverhead(3N), readopt(3N).

-1- HP-UX Release 9.0: August 1992

regcmp(3X) regcmp(3X)

NAME
regcmpO, regexO - compile and execute regular expression

SYNOPSIS
#include <stdlib.h>

char *regcmp(

) ;

const char *string1,
/* string2, */ •••
/ * , (char *) 0 * /

char *regex(const char *re, const char *subject);

extern char * 10c1;

Remarks
Features documented in this manual entry are obsolescent and may be removed in a future HP-UX release.
Use ofregcomp(3C) instead is recommended.

DESCRIPTION
regcmp () compiles a regular expression and returns a pointer to the compiled form. malloc(3C) is used to
create space for the vector. It is the user's responsibility to free unneeded space so allocated. A NULL
return from regcmp () indicates an incorrect argument.

regex () exe~tes a compiled pattern against the subject string. Additional arguments are passed to
receive values back. regex () returns NULL on failure, or a pointer to the next unmatched character on
success. A global character pointer __ 10c1 points to where the match began. regcmp () and
regex () were largely borrowed from the editor, ed(1); however, the syntax and semantics have been
changed slightly. The following are the valid symbols and their associated meanings:

[] * . A

$

+

These symbols retain their current meaning.

Matches the end of the string; \n matches a new-line.

Used within brackets the hyphen signifies a character range. For example, [a- z] is
equivalent to [abc d ... xyz]. The - can represent itself only if used as the first or
last character. For example, the character class expression [] -] matches the char­
acters] and -.

A regular expression followed by + means one or more times. For example, [0 - 9] +
is equivalent to [0 - 9] [0 - 9] *.

{m} {m,} {m, u}
Integer values enclosed in { } indicate the number of times the preceding regular
expression can be applied. The value m is the minimum number and u is a maximum
number, which must be no greater than 256. The syntax {m} indicates the exact
number of times the regular expression can be applied. The syntax {m, } is analo­
gous to {m,infinityJ. The plus (+)andasterisk (*) operations are equivalent to {1,}
and {O,} respectively.

(...) $n The value of the enclosed regular expression is returned. The value is stored in the
(n+l)th argument following the subject argument. A maximum of ten enclosed regu­
lar expressions are allowed. regex () makes its assignments unconditionally.

(...) Parentheses are used for grouping. An operator, such as *, +, or { }, can work on a
single character or a regular expression enclosed in parentheses. For example,
(a * (cb +) *) $ O.

Since all of the above defined symbols are special characters, they must be escaped to be used as them­
selves.

regcmp () and regex() are kept in /lib/libPW.a, and are linked by using the -lc and -lPW
options to the Id or cc command. See WARNINGS below.

EXAMPLES
Match a leading new-line in the subject string to which the cursor points.

HP-UX Release 9.0: August 1992 -1- 711

I

I

regcmp(3X) regcmp(3X)

char *cursor, *newcursor, *ptr;

newcursor = regex«ptr = regcmp(IIA\n ll
, 0», cursor);

free(ptr);

Match through the string Tes t ing3 and return the address of the character after the last matched char­
acter (cursor+ll). The string Testing3 will be copied to the character array retO.

char retO[9];
char *newcursor, *name;

name = regcmp(lI([A-Za-z] [A-Za-zO-9] (0,7})$01l, 0);
newcursor = regex(name, 11123Testing321 11

, retO);

WARNINGS
regcmp () and regex () are kept in /lib/1ibPW.a. Unfortunately, /lib/1ibPW.a also contains
some functions that have the same names as functions contained in the default C library, / lib / 1ibc • a.
To prevent unexpected results due to these name conflicts, always search 1ibc before searching 1ibPW.
This is done with the 1d (or cc) command line option sequence -lc -lPW which satisifies all standard C
functions from 1ibc then searches 1ibPW for the regcmp () and regex () functions (there is also an
implied -lc following the explicit -lPW to satisfy any additional C functions required by regcmp ()
and regex ()).

User programs that use regcmp () might run out of memory if regcmp () is called iteratively without
freeing vectors that are no longer required.

SEE ALSO
ed(1), malloc(3C), regcomp(3C).

712 -2- HP-UX Release 9.0: August 1992

regcomp (3C) regcomp (3C)

NAME
regcompO, regerrorO, regexec(), regfreeO - regular expression matching routines

SYNOPSIS
#include <regex.h>

int regcomp(regex_t *preg, const char *pattern, int cflags)i

int regexec(
const regex_t *preg,
const char *string,
s1ze_t wuatch,
regmatch_t pmatch[],
int eflags

) ;

void regfree(regex_t *preg);

size_t regerror(

);

int errcode,
const regex_t *preg,
char *errbuf,
size_t errbuf_size

DESCRIPTION
These functions interpret regular expressions as described in regexp(5). They support both basic and
extended regular expressions.

The structures regex_t and regmatch_t are defined in the header <regex.h>.

The regex_t structure contains at least the following member (use of other members results in non­
portable code):

Number of parenthesized subexpressions.

The regmatch_t structure contains at least the following members:

regofCt rm_so Byte offset from start of string to start of substring.

regofCt rm_eo Byte offset from start of string to the first character after the end of the
substring.

regcomp () compiles the regular expression specified by the pattern argument and places the results in
the structure pointed to by preg. The cflags argument is the bit-wise logical OR of zero or more of the fol­
lowing flags (defined in <regex. h»:

REG_EXTENDED Use extended regular expressions.

REG_NEWLINE IF REG_NEWLINE is not set in cflags, a newline character in pattern or string
is treated as an ordinary character. If REG_NEWLINE is set, newlines are
treated as ordinary characters except as follows:

REG_I CASE

1. A newline in string is not matched by a period outside of a bracket
expression or by any form of a nonmatching list.

2. A circumflex (A) in pattern, when used to specify expression anchor­
ing, matches the zero-length string immediately after a newline in
string, regardless of the setting ofREG_NOTBOL.

3. A dollar-sign ($) in pattern, when used to specify expression anchor­
ing, matches the zero-length string immediately before a newline in
string, regardless of the setting ofREG_NOTEOL.

Ignore case in match. If a character in pattern is defined in the current LC_CTYPE locale as having one or
more opposite-case counterpoints, both the character and any counterpoints match the pattern character.
This applies to all portions of the pattern, including a string of characters specified to be matched via a
back-reference expression (\n).

HP-UX Release 9.0: August 1992 -1- 713

•

•

regcomp (3C) regcomp (3C)

714

Within bracket expressions: Collation ranges, character classes, and equivalence classes are effectively
expanded into equivalent lists of collation elements and characters. Opposite-case counterpoints are then
generated for each collation element or character to form the complete matching list or non-matching list
for the bracket expression. Opposite-case counterpoints for a multi-character collating element include all
possible combinations of opposite-case counterpoints for each individual character comprising the collating
element. These are then combined to form new valid multi-character collating elements. For example, the
opposite-case counterpoints for [. ch.] could be [• Ch.], [. cH .] ,and [. CH .] .

REG_NOSUB
Report only success/fail in regexec () .

The default regular expression type for pattern is Basic Regular Expression. The application can specify
Extended Regular Expressions by using the REG_EXTENDED c;flags value.

If the function regcomp () succeeds, it returns zero; otherwise it returns a non-zero value indicating
the error.

If regcomp () succeeds, and if the REG_NOSUB flag was not set in cflags, regcomp () sets
re_nsub to the number of parenthesized subexpressions (delimited by \ (and \) in basic regular
expressions or (and) in extended regular expressions) found in pattern.

regexec () matches the null-terminated string specified by string against the compiled regular expres­
sion preg initialized by a previous call to regcomp (). If it finds a match, regexec () returns zero;
otherwise it returns non-zero indicating either no match or an error. The eflags argument is the bit-wise
logical OR of the following flags:

REG_NOTBOL The first character of the string pointed to by string is not the beginning of the
line. Therefore, the circumflex character ("), when taken as a special character,
never matches.

The last character of the string pointed to by string is not the end of the line.
Therefore, the dollar sign ($), when taken as a special character, never
matches.

If nmatch is not zero, and REG_NOSUB was not set in the cflags argument to regcomp (), then
regexec () fills in the pmatch array with byte offsets to the substrings of string that correspond to the
parenthesized subexpressions of pattern: pmatch[i].rm_so is the byte offset of the beginning and
pmatch[i J.rm_eo is the byte offset one byte past the end of the substring i. (Subexpression i begins at the
ith matched left parenthesis, counting from 1). Offsets in pmatch[O] identify the substring that
corresponds to the entire regular expression. Unused elements ofpmatch are set to -1. If there are more
than nmatch subexpressions in pattern (pattern itself counts as a subexpression), regexec () still does
the match, but only records the first nmatch substrings.

When matching a regular expression, any given parenthesized subexpression of pattern might partici­
pate in the match of several different substrings of string, or it might not match any substring, even
though the pattern as a whole did match. The following explains which substrings are reported in
pmatch when matching regular expressions:

1. If subexpression i in a regular expression is not contained within another subexpression, and
it participated in the match several times, the byte offsets in pmatch[i] delimit the last such
match.

2. If subexpression i is not contained within another subexpression, and it did not participate in
an otherwise successful match (because either *, ?, or I was used), then the byte offsets in
pmatch[i] are-1.

3. If subexpression i is contained in subexpressionj, and a match of subexpressionj is reported
inpmatchU], the match or no-match reported inpmatch[i] is the last one that occurred within
the substring in pmatchU].

4. If subexpression i is contained in subexpression j, and the offsets in pmatchU] are -1, the
offsets inpmatch[i] will also be-1.

5. If subexpression i matched a zero-length string, both offsets in pmatch[i] refer to the charac­
ter immediately following the zero-length substring.

-2- HP-UX Release 9.0: August 1992

regcomp (3C) regcomp (3C)

If REG_NOSUB was set in cflags in the call to regcomp (), and nmatch is not zero in the call to
regexec () , the content of the pmatch array is unspecified.

regfree () frees any memory allocated by regcomp () associated withpreg.

If the preg argument to regexec () or regfree () is not a compiled regular expression returned by
regcomp () , the result is undefined. A preg can no longer be treated as a compiled regular expression
after it is given to regfree ().

regerror () provides a mapping from error codes returned by regcomp () and regexec () to
printable strings. regerror () generates a string corresponding to the value of the errcode parame­
ter, which was the last non-zero value returned by regcomp () or reg exec () with the given value of
preg. The errcode parameter can take on any of the error values defined in <regex. h>. If errbuf_size is
not zero, regerror () copies an appropriate error message into the buffer specified by errbuf. If the
error message (including the terminating null) cannot fit in the buffer, it is truncated to errbuf-size - 1
bytes and null terminated.

If errbuf-size is zero, the errbuf parameter is ignored, but the return value is as defined below.

regerror() returns the size of the buffer (including terminating null) that is required to hold the entire
error message.

EXTERNAL INFLUENCES
Locale

The LC_COLLATE category determines the collating sequence used in compiling and executing regular
expressions.

The LC_CTYPE category determines the interpretation of text as single andlor multi-byte characters, the
characters matched by character-class expressions in regular expressions, and the opposite-case counter­
part for each character.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
regcomp () returns zero for success and non-zero for an invalid expression or other failure.
regexec () returns zero ifit finds a match and non-zero for no match or other failure.

ERRORS
If regcomp () or regexec () detects one of the error conditions listed below, it returns the correspond­
ing non-zero error code. The error codes are defined in the header <regex. h>.

REG_BADPAT

REG_BADRPT

REG_EBRACE

REG_EBRACK

RE G_E COLLATE

REG_ECTYPE

REG_EDUPOPER

REG_EESCAPE

REG_EMEM

REG_ENEWLINE

REG_ENOEXPR

REG_ENOSEARCH

REG_EPAREN

Contents of \ { \} invalid: Not a number, number too large, more than two
numbers, or first larger than second.

Invalid regular expression.

*, +, or + not preceded by valid regular expression.

\ { \} imbalance.

[] imbalance.

Invalid collation element referenced.

Invalid character class type named.

Duplication operator in illegal position.

Trailing \ in pattern.

Out of memory while matching expression.

new-line character found before end of pattern and REG_NEWLINE flag not set.

No expression within () or on one side of a I.

No remembered search string.

\ (\) imbalance in basic regular expression or () imbalance in extended
regular expression.

HP-UX Release 9.0: August 1992 -3- 715

I

I

regcomp (3C) regcomp (3C)

REG_ERANGE

REG_ESPACE

REG_ESUBREG

REG_NOMATCH

REG_NSUB

Invalid endpoint in range statement.

Out of memory for compiled pattern.

Number in \digit invalid or in error.

regexec () failed to match.

Too many parenthesis pairs or nesting level too deep.

EXAMPLES
/* match string against the extended regular expression in pattern,
treating errors as no match. Return 1 for match, 0 for no match.
Print an error message if an error occurs. */

int
match(string, pattern)
char *string;
char *pattern;
{

int i;
regex_t re,
char buf[256];

i=regcomp(&re, pattern, REG_EXTENDEDIREG_NOSUB);
if (i ! = 0) {

}

(void)regerror(i,&re,buf,sizeof buf);
printf("%s\n",buf);
return(O); /* report error */

i regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (i ! = 0) {

}

(void)regerror(i,&re,buf,sizeof buf);
printf("%s\n",buf);
return(O); /* report error */

return(l);

The following demonstrates how the REG_NOTBOL flag could be used with regexec () to find all sub­
strings in a line that match a pattern supplied by a user.

(void) regcomp(&re, pattern, 0);
/* look for first match at start of line */
error = regexec(&re, &buffer[O], 1, &pm, 0);
while (error == 0) { /* while matches found */

/* find next match on line */
error = regexec(&re, &buffer[pm.r.rn_eo], 1, &pm, REG_NOTBOL);

AUTHOR
regcomp (), regerror () , regexec (), and regfree () were developed by HP.

SEE ALSO
regexp(5).

STANDARDS CONFORMANCE
regcomp () : XPG4, POSIX.2
regerror () : XPG4, POSIX.2

716

regexec () : XPG4, POSIX.2
regfree () : XPG4, POSIX.2

-4- HP-UX Release 9.0: August 1992

regexp(3X)

NAME
compile(), step(), advance() - regular expression compile and match routines

SYNOPSIS
#def ine INIT declarations
#def ine GETC () getc statements
#def ine PEEKC () peekc statements
#def ine UNGETC (c) ungetc statements
#def ine RETURN (pointer) return statements
#def ine ERROR (val) error statements

#inc1ude <regexp.h>

char *compile(

) i

const char *instring,
char *expbuf,
const char *endbuf,
int eof

int step(const char *string, const char *expbuf)i

int advance(const char *string, const char *expbuf)i

extern char *10c1, *10c2, *locs;

extern int circf, sed, nbra;

Remarks

regexp(3X)

Features documented in this manual entry are obsolescent and may be removed in a future HP.UX release.
Use ofregcomp(3C) functions instead is recommended.

DESCRIPTION
These functions are general-purpose regular expression matching routines to be used in programs that per­
form Basic Regular Expression (see regexp(5)) matching. These functions are defined in <regexp. 11>.

The functions step () and advance () do pattern matching given a character string and a compiled
regular expression as input. compi 1e () takes a Basic Regular Expression as input and produces a com­
piled expression that can be used with step () and advance () .

The interface to this file is unpleasantly complex. Programs that include this file must have the following
five macros declared before the #include <regexp .h> statement. These macros are used by the
compile () routine.

GETC ()

PEEKC ()

Return the value of the next byte in the regular expression pattern. Successive calls to
GETC () should return successive bytes of the regular expression.

Return the next byte in the regular expression. Successive calls to PEEKC () should
return the same byte (which should also be the next byte returned by GETC ().

UNGETC (c) Cause the argument c to be returned by the next call to GETC () (and PEEKC (»). No
more than one byte of pushback is ever needed, and this byte is guaranteed to be the last
byte read by GETC (). The value of the macro UNGETC (c) is always ignored.

RETURN (pointer)
This macro is used on normal exit of the compile () routine. The value of the argument
pointer is a pointer to the character after the last character of the compiled regular expres­
sion. This is useful to programs that must manage memory allocation.

ERROR (val) This is the abnormal return from the compile () routine. The argument val is an error
number (see table below for meanings). This call should never return.

Error Meaning
11 Range endpoint too large.
16 Bad number.
25 "\digit" out of range.
36 Illegal or missing delimiter.

HP-UX Release 9.0: August 1992 -1- 717

I

I

regexp(3X) regexp(3X)

718

41 No remembered search string.
42 \ (\) imbalance.
43 Too many \ (.
44 More than 2 numbers given in \ { \ } .
45 } expected after \.
46 First number exceeds second in \ { \} .
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile () routine is as follows:

compile (instring, expbuf, endbuf, eof)

The :first parameter instring is never used explicitly by the compile () routine, but is useful for pro­
grams that pass down different pointers to input characters. It is sometimes used in the INIT declara­
tion (see below). Programs that call functions to input characters or have characters in an external array
can pass down a value of « char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the location where the compiled regular
expression will be placed.

The parameter endbuf is one more than the highest address where the compiled regular expression can
be placed. If the compiled expression cannot fit in (endbuf - expbuf) bytes, a call to ERROR (50) is
made.

The parameter eofis the character which marks the end of the regular expression. For example, in ed(1),
this character is usually a /.

Each program that includes this file must have a #define statement for INIT. This definition is
placed right after the declaration for the function compi Ie () and the opening curly brace {. It is used
for dependent declarations and initializations. Most often it is used to set a register variable to point to
the beginning of the regular expression so that this register variable can be used in the declarations for
GETC () , PEEKC () , and UNGETC (). Otherwise it can be used to declare external variables that might
be used by GETC (), PEEKC () , and UNGETC (). See the example below of the declarations taken from
grep(1).

step () also performs actual regular expression matching in this file. The call to step is as follows:

step (string, expbuf)

The first parameter to step () is a pointer to a string of characters to be checked for a match. This
string should be null-terminated.

The second parameter expbuf is the compiled regular expression that was obtained by a call to com­
pile ().

step () returns non-zero if the given string matches the regular expression, and zero if the expressions
do not match. If there is a match, two external character pointers are set as a side effect to the call to
step (). The variable set in step () is locl. This is a pointer to the first character that matched the
regular expression. The variable loc2, which is set by the function advance (), points to the charac­
ter after the last character that matches the regular expression. Thus, if the regular expression matches
the entire line, 1 oc 1 points to the first character of string and 1 oc 2 points to the null at the end of
string.

step () uses the external variable circf (), which is set by compile () if the regular expression
begins with A. If this is set, step () tries to match the regular expression to the beginning of the string
only. If more than one regular expression is to be compiled before the first is executed, the value of eiref
should be saved for each compiled expression and eiref should be set to that saved value before each call
to step ().

advance () is called from step () with the same arguments as step (). The purpose of step () is
to step through the string argument and call advance () until advance () returns non-zero, which
indicates a match, or until the end of string is reached. To constrain string to beginning-of-line in all
cases, step () need not be called; simply call advance ().

When advance () encounters a * or \ { \} sequence in the regular expression, it advances its pointer
to the string to be matched as far as possible and recursively calls itself, trying to match the rest of the

-2- HP-UX Release 9.0: August 1992

regexp(3X) regexp(3X)

string to the rest of the regular expression. As long as there is no match, advance backs up along the
string until it finds a match or reaches the point in the string that initially matched the * or \ { \}. It
is sometimes desirable to stop this backing up before the initial point in the string is reached. If the
external character pointer 10cs is equal to the point in the string at sometime during the backing up
process, advance () breaks out of the loop that backs up and returns zero. This is used by ed(l) and
sed(l) for substitutions done globally (not just the first occurrence, but the whole line) so, for example,
expressions such as s /y* / / g do not loop forever.

The additional external variables sed and nbra are used for special purposes.

EXTERNALI~WLUENCES

Locale
The LC_COLLATE category determines the collating sequence used in compiling and executing regular
expressions.

The LC_CTYPE category determines the interpretation of text as single and/or multi-byte characters, and
the characters matched by character class expressions in regular expressions.

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
The following is an example of how the regular expression macros and calls look from grep (1):

#define INIT register char *sp = instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)
#define UNGETC(c) (--sp)
#define RETURN(c) return;
#define ERROR(c) regerr()

#inc1ude <regexp.h>

(void) compile (*argv, expbuf, &expbuf[ESIZE], '\0');

SEE ALSO

if (step (linebuf, expbuf»
succeed ();

grep(l), regcomp(3C), setlocale(3C), regexp(5).

STANDARDS CONFORMANCE
advance () : AES, SVID2, XPG2, XPG3, XPG4
compile (): AES, SVID2, XPG2, XPG3, XPG4

loci: AES, SVID2, XPG2, XPG3, XPG4
10c2: AES, SVID2, XPG2, XPG3, XPG4

10cs: AES, SVID2, XPG2, XPG3, XPG4
step () : AES, SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -3- 719

I

I

reltimer(3C) Series 300, 400, and 700 Only reltimer (3C)

NAME
reltimer - relatively arm a per-process timer

SYNOPSIS
#include <sys/timers.h>

int reltimer(

) ;

timer_t time rid,
struct itimerspec *value,
struct itimerspec *ovalue,

DESCRIPTION
rel timer () sets the it_value of the specified timer to an offset from the current clock setting,

If reltimer () specifies a value argument with the it_value member equal to zero, the timer is dis­
abled. rel timer () updates the iCinterval value of the timer to the value specified. Time values
smaller than the resolution of the specified timer are rounded up to its resolution; timer values larger than
the maximum value of the specified timer are rounded down to the maximum value (see mktimer(3C».

re 1 timer () returns in the ovalue parameter a value representing the previous amount of time before the
timer would have expired or zero if the timer was disabled, together with the previous interval timer period.
The members of ovalue are subject to the resolution of the timer, and are the same values that would be
returned by a get timer () call.

The behavior ofthis function is undefined if value is NULL.

RETURN VALUE
Upon successful completion, rel timer () returns zero; otherwise, it returns -1 and sets errno to indi­
cate the error.

ERRORS
reltimerO fails if any of the following conditions are encountered:

[EINVAL] timerid does not correspond to an ID returned by mktimer () or the value structure
specified a nanosecond value less than zero or greater than or equal to 1000 million.

[EIO] An error occurred while accessing the clock device.

SEE ALSO
gettimer(3C), mktimer(3C), <sys/timers.h>.

STANDARDS CONFORMANCE
reltimer (): AES

720 -1- HP-UX Release 9.0: August 1992

remove (3C)

NAME
remove() - remove a file

SYNOPSIS
#include <stdio.h>

int remove(const char *path);

DESCRIPTION

remove (3C)

remove () removes the file named by path. If path does not name a directory, remove (path) is
equivalent to unl ink (path). If path names a directory, remove (path) is equivalent to rmdi r (path).

SEE ALSO
rmdir(2), unlink(2).

STANDARDS CONFORMANCE
remove () : AES, XPG3, XPG4, FIPS 151-2, PO SIX. 1, ANSI C

HP-UX Release 9.0: August 1992 -1- 721

I

I

resolver (3N) resolver (3N)

NAME
res_queryO, res_searchO, res_mkqueryO, res_sendO, res_initO, dn_compO, dn_expandO, herrorO -
resolver routines

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res_query (

) ;

char *dname,
int class,
int type,
u_char *answer,
int anslen

int res_search (

) ;

char *dname,
int class,
int type,
u_char *answer,
int anslen

int res_mk.query(
int op,

) ;

char *dname,
int class,
int type,
char *data,
int datalen,
struct rrec *newrr,
char *buf,
int buflen

int res_send(char *msg, int msglen, char *answer, int anslen);

void res_init();

int dn_comp(

) ;

char *exp_dn,
char *comp_dn,
int length,
char **dnptrs,
char **lastdnptr

int dn_expand(

) ;

char *msg,
char *eomorig,
char *comp_dn,
char exp_dn,
int length

extern int h_errno;

void herror(char *s);

DESCRIPTION

722

These routines are used for making, sending and interpreting query and reply messages with Internet
domain name servers.

-1- HP-UX Release 9.0: August 1992

resolver(3N) resolver(3N)

Global configuration and state information used by the resolver routines is kept in the structure _res.
Most of the values have reasonable defaults and can be ignored. Options stored in _res. opt ions are
defined in <resol v. h> and are as follows. Options are stored as a simple bit mask containing the bitwise
OR of the options enabled.

RES_INIT True if the initial name server address and default domain name are initialized
(i.e., res_ini t () has been called).

RES_DEBUG

RES_AAONLY

Print debugging messages.

Accept authoritative answers only. With this option, res_send () should con­
tinue until it finds an authoritative answer or finds an error. Currently this is
not implemented.

RES_PRIMARY

RES_USEVC

RES_STAYOPEN

Query the primary server only. Currently this is not implemented.

Use TCP connections for queries instead ofUDP datagrams.

Used with RES_USEVC to keep the TCP connection open between queries. This
is useful only in programs that regularly do many queries. UDP should be the
normal mode used.

Primary Routines
res_init()

Other Routines

The name server will set the truncation bit if all of the data does not fit into the
response datagram packet. If RES_IGNTC is set, res_send () will not retry
the query with TCP (i.e., ignore truncation errors).

Set the recursion-desired bit in queries. This is the default. (res_send ()
does not do iterative queries and expects the name server to handle recursion.)

If set, res_search () appends the default domain name to single-component
names (those that do not contain a dot). This option is enabled by default.

If this option is set, res_search () searches for host names in the current
domain and in parent domains; see hostname(5). This is used by the standard
host lookup routine gethostbyname () (see gethostbyname(3N)). This
option is enabled by default.

Reads the configuration file, /etc/resolv. conf, to get the default domain name,
search list, and the Internet address of the local name server(s). If no server is
configured, the host running the resolver is tried. The current domain name is
defined by the hostname if not specified in the configuration file; it can be overridden
by the environment variable LOCALDOMAIN. Initialization normally occurs on the
first call to one of the following routines. If there are errors in the configuration file,
they are silently ignored.

Provides an interface to the server query mechanism. It constructs a query, sends it
to the local server, awaits a response, and makes preliminary checks on the reply.
The query requests information of the specified type and class for the specified fully­
qualified domain name dname. The reply message is left in the answer buffer with
length anslen supplied by the caller.

Makes a query and awaits a response much like res_query (), but in addition, it
implements the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. It returns the first successful reply.

Routines described here are lower-level routines used by res_query ().

res_mkquery () Constructs a standard query message and places it in bur. It returns the size of the
query, or -1 if the query is larger than buflen. The query type op is usually QUERY,
but can be any of the query types defined in <arpa/nameser. h>. The domain
name for the query is given by dna me . class can be any of the query classes defined in
<arpa/nameser. h>. type can be any of the query types defined in
<arpa/nameser. h>. data is the data for an inverse query (IQUERY). newrr is
currently unused but is intended for making update messages.

HP-UX Release 9.0: August 1992 -2- 723

I

I

resolver (3N) resolver (3N)

Sends a pre-formatted query and returns an answer. It calls res_ini t () if
RES_INIT is not set, sends the query to the local name server, and handles timeouts
and retries. res_send () returns the length of the reply message, or -1 if there
were errors.

Compresses the domain name exp_dn and stores it in comp_dn. The size of the
compressed name is returned or -1 if there were errors. length is the size of the array
pointed to by comp _dn. The compression uses an array of pointers dnptrs to previ­
ously compressed names in the current message. The first pointer points to to the
beginning of the message and the list ends with NULL. The limit to the array is
specified by lastdnptr. A side effect of dn_comp () is to update the list of pointers
for labels inserted into the message as the name is compressed. If dnptr is NULL,
names are not compressed. If lastdnptr is NULL, the list oflabels is not updated.

Expands the compressed domain name comp_dn to a full domain name. The
compressed name is contained in a query or reply message; msg is a pointer to the
beginning of the message. The uncompressed name is placed in the buffer indicated
byexp_dn which is of size length. The size of compressed name is returned or -1 if
there was an error.

RETURN VALUE
Error return status from res_search () is indicated by a return value of -1. The external integer
h_errno can then be checked to see whether this is a temporary failure or an invalid or unknown host.
The routine herror () can be used to print an error message describing the failure. The argument string
s is printed first, followed by a colon, a blank, the message, and a new-line.

ERRORS
h_errno can have the following values:

HOST_NOT_FOUND No such host is known.

NO_RECOVERY

This is usually a temporary error and means that the local server did not receive
a response from an authoritative server. A retry at some later time may
succeed.

Some unexpected server failure was encountered. This is a non-recoverable
error.

The name is known to the name server, but there is no data of the requested
type associated with this name; this is not a temporary error. Another type of
request to the name server using this domain name will result in an answer.

AUTHOR
These resolver routines were developed by the University of California, Berkeley.

FILES
/etc/resolv.conf resolver configuration file

SEE ALSO
named(1m), gethostent(3N), resolver(4), hostname(5), RFCI034, RFCI035.

724 -3- HP-UX Release 9.0: August 1992

rexec(3N)

NAME
rexec() - return stream to a remote command

SYNOPSIS
int rexec(

char **ahost,
int inport,
const char *user,
const char *passwd,
const char *cmd,
int *fd2p);

DESCRIPTION

rexec(3N)

rexec () arranges for the remote execution of cmd on the host *ahost as user, who is authenticated with
passwd. It returns a file descriptor for the socket to which the standard input and standard output of cmd
are attached. A command-level interface to rexec () is provided by the rexec command (see remsh(l)).

rexec () looks up host *ahost using gethostbyname () (seegethostbyname(3N)) and returns -1 if the
host does not exist .. The host name can be either the official name or an alias. If the gethostbyname ()
call succeeds, *ahost is set to the standard name of the host. rexec () passes a username and password
to the remote host for authentication. These can be specified in the user and passwd parameters to
rexec (). If either is NULL, rexec () searches for the appropriate information in the • net rc file (see
netrc(4)) in the users's home directory. If this fails, rexec () prompts the user for the remote user name
and password, defaulting to the local user name and a NULL password.

inport specifies which TCP port to use for the connection; it is normally the value returned by
getservbyname (.. exec", .. tcp") (see getservent(3N)). The protocol used by rexec () is described
in detail in rexecd(lM).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the remote com­
mand as stdin and stdout. If the connection to the socket is refused after five tries, or if it was refused
for a reason other than the port being in use, rexec () returns -1. If fd2p is non-zero, an auxiliary con­
nection to a control process is set up and a file descriptor for it is placed in *fd2p. The control process
returns diagnostic output from the command on this connection and accepts bytes on this connection, inter­
preting them as UNIX signal numbers to be forwarded to the process group ofthe command. If the auxiliary
port cannot be set up, rexec () returns -1. If fd2p is 0, stderr of the remote command is made the
same as stdout and no provision is made for sending arbitrary signals to the remote process.

DIAGNOSTICS
rexec () produces the following diagnostic messages:

hostname: Unknown host
The remote host name was not found by gethostbyname ().

system call: •••
Error in executing the system call. A message specifying the cause of the failure is appended to this
message.

connect: hostname: •••
Error in connecting to the socket obtained for rexec (). A message specifying the cause of the
failure is appended to this diagnostic.

Secondary socket: •••
Error in creating a secondary socket for error transmission to be used by rexec () .

read: hostname : •••
Error in reading information transmitted over the socket. A message specifying the cause of the
failure is appended to this diagnostic.

Connection timeout
The remote host did not connect within 30 seconds to the secondary socket set up as an error connec­
tion.

Lost connection
The program attempts to read from the socket and fails. This means the socket connection with the
remote host was lost.

HP-UX Release 9.0: August 1992 -1- 725

I

I

rexec(3N) rexec(3N)

.netrc: •••
Error in opening .netrc file in the home directory for a reason other than the file not existing.

Error- .netrc file not correct mode.
Remove password or correct mode.

The • netrc file is readable, writable or executable by anyone other than the user.

Next step: Check whether • netrc has been modified by someone else and change the mode of
.netrc (chmod 400 .netrc).

Unknown .netrc option •••
An unrecognized keyword has been found in .netrc (see netrc(4».

Next step: Correct keyword in .netrc.

primary connection shutdown
While waiting for the secondary socket to be set up, rexec () had its primary connection shut down.
This may have been caused by the inetd security failure.

recv: •••
While trying to set up the secondary (stderr) socket, rexec () had an error condition on its pri­
mary connection.

accept: Interrupted system call
While trying to set up a secondary socket, rexec () ran out of a resource, which caused the accept to
be timed out.

Next step: Repeat the command. If a timeout occurs, check whether the ARPA Services are installed
and inetd is running.

EXAMPLE
To execute the date command on remote host hpxzgy using the remote account chIn, rexec () could
be used as follows:

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

char *host [] = { II hpxzgy II
char *user = IIchInll;
char *passwd = IIpassword ll ;
char *cmd = IIdate ll

;

main (argc, argv)
char **argv;
int argc;

char chI

} ;

struct servent *servent;
FILE *fp;
int sd;

servent = getservbyname (llexec ll , IItcpll);
sd = rexec(host, servent->s-port, user, passwd, cmd, 0);
fp = fdopen(sd, IIrll);
while «ch = getc(fp» != EOF)

putchar (ch) ;
}

WARNINGS
There is no way to specify options to the socket () call that rexec () makes.

726 -2- HP-UX Release 9.0: August 1992

rexec(3N) rexec(3N)

A program using rexec () should not be put in the background when rexec () is expected to prompt for
a password or user name. !fit is put in the background it will compete with the shell for input.

Since rexec () replaces the pointer to the hostname (*ahost) with a pointer to the standard name of the
host in a static data area, this value must be copied into the user's data area if it is to be used later.

The password is sent unencrypted through the socket connection.

AUTHOR
rexec () was developed by the University of California, Berkeley.

SEE ALSO
remsh(l), rexecd(lM), gethostent(3N), getservent(3N), rcmd(3N), netrc(4).

HP-UX Release 9.0: August 1992 -3- 727

I

I

rmtimer (3C) Series 300, 400, and 700 Only

NAME
rmtimer - free a per-process timer

SYNOPSIS
#include <sys/timers.h>

int r.mtimer(timer_t timerid);

DESCRIPTION

rmtimer(3C)

rmtimer () is used to free a previously allocated timer (returned by mktimer (). Any pending timer
event to be generated by this timer has been cancelled when the call returns.

RETURN VALUE
Upon successful completion, rmtimer () returns zero; otherwise, it returns -1 and sets errno to indi­
cate the error.

ERRORS
rmtimerO fails if the following condition is encountered:

[EINVAL] timerid is not a valid timer ID.

SEE ALSO
mktimer(3C), reltimer(3C), <sys/timers.h>

STANDARDS CONFORMANCE
rmt imer () : AES

728 -1- HP-UX Release 9.0: August 1992

rnusers(3N)

NAME
rnusersO, rusersO - return information about users on remote machines

SYNOPSIS
#include <utmp.h>
#include <rpcsvc/rusers.h>

int rnusers(char *host);

int rusers(char *host, struct utmpidlearr *up);

DESCRIPTION

rnusers (3N)

rnusers () returns the number of users logged in on host or -1 if it cannot determine that number.
The host string is either the official name of the host or an alias for it. See hosts(4) for more
information regarding host names.

rusers () fills in the utmpidlearr structure with data about host and returns 0 if successful. The
ut_line field is limited to eight characters on Berkeley systems, so the HP-UX XDR rou­
tine truncates from 12 characters to 8. The nonuser () macro does not exist in the HP­
UX utmp. h file; therefore, HP-UX windows appear as separate users.

The relevant structures are:

struct utmparr {

} ;

struct utmp **uta_arr;
int uta_cnt;

struct utmpidle {

} ;

struct utmp ui_utmp;
unsigned ui_idle;

/* RUSERSVERS_ORIG */

struct utmpidlearr { /* RUSERSVERS_IDLE */
struct utmpidle **uia_arr;
int uia_cnt;

} ;

RPC Information
program number:

RUSERSPROG

xdr routines:

procs:

int xdr_utmp(xdrs, up)
XDR*xdrs;
struct utmp *u p;

int xdr_utmpidle(xdrs, ui)
XDR*xdrs;
struct utmpidle *ui;

int xdr_utmpptr(xdrs, up)
XDR*xdrs;
struct utmp **up;

int xdr_utmpidleptr(xdrs, up)
XDR*xdrs;
struct utmpidle **up;

int xdr_utmparr(xdrs, up)
XDR*xdrs;
struct utmparr *up;

int xdr_utmpidlearr(xdrs, up)
XDR*xdrs;
struct utmpidlearr *up;

RUSERSPROC_NUM

HP-UX Release 9.0: August 1992 -1- 729

I

I

rnusers (3N)

WARNING

No arguments, returns number of users as an
unsigned long.

RUSERSPROC_NAMES
No arguments, returns utmparr or utmpidlearr,
depending on version number.

RUSERSPROC ALLNAMES

versions:

No arguments, returns utmparr or utmpidlearr,
depending on version number. Returns listing even
for utmp entries satisfying nonuser() in utmp.h.

RUSERSVERS_ORIG
RUSERSVERS_IDLE

structures:

rnusers (3N)

User applications that call this routine must be linked with /usr / include/librpcsvc. a. For exam­
ple,

cc my_source.c -lrpcsvc

AUTHOR
rnus ers () was developed by Sun Microsystems, Inc.

SEE ALSO
rusers(l).

730 -2- HP-UX Release 9.0: August 1992

rpc(3C) rpc(3C)

NAME
rpcO -library routines for remote procedure calls

DESCRIPTION
These routines allow C programs to make procedure calls on other machines across the network. First, the
client calls a procedure to send a data packet to the server. Upon receipt of the packet, the server calls a
dispatch routine to perform the requested service and then sends back a reply. Finally, the procedure call
returns to the client.

Functions
auth_destroy ()

authnone_create()

Destroy authentication information handle.

Return RPC authentication handle with no checking.

au thun ix_c reate () Return RPC authentication handle with UNIX permissions.

authunix_create_default()

callrpc ()

clnt_broadcast()

clnt-call()

clnt_control ()

clnt_create ()

clnt_destroy ()

clnt_freeres()

clnt_geterr ()

clnt-pcreateerror()

clnt-perrno ()

clnt-perror ()

Return default UNIX authentication handle.

Call remote procedure, given [prognum., versnum,procnum].

Broadcast remote procedure call everywhere .

Call remote procedure associated with client handle.

Change or retrieve information associated with a client handle.

Create RPC client using the transport specified by the caller.

Destroy client's RPC handle.

Free data allocated by RPCIXDR system when decoding results.

Copy error information from client handle to error structure.

Print message to stderr about why client handle creation failed.

Print message to stderr corresponding to condition given.

Print message to stderr explaining why an RPC call failed.

clnt_spcreateerror () Return a pointer to a null-delimited string telling why the client handle
creation failed.

clnt_sperrno () Return a pointer to a null-delimited string containing a message
corresponding to the error value passed to this function.

clnt_sperror () Return a pointer to a null-delimited string telling why an RPC call failed.

clntraw_create()

clnttcp_create()

clntudp_create()

get_myaddress()

gettransient()

pmap_getmaps ()

pmap_getport ()

pmap_rmtcall ()

pmap_set ()

pmap_unset()

registerrpc()

rpc_createerr()

svc_destroy

HP-UX Release 9.0: August 1992

Create toy RPC client for simulation.

Create RPC client using TCP transport.

Create RPC client using UDP transport.

Get the machine's IP address.

Get a program number in the transient range.

Return list ofRPC program-to-port mappings.

Return port number on which waits supporting service.

Instruct portmapper to make an RPC call.

Establish mapping between [prognum., versnum,procnum] and port.

Destroy mapping between [prognum,versnum,procnum] and port.

Register procedure with RPC service package.

Global variable indicating reason why client creation failed.

Destroy RPC service transport handle.

-1- 731

I

I

rpc(3C)

svc_freeargs()

svc_getargs ()

svc_getcaller()

svc_getreqset()

svc_register ()

svc_run()

svc_sendreply ()

svc_unregister()

svcerr_auth()

svcerr_decode ()

svcerr_noproc ()

svcerr_noprog ()

svcerr-progvers()

svcerr_systemerr()

svcerr_weakauth()

svcfd_create()

svcraw_create ()

svctcp_create()

svcudp_create ()

xdr_accepted_reply()

xdr_authunix-parms()

xdr_callhdr ()

xdr_callmsg ()

xdr_opaque_auth()

xdr-pmap()

xdr-pmaplist ()

xdr_rejected_reply()

xdr_replymsg ()

xprt_register ()

xprt_unregister()

AUTHOR

rpc(3C)

Global array with RPC service file descriptor mask; can handle up to
NOFILE socket descriptors (NOFILE defined in header file
<sys/parm. h».

Free data allocated by RPCIXDR system when decoding arguments.

Decode the arguments of an RPC request.

Get the network address of the caller of a procedure.

Return when all associated sockets have been serviced.

Associate prognum and versnum with service dispatch procedure.

Wait for RPC requests to arrive and call appropriate service.

Send back results of a remote procedure call.

Remove mapping of [prognum,versnum] to dispatch routines.

Called when refusing service because of authentication error.

Called when service cannot decode its parameters.

Called when service hasn't implemented the desired procedure.

Called when program is not registered with RPC package.

Called when version is not registered with RPC package.

Called when service detects system error.

Called when refusing service because of insufficient authentication.

Create an RPC service from an existing socket.

Create a toy RPC service transport for testing.

Create an RPC service based on TCP transport.

Create an RPC service based on UDP transport.

Generate RPC-style replies without using RPC package.

Generate UNIX credentials without using RPC package.

Generate RPC-style headers without using RPC package.

Generate Rpc-style messages without using RPC package.

Describe RPC messages, externally.

Describe parameters for portmap procedures, externally.

Describe a list of port mappings, externally.

Generate RPC-style rejections without using RPC package.

Generate RPc-style replies without using RPC package.

Register RPC service transport with RPC package.

Unregister RPC service transport from RPC package

rpc was developed by Sun Microsystems, Inc.

SEE ALSO
Programming and Protocols for NFS Services.

732 -2- HP-UX Release 9.0: August 1992

rstat(3N) rstat(3N)

NAME
rstat(), havedisk() - get performance data from remote kernel

SYNOPSIS
#include <time.h>
#include <rpcsvc/rstat.h>

int havedisk(char *host);

int rstat(char *host, struct statstime *statp);

DESCRIPTION
havedi sk () returns 1 if host has a disk, 0 if it does not, and -1 if this cannot be determined. The host
string is either the official name of the host or an alias for it. See hosts(4) for more information regarding
host names.

rstat () fills in the statstime structure for host, and returns 0 if it was successful. The relevant struc­
tures are:

struct stats {

};

int cp_time[CPUSTATES];
int dk_xfer[DK_NDRIVE];

unsigned v-pgpgin;
unsigned v-pgpgout;
unsigned v-pswpin;
unsigned v-pswpout;
unsigned v_intr;
int if_ipackets;
int if_ierrors;
int if_opackets;
int if_oerrors;
int if_collisions;

struct statsswtch {

};

int cp_time[CPUSTATES];
int dk_xfer[DK_NDRIVE];

unsigned v-pgpgin;
unsigned v-pgpgout;
unsigned v-pswpin;
unsigned v-pswpout;
unsigned v_intr;
int if_ipackets;
int if_ierrors;
int if_opackets;
int if_oerrors;
int if_collisions;
unsigned v_swtch;
long avenrun[3];
struct timeval boottime;

struct statstime {
int cp_time[CPUSTATES];
int dk_xfer[DK_NDRIVE);

unsigned v-pgpgin;
unsigned v-pgpgout;
unsigned v-pswpin;
unsigned v-pswpout;

HP-UX Release 9.0: August 1992

/* RSTATVERS_ORIG */
/* the time spent in each CPU state */
/* total number of disk transfers

on each of the disk interfaces */
/* total VM pages paged in */
/* total VM pages paged out */
/* total VM pages paged swapped in */
/* total VM pages paged swapped out */
/* total interrupts */
/* inbound packets on all interfaces */
/* inbound errors on all interfaces */
/* outbound packets on all interfaces */
/* outbound errors on all interfaces */
/* collisions seen on all interfaces */

/* RSTATVERS_SWTCH */
/* the time spent in each CPU state */
/* total number of disk transfers

on each of the disk interfaces */
/* total VM pages paged in */
/* total VM pages paged out */
/* total VM pages paged swapped in */
/* total VM pages paged swapped out */
/* total interrupts */
/* inbound packets on all interfaces */
/* inbound errors on all interfaces */
/* outbound packets on all interfaces */
/* outbound errors on all interfaces */
/* collisions seen on all interfaces */
/* total context switches */
/* average number of running jobs */
/* time of last boot */

/* RSTATVERS_TlME */
/* the time spent in each CPU state */
/* total number of disk transfers

on each of the disk interfaces */
/* total VM pages paged in */
/* total VM pages paged out */
/* total VM pages paged swapped in */
/* total VM pages paged swapped out */

-1- 733

•

I

rstat(3N) rstat(3N)

unsigned v_intr;
int if_ipackets;
int if_ierrors;
int if_opackets;
int if_oerrors;
int if_collisions;

1* total interrupts *1
1* inbound packets on all interfaces *1
1* inbound errors on all interfaces *1
1* outbound packets on all interfaces *1
1* outbound errors on all interfaces *1
1* collisions seen on all interfaces *1

unsigned v_swtch; /* total context switches */
long avenrun[3]; 1* average number of running jobs *1
struct timeval boottime; 1* time of last boot *1
struct timeval curtime; 1* current system time *1

};

RPC Info

WARNING

program number:
RSTATPROG

xdr routines:

procs:

int xdr_statsexdrs, stat)
XDR*xdrs;
struct stats *stat;

int xdr_statsswtch(xdrs, stat)
XDR*xdrs;
struct statsswtch *stat;

int xdr_statstimeexdrs, stat)
XDR *xdrs;
struct statstime *stat;

int xdr_timevalexdrs, tv)
XDR*xdrs;
struct timeval *tv;

RSTATPROC_HA VEDISK
Takes no arguments, returns long
which is true if remote host has a disk.

RSTATPROC_STATS
Takes no arguments, return struct statsxxx,
depending on version.

versions:
RSTATVERS_ORIG
RSTATVERS_SWTCH
RSTATVERS_TIME

User applications that call this routine must be linked with lusr I include/librpcsvc. a. For exam­
ple,

cc my_source.c -lrpcsvc

AUTHOR
rstat () was developed by Sun Microsystems, Inc.

SEE ALSO
rup(l), rstatd(lM).

734 -2- HP-UX Release 9.0: August 1992

rwall(3N)

NAME
rwallO - write to specified remote machines

SYNOPSIS
#include <rpcsvc/rwall.h>

int rwall(char *host, char *msg};

DESCRIPTION
rwall () causes host to print the string msg to all its users. It returns 0 if successful.

RPC Info
program number:

procs:

WALLPROG

WALLPROC_W ALL
Takes string as argument (wrapstring), returns no
arguments. Executes wall on remote host with
string.

versions:
RSTATVERS_ORIG

WARNING

rwall(3N)

User applications that call this routine must be linked with lusrl include/librpcsvc. a. For exam­
ple,

cc my_source.c -lrpcsvc

AUTHOR
rwall () was developed by Sun Microsystems, Inc.

SEE ALSO
rwall(lM), rwalld(lM), shutdown(lM).

HP-UX Release 9.0: August 1992 -1- 735

•

I

scandir (3C) scandir (3C)

NAME
scandir(), alphasortO - scan a directory

SYNOPSIS
#include <dirent.h>

int scandir(

) ;

const char *dirn~~e,
struct dirent **namelist,
int (*select) (const struct dirent * const *),
int (*compar) (

const struct dirent * const *,
const struct dirent * const *

int alphasort(

) ;

const struct dirent * const *dl,
const struct dirent * const *d2

DESCRIPTION
scandi r () reads the directory dirname and builds an array of pointers to directory entries using mal­
loc () (see malloc(3C)). It returns the number of entries in the array and a pointer to the array through
namelist.

The select parameter is a pointer to a user-supplied subroutine which is called by scandir () to select
which entries are to be included in the array. The select routine is passed a pointer to a directory entry and
should return a non-zero value if the directory entry is to be included in the array. If select is null, then all
the directory entries will be included.

The com par parameter is a pointer to a user-supplied subroutine which is passed to qsort(3C) to sort the
completed array. If this pointer is null, the array is not sorted. alphasort () is a routine which can be
used for the compar parameter to sort the array alphabetically.

The memory allocated for the array can be deallocated with free () (see malloc(3C)) by freeing each
pointer in the array and the array itself.

EXTERNAL INFLUENCES
Locale

The LC_COLLATE category determines the collation ordering used by alphasort (). See hpnls(5) for a
description of supported collation features.

The LC_CTYPE category determines the interpretation of bytes in the file name portion of directory
entries as single- and/or multi-byte characters by the alphasort () function.

Results are undefined if the locales specified by the LC_COLLATE and LC_CTYPE categories use
different code sets.

International Code Set Support
Single- and multi-byte character code sets are supported for alphasort ().

RETURN VALUE
scandir () returns -1 if the directory cannot be opened for reading or if malloc () cannot allocate
enough memory to hold all the data structures.

EXAMPLE

736

The example program below scans the /tmp directory. It does not exclude any entries since select is NULL.
The contents of namelist are sorted by alphasort (). It prints out how many entries are in /tmp
and the sorted entries of the /tmp directory. The memory used by scandir () is returned using
free ().

#include <sys/types.h>
#include <stdio.h>
#include <dirent.h>

-1- HP-UX Release 9.0: August 1992

scandir (3C)

extern int scandir();
extern int alphasort();

main()
{

int num_entries, i;
struct dirent **namelist, **list;

scandir (3C)

if «num_entries = scandir("/tmp", &namelist, NULL, alphasort» < 0) {
fprintf(stderr, "Unexpected error\n");

SEE ALSO

exit(l);
}
printf("Number of entries is %d\n", num_entries);
if (num_entries) {

printf("Entries are:");
for (i=O, list=namelist; i<num_entries; i++) {

printf(" %S", (*list)->d_name);
free(*list);
*list++;

}
free(namelist);
printf("\n");

printf("\n");
exit(O);

directory(3C), malloc(3C), qsort(3C), string(3C), dirent(5), hpnls(5).

HP-UX Release 9.0: August 1992 -2- 737

I

I

scanf(3S) scanf(3S)

NAME
scanf, fscanf, sscanf, nLscanf, nLfscanf, nLsscanf - formatted input conversion, read from stream file

SYNOPSIS
#inc1ude <stdio.h>

int scanf(const char *for.mat, /* [pointer,] */ •••);

int fscanf(FILE *stream, const char *for.mat, 1* [pointer,j *1 ... j;
int sscanf(const char *s, const char *for.mat, /* [pointer,] */ •••);

int n1_scanf(const char *for.mat, /* [pointer,] */ ...);

int nl_fscanf(FILE *stream, const char *for.mat, /* [pointer,] */ •••);

int nl_sscanf(const char *s, const char *for.mat, i* [pointer,j *i ... j;

DESCRIPTION

738

scanf () and n1_scanf () read from the standard input streamstdin.

fscanf () and n1_fscanf () read from the named input stream.

sscanf () and nl_sscanf () read from the character string s.

Each function reads characters, interprets them according to the control string format argument, and stores
the results in its pointer arguments. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are ignored. The con­
trol string contains conversion specifications and other characters used to direct interpretation of input
sequences. The control string contains:

• White-space characters (blanks, tabs, newlines, or formfeeds) that cause input to be read up to the
next non-white-space character (except in two cases described below).

• An ordinary character (not %) that must match the next character of the input stream.

• Conversion specifications, consisting of the character %, an optional assignment suppressing char­
acter *, an optional numerical maximum-field width, an optional 1 (ell), h or L indicating the
size of the receiving variable, and a conversion code.

• The conversion specification can alternatively be prefixed by the character sequence 9-017, $ instead
of the character %, where n is a decimal integer in the range (1- {NL_ARGMAX}) (NL_ARGMAX is
defined in <1 imi t s • h». The %n $ construction indicates that the value of the next input field
should be placed in the nth argument, rather than to the next unused one. The two forms of intro­
ducing a conversion specification, % and 9-017, $, must not be mixed within a single format string
with the following exception: Skip fields (see below) can be designated as %* or 9-017,$*. In the
latter case, n is ignored.

Unless the specification contains the n conversion character (described below), a conversion specification
directs the conversion of the next input field. The result of a conversion specification is placed in the
variable to which the corresponding argument points, unless * indicates assignment suppression.
Assignment suppression provides a way to describe an input field to be skipped. An input field is defined
as a string of non-space characters; it extends to the next inappropriate character or until the field width,
if specified, is exhausted. For all descriptors except [and c, white space leading an input field is
ignored.

The conversion code indicates the interpretation of the input field; the corresponding pointer argument
must be of a restricted type. For a suppressed field, no pointer argument is given. The following conver­
sion codes are legal:

%

d

u

o

A single % is expected in the input at this point; no assignment is done.

A decimal integer is expected; the corresponding argument should be an integer
pointer.

An unsigned decimal integer is expected; the corresponding argument should be an
unsigned integer pointer.

An octal integer is expected; the corresponding argument should be an unsigned
integer pointer.

-1- HP-UX Release 9.0: August 1992

scanf(3S) scanf(3S)

x, x A hexadecimal integer is expected; the corresponding argument should be an unsigned
integer pointer. The x and X conversion characters are equivalent.

i An integer is expected; the corresponding argument should be an integer pointer. The
value of the next input item, interpreted according to C conventions, will be stored; a
leading ° implies octal, a leading Ox implies hexadecimal; otherwise, decimal is
assumed.

n Cause the total number of bytes (including white space) scanned since the function
call to be stored; the corresponding argument should be an integer pointer. No input
is consumed. The function return value does not include %n assignments in the count
of successfully matched and assigned input items.

e,E,f,g,G A floating-point number is expected; the next field is converted accordingly and stored
through the corresponding argument, which should be a pointer to a float. The input
format for floating-point numbers is an optionally signed string of digits, possibly con­
taining a radix character, followed by an optional exponent field consisting of an E or
an e, followed by an optional +, -, or space, followed by an integer. The conversion
characters E and G behave the same as, respectively, e and g.

C A character is expected; the corresponding argument should be a wchar_t pointer.
The normal skip-over-white-space is suppressed in this case; to read the next non­
space character, use %lS. The character is read and converted into a wide character
according to the setting of LC_CTYPE. If a field width is given, the corresponding
argument refers to a wide character array; the indicated number of characters is read
and converted.

c A character is expected; the corresponding argument should be a character pointer.
The normal skip-over-white-space is suppressed in this case; to read the next non­
space character, use %ls. If a field width is given, the corresponding argument refers
to a character array; the indicated number of characters is read.

S A character string is expected; the corresponding argument should be a wchar_t
pointer pointing to an array of wide characters large enough to accept the string and a
terminating (wchar_t) 0, which is added automatically. Characters are read and
converted into wide characters according to the setting of LC_CTYPE. The input field
is terminated by a white-space character. scanf () cannot read a null string.

s

p

A character string is expected; the corresponding argument should be a character
pointer pointing to an array of characters large enough to accept the string and a ter­
minating \ 0, which is added automatically. The input field is terminated by a white­
space character. scanf () cannot read a null string.

Indicates string data and the normal skip-over-Ieading-white-space is suppressed.
The left bracket is followed by a set of characters, called the scanset, and a right
bracket; the input field is the maximal sequence of input characters consisting entirely
of characters in the scanset. The circumflex (A), when it appears as the first character
in the scanset, serves as a complement operator and redefines the scanset as the set of
all characters not contained in the remainder of the scanset string. Construction of
the scanset follows certain conventions. A range of characters may be represented by
the construct first-last, enabling [0123456789] to be expressed [0-9]. Using this con­
vention, first must be lexically less than or equal to last; otherwise, the dash stands
for itself. The dash also stands for itself when it is the first or the last character in the
scanset. To include the right square bracket as an element of the scanset, it must
appear as the first character (possibly preceded by a circumflex) of the scanset, in
which case it will not be interpreted syntactically as the closing bracket. The
corresponding argument must point to a character array large enough to hold the data
field and the terminating \0, which are added automatically. At least one character
must match for this conversion to succeed.

A sequence of unsigned hexadecimal numbers is expected.. This sequence may be pro­
duced by the p conversion character of printf (). The corresponding argument
shall be a pointer to a pointer to void into which the value represented by the hexa­
decimal sequence is stored. The behavior of this conversion is undefined for any input

HP-UX Release 9.0: August 1992 -2- 739

I

I

scanf(3S) scanf(3S)

item other than a value converted earlier during the same program execution.

The conversion characters d, i, and n can be preceded by 1 or h to indicate that a pointer to a
long int or short int rather than to an int is in the argument list. Similarly, the conver­
sion characters u, 0, x, and X can be preceded by 1 or h to indicate that a pointer to uns i gned
long int or unsigned short int rather than to an unsigned int is in the argument
list. Finally, the conversion characters e, E, f, g, and G can be preceded by lor L to indicate that
a pointer to a double or long double rather than to a float is in the argument list. The
l, L or h modifier is ignored for other conversion characters.

The scanf () functions terminate their conversions at EOF, at the end of the control string, or
when an input character conflicts with the control string. In the latter case, the offending character
is left unread in the input stream.

EXrERNALINFLUENCES
Locale

The LC_CTYPE category determines the interpretation of ordinary characters within format strings as
single and/or multi-byte characters. Field width is given in terms of bytes. Characters received from the
input stream are interpreted as single- or multi-byte characters as determined by the LC_TYPE category
and the field width is decremented by the length of the character.

The LC_NUMERIC category determines the radix character expected within floating-point numbers.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUES
If the input ends before the first conflict or conversion, EOF is returned. Otherwise, these functions return
the number of successfully assigned input items. This number is a short count, or even zero if a conflict
ensues between an input character and the control string.

ERRORS
scanf (), fscanf (), nl_scanf (), and nl_fscanf () fail if data needs to be read into the stream's
buffer, and:

[EAGAIN]

[EBADF]

[EINTR]

The O_NONBLOCK flag is set for the file descriptor underlying stream and the process
would be delayed in the read operation.

The file descriptor underlying stream is not a valid file descriptor open for reading.

The read operation was terminated due to the receipt of a signal, and either no data
was transferred or the implementation does not report partial transfer for this file.

[EIO] The process is a member of a background process and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking the SIGTTIN sig­
nal or the process group of the process is orphaned.

Additional errno values can be set by the underlying read () function (see read(2».

EXAMPLES
The call:

740

int i, ni float Xi char name[50]i
n = scanf(lI%d%f%sll, &i, &X, name)i

with the input line:

25 54.32E-1 thompson

assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains thompson\ O. Or:

int ii float Xi char name[50]i
(void) scanf(II%2d%f%*d %[0-9]11, &i, &x, name)i

with input:

56789 0123 56a72

assigns 56 to i, 7 89 • 0 to x, skips 012 3, and places the string 56 \ 0 in name. The next call to
getchar () (see getc(3S» returns a.

-3- HP-UX Release 9.0: August 1992

scanf(3S)

For another example, to create a language-independent date scanning routine, use:

char month[20]; int day, year;
(void) scanf(format, month, &day, &year};

For American usage, format would point to a string:

%l$s %2$d %3$d

The input:

July 3 1986

would assign Ju ly to month, 3 to day and 1986 to year.

For German usage, format would point to a string:

%2$d %l$s %3$d

The input:

3 Juli 1986

would assign Juli to month, 3 to day and 1986 to year.

scanf(3S)

The success of literal matches and suppressed assignments can be determined with the %n conversion
specification. Here is an example that checks the success of literal matches:

int i, nl, n2, n3, n4;
nl = n2 = n3 = n4 = -1;11
scanf(lI%nBEGIN%n %d %nEND%n ll

, &nl, &n2, &i, &n3, &n4};
if (n2 - nl == 5) puts (IImatched BEGIN II);
if (n4 - n3 == 3) puts (IImatched END II) ;

Here is an example that checks the success of suppressed assignments:

int i, nl, n2;
nl = n2 = -1;
scanf (lI%d %n%*s%n II, &i, &nl, &n2);
if (n2 > nl)

printf(IIsuccessful assignment suppression of %d chars\nll, n2 - nl};

WARNINGS
Trailing white space (including a newline) is left unread unless matched in the control string.

Truncation of multi-byte characters may occur if a field width is used with the conversion character.

nl_scanf (), nl_fscanf (), and nl_sscanf () are provided for historical reasons only. Their use is
not recommended. Use scanf (), fscanf (), and sscanf () instead.

AUTHOR
scanf () was developed by AT&T and HP.

SEE ALSO
getc(3S), setlocale(3C), printf(3S), strtod(3C), strtol(3C).

STANDARDS CONFORMANCE
scanf (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
fscanf (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

nl_f scanf () : XPG2
nl_scanf () : XPG2

nl_sscanf (): XPG2
sscanf (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -4- 741

I

I

setaclentry(3C) setaclentry(3C)

NAME
setaclentry(), fsetaclentryO - add, modify, or delete one entry in file's access control list (ACL)

SYNOPSIS
#include <unistd.h>
#include <acllib.h>

int setaclentry(const char *path, int uid, tnt int mode) i

int fsetaelentry(int fd, int uid, int gid, int mode);

DESCRIPTION
Both forms of this call add, modify, or delete one entry in a file's access control list (ACL). setaelen­
try () and fsetaelentry () take a path name (path) or open file descriptor (fd) and an entry
identifier (uid, gid). They change the indicated entry's access mode hits to the given value (mode), mean­
ings of which are defined in <unistd.h>. modes are represented as R_OK, W_OK, and X_OK. Irrelevant
bits in mode values must be zero.

If the file's ACL does not have an entry for the given uid andgid, the entry is created and added to the ACL.
If mode is MODE_DEL (defined in <ae 11 ib • h», the matching entry is deleted from the file's ACL if it is
an optional entry, or its mode bits are set to zero (no access) ifit is a base entry.

uid or gid can be ACL_NSUSER or ACL_NSGROUP (defined in <sys/ael. h», respectively, to represent
non-specific entries u • %, % .g, or %. % • The file's u • % or %.g base entries can be referred to using
ACL_FILEOWNER or ACL_FILEGROUP (defined in <aellib.h», for the file's owner or group ID,
respectively.

setaelentry() and fsetaelentry() read the file's ACL with getael () or fgetael () and
modify it with setael () or fsetael (), respectively.

RETURN VALUE
If successful, setaelentry () and fsetaelentry () return zero.

ERRORS
If an error occurs, setaelentry () and fsetaelentry () return the following negative values and
set errno:

-1 Unable to perform getael () or fgetael () on the file. errno indicates the cause.

-2 Unable to perform stat () or f stat () on the file. errno indicates the cause.

-3 Cannot add a new entry because the ACL already has NACLENTRIES (defined in <sys/ae1.h»
entries.

-4 Cannot delete a nonexisting entry.

-5 Unable to perform setael () or f setae 1 () on the file. errno indicates the cause.

EXAMPLES
The following code fragment adds an entry to file "workllist" for user ID 115, group ID 32, or modifies the
existing entry for that user and group, if any, with a new access mode of read only. It also changes the
owner base entry to have all access rights, and deletes the entry, if any, for any user in group 109.

#inelude <unistd.h>
#inelude <aellib.h>

ehar *filename = "work/list";

setaelentry (filename, 115, 32, R_OK);
setaclentry (filename, ACL_FILEOWNER, ACL_NSGROUP, R_OK
setaelentry (filename, ACL_NSUSER, 109, MODE_DEL);

DEPENDENCIES
NFS setaelentry () and fsetaelentry() are not supported on remote files.

AUTHOR
setaelentry () and fsetaclentry () were developed by HP.

SEE ALSO
getacl(2), setacl(2), stat(2), acltostr(3C), cpacl(3C), chownacl(3C), strtoacl(3C), acl(5).

742 -1- HP-UX Release 9.0: August 1992

setbuf(3S) setbuf(3S)

NAME
setbuf(), setvbuf() - assign buffering to a stream file

SYNOPSIS
#include <stdio.h>

void setbuf(FILE *stream, char *buf);

int setvbuf(FILE *stream, char *buf, int type, size_t size);

DESCRIPTION
setbuf () can be used after a stream has been opened but before it is read or written. It causes the array
pointed to by bur to be used instead of an automatically allocated buffer. If bur is the NULL pointer
input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio. h> header file, tells how big an array is needed:

char buf[BUFSIZ];

setvbuf () can be used after a stream has been opened but before it is read or written. type determines
how stream is to be buffered. Legal values for type (defined in <stdio. h» are:

_IOFBF causes input/output to be fully buffered.

causes output to be line buffered; the buffer will be flushed when a newline is written,
the buffer is full, or input is requested.

causes input/output to be completely unbuffered.

When an output stream is unbuffered, information is queued for writing on the destination file or terminal
as soon as written; when it is buffered, many characters are saved up and written as a block. When the out­
put stream is line-buffered, each line of output is queued for writing on the destination terminal as soon as
the line is completed (that is, as soon as a new-line character is written or terminal input is requested).
ff lush () can also be used to explicitly write the buffer.

If bur is not the NULL pointer, the array it points to is used for buffering instead of an automatically allo­
cated buffer (from malloc (». size specifies the size of the buffer to be used. The constant BUFSIZ in
<stdio .h> is suggested as a good buffer size. Ifinputloutput is unbuffered, bur and size are ignored.

By default, output to a terminal is line buffered and all other input/output is fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS
If an illegal value for type or size is provided, setvbuf () returns a non-zero value. Otherwise, the value
returned will be zero.

NOTE
A common source of error is allocating buffer space as an "automatic" variable in a code block, then failing
to close the stream in the same block.

STANDARDS CONFORMANCE
setbuf () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

setvbuf () : AES, SVID2, XPG2, XPG3, XPG4, ANSI C

HP-UX Release 9.0: August 1992 -1- 743

I

I

setclock (3C) setclock (3C)

NAME
setclock " set value of system-wide clock

SYNOPSIS
#include <sys/timers.h>

int setclock(int clock_type, struct timespec *tp);

DESCRIPTION
setclock () sets the current value tp of the specified system-wide clock, clock_type.

setclock () supports a clock_type of TIMEOFDAY, defined in <sys/timers. h>, which represents the
time-of-day clock for the system. For this clock, the values returned by setclock () represent the
amount of time since the Epoch.

The calling process must have appropriate privileges to set the TIMEOFDAY clock.

RETURN VALUE
setclock() returns a value of zero if successful; otherwise it returns -1 and sets errno to indicate the
error.

ERRORS
setclockO fails if any of the following conditions are encountered:

[EINVAL]

[EID]

[EPERM]

clock_type does not specify a known system-wide clock, or tp either is outside the
range for a given clock type, or specifies a nanosecond value less than zero or greater
than or equal to 1000 million.

An error occurred while accessing the clock device

The requesting process does not have the required appropriate privileges to set the
specified clock.

SEE ALSO
gettimer(3C), getclock(3C), <sys/timers.h>

STANDARDS CONFORMANCE
setclock (): AES

744 -1- HP-UX Release 9.0: August 1992

setjmp(3C) setjmp(3C)

NAME
setjmp(), longjmp(), sigsetjmp(), siglongjmp() - non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp(jmp_buf env);

void longjmp(jmp_buf env, int val);

int _setjmp(jmp_buf env);

void _longjmp(jmp_buf env, int val);

int sigsetjmp(sigjmp_buf env, int savemask);

void siglongjmp(sigjmp_buf env, int val);

DESCRIPTION
setjmp () and longjmp () are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program. They exist in three variant forms: setjmp () and longjmp (); _setjmp ()
and _longjmp (); s igsetjmp () and s iglongjmp (). Unless indicated otherwise, references to
setjmp () and longjmp () apply to all three versions.

setjmp () saves its stack environment in env (whose type, jmp_buf, is defined in the
<setjmp • h> header file) for later use by longjmp (). It returns the value o.

longjmp() restores the environment saved by the last call of setjmp () with the
corresponding env argument. After longjmp () is completed, program execution
continues as if the corresponding call of setjmp () (which must not itself have
returned in the interim) had just returned the value val. longjmp () cannot
cause setjmp () to return the value o. If longjmp () is invoked with a
second argument of 0, setjmp () returns 1. All accessible data values are valid
as of the time longjmp () is called.

Upon the return from a setjmp () call caused by a longjmp (), the values of any non-static local vari­
ables belonging to the routine from which setjmp () was called are undefined. Code which depends on
such values is not guaranteed to be portable.

Variant Forms
The following functions behave the same as setjmp () and longjmp () except in the handling of the
process' signal mask (see sigaction(2) and sigvector(2)). This distinction is only significant for programs
which use sigaction (), sigprocmask (), sigvector (), sigblock (), and/or sigsetmask().

setjmp ()
longjmp () These always save and restore the signal mask.

_setjmp()
_longjmp() These never manipulate the signal mask.

sigsetjmp () Saves the signal mask if and only if savemask is non-zero.

siglongjmp () Restores the signal mask if and only if it is saved by sigsetjmp ().

Programming Considerations
If a longjmp () is executed and the environment in which the setjmp () is executed no longer exists,
errors can occur. The conditions under which the environment of the setjmp () no longer exists include
exiting the procedure that contains the setjmp () call, and exiting an inner block with temporary storage
(such as a block with declarations in C or a wi th statement in Pascal). This condition might not be detect­
able, in which case the longjmp () occurs and, if the environment no longer exists, the contents of the
temporary storage of an inner block are unpredictable. This condition might also cause unexpected process
termination. If the procedure has been exited the results are unpredictable.

Passing longjmp () a pointer to a buffer not created by setjmp (), passing _longjmp () a pointer to
a buffer not created by either setjmp () or _setjmp (), passing siglongjmp () a pointer to a buffer
not created by sigsetjmp () or passing any of these three functions a buffer that has been modified by
the user, can cause all the problems listed above, and more.

HP-UX Release 9.0: August 1992 -1- 745

•

I

setjmp(3C) setjmp(3C)

Some implementations of Pascal support a ''try/recover" mechanism, which also creates stack marker infor­
mation. If a longjmp () operation occurs in a scope which is nested inside a try/recover, and the
corresponding setjmp () is not inside the scope of the try/recover, the recover block will not be executed
and the currently active recover block will become the one enclosing the set jmp () , if one exists.

WARNINGS
A call to longjmp () to leave the guaranteed stack space reserved by sigspace () might remove the
guarantee that the ordinary execution of the program will not extend into the guaranteed space. It might
also cause the program to forever lose its ability to automatically increase the stack size, and the program
might then be limited to the guaranteed space.

The result of using setjmp () within an expression can be unpredictable.

If longjmp () is called even though env was never primed by a call to setjmp (), or when the last such
call was in a function that has since returned, total chaos is guaranteed.

AUTHOR
setjmp () was developed by AT&T and lIP.

SEE ALSO
sigaction(2), sigblock(2), signal(5), sigprocmask(2), sigsetmask(2), sigspace(2), sigsuspend(2), sigvector(2).

STANDARDS CONFORMANCE

746

setjmp () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C
longjmp (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

siglongjmp (): AES, XPG3, XPG4, FIPS 151-2, PO SIX. 1
sigsetjmp (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

-2- HP-UX Release 9.0: August 1992

setlocale (3C) setlocale (3C)

NAME
setlocale(), getlocale() - set and get the locale of a program

SYNOPSIS
#include <locale.h>

char *setlocale(int category, const char *locale);

struct locale_data *getlocale(int type);

DESCRIPTION
set locale () sets, queries or restores that aspect of a program's locale as specified by the category argu­
ment. A program's locale refers to those areas of the program's Native Language Support (NLS) environ­
ment for which the following values of category have been defined:

LC_ALL Affects behavior of all categories below as well as all nClanginfo(3C) items.

LC_COLLATE

LC_NUMERIC

Note that some nClanginfo items are only affected by the setting of the
LC _ALL category.

Affects behavior of regular expressions and the NLS string collation functions
(see string(3C) and regexp(5)).

Affects behavior of regular expressions, character classification and conversion
functions (see ctype(3C), conv(3C), and regexp(5)). The LC_CTYPE category
also affects the behavior of all routines that process multibyte characters (see
multibyte(3C) and nCtools_16(3C)).

Affects the language in which messages are displayed and the processing of
affirmative and negative responses.

Affects behavior of functions that handle monetary values (see localeconv(3C)).

Affects handling of the radix character in the formatted input/output functions
(see printf(3C), scanf(3C) and vprintf(3C)) and the string conversion functions
(see ecvt(3C) and strtod(3C)). LC_NUMERIC also affects the numeric values
found in the localeconv structure.

Affects the behavior of time conversion functions (see getdate(3C) and
strftime(3C)).

All nClanginfo(3C) items are affected by the setting of one of the categories listed above. See lan­
ginfo(5) to determine which categories affect each item.

The value of the locale argument determines the action taken by setloca1e (). locale is a pointer to a
character string.

Setting the Locale of a Program
To set the program's locale for category, setlocale () accepts one of the following values as the locale
argument: locale name, "C", or (the empty string). The actions prescribed by these values are as follows

locale name If locale is a valid locale name (see lang(5)), set locale () sets that part of the NLS
environment associated with category as defined for that locale.

"c"

POSIX

If the value of locale is set to "C", set locale () sets that part of the NLS environment
associated with category as defined for the "c" locale (see lang(5)). The "c" locale is the
default prior to successfully calling setlocale () .

Same as "C"

If the value of locale is the empty string, the setting of that part of the NLS environment
associated with category depends on the setting of the following environment variables in
the user's environment (see environ(5)):

LANG
LC_ALL
LC_COLLATE
LC_CTYPE

LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TlME

HP-UX Release 9.0: August 1992 -1- 747

I

I

setlocale (3C) set locale (3C)

If category is any defined value other than LC_ALL, set locale () sets that category as specified by the
value of the LC_ALL environment or if LC_ALL is not set to the corresponding environment variable. If
the environment variable is not set or set to the empty string, set locale () sets the category as
specified by the value of the LANG environment variable. If LANG is not set or is set to the empty string,
then set locale () sets the category to the "C" locale. For example, set locale (LC_TlME:, II ")
sets the program's NLS environment associated with the LC_TIME category to the value specified by the
user's LC_TlME environment variable. All other aspects of the NLS environment are unaffected.

If category is LC_ALL, then all categories are set corresponding to the value of LC_ALL if LC_ALL is
set, or LANG if LC_ALL is not set, except for those categories in which the corresponding environment
variable is set to a valid language name (see lang(5)). In this case the value of the environment variable
overrides the values of LC_ALL and LANG for that category. If the values of both LC_ALL and LANG
are not set or are set to the empty string, then the "C" locale is used.

The following usage of setlocale () results in the program's locale being set according to the the user's
language requirements:

setlocale (LC_ALL, 1111);

Querying the Locale of a Program
setlocale () queries the current NLS environment pertaining to category if the value of locale is NULL.
The query operation does not change the environment. The purpose of performing a query is to save that
aspect of the user's current NLS environment associated with category, in the value returned by setlo­
cale (), such that it can be restored with a subsequent call to setlocale ().

Restoring the Locale of a Program
To restore a category within the program locale, a set locale () call is made with the same category
argument and the return string of the previous setlocale () call given as the locale argument.

getlocale () returns a pointer to a locale_data structure (see /usr /include/locale. h). The
members of the locale_data structure contain information about the setting of each setlocale category.
type determines what information is contained in the locale_data structure. Defined values of type
and their behaviour are:

The structure member corresponding to each category contains a string
with the name of the locale currently set for that category. The string does
not include modifier information.

The structure member corresponding to each category contains a string
with the name of the modifier currently set for that category. If no
modifier is set then the entry contains an empty string.

The structure member contains information about errors which occurred
during the previous call to setlocale (). If set locale () could not
satisfy a request corresponding to a particular category, the structure
member for that category contains a string with the name of the invalid
locale. In all other cases the member for the category contains an empty
string.

RETURN VALUE
If the pointer to a string is given for locale and the selection can be honored, the setlocale () function
returns a pointer to the string associated with the specified category for the new locale. The maximum
length of this string is LC_BUFSIZ bytes (see <locale. h». If the selection cannot be honored, the
set locale () function returns a null pointer and the program's locale is not changed.

A null pointer for locale causes set locale () to return a string associated with the category for the
program's current locale.

The string returned by set locale () is such that a subsequent call with that string as the locale argu­
ment and its associated category restores that part of the program's locale.

ERRORS
If a language name given through the locale argument does not identify a valid language name or the

748 -2- HP-UX Release 9.0: August 1992

setlocale (3C) setlocale (3C)

language is not available on the system (see lang(5)) a null pointer is returned and the program's locale is
not changed. The same behavior occurs when the call:

setlocale(LC_ALL, 1111);

is made and any category related environment variable in the user's environment identifies an invalid
language name or a language that is not available on the system.

If the category argument is not a defined category value, a null pointer is returned and the program's locale
is not changed.

setlocale () returns a string which reflects the c'urrent setting of that aspect of the NLS environment
corresponding to the category argument. If this return string is used in a subsequent set locale () call
and the category arguments of the two calls do not match, the locale remains unchanged and a null pointer
is returned.

WARNINGS
Using getenv () as the locale argument is not recommended. Arf example of such incorrect usage is :

set locale (LC_ALL, getenv (II LANG II)) ;

getenv () returns a character string which can be a language name, an empty string, or a null pointer;
depending on the setting of the user's LANG environment variable. Each of these values as the locale argu­
ment define a specific action to be taken by setlocale (). Therefore the action taken by setlo­
cale () depends upon the value returned from the getenv() call. To ensure that setlocale () sets
the program's locale based upon the setting of the user's environment variables the following usage is
recommended:

set locale (LC_ALL, 1111);

The value returned by setlocale () points to a static area that is overwritten during the next call to
setlocale (). Be sure to copy these values to another area if they are to be used after a subsequent
setlocale () call.

The structure returned through a call to get locale () is overwritten during the next call to getlo­
cale (). Be sure to save these values if they are to be used after a subsequent getlocale () call.

Any program which calls setlocale () before catopen() may behave differently in this release than
on previous releases because of the addition of LC-.MESSAGES to XPG4 • In the past, catopen() was
directed to the desired language by LANG • Now, cat open () is controlled by LC_MESSAGES •
Set locale () can modify the LC_MESSAGES category.

For example, if the environment variables are set as follows:

LC_MESSAGES=lIfrenchll

and the following call to setlocale () is made:

set locale (LC_ALL, IIgerman");

which is followed by a call to catopen () • Ca topen () will open the message catalogs for german
rather than french.

EXAMPLES
To set a program's entire locale based on the language requirements specified via the user's environment
variables:

set locale (LC_ALL, 1111);

If, in the previous example, the user's environment variables were set as follows:

LANG =lIgermanll
LC_COLLATE =lIspanish@nofoldll

LC-.M0NETARY = II II
LC_TIME =lIamericanll

the LC_ALL, LC_CTYPE, LC_MONETARY, and LC_NUMERIC category items would be set to correspond
to the german language definition, the LC_COLLATE category items would be set to correspond to the
spanish language definition for unfolded collation (see hpnls(5» and the liC_TIME category items would
be set corresponding to the american language definition.

HP-UX Release 9.0: August 1992 -3- 749

I

I

setlocale (3C) setlocale (3C)

750

Using the same example, if the following call was made:

struct locale_data *locale_info=getlocale(LOCALE_STATUS);

the contents of *locale_info would be:

locale_info->LC_ALL_D="germanll
locale_info->LC_COLLATE_D=lIspanishll
locale_info->LC_CTYPE_D=lIgerman ll
locale_info->LC_MESSAGES_D=lIgerman ll
locale_info->LC_MONETARY_D=lIgerman ll
locale_info->LC_NUMERIC_D= II german II
locale_info->LC_TIME_D=lIamericanll

Continuing with the same example, if the following call was made:

struct locale_data *modifier_info=getlocale(MODIFIER_STATUS);

the contents of*modifier_info would now be:

modifier_info->LC_ALL_D=IIII
modifier_info->LC_COLLATE_D=lInofold ll
modifier_info->LC_CTYPE_D=IIII
modifier_info->LC_MESSAGES_D=" II
modifier_info->LC_MONETARY_D=IIII
modifier info->LC NUMERIC D=IIII
modifier=info->LC=TIME_D=-;;-II

The calls:

set locale (LC_ALL, 1111);
struct locale_data *error_info=getlocale(ERROR_STATUS);

with the following settings in the users environment:

LANG=german
LC_COLLATE=junk

where junk is an invalid language, would result in the contents of *error_info being:

_error_info->LC_ALL_D=IIII
_error_info->LC_COLLATE_D=lIjunk"
_error_info->LC_CTYPE_D=IIII
_error_info->LC_MESSAGES_D=IIII
_error_info->LC_MONETARY_D=IIII
_error_info- >LC_NUMERIC_D= II II

_error_info->LC_TIME_D=IIII

An example showing the precedence of the LC_ALL environment variable:

setlocale(LC_ALL, 1111);

with the following settings in the users environment:

LANG=german
LC_ALL=french

All categories will be loaded with french.

Another example showing the precedence of the LC_ALL environment variable :

setlocale(LC_CTYPE, 1111);

with the following settings in the users environment:

LANG=turkish
LC_ALL=danish
LC_CTYPE=russian

The LC_CTYPE category will be loaded with danish.

-4- HP-UX Release 9.0: August 1992

setlocale (3C)

Another example with the LC_ALL environment variable:

set locale (LC_TlME, "polish");

with the following settings in the users environment:

LANG=italian
LC_ALL=dutch

The LC_TlME category will be set to polish.

To set the date/time formats to French :

setlocale (LC_TlME, "french");

To set the collating sequence to the "C" locale:

setlocale(LC_COLLATE, "C");

setlocale (3C)

To set monetary handling to the value of the user's LC_MONETARY environment variable:

setlocale(LC_MONETARY, 1111);

(Note that if the LC_MONETARY environment variable is not set or empty, the value of the user's LANG
environment variable is used.)

To query a user's locale:

char *ch = setlocale(LC_ALL, NULL);

To restore the locale saved in the above example :

setlocale(LC_ALL, ch);

To query just that part of the user's locale pertaining to the LC_NUMERIC category:

char *ch = setlocale(LC_NUMERIC, NULL);

To restore the LC_NUMERIC category of the user's locale saved in the above example:

setlocale(LC_NUMERIC, ch);

AUTHOR
setlocale () was developed by HP.

SEE ALSO
nlsinfo(1), buildlang(lM), conv(3C), ctype(3C), ecvt(3C), getdate(3C), langinfo(3C), multibyte(3C),
nl_tools_16(3C), printf(3S), scanf(3S), strcoll(3C), strftime(3C), string(3C), strtod(3C), vprintf(3S),
wconv(3X), wctype(3X), wstring(3X), hpnls(5), environ(5), langinfo(5), strerror(3C), <langinfo.h>, <locale.h>.

STANDARDS CONFORMANCE
set locale () : AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -5- 751

I

I

NAME
shLload(), shl_definesym(), shl_findsym(), shLgethandle(), shl~etsymbols(), shLunload(), shl~et() -
explicit load of shared libraries

SYNOPSIS
#include <dl.h>

shl_t shl_load(const char *path, int flags, long address);

int shl_findsym(
shl_t *handle,
const char *sym,
short type,
void *value

) ;

int shl_definesym(
const char *sym,
short type,
long value,
int flags

) ;
int shl_getsymbols(

shl_t handle,
short type,
int flags,
void * (*memory) (),
struct shl_symbol **symbols,

) ;

int shl_unload(shl_t handle);

int shl_get(int index, struct shl_descriptor **desc);

int shl_gethandle(shl_t handle, struct shl_descriptor **desc);

DESCRIPTION

752

These routines can be used to programmatically load and unload shared libraries, and to obtain informa­
tion about the libraries (such as the addresses of symbols defined within them). The routines themselves
are accessed by specifying the -ldld option on the command line with the cc or ld command (see ee(!)
and ld(!)). In addition, the -E option to the ld command can be used to ensure that all symbols defined
in the program are available to the loaded libraries.

Shared libraries are created by compiling source files with the + z (position-independent code) option, and
linking the resultant object files with the -b (create shared library) option.

shl_load () Attaches the shared library named by path to the process. The library is mapped at
the specified address. If address is OL, the system chooses an appropriate address for
the library. This is the recommended practice because the system has the most com­
plete knowledge of the address space (see DEPENDENCIES). The flags argument is
made up of several fields. One of the following must be specified:

BIND_IMMEDIATE Resolve symbol references when the library is loaded.

BIND_DEFERRED Delay code symbol resolution until actual reference.

Zero or more of the following can be specified by doing a bitwise OR operation:

BIND_FIRST Place the library at the head of the symbol search order.

Default BIND_IMMEDIATE behavior is to treat all unsatisfied symbols as
fatal. This flag allows binding of unsatisfied code symbols to be deferred
until use.

Do not call the initializer for the shared library when the library is loaded,
nor on a future call to shl_unload ().

-1- HP-UX Release 9.0: August 1992

Print verbose messages concerning possible unsatisfied symbols.

If successful, shl_load () returns a handle which can be used in subsequent calls to
shl_f indsym () , shl_unload (), or shl_gethandle () ; otherwise NULL is returned.

shl_f indsym ()
Obtains the address of an exported symbol sym from a shared library. The handle argument should be a .
pointer to the handle of a loaded shared library that was returned from a previous call to shl_load ()
or shl_get (). If a pointer to NULL is passed for this argument, shl_f indsym () searches all
currentiy loaded shared libraries to find the symbol; otherwise shl_f indsym () searches only the
specified shared library. The return value of handle will be NULL if the symbol found was generated via
shl_definesym(). Otherwise the handle of the library where the symbol was found is returned. The
special handle PROG_HANDLE can be used to refer to the program itself, so that symbols exported from
the program can also be accessed dynamically. The type argument specifies the expected type for the sym­
bol, and should be one of the defined constants TYPE_PROCEDURE, TYPE_DATA, or TYPE_UNDEFINED.
The latter value suppresses type checking. The address of the symbol is returned in the variable pointed
to by value. If a shared library contains multiple versions of the requested symbol, the latest version is
returned. This routine returns 0 if successful; otherwise -1 is returned.

shl_definesym()
Adds a symbol to the shared library symbol table for the current process making it the most visible
definition. If the value falls in the range of a currently loaded library, an association will be made and the
symbol is undefined once the associated library is unloaded. The defined symbol can be overridden by a
subsequent call to this routine or by loading a more visible library that provides a definition. Symbols
overridden in this manner may become visible again if the overriding definition is removed.

Possible symbol types include:

TYPE_PROCEDURE Symbol is a function.

TYPE_DATA Symbol is data.

Possible flag values include: None defined at the present time. Zero should be passed in to prevent
conflicts with future uses of this flag.

shl_getsymbols()
Provides an array of symbol records, allocated using the supplied memory allocator, that are associated
with the library specified by handle. If the handle argument is a pointer to NULL, symbols defined using
shl_def inesym () are returned. If multiple versions of the same symbol have been defined within a
library or with shl_definesym(), only the version from the specified symbol information source that
would be considered for symbol binding is returned. The type argument is used to restrict the return infor­
mation to a specific type. Values of TYPE_PROCEDURE and TYPE_DATA can be used to limit the
returned symbols to be either code or data respectively. The constant TYPE_UNDEFINED can be used to
return all symbols, regardless of type. The flags argument must have one of the following values:

IMPORT_SYMBOLS
Return symbols found on the import list.

EXPORT_SYMBOLS
Return symbols found on the export list. All symbols defined via
shl_def inesym () are export symbols.

Zero or more of the following can be specified by doing a bitwise OR operation:

NO_VALUES Only makes sense when combined with EXPORT_SYMBOLS. Do not calculate the
value field in the return structure to avoid symbol binding by the loader to resolve
symbol dependencies. If only a few symbol values are needed, shl_f indsym ()
can be used to find the values of interesting symbols. Not to be used with
GLOBAL_VALUES.

GLOBAL_VALUES
Only makes sense when combined with EXPORT_SYMBOLS. Use the name and

HP-UX Release 9.0: August 1992 -2- 753

I

I

type information of each return symbol and find the most visible occurrence using all
symbol information sources. The value and handle fields in the symbol return struc­
ture reflect where the most visible occurrence was found. Not to be used with
NO_VALUES.

The memory argument should point to a function with the same interface as malloe () (see rr..alloc(3C».

The return information consists of an array of the following records (defined in <dl.h»:

struct shl_symbol
char *name,
short type,
void value,
shl_t handle,

} ;

The type field in the return structure can have the values TYPE_PROCEDURE, TYPE_DATA, or
TYPE_STORAGE, where TYPE_STORAGE is a subset of TYPE_DATA. The value and handle fields are
only valid if export symbols are requested and the NO_VALUES flag is not specified. The value field con­
tains the address of the symbol, while the handle field is the handle of the library that defined the symbol,
or NULL for symbols defined via the shl_definesym() routine and is useful in conjunction with the
GLOBAL_VALUES flag.

If successful, shl_getsymbols () returns the number of symbols found; otherwise it returns-l.

shl_unload ()
Can be used to detach a shared library from the process. The handle argument should be the handle
returned from a previous call to shl_load () . shl_unload () returns 0 if successful; otherwise -1 is
returned. All explicitly loaded libraries are detached automatically on process termination.

shl_get ()
Returns information about currently loaded libraries, including those loaded implicitly at startup time.
The index argument is the ordinal position of the shared library in the shared library search list for the
process. A subsequent call to shl_unload () decrements the index values of all libraries having an
index greater than the unloaded library. The index value -1 refers to the dynamic loader. The dese argu­
ment is used to return a pointer to a statically allocated buffer containing a descriptor for the shared
library. The format of the descriptor is implementation dependent; to examine its format, look at the con­
tents of file /usr/include/dl.h. Information common to all implementations includes the library
handle, pathname, and the range of addresses the library occupies. The buffer for the descriptor used by
shl_get () is static; the contents should be copied elsewhere before a subsequent call to the routine. The
routine returns 0 normally, or -1 if an invalid index is given.

shl~ethandle()

Returns information about the library specified by the handle argument. The special handle
PROG_HANDLE can be used to refer to the program itself. The descriptor returned is the same as the one
returned by the shl_get () routine. The buffer for the descriptor used by shl_gethandle () is
static; the contents should be copied elsewhere before a subsequent call to the routine. The routine returns
o normally, or -Ion error.

DIAGNOSTICS

754

If a library cannot be loaded, shl_load () returns NULL and sets errno to indicate the error. All other
functions return -Ion error and set errno.

If shl_f indsym () cannot find the indicated symbol, errno is set to zero. If shl_f indsym () finds
the indicated symbol but cannot resolve all the symbols it depends on, errno is set to ENOSYM.

If a call to shl_load () or shl_f indsym () fails with ENOSYM, the process may be left in an incon­
sistent state. Some symbol resolutions may have occurred before the failure, and these may be invalid.
The program should probably be terminated if this occurs.

-3- HP-UX Release 9.0: August 1992

ERRORS
Possible values for errno include:

The specified file is not a shared library, or a format error was detected.

Some symbol required by the shared library could not be found.

[ENOEXEC]

[ENOSYM]

[EINVAL] The specified handle or index is not valid or an attempt was made to load a library at
an invalid address.

[ENOMEM]

[ENOENT]

[EACCES]

WARNINGS

There is insufficient room in the address space to load the library.

The specified library does not exist.

Read or execute permission is denied for the specified library.

shl_unload () detaches the library from the process and frees the memory allocated for it, but does not
break existing symbolic linkages into the library. In this respect, an unloaded shared library is much like a
block of memory deallocated via free () (see free (3 C».

Some implementations may not, by default, export all symbols defined by a program (instead exporting only
those symbols that are imported by a shared library seen at link time). Therefore the -E option to ld(1)
should be used when using these routines if the loaded libraries are to refer to program symbols.

All symbol information returned by shl_getsymbols (), including the name field, become invalid once
the associated library is unloaded by shl_unload ().

DEPENDENCIES
Series 300/400:

shl_definesym() and shl_getsymbols () are not implemented on Series 300 and 400 systems.

When using shl_f indsym () , keep in mind that the compilers place an underscore at the beginning of all
external names.

Series 700/800:
The only value for the address field is OL. Any other value is treated as if it had been specified as OL.

The following additional values for the {lags argument can be used with shl_load () on Series 700 and
800 systems:

AUTHOR

BIND_RESTRICTED
Restrict symbols visible by the library to those present at library load time.

DYNAMIC_PATH Allow the loader to dynamically search for the library specified by the path argu­
ment. The directories to be searched are determined by the +s and +b options
of the Id command used when the program was linked.

shCload(3X) and related functions were developed by HP.

SEE ALSO
Id(1), dld.sl(5).

HP-UX Release 9.0: August 1992 -4- 755

I

I

sigsetops (3C) sigsetops (3C)

NAME
sigemptyset(), sigfillset(), sigaddset(), sigdelset(), sigismember() - initialize, manipulate, and test signal
sets

SYNOPSIS
#inc1ude <signa1.h>

int sigemptyset(sigset_t *set);

int sigfi11set(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigde1set(sigset_t *set, int signo);

int sigism~uber{const sigset_t *set, int signo);

DESCRIPTION
sigemptyset () initializes the signal set pointed to by set, to exclude all signals supported by HP-UX.

s i gf i 11 s et () initializes the signal set pointed to by set, to include all signals supported by HP-ux.
Applications must call either sigemptyset () or sigfi11set () at least once for each object of type
sigset_t before using that object for anything else, including cases where the object is returned from a
function (for example, the oset argument to s igprocmask () - see sigprocmask(2)).

sigaddset () adds the signal specified by signo to the signal set pointed to by set.

sigde1set () deletes the signal specified by signo from the signal set pointed to by set.

sigismember () tests whether the signal specified by signo is a member of the signal set pointed to by
set.

RETURN VALUE
Upon successful completion, sigismember () returns a value of 1 if the specified signal is a member of
the specified set, or a value of 0 if it is not. The other functions return a value of 0 upon successful comple­
tion. For all of the above functions, if an error is detected, a value of -1 is returned and errno is set to
indicate the error.

ERRORS
sigaddset (), sigde1set (), and sigismember () fail if the following is true:

[EINVAL] The value of the signo argument is out of range. The reliable detection ofthis error is
not guaranteed.

WARNINGS
The above functions do not detect a bad address passed in for the set argument. A segmentation fault is the
most likely result.

AUTHOR
sigfi11set (), sigemptyset (), sigaddset (), sigde1set (), and sigismember () were
derived from the IEEE Standard POSIX 1003.1-1988.

SEE ALSO
sigaction(2), sigsuspend(2), sigpending(2), sigprocmask(2), signal(5).

STANDARDS CONFORMANCE

756

sigaddset (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1
sigde1set (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

sigemptyset (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1
sigfi11set (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

sigismember (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

-1- HP-UX Release 9.0: August 1992

sinh(3M) sinh(3M)

NAME
sinh(), cosh(), tanh(), sinhf(), coshf(), tanhf() - hyperbolic functions

SYNOPSIS
#include <math.h>

double s inh (double x) ;

double cosh(double x) ;

double tanh (double x) ;

float sinhf(float x) ;

float coshf(float x) ;

float tanhf(float x);

DESCRIPTION
sinh (), cosh (), and tanh () return respectively the hyberbolic sine, cosine, and tangent of their argu­
ment.

When x is ±INFINITY, sinh () returns ±INFINITY respectively.

When x is ±INFINITY, cosh () returns +INFINITY.

When x is ±INFINITY, tanh () returns ±1.0 respectively.

sinhf (), coshf (), and tanhf () are float versions of these functions. Their performance is
significantly faster than that of the double versions. Programs must be compiled in ANSI mode (use the
-Aa option) in order to use these functions; otherwise, the compiler promotes the float arguments to
double, and the functions return incorrect results.

DEPENDENCIES
Series 300/400

sinhf (), coshf (), and tanhf () are not supported on Series 300/400 systems.

Series 700/800
s inhf (), coshf (), and tanhf () are not specified by any standard (they are, however, named in
accordance with the conventions specified in the "Future Library Directions" section of the ANSI C stan­
dard). They are provided in the PAl.l versions of the math library only. The +DA1.l option (the default
on Series 700 systems) links in a PA1.l version automatically. A PA1.l library can be linked in explicitly.
For more information, see the HP-UX Floating-Point Guide.

ERRORS
Ilibllibm.a

sinh () and cosh () return HUGE_VAL (and sinh () may return -HUGE_VAL for negative x) and set
errno to ERANGE when the correct value would overflow.

sinh (), cosh () and tanh () return NaN and set errno to EDOM when x is NaN. In addition, a mes­
sage indicating DOMAIN error is printed on the standard error output.

These error-handling procedures can be changed with the matherr () function (see matherr(3M)).

llibllibM.a
No error messages are printed on the standard error output.

sinh () and cosh () return HUGE_VAL (and sinh() may return -HUGE_VAL for negative x) and set
errno to ERANGE when the correct value would overflow.

sinh (), cosh () and tanh () return NaN and set errno to EDOM when x is NaN.

These error-handling procedures can be changed by using the _matherr () function (see _matherr(3M)).
Note that JIlatherr() is provided in order to assist in migrating programs from libm.a to libM.a
and is not a part ofXPG3, ANSI C, or POSIX.

SEE ALSO
isinf(3M), isnan(3M), matherr(3M).

STANDARDS CONFORMANCE
sinh () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 757

I

I

sinh(3M)

758

sinh () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

cosh () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
cosh () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

tanh () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
tanh () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

-2-

sinh(3M)

HP-UX Release 9.0: August 1992

sleep(3C) sleep(3C)

NAME
sleepO - suspend execution for interval

SYNOPSIS
#include <unistd.h>

unsigned int sleep(unsigned int seconds);

DESCRIPTION
sleep () suspends the current process from execution for the number of seconds specified by the argu­
ment.

Actual suspension time can be less than that requested for two reasons:

• Scheduled wakeups occur at fixed 1-second intervals (on the second, according to an internal clock),
and

• Any caught signal terminates the sleep following execution ofthat signal's catching routine.

Suspension time can be an arbitrary amount longer than requested due to the scheduling of other activity
in the system. The value returned by sleep () is the "unslept" amount (the requested time minus the
time actually slept) in case the caller had an alarm set to go off earlier than the end of the requested
sleep () time, or premature arousal due to another caught signal.

sleep () is implemented by setting an alarm signal and pausing until it (or some other signal) occurs.
The previous state of the alarm signal is saved and restored. The calling program may have set up an
alarm signal before calling sleep (). If the sleep () time exceeds the time until such an alarm signal,
the process sleeps only until the alarm signal would have occurred. The caller's alarm catch routine is exe­
cuted just before the sleep () routine returns. If the sleep () time is less than the time till such
alarm, the prior alarm time is reset to go off at the same time it would have without the intervening
sleep ().

seconds must be less than 232
•

SEE ALSO
alarm(2), pause(2), signal(5).

STANDARDS CONFORMANCE
sleep (); AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0; August 1992 -1- 759

I

I

spray(3N)

NAME
spray - scatter data in order to check the network

SYNOPSIS
#include <time.h>
#include <rpcsvc/spray.h>

DESCRIPTION

spray(3N)

This reference page describes the data structures and XDR routines used by the spray(lM) program. A
spray () function call does not exist. Refer to spray(1M) for more information.

RPC Info
program number:

SPRAYPROG

xdr routines:
xdr_sprayarr(xdrs, arr);

XDR*xdrs;

procs:

struct sprayarr *arr;
xdr_spraycumul(xdrs, cumul);

XDR*xdrs;
struct spraycumul *cumul;

SPRAYPROC_SPRAY
Takes no arguments, returns no value.
Increments a counter in server daemon.
The server does not return this call,
so the caller should have a timeout of O.
The sprayarr is only used by the caller,
to vary the size of the UDP packets sent.

SPRA YPROC_GET
Takes no arguments, returns struct spraycumul
with the values of counter and clock set to
reflect the number of SPRA YPROC_SPRA Y calls,
and the total time (seconds and microseconds)
elapsed since the last SPRAYPROC_CLEAR request.

SPRAYPROC_CLEAR
Takes no arguments and returns no value.
Zeros out counter and clock in preparation
for calls to SPRAYPROC_SPRAY.

versions:
SPRAYVERS_ORIG

structures:

WARNING

struct spraycumul {
unsigned counter;
struct time val clock;

J;
struct sprayarr {

int *data;
int lnth;

J;

User applications that call this routine must be linked with /usr/include/librpcsvc.a. For exam­
ple,

co my_source.c -lrpcsvc

AUTHOR
spray was developed by Sun Microsystems, Inc.

SEE ALSO
spray(lM), sprayd(lM).

760 -1- HP-UX Release 9.0: August 1992

spray (3N) spray(3N)

INTERNATIONAL SUPPORT
8-bit data, 16-bit data, messages

I

HP-UX Release 9.0: August 1992 -2- 761

I

sputl(3X) sputl(3X)

NAME
sputl(), sgetl() - access long integer data in a machine-independent fashion

SYNOPSIS
#include <unistd.h>

void sputl(long int value, char *buffer);

DESCRIPTION
sputl()

sgetl ()

Take the four bytes of the long integer value and place them in memory starting at the
address pointed to by buffer. The ordering of the bytes is the same across all machines.

Retrieve the four bytes in memory starting at the address pointed to by buffer and return
the long integer value in the byte ordering of the host machine.

The combination of sputl () and sgetl () provides a machine-independent way of storing long
numeric data in a file in binary form without conversion to characters.

Any program that uses these functions must be loaded with the object-file access-routine library libld. a.

STANDARDS CONFORMANCE
sputl (): SVID2

sgetl (): SVID2

762 -1- HP-UX Release 9.0: August 1992

ssignal(3C) ssignal (3C)

NAME
ssignal(), gsignal() - software signals

SYNOPSIS
#include <signal.h>

int (*ssignal(int sig, int (*action) (int»)(int);

int gsignal(int sig);

DESCRIPTION
ssignal () and gsignal () implement 9, software facility similar to signal(5). This facility is used by
the Standard C Library to enable users to indicate the disposition of error conditions, and is also made
available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive range 1 through 15.
A call to ssignal () associates a procedure, action, with the software signal sig; the software signal, sig,
is raised by a call to gsignal (). Raising a software signal causes the action established for that signal to
be taken.

The first argument to ssignal () is a number identifying the type of signal for which an action is to be
established. The second argument defines the action; it is either the name of a (user-defined) action (unc­
tion or one of the manifest constants SIG_DFL (default) or SIG_IGN (ignore). ssignal () returns the
action previously established for that signal type; if no action has been established or the signal number is
illegal, ssignal () returns SIG_DFL.

gsignal () raises the signal identified by its argument, sig:

• If an action function has been established for sig, that action is reset to SIG_DFL and the action
function is entered with argument sig. gs ignal () returns the value returned to it by the
action function.

• If the action for sig is SIG_IGN, gsignal () returns the value 1 and takes no other action.

• If the action for sig is SIG_DFL, gsignal () returns the value 0 and takes no other action.

• If sig has an illegal value or no action was ever specified for sig, gs ignal () returns the value 0
and takes no other action.

SEE ALSO
signal(5).

NOTES
Some additional signals with numbers outside the range 1 through 15 are used by the Standard C Library
to indicate error conditions. Those signal numbers outside the range 1 through 15 are legal, although their
use may interfere with the operation of the Standard C Library.

STANDARDS CONFORMANCE
ssignal (): SVID2, XPG2

gsignal (): SVID2, XPG2

HP-UX Release 9.0: August 1992 -1- 763

I

I

statfsdev(3C) statfsdev (3C)

NAME
statfsdev, fstatfsdev - get file system statistics

SYNOPSIS
#include <sys/vfs.h>

int statfsdev(const char *path, struct statfs *buf);

int fstatfsdev(int fildes, struct statfs *buf);

DESCRIPTION
statfsdev () returns information about the file system on the file specified by path.

bur is a pointer to a statfs structure into which information is placed concerning the file system. The
contents of the structure pointed to by bur include the following members:

long f_bavail
long f_bfree
long f_blocks
long f_bsize
long f_ffree
long f_files
long f_type
fsid_t f_fsid

1* free blocks available to non-superuser *1
1* free blocks *1
1* total blocks in file system *1
1* fundamental file system block size in bytes *1
1* free file nodes in file system *1
1* total file nodes in file system *1
1* type of info, zero for now *1
1* file system ID. f_fsid[ll is MOUNT_UFS,

MOUNT_NFS, or MOUNT_CDFS * 1

Fields that are undefined for a particular file system are set to -1.

fstatfsdev () returns the same information as above, but about the open file referred to by file descrip­
tor fildes.

RETURN VALUE
Upon successful completion, statfsdev () and fstatfsdev () return zero. Otherwise, they return-1
and set the global variable errno to indicate the error.

ERRORS

764

statfsdev () fails if one or more of the following conditions are encountered:

[EACCES]

[EAGAIN]

[EFAULT]

[ELOOP]

[EMFILE]

Search permission is denied for a component of the path prefix.

The file exists, enforcement mode file/record locking is set, and there are outstanding
record locks on the file.

path points to an invalid address.

Too many symbolic links are encountered in translating the path name.

The maximum number of file descriptors allowed are currently open.

[ENAMETOOLONG]

[ENFILE]

[ENOENT]

[ENOTDIR]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

The system file table is full.

The named file does not exist.

A component of the path prefix is not a directory.

[ENXIO] The device specified by the named special file does not exist.

f s tat f sdev () fails if one or more of the following is true:

[EBADF] fildes is not a valid open file descriptor.

[ESPIPE] filedes points to an invalid address.

Both fstatfsdev () and statfsdev () failifone or more of the following is true:

[EAGAIN] Enforcement-mode record locking was set, and there was a blocking write lock.

-1- HP-UX Release 9.0: August 1992

statfsdev (3C)

A resource deadlock would occur as a result of this operation.

A system call was interrupted by a signal.

statfsdev(3C)

[EDEADLK]

[EINTR]

[EINVAL]

[ENOLOCK]

The file specified by path or filedes does not contain a file system of any known type.

The system lock table was full, so the read could not go to sleep until the blocking
write lock was removed.

AUTHOR
statfsdev() and fstatfsdev() were developed byHP.

FILES
/usr/include/sys/mount.h

SEE ALSO
bdf(lM), df(lM), stat(2), statfs(2).

HP-UX Release 9.0: August 1992 -2- 765

•

•

stdio(3S) stdio(3S)

NAME
stdio() - standard buffered input/output stream file package

SYNOPSIS
#include <stdio.h>

DESCRIPTION
The Standard I/O functions described in the subsedion (38) entries of this manual constitute an efficient,
user-level I/O buffering scheme. The getc () and putc () functions handle characters quickly. The fol­
lowing funtions all use or act as if they use getc () and putc (), and can be freely intermixed:

fgetc() fputs() getchar() putchar()
fgets() fread() gets() puts()
fprintf () fscanf () getw() putw()
fputc () fwri te () printf () scanf ()

A file with associated buffering is called a stream and is declared to be a pointer to a defined type FILE.
fopen () creates certain descriptive data for a stream and returns a pointer to designate the stream in all
further transactions. Section (3S) library routines operate on this stream.

At program startup, three streams, standard input, standard output, and standard error, are predefined
and do not need to be explicitly opened. When opened, the standard input and standard output streams are
fully buffered if the output refers to a file and line-buffered if the output refers to a terminal. The standard
error output stream is by default unbuffered. These three streams have the following constant pointers
declared in the <stdio .h> header file:

stdin standard input file
stdout standard output file
stderr standard error file

A constant, NULL, (0) designates a nonexistent pointer.

An integer-constant, EOF, (-1) is returned upon end-of-file or error by most integer functions that deal with
streams (see individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular implementation (see
setbuf(3S» .

Any program that uses this package must include the header file of pertinent macro definitions as follows:

#include <stdio.h>

The functions and constants mentioned in subsection (3S) entries of this manual are declared in that header
file and need no further declaration.

A constant _NFILE defines the default maximum number of open files allowed per process. To increase
the open file limit beyond this default value, see setrlimit(2).

SEE ALSO
close(2), Iseek(2), open(2), pipe(2), read(2), setrlimit(2), write(2), ctermid(3S), cuserid(3S), fclose(3S),
ferror(3S), fgetpos(3S), fileno(3S), fopen(3S), fread(3S), fseek(3S), fsetpos(3S), getc(3S), gets(3S), popen(3S),
printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S), system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S).

ERRORS
Invalid stream pointers usually cause grave disorder, possibly including program termination. Individual
function descriptions describe the possible error conditions.

STANDARDS CONFORMANCE

766

stderr: AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.l, ANSI C

stdin: AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

stdout: AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.l, ANSI C

-1- HP-UX Release 9.0: August 1992

stdipc(3C) stdipc(3C)

NAME
ftok() - standard interprocess communication package

SYNOPSIS
#lnclude <sys/lpc.h>

key_t ftok(const char *path, lnt ld);

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be used by the msgget (),
semget () , and shmget () system calls to obtain interprocess communication identifiers (see msgget(2),
semget(2), and shrnget(2». One suggested method for fonning a key is to use the ftok () routine
described below. Another way to compose keys is to include the project ID in the most significant byte, and
use the remaining portion as a sequence number. There are many other ways to form keys, but it is neces­
sary for each system to define standards for forming them. If some standard is not adhered to, it will be
possible for unrelated processes to unintentionally interfere with each other's operation. Therefore, it is
strongly suggested that the most significant byte of a key in some sense refer to a project so that keys do not
conflict across a given system.

ftok () returns a key based on path and id that is usable in subsequent msgget (), semget (), and
shmget () system calls. path must be the path name of an existing file that is accessible to the process. id
is a character that uniquely identifies a project. Note that ftok () returns the same key for linked files
when called with the same id and that it returns different keys when called with the same file name but
different ids.

RETURN VALUE
ftok () returns (key _t) -1 ifpath does not exist or if it is not accessible to the process.

EXAMPLES
The following call to ftokO returns a key associated with the file myfile and id A:

key_t mykey;
mykey = ftok (Imyfl1e", 'A');

WARNINGS
If the file whose path is passed to ftok () is removed when keys still refer to the file, future calls to
ftok () with the same path and id will return an error. If the same file is recreated, ftok () is likely to
return a different key than it did the original time it was called.

In an HP Clustered environment, ftok () can return a different key (using the same file name) when exe­
cuted on different members of the cluster if any component of the file path name is a context-dependent file.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2), cdf(4).

HP-UX Release 9.0: August 1992 -1- 767

•

I

strftime (3C) strftime (3C)

NAME
strftimeO - convert date and time to string

SYNOPSIS
#include <time.h>

size_t strftime{

) i

size_t maxsize,
const char *format,
const struct tm *timeptr

DESCRIPTION
strftime () converts the contents of a tm structure (see ctime(3C)) to a formatted date and time string.

strftime () places characters into the array pointed to by s as controlled by the string pointed to by for­
mat. The format string consists of zero or more directives and ordinary characters. A directive consists of a
% character, an optional field width and precision specification, and a terminating character that deter­
mines the directive's behavior. All ordinary characters (including the terminating null character are copied
unchanged into the array. No more than maxsize characters are placed into the array. Each directive is
replaced by the appropriate characters as described in the following list. The appropriate characters are
determined by the program's locale, by the values contained in the structure pointed to by timeptr, and by
the TZ environment variable (see External Influences below).

Directives

768

The following directives, shown without the optional field width and precision specification, are replaced by
the indicated characters:

%a
9-oA
%b
%B
%c

%d
%E
%H
%I
%j

9-om
9-oM
%n
9-oN
%0

%p
%S
%t
%U

%w

%W

%x
9-oX
%y
%y

%Z
%%

Locale's abbreviated weekday name.
Locale's full weekday name.
Locale's abbreviated month name.
Locale's full month name.
Locale's appropriate date and time representation.

Day of the month as a decimal number [01,31].
Locale's combined EmperorlEra name and year.
Hour (24-hour clock) as a decimal number [00,23].
Hour (12-hour clock) as a decimal number [01,12].
Day of the year as a decimal number [001,366].

Month as a decimal number [01,12].
Minute as a decimal number [00,59].
New-line character.
Locale's EmperorlEra name.
Locale's EmperorlEra year.

Locale's equivalent of either AM or PM.
Second as a decimal number [00,61].
Tab character.
Week number of the year (Sunday as the first day of the week) as a decimal number
[00,53]. All days in a new year preceding the first Sunday are considered to be in week O.
Weekday as a decimal number [0(Sunday),6].

Week number of the year (Monday as the first day of the week) as a decimal number
[00,53]. All days in a new year preceding the first Sunday are considered to be in week O.
Locale's appropriate date representation.
Locale's appropriate time representation.
Year without century as a decimal number [00,99].
Year with century as a decimal number.

Time zone name (or by no characters if no time zone exists).
%

-1- HP-UX Release 9.0: August 1992

strftime (3C) strftime (3C)

The following directives are provided for backward compatibility with the directives supported by date(l)
and the ctime(3C) functions. It is recommended that the directives above be used in preference to those
below.

%D Date in usual u.s. format (%m/%d/%y) (use %x instead).
%F Locale's full month name (use %B instead).
%h Locale's abbreviated month name (use %b instead).
%r Time in 12-hour u.s. format (%I:%M:%S [AM 1 PM]) (use 9-eJ{ instead).
%T Time in 24-hour u.s. format (%H:%M:%S) (use %X instead).
%z Time zone name (or by no characters if no time zone exists) (use %Z instead).

If a directive is not one of the above, the behavior is undefined.

Field Width and Precision
An optional field width and precision specification can immediately follow the initial
following order:

% of a directive in the

[-IO]w the decimal digit string w specifies a minimum field width in which the result of the conver­
sion is right- or left-justified. It is right-justified (with space padding) by default. If the
optional flag '-' is specified, it is left-justified with space padding on the right. If the
optional flag '0' is specified, it is right-justified and padded with zeros on the left .

• p the decimal digit string p specifies the minimum number of digits to appear for the d, H, I,
j, In, M, 0, S, U, w, W, y and Y directives, and the maximum number of characters to be
used from the a, A, b, B, c, D, E, F, h, n, N, p, r, t, T, x, X, z, Z, and % directives. In the
first case, if a directive supplies fewer digits than specified by the precision, it will be
expanded with leading zeros. In the second case, if a directive supplies more characters
than specified by the precision, excess characters will truncated on the right.

If no field width or precision is specified for a d, H, I, In, M, S, U, W, y, or j directive, a default of • 2 is used
for all but j for which .3 is used.

EXTERNAL INFLUENCES
Locale

The LC_TIME category determines the characters to be substituted for those directives described above as
being from the locale.

The LC_CTYPE category determines the interpretation of the bytes within format as single and/or multi­
byte characters.

The LC_NUMERIC category determines the characters used to form numbers for those directives that pro­
duce numbers in the output. If ALT_DIGITS (see langinfo(5» is defined for the locale, the characters so
specified are used in place of the default ASCII characters.

Environment Variables
TZ determines the time zone name substituted for the %Z and %z directives. The time zone name is
determined by calling the function t zset () which sets the external variable t zname (see ctime(3C».

International Code Set Support
Single- and multi -byte character code sets are supported.

RETURN VALUE
If the total number of resulting characters including the terminating null character is not more than max­
size, strftime () returns the number of characters placed into the array pointed to by s, not including
the terminating null character. Otherwise, zero is returned and the contents of the array are indeter­
minate.

EXAMPLES
If the timeptr argument contains the following values:

timeptr~tm_sec = 4;
timeptr~tm_min = 9;
timeptr~tm_hour = 15;
timeptr~tm_mday = 4;
timeptr~tm_mon = 6;

HP-UX Release 9.0: August 1992 -2- 769

•

•

strftime (3C) strftime (3C)

timeptr-7tm..,year = 88;
timeptr-7tm_wday = 1;
timeptr-7tm..,yday = 185;
timeptr-7tm_isdst = 1;

the following combinations of the LC_TlME category and format strings produce the indicated output:
T r-. 'l'T1\6 format string output oUV_J.J.J.'J.J.:.I

american %x Mon, Jul 4, 1988
german %x Mo., 4. Juli 1988
american %X 03:09:04 PM
french %X 15h0904
,. •. u.+ %H:%l'.f:%S 15:09:04 '-"'''JI

anyt %.IH:%.IM:%.1S 15:9:4
anyt %2.1H:%-3M:%03.1S 15:9 :004

t The directives used in these examples are not affected by the LC_TIME category ofthe locale.

WARNINGS
If the arguments s and format are defined such that they overlap, the behavior is undefined.

The function tzset () is called upon every invocation of strftime () (whether or not the time zone
name is copied to the output array).

The range of values for %S ([0,61]) extends to 61 to allow for the occasional one or two leap seconds. How­
ever, the system does not accumulate leap seconds and the tm structure generated by the functions
localtime () and gmtime () (see ctime(3C)) never reflects any leap seconds.

Results are undefined if values contained in the structure pointed to by timeptr exceed the ranges defined
for the tm structure (see ctime(3C)) or are not consistent (such as if the tmJday element is set to 0, indi­
cating the first day of January, while the tm_mon element is set to 11, indicating a day in December).

AUTHOR
strftime () was developed by HP.

SEE ALSO
date(I), ctime(3C), getdate(3C), setlocale(3C), environ(5), langinfo(5), hpnls(5).

STANDARDS CONFORMANCE
strftime (): AES, XPG3, XPG4, FIPS 151-2, PO SIX. 1, ANSI C

770 -3- HP-UX Release 9.0: August 1992

string(3C) string(3C)

NAME
strcatO, strncatO, strcmpO, strncmpO, strcasecmpO, strncasecmpO, strcpyO, strncpyO, strdupO, strlenO,
strchrO, strrchrO, strpbrkO, strspnO, strcspnO, strstr(), strrstrO, strtokO, strcollO, strxfrmO, nLstrcmpO,
nLstrncmp(), index(), rindex() - character string operations

SYNOPSIS
#include <string.h>
#include <strings.h>

char *strcat(char *sl, const char *S2)i

char *strncat(char *sl, const char *s2, size_t n);

int strcmp(const char *sl, const char *s2);

int strncmp(const char *sl, const char *s2, size_t n);

int strcasecmp(const char *sl, const char *s2);

int strncasecmp(const char *sl, const char *s2, size_t n);

char *strcpy(char *sl, const char *s2);

char *strncpy(char *sl, const char *s2, size_t n);

char *strdup(const char *s);

size_t strlen(const char *s);

char *strchr(const char *s, int c);

char *strrchr(const char *s, int c);

char *strpbrk(const char *sl, const char *s2);

size_t strspn(const char *sl, const char *s2);

size_t strcspn(const char *sl, const char *s2);

char *strstr(const char *sl, const char *s2);

char *strrstr(const char *sl, const char *s2);

char *strtok(char *sl, const char *s2);

int strcoll(const char *sl, const char *s2);

size_t strxfrm(char *sl, const char *s2, size_t n);

int nl_strcmp(const char *sl, const char *s2);

int nl_strncmp(const char *sl, const char *s2, size_t n);

char *index(const char *s, int C)i

char *rindex(const char *s, int c);

Remarks:
All functions except index () and r index () are declared in both headers, so only one of the two
headers needs to be included.

The functions index () and rindex () are declared only in <strings. 11>, They and <strings. 11>
are provided solely for portability ofBSD applications, and are not recommended for new applications where
portability is important. For portable applications, use <string .h>, strchr (), and strrchr ()
instead.

index () and rindex () and <strings .h> are provided solely for portability ofBSD applications, and
are not recommended for new applications where portability is important. For portable applications, use
strchr () and strrchr () instead.

DESCRIPTION
Arguments 81,82, and 8 point to strings (arrays of characters terminated by a null byte).

HP-UX Release 9.0: August 1992 -1- 771

•

I

string(3C) string(3C)

772

Definitions for all these functions, the type size_t, and the constant NULL are provided in the <string.h>
header.

strcat ()

.. t- ,....,.,,.... (\
-- .. """ ,.t' \ J

strcpy()

strdup ()

strlen()

strchr ()

Appends a copy of string 82 to the end of string 81. strncat () appends a maximum of
n characters. It copies fewer if 82 is shorter than n characters. Each returns a pointer to
the null-terminated result (the value of 81).

Compares its arguments and returns an integer less than, equal to, or gl'eater than zero,
depending on whether 81 is lexicographically less than, equal to, or greater than 82. The
comparison of corresponding characters is done as if the type of the characters were
unsigned char. Null pointer values for 81 and 82 are treated the same as pointers to
empty strings. strncmp () makes the same comparison but examines a maximum of n
characters (n less than or equal to zero yields equality). strcasecmp () and
strncasec.."Up () are identical in function to strcmp () and strnc:mp () respectively,
but characters are folded by _tolower () (see conv(3C» prior to comparison. The
returned lexicographic difference reflects the folding to lowercase.

Copies string 82 to 81, stopping after the null byte has been copied. strncpy () copies
exactly n characters, truncating 82 or adding null bytes to 81 if necessary, until a total of n
have been written. The result is not null-terminated if the length of 82 is n or more. Each
function returns 81. Note that should not be used to copy n bytes of an arbitrary structure.
If that structure contains a null byte anywhere, strncpy() copies fewer than n bytes
from the source to the destination and fills the remainder with null bytes. Use the
memcpy () function (see memory(3C» to copy arbitrary binary data.

Returns a pointer to a new string which is a duplicate of the string to which 81 points. The
space for the new string is obtained using the malloc () function (see malloc(3C».

Returns the number of characters in 8, not including the terminating null byte.

(strrchr (» Returns a pointer to the first (last) occurrence of character c in string 8, or a
null pointer if c does not occur in the string. The null byte terminating a string is con-
sidered to be part of the string. index () (rindex (» is identical to strchr ()
(strrchr (», and is provided solely for portability ofBSD applications.

strpbrk() Returns a pointer to the first occurrence in string 81 of any character from string 82, or a
null pointer if no character from 82 exists in 81 .

strspn () (strcspn (» Returns the length of the maximum initial segment of string 81, which con­
sists entirely of characters from (not from) string 82.

strstr () (strrstr (» Returns a pointer to the first (last) occurrence of string 82 in string 81, or a
NULL pointer if 82 does not occur in the string. If 82 points to a string of zero length,
strstr () (strrstr (» returns 81.

strtok () Considers the string 81 to consist of a sequence of zero or more text tokens separated by
spans of one or more characters from the separator string 82. The first call (with a non-null
pointer 81 specified) returns a pointer to the first character of the first token, and writes a
null byte into 81 immediately following the returned token. The function keeps track of its
position in the string 81 between separate calls, so that subsequent calls made with the
first argument a null pointer work through the string immediately following that token. In
this way subsequent calls work through the string 81 until no tokens remain. The separa­
tor string 82 can be different from call to call. When no token remains in 81, a null pointer
is returned.

st rcoll () Returns an integer greater than, equal to, or less than zero, according to whether the string
pointed to by 81 is greater than, equal to, or less than the string pointed to by 82. The com­
parison is based on strings interpreted as appropriate to the program's locale (see Locale
below). In the "C" locale strcoll () works like strcmp (). nl_strcmp () is pro­
vided for historical reasons only and is equivalent to strcoll (). nl_strncmp (), also
provided only for historical reasons, makes the same comparisons as strcoll (), but
looks at a maximum ofn characters (n less than or equal to zero yields equality).

s t rxf rm () Transforms the string pointed to by 82 and places the resulting string into the array
pointed to by 81. The transformation is such that if the strcmp () function is applied to

-2- HP-UX Release 9.0: August 1992

string(3C) string(3C)

two transformed strings, it returns a value greater than, equal to, or less than zero,
corresponding to the result of the strco11 () function applied to the same two original
strings. No more than n bytes are placed into the resulting string, including the terminat­
ing null character. If the transformed string fits in no more than n bytes, the length of the
resulting string is returned (not including the terminating null character). Otherwise the
return value is the number of bytes that the s1 string would occupy (not including the ter­
minating null character), and the contents of the array are indeterminate.

strco11 () has better performance with respect to strxfrm() in cases where a given string is com­
pared to other strings only a few times, or where the strings to be compared are long but a difference in the
strings that determines their relative ordering usually comes among the first few characters.
strxfrm() offers better performance in, for example, a sorting routine where a number of strings are
each transformed just once and the transformed versions are compared against each other many times.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the interpretation of the bytes within the string arguments to the
strco11 (), strxfrm(), n1_strcmp (), and n1_strncmp () functions as single and/or multi-byte
characters. It also determines the case conversions to be done for the strcasecmp () and
strncasecmp () functions.

The LC_COLLATE category determines the collation ordering used by the strco11(), strxfrm(),
n1_strcmp (), and n1_strncmp () functions. See hpnls(5) for a description of supported collation
features. Use n1sinfo (see nlsinfo(l» to view the collation used for a particular locale.

International Code Set Support
Single- and multi-byte character code sets are supported for the strco11(), strxfrm(),
n1_strcmp (), and n1_strncmp () functions. All other functions support only single-byte character
code sets.

WARNINGS
The functions strcat (), strncat (), strcpy (), strncpy (), and strtok () alter the contents of
the array to which 81 points. They do not check for overflow of the array.

Null pointers for destination strings cause undefined behavior.

Character movement is performed differently in different implementations, so moves involving overlapping
source and destination strings may yield surprises.

The transformed string produced by strxfrm() for a language using an 8-hit code set is usually at least
twice as large as the original string and may be as much four times as large (ordinary characters occupy
two bytes each in the transformed string, l-to-2 characters four bytes, 2-to-1 characters two bytes per origi­
nal pair, and don't-care characters no bytes). Each character of a multi-byte code set (Asian languages)
occupies three bytes in the transformed string.

For functions strco11 (), strxfrm (), n1_strcmp (), and n1_strncmp (), results are undefined if
the languages specified by the LC_COLLATE and LC_CTYPE categories use different code sets.

AUTHOR
string was developed by AT&T, HP, and the University of California, Berkeley.

SEE ALSO
nlsinfo(l), conv(3C), malloc(3C), malloc(3X), memory(3C), setlocale(3C), hpnls(5).

STANDARDS CONFORMANCE
n1_strcmp (): XPG2

n1_strncmp (): XPG2

strcat () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX..1, ANSI C

s t rchr () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX..1, ANSI C

st rcmp () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX..1, ANSI C

s t rc 0 11 () : AES, XPG3, XPG4, ANSI C

strcpy () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX..1, ANSI C

st rc spn () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX..1, ANSI C

HP-UX Release 9.0: August 1992 -3- 773

I

I

string (3C)

774

strdup (): SVID2

s t r 1 en () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

strncat (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

strncmp (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

strncpy (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

strpbrk (): AES, S"VID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.l, ANSI C

strrchr (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

strspn (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

strs tr () : AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

strtok (): AES, SVID2, XPG2,XPG3,XPG4, FIPS 151-2, POSIX.1,ANSIC

st rxf rm () : AES, XPG3, XPG4, ANSI C

-4-

string(3C)

HP-UX Release 9.0: August 1992

strord(3C) strord(3C)

NAME
strord - convert string data order

SYNOPSIS
#include <nl_types.h>

char *strord(char *sl, const char *s2, nl_mode m)i

DESCRIPTION
The text orientation (mode) of a file can be right-to-Ieft (non-Latin) or left-to-right (Latin). This text orien­
tation can affect the way data is arranged in the file. The data arrangements that result are called screen
order and keyboard order (see hpnl8(5) for more details).

strord () converts the order of characters in 82 from screen to keyboard order or vice versa and places the
result in 81. The arguments 81 and 82 point to strings (arrays of characters terminated by a null charac­
ter). strord () returns 81.

strord () performs the conversion based on mode information indicated by the argument m. The argu­
ment m is of type nCmode found in the header file <nl_types .h>. The mode argument can have two
possible values: NL_LATIN and NL_NONLATIN.

If the mode argument is NL_LATIN, the text orientation is left-to-right, and all non-Latin sub-strings are
reversed. Non-Latin sub-strings are any number of contiguous right-to-Ieft language characters. Non­
Latin sub-strings are delimited by ASCII characters.

Similarly, if the mode argument is NL_NONLATIN, the text orientation is right-to-left and all Latin sub­
strings are reversed. Latin sub-strings are any number of contiguous printable ASCII characters. Latin
sub-strings are delimited by right-to-Ieft language characters and ASCII control codes.

Some right-to-Ieft languages have a duplicate set of digits called alternative numbers. Alternative numbers
always have a left-to-right orientation.

EXTERNAL INFLUENCES
Locale

The LC_NUMERIC category determines whether a right-to-left language has alternative numbers.

International Code Set Support
Single-byte character code sets are supported.

WARNINGS
strord () does not check for overflow of the array pointed to by 81.

AUTHOR
strord () was developed by HP.

SEE ALSO
nl_init(3C), hpnls(5), environ(5), forder(l), nljust(l).

HP-UX Release 9.0: August 1992 -1- 775

I

I

strtoacl (3C) strtoacl (3C)

NAME
strtoaclO, strtoaclpattO, aclentrystartO - convert exact or pattern string form to access control list (ACL)
structure

SYNOPSIS
#include <acllih.h>

lnt strtoacl(

) ;

const char *string,
int nentries,
int maxentries,
struct acl_entry *acl,
int fuid,
lnt fgid

int strtoaclpatt(

) ;

const char *string,
int maxentries,
struct acl_entry-patt *acl

DESCRIPTION
strtoacl () converts an access control list from exact symbolic (string) representation to structure form.
It parses the input string and verifies its validity. Optionally it applies the entries in the string as a series
of changes to an existing ACL.

strtoaclpatt () converts an access control list pattern from symbolic (string) representation to struc­
ture form. It parses the input string and verifies its validity.

The external array aclentrystart [], only valid until the next call of either routine, is useful for error
reporting. See ERRORS below.

The "operator" and "short" symbolic forms of ACLs and ACL patterns (described in acl(5» are acceptable as
input strings. If the first non-whitespace character in string is (, the ACL or ACL pattern in string must be
in short form. Otherwise operator form is assumed.

strtoacl () takes a pointer to the string to be converted, and a pointer to the first element of an array of
ACL entries (acl []) initially containing the indicated number (nentries) of valid entries (zero or more).
This array can grow to the indicated number of entries (maxentries). strtoacl () also takes file user ID
(juid) and group ID (fgid) values to substitute for @ characters in string and returns the resulting number
of entries in ac 1 [] .

Redundant entries (identical user ID and group ID values after processing @ characters) are combined, so
that ac 1 [] contains unique entries in the order encountered. If a new entry is mentioned, it is added to
the end of the acl array.

strtoaclpatt()

776

strtoaclpatt () differs from strtoacl () because it processes an ACL pattern instead of an ACL.
Since modification of an existing initial ACL is not useful, it is not supported.

Entries with matching user and group ID values are not combined. Each entry input yields one entry in the
returned array.

The @ character for user and group IDs (see acl(5» is converted to special values (ACL_FILEOWNER or
ACL_FILEGROUP, respectively, defined in <acllib. h», not to specific user or group names provided by
the caller. Thus, s trtoac Ipat t () need not be called to reparse the ACL pattern for each file, but the
caller must handle the special values when comparing an ACL pattern to an ACL.

Wildcard user names, group names, and mode values are supported, as are absent mode parts; see acl(5).

strtoaclpatt () returns a different structure than strtoacl (). The acCentry-patt structure con­
tains onmode and offmode masks rather than a single mode value.

In operator form input, operators have a different effect on strtoaclpatt ():

-1- HP-UX Release 9.0: August 1992

strtoacl (3C) strtoacl (3C)

Sets bits in both the onmode and offmode fields appropriately, replacing existing bits in the
entry, including any set by earlier operators.

+ Sets bits in onmode and clears the same bits in offmode.

Sets bits in offmode and clears the same bits in onmode .

In short form input, the mode is treated like the = operator in operator form.

For both routines, a non-specific user or group ID of % is converted to ACL_NSUSER or ACL_NSGROUP,
respectively. For strtoaclpatt () only, a wildcard user or group ID of * is converted to
ACL_ANYUSER or ACL_ANYGROUP, respectively. The values are defined in <acl11b .h>.

Entries can appear in string in any order. string can contain redundant entries, and in operator form
only, redundant + and - operators for ACL entry mode modifications (in exact form) or mode bit
inclusions/exclusions (in patterns). Entries or modifications are applied left to right.

Suggested Use
To build a new ACL (ACL pattern) array using strtoacl () (strtoaclpatt (»), define acl [] with as
many entries as desired. Pass it to strtoacl () (strtoaclpatt (» with nentries set to zero
(strtoacl () only) and maxentries set to the number of elements in acl [].

To have strtoacl () modify a file's existing ACL, define acl [] with the maximum possible number of
entries (NACLENTRIES; see <sys/acl.h». Call getacl () (see getacl(2)) to read the file's ACL and
stat () (see stat(2)) to get the file's owner and group IDs. Then pass the current number of entries, the
current ACL, and the ID values to strtoacl () with maxentries set to NACLENTRIES.

If strtoacl () succeeds, the resulting ACL can be passed safely to setacl () (see setacl(2)) because all
redundancies (if any) have been resolved. However, note that since neither strtoacl () nor
strtoaclpatt () validate user and group ID values, if the values are not acceptable to the system,
setacl () fails.

Performance Trick
Normally strtoacl () replaces user and group names of @ with specific user and group ID values, and
also combines redundant entries. Therefore, calling stat () and strtoacl () for each of a series of
files to which an ACL is being applied is simplest, although time consuming.

If string contains no @ character, or if the caller merely wants to compare one ACL against another (and
will handle the special case itself), it is sufficient to call strtoacl () once, and pointless to call stat ()
for each file. To determine this, call strtoacl () the first time with fuid set to ACL_E'ILEOWNER and
fgid set to ACL_E'ILEGROUP. Repeated calls with file-specific fuid and fgid values are needed only if the
special values of fuid and fgid appear in ac 1 [] and the caller needs an exact ACL to set on each file; see
EXAMPLES below.

If @ appears in string and acl [] will be used later for a call to setael (), it is necessary to call
strtoacl () again to reparse the ACL string for each file. It is possible that not all redundant entries
were combined the first time because the @ names were not resolved to specific IDs. This also complicates
comparisons between two ACLs. Furthermore, the caller cannot do the combining later because operator
information from operator form input might be lost.

RETURN VALUE
If strtoael () (strtoaclpatt (») succeeds, it returns the number of entries in the resulting ACL
(ACL pattern), always equal to or greater than nentries (zero).

strtoaclpatt () also sets values in global array aclentrystart [] to point to the start of each pat­
tern entry it parsed in string, in some cases including leading or trailing whitespace. It only sets a number
of pointers equal to its return value plus one (never more than NACLENTRIES + 1). The last valid ele­
ment points to the null character at the end of string. After calling strtoaelpatt (), an entry pattern's
corresponding input string can be used by the caller for error reporting by (temporarily) putting a null at
the start of the next entry pattern in string.

ERRORS
If an error occurs, strtoacl () and strtoaclpatt () return a negative value and the content of
acl is undefined (was probably altered). To help with error reporting in this case, aclentrystart [0]
and aclentrystart [1] are set to point to the start of the current and next entries, respectively, being
parsed when the error occurred. If the current entry does not start with (, aclentrystart [1] points

HP-UX Release 9.0: August 1992 -2- 777

I

I

strtoacl (3C) strtoacl (3C)

to the next null character or comma at or after aclentrystart [0]. Otherwise, it points to the next
null, or to the character following the next) .

The following values are returned in case of error:

-1 Syntax error: entry doesn't start with (as expected in short form.

-2 Syntax error: entry doesn't end with) as expected in short form.

-3 Syntax error: user name is not terminated by a dot.

-4 (strtoacl () only) Syntax error: group name is not terminated by an operator in operator-
form input or a comma in short-form input.

-5 Syntax error: user name is null.

-6 Syntax error: group name is null.

-7 Invalid user name (not found in / etc/passwd file and not a valid number).

-8 Invalid group name (not found in /etc/group file and not a valid number).

-9 Syntax error: invalid mode character, other than 0 .. 7, r, w, x, - (allowed in short form only), *
(allowed in patterns only), , (to end an entry in operator form), or) (to end an entry in short
form). Or, 0 .. 7 or * is followed by other mode characters.

-10 The resulting ACL would have more than maxentries entries.

EXAMPLES

778

The following code fragment converts an ACL from a string to an array of entries using an fuid of 103 for the
file's owner and fgid of 45 for the file's group.

#include <acllib.h>

int nentries;
struct acl_entry acl [NACLENTRIES];

if «nentries = strtoacl (string, 0, NACLENTRIES, acl, 103, 45» < 0)
error (.••);

The following code gets the ACL, fuid, and fgid for file •• /myfile, modifies the ACL using a description
string, and changes the ACL on file •• /mytile2 to be the new version.

#include <sys/types.h>
#include <sys/stat.h>
#include <acllib.h>

struct stat statbuf;
int nentries;
struct acl_entry acl [NACLENTRIES];

if (stat (II •• /myfile", & statbuf) < 0)
error (•••);

if «nentries = getacl (II •• /myfile ll , NACLENTRIES, acl» < 0)
error (.•.);

if «nentries = strtoacl (string, nentries, NACLENTRIES, acl,
statbuf.st_uid, statbuf.st_gid» < 0)

error (•..);
}

if (setacl (1I •• /myfile2", nentries, acl) < 0)
error (...);

The following code fragment calls strtoacl () with special values offuid and fgid, then checks to see if
they show up in acl [].

#include <acllib.h>

-3- HP-UX Release 9.0: August 1992

strtoacl (3C) strtoacl (3C)

int perfile = 0; /* need to state) and reparse per file? */
int entry;

if «nentries = strtoacl (string, 0, NACLENTRIES, acl,
ACL_FILEOWNER, ACL_FILEGROUP» < 0)

error (...);

for (entry = 0; entry < nentries; entry++)
{

if «acl [entry]
I I (acl [entry]

{

uid
gid

perfile = 1;
break;

ACL_FILEOWNER)
ACL_FILEGROUP»

The following code fragment converts an ACL pattern from a string to an array of pattern entries.

#include <acllib.h>

int nentries;
struct acl_entry-patt acl [NACLENTRIES];

if «nentries = strtoaclpatt (string, NACLENTRIES, acl» < 0)
error (.•.);

The following code fragment inside a for loop checks an entry pattern (p*, omnask, and offmask vari­
able names) against an entry in a file's ACL (a* variable names) using the file's user and group IDs (f*
variable names).

AUTHOR

include <unistd.h>
if «(puid == ACL_FILEOWNER) && (fuid != auid»

I I «puid != ACL_ANYUSER) && (puid != auid»)
{

continue;

if «(pgid == ACL_FILEGROUP) && (fgid != agid»
I I «pgid != ACL_ANYGROUP) && (pgid != agid»)

{
continue;

if «« amode) & MODEMASK & onmask) != onmask)
I I «(- amode) & MODEMASK & offmask) != offmask»

{
continue;

strtoacl () and strtoaclpatt () were developed by HP.

FILES
/etc/passwd
/etc/group

SEE ALSO
getacl(2), setacl(2), acltostr(3C), cpacl(3C), chownacl(3C), setaclentry(3C), acl(5).

HP-UX Release 9.0: August 1992 -4- 779

I

I

strtod(3C) strtod(3C)

NAME
strtod, atof, nCstrtod, nCatof - convert string to double-precision number

SYNOPSIS
#include <stdlib.h>

double strtod(const char *str, char **ptr);

double atof(const char *str);

double nl_strtod(const char *str, char **ptr, int langid);

double nl_atof(const char *str, int langid);

DESCRIPTION
strtod () returns, as a double-precision floating-point number, the value represented by the character
string pointed to by str. The string is scanned (leading white-space characters as defined by isspace ()
in ctype(3C) are ignored) up to the first unrecognized character. If no conversion can take place, zero is
returned.

strtod () recognizes characters in the following sequence:

1. An optional string of "white-space" characters which are ignored,
2. An optional sign,
3. A string of digits optionally containing a radix character,
4. An optional e or E followed by an optional sign or space, followed by an integer.

The radix character is determined by the loaded NLS environment (see setlocale(3C». If setlocale ()
has not been called successfully, the default NLS environment, "C", is used (see lang(5». The default
environment specifies a period (.) as the radix character.

If the value ofptr is not (char **) NULL , the variable to which it points is set to point at the charac­
ter after the last number, if any, that was recognized. If no number can be formed, *ptr is set to str, and
zero is returned.

atof(str) is equivalent to strtod (str, (char **)NULL).

nl_strtod () and nl_atof () are similar to the above routines, but first call langinit () (see
nCinit(3C)) to load the NLS envirnnrnpnt sr:'~dfied by lang-ia..

EXTERNAL INFLUENCES
Locale

The LC_NUMERIC category determines the value of the radix character within the currently loaded NLS
environment.

RETURN VALUE
If the correct value would cause overflow, +HUGE_VAL or -HUGE_VAL is returned (according to the sign
of the value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

WARNINGS
nl_strtod () and nl_atof () are provided for historical reasons only. Their use is not recommended.
Use strtod() and atof () instead.

AUTHOR
strtod () was developed by AT&T and HP.

SEE ALSO
ctype(3C), setlocale(3C), scanf(3S), strtol(3C), hpnls(5), lang(5).

STANDARDS CONFORMANCE
strtod (): AES, SVID2, XPG2, XPG3, XPG4, ANSI C

atof () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

780 -1- HP-UX Release 9.0: August 1992

strtol(3C)

NAME
strtol, atol, atoi, strtoul - convert string to integer

SYNOPSIS
#include <stdlib.h>

long strtol(const char *str, char **ptr, int base);

long atol(const char *str);

int atoi(const char *str);

unsigned long strtoul(const char *str, char ~*ptr, lnt base);

DESCRIPTION

strtol(3C)

strtol () (strtoul (») converts the character string pointed to by str to long int (unsigned
long int) representation. The string is scanned up to the first character inconsistent with the base.
Leading "white-space" characters (as defined by isspace () in ctype(3C)) are ignored. If no conversion
can take place, zero is returned.

If base is greater than or equal to 2 and less than or equal to 36, it is used as the base for conversion. After
an optional leading sign, leading zeros are ignored, and Ox or OX is ignored if base is 16.

If base is zero, the string itself determines the base as follows: Mter an optional leading sign, a leading zero
indicates octal conversion; a leading Ox or OX hexadecimal conversion. Otherwise, decimal conversion is
used.

If the value of ptr is not (char * *) NULL, a pointer to the character terminating the scan is returned in
the location pointed to by ptr. If no integer can be formed, the location pointed to by ptr is set to str, and
zero is returned.

atol(str) is equivalent to strtol(str, (char **)NULL, 10).

atoi (str) is equivalent to int strtol (str, (char **) NULL, 10).

RETURN VALUE
Upon successful completion, all functions return the converted value, if any. If the correct value would
cause overflow, strtol () returns LONG_MAX or LONG_MIN (according to the sign of the value), and
sets errno to ERANGE; strtoul () returns ULONG_MAX and sets errno to ERANGE. Overflow condi­
tions are ignored by atol () and atoi () .

For all other errors, zero is returned and errno is set to indicate the error.

ERRORS
strtol () and strtoul () fail and errno is set if any of the following conditions are encountered:

[EINV AL] The value of base is not supported.

[ERANGE] The value to be returned would have caused overflow.

SEE ALSO
ctype(3C), strtod(3C), scanf(3S).

STANDARDS CONFORMANCE
strtol (): AES, SVID2, XPG2, XPG3, XPG4, ANSI C

atoi (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, PO SIX. 1, ANSI C

atol (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

strtoul (): AES, XPG4, ANSI C

HP-UX Release 9.0: August 1992 -1- 781

I

I

strtold (3C) strtold (3C)

NAME
strtoldO - convert string to long double-precision number

SYNOPSIS
#1nclude <stdl1b.h>

long_double strtold(const char *str, char **ptr);

DESCRIPTION
strtold () returns as a long double-precision number the value represented by the character string
pointed to by str. The string is scanned up to the first unrecognized character.

strtold () recognizes an optional string of "white-space" characters (as defined by 1sspace () in
ctype(3C)), then an optional sign, then a string of digits optionally containing a radix character, then an
optional e or E followed by an optional sign or space, followed by an integer. The radix character is deter­
mined by the loaded NLS environment (see nCinit(3C)). If n1_1n1 t () has not been called successfully,
the default NLS environment, "C" (see lang(5)), is used. The default environment specifies a period (.) as
the radix character.

If the value of ptr is not (char **)NULL, the variable to which it points is set to point at the character
after the last number, if any, that was recognized. If no number can be formed, *ptr is set to str, and zero is
returned.

EXTERNAL INFLUENCES
International Code Set Support

Single-byte character code sets are supported.

RETURN VALUE
If the correct value would cause overflow, + _MAXLDBL or -_MAXLDBL is returned (according to the sign
of the value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

AUTHOR
strtold () was developed by HP.

SEE ALSO
ctype(3C), nCinit(3C), scanf(3S), hpnls(5), lang(5).

782 -1- HP-UX Release 9.0: August 1992

swab(3C) swab(3C)

NAME
swab() - swap bytes

SYNOPSIS
#include <unistd.h>

void swab(const void *from, void *to, ssize_t nbytes);

DESCRIPTION
swab () copies nbytes bytes pointed to by from to the array pointed to by to, exchanging adjacent even and
odd bytes. It is useful for carrying binary data between byte-swapped and non-byte-swapped machines.
nbytes should be even and non-negative. If nbytes is odd and positive swab () uses nbytes~l instead. If
nbytes is negative, swab () does nothing.

STANDARDS CONFORMANCE
swab () : AES, SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 783

I

I

syslog (3C) syslog (3C)

NAME
syslog(), openlog(), closelog(), setlogmask() - control system log

SYNOPSIS
#include <syslog.h>

int syslog(int priority, const char *message, int parameters, •••)i

int openlog(const char *ident, int logopt, int facilitY)i

int closelog(void)i

int setlogmask(int maskpri)i

DESCRIPTION

784

syslog () writes a message onto the system log maintained by syslogd (see syslogd(lM)). The
message is tagged with priority. The message is similar to a printf(3S) format string except
that 9-am is replaced by the error message associated with the current value of errno. A
trailing newline is added if needed.

This message is read by sys logd and written to the system console, log files, selected
users' terminals, or forwarded to syslogd on another host as appropriate.

priority is encoded as the logical OR of a level and a facility. The level signifies the urgency
of the message, and facility signifies the subsystem generating the message. facility can be
encoded explicitly in priority, or a default facility can be set with openlog () (see below).

level is selected from an ordered list:

LOG_EMERG

LOG_ALERT

LOG_CRIT

LOG_ERR

LOG_WARNING

LOG_NOTICE

A panic condition. This is normally broadcast to all users.

A condition that should be corrected immediately, such as a cor­
rupted system database.

Critical conditions, such as hard device errors.

Errors.

Warning messages.

Conditions that are not error conditiuns, but should possibly be
handled specially.

Informational messages.

Messages that contain information normally of use only when
debugging a program.

syslog 0 does not log a message that does not have a level set.

If syslog () cannot pass the message to syslogd, it attempts to write the message on
Idev/console if the LOG_CONS option is set (see below).

openlog ()
can be called to initialize the log file, if special processing is needed. ident is a string that precedes
every message. logopt is a mask of bits, logically OR'ed together, indicating logging options. The
values for logopt are:

Log the process ID with each message; useful for identifying instantiations
of daemons.

Force writing messages to the console if unable to send it to sys logd.
This option is safe to use in daemon processes that have no controlling ter­
minal because sys log () forks before opening the console.

Open the connection to sys logd immediately. Normally, the open is
delayed until the first message is logged. This is useful for programs that
need to manage the order in which file descriptors are allocated.

Do not wait for children forked to log messages on the console. This option
should be used by processes that enable notification of child termination

-1- HP-UX Release 9.0: August 1992

syslog(3C) syslog(3C)

via SIGCLD, because syslog () might otherwise block, waiting for a
child whose exit status has already been collected.

facility encodes a default facility to be assigned to all messages written subsequently by syslog ()
with no explicit facility encoded.

Messages generated by the kernel. These cannot be generated by any user
processes.

Messages generated by random user processes. This is the default facility
identifier if none is specified.

The mail system.

System daemons, such as inetd(lM), ftpd(lM), etc.

The authorization system: login(l), su(l), getty (1M), etc.

The line printer spooling system: lp(l), lpsched(lM), etc.

LOG_MAIL

LOG_DAEMON

LOG_AUTH

LOG_LPR

LOG_LOCAL 0 Reserved for local use. Similarly for LOG_LOCAL1 through
LOG_LOCAL7.

closelog()
closes the log file.

setlogmask()
sets the log priority mask to maskpri and returns the previous mask. Calls to sys log () with a
priority not set in maskpri are rejected. The mask for an individual priority pri is calculated by the
macro LOG_MASK (pri) ; the mask for all priorities up to and including toppri is given by the macro
LOG_UPTO(toppri). By default, all priorities are logged.

RETURN VALUE
syslog () returns zero if it is successful in writing to the system log or if priority is masked out. It
returns -1 if it is unable to write to the system log or ifpriority is out ofrange.

EXAMPLES
who logs a message regarding some sort of unexpected and serious error:

syslog(LOG_ALERT, "who: internal error 23");/80

ftpd uses openlog () to arrange to log its process ID, to log to the console if necessary, and to log in the
name of the daemon facility:

openlog("ftpd", LOG_PIDILOG_CONS, LOG_DAEMON);

Arrange to log messages only at levels LOG_ERR and lower:

setlogmask(LOG_UPTO(LOG_ERR»;

Typical usage of syslog () to log a connection:

syslog(LOG_INFO, "Connection from host %d", CallingHost);

If the facility has not been set with openlog (), it defaults to LOG_USER.

Explicitly set the facility for this message:

syslog (LOG_INFO I LOG_LOCAL2, "foobar error: 9-om");

WARNINGS
A call to syslog () has no effect unless the syslog daemon (syslogd(lM» is running. openlog () does
not copy and store the ident string internally; it stores only a character pointer. Therefore it is the responsi­
bility of the programmer to make sure that the ident argument points to the correct string until the log file
is closed.

AUTHOR
syslog () was developed by the University of California, Berkeley.

HP-UX Release 9.0: August 1992 -2- 785

I

syslog(3C) syslog(3C)

SEE ALSO
logger(l), syslogd(lM).

I

786 -3- HP-UX Release 9.0: August 1992

system(3S) system(3S)

NAME
system() - issue a shell command

SYNOPSIS
#include <stdlib.h>

int system(const char *command);

DESCRIPTION
system () executes the command specified by the string pointed to by command. The environment of the
executed command is as if a child process were created using fork () (see fork(2», and the child process
invoked the sh-posix(1) utility via a call to exec 1 () (see execl(2» as follows:

exec 1 (.. /bin/posix/ sh", .. sh", .. -c", command, 0);

system () ignores the SIGINT and SIGQUIT signals, and blocks the SIGCHLD signal, while waiting
for the command to terminate. If this might cause the application to miss a signal that would have killed it,
the application should examine the return value from system () and take whatever action is appropriate
to the application if the command terminated due to receipt of a signal.

system () does not affect the termination status of any child of the calling processes other than the pro­
cess or processes it itself creates.

system () does not return until the child process has terminated.

Application Usage
If the return value of system() is not -1, its value can be decoded through the use of the macros
described in <sys/wait .h>. For convenience, these macros are also provided in <stdlib .h>.

Note that, while system () must ignore SIGINT and SIGQUIT and block SIGCHLD while waiting for
the child to terminate, the handling of signals in the executed command is as specified by fork(2) and
exec (2). For example, if SIGINT is being caught or is set to SIG_DFL when system () is called, the
child is started with SIGINT handling set to SIG_DFL.

Ignoring SIGINT and SIGQUIT in the parent process prevents coordination problems (such as two
processes reading from the same terminal) when the executed command ignores or catches one of the sig­
nals.

RETURN VALUE
If command is null, system() returns non-zero.

If command is not null, system () returns the termination status of the command language interpreter
in the format specified by waitpid(2). The termination status of the command language interpreter is as
specified for sh-posix(1), except that if some error prevents the command language interpreter from execut­
ing after the child process is created, the return value from sys tem () is as if the command language
interpreter had terminated using _exi t (127). If a child process cannot be created, or if the termination
status for the command language interpreter cannot be obtained, system () returns -1 and sets errno
to indicate the error.

DIAGNOSTICS
system () forks to create a child process which, in turn, exec () s /bin/pos ix/ sh in order to execute
string. If the fork fails, system () returns -1 and sets errno. If the exec fails, system () returns the
status value returned by wai tpid () (see waitpid(2» for a process that terminates with a call of
exit (127).

ERRORS
If errors are encountered, system () sets errno values as described by fork(2).

FILES
/bin/posix/sh

SEE ALSO
sh(1), fork(2), exec(2), waitpid(2).

STANDARDS CONFORMANCE
system () : AES, SVID2, XPG2, XPG3, XPG4, POSIX.2, ANSI C

HP-UX Release 9.0: August 1992 -1- 787

I

I

tea ttribute (aC) teattribute (aC)

NAME
tcgetattr(), tcsetattrO - control tty device

SYNOPSIS
#include <ter.mios.h>

int tcgetattr(int fildes, struct ter.mios *ter.mios-p);

int tcsetattr(
int fildes,
int optional_actions,
const struct ter.mios *ter.mios-p

) ;

DESCRIPTION
tcgetattr () gets the parameters associated with fildes and stores them in the termios structure refer­
enced by termios--p. If the terminal device does not support split baud rates, the input baud rate stored in
the termios structure is zero. This function is allowed from a background process (see termio(7». However,
the terminal attributes can be subsequently changed by a foreground process.

tcsetattr () sets the parameters associated with fildes (unless support is required from underlying
hardware that is not available) from the termios structure referenced by termios--p as follows:

• If optionaCactions is TCSANOW, the change is immediate.

• If optionaCactions is TCSADRAIN, the change occurs after all output written to fildes is transmit­
ted.

• If optional_actions is TCSAFLUSH, the change occurs after all output written to fildes is transmit­
ted, and all input that has been received but not read is discarded.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
tcgetattr () and tcsetattr () fail if any of the following conditions are encountered:

[EBADF] fildes is not a valid file descriptor.

[EINVAL]

[ENOTTY]

The optionaCactions argument is not a proper value.

The file associated with fildes is not a terminal.

WARNINGS
A request to set a hardware parameter to a value that is not supported by the hardware being used is
ignored. Any remaining parameter values in the request that are supported or that do not affect hardware
are set as requested. For any hardware that does not support separate input and output baud rates, the
requested output baud rate is used to set the actual hardware baud rate. tcgetattr () always returns
the actual values set in hardware.

SEE ALSO
cfspeed(3C), tccontrol(3C), termio(7).

STANDARDS CONFORMANCE
tcgetattr (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

tcsetattr (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

788 -1- HP-UX Release 9.0: August 1992

tccontrol (3C)

NAME
tcsendbreakO, tcdrainO, tcflushO, tcflowO - tty line control functions

SYNOPSIS
#include <ter.mios.h>

int tcsendbreak(int fildes, int duration);

int tcdrain(int fildes);

int tcflush(int fildes, int queue_selector);

int tcflow(int fildes, lnt action);

DESCRIPTION

tccontrol (3C)

If the terminal is using asynchronous serial data transmission, tcsendbreak () causes transmission of
a continuous stream of zero-valued bits for at least 0.25 seconds, but not more than 0.5 seconds. For all
HP-UX implementations, duration is ignored.

tcdraln () waits until all output written to fildes has been transmitted.

tcflush() discards data written to fildes but not transmitted, or data received but not read, depending
on the value of queue_selector:

• If queue_selector is TCIFLUSH, data received but not read is flushed.

• If queue_selector is TCOFLUSH, data written but not transmitted is flushed.

• If queue_selector is TCIOFLUSH, both data received but not read, and data written but not
transmitted is flushed.

tcflow() suspends transmission of data to fildes or reception of data from fildes, depending on the
value of action:

• If action is TCOOFF, output is suspended.

• If action is TCOON, suspended output is restarted.

• If action is TCIOFF, a STOP character is transmitted which is intended to cause the terminal to
stop transmitting data to the system.

• If action is TCION, a START character is transmitted which is intended to cause the terminal to
start transmitting data to the system.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
These functions fail if one or more of the following is true:

SEE ALSO

[EBADF]

[EINTR]

[EINVAL]

[ENOTTY]

fildes is not a valid file descriptor.

A signal was received during tcdrain ().

The queue_selector or the action argument is not a proper value.

The file associated with fildes is not a terminal.

tcattribute(3C), tccontrol(3C), termio(7).

STANDARDS CONFORMANCE
tcdrain (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

tcflow(): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

tcflush(): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

tcsendbreak (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 789

I

I

tcgetpgrp (3C) tcgetpgrp (3C)

NAME
tcgetpgrpO - get foreground process group id

SYNOPSIS
#include <unistd.h>

pid_t tcgetpgrp(int fildes);

DESCRIPTION
tc getpgrp () returns the value of the process group ID of the foreground process group associated with
the terminal referenced by fildes. tcgetpgrp () is allowed from a process that is a member of a back­
ground process group (see termio(7»; however, the information can be subsequently changed by a process
that is a member of a foreground process group.

RETURN VALUE
Upon successful completion, tcgetpgrp () returns the value of the process group ID of the foreground
process group associated with the terminal referenced by fildes. Otherwise, tcgetpgrp () returns a
value of -1 and sets errno to indicate the error.

ERRORS
tcgetpgrp () fails if any of the following conditions are encountered:

[EACCES] The file associated with fildes is the controlling terminal of the calling process, how­
ever, there is no foreground process group defined for the controlling terminal.

[EBADF] fildes is not a valid file descriptor.

[ENOTTy] The file associated with fildes is not the controlling terminal or the calling process
does not have a controlling terminal.

WARNING
The error EACCES, which is returned if the controlling terminal has no foreground process group, might not
be returned in future releases, depending on the course taken by the POSIX standard. Portable applications
therefore should not rely on this error condition.

SEE ALSO
setpgid(2), setsid(2), tcsetpgrp(3C), termio(7).

STANDARDS CONFORMANCE
tcgetpgrp (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

790 -1- HP-UX Release 9.0: August 1992

tcsetpgrp (3C) tcsetpgrp (3C)

NAME
tcsetpgrpO - set foreground process group id

SYNOPSIS
#include <unistd.h>

int tcsetpgrp(int fildes, pid_t pgrp_id);

DESCRIPTION
If the calling process has a controlling terminal, tcsetpgrp () sets the foreground process group ID asso­
ciated with the terminal referenced by fildes to pgrp_id. The file associated with fildes must be the control­
ling terminal of the calling process and the controlling terminal must be currently associated with the ses­
sion of the calling process. The value of pgrp_id must match a process group ID of a process in the same
session as the calling process.

RETURN VALUE
Upon successful completion, tcsetpgrp () returns zero. Otherwise, tcsetpgrp () returns -1 and sets
errno to indicate the error.

ERRORS
tcsetpgrp () fails if any of the following conditions are encountered:

SEE ALSO

[EBADF] fildes is not a valid file descriptor.

[EINVAL]

[ENO'ITY]

[EPERM]

The value of the pgrp _id argument is not supported.

The calling process does not have a controlling terminal, or the fildes is not the con­
trolling terminal, or the controlling terminal is no longer associated with the session
of the calling process.

The value of pgrp_id is a supported value but does not match the process group ID of
a process in the same session as the calling process.

setpgid(2), setsid(2), tcgetpgrp(3C), termio(7).

STANDARDS CONFORMANCE
tcsetpgrp (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 791

I

I

termcap (ax) termcap (3X)

NAME
tgetentO, tgetnumO, tgetflag(), tgetstrO, tgotoO, tputsO - emulate /etc/termcap access routines

SYNOPSIS
#include <curses.h>

int tgetent(char *bp, const char *name);

int tgetnum(const char *id);

int tgetflag(const char *id);

char *tgetstr(const char *id, char **area);

char *tgoto(char *cm, int destcol, int destline);

int tputs(char *cp, int affcnt, int (*outc)(int»;

DESCRIPTION
These functions extract and use capabilities from the compiled terminal capability data bases (see ter­
minfo(4)). They are emulation routines that are provided as a part of the curses(3X) library.

tgetent () Extracts the compiled entry for terminal name into buffers accessible by the program­
mer. Unlike previous termcap routines, all capability strings (except cursor address­
ing and padding information) are already compiled and stored internally upon return
from tgetent (). The buffer pointer bp is redundant in the emulation, and is
ignored. It should not be relied upon to point to meaningful information.
tgetent () returns -1 ifit cannot access the terminfo directory, 0 if there is no capa­
bility file for name, and 1 if all goes well. If a TERMINFO environment variable is
set, tgetent () first looks for TERMINFO/? /name (where ? is the first character
of name), and if that file is not accessible, it looks for
/usr/lib/terminfo/? /name.

tgetnum () Gets the numeric value of capability id, returning -1 if it is not given for the terminal.
tgetnum () is useful only with capabilities having numeric values.

tgetflag () Returns 1 if the specified capability is present in the terminal's entry, and 0 if it is
not. t getf lag () is useful only with capabilities that are boolean in nature (Le.
either present or missing in terminfo(4)).

tgetstr () Returns a pointer to the string value of capability id. In addition, if area is not a
NULL pointer, tgetstr () places the capability in the buffer at area and advances
the area pointer. The returned string capability is compiled except for cursor address­
ing and padding information. tgetstr () is useful only with capabilities having
string values.

tgoto () Returns a cursor addressing string decoded from cm to go to column destcol in line
destline. (Programs that call tgoto () should be sure to turn off the TAB3 bit or
bits, since tgoto () can now output a tab. See termio(7)). Note that programs
using termcap should in general turn off TAB3 anyway since some terminals use
Ctrl-I for other functions, such as nondestructive space.) If a % sequence is given
that is not understood, tgoto () returns [OOPS].

tputs () Decodes the padding information of the string cp. affcnt gives the number of lines
affected by the operation, or 1 if this is not applicable. outc is a routine that is called
with each character in turn. The terminfo variable pad_char should contain a
pad character to be used (from the pc capability) if a null (A@) is inappropriate.

FILES
/usr /lib/libcurses. a -lcurses library

/usr /lib/terminfo/? /* data bases

SEE ALSO
ex(1), terminfo(4), termio(7).

792 -1- HP-UX Release 9.0: August 1992

tmpfile (3S) tmpfile (3S)

NAME
tmpfile() - create a temporary file

SYNOPSIS
#lnclude <stdl0.h>

FILE *tmpflle{vold);

DESCRIPTION
tmpflle () creates a temporary file by generating a name through tmpnam{) (see tmpnam(3S», and
returns a corresponding FILE pointer, If the file cannot be opened a NULL pointer is returned. The file is
automatically deleted when the process using it terminates. The file is opened for update (wb+).

NOTES
On HP-UX systems, the wb+ mode is equivalent to the w+ mode.

SEE ALSO
creat(2), unlink(2), mktemp(3C), fopen(3S), tmpnam(3S).

STANDARDS CONFORMANCE
tmpf lIe (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -1- 793

I

I

tmpnam(3S) tmpnam(3S)

NAME
tmpnamO, tempnamO - create a name for a temporary file

SYNOPSIS
#inc1ude <stdio.h>

char *tmpnam(char *s);

char *tempnam(const char *dir, const char *pfx);

DESCRIPTION
tmpnam () and tempnam () generate file names that can safely be used for a temporary file.

tmpnam () Always generates a file name using the path-prefix defined as P _tmpdir in the
<stdio.):1-> header file. If s is NULL, tmpnQJ.u () leaves its result in an internal
static area and returns a pointer to that area. The next call to tmpnam () destroys
the contents of the area. If s is not NULL, it is assumed to be the address of an array
of at least L_tmpnam bytes, where L_tmpnam is a constant defined in
<stdio. h>; tmpnam () places its result in that array and returns s.

tempnam () allows the user to control the choice of a directory. The argument dir points to the
name of the directory in which the file is to be created. If dir is NULL or points to a
string that is not an appropriate directory name, the path-prefix defined as
P_tmpdir in the <stdio.h> header file is used. If that directory is not accessible,
/tmp is used as illast resort. This entire sequence can be eliminated by providing an
environment variable TMPDIR in the user's environment, whose value is the name of
the desired temporary-file directory.

Many applications are written such that temporary files have certain initial character sequences in their
names. Use the pfx argument to define a given prefix. The argument can be NULL or point to a string of
up to five characters to be used as the first characters in the temporary-file name.

tempnam() uses ma110c () (see malloc(3C» to get space for the constructed file name, and returns a
pointer to this area. Thus, any pointer value returned from t empnam () can serve as an argument to
free () (see malloc(3C». If tempnam() cannot return the expected result for any reason; i.e., ma1-
10c () failed, or none of the above mentioned attempts to find an appropriate directory was successful, a
NULL pointer is returned.

NOTES
tmpnam () and tempnam () generate a different file name each time they are called, but start recycling
previously used names if called more than TMP _MAX times in a single process.

Files created using these functions and either fopen () or creat () (see fopen(3S) and creat(2» are
temporary only in the sense that they reside in a directory intended for temporary use, and their names are
unique. It is the user's responsibility to use unlink(2) to remove the file when it is no longer needed.

WARNINGS
Between the time a file name is created and the file is opened, it is possible for some other process to create
a file with the same name. This can never happen if that other process is using these functions or mktemp,
and the file names are chosen such that duplication by other means is unlikely.

SEE ALSO
creat(2), unlink(2), malloc(3C), mktemp(3C), fopen(3S), tmpfile(3S).

STANDARDS CONFORMANCE
tmpnam () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

tempnam () : AES, SVID2, XPG2, XPG3, XPG4

794 -1- HP-UX Release 9.0: August 1992

trig(3M) trig(3M)

NAME
sinO, cosO, tanO, asinO, acosO, atanO, atan2(), sinf(), cosf(), tanfO, asinf(), acosf(), atanf(), atan2fO - tri­
gonometric functions

SYNOPSIS
#include <math.h>

double sin (double x) ;

double cos (double x) ;

double tan {double x);

double asin(double x) ;

double acos(double x) ;

double atan(double x) ;

double atan2(double y, double x);

float sinf(float x) ;

float cosf(float x) ;

float tanf(float x) ;

float asinf(float x) ;

float acosf(float x) ;

float atanf(float x) ;

float atan2f(float y, float x);

DESCRIPTION
The following trigonometric functions return the values indicated:

sin (x) sine of x (x specified in radians)

cos (x)

tan(x)

asin(x)

cosine of x (x specified in radians)

tangent of x (x specified in radians)

arcsine of x in the range -rrJ2 to rrJ2.

acos (x) arccosine of x in the range 0 to 1t.

atan (x) arctangent of x in the range -rrJ2 to rrJ2. If x is ±INFINITY, atan () returns ±rrJ2
respectively.

at an2 (y , x) arctangent of y lx, in the range -1t to 1t, using the signs of both arguments to determine
the quadrant of the return value.

Other at an2 () returns:

HP-UX Release 9.0: August 1992

• rrJ4 wheny and x are +INFINITY.
• 3*rrJ4 wheny is +INFINITY and x is-INFINITY.
• -rrJ4 wheny is -INFINITY and x is +INFINITY.
• -3*rrJ4 wheny and x are -INFINITY.
• 0.0 wheny is 0.0 and x is a positive number.
• 1t when y is 0.0 and x is a negative number, or -1t when y is -0.0 and x is a

negative number.
• rrJ2 when y is a positive number and x is 0.0, or -rrJ2 when y is a negative

number and x is 0.0.
• ±rrJ2 if y Ix would overflow. The result will be rrJ2 if y is a positive number and

-rrJ2 ify is a negative number.
• ±1t or 0.0 ifylx would underflow. The result is 0.0 ifx is a positive number, 1t

if x is a negative number and y is a positive number, and -1t if x and y are
both negative numbers.

-1- 795

•

•

trig(3M) trig(3M)

sinf (), cosf (), tanf (), asinf (), acosf (), atanf (), and atan2f () are float versions of
these functions; they take float arguments and return float results. Their performance is
significantly faster than that of the double versions of the functions. Programs must be compiled in
ANSI mode (use the -Aa option) in order to use these functions; otherwise, the compiler promotes the
f loa t arguments to doub 1 e, and the functions return incorrect results.

DEPENDENCIES
Series 300/400

sinf (), cosf (), tanf (), asinf (), acosf (), atanf (), and atan2f () are not supported on
Series 300/400 systems.

Series 700/800
sinf (), cosf (), tanf (), asinf (), acosf (), atanf (), and atan2f () are not specified by any
standard (they are, however, named in accordance with the conventions specified in the "Future Library
Directions" section of the ANSI C standard). These functions are provided in the PA1.1 versions of the math
library only. The +DA1.l option (the default on Series 700 systems) links in a PA1.1 version automati­
cally. A PA1.1 library can be linked in explicitly. For more information, see the HP-UX Floating-Point
Guide.

ERRORS
Ilibllibm.a

sin(), cos (), and tan() lose accuracy when their argument is far from zero. For arguments
sufficiently large, these functions return 0.0 when there would otherwise be a complete loss of significance.
In this case a message indicating TLOSS error is printed on the standard error output. For less extreme
arguments causing partial loss of significance, a PLOSS error is generated but no message is printed. In
both cases, errno is set to ERANGE.

If the magnitude of the argument of asin () or acos () is greater than one, or if both arguments of
atan2 () are 0.0,0.0 is returned and errno is set to EDOM. In addition, a message indicating DOMAIN
error is printed on the standard error output.

sin (), cos (), tan (), acos (), and as in () return NaN and set errno to EDOM when x is NaN or
±INFINITY. In addition, a message indicating DOMAIN error is printed on the standard error output.

atan () returns NaN and sets errno to EDOM when x is NaN. In addition, a message indicating
DOMAIN error is printed on the standard error output.

atan2 () returns NaN and sets errno to EDOM when x or y is NaN. In addition, a message indicating
DOMAIN error is printed on the standard error output.

These error-handling procedures can be changed with the matherr () function (see matherr(3M».

llibllibM.a
No error messages are printed on the standard error output.

sin (), cos (), and tan () lose accuracy when their argument is far from zero. For arguments
sufficiently large, these functions return 0.0 when there would otherwise be a complete loss of significance.
For less extreme arguments causing partial loss of significance, a PLOSS error is generated. In both cases,
errno is set to ERANGE.

If the magnitude of the argument of asin() or acos () is greater than one, NaN is returned and
errno is set to EDOM.

If both arguments of atan2 () are 0.0, 0.0 is returned and errno is set to EDOM.

sin (), cos (), tan (), acos () ,and as in () return NaN and set errno to EDOM when x is NaN or
±INFINITY.

atan () returns NaN and sets errno to EDOM when x is NaN.

atan2 () returns NaN and sets errno to EDOM when x ory is NaN.

These error-handling procedures can be changed with the function _matherr () (see matherr(3M». Note
that _matherr () is provided in order to assist in migrating programs from libm. a to libM.a and is
not a part ofXPG3, ANSI C, or POSIX.

SEE ALSO
trigd(3M), isinf(3M), isnan(3M), matherr(3M).

796 -2- HP-UX Release 9.0: August 1992

trig(3M)

STANDARDS CONFORMANCE
acos () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
acos () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

asin () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
as in () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

atan () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
atan () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

atan2 () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
atan2 () in libM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

cos () in libm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
cos () in !ibM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

sin () in !ibm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
sin () in !ibM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

tan () in !ibm.a: AES, SVID2, XPG2, XPG3, FIPS 151-2, POSIX.1
tan () in !ibM.a: AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -3-

trig(3M)

•

797

I

trigd(3M) trigd(3M)

NAME
sindO, cosdO, tandO, asindO, acosdO, atandO, atan2dO, sindfO, cosdfO, tandfO, asindfO, acosdfO,
atandf(), atan2df() - degree-valued trigonometric functions

SYNOPSIS
#include <math.h>

double sind(double x) ;

double cosd(double x) ;

double tand(double x) ;

double asind(double x);

double acosd(double x) ;

double atand(double x);

double atan2d(double y, double x);

float sindf(float x);

float cosdf(float x) ;

float tandf(float x) ;

float asindf(float x) ;

float acosdf(float x) ;

float atandf(float x) ;

float atan2df(float y, float x);

DESCRIPTION

798

sind() , cosd(), tand(), asind(), acosd(), atand(), and atan2d() are degree-valued ver­
sions of the trigonometric functions. The functions return the values indicated:

sind () sine of x (x specified in degrees)

cos ()

tand()

asind()

acosd()

at and ()

atan2d ()

cosine of x (x specified in degrees)

tangent of x (x specified in degrees)

arcsine of x in the range -90 to 90.

arccosine of x in the range 0 to 180.

arctangent of x in the range -90 to 90. If x is ±INFINITY, atand () returns ±90
respectively.

arctangent of y/x, in the range -180 to 180, using the signs of both arguments to
determine the quadrant of the return value.

Other atan2d () returns:

• 45 wheny and x are +INFINITY.
• 135 wheny is +INFINITY and x is -INFINITY.
• -45 wheny is -INFINITY and x is +INFINITY.
• -135 wheny and x are -INFINITY.
• 0.0 wheny is 0.0 and x is a positive number.
• 180 wheny is 0.0 and x is a negative number, or -180 wheny is -0.0 and x is

a negative number.
• 90 when y is a positive number and x is 0.0, or -90 when y is a negative

number and x is 0.0.
• ±90 ify/x would overflow. The result will be 90 ify is a positive number and

-90 ify is a negative number.
• ±180 or 0.0 if y/x would underflow. The result will be 0.0 if x is a positive

number, 180 if x is a negative number and y is a positive number, and -180
if x and yare both negative numbers.

-1- HP-UX Release 9.0: August 1992

trigd(3M) trigd(3M)

sindf (), cosdf () , tandf (), asindf (), cosdf (), atandf (), and atan2df () are float ver­
sions of these functions; they take float arguments and return float results. They are named in
accordance with the conventions specified in the "Future Library Directions" section of the ANSI C stan­
dard. Their performance is significantly faster than that of the double versions of the functions. Com­
piling must be done in ANSI mode (use the -Aa option) in order to use these functions; otherwise, the com­
piler promotes the float arguments to double, and the functions return incorrect results.

DEPENDENCIES
Series 300/400

These functions are not supported on the Series 300/400.

Series 700/800
These functions are provided in the PA1.l versions of the math library only. The +DA1.l option (the
default on Series 700 systems) links in a PA1.l version automatically. A PA1.1 library can be linked in expli­
citly. For more information, see the HP-UX Floating-Point Guide.

ERRORS
Ilibllibm.a

sind (), cosd (), and tand () lose accuracy when their argument is far from zero. For arguments
sufficiently large, these functions return 0 when there would otherwise be a complete loss of significance. In
this case a message indicating TLOSS error is printed on the standard error output. For less extreme
arguments causing partial loss of significance, a PLOSS error is generated but no message is printed. In
both cases, errno is set to ERANGE.

If the magnitude of the argument of asind() or acosd() is greater than one, or if both arguments of
atan2d () are 0.0, 0 is returned and errno is set to EDOM. In addition, a message indicating DOMAIN
error is printed on the standard error output.

sind (), cosd () , tand (), acosd (), and as ind () return NaN and set errno to EDOM when x is
NaN or ±INFINITY. In addition, a message indicating DOMAIN error is printed on the standard error out­
put.

at and () returns NaN and sets errno to EDOM when x is NaN. In addition, a message indicating
DOMAIN error is printed on the standard error output.

atan2d () returns NaN and sets errno to EDOM when x or y is NaN. In addition, a message indicating
DOMAIN error is printed on the standard error output.

These error-handling procedures can be changed with the rnatherr () function (see matherr(3M».

llibllibM.a
No error messages are printed on the standard error output.

sind (), cosd (), and tand () lose accuracy when their argument is far from zero. For arguments
sufficiently large, these functions return 0 when there would otherwise be a complete loss of significance.
For less extreme arguments causing partial loss of significance, a PLOSS error is generated. In both cases,
errno is set to ERANGE.

If the magnitude of the argument of as ind () or acosd () is greater than one, NaN is returned and
errno is set to EDOM.

Ifhoth arguments of atan2d () are 0.0, 0 is returned and errno is set to EDOM.

sind (), cosd (), tand (), acosd (), and asind () return NaN and set errno to EDOM when x is
NaN or ±INFINITY.

at and () returns NaN and sets errno to EDOM when x is NaN.

atan2d () returns NaN and sets errno to EDOM when x ory is NaN.

These error-handling procedures can be changed with the function _rna therr () (see matherr(3M». Note
that _rna therr () is provided in order to assist in migrating programs from libm. a to libM. a and is
not a part ofXPG3, ANSI C, or POSIX.

SEE ALSO
trig(3M), isinf(3M), isnan(3M), matherr(3M).

HP-UX Release 9.0: August 1992 -2- 799

•

•

tsearch (3C) tsearch (3C)

NAME
tsearch(), tfind(), tdelete(), twalk() - manage binary search trees

SYNOPSIS
#include <search.h>

void *tsearch(
const void *key,
void **rootp,
int (*cornpar) (const void *, const void *)

) ;

void *tfind(

) ;

const void *key,
void * const *rootp,
int (*cornpar) (const void *, const void *)

void *tdelete(

) ;

const void *key,
void **rootp,
int (*cornpar) (const void *, const void *)

void twalk(
const void *root,
void (*action) (const void *, VISIT, int)

) ;

DESCRIPTION

800

tsearch (), tfind (), tdelete (), and twalk () are routines for manipulating binary search trees.
They are generalized from Knuth (6.2.2) Algorithms T and D. All comparisons are done with a user­
supplied routine, compar. This routine is called with two arguments, the pointers to the elements being
compared. It returns an integer less than, equal to, or greater than 0, according to whether the first argu­
ment is to be considered less than, equal to or greater than the second argument. The comparison function
need not compare every byte, so arbitrary data may be contained in the elements in addition to the values
being compared.

tsearch () is used to build and access the tree. key is a pointer to an entry to be accessed or stored. If
there is an entry in the tree equal to the value pointed to by key, a pointer to the previous key associated
with this found entry is returned. Otherwise, key is inserted, and a pointer to it returned. Note that since
the value returned is a pointer to key and key itself is a pointer, the value returned is a pointer to a pointer .
Only pointers are copied, so the calling routine must store the data. rootp points to a variable that points to
the root of the tree. A NULL value for the variable pointed to by rootp denotes an empty tree; in this case,
the variable is set to point to the entry which will be at the root of the new tree.

Like tsearch (), tf ind () searches for an entry in the tree, returning a pointer to it if found. However,
if it is not found, tfind () returns a NULL pointer. The arguments for tfind () are the same as for
tsearch() .

tdelete () deletes a node from a binary search tree. Arguments are the same as for tsearch (). The
variable pointed to by rootp is changed if the deleted node was the root of the tree. tdelete () returns a
pointer to the parent of the deleted node, or a NULL pointer if the node is not found.

twalk () traverses a binary search tree. root is the root of the tree to be traversed. (Any node in a tree
may be used as the root for a walk below that node.) action is the name of a routine to be invoked at each
node. This routine is, in turn, called with three arguments:

• First argument is the address of the node being visited.

• Second argument is a value from an enumeration data type typedef enurn { preorder,
postorder, endorder, leaf } VISIT; (defined in the <search.h> header file),
depending on whether this is the first, second or third time that the node has been visited (during
a depth-first, left-to-right traversal of the tree), or whether the node is a leaf.

-1- HP-UX Release 9.0: August 1992

tsearch (3C) tsearch (3C)

• Third argument is the level of the node in the tree, with the root being level zero.

EXAMPLE
The following code reads strings, and stores structures containing a pointer to each string and a count of its
length. It then walks the tree, printing out the stored strings and their lengths in alphabetical order .

. c #include <stdlib.h>

.C #include <search.h>

.C #include <stdio.h>

.C #include <string.h>

.IP

.C struct element 1* pointers to

.C {

.C char *string;"

.C int length;"

.C };

.C char string_space[10000];
struct element elements[500];
struct element *root = NULL;
void print_node(void *, VISIT,

1* space to
1* elements to store *1

1* this points to the root *1
int) ;

int element_compare(const void *, const void *);

main ()
{

char *strptr = string_space;
struct element *element-ptr elements;
struct element **ts_retval;

int i = 0;

while (gets (strptr) != NULL && i++ < 500)
{

1* set element *1
element-ptr->string = strptr;
element-ptr->length = strlen(strptr);

1* put element into the tree *1
ts_retval = (struct element **) tsearch«void *) element-ptr,

(void **) &root, element_compare);

}

}

if (*ts_retval == element-ptr)
{

else
{

(void) printf ("The element \ "%s\" ",
(*ts_retval)->string);

(void) printf ("has now been inserted into the tree\n");

(void) printf ("The element \ "%s\" ",
(*ts_retval)->string);

(void) printf("already existed in the tree\n");

1* adjust pointers, so we don't overwrite tree *1
strptr += element-ptr->length + 1;
element-ptr++;

twalk«void *) root, print_node);

1* This routine compares two elements, based on an
alphabetical ordering of the string field. *1

int
element_compare (elem1, elem2)

HP-UX Release 9.0: August 1992 -2- 801

•

I

tsearch (3C) tsearch (3C)

void *e1eml, *e1em2;
{

return strcmp«(struct element *) e1eml)->string,
«struct element *) e1em2)->string);

}
/* This routine prints out a node, the first time

twalk encounters it. *;
void
print_node (element, order, level)
void *e1ement;
VISIT order;
int level;

if (order == preorder I I order == leaf)
{

(void) printf(" s tring = %20s, length = %d\n",
(*(struct element **) e1ement)->string,
(*(struct element **) e1ement)->length);

SEE ALSO
bsearch(3C), hsearch(3C), Isearch(3C).

RETURN VALUE
A NULL pointer is returned by tsearch () if there is not enough space available to create a new node.

A NULL pointer is returned by tsearch (), tfind (), and tde1ete () ifrootp is NULL on entry.

If the datum is found, both tsearch() and tfind() return a pointer to it. If not, tfind() returns
NULL, and tsearch () returns a pointer to the inserted item.

WARNINGS
The root argument to twa1k () is one level of indirection less than the rootp arguments to tsearch ()
and tde 1ete () .

Two nomenclatures are used to refer to the order in which tree nodes are visited. tsearch () uses
preorder, postorder and endorder to respectively refer to visting a node before any of its children, after its
left child and before its right and after both its children. The alternate nomenclature uses preorder,
inorder, and postorder to refer to the same visits, which could result in some confusion over the meaning of
postorder. If the calling function alters the pointer to the root, results are unpredictable.

STANDARDS CONFORMANCE

802

tsearch (): AES, SVID2, XPG2, XPG3, XPG4

tde1ete (): AES, SVID2, XPG2, XPG3, XPG4

tf ind () : AES, SVID2, XPG2, XPG3, XPG4

twa1k () : AES, SVID2, XPG2, XPG3, XPG4

-3- HP-UX Release 9.0: August 1992

ttyname (3C)

NAME
ttyname(), isatty() - find name of a terminal

SYNOPSIS
#include <unistd.h>

char *ttyname(int fildes);

int isatty(int fildes);

DESCRIPTION

ttyname (3C)

ttyname () returns a pointer to a string containing the null-terminated path name of the terminal device
associated with file descriptor fildes.

isatty () returns 1 iffildes is associated with a terminal device, 0 otherwise.

RETURN VALUE
ttyname () returns a NULL pointer iffildes does not describe a terminal device in directory /dev.

ERRORS
isatty () and ttyname () fail if any of the following conditions are encountered:

[EBADF] The fildes argument is invalid.

[ENO'ITY] An inappropriate I/O control operation has been attempted.

WARNINGS
The return value points to static data whose content is overwritten by each call.

FILES
/dev/*
/dev/pty/*

STANDARDS CONFORMANCE
ttyname (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

isat ty () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 803

•

I

ttyslot (3C) ttyslot (3C)

NAME
ttyslotO - find the slot in the utmp file of the current user

SYNOPSIS
#include <unistd.h>

int ttyslot(void);

DESCRIPTION
ttyslot () returns the index of the current user's entry in the letc/utmp file. This is accomplished by
scanning I etc lu tmp for the name of the terminal associated with the standard input, standard output,
or standard error (file descriptor 0, 1 or 2).

RETURN VALUE
ttys lot () returns -1 if an error was encountered while searching for the terminal name or if none of file
descriptors 0, 1, or 2 is associated with a terminal device. -

FILES
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

STANDARDS CONFORMANCE
ttyslot (): XPG2

804 -1- HP-UX Release 9.0: August 1992

ungetc(3S) ungetc(3S)

NAME
ungetcO - push character back into input stream

SYNOPSIS
#inelude <stdio.h>

lnt ungete(int e, FILE *stream);

DESCRIPTION
ungete () inserts the character c (converted to an unsigned char) into the buffer associated with an input
stream. That character, c, is returned by the next call to gete () (seegetc(3S» on that stream. A success­
ful intervening call to a file positioning function with stream (f seek (), fsetpos (); or rewind (»)
erases all memory of the inserted characters.

ungete () affects only the buffer associated with the input stream. It does not affect the contents of the
file corresponding to stream.

One character of pushback is guaranteed.

If c equals EOF, ungete () does nothing to the buffer and returns EOF.

RETURN VALUE
If successful, ungete () returns c and clears the end-of-file indicator for the stream. ungete () returns
EOF if it cannot insert the character.

SEE ALSO
fseek(3S), fsetpos(3S), getc(3S), setbuf(3S).

STANDARDS CONFORMANCE
ungete () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -1- 805

I

I

ungetwc(3C) ungetwc(3C)

NAME
ungetwc() - push a wide character back into an input stream

SYNOPSIS
#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);

Remarks:
This function is compliant with the XPG4 Worldwide Portability Interface wide-character I/O functions. It
parallels the 8-bit character I/O function defined in ungete(3S).

DESCRIPTION
ungetwc () pushes the character corresponding to the wide-character code we into the buffer associated
with an input stream. That wide-character code, we, is returned by the next call to getwc () (see
getwe(3C)) on that stream. A successful intervening call to a file positioning function with stream
(fseek (), fsetpos (), or rewind (») erases all memory of the pushed-back characters.

ungetwc () affects only the buffer associated with the input stream. It does not affect the contents of the
file corresponding to stream.

One character of pushback is guaranteed.

If we equals WEOF, ungetwc () does nothing to the buffer and returns WEOF.

The definition for this function, the type wint_t and the value WEOF are provided in the <wchar. h>
header.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines how wide character conversions are done.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
If successful, ungetwc () returns we and clears the end-of-file indicator for the stream. ungetwc ()
returns WEOF ifit cannot insert the wide character.

SEE ALSO
fseek(3S), fsetpos(3S), getwc(3C), setbuf(3S).

STANDARDS CONFORMANCE
ungetwc () : XPG4

806 -1- HP-UX Release 9.0: August 1992

vprintf(3S) vprintf(3S)

NAME
vprintf(), vfprintf(), vsprintf() - print formatted output of a varargs argument list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf(const char *for.mat, va_list ap);

int vfprintf(FILE *stream, const char *for.mat, va_list ap);

int vsprintf(char *s, const char *for.mat, va_list ap);

DESCRIPTION
vprintf (), vfprintf (), and vsprintf () are the same as printf (), fprintf (), and
sprintf () respectively, except that instead of being called with a variable number of arguments, they
are called with an argument list as defined by varargs(5).

EXAMPLE
The following demonstrates how vfprintf () could be used to write an error routine:

SEE ALSO

#include <stdio.h>
#include <varargs.h>

/*
* error should be called using the form
* error (function_name, format, argl, arg2 .••);
*/

/*VARARGSO*/
void
error (va_alist)
va_del
{

}

va_list args;
char *fmt;

va_start(args);

/* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *»;
fmt = va_arg(args, char *);

/* print out remainder of message */
(void)vfprintf(stderr, fmt, args);
va_end(args);
(void) abort ();

setlocale(3C), printf(3S), varargs(5).

STANDARDS CONFORMANCE
vprintf (): AES, SVID2, XPG2, XPG3, XPG4, ANSI C

vfprintf () : AES, SVID2, XPG2, XPG3, XPG4, ANSI C

vsprintf (): AES, SVID2, XPG2, XPG3, XPG4, ANSI C

HP-UX Release 9.0: August 1992 -1- 807

I

I

vscanf(3S) vscanf(3S)

NAME
vscanf(), vfscanfO, vsscanfO - formatted input conversion to a varargs argument list, read from stream file

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vscanf(const char *fQrmat; va_list ap)i

int vfscanf(FILE *stream, const char *for.mat, va_list ap)i

int vsscanf(char *s, const char *for.mat, va_list ap)i

DESCRIPTION
vscanf (), vfscanf (), and vsscanf () are the same as scanf (), fscanf (), and sscanf ()
l'espectively, except that instead of being called with a variable number of arguments, they are called with
an argument list as defined by varargs(5).

SEE ALSO
scanf(3S), setlocale(3C), varargs(5).

808 -1- HP-UX Release 9.0: August 1992

wconv(3C)

NAME
towupper(), towlower() - translate wide characters

SYNOPSIS
#ine1ude <wehar.h>

wint_t towupper(wint_t we);

wint_t tow1ower(wint_t we);

Remarks:

wconv(3C)

These functions are compliant with the XPG4 Worldwide Portability Interface wide-character conversion
functions. They parallel the 8-bit character conversion functions defined in conu(3C) .

DESCRIPTION
towupper () and tow1ower () have as domain a wint_t, the value of which is representable as a
wehar_t or the value WEOF. If the argument has any other value, the behavior is undefined. If the argu­
ment of towupper () represents a lowercase letter, the result is the corresponding uppercase letter. If
the argument of tow1ower () represents an uppercase letter, the result is the corresponding lowercase
letter. All other arguments are returned unchanged.

Definitions for these functions, the types wint_t, wehar_t, and the value WEOF are provided in the
<wchar . h> header.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the translations to be done.

International Code Set Support
Single-byte character code sets are supported. Japanese HP15 and EVC multi-byte character code sets are
supported. towupper () and tow1ower () return their argument for values in other multi-byte char­
acter code sets outside the ASCII range.

WARNING
towupper () and tow1ower () are supplied both as library functions and as macros defined in the
<wchar • h> header. Normally, the macro versions are used. To obtain the library function, either use a
#undef to remove the macro definition or, if compiling in ANSI C mode, enclose the function name in
parenthesis or take its address. The following examples use the library function for tow1ower ():

or

AUTHOR

#inc1ude <wchar.h>
#undef tow1ower

maine)
(

c1 = tow1ower(e);

#include <wchar.h>

maine}
(

c1 = (towlower)(c);

conv_func = towlower;

weonv () was developed by AT&T and HP.

HP-UX Release 9.0: August 1992 -1- 809

I

I

WCODv(3C)

SEE ALSO
conv(3C), multibyte(3C), wctype(3C), setlocale(3C), lang(5).

STANDARDS CONFORMANCE
towlower () : XPG4

towupper () : XPG4

810 -2-

WCODv(3C)

HP-UX Release 9.0: August 1992

we sf time (3C)

NAME
wcsftimeO - convert date and time to wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcsftime(
wchar_t *ws,
size_t maxsize,
const char *for.mat,
const struct tm *timeptr

) ;

Remarks:

wesftime (3C)

This function is compliant with the XPG4 Worldwide Portability Interface wide-character formatting func­
tions. It parallels the 8-bit character formatting function defined in str{time(3C).

DESCRIPTION
wcsftime () converts the contents of a tm structure (see ctime(3C)) to a formatted date and time wide­
character string.

wcsftime () places wide characters into the array pointed to by ws as controlled by the string pointed to
by format. The format string consists of zero or more directives and ordinary characters. A directive con­
sists of a % character, an optional field width and precision specification, and a terminating character that
determines the directive's behavior. All ordinary characters (including the terminating null character) are
converted into corresponding wide characters and are copied into the array. No more than maxsize wide
characters are placed into the array. Each directive is replaced by the appropriate wide characters as
described in the following list. The appropriate wide characters are determined by the program's locale, by
the values contained in the structure pointed to by timeptr, and by the TZ environment variable (see
External Influences below).

The definition for this function and the type wchar_t are provided in the <wchar. h> header.

Directives
The following directives, shown without the optional field width and precision specification, are replaced by
the corresponding wide characters as indicated:

%a locale's abbreviated weekday name
9-oA locale's full weekday name
%b locale's abbreviated month name
%B locale's full month name
%c locale's appropriate date and time representation

%d day of the month as a decimal number [01,31]
%E locale's combined EmperorlEra name and year
%H hour (24-hour clock) as a decimal number [00,23]
%I hour (12-hour clock) as a decimal number [01,12]
%j day of the year as a decimal number [001,366]

month as a decimal number [01,12]
minute as a decimal number [00,59]
new-line wide character
locale's EmperorlEra name
locale's EmperorlEra year

locale's equivalent of either AM or PM
second as a decimal number [00,61]
tab wide character

%p
%8
%t
%U week number of the year (the first Sunday as the first day of week 1) as a decimal number

[00,53]
%w weekday as a decimal number [0(Sunday),6]

%W week number of the year (the first Monday as the first day of week 1) as a decimal number
[00,53]

HP-UX Release 9.0: August 1992 -1- 811

I

I

we sf time (3C) wesftime (3C)

%x locale's appropriate date representation
%X locale's appropriate time representation
%y year without century as a decimal number [00,99]
%Y year with century as a decimal number

%z time zone name (or by no characters if no time zone exists)
%% Percent character (%)

The following directives are provided for backward compatibility with the directives supported by the
date command and the ctime () functions (see date(l) and ctime(3C)). It is recommended that the
directives above be used in preference to those below.

%D date in usual u.s. format (%m/%d/%y) (use %x instead)
%F locale's full month name (use %B instead)
9-011 locale's abbreviated month name (use 9-ob instead)
%r time in 12-hour u.s. format (%I:%M:%S [AM I PM]) (use %X instead)
%T time in 24-hour u.s. format (%H:%M:%S) (use 9-oX instead)
%z time zone name (or by no characters ifno time zone exists) (use %Z instead)

If a directive is not one of the above, the behavior is undefined.

Field Width and Precision
An optional field width and precision specification can immediately follow the initial
following order:

% of a directive in the

[-IO]w

.p

the decimal digit string w specifies a minimum field width in which the result of the
conversion is right- or left-justified. It is right-justified (with space padding) by
default. If the optional - character is specified, it is left-justified with space padding
on the right. If the optional 0 character is specified, it is right-justified and padded
with zeros on the left.

the decimal digit string p specifies the minimum number of digits to appear for the d,
H, I, j, m, M, 0, S, U, w, W, y and Y directives, and the maximum number of
corresponding wide characters to be used from the a, A, b, B, c, D, E, F, h, n, N, p, r,
t, T, x, X, z, Z, and % directives. In the first case, if a directive supplies fewer digits
than specified by the precision, it is expanded with leading zeros. In the second case,
if a directive supplies more characters than specified by the precision, excess charac­
ters are truncated on the right.

Ifno field width or precision is specified for a d, H, I, m, M, S, U, W, y, or j directive, a default of .2 is
used for all but j for which .3 is used.

EXTERNAL INFLUENCES
Locale

The LC_TIME category determines the characters to be substituted for those directives described above as
being from the locale.

The LC_CTYPE category determines the interpretation of the bytes within format as single and/or multi­
byte characters as well as how wide-character conversions are done.

The LC_NUMERIC category determines the characters used to form numbers for those directives that pro­
duce numbers in the output. If ALT_DIGITS (see langinfo(5)) is defined for the locale, the characters so
specified are used in place of the default ASCII characters.

Environment Variables
TZ determines the time zone name substituted for the %Z and %z directives. The time zone name is
determined by calling the function tzset () which sets the external variable tzname (see ctime(3C)).

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE

812

If the total number of resulting wide characters including the terminating null wide character is not more
than maxsize, wcsftime () returns the number of wide characters placed into the array pointed to by
W8, not including the terminating null wide character. Otherwise, zero is returned and the contents of the
array are indeterminate.

-2- HP-UX Release 9.0: August 1992

wesftime (3C) we sf time (3C)

EXAMPLES
If the timeptr argument contains the following values:

timeptr->tm_sec = 4;
timeptr->tm_min = 9;
timeptr->tm_hour = 15;
timeptr->tm_mday = 4;
timeptr->tm_mon = 6;
timeptr->tm-year 88;
timeptr->tm_wday ~ 1;
timeptr->tm-yday = 185;
timeptr->tm_isdst = 1;

the following combinations of the LC_TIME category and format strings produce the indicated output:

LC_TlME Format String Output
american %x Mon, Jul 4, 1988
german %x Mo., 4. Juli 1988
american %X 03 : 09 : 04 PM
french %X 15h09 04
anyt %H:%M:%S 15:09:04
anyt %.lH:%.lM:%.lS 15:9:4
anyt %2 .lH:%-3M:%03 .1S 15: 9 : 004

t The directives used in these examples are not affected by the LC_TlME category of the locale.

WARNINGS
The function tzset () is called upon every invocation of wcsftime () (whether or not the time zone
name is copied to the output array).

The range of values for %S ([0,61]) extends to 61 to allow for the occasional one or two leap seconds. How­
ever, the system does not accumulate leap seconds and the tm structure generated by the functions
local time () and gmtime () (see ctime(3C)) never reflects any leap seconds.

Results are undefined if values contained in the structure pointed to by timeptr exceed the ranges defined
for the tm structure (see ctime(3C)) or are not consistent (such as if the tm-yday element is set to 0, indi­
cating the first day of January, while the tmJIlon element is set to 11, indicating a day in December).

AUTHOR
wcsftime () was developed by HP.

SEE ALSO
date(l), ctime(3C), setlocale(3C), environ(5), langinfo(5), hpnls(5).

STANDARDS CONFORMANCE
wcsftime (): XPG4

HP-UX Release 9.0: August 1992 -3- 813

I

I

wcstod(3C) wcstod(3C)

NAME
wcstodO - convert wide character string to double-precision number

SYNOPSIS
#include <wchar.h>

double wcstod(const wchar_t *nptr, wchar_t **endptr);

Remarks:
This function is compliant with the XPG4 Worldwide Portability Interface wide-character formatting func­
tions. It parallels the 8-bit character formatting function defined in strtod(3C).

DESCRIPTION
wcstod () returns, as a double-precision floating-point number, the value represented by the wide charac­
ter string pointed to by nptr. The wide character string is scanned (leading white-space characters as
defined by iswspace () in wctype(3C) are ignored) up to the first unrecognized character. If no conver­
sion can take place, zero is returned.

wcstod () recognizes wide characters in the following sequence:

1. An optional string of "white-space" wide characters which are ignored,
2. An optional sign,
3. A string of digits optionally containing a radix character,
4. An optional e or E followed by an optional sign or space, followed by an integer.

The radix character is determined by the current NLS environment (see setlocale(3C)). If set locale ()
has not been called successfully, the default NLS environment, "C", is used (see lang (5)). The default
environment specifies a period (.) as the radix character.

If the value of endptr is not (wchar_t **) NULL, the variable to which it points is set to point at the
wide character after the last number, if any, that was recognized. If no number can be formed, *endptr is
set to nptr, and zero is returned.

The definition for this function and the type wchar_t are provided in the <wchar. h> header.

EXTERNAL INFLUENCES
Locale

The LC_NUMERIC category determines the value of the radix character within the currently loaded NLS
environment;

The LC_CTYPE category determines how wide character codes are interpreted.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
If the correct value would cause overflow, +HUGE_VAL or -HUGE_VAL is returned (according to the sign
ofthe value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

AUTHOR
wcstod() was developed by AT&T and HP.

SEE ALSO
wctype(3C), setlocale(3C), scanf(3S), wcstol(3C), hpnls(5), lang(5).

STANDARDS CONFORMANCE
wcstod () : XPG4

814 -1- HP-UX Release 9.0: August 1992

wcstol(3C) wcstol(3C)

NAME
wcstol(), wcstoul() - convert wide character string to long integer

SYNOPSIS
#inelude <wehar.h>

long int westol(eonst wehar_t *nptr, wehar_t **endptr, int base);

unsigned long int westoul (eonst wehar_t *nptr, wehar_t **endptr, int
base) ;

Remarks:
These functions are compliant with the XPG4 Worldwide Portability Interface wide-character formatting
functions. They parallel the 8-bit character formatting functions defined in strtol(3C).

DESCRIPTION
westol () (westoul (») converts the wide character string pointed to by nptr to long int
(unsigned long int) representation. The wide character string is scanned up to the first wide charac­
ter inconsistent with the base. Leading "white-space" wide characters (as defined by iswspaee () in
wctype(3C)) are ignored. If no conversion can take place, zero is returned.

If base is greater than or equal to 2 and less than or equal to 36, it is used as the base for conversion. After
an optional leading sign, leading zeros are ignored, and Ox or OX is ignored if base is 16.

If base is zero, the wide character string itself determines the base as follows: After an optional leading
sign, a leading zero indicates octal conversion; a leading Ox or OX hexadecimal conversion. Otherwise,
decimal conversion is used.

If the value of endptr is not (wehar_t **) NULL, a pointer to the wide character terminating the scan is
returned in the location pointed to by endptr. If no integer can be formed, the location pointed to by endptr
is set to nptr, and zero is returned.

Definitions for these functions and the type wehar_t are provided in the <wchar. h> header.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines how wide character codes are interpreted.

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
Upon successful completion, both functions return the converted value, if any. If the correct value would
cause overflow, westol () returns LONG_MAX or LONG_MIN (according to the sign of the value), and
sets errno to ERANGE; westoul () returns ULONG_MAX and sets errno to ERANGE.

For all other errors, zero is returned and errno is set to indicate the error.

ERRORS
westol () and westoul () fail and errno is set if any of the following conditions are encountered:

[EINVAL]

[ERANGE]

The value of base is not supported.

The value to be returned would have caused overflow.

SEE ALSO
wctype(3C), wcstod(3C), scanf(3S).

STANDARDS CONFORMANCE
westol (): XPG4

westoul (): XPG4

HP-UX Release 9.0: August 1992 -1- 815

I

I

wcstring(3C) wcstring(3C)

NAME
wcscatO, wcsncatO, wcscmpO, wcsncmpO, wcscpyO, wcsncpyO, wcslenO, wcschrO, wcsrchrO, wcspbrkO,
wcsspn(), wcscspn(), wcswcs(), wcstok(), wcscoll(), wcwidth(), wcswidth() - wide character string operations

SYNOPSIS
#include <wchar.h>

wchar_t *wcscat(wchar_t *wsl, const wchar_t *ws2);

wchar_t *wcsncat(wchar_t *wsl, const wchar_t *ws2, size_t n);

int wcscmp(const wchar_t *wsl, const wchar_t *ws2);

int wcsncmp(const wchar_t *wsl, const wchar_t *ws2, size_t n);

wchar_t *wcscpy(wchar_t *wsl, const wchar_t *ws2);

wchar_t *wcsncpy(wchar_t *wsl, const wchar_t *ws2, size_t n);

size_t wcslen(const wchar_t *ws);

wchar_t *wcschr(const wchar_t *ws, wchar_t wc);

wchar_t *wcsrchr(const wchar_t *ws, wchar_t wc);

wchar_t *wcspbrk(const wchar_t *wsl, const wchar_t *ws2);

size_t wcsspn(const wchar_t *wsl, const wchar_t *ws2);

size_t wcscspn(const wchar_t *wsl, const wchar_t *ws2);

wchar_t *wcswcs(const wchar_t *wsl, const wchar_t *ws2);

wchar_t *wcstok(wchar_t *wsl, const wchar_t *ws2);

int wcscoll(const wchar_t *wsl, const wchar_t *ws2);

int wcwidth(const wchar_t wc);

int wcswidth(const wchar_t *ws, size_t n);

Remarks:
These functions are compliant with the XPG4 Worldwide Portability Interface wide-character string han­
dling functions. They parallel the 8 bit string functions defined in string(3C).

DESCRIPTION

816

The arguments wsl, ws2, and ws point to wide character strings (arrays of type wchar_t terminated by a
null value).

wcscat () appends a copy of wide string ws2 to the end of wide string wsl. wcsncat () appends a
maximum of n characters; fewer if ws2 is shorter than n characters. Each returns a pointer to the null­
terminated result (the value ofwsl).

wcscmp () compares its arguments and returns an integer less than, equal to, or greater than zero,
depending on whether wsl is lexicographically less than, equal to, or greater than ws2. The comparison of
corresponding wide characters is done by comparing numeric values of the wide character codes. Null
pointer values for wsl and ws2 are treated the same as pointers to empty wide strings. wcsncmp ()
makes the same comparison but examines a maximum of n characters (n less than or equal to zero yields
equality).

wcscpy () copies wide string ws2 to wsl, stopping after the null value has been copied. wcsncpy ()
copies up to n characters from ws2, adding null values to wsl if necessary, until a total of n have been
copied. The result is not null-terminated if the length of ws2 is n or more. Each function returns wsl.
Note that wcsncpy () should not be used to copy an arbitrary structure. If that structure contains
sizeofCwchar_t) consecutive null bytes, wcsncpy () may not copy the entire structure. Use the
memcpy () function (see memory(3C» to copy arbitrary binary data.

wcslen () returns the number of wide characters in ws, not including the terminating null wide charac­
ter.

wcschr () (wcsrchr (» returns a pointer to the first (last) occurrence of wide character we in wide string
ws, or a null pointer if we does not occur in the wide string. The null wide character terminating a wide

-1- HP-UX Release 9.0: August 1992

wcstring (3C) wcstring (3C)

string is considered to be part of the wide string.

wcspbrk() returns a pointer to the first occurrence in wide string wsl of any wide character from wide
string ws2, or a null pointer ifno wide character from ws2 exists in wsl.

wcsspn () (wcscspn (» returns the length of the maximum initial segment of wide string wsl, which
consists entirely of wide characters from (not from) wide string ws2.

wcswcs () returns a pointer to the first occurrence of wide string ws2 in wide string wsl, or a null pointer
if ws2 does not occur in the wide string. If ws2 points to a wide string of zero length, wcswcs () returns
wsl.

wcstok () considers the wide string wsl to consist of a sequence of zero or more text tokens separated by
spans of one or more wide characters from the separator wide string ws2. The first call (with a non-null
pointer wsl specified) returns a pointer to the first wide character of the first token, and writes a null wide
character into wsl immediately following the returned token. The function keeps track of its position in the
wide string wsl between separate calls, so that subsequent calls made with the first argument a null
pointer work through the wide string immediately following that token. In this way subsequent calls work
through the wide string wsl until no tokens remain. The separator wide string ws2 can be different from
call to call. When no token remains in wsl, a null pointer is returned.

wcscoll () returns an integer greater than, equal to, or less than zero, according to whether the wide
string pointed to by wsl is greater than, equal to, or less than the wide string pointed to by ws2. The com­
parison is based on wide strings interpreted as appropriate to the program's locale (see Locale below). In
the "C" locale wcscoll () works like wcscmp ().

wcwidth () returns the number of column positions required for the wide character we, or 0 if we is a null
wide character.

wcswidth () returns the number of column positions required for n wide characters (or fewer than n wide
characters if a null wide character is encountered before n wide characters are exhausted) in the wide
string pointed to by ws. wcswidth () returns or 0 ifws points to a null wide character.

Definitions for these functions and the type wchar_t are provided in header file <wchar • h>.

EXTERNAL INFLUENCES
Locale

The LC_COLLATE category determines the collation ordering used by the wcscoll () function. See
nlsinfo(l) to determine the collation used for a particular locale.

The LC_CTYPE category determines how widths are calculated by the wcwidth () and wcswidth ()
functions.

WARNINGS
The functions wcscat () , wcsncat (), wcscpy (), wcsncpy (), and wcstok () alter the contents of
the array to which wsl points. They do not check for overflow of the array.

Null pointers for destination wide strings cause undefined behavior.

Wide character movement is performed differently in different implementations, so copying that involves
overlapping source and destination wide strings may yield unexpected results.

For the wcscoll () function, the results are undefined if the languages specified by the LC_COLLATE
and LC_CTYPE categories use different code sets.

AUTHOR
wcstring functions were developed by HP.

SEE ALSO
nlsinfo(1), wconv(3C), memory(3C), multibyte(3C), setlocale(3C), string(3C), hpnls(5).

STANDARDS CONFORMANCE
wcscat () : XPG4
wcschr (): XPG4

wcscmp () : XPG4
wcscoll (): XPG4

HP-UX Release 9.0: August 1992 -2- 817

I

I

westring (3C)

818

we sepy () : XPG4
wesespn () : XPG4

weslen () : XPG4
wesneat (): XPG4

we sncmp () : XPG4
we snepy () : XPG4

wespbrk(): XPG4
wesrehr (): XPG4

wesspn () : XPG4
westok () : XPG4

weswes () : XPG4
weswidth () : XPG4

wewidth () : XPG4

west ring (3C)

-3- HP-UX Release 9.0: August 1992

wctype(3C) wctype(3C)

NAME
iswalphaO, iswupperO, iswlowerO, iswdigitO, iswxdigitO, iswalnum(), iswspaceO, iswpunctO, iswprintO,
iswgraphO, iswcntrl(), wctypeO, iswctypeO - classify wide characters

SYNOPSIS
#inelude <wehar.h>

wetype_t wetype(eonst char *eharelass);
int iswetype(wint_t we, wetype_t prop);
int iswalnum(wint_t we);
int iswalpha(wint_t we);
int iswentrl(wint_t we);
int iswdigit(wint_t we);
int iswgraph(wint_t we);
int iswlower(wint_t we);
int iswprint(wint_t we);
int iswpunet(wint_t we);
int iswspaee(wint_t we);
int iswupper(wint_t we);
int iswxdigit(wint_t we);

Remarks:
These functions are compliant with the XPG4 Worldwide Portability Interface wide-character classification
functions. They parallel the 8-bit character classification functions defined in ctype(3C).

DESCRIPTION
These functions classify wide character values according to the rules of the coded character set identified by
the last successful call to set locale () (see setloeale(3C».

If set locale () has not been called successfully, characters are classified according to the rules of the
default ASCII 7-bit coded character set (see setlocale(3C».

Each of the classification functions is a predicate that returns non-zero for true, zero for false.

wetype () is defined for valid character class names as defined in the current locale. eharclass is a string
identifying a generic character class for which code set-specific type information is required. The following
class names are defined in all locales: alnum, alpha, blank, entrl, digit, graph, lower, print,
punet, space, upper, and xdigit. wetype () returns a value of type wetype_t that can be used
in a subsequent call to iswetype (), or (wetype_t) -1 if eharclass is not valid in the current locale.

The classification functions return non-zero under the following circumstances, and zero otherwise:

iswetype (we ,prop)

iswalpha (we)

iswupper (we)

iswlower (we)

iswdigit (we)

iswxdigit (we)

iswalnum (we)

iswspaee (we)

iswpunet (we)

iswprint (we)

iswgraph (we)

we has the property defined by prop.

we is a letter.

we is an uppercase letter.

we is a lowercase letter.

we is a decimal digit (in ASCII: characters [0-9]).

we is a hexadecimal digit (in ASCII: characters [0-9], [A-F] or [a-f]).

we is an alphanumeric (letters or digits).

we is a character that creates "white space" in displayed text (in ASCII: space,
tab, carriage return, new-line, vertical tab, and form-feed).

we is a punctuation character (in ASCII: any printing character except the space
character (040), digits, letters).

we is a printing character.

we is a visible character (in ASCII: printing characters, excluding the space
character (040».

HP-UX Release 9.0: August 1992 -1- 819

I

I

wctype(3C) wctype(3C)

iswcntrl (we) we is a control character (in ASCII: character codes less than 040 and the delete
character (0177)).

If the argument to any of these functions is outside the domain of the function, the result is 0 (false).

Definitions for these functions and the types wint_t, wchar_t, and wctype_t are provided in the
<wchar. h> header.

EXTERNAL INFLUENCES
Locale

The LC_CTYPE category determines the classification of character type.

International Code Set Support
Single-byte character code sets are supported. Japanese HP15 and EUC multi-byte character code sets are
supported. The classification functions return zero for values in other multi-byte character code sets out­
side the ASCII range.

WARNINGS
These functions are supplied both as library functions and as macros defined in the <wchar .h> header.
Normally, the macro versions are used. To obtain the library function, either use a #undef to remove the
macro definition or, if compiling in ANSI-C mode, enclose the function name in parenthesis or take its
address. The following example uses the library functions for iswalpha (), iswdigit (), and
iswspace () :

#include <wchar.h>
#undef iswalpha

, main ()
{

int (*ctype_func)()i

if iswalpha(c»

if (iswdigit) (c)

ctype_func = iswspacei

AUTHOR
wctype () was developed by AT&T and HP.

SEE ALSO
ctype(3C), multibyte(3C), setlocale(3C), ascii(5).

STANDARDS CONFORMANCE
wctype () : XPG4
iswctype (): XPG4
iswalnum (): XPG4
iswalpha () : XPG4
iswcntrl (): XPG4
iswdigit (): XPG4
iswgraph (): XPG4
iswlower () : XPG4
iswprint () : XPG4
iswpunct () : XPG4
iswspace (): XPG4
iswupper (): XPG4
iswxdi~it():XPG4

820 -2- HP-UX Release 9.0: August 1992

wordexp (3C) wordexp (3C)

NAME
wordexp, wordfree - perform word expansions

SYNOPSIS
#include <wordexp.h>

int wordexp(const char *words, wordexp_t *pwordexp, int flags);

void wordfree(wordexp_t *pwordexp);

DESCRIPTION
wordexp () performs word expansions and places the list of expanded words into the stl'Ucture pointed to
by pwordexp.

The words argument is a pointer to a string containing one or more words to be expanded. The expansions
are the same as would be performed by the shell (see sh-posix(1), if words were the part of a command line
representing the arguments to a utility. Therefore, words must not contain an unquoted new-line character
or any of the unquoted shell special characters I, &, ;, < or >, except in the context of shell command sub­
stitution. If words contains an unquoted comment character, #, it is treated as the beginnning of a token
which wordexp () interprets as a comment indicator, causing the remainder of words to be ignored.

The structure type wordexp_t is defined in the header <wordexp. h>, and includes the following
members:

A size_t used to keep count of words matched by words.

A char* * used as a pointer to a list of expanded words.

Also a size_t used to indicate number of slots to reserve at the the beginning
of pwordexp->we_wordv •

wordexp () stores the number of generated words into pwordexp- >we_wordv. Each individual field
created during field splitting or pathname expansion is a separated word in the pwordexp->we_wordv
list. The words are in order as described in shell word expansions. The first pointer after the last word
pointer is a null pointer.

It is the caller's responsibility to allocate the storage pointed to by pwordexp. wordexp () allocates
other space as needed, including memory pointed to by pwordexp- >we_wordv.

wordfreeO frees any memory associated with pwordexp from a previous call to wordexp () .

The {lags argument is used to control the behavior of wordexp (). The value of flags is the bitwise
inclusive OR of zero or more of the following constants, which are defined in <wordexp • h>:

WRDE_APPEND Append words generated to the ones from a previous call to wordexp () .

WRDE_DOOFFS Make use of pwordexp->we_offs. If this flag is set, pwordexp­
>we_offs is used to specify how many null pointers to add to the beginning of
pwordexp- >we_wordv. In other words, pwordexp- >we_wordv points to
pwordexp->we_offs null pointers, followed by pwordexp->we_wordc
word pointers, followed a null pointer.

WRDE_SHOWERR

WRDE_UNDEF

Fail if command substitution is requested.

The pwordexp argument was passed to a previous successful call to wor­
dexp (), and has not been passed to wordfree (). The result is the same as
if the application had called wordfree () and then called wordexp ()
without WRDE_REUSE •

Do not redirect stderr to /dev/null.

Report error on an attempt to expand an undefined shell variable.

The WRDE_APPEND flag can be used to append a new sets of words to those generated by a previous call
to wordexp (). The following rules apply when two or more calls to wordexp () are made with the
same value of pwordexp and without intervening calls to wordfree () :

• The first such call must not set WRDE_APPEND. All subsequent calls must set it.

HP-UX Release 9.0: August 1992 -1- 821

I

I

wordexp (BC) wordexp (3C)

• All of the calls must set WRDE_DOOFFS, or all must not set it.

• After the second and each subsequent call, pwordexp- >we_wordv points to a list containing
the following:

• Zero or more null pointers, as specified by WRED_DOOFFS and pwordexp- >we_off s.

• Pointers to the words that were in the pwordexp->we_wordv list before the call, in
the same order as before.

• Pointers to the new words generated by the latest call, in the specified order.

• The count returned in pwordexp->we_wordc is the total number of words from all of the calls.

• The application can change any of the fields after a call to wordexp (), but if it does so, if must reset
them to the original value before a subsequent call, using the same pwordexp value, to wordfree ()
or wordexp () with the WRDE_APPEND or WRDE_REUSE flag.

If words contains an unquoted newline, I, &, ;, <, >, parenthesis, or curly barcket in an inappropriate con­
text, wordexp () fails, and the number of expanded words is zero.

Unless WRDE_SHOWERR is set in {lags, wordexp () redirects stderr to /dev/null for any utilities
executed as a result of command subsitution while expanding words. If WRDE_SHOWERR is set, wor­
dexp () writes messages to stderr if syntax errors are detected while expanding words.

If WRDE_DOOFFS is set, pwordexp->we_offs has the same value for each wordexp () call and the
wordfree () call using a given wordexp.

RETURN VALUE
Upon successful completion, wordexp () returns zero; otherwise, it returns a nonzero value defined in
<wordexp • h> to indicate the error:

WRDE_BADCHAR One of the unquoted characters I, &, ;, <, >, parentheses, or braces appears in
words in an inappropriate context

WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in {lags.

WRDE_ CMDSUB Command substitution requested when WRDE_NOCMD was set in {lags.

WRDE_NOSPACE Attempt to allocate memory failed.

WRDE_SYNTAX Shell syntax error such as unbalanced parentheses or unterminated string.

WRDE_INTERNAL Internal error.

If wordexp () returns the error value WRDE_NOSPACE, the pwordexp- >we_wordc and
pwordexp- >we_wordv are updated to reflect any words that were successfully expanded. In other
cases, they are not modified.

SEE ALSO
sh.posix(1), fnmatch(3C), glob(3C), regexp(5).

STANDARDS CONFORMANCE
wordexp () : XPG4, POSIX.2

wordfree () : XPG4, POSIX.2

822 -2- HP-UX Release 9.0: August 1992

xdr(3C) xdr(3C)

NAME
xdr*O -library routines for external data representation

DESCRIPTION
These routines allow C programmers to describe arbitrary data structures in a machine-independent
fashion. Data for remote procedure calls are transmitted using these routines.

Functions
xdr_array() Translate arrays to/from external representation.

Translate Booleans to/from external representation.

Translate counted byte strings to/from external representation.

Translate characters to/from external representation.

Destroy XDR stream and free associated memory.

Translate double precision to/from external representation.

Translate enumerations to/from external representation.

Translate floating point to/from external representation.

Return current position in XDR stream.

Free the memory allocated to create XDR "data structures.

Invoke the in-line routines associated with XDR stream.

Translate integers to/from external representation.

Translate long integers to/from external representation.

Translate fixed-size opaque data to/from external representation.

xdr_bool ()

xdr_bytes ()

xdr_char ()

xdr_destroy()

xdr_double ()

xdr_enum()

xdr_float()

xdr_getpos ()

xdr_free()

xdr_inl ine ()

xdr_int ()

xdr_long()

xdr_opaque ()

xdrJ)ointer () Similar to xdr_reference () except it is able to follow recursive data struc­
tures such as a binary tree.

xdr_reference ()

xdr_setpos ()

xdr_short ()

xdr_string ()

xdr_u_char ()

xdr_u_int ()

xdr_u_long()

xdr_u_short()

xdr_union ()

xdr_vector()

xdr_void()

xdr_wrapstring()

xdrmem_create ()

Chase pointers within structures.

Change current position in XDR stream.

Translate short integers to/from external representation.

Translate null-terminated strings to/from external representation.

Translate unsigned characters to/from external representation.

Translate unsigned integers to/from external representation.

Translate unsigned long integers to/from external representation.

Translate unsigned short integers to/from external representation.

Translate descriminated unions to/from external representation.

Translate fixed-length arrays to/from external representation.

Always return one (1).

Package RPC routine for XDR routine, or vice-versa.

Initialize an XDR stream.

xdrrec_create () Initialize an XDR stream with record boundaries.

xdrrec_endofrecord()
Mark XDR record stream with an end-of-record.

Mark XDR record stream with an end-of-file.

xdrrec_skiprecord()
Skip remaining record in XDR record stream.

HP-UX Release 9.0: August 1992 -1- 823

I

xdr(3C) xdr(3C)

xdrstdio_create () Initialize an XDR stream as standard 110 FILE stream.

AUTHOR
xdr* () was developed by Sun Microsystems, Inc.

SEE ALSO
Programming and Protocols for NFS Services.

I

824 -2- HP-UX Release 9.0: August 1992

ypclnt(3C) ypclnt(3C)

NAME
ypclnt(), yp_all(), yp_bind(), yp_first(), YP-8'et_defaulCdomain(), yp_master(), yp_match(), yp_next(),
yp_orderO, yp_unbindO, yperr_stringO, ypprot_errO - Network Information Service client interface

SYNOPSIS
#include <rpcsvc/ypclnt.h>

#include <sys/types.h>
#include <rpc/rpc.h>
#include <rpcsvc/yp-prot.h>

int yp_all(
char *indomain,
char *inmap,
struct ypall_callback incallback

) ;

int yp_bind(char *indomain);

int yp_first(

) ;

char *indomain,
char *inmap,
char **outkey,
int *outkeylen,
char **outval,
int *outvallen

int yp_get_default_domain(char **outdomain);

int yp_master(

) ;

char *indomain,
char *inmap,
char **outmaster

int yp_match(

) ;

char *indomain,
char *inmap,
char *inkey,
int inkeylen,
char **outval,
int *outvallen

int yp_next(

) ;

char *indomain,
char *inmap,
char *inkey,
int inkeylen,
char **outkey,
int *outkeylen,
char **outval,
int *outvallen

int yp_order(

) ;

char *indomain,
char *inmap,
unsigned long *outorder

void yp_unbind(char *indomain);

HP-UX Release 9.0: August 1992 -1- 825

I

I

ypclnt(3C) ypclnt(3C)

char *yperr_string(int incode);

int ypprot_err(unsigned int incode);

DESCRIPTION
These functions provide an interface to the Network Information Service (NIS) network-lookup service. The
package can be loaded from the library 11ib/libc .a, Refer to ypfiles(4) andypserv(lM) for an overview
of the NIS, including the definitions of map and NIS domain, and a description of the various servers, data­
bases, and commands comprising the NIS.

Input parameter names begin with in; output parameter names begin with out. Output parameters of
type char * * should be the addresses of uninitialized character pointers. Memory is allocated by the NIS
client package using malloc () and can be freed if the user code has no continuing need for it (see
Tlwlloc(3C». For each outkey and outval, two extra bytes of memory are allocated at the end that contain
new-line and null (in that order), but these two bytes are not reflected in outkeylen and outvallen. The
indo main and inmap strings must be non-null and null-terminated. String parameters that are accom­
panied by a length parameter cannot be null, but can point to null strings with a length parameter of zero.
Counted strings need not be null-terminated.

The NIS lookup calls require a map (database) name and a NIS domain name. The client process should
know the name of the map of interest. Client processes should obtain the host's NIS domain by calling
yp_get_default_domain() and use the returned outdomain as the indomain parameter to subse­
quent NIS calls.

To use the NIS services, the client process must be ''bound'' to an NIS server that serves the appropriate NIS
domain using yp_bind (). Binding does not have to occur explicitly by user code. Rather, it occurs
automatically whenever a NIS lookup function is called. yp_bind () can be called directly for processes
that use a backup strategy (such as a local file) when NIS services are not available.

Each binding allocates (uses up) one client process socket descriptor. Each bound NIS domain costs one
socket descriptor. However, multiple requests to the same NIS domain use that same descriptor.
yp_unbind () is available at the client interface for processes that explicitly manage their socket descrip­
tors while accessing multiple NIS domains. The call to yp_unbind () makes the NIS domain unbound
and frees all per-process and per-node resources used to bind it.

If an RPC failure results when using a binding, that NIS domain is unbound automatically. The ypclnt layer
then continues retrying until the operation succeeds, provided ypbind is running (see ypbind(lM» and
either:

a. the client process cannot bind a server for the proper NIS domain, or

b. RPC requests to the server fail.

If an error is not RPC-related, if ypbind is not running, or if a bound ypserv process returns any
answer (success or failure), the ypclnt layer returns control to the user code with either an error code or
with a success code and any results (seeypbind(lM) andypserv(lM».

Operational Behavior

826

yp_match () Returns the value associated with a passed key. This key must be exact; no pattern
matching is available.

yp_first ()

yp_next ()

Returns the first key-value pair from the named map in the named NIS domain.

Returns the next key-value pair in a named map. To obtain the second key-value
pair, the inkey parameter should be the outkey returned from an initial call to
yp_first (). To obtain the (n + l)thkey-valuepair,the inkey value should be the
outkey value from the nth call to yp _next () .

The concepts offirst and next are particular to the structure of the NIS map being pro­
cessed. No relation in retrieval order exists to either the lexical order within any ori­
ginal ASCII file or to any obvious numerical sorting order on the keys, values, or key­
value pairs. The only ordering guarantee is that if the yp_f irst () function is
called on a particular map and the yp_next () function is called repeatedly on the
same map at the same server until the call fails with an error of YPERR_NOMORE,
every entry in the database is retrieved exactly once. If the same sequence of opera­
tions is performed on the same map at the same server, the entries are retrieved in

-2- HP-UX Release 9.0: August 1992

ypclnt(3C) ypclnt(3C)

the same order.

Under conditions of heavy server load or server failure, the NIS domain may become
unbound and bind again (perhaps to a different server) while a client is running. This
process can cause a break in one of the enumeration (retrieval) rules: specific entries
may be seen twice by the client or not at all. This approach protects the client from
error messages that would otherwise be returned in the midst of the enumeration.

yp_all () describes a better solution to enumerating all entries in a map.

Provides a way to transfer an entire map from server to client in a single request
using TCP (rather than UDP as with other functions in this package). The entire tran­
saction occurs as a single RPC request and response. You can use yp_all () like
any other NIS procedure by identifying the map in the normal manner and supplying
the name of a function called to process each key-value pair within the map. A return
from the call to yp_all () occurs only when the transaction is completed (either
successfully or unsuccessfully) or the foreach function decides it does not want any
more key-value pairs.

The third parameter to yp_all () is:

struct ypall_callback *incallback {
int (*foreach) ()i
char *data;

) ;

The function f oreach () is called as follows:

foreach(

) ;

Where:

instatus

inkey
inval

indata

int instatus;
char *inkey;
int inkeylen;
char *inval;
int invallen;
char *indata;

Holds one of the return status values defined in <rpcsvc/yp-prot .h>: either
YP_TRUE or an error code (see ypprot_err () below, for a function that converts a NIS
protocol error code to a ypclnt layer error code, as defined in <rpcsvc/ypclnt. h».

The key and value parameters are somewhat different than defined in the SYNOPSIS sec­
tion above. First, the memory pointed to by inkey and inval is private to yp_all (), and
is overwritten with the arrival of each new key-value pair. Therefore, foreach ()
should do something useful with the contents of that memory, but it does not own the
memory. Key and value objects presented to the foreach () look exactly as they do in
the server's map. Therefore, if they were not newline-terminated or null-terminated in the
map, they will not be terminated with newline or null characters here, either.

Is the contents of the incallback->data element passed to yp_all () The data element
of the callback structure can share state information between foreach () and the main­
line code. Its use is optional, and no part of the NIS client package inspects its contents.
Cast it to something useful or ignore it as appropriate.

The foreach () function is Boolean. It should return zero to indicate it needs to be called again for
further received key-value pairs, or non-zero to stop the flow of key-value pairs. If foreach () returns a
non-zero value, it is not called again and the functional value of yp_all () is then O.

yp_order()
Returns the order number for a map.

HP-UX Release 9.0: August 1992 -3- 827

•

I

ypclnt(3C) ypclnt(3C)

yp_master()
Returns the host name of the master NIS server for a map.

yperr_string()
Returns a pointer to an error message string that is null-terminated, but contains no period or newline.

ypprot_err ()
Takes an NIS protocol error code as input and returns a ypclnt layer error code that can be used as input to
yperr_string ()

RETURN VALUE
All functions in this package of type int return 0 if the requested operation is successful or one of the fol­
lowing errors if the operation fails.

[YPERR_BADARGS]

[YPERR_BADDB]

[YPERR_DOMAIN]

[YPERR_KEYJ

[YPERR_MAP]

[YPERR_NODOM]

[YPERR_NOMORE]

[YPERR_PMAP]

[YPERR_RESRC]

[YPERR_RPC]

[YPERR_ VERS]

[YPERR_ YPBIND]

[YPERR_YPERR]

[YPERR_YPSERV]

args to function are bad

NIS map is defective

cannot bind to server on this NIS domain

no such key in map

no such map in server's NIS domain

local NIS domain name not set

no more records in map

cannot communicate with portmap

resource allocation failure

RPC failure - NIS domain has been unbound

NIS client/server version mismatch: the NIS server bound to uses Version 1 pro­
tocol, so it does not provide yp_all () functionality

cannot communicate with ypbind

internal NIS server or client error

cannot communicate with ypserv

AUTHOR
ypclnt () was developed by Sun Microsystems, Inc.

SEE ALSO
domainname(1), rpcinfo(1M), ypserv(lM), ypfiles(4).

828 -4- HP-UX Release 9.0: August 1992

yppasswd (3N)

NAME
yppasswd() - update user password in Network Information Service

SYNOPSIS
#include <pwd.h>
#include <rpcsvc/yppasswd.h>

int yppasswd(char *oldpass, struct passwd *newpw)i

DESCRIPTION

yppasswd (3N)

If oldpass is the old, unencrypted user password, this routine replaces the password entry with the
cncI)'Pted newpw .

RPC Info
program number:

YPPASSWDPROG

xdr routines:
xdr-yppasswd(xdrs, yp)

XDR *xdrs;

procs:

struct yppasswd *yp;
xdr_passwd(xdrs, pw)

XDR *xdrs;
struct passwd *pw;

YPPASSWDPROC_UPDATE
Takes struct yppasswd as an argument; returns an integer.
Behaves the same as the yppasswd () function.
Uses UNIX authentication.

versions:
YPPASSWDVERS

structures:
struct yppasswd {

char *oldpass; /* old (unencrypted) password */
struct passwd newpw; /* new pw structure */

};

RETURN VALUE
yppasswdO returns 0 if successful and -1 if an error occurs.

AUTHOR
yppasswd () was developed by Sun Microsystems, Inc.

SEE ALSO
yppasswd(l), yppasswdd(lM).

HP-UX Release 9.0: August 1992 -1- 829

•

Index
to

Volume 2

Index
Volume 2

Description Entry Name(Section)
a64l () - convert base-64 value to long integer ASCII string ... a641(3C)
AAudiostring () - get name of audio controller (string) passed to AOpenAudioO AAudioString(3X)
ABestAudioAttributes () - get best audio attributes for controller ABestAudioAttributes(3X)
abort a per-process timer .. rmtimer(3C)
abort () - generate an lOT fault .. .abort(3C)
abs () , labs () - return integer absolute value ... abs(3C)
absolute value, floor, ceiling, remainder, round-to-nearest functions .. :ftoor(3M}
absolute value function, complex ... hypot(3M}
absolute value, return integerabs(3C)
ACalculateLengtb. () - return the size in by-tes of converted data ACalculateLength(3X)
accelerator, math, check for presence ofis_hw..,.Present(3C)
accept () - accept connection on a socket ... accept(2)
access and modification times, set or update file .. utime(2)
access control list (ACL), change owner and/or group in ... chownacl(3C)
access control list (ACL), copy to another file ... cpac1(3C)
access control list (ACL) information, get ... getac1(2)
access control list (ACL) information, set ... setac1(2)
access control list (ACL) structure, convert string form to .. strtoacl(3C)
access control list (ACL) structure, convert to string form .. acltostr(3C)
access control list; add, modify, or delete entry .. setaclentry(3C)
access () - determine accessibility of a file .. access(2)
access exported file system information .. exportent(3N)
accessibility of a file, determine .. .access(2)
access list, get group ... ,getgroups(2)
access list, initialize group ... initgroups(3C)
access list, set group ... setgroups(2)
access long integer data in a machine-independent fashion ... sput1(3X)
access mode (permissions) of file, change ... chmod(2)
access, open, or close a directory and associated directory stream ... directory(3C)
access or build a binary search tree ... tsearch(3C)
access protections, modify memory mapping .. mprotect(2)
access rights to a file, get a user's effective ... getaccess(2)
access utmp () or wtmp () file ... ,getut(3C)
accounting: enable or disable process accounting .. acct(2)
acct () - enable or disable process accounting ... acct(2)
ACheckEvent () - get first event found in audio event queue ... ACheckEvent(3X)
ACheckMaskEvent () - get first event in audio event queue that matches mask ACheckMaskEvent(3X)
AChooseAFileAttributes () - select attributes for creating new file AChooseAFileAttributes(3X)
AChoosePlayAttributes () - select attributes for playing existing file AChoosePlayAttributes(3X)
AChooseSourceAttributes () - select attributes for existing file or stream ... AChooseSourceAttributes(3X)
aclentrystart () - convert pattern string form to access control list (ACL) structure strtoacl(3C)
ACloseAudio () - close connection to specific audio server .. ACloseAudio(3X)
acltostr () - convert access control list (ACL) structure to string form ... acltostr(3C)
AConnectionNumber () - get audio server connection number AConnectionNumber(3X)
AConnectRecordStream () - connect socket to TCP socket address AConnectRecordStream(3X)
AConvertAFile () - convert audio file data format .. AConvertAFile(3X)
AConvertBuffer () - convert a buffer of data ... AConvertBuffer(3X)
acosdf () _ trigonometric arcosine function (float, degrees) ... trigd(3M)
acosd () - trigonometric arcosine function (degrees) .. trigd(3M)
acosf () - trigonometric arcosine function (float) .. trig(3M)
acos () - trigonometric arcosine function ... trig(3M)
acquire exclusive use of audio server .. .AGrabServer(3X)
ACreateSBucket () - create empty sound bucket and return pointer to it ACreateSBucket(3X)
active controllers on HP-IB, change .. hpib..,.Pass_ctl(3I)
activity on specified HP-IB bus, stop ... hpib_abort(3I)
ADataFormats () - get list of data formats supported by audio controller ADataFormats(3X)
add argument and data to NetlPC option buffer .. addopt(3N)
add a swap device for interleaved paging/swapping .. swapon(2)
add audio event handler for this connection .. Atlnitialize(3X)

Index: Volume 2 831

•

Index
Volume 2

Description Entry Name(Section)
add callback procedure for audio toolkit .. AtAddCallback(3X)
addexportent () - access exported file system information ... exportent(3N)
addmntent () - add entry to open file system description file ... getmntent(3X)
add, modify, or delete access control list entry ... setaclentry(3C)
addopt () - add argument and data to NetIPC option buffer .. addopt(3N)
addresses - first locations beyond allocated program regions ... end(3C)
address, get socket .. .getsockname(2)
address manipulation routines, Internet .. .inet(3N)
address of connected peer, get ... getpeername(2)
address string conversion routines, network station .. net_aton(3C)
address to a socket, bind ... hind(2)
add value to environment .. putenv(3C)
ADestroySBucket () - destroy specified sound bucket ... ADestroySBucket(3X)
ADVANCE () - advance pointer to next 8- or 16-bit character ... nCtools_16(3C)
advance () - regular expression substring comparison routines ... regexp(3X)
advise system of process' expected paging behavior ... madvise(2)
AEndConversion () - finish stream data conversion .. AEndConversion(3X)
AEventsQueued () - get number of events in queue for server connection AEventsQueued(3X)
AGetAFileAttributes () - get file attributes of file ... AGetAFileAttributes(3X)
AGetChannelGain - get transaction channel gain .. AGetChanneIGain(3X)
AGetDataFormats () - get data formats for specified file format AGetDataFormats(3X)
AGetErrorText () - copy error description into specified buffer ... AGetErrorText (3X)
AGetGain () - get play volume or record gain of specified transaction .. AGetGain(3X)
AGetSBucketData () - copy data in sound bucket to buffer ... AGetSBucketData(3X)
AGetSilenceValue () - get a silence value ... AGetSilenceValue(3X)
AGetSystemChannelGain () - get system or monitor channel gain AGetSystemChanneIGain(3X)
AGetTransStatus () - get status of specified transaction ... AGetTransStatus(3X)
AGMGainRestricted () - find out if audio controller restricts gain entries AGMGainRestricted(3X)
AGrabServer () - acquire exclusive use of audio server .. AGrabServer(3X)
AlnputChannels () - get list of AID input channels on current hardware AlnputChannels(3X)
AlnputSources () - get types of input sources existing on current hardware AlnputSources(3X)
alarm clock, set a process's .. .alarm(2)
alarm () - set a process's alarm clock ... alarm(2)
allocate a per-process timermktimer(3C)
allocate data and stack space then lock process into memory ... datalock(3C)
allocated program regions, first locations beyond .. end(3C)
allocation, change data segment space .. brk(2)
allocator for main memorymalloc(3C)
allow interface to enable SRQ line on HP-IB .. hpib_rqst_srvce(30
almanac () - return numeric date information in MPE format ... almanac (3X)
ALoadAFile () - copy audio file into new sound bucket with data conversion ALoadAFile(3X)
alphasort () - sort a directory pointer array ... scandir(3C)
AMaskEvent () - get first matching event in audio event queue .. AMaskEvent(3X)
AMaxlnputGain () - get maximum input gain supported by audio controller AMaxInputGain(3X)
AMaxOutputGain () - get maximum output gain supported by audio controller AMaxOutputGain(3X)
AMinlnputGain () - get minimum input gain supported by audio controller AMinInputGain(3X)
AMinOutputGain () - get minimum output gain supported by audio controller AMinOutputGain(3X)
ANextEvent () - dequeue and return first event in audio event queue .. ANextEvent(3X)
anonymous memory region, initialize semaphore in mapped file or ... msem_init(2)
anonymous region, remove semaphore in mapped file or ... msem_remove(2)
another process, request connection to .. .ipcconnect(2)
ANumDataFormats () - get number of data formats supported by controller ANumDataFormats(3X)
ANumSamplingRates () - get number of sampling rates supported by controller ANumSamplingRates(3X)
AOpenAudio () - open connection to specified audio server .. AOpenAudio(3X)
AOutputChannels () - get D/A output channels existing on current hardware AOutputChannels(3X)
AOutputDestinations () - get types of output destinations on hardware AOutputDestinations(3X)
APauseAudio () - pause the specified audio transaction ... APauseAudio(3X)
APeekEvent () - return but do not dequeue first event in audio event queue APeekEvent(3X)

832 Index: Volume 2

Index
Volume 2

Description Entry Name(Sectlon)
APlaySBucket () - play specified sound bucket and return transaction ID APlaySBucket(3X)
APlaySStream () - initiate transaction and return transaction ID and SStream structure .. APlaySStream(3X)
AProtocolRevision () - get revision number of protocol on audio server AProtocolRevision(3X)
AProtocolVersion() - get version number of protocol on audio server AProtocoIVersion(3X)
APutBackBvent () - push event onto head of audio event queue .. APutBackEvent(3X)
APutSBucketData () - copy audio data from buffer to sound bucket APutSBucketData(3X)
AQLength () - return number of events on audio event queue .. AQLength(3X)
AQueryAFi1e () - get file format of specified file ... AQueryAFile(3X)
arcsine, arccosine, arctangent trigonometric functions ... trig(3M)
arcsine, arccosine, arctangent trigonometric functions (degrees) .. trigd(3M)
ARecordAData () - read audio data into sound bucket ... ARecordAData(3X)
ARecordSStream () - initiate transaction ... ARecordSStream(3X)
AResumeAudio () - resume specified audio transaction ... AResumeAudio(3X)
argument and data to NetIPC option buffer, add ... addopt(3N)
argument list, print formatted output of a varargs .. vprintf(3S)
argument, varargs, formatted input conversion to a ... vscanf(3S)
argument vector, get option letter from ... '" ... getopt(3C)
arm a per-process timer, relatively .. .reItimer(3C)
array element, convert floating-point number to string or string .. ecvt(3C)
array, sort a directory pointerscandir(3C)
ASamplingRates () - return list of sampling rates supported by audio controller ASamplingRates(3X)
ASaveSBucket () - write sound bucket data into file with data conversion ASaveSBucket(3X)
ASCII, 7 -bit, translate characters to ... '" .. conv(3C)
ASCII string, convert between long integer and base-64 ... a641(3C)
ASCII string, convert long integer to ... ltostr(3C)
asctime (), nl_ascxtime () - convert tm structure date and time to string ... ctime(3C)
ASelectJ:nput () - request report of specified audio events .. ASelectInput(3X)
AServerVendor () - get vendor name of audio server for this connection AServerVendor(3X)
ASetChannelGain () - set transaction channel gain .. ASetChanneIGain(3X)
ASetCloseDownMode () - set close-down mode on connection ASetCloseDownMode(3X)
ASetErrorHandler () - replace audio error handler .. ASetErrorHandler(3X)
ASetGain () - set play volume or record gain of specified transaction ... ASetGain(3X)
ASetJ:OErrorHandler () - replace audio 110 error handler .. ASetIOErrorHandler(3X)
ASetSystemchannelGain () - set system or monitor channel gain ASetSystemChanneIGain(3X)
ASetSystemPlayGain () - set system play volume .. ASetSystemPlayGain(3X)
ASetSystemRecordGain() - set system record gain .. ASetSystemRecordGain(3X)
ASetupConversion() - perform setup required for stream data conversion ASetupConversion(3X)
ASimplePlayer () - return gain matrix of basic play device ... ASimplePlayer(3X)
ASimpleRecorder () - return gain matrix of basic recording device ASimpleRecorder(3X)
as indf () - trigonometric arcsine function (float, degrees) ... , '" trigd(3M)
asind() - trigonometric arcsine function (degrees) .. trigd(3M)
asinf () - trigonometric arcsine function (float) .. , trig(3M)
asinh() - inverse hyperbolic sine function ... asinh(3M)
asin () - trigonometric arcsine function ... trig(3M)
ASoundBitOrder () - get bit order used for one-bit-per-sample data ASoundBitOrder(3X)
ASoundByteOrder () - get audio data byte order for this connection ASoundByteOrder(3~)
assertion, verifY program .. assert(3X)
assert () - verifY program assertion .. .assert(3X)
assign buffering to a stream filesetbuf(3S)
associate name with call socket or destination call socketipcname(2)
AStopAudio () - stop specified audio transaction ... AStopAudio(3X)
async_daemon: NFS daemonn.fssvc(2)
asynchronous faults, enable ... pfm_$enable(3)
asynchronous faults, enable .. pfm_$enable_faults(3)
asynchronous faults, inhibit but allow time-sliced task switching pfm_$inhibitJaults(3)
asynchronous faults, inhibit : ... pfm_$inhibit(3)
AtAddCallback () - add callback procedure for audio toolkit ... AtAddCallback(3X)
atan2df () - trigonometric arctangent-and-quadrant function (float, degrees) .. trigd(3M)

Index: Volume 2 833

Index
Volume 2

Description Entry Name(Section)
atan2d () - trigonometric arctangent-and-quadrant function (degrees) ... trigd(3M)
atan2f () - trigonometric arctangent-and-quadrant function (float) ... trig(3M)
atan2 () - trigonometric arctangent-and-quadrant function .. trig(3M)
atandf () - trigonometric arctangent function (float, degrees) .. trigd(3M)
atand () - trigonometric arctl'lngent function (degrees) .. trigd(3M)
atanf () - trigonometric arctangent function (float) .. trig(3M)
atan () - trigonometric arctangent function ... trig(3M)
ate:x:it () - register a function to be called at program termination ... atexit(2)
Atlnitialize () - add audio event handler for this connection .. AtInitialize(3X)
ATN commands, enable/disable odd parity on .. hpib....Parity_ct1(31)
atof () - convert string to double-precision nuTtlher .. strtod(3C)
atoi () - convert string to long integer .. strtol(3C)
atol () - convert string to long integer .. strtol(3C)
atomically release blocked signals and wait for interrupt .. sigpause(2)
AtRemoveCallback () - set callback to NULL ... AtRemoveCallback(3X)
attach shared memory to data segment ... shmop(2)
Attention line on HP-IB, control ... hpib_atn_ctl(31)
attributes of specified file, get file .. AGetAFileAttributes(3X)
attributes to use when creating a new file, select ... AChoosePlayAttributes(3X)
AuCreatePlay () - create an audio play widget ... AuCreatePlay(3X)
AuCreateRecord () _ create an audio record widget ... AuCreateRecord(3X)
audctl () - start or halt auditing system; set or get audit files .. audctl(2)
audiochannel gain, get system or monitor ... AGetSystemChannelGain(3X)
audio channel gain, set system or monitor ... ASetSystemChannelGain(3X)
audio event handler for this connection, add ... AtInitialize(3X)
audio file data format, convertAConvertAFile(3X)
audio play widget ... AuPlayWidget(3X)
audio play widget, create an .. .AuCreatePlay(3X)
audio record widget ... AuRecordWidget(3X)
audio record widget, create an .. .AuCreateRecord(3X)
audio toolkit, add callback procedure for ... AtAddCallback(3X)
audio widget play operation, initiate anAuInvokePlay(3X)
audio widget record operation, initiate an ... AuInvokeRecord(3X)
audit: get events and system calls currently being audited .. getevent(2)
audit: set current events and system calls to be audited ... setevent(2)
audit: set or clear auditing on calling process ... setaudproc(2)
audit: set or get audit files .. .audctl(2)
audit: start or halt auditing systemaudctl(2)
audit files, set or get .. .audctl(2)
audit ID (aid(» for current process, get ... getaudid(2)
audit ID (aid (», set for current process .. setaudid(2)
auditing, set or clear on calling process ... setaudproc(2)
auditing, suspend or resume on current process .. audswitch(2)
auditing system, start or haltaudctl(2)
audit process flag for calling process, get .. getaudproc(2)
audit record, write for self-auditing process .. audwrite(2)
audswitch() - suspend or resume auditing on current process ... audswitch(2)
audwrite () - write audit record for self-auditing process ... audwrite(2)
AulnvokePlay () - initiate an audio widget play operation .. AuInvokePlay(3X)
AUlnvokeRecord () - initiate an audio widget record operation ... AuInvokeRecord(3X)
AUngrabServer () - release server from exclusive use by this connection AUngrabServer(3X)
AUpdateDataLength () - update a file's header .. AUpdateDataLength(3X)
AuPlayWidget () - audio play widget ... AuPlayWidget(3X)
AuRecordWidget () - audio record widget ... AuRecordWidget(3X)
AuSaveFile () - save sound bucket data created by record widget .. AuSaveFile(3X)
auth_destroy(} - destroy authentication information handle .. rpc(3C)
authnone_create () - get RPC authentication handle with no checking ... rpc(3C)
authuni:x:_create_default () - get default UNIX authentication handle .. rpc(3C)

834 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
authunix_create () - get RPC authentication handle with UNIX permissions ... rpc(3C)
AVendorRelease () - get vendor release number of audio server for this connection AVendorRelease(3X)
AWriteAHeader () - write a header for an audio file .. AWriteAHeader(3X)
back into input stream, push character ... ungetc(3S)
back into input stream, push wide character .. ungetwc(3C)
base-64 ASCII string, convert long integer to ... a641(3C)
baud rate, tty, set or getcfspeed(3C)
bcmp () - BSD memory compare ... memory(3C)
bcopy () - BSD memory copymemory(3C)
behavior, advise system of process' expected paging .. madvise(2)
Bessel functions .. hessel(3M)
binary input/output to a stream file, buffered .. fread(3S)
binary search routine for sorted tables ... bsearch(3C)
binary search tree, manage a .. tsearch(3C)
bind a socket to a privileged IP port .. bindresvport(3N)
bind () - bind address to a socket ... bind(2)
bindresvport () - bind a socket to a privileged IP port .. bindresvport(3N)
blclose () - terminal block-mode library interface .. blmode(3C)
blget () - terminal block-mode library interface .. blmode(3C)
blmode () - terminal block-mode library interface .. blmode(3C)
blocked signals, examine and change ... sigprocmask(2)
blocked signals, release and atomically wait for interrupt ... sigpause(2)
block-mode terminal I/O library interface .. blmode(3C)
block signals ... sigblock(2)
blopen () - terminal block-mode library interface .. blmode(3C)
blread () - terminal block-mode library interface .. blmode(3C)
blset () - terminal block-mode library interface .. blmode(3C)
boot the system .. reboot(2)
break value and file size limits, get or set ... ulimit(2)
brk (), sbrk () - change data segment space allocation ... brk(2)
BSD-4.2-compatible kill () , sigvec (), and signal () system calls ... bsdproc(2)
bsearch () - binary search routine for sorted tables .. bsearch(3C)
buffer, add argument and data to NetIPC option ... addopt(3N)
buffered binary input/output to a stream file ... fread(3S)
buffered input/output standard stream file package .. stdio(3S)
buffer, flush with or without closing stream ... fclose(3S)
buffering, assign to a stream file .. .setbuf(3S)
buffer, initialize NetIPC option ... jnitopt(3N)
buffer, obtain option code and data from NetIPC option .. readopt(3N)
buffers, flush to disk : .. sync(2)
buffers, use to perform I/O with an HP-IB channel .. hpib_io(3I)
build or access a binary search tree ... tsearch(3C)
bus address for an interface, set HP-IB .. hpib_address_ctl(3I)
bus .. see HP-IB
bus, stop activity on specified HP-IB ... hpib_abort(3I)
byte order, network and host, convert values between .. byteorder(3N)
bytes needed by a NetIPC option, return number of ... optoverhead(3N)
bytes over HP-IB, send command .. hpib_send_cmnd(3I)
bytes, swap .. swab(3C)
byte_status () , BYTE_STATUS () - test for valid 1- or 2-byte character ... nCtools_16(3C)
bzero () - BSD memory clear .. .memory(3C)
cabs () - complex absolute value function .. hypot(3M)
cachectl () - flush and/or purge the cache ... cachectl(3C)
cache, flush and/or purge the .. cachectl(3C)
calendar () - return MPE calendar date ... calendar(3X)
callback procedure for audio toolkit, add ... AtAddCallback(3X)
callback to NULL, set .. .AtRemoveCallback(3X)
calling process, get audit process flag for .. getaudproc(2)

Index: Volume 2 835

Index
Volume 2

Description Entry Narne(Section)
calling process, set or clear auditing on ... setaudproc(2)
calling process, signal the .. pfm_$sipal(3)
calloc () - allocate memory for array - main memory allocator .. malloc(3C)
callrpc () - call remote procedurerpc(3C)
call socket or destination call socket; associate name with ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,, .. ,,,,,,,.,,,,,,,.,,,,,,.ipcname(2)
call socket or destination call socket, delete name associated with a ... ipcnamerase(2)
call socket or VC socket, determine status of .. .ipcselect(2)
call socket, receive connection request on a .. .ipcrecvcn(2)
calls, remote procedure, library routines for .. .rpc(3C)
calls, system, BSD-4.2-compatible kill (), sigvec (), and signal () ... bsdproc(2)
cancel a per-process timer .. rmtimer(3C)
C and Pascal execution startup routines .. crtO(3)
capabilities, check for presence of hardware ... is_hw -present(3C)
catalog for reading, close or open NLS message .. catopen(3C)
catalog support, RTEIMPE-style message ... catread(3C)
catalogue, get message from an NLS message .. catgetmsg(3C)
catclose () - close NLS message catalog for reading ... catopen(3C)
catgetmsg () - get message from an NLS message catalogue ... catgetmsg(3C)
catgets () - get an NLS program message ... catgets(3C)
catopen () - open NLS message catalog for reading ... catopen(3C)
cat read () - MPEIRTE-style message catalog support .. catread(3C)
cbrtf (), cbrt (), sqrt (), sqrtf () - cube root, square root functions ... exp(3M)
cbrt (), sqrt (), sqrtf (), cbrtf () - cube root, square root functions ... exp(3M)
c_colwidth () , C_COLWIDTH 0 - test for valid first byte in 16-bit character nl_tools_16(3C)
ceil(),floor(),fmod(),fmodf(),fabs(),

fabsf () , rint () - ceiling, floor, remainder, absolute value, round-to-nearest functions :8oor(3M)
ceiling, floor, remainder, absolute value, round-to-nearest functions .. :8oor(3M)
cfgetispeed () - get tty input baud rate .. cfspeed(3C)
cfgetospeed () - get tty output baud rate ... cfspeed(3C)
cfsetispeed() - set tty input baud rate .. cfspeed(3C)
cf setospeed () - set tty output baud rate .. cfspeed(3C)
change access mode (permissions) of file .. chmod(2)
change active controllers on HP-IB .. hpib-Pass_ctl(31)
change data segment space allocation ... brk(2)
change or add value to environment ... putenv(3C)
change or examine blocked signals ... sigprocmask(2)
change or examine signal action .. sigaction(2)
change or read real-time priority .. rtprio(2)
change owner and group of a file .. .chown(2)
change owner and/or group in access control list (ACL) .. chownacl(3C)
change priority of a process ... nice(2)
change root directory .. .chroot(2)
change the name of a file .. rename(2)
change working directory .. .chdir(2)
channel, create an interprocess ... pipe(2)
channel from buffers, perform 110 with an HP-IB .. hpib_io(31)
channel gain, get system or monitor audio .. AGetSystemChanneIGain(3X)
channel gain, get transactionAGetChanneIGain(3X)
channel gain, set system or monitor audio ... ASetSystemChanneIGain(3X)
channel gain, set transactionASetChanneIGain(3X)
channel, perform low-overhead 110 on an HP-IB/GPIO/parallel ... io_burst(31)
character back into input stream, push ... ungetc(3S)
character code set, convert to another ... iconv(3C)
character, compare memory contents with specified ... memory(3C)
character device special file, control .. joctl(2)
character, find location of in memory ... memory(3C)
character or data word from a stream file, get ... getc(3S)
character or word, put on a stream .. putc(3S)

836 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
characters and strings conversions, multibyte .. multibyte(3C)
characters, classify according to type ... ctype(3C)
characters, classify according to type ... wctype(3C)
characters, classify for use with NLS .. nl_ctype(3C)
character, set contents of memory area to specified .. memory(3C)
characters, tools to process 16-bit ... nl_tools_16(3C)
characters, translate for use with NLS (obsolete - useconv(3C» ... nl_conv(3C)
characters, translate to uppercase, lowercase, or 7-bit ASCII .. conv(3C)
character-string login name of the user, get .. cuserid(3S)
character string operations ... string(3C)
character string or stream file, read from with formatted input conversion ... scanf(3S)
CHARADV 0 - get character and advance pointer to next character .. nl_tools_16(3C)
CHARAT () - get value of 8- or 16-bit character ... nl_tools_16(3C)
chdir () - change working directory ... chdir(2)
check for presence of hardware capabilitiesis_hw-Present(3C)
check the network, scatter data to .. spray(3N)
child or traced process to stop or terminate, wait for .. wait(2)
child process and process times, get .. times(2)
chmod(), fchmod() - change access mode (permissions) offfie ... chmod(2)
chownacl () - change owner and/or group in access control list (ACL) .. chownacl(3C)
chown (), fchown () - change owner and group of a file .. chown(2)
chroot () - change root directory .. chroot(2)
circuit connection, establish or receive data on NetIPC virtual .. ipcrecv(2)
circuit connection, send data on a virtual .. ip~send(2)
classify characters according to type .. ctype(3C)
classify characters according to type .. wctype(3C)
classify characters for use with NLS ... nl_ctype(3C)
cleanup handler, establish a .. pfm_$cleanup(3)
cleanup handler, release a .. pfm_$rls_cleanup(3)
cleanup handler, reset a ... pfm_$reset_cleanup(3)
cleanup handlers, exiting .. pfm_$signal(3)
cleanup handlers ... pfm_$intro(3)
clearenv - clear the process environment .. clearenv(3C)
clearerr () - clear I/O error on stream ... ferror(3S)
clear or set auditing on calling process .. setaudproc(2)
clear the process environment .. clearenv(3C)
client interface, Network Information Service ... ypclnt(3C)
clnt_broadcast () - broadcast remote procedure call everywhere ... rpc(3C)
clnt_call () - call remote procedure associated with client handle .. rpc(3C)
clnt_control () - change or retrieve information associated with client handle rpc(3C)
clnt_create () - create RPC client using caller-specified transport .. rpc(3C)
clnt_destroy () - destroy client's RPC handle .. rpc(3C)
clnt_freeres () _ free data allocated by RPCIXDR when decoding results .. rpc(3C)
clnt_geterr () - copy error info from client handle to error structure .. rpc(3C)
clnt-pcreateerror () - print reason why client handle creation failed .. rpc(3C)
clnt-perrno () - print message corresponding to condition given ... rpc(3C)
clnt-perror () - print message explaining why RPC call failed .. rpc(3C)
clntraw_create () - create toy RPC client for simulation .. rpc(3C)
clnt_spcreateerror () - get pointer to why client handle creation failed .. rpc(3C)
clnt_sperrno () - get pointer to message corresponding to error value ... rpc(3C)
clnt_sperror () - get pointer to why an RPC call failed ... rpc(3C)
clnttcp_create () - create RPC client using TCP transport .. rpc(3C)
clntudp_create () - create RPC client using UDP transport .. rpc(3C)
clock date and time, get or set system .. gettimeofday(2)
clock, get current value of system-wide .. getclock(3C)
clock () - report CPU time used .. clock(3C)
clock () - return the MPE clock value .. clock(3X)
clock, set value of system-wide ... setclock(3C)

Index: Volume 2 837

Index
Volume 2

Description Entry Name(Section)
clock value, MPE, return the ... '.clock(3X)
close, access, or open a directory and associated directory stream ... directory(3C)
close a stream ... fclose(3S)
close () - close a file descriptorclose(2)
close connection to specific audio ser{erACloseAudio(3X)
closedir () - close a currently open directory .. directory(3C)
close legal user shells file .. getusershell(3C)
closelog () - close system log file .. syslog(3C)
close or open NLS message catalog for reading ... catopen(3C)
close or open pipe I/O to or from a process .. popen(3S)
cluster configuration file, get entry from .. getccent(3C)
cluster nodes, get a list of active diskless .. cnodes(2)
clusters, diskless'see diskless clusters
cnodeid () - get diskless cnode ID oflocal machine .. cnodeid(2)
cnode ID of local machine, get diskless .. cnodeid(2)
cnodes () - get a list of active nodes in cluster .. cnodes(2)
code set conversion, character ... jconv(3C)
collation, non-ASCII stringnl_string(3C)
command bytes over HP-IB, send .. hpib_send_cmnd(3I)
command, remote, return a stream torcmd(3N)
command, return stream to a remoterexec(3N)
command, shell, issue a ... system(3S)
communication, create an endpoint for .. .socket(2)
communication package, standard interprocess .. stdipc(3C)
compare contents of memory with character .. memory(3C)
compare two non-ASCII strings .. nl_string(3C)
compare two strings .. string(3C)
compare two wide strings ... wcstring(3C)
comparison routines for regular expressions .. regex:p(3X)
compile and match routines for regular expressions .. regex:p(3X)
compile a regular expression ... regcmp(3X)
compile () - regular expression compile routine .. regex:p(3X)
compiling routines, regular expressionregcomp(3C)
complementary error function and error function ... erf(3M)
completion status code, return an error message for a ... error_$c_text(3)
complex absolute value function .. hypot(3M)
concatenate two strings ... string(3C)
concatenate two wide strings ... wcstring(3C)
condition becomes true, wait until the requested status ... hpib_status_wait(31)
conditions, define for I/O device interruptio_on_interrupt(3I)
conduct a serial poll on HP-IB .. hpib_spoll(3I)
conduct parallel poll on HP-IB ... hpib-ppoll(3I)
configurable pathname variables, get .. pathconf(2)
configurable system variables, get .. sysconf(2)
configuration file, cluster, get entry from ... getccent(3C)
configuration values, get string-valued .. confstr(3C)
confstr () - get string-valued configuration values .. confstr(3C)
connected peer, get address of ... getpeername(2)
connected sockets, create a pair ofsocketpair(2)
connect () - initiate connection on a socket .. connect(2)
connection, add audio event handler for this ... AtInitialize(3X)
connection, establish an out-bound terminal line .. dial(3C)
connection, establish or receive data on NetIPC virtual circuitipcrecv(2)
connection on a socket, accept .. .accept(2)
connection on a socket, initiate ... connect(2)
connection request on a call socket, receive .. .ipcrecvcn(2)
connection, send data on a virtual circuit ... jpcsend(2)
connections on a socket, listen for .. listen(2)

838 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
connection to another process, request .. '"ipcconnect(2)
connect socket to TCP socket address; return transaction ID '" AConnectRecordStream(3X)
consumption limit, get or set system resource ... , '" getrlimit(2)
context-dependent file path names, manipulate '" .. '" getcdf(3C)
context-dependent file search, return process context for ... getcontext(2)
context, signal stack, set and/or get ... sigstack(2)
control Attention line on HP-IB .. hpib_atn_ctl(31)
control character device special file ... ,ioctl(2)
control DMA allocation for an interface '"io_dma_ctl{3I)
control EOI mode for HP-IB file ... hpib_eoi_ctl(3I)
control, file system ... fsctl(2)
control functions, tty line ... tccontrol(3C)
controllers on HP-IB, change active .. hpib-Pass_ctl{3I)
control lines on GPIO card, set ... gpio_set_ctl(3I)
controlling terminal, generate file name of ... ctermid(3S)
control operations, message .. mstctl(2)
control operations, semaphore .. .semctl(2)
control operations, shared memoryshmctl(2)
control register defaults (floating-point), set ... fpgetround(3M)
control register (floating-point), examine and set ... fpgetround(3M)
control response to parallel poll on HP-IB ... hpib_card-PpoICresp(31)
control routines for open-files ... fcntl(2)
control system log .. syslog(3C)
control system resource consumption limit .. getrlimit(2)
control terminal device (Version 6 compatibility only) ... stty(2)
control the HP-IB interface Remote Enable line .. hpib_ren_ctl{3I)
control tty device ... tcattribute(3C)
conventions, numeric formatting, of current locale, query ... localeconv(3C)
conversion, formatted input, to a varargs argument ... vscanf(3S)
conversion routines, network station address string .. net_aton(3C)
conversions, multibyte characters and strings .. multibyte(3C)
convert a buffer of data ... AConvertBuffer(3X)
convert access control list (ACL) structure to string form ... acltostr(3C)
convert audio file data format .. .AConvertAFile(3X)
convert between 3-byte integers and long integers .. .l3tol(3C)
convert between long integer and base-64 ASCII string .. a641(3C)
convert character code set to another ... '"iconv(3C)
convert date and time to string .. ctime(3C)
convert date and time to string .. .strftime(3C)
convert date and time to wide-character string .. wcsftime(3C)
convert file to stream .. fopen(3S)
convert floating-point number to string or string array element ... ecvt(3C)
convert long double floating-point number to string .. .ldcvt(3C)
convert long integer to string ... ltostr(3C)
convert string data order .. strord(3C)
convert string form to access control list (ACL) structure ... strtoacl(3C)
convert string to double-precision number ... strtod(3C)
convert string to floating-point number ... cvtnum(3C)
convert string to long double-precision number ... strtold(3C)
convert user format date and time ... getdate(3C)
convert values between host and network byte order .. byteorder(3N}
convert wide character string to double-precision number ... wcstod(3C)
coprocessor, math, check for presence of .. .is_hw-Present(3C)
copy access control list (ACL) to another file .. cpacl(3C)
copy audio data from buffer to sound bucket ... APutSBucketData(3X)
copy audio data in sound bucket to buffer; return number of bytes AGetSBucketData(3X)
copy audio file into new sound bucket with data conversion .. AI..oadAFile(3X)
copy error description into specified buffer .. AGetErrorText(3X)

Index: Volume 2 839

Index
Volume 2

Description Entry Name(Section)
copy memory to another areamemory(3C)
copysign (), copysignf () - copysign functions .. .ieee(3M)
copysignf (), copysign () - copysign functions .. .ieee(3M)
copysign functions .. , ... ieee(3M)
cosdf () - trigonometric cosine function (float, degrees) "."""".".".""."" trigd(3M)
cosd () - trigonometric cosine function (degrees) .. trigd(3M)
cosf () - trigonometric cosine function (float) .. trig(3M)
cosh (), coshf () - hyperbolic cosine functions .. sinh(3M)
coshf () , cosh () - hyperbolic cosine functions .. sinh(3M)
cosh () - inverse hyperbolic cosine function .. asinh(3M)
cosine trigonometric function (degrees) ... "" ".""" " trigd(3M)
cosine trigonometric function .. trig(3M)
cos () - trigonometric cosine function ... trig(3M)
cpacl () - copy access control list (ACL) to another file ... cpacl(3C)
cpu, set name of host ... sethostname(2)
CPU, set NetIPC node name of host .. ipcsetnodename(2)
CPU time used, reportclock(3C)
creat () - create a new file or rewrite an existing one ... creat(2)
create a call socket ... ipccreate(2)
create a destination descriptor ... jpcdest(2)
create a directory file ... mkdir(2)
create a directory, or a special or ordinary file .. mknod(2)
create a name for a temporary file .. tmpnam(3S)
create an audio play widget ... AuCreatePlay(3X)
create an audio record widget ... AuCreateRecord(3X)
create an endpoint for communication ... socket(2)
create a new filecreat(2)
create a new file or rewrite an existing one .. creat(2)
create a new process .. fork(2)
create an interprocess channel .. pipe(2)
create a pair of connected sockets .. socketpair(2)
create a socket ... socket(2)
create a temporary file .. tmpfile(3S)
create a unique (usually temporary) file name .. mktemp(3C)
created by record widget, save sound bucket data ... AuSaveFile(3X)
create empty sound bucket and return pointer to it .. ACreateSBucket(3X)
create file names ... glob(3C)
create session and set process group ID .. setsid(2)
creating a new file, select play attributes to use when ... AChoosePlayAttributes(3X)
crtO .0, gcrtO .0, mcrtO .0, frtO .0, mfrtO.o - execution startup routines ... crtO(3)
crtO.o, mcrtO. 0 - C and Pascal execution startup routines .. crtO(3)
CRT optimization and screen handling package .. curses(3X)
CRT screen handling and optimization package .. curses(3X)
crypt () , setkey (), encrypt () - generate hashing encryption .. crypt(3C)
ctermid () - generate file name for terminal .. ctermid(3S)
ctime (), nl_cxtime () - convert clock () date and time to string ... ctime(3C)
cube root, square root, power, logarithm, exponential functions .. exp(3M)
current events and system calls to be audited .. setevent(2)
current host, get name of .. .gethostname(2)
current HP-UX system, get name and version of .. uname(2)
current locale, query numeric formatting conventions of .. .localeconv(3C)
current process, get audit ID (aid (» for ... getaudid(2)
current process, set audit ID (aid (» for .. setaudid(2)
current process, suspend or resume auditing on .. audswitch(2)
current tIser, find the slot in the utmp () file of the .. ttyslot(3C)
current value of system-wide clock, get .. getclock(3C)
current working directory, get path-name of ... getcwd(3C)
currlangid () - get current NLS language ID number .. .langinfo(3C)

840 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
curses () - CRT screen handling and optimization package .. curses(SX)
cursor control, CRT optimization, and screen handling package .. curses (SX)
cuserid () - get character-string login name of the user .. cuserid(SS)
cvtnum () - convert string to floating-point number ... cvtnum(SC)
daemons, NFS ... nfssvc(2)
data and stack space, allocate then lock process into memory .. datalock(SC)
database operations, error text .. error_$intro(S)
database subroutines (new multiple database version) ... ndbm(SX)
database subroutines (old version - see also ndbm(SX») .. dbm(3X)
data created by record widget, save sound bucket ... AuSaveFile(SX}
data format, convert audio file ... AConvertAFile(SX)
data from a file, read ... read(2)
data from NetIPC option buffer, obtain option code and .. readopt(SN)
data, get character or word from a stream file ... getc(SS)
data, get wide character from a stream file .. getwc(SC)
datalock () - lock process into memory after allocating data and stack space datalock(SC)
data order, convert string ... strord(SC)
data path width (in bits), set .. jo_ width.-ctl(SD
data pointer for binary search tree, get ... tsearch(SC)
data representation, library routines for external .. ; xdr(SC)
data segment and shared memory, attach or detach .. shm.op(2)
data segment space allocation, change , ... brk(2)
data, send on a virtual circuit connection .. ipcsend(2)
data, text, or process, lock in memory .. plock(2)
data to a file, write .. write(2)
data to check the network, scatter .. spray(SN)
data to NetIPC option buffer, add argument and ... addopt(SN)
data transfer rate, inform system of required minimum I/O .. io_speed_ctl(SI)
date and time, convert to string ... ctime(SC)
date and time, convert to string ... strftime(SC)
date and time, convert to wide-character string ... wcsftime(SC)
date and time, convert user format .. getdate(SC)
date and time, get more precisely (Version 7 compatibility only) ... ftime(2)
date and time, get or set system clock .. gettimeofday(2)
date and time, set .. stime(2)
daylight () - Daylight Savings Time flag .. ctime(SC)
dbm_clearerr () - reset error condition on named database .. ndbm(SX)
dbm_close () - close an open database .. ndbm(SX)
dbmclose () - close currently open database (old single-data-base version) ; dbm(SX)
dbm_delete () - delete a database key and associated contents ... ndbm(SX)
dbm_error () - error in reading or writing in a database .. ndbm(SX)
dbm_fetch () - access a database entry under a key ... ndbm(SX)
dbm_f irstkey () - get first key in a database .. ndbm(SX}
dbminit () - open a single database (old single-data-base version) ... dbm(SX)
dbm_nextkey () - get next key in a database .. ndbm(SX)
dbm_open () - open a database for access .. ndbm(SX)
dbm_store () - store an entry under a key in a database .. ndbm(SX)
decimal ASCII string, convert long integer toltostr(SC)
decimal library, packed, HP 3 OOO-mo de .. hppac(SX)
define additional signal stack space .. sigspace(2)
define interface parallel poll response .. hpib..PpolCresp_ctl(SI)
define I/O device interrupt (fault) conditions ... io_on_interrupt(SI)
define what to do upon receipt of a signal ... signal(2)
degree-valued trigonometric functions ... trigd(SM)
delete, add, or modify delete access control list entry .. setaclentry(SC)
delete allocated signal stack space .. sigspace(2)
delete a node from a binary search tree ... tsearch(SC)
delete () - delete key and data under it (old single-data-base version) ... dbm(SX)

Index: Volume 2 841

Index
Volume 2

Description Entry Name(Section)
delete file or directory name; remove directory entry .. unlink(2)
delete name associated with a call socket or destination call socket .. ipcnamerase (2)
dequeue and return first event in audio event queue ... ANextEvent(3X)
descend a directory hierarchy recursively .. .ftw(3C)
description of disk by its name, get " .. "''',,,'''''''', .. , .. getdiskbyname(3C)
descriptor, close a fileclose(2)
descriptor, create a destination .. Jpcdest(2)
descriptor file entry, get file system (BSD 4.2 compatibility only) ... getfsent(3X)
descriptor, map stream pointer to filefileno(3S)
descriptor, obtain a destination ... Jpclookup(2)
descriptor, release a .. ,"""""""""" .. , .. " .. " .. "ipcshutdo\\T.(2)
destination call socket, associate name with call socket or .. .ipcname(2)
destination call socket, delete name associated with a call socket or ... ipcnamerase(2)
destination descriptor, create a .. Jpcdest(2)
destination descriptor, obtain a ... Jpclookup(2)
destroy specified sound bucketADestroySBucket(3X)
detach shared memory from data segment .. shmop(2)
determine accessibility of a fileaccess(2)
determine current signal stack space ... sigspace(2)
determine how last 110 read terminated ... io..get_term_reason (31)
determine status of call socket or VC socket .. ipcselect(2)
device file, FIFO, make amkfifo(3C)
device for interleaved paging/swapping, add a swap ... swapon(2)
device ID to file path, map .. .d.evnm(3)
device 110 interrupt (fault) controlio_on_interrupt(3I)
device special file, control character .. Joctl(2)
devnm () - map device ID to file path ... devnm(3)
dial () , undial () - establish an out-bound terminal line connection .. dial(3C)
difftime () - difference between two calendar time values .. ctime(3C)
directory: access, open, or close a directory and associated directory stream directory(3C)
directory: change root directorychroot(2)
directory: change working directory .. chdir(2)
directory: delete file or directory name; remove directory entry ... unlink(2)
directory: get entries in a filesystem-independent format .. getdirentries(2)
directory: get path-name of current working directory ... getcwd(3C)
directory: make a directory filemkdir(2)
directory: make a directory, or a special or ordinary file .. mknod(2)
directory: remove a directory file ... rmdir(2)
directory: scan a directory .. scandir(3C)
directory entry, remove; delete file or directory name ... unlink(2)
directory file, remove a ... rmdir(2)
directory hierarchy, recursively descend a .. ftw(3C)
directory pointer array, sort a ... scandir(3C)
directory, scan a .. scandir(3C)
directory stream, directory and associated, open for access .. directory(3C)
disable/enable odd parity on ATN commands ... hpib..,parity_ctl(31)
disable or enable 110 interrupts for the associated eid () .. .io_interrupt_ctl(3I)
disable or enable process accounting .. .acct(2)
disk description by its name, get ... getdiskbyname(3C)
disk, flush buffers to .. sync(2)
diskless cluster nodes, get a list of active .. cnodes(2)
diskless cnode ID of local machine, get .. cnodeid(2)
disk quotas, manipulate .. .quotactl(2)
disk storage, preallocate fast .. prealloc(2)
disk, synchronize a file's in-core state with its state on ... fsync(2)
distance function, Euclidean (hypotenuse) .. .hypot(3M)
division and remainder, integer ... div(3C)
di v (), ldi v () - integer division and remainder .. div(3C)

842 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
DMA allocation for an interface, controlio_dma_ctl(3I)
dn_comp () - resolver routines .. .resolver(3N)
dn_expand () - resolver routines .. .resolver(3N)
domain, get or set name of current NIS .. getdomainname(2)
double-precision number, convert string to .. strtod(3C)
double-precision number, convert string to long .. strtold(3C)
double-precision number, convert wide character string to .. wcstod(3C)
drand48 (), erand48 () - generate double-precision pseudo-random numbers drand48(3C)
drem () - remainder manipulationsieee(3M)
dup2 () - duplicate an open file descriptor to a specific slot .. dup2(2)
dup () - duplicate an open file descriptor ... dup(2)
duplicate an open file descriptor .. dup(2)
duplicate an open file descriptor to a specific slot ... dup2(2)
duplicate entries in a table, eliminate .. lsearch(3C)
dynamic file system swapping .. ,swapon(2)
echo, suppress while reading password from terminal ... getpass(3C)
ecvt (), fcvt () - convert floating-point number to string ... ecvt(3C)
edata - first address beyond initialized program data region ... end(3C)
effective access rights to a file, get a user's ... getaccess(2)
effective or real user or group ID, get .. getuid(2)
effective, real, and/or saved user or group IDs, set ... setresuid(2)
element, convert floating-point number to string or string array .. ecvt(3C)
eliminate duplicate entries in a table .. .lsearch(3C)
emulate /etc/termcap access routines .. termcap(3X)
enable asynchronous faults .. pfm_$enable(3)
enable asynchronous faults ... pfm_$enable_faults(3)
enable/disable odd parity on ATN commands ... hpib..,Parity_ctl(30
enable or disable 110 interrupts for the associated eid() ... io_interrupt_ctl(3I)
enable or disable process accounting .. .acct(2)
enable SRQ line on HP-IB, allow interface to ... hpib_rqst_srvce(30
encrypt () - generate hashing encryption ... crypt(3C)
encryption, hashing, generate ... : crypt(3C)
encryption, password .. .crypt(3C)
endccent () - close cluster configuration file ... getccent(3C)
endexportent () - access exported file system information ... exportent(3N)
end - first address beyond uninitialized program data region ... end(3C)
endf sent () - close file system descriptor file ... getfsent(3X)
endgrent () - close currently open group () file ... getgrent (3 C)
endhostent () - get network host entry .. gethostent(3N)
end locations of allocated regions in program ... end(3C)
endmntent () - close file system description file ... getmntent(3X)
endnetent () : get network entry .. getnetent(3N)
endnetgrent () - get network group entry ... getnetgrent(3C)
endpoint for communication, create an .. ,socket(2)
endprotoent () - get protocol entry .. getprotoent(3N)
endpwent () - close currently open password file ... getpwent(3C)
endservent () : get service entry .. getservent(3N)
endspwent () - close currently open secure password file ... getspwent(3C)
endusershell () - clol3e legal user shells file ... getusershell(3C)
endutent () - close currently open utmp () file ... getut(3C)
entries from a directory, get in a filesystem-independent format .. getdirentries(2)
entries from name list, getnlist(3C)
entries in a table, eliminate duplicate .. lsearch(3C)
entry from cluster configuration file, get .. getccent(3C)
entry from group () file, get ... getgrent(3C)
entry from password file, get ... getpwent(3C)
entry from secure password file, get ... getspwent(3C)
entry, get file system description file .. getmntent(3X)

Index: Volume 2 843

Index
Volume 2

Description Entry Name(Section)
entry, get file system descriptor file (BSD 4.2 compatibility only) ... getfsent(3X)
entry, get or set protocol ... getprotoent(3N)
entry, get RPCgetrpcent(3C)
entry, network group, get or set ... getnetgrent(3C)
entry, service, get or set """"",,,,,,,,,,,,,,,,, .. .getservent(3N)
entry, write password file .. putpwent(3C)
environment, change or add value to .. putenv(3C)
environment, clear the process .. , ... clearenv(3C)
environment list, search for value of specified variable name ... getenv(3C)
environment of a program, initialize the NLS ... nl_init(3C)
environment, save/restore stack for non-local goto "" .. " ... " : .. setjmp(3C)
environment variable, search environment list for value of .. getenv(3C)
EOI mode for HP-IB file, control .. hpib_eoi_ct1(3I)
erf (), erfc () - error function and complementary error function ... erf(3M)
errno () - error indicator for system calls .. errno(2)
errno - system error messages ... perror(3C)
error_$c_get_text () - return subsystem, module, and error texts for a status code error_$c~et_text(3)
error_$c_text () - return an error message for a status code .. error_$c_text(3)
error function and complementary error function , ... erf(3M)
error-handling function, math library ... matherr(3M)
error indicator for system calls .. .errno(2)
error_$intro - error text database operations ... error_$intro(3)
error message for a status code, return an .. error_$c_text(3)
error messages, system ... perror(3C)
error number, provide text describing NetIPC .. .ipcerrmsg(3N)
error text database operations ... error_$intro(3)
error texts for a status code, return subsystem, module, and .. error_$c~et_text(3)
establish a cleanup handler ... pfm_$cleanup(3)
establish an out-bound terminal line connection ... dial(3C)
establish NetIPC virtual circuit connection .. ipcrecv(2)
establish time limit for I/O operationsio_timeout_ctl(3I)
/etc/termcap access routines, emulate ... termcap(3X)
etext - first address beyond program text region .. end(3C)
Euclidean distance (hypotenuse) function .. hypot(3M)
event handler for this connection, add audio ... Atlnitialize(3X)
events and system calls currently being audited, get .. getevent(2)
events and system calls to be audited , .. setevent(2)
examine and change blocked signals .. sigprocmask(2)
examine and change signal action ... sigaction(2)
examine pending signals .. sigpending(2)
exception flags (floating-point), examine and set .. fpgetround(3M)
exceptions, managing signal ... pfm_$intro(3)
exception trap enable bits (floating-point), examine and set .. fpgetround(3M)
execl () , execle () , execlp () , execv () , execve () , execvp () - execute an object-code file exec(2)
execute an object-code fileexec(2)
execute a regular expression against a string ... regcmp(3X)
execution profile, prepare .. .monitor(3C)
execution startup routines, C, Pascal, and FORTRAN •.••••••••••••••••••••••••••.•••••••••..••..••••••••••••••••••••••.•••••••••••.•••••••••.• crtO(3)
execution, suspend for interval .. sleep(3C)
execution time profile .. pro:fil(2)
existing file, truncate to zero for rewriting ... creat(2)
exit a program ., .. '" .. pgm_$exit
exit (), _exit () - terminate process .. exit(2)
exiting cleanup handlers ... pfm_$signal(3)
exit, register a function to be called at .. .atexit(2)
expansions, perform word ... wordexp(3C)
exp (), expf () - exponential functions ... exp(3M)
expf (), exp () - exponential functions ... exp(3M)

844 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
explicit load of shared libraries .. shlJoad(3X)
exponent and mantissa, split floating-point into ... frexp(3C)
exponential, logarithm, power, square root, cube root functions .. exp(3M)
exponent manipulations .. ieee(3M)
exported file system information, access ... exportent(3N)
exportent () - access exported file system information ... exportent(3N)
expression matching routines, regularregcomp(3C)
expression, regular, compile and match routines ... regex:p(3X)
expression, regular, compile or execute against a string .. regcmp(3X)
external data representation, library routines for .. xdr(3C)
fabs (), fabsf (), floor (), ceil (), fmod(),

fmodf (), rint () - absolute value, floor, ceiling, remainder, round-to-nearest functions floor(3M)
fabsf (), fabs (), floor (), ceil (), fmod (),

fmodf (), rint () - absolute value, floor, ceiling, remainder, round-to-nearest functions floor(3M)
facilities, software signal ... sigvector(2)
fast disk storage, preallocate .. prealloc(2)
fault, generate an lOT .. abort(3C)
fault (interrupt) conditions, define for 110 deviceio_on_interrupt(3I)
fault management .. pfm_$intro
faults, enable asynchronous ... pfm_$enable(3)
faults, enable asynchronous .. pfm_$enable_faults(3)
faults, inhibit asynchronous but allow time-sliced task switching pfm_$inhibit_faults(3)
faults, inhibit asynchronous .. pfm_$inhibit(3)
fchdir () - change working directory ... chdir(2)
fchmod() - change access mode (permissions) of file .. chmod(2)
fchown() - change owner and group ofa file ... chown(2)
fclose () - flush buffer then close stream ... fclose(3S)
fcntl () - open-file control ... fcntl(2)
fcpacl () - copy access control list (ACL) to another file ... cpacl(3C)
fcvt (), ecvt () - convert floating-point number to string ... ecvt(3C)
fdopen() - associate a stream with an open file descriptor ... fopen(3S)
feof () - check for end-of-file error on stream ... ferror(3S)
ferror () - check for 110 error on stream .. ferror(3S)
feteh () - access data under a key (old single-data-base version) ... dbm(3X)
fflush() - flush buffer without closing stream .. fclose(3S)
ffs () - BSD find first set bit ... memory(3C)
fgetacl () - get access control list (ACL) information .. getacl(2)
fgetecent () - get pointer to cluster configuration entry in a stream .. getccent(3C)
fgete () , gete () - get character from a stream file .. getc(3S)
fgetgrent () - get next entry in group () -file-formatted input stream ... getgrent(3C)
fgetpos () - save file position indicator for a stream .. fgetpos(3S)
fgetpwent () - get next entry in password-file-formatted input stream ... getpwent(3C)
fgets () , gets () - get a string from a standard input stream ... gets(3S)
fgetspwent () - get next entry in secure password-file-formatted input stream getspwent(3C)
fgetwc () , getwe () - get wide character from a stream file ... getwc(3C)
fgetws (), getws () - get a wide string from a standard input stream .. getws(3C)
FIFO special file, make a .. .mk:fifo(3C)
file: access wtmp () or utmp () file .. getut(3C)
file: assign buffering to a stream file ... setbuf(3S)
file: change access mode (permissions) of file ... chmod(2)
file: change owner and group of a file ... chown(2)
file: change the name of a file ... rename(2)
file: close a file descriptorclose(2)
file: copy access control list (ACL) to another file ... cpacl(3C)
file: create a name for a temporary file ... tmpnam(3S)
file: create a new file or rewrite an existing one .. creat(2)
file: create a temporary file .. tmpfile(3S)
file: delete file or directory name; remove directory entry ... unlink(2)

Index: Volume 2 845

Index
Volume 2

Description Entry Name(Section)
file: determine accessibility of a file .. access(2)
file: execute an object-code file .. exec(2)
file: get file status ... stat(2)
file: link additional name to an existing file ... link(2)
file: make a tHrectory file or a special or ordinary file ... nl'lcYlod.(2)
file: make a symbolic link to a file .. symlink(2)
file: make a unique (usually temporary) file name .. mktemp(3C)
file: open a file for reading or writing ... open(2)
file: open-file control routines ... icntl(2)
file: print formatted output with numbered arguments to a file or string ... printmsg(3C)
file: read data from a file .. read(2)
file: read from file, stream, or character string with formatted input conversion scanf(3S)
file: remove a directory file ... rmdir(2)
file: remove a file ... remove(3C)
file: rewrite an existing file .. creat(2)
file: truncate a file to a specified length .. truncate(2)
file: truncate an existing file to zero for rewriting .. creat(2)
file: write data to a file ... write(2)
file access and modification times, set or update .. utime(2)
file attributes of specified file, get .. AGetAFileAttributes(3X)
file, CDF: return process context for context-dependent file search, return ... getcontext(2)
file, cluster configuration: get entry from cluster configuration file ... getccent(3C)
file creation (permissions) mask, set and get ... umask(2)
file data format, convert audio ... AConvertAFile (3X)
file descriptor: duplicate an open file descriptor ... dup(2)
file descriptor: duplicate an open file descriptor to a specific slot .. dup2(2)
file descriptor, map stream pointer tofileno(3S)
file entry, get file system description .. getmntent(3X)
file entry, get file system descriptor (BSD 4.2 compatibility only) ... getfsent(3X)
file, get a user's effective access rights to a ... getaccess(2)
file, get file attributes of specified .. AGetAFileAttributes(3X)
file, group: get entry from group () file : ... getgrent(3C)
file handle for file on remote node, get .. getfb.(2)
file locking: provide semaphores and record locking on fileslockf(2)
file name generation function .. .glob(3C)
file name of controlling terminal, generate ... ctermid(3S)
filename patterns, match .. fnmatch(3C)
fileno () - get integer file descriptor for stream .. ferror(3S)
fileno () - map stream pointer to file descriptor .. fileno(3S)
file on remote node, get file handle for .. getfb.(2)
file or anonymous memory region, initialize semaphore in mapped ... msem_init(2)
file or anonymous region, remove semaphore in mapped ... msem_remove(2)
file, password: get entry from password file ... getpwent(3C)
file, password: get entry from secure password file ... getspwent(3C)
file path, map device ID to .. .devnm(3)
file path names, manipulate context-dependent ... getcdf(3C)
file pointer: move read/write file pointer .. lseek(2)
file position indicator for a stream, save or restore .. fgetpos(3S)
files, audit, set or get .. audctl(2)
file search: return process context for context-dependent file search ... getcontext(2)
file's in-core state with its state on disk, synchronize a ... fsync(2)
file size limits and break value, get or set ... ulimit(2)
file, stream: buffered binary input/output to a stream file .. fread(3S)
file, stream: convert file to stream; open or re-open a stream file .. fopen(3S)
file, stream: get character or data word from a stream file ... getc(3S)
file, stream: get wide character from a stream file ... getwc(3C)
file, stream: open or re-open a stream file; convert file to stream .. fopen(3S)
file, stream: reposition or get pointer for I/O operations on a stream file ... fseek(3S)

846 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
file, synchronize a mapped .. msync(2)
file system: get file system description file entry ... getmntent(3X)
file system: get file system descriptor file entry (BSO 4.2 compatibility only) .. getfsent(3X)
file system: get file system statistics .. .statfs(2)
file system: get mounted file system statistics .. ustat(2)
file system: mount a file system ... vfsmount(2)
file system: mount a removable file system .. mount(2)
file system: unmount a file system ... umount(2)
file system control .. fsctl(2)
file system information, access exported ... exportent(3N)
file systems, keep track of remotely mounted ... mount(3N)
file system statistics, getstatfsdev(3C)
file system swapping ... swapon(2)
file tree: walk a file tree .. ftw(3C)
file, utmp (), of the current user, find the slot in the .. ttyslot(3C)
find name of a terminal ... ttyname(3C)
find out if audio controller restricts gain entries ... AGMGainRestricted(3X)
find the slot in the utmp () file of the current user ... ttyslot(3C)
finish stream data conversion .. .AEndConversion(3X)
finitef (), finite () -floating-point classification functions ... ieee(3M)
finite (), finitef () -floating-point classification functions ... ieee(3M)
firstkey() - get first key in database (old single-data-base version) .. dbm(3X)
first locations beyond allocated program regions ... end(3C)
firstof2 (), J!'J:RSTof2 () - test for valid first byte in 16-bit character ... nl_tools_16(3C)
flag for calling process, get audit process .. getaudproc(2)
floating-point: convert floating-point number to string or string array element .. ecvt(3C)
floating-point: convert string to floating-point number .. cvtnum(3C)
floating-point: split floating-point into mantissa and exponent ... frexp(3C)
floating-point classification functionsfpclassify(3M)
floating-point classification functionsieee(3M)
floating-point classification functions ... ,isinf(3M)
floating-point classification functionsisnan(3M)
floating-point mode control functions ... fpgetround(3M)
floating-point number to string, convert long doubleldcvt(3C)
floor(),ceil(),fmod(),fmodf(),fabs(),fabsf(),

rint () -floor, ceiling, remainder, absolute value, round-to-nearest functions floor(3M)
floor, ceiling, remainder, absolute value, round-to-nearest functions .. floor(3M)
flush and/or purge the cache ... cachectl(3C)
flush buffers to disk ... sync(2)
flush buffer with or without closing stream .. fclose(3S)
fmodf(),fmod(),ceil(),floor(),fabs(),

fabsf (), rint () - remainder, ceiling, floor, absolute value, round-to-nearest functions flo or (3M)
fmod(),fmodf(),ceil(),floor(),fabs(),

fabsf () , rint () - remainder, ceiling, floor, absolute value, round-to-nearest functions floor(3M)
fnmatch () - match filename patterns .. fnmatch(3C)
fopen () - open a named file and associate with a stream ... fopen(3S)
foreground process group 10, get .. tcgetpgrp(3C)
foreground process group 10, set .. tcsetpgrp(3C)
fork () - create a new process ... lork(2)
format, convert audio file dataAConvertAFile(3X)
format date and time, convert user .. getdate(3C)
formatted input conversion, read from stream file or character string .. scanf(3S)
formatted input conversion to a varargs argument ... vscanf(3S)
formatted output of a varargs argument list, print .. vprintf(3S)
formatted output, print to standard output, file, or string ... printf(3S)
formatted output with numbered arguments, print to a file or string ... printmsg(3C)
formatted read and conversion from stream file or character string .. scanf(3S)
formatting conventions, numeric, of current locale, query ... localeconv(3C)

Index: Volume 2 847

Index
Volume 2

Description Entry Name(Section)
FORTRAN execution startup· routinescrtO(3)
fpathconf () - get configurable pathname variables ... pathconf(2)
fpcIassifyf (), fpcIassify() - floating-point classification functions fpclassify(3M)
fpcIassify(), fpcIassifyf () - floating-point classification functions fpclassify(3M)
fpgetcontrol (), fpsetcontrol () - examine and set floating~point control register fpgetround(3M)
fpgetfastmode (), fpsetfastmode () - examine and set floating-point underflow mode fpgetround(3M)
fpgetmask () , fpsetmask () - examine and set floating-point exception trap enables fpgetround(3M)
fpgetround (), fpsetround () - examine and set floating-point rounding mode fpgetround(3M)
fpgetsticky (), fpsetsticky () - examine and set floating-point exception flags fpgetround(3M)
fprintf (), nI_fprintf () - print formatted output to a file .. printf(3S)
fprintmsg () - print formatted output with numbered arguments to a file printmsg(3C)
fpsetcontrol (), fpgetcontrol () - examine and set floating-point control register fpgetround(3M)
fpsetdefaults () - set floating-point control register defaults .. fpgetround(3M)
fpsetfastmode (), fpgetfastmode () - examine and set floating-point underflow mode fpgetround(3M)
fpsetmask (), fpgetmask () - examine and set floating-point exception trap enables fpgetround(3M)
fpsetround (), fpgetround () - examine and set floating-point rounding mode fpgetround(3M)
fpsetsticky (), fpgetsticky () - examine and set floating-point exception flags fpgetround(3M)
fputc () , putc () - put character on a stream ... putc(3S)
fputs () - write null-terminated string to a named stream file ... puts(3S)
fputwc () , putwc () - put wide character on a stream .. putwc(3C)
fputws () - write null-terminated wide string to a named stream file ... fputws(3C)
fread (), fwrite () - buffered binary input/output to a stream file .. fread(3S)
free a per-process timer .. .rmtimer(3C)
free () - release allocated block of main memory ... malloc(3C)
freopen() - substitute a named file in place of an already open stream ... fopen(3S)
frexp (), Idexp () , modf () - split floating-point into mantissa and exponent .. frexp(3C)
frtO .0, mfrtO. 0 - FORTRAN execution startup routines .. crtO(3)
fscanf (), nl_fscanf () - formatted read from named input stream file .. scanf(3S)
fsctl () - file system control .. fsctl(2)
fseek (), rewind (), fteII () - reposition a file pointer in a stream .. fseek(3S)
f seek () - set position of next 110 operation on stream file ... fseek(3S)
fsetaclentry() - add, modify, or delete access control list entry .. setaclentry(3C)
fsetacI () - set access control list (ACL) information ... setacl(2)
fsetpos () - restore file position indicator for a stream .. fgetpos(3S)
fstatfsdev(), statfsdev () - get file system statistics ... statfsdev(3C)
fstatfs (), statfs () - get file system statistics .. statfs(2)
fstat (), (stat (), Istat (» - get open file status .. stat(2)
fsync () - synchronize a file's in-core state with its state on disk ... fsync(2)
fteII () - get offset from beginning-of-file of current byte in stream file ... fseek(3S)
ftime () - get date and time more precisely (Version 7 compatibility only) ... ftime(2)
ftok () - standard interprocess communication package .. stdipc(3C)
ftruncate (), truncate () - truncate a file to a specified length ... truncate(2)
ftw (), ftwh () nftw () - walk a file tree .. itw(3C)
function: Bessel functions ... bessel(3M)
function: complex absolute value ... hypot(3M)
function: Euclidean distance (hypotenuse) ... hypot(3M)
function: hyperbolic trigonometric functions .. sinh(3M)
function: inverse hyperbolic trigonometric functions ... asinh(3M)
function: log gamma ... gamma(3M)
function: trigonometric functions (degrees) ... trigd(3M)
function: trigonometric functions ...•.................................... trig(3M)
function to be called at program termination, register a .. atexit(2)
fwrite (), fread () - buffered binary input/output to a stream file .. fread(3S)
gain, get system or monitor audio channel .. AGetSystemChanneIGain(3X)
gain, get transaction channel ... AGetChanneIGain(3X)
gain, set system or monitor audio channel ... ASetSystemChannelGain(3X)
gain, set transaction channel ... ASetChanneIGain(3X)
gamma function, log ... gamma(3M)

848 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
gamma () , 19amma () , s igngam () - log gamma function ... gamma(3M)
gcrtO.o, gfrtO. 0 - C and Pascal execution startup routines .. crtO(3)
gcvt () , nl_gcvt () - convert floating-point number to string array element .. ecvt(3C)
generate an lOT fault ... abort(3C)
generate file name of controlling terminal .. ctermid(3S)
generate file names ... glob(3C)
generate hashing encryption .. crypt(3C)
generate uniformly distributed pseudo-random numbers .. drand48(3C)
generator, simple random-numberrand(3C)
get: character or data word from a stream file ... getc(3S)
get: data pointer for binary search tree ... tsearch(3C)
get: date and time more precisely (Version 7 compatibility only) ... ftime(2)
get: diskless cnode ID oflocal machine .. cnodeid(2)
get: entries from a directory in a filesystem-independent format .. getdirentries(2)
get: entries from name listnlist(3C)
get: entry from group () file ... getgrent(3C)
get: file size limits and break value, get or set .. ulimit(2)
get: file status ... stat(2)
get: file system description file entry .. getmntent(3X)
get: file system descriptor file entry (BSD 4.2 compatibility only) ... getfsent(3X)
get: file system statistics ... statfs(2)
get: list of active nodes in diskless cluster ... cnodes(2)
get: message from an NLS message catalogue '" ... catgetmsg(3C)
get: message queue .. msgget(2)
get: mounted file system statistics ... ustat(2)
get: name and version of current HP-UX system .. uname(2)
get: name of current host .. .gethostname(2)
get: NLS program message ... catgets(3C)
get: option letter from argument vector ... getopt(3C)
get: path-name of current working directory ... getcwd(3C)
get: pointer for 110 operations on a stream file, get or reposition ... fseek(3S)
get: pointer to login name in utmp () .. getlogin(3C)
get: process and child process times .. times(2)
get: process context for context-dependent file search ... getcontext(2)
get: process priority .. .getpriority(2)
get: process, process group, or parent process ID ... getpid(2)
get: real or effective user or group ID .. getuid(2)
get: set of semaphores .. semget (2)
get: shared memory segment .. shmget(2)
get: system clock date and time .. gettimeofday(2)
get: time ... time(2)
get: value of process interval timer .. getitimer(2)
get: wide character from a stream file ... getwc(3C)
get access control list (ACL) information .. getacl(2)
getaccess () - get a user's effective access rights to a file .. getaccess(2)
getacl (), fgetacl () - get access control list (ACL) information .. getacl(2)
get address of connected peer .. getpeername(2)
get and/or set signal stack context .. .sigstack(2)
get a silence value ... AGetSilenceValue(3X)
getaudid () - get audit ID (aid ()) for current process .. getaudid(2)
get audit ID (aid (» for current process .. getaudid(2)
get audit process flag for calling process ... getaudproc(2)
getaudproc () - get audit process flag for calling process ... getaudproc(2)
get a user's effective access rights to a file .. getaccess(2)
get best audio attribute setting for specified controller ... ABestAudioAttributes(3X)
get bit order used for one-bit-per-sample data ... ASoundBitOrder(3X)
get byte order of audio data accepted by audio controller for this connection ASoundByteOrder(3X)
getcccid () - get cluster configuration file entry matching specified id () .. getccent(3C)

Index: Volume 2 849

Index
Volume 2

Description Entry Name(Section)
geteeent () - get entry in cluster configuration file ... getccent(3C)
geteenam() - get cluster configuration file entry matching specified name () getccent(3C)
getedf () - manipulate context-dependent file path names ... getcdf(3C)
gete () , fgete () - get character from a stream file .. getc(3S)
ITA+- ,.'h (\ _ O'ot "h M-o" f .. n-rn cd,.,nrl,., .. rl ;nnllf filo d'""t ... (~!O:) :1:'------ '\.1 b-........... .,a. _____ _..&.&. ~'-'., V'-N'_, o..N' ,,.v1:''''''''''&''&''&'- •• ································b---'-...... ,
geteloek - get current value of system-wide clock ... getclock(3C)
get configurable pathname variables ... pathconf(2)
get configurable system variables .. sysconf(2)
get connection number for specified audio server connection ... AConnectionNumber(3X)
geteontext () - return the process context for context-dependent file search getcontext(2)
get current value of system-wide clock ... getclock(3C)
getewd() - get path-name of current working directory ... getcwd(3C)
get D/A output channels existing on current hardware ... AOutputChannels(3X)
get data formats for a specifed file format ... AGetDataFormats(3X)
getdate () - convert user format date and time ... getdate(3C)
getdirentries () - get entries from a directory in a filesystem-independent format getdir~ntries(2)
getdiskbyname () - get disk description by its name .. getdiskbyname(3C)
get disk description by its name .. getdiskbyname(3C)
getdomainname () - get name of current NIS domain ... getdomainname(2)
getegid () - get effective group ID .. getuid(2)
getenv () - return value for environment name .: ... getenv(3C)
geteuid () - get effective user ID ... getuid(2)
get event () - get events and system calls currently being audited ... getevent(2)
get events and system calls currently being audited ... getevent(2)
getexportent () - access exported file system information ... exportent(3N)
getexportopt () - access exported file system information ... exportent(3N)
getfh () - file handle for file on remote node .. getfb.(2)
get file attributes of specified file ... AGetAFileAttributes(3X)
get file format of specified file .. AQueryAFile(3X)
get file handle for file on remote node ... getfb.(2)
get file system statistics .. .statfsdev(3C)
get first event found in audio event queue ... ACheckEvent(3X)
get first event in audio event queue that matches mask .. ACheckMaskEvent(3X)
get first matching event in audio event queue ... AMaskEvent(3X)
get foreground process group ID ... tcgetpgrp(3C)
getfsent () - get next line in file system descriptor file ... : getfsent(3X)
getfsfile () - search descriptor file for ordinary file entry ... getfsent(3X)
getfsspee () - search descriptor file for special (device) file entry ... getfsent(3X)
getfstype () - search descriptor file for specified file type entry ... getfsent(3X)
getgid () - get real group IDgetuid(2)
getgrent () - get next entry in group () file .. getgrent(3C)
getgrgid () - get entry from group () file that matches gid () ... getgrent(3C)
getgrnam() - get entry from group () file that matches group name name () getgrent(3C)
getgroups () - get group access list ... getgroups(2)
gethewd () - get path-name of current working directory including diskless hidden directories getcwd(3C)
gethostbyaddr () - get network host entry .. gethostent(3N)
gethostbyname () - get network host entry .. gethostent(3N)
gethostent () - get network host entry .. gethostent(3N)
gethostname () - get name of current host .. gethostname(2)
get information about shared library .. shCload(3X)
getitimer () - get value of process interval timer ... getitimer(2)
get legal user shellsgetusershell(3C)
get list of AID input channels on current hardware .. AInputChannels(3X)
get list of data formats supported by audio controller ... ADataFormats(3X)
getloeale () - get the locale of a program ... setlocale(3C)
getlogin{) - get pointer to login name in utmp () ... getlogin(3C)
get major version number of protocol used by audio server .. AProtocoIVersion(3X)
get maximum input gain supported by audio controller .. AMaxInputGain(3X)

850 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
get maximum output gain supported by audio controller ... AMaxOutputGain(3X)
get minimum input gain supported by audio controller .. AMinInputGain(3X)
get minimum output gain supported by audio controller ... AMinOutputGain(3X)
get minor revision number of protocol used by audio server ... AProtocoIRevision(3X)
getmntent () - get a file system description file entry .. getmntent(3X)
get_myaddress () - get machine's IP addressrpc(3C)
get name of audio controller (string) passed to AOpenAudioO ... AAudioString(3X)
get name of current NIS domain .. getdomainname(2)
getnetbyaddr () : get network entry .. getnetent(3N)
getnetbyname () : get network entry .. getnetent(3N)
getnetent () : get network entry .. getnetent(3N)
getnetgrent () - get network group entry ... getnetgrent(3C)
get network entry ... getnetent(3N)
get network group entry .. getnetgrent(3C)
get network host entrygethostent(3N)
get number of events in queue for specified server connection .. AEventsQueued(3X)
getopt (), optarg, optind, opterr - get option letter from argument vector getopt(3C)
get or set audit filesaudctl(2)
get or set tty baud rate .. cfspeed(3C)
getpass () - read a password from terminal while suppressing echo ... getpass(3C)
getpeername () - get address of connected peer ... getpeername(2)
getpgrp2 () - get process group ID of specified process ... getpid(2)
getpgrp () - get process group ID .. getpid(2)
getpid () - get process ID .. .getpid(2)
get play volume or record gain of specified transaction .. AGetGain(3X)
getppid () - get parent process ID .. getpid(2)
getpriority - get process priority ... getpriority(2)
getprotobyname () - get protocol entry .. getprotoent(3N)
getprotobynumber () - get protocol entry ... getprotoent(3N)
get protocol entry .. .getprotoent(3N)
getprotoent () - get protocol entry .. getprotoent(3N)
getpwent () - get next password file entry ... getpwent(3C)
getpw () - get name from UID (obsolete) ... getpw(3C)
getpwnam () - get password file entry matching login name name () .. getpwent(3C)
getpwuid () - get password file entry matching uid () .. getpwent(3C)
getrlimit () - set system resource consumption limit .. getrlimit(2)
getrpcbyname () : get RPC entry ... getrpcent(3C)
getrpcbynumber () : get RPC entry .. getrpcent(3C)
getrpcent () : get RPC entry ... getrpcent(3C)
get RPC entry .. getrpcent(3C)
getrpcport () - get RPC port number ... getrpcport(3N)
get RPC port number .. .getrpcport(3N)
getservbyname () : get service entry .. getservent(3N)
getservbyport () : get service entry .. getservent(3N)
getservent () : get service entry .. getservent(3N)
get service entry .. getservent(3N)
gets (), fgets () - get a string from a standard input stream ... gets(3S)
get socket addressgetsockname(2)
getsockname () - get socket address .. getsockname(2)
getsockopt () - get options on sockets .. getsockopt(2)
getspwaid () - get next secure password file audit ID .. getspwent(3C)
getspwent () - get next secure password file entry ... getspwent(3C)
getspwnam () - get secure password file entry matching login name name () getspwent(3C)
getspwuid () - get secure password file entry matching uid () .. getspwent(3C)
get status of specified transactionAGetTransStatus(3X)
getsuhopt () - parse suboptions from a string ... getsubopt(3C)
get system or monitor audio channel gain ... AGetSystemChanneIGain(3X)
get system resource consumption limit .. getrlimit(2)

Index: Volume 2 851

Index
Volume 2

Description Entry Name(Section)
get the locale of a program .. setlocale(3C)
get the name of a slave pty ... ptsname(3C)
gettimeofday() - get system clock date and time .. gettimeofday(2)
get timer - get value of a per-process timer .. gettimer(3C)
get transaction channel gain .. AGetChannelGain(3X)
gettransient () - get a program number in the transient range .. rpc(3C)
get tty device operating parameters .. tcattribute(3C)
get types of input sources existing on current hardware .. AInputSources(3X)
get types of output destinations existing on current hardware AOutputDestinations(3X)
getuid () - get real user IDgetuid(2)
getusershell () - get legal usel' shells .. getusershell(3C)
getutent () - get pointer to next entry in a utmp () file .. getut(3C)
getutid() - get pointer to entry matching id() in a utmp () file .. getut(3C)
getutline () - get pointer to entry matching line () in a utmp () file .. getut(3C)
get value of a per-process timer .. gettimer(3C)
get vendor name of audio server for this connection .. AServerVendor(3X)
get vendor release number of audio server for this connection ... AVendorRelease(3X)
getwc () , fgetwc () - get wide character from a stream file ... getwc(3C)
getwchar () - get wide character from standard input file ... getwc(3C)
getw () - get data word (integer) from a stream file ... getc(3S)
getws (), fgetws () - get a wide string from a standard input stream .. getws(3C)
gfrtO .0, gcrtO.o - C and Pascal execution startup routines .. crtO(3)
glob () : - file name generation function ... glob(3C)
globfree () : - file name generation function .. glob (3C)
gmtime () - convert date and time to Greenwich Mean Time .. ctime(3C)
goto, save/restore stack environment for non-local ... setjmp(3C)
GPIO: return status lines of GPIO card ... gpio~et_status(3I)
GPIO: set control lines on GPIO card .. gpio_set_ctl{3I)
gpio_get_status () - return status lines ofGPIO card .. gpio~et_status(3I)
gpio_set_ctl () - set control lines on GPIO card .. gpio_set_ctl{3I)
group access list: get group access list ... getgroups(2)
group access list: initialize group access listinitgroups(3C)
group access list: set group access list .. setgroups(2)
group and/or owner, change in access control list (ACL) ... chownacl(3C)
group and owner of a file, change .. chown(2)
group entry, network, get or set ... getnetgrent(3C)
group () file, get entry from ... getgrent(3C)
group ID: get real or effective group ID ... getuid(2)
group ID: set group ID .. setuid(2)
group ID: set real, effective, and/or saved group or user IDs .. setresuid(2)
group ID, create session and set process .. setsid(2)
group ID, foreground process, get ... tcgetpgrp(3C)
group ID, foreground process, set ... tcsetpgrp(3C)
group ID for job control, set process .. .setpgid(2)
group of processes, send a signal to a process or a ... kill(2)
gsignal () - raise a software signal .. ssignal(3C)
gt ty (), st ty () - control terminal device (Version 6 compatibility only) ... stty(2)
halt or start auditing system .. .audctl(2)
handler, establish a cleanup .. pfm_$cleanup(3)
handler for this connection, add audio event ... AtInitialize(3X)
handler, release a cleanup .. pfm_$rls_cleanup(3)
handler, reset a cleanup ... pfm_$reset_cleanup(3)
hardware capabilities, check for presence of .. .is_hw..,present(3C)
hashing encryption, generate ... crypt(3C)
hash search tables, manage .. hsearch(3C)
hasmntopt () - search mount option field in file system description file .. getmntent(3X)
havedisk () - get performance data from remote kernel ... rstat(3N)
hcreate () - allocate space for new hash search table .t ... hsearch(3C)

852 Index: Volume 2

Index
Volume 2

Description Entry Name(Sectlon)
hdestroy () - destroy existing hash search table .. hsearch(3C)
herror () - resolver routines .. .resolver(3N}
hierarchy, directory, recursively descend a ... ftw(3C)
hold signal upon receipt s igset(2V)
host and network byte order, convert values between ... byteorder(3N}
host cpu, set name of ... sethostname (2)
host CPU, set NetIPC node name ofipcsetnodename(2)
host, current, get name of .. , gethostname(2)
host, obtain NetIPC node name of current .. .ipcgetnodename(2)
HP3000-mode packed decimal library .. hppac(3X)
HP·IB: allow interface to enable SRQ line on HP·IB ... hpib_rqst_srvce(31)
HP·IB: change active controllers on Hp·IB .. hpib-Pass_ctl(31)
HP-IB: conduct a serial poll on HP·IB .. hpib_spoll(31)
HP·IB: conduct parallel poll on HP·IB ... hpib-Ppoll(31)
HP-IB: control Attention line on HP·IB ... , , hpib_atn_ctl(31)
HP-IB: control EOI mode for HP-IB file .. hpib_eoCctl(31)
HP·IB: control response to parallel poll on HP·IB .. hpib_card-PpolCresp(31)
HP·IB: control the Remote Enable line on HP·IB ... hpib_ren_ctl(31)
HP·IB: define interface parallel poll response ... hpib-Ppoll_resp...;.ctl(31)
HP·IB: enable/disable odd parity on ATN commands ... hpib-parity_ctl(31)
HP·IB: perform 110 with an HP·IB channel from buffers ... hpib_io(31)
HP·IB: return status ofHP.IB interface .. hpib_bus_status(31)
HP·IB: send command bytes over HP·IB ... hpib_send_cmnd(31)
HP·IB: set Hp·IB bus address for an interface .. hpib_address_ctl(31)
HP·IB: stop activity on specified HP·IB ... hpib_abort(31)
HP·IB: wait until a particular parallel poll value occurs ... hpib_wait_on-Ppoll(31)
HP-IB: wait until the requested status condition becomes true ... hpib_status_wait(31)
hpib_abort () - stop activity on specified HP·IB ... hpib_abort(31)
hpib_address_ctl () - set HP·IB bus address for an interface .. hpib_address_ctl(31)
hpib_atn_ctl () - control Attention line on HP·IB .. hpib_atn_ctl(31)
HP-IB bus address for an interface, set .. hpib_address_ctl(31)
hpib_bus_status () - return status of HP·IB interface .. hpib_bus_status(31)
hpib_card"""ppoll_resp () - control response to parallel poll on HP-IB hpib_card-ppoICresp(31)
hpib_eoi_ctl () - control EO! mode for HP-IB file .. hpib_eoCctl(31)
HP-IB/GPIO/parallel channel, perform low-overhead 110 on an ... io_burst(31)
hpib_io () - perform 110 with an HP·IB channel from buffers ... hpib_io(31)
hpib......parity_ctl () - enable/disable odd parity on ATN commands hpib-Parity_ctl(31)
hpib"""pass_ctl () - change active controllers on HP-IB ... hpib-pass_ctl(31)
hpib"""ppoll () - conduct parallel poll on HP·IB .. hpib-ppoll(31)
hpib"""ppoll_resp_ctl () - define interface parallel poll response hpib-Ppoll_resp_ctl(31)
hpib_ren_ctl () - control the Remote Enable line on HP·IB .. hpib_ren_ctl(31)
hpib_rqst_srvce () - allow interface to enable SRQ line on HP·IB hpib_rqst_srvce(31)
hpib_send_cmnd () - send command bytes over HP-IB .. hpib_send_cmnd(31)
hpib_spoll () - conduct a serial poll on HP-IB ... hpib_spoll(31)
hpib_status_wait () - wait until the requested status condition becomes true hpib_status_wait(31)
hpib_wait_on-ppoll () - wait until a particular parallel poll value occurs hpib_ wait_on-ppoll(31)
HPPAC*: HP 3000-mode packed decimal library .. hppac(3X)
hsearch () - hash table search routine ... hsearch(3C)
htonl () - convert values between host and network byte order ... byteorder(3N}
htons () - convert values between host and network byte order ... byteorder(3N}
hyperbolic trigonometric functions, inverse .. asinh(3M)
hyperbolic trigonometric functions .. : sinh(3M)
hypotenuse of a right triangle .. hypot(3M)
hypot () - Euclidean distance function ... hypot(3M)
ICONV, ICONV1, ICONV2 - code set conversion routines .. .iconv(3C)
iconvsize (), iconvopen (), iconvclose (), iconvlock () - code set conversion routines iconv(3C)
ID, create session and set process group .. setsid(2)
ID, foreground process group, get ... tcgetpgrp(3C)

Index: Volume 2 853

Index
Volume 2

Description Entry Name(Section)
ID, foreground process group, set ... tcsetpgrp(3C)
ID for job control, set process group .. .setpgid(2)
ID, get real or effective user or group .. getuid(2)
ID of local machine, get diskless cnode .. cnodeid(2)
ID; set user or groupsetuid(2)
ID to file path, map device .. .devnm(3)
idtolang () - convert NLS language ID number to language name ... langinfo(3C)
ignorable signals mask, set current ... sigsetmask(2)
ignore signal ... sigset(2V)
ignore signals ... sigblock(2)
in-core state with its state on disk, synchronize a file's ... fsync(2)
increase data segment space allocation ... brk(2)
index () - BSD portability string routine .. string(3C)
inet_addr () - Internet address manipulation routines .. inet(3N)
inet_lnaof () - Internet address manipulation routines .. inet(3N)
inet_makeaddr () - Internet address manipulation routines .. inet(3N)
inet_netof () - Internet address manipulation routines .. inet(3N)
inet_network () - Internet address manipulation routines .. inet(3N)
inet_ntoa () - Internet address manipulation routines .. inet(3N)
INFINITY, test for ... isinf(3M)
information about users on remote machines, return .. rnusers(3N)
information, access exported file system ... exportent(3N)
information, NLS, about native languages .. .langinfo(3C)
information, NLS, about native languages .. nl_langinfo(3C)
inhibit asynchronous faults; allow time-sliced task switching ... pfm_$inhibit_faults(3)
inhibit asynchronous faults ... pfm_$inhibit(3)
initgroups () - initialize group access list .. .initgroups(3C)
initialize group access list .. jnitgroups(3C)
initialize, manipulate, and test signal sets .. sigsetops(3C)
initialize NetIPC option buffer .. jnitopt(3N)
initialize semaphore in mapped file or anonymous memory region .. msem_init(2)
initialize the NLS environment of a program .. nl_init (3C)
initialize the process fault manager package ... pfm_$init(3)
initiate an audio widget play operation .. AuInvokePlay(3X)
initiate an audio widget record operation .. AuInvokeRecord(3X)
initiate connection on a socket .. connect(2)
initiate transaction and return transaction ID and SStream structure APlaySStream(3X)
initiate transaction; return transaction ID and SStreams structure ARecordSStream(3X)
initopt () - initialize NetIPC option buffer .. initopt(3N)
innetgr () - get network group entry .. getnetgrent(3C)
input conversion, formatted read from stream file or character string .. scanf(3S)
input conversion, formatted, to a varargs argument ... vscanf(3S)
input/output, buffered, standard stream file package .. stdio(3S)
input/output to a stream file, buffered binary .. fread(3S)
input stream, push character back into ... ungetc(3S)
input stream, push wide character back into .. ungetwc(3C)
input string from a standard input stream .. gets(3S)
input wide string from a standard input stream .. getws(3C)
integer absolute value, returnabs(3C)
integer, convert string to long .. .strtol(3C)
integer, convert wide character string to long ... wcstol(3C)
integer data in a machine-independent fashion, access long .. sputl(3X)
integer division and remainder .. div(3C)
integer, long, convert to string, .. ltostr(3C)
integers, convert between 3-byte integers and long integers .. .l3tol(3C)
integer to base-64 ASCII string, convert long ... a641(3C)
interface: define HP-IB interface parallel poll response ... hpib-Ppoll_resp_ctl(3I)
interface, control DMA allocation for anio_dma_ctl(3I)

854 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
interface, GPIO: return status lines of GPIO card .. gpio~et_status(31)
interface, GPIO: set control lines on GPIO card ... gpio_set_ctl(31)
interface, HP-IB: allow interface to enable SRQ line on HP-IB .. hpib_rqst_srvce(30
interface, HP-IB: change active controllers on HP-IB ... hpib-Pass_ctl(31)
interface, HP-IB: conduct a serial poll on HP-IB ... hpib_spoll(31)
interface, HP-IB: conduct parallel poll on HP-IB .. hpib-PPoll(31)
interface, HP-IB: control EO! mode for HP-IB file .. hpib_eoCctl(31)
interface, HP-IB: control response to parallel poll on HP-IB ... hpib_card-IJpolCresp(30
interface, HP-IB: control the HP-IB interface Remote Enable line .. hpib_ren_ctl(31)
interface, HP-IB: perform 110 with an HP-IB channel from buffers ... hpib_io(31)
interface, HP-IB: return status of HP-IB interface ... hpib_bus_status(31)
interface, HP-IB: send command bytes over HP-IB .. hpib_send_cmnd(31)
interface, HP-IB: stop activity on specified HP-IB ... hpib_abort(31)
interface, HP-IB: wait until a particular parallel poll value occurs hpib_wait_on-ppoll(31)
interface, HP-IB: wait until the requested status condition becomes true hpib_status_wait(30
interface, Network Information Service client ... ypclnt(3C)
interface parallel poll response, define ... hpib-Ppoll_resp_ctl(31)
interface, reset an 110 .. io_reset(31)
interface, set HP-IB bus address for an .. hpib_address_ctl(31)
interface, unlock or lock an 110 .. .io_lock(31)
interleaved paging/swapping, add a swap device for ... swapon(2)
Internet address manipulation routinesinet(3N)
interprocess channel, create an ... pipe(2)
interprocess communication package, standard .. stdipc(3C)
interrupt, atomically release blocked signals and wait for ... sigpause(2)
interrupt (fault) conditions, define for 110 device .. io_on_interrupt(31)
interrupts for the associated eid (), disable or enable 110 .. io_interrupt_ctl(31)
interval, suspend execution for .. .sleep(3C)
interval timer, set or get value of process ... getitimer(2)
introduction to subroutines and libraries .. intro(3)
introduction to system callsintro(2)
intro () - introduction to subroutines and librariesintro(3)
inverse hyperbolic trigonometric functions ... asinh(3M)
110: GPIO card, return status lines of .. gpio~et_status(31)
110: GPIO card, set control lines on ... gpio_set_ctl(31)
io_burst () - perform low-overhead 110 on an HP-IB/GPIO/parallel channel .. io_burst(31)
110, control character device special fileioctl(2)
ioctl () - control character device special file .. .ioctl(2)
110 data path width (in bits), set .. .io_ width_ctl(31)
110 device interrupt (fault) controlio_on_interrupt(31)
io_dma_ctl () - control DMA allocation for an interface ... io_dma_ct1(31)
io_eol_ctl () - set up 110 read termination character on special file .. io_eol_ctl(31)
io_get_ternLreason () - determine how last read terminated io~et_term_reason(31)
110 interface, reset an .. io_reset(31)
110 interface, unlock or lock an .. .io_lock(31)
io_interrupt_ctl () - enable/disable interrupts for the associated eid () io_interrupt_ctl(31)
110 interrupts for the associated eid (), disable or enable .. io_interrupt_ctl(31)
io_lock (), io_unlock () -lock and unlock an 110 interface .. io_lock(31)
110 multiplexing, synchronous ... select(2)
110 on an HP-IB/GPIO/parallel channel, perform low-overhead ... io_burst(31)
io_on_interrupt () - device 110 interrupt (fault) control .. io_on_interrupt(31)
110 operations on a stream file, get or reposition pointer for ... fseek(3S)
110 operations, set time limit for .. .io_timeout_ctl(31)
110 pipe to or from a process, open or close ... popen(3S)
110 read, determine how last terminated .. io~et_term_reason(31)
110 read termination character on special file, set up .. .io_eol_ctl(31)
io_reset () _ reset an 110 interfaceio_reset(31)
io_speed_ctl () - inform system of required transfer speed .. io_speed_ctl(30

Index: Volume 2 855

Index
Volume 2

Description Entry Name(Section)
lOT fault, generate an .. abort(3C)
io_timeout_ctl () - establish a time limit for 110 operations .. io_timeout_ctl(31)
110 to a stream file, buffered binaryfread(3S)
io_unlock () - unlock an 110 interfaceio_lock(31)
io_width_ctl () - set width (in bits) of data path ".""" """"",,,,,,,,,,,,,,,,,,,,,,,jo_width_ctl(31)
110 with an HP-IB channel from buffers, perform .. hpib_io(31)
ipcconnect() 0 - request connection to another process .. ipcconnect(2)
ipccontrol () 0 - perform special operations on NetIPC sockets ... ipccontrol(2)
ipccreate () () - create a call socket ... ipccreate(2)
ipcdest () 0 - create a destination descriptor .. ipcdest(2)
ipcerrmsg () - provide text describing NetIPC error number , , .. ipcerrmsg(3N)
ipcgetnodename () - obtain NetlPC node name of current host ... ipcgetnodename(2)
ipclookup () 0 - obtain a destination descriptor .. ipclookup(2)
ipcname () 0 - associate name with call socket or destination call socket ... ipcname(2)
ipcnamerase () () - delete name associated with a call socket or destination call socket ipcnamerase(2)
ipcrecvcn () () - receive connection request on a call socket .. .ipcrecvcn(2)
ipcrecv () 0 - establish or receive data on N etlPC virtual circuit connection ... ipcrecv(2)
ipcselect () () - determine status of call socket or VC socket ... ipcselect(2)
ipcsend () 0 - send data on a virtual circuit connection .. .ipcsend(2)
ipcsetnodename () - set NetlPC node name of host CPU .. ipcsetnodename(2)
ipcshutdown () () - release a descriptor ... ipcshutdown(2)
IP port, bind socket to a privileged .. bindresvport(3N)
is_680l0-present () - check for MC68010 system microprocessor .. is_hw...,present(3C)
is_6888l-present () - check for MC68881 math coprocessor .. is_hw...,present(3C)
is_98248A-present () - check for floating-point accelerator card .. is_hw...,present(3C)
is_98635A..present () - check for floating-point math card ... is_hw...,present(3C)
isalnum () - character is alphanumeric .. ctype(3C)
isalpha () - character is alpha .. ctype(3C)
isascii () - character is 7-bit ASCII code .. ctype(3C)
ISASCII - character is 7-bit ASCII code ... wctype(3C)
isat ty () - find name of a terminal .. ttyname(3C)
iscntrl () - character is a control character .. ctype(3C)
isdigit () - character is a digit ... ctype(3C)
isgraph () - character is a visible character ... ctype(3C)
isinff (), isinf - test for INFINITY .. jsinf(3M)
isinf (), isinff - test for INFINITY .. jsinf(3M)
islower () - character is lowercase .. ctype(3C)
isnanf (), isnan() -test for NaN .. isnan(3M)
isnan (), isnanf () - test for NaN .. isnan(3M)
isprint () - character is a printing character .. ctype(3C)
ispunct () - character is punctuation ... ctype(3C)
isspace () - character is whitespace ... ctype(3C)
issue a shell command ... system(3S)
isupper () - character is uppercase ... ctype(3C)
iswalnum- character is alphanumeric ... wctype(3C)
iswalpha - character is alpha ... wctype(3C)
iswcntrl- character is a control character ... wctype(3C)
iswdigit - character is a digit .. wctype(3C)
iswgraph - character is a visible character .. wctype(3C)
iswlower - character is lowercase .. wctype(3C)
iswprint - character is a printing character ... wctype(3C)
iswpunct - character is punctuation .. wctype(3C)
iswspace - character is whitespace .. wctype(3C)
iswupper - character is uppercase .. wctype(3C)
iswxdigit - character is a hexadecimal digit .. wctype(3C)
isxdigit () - character is a hexadecimal digit ... ctype(3C)
j 0 (), j 1 () , j n () , yO () , yl () , yn () _ Bessel functions ... bessel(3M)
j 1 () - Bessel function .. bessel(3M)

856 Index: Volume 2

Index
Volume 2

Description Entry Name(Sectlon)
j n () - Bessel function .. bessel(3M}
job control, set process group ID for .. .setpgid(2)
keep track of remotely mounted file systems .. mount(3N)
kernel, remote, get performance data from .. rstat(3N)
killpg () - 4.2 BSD-compatible kill () system call ... bsdproc(2)
kill () , raise () - send signal to process or group of processes .. kill(2)
kill () system call, 4.2 BSD-compatible ... bsdproc(2)
l3tol () - convert 3-byte integer to long integer .. .l3tol(3C)
l64a () - convert long integer to base-64 value ASCII string ... a641(3C)
labs () - return long integer absolute value .. abs(3C)
langinfo () - obtain NLS string form oflocallanguage variable ... langinfo(3C)
langtoid() - convert NLS language name to language ID number ... 1anginfo(3C)
languages, NLS information about native (local) .. .langinfo(3C)
languages, NLS information about native (local) .. nClanginfo(3C)
last I/O read, determine how terminatedio~et_term_reason(3I)
last locations of allocated regions in program .. end(3C)
ldecvt () , Lldecvt ()) - convert long double to stringldcvt(3C)
_ldecvt (), _ldfcvt (), _ldgcvt () - convert long double to string .. ldcvt(3C)
ldexp (), frexp () , modf () - split floating-point into mantissa and exponent .. frexp(3C)
ldfcvt (), Lldfcvt (» - convert long double to stringldcvt(3C)
ldgcvt () , Lldgcvt ()) - convert long double to stringldcvt(3C)
ldiv () -long integer division and remainder ... div(3C)
legal user shells, get .. .getusershell(3C)
length of string, find .. string(3C)
length of wide string, find ... wcstring(3C)
19amma () , gamma () , signgam () -log gamma function ... gamma(3M)
libraries and subroutines, introduction to ... intro(3)
library, packed decimal, HP3000-mode .. hppac(3X)
library routines for external data representation ... xdr(3C)
library routines for remote procedure calls .. .rpc(3C)
limit for I/O operations, set time .. .io_timeout_ctl(3I)
limit, get or set system resource consumption ... getrlimit(2)
linear table search with optional update ... lsearch(3C)
line connection, establish an out-bound terminal .. dial(3C)
line control functions, tty ... tccontrol(3C)
line on HP-IB, control the Remote Enable .. hpib_ren_ctl(3I)
lines of GPIO card, return status ... gpio~et_status(3I)
lines on GPIO card, set control ... gpio_set_ctl(3I)
line, SRQ, on HP-IB, allow interface to enable ... hpib_rqst_srvce(30
link () - link additional name to an existing filelink(2)
link, symbolic, read value ofreadlink(2)
link to a file, make a symbolic ... ,Symlink(2)
listen for connections on a socket ... listen(2)
listen () -listen for connections on a socketlisten(2)
list, get group accessgetgroups(2)
list, initialize group access ... initgroups(3C)
list, name, get entries from .. .nlist(3C)
list, print formatted output of a varargs argument .. vprintf(3S)
list, set group access ... setgroups(2)
load shared library .. shl_load(3X)
localeconv () - query numeric formatting conventions of current locale localeconv(3C)
locale, current, query numeric formatting conventions of .. localeconv(3C)
locale of a program, get or set the .. setlocale(3C)
local machine, get diskless cnode ID of .. cnodeid(2)
local (native) languages, NLS information about .. .langinfo(3C)
local (native) languages, NLS information about .. nl_langinfo(3C)
localtime () - convert date and time to local timezone .. ctime(3C)
location of character in memory, find ... memory(3C)

Index: Volume 2 857

Index
Volume 2

Description Entry Narne(Section)
locations beyond allocated program regions, first .. end(3C)
lock a semaphore .. msem_Iock(2)
10ekf () - provide semaphores and record locking on fileslockf(2)
locking on files, provide semaphores and record .. .1ockf(2)
lock or unlock an I/O interface ... jo_lock(SI)
lock process into memory after allocating data and stack space ... datalock(3C)
lock process, text, or data in memory ... plock(2)
10g10f (), 10gf (), 10g2f (), log {), 10g10 (), 10g2 () -logarithm functions ... exp(3M)
10g10 (), log () , 10g2 () , 10gf (), 10g10f () , 10g2 f () -logarithm functions ... exp(3M)
10g2 f (), 10gf (), 10g10f () , log (), 10g10 (), 10g2 () -logarithm functions ... exp(3M)
10g2 () , log () , 10g10 () , 10g£ (), 10g10 f () , 10g2 f () - logarithm functions ... exp(3M)
logarithm, exponential, power, square root, cube root functions .. exp(3M)
10gb (), sealb () - exponent manipulations ... ieee(3M)
10gf (), log10f () , 10g2 f () , log (), 10g10 (), 10g2 () -logarithm functions ... exp(3M)
log gamma function .. gamma(3M)
login name in utmp () , get pointer to .. getlogin(3C)
login name of the user, get character-string .. cuserid(3S)
login name of user, obtain ; .. 10gname(3C)
log () , 10gl.0 () , 10g2 () , 10gf (), 10g10f (), 10g2 f () -logarithm functions ... exp(3M)
10gname () - return login name of user10gname(3C)
log, system, control .. syslog(3C)
long double floating-point number to string, convertldcvt(3C)
long double-precision number, convert string to .. strtold(3C)
long integer data in a machine-independent fashion, access .. sputl(3X)
long integers and 3-byte integers, convert betweenl3tol(3C)
long integer to base-64 ASCII string, convert ... a641(3C)
long integer to string, convert .. ltostr(3C)
_longjmp () - restore stack environment after non-local goto ... setjmp(3C)
look up symbol in shared library .. .shl_Ioad(3X)
lowercase, translate characters to ... conv(3C)
lowercase, translate wide characters to ... wconv(3C)
low-overhead 110 on an HP-IB/GPlO/parallel channel, perform ... io_burst(3I)
1rand48 (), nrand48 () - generate long-integer pseudo-random numbers ... drand48(3C)
lseareh (), 1find () -linear search and update ... ; lsearch(3C)
lseek () - move read/write file pointer; seek ... lseek(2)
lstat () , (stat () , fstat (» - get file link status .. stat(2)
lsyne (), sync () - update super-block .. sync(2)
1toa (); convert long integer to ASCII decimal ... ltostr(3C)
1to13 () - convert long integer to 3-byte integer .. .13to1(3C)
1tostr (); convert long integer to string .. ltostr(3C)
machine, get diskless cnode ID of local .. cnodeid(2)
machines, return iIlformation about users on remote .. rnusers(3N)
machines, write to specified remote .. .rwall(3N)
madvise - advise system of process' expected paging behavior ... madvise(2)
main memory allocator .. malloc(3C)
main memory space allocation, control .. malloc(3C)
main memory space usage, display ... ,malIoc(3C)
make a directory file '" ... mkdir(2)
make a directory, or a special or ordinary file ... mknod(2)
make a FIFO special filemkfifo(3C)
make a symbolic link to a file .. .symlink(2)
make a unique (usually temporary) file name ... mktemp(3C)
mall info () - display memory space usage .. malIoc(3C)
ma110e () - allocate block of main memory .. malIoc(3C)
ma110e, free () , rea110e () , ea110e () ma110pt () ,

mallinfo () , memorymap () - main memory allocator .. malloc(3C)
ma110pt () - control memory space allocation ... malloc(3C)
manage a binary search tree ... tsearch(3C)

858 Index: Volume 2

Index
Volume 2

Description Entry Name(Sectlon)
manage hash search tables ... hsearch(3C)
management, program ... pgm_$intro(3)
management, signal (sigset (), sighold (), sigrelse () , sigignore (), sigpause (» sigset(2V)
managing signal exceptions .. pfm_$intro(3)
manipulate disk quotasquotactl(2)
manipulate, initialize, and test signal sets .. sigsetops(3C)
manipulation routines, Internet address ... inet(3N)
mantissa and exponent, split floating-point into ... frexp(3C)
map device ID to file pathdevnm(3)
map object into virtual memory ... ~ .. .mmap(2)
mapped file or anonymous memory region, initialize semaphore in ... msem_init(2)
mapped file or anonymous region, remove semaphore in ... msem_remove(2)
mapped file, synchronize a .. .msync(2)
mapped region, unmap a .. .munmap(2)
mapping access protections, modify memory .. mprotect(2)
map stream pointer to file descriptor .. .fileno(3S)
mask for file creation, set and get permissions .. umask(2)
mask, set current ignorable signals ... sigsetmask(2)
match filename patternsfnmatch(3C)
matching routines, regular expressionregcomp(3C)
match routines for regular expressions .. .regexp(3X)
math: Bessel functions .. bessel(3M)
math: complex absolute value function .. hypot(3M)
math: copysign, remainder, classification, exponent manipulations ... ieee(3M)
math: error function and complementary error function .. erf(3M)
math: Euclidean distance (hypotenuse) function ... hypot(3M)
math: exponential, logarithm, power, square root, cube root functions ... exp(3M)
math: floating-point classification functions ... fpclassify(3M)
math: floating-point mode control functions .. fpgetround(3M)
math: floor, ceiling, remainder, absolute value, round-to-nearest functions ... :ftoor(3M)
math: hyperbolic trigonometric functions ... sinh(3M)
math: inverse hyperbolic trigonometric functions .. asinh(3M)
math: log gamma functiongamma(3M)
math: math library error-handling function ... matherr(3M)
math: split floating-point into mantissa and exponent ... frexp(3C)
math: ~est for INFINITY ... isinf(3M)
math: test for NaN ... isnan(3M)
math: trigonometric functions (degrees) .. trigd(3M)
math: trigonometric functions ... trig(3M)
math coprocessor or accelerator, check for presence of .. is_hw-Present(3C)
matherr () - math library error-handling function ... matherr(3M)
math library error-handling function .. matherr(3M)
mblen () - multibyte characters and strings conversions ... multibyte(3C)
mbstowcs () - multibyte characters and strings conversions ... multibyte(3C)
mbtowc () - multibyte characters and strings conversions ... multibyte(3C)
mcrtO.o, crtO. 0 - C and Pascal execution startup routines .. crtO(3)
memchr () - find first occurrence of character in memory area .. memory(3C)
memcmp () - compare character with memory contents .. memory(3C)
memcpy () , memccpy () - copy characters from memory to another memory location memory(3C)
memmove () - move memory contents ... memory(3C)
memory allocator for main memory .. .malloc(3C)
memory control operations, sharedshmctl(2)
memory, lock process into after allocating data and stack space .. datalock(3C)
memory, lock process, text, or data in .. plock(2)
memorymap () - display contents of memory allocator .. malloc(3C)
memory, map object into virtualmmap(2)
memory mapping access protections, modify .. mprotect(2)
memory operations - copy, compare, test for contents, or set contents to value memory(3C)

Index: Volume 2 859

Index
Volume 2

Description Entry Narne(Section)
memory region, initialize semaphore in mapped file or anonymous ... msemJnit(2)
memory segment, get shared .. shmget(2)
memset () - set area in memory to contain a specified character .. memory(3C)
message catalog for reading, close or open NLS .. catopen(3C)
message catalog support, RTElMPE-style ... catread(3C)
message catalogue, get message from an NLS .. catgetmsg(3C)
message control operations ... mstctl(2)
message for a status code, return an error .. elTor_$c_text(3)
message from an NLS message catalogue, get .. catgetmsg(3C)
message from a socket, receive ! •• recv(2)
message, NLS program, get an .. catgets(3C)
message queue, get .. msgget(2)
message, send or receive message to or from message queue ... msgop(2)
message, send to a socket ... send(2)
messages, system error ... pelTor(3C)
mfrtO.o, frtO. 0 - FORTRAN execution startup routines .. crtO(3)
microprocessor, MC68010, check for presence ofis_hw...,present(3C)
minimum I/O data transfer rate, inform system of required .. io_speed_ctl(30
mkdir () - make a directory filemkdir(2)
mkfifo () - make a FIFO special file ... mk:fifo(3C)
mknod () - make a directory, or a special or ordinary file .. mknod(2)
mkrnod () - make a cnode-specific special file .. mknod(2)
mktemp () - make a unique (temporary) file name ... mktemp(3C)
mktime () - convert time into calendar time value .. ctime(3C)
mktimer _ allocate a per-process timer ... mktimer(3C)
mrnap - map object into virtual memory .. mmap(2)
mode, EOI, for HP-IB file, control .. hpib_eoCctl(3I)
mode (permissions) of file, change access ... chmod(2)
modf (), frexp () , ldexp () - split floating-point into mantissa and exponent .. frexp(3C)
modification and access times, set or update file .. utime(2)
modify, add, or delete access control list entry ... setaclentry(3C)
modify memory mapping access protections ... mprotect(2)
module, and error texts for a status code, return subsystem, .. error_$c-Jlet_text(3)
monitor audio channel gain, get system or .. AGetSystemChanneIGain(3X)
monitor audio channel gain, set system or ... ASetSystemChanneIGain(3X)
monitor 110 conditions on multiple file descriptors ... poll(2)
moni tor () - prepare execution profile .. monitor(3C)
mount () : keep track of remotely mounted file systems ... mount(3N)
mount a file system ... vfsmount(2)
mount a removable file system ... mount(2)
mounted file systems, keep track of remotely ... mount(3N)
mounted file system statistics, get ... ustat(2)
mount () - mount a removable file system ... mount (2)
move read/write file pointer; seek ... lseek(2)
MPE clock value, return the ... clock(3X)
MPE Native Language Support:

append language ID to valid MPE file name .. nlappend(3X)
check/convert time string to MPE internal format ... nlconvclock(3X)
compare character arrays (key!, key2) using MPE collation table nlkeycompare(3X)
compare strings; use MPE language-dependent collating sequence ... nlcollate(3X)
convert ASCII number to MPE language-specific formatted number nlfmtnum(3X)
convert date string to MPE packed date format ... nlconvcustdate(3X)
convert MPE native language formatted number to ASCII .. nlconvnum(3X)
convert string between phonetic and screen order using MPE table nlswitchbuf(3X)
extract substring in string using MPE character set table ... nlsubstr(3X)
format MPE date and time in localized format ... nlfmtdate(3X)
format MPE packed date using custom date ... nlfmtcustdate(3X)
format MPE packed date using localized format ... nlfmtcal(3X)

860 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
format MPE packed date using long calendar format .. '" nlfmtlongcal(3X)
format MPE time of day using localized format .. nlfmtclock(3X)
identify one- or multi-byte Asian character using MPE character table nljudge(3X)
move, scan, case-shift strings using MPE character set table ... nlscanmove(3X)
replace non-displayable string characters using MPE character set table nlrepchar(3X)
return current user, data, or system default language .. nlgetlang(3X)
return MPE calendar date ... '" .. calendar(3X)
return MPE langu.age-dependent information '" .. J1J.info(3X)
return number conversion/formatting information for MPE routines nlnumspec(3X)
return numeric date information in MPE format .. almanac(3X)
search for string in a string using MPE character set definition ... nlfindstr(3X)
translate ASCII strings to EBCDIC using MPE conversion table .. nltranslate(3X)

MPEIRTE-style message catalog support .. catread(3C)
mprotect - modify memory mapping access protections .. mprotect(2)
mrand48 () , j rand4 8 () - generate signed long-integer pseudo-random numbers drand48(3C)
msem_init - initialize semaphore in mapped file or anonymous memory region msem_init(2)
msem_lock -lock a semaphore ... msem_Iock(2)
msem_remove - remove semaphore in mapped file or anonymous region msemyemove(2)
msem_unlock - unlock a semaphore .. msem_unlock(2)
msgctl () - message control operations ... mstctl(2)
msgget () - get message queue .. .msgget(2)
msgrcv () - receive message from message queue .. msgop(2)
msgsnd () - send message to message queue .. msgop(2)
msync - synchronize a mapped file ... msync(2)
multibyte characters and strings conversions ... multibyte(3C)
multiplexing, synchronous I/O ... select(2)
munmap - unmap a mapped region ... munmap(2)
name:

change the name of a filerename(2)
create a name for a temporary file ... tmpnam(3S)
find name of a terminal .. ttyname(3C)
get character-string representation of user login name ... cuserid(3S)
get entries from name listnlist(3C)
get name and version of current HP-UX system .. uname(2)
get name from UID (obsolete) ... getpw(3C)
get name of current host ... gethostname(2)
get pointer to login name in utmp () .. getlogin(3C)
obtain user login name ... logname(3C)
set the name of host cpu .. sethostname(2)

name associated with a call socket or destination call socket, delete ... ipcnamerase(2)
name, associate with call socket or destination call socket ... ipcname(2)
name, get disk description by its ... getdiskbyname(3C)
name of a slave pty, get the .. ptsname(3C)
name of current host, obtain NetIPC node .. .ipcgetnodename (2)
name of current NIS domain, get or set .. getdomainname(2)
name of host CPU, set NetIPC nodeipcsetnodename(2)
names, manipulate context-dependent file path ... getcdf(3C)
NaN, test for ... isnan(3M)
native languages, NLS information about ... langinfo (3C)
native languages, NLS information about ... nl_Ianginfo(3C)
net_aton () - network station address string conversion routines ... net_aton(3C)
NetIPC error number, provide text describing .. .ipcerrmsg(3N)
NetIPC node name of current host, obtain .. .ipcgetnodename(2)
NetIPC node name of host CPU, setipcsetnodename(2)
NetIPC option buffer, add argument and data to ... addopt(3N)
NetIPC option buffer, initialize ... jnitopt(3N)
NetIPC option buffer, obtain option code and data from .. readopt(3N)
NetIPC option, return number of bytes needed by a ... optoverhead(3N)

Index: Volume 2 861

Index
Volume 2

Description Entry Name(Section)
NetIPC sockets, perform special operations on ... ipccontrol(2)
NetIPC virtual circuit connection, establish or receive data on .. ipcrecv(2)
net_ntoa () - network station address string conversion routines ... net_aton(3C)
network and host byte order, convert values between ... byteorder(3N)
network entry, get or set .. .getnetent(3N)
network group entry, get or set .. getnetgrent(3C)
network host entry, get or set ... gethostent(3N)
Network Information Service client interface .. ypclnt(3C)
Network Information Service, update user password in .. yppasswd(3N)
network, scatter data to check the .. .spray(3N)
network station address string conversion routines ... net_aton(3C)
new file, create ... creat (2)
new process, create a ... fork(2)
next key () - get next key in database (old single-data-base version) .. dbm(3X)
NFS daemons .. nfssvc(2)
nfssvc (): NFS daemon .. nfssvc(2)
nice () - change priority of a processnice(2)
NIS domain, get or set name of current .. getdomainname(2)
nlappend () - append language ID to valid MPE file name ... nlappend(3X)
nl_atof () - convert string to double-precision number ... strtod(3C)
nIcollate () - compare strings; use MPE language-dependent collating sequence nlcollate(3X)
nIconvclock () - check/convert time string to MPE internal format .. nlconvclock(3X)
nIconvcustdate () - convert date string to MPE packed date format nlconvcustdate(3X)
nIconvnum () - convert MPE native language formatted number to ASCII nlconvnum(3X)
nl_ctime (), nl_asctime () - (obsolete; backwards compatibility only) ... ctime(3C)
nIf indstr () - search for string in a string using MPE character set definition nlfindstr(3X)
nIfmtcaIendar () - format MPE packed date using localized format ... nlfmtcal(3X)
nIfmtcIock () - format MPE time of day using localized format ... nlfmtclock(3X)
nIfmtcustdate () - format MPE packed date using custom date ... nlfmtcustdate(3X)
nIfmtdate () - format MPE date and time in localized format .. nlfmtdate(3X)
nIfmtIongcal () - format MPE packed date using long calendar format nlfmtlongcal(3X)
nIfmtnum() - convert ASCII number to MPE language-specific formatted number nlfmtnum(3X)
nl_fprintf (), fprintf () - print formatted output to a file .. printf(3S)
nl_fscanf (), fscanf () - formatted read from named input stream file .. scanf(3S)
nl_gcvt (), gcvt () - convert floating-point number to string array element .. ecvt(3C)
nlgetIang () - return current user, data, or system default language ... nlgetlang(3X)
nlinfo () - return MPE language-dependent information ... nlinfo(3X)
nl_init (), l.anginit () (obsolete) - initialize the NLS environment of a program nl_init(3C)
nl_isaInwn () - NLS character class is alphanumeric .. nl_ctype(3C)
nl_isaIpha () - NLS character class is alpha ... nl_ctype(3C)
nl_iscntrl () - NLS character class is a control character ... nl_ctype(3C)
nl_isdigit () - NLS character class is a digit .. nl_ctype(3C)
nl_isgraph() - NLS character class is a visible character .. nl_ctype(3C)
nl_isIower () - NLS character class is lowercase ... nl_ctype(3C)
nl_isprint () - NLS character class is a printing character ... nl_ctype(3C)
nl_ispunct () - NLS character class is punctuation .. nl_ctype(3C)
nl_isspace () - NLS character class is whitespace .. nl_ctype(3C)
nlist () - get entries from name list ... nlist(3C)
nl_isupper () - NLS character class is uppercase .. nl_ctype(3C)
nl_isxdigit () - NLS character class is a hexadecimal digit .. nl_ctype(3C)
nIjudge () - identify one- or multi-byte Asian character using MPE character table nljudge(3X)
nlkeycompare () - compare character arrays using MPE collation table nlkeycompare(3X)
nl_Ianginfo () - obtain NLS string form oflocallariguage variable ... nl_Ianginfo(3C)
nInumspec () - return number conversion/formatting information for MPE routines nlnumspec(3X)
nl.....printf (), printf () - print formatted output to standard output .. printf(3S)
nIrepchar () - replace non-displayable string characters using MPE character set table nlrepchar(3X)
NLS: classify characters for use with NLS .. nl_ctype(3C)
NL8: get an NLS program message, .. catgets(3C)

862 Index: Volume 2

Index
Volume 2

Description Entry Name(Sectlon)
NLS: get message from an NLS message catalogue .. catgetmsg(3C)
NLS: initialize NLS environment of a program .. nCinit(3C)
NLS: NLS information about native languageslanginfo(3C)
NLS: NLS information about native languages ... '" nClanginfo(3C)
NLS: open or close message catalog for reading .. catopen(3C)
NLS: query numeric formatting conventions of current locale ... localeconv(3C)
NLS: translate characters for use with NLS (obsolete - useconv() (3C» .. nCconv(3C)
nl_scanf (), scanf () - formatted read from standard input stream file ... scanf(3S)
nlscanmove () - move, scan, case-shift strings using MPE character set table nlscanmove(3X)
NLS message catalog, open or close for reading .. '" catopen(3C)
nl_sprintf (), sprintf () - print formatted output to a string ... printf(3S)
nl_sscanf (), sscanf () - formatted read from character string .. scanf(3S)
nl_strcmp (), nl_strncmp () - compare strings using language-dependent collation string(3C)
nl_strtod () - convert string to double-precision number ... strtod(3C)
nlsubstr () - extract substring in string using MPE character set table .. nlsubstr(3X)
nlswitchbuf () - convert string between phonetic and screen order using MPE table nlswitchbuf(3X)
nl_toupper () , nl_tolower () - (obsolete) translate characters for use with NLS nl_conv(3C)
nltranslate () - translate ASCII strings to EBCDIC using MPE conversion table nltranslate(3X)
node from a binary search tree, delete a '" ... tsearch(3C)
node name of current host, obtain NetIPC ... '"ipcgetno dename (2)
node name of host CPU, set NetIPCipcsetnodename(2)
non-ASCII string collation .. .nl_string(3C)
non-local goto, save/restore stack environment for ... setjmp(3C)
ntohl () - convert values between host and network byte order ... byteorder(3N}
ntohs () - convert values between host and network byte order ... byteorder(3N}
NULL, set callback to .. AtRemoveCallback(3X)
number, convert string to double-precision .. strtod(3C)
number, convert string to floating-point .. cvtnum(3C)
number, convert string to long double-precision .. strtold(3C)
number, convert wide character string to double-precision .. wcstod(3C)
number, provide text describing NetIPC error .. .ipcerrmsg(3N}
numbers, generate uniformly distributed pseudo-random ... drand48(3C)
number to string, convert long double floating-pointldcvt(3C)
number to string or string array element, convert floating-point .. ecvt(3C)
numeric formatting conventions of current locale, query ... localeconv(3C)
object-code file, execute an .. .exec(2)
object into virtual memory, mapmmap(2)
obtain a destination descriptor .. ipclookup (2)
odd parity on ATN commands, enable/disable .. hpib-parity_ctl(3n
open, access, or close a directory ... directory(3C)
open a directory and associated directory stream for access ... directory(3C)
open connection to specified audio serverAOpenAudio(3X)
opendir () - open a directory and associated directory stream for access ... directory(3C)
open-file control ... fcntl(2)
open file descriptor, duplicate an ... dup(2)
open file descriptor to a specific slot, duplicate an .. dup2(2)
openlog () - initialize system log file .. syslog(3C)
open () - open file for reading or writing .. open(2)
open or close NLS message catalog for reading ... catopen(3C)
open or close pipe I/O to or from a process .. popen(3S)
open or re-open a stream file; convert file to stream ... fopen(3S)
operations, message control .. .mstctl(2)
operations on a stream file, get or reposition pointer for I/O ... , fseek(3S)
operations on NetIPC sockets, perform special .. .ipccontrol(2)
operations, semaphore control .. semctl(2)
operations, semaphore .. semop(2)
operations, set time limit for I/O .. .io_timeout_ctl(31)
operations, shared memory control .. '"shmctl(2)

Index: Volume 2 863

Index
Volume 2

Description Entry Name(Section)
optarg, optind, opterr - get option letter from argument vector ... getopt(3C)
optimization package, CRT screen handling and , ... curses(3X)
option buffer, add argument and data to NetIPC ... addopt(3N)
option buffer, initialize NetIPC ... initopt(3N)
option buffer, obtain option code and data from NetIPC .. readopt(3N)
option code and data from NetIPC option buffer, obtain .. readopt(3N)
option letter from argument vector, get ... getopt(3C)
options on sockets, get or set ... getsockopt(2)
options, parse suboptions from a string , .. getsubopt(3C)
optoverhead () - return number of bytes needed by a NetIPC option .. optoverhead(3N)
order of data, convert string ''''''"'''''''''''''"'''',,.,,strord(3C)
ordinary file, make a directory, or a special or .. mknod(2)
out-bound terminal line connection, establish an .. dial(3C)
output, formatted, print to standard output, file, or string .. printf(3S)
output, formatted with numbered arguments, print to a file or string .. printmsg(3C)
output/input, buffered, standard stream file package .. stdio(3S)
output of a varargs argument list, print formatted .. vprintf(3S)
owner and group of a file, change .. chown(2)
owner and/or group, change in access control list (ACL) ... chownacl(3C)
package, standard interprocess communication , .. stdipc(3C)
packed decimal library , HP 3000-mode ... hppac(3X)
paging behavior, advise system of process' expected .. madvise(2)
paging/swapping, add a swap device for interleaved ... swapon(2)
parallel channel, perform low-overhead I/O on a .. .io_burst(3I)
parallel poll on HP-IB bus, conduct ... hpib...,ppoll (31)
parallel poll on HP-IB, control response to .. hpib_card...,ppoll_resp(3n
parallel poll response, define interface ... hpib...,ppoll_resp_ctl(3I)
parallel poll value occurs, wait until a particular .. hpib_wait_on...,ppoll(3I)
parent process ID, get process, process group, or ... getpid(2)
parity on ATN commands, enable/disable odd .. hpib...,parity_ctl(3n
parse suboptions from a string .. , getsubopt(3C)
particular parallel poll value occurs, wait until a .. hpib_wait_on...,ppoll(3I)
Pascal and C execution startup routines .. crtO(3)
password encryption function .. , .. crypt(3C)
password file entry, secure, write ... putspwent(3C)
password file entry, write .. putpwent(3C)
password file, get entry from ... getpwent(3C)
password in Network Information Service, update user .. yppasswd(3N)
password, read from terminal while suppressing echo ... getpass(3C)
pathconf (), fpathconf () - get configurable pathname variables ... pathconf(2)
path, map device ID to file ... devnm(3)
path-name of current working directory, get ... getcwd(3C)
path names, manipulate context-dependent file ... getcdf(3C)
pathname variables, get configurable .. pathconf(2)
patterns, match filename .. inmatch(3C)
pause () - suspend process until signal .. pause(2)
pause the specified audio transaction .. .APauseAudio(3X)
pclose () - terminate pipe I/O to or from a process ... popen(3S)
peer, get address of connected ... getpeername(2)
pending signals, examine ... sigpending(2)
performance data from remote kernel, get ... , rstat(3N)
perform I/O with an HP-IB channel from buffers ... hpib_io(3I)
perform low-overhead I/O on an HP-IB/GPIO/parallel channelio_burst(3I)
perform setup required for stream data conversion ... ASetupConversion(3X)
perform special operations on NetIPC socketsipccontrol(2)
perform word expansions .. wordexp(3C)
permissions mask for file creation, set and get .. umask(2)
permissions (mode) of file, change access : .. chmod(2)

864 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
per-process timer, allocate a .. .mktimer(3C)
per-process timer, free a ... rmtimer(3C)
per-process timer, get value of a ... gettimer(3C)
per-process timer, relatively arm a .. reltimer(3C)
perror (), errno (), sys_errlist (), sys_nerr () - system error messages perror(3C)
pfm_$bad_rls_order .. .pfm_$intro(3)
pfm_$cleanup () - establish a cleanup handler .. pfm_$cleanup(3)
pfm_$cleanup_not_found ... pfm_$intro(3)
pfm_$cleanup_rec .. pfm_$intro(3)
pfm_$cleanup_set .. '" .. pfm_$intro(3)
pfm_$cleanup_set_signalled .. pfm_$intro(3)
pfm_$enable () - enable asynchronous faults ... pfm_$enable(3)
pfm_$enable_faults () - enable asynchronous faults .. pfm_$enable3aults(3)
pfm.h ... pfm_$intro (3)
pfm_$inhibit_faults () - inhibit asynchronous faults; allow time-sliced task switchi:r)Jfm_$inhihit3aults(3)
pfm_$inhibit () - inhibit asynchronous faults ... pfm_$inhibit(3)
pfm_inhibit () - pointer entry for conflicting online manual entries ... pfm_inhibit(3)
pfm_$init () - initialize the process fault manager package ... pfm_$init(3)
pfm_$init_signal_handlers ... pfm_$intro(3)
pfm_$intro - fault management ... pfm_$intro(3)
pfm_$invalid_cleanup_rec ... pfm_$intro(3)
pfm_$no_space ... pfm_$intro(3)
PFM package, initialize the ... pfm_$init(3)
pfm_$reset_cleanup () - reset a cleanup handler ... pfm_$reset_cleanup(3)
pfm_$rls_cleanup () - release a cleanup handler .. pfm_$rls_cleanup(3)
pfm_$signal () - signal the calling process .. pfm_$signal(3)
pgm_$exit () - exit a program ... pgm_$exit(3)
pgm_$intro - program management ... pgm_$intro(3)
pipe () - create an interprocess channel ... pipe(2)
pipe I/O to or from a process, open or close ... popen(3S)
play attributes to use when creating a new file, select ... AChoosePlayAttributes(3X)
play operation, initiate an audio widget ... AuInvokePlay (3X)
play specified sound bucket and return transaction ID ... APlaySBucket(3X)
play widget, audio .. AuPlayWidget(3X)
play widget, create an audio .. AuCreatePlay(3X)
plock () - lock process, text, or data in memory .. plock(2)
pmap_getmaps () - get list ofRPC program-to-port mappings ... rpc(3C)
pmap_getport () - get port number on which waits supporting service .. rpc(3C)
pmap_rmtcall () - instruct portmapper to make an RPC call ... rpc(3C)
pmap_set () - set [prognum,versnum,procnum]-to-port mapping ... rpc(3C)
pmap_unset () - destroy [prognum,versnum,procnum]-to-port mapping ... rpc(3C)
pointer array, sort a directoryscandir(3C)
pointer entry for conflicting online manual entries ... pfm_inhibit(3)
pointer, file, move read/write .. lseek(2)
pointer for binary search tree, get data ... tsearch(3C)
pointer for I/O operations on a stream file, get or reposition ... fseek(3S)
pointer, stream, map to file descriptor .. .fileno(3S)
pointer to login name in utmp () , get .. getlogin(3C)
poll- monitor I/O conditions on multiple file descriptors .. poll(2)
poll on HP-IB bus, conduct a serial .. hpib_spoll(31)
poll on HP-IB bus, conduct parallel ... hpib,.ppoll(3I)
poll on HP-IB, control response to parallel .. hpih_card,.ppoICresp(31)
poll, parallel, define interface response .. hpib,.ppolCresp_ctl(3I)
poll value occurs, wait until a particular parallel .. hpib_wait_on,.ppoll (31)
popen () - initiate pipe I/O to or from a process .. popen(3S)
portable pfm_$ interface ... pfm_$intro(3)
port, IP, bind socket to a privileged ... bindresvport(3N)
port number, RPC, get .. .getrpcport(3N)

Index: Volume 2 865

Index
Volume 2

Description Entry Name(Section)
power, logarithm, exponential, square root, cube root functions .. exp(3M)
powf () , pow () - power function .. exp(3M)
pow () , powf () - power function .. exp(3M)
preallocate fast disk storage ... prealloc(2)
prealloc () - preallocate fast disk storage .. ,.,,,.,,,,.,,,.,,,,.,,,,,,,,,,,,,,,,,,,,,, ... prenlloc(2)
prepare execution profile ... monitor(3C)
presence of hardware capabilities, check for ... ,is_hw...,present(3C)
preset contents of memory area to specified character .. memory(3C)
printf (), nl..,.printf () - print formatted output to standard output .. printf(3S)
print formatted output of a varargs argument list ... vprintf(3S)
print formatted output to standard output, file, or string,."",.".,.,.""."",.,,,,,,,,,,,,,,,,,,,printf(3S)
print formatted output with numbered arguments to a file or string .. printmsg(3C)
printmsg () - print formatted output with numbered arguments to standard output printmsg(3C)
priority, get process .. .getpriority(2)
priority of a process, change .. nice(2)
priority, set process ... setpriority(2)
privileged IP port, bind socket to a .. bindresvport(3N)
procedure calls, remote, library routines for .. .rpc(3C)
process 16-bit characters, tools to ... nl_tools_16(3C)
process accounting, enable or disableacct(2)
process and child process times, get .. times(2)
process, calling, set or clear auditing on .. setaudproc(2)
process, change priority of a .. nice(2)
process context for context-dependent file search, return ... getcontext(2)
process, create a new ... fork(2)
process environment, clear the ... clearenv(3C)
process' expected paging behavior, advise system of .. madvise(2)
process fault management .. pfm_$intro(3)
process fault manager package, initialize the .. pfm_$init(3)
process, get audit ID (aid (» for current ... getaudid(2)
process, get audit process flag for calling .. getaudproc(2)
process group ID, create session and set .. setsid(2)
process group ID, foreground, get ... tcgetpgrp{3C)
process group ID, foreground, set ... tcsetpgrp(3C)
process group ID for job control, set .. .setpgid(2)
process interval timer, set or get value of ... getitimer(2)
process, lock into memory after allocating data and stack space .. datalock(3C)
process, open or close pipe I/O to or from a ... popen{3S)
process or a group of processes, send a signal to a ... kill(2)
processor type, determine ... syscom(2)
process priority, get .. .getpriority(2)
process priority, set ... '" , .. .setpriority(2)
process, process group, or parent process ID, get ... getpid(2)
process, request connection to another .. .ipcconnect(2)
process's alarm clock, setalarm(2)
process, self-auditing, write audit record for ... audwrite(2)
process, set audit ID (aid (» for current .. setaudid (2)
process, signal the calling .. pfm_$signal(3)
process, spawn new (use fork () instead) .. vfork(2)
process, suspend or resume auditing on current .. audswitch(2)
process, suspend until signalpause (2)
process, terminate .. exit(2)
process, text, or data, lock in memory .. plock(2)
process to stop or terminate, wait for child or traced .. wait(2)
process trace .. ptrace(2)
profile, execution time ... profil(2)
profile of execution, prepare .. monitor(3C)
profil () - execution time profile ... profil(2)

866 Index: Volume 2

Index
Volume 2

Description Entry Narne(Section)
program assertion, verify .. assert(3X)
program, exit a ... pgm_$exit(3)
program, get or set the locale of a .. setlocale(3C)
program, initialize the NLS environment of a ... nl_init(3C)
program management .. pgm_$intro(3)
program message, get an NLS ... catgets(3C)
program regions, first locations beyond allocated .. end(3C)
program termination, register a function to be called at .. atexit(2)
protections, modify memory mapping access .. mprotect(2)
protocol entry, get or set ... getprotoent(3N)
provide semaphores and record locking on fileslockf(2)
provide text describing NetIPC error numberipcerrmsg(3N)
pseudo-random numbers, generate uniformly distributed ... drand48(3C)
ptrace () - process trace .. ptrace(2)
pt sname - get the name of a slave pty .. ptsname(3C)
pty, get the name of a slave .. ptsname(3C)
purge and/or flush the cache ... cachectl(3C)
push character back into input stream .. ungetc(3S)
push event onto head of audio event queue ... APutBackEvent(3X)
push wide character back into input stream ... ungetwc(3C)
put a string on a stream .. puts(3S)
putc (), fputc () - put character on a stream ... putc(3S)
put character or word on a stream ... putc(3S)
putchar () - put character on stream standard output .. putc(3S)
putenv () - change or add value to environment .. putenv(3C)
putpwent () _ write password file entry ... putpwent(3C)
putspwent () - write secure password file entry ... putspwent(3C)
puts () - write null-terminated string to stream stdout () ... puts(3S)

. -pututline () - update or create entry in a utmp () file ... getut(3C)
pututline () - update or create entry in a utmp () file .. getut(3C)
putwc (), fputwc () - put wide character on a stream .. putwc(3C)
putwchar () - put wide character on stream standard output ... putwc(3C)
put wide character on a stream .. putwc(3C)
put word or character on a stream ... putc(3S)
putw(} - put word (integer) on a stream .. putc(3S)
qsort () - quicker sort ... qsort(3C)
query numeric formatting conventions of current locale .. localeconv(3C)
quicker sort .. 1J.sort(3C)
quotactl () - manipulate disk quotas .. quotactl(2)
quotas, manipulate disk .. .quotactl(2)
raise a software signal .. '" ssignal(3C)
raise () - raise a software signalkill(2)
rand () - generate successive random numbers .. rand(3C)
random-number generator, simplerand(3C)
rate of I/O data transfer, inform system of required minimum .. io_speed_ctl(30
rcmd () : return a stream to a remote command .. rcmd(3N)
read audio data into sound bucket .. .ARecordAData(3X)
readdir () - get pointer to current entry in open directory .. directory(3C)
read from stream file or character string with formatted input conversion .. scanf(3S)
reading or writing, open file for .. open(2)
read, I/O, determine how last terminated .. .io~et_term_reason(3I)
readlink () - read value of a symbolic link ... readlink(2)
readopt () - obtain option code and data from NetIPC option buffer ... readopt(3N)
read or change real-time priority .. .rtprio(2)
read password from terminal while suppressing echo .. getpass(3C)
read {} - read contiguous data from a fileread(2)
read termination character on special file, set up I/O ... io_eoCctl{3I)
read value of a symbolic link .. .readlink(2)

Index: Volume 2 867

Index
Volume 2

Description Entry Name(Section)
readv () - read non-contiguous data from a file ... read(2)
read/write file pointer, move ... lseek(2)
real, effective, and/or saved user or group IDs, set ... setresuid(2)
realloc () _ change size of allocated memory block ... malloc(3C)
real or effective user or group ID; get .. getuid(2)
reboot () - boot the system .. reboot(2)
receipt of a signal, define what to do upon .. signal(2)
receive connection request on a call socket .. ipcrecvcn(2)
receive data on NetIPC virtual circuit connection .. ipcrecv(2)
receive message from a socket .. recv(2)
receive message from message queue ""."." ... msgop(2)
record, audit, write for self-auditing process ... audwrite(2)
record locking and semaphores on files, provide .. .lockf(2)
record operation, initiate an audio widget ... AuInvokeRecord(3X)
record widget, audio .. AuRecordWidget(3X)
record widget, create an audio .. AuCreateRecord(3X)
record widget, save sound bucket data created by ... AuSaveFile(3X)
recursively descend a directory hierarchy .. .ftw(3C)
recvfrom{) - receive message from a socket .. .recv(2)
recvmsg () - receive message from a socket .. .recv(2)
reev{) - receive message from a socketrecv(2)
regcmp () - compile a regular expression .. .regcmp(3X)
regcomp () - regular expression matching routines .. regcomp(3C)
regerror () - regular expression matching routines ... regcomp(3C)
regexec () - regular expression matching routines .. regcomp(3C)
regex () - execute a regular expression against a string .. regcmp(3X)
regfree () - regular expression matching routines .. regcomp(3C)
region, initialize semaphore in mapped file or anonymous memory ... msem_init(2)
region, remove semaphore in mapped file or anonymous ... msem_remove(2)
regions, first locations beyond allocated program .. end(3C)
region, unmap a mapped .. .munmap(2)
register a function to be called at program termination ... atexit(2)
registerrpe () - register procedure with RPC service package .. rpc(3C)
regular expression compile and match routines ... regexp(3X)
regular expression, compile or execute against a string ... regcmp(3X)
regular expression matching routines .. .regcomp(3C)
relatively arm a per-process timer ... reltimer(3C)
release a cleanup handler ... pfm_$rls_cleanup(3)
release a descriptor ... ipcshutdown(2)
release blocked signals and atomically wait for interrupt .. sigpause(2)
release server from exclusive use by this connection ... AUngrabServer(3X)
reltimer - relatively arm a per-process timer .. reltimer(3C)
remainder, ceiling, floor, absolute value, round-to-nearest functions .. :fIoor(3M)
remainder, integer division and ... div(3C)
remainder manipulations .. ieee(3M)
remexportent () - access exported file system information ... exportent(3N)
remote command, return a stream to .. .rcmd(3N)
remote command, return stream to arexec(3N)
Remote Enable line on HP-IB, control the ... hpib_ren_ctl(3I)
remote kernel, get performance data from ... rstat(3N)
remotely mounted file systems, keep track of ... mount(3N)
remote machines, return information about users on .. rnusers(3N)
remote machines, write to specified .. .rwall(3N)
remote node, get file handle for file on .. getth(2)
remote procedure calls, library routines forrpc(3C)
remove a directory file .. rmdir(2)
remove directory entry; delete file or directory name .. unlink(2)
remove () - remove a file ... remove(3C)

868 Index: Volume 2

Index
Volume 2

Description Entry Name(Sectlon)
remove semaphore in mapped file or anonymous region .. msem_remove(2)
rename () - change the name of a filerename(2)
re-open or open a stream file; convert file to stream ... fopen(3S)
replace default error handler with specified handler ... ASetErrorHandler(3X)
replace default I/O error handler with specified handler ... ASetIOErrorHandler(3X)
report CPU time used .. .clock(3C)
reposition or get pointer for I/O operations on a stream file .. fseek(3S)
representation, library routines for external data .. xdr(3C)
request connection to another processipcconnect(2)
requested status condition becomes true, wait until the ... hpib_status_wait(31)
request on a call socket, receive connection .. .ipcrecvcn(2)
request report of specified audio events .. ASelectInput(3X)
required minimum I/O data transfer rate, inform system of .. io_speed_ctl(31)
reset a cleanup handler .. pfm_$reset_cleanup(3)
reset an I/O interface ... io_reset(3I)
res_init () - resolver routines .. .resolver(3N)
res_mkquery () - resolver routinesresolver(3N)
resolver routines .. .resolver(3N)
resource consumption limit, get or set system ... getrlimit (2)
response, define interface parallel poll ... hpib-Ppoll_resp_ctl(3I)
response to parallel poll on HP-IB, control .. hpib_card-PpoICresp(31)
res_query () - resolver routines .. .resolver(3N)
res_search () - resolver routinesresolver(3N)
res_send () - resolver routines .. .resolver(3N)
restore or save file position indicator for a stream ... fgetpos(3S)
restore/save stack environment for non-local goto .. setjmp(3C)
restore signal action ... sigset(2V)
resume or suspend auditing on current process ... audswitch(2)
resume specified audio transactionAResumeAudio(3X)
resvport () : return a stream to a remote command ... rcmd(3N)
return a stream to a remote command .. .rcmd(3N)
return but do not dequeue first event in audio event queue ... APeekEvent(3X)
return character back into input stream ... ungetc(3S)
return gain matrix of basic play deviceASimplePlayer(3X)
return gain matrix of basic recording device .. ASimpleRecorder(3X)
return information about users on remote machines ... rnusers(3N)
return integer absolute value .. .abs(3C)
return list of sampling rates supported by audio controller .. ASamplingRates(3X)
return number of bytes needed by a NetIPC option .. optoverhead(3N)
return number of data formats supported by audio controller .. ANumDataFormats(3X)
return number of events on audio event queue .. AQLength(3X)
return number of sampling rates supported by audio controller ANumSamplingRates(3X)
return process context for context-dependent file search .. getcontext(2)
return status of HP-IB interface ... hpib_bus_status(3I)
return stream to a remote command .. .rexec(3N)
return the size in bytes of converted data .. ACalculateLength(3X)
return wide character back into input stream ... ungetwc(3C)
rewinddir () - reset position of named directory stream to beginning of directory directory(3C)
rewind legal user shells file .. getusershell(3C)
rewind () - set position of next I/O operation on stream file ... fseek(3S)
rewrite an existing filecreat(2)
rexec () : return stream to a remote command .. rexec(3N)
rights to a file, get a user's effective access ... getaccess(2)
right triangle, hypotenuse of a .. '" .. hypot(3M)
rindex () - BSD portability string routine .. string(3C)
rint(),fabsf(),fabs(),floor(),ceil(),

fmod (), fmodf () - round-to-nearest, absolute value, floor, ceiling, remainder functions floor(3M)
rmdir () - remove a directory file ... rmdir(2)

Index: Volume 2 869

Index
Volume 2

Description Entry Name(Section)
rmtimer - free a per-process timerrmtimer(3C)
rnusers (): return information about users on remote machines ... rnusers(3N)
root directory, change ... ,chroot(2)
rounding mode (floating-point), examine and set ... , fpgetround(3M)
'round-to-nearest, absolute value, floor, ceiling, remainder functions .. floor(3.lli)
routine for sorted tables, binary search .. bsearch(3C)
routines, CRT screen handling and optimization ... , curses(3X)
routines, emulate /etc/termcap access ... termcap(3X)
routines for external data representation, library .. xdr(3C)
routines, Internet address manipulation .. .inet(3N)
routines, network station address string conversion .. net_aton(3C)
routines, resolver ... resolver(3N)
rpc () : library routines for remote procedure calls .. rpc(3C)
rpc_createerr () - global variable reason why client creation failed ... rpc(3C)
RPC entry, get , .. .getrpcent(3C)
RPC port number, getgetrpcport(3N)
rstat () - get performance data from remote kernel ... rstat(3N)
RTEIMPE-style message catalog support .. catread(3C)
rtprio () - change or read real-time priorityrtprio(2)
ruserok () : return a stream to a remote command ... rcmd(3N)
rusers () : return information about users on remote machines .. rnusers(3N)
rwall (): write to specified remote machines ... rwall(3N)
saved, real, and/or effective user or group IDs, set ... setresuid(2)
save or restore file position indicator for a stream ... fgetpos(3S)
save/restore stack environment for non-local goto .. setjmp(3C)
save sound bucket data created by record widget .. AuSaveFile(3X)
sbrk () - increase data segment space allocation , .. brk(2)
scalb () ,10gb () - exponent manipulations .. .ieee(3M)
scan a directory ... scandir(3C)
scandir () - scan a directory ... scandir(3C)
scanf () , nl_scanf () - formatted read from standard input stream file ... scanf(3S)
scatter data to check the network ... spray(3N)
screen handling and optimization package, CRT ... curses(3X)
search, context-dependent file, return process context for .. getcontext(2)
search environment list for value of specified variable name .. getenv(3C)
search routine, binary, for sorted tables ... bsearch(3C)
search table for entry; optional update if missing ... lsearch(3C)
search tables, hash, manage , .. .hsearch(3C)
search tree, manage a binary .. tsearch(3C)
secof.2 () , sEcof.2 () - test for valid second byte in I6-bit character .. nCtools_16(3C)
secure password file entry, write , ... putspwent(3C)
secure password file, get entry from .. , getspwent(3C)
seekdir () - set position of next readdir () operation on named directory stream directory(3C)
seek; move read/write file pointer , .. lseek(2)
segment, get shared memory .. shmget(2)
select attributes to use when creating a new file ... AChooseAFileAttributes(3X)
select attributes to use when creating a new file .. AChoosePlayAttributes(3X)
select attributes to use with an existing file or a stream AChooseSourceAttributes(3X)
select () - synchronous I/O multiplexing .. select(2)
self-auditing process, write audit record for .. audwrite(2)
semaphore control operations ... semctl(2)
semaphore in mapped file or anonymous memory region, initialize ... msem_init(2)
semaphore in mapped file or anonymous region, remove ... msem_remove(2)
semaphore, lock a ... msem_Iock(2)
semaphore operations ... semop(2)
semaphores and record locking on files, provide .. .lockf(2)
semaphores, get set of .. semget(2)
semaphore, unlock a .. , , .. .msem_unlock(2)

870 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
semetl () - semaphore control operations .. semctl(2)
semget () - get set of semaphores .. .semget(2)
semop () - semaphore operations .. .semop(2)
send a signal to a process or a group of processes .. kill(2)
send command bytes over HP·IB .. hpib_send_cmnd(31}
send data on a virtual circuit connection ... ipcsend(2)
send message to a socket .. send(2)
send message to message queuemsgop(2)
sendmsg () - send message to a socket .. .send(2)
send() - send message to a socketsend(2)
sendto () - send message to a socket .. .send(2)
separate floating·point into mantissa and exponent ... frexp(3C)
serial poll on HP·IB bus, conduct a .. hpib_spoll(3I)
service entry, get or set .. .getservent(3N)
session, create and set process group ID .. setsid(2)
set: file creation (permissions) mask, set and get .. umask(2)
set: file size limits and break value, get or set .. ulimit(2)
set: process prioritysetpriority(2)
set: system clock date and time .. gettimeofday(2)
set access control list (ACL) information .. setacl(2)
setaclentry () - add, modify, or delete access control list entry .. setaclentry(3C)
setael (), fsetael () - set access control list (ACL) information ... setacl(2)
set and/or get signal stack context .. .sigstack(2)
se~ a process's alarm clockalarm(2)
setaudid () - set audit ID (aid ()) for current process ... setaudid(2)
set audit ID (aid(}) for current process ... setaudid(2)
setaudproc () - set or clear auditing on calling process .. setaudproc(2)
setbuf () , setvbuf () - assign buffering to a stream file ... setbuf(3S)
set callback to NULL ... AtRemoveCaIlback(3X)
seteeent () - rewind cluster configuration pointer to beginning of file .. getccent(3C)
seteloek - set value of system·wide clock ... setclock(3C)
set close-down mode on specified connection ... ASetCloseDownMode(3X)
set contents of memory area to specified character ... memory(3C)
set current ignorable signals mask .. sigsetmask(2)
setdomainname () - set name of current NIS domain ... getdomainname(2)
setevent () - set current events and system calls to be audited .. setevent(2)
setexportent () - access exported file system information ... exportent(3N)
set foreground process group ID ... tcsetpgrp(3C)
setfsent () - open and rewind file system descriptor file ... getfsent(3X)
setgid () - set group IDsetuid(2)
setgrent () - rewind pointer to first entry in group () file ... getgrent(3C)
set group access list .. setgroups(2)
setgroups () - set group access list ... setgroups(2)
sethostent () - get network host entry .. gethostent(3N)
sethostname () - set name of host cpu ... sethostname(2)
setitimer () - set value of process interval timer ... getitimer(2)
_setjmp () - save stack environment for non-local goto ... setjmp(3C)
setkey () - generate hashing encryption ... crypt(3C)
setloeale () - set the locale of a program .. setlocale(3C)
setlogmask () - set system log file priority mask ... syslog(3C)
setmntent () - open a file system description file .. getmntent(3X)
set name of current NIS domain .. getdomainname(2)
set name of host cpu .. sethostname(2)
setnetent () : get network entry .. getnetent(3N)
setnetgrent () - get network group entry ... getnetgrent(3C)
set N etIPC node name of host CPU .. .ipcsetnodename(2)
set network entry .. ,getnetent(3N)
set network group entry .. getnetgrent (3 C)

Index: Volume 2 871

Index
Volume 2

Description Entry Name(Section)
set network host entry .. .gethostent(3N)
set of semaphores, get .. semget(2)
set or clear auditing on calling process .. setaudproc(2)
set or get audit files ... audctl(2)
set Oi get tty baud rate .. cispeed(3C)
set or update file access and modification times ... utime(2)
setpgid () ,- set process group ID for job control ... setpgid(2)
setpgrp2 (): set process group ID ... setpgid(2)
setpgrp () - create session and set process group ID ... setsid(2)
set play volume or record gain of specified transaction ... ASetGain(3X)
satpriority - set process piiority .. setpriority(2)
set process group ID, create session and .. setsid(2)
set process group ID for job control ... setpgid(2)
set protocol entry .. .getprotoent(3N)
setprotoent () : -get protocol entry .. getprotoent(3N)
setpwent () - rewind pointer to beginning of password file ... getpwent(3C)
set real, effective, and/or saved user or group IDs .. setresuid(2)
setresgid () - set real, effective, and/or saved group IDs ... setresuid(2)
setresuid () - set real, effective, and/or saved user IDs ... setresuid(2)
setrlimit () - get system resource consumption limit .. getrlimit(2)
setservent () : get service entry .. getservent(3N)
setsid(), setpgrp () - create session and set process group ID .. setsid(2)
setsockopt () - set options on sockets .. getsockopt(2)
setspwent () - rewind pointer to beginning of secure password file .. getspwent(3C)
set system or monitor audio channel gain .. ASetSystemChanneIGain(3X)
set system play volume ... ASetSystemPlayGain(3X)
set system record gain ... ASetSystemRecordGain(3X)
set system resource consumption limit .. getrlimit(2)
set the locale of a program ... setlocale(3C)
set time and date ... stime(2)
set time limit for I/O operations .. io_timeout_ctl(3I)
settimeofday() - set system clock date and time ... gettimeofday(2)
set transaction channel gain .. ASetChanneIGain(3X)
set tty device operating parameters .. tcattribute(3C)
setuid () - set user ID ... setuid(2)
set up I/O read termination character on special file .. io_eoCctl{3I)
set user or group ID .. setuid(2)
setusershell () - rewind legal user shells file ... getusershell(3C)
setutent () - reset input stream to beginning ofutmp () file ... getut(3C)
set value of process interval timer ... getitimer(2)
set value of system-wide clock .. setclock(3C)
set width (in bits) of data path ... jo_width_ctl(3I)
sgetl () - retrieve a 4-byte long integer from memory .. sputI(3X)
shared library, load or unload .. shl_Ioad(3X)
shared library, look up symbol in ... shl_Ioad(3X)
shared memory and data segment, attach or detach .. shmop(2)
shared memory control operations .. shmctl(2)
shared memory segment, get .. shmget(2)
shell command, issue a .. system(3S)
shells, get legal user .. .getusershell(3C)
shl_findsym() -look up symbol in shared library .. shl_Ioad(3X)
shl_get () _ get information about shared library .. shl_Ioad(3X)
shl_load() -load shared library .. shl_Ioad(3X)
shl_unload () - unload shared library ... shl_Ioad(3X)
shmat () - attach shared memory to data segment .. shmop(2)
shmctl () - shared memory control operations .. shmctI(2)
shmdt () - detach shared memory from data segment ... shmop(2)
shmget () - get shared memory segment ... shmget(2)

872 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
shut down a socket .. shutdown(2)
shutdown () - shut down a socket ... shutdown(2)
sigaction () - examine and change signal action ... sigaction(2)
sigaddset () - initialize, manipulate, and test signal sets .. sigsetops(3C)
sigblock () - block signals ... sigblock(2)
sigdelset () - initialize, manipulate, and test signal sets .. sigsetops(3C)
sigemptyset () - initialize, manipulate, and test signal sets .. sigsetops(3C)
sigfillset () - initialize, manipulate, and test signal sets .. sigsetops(3C)
sighold () , sigrelse (), sigignore (), sigpause () , sigset () - signal management sigset(2V)
sigignore (), sigpause (), sigset (), sighold(), sigrelse () - signal management sigset(2V)
sigismember () - initialize, manipulate, and test signal sets .. sigsetops(3C)
signal () - 4.2 BSD-compatible signal () system call .. bsdproc(2)
signal action, examine and change .. sigaction(2)
signal, define what to do upon receipt of a .. signal(2)
signal exceptions, managing ... pfm_$intro(3)
signal facilities, software ... sigvector(2)
signal, hold upon receipt ... sigset(2V)
signal, ignore .. sigset(2V)
signal management (sigset (), sighold (), sigrelse (), sigignore () , sigpause (») sigset(2V)
signal, raise a software .. '" .. kill (2)
signal, raise a software .. ssignal(3C)
signal, restore action .. sigset(2V)
signals, blocked, examine and change .. sigprocmask(2)
signals, block .. sigblock(2)
signal, select method of handlingsigset(2V)
signal, send to a process or a group of processes .. kill (2)
signal sets, initialize, manipulate, and test ... sigsetops(3C)
signals, examine pending ... sigpending(2)
signals mask, set current ignorable ... sigsetmask(2)
signal () - specify what to do upon receipt of a signal .. signal(2)
signals, release blocked and atomically wait for interrupt ... sigpause(2)
signal stack context, set and/or get .. sigstack(2)
signal stack space, define, delete, or get amount of ... sigspace(2)
signal, suspend calling process until received .. sigset(2V)
signal, suspend process until .. pause(2)
signal () system call, 4.2 BSD-compatible ... bsdproc(2)
signal the calling process ... pfm_$signal(3)
signal, wait for a ... sigsuspend(2)
signgam () , gamma () , 19amma () -log gamma function ... gamma(3M)
sigpause () - atomically release blocked signals and wait for interrupt .. sigpause(2)
sigpause (), sigset () , sighold () , sigrelse (), sigignore () - signal management sigset(2V)
sigpending () - examine pending signals ... sigpending(2)
sigprocmask () - examine and change blocked signals .. sigprocmask(2)
sigrelse () , sigignore (), sigpause () , sigset (), sighold () - signal management sigset(2V)
sigsetmask () - set current ignorable signals mask .. sigsetmask(2)
sigset () , sighold () , sigrelse () , sigignore (), sigpause () - signal management sigset(2V)
sigspace () - define or delete additional signal stack space .. sigspace(2)
sigstack () - set and/or get signal stack context ... sigstack(2)
sigsuspend () - wait for a signal ... sigsuspend(2)
sigvec () - 4.2 BSD-compatible sigvec () system call .. bsdproc(2)
sigvec () system call, 4.2 BSD-compatible ... bsdproc(2)
sigvector () - software signal facilities ... sigvector(2)
sindf () - trigonometric sine function (float, degrees) .. trigd(3M)
sind () - trigonometric sine function (degrees) .. trigd(3M)
sine trigonometric function (degrees) ... trigd(3M)
sine trigonometric function ... trig(3M)
sinf () - trigonometric sine function (float) ... trig(3M)
sinhf (), sinh () - hyperbolic sine functions .. sinh(3M)

Index: Volume 2 873

Index
Volume 2

Description Entry Name(Section)
sinh () , s inhf () - hyperbolic sine functions .. sinh(3M)
sin() - trigonometric sine function .. trig(3M)
sixteen-bit characters, tools to process ... nLtools_16(3C)
slave pty, get the name of a .. ptsname(3C)
sleep () - suspend execw..ltion fer interval ... sleep(3C)
slot in the utmp () file of the current user, find .. ttyslot(3C)
socket, accept connection on a .. .accept(2)
socket address, get .. .getsockname(2)
socket, bind address to a ... hind(2)
socket, bind to a privileged IP port .. bindresvport(3N)
socket () - create an endpoint for communication .. socket(2)
socket, initiate connection on a ... connect (2)
socket, listen for connections on a .. listen(2)
socket or destination call socket, associate name with call .. .ipcname(2)
socket or destination call socket, delete name associated with a call ... ipcnamerase(2)
socket or VC socket, determine status of call .. .ipcselect(2)
socketpair () - create a pair of connected sockets ... socketpair(2)
socket, receive connection request on a call ... ipcrecvcn(2)
socket, receive message from a ... recv(2)
sockets, create a pair of connectedsocketpair(2)
socket, send message to a ... send(2)
sockets, get or set options on ... getsockopt(2)
socket, shut down a ... shutdown(2)
sockets, perform special operations on NetIPC .. .ipccontrol(2)
software signal facilities .. .sigvector(2)
software signal, raise a ... kill(2)
software signal, raise a .. ssignal(3C)
sort a directory pointer array .. .scandir(3C)
sorted tables, binary search routine for .. bsearch(3C)
sort, quicker ... qsort(3C)
sound bucket data created by record widget, save ... AuSaveFile(3X)
space allocation, change data segment ... ; .. brk(2)
space for signal stack, define, delete, or get amount of .. ; sigspace(2)
space, stack and data, allocate then lock process into memory ... datalock(3C)
spawn new process (use fork () instead) ... vfork(2)
special file, control character device .. ioctl(2)
special file, FIFO, make amkfifo(3C)
special file, set up I/O read termination character on .. .io_eoLctl(3I)
special operations on NetIPC sockets, perform .. .ipccontrol(2)
special or ordinary file, make a directory, or a .. mknod(2)
specified file, get file attributes of .. AGetAFileAttributes(3X)
specified remote machines, write to .. .rwall(3N)
specify I/O read termination character on special file .. .io_eoLctl{3I)
specify what to do upon receipt of a signal .. signal(2)
speed, inform system of required minimum I/O transfer .. io_speed_ctl(30
split floating-point into mantissa and exponent .. frexp(3C)
spray: scatter data to check the network ... spray(3N)
sprintf () , nl_sprintf () - print formatted output to a string ... printf(3S)
sprintmsg () - print formatted output with numbered arguments to a string printmsg(3C)
sputl () - place a 4-byte long integer in memory ... sputl(3X)
sqrt (), cbrt (), sqrtf (), cbrtf () _ square root, cube root functions ... exp(3M)
sqrtf (), sqrt (), cbrt (), cbrtf () - square root, cube root functions ... exp(3M)
square root, power, logarithm, exponential, cube root functions .. exp(3M)
srand48 (), seed48 (), lcong48 () - initialize pseudo-random number generator drand48(3C)
srand () - reset random-number generator to random starting point .. rand(3C)
SRQ line on HP-IB, allow interface to enable ... hpib_rqst_srvce(30
sscanf (), nl_sscanf () - formatted read from character string .. scanf(3S)
ssignal () - raise a software signal and perform an action .. ssignal(3C)

874 Index: Volume 2

Index
Volume 2

Description Entry Name(Section)
stack and data space, allocate then lock process into memory .. datalock(3C)
stack context, signal, set and/or get ... sigstack(2)
stack environment, save/restore for non-local goto ... setjmp(3C)
stack space for signals, define, delete, or get amount of .. sigspace(2)
standard buffered input/output stream file package .. stdio(3S)
standard input stream, input string from a ... gets(3S)
standard input stream, input wide string from a ... getws(3C)
standard interprocess communication package .. .stdipc(3C)
start or halt auditing system .. audctl(2)
state with its state on disk, synchronize a file's in-core ... fsync(2)
statfsdev (), fstatfsdev () - get file system statistics ... statfsdev(3C)
statfs (), fstatfs () - get file system statistics .. statfs(2)
station address string conversion routines, network .. net_aton(3C)
statistics, get file system ... statfs(2)
statistics, get file system ... statfsdev(3C)
statistics, get mounted file system ... ustat(2)
stat (), lstat (), fstat () - get file status .. stat(2)
status code, return an error message for a .. error_$c_text(3)
status code, return subsystem, module, and error texts for a .. error_$c~et_text(3)
status condition becomes true, wait until the requested ... hpib_status_wait(30
status, get file ... stat(2)
status inquiries, stream .. .ferror(3S)
status lines of GPIO card, return ... gpio~et_status(3I)
status of call socket or VC socket, determine ... ipcselect(2)
status of HP-IB interface, return .. hpib_bus_status(3I)
std_$call ... pfm_$intro(3)
stdio () - standard buffered input/output stream file package .. stdio(3S)
step () - regular expression string comparison routine ... regexp(3X)
stime () - set time and date .. stime(2)
stop activity on specified HP-IB ... hpib_abort (31)
stop or terminate, wait for child or traced process to .. wait(2)
stop specified audio transaction .. AStopAudio(3X)
storage, preallocate fast disk .. prealloc(2)
store () - store data under a key (old single-data-base version) ... dbm (3X)
strcat (), strncat () - append string 2 to string 1 ... string(3C)
strchr () , strrchr () - get pointer to character in string ... string(3C)
strcmp16 (), strncmp16 () - non-ASCII 16-bit character string collation ... nCstring(3C)
strcmp8 (), strncmp8 () - non-ASCII 8-bit character string collation .. nCstring(3C)
strcmp (), strncmp () - compare two strings .. string(3C)
strcoll () - process string of text tokens ... string(3C)
strcpy (), strncpy () - copy string 2 to string 1 .. string(3C)
strcspn(), strspn() _ find length of matching substrings .. string(3C)
stream, close a .. fclose(3S)
stream file, assign buffering to a .. setbuf(3S)
stream file, buffered binary input/output to a .. fread(3S)
stream file, get character or data word from a ... getc(3S)
stream file, get or reposition pointer for I/O operations on' a ... fseek(3S)
stream file, get wide character from a ... getwc(3C)
stream file, open or re-open; convert file to stream ... fopen(3S)
stream file or character string, read from with formatted input conversion ... scanf(3S)
stream file package, standard buffered input/output ... stdio(3S)
stream, flush buffer with or without closing ... fclose(3S)
stream, input string from a standard input ... gets(3S)
stream, input wide string from a standard input ... getws(3C)
stream pointer, map to file descriptorfileno(3S)
stream, push character back into input ... ungetc(3S)
stream, push wide character back into input .. ungetwc(3C)
stream, put wide character on a ... putwc(3C)

Index: Volume 2 875

Index
Volume 2

Description Entry Name(Section)
stream, put word or character on a .. putc(3S)
stream, return to a remote command .. .rcmd(3N)
stream, return to a remote commandrexec(3N)
stream, ~a~e o~ res~o:e file position indicator for a .. f~etpos~3~?
sLream status lnqulnesterror(3:s)
strerror () - system error messages .. perror(3C)
strftime () - convert date and time to string .. strftime(3C)
string collation, non-ASCIInl_string(3C)
string conversion routines, network station address .. net_aton(3C)
string, convert between long integer and base-64 ASCII ... a641(3C)
string, convert date and time to ... ciime(3C)
string, convert date and time to ... strftime(3C)
string, convert date and time to wide-character ... wcsftime(3C)
string, convert long double floating-point number toldcvt(3C)
string, convert long integer to .. ltostr(3C)
string, convert to access control list (ACL) structure .. strtoacl(3C)
string, convert to floating-point number .. cvtnum(3C)
string, convert to long double-precision number .. strtold(3C)
string data order, convert ... strord(3C)
string form, convert access control list (ACL) structure to .. acltostr(3C)
string from a standard input stream, input ... gets(3S)
string operations, character .. string(3C)
string operations, wide character .. , .. wcstring(3C)
string or string array element, convert floating-point number to .. ecvt(3C)
string, parse suboptions from a .. getsubopt(3C)
strings and characters conversions, multibyte .. multibyte(3C)
strings, concatenate two .. string(3C)
string to double-precision number, convert .. strtod(3C)
string to long integer, convert .. strtol(3C)
string-valued configuration values, get .. , confstr(3C)
strlen () - determine length of a string ... string(3C)
strord () - convert string data order ... strord(3C)
strpbrk () - find occurrence of character from string 2 in string 1 .. string(3C)
s trrs tr () - process string of text tokens ... string(3C)
strspn(), strcspn() - find length of matching substrings .. string(3C)
strstr () - process string of text tokens ... string(3C)
strtoacl () - convert exact string form to access control list (ACL) structure strtoacl(3C)
strtoaclpa.tt () - convert pattern string form to access control list (ACL) structure strtoacl(3C)
strtod () - convert string to double-precision number ... strtod(3C)
strtok () - process string of text tokens ... string(3C)
strtol () - convert string to long integer .. strtol(3C)
strtold () - convert string to long double-precision number .. strtold(3C)
strxfrm() - process string of text tokens ... string(3C)
stty(), gtty() - control terminal device (Version 6 compatibility only) ... stty(2)
suboptions, parse from a string .. getsubopt(3C)
subroutines and libraries, introduction to .. .intro(3)
subroutines, database (new multiple database version) .. ndbm(3X)
subroutines, database (old version - see also ndbm(3X» ... dbm(3X)
subsystem, module, and error texts for a status code, return .. error_$c-"et_text(3)
super-block, update ... sync(2)
support, RTEIMPE-style message catalog ... catread(3C)
suppress echo while reading password from terminal .. getpass(3C)
suspend execution for interval ... sleep(3C)
suspend or resume auditing on current process ... audswitch(2)
suspend process until signal ... pause(2)
svc_destroy () - destroy RPC service transport handle .. rpc(3C)
svcerr_auth () - refuse service because of authentication error .. rpc(3C)
svcerr_decode () - service cannot decode its parameters .. rpc(3C)

876 Index: Volume 2

Index
Volume 2

Description Entry Name(Sectlon)
svcerr_noproc () - service hasn't implemented the desired procedure .. rpc(3C)
svcerr_noprog () - program not registered with RPC package , ... rpc(3C)
svcerr-progvers () - version not registered with RPC package .. , rpc(3C)
svcerr_systemerr () - service detected system error .. rpc(3C)
svcerr_weakauth() - refuse service due to insufficient authentication ... rpc(3C)
svcfd_create () - create RPC service from existing socket .. rpc(3C)
svc_fdset () - global array with RPC service file descriptor mask ... rpc(3C)
svc_freeargs () - free data allocated by RPCIXDR .. rpc(3C)
svc_getargs () - decode arguments in RPC request .. rpc(3C)
svc_getcaller () - get procedure caller's network address ... rpc(3C)
svc_getreqset () - return when all associated sockets have been serviced ... rpc(3C)
svcraw_create () - create toy RPC service transport for testing .. rpc(3C)
svc_run () - wait for RPC requests to arrive and call appropriate service .. rpc(3C)
svc_sendreply () - send back results of remote procedure call ... rpc(3C)
svctcp_create () - create RPC service based on TCP transport ... rpc(3C)
svcudp_create () - create RPC service based on UDP transport .. rpc(3C)
svc_unregister () - remove mapping of [prognum, versnum] to dispatch routines rpc(3C)
swab () - swap bytes .. swab(3C)
swap bytes ... swab(3C)
swap device for interleaved paging/swapping, add a ... swapon(2)
swapon () - add a swap device for interleaved paging/swapping .. swapon(2)
swapping, file system .. '" swapon(2)
swapping/paging, add a swap device for interleaved ... swapon(2)
symbolic link, read value of .. readlink(2)
symbolic link to a file, make a ,symlink(2)
symbol, look up in shared library '" .. .shl_Ioad(3X)
symlink () - make symbolic link to a file ... symlink(2)
synchronize a file's in-core state with its state on disk .. fsync(2)
synchronize a mapped filemsync(2)
synchronous I/O multiplexing .. select(2)
sync (), lsync () - update super-block .. sync (2)
sysconf - get configurable system variables .. sysconf(2)
sys_errlist - system error messages .. perror(3C)
sys log () - write message onto system log file ... '" syslog(3C)
sys_nerr - system error messages ... perror(3C)
system, boot ... reboot(2)
system calls and events currently being audited, get .. getevent(2)
system calls and events to be audited .. , .. setevent(2)
system calls, BSD-4.2-compatible kill (), sigvec (), and signal () .. bsdproc(2)
system-calls error indicator ... errno(2)
system calls, introduction to .. intro(2)
system clock date and time, get or set .. gettimeofday(2)
system error messages .. perror(3C)
system() - issue a shell command .. .system(3S)
system log, control , .. syslog(3C)
system of process' expected paging behavior, advise .. madvise(2)
system or monitor audio channel gain, get .. AGetSystemChanneIGain(3X)
system or monitor audio channel gain, set ... ASetSystemChanneIGain(3X)
system resource consumption limit, get or set ... getrlimit(2)
system variables, get configurable .. sysconf(2)
system-wide clock, get current value of .. getclock(3C)
system-wide clock, set value ofsetclock(3C)
table, eliminate duplicate entries in a .. lsearch(3C)
table, linear search for entry; optional update if missing ... lsearch(3C)
tables, binary search routine for sorted .. bsearch(3C)
tables, hash search, manage ... hsearch(3C)
tandf () - trigonometric tangent function (float, degrees) .. trigd(3M)
tand () - trigonometric tangent function (degrees) ... trigd(3M)

Index: Volume 2 877

Index
Volume 2

Description Entry Name(Section)
tanf () - trigonometric tangent function (float) ... trig(3M)
tangent trigonometric function (degrees) ... trigd(3M)
tangent trigonometric function ... trig(3M)
tanhf (), tanh () - hyperbolic tangent functions ... sinh(3M)
tanh () - inverse hyperbolic tangent function ... " ""., asinh(3M)
tanh () , tanhf () - hyperbolic tangent functions ... sinh(3M)
tan () - trigonometric tangent function .. trig(3M)
tedrain (): tty line control function ... , .. tccontrol(3C)
tef low () : tty line control function .. tccontrol(3C)
tef lush (): tty line control function .. tccontrol(3C)
tcgetattr (): get tty device operating parameters """"""""." .. tcattribute(3C)
tegetpgrp () : get foreground process group ID ... tcgetpgrp(3C)
tesendhreak () : tty line control function ... tccontrol(3C)
tesetattr (): set tty device operating parameters .. tcattribute(3C)
tesetpgrp () : get foreground process group ID ... tcsetpgrp(3C)
tdelete () - delete a node from a binary search tree ... tsearch(3C)
telldir () - get current location of named directory stream .. directory(3C)
tempnam() - create a name for a temporary file ... tmpnam(3S)
temporary file, create a name for ... ,. tmpnam (3S)
temporary file, create a ... tmpfile(3S)
temporary (unique) file name, make a .. mktemp(3C)
termeap () access routines, emulate /ete/ ... termcap(3X)
terminal block-mode library interface .. blmode(3C)
terminal, find name of .. ttyname(3C)
terminal, generate file name of controlling ... ctermid(3S)
terminal I/O, block-mode library interface for .. blmode(3C)
terminal line connection, establish an out-bound .. dial(3C)
terminal, read password from while suppressing echo ... getpass(3C)
terminate a per-process timer .. .rmtimer(3C)
terminated, determine how last I/O readio~et_term_reason(3I)
terminate, wait for child or traced process to stop or .. wait(2)
termination character on special file, set up I/O read .. .io_eoCctl(3I)
termination, register a function to be called at program .. atexit(2)
test contents of memory areamemory(3C)
test for INFINITY .. isinf(3M)
test for NaN .. isnan(3M)
test, initialize, and manipulate signal sets .. sigsetops(3C)
text database operations, error .. error_$intro(3)
text, data, or process, lock in memory .. plock(2)
text describing NetIPC error number, provide ... ipcerrmsg(3N)
texts for a status code, return subsystem, module, and error .. error_$c~et_text(3)
t find () - get data pointer for binary search tree ... tsearch(3C)
tgetent () - get compiled terminfo data base entry into buffer ... termcap(3X)
tget flag () - get availability of compiled boolean terminal capability ... termcap(3X)
tgetnum () - get numeric value of compiled terminal capability .. termcap(3X)
tgetstr () - get string value of compiled terminal capability .. termcap(3X)
tgoto () - get compiled terminal cursor addressing string ... termcap(3X)
three-byte integers and long integers, convert between .. .l3tol(3C)
time and date, convert to string ... ctime(3C)
time and date, convert to string ... strftime(3C)
time and date, convert to wide-character string ... wcsftime(3C)
time and date, get more precisely (Version 7 compatibility only) ... ftime(2)
time and date, get or set system clock .. gettimeofday(2)
time and date, set '" ... stime(2)
time, convert user format date and .. getdate(3C)
time, get ... time(2)
time () - get timetime(2)
time limit for I/O operations, set .. .io_timeout_ctl(3I)

878 Index: Volume 2

Index
Volume 2

Description Entry Name(Sectlon)
timeout limit for I/O operations, setio_timeout_ctl(3I)
time profile, execution ... profil(2)
timer, allocate a per-process .. .mktimer(3C)
timer, free a per-process ... rmtimer(3C)
timer, get value of a per-process ... gettimer(3C)
timer, relatively arm a per-process reItimer(3C)
timer, set or get value of process interval ... getitimer(2)
times, file access and modification, set or update __ ,.",,.,,.,,,.,.,,,,-',,,,,,,, ... utime(2)
times () - get process and child process times ... times(2)
times, get process and child process ... , .. times(2)
time used, report CPUclock(3C)
timezone () - difference between UCT and local timezone ... ctime(3C)
tmpf ile () - create a temporary file ... , tmpfile(3S)
tmpnam() - create a name for a temporary file ... tmpnam(3S)
toascii () - translate characters to 7-bit ASCII ... conv(3C)
tolower (), _tolower{) - translate characters to lowercase ... conv(3C)
toolkit, add callback procedure for audio ... AtAddCallback(3X)
tools to process 16-bit characters .. nCtools_16(3C)
toupper () , _toupper () , - translate characters to uppercase ... conv(3C)
towlower () - translate wide characters to lowercase .. , wconv(3C)
towupper () - translate wide characters to uppercase .. , wconv(3C)
tputs () - decode terminal string padding information .. termcap(3X)
traced process to stop or terminate, wait for child or .. wait(2)
trace, process ... ptrace(2)
transaction channel gain, get ... AGetChanneIGain(3X)
transaction channel gain, set ... ASetChanneIGain(3X)
transfer speed, inform system ofrequired minimum 110 .. : ...•................. io_speed_ctl(31)
translate character code to another code set .. .iconv(3C)
translate characters for use with NLS (obsolete - useconv(3C») .. nCconv(3C)
translate characters to uppercase, lowercase, or 7-bit ASCII ... conv(3C)
translate wide characters to uppercase or lowercase .. wconv(3C)
traverse a binary search tree .. tsearch(3C)
traverse (walk) a file tree ... fiw(3C)
tree, manage a binary search .. , tsearch(3C)
tree, walk a file , ... , ftw(3C)
triangle, right, hypotenuse of a .. hypot(3M)
trigonometric functions (degrees) ... trigd(3M)
trigonometric functions, hyperbolic .. .sinh(3M)
trigonometric functions, inverse hyperbolic .. asinh(3M)
trigonometric functions .. , ... trig(3M)
true, wait until the requested status condition becomes ... hpib_status_ wait (3 I)
truncate an existing file to zero for rewriting ... creat(2)
truncate (), ftruncate () - truncate a file to a specified length ... truncate(2)
tsearch () - build and access a binary search tree ... tsearch(3C)
tty baud rate, set or get ... cfspeed(3C)
tty device operating parameters, get or set ... tcattribute(3C)
tty line control functions .. tccontrol(3C)
ttyname (), isatty () - find name of a terminal .. ttyname(3C)
t tyslot () _ find the slot in the utmp () file of the current user ... ttyslot(3C)
twalk () - traverse a binary search tree ... tsearch(3C)
type, classify characters according to '" .. ctype(3C)
type, classify characters according to ... wctype(3C)
type ofNLS characters, classifY .. .nl_ctype(3C)
tzname () - name of local timezone .. ctime(3C)
tzset () - initialize timezone (), daylight (), and tzname () using TZ variable ctime(3C)
UID, get name from (obsolete) .. .getpw(3C)
ulimit () - get or set file size limits and break value .. ulimit(2)
ultoa (); convert unsigned long integer to ASCII decimal .. .ltostr(3C)

Index: Volume 2 879

Index
Volume 2

Description Entry Name(Section)
ultostr (); convert unsigned long integer to stringltostr(3C)
umask () - set and get file creation (permissions) mask ... umask(2)
umount () - unmount a file system '" ... umount(2)
uname () - get name and version of current HP-UX system ... uname(2)
underflow mode (floating-point), examine and set " '" ... fpgetround(3M)
undial (), dial () - establish an out-bound terminal line connection '" '" dial(3C)
ungetc () - push character back into input stream .. ungetc(3S)
ungetwc () - push wide character back into input stream .. ungetwc(3C)
unique (usually temporary) file name, make a .. mktemp(3C)
unlink - remove directory entry; delete file ... unlink(2)
unload shared library .. .sh!_load(3X)
unlock a semaphore '" .. '"msem_unlock(2)
unlock or lock an I/O interface ... io_lock(3I)
unmap a mapped regionmunmap(2)
unmount a file system .. '" .. umount(2)
unsigned long integer to string, convert ... ltostr(3C)
update a file's header ... AUpdateDataLength(3X)
update or set file access and modification times ... utime(2)
update super-block .. sync(2)
update table if entry missing after search ... lsearch(3C)
update user password in Network Information Service ... yppasswd(3N)
uppercase, translate characters to .. conv(3C)
uppercase, translate wide characters to .. wconv(3C)
user, current, find the slot in the utmp () file of the ... ttyslot(3C)
user format date and time, convert .. '" ... getdate(3C)
user ID, get real or effective '" .. ,getuid(2)
user ID, set .. setuid(2)
user login name, get character-string representation of ... cuserid(3S)
user login name, obtain .. logname(3C)
user or group IDs, set real, effective, and/or saved ... setresuid(2)
user password in Network Information Service, update .. yppasswd(3N)
user's effective access rights to a file, get a ... getaccess(2)
user shells, get legal .. .getusershell(3C)
users on remote machines, return information about .. rnusers(3N)
ustat () - get mounted file system statistics .. ustat (2)
utime () - set or update file access and modification times .. utime(2)
utmp () file of the current user, find the slot in the .. ttyslot(3C)
utmp () , get pointer to login name in .. getlogin(3C)
utmpname () - change name ofutmp () file being examined ... getut(3C)
utmp () or wtmp () file, access ... getut(3C)
value, change or add to environment .. putenv(3C)
value, get or set file size limits and break ... ulimit(2)
value occurs, wait until a particular parallel poll .. hpib_wait_on-Ppoll(3I)
value of a per-process timer, get ... gettimer(3C)
value of process interval timer, set or get ... getitimer(2)
value of system-wide clock, get current .. getclock(3C)
value of system-wide clock, setsetclock(3C)
value, return integer absoluteabs(3C)
values, convert between host and network byte order ... byteorder(3N)
values, get string-valued configuration .. confstr(3C)
varargs argument, formatted input conversion to a .. vscanf(3S)
varargs argument list, print formatted output of a .. vprintf(3S)
variable, environment, search environment list for value of ... getenv(3C)
variables, configurable pathname, get ... pathconf(2)
variables, system, get configurable ... sysconf(2)
vc socket, determine status of ... jpcselect(2)
vector, get option letter from argument ... getopt(3C)
verify program assertionassert(3X)

880 Index: Volume 2

Index
Volume 2

Description Entry Narne(Sectlon)
version and name of current HP-UX system, get .. uname(2)
vfork () - spawn new process (use fork () instead) ... vfork(2)
vfprintf () - print formatted output of a varargs argument list ... vprintf(3S)
vfscanf () - formatted input conversion to a varargs argument ... vscanf(3S)
vfsmount () - mount a file system ... vfsmount(2)
virtual circuit connection, establish or receive data on NetIPC .. ipcrecv(2)
virtual circuit connection, send data on a .. ipcsend(2)
Virtual Circuit socket, determine status of .. ipcselect(2)
virtual memory, map object intommap(2)
vprintf (), vfprintf (), vsprintf () - print formatted output of a varargs argument list vprintf(3S)
vscanf () - formatted input conversion to a varargs argument ... vscanf(3S)
vsprintf () - print formatted output of a varargs argument list ... vprintf(3S)
vsscanf () - formatted input conversion to a varargs argument ... vscanf(3S)
wait for a signal .. sigsuspend(2)
wait for interrupt, atomically release blocked signals and ... sigpause(2)
wait until a particular parallel poll value occurs ... hpib_wait_on,..ppoll(3I)
wait until the requested status condition becomes true .. hpib_status_wait(3n
wait (), waitpid(), wait3 () - wait for child or traced process to stop or terminate wait(2)
walk a file tree .. ftw(3C)
WCHARADV() , - put character in memory and advance pointer ... nl_tools_16(3C)
WCHAR 0, - put 8- or I6-bit character in memory ... nl_tools_16(3C)
wcscat, wcsncat - append wide string 2 to wide string 1 ... wcstring(3C)
wcschr, wcsrchr - get pointer to wide character in wide string ... wcstring(3C)
wcscmp, wcsncmp - compare two wide strings ... wcstring(3C)
wcscoll- process wide string of text tokens ... wcstring(3C)
wcscpy, wcsncpy - copy wide string 2 to wide string 1 .. wcstring(3C)
wcscspn, wes spn - find length of matching wide substrings ... wcstring(3C)
wcsftime () - convert date and time to wide-character string .. wcsftime(3C)
wcslen - determine length of a wide string ... wcstring(3C)
wcspbrk - find occurrence of wide character from wide string 2 in wide string 1 wcstring(3C)
wcstod () - convert wide character string to double-precision number .. wcstod(3C)
wcstok - process wide string of text tokens ... wcstring(3C)
wcstol () - convert wide character string to long integer .. wcstol(3C)
wcstombs () - multibyte characters and strings conversions ... multibyte(3C)
wcswcs - process wide string of text tokens ... wcstring(3C)
wctomb () - multibyte characters and strings conversions ... multibyte(3C)
wide character back into input stream, push .. ungetwc(3C)
wide character from a stream file, get ... getwc(3C)
wide character, put on a stream ... putwc(3C)
wide characters, translate to uppercase or lowercase ... wconv(3C)
wide-character string, convert date and time to ... wcsftime(3C)
wide character string operations .. wcstring(3C)
wide character string to double-precision number, convert .. wcstod(3C)
wide character string to long integer, convert ... wcstol(3C)
wide string from a standard input stream, input ... getws(3C)
wide strings, concatenate two .. wcstring(3C)
widget, audio play .. AuPlayWidget(3X)
widget, audio record .. AuRecordWidget(3X)
widget, create an audio play .. AuCreatePlay(3X)
widget, create an audio record .. AuCreateRecord(3X)
widget play operation, initiate an audio ... AuInvokePlay(3X)
widget record operation, initiate an audio ... AuInvokeRecord(3X)
widget, save sound bucket data created by record ... AuSaveFile(3X)
width (in bits) of data path, set .. io_ width_ctl(3I)
word expansions, perform ... wordex:p(3C)
wordexp - perform word expansions .. wordex:p(3C)
wordfree - perform word expansions .. wordex:p(3C)
word from a stream file, get character or data ... getc(3S)

Index: Volume 2 881

Index
Volume 2

Description Entry Name(Section)

word or character, put on a stream .. putc(3S)
working directory, changechdir(2)
working directory, get path-name of current ... getcwd(3C)
write a header for an audio file .. AWriteAHeader(3X)
write a null-terminated string on a stream .. '" puts(3S)
write a null-terminated wide string on a stream ... fputws(3C)
write audit record for self-auditing process ... audwrite(2)
write password file entry ... putpwent(3C)
write/read file pointer, move ... lseek(2)
write secure password file entry ... putspwent(3C)
write sound bucket data into file with data conversion ... ASaveSBucket(3X)
write to specified remote machinesrwall(3N)
writev () - write non-contiguous data to a file .. write(2)
write () - write contiguous data to a file .. write(2)
writing or reading, open file for .. open(2)
wtmp () or utmp () file, access ... getut(3C)
xdr () : library routines for external data representation .. xdr(3C)
xdr_accepted_reply () - generate RPc-style replies without using RPC package rpc(3C)
xdr_array () - translate arrays to/from external representation ... xdr(3C)
xdr_authunix.....parms () - generate UNIX credentials without using RPC package rpc(3C)
xdr_bool () - translate Booleans to/from external representation ... xdr(3C)
xdr_bytes () - translate counted byte strings to/from external representation .. xdr(3C)
xdr_callhdr () - generate RPC-style headers without using RPC package ... rpc(3C)
xdr_callmsg () - generate RPC-style messages without using RPC package ... rpc(3C)
xdr_char () - translate characters to/from external representation .. xdr(3C}
xdr_destroy() - destroyXDR stream and free associated memory ... xdr(3C)
xdr_double () - translate double precision to/from external representation .. xdr(3C)
xdr_enum () - translate enumerations to/from external representation ... xdr(3C)
xdr_float () - translate floating point to/from external representation ... xdr(3C)
xdr_free () - free the memory allocated to create XDR data structures .. xdr(3C)
xdr_getpos () - return current position in XDR stream ... ; xdr(3C)
xdr_inline () - invoke the in-line routines associated with XDR stream .. xdr(3C)
xdr_int () - translate integers to/from external representation ... xdr(3C)
xdr_long () - translate long integers to/from external representation .. xdr(3C)
xdrmem_create () - initialize an XDR stream .. xdr(3C)
xdr_opaque_auth () - describe RPC messages externally ... rpc(3C)
xdr_opaque () - translate fixed-size opaque data to/from external representation xdr(3C)
xdr""'pmap () - describe parameters for portmap procedures externally .. rpc(3C)
xdr""'pmaplist () - describe a list of port mappings externally ... rpc(3C)
xdr""'pointer () - similar to xdr_reference () but different .. xdr(3C)
xdrrec_create () - initialize an XDR stream with record boundaries ... xdr(3C)
xdrrec_endofrecord () - mark XDR record stream with an end-of-record .. xdr(3C)
xdrrec_eof () - mark XDR record stream with an end-of-file ... xdr(3C)
xdrrec_skiprecord () - skip remaining record in XDR record stream ... xdr(3C)
xdr_reference () - chase pointers within structures ... xdr(3C)
xdr_rej ected_reply ()- generate RPC-style rejections without using RPC package rpc(3C)
xdr_replymsg () - generate Rpc-style replies without using RPC package ... rpc(3C)
xdr_setpos () - change current position in XDR stream ... xdr(3C)
xdr_short () - translate short integers to/from external representation ... xdr(3C)
xdrstdio_create () - initialize XDR stream as standard I/O FILE stream ... xdr(3C)
xdr_string () - translate null-terminated strings to/from external representation xdr(3C)
xdr_u_char () - translate unsigned characters to/from external representation .. xdr(3C)
xdr_u_int () - translate unsigned integers to/from external representation .. xdr(3C)
xdr_u_long () - translate unsigned long integers to/from external representation xdr(3C)
xdr_union () - translate descriminated unions to/from external representation .. xdr(3C)
xdr_u_short () - translate unsigned short integers to/from external representation xdr(3C)
xdr_ vector () - translate fixed-length arrays to/from external representation .. xdr(3C)
xdr_ void () - always return one (1)xdr(3C)

882 Index: Volume 2

Manual Part No.
B2355-90033

Flin- HEWLETT
~~ PACKARD

Copyright @1992
Hewlett-Packard Company
Printed in USA E0892

Manufacturing
Part No.
B2355-90033

B2355-90033

I I

