
Creating Product Packages
for HP-UX

HP9000
Computers

Creating Product Packages for HP-UX

Fli'PW HEWLETT
~~ PACKARD

HP Part No. 82355-90031
Printed in USA 8/92

E0892

Legal Notices
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service Office.

Copyright © 1983-92 Hewlett-Packard Company

Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend .. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in sub-paragraph
(c)(l)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).

All Rights Reserved.

Copyright © 1979, 1980, 1983, 1985-1990 The Regents of the Univ. of
California.

This software and documentation is based in part on materials licensed from
The Regents of the University of California. We acknowledge the role of

the Computer Systems Research Group and the Electrical Engineering and
Computer Sciences Department of the University of California at Berkeley and
the other named Contributors in their development.

Copyright © 1990 Motorola, Inc. All Rights Reserved.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the
U.S.A. and other countries.

Copyright © Hewlett-Packard Company

Printing History
This is the first edition of this manual.

New editions of this manual will incorporate all material updated since this
first edition. The manual printing date and part number indicate its current
edition. The printing date changes when a new edition is printed. (Minor
corrections and updates which are incorporated at reprint do not cause the
date to change.) The manual part number changes when extensive technical
changes are incorporated.

iv

Typeface Conventions
Unless otherwise noted in the text, this manual uses the following typeface
conventions.

Table 0-1. Typeface Conventions

term Boldface text indicates a term that is being introduced for the first
time. See the Glossary for the term's definition.

variable_info Italic text in commands or messages represents values you must
supply. For example:

mkdir directory_ name

indicates that you should supply the directory_name component of
the command.

emphasis Italic text is also sometimes used for emphasis (for example: never
remove this file . ..).

command Typewriter text denotes command and file names, examples of
source code, and information displayed by the computer.

fpkg(lM) Refers to a page in the HP- UX Reference. This example says that
the topic fpkg is found in section 1M of the HP- UX Reference.

(Return) Used for graphic representations of the key caps on a keyboard.

Shaded text is used to represent function keys or menu items that
appear online.

[] Square brackets enclose optional items in formats and command
descriptions.

I A vertical bar separates items in a list of choices.

" . Horizontal ellipsis indicate that you can repeat the preceding item
one or more times.

Vertical ellipsis mean that irrelevant parts of a figure or example
have been omitted.

v

Scope and Organization of This Manual
This manual is for vendors or customers who want to package software in
a form that can be used by other HP-UX commands such as update(lM),
updist(lM), netdistd(lM), and rmfn(lM). Each chapter and appendix
addresses a particular aspect of the process for packaging software.

Table 0-2. Manual Organization

Chapter 1: Contains a general description of the fpkg tool, including
Introduction supported media types, media format versions, and

systems. Also gives a brief overview of the process of
packaging software products.

Chapter 2: Describes the prerequisites and conditions that must exist
Making a Package of when creating a software package, as well as a detailed
Software Products explanation of all the options available in the fpkg

command.

Chapter 3: Explains how to use the Product Specification File to
Defining the Structure structure the software product(s) you want to package. It
of the Product Package also contains information about how to modify the

structure of an existing software package.

Chapter 4: Shows the packaging process, giving examples of the
An Example of the Product Specification File, the log file, the format of the
Packaging Process package on the install media, and the files created on the

destination host.

Appendix A: Contains guidelines for writing and testing file set
Guidelines for customization and check scripts.
Installation
Control Scripts

Appendix B: Contains detailed information about how to re-create a
Re-Creating a Product Product Specification File.
Specification File

Glossary Defines the critical terms used in the packaging process.

vi

Related Documentation
In addition to this manual, you may find the following documentation useful:

• HP- UX Reference manual.

• The online manpages of the following related HP-UX commands:

fpkg(lM) Command that packages a set of source files (a software
product or application) into a format that is acceptable to
the update command.

update(lM) Command that installs or updates software from a host
system to a destination system.

netdistd(lM) Command that supports the installation of software across
the network, from a server host to one or more destination
hosts.

rmfn(lM) Command that removes software products interactively or
non-interactively from a system in units of filesets and/or
partitions.

updist(lM) Command that installs or updates the HP-UX system or
application files as "fileset packages" in a special directory.
This allows the system to be a network file distribution
(netdist) server. The network server daemon, netdistd,
finds the files in this special directory and supplies them to a
remote update process on request.

update (4) Describes the format of the update media.

CDFinfo(4) Describes the CDFinfo file format and rule syntax.

• Installing and Updating HP- UX -explains how to install/update software on
a local or remote host, remove software from a host, and manage network
servers.

vii

Contents

1. Introduction
Supported Media Types 1-2
Supported Media Format Versions 1-3
Supported Systems 1-4
An Overview of the Packaging Process 1-5

2. Making a Package of Software Products
Prerequisites and Conditions 2-1
Options Available With the fpkg Command 2-4

Defining the Type of Media to Create (-m media-type) 2-6
Naming the Network Media Destination (-d directory) . 2-6
Naming the Tape Media Device (-a archive-file) 2-7
Specifying the Tape Device Size (-8 device-size) 2-7
Specifying the Media Format Version (-V media-format-

version) 2-8
Determining Machine Series To Use Media (-5 machine-series) 2-9
Naming an Alternate Log File (-L logfile) 2-10
Treating Symbolic Links (-h) 2-10
Turning On Verbose Output (-v) 2-10
Changing the Comment String in MAIN .pkg (-c

comment-string) 2-10
Mixing Architectures (-M) 2-11
Re-Creating Media (-r media-directory) 2-11

Some Examples of Command Lines . . . 2-12

Contents-1

3. Defining the Structure of the Product Package
General Structure of HP- UX Update Media 3-1
Creating the Product Specification File 3-2

Prerequisites and Conditions 3-4
Defining Partition Attributes 3-4

partition_name (pn) . . . 3-4
partition_description (pd) 3-5

Defining Fileset Attributes 3-6
fileset_name (fn) 3-6
fileset_description (fd) 3-7
fileset _flags (ff) . . . 3-7
instruction_set (is) 3-9
system_architecture_type (sys) 3-10
fileset_dependency (dep) . . . 3-11
fileset _version (fv) 3-11
fileset_file_permission (ffperm) 3-13
fileset _directory _permission (fd perm) 3-14
customize 3-15
decustomize 3-16
copyright 3-17
CDFinfo . . 3-17
systemfile 3-18
media_order 3-19
media_format 3-19

Describing the Location of Files. 3-20
pseudo_root (pr) 3-20
Files (F) 3-21
More Information About File Location Keywords 3-22
Examples of the Use of File Location Keywords 3-24

4. An Example of the Packaging Process
Step 1: Satisfy the Necessary Prerequisites and Conditions 4-2
Step 2: Decide Which Options to Use for fpkg . . . 4-3
Step 3: Define the Structure of the Software Package 4-4

Example of Product Specification File 4-4
Step 4: Invoke the fpkg Command 4-6

Example of Log File. 4-6
Format of the Package on the Install Media 4-8

Contents-2

A.

B.

Guidelines for Installation Control Scripts
General Guidelines for Installation Control Scripts
Location and Execution of Installation Control Scripts

Details Common to Both Types of Installation Control Scripts
Details Specific to customize Scripts
Details Specific to decustomize Scripts

Execution of Other Commands by Installation Control Scripts
Input and Output From Installation Control Scripts
File Management for Installation Control Scripts
Testing Installation Control Scripts

Testing customize Scripts
Testing decustomize Scripts

Re-Creating a Product Specification File
Prerequisites and Conditions
Using fpkg to Re-Create a Product Specification File

Re-Creating a Product Specification File From CD-ROM Media
Re-Creating a Product Specification File From netdist Media

The Command Output
Output From CD-ROM Media
Output From netdist Media

Example

Glossary

Index

A-3
A-4
A-4
A-5
A-6
A-7
A-8

A-11
A-12
A-12
A-13

B-1
B-2
B-2
B-2
B-3
B-3
B-3
B-4

Contents-3

Tables

0-1. Typeface Conventions
0-2. Manual Organization
1-1. Supported Media Format Versions
2-1. Options of the fpkg Command
3-1. Keywords Used in the Product Specification File

Contents-4

v
vi

1-3
2-4
3-3

1
Introduction

The fpkg command allows you to package a collection of source files (a
software product) into a format that is acceptable to the HP-UX update
command. The update command is a convenient tool that lets you install new
products or patches to existing products.

The media produced by fpkg can be either tape archive format (see tar(l)) or
in a format usable by netdistd (see netdistd(lM)). The fpkg command cannot
be used to make CD-ROM media.

The fpkg command takes information about what is to be packaged from two
sources; command line arguments and a file called the Product Specification
File. These two sources tell fpkg what files are to be packaged, where they are
to be placed when loaded, what machine series (300/400,700, or 600/800) are
allowed to use these files, and how the source files are organized into logical
groups called filesets and partitions.

The Product Specification File allows the source files to be scattered
throughout a developer's file system and yet be pulled together by fpkg to be
more suitable for loading on another system. The Product Specification File
can also be used to specify permissions of each individual file or groups of files.
This gives you an easy way to guarantee that the files will be packaged with
the correct attributes, and not necessarily with those of the source file.

Introduction 1-1

Supported Media Types
Using fpkg, you can package software products for distribution on the following
media:

• Tape Media, which uses tar(l) to store software products and control files
needed by update to use the media (i.e., all of the product files and the
control files reside in a tar archive). Such an archive usually resides on a
serial media such as a DDS, cartridge, or nine-track tape, though a Tape
Media can be a simple, regular file that contains the tar archive. All tape
devices currently supported by update are also supported by fpkg .

• Network Media, which is used by the netdistd(lM) network distribution
daemon. Software packages can be added to an existing database, or a new
netdistd database will be created if it does not already exist. The default
netdist database is /netdist. This cannot be an NFS mounted directory.
If a fileset being added to a network database already exists with the same
fileset name, it will first be deleted from the database before adding.

The netdistd daemon cannot handle multiple media format versions in the
same database. The fpkg command will detect this and refuse to mix media
formats.

1-2 Introduction

Supported Media Format Versions
All HP-UX media is stamped with a media format version number, which
update uses to determine if the media is in a format that can be understood.
The update tool refuses to read media that is stamped with a media format
version higher (newer) than the update version. However, update can read
some media with a version number lower (older) than the update version (in
other words, it is backward-compatible but not forward-compatible). The
current versions of update and corresponding supported media format versions
appear in Table 1-1.

Table 1·1. Supported Media Format Versions

update Release Supported Media Format Versions

7.0 A.B7.00

8.0 A.B7.00 A.B8.00

8.05 and beyond A.B7.00 A.B8.00 A.B8.05

Table 1-1 helps determine which media format version to use when creating
product packages. The features introduced by each media format version are
summarized below:

A.B7.00

A.B8.00

A.B8.05

Provides basic functionality, usable by a large number of HP-UX
releases.

Allows for fileset versioning, which means that a fileset can depend
on a particular version of a different fileset. This allows update to
determine if a depended-on fileset needs to be (re)loaded or if the
version on the system is sufficient.

This is the first version that fully supports the Series 700. In
earlier versions, media must be marked for the Series 800, which
implies Series 700 also. This version is like the A.B8.00 version but
has two new fileset keywords (sys and is) that allow for greater
Series and instruction set specification.

Introduction 1-3

Supported Systems
The fpkg tool supports all HP-UX architectures currently supported by
update. This includes the Series 300/400, 700, and 600/800, depending on the
media format version (see "Supported Media Format Versions").

When packaging a product with fpkg, you have the option of specifying which
machine series the product is to be loaded on .

• Media format versions A.B7.00 and A.B8.00 allow only one series to be
specified (or none, which implies that all series can load it) .

• With media format version A.B8.05, the keywords sys and is in the Product
Specification File allow media to be made for any combination of series
(although all filesets must agree on these keywords).

The -S option on the command line can help in setting the correct architecture
flags.

The fpkg command does not need to run on the same series or release as the
type of media that is being produced. This means that if your source/build
machine is a Series 800, you can still make media to be loaded on a Series
300. Also, if your source/build machine is running 9.0 HP- UX, you can
still make media load able by a machine running 7.0 (by setting the -V
media-format-version option).

1-4 Introduction

An Overview of the Packaging Process
The fpkg command is all you need to create a software package that you can
then install or update onto other destination hosts. In a nutshell, the process of
creating a software package consists of the following steps:

1. Satisfy the necessary prerequisites and conditions before running the fpkg
command (described in Chapter 2: Making a Package of Software Products).

2. Decide which options of the fpkg command are appropriate for your package
(described in Chapter 2: Making a Package of Software Products).

3. Define the structure of your package using the Product Specification File
(described in Chapter 3: Defining the Structure of the Product Package).

4. Create the package using the fpkg command, using the information
gathered from steps 2 and 3 above. Once invoked, the fpkg command does
the following:

a. The fpkg command first parses the Product Specification File, flagging
all errors and warnings it finds.

b. If errors are found, fpkg exits, having listed these errors to stderr and
the log file (if open).

c. If no errors (or only warnings) are found, fpkg builds the media. Any
warnings are listed to stderr and the log file (if open).

It is important to keep in mind that the files that are being packaged will
reside in three different places during the process of packaging and installation:

• First, the files will reside in the original place(s) specified in the Product
Specification File. These files can be scattered throughout the developer's file
system.

• The fpkg command interprets the Product Specification File, translates file
path names as required, then writes them to the specified media using the
modified paths.

• Finally, the update command extracts the files from the media and loads
them into their final destination.

Introduction 1-5

Making a Package of Software Products

The fpkg command collects the necessary information to build the software
package from:

1. The options to the command.

2

2. The Product Specification File that contains both data attribute and data
location information.

This chapter describes the requirements for running the fpkg command, as well
as the features provided by each of the commands' options.

Prerequisites and Conditions

• Packages must be made on the machine on which fpkg is executing.

• The fpkg command will not build packages on remote systems.

• You must be superuser to make Network Media using fpkg. This is to
enable the setting of file permissions and for allowing access to the netdistd
distribution tree. The fpkg command does not touch the permissions on the
source files, but still needs to be able to set the appropriate permissions on
the files it creates. Making Tape Media does not require superuser privileges
unless the source files cannot be otherwise accessed.

• Normally, a media package cannot mix filesets destined for different
archi tectures (machines series). This means that if one fileset is marked to
be loaded on one specific series (Series 300 for example), all other filesets
on that media must also be for that series. However, you can make filesets
load able by different series as long as all the filesets on the media are
consistent.

Making a Package of Software Products 2-1

The HP-UX 9.0 version of update allows a limited amount of architecture
mixing of filesets. If you want to mix architectures and the package will only
be installed on HP- UX 9.0, the -M option can be used to allow packaging of
mixed architecture filesets.

• The media created by fpkg must have a version associated with it which
correlates to the version of update (or updist) that is intended to read it.
This is because throughout the history of the update command, certain
enhancements were made to the media format that made it no longer
compatible with the previous version. A media package can only contain one
version of update media. It is important to know what version of update will
be reading the media being created and use fpkg to create the appropriate
media format version (see Table 1-1.

• When making tape media, the fpkg command tries to determine the
capacity of the device. However, fpkg cannot do this for all devices, so the
size of the device may have to be specified on the command line (using the
-s device-size option). This information helps fpkg determine if the product
will fit on the device, and how to arrange filesets on multi-volume packages.

• No interrupts are allowed if network media is being built, but if tape media
is being built, fpkg can be interrupted. When an interrupt occurs, fpkg
removes the work done so far, then restores the system to its original state.

• The fpkg command supports the following product file types: regular files,
directories, symbolic links, and hard links. If a recognized but unsupported
type or an unrecognized type is given, an error message is given.

In creating hard links, fpkg assumes that the first occurrence of the file in
the Files list for this fileset is the "primary" to which all other occurrences
of the inode (operating system structure that contains file information like
number of links) are linked.

• Attributes of files being packaged are preserved as closely as possible:

[J File permissions may be overridden by the Product Specification File.
[J Hard links to files are preserved as long as both file elements of the file are

included in the package.
D Symbolic links are preserved (or not, depending on the - h option), even if

the target file is not part of the package. The update tool requires that
all symbolic links be relative to root (I), which means that "dot-relative"
links such as "foo -) .. Ifoo" are not acceptable to update. The fpkg

2-2 Making a Package of Software Products

tool eases this restriction by converting any "dot-relative" symlinks to be
relative to root (/). If any such conversions are made, fpkg issues a notice.

• Files created by fpkg are organized into filesets, and fpkg requires that these
filesets be given a name. This name must be unique with respect to any
other fileset that may be loaded onto the system. Since there is no way to
know what other filesets may exist now and in the future, it is a good idea
to create fileset names that have a low probability of being used by another
fpkg user (or used on the base HP -UX system). Using a unique acronym
(like your company's initials) as a prefix is a good example.

• Typically, only one invocation of fpkg is allowed at a time. If fpkg detects
that another fpkg process is running and using the same resources, it will
exit with a message stating this fact. To run more than one fpkg process at
a time, do this for each invocation of fpkg:

[J Specify a different log file (with the - L logfile option) for each invocation.
[J If creating network media, specify a different netdist directory (with the

-d directory option) for each invocation.
[J If creating tape media, specify a different tape device (with the -a

archive-file option) for each invocation.

• When the destination directories are created, their attributes will be made
to reflect the source, if possible. If there is no corresponding source directory
and the directory permissions were not set in the Product Specification File,
they will be set to these defaults:

mode
owner
group

0755
bin
bin

Making a Package of Software Products 2-3

Options Available With the fpkg Command
For creating new packages, the fpkg command has the following syntax:

fpkg [-m media-type] [-d destination-directory] [-a archive-file]

[-s device-size] [-v media-format-versionJ [-5 machine-series]

[-L logfileJ [-h] [-v] [-c comment-string] [-MJ Product-Specification-File

For re-creating media (creating a Product Specification File from a CD-ROM
or netdist, the syntax of the fpkg command is this:

fpkg [-v] [-L logfileJ -r media-directory> Product-Specification-File

Here is a brief explanation of each of the fpkg options. More detailed
explanations of the options appear after this table.

Table 2·1. Options of the fpkg Command

-? Displays a general usage message.

-rn media-type Defines the type of product media to create (either network or
tape). The default media-type is network.

-d directory If creating network media, this option defines the destination
directory where the media will be located. The default directory
is /netdist.

-a archive-file If creating tape media, this option names the archive file on
which to write the tar archive. If the file does not exist, fpkg
will create it as a regular disk file. The default archive-file is
/dev/rrnt/Orn.

-s device-size If creating tape media, this option specifies the size of the
device, in megabytes. Otherwise, fpkg sets the size to:

Cartridge tape 63 MBytes
9-track tape 40 MBytes
DDS-format tape 1330 MBytes
Disk file Size of free file system space

2·4 Making a Package of Software Products

Table 2-1. Options of the fpkg Command (continued)

-v media-format- Specifies the media format version number for the product(s).
verswn The media format version number is used by update to compare

itself against the media, to insure that it supports the format
created by fpkg. The default media-format-version is A. B8. 00.

-s machine-series Specifies which series of machines will be able to read the media
produced. The default machine-series for tape media is "all
series". For network media, the default is the machine series on
which fpkg is executed. You can give multiple -s options if the
media format version supports it.

-L logfile Writes log information to logfile instead of the default log file
Itmp/fpkg.log.

-h Follows symbolic links and treat them as regular files. Without
this option, fpkg makes a literal copy of a symbolic link.

-v Turns on verbose output.

-c com men t-strin 9 Overrides the default comment string placed in the MAIN. pkg
file used by netdistd.

-M Lets fpkg produce media that contains filesets destined for a
mixture of architectures (HP-UX 9.0 systems or later).

-r media-directory Creates a Product Specification File from a physical media
(CD-ROM or netdist).

Making a Package of Software Products 2-5

Defining the Type of Media to Create (-m media-type)

The -m media-type option defines the type of product media to create. The
recognized media types are:

network

tape

Builds the software package for distribution on a network
server (via the netdistd daemon). The package is created
in the format used by netdistd and then loaded into the
destination directory (/netdist or whatever is set by the -d
option).

Builds the software package as a single tar archive so that
it can be put on a DDS, cartridge, or nine-track tape. The
package is written to the specified archive-file (/dev/rmt/Om
or whatever is set by the -a option) in a tar format directly
suitable for use by update.

If the media type named is not one of the above, an error message is given.

The default media-type is network media.

Naming the Network Media Destination (-d directory)

If creating network media, the -d directory option defines the destination
directory where the media will be located. This directory is also referred to as
the Network Media.

Specifying the -d option implies the -m network option, meaning that if you
use the -d option, you do not have to use the -m option, since fpkg will assume
that the media type is netliJork.

The directory given must be an absolute pathname, not equal to /. Otherwise
an error message is given.

The default destination directory is /netdist.

2-6 Making a Package of Software Products

Naming the Tape Media Device (-a archive-file)

If creating tape media, the -a archive-file option lets you specify the output
device file (or regular disk file) to which fpkg writes the package archive.

You can also use a dash (-) in place of the archive-file (i.e. -a -) to cause fpkg
to write to stdout. This allows, among other things, the output to be piped to
a tape device on a remote host.

Specifying the -a option implies the -m tape option, meaning that if you use
the -a option, you do not have to use the -m option, since fpkg will assume
that the media type is tape.

The package is written in tar format, meaning that all operations valid for
working on a tar-archive are valid for the archive-file. One common operation
is to create the archive-file as a regular disk file before transferring it to a tape
device. The transfer can be done by using dd with a block size (bs) of 10K.

To determine the contents of the archive-file created by fpkg, you can view the
archive-file using the following command:

tar -tvf archive-file

If the archive file does not exist, fpkg will create it as a regular disk file. If
the archive file does not exist and cannot be created, or if it is not one of the
supported serial types, an error message is given.

The default archive-file is / dev /rmt/Om.

Specifying the Tape Device Size (-s device-size)

If creating tape media, the -s device-size option lets you specify the size of
the tape media (archive-file) in megabytes. This size information is used to
determine how much of the package will fit on one tape. This is necessary
information, especially when the package will span more than one volume. For
some tape devices, fpkg can automatically determine the capacity.

This option is required if the tape media is anything other than a DDS-format
tape or a disk file. If the option is not included when required, an error
message is given.

Making a Package of Software Products 2-7

The device-size has to be greater than zero. Otherwise, an error message is
given.

The devices recognized by fpkg and the default device-size for each are:

Cartridge tape

9-track tape

DDS-format tape

Disk file

63 MBytes

40 MBytes

1330 MBytes

Size of free file system space

Information about default values get appended to the file /tmp/fpkg .log (or
the log file set by the - L option). If the -v (verbose) option is used, the default
values also appear on the screen.

Specifying the Media Format Version (-V media-format-version)

The -V media-format-version option specifies the version number of the media
produced by fpkg. The media-format-version number determines which
versions of update will be able to read the media. This allows fpkg to support
multiple versions of update. In general, update can read media older than the
time of its release, but not newer. For more details, see "Supported Media
Format Versions" in Chapter l.

Acceptable values for media-format-version are A. B7 .00, A. BB. 00, and
A.BB .05.

If media-format-version is not one of the acceptable values, fpkg will round the
given number to the next lowest acceptable value (for example A. BB. 01 ->
A.BB .00).

The default value for media-format-version is A. BB. 00.

2-8 Making a Package of Software Products

Determining Machine Series To Use Media (-8 machine-series)

The -s machine-series option lets you specify which series of machines will be
able to read the media produced by fpkg. Acceptable values are 300, 700, and
800.

Certain characteristics of this option differ depending on whether you are
creating Tape Media (-m tape) or Network Media (-m network).

Tape Media

Network
Media

• You can allow all series to read the media by omitting the -s
option and not specifying any architecture series specifiers in
the Product Specification File.

• For tape media of version A.B8.05, you can specify a mixture
of machines that can load this media by using multiple -s
options (e.g., -S 800 -S700).

• Default machine-series is "all series". This default value will
be overridden if the Product Specification File contains any
machine architecture specifiers (fpkg issues a notice in this
case).

• The machine-series information is necessary because of the
structure of the netdistd database, which keeps a separate
netdistd subdirectory for each machine series. Thus, fpkg
needs to know in which subdirectory to place the package.

• For network media of version A.B8.05, fpkg uses the first -s
option to determine where to place the package. Therefore
it must be called multiple times rearranging the -s options
so that the package can be placed in each of the appropriate
subdirectories.

• The default value for machine-series is whatever machine
series the fpkg command is executed from. This default
value will be overridden if the Product Specification File
contains any machine architecture specifiers (fpkg issues a
notice in this case).

Making a Package of Software Products 2-9

Naming an Alternate Log File (-L logfile)

The -L logfile option lets you choose an alternate name for the log file. The
fpkg tool appends a log of messages, errors, and other information to this file.

The logfile name must be an absolute pathname, not equal to /. Otherwise, an
error message is given.

The default logfile name is /tmp/fpkg .log.

Treating Symbolic Links (-h)

The -h option tells fpkg to ignore files that are symbolic links, and to treat
the linked-to-file as the file to be placed into the package instead of the link.
Without this option, fpkg makes a literal copy of a symbolic link, which is then
restored by update when the media is loaded. This option should not be set if
you intend to ship symbolic links.

Turning On Verbose Output (-v)

The -v option turns on verbose output. This can be useful for determining
what defaults were chosen for the package, and for a step-by-step progress
report. Without this option set, fpkg issues some status information, notices,
and errors. A log of more detailed information is appended to the file
/tmp/fpkg.log (or the log file set by the -L option).

Changing the Comment String in MAIN.pkg (-c comment-string)

The -c option lets you override the default comment string that is placed in
the MAIN. pkg file used by netdistd. The default string is: "Fileset packages
for use by update(lm)".

2-10 Making a Package of Software Products

Mixing Architectures (-M)

The -M option allows fpkg to produce media that contains filesets destined
for a mixture of architectures. However, until HP-UX release 9.0, the
update command will refuse to load media that contains filesets with mixed
architecture specifiers. Using the -M option may cause the media to be load able
only by HP-UX release 9.0 or later systems. A warning will be given if this is
the case.

Re-Creating Media (-r media-directory)

The -r option lets you transfer filesets from either CD-ROM or netdistd
media to tape media. With this option, fpkg reads the media specified by
media-directory and writes (to standard out) a Product Specification File that
can be used in a second invocation of fpkg to re-create the desired media.
The argument media-directory is the pathname of a mounted CD-ROM (e.g.
/UPDATE_CDROM) or that of the architecture level of a netdistd directory (e.g.
/netdist/300 or /netdist/800).

Note The -r media-directory option is not intended as a replacement
for updist, which should still be used when transferring media
to a netdistd database.

The fpkg command will skip any filesets on CD-ROM media that are secured
(encrypted). If the verbose output (-v) option is given, fpkg notifies you each
time it skips a secured fileset. To transfer secured filesets to the tape media, do
this:

1. Use updist to transfer the fileset(s) to a netdistd directory (they are
decrypted by the updist process).

2. Invoke fpkg with the -r option naming the netdistd directory just created
by updist. This creates a new Product Specification File.

For more details, see Appendix B: Re-Creating a Product Specification File.

Making a Package of Software Products 2-11

Some Examples of Command Lines

Here are some example command line usages of fpkg (and some other tools).
These examples assume that the Product Specification File has already been
created, and that it does not contain any architecture specifiers (sys, is, ff H,
or ff M keywords) .

• To make tape media for a Series 800 machine (default A. B8. 00 media format
version), use this series of commands:

fpkg -m tape -a update.image -S 800 psf.file
tar -tvf update.image

jete/update -es $PWD/update.image -S800

dd if=update.image of=/dev/rmt/Om bs=10k

Write the image to a disk file

Use tar to look at the contents

of the file

Use update to look at the con­

tents of the file

Use dd to transfer the image

to a DDS tape device

eat update. image I teio -0 -z -v -V -S8 /dev/update. sre Write the same image to a
cartridge tape. The -z option
is required .

• To make network media with a version of A. B7 . 00 for a Series 300, under a
non-default netdist tree, use these commands:

fpkg -S300 -VA.B7.00 -d /netdist/7.0 psf.file
/ete/netdistd -f /netdistd/7.0/MAIN.pkg

2-12 Making a Package of Software Products

Start the netdistd daemon on default

port (2106)

• To make tape media for all architectures, use this command:

Ipkg -m tape -a update. image psI.Iile

• To make a tape using a device on a remote host, use this command (size
must be specified):

Ipkg -a - -S300 -s1330 -v /tmp/pSI I remsh host dd obs=10k oI=/dev/rmt/Om

• To make DDS-format tape media for Series 700 and Series 800 of 1300
MBytes (1.3 GBytes) capacity, (only A. B8. 05 media format version supports
this), use this command:

Ipkg -m tape -a /dev/rmt/Om -s1330 -S700 -SBOO -VA.BB.05 psI.Iile

Making a Package of Software Products 2-13

3
Defining the Structure of the Product Package

This chapter describes the structure of HP-UX update media and how to use
the Product Specification File to define the structure of your software package.

General Structure of HP-UX Update Media
HP-UX update media appears as a three layer hierarchy:

1. The top layer contains partitions. Partitions are a named collection of
related filesets.

2. Under each partition is a collection of related filesets. A fileset is a named
collection (grouping) of directories and files that divide a partition into
manageable units. Each fileset belongs to exactly one partition.

3. The actual directories and files make up the third layer.

The update tool allows you to pick and load functional groups of files either at
the partition level or the fileset level. The fileset is the smallest group of files
that update will load.

The Product Specification File defines partitions, the filesets in partitions, and
the files in each fileset. There is no limit to the number of partitions, filesets,
and files that you can define in a Product Specification File.

Defining the Structure of the Product Package 3-1

Creating the Product Specification File
The Product Specification File is the mechanism for defining the structure for
the products being packaged.

There are attributes associated with each level of the product structure, and
each attribute has a keyword that tells fpkg about that attribute of the
product. The same keywords for attributes are used for both supported media
types (network and tape).

In general, the structure of the Product Specification File looks like this:

Partition-name-and-description
Fileset-name-and-description
Fileset-attributes

Files-in-fileset
Another-fileset
Attributes

Files-in-this-fileset

Next-Partition-name-and-description
Next-Fileset
Attributes

Files

The Product Specification File is made up of a list of keywords usually followed
by an argument. The syntax for a keyword entry is:

keyword (or short notation) argument [# comments]

Most attributes are optional and are not required entries in the Product
Specification File. Each attribute is specified by either its full keyword or a
short notation. For example, a partition name called can be specified by either
of the following entries:

partition_name ALLBASE
pn ALLBASE

3-2 Defining the Structure of the Product Package

Table 3-1. Keywords Used in the Product Specification File

Full Keyword Short Argument (s) Use
Notation

partition_name pn string recommended

partition_description pd string recommended

fileset_name fn string required

fileset_description fd string recommended

fileset_flags ff characters optional

instruction_set is instruction id not recommended

system_architecture_type sys Series list not recommended

fileset_dependency dep string(s) optional

fileset_version fv version string optional

fileset_file_permission ffperm owner group mode optional

fileset_directory_permission fdperm owner group mode optional

customize file name optional

decustomize file name optional

copyright file name optional

CDFinfo file name optional

systemfile file name optional

media_order number optional

media_format format version optional

pseudo_root pr path=path optional

Files F * or none required

Defining the Structure of the Product Package 3-3

Prerequisites and Conditions

• The files contained in a fileset are listed one per line, the list is terminated
by any recognized keyword. This means that no file name can exactly
match that of any keyword. To work around file name conflicts, use the full
pathname of the file, or prefix the path . / to the filename.

• All keywords except the Files (F) keyword have arguments. If the argument
is missing, an error message is given.

• Some keywords have an argument that is a character string value. Strings
containing embedded white space (e.g. description fields) do not need to be
enclosed in quotes, unless the comment character (#) is to be used in the
string.

• Comments (designated by a preceding #) can be placed on a line by
themselves or after the keyword argument syntax.

• Most attribute keywords should be used only once for each partition or fileset
group. For example, in a given fileset, there can be only one instance of
fileset_name and fileset_description. The exceptions to this rule are
four of the keywords dealing with fileset attributes (fileset_dependency,
fileset_file_permission, fileset_directory_permission, and
systemfile) and the two file location keywords (pseudo_root and Files).

A warning message is given for all duplicate keywords given after the first.

The following sections describe each keyword (the short notation appears in
parentheses after the full keyword).

Defining Partition Attributes

Two keywords describe the attributes of the partition(s) being packaged.
Because they are defined at the partition level, these two keywords apply to all
the levels defined for that partition (i.e., filesets and/or files).

partition_name (pn)

The keyword pn establishes its argument as the partition name, specifying the
partition to which any following filesets will belong. The argument for pn can
be up to 14 characters long. It is an optional (but recommended) keyword.
This keyword must precede any fileset_name (fn) keyword. It is usually the

3-4 Defining the Structure of the Product Package

first keyword to appear in the Product Specification File. Each time fpkg finds
a new pn keyword, a new partition is started, and the filesets that follow are
placed in that partition.

If no partition name is given, the default will be UNKNOWN and fpkg will give a
warning.

Any character usable in a directory name is allowed as part of the partition
name. The following characters are not allowed:

. * / ? II [

Embedded white space is also not allowed. If an illegal character (or embedded
white space) is used in the partition name, an error message is given.

An example of a partition_name entry is:

pn ALLBASE

Note The partition name has no physical representation on the
media (unlike the fileset name). It only appears in the control
files on the media.

partition_ description (pd)

The keyword pd lets you attach a descriptive text field up to 32 characters long
to the partition name that was given with the 'pn' keyword that preceded this
keyword in the Product Specification File. This description can be helpful
when making installation selections, since it is visible when running update to
load the media interactively.

The description may contain spaces and may be surrounded by double-quotes
("). If no description is provided, fpkg will use "no description given".

An example of a partition_description entry is:

pd Database Products

Defining the Structure of the Product Package 3-5

Defining Fileset Attributes

The keywords in this section apply to the fileset(s) in a partition.

fileseLname (fn)

The keyword fn establishes its argument as the file set name. It is a required
field in the Product Specification File. The other fileset attribute keywords, all
optional, provide additional information for the fileset named with fn. Each
time fpkg finds a new fn keyword, a new fileset is started.

The argument for fn can be up to 14 characters long.

For every other fileset keyword that is used, fpkg checks for the existence of a
fileset name. If not found, an error message is given.

A fileset without a partition causes the partition to be set to UNKNOWN, and a
warning is given.

All printable characters are allowed except for the following:

. * / ? II [

Embedded white space is also not allowed. If an illegal character (or embedded
white space) is used in the fileset name, an error message is given.

Note that as mentioned in "Prerequisites and Conditions" in Chapter 2, fileset
names must be unique with respect to any other filesets that may be loaded
onto the system. This is because the fileset name is used as a directory and
file name in the update database. Having a conflicting fileset name will cause
problems and confusion. For examples of fileset names already in use, look in
the /etc/filesets directory or /system directory on any HP-UX system.
Since there is no way of knowing what fileset names are currently in use or
what will be used in the future, choosing a unique and meaningful name is a
challenge. One recommendation is to use your company's initials as a prefix of
the fileset name.

An example of a fileset_name entry is:

fn ALLBASE1

3-6 Defining the Structure of the Product Package

fileseL description (fd)

The keyword fd lets you attach a descriptive text field up to 32 characters long
to the fileset name that was given with the fn keyword that preceded this
keyword in the Product Specification File. This description can be helpful
when making installation selections, since it is visible when running update to
load the media interactively.

The description may contain spaces and may be surrounded by double-quotes
CI). If no description is provided, the file set will have a blank description.

An example of a fileset_description entry is:

fd ALLBASE Run-time System

fileseL flags (ff)

The keyword ff allows you to assign special conditions to a fileset. The
argument for ff is a list of up to 7 characters, each with a special meaning
(order is not important). No embedded spaces are allowed.

The possible flags are:

B The "reboot" or Rebuild and Reboot Fileset Flag causes update to
rebuild the kernel and reboot after the fileset is loaded and its customize
script is run. All filesets marked with a B flag will be loaded and
customize scripts executed before the kernel is rebuilt.

C The "no change destination" or N onlocatable Fileset Flag states that the
fileset cannot be installed into any destination directory other than root
(/).

Y Indicates to update that it should run the sysrm or rmfn command
to remove any old fileset by this name prior to loading. This can slow
the update process considerably and is not normally done. It is best to
remove specific unwanted files in the customize script.

D Specifies that the file set 's customize script should run only after all
filesets selected are loaded (as opposed to running after each fileset is
loaded). This is the default action for filesets loaded with a version of
update that is version 8.05 or later. Consequently, this flag is obsolete
(but can still be used) for loading on 8.05 or later systems. This flag is
not compatible with the B flag.

Defining the Structure of the Product Package 3-7

H For A.B7.00 and A.B8.00 media format versions, this flag is used to
indicate that this fileset is load able only onto PA-RISC architecture
machines, namely Series 700 and 800. Use of this flag is NOT
recommended (see Note below).

M Similar to the H flag, but is used to indicate MC-680xO architecture
machines, namely the Series 300 and 400. Use of this flag is NOT
recommended (see Note below).

Note The Hand M flags are used on A.B7.00 and A.B8.00 media
format versions. For A.B8.0S media, use the sys and is
keywords instead. The Hand M flags are used to specify the
type of machines that can load a fileset. These flags may be left
off to indicate that the fileset is load able by all series machines.
Or they may be left off, and later specified by using the -S
machine-series command line option, in which case fpkg will
automatically supply these flags. (That is if the media format
version is A.B7.00 or A.B8.0S. If the media format version is
A.B8.0S, it will use the appropriate sys and is keywords.) All
filesets on the menia must have the same architecture-specific
flags. It is recommended that you NOT use the Hand M flag,
but instead use the -S machine-series command line option
(and let fpkg supply the appropriate flags).

S Used only if this media is later transferred to a CD-ROM through HP's
internal integration and manufacturing process. When this flag is set, the
fileset is encrypted upon transfer to the CD. When encrypted, the fileset
cannot be loaded without first obtaining a codeword (password). Note
that fpkg cannot make CD-RO M media.

The fileset flags given in the Product Specification File are checked against the
list above. If a flag does not match one in the list, an error message is given.

An example of a fileset_flags entry is:

ff Be

3-8 Defining the Structure of the Product Package

instruction_set (is)

The keyword is specifies the instruction set of the systems that are allowed to
load a fileset. This keyword is only valid with A. B8. 05 version media.

The argument string for this keyword can contain up to 11 characters. Valid
instruction set identifiers are:

MC68020 for Series 300 and 400 machines

PA_RISC_1_0 for Series 700 and 800 machines

PA_RISC_1_1 for Series 700 machines only

* indicates that any instruction set machine may load this fileset

If this keyword is used, the sys keyword must also be specified. This keyword
cannot be used in conjunction with the H or M flag to the fileset_flags (ff)
keyword.

It is recommended that you NOT use the sys or is keywords, but instead
use the command line option -s machine-series (which allows fpkg to
automatically generate the is keyword, if appropriate).

An example of an instruction_set entry is:

Defining the Structure of the Product Package 3-9

system_architecture~type (sys)

The keyword sys describes the machines or architectures on which this
software will execute. This keyword is only valid with A. B8. 05 version media.

The argument string for this keyword can be up to 27 characters long. Valid
system types are:

• S300

• S400 (translated to be S300).

• S600 (translated to be S800).

• S700

• S800

• * (translated as "any series machine")

To specify more than one system type, separate them by a comma.

If this keyword is used, the is keyword must also be specified. This keyword
cannot be used in conjunction with the H or M flag to the fileset_flags (ff)
keyword.

It is recommended that you NOT use the sys or is keywords, but instead
use the command line option -S machine-series (which allows fpkg to
automatically generate the sys keyword, if appropriate).

An example of a system_archi tecture_ type entry is:

sys S700,S800

3-10 Defining the Structure of the Product Package

fileseL dependency (dep)

The keyword dep allows you to specify any fileset (and fileset version) that
must be loaded before, or along with this fileset for the product to function
properly.

There are two argument strings associated with this keyword:

1. The first string is the name of one dependent fileset. It can be up to 14
characters long.

2. The second (optional) string is the version number of the dependent fileset.
It can be up to 11 characters long. During an installation, selection of a
fileset with dependencies causes the automatic selection of the dependent
filesets if they are not already present on the destination host with a version
number equal to or greater than that required. This version feature is not
supported when making A.B7 .00 media (fpkg will give a warning in this
case). See section "fileset""version (fv)" for more details.

Most fileset attribute keywords should be used only once for each fileset.
However, this keyword can be used more than once for the same fileset (when a
fileset has more than one dependent fileset).

The fpkg tool will give a warning if the depended on file set is not contained in
the same package (this is because update cannot enforce this dependency if it
is not on the same media, it can only give a warning during loading).

An example of a fileset_dependency entry is:

dep ALLBASE-MAN A.BB.OSA

fileseL version (fv)

The keyword fv sets the version string for this fileset. The version string is
used by update in calculating fileset dependencies (refer to the dep keyword).
Giving a fileset a "version" allows other filesets to depend on a particular
version of this fileset. For example, if this fileset is loaded onto a system, and it
has a fileset version of A. BB . 07 . OA, and later another fileset is loaded that has
a dependency on version A. BB . OS. OA of this fileset (as in the example above),
update will proceed with the load because it knows that the system holds a
fileset equal or greater than the version required.

Defining the Structure of the Product Package 3·11

The concept of giving a fileset a version number was introduced at HP-UX
release 8.0, so if you are making media for HP-UX 7.0, the file set version
will be ignored, and fpkg will give a warning (if the media format version
set by the -V option is A. B7 .00). Giving a fileset version A. B7 .00 (the
default) indicates to update that it should not use the version number in
its calculations, and it will always reload the fileset if another selected fileset
depends on it.

Both update and fpkg require that the fileset version be at least A. B7 .00, thus
a version of A. B6. 5 will be rejected.

When a fileset is being loaded, either as a primary selection or as a
dependency, its version number is checked against the version of the fileset on
the destination (if the fileset already exists on the destination).

• The fileset is updated if its version is greater (newer) than the version on the
destination host.

• If the version on the media is the same as the one on the destination host,
the software is installed if and only if the fileset was manually selected for
loading.

• If the software is less (older) than the version on the destination host, the
interactive version of update will just give a warning and allow it. however,
the command line version of update will give an error, so the version on the
destination host must be removed first (manually by the user).

The argument string for this keyword can be up to 11 characters long, and the
syntax of the argument string is a sequence of dot-separated letters and digits.
When update compares two version strings, it compares each corresponding
sub-string between the dots. So a version of B6 is greater than A. B7 .00.
Version strings are truncated at 11 characters.

The default value for fileset_version is A.B7 .00.

An example of a fileset_ version entry is:

fv A.B7.00

3-12 Defining the Structure of the Product Package

fileseLfile_permission (ffperm)

By default, a destination file inherits the permissions of the source file. The
keyword ffperm allows you to override this default by specifying a new owner,
group, and mode for all files following this keyword in this fileset.

There are three arguments to this keyword; owner, group, and mode. The
arguments owner and group are given as strings and represent an owner and
group name on the destination host. The strings are looked up in the password
file on the package-creation machine and the uid/ gid (user id/ group id) stored.
The mode argument is expected to be in octal (unless it has a leading Ox to
indicate hexadecimal). You cannot specify the mode in decimal form.

This keyword only applies to the file set in which it is defined. Most file set
attribute keywords should be used only once for each fileset group. However,
this keyword can be used more than once when describing a fileset.

This keyword is most useful when a group of files will all have the same
permissions. To set the permissions on a per-file basis, or to override the
default permissions, the -0 -g -m file flags may be used (see section "Files (F)"
for more details).

Note owner, group, and mode can only be changed for regular files
and hard links, not symbolic links. If the permissions are
changed on a hard link, they are changed for all other links
because they share the inode. If permissions are changed on a
symbolic link, they are changed on the source. The permissions
are not changed on the link itself.

The syntax for the ffperm keyword is:

ffperm owner group mode

These permissions apply globally in the fileset until a file level override is used
or a new ffperm keyword overrides them. The three arguments are position
dependent, so if anyone of the arguments is not wanted, use an asterisk (*) to
indicate that no override for that permission should be applied. You can also
use the following line to terminate the effects of the previous ffperm:

ffperm * * *

Defining the Structure of the Product Package 3-13

An example of the fileset_file_permission keyword is:

ffperm root bin 0644

fileseL directory _ permission (fdperm)

By default, a destination directory inherits the permissions of the source
directory (otherwise the default is bin bin 0775). The keyword fdperm allows
you to override this default by specifying a new owner, group, and mode for all
directories following this keyword in this fileset.

There are three arguments to this keyword; owner, group, and mode. The
owner and group arguments are given as strings and represent an owner and
group name on the destination host. The strings are looked up in the password
file on the package-creation machine and the uid/gid (user id/group id) stored.
The mode argument is expected to be in octal (unless it has a leading Ox to
indicate hexadecimal). You cannot specify the mode in decimal form.

This keyword only applies to the fileset in which it is defined. Most fileset
attribute keywords should be used only once for each file set group. However,
this keyword can be used more than once when describing a fileset.

The syntax for the fdperm keyword is:

fdperm owner group mode

These permissions apply globally in the fileset until a file level override is
used or new fdperm keyword overrides it. The three arguments are position
dependent, so if anyone of the arguments is not wanted, use an asterisk (*) to
indicate that no override for that permission should be applied. You can also
use the following line to terminate the effects of the previous ffperm:

fdperm * * *
An example of the fileset_directory _permission keyword is:

fdperm root bin 0755

3·14 Defining the Structure of the Product Package

customize

The customize keyword allows a customize script to be placed on the
media and associated with the current fileset. This script will be executed
after the file set has been successfully loaded. The customize script will be
executed with the current working directory set to the directory where the
file set is loaded (usually I), but you can specify that it be relocated if the
fileset_flags (ff) keyword allows it.

The actual customize script will be passed one argument, either HP-MC68020
for (Series 300/400 machines) or HP-PA (for Series 600,700 and 800 machines)
depending on which type of machine the fileset is loaded (this is useful when
loading on a mixed architecture cluster). See Appendix A: Guidelines for
Installation Control Scripts for more details on writing a customize script.

The customize keyword has an argument that is the pathname for the actual
customize script, telling fpkg where to get the file. The customize script
provided will be renamed as it is loaded on the media to allow update to find
and execute it.

If you do not use the customize keyword, fpkg supplies a nearly empty default
customize script to overwrite a possible older one left on the system.

A symbolic link may not be given for the pathname for this keyword. If it is,
an error message is given.

The syntax of the customize keyword is:

customize filename

The filename must include an absolute pathname. The filename itself is not
important, since it will be renamed customize when the package is loaded
by update. For instance, in the example below, customize. UX-CORE will be
renamed customize.

Here is an example of the use of the customize keyword:

customize /build/scripts/customize.UX-CORE

Defining the Structure of the Product Package 3-15

decustomize

The decustomize keyword allows a decustomize script to be placed on the
media and associated with the current fileset. This script will be executed
when the fileset is removed using rmfn.

It is important to remember that the decustomize script is executed twice. The
first time, rmfn runs the script just to check if the fileset is removable. The
second time, rmfn runs the script just prior to removing all files loaded with
this fileset. The first invocation of the script is given 2 arguments, the machine
architecture (HP-MC68020 for Series 300/400 machines or HP-PA for Series 600,
700 and 800 machines), and the word check (meaning don't do anything yet,
just checking). The second invocation of the script is given just 1 argument,
the machine architecture (HP-MC68020 or HP-PA).

The script should exit with a return code of 0 if no problems are encountered,
and with a value 1 if an error occurred. The first invocation of the script is the
only chance it has to stop the removal process (by returning a value of 1). See
Appendix A: Guidelines for Installation Control Scripts for more details on
writing a decustomize script.

The decustomize keyword has an argument that is the pathname for the
actual decustomize script, telling fpkg where to get the file. The customize
script provided will be renamed as it is loaded on the media to allow update to
find and execute it.

A symbolic link may not be given for the pathname for this keyword. If it is,
an error message is given.

The syntax of the decustomize keyword is:

decustomize filename

The filename must be an absolute pathname. The filename itself is not
important, since it will be renamed decustomize. For instance, in the example
below, decustomize. UX-CORE will be renamed decustomize.

Here is an example of the use of the decustomize keyword:

decustomize /build/scripts/decustomize.UX-CORE

3-16 Defining the Structure of the Product Package

copyright

The copyright keyword places a file on the system called:

/ system/ fileset-name/ copyright.

This is where most HP applications place copyright information about the
product contained in that fileset.

The syntax of the copyright keyword is:

copyright filename

Here is an example of the use of the copyright keyword:

copyright /build/rights

CDFinfo

The CDFinfo keyword allows a CDFinfo file to be placed on the media and
associated with the current fileset. The CDFinfo file contains rules that update
uses when loading the fileset onto a clustered system. These rules specify which
files should be loaded as context dependent files (or CDFs). The rules in this
file also apply to the sam(lM) utility when a system is turned into a cluster
server, or when adding a cnode. For more details on creating CDFs, see the
CDFinfo(4) entry in the HP- UX Reference manual.

A CDFinfo file is not necessary if the application will not be supported on a
HP-UX cluster system, or if all the files are system independent (Le. can be
shared by all systems in a cluster).

The syntax of the CDFinfo keyword is:

CDFinfo filename

Here is an example of the use of the CDFinfo keyword:

CDFinfo /build/cdfs/UX-CORE

Defining the Structure of the Product Package 3-17

systemfile

The systemfile keyword is used if a file needs to be loaded in the
/ system/ fileset directory but has no specific keyword to place it there (Le. it is
not a customize, decustomize, copyright, or CDFinfo file). The file will be
loaded under the fileset directory associated with the current fileset, and will be
named the same as the basename of the source file.

Do not place files called index in this directory, since an index file is created
by fpkg and used by update and other utilities. Also, if the filesets are to be
loaded into a system running 8.0 HP- UX, the update utility will remove the
obsoleted files called revlist, pif, and customize. old, so you should avoid
using these names for system files.

The syntax of the systemfile keyword is:

systemfile filename

Here is an example of the use of the systemfile keyword:

systemfile /build/UX-CORE/pdf

3-18 Defining the Structure of the Product Package

media_order

The media_order keyword is used to control the order in which the filesets
are written to the (tape) media. All filesets with a media_order 1 will be
processed first, then those with media_order 2, etc.

However, all filesets that are marked with the fileset_flag B will be placed
on the media first, because update loads all those filesets first so that the new
kernel can be built. The media_order keyword can still be used to order the
set of filesets marked with the B flag.

Filesets with the same media_order number are placed on the media as they
appear in the Product Specification File.

The default value for media_order is 1. The maximum value is 10.

The syntax of the media_order keyword is:

media_order number

Here is an example of the use of the media_order keyword:

media_order 2

media_ format

The media_format keyword is used to specify the media format version from
within the Product Specification File.

The syntax of the media_format keyword is:

media_format format-version

The format-version value must agree with the value supplied with the -v
media-format-version command line option.

Here is an example of the use of the media_format keyword:

media_format A.BS.OO

Defining the Structure of the Product Package 3·19

Describing the Location of Files

Two keywords describe where the files you want to package into a fileset are
located, and where they should be installed. Most attribute keywords should
be used only once for each partition or fileset group. However, these two
keywords are an exception.

pseudo_root (pr)

The pseudo_root keyword specifies a directory where the source files are to be
found on the system. In addition, this keyword can also specify a destination
directory where those files will be placed when loaded by update.

The syntax of the pseudo_root keyword is:

pr source-directory [=destination-directory]

Both source and destination must be absolute pathnames. If these checks fail,
an error messages are given.

Here is an example of the use of the pseudo_root keyword:

pr /users/joe/build

The example above will cause fpkg to look for the source files in the
directory /users/joe/build. Any files specified with the Files keyword
(and not beginning with /) will have their path prefixed with the path
/users/ joe/build and included in the current fileset. If the Files * keyword
is used, all files in the directory /users/ joe/build will be included in the
current fileset.

Another example of how the pseudo_root keyword can be used is this:

pr /users/joe/build=/usr/bin

This example will also cause fpkg to look for files in the directory
/users/ joe/build, but the files will have the path /users/ joe/build
replaced with the path /usr/bin as it is loaded on the media. This is very
useful if the directory that holds the source files is different than where
they should be when loaded by update. See section "Example of Product
Specification File" in Chapter 4 for more ideas on how this can be used.

3·20 Defining the Structure of the Product Package

The fpkg command does not enforce the absolute location of a fileset. All
files are placed on the media with relative pathnames. The update command
normally loads files relative to the root directory (/) on the destination host's
file system, but filesets that do not have the C fileset flag set can be installed to
a destination other than root.

Files (F)

The Files (or F) keyword is used to begin specifying the files that are to be
included in the current fileset. Each fileset definition MUST include at least
one F keyword.

The syntax for the F keyword depends on whether you want to include ALL
files and directories under the specified source directory or just specific files and
directories.

1. To include ALL files and directories, the syntax for the F keyword is:

Files *

If the pseudo_root keyword is defined, F * includes all files and directories
under this directory in the fileset. Partial wild carding is not supported, such
as F dm* (to indicate all files starting with dm). If F * is used without
the pr keyword, an error message is given.

Before processing a directory recursively, fpkg changes to the directory
given by the pr keyword. Before the chdir is done, the current working
directory is saved. It will be restored after directory processing is finished.
If either chdir fail, an error message is given.

When processing the directory recursively, several problems may be
encountered. An unreadable or un-statable directory causes an error
message.

Defining the Structure of the Product Package 3-21

2. If you do not want to do a recursive directory search, use the F keyword
followed by an explicit list of files and/or directories to include in the fileset.
All following lines that do not match a reserved fpkg keyword are assumed
to be file names.

In this case, the syntax for the F keyword is:

Files
source [destination] [-0 owner] [-g group] [-m mode]

The field separator is white space or a tab. The list is ended by any
keyword or EO F. The source pathname is used for destination if no
mapping (using the pr keyword) has been defined and destination is not
given. If a source directory has been defined (using pr), then the source files
can be relative pathnames. Otherwise, full pathnames are required.

Here are some examples of how files can be specified:

sourcefile
sourcefile destination

sourcefile -0 root -m 0755

Specifies a single file.
Specifies where to get the file and what to
name it on the media.
Specify a file, and override permissions.

Make sure you indicate the destination directory with the pr keyword or
give absolute pathnames when specifying the files. If this is not done, an
error message is given.

More Information About File Location Keywords

By default, a destination file or directory inherits the permissions of the source
file or directory. The keywords ffperm or fdperm allow you to override this
default by specifying a new owner, group, and mode for all files/directories
in the fileset. The options (-0, - g, and -m) are used to override either of the
above choices and support specifying file or directory permissions at the file
level.

When fpkg puts together a source name or destination name, it prefixes any
directories defined by the pseudo_root keyword to it and treats the pathname
as a whole.

3-22 Defining the Structure of the Product Package

For instance, given the following syntax:

pseudo_root /users/mode.data/database/1/bin=/database/bin
Files
db1_file1 -0 bin -g bin -m 0644

db1_file1 has:

source
destination

/users/mode.data/database/1/bin/db_file1
/database/bin/db_file1

This means that when you set

db1_file1 -0 bin -g bin -m 0644

you are asking fpkg to set only db1_file1 with these permissions. You have
to be sure that the directories in the path also get their permissions set. To do
this, you have three options:

1. Rely on the permissions that the directories have in the source.
2. Use the fdperm keyword.
3. Give a line for each directory.

For example, rather than this use of the F keyword:

pseudo_root /users/mode.data/database/1/bin=/database/bin
Files
db1_:file1
db1_:file2
1

11

-0 bin
-0 bin
-0 bin
-0 bin

-g bin -m 0644
-g bin -m 0644
-g bin -m 0644
-g bin -m 0644

Adding extra lines (the third and fourth lines in the example below) sets
separate permissions for directories and files.

pseudo_root /users/mode.data/database/1/bin=/database/bin
Files
/users/mode.data/database/ /database/ -0 root -g other -m 0755
/users/mode.data/database/1/bin/ /database/bin/ -0 root -g other -m 0755
db1_:file1 -0 bin -g bin -m 0644
db1_:file2 -0 bin -g bin -m 0644
1 -0 bin -g bin -m 0644
11 -0 bin -g bin -m 0644

The pseudo_root and Files keywords can be used more than once in a fileset.

When processing the files in a directory, several problems may be encountered.
Inability to open or stat a file found causes an error message.

Defining the Structure of the Product Package 3-23

Examples of the Use of File Location Keywords

The following examples illustrate the use of pseudo_root and Files keywords.

1. All files under /mfg/softbench/hp/files to be rooted under softbench:

pr /mfg/softbench/hp/files=/softbench

F *
2. All files under /develop/bin, to be rooted under usr/bin:

pr /develop/bin/=/usr/bin

F *
3. Certain files under /develop/bin, to be rooted under usr/bin:

pr /develop/bin=/usr/bin
F
bdf
more
vi

4. No pr keyword given, just name each file explicitly:

F
/develop/bin/bdf
/develop/bin/vi
/usr/local/bin/find

/usr/bin/bdf
/usr/local/bin/vi
/bin/find

5. No pr keyword given, name only the source explicitly:

F
/usr/bin/bdf
/usr/bin/vi
/bin/find

These files will have the same destination (e.g. /usr /bin/vi/ as a source
will also have /usr/bin/vi/ as a destination).

3-24 Defining the Structure of the Product Package

An Example of the Packaging Process

This chapter shows an example of the packaging process, which requires the
following four steps to complete:

4

1. Satisfy the necessary prerequisites and conditions before running the fpkg
command.

2. Decide which options of the fpkg command are appropriate to use.

3. Define the structure of the software package using the product specification
file.

4. Create the package using the fpkg command, using the information
gathered from steps 2 and 3 above. Once invoked, the fpkg command does
the following:

a. The fpkg command first parses the Product Specification File, flagging
all errors and warnings it finds.

b. If errors are found, fpkg exits, having listed these errors to stderr and
the log file (if open).

c. If no errors (or only warnings) are found, fpkg builds the media. Any
warnings are listed to stderr and the log file (if open).

For this example, we'll briefly go through these steps, and show listings of:

• The Product Specification File .

• The log file produced during the packaging process.

An Example of the Packaging Process 4-1

Step 1: Satisfy the Necessary Prerequisites and
Conditions
In this example, we will be creating a software package on a Series 300 machine
that will be put in a tape image on a regular disk file .

• The package must be made on the machine on which fpkg is executing .

• No interrupts of the fpkg command will be allowed.

4-2 An Example of the Packaging Process

Step 2: Decide Which Options to Use for fpkg
For this example, the following command will be used:

fpkg -v -m tape -a /tmp/tape.out -S 300 /tmp/psf

The options on the above command line set the following conditions:

-v

-m tape

-a
/tmp/tape. out

-S 300

/tmp/psf

Verbose output is turned on.

The type of media that will be created is tape.

The archive file that the package will be written to. In this
case it is a regular disk file. Had it been written to a tape
drive, the device file for the tape drive would be named
here.

The package will be read by Series 300 machines only.

The name of the Product Specification File.

In addition, the following default conditions exist (since the corresponding
options were not specified):

• Literal copies will be made of symbolic links (since -h option was not used).

• The media format version number for the products created by this command
is A.BS.OO.

• Log information will be written to the log file /tmp/fpkg .log.

• The size of the output disk file will be calculated by fpkg from the free disk
space.

An Example of the Packaging Process 4-3

Step 3: Define the Structure of the Software Package
The Product Specification File defines the structure of the software package. In
this example, we are making a database package that contains two partitions:

DATABASE This is the actual database application, which contains two
filesets (DBASE-RUN and DBASE-DOC).

DBEXAMPLES This is a set of database examples, all contained in a single
fileset (DBASE-EXAMPLE).

Example of Product Specification File

Product Speci£ication File to package a database application

Start o£ DATABASE partition in£ormation

pn DATABASE # partition name
pd "The Database" # partition description

Start o£ DBASE-RUN £ileset in£ormation
£n DBASE-RUN # £ileset name
£d "The database applicat ion" # £ileset descript ion
££ C # £lag to make update load under 'I'
customize /build/scripts/customize-DBASE # customize script
decustomize /build/scripts/decustomize-DBASE # decustomize script
CDFin£o /build/scripts/CDFin£o-DBASE # associated CDFin£o £ile
copyright /build/misc/rights # copyright in£o £ile

The DBASE-RUN £ileset contains everything in /build/dbase/bin on the
source machine, and is loaded on the destination system under /usr/bin.
These are all executables so set the £ileset permissions as such.

££perm bin bin 0655
£dperm bin bin 0555
pr /build/dbase/bin=/usr/bin

F *

set de£ault £ile permissions
set de£ault directory permissions
speci£y source/dest dirs
load all £iles £rom directory

Now add the support £iles, setting permissions one by one
pr /build=/usr # speci£y source/dest dirs
F # list £iles separately
lib -0 bin -g bin -m 755
lib/dictionary -0 root -g bin -m 0444
lib/library -0 root -0 bin -m 644

4-4 An Example of the Packaging Process

set directory permissions
set £ile permissions
set £ile permissions

Now add some miscellaneous Tiles
TTperm bin bin 666

in chunks.

pr /build/misc=/usr/local/misc
F

Tile1
Tile2
TTperm bin bin 555
F

Tile3
Tile4

Start OT DBASE-DOC Tileset inTormation
Tn DBASE-DOC
Td "Documentation Tor DBASE"
copyright /build/misc/rights
pr /usr/man/man1

F *

Start OT DBEXAMPLES partition inTormation
pn DBEXAMPLES
pd "Database examples"

Start OT DBASE-EXAMPLE Tileset inTormation
Tn DBASE-EXAMPLE
Td "Example database's"

Tdperm bin bin 555
pr /build/examples=/usr/local/examples
F

example1 -0 bin -g bin -m 644
example2 -0 bin -b bin -m 555

set deTault Tile permissions
speciTY source/dest dirs
list Tiles separately

set new deTault permissions
list Tiles separately

Tileset name
Tileset description
copyright inTo Tile
same source/destination dirs
load all Tiles Trom source

partition name
partition description

Tileset name
Tileset description
speciTY directory permissions
speciTY source/dest dirs
list Tiles separately
set Tile permissions
set Tile permissions

An Example of the Packaging Process 4-5

Step 4: Invoke the fpkg Command
When the fpkg command is invoked, the following things occur:

1. The fpkg command parses the Product Specification File, flagging all errors
and warnings it finds.

2. If errors are found, fpkg exits, and the errors are listed to stderr and the
log file (if it is open).

3. If no errors (or only warnings) are found, fpkg builds the media. Any
warnings are listed to stderr and the log file (if it is open).

In this example, the log file /tmp/fpkg .log captures the output from the fpkg
session. If the message type is serious (error or warning), or if the log file is
closed or writing to it fails, the message is written to stderr.

Example of Log File
04/07/92 16:10:09 MDT 04/07/92 16:10:09 MDT BEGINNING fpkg PROGRAM
(command line)

* The options used for this run are:
- m (media type) tape
- a (archive file) /tmp/tape.out
- s (size of output device: MBs) 131
- V (media format version) A.BB.OO
- L (logfile) /tmp/fpkg.log
- h (follow symbolic links) no
- v (verbose) yes
- S (Series) 300

The product specification file is: /tmp/psf

* Begin parsing the product specification file.
* Fileset "DBASE-RUN":

Source location: "/build/dbase/bin"
Destination location: "/usr/bin"

* Fileset "DBASE-RUN":
Source location: "/build"
Destination location: "/usr"

* Fileset "DBASE-RUN":
Source location: "/build/misc"
Destination location: "/usr/local/misc"

* Fileset "DBASE-RUN":
Source location: "/build/misc"
Destination location: "/usr/local/misc"

* Fileset "DBASE-DOC":

4-6 An Example of the Packaging Process

Source locat ion: "/usr /man/man1"
Destination location: "/usr/man/man1"

* Fileset "DBASE-EXAMPLE":
Source location: "/build/examples"
Destination location: "/usr/local/examples"

* Finished parsing the product speci£ication £ile.
* Begin building the so£tware package £or tape media.
* Total size £or control £iles: 4608 bytes.
* Fileset: "DBASE-RUN" occupies 16896 bytes on tape.
* Fileset: "DBASE-DOC" occupies 8704 bytes on tape.
* Fileset: "DBASE-EXAMPLE" occupies 6656 bytes on tape.
* Begin building the tar tape.
* a system/INDEX (mode 0000644) 1 blocks
* a system/INFO (mode 0000644) 4 blocks
* a system/CDFin£o (mode 0000644) 1 blocks
* Begin building £ileset "DBASE-RUN".
* a DBASE-RUN/ .. /system/DBASE-RUN/customize (mode 0100544) 1 blocks
* a DBASE-RUN/ .. /system/DBASE-RUN/decustomize (mode 0100544) 1 blocks
* a DBASE-RUN/ .. /system/DBASE-RUN/CDFin£o (mode 0100444) 1 blocks
* a DBASE-RUN/ .. /system/DBASE-RUN/copyright (mode 0100444) 2 blocks
* a DBASE-RUN/ .. /usr/bin/x (mode 0100655) 0 blocks
* a DBASE-RUN/ .. /usr/bin/y (mode 0100655) 0 blocks
* a DBASE-RUN/ .. /usr/bin/z (mode 0100655) 0 blocks
* a DBASE-RUN/ .. /usr/lib/dictionary (mode 0100444) 1 blocks
* a DBASE-RUN/ .. /usr/lib/library (mode 0100644) 1 blocks
* a DBASE-RUN/ .. /usr/local/misc/£1 (mode 0100666) 1 blocks
* a DBASE-RUN/ .. /usr/local/misc/£2 (mode 0100666) 1 blocks
* a DBASE-RUN/ .. /usr/local/misc/£3 (mode 0100555) 1 blocks
* a DBASE-RUN/ .. /usr/local/misc/£4 (mode 0100555) 1 blocks
* Begin building £ileset "DBASE-DOC".
* a DBASE-DOC/ .. /system/DBASE-DOC/copyright (mode 0100444) 2 blocks
* a DBASE-DOC/ .. /usr/man/man1/x.1 (mode 0100644) 0 blocks
* a DBASE-DOC/ .. /usr/man/man1/y.1 (mode 0100644) 0 blocks
* a DBASE-DOC/ .. /usr/man/man1/z.1 (mode 0100644) 0 blocks
* a DBASE-DOC/ .. /system/DBASE-DOC/CDFin£o (mode 0100444) 1 blocks
* a DBASE-DOC/ .. /system/DBASE-DOC/customize (mode 0100544) 1 blocks
* Begin building £ileset "DBASE-EXAMPLE".
* a DBASE-EXAMPLE/ .. /usr/local/examples/example1 (mode 0100644) 0 blocks
* a DBASE-EXAMPLE/ .. /usr/local/examples/example2 (mode 0100555) 0 blocks
* a DBASE-EXAMPLE/ .. /system/DBASE-EXAMPLE/CDFin£o (mode 0100444) 1

blocks
* a DBASE-EXAMPLE/ .. /system/DBASE-EXAMPLE/customize (mode 0100544) 1

blocks
* Success building the so£tware package. Review the log £ile,

"/tmp/£pkg.log" £or details.

04/07/92 16:10:10 MDT 04/07/92 16:10:10 MDT COMPLETED £pkg PROGRAM
(command line)

An Example of the Packaging Process 4-7

Format of the Package on the Install Media
When the software package is built for distribution on a network server
(network media type), it is created as Network Media, which exists as a tree of
directories and files in the file system.

When the software package is built for distribution on Tape Media (tape media
type), files are transferred to the tar-formatted archive directly from the source
location. Names are translated during packaging.

If you are interested in a more detailed description of the format of the package
on the install media, see update (4) in the HP- UX Reference manual.

4-8 An Example of the Packaging Process

A
Guidelines for Installation Control Scripts

This appendix contains guidelines for writing and testing installation control
scripts. There are two types of Installation Control Scripts supported by fpkg:

1. customize.

2. decustomize.

The customize scripts are run by update during the install and update
process. The decustomize scripts are run during the fileset removal process by
the rmfn command.

Unless specifically noted, the use of the term installation control script applies
to both types.

This appendix covers:

• Location and execution of Installation Control Scripts.

• Execution of other commands by the Installation Control Scripts.

• Input and output from the Installation Control Scripts.

• File management by the Installation Control Scripts.

• How to test your Installation Control Scripts.

Guidelines for Installation Control Scripts A-1

All Installation Control Scripts perform product-specific, vendor-supplied
operations:

customize script

decustomize
script

Runs after the fileset is successfully loaded by update
during an install or update.

Runs before fileset deletion by rmfn to perform removal
operations specific to the particular fileset.

Installation control scripts perform a myriad of product-specific setup
operations, such as:

• Performing product-specific requirements checks, such as prerequisites.

• Removing previously installed versions of the product.

• Removing obsolete files.

• Moving configuration files into place if absent.

• Modifying existing configuration files for new features.

• Rebuilding custom versions of configuration files.

• Creating device files or custom programs.

• Killing fileset-specific daemons as part of fileset removal.

A-2 Guidelines for Installation Control Scripts

General Guidelines for Installation Control Scripts

• Emphasize performance, even if it means a script must be written as a
program. All Installation Control Scripts execute serially, and directly affect
the total time required to complete an installation.

• Rebuilding the kernel in a postload script is strongly discouraged. It's a
complex and trouble-prone process. The update command has the ability to
rebuild the kernel for you by specifying the B fileset flag (ff) in the Product
Specification File.

• The results of disk space analysis are only valid while the update code itself
is running. Files copied or removed during script execution are not reflected
in the disk space analysis results.

• Installation control scripts are left on customers' systems after installations.
Hence they should be well-engineered and well-commented.

Guidelines for Installation Control Scripts A-3

Location and Execution of Installation Control Scripts
This section details the location and execution of each type of installation
control script.

Details Common to Both Types of Installation Control Scripts

• Installation control scripts are always run as superuser. Use appropriate
caution.

• Installation control scripts must be executable.

• Each script must set its own PATH variable.

• Neither update nor rmfn require that the system be shut down. Hence,
Installation Control Scripts must work correctly on both quiet single-user
systems and active multi-user systems. They must deal properly with
unremovable running programs. They might have to shut down or start up
processes themselves to succeed.

• Installation control scripts should be re-runnable. If a script is run more
than once, it should produce the same results each time. The second
execution should not produce any error messages or leave the system in a
state different than before it was run.

For example, if you must move a file from /etc/neW'config to another
location, use the cpio -p command to copy it rather than the mv command
to move it, or check for the absence of the / etc/neW'config version before
attempting the move.

Note: Use the cpio(l) command rather than cp(l) because cpio copies
permission bits (owner/group/mode).

• Installation control scripts must exit with return value zero (exit 0) if
no serious errors are detected (no ERRORs emitted as described in the
"Input and Output From Installation Control Scripts" section later in this
appendix). They must return 1 (exit 1) in case of any serious ERRO Rs and
WARNINGs.

A-4 Guidelines for Installation Control Scripts

Details Specific to customize Scripts

• After the product has loaded, customize script files are called as:

/ system/ fileset/ customize architecture

where fileset is the name of the fileset the script acts on and architecture is
either HP-MC68020 or HP-PA.

• The current working directory when a customize script is executed is
update's destination directory. Some applications can be installed in
directories other than the default destination (/), depending on whether the
C fileset flag (ff) is set in the Product Specification File.

• If the file set is relocatable (the C fileset flag is not set), then you must:

[J Ensure that the script uses relative pathnames for files it manipulates.

o Test the fileset for correct loading and functionality when loaded to a
non-root destination.

The update command changes the working directory to the destination
directory before running the customize script.

• The update command only runs Installation Control Scripts for filesets that
load successfully. If a fileset fails to load correctly, update logs the following
message:

WARNING: Skipping customize script for fileset
because the fileset did not load successfully.

• customize scripts always run after their filesets are completely and
successfully loaded, either after all critical filesets are loaded, or after all
filesets are loaded (and the system reboots, if appropriate). Which scenario
applies depends on if the B (reboot) fileset flag is specified in the Product
Specification File.

Guidelines for Installation Control Scripts A-5

Details Specific to decustomize Scripts

• decustomize script files are executed twice. The first time, rmfn runs the
script to check whether the fileset is removable. The syntax of this first
invocation looks like this:

/ system/ fileset/ decustomize architecture check

where fileset is the name of the fileset the script acts on, architecture is either
HP-MC68020 (for Series 300/400) or HP-PA (for Series 600, 700, and 800), and
check means to just check, not to do anything.

The second time, rmfn runs the script just prior to removing all files loaded
with fileset. The syntax of the second invocation looks like this:

/ system/ fileset/ decustomize architecture

• The first invocation of the decustomize script is the only chance it has of
preventing files from being removed. This happens if the exit status from
the script is a value of 1. If the exit status is a 0, then the removal process
continues.

• The rmfn command does not remove files on remotely mounted file systems.

• For release 9.0, if a file to be deleted is a symbolic link to another file, rmfn
removes only the symbolic link, not the target. Any pathnames that contain
symbolic links are followed and the appropriate file is removed. For releases
earlier than 9.0, if a file to be deleted is a symbolic link to another file, rmfn
removes the target and not the link.

• decustomize scripts must not shut down and reboot the system, even for
critical filesets, since rmfn might be initiated during the installation process.

A-6 Guidelines for Installation Control Scripts

Execution of Other Commands by Installation Control
Scripts

• Every command used by an installation control script is a potential source of
failure due to:

1. The fact that the command may not exist on the system.
2. Command/kernel or command/library incompatibilities.

Your script can use any command conditionally, if it checks first for its
existence and executability, and if it does not fail when the command is
unavailable.

You can also deliver the command in your fileset if it is suspected it will not
be on the system. That is, the file set is self-contained.

• Do not use or depend on commands in any other fileset in a customize
script, because fileset load order is not guaranteed. Specifying the D fileset
flag in the Product Specification File will guarantee that all filesets are
loaded before the script is run.

• Pathnames of commands run by the script should be absolute pathnames,
or relative to the paths specified in the PATH variable. (This is not really a
restriction, just a reminder.)

Guidelines for Installation Control Scripts A-7

Input and Output From Installation Control Scripts

• Installation control scripts must not be interactive. This includes messages
such as, Press return to continue. Once initiated, the installation process
is designed to run to completion without intervention.

• Installation control scripts must write serious errors to standard error (echo
>&2) and other messages to standard output. Installation control scripts
must not write directly to / dev / console or attempt any other method of
writing directly to the display. During an interactive installation process, the
human interface has control of the screen. Also, update has a non-interactive
mode-it can run from a command line or cron(lM).

At this time, standard output and standard error from installation control
scripts are appended to either the update log file (/tmp/update .log) or the
remove log file (/tmp/rmfn.log). They are not handled separately.

• Only minimal, essential information should be emitted by installation control
scripts. Ideally, no output is emitted if all goes well.

• Begin and end messages are logged around the execution of each script.
Before an installation control script is run, a message is logged, for example:

* Beginning customize script for fileset:

Next appear any messages from the script itself. When the script completes,
one of the following messages, depending on the return value, is logged:

ERROR:

* customize script for fileset succeeded.

Customize script for fileset < > failed. You might
want to make appropriate corrections and re-invoke it
manually later using the command line shown above.

A-8 Guidelines for Installation Control Scripts

• For easiest review of the log file, output from installation control scripts must
conform to the following log file format conventions wherever possible.

1. Never emit blank lines.

2. All output lines must have one of these forms:

ERROR: text
WARNING: text
NOTE: text
blank text

In each case, the keyword must begin in column 1, and the text must
begin in column 10 (indented nine blanks).

3. Choose the keyword (ERROR, WARNING, NOTE, or blank) as follows:

ERROR:

WARNING:

NOTE:

blank

Something happened which must grab the user's
attention. Cannot proceed, or need corrective action (to
be taken later).
Can continue, but it's important the user knows
something went wrong or requires attention.
Something out of the ordinary or worth special attention;
not just a status message.
Generic progress and status messages (keep them to a
necessary minimum).

Do not start a line with an asterisk (*) character. This is reserved for
standard operation messages, so that they can be easily distinguished
from product messages, warnings and errors.

4. If the message text requires more than one line (79 columns), break it into
several lines. Begin each continuation line with nine blanks. For example:

NOTE: To install your new graphics package, it was
necessary to turn on the lights in the next room.
Turn them off when you leave.

5. Do not use tabs for anything. Simply avoid them.

Guidelines for Installation Control Scripts A-9

• Scripts execute other commands, which might unexpectedly fail and emit
output not in the above format. Wherever you suspect a failure is possible
or likely, and it is reasonable to do so, redirect the standard output and/or
error of the executed command to /dev/null or to a temporary file. Then
emit a proper-format message based on the return code or on output from
the command. For example:

if /bin/grep bleteh fete/bagel 2> /dev/null
then echo "ERROR: Cannot find bleteh in fete/bagel. II >&2
fi

• The following are other suggested conventions, to help your script's output
look compatible with the output from update' or rmfn.

1. Use full sentences wherever possible. Avoid terseness.

2. Start sentences and phrases with a capital letter and end with a period.

3. Put two blanks after colons and periods; one after semicolons and
commas.

4. Uppercase first letters of phrases after colons. (This helps break up the
message into digestible "bites" of information.)

5. Surround product, fileset, directory, and file names, and other
unpredictable variant strings with quotes. For example:

echo "ERROR: Cannot open file \"$file\"."

Exception: When referring to an object name in a string owned and
controlled by the script (such as / ete/mnttab), you can leave off the
quotes.

6. Speak in present tense. Avoid "would", "will", and so forth. Also avoid
past tense except where necessary.

7. Use "cannot" rather than "can't", "could not", "couldn't", "unable to",
"failed to", and similar phrases.

8. When reporting an internal error (unlikely in a shell script), start the
message string with "Internal error:" .

9. Keep your messages simple, neutral, and direct.

A-10 Guidelines for Installation Control Scripts

File Management for Installation Control Scripts

• If any files in the previous release of your fileset changed names or became
obsolete, the installation control script should remove the old versions. No
other agent takes care of this.

Note It is necessary to handle cleanup of any previous release whose
update to the new release is "supported". Sometimes this is
more than just the previous release.

Also, it is wise to leave old cleanup code from previous releases in a new
version of an installation control script, if there is no significant risk of failure
or spurious messages, nor significant time or space penalty for doing so.

• If your fileset's name changes between releases, your new installation
control script should remove the old I systeml fileset directory and the file
I etc/filesetsl fileset (using rm -rf).

• Any files created (built) by a customize script and left on the system
when it completes should have their names added to the fileset's
I etc/filesetsl fileset file with the proper full, absolute pathnames. It
is sufficient to append the names, one per line, to the end of the file. For
relocatable filesets, if the installation destination (initial working directory) is
other than I, prefix the new filename accordingly.

• Any files deleted by a customize script that were loaded by update from
the install media should have their names removed from the fileset's
I etc/filesetsl fileset file. This might require passing a copy through
grep(l) to a temporary file, for example:

cd letc/filesets
grep -v '~/old/file/name' < fileset > Itmp/live_files
mv Itmp/live_files fileset

• If an installation control script writes to the I etcl ini ttab file, it must do
so only if the file already exists. Do not accidentally create an incomplete
ini ttab file.

Guidelines for Installation Control Scripts A-11

Testing Installation Control Scripts
Here are some steps to follow when testing Installation Control Scripts.

These steps do not cover all cases. There might still be some problems
with your scripts even after doing this testing. For example, you will test
loading/removing individual filesets. There might be some interactions that are
discovered only after all the filesets are combined on/ deleted from the system.

Here are a couple of reasons, specific to the update process, why the steps
below do not cover all cases .

• You will update your system from one version of a release to another version
of the same release. You might miss a problem where your script uses a
command that is new to one version of a release, and you don't execute the
script on the old version of the release, before that new command is installed
on the system .

• You might do your testing on a fully loaded system and miss a problem
where you execute a command in your script that is not part of the base
system. If the user chooses not to load the fileset containing that particular
command, your script will fail.

Testing customize Scripts

Test the standalone case on all supported systems:

1. rm /tmp/update .log

2. Run / etc/update to get your fileset(s) and any others of interest.

3. After the installation completes, check the /tmp/update .log file for any
problems, either in format or contents of the logged messages.

4. Study the resulting file system to see if the script did what you expected it
to do. If you have a complex script, run the tests for your product that you
feel will give you confidence your product has been installed correctly on the
system.

A-12 Guidelines for Installation Control Scripts

Testing decustomize Scripts

Test the standalone case on all supported systems:

1. If you want to start with a fresh system, remove /tmp/update .log and run
/ etc/update to load the filesets of interest.

2. After the installation completes, check the log messages in the file
/tmp/update .log for any problems.

3. rm /tmp/rmfn .log

4. Now run / etc/rmfn to get your function(s) removed.

5. Check the log messages in the file /tmp/rmfn .log for any problems during
fileset removal.

6. Study the resulting file system to see if the decustomize script did what
you expected it to do. If you have a complex decustomize script, run the
tests for your product that give you confidence your product has been
deleted correctly from the system.

Guidelines for Installation Control Scripts A-13

B
Re-Creating a Product Specification File

There are occasions when you might have media available and you want to
apply fpkg capabilities to it. For example, you have a CD-ROM media and
want to make an update tape containing all or part of the filesets on the
CD-ROM. The fpkg(lM) command is the one to use for creating an update
tape, but that requires the Product Specification File that was used to create
the CD-RO M media (or one functionally similar).

The -r option directs the output of the fpkg command to be a Product
Specification File.

Prerequisites and Conditions
The -r option can only be used with the -v option to increase verbosity and
the - L option to specify an alternate log file. Including any of the other valid
fpkg options along with the -r option on the command line causes a fatal error
(along with an error message telling why).

Re-Creating a Product Specification File 8-1

Using fpkg to Re-Create a Product Specification File
To re-create a Product Specification File, use the following syntax:

fpkg [-v] [-L logfile] -r media-directory> Product-Specification-File

The argument media-directory is the directory under which the appropriate
media (either netdist or CD-ROM) will be found.

Re-Creating a Product Specification File From CD-ROM Media

In the case of CD-ROM media, the media-directory command argument is the
directory at which the CD-ROM drive is mounted. This directory is usually
named /UPDATE_ CDROM.

The fpkg command verifies the correct structure of this media by looking for
a subdirectory named system which contains files named INDEX and INFO. A
fatal error occurs if either of these files are not found.

Re-Creating a Product Specification File From netdist Media

For netdist media, the media-directory command argument points to a
directory which has been created as a result of either the updist(lM) command
or the fpkg(lM) command. A typical directory in this case might be named
/netdist/8.07/MR/700.

The fpkg command verifies the correct structure of this media by looking
in each immediate subdirectory for files named netdist. index and
netdist. info, and for a directory named product. Any subdirectory is
ignored as netdist media if it does not have any such structure. A fatal error
occurs if no subdirectory under the argument directory has any such structure.
Further testing by fpkg ensures the suitability of each subdirectory as netdist
media. Failing any of these tests results in the directory being ignored as a
fileset directory structure.

B-2 Re-Creating a Product Specification File

The Command Output
The result of using fpkg with the -r media-directory option is:

• A Product Specification File printed to stdout (default is the monitor).
Output should be redirected to a permanent file.

• Error messages are directed to stderr.

• Log messages are sent to /tmp/fpkg .log (unless you named another log file
with the -L option).

The Product Specification File resulting from each type of media is slightly
different because of differences in the structure of CD-ROM media and netdist
media.

Output From CD-ROM Media

The CD-ROM media has all of its filesets distributed under a single root
directory. There is no separation of filesets on a CD, which is necessary on tape
media. For this reason, fpkg must individually specify the source location of
each file contained in a particular fileset. In addition, the mode of each file is
explicitly specified. This makes for a lengthy Product Specification File.

Note Any filesets on CD-ROM media which are found to be secured
will be omitted from the output. These filesets will be noted in
the log file only if the verbose (-v) option was used.

Output From netdist Media

The directories under a netdist distribution hierarchy are organized by fileset.
For the sake of consistency, each file is listed as in reading from CD-ROM
media. The Product Specification File contains the filesets in the order in
which they are read from the netdist directory. However, the sequence in which
the subdirectories are read may not be identical to the sequence in which they
must be put onto the tape media. The correct ordering is done by fpkg after
reading the Product Specification File and prior to writing to the tape.

Re-Creating a Product Specification File B-3

Example
The following command line will read the CD-ROM media mounted at
/UPDATE_CDROM and will write the Product Specification File into the file
/tmp/psf.

fpkg -rv /UPDATE_CDROM > /tmp/psf

You can edit the Product Specification File /tmp/psf, but deleting entire
fileset structures is the only recommended action.

The following command line will result in an update tape which is the
functional equivalent of the CD-ROM media (the default tape device
/dev/rmt/Om is used here).

fpkg -m tape /tmp/psf

8-4 Re-Creating a Product Specification File

Glossary

The following terms, names, and acronyms are used when packaging and
installing software applications on HP -UX.

Alternate Log File
You can override the default location of the fpkg log file with an alternate
name using the -L logfile option of fpkg.

Critical Filesets
Critical filesets contain software that is critical to the correct operation of
the destination host. Critical filesets are those marked with the rebuild and
reboot (B) file set flag. During the load phase, critical filesets are loaded and
customized before other filesets.

customize Script
Optional, vendor-supplied script associated with a fileset that is executed
before or after installing the corresponding fileset.

decustomize Script
An optional, vendor-supplied script associated with a fileset that is executed
by rmfn.

Dependee Fileset
A fileset on which some other file set depends. For example, if fileset A
depends on fileset B, then B is a dependee of A.

Dependencies
Dependencies between filesets are used to enforce corequisites. A file set
that depends on another fileset requires that the other fileset be installed
in order for the first fileset to be usable. For example, if fileset A depends
on fileset B, then B must be installed in order for A to be usable (A won't
work without B).

Glossary-1

Depender
A file set that depends on some other fileset. For example, if fileset A
depends on fileset B, then A is a depender of B.

Destination Host
A host (local or remote) on which software is installed or copied.

fileset
HP-UX software is organized into filesets and partitions. Individual files
are logically grouped into filesets, and filesets are logically grouped into
partitions. For a description of existing HP-UX filesets and partitions, see
Installing and Updating HP- UX.

fpkg
This command allows a software vendor to create software products and
package them onto Tape Media or Network Media. Network Media can
be accessed directly and can be served to other hosts by the netdistd
command.

Host
Same as a "system".

INDEX File
An INDEX file provides attribute and organizational information about
partitions and filesets.

INFO File
An INFO file provides information about the files within a fileset. This
information includes file type, mode, size, and pathname.

Installation Control Scripts
Optional, vendor-supplied scripts that are run during update and rmfn.
Includes the customize script for update and the decustomize script for
rmfn.

Installed Product
A product that has been installed on a host so that its files can be used by
end-users. Contrast with a product residing in Network Media on a host's
file system, sometimes referred to as a "served product" .

Glossary-2

Keyword
A word (or phrase) that tells fpkg about an attribute of the product.
Keywords also have a corresponding shorthand notation. Either the full
keyword or the shorthand notation can be used in the Product Specification
File.

Local Host
The host that update or updist is being run on. Essentially equivalent
to the administrative host, though the term local host is used along with
remote host when talking about destination hosts.

Locatable Fileset
The files in a locatable file set can be installed relative to an arbitrary
destination directory on a destination host. If a fileset is nonlocatable, then
its files are always installed relative to root (/).

Locatable Software
Software that can be installed relative to an arbitrary destination directory
on a destination host. If software is nonlocatable, its files are always
installed relative to the root (/) directory.

Logging
The fpkg tool keeps a record of its actions (messages, errors, and other
information) in a log file. The default location for the fpkg log file is
/tmp/fpkg .log; This can be overridden by invoking fpkg with the -L
logfile option.

Media Format
The organization of media based on the HP- UX data model.

netdistd
The network server command; it serves Network Media simultaneously to
multiple update processes on remote hosts.

N etwor k Media
One type of HP -UX Media. This media type uses a file system to store the
software products and control files needed by netdistd to use the media
(i.e., all of the files in the products and the various netdistd control files
residein a directory structure with a single, common root).

Glossary-3

Network Server
An alternate source for software installation and updates. The netdistd
command manages a network server and interfaces with the install agent.

Nonlocatable Fileset Flag
An attribute of a fileset (set by the keyword ff C) which states that the
fileset cannot be installed into any non-root destination directory. It must
be loaded relative to root (/). A fileset with this flag is a nonlocatable
fileset.

Nonlocatable Software
Software that is always installed relative to the root (/) directory. If
software is locatable, its files can be installed under an arbitrary destination
directory on a destination host.

partition
HP-UX software is organized into filesets and partitions. Individual files
are logically grouped into filesets, and filesets are logically grouped into
partitions. For a description of existing HP-UX filesets and partitions, see
Installing and Updating HP- UX.

Product Specification File
The input file used to define the structure and attributes of the products to
be packaged by fpkg.

Rebuild and Reboot Fileset Flag
An attribute of a file set (set by the keyword ff B) which states that a
destination host must have the kernel rebuilt and be rebooted after the
file set is installed. All filesets marked with a B flag will be loaded before the
kernel is rebuilt. A fileset with this flag is considered to be a critical fileset.

rmfn
This command can interactively or non-interactively remove products from
a system in units of filesets or partitions.

HP-UX Media
The term for generically referring to media used by HP -UX. There are two
types of HP- UX Media that fpkg can make: Network Media and Tape
Media. A media contains the software product files and the catalog of

Glossary-4

product information used for control of the selection and installation of the
products.

Serial Media
A synonym for Tape Media.

Served Prod uet
A product contained in a Network Media which is provided to update or
updist through a netdistd server. Products contained in Network Media
can be served to other hosts.

Tape Media
One type of HP -UX Media. This media type uses tar to store software
products and control files needed by update to use the media (i.e., all of
the files in the products and the various control files reside in a single tar
archive). Such an archive usually resides on a serial media such as a DDS,
cartridge, or nine-track tape, though a Tape Media can be a simple, regular
file that contains the tar archive.

Tar Media
A form of installation media that exists as a tar-archive file, usually
resident on a tape. A synonym for Tape Media.

update
The command that you execute to install or update software.

updist
This command is similar to update, except that it installs or updates
the HP-UX system or application files as "file set packages" in a special
directory. This allows the system to be a network file distribution (netdist)
server. The network server daemon (netdistd) finds the files in this special
directory and supplies them to a remote update process on request.

Glossary-5

Index

A

alternate log file (-L logfile option),
2-10

architecture mixing (-M option), 2-11
attributes, 3-2

file location, 3-20
fileset, 3-6
partition, 3-4

attributes of files being packaged, 2-2

c
comment string (-c option), 2-10
conditions and prerequisites to creating

Product Specification File, 3-4
conditions and prerequisites to running

fpkg, 2-1
customize script, 3-15, A-I

details, A-4
customize script, details, A-5

D

decustomize script, 3-16, A-I
details, A-4

decustomize script, details, A-6
default attributes for destination

directories, 2-3
defining the software product structure,

3-1
destination directory(-d directory

option), 2-6
device file for tape (ldev/rmt/Om), 2-7
/dev/rmt/Om, 2-7

documentation related to fpkg, vii

E

error messages
Skipping customize script for fileset ...

, A-5
examples

CDFinfo keyword, 3-17
copyright keyword, 3-17
customize keyword, 3-15
decustomize keyword, 3-16
fileset_dependency (dep) keyword,

3-11
fileset_description (fd) keyword,

3-7
fileset_directory_permission

(fdperm) keyword, 3-14
fileset_file_permission(ffperm)

keyword, 3-14
fileset_flags (ff) keyword, 3-8,

A-3, A-5, A-7
fileset_name (fn) keyword, 3-6
fileset_version (fv) keyword, 3-12
Files (F) keyword, 3-24
fpkg command lines, 2-12
installation control script, 3-15, 3-16
instruction_set (is) keyword, 3-9
keywords, full or short version, 3-2
log file, 4-6
media_format keyword, 3-19
media_order keyword, 3-19
packaging process, 4-1

Index-1

F

partition_description (pd)
keyword, 3-5

partition_name (pn) keyword, 3-5
Product Specification File, 4-4
pseudo_root (pr) keyword, 3-20,

3-24
specifying file or directory permissions

at the file level, 3-23
specifying files with the Files keyword,

3-22
system_architecture_type (sys)

keyword, 3-10
systemfile keyword, 3-18

file location keywords, 3-20
files

device file for tape (ldev/rmt/Om),
2-7

installation control scripts, 3-15, 3-16
Installation Control Scripts, A-1
log file example, 4-6
log file (ltmp/fpkg .log), 2-10
Product Specification File, 1-1, 3-2
Product Specification File example,

4-4
fileset

as part of product structure, 3-1
attributes, 3-6
keyword for CDFinfo file, 3-17
keyword for copyright, 3-17
keyword for customize script, 3-15
keyword for decustomize script, 3-16
keyword for dependencies, 3-11
keyword for description, 3-7
keyword for directory permissions,

3-14
keyword for file permissions, 3-13
keyword for flags, 3-7
keyword for instruction set, 3-9
keyword for name, 3-6

Index-2

keyword for other /system files, 3-18
keyword for specifying media format

version, 3-19
keyword for specifying order of filesets,

3-19
keyword for system architecture type,

3-10
keyword for version, 3-11

file types supported by fpkg, 2-2
flags, file set , 3-7
fpkg command

H

examples, 2-12
options, 2-4
prerequisites and conditions, 2-1
purpose, 1-1
related documentation, vii
supported file types, 2-2
syntax, 2-4

hard links, 2-2

installation control scripts, 3-15, 3-16
Installation Control Scripts

execution of other commands, A-7
file management, A-ll
guidelines, A-1
input and output, A-8
location and execution of, A-4
testing them, A-12

install media format, 4-8
instruction set, 3-9

K

keywords, 3-2
categories, 3-2
CDFinfo, 3-17
copyright, 3-17
customize script, 3-15, A-1
customize script, details, A-4, A-5

L

decustomize script, 3-16, A-I
decustomize script, details, A-4, A-6
file location, 3-20
fileset attributes, 3-6
fileset_dependency (dep), 3-11
fileset_description (fd), 3-7
fileset_directory_permission

(fdperm),3-14
fileset_file_permission (ffperm),

3-13
fileset_flags (ff), 3-7, A-3, A-5,

A-7
fileset_name (fn), 3-6
fileset_version (fv), 3-11
Files (F), 3-4, 3-21
instruction_set (is), 3-9
machine_type (sys), 3-10
media_format, 3-19
media_order, 3-19
partition attributes, 3-4
partition_description (pd), 3-5
partition_name (pn) , 3-4
pseudo_root (pr), 3-20
summary table, 3-2
syntax, 3-2
systemfile, 3-18

log file, 2-10
log file example, 4-6

M

machine series (-s machine-series
option, 2-9

media format version (-V media-format­
version option), 2-8

media type (-m media-type option), 2-6
mixing architectures (-M option), 2-11

N

Network Media destination (-d directory
option), 2-6

o
options for fpkg command

-a archive-file (tape device), 2-7
-c comment-string, 2-10
-d directory (Network Media

destination), 2-6
-h (symbolic links), 2-10
-L logfile, 2-10
-M, 2-11
-m media-type, 2-6
overview, 2-4
-r media-directory, 2-11
-s device-size (tape device size), 2-7
-s machine-series, 2-9
-v media-format-version, 2-8
-v (verbose output), 2-10

organization of this manual, vi
overview of the packaging process, 1-5,

4-1

p

packaging process
overview, 1-5, 4-1

partition
as part of product structure, 3-1
attributes, 3-4
keyword for description, 3-5
keyword for name, 3-4

permissions, overriding, 3-13, 3-14, 3-22,
3-23

prerequisites and conditions to creating
Product Specification File, 3-4

prerequisites and conditions to running
fpkg, 2-1

Product Specification File, 1-1
creating, 3-2
example, 4-4

Index-3

structure, 3-2
product structure, defining, 3-1

R

re-create media (-r option), 2-11

s
scope of this manual, vi
scripts

customize, A-1
decustomize, A-1
installation control, A-1

scripts, installation control, 3-15, 3-16
structure of software products, 3-1
symbolic links, 2-2
symbolic links (-h option), 2-10
syntax

all keywords, 3-2
CDFinfo keyword, 3-17
copyright keyword, 3-17
customize keyword, 3-15
decustomize keyword, 3-16

Index-4

fileset_directory_permission
(fdperm) keyword, 3-14

fileset_file_permission(ffperm)
keyword, 3-13

Files (F) keyword, 3-21, 3-22
fpkg command, 2 ... ,4

media_format keyword, 3-19
media_order keyword, 3-19 '
pseudo_root (pr) keyword, 3-20
systemfile keyword, 3-18

system architecture type, 3-10

T

tape device (-a archive-file option), 2-7
tape device size (-s device-size option),

2-7
/tmp/fpkg.log, 2-10
typeface conventions used in this manual,

v

v
verbose output (-v option), 2-10

Reorder No. or
Manual Part No.
B2355-90031

rll~ HEWLETT
a:~ PACKARD

Copyright © 1992
Hewlett-Packard Company
Printed in USA E0892

Manufacturing
Part No.
B2355-90031

B2355-90031

