/A cackaro

HP-UX Reference
Volume 2

HP-UX Reference

Volume 2: Sections 2 and 3

HP 9000 Computers

HP-UX Release 9.0

HEWLETT
(ép] PACKARD
HP Part No. B2355-90033

Printed in USA August 1992

Third Edition
E0892.

Legal Notices
The information contained in this document is subject to change without notice.

Heuwlett-Packard Company makes no warranty of any kind with regard to this manual, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard Company shall not be liable for errors contained herein or direct, indirect, special,
incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.

Warranty: A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

© Copyright Hewlett-Packard Company 1983-1992

This documentation and software contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without written permission is prohibited
except as allowed under the copyright laws.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(e)(1,2).

© Copyright 1980, 1984, 1986 UNIX System Laboratories, Inc.
© Copyright 1986-1992 Sun Microsystems, Inc.
© Copyright 1979, 1980, 1983, 1985-1990 The Regents of the University of California

This software and documentation is based in part on the Fourth Berkeley Software Distribution
under license from the Regents of the University of California.

© Copyright 1985, 1986, 1988 Massachusetts Institute of Technology

© Copyright 1986 Digital Equipment Corp.

© Copyright 1990 Motorola, Inc.

© Copyright 1990, 1991, 1992 Cornell University

© Copyright 1988 Carnegie Mellon

© Copyright 1982 Walter F. Tichy

UNIX is a trademark of UNIX System Labs Inc. in the U.S. and other countries.
NFS is a trademark of Sun Microsystems, Inc.

Printing History

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. However, minor changes may be made at reprint without changing
the printing date. The manual part number changes when extensive changes are made.

To ensure that you receive new editions of this manual when changes occur, you may subscribe to
the appropriate product support service, available through your HP sales representative.

August 1992. Third Edition. This edition ig an npdate to the Second Edition and is vali
HP-UX Release 9.0 on all HP 9000 systems. Replaces Second Edition, HP part number B2
90004.

June 1991. Second Edition. Update to the First Edition for HP-UX Release 8.05 on Series 700
systems. Also valid for HP-UX Release 8.0 on Series 300/400 and Series 800 systems. Replaces
First Edition, HP part number B1864-90000.

January 1991. First Edition. Replaces manual part number 09000-90013. Valid for HP-UX
Release 8.0 on Series 300/400, 700, and Series 800 systems. The Networking Reference was
merged into this manual at Release 8.0.

w!l.

55-

New Features
This edition contains several new features.

Typography has been changed to conform to style used in other HP manuals as well as
industry standards (conversion complete execpt for parts of Volume 3). Command names,
argument names, and such appear on the printed page in exactly the same form as when they
are typed in commands or applications, eliminating much confusion regarding capitalization of
letters, which items are literals or otherwise, etc.

Progressive bleed tabs in each section are positioned vertically on the page edge according to
the first letter in the name of the manual entry for easier access.

As part of an on-going effort to improve the quality and usability of this manual, several
entries have been expanded and rewritten for better clarity and many examples have been
added or expanded in many entries. Many changes are a direct result of comments, requests,
and suggestions from users outside of HP.

Manual is expanded considerably to conver new functionality from Open Software Foundation
and several other sources as well as newer versions of NFS Services and other software
contained in previous releases.

Do You Have Comments or Suggestions?
Comments and suggestions from users about this manual are always welcome because they
are an important part of our on-going process of improving the HP-UX Reference.

Internal HP users send electronic mail to:
hpuxref@fc.hp.com

Other users, please use the reply card provided in the manual or send a note or letter by
ordinary mail to:

HP-UX Reference Comments, MS 11
Hewlett-Packard Company

3404 East Harmony Road

Fort Collins, CO 80525-9988, U.S.A.

Notes

iv

Table of Contents
for
Volume 2

Table of Contents

Volume 2

Section 2: System Calls

Entry Name(Section): name Description
INBPO(2): cooicrevieieierrereereerrsrersteste s sesae s esaaeseasesaesbanbarsbese sersebe sanesaesnesnaerbersseresraeresanentas introduction to system calls
BCCEPL(2): ACCODL () evviiicceieeiriirreeeestrterraeeesessseseessessessssssesasssssssessesnsssssssssassesnressans accept connection on a socket
access(2): access()determine accessibility of a file
acct(2): acct() ... eteteresereeseneneeeri€Dable or disable process accounting
Alarmi(2): ALATM() wcovvececreecereerere e rees i sstsssas e st ssase s et sas e s st erussastsesas .set a process’s alarm clock
atexit(Z): atexit () ... enes register a function to be called at program termination
audetl(2): audetl()start or halt auditing system; set or get audit files
audswitch(2): audswitch()suspend or resume auditing on current process
ARAWEIte(2): AUAWLLEE () .ocvevecrrrinririenrenieieseessesesssisssssssersssssosesesses write audit record for self-auditing process
DINA(2): DIDA () oottt tr e eenseeneerssre sesessesesssnsnasesassasessesesasseaseessescmssnencsnaed bind address to a socket
Brk(2): DR (), BBIR () ceveereeerierecrieereereteerressessestesesssersessseseessersessesssessessenes change data segment space allocation
bsdproc(2): killpg(), getpgrp(), setpgrp(), sigvec(),

BIGNAL () .ioiiriirenreenererene et oo e sesserseareressevensens ...4.2 BSD-compatible process control facilities
ChAIr(2): CRAIT () .ccecirereceiierrirerrereerenrrereessrecrestssessessensessssessessesessessersssessessssessessensenssied change working directory
chmod(2): chmod (), ECAMOA () .cccvreerieverirtieriineesressessessesessessesrsessestessssssessesassessesseenes change access mode of file
chown(2): chowWn (), ECROWI{) ..ccveverrrrenrerreereanssnsesresessseesssessosssssnssasessssssasons change owner and group of a file
chroot(2): chroot () ...eevenn. rerereeerrrensaresnnned change root directory
ClOSE(2): CLOBE() ocvviveerrervererrree e seisetesrsseestssetesast setesbesssesasasas st asassesesasasssseresserarersanesesenn close a file des'criptor
cnodeid(2): cnodeid() .“ resssersersreaterssneraenssassbenasns get the cnode ID of the local machine
cnodes(2): cnodes() get a list of active nodes in cluster
connect(2): connect() ... tereretreeesstaeresaresennrtesbesesraeesrnreresresernbreansnen initiate connection on a socket
creat(2): Creat () ..ccivernienerenenterernereresnesnnnnns JORN create a new file or rewrite an existing one
dup2(2): dup2()duplicate an open file descriptor to a specific slot
AUP(R): QUD () -eoeeeeereieeecereeet e sereseeatetsesa s sesesastssesemssesasasesenesanssssstsensseseesensesens duplicate an open file descriptor
eITNO(2): @TTIO () coveieirrcrcnireriinnnceneseesessssseseassessaesesessseseassasssnsssesassessrsssassesssessnsssees error indicator for system calls
exec(2): execl(), execv(), execle(), execve(), execlp (), @XeCVD () .ccirrrcrrnrineeceesisssoseoes execute a file

...see exec(2)
...see exec(2)

execle(): execute afile ...
execl(): execute afile

execlp(): execute a file rereesetesttesbeeetesteete reeeresebeaeteessbasrsaesntesaessaesraes ...See exec(2)
execve(): execute a filesee exec(2)
exXecV(): EXECULE @ Il .civviiiriiiiiertereerieriieirereriestieseesecserbreesrereesesaesasssenestesasseesesuansentore sesesressessesnesessas see exec(2)
execvp(): executeafile eeeeeeteeesenarateseesantaa osrrnre b eenseansnsteeneeseesersnnarannanen see exec(2)
exit(2): eXit (), _@XAt () scvrrrreieicrenieriresesteneressssnesasaesresasnessessesarsenes terminate process

fchdir(2): change WOrking dir€CtoTyccceeccrienerrnrsierserrennnnnssonsensiseesessssessesissesecsessesisessessassossesucnnd see chdir(2)
fchmod (): change access mode of filecccceevivererenen.see chmod(2)
fchown(): change owner and group of a ﬁle ...see chown(2)

FENEL(): FOREL () covrirereicrerrrenerereresesesenteseesesassssssesnasesesassesesassasssasessessssesens sessesessenssssens sesesensesessssosssesses file control
fgetacl (): get access control list (ACL) information trreerreesreserreerraentereasratassaananaes see getacl(2)
FOrK(2): £OTKR() cvvriirerennriteriiisrer e rississ s ssas s ss s b sssssas s s s sresas s b b s bbbt bR create a new process
fpathconf (): get conﬁgurable pathname vanables ...see pathconf(2)
fSCtL(2): £BCLL() ceverircrnirreninanieiestereeessesserseresseseas reeeaereeseeteeteraeaesteseesasteaerabesaesaeres file system control
fsetacl (): set access control list (ACL) informationcueeveviceerereninnenseneienissssesseesessscessssesnsesssnene see setacl(2)
f£statfs(): get file system statisticsccccounee . . see statfs(2)
fotat (): get file SEATUS ettt s see stat(2)
fsync(2): fsync()synchronize a file’s in-core state with its state on disk
ftime(2): £time () ..cccovvivernnrerennrreeseeseeresnessenes ..get date and time more precisely

ftruncate(): truncate a file to a specified lengthccccoereoeniereciiinnieninnccrt e see truncate(2)
getaccess(2): getaccess ()ieiivnnenroenens .get a user’s effective access rights to a file
getacl(2): getacl(), £EGELACL() .rvriineseirneereiieseessesesssessessessssssens get access control list (ACL) information
getaudid(2): getaudid()get the audit ID (aid()) for the current process
getaudproc(2): getaudproc() get audit process flag for calling process
getcontext(2): getcontext ()ccievrveneeenenns return the process context for context dependent file search
getdirentries(2): getdirentries() get entries from a directory in a filesystem-independent format
getdomainname(2): getdomainname (), setdomainname ()cccenvrnneune get/set name of current NIS domain
getegid(): get effective groupIDcccovvvrrrevereneererereeneenns rrerereensre st seneaseasn e s e srencaseenseaead see getuid(2)

geteuid(): get effective USEr GrOUD ID ...cvcccciiceeiecienieneereenenrereaseeesense s sssssessssessassessesessssesassessonsonsas see getuid(2)

Table of Contents: Volume 2 v

Table of Contents

Volume 2
Entry Name(Section): name Description
getevent(2): getevent ()oeevcrercereisraresesseseesseeenns get events and system calls currently being audited
FOtfh(2): GEEER() .ovvveeeceiireninieieeseeteteeeresaebessessesaesestesssssnsesessesbessenns return file handle for file on remote node.
getgid (): Zet Teal GTOUP ID .ccivieericrrrnrenrnranreseesessessesansassesesessessessisnsnesessesssssesassassasssssssssssssossossnses see getuid(2)
Letgroups(2): GELGTOUDS () iiiiiieierieiineniiiesestesesseesessesessassestsstssessassasesestesessassassssossossosees get group access list
gethostname(2): gethostname() .. eerresernrasersreeerareesenneseares rreeeesrreeteesraees get name of current host
getitimer(2): getitimer(), setitimer ()coeerevrrererireierreieeserservens .get/set value of interval timer
getpeername(2): getPeETNAME ()cccceveerrrerrerreeeerieerenarnserrsereessersesssessessassasssessans get address of connected peer
getpgrp2: get process group ID of specified Processcoccecicvirininiiiiiinniiniiiin e, see getpid(2)
getpgrp(): 4.2 BSD-compatible process control facilitiessee bsdproc(2)
getpgrP (): get Process GTOUP ID ...ccecciereiriinieireenerenssesioereesesesesssosssssnssneseesssssssssssssassnensssssnesrressosse see getpid(2)
getpid(2): getpid(), getpgrp(), getppid(), getpgrp2 get process, process group, and parent process ID
getppid(): gt PArent ProCESS IDccccoccviirierrecreeeeieiesreieneeeetesesessesaessssessessesassesrossosesssstsssssesussasrsese s see getpid(2)
getpriority(2): getpriority, setpriority ..get or set process priority
getpriority: get Process PriOTILYccccocirrrcriirceiieeeeete e ereese e esestess e eseasesesasseontsvess see getpriority(2)
getrlimit(2): getrlimit (), setTlimit () .icvvvrcvmrorirnenreeieennenenneene control consumption of system resources
getsockname(2): getsockname()c.cccoveueuee. ST get socket address
getsockopt(2): getsockopt (), setsockopt () get or set options on sockets
gettimeofday(2): gettimeofday(), settimeofday() get/set date and time
getuid(2): getuid(), geteuid(), getgidl(),

getegid () cvevrecerrieeneeenreseeereesereeessenes get real user, effective user, real group, and effective group IDs
GEEY ()1 CONLYOL AEVICE .voeeiniiiiiririeineree e ititiieen e crctestssesaesesecresseresseersasesscnssnsssessssesasssstsshssssresasssassonees see stty(2)
HOCEI(2): ZOCEL () cerecireecrriererenereerrecsesessesetesessasesestessosesnessassesesseasessensasessessesesresnssssnsasessssssassssssossssore control device
ipcconnect(2): ipccoBNECt ()() .ot siienes request connection to another process
ipcecontrol(2): ipccontrol()() perform special operations on NetIPC sockets
ipcereate(2): ADCCTEAL@ () () cvivirirnrinenrerintiniiesstseecesesesressessenessessessassertosesseseessssensessrsenesrssues create a call socket

ipcdest(2): ipcdest ()() coveverrevennenecreate a destination descriptor
ipcgetnodename(2): ipcgetnodename ()cccciieniemeens obtain NetIPC node name of current host
ipclookup(2): ipclookup ()() .cvverrrcevecnennns . reeeesnasnaentens obtain a destination descriptor
ipcname(2): ipcname () () .oocevriienniinennenenesennennens associate name with call socket or destination call socket
ipcnamerase(2): ipcnamerase()() . delete name associated with a call socket or destination call socket
ipereev(2): iperecv () () i establish or receive data on NetIPC virtual circuit connection
ipcrecven(2): iperecven ()() ccciiecrereeec e ceee e e s receive connection request on a call socket
ipcselect(2): ipcselect ()()determine status of call socket or VC socket
ipesend(2): ipcsend()() .cceeveeveeveneevreerennessend data on a virtual circuit connection
ipcsetnodename(2): ipcsetnodename ()criomeeesisimeennioes set NetIPC node name of host CPU
ipcshutdown(2): ipeshUtAOWR () () ccoeerrmnneircieiernericereetceenea e seesee et asseasarc e sesaens sns release a descriptor
Kill(2): kill(), Tai8@ () .ccvermrrrrenrercncenrcnnriesireseseeersesesmnnsesnens send a signal to a process or a group of processes
killpg(): 4.2 BSD-compatible process control facilitiesccoocverenimnmvcrecsirisecrenncscecinnnns see bsdproc(2)
LNK(2): LEBK () coreerrrinninineereesireseeesscsseessesssatsssrsssesssesseraressseesss sorssesssesssssssessssserssssssosssssssesssssssesssesssessrans link to a file
Listen(2): 118Len () .cvrecreiniicrreeneeiseeireesseessnssneeseeees listen for connections on a socket
10CKE(2): LOCKE () ivvivvereereereninreieeteneensesessesersenessasssssssessessesssaenes provide semaphores and record locking on files
IS@EK(2): 180K () .oovevererireireecieiisiisnerrerrsareresnessesseessersessessesssaesesrnennessessnesserenes move read/write file pointer; seek
Latat (): et fIle SEATUS ..cvveveirtiiiceeee sttt s stestesraesaes e et bes e s aesesrsestesaesseesessneraannasees see stat(2)

leync (): update SUPET-DIOCKcciviiiiiiiiiiiriiinenie e s e s sbersen st seaes see sync(2)
madvise(2): madviseadvise system of process’ expected paging behavior
mkdir(2): mkdir() Feeeteeesesteesesreasatasar bt sehtrer ra st b bse bt aeeR b e e s essaenantssenrbre sebesessnseesnnaee make a directory file
mknod(2): mknod ()ceeeeriereneniereesenenns make a directory, or a special or ordinary file
mkrnod () — make a cnode-specific special fileccocevivinrnnnivinciniimnne et see mknod(2)
mmap(2): MMAD ..c.ccocceervrreeecerenrrereeeesseseerns .map object into virtual memory
MOUNE(2)! MOUNE () cervrerrirereeniciiesreseieseerstsisessscsssserssssssssssesesosarssenesesesssssssssssessssesssssssssssaossssses amount a file system
MProtect(2): MPIOLECL ..ccoueerireeiriee et eresss s seee e seonsresaneseaeeses modify memory mapping access protections
msem_init(2): msem_initinitialize semaphore in mapped file or anonymous memory region
MmSeM_JOCK(2): MBOIM_LOCK ..voveirierieeeeeierteeieieieeeesresessesressneesesssessessssssessensestesssessessensansessesssesrenses lock a semaphore
msem_remove(2): mMSem_YemMOVEcoeerreerrerererresens remove semaphore in mapped file or anonymous region
msem_unlock(2): msem_unlock unlock a semaphore
msgget(2): msgget () ..ccceeeeeeennnnn ...get message queue

msgop(2): msgsnd(), megrev() cereeesrrre et e sa e s nrr e are s et areserenserbas e s b naeesrnnen message operations

vi Table of Contents: Volume 2

Table of Contents

Volume 2
Entry Name(Section): name Description
magrev(): MESSALE OPEYALIONS ..ceovvviceireriecieeeieettere et ceeeee e e ten s eeneeetesaaenesasssnessensaenaessaeesessentenaens see msgop(2)
MSEELL(2): MBGOEL () oottt sttt s b e s et e e sasse e bebesarssbenbesasasassasasanes message control operations
msync(2): msyncsynchronize a mapped file
munmap(2): munmapcccceeeereiverenns ...unmap a mapped region
NfsSve(2): NESSVC (), ABYNC_AACIMON .cueceuieeiririerieeerereeteniissseesessesaessssersesessessessessessssessssstossessrsessensasens NFS daemons
NICE(2): DLC@ () cirvivirrerirerieienreesietereessrasteeressassesssesessssesesesessesesessesensaseressssnsssssensrensesd change priority of a process
OPEN(2): OPOIL() reveeerrrereeriirecrerierestestistesesaesaessesessessessesessosesssssossssessessssssesssnsssnsensenes open file for reading or writing
pathconf(2): pathconf (), fpathconf () . ..get configurable pathname variables
PAUSE(2): DAUBE () eoveverrrirreeirieniiteeertesiietesssessesessstesessssssesessessssssssessssasasasssesssssasesans suspend process until signal
PIPE(2): DIDE () oottt ettt st b e e st sttt s s e seae e create an interprocess channel
PLOCK(2): DLOCK () torivierireriireriereeeeteeesesssssseissesessesesssesesessessess sassnsssesessesnons lock process, text, or data in memory
poll(2): poll — monitor I/O conditions on multiple file descriptors
Prealloc(Z): DIealLloc () ..ciicccrceceeriereieesreersieesresesessesersessessessesessessesessesnessessesessen preallocate fast disk storage
PrOfil(2): DIOFLIL() .eevrvrrrrmrinirenrentenensosiosasessessssessosesserssossonssasssessesessasssssssassersenssessossssssessd execution time profile
- ptrace(2): ptrace()process trace
quotactl(2): qUOLACLL () .ccvrveererreverrerntiieerresassensensens mampulate disk quotas
raise () — send a signal to a Process or a group 0f PIOCESSESuceuvirivrreremeeirenennreisisensisnsessscasssmsessssessnen see kill(2)
read(2): TeAA (), TEAAV () .iivciecereeceererrerterereersessessssessssesessessesessessessesessessessessessrsessasessssssessessssessassosesnean read input
readlink(2): readlink()read value of a symbolic link
readv(): TeAdINPUL ..ottt et sttt e s e s e st b st b bR s ben e see read(2)
TEDOOL(2): TEDOOTL () .eevevreeuirrreiineiieiieeetetrtesesessssessssesetesesesesasasssssassssssssesasesssnsesssesssssessnssssanssasessasneas boot the system
recv(2): recv(),TecVEIOM() TECVMBG () .covcecverrieereeieecrieriessessesssensessessssssesssns receive message from a socket
recvirom(): receive message from @ SOCKELcccevereererireinrineinenieseereeecnerecseeeeseesmresesseeerasssusseseses see recv(2)
recvmsg () : receive message from & SOCKEtcciiiiiiieivineicniiiiiic e s see recv(2)
Tename(2): TENAME () .oovcovieeiiiiecireieireeneseseesteseestssassseosesssessesssssssosessesssensessesnsssssssesnsenss change the name of a file
IMAIr(2): IMALT () crerorecirieirreeieesereiuesessesaeresrestesessastossssassessssersossessosastsstssessassessrsessasssasas remove a directory file
rtprio(2): TtPrio() e ..change or read real-time priority
sbrk(): change data segment space alloCationccccereeeciieriinnienesnessesersestesessessesseseseosessessassassons see brk(2)
SElECt(2): BELECL () .oocoieieceiie et seerctee et era e et s e saes e s et eres e s snsaebeseesenen synchronous I/0 multiplexing
SeMCtL(2): SEMELL() .ovvivererireirieiiree et e eete e st sere sttt s b e s et sereebesesesreenenenan semaphore control operations
semget(2): semget() .. seeneeneenget set of semaphores
semop(2): semop() ..o ...semaphore operations
send(2): 8end(), BeNALO () .cciviinreerrnrrreeeeeeerreeesereess e e sesees e aseasaesese e s eserenesene e send message to a socket
2endmsg () : Send MESSAZE 10 & SOCKEL ..ueevevrireruiieerrerieieciteessecesteseesessestessesersessssessessessenssssssssensessessssesens see send(2)
sendto (): send message t0 & SOCKEDc.cccvcvirierireieiiiecere ettt st es et s e e nese e senesmenesre s see send(2)
setacl(2): setacl(), £setacl()set access control list (ACL) information
setaudid(2): setaudid ()cocereerrerirnenenenset audit ID (aid ()) for current process
s5etaudproc(2): 8etaUdPTOC () .cvcceveceecereeeee e et errereaeane set or clear auditing on calling process
setevent(2): setevent()set current events and system calls to be audited
80tgid(): SEL GYOUP ID ..ottt e sese e st eseesesbeaseseesas sasssasesess tas shen e b sasnsenae see setuid(2)

set group access list
...set name of host cpu

setgroups(2): setgroups()
sethostname(2): sethostname() .

setitimer(): set value of interval timer . ..see getitimer(2)
setpgid(2): setpgid(), setpgrpz set process g'roup ID for job control
8etpgIP2: Set Process BTOUD IDccccviiiiiiniieriniinienecnseressuessessasssessassessesssessassassassssssssssosssssmsasssssssossasssd see setpgid(2)
setpgrp(): 4.2 BSD-compatlble process control facilities .. .see bsdproc(2)
setpgrp () — create session and set Process Group IDceceveeeececenrneereesreessseresssesessssssesasssssasssseses see setsid(2)
setpriority: set process priorityoeeeo ..see getpriority(2)
setresgid(): setreal, effective, and saved group IDScccceririminiurecrircnrcnrrcnecsi e see setresuid(2)
setresuid(2): setresuid(), setresgid() ... set real, effective, and saved user and group IDs
setrlimit () — control consumption of System reSources ... see getrlimit(2)
setsid(2): setsid(), 8€tDTP () wvvvvcrveirrnririseesneinenas .create session and set process group ID
setsockopt (): Set OPtIONS 0N SOCKELScccvieerisierieinterenreie et neieeseeerieeeen et esesanssassssssssssesesanes see getsockopt(2)
settimeofday(): set date and timesee gettimeofday(2)
setid(2): 8etuiA(), BEEGIA () oottt et e s eensee st e s e et essesaeesnes as set user and group IDs
shmctl(2): shmetl() ..ocoveerveneciennenns ...shared memory control operations
shmdt (): shared memOry 0PETAIONScccccveeuevieiiiieeiiee et e et e e s e s s et nsae st saesresaaes see shmop(2)

Table of Contents: Volume 2 vii

Table of Contents

Volume 2

Entry Name(Section): name Description
Shmget(2): SRMGEL () .ccecevrriviceeecinere ittt seteieseesasss st esssstss st sabesasasssssssssessasssnsass get shared memory segment
shmop(2): shmat (), BAMAL () .ooviviiiiinreneenicerrenesesesenseseesecsseesesessassessessensesssssanssese shared memory operations
shutdown(2): shutdown()erennn RO ..shut down a socket
sigaction(2): sigaction() ... rerveserrenrrnasasasnasenens examine and change signal action
SIEDLOCK(2): BAGDLOCK () .oivvviieecrerrirerireiierassisssssaesssesssiessesssesstesessstessasssssenssesessassesssssasssesssssesesssssesns block signals
sighold(): signal managementcvveievirrivnenvennireseeresnnnnns see sigset(2V)
sigignore(): signal managementccovirrrrernnerncnnnes e see sigset(2V)
signal(2): signal() ... specify what to do upon receipt of a signal
signal(): 4.2 BSD-compatible process control fACilitiescveeerirenrerererrereserrsresssseseressssesssnesssenss see bsdproc(2)
sigpause(2): 2igpause() ..., atomically release blocked signals and wait for interrupt
sigpause(): signal Management ... s st see sigset(2V)
sigpending(2): sigpending() rereerreresseeaenrerensseasenens examine pending signals
sigprocmask(2): sigprocmask() . ..examine and change blocked signals
sigrelse(): sSignal MaNAZEMENTcvirriirirneieisosseeesesessessessesssseresssrsssssnssisssessssonasssenssoensa see sigset(2V)
sigset(2V): sigset(), sighold(), sigrelse(), sigignore(), sigpause() <veeeee. Signal management
sigsetmask(2): 8LgBELMABK () .voccvciiiriiriiireeieiisresisseesessersssssrossosesssssesessessossossssonsessesesses set current signal mask
SIgSPace(2): BLGBDACE () ..coiierecnieeririniiierinsasssesrenesnseseseresesssssessssansesasesanes assure sufficient signal stack space
sigstack(2): 8igstack()cccvrmreenenieresseenssenens ...set and/or get signal stack context
sigsuspend(2): SLigBUSDENA () ..ccccririnienrnriiniiinriieiesesesesssesssestsssssssasasesssesesssesssssenssonsssassssaes wait for a signal
sigvec(): 4.2 BSD-compatible process control facilitiesccccveeiriveecrecerrencernnrecrinemscntsseciinns see bsdproc(2)
sigvector(2): sigvector() ... reesssesneessreerteeaaetteesatsnresatearssnbeseresesses software signal facilities
socket(2): socket() etreteteseeares st e aerearenrenearesnsessresrnrsesssasransrnna create an endpoint for communication
socketpair(2): socketpair ()c...coeeerenn rernrese e sasrasaes create a pair of connected sockets
stat(2): stat (), 18Lat (), FBEAL () wiiininerenrseieeeneseeseresstsssssessassessisssessesssesesssessassssrssenssassases get file status
statfs(2): statfs(), £statfs()get file system statistics
SEIME(2): SEIME () oottt et st creesae e n e et se s eenesa s be e e seanseasanaensenn sheseennenrens set time and date
SEY(2): BEEY (), GEEY () ervrrirrerernrerererrenereerserssserserersessesssrsssessessssessersersenssess control device
swapon(2): swapon() ... reeeerre et s eussbesesenes add a swap device for mterleaved paging/swapping
Symlink(2): SYMLIDK () .ooocoeeeenrerninniinniineeeresnneesssssssssesesessssossssssessasesssssnencs .make symbolic link to a file
SYNC(2): BYNC (), 1BYNC () coivireriiiinnicniisissoscasesensasessis s ssas s sssnsssens essesssssessasssssassssesarsons update super-block
SYSCONL(2): BYBCODE ..ceerrrrrirrerenrereeenteerenseseesessersesesssssessssssesseressersensone get configurable system variables
TIME(2): LEME () .ocrerriiiieeerieiiesiecncsteetecresie st sssesesesesasesesensssaessssosases bt asssesassnssess saressnssentosssssonssssssasesasssiss get time
timMes(2): CAMEB () ceciveirerereeniiirerrereeeie e ee e tbebesresaesebeessebesssrssbesaenssrsraes get process and child process times
truncate(2): truncate(), ftruncate()truncate a file to a specified length
ulimit(2): ulimit() reeterrestetat et e b esast et e e eree eeteree st atnsaesaerserseuesrernaness get and set user limits
UMASK(2): UMABK () .oceveerirveriirieeereesteseresisseseesasssssssesssssssssesssssesssessasasssssssssassssssns set and get file creation mask
umount(2): umount () reeseetst st n et aeasreesaesenesnneensastasrerastend unmount a file system
uname(2): uname() OO RO get name of current HP-UX system
UNHNK(2): UNLINK covciereretciieceesiesesesasssresetssnessasesesessssssssssssssesssssesesasans remove directory entry; delete file
UStAL(2): WBLAL () .eovecrecrecrerinenrerestererneesnnesssseseeseranssesessesseneons . get file system statistics
UEIME(2): ULIME () cooecieircecrercrccenieceecretraesestenensesesasse e ssrsssresessasasrsvnssnsens set file access and modification times
VEOrk(2): vEOrk() ..ccccerereneerirerenrerennneeens spawn new process (use fork () intead)
vismount(2): vEsmount() ... eeetereret et a e eae e saeseensaeaea st seresassas bbb baes mount a file system
wait(2): wait (), wait3 () e ereereeees wait for child or traced process to stop or terminate
wait3(): wait for child or traced process to stop or terminatecccceeeveveerecerenrensesinsenienssssesessiesesnens see wait(2)
waitpid(): wait for child or traced process to stop or terminate ..o see wait(2)
write(2): write(),writev() reteeeteesaeerbeetasesnesrnassasssstassenossassaanesaes write on a file
writev(): writeonafilecccoeerueene .see write(2)

viii Table of Contents: Volume 2

Table of Contents

Volume 2
Section 3: Library Routines
Entry Name(Section): name Description
a641(3C): a641(), 164A() .cccvevnrrverrererrenssiscsieseressereneseses convert between long integer and base-64 ASCII string
INEro(3): ANETO () ciriiiiiicnr e et aaes introduction to subroutines and libraries
AAudioString(3X): AAudiostring() get name of audio controller (string) passed to AOpenAudio()
ABestAudioAttributes(3X): ABestAudiocattributes() get best audio attributes for specified controller

abort(3C): abort() ...
abs(3C): abd (), ADB () ccvrrrirerreernnerrneneersenannens

..generate a software abort fault
.................... return integer absclute value

ACalculateLength(8X): AcalculateLength() ..o return the size in bytes of converted data
ACheckEvent(3X): AcheckEvent () rersesresassiaeserns e naees get first event found in audio event queue
ACheckMaskEvent(3X): AcheckMaskEvent() get first event in audio event queue that matches mask
AChooseAFileAttributes(3X): AChooseAFileAttributes() .. select attributes for creating new file
AChoosePlayAttributes(3X): AChoosePlayAttributes() ... select attributes for playing file or stream
AChooseSourceAttributes(3X):cccevverevenrerrerennes select attributes associated with existing file or stream
aclentrystart (): convert pattern string form to access control list (ACL) structurecu... see strtoacl(3C)
ACloseAudio(3X):ACL1080AUALO () ..ccivrireerercsrnremrersnessssessssressessesssessessas close connection to specific audio server
acltostr(3C): acltostI () ..ccecririreererererserenresssesasnes convert access control list (ACL) structure to string form
AConnectionNumber(3X): AConnectionNumber () ... get audio server connection number
AConnectRecordStream(8X):AConnectRecordstream() . . connect socket to TCP socket address
AConvertAFile(3X): ACORVETLLAFLIle()cccecriirmemmoronenmnesonssssseseorssassossaesssss convert audio file data format
AConvertBuffer(3X): AconvertBuffer() oo saas b entanens convert a buffer of data
acosdf (): trigonometric arccosine function (float, deg'rees) see trigd(3M)
acosd(): trigonometric arccosine function (degrees) ...see trigd(3M)
acosf (): trigonometric arccosine function (float) reteeervessreeseesatesaaebaeraesses st s neasneesaaesereaanen see trig(3M)
acosh(): inverse hyperbolic cosine fUNCHIONcoiceeeeeiceerireiese e ccstssiece et sss e berssness see sinh(3M)
acos(): trigonometric arccosine functionc.....ccccvconeireninineesescsssessessssssones see trig(3M)
ACreateSBucket(3X): AcCreateSBucket () ... create empty sound bucket and return pointer to it
ADataFormats(3X): ADataFormats () ... get list of data formats supported by audio controller
addexportent () — access exported file system informationsee exportent(3N)
addmntent (): get file system descnptor file entrY ..cocovverererveenurecens see getmntent(3X)
addopt(BN): . addoPt () ..cccccveeeeveinrereinnseresnssercsnnressessesesesenas ...add argument and data to NetIPC option buffer
ADestroySBucket(3X): ADestroySBucket () ... reeresessrersessstantesesrssnses destroy specified sound bucket
ADVANCE (): process 16-bit characterscoevevvveevmureerecresunns see nl_tools_16(3C)
advance(): regular expression compile and match routinesccovcerveiinnnricniinninneseenn. see regexp(3X)
AEndConversion(3X): AENACODVeIsion ()eceeeercrcrrrseseereseeseseses finish stream data conversion
AEventsQueued(3X): ARventsQueued() get number of events in queue for specified server connection
AGetAFileAttributes(3X): AGetAFileAttributes()ccececemveremnnene get file attributes of specified file
AGetASilenceValue(3X): AGetSilenceValue() rerresese st tsassares get a silence value
AGetChannelGain(3X): AGetChanNelGALNcccoreieeeecrrerirennserestssiseesescsessssences get transaction channel gain
AGetDataFormats(8X): AGetDataFormats() reerenesennne. @€t data formats for a specified file format
AGetErrorText(3X):AGetErrorText () . ..COpy error descnptlon into specified buffer
AGetGain(3X):AGetGain ()ienmnreirenroniriiens get play volume or record gain of specified transaction

AGetSBucketData(3X): Aoetssucketnata €ppy audio data in sound bucket to buffer; return number of bytes
AGetSystemChannelGain(38X): AGetSystemChannelGain() get system or monitor channel gain
AGetTransStatus(3X):AGet TransStatus () ..c...ccuenernirenscsseseeessessoreseesesine get status of specified transaction
AGMGainRestricted(3X):AcMGainRestricted() . .. find out if audio controller restricts gain entries

AGrabServer(3X): AGIabSeIvVer () ...t acquire exclusive use of audio server
AlInputChannels(3X):AInputChannels ()ceerereerenens get list of A/D input channels on current hardware
AInputSources(3X):AInput Sources ()cecverveerorvenes get types of input sources existing on current hardware

almanac(3X): almanac()c..eceoececeeseeesane return numeric date information in MPE format
Al.cadAFile(3X):ALcadAFile ()cucvmennns .copy audio file into new sound bucket with data conversion
alphasort () — sort a directory pointer arrayc....oessenccsisivesens see scandir(3C)
AMaskEvent(3X):AMaskBvent ()ccirveresennseseessososesessesesnes get first matchmg event in audio event queue
AMaxInputGain(3X):AMaxInputGain() get maximum input gain supported by audio controller
AMaxOutputGain(3X):AMaxOutputGain () .. get maximum output gain supported by audio controller
AMinInputGain(3X):AMinInputGain()cccrnnen get minimum input gain supported by audio controller
AMinOutputGain(3X):AMinoutputGain ()cccceverenene get minimum output gain supported by audio controller

Table of Contents: Volume 2 ix

Table of Contents

Volume 2

Entry Name(Section): name Description
ANextEvent(3X):ANeXtEVEnt ()ccccevereeeererrrienesseresesees dequeue and return first event in audio event queue
ANumDataFormats(3X): ANumDataFormats() data formats, number supported by audio controller
ANumSamplingRates(3X): ANumSamplingRates() number of sampling rates supported by audio controller
AOpenAudio(3X):A0PERAUALIO () ..ccevvrriirinrerneersserersssssnnsesessssssssssaresnsas open connection to specified audio server
AOutputChannels(8X):AoutputChannels() get D/A output channels existing on current hardware
AOutputDestinations(3X):AoutputDestinations() output destinations types on current hardware
APauseAudio(3X): APAUSEAUGLIO () ..crvirrreerercearnrrrenrsecescseasanessasassscsesss pause the specified audio transaction
APeekEvent(3X): APeekEvent () return but do not dequeue first event in audio event queue
APlaySBucket(3X): APlaySBucket ()ccocemevmennne play specified sound bucket and return transaction ID

APlaySStream(3X):APlaySStream()initiate transaction and return transaction ID and SStream structure
AProtocolRevision(3X):AProtocolRevision() get minor revision number of protocol used by audio server

AProtocolVersion(8X): AProtocolVersion() ... get major version number of protocol used by audio server
APutBackEvent(3X): APULBaCKEVEDL () ..ccccccorreererernrersnscrennreresinns push event onto head of audio event queue
APutSBucketData(8X): APutSBucketData()cocevererereeenenens copy audio data from buffer to sound bucket
AQLength(3X): AQLength() ...ceevrevrrerevernenes return number of events on audio event queue
AQueryAFile(B3X):AQUETYAFLLE () ..ccccvrreerernreeirnenneesesesessssessssesessesnesssssasessesessesess get file format of specified file

ARecordAData(8X): ARECOTAADALA () ..cccverereeeererenrererereneressereseesesesensosernenes read audio data into sound bucket
ARecordSStream(3X):ARecordsStream() . initiate transaction; return transaction ID and SStreams structure

AResumeAudio(3X): AReSUMEAUALIO () ..ccvrerrererreriesernessssssenssssesnsnsssessassons resume specified audio transaction
ASamplingRates(3X):ASamplingRates () return list of sampling rates supported by audio controller
ASaveSBucket(3X):ASaveSBucket ()ccccoerrrererrrurrenen write sound bucket data into file with data conversion

asctime(): convert date and time to string rerenrnestereeresaansene see ctime(3C)
ASelectInput(8X):ASe1ectINDUL () ..cccerevereeerririeireecrsesssesessesesssssenes request report of specified audio events
AServerVendor(3X): AserverVendor() ... get vendor name of audio server for this connection
ASetChannelGain(3X): ASetChannelGain()cceriniiesosenmesnnns set transaction channel gain
ASetCloseDownMode(3X): .. set close-down mode to destroy or complete transactions on specified connection
ASetErrorHandler(3X): AsetErrorHandler() ... replace default error handler with specified handler

ASetGain(3X):ASetGain ()cceveverererierererserinnens ...set play volume or record gain of specified transaction
ASetIOErrorHandler(3X): AsetIOErrorHandler() replace default /O error handler with specified handler

ASetSystemChannelGain(3X): AsetSystemChannelGain() set system or monitor channel gain
ASetSystemPlayGain(3X):AsetSystemPlayGain()ccccocmrerne set system play volume
ASetSystemRecordGain(3X):Aset SystemRecOrAGAIN () .cwvcieererirrereereereneereensereeseenes set system record gain
ASetupConversion(3X): AsetupConversion() perform setup required for stream data conversion
ASimplePlayer(3X):ASimplePlayer ()cccienssiesierensseensesses return gain matrix of basic play device
ASimpleRecorder(3X):asimpleRecorder () return gain matrix of basic recording device

asindf (): trigonometric arcsine function (float, degrees)ccoevemeviciecnenenrernnniininscsesencnee see trigd(3M)
asind(): trigonometric arcsine function (degrees)see trigd(8M)
asinf (): trigonometric arcsine function (Ioat)cceccvreeveeieceririenneieeeseretes e eseseesesesvesernesenne see trig(3M)

asinh(3M): asinh(), acosh(), atanh()inverse hyperbolic functions
asin(): trigonometric arcsine funCionc..ccccocirnieecrinnnnenniiesesseesee e sesnsasseseseseessesssssesnareseeaens see trig(3M)
ASoundBitOrder(3X): ASoundBitOrder () ... get bit order used for one-bit-per-sample data
ASoundByteOrder(3X): get byte order of audio data accepted by audio controller for this connection
BSSEIt(BX): ABBOIL () .coccerviviieeeerennieitiess e sierete e tetesesssestssssss st st ese e sesssbsesensesatetsrnes verify program assertion
AStopAudio(3X): AstopAudio() stop specified audio transaction
AtAddCallback(3X):AtAAACAI1DACK () .cceovverieereeriiieeeceeee e sieeeevesseesseneens add callback procedure for the toolkit
atan2df(): trigonometric arctangent-and-quadrant function (float, degrees) see trigd(3M)
atan2d(): trigonometric arctangent-and-quadrant function (degrees) ceeeeee. SE€ trigd (3M)
atan2f(): trigonometric arctangent-and-quadrant function (float) see trig(3M)

atan2(): trigonometric arctangent-and-quadrant function .. see trig(3M)
atandf (): trigonometric arctangent function (float, degrees)cccceveeeverernveneerrveccseeseseresserasanes see trigd(3M)
atand(): trigonometric arctangent function (degrees)see trigd(8M)
atanf (): trigonometric arctangent function (float)cocovemirirecrnicimnnnecnien e s see trig(3M)
atanh(): inverse hyperbolic tangent fUNCHIONcceevveiriereerrerenrrrrinrenirreesentesesensenssnsresenessesesnesesassesens see sinh(3M)
atan(): trigonometric arctangent functionceminiinciininienen veeeenen.Se€ trig(3M)
AtlInitialize(3X):AtInitialize()add audio event handler for this connection
atof(): convert string to double-precision DUMbEYcovvriciiiinniiiiiice et see strtod(3C)
AtRemoveCallback(3X): aAtRemoveCallback()set callback to NULL

X Table of Contents: Volume 2

Table of Contents

Volume 2
Entry Name(Section): name Description
AuCreatePlay(8X): AuUCLeatePLay ()c.ccciiereermeseoninesessrssersisissssssssserens create an audio play widget
AuCreateRecord(8X): AUCTeatoRECOTA() ..ceivevrirvererninrerresrereernsnereersssessorsosees create an audio record widget
AulnvokePlay(8X): AUIDVOKEPLAY () .oeeveereriiicrererieniriesiesesssessessssssessesssosnssenses initiate a widget play operation
AulnvokeRecord(8X): AuInvokeRecOrd()ceeeeeermens initiate an audio widget record operation
AUngrabServer(3X): AuUngrabserver() release server from exclusive use by this connection
AUpdateDataLength(8X): AUpdateDataLength()c.ceeemiinmmmon. update a file’s header
AuPlayWidget(83X): AuPlayWidget ()c.cccccicriciciennresnesiesesessesessssressessssssesessassesesssssssess audio play widget
AuRecordWidget(3X): AURGCOTAWLAGEL () ..ocecvvveericerrereriiereressesesseseseraesssssesssssssnssssssessssorans audio record widget
AuSaveFile(3X): AuSaveFile() ... save sound bucket data created by record widget
AVendorRelease(3X): AVendorRelease() get vendor release number of audio server for this connection
AWriteAHeader(3X): AWCiteAHeader ()icimiennesnimsesmsesns write a header for an audio file
bemp (): MEMOYY OPETALIONS ..civriciiriiriiiiieninesririnsesssistierssisiassssisiessossssessissssssssosassassesessnsensesnesssreses see memory(3C)
beopy(): memory operationssee memory(3C)
bessel(3M): jo(),31(),3n(),¥0(), yl(), yn() .. Bessel functions
bindresvport(8N): bindresvport () ... bind a socket to a privileged IP port

blclose() —terminal block-mode library interface see blmode(3C)
blget () — terminal block-mode library interface see blmode(3C)
blmode(3C): DIMOA () .occeeiucricecrerinnesernreresssanescasessesesesassseseserssesessonsasses terminal block-mode library interface
blopen() —terminal block-mode library interface see blmode(3C)

blread() —terminal block-mode library interface .. see blmode(8C)
blset () — terminal block-mode library interface“ see blmode(3C)
DSearch(8C): DSEATCR() ..c.cccrrerceiresreenecrerereersrsesersresesessssessssersssessessnssessssessssonssas b inary search a sorted table
byteorder(3N): htonl(), htons(), ntohl(), ntohs () ..convert values between host and network byte order
byte_status (), BYTE_STATUS(): process 16-bit ChATACLEYS ...ovvveevieeerrrieecreenieerereenreesirsaeenens see nl_tools_16(3C)
bzero(): memory OPerationsecveerereereresrererersessesenns " see memory(3C)
cabs () — complex absolute Value fUNCHIONccviieveereirieririnrentieneiserinnessanissesseresssesnssessossssssessosserssnessee see hypot(SM)
cachectl(3C): cachectl()cccoveeeene. flush and/or purge the cache
calendar(8X): calendar()ccccvivevveerervererrerirereseennes ...return the MPE calendar date
calloe: main memory allocator retertses e ter et st st satre srstenesusnaeresresaes see malloc(3C)
catclose(): close NLS message catalog for readingccoccvvmvnicrnicncsecrinniiesienerisnenens see catopen(3C)
catgetmsg(8C): CALTOLMBG () .eereveverrenerreerrreeresserrresensessessssssrsesansesessesessosens get message from a message catalog
catgets(3C): catgets () ...cvevermnreeennns trestesetaaesetenesassesassssresaonersinesnes get a program message
catopen(3C): catopen(), catclose()ernrenernens ..open or close NLS message catalog for reading
catread(3C): CAtTEAA() ...cvvevrerereierrrrrnsesiesensessessessssesssseseessssessessessones MPE/RTE-style message catalog support
Ot (): CUDE YOO FUNCHION .ovieieveereriirenreerenrenreserressesssiessesersessesesssseesnssssssessessesessessarssssssssssessossssssssnares see exp(3M)
cbrtf(): cube root function (loat VETSION)cceevirereiceeenrrennirscssereiesesenneeissnssssssesscssssssoseasasseses see exp(3M)
c_colwidth(), c_coIwIDTH(): process 16-bit characterscccccecvveuueenne ..see nl_tools_16(3C)
ceil(): cel]mg function reersaeststsssnsseresisssrsnsssensensased see floor(3M)

cfgetispeed(): get tty intput baud T oooessssoesssseeseseseessseeessseeessseeees s eees oo see cfspeed(3C)
cfgetospeed () : get tty output baud rate ..see cfspeed(3C)

cfsetispeed(): set tty intput baud rate ..see cfspeed(3C)
cfsetospeed () : set tty output baud rateccvevviriiinnine see cfspeed(3C)
cfspeed(3C): cfgetospeed(), cfsetospeed(), cfget:l.speed () cfsecispeed() .. tty baud rate functions
CHARADV(): process 16-bit characters .. see nl_tools_16(3C)
CHARAT(): process 16-bit characters ettt ettt sttt saeesemtaseanebssnenssassrasesesntans see nl_tools_16(3C)
chownacl(3C): chownacl () ..c.ccevicriniernrensreernnnesennes change owner and/or group in access control list (ACL)
clearenv(3C): Clearenv ..o clear the process environment
clearerr: stream status INQUIFIEScivciiiniiiininini st ses e ssssesessessrssess see ferror(3S)
ClOCK(BC): CLOCK () erverrererereriereniunrinseeresesseeerssassssssassssssssarassesasssissasensssessnsasnssssasssssasesasesssed report CPU time used
Clock(3X): CLOCK () covrieririririiinnicinnsssstste s sese s sesssssesessacsasesansassssesessssosssnss sessssnsssnid return the MPE clock value
closedir(): direCtOry OPETALIONSccoreeoierrereeriressenrerennsseseeesasansasersesssesestesereesasescesasas see directory(3C)
closelog(): control system 108 ettt SOOI PRI see syslog(3C)
compile(): regular expression compile and match routines see regexp(3X)
confStr(8C): COREBEL () wvveverinererniriiririnressiensnressssesesessesessssssesssessessssssesessenn get string-valued configuration values

translate characters
see ieee(3M)
see ieee(3M)

conv(3C): toupper(), tolower(), toupper, _tolower, toascii()
copysign(), copysignf (): copysign manipulations
copysignf (), copysign(): copysign manipulations

Table of Contents: Volume 2 xi

Table of Contents

Volume 2

Entry Name(Section): name Description
cosdf (): trigonometric cosine function (float, degrees)cccocveiviiverincinicnnenneneinnesnsesisssanien see trigd(3M)
cosd(): trigonometric cosine function (degrees)see trigd(3M)

cosf(): trigonometric cosine function (float)
coshf (): hyperbolic cosine function (float version) .

...see trig(3M)
see sinh(3M)

cosh(): hyperbolic cosine functionccecevrerverennne see sinh(3M)
cos (): trigonometric CoSINe FUNCLION ...civiiivrceniererrirenreeiinesiaeiussesienesessessesnassssosasnassessosssnssnssrassaresaess see trig(3M)

cpacl(3C): cpacl(), £cpacl()
crt0(3): crt0.o,mert0.o, fxrt0.o, mfrtld.o ...

copy access control list (ACL) to another file
....execution startup routines

ert0.0: exXecution SEATTUP YOULINGSccccoviviirreiiiececrece e sterenreessitaeaeesesaesuessnsanesssssossasnsasss sessuassnsonsons see crt0(3)
crypt(3C): cxypt (), setkey (), NCTYDE () cvrrcerrnrieieierereeressesesssssassssesssssssens generate hashing encryption
ctermid(38): CtermMid () .vvivnmnirineninenriniieseseseseeresesssesaensaes generate file name for terminal
ctime(3C): ctime(), nl_cxtime(), localtime(),gmtime(), asctime(),nl_ascxtime(), timezone(),

daylight (), tzname(), tzset(),nl_ctime(), nl_asctime() convert date and time to string
ctime(): convert date and time to SEFNG oot see ctime(3C)
ctype(3C): .isalpha(), isupper(), islower (), isdigit(), isxdigit () isalnum(), isspace(),

ispunct (), isprint (), isgraph(), iscntrl(), isascii() ... classify characters
currlangid(): NLS information about native languagessee langinfo(3C)
curses(3X): CUTBE8 () ..ococcvrverrrrnrinenreresesiniesessesesnessssessesenensCRT screen handling and optimization package
cuserid(38): cUSETLIA () .coicvninirinnrircrnecninesseennensst et se s sere s ssts e esasssssnne get character login name of the user
evtnum(3C): SVERUIM() cocrereiirreseenrcesesneseesessesernsessssssssaesessesesearssssesasnsses convert string to floating point number
datalock(3C): datalock()ccecerienerennes lock process into memory after allocating data and stack space
daylight(): convert date and time to Stringcccceevmrirercnnns reesebse s sasr s b s srens see ctime(3C)
dbm(3X): dbminit(), fetch(), store(),delete(), firstkey(),

nextkey (), ABMCLOBO () cicvivrriiiiieitininieestsenssiesessscsssnessssssessnsssosssssssssssssssessssssessaoss database subroutines
dbm_clearerr: database SUDTOULINEScccceoeveiriereuiereeeeeieeessesnesresssessessassssssssssssesenesresssesannsens see ndbm(3X)

dbmclose(): database SUDTOULINESccccccvireerereineresereiesserssiseressetosesessssnssessessessssesssssesssssssossasessessons see dbm(3X)
dbm_close: database SUBTOULINEScccecviirereerirnenenieenenensesiessesesnsessaseessnens oosee ndbm(3X)
dbm_delete: database subroutinessee ndbm(3X)
dbm_error: database SUDTOULINGSccceeereeveererriieiiecnereerensesessessesseasssssesessessesssee ndbm(3X)
dbm_fetch: database subroutinessee ndbm(38X)
dbm_firstkey: database Subroutinescc.ceeveeveriereererennevereeneeneeennssee ndbm(3X)
dbminit (): database subroutinessee dbm(3X)
dbm_nextkey: database SUDTOULINEScccccvriiieriereerenesieesreeerteieesaeessteseesersesssesessnsesesssssassnssaoss see ndbm(3X)
dbm_open: database subroutines rreestereeteaeraessanteeereereareesaerarrae see ndbm(3X)

dbm_store: database subroutinesccccvveevenreereeniensnereenennns JUUTUROURIORRPROUIN wrereenrnSee ndbm(3X)

delete(): database SUDIOULINESccccoivererieieiereereiennsintnesesessnaiereeesessesssssrensssssssosonssesesssansssnerasassese o see dbm(3X)
devam(38): devmom() teeveeseeresentresae sttt eer et ensenersartenes map device ID to file path
dial(3C): dial(),undial() ...c.cecviermnrneninsenns establish an out-going terminal line connection
difftime(): difference between calendar timesc.cccoeeeeeeeercerenceenneiietencie e eceecrenisaesins see ctime(3C)
directory(3C): opendir(), readdir(),

telldir(), seekdir (), rewinddir (), cloSedir ()ccccrnemeeeneenecnenennies directory operations
div(BC): iV (), 1ALIV() rrrrrrirerrerienrerercrenenssssesneaesreesnessssnnes .integer division and remainder
dn_comp, dn_expand, — IeSOLVET TOULINESccvveiviiiieereeiiiieenreeeserecssessesseessessesnsensesssssesessasssessnn see resolver(3N)
drand48(3C): drandd8(), erand48(), lrand48(), nrand48 (), mrand48(), jrand48(), srandds8(),

seedd8 (), 1eongd8 () ..viieninenerieriennennennes generate uniformly distributed pseudo-random numbers
drem(): remainder MANIPUIALIONScccceverererrereneneerinsaresreressintesosesseseressssessssasssnsssasasosesesasssossos see ieee(3M)
ecvt(3C): ecvt (), fevt (), gevt (), Bl _gevt () .eerieereeereenenesenns convert floating-point number to string
edata: last locations in program . reveeeraeetbeeeesaeaeeserbebestenterasetesraeseeneabentend see end(3C)
encrypt (): generate hashing encryptionoccoccverivrnneneieceicncsi et csenias see crypt(3C)
end(3C): end, etext, edata reeveeneeaenssesae e b eee last locations in program
endccent (): get cluster configuration eNtIYccccvirierecniririennrsneiinesensnsnressessssees see getccent(3C)
endexportent () — access exported file system informationsee exportent(3N)
endfsent (): get file system descriptor file ntryccooveevceiiieecnnniine e see getfsent(3X)
endgrent (): get group file entry see getgrent(3C)
endhostent () : get network host entryccceceevevecennne see gethostent(3N)
endmntent (): get file system descriptor file entry ..ot see getmntent(3X)
endnetent (): get NELWOTK ENLYYcccccvirrerereereereruerensernsessesessossesessasssnenee erreressraneersssennnnees see getnetent(3N)

xii Table of Contents: Volume 2

Table of Contents

Volume 2
Entry Name(Section): name Description
endprotoent (): et Protocol ENLYYcccciveriiiiieiniicinise e eseerensessereesessesesresssssersssosasresasns see getprotoent(3N)
endpwent (): get passWord file entrycoevveecrrnreneerercnenrit et et see getpwent(3C)
endpwent (): get secure password file EntIYcccoivervrireiniinininnennianien esieensnsesiesesesnerens see getspwent(3C)
endservent (): get SEYVICE ENEYYccocceivieviiecieiinnnsnicnnes e sresesassessisssssesas sesssesessssessesens see getservent(3N)
endusershell () — close legal user shells filesee getusershell(3C)
endutent (): access utmp file entrysee getut(3C)
erand48(): generate pseudo-random numbers .. see drand48(3C)
erf(BM): eTf (), @TEC() wrrreereererrireeereeee et nvesreeneenens .error function and complementary error function
erfc(): error function and complementary error function ... see erf(3M)
OYTNO: SYSLEIN EYTOT MESSAGES ...oevreerirverierierisreriorearesreseseossisesssssestesstestassssersssssessisassssststsasssasasas sresas see perror(3C)
error_Sintro(8): eTTOT_SANETO .t csaesressssessiessessssrssssessesssessensaess error text database operations
error_$c_get_text(3): error_$c_get_text() ... return subsystem, module, and error texts for a status code
error_$c_text(3): error_ $c_text() rereeeeesreeetresrrassaees return an error message for a status code
etext: last locations in Program ...t see end(3C)

exp(8M): exp(),log(), 1ogl0(), log2(),pow(), sqrt (), cbrt (), expf (), logf (),
1logl0f£ (), Log2£ (), powE (), sgqrtf () ... exponential, logarithm, power, square root, cube root functions

expf(): exponential function (float VErSion) ... ssessssmssessssis see exp(3M)
exportent(3N): exportent (), getexportent (), setexportent (), addexportent (), remexportent (),
endexportent (), getexportopt ()ccrrienenrenenieniarsnesnes access exported file system information
fabs (): absolute Value fUnCLION «c....ccoeivirieniiiiteeeere e st csee e ste s e sseesesasssessueenasssasaad see floor(3M)
fabsf(): absolute value function (float VErsion)ccceceveceriereeneirnenesieee st enes see floor(3M)
fclose(8S): fclose (), £E£IUSR() .rvevvrerrrierenrennenenns .close or flush a stream
fepacl(): copy access control list (ACL) to another fileccoocveviniiniininiinnincnicicnneciienns see cpacl(3C)
fovt (): convert floating-point number to string ressnesresaestasr e s s saes e saberaresbeses see ecvt(3C)
fdopen (): associate a stream with a file descriptor reertesase s aeraese ssee fopen(3S)
feof: stream StaAtUs INQUITIESc.ccccceeiiiriiciiiieniniineeneiiresecessseeesserssssesessssssesssessessesssessssnsoscsses sussond see ferror(3S)
ferror(3S): ferror, feof, clearerr, fileno ...stream status inquiries
fetch(): database SUDTOULINEScccccecveciirerriinereenneioneenerssseiesessossnsessessosessecsssnsacsssassssssscsssressessasisssond see dbm(3X)
fflush(): flush astreamsee fclose(3S)
££8(): mMemOry operationsc.eceecererrerererrens ...see memory(3C)
fgetccent (): get cluster configuration entrysee getccent(3C)
fgetc(): get character from a stream filec.coovvreieernciinniiee s see getc(3S)

fgetgrent (): get group file entry ceessessesaritssnssneesssasenbas see getgrent(3C)
fgetpos(3S): fgetpos(), fsetpos() save or restore file position indicator for a stream

fgetpwent (): get password file entryc.cocecrieueveereniennienencsierenisseneeesienessee getpwent(3C)
fgetpwent (): get secure password file entry ..see getspwent(3C)
fgets(): get a String from & SErEAMccccriiieieicrree ettt e cstbeee s e bbb ese st b eneosd see gets(3S)
fgetwe(): get wide character from a stream fileccoeceeeevercienennrireninnncniicninciicnecninns ...see getwc(3C)
fgetws (): get a wide string from a stream . ereteesssessabesssteesstte s sbsses bR resentbEe bbb s seasuebresets basseree see getws(3C)
fAleno(38): FL1ONO() covceieieriiceeeeecetesestsstesseesteseessesessesseassesssesssssessesnsessans map stream pointer to file descriptor
finitef(), finite(): floating-point classification functions........cceemvireccvirnirmninninnienencsnnnns see ieee(3M)
finite(), finitef(): floating-point classification functions.... ..see ieee(3M)
firstkey (): database SUDTOULINESccccevcieiveereiienrnriieeseeresseressessensesersssessessessssssssesessssesassessassarssnsanes see dbm (3X)
firstof4 (), FIRSTO£2(): process 16-bit Characterscccorrrneeierceeinrenessensescesinaesessens see nl_tools_16(3C)
floor(8M): £loor(), ceil(), fmod (), £abs (),

£ab8E (), TADE () coevveererieiennenieenrersereessesessesessessersesessonnes floor, ceiling, remainder, absolute value functions
fmodf (): remainder function (float VEISION)cccveeeeriesreniirnerrecrieecreeseeaneeeserressesssssesesssassesssessane see floor(8M)
fmod(): remainder functionecceeeevverenen. rreetesaeseetesresssrassaaarases see floor(3M)
fmatch(3C): FRAMALCH () cccoivvrecnererrnrretrisesresiesssssasesseressssessasssssessssessssassescssssasssessasasasases match filename patterns

fopen(38S): fopen(), freopen(), fdopen() open or re-open a stream file; convert file to stream
fpclassify(83M): fpclassify (), £pclassifvE () ..ccvvverevienirioreneiones floating-point classification functions
fpclassifyf(): floating-point classification function (float version)ccccevernniniircrnninnens see fpclassify (3M)
fpgetcontrol (), fpsetcontrol(): floating-point control register functions see fpgetround(3M)
fpgetfastmode(), fpsetfastmode(): floating-point underflow mode functions see fpgetround(3M)
fpgetmask(), fpsetmask(): floating-point exception trap enables functionsc.cecua. see fpgetround(3M)

fpgetround(8M): fpgetround(), £psetround(), £pgetmask (), fpsetmask(), fpgetsticky (),
fpsetsticky(), fpgetcontrol (), fpsetcontrol (), fpgetfastmode(),

Table of Contents: Volume 2 xiii

Table of Contents

Volume 2
Entry Name(Section): name Description
fpsetfastmode (), £psetdefaults () ...cveenniereenvereereeseeruecensnens floating-point mode control functions
fpgetsticky(), fpsetsticky(): floating-point exception flags functionsccoeeuennncne see fpgetround(3M)
fprintf(): print formatted OULPULccoivuireiiiniiirereneriiie e seestninnresessissnsssssssasassiesnosussossesessassssns see printf(3S)
fprintmsg(): print formatted output with numbered argumentscc......see printmsg(3C)
fpsetcontrol(), fpgetcontrol(): floating-point control register functions see fpgetround (3M)
fpsetdefaults(): floating-point control register defaults functionsc.ccceevvveeee ... see fpgetround(3M)
fpsetfastmode (), fpgetfastmode(): floating-point underflow mode functions see fpgetround(3M)
fpsetmask(), £pgetmask(): floating-point exception trap enables functions see fpgetround(3M)

fpsetround(), fpgetround(): floating-point rounding mode functions see fpgetround(3M)
fpsetsticky(), fpgetsticky(): floating-point exception flags functions see fpgetround(3M)
fputc(): put character 0N @ SETEAIMNcccoevveireeeeeeeiiinieseseneniieiseeenaeseenesssasaeesesenessssesssseresussesessessses see putc(3S)
fputs(): put a StrinG On @ SEFEAML ...c.civeirriecieireiiiniiiriereteeesereecesseerieseessaesssseessessoscassssssnessosansssssssssesnsos see puts(3S)
fputwe(): put wide character on a streamsee putwe(3C)

fputws (): put a wide String 0N & SETEAIMNcceiiiiiiveeie et cee e e eeeessesse e resenensssessessnsas see putws(3C)
fread(3S): fread(), fwrite()buffered binary input/output to a stream file
free: main MEmMOTY AllOCALOTccceiiviiriirinreneiiiiinneene ettt sesaees s sesese s e sassesassassnssaesssrsnsens see malloc(3C)
freopen(): re-open a stream file; convert file to StrEAMcceceeeeeriniinrecnnnrirninnecreenese e e eene see fopen(3S)
frexp(38C): frexp, 1dexp, MOAEc.cccerererrrccrrrrerereressaserns .split floating-point into mantissa and exponent
£rt0.0: execution SEArtUP FOULINEScccceviveieireerieiirresteeienrreecresenesaestssseansnsessassesssseesenssassassasrsssssnes see crt0(3)
facanf (): formatted input conversion, read from stream file see scanf(3S)
fseek(3S): fseek, rewind, FLELlccccuccrinienernrerieiereseraeesrsessoseessesenesees reposition a file pointer in a stream
fsetaclentry(): add, modify, or delete access control list entrycc.coecevevvceierecenierencnns see setaclentry(3C)
fsetpos () — restore file position indicator for a StIEAMcccicvererrerrerererieiereessesserersessesussnosecsesases see fgetpos(3S)
fatatfadev(): get file system statisticscccererrvvrerernne ..see statfsdev(3C)
ftell: reposition a file pointer in @ StrEAMcccoviieereiivieiiri e see fseek(3S)
ftok () — standard interprocess communication packagesee stdipc(3C)
FEW(BC): EEW, FEWR ceoviiiiiiirieieniie it osseiesassssessessosssesstosssssssssesssronsossosessssassassessessssssrsssessoss sussnesssnsens walk a file tree
FEWR! WALK @ fle tTEE .uvuiviecreereieerer s s v s eeas s sessssasssesss s sssesseesesssessnss sesssessssssbsnsensesesssssensensmsastreses see ftw(3C)
fwrite(): buffered binary output to a stream filecccovvrervirinicnneiiic e see fread(3S)
gamma(3M): gamma(), lgamma(), signgam()Jog gamma function
gert0.o: execution startup routinesc.......see crt0(3)
gevt (): convert floating-point number to SEIINGcovieiieeierirriertecccrit e e eseasssese e seseterees see ecvt(3C)
getc(8S): getc(), getchar(), £getc (), getw() get character or word from a stream file
getceceid(): get cluster configuration entry ... s see getccent(3C)
getccent(3C): getccent (), getcccid(), getcenam(), setccent (),

endcecent (), EFEECCONL () .ovvvvviiinrreiinierrecseesiecreessssessessessesssessessessassssssaens get cluster configuration entry
getccnam(): get cluster configuration entrycccceeveveeerenverenenrnne e e see getccent(3C)
getcdf(8C): getcdf (), hidecdf () ..ccervveernnene ..manipulate CDF path names
getchar(): get character from a Stream filecccvecveeeeeeeerierieninnererenecececnreseeseesssssesseessssssssnsssessees see getc(3S)
getclock(3C): getclock ...veneenienvennens ...get current value of system-wide clock
getcwd(3C): getcwd(), gethewd() .. .get path-name of current working directory
getdate(3C): GELAALE () ..iiivverrererreriereercrtrsteresreraeserseresssessersesestessorassssasssens convert user format date and time
getdiskbyname(8C) :getdiskbyname () <o get disk description by its name
getenv(3C): getenvV () ..cccieiieneecereieesneereenensensesseessessenns .return value for environment name

getexportent () — access exported file system information tereeresee sttt ensareens see exportent(3N)
getexportopt () — access exported file system informationcceceecerieereneervennrneecensereeeseees see exportent(3N)
getfsent(8X): getfsent (), getfsspec(),getfsfile(),getfstype(),

setfsent (), eNAESENt () ..c.ciireriiiineencsniicieere sttt esesresssesenis get file system descriptor file entry
getfsent (): get file system descriptor file entry reeeneeeseesrsnasaesiasssnaenesanes see getfsent(3X)

getfafile(): get file system descriptor file entrysee getfsent(3X)

getfsspec(): get file system descriptor file entrysee getfsent(3X)
getfstype(): get file system descriptor file €ntryccccceviiivmcvrciesicnieciccci e see getfsent(3X)
getgrent(3C): getgrent (), getgrgid(), getgrnam(), setgrent (),

endgrent (), EGEETTENE () ..iiiicicrereeieirereneeeeeisrraeeeeerasresessssmnasesssssssasessesessasssensessssassssans get group file entry
getgrgid(), getgrnam(): get group file entrycccceveinennincrenenenninenee et eaesenns see getgrent(3C)
gethcwd (): get path-name of current working direCtoryoeovevcecriiinceniiniinccninne i see getcwd(3C)

gethostbyaddr (): get NetWork host €NtYY ...cccceieriereniernnrennenincsorineiressesesseseesseorsssasecssesnosesane see gethostent(3N)

xiv Table of Contents: Volume 2

Table of Contents

Volume 2

Entry Name(Section): name Description
gethostbyname () : get NEtWOTK oSt @NELYccccovivrrieririeveiirinirecnrrcensiseesessesesesesssssiessassessnns see gethostent(3N)
gethostent(8N): gethostent (), gethostbyaddr (), gethostbyname (),

sethostent (), eNAROBLENL () .cccviciiiiiiiiieinriiniecnieeenieeieeseerssesssesssesssessssssssesssesans get network host entry
gethostent () : get NetWOTK host €Ntyccccovviiriiciniriine e rs e e ssreevesvees see gethostent(3N)
getlocale(): get the locale of & PrOGram ...ttt s s snsnns see setlocale(3C)
Zetlogin(BC): GELLOGIN() .civiiieeeeeierereteeecers s erereseseresrsbesessessressessassnesessssstessressonsessrsesernssonsansane get login name
getmntent(3X): getmntent (), setmntent (), addmntent (),

endmntent (), hasmntopt ()ccciiiiiiieiccniininrertee et sreseeceeanesneessene get file system descriptor file entry
getnetbyaddr (): get network entry see getnetent(3N)
getnetbyname (): get network entry see getnetent(3N)
getnetent(3N): getnetent (), getnetbyaddr (), getnetbyname(),

setnetent (), endNetent ()iiiiiiieiiiininieiiicieierren et sessssnnees sessssreassssernesses s get network entry
getnetent (): get NEEWOTK EDLIYcccvvirnriviinrcciierinreeirerere et snss e sasesesosesasesresesesesnanens see getnetent(3N)
getnetgrent(3C): getnetgrent (), setnetgrent (), endnetgrent (), innetgr() get network group entry
getopt(3C): getopt (), optarg, optind, opterr get option letter from argument vector
ZetPASS(BC): GEEDABB () .evveeeceerirrererrerirreiesinreree i seseesessessssesssssarssssssessess sresesssresssssssssnsassnessonnenaens read a password

see getprotoent(3N)
see getprotoent(3N)

getprotobyname (): get protocol entry
getprotobynumber () : get protocol entry
getprotoent(3N): getprotoent (), getprotobynumber (), getprotobyname (),

setprotoent (), endprotoent () get protocol entry
getprotoent (): get protocol entrysee getprotoent(3N)
EEEPW(BC): GOEDW () ceerrerereeieeetectirreeeseereritsesessesessessessssessessorsssessossossssessonsossasossonsassssesssssssnsens sred get name from UID
getpwent(3C): getpwent (), getpwuid(), getpwnam(), setpwent (),

endpwent (), EGELDWERLE () ..ccccvriniiivenienenniesniarenssssueseossasssessssresssssessnsssssecsssasss crsssose get password file entry
getpwent (): get password file entrysee getpwent(3C)
getpwent (): get secure password file entryccccverriveeeenversnencernnenes ..see getspwent(3C)
getrpcent(3C): getrpcent (), getrpcbyname (), getrpehynuUmber () ...ccccccvereeeerenenesnsresseceressens get rpc entry
ZetrPCPOrt(BN): GELTDCPOTL () .ecverirrrerieeerreireereesressesessese s sesersssessessesessesserssessssesssssossssessens get RPC port number
etS(38): GOt (), FEEB () wevvererrirceiiiereerinisiestisassatststssarasabessasstesesssssssssssssssenssessnas get a string from a stream
getservbyname () : get SEIVICe BNLYYcccuivmevivinimniisnrictininsrnscnesisisiismsscsstsressssissosesssesesssasnassson see getservent(3N)
getservbyport (): get service entry ...c.cccvceveevinvineeneenieevereeennene ..see getservent(3N)
getservent(3N): getservent (), getservbyport (), getservbyname (),

setservent (), @NASEI VN ()ciiiiiiiiiciiiesiseenieoseesssiesssssssisssssssssssssnss ses get service entry
getservent (): get service entry e ans see getservent(3N)
getspwaid(): get secure password file entry .. see getspwent(3C)
getspwent(3C): getpwent (), getpwuid(), getpwnam(), setpwent (),

endpwent (), £GELPWENL () .ottt teeceereeee e e s srtaess e nene get secure password file entry
getsubopt(3C): getsubopt ()cveerrreveereeerverennns parse suboptions from a string.
gettimer(3C): gettimercevveererennne get value of a per-process timer
getusershell(3C): getusershell(), setusershell(), endusershell [J TS get legal user shells
getut(3C): getutent (), getutid(), getutline(), pututline(), setutent(),

endutent (), UtMPRAME () ...cooceiiiiiiicinitiicitiete st essste s sesssaesaes access utmp file entry
getutent (): access utmp file ENEIY ...o.ccociiieirieicierr et es et s et e see getut(3C)
getwe(3C): getwe (), getwchar (), EGEtWE () .uvvvereeeereereirereersesneesesnrseens get wide character from a stream file
getwchar(): get wide character from a stream fileccooeoiiiiiiioieceioiieei e see getwce(3C)
getw(): get word from a stream filecccooeiveeiiinricineieeceee et et sees e srerasenad see getc(3S)
getws(3C): getws (), fgetws ()get a wide string from a stream
€lob(3C): GLOb (), GLODELE@ () .coicvrreerrrerrienieeerennrestssiesesesesesasssasnsssssnssssssssessssssennas file name generation function
globfree () — file name generation fUNCHONcccovrveeverierreriisreerrnessrsereseiesenseereseaetses et aesrasmesissnes see glob(3C)
gmtime (): convert date and time to SEFING «...oceeoeeueeieeieecerec et see ctime(3C)
gpio_get_status(B3I): gpio_get_Statuseieernerenineorensesserssesenens return status lines of GPIO card
gpio_set_CtI(BI): gPIo_8t_CLL .eeiiiiinereereeineeree et ssetessesseserssssessessssensennes set control lines on GPIO card
gsignal(): software signals .. see ssignal(3C)
hasmntopt (): get file system descnptor file entry see getmntent(3X)
hereate(): manage hash Search tablesoicvninieninineeieininesennieressressseesesssesesosesensonsson ..see hsearch(3C)
hdestroy(): manage hash search tablessee hsearch(3C)
ROTTOL — TESOLVET TOUBINES ..vveveiiierierrearieeieeerniersscseunestesesssesteresnsesosesssssosesssestossesssssssssssesossasssssessens see resolver(3N)

Table of Contents: Volume 2 XV

Table of Contents

Volume 2

Entry Name(Section): name Description
hidecdf () — manipulate context-dependent file path NAMESc.ccceeeierirenrerererrereciierineerenneeeesenns see getedf(3C)
hpib_abort(3I): hpib_abOort ()c..cccecceeiienenneeesmeiessesssssaeses stop activity on specified HP-IB bus
hpib_address_ctl(3I): hpib_address_ctl() ...set HP-IB bus address for an interface
hpib_atn_ctl(3I): Rpib_ath_CtL() ...ccerriirmirinennrerirersssesismsessesseseseseressseseras control Attention line on HP-IB
hpib_bus_status(3I): hpib_bus_status ()ciieeerernrerneennns return status of HP-IB interface
hpib_card_ppoll_resp(3I): hpib_card_ppoll_resp() control response to parallel poll on HP-IB
hpib_eoi_ctl(8I): hPib_@0i_cCtL() .wcieeiioiniiensressessesseseressssnsssesessessesseses control EOI mode for HP-IB file
hpib_i0(3I): hpib_i0() .crviireeeenrieieenns .perform I/0 with an HP-IB channel from buffers
hpib_parity_ctl(3]): hpib_parity_ctl() ... enable/disable odd parity on ATN commands
hpib_pass_ctl(3I): hpib_Pass_ctl() ... change active controllers on HP-IB
hpib_ppoll(8I): hpib_PPOLlLl() .cvreeeeicieirieiierirsssessereeresesesnsssesssssssssseseres conduct parallel poll on HP-IB bus
hpib_ppoll_resp_ctl(8I): hpib_ppoll_resp_ctl()cccvmermcrernnnn define interface parallel poll response
hpib_ren_ctl(8I): hpib_ren _ctl() ..eiiireeinineeereeenreeeeeessens control the Remote Enable line on HP-IB
hpib_rqst_srvce(3I): hpib_rgst_sxvce()allow interface to enable SRQ line on HP-IB
hpib_send_cmnd(3D): hpib_send cmMnA ()cccceveermrerrruenrenneeressnsensuesessssssssens send command bytes over HP-IB
hpib_spoll(8I): hpib_spoll() ... conduct a serial poll on HP-IB bus
hpib_status_wait(3I): hpib_status_wait () wait until the requested status condition becomes true
hpib_wait_on_ppoll(8I): hpib_wait_on_ppoll() wait until a particular parallel poll value occurs
BPPAC(BX) ..corvrirrerinrinriniintnnneenieieeseaee e eses e ersssensesesses .Series 800 HP 3000-mode packed decimal library
hsearch(3C): hsearch(), hcreate (), BAeSEIOY () .eriereiecirerreerirenreesesreeseenes manage hash search tables
htonl (), htons(): convert Values from host to network byte OPAET .ouveviirencereeenrernraeresereenennanas see byteorder(3N)
hypot(sM) hypot (), DS () ccccevrvereererneniersreaesssersnesnens Euclidean distance, complex absolute value function
iconv(3C): iconvclose(), iconvopen(), iconvsize (), iconvlock(),

ICONV, TCONVL, ICONV2 ...cccorerersssrrsocsssssnorsssnesaossres eerseessssessessrsasssssssssssrnas code set conversion routines
idtolang(): NLS information about native languagesccocererererunune see langinfo(3C)
ieee(3M): copysign(), copysignf(),drem(), finite(), £initef (),

1ogb (), 8CALlD () wervrcrririrsnienroinnesessessssensasss copysign, remainder, classification, exponent manipulations
index(): BSD portability string routinecccccccceceevevererricreeeriveeirvsersnressnieneenns see string(3C)

inet(8N): inet_addr(), inet_network(), inet_ntoal(),

inet_makeaddr (), inet_lnaof (), inet_netof () Internet address manipulation routines

inet_addr(): Internet address manipulation routinesccccecevsereesceserrrecenseseennsesestenneneesccscenes see inet(3N)
inet_lnaof (): Internet address manipulation routinessee inet(3N)
inet_makeaddr (): Internet address manipulation routinescoceveeeesicceuencnssee inet(3N)
inet_netof (): Internet address manipulation FoUtINeSccceeevereieivreerenierisinineseesereseseesennnrenesmsesseens see inet(3N)
inet_network(): Internet address manipulation routinesccc.ccceeeueen. rrerennens .see inet(3N)
inet_ntoa(): Internet address manipulation TOULINESccccoveereveerrerncnriesennereenneereeresesssseraessssasesses see inet(3N)
initgroups(3C): initgroups () eevetereenarrasrssrnessessssesrasanerasnasies initialize group access list
INItOPt(BN): ANLLOPL () vttt st tsen s ststeaseeassesesosesesesaresesasansan initialize a NetIPC option buffer
io_burst(3D): io_burst ()cecerreneninneinnens perform low-overhead /O on an HP-IB/GPIO/parallel channel
io_dma_ctl(3): io_dma_ctl() control DMA allocation for an interface
i0_eol_ctl(3I): 10_00L1_Ctl ...vreeierieerreeriesnianereseermsnissessessenes set up read termination character on special file

determine how last read terminated
enable/disable interrupts for the associated eid
..... lock and unlock an interface

io_get_term_reason(3[): io_get_term reason() ...
io_interrupt_ctl(8I): io_interrupt_ctl()
io_lock(3D: io_lock, io_unlock

io_on_interrupt(3I): io_on_interrupt()device interrupt (fault) control
io_reset(3I): io_reset() ... rreereetesterrerreeeeaeste reesestetbeseansatrsastesraend reset an I/0 interface
io_speed_ctl(3I): io_speed_ctl()cceermerrreemrns .inform system of required transfer speed

io_timeout_ctl(3I): io_timeout_ctl() ..
io_unlock: lock and unlock an interface ...

...establish a time limit for I/O operations
see io_lock(8I)

io_width_ctl(3I): io_width_ctl()ccceeeren set width of data path
ipcerrmsg(3N): ipcerrmsg(), ipcerrstr()ieneerrreirenne provide text describing NetIPC error number
ipcerrstr () — provide text describing NetIPC error nUmDbETcccevecreerureescnseenrereeeseesencnns see ipcerrmsg(3N)
is_68010_present: check for presence of hardware capabilitiesccccveerreverrivennnncs see is_hw_present(3C)
is_68881_present: check for presence of hardware capabilitiesc.ccceeevrercrreuerennencs see is_hw_present(3C)
is_98248A_present: check for presence of hardware capabilitiessee is_hw_present(3C)

is_98635A_present: check for presence of hardware capabilitiessee is_hw_present(3C)
isalnum(): classify ChATACLETScccvicirieiiiniiiiienreiieieireessiariseeeseeresatesesesssesessbasssssesesssesasssassses see ctype(3C)

xvi Table of Contents: Volume 2

Table of Contents

Volume 2
Entry Name(Section): name Description
isalpha(): classify ChATACIEYSco.occcciiririiiinnrenrrineienire st ere e sssressssrasssenesreverassesesemsessborsasenensssesene d see ctype(3C)
isascii(): classify Characters ... e see ctype(8C)
isatty(): find name of a terminal .. see ttyname(3C)
isentrl(): classify Characters ... s e s see ctype(3C)
isdigit (): classify Characters ...t siressesae st sssssesessassssssassarasssssios see ctype(3C)
isgraph(): classify Characters ... e reeeeeaend see ctype(3C)
is_hw_present(3C): is_68010_present,is_68881_present,
is_98635A_present, is_98248A_present ... check for presence of hardware capabilities
isinf(8M): isinf (), isinff () .vvvrirecieciriiieinenne test for INFINITY
isinff (): test for INFINITY (float version)...........cmimiiiiiiiiciiennssissessssissssssns see isinf(3M)
islower (): classify Characters ... srassssssosssensoned see ctype(3C)
isnan(8M): isnan(), isnanf () . rresrreerresraeeraeren . reeverrneesnraseanas test for NaN
isnanf(): test for NalN (float VErSion)........ccoivmivmeeinnicerisineneereseisssenisieisiieiniesssssssissessassssssass see isnan(3M)
isprint (): classify Characters ...t srossesssssd see ctype(8C)
ispunct (): classify characterssee ctype(3C)
isspace(): Classify ChATACLETSc..ccovivveriirenieriiiieerinesreseessssssesssnrsssssreseraeseseseesensssssesssenesassssess ...see ctype(3C)
isupper(): classify characters v rreteresesnsesseresnenarend see ctype(3C)
iswalnum: classify Wide Characters ... e sressessaesssssssssesesstssmosasssasases see wetype(3C)
iswalpha: classify wide characterssee wetype(3C)
iswentrl: classify wide characterscoocviniiiiinnniiiciciienns ...see wetype(3C)
iswdigit: classify wide charactersccoveivnininnininnenennnnreseesnneeseens ...see wetype(3C)
iswgraph: classify wide characterssee wetype(3C)
iswlower: classify wide characterssee wetype(3C)
iswprint: classify wide characterssee wetype(3C)
iswpunct: classify wide characterssee wetype(3C)
iswspace: classify wide characters rrerrerenaetianersassrees see wetype(3C)
iswupper: classify wide characterscccccccvvvnreveccncns reeressessesistastsstetesssserssarassenserssrones see wetype(3C)
iswxdigit: classify wide charactersoiirneinineineennseccensessseens ...see wetype(3C)
isxdigit (): classifyf ChATACETScoiviiveere et e ettt be e e bara sasssasnebsans see ctype(3C)
FO(): BeSSEl fUNCEION ucveeciciiinntitieenressiccsisesni sttt st bt sasseassias b sessstonsbssssassasassasssrrnone see bessel(3M)
F1(): Bessel fUnctionccociniiienenncccicniiniiee e ssssneniessee bessel(3M)
jn(): Bessel function et asessens ettt st st s bbb R s b r b b eae see bessel(3M)
jrandd8(): generate pseudo-random NUMDETScccccivminineninnenieniriiesiisessnersnssisses see drand48(3C)
13tol(3C): 13tol(), 1tol3() convert between 3-byte integers and long integers
164a: convert between long integer and base-64 ASCII SETINGcccveereevresienerenesesssisissiriisissnsesssnens see a641(3C)
langinfo(3C): langinfo(), langtoid(), idtolang(), currlangid() native language NLS information
langinit(): initialize the NLS environment of & programcccoviniiniinnceceinnennnen see nl_init(3C)
langtoid(): NLS information about native languages reseesass et et see langinfo(3C)
lcong48(): generate pseudo-random NUMDBETS ... see drand48(3C)
1devt(3C): _1decvt (), _ldfcvt (), _ldgevt() ... convert long double floating-point number to string
_ldecvt () — convert long double floating-point number to Stringccocvivniniinisisenionns see ldevt(3C)
ldecvt () (_ldecvt ())— convert long double floating-point number to string see 1devt(3C)
ldexp: split floating-point into mantissa and eXpPonentc.ccececeececnmriireceessiiisiniincsi i see frexp(3C)
_ldfevt () - convert long double floating-point number to string reserstsessrsaeiasasaserserenes see ldevt(3C)
1ldfeovt () (_1dfevt ()) - convert long double floating-point number to Stringcccoivensieseenisanns see ldevt(3C)
_ldgevt () — convert long double floating-point number to stringccoeevverccne ...see 1devt(3C)

ldgevt () (_ldgevt ()) - convert long double floating-point number to stringsee 1devt(3C)
1div(): long integer division and remMainderc..ccccvverereierceiiiniereeceeereenerseeeesreesansssssiesssesisesaessssssnens see div(3C)
1£find(): linear search and UPAatec..ceemeenienencrniisiseisessismrssesssesssssssssessess ..see lsearch(3C)

lgamma (): log gamma FUNCHIOM wuceeeeieiciice ittt ettt cee st csss bbb e s s ebe b0 see gamma(3M)
localtime(): convert date and time to Stringcocveevvriviermeecrcccnessee ctime(3C)
1og10(): common logarithm functioncc.... see exp(3M)
log10£(): common logarithm function (float version) see exp(3M)
log2(): base 2 logarithm functionc.c.cvviemieicmecninnee e sssses s st sasessssrassses see exp(3M)
log2f (): base 2 logarithm function (float VErSIon)ccicrenereriniesienseneseeressssessessesiaessesassscsessasns see exp(3M)
logb(), scalb(): exponent manipulationseeeenene ...see ieee(3M)
logf(): mnatural logarithm function (float Version)ccccceimeereeieniiecnineceienressesesceesmensseessassanssess see exp(3M)

Table of Contents: Volume 2 xvii

Table of Contents
Volume 2

Entry Name(Section): name Description
logname(3C): logname () return login name of user

log(): natural logarithm function see exp(3M)
longjmp(): restore stack environment for non-local gotosee setjmp(3C)
lrand48(): generate pseudo-random NUMDETScccveerereeressesrnrnsessesessssesassesasasissssesessssensoses see drand48(3C)
lsearch(3C): 1search(), 1EiRA() .cccccvecccnerenererersanneneneslinear search and update
ltoa(): long to ASCII declmal .. see ltostr(3C)
ltol3(): convert between 3-byte integers and long INTEGETS ..vvvriirirerreiiitiietcti st er e eaaenans see 13tol(3C)
ltostr(8C): 1ltostr(),ultostr(), ltoa(),ultoa()convert long integers to strings
mallinfo: main MEMOYY ALIOCALOTcccvcuiereirrrentirieireirreeesentesseessereensssessessessesiassssesssssssasssesasessasd see malloc(3C)

malloe(3C): malloc, free, realloc, calloc,

mallopt, mallinfo, memorymap main memory allocator

mallopt: main memory allocator rerrreeerersenrstesseraraess see malloc(3C)
MAatherr(BM): MALRETIT () .cccveeeeeeeieeieeiereerterre e essseeessssseesressesssessessessnssessssssnsnsessenssessenad error-handling function
mblen(): multibyte characters and strings conversions see multibyte(3C)
mbstowes () : multibyte characters and strings conversions see multibyte(3C)
mbtowc () : multibyte characters and strings conversions see multibyte(3C)
mert0.o: execution startup routines rresersesesesennens see crt0(3)
memccpy(): Memory Operationsc.ceeceereesvereenneas see memory(3C)
memchr (): memory operations see memory(3C)
mememp (): memory operations see memory(3C)
memcpy (): memory operations see memory(3C)
memmove(): mMEemMOYY OPETALIONS ..ccvvrrerrerrerrarsessersenrarsersrasassseessssneseennens rersessaesaseseresaossasas see memory(3C)
memory(3C): memccpy (), memchr (), mememp (), memcpy (), memset () ..occeeeeenee . memory operations
memorymap: main memory allocatorcieeersieneneesisroseesissesiesens resaresessnesasinaened see malloc(3C)
memset (): MEMOYY OPETALIONSccovevirrerrerrnrirsssrrererseesensersoscssssessrosersessrsesssssasassassnssasnsssesssssessssssans see memory(3C)
mfrt0.o: execution startup routines reesesrserasssesasssstssasaes see crt0(3)
mkfifo(3C): mKEifo() .cvevrvveecennens rereereeereraetesaeesentesseesbensas make a FIFO special file
mktemp(3C): mktemp()cee.. cernerestersrtetssaesaassneses " reeressesnesrerasseseond make a unique file name
mktime (): create calendar time valuecccoeruenenn. . . rrreeretsteae st sasaeeasshesbsr et bbb e e sassaaen see ctime(3C)
mEtimer(3C): MKELMET ..occvieeeireeerenieiieineisenerienteresseransessestessesessessessesessessesass ..allocate a per-process timer
modf: split floating-point into mantissa and eXponentcveeeeccminniriennienen see frexp(3C)
MONItOr(3C): MODLEOL () .ourviuivirreerinirintireneaeseeeuese et seranssasesesesssssessssssssssessesssssesasssensassesones prepare execution profile
mount(8N): mount ()coeirnininnieiiinneeceesinianen ..keep track of remotely mounted filesystems
mrand48(): generate pseudo-random NUMDbEYSccccveerrerrerrneeresrernerenne see drand48(3C)
multibyte(3C): mblen(), mbtowc (), mbstowcs (), wetomb(),

WEBEOMDB () .ooveiviiiriiiiiecniiniiinioniiieessessssessssesssssnsorssosssssssens multibyte characters and strings conversions
ndbm(3X): dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,

dbm_nextkey, dbm_error, dbm_clearerr database subroutines
net_aton(3C): net_aton(),net_ntoa() ..o network station address string conversion routines
net_ntoa(): network station address string conversion routinescccoveereeeerererrescsesieecisesnnes see net_aton(3C)
nextkey(): database SUDTOULINESc.cooverivvieereeiieceiereerreessresseesssesssssessesssessaessssssssessassssesosnesssessees see dbm(3X)
nlappend(3X): nlappend() ... append appropriate language identification to valid MPE file name
nl_asctim()e: convert date and time t0 StrINGccooveerireiriinnnceiniiiriies s see ctime(3C)
nl_ascxtime(): convert date and time to SEFINGccoovriviiciiririncstinnt et see ctime(3C)
nl_atof: convert string to double-precision number .see strtod(3C)
nlcollate(3X): nlcollate()c.covmenne compare strings usmg MPE language-dependent collating sequence
nl_conv(3C): nl_toupper(),nl_tolower ()ceeren translate characters for use with NLS
nlconvelock(8X): nlconvelock () ..ieeeieoesnennns check and convert time string to MPE internal format
nlconvcustdate(3X): nlconvcustdate ()ceeeemen. convert date string to MPE packed date format
nlconvhum(3X): nlconvoum()cccomrnnnee convert MPE native language formatted number to ASCII number
nl_ctime(): convert date and time to SEFINE «.cccceirerrerrnrececinnicciersirieseencesereesecsssesisesesescrssessnns see ctime(3C)

nl_ctype(3C): nl_isalpha(),nl_isupper(),nl_islower(),nl_isdigit(),nl_isxdigit(),
nl_isalnum(),nl_isspace(),nl_ispunct(),nl_isprint(),nl_isgraph(),

D1 _ABONETL () ceccorirrrieneiriieerererrenserresessssassessesnsssansssssessessessessorssrensssssnees classify characters for use with NLS
nl_cxtime(): convert date and tlme to string see ctime(3C)
nlfindstr(3X): nlfindstr() ... search for string in another string using MPE character set definition
nifmtcal(3X): nlfmtcalendar() ... format MPE packed date using localized format

xviii Table of Contents: Volume 2

Table of Contents

Volume 2
Entry Name(Section): name Description
nifmtclock(8X): NLIEMECIoCk () ccivercrinrneresenerenssirraesesecssrnanenns format MPE time of day using localized format
nifmtcustdate(83X): nlfmtcustdate() ..., format MPE packed date using custom date
nifmtdate(3X): nlfmtAate() ... format MPE date and time in localized format
nlfmtlongcal(3X): nlfmtlongcal()ccvvrenererererens format MPE packed date using long calendar format
nifmtnum(3X): nlfmtoum()convert ASCII number to MPE language-specific formatted number
nl_fprintf(): print formatted OULPULcccoevevereriniiieiriicenieveeenr ettt senssesaesesessesesssnraesessesossens see printf(3S)
nl_fscanf: formatted input conversion, read from stream filesee scanf(3S)
nl_gevt(}): convert floating-point number to Stringccoccvvivciviniinnininininee e see ecvi(3C)
nlgetlang(3X): nlgetlang ()cceoriemrereecens ..return current user, data, or system default language
nlinfo(3X): nL1info() .cccvrenereneninnens ...return MPE language-dependent information
nl_init(3C): nl_init (), langinit () ...ccervcerecnnneeinitialize the NLS environment of a program
nl_isalnum(): classify characters for use With NLScccccccieiirenmrenenrneosimmencseressnesissosesnnes see nl_ctype(3C)

....see nl_ctype(3C)
....see nl_ctype(3C)
....see nl_ctype(3C)
...see nl_ctype(3C)

nl_isalpha(): classify characters for use with NLS ..
nl_iscentrl(): classify characters for use with NLS ...
nl_isdigit(): classify characters for use with NLS ...
nl_isgraph(): classify characters for use with NLS
nl_islower(): classify characters for use with NLSsee nl_ctype(3C)
nl_isprint(): classify characters for use with NLSsee nl_ctype(3C)
nl_ispunct(): classify characters for use With NLSccccocviiverieeniiniererncsciienninnenieiesiesssssessnnes see nl_ctype(3C)
nl_isspace(): classify characters for use With NLSccccociiniirnrnriniismiininnsinineninninirc e see nl_ctype(3C)
nlist(3C): DIi8E () .oevciriiccccieeieeeee e eveaere e .get entries from name list
nl_isupper(): classify characters for use with NLSsee nl_ctype(3C)
nl_isxdigit(): classify characters for use with NLS ... see nl_ctype(3C)
nljudge(3X): nljudge() judge whether character is one- or multi-byte Asian using MPE character table
nlkeycompare(3X):

N1KeyCOomPATe () ..coccoeeeeeeeeeeceeeeeeiinreanans compare character arrays (keyl, key2) using MPE collation table
nl_nl langinfo(3C): nl_langinfo ()cvereeiiineneereseeesesseesens NLS information about native languages
nlnumspec(3X): nlnumspec()return number convert/format information for MPE routines

nl_printf(): print formatted OULPUL ..cccoviiiieieieice et see st s esraee st sasaecre s saese s sasan see printf(3S)
nlrepchar(3X): nlrepchar() ..o replace non-displayable characters MPE character set table
nl_scanf: formatted input conversion, read from stream fileccooueevivievenrenrereerneinennenniniieninine see scanf(3S)
nlscanmove(3X): nlscanmove() ... move, scan and case shift character strings using MPE character set table
nl_sprintf (): print formatted oULPULccoveriieiiiiiiiiere et sttt e e see printf(3S)
nl_sscanf: formatted input conversion, read from stream fileccooccevriiiinincniniinnncniiinnenn see scanf(3S)
nl_strcmp, nl_strancmp: character string operationsccceeneeeereces see string(3C)

nl_string(3C): strcmp8(), strncmp8(), strempl6 (), strncmplé () .. non-ASCII string collation
nl_strtod: convert string to double-precision NUMbETc.ccovevirniiiiiiencnnininecie e see strtod(3C)
nlsubstr(3X): n1substr () ...ccvvverinrnnrinieieeieeceninnsieeeseeneee extract substring using MPE character set table
nlswitchbuf(8X): nlswitchbuf ()cccoovmevinrenenne convert string screen order using MPE character set table
nl_tolower(): translate characters for use with NLSccccciviiiiiiiiiiiiinne e ciienrierneserareesaeenes see nl_conv(3C)
nl_tools_16(3C): firstof2(), secof2(),byte_status(), c_colwidth(),

PIRSTOf2 (), SECO£2 (), BYTE_STATUS (), C_COLWIDTH (), CHARAT (),

ADVANCE (), CHARADV (), WCHAR (), WCHARADV ()

...tools to process 16-bit characters

nl_toupper(): translate characters for use With NLSccccivviiiieiiiiiieiineeiee e cresseeeeesnens see nl_conv(3C)
nltranslate(3X): nltranslate()c..coenn. .translate ASCII EBCDIC using MPE conversion table
nrand48(): generate pseudo-random NUMDETSc.cccocvevrrereererenieeieteiesinteseseeesesisseseseseresessesenses see drand48(3C)
ntohl (), ntohs (): convert values from network to host byte ordercccccoveveinvciiinncnns see byteorder(3N)
opendir (): direCtory OPETatiONScccococeeieieiiiiiieieieeeeeresteessese st etesaessebesassssesnasssesesessssassnsenes see directory(3C)
openlog(): CONLIOl SYSEEIM LOG .c.ocoiririiirieiieeirieie ettt s seete s see e s asae e e s esnasesssesars sbesssssensaend see syslog(3C)
optarg: get option letter from argument VECOTc.covcueueeieuireieitie et s e e e see getopt(3C)
opterr: get option letter from argument VECEOYcouecveeuieiveiireiiceere vt et e e e see getopt(3C)
optind: get option letter from argument VECtOTc....cocveviiieiiicriiieeee e e e see getopt(3C)
optoverhead(8N): optoverhead() return number of bytes needed by a NetIPC option
pclose(): initiate pipe /O to/from @ Processcoccooiriiveciiiniincnine et s see popen(3S)
perror(3C): perror (), errno(), sys_errlist (), sys_nerr() .. system error messages
PIM_$Iintro(3): PIM_BINLTO .oooioiiiieiecie ettt ettt eer e e eaes et re et ebaenensaneie fault management
Pfm_$cleanup(8): DEM _$CLOANUD () .ooooviiieecriiiicie et seeeeseneere et es e et eseeseans establish a cleanup handler

Table of Contents: Volume 2 xix

Table of Contents

Volume 2
Entry Name(Section): name Description
pfm_$enable(3): pfm_$enable()ccceveverrverns enable asynchronous faults
pfm_$enable_faults(3): pfm_$enable_faults() .enable asynchronous faults
pfm_$inhibit(8): pfm_$inhibit () ..coerrrceneiinnne inhibit asynchronous faults
pfm_inhibit(3): pfm_inhibitc.ccoceevirrieirerrererrerieienens pointer entry for conflicting online manual entries
pfm_$inhibit_faults(3): pfm_$inhibit_faults {dhibit asynchronous faults; allow time-sliced task switching
PIm_$init(3): PEM_$IDIE () eovrerrereeeeeeceeer st sneserreresnesnerenns initialize the process fault manager package
pfm_$reset_cleanup(3): Pfm_$Ireset_CLleanUPcmiriiirnenienniesersesssesesssesesenssones reset a cleanup handler
pfm_$rls_cleanup(8): pfm_$rls_cleanup()ccceere .release a cleanup handler
pfm_$signal(3): pfm_$signal() . rerestrrest e raste e saentaesraraerenenes signal the calling process
PEM_S$INtro(8): PEM_PINIIO ...oceiirieeiiieieeecreceeeer et tetees e sreseseererarersernessaesestessasstessasesass program management
PEM_$eXit(3): DOM_$OXIE () toverrriiiiererereeiree ettt sresessesesassbessesessssoresensesessrsonssssrersssssenssssnsssnes exit a program
Popen(88): Popen (), PCLOBE () .ueiirieeeeireeereesaesresnersesessesnesssses ..initiate pipe I/O to/from a process
powf (): power function (float version) . rreeseisesss e ersshsaberesasaen e see exp(3M)
POW(): POWET FUNCHION .ottt ettt e sese e e esensesssrbesssussesasbssssesbess sase see exp(3M)
printf(38): printf(),nl_printf(), fprintf (), nl_fprintf(),

8DPTINEE (), DLl _BPTINEE () trorrereeceeeririecrrreecirererrresessenresstsesssssesssnescssssossrnsresssnsassnsneses print formatted output
printmsg(3C): printmsg(), fprintmsg(), sprintmsg() print formatted output with numbered arguments
Ptsname(3C): DLBRAMEccccccevvinirnrienreeesiereeresssesresisesssssssessssesesesessessesssssensasesssess get the name of a slave pty
putc(3S): putc(), putchar(), fputc (), putw() put character or word on a stream
putchar(): put character 0N & SETEAIMNcc.evecririreereeiersiinereeiesereeieessienersesesassereasessessasesessonsesassansas see putc(3S)
putenv(3C): putenv()change or add value to environment
PUtPWENt(BC): DUEDWERLE () .ivivvereceeererinrerernnreesreresesuraesessesssessssssessosesesssossrsasessssssassseses write password file entry
PUtS(38): DULS (), EDULS () .ovcircerccieieneeinrenrersrinsiesessesssesesesssestssessosssssessssrssassssssssssssssssses put a string on a stream
putspwent(8C): putspwent () reereseesnreeasaas write secure password file entry
_pututline(): access utmp file entry see getut(3C)
pututline(): accessutmp file entryccovrevivrcienrees rererennes see getut(3C)
putwe(3C): putwe(), putwehar (), fputwe (), PUtw() coeveecvcrenene rerererernsense put wide character on a stream
putwchar(): put wide character on & Streamcciiiiniininicnnier s aesraenss see putwc(3C)
putw(): put wordon a stream et et st sraese e st e s issasnaertsresrsrbeas st e saesbane see putc(3S)
putws(8C): putws (), fputws () .put a wide string on a stream
gsort(3C): gsort() ... ettt et s b s b Lt sb e she bt s b S b Sh Rt e R Sb aBeb SRR BEs R bsBasat SRS R NSRS shs Shsu R e R e susbOsRE quicker sort
rand(3C): rand(), BTABA() ...ccoevivrrrneenrnensiierensessessssssssesesesssesesseserasassas simple random-number generator
remd(8N): rcemd(), rresvport(), ruserok() return a stream to a remote command
readdir(): directory OPerationsc.cccccccersnirenimscerresreserseesneesesesscnsessesssnsessesssessansesssssesd see directory(3C)
readopt(3N): readopt()obtain option code and data from NetIPC option buffer
realloc: mMain MEMOXY ALIOCALOTcccecerererrerererrnrererasssresereseessssesessssesessssssessesessssascssesesersesecasseses see malloc(3C)
regemp(3X): regomP (), £OGOX () .ivvirvicereucerunininensenssrirressrsessseasssssasersones compile and execute regular expression
regcomp(3C): regcomp(), regerror (), regexec(), regfree() regular expression matching routines
regerror () — regular expression matching FOUtINescccceerveriveeenrerneeeserersnreseessesisssessesonens see regcomp(3C)
regex(): compile and execute regular EXPressioncieiireiiesesseseersesessesiessseseesssesssns see regemp(3X)
regexec () — regular expression matching FOULINESccvcreeeererensrenterneerenerenssesseensesssssessesesosens see regcomp(3C)
regexp(3X): compile(), step(), advance() regular expression compile and match routines
regfree () —regular expression matching POULINESccevierererernsenintrensrieniesenssnesesssessssssssseens see regcomp(3C)
reltimer(3C): reltimer ... reereaes ...relatively arm a per-process timer
remexportent () — access exported file system informationccceeeevevcncnennencnniiinninneac. see exportent(3N)
YEMOVE(3C): TOMOVE () ccuerureeecrinrerersnseonsesssnsesiusssesersssmsassssesasssessssssssssesssssasassssssssesessssessssssssnsssssssssssoss remove a file
res_init, res_mkquery, res_query, res_search, res_send, — resolver routines see resolver(3N)
resolver(8N): res_init, res mkquery, res_gquery, res_search, res_send, dn_comp,

dn_expand, herror rereessseeeetesstesantenresoras resolver routines

rewinddir(): directory operatlons see directory(3C)

rewind: reposition a file pointer in a stream see fseek(3S)
rexec(8N): rexec()cuererereereveneens rveereeneenYEGUTD Stream to a remote command
rindex(): BSD portability string routinecccceverevecrerrervererererennes . . seeeneneeiSee StXiNg(3C)
rint (): Tound-t0-NEATESt FUNCEION ...ccviriveerirrieeieeeerereresreserereereerassrssessesareesessseseressessressssererasnesensensnsred see floor(3M)
rmtimer(3C): rmtimercceeeee. reteretae s e e sese et e senteaeseas st beseses free a per-process timer
rnusers(3N): rousers (), Tusers ()vveeererermreeivennes return information about users on remote machines
YPC(BC): IPC () covrrirrinetreenieereeeceveseens library routines for remote procedure calls

XX Table of Contents: Volume 2

Table of Contents

Volume 2
Entry Name(Section): name Description
rresvport () — return a stream to a remote COMMANAcccceerrirriiiiierierneenieeneenisesisesssesinssesssnssssssers see remd(3N)
rstat(3N): rstat (), havedisk ()ccvvmveecererennes get performance data from remote kernel
ruserck() return a stream to a remote cCOMMANcccceeeerrirverirceerrrrernerseeseeseesseestsstoresnessresessssssns see remd(3N)
rwall(BN): rwall () .cecrrreeececnrannreeseessesesessenns .write to specified remote machines
scalb(), logb(): exponent ManIPUIAtIONSc.ccvvirecrcrrerineesrnenieseisessecreoersoresnesssssessesesmessassnssesssonssos see ieee(3M)
scandir(3C): 8candir (), ALPRABOTE () .cviveeiieiiiticeiesieneestiteesessressrsesesaesssessasssessessaesesesssasssessnss scan a directory
gcanf(88): acanf (), facanf (), sacanf (), nl_acanf,
nl_fscanf, Dl_SSCANEeceereeniietiie e formatted input conversion, read from stream file
8ecof2 (), SBCof2(): Process 16-bit charactersccocevviiencicreninenenenerecsnssessisannsnenees see nl_tools_16(3C)
seedd8(): generate pseudo-random NUMDETSccccvceriiinerrereireriersessreesienueressesreesonesrnsasassesesees see drand48(3C)
seekdir (): directory OPerationsecremmiinieeiemessssssasossssssase see directory(3C)
setaclentry(3C): setaclentry(), fsetaclentry() add, modify, or delete access control list entry
5etbuf(3S): setbuf (), 8ELVDUE () .viiiirerererieieiesesesernerrerseresssseressrsesessssersrssreses assign buffering to a stream file
setccent (): get cluster configuration entrysee getccent(3C)
5etclock(3C): 8eECLOCK ..covevicririiireererieresrreerseresrerseseesessenees rerreerereerenenneneen.S€L value of system-wide clock
setexportent () — access exported file system information .. reresessestessr e eseseaseesatesasssnes see exportent(3N)
setfsent (): get file system descriptor file €ntryccvevinvirninnecntiin s see getfsent(3X)
setgrent (): get group file entryccoeeeeveeevivererneenen. erereeera ettt ettt esesars seseseestas see getgrent(3C)
sethostent (): get network host entrycccceveevrecinnnnne see gethostent(3N)
setjmp(3S): setjimp(), longjmp() ...save/restore stack environment for non-local goto
_setjmp(): save stack environment for non-10cal GOtocccecererervreerrierenerneintininnietneenne see setjmp(3C)
setkey(): generate hashing encryPtioncocccicininiiiinnneece sttt st etsaesssnssssessonns see crypt(3C)
setlocale(83C): setlocale(),getlocale()ceen .set and get the locale of a program
setlogmask(): coNtrol SYStem I0Z ...ccceeeveeiiiivcivrreieeeeee ettt et s st see syslog(3C)
setmntent (): get file system descriptor file entrycocccceveervcruenenee ..see getmntent(3X)
setnetent (): get NEtWOTK entryccceeeevecerieniveneeerseenenns see getnetent(3N)
setprotoent (): get protocol entryccccervrrereesrnanene <enenn.S€E getprotoent(3N)
setpwent (): get password file entryccccceveeenrivenrennnninncnscnrneceesecsneens see getpwent(3C)
setpwent (): get secure password file ntry ... e see getspwent(3C)
setservent (): get SEYVICE BNLTY ...cccvieiiviicnicriiininni s st sasesssssassssssstesemmeassnen see getservent(3N)
setusershell () — rewind legal user shells fileccccorvermenrciivnvnerecinrccnnennens weeee.S€€ getusershell(3C)
setutent (): access utmp file entry ... RN see getut(3C)
setvbuf (): assign buffering to a stream filec.ccccevvevrcuiereereccneene reereesnreiasnes .see setbuf(3S)
sgetl1(): access long integer data in a machine-independent fashionccccvivierneirincsircnennne, see sputl(3X)
shl_definesym() — define new symbol for shared Hbrariesccccerenerniereerecsnseeseoriinseesseseonns see shl_load(8X)

shl_findsym() — explicit load of shared libraries see shl_load(3X)

shl_findsym() — get information about shared Librariesccccecveerernecvcrurrinrennence see shl_load(3X)
shl_gethandle() — get shared library informationcccocevrrerciruennnns see shl_load(3X)
shl_load(3X): shl_load(), shl_findsym(), shl unload(), shl_get() ... explicit load of shared libraries
shl load() — explicit load of shared libraries reeereeeeseerestestentensaee et st et ernas sessasnans see shl_load(3X)
shl_unload() — unload shared HBIariescvrimnicicnnnnisisennenssssssssssesssenees ..see shl_load(3X)
sigaddset (): initialize, manipulate, and test signal Setscecevevereccnccnrrerncecenssniinncennnnes see sigsetops(3C)
sigdelset (): initialize, manipulate, and test signal sets see sigsetops(3C)
sigemptyset (): initialize, manipulate, and test signal sets - ...see sigsetops(3C)
sigfillset (): initialize, manipulate, and test signal setscccccvveeeneee see sigsetops(3C)
sigismember (): initialize, manipulate, and test signal Setscccccerrirveicrcinrnnecrvcecscninenes see sigsetops(3C)
signgam(): log gamma function .. rreeeresraenereraes see gamma(3M)
sigsetops(3C): sigemptyset (), sigfillset (), sigaddset 0,

sigdelset (), 8igismember ()c.ccccereireerierresreeieesienseesaenns initialize, manipulate, and test signal sets
sindf (): trigonometric sine function (float, dEETEes)cccerrverrerrerencrinienerenrensesissesssesnesseseorssusseses see trigd(8M)
sind(): trigonometric sine function (degrees) . see trigd(SM)
sinf (): trigonometric sine function (IOAL)ccceeeiieiennerinenirseressererneessesassessessorsassassssssssesssnsons see trig(3M)
sinh(8M): sinh(), cosh(), tanh(), sinhf(), coshf (), tanhf ()ccceervrrrererrerrrescermrrenerenes hyperbolic functions
sinhf (): hyperbolic cosine function (float version)c.ccccovvvrenene. see sinh(3M)
sin(): trigonometric sine function reterreeseeseteanertesnaeseesaeteraessaesarnresranssnsesressessassted see trig(8M)
sleep(3C): sleep() ... et s e e et e bt s sen s st saes suspend execution for interval
SPraY(BIN): BDTAY ..cccooiiirrrierecsirnreneieristessssessesneraessesessesnessssessesssressessssasassserseseses scatter data for network checking

Table of Contents: Volume 2 Xxi

Table of Contents

Volume 2

Entry Name(Section): name Description
sprintf (): print formatted OULPULcooviviieiiiet et ee s teresteeae st eessesaessssosrossossessosasonsons see printf(38)
sprintmsg(): print formatted output with numbered arguments see printmsg(3C)
sputl(3X): sputl(), sgetl()ceererererenenenes access long integer data in a machine-independent fashion
sqrtf(): square root function (float VErSion)c.ceceeoverecerereiinnicniniesiicnnene e s enessseaessenene see exp(3M)
SQrt (): SQUAYe YOO FUNCEION ..ovveeereeeiieecce et et er s sa e e e e et eencetcaea s seateae st s ssesbese et sesesnanssesesed see exp(3M)
srand48(): generate pseudo-random numbers .. see drand48(3C)
srand(): simple random-NUMDET GENETALOTcuvverveerrireisineenieniesieeinresensesseseestssesnesmssnesassosussnessasessens see rand(3C)
sscanf (): formatted input conversion, read from stream fileccooeeereuinneinievcniininiiincee see scanf(38S)
ssignal(8C): 38ignal (), gSIgMAL() wicirecieciiceereeereeesiereetniestesestesressessesessesssssassssossessosssnsssens software signals
statfsdev(3C): statfadev(), £RLALEBAGV() .oivcicecerirrreeeer e sesrereresreseeseeesesrensesosens get file system statistics
stdio(8S): BtAIO() cvrrrerriieee e .standard buffered input/output stream file package
SEAIPC(BC): FLOK () woeverrierrererrererenrrerenisseiesseressesessesssessesasesesseseses standard interprocess communication package
step(): regular expression compile and match Youtinesccceeveeeevccncrnenenccenennsinic e see regexp(3X)
store(): database subroutinesc.cccvervierernrerverennnnssee dbm(3X)
strcat (), strncat (): character string operationssee string(3C)
strchr (), strrchr(): character string operationscccecveveveerecrenrerrernruereenessessessesseossereeesnene see string(3C)
stremp8 (), strempl6(): non-ASCII string collationsee nl_string(3C)
stremp (), strnemp(): character string operations ... e see string(3C)
strcoll(): character string operationsccccceeen.see string(3C)
strepy (), strncpy(): character string operationssee string(3C)
Strerror () SYSLEmM eITOY MESSAZES ..cvecviuiiiicrereeeererrnessssaesnerestesesaesecsnssassesassnsssesesrernerssrssssnsesess see perror(3C)

strftime(3C): SLTELIME () .oovvveveeiierreeereee e sre st srevesnasseens ..convert date and time to string
string(8C): strcat(), strncat 0, strcmp () strncmp (), strepy(), strncpy (), strlen(),

strchr(), strrchr(), strpbrk(), strspn(), strcspn(),

strtok(), nl_stromp, DL _SEXNCMD woivvererreneerenerireserscecnessntesseescoseesaressrasesss character string operations
strlen(): character string operationscccccceoeveeerveces SEUTRUROUBRURRONE see string(3C)
strncmp8 (), strnempl6(): non-ASCII string collationccccecvveveenecccninnence v ..see nl_string(3C)

SEEOTA(BC): SETOTA() ceerrvreeieerrererenreneeintasnteeessessessesessaseesssesmssesessssssessssssasssssassssssssssesesd convert string data order
strpbrk(): character string Operations ... reciiciicinine i e see string(3C)
strrstr(): character string operationsccccouenen.see string(3C)
strspn(), strespn(): character string operationssee string(3C)
strstr(): character string 0PErationsc...ccveereriniin oot sres s ssssssssesssnss see string(3C)
strtoacl(3C): strtoacl(), strtoaclpatt() convert string form to access control list structure
strtoaclpatt (): convert pattern string form to access control list (ACL) structurecccrvernuee. see strtoacl(3C)
strtod(3C): strtod(), atof(),nl_strtod,nl_atof convert string to double-precision number
strtok(): character string operations .. see string(3C)
strtold(3C): strtold()ceivenenne ..convert string to long double-precision number
strxfrm(): character string operationssee string(3C)
SWADB(BC): BWAD () .ottt ctetseetsrreseeseneseseesesastssonestesesssssbesestesssesassastososssasssns shsssrssnsssnsssstsssnns swap bytes
sys_errlist: System eITor MESSAZEScecermerererererenrerersesereerens ...see perror(3C)
syslog(3C): syslog(), openlog(), closelog(), setlogmask() ... control system log
sys_mnerr: system error messages reerereereeesseensnaeeeeesaneeanes see perror(3C)
system(3S): system()cccoevererrerrerennnenn . .issue a shell command
tandf (): trigonometric tangent function (float, degrees) see trigd(3M)
tand(): trigonometric tangent function (degrees)see trigd(3M)
tanf(): trigonometrictangent function (I0at)ccciveveeerrirrinreenrenreniesinsessernesesressestessssnssessesessessenns see trig(3M)
tanhf (): hyperbolic tangent function (float version)see sinh(3M)
tanh(): hyperbolic tangent functionc.cecererernnenesee sinh(8M)
tan(): trigonometrictangent fUNCEIONcccoevruirrerereniesiecicteriieeercinie st s ceeseeenra s sassasesaesssssasad see trig(3M)
tcattribute(3C): tcgetattr(), te8etattT () .vvveererecrereererereens seerereeneeneccODEYO] tHy device
tccontrol(8C): tcsendbreak(), tedrain(), teflush(), teflow() . .. tty line control functions
tedrain(): tty line control functions <v.-on.5€€ tecontrol(3C)
teflow(): tty line control functionssee teccontrol(3C)
teflush(): tty line control FUNCHIONSocvcveeireeeiierierieeesreeesesneseesessesesresssesssssssessessesessessssassessons see tccontrol(3C)
tegetattr (): get tty device attribULESocevieiieieeeeceeeer e et es e eeeesn s ersa e sasnsssesess see tcattribute(3C)
tegetPrp(BC): ECGEEDIID () .oovvvvrerenieriinreneisesensrsesssesresesessssesassssesssssssssssaserasseses get foreground process group ID
tesendbreak () : tty line control fUNCHONSccccciciiereiriiirieenierreeeecesresresreraesaesesssssesessessessersasanns see tecontrol(3C)

xxii Table of Contents: Volume 2

Table of Contents

Volume 2
Entry Name(Section): name Description
tesetattr (): set tty device attribULes.ccivirervererieniinieneiniere e et ssreeeeseessssesesssnones see tcattribute(3C)
tesetpgrp(3C): tesetpgrp() ..cceeeeeee. get foreground process group ID
tdelete(): manage binary Search treesccciiieneriiiiisiienenennsneeisseeinesseemessessssssons see tsearch(3C)
telldir(): directory OPETatiOnScccceceernererisrerieesoreresnsseessssesasassesesesssnans ..see directory(3C)
tempnam(): create a name for a temporary file ..o see tmpnam(3S)
termcap(3X): tgetent (), tgetnum(), tgetflag(), tgetstr(),

EGOLO (), EPULB () ciiiiriceiiiiniiinneeercnsiniiereeesesseneessesssssenssssssravasasasssnns emulate /etc/termcap access routines
tf£ind{): manage binary search ireesccocene. ..see isearch{3C)
tgetent (): emulate /etc/termcap access routinessee termcap(3X)
tgetflag(): emulate /etc/termcap access routinessee termecap(3X)
tgetnum(): emulate /etc/termcap access routineso.eeereeesee termcap(3X)
tgetstr(): emulate /etc/termcap access routinessee termcap(3X)
tgoto(): emulate /etc/termcap access routines see termcap(3X)
timezone(): convert date and time to stringsee ctime(3C)
tmpfile(3S): tHMPELLe () .iviverrreririrrinreieererrereenererresesseesserees create a temporary file
tmpnam(8S): tmpnam(), tEMPRAM () ..cccceverrererrerrereererrreesseeeserseessessssessesseseases create aname for a temporary file
toascii(): translate charactersccceeuee. ..see conv(3C)
tolower (), _tolower: translate Characterscovevirieeieieererrrceeree e neeeeseesesseasaesesssssssssssssons see conv(3C)
toupper (), _toupper: translate characterscoccevevvenerceeniiierneenesee conv(3C)
towlower(): translate wide charactersccccveveniieverreivccceriverseceeercnnessee weonv(3C)
towupper (): translate wide characterssee weonv(3C)
tputs(): emulate /etc/termeap ACCESS TOULINES ...c..ccvvecreeeiierieenrieiriertseisaessteessessssesssssssssssssrens see termcap(3X)
trig(3M): sin(), cos(), tan(), asin(), acos (), atan(), atan2(), sinf (), cosf (), tanf (),

asinf (), acosf (), atanf (), atan2f () ...creriiiiirinree e s seeeeeese e saasenes trigonometric functions
trigd(83M): sind(), cosd(), tand(), asind(), acosd (), atand(), atan2d(),

sindf (), cosdf (), tandf (), asindf (), acosdf (), atandf (),

ALAN2AEL () cooveeriinerreerennienesseesessessesssssassessessronassassssossasas st snssrsstsnses degree-valued trigonometric functions
tsearch(83C): tsearch(),tfind(), tdelete(), twalk() manage binary search trees
ttyname(3C): ttyname (), 18att¥ () .ccvvrverererrrrrenererernsnseseresisiesesissnssessessanssesssssneseins find name of a terminal
ttyslot(3C): ttyslot () .ccovevnennens find the slot in the utmp file of the current user
twalk(): manage binary SEarch trEESccceiveeviiiireererieneriersersereereeresessessesserssronsosesasssessosmaessossssenss see tsearch(3C)
tzname (): convert date and time to Stringccoceeeiiviiniiins ..see ctime(3C)
tzset (): convert date and time to SEringccccoeeereerrrnveresseererneseosannene ..see ctime(3C)
ultoa(): unsigned long to ASCII decimalsee Itostr(3C)
ultostr(): unsigned 10ng t0 ASCILcccoceevereremreererunrrnnreceeserecenecees e sesesessssssnssonsssenss ...see Itostr(3C)
undial(): establish an out-going terminal line connectioncceciviviiinreieeieiineinereienene see dial(3C)
UNEEtC(3S): UNGEEC () wovrerrerecrireenteceereeenresnessesessessesessessessstessessessesessorassanes push character back into input stream
ungetwc(3C): ungetwc () ...push wide character back into input stream
UEINP fIl ENETY covoovereeiinriiiiitene it stesteiestterecsteresetesaesttessensessassesusansessnsssessessssnsessssssonsassssieststossensssrassrssne see getut(3C)
utmpname (): access UtMP fIle ENLTY ...ccvvvrririvierreiniinienninenineesreneeseesessestscaeneesesussesnesassrssiaesnenns ...see getut(3C)
viprintf(): print formatted output of a varargs argument list ...see vprintf(3S)
vEscanf () : formatted input conversion to a varargs argumentocoeveenvevenieiniiincni s see vscanf(3S)
vprintf(3S): vprintf (), vEprintf (), veprintf () print formatted output of a varargs argument list
vscanf(3S): vscanf (), vEscanf (), vsscanf ()cccerrruenene formatted input conversion to a varargs argument
vsprintf (): print formatted output of a varargs argument Listccecevueveeveercrrenirncsiiesrerccorcenee see vprintf(3S)
vsscanf (): formatted input conversion to a varargs argument see vscanf(3S)
WCHARADV(): Process 16-bit Charactersoovvviiriiieeee st esecessrsrsssonns see nl_tools_16(3C)
WCHAR (): Process 16-bit Charactersoiiiiiieecniiiecesieereseeeisesreeeeesesseseesessessessssesseserasnenes see nl_tools_16(8C)
weonv(3C): towupper(), towlower ()cceceveernnn .translate wide characters
wcscat, wesncat: wide character string operationsccocececereeeirenenviininninsine i see westring(3C)

see westring(3C)
see westring(3C)

weschr, wesrchr: wide character string operations
wescenp, wesnemp: wide character string operations

wescoll: wide character string operationssee westring(3C)
wescpy, wesncpy: Wwide character string operations see westring(3C)
wesftime(3C): wesftime() . . convert date and time to wide-character string
wcslen: wide character strmg operatlons ... see westring(3C)
wespbrk: wide character String 0perationscccveeereerecreniniisnsscnesiecreseensesessae s sienes see westring(3C)

Table of Contents: Volume 2 xxiii

Table of Contents

Volume 2
Entry Name(Section): name Description
wesspn, wescespn: wide character String 0perationsc.cececreenncncmncenevecnninreisessienes see westring(3C)
WEStod(SC): WOBLOA() coveeieeiceeeeniereteesseeesreesesesesesees convert wide character string to double-precision number
wcatok: wide character StTing OPErationsc.cccevernecrereerererrserssnssseresrsssssressesensssssesessesessenssene see westring(3C)
westring(3C): wescat, wesncat, wesemp, wesncmp, wescpy, wesncepy, weslen, weschr, wesrchr,

wespbrk, wdbspn, wescspn, westok, nl_wescmp, nl_WESHCHD wide character string operations
weswes: wide character string operations rrerererereerasae s esasnnesensen see westring(3C)
weswidth: wide character String operationsc.coeeeeveeeeeerreeercrrecnesnnsesesseseesenes ...see westring(3C)
wctomb (), wotombs () : multibyte characters and strings conversionscccoveeecricrsicenens see multibyte(3C)
wetype(3C): iswalpha, iswupper, iswlower, iswdigit, iswxdigit, iswalnum, iswspace,

iswpunct, iswprint, 1swgraph, 1SWOREELccoerrrreeireirireeenireneeenressnessseseseneanes classify wide characters
wowidth: wide character String OPErationsc.cccvevereeernresineresesieresereesernssesesesasssssssessssseses see westring(3C)
wordexp 3C: wordexp, wordfree — perform word expansions
Xdr(3C): xdr () ..covevercrririreenens library routines for external data representation
y0(): Bessel function e eveereeeerereetest et aeneesasaeseseas see bessel(3M)
v1(): Bessel functionsee bessel(3M)
yn(): Bessel functionc.ccoeeerrerenrersennnesrerensrisesesesenes ...see bessel(3M)
yp_all() — Network Information Service client interfacesee ypelnt(3C)
yp_bind () — Network Information Service client interfacecccceveererenverieserserereresncsersessesessssseses see ypelnt(3C)
ypcInt(3C): ypeclnt(),yp_all(),yp_bind(), yp_£first(), yp_get_default_domain(),

yp_master (), yp_match(), yp_next (), yp_order(), yp_unbind(),

yperr_string (), YPPTOE_OrT ()ccccecvcicronmessosossssosases Network Information Service client interface
yperr_string () — Network Information Service client interface see ypelnt(3C)
yp_£first () — Network Information Service client interfacesee ypelnt(3C)
yp_get_default_domain() — Network Information Service client interfacecccceecvereeeieeennenne see ypelnt(3C)
yp_master () — Network Information Service client interfacesee ypelnt(3C)
yp_match() — Network Information Service client interfacesee ypelnt(3C)
yp_next () — Network Information Service client interfaceceeverenen. see ypelnt(3C)
yp_order () — Network Information Service client interfacesee ypelnt(3C)
yPPasswd(3N): YDPaS8WA () ...ccvvvrerereerereerreneneraennreerersesens update user password in Network Information Service
ypprot_err () — Network Information Service client interface see ypelnt(3C)
yp_unbind () — Network Information Service client interfacecceveiiverenreereirerervenreneerens see ypclnt(3C)

xxiv Table of Contents: Volume 2

Section 2:
System Calls

intro(2) intro(2)

NAME
intro - introduction to system calls

DESCRIPTION
This section describes all of the system calls. All of these calls return a function result. This result indi-
cates the status of the call. Typically, a zero or positive result indicates that the call completed successfully,
and -1 indicates an error. The individual descriptions specify the details. An error number is also made
available in the external variable errno (see errno(2)). Note: errno is not cleared on successful calls.
Therefore, it should be tested only after an error has been indicated.

intro(3), errno(2), hier(5).

The introduction to this manual.

HP-UX Release 9.0: August 1992 -1- 1

accept(2) accept(2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/socket.h>

AF_CCITT only:
#include <x25/x25addrstr.h>

int accept(int s, vold *addr, int *addrlen);

DESCRIPTION

accept () is used with connection-based socket types, such as SOCK_STREAM. Argument s is a socket
descriptor created using socket (), bound to an address by bind (), and listening for connections after a
listen(). accept () extracts the first connection on the queue of pending connections, creates a new
socket with the same properties as s, and allocates a new file descriptor, ns, for the socket. If no pending
connections are present on the queue and non-blocking mode has not been enabled using the
O_NONBLOCK or O_NDELAY fcntl () flags or the FIOSNBIO loctl() request, accept () blocks
the caller until a connection is present. (O_NONBLOCK and O_NDELAY are defined in <sys/fcntl.h>;
see fentl(2) fontl(5), and socket(7). FIOSNBIO and the equivalent request FIONBIO are defined in
<sys/loctl.h>, although use of FIONBIO is not recommended; see ioctl(2), ioctl(5), and socket(7).) If
the socket is marked non-blocking and no pending connections are present on the queue, accept ()
returns an error as described below. The accepted socket, ns, cannot be used to accept more connections.
The original socket s remains open. It is possible to determine whether a listening socket has pending con-
nection requests ready for an accept () call by using select () for reading.

The argument addr should point to a local socket address structure. The accept () call fills in this struc-
ture with the address of the connecting entity, as known to the underlying protocol. The format of the
address depends upon the protocol and the address-family of the socket s. addrlen is a pointer to an int; it
should initially contain the size of the structure pointed to by addr. On return, it contains the actual length
(in bytes) of the address returned. If the memory pointed to by addr is not large enough to contain the
entire address, only the first addrien bytes of the address are returned.

Since both the £cntl() O_NONBLOCK flag and FIOSNBIO loctl() request are supported, some
clarification on how these features interact is necessary. If the O_NONBLOCK flag has been set,
accept () requests behave accordingly, regardless of any FIOSNBIO requests. If the O_NONBLOCK
flag has not been set, FIOSNBIO requests control the behavior of accept (). AF_CCITT only: The addr
parameter to accept() returns addressing information for the connecting entity, except for the
x251fname [] field of addr which contains the name of the local X.25 interface through which the connec-
tion request arrived. Call-acceptance can be controlled with the X25_CALL_ACPT_APPROVAL
loct1 () call described in socketx25(7).

RETURN VALUE
Upon successful competion, accept () returns a non-negative integer which is a descriptor for the
accepted socket. If an error occurs, accept () returns —1 and sets errno to indicate the cause.

DIAGNOSTICS
accept () fails if any of the following conditions are encountered:

[EBADF] The file descriptor s is invalid.

[ENOTSOCK] The file descriptor s references a file, not a socket.

[EOPNOTSUPP] The socket referenced by s is not of type SOCK_STREAM.

[EFAULT] The addr parameter is not in a valid pointer.

[EWOULDBLOCK] Non-blocking I/O is enabled using O_NDELAY or FIOSNBIO and no con-
nections are present to be accepted.

[EMFILE] The maximum number of file descriptors for this process are already
currently open.

[ENFILE] The system’s table of open files is full and no more accepts can be
accepted at this time. .

2 -1- HP-UX Release 9.0: August 1992

accept(2)

[ENOBUFS]

[EINVAL]

[EAGAIN]

[EINTR]
AUTHOR

accept(2)

No buffer space is available. The accept() cannot complete. The
queued socket connect request is aborted.

The socket referenced by s is not currently a listen socket or has been
shutdown(). A listen() must be done before an accept() is
allowed.

Non-blocking 1/0 is enabled using O_NONBLOCK and no connections are
present to be accepted.

The call was interrupted by a signal before a valid connection arrived.

accept () was developed by the University of California, Berkeley.

SEE ALSO

bind(2), connect(2), listen(2), select(2), socket(2) socketx25(7).

HP-UX Release 9.0: August 1992

access(2) access(2)

NAME
access - determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access(char *path, int amode);

DESCRIPTION
path points to a path name naming a file. access () checks the named file for accessibility according to
the bit pattern contained in amode, using the real user ID instead of the effective user ID and the real group
ID instead of the effective group ID. The value of amode is either the bit-wise inclusive OR of the access per-
missions to be checked or the existence test. The following symbolic constants, defined in <unistd.h>,

test for permissions:
R_OK read
W_OK write

X_OK execute (search)
F_OK check existence of file

Access Control Lists (ACLs)

Read, write and execute/search permissions are checked against the file’s access control list. Each mode is
checked separately since different ACL entries might grant different permissions. The real user ID is com-
bined with the process’s real group ID and each group in its supplementary groups list, and the access con-
trol list is searched for a match. Search proceeds in order of specificity and ends when one or more match-
ing entries are found at a specific level. More than one u.g or %.g entry can match a user if that user has a
non-null supplementary groups list. If any matching entry has the appropriate permission bit set, access is
permitted.

access () reports that a shared text file currently open for execution is not writable, regardless of its
access control list. It also reports that a file on a read-only file system is not writable. However,
access () does not report that a shared text file open for writing is not executable, since the check is not
easily done.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Access to the file is denied if one or more of the following is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] Read, write, or execute (search) permission is requested for a null path name.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being exe-
cuted.

[EACCES] The access control list does not permit the requested access and the real user ID is not
a user with appropriate privileges.

[EFAULT] path points outside the allocated address space for the process. The reliable detection
of this error is implementation dependent.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX NO_TRUNC
is in effect.

The owner of a file has permission checked with respect to the “owner” read, write, and execute mode bits.
Members of the file’s group other than the owner have permissions checked with respect to the “group”

4 -1- HP-UX Release 9.0: August 1992

access(2) access(2)

mode bits, and all others have permissions checked with respect to the “other” mode bits.

access () reports that a file currently open for execution is not writable, regardless of the setting of its
mode.

WARNINGS
If the path is valid and the real user ID is super-user, and the access requested is not X_OK, access ()
always returns 0. If X_OK access is requested for a valid path and the real user ID is super-user and the
file is a directory, access always returns 0. If X_OK access is requested for a valid path which is not a
directory and the real user ID is super-user, access returns 0 only if at least one execute bit (for user, group,
or other) ig get in the file’s mode.
Access Control Lists

Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

SEE ALSO
chmod(2), setacl(2), stat(2), acl(5), unistd(5).

STANDARDS CONFORMANCE
access (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -2- 5

acct(2) acct(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
#include <sys/acct.h>

int acct(const char *path);

DESCRIPTION
acct () is used to enable or disable the system’s process accounting routine. If the routine is enabled, an
accounting record is written on an accounting file for each process that terminates. Termination can be
caused by one of two things: an exit () call or a signal; see exit(2) and signal(5). The effective user ID of
the calling process must be super-user to use this call.

path points to a path name naming the accounting file. The accounting file format is described in acct(4).
The accounting routine is enabled if path is non-zero and no errors occur during the system call. It is dis-
abled if path is zero and no errors occur during the system call.

When the amount of free space on the file system containing the accounting file falls below a configurable
threshold, the system prints a message on the console and disables process accounting. Another message is
printed and the process accounting is re-enabled when the space reaches a second configurable threshold.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
acct () fails if one or more of the following is true:

[EPERM] The effective user ID of the calling process is not super-user.

[EBUSY] An attempt is being made to enable accounting when it is already enabled.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] One or more components of the accounting file path name do not exist.

[EACCES] The file named by path is not an ordinary file.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path points to an illegal address. The reliable detection of this error simplementation
dependent.

[ETXTBSY] path points to a text file which is currently open.

[ENAMETOOLONG]

The accounting file path name exceeds PATH_MAX bytes, or the length of a component of
the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.

DEPENDENCIES
Series 300/400
The system’s process accounting routine ignores any locks placed on the process accounting file.

If the size of the process accounting file reaches 5000 blocks, records for processes terminating after
that point will be silently lost. However, in that case the turnacct command would still sense that
process accounting is still enabled. This loss of records can be prevented by the use of ckpacct (see
acctsh(1M)).

SEE ALSO
acct(1M), acctsh(1M), exit(2), acct(4), signal(5).

STANDARDS CONFORMANCE
acct (): SVID2, XPG2

6 -1- HP.UX Release 9.0: August 1992

alarm(2) alarm(2)

NAME
alarm - set a process’s alarm clock

SYNOPSIS
#include <unistd.h>

unsigned int alarm(unsigned int sec);

DESCRIPTION
alarm() instructs the alarm clock of the calling process to send the signal SIGALRM to the calling process
after the number of real-time seconds specified by sec have elapsed; see signal(5). Specific implementations
might place limitations on the maximum supported alarm time. The constant MAX_ALARM defined in
<gys/param.h> specifies the implementation-specific maximum. Whenever sec is greater that this max-
imum, it is silently rounded down to it. On all implementations, MAX_ ALARM is guaranteed to be at least
31 days (in seconds).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.
If sec is 0, any previously made alarm request is canceled.
Alarms are not inherited by a child process across a fork (), but are inherited across an exec ().

On systems that support the getitimer() and setitimer() system calls, the timer mechanism
used by alarm() is the same as that used by ITIMER_REAL. Thus successive calls to alarm(), geti-
timer(), and setitimer () set and return the state of a single timer. In addition, alarm() sets the
timer interval to zero.

RETURN VALUE
alarm() returns the amount of time previously remaining in the alarm clock of the calling process.

WARNINGS
In some implementations, error bounds for alarm are -1, +0 seconds (for the posting of the alarm, not the
restart of the process). Thus a delay of 1 second can return immediately. The setitimer () routine can
be used to create a more precise delay.

SEE ALSO
sleep(1), exec(2), getitimer(2), pause(2), signal(5), sleep(3C).

STANDARDS CONFORMANCE
alarm(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 7

atexit(2) atexit(2)

NAME
atexit - register a function to be called at program termination

SYNOPSIS
#include <stdlib.h>

int atexit(void (*func) (void));

DESCRIPTION
atexit () registers the function func to be called, without arguments, at normal program termination.
Functions registered by atexit () are called in reverse order of registration.

An atexit () call during exit processing is always unsuccessful.
The number of registered functions should not exceed ATEXIT_MAX as specified in <1imits.h>.

RETURN VALUE
atexit () returns zero if the registration is successful; non-zero if unsuccessful.

SEE ALSO
exit(2).

STANDARDS CONFORMANCE
atexit (): AES, XPG4, ANSIC

8 -1- HP-UX Release 9.0: August 1992

audetl(2)

NAME

audctl(2)

audctl - start or halt the auditing system and set or get audit files

SYNOPSIS

#include <sys/audit.h>
int audctl(int cmd, char *cpath, char *npath, mode_t mode);

DESCRIPTION

audctl () sets or gets the auditing system "current” and "next" audit files, and starts or halts the audit-
ing system. This call is restricted to superusers. cpath and npath hold the absolute path names of the
"current” and "next" files. mode specifies the audit file’s permission bits. c¢md is one of the following

specifications:
AUD_ON

AUD_GET

AUD_SET

AUD_SETCURR

AUD_SETNEXT

AUD_SWITCH

The caller issues the AUD_ON command with the required "current” and "next"
files to turn on the auditing system. If the auditing system is currently off, it is
turned on; the file specified by the cpath parameter is used as the "current”
audit file, and the file specified by the npath parameter is used as the "next"
audit file. If the audit files do not already exist, they are created with the mode
specified. The auditing system then begins writing to the specified "current” file.
An empty string or NULL npath can be specified if the caller wants to designate
that no "next" file be available to the auditing system. If the auditing system is
already on, no action is performed; -1 isreturned and errno is set to EBUSY.

The caller issues the AUD_GET command to retrieve the names of the "current"
and "next" audit files. If the auditing system is on, the names of the "current"
and "next" audit files are returned via the cpath and npath parameters (which
must point to character buffers of sufficient size to hold the file names). mode is
ignored. If the auditing system is on and there is no available "next" file, the
"current” audit file name is returned via the cpath parameter, npath is set to an
empty string; -1 is returned, and errno is set to ENOENT. If the auditing
system is off, no action is performed; -1 is returned and errno is set to EAL-
READY.

The caller issues the AUD_SET command to change both the "current” and
"next" files. If the audit system is on, the file specified by cpath is used as the
"current” audit file, and the file specified by npath is used as the "next" audit
file. If the audit files do not already exist, they are created with the specified
mode. The auditing system begins writing to the specified "current"” file. Either
an empty string or NULL npath can be specified if the caller wants to designate
that no "next" file be available to the auditing system. If the auditing system is
off, no action is performed; -1 is returned and errno is set to EALREADY.

The caller issues the AUD_SETCURR command to change only the "current”
audit file. If the audit system is on, the file specified by cpath is used as the
"current” audit file. If the specified "current” audit file does not exist, it is
created with the specified mode. npath is ignored. The auditing system begins
writing to the specified "current” file. If the audit system is off, no action is per-
formed; -1 is returned and errno is set to EALREADY.

The caller issues the AUD_SETNEXT command to change only the "next" audit
file. If the auditing system is on, the file specified by npath is used as the "next”
audit file. cpath is ignored. If the "next” audit file specified does not exist, it is
created with the specified mode. Either an empty string or NULL npath can be
specified if the caller wants to designate that no "pext" file be available to the
auditing system. If the auditing system is off, no action is performed; -1 is
returned, and errno is set to EALREADY.

The caller issues the AUD_SWITCH command to cause auditing system to
switch audit files. If the auditing system is on, it uses the "next" file as the new
"current" audit file and sets the new "next" audit file to NULL. cpath, npath.,and
mode are ignored. The auditing system begins writing to the new "current” file.
If the auditing system is off, no action is performed; -1 is returned, and
errno is set to EALREADY. If the auditing system is on and there is no

HP-UX Release 9.0: August 1992 -1~ 9

audctl(2) audctl(2)

available "next" file, no action is performed; -1 is returned, and errno is set
to ENOENT.

AUD_OFF The caller issues the AUD_OFF command to halt the auditing system. If the
auditing system is on, it is turned off and the "current" and "next" audit files are
closed. cpath, npath, and mode are ignored. If the audit system is already off,
-1 isreturned and errno is set to EALREADY.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, -1 is returned and the global variable
errno is set to indicate the error.

EXAMPLES
In the following example, audetl () is used to determine whether the auditing system is on, and to
retrieve the names of the audit files that are currently in use by the system.

char c_file[PATH MAX+1], x flle[PATH MAX+1];
int mode=0600;

if (audctl(aup_GET, c_file, x_file, mode))
swiltch (errno) {
case ENOENT:
strepy(x_file, "-none-");
break;
case EALREADY:
printf ("The auditing system 1s OFF\n");
return 0;
case default:
fprintf (stderr, "Audctl falled: errno=%d\n", errno);
return 1;
}

printf ("The auditing system is ON: c_file=%s x_ file=%s\n", c_file,
return 0;

ERRORS
audctl () fails if one of the following is true:
[EPERM] The caller does not have superuser privilege, or one or both of the given files are
not regular files and cannot be used.
[EALREADY] The AUD_OFF, AUD_SET, AUD_SETCURR, AUD_SETNEXT, AUD_SWITCH, or
AUD_GET cmd was specified while the auditing system is off.
[EBUSY] User attempt to start the auditing system failed because auditing is already on.
[EFAULT] Bad pointer. One or more of the required function parameters is not accessible.
[EINVAL] The cpath or npath is greater than PATH_MAX in length, the cpath or npath
specified is not an absolute path name.
[ENOENT] No available "next" file when cmd is AUD_GETNEXT or AUD_SWITCH.
AUTHOR
audctl () was developed by HP.
SEE ALSO

audit(5), audsys(1M), audomon(1M).

10 -2- HP-UX Release 9.0: August 1992

x_file

audswitch(2) audswitch(2)

NAME
audswitch - suspend or resume auditing on the current process

SYNOPSIS
#include <sys/audit.h>

int audswitch(int aflag);

DESCRIPTION
audswitch() suspends or resumes auditing within the current process. This call is restricted to
superusers.

One of the following aflags must be used:
AUD_SUSPEND Suspend auditing on the current process.
AUD_RESUME Resume auditing on the current process.

audswitch() can be used in self-auditing privileged processes to temporarily suspend auditing during
intervals where auditing is to be handled by the process itself. Auditing is suspended by a call to
audswitch () with the AUD_SUSPEND parameter and resumed later by a call to audswitch() with
the AUD_RESUME parameter.

An audswitch() call to resume auditing serves only to reverse the action of a previous audswitch()
call to suspend auditing. A callto audswitch() to resume auditing when auditing is not suspended has
no effect.

audswitch() affects only the current process. For example, audswitch() cannot suspend auditing
for processes exec’ed from the current process. (Use setaudproc (see setaudproc(2)) to enable or dis-
able auditing for a process and its children).

RETURN VALUE
Upon successful completion, audswitch() returns 0. If an error occurs, -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
audswitch() fails if one of the following is true:

[EPERM]} The user is not a superuser.

[EINVAL] The input parameter is neither AUD_RESUME nor AUD_SUSPEND.
AUTHOR

audswitch () was developed by HP.
SEE ALSO

audit(5), setaudproc(2), audusr(1M), audevent(1M).

HP-UX Release 9.0: August 1992 -1~ 11

audwrite(2) audwrite(2)

NAME
audwrite - write an audit record for a self-auditing process

SYNOPSIS
#include <sys/audit.h>

int audwrite(const struct self_audit_rec *audrec_p):;

DESCRIPTION
audwrite() is called by trusted self-auditing processes, which are capable of turning off the regular
auditing (using cudswitch(2)) and doing higher-level auditing on their own. audwrite () is restricted to
superusers.

audwrite () checks to see if the auditing system is on and the calling process and the event specified are
being audited. If these conditions are met, audwrite () writes the audit record pointed to by audrec_p
into the audit file. The record consists of an audit record body and a header with the following fields:

u_long ah_time; /% Date/time (tv_sec of timeval) */
u_short ah_pid; /% Process ID #/

u_short ah_error; /+ Success/failure »/

u_short ah_event; /+Eventbeing audited */
u_short ah_len; /* Length of variant part */

The header has the same format as the regular audit record, while the body contains additional information
about the high-level audit event. The header fields ah_error, ah_event, and ah_1len are specified by
the calling process. audwrite () fillsin ah_time and ah_pid fields with the correct values. this is
done to reduce the risk of forgery. After the header is completed, the record body is attached and the entire
record is written into the current audit file.

RETURN VALUE
If the write is successful, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the reason for the failure.

ERRORS
audwrite () fails if one of the following is true:

[EPERM] The caller is not a superuser.
[EINVAL] The event number in the audit record is invalid.
WARNINGS

If audwrite causes a file space overflow, the calling process might be suspended until the file space is
cleaned up. However a returned call with the return value of 0 indicates that the audit record has been
successfully written.

AUTHOR
audwrite () was developed by HP.

SEE ALSO
audswitch(2), audit(4).

12 -1- HP-UX Release 9.0: August 1992

bind(2) bind (2)

NAME
bind - bind an address to a socket

SYNOPSIS
#include <sys/socket.h>

AF_INET only:
#include <netinet/in.h>

AF_UNIX only:
#include <sys/un.h>

AF_CCITT only:
#include <x25/x25addrstr.h>

int bind(int s, const void *addr, int addrlen);

DESCRIPTION
bind () assigns an address to an unbound socket. When a socket is created with socket (), it exists in
an address space (address family) but has no address assigned. bind() causes the socket whose descrip- ~
tor is s to become bound to the address specified in the socket address structure pointed to by addr.

addrlen must specify the size of the address structure. Since the size of the socket address structure varies
between socket address families, the correct socket address structure should be used with each address
family (for example, struct sockaddr_in for AF_INET, and struct sockaddr_un for
AF_UNIX). Typically, the sizeof () function is used to pass this value in the bind () call (for exam-
ple, sizeof (struct sockaddr_in)).

The rules used in address binding vary between communication domains. For example, when binding an
AF_UNIX socket to a path name (such as /tmp/mysocket), an open file having that name is created in
the file system. When the bound socket is closed, that file still exists unless it is removed or unlinked.
When binding an AF_ INET socket, sin_port can be a port number, or it can be zero. If sin_port is zero, the
system assigns an unused port number automatically.

RETURN VALUE
Upon successful completion, bind() returns 0; otherwise it returns —1 and sets errno to indicate the
error.
DIAGNOSTICS
bind () fails if any of the following conditions are encountered:
[EBADF] s is not a valid descriptor.
[ENOTSOCK] s is not a socket.

[EADDRNOTAVAIL] The specified address is bad or not available from the local machine, or for
AF_CCITT sockets which use “wild card” addressing, the specified address
space overlays the address space of an existing bind.

[EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an address, the socket has been shut down,
addrlen is a bad value, or an attempt was made to bind() an AF_UNIX
socket to an NFS-mounted (remote) name.

AF_CCITT: The protocol-ID length is negative or greater than 8, or the X.121
address string contains an illegal character, or the X.121 address string is
greater than 15 digits long.

[EAFNOSUPPORT] Requested address does not match the address family of this socket.

[EACCES] The requested address is protected, and the current user has inadequate per-
mission to access it. (This error can be returned by AF_INET only.)

[EFAULT] addr is not a valid pointer.

[EOPNOTSUPP] The socket whose descriptor is s is of a type that does not support address bind-
ing.

HP-UX Release 9.0: August 1992 -1- 13

bind (2)

[ENOBUFS]
[ENETUNREACH]

[EDESTADDREQ]
{ENODEV]

[ENETDOWN]

AUTHOR

bind (2)

Insufficient buffer memory is available. The bind () cannot complete.

The X.25 Level 2 protocol is down. The X.25 link is not working: wires might be
broken, or connections are loose on the interface hoods at the modem, or the
modem failed, or noise interfered with the line for an extremely long period of
time.

No addr parameter was specified.

The x25ifname field name specifies a non-existent interface. (This error can be
returned by AF_CCITT only.)

The x25ifname field name specifies an interface that was shut down, or never
initialized, or whose Level 2 protocol indicates that the link is not working:
wires might be broken, the interface hoods on the modem are broken, the
modem failed, the phone connection failed (this error can be returned by
AF_CCITT only), noise interfered with the line for a long period of time.

bind () was developed by the University of California, Berkeley)

SEE ALSO

connect(2), getsockname(2), listen(2), socket(2), af_ccitt(7F), inet(7F), socketx25(7), tcp(7P), udp(7P),

unix(7P).

14

-2- HP-UX Release 9.0: August 1992

brk(2) brk(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
#include <unistd.h>

int brk(const vold *endds);
vold *sbrk(int incr);

DESCRIPTION
brk{) and sbrk{) are used to change dynamically the amount of space allocated for the calling process’s
data segment; see exec(2). The change is made by resetting the process’s break value and allocating the
appropriate amount of space. The break value is the address of the first location beyond the end of the data

segment. The amount of allocated space increases as the break value increases. The newly allocated space
is set to zero.

brk () sets the break value to endds and changes the allocated space accordingly.

sbrk () adds incr bytes to the break value and changes the allocated space accordingly. incr can be nega-
tive, in which case the amount of allocated space is decreased.

ERRORS
brk() and sbrk() fail without making any change in the allocated space if one or more of the following
are true:
[ENOMEM] Such a change would result in more space being allocated than is allowed by a system-

imposed maximum (see ulimit(2)).

[ENOMEM] Such a change would cause a conflict between addresses in the data segment and any
attached shared memory segment (see shmop(2)).

[ENOMEM] Such a change would be impossible as there is insufficient swap space available.

WARNINGS
The pointer returned by sbrk() is not necessarily word-aligned. Loading or storing words through this
pointer could cause word alignment problems.

Be very careful when using either brk or sbrk in conjunction with calls to the malloc(3C) library routines.
There is only one program data segment from which all three of these routines allocate and deallocate pro-
gram data memory.

RETURN VALUE
Upon successful completion, brk () returns a value of 0 and sbrk() returns the old break value. Other-
wise, a value of -1 is returned and errno is set to indicate the error.

AUTHOR
brk() and sbrk() were developed by AT&T and HP.

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C), malloc(3C).

STANDARDS CONFORMANCE
brk(): XPG2

sbrk ():XPG2

HP-UX Release 9.0: August 1992 -1- 15

bsdproc(2) bsdproc(2)

NAME
killpg, getpgrp, setpgrp, sigvec, signal - 4.2 BSD-compatible process control facilities

SYNOPSIS
#include <signal.h>

int killpg(int pgrp, int sig);
int getpgrp(int pid);
int setpgrp(int pid, int pgrp):;

int sigvec(
int sig,
struct sigvec *vec,
struct sigvec *ovec
)i
vold (*signal(int sig, void (*func) (int))) (int);

DESCRIPTION
These calls simulate (and are provided for backward compatibility with) functions of the same name in the
4.2 Berkeley Software Distribution.

This version of setpgrp() is equivalent to the system call setpgid (pid, pgrp) (see setpgid(2)).
This version of getpgrp () is equivalent to the system call getpgrp2 (pid) (see getpid(2)).
ki1llpg () is equivalent to the system call k111 (-pgrp, sig) (see kill(2)).

sigvec () is equivalent to the system call sigvector (sig, vec, ovec) (see sigvector(2)), except for the
following:

When SIGCHLD or SIGCLD is used and vec specifies a catching function, the routine acts as if the
SV_BSDSIG flag were included in the sv_£1lags field of vec.

The name sv_onstack can be used as a synonym for the name of the sv_£1lags field of vec and
ovec.

If vec is not a null pointer and the value of (vec->sv_flags & 1) is "true", the routine acts as if the
SV_ONSTACK flag were set.

If ovec is not a null pointer, the flag word returned in ovec->sv_flags (and therefore the value of
ovec->sv_onstack) will be equal to 1 if the system was reserving space for processing of that signal
because of a call to sigspace(2), and 0 if not. The SV_BSDSIG bit in the value placed in
ovec->sv_flags is always clear.

If the reception of a caught signal occurs during certain system calls, the call will always be restarted,
regardless of the return value from a catching function installed with sigvec (). The affected calls
are wait(2), semop(2), msgsnd(2), msgrev(2), and read(2) or write(2) on a slow device (such as a termi-
nal or pipe, but not a file). Other interrupted system calls are not restarted.

This version of signal () has the same effect as sigvec(sig, vec, ovec), where vec->sv_handler is
equal to func, vec->sv_mask is equal to 0, and vec->sv_flags is equal to 0. signal () returns the value
that would be stored in ovec->sv_handler if the equivalent sigvec() call would have succeeded. Other-
wise, signal () returns -1 and errno is set to indicate the reason as it would have been set by the
equivalent call to sigvec ().

These functions can be linked into a program by giving the -1BSD option to Id(1).

WARNINGS
While the 4.3 BSD release defined extensions to some of the interfaces described here, only the 4.2 BSD
interfaces are emulated by this package.

bsdproc () should not be used in conjunction with the facilities described under sigset(2V).

AUTHOR
bsdproc () was developed by HP and the University of California, Berkeley.

16 -1- HP-UX Release 9.0: August 1992

bsdproc(2) bsdproc(2)

SEE ALSO
1d(1), kill(2), getpid(2), msgsnd(2), msgrev(2), read(2), semop(2), setpgid(2), setsid(2), sigvector(2), wait(2),
write(2), sigset(2V), sigstack(2), signal(5).

HP-UX Release 9.0: August 1992 -2~ 17

chdir(2) chdir(2)

NAME

chdir, fchdir - change working directory
SYNOPSIS

#include <unistd.h>

int chdir(const char *path);
int fchdir(int fildes):

DESCRIPTION
chdir() and f£chdir() cause a directory pointed to by path or fildes to become the current working
directory, the starting point for path searches of path names not beginning with /. path points to the path
name of a directory. fildes is an open file descriptor of a directory.

For a directory to become the current working directory, a process must have execute (search) access to the
directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRO;I'fdir() fails and the current working directory remains unchanged if one or more of the following are
rue:
[ENOTDIR] A component of the path name is not a directory.
[ENOENT] The named directory does not exist.
[EACCES] Search permission is denied for any component of the path name.
[EFAULT] path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.
[ENOENT] path is null.
[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX NO_TRUNC is in effect.
[ELOQP] Too many symbolic links were encountered in translating the path name.
1fo:':hd:lr () fails and the current working directory remains unchanged if one or more of the following are
rue:
[EACCES] Search permission is denied for fildes.
[EBADF] fildes is not an open file descriptor.
[ENOTDIR] The open file descriptor fildes does not refer to a directory.
AUTHOR
chdir() and £chdir () were developed by AT&T Bell Laboratories and HP.
SEE ALSO

¢d(1), chroot(2).

STANDARDS CONFORMANCE
chdir(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

18 -1~ HP-UX Release 9.0: August 1992

chmod(2) chmod(2)

NAME
chmod, fchmod - change access mode of file

SYNOPSIS
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);
int fchmod(int fildes, mode_t mode);

DESCRIPTION
chmod{) and £chmod{) set the access permission portion of the file’s mode according to the bit pattern
contained in mode. path points to a path name naming a file. fildes is a file descriptor.

The following symbolic constants representing the access permission bits are defined with the indicated
values in <sys/stat .h> and are used to construct the mode argument. The value of mode is the bit-wise
inclusive OR of the values for the desired permissions.

S_ISUID 04000 Set user ID on execution.
S_ISGID 02000 Set group ID on execution.
S_ENFMT 02000 Record locking enforced.
S_ISVTX 01000 Save text image after execution.
S_IRUSR 00400 Read by owner.

S_IWUSR 00200 Write by owner.

S_IXUSR 00100 Execute (search) by owner.
S_IRGRP 00040 Read by group.

S_IWGRP 00020 Write by group.

S_IXGRP 00010 Execute (search) by group.
S_IROTH 00004 Read by others (that is, anybody else).
S_IWOTH 00002 Write by others.

S_IXOTH 00001 Execute (search) by others.

To change the mode of a file, the effective user ID of the process must match that of the owner of the file or a
user with appropriate privileges.

If the effective user ID of the process is not that of a user with appropriate privileges and the file is a regular
file, S_ISVTX (mode bit 01000, save text image on execution) is cleared.

If the effective user ID of the process is not that of a user with appropriate privileges, and the effective group
ID of the process does not match the group ID of the file and none of the group ID s in the supplementary
groups list match the group ID of the file, S_ISGIDR, S_ENFMT (mode bit 02000, set group ID on execu-
tion and enforced file locking mode) is cleared.

The set-group-ID on execution bit is also used to enforce file-locking mode (see Zockf(2) and fentl(2)) on files
that are not group executable. This might affect future calls to open(), creat(), read(), and
write() on such files (see open(2), creat(2), read(2), and write(2)).

If an executable file is prepared for sharing, S_ISVTX (mode bit 01000) prevents the system from aban-
doning the swap-space image of the program-text portion of the file when its last user terminates. Then,
when the next user of the file executes it, the text need not be read from the file system but can simply be
swapped in, thus saving time.

If mode S_ISVTX (mode bit 01000) is set on a directory, an unprivileged user cannot delete or rename oth-
ers’ files in that directory.

Access Control Lists
All optional entries in a file’s access control list are deleted when chmod() is executed. (This behavior
conforms to the IEEE Standard POSIX 1003.1-1988.) To preserve optional entries in a file’s access control
list, ;}; ;)s necessary to save and restore them using getacl() and setacl() (see gefacl(2) and
setacl(2)).

To set the permission bits of access control list entries, use setacl () instead of chmod ().
For more information on access control list entries, see acl(5).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is

HP-UX Release 9.0: August 1992 -1- 19

chmod (2) chmod(2)

set to indicate the error.

ERRORS
chmod () and fchmod () fail and the file mode is unchanged if one or more of the following is true:

[EACCES] Search permission is denied on a component of the path prefix.

[EFAULT] poth points outside the allocated address space of the process. The reliable detection
of this error is implementation dependent.

[ELOOP] Too many symbolic links are encountered in translating path.

[ENAMETOOLONG]

A component of path exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in
effect or path exceeds PATH_MAX bytes.

{ENOENT] A component of path does not exist.

[ENOENT] The file named by path does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The effective user ID does not match that of the owner of the file, and the effective

user ID is not that of a user with appropriate privileges.

[EROFS] The named file resides on a read-only file system.

[EINVAL] gItEtgz)npted to make a root directory into a context-dependent file (see DEPENDEN-
WARNINGS

Access Control Lists
Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

DEPENDENCIES
HP Clustered Environment:
If the file is a directory, the access permission bit S_CDF (04000) indicates a hidden directory
(context-dependent file - see cdf(4)). A root directory cannot be made into a context-dependent file.

NFS fchmod () is not supported on remote files.

AUTHOR
chmod () was developed by AT&T, the University of California, Berkeley, and HP.

fchmod () was developed by the University of California, Berkeley.

SEE ALSO
chmod(1), chown(2), creat(2), fentl(2), read(2), lockf(2), mknod(2), open(2), getacl(2), setacl(2), write(2),
cdf(4), acl(5).

STANDARDS CONFORMANCE
chmod (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

fchmod (): AES

20 -2- HP-UX Release 9.0: August 1992

chown(2) chown(2)

NAME
chown, fchown - change owner and group of a file

SYNOPSIS
#include <unistd.h>

int chown(const char *path, uld_t owner, gid_t group);
int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION
chown () changes the user and group ownership of a file. path points to a path name naming a file. fildes
is a file descriptor. chown () and fchown() set the owner ID and group ID of the file to the numeric
values contained in owner and group respectively. A value of UID_NO_CHANGE or GID_NO_CHANGE
can be specified in owner or group to leave unchanged the file’s owner ID or group ID respectively. Note that
owner and group should be less than UID_MAX (see limits(5)).

Only processes with effective user ID equal to the file owner or a user having appropriate privileges can
change the ownership of a file. If privilege groups are supported, the owner of a file can change the owner-
ship only if he is a member of a privilege group allowing CHOWN, as set up by the setprivgrp command
(see setprivgrp(1IM)). All users get CHOWN privileges by default.

The group ownership of a file can be changed to any group in the current process’s access list or to the real
or effective group ID of the current process. If privilege groups are supported and the user is permitted the
CHOWN privilege, the file can be given to any group.

If chown () is invoked on a regular file by other than the super-user the set-user-ID and set-group-ID bits
of the file mode are cleared. Whether chown () preserves or clears these bits on files of other types is
implementation dependent.

Access Control Lists (ACLs)
A user can allow or deny specific individuals and groups access to a file by using the file’s access control list
(see acl(5)). When using chown() in conjunction with ACLs, if the new owner and/or group does not have an
optional ACL entry corresponding to © .% and/or %.g in the file’s access control list, the file’s access permis-
sion bits remain unchanged. However, if the new owner and/or group is already designated by an optional
ACL entry of v .% and/or %.g, chown () sets the file’s permission bits (and the three basic ACL entries) to
the permissions contained in that entry.

ERRORS

chown () fails and the owner and group of the file remain unchanged if one or more of the following is true:

[EBADF] fildes is not a valid file descriptor.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT The file named by path does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID is not a user having appropriate privileges and one or more of the fol-
lowing conditions exist:
The effective user ID does not match the owner of the file.
When changing the owner of the file, the owner of the file is not a member of a privilege
group allowing the CHOWN privilege.
When changing the group of the file, the owner of the file is not a member of a privilege
group allowing the CHOWN privilege and the group number is not in the current process’s
access list.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path points outside the allocated address space of the process. The reliable detection of this
error will be implementation dependent.

[ENAMETOOLONG]

A component of path exceeds NAME_MAX bytes while _POSIX NO_TRUNC is in effect, or
path exceeds PATH_MAX bytes.

HP-UX Release 9.0: August 1992 -1- 21

chown(2) chown (2)

[ELOOP] Too many symbolic links were encountered in translating path.
[EINVAL] Either owner or group is greater than or equal to UID_MAX.
DEPENDENCIES
Series 300, 400, and 700:

If the path given to chown () contains a symbolic link as the last element, this link is traversed and path-
name resolution continues. chown() changes the owner and group of the symbolic link’s target, rather
than the owner and group of the link.

HP Clustered Environment:
chown () does not clear the set-user-ID bit of a directory because that bit indicates that the directory is
hidden (see cdf(4)).

When chown/{) is called from a cluster client node, the privilege groups checked are the ones set up
on the cluster server.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is
set to indicate the error.

WARNINGS
Access Control Lists
Access control list descriptions in this entry apply only to standard HP.UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

AUTHOR
chown () was developed by AT&T.
fchown () was developed by the University of California, Berkeley.

SEE ALSO
chown(1), setprivgrp(1M), chmod(2), setacl(2), acl(5), limits(5), limits(5).

STANDARDS CONFORMANCE
chown (): AES [Series 300/400/700 only], SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

fchown (): AES

22 -2- HP-UX Release 9.0: August 1992

chroot(2) chroot(2)

NAME
chroot - change root directory

SYNOPSIS
#include <unistd.h>

int chroot (const char *path);

DESCRIPTION
chroot () causes the named directory to become the root directory, the starting point for path searches for
path names beginning with /. path points to a path name naming a directory. The user’s working direc-
tory is unaffected by the chroot () sysiem cali.
The effective user ID of the process must be a user having appropriate privileges to change the root direc-
tory.
The .. entry in the root directory is interpreted to mean the root directory itself. Thus, .. cannot be
used to access files outside the subtree rooted at the root directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
chroot () fails and the root directory remains unchanged if one or more of the following is true:
[ENOTDIR] Any component of the path name is not a directory.
[ENOENT] The named directory does not exist or a component of the path does not
exist.
[EPERM] The effective user ID is not a user who has appropriate privileges.
[EFAULT] path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.
[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the
length of a component of the path name exceeds NAME_MAX bytes while
_POSIX NO_TRUNC is in effect. '
[ELOOP] Too many symbolic links were encountered in translating the path name.
SEE ALSO

chroot(1M), chdir(2).

STANDARDS CONFORMANCE
chroot (): AES, SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 23

close(2) close(2)

NAME
close - close a file descriptor

SYNOPSIS
#include <unistd.h>

int close(int fildes);

DESCRIPTION
close() closes the file descriptor indicated by fildes. fildes is a file descriptor obtained from a creat (),
open(),dup(), fecntl(), or pipe() system call. All associated file segments which have been locked
by this process with the lockf () function are released (i.e., unlocked).

RETURN VALUE
Upon successful completion, close () returns a value of 0; otherwise, it returns —1 and sets errno to
indicate the error.

ERRORS
close () fails if the any of following conditions are encountered:

[EBADF] fildes is not a valid open file descriptor.

[EINTR] An attempt-to close a slow device or connection was interrupted by a signal. The file
descriptor still points to an open device or connection.

[ENOSPC] Not enough space on the file system. This error can occur when closing a file on an
NFS file system. [When a write () system call is executed on a local file system and
if a new buffer needs to be allocated to hold the data, the buffer is mapped onto the
disk at that time. A full disk is detected at this time and write () returns an error.
When the write () system call is executed on an NFS file system, the new buffer is
allocated without communicating with the NFS server to see if there is space for the
buffer (to improve NFS performance). It is only when the buffer is written to the
server (at file close or the buffer is full) that the disk-full condition is detected.]

SEE ALSO
creat(2), dup(2), exec(2), fentl(2), lockf(2), open(2), pipe(2).

STANDARDS CONFORMANCE
close(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

’

24 -1- HP-UX Release 9.0: August 1992

cnodeid (2)

NAME
cnodeid - get the cnode ID of the local machine

SYNOPSIS
#include <cluster.h>

cnode_t cnodeld(void);
DESCRIPTION

cnodeld () returns the cnode ID of the local machine.

SEE AT QN

LaanoS

cnodes(1), cnodes(2), getcontext(2), getccent(3C).

AUTHOR
cnodeld was developed by HP.

HP-UX Release 9.0: August 1992 -1-

cnodeid(2)

25

cnodes(2) cnodes(2)

NAME
cnodes - get a list of active nodes in cluster

SYNOPSIS
#include <cluster.h>

int cnodes(cnode_t *buf);

DESCRIPTION
cnodes () determines the number of active cnodes in the cluster, including the cnode on which it is
invoked. If buf is not a null pointer, it must point to an array of type cnode_t with at least MAX_CNODE
elements. In this case, the values of the cnode IDs of the nodes currently in the cluster are stored in the
array, terminated by the cnode ID 0.

RETURN VALUE
Upon successful completion, cnodes () returns the current number of active cnodes. If the value 0 is
returned, the machine is not a member of a cluster. In case of an error, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
cnodes () may fail if:

[EFAULT] buf is not a null pointer and points to an lllegal address. Reliable detection of this
error is not guaranteed.

SEE ALSO
cnodes(1), cnodeid(2), getcontext(2), getccent(3C).

AUTHOR
cnodes was developed by HP.

26 -1- HP-UX Release 9.0: August 1992

connect(2) connect(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/socket.h>

AF_INET only:
#include <netinet/in.h>

AF_UNIX only:
#include <svg/un.h>

AF_CCITT only:
#include <x25/x25addrstr.h>

int connect(int s, const vold *addr, int addrlen);

DESCRIPTION
connect () initiates a connection on a socket.

The parameter s is a socket descriptor. addr is a pointer to a socket address structure containing the
address of a remote socket to which a connection is to be established. addrlen is the size of this address
structure. Since the size of the socket address structure varies among socket address families, the correct
socket address structure should be used with each address family (for example, struct sockaddr_in
for AF_INET, and struct sockaddr_un for AF_UNIX). Typically, the sizeof () function is used
to pass this value (for example, sizeof (struct sockaddr_in)).

If the socket is of type SOCK_DGRAM, connect () specifies the peer address to which messages are to be
sent, and the call returns immediately. Furthermore, this socket can only receive messages sent from this
address.

If the socket is of type SOCK_STREAM, connect () attempts to contact the remote host in order to make
a connection between the remote socket (peer) and the local socket specified by s. The call normally blocks
until the connection completes. If non-blocking mode has been enabled using the O_NONBLOCK or
O_NDELAY fcntl() flags or the FIOSNBIO ioctl () request and the connection cannot be com-
pleted immediately, connect () returns an error as described below. In these cases, select () can be
used on this socket to determine when the connection has completed by selecting it for writing.

O_NONBLOCK and O_NDELAY are defined in <sys/fcntl.h> and explained in fentl(2), fontl(5), and
socket(7). FIOSNBIO is defined in <sys/1octl.h> and explained in ioctl(2), ioctl(5), and socket(7).

If sis a SOCK_STREAM socket that is bound to the same local address as another SOCK_STREAM socket,
connect () returns EADDRINUSE if addr is the same as the peer address of that other socket. This situa-
tion can only happen if the SO_REUSEADDR option has been set on an AF_INET socket (see get-
sockopt(2)).

If the AF_INET socket does not already have a local name bound to it (see dind(2)), connect () also binds
the socket to a local address chosen by the system.

Generally, stream sockets may successfully connect only once; datagram sockets may use connect ()
multiple times to change the peer address. For datagram sockets, a side effect of attempting to connect to
some invalid address (see DIAGNOSTICS below) is that the peer address is no longer maintained by the sys-
tem. An example of an invalid address for a datagram socket is addrlen set to 0 and addr set to any value.

AF_CCITT only:
Use the x25addrstr struct for the address structure. The caller must know the X.121 address of the
DTE to which the connection is to be established, including any sub-addresses or protocol-IDs that may be
needed. Refer to af_ccitt(7F) for a detailed description of the x25addrstr address structure. If address-
matching by protocol-ID, specify the protocol-ID with the X25_WR_USER_DATA 1octl() call before
issuing the connect () call. The X25_WR_USER_DATA loctl () call is described in socketx25(7).

DEPENDENCIES
AF_CCITT:
The SO_REUSEADDR option to setsockopt () is not supported for sockets in the AF_CCITT address
family.

HP-UX Release 9.0: August 1992 -1- 27

connect(2)

RETURN VALUE

DIAGNOSTICS

28

[EBADF]
[ENOTSOCK]
[EADDRNOTAVAIL]

[EAFNOSUPPORT]

[EALREADY]

[EISCONN]
[EINVAL]

[ETIMEDOUT]

[ECONNREFUSED]
[ENETUNREACH]

[EADDRINUSE]

[EFAULT]
[EINPROGRESS]

[ENODEV]
[ENOSPC]
[ENETDOWN]

[ENOBUFS]}

connect(2)

Upon successful completion, connect () returns 0; otherwise it returns -1 and sets errno to indicate
the error.

connect () fails if any of the following conditions are encountered:

s is not a valid file descriptor.
s is a file descriptor for a file, not a socket.

The specified address is not available on this machine, or the socket is a
TCP or UDP socket and the zero port number is specified.

For datagram sockets, the peer address is no longer maintained by the sys-
tem.

Addresses in the specified address family cannot be used with this socket.

For datagram sockets, the peer address is no longer maintained by the sys-
tem.

Non-blocking /O is enabled using O_NONBLOCK, O_NDELAY, or
FIOSNBIO, and a previous connection attempt has not yet completed.

The socket is already connected.

The socket has already been shut down, or has a 1isten() active on it;
addrlen is a bad value; an attempt was made to connect () an AF_UNIX
socket to an NFS-mounted (remote) name; the X.121 address length is zero,
negative, or greater than fifteen digits.

For datagram sockets, if addrlen is a bad value, the peer address is no
longer maintained by the system.

Connection establishment timed out without establishing a connection.
backlog may be full (see listen(2)).

The attempt to connect was forcefully rejected.
The network is not reachable from this host.

For AF_CCITT only: X.25 Level 2 is down. The X.25 link is not working:
wires might be broken, or connections are loose on the interface hoods at
the modem, or the modem failed, or noise interfered with the line for an
extremely long period of time.

The address is already in use.

For datagram sockets, the peer address is no longer maintained by the sys-
tem.

addr is not a valid pointer.

Non-blocking /O is enabled using O_NONBLOCK, O_NDELAY, or
FIOSNBIO, and the connection cannot be completed immediately. This is
not a failure. Make the connect () call again a few seconds later.
Alternatively, wait for completion by calling select (), selecting for
write.

The x25ifname field refers to a non-existent interface.
All available virtual circuits are in use.

The X.25 interface specified in the addr struct was found or but was not in
the initialized state. x25ifname field name is an interface which has been
shut down or never initialized or suffered a power failure which erased its
state information.

No buffer space is available. The connect () has failed.

-2- HP-UX Release 9.0: August 1992

connect(2) connect(2)

[EINTR] The connect was interrupted by delivery of a signal before the connect
sequence was complete. The building of the connection still takes place,
even though the user is not blocked on the connect () call.

[EOPNOTSUPP] A connect () attempt was made on a socket type which does not sup-
port this call. Under X.25 an attempt was made to issue a connect ()
callona listen () socket.

AUTHOR »
connect () was developed by the University of California, Berkeley.

SEE ALSO
accept(2), select(2), socket(2), getsockname(2), socket(7), socketx25(7), af_ccitt(7F).

HP-UX Release 9.0: August 1992 -3- 29

creat(2) creat(2)

NAME

creat - create a new file or rewrite an existing one

SYNOPSIS

#include <fcntl.h>
int creat(const char *path, mode_t mode);

DESCRIPTION

creat () creates a new regular file or prepares to rewrite an existing file named by the path name pointed
to by path.

If the file exists, its length is truncated to 0, and its mode and owner are unchanged. Otherwise, the file’s
owner ID is set to the effective user ID of the process. If the set-group-ID bit of the parent directory is set,
the file’s group ID is set to the group ID of the parent directory. Otherwise, the file’s group ID is set to the
process’s effective group ID. The low-order 12 bits of the file mode are set to the value of mode modified as
follows:

¢ All bits set in the process’s file mode creation mask are cleared (see umask(2)).
¢ The "save text image after execution" bit of the mode is cleared (see chmod(2)).

Upon successful completion, the file descriptor is returned and the file is open for writing (only), even if the
mode does not permit writing. The file offset is set to the beginning of the file. The file descriptor is set to
remain open across exec () system calls (see fentl(2)). No process can have more than OPEN_MAX files
open simultaneously. This is discussed in open(2). A new file can be created with a mode that forbids writ-
ing.

Access Control Lists (ACLs)

On systems that support access control lists, three base ACL entries are created corresponding to the file
access permission bits. An existing file’s access control list is unchanged by creat () (see setacl(2),
chmod(2), and acl(5)).

ERRORS

30

creat () fails if one or more of the following is true:

[EACCES] Search permission is denied on a component of the path prefix.

[EACCES] The file does not exist and the directory in which the file is to be created does not permit
writing.

[EACCES] The file exists and write permission is denied.

[EAGAIN] The file exists, enforcement mode file and record locking is set and there are outstanding
record locks on the file.

[EDQUOT] User’s disk quota block or inode limit has been reached for this file system.

[EFAULT] path points outside the allocated address space of the process. The reliable detection of this
error is implementation dependent.

[EISDIR] The named file is an existing directory.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[EMFILE) More than the maximum number of file descriptors are currently open.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a com-
ponent of the path name exceeds NAME_MAX bytes while _POSIX NO_TRUNC is in

effect.

[ENFILE] The system file table is full.

[ENOENT] The named file does not exist (for example, path is null, or a component of peth does not
exist).

[ENOSPC] Not enough space on the file system.

[ENOTDIR] A component of the path prefix is not a directory.

-1- HP-UX Release 9.0: August 1992

creat(2) creat(2)

[ENXIO] The named file is a character special or block special file, and the device associated with
this special file does not exist.

[EROFS] The named file resides or would reside on a read-only file system.
[ETXTBSY) The file is a pure procedure (shared text) file that is being executed.

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file descriptor, is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

WARNINGS
Access Control Lists
Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

SEE ALSO
chmod(2), close(2), dup(2), fentl(2), lockf(2), Iseek(2), open(2), read(2), setacl(2), truncate(2), umask(2),
write(2), acl(5).

STANDARDS CONFORMANCE
creat (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -2- 31

dup(2) dup(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int Qup(int fildes);

DESCRIPTION)
fildes is a file descriptor obtained from a creat (), open(), dup (), fcntl (), or pipe() system call.
dup () returns a new file descriptor having the following in common with the original:

¢ Same open file (or pipe).

¢ Same file pointer (i.e., both file descriptors share one file pointer).

¢ Same access mode (read, write or read/write).

¢ Same file status flags (see fentl(2), F_DUPFD).
The new file descriptor is set to remain open across exec () system calls. See fenzl(2).
The file descriptor returned is the lowest one available.

RETURN VALUE
Upon successful completion, the file descriptor is returned as a non-negative integer. Otherwise, a value of
-lisreturned and errno is set to indicate the error.

ERRORS

dup() fails if one or more of the following is true:

{EBADF] fildes is not a valid open file descriptor.

[EMFILE] Request violates the maximum number of open file descriptors.
AUTHOR

dup() was developed by AT&T and HP.
SEE ALSO

close(2), creat(2), dup2(2), exec(2), fentl(2), open(2), pipe(2).

STANDARDS CONFORMANCE
dup(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

32 -1- HP-UX Release 9.0: August 1992

dup2(2) dup2(2)

NAME
dup? - duplicate an open file descriptor to a specific slot

SYNOPSIS
#include <unistd.h>

int Aup2(int fildes, int fildes2);

DESCRIPTION
fildes is a file descriptor obtained from a creat (), open(), dup(), fentl (), or pipe () system call.

fildes2 is a non-negative integer less than the maximum value allowed for file descriptors.

dup2 () causes fildes2 to refer to the same file as fildes. If fildes2 refers to an already open file, the open
file is closed first.

The file descriptor returned by dup2 () has the following in common with fildes:
¢ Same open file (or pipe).
* Same file pointer (that is, both file descriptors share one file pointer.)
* Same access mode (read, write or read/write).
¢ Same file status flags (see fcntl(2), F_DUPFD).
The new file descriptor is set to remain open across exec () system calls. See fentl(2).

This routine is found in the C library. Programs using dup2 () but not using other routines from the
Berkeley importability library (such as the routines described in bsdproc(2)) should not give the -1BSD
option to /d(1).

RETURN VALUE
Upon successful completion, dup2 () returns the new file descriptor as a non-negative integer, fildes2.
Otherwise, it returns -1 and sets errno to indicate the error.

ERRORS
dup2 () fails if the following is true:
[EBADF] fildes is not a valid open file descriptor or fildes2 is not in the range of legal file descriptors.
[EINTR] An attempt to close fildes2 was interrupted by a signal. The file is still open.

SEE ALSO

close(2), creat(2), dup(2), exec(2), fentl(2), open(2), pipe(2).

STANDARDS CONFORMANCE
dup2 () : AES, SVID2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 33

errno(2) errno(2)

NAME

errno - error indicator for function calls

SYNOPSIS

#include <errno.h>
extern int errno;

DESCRIPTION

34

Many functions in the HP-UX operating system indicate an error condition by returning an otherwise out-
of-range value (usually -1). Most of these functions set the external variable errno to a non-zero code
value that more specifically identifies the particular error condition that was encountered.

All errors detected and the corresponding error code values stored in errno are documented in the
ERRORS section on manual pages for those functions that set it.

The value of errno is zero immediately after a successful call to any of the functions described by exec(2)
and ptrace(2), but it is never set to zero by any other HP-UX function. Functions for which the use of
errno is not described may nevertheless change its value to a non-zero value.

Since errno is not cleared on successful function calls, its value should be checked or used only when an
error has been indicated and when the function’s ERRORS section documents the error codes.

Applications should not attempt to take the address of errno, because it may be converted to a macro in a
future release.

The following is a complete list of the error codes. The numeric values can be found in <errno.h> but
they should not be used in an application program because they can vary from system to system.

E2BIG Arg list too long. An argument and or environment list longer than maximum supported
size is presented to a member of the exec () family. Other possibilities include: message
size or number of semaphores exceeds system limit (msgop, semop), or too many
privileged groups have been set up (setprivgrp).

EACCES Permission denied. An attempt was made to access a file or IPC object in a way forbidden
by the protection system.

EADDRINUSE Address already in use. Only one usage of each address is normally permitted.

EADDRNOTAVAIL

Cannot assign requested address. Normally results from an attempt to create a socket
with an address not on this machine.

EAFNOSUPPORT
Address family not supported by protocol family. An address incompatible with the
requested protocol was used. For example, you should not necessarily expect to be able to
use PUP Internet addresses with ARPA Internet protocols.

EAGAIN No more processes. A fork() failed because the system’s process table is full or the user
is not allowed to create any more processes, or a semop () or msgop () call would have
to block.

EALREADY Operation already in progress. An operation was attempted on a non-blocking obJect which
already had an operation in progress.

EBADF Bad file number. Either a file descriptor refers to no open file, a read (respectively write)
request is made to a file which is open only for writing (respectively reading), or the file
descriptor is not in the legal range of file descriptors.

EBUSY Device or resource busy. An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active file (open file, current
directory, mounted-on file, active text segment). It will also occur if an attempt is made to
enable accounting when it is already enabled. The device or resource is currently unavail-
able, such as when a non-shareable device file is in use.

ECHILD No child processes. A wait () was executed by a process that had no existing or
unwaited-for child processes.

-1- HP-UX Release 9.0: August 1992

errno(2)

errno(2)

ECONNABORTED

Software caused connection abort. A connection abort was caused internal to your host
machine.

ECONNREFUSED

ECONNRESET

EDEADLK

Connection refused. No connection could be made because the target machine actively
refused it. This usually results from trying to connect to a service that is inactive on the
foreign host.

Connection reset by peer. A connection was forcibly closed by a peer. This normally results
from the peer executing a shutdown () eall (see shutdown(2)).

Resource deadlock would occur. A process which has locked a system resource would have
been put to sleep while attempting to access another process’ locked resource.

EDESTADDRREQ

EDOM

EEXIST
EFAULT

EFBIG

EHOSTDOWN

Destination address required. A required address was omitted from an operation on a
socket.

Math argument. The argument of a function in the math package (3M) is out of the domain
of the function.

File exists. An existing file was mentioned in an inappropriate context; e.g., 1ink ().

Bad address. The system encountered a hardware fault in attempting to use an argument
of a system call; can also result from passing the wrong number of parameters to a system
call. The reliable detection of this error is implementation dependent.

File too large. The size of a file exceeded the maximum file size (for the file system) or
ULIMIT was exceeded (see ulimit(2)), or a bad semaphore number in a semop () call (see
semop(2)).

Host is down. A socket operation encountered a dead host. Networking activity on the
local host has not been initiated.

EHOSTUNREACH

EIDRM

EILSEQ

EINPROGRESS

EINTR

EINVAL

EIO

EISCONN

EISDIR
ELOOP

No route to host. A socket operation was attempted to an unreachable host.

Identifier Removed. This error is returned to processes that resume execution due to the
removal of an identifier from the file system’s name space (see msgctl(2), semctl(2), and
shmctl(2)).

Illegal byte sequence. A wide character code has been detected that does not correspond to
a valid character, or a byte sequence does not form a valid wide character code.

Operation now in progress. An operation that takes a long time to complete was attempted
on a non-blocking object (see ioctl(2) and fentl(2)).

Interrupted system call. An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is resumed after processing
the signal, it will appear as if the interrupted system call returned this error condition
unless the system call is restarted (see sigvector(2)).

Invalid argument. Some invalid argument (such as unmounting a device that is not
currently mounted, mentioning an undefined signal in signal () or ki1l (), or reading
or writing a file for which 1seek () has generated a negative pointer). Also set by the
math functions described in the (3M) entries of this manual.

L/O error - some physical /O error. This error may in some cases occur on a call following
the one to which it actually applies.

Socket is already connected. A connect () request was made on an already connected
socket, or, a sendto() or sendmsg () request on a connected socket specified a desti-
nation other than the connected party.

Is a directory. An attempt to open a directory for writing.

Too many levels of symbolic links. A path name search involved more than MAXSYM-
LINKS symbolic links. MAXSYMLINKS is defined in <sys/param.h>.

HP-UX Release 9.0: August 1992 -2- 35

errno(2) errno(2)

36

EMFILE Too many open files. No process may have more than a system-defined number of file
descriptors open at a time.
EMLINK Too many links. An attempt to make more than the maximum number of links to a file.

EMSGSIZE Message too long. The socket requires that the message be sent atomically, and the size of
the message to be sent made this impossible.

ENAMETOOLONG

File name too long. A path specified exceeds the maximum path length for the system. The
maximum path length is specified by PATH _MAX and is defined in <limits.h>.
PATH_MAX is guaranteed to be at least 1023 bytes. This error is also generated if the
length of a path name component exceeds NAME_MAX and the _POSIX NO_TRUNC
option is in effect for the specified path. Currently, _POSIX NO_TRUNC is in effect only
for HFS file systems configured to allow path name components up to 255 bytes long (see
convertfs(1IM)) and therefore only path names referring to such file systems can generate
the error for this case. The values of NAME_MAX, PATH_MAX, and _POSIX NO_TRUNC
for a particular path name can be queried by using the pathconf () system call (see
pathconf(2)).

ENETDOWN Network is down. A socket operation encountered a dead network.

ENETRESET Network dropped connection on reset. The host you were connected to crashed and
rebooted.

ENETUNREACH
Network is unreachable. A socket operation was attempted to an unreachable network.

ENFILE File table overflow. The system’s table of open files is full, and temporarily no more
open () s can be accepted.

ENOBUFS No buffer space available. An operation on a socket was not performed because the system
lacked sufficient buffer space.

ENODEV No such device. An attempt was made to apply an inappropriate system call to a device
(such as read a write-only device).

ENOENT No such file or directory. This error occurs when a file name is specified and the file should
exist but does not, or when one of the directories in a path name does not exist. It also
occurs with msgget (), semget (), and shmget () when key does not refer to any
object and the IPC_CREAT flag is not set.

ENOEXEC Exec format error. A request is made to execute a file which, although it has the appropri-
ate permissions, does not start with a valid magic number (see a.out(4)), or the file is too
small to have a valid executable file header.

ENOLCK System lock table is full. Too many files have file locks on them, or there are too many
record locks on files, or there are too many instances of a reading or writing process sleep-
ing until an enforcement mode lock clears. This error may also indicate system problems in
handling a lock request on a remote NFS file. This error is also currently returned for all
attempts to perform locking operations on a remote NFS file that has its locking enforce-
ment mode bit set, since the stateless nature of NFS prevents maintaining the necessary
lock information.

ENOMEM Not enough space. During a system call such as exec (), brk (), fork(),or sbrk(),a
program asks for more space than the system is able to supply. This may not be a tem-
porary condition; the maximum space size is a system parameter. The error can also occur
if the arrangement of text, data, and stack segments requires too many segmentation regis-
ters, or if there is not enough swap space during a fork ().

ENOMSG No message of desired type. An attempt was made to receive a message of a type that does
not exist on the specified message queue; see msgop(2).

ENOPROTOOPT Protocol not available. A bad option was specified in a getsockopt() or set-
sockopt () call (see getsockopt(2)).

-3- HP-UX Release 9.0: August 1992

errno(2) errno(2)

ENOSPC No space left on device. During a write() to an ordinary file, there is no free space left
on the device; or no space in system table during msgget (), semget (), or semop ()
while SEM_UNDO flag is set.

ENOSYM Symbol does not exist in executable. The dynamic loader was unable to resolve a symbolic
reference in a shared library during a call to one of the dynamic loader interface routines
(see shl_load(3X). The program may be in an inconsistent state and should be terminated
immediately.

ENOSYS Function is not available. The requested function or operation is not implemented or not
configured in the system.

ENOTBLK Block device required. A non-block file was mentioned where a block device was required,
such as inmount ().

ENOTCONN Socket is not connected. A request to send or receive data was disallowed because the
socket was not connected.

ENOTDIR Not a directory. A non-directory was specified where a directory is required, such as in a
path prefix or as an argument to chdir ().

ENOTEMPTY Directory not empty. An attempt was made to remove a non-empty directory.

ENOTSOCK Socket operation on non-socket. An operation was attempted on something that is not a

socket.
ENOTTY Not a typewriter. The (1octl ()) command is inappropriate to the selected device type.
ENXIO No such device or address. I/O on a special file refers to a subdevice that does not exist, or

is beyond the limits of the device. It can also occur when, for example, a tape drive is not
on line or no disk pack is loaded on a drive.

EOPNOTSUPP Operation not supported. The requested operation on a socket or NFS file is either invalid
or unsupported. For example, this might occur when an attempt to accept () a connec-
tion on a datagram socket fails.

EPERM Not owner. Typically, this error indicates an attempt to modify a file in some way forbid-
den except to its owner or the super-user, such as to change its mode. It is also returned for
attempts by ordinary users to do things for which they need, but lack, a special privilege.

EPFNOSUPPORT
Protocol family not supported. The protocol family has not been configured into the system
or no implementation for it exists. The socket is not connected.

EPIPE Broken pipe. Data has been written to a pipe for which the other (reading) end has been
closed. This most often occurs when the reading process exits before the writing process.
This condition also generates the signal SIGPIPE; the error is returned if the signal is
ignored.

EPROTONOSUPPORT

Protocol not supported. The protocol has not been configured into the system or no imple-
mentation for it exists.

EPROTOTYPE Protocol wrong type for socket. A protocol was specified that does not support the seman-
tics of the socket type requested. For example, ARPA Internet UDP protocol cannot be used
with type SOCK_STREAM.

ERANGE Result too large. The value of a function in the math package (83M) is not representable
within machine precision, or a semop () call would cause either a semaphore value or a
semaphore adjust value to exceed it system-imposed maximum.

EROFS Read-only file system. An attempt to modify a file or directory was made on a device
mounted read-only.

ESHUTDOWN Cannot send after socket shutdown. A request to send data was disallowed because the
socket had already been shut down with a previous shutdown () call.

ESOCKTNOSUPPORT
Socket type not supported. The support for the socket type has not been configured into the

HP-UX Release 9.0: August 1992 -4- 37

errno(2)

ESPIPE
ESRCH

ETIMEDOUT

ETXTBSY

EWOULDBLOCK

EXDEV

DEPENDENCIES
The following NFS errors are also defined:

38

EREFUSED

EREMOTE

ESTALE
Series 700/800:

errno(2)

system or no implementation for it exists.
Illegal seek. An 1seek () was issued to a pipe.

No such process. No process can be found corresponding to that specified by pid in
k111 (), rtprio(), or ptrace (), or the process is not accessible.

Connection timed out. A connect () request failed because the connected party did not
properly respond after a period of time (timeout period varies, depending on the communi-
cation protocol).

Text file busy. An attempt to execute an executable file which is currently open for writing
(or reading). Also, an attempt to open for writing an otherwise writable file which is
currently open for execution.

Operation would block. An operation which would cause a process to block was attempted
on an object in non-blocking mode (see ioc#l(2) and fentl(2)).

Cross-device link. A link to a file on another device was attempted.

The same error as ECONNREFUSED. The external variable errno is defined as ECONNRE-
FUSED for NFS compatibility.

Too many levels of remote in path. An attempt was made to remotely mount an NFS file
system into a path which already has a remotely mounted NFS file system component.

Stale NFS file handle. A client referenced an open file, but the file was previously deleted.

In the definition of error ENOMEM, the term “segmentation registers” is invalid.

STANDARDS CONFORMANCE
errno: AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

-5~ HP-UX Release 9.0: August 1992

exec(2) exec(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
#include <unistd.h>

extern char **environ;

int execl(
const char *path,
const char *arg0, ...
/* const char *argl,
const char *argn,
(char *)0 */

int execv(const char *path, char * comnst argv([]):

int execle(
const char *path,
const char *arg0, ...
/* const char *argl,
const char *argn,
(char *)o0,
char * const envpl[] */

int execve(const char *file, char * const argv{], char * const envpll):

int execlp(
const char *file,
const char *arg0, ...
/* const char *argl,
const char *argn,
(char *)0 */
)i

int execvp(const char *file, char * const argv([]):

DESCRIPTION
exec (), in all its forms, loads a program from an ordinary, executable file onto the current process, replac-
ing the current program. The path or file argument refers to either an executable object file or a file of data
for an interpreter. In this case, the file of data is also called a script file.

An executable object file consists of a header (see a.out(4)), text segment, and data segment. The data seg-
ment contains an initialized portion and an uninitialized portion (bss). For execlp() and execvp()
the shell (/bin/sh) can be loaded to interpret a script instead. A successful call to exec () does not return
because the new program overwrites the calling program.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **xargv, **envp;

where arge is the argument count and argv is the address of an array of character pointers to the argu-
ments themselves. As indicated, arge usually has a value of at least one, and the first member of the array
points to a string containing the name of the file. (Exit conditions from main are discussed in exit(2).)

path points to a path name that identifies the executable file containing the new program.

file in execlp() or execvp()) points to a file name identifying the executable file containing the new
program. The path prefix for this file is obtained by searching the directories passed as the environment
line PATH = (see environ(5)). The environment is supplied by the shell (see sk (1)). If file does not have an

HP-UX Release 9.0: August 1992 -1- 39

exec(2) exec(2)

40

executable magic number (magic(4)), it is passed to /bin/sh as a shell script.

arg0, argl, ..., argn are pointers to null-terminated character strings. These strings constitute the argu-
ment list available to the new program. By convention, at least arg0 must be present and point to a string

identical to path or path’s last component.

argv is an array of character pointers to null-terminated strings. These strings constitute the argument list
available to the new program. By convention, argv must have at least one member, and must point to a
string that is identical to path or path’s last component. argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings constitute the environment
in which the new program runs. enuvp is terminated by a null pointer. For exec () and execv (), the C
run-time start-off routine places a pointer to the environment of the calling program in the global cell:

extern char **environ;
and it is used to pass the environment of the calling program to the new program.

Open file descriptors remain open, except for those whose close-on-exec flag is set (see fentl(2)). The file
offset, access mode, and status flags of open file descriptors are unchanged.

Note that normal executable files are open only briefly when they start execution. Other executable file
types can be kept open for a long time, or even indefinitely under some circumstances.

The processing of signals by the process is unchanged by exec (), except that signals caught by the pro-
cess are set to their default value (see signal(2)).

If the set-user-ID mode bit of the executable file pointed to by path or file is set (see chmod(2)), exec ()
sets the effective-user-ID of the new process to the user ID of the executable file. Similarly, if the set-group-
ID mode bit of the executable file is set, the effective-group-ID of the process is set to the group ID of the exe-
cutable file. The real-user-ID and real-group-ID of the process are unchanged. Note that the set-
user(group)-ID function does not apply to scripts; thus, if execlp () or execvp() executes a script, the
set-user(group)-ID bits are ignored, even if they are set.

The saved-user-ID and saved-group-ID of the process are always set to the effective-user-ID and effective-
group-ID, respectively, of the process at the end of the exec, whether or not set-user(group)- ID is in effect.

The shared memory segments attached to the calling program are not attached to the new program (see
shmop(2)).

Text and data segment memory locks are not passed on to the new program (see plock(2)).
Profiling is disabled for the new process; see profil(2).
The process also retains the following attributes:

current working directory

file creation mode mask (see umask(2))

file locks (see fentl(2)), except for files closed-on-exec
file size limit (see ulimit(2))

interval timers (see getitimer(2))

nice value (see nice(2))

nice value (see parent process ID

pending signals

process ID

process group ID

real user ID

real group ID

real-time priority (see rtprio(2))

root directory (see chroot(2))

semadj values (see semop(2))

session membership

signal mask (see sigvector(2))

supplementary group IDs

time left until an alarm clock signal (see alarm(2))
trace flag (see ptrace(2) PT_SETTRC request)

-2~ HP-UX Release 9.0: August 1992

exec(2) exec(2)

e tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))

The initial line of a script file must begin with #! as the first two bytes, followed by zero or more spaces,
followed by interpreter or interpreter argument. One or more spaces or tabs must separate inferpreter and
argument. The first line should end with either a new-line or null character.

#1 interpreter
#1 interpreter argument

When the script file is executed, the system executes the specified interpreter as an executable object file.
Even in the case of execlp () or execvp (), no path searching is done of the interpreter name.

The argument is anything that follows the inferprefer and tabs or spaces. If an argument is given, it is
passed to the interpreter as argv[1], and the name of the script file is passed as argv{2]. Otherwise,
the name of the script file is passed as argv[1]. The argv[0] is passed as specified in the exec ()
call, unless either argv or argv[0] is null as specified, in which case a pointer to a null string is passed
as argv([0]. All other arguments specified in the exec () call are passed following the name of the
script file (that is, beginning at argv [3] if there is an argument; otherwise at argv[2]).

If the initial line of the script file exceeds a system-defined maximum number of characters, exec () fails.
The minimum value for this limit is 32.

Set-user-ID and set-group-ID bits are honored for the script but not for the interpreter.

RETURN VALUE
If exec () returns to the calling program, an error has occurred; the return value is -1 and errno is set
to indicate the error.

ERRORS
exec () fails and returns to the calling program if one or more of the following is true:

[E2BIG] The number of bytes in the new program’s argument list is greater than the system-
imposed limit. This limit is at least 5120 bytes on HP-UX systems.

{EACCES] Read permission is denied for the executable file or interpreter, and trace flag (see ptrace(2)
request PT_SETTRC) of the process is set.

[EACCES]) Search permission is denied for a directory listed in the executable file’s or the interpreter’s
path prefix.

[EACCES] The executable file or the interpreter is not an ordinary file.

[EACCES] The file described by path or file is not executable. The super-user cannot execute a file
unless at least one access permission bit or entry in its access control list has an execute bit
set.

[EFAULT) path, argu, or envp point to an illegal address. The reliable detection of this error is imple-
mentation dependent.

[EFAULT] The executable file is shorter than indicated by the size values in its header, or is otherwise
inconsistent. The reliable detection of this error is implementation dependent.

[EINVAL] The executable file is incompatible with the architecture on which the exec () has been

performed, and is presumed to be for a different architecture. It is not guaranteed that
every architecture’s executable files will be recognized.

[ELOOP} Too many symbolic links are encountered in translating the path name.

[ENAMETOOLONG]
The executable file’s path name or the interpreter’s path name exceeds PATH_MAX bytes,
or the length of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ENOENT] path is null.

[ENOENT] One or more components of the executable file’s path name or the interpreter’s path name
does not exist.

[ENOEXEC] The exec() is not an execlp() or execvp(), and the executable file has the
appropriate access permission, but there is neither a valid magic number nor the

HP-UX Release 9.0: August 1992 -3- 41

exec(2) exec(2)

characters #! as the first two bytes of its initial line.
[ENOEXEC] The number of bytes in the initial line of a script file exceeds the system’s maximum.

[ENOMEM] The new process requires more memory than is available or allowed by the system-imposed
maximum.
{ENOTDIR] A component of the executable file’s path prefix or the interpreter’s path prefix is not a
directory.
[ETXTBSY] The executable file is currently open for writing.
WARNINGS

Access Control Lists
Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

DEPENDENCIES
Series 700/800
Unsharable executable files (EXEC_MAGIC magic number produced via the -N option of Id(1)) are not
supported.

SEE ALSO
sh(1), alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2), ulimit(2), umask(2), a.out(4),
acl(5), environ(5), signal(5).

STANDARDS CONFORMANCE
environ: AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execl (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
execle (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
execlp (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
execv (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
execve (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
execvp () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

42 -4~ HP-UX Release 9.0: August 1992

exit(2)

NAME

exit(2)

exit, _exit - terminate process

SYNOPSIS

#include <stdlib.h>
void exit(int status);
#include <unistd.h>
vold _exit (int status);

DESCRIFPTION
exlt () terminates the calling process and passes stafus to the system for inspection, see wait(2). Return-
ing from main in a C program has the same effect as exit (); the status value is the function value
retlilmed by main (this value is undefined if main does not take care to return a value or to call exit ()
explicitly).

exlt () cannot return to its caller. The result of an exit () call during exit processing is undefined.

The functions exit () and _exit (), are equivalent, except that exit () calls functions registered by
atexit () and flushes standard /O buffers, while _exit () does not. Both exit () and _exit ()
terminate the calling process with the following consequences:

AUTHOR

Functions registered by atexit () (see atexit(2)) are called in reverse order of registration.
All file descriptors open in the calling process are closed.
All files created by tmpfile() are removed (see tmpfile(3S)).

If the parent process of the calling process is executing a wait (), wait3 (), or waitpid (), it is
notified of the calling process’s termination, and the low-order eight bits; i.e., bits 0377 of status are
made available to it (see wait(2)).

If the parent process of the calling process is not executing a wait (), wait3 (), or waltpid(),
and does not have SIGCLD set to SIG_IGN, the calling process is transformed into a zombie pro-
cess. A zombie process is a process that only occupies a slot in the process table. It has no other
space allocated either in user or kernel space. Time accounting information is recorded for use by
times () (see times(2)).

The parent process ID is set to 1 for all of the calling process’s existing child processes and zombie
processes. This means the initialization process (procl) inherits each of these processes.

Each attached shared memory segment is detached and the value of shm_ nattach in the data
structure associated with its shared memory identifier is decremented by 1 (see shmop(2)).

For each semaphore for which the calling process has set a semadj value (see semop(2)), that semadj
value is added to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock () is performed, see plock(2).

An accounting record is written on the accounting file if the system’s accounting routine is enabled
(see acct(2)).

A SIGCHLD signal is sent to the parent process.

If the calling process is a controlling process, the SIGHUP signal is sent to each process in the fore-
ground process group of the controlling terminal belonging to the calling process. The controlling ter-
minal associated with the session is disassociated from the session, allowing it to be acquired by a
new controlling process.

If the exit of the calling process causes a process group to become orphaned, and if any member of the
newly-orphaned process group is stopped, all processes in the newly-orphaned process group are sent
SIGHUP and SIGCONT signals.

If the current process has any child processes that are being traced, they are sent a SIGKILL signal.

exit () was developed by HP, AT&T, and the University of California, Berkeley.

HP-UX Release 9.0: August 1992 -1- 43

exit(2) exit(2)

SEE ALSO
Exit conditions ($?) in sh(1),
acct(2), plock(2), semop(2), shmop(2), times(2), vfork(2), wait(2), signal(5).

STANDARDS CONFORMANCE
exit (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

_exit (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

44 -2- HP-UX Release 9.0: August 1992

fentl(2)

NAME

fentl(2)

fentl - file control

SYNOPSIS

#include <fcntl.h>

int

fentl (int £1ldes, int cmd, ... /* arg */);

DESCRIPTION
fcntl () provides for control over open files. fildes is an open file descriptor.

The following are possible values for the cmd argument:

F_DUPFD Return a new file descriptor having the following characteristics:
¢ Lowest numbered available file descriptor greater than or equal to arg. val.
¢ Same open file (or pipe) as the original file.

¢ Same file pointer as the original file (that is, both file descriptors share one
file pointer).

* Same access mode (read, write or read/write).

* Same file status flags (that is, both file descriptors share the same file status
flags).

¢ The close-on-exec flag associated with the new file descriptor is set to remain
open across exec(2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor fildes. If the low-order bit
is O the file will remain open across exec(2), otherwise the file will be closed upon exe-
cution of exec(2).

F_SETFD Set the close-on-exec flag associated with fildes to the low-order bit of arg.val (see
F_GETFD).

F_GETFL Get file status flags and access modes; see fentl(5).

F_SETFL Set file status flags to arg .val. Only certain flags can be set; see fen#l(5). It is not
possible to set both O_NDELAY and O_ NONBLOCK.

F_GETLK Get the first lock that blocks the lock described by the variable of type struct
flock pointed to by arg. The information retrieved overwrites the information
passed to £cntl () in the f£lock structure. If no lock is found that would prevent
this lock from being created, the structure is passed back unchanged, except that the
lock type is set to F_UNLCK.

F_SETLK Set or clear a file segment lock according to the variable of type struct flock
pointed to by arg .lockdes (see fentl(5)). The cmd F_SETLK is used to establish read
(F_RDLCK) and write (F_WRLCK) locks, as well as to remove either type of lock
(F_UNLCK). If a read or write lock cannot be set, £cntl () returns immediately
with an error value of -1.

F_SETLKW This cmd is the same as F_SETLK except that if a read or write lock is blocked by
other locks, the process will sleep until the segment is free to be locked.

A read lock prevents any other process from write-locking the protected area. More than one read lock
can exist for a given segment of a file at a given time. The file descriptor on which a read lock is being
placed must have been opened with read access.

A write lock prevents any other process from read-locking or write-locking the protected area. Only
one write lock may exist for a given segment of a file at a given time. The file descriptor on which a
write lock is being placed must have been opened with write access.

The structure f£lock describes the type (1_type), starting offset (1_whence), relative offset
(1_start), size (1_len), and process ID (1_pid) of the segment of the file to be affected. The pro-
cess ID field is only used with the F_GETLK cmd to return the value of a block in lock. Locks can
start and extend beyond the current end of a file, but cannot be negative relative to the beginning of
the file. A lock can be set to always extend to the end of file by setting 1_len to zero (0). If such a

HP-UX Release 9.0: August 1992 -1- 45

fentl(2)

NETWORKING FEATURES

46

fcntl(2)

lock also has 1_start set to zero (0), the whole file will be locked. Changing or unlocking a segment
from the middle of a larger locked segment leaves two smaller segments for either end. Locking a seg-
ment already locked by the calling process causes the old lock type to be removed and the new lock
type to take effect. All locks associated with a file for a given process are removed when a file descrip-
tor for that file is closed by that process or the process holding that file descriptor terminates. Locks
are not inherited by a child process in a fork(2) system call.

When enforcement-mode file and record locking is activated on a file (see chmod(2)), future read()
and write () system calls on the file are affected by the record locks in effect.

NFS The advisory record-locking capabilities of fentl(2) are implemented throughout the network by the
“network lock daemon” (see lockd(1M)). If the file server crashes and is rebooted, the lock daemon
attempts to recover all locks associated with the crashed server. If a lock cannot be reclaimed, the pro-
cess that held the lock is issued a SIGLOST signal.

Record locking, as implemented for NFS files, is only advisory.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL
F_GETLK
F_SETLK
F_SETLEW

A new file descriptor.

Value of close-on-exec flag (only the low-order bit is defined).
Value other than -1.

Value of file status flags and access modes.

Value other than -1.

Value other than -1.

Value other than —1.

Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
fcntl () fails if any of the following conditions occur:

[EBADF]

[EMFILE]
[EMFILE]

[EMFILE]

[EMFILE]
[EINVAL]

[EINVAL]
[EINVAL]
[EINTR]

[EACCES]

[ENOLCK]

fildes is not a valid open file descriptor, or was not opened for reading when setting a
read lock or for writing when setting a write lock.

cmd is F_DUPFD and the maximum number of file descriptors is currently open.

cemd is F_SETLK or F_SETLKW, the type of lock is a read or write lock, and no more
file-locking headers are available (too many files have segments locked).

cmd is F_DUPFD and arg .val is greater than or equal to the maximum number of
file descriptors.

¢cmd is F_DUPFD and arg . val is negative.

cmd is F_GETLK, F_SETLK, or F_SETLRW, and arg . lockdes or the data it points to
is not valid, or fildes refers to a file that does not support locking.

cmd is not a valid command. :
e¢md is F_SETFL and both O_NONBLOCK and O_NDELAY are specified.
cmd is F_SETLKW and the call was interrupted by a signal.

cmd is F_SETLK, the type of lock (1_type) is a read lock (F_RDLCK) or write lock
(F_WRLCK) and the segment of a file to be locked is already write-locked by another
process, or the type is a write lock (F_WRLCK) and the segment of a file to be locked
is already read- or write-locked by another process.

cmd is F_SETLK or F_SETLERW, the type of lock is a read or write lock, and no more
file-locking headers are available (too many files have segments locked), or no more
record locks are available (too many file segments locked).

-2- HP-UX Release 9.0: August 1992

fentl(2) fentl(2)

[ENOLCK] cmd is F_SETLK or F_SETLKW, the type of lock (1_type) is a read lock
(F_RDLCK) or write lock (F_WRLCK) and the file is an NFS file with access bits set
for enforcement mode.

fENOLCK] cmd is F_GETLK, F_SETLK, or F_SETLEW, the file is an NFS file, and a system error
occurred on the remote node.

[EDEADLK] cmd is F_SETLKW, when the lock is blocked by a lock from another process and sleep-
ing (waiting) for that lock to become free. This causes a deadlock situation.

[EAGAIN] cmd is F_SETLK or F_SETLKW, and the file is mapped in to virtual memory via the
mmap () system call (see mmap(2)).

[EFAULT] emd is either F_GETLK, F_SETLK, or F_SETLKW, and arg points to an illegal
address.

AUTHOR
fent1 () was developed by HP, AT&T and the University of California, Berkeley.

APPLICATION USAGE
Because in the future the external variable errno will be set to EAGAIN rather than EACCES when a sec-
tion of a file is already locked by another process, portable application programs should expect and test for
either value, for example:

£flk->1_type = F_RDLCK;

if (fentl(fd4, rP_sETLR, flk) == -1)
if ((errno == EACCES) || (errno == EAGAIN))
/*

* section locked by another process,
* check for elther EAGAIN or EACCES
* due to different implementations

* check for other errors
*/
SEE ALSO
lockd(1M), statd(1M), chmod(2), close(2), exec(2), lockf(2), open(2), read(2), write(2), fentl(5).

FUTURE DIRECTIONS
The error condition which currently sets errno to EACCES will instead set errno to EAGAIN (see also
APPLICATION USAGE above).

STANDARDS CONFORMANCE
fentl (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -3- 47

fork (2) fork(2)

NAME
fork - create a new process

SYNOPSIS
#include <unistd.h>

pid_t fork(vold);

DESCRIPTION
fork() causes the creation of a new process. The new process (child process) is an exact copy of the cal-
ling process (parent process). This means that the child process inherits the following attributes from the
parent process:

Real, effective, and saved user ID. ¢

Real, effective, and saved group iD.

List of supplementary group IDs (see getgroups(2)).
Process group. ID

Environment.

File descriptors.

Close-on-exec flags (see exec(2)).

Signal handling settings (SIG_DFL, SIG_IGN, address).
Signal mask (see sigvector(2)).

Profiling on/off status (see profil(2)).

Command name in the accounting record (see acct(4)).
Nice value (see nice(2)).

All attached shared memory segments (see shmop(2)).
Current working directory

Root directory (see chroot(2)).

File mode creation mask (see umask(2)).

File size limit (see ulimiz(2)).

Real-time priority (see réprio(2)).

® © o © © & o o © 0 0 o o 0o 0 o

Each of the child’s file descriptors shares a common open file description with the corresponding file descrip-
tor of the parent. This implies that changes to the file offset, file access mode, and file status flags of file
descriptors in the parent also affect those in the child, and vice-versa.

The child process differs from the parent process in the following ways:

The child process has a unique process ID. The child process ID also does not match any active process
group ID.

The child process has a different parent process ID (which is the process ID of the parent process).
The set of signals pending for the child process is initialized to the empty set.

The trace flag (see ptrace(2) -PT_SETTRC request) is cleared in the child process.

The AFORK flaginthe ac_flags component of the accounting record is set in the child process.
Process locks, text locks, and data locks are not inherited by the child (see plock(2)).

All semad]j values are cleared (see semop(2)).

The child process’s values of tms_utime, tms_stime, tms_cutime, and tms_cstime are set
to zero (see times(2)).

The time left until an alarm clock signal is reset to 0 (clearing any pending alarm), and all interval
timers are set to 0 (disabled).

The vfork(2) system call can be used to fork processes more quickly than fork(), but has some restric-
tions. See vfork(2) for details.

If a parent and child process both have a file opened and the parent or child closes the file, the file is still
open for the other process.

RETURN VALUE
Upon successful completion, fork() returns a value of 0 to the child process and returns the process ID
of the child process to the parent process. Otherwise, a value of -1 is returned to the parent process, no

48 -1- HP-UX Release 9.0: August 1992

fork (2) fork(2)

child process is created, and errno is set to indicate the error.

The parent and child processes resume execution immediately after the fork() call; they are dis-
tinguished by the value returned by fork.

ERRORS
fork () fails and no child process is created if one or more of the following is true:

[EAGAIN] The system-imposed limit on the total number of processes under execution would be
exceeded.

A

{EAGAIN] The system-imposed lmit on the total number of processes under execution by a sin-
gle user would be exceeded.

[ENOMEM] There is insufficient swap space and/or physical memory available in which to create
the new process.

WARNINGS
Standard I/O streams (see stdio(3S)) are duplicated in the child. Therefore, if fork is called after a buffered
/O operation without first closing or flushing the associated standard /O stream (see fclose(3S)), the
buffered input or output might be duplicated.

AUTHOR
fork () was developed by AT&T, the University of California, Berkeley, and HP.

SEE ALSO
acct(2), chroot(2), exec(2), exit(2), fentl(2), getgroups(2), lockf(2), nice(2), plock(2), profil(2), ptrace(2),
rtprio(2), semop(2), setuid(2), setpgrp(2), shmop(2), times(2), ulimit(2), umask(2), vfork(2), wait(2),
fclose(38), stdio(38), acct(4), signal(5).

STANDARDS CONFORMANCE
fork (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -2- 49

fsctl(2)

NAME

fsctl - file system control

SYNOPSIS

#include <sys/fsc

int fsctl(
int fildes,
int command,
void *outbuf,
slze_t outlen
)

DESCRIPTION
£scti () provides access to file-system-specific information. fildes is an open file descriptor for a file in the
file system of interest. The possible values for command depend on the type of file system. Currently,
defined commands exist only for the CDFS file system (see sys/cdfsdir.h).

50

fsctl(2)

tl.h>

outbuf is a pointer to the data area in which data is returned from the file system. outlen gives the length
of the data area pointed to by outbuf.

The CDFS commands are:

CDFS_DIR_REC

CDFS_XAR

CDFS_AFID

CDFS_BFID

CDFS_CFID

CDFS_VOL_ID

Returns the directory record for the file or directory indicated by fildes. The record
is returned in a structure of type cddir, defined in <sys/cdfsdir.h>.

Returns the extended attribute record, if any, for the file or directory indicated by
fildes. Because the size of an extended attribute record varies, be sure outbuf
points to a data area of sufficient size. To find the necessary size, do the following:

1. Use statfs(2). to get the logical block size of the CDFS volume.

2. Usean fsctl() call with the CDFS_DIR_REC command to get the
extended attribute record size (in blocks) for the file or directory of
interest. The mincdd_xar_1len field in the returned structure con-
tains the size of the extended attribute record in logical blocks. (If this
field is zero, the file or directory has no extended attribute record.)

3. Multiply mincdd_xar_1len by the logical block size obtained in step
1 to get the total space needed.

4. Once you get the extended attribute record, cast outbuf into a pointer to
a structure of type cdxar_iso (defined in <sys/cdfsdir.h>).
This enables you to access those fields that are common to all extended
attribute records. (See EXAMPLES below for an example of this pro-
cess.)

If the extended attribute record contains additional system use or
application use data, that data will have to be accessed manually.

Returns the abstract file identifier for the primary volume whose root directory is
specified by fildes, terminated with a NULL character. Note that the constant
CDMAXNAMLEN defined in <sys/cdfsdir.h> gives the maximum length a file
identifier can have. Thus, CDMAXNAMLEN + 1 can be used for outlen and the size
of outbuf.

Returns the bibliographic file identifier for the primary volume whose root direc-
tory is specified by fildes, terminated with a NULL character. CDMAXNAMLEN +
1 can be used for the value of outlen and the size of outbuf.

Returns the copyright file identifier for the primary volume whose root directory is
specified by fildes, terminated with a NULL character. CDMAXNAMLEN + 1 can
be used for the value of outlen and the size of outbuf.

Returns the volume ID for the primary volume specified by fildes, terminated with
a NULL character. The maximum size of the volume ID is 32 bytes, so a length of
33 can be used for outlen and the size of utbuf.

-1- HP-UX Release 9.0: August 1992

fsctl (2) fsctl(2)

CDFS_VOL_SET_ID
Returns the volume set ID for the primary volume specified by fildes, terminated
with a NULL character. The maximum size of the volume set ID is 128 bytes, so a
length of 129 can be used for outlen and the size of outbuf.

EXAMPLES
The following code fragment gets the extended attribute record for a file on a CDFS volume. The filename is
passed in as the first argument to the routine. Note that error checking is omitted for brevity.

#include <sys/types.h>
#include <sys/vEs.h>
#include <fcntl.h>
#include <sys/cdfsdir.h>
main(arge, argv)

int argc:
char *argv(]:;
{

int fildes, size = 0;
char *malloc(), *outbuf;
struct statfs buf;
struct cddir cdrec;
struct cdxar_iso *xar;

statfs(argv([l], &buf); /* get logical block size */
fildes = open(argv([l], O_RDONLY); /* open file arg */

/* ﬁet directory record for file arg */
fsctl(fildes, CDFS_DIR_REC, &cdrec, sizeof(cdrec)):;

size = buf.f bsize * cdrec.cdd_min.mincdd_xar_len; /* compute size ¥*/

1f(size) { /* 1f size != 0 then there 1s an xar */ s
outbuf = malloc(size); /* malloc sufficient memory */

fsctl(fildes, CDFS_XAR, outbuf, size); /* get xar */

xar = (struct cdxar_iso *)outbuf; /* cast outbuf to access fields */

RETURN VALUE g
£8ctl () returns the number of bytes read if succegful. If an error occurs, -1 is returned and errno is
set to indicate the error.

ERRORS
£sctl () fails if any of the following conditions are encountered:
[EBADF] fildes is not a valid open file descriptor. h
[EFAULT] outbuf points to an invalid address.
[ENOENT] The requested information does not exist.

HP-UX Release 9.0: August 1992 ‘ -2- 51

fsctl(2) fsctl(2)

[EINVAL] command is not a valid command.
[EINVAL] outlen is negative, or fildes does not refer to a CDFS file system.

SEE ALSO
statfs(2), cdfs(4), cdfsdir(4), cdnode(4), cdrom(4).

52) -38- HP-UX Release 9.0: August 1992

fsync(2) fsync(2)

NAME
fsync - synchronize a file’s in-core state with its state on disk

SYNOPSIS
#include <unistd.h>

int f£sync(int f£ildes):

DESCRIPTION
fayne () causes all modified data and attributes of fildes to be moved to a permanent storage device. This
normally results in all in-core modified copies of buffers for the associated file to be written to a disk.
fsync () applies to ordinary files, and applies to block special devices on systems which permit /0 to biock
special devices.

f£sync () should be used by programs that require a file to be in a known state; such as when building a
simple transaction facility.

RETURN VALUE
fsync () returns 0 on success or -1 if an error error occurs, and sets errno to indicate the error.
ERRORS
fsync fails if any of the following conditions are encountered:
[EBADF] fildes is not a valid descriptor.
[EINVAL] fildes refers to a file type to which £sync () does not apply.
WARNINGS
The current implementation of this function is inefficient for large files.
AUTHOR
fsynec () was developed by the the University of California, Berkeley and HP.
' SEE ALSO

fentl(2), fentl(5), open(2), select(2), sync(2), sync(1M).

STANDARDS CONFORMANCE
fsync (): AES, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 53

ftime (2) ftime (2)

NAME
ftime - get date and time more precisely

SYNOPSIS
#include <sys/timeb.h>
int ftime(struct timeb *tp);
REMARKS
This facility is provided for backwards compatibility with Version 7 systems. Either time() or get-
timeofday () should be used in new programs.
DESCRIPTION
ftime () fills in a structure pointed to by its argument, as defined by <sys/timeb.h>:
/ *
* Structure returned by ftime system call
*/
struct timeb {
time_t time;
unsigned short millitm;
short timezone;
short dstflag;
}:
The structure contains the time in seconds since 00:00:00 UTC (Coordinated Universal Time), January 1,
1970, up to 1000 milliseconds of more-precise interval, the local timezone (measured in minutes of time
westward from UTC), and a flag that, if nonzero, indicates that Daylight Saving time applies locally during
the appropriate part of the year. Consult gettimeofday(2) for more details on the meaning of the timezone
field.

This function can be accessed by giving the -1V7 option to the 14 command (see Id(1)).
ftime () can fail for exactly the same reasons as gettimeofday(2).

SEE ALSO .
date(1), gettimeofday(2), stime(2), time(2), ctime(3C).

WARNINGS

The millisecond value usually has a granularity greater than one due to the resolution of the system clock.
Depending on any granularity (particularly a granularity of one) renders code non-portable.

54 -1- HP-UX Release 9.0: August 1992

getaccess(2) getaccess(2)

NAME
getaccess - get a user’s effective access rights to a file

SYNOPSIS
#include <sys/getaccess.h>

int getaccess(
const char *path,
uld _t uiq,
int ngroups,
consgt gid_t *gidset,
void *label,
vold *privs

):

DESCRIPTION
getaccess () identifies the access rights (read, write, execute/search) a specific user ID has to an existing
file. path points to a path name of a file. If the call succeeds, it returns a value of zero or greater,
representing the specified user’s effective access rights (modes) to the file. The rights are expressed as the
logical OR of bits (R_OK, W_OK, and X_OK) whose values are defined in the header <cunistd.h>. A return
of zero means that access is denied.

The uid parameter is a user ID. Special values, defined in <sys/getaccess.h>, represent the calling
process’s effective, real, or saved user ID:

UID_EUID Effective user ID.
UID_RUID Real user ID.
UID_SUID Saved user ID.

ngroups is the number of group IDs in gidset, not to exceed NGROUPS_MAX + 1 (NGROUPS_MAX is defined
in <1imits.h>). If the ngroups parameter is positive, the gidset parameter is an array of group ID valies
to use in the check. If ngroups is a recognized negative value, gidset is ignored. Special negative values of
ngroups, defined in <sys/getaccess.h>, represent various combinations of the process’s effective, real,
or saved user ID and its supplementary groups list:

NGROUPS_EGID Use process’s effective group ID only.
NGROUPS_RGID Use process’s real group ID only.
NGROUPS_SGID Use process’s saved group ID only.
NGROUPS_SUPP Use process’s supplementary groups only.

NGROUPS_EGID_SUPP Use process’s effective group ID plus supplementary groups.
NGROUPS_RGID_SUPP Use process’s real group ID plus supplementary groups.
NGROUPS_SGID_SUPP Use process’s saved group ID plus supplementary groups.

The label and privs parameters are placeholders for future extensions. For now, the values of these param-
eters must be (void *) 0.

The access check rules for access control lists are described in acl(5). In addition, the W_OK bit is cleared
for files on read-only file systems or shared-text programs being executed. Note that as in access(2), the
X_OK bit is not turned off for shared-text programs open for writing because there is no easy way to know
that a file open for writing is a shared-text program.

If the caller’s user ID is 0, or if it is UID_EUID, UID_RUID, or UID_SUID (see <sys/getaccess.h>)
and the process’s respective user ID is 0, R_OK and W_OK are always set except when W_OK is cleared for
files on read-only file systems or shared-text programs being executed. X_OK is set if and only if the file is
not a regular file or the execute bit is set in any of the file’s ACL entries.

getaccess () checks each directory component of path by first using the caller’s effective user ID,
effective group ID, and supplementary groups list, regardless of the user ID specified. An error occurs, dis-
tinct from “no access allowed,” if the caller cannot search the path to the file. (In this case it is inappropri-
ate for the caller to learn anything about the file.)

Comparison of access(2) and getaccess(2)
The following table compares various attributes of access () and getaccess ().

HP-UX Release 9.0: August 1992 -1- 55

getaccess(2)

getaccess(2)

access () getaccess ()
checks all ACL entries same
uses real uid, real gid, and uses specified uid and groups list;
supplementary groups list macros available for typical values

checks specific mode value,

returns all mode bits, each on or off

returns succeed or fail

checks path to file using caller’s effective IDs same
W_OK false if shared-text file same
currently being executed

W_OK false if file on same
read-only file system

¥_OK not modified for file same

currently open for writing

R_OK and W_OK always true for superuser same
(except as above)

X_OK always true for superuser

X_OK true for super-user if file is not a regular
file or execute is set in any ACL entry

RETURN VALUE

Upon successful completion, getaccess () returns a non-negative value representing the access rights of
the specified user to the specified file. If an error occurs, a value of -1 is returned and errno is set to
indicate the error.

ERRORS
getaccess () fails if any of the following conditions are encountered:

[EACCES] A component of the path prefix denies search permission to the caller.

[EFAULT] path or gidset points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

[EINVAL] ngroups is invalid; ngroups is either zero, an unrecognized negative value, or a value
larger than NGROUPS + 1.

[EINVAL] gidset contains an invalid group ID value.

[EINVAL] The value of label or privs is not a null pointer.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

[ENOENT] The named file does not exist (for example, path is null or a component of path does
not exist).

[ENOTDIR] A component of the path prefix is not a directory.

[EOPNOTSUPP] getaccess()is not supported on some types of remote files.

EXAMPLES

56

Thedfollowing call determines the caller’s effective access rights to file “test,” and succeeds if the user has
read access:

#include <unistd.h>
#include <sys/getaccess.h>

int mode;
mode = getaccess ("test", UID_EUID, NGROUPS_EGID_SUPP,
(int *) 0, (void *) 0, (void *) 0);

if ((mode >= 0) && (mode & R_OK)) ...

Here is one way to test access rights to file /tmp/hold for user ID 23, group ID 109:

-2 HP-UX Release 9.0: August 1992

getaccess(2) getaccess(2)

int gid = 109;
int mode;

mode = getaccess ("/tmp/hold", 23, 1, & gid,
(void *) 0, (void *) 0);

Should the need arise, the following code builds a gidset that includes the process’s effective group ID:
#include <limits.h>
int gidset [NGROUPS_MAX + 1];

int ngroups;

gidset [0] = getegid();
ngroups = 1 + getgroups (NGROUPS_MAX, & gldset [1]);

AUTHOR
getaccess () was developed by HP.

SEE ALSO
access(2), chmod(2), getacl(2), setacl(2), stat(2), acl(5), unistd(5).

HP-UX Release 9.0: August 1992

getacl(2) : getacl(2)

NAME

getacl, fgetacl - get access control list (ACL) information

SYNOPSIS

#include <sys/acl.h>

int getacl(

const char *path,

int nentries,

struct acl_entry *acl
)i

int fgetacl(int fildes, int nentries, struct acl_entry *acl);

DESCRIPTION

getacl () returns a complete listing of all ACL entries (uid.gid, mode) in an existing file’s access control
list. path points to a path name of a file.

Similarly, fgetacl() returns a complete listing of all ACL entries for an open file known by the file
descriptor fildes.

nentries is the number of entries being reported on, and is never more than the constant NACLENTRIES
defined in <sys/acl.h>. If nentries is non-zero, it must be at least as large as the number of entries in
the file’s ACL, including base entries (see sefacl(2)). getacl() returns the number of entries in the file’s
ACL, as well as the ACL entries themselves in the array of structures acl declared by the calling program.

If nentries is zero, getacl () returns the number of entries in the file’s ACL, including base ACL entries,
and ac! is ignored.

Entries are reported in groups of decreasing order of specificity (see setacl(2)), then sorted in each group by
user ID and group ID. The content of array entries beyond the number of defined entries for the file is
undefined.

RETURN VALUE

Upon successful completion, getacl() and fgetacl() return a non-negative value. If an error
occurs, a value of -1 is returned, and errno is set to indicate the error.

ERRORS

getacl () or £getacl () fail to modify the acl array if any of the following is true:
[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist (for example, path is null or a component of path does
not exist).

[EBADF] fildes is not a valid file descriptor.

[EACCES] A component of the path prefix denies search permission.

[EFAULT] path or a portion of acl to be written points outside the allocated address space of the
process.

[EINVAL] nentries is non-zero and less than the number of entries in the file’s ACL, or it is
greater than NACLENTRIES:

[EOPNOTSUPP] getacl () is not supported on remote files by some networking services.

[ENFILE] The system file table is full.

[ENAMETOOLONG]

The length of path exceeds PATH_MAX bytes, or the length of a component of path
exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.

EXAMPLES

58

The following call returns the number of entries in the ACL on file /users/bill/mcfile.
#include <sys/acl.h> '

-1- HP-UX Release 9.0: August 1992

getacl(2)

entries = getacl ("/users/bill/mcfile", 0, (struct acl_entry *) 0);

The following call returns in acl all entries in the ACL on the file opened with file descriptor 5.
#include <sys/acl.h>

int nentries;

struct acl_entry acl [NACLENTRIES];

entries = fgetacl (5, NACLENTRIES, acl);
DEPENDENCIES

NFS getacl() and fgetacl () are not supported on remote files.

AUTHOR
getacl () and fgetacl () were developed by HP.

SEE ALSO
access(2), chmod(2), getaccess(2), setacl(2), stat(2), unistd(5).

HP-UX Release 9.0: August 1992 -2-

getacl(2)

59

.

getaudid(2) getaudid (2)

NAME
getaudid - get the audit ID (aid) for the current process

SYNOPSIS
#include <sys/audit.h>

int getaudid(void);

DESCRIPTION
getaudid () returns the audit ID (aid) for the current process. This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, the audit ID is returned; otherwise, a ~1 is returned.

ERRORS
getaudid () fails if the following is true:

[EPERM] The caller is not super-user.

AUTHOR
getaudid () was developed by HP.

SEE ALSO
setaudid(2).

60 -1- HP-UX Release 9.0: August 1992

getaudproc(2) ' getaudproc(2)

NAME
getaudproc - get the audit process flag for the calling process

SYNOPSIS
#include <asys/audit.h>

int getaudproc(void);

DESCRIPTION
getaudproc () returns the audit process flag for the calling process. The audit process flag (v_audproc)
determines whether the process run by a given user should be audited. The process is audited if the
returned fiag is 1. If the returned fiag is 0, the process is not audited. This cail is resiricted to the super-
user.

RETURN VALUE
Upon successful completion, the audit process flag is returned; otherwise, a -1 is returned and errno is
set to indicate the error.

ERRORS
getaudproc () fails if the following is true:

[EPERM] The caller is not the super-user.

AUTHOR
getaudproc () was developed by HP.

SEE ALSO
setaudproc(2).

HP-UX Release 9.0: August 1992 -1- 61

getcontext(2) getcontext(2)

NAME
getcontext - return process context for context-dependent file search

SYNOPSIS
#include <unistd.h>

int getcontext (char *contextbuf, size_t length):;

DESCRIPTION .
getcontext () reads the per-process context (see confext(5)) into the buffer pointed to by contextbuf. The
context is returned as a null-terminated string containing a blank-separated list of names. The function
value returned by getcontext () is the length of this string, including the null terminator. If this
string, including the null terminator, is less than length bytes, a truncated, null-terminated string of length
bytes is returned. In particular, if length is zero, only the function value is returned.

RETURN VALUE
Upon successful completion, the length of the context string, including the null terminator, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
getcontext () may fail if the following is true:

[EFAULT] contextbuf points to an illegal address. Reliable detection of this error is not guaranteed.

EXAMPLES
In the following example getcontext () is called once with a length parameter of zero to determine the
size of a buffer to allocate for the context.
int length;
char *contextbuf;

length = getcontext ((char *)0, 0);
contextbuf = malloc (length);
(void) getcontext (contextbuf, length);

AUTHOR
getcontext () was developed by HP.

SEE ALSO
getcontext(1), cnodeid(2), cnodes(2), cdf(4), context(5).

62 -1- HP-UX Release 9.0: August 1992

getdirentries(2) getdirentries(2)

NAME
getdirentries - get entries from a directory in a filesystem-independent format

SYNOPSIS
#include <ndir.h>

int getdirentries(
int fildes,
struct direct *buf,
size_t nbytes,
off_t *basep

)i

DESCRIPTION
getdirentries () places directory entries from the directory referenced by the file descriptor fildes into
the buffer pointed to by buf, in a filesystem-independent format. Up to nbyfes of data are transferred.
nbytes must be greater than or equal to the block size associated with the file; see stat(2). Smaller block
sizes can cause errors on certain file systems.

The data in the buffer consists of a series of direct structures, each containing the following entries:

unsigned long d_flleno;
unsigned short d_reclen;
unsigned short d namlen;
char d_name [MAXNAMLEN + 1];

The d_fileno entry is a number unique for each distinct file in the file system. Files linked by hard
links (see link(2)) have the same d_£fileno. The d_reclen entry identifies the length, in bytes, of the
directory record. The d_name entry contains a null-terminated file name. The d_namlen entry
specifies the length of the file name. Thus the actual size of d_name can vary from 2 to MAXNAMLEN + 1.
Note that the direct structures in the buffer are not necessarily tightly packed. The d_reclen entry
must be used as an offset from the beginning of a direct structure to the next structure, if any.

The return value of the system call is the actual number of bytes transferred. The current position pointer
associated with fildes is set to point to the next block of entries. The pointer is not necessarily incremented
by the number of bytes returned by getdirentries (). If the value returned is zero, the end of the
directory has been reached.

The current position pointer is set and retrieved by lseek() (see lseek(2). getdlirentries () writes
the position of the block read into the location pointed to by bdasep. The current position pointer can be set
safely only to a value previously returned by lseek(), to a value previously returned in the location
pointed to by basep, or to zero. Any other manipulation of the position pointer causes undefined results.

RETURN VALUE
If successful, the number of bytes actually transferred is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

ERRORS
getdirentries () fails if any of the following conditions are encountered:
[EBADF] fildes is not a valid file descriptor open for reading.
[EFAULT] Either buf or basep points outside the allocated address space.
[EINTR] A read from a slow device was interrupted by the delivery of a signal before any data
arrived.
[EIO] An I/0 error occurred while reading from or writing to the file system.
AUTHOR
getdirentries () was developed by Sun Microsystems, Inc.
SEE ALSO
open(2), Iseek(2).

HP-UX Release 9.0: August 1992 -1- 63

getdomainname(2) getdomainname(2)

NAME
getdomainname, setdomainname - get/set name of current Network Information Service domain

SYNOPSIS
int getdomainname (char *name, int namelen);

int setdomainname (char *name, int namelen);

DESCRIPTION
getdomainname () returns the name of the Network Information Service (NIS) domain for the current
processor, as previously set by setdomainname (). The parameter namelen specifies the size of the name
array. The returned value is null-terminated unless the area pointed to by name is not large enough to
hold the domain name plus the null byte. In this case, only the namelen number of bytes is returned.

setdomainname () sets the domain of the host machine to name, which has a length of namelen. This
callis restricted to the super-user and is normally used only when the system is booted.

These Network Information Service domains enable two distinct networks with common host names to
merge. Each network is distinguished by having a different domain name. Currently, only the Network
Information Service uses these domains.

RETURN VALUE
If the call succeeds, a value of 0 is returned. If the call fails, a value of -1 is returned and errno is set to
indicate the error.

ERRORS
getdomainname () and setdomainname () fail if any of the following conditions are encountered:

[EFAULT] name points outside the accessible address space.
[EPERM] The caller is not super-user. This error only applies to setdomainname ().
WARNINGS

The length of the name array should be at least 65; NIS domain names can be up to 64 characters long.

NIS servers use the NIS domain name as the name of a subdirectory of /usr/etc/yp. Since the NIS
domain name can be as long as 64 characters, the domain name set with setdomainname () can exceed
the maximum file name length allowed on the local file system. If that length is exceeded, the name of the
subdirectory is the truncated NIS domain name.

AUTHOR
getdomainname was developed by Sun Microsystems, Inc.

SEE ALSO
domainname(1), ypserv(1M), ypfiles(4).

64 -1~ HP-UX Release 9.0: August 1992

getevent(2) getevent(2)

NAME
getevent - get events and system calls that are currently being audited

SYNOPSIS
#include <sys/audit.h>

int getevent (
struct aud_type *a_syscall,
struct aud_event_tbl *a_event
)i
DESCRIPTION
getevent () gets the events and system calls being audited. The events are returned in a table pointed
to by a_event. The system calls are returned in a table pointed to by a_syscall. This call is restricted to the
super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned; otherwise, a -1 is returned and errno is set to indi-
cate the error.

ERRORS
getevent () fails if the following is true:

[EPERM] The caller is not super-user.
AUTHOR

getevent () was developed by HP.
SEE ALSO

setevent(2), audevent(1M).

HP-UX Release 9.0: August 1992 -1- 65

getfh(2)

NAME

getfh - return file handle for file on remote node

SYNOPSIS
#include
#include
#include
#include

int getfh(char *path, fhandle_t *fhp);

DESCRIPTION

<time.h>
<rpc/rpc.h>
<errno.h>
<nfs/nfs.h>

getfh(2)

getfh() returns a file handle in the struct pointed to by fhp for the file pointed to by path. This informa-

tion is used to perform an NFS mount for a remote node.

getfh () is executed on the remote node;

results are passed back to the program doing the NFS mount. The caller should never examine the file han-
dle contents. The file handle only identifies a file to the node that produced the file handle. (The term "file

handle" refers to an NFS concept.)
Only the super-user can invoke getfh().

RETURN VALUE

Upon successful completion, get£h () returns 0; otherwise it returns ~1 and sets errno to indicate the

error.
ERRORS

getfh() fails if any of the following conditions are encountered:
[EPERM]
[ENOENT]
[EINVAL]

[EREMOTE]

WARNINGS

The effective user ID is not super-user.
File or directory specified by path does not exist.

Invalid argument, or the file or directory has not been exported by exportfs (see
exportfs(1M)).

The file or directory specified by path is a remote file or directory.

This call should be used only by HP-supplied commands and is not recommended for use by non-HP-
supplied programs.

AUTHOR

Sun Microsystems, Inc.

SEE ALSO

exportfs(1IM), mount(1M), vfsmount(2).

66

HP-UX Release 9.0: August 1992

getgroups(2) getgroups(2)

NAME

getgroups - get group access list
SYNOPSIS

#include <unistd.h>

int getgroups(int ngroups, gid_t gidset[]);

DESCRIPTION
getgroups () gets the current group access list of the user process and stores it in the array gidset. The
parameter ngroups indicates the number of entries which may be placed in gidset. No more than NGROUPS,
as defined in <sys /param.h>, is ever returned.

As a special case, if the ngroups argument is zero, getgroups () returns the number of group entries for
the process. In this case, the array pointed to by the gidset argument is not modified.

EXAMPLES
The following call to gefgroups(2) retrieves the group access list of the calling process and stores the group
ids in array mygidset:
int ngroups = NGROUPS;
gld t mygidset [NGROUPS];
- int ngrps;

ngrps = getgroups (ngroups, mygldset);

RETURN VALUE
If successful, getgroups () returns a non-negative value indicating the number of elements returned in
gidset. If an error occurs, a value of -1 is returned and errno is set to indicate the type of error.

ERRORS
getgroups () fails if any of the following conditions are encountered:
[EFAULT] gidset specifies an invalid address. The reliable detection of this error is implementation
dependent.
[EINVAL]} The argument ngroups is not. zero and is less than the number of groups in the current
group access list of the process.
AUTHOR
getgroups () was developed by HP and the University of California, Berkeley
SEE ALSO

setgroups(2), initgroups(3C)

STANDARDS CONFORMANCE
getgroups (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 67

gethostname(2) gethostname(2)

NAME
gethostname - get name of current host

SYNOPSIS
#include <unistd.h>

int gethostname(char *hostname, size_t size);

DESCRIPTION
gethostname () returns in the array to which kostname points, the standard host name for the current
processor as set by sethostname () (see sethostname(2)). size specifies the length of the hostname array.
hostname is null-terminated unless insufficient space is provided.

RETURN VALUE
gethostname () returns 0 if successful. Otherwise, it returns -1 and sets errnoc fo indicate the error.
ERRORS
gethostname () can fail if the following is true:
[EFAULT) hostname points to an illegal address. The reliable detection of this error is implementa-
tion dependent.
AUTHOR
gethostname () was developed by the University of California, Berkeley.
SEE ALSO

hostname(1), uname(1), sethostname(2), uname(2).

68 -1- HP-UX Release 9.0: August 1992

getitimer(2) getitimer(2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include <time.h>

int getitimer(int which, struct itimerval *value);

int setitimer(
int which,
const struct itimerval *value,
struct itimerval ¥*ovalue

)i

DESCRIPTION
The system provides each process with three interval timers, defined in <time.h>. getitimer ()
returns the current value for the timer specified in which, whereas setitimer () call sets the value of a
timer (optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_wvalue; /* current value */
}i
If it_value is non-zero, it indicates the time to the next timer expiration. If it_inferval is non-zero, it
specifies a value to be used in reloading it_value when the timer expires. Setting i¢_velue to O disables a
timer. Setting iz_interval to 0 causes a timer to be disabled after its next expiration (assuming it_value is
non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution. The
machine-dependent clock resolution is 1/HZ seconds, where the constant HZ is defined in
<gsys/param.h>. Time values larger than an implementation-specific maximum value are rounded down
to this maximum. The maximum values for the three interval timers are specified by the constants
MAX ALARM, MAX VTALARM, and MAX_PROF defined in <sys/param.h>. On all implementations,
these values are guaranteed to be at least 31 days (in seconds).

The which parameter specifies which timer to use. The possible values are ITIMER_ REAL,
ITIMER_VIRTUAL, and ITIMER_PROF.

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this timer
expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the process is exe-
cuting. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is running on
behalf of the process. It is designed to be used by interpreters in statistically profiling the execution of
interpreted programs. Each time the ITIMER_PROF timer expires, the SIGPROF signal is delivered.
Since this signal can interrupt in-progress system calls, programs using this timer must be prepared to res-
tart interrupted system calls.

Interval timers are not inherited by a child process across a fork (), but are inherited across an exec ().

Three macros for manipulating time values are defined in <t ime . h>:

timerclear Set a time value to zero.
timerlsset Test if a time value is non-zero.
timercmp Compare two time values. (Beware that >= and <= do not work with the

timercmp macro.)

The timer used with ITIMER_REAL is also used by alarm() (see alarm(2)). Thus successive calls to
alarm(), getitimer(), and setitimer () set and return the state of a single timer. In addition, a
callto alarm() sets the timer interval to zero.

HP-UX Release 9.0: August 1992 -1- 69

getitimer(2) getitimer(2)

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, -1 is returned, and errno is set to indicate
the error.
ERRORS
getitimer () or setitimer () fail if any of the following conditions are encountered:
[EFAULT] The value structure specified a bad address. Reliable detection of this error is imple-
mentation dependent.
[EINVAL] A value structure specified a microsecond value less that zero or greater than or equal
to one million.
[EINVAL] which does not specify one of the three possible timers.
EXAMPLES

The following call to setitimer () sets the real-time interval timer to expire initially after 10 seconds
and every 0.5 seconds thereafter:

struct itimerval rttimer;
struct itimerval old_rttimer

~

rttimer.it_value.tv_sec = 10;
rttimer.it_value.tv_usec = 0;
rttimer.it_interval.tv_sec = 0;
rttimer.it_interval.tv_usec = 500000;

setitimer (ITIMER_REAL, &rttimer, &old_rttimer);

AUTHOR
getitimer () was developed by the University of California, Berkeley.

SEE ALSO
alarm(2), exec(2), gettimeofday(2), signal(5).

70 -2- HP-UX Release 9.0: August 1992

getpeername(2) getpeername(2)

NAME
getpeername - get address of connected peer

SYNOPSIS
#include <sys/socket.h>

AF_CCITT only:
#include <x25/x25addrstr.h>
int getpeername(int s, vold *addr, int *addrlen):;
DESCRIPTION
getpeername () returns the address of the peer socket connected to the socket indicated by s, where s is
a socket descriptor. addr points to a socket address structure in which this address is returned. addrlen
points to an object of type int, which should be initialized to indicate the size of the address structure. On

return, it contains the actual size of the address returned (in bytes). If addr does not point to enough space
to contain the whole address of the peer, only the first addrlen bytes of the address are returned.

AF_CCITT only:
The addr struct contains the X.25 addressing information of the remote peer socket connected to socket s.

However, the x251fname[] field of the addr struct contains the name of the local X.25 interface through
which the call arrived.

RETURN VALUE
Upon successful completion, getpeername () returns 0; otherwise it returns -1 and sets errno to indi-
cate the error.

ERRORS
getpeername () fails if any of the following conditions are encountered:

[EBADF] The argument s is not a valid file descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.
[ENOBUFS] Insufficient resources were available in the system to perform the operation.
[EFAULT] The addr or addrlen parameters are not valid pointers.
[EINVAL] The socket has been shut down.
[EOPNOTSUPP] Operation not supported for AF_UNIX sockets.
AUTHOR
getpeername () was developed by the University of California, Berkeley.
SEE ALSO

bind(2), socket(2), getsockname(2), inet(7F), af_ccitt(7F).

HP-UX Release 9.0: August 1992 -1- 71

getpid(2) getpid(2)

NAME
getpid, getpgrp, getppid, getpgrp2 - get process, process group, and parent process ID

SYNOPSIS
#include <unistd.h>

pld_t getpid(void);

pld_t getpgrp(vold);

pld_t getpplid(void);

pld_t getpgrp2(pild_t pid);

DESCRIPTION
The following functions return the information indicated:
getpid () Process ID of the calling process.
getpgrp() Process group ID of the calling process.
getppid() Parent process ID of the calling process.

getpgrp2 () Process group ID of the specified process. If pid is zero, the call applies to the
current process. For this to be allowed, the current process and the referenced
process must be in the same session.

ERRORS
getpgrp2 fails if any of the following conditions are encountered:
(EPERM] The current process and the specified process are not in the same session.
[ESRCH] No process can be found corresponding to that specified by pid.

AUTHOR
getpid(), getpplid(), getpgrp(), and getpgrp2() were developed by HP, AT&T, and the
University of California, Berkeley.

SEE ALSO
exec(2), fork(2), setpgrp(2), setpgid(2), signal(5).

STANDARDS CONFORMANCE
getpid(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getpgrp(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
getppld(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

72 -1- HP-UX Release 9.0: August 1992

getpriority (2) getpriority(2)

NAME

getpriority, setpriority - get and set process priorities
SYNOPSIS

#include <sys/resource.h>

int getpriority(int which, int who);
int setpriority(int which, int who, int priority);
DESCRIPTION

getpriority () returnsthe

rh\rity of the indicated processes.

n
PTic O1 vag lngicatet

setpriority() setsthe priority of the indicated processes to priority.
The processes are indicated by which and who, where which can have one of the following values:

PRIO_PROCESS
Get or set the priority of the specified process where who is the process ID. A who of
0 implies the process ID of the calling process.

PRIO_PGRP Get or set the priority of the specified process group where who is the process-group
ID, indicating all processes belonging to that process-group. A who of 0 implies the
process-group ID of the calling process.

PRIO_USER Get or set the priority of the specified user where who is the user ID, indicating all
processes owned by that user. A who of 0 implies the user ID of the calling process.

If more than one process is indicated, the priority returned by getpriority() is the smallest valued
priority of all the indicated processes, and setpriority () sets the priority of all indicated processes.

priority is a value between -20 and 20, where smaller values indicate better priorities. The default priority
for a processes is 0, and negative priorities require appropriate privileges.

RETURN VALUE
On success, getpriority() returns an integer in the range from —20 to 20, and setpriority()
returns 0. Otherwise, both return ~1 and set errno to indicate the error. See WARNINGS below.

ERRORS
getpriority() and setpriority() failif any of the following conditions are encountered:

[ESRCH] Processes indicated by which and who cannot be found.
[EINVAL] which is not one of the choices listed above.

[EACCES] The calling process does not have access rights to change one or more of the indicated
processes. All processes for which access is allowed are still affected.

[EPERM] The calling process attempted to change the priority of a process to a negative value
without having appropriate privileges.

WARNINGS
Note that getpriority () can return -1 when it successfully finds a priority of -1, and when it fails. To
determine whether a failure occurred, set errno to 0 before calling getpriority () then examine
errno after the call returns.

AUTHOR
setpriority() and getpriority() were developed by the University of California, Berkeley.

SEE ALSO
nice(1), renice(1), nice(2).

HP-UX Release 9.0: August 1992 -1- 73

getprivgrp(2) getprivgrp(2)

NAME

getprivgrp, setprivgrp - get and set special attributes for group

SYNOPSIS

#include <sys/privgrp.h>
int getprivgrp(struct privgrp_map *grplist);
int setprivgrp(gid_t grpid, const int *mask);

DESCRIPTION

setprivgrp () associates a kernel capability with a group ID. This allows subsetting of super-user-like
privileges for members of a particular group or groups. setprivgrp() takes two arguments: the
integer group id and a mask of permissions. The mask is created by treating the access types defined in
<8ys8/privgrp.h> as bit numbers (using 1 for the least significant bit). Thus, privilege number 5 wouid
be represented by the bit 1<<(5-1) or 16. More generally, privilege p is represented by:

mask[((p-1)/ BITS_PER_INT)] & (1 << ((p-1) % BITS_PER_INT)).

As it is possible to have more than word size distinct privileges, mask is a pointer to an integer array of
size PRIV_MASKSIZ.

setprivgrp () privileges include those specified in the file <ays/privgrp.h>. A process can access
the system call protected by a specific privileged group if it belongs to or has an effective group ID of a group
having access to the system call. All processes are considered to belong to the pseudo-group
PRIV_GLOBAL.

Specifying a grpid of PRIV_NONE causes privileges to be revoked on all privileged groups having any of
the privileges specified in mask. Specifying a grpid of PRIV_GLOBAL causes privileges to be granted to
all processes.

The constant PRIV_MAXGRPS in <sys/privgrp.h> defines the system limit on the number of groups
that can be assigned privileges. One of these is always the psuedo-group PRIV_GLOBAL , allowing for
PRIV_MAXGRPS - 1 actual groups.

getprlvgrp () returns a table of the privileged group assignments into a user supplied structure. grplist
points to an array of structures of type privgrp_map associating a groupid with a privilege mask.
Privilege masks are formed by ORing together elements from the access types specified in
<sys/privgrp.h>. The array may have gaps in it distinguished as having a priv_groupno field of
PRIV_NONE. The group number PRIV_GLOBAL gives the global privilege mask. Only information about
groups which are in the user’s group access list, or about his real or effective group id, is returned to an
ordinary user. The complete set is returned to the privileged user.

EXAMPLES

The following example prints out PRIV_GLOBAL and the group IDs of the privilege groups to which the
user belongs:

#include <sys/types.h>

struct privgrp _map pgrplist[PRIV_MAXGRPS];
int 1;
gid_t pgid;

getprivgrp (pgrplist);
for (1=0; 1i<PRIV_MAXGRPS; 1++) {
if ((pgid = pgrplist([i].priv_groupno) != PRIV_NONE) {
if (pgid == PRIV_GLOBAL)
printf (" (PRIV_GLOBAL) "“);
printf ("privilege group id = %4\n", pgid);

NOTES

74

Only users with the #idfef B1 setprocident privilege

-1- HP-UX Release 9.0: August 1992

getrlimit(2) getrlimit(2)

NAME
getrlimit, setrlimit - control consumption of system resources

SYNOPSIS
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);
int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
setrlimit () sets a limit on consumption of system resources by the current process and each process it
creates. getrlimit () isused to obtain the value of the current limit.

Each call to either getrlimit () or setrlimit () identifies a specific resource to be operated upon as
well as a resource limit. A resource limit is a pair of values: one specifying the current (soft) limit, the
other a maximum (hard) limit. Soft limits can be changed by a process to any value that is less than or
equal to the hard limit. A process can irreversibly lower its hard limit to any value that is greater than or
equal to the soft limit. Only users with appropriate privileges can raise a hard limit. Both hard and soft
limits can be changed in a single call to setr1imit (), subject to the constraints described above.

The resource parameter selects the system resource limits to be set or retrieved. The possible values for
resource are defined in <sys/resource.h>. Currently, only the following values are supported:

RLIMIT NOFILE the maximum number of files a process can have open. The soft limit for this
resource is the same as the value returned by
sysconf (_SC_OPEN_MAX) .

RLIMIT OPEN_MAX defined to be the same as RLIMIT NOFILE.

The rlp argument points to an object of type struct rlimit, which is defined in <sys/resource.h>, and
includes the following members:

int rlim_cur Current (soft) 1limit

int rlim_max Hard limit
For getrlimit (), the system stores the two limits on the specified resource in the structure to which rip
points.

For setrlimit (), the system reads new values for the two limits on the specified resource from the
structure to which rlp points.

‘RETURN VALUE
Upon successful completion, getrlimit () and setrlimit () return a value of 0. Otherwise, a value
of -1 is returned, the limits on the resource and the rlp structure are unchanged, and errno is set to indi-
cate the error.

ERRORS
getrlimit () and setrlimit () failif:
[EFAULT] The address specified for rip is invalid. Reliable detection of this error is implementa-
tion dependent.
[EINVAL] The number specified for resource is invalid.
setrlimit fails if:
[EPERM]
The rip argument specified a hard or soft limit higher than the current hard limit
value, and the caller does not have appropriate privileges.
[EINVAL] A user with appropriate privileges has attempted to raise rlp->rlim_cur or
rip->rlim_max to a value greater than the system is capable of supporting.
[EINVAL] The value of rip->rlim_cur is less than the number of file descriptors the process
already has allocated.
{EINVAL] The value of rip->rlim_max is less than the current soft limit.

HP-UX Release 9.0: August 1992 -1- 75

getrlimit (2) getrlimit(2)

AUTHOR
get‘i(rlimit () and setrlimit() were developed by HP, AT&T, and the University of California,
Berkeley.

SEE ALSO
sysconf(2).

76 -2- HP.UX Release 9.0: August 1992

getsockname(2) getsockname(2)

NAME
getsockname - get socket address

SYNOPSIS
#include <sys/socket.h>

AF_CCITT only:
#include <x25/x25addrstr.h>

int getsockname(int 8, void *addr, int *addrlen);

DESCRIPTION :
getsockname () returns the address of the socket indicated by s, where s is a socket descriptor. addr
points to a socket address structure in which this address is returned. addrien points to an int which
should be initialized to indicate the size of the address structure. On return it contains the actual size of
the address returned (in bytes). If addr does not point to enough space to contain the whole address of the
socket, only the first addrlen bytes of the address are returned.

AF_CCITT only:
The x25_host[] field of the addr struct returns the X.25 addressing information of the local socket s.
The x251fname[] field of the addr struct contains the name of the local X.25 interface through which the
call arrived.

RETURN VALUE
Upon successful completion, getsockname () returns 0; otherwise, it returns -1 and sets errno to indi-
cate the error.

ERRORS
getsockname () fails if any of the following conditions are encountered:
[EBADF] s is not a valid descriptor.
[ENOTSOCK] s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in the system to perform the operation.
[EFAULT] The addr or addrlen parameters are not valid pointers.
{EINVAL] The socket has been shut down.
[EOPNOTSUPP] Operation not supported for AF_UNIX sockets.
AUTHOR
getsockname () was developed by the University of California, Berkeley.
SEE ALSO

bind(2), socket(2), getpeername(2), inet(7F), af_ccitt(7F).

HP-UX Release 9.0: August 1992 -1- (ki

getsockopt(2) getsockopt (2)

NAME

getsockopt, setsockopt - get and set options on sockets

SYNOPSIS

#include <sys/socket.h>

int getsockopt (
int s,
int level,
int optname,
vold *optval,
int *optlen);

int setsockopt/(
int =,
int level,
int optname,
const void *optval,
int optlen);

DESCRIPTION

78

getsockopt () and setsockopt () manipulate options associated with a socket. The socket is
identified by the socket descriptor s. Options can exist at multiple protocol levels; and they are always
present at the uppermost “socket” level (see socket(2)).

When manipulating socket options, the level at which the option resides (level) and the name of the option
(optname) must be specified. To manipulate options at the “socket” level, level is specified as
SOL_SOCKET.

There are two kinds of options: boolean and non-boolean. Boolean options are either set or not set and also
can use optval and optlen (see below) to pass information. Non-boolean options always use optval and
optlen to pass information.

To determine whether boolean option optname is set, the return value of getsockopt () must be exam-
ined. If the option is set, getsockopt () returns without error. If the boolean option is not set, get-
sockopt () returns -1 and errno is set to indicate the error.

For setsockopt (), the parameters optval and optlen are used to pass option information from the sys-
tem to the calling process. optval is the address of a location in memory that contains the option informa-
tion to be passed to the system. optlen is an integer that specifies the size in bytes of the option informa-
tion.

For get sockopt (), optval and optlen are used to pass option information from the system to the calling
process. optval is the address of a location in memory that contains the option information to be passed to
the calling process, or (char *) NULL if the option information is not of interest and not to be passed to the
calling process. optlen is an address of an integer initially used to specify the maximum number of bytes of
option information to be passed. If optval is not (char *) NULL, optlen is set on return to the actual number
of bytes of option information passed. If the getsockopt () call fails, no option information is passed.

optname and any specified options are passed uninterpreted to the appropriate protocol module for interpre-
tation. The include file <sys/socket .h> contains definitions for “socket” level options (see socket(2)).
Options at other protocol levels vary in format and name. Consult the appropriate entries in Section 7P,
such as tcp(7P).

The “socket” level options defined in the include file <8ys/socket .h> are explained below:

SO_DEBUG (boolean option) no functionality; included only for compatibility.

SO_DONTROUTE (boolean option; SOCK_STREAM sockets only) causes outgoing messages to
bypass standard routing facilities and to be routed by the network portion
of the Internet address. .

SO_ERROR returns the current contents of the variable so_error for this socket and

then clears the variable (so_error is defined in <sys/socketvar.h>.
The contents match those found in errno.

-1- '~ HP-UX Release 9.0: August 1992

getsockopt(2) getsockopt(2)

SO_REUSEADDR (boolean option; AF_INET sockets only) allows local address reuse.

SO_KEEPALIVE (boolean option; SOCK_STREAM and AF_INET <<<<<<< getsockopt.2 sockets
only) keeps otherwise idle connections active. If a connection has been idle
for two hours, transmissions are forced every 75 seconds until a response is
received or 10 minutes expires, whichever occurs first. If 10 minutes
expires with no response, the connection is dropped.

SO_LINGER (boolean option; SOCK_STREAM and AF_INET sockets only) lingers on close
if data is present. For SO_LINGER, opfval points to a struct linger
, defined in fusr/include/svs/socket.h. The linger structure
contains an integer boolean flag to toggle behavior on/off and an integer
linger value. '

SO_BROADCAST (boolean option; SOCK_DGRAM and AF_INET sockets only) toggles permis-
sion to transmit broadcast messages.

SO_RCVBUF (non-boolean option) For stream sockets it changes the buffer size of a
socket’s receive socket buffer. For datagram sockets it changes the max-
imum size message a socket can receive. A stream socket’s buffer size can
be increased at any time but decreased only prior to establishing a connec-
tion. For datagram sockets, the inbound maximum message size can be
increased or decreased at any time. The default and maximum values for
SO_RCVBUF are protocol-specific. Refer to the appropriate entries in Sec-
tions 7F and 7P.

SO_SNDBUF (non-boolean option) For stream sockets, it changes the buffer size of a
socket’s send socket buffer. For datagram sockets it changes the maximum
size message that can be sent. A stream socket’s buffer size can be
increased at any time but decreased only prior to establishing a connec-
tion. For datagram sockets, the maximum outbound message size can be
increased or decreased at any time. The default and maximum values for
SO_SNDBUF are protocol-specific. Refer to the appropriate entries in Sec-
tions 7F and 7P. ’

SO_USELOOPBACK (boolean option) no functionality; included only for compatibility.
None of the boolean options are supported for SOCK_DGRAM sockets.

If SO_DONTROUTE is set, the system does not use the network routing tables when determining which
interface to use to send an outbound message. Instead, the system sends the message out through the
interface that has a configured address matching the address to which the message is intended to be sent.
If SO_DONTROUTE is not set, the system uses the network routing tables.

SO_REUSEADDR indicates the rules used in validating addresses supplied in a bind () call should allow
reuse of local addresses. This allows multiple SOCK_STREAM sockets to be bound to the same local address,
as long as all existing sockets at the desired address are in a connected state before the bind () is done on
the new socket. The SO_REUSEADDR option has no effect on SOCK_DGRAM sockets.

The SO_KEEPALIVE option defaults to off. If SO_KEEPALIVE is set on and the connection has been idle
for two hours, TCP sends a packet to the remote socket to acknowledge that it is still alive. If the remote
socket does not respond within 75 seconds, TCP sends another packet. If TCP sends a total of 8 packets
without response from the remote socket (i.e., 10 minutes have passed), TCP drops the connection. The
next socket call (e.g., recv ()) returns an error, and errno is set to ETIMEDOUT.

SO_LINGER controls the actions taken when unsent messages are queued on a SOCK_STREAM socket and a
close(2) is performed. If SO_LINGER is toggled on with a non-zero linger interval, the system blocks the
process on the close() attempt until it is able to transmit the data or until it decides it is unable to
deliver the information. If SO_LINGER is toggled on with a linger interval of zero, the connection is
immediately terminated on the close () of the socket, and any unsent data queued on the connection is
lost. If SO_LINGER is toggled off (default upon socket creation) and a close() is issued, the call
returns immediately. The system still gracefully brings down the connection by transmitting any queued
data, if possible. SO_LINGER can be toggled on/off at any time during the life of an established connec-
tion. Toggling SO_LINGER does not affect the action of shutdown ().

HP-UX Release 9.0: August 1992 -2- 79

getsockopt(2) getsockopt(2)

The SO_BROADCAST option requests permission to send Internet broadcast datagrams on the socket.

For stream sockets, SO_RCVBUF and SO_SNDBUF can be used with getsockopt () to find the current
sizes (in number of bytes) of the socket’s receive and send buffers, respectively. If supported by the protocol,
SO_RCVBUF and SO_SNDBUF can also be used with setsockopt () to set the sizes (in number of
bytes) of the socket’s receive and send buffers, respectively. The sizes are passed as integer values using
optval and optlen. You can increase a socket’s buffer size at any time, but you can decrease it only prior to
establishing a connection. The default and maximum buffer sizes are protocol-specific. See the appropriate
entries in Sections 7F and 7P for more information.

For datagram sockets, SO_RCVBUF and SO_SNDBUF can be used with getsockopt () to find the
current maximum datagram size (in number of bytes) in the inbound and outbound direction, respectively.
SO_RCVBUF and SO_SNDBUF can also be used with setsockopt () to set the maximum datagram
size. The default and maximum datagram sizes are protocoi-specific. See the appropriate entries in Sec-
tions 7F and 7P for more information.

AF_CCITT

SO_SNDBUF and SO_RCVBUF are the only options supported for sockets of the AF_CCITT address family.

RETURN VALUE

Upon successful completion, getsockopt () and setsockopt () return 0; otherwise, they return -1
and set errno to indicate the error.

DIAGNOSTICS
getsockopt () and setsockopt () fail if any of the following conditions are encountered:
[EBADF] The argument s is not a valid descriptor.
[EOPNOTSUPP] The option is not supported by the protocol in use by the socket.
[ENOBUFS] No buffer space is available.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOPROTOOPT] In getsockopt (), the requested option is currently not set.
[EINVAL] The option is unknown at the socket level or the socket has been shut down.
[EFAULT] The optval or, in the case of getsockopt (), optlen parameters are not valid
pointers.
AUTHOR

getsockopt () was developed by the University of California, Berkeley.

SEE ALSO

80

socket(2), getprotoent(8N), af_ccitt(7F), tcp(7P), udp(7P), unix(7P).

-3- HP-UX Release 9.0: August 1992

gettimeofday (2) gettimeofday(2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <time.h>

int gettimeofday (
struct timeval *tp,
struct timezone *tzp
)i
int settimeofday (
const struct timeval *tp,
const struct timezone *tzp
)i
DESCRIPTION
gettimeofday () returns and settimeofday () sets the system’s notion of the current Coordinated
Universal Time (UTC) and the system’s notion of the current time zone. Time is expressed in seconds and
microseconds since midnight January 1, 1970.

The structures pointed to by ¢p and #zp are defined in <t ime.h> as:
struct timeval {

unsigned long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */
}i
struct timezone {
int tz_minuteswest; /* of UTC */
int tz_dsttime; /* type of DST correction to apply */

iH
The timezone structure indicates the local time zone (measured in minutes of time westward from UTC),
and a flag that, if nonzero, indicates that Daylight Savings Time applies locally during the appropriate part

of the year. Programs should use this timezone information only in the absence of the TZ environment vari-
able.

Only users with appropriate privileges can set the time of day.

EXAMPLES
The following example calls gettimeofday () twice. It then computes the lapsed time between the calls
in seconds and microseconds and stores the result in a timeval structure:

struct timeval first,
second,
lapsed;
struct timezone tzp;
gettimeofday (&first, &tzp);
/* lapsed time */
gettimeofday (&second, &tzp);
if (flrst.tv_usec > second.tv_usec) {

second.tv_usec += 1000000;
second.tv_sec--;

}
lapsed.tv_usec = second.tv_usec - first.tv_usec;
lapsed.tv_sec = second.tv_sec - first.tv_sec;

RETURN VALUE
gettimeofday () and settimeofday() return 0 on success; otherwise, if an error occurs, they
return -1 and set errno to indicate the error.

HP-UX Release 9.0: August 1992 -1- 81

gettimeofday (2) gettimeofday (2)

ERRO;:tt imeocfday () and settimeofday () fail if any of the following conditions are encountered:
[EFAULT] An argument address referenced invalid memory. The reliable detection of this error
will be implementation dependent.
[EPERM] A user lacking appropriate privileges attempted to set the time.
WARNINGS

The microsecond value usually has a granularity much greater than one due to the resolution of the system
clock. Relying on any granularity (particularly of one) will render code non-portable.
DEPENDENCIES
Series 300/400
gettimeofday () has a granularity of 4 microseconds.
Clustered Systems
In an HP Clustered Environment, setting the time of day sets the date and timezone on all systems in the
cluster.
AUTHOR
gettimeofday () was developed by the University of California, Berkeley.

SEE ALSO
date(1), stime(2), time(2), ctime(3C), privilege(5).

82 -2- HP-UX Release 9.0: August 1992

getuid(2) getuid(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and effective group IDs

SYNOPSIS
#include <unistd.h>

uid_t getuid(void);
uld_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);

DESCRIPTION
The following functions return the information indicated:

getuid() Real-user-ID of the calling process.
geteuld() Effective-user-ID of the calling process.
getgld() Real-group-ID of the calling process.
getegld() Effective-group-ID of the calling process.
No means is available for ascertaining the saved-user-ID or saved-group-ID of a process.
SEE ALSO
setuid(2).

STANDARDS CONFORMANCE
getuid(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getegid(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
geteuld(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
getgid(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 Co=-1- 83

ioctl(2) ioctl(2)

NAME
ioctl - control device

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int fildes, int request, ... /* arg */):

DESCRIPTION
loctl () performs a variety of functions on character special files (devices). The write-ups of various dev-
ices in Section (7) discuss how loctl () applies to them. The type of arg is dependent on the specific
loctl () call, as described in Section (7).

request is made up of several fields which encode the size and direction of the argument (referenced by arg),
as well as the desired command. An enumeration of the request fields are:

IOC_IN Argument is read by the driver (meaning that the argument is copied from the
application to the driver).

I0C_OUT Argument is written by the driver (meaning that the argument is copied from
the driver to the application). Ignored if an error occurs.

IOCSIZE_MASK Number of bytes in the passed argument. A nonzero size indicates that arg is a
pointer to the passed argument. A zero size indicates that arg is the passed
argument (if the driver wants to use it), and is not treated as a pointer.

IOCCMD_MASK The request command itself.

When both IOC_IN and IOC_OUT are zero, it can be assumed that reguest is not encoded for size and
direction, for compatibility purposes. Requests that do not require any data to be passed and requests that
use arg as a value (as opposed to a pointer), have the IOC_IN bit set to one and the IOCSIZE_MASK
field set to zero.

The following macros are used to create the request argument. x and y are concatenated ((x<<8) | y)to
form IOCCMD and shifted into the proper location according to IOCCMD_MASK. t is the type (e.g.
struct hpib_cmd) of the actual argument that the request references, and its size is taken and shifted
into the appropriate place according to IOCSIZE_MASK.

_IOR(x,y,t) Sets IOC_OUT and initializes the values at IOCCMD_MASK and
IOCSIZE_MASK accordingly.

_IOW(x,y,t) Sets IOC_IN and initializes the values at IOCCMD_MASK and
IOCSIZE_MASK accordingly.

_IOWR(x,y,t) Sets both IOC_IN and IOC_OUT and initializes the values at
IOCCMD_MASK and IOCSIZE_MASK.

Note: any data structure referenced by arg must not contain any pointers.

RETURN VALUE
If an error has occurred, a value of -1is returned and errno is set to indicate the error.

loct1() fails if one or more of the following are true: I0C_OUT is ignored if an error occurs.

[EBADF] fildes is not a valid open file descriptor.

[ENOTTY] The request is not appropriate to the selected device.

[EINVAL] request or arg is not valid.

[EINTR] A signal was caught during the l1octl () system call.

[EPERM] Typically this error indicates that an ioctl request was attempted that is forbidden in

some way to the calling process.

WARNINGS

Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector(2) can
affect the behavior described on this page.

AUTHOR
ioctl() was developed by AT&T and HP.

84 -1- HP-UX Release 9.0: August 1992

ioctl(2) ioctl(2)

SEE ALSO
ioctl(5), termio(7).

STANDARDS CONFORMANCE
ioctl (): SVID2, XPG2

HP-UX Release 9.0: August 1992 -2- 85

ipcconnect(2) ipcconnect(2)

NAME
ipcconnect - initiate a connection to another process

SYNOPSIS
#include <sys/ns_ipc.h>

vold i1pcconnect (
ns_int_t calldesc,
ns_int_t destdesc,
ns_int_t *flags,
short optll},
ns_int_t #*vcdesc,
ns_1int_t *result):;

DESCRIPTION
ipcconnect () is used to initiate a virtual circuit on which data can be sent and received. When
ipcconnect () returns, a connection is not yet established; a successful return only indicates that a con-
nection request was sent without error. Actively establishing a virtual circuit with NetIPC calls is a two-
step process:

¢ ipcconnect () is called to request a connection, then

¢ ipcrecv(8N) is called to find out if a connection initiated with ipcconnect (). was successfully
established.

The opt parameter can be used to specify the number of bytes you expect to send and receive on the connec-
tion. The default for both sending and receiving is 100 bytes. This information is passed to the underlying
protocol. When TCP is the underlying protocol, it limits the number of bytes that can be queued on a socket

to the specified value.
PARAMETERS
calldesc (input parameter)

NS_NULL_DESC should be specified. A valid call socket descriptor can be specified to
ensure backward compatibility.

destdesc (input parameter)
A destination descriptor obtained by calling ipclookup() or ipcdest() (see
ipclookup(3N) and ipcdest(3N)). '

flags (input parameter)
Either 0 or a pointer to 0. All other values are reserved for future use.

opt (input parameter)
Options for this call. If no options are used, this parameter can be null. Otherwise, see
below.

vedese (output parameter)

A pointer to a virtual circuit number that can be used in subsequent NetIPC calls to refer-
ence the connection.

result (output parameter)
See ERRORS below.

OPTION PARAMETER
NSO_MAX SEND_SIZE (optioncode = 3) (datalength = 2) A two-byte integer specifying the maximum
number of bytes that can be sent with a single ipcsend () call on this con-
nection (see ipcsend(3N)). Range: 1 to 32 000 bytes. Default: 100 bytes.
NSO_MAX RECV_SIZE (optioncode = 4) (datalength = 2) A two-byte integer specifying the maximum
number of bytes that can be received with a single iperecv() call on this con-
nection (see ipcrecv(3N)). Range: 1 to 32,000 bytes. Default: 100 bytes.
RETURN VALUE
None. Errors are returned in the result parameter.

ERRORS

86 -1- HP-UX Release 9.0: August 1992

ipcconnect (2)

[NSR_ADDR_NOT_AVAIL]

[NSR_BOUNDS_VIO]

[NSR_DESC]

[NSR_DEST_UNREACHABLE]

[NSR_DUP_OPTION]
[NSR_FLAGS]
[NSR_KIND_AND_PROTOCOL]
[NSR_MSGSIZE]

[NSR_NO_DESC_AVAILABLE]

[NSR_NO_ERROR]
[NSR_NO_FILE_AVAILABLE]
[NSR_NO_MEMORY]
[NSR_NOT_ALLOWED]
[NSR_NOT_CALL_SOCKET]
{NSR_OPT_OPTION]
[NSR_OPT_SYNTAX]
[NSR_PROTOCOL]
[NSR_SIGNAL_INDICATION]

AUTHOR

ipcconnect(2)

The protocol address specified by the destination descriptor is 0, which is
illegal for connection establishment, OR there is no available interface to
the destination network.

A length or offset value in the option parameter is illegal or one of the
pointer arguments is invalid.

The calldesc argument is not NSR_NULL_DESC or a valid socket descrip-
tor, or the destdesc argument is not a valid destination descriptor.

The m_etwork or host specified by the destination descriptor is unreachable
from this host at this time.

A particular option is defined more than once in the opt parameter.

An unsupported flag is set in the flags parameter.

The requested protocol is not supported in the default domain.

The value specified in NSO_MAX_SEND_SIZE or

NSO_MAX RECV_SIZE is invalid.

The process exceeded the system-defined number of file and socket descrip-
tors that can be open at a time (see getrlimit(2)).

The call was successful.

The system cannot allocate a file structure at this time.

Sufficient system memory is not available to execute this call at this time.
An unsupported flag is set in the flags parameter.

The calldesc argument is not an NS_CALL socket.

An option in the opt parameter is unknown or unsupported.

A length or offset value in the opt parameter is invalid.

The requested protocol is not supported.

The call aborted due to a signal.

ipcconnect () was developed by HP.

SEE ALSO

getrlimit(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam-
erase(2), ipcrecv(2), ipcrecven(2), ipeselect(2), ipecsend(2), ipcsetnodename(2), ipecshutdown(2), addopt(3N),
initopt(8N), ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992

-9 87

ipccontrol (2)

NAME
ipccontrol - perform special operations on a NetIPC socket

SYNOPSIS

#include <sys/ns_ipc.h>

vold ipccontrol(

ns_int_t descriptor,
ns_int_t request,
const void *wrtdata,
ns_1int_t wlen,

vold *readdata,
ns_int_t *rlen,
ns_int_t *flags,
ns_1int_t *result);

DESCRIPTION
ipccontrol () is used to manipulate NetIPC sockets. The type of request is specified in the request
parameter. Some parameters are optional and not used in all requests. If wrtdate is not used, wlen must
be zero. If readdata is unused, rlen must be zero.

88

ipccontrol (2)

All processes that own descriptors for a particular socket are affected by ipccontrol () operations per-
formed on that socket. For example, one process can change a socket’s read or write threshold, synchronous
timeout interval, or synchronous/asynchronous mode while another process is reading, writing, or selecting
on that socket. Exactly when the process that is sharing the socket will be affected by these operations can-
not be reliably predicted. Reads, writes, and selects in progress may complete after using either the previ-
ous, new, or a combination of the previous and new values.

Parameters
descriptor (input parameter)
The descriptor that refers to the socket to be manipulated.
request (input parameter)
Request code. Defines which operation is to be performed. See below.
wrtdata (input parameter)
A data buffer used to pass timeout and threshold information.
wlen (input parameter)
Length in bytes of the wrtdata data buffer.
readdata (output parameter)
A data buffer used to contain any data returned by the call.
rlen (input/output parameter)
The length in bytes of the readdata data buffer. On output, this parameter contains the
total number of bytes returned to the process.
flags (input parameter)
Reserved for future use. This parameter should be 0 or a pointer to 0.
result (output parameter)

The error code returned. See ERRORS below for more information.

Request Parameter

NSC_NBIO_ENABLE (request code 1)

Place socket referenced by descriptor in asynchronous mode.
NSC_NBIO_DISABLE (request code 2)

Place socket referenced by descriptor in synchronous mode.
NSC_TIMEOUT RESET (request code 3)

Change the referenced socket’s synchronous timeout. The default timeout
value is 60 seconds. The timeout value is specified in tenths of seconds (for
example, a value of 1200 indicates 120 seconds). The new timeout value is
treated as a 16-bit signed integer, and must be placed in the first two bytes
of the wrtdata parameter. The timeout value must be in the range of zero

-1-

HP-UX Release 9.0: August 1992

ipccontrol(2)

NSC_TIMEOUT_GET

NSC_SEND_THRESH_RESET

NSC_RECV_THRESH_GET

NSC_SEND_THRESH_GET

NSC_GET_NODE_NAME

RETURN VALUE

ipccontrol(2)

to 32 767. Negative values have no meaning and will result in an error. A
value of zero sets the timeout to infinity. The timeout is not reset if the
referenced socket is switched to asynchronous mode then back to synchro-
nous mode.

(request code 4)

Return the synchronous timeout value for the socket referenced in the
descriptor parameter. The timeout value is treated as a 16-bit signed
integer, and is returned in the readdata parameter.

(request code 1000)

Change the read threshold of the VC socket referenced in descriptor param-
eter. Read thresholds are one byte by default. The descriptor parameter
must reference a VC socket descriptor. The new read threshold value must be
placed in the first two bytes of the wrtdata parameter.

(request code 1001)

Change the write threshold of the VC socket referenced in the descriptor
parameter. Write thresholds are one byte by default. The descriptor
parameter must reference a VC socket descriptor. The new write threshold
value must be placed in the first two bytes of the wrtdata parameter.

(request code 1002)

Return the current write threshold for the VC socket referenced in the
descriptor parameter. The descriptor parameter must reference a VC
socket descriptor. The write threshold is treated as a 16-bit signed integer,
and is returned in the readdata parameter.

(request code 1003)

Return the current read threshold for the VC socket referenced in the
descriptor parameter. The descriptor parameter must reference a VC
socket descriptor. The read threshold is treated as a 16-bit signed integer,
and is returned in the readdata parameter.

(request code 9008)
Obsolescent. Use getnodename(2) instead.

None. Errors are returned in the result parameter.

ERRORS
[NSR_BOUNDS_VIO]

[NSR_DESC]

[NSR_DLEN]

[NSR_NO_ERROR]

[NSR_REQUEST]

[NSR_TIMEOUT_VALUE]

[NSR_THRESH_VALUE]
AUTHOR

One of the pointer arguments is invalid.

The argument descriptor is not a valid NetIPC socket descriptor.
The specified wien or rlen parameter is invalid.

The call was successful.

The request was unknown.

An illegal timeout value was specified.

An illegal threshold value was specified.

ipccontrol () was developed by HP.

SEE ALSO

ipcconnect(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnamerase(2),
ipcrecv(2), ipcrecven(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992

-9 89

ipccreate(2)

NAME

ipccreate(2)

ipcereate - create a call socket

SYNOPSIS

#include<sys/ns_1ipc.h>

vold ipccreate(

ns_int_t socketkindg,

[M-

ns_1int_t protocol,
ns_int_t *flags,
short optll],
ns_int_t *calldesc,
ns_1int_t *result);

DESCRIPTION

ipcecreate is used to create a call socket for use with subsequent NetIPC calls to establish a virtual cir-
cuit connection between two processes.

A process can have a system-defined maximum number of descriptors open at a time (see getrlimit(2)).
ipccreate() returns an error if a process attempts to exceed this limit. This limit includes file descrip-
tors, as well as socket descriptors and destination descriptors. These descriptors may reference sockets
and/or files inherited by or otherwise opened by the process.

The NSO_PROTOCOL_ADDRESS option (code 128) can be used to create a call socket with a specific proto-
col address. The peer process, which must have a priori knowledge of this protocol address, can call
ipcdest () with this address to obtain a destination descriptor that will enable ipcconnect () to con-

nect to this call socket.
PARAMETERS
socketkind (input parameter) Must be NS_CALL. Other values are reserved for future use.
protocol (input parameter) Indicates the protocol module that the calling process wants to access.
Must be NSP_TCP or zero. Other values are reserved for future use.
flags (input parameter) Must be 0 or a pointer to 0. Other values are reserved for future use.
opt (input parameter) See below.
calldesc (output parameter) Call socket descriptor. Refers to the newly-created call socket.
result (output parameter) See diagnostics section below for more information.

Opt Parameter

See initopt and addopt for more information on NetIPC option buffers.
NSO_MAX_CONN_REQ_BACK

(optioncode = 6) (datalength = 2)

A two-byte integer specifying the maximum number of unreceived connection requests that
can be queued to a call socket. If this value is not specified, the default maximum is used.
Default: One request. Range: 1 to 20. (Note that a queue limit of one may be too few if
many processes attempt to initiate connections to the call socket simultaneously. If this
occurs, some connection requests will be automatically rejected.)

NSO_PROTOCOL_ADDRESS

(optioncode = 128) (datalength = 2)

A two-byte integer specifying a protocol-specific address to be used by the newly-created
call socket. If this option is not specified, or if zero is specified, Net.SM IPC dynamically
allocates an address. You must have super-user capability to request protocol addresses
less than 1024. Recommended Range: 30 767 through 32 767. If the protocol is TCP then
this option specifies the TCP port.

RETURN VALUE
None. Errors are returned in the result parameter.
ERRORS
[NSR_BOUNDS_VIO] One of the pointer arguments is invalid.
90 -1- HP-UX Release 9.0: August 1992

ipccreate (2) ipccreate (2)

[NSR_DUP_ADDRESS] The protocol address specified in the NSO_PROTOCOL_ADDRESS option is in

use.
[NSR_DUP_OPTION] A particular option is defined more than once in the opt parameter.
[NSR_FLAGS] The flags parameter was not 0 or a pointer to 0.

{NSR_KIND_AND_PROTOCOL)]
The requested protocol is not supported in the default domain.

[NSR_MAX_CONNECTQ] The NSO_MAX CONN_REQ_BACK option must be greater than 0 and less than
20.

[NSR_NO_DESC_AVAILABLE]
The process exceeded the system-defined number of file and socket descriptors
that can be open at a time (see getrlimit(2)).

[NSR_NO_ERROR}] The call was successful.

[NSR_NO_FILE_AVAILABLE]
The system cannot allocate a file structure at this time.

[NSR_NO_MEMORY]} Sufficient system memory is not available to execute this call at this time.

[NSR_NOT_ALLOWED] The protocol address specified via the NSO_PROTOCOL_ADDRESS option was
less than 1024 and the program did not have super-user capability.

{NSR_OPT_OPTION] An option specified in the op¢ parameter is unknown or unsupported.
[NSR_OPT_SYNTAX] A length or offset value in the opt parameter is invalid.
[NSR_PROTOCOL] The combination of the profocol parameter and socketkind parameter could not
be satisfied. At least one is incorrect. .
AUTHOR
ipccreate () was developed by HP.
SEE ALSO

getrlimit(2), ipcconnect(2), ipccontrol(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam-
erase(2), ipcrecv(2), ipcrecven(2), ipeselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992 -2~ ‘ 91

ipcdest(2) ipcdest(2)

NAME
ipcdest - create a NetIPC destination descriptor

SYNOPSIS
#include <sys/ns_ipc.h>

vold ipcdest (
ns_int_t socketkingd,
const char *nodename,
ns_int_t nodelen,
ns_1int_t protocol,
short *protoaddr,
ns_int_t protolen,
ns_int_t #*flags,
short optl[],
ns_1int_t *destdesc,
ns_int_t *result);

DESCRIPTION
ipcdest () creates a destination descriptor which the calling process can use to establish a connection to
another process.

ipcdest () can be used to obtain a destination descriptor for a call socket with a particular protocol
address. To create a call socket with a particular address, use ipccreate() with the
NSO_PROTOCOL_ADDRESS option (see ipccreate(3N)).

ipcdest () does not verify that the remote endpoint described by the input parameters exists. This
evaluation is delayed until the destination descriptor is used in a subsequent ipcconnect () call.

Parameters
socketkind (input parameter) Defines the type of socket. Must be NS_CALL or 3 to specify a call
socket. Other values are reserved for future use.
nodename (input parameter) The ASCII-coded name that identifies the node where the call socket

with protoaddr resides. Default: The organization, organization and domain, or all
parts of the node name can be omitted. When organization or organization and
domain are omitted, they default to the local organization and/or domain. If the
nodelen parameter is set to zero, this parameter is ignored and the node name
defaults to the local node.

nodelen (input parameter) The length in bytes of the nodename parameter. Zero indicates
that the nodename parameter is ignored, and the node name defaults to the local
node. A fully-qualified node can be up to 50 bytes long.

protocol (input parameter) Defines the Transport Layer protocol to be used. Must be
NSP_TCP or 4 to indicate the Transmission Control Protocol (TCP). Other values are
reserved for future use.

protoaddr (input parameter) A data buffer that contains a TCP protocol address.

protolen (input parameter) The length in bytes of the protocol address. TCP protocol addresses
are two bytes long.

flags (input parameter) This parameter is reserved for future use. All bits must be clear
(not set).

opt (input parameter) No options are defined for this call. You must set this parameter to
zero (0) or pass the constant (C programs only) NSO_NULL.

destdesc (output parameter) Destination descriptor. Can be used in a subsequent ipccon-
nect call to establish a connection to the call socket with protoaddr.

result (output parameter) See ERRORS below.

RETURN VALUE

None. Errors are returned in the result parameter.

92 -1~ HP-UX Release 9.0: August 1992

ipcdest(2)

ERRORS

[NSR_NO_ERROR]
[NSR_BOUNDS_VIO]
[NSR_NOT_CALL_SOCKET]
[NSR_FLAGS]
[NSR_OPT_OPTION1
[NSR_PROTOCOL)]
[NSR_KIND_AND_PROTOCOL]
[NSR_ADDR_OPT]
[NSR_NLEN]
[NSR_NODE_NAME_SYNTAX]
[NSR_NO_NODE]
[NSR_NO_MEMORY]
[NSR_PATH_REPORT]
[NSR_DEST_UNREACHABLE]
[INSR_NO_FILE_AVAIL]
[NSR_NO_DESC_AVAIL]

AUTHOR

ipcdest(2)

The call was successful.

A parameter address is invalid.

The socketkind parameter is not NS_CALL.

The value in the flags parameter is invalid.

An option specified in the opt parameter is unknown or unsupported.
The protocol of the specified socket is not supported by the local system.
The socketkind and protocol parameters are not compatible.

The value in the protolen parameter is invalid.

The value in the nodelen parameter is invalid.

The node specified in the nodename parameter is invalid.

The specified node is unknown to the local host.

Sufficient system memory is not available to execute this call at this time.
The path report could not be interpreted.

The path report contained no usable paths.

No file table entries are available at this time.

The process exceeded the system-defined number of file and socket descrip-
tors that can be open at a time (see getrlimit(2)).

ipcdest () was developed by HP.

SEE ALSO

getrlimit(2), ipcconnect(2), ipccontrol(2), ipccreate(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam-
erase(2), ipcrecv(2), ipcrecven(2), ipeselect(2), ipcsend(2), ipesetnodename(2), ipeshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), optoverhead(8N), readopt(3N).

HP-UX Release 9.0: August 1992

ipcgetnodename(2) ipcgetnodename(2)

NAME :
ipcgetnodename - obtain NetIPC node name of current host

SYNOPSIS
#include <sys/ns_ipc.h>

void ipcgetnodename (
char *nodename,
ns_int_t *size,
ns_int_t *result);

DESCRIPTION
ipcgetnodename () returns the NetIPC node name for the current processor as set by setno-
dename () in the array to which nodename points (see setnodename(2)).

Parameters
nodename (input parameter) A pointer to a character array in which the ASCII-coded NetIPC node name
is to be returned.

size (input/output parameter) The length in bytes of the nodename array on input and the length of
the returned NetIPC node name on output.

result (output parameter) See ERRORS below.
RETURN VALUE
None. Errors are returned in the result parameter.
ERRORS
[NSR_NO_ERROR] The call was successful.
[NSR_NLEN] The value of the size parameter is not large enough for the NetIPC node name.
[NSR_BOUNDS_VIO] Output parameter address is invalid.
AUTHOR
ipcgetnodename was developed by HP.
SEE ALSO

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipclookup(2), ipcname(2), ipcnamerase(2), ipcrecv(2),
ipcrecven(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

94 -1- HP-UX Release 9.0: August 1992

ipclookup(2) ipclookup(2)

NAME
ipclookup - obtain a NetIPC destination descriptor

SYNOPSIS
#include <sys/ns_ipec.h>

vold ipclookup (
const char *socketname,
ns_int_t nlen,
const char *nodename,
ng_int_t nodelen,
ns_1int_t *flags,
ns_int_t *destdesc,
ns_int_t *protocol,
ns_int_t *socketkind,
ns_int_t *result);

DESCRIPTION
ipclookup() is used to obtain a destination descriptor for a named call socket. When supplied with
valid socket and node names, ipclookup () looks up the call socket in the socket registry at the node
specified in the nodename parameter and returns a destination descriptor that can be used by subsequent
NetIPC calls to locate the call socket. A destination descriptor is required by the ipcconnect () call to
provide the information necessary to direct a connection request to the proper node and call socket and thus
initiate a connection.

When a process attempts to look up a socket name in the appropriate socket registry, the name must be
there or an NSR_NAME_NOT_FOUND error is returned to the calling process. When two processes are run-
ning concurrently, it may be difficult to ensure that a socket name is placed in the socket registry prior to
being "looked up” by another process. This problem is referred to as a race condition because the two
processes are "racing” to see which one accesses the socket registry first.

In order to avoid a race situation, the process that calls 1pclookup() can test for a
NSR_NAME_NOT_FOUND error in the call’s result parameter. If this error is returned, the process can try
again by entering a loop and repeating the ipclookup () call for a specified number of times. The pro-
cess should also call sleep() to suspend execution for an interval (see sleep(3C), then repeat the
ipclookup () call.

Parameters

socketname (input parameter) The name of the call socket to be “loocked up”. Uppercase and
lowercase characters are treated as equivalent.

nlen (input parameter) The length of the socketname parameter in characters. Maximum
length is 16 characters.

nodename (input parameter) The ASCII-coded name that that identifies the node where the
socket specified in the socketname parameter resides. Default: organization, organi-
zation and domain, or all parts of the node name can be omitted. When organization
or organization and domain are omitted, they default to the local organization and/or
domain. If the entire parameter is omitted, the node name defaults to the local node.

nodelen (input parameter) The length in bytes of the nodename parameter. If zero is specified,
NetIPC searches the local node’s socket registry (see nodename parameter above for
more information).

flags (input parameter) This parameter is reserved for future use. All bits must be clear
(not set).

destdesc (output parameter) Destination descriptor. Refers to the descriptor that indicates the
location of the named call socket. Can be used in subsequent NetIPC calls.

protocol (output parameter) This parameter is reserved for future use. Zero (0) is always
returned in this parameter.

socketkind (output parameter) Identifies the socket’s type. Can be used in an 1pccreate()

call to create a socket of the appropriate type.

HP-UX Release 9.0: August 1992 -1- 95

ipclookup (2) ipclookup(2)

result (output parameter) See ERRORS below.
RETURN VALUE
None. Errors are returned in the result parameter.
ERRORS
[NSR_NO_ERROR] The call was successful.
[NSR_BOUNDS_VIO] A parameter address is invalid.
[NSR_FLAGS]) The value in the flags parameter in invalid.
[NSR_PROTOCOL]} The protocol of the socket specified by socketname is not supported by the
local system.
[NSR_NLEN] The value in the nodelen parameter is not valid.
[NSR_NODE_NAME_SYNTAX] The string pointed to by nodename is invalid.
[NSR_NO_NODE] nodename is unknown to the local host.
[NSR_NO_MEMORY] Sufficient system memory is not available to execute this call at this time.
[NSR_PATH_REPORT] The path report could not be interpreted.
[NSR_NAME_NOT _FOUND] The specified socketname was not found in the socket registry.
[NSR_CANT_CONTACT_SERVER] The i1pclookup () request could not be sent to the remote socket regis-
try server.
[NSR_NO_REG_RESPONSE] No response was received from the remote socket registry server.
[NSR_VERSION] The reply from the remote socket registry indicates a version error
occurred.
[NSR_BAD_REG_MSG] A corrupt reply message was received from the remote socket registry
server.
[NSR_NO_FILE_AVAIL] No file table entries are available.
[NSR_NO_DESC_AVAIL] The process exceeded the system-defined number of file and socket descrip-
tors that can be open at a time (see getrlimit(2)).
AUTHOR
ipclookup () was developed by HP.
SEE ALSO

getrlimit(2), ipcconnect(2), ipccontrol(2), ipecreate(2), ipedest(2), ipcgetnodename(2), ipcname(2), ipcnam-
erase(2), ipcrecv(2), ipcrecven(2), ipeselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N),
initopt(3N), ipcerrmsg(3N), optoverhead(3N), readopt(3N), sleep(3C).

96 -2~ HP-UX Release 9.0: August 1992

ipcname(2) ipcname(2)

NAME
ipcname - associate a name with a call socket or destination descriptor

SYNOPSIS
#include <sys/ns_ipc.h>

voild ipcname (
ns_int_t descriptor,
const char *socketname,
ns_int_t nlen,
ns_int t *result):

DESCRIPTION
ipcname () associates a name with a call socket and adds this information to the local node’s socket regis-
try. The name a process associates with a call socket must be known to its peer process so that the peer
process can look up the name with an ipclookup () call. This can be accomplished by hard-coding the
name into both processes or by passing the name from one process to another.

The name associated with a call socket can be user-defined or randomly generated by NetIPC, and must be
unique to your node (i.e., it cannot be simultaneously associated with two descriptors). For example, if a
call to ipcname () assigns the name Liz to a call socket, a subsequent call with Liz results in an
error. To ensure that the name being assigned to a call socket is unique, use the random name generating
feature of ipcname () (see the nlen parameter below for more information). A call socket can be listed
under multiple names.

ipcname () always enters its listings into the local node’s socket registry. ipclookup(), by contrast,
can look up socket names at both the local node and at a remote node. Since “long distance” look-ups take
longer than local look-ups, it may be helpful to use ipcname () to name a destination descriptor associ-
ated with a remotely named call socket. When a process names a destination descriptor, the name of the
destination descriptor is placed in the local socket registry (the socket registry at the node where the calling
process resides). This allows other processes to look up the name in the local socket registry rather than
calling ipclookup() to look up the name in a socket registry at a remote node where the call socket
resides.

Using ipcname () to name a destination descriptor is less reliable than looking up the socket name at the
remote node because destination descriptors can become outdated. As a precaution, locally stored destina-
tion descriptors should be refreshed periodically.

ipcname () cannot be used to name VC sockets.

PARAMETERS
descriptor (input parameter) The descriptor that references the call socket to be named. Can be
a call socket descriptor or a destination descriptor.
socketname (input/output parameter) The ASCII-coded name to be associated with the descriptor.
Uppercase and lowercase characters are treated as equivalent. NetIPC can also
return a randomly-generated name in this parameter (see the nlen parameter).
nlen (input parameter) The length in characters of the socketname parameter. Maximum
length is 16 characters. If zero is specified, NetIPC returns a random, eight-byte name
in the socketname parameter. The eight-byte length is not returned in the nlen
parameter.
result (output parameter) See ERRORS below.
RETURN VALUE
None. Errors are returned in the result parameter.
ERRORS
[NSR_NO_ERROR] The call was successful.
[NSR_CANT_NAME_VC] The descriptor parameter corresponds to a VC socket and naming of VC sockets is
not allowed.
[NSR_DESC] The descriptor parameter does not correspond to a NetIPC socket.

HP-UX Release 9.0: August 1992 -1- 97

ipcname(2) ipcname(2)

[NSR_NLEN] The value specified in the nlen parameter is invalid.
[NSR_DUP_NAME] The specified socketname already exists in the local socket registry.
[NSR_NO_MEMORY] Sufficient system memory is not available to execute this call at this time.
[NSR_BOUNDS_VIO] The output parameter address is invalid.

AUTHOR
ipcname () was developed by HP.

SEE ALSO

ipcconnect(2), ipccontrol(2), ipccreate(2), ipedest(2), ipcgetnodename(2), ipclookup(2), ipcnamerase(2),
ipcrecv(2), ipcrecven(2), ipeselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(8N),
initopt(3N), ipcerrmsg(3N), optoverhead(8N), readopt(3N).

98 -2~ HP-UX Release 9.0: August 1992

ipcnamerase(2) ipcnamerase(2)

NAME
ipcnamerase - delete a name associated with a NetIPC call socket or destination descriptor

SYNOPSIS
#include <sys/ns_ipc.h>

voild ipcnamerase(
const char *socketname,
ns_int_t nlen,
ns_1int_t *result);
DESCRIFTION
ipcnamerase () can be called to remove listings from the local node’s socket registry. Only the owner of
a call socket or destination descriptor can remove the socket’s name from the local socket registry.

If a call socket descriptor or destination descriptor is destroyed by ipcshutdown () or if its last owner
terminates, any listings for it that exist at the local socket registry are automatically purged.

If multiple processes have descriptors for the same socket, the first ipcnamerase () call succeeds; subse-

quent calls fail.
Parameters
socketname (input parameter) The ASCII-coded name that was previously associated with a call
socket descriptor or destination descriptor via 1pcname (). Uppercase and lower-
case characters are treated as equivalent.
nlen (input parameter) The length in bytes of the specified name. Maximum length is 16
bytes.
result (output parameter) See ERRORS below.
RETURN VALUE
None. Errors are returned in the result parameter.
ERRORS
[NSR_NO_ERROR] The call was successful.
[NSR_NLEN] The value specified in the nlen parameter is invalid.
[NSR_NAME_NOT_FOUND] The name specified by socketname does not exist in local socket registry.
[NSR_NO_OWNERSHIP] The caller is not the owner of the named socket.
AUTHOR
ipcnamerase () was developed by HP.
SEE ALSO

ipcconnect(2), ipccontrol(2), ipccreate(2), ipedest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), iperecv(2),
iperecven(2), ipeselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(8N), initopt(3N),
ipecerrmsg(3N), optoverhead(8N), readopt(3N).

HP-UX Release 9.0: August 1992 -1~ 99

ipcrecv(2) ipcrecv(2)

NAME
ipcrecv - establish an NetIPC virtual circuit connection or receive data on an established connection

SYNOPSIS
#include <sys/ns_1ipc.h>

voild ipcrecv(
ns_int_ t vcdesc,
vold *data,
ns_int_t *dlen,
ns_int_t *flags,
short optl],
ns_int_t *result);

DESCRIPTION
ipcerecv () serves two purposes:

¢ Establish a virtual circuit connection that was initiated with ipcconnect () (see ipcconnect(2)),
¢ Receive data on a previously established virtual circuit connection.

After a program calls ipcconnect (), it must call ipcrecv() to complete the connection. When
ipcrecv() is called to finish establishing a connection, no data is returned in the data parameter and the
dlen parameter is ignored. An exception ipcselect () (see ipcselect(2)) can be performed to determine
whether connections are pending on a call socket.

When ipcrecv() is called to receive data queued on a established connection, several different alterna-
tives are available:

¢ Normal reading: Data is moved from the connection queue into the user’s buffer.

¢ Preview reading: This alternative is specified by setting the NSF_PREVIEW bit (bit 30) of the flags
parameter. When this bit is set, data is copied into the process’s buffer, but still remains in the
connection queue. Consequently, the next 1pcrecv () call reads the same data.

* Vectored or "scattered" reading: The calling process can pass a data vector argument that
describes one or more locations. Received data is then placed into these locations. This alternative
can be used with both the normal and the preview read described above, and is specified by setting
the NSF_VECTORED bit (bit 31) of the flags parameter.

For vectored reads an iovec structure contains the data vector. An iovec structure can be defined as:

struct iovec {
char *iov_base;
unsigned iov_len;
};

and the normal type for the data argument can be replaced by:
struct lovec *data;

Each iovec entry specifies the base address and length of an area in memory where data should be placed.
ipcrecv() always fills one area completely before proceeding to the next area.

ipcrecv () behavior varies, depending on whether the socket referenced is in synchronous or asynchro-
nous mode. A socket is in synchronous mode by default. It can be placed in asynchronous mode by calling
ipccontrol () (see ipccontrol(2)). By default, calls that block reach their timeout limit in 60 seconds.
The length of the timeout period can be changed by calling ipccontrol(). Refer to ipccontrol(2) for
more information.

If the socket referenced by ipcrecv() is in synchronous mode and no data is queued on the connection,
the call blocks until data arrives or the socket timer expires.

If the socket referenced by ipcrecv() is in asynchronous mode and no data is queued on the connection,
NSR_WOULD_BLOCK is returned in the result parameter.

Parameters
vedese (input parameter) "virtual circuit” socket descriptor. Refers to a socket that:

100 ~-1- HP-UX Release 9.0: August 1992

ipcrecv(2) ipcrecv(2)

¢ Is the endpoint of a virtual circuit connection that has not yet been esta-
blished, or

* Is the endpoint of an established virtual circuit on which data will be
received.

data (output parameter) A pointer to a data buffer for holding the received data, or a
pointer to an array of data vectors describing the locations where the data is to be
placed.

dlen (input/output parameter) If data is a data buffer, dlen is the maximum number of
bytes that can be received. If duia is a data vector, dien refers to the length of the
data vector in bytes. As a return parameter, dlen indicates how many bytes were
actually received. If ipcrecv() is used to establish a connection (not to receive
data), dlen is meaningless on input and a value of zero (0) is returned on output.

flags (input/output parameter) See below.

opt (input parameter) A pointer to a NetIPC options buffer. See below.

result (output parameter) The error code returned. Refer to ERRORS below for more infor-
mation.

Flags Parameter
Flags are only valid on an established connection.

NSF_DATA_WAIT (bit 20)
(input parameter) This flag exists for backward compatibility. Existing
programs that use this flag may suffer performance degradation due to
network congestion avoidance algorithms in the networking protocol code.
This flag should be removed from those programs.

NSF_MORE_DATA (bit 26)
(output parameter) This bit is always set for backwards compatibility.

NSF_PREVIEW (bit 30) (input parameter) When this bit is set, data queued on the connection may
be previewed. Data is placed in the date parameter but not removed from
the connection queue. Since the data remains in the queue, the next
ipcrecv () call reads the same data.

NSF_VECTORED (bit 31) (input parameter) When set, this bit indicates that data is a data vector
and not a data buffer.

Opt Parameter
Options are only valid when ipcrecv() isissued against an established connection.

NSO_DATA_OFFSET (optioncode = 8) (datalength = 2) A two-byte integer that defines a hyte
offset from the beginning of a data buffer where NetIPC is to begin placing
data. This option is valid only if data is a data buffer and not a data vec-

tor.
RETURN VALUE
None. Errors are returned in the result parameter.
ERRORS
[NSR_BOUNDS_VIO] A length or offset value in the opt parameter is illegal, or one of the pointer
arguments is invalid.
[NSR_DESC] The vedesc argument is not a valid socket descriptor
[NSR_DLEN] The specified dlen parameter is invalid.
[NSR_DUP_OPTION] A particular option is defined more than once in the opt parameter.
[NSR_MESSAGE_SIZE] The value in the dlen exceeds the maximum limit for this socket. The
default maximum is 100 bytes. You can use ipccontrol () to alter this
value.

HP-UX Release 9.0: August 1992 -2- 101

ipcrecv(2)

[NSR_NO_ERROR]
[NSR_NOT_CONNECTION]
[NSR_OPT_OPTION]
[NSR_OPT_SYNTAX]

MNSR REMOTE ARORT

LANSaYy_TurbiVass i ah_ £as\Jiva

[NSR_REMOTE_RELEASED]
[NSR_SIGNAL_INDICATION]
[NSR_SOCKET_TIMEOUT]

[NSR_TOO_MANY_VECTS]
[NSR_VECT_COUNT]
[NSR_WOULD_BLOCK]

AUTHOR
ipcrecv () was developed by HP.

SEE ALSO
ipeconnect(2), ipccontrol(2), ipccreate(2), ipedest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam-
erase(2), iperecven(2), ipeselect(2), ipesend(2), ipesetnodename(2), ipeshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(8N).

102

ipcrecv(2)

The call was successful.

The vedesc parameter did not reference a VC socket.

An option specified in the op¢ parameter is unknown or unsupported.
A length or offset value in the opt parameter is invalid.

Tho eonnection w hartod due to otion hu the near

The connection was aborted due to an action by the peer.
The connection was released due to action by the peer.
The call aborted due to a signal received.

The socket timer expired:

e Rofore the connection comnleted (ﬁxvsv call to ipcrecv() and

2CI0TC e COnNECLIon COMpa

the socket is in synchronous mode),

* Before any data arrived (connection established, socket in syn-
chronous mode, NSF_DATA_WAIT flag not set), or

¢ Before the requested amount of data arrived (connection esta-
blished, socket in synchronous mode, NSR_DATA_WAIT flag set).

The number of data vectors exceeds the maximum limit of 16.
A negative data length was specified in the iovec.

The connection is still pending; the data present is less than requested, the
socket in asynchronous mode, and the NSF_DATA_WAIT flag is set; or no
data is present, and the socket is in asynchronous mode with the
NSF_DATA_WAIT flag not set.

-3- HP-UX Release 9.0: August 1992

ipcrecven (2) ipcrecven(2)

NAME
ipcrecven - receive a connection on a call socket

SYNOPSIS
#include <sys/ns_ipc.h>

vold ipcrecven(
ns_int_t calldesc,
ns_int_t *vcdesc,
ns_int_t *flags,
short optl];
ns_1int_t *result):

DESCRIPTION
Before calling ipcrecven(), ipccreate() must be called to create a new call socket. When
ipcrecven() is invoked against a call socket that has queued connection requests, it returns a virtual
circuit (VC) socket descriptor to the calling process. The VC socket descriptor can be used with subsequent
NetIPC calls to send and receive data.

When a socket is created, it is placed in synchronous mode by default. A socket can be placed in asynchro-
nous mode by calling ipccontrol (). When the call socket is in synchronous mode, ipcrecven ()
blocks until a connection request arrives or the synchronous socket timer expires. The timeout value can be
altered by calling ipccontrol (). When the call socket is in asynchronous mode, ipcrecven ()
returns NSR_WOULD_BLOCK if no connection requests are queued for the call socket.

An exception ipcselect () can be performed on the referenced call socket to determine if connections
are pending on a call socket.

Parameters

calldesc (input parameter) Socket descriptor. Refers to a call socket owned by the calling pro-
cess.

vedesc (output parameter) VC socket descriptor. Refers to a VC socket that is the end-point of
an established virtual circuit connection.

flags (input parameter) Must be 0. Other values are reserved for future use.

opt (input parameter) See below.

result (output parameter) The error code returned. Refer to ERRORS below for more infor-

mation.

Opt Parameter
NSO_MAX SEND_SIZE (optioncode = 3) (datalength = 2) A signed two-byte integer that specifies the
maximum number of bytes you expect to send with a single 1pcsend() (see
ipcsend(2)) call on the VC socket. Range: 1 to 32000 bytes. Default: 100 bytes.

NSO_MAX RECV_SIZE (optioncode = 4) (datalength = 2) A signed two-byte integer that specifies the
maximum number of bytes you expect to receive with a single ipcrecv () (see
ipcrecv(2)) call on this connection. Range: 1 to 32000 bytes. Default: 100

bytes.
RETURN VALUE
None. Errors are returned in the result parameter.
ERRORS
[NSR_DESC] calldesc is not a valid socket descriptor.
[NSR_BOUNDS_VIO] A length or offset value in the opt parameter is invalid.
{NSR_DUP_OPTION] A particular option is defined more than once in the opt parameter.
[NSR_MSGSIZE] The value specified in NSO_MAX SEND_SIZE or
NSO_MAX_ RECV_SIZE is invalid.
[NSR_NO_ERROR] The call was successful.
[NSR_NOT_CALL_SOCKET] calldesc is not a call socket.

HP-UX Release 9.0: August 1992 -1- 103

ipcrecven(2) ipcrecven(2)

[NSR_OPT_OPTION] The option in opt parameter is unknown or unsupported.
[NSR_OPT_SYNTAX] A length or offset value in the op¢ parameter is invalid.
[NSR_SIGNAL_INDICATION] A signal was received before a connection request arrived.
[NSR_SOCKET_TIMEOUT The socket timer expired before a connection request arrived.
INSR_WOULD_BLOCK] The socket is in asynchronous mode and ne connection requests are pend-
ing.

AUTHOR
ipcrecven () was developed by HP.

SEE ALSO
ipcconnect(2), ipccontrol(2), ipccreate(2), ipedest(2), ipegetnodename(2), ipclockup(2), ipcname(2), ipcnam-

104

erase(2), ipcrecv(2), ipcselect(2), ipcsend(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

-2- HP-UX Release 9.0: August 1992

ipcselect(2) ipcselect(2)

NAME
ipcselect - determine status of NetIPC socket

SYNOPSIS
#include <sys/ns_ipc.h>

vold ipcselect (
ns_int_t *sdbound,
int readmap(],
int writemap(],
int exceptionmapl[].
ns_int_t timeout,
ns_1int_t *result);

DESCRIPTION
ipcselect () enables a process to detect and/or wait for the occurrence of any of several events across
any of several sockets. A process should call ipcselect () with map elements set for descriptors that it
owns. If-a process attempts to perform a select on a closed or invalid descriptor, an error is returned. Per-
forming a select on a destination descriptor has no meaning and should be avoided.

ipcselect () reports three types of information:

¢ Whether any of the referenced sockets are readable. A VC socket is considered readable if it can
immediately satisfy an ipcrecv() (see ipcrecv(2)) request for a number of bytes greater than or
equal to its read threshold. The read threshold is one byte by default and can be modified by cal-
ling ipccontrol() (see ipccontrol(2)). Read selecting on a call socket has no meaning and
should be avoided.

* Whether any of the referenced sockets are writeable. A VC socket is considered writeable if it can
immediately accommodate an ipcsend() (see ipcsend(2)) request that involves a number of
bytes greater than or equal to the socket’s write threshold. The write threshold is one byte by
default and can be modified by calling ipccontrol (). Write selecting on a call socket has no
meaning and should be avoided.

e Whether any of the referenced sockets are exceptional. A VC socket is exceptional if it is not con-
nected. A call socket is exceptional if it has a connection queued on it (i.e., if a subsequent call to
ipcrecven() can succeed).

When a socket is shared (i.e., more than one process has a descriptor for the same socket), an ipcsend()
call may return an NSR_WOULD_BLOCK error even if a previous ipcselect () call indicated that the
socket was writeable. For example, this would occur if another process (with a descriptor for the same
socket) called ipcsend() after the original process called ipcselect() and before it called
ipesend().

The following are examples of read selecting, write selecting, and exception selecting using ipcselect ().

Detecting Connection Requests

By setting bits in the exceptionmap parameter, a process can determine whether incoming connection
requests are queued to certain call sockets. For example: Process A must determine whether certain
call sockets have received connection requests. To do this, Process A calls ipcselect () with the
exceptionmap map elements set to correspond to these sockets. Assuming that the timeout interval is
long enough (set by timeout parameter), ipcselect () completes after at least one connection has
been established and has been queued on one of the sockets specified in exceptionmap. When the call
completes, only those elements remain set that correspond to sockets which have queued connections;
the other elements will have been cleared.

Performing a Read Select

By setting elements in the readmap parameter, a process can determine whether certain VC sockets
are readable. For example: Process A must determine which of its VC sockets have data queued to
them. To do this, Process A performs a read select on those sockets by setting elements in the read-
map parameter to correspond with the desired VC sockets. Upon completion of the call, only the ele-
ments that represent readable sockets remain set; the other elements will have been cleared. Process
A can call ipcselect() with a zero-length timeout to determine the status of a socket immedi-
ately, or with a non-zero timeout if it is willing to wait for data to arrive.

HP-UX Release 9.0: August 1992 -1- 105

ipcselect(2) ipcselect(2)

Performing a Write Select

By setting bits in the wrifemap parameter, a process can determine whether certain VC sockets are
writeable. For example: Process A must determine which of its VC sockets can accommodate a new
ipesend () request, and which of its call sockets can accommodate a new ipcconnect () request
(see ipcsend(2) and ipcconnect(2)). To do this, it can perform a write select on these sockets by setting
elements in the writemap parameter to correspond with the desired VC and call sockets. Upon comple-
tion of the call, only the clements that represent writeable sockets will remain set; the other elements
will have been cleared. Process A can call ipcselect () with a zero-length timeout to determine
the status of a socket immediately, or with a non-zero timeout if it is willing to wait before sending
data on the connection.

Exception Selecting

By setting bits in the exceptionmap parameter, a process can determine whether certain connections
have been aborted. VC sockets that reference aborted connections always exception select as "true”
(their elements are set when the call completes). Exception selecting on VC sockets can also be useful
when the connection associated with the socket is not fully established. For example: Process B has
successfully created a VC socket via a call to 1pcconnect (), but cannot know whether the connec-
tion associated with the socket is established until it calls ipcrecv(). If Process B calls
ipcrecv () before the connection is established or before it becomes known that the connection can-
not be established, it will block if the VC socket is in synchronous mode, or return a
NSR_WOULD_BLOCK error if the VC socket is in asynchronous mode. Process B can avoid blocking in
the synchronous case, or polling in the asynchronous case, by performing an exception select on the
new VC socket. The socket selects as true if the connection has become "established” but
ipcrecv () has not yet been called or if the attempt to connect has failed.

Parameters
sdbound (input/output parameter) Specifies the upper ordinal bound on the range of descrip-

tors specified in the readmap, writemap, and exceptionmap parameters. An
ipcselect () call is most efficient if sdbound is set to the ordinal value of the
highest-numbered socket descriptor specified in the map parameters. As an output
parameter, sdbound contains the upper ordinal boundary of all of the descriptors that
met the select criteria. The maximum number of file and socket descriptors that a
process can open at a time is a system-defined number (see getrlimit(2)).

readmap (input/output parameter) A bit map indexed with NetIPC socket descriptors. On

input, this parameter specifies the socket descriptors to be examined for readability.
If zero is passed, no sockets are examined. On output, readmap describes all readable
sockets. Readability is described above.

writemap (input/output parameter) A bit map indexed with NetIPC socket descriptors. On

input, this parameter specifies the socket descriptors to be examined for writeability.
If zero is passed, no sockets will be examined. On output, writemop describes all
writeable sockets. Writeablity is described above.

exceptionmap (input/output parameter) A bit map indexed with NetIPC sockets descriptors. On

input, this parameter specifies the socket descriptors to be examined for exceptions. If
zero is passed, no sockets will be examined. On output, exceptionmap describes all
exceptional sockets. Exception conditions are described above.

timeout (input parameter) The number of tenths of seconds to wait. If no sockets are select-

able, ipcselect () blocks for this amount of time. Valid values are zero, -1, or any
positive integer. If timeout is set to zero, the call will not block. If timeout is set to -1,
the call blocks until some event occurs. NOTE: If timeout is set to -1 and no bits are
set in any of the bit maps, 1peselect () blocks indefinitely.

result

EXAMPLES

(output parameter) The error code returned. Refer to ERRORS below for more infor-
mation.

In the C programming language, the readmap, writemap, and exceptionmap parameters can be declared as
int arrays. The size of the map arrays must be large enough to accommodate sdbound +1 bits. Thus, each
map array must contain at least the following number of elements (where BITS_PER_INT is the number
of bitsin an int variable):

106

-2- HP-UX Release 9.0: August 1992

ipcselect(2) ipcselect(2)

(sdbound + BITS_PER_INT) / BITS_PER_INT

The bits can be set to correspond to specific call or VC socket descriptors in the appropriate map parameter.
The following example can be used to set a bit in the array. (The socket descriptor is represented by the
variable sd, and the number of bits in an int variable is 32.)

readmap([sd/32] | = (unsigned)0x80000000 >> (84 % 32);
fI‘he feXt example can be used after an ipcselect () call completes to check whether or not a certain bit
is set:
readmapl(sd/32]1 & ((unsigned)0x80000000 >> (sd % 32))
RETURN VALUE
None. Errors are returned in the reswlt parameter.
ERRORS
[NSR_BOUNDS_VIO) One of the pointer arguments is invalid.
[NSR_DESC] A socket descriptor specified in a bitmap is not valid.
[NSR_NO_ERROR] No error occured.
[NSR_SIGNAL_INDICATION] A signal caused the call to abort.
[NSR_SOCKET_TIMEOUT] The timer expired before an exception was detected.
[NSR_TIMEOUT_VALUE] The value specified in the timeout parameter is invalid.
AUTHOR
ipcselect () was developed by HP.
SEE ALSO

getrlimit(2), ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2),
ipcname(2), ipcnamerase(2), ipcrecv(2), ipcrecven(2), ipecsend(2), ipcsetnodename(2), ipcshutdown(2),
addopt(3N), initopt(3N), ipcerrmsg(3N), optoverhead(8N), readopt(3N).

HP-UX Release 9.0: August 1992 -3- 107

ipcsend(2) ipcsend(2)

NAME
ipcsend - send data on a NetIPC socket

SYNOPSIS
#include <sys/ns_ipc.h>

vold ipcsend(
ns_1int_t wvcdesc,
const void *data,
ns_int_t dlen,
ns_int_t *flags,
short optl],
ns_int_t *result);
DESCRIPTION
ipcsend() is used to send data on an established connection. The data can be sent as a single contigu-
ous buffer or as a scattered data vector. If the data is vectored, NetIPC gathers all the referenced data
before sending it.

For vectored writes an iovec structure contains the data vector. An iovec structure can be defined as:

struct lovec {
char *iov_base;
unsligned iov_len;
}i

and the normal type for the data argument can be replaced by:
struct lovec *data;

Each iovec entry specifies the base address and length of an area in memory where data should be accessed.
ipesend () always fills-in one area completely before proceeding to the next area.

ipcsend () behaves differently, depending on whether the referenced socket is in synchronous or asyn-
chronous mode. These differences are as follows:

Synchronous I/O.
Send requests issued against sockets in synchronous mode may block. ipcsend() blocks if it cannot
immediately obtain the buffer space needed to accommodate the data. The call resumes after the required
buffer space becomes available or after the socket timer expires. Timeouts are 60 seconds by default, and
can be altered by calling ipccontrol ().

Asynchronous I/O.
Send requests issued against sockets in asynchronous mode never block. If the buffer space required to

accommodate the data is not immediately available, a NSR_WOULD_BLOCK error (code 56) is returned.
After receiving this error, the process can try the call again later or determine when the socket is writeable

by calling ipcselect ().
PARAMETERS
vedese (input parameter) Socket descriptor. Refers to the virtual circuit (VC) socket endpoint

of the connection through which the data will be sent. A VC socket descriptor is
obtained by calling 1pcconnect () or ipcrecven().

data (input parameter) A buffer to hold the data being sent, or a data vector that describes
where the data to be sent is located.

dlen - (input parameter) If data is a data buffer, dlen is the length in bytes of the data in the
buffer. If data is a data vector, dlen is the length in bytes of the data vector.

flags (input parameter) See below.

opt (input parameter) An array of options and associated information. See below.

result (output parameter) The error code returned. Refer to ERRORS below for more infor-
mation.

FLAGS PARAMETER

108 -1- HP-UX Release 9.0: August 1992

ipcsend(2)

ipcsend(2)

NSF_MORE_DATA (bit 26) (input parameter) When this bit is set, the underlying network protocol can
temporarily delay sending data for efficiency reasons.

NSF_VECTORED (bit 31) (input parameter) When this bit is set, the data parameter refers to a data
vector and not to a data buffer.

OPT PARAMETER
NSO_DATA_OFFSET

(optioncode =8) (datalength =2) A two-byte integer that indicates a byte offset from
the beginning of the data buffer where the data to be sent actually begins. Only valid
if the data parameter is a data buffer.

RETURN VALUE

None. Errors are returned in the resulf parameter.

ERRORS
[NSR_BOUNDS_VIO]

[NSR_DESC]
[NSR_DLEN]
[NSR_DUP_OPTION]
[NSR_FLAGS}
[NSR_MSGSIZE]

[NSR_NOT_CONNECTION]
[NSR_OPT_OPTION]
[NSR_OPT_SYNTAX]
[NSR_SIGNAL_INDICATION]
[NSR_SOCKET_TIMEOUT]

[NSR_TOO_MANY_VECTS]

[NSR_VECT_COUNT]

[NSR_WOULD_BLOCK]
AUTHOR

An address parameter is invalid.

The vedesc parameter is not a valid descriptor.

The value specified in the dlen parameter is invalid.
The opt array contains duplicate information.

An illegal flag was specified.

An illegal data length was specified. By default, data transfer is limited to
a 100 byte maximum. You can alter this limit by calling ipccontrol ()

The vcdesc parameter is not a valid VC socket.

An option in the opt parameter in unknown or invalid.
A length or offset value in the opt parameter is invalid.
The call aborted due to a signal.

The socket timer expired before the data could be transfered. By default,
the socket timer is 60 seconds. This value can be altered by calling
ipccontrol ().

The maximum number of data vectors was exceeded. The limit is 16.
An incorrect data length was specified for vectored data.

The requested data cannot be sent at this time.

ipcsend () was developed by HP.

SEE ALSO

ipcconnect(2), ipccontrol(2), ipccreate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam-
erase(2), ipcrecv(2), ipcrecven(2), ipcselect(2), ipcsetnodename(2), ipcshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(8N), readopt(3N).

HP-UX Release 9.0: August 1992

-2- 109

ipcsetnodename(2) ipcsetnodename(2)

NAME
ipcsetnodename - set NetIPC node name of host CPU

SYNOPSIS
#include <sys/ns_ipc.h>

vold ipcsetnodename (
const char *nodename,
ns_int_t namelen,
ns_int_t *result);

DESCRIPTION

ipcsetnodename () sets the NetIPC node name of the host processor to nodename, which has a length of
namelen characters,

Super-user capability is required to use this call.

Parameters
nodename (input parameter) The ASCII-coded name that is to be assigned to this host.

namelen (output parameter) The length in bytes of the nodename parameter.

result (output parameter) See ERRORS below.
RETURN VALUE
None. Errors are returned in the result parameter.
AUTHOR
ipcsetnodname was developed by HP.
ERRORS
[NSR_NO_ERROR] The call was successful.
[NSR_NOT_ALLOWED] The caller does not have super-user capability.
[NSR_BOUNDS_VIO] The input parameter address is invalid.
[NSR_NLEN] The value of the namelen parameter is invalid.
{NSR_NODE_NAME_SYNTAX] The syntax of the nodename parameter is illegal.
AUTHOR
ipcsetnodename () was developed by HP.
SEE ALSO

ipcconnect(2), ipccontrol(2), ipccreate(2), ipedest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam-
erase(2), ipcrecv(2), ipcrecven(2), ipcselect(2), ipcsend(2), ipcshutdown(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

110 -1- HP-UX Release 9.0: August 1992

ipcshutdown(2) ipcshutdown (2)

NAME
ipcshutdown - release a NetIPC descriptor

SYNOPSIS
#include <sys/ns_1ipc.h>

void ipcshutdown (

ns_int_t descriptor,

ns_int_t *flags,

short optll],

ns_int_t *resultj;

DESCRIPTION

ipcshutdown() isused to release a descriptor. The referenced descriptor can be a call socket descriptor,
virtual circuit (VC) socket descriptor, or destination descriptor. Once a descriptor has been realeased, the
descriptor can no longer be used by the calling process. Since the descriptor may be shared between
processes, it is destroyed only if the calling process is the last process referencing it.
When a call socket, VC socket, or destination descriptor is destroyed, all resources are released and the
descriptor name(s) in the local ‘socket registry are removed. Shutting down a VC socket does not affect any
call sockets, and shutting down a call socket does not affect any VC sockets created using the call socket.
All of the data in transit on a VC socket, including any data that has already been queued on the destina-
tion VC socket, may be destroyed when the connection is shut down wunless the
NSF_GRACEFUL_RELEASE flag is set. If a process sends important data to its peer process just prior to
shutting that process down, it is recommended that the calling process receive a confirmation from the peer
process before calling ipcshutdown () or exiting, or use the NSF_GRACEFUL_RELEASE flag to ensure
that the data was received.

PARAMETERS

descriptor (input parameter) The descriptor to be released. Can be a call socket descriptor, VC
socket descriptor, or destination descriptor.

flags (input parameter) Must be 0 or NSF_GRACEFUL_RELEASE. See below.

opt (input parameter) No options are defined for this call. Can be 0 or a pointer to an
empty NetIPC option buffer.

result (output parameter) The error code returned. Refer to ERRORS below for more infor-
mation.

Flags Parameter
NSF_GRACEFUL_RELEASE
If this flag is set, the underlying network protocol can continue to transmit data after
the calling process exits.

RETURN VALUE
None. Errors are returned to the result parameter.
ERRORS
[NSR_DESC] The descriptor parameter is not a valid VC socket descriptor, call socket descriptor, or
destination descriptor.
[NSR_FLAGS] The flags parameter is illegal or unsupported.

[NSR_NO_ERROR] The call was successful.
[NSR_OPT_OPTION] An unsupported option was specified.
[NSR_OPT_SYNTAX] A length or offset within the opt parameter is invalid or unsupported.
AUTHOR
ipcshutdown () was developed by HP.
SEE ALSO
ipcconnect(2), ipccontrol(2), ipcereate(2), ipcdest(2), ipcgetnodename(2), ipclookup(2), ipcname(2), ipcnam-
erase(2), ipcrecv(2), ipcrecven(2), ipeselect(2), ipcsend(2), ipcsetnodename(2), addopt(3N), initopt(3N),
ipcerrmsg(3N), optoverhead(3N), readopt(3N).

HP-UX Release 9.0: August 1992 -1- 111

kill(2) kill(2)

NAME

kill, raise - send a signal to a process or a group of processes

SYNOPSIS

#include <signal.h>
int kill(pid_t pid, int sig);
int raise(int sig):

DESCRIPTION

ki1l () sends a signal to a process or a group of processes. The process or group of processes to which the
signal is to be sent is specified by pid. The signal to be sent is specified by sig and is either one from the list
given in signal(2), or 0.

ralse() sends signal sig to the executing program. The signal to be sent is specified by sig and is either
one from the list given in signal(2), or 0.

If sig is 0 (the null signal), error checking is performed but no signal is actually sent. This can be used to
check the validity of pid.

The real or effective user ID of the sending process must match the real or saved user ID of the receiving
process unless the effective user ID of the sending process is a user who has appropriate privileges. As a
single special case, the continue signal SIGCONT can be sent to any process that is a member of the same
session as the sending process.

The value KILL_ALL_OTHERS is defined in the file <sys/signal.h> and is guaranteed not to be the
ID of any process in the system or the negation of the ID of any process in the system.

If pid is greater than zero and not equal to KILL_ALL_OTHERS, sig is sent to the process whose process ID
is equal to pid. pid can equal 1 unless sigis SIGKILLor SIGSTOP.

If pid is 0, sig is sent to all processes excluding special system processes whose process group ID is equal to
the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not a user who has appropriate privileges. sig is sent
to all processes excluding special system processes whose real or saved user ID is equal to the real or
effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is a user who has appropriate privileges, sig is sent to all
processes excluding special system processes.

If pid is KILL_ALIL_OTHERS, k111 () behaves much as when pid is equal to -1, except that sig is not
sent to the calling process.

If pid is negative but not -1 or KILL_ALL_OTHERS, sig is sent to all processes (excluding special system
processes) whose process group ID is equal to the absolute value of pid, and whose real and/or effective user
ID meets the constraints described above for matching user IDs.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS

112

k111 () fails and no signal is sent if one or more of the following is true:

[EINVAL] sig is neither a valid signal number nor zero.

[EINVAL] sig is SIGKILL or SIGSTOP and pid is 1 (procl).

[EPERM] The user ID of the sending process is not a user who has appropriate privileges and its
real or effective user ID does not match the real or saved user ID of the receiving pro-
cess.

[EPERM] The sending and receiving processes are not in the same session.

[ESRCH] No process or process group can be found corresponding to that specified by pid.

raise() fails and no signal is sent if the following is true:

-1- HP-UX Release 9.0: August 1992

kill(2) kill(2)

[EINVAL] sig is not a valid signal number or zero.

AUTHOR
k111 () was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2), privilege(5).

STANDARDS CONFORMANCE
k111 (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

raise(): AES, XPG4, ANSI C

HP-UX Release 9.0: August 1992 -2- » 113

link(2) | link(2)

T NAME
link - link to a file
SYNOPSIS
#include <unistd.h>

int link(const char *pathl, const char *path2);

DESCRIPTION
1ink() creates a new link (directory entry) for the existing file. pathI points to a path name naming an
existing file. path2 points to a path name naming the new directory entry to be created.

RETURN VALUE
Upon successful completion, 1ink () returns 0; otherwise, it returns —~1 and sets errno to indicate the

errer.

ERRORS
link() fails and no link is created if one or more of the following is true:

[EACCES] A component of either path prefix denies search permission.

[EACCES)] The requested link requires writing in a directory that does not permit
writing.

[EDQUOT] User’s disk quota block limit has been reached for this file system.

[EEXIST] The link named by path2 exists.

[ENOENT1 The file named by path1 does not exist.

[ENOENT) A component of either path prefix does not exist.

[ENOENT] path2 points to a null path name.

[ENOSPC] The directory to contain the file cannot be extended.

[ENOTDIR] A component of either path prefix is not a directory.

[EPERM] The file named by pathl is a directory and the effective user ID is not a
user who has appropriate privileges.

[EXDEV] The link named by path2 and the file named by pathl are on different logi-
cal devices (file systems).

[EROFS] The requested link requires writing in a directory on a read-only file sys-
tem.

[EFAULT] path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

[ENOENT)] pathl or path? is null.

[EMLINK] The maximum number of links to a file would be exceeded.

[ENAMETOOLONG] Either specified path exceeds PATH_MAX bytes, or a component of eithér
specified path exceeds NAME_MAX while POSIX_NO_TRUNC is in effect.

[ELOOP] Too many symbolic links were encountered in translating either path
name.

DEPENDENCIES

Series 300, 400, and 700:
If path2 names a symbolic link, 1ink () fails without creating the link, -1 is returned, and errno is set
to:

[EEXIST] poth2 names a symbolic link.

SEE ALSO
cp(D), link(1M), symlink(2), symlink(4), unlink(2).

STANDARDS CONFORMANCE
link (): AES [Series 300/400/700 only], SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

114 -1- HP-UX Release 9.0: August 1992

listen(2) listen(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
int listen(int s, int backlog);

DESCRIPTION
To accept connections, a socket is first created using socket (), a queue for incoming connections is
specified using 1isten(), and then connections are accepted using accept (). 1listen() applies
only to unconnected sockets of type SOCK_STREAM. If the socket has not been bound to a local port before
listen() isinvoked, the system automatically binds a local port for the socket to listen on (see inet(7F)).
For sockets in the address family AF_CCITT, the socket must be bound to an address by using bind ()
before connection establishment can continue, otherwise an EADDREQUIRED error is returned.

The listen queue is established for the socket specified by the s parameter, which is a socket descriptor.

backlog defines the maximum allowable length of the queue for pending connections. If a connection
request arrives when the queue is full, the client receives an ETIMEDOUT error.

backlog is currently limited (silently) to be in the range of 1 to 20. If any other value is specified, the system
automatically assigns the closest value within range.

DEPENDENCIES
AF_CCITT:
Call-acceptance can be controlled by the X25_CALL_ACPT_APPROVAL ioctl() call described in
RETURN VALUE Upon successful completion, listen() returns 0; otherwise, it returns -1 and sets
errno to indicate the error.

ERRORS
listen () fails if any of the following conditions are encountered:

[EBADF] The argument s is not a valid descriptor.

[EDESTADRREQ] No bind address was established.

{ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the 11isten() operation.

[ENOBUFS] (Series 300/400 only) No buffer space is available. 1listen() cannot be

started at this time.

[EINVAL] The socket has been shut down or is already connected (see socketx25(T)).

AUTHOR
listen() was developed by the University of California, Berkeley.

SEE ALSO

accept(2), connect(2), socket(2), socketx25(7), af_ccitt(7F), inet(7F).

HP-UX Release 9.0: August 1992 -1- 115

lockf(2) lockf(2)

NAME

lockf - provide semaphores and record locking on files

SYNOPSIS

#include <unistd.h>
int lockf(int fildes, int function, off_t size);

DESCRIPTION

116

lock£ () allows regions of a file to be used as semaphores (advisory locks) or restricts access to only the
locking process (enforcement-mode record locks). Other processes that attempt to access the locked resource
either return an error or sleep until the resource becomes unlocked. All locks for a process are released
upon the first close of the file, even if the process still has the file opened, and all locks held by a process are
released when the process terminates.

fildes is an open file descriptor. The file descriptor must have been opened with write-only permission
(O_WRONLY) or read-write permission (O_RDWR) in order to establish a lock with this function call (see
open(2)).

If the calling process is a member of a group that has the PRIV_LOCKRDONLY privilege (see set-
privgrp(2)), it can also use lock£ () tolock files opened with read-only permission (O_RDONLY).

function is a control value that specifies the action to be taken. Permissible values for function are defined
in <unistd.h> as follows:

f#define F ULOCK 0 /* unlock a region */
#define F_LOCK 1 /* lock a region */

#define F_TLOCK 2 /* test and lock a region */
#define F_TEST k} /* test region for lock */

All other values of function are reserved for future extensions and result in an error return if not imple-
mented.

F_TEST is used to detect whether a lock by another process is present on the specified region. lockf ()
returns zero if the region is accessible and -1 if it is not; in this case errno is set to EACCES. F_LOCK
and F_TLOCK both lock a region of a file if the region is available. F_ULOCK removes locks from a
region of the file.

size is the number of contiguous bytes to be locked or unlocked. The resource to be locked starts at the
current offset in the file, and extends forward for a positive size, and backward for a negative size (the
preceding bytes up to but not including the current offset). If size is zero, the region from the current offset
through the end of the largest possible file is locked (that is, from the current offset through the present or
any future end-of-file). An area need not be allocated to the file in order to be locked, because such locks can
exist past the end of the file.

Regions locked with F_LOCK or F_TLOCK can, in whole or in part, contain or be contained by a previ-
ously locked region for the same process. When this occurs or if adjacent regions occur, the regions are com-
bined into a single region. If the request requires that a new element be added to the table of active locks
but the table is already full, an error is returned, and the new region is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not available: F_LOCK
causes the calling process to sleep until the resource is available, wherecas F_TLOCK returns an EACCES
error if the region is already locked by another process.

F_ULOCK requests can, in whole or part, release one or more locked regions controlled by the process.
When regions are not fully released, the remaining regions are still locked by the process. Releasing the
center section of a locked region requires an additional element in the table of active locks. If this table is
full, an EDEADLK error is returned, and the requested region is not released.

Regular files with the file mode of S_ENFMT, not having the group execute bit set, will have an enforcement
policy enabled. With enforcement enabled, reads and writes that would access a locked region sleep until
the entire region is available if O_NDELAY is clear, but return -1 with errno set if O_NDELAY is set.
File access by other system functions, such as exec (), are not subject to the enforcement policy. Locks on
directories, pipes, and special files are advisory only; no enforcement policy is used.

A potential for deadlock occurs if a process controlling a locked resource is put to sleep by accessing the
locked resource of another process. Thus, calls to fentl (), lockf(), read(), or write() (see

-1- HP-UX Release 9.0: August 1992

lockf(2) lockf(2)

fentl(2), lockf(2), read(2), and write(2)) scan for a deadlock prior to sleeping on a locked resource. Deadlock
is not checked for the walt () and pause() system calls (see wait(2) and pause(2)), so potential for
deadlock is not eliminated. A creat () call or an open () call with the O_CREATE and O_TRUNC
flags set on a regular file returns error EAGAIN if another process has locked part of the file and the file is
currently in enforcement mode.

NETWORKING FEATURES
NFS
The advisory record-locking capabilities of 1ockf () are implemented throughout the network by the “net-
work lock daemon” (see lockd(1M)). If the file server crashes and is rebooted, the lock daemon attempts to
recover all locks associated with the crashed server. If a lock cannot be reciaimed, the process that held the
lock is issued a SIGLOST signal.

Only advisory record locking is implemented for NFS files.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
lockf () fails if any of the following occur:
[EACCES] function is F_TLOCK or F_TEST and the region is already locked by another pro-
cess.
[EBADF] fildes is not a valid, open file descriptor.

[EDEADLK] A deadlock would occur or the number of entries in the system lock table would
exceed a system-dependent maximum. HP-UX guarantees this value to be at least 50.

[EAGAIN] function is F_LOCK or F_TLOCK and the file is mapped in to virtual memory via
the mmap () system call (see mmap(2)).

[EINTR] A signal was caught during the lockf () system call.
[BINVAL] function is not one of the functions specified above.
[EINVAL] size plus current offset produces a negative offset into the file.
[ENOLCK] function is F_TLOCK or F_LOCK and the file is an NFS file with access bits set for
enforcement mode.
[ENOLCK] The file is an NFS file and a system error occurred on the remote node.
WARNINGS

Deadlock conditions may arise when either the wait () or pause () system calls are used in conjunction
with enforced locking; see wait(2) and pause(2) for details.

File and record locking using file descriptors obtained through dup() or link() may not work as
expected (see dup(2) or link(2)). For example, unlocking regions that were locked using either file descrip-
tor may also unlock regions that were locked using the other file descriptor.

Unexpected results may occur in processes that use buffers in the user address space. The process may
later read or write data which is or was locked. The standard /O package, stdio(3S), is the most common
source of unexpected buffering.

In a hostile environment, locking can be misused by holding key public resources locked. This is particu-
larly true with public read files that have enforcement enabled.

It is not recommended that the PRIV_LOCKRDONLY capability be used because it is provided for back-
ward compatibility only. This feature may be modified or dropped from future HP-UX releases.

Locks default to advisory mode unless the setgid hit of the file permissions is set.

APPLICATION USAGE
Because in the future the variable errno will be set to EAGAIN rather than EACCES when a section of a
file is already locked by another process, portable application programs should expect and test for either
value. For example:

HP-UX Release 9.0: August 1992 -2- 117

lockf(2) lockf(2)

1f (lockf(fd, F_TLOCK, s8iz) == -1)
if ((errno == EAGAIN) || (errno == ACCES))
/*

* gection locked by another process
* check for elther EAGAIN or EACCES
* due to different implementations
*/
else if ...
/ *
* check for other errors
*/
SEE ALSO
lockd(1M), statd(iM), chmod(2), close(2), creat(2), fentl(2), open(2), pause(2), read(2), stat(2), wait(2),
write(2), unistd(5).

FUTURE DIRECTIONS
The error condition that currently sets errno to EACCES will instead set errno to EAGAIN (see also
APPLICATION USAGE above).

STANDARDS CONFORMANCE
lockf (): SVID2, XPG2

118 -38- HP-UX Release 9.0: August 1992

Iseek(2) lseek(2)

NAME
Iseek - move read/write file pointer; seek

SYNOPSIS
#include <unistd.h>

off_t lseek(int flldes, off t offset, int whence);

DESCRIPTION
lseek () setsthe file pointer associated with the file descriptor as follows:

¢ Ifwhence is SEEX_SET, the pointer is set to offsef bytes.

e Ifwhence is SEEK_CUR, the pointer is set to its current location plus offser.

o Ifwhence is SEEK_END, the pointer is set to the size of the file plus offset.
These symbolic constants are defined in <unistd.h>.

RETURN VALUE
When lseek() completes successfully, it returns an integer, which is the resulting file offset as measured
in bytes from the beginning of the file. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

For all files that are not character or block special files, the integer returned on successful completion is
non-negative. For character or block special files that correspond to disk sections larger than 2 gigabytes, a
non-negative integer is returned for successful seeks beyond 2 gigabytes. This value is the resulting file

offset as measured in bytes from the beginning of the file, when taken as an unsigned value. -1 always
indicates an error return, even when encountered on greater than 2 gigabyte disk sections.
ERRORS
1seek() fails and the file offset remains unchanged if one or more of the following is true:
[EBADF] fildes is not an open file descriptor.
[ESPIPE] fildes is associated with a pipe or FIFO.
[EINVAL] whence is not one of the supported values.
[EINVAL] The resulting file offset would be negative.
WARNINGS
Some devices are incapable of seeking. The value of the file offset associated with such a device is
undefined.
Using 1seek() with a whence of SEEK_END on device special files is not supported and the results are
not defined.
SEE ALSO

creat(2), dup(2), fentl(2), open(2), unistd(s).

STANDARDS CONFORMANCE
lgeek(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

\

HP-UX Release 9.0: August 1992 -1- 119

madvise(2) madvise(2)

NAME
madpvise - advise the system of a process’ expected paging behavior

SYNOPSIS
#include <sys/mman.h>

int madvise(
caddr_t addr,
slze_t len,
int behav);

DESCRIPTION
madvise permits a process to advise the system about its expected future behavior in referencing a
mapped file or anonymous memory region. Certain implementations may usec this information to optimize
use of resources.

addr and len specify the address and length in bytes of the region to which the advice refers. If these are
not the address and length of a region created by a successful call to mmap (), madvise () fails with an
EINVAL error.

The behav argument is constructed from the bitwise inclusive OR of one or more of the following flags
defined in the header <sys /mman.h>:

MADV_NORMAL No further special treatment.
MADV_RANDOM Expect random page references.
MADV_SEQUENTIAL Expect sequential page references.
MADV_WILLNEED Will need these pages.
MADV_DONTNEED Will not need these pages.
MADV_SPACEAVAIL Ensure that resources are reserved.
IMPLEMENTATION NOTES
The current implementation of madvise () is a null operation.
RETURN VALUE
madvise () returns 0 upon success; otherwise, it returns —1 and sets errno to indicate the error.
ERRORS
madvise () fails if any of the following conditions are encountered:
[EFAULT] The range specified by (addr, addr+len) is invalid for a process’ address space.
[EINVAL] addr is not a multiple of the page size as returned by

sysconf (_SC_PAGE_SIZE), or behav contains invalid values or incompatible
combinations of flags.

[EINVAL] The address range specified by addr and len was not created by a successful call to
mmap ().
AUTHOR
madvise () was developed by HP and OSF.
SEE ALSO

mmap(2), sysconf(2).

STANDARDS CONFORMANCE
madvise(): AES

120 -1- HP-UX Release 9.0: August 1992

mkdir(2) mkdir(2)

NAME
mkdir - make a directory file

SYNOPSIS
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

DESCRIPTION
mkdir () creates a new directory file named by path. The file permission bits of the new directory are ini-
tialized from mode, and are modified by the process’s file mode creation mask. For each bit set in the
proces};s&’s))ﬁle mode creation mask, the corresponding bit in the new directory’s mode is cleared (see
umask(2)).

The directory’s owner ID is set to the process’s effective-user-ID. If the set-group-ID bit of the parent direc-
tory is set, the directory’s group ID is set to group ID of the parent directory. Otherwise, the directory’s
group ID is set to the process’s effective-group-ID. The set-group-ID bit of the new directory is set to the
same value as the set-group-ID bit of the parent directory.

Symbolic constants defining the access permission bits are found in the <sys/stat .h> header and are
used to construct the argument mode. The value of the argument mode is the bit-wise inclusive OR of the
values of the desired permissions.

S_IRUSR Read by owner.

S_IWUSR Write by owner.

S_IXUSR Execute (search) by owner.

S_IRGRP Read by group.

S_IWGRP Write by group.

S_IXGRP Execute (search) by group.

S_IROTH Read by others (that is, anybody else).
S_IWOTH Write by others.

S_IXOTH Execute (search) by others.

Access Control Lists (ACLs)
On systems implementing access control lists, the directory is created with three base ACL entries,
corresponding to the file access permission bits (see acl(5)).
RETURN VALUE
Upon successful completion, mkdlr () returns a value of 0; a return value of -1 indicates an error, and
an error code is stored in errno.

ERRORS
mkdir () fails and no directory is created if any of the following is true:

[EACCES] A component of the path prefix denies search permission.

[EACCES] The parent directory of the new directory denies write permission.

[EEXIST] The named file already exists.

{EFAULT] path points outside the process’s allocated address space. The reliable detection of this
error is implementation dependent.

[EIO] An 1/0 error occurred while writing to the file system.

[ELOOP] Too many symbolic links are encountered in translating the path name.

[EMLINK] The maximum number of links to the parent directory, { LINK_MAX}, would be exceeded.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a com-
ponent of the path name exceeds NAME_MAX hytes while _POSIX_NO_TRUNC is in

effect.
[ENOENT] A component of the path prefix does not exist.
[ENOSPC] Not enough space on the file system.

HP-UX Release 9.0: August 1992 -1- 121

mkdir(2) mkdir(2)

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The named file resides on a read-only file system.
[EDQUOT] User’s disk quota block or inode limit has been reached for this file system.
WARNINGS

Access Control Lists
Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

~ AUTHOR

mkdir () was developed by the University of California, Berkeley.

SEE ALSO
chmod(2), setacl(2), stat(2), umask(2), acl(5), limits(5).

STANDARDS CONFORMANCE
mkdir (): AES, SVID2, XPG3, XPG4, FIPS 151-2, POSIX.1

122 -2- HP-UX Release 9.0: August 1992

mknod (2) mknod(2)

NAME
mknod, mkrnod - make a directory, or a special or regular file

SYNOPSIS
#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

int mkrnod/(
const char *path,
mode_t mode,
dev_t dev,
cnode_t cnodeid
)i

DESCRIPTION
mknod () creates a new file named by the path name pointed to by path. The mode of the new file is
specified by the mode argument. mkrnod() is the same as mknod() but is used to make device files
that can be accessed from a different cnode in the cluster as identified by the additional parameter cnodeid.
A cnodeid value of 0 creates a "generic” device file that can be accessed by any cnode.

Symbolic constants defining the file type and file access permission bits are found in the <sys/stat .h>
header file and are used to construct the mode argument. The value of the mode argument should be the
bit-wise inclusive OR of the values of the desired file type, miscellaneous mode bits, and access permissions.
See stat(5) for a description of the components of the file mode.

The owner ID of the file is set to the effective-user-ID of the process. If the set-group-ID bit of the parent
directory is set, the new file’s group ID is set to the group ID of the parent directory. Otherwise, the new
file’s group ID is set to the effective-group-1D of the process.

The file access permission bits of mode are modified by the process’s file mode creation mask: for each bit
set in the process’s file mode creation mask, the corresponding bit in the file’s mode is cleared (see
umask(2)).

The new file is created with three base access-control-list (ACL) entries, corresponding to the file access per-
mission bits (see acl(5)).

The dev argument is meaningful only if mode indicates a block or character special file, and is ignored oth-
erwise. It is an implementation- and configuration-dependent specification of a character or block 1/0 dev-
ice. The value of dev is created by using the makedev () macro defined in <sys /mknod.h>. The mak-
edev() macro takes as arguments the major and minor device numbers, and returns a device
identification number which is of type dev_t. The value and interpretation of the major and minor device
numbers are implementation-dependent. For more information, see mkrod(5) and the System Administra-
tion manuals for your system.

Only users having appropriate privileges can invoke mknod () for file types other than FIFO files.

WARNINGS
Proper discretion should be used when using mkrnod() to create generic device files in an HP Clustered
Environment. A generic device file accessed from different cnodes in a cluster applies to different physical
devices. Thus the file’s ownership and permissions might not be appropriate in the context of every indivi-
dual cnode in the cluster.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned and errno is
set to indicate the error.

ERRORS
mknod () fails and the new file is not created if:
[EACCES] The directory in which path would be created denies write permission, mode is for a
FIFO file and the caller does not have appropriate privileges.
[EACCES] A component of the path prefix denies search permission.
[EEXIST) The named path already exists.

HP-UX Release 9.0: August 1992 -1- 123

mknod(2)

AUTHOR

mknod(2)

[EFAULTY] The path argument points outside the process’s allocated address space. The reliable
detection of this error is implementation dependent.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

[ENOENT] The path argument is null.

[ENOENT] A component of the path prefix does not exist.

[ENQOSPC] Not enough space on the file system.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The effective-user-ID of the process does not match that of a user who has appropriate
privileges, and the file type is not FIFO special.

[EROFS] The directory in which the file is to be created is located on a read-only file system.

[EDQUOTI User’s disk quota block or inode limit has been reached for this file system.

mknod () was developed by AT&T and HP.

SEE ALSO

mknod(1M), chmod(2), exec(2), mkdir(2), setacl(2), umask(2), cdf(4), fs(4), acl(5), mknod(5), stat(5), types(5),
privilege(5).

STANDARDS CONFORMANCE
mknod (): SVID2, XPG2

124

-2- HP-UX Release 9.0: August 1992

mmap(2) mmap(2)

NAME
mmap - map object into virtual memory

SYNOPSIS
#include <sys/mman.h>

caddr_t mmap (
caddr_t addr,
slze_t len,
int prot,
int flags,
int fildes,
off_t off);

DESCRIPTION
mmap () creates a new memory mapped file or anonymous memory region. The format of the call is as fol-
lows:

pa = mmap(addr, len, prot, flags, fildes, off);

mmap () establishes a mapping between the process’s address space at an address pa for len bytes to an
object represented by the file descriptor fildes at offset off for len bytes, or to an anonymous region of physi-
cal memory of size len bytes. A successful mmap () call returns pa as its result, where pa is an
implementation-dependent function of the requested starting address and length for the new region, addr
and len, as further described below.

If len is not a multiple of the page size returned by sysconf (_SC_PAGE_SIZE), then references are
permitted to an address between pa +len and the next higher address that is an integer multiple of the page
size; however, the results of any such references are undefined.

The flags argument specifies the attributes of the region. Values of the flags argument are constructed by
bitwise-inclusive ORing flags from the following list of symbolic names defined in <sy s /mman .h>:

MAP_FILE Create a mapped file region.

MAP_ANONYMOUS Create an unnamed memory region.

MAP_VARIABLE Place region at implementation-computed address.

MAP_FIXED Place region at specified address.

MAP_SHARED Share changes between processes and underlying file object, if any.
MAP_PRIVATE Changes are private to a process.

The MAP_FILE and MAP_ANONYMOUS flags control whether the region to be mapped is a mapped file
region or an anonymous shared memory region. Exactly one of these flags must be selected.

If MAP_FILE is set in flags:
* A new mapped file region is created, mapping the file associated with fildes.

* off specifies the file byte offset at which the mapping starts. This offset must be a multiple of the
page size returned by sysconf (_SC_PAGE_SIZE).

¢ If the end of the mapped file region is beyond the end of the file, any reference to an address in
the mapped file region corresponding to an offset beyond the end of the file results in the delivery
of a SIGBUS signal to the process, unless the address lies in the last partial page corresponding
to the range beyond the end of the file. The last partial page mapping the range beyond the end
of the file is always initialized to zeros, and any modified portions of the last page of a file which
are beyond its end are not written back to the file.

If MAP_ANONYMOUS is set in flags:

* A new memory region is created and initialized to all zeros. This memory region can be shared
only with descendants of the current process.

e Ifthe fildes argument is not —1, an EINVAL error is generated.

HP-UX Release 9.0: August 1992 -1- 125

mmap (2) mmap(2)

126

¢ The value of off is meaningless because there is no underlying file object for the memory region.

The MAP_VARIABLE and MAP_FIXED flags control the placement of the region as described below.
Exactly one of these flags must be selected.

If MAP_VARIABLE is set in flags:

* If the requested address is NULL, or if it is not possible for the system to place the region at the
requested address, the region is placed at an address selected by the system. If the requested
address is not a multiple of the page size returned by sysconf (_SC_PAGE_SIZE), the sys-
tem treats the address as if it were rounded up to the next larger page size multiple.

If MAP_FIXED is set in flags:

e If it is not possible for the system to place the region at the requested address, the mmap ()
function fails.
¢ addr must be a multiple of the page size returned by sysconf (_SC_PAGE_SIZE).

A region is never placed at an address where it would overlap with an existing region or a portion of the
process address space that is already in use or reserved for other purposes. A region is always placed at a
starting address that is an exact multiple of the page size returned by sysconf (_SC_PAGE_SIZE).

The MAP_PRIVATE and MAP_SHARED flags control the visibility of modifications to the mapped file or
anonymous memory region. Exactly one of these flags must be selected.

If MAP_SHARED is set in flags:

¢ Modifications to the region are visible to other processes which have mapped the same file using
MAP_SHARED.

¢ If the region is a mapped file region, modifications to the region are written to the underlying
file.

If MAP_PRIVATE is set in flags:

¢ Modification to the mapped region by the calling process is not visible to other processes which
have mapped the same region using either MAP_ PRIVATE or MAP_ SHARED. Modifications are
not visible to descendant processes that have inherited the mapped region across a fork ().

¢ Ifthe region is a mapped file region, modifications to to the region are not written to the underly-
ing file.

It is unspecified whether modifications by processes that have mapped a file using MAP_ SHARED are visi-
ble to other processes that have mapped the same file using MAP_ PRIVATE.

The prot argument specifies the mapped region’s access permissions. Header file <sys/mman .h> defines
the following access permissions:

PROT_READ Region can be read
PROT_WRITE Region can be written
PROT_EXEC Region can be executed
PROT_NONE Region cannot be accessed

The prot argument can be PROT_NONE, or any combination of PROT_READ, PROT WRITE , and
PROT_EXEC OR-ed together. If PROT_NONE is not specified, the system may grant other access permis-
sions to the region in addition to those explicitly requested, except that write access will not be granted
unless PROT_WRITE is specified.

mmap () cannot create a mapped file region unless the file descriptor used to map the file is open for read-
ing. For a mapped file region that is mapped with MAP_ SHARED, mmap () grants write access permission
only if the file descriptor is open for writing. If a region was mapped with either MAP_PRIVATE or
MAP_ANONYMOUS, mmap () grants all requested access permissions.

After the successful completion of mmap (), fildes can be closed without effect on the mapped region or on
the contents of the mapped file. Each mapped region creates a file reference, similar to an open file descrip-
tor, that prevents the file data from being deallocated.

Whether modifications made to the file using write() are visible to mapped regions, and whether
modification to a mapped region are visible with read (), is undefined except for the effect of msync ().

-2- HP-UX Release 9.0: August 1992

mmap(2) mmap(2)

If an enforcement-mode file lock is in effect for any range of a file, a call to mmap () to map any range of
the file with access rights that would violate the lock fails. The msem lock() and msem_unlock()
semaphore interfaces can be used to coordinate shared access to a region created with the MAP_ SHARED
flag. The advisory locks of the lockf() or fcntl () interfaces have no effect on memory mapped
access, but they can be used to coordinate shared access to a MAP_ SHARED mapped file region.

For a memory mapped file, the st_atime and st_mtime values returned by stat () are updated
when a page in the memory mapped region is read from or written to the file system.

After a call to fork (), the child process inherits all mapped regions with the same data and the same
sharing and protection attributes as in the parent process. Each mapped file and anonymous memory
region created with mmap () is unmapped upon process exit, and by a successful call to any of the exec
functions.

A SIGBUS signal is delivered to a process when a write reference to a mapped file region would cause a file
system error condition such as exceeding quota or file system space limits.

A SIGBUS signal is delivered to a process upon a write reference to a region without PROT_WRITE pro-
tection, or any reference to a region with PROT_NONE protection.

A call to mmap() with PROT EXECUTE specified, but without PROT_WRITE specified for a
MAP_SHARED |MAP_FILE mapping is treated by the system as the execution of the underlying file. This
implies that such a call fails if the file is currently open for writing or mapped with
MAP_SHARED | PROT_WRITE options by any process, and that if the call succeeds, the file cannot be
opened for writing or subsequently mapped with MAP_SHARED | PROT_WRITE options as long as such
mappings are present. A file’s status as an active executable file is determined only at the time of an
exec (), exit (), or mmap() operation. mprotect () operations on a MAP_FILE|MAP_SHARED
mapping have no effect on the underlying file’s status as an active executable file.

IMPLEMENTATION NOTES
Only regular files (not directories, named pipes, or device special files) can be mapped.

System swap resources are reserved for all mappings created with either MAP_PRIVATE or
MAP_ANONYMOUS.

RETURN VALUE
Upon successful completion, mmap () returns the address at which the mapping was placed. Otherwise,
mmap () returns —1 and sets errno to indicate the error.

ERRORS
mmap () fails if any of the following conditions are encountered:
[EACCESS] The file referred to by fildes is not open for read access, or the file is not open for write
access and PROT_WRITE was set for a MAP_SHARED mapping operation, or

PROT_EXECUTE was set for a MAP_ SHARED mapping operation and the underlying
file does not have execute permission.

[EBADF] fildes is not a valid file descriptor.

[EINVAL] flags or prot is invalid, or addr (with MAP_FIXED set) or off (with MAP_FILE set) is
not a multiple of the page size returned by sysconf (_SC_PAGE_SIZE).

[ENODEV] fildes refers to an object that cannot be mapped, such as a terminal.

[ENOMEM] There is not enough address space to map len bytes, or MAP_FIXED was set and
part of the address space range [addr, addr+len) (from, and including, eddr to, but
not including, addr+len) is not available for use.

[ENXIO] The addresses specified by the range [off, off+len) (from, and including, off to, but not
including, off +len) are invalid for fildes.
[EAGAIN] The file represented by fildes has enforcement-mode file locking in effect for some

range in the file. (see lockf(2), or fentl(2)).

[ETXTBSY] MAP_SHARED and MAP_FILE are set, and PROT _EXECUTE is set and
PROT_WRITE is not set, and the file being mapped is currently open for writing.

HP-UX Release 9.0: August 1992 -3- 127

mmap(2) mmap (2)

DEPENDENCIES
Series 700/800

Because the PA-RISC memory architecture utilizes a globally shared virtual address space between
processes, and discourages multiple virtual address translations to the same physical address, all con-
currently existing MAP_ SHARED mappings of a file range must share the same virtual address offsets and
hardware translations. PA-RISC-based HP-UX systems allocate virtual address ranges for shared memory

and SL..W.A maomoad Blac in tha s s O0x80000000 throuch OxeffTYr This address range is used globally for
Qailu sarcau J-I.IGPPULI A1ITD 111 vilo Lausv vAOCUUUuUuUuuv uuuusu UVACLIIIIIL. 111D auulrodd 1ausc 1D upcu 51uuﬁuy vl

all memory objects shared between processes.
This implies the following:
¢ Any single range of a file cannot be mapped multiply into different virtual address ranges.

. After the initial MAP_ SHARED mmap () of a file range, all subsequent MAP_SHARED calls to
mmap () to map the same range of a file must either specify MAP_VARIABLE in flogs and
inherit the virtual address range the system has chosen for this range, or specify MAP_FIXED
with an eddr that corresponds exactly to the address chosen by the system for the initial map-
ping. Only after all mappings for a file range have been destroyed can that range be mapped to
a different virtual address.

* In most cases, two separate calls to mmap () cannot map overlapping ranges in a file. The vir-
tual address range reserved for a file range is determined at the time of the initial mapping of
the file range into a process address space. The system allocates only the virtual address range
necessary to represent the initial mapping. As long as the initial mapping exists, subsequent
attempts to map a different file range that includes any portion of the initial range may fail with
an ENOMEM error if an extended contiguous address range that preserves the mappings of the
initial range cannot be allocated.

* Separate calls to mmap () to map contiguous ranges of a file do not necessarily return contigu-
ous virtual address ranges. The system may allocate virtual addresses for each call to mmap ()
on a first available basis.

¢ The use of MAP_FIXED is strongly discouraged because it is not portable. Using MAP_FIXED
is generally unsuccessful on this implementation, and when it is successful, it may prevent the
system from optimally allocating virtual address space.

The following combinations of protection modes are supported:

PROT_NONE

PROT_READ

PROT_READ| PROT_EXECUTE
PROT_READ|PROT_WRITE

PROT_READ| PROT_WRITE | PROT_EXECUTE

If a MAP_PRIVATE mapping is created of a file for which a MAP_SHARED mapping exists, a separate
copy of a page for the MAP_PRIVATE mapping is created at the time of the first access to the page through
the private mapping.

Series 300/400

128

The following combinations of protection modes are supported:

PROT_NONE

PROT_READ

PROT_READ | PROT_EXECUTE
PROT_READ|PROT_WRITE

PROT_READ| PROT_WRITE | PROT_EXECUTE

In addition, for protection modes that do not explicitly have PROT_EXECUTE set, individual pages within
the region can be promoted to include PROT_EXECUTE permissions simply by executing code located
within the region.

If a MAP_PRIVATE mapping is created of a file for which a MAP_SHARED mapping exists, a separate
copy of a page for the MAP_PRIVATE mapping is created at the time of the first write reference to the page
through the private mapping.

—-4- HP-UX Release 9.0: August 1992

mmap(2) mmap (2)

HP Clustered Environment
In a clustered environment, modifications to a MAP_SHARED mapped file region on one cluster node may
not be visible to other processes on other cluster nodes that have the same file mapped with the
MAP__SHARED option.

AUTHOR
mmap () was developed by HP, AT&T, and OSF.

SEE ALSO
fentl(2), fork(2), ftruncate(2), lockf(2), madvise(2), mprotect(2), msem_init(2), msem_lock(2),
msem_unlock(2), msync(2), munmap(2), sysconf(2), mman(5), stat(5).

STANDARDS CONFORMANCE
mmap () : AES [Series 300/400/700 only]

HP-UX Release 9.0: August 1992 -5- 129

mount(2) mount(2)

NAME
mount - mount a file system

SYNOPSIS
#include <sys/mount.h>

int mount (const char *spec, const char *dir, int rwflag):

DESCRIPTION
mount () requests that a removable file system contained on the block special device file identified by spec
be mounted on the directory identified by dir. spec and dir are pointers to path names.

Upon successful completion, references to the file dir refer to the root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on the mounted file system. If it is 1, writing
is forbidden; otherwise, writing is permitted according to individual file accessibility.

mount () can be invoked only by a user who has appropriate privileges.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
mount () fails if one or more of the following is true:

[EPERM] The effective user ID is not a user who has appropriate privileges.
[ENOENT)] The named file does not exist (for example, path is null or a component of path does
not exist).

[ENOTDIR] A component of a path prefix is not a directory.
[ENOTBLK] spec is not a block special device.

[ENXIO] The device associated with spec does not exist.

[ENOTDIR] dir is not a directory.

[EFAULT] spec or dir points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

[EBUSY] dir is currently mounted on, is someone’s current working directory, or is otherwise
busy.

[EBUSY] The device associated with spec is currently mounted.

[EBUSY] There are no more mount table entries.

[ENOENT] spec or dir is null.

[EACCES] A component of the path prefix denies search permission.

[ENAMETOOLONG]

The length of a specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

[ELOOP] Too many symbolic links were encountered in translating either path name.

WARNINGS
If mount () is called from the program level (i.e. not called from mount(1M)), the table of mounted devices
contained in /etc/mnttab is not updated. Updating of /etc/mnttab is performed by mount(1M) and
syncer(1IM). See corresponding manual entries for more information.

In the HP Clustered environment, the spec and dir arguments should always be fully expanded pathnames.

SEE ALSO
mount(1M), syncer(1M), umount(2).

STANDARDS CONFORMANCE
mount (): SVID2, XPG2

130 -1- HP-UX Release 9.0: August 1992

mprotect(2) mprotect(2)

NAME
mprotect - modify access protections of memory mapping

SYNOPSIS
#include <sys/mman.h>

int mprotect (
caddr_t addr,
slze_t 1len,
int prot);

DESCRIPTION
mprotect () modifies the access protection of the memory mappings specified by the address range start-
ing at addr and continuing for len bytes, rounded up to the next multiple of the page size, to be that
specified by prot. If the address range does not correspond to one created by a successful call to mmap (),
mprotect () returns an error. prot determines whether read, write, execute, or some combination of
accesses are permitted to the data being mapped. Legitimate values for prot are the same as those permit-
ted for mmap () (see mmap(2)).

If the address range being modified corresponds to a mapped file that was mapped with MAP_ SHARED,
mprotect () grants write access permission only if the file descriptor used to map the file was opened for
writing. If the address range corresponds to a mapped file that was mapped with the MAP_PRIVATE or
the MAP_ANONYMOUS flag, mprotect () grants all requested access permissions.

If mprotect () fails under a condition other than that specified by EINVAL, the access protection of some
of the pages in the range [addr, addr+len) (from, and including, addr to, but not including, addr+len) may
have been changed. For example, suppose an error occurs on some page at an addr2; mprotect () may
have modified the protections of all whole pages in the range [addr,addr2].

RETURN VALUE
mprotect () returns 0 upon success; otherwise, it returns —1 and sets errno to indicate the error.

ERRORS
mprotect () fails if any of the following conditions are encountered:

[EACCES] prot specifies a protection that conflicts with the access permission set for the underly-
ing file.

[EINVAL] prot is invalid, or addr is not a multiple of the page size as returned by
gsysconf (_SC_PAGE_SIZE).

[ENOMEM] The range specified by [aeddr, addr+len) (from, and including, addr to, but not
including, addr+len) is invalid for a process’ address space, or the range specifies one
or more unmapped pages.

AUTHOR
mprotect () was developed by HP, AT&T, and OSF.

SEE ALSO
mmap(2), sysconf(2).

STANDARDS CONFORMANCE
mprotect (): AES

HP-UX Release 9.0: August 1992 ~-1- 131

msem_init(2) msem_init(2)

NAME

msem_init - initialize a semaphore in a mapped file or anonymous memory region

SYNOPSIS

#include <sys/mman.h>

msemaphore *msem_init (msemaphore *sem, int initial_value);

DESCRIPTION

msem_init () allocates a new binary semaphore and initializes the state of the new semaphore.
sem points to an msemaphore structure in which the state of the semaphore is to be stored.

If initial_value is MSEM_LOCKED, the new semaphore is initialized in the locked state. If initial_value is
MSEM_UNLOCKED, the new semaphore is initialized in the unlocked state.

The msemaphore structure must be located within a mapped file or anonymous memory region created
by a successful call to mmap () and have both read and write access.

If a semaphore is created in a mapped file region, any reference by a process that has mapped the same file,
usinga (struct msemaphore *) pointer that resolves to the same file offset is interpreted as a refer-
ence to the same semaphore. If a semaphore is created in an anonymous memory region, any reference by a
process sharing the same region by use of a (struct msemaphore *) pointer that resolves to the
same offset from the start of the region is interpreted as a reference to the same semaphore.

Any previous semaphore state stored in the msemaphore structure is be ignored and overwritten.

IMPLEMENTATION NOTES

In order to ensure that an msemaphore structure is entirely contained in a single memory page, sem
must be at an address that is an exact multiple of sizeof (structmsemaphore). The size of the
msemaphore structure is guaranteed to prevent semaphores that cross page boundaries given the above
restriction.

For a memory mapped file region, the system deallocates memory that corresponds to a range of the file
that has been truncated with ftruncate() or truncate (). If a semaphore is located in memory so
deallocated, the effect is equivalent to an msem remove () on the semaphore.

RETURN VALUE

msem_init () returns the address of the initialized msemaphore structure; otherwise, it returns NULL
and sets errno to indicate the error. NOTE: This error return value may change to -1 in a future HP-UX
release. For portability, applications should check for a zero or negative value for error returns.

ERRORS

msem_init () fails if any of the following conditions are encountered:

[EINVAL] sem points to an msemaphore structure that is not located in a mapped region
created by mmap () and with read and write access, or initial_value is not valid.

[ENOMEM] A new semaphore could not be created.
[EFAULT] sem is an invalid pointer.

AUTHOR

msem_init () was developed by HP and OSF.

SEE ALSO

mmap(2), msem_lock(2), msem_remove(2), msem_unlock(2), mman(5).

STANDARDS CONFORMANCE

132

msem_init(): AES

-1- HP-UX Release 9.0: August 1992

msem_lock(2) msem_lock(2)

NAME
msem_lock - lock a semaphore

SYNOPSIS
#include <sys/mman.h>

int msem_lock(msemaphore *sem, int condition);

DESCRIPTION
msem_lock () attempts to lock a binary semaphore.

sem points to an msemaphore structure which specifies the semaphore to be locked.
If the semaphore is not currently locked, it becomes locked and the function returns successfully.

If the semaphore is currently locked, and condition is MSEM_IF_NOWAIT, then the function returns with
an error. If the semaphore is currently locked and condition is zero, the function does not return until
either the calling process is able to successfully lock the semaphore, or an error condition occurs.

All calls to msem_lock() and msem_unlock() by multiple processes sharing a common msema-
phore structure behave as if the calls were serialized.

If the msemaphore structure contains any value not resulting from a call to msem_init () followed by
a (possibly empty) sequence of calls to msem_lock() and msem_unlock(), the results are undefined.
The address of an msemaphore uniquely identifies the semaphore. If the msemaphore structure con-
tains any value copied from an msemaphore structure at a different address, the result is undefined.

IMPLEMENTATION NOTES
If blocked on a locked semaphore, msem_lock () suspends the calling process at a priority such that the
process can be interrupted by a signal.

The system attempts to ignore or recover from invalid values written to the msemaphore structure, but
this is not guaranteed for all cases.

msem_lock () successfully acquires a semaphore that is locked by a process that has exited.

RETURN VALUE
Upon success, msem_lock () returns zero; otherwise, it returns ~1 and sets errno to indicate the error.
ERRORS
msem_lock () fails if any of the following conditions are encountered:
[EAGAIN] MSEM_IF_NOWAIT was specified and the semaphore was already locked.
[EINVAL] sem points to an msemaphore structure that has been removed, or condition is
invalid.
[EINTR] msem_lock () was interrupted by a signal that was caught.
[EDEADLK] The semaphore is currently locked, condition is zero, and waiting to lock the sema-
phore would create a deadlock.
[EFAULT] sem is not a properly aligned address or is otherwise an invalid pointer.
AUTHOR
msem_lock () was developed by HP and OSF.
SEE ALSO

msem_init(2), msem_remove(2), msem_unlock(2), mman(5).

STANDARDS CONFORMANCE
msem_lock(): AES

HP-UX Release 9.0: August 1992 -1- 133

msem_remove(2) msem_remove(2)

NAME
msem_remove - remove a semaphore in mapped file or anonymous region

SYNOPSIS
#include <sys/mman.h>

int *msem_ remove (msemaphore *sem);

QN TIMTITARY
AZLOVIVALD L1UL

msem_remove () removes a binary semaphore.

sem points to an msemaphore structure that specifies the semaphore to be removed. Any subsequent use
of the msemaphore structure before it is again initialized by calling msem_init () produces undefined
results.

msem_remove () also causes any process waiting in the msem_lock{() function on the removed sema-

phore to return with an error.

If the msemaphore structure contains any value not resulting from a call to msem_init () followed by
a (possibly empty) sequence of calls to msem_lock() and msem_unlock(), the results are undefined.
The address of an msemaphore uniquely identifies the semaphore. If the msemaphore structure con-
tains any value copied from a msemaphore structure at a different address, the result is undefined.

RETURN VALUE
Upon success, msem_remove () returns zero; otherwise, it returns —1 and sets errno to indicate the

error.
ERRORS
msem_remove () fails if any of the following conditions are encountered:
[EINVAL] sem points to an msemaphore structure that has been removed.
[EFAULT}] sem is an invalid pointer.
AUTHOR
msem_remove () was developed by HP and OSF.
SEE ALSO

msem_init(2), msem_lock(2), msem_remove(2), mman(5).

STANDARDS CONFORMANCE
msem_remove (): AES

134 -1- HP-UX Release 9.0: August 1992

msem_unlock(2) msem_unlock(2)

NAME
msem_unlock - unlock a semaphore

SYNOPSIS
#include <sys/mman.h>

int msem_unlock(msemaphore *sem, int condition);

DESCRIPTION
msem_unlock () unlocks a binary semaphore.

sem pointg to an maemaphora structure that specifies the semaphore to be unlocked.

If the condition argument is zero, the semaphore will be unlocked, whether or not any other processes are
currently attempting to lock it. If the condition argument is MSEM_IF_WAITERS, and some other process
is waiting to lock the semaphore or the implementation cannot reliably determine whether some process is
waiting to lock the semaphore, the semaphore is unlocked by the calling process. If the condition argument
is MSEM_IF_WAITERS, and no process is waiting to lock the semaphore, the semaphore is not unlocked
and an error is returned.

All calls to msem_lock() and msem_unlock() by multiple processes sharing a common msema-
phore structure behave as if the calls were serialized.

If the msemaphore structure contains any value not resulting from a call to msem_1init () followed by
a (possibly empty) sequence of calls to msem_lock() and msem_unlock(), the results are undefined.
The address of an msemaphore uniquely identifies the semaphore. If the msemaphore structure con-
tains any value copied from a msemaphore structure at a different address, the result is undefined.

IMPLEMENTATION NOTES
The system attempts to ignore or recover from invalid values placed in the msemaphore structure, but
this is not guaranteed for all cases.

RETURN VALUE
Upon success, msem_unlock() returns zero; otherwise, it returns —1 and sets errno to indicate the
error.

ERRORS
msem_unlock () fails if any of the following conditions are encountered:
[EAGAIN] MSEM_IF_NOWAIT was specified and there were no waiters.
[EINVAL] sem points to an msemaphore structure that has been removed, or condition is
invalid.
[EFAULT] sem is an invalid pointer.
AUTHOR
msem_unlock () was developed by HP and OSF.
SEE ALSO

msem_init(2), msem_lock(2), msem_remove(2), mman(5).

STANDARDS CONFORMANCE
msem_unlock(): AES

HP-UX Release 9.0: August 1992 -1- 135

msgctl (2) msgctl(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/msg.h>

int msgetl(int msqid, int omd, struct msqglid_ds *buf);

DESCRIPTION
msgctl () provides a variety of message control operations as specified by cmd. The following cmds are
available:

IPC_STAT Place the current value of each member of the data structure associated with msgid

into the structure pointed to by buf. The contents of this structure are defined in
ologearv(9)
Srvesh Ty

IPC_SET Set the value of the following members of the data structure associated with msgqid to
the corresponding value found in the structure pointed to by buf:
msg_perm.uid
msg_perm.gid
msg_perm.mode /* only low 9 bits */
msg_gbytes

This cmd can only be executed by a process that has an effective user ID equal to either that of super-user
or to the value of either msg_perm.uid or msg_perm.cuid in the data structure associated with
msqid. Only super-user can raise the value of msg_gbytes.

IPC_RMID
Remove the message queue identifier specified by msqid from the system and destroy the message queue
and data structure associated with it. This ¢cmd can only be executed by a process that has an effective
user ID equal to either that of super-user or to the value of either msg_perm.uid or
msg_perm.cuidin the data structure associated with msqid.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
msgetl () fails if one or more of the following is true:

[EINVAL] msqid is not a valid message queue identifier.

[EINVAL] cmd is not a valid command.

[EACCES] cmd is equal to IPC_STAT and Read operation permission is denied to the calling process
(see message operation permissions in glossary(9)).

[EPERM] cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling process is

not equal to that of a user who has appropriate privileges and it is not equal to the value of
either msg_perm.uid or msg_perm.culd in the data structure associated with

msqid.

[EPERM] cmd is equal to IPC_SET, an attempt is being made to increase to the value of
msg_gbytes, and the effective user ID of the calling process is not equal to that of super-
user.

[EFAULT] buf points to an illegal address. Reliable detection of this error is implementation depen-
dent.

SEE ALSO
iperm(1), ipes(1), msgget(2), msgop(2), stdipc(3C).

STANDARDS CONFORMANCE
msgetl (): SVID2, XPG2, XPG3, XPG4

136 -1- HP-UX Release 9.0: August 1992

msgget(2) msgget(2)

NAME

msgget - get message queue

SYNOPSIS

#include <sys/msg.h>

int

msgget (key_t key, int msgflg);

DESCRIPTION
msgget () returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure are created for key if one of
the following is true:

key is equal to IPC_PRIVATE. This call creates a new identifier, subject to available resources. The
identifier will never be returned by another call to msgget () until it has been released by a call to
msgcetl (). The identifier should be used among the calling process and its descendents; however, it
is not a requirement. The resource can be accessed by any process having the proper permissions.

key does not already have a message queue identifier associated with it, and (msgflg & IPC_CREAT)
is “true”.

Upon creation, the data structure associated with the new message queue identifier is initialized as follows:

nmsg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set equal to the
effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg.
msg_qnum,msg_1lspid, msg_lrpid msg_stime, and msg_rtime are set equal to 0.
msg_ctime is set equal to the current time.

msg_gbytes is set equal to the system limit.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a message queue identifier, is returned. Other-

wise, a value of -1 is returned and errno is set to indicate the error.
ERRORS
msgget () fails if one or more of the following is true:
[EACCES] A message queue identifier exists for key, but operation permission as specified by the low-
order 9 bits of msgflg would not be granted.
[ENOENT A message queue identifier does not exist for key and (msgflg & IPC_CREAT) is “false”.
[ENOSPC] A message queue identifier is to be created but the system-imposed limit on the maximum

number of allowed message queue identifiers system wide would be exceeded.

[EEXIST] A message queue identifier exists for key but ((msgflg & IPC_CREAT) && (msgfig &

SEE ALSO

IPC_EXCL)) is “true”.

ipcrm(1), ipes(1), msgetl(2), msgop(2), stdipe(3C).

STANDARDS CONFORMANCE
msgget (): SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 137

msgop(2) msgop(2)

NAME
msgsnd, msgrev - message operations

SYNOPSIS
#include <sys/msg.h>

int msgsnd(
int msqidq,
const void *msgp,
size_t msgsz,

int msgflg

):

int msgrev(
int msqid,
void *msgp,
size_t msgsz,
long msgtyp,
int msgflg

);

DESCRIPTION
msgsnc(li () is used to send a message to the queue associated with the message queue identifier specified
by msqid.

msgp points to a user-defined buffer that must contain first a field of type long that specifies the type of
the message, followed by a data portion that will hold the data bytes of the message. The structure below is
an example of what this user-defined buffer might look like:

long mtype; /* message type */
char mtext[]; /* message text */

mtype is a positive integer that can be used by the receiving process for message selection (see
msgrev () below). mtext is any text of length msgsz bytes. msgsz can range from 0 to a system-
imposed maximum.

msgflg specifies the action to be taken if one or more of the following is true:

The number of bytes already on the queue is equal to msg_gbytes (see message queue identifier in
glossary(9)).

The total number of messages on all queues system-wide is equal to the system-imposed limit.
These actions are as follows:

If (msgflg & IPC_NOWAIT) is “true”, the message is not sent and the calling process returns
immediately.

;f (msgflg & IPC_NOWAIT) is “false”, the calling process suspends execution until one of the follow-
ing occurs:

The condition responsible for the suspension no longer exists, in which case the message is
sent.

msqid is removed from the system (see msgctl(2)). When this occurs, errno is set equal to
EIDRM, and a value of -1 is returned.

The calling process receives a signal to be caught. In this case the message is not sent and the
calling process resumes execution in the manner prescribed in signal(5).

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid:

msg_qgnum is incremented by 1.
msg_1spid is set equal to the process ID of the calling process.
msg_stime is set equal to the current time.

138 -1- HP-UX Release 9.0: August 1992

msgop(2) msgop(2)

msgrcv() reads a message from the queue associated with the message queue identifier specified by
msqid and places it in the structure pointed to by msgp. This structure is composed of the following
members:

long mtype; /* message type */
char mtext(]:; /* message text */

mtype is the received message’s type as specified by the sending process. mtext is the text of the mes-
sage. msgsz specifies the size in bytes of mtext. The received message is truncated to msgsz bytes if it is
larger than msgsz and (msgflg &B MSG_NOERROR) is “true”. The truncated part of the message is lost
and no indication of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:
msgtyp =0 First message on the queue is received.
msgtyp > 0 First message of type msgtyp is received.

msgtyp <0 First message of the lowest type that is less than or equal to the absolute value of
msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on the queue. These are as fol-
lows:

(msgflg & IPC_NOWAIT)is “true™
Calling process returns immediately with a return value of -1 and errno set to ENOMSG.

(msgflg & IPC_NOWAIT) is “false”
Calling process suspends execution until one of the following occurs:

¢ A message of the desired type is placed on the queue.

* msqid is removed from the system. When this occurs, errno is set equal to EIDRM,
and a value of -1 is returned.

¢ The calling process receives a signal that is to be caught. In this case, a message is not
received and the calling process resumes execution in the manner prescribed in sig-
nal(5)).

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid.

msg_qgnum is decremented by 1.
msg_1lrpild is set equal to the process ID of the calling process.
msg_rtime is set equal to the current time.

RETURN VALUES
Upon successful completion, the return value is as follows:

msgsnd () returns a value of 0.
msgrev () returns a value equal to the number of bytes actually placed into mfext.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
msgsnd () fails and no message is sent if one or more of the following is true:

[EINVAL] msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process.

[EINVAL] mtype is less than 1.

[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg &
IPC_NOWAIT) is “true”.

[EINVAL] msgsz is less than zero or greater than the system-imposed limit.

[EFAULT] msgp points to an illegal address. The reliable detection of this error is implementa-
tion dependent.

N
HP-UX Release 9.0: August 1992 -2- 139

msgop(2) msgop(2)

[EIDRM] The message queue identifier msqgid has been removed from the system.
[EINTR] msgsnd () was interrupted by a signal.
msgrcv () fails and no message is received if one or more of the following is true:

[EINVAL] msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process.

[EINVAL] msgsz is less than 0.

[E2BIG] mtext is greater than msgsz and (msgflg & MSG_NOERROR) is “false”.

[ENOMSG] The queue does not contain a message of the desired type and (msgfls &
IPC_NOWAIT) is “true”.

[EFAULT] msgp points to an illegal address. The reliable detection of this error is implementa-
tion dependent.

[EIDRM] The message queue identifier msqid has been removed from the system.

[EINTR] The function msgrcv () was interrupted by a signal.

WARNINGS

Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector(2) can
affect the behavior described on this page.

SEE ALSO
ipes(1), msgetl(2), msgget(2), signal(5), stdipe(3C).

STANDARDS CONFORMANCE
msgrev () : SVID2, XPG2, XPG3, XPG4

msgsnd () : SVID2, XPG2, XPG3, XPG4

140 -3- HP-UX Release 9.0: August 1992

msync(2) msync(2)

NAME
msync - synchronize a mapped file

SYNOPSIS
#include <sys/mman.h>

int msync(caddr_t addr,size_t len, int flags):;

DESCRIPTION
msync controls the caching operations of a mapped file region. msync () writes all modified pages in the

region to the file’s underlying storage device, and ensures the visibility of modifications made to the region
with respect to file system operations.

addr and len specify the region to be synchronized. If these are not the address and length of a region
created by a previous successful call to mmap (), msync () returns an error. The behavior of msync ()
upon a region created with the MAP_ ANONYMOUS or MAP_PRIVATE flags is undefined.

flags is constructed from the bitwise inclusive OR of one or more of the following flags defined in

<sys/mman.h>:
MS_SYNC Perform synchronous writes
MS_ASYNC Perform asynchronous writes

MS_INVALIDATE Invalidate cached pages

If MS_SYNC is specified, msync () does not return until the system completes all /O operations. If
MS_ASYNC is specified, msync() returns after the system schedules all /O operations. Either
MS_SYNC or MS_ASYNC can be set in flags, but not both.

If MS_INVALIDATE is specified, msync () invalidates all cached copies of the pages. Subsequent refer-
ences to the mapped data is obtained from the file’s permanent storage locations. If either MS_SYNC or
MS_ASYNC is also specified, a page is invalidated after it has been written to the file.

After a successful call to msync () with MS_SYNC specified, all previous modifications to the mapped
region are visible to processes using read (). Previous modifications to the file using write () may be
lost.

After a successful call to msync () with only MS_INVALIDATE specified, all previous modifications to
the file using write() are visible to the mapped region. Previous direct modifications to the mapped
region may be lost.

RETURN VALUE
nsyne () returns 0 upon success; otherwise, it returns -1 and sets errno to indicate the error.

ERRORS
nsync () fails if any of the following conditions are encountered.:

[EIO] An 1/0 error occurred while reading from or writing to the file system.

[ENOMEM] The range specified by [addr, addr+len) (from, and including, addr to, but not
including, addr+len) is invalid for a process’ address space, or the range specifies one
or more unmapped pages.

[EINVAL] addr is not a multiple of the page size as returned by
sysconf (_SC_PAGE_SIZE).
[EINVAL] The address range specified by addr and len was not created by a successful call to
mmap ().
AUTHOR
msync () was developed by HP, AT&T, and OSF.
SEE ALSO

mmap(2), sysconf(2).

STANDARDS CONFORMANCE
msync(): AES

HP-UX Release 9.0: August 1992 -1- 141

munmap(2) munmap(2)

NAME
munmap - unmap a mapped region
SYNOPSIS
#include <sys/mman.h>
int munmap (caddr_t addr, size_t len):

DESCRIPTION :
munmap () unmaps a mapped file or anonymous memory region.
munmap () unmaps pages in the address range starting at addr and continuing for len bytes rounded up to

the next multiple of the page size. Further references to these pages result in the delivery of a SIGSEGV
signal to the process.

If the address range specified by addr and len was not created by a successful call to mmap (), munmap ()
returns an error.

If the specified address range was created by multiple calls to mmap (), munmap () succeeds in unmap-
ping all of the specified regions, provided they form a contiguous address range.

If the region was created with the MAP_PRIVATE option, any modifications made to the region are dis-
carded.

RETURN VALUE
munmap () returns 0 upon success; otherwise, it returns —1 and sets errno to indicate the error.

ERRORS
- munmap () fails if any of the following conditions are encountered:

[EINVAL] addr is mnot a multiple of the page size as returned by
sysconf (_SC_PAGE_SIZE).
[EINVAL] The address range specified by addr and len was not created by a successful call to
mmap ().
AUTHOR
munmap () was developed by HP, AT&T, and OSF.
SEE ALSO

mmap(2), sysconf(2).

STANDARDS CONFORMANCE
munmap () : AES

142 -1- HP-UX Release 9.0: August 1992

nfssve(2) nfssvc(2)

NAME
nfssve, async_daemon - NFS daemons

SYNOPSIS
int nfssvc(int sock);

vold async_daemon();

DESCRIPTION
nfssve () starts an NFS daemon listening on socket sock. The socket must be AF_INET and SOCK_DGRAM
(protocol UDP/IP). The system call returns only if the process is killed.

async_daemon implements the NFS daemon that handles asynchronous I/O for an NFS client. The system
call never returns.

ERRORS
nfssve () fails if any of the following conditions is encountered, and sets errno accordingly:

[EBADF] sock is not a valid socket descriptor.
[EINVAL] sock refers to a socket that is not an AF_INET and SOCK_DGRAM socket.
async_daemon fails if the following condition is encountered, and sets errno accordingly:
[ENOMEM] There are not enough resources to create the process.

WARNINGS
This call should be used only by HP-supplied commands and is not recommended for use by non-HP-
supplied programs.
These two system calls allow kernel processes to have user context.

AUTHOR
nfssve () was developed by Sun Microsystems, Inc.

SEE ALSO
mountd(1M), nfsd(1M).

HP-UX Release 9.0: August 1992 -1- 143

nice(2) nice(2)

NAME

nice - change priority of a process
SYNOPSIS

#include <unistd.h>

int nice(int priority_change);

DESCRIPTION
nice () adds the value of priority_change to the nice value of the calling process. A process’s nice value
is a positive number for which a more positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system. Requests for
values above or below these limits result in the nice value being set to the corresponding limit.

RETURN VALUE
Upon successful completion, nice() returns the new nice value minus 20. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Note that nice () assumes a user process priority value of 20. If a user having appropriate privileges has
changed the user process priority value to something less than 20, certain values for priorify_change can
cause nlce () to return -1, which is indistinguishable from an error return.

ERRORS
[EPERM] nice () fails and does not change the nice value if priority_change is negative or greater
than 40, and the effective user ID of the calling process is not a user having appropriate
privileges.
SEE ALSO

nice(1), renice(1), exec(2).

STANDARDS CONFORMANCE
nice (): AES, SVID2, XPG2, XPG3, XPG4

144 -1- HP-UX Release 9.0: August 1992

open(2) open(2)

NAME
open - open file for reading or writing
SYNOPSIS
#include <fentl.h>
int open(
const char *path,
int oflag, ...
/* mode_t mode */
)i
DESCRIPTION

open () opens a file descriptor for the named file and sets the file status flags according to the value of
oflag. path points to a path name naming a file, and must not exceed PATH_MAX bytes in length. oflag
values are constructed by OR-ing flags from the list below.

Exactly one of the flags O_ RDONLY, O_ WRONLY, or O_RDWR must be used in composing the value of oflag.
If none or more than one is used, the behavior is undefined. Several other flags listed below can be changed
by using £cntl () while the file is open. See fentl(2) and fentl(5) for details.

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag might affect subsequent reads and writes. See read(2) and write(2).
When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELAY is set:
An open() for reading-only returns without delay. An open() for
writing-only returns an error if no process currently has the file open for
reading.

If O_NDELAY is clear:
An open() for reading-only does not return until a process opens the file for writing. An
open () for writing-only does not return until a process opens the file for reading.

When opening a file associated with a communication line:

If O_NDELAY is set:
The open () returns without waiting for carrier.

If O_NDELAY is clear:
The open () does not return until carrier is present.

O_NONBLOCK
Same effect as O_NDELAY for open(2), but slightly different effect in read(2) and write(2). Only one of
O_NONBLOCK and O_NDELAY can be specified.

O_APPEND
If set, the file offset is set to the end of the file prior to each write.

O_CREAT
If the file exists, this flag has no effect, except as noted under O_EXCL below. Otherwise, the owner ID
of the file is set to the effective user ID of the process, the group ID of the file is set to the effective group
ID of the process if the set-group-ID bit of the parent directory is not set, or to the group ID of the parent
directory if the set-group-ID bit of the parent directory is set. The file access permission bits of the file
mode are set to the value of mode modified as follows (see creat(2)):

* For each bit set in the file mode creation mask of the process, the corresponding bit in the new
file’s mode is cleared (see umask(2)).

¢ The "save text image after execution" bit of the mode is cleared. See chmod(2).

* On systems with access control lists, three base ACL entries are created corresponding to the file
access permissions (see acl(5)).

HP-UX Release 9.0: August 1992 -1- 145

open(2) open(2)

O_TRUNC
If the file exists, its length is truncated to 0 and the mode and owner are unchanged.

O_EXCL
If O_EXCL and O_CREAT are set, open () fails if the file exists.

O_NOCTTY
If set, and path identifies a terminal device, open () does not cause the terminal to become the control-
ling terminal for the process.

O_SYNC
If a file is opened with O_SYNC or if that flag is set with the F_SETFL option of fcnt1 (), file system
writes for the file are done through the cache to the disk as soon as possible, and the process blocks until
the data is written to the buffer cache. This flag is ignored by all /O calls except write (), and is
ignored for files other than ordinary files and block special devices on those systems that permit I/O to
block special devices.

The name O_SYNCIO is a synonym for O_SYNC, and is defined for backward compatibility in
<fentl.h>.

The file pointer used to mark the current position within the file is set to the beginning of the file.
The new file descriptor is set to remain open across exec system calls; see fentl(2).

EXAMPLES

The following call to open () opens file inputfile for reading only and returns a file descriptor for inputfile.
For an example of reading from file inputfile, see the read(2) manual entry.

int myfd;
myfd = open ("inputfile", O_RDONLY);

The following call to open () opens file outputfile for writing and returns a file descriptor for outputfile.
For an example of preallocating disk space for outputfile, see the prealloc(2) manual entry. For an exam-
ple of writing to outputfile, see the write(2) manual entry.

int outfd; outfd = open ("outputfile", O_WRONLY);

RETURN VALUE

Upon successful completion, the file descriptor is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS

146

open () fails and the file is not opened if any of the following conditions are encountered:

[EACCES] oflag permission is denied for the named file.

[EACCES] A component of the path prefix denies search permission.

[EACCES] The file does not exist and the directory in which the file is to be created does not per-
mit writing.

[EAGAIN] One or more segments of a pre-existing file have been locked with lockf or fentl by
some other process, and O_TRUNC is set.

[EAGAIN] The file exists, enforcement mode file/record locking is set, and there are outstanding
record locks on the file (see chmod(2)).

[EDQUOT] User’s disk quota block or inode limit has been reached for this file system.

[EEXIST] O_CREAT and O_EXCL are set and the named file exists.

[EFAULT] path points outside the allocated address space of the process.

[EINTR] A signal was caught during the open() system call, and the system call was not
restarted (see signal(5) and sigvector(2)).

[EINVAL] oflag specifies both O_WRONLY and O_RDWR.

[EINVAL]) oflag specifies both O_NONBLOCK and O_NDELAY.

-2- HP.UX Release 9.0: August 1992

open(2) open(2)

[EISDIR] The named file is a directory and oflag is write or read/write.

[ELOOP) Too many symbolic links are encountered in translating the path name.
[EMFILE] The maximum number of file descriptors allowed are currently open.
[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX NO_TRUNC

is in effect.
[ENFILE] The system file table is fuii.
[ENOENT] The named file does not exist (for example, path is null or a component of path does

not exist, or the file itself does not exist and O_CREAT is not set).
[ENOTDIR] A component of the path prefix is not a directory.

[ENXIO} O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process has the
file open for reading.

[ENODEV] The named file is a character special or block special file, and the device associated
with this special file either does not exist, or the driver for this device has not been
configured into the kernel.

[EROFS] The named file resides on a read-only file system and oflag is write or read/write.

[ETXTBSY] The file is open for execution and oflag is write or read/write. Normal executable files

are only open for a short time when they start execution. Other executable file types
can be kept open for a long time, or indefinitely under some circumstances.

DEPENDENCIES
HP Clustered Environment:
Attempting to open a device file with a st_rcnode value that does not match the cnode ID of the
machine on which the calling process is running (or 0) fails with an EOPNOTSUPP error.

WARNINGS
Access Control Lists
Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.

AUTHOR
open () was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
. chmod(2), close(2), creat(2), dup(2), fentl(2), lockf(2), Iseek(2), read(2), select(2), setacl(2), umask(2), write(2),
acl(5), fentl(5), signal(5).

STANDARDS CONFORMANCE
open(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -3- 147

pathconf(2) pathconf(2)

NAME
pathconf(), fpathconf() - get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long pathconf (const char *path, int name);
long fpathconf (int fildes, int name);

DESCRIPTION
pathconf () and fpathconf() provide a method for applications to determine the value of a
configurable limit or option associated with a file or directory (see limits(5) and <unistd.h>).

For pathconf (), the path argument points to the path name of a file or directory.
For fpathcont (), the fildes argument is an open file descriptor.

For both functions, the name argument represents the variable to be queried regarding the file or directory
to which the other argument refers.

The following table lists the configuration variables available from pathconf () and f£pathconf (),
and lists for each variable the associated value of the name argument:

Variable Value of name Notes
LINK_MAX _PC_LINK_MAX 1
MAX_CANON _PC_MAX_CANON 2
MAX_ INPUT _PC_MAX_ INPUT 2
NAME_MAX _PC_NAME_MAX 3,4
PATH_MAX _PC_PATH_MAX 4,5
PIPE_BUF _PC_PIPE_BUF 6
_POSIX_CHOWN_RESTRICTED | _PC_CHOWN_RESTRICTED | 7,8
_POSIX_NO_TRUNC _PC_NO_TRUNC 8,4
_POSIX_VDISABLE _PC_V_DISABLE 2

The variables in the table are defined as constants in <1imits.h> or <unistd.h> if they do not vary
from one pathname to another. The associated values of the name argument are defined in <unistd.h>.

RETURN VALUE
The following notes further qualify the table above.

1. If path or fildes refers to a directory, the value returned applies to the directory itself.

2. If the variable is constant, the value returned is identical to the variable’s definition in
<limits.h> or <unistd.h> regardless of the type of fildes or path. The behavior is
undefined if path or fildes does not refer to a terminal file.

3. If path or fildes refers to a directory, the value returned applies to the filenames within the direc-
tory.

4. If path or fildes does not refer to a directory, pathconf () or £pathcon£ () returns -1 and
sets errno to EINVAL.

5. If path or fildes refers to a directory, the value returned is the maximum length of a relative path
name when the specified directory is the working directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned applies to the pipe or
, FIFO itself. If path or fildes refers to a directory, the value returned applies to any FIFOs that
exist or can be created within the directory. If PIPE_BUF is a constant, the value returned is
identical to the definition of PIPE_BUF in <limits.h> regardless of the type of fildes or
path. The behavior is undefined for a file other than a directory, FIFO, or pipe.

a

If path or fildes refers to a directory, the value returned applies to files of any type, other than
directories, that exist or can be created within the directory.

8. _POSIX_CHOWN_RESTRICTED is defined if the privilege group PRIV_GLOBAL has been
granted the CHOWN privilege (see getprivgrp(2) and chown(2)). In all other cases,
_POSIX CHOWN_RESTRICTED is undefined and pathconf or fpathconf returns -1 without
changing errno. To determine if chown can be performed on a file, it is simplest to attempt the

148 -1- HP-UX Release 9.0: August 1992

pathconf(2) pathconf(2)

chown () operation and check the return value for failure or success.

If the variable corresponding to name is not defined for path or fildes, the pathconf and fpathconf functions
succeed and return a value of -1, without changing the value of errno.

Upon any other successful completion, these functions return the value of the named variable with respect
to the specified file or directory, as described above.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
pathconf and fpathconf fail if any of the following conditions are encountered:

[EACCES] A component of the path prefix denies search permission.

[EBADF} The fildes argument is not a valid open file descriptor.

[EFAULT] path points outside the allocated address space of the process.

[EINVAL] The value of name is not valid or the implementation does not support an associ-

ation of the variable name with the specified file.
[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
POSIX NO_TRUNC is in effect.

[ENOENT] The file named by path does not exist (for example, path is null or a component
of path does not exist).
[ENOTDIR] A component of the path prefix is not a directory.
EXAMPLES

The following example sets val to the value of MAX_CANON for the device file being used as the standard
input. If the standard input is a terminal, this value is the maximum number of input characters that can
be entered on a single input line before typing the newline character:

if (isatty(0))
val = fpathconf (0, _PC_MAX CANON);

The following code segment shows two calls to pathconf, one to determine whether a file name longer than
NAME_MAX bytes will be truncated to NAME_ MAX bytes in the /tmp directory, and if so, another call to
determine the actual value of NAME MAX so that an error can be printed if a user-supplied file name
stored in filebuf will be truncated in this directory:

extern int errno;
char *filebuf;
errno = 0; /* reset errno */
if (pathconf (“/tmp" _PC NO_TRUNC) == -1) {
/* _POSIX NO_TRUNC is not in effect for this directory */
if (strlen(filebuf) > pathconf("/tmp", PC_NAME_MAX)) {
fprintf (stderr, "Filename %8s too long.\n", filebuf);
/* take error actlion */

}
else
if (errno) {
perror("pathconf");
/* take error action */
}
}

/* otherwlse, _POSIX_NO_TRUNC is in effect for this directory */
1f ((fd = open(filebuf, O_CREAT, mode)) < 0)
perror(filebuf);

DEPENDENCIES
NFS
The following error can occur:

HP-UX Release 9.0: August 1992 -2- 149

pathconf(2) pathconf(2)

[EOPNOTSUPP] path or fildes refers to a file for which a value for name cannot be determined. In par-
ticular, _ PC_LINK_ MAX, _PC_NAME_MAX, _PC_PATH MAX, _PC_NO_TRUNC,
and _PC_CHOWN_RESTRICTED, cannot be determined for an NFS file.

AUTHOR
pathconf () and fpathconf () were developed by HP.

SEE ALSO
errno(2), chown(2), limits(5), unistd(5), termio(7).

STANDARDS CONFORMANCE
pathconf (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.2

fpathconf (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.2

150 -3~ HP-UX Release 9.0: August 1992

pause(2) pause(2)

NAME
pause - suspend process until signal

SYNOPSIS
#include <unistd.h>

int pause(vold);

DESCRIPTION
pause() suspends the calling process until it receives a signal. The signal must be one that is not
currently set to be ignored or blocked (masked) by the calling process.

If the signal causes termination of the calling process, pause () does not return.

If the signal is caught by the calling process and control is returned from the signal-catching function (see
signal(5)), the calling process resumes execution from the point of suspension; with a return value of -1
from pause() and errno set to EINTR.

WARNING
Check all references to sigrnal(5) for appropriateness on systems that support sigvector(2). sigvec-
tor () can affect the behavior described on this page.

SEE ALSO
alarm(2), kill(2), sigvector(2), wait(2), signal(5).

STANDARDS CONFORMANCE
pause (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 151

pipe(2) pipe(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe(int fildes[2]);

DESCRIPTION
pipe() creates an /O mechanism called a pipe and returns two file descriptors, fildes[0] and fildes[1].
fildes[0] is opened for reading and fildes[1] is opened for writing.

A read-only file descriptor fildes[0] accesses the data written to fildes(1] on a first-in-first-out (FIFO) basis.
For details of the I/0 behavior of pipes see read(2) and write(2).

EXAMPLES
The following example uses pipe () to implement the command string1s | sort:

#include <sys/types.h>
pild_t pid;
int pipefd[2];

/* Assumes file descriptor 0 and 1 are open */
pipe (pipefd):;

1f ((pild = fork()) == (pid_t)0) {
close(1l); /* close stdout */
dup (pipefd[1l]);
close (pipefd[0]):;
execlp ("1ls", "1s", (char *)0);

elgse if (pid > (pid_t)0) {
close(0); /* close stdin */
dup (pipefd[0]);
close (pipefd[l]);
execlp ("sort", "sort", (char *)0);

}

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
pipe () fails if one or more of the following is true:

[EMFILE] NFILE - 1 or more file descriptors are currently open.

[ENFILE] The system file table is full.

[ENOSPC] The file system lacks sufficient space to create the pipe.
SEE ALSO

sh(1), read(2), write(2), popen(3S).

STANDARDS CONFORMANCE
pipe(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

152 -1- HP-UX Release 9.0: August 1992

plock(2) plock(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock(int op);

DESCRIPTION
plock() allows the calling process to lock the text segment of the process (text lock), its data segment
(data lock), or both its text and data segment (process lock) into memory. Locked segments are immune to
all routine swapping. plock{} also allows these segments to be unlocked. To use this call, the calling
process must be a member of a privilege group allowing plock() (see setprivgrp() on getprivgrp(2))
?r 11t;he effective user ID of the calling process must be a user having appropriate privileges. op specifies the
ollowing:

PROCLOCK lock text and data segments into memory (process lock)

TXTLOCK lock text segment into memory (text lock)
DATLOCK lock data segment into memory (data lock)
UNLOCK remove locks

EXAMPLES

The following call to plock () locks the calling process in memory:
plock (PROCLOCK):;

RETURN VALUE
Upon successful completion, plock () returns 0 to the calling process. Otherwise, it returns -1 and sets
errno to indicate the error.

ERRORS
Plock() fails and does not perform the requested operation if any of the following conditions are encoun-
tered:
[EPERM] The effective user ID of the calling process is not super-user and the user does not
have the PRIV_MLOCK privilege.
[EINVAL] op is equal to PROCLOCK and a process lock, a text lock, or a data lock already exists
on the calling process.
[EINVAL} op is equal to TXTLOCK and a text lock or process lock already exists on the calling
process.
[EINVAL} op is equal to DATLOCK and a data lock, or process lock already exists on the calling
process.
[EINVAL] op is equal to UNLOCK and no type of lock exists on the calling process.
{EINVAL] op is not equal to either PROCLOCK, TXTLOCK, DATLOCK, or UNLOCK.
[EINVAL] plock() not allowed in [vfork, exec] window (see vfork(2)).
[ENOMEM] There is not sufficient lockable memory in the system to satisfy the locking request.
SEE ALSO

exec(2), exit(2), fork(2).

STANDARDS CONFORMANCE
plock(): SVID2, XPG2

HP-UX Release 9.0: August 1992 -1- 153

poll(2) Series 300, 400, and 700 Only poll(2)

NAME

poll - monitor I/O conditions on multiple file descriptors

SYNOPSIS

#include <poll.h>

int poll(
gtruct pollfd f£ds[]
int nfds,
int timeout

)i

DESCRIPTION

poll () provides a general mechanism for reporting /O conditions associated with a set of file descriptors
and for waiting until one or more specified conditions becomes true. Specified conditions include the ability
to read or write data without blocking, and error conditions.

Arguments
fds Points to an array of pol1l£4 structures, one for each file descriptor of interest.
nfds Specifies the number of poll£d structures in the fds array.
timeout Specifies the maximum length of time (in milliseconds) to wait for at least one of the

164

specified conditions to occur.
Each poll£fd structure includes the following members:

int f4 File descriptor
short events Requested conditions
short revents Reported conditions

The £d member of each pollfQd structure specifies an open file descriptor. The poll () function uses
the events member to determine what conditions to report for this file descriptor. If one or more of
these conditions is true, poll () sets the associated revents member.

poll() ignores any pollfd structure whose £4 member is negative. If the £4 member of all
pollfd structures is negative, poll () returns 0 and has no other results.

The events and revents members of the poll£d structure are bit masks. The calling process sets
the events bit mask, and poll () sets the revents bit masks. These bit masks contain ORed com-
binations of condition flags. The following condition flags are defined:

POLLIN Data can be read without blocking. For streams, this flag means that a mes-
sage that is not high priority is at the front of the stream head read queue.
This message can be of zero length.

POLLNORM Synonym for POLLIN

POLLPRI A high priority message is available. For streams, this message can be of zero
length.

POLLOUT Data can be written without blocking. For streams, this flag specifies that nor-

mal data (not high priority or priority band > 0) can be written without being
blocked by flow control. This flag is not used for high priority data, because it
can be written even if the stream is flow controlled.

POLLERR An error has occurred on the file descriptor.

POLLHUP The device has been disconnected. For streams, this flag in revents is
mutually exclusive with POLLOUT, since a stream cannot be written to after a
hangup occurs. This flag and POLLIN, POLLPRI, POLLRDNORM, POLLRD~
BAND, and POLLMSG are not mutually exclusive.

POLLNVAL £d is not a valid file descriptor.

POLLRDNORM A non-priority message is available. For streams, this flag means that a nor-
mal message (not high priority or priority band > 0) is at the front of the
stream head read queue. This message can be of zero length.

POLLRDBAND A priority message (priority band > 0) is at the front of the stream head read
queue. This message can be read without blocking. The message can be of
zero length.

-1- HP-UX Release 9.0: August 1992

poll(2) Series 300, 400, and 700 Only poll(2)

POLLWRNORM Same as POLLOUT

POLLWRBAND Priority data (priority band > 0) can be written without being blocked by flow
control. Only previously written bands are checked.

POLLMSG A M_SIGor M_PCSIG message specifying SIGPOLL has reached the front

of the stream head read queue.

The conditions indicated by POLLNORM and POLLOUT are true if and only if at least one byte of data
can be read or written without blocking. The exception is regular files, which always poll true for
POLLNORM and POLLOUT. Also, streams return POLLNORM in revents even if the available message

is of zero length.

The condition flags POLLERR, POLLHUP, and POLLNVAL are always set in revents if the conditions
they indicate are true for the specified file descriptor, whether or not these flags are set in events.

For each call to poll (), the set of reportable conditions for each file descriptor consists of those condi-
tions that are always reported, together with any further conditions for which flags are set in events. If
any reportable condition is true for any file descriptor, poll{() returns with flags set in revents for
each true condition for that file descriptor.

If no reportable condition is true for any of the file descriptors, poll () waits up to fimeout milliseconds
for a reportable condition to become true. If, in that time interval, a reportable condition becomes true for
any of the file descriptors, poll() reports the condition in the file descriptor’s associated revents
member and returns. If no reportable condition becomes true, poll () returns without setting any
revents bit masks.

If the timeout parameter is a value of -1, poll () does not return until at least one specified event has
occurred. If the value of the timeout parameter is 0, poll() does not wait for an event to occur but
returns immediately, even if no specified event has occurred. The behavior of poll () is not affected by
whether the O_NONBLOCK flag is set on any of the specified file descriptors.

RETURN VALUES
Upon successful completion, poll () returns a nonnegative value. If the call returns 0, poll() has
timed out and has not set any of the revents bit masks. A positive value indicates the number of file
descriptors for which poll () has set the revents bit mask. If poll () fails, it returns -1 and sets
errno to indicate the error.

ERRORS
poll () fails if any of the following conditions are encountered:

[EAGAIN] . Allocation of internal data structures failed. A later call to poll() may complete

successfully.

{EINTRI] A signal was delivered before any of the selected for conditions occurred or before the
time limit expired.

[EINVAL] timeout is a negative number other than -1, or nfds is negative.

[EFAULT] The fds parameter in conjunction with the nfds parameter addresses a location out-

side of the allocated address space of the process. Reliable detection of this error is
implementation-dependent.

EXAMPLES
Wait for input on file descriptor 0:

#include <poll.h>
struct pollfd fds;

fds.£f4d = 0;
fds.events = POLLNORM;
poll(&fds, 1, -1);

Wait for input on 1£d1 and 1£d42, output on o£4d, giving up after 10 seconds:

#include <poll.h>
struct pollfd f£ds[3];
int ifdl, ifd2, ofd, count;

fds[0].£fd = ifd1l;

HP-UX Release 9.0: August 1992 -2- 155

poll(2) Series 300, 400, and 700 Only poll(2)

fds[0] .events = POLLNORM;
fds[1l].£f4 = ifd2;
fds[l1l] .events = POLLNORM;
fds[2].£fd = ofd;
fds[2].events = POLLOUT;
count = poll(fds, 3, 10000):
if (count == -1) {
perror ("poll failed");
exit(1);

if (count==0)

printf ("No data for reading or writing\n"):
if (£ds[0].revents & POLLNORM)

printf ("There is data for reading fd %d\n", £ds[0].£fd):
if (f£ds[l].revents & POLLNORM)

printf ("There is data for reading fd %d\n", fds[l]l.£fd):
if (fds[2].revents & POLLOUT)

printf ("There is room to write on f£d %d\n", £ds[2].£fd);

Check for input or output on file descriptor 5 without waiting:

#include <poll.h>
struct pollfd fds:

fds.fd = 5;
fds.events = POLLNORM|POLLOUT;
poll(&fds, 1, 0);
if (fds.revents & POLLNORM)
printf ("There is data available on fd %d\n", fds.fd):;
if (fds.revents & POLLOUT)
printf ("There is room to write on £d %d\n", fds.fd);

Wait 3.5 seconds:

#include <stdio.h>
#include <poll.h>

poll((struct pollfd *) NULL, 0, 3500);
Wait for a high priority, priority, or normal message on streams file descriptor 0:

#include <poll.h>
struct pollfd fds;

fds.fd = 0;
fds.events = POLLIN|POLLPRI;
poll(afds, 1, -1);

WARNINGS
In some countries, electioneering is illegal within one hundred feet of a polling place.

SEE ALSO
read(2), write(2), select(2), getmsg(2), putmsg(2), streamio(7).

STANDARDS CONFORMANCE
poll(): AES, SVID2

156 -3- HP-UX Release 9.0: August 1992

prealloc(2) prealloc(2)

NAME
prealloc - preallocate fast disk storage

SYNOPSIS
#include <unistd.h>

int prealloc(int fildes, off_t size);

DESCRIPTION
prealloc () isused to preallocate space on a disk for faster storage operations.

fildes is a file descriptor obtained from a creat (), pen(), dup(), or fcntl () system call for an ordi-
nary file of zero length. It must be opened writable, because it will be written to by prealloc (). size is
the size in bytes to be preallocated for the file specified by fildes. At least size bytes will be allocated. Space
is allocated in an implementation-dependent fashion for fast sequential reads and writes. The EOF in an
extended file is left at the end of the preallocated area. The current file pointer is left at zero. The file is
zero-filled.

Using prealloc () on a file does not give the file an attribute that is inherited when copying or restoring
the file using a program such as c¢p or tar (see cp(1) and far(1)). It simply ensures that disk space has
been preallocated for size bytes in a manner suited for sequential access. The file can be extended beyond
these limits by write () operations past the original end of file. However, this space will not necessarily
be allocated using any special strategy.

EXAMPLES
Assuming a process has opened a file for writing, the following call to prealloc() preallocates at least
50 000 bytes on disk for the file represented by file descriptor ou#fd:

prealloc (outfd, 50000);

DEPENDENCIES
Since the exact effect and performance benefits obtainable by using this call vary with the implementation
of the file system, performance related details are described in the system administrator manuals for each

specific machine.
RETURN VALUE
Upon successful completion, prealloc () returns 0; otherwise, it returns -1 and sets errno to indicate
the error.
ERRORS
prealloc () fails and no disk space is allocated if any of the following conditions are encountered:
[EBADF] fildes is not a valid open file descriptor opened for writing.
[EDQUOT] User’s disk quota block limit has been reached for this file system.
[EFBIG] size exceeds the maximum file size or the process’s file size limit. See ulimit(2).
[ENOSPC] Not enough space is left on the device to allocate the requested amount; no space was
allocated.
[ENOTEMPTY] fildes not associated with an ordinary file of zero length.
AUTHOR
prealloc () was developed by HP.
SEE ALSO
prealloc(1), creat(2), dup(2), fentl(2), open(2), read(2), ulimit(2), write(2).
WARNINGS

Allocation of the file space is highly dependent on current disk usage. A successful return does not tell you
how fragmented the file actually might be if the disk is nearing its capacity.

HP-UX Release 9.0: August 1992 -1- 167

profil(2) profil(2)

NAME

profil - execution time profile

SYNOPSIS

#include <time.h>

vold profil(
unsigned short int *buff,
slze_t bufsiz,
size_t offset,
unsigned int scale
)i

DESCRIPTION

program spends executing at various places in its address space.

The buff argument must point to an area of memory whose length (in bytes) is given by bufsiz. When
profiling is on, the process’s program counter (pc) is examined each clock tick (CLK_TCK times per second),
offset is subtracted from the pc value, and the result is multiplied by scale. If the resulting number
corresponds to an element inside the array of unsigned short intsto which buff points, that element
is incremented.

The number of samples per second for a given implementation is given by CLK_TCK, which is defined in
<time.h>.

The scale is interpreted as an unsigned, sixteen bit, fixed-point fraction with binary point at the left:
0177777 (octal) gives a one-to-one mapping of pc’s to words in buff; 077777 (octal) maps each pair of instruc-
tion words together. 02(vctal) maps all instructions onto the beginning of buff (producing a non-
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of 0. Profiling
is turned off when one of the exec () functions is executed, but remains on in child and parent both after
a fork (). Profiling is turned off if an update in buff would cause a memory fault.

RETURN VALUE

No value is returned.

SEE ALSO

prof(1), monitor(3C).

STANDARDS CONFORMANCE

158

profil (): SVID2, XPG2

-1- HP-UX Release 9.0: August 1992

ptrace(2) ptrace(2)

NAME
ptrace - process trace

SYNOPSIS
#include <sys/ptrace.h>

int ptrace(
int request,
pid_t pid,
int addr,
int data,
int addr2

)i

REMARKS
Much of the functionality of this capability is highly dependent on the underlying hardware. An application
that uses this system call should not be expected to be portable across architectures or implementations.

DESCRIPTION

ptrace () provides a means by which a process can control the execution of another process. Its primary
use is for the implementation of breakpoint debugging; see adb(1). The traced process behaves normally
until it encounters a signal (see signal(2) for the list), at which time it enters a stopped state and the trac-
ing process is notified via wailt () (see wait(2)). When the traced process is in the stopped state, the trac-
ing process can examine and modify the "core image" using ptrace (). Also, the tracing process can cause
the traced process either to terminate or continue, with the possibility of ignoring the signal that caused it
to stop.

The request argument determines the precise action to be taken by ptrace () and is one of the following:

PT_SETTRC This request must be issued by a child process if it is to be traced by its parent. It
turns on the child’s trace flag which stipulates that the child should be left in a
stopped state upon receipt of a signal rather than the state specified by func; see sig-
nal(2). The pid, addr, data, and addr2 arguments are ignored, and a return value is
not defined for this request. Peculiar results occur if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the tracing process. For each, pid is the process ID of
the process being traced, which must be in a stopped state before these requests are made.

PT RIUSER, PT_RDUSER

With these requests, the word at location addr in the address space of the traced
process is returned to the tracing process. If instruction (I) and data (D) space are
separated, request PT_RIUSER returns a word from I space, and request
PT_RDUSER returns a word from D space. If I and D space are not separated,
either request PT_RIUSER or request PT_RDUSER can be used with equivalent
results. The dafa and addr2 arguments are ignored. These two requests fail if
addr is not the start address of a word, in which case a value of -1 is returned to the
tracing process and its errno is set to EIO.)

PT_RUAREA With this request, the word at location addr in the USER area of the traced process
in the system’s address space (see <sys /user .h>) is returned to the tracing pro-
cess. Addresses in this area are system dependent, but start at zero. The limit can
be derived from <sys/user.h>. The data and addr2 arguments are ignored.
This request fails if addr is not the start address of a word or is outside the USER
area, in which case a value of -1 is returned to the tracing process and its errno is
set to EIO.

PT_WIUSER, PT_WDUSER
With these requests, the value given by the data argument is written into the
address space of the traced process at location addr. Request PT_WIUSER writes
a word into I space, and request PT_WDUSER writes a word in D space. Upon suc-
cessful completion, the value written into the address space of the traced process is
returned to the tracing process. The addr2 argument is ignored. These two
requests fail if addr is not the start address of a word, or if addr is a location in a

HP-UX Release 9.0; August 1992 -1- 159

ptrace(2)

PT_WUAREA

PT_CONTIN

PT_EXIT

PT_SINGLE

PT_ATTACH

PT_DETACH

ptrace(2)

pure procedure space and either another process is executing in that space or the
tracing process does not have write access for the executable file corresponding to
that space. Upon failure a value of -1 is returned to the tracing process and its
errno is set to EIO.

With this request, a few entries in the traced process’ USER area can be written.
data gives the value that ig to he written and addr is the location of the nnfw The

S8 LC VaIUe LAl is writien ang 1S 151e odaltlion O Lae env +1e

addr?2 argument is ignored. The few entries that can be written are dependent on
the architecture of the system, but include the user data registers, auxiliary data
registers, and status register (the set of registers, or bits in registers, that the user’s
program could modify).

This request causes the traced process to resume execution. If the data argument is
0, all pending signals, including the one that caused the traced process to stop, are
canceled before it resumes execution. If the dafa argument is a valid signal
number, the traced process resumes execution as if it had incurred that signal, and
any other pending signals are canceled. The addr argument must be equal to 1 for
this request. The addr2 argument is ignored. Upon successful completion, the
value of data is returned to the tracing process. This request fails if data is not 0 or
a valid signal number, in which case a value of -1 is returned to the tracing process
and its exrrno is set to EIO.

This request causes the traced process to terminate with the same consequences as
exit (). The addr, data, and addr2 arguments are ignored.

This request causes a flag to be set so that an interrupt occurs uponthe completion
of one machine instruction, and then executes the same steps as listed above for
request PT_CONTIN. If the processor does not provide a trace bit, this request
returns an error. This effectively allows single stepping of the traced process.

Whether or not the trace bit remains set after this interrupt is a function of the
hardware.

This request stops the process identified by pid and allows the calling process to
trace it. Process pid does not have to be a child of the calling process, but the
effective user ID of the calling process must match the real and saved uid of process
pid unless the effective user ID of the tracing process is super-user. The calling pro-
cess can use the walt () system call to wait for process pid to stop. The addr,
data, and addr2 arguments are ignored.

This request detaches the traced process pid and allows it to continue its execution
in the manner of PT_CONTIN.

To forestall possible fraud, ptrace () inhibits the set-user-ID facility on subsequent exec () calls. If
a traced process calls exec (), it stops before executing the first instruction of the new image showing

signal SIGTRAP.
ERRORS

In general, ptrace () fails if any of the following conditions are encountered:

[EIO]
[EPERM]
[ESRCH]

DEPENDENCIES
Series 300/400

request is an illegal number.
The specified process cannot be attached for tracing.

pid identifies a process to be traced that does not exist or has not executed
a ptrace () with request PT_SETTRC.

The following additional requests are available:
PT_RFPREGS With this request, the child’s floating-point accelerator register set is returned to the

160

parent process in addr. addr must be the address of a buffer of at least 136 bytes.
The first 128 bytes contains the 16 double-precision floating-point registers and the
next 8 bytes contains the status and control registers. The data argument is ignored.
This request fails if the child process is not using the floating-point accelerator, in

-2- HP-UX Release 9.0: August 1992

ptrace(2)

PT_WFPREGS

Series 700/800

ptrace(2)

which case a value of -1 is returned to the parent process and the parent’s errno is
set to EIO. This request also fails if addr is a bad address, in which case a value of -1
is returned to the parent process and the parent’s errno is set to EFAULT.

With this request, the child’s floating-point accelerator register set is written from the
buffer pointed to by addr. addr must be the address of a buffer of at least 136 bytes.
The first 128 bytes contains the new values for the 16 double-precision floating point
registers and the next 8 bytes contains the new values for the status and control
registers. The data argument is ignored. This request fails if the child process is not
using the floating-point accelerator, in which case a value of -1 is returned to the
parent process and the parent’s errno is set to EIO. This request also fails if eddr is
a bad address, in which case a value of -1 is returned to the parent process and the
parent’s errno is set to EFAULT.

The request PT_WUAREA is not supported. Therefore, it returns -1, sets errno to EIO and does not affect
the USER area of the traced process.

If the addr argument to a PT_CONTIN or PT_SINGLE request is not 1, the Instruction Address Offset
Queue (program counter) is loaded with the values addr and addr+4 before execution resumes. Otherwise,
execution resumes from the point where it was interrupted.

If the addr argument to a PT_DETACH request is not 1, the Instruction Address Offset Queue is loaded
with the values addr and addr2.

Additional requests are available:

PT_RUREGS

PT_WUREGS

With this request, the word at location addr in the save_state structure at the
base of the per-process kernel stack is returned to the tracing process. addr must be
word-aligned and less than STACKSIZE *NBPG (see <sys/param.h> and
<nachine/param.h>). The save_state structure contains the registers and
other information about the process. The data and addr2 arguments are ignored.

The save_state structure at the base of the per-process kernel stack is written as
it is read with request PT_RUREGS. Only a few locations can be written in this way:
the general registers, most floating-point registers, a few control registers, and certain
bits of the interruption processor status word. The addr2 argument is ignored.

PT_RDTEXT, PT_RDDATA

PT_WRTEXT ,

SEE ALSO

These requests are identical to PT_RIUSER and PT_RDUSER, except that the data
argument specifies the number of bytes to read and the addr2 argument specifies
where to store that data in the tracing process.

PT_WRDATA
These requests are identical to PT_WIUSER and PT_WDUSER except that the data
argument specifies the number of bytes to write and the addr2 argument specifies
where to read that data in the tracing process.

adb(1), exec(2), signal(2), wait(2).

STANDARDS CONFORMANCE
ptrace (): SVID2, XPG2

HP-UX Release 9.0: August 1992 -3- 161

quotactl (2)

NAME
quotactl - manipulate disk quotas

SYNOPSIS
#include <sys/quota.h>

int quotactl(int cmd, comnst char *speclal, uid_t uild, void *addr):;

DESCRIPTION
quotactl () manipulates disk quotas. cmd indicates a command to be applied to the user ID uid.
Parameter special is a pointer to a null-terminated string containing the path name of the block special dev-
ice for the file system being manipulated. The block special device must be mounted as an hfs file system
(see mount(2)). The parameter addr is the address of an optional, command-specific, data structure which
is copied in or out of the system. The interpretation of addr is explained with each command below:

Q_QUOTAON

Q_QUOTAOFF

Q_GETQUOTA

Q_SETQUOTA

Q_SETQLIM

Q_SYNC

RETURN VALUE
Upon successful completion, quotactl () returns 0; otherwise, it returns -1 and sets errno to indicate

the error.

ERRORS
quotactl () fails when any of the following occurs:

162

[ENOSYS]
[EINVAL]
[ESRCH]

[EPERM]
[ENODEV]
[ENOTBLK]
[EACCES]

[EBUSY]
[ENOENT]
[EFAULT]

[EDQUOT]

quotactl(2)

Turn on quotas for a file system. The parameter addr points to the path name of file
containing the quotas for the file system. The quota file must exist; it is normally
created using the quotacheck command (see quotacheck(1M)). The uid parameter
is ignored. This call is restricted to users having appropriate privileges.

Turn off quotas for a file system. The addr and wid parameters are ignored. This call
is restricted to the user with appropriate privileges.

Get disk quota limits and current usage for user uid. addr is a pointer to a dgblk
structure (defined in <sys/quota.h>). Only users having appropriate privileges
can get the quotas of a user other than himself.

Set disk quota limits and current usage of files and blocks for user uid. addr is a
pointer to a dgblk structure (defined in <sys/quota.h>). This call is restricted
to users with appropriate privileges.

Set disk quota limits for user wid. The parameter addr is a pointer to a dgblk
structure (defined in <sys/quota.h>). This call is restricted to users with
appropriate privileges.

Update the on-disk copy of quota usages for a file system. If special is null, all file
systems with active quotas are synced. The parameters addr and uwid are ignored.

The kernel has not been configured with the disk quota subsystem.
The parameter emd is invalid.

No disc quota is found for the indicated user or quotas have not been turned on for
this file system.

The call is privileged and the calling process does not have appropriate privileges.
The parameter special is not a mounted HFS file system.
The parameter special is not a block device.

(Q_QUOTAON) The quota file pointed to by addr exists but is either not a regular file
or is not on the file system pointed to by special.

Q_QUOTAON attempted while another Q_QUOTAON or Q_QUOTAOFF is in progress.
The file specified by special or addr does not exist.

The addr or special parameter points to an invalid address. Reliable detection of this
error is implementation-dependent.

User’s disk quota block limit has been reached for this file system.

-1~ HP-UX Release 9.0: August 1992

quotactl (2) quotactl(2)

WARNINGS
The quotactl() system call is incompatible with the 4.2/4.3BSD implementation of Melbourne quotas

which uses a different system call interface and on-disk data structure.

AUTHOR
quotactl () was developed by HP and Sun Microsystems, Inc.

SEE ALSO
quota (1), edquota (1M), rquotad (1M), quotacheck (1IM), quotaon (1M), mount (2), quota (5), privilege(5).

HP-UX Release 9.0: August 1992 -2- 163

read(2) read(2)

NAME

read, readv - read input

SYNOPSIS

#include <unistd.h>
size_t read(int fildes, void *buf, size_t nbyte);
#include <sys/uic.h>

ssize_t readv(
int fildes,
const struct iovec *iov,
size_t iovent

)i

DESCRIPTION

164

read () attempts to read nbyte bytes from the file associated with the file descriptor into the buffer pointed
to by buf. readv () performs the same action, but scatters the input data into the iovcnt buffers specified
by the elements of the iovec array: iov[0], iov[1], ..., iov[iovent - 1].

For readv (), the iovec structure is defined as:

struct iovec {
caddr_t 1ov_base;
int iov_len;
Yi

Each iovec entry specifies the base address and length of an area in memory where data should be
placed. readv () always fills one area completely before proceeding to the next area. The lovec array
can be at most MAXIOV long.

On devices capable of seeking, the read () starts at a position in the file given by the file offset associated
with fildes. Upon return from read (), the file offset is incremented by the number of bytes actually read.

Devices incapable of seeking always read from the current position. The value of a file offset associated
with such a device is undefined.

When attempting to read from a regular file with enforcement-mode file and record locking set (see
chmod(2)), and the segment of the file to be read is blocked by a write lock owned by another process, the
behavior is determined by the O_NDELAY and O_NONBLOCK file status flags:

e If O_NDELAY or O_NONBLOCK is set, read () returns -1 and errno is set to EAGAIN.

¢ If O_NDELAY and O_NONBLOCK are clear, read() does not return until the blockmg write
lock is removed.

When attempting to read from an empty pipe (or FIFO):
¢ Ifno process has the pipe open for writing, the read returns a 0.

¢ If some process has the pipe open for writing and O_NONBLOCK is set, the read returns -1 and
errno is set to EAGAIN.

e If O_NDELAY is set, the read returns a 0.

¢ If some process has the pipe open for writing and O_NDELAY and O_NONBLOCK are clear, the
read blocks until data is written to the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data currently available:
e If O_NONBLOCK is set, the read returns -1 and errno is set to EAGAIN.
e If O_NDELAY is set, the read returns 0.
¢ If O_NDELAY and O_NONBLOCK are clear, the read blocks until data becomes available.

If read() is interrupted by a signal after it has successfully read some data, it returns the number of
bytes actually read and placed in the buffer before the interrupt occurred. If read() is interrupted
before any data is successfully read, read() returns -1 and sets errno to EINTR.

-1- HP-UX Release 9.0: August 1992

read(2) read(2)

RETURN VALUE
Upon successful completion, read () returns the number of bytes actually read and placed in the buffer;
this number may be less than nbyte if:

* The file is associated with a communication line (see ioctl(2) and termio(T7)), or
¢ The number of bytes left in the file is less than nbyte bytes.

* read() was interrupted by a signal after it had successfully read some, but not all of the data
requested.

When an end-of-file is reached, a value of 0 is returned. Otherwise, a -1 is returned and errno is set to
indicate the error.

ERRORS
read () fails if any of the following conditions are encountered:

[EBADF] fildes is not a valid file descriptor open for reading.
[EINTR] A signal was caught before any data was transferred (see sigvector(2)).
[EAGAIN] Enforcement-mode file and record locking is set, O_NDELAY or O_NONBLOCK is set,

and there is a blocking write lock.

[EDEADLK] A resource deadlock would occur as a result of this operation (see lockf(2) and
fentl(2)).

[EFAULT] buf points outside the allocated address space. Reliable detection of this error is
implementation dependent.

[EIO] The process is in a background process group and is attempting to read from its con-
trolling terminal, and either the process is ignoring or blocking the SIGTTIN signal
or the process group of the process is orphaned.

[EIO] An I/0 error occurred while reading from the device corresponding to fildes.

[EISDIR] An attempt was made to read a directory on an NFS file system using the read ()
system call.

[ENOLCK] The system record lock table is full, preventing the read from sleeping until the block-

ing write lock is removed.

In addition, readv () can return one of the following errors:

[EFAULT] iov_base or iov points outside of the allocated address space. The reliable detection
of this error is implementation dependent.

[EINVAL] iovent is less then or equal to 0, or greater than MAXTOV.

[EINVAL] The sum of iov_len values in the iov array exceeded UINT_MAX defined in

<limits.h> (see limits(5)).

EXAMPLES
Assuming a process opened a file for reading, the following call to read(2) reads BUFSIZ bytes from the file
into the buffer pointed to by mybuf:

#include <stdio.h> /* include this for BUFSIZ definition */

char mybuf [BUFSIZ];
int nbytes, fildes;

nbytes = read (fildes, mybuf, BUFSIZ);

WARNINGS

Record locking might not be enforced by the system, depending on the setting of the file’s mode bits (see
lockf(2)).

Character-special devices, and raw disks in particular, apply constraints on how read() can be used. See
the specific Section (7) entries for details on particular devices.

Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector ()
can affect the behavior described on this page.

HP-UX Release 9.0: August 1992 -2- 165

read(2) read(2)

In general, avoid using read() to get the contents of a directory; use the readdir () library routine
(see directory(3C)).

DEPENDENCIES
NFSs
When obtaining the contents of a directory on an NFS file system, the readdir () library routine must be
used (see directory(3C)). read() returns with an error if used to read a directory using NFS.
AUTHOR
read () was developed by HP, AT&T, and the University of California, Berkeley.
SEE ALSO
creat(2), dup(2), fentl(2), ioctl(2), lockf(2), open(2), pipe(2), select(2), ustat(2), tty(7), directory(3C).
STANDARDS CONFORMANCE
read(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

166 -3- HP-UX Release 9.0: August 1992

readlink(2) readlink(2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
#include <symlink.h>

sslze_t readlink(
const char *path,
char *buf,
slze_t bufsiz
Y.
DESCRIPTION
readlink () obtains the path name pointed to by the symbolic link, path. This path name is placed in
the buffer buf, which has size bufsiz.
RETURN VALUE

If readlink() succeeds, it returns the count of characters placed in the buffer. If an error occurs, it
returns -1 and sets errno to indicate the error.

ERRORS
readlink () fails if any of the following conditions is encountered:
[ENOTDIR] A component of the path prefix is not a directory.
[ENAMETOOLONG] A component of path exceeds bytes while is in effect, or path exceeds bytes.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.
[ELOOP] Too many symbolic links were encountered in translating the path name.
[EINVAL] The named file is not a symbolic link.
[EFAULT] buf points outside the process’ allocated address space. Reliable detection of this
error is implemenation dependent.
DEPENDENCIES

Series 300,400, and 700:
If the length of the path name string is less than bufsiz, the string will be null terminated when returned.
If the length of the path name string is exactly bufsiz, the string will not be null terminated when returned.
If the length of the path name string exceeds bufsiz, readlink() returns—1 and sets errno to:
[ERANGE] The length of the path name string read from the symbolic link exceeds bufsiz.
Series 800:
The path name is not null terminated when returned.

AUTHOR
readlink () was developed by the University of California, Berkeley.

SEE ALSO
stat(2), Istat(2), symlink(2), symlink(4).

STANDARDS CONFORMANCE
readlink (): AES [Series 300/400/700 only]

HP-UX Release 9.0: August 1992 -1- 167

reboot(2) reboot(2)

NAME

reboot - boot the system

SYNOPSIS

#include <sys/reboot.h>

int reboot (int howto, ...
/* const char *device file,
const char *filename,
const char *filename,
const char *server_linkaddress */
)i

DESCRIPTION

reboot () causes the system to reboot. Aowfo is a mask of reboot options (see <sys/reboot .h>),
specified as follows:

RB_AUTOBOOT A file system sync is performed (unless RB_NOSYNC is set) and the processor is
rebooted from the default device and file.

RB_HALT The processor is simply halted. A sync of the file system is performed unless the
RB_NOSYNC flag is set. RB_HALT should be used with caution.

RB_NOSYNC A sync of the file system is not performed.

RB_NEWDEVICE The device_file argument is used as the file name of the device from which to
reboot.

RB_NEWFILE The filename argument is used as the name of the file being rebooted.

RB_NEWSERVER The additional optional parameter, server_linkaddress, specifies the ETHERNET
link address of a new boot server. The server_linkaddress is a 12-character hex-
adecimal number that has the same format as the machine ID field of
/etc/clusterconft. The 0x prefix is optional.

This allows a standalone system or HP cluster server to reboot and join an HP
cluster as a client node, or for an existing client to join a different HP cluster.

device_file specifies the "boot device", the device from which the reboot occurs. device_file must be a block
or character special file name and is used only if the RB_NEWDEVICE option is set.

If the RB_NEWFILE option is set, filename specifies the "boot file", the name of the file being rebooted.
This file is loaded into memory by the bootstrap then control is passed to it.

If the RB_NEWSERVER option is set, reboot(2) does not verify that server_linkaddress is a valid ETHER-
NET address, nor that the specified server is valid or provides the required service.

If the boot device is not a LAN device, the server_linkaddress information is ignored. The boot device is
considered a LAN device if the previous boot was from a LAN device or if a LAN device is specified via the
RB_NEWDEVICE option.

Unless the RB_NOSYNC flag has been specified, reboot(2) unmounts all mounted file systems and marks
them clean so that it will not be necessary to run fsck(1M) on these file systems when the system reboots.

Only users with appropriate privileges can reboot a machine.

RETURN VALUE

If successful, this call never returns. Otherwise, a -1is returned and errno is set to indicate the error.

ERRORS

168

reboot () fails if any of the following conditions are encountered:
[EFAULT] device_file points outside the allocated address space of the process.

[ENAMETOOLONG] the path name specified by device_file exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX NO_TRUNC is in effect.

[EINVAL] device_file is not a block or a character device.

-1- HP-UX Release 9.0: August 1992

reboot(2) reboot(2)

[ENET] The device specified by device_file is remote.

[ENOENT] The file specified by device_file does not exist.

[ENOTDIR] A component of the path prefix specified by device_file is not a directory.

fENXIO] The device named by device_file does not exist.

[EPERM] The effective user ID of the caller is not a user with appropriate privileges.
DEPENDENCIES

Series 300/400
filename must be one of the files listed by the boot ROM at power-up.

The default device, file, and server for RB_AUTOBOOT are those from which the system was previously
booted.

If the RB_NEWDEVICE option is used and device_file specifies a LAN device, the RB_NEWSERVER option
and server_linkaddress parameter must also be used.

If an invalid server linkaddress is specified with the RB_NEWSERVER option, or if the requested server
does not respond, the Series 300/400 boot ROM displays the message BOOTING A SYSTEM and retries
indefinitely, or until the requested server responds, or the system is rebooted manually.

Series 700/800
The RB_NEWDEVICE, RB_NEWFILE, and RB_NEWSERVER options and the device_file, filename and
server_linkaddress parameters are ignored. Therefore, none of the errors associated with them are
returned.

The default file and device for RB_AUTOBOOT are /hp-ux on the current root device.

AUTHOR
reboot () was developed by HP and the University of California, Berkeley.

SEE ALSO
reboot(1M), clusterconf(4).

HP-UX Release 9.0: August 1992 -2- 169

recv(2) recv(2)

NAME

recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS

#include <sys/socket.h>
int recv(int s, void *buf, int len, int flags);

int recvErom(
int s,
voild *buf,
int len,
int flags,
void *from,
int *fromlen);

int recvmsg(int s, struct msghdr msgl[], int flags);

DESCRIPTION

170

recv(),recvirom(), and recvmsg() are used to receive messages from a socket.

s is a socket descriptor from which messages are received. buf is a pointer to the buffer into which the mes-
sages are placed. len is the maximum number of bytes that can fit in the buffer referenced by buf.

If the socket uses connection-based communications, such as a SOCK_STREAM socket, these calls can only be
used after the connection has been established (see connect(2)). For connectionless sockets such as
SOCK_DGRAM, these calls can be used whether a connection has been specified or not.

recvfrom() operates in the same manner as recv () except that it is able to return the address of the
socket from which the message was sent. For connected datagram sockets, recvfrom() simply returns
the same address as getpeername() (see geftpeername(2)). For stream sockets, recvfrom()
retrieves data in the same manner as recv (), but does not return the socket address of the sender. If
from is non-zero, the source address of the message is placed in the socket address structure pointed to by
from. fromlen is a value-result parameter, initialized to the size of the structure associated with from, and
modified on return to indicate the actual size of the address stored there. If the memory pointed to by from
is not large enough to contain the entire address, only the first fromlen bytes of the address are returned.

The length of the message is returned.

For message-based sockets such as SOCK_DGRAM, the entire message must be read in a single operation. If
a message is too long to fit in the supplied buffer, the excess bytes are discarded. For stream-based sockets
such as SOCK_STREAM, there is no concept of message boundaries. In this case, data is returned to the user
as soon as it becomes available, and no data is discarded. See the AF_CCITT section below for a list of the
exceptions to this behavior for connections in the address family AF_CCITT.

recvmsg () performs the same action as recv (), but scatters the read data into the buffers specified in
the msghdr structure. This structure is defined in <sys/socket .h>, and has the following form :

struct msghdr {

caddr_t msg_name; /* optlonal address */

int msg_namelen; /* s8lze of address */

struct iovec *msg_lov; /* scatter array for data */
int msg_iovlen; /* # of elements in msg ilov */
caddr_t msg_accrights; /* access rights */

int msg_accrightslen; /* slze of msg _accrights */

}

msg_name is the destination address if the socket is unconnected; msg_rame may be a null pointer if no
name is specified. msg_iov is the location of the scatter/gather data. msg_accrights specifies a buffer to
receive any access rights sent along with the message. Access rights are limited to file descriptors of size
int. If access rights are not being transferred, set the msg_acccrights field to NULL. Access rights are sup-
ported only for AF_UNIX.

If no data is available to be received, recv () waits for a message to arrive unless non-blocking mode is
enabled. There are three ways to enable non-blocking mode:

-1- HP-UX Release 9.0: August 1992

recv(2) recv(2)

¢ With the FIOSNBIO ioctl() request,
¢ Withthe O_NONBLOCK fcntl () flag,
¢ With the O_NDELAY fcntl() flag.

If non-blocking I/O is enabled using FIOSNBIO or the equivalent FIONBIO request (defined in
<sys/loctl.h> and explained in ioctl(2), ioctl(5) and socket(T), although use of FIONBIO is not
recommended), the recv () request completes in one of three ways:

¢ If there is enough data available to satisfy the entire request, recv() completes successfully,
having read all of the data, and returns the number of bytes read.

¢ If there is not enough data avaiiabie to satisfy the entire requesi, recv{) compiete success-
fully, having read as much data as possible, and returns the number of bytes it was able to read.

e Ifthere is no data available, recv () fails and errno is set to EWOULDBLOCK.

If non-blocking 1/0 is disabled using FIOSNBIO, recv () always executes completely (blocking as neces-
sary) and returns the number of bytes read.

If the O_NONBLOCK flag is set using £fentl () (defined in <sys/fcntl.h> and explained in fentl(2)
and fcntl(5)), POSIX-style non-blocking I/O is enabled. In this case, the recv () request completes in one
of three ways:

¢ If there is enough data available to satisfy the entire request, recv() completes successfully,
having read all the data, and returns the number of bytes read.

e If there is not enough data available to satisfy the entire request, recv () completes success-
fully, having read as much data as possible, and returns the number of bytes it was able to read.

¢ If there is no data available, recv() completes, having read no data, and returns -1 with
errno set to EAGAIN.

Ifthe O_NDELAY flag is set using fontl () (defined in <sys/fentl.h> and explained in fen#l(2) and
fentl(5)), non-blocking /O is enabled. In this case, the recv () request completes in one of three ways:

o Ifthere is enough data available to satisfy the entire request, recv() completes successfully,
having read all the data, and returns the number of bytes read.

¢ If there is not enough data available to satisfy the entire request, recv () completes success-
fully, having read as much data as possible, and returns the number of bytes it was able to read.

¢ Ifthere is no data available, recv () completes successfully, having read no data, and returns
0.

If the O_NONBLOCK or O_NDELAY flag is cleared using £cntl (), the corresponding style of non-
blocking 1/, if previously enabled, is disabled. In this case, recv () always executes completely (block-
ing as necessary) and returns the number of bytes read.

Since both the f£cntl () O_NONBLOCK and O_NDELAY flags and ioctl() FIOSNBIO request are
supported, some clarification on how these features interact is necessary. If the O_NONBLOCK or
O_NDELAY flag has been set, recv() requests behave accordingly, regardless of any FIOSNBIO
requests. If neither the O_NONBLOCK nor O_NDELAY flag has been set, FIOSNBIO requests control
the behavior of recv (). The default is that non-blocking I/O is not enabled.

select () can be used to determine when more data arrives by selecting the socket for reading.

The flags parameter can be set to MSG_PEEK, MSG_OOB, hoth, or zero. If it is set to MSG_PEEK, any
data returned to the user still is treated as if it had not been read. The next recv ()} re-reads the same
data. The MSG_OOB flag is used to alert the other process with an urgent message, using a logically
independent transmission channel associated with a pair of connected stream sockets. Refer to SEE ALSO
below for details. For stream-based TCP SOCK_STREAM sockets, both the MSG_PEEK and MSG_OOB
flags can be set at the same time. The MSG_OOB flag value is supported for stream-based TCP
SOCK_STREAM sockets only. MSG_OOB is not supported for AF_UNIX sockets.

A read() call made to a socket behaves in exactly the same way as a recv () with flags set to zero.

AF_CCITT only:
Connections in the address family AF_CCITT support message-based sockets only. Although the user
specifies connection-based communications (SOCK_STREAM), the X.25 subsystem communicates via

HP-UX Release 9.0: August 1992 -2~ 171

recv(2) recv(2)

messages. This address family does not support SOCK_DGRAM socket types.

Normally, each recv() returns one complete X.25 message. If the socket is in non-blocking mode,
recv() behaves as described above. Note that if the user specifies len less than the actual X.25 message
size, the excess data and no error indication is returned. The size of the next available message as well as the
state of MDTF, D, and Q bits can be obtained with 1octl (X25_NEXT MSG_STAT).

Connections of the address family AF_CCITT receive data in the same way as message-based connections
described above, with the following additions and exceptions:

¢ recvfrom() is supported; however, the from and fromlen parameters are ignored (that is, it
works in the same manner as recv()).

* To receive a message in fragments of the complete X25 message, use
ioct1(X25_SET FRAGMENT SIZE). The state of the MDTF bit is 1 on all except the last frag-
ment of the message.

* The MSG_OOB flag is supported.
e The MSG_PEEK flag is supported; the two flags can be combined.

e If a message is received that is larger than the user-controlled maximum message size (see
af ccitt(TF)), the X.25 subsystem RESETs the circuit, discards the data, and sends the out-of-band
event OOB_VC_MESSAGE_TOO_BIG to the socket.

DEPENDENCIES
AF_CCITT

recvfrom() is supported; however, the from and fromlen parameters are ignored (i.e., it works in the
same manner as recv()).

The O_NDELAY fentl () call is not supported over X.25 links. Use the FIOSNBIO ioctl() call
instead to enable non-blocking 1/0.

RETURN VALUE

upon successful completion, recv () returns the number of bytes received. Otherwise, it returns -1 and
sets errno to indicate the error. recv() returns 0 if the socket is blocking and the transport connec-
tion to the remote node fails.

DIAGNOSTICS
The call to recv () or recvfrom() fails if any of the following conditions are encountered:

[EBADF] The argument s is an invalid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would block.

[EINTR] The receive was interrupted by delivery of a signal before any data was avail-
able for the receive.

[EFAULT] An invalid pointer was specified in the buf, from , or fromlen parameter, or in
the msghdr structure.

[EMSGSIZE] A length in the msghdr structure is invalid.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a transmis-
sion timeout on active connection.

[ENOTCONN] Receive on a SOCK_STREAM socket that is not yet connected.

[EINVAL] The len parameter or a length in the msghdr structure is invalid; or no data is
available on receive of out of band data.

[EOPNOTSUPP] The MSG_OOB flag was set for a UDP SOCK_DGRAM message-based socket; or

172

MSG_OOB or MSG_PEEK was set for any AF_UNIX socket. The MSG_OOB flag
is only supported for stream-based TCP SOCK_STREAM sockets. Neither
MSG_PEEK nor MSG_OOB is supported for AF_UNIX sockets.

AF_CCITT Only: recv () wasissuedona listen() socket.

-3~ HP-UX Release 9.0: August 1992

recv(2) recv(2)

[ENOBUFS] Insufficient resources were available in the system to perform the operation.
[ECONNRESET] A connection was forcibly closed by a peer.
AUTHOR
recv () was developed by the University of California, Berkeley
SEE ALSO

getsockopt(2), read(2), select(2), send(2), socket(2), af_ccitt(7F), inet(7F), socket(7), socketx25(7), tep(7P),
udp(7P), unix(7P).

HP-UX Release 9.0: August 1992 -4- 173

rename(2) rename(2)

NAME
rename - change the name of a file

SYNOPSIS
#include <stdio.h>

int rename (const char *source, const char *target);

DESCRIPTION
rename () causes file source to be renamed to target. If target exists, it is first removed. Both source and
target must be of the same type (that is, either directories or non-directories), and must reside on the same
file system.

If target can be created or if it existed before the call, rename () guarantees that an instance of target will
exist, even if the system crashes in the midst of the operation.

If the final component of source is a symbolic link, the symbolic link is renamed; not the file or directory to
which the symbolic link points.

RETURN VALUE

If the operation succeeds, rename () returns 0; otherwise it returns -1 and sets errno to indicate the
reason for the failure.

ERRORS
rename () fails and neither file is affected if any of the following conditions are encountered:

[EACCES] A component of either path prefix denies search permission.

[EACCES] The requested link requires writing to a directory without write permission.

[EBUSY] target or source is an existing directory that is the mount point for a mounted
file system.

[EDQUOT] User’s disk quota block or inode limit has been reached for this file system.

[EEXIST] target is a directory and is not empty.

[EFAULT] source or target points outside the allocated address space of the process. Reli-
able detection of this error is implementation dependent.

[EINVAL] source is a parent directory of farget, or an attempt is made to rename . or...

[EISDIR] target is a directory, but source is not.

[ELOOP} Too many symbolic links were encountered in translating either path name.

[ENAMETOOLONG] A component of either path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect, or the entire length of either path name
exceeds PATH_MAX bytes.

[ENOENT! A component of the source path does not exist, or a path prefix of farget does not
exist.

[ENOSPC) The destination directory cannot be extended because of a lack of space on the
file system containing the directory.

[ENOTDIR] A component of either path prefix is not a directory.

[ENOTDIR] source is a directory, but farget is not. [EPERM] The directory containing source
has the sticky bit set, and neither the containing directory nor the source are
owned by the effective user ID.

[EPERM] The target file exists, the directory containing farget has the sticky bit set, and
neither the containing directory nor the farget are owned by the effective user
ID.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EXDEV] The paths named by source and target are on different logical devices (file sys-
tems).

174 -1- HP-UX Release 9.0: August 1992

rename(2) rename(2)

AUTHOR
rename () was developed by the University of California, Berkeley.

SEE ALSO
open(2).

STANDARDS CONFORMANCE
rename () : AES, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 9.0: August 1992 -2- 176

rmdir(2) rmdir(2)

NAME
rmdir - remove a directory file
SYNOPSIS
int rmdir(const char *path);
DESCRIPTION
rmdir() removes a directory file whese name is given by path. The directory must be empty {excepi for
files . and ..) before it can be removed.
RETURN VALUE
rmdir () returns 0 if the directory removal succeeds; otherwise, it returns —1 and sets errno to indicate
the error.
ERRORS
rmdir () fails and the directory is not removed if any of the following conditions are encountered:
[EACCES] A component of the path prefix denies search permission.
[EACCES] Write permission is denied on the directory containing the link to be removed.
[EBUSY] The directory to be removed is the mount point for a mounted file system.
[EEXIST] The named directory is not empty. It contains files other than . and ...
[EFAULT] path points outside the process’s allocated address space. The reliable detection
of this error is implementation dependent.
[EINVAL] The path is . .
[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNC is in effect.

[ENOENTI] The named file does not exist.
[ENOTDIR] A component of the path is not a directory.
[EPERM] The directory containing the directory to be removed has the sticky bit set and

neither the containing directory nor the directory to be removed are owned by
the effective user ID.

[EROFS] The directory entry to be removed resides on a read-only file system.
AUTHOR
rmdir () was developed by the University of California, Berkeley.
SEE ALSO
mkdir(2), unlink(2).

STANDARDS CONFORMANCE
rmdir(): AES, SVID2, XPG3, XPG4, FIPS 151-2, POSIX.1

176 -1- HP-UX Release 9.0: August 1992

rtprio (2) rtprio(2)

NAME
rtprio - change or read real-time priority

SYNOPSIS
#include <sys/rtprio.h>

int rtprio(pid_t pid, int prio);

DESCRIPTION

rtprio() is used to set or read the real-time priority of a process. If pid is zero, it names the calling pro-
cess; otherwise it gives the pid of the process. When setting the real-time priority of another process, the
real or effective user ID of the calling process must match the real or saved user ID of the process to be
modified, or the effective user ID of the calling process must be that of a user having appropriate privileges.
The calling process must also be a member of a privilege group allowing rtprio () (see getprivgrp(2)) or
the effective user ID of the calling process must be a user having appropriate privileges. Simply reading
real-time priorities requires no special privilege.

Real-time scheduling policies differ from normal timesharing policies in that the real-time priority is used
to absolutely order all real-time processes; this priority is not degraded over time. All real-time processes
are of higher priority than normal user and system processes, although some system processes may run at
real-time priorities. If there are several eligible processes at the same priority level, they are run in a round
robin fashion as long as no process with higher priority intervenes. A real-time process receives CPU service
until it either voluntarily gives up the CPU or is preempted by a process of equal or higher priority. Inter-
rupts can also preempt a real-time process.

Valid real-time priorities run from zero to 127. Zero is the highest (most important) priority. This real-time
priority is inherited across fork()s and exec ()s.

prio specifies the following:

0-127 Set process to this real-time priority.
RTPRIO_NOCHG Do not change real-time priority. This is used for reading the process real-time
priority.

RTPRIO_RTOFF Set this process to no longer have a real-time priority. It resumes a normal
timesharing priority. Any process, regardless of privilege, is allowed to turn off
its own real-time priority using a pid of zero.

EXAMPLES
The following call to rtprio() sets the calling process to a real-time priority of 90:

rtprio (0, 90);

RETURN VALUE
If no error occurs, rtprio() returns the pid’s former (before the call) real-time priority. If the process
was not a real-time process, RTPRIO_RTOFF is returned. If an error occurs, rtprio() returns -1 and
sets errno to indicate the error.

ERRORS
rtprio() failsif any of the following conditions are encountered:
[EINVAL] prio is not RTPRIO_NOCHG, RTPRIO_RTOFF, or in the range of 0 through 127.
[EPERM] The calling process is not a user having appropriate privileges, and neither its
real or effective user-id match the real or saved user ID of the process indicated
by pid.
[EPERM] The group access list of the calling process does not contain a group having
PRIV_RTPRIO capability and prio is not RTPRIO_NOCHG, or
RTPRIO_RTOFF with a pid of zero.
[ESRCH] No process can be found corresponding to that specified by pid.
DEPENDENCIES
Series 800:

Because processes executing at real-time priorities get scheduling preference over a system process execut-
ing at a lower priority, unexpected system behavior can occur after a power failure on systems that support

HP-UX Release 9.0: August 1992 -1- 177

rtprio (2) rtprio(2)

power-fail recovery. For example, when init(1M) receives the powerfail signal SIGPWR, it normally reloads
programmable hardware such as terminal multiplexers. If a higher-priority real-time process is eligible to
run after the power failure, running of init is delayed. This condition temporarily prevents terminal
input to any process, including real-time shells of higher priority than the eligible real-time process. To
avoid this situation, a real-time process should catch SIGPWR and suspend itself until init has finished
its powerfail processing.
AUTHOR
rtprio() was developed by HP.

SEE ALSO .
rtprio(1), getprivgrp(2), nice(2), plock(2), privilege(5).

WARNINGS

Normally, compute-bound programs should not be run at real-time priorities, because all time sharing work
on the CPU would come to a complete halt.

178 -2- HP-UX Release 9.0: August 1992

select(2) select(2)

NAME
select - synchronous /O multiplexing

SYNOPSIS
#include <time.h>

int select(

slze_t nfds,

int *readfds,

int *writefds,

int *exceptifds,

const struct timeval *timeout
)i

DESCRIPTION
select () examines the file descriptors specified by the bit masks readfds, writefds, and exceptfds. The
bits from 0 through nfds-1 are examined. File descriptor f is represented by the bit 1<<f in the masks.
More formally, a file descriptor is represented by:

fds[(f / BITS_PER_INT)] & (1 << (f % BITS_PER_INT))

When select () completes successfully it returns the three bit masks modified as follows: For each file
descriptor less than nfds, the corresponding bit in each mask is set if the bit was set upon entry and the file
descriptor is ready for reading or writing, or has an exceptional condition pending.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to complete. If
timeout is a zero pointer, the select waits until an event causes one of the masks to be returned with a valid
(non-zero) value. To poll, the timeout argument should be non-zero, pointing to a zero valued timeval struc-
ture. Specific implementations may place limitations on the maximum timeout interval supported. The
constant MAX_ ALARM defined in <sys/param.h> specifies the implementation-specific maximum (in
seconds). Whenever fimeout specifies a value greater than this maximum, it is silently rounded down to
this maximum. On all implementations, MAX_ALARM is guaranteed to be at least 31 days (in seconds).
Note that the use of a timeout does not affect any pending timers set up by alarm() or setitimer ()
(see alarm(2) or setitimer(2)).

Any or all of readfds, writefds, and exceptfds can be given as 0 if no descriptors are of interest. If all the
masks are given as 0 and timeout is not a zero pointer, select () blocks for the time specified, or until
interrupted by a signal. If all the masks are given as 0 and ¢timeout is a zero pointer, select () blocks
until interrupted by a signal.

Ordinary files always select true whenever selecting on reads, writes, and/or exceptions.

EXAMPLES
The following call to select () checks if any of 4 terminals are ready for reading. select () times out
after 5 seconds if no terminals are ready for reading. Note that the code for opening the terminals or read-
ing from the terminals is not shown in this example. Also, note that this example must be modified if the
calling process has more than 32 file descriptors open. Following this first example is an example of select
with more than 32 file descriptors.

#define MASK(f) (1 << (£))
#define NTTYS 4

int tty([NTTYS];

int ttymask[NTTYS];

int readmask = 0;

int readfds;

int nfound, 1i;

struct timeval timeout;

/* First open each terminal for reading and put the
* file descriptors into array tty[NTTYS]. The code
* for opening the terminals is not shown here.
*/

for (i=0; 1 < NTTYS; i++) {(
ttymask[i] = MASK(ttyl[i]);

HP-UX Release 9.0: August 1992 -1- 179

select(2)

180

readmask |= ttymask[1];
}
timeout.tv_sec

5
timeout.tv_usec 0
readfds = readmask;

~e e

/* select on NTTYS+3 file descriptors 1f stdin, stdout
* and stderr are also open
*/
1f ((nfound = select (NTTYS+3, &readfds, 0, 0, &timeout))

perror ("select falled");
else if (nfound == 0)

printf (*seiect timed out \n");
else for (1=0; 1 < NTTYS; i++)

1f (ttymask[l] & readfds)

/* Read from tty[l]. The code for reading
* 18 not shown here.
*/
else printf ("tty[%d] 1s not ready for reading \n",i):

#include <sys/param.h>
#include <sys/types.h>
#include <sys/time.h>

#define MASK(f) (1 << (f))
#define NTTYS NOFILE - 3
#define NWORDS howmany (FD_SETSIZE, NFDBITS)

int tty[NTTYS]:;

int ttymask[NTTYS]:;

struct fd_set readmask, readfds;
int nfound, i, J, k;

struct timeval timeout;

/* First open each terminal for reading and put the
* file descriptors into array tty[NTTYS]. The code
* for opening the terminals 1s not shown here.

*/
for (k=0; k < NWORDS; k++)
readmask.fds_bits{k] = 0;

for (1=0, k=0; 1 < NTTYS && k < NWORDS; k++)
for (j=0; j < NFDBITS && 1 < NTTYS; J++, i++) {
ttymask[1l] = MASK(ttyl[il);
readmask.fds_bits[k] |= ttymask[i];
}

timeout.tv_sec = 5;
timeout.tv_usec = 0;
for (k=0; k < NWORDS; k++)
readfds.fds_bits[k] = readmask.fds_bitslk];

/* select on NTTYS+3 file descriptors if stdin, stdout
* and stderr are also open
*/

1f ((nfound = select (NTTYS+3, &readfds, 0, 0, &timeout))

perror ("select falled");
else 1f (nfound == 0)
printf ("select timed out \n");
else for (1=0, k=0; 1 < NTTYS && k < NWORDS; k++)

select(2)

-1)

The following example is the same as the previous example, except that it works for more than 32 open
files. Definitions for howmany, £4_set, and NFDBITS are in <sys/types.h>.

== —1)

-2- HP-UX Release 9.0: August 1992

select(2) select(2)

for (j=0; J < NFDBITS && 1 < NTTYS; J++, 1++)
1f (ttymask[l] & readfds.fds_bits(k])
/* Read from tty[i]. The code for reading
* 18 not shown here.
*/
else printf ("tty([%d] 1s not ready for reading \n",1i);

RETURN VALUE
select () returns the number of descriptors contained in the bit masks, or -1if an error occurred. If the
time limit expires, select () returns 0 and all the masks are cleared.

ERRORS
select () fails if any of the following conditions are encountered:
[EBADF] One or more of the bit masks specified an invalid descriptor.
[EINTR] A signal was delivered before any of the selected for events occurred or before the
time limit expired.
[EFAULT] One or more of the pointers was invalid. The reliable detection of this error is imple-
mentation dependent. :
[EINVAL] Invalid timeval passed for timeout.
[EINVAL] The value of nfds is less than zero.
WARNINGS

Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector(2) can
affect the behavior described on this page.

The file descriptor masks are always modified on return, even if the call returns as the result of a timeout.

DEPENDENCIES
Series 300/400
select () supports the following devices and file types:

pipes

fifo special files (named pipes)

All serial interfaces

A}l ITEs (internal terminal emulators) and HP-HIL input devices
pty(7) special files

sockets

HP 98643 LAN interface card driver

File types not supporting select () always return true.

Series 700/800
select () supports the following devices and file types:

pipes

fifo special files (named pipes)

all serial devices

Al ITEs (internal terminal emulators) and HP-HIL input devices
hpib(T) special files

gpio(7) special files (Series 800 Only for Release 8.0)

lan(T) special files

pty(7) special files

sockets

The convention for device files that do not support select () is to always return true for those condi-
tions the user is selecting on.

Consult individual device manual entries to determine the extent to which any particular driver sup-
ports select.

® & o o o o o

HP Clustered Environment
In a clustered environment, select () is not supported for distributed fifos; i.e., fifos that are
open simultaneously on multiple machines. In this case an error of EINVAL is returned.

HP-UX Release 9.0: August 1992 -3- 181

select(2) select(2)

AUTHOR
select () was developed by HP and the University of California, Berkeley.

SEE ALSO
fentl(2), read(2), write(2).

182 -4 - HP.UX Release 9.0: August 1992

semctl(2) semctl(2)

NAME

semct] - semaphore control operations
SYNOPSIS

#include <sys/sem.h>

int semctl (int semid,

int semnum,

int cmd, ...

/* arg */

)i
DESCRIPTION

semctl () provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid and semnum:

GETVAL Return the value of semval (see semaphore identifier in glossary(9)). Requires Read
permission.
SETVAL Set the value of semval to arg, where arg is the fourth argument of semctl ()

taken as an int. When this cmd is successfully executed, the semadj value
corresponding to the specified semaphore in all processes is cleared. Requires Alter

permission.
GETPID Return the value of sempid. Requires Read permission.
GETNCNT Return the value of semnent. Requires Read permission.
GETZCNT Return the value of semzcent. Requires Read permission.
The following cmds return and set, respectively, every semval in the set of semaphores.

GETALL Place semvals into array pointed to by arg, where arg is the fourth argument of
sgmgtl () taken as a pointer to unsigned short int. Requires Read per-
mission.

SETALL Set semvals according to the array pointed to by arg, where arg is the fourth argu-

ment of semctl() taken as a pointer to unsigned short int. When this
cmd is successfully executed, the semadj values corresponding to each specified
semaphore in all processes are cleared. Requires Alter permission.

The following cmds are also available:

IPC_STAT Place the current value of each member of the data structure associated with semid
into the structure pointed to by arg, where arg is the fourth argument of
semctl () taken as a pointer to struct semid_ds. The contents of this struc-
ture are defined in glossary(9). Requires Read permission.

IPC_SET Set the value of the following members of the data structure associated with semid
to the corresponding value found in the structure pointed to by arg, where arg is
the fourth argument of semctl () taken as a pointer to struct semid_ds:

sem_perm.uid
sem_perm.gid
sem_perm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an effective user ID equal to either that of super-
user or to the value of either sem perm.uldor sem perm.cuid in the data structure associated
with semid.

IPC_RMID
Remove the semaphore identifier specified by semid from the system and destroy the set of sema-
phores and data structure associated with it. This ¢md can only be executed by a process that has an
effective user ID equal to either that of super-user or to the value of either sem_perm.uid or
sem_perm.cuid in the data structure associated with semid.

EXAMPLES
The following call to semctl () initializes the set of 4 semaphores to the values 0, 1, 0, and 1 respectively.

HP-UX Release 9.0: August 1992 -1- 183

semctl(2) semctl(2)

This example assumes the process has a valid semid representing a set of 4 semaphores as shown in the
semget(2) manual entry. For an example of performing "P" and "V" operations on the semaphores below,
refer to semop(2).

ushort semarray[4];

0;

i;

0;

1;

semctl (mysemid, 0, SETALL, semarray);

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

GETVAL The value of semval.
GETNCNT The value of semnent.
GETZCNT The value of semzent.
GETPID The value of sempid.

All others return a value of 0.

semarray[0]
semarray[1l]
semarray[2]
semarray[3]

Otherwise, a value of —1 is returned and errno is set to indicate the error.

ERRORS
semctl () fails if any of the following conditions are encountered:

[EACCES] Operation permission is denied to the calling process (see semaphore operation per-
missions in glossary(9).

[EFAULT} emd is equal to GETVAL, SETVAL, GETALL, SETALL, IPC_STAT, or IPC_SET,
and arg.

[EINVAL]} semid is not a valid semaphore identifier.

[EINVAL] semnum is less than zero or greater than or equal sem_nsems.

[EINVAL] c¢md is not a valid command.

[EPERM] e¢md is equal to IPC_RMID or IPC_SET and the effective user ID of the calling pro-

cess is not equal to that of super-user and it is not equal to the value of either
sem_perm.uidor sem_perm.culd in the data structure associated with semid.

[ERANGE] cmd is SETVAL or SETALL and the value to which semval is to be set is greater
than the system imposed maximum.

SEE ALSO
iperm(1), ipes(1), semget(2), semop(2), stdipc(3C).

STANDARDS CONFORMANCE
semctl (): SVID2, XPG2, XPG3, XPG4

184 -2- HP-UX Release 9.0: August 1992

semget(2) semget(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/sem.h>

int semget (key_t key, int nsems, int semflg):;

DESCRIPTION
semget () returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores are created for
key if one of the following is true:

key is equal to IPC_PRIVATE. This call creates a new identifier, subject to available resources. The
identifier is never returned by another call to semget () until it has been released by a call to
semctl (). The identifier should be used among the calling process and its descendents; however, it
is not a requirement. The resource can be accessed by any process having the proper permissions.

key does not already have a semaphore identifier associated with it, and (semflg & IPC_CREAT) is
“true”.

Specific behavior can be requested by ORing the following masks into semjlg.
IPC_CREAT: Create a semaphore identifier if one does not already exist for key.

IPC_EXCL: If IPC_CREAT is specified and key already has a semaphore identifier associated with
it, return an error.

The low-order 9 bits of semflg are the semaphore operation permissions which are defined in glossary(9).
Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:

In the operation-permission structure, sem_perm.cuid and sem_perm.uid are set equal to the
effective-user-ID of the calling process, while sem_perm.cgid and sem_perm.gid are set to the
effective-group-ID of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to the low-order 9 bits of semflg.
sem_nsems is set equal to the value of nsems.
sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

EXAMPLES
The following call to semget () returns a semid associated with the key returned by ftok ("myfile",
‘a’). If a semid associated with the key does not exist, a new semid, set of 4 semaphores, and associated
data structure will be created. If a semid for the key already exists, the semid is simply returned.

int semid;
mysemid = semget (ftok("myfile",’A’), 4, IPC_CREAT | 0600);

RETURN VALUE
Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
semget () fails if one or more of the following is true:

[EINVAL] nsems is either less than or equal to zero or greater than the system-imposed limit.

[EACCES] A semaphore identifier exists for key, but operation permission as specified by the
low-order 9 bits of semflg would not be granted.

[EINVAL] A semaphore identifier exists for key, but the number of semaphores in the set associ-
ated with it is less than nsems, and nsems is not equal to zero.

[ENOENT! A semaphore identifier does not exist for key and (semflg & IPC_CREAT) is “false”.

[ENOSPC] A semaphore identifier is to be created, but the system-imposed limit on the max-

imum number of allowed semaphore identifiers system wide would be exceeded.

HP-UX Release 9.0: August 1992 -1- 185

semget(2) semget(2)

[EEXIST] A semaphore identifier exists for key but ((semflg& IPC_CREAT) && (semflg &
IPC_EXCL)) is “true”.

SEE ALSO

iperm(1), ipes(1), semetl(2), semop(2), stdipc(3C).
STANDARDS CONFORMANCE

semget (): SVID2, XPG2 XPG3, XPG4

L3 \TLy AL \TOy L

186 -2- HP-UX Release 9.0: August 1992

semop(2) semop(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/sem.h>

int semop(
int semid,
struct sembuf *sops,
unsigned int nsops
)i

DESCRIPTION
semop () is used to atomically perform an array of semaphore operations on the set of semaphores associ-
ated with the semaphore identifier specified by semid. sops is a pointer to the array of semaphore-operation
structures. nsops is the number of such structures in the array. The contents of each structure includes the

following members:
ushort sem_num; /* semaphore number */
short sem_op /* semaphore operation */
short sem_£flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding semaphore specified by
semid and sem_num. Semaphore array operations are atomic in that none of the semaphore operations are
performed until blocking conditions on all of the semaphores in the array have been removed.

sem_op specifies one of three semaphore operations as follows:
If sem_op is a negative integer, one of the following occurs:

If semval (see semaphore identifier in glossary(9)) is greater than or equal to the absolute value
of sem_op, the absolute value of sem_op is subtracted from semval. Also, if (sem_flg &
SEM_UNDO) is “true”, the absolute value of sem_op is added to the calling process’s semadj value
(see glossary(9) and exit(2)) for the specified semaphore.

If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is “true”,
semop () returns immediately.

If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is “false”,
semop () increments the semncnt associated with the specified semaphore and suspend execu-
tion of the calling process until one of the following conditions occur:

semval becomes greater than or equal to the absolute value of sem_op. When this occurs,
the value of semnent associated with the specified semaphore is decremented, the absolute
value of sem_op is subtracted from semval and, if (sem_flg & SEM_UNDO) is “true”, the
absolute value of sem_op is added to the calling process’s semadj value for the specified
semaphore.

The semid for which the calling process is awaiting action is removed from the system (see
semctl(2)). When this occurs, errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the value of
semncnt associated with the specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal(5).

If sem_op is a positive integer, the value of sem_op is added to semval and, if (sem_flg & SEM_UNDO) is
“true”, the value of sem_op is subtracted from the calling process’s semadj value for the specified sema-
phore.

If sem_op is zero, one of the following occurs:

If semval is zero, semop () proceeds to the next semaphore operation specified by sops, or returns
immediately if this is the last operation. :

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is “true”, semop () returns immedi-
ately.

HP-UX Release 9.0: August 1992 -1- 187

semop(2)

semop(2)

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is “false”, semop () increments the
semzent associated with the specified semaphore and suspends execution of the calling process until
one of the following occurs:

semval becomes zero, at which time the value of semzcnt associated with the specified sema-
phore is decremented.

The semid for which the calling process is awaiting action is removed from the system. When
this occurs, errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the value of
semzent associated with the specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal(5).

EXAMPLES
The following call to semop () atomically performs a "P" or "get" operation on the second semaphore in the
semaphore set and a "V" or "release” operation on the third semaphore in the set. This example assumes
the process has a valid semid which represents a set of 4 semaphores as shown on the semgef(2) manual
page. It also assumes that the semvals of the semaphores in the set have been initialized as shown in the
semctl(2) manual entry.

struct sembuf sops[4];

188

sops[0].s8em num
sops[0].sem_op
sops[0] .sem_flg
sops[1l] .sem_num
sops[l].sem_op
sops[l].sem_flg

= 1;

= -1; /* P (get) */
=0 :

= 1; /*V (release) */
=0 :

semop (mysemid, sops, 2);:

RETURN VALUE
If semop () returns due to the receipt of a signal, a value of -1 is returned to the calling process and
errno is set to EINTR. If it returns due to the removal of a semid from the system, a value of -1 is returned
and errno is set to EIDRM.

Upon successful completion, a non-negative value is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
semop () fails if one or more of the following is true for any of the semaphore operations specified by sops:

[EINVAL]
[EFBIG]

[E2BIG]
[EACCES])
[EAGAIN]

[ENOSPC]

[EINVAL]

[ERANGE]
[ERANGE]
[EFAULT]

semid is not a valid semaphore identifier.

sem_num is less than zero or greater than or equal to the number of semaphores in
the set associated with semid.

nsops is greater than the system-imposed maximum.
Operation permission is denied to the calling process (see glossoary(9)).

The operation would result in suspension of the calling process but (sem_flg &
IPC_NOWAIT) is “true”.

The limit on the number of individual processes requesting an SEM_UNDO would be
exceeded.

The number of individual semaphores for which the calling process requests a
SEM_UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed limit.
An operation would cause a semadj value to overflow the system-imposed limit.

sops points to an illegal address. The reliable detection of this error will be imple-
mentation dependent.

Upon successful completion, the value of sempid for each semaphore specified in the array pointed to
by sops is set equal to the process ID of the calling process. The value of sem_otime in the data

-2- HP-UX Release 9.0: August 1992

semop(2) semop(2)

structure associated with the semaphore identifier will be set to the current time.

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector(2) can
affect the behavior described on this page.

SEE ALSO
ipes(1), exec(2), exit(2), fork(2), semctl(2), semget(2), stdipc(3C), signal(5).

STANDARDS CONFORMANCE
semop (): SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -3- 189

send (2) send(2)

NAME

send, sendto, sendmsg - send a message from a socket

SYNOPSIS

#include <sys/socket.h>
int send(int s, const void *msg, int len, int flags);

int sendto(
int s,
const void *msg,
int 1len,
int flags,
const voild *to,
int tolen);

int sendmsg(int s, const struct msghdr msg[], int flags);

DESCRIPTION

190

send(), sendto(), and sendmsg() are used to transmit a message to another socket. send() can
be used only when the socket is in a connected state, whereas sendto() and sendmsg() can be used
at any time. sendmsg () allows the send data to be gathered from several buffers specified in the
msghdr structure. See recv(2) for a description of the msghdr structure.

s is a socket descriptor that specifies the socket on which the message will be sent. msg points to the buffer
containing the message.

If the socket uses connection-based communications, such as a SOCK_STREAM socket, these calls can only be
used after the connection has been established (see connect(2)). In this case, any destination specified by %o
is ignored. For connectionless sockets, such as SOCK_DGRAM, sendto () must be used unless the destina-
tion address has already been specified by connect (). If the destination address has been specified and
sendto () is used, an error results if any address is specified by 0.

The address of the target is contained in a socket address structure pointed at by Zo, with folen specifying
the size of the structure.

If a sendto() is attempted on a SOCK_DGRAM socket before any local address has been bound to it, the
system automatically selects a local address to be used for the message. In this case, there is no guarantee
that the same local address will be used for successive sendto () requests on the same socket.

The length of the message is given by len, in bytes. The length of data actually sent is returned. If the
message is too long to pass atomically through the underlying protocol, the message is not transmitted, -1 is
returned, and errno is set to EMSGSIZE. For SOCK_DGRAM sockets, this size is fixed by the implementa-
tion (see the DEPENDENCIES section below). Otherwise there is no size limit.

No indication of failure to deliver is implicit in a send/sendto. Return values of -1 indicate some locally-
detected errors.

If no buffer space is available to hold the data to be transmitted, send() blocks unless non-blocking mode
is enabled. There are three ways to enable non-blocking mode:

* Withthe FIOSNBIO ioctl () request,
¢ Withthe O_NONBLOCK flag, and
¢ Withthe O_NDELAY fcntl() flag.

If non-blocking I/O is enabled using FIOSNBIO or the equivalent FIONBIO request (defined in
<sys/ioctl.h> and explained in ioctl(2) ioctl(5), and socket(7)), although use of FIONBIO is not
recommended, the send() request completes in one of three ways:

¢ If there is enough space available in the system to buffer all the data, send () completes suc-
cessfully, having written out all of the data, and returns the number of bytes written.

¢ If there is not enough space in the buffer to write out the entire request, send() completes
successfully, having written as much data as possible, and returns the number of bytes it was
able to write.

-1- HP-UX Release 9.0: August 1992

send(2) send (2)

¢ If there is no space in the system to buffer any of the data, send () fails, having written no
data, and errno is set to EWOULDBLOCK.

If non-blocking 1/0 is disabled using FIOSNBIO, send() always executes completely (blocking as
necessary) and returns the number of bytes written.

Ifthe O_NONBLOCK flag is set using fcntl () (defined in <sys/fcntl.h> and explained in fentl(2)
and fentl(5)), POSIX-style non-blocking /O is enabled. In this case, the send () request completes in
one of three ways:

¢ If there is enough space available in the system to buffer all the data, send () completes suc-
cessfully, having written out all of the data, and returns the number of bytes written.

¢ If there is not enough space in the buffer to write out the entire request, send () completes
successfully, having written as much data as possible, and returns the number of bytes it was
able to write.

» If there is no space in the system to buffer any of the data, send () completes, having written
no data, and returns -1, with errno set to EAGAIN.

If the O_NDELAY flag is set using fcntl () (defined in <sys/fcntl.h> and explained in fentl(2)
and fen#l(5)), non-blocking I/O is enabled. In this case, the send() request completes in one of three
ways:

¢ If there is enough space available in the system to buffer all the data, send () completes suc-
cessfully, having written out all of the data, and returns the number of bytes written.

¢ If there is not enough space in the buffer to write out the entire request, send() completes
successfully, having written as much data as possible, and returns the number of bytes it was
able to write.

* If there is no space in the system to buffer any of the data, send() completes successfully,
having written no data, and returns 0.

If the O_NDELAY flag is cleared using fcntl (), non-blocking 1/0 is disabled. In this case, the
send () always executes completely (blocking as necessary) and returns the number of bytes written.

Since both the fentl () O_NONBLOCK and O_NDELAY flags and FIOSNBIO ioctl () request are
supported, some clarification on how these features interact is necessary. If the O_NONBLOCK or
O_NDELAY flag has been set, send() requests behave accordingly, regardless of any FIOSNBIO
requests. If neither the O_NONBLOCK nor O_NDELAY flag has been set, FIOSNBIO requests con-
trol the behavior of send (). If the O_NDELAY flag has not been set, FIOSNBIO requests control the
behavior of send ().

The default is that non-blocking I/O is not enabled.

The supported values for flags are zero, or MSG_OOB (to send out-of-band data). A write() call made
to a socket behaves in exactly the same way as send() with flags set to zero. MSG_OOB is not sup-
ported for AF_UNIX sockets.

The select(2) call can be used to determine when it is possible to send more data.

AF_CCITT only:
Sockets of the address family AF_CCITT operate in message mode. Although they are specified as
connection-based (SOCK_STREAM) sockets, the X.25 subsystem communicates via messages. They require
that a connection be established with the connect () or accept () calls.

The O_NDELAY flag is not supported, use FIOSNBIO requests to control non-blocking I/O. If the avail-
able buffer space is not large enough for the entire message, and the socket is in non-blocking mode, the
error EWOULDBLOCK is returned. If the amount of data in the send () exceeds the maximum outbound
message size, EMSGSIZE is returned.

The sendto() call is not supported.

Each call sends either a complete or a partial X.25 message. This is controlled by the setting of More-Data-
To-Follow (MDTF) bit. If the user wants to send a partial message, MDTF should be set to 1 before the
send () call. The MDTF bit should be cleared to 0 before sending the final message fragment.

HP-UX Release 9.0: August 1992 -2~ 191

send (2) send (2)

Message fragment length may range from 0 bytes up to the size of the socket’s send buffer (see af _ccitt(7F)).
The MDTF bit and multiple send() calls can be combined to transmit complete X.25 packet sequences
(i.e., zero or more DATA packets in which the More Data bit is set, followed by one DATA packet in which the
More Data bit is clear) of arbitrary length. Note that a 0-byte message is not actually sent, but may be
necessary to flush a complete X.25 message if the user is controlling the MDTF bit.

Sockets of the AF_CCITT address family can send 1 byte of cut-cf-band data (known as INTERRUPT Data
packet in X.25 terminology), or up to 32 bytes if the X.25 interface is configured for 1984 CCITT X.25 recom-
mendations. INTERRUPT data packets sent in blocking mode cause the process to block until confirmation
is received. INTERRUPT data packets sent with the socket in non-blocking mode do not cause the process to
block; instead, an out-of-band message is queued to the socket when the INTERRUPT confirmation packet is
received (see recv(2)).

DEPENDENCIES

UDP messages are fragmented at the IP level into Maximum Transmission Unit (MTU) sized pieces; MTU
varies for different link types. These pieces, called IP fragments, can be transmitted, but IP does not
guarantee delivery. Sending large messages may cause so many fragments to be created that some of them
overrun a receiver’s ability to receive them, and hence are dropped. If this happens, even if most of the
fragments ultimately arrive at the destination, the complete message cannot be re-assembled. This affects
the apparent reliability and throughput of the network, as viewed by the end-user.

Default and maximum buffer sizes are protocol-specific. Refer to the appropriate entries in Sections 7F
and 7P for details. The buffer size can be set by calling setsockopt () with SO_SNDBUF.

AF_CCITT

If the receiving process is on a Series 700/800 HP-UX system and the connection has been set up to use the
D-bit, data sent with the D-bit set is acknowledged when the receiving process has read the data. Other-
wise, the acknowledgement is sent when the firmware receives it.

If the receiving process is on a Series 300/400 HP-UX system, data sent with the D-bit set is acknowledged
when the data reaches the X.25 interface card, but D-bit acknowledgement from a Series 300/400 does not
imply that the receiving process has read the data.

RETURN VALUE

Upon successful completion, send (), sendto (), and sendmsg() return the number of bytes sent.
Otherwise, they return -1 and set errno to indicate the error.

DIAGNOSTICS
send (), sendto(), and sendmsg() fail if any of the following conditions are encountered:

[EACCES] Process doing a send () of a broadcast packet does not have broadcast capa-
bility enabled for the socket. Use setsockopt () to enable broadcast capa-
bility.

[EBADF] An invalid descriptor was specified.

[ENOTSOCK] The argument s is not a socket.

[EFAULT] An invalid pointer was specified in the msg or fo parameter, or in the msghdr
structure.

[EMSGSIZE] A length in the msghdr structure is invalid. The socket requires that mes-

192

sages be sent atomically, and the size of the message to be sent made this
impossible. SOCK_DGRAM/AF_INET and/or SOCK_STREAM/AF_CCITT Only:
The message size exceeded the outbound buffer size.

[EWOULDBLOCK] The socket is in non-blocking mode and the requested operation would block.

[ENOBUFS] Insufficient network memory resources were available in the system to per-
form the operation.

[EINTR] The operation was interrupted by a signal before any data were sent. (If some
data was sent, send () returns the number of bytes sent before the signal,
and EINTR is not given.)

[EINVAL] The len or tolen parameter, or a length in the msghdr structure is invalid. A

sendto () system call was issued on an X.25 socket, or the connection is in

-3~ HP-UX Release 9.0: August 1992

send(2)

[EDESTADDRREQ]

[ENOTCONN]

[EISCONN]

[EAFNOSUPPORT]

send(2)

its reset sequence and cannot accept data.

The to parameter needs to specify a destination address for the message. This
is also given if the specified address contains unspecified fields (see inet(7F)).

A send() on a socket that is not connected, or a send () on a socket that
has not completed the connect sequence with its peer, or is no longer con-
nected to its peer.

An address was specified by fo for a SOCK_DGRAM socket which is already con-
nected.

Requested address does not match the address family of this socket.

[EPIPE] and SIGPIPE signal

[EI0]
[ENETDOWN]

[EOPNOTSUPP]
[ENETUNREACH]

[ECONNRESET}
AUTHOR

An attempt was made to send on a socket that was connected, but the connec-
tion has been shut down, either by the remote peer or by this side of the con-
nection. Note that the default action for SIGPIPE, unless the process has
established a signal handler for this signal, is to terminate the process.

A timeout occurred.

The interface used for the specified address is "down" (see ifconfig(1IM)), or no
interface for the specified address can be found, (SO_DONTROUTE socket
option in use), or the X.25 Level 2 is down.

The MSG_O0OB flag was specified; it is not supported for AF_UNIX sockets.
(LAN) All encapsulations (e.g., ether, icee) have been turned off (see also
lanconfig(1M), and ifconfig(1M)).

(X.25) The X.25 Level 2 is down. The X.25 link layer is not working (wires
might be broken, or connections are loose on the interface hoods at the
modem, or the modem failed, or the packet switch at the remote end lost
power or failed for some reason, or electrical noise interfered with the line for
an extremely long period of time).

A connection was forcibly closed by a peer.

send () was developed at the University of California, Berkeley.

SEE ALSO

lanconfig(1M), ifconfig(1M), getsockopt(2), recv(2), select(2), setsockopt(2), socket(2), af_ccitt(7F), inet(7F),
socket(7), socketx25(7), tcp(7P), udp(7P), unix(7P).

HP-UX Release 9.0: August 1992

4 193

setacl(2) setacl(2)

NAME

setacl, fsetacl - set access control list (ACL) information

SYNOPSIS

#include <sys/acl.h>
int setacl(

- ayr *na
const char *path,

size_t nentrles,
const struct acl_entry *acl

int fsetacl(

int fildes,

slze_t nentries,

const struct acl_entry *acl
)i

DESCRIPTION

setacl () sets an existing file’s access control list (ACL) or deletes optional entries from it. path points to
a path name of a file.

Similarly, £setacl () sets an existing file’s access control list for an open file known by the file descriptor
fildes.

The effective user ID of the process must match the owner of the file or be the super-user to set a file’s ACL.

A successful call to setacl () deletes all of a file’s previous optional ACL entries (see explanation below),
if any. nentries indicates how many valid entries are defined in the acl parameter. If nentries is zero or
greater, the new ACL is applied to the file. If any of the file’s base entries (see below) is not mentioned in
the new ACL, it is retained but its access mode is set to zero (no access). Hence, routine calls of setacl ()
completely define the file’s ACL.

As a special case, if nentries is negative (that is, a value of ACL_DELOPT (defined in <sys/acl.h>), the
acl parameter is ignored, all of the file’s optional entries, if any, are deleted, and its base entries are left
unaltered.

Some of the miscellaneous mode bits in the file’s mode might be turned off as a consequence of calling
setacl (). See chmod(2).

Access Control Lists

194

An ACL consists of a series of entries. Entries can be categorized in four levels of specificity:

(w.g, mode) applies touser u in group g
(w.%, mode) applies to user « in any group
(%.g, mode) applies to any user in group g
(%.%, mode) applies to any user in any group

Entries in the ACL must be unique; no two entries can have the same user ID (vid) and group ID (gid) (see
below). Entries can appear in any order. The system orders them as needed for access checking.

The <sys/acl.h> header file defines ACL_NSUSER as the non-specific uid value and ACL_NSGROUP
as the non-specific gid value represented by % above. Ifuid in an entry is ACL_NSUSER, it is a %.g entry.
If gid in an entry is ACL_NSGROUP, it is a v .% entry. If both uid and gid are non-specific, the file’s entry
is %.%.

The <unistd.h> header file defines meanings of mode bits in ACL entries (R_OK, W_OK, and X_OK).
Irrelevant bits in mode values must be zero.

Every file’s ACL has three base entries which cannot be added or deleted, but only modified. The base ACL
entries are mapped directly from the file’s permission bits.

(<file’s owner> . ACL_NSGROUP, <file’s owner mode bits>)
(ACL_NSUSER . <file’s group>, <file’s group mode bits>)
(ACL_NSUSER . ACL_NSGROUP, <file’s other mode bits>)

In addition, up to 13 optional ACL entries can be set to restrict or grant access to a file.

-1- HP-UX Release 9.0: August 1992

setacl(2)

setacl (2)

Altering a base ACL entry’s modes with setacl () changes the file’s corresponding permission bits. The
permission bits can be altered also by using chmod () (see chmod(2)) and read using stat () (see

stat(2)).

The number of entries allowed per file (see NACLENTRIES in <gys/acl.h>)is small for space and per-
formance reasons. User groups should be created as needed for access control purposes. Since ordinary
users cannot create groups, their ability to control file access with ACLs might be somewhat limited.

RETURN VALUE

Upon successful completion, setacl () and f£setacl () return a value of zero. If an error occurs, they
return -1, the file’s ACL is not modified, and errno is set to indicate the error.

ERRORS

setacl() and fsetacl () fail if any of the following conditions are encountered:
[ENOTDIR]
[ENOENT]

[EBADF]
[EACCES]
[EPERM]

[EROFS]
[EFAULT]

[EINVAL]

[E2BIG]
[EOPNOTSUPP]
[ENOSPC]
[ENFILE]

[ENAMETOOLONG]

[ELOOP]
[EDQUOT]

EXAMPLES

A component of the path prefix is not a directory.

The named file does not exist (for example, path is null or a component of path
does not exist).

fildes is not a valid file descriptor.
A component of the path prefix denies search permission.

The effective user ID does not match the owner of the file and the effective user
ID is not super-user.

The named file resides on a read-only file system.

path or acl points outside the allocated address space of the process, or acl is not
as large as indicated by nentries.

There is a redundant entry in the ACL, or acl contains an invalid uid, gid, or
mode value.

An attempt was made to set an ACL with more than NACLENTRIES entries.
setacl () is not supported on remote files by some networking services.
Not enough space on the file system.

System file table is full.

The length of path exceeds PATH_MAX bytes, or the length of a component of
path exceeds NAME_MAX bytes while _POSIX NO_TRUNC is in effect.

Too many symbolic links were encountered in translating the path name.
User’s disk quota block or inode limit has been reached for this file system.

The following code fragment defines and sets an ACL on file ../shared which allows the file’s owner to
read, write, and execute or search the file, and allows user 103, group 204 to read the file.

#include <unistd.h>
#include <sys/stat.h>
#include <sys/acl.h>

char *filename
struct acl_entry acl [2];
struct stat statbuf;

1f (stat (filename, & statbuf) <
(e.0);

acl
acl
acl

acl
acl

error
fo1 .
[o] .
[o] .

[11 .
[1i1 .

uid
gid
mode

uid
gid

= ",./shared";

statbuf . st_uld; /* flle owner */
ACL_NSGROUP;
R_OK | WOK | X OK;

103;
204;

HP-UX Release 9.0: August 1992 -2- 195

setacl(2) setacl(2)

acl [1] . mode = R_OK;

if (setacl (fllename, 2, acl))
error (...);

The following call deletes all optional ACL entries from £filel:
setacl ("filel", ACL_DELOPT, (struct acl_entry *) 0);

DEPENDENCIES
NFS
setacl () and £setacl () are not supported on remote files.

AUTHOR
setacl () and £setacl () were developed by HP.

SEE ALSO
access(2), chmod(2), getaccess(2), getacl(2), stat(2), acl(5), unistd(5).

196 -3- HP-UX Release 9.0: August 1992

setaudid (2) setaudid (2)

NAME
setaudid - set the audit ID (aid) for the current process

SYNOPSIS
#include <sys/audit.h>

int setaudid(aid_t audid);

DESCRIPTION
setaudid () sets the audit ID (aid) for the current process. This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, setaudid () returns a value of 0; otherwise, it returns -1 and sets errno
to indicate the error.

ERRORS
setaudid () fails if any of the following conditions are encountered:

[EPERM] The caller is not a superuser.
[EINVAL] The audit ID (audid) is invalid.
AUTHOR
setaudid () was developed by HP.
SEE ALSO
getaudid(2).

HP-UX Release 9.0: August 1992 -1~ 197

setaudproc(2) setaudproc(2)

NAME

setaudproc - controls process level auditing for the current process and its decendents

SYNOPSIS

#include <sys/audit.hs>
int setaudproc(int aflag):;

DESCRIPTION

setaudproc () controls process level auditing for the current process and its decendents. It accomplishes
this by setting or clearing the u_audproc flag in the u area of the calling process. When this flag is set,
the system audits the process; when it is cleared, the process is not audited. This call is restricted to super-
users.

One of the following aflags must be used:

AUD_PROC Audit the calling process and its decendents.
AUD_CLEAR Do not audit the calling process and its decendents.

The u_audproc flag is inherited by the descendents of a process. consequently, the effect of a call to
setaudproc () is not limited to the current process, but propagates to all its decendents as well. For
example, if setaudproc () is called with the AUD_PROC flag, all subsequent audited system calls in the
current process and its decendents are audited until setaudproc () is called with the AUD_CLEAR flag.

Further, setaudproc () performs its action regardless of whether the user executing the process has
been selected to be audited or not. For example, if setaudproc () is called with the AUD_PROC (or the
AUD_CLEAR) flag, all subsequent audited system calls will be audited (or not audited), regardless of
whether the user executing the process has been selected for auditing or not.

Due to these features, setaudproc() should not be used in most self-auditing applications.
audswitch() should be used (see audswitch(2)) when the ohjective is to suspend auditing within a pro-
cess without affecting its decendents or overriding the user selection aspect of the auditing system.

RETURN VALUE

Upon successful completion, setaudproc () returns 0; otherwise, it returns -1 and sets errno to indi-
cate the error.

AUTHOR

setaudproc () was developed by HP.

SEE ALSO

198

getaudproc(2), audswitch(2), audusr(1M), audevent(1M), audit(5).

-1- HP-UX Release 9.0: August 1992

setevent(2) setevent(2)

NAME
setevent - set current events and system calls which are to be audited

SYNOPSIS
#include <sys/audit.h>

int setevent (
const struct aud_type a_syscalll],
const struct aud_event_tbl a_event|[]
)i
DESCRIPTION
setevent () sets the events and system calls to be audited. The event and system call settings in the
tables pointed to by a_syscall and a_event become the current settings. This call is restricted to the super-
user.

RETURN VALUE
Upon successful completion, setevent () returns 0; otherwise, it returns -1 and sets errno to indicate
the error.

ERRORS
setevent () fails if the following condition is encountered:

[EPERM] The caller is not super-user.

AUTHOR _
setevent () was developed by HP.

SEE ALSO
getevent(2), audevent(1M).

HP-UX Release 9.0: August 1992 -1- 199

setgroups(2) setgroups(2)

NAME
setgroups - set group access list

SYNOPSIS
#include <unistd.h>

int setgroups(int ngroups, const gid_t *gidset):;

DESCRIPTION
setgroups () sets the group access list of the current user process according to the array gidset. The
parameter ngroups indicates the number of entries in the array and must be no more than NGROUPS, as
defined in <sys/param.h>.

Only super-user can set new groups by adding to the group access list of the current user process; any user
can delete groups from it.

RETURN VALUE
Upon successful completion, setgroups () returns 0; otherwise it returns -1 and sets errno to indicate

the error.
ERRORS
setgroups () fails if any of the following conditions are encountered:
[EPERM] The caller is not super-user and has attempted to set new groups.
[EFAULT] The address specified for gidset is outside the process address space. The reliable
detection of this error is implementation dependent.
[EINVAL] ngroups is greater than NGROUPS or not positive.
[EINVAL] An entry in gidset is not a valid group ID.
AUTHOR
setgroups () was developed by the University of California, Berkeley.
SEE ALSO

getgroups(2), initgroups(3C)

STANDARDS CONFORMANCE
setgroups(): AES

200 -1- HP-UX Release 9.0: August 1992

sethostname(2) sethostname (2)

NAME
sethostname - set name of host cpu

SYNOPSIS
#include <unistd.h>

int sethostname (const char *name, size_t namelen):;

DESCRIPTION
sethostname () sets the name of the host processor to name, which has a length of namelen characters.
sethostname () is normally executed by hostname (see hostname(1)) in the /etc/re script at sys-
tem boot time. Host names are limited to MAXHOSTNAMELEN characters, as defined in
<sys/param.h>.

RETURN VALUE
Upon successful completion, sethostname () returns 0; otherwise it returns -1 and sets errno to indi-
cate the error.

ERRORS
sethostname () fails if any of the following conditions are encountered:

[EPERM] It is not executed by a user having appropriate privileges.
[EFAULT] name points to an illegal address. The reliable detection of this error is implementa-
tion dependent.
AUTHOR
sethostname () was developed by the University of California, Berkeley.
SEE ALSO

hostname(1), uname(1), gethostname(2), uname(2), privilege(5).

HP-UX Release 9.0: August 1992 -1- 201

setpgid (2)

NAME

setpgid(2)

setpgid, setpgrp2 - set process group ID for job control

SYNOPSIS

#include <unistd.h>
int setpgid(pid t pid, pid_t pgid):;
int setpgrp2(pid_t pid, pid_t pgid);

DESCRIPTION
setpgld() or setpgrp2() causes the process specified by pid to join an existing process group or
create a new process group within the session of the calling process. The process group ID of the process
whose process ID is pid is set to pgid. If pid is zero, the process ID of the calling process is used. If pgid is
zero, the process ID of the indicated process is used. The process group ID of a session leader does not
change.

setpgrp2 () is provided for backward compatibility only.

RETURN VALUE
Upon successful completion, setpgid() and setpgrp2 () return zero; otherwise, they return -1 and
set errno to indicate the error.

ERRORS

setpgid() and setpgrp2() fail and no change occurs if any of the following conditions are encoun-
tered:

AUTHOR

[EACCES]

[EINVAL]

[EPERM]
[EPERM]

[EPERM]

[ESRCH]

The value of pid matches the process ID of a child process of the calling process and
the child process has successfully executed one of the exec(2) functions.

The value of pgid is less than zero or is outside the range of valid process group ID
values.

The process indicated by pid is a session leader.

The value of pid is valid but matches the process ID of a child process of the calling
process, and the child process is not in the same session as the calling process.

The value of pgid does not match the process ID of the process indicated by pid and
there is no process with a process group ID that matches the value of pgid in the same
session as the calling process.

The value of pid does not match the process ID of the calling process or of a child pro-
cess of the calling process.

setpgld() and setpgrp2 () were developed by HP and the University of California, Berkeley.

SEE ALSO

bsdproc(2), exec(2), exit(2), fork(2), getpid(2), kill(2), setsid(2), signal(2), termio(7).

STANDARDS CONFORMANCE
setpgld(): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

202

-1- HP-UX Release 9.0: August 1992

setresuid (2) setresuid (2)

NAME
setresuid, setresgid - set real, effective, and saved user and group IDs

SYNOPSIS
#include <unistd.h>

int setresuid(uid t ruid, uld_t euid, uid_t suid);
int setresgid(gid_t rgid, gid t egid, gid_t sgid);

DESCRIPTION
setresuid () setsthe real, effective and/or saved user ID of the cailing process.

If the current real, effective or saved user ID is equal to that of a user with having appropriate privileges,
setresuld() sets the real, effective and saved user IDs to ruid, euid, and suid, respectively. Otherwise,
setresuid() only sets the real, effective, and saved user IDs if ruid, euid, and suid each match at least
one of the current real, effective, or saved user IDs.

If ruid, euid, or suid is -1, setresuld () leaves the current real, effective or saved user ID unchanged.
setresgld () setsthe real, effective and/or saved group ID of the calling process.

If the current real, effective or saved user ID is equal to that of a user having appropriate privileges,
setresgld() sets the real, effective, and saved group IDs to rgid, egid, and sgid, respectively. Other-
wise, setresgid() only sets the real, effective and saved group IDs if rgid, egid, and sgid each match at
least one of the current real, effective or saved group IDs.

If rgid, egid, or sgid is -1, setresgid () leaves the current real, effective or saved group ID unchanged.

RETURN VALUE
Upon successful completion, setresuid() and setresgid() return 0; otherwise, they return -1 and
set errno to indicate the error.

ERRORS
setresuld() and setresgid() fail if any of the following conditions are encountered:

[EINVAL] ruid, euid, or suid (rgid, egid, or sgid) is not a valid user (group) ID.
[EPERM] None of the conditions above are met.
AUTHOR
setresuld() and setresgid() were developed by HP.
SEE ALSO

exec(2), getuid(2), setuid(2).

HP-UX Release 9.0: August 1992 -1- 203

setsid (2) setsid (2)

NAME
setsid, setpgrp - create session and set process group ID

SYNOPSIS
#include <unistd.h>

pld_t setsid(void);
pld_t setpgrp(veoid):;

DESCRIPTION
If the calling process is not a process group leader, setsid() or setprgp () creates a new session. The
calling process becomes the session leader of this new session, becomes the process group leader of a new
process group, and has no controlling terminal. The process group ID of the calling process is set equal to
the process ID of the calling process. The calling process is the only process in the new process group, and
the only process in the new session.

setprgp () is provided for backward compatibility only.

RETURN VALUE
setprgp () returns the value of the process group ID of the calling process.

Upon successful completion, sets1d() returns the value of the new process group ID of the calling pro-
cess. Otherwise, a value of -1 is returned, and errno is set to indicate the error.

ERRORS
No change occurs if any of the following conditions are encountered. In addition, setsid() fails when
any of the following conditions occur:

[EPERM] The calling process is already a process group leader.
[EPERM] The process group ID of a process other than the calling process matches the process
ID of the calling process.
AUTHOR
setprgp() and setsid () were developed by HP and AT&T.
SEE ALSO

exec(2), exit(2), fork(2), getpid(2), kill(2), setpgid(2), signal(2), termio(7).

STANDARDS CONFORMANCE
setsid(): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

setpgrp (): SVID2, XPG2

204 -1- HP-UX Release 9.0: August 1992

setuid(2) setuid(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
#include <unistd.h>

int setuid(uid_t uid);
int setgid(gid t gid);
DESCRIPTION

setuld () sets the real-user-ID (uid)effective-user-ID (euid), and/or saved-user-ID (suid) of the calling
process. The super-user’s euid is zero. The following conditions govern setuid’s behavior:

e Iftheeuid is zero, setuid() sets the ruid, euid, and suid to uid.

¢ If the euid is not zero, but the argument wid is equal to the ruid or the suid, setuld () sets the
euid to wid; the ruid and suid remain unchanged. (If a set-user-ID program is not running as
super-user, it can change its euid to match its ruid and reset itself to the previous euid value.)

e If euid is not zero, but the argument uid is equal to the euid, and the calling process is a member
of a group that has the PRIV_SETRUGID privilege (see privgrp(4)), setuld() sets the ruid to
uid; the euid and suid remain unchanged.

setgld() sets the real-group-ID (rgid), effective-group-ID (egid), and/or saved-group-ID (sgid) of the cal-
ling process. The following conditions govern setgid ()’s behavior:

o Ifeuid is zero, setgid() sets the rgid and egid to gid.
e Ifeuid is not zero, but the argument gid is equal to the rgid or the sgid, setgld () sets the egid
to gid; the rgid and sgid remain unchanged.

¢ If euid is not zero, but the argument gid is equal to the egid, and the calling process is a member
of a group that has the PRIV_SETRUGID privilege (see privgrp(4)), setgid () sets the rgid to
gid; the egid and sgid remain unchanged.

RETURN VALUE
Upon successful completion, setuid() and setgid() returned O0; otherwise, they return -1 and set
errno to indicate the error.

ERRO;‘eStuid () and setgid() fail and return -1 if any of the following conditions are encountered:
[EPERM] None of the conditions above are met.
[EINVAL] uid (gid) is not a valid user (group) ID.

WARNINGS

It is recommended that the PRIV_SETRUGID capability be avoided, as it is provided for backward compa-
tibility. This feature may be modified or dropped from future HP-UX releases. When changing the real user
ID and real group ID, use of setresuid() and setresgid() (see sefresuid(2)) are recommended
instead.

AUTHOR
setuld () was developed by AT&T, the University of California, Berkeley, and HP.

setgid () was developed by AT&T.

SEE ALSO
exec(2), getprivgrp(2), getuid(2), setresuid(2) privgrp(4).

STANDARDS CONFORMANCE
setuld(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

setgid(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 205

shmctl(2) shmetl(2)

NAME

shmctl - shared memory control operations

SYNOPSIS

#include <sys/shm.h>
int shmctl(int shmid, int emd, struct shmid_ds *buf);

DESCRIPTION

shmetl () provides a variety of shared memory control operations as specified by emd. The following

cmds are available:

IPC_STAT Place the current value of each member of the data structure associated with shmid
into the structure pointed to by buf. The contents of this structure are defined in the

aloceor

glossary.

IPC_SET Set the value of the following members of the data structure associated with shmid to
the corresponding value found in the structure pointed to by buf"

shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an effective user ID equal to either that of a user hav-
ing appropriate privileges or to the value of either shm_perm.uid or shm_perm.culd in the data
structure associated with shmid.

IPC_RMID
Remove the shared memory identifier specified by shmid from the system and destroy the shared memory
segment and data structure associated with it. If the segment is attached to one or more processes, then
the segment key is changed to IPC_PRIVATE and the segment is marked removed. The segment disap-
pears when the last attached process detaches it. This cmd can only be executed by a process that has an
effective user ID equal to either that of a user with appropriate privileges or to the value of either
shm_perm.uildor shm_perm.cuid in the data structure associated with shmid.

SHM_LOCK
Lock the shared memory segment specified by shmid in memory. This cmd can only be executed by a pro-
cess that either has an effective user ID equal to that of a user having appropriate privileges or has an
effective user ID equal to the value of either shm_perm.uid or shm_perm.cuid in the data struc-
ture associated with shmid and has PRIV_MLOCK privilege (see setprivgrp() description, get-
privgrp(2)).

SHM_UNLOCK
Unlock the shared memory segment specified by shmid. This cmd can only be executed by a process that
either has an effective user ID equal to a user having appropriate privileges or has an effective user ID
equal to the value of either shm_perm.uidor shm_perm.cuid in the data structure associated with
shmid and has PRIV_MLOCK privilege (see setprivgrp () description, getprivgrp(2)).

RETURN VALUE

shmctl () returns a value of 0 upon successful completion; otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS

206

shmetl () fails if any of the following conditions are encountered (see DEPENDENCIES):
[EINVAL] shmid is not a valid shared memory identifier.
[EINVAL] cmd is not a valid command.
[EACCES] cmd is equal to IPC_STAT and Read operation permission is denied to the calling
process (see shared memory operation permissions in glossary(9)).
[EPERM] cmd is equal to IPC_RMID, IPC_SET, SHM_LOCK, or SHM UNLOCK and the

effective user ID of the calling process is not equal to that of a user having appropriate
privileges and it is not equal to the value of either shm_perm.uid or
shm_perm.cuildin the data structure associated with shmid.

-1- HP-UX Release 9.0: August 1992

shmctl(2)

[EPERM]

[EINVAL]
[EFAULT]
[ENOMEM]

EXAMPLES

shmctl(2)

cmd is equal to SHM_LOCK or SHM_UNLOCK and the effective user ID of the calling
process is not equal to that of a user having appropriate privileges and the calling
process does not have PRIV_MLOCK privilege (see setprivgrp() description,
getprivgrp(2)).

cmd is equal to SHM_UNLOCK and the shared-memory segment specified by shmid is
not locked in memory.

buf points to an illegal address. The reliable detection of this error is implementation
dependent.

cmd is equal to SHM_LOCK and there is not sufficient lockable meimory to fill the
request.

The following call to shmectl () locks in memory the shared memory segment represented by myshmid.
This example assumes the process has a valid shmid, which can be obtained by calling shmget(2).

shmctl (myshmid, SHM_LOCK, 0);

The following call to shmctl () removes the shared memory segment represented by myshmid. This
example assumes the process has a valid shmid, which can be obtained by calling shmget () (see

shmget(2).

shmctl (myshmid, IPC_RMID, 0); !

DEPENDENCIES
Series 300/400

An additional error condition can occur on Series 300/400 systems:

[EACCES]

AUTHOR

shmid is the id of a shared memory segment currently being used by the system to
implement other features (see graphics(7) and iomap(7)).

shmectl () was developed by AT&T and HP.

SEE ALSO

iperm(1), ipcs(1), shmget(2), shmop(2), stdipc(3C).

STANDARDS CONFORMANCE
shmetl (): SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -2 207

shmget(2) shmget(2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/shm.h>

int shmget (key_t key, size_t size, int shmflg);

DESCRIPTION
shmget () returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of size size bytes
(see glossary(9)) are created for key if one of the following is true:

¢ key is equal to IPC_PRIVATE. This call creates a new identifier, subject to available resources.
The identifier will never be returned by another call to shmget () until it has been released by a
call to shmet1 (). The identifier should be used among the calling process and its descendents;
however, it is not a requirement. The resource can be accessed by any process having the proper
permissions.

¢ key does not already have a shared memory identifier associated with it, and (shmflg &
IPC_CREAT) is “true”.

Upon creation, the data structure associated with the new shared memory identifier is initialized as fol-
lows:

¢ shm_perm.cuid, shm perm.uid, shm perm.cgid, and shm_perm.gid are set equal to
the effective user ID and effective group ID, respectively, of the calling process.

¢ shm_perm.cuid, The low-order 9 bits of shm_perm.mode are set equal to the low-order 9
bits of shmflg. shm_segsz is set equal to the value of size.

¢ shm 1pid, shm nattch, shm atime, and shm_dtime are set equal to 0.
e shm_ctilme is set equal to the current time.

EXAMPLES
The following call to shmget () returns a unique shmid for the newly created shared memory segment of
4096 bytes:

int myshmid;
myshmid = shmget (IPC_PRIVATE, 4096, 0600);

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is returned. Other-
wise, a value of -1is returned and errno is set to indicate the error.

ERRORS)
shmget () fails if any of the following conditions are encountered:

[EINVAL] size is less than the system-imposed minimum or greater than the system-imposed
maximum.

[EACCES] A shared memory identifier exists for key but operation permission (see glossary(9))
as specified by the low-order 9 bits of shmflg would not be granted.

[EINVAL] A shared memory identifier exists for key but the size of the segment associated with
it is less than size and size is not equal to zero.

[ENOENT] A shared memory identifier does not exist for key and (shmflg & IPC_CREAT) is
“false”.

[ENOSPC] A shared memory identifier is to be created but the system-imposed limit on the max-

imum number of allowed shared memory identifiers system wide would be exceeded.

[ENOMEM] A shared memory identifier and associated shared memory segment are to be created,
but the amount of available physical memory is not sufficient to fill the request.

[EEXIST] A shared memory identifier exists for key but ((shmflg & IPC_CREAT) && (shmflg &
IPC_EXCL)) is “true”.

208 -1- HP-UX Release 9.0: August 1992

shmget(2) shmget(2)

SEE ALSO
iperm(1), ipes(1), shmetl(2), shmop(2), stdipe(3C).

STANDARDS CONFORMANCE
shmget (): SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -2- 209

shmop(2) shmop(2)

NAME
shmat, shmdt - shared memory operations

SYNOPSIS
#include <sys/shm.h>

char *shmat (int shmid, void *shmaddr, int shmflg);
int shmdt(void *shmaddr);

DESCRIPTION
shmat () attaches the shared memory segment associated with the shared memory identifier specified by
shmid to the data segment of the calling process.

Series 700/800 Systems
If the shared memory segment is not already attached, shmaddr must be specified as zero and the

segment is attached at a location selected by the operating system. That location is identical in all
processes accessing that shared memory object.

Ifthe shared memory segment is already attached, a non-zero value of shmaddr is accepted, provided
the specified address is identical to the current attach address of the segment.

Series 300/400 Systems
shmaddr can be specified as a non-zero value as a machine-dependent extension (see DEPENDENCIES
below). However, those systems do not necessarily guarantee that a given shared memory object
appears at the same address in all processes that access it, unless the user specifies an address.

The segment is attached for reading if (shmflg & SHM RDONLY) is “true”; otherwise it is attached for
reading and writing. It is not possible to attach a segment for write only.

shmdt () detaches from the calling process’s data segment the shared memory segment located at the
address specified by shmaddr.

RETURN VALUE
Upon successful completion, the return value is as follows:

shmat () returns the data segment start address of the attached shared memory segment.

shmdt () returns a value of 0; otherwise, a value of -1 is returned and errno is set to indicate the
error.
ERRORS

shmat () fails and does not attach the shared memory segment if any of the following conditions are
encountered (see DEPENDENCIES):

[EINVAL] shmid is not a valid shared memory identifier.

[EACCES] Operation permission is denied to the calling process.

[ENOMEM] The available data space is not large enough to accommodate the shared memory seg-
ment.

[EINVAL) shmaddr is not zero and the machine does not permit non-zero values or shmaddr is

not equal to the current attach location for the shared memory segment.

[EMFILE] The number of shared memory segments attached to the calling process exceed the
system-imposed limit.

shmdt () fails and returns -1 if the following condition is encountered:
[EINVAL] shmaddr is not the data segment start address of a shared memory segment.

EXAMPLES
The following call to shmat attaches the shared memory segment to the process. This example assumes the
process has a valid shmid, which can be obtained by calling shmgez(2).

char *shmptr, *shmat();
shmptr = shmat (myshmid, (char *)0, 0);

The following call to shmdt () then detaches the shared memory segment.

210 -1- HP.UX Release 9.0: August 1992

shmop(2) shmop(2)

shmdt (shmptr);

DEPENDENCIES
Series 300/400
shmaddr can be non-zero, and if it is, the segment is attached at the address specified by one of the follow-
ing criteria:
If shmaddr is equal to zero, the segment is attached at the first available address as selected by the system.
The selected value varies for each process accessing that shared memory object.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is “true”, the segment is attached at the address
given by (shmaddr - (shmaddr % SEMLBA)). The character % is the C language modulus operator.

If shmaddr is not equal to zero and (shmflg & SHM_ RND) is “false”, the segment is attached at the address
given by shmaddr.

This form of shmat () fails and does not attach the shared memory segment if any of the following condi-
tions are encountered:

[EACCES] shmid is the ID of a shared memory segment currently being used by the system to
implement other features (see graphics(7) and iomap(7)).

[EINVAL] shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr % SHMLBA)) is
an illegal address.

[EINVAL] shmaddr is not equal to zero, (shmflg & SHM_RND) is “false”, and the value of

shmaddr is an illegal address.

[ENOMEM] The calling process is locked (see plock(2)) and there is not sufficient lockable memory
to support the process-related data structure overhead.

Series 700/800
shmat () fails and returns -1 if the following is encountered:

[EINVAL] The calling process is already attached to shmid.

SEE ALSO
ipes(1), exec(2), exit(2), fork(2), shmetl(2), shmget(2), stdipc(3C).

STANDARDS CONFORMANCE
shmat (): SVID2 [Series 300/400 only], XPG2, XPG3, XPG4

shmdt (): SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -2- 211

shutdown (2) shutdown (2)

NAME
shutdown - shut down a socket

SYNOPSIS
int shutdown(int s, int how);

DESCRIPTION
The shutdown() system call is used to shut down a socket. In the case of a full-duplex connection,
ngutdown() can be used to either partially or fully shut down the socket, depending upon the value of
w:
how Interpretation

0 Further receives are disallowed

1 Further sends are disallowed

2 Further sends and receives are disaliowed

The s parameter is a socket descriptor for the socket to be shut down.

Once the socket has been shut down for receives, all further recv () calls return an end-of-file condition.
A socket that has been shut down for sending causes further send () calls to return an EPIPE error and
send the SIGPIPE signal. After a socket has been fully shut down, operations other than recv() and
send () return appropriate errors, and the only other thing that can be done to the socket isa close ().

Multiple shutdowns on a connected socket and shutdowns on a socket that is not connected might not
return errors.

A shutdown/() on a connectionless socket, such as SOCK_DGRAM , only marks the socket as unable
to do further send() or recv() calls, depending upon how. Once this type of socket has been disabled
for both sending and receiving data, it becomes fully shut down. For SOCK_STREAM sockets, if ow is 1
or 2, the connection begins to be closed gracefully in addition to the normal actions. However, the
shutdown () call does not wait for the completion of the graceful disconnection. The disconnection is
complete when both sides of the connection have done a shutdown () with how equalto 1 or 2. Once
the connection has been completely terminated, the socket becomes fully shut down. The SO_LINGER
option (see socket(2)) does not have any meaning for the shutdown () call, but does for the close ()
call. For more information on how the close () call interacts with sockets, see socket(2).

If a shutdown() is performed on a SOCK_STREAM socket that has a 1isten() pending on it, that
socket becomes fully shut down when how = 1.

AF_CCITT only:
The how parameter behaves differently if the socket is of the the AF_CCITT address family. If how is set
to 0 the specified socket can no longer receive data. The SVC is not cleared and remains intact. However,
if data is subsequently received on the SVC, it is cleared. The connection is not completely down until either
side executes a close() or shutdown () with Aowsetto 1 or 2.

If how is set to 1 or 2, the SVC can no longer send or receive data and the SVC is cleared. The socket’s
resources are maintained so that data arriving prior to the shutdown () call can still be read.

RETURN VALUE
Upon successful completion, shutdown () returns 0; otherwise it returns -1 and errno is set-to indicate
the error.
ERRORS
shutdown () fails if any of the following conditions are encountered:
[EBADF] s is not a valid descriptor.
[ENOTSOCK] s is a file, not a socket.
[EINVAL] The specified socket is not connected.
AUTHOR
shutdown () was developed by the University of California, Berkeley.
SEE ALSO

close(2), connect(2), socket(2).

212 -1- HP-UX Release 9.0: August 1992

sigaction(2) sigaction(2)

NAME
sigaction - examine and change signal action

SYNOPSIS
#include <signal.h>

int sigaction (
int sig,
const struct sigaction *act,
struct sigaction *oact
Y.
DESCRIPTION
sigaction() allows the calling process to examine and specify the action to be taken on delivery of a
specific signal. The argument sig specifies the signal; acceptable values are defined in <signal.h>. More
details on the semantics of specific signals can be found in the signal(5) manual entry.

The sigaction structure and type sigset_t are defined in <signal.h>.
act and oact are pointers to slgaction structures that include the following elements:

void (*sa_handler) () ;
sigset_t sa_mask ;
int sa_flags;

Unless it is a null pointer, the argument act points to a structure specifying the action to be taken when
delivering the specified signal. If the argument oact is not a null pointer, the action previously associated
with the signal is stored in the location pointed to by oact. If the argument act is a null pointer, signal han-
dling is unchanged; thus sigaction() can be used to inquire about the current handling of a given sig-
nal.

The sa_handler member of the sigactilon structure is assigned one of three values: SIG_DFL,
SIG_IGN, or a function address. The actions prescribed by these values are as follows:

SIG_DFL Execute default action for signal.
Upon receipt of the signal sig, the default action (specified on signal(5)) is per-
formed. The default action for most signals is to terminate the process.

A pending signal is discarded (whether or not it is blocked) if sigaction() is
set to SIG_DFL for a pending signal whose default action is to ignore the signal
(as in the case of SIGCHLD).

SIG_IGN Ignore the signal.
Setting a signal action to SIG_IGN causes a pending signal to be discarded,
whether or not it is blocked.

The SIGKILL and SIGSTOP signals cannot be ignored.

function address Catch the signal.
Upon receipt of the signal sig, the receiving process executes the signal-catching
function pointed to by sa_handler. The signal-catching function is entered as a C-
language function call. Details on the arguments passed to this function can be
found in the signal(5) manual entry.

The signals SIGKILL and SIGSTOP cannot be caught.

When a signal is caught by a signal-catching function installed by sigaction, a new mask is calculated
and installed for the duration of the signal-catching function, or until a call is made to sigproc-
mask () or sigsuspend () (see sigprocmask(2) and sigsuspend(2)). This mask is formed by taking
the union of the current signal mask, the signal to be delivered, and unless the SA_RESETHAND flag
is set (see below), the signal mask specified in the sa_mask field of the sigaction structure associ-
ated with the signal being delivered. If and when the signal-catching function returns normally, the
original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is explicitly
requested, or until one of the exec(2) functions is called.

HP-UX Release 9.0: August 1992 -1- 213

sigaction(2) sigaction(2)

If the previous action for sig was established by signal(2), the values of the fields returned in the
structure pointed to by oact are unspecified; in particular, oact->sa_handler is not necessarily the
same value passed to signal (). However, if a pointer to the same structure or a copy thereof is
passed to a subsequent call to sigaction() via the act argument, handling of the signal is rein-
stated as if the original call to signal () were repeated.

The set of signals specified by the sa_mask field of the sigaction structure pointed to by the act

argument cannot block the SIGKILL or SIGSTOP signal. This is enforced by the system without
causing an error to be indicated.

The sa_flags field in the sigaction structure can be used to modify the behavior of the specified
signal. The following flag bits, defined in the <signal .h> header, can be set in sa_flags:

SA_NOCLDSTOP Do not generate SIGCHLD when untraced children stop (see ptrace(2)).
SA_ONSTACK Use the space reserved by sigspace () for signal processing.

SA_RESETHAND Use the semantics of signal (). The signal mask specified by the
sa_mask field is not used when setting up the effective signal mask for the
signal handler. If the signal is not one of those marked "not reset when
caught” (see signal(5)), the default action for the signal is reinstated when
the signal is caught, prior to entering the signal-catching function. The
"not reset when caught" distinction is insignificant when sigaction()
is called and SA_RESETHAND is not set.

RETURN VALUE
Upon successful completion, sigactilon() returns 0; otherwise it returns -1 and sets errno to indicate
the error.

ERRORS
slgaction() fails and no new signal-catching function is installed if any of the following conditions is
encountered:

[EINVAL] The value of the sig argument is not a valid signal number, or an attempt is
made to supply an action other than SIG_DFL for the SIGKILLor SIGSTOP
signal.

[EFAULT] act or oact points to an invalid address. The reliable detection of this error is
implementation dependent.

AUTHOR

sigaction() was derived from the IEEE POSIX 1003.1-1988 Standard.

SEE ALSO

ptrace(2), sigprocmask(2), sigpending(2), sigspace(2), sigsuspend(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigaction(): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

214

-2- HP-UX Release 9.0: August 1992

sigblock (2) sigblock(2)

NAME
sigblock - block signals

SYNOPSIS
#include <signal.h>

long sigblock(long mask);

DESCRIPTION
sigblock () causes the signals specified in mask to be added to the set of signals currently being blocked
from delivery. Signal i is blocked if the i-th bit in mask is 1, as specified with the macro sigmask(z).

It is not possible to block signals that cannot be ignored, as documented in sigrnal(5); this restriction is
silently imposed by the system.

Use sigsetmask() to set the mask absolutely (see sigsetmask(2)).

RETURN VALUE
sigblock () returns the previous set of masked signals.

EXAMPLES
The following call to sigblock() adds the SIGUSR1 and SIGUSR2 signals to the mask of signals

currently blocked for the process:
long oldmask;
oldmask = sigblock (sigmask (SIGUSR1l) | sigmask (SIGUSR2)):;

WARNINGS
Do not use sigblock() in conjunction with the facilities described under sigset(2V).

AUTHOR
sigblock () was developed by the University of California, Berkeley.

SEE ALSO
kill(2), sigprocmask(2), sigsetmask(2), sigvector(2).

HP-UX Release 9.0: August 1992 ~-1- 215

signal (2)

NAME

signal(2)

signal - specify what to do upon receipt of a signal

SYNOPSIS

#include <signal.h>
void (*signal(int sig, void (*action) (int))) (int);

DESCRIPTION

signal () allows the calling process to choose one of three ways to handle the receipt of a specific signal.
sig specifies the signal and action specifies the choice.

Acceptable values for sig are defined in <signal.h>. The specific signals are described in full in the sig-
nal(5) manual entry.

The value of the action argument specifies what to do upon the receipt of signal sig, and should be one of

the following:
SIG_DFL

SIG_IGN

address

Execute the default action, which varies depending on the signal. The default action for
most signals is to terminate the process (see signal(5)).

A pending signal is discarded (whether or not it is blocked) if action is set to SIG_DFL
but the default action of the pending signal is to ignore the signal (as in the case of
SIGCLD).

Ignore the signal.
When signal () is called with action set to SIG_IGN and an instance of the signal
sig is pending, the pending signal is discarded, whether or not it is blocked.

SIGKILL and SIGSTOP signals cannot be ignored.

Catch the signal.

Upon receipt of signal sig, reset the value of action for the caught signal to SIG_DFL
(except signals marked with "not reset when caught"; see signal(5)), call the signal-
catching function to which address points, and resume executing the receiving process at
the point where it was interrupted.

The signal-catching function is called with the following three parameters:
sig The signal number.
code A word of information usually provided by the hardware.

scp A pointer to the machine-dependent structure sigconfext defined in
<signal.h>.

Depending on the value of sig, code can be zero and/or scp can be NULL. The meanings of code and scp
and the conditions determining when they are other than zero or NULL are implementation dependent
(see DEPENDENCIES below). It is possible for code to always be zero, and scp to always be NULL.

The pointer scp is valid only during the context of the signal-catching function.
The signals SIGKILL and SIGSTOP cannot be caught.

RETURN VALUE

Upon successful completion, signal () returns the previous value of action for the specified signal sig.
Otherwise, a value of SIG_ERR is returned and errno is set to indicate the error.

ERRORS

signal () fails if the following is true:

[EINVAL]
EXAMPLES

sig is an illegal signal number, or is equal to SIGKILL or SIGSTOP.

The following call to signal () sets up a signal-catching function for the SIGINT signal:
vold myhandler();
(vold) signal (SIGINT, myhandler);

216

-1- HP-UX Release 9.0: August 1992

signal (2) signal (2)

WARNINGS
signal () should not be used in conjunction with the facilities described under bsdproc(2), sigaction(2),
sigset(2V), or sigvector(2).

signal () does not detect an invalid value for action, and if it does not equal SIG_DFL or SIG_IGN, or
point to a valid function address, subsequent receipt of the signal sig causes undefined results.

DEPENDENCIES
Series 300/400
The code word is always zero for all signals except SIGILL and SIGFPE. For SIGILL, code has the fol-
lowing values:
lowing values:

0 illegal instruction;
6 check instruction;
7 TRAPV;
8 privilege violation.
Refer to the MC6800xx processor documentation for more detailed information about the meaning of the
SIGILL errors.
For SIGFPE, code has the following values:
0 software floating point exception;
5 integer divide-by-zero.
Ox Bxoxxxxx any value with the high-order bit set indicates an exception while using the
HP 98248 floating-point accelerator. The value of (code &~ 0x8000000) is the value of
the HP 98248 status register. Refer to the HP98248 documentation for more detailed
information.
other any other value indicates an exception while using the MC68881 or MC68882

floating-point coprocessor. The value of code is the value of the MC68881 or MC68882
status register. Refer to the MC68881 documentation for more detailed information.

Series 700/800
The structure pointer scp is always defined.

The code word is always zero for all signals except SIGILL and SIGFPE. For SIGILL, code has the fol-

lowing values:
8 illegal instruction trap;
9 break instruction trap;

10 privileged operation trap;
11 privileged register trap.

For SIGFPE, code has the following values:

12 overflow trap;

13 conditional trap;

14 assist exception trap;
22 assist emulation trap.

As defined by the IEEE POSIX Standard, HP-UX on Series 700/800 systems does not raise an exception on
floating-point divide by zero. The result of floating-point divide by zero is infinity which can be checked by
isinf(3M).
AUTHOR
silgnal () was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
kill(1), init(1M), exit(2), kill(2), 1seek(2), pause(2), sigaction(2), sigvector(2), wait(2), abort(3C), setjmp(3C),
signal(5).

STANDARDS CONFORMANCE
signal (): AES, SVID2, XPG2, XPG3, XPG4, ANSI C

HP-UX Release 9.0: August 1992 -2- 217

sigpause(2) sigpause(2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
#include <signal.h>

long sigpause(long mask);

DESCRIPTION
slgpause () blocks signals according to the value of mask in the same manner as sigsetmask(2), then
atomically waits for an unmasked signal to arrive. On return sigpause () restores the current signal
mask to the value that existed before the sigpause () call. When no signals are to be blocked, a value of
OL is used for mask.
In normal usage, a signal is blocked using sigblock{) {(see sighlock(2)). To begin a critical section, vari-
ables modified on the occurrence of the signal are examined to determine that there is no work to be done,
and the process pauses, awaiting work by using sigpause () with the mask returned by sigblock().

RETURN VALUE
sigpause () terminates when it is interrupted by a signal. When sigpause() terminates, it returns -1
and sets errno to EINTR.

EXAMPLES
The following call to sigpause () waits until the calling process receives a signal:

sigpause (OL);

The following example blocks the SIGIO signal until sigpause () is called. When a signal is received at
the sigpause () statement, the signal mask is restored to its value before sigpause () was called:

long savemask;
savemask = sigblock (sigmask (SIGIO));
/* critical section #/
sigpause (savemask):;
WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector() can
affect the behavior described on this page.

Do not use sigpause () in conjunction with the facilities described under sigset(2V).

AUTHOR
sigpause () was developed by the University of California, Berkeley.

SEE ALSO
sigblock(2), sigsetmask(2), sigsuspend(2), sigvector(2).

218 -1- HP-UX Release 9.0: August 1992

sigpending(2) sigpending(2)

NAME

sigpending - examine pending signals
SYNOPSIS

#include <signal.h>

int sigpending(sigset_t *set);

DESCRIPTION
sigpending () stores sets of signals that are blocked from delivery and are pending to the calling pro-
cess, at the location pointed to by set.

RETURN VALUE
Upon successful completion, sigpending() returns a value of 0; otherwise it returns -1 and sets
errno to indicate the error.

ERRORS
slgpending () fails if the following condition is encountered:

[EFAULT] set points to an invalid address. The reliable detection of this error is implementation
dependent.
AUTHOR
sigpending () was derived from the IEEE POSIX 1003.1-1988 Standard.
SEE ALSO

sigaction(2), sigsuspend(2), sigprocmask(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigpending (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- . 219

sigprocmask (2) sigprocmask(2)

NAME
sigprocmask - examine and change blocked signals

SYNOPSIS
#include <signal.h>

int sigprocmask(
int how,
const sigset_t *get,
sigset_t *oset

)i

DESCRIPTION
slgprocmask () allows the calling process to examine and/or change its signal mask.

Unless it is a null pointer, the argument sef points to a set of signals to be used to change the currently

blocked set.
The argument how indicates how the set is changed, and consists of one of the following values (see
<signal.h>):
SIG_BLOCK The resulting set is the union of the current set and the signal set pointed to by
set.
SIG_UNBLOCK The resulting set is the intersection of the current set and the complement of the
signal set pointed to by set.

SIG_SETMASK The resulting set is the signal set pointed to by set.

If the argument oset is not a null pointer, the previous signal mask is stored in the location pointed to by
oset. If set is a null pointer, the value of the argument how is insignificant and the process’s signal mask is
unchanged; thus the call can be used to inquire about currently blocked signals.

If any pending unblocked signals remain after the call to slgprocmask(), at least one of those signals
is delivered before the call to sigprocmask() returns.

It is impossible to block the SIGKILL or SIGSTOP signal. This is enforced by the system without caus-
ing an error to be indicated.

The process’s signal mask is not changed if sigprocmask () fails for any reason.

RETURN VALUE
Upon successful completion, sigprocmask() returns 0; otherwise it returns -1 and sets errno to indi-
cate the error.

ERRORS
sigprocmask () fails if any of the following conditions are encountered:

[EINVAL] The value of the how argument is not equal to one of the defined values.
[EFAULT] set or oset points to an invalid address. The reliable detection of this error is imple-
mentation dependent.
AUTHOR
slgprocmask () was derived from the IEEE POSIX 1003.1-1988 Standard.
SEE ALSO

sigaction(2), sigsuspend(2), sigpending(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE)
sigprocmask(): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

220 -1- HP-UX Release 9.0: August 1992

sigset(2V) sigset(2V)

NAME

sigset, sighold, sigrelse, sigignore, sigpause - signal management
SYNOPSIS

#include <signal.h>

vold (*sigset(int sig, voilid (*func) (int))) (int);
int sighold(int sig);

int sigrelse(int sig);

int sigignore(int sig);

int sigpause(int sig):;

DESCRIPTION
The system defines a set of signals that can be delivered to a process. The set of signals is defined in sig-
nal(5), along with the meaning and side effects of each signal. An alternate mechanism for handling these
signals is defined here. The facilities described here should not be used in conjunction with the other facili-
ties described under signal(2), sigvector(2), sigblock(2), sigsetmask(2), sigpause(2) and sigspace(2).

sigset () allows the calling process to choose one of four ways to handle the receipt of a specific signal.
sig specifies the signal and func specifies the choice.

sig can be any one of the signals described under signal(5) except SIGKILL or SIGSTOP.

func is assigned one of four values: SIG_DFL, SIG_IGN, SIG_HOLD, or a function address. The actions
prescribed by SIG_DFL and SIG_IGN are described under signal(5). The action prescribed by
SIG_HOLD and function address are described below:

SIG_HOLD Hold signal.
The signal sig is held upon receipt. Any pending signal of this signal type remains held.
Only one signal of each type is held.

Note: the signals SIGKILL, SIGCONT, and SIGSTOP cannot be held.

function address

Catch signal.

func must be a pointer to a function, the signal-catching handler, that is called when signal
sig occurs. silgset () specifies that the process calls this function upon receipt of signal
sig. Any pending signal of this type is released. This handler address is retained across
calls to the other signal management functions listed here. Upon receipt of signal sig, the
receiving process executes the signal-catching function pointed to by func as described
under signal(5) with the following differences:

Before calling the signal-catching handler, the system signal action of sig is set to
SIG_HOLD. During a normal return from the signal-catching handler, the system signal
action is restored to func and any held signal of this type is released. If a non-local goto

- (longjmp(3C)) is taken, sigrelse () must be called to restore the system signal action to
func and release any held signal of this type.

sighold() holds the signal sig. sigrelse() restores the system signal action of sig to that specified
previously by sigset (). sighold() and sigrelse () are used to establish critical regions of code.
sighold() is analogous to raising the priority level and deferring or holding a signal until the priority is
lowered by sigrelse().

sigignore () setsthe action for signal sig to SIG_IGN (see signal(5)).

silgpause () suspends the calling process until it receives an unblocked signal. If the signal sig is held, it
is released before the process pauses. sigpause () is useful for testing variables that are changed when
a signal occurs. For example, sighold () should be used to block the signal first, then test the variables.
If they have not changed, call sigpause () to wait for the signal.

These functions can be linked into a program by giving the -1V3 option to the 1d command (see ld(1)).

RETURN VALUE

Upon successful completion, sigset () returns the previous value of the system signal action for the
specified signal sig. Otherwise, a value of SIG_ERR is returned and errno is set to indicate the error.

HP-UX Release 9.0: August 1992 -1- 221

sigset(2V) sigset(2V)

SIG_ERR is defined in <signal.h>.

For the other functions, a 0 value indicates that the call succeeded. A -1 return value indicates an error
occurred and errno is set to indicate the reason.

ERRORS
sigset () fails and the system signal action for sig is not changed if any of the following occur:

[EFAULT] The func argument points to memory that is not a valid part of the process
address space. Reliable detection of this error is implementation dependent.

sigset (), sighold(), sigrelse(), sigignore(), and sigpause () fail and the system signal
action for sig is not changed if any of the following occur:

[EINVAL] sig is not a valid signal number.
[EINVAL] An attempt is made to ignore, hold, or supply a handler for a signal that can-

not be ignored, held, or caught; see signal(5).
sigpause returns when the following occurs:
[EINTR] A signal was caught.

WARNINGS

These signal facilities should not be used in conjunction with bsdproc(2), signal(2), sigvector(2), sigblock(2),
sigsetmask(2), sigpause(2) and sigspace(2).

SEE ALSO
kill(1), kill(2), signal(2), pause(2), wait(2), abort(3C), setjmp(3C), signal(5).

STANDARDS CONFORMANéE
slgset: SVID2

sighold: SVID2
sigignore: SVID2
sigpause: SVID2
sigrelse: SVID2

222 -2- HP-UX Release 9.0: August 1992

sigsetmask(2) sigsetmask(2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
#include <signal.h>

long sigsetmask(long mask);

DESCRIPTION
sigsetmask () sets the current signal mask (those signals that are blocked from delivery). Signal i is
blocked if the i-th bit in mask, as specified with the macro sigmask (i), isa 1.

It is not possible to mask signals that cannot be ignored, as documented in signal(5); this restriction is
silently imposed by the system.

sigblock () can be used to add elements to the set of blocked signals.

RETURN VALUE
The previous set of masked signals is returned.

EXAMPLES
The following call to sigsetmask() causes only the SIGUSR1 and SIGUSR2 signals to be blocked:

long oldmask;
oldmask = sigsetmask (sigmask (SIGUSR1l) | sigmask (SIGUSR2));

WARNINGS
Do not use sigsetmask() in conjunction with the facilities described under sigset(2V).

AUTHOR
sigsetmask () was developed by the University of California, Berkeley.

SEE ALSO
kill(2), sigblock(2), sigpause(2), sigprocmask(2), sigvector(2).

HP-UX Release 9.0: August 1992 -1- 223

sigspace(2) sigspace(2)

NAME
sigspace - assure sufficient signal stack space

SYNOPSIS
#include <signal.h>

slize_t sigspace(size_t stacksize);

DESCRIPTION

sigspace () requests additional stack space that is guaranteed to be available for processing signals
received by the calling process.

If the value of stacksize is positive, it specifies the size of a space, in bytes, which the system guarantees to
be available when processing a signal. If the value of stacksize is zero, any guarantee of space is removed.
If the value is negative, the guarantee is left unchanged; this can be used to interrogate the current
guaranteed value.

When a signal’s action indicates that its handler should use the guaranteed space (specified with a sigac-
tion(), sigvector (), or sigvec () call (see bsdproc(2)), the system checks to see if the process is
currently using that space. If the process is not currently using that space, the system arranges for that
space to be available for the duration of the signal handler’s execution. If that space has already been made
available (due to a previous signal) no change is made. Normal stack discipline is resumed when the signal
handler first using the guaranteed space is exited.

The guaranteed space is inherited by child processes resulting from a successful fork () system call, but
the guarantee of space is removed after any exec () system call (see fork(2) and exec(2)).

The guaranteed space cannot be increased in size automatically, as is done for the normal stack. If the
stack overflows the guaranteed space, the resulting behavior of the process is undefined.

Guaranteeing space for a stack can interfere with other memory allocation routines in an implementation-
dependent manner.

During normal execution of the program the system checks for possible overflow of the stack. Guaranteeing
space might cause the space available for normal execution to be reduced.

Leaving the context of a service routine abnormally, such as by longjmp () (see setjmp(3C)), removes the
guarantee that the ordinary execution of the program will not extend into the guaranteed space. It might
also cause the program to lose forever its ability to automatically increase the stack size, causing the pro-
gram to be limited to the guaranteed space.

RETURN VALUE
Upon successful completion, sigspace () returns the size of the former guaranteed space. Otherwise, it
returns -1 and sets errno to indicate the error.

ERRORS
sigspace () fails and the guaranteed amount of space remains unchanged if the following occurs:

{[ENOMEM] The requested space cannot be guaranteed, either because of hardware limita-
tions or because some software-imposed limit would be exceeded.
WARNINGS
The guaranteed space is allocated using malloc(3C). This use might interfere with other heap management
mechanisms.

Methods for calculating the required size are not well developed.
Do notuse sigspace () in conjunction with the facilities described under sigset(2V).
Do notuse sigspace () in conjunction with sigstack(2).

DEPENDENCIES
Series 300/400
The kernel overhead taken in the reserved space is 608 bytes on Series 300/400 systems. This overhead
must be included in the requested amount. These values are subject to change in future releases.
AUTHOR
sigspace () was developed by HP.

224 -1- HP-UX Release 9.0: August 1992

sigspace(2) sigspace(2)

SEE ALSO
sigaction(2), sigstack(2), sigvector(2), malloc(3C), setjmp(3C).

HP-UX Release 9.0: August 1992 -2 225

sigstack(2) sigstack(2)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include <signal.h>

int sigstack(
const struct sigstack *ss,
struct sigstack *oss

)i

DESCRIPTION
slgstack() allows the calling process to indicate to the system an area of its address space to be used for
processing signals received by the process.

The correct use of sigstack() is hardware dependent, and therefore is not portable between different
HP-UX implementations (see DEPENDENCIES below). sigspace () is portable between different HP-UX
implementations and should be used when the application does not need to know where the signal stack is
located (see sigspace(2)). sigstack() is provided for compatability with other systems that provide this
functionality. Users should note that there is no guarantee that functionality similar to this is even possi-
ble on some architectures.

If the value of the ss argument is not a null pointer, it is assumed to point to a struct sigstack struc-
ture, which includes the following members:

int ss onstack; Non-zero when signal stack is in use.
vold *ss_sp; Signal stack pointer.

The value of the ss_onstack member indicates whether the process wants the system to use a signal stack
when delivering signals; the value of the ss_sp member indicates the desired location (see DEPENDEN-
CIES) of the signal stack area in the process’s virtual address space.

If the ss argument is a null pointer, the current signal stack context is not changed.

If the oss argument is not a null pointer, it should point to a variable of type struct sigstack; the
current signal stack context is returned in that variable. The value stored in the ss_onstack member tells
whether the process is currently using a signal stack, and if so, the value stored in the ss_sp member is
the current stack pointer for the stack in use.

If the oss argument is a null pointer, the current signal stack context is not returned.

When a signals action indicates its handler should execute on the signal stack (specified by calling
slgaction(), sigvector (), or sigvec() (see bsdproc(2))), the system checks to see if the process
is currently executing on that stack. If the process is not currently executing on the signal stack, the sys-
tem arranges a switch to the signal stack for the duration of the signal handler’s execution.

The signal stack context is inherited by child processes resulting from a successful fork() system call,
but the context is removed after an exec () system call (see fork(2) and exec(2)).

RETURN VALUE
Upon successful completion, sigstack () returns 0; otherwise, it returns -1 and sets errno to indicate
the error.

ERRORS
slgstack() fails and the signal stack context remains unchanged if the following is true:

[EFAULT}] Either of ss or oss is not a null pointer and points outside the allocated address
space of the process. The reliable detection of this error is implementation
dependent.

WARNINGS

Do not use sigstack(2) in conjunction with sigspace(2).

User-defined signal stacks do not grow automatically, as does the normal process stack. If a signal stack
overflows, the resulting behavior of the process is undefined.

Methods for calculating the required stack size are not well developed.

226 -1- HP-UX Release 9.0: August 1992

sigstack(2) sigstack(2)

Leaving the context of a service routine abnormally, such as by longjmp() (see setjmp(3C)), might
remove the guarantee that the ordinary execution of the program does not extend into the guaranteed
space. It might also cause the program to lose forever its ability to automatically increase the stack size,
causing the program to be limited to the guaranteed space.
DEPENDENCIES
Series 300/400
Stack addresses grow from high addresses to low addresses; therefore the signal stack address provided to
sigstack(2) should point to the end of the space to be used for the signal stack. This address should be
aligned to a four-byte boundary.
Series 700/800
Stack addresses grow from low addresses to high addresses; therefore the signal stack address provided to
sigstack(2) should point to the beginning of the space to be used for the signal stack. This address should
be aligned to an eight-byte boundary.
AUTHOR
slgstack() was developed by HP and the University of California, Berkeley.

SEE ALSO
sigspace(2), setjmp(3C).

HP-UX Release 9.0: August 1992 -2- 227

sigsuspend (2) Series 300/400 Only sigsuspend(2)

NAME
sigsuspend - wait for a signal

SYNOPSIS
#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

DESCRIPTION

sigsuspend () replaces the process’s current signal mask with the set of signals pointed to by sigmask,
then suspends the process until delivery of a signal that either executes a signal handler or terminates the
process.

If the signal terminates the process, sigsuspend() never returns. If the signal executes a signal
handier, sigsuspend () returns after the signal handler returns, and restores the signal mask to the set
that existed prior to the sigsuspend () call

It is impossible to block the SIGKILL or SIGSTOP signal. This is enforced by the system without caus-
ing an error to be indicated.

RETURN VALUE
Since sigsuspend () suspends a process indefinitely, there is no successful completion return value. Ifa
return occurs, a value of -1 is returned and errno is set to indicate the error.

ERRORS
slgsuspend () fails if any of the following conditions are encountered:

[EINTR] sigsuspend () was interrupted by receipt of a signal.
[EFAULT] sigmask points to an invalid address. The reliable detection of this error is
implementation dependent.
AUTHOR
sigsuspend () was derived from the IEEE POSIX 1003.1-1988 Standard.
SEE ALSO

sigaction(2), sigpending(2), sigprocmask(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigsuspend(): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

228 -1- HP-UX Release 9.0: August 1992

sigvector(2) sigvector(2)

NAME
sigvector - software signal facilities

SYNOPSIS
#include <signal.h>

int sigvector(
int sig,
const struct sigvec *vec,
struct sigvec *ovec

);

DESCRIPTION
The system defines a set of signals that can be delivered to a process. The set of signals is defined in sig-
nal(5), along with the meaning and side effects of each signal. This manual entry, along with those for sig-
block(2), sigsetmask(2), sigpause(2), and sigspace(2), defines an alternate mechanism for handling these sig-
nals that ensures the delivery of signals and the integrity of signal handling procedures. The facilities
described here should not be used in the same program as signal(2).

With the sigvector () interface, signal delivery resembles the occurrence of a hardware interrupt: the
signal is blocked from further occurrence, the current process context is saved, and a new one is built. A
process can specify a handler function to be invoked when a signal is delivered, or specify that a signal
should be blocked or ignored. A process can also specify that a default action should be taken by the system
when a signal occurs. It is possible to ensure a minimum amount of stack space for processing signals using
sigspace () (see sigspace(2)).

All signals have the same priority. Signal routines execute with the signal that causes their invocation to
be blocked, although other signals can yet occur. A global signal mask defines the set of signals currently
blocked from delivery to a process. The signal mask for a process is initialized from that of its parent (nor-
mally 0). It can be changed with a sigblock (), sigsetmask(), or sigpause () call, or when a sig-
nal is delivered to the process. ‘

A signal mask is represented as a 1ong, with one bit representing each signal being blocked. The following
macro defined in <signal.h> is used to convert a signal number to its corresponding bit in the mask:

#define sigmask(signo) (1L << (signo-1))

When a signal condition arises for a process, the signal is added to a set of signals pending for the process.
If the signal is not currently blocked by the process, it is delivered to the process. When a signal is
delivered, the current state of the process is saved, a new signal mask is calculated (as described below),
and the signal handler is invoked. The call to the handler is arranged so that if the signal handling rou-
tine returns normally, the process resumes execution in the same context as before the signal’s delivery.
If the process wishes to resume in a different context, it must arrange to restore the previous context
itself.

When a signal is delivered to a process, a new signal mask is installed for the duration of the process’ sig-
nal handler (or until a sigblock() or sigsetmask() call is made). This mask is formed by taking
the current signal mask, computing the bit-wise inclusive OR with the value of vec .sv_mask (see below)
from the most recent call to sigvector() for the signal to be delivered, and, unless the
SV_RESETHAND flag is set (see below), setting the bit corresponding to the signal being delivered. When
the user’s signal handler returns normally, the original mask is restored.

slgvector () assigns a handler for the signal specified by sig. vec and ovec are pointers to sigvec struc-
tures that include the following elements:

void (*sv_handler) ();
long sv_mask;
long sv_flags;

If vec is non-zero, it specifies a handler routine (sv_handler), a mask (su_mask) that the system should
use when delivering the specified signal, and a set of flags (sv_flags) that modify the delivery of the signal.
If ovec is non-zero, the previous handling information for the signal is returned to the user. If vec is zero,
signal handling is unchanged. Thus, the call can be used to enquire about the current handling of a given
signal. If vec and ovec point to the same structure, the value of vec is read prior to being overwritten.

HP-UX Release 9.0: August 1992 -1- ' 229

sigvector(2) sigvector(2)

230

The sv_flags field can be used to modify the receipt of signals. The following flag bits are defined:

SV_ONSTACK Use the sigspace () allocated space.
SV_BSDSIG Use the Berkeley signal semantics.
SV_RESETHAND Use the semantics of signal(2).

If SV_ONSTACK is set, the system uses or permits the use of the space reserved for signal processing in
the sigspace () system cali.

If SV_BSDSIG is set, the signal is given the Berkeley semantics. The following signal is affected by this
flag:

SIGCLD In addition to being sent when a child process dies, the signal is also sent when any
child’s status changes from running to stopped. This would normally be used by a
program such as ¢sh (see csh(1)) when maintaining process groups under Berkeley
job control.

If SV_RESETHAND is set, the signal handler is installed with the same semantics as a handler installed
with signal(2). This affects signal mask set-up during the signal handler (see above) and whether the
handler is reset after a signal is caught (see below).

If SV_RESETHAND is not set, once a signal handler is installed, it remains installed until another
sigvector () callis made or an exec () system call is performed (see exec(2)). If SV_RESETHAND is
set and the signal is not one of those marked "not reset when caught” under signal(5), the default action is
reinstated when the signal is caught, prior to entering the signal-catching function. The "not reset when
caught" distinction is not significant when sigvector() iscalled and SV_RESETHAND is not set.

The default action for a signal can be reinstated by setting sv_handler to SIG_DFL; this default usually
results in termination of the process. If sv_handler is SIG_IGN the signal is usually subsequently
ignored, and pending instances of the signal are discarded. The exact meaning of SIG_DFL and
SIG_IGN for each signal is discussed in signal(5).

Certain system calls can be interrupted by a signal; all other system calls complete before the signal is
serviced. The scp pointer described in signal(5) is never null if sigvector () is supported. scp points
to a machine-dependent sigcontext structure. All implementations of this structure include the fields:

int sc_syscall;
char sc_syscall_action,;

The value SYS_NOTSYSCALL for the sc_syscall field indicates that the signal is not interrupting a sys-
tem call; any other value indicates which system call it is interrupting.

If a signal that is being caught occurs during a system call that can be interrupted, the signal handler is
immediately invoked. If the signal handler exits normally, the value of the sc_syscall_action field is
inspected; if the value is SIG_RETURN, the system call is aborted and the interrupted program continues
past the call. The result of the interrupted call is -1 and errno is set to EINTR. If the value of the
sc_syscall_action field is SIG_RESTART, the call is restarted. A call is restarted if, in the case of a
read() or write() system call (see read(2) or write(2)), it had transferred no data. If some data had
been transferred, the operation is considered to have completed with a partial transfer, and the sc_syscall
value is SYS_NOTSYSCALL. Other values are undefined and reserved for future use.

Exiting the handler abnormally (such as with longjmp () — see setjmp(3C)) aborts the call, leaving the
user responsible for the context of further execution. The value of scp->sc_syscall_action is ignored when
the value of scp->sc_syscall is SYS_NOTSYSCALL. scp->sc_syscall_action is always initialized to
SIG_RETURN before invocation of a signal handler. When an system call that can be interrupted is
interrupted by multiple signals, if any signal handler returns a value of SIG_RETURN in
scp->sc_syscall_action, all subsequent signal handlers are passed a value of SYS_NOTSYSCALL in
scp->sc_syscall.

Note that calls to read (), write (), or ioctl () on fast devices (such as disks) cannot be interrupted,
but /O to a slow device (such as a printer) can be interrupted. Other system calls, such as those used for
networking, also can be interrupted on some implementations. In these cases additional values can be
specified for Programs that look at the values of scp->sc_syscall always should compare them to these
symbolic constants; the numerical values represented by these constants might vary among implementa-
tions. System calls that can be interrupted and their corresponding values for scp->sc_syscall are listed
below:

-2- HP-UX Release 9.0: August 1992

sigvector(2)

Call sc_syscall value
read (slow devices) SYS_READ
readv (slow devices) | SYS_READV
write (slow devices) SYS_WRITE
writev (slow devices) | SYS_WRITEV
open (slow devices) SYS_OPEN

ioctl (slow requests) SYS_IOCTL
close (slow requests) | sYS_CLOSE
wait SYS_WAIT
select gys_sBrECT
pause SYS_PAUSE
sigpause SYS_SIGPAUSE
semop SYS_SEMOP
msgsnd SYS_MSGSND
msgrev SYS_MSGRCV

sigvector(2)

These system calls are not defined if the preprocessor macro _XPG2 is defined when <signal.h> is
included. This is because the X/Open Portability Guide, Issue 2 specifies a different meaning for the sym-
bol SYS_OPEN (see limits(5)).

After a fork() or vfork() system call, the child inherits all signals, the signal mask, and the
reserved signal stack space.

exec(2) resets all caught signals to the default action; ignored signals remain ignored, the signal mask
remains unchanged, and the reserved signal stack space is released.

The mask specified in vec is not allowed to block signals that cannot be ignored, as defined in signal(5).
This is enforced silently by the system.

If sigvector() is called to catch SIGCLD in a process that currently has terminated (zombie) chil-
dren, a SIGCLD signal is delivered to the calling process immediately, or as soon as SIGCLD is
unblocked if it is currently blocked. Thus, in a process that spawns multiple children and catches
SIGCLD, it is sometimes advisable to reinstall the handler for SIGCLD after each invocation in case
there are multiple zombies present. This is true even though the handling of the signal is not reset by the
system, as with signal(2), because deaths of multiple processes while SIGCLD is blocked in the handler
result in delivery of only a single signal. Note that the function must reinstall itself after it has called
walt () orwait3 (). Otherwise the presence of the child that caused the original signal always causes
another signal to be delivered.

RETURN VALUE
Upon successful completion, sigvector () returns 0; otherwise, it returns -1 and sets errno to indi-
cate the reason.

ERRORS
slgvector() fails and no new signal handler is installed if any of the following conditions are encoun-
tered:
[EFAULT] Either vec or ovec points to memory that is not a valid part of the process
address space. Reliable detection of this error is implementation dependent.
[EINVAL] sig is not a valid signal number.
[EINVAL] An attempt was made to ignore or supply a handler for a signal that cannot be
caught or ignored; see signal(5).
WARNINGS

Restarting a select(2) call can sometimes cause unexpected results. If the select () call has a timeout
specified, the timeout is restarted with the call, ignoring any portion that had elapsed prior to interruption
by the signal. Normally this simply extends the timeout and is not a problem. However, if a handler
repeatedly catches signals, and the timeout specified to select () is longer than the time between those
signals, restarting the select () call effectively renders the timeout infinite.

sigvector () should not be used in conjunction with the facilities described under sigset(2V).

AUTHOR
sigvector() was developed by HP and the University of California, Berkeley.

HP-UX Release 9.0: August 1992 ~-3- 231

sigvector(2) sigvector(2)

SEE ALSO
kill(1), kill(2), ptrace(2), sigblock(2), signal(2), sigpause(2), sigsetmask(2), sigspace(2), setjmp(3C), signal(5),
termio(7).

232 -4- HP-UX Release 9.0: August 1992

socket(2) socket(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/socket.h>

AF_CCITT only:
#include <x25/x25ccittproto.h>

int socket(int af, int type, int protocol);

DESCRIPTION
socket () creates an endpoint for communication and returns a descriptor. The socket descriptor
returned is used in all subsequent socket-related system calls.

The of parameter specifies an address family to be used to interpret addresses in later operations that
specify the socket. These address families are defined in the include files <sys/socket.h> and
<x25/ccittproto.h>. The only currently-supported address families are:

AF_INET (DARPA Internet addresses)
AF_UNIX (path names on a local node)
AF _CCITT (ccITT X.25 addresses)

The type specifies the semantics of communication for the socket. Currently defined types are:

SOCK_STREAM
SOCK_DGRAM (for AF_INET only)

A SOCK_STREAM type provides sequenced, reliable, two-way-connection-based byte streams. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a fixed, typically small,
maximum length).

protocol specifies a particular protocol to be used with the socket. Normally, only a single protocol exists
to support a particular socket type using a given address family. However, many protocols may exist, in
which case a particular protocol must be specified. The protocol number to use depends on the communi-
cation domain in which communication is to take place (see services(4) and protocols(4)). protocol can be
supplied as zero, in which case the system chooses a protocol type to use.

Sockets of type SOCK_STREAM are byte streams similar to pipes except that they are full-duplex instead
of half-duplex. A stream socket must be in a connected state before any data can be sent or received on it.
A connection to another socket is created with a connect () or accept () call. Once connected, data
can be transferred using some variant of the send() and recv() or the read() and write()
calls. When a session has been completed, a close () can be performed.

TCP, the communications protocol used to implement SOCK_STREAM for AF_INET sockets, ensures that
data is not lost or duplicated. If a peer has buffer space for data and the data cannot be successfully
transmitted within a reasonable length of time, the connection is considered broken and the next
recv () call indicates an error with errno set to ETIMEDOUT. If SO_KEEPALIVE is set and the con-
nection has been idle for two hours, the TCP protocol sends “keepalive” packets every 75 seconds to deter-
mine whether the connection is active. These transmissions are not visible to users, and cannot be read
by a recv () call. If the remote system does not repond within 10 minutes (i.e., after 8 “keepalive” pack-
ets have been sent), the next socket call (e.g., récv ()) returns an error sets errno to EFIMEDOUT. A
SIGPIPE signal is raised if a process sends on a broken stream; this causes naive processes that do not
handle the signal to exit. An end-of-file condition (zero bytes read) is returned if a process tries to read on
a broken stream.

SOCK_DGRAM sockets allow sending of messages to correspondents named in send () calls. It is also
possible to receive messages at such a socket with recv ().

The operation of sockets is controlled by socket level options set by the setsockopt () system call
described by the getsockop?(2) manual entry. These options are defined in the file <sys/socket.h>
and explained in the getsockop?(2) manual entry.

X.25 only:
Socket endpoints for communication over an X.25/9000 link can be in either address family AF_INET or
AF_CCITT. If the socket is in the AF_INET family, the connection will behave as described above. TCP
is used if the socket type is SOCK_STREAM; UDP is used if the socket type is SOCK_DGRAM. In both cases,

HP-UX Release 9.0: August 1992 -1- 233

socket(2) socket(2)

Internet Protocol (IP) and the X.25-to-IP interface module are used. If the socket is in the AF_CCITT
address family, only the SOCK_STREAM socket type is supported. Refer to the topic Comparing X.25 Level
3 Access to IP in the X.25 Programmer’s Guide for more details on the difference between programmatic
access to X.25 via IP and X.25 Level 3.

If the socket is of the AF_CCITT family, the connection and all other operations pass data directly from
the application to the X.25 Packet Level (level 3} without passing through a TCP or UDP protocol. Conmec-
tions of the AF_CCITT family cannot use most of the socket level options described in the gefsockopt(2)
manual entry. However, AF_CCITT connections can use many X.25-specific 1octl() calls, described by

socketx25(7).

DEPENDENCIES
AF_CCITT

Only the SOCK_STREAM fype is supported.

RETURN VALUE

Upon successful completion, socket () returns a valid file descriptor referencing the socket. Otherwise,
it returns -1 and sets errno to indicate the error.

ERRORS

socket () fails if any of the following conditions are encountered:
[EHOSTDOWN] The networking subsystem has not been started up.
[EAFNOSUPPORT] The specified address family is not supported in this version of the system.

[ESOCKTNOSUPPORT] The specified socket type is not supported in this address family.
[EPROTONOSUPPORT] The specified protocol is not supported.

[EMFILE] The per-process descriptor table is full.

[ENOBUFS] No buffer space is available. The socket cannot be created.

[ENFILE] The system’s table of open files is temporarily full and no more socket () calls

can be accepted.

[EPROTOTYPE] The type of socket and protocol do not match.

[ETIMEDOUT] Connection timed-out.

[EINVAL] SOCK_DGRAM sockets currently not supported for AF_UNIX address family.
AUTHOR

socket () was developed by the University of California, Berkeley.

SEE ALSO

234

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2), select(2), send(2),
shutdown(2), af_ccitt(7F), socket(7), socketx25(7), tcp(7P), udp(7P), unix(7P).

-2~ HP-UX Release 9.0: August 1992

socketpair(2) socketpair(2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/socket.h>

int socketpair(int af, int type, int protocol, int sv(2]);

DESCRIPTION
socketpalr () creates an unnamed pair of connected sockets and returns two file descriptors in sv[0]
and sv[1]. The two sockets are indistinguishable. af specifies the address family. See socket(2). type
specifies the semantics of communication for the socket. protocol specifies a particular protocol to be used.
protocol can be supplied as zero, in which case the system chooses a protocol type to use.

RETURN VALUES .
Upon successful completion, socketpalr () returns 0; otherwise, it returns -1 and sets errno to indi-
cate the error.

ERRORS
socketpair () fails if any of the following conditions are encountered:
[EMFILE] The per-process file descriptor table is full.
[ENFILE] The system file table is temporarily full.
[EAFNOSUPPORT] The specified address family is not supported in this version of the system.
[EPROTONOSUPPORT] The specified protocol is not supported in this version of the system.
[EOPNOSUPPORT The specified protocol does not support creation of socket pairs.
[EFAULT] The sv parameter is not valid.
[ENOBUFS] Epsuﬁcient resources were available in the system to perform the opera-
ion.
DEPENDENCIES
This call is supported only for AF_UNIX.
AUTHOR
socketpalr () was developed by the University of California, Berkeley.
SEE ALSO

read(2), write(2), socket(2).

HP-UX Release 9.0: August 1992 -1- 235

stat(2)

NAME
stat, Istat, fstat -

SYNOPSIS

get file status

#include <sys/stat.h>

int stat(const char *path,
int 1lstat (const char *path,
int fstat(int fildes,

DESCRIPTION

struct stat *buf);
struct stat *buf);

struct stat *buf);

stat () obtains information about the named file.

stat(2)

path points to a path name naming a file. Read, write, or execute permission of the named file is not
required, but all directories listed in the path name leading to the file must be searchable.

Similarly, £stat () obtains information about an open file known by the file descriptor fildes, obtained
from a successful open(), creat (), dup(), £cntl(), or pipe() system call (see open(2), creat(2),
dup(2), fentl(2), or pipe(2)).

lstat () is similar to stat () except when the named file is a symbolic link, in which case 1lstat ()
returns the information about the link, while stat () returns information about the file to which the link

points.

bufis a pointer to a stat () structure into which information is placed concerning the file.

The contents of structure stat () pointed to by buf include the following members. Note that there is no
necessary correlation between the placement in this list and the order in the structure.

dev_t

ino_t
ushort

ushort

ushort
ushort
uld_t
gid t
dev_t

off t

time_t
time_t
time_t

uint

st_dev;

st_1ino;
st_£fstype;

st_mode;

st_basemode

st_nlink;
st_uid;
st_gild;
st_rdev;

st_size;
st_atime;
st_mtime;
st_ctime;

st_acl:1;

Field contents are as follows:

/*
/*

ID of device containing a */
directory entry for this file */
Inode number */

Type of fllesystem this file */
is in; see vfsmount(2) */

File type, attributes, and */
access control summary */
Permission bits (see chmod(l)) */
Number of links */

User ID of file owner */

Group ID of file group */

Device ID; this entry defined */
only for char or blk spec files */
File size (bytes) */

Time of last access */

Last modification time */

Last file status change time */
Measured 1n secs since */
00:00:00 GMT, Jan 1, 1970 */

Set 1f the file has optional */
access control list entries */

st_atime Time when file data was last accessed. Changed by the following system calls:
creat (), mknod (), pipe(), read(), readv() (see read(2)), and utime (). Ifa
file is mapped into virtual memory, accesses of file data through the mapping may also
modify st_mt ime. See mmap(2).

Time when data was last modified. Changed by the following system calls: creat (),
truncate (), ftruncate(), (see truncate(2)), mknod(), pipe(), prealloc (),
utime(), write(), and writev() (see write(2)). Also changed by close() when
the reference count reaches zero on a named pipe (FIFO special) file that contains data.
If a file is mapped into virtual memory, updates of file data through the mapping may
also modify st_mtime. See mmap(2@).

st_mtime

236

-1- HP-UX Release 9.0: August 1992

stat(2) stat(2)

st_ctime Time when file status was last changed. Changed by the following system calls:
chmod(), chown(), creat(), fchmod(), fchown(), truncate(), ftrun-
cate(), (see truncate(2)), 1ink (), mknod (), pipe(), prealloc(), rename (),
setacl(),unlink(),utime(),write(), andwritev () (see write(2)).

The touch command (see fouch (1) can be used to explicitly control the times of a file.

st_mode The value returned in this field is the bit-wise inclusive OR of a value indicating the file’s
type, attribute bits, and a value summarizing its access permission. See mknod(2).

For ordinary users, the least significant nine bits consist of the file’s permission bits
modified to refiect the access granted or denied to the caller by optional entries in the
file’s access control list.

For users with appropriate privileges

the least significant nine bits are the file’s access permission bits. In addition, the
S__IXUSR (execute by owner) mode bit is set if the following conditions are met:

¢ The file is a regular file,

¢ No permission execute bits are set, and

* An execute bit is set in one or more of the file’s optional access control list
entries.

The write bit is not cleared for a file on a read-only file system or a shared-text program file that is
being executed. However, getaccess () clears this bit under these conditions (see getaccess(2).

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to indicate the
error.
ERRORS
stat () and lstat () fail if any of the following conditions are encountered:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist).
[EACCES] Search permission is denied for a component of the path prefix.
[EFAULT] buf or path points to an invalid address. The reliable detection of this error is
implementation dependent.
[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
__POSIX_NO_TRUNC is in effect.

fstat () fails if any of the following conditions are encountered:
[EBADF] fildes is not a valid open file descriptor.

[EFAULT] buf points to an invalid address. The reliable detection of this error is imple-
mentation dependent.

DEPENDENCIES
HP Clustered Environment
The contents of the stat () structure include the following additional members:

cnode_t st_cnode; /* cnode ID of machine */

/* where the inode lives */
cnode_t st_rcnode /* cnode ID where this */

/* device file can be used */
dev_t st_realdev; /* Real device number of device */

/* containing the inode for this file */

st_dev The ID number for the volume on which the inode exists. This number may or may not
be the device number for the device containing the volume. Device numbers are not

HP-UX Release 9.0: August 1992 -2- 237

stat(2) stat(2)

unique throughout a cluster, but the value of st_dev is guaranteed to be unique
among all volumes currently mounted in the file system. The device number for the
volume can always be found in the field st_realdev, which, together with st_cnode,
fully specifies the device containing the volume.
CD-ROM
The st_uldand st_gid fields are set to -1 if they are not specified on the disk for a given file.
NFS
The st_basemode and st_acl fields are zero on files accessed remotely.
WARNINGS
Access Control Lists
Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been instalied, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP-UX BLS environment.
AUTHOR
stat () and f£stat () were developed by AT&T. 1stat () was developed by the University of Califor-
nia, Berkeley.
SEE ALSO .
touch(1), chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), rename(2), setacl(2), time(2), trun-
cate(2), unlink(2), utime(2), write(2), acl(5), stat(5), privilege(5).
STANDARDS CONFORMANCE
stat (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1
fstat (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

lstat(): AES

238 -3- HP-UX Release 9.0: August 1992

statfs(2) statfs(2)

NAME
statfs, fstatfs - get file system statistics

SYNOPSIS
#include <sys/vfs.h>

int statfs(const char *path, struct statfs *buf);
int fstatfs(int fildes, struct statfs *buf);

DESCRIPTION
stat£fs () returns information about a mounted file system. path is the path name of any file within the
mounted file system.

buf is a pointer to a statfs () structure into which information is placed concerning the file system. The
contents of the structure pointed to by buf include the following members:

long f_bavall; /* free blocks avallable to non-superuser */

long f_bfree; /* free blocks */

long f_blocks; /* total blocks 1in file system */

long f_bsize; /* fundamental file system block size in bytes */
long f _ffree; /* free file nodes in flle system */

long f_files; /* total file nodes in file system */

long f_type; /* type of info, zero for now */

fsid_ t f_fsid /* file system ID. £ fsid[l] is MOUNT_UFS,

MOUNT_NFS, or MOUNT_CDFS */

A file node is a structure in the file system hierarchy that describes a file. For mounted HP-UX volumes, file
node is an HP-UX inode. For other types of mounts, file node is defined by the system embodying the file
pointed to by path.

Fields that are undefined for a particular file system are set to -1.
fstat£fs () returns similar information about an open file referred to by file descriptor fildes.

RETURN VALUE
statfs () and fstatfs() return 0 upon successful completion; otherwise, they return -1 and set
errno to indicate the error.

ERRORS
stat£fs () fails if any of the following conditions are encountered:

[EACCES] Search permission is denied for a component of the path prefix.
[EFAULT] buf or path points to an invalid address.

[EIO] An 1/0 error occurred while reading from or writing to the file system.
[ELOOP] Too many symbolic links are encountered in translating the path name.

[ENAMETOOLONG] A component of path exceeds NAME_MAX bytes while _POSIX_NO_TRUNC is
in effect, or path exceeds PATH_MAX bytes.

[ENOENT The named file does not exist.
[ENOTDIR] A component of the path prefix is not a directory.
fstatfs () fails if any of the following conditions are encountered:
[EBADF} fildes is not a valid open file descriptor.
[EFAULT] buf points to an invalid address.
[EIO] An /O error occurs while reading from or writing to the file system.
AUTHOR
statfs () and f£statfs () were developed by Sun Microsystems, Inc.
SEE ALSO

df(1M), stat(2), ustat(2).

HP-UX Release 9.0: August 1992 -1- 239

stime(2) stime(2)

NAME
stime - set time and date

SYNOPSIS
#include <time.h>

int stime(const time_t *tp);

LTS e

stime () sets the system’s idea of the time and date. #p points to the value of time as measured in seconds
from 00:00:00 UTC (Coordinated Universal Time) January 1, 1970.

RETURN VALUE
Upon successful completion, stime() returns a value of 0; otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM] stime () fails if the effective user ID of the calling process is not super-user.

DEPENDENCIES
HP Clustered Environment
On systems that are members of a cluster, setting the time sets the time and date for all systems in
the cluster.

SEE ALSO
date(1), gettimeofday(2), time(2).

STANDARDS CONFORMANCE
stime (): SVID2, XPG2

240 -1- HP-UX Release 9.0: August 1992

stty (2) stty (2)

NAME
stty, gtty - control device

SYNOPSIS
#include <sgtty.h>

int stty(int fildes, const struct sgttyb *argp):;
int gtty(int fildes, struct sgttyb *argp):;

REMARKS
These system calls are preserved for backward compatibility with Bell Version 6. They provide as close an
approximation as possible to the old Version 6 functions. All new code should use the TCSETA and
TCGETA loctl() calls described in termio(7).

DESCRIPTION
For certain status settings and status inquiries about terminal devices, the functions stty() and
gtty () are equivalent to

loctl(£ildes, TIOCSETP, argp)
and

loctl(fildes, TIOCGETP, argp)
respectively; see termio(7).

RETURN VALUE
stty () returns zero if the call was successful or -1 if the file descriptor does not refer to the kind of file for
which it was intended.

SEE ALSO
stty(1), exec(2), sttyV6(7), tty(7), termio(7).

HP-UX Release 9.0: August 1992 -1- 241

swapon (2)

NAME
swapon - add swap space for interleaved paging/swapping

SYNOPSIS
#include <unistd.h>

int swapon(
conet char *path, ...
/* [int min,
int 1limit,
int reserve,}
int priority */
);
DESCRIPTION
If path names a block device file:

swapon(2)

swapon () makes it available to the system at the specified priority for allocation for paging and
swapping.

In this form, swapon () takes only two arguments: the path to the block device file, and the priority.

The device associated with path can be a device already known to the system, defined at system
configuration time, or it can be a previously unspecified device.

If the device was already defined at system configuration time and also has a start and/or size defined
for that swap device, these values are used.

Otherwise, if a filesystem exists on the device, swap is added following the filesystem, or if no filesys-
tem exists, the complete device is used for swap.

See the appropriate system administrator’s manual for information on how the size of the swap area
is calculated.

If path names a directory:

swapon () makes the blocks on the file system rooted at path, available for paging and swapping.

The min, limit, and reserve arguments are passed and used only if the path argument names a direc-
tory.

min indicates the number of file system blocks to take from the file system when swapon() is
called.

limit indicates the maximum number of file system blocks the swap system is allowed to take from the
file system.

reserve indicates the number of file system blocks that are saved for file system use only.

priority indicates the order in which the swap space from this device or file system is used. Space is taken

from the lower-priority systems first.

swapon () can be used only by users who have appropriate privileges.

ERRORS

242

swapon () fails if any of the following conditions are encountered:

[EALREADY] The device or directory associated with path already has swap turned on.

[ENXIO] The device associated with path could not be opened.

[EBUSY] The device associated with path is already in use.

[ENODEV] The device associated with path does not exist.

[EPERM] The effective user ID is not a user with appropriate privileges.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENOTBLK] ;I‘ehe path argument is not a block special file or the root directory of a file sys-
m.

-1- HP-UX Release 9.0: August 1992

swapon (2)

[ENOENT]
[ENOSPC]
[EINVAL]

[ENOSYS]
[EEXIST)
[EIO]

[EROFS]
[EFAULT)

[ENAMETOOLONG]

WARNINGS

swapon(2)

The system-imposed limit on the number of swap file entries has been reached.
There is is not enough available space on the specified file system or device.

The node (see cluster(1M)) attempting to add swap had no swap configured at
boot time.

The device associated with path was specified at system configuration time to
add swap following the file system, but no file system was found.

The device associated with path was specified at system configuration time to
add swap at a specified location, but that location is within an existing file sys-
tem on the device.

Unable to read the device associated with path.
The device associated with path is read-only.

The LIF header on the device associated with path contains inconsistent direc-
tory data.

The length of the specified path name exceeds PATH_MAX bytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX NO_TRUNC is in effect.

No means is available to stop swapping to a device.

The system allocates no less than the amount specified in min. However, to make the most efficient use of
space, more than the amount requested might be taken from the file system. The actual amount taken will
not exceed the number of file system blocks indicated in reserve.

Swapping to a file system is usually slower than swapping to a device.

AUTHOR

swapon () was developed by the University of California, Berkeley.

SEE ALSO
swapon(1M), privilege(5).

HP-UX Release 9.0: August 1992 -2- 243

symlink (2)

NAME

symlink(2)

symlink - make symbolic link to a file

SYNOPSIS

#include <symlink.h>

int symlink(const char *namel, const char *name2);

s

DESCRIPTION

symlink () creates a file name2, which is a symbolic link to namel. Either name can be an arbitrary
path name. The files need not be on the same file system.

RETURN VALUE

Upon successful completion, a zero value is returned. If an error occurs, the error code is stored in errno

and a -1 value is returned.

ERRORS

The symbolic link is made unless one or more of the following is true:

[ENOTDIR]
[ENAMETOOLONG]

[ENOENT]
[EACCES]
[EDQUOT]
[ELOOP]
[EEXIST]
[EIO]

[EROFS]

[ENOSPC]

[ENOSPC]

[ENOSPC]

[EIO]
[EFAULT]

AUTHOR

A component of the name2 prefix is not a directory.

A component of either path name exceeds NAME_MAX bytes while
_POSIX NO_TRUNC is in effect, or the entire length of either path name
exceeds PATH_MAX bytes.

A component of the name2 prefix does not exist.

A component of the name2 path prefix denies search permission.

User’s disk quota block or inode limit has been reached for this file system.
Too many symbolic links were encountered in translating the path name.
name2 already exists.

An I/O error occurred while making the directory entry for name2, allocating the
inode for name2, or writing out the link contents of name2.

The file name2 resides on a read-only file system.

The directory in which the entry for the new symbolic link is being placed can-
not be extended because there is no space left on the file system containing the
directory.

The new symbolic link cannot be created because there is no space left on the
file system that will contain the symbolic link.

There are no free inodes on the file system on which the symbolic link is being
created.

An 1/0 error occurred while making the directory entry or allocating the inode.

namel or name2 points outside the process’ allocated address space. The reli-
able detection of this error is implementation dependent.

symlink () was developed by the University of California, Berkeley.

SEE ALSO

cp(1), link(2), readlink(2), unlink(2), symlink(4).

STANDARDS CONFORMANCE

symlink(): AES

244

-1- HP-UX Release 9.0: August 1992

sync(2) sync(2)

NAME
sync, lsync - update super-block

SYNOPSIS
#include <unistd.h>

vold sync(void);
vold lsync(void);

DESCRIPTION
sync () causes all information in memory that should be on disk to be written out. This includes modified
super blocks, modified inodes, and delayed block I/O.

It should be used by commands and programs that examine a file system, such as £sck, df, etc. It is man-
datory before a shutdown.

The writing, although scheduled, is not necessarily complete upon return from sync.

In some HP-UX systems, sync () may be reduced to a no-op. This is permissible on a system which does
not cache buffers, or in a system that in some way ensures that the disks are always in a consistent state.

In the HP Clustered Environment, sync () causes updates of all file systems in the cluster to be written
out, while 1sync () performs only a local sync () ; that is, local buffers are flushed to disk and to remote
nodes of the cluster, but remote nodes do not flush their own pages.

AUTHOR
sync () was developed by HP and AT&T Bell Laboratories. 1lsync () was developed by HP.

SEE ALSO
sync(1M), fsync(2).

STANDARDS CONFORMANCE
sync () : SVID2, XPG2

HP-UX Release 9.0: August 1992 -1- 245

sysconf(2) sysconf(2)

NAME

sysconf - get configurable system variables

SYNOPSIS

#include <unistd.h>
long sysconf (int name);
int CPU_IS_PA_RISC({lomg cpuvers);

int CPU_IS_HP MC68K(long cpuvers);

DESCRIPTION

246

sysconf () provides a way for applications to determine the current value of a configurable limit or vari-
able.

The name argument represents the system variable being queried.

The following table lists the configuration variables whose values can be determined by calling sys-
conf (), and for each variable, the associated value of the name argument and the value returned:

Variable Value of name Value Returned
AES_OS_VERSION _SC_AES_OS_VERSION Version number of OSF/AES OSC supported
ARG_MAX _SC_ARG_MAX Maximum total length of the arguments for

exec () in bytes, including environment data
(see exec(2))

ATEXIT_MAX _SC_ATEXIT MAX Maximum number of functions that can be
registered with atexit () (see atexif(2))

BC_BASE_MAX _SC_BC_BASE_MAX Maximum ibase (input number radix) and
obase (output number radix) allowed by bec
(see be(1))

BC_DIM_MAX _SC_BC_DIM_MAX Maximum number of elements in an array
permitted by be (see be(1))

BC_SCALE_MAX _SC_BC_SCALE_MAX Maximum scale factor (number of digits to the
right of the decimal point) allowed by bc (see
be(1))

BC_STRING_MAX _SC_BC_STRING_MAX Maximum length of strings allowed by bc
(see be(1))

CHILD_MAX _SC_CHILD_MAX Maximum number of simultaneous processes
per user ID (see fork(2))

CLK_TCK _SC_CLK_TCK Number of clock intervals per second for
times () (see times(2))

CLOCKS_PER_SEC _SC_CLOCKS_PER_SEC Number of clock ticks per second for
clock () (see clock(3C))

COLL_WEIGHTS_MAX _SC_COLL_WEIGHTS_MAX Maximum number of weights that can be

assigned to an entry of the LC_COLLATE
order keyword in a localedef input file

(see localedef(1M))

CPU_VERSION _SC_CPU_VERSION Version of CPU architecture (see below)

EXPR_NEST MAX _SC_EXPR_NEST_MAX Maximum parenthesis nesting level for expr
expressions (see expr(1))

IO_TYPE _SC_IO_TYPE Type of VO drivers the kernel supports (see
below)

LINE_MAX _SC_LINE_MAX Maximum number of bytes in an input line

(including the newline) for POSIX.2 utilities

-1- HP-UX Release 9.0: August 1992

sysconf(2)

NGROUPS_MAX

OPEN_MAX

PAGE_SIZE
PASS_MAX

POSIX_JCB_!

CONTRCL

POSIX SAVED_IDS

POSIX VERSION

POSIX2_C_BIND

POSIX2_C_DEV

POSIX2_C_VERSION

POSIX2_FORT_DEV

POSIX2_FORT_RUN

POSIX2_ LOCALEDEF

POSIX2_SW_DEV

POSIX2_UPE

POSIX2_VERSION

RE_DUP_MAX

SECURITY_CLASS
STREAM_MAX

TZNAME_MAX

HP.UX Release 9.0: August 1992

_SC_NGROUPS_MAX

_SC_OPEN_MAX

_SC_PAGE_SIZE
_SC_PASS_MAX

_SC_JO0B_CONTROL

_SC_SAVED_IDS

_SC_VERSION

_SCc_2_C_BIND

_SC_2_C_DEV

_SC_2_C_VERSION

_SC_2_FORT_DEV

_SC_2_FORT_RUN

_8C_2_LOCALEDEF

_SC_2_SW_DEV

_SC_2_UPE

_SC_2_VERSION

_SC_RE_DUP_MAX

_SC_SECURITY CLASS
_SC_STREAM MAX

_SC_TZNAME_MAX

sysconf(2)

Maximum number of simultaneous supple-
mentary group IDs per process

Maximum number of files that one process can
have open at one time

Kernel memory page size

Maximum number of significant bytes in a
password

Positive if the system supports POSIX job con-
trol; —1 otherwise

Positive if each process has a saved set-user-
ID and a saved set-group-ID; —1 otherwise

Approval date of the POSIX.1 Standard (such
as 199009 for POSIX.1-1990) to which the system
conforms. This value indicates the year (first four
digits) and month (next two digits) that the standard
was approved by the IEEE Standards Board.

Equal to 1 if the POSIX.2 C Language Bind-
ings Option is available through the c89 util-
ity; —1 otherwise

Equal to 1 if the POSIX.2 C Language
Development Utilities Option is supported; —1
otherwise

Current version of the POSIX.2 C Language
Binding Option supported (same format as
_POSIX_VERSION); -1 otherwise.

Equal to 1 if the POSIX.2 FORTRAN Develop-
ment Utilities Option is supported; ~1 other-
wise

Equal to 1 if the POSIX.2 Fortran Runtime
Utilities Option is supported; —1 otherwise

Equal to 1 if locales can be created with the
POSIX.2 localedef utility; —1 otherwise

Equal to 1 if the POSIX.2 Software Develop-
ment Utilities Option is supported; —1 other-
wise

Equal to 1 if the POSIX.2 User Portability
Utilities Option is supported; —1 otherwise

Current version of POSIX.2 (same format as
_POSIX_VERSION)

Maximum number of repeated occurrences of
a regular expression permitted when using
the interval notation \{m,n\} (see
regcomp(3C))

DoD security level (see below)

Maximum number of stdio streams that one
process can have open at one time

Maximum number of bytes in a timezone
name for the TZ environment variable

247

sysconf(2) sysconf(2)

XOPEN_CRYPT _SC_XOPEN_CRYPT Equal to 1 if the X/Open Encryption Feature
Group is supported; —1 otherwise

XOPEN_ENH_I18N _SC_XOPEN_ENH_TI18N Equal to 1 if the X/Open Enhanced Interna-
tionalization Feature Group is supported; -1
otherwise

XOPEN_ sEM _SC_XOPEN_SHM Equal to i if the X/Open Shared Memory
Feature Group is supported; —1 otherwise

XOPEN_VERSION _SC_XOPEN_VERSTION Issue number of X/Open Portability Guide
supported

Some of the variables in the table are defined as constants in <1imits.h> (see limits(5)). The associated
values of the name argument are defined in <unistd.h>.

The SECURITY_CLASS variable (returned by sysconf (_SC_SECURITY_CLASS)) can have the fol-
lowing possible values with meanings as indicated:

Value Meaning
SEC_CLASS_NONE No DoD security level supported
SEC_CLASS_C2 DoD C2 level security
SEC_CLASS_B1 DoD B1 level security
The possible values of the IO_TYPE variable (returned by sysconf (_SC_IO_TYPE)) and their mean-
ings are:
Value Meaning
IO_TYPE_WSIO Workstation VO (used by Series 300/400/700)
IO_TYPE_SIO Server I/0 (used by Series 800)

Since the Series 700 instruction set is compatible with Series 800 but its /O system differs, I0_TYPE can
be used to detect which /O system is present in a single executable program that can be run on either a
Series 700 or a Series 800.

The possible values of the CPU_VERSION variable (returned by sysconf (_SC_CPU_VERSION)) and
their meanings are:

Value Meaning
CcPU_PA_RISC1_0 HP Precision Architecture RISC Version 1.0
CPU_PA_RIscl_1 HP Precision Architecture RISC Version 1.1

CPU_HP_MC68020 Motorola MC68020
CPU_HP_MC68030 Motorola MC68030
CPU_HP_MC68040 Motorola MC68040

The CPU_IS PA_RISC() and CPU_IS_HP_MC68K() functions classify cpuvers, a value of the
CPU_VERSION variable, as to its processor family.

RETURN VALUE
Upon successful completion, sysconf () returns the value of the named variable. If the value of name is
not valid, sysconf () returns —1 and sets errno to indicate the error. If the variable corresponding to
name is not defined, sysconf () returns —1, but does not change errno.

CPU_IS_PA_RISC () returns positive non-zero if cpuvers is an HP PA-RISC processor; zero if not.
CPU_IS_HP_MC68K() returns positive non-zero if cpuvers is a “Motorola MC680x0” processor; zero if not.

ERRORS
sysconf () fails if:

[EINVAL] The value of name is not valid.

EXAMPLES
The following example determines the number of times the system clock ticks each second:

248 -3- HP-UX Release 9.0: August 1992

sysconf(2) sysconf(2)

#include <unistd.h>
long ticks;

ticks = sysconf(_SC_CLK_TCK):

The following example determines whether the current processor is an HP PA-RISC machine:
#include <unistd.h>
if (CPU_IS_PA RISC(sysconf(_SC_CPU_VERSION)))

WARNINGS
CPU_IS_PA_RISC() and CPU_IS_HP_MC68K() are implemented as macros.

Normally, the values returned from sysconf () do not change during the lifetime of the calling process.
However, the value of the symbolic constant _POSIX VERSION and thus the value of
sysconf (_SC_VERSION) can vary under certain circumstances. If either of the feature test macros
_POSIX1_1988 or _XPG3 is defined by the programmer prior to including <unistd.h>, the value of
_POSIX_VERSION is defined as 198808, in conformance with POSIX.1-1988, FIPS 151-1, and XPG3. Oth-
erwise, the value of _POSIX_VERSION is defined as 199009, in conformance with POSIX.1-1990.

Similarly, the value of the symbolic constant _XOPEN_VERSION and thus the value of
sysconf (_SC_XOPEN_VERSION) can vary under certain circumstances. If the feature test macro
_XPG3 is defined by the programmer prior to including <unistd.h>, the value of _XOPEN_VERSION is
defined as 3, in conformance with XPG3. Otherwise, the value of _XOPEN_VERSION is defined as 4, in
conformance with XPG4.

See stdsyms(5) for more information about these feature test macros.

AUTHOR
sysconf () was developed by HP and POSIX.

CPU_IS_PA RISC() and CPU_IS HP_ MC68K() were developed by HP.

SEE ALSO
getconf(1), atexit(2), exec(2), fork(2), getrlimit(2), pathconf(2), times(2), clock(3C), regcomp(3C), limits(5),
stdsyms(5), unistd(5), x_open(5).

STANDARDS CONFORMANCE
sysconf (): AES, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.2

HP-UX Release 9.0: August 1992 -4- 249

time (2) time(2)

NAME
time - get time

SYNOPSIS
#include <time.h>

time_t time(time_t *tloc);

DESCRIPTION
time () returns the value of time in seconds since the Epoch.

If tloc is not a null pointer, the return value is also assigned to the object to which it points.

RETURN VALUE
Upon successful completion, time() returns the value of time. Otherwise, a value of (time_t)-1 is
returned and errno is set to indicate the error.

ERRORS
[EFAULT] time () fails if Zloc points to an illegal address. The reliable detection of this error is
implementation dependent.
SEE ALSO

date(1), gettimeofday(2), stime(2), ctime(3C), strftime(3C).

STANDARDS CONFORMANCE
time (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

250 -1- HP-UX Release 9.0: August 1992

times(2) times(2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/times.h>

clock_t times(struct tms *buffer);

DESCRIPTION
times () fills the structure pointed to by buffer with time-accounting information. The structure defined
in <sys/times.h> is as follows:

struct tms (

clock t tms_utime; /* user time */

clock_t tms_stime; /* system time */"

clock_t tms_cutime; /* user time, children */
clock_t tms_cstime; /* system time, children */

}i

This information comes from the calling process and each of its terminated child processes for which it has
executed a walt (), wait3 (), or waltpid(). The times are in units of 1/CLK_TCK seconds, where
CLK_TCK is processor dependent The value of CLK_TCK can be queried using the sysconf () function
(see sysconf(2)).

tms_ut ime is the CPU time used while executing instructions in the user space of the calling process.
tms_st ime is the CPU time used by the system on behalf of the calling process.

tms_cutime is the sum of the tms_ut imes and tms_cut imes of the child processes.
tms_cstime is the sum of the tms_st imes and tms_cst imes of the child processes.

RETURN VALUE
Upon successful completion, times () returns the elapsed real time, in units of1/CLK_TCK of a second,
since an arbitrary point in the past (such as system start-up time). This point does not change from one
invocation of times () to another. If times() fails, -1 is returned and errno is set to indicate the

error.
ERRORS
[EFAULT) times () fails if buffer points to an illegal address. The reliable detection of this error is
implementation dependent.
SEE ALSO
time(1), gettimeofday(2), exec(2), fork(2), sysconf(2), time(2), wait(2).
WARNINGS

Not all CPU time expended by system processes on behalf of a user process is counted in the system CPU
time for that process.

STANDARDS CONFORMANCE
times (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1- 251

truncate(2) truncate(2)

NAME
truncate, ftruncate - truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int truncate(const char *path, size t length);
int ftruncate(int fildes, size_t length);

DESCRIPTION
truncate () causes the file named by path or referenced by fd to have a size of length bytes. If the file
previously was larger than this size, the extra data is lost. If it was previously shorter, bytes between the
old and new lengths are read as zeroes. With ftruncate (), the file must be open for writing; for trun-
cate () the user must have write permissicon for the file,

RETURN VALUES
truncate () returns a value of 0 if successful; otherwise a -1 is returned, and errno is set to indicate
the error.

ERRORS
truncate () fails if any of the following conditions are encountered:

[ENOTDIR] A component of the path prefix of path is not a directory.
[EACCES] A component of the path prefix denies search permission.
[EACCES] Write permission is denied on the file.

[EINVAL] length was greater than the maximum file size.

[EISDIR] The named file is a directory.

[EROFS] The named file resides on a read-only file system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EFAULT] path points outside the process’s allocated address space. The reliable detection of
this error is implementation dependent.

[ELOOP]} Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_NO_TRUNC
is in effect.

[EDQUOT] User’s disk quota block limit has been reached for this file system.
ftruncate () failsif any of the following conditions are encountered:
[EBADF] fd is not a valid file descriptor.
[EINVAL] fd references a file that was opened without write permission.

[EDQUOT] User’s disk quota block limit has been reached for this file system.
AUTHOR
truncate () was developed by the University of California, Berkeley.
SEE ALSO
open(2).

STANDARDS CONFORMANCE
truncate(): AES

ftruncate(): AES

252 -1- HP-UX Release 9.0: August 1992

ulimit(2) ulimit(2)

NAME
ulimit - get and set user limits

SYNOPSIS
#include <ulimit.h>

long ulimit(int cmd, ...);

DESCRIPTION
ulimit () provides for control over process limits. Available values for cmd are:

UL_GETFSIZE Get the file size limit of the process. The limit is in units of 512-byte blocks and
is inherited by child processes. Files of any size can b re ad The optional
second argument is not used.

UL_SETFSIZE Set the file size limit of the process to the value of the optional second argument
which is taken as a long. Any process can decrease this limit, but only a process
with an effective user ID of super-user can increase the limit. Note that the limit
must be specified in units of 512-byte blocks.

UL_GETMAXBRK Get the maximum possible break value (see brk(2)). Depending on system
resources such as swap space, this maximum might not be attainable at a given
time. The optional second argument is not used.

ERRORS
ulimit () fails if one or more of the following conditions is true.
[EINVAL] c¢md is not in the correct range.
[EPERM] ulimit () fails and the limit is unchanged if a process with an effective user ID

other than super-user attempts to increase its file size limit.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Errors return a -1, with errno set to indi-

cate the error.

SEE ALSO
brk(2), write(2).

STANDARDS CONFORMANCE
ulimit (): AES, SVID2, XPG2, XPG3, XPG4

HP-UX Release 9.0: August 1992 -1- 253

umask(2) umask(2)

NAME
umask - set and get file creation mask

SYNOPSIS
#include <sys/stat.h>

mode_t umask(mode_t cmask);

DESCRIPTION
umask () sets the process’s file mode creation mask to umask() and returns the previous value of the
mask. Only the file access permission bits of the masks are used.

The bits set in cmask specify which permission bits to turn off in the mode of the created file, and should be
specified using the symbolic values defined in stat(5).

EXAMPLES
The following creates a file named path in the current directory with permissions
S_IRWXU|S_IRGRP | S_IXGRP, so that the file can be written only by its owner, and can be read or exe-

cuted only by the owner or processes with group permission, even though group write permission and all
permissions for others are passed in to creat ().

#include <sys/types.h>
#include <sys/stat.h>

int f£ildes;

(void) umask(S_IWGRP|S_IRWXO);
fildes = creat("path", S_IRWXU|S_IRWXG|S_IRWXO);

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh(1), mknod(1M), chmod(2), creat(2), mknod(2), open(2).

STANDARDS CONFORMANCE
umask(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151.2, POSIX.1

254 -1~ HP-UX Release 9.0: August 1992

umount(2) umount(2)

NAME
umount - unmount a file system

SYNOPSIS
#include <sys/mount.h>

int umount (const char *name);

DESCRIPTION
umount () requests that a previously mounted file system contained on the block special device identified
by name be unmounted. name is a pointer to a path name. After unmounting the file system, the directory
upon which the file system was mounted reverts to its ordinary interpretation.

umount () can also request that a file system mounted previously on the directory identified by name be
unmounted. After unmounting the file system, name reverts to its ordinary interpretation.

umount () can be invoked only by the user with the appropriate privilege.

NETWORKING FEATURES
NFs

path must indicate a directory name when unmounting an NFS file system.

RETURN VALUE
If successful, umount () returns a value of 0. Otherwise, it returns a value of -1 and sets errno to
indicate the error.

ERRORS
umount () fails if one or more of the following are true:

[EPERM] The effective user ID of the process is not that of a user with appropriate privileges.
[ENOENT] name does not exist.

[ENOTBLK] name is not a block special device.

[EINVAL] name is not mounted.

[EBUSY] A file on name is busy.

[EFAULT] name points outside the allocated address space of the process. Reliable detection of this

error is implementation dependent.
[ENXIO] The device associated with name does not exist.
[ENOTDIR] A component of name is not a directory.
[ENOENT name is null.

[ENAMETOOLONG]
name exceeds PATH_MAX bytes, or a component of name exceeds NAME_MAX bytes while
_POSIX NO_TRUNC is in effect.

[EACCES] A component of the path prefix of name denies search permission.
[ELOOP] Too many symbolic links were encountered in translating the path name.
WARNINGS

If umount () is called from the program level (that is, not from the mount(1M) level), the table of mounted
devices contained in /etc/mnttab is not updated automatically. Updating of /etc/mnttab is per-
formed by the mount and syncer commands (see mount(1M) and syncer(1M) for more information).

DEPENDENCIES
HP Clustered Environment:
When umount () is called from a client node and path refers to a directory on which is mounted a
UFS file system (as opposed to an NFS file system; see vfsmount(2)), an EINVAL error is returned. This
behavior is subject to change in future releases, and its use in applications is not recommended.

SEE ALSO
mount(1M), syncer(1M), mount(2), vfsmount(2).

HP-UX Release 9.0: August 1992 -1- 255

umount(2) umount(2)

STANDARDS CONFORMANCE
umount (): SVID2, XPG2

256 -2- HP-UX Release 9.0: August 1992

uname(2) uname(2)

NAME
uname, setuname - get/set name of current HP-UX system

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *name);
int setuname(const char *name, size_t namelen);

DESCRIPTION
uname () stores information identifying the current HP-UX system in the structure pointed to by name.

uname () uses the structure defined in <sys /ut sname .h> whose members are:

#define UTSLEN 9
#define SNLEN 15

char sysname [UTSLEN];
char nodename [UTSLEN] ;
char release[UTSLEN];
char version[UTSLEN];
char machine [UTSLEN];
char idnumber [SNLEN];

uname () returns a null-terminated string in each field. The sysname field contains HP-UX. Similarly,
the nodename field contains the name by which the system is known on a communications network. The
release field contains the release number of the operating system, such as 8.0 or 8.0.1. The ver-
sion field contains additional information about the operating system. The first character of the ver-
sion field is set to:

Character | Series 700/800 | Series 300/400
A two-user system two-user system
B 16-user system unlimited-users system
C 32-user system
D 64-user system
E 8-user system
U unlimited-users system

(Note that the contents of the version field might change on future releases as AT&T license agreement res-
trictions change.) The machine field contains a standard name that identifies the hardware on which the
HP-UX system is running. The idnumber is a unique identification number within that class of
hardware, possibly a hardware or software serial number. This field returns the null string to indicate the
lack of an identification number.

setuname () sets the nodename field in the utsname structure to name, which has a length of
namelen characters. This is usually executed by /etc/rc at system boot time. Names are limited to
UTSLEN - 1characters; UTSLEN is defined in <sys /utsname .h>.

ERRORS
[EPERM] setuname () was attempted by a user lacking the appropriate privileges.
[EFAULT] name points to an illegal address. The reliable detection of this error is implementation
dependent.
RETURN VALUE

Upon successful completion, a non-negative value is returned. Otherwise, -1 is returned and errno is set
to indicate the error.

AUTHOR
uname () was developed by AT&T and HP.

SEE ALSO
hostname(1), uname(1), gethostname(2), sethostname(2), privilege(5).

STANDARDS CONFORMANCE
uname () : AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -1~ 257

unlink(2) unlink(2)

NAME
unlink - remove directory entry; delete file

SYNOPSIS
#include <unistd.h>

int unlink(const char *path);

DESCRIPTION
unlink () removes the directory entry named by the path name pointed to by path.

When all links to a file have been removed and no process has the file open, the space occupied by the file is
freed and the file ceases to exist. If one or more processes have the file open when the last link is removed,
only the directory entry is removed immediately so that processes that do not already have the file open
cannot, access the file. After all processes close their references to the file, if there are no more links to the
file, the space occupied by the file is then freed and the file ceases to exist.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
The named file is unlinked unless one or more of the following are true:

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to be removed.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] Thet;lamed file does not exist (for example, path is null or a component of path does not
€exist).

[EPERM] The named file is a directory and the effective user ID of the process is not a user with
appropriate privileges.

[EBUSY] The entry to be unlinked is the mount point for a mounted file system.

[ETXTBSY] The entry to be unlinked is the last link to a pure procedure (shared text) file that is being
executed.

[EROFS] The directory entry to be unlinked is part of a read-only file system.

[EFAULT] path points outside the process’s allocated address space. The reliable detection of this
error is implementation dependent.

[ENAMETOOLONG]

The length of the specified path name exceeds PATH_MAX bytes, or the length of a com-
ponent of the path name exceeds NAME MAX bytes while _POSIX_NO_TRUNC is in
effect.

{ELOOP] Too many symbolic links were encountered in translating the path name.

WARNINGS .
If unlink() isused on a directory that is not empty (contains files other than . and ..), the directory is
unlinked, the files become orphans, and the directory link count is left with an inaccurate value unless they
are linked by some other directory.

If unlink() is used on a directory that is empty (contains only the files . and ..), the directory is
unlinked, but the parent directory’s link count is left with an inaccurate value.

In either of the above cases, the file system should be checked using £sck (see fsck(1IM)). To avoid these
types of problems, use rmdir () instead (see rmdir(2)).

SEE ALSO
rm(1), close(2), link(2), open(2), rmdir(2), privilege(5).

STANDARDS CONFORMANCE
unlink():AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

258 . -1- HP-UX Release 9.0: August 1992

ustat(2) ustat(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <ustat.h>

int ustat(dev_t dev, struct ustat *buf);

DESCRIPTION
ustat () returns information about a mounted file system. dev is a device number identifying a device
containing a mounted file system. buf is a pointer to a ustat structure (defined in <ustat .h>) that
includes the following elements:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free 1inodes */
char £ fname([6]; /* Fllsys name */
char £f_fpackl[6]; /* Fllsys pack name */
int £f_blksize; /* Block size */
The values of the f_tfree and £_blkslze fields are reported in fragment size units.
RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
ustat () fails if one or more of the following is true:

[EINVAL] dev is not the device number of a device containing a mounted file system.
[EFAULT] buf points outside the process’s allocated address space. The reliable detection of this error
is implementation dependent.
AUTHOR
ustat () was developed by AT&T and HP.
SEE ALSO

touch(1), stat(2), fs(4).

STANDARDS CONFORMANCE
ustat (): SVID2, XPG2

HP-UX Release 9.0: August 1992 -1- 259

utime(2) utime(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <utime.h>

int utime(const char *path, const struct utimbuf *times);

DESCRIPTION
utime () sets the access and modification times of the file to which the path argument refers.

If times is a null pointer, the access and modification times of the file are set to the current time. A process
must be the owner of the file or have write permission on the file to use utime () in this manner.

If times is not a null pointer, times is interpreted as a pointer to a utimbuf structure and the access and
modification times are set to the values contained in the designated structure. Only the owner of the file or
users having appropriate privileges can use utime () this way.

The following times in the utimbuf structure defined in <utime.h> are measured in seconds since
00:00:00 UTC (Universal Coordinated Time), Jan. 1, 1970.

time_t actime; /* access time */
time_t modtime; /* modification time */
RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
utime () fails if one or more of the following is true:
[ENOENT The named file does not exist.
[ENOTDIR] A component of the path prefix is not a directory.
[EACCES] Search permission is denied by a component of the path prefix.
[EPERM] The effective user ID is not a user with appropriate privileges. and not the owner of
the file, and times is not a null pointer.
[EACCES] The effective user ID is not a user with appropriate privileges, and not the owner of
the file, times is a null pointer, and write access is denied.
[EROFS] The file system containing the file is mounted read-only.
[EFAULT] times is not a null pointer, and points outside the process’s allocated address space.
The reliable detection of this error is implementation dependent.
[EFAULT] path points outside the process’s allocated address space. The reliable detection of
this error is implementation dependent.
[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAX bytes, or the length of a
component of the path name exceeds NAME_MAX bytes while _POSIX_ NO_TRUNC
is in effect.
DEPENDENCIES

NFS: utime () may return EPERM when invoked on a remote file owned by the super-user, even if the
invoking user has write permission on the file.

SEE ALSO
touch(l), stat(2).

STANDARDS CONFORMANCE
utime (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

260 -1- HP-UX Release 9.0: August 1992

vfork(2) vfork(2)

NAME
vfork - spawn new process; share virtual memory

SYNOPSIS
#include <unistd.h>

pid_t vfork(void);

REMARKS
vfork() is a higher performance version of fork() that is provided on some systems where a perfor-
mance advantage can be attained.

viork() differs from fork() only in that the child process can share code and data with the calling pro-
cess (parent process). This speeds cloning activity significantly at a risk to the integrity of the parent pro-
cessif vEork() is misused.

The use of vEork () for any purpose except as a prelude to an immediate exec () or exit() is not
supported. Any program that relies upon the differences between fork() and vEfork () is not portable
across HP-UX systems.

All HP-UX implementations must provide the entry vEork (), but it is permissible for them to treat it
identically to £ork. On some implementations the two are not distinguished because the fork() imple-
mentation is as efficient as possible. Other versions may do the same to avoid the overhead of supporting
two similar calls.

DESCRIPTION
vEork() can be used to create new processes without fully copying the address space of the old process. If
a forked process is simply going to do an exec () (see exec(2)), the data space copied from the parent to the
child by fork() is not used. This is particularly inefficient in a paged environment, making vfork is
particularly useful. Depending upon the size of the parent’s data space, vEork () can give a significant
performance improvement over fork ().

vEork() differs from fork() in that the child borrows the parent’s memory and thread of control until a
call to exec () or an exit (either by a call to exit () or abnormally (see exec(2) and exif(2)). The parent
process is suspended while the child is using its resources.

vfork () returns 0 in the child’s context and (later) the pid of the child in the parent’s context.

vEork() can normally be used just like fork (). It does not work, however, to return while running in
the child’s context from the procedure which called vfork () since the eventual return from vfork()
would then return to a no longer existent stack frame. Be careful, also, to call _exit () rather than
exit () if you cannot exec (), since exit () flushes and closes standard 1/0 channels, thereby damag-
ing the parent process’s standard I/0 data structures. (Even with fork() it is wrong to call exit ()
since buffered data would then be flushed twice.)

The [vEork,exec] window begins at the vEork() call and ends when the child completes its exec ()
call.

RETURN VALUE
Upon successful completion, vEork () returns a value of 0 to the child process and returns the process ID
of the child process to the parent process. Otherwise, a value of —1 is returned to the parent, no child pro-
cess is created, and errno is set to indicate the error.

ERRORS
vEork () fails and no child process is created if any of the following conditions are encountered:

[EAGAIN] The system-wide limit on the total number of processes under execution would be
exceeded.
[EAGAIN] The system-imposed limit on the total number of processes under execution by a sin-
gle user would be exceeded.
DEPENDENCIES
Series 800

Process times for the parent and child processes within the [vEork,exec] window may be inaccurate.

Parent and child processes share the same stack space within the [vEork,exec] window. If the size
of the stack has been changed within this window by the child process (return from or call to a

HP-UX Release 9.0: August 1992 -1- 261

vfork(2) vfork(2)

function, for example), it is likely that the parent and child processes will be killed with signal SIG-
SEGV or SIGBUS.

In the [vfork,exec] window, a call to signal () (see signal(2) that installs a catching function
can affect handling of the signal by the parent. The parent is not affected if the handling is being set
to SIG_DFL or SIG_IGN, or if either slgaction() or sigvector () is used (see sigaction(2)

and gianpnfnr(')))‘

sigvector(2
AUTHOR

vfork() was developed by the University of California, Berkeley.
SEE ALSO

exec(2), exit(2), fork(2), wait(2).

262 -2- HP-UX Release 9.0: August 1992

vismount (2) vismount(2)

NAME
vismount - mount a file system

SYNOPSIS
#include <sys/mount.h>

int vEfsmount (
int type,
const char *dir,
int flags,
caddr_t data

)i

DESCRIPTION
vEsmount () attaches a file system to a directory. After a successful return, references to directory dir
refer to the root directory of the newly mounted file system. dir is a pointer to a null-terminated string con-
taining a path name. dir must exist already, and must be a directory. dir cannot be a context-dependent
file (see cdf(4)). Its old contents are inaccessible while the file system is mounted. vfsmount () differs
from mount () (see mount(2)) in its ability to mount file system types other than just the UFS type.

type indicates the type of the file system. It must be one of the types described below. vfsmount () does
not check that the file system is actually of type #ype; if type is incorrect, vEsmount () may cause the pro-
cess to hang. To prevent such problems, statfsdev() (see staffsdev(3c)) should be called before
vEsmount () to check the file system type, which statfsdev () placesinthe £_fsid[1] field of the
stat£s structure it returns.

The flags argument determines whether the file system can be written to (functionally identical to the
rwflag argument in mount(2) in this regard). It also controls whether programs from the mounted file
system are allowed to have set-uid execution. Physically write-protected and magnetic tape file systems
must be mounted read-only. Failure to do so results in a return of -1 by vEsmount () and a value of EIO
in errno. The following values for the flags argument are defined in <8ys /mount . h>:

M_RDONLY Mount done as read-only.
M_NOSUID Execution of set-uid programs not permitted.

data is a pointer to a structure containing arguments specific to the value contained in zype. The follow-
ing values for #ypes are defined in <sys /mount .h>:

MOUNT_UFS Mount a local HFS file system. data points to a structure of the following for-
mat:

struct ufs_args {
char *fapec;
}:

fspec points to the name of the block special file that is to be mounted. This is identical in use and func-
tion to the first argument for mount(2).

MOUNT_CDFS Mount a local CD-ROM file system. dafa points to a structure of the following
format:

struct cdfs_args {
char *fapec;
}i
fspec points to the name of the block special file that is to be mounted.

NETWORKING FEATURES
NFS
An additional value for the fype argument is supported.

MOUNT_NFS Mount an NFS file system. data points to a structure of the following format:

#include <nfs/nfs.h>
#include <netinet/in.h>

HP-UX Release 9.0: August 1992 -1- 263

vismount(2) vismount(2)
struct nfs_args {
struct sockaddr in *addr;
fhandle_t *fh;
int flags;
int wslze;
int rsize;
int timeo;
int retrans;
char *hostname;
int acregmin;
int acregmax;
int acdirmin;
int acdirmax;
}:
Elements in the structure as as follows:
addr Points to a local socket address structure (see inet(7)), which is used by the system to
communicate with the remote file server.
fh Points to a structure containing a file handle, an abstract data type that is used by

the remote file server when serving an NFS request.

flags Bit map that sets options and indicates which of the following fields contain valid
information. The following values of the bits are defined in <nfs/nfs.h>:

NFSMNT_SOFT

NFSMNT_WSIZE
NFSMNT_RSIZE
NFSMNT_TIMEO

Specify whether the mount is a soft mount or a hard
mount. If set, the mount is soft and will cause requests to
be retried retrans number of times. Otherwise, the
mount is hard and requests will be tried forever.

Set the write size.
Set the read size.
Set the initial timeout value.

NFSMNT_RETRANS Set the number of request retries.
NFSMNT_HOSTNAME

NFSMNT_INT

NFSMNT_NODEVS

NFSMNT_IGNORE
NFSMNT_NOAC

NFSMNT_NOCTO

264

Set a hostname.

Set the option to have interruptible I/O to the mounted file
system.

Set the option to deny access to local devices via NFS device
files. By default, access to local devices via NFS device files
is allowed.

Mark the file system type as ignore in /etc/mnttab.

Turn off attribute caching. By default NFS caches attri-
butes of files and directories to speed up operations on NFS
files by not always getting the attributes from the server.
Names are also cached to speed up path name lookup.
However it does allow modifications to files on the server to
not be immediately detectable on the clients. Setting
NFSMNT_NOAC turns off attribute caching and name
lookup caching. NFS caches attributes for a length of time
proportional to how much time has elapsed since the last
modification. The time length is subject to acregmin,
acregmax, acdirmin, and acdirmax described below.

Cached attributes are flushed when a NFS file is opened
unless this option is specified. This option is useful where
it is known that the files will not be changing as is the case
for a CD-ROM drive.

-2- HP-UX Release 9.0: August 1992

vfsmount(2) vfsmount(2)

NFSMNT_ACREGMIN
Use the acregmin value. See acregmin below.

NFSMNT_ACDIRMIN
Use the acdirmin value. See acdirmin below.

NFSMNT_ACREGMAX
Use the acregmax value. See acregmax below.

NFSMNT_ACDIRMAX
Use the acdirmax value. See acdirmax below.

wsize
Can be used to advise the system about the maximum number of data bytes to use for a single outgo-
ing protocol (such as UDP) message. This value must be greater than 0. Default wsizeis 8192.

rsize
Can be used to advise the system about the maximum number of data bytes to use for a single incom-
ing protocol (such as UDP) message. This value must be greater than 0. Default rsize is 8192.

timeo
Can be used to advise the system on the time to wait between NFS request retries. This is in units of
0.1 seconds. This value must be greater than 0. Default timeois 7.

retrans
Can be used to advise the system about the number of times the system will resend a request. This
value must be 0 or greater. Default retransis 4.

hostname
A name for the file server that can be used when any messages are given concerning the server. The
string can be of length from 0 to 32 characters.

acregmin
can be used to advise the system the minimum number of seconds to cache attributes for a non-
directory file. If this number is less than 0, it means to use the system defined maximum of 3600
seconds. The number specified can not be 0. If the number is greater than 3600, 3600 will be used.
Default acregminis 3. isignored if NFSMNT_NOAC is specified.

acdirmin
can be used to advise the system the minimum number of seconds to cache attributes for a directory.
If this number is less than 0, it means to use the system defined maximum of 3600 seconds. The
number specified can not be 0. If the number is greater than 3600, 3600 will be used. Default
acdirminis 30. acdirmin isignored if NFSMNT_NOAC is specified.

acregmax
can be used to advise the system the maximum number of seconds to cache attributes for a non-
directory file. If this number is less than 0, it means to use the system defined maximum of 36000
seconds. The number specified cannot be 0. If the number is greater than 36 000, 36000 is used.
Default acregmaxis 60. acregmax isignored if NFSMNT_NOAC is specified.

acdirmax can be used to advise the system the maximum number of seconds to cache attributes for a
directory. If this number is less than 0, it means to use the system defined maximum of 36 000 seconds.
The number specified cannot be 0. If the number is greater than 36 000, 36 000 will be used. Default
acdirmaxis 60. acdirmax isignored if NFSMNT_NOAC is specified. '

RETURN VALUE
Upon successful completion, vEsmount () returns a value of 0. Otherwise, no file system is mounted, a
value of -1 is returned, and errno is set to indicate the error.

ERRORS
vEsmount () fails when one of the following occurs:

[EBUSY] dir is not a directory, or another process currently holds a reference to it.
{EBUSY] No space remains in the mount table.
[EBUSY] The super block for the file system had a bad magic number or an out-of-range block size.

HP-UX Release 9.0: August 1992 -3- 265

vismount(2) vismount(2)

[EBUSY] i\Iot enough memory was available to read the cylinder group information for the file sys-
em.

[EFAULT] data or dir points outside the allocated address space of the process.

[EINVAL] dir is a context-dependent file (see cdf(4).

[EIO} An 1/0 error occurred while reading from or writing to the file system.

[EIO] An attempt was made to mount a physically write protected or magnetic tape file system as
read-write.

[ELOOP] Too many symbolic links were encountered while translating the path name of file system
referred to by data or dir.

[ENAMETOOLONG]

The path name of the file system referred to by dafa or dir is longer than PATH MAX
bytes, or the length of a component of the path name exceeds NAME_MAX bytes while
_POSIX NO_TRUNC is in effect.

[ENOENT The file system referred to by data or dir does not exist.
[ENOENT The file system referred to by data does not exist.

[ENOTBLK] The file system referred to by data is not a block device. This message can occur only dur-
ing a local mount.

[ENOTDIR] A component of the path prefix in dir is not a directory.

[ENOTDIR] A component of the path prefix of the file system referred to by date or dir is not a direc-
tory.

[ENXIO] The major device number of the file system referred to by dafa is out of range (indicating
that no device driver exists for the associated hardware).

[EOPNOTSUPP] vfsmount () of a remote device was attempted.
[EPERM] The caller does not have appropriate privileges.

DEPENDENCIES
NFS: vEsmount () fails when one of the following occurs, and returns the error indicated:

[EFAULT] A pointer in the data structure points outside the process’s allocated address space.
[EINVAL] A value in a field of data is out of proper range.

[EREMOTE] An attempt was made to remotely mount a file system that was already mounted from
another remote node.

See getfh(2), inet(7), and mountd(1M) for more information.

HP Clustered Environment:
vEsmount () of a local CDFS file system (MOUNT_CDFS) is not supported from a cluster client.
Such a call returns an EINVAL error.
WARNINGS
Use of mount(1M) is preferred over vEsmount () because mount(1M) supports all mounting options that
are available from vEfsmount () directly, plus mount(1M) also maintains the /etc/mnttab file which
lists what file systems are mounted.

In the HP Clustered environment, the spec and dir arguments should always be fully expanded pathnames.

AUTHOR
vEsmount () was developed by HP and Sun Microsystems, Inc.

SEE ALSO
mount(2), umount(2), mount(1M).

266 -4~ HP-UX Release 9.0: August 1992

wait(2) wait(2)

NAME
wait, waitpid, wait3 - wait for child or traced process to stop or terminate

SYNOPSIS
#include <sys/wait.h>

pid_t wailt(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);
pid_t wait3(int *stat_loc, int options, int *reserved);

DESCRIPTION
walt () suspends the calling process until one of the immediate children terminates or until a process
being traced stops because that traced process has hit a break point. A process being traced can be either a
child or a process attached by the ptrace () request PT_ATTACH (see ptrace(2)). The walt () system
call returns prematurely if a signal is received. If a child or traced process stops or terminates prior to the
call on wailt, return is immediate.

If stat_loc is not a null pointer, status information is stored in the location pointed to by staz_loc. The
status can be used to differentiate between stopped and terminated processes. If the process terminates,
the status identifies the cause of termination and passes useful information to the calling process. This is
accomplished using the following macros defined in <sys/wait.h>, with the status value stored at
*stat_loc as an argument;:

WIFEXITED(stat_val) If the process terminated because of an exit () or _exit () system
call, this macro evaluates to a non-zero value.

WEXITSTATUS (stat_val)
If the value of WIFEXITED (sfaf_val) is non-zero, this macro evaluates to
the low-order 8 bits of the argument that the process passed to exit () or
_exit () (see exit(2)).

WIFSIGNALED (sfat_val)
If the process terminated due to the default action of a s1g-na1 (see sig-
nal(5)), this macro evaluates to a non-zero value.

WTERMSIG (stat_val) If the value of WIFSIGNALED (staf_val) is non-zero, this macro evaluates
to the number of the signal that caused the termination.

WCOREDUMP (stat_val) Ifthe value of WIFSIGNALED (staf_val) is non-zero, this macro evaluates
to a non-zero value if a “core image” was produced (see signal(5)).

WIFSTOPPED (stat_val) Ifthe process is stopped, this macro evaluates to a non-zero value.

WSTOPSIG (stat_val) If the value of WIFSTOPPED (staf_val) is non-zero, this macro evaluates
to the number of the signal that caused the process to stop.

As a single special case, the value stored in *staf_loc is zero if and only if status is being returned from a
terminated process that called exit () or _exit () with a value of zero.

If the information stored at the location pointed to by stat_loc was stored there by a call to one of the
wait () functions, exactly one of the macros WIFEXITED (*stat_loc), WIFSIGNALED (*stat_loc), or
WIFSTOPPED (*stat_loc) evaluates to a non-zero value.

The waitpid() function behaves identically to wait () if pid has a value of -1 and options has a
value of zero. Otherwise its behavior is modified by the values of the pid and options arguments.

The pid argument specifies the set of processes for which status is requested. waitpid returns only the
status of a child process from this set.

e If pid is equal to -1, status is requested for any child process or attached process. In this
respect, waltpid () isthen equivalent to wait ().

o If pid is greater than zero, it specifies the process ID of a single child or attached process for
which status is requested.

o If pid is equal to zero, status is requested for any child or attached process whose process group
ID is equal to that of the calling process.

HP-UX Release 9.0: August 1992 -1- 267

wait(2) wait(2)

e Ifpid isless than -1, status is requested for any child or attached process whose process group
ID is equal to the absolute value of pid.

The options argument is constructed from the bit-wise inclusive OR of zero or more of the following flags:

WNOHANG If this flag is set, waitpid() or wait3 () is prevented from suspending the cal-
ling process. A value of zero is returned indicating that no child or traced processes
have stopped or died.

WUNTRACED If and only if this flag is set, waitpid() or wait3 () returns information on
child or attached processes that are stopped but not traced (with ptrace(2)) because
they received a SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal, and whose
status has not yet been reported. Regardless of this flag, status is returned for
child or attached processes that have terminated or are stopped and traced and
whose status has not yet been reported.

Calling wait3 () is equivalent to calling waitpid() with the value of pid equal to zero. The third
parameter to wait3 () is currently unused and must always be a null pointer.

If a parent process terminates without waiting for its child processes to terminate, the parent process ID
of each child process is set to 1. This means the initialization process inherits the child processes.

Notes
Earlier HP-UX versions documented the bit encodings of the status returned by wait () rather than the
macros WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, and
WSTOPSIG. Applications using those bit encodings will continue to work correctly. However, new applica-
tions should use the macros for maximum portability.

In earlier HP-UX versions, the macros WIFSTOPPED, WIFSIGNALED, and WIFEXITED have the same
definitions as the correspondingly named macros in the BSD 4.3 and earlier systems. Existing applications
that depend on these definitions will continue to work correctly. However, if the application is recompiled,
the feature test macro _BSD must be turned on for the compilation so that the old definitions of these mac-
ros are obtained. New definitions of these macros are in effect by default. The only difference between the
old and new definitions is the type of the argument. Type union walt is used in the BSD definitions
while type int isused in the default definitions.

ERRORS
wailt () fails if one or more of the following is true:

[ECHILD] The calling process to wailt() or wait3() has no existing child or traced
processes, or the calling process to waitpid() has no existing unwaited-for child or
traced processes that match the pid argument.

[ECHILD] For waltpid(), the process or process group specified by pid does not exist or is not
a child of the calling process.

{EFAULT] stat_loc points to an illegal address. The reliable detection of this error is implemen-
tation dependent.

[EINVAL] The options argument to waltpid () or wait3 () isinvalid.

[EINVAL] wait3 () was passed a non-null pointer value for its third argument.

[EINTR] The function was interrupted by a signal. The value of the location pointed to by

stat_loc is undefined.

RETURN VALUE
If walt () returns due to the receipt of a signal, a value of -1 is returned to the calling process and
errno is set to EINTR. If wailt () returns due to a stopped or terminated child or traced process, the pro-
cess ID of that process is returned to the calling process. If waitpid() or wait3() is called, the WNOHANG
option is used, and there are no stopped or terminated child or traced processes (as specified by pid in the
case of waifpid()), a value of zero is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

WARNINGS
The behavior of wait (), waitpid(), and wait3() is affected by setting the SIGCLD signal to
SIG_IGN. See WARNINGS section of signal(5). Signal handlers that cause system calls to be restarted can

268 -2- HP-UX Release 9.0: August 1992

wait(2) wait(2)

affect the EINTR condition described above (see sigaction(2), sigvector(2), and bsdproc(2)).

AUTHOR
walt (), waltpid(), and wait3 () were developed by HP, AT&T, and the University of California,
Berkeley.

SEE ALSO
Exit conditions ($?) in sh(1), exec(2), exit(2), fork(2), pause(2), ptrace(2), signal(5).

STANDARDS CONFORMANCE
wait ():AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

waltpid(): AES, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 9.0: August 1992 -3- 269

write(2) write(2)

NAME

write, writev - write on a file

SYNOPSIS

#include <unistd.h>
sslze_t write(int fildes, const vold *buf, size_t nbyte);
#include <sys/ulo.h>

ssize t writev(
int fildes,
const struct lovec *iov,
size_t iovent

):

DESCRIPTION

270

write () attempts to write nbyte bytes from the buffer pointed to by buf to the file associated with the file
descriptor fildes. writev () performs the same action, but gathers the output data from the iovlen
buffers specified by the elements of the 1ovec array: 1ovi0], 1ov(1], ..., Loviiovent-1].

The 1ovec structure for writev () is defined as follows:

struct lovec {
caddr_t 1iov_base;
int ilov_len;
};
Each 1lovec entry specifies the base address and length of an area in memory from which data should be
copied. The lovec array can be at most MAXIOV long.

On devices capable of seeking, the actual writing of data proceeds from the position in the file indicated by
the file offset. Upon return from write (), the file offset is incremented by the number of bytes actually
written.

On devices incapable of seeking, writing always takes place starting at the device’s current position. The
value of a file offset associated with such a device is undefined.

If the O_APPEND file status flag is set, the file offset is set to the end of the file prior to each write.

For ordinary files, if the O_SYNC flag of the file status flags is set, the write does not return until both the
file data and the file status are physically updated. For block special files, if O_SYNC is set, the write does
not return until the data is physically updated. How the data reaches the physical media is
implementation- and hardware-dependent.

If the number of bytes requested by write () exceeds the allotted capacity (see ulimit(2)) or the physical
end of a medium, only the allotted number of bytes are actually written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512 bytes returns 20. The next write of
a non-zero number of bytes fails (except as noted below).

A write to an ordinary file is prevented if enforcement-mode file and record locking is set, and another pro-
cess owns a lock on the segment of the file being written:

If O_NDELAY or O_NONBLOCK is set, the write returns —1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, the write does not complete until the blocking record
lock is removed.

If the file being written is a pipe (or FIFO), the system-dependent maximum number of bytes that it can
store is given by PIPSIZ (defined in <sys/inode.h>). The minimum value of PIPSIZ on any HP-UX
system is 8192. When writing a pipe, the following conditions apply:

Ifthe O_NDELAY or O_NONBLOCK file status flag is set:

If nbyte is less than or equal to PIPSIZ and sufficient room exists in the pipe or FIFO, the
write () succeeds and returns the number of bytes written;

If nbyte is less than or equal to PIPSIZ but insufficient room exists in the pipe or FIFO, the
write() returns having written nothing. If O_NONBLOCK is set, —1 is returned and errno

-1- HP-UX Release 9.0: August 1992

write(2)

write(2)

is set to EAGAIN. If O_NDELAY is set, 0 is returned.

If nbyte is greater than PIPSIZ and the pipe or FIFO is full, the write returns having written
nothing. If O_NONBLOCK is set, —1 is returned and errno is set to EAGAIN. If O_NDELAY is
set, O isreturned.

If nbyte is greater than PIPSIZ, and some room exists in the pipe or FIFO, as much data as fits
in the pipe or FIFO is written, and write () returns the number of bytes actually written, an
amount less than the number of bytes requested.

Ifthe O_NDELAY and O_NONBLOCK file status flags are clear:

The write() always executes correctly (blocking as necessary), and returns the number of
bytes written.

If write () is interrupted by a signal after it successfully writes some data, it returns the number of
bytes written before the interrupt occurred. If write() is interrupted before any bytes are written,
write () returns-1 and sets errno to EINTR.

write () clears the SUID, SGID, and sticky bits on all non-directory type files if the write is performed by
any user other than the owner or a user who has appropriate privileges. For directories, write () does
not clear the SUID, SGID, and sticky bits.

RETURN VALUE

Upon successful completion, the number of bytes actually written is returned. Otherwise, —1 is returned
and errno is set to indicate the error.

ERRORS

write () fails and the file offset remains unchanged if any of the following conditions is true:

[EBADF]

fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal]

[EINTR]
[EDEADLK]

[EDQUOT]
[EAGAIN]

[ENOLCK]

[EIO]

[EIO]
[ENOSPC]

An attempt is made to write to a pipe that is not open for reading by any process.
A signal was caught before any data was transferred (see sigvector(2).
A resource deadlock would occur as a result of this operation (see lockf(2) and

fentl(2)).
User’s disk quota block limit has been reached for this file system.

Enforcement-mode file and record locking was set, O_NDELAY was set, and there
was a blocking record lock.

The system record lock table is full, preventing the write from sleeping until the
blocking record lock is removed.

The process is in a background process group and is attempting to write to its control-
ling terminal, TOSTOP is set, the process is neither ignoring or blocking the SIGTTOU
signal, and the process group of the process is orphaned.

An 1I/0 error occurred while writing to the device corresponding to fildes.
Not enough space on the file system.

In addition, writewv () might return one of the following errors:

[EFAULT]

[EINVAL]
[EINVAL]
[EINVAL]

iov_base or 1ov points outside of the allocated address space. The reliable
detection of this error is implementation dependent.

iovent is less than or equal to 0, or greater than MAXTOV.
One of the 1ov_len valuesinthe iov array was negative.

The sum of 1ov_1len valuesinthe 1ov array overflowed a 32-bit integer.

write() or writev() fails, the file offset is updated to reflect the amount of data transferred, and
errno is set accordingly if one of the following conditions is true:

[EFBIG]

An attempt was made to write a file that exceeds the process’s file size limit or the
maximum file size. See ulimit(2).

HP-UX Release 9.0: August 1992 -2- 271

write(2) write(2)

{EFAULT] buf points outside the process’s allocated address space. The reliable detection of
this error is implementation dependent.

EXAMPLES

Assuming a process opened a file for writing, the following call to write(2) attempts to write mybufsize bytes
to the file from the buffer to which mybuf points.

#include <string.h>

int mybufsize, nbytes, fildes;

char *mybuf = "aelou and sometimes y";
mybufsize = strlen (mybuf);

nbytes = write (fildes, mybuf, mybufsize);

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector(2). sigvector(2) can
affect the behavior described on this page.

Character special devices, and raw disks in particular, apply constraints on how write() can be used.
See specific Section (7) manual entries for details on particular devices.

AUTHOR
write() was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
creat(2), dup(2), lockf(2), Iseek(2), open(2), pipe(2), ulimit(2), ustat(2).

STANDARDS CONFORMANCE
write(): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

272 -3- HP-UX Release 9.0: August 1992

Section 3:
Library Functions

intro(3) intro(3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
#include <stdio.h>

#include <math.h>

DESCRIPTION
This section describes functions found in various libraries, other than those functions that directly invoke
HP-UX system primitives, which are described in Section (2) of this volume. Certain major collections are

identified by a letter afier the section identifier {3):

30C) These functions, together with the Operating System Calls and those marked (3S), consti-
tute the Standard C Library which is automatically loaded by the C compiler, cc(1). The
link editor Jd(1) searches this library if the -1lc option is specified. Declarations for some
of these functions can be obtained from #include files indicated in the appropriate

entries.
3G These functions constitute the graphics library, and are documented in separate manuals.
(30) These functions constitute the instrument support (Device I/O) library.

BM) These functions constitute the Math Libraries, 1ibm.a and 1ibM.a. All of the functions
are in both libraries except for matherr (see matherr(3M) for more details). The HP-UX
operating system provides two different libraries due to to conflicts between Issue 2 of the
SVID specification and the ANSI C standard. If behavior conforming to SVID Issue 2 is
desired, l1ibm.a should be used. If behavior conforming to the ANSI C standard is
desired, 1ibM.a should be used. The 1ibm. a library is automatically linked as needed
by the FORTRAN compiler (see f77(1)). Neither is automatically loaded by the C compiler
(see cc(1)); however, the link editor searches this library if the -1m (for 1ibm.a)or -1M
(for 11bM.a) option is specified. Declarations for these functions are available in the
header file <math.h>. Several generally useful mathematical constants are also defined
there (see math(5)).

(3N) These functions are applicable to the Internet network, and are part of the standard C
library, 1ibc.a.

39) These functions constitute the “standard /O package” (see stdio(3S)). These functions are
in the library 1ibec, already mentioned. Declarations for these functions can be obtained
from the #include file <stdio.h>.

(8X) Various specialized libraries. The files in which these libraries are found are specified in
the appropriate entries.

Definitions

The word character is used to refer to a bit representation that fits in a byte and represents a single
graphic character or control function. The null character is a character with value 0, represented in the C
language as \ 0. A character array is a sequence of characters. A null-terminated character array is
a sequence of characters, the last of which is the null character. A string is a designation for a null-
terminated character array. The null string is a character array containing only the null character. A
null pointer is the value that is obtained by casting 0 into a pointer. The C language guarantees that two
null pointers always compare equal, and a null pointer always compares unequal to a pointer to any object
or function. Consquently, many functions that return pointers return a null pointer to indicate an error.
The macro NULL expands to a null pointer constant and is defined in <stddef .h> and certain other
headers.

Many groups of FORTRAN intrinsic functions have generic function names that do not require explicit or
implicit type declaration. The type of the function is determined by the type of its argument or arguments.
For example, the generic function max returns an integer value if given integer arguments (max0), a real
Era]ue if given real arguments (amax1), or a double-precision value if given double-precision arguments
dmax1).

DIAGNOSTICS
Functions in the C and Math Libraries, (3C) and (3M), may return the conventional values 0 or
+HUGE_VAL (the largest-magnitude double-precision floating-point numbers; HUGE_VAL is defined in the

HP-UX Release 9.0: August 1992 -1- 273

intro(3) intro(3)

<math.h> header file) when the function is undefined for the given arguments or when the value is not
representable. Functions in the Math Libraries may also return +INFINITY or NaN. In these cases, the
external variable errno (see errno(2)) is set to the value EDOM or ERANGE. As many of the FORTRAN
intrinsic functions use the routines found in the Math Library, the same conventions apply.

WARNINGS

Library routines in libc.a and libm.a often call other routines in these libraries. Prior to HP-UX
reiease 7.0, a user could define a function having the same name as one of these library routines, and this
function would be linked in instead of the library version. In this way, a user could effectively replace a
library routine with his own (see matherr(3M) for a supported example of this). More often, this type of
linkage would occur unintentionally, causing unexpected behavior which was difficult to debug.

Starting at Release 7.0, object names in libraries have been modified such that they are much less likely to
collide with user names. Therefore, calls te library routines from within other library routines are much
more likely to call the actual library routine. (matherr(3M) is the only exception to this.)

In spite of these changes, it is still remotely possible for name conflicts to occur. The lint(1) program
checker reports name conflicts of this kind as “multiple declarations” of the names in question. Definitions
for Sections (2), (3C), and (3S) are checked automatically. Other definitions can be included by using the
-1 option (for example, -1m includes definitions for the Math Library, 1ibm.a. Use of linf(1) is highly
recommended.

FII-ll‘:slli‘b/libc.a Standard /O, operating system calls, and general purpose routines archive library.
Nib/libe.sl Standard I/0, operating system calls, and general purpose routines shared library.
Nib/libcurses.sl CRT screen handling shared library.

ANib/libm.a SVID2 compliant math archive library.
Nib/libm.s] SVID2 compliant math shared library.
/lib/libM.a XPG3, POSIX.1, ANSI-C compliant math archive library.
Nib/libM.sl XPG3, POSIX.1, ANSI-C compliant math shared library.

fusr/lib/libF77.a General FORTRAN 77 routines archive library.
Jusr/1lib/libF77 sl General FORTRAN 77 routines shared library.

SEE ALSO

274

intro(2), stdio(3S), math(5), hiex(5), ar(1), cc(1), £77(1), 1d(1), lint(1), nm(1).
The introduction to this manual.
Device I/ O Library, tutorial in Device I/ O Users Guide .

-2- HP-UX Release 9.0: August 1992

a641(3C) a641(3C)

NAME
a641(), 164a() - convert between long integer and base-64 ASCII string

SYNOPSIS
#include <stdlib.hs>

long int aé64l(const char *sg);
char *164a(long int 1);

DESCRIPTION
These functions are used to maintain numbers stored in base-64 ASCII characters. This is a notation by

« 10 ne ar

which long integers can be represented by up to six characters; each character represents a "digit" in a
radix-64 notation.

The characters used to represent "digits" are . for 0, / for 1, 0 through 9 for 2-11, A through Z for
12-37, and a through z for 38-63.

The leftmost character is the least significant digit. For example,
a0 = (38 x 64°) + (2 x 64%) = 166

a641 () takes a pointer to a null-terminated base-64 representation and returns a corresponding long
value. If the string pointed to by s contains more than six characters, a641 () uses the first six.

164a() takes a long argument and returns a pointer to the corresponding base-64 representation. If
the argument is 0, 164a() returns a pointer to a null string.

WARNINGS
The value returned by 164a() is a pointer into a static buffer, the contents of which are overwritten by

each call.

STANDARDS CONFORMANCE
a641():SVID2

164a():SVID2

HP-UX Release 9.0: August 1992 -1- 276

AAudioString (3X) Series 700 Only AAudioString (3X)

NAME
AAudioString - get name of audio controller (string) passed to AOpenAudio()

SYNOPSIS
#include <audio/Alib.h>
char *AAudioString (Audio *audio):;
DESCRIPTION
AAudioString () returns the audio_name (string) that was passed to AOpenAudio () . If audio_name
was NULL, the value of the AUDIO variable was used, and that is the value returned.

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon successful completion, AAudioString() returns the audio_name (string) that was passed to
AOpenAudio (). If audio_name is NULL, the value of the AUDIO variable is used, and that is the value
returned. .

ERRORS
AAudlostring () does not return an error status.

EXAMPLES
The following call to AAudioString gets the name of the audio controller (string) that was passed to
AOpenAudio().

char *ac_name; /* name of audio
Audio *audio; /* audlo connection */"

/* get audio controller name */
ac_name = AAudioString(audio):;
DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The

audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
AAudiostring () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

276 - -1- HP-UX Release 9.0: August 1992

ABestAudioAttributes (3X) Series 700 Only ABestAudioAttributes(3X)

NAME
ABestAudioAttributes - get best audio attribute setting for specified controller

SYNOPSIS
#include <audio/Alib.h>

AudioAttributes *ABestAudioAttributes (Audio *audio);

DESCRIPTION
ABestAudioAttributes () returns a pointer to an AudioAttributes structure containing the
optimal attributes for the audio controller associated with the audio connection. The application can use
the returned attributes pointer directly in subsequent audio operation calis.

Changes should not be made to the AudioAttributesstructure; rather, the application should copy the
structure and make changes in the copy, as shown in the example below.

audio specifies the Audio structure associated with this connection.

RETURN VALUE
Upon successful completion, ABestAudioAttributes() returns a pointer to an AudioAttri-
butes structure.

ERRORS
ABestAudiocAttributes () does not return an error status.

EXAMPLES
The following example shows a call to ABestAudioAttributes () to get the pointer to the best audio
attributes.

Audlio *audlo; /* audio connection */"
AudioAttributes *bestAttr; /* best attributes */"

/* get best audio attributes */
bestAttr = ABestAudioAttributes (audio);

This example shows how to get a copy of the best attributes and make a change to a field in the copy. The
program assigns the contents at the returned pointer (the audio attributes) to myAtér and then sets the
value of the sampled_attr field in myAttr to ASAFBitPerSample.

Audio *audio; /* audio connection */
AudioAttributes myAttr; /* my copy of best attributes */

.

/* get copy of audlo attributes; change the copy */
myAttr = *ABestAudloAttributes (audlo);
myAttr.attr.sampled_attr.data_format = ADFALaw

DEPENDENCIES
This function belongs to the Audio Library of functions that manage connections to an audio server. The
audio server must run on a system that has audio hardware. To find out whether or not your system has
audio hardware, refer to the hardware manual that accompanies your system.

AUTHOR
ABestAudioAttributes () was developed by HP.

SEE ALSO
Using the Audio Application Program Interface.

HP-UX Release 9.0: August 1992 -1- 277

abort(3C) abort(3C)

NAME
abort() - generate a software abort fault

SYNOPSIS
#include <stdlib.h>

voild abort(void);

DESCRIPTION
abort () first closes all open files, streams, directory streams, and message catalogue descriptors, if possi-
ble, then causes the signal SIGABRT to be sent to the calling process. This may cause a core dump to be
generated (see signal(2)).

If the signal SIGABRT is caught, the handling function is executed. If the handling function returns, the
action for SIGABRT is then reset to IG_DFL, and the signal SIGABRT is sent again to the process to
ensure that it terminates.

RETURN VALUE
abort () does not return.

ERRORS
No errors are defined.

APPLICATION USAGE
SIGABRT is not intended to be caught.

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current directory is writable, a core dump is produced
and the message abort - core dQumped is written by the shell.

SEE ALSO
adb(1), exit(2), kill(2), signal(2). signal(5).

STANDARDS CONFORMANCE
abort (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

278 -1- HP-UX Release 9.0: August 1992

abs(3C) abs(3C)

NAME
abs(), labs() - return integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs(int 1);
long int labs(long int 1i);

DESCRIPTION
abs () returns the absolute value of its integer operand.

labs () is similar to abs (), except that the argument and the returned value each have type long int.
The largest negative integer returns itself.

WARNINGS
In two’s-complement representation, the absolute value of the negative integer with largest magnitude is
undefined. Some implementations trap this error, but others simply ignore it.

SEE ALSO
floor(3M).

STANDARDS CONFORMANCE
abs (): AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

labs (): AES, XPG4, ANSI C

HP-UX Release 9.0: August 1992 -1- 279

ACalculateLength (3X) ACalculateLength(3X)

NAME
ACalculateLength - return the size in bytes of converted data

SYNOPSIS
#include <audio/Alib.h>

long ACalculatelLength (
Audio *audio,

aluaio

long bufferl_size,
AudioAttributes *buffer1_attributes,
AudloAttributes *buffer2_attributes,
long *status_return) ;
DESCRIPTION
ACaliculateLength () returns the size in bytes of the data in buffer 1 after it is converted to the attri-
butes of buffer2_attributes.

audio specifies the Audio structure associated with this connection.
bufferl_size specifies the length in bytes of the data in buffer 1.
bufferl_attributes specifies the attributes of the data in buffer 1.
buffer2_attributes specifes the attributes of the data in buffer 2.

status_return receives the returned status of the operation, unless it is set to NULL.

RETURN VALUE
Upon successful completion, ACalculateLength () returns the size in bytes of the data which will be
produced by converting a source buffer whose size in bytes is specified in bufferI_size and whose attributes
are specified in bufferl_attributes to the attributes specifed in buffer2_ottributes.
ERRORS
If status_return is not set to NULL, the following is returned in status_return:
0 AENoError

EXAMPLE
For an example, see /usr/audioc/examples/splayer.c
DEPENDENCIES)
This function belongs to the Audio Library of functions that manage connections to an au