[ﬁp HE’WLETTJ«

HP 9000 =
Computers ’_

Programming on HP-UX

Programming on HP-UX

HP 9000 Computers

A caciarc

HP Part No. B2355-90026
Printed in USA August 1992

E0892

Notices

The information contained in this document is subject to change without
notice,

Hewlett- Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Copyright (© 1983—92 Hewlett-Packard Company

All rights are reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in sub-paragraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).

Copyright (©) 1980, 1984, 1986 UNIX System Laboratories, Inc.

Copyright (©) 1979, 1980, 1983, 1985—1990 The Regents of the University of
California.

This software and documentation is based in part on materials licensed from
the Regents of the University of California. We acknowledge the role of

the Computer Systems Research Group and the Electrical Engineering and
Computer Sciences Department at the University of California at Berkeley and
the other named Contributors in their development.

Trademarks. The following trademark is used in this manual:

UNIX UNIX is a registed trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. The manual printing date and part number indicate its
current edition. The printing date changes when a new edition is printed.
The manual part number changes when extensive technical changes are

incorporated.

August 1992

Edition 1. This manual supersedes Programming on HP-UX
(part number B2355-90010). The main reason for this new
edition is to document new functionality for the HP-UX 9.0
release:

m Series 300/400/800 computers now support the following
features, which formerly were supported only on Series 700
systems:

o shl_gethandle routine
7 -h and +e linker options

o BIND_VERBOSE, BIND_NONFATAL, and BIND_FIRST ﬂags to
the shl_load routine

o -B nonfatal linker option
o -c linker option (for linker option files)

m Linker functionality is now identical on Series 800 and Series
700.

m A shared library’s run-time location can be different than its
link-time location; in other words, shared libraries no longer
have to reside at the same location at run time as they were
when the application was linked.

m Shared libraries can now be debugged with xdb.

m There is a new section on improving the run-time
performance of shared libraries.

m Profile-based optimization (PBO) has changed somewhat.

m On Series 700/800, greater math library performance can
be obtained by linking with the PA89 math libraries (as
described in Chapter 2).

m On Series 700/800, there is a new shared library
management routine, shl_getsymbols.

m New BIND_RESTRICTED flag to the shl_load routine.
m New -B restricted linker option.
m New +I linker option (shared library initializers).

The previous edition (part number B2355-90010) superseded
part number B1864-90007. The main reason for the previous
edition was to include information from the Programming on
HP-UX Technical Addendum for the Series 700 HP-UX release
8.05 (part number B2355-90604):

a profile-based optimization—repositioning procedures in an
a.out file to optimize run-time performance

m linker optimization with the -0 option
m new linker option for shared library binding: -B nonfatal

m explicitly hiding and exporting shared library symbols with
the -h and +e linker options

m support for linker option files with the -c option

m shared library dependencies—automatically loading libraries
that are required by other libraries

m new shl_load flags—BIND_VERBOSE, BIND_FIRST,
and BIND_NONFATAL

m new shared library management routines—shl_definesym
and shl_gethandle

m support for shared library debugging with the -s option to
xdb

Contents

1.

Introduction
Manual Contents
Prerequisites

Related Manuals

Chapter Summaries
Conventions

The HP-UX Software Development Environment

Compiling Programs on HP-UX: An Example
Looking “inside” a Compiler
What Is an Object File?

Local Definitions

Global Definitions

External References
Using nm to View Symbols

The Link-Edit Phase of Compilation

Linking with Libraries
Library Naming Conventions
Specifying Libraries to the Linker (-1)
Default Libraries

Specifying Libraries on the Compile Line (1) ..

Linking with the crt0.0 Startup File . .

The Default Library Search Path

Summary of HP-UX Libraries

Archive and Shared Libraries

What Are Archive Libraries? C
What Are Shared Libraries?
Position-Independent Code .

Compiler Options That Affect the Lmker

Renaming the a.out File (-o name)

1-2
1-3
1-4
1-6
1-8

2-2
2-4
2-6
2-6
2-6
2-6
2-7
2-9
2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-12
2-14
2-16
2-17
2-19
2-20
2-20

Contents-1

Suppressing the Link-Edit Phase (-«¢) 220

Specifying Libraries (-1) e e e e e e e 221
Getting Verbose Output (-) e e e e e 2221
Passing Linker Options Directly (Wl) Coe Coe e 2:22
Augmenting the Default Linker Search Path (-WI, L) Coe e 2-22
Selecting Faster Libraries (Series 700/800 Only) e e e e 223
From the Linker Command Line 223
From the Compiler Command Line 224
Restrictions on Using Faster Libraries 224
The Assemblers e e e e e e e Ce e o225
Other Programming Tools C e e e 227
SoftBench e e e e e 2:28
The Programming Tools e e e .. 228
The SoftBench Framework 228
SoftBench Encapsulator C e e e e 2:29
3. Creating Archive Libraries
Overview of Creating an Archive Library e e e 3-2
What Does an Archive File Contain? 3-3
Creating an Archive Library: An Example 3-4
Replacing, Adding and Deleting Object Modules 3-6
Replacing or Adding an Object Module 3-6
Deleting an Object Module 3-6
Summary of ar Keys e e e 3-7
Where to Put Archive lerarles C e e 3-8
Using /lib or /usr/lib e e 3-8
Using /usr/local/lib or /us1/contr1b/11b C e e 3-8
4. Creating Shared Libraries
Creating Position-Independent Code (PIC) 4-2
Example e e e e e e e e e 4-2
+z versus +72 e e e e e e e 4-2
Compiler Support for +z and —|—Z Ce . 4-2
Shared Libraries with Debuggers, Profilers, and Statlc Analysw . 4-3
Creating the Library with1d 4-4
Updating a Shared Library 4-5
Version Control e e e e e e 4-6
The Version Number Compller D11ect1ve e e e e 4-6

Contents-2

Adding New Versions to a Shared Library R 4-7

Specifying a Version Date C e 4-8
Shared Library Locationo 4-9
Shared Library Dependencies (Series 700/800 Only) 4-10

The Order in Which Libraries Are Loaded (Load Graph) 4-10

Placing Loaded Libraries in the Search List e 412
Improving Shared Library Performance e 2

Exporting Only the Required Symbols 413

Placing Frequently-Called Routines Together 414

Setting Shared Library Permissions to Non-Writable (Semes

700/800 Only) 415

Using the +ESlit Option to cc (Serles 700/800 Only) R S)
Linking and Running Programs
Linker Overview R 5-2

Compiler-Linker Interaction 5-2

The crt0.o Startup File e e e 5-3

Entry Point e e C e e e 5-3

The aout File Ce e e 5-3

File Permissions C e e Ce e 5-4
Renaming the a.out File 5-4
Specifying Linker Options with the LDOPTS Env1ronment
Variableo e e 5-4
Specifying Libraries (-1) Coe e 5-5

Link Order Coe 5-6

Overriding the Default Linker Search Path (LPATH) Co 5-6

Augmenting the Default Linker Search Path (-L) 5-7
Choosing Archive or Shared Libraries (-a and -1:) 5-8

Using the -a Option C e e 5-8

Using the -1: Option (Series 700/800 Only) . Ce e 5-9
Linking a Program with Shared Libraries 511

Exporting Symbols from the Main Program (-E) 511

Library Location and the Dynamic Loader (dld.sl) 5-11

Default Behavior When Searching for Libraries at Run Tlme 5-11
Moving Libraries after Linking 512
The Path List e S
Caution on Using Dynamic Library Searching 5-13
Specifying a Path List with +b 5-13

Contents-3

Specifying a Path List with +s and SHLIB_PATH
Mixing +band +s Lo L.
The Path List and the shl_load Routine
Binding Routines to a Program
Deferred Binding e e e
Forcing Immediate Binding (-B immediate)
Nonfatal Shared Library Binding (-B nonfatal) .
Restricted Shared Library Binding (-B restricted) (Series
700/800 Only)
Hiding and Exporting Symbols (-h and +e) . .
Hiding and Exporting Symbols When Building a Shared
Library . .
Hiding Symbols When Combmmg .0 F11es Wlth the -T Optlon .
Hiding and Exporting Symbols When Creating an a.out File
Linker Option Files (-c file) Coe e
Migrating to Shared Libraries e e
Library Path Names
Relying on Undocumented Linker Behavior
Absolute Virtual Addresses . e e e e
Stack Usage
Text and Data Segment Restrictions (Series 300/4[)0 Only)
Startup Code (crt00)
Version Control
Using the chroot Command with Shared lelarleq .
Debugger Limitations
Profiling Limitations
Loading Programs: exec
Magic Numberso
Shareable Executables vs Shared Libraries
Changing a Program’s Attributes with chatr . .
Stripping Symbol Table Information from the Qutput Flle .
Dynamic Linking (-A and-R) e
Overview of Dynamic Linking
Step 1: Determine how much space is 1equ11ed to load the
module.

Step 2: Allocate the required memory and obtam 1ts startlng

address.o
Step 3: Link the module from the running apphcatlon

Contents-4

Step 4: Get information about the module’s text, data, and
bss segments from the module’s header. . .
Step 5: Read the text and data into the allocated space.
Step 6: Clear (zero out) the bss segment. .
Step 7: Flush the text from the data cache before executmg
code from the loaded module.
Step 8: Get the addresses of routines and data that are
referenced in the module.
An Example Program
The Build Environment
Source for dynprog
filel.oand file2o L.
Output of dynprog Co
dynload.c
The alloc_load_space Function Coe e
The dyn_load Function
The flush_cache Function (Series 700/800 Only)

Profile-Based Optimization and Data Access Optimization
Optimizing Access to Data (Series 700/300 Only)
Invoking -O from the Compile Line e
Incompatibilities with other Options . . .
Profile-Based Optimization (Series 700/800 Only)
When to Use PBO
How to Use PBO
Instrumenting (+1/-1)
The Startup File icrt00
The -1 Linker Option C e e e
Specifying a Code Generator to the Llnker (Fb)
Profiling
Choosing Input Data
The flow.data File
Storing Profile Information for Multiple Programs .
Sharing the flow.data File Among Multiple Processes
Forking an Instrumented Application
Optimizing Based on Profile Data (+P/-P).
The -P Linker Option Ce e
Using The flow.data File

5-37
5-38
5-39

5-39

5-39
5-40
5-41
5-42
5-45
5-46
5-46
5-47
5-50
5-55

6-2
6-2
6-2
6-3
6-4
6-4
6-4
6-5
6-6
6-7
6-8
6-8
6-8
6-9
6-10
6-11
6-11
6-12
6-12

Contents-5

Specifying a Different flow.data File with +df 6-12

Specifying a Different flow.data File with FLOW_DATA . . 6-13
Interaction between FLOW_DATA and +df 6-13
Specifying a Different Program Name (+pgm) 6-13
Selecting an Optimization Level with PBO 6-14
A Simple Example 6-15
Restrictions and Limitations of PBO 6-16
Temporary Files 6-16
Source Code Changesand PBO 6-16
[-SOM File Restrictions 6-17
Id . . . e 6-17
110 6-18
- 6-18
Strip . . . o e 6-18
Compiler Options 6-18
Compatibility with 8.05PBO 6-19
7. Position-Independent Code
What Is Relocatable Object Code? 7-2
What Is Position-Independent Code? 7-3
Series 700/800 Position-Independent Code 7-4
PIC Requirements for Compilers and Assembly Code 7-5
Long Calls 7-6
Long Branches and Switch Tables 7-7
Assigned GOTO Statements 7-8
Literal References 7-8
Global and Static Variable References 7-8
Procedure Labels 7-9
Series 300/400 Position-Independent Code 7-11
Brancheso 7-11
Subroutine Calls 7-12
Data Referenceso L 7-13
The fpa_loc Symbol and PIC 7-14

Contents-6

8.

Shared Library Management Routines

Linking with Shared Library Routines R 8-2
Shared Library Header File (dlLh) Co 8-3
Explicitly Loading a Shared Libraryo 8-4
shl_load Syntax 8-4
BIND_NONFATAL Modlﬁer R 8-5
BIND_VERBOSE Modifier 8-6
BIND_FIRST Modifier 8-6
DYNAMIC_PATH Modifier 8-6
BIND_RESTRICTED Modifier (Series 700/800 Only) 8-7
shl_load Return Value R 8-7
shl load Usage R 8-8
shl_load Example R 8-8
Accessing Routines and Data in Explicitly Loaded Libraries . . 8-10
shl_findsym Syntax 810
shl_findsym Return Value 811
Using shl_findsym to Call a Routme 811
Using shl_findsym to Access Data 812
shl_findsym Example 812
Getting Information on Currently Loaded Libraries 816
shl_get Syntax 816
shl_get Return Value -
shl_get Usage R N
shl_get Example 818
Getting Descriptor Information for a Shared lerary Coe ... 820
shl_gethandle Syntax Ce e oo 820
shl_gethandle Return Value 8-20
shl_gethandle Example 8-21
Defining or Redefining a Shared lerary Symbol (Serles 700/ 800
Ounly) Ce e oo 822
shl_definesym Syntax Ce. 822
shl_definesym Return Value e e e e s 822
shl_definesym Usage 8-23
Retrieving Symbols Defined in a Shared lerary (Serles 700/ 800
Only) 824
shl_getsymbols Syntax O <
The shl_symbol Structure < 1)
shl_getsymbols Return Value e e e e 8-26

Contents-7

shl_getsymbols Fxample e e e e e e 827

Unloading a Shared Library - X
shl_unload Syntax Ce e e .. 831
shl_unload Return Value 8-31
shl_unload usage Coe e e 832

Declaring an Initializer for a Shared Library 833
Declaring the Initializer Coe e o 833

The +1I Linker Option 833
Referencing the Initializer from the Shared lerary o . 834
The Default Initializer (Series 300/400 Only) . e . 834
Initializer Syntaxo e . .. 835
Example: An Initializer fo1 Each Library 835
Example: A Common Initializer for Multiple lerarles S . 838

9. Standard Input/Output Library Routines

Overview of Input/Output e e e e e . 9-2

Input/Output Using stdin and stdout 9-3
Single-Character Input/Output 9-3
String Input/Qutput Ce e 9-5
Formatted Input/Output with scanf e e e e . 9-5

Conversion Specifications C e e 9-6
Conversion Characters e 9-7
Integer Conversion Characters Ce e e 9-7
Character Conversion Characters C e e 9-8
Floating-Point Conversion Characters 9-9
Literal Characters 9-9
Examples e e o910
Formatted Output with printfo 913
Literal Characterso .. 913
Conversion Specifications O R
Conversion Characters O 5 Bt
Examples oo .. 917

Input/Output from/to Strings C e e e oo 920
Reading Data from a String S o ..o 920
Writing Data into a String C e e e e 924

Input/Output Using Ordinary Files o *]
Opening Ordinary Files C e e e e . 926
fdose Lo o929

Contents-8

10.

11.

Single-Character Input/Output . . . e
Character Push-Back
String Input/Output
Formatted Input/Output .
Binary Input/Output -
Stream Status and Control Routines
Stream Status Inquiry Routines .
Repositioning Stream Input/Output Operatlons
Stream Control Routines
setbuf .
setvbuf
flush
freopen . .
Converting between F11e Pomters and Flle Descmptors .
Inter-Process Communication . .

Standard Character, String, and Date Manipulation Routines
Converting between Uppercase and Lowercase
Character Classification
String Manipulation Routines
Concatenating Strings .
Copying Strings
Comparing Strings
Finding the Length of a Strmg
Finding Characters in Strings
Finding Characters Common to Two Strmgs
Breaking a String into Tokens
Date and Time Manipulation .

Standard Math Routines

The math.h Header File

The Math Libraries

Absolute Value Functions

Power, Square Root, and Loganthmlc Functlons
Trigonometric Functions .

Calculating Upper and Lower Bounds
Calculating Remainders .o
Calculating A Hypotenuse

9-30
9-34
9-35
9-39
9-40
9-47
9-47
9-50
9-57
9-57
9-59
9-60
9-61
9-63
9-66

10-1
10-2
10-2
10-3
10-3
10-5
10-8
10-8
10-10
10-10
10-12

11-1
11-2
11-3
11-4
11-5
11-9
11-10
11-12

Contents-9

Generating Random Numbers 11-12

Floating-Point Exponentiation Routmes B
12. Advanced HP-UX Programming
Program Arguments and Environment Pointer 122
intargeo e e e e 1222
char *argv[]00 122
char **envp oo 123
Example O 2K
Error Handling: stderr and ex1t T 28,
Low-Level Input/Qutput 126
File Descriptors 126
read and write L. oL oo 127
open, creat, close, unlink 129
Random Access: Iseek 1212
Error Processingand errno 12-13
Processes . . . O 2
The system Functlon R e e e e e 1214
Low-level Process Creation: execl and execv 1214
Control of Processes: fork and wait 1216
Pipes . . . e e e e e e e e e e e e e e 12418
Signals (Interrupts) e e s 12222
13. make: A Command for Maintaining Computer Programs
Overviewo e e e e 132
Basic Features O s
Description Files and Substltutlons e e e e e e e e oo 136
Command Usage 138
Implicit Rules 1310
Example e s S5 0
Suggestions and Warmngs P I B S
Suffixes and Transformation Rules 1314
Using make with SCCS 1316

Contents-10

14.

SCCS: Source Code Control System

Overview
Terms .
S-files

Deltas . .

SIDs (Version Numbers)
ID Keywords
Creating SCCS Files Coe e
Removing SCCS Files Ce .
Getting Files for Compilation

Changing Files (Creating Deltas)

Getting a Copy to Edit

Merging the Changes Back Into the S-File

When To Make Deltas

What’s Going On: The Sact Command

Using ID Keywords
The what Command e e e e
Where to Put Id Keywords

Creating New Releases

Canceling an Editing Session

Restoring Old Versions

Reverting to Old Versions

Selectively Excluding Old Deltas

Selectively Including Deltas

Removing Deltas
The Help Command
Auditing Changes

The prs Commando

Determining Why Lines Were Inserted
Comparing Versions

Files Used by SCCS
S-Files . . L.
The Contents of the S-File

G-Files
L-Files
P-Files
D-Files
Q-Files

....................

..............

14-2
14-3
14-3
14-3
14-3
14-4
14-5
14-7
14-7
14-8
14-8
14-8
14-9
14-10
14-10
14-11
14-12
14-13
14-13
14-14
14-14
14-15
14-16
14-17
14-17
14-18
14-18
14-19
14-20
14-20
14-21
14-21
14-22
14-23
14-23
14-24
14-24

Contents-11

X-Files C e e e e
Z-Files . . o . oo o000 oL
Concurrent Editing Ce e Ce
Concurrent Edits on Different Vers1ons e e e
Concurrent Edits on the Same Version . .
Recovering from Problems Ce e
Making Temporary Changes e e
Recovering an Edit File e e e
Restoring the S-File
Using the Admin Command C e e e e e
Creating SCCS Files . . . e e e e e
Adding Comments to Initial Delta e e
Descriptive Text in Files
Setting SCCS File I'lags C e e e e
Specifying Who Can Edit a File
Maintaining Different Branches
Creating a Branch
Retrieving a Branch C e e e
Branch Numbering
A Warning L. e e e e e e
SCCS Protection Facilities
General File Protection C e e e
System Protection Using admin
Using SCCS With Make
To Maintain Groups of Programs
To Maintain a Library

To Maintain a Large Program
Using SCCS on a Multi-User Project
How the SCCS Interface Works
Configuring an SCCS System Using the Interface
Creating the SCCS Directory

Writing and Compiling the Program
Specifying Program Access Permissions
Assign Name Links to the Program
Modifying the Users” Search Path
Creating SCCS Files
Quick Reference e e e e e e
Commands C e e e e e

Contents-12

14-24
14-25
14-25
14-25
14-26
14-27
14-27
14-27
14-28
14-29
14-29
14-29
14-30
14-30
14-32
14-34
14-35
14-35
14-35
14-37
14-37
14-37
14-38
14-39
14-39
14-41
14-42
14-43
14-44
14-44
14-45
14-46
14-47
14-47
14-48
14-48
14-49
14-49

15.

ID Keywords .

The M4 Macro Processor
Overview of m4 Capabilities
Usage

Defining Macros

Arguments .

Arithmetic Functions

File Manipulation .

System Command

Conditionals

String Manipulation

Printing . .
Glossary

Index

14-51

15-2
15-5
15-5
15-9
15-10
15-11
15-12
15-12
15-13
15-15

Contents-13

Figures

2-1. sumnum.c—Sum the Numbers from 1 ton Ce 2-3
2-2. High-Level View of the Compiler Coe 2-3
2-3. Looking “inside” a Compiler 2-4

2-4. Qutput of nm on a Series 700/800 Computer 2-7
2-5. Qutput of nm on a Series 300/400 Computer 2-8

2-6. Matching the External Reference to sum-n 2-9
2-7. Linking with an Archive Library 216
2-8. Two Processes Sharing libc C e e e e e . 218
2-9. Two Processes with Their Own Copies oI l1bc e e 2-19
3-1. Creating an Archive Library . . . e e e 3-2
3-2. length.c—Routine to Convert Length Umts e e e 3-4
3-3. volume.c—Routine to Convert Volume Units 3-4
3-4. mass.c—Routine to Convert Mass Units 3-4
4-1. length.c—Length-Conversion Routines; New Version 4-7
5-1. Archive Libraries with One Shared Executable 5-32
5-2. Archive Libraries with Two Shared Executables 5-33
5-3. Shared Libraries with Shared Executables 533
5-4. Makefile Used to Create Dynamic Link Files 541
5-5. dynprog.c—Example Dynamic Link and Load Program . . . 5-44
5-6. Source for filel.c and file2.c O 83
5-7. Include Directives for dynload.c 546
5-8. C Source for alloc_load_space Function 5-49
5-9. C Source for dyn_load Function s T L
5-10. Assembly Language Source for flush_ cache Functlon B-56
8-1. load_lib—Function to Load a Shared Library 8-9

8-2. Load a Shared Library and Call Its Routines and Access Its
Data e e e e . 814

8-3. show_loaded_libs—Display Library Infmmatwn O - N £
8-4. show_lib_info—Display Information for a Shared Library . . 8-21
8-5. show_symbols—Display Shared Library Symbols 8-28

Contents-14

8-7.
8-8.
. C Source for testlib e e e e e e
8-10. Output of testlib

8-11.
8-12.
8-13.
8-14.
8-15.
11-1.
13-1.
14-1.
14-2.
14-3.
14-4.

. show_all-—Use show_symbols to Show All Symbols
Output of show_all Program

C Source for libfoo.sl

C Source for _INITIALIZER (file init.c)

C Source for libunits.sl

C Source for libtwo.s!

C Source for testlib2

Output of testlib2

triangle.c—Get Dimensions of nght Trlangle Coe

Default make Transformation Paths . ..
Development of SCCS File
Example Branch Delta .

Diagram 1
Diagram 2

8-29
8-30
8-36
8-37
8-37
8-38
8-39
8-40
8-41
8-42
11-8
13-10
14-4
14-34
14-36
14-36

Contents-15

Tables

1-1. Related Manuals
1-2. Summary of Chapter Contents
1-3. Typographical Conventions
2-1. Libraries Documented in the HP-UX Reference
2-2. Comparison of Archive and Shared Libraries
2-3. Programming Environment Tools
3-1. Usefular Keys
5-1. Magic Number Linker Options
5-2. Changing Executable Attributes with chatr
15-1. Built-in Macros

Contents-16

Introduction

This chapter describes

m the scope of this manual

m what you should know before reading this manual
m what manuals to go to for additional information
m the content of each chapter

m conventions used throughout this manual

Introduction 1-1

Manual Contents

This book describes the fundamentals of software development on HP-UX. It
shows how the basic pieces of the HP-UX software development environment fit
together—the compilers, assemblers, linker, libraries, and object files. It also
describes

m the two kinds of subroutine libraries (archive and shared), how to create
them, and how to link them with your programs

m using the linker, 1d, to create executable programs

m special considerations for writing position-independent code, which is the
code used to build shared libraries

m managing shared libraries from within a program
m using the standard I/O library

m using character, string, and date/time manipulation routines from the
standard library

m using math routines found in the standard C library (1ibc) and the math
library (1ibm)

m advanced system programming techniques
m general-purpose software development tools:

O make—a program for maintaining computer programs.
o m4—the macro preprocessor.
o SCCS—a source code control systems (SCCS).

This book does not discuss in detail the compilers (cc, £77, pc), debuggers, or
language-specific tools (such as cflow, ratfor, and lint). For details on where
to look for a specific topic not covered in this manual, see “Related Manuals”.

1-2 Introduction

Prerequisites

Before reading this manual, you should have a good grasp of these basic
HP-UX concepts:

login and logout
m shells
m environment variables: PATH, HOME, TERM

m standard input, standard output, and standard error output

m processes

m input/output redirection

m pipes

m text editing (for example, with the vi text editor)

For details on these and other important prerequisite concepts, refer to
m A Beginner’s Guide to HP-UX

m How HP-UX Works: Concepts for the System Administrator

Introduction 1-3

Related Manuals

For Information On ...

Table 1-1. Related Manuals

See This Manual ...

Floating-point programming
(Series 700/800 computers)

xdb debugger

Porting programs across different
HP computer systems and from
other vendors’ systems to HP-UX

Assembly language programming

C Programming

C++ Programming

1-4

Introduction

HP-UX Floating-Point Guide

HP-UX Symbolic Debugger User’s Guide
HP-UX Portability Guide

Series 700/800 computers:

m Assembly Language Reference Manual
Series 300/400 computers:

m HP-UX Assembler and Tools

Series 700/800 computers:

m HP C/HP-UX Reference Manual
m HP C Programmer’s Guide
u C Programming Tools

Series 300/400 computers:

m C: A Reference Manual (2nd Edition; Harbison
& Steele)

m C Programmer’s Guide

m C Programming Tools

m HP C++ Programmer’s Guide

C++ Quick Reference Card

The C++ Programming Language (2nd Edition;
Stroustrup)

Table 1-1. Related Manuals (continued)

For Information On ...

See This Manual . ..

FORTRAN Programming

Pascal Programming

COBOL Programming

RCS

m FORTRAN/9000 Programmer’s Reference
m FORTRAN/9000 Programmer’s Guide

Series 700/800 computers:

m HP Pascal/HP-UX Reference Manual
m HP Pascal Programmer’s Guide

Series 300/400 computers:

m Pascal Language Reference

w COBOL/HP-UX Implementation Notes

m COBOL/HP-UX Language Reference Manual
m COBOL/HP-UX Operating Manual

m COBOL/HP-UX Utilities Manual

m COBOL/HP-UX Pocket Guide

HP-UX Reference: res(1), co(l), ci(1), resdiff (1),
resintro(B), rlog(1), resfile(4), acl(h).

Introduction 1-5

Chapter Summaries

Chap

Table 1-2. Summary of Chapter Contents

Title
Description

Introduction
What’s in this manual.

The HP-UX Software Development Environment

Describes the fundamentals of developing programs on HP-UX. Introduces
HP-UX compilers, object files, libraries (archive and shared), the linker
(14d), a.out files, the assemblers, and other useful programming tools. You
should understand the concepts in this chapter before proceeding with other
chapters.

Creating Archive Libraries
Creating archive libraries using the ar command.

Creating Shared Libraries
Creating shared libraries using the 1d command on object files containing
position-independent code (PIC).

Linking and Running Programs

Using the linker, 1d, to create executable programs; linking with archive
and shared libraries; migrating to shared libraries from archive libraries;
differences at run time between archive and shared libraries.

Profile- Based Optimization and Linker Optimization
How to use profile-based optimization to improve run-time performance,
and how to optimize access to data with linker optimization.

Position-Independent Code
Relocatable object code, position-independent code (PIC), and how the
compilers generate certain language constructs in PIC. Describes PIC for

Series 300/400 and Series 700/800.

Shared Library Management Routines

How to explicitly load libraries at run time using shared library
management routines. This is useful mainly when it is impossible to know
the name of libraries at link time.

1-6 Introduction

Table 1-2. Summary of Chapter Contents (continued)

Chap Title
Description

9 Standard Input/Quiput Library Routines
Using standard library (1ibc) input/output routines to read/write from/to
the keyboard/screen, files, or strings.

10 Standard Character, String, and Date Manipulation Routines
Describes standard library (1ibc) routines that manipulate characters and
strings.

11 Standard Math Routines
Describes math routines from the standard C library (1ibc) and standard
math library (1ibm).

12 Advanced HP-UX Programming
Describes how to access command line arguments from C programs, how to
handle errors, and how to use system calls, which provide low-level access
to the kernel for input/output, process control, and signal handling.

13 make: A Program for Maintaining Computer Programs
Describes how to use the make program for managing compiles.

14 SCCS: Source Code Control System
Describes the use of the SCCS source code control system.

15 The m4 Macro Preprocessor
Describes how to use the m4 macro preprocessor.

Glossary Glossary

Contains definitions of important terms used throughout this manual.

Introduction 1-7

Con

ventions

Table 1-3 summarizes the typographical conventions used throughout this
manual.

Convention

Table 1-3. Typographical Conventions
Description

computer font

underlining

name(N)

italic

Denotes information displayed by the computer (for example,
login:), file names (for example, /usr/include/stdio.h), and
command names (for example, vi).

Denotes text you must type explicitly:

$ cc —¢c prog.c -1m

Refers to a command, system call, or library routine in the HP-UX
Reference. N refers to the section in which name can be found. For
example, {d(1) refers to the /d page in section 1 of the HP-UX
Reference.

Denotes information that you must fill in—for example:
cc -o outfile progfile.c

means that you should specify your own outfile and progfile name.

Most of the programming examples presented in this manual are in the ANSI
C language. When compiling ANSI C examples, be sure to specify the -Aa
compiler option.

Although most of the examples are in C, the concepts presented apply equally
well in most cases to other HP-UX languages, especially FORTRAN, C++.

1-8

Introduction

The HP-UX Software Development
Environment

Because HP-UX has such a powerful, versatile programming environment,
there are many different ways to do things, and no one way is absolutely right.
Rather than trying to describe every possible way, this chapter introduces
program development with a simple example in the first section. Subsequent
sections build on the commands and concepts introduced in the first section.
Specific topics introduced in this chapter are:

m compilers

m object (.o) files

m a command for viewing symbols in object files (nm)
m the linker (1d)

m executable (a.out) files

m assemblers (as)

m libraries—archive (.a) and shared (.sl)

m system libraries (1ibc, 1ibm, etc)

m other programming tools:

o debuggers (xdb and adb)
o source code control systems (RCS and SCCS)
o program compilation manager (make)

m the SoftBench™ development environment

After finishing this chapter, you should be able to develop your own programs
using HP-UX compilers and the tools described in the rest of this manual.

The HP-UX Software Development Environment 2-1

Compiling Programs on HP-UX: An Example

To create an executable program, you compile a source file containing a main
program. For example, to compile an ANSI C program named sumnum.c,
shown in Figure 2-1, use this command (-Aa says to compile in ANSI mode):

$ cc -Aa sumnum.c

The compiler displays status, warning, and error messages to standard error
output (stderr). If no errors occur, the compiler creates an executable file
named a.out in the current working directory. If your PATH environment
variable includes the current working directory, you can run a.out as follows:

$ a.out
Enter a number: ﬂ
Sum 1 to 4: 10

The process is essentially the same for all HP-UX compilers. For instance, to
compile and run a similar FORTRAN program named sumnum.f:

$ £77 sumnum.f

: The compiler displays any messages here,
$ a.out Run the program.

v

Output from the program is displayed here.

Program source can also be divided among separate files. For example,
sumnum. c could be divided into two files: main.c, containing the main
program, and func.c, containing the function sum_n. The command for
compiling the two together is:

$ cc -4a main.c func.c
main.c:
func.c:

Notice that cc displays the name of each source file it compiles. This way, if
errors occur, you know where they occur.

2-2 The HP-UX Software Development Environment

#tinclude <stdio.h> /* contains standard I/0 defs */

int sum_n(int n) /* sum numbers from n to 1 */
{
int sum = 0; /* running total; initially O */
for (; n >= 1; n—-) /* sum from n to 1 */
sum += n; /* add n to sum */
return sum; /* return the value of sum */
¥
main() /* begin main program */
{
int n; /* number to input from user */
printf("Enter a number: "); /* prompt for number */
scanf ("%d", &n); /* read the number into n */

printf(“Sum 1 to %d: %d\n", n, sum_n(n)); /* display the sum */

Figure 2-1. sumnum.c—Sum the Numbers from 1 ton

Generally speaking, the compiler reads one or more source files, one of which
contains a main program, and outputs an executable a.out file, as shown in
Figure 2-2.

main
source

compiler

subprogram | |
source

+ (opticnal)

Figure 2-2. High-Level View of the Compiler

The HP-UX Software Development Environment 2-3

Looking “inside” a Compiler

On the surface, it appears as though an HP-UX compiler generates an
a.out file by itself. Actually, an HP-UX compiler is a driver that calls other
commands to create the a.out file. The driver performs different tasks (or
phases) for different languages, but two phases are common to all languages:

1. For each source file, the driver calls the language compiler to create an
object file.

2. Then, the driver calls the HP-UX linker (1d) which builds an a.out file
from the object files. This is known as the link-edit phase of compilation.

Figure 2-3 summarizes how a compiler driver works.

compiler driver

main
source

object
(o)

a.out

subprogram
source

\

Figure 2-3. Looking “inside” a Compiler

(optional) E

The C, FORTRAN, and Pascal compilers provide the -v (verbose) option to
display the phases a compiler is performing. Compiling main.c and func.c
with the -v option produced this output on a Series 700 workstation (\ at the
end of a line indicates the line is continued to the next line):

$ cc -Aa -v main.c func.c

cc: CCOPTS is not set,

main.c:

/1ib/cpp.ansi main.c /tmp/ctmAAAa09888 -D__hp9000s700 \
-D__hp90008800 -D__hppa -D__hpux -D__unix -D_PA_RISC1_1 \
-A -1 /usr/include

cc: Entering Preprocessor.

/1lib/ccom /tmp/ctmAAAa09888 main.o -00 -v -Aa

2-4 The HP-UX Software Development Environment

func.c:

/1ib/cpp.ansi func.c /tmp/ctmAAAa09888 -D__hp9000s700 \
-D__hp9000s800 -D__hppa -D__hpux -D__unix -D_PA_RISC1_1 \
-A -I /usr/include

cc: Entering Preprocessor.

/1lib/ccom /tmp/ctmAAAa09888 func.o -00 -v -Aa

cc: LPATH is /lib/pal.i:/usr/lib/pal.1l:/1lib:/usr/1lib

/bin/ld /1lib/crt0.o -u main main.o func.o -lc

cc: Entering Link editor.

This example shows that the cc driver calls the C preprocessor (/1ib/cpp) for
each source file, then calls the actual C compiler (/1ib/ccom) to create the
object files. Finally, the driver calls the linker (/bin/1d) on the object files
created by the compiler (main.o and func.o).

Compiling main.c and func.c with -v on a Series 300/400 computer produced
this output:

$ cc -v -Aa main.c func.c
main.c:
/lib/ccom.ansi: cpp.ansi main.c -I/usr/include -D__hp9000s300 \
-D__unix-D__hpux ccom.ansi -YS |
/bin/as: as -o main.o
func.c: :
/lib/ccom.ansi: cpp.ansi func.c -I/usr/include -D__hp9000s300 \
-D__unix-D__hpux ccom.ansi -YS |
/bin/as: as -o func.o
/bin/ld /lib/crt0.o main.o func.o -x -lc

The compiler creates an object file for each source file specified on the
command line. The files are placed in the current working directory. Each
object file has the same name as its corresponding source file, except that the
language suffix (e.g., .c, .f, .p) is replaced with .o. For instance, in the above
example, two object files were created, main.o and func.o, which we can see
with the 1s command:

$ 1s x.0 List all .o files.
func.o main.o Here are the object files.

The HP-UX Software Development Environment 2-5

What Is an Object File?

An object file is basically a file containing machine language instructions and
data in a form that the linker can use to create an executable program. Each
routine or data item defined in an object file has a corresponding symbol name
by which it is referenced. A symbol generated for a routine or data definition
can be either a local definition or global definition. Any reference to a symbol
outside the object file is known as an external reference.

To keep track of where all the symbols and external references occur, an object
file has a symbol table. The linker uses the symbol tables of all input object
files to match up external references to global definitions.

Local Definitions

A local definition is a definition of a routine or data that is accessible only
within the object file in which it is defined. Such a definition cannot be
accessed from another object file. Local definitions are used primarily by
debuggers, such as adb. More important for this discussion are global
definitions and external references.

Global Definitions

A global definition is a definition of a procedure, function, or data item that
can be accessed by code in another object file. For example, the C compiler
generates global definitions for all variable and function definitions that are not
static. The FORTRAN compiler generates global definitions for subroutines
and common blocks. In Pascal, global definitions are generated for external
procedures, external variables, and global data areas for each module.

External References

An external reference is an attempt by code in one object file to access a global
definition in another object file. A compiler cannot resolve external references
because it works on only one source file at a time. Therefore, the compiler
simply places external references in an object file’s symbol table; the matching
of external references to global definitions is left to the linker or loader.

2-6 The HP-UX Software Development Environment

Using nm to View Symbols

To view the symbols defined in an object file, use the nm command. Its syntax
and output differ slightly on Series 300/400 and Series 700/800 computers, but
it provides basically the same information on both systems. On Series 700/800
computers, nm produces output similar to Series 300/400 computers if invoked
with the -p option. Figure 2-4 shows output from running nm -p on the func.o
and main.o object files on a Series 700/800 computer; Figure 2-5 shows the
output produced on a Series 300/400 computer.

$ nm -p func.
1073741824 d

1073741824 d
1073741824 b
1073741824 d
0000000000 T

$ nm -p main.

0000000000
1073741824
1073741872
1073741872
1073741872
0000000000
0000000000
0000000000
0000000000

agacHda T ang

(@)

$THIS_DATAS
$THIS_SHORTDATA$
$THIS_BSS$
$THIS_SHORTBSS$
sum_n

$global$
$THIS_DATAS
$THIS_SHORTDATA$
$THIS_BSSS
$THIS_SHORTBSS$
main

printf

scanf

sum_n

Other symbols created from compiling.

Global definition of sum_n.

Other symbols created from compiling.

Global definition of main.
External reference to printf.
Ezxternal reference to scant.
Ezxternal reference to sum_n.

Figure 2-4. Output of nm on a Series 700/800 Computer

The first column shows the address of each symbol or reference. The last
column shows the symbol name. The second column denotes the symbol’s type:

T indicates a global definition.
indicates an external reference.

U
d indicates a local definition of data.
b

indicates a local definition of bss (uninitialized data area).

The HP-UX Software Development Environment 2-7

Thus, a global definition of sum_n is found in func.o. An external reference
to sum_n is found in main.o. External references to the C printf and scanf
routines are found in main.o. For details on the use of nm, see nm(1).

$ nm func.o View symbols in func.o.

0x00000000 T _sum_n The global definition for sum_n appears.
$ nm main.o View symbols in main.o.

0x00000000 T _main Global definition for main.

0x00000000 U _printf Erternal reference to printf,
0x00000000 U _scanf External reference to printf.
0x00000000 U _sum_n External reference to sum_n.

Figure 2-5. Output of nm on a Series 300/400 Computer

Notice that on Series 300/400 computers, global symbols all begin with an
underscore (for example, _sum_n); on Series 700/800 computers, they do not.

2-8 The HP-UX Software Development Environment

The Link-Edit Phase of Compilation

When called in the link-edit phase of compilation, 1d builds an a.out file

from the object files passed by the compiler. 1d attempts to match external
references with global definitions. For instance, in the C program example (see
Figure 2-4), main.o contains an external reference to sum_n, which has a global
definition in func.o. 1d matches the external reference to the global definition,
allowing the main program code in a.out to access sum_n (see Figure 2-6).

main.o a.out
external linker (Id)
reference —l call to sum.n call to sumon
to "sum_n" combine .o files
and match
func.o external references
to global defines
global 9
definition sum_n defined sum_n defined

for "sum_n"

address of "sum_n"
is now known

Figure 2-6. Matching the External Reference to sum_n

If 14 cannot match an external reference to a global definition, it displays a
message to standard error output. If, for instance, you compile main.c without
func.c, 1d cannot match the external reference to sum_n and displays this
output on a Series 700/800 computer:

$ cc main.c
/bin/1d: Unsatisfied symbols:
sum_n (code)

Similar output is produced on Series 300/400 computers:

$ cc main.c
1d: Undefined external -
-sum_n
1d: output file still contains undefined symbols

The HP-UX Software Development Environment 2-9

Linking with Libraries

In addition to matching external references to global definitions in object files,
1d matches external references to global definitions in libraries. A library is a
file containing object code for subroutines and data that can be used by other
programs. For example, the standard C library, 1ibc, contains object code for
functions that can be used by C, FORTRAN, and Pascal programs to do input,
output, and other standard operations.

Library Naming Conventions

By convention, library names have the form:

libname. sfz
name is a string of one or more characters that identifies the library.

sfx is .a if the library is an archive library or .sl if the library is a shared
library. For details on archive versus shared libraries, see the section
“Archive and Shared Libraries” later in this chapter.

Typically, library names are referred to without the suffix. For instance, the
standard C library is referred to as libc.

Specifying Libraries to the Linker (-I)

To direct the linker to search a particular library, use the -1name option. For
example, to specify 1ibc, use -1c; to specify 1ibm, use -1lm; to specify 1ibXm,
use -1Xm.

Default Libraries

A compiler driver automatically specifies certain default libraries when it
invokes 1d. For example, cc automatically links in the standard library 1libe,
as shown in this Series 700/800 example:

$ cc -v main.c func.c Compile with -v to see
: the 1d command line.

/bin/ld /1lib/crt0.o -u main main.o func.o -lc Notice -1c at end.

cc: Entering Link editor.

2-10 The HP-UX Software Development Environment

Similarly, the Series 700 FORTRAN compiler automatically links with the
libel (C interface), libisamstub (ISAM file I/0), and libc libraries:

$ £77 -v sumnum.f

/bin/1d -x /1lib/crt0.o sumnum.o -lcl -lisamstub -lc

Specifying Libraries on the Compile Line (-1)

Sometimes, programs call routines not contained in the default libraries. In
such cases, you must explicitly specify the necessary libraries on the compile
line with the -1 option. The compilers pass -1 options directly to the linker,
before the default libraries.

For example, if a C program calls library routines in the curses library
(libcurses), you must specify -lcurses on the cc command line:

$ cc -v cursesprog.c -lcurses

/bin/1d /1lib/crt0.c -u main main.o -lcurses -lc
cc: Entering Link editor.

Linking with the crt0.o0 Startup File

Notice also, in the above example, that the compiler linked cursesprog.o with
the file /1ib/crt0.o. This file contains object code that performs tasks which
must be executed when a program starts ranning—for example, retrieving any
arguments specified on the command line when the program is invoked. For
details on this file, see ¢rt0(3) and Chapter 5.

The Default Library Search Path

By default, 1d searches for libraries in the /1ib and /usr/1lib directories, in
that order. (If the -p or -G profiling option is specified on the command line,
the compiler directs the linker to also search /1ib/1libp.) The default order
can be overridden with the LPATH environment variable or the -L linker option.
LPATH and -L are described in detail in Chapter 5. The -L option is discussed
later in the section “Compiler Options That Affect the Linker”.

The HP-UX Software Development Environment 2-11

Summary of HP-UX Libraries

What libraries your system has depends on what components were purchased.
For example, if you didn’t purchase Starbase Display List, you won’t have the
Starbase Display List library on your system.

HP-UX library routines are described in detail in sections 2 and 3 of the
HP-UX Reference. Routines in section 2 are known as system calls, because
they provide low-level system services; they are found in 1ibc. Routines in
section 3 are other “higher-level” library routines and are found in several
different libraries.

Each library routine, or group of library routines, is documented on a
man-page. Man-pages are sorted alphabetically by routine name and have the
general form routine(nl), where:

routine is the name of the routine, or group of closely related routines,
being documented.

n is the HP-UX Reference section number: 2 for system calls, 3 for
other library routines.

L is a letter designating the library in which the routine is stored.

For example, the “printf(3S)” man-page describes the standard input/output
libc routines printf, nl_printf, fprintf, nl_fprintf, sprintf, and
nl_sprintf. And the “pipe(2)” man-page describes the pipe system call.

Table 2-1 summarizes the major library groups defined in the HP-UX
Reference.

Note Certain language-specific libraries are not documented in
the HP-UX Reference; instead, they are documented with
the appropriate language documentation. For example, all
FORTRAN intrinsics (MAX, MOD, etc.) are documented in the
FORTRAN language documentation.

2-12 The HP-UX Software Development Environment

Table 2-1. Libraries Documented in the HP-UX Reference
Group Description

(2) These functions are known as system calls. They provide low-level
access to operating system services, such as opening files, setting up
signal handlers, and process control. These routines are located in
libec.

(3C)! These are standard C library routines located in 1ibc. These
routines are described in Chapter 9 through Chapter 12.

(39)! These functions comprise the Standard input/output routines (see
stdio(3S)). They are located in 1ibe. These routines are described
also in Chapter 9.

(3M) These functions comprise the M ath library. The linker searches this
library under the -1m option (for the SVID math library) or the -1M
option (for the POSIX math library).

(3G) These functions comprise the Graphics library.
(31) These functions comprise the Instrument support library.
(3X) Various specialized libraries. The names of the libraries in which

these routines reside are documented on the man-page.

1 The routines marked by (2), (3C), and (3S) comprise the standard C library 1ibc. The
C, FORTRAN, and Pascal compilers automatically link with this library when creating
an executable program.

The HP-UX Software Development Environment 2-13

Archive and Shared Libraries

HP-UX supports two kinds of libraries: archive and shared. Archive libraries
are the more traditional of the two.

Almost all system libraries are available as archive. In most cases, a shared
version is also available. Archive library file names end with .a; shared
library file names end with .sl1. If both versions of a library exist, they are
usually found in the same directory. For example, the archive 1ibc is named
/1ib/libc. a; the shared version is named /1ib/libc.sl.

If both versions of a library exist, 1d uses the one that it finds first in the
default library search path. If both versions exist in the same directory, 1d uses
the shared version. For example, compiling the C program prog.c causes cc to
invoke the linker with a command like this:

1d /1lib/crt0.o prog.o -lc

This instructs the linker to search the C library, 1ibc, to resolve unsatisfied
references from prog.o. If a shared libc exists (/1ib/1libc.sl), 1d uses it
instead of the archive 1ibc (/1ib/libc.a). You can, however, override this
behavior, and select the archive version of a library (see Chapter 5).

In addition to the system libraries provided on HP-UX, you can create your
own archive and shared libraries. To create archive libraries, combine object
files with the ar command, as described in Chapter 3. To create shared
libraries, use 1d to combine object files containing position-independent code
(PIC), as described in Chapter 4.

Table 2-2 summarizes differences between archive and shared libraries. A
detailed discussion of archive and shared libraries follows the table.

2-14 The HP-UX Software Development Environment

Table 2-2. Comparison of Archive and Shared Libraries

Comparing

Archive

Shared

file name suffix

object code

creation

address binding

a.out files

run time

Suffix is .a.

Made from object code.

Combine object files with the ar
command (see Chapter 3).

Addresses of library subroutines
and data are resolved at link
time.

Contains all library routines or
data (external references)
referenced in the program. An
a.out file that does not use
shared libraries is known as a
complete executable.

Each program has its own copy
of archive library routines.

Suffix is .sl.

Made from position-independent
object code, created by compiling
with the +z or +Z compiler
option. Can also be created in
assembly language (see

Chapter 7).

Combine PIC object files with
the 1d command (see Chapter 4).

Addresses of library subroutines
are bound at run time.
Addresses of data in a.out are
bound at link time; addresses of
data in shared libraries are
bound at run time.

Does not contain library
routines; instead, contains a
linkage table that is filled in with
the addresses of routines. Does,
however, contain some shared
library data. An a.out that uses
shared libraries is known as an
incomplete executable, and is
almost always much smaller than
a complete executable.

Shared library routines are
shared among all processes that
use the library.

The HP-UX Software Development Environment 2-15

What Are Archive Libraries?

An archive library contains one or more object files and is created with the
ar command. When linking an object file with an archive library, 1d searches
the library for global definitions that match up with external references in the
object file. If a match is found, 1d copies the object file containing the global
definition from the library into the a.out file. In short, any routines or data a
program needs from the library are copied into the resulting a.out file.

For example, suppose you write a C program that calls printf from the 1ibc
library. Figure 2-7 shows how the resulting a.out file would look if you linked
the program with the archive version of libc.

main.o a.out
external linker (Id)
reference — call to printf call to printf
to Uprintf” match external

reference to printf
/lib/libe . a definition in libe;
copy that portion
of libc into a.out

printf defined

global
definition —® printf defined
for "printf"

Figure 2-7. Linking with an Archive Library

2-16 The HP-UX Software Development Environment

What Are Shared Libraries?

Like an archive library, a shared library contains relocatable object code.
However, 1d treats shared libraries quite differently than archive libraries.
When linking an object file with a shared library, 1d does not copy object code
from the library into the a.out file; instead, the linker simply notes in the
a.out file that the code calls a routine in the shared library. An a.out file that
calls routines in a shared library is known as an incomplete executable.

When an incomplete executable begins execution, the HP-UX dynamic loader
(see dld.sl(5)) looks at the a.out file to see what libraries the a.out file needs
during execution. The dynamic loader then loads and maps any required
shared libraries into the process’s address space—known as attaching the
libraries. A program calls shared library routines indirectly through a linkage
table that the dynamic loader fills in with the addresses of the routines. By
default, the dynamic loader places the addresses of shared library routines

in the linkage table as the routines are called—known as deferred binding.
Immediate binding is also possible—that is, binding all required symbols in the
shared library at program startup. In either case, any routines that are already
loaded are shared.

Consequently, linking with shared libraries generally results in smaller
a.out files than linking with archive libraries. Therefore, a clear benefit of
using shared libraries is that it can reduce disk space and virtual memory
requirements.

The HP-UX Software Development Environment 2-17

As an example, suppose two separate programs, progl and prog2, use shared
libe routines heavily. Suppose that the a.out portion of progl is 256Kb in
size, while the prog2 a.out portion is 128Kb. Assume also that the shared
libc is 512Kb in size. Figure 2-8 shows how physical memory might look when
both processes run simultaneously. Notice that one copy of libc is shared by
both processes. The total memory requirement for these two processes running
simultaneously is 896Kb (256Kb + 128Kb + 512Kb).

o [“n
progl
(256Kb)
(unusgd/
brog2 Z — calls
(128Kb) { to I'|bc
routines
e
libc.sl
(512Kb) —
o [} J\

Figure 2-8. Two Processes Sharing libc

Compare this with the memory requirements if progl and prog2 had been
linked with the archive version of 1ibec. As shown in Figure 2-9, 1428Kb
of memory are required (768Kb 4+ 640Kb). The numbers in this example
are made up, but it is true in general that shared libraries reduce memory
requirements.

2-18 The HP-UX Software Development Environment

o) “un
.
progl.o
___________________ calls
prog1) to |~ibc
(768Kb) libe routines
routines
N S
/unused /
prog2.o
.................. calls
progz | . to libe
(640Kb) rOlLIJICt)i%eS routires
g ® Jh

Figure 2-9. Two Processes with Their Own Copies of libc

Position-Independent Code

Shared libraries are constructed from object files that contain a special kind of
object code known as position-independent code (PIC). All that most users
need to know about PIC is that it has characteristics that make it shareable by
multiple processes, and you create it by compiling with the +z/+Z compiler
option (see Chapter 4).

If you really need to know why: PIC makes sharing possible because it
contains no absolute virtual addresses; only PC-relative addressing is used.
(PC-relative addressing means that all addresses are referenced relative to
the program counter register.) Therefore, PIC can be placed anywhere in a
process’s address space without addresses having to be relocated. For details
on position-independent code, see Chapter 7.

The HP-UX Software Development Environment 2-19

Compiler Options That Affect the Linker

This section summarizes compiler options—common to the C, FORTRAN, and
Pascal compilers—that control how the compiler interacts with the linker. (For
more information on linker options, see Chapter 4 and Chapter 5.)

Renaming the a.out File (-0 name)

The -o name option causes 1d to name the output file name instead of a.out.
For example, to compile a C program prog.c and name the resulting file
sum_num:

$ cc -Aa -o sum_num prog.c Compile using -o option.

$ sum_num Run the program.
Enter a number to sum: §
The sum of 1 to 5: 15

Suppressing the Link-Edit Phase (-c)

The -c option suppresses the link-edit phase. That is, the compiler generates
only the .o files and not the a.out file. This is useful when compiling source
files that contain only subprograms and data, which can be linked later with
other object files. The resulting object files can then be specified on the
compiler command line, just like source files. For example:

$ £77 -c func.f Produce .o for func.f.

$ 1s func.o

func.o Verify that func.o was created.
$ £77 main.f func.o Compile main.f with func.o.
$ a.out Run it to verify it worked.

2-20 The HP-UX Software Development Environment

Specifying Libraries (-1)

When writing programs that call routines not found in the default libraries
linked at compile time, you must specify the libraries on the compiler command
line with the -1z option. For example, if you write a C program that calls
POSIX math functions, you must link with 1ibM.

The z argument corresponds to the identifying portion of the library path
name—the part following 1ib and preceding the suffix .a or .sl. For example,
for the 1ibM.sl or 1ibM.a library, z is the letter M:

$ cc -Aa mathprog.c -1M

The linker searches libraries in the order in which they are specified on the
command line (that is, the link order). In addition, libraries specified with -1
are searched before the libraries that the compiler links by default.

Getting Verbose Output (-v)

The -v option makes a compiler display verbose information. This is useful for
seeing how the compiler calls 1d. For example, using the -v option with the
Series 700/800 Pascal compiler shows that it automatically links with 1ibel,
libm, and libe.

$ pc -v prog.p

/usr/lib/pascomp prog.p 7 prog.o . 7 7
/bin/1ld /lib/crt0.o prog.o -1lcl -1lm -lc -z
unlink prog.o

Using the -v option with the Series 300/400 Pascal compiler shows that it
automatically links with 1ibpc, 1ibm, and libc:

$ pc -v prog.p

pc: /bin/ld /lib/crt0.o prog.o -x -lpc -Im -lc

The HP-UX Software Development Environment 2-21

Passing Linker Options Directly (-Wl)

The -W1 option passes options and arguments to 1d directly, without the
compiler interpreting the options. Its syntax is:

-Wl, arg][, arg@] ...

where each argn is an option or argument passed to the linker. For example,
to make 1d use the archive version of a library instead of the shared, you must
specify -a archive on the 1d command line before the library. The command
for telling the linker to use an archive version of libm is:

$ 1d /lib/crt0.o mathprog.o -a archive -1lm -a shared -lc

To pass -a archive directly to the linker from the C command line, use -W1 as
follows:

$ cc -Aa mathprog.c -Wl,-a,archive -1m -Wl,-a,shared

Augmenting the Default Linker Search Path (-WI,-L)

By default, the linker searches the /1ib and /usr/1ib directories for libraries
specified with the -1 option. (If the -p or -G compiler option is specified, then
the linker also searches the profiling library directory /usr/1ib/1libp.) The -L
libpath option to 1d augments the default search path; that is, it causes 1d to
search the specified libpath before the default places.

The C compiler (cc) and the POSIX FORTRAN compiler (fort77) recognize
the -L option and pass it directly to 1d. However, the HP FORTRAN compiler
(£77) and Pascal compiler (pc) do not recognize -L; it must be passed

to 1d via the -W1 option. For example, to make the £77 compiler search
/usr/local/lib to find a locally developed library named liblocal, use this
command line:

$ £77 prog.f -Wl,-L,/usr/local/lib -llocal

For the C compiler, use this command line:

$ cc -Aa prog.c -L /usr/local/lib -llocal

The LPATH environment variable provides another way to override the default
search path. For details, see “Specifying Libraries (-1)” in Chapter 5.

2-22 The HP-UX Software Development Environment

Selecting Faster Libraries
(Series 700/800 Only)

On Series 700/800, some libraries—for example, the math libraries 1ibm and
libM—are provided in two versions: PA-RISC 1.0 (PA1.0) and PA-RISC 1.1
(PA1.1). Derived from an earlier PA-RISC instruction set, PA1.0 libraries
are completely compatible between Series 700 and 800. PA1.1 libraries, on
the other hand, take advantage of the latest improvements in the PA-RISC
instruction set, resulting in faster code. However, PA1.1 libraries run only on
Series 700 models and Series 800 models whose last digit is 7 (that is, 827
models). (The file /usr/1ib/sched.models shows which architecture is used
for a particular model.)

There are primarily two types of application developers who will need PA1.0
libraries:

m developers who have to create programs that will run on older Series 800
models (that is, those whose model numbers do not end with 7)

m developers who require stability and reproducibility of results more than
higher performance and greater precision

The PA1.0 libraries are stored in the usual system library directories, /1ib
and /usr/1ib. The corresponding PA1.1 libraries (if they exist) are stored in
the directories /1ib/pal.1 and /usr/lib/pal.1l, respectively. For example,
the PA1.0 archive library libm is /1ib/1libm.a, while the PA1.1 version is
/lib/pal.1/1libm.a. Note that there are no shared versions of 1ibm or 1ibM.

(For details on PA1.0 and PA1.1 math libraries, refer to the HP-UX
Floating-Point Guide.)

From the Linker Command Line

To link against PA1.1 libraries from the linker command line, use the linker
options -L/1ib/pal.1 and -L/usr/1lib/pal.1. The -Lpath option causes
the linker to look in the specified path for libraries before looking in the usual
places (/1ib and /usr/1ib). Thus, if the PA1.1 version of a library exists,
the linker will find it and use it before the PA1.0 version. For example, the
following linker command will link against the PA1.1 1ibc and libm:

$ 1d /1lib/crt0.o0 -u main -L/lib/pal.l prog.o -lc -1lm

The HP-UX Software Development Environment 2-23

Notice that -L/usr/1ib/pal.1 was not specified in the above example. This
is because the PA1.0 versions of both libraries are found in /1ib; therefore,
it is really only necessary to search /1ib/pail.1. If, however, the program
were linked with a PA1.1 library found in /usr/1ib, you would specify
-L/usr/lib/pal.1l.

From the Compiler Command Line

To select PA1.0 or PA1.1 libraries from the compile line, use the +DAarch
option, where arch is 1.0 for PA1.0 and 1.1 for PA1.1. Not only does +D4
cause the compiler to invoke the linker with the correct search path, it also
causes the compiler to generate PA1.0 or PA1.1 code for each object file
specified on the command line.

On Series 800 computers, the default value for the +DA option is +DA1.0
because the primary concern for most Series 800 applications is compatibility
across all Series 700/800 models. On Series 700 computers, the default value
for the +DA option is +DA1.1 because the primary concern for most Series 700
applications is maximum performance. For details on the +DA option, refer to
your language reference manual.

Restrictions on Using Faster Libraries
Here are some restrictions on using PA1.1 libraries:

m Applications built using PA1.0 libraries run on both Series 800 and 700.
However, applications built with PA1.1 libraries run only on Series 700
models and Series 800 models whose last digit is 7.

m The PA1.1 versions of the math libraries are available only on systems
running HP-UX release 9.0 or later.

2-24 The HP-UX Software Development Environment

The Assemblers

In addition to the standard programming languages, HP computers support
assembly language. Although Series 300/400 and Series 700/800 computers
have different architectures, there are some similarities in the assembler on

both computers.

On both systems, the assembler is invoked with the as command. Like a
compiler, an assembler reads a program (in assembly language) and produces
a corresponding object file. Unlike a compiler, however, it does not call the
linker. Assembly language file names end with .s.

Interestingly, Series 300/400 C and FORTRAN compilers convert source
programs to assembly language as an intermediate phase. They then run the
intermediate assembly language through as to produce the .o file. To suppress
the assembly phase on Series 300/400, invoke the C or FORTRAN compiler
with the -S option, which produces .s files instead of .o files. For example,
compiling a C program with the -S option produced the assembly language file
shown below:

$ cc -Aa -S hello.c Suppress assembler phase with -S.
$ cat hello.s View the assembly language.
global _main

_main:
link.1 Y%a6,&LF1
movm.l &LS1, (%sp)

The HP-UX Software Development Environment 2-25

Series 700/800 compilers do not run the assembler as an intermediate phase,
but they still produce assembly language output if invoked with the -S option.
For example, compiling a FORTRAN program with -S produced the assembly
language output shown below:

$ £77 -S prog.f
$ more prog.s

.SPACE $TEXT$
.SUBSPA $CODE$,QUAD=0,ALIGN=4,ACCESS=44,CODE_ONLY

stuff
_start
.PROC
.CALLINFO CALLER,FRAME=0,SAVE_SP,SAVE_RP
.ENTRY
STW 2,-20(0,30) ;offset 0x0

LDO 48(30),30 ;offset 0x4

Also, both assemblers support instructions and pseudo-ops for generating PIC,
used to create shared libraries. Writing assembly code that produces PIC
object code is described in Chapter 7 and in the following assembly language
manuals:

m Assembly Language Reference Manual (Series 700/800).
m HP-UX Assembler and Tools (Series 300/400)

2-26 The HP-UX Software Development Environment

Other Programming Tools

In addition to the programming tools discussed thus far, HP-UX provides a
rich environment of programming tools, summarized in Table 2-3.

Table 2-3. Programming Environment Tools

Tools Description

debuggers: Help you find run-time errors in programs. (See The HP-UX Symbolic

xdb and adb Debugger User’s Guide.)

profilers: Help you locate parts of a program most frequently executed (that is,

prof, gprof possible bottlenecks); using this data, you may be able to improve a
program’s performance. (See prof(1) and gprof(1).)

SCCS Source code control systems, which help manage software projects

RCS with multiple programmers. (See Chapter 14 and res(1).)

chatr Changes an a.out file’s internal attributes. (See Chapter 5 and
chatr(1).)

file Determines a file’s type and lists its attributes. (See file(1).)

lorder Determines object file dependencies; used with tsort command to
generate more efficient link order for 1d on Series 300/400. (See
Chapter 4 and lorder(1).)

mé A macro preprocessor, which can be used by all languages. (See
Chapter 15.)

make A tool for managing program “builds,” compilation, and linking. (See
Chapter 13.)

nm Displays symbol table information in object files. (See “What Is an
Object File?” in this chapter and nm(1).)

od Shows octal or hexadecimal dumps of binary files. (See od(1).)

strings Displays all the printable strings in an object or other binary file.
Useful for sceing the strings in an a.out. (See strings(1).)

strip Strips symbol table and line number information from an object file,

thus making it smaller, but unusable by symbolic debuggers. Useful
after a program is debugged. (See strip(1) and the description of the
-s option in {d(1).)

The HP-UX Software Development Environment 2-27

SoftBench

SoftBench is an integrated set of window-based programming tools and an
framework for integrating other tools. Together they provide a development
environment targeted at the program construction, test, and maintenance
phases of software development.

The Programming Tools
There are several programming tools in SoftBench:

m Program Editor and Program Builder address the program construction
phase, and are used to develop an executable program.

m A symbolic Program Debugger and Static Analyzer are used for program
analysis. Program Debugger is mainly used during the testing phase, helping
to identify bugs in the executable program. Static Analyzer is most valuable
in the maintenance phase, providing information on program structure to
engineers who fix bugs and enhance existing programs.

m A Development Manager is used to manage the files over which the other
tools operate. In particular, it organizes and maintains the program’s source
files during the development process.

The SoftBench Framework
The SoftBench Framework provides the environment with

m a multi-window, graphical user interface that is common throughout the
environment

m a pervasive, interactive help system

m communication between the tools, allowing them to cooperate to accomplish
tasks

m support for both distributed and local tool execution and data accessing

2-28 The HP-UX Software Development Environment

SoftBench Encapsulator

SoftBench Encapsulator delivers the customizability benefit of SoftBench to
the customer. It allows customers to customize and extend the SoftBench
environment by

m automating custom development processes (SoftBench Encapsulator is used
to define actions that will be executed whenever specific events occur in the
SoftBench environment.)

m adding the SoftBench graphical user interface to existing UNIX utilities and
customer tools, without modifying the source code (The tools must use
standard input and standard output.)

m adding the SoftBench graphical user interface and inter-tool messaging to
C or C++ programs with simple library calls for SoftBench Encapsulator
functions

The HP-UX Software Development Environment 2-29

3

Creating Archive Libraries

As discussed in Chapter 2, HP-UX provides many useful libraries of routines
you can call from your programs. You can also create your own libraries.
There are two kinds of libraries to create—archive and shared. This chapter
describes how to create your own archive libraries with the ar command.
Specifically, it discusses

m creating an archive library
m viewing an archive library’s contents
m replacing object modules in an archive library

adding object modules to an archive library

m deleting object modules from an archive library
m summary of ar command keys
m where to put archive libraries

For details on creating shared libraries, see Chapter 4. For details on linking
archive libraries with programs, and for a summary of the tradeoffs between
using archive versus shared libraries, see Chapter 5.

Creating Archive Libraries 3-1

Overview of Creating an Archive Library
To create an archive library:

1. Create one or more object files containing relocatable object code.
Typically, each object file contains one function, procedure, or data
structure, but an object file could have multiple routines and data.

2. Combine these object files into a single archive library file with the ar
command. Invoke ar with the r key.

(“Keys” are like command line options, except that they do not require a
preceding -.)

Figure 3-1 summarizes the procedure for creating archive libraries from three
C source files (filel.c, file2.c, and file3.c). The process is identical for
other languages, except that you would use a different compiler.

archive
) library
source object N,
files files
v mm— e, s.t.

fi\eLc——\ compiler /—-Hﬁleﬁo \Qrch[ver file1.0

file2.c cCo—C oL file? o ar ... file2.0
file3.0
file3.0

file3.c

@ Create object files (:2) Combine with ar

Figure 3-1. Creating an Archive Library

By default, ar creates the archive library in the current working directory. You
can then link this library with your programs by specifying it on the command
line, just like an object file.

3-2 Creating Archive Libraries

What Does an Archive File Contain?
An archive library file consists of three main pieces:

1. a header string, “!<arch>\n”, identifying the file as an archive file created
by ar (\n represents the newline character)

2. a symbol table, used by the linker and other commands to find location,
size, and other information for each routine or data item contained in the
library

3. object modules, one for each object file specified on the ar command line

Object modules appear in the archive in the same order in which they were
specified on the ar command line.

To see what object modules a library contains, run ar with the t key, which
displays a table of contents. For example, to view the “table of contents” for
libm.a:

$ ar t /1lib/libm.a Run ar with the t key.
cosh.o Object modules are displayed.
erf.o

fabs.o

floor.o

This indicates that the library was built from object files named cosh.o,
erf.o, fabs.o, floor.o, etc. In other words, module names are the same as
the names of the object files from which they were created.

Creating Archive Libraries 3-3

Creating an Archive Library: An Example

Suppose you are working on a program that does several conversions between
English and Metric units. The routines that do the conversions are contained
in three C-language files shown in Figure 3-2 through Figure 3-4:

float in_to_cm(float in) /* convert inches to centimeters */
{
return (in * 2.54);

}

Figure 3-2. length.c—Routine to Convert Length Units

float gal_to_l(float gal) /* convert gallons to liters */
{
return (gal * 3.79);

b

Figure 3-3. volume.c—Routine to Convert Volume Units
float oz_to_g(float oz) /* convert ounces to grams */
{

return (oz * 28.35);
}

Figure 3-4. mass.c—Routine to Convert Mass Units

During development, each routine is stored in a separate file. To make the
routines easily accessible to other programmers, they should be stored in an
archive library. To do this, first compile the source files, either separately or
together on the same command line:

$ cc -Aa -c length.c volume.c mass.c Compile them together.

3-4 Creating Archive Libraries

length.c:

volume.c:

mass.c:

$ 1s x.0 List the .o files.

length.o mass.o volume.o 3

Then combine the .o files by running ar with the r key, followed by the library
name (say libunits.a), followed by the names of the object files to place in
the library:

$ ar r libunits.a length.o volume.o mass.o
ar: creating libunits.a

To verify that ar created the library correctly, view its contents:

$ ar t libunits.a Use ar with the t key.
length.o All the .o modules are included; it worked.
volume.o

mass.o

Now suppose you’ve written a program, called convert.c, that calls several of
the routines in the libunits.a library. You could compile the main program
and link it to libunits.a with the following cc command:

$ cc -Aa convert.c libunits.a

Note that the whole library name was given, and the -1 option was not
specified. This is because the library was in the current directory. If you move
libunits.a to /1ib or /usr/1ib before compiling, the following command line
will work instead:

$ cc -Aa convert.c -lunits

Linking with archive libraries is covered in detail in Chapter 5.

Creating Archive Libraries 3-5

Replacing, Adding and Deleting Object Modules

Occasionally you may want to replace an object module in a library, add an
object module to a library, or to delete a module completely. For instance,
suppose you add some new conversion routines to length.c (defined in

the previous section) and want to include the new routines in the library
libunits.a. You would then have to replace the length.o module in
libunits.a.

Replacing or Adding an Object Module

To replace or add an object module, use the r key (the same key you use to
create a library). For example, to replace the length.o object module in
libunits.a:

$ ar r libunits.a length.o

Deleting an Object Module

To delete an object module from a library, use the d key. For example, to
delete volume.o from libunits.a:

$ ar d libunits.a volume.o Delete volume.o.
$ ar t libunits.a List the contents.
length.o _ volume.o is gone.
mass.o

3-6 Creating Archive Libraries

Summary of ar Keys

When used to create and manage archive libraries, ar’s syntax is:

ar [-]keys archive [modules] 3
archive is the name of the archive library. modules is an optional list of object

modules or files. Table 3-1 defines some useful keys and their modifiers.

Table 3-1. Useful ar Keys
Key Description

t Display a table of contents for the archive.
v Display verbose output.
d Delete the modules from the archive.

r Replace or add the modules to the archive. If archive exists, ar replaces modules
specified on the command line. If archive does not exist, ar creates a new
archive containing the modules.

u Used with the r, this modifier tells ar to replace only those modules with
creation dates later than those in the archive.

X Extracts object modules from the library. Extracted modules are placed in .o
files in the current directory. Once an object module is extracted, you can use
nm to view the symbols in the module.

f Truncate file names to 14 characters before comparing with file names in the
archive, which are already truncated to 14 characters. Useful with long file
names.

For example, when used with the v flag, the t flag creates a verbose table of
contents—including such information as module creation date and file size:

$ ar tv libunits.a

rw-r--r-- 265/ 20 230 Feb 2 17:19 1990 length.o
rW-r--I-- 265/ 20 228 Feb 2 16:25 1990 mass.o
rv-r--r-- 265/ 20 230 Feb 2 16:24 1990 volume.o

The next example replaces length.o in libunits.a, only if length.o is more
recent than the one already contained in libunits.a:

$ ar ru libunits.a length.o

Creating Archive Libraries 3-7

Where to Put Archive Libraries

After creating an archive library, you will probably want to save it in a location
that is easily accessible to other programmers who might want to use it. There
are two main choices for places to put the library:

m in the /1ib or /usr/1ib directory

m in the /usr/local/lib or /usr/contrib/1ib directory

Using /lib or /usr/lib

Since the linker, by default, searches /1ib and /usr/1ib for libraries, you
might want to put the libraries here. Placing a library here eliminates your
having to type the entire library path name each time you compile or link. The
drawbacks of putting the libraries in these directories are:

m It typically takes super-user (system administrator) privileges to write the
files into these directories.

a HP-UX system libraries reside here, so you should take care not to overwrite
them.

Check with your system administrator before attempting to use /1ib or
/usr/1lib.

Using /ust/local/lib or /usr/contrib/lib

The /usr/local/1ib library typically contains libraries created locally—by
programmers on the system; /usr/contrib/1ib contains libraries supplied
with HP-UX but not supported by Hewlett-Packard. Although 1d does not
automatically search these directories, they are still often the best choice for
locating user-defined libraries because the directories are not write-protected.
Therefore, programmers can store the libraries in these directories without
super-user privileges.

3-8 Creating Archive Libraries

4

Creating Shared Libraries

As discussed in Chapter 2, HP-UX provides many useful libraries of routines
you can call from your programs. You can also create your own libraries.
There are two kinds of libraries you can create—archive and shared. This
chapter describes how to create shared libraries with the 1d command.
Specifically, it discusses:

m creating position-independent code (PIC)
m creating a shared library with 1d

m updating a shared library

m version control

m where to put shared libraries

m linking with other libraries to create library dependencies (Series 700/800
only)

m improving performance of shared libraries

For details on creating archive libraries, see Chapter 3. For details on linking
shared libraries with programs, and for a summary of the tradeoffs between
using shared versus archive libraries, see Chapter 5.

Creating Shared Libraries 4-1

Creating Position-Independent Code (PIC)

The first step in creating a shared library is to create object files containing
position-independent code (PIC). There are two ways to create PIC object
files:

m Compile source files with the +z or +Z compiler option (described below).

m Write assembly language programs that use appropriate addressing modes
(described in Chapter 7).

The +z (or +Z) option forces the compiler to generate PIC object files.

Example

Suppose you have some C functions, stored in length.c, that convert between
English and Metric length units. To compile these routines and create PIC
object files with the C compiler, you could use this command:

$ cc -Aa -c +z length.c The +z option creates PIC.

You could then combine (link) it with other PIC object files to create a shared

1 Yal

library, as discussed in “Creating the Library with 1d” later in this chapter.

+z versus +2Z

The +z and +Z options are essentially the same. Normally, you compile with
+z. However, in some instances—when the number of referenced symbols per
shared library exceeds a predetermined limit—you must recompile with the
+Z option instead. You would discover this condition when creating a shared
library with the 1d command. In such cases, 1d displays an error message,
telling you to recompile the library with +Z.

Compiler Support for +z and +2Z

The +z and +Z options work only on these conipilers:
Series 300/400 computers C and FORTRAN

Series 700/800 computers C, FORTRAN, and Pascal

4-2 Creating Shared Libraries

Shared Libraries with Debuggers, Profilers, and Static
Analysis

As of the HP-UX 9.0 release, debugging of shared libraries is supported. For
details on how debug shared libraries, refer to HP-UX Symbolic Debugger
User’s Guide.

Profiling (with prof and gprof) and static analysis are not allowed on shared
libraries. If you need to profile a library, use the archive version.

Creating Shared Libraries 4-3

Creating the Library with Id

To create a shared library from one or more PIC object files, use the linker,
1d, with the -b option. By default, 1d will name the library a.out. You can
change the name with the -o option.

For example, suppose you have three C source files containing routines to

do length, volume, and mass unit conversions. They are named length.c,
volume.c, and mass.c, respectively. To make a shared library from these
source files, first compile all three files using the +z option, then combine the
resulting .o files with 1d. Shown below are the commands you would use to
create a shared library named libunits.sl:

$ cc -Aa -c +z length.c volume.c mass.c
length.c:

volume.c:

mass.c:

$ 1d -b -o libunits.sl length.o volume.o mass.o

Once the library is created, be sure it has read and execute permissions for
all users who will use the library. For example, the following chmod command
allows read/write permission for all users of the 1ibunits.sl library:

$ chmod +r+x libunits.sl

This library can now be linked with other programs. For example, if you have
a C program named convert.c that calls routines from libunits.sl, you
could compile and link it with the cc command:

$ cc -4a convert.c libunits.sl

Once the executable is created, the library should not be moved because the
absolute path name of the library is stored in the executable. For details, see
“Shared Library Location” later in this chapter.

For details on linking shared libraries with your programs, see Chapter 5.

4-4 Creating Shared Libraries

Updating a Shared Library

The 1d command cannot replace or delete object modules in a shared library.
Therefore, to update a shared library, you must re-link the library with «ll the
object files you want the library to include. For example, suppose you fix some
routines in length.c (from the previous section) that were giving incorrect
results. To update the libunits.sl library to include these changes, you
would use this series of commands:

$ cc -Aa -c +z length.c
$ 1d -b -o libunits.sl length.o volume.o mass.o

Any programs that use this library will now be using the fixed versions of the
routines. That is, you do not have to relink any programs that use this shared
library. This is because the routines in the library are attached to the program
at run time.

This is one of the advantages of shared libraries over archive libraries: if you
change an archive library, you must relink any programs that use the archive
library. With shared libraries, you need only recreate the library.

Creating Shared Libraries 4-5

Version Control

For the most part, updates to a shared library should be completely
upward-compatible; that is, updating a shared library won’t usually cause
problems for programs that use the library. But sometimes—for example, if
you add a new parameter to a routine—updates cause undesirable side-effects
in programs that call the old version of the routine. In such cases, it is
desirable to retain the old version as well as the new. This way, old programs
will continue to run and new programs can use the new version of the routine.
Version numbers allow a shared library to have multiple versions of an object
module.

The Version Number Compiler Directive

A version number can be assigned to any module in a shared library. It applies
to all global symbols defined in the module’s source file. The version number is
a date, specified with a compiler directive in the source file. The syntax of the
version number directive depends on the language:

C: #pragma HP_SHLIB_VERSION "date" (the quotes are optional)
FORTRAN: $SHLIB_VERSION °’date’
Pascal: $SHLIB_VERSION ’date’$

The date argument in all three directives is of the form month/year. The
month must be 1 through 12, corresponding to January through December.
The year can be specified as either the last two digits of the year (90 for 1990)
or a full year specification (1990). Two-digit year codes from 00 through 40
represent the years 2000 through 2040.

This directive should only be used if incompatible changes are made to a source
file. If a version number directive is not present in a source file, the version
number of all symbols defined in the object module defaults to 1/90.

4-6 Creating Shared Libraries

Adding New Versions to a Shared Library

To rebuild a shared library with new versions of object files, run 1d again with
the newly compiled object files. For example, suppose you want to add new
functionality to the routines in length.c, making them incompatible with
existing programs that call 1ibunits.sl. Before making the changes, make a
copy of the existing length.c and name it oldlength.c. Then change the
routines in length.c with the version directive specifying the current month
and date. Figure 4-1 shows the new length.c file.

#pragma HP_SHLIB_VERSION "11/92" /% date is November 1992 x/
/*

* New version of "in_to_cm" also returns a character string
* ""cmstr" with the converted value in ASCII form.

*/
float in_to_cm(float in, float cmstr) /* convert in to cm */
{
/* build "cmstr" */
return(in * 2.54);
}

/* other length conversion routines */
Figure 4-1. length.c—Length-Conversion Routines; New Version
To update libunits.sl to include the new length.c routines, copy the old

version of length.o to oldlength.o; then compile length.c and rebuild the
library with the new length.o and oldlength.o:

$ cp length.c oldlength.c Save the old source.
$ mv length.o oldlength.o Save old length.o.

. Make new length.c.
$ cc -Ba -c +z length.c Make new length.o.

$ 1d -b -o libunits.sl oldlength.o volume.o mass.o length.o Relink the library.

Thereafter, any programs linked with libunits.sl use the new versions of
length-conversion routines defined in length.o. Programs linked with the old
version of the library still use those routines from oldlength.o. For details on
linking with shared libraries, see Chapter 5.

Creating Shared Libraries 4-7

Specifying a Version Date

When adding modules to a library for a particular release of the library, it is
best to give all modules the same version date. For example, if you complete
filel.o on 04/92, file2.0 on 05/92, and file3.o0 on 07/92, it would be best
to give all the modules the same version date, say 07/92.

The reason for doing this is best illustrated with an example. Suppose in the
previous example you gave each module a version date corresponding to the
date is was completed: 04/92 for filel.o, 05/92 for file2.o0, and 07/92 for
file3.o. You then build the final library on 07/92 and link an application
a.out with the library. Now suppose that you introduce an incompatible
change to function foo found in filel.o, set the version date to 05/92, and
rebuild the library. If you run a.out with the new version of the library, a.out
will get the new, incompatible version of foo because its version date is still
earlier than the date the application was linked with the original library!

4-8 Creating Shared Libraries

Shared Library Location

You can place shared libraries in the same locations as archive libraries (see
“Where to Put Archive Libraries” in Chapter 3). Again, this is typically
/usr/local/lib and /usr/contrib/1lib for application libraries, and /1ib
and /usr/1lib for system libraries. However, these are just suggestions.

Prior to the HP-UX 9.0 release, moving a shared library caused any programs
that were linked with the library to fail when they tried to load the library.
Prior to 9.0, you were required to relink all applications that used the library if
the library was moved to a different directory.

As of the HP-UX 9.0 release, a program can search a list of directories at

run time for any required libraries. Thus, libraries can be moved after an
application has been linked with them. To search for libraries at run time, a
program must know which directories to search. There are two ways to specify
this directory search information:

m Store a directory path list in the program via the linker option +b path_list.

m Link the program with +s, enabling the program to use the path list defined
by the SHLIB_PATH environment variable at run time.

For details on the use of these options, refer to the section “Linking a Program
with Shared Libraries” in Chapter 5.

Creating Shared Libraries 4-9

Shared Library Dependencies
(Series 700,800 Only)

On Series 700/800 systems, you can specify additional shared libraries on the
1d command line when creating a shared library. The created shared library

is said to have a dependency on the specified libraries, and these libraries are
known as supporting libraries. When you load such a library, all its supporting
libraries are loaded too. For example, suppose you create a library named
libdep.sl using the command:

$ 1d -b -o libdep.sl modl.o mod2.0 -lcurses -lcustom

Thereafter, any programs that load libdep.sl—either explicitly with
shl_load or implicitly with the dynamic loader when the program begins
execution—also automatically load the supporting libraries 1ibcurses.sl and
libcustom.sl.

There are two additional issues that may be important to some shared library
developers:

m When a shared library with dependencies is loaded, in what order are the
supporting libraries loaded?

m Where are all the supporting libraries placed in relation to other already
loaded libraries? That is, where are they placed in the process’s shared
library search list used by the dynamic loader?

The Order in Which Libraries Are Loaded (Load Graph)

When a shared library with dependencies is loaded, the dynamic loader builds
a load graph to determine the order in which the supporting libraries are
loaded. The following algorithm is used:

if the library has not been visited then
mark the library as visited.
if the library has a dependency list then
traverse the list in reverse order.
Place the library at the head of the load list.

4-10 Creating Shared Libraries

For example, suppose you create three libraries—1ibQ, 1ibD, and 1ibP—using
the 1d commands below. The order in which the libraries are built is important
because a library must exist before you can specify it as a supporting library.

$ 1d -b -o 1ibQ.sl modq.o -1B

$ 1d -b -o 1ibD.sl modd.o -1Q -1B
$ 1d -b -o 1ibP.sl modp.o -1A -1D -1Q

The dependency lists for these three libraries are:
1ibQ — 1ibB

1ibD — 1ibQ, 1ibB

1ibP — 1ibA, 1ibD, 1ibQ

Shown below are the steps that would be taken to form the load graph when
1ibP is loaded:

1. mark P, traverse Q

mark Q, traverse B

mark B, load B

load Q

traverse D

mark D, traverse B

B is marked, skip B, traverse Q
Q is marked, skip Q
9. load D

10. mark 4, load A

11. load P

SISO otk

o

The resulting load graph is:
1ibP — 1ibA — 1ibD — 1ibQ — 1ibB

Creating Shared Libraries 4-11

Placing Loaded Libraries in the Search List

Once a load graph is formed, the libraries must be added to the shared library
search list, thus binding their symbols to the program. If the initial library

is an implicitly loaded library (that is, a library that is automatically loaded
when the program begins execution), the libraries in the load graph are
appended to the library search list. For example, if 1ibP is implicitly loaded,
the library search list is:

<current search list> — 1ibP — 1ibA — 1ibD — 1ibQ — 1ibB

The same behavior occurs for libraries that are explicitly loaded with
shl_load, but without the BIND_FIRST modifier (see Chapter 8 for details). If
BIND_FIRST is specified in the shl_load call, then the libraries in the load
graph are inserted before the existing search list. For example, suppose 1ibP is
loaded with this call:
lib_handle = shl_load("1ibP.sl", BIND_IMMEDIATE | BIND_FIRST, 0);
Then the resulting library search list is:

1ibP — 1ibA — 1ibD — 1ibQ — 1ibB — <current search list>

4-12 Creating Shared Libraries

Improving Shared Library Performance

This section describes methods you can use to improve the run-time
performance of shared libraries. If, after using the methods described here,
you are still not satisfied with the performance of your program with shared
libraries, try linking with archive libraries instead to see if it improves
performance. In general, though, archive libraries will not provide great
performance improvements over shared libraries.

Exporting Only the Required Symbols 4

Normally, all global variables and procedure definitions are exported from a
shared library. In other words, any procedure or variable defined in a shared
library is made visible to any code that uses this library. In addition, the
compilers generate “internal” symbols that are exported. You may be surprised
to find that a shared library exports many more symbols than necessary for
code that uses the library. These extra symbols add to the size of the library’s
symbol table and can even degrade performance (since the dynamic loader has
to search a larger-than-necessary number of symbols).

One possible way to improve shared library performance is to export only those
symbols that need exporting from a library. To control which symbols are
exported, use either the +e or -h option. When +e options are specified, the
linker exports only those symbols specified by +e options. The -h option causes
the linker to hide the specified symbols. (For details on using these options, see
“Hiding and Exporting Symbols (-h and +e)” in Chapter 5).

As an example, suppose you’ve created a shared library that defines the
procedures init_prog and quit_prog and the global variable prog_state.
To ensure that only these symbols are exported from the library, specify these
options when creating the library:

+e init_prog +e quit_prog +e prog_state

If you have to export many symbols, you may find it convenient to use the -c
file option, which allows you to specify linker options in file. For instance, you
could specify the above options in a file named export_opts as:

+e init_prog
+e quit_prog
+e prog_state

Creating Shared Libraries 4-13

Then you would specify the following option on the linker command line:
-C export_opts

(For details on the -c option, see “Linker Option Files (-c file)” in Chapter 5.)

Placing Frequently-Called Routines Together

When the linker creates a shared library, it places the PIC object modules into
the library in the order in which they are specified on the linker command line.
The order in which the modules appear can greatly affect performance. For
instance, consider the following modules:

a.o Calls routines in c.o heavily, and its routines are called frequently by
c.o.

b.o A huge module, but contains only error routines that are seldom called.

c.o Contains routines that are called frequently by a.o, and calls routines in
a.o frequently.

If you create a shared library using the following command line, the modules
will be inserted into the library in alphabetical order:

$ 1d -b -o libabc.sl *.o

The potential problem with this ordering is that the routines in a.o and c.o
are spaced far apart in the library. Better virtual memory performance could
be attained by positioning the modules a.o and c.o together in the shared
library, followed by the module b.o. The following command will do this:

$ 1d -b -o libabc.sl a.o ¢c.o b.o

One way to help determine the best order to specify the object files is to gather
profile data for the object modules; modules that are frequently called should
be grouped together on the command line.

Another way is to use the lorder(1) and ¢sort(1) commands. Used together on
a set of object modules, these commands determine how to order the modules
so that the linker only needs a single pass to resolve references among the
modules. A side-effect of this is that modules that call each other may be
positioned closer together than modules that don’t. For instance, suppose you
have defined the following object modules:

4-14 Creating Shared Libraries

Module Calls Routines in Module(s)

a.o X.0y.0
b.o X.0y.0
d.o none
e.o none
X.0 d.o
y.o d.o

Then the following command determines the one-pass link order:

$ lorder 7.o | tsort Pipe lorder’s output to tsort.

A< W o T o
o 0 0 0O ©

Notice that d.o is now closer to x.0 and y.o, which call it. However, this is
still not the best information to use because a.o and b.o are separated from
x.0 and y.o by the module e.o, which is not called by any modules. The
actual optimal order might be more like this:

a.o b.o x.0 y.o d.o e.o

Again, the use of lorder and tsort is not perfect, but it may give you leads
on how to best order the modules. You may want to experiment to see what
ordering gives the best performance.

Setting Shared Library Permissions to Non-Writable
(Series 700/800 Only)

On Series 700/800 systems, you may get an additional performance gain by
ensuring that no shared libraries have write permissions. Programs that

use more than one writable library can experience significantly degraded
loading time. The following chmod command gives shared libraries the correct
permissions for best load-time performance:

$ chmod 555 libname

Creating Shared Libraries 4-15

Using the +ESIit Option to cc
(Series 700/800 Only)

Normally, the Series 700/800 C compiler places constant data in the data
space. If such data is used in a shared library, each process will get its own
copy of the data, in spite of the fact that the data is constant and should not
change. This can result in some performance degradation.

To get around this, use the C compiler’s +ES1it option, which places constant
data in the LIT text space instead of the data space. This results in one copy
of the constant data being shared among all processes that use the library.

Note This option requires that programs not write into constant
strings and data. In addition, structures with embedded
initialized pointers won’t work because the pointers cannot be
relocated since they are in read-only $TEXT$ space. In this case,
the linker outputs the error message “Invalid loader fixup
needed”.

4-16 | Creating Shared Libraries

<

Linking and Running Programs

This chapter describes how to use the linker, 1d, to create executable programs.
It describes the use of many powerful linker options that change characteristics
of the executable. This chapter also describes what the operating system does
when you run a program. Specifically, this chapter describes how to

m specify link libraries

m choose an archive or shared library

m link with shared libraries

m hide and export symbols in a shared library or program

specify multiple linker options in files

migrate to shared libraries from archive libraries

generate shared executables

generate demand-loaded executables

strip symbol table information from executables

m change a program’s attributes with chatr
m dynamically link and load object modules

This chapter does not cover detailed reference information on the linker. For
such information, refer to ld(1); in the HP-UX Reference.

Linking and Running Programs 5-1

Linker Overview

The HP-UX linker, 1d, produces a single executable file from one or more input
object files. In doing so, it matches external references to global definitions
contained in other object files or libraries. It revises code and data to reflect
new addresses, a process known as relocation. If the input files contain
debugger information, 1d updates this information appropriately. The linker
places the resulting executable code in a file named, by default, a.out.

Compiler-Linker Interaction

As described in Chapter 2, the compilers automatically call 1d to create an
executable file. To see how the compilers call 1d, run the compiler with the
-v (verbose) option. For example, compiling a C program on a Series 700
workstation produced the output below:

$ cc -Aa -v main.c func.c -1lm

cc: CCOPTS is not set.

main.c:

/1ib/cpp.ansi main.c /tmp/ctmAAAa10102 -D__hp9000s700 \
-D__hp9000s800 -D__hppa -D__hpux -D__unix -D_PA_RISC1_1 \
-A -I /usr/include

cc: Entering Preprocessor.

/1lib/ccom /tmp/ctmAAAal0102 main.o -00 -v -Aa

func.c:

/1ib/cpp.ansi func.c /tmp/ctmAAAail0102 -D__hp9000s700 \
-D__hp9000s800 -D__hppa -D__hpux -D__unix -D_PA_RISC1i_1 \
-A -I /usr/include

cc: Entering Preprocesscr.

/1lib/ccom /tmp/ctmAAAail0102 func.o -00 -v -Aa

cc: LPATH is /lib/pal.il:/usr/lib/pal.1:/1lib:/usr/1ib

/bin/ld /1ib/crt0.o -u main main.o func.o -1lm -lc

cc: Entering Link editor.

The next-to-last line in the above example is the command line the compiler
used to invoke the linker, /bin/1d. In this command, 1d combines a startup
file (crt0.0) and the two object files created by the compiler {(main.o and

func.o). Also, 1d searches the 1ibm and 1ibc libraries.

5-2 Linking and Running Programs

The crt0.0 Startup File

Notice in the previous example that the first object file on the linker command
line is /1ib/crt0.0, even though this file was not specified on the compiler
command line. This file, known as a startup file, contains the program’s entry
point—that is, the location at which the program starts running after HP-UX
loads it into memory to begin execution. The startup code does such things

as retrieving command line arguments into the program at run time, and
activating the dynamic loader (dld.sl(5)) to load any required shared libraries.
It also calls the main program: it calls the routine _start in libc, which in
turn calls the main program as a function. On Series 300/400 computers, it
calls the main program directly, without calling _start.

If the -p profiling option is specified on the compile line, the compilers link
with mcrt0.o instead of crt0.o. If the -G profiling option is specified, the
compilers link with gcrt0.o. For details on startup files, see crt0(3). 5

On Series 300/400 FORTRAN, the startup file is frt0.o instead of crt0.o.
Also, the profiling startup files are mfrt0.o (if compiled with -p) and gfrt0.o
(if compiled with -G).

Entry Point

The entry point is the location at which execution begins in the a.out file. It
is defined in crt0.o0. On Series 300/400 computers, the entry point is defined
by the symbol _start in crt0.o. On Series 700/800 computers, the entry
point is defined by the symbol $START$ in crtO.o.

The a.out File

The information contained in the resulting a.out file depends on which
architecture the file was created on and what options were used to link the
program. In any case, an executable a.out file contains information that
HP-UX needs when loading and running the file, for example: Is it a shared
executable? Does it reference shared libraries? Is it demand-loadable? Where
do the code (text), data, and bss segments reside in the file? For details on the
format of this file, see a.out(4).

Linking and Running Programs 5-3

File Permissions

If no linker errors occur, the linker gives the a.out file read/write/execute
permissions to all users (owner, group, and other). If errors occurred, the linker
gives read/write permissions to all users. Permissions are further modified

if the umask is set (see umask(1)). For example, on a system with umask

set to 022, a successful link produces an a.out file with read/write/execute
permissions for the owner, and read/execute permissions for group and other:

$ umask

022

$ 1s -1 a.out

-rwxr-xr-x 1 michael users 74440 Apr 4 14:38 a.out

Renaming the a.out File

To override the default name of a.out, use the -o option. For example, the
following 1d command creates an executable named sum from the object files
/1lib/crt0.o and sum.o:

$ 1d -0 sum /1lib/crt0.o sum.o -lc -1m

Specifying Linker Options with the LDOPTS Environment Variable

If you use certain linker options all the time, you may find it useful to specify
them in the LDOPTS environment variable. The linker inserts the value of this
variable before all other arguments on the linker command line. For instance, if
you always want the linker to display verbose information (-v) and a trace of
each input file (-t), set LDOPTS as follows:

$ LDOPTS="-v -t" Korn and Bourne syntax.
$ export LDOPTS

$ setenv LDOPTS "-v ~-t" C' shell syntax.

Thereafter, the following commands would be equivalent

$ 1d /lib/crt0.o -u main prog.o -1 -c
$ 1d -v -t /1ib/crt0.o -u main prog.o -1 -c

5-4 Linking and Running Programs

Specifying Libraries (-I)

The -1 option tells 1d the libraries to search in to find global definitions. Its
usage is:

-1z

where z is a character string denoting the library in which 1d should search for
global definitions. Only the part of the library name following 1ib needs to be
specified with the -1 option. For example, to specify 1ibc, use -1c; to specify

libm, use —-1m.

By default, 1d searches for the specified libraries in /1ib and /usr/1ib, in that
order. The default order can be changed with the LPATH environment variable
or the -L option, described below.

Note On Series 700 computers, you can use the -L option to direct
the linker to search for the faster PA1.1 libraries as follows:

-L/1lib/pal.1 -L/usr/lib/pal.1

For details, see “Selecting Faster Libraries (Series 700/800
Only)” in Chapter 2.)

You can also use the LPATH environment variable (described
later in this section) to do the same thing. In fact, this is how
the C and FORTRAN compilers cause the linker to search the
appropriate libraries for a particular architecture.

Linking and Running Programs 5-5

Link Order

The linker searches libraries in the order in which they arc specified on the
command line—the link order. Link order is important in that a library
containing an external relerence to another library must precede the library
containing the definition. This is why libc is typically the last library specified
on the linker command line: because the other libraries preceding it in the link
order often contain references to 1ibe routines and so must precede it.

Note If multiple definitions of a symbol occur in the specified
libraries, 1d does not necessarily choose the first definition.
It depends on whether the program is linked with archive
libraries, shared libraries, or a combination of both. Depending
on link order to resolve such library definition conflicts is risky
because it relies on undocumented linker behavior that may
change in future releases.

Overriding the Default Linker Search Path (LPATH)

The LPATH environment variable allows you to specify which directories 1d
should search. If LPATH is not set, 1d searches the default directories /1ib and
/usr/lib. If LPATH is set, 1d searches only the directories specified in LPATH:;
the default directories are not searched unless they are specified in LPATH.

If set, LPATH should contain a list of colon-separated directory path names 1d
should search. For example, to include /usr/local/lib in the search path
after the default directories, set LPATH as follows:

$ LPATH=/1ib:/usr/lib:/usr/local/lib Korn and Bouwrne shell syniar,
$ export LPATH

$ setenv LPATH /lib:/usr/lib:/usr/local/lib (' shell synlax.

5-6 Linking and Running Programs

Augmenting the Default Linker Search Path (-L)

The -L option to 1d also allows you to add additional directories to the search
path. If -L libpath is specified, 1d searches the libpath directory before the
default places.

For example, suppose you have a locally developed version of 1ibc, which
resides in the directory /usr/local/lib. To make 1d find this version of 1ibc
before the default 1ibc, use the -L option as follows:

$ 1d /lib/crt0.o prog.o -L /usr/local/lib -lc

Multiple -L options can be specified. For example, to search
/usr/contrib/1lib and /usr/local/lib before the default places:

$ 1d /1lib/crt0.o prog.o -L /usr/contrib/lib -L /usr/local/lib -lc

If LPATH is set, then the -L option specifies the directories to search before the
directories specified in LPATH.

Linking and Running Programs 5-7

Choosing Archive or Shared Libraries (-a and -I:)

If both an archive and shared version of a particular library reside in the

same directory, 1d links against the shared version. For example, 1ibc.a and
libc.sl both reside in /1ib; so by default, 1d uses 1ibc.sl. Occasionally, you
might want to override this behavior.

As an example, suppose you write an application that will run on a system on
which shared libraries may not be present. Since the program could not run
without the shared library, it would be best to link with the archive library,
resulting in executable code that contains the required library routines.

There are two ways to select archive or shared libraries—with the -a option
and the -1: option.

Using the -a Option

The -a option tells the linker what kind of library to link against. It applies to
all libraries (-1 options) until the end of the command line or until the next -a
option. Its syntax is:

archive
shared

-a { default
archive_shared
shared_archive

5-8 Linking and Running Programs

The different option settings are:

-a archive Select archive libraries. If the archive library does
not exist, 1d generates an error message and does not
generate the output file.

-a shared Select shared libraries. If the shared library does not
exist, 1d generates an error message and does not
generate the output file.

-a default Select the shared library if it exists; otherwise, select
the archive library. If the library cannot be found in
either version, 1d generates an error message and does
not generate the output file.

-a archive_shared (Series 700/800 only.) Select the archive library if
it exists; otherwise, select the shared library. If the
library cannot be found in either version, 1d generates

an error message and does not generate the output
file.

-a shared_archive (Series 700/800 only.) This is the same as -a default.

For example, to link with the shared libcurses but the archive 1ibm and
libe, use this sequence of -1 and -a options:

$ 1d /lib/crt0.o prog.c -lcurses -a archive -lm -lc

The following sequence of -1 and -a options causes the linker to use the
archive version of libcurses and the shared versions of 1libm and libc:

$ 1d /1lib/crt0.o prog.o -a archive -lcurses -a default -Im -lc

Using the -I: Option
(Series 700/800 Only)

The -1: option works just like the -1 option with one major difference:

-1: allows you to specify the full basename of the library to link against.

For instance, -1:1ibm.a causes the linker to link against archive library
/1ib/libm.a, regardless of whether -a shared was specified previously on the
linker command line.

Linking and Running Programs 5-9

The advantage of using this option is that it allows you to specify an archive or
shared library explicitly without having to toggle the state of the -a option.

For instance, suppose you use the LDOPTS environment variable (see “Specifying
Linker Options with the LDOPTS Environment Variable”) to set the -a

option that you want to use by default when linking. And depending on what
environment you are building an application for, you might set LDOPTS to -a
archive or -a shared. If a particular library is available only as shared or
archive, you can use -1: to ensure that the linker will always link against this
library, regardless of the setting of the -a option in the LDOPTS variable.

For example, even if LDOPTS were set to -a shared, the following command
would link against the archive libfoo.a in the directory /usr/mylibs:

$ 1d /lib/crtO0.o -u main prog.o -L/usr/mylibs \
-l:libfoo.a -1lc -Im

5-10 Linking and Running Programs

Linking a Program with Shared Libraries

When linking with shared libraries, there are some special considerations that
don’t apply to archive libraries. This section discusses these.

Exporting Symbols from the Main Program (-E)

By default, the linker exports from a program only those symbols that were
imported by a shared library. For example, if a shared executable’s libraries do
not reference the program’s main routine, the linker does not include the main
symbol in the a.out file’s export list. Normally, this is a problem only when

a program calls shared library management routines (described in Chapter 8).
To make the linker export all symbols from a program, invoke 1d with the -E
option.

The +e option allows you to be more selective about which symbols are 5
exported, resulting in better performance. For details on +e, see the section
“Hiding and Exporting Symbols (-h and +e)” later in this chapter.

Library Location and the Dynamic Loader (did.sl)

An incomplete executable contains a list of absolute path names of the shared
libraries searched at link time. When a program begins execution, it attaches
these shared libraries. This activity is actually performed by the dynamic
loader, which is activated by the startup code in crt0.o.

Default Behavior When Searching for Libraries at Run Time

By default, if the dynamic loader cannot find a shared library from the list, it

generates a run-time error and the program aborts. For example, suppose that
during development, a program is linked with the shared library 1liblocal.sl

in your current working directory (say, /users/hyperturbo):

$ 1d /1lib/crt0.o prog.o -lc liblocal.sl

The linker records the path name of 1iblocal.sl in the a.out file as
/users/hyperturbo/liblocal.sl. When shipping this application to

users, you must ensure that (1) they have a copy of 1iblocal.sl on their
system, and (2) it is in the same location as it was when you linked the final
application. Otherwise, when the users of your application run it, the dynamic

Linking and Running Programs 5-11

loader will look for /users/hyperturbo/liblocal.sl, fail to find it, and the
program will abort.

This is more of a concern with non-standard libraries—that is, libraries not
found in /1ib or /usr/1lib. There is little chance of the standard libraries not
being in these directories.

Moving Libraries after Linking

As of the HP-UX 9.0 release, a library can be moved even after an application
has been linked with it. This is done by providing the executable with a list of
directories to search at run time for any required libraries. There are two ways
to specify this information:

m by storing a directory path list in the program via the linker option
+b path_list

m by linking the program with +s, enabling the program to use the path list
defined by the SHLIB_PATH environment variable at run time

Note that dynamic path list search works only for libraries specified

with ~1 on the linker command line (for example, -1foo). It won’t

work for libraries whose full path name is specified (for example,
/usr/contrib/lib/libfoo.sl). However, on Series 700/800 computers, it can
be enabled for such libraries with the -1 option to the chatr command (see
“Changing a Program’s Attributes with chatr”).

The Path List

Whether specified as a parameter to +b or set as the value of the SHLIB_PATH
environment variable, the path list is simply one or more path names separated
by colons (:), just like the syntax of the PATH environment variable. An
optional colon can appear at the start and end of the list.

Absolute and relative path names are allowed. Relative paths are searched
relative to the program’s current working directory at run time.

Remember that a shared library’s full path name is stored in the
executable. When searching for a library in an absolute or relative path
at run time, the dynamic loader uses only the basename of the library
path name stored in the executable. For instance, if a program is linked
with /usr/local/lib/libfoo.sl, and the directory path list contains

5-12 Linking and Running Programs

/apps/1ib:xyz, the dynamic loader searches for /apps/lib/libfoo.sl, then
./xyz/libfoo.sl.

The full library path name stored in the executable is referred to as the default
library path. To cause the dynamic loader to search for the library in the
default location, use a null directory path (::). When the loader comes to

a null directory path, it uses the default shared library path stored in the
executable. For instance, if the directory path list in the previous example were
/apps/lib: :xyz, the dynamic loader would search for /apps/1ib/libfoo.sl,
/usr/local/lib/libfoo.sl, then ./xyz/libfoo.sl.

If the dynamic loader cannot find a required library in any of the directories
specified in the path list, it searches for the library in the default location (::)
recorded by the linker.

Caution on Using Dynamic Library Searching

If different versions of a library exist on your system, be aware that the
dynamic loader may get the wrong version of the library when dynamic library
searching is enabled with SHLIB_PATH or +b. For instance, you may want a
program to use the PA1.1 libraries found in the /1ib/pal.1 directory; but
through a combination of SHLIB_PATH settings and +b options, the dynamic
loader ends up loading versions found in /1ib instead. If this happens, make
sure that SHLIB_PATH and +b are set in such a way as to avoid such conflicts.

Specifying a Path List with +b
The syntax of the +b option is

+b path_list

where path_list is the list of directories you want the dynamic loader to search
at run time. For example, the following linker command causes the path
.:/app/lib:: to be stored in the executable. At run time, the dynamic loader
would search for libfoo.sl, 1ibm.sl, and 1ibc.sl in the current working
directory (.), the directory /app/1ib, and lastly in the location in which the
libraries were found at link time (::):

$ 1d /lib/crt0.o +b .:/app/lib:: prog.o -lfoo -Im -lc

If path_list is only a single colon, the linker constructs a path list consisting of
all the directories specified by -L, followed by all the directories specified by

Linking and Running Programs 5-13

the LPATH environment variable. For instance, the following linker command
records the path list as /app/lib:/tmp:

$ LPATH=/tmp ; export LPATH
$ 1d /lib/crt0.o +b : -L/app/lib prog.o -lfoo -1lm -lc

Specifying a Path List with +s and SHLIB_PATH

When a program is linked with +s, the dynamic loader will get the library path
list from the SHLIB_PATH environment variable at run time. This is especially
useful for application developers who don’t know where the libraries will reside
at run time. In such cases, they can have the user or an install script set
SHLIB_PATH to the correct value.

Mixing +b and +s

If a program is linked with both +b and +s, the dynamic loader builds a path

list according to the order in which the options were specified. For example, if
+b is specified before +s, the dynamic loader will use the path list gpecified by
+b and append the path list specified by SHLIB_PATH.

Note No special provisions related to security issues are taken for
programs that use setuid(2) or sclgid(2) to change process
permissions. The builder of such programs must ensure that
users cannot substitute their own library on a search path and
gain undesirable privileges. Since dynamic library searching
is not the default behavior, this is not considered a sccurity
hole in the program development environment; rather, it is the
responsibility of the program builder.

The Path List and the shi_load Routine

If & library is loaded with shl_load (see Chapter 8), the dynamic loader
searches the path list only if the DYNAMIC_PATH llag is specified in the
shl_load call and the program has also been linked with either +b or +s.

5-14 Linking and Running Programs

Binding Routines to a Program

Since shared library routines and data are not actually contained in the a.out
file, the dynamic loader must attach the routines and data to the program

at run time. Attaching a shared library entails mapping the shared library
code and data into the process’s address space, relocating any pointers in the
shared library data that depend on actual virtual addresses, allocating the bss
segment, and binding routines and data in the shared library to the program.

The dynamic loader binds only those symbols that are reachable during the
execution of the program. This is similar to how archive libraries are treated
by the linker; namely, 1d pulls in an object file from an archive library only if
the object file is needed for program execution.

Deferred Binding

To accelerate program startup time, routines in a shared library are not
bound until referenced. (Data items are always bound at program startup.)
This deferred binding of shared library routines distributes the overhead of
binding across the exccution time of the program and is especially expedient
for programs that contain many references that are not likely to be executed.
In essence, deferred binding is similar to demand-loading.

Forcing Immediate Binding (-B immediate)

You might also want to force immediate binding—that is, force all routines
and data to be bound at startup time. With immediate binding, the overhead
of binding occurs only at program startup, rather than across the program’s
execution. One possibly useful characteristic of immediate binding is that it
causes any possible unresolved symbols to be detected at startup time, rather
than during program execution. Another use of immediate binding is to get
better interactive performance, if you don’t mind program startup taking a
little longer.

To force immediate binding, link an application with the -B immediate linker
option. For example, to force immediate binding of all symbols in the main
program and in all shared libraries linked with it, you could use this 1d
command:

$ 1d -B immediate /lib/crtO0.o prog.o -lc -1m

Linking and Running Programs 5-15

Nonfatal Shared Library Binding (-B nonfatal)

The linker also supports nonfatal binding, which is useful with the -B
immediate option. Like immediate binding, nonfatal immediate binding causes
all required symbols to be bound at program startup. The main difference from
immediate binding is that program execution continues even if the dynamic
loader cannot resolve symbols. Compare this with immediate binding, where
unresolved symbols cause the program to abort.

To use nonfatal binding, specify the -B nonfatal option along with the -B
immediate option on the linker command line. The order ol the options is not
important, nor is the placement of the options on the line. For example, the
following 1d command uses nonfatal immediate binding:

$ 1d /lib/crtO.o prog.o -B nonfatal -B immediate -1m -lc

Note that the -B nonfatal modifier does not work with deferred binding
because a symbol must have been bound by the time a program actually
references or calls it. If a program attempts to call or access a nonexistent
symbol, it is a fatal error.

Restricted Shared Library Binding (-B restricted)
(Series 700/800 Only)

The Series 700/800 linker also supports restricted binding, which is uselul
with the -B deferred and -B nonfatal options. T'he -B restricted option
causes the dynamic loader to restrict the scarch for symbols to those thal
were visible when the library was loaded. I the dynamic loader cannot lind a
symbol within the restricted set, a run-time symbol-binding error occurs and
the program aborts.

The -B nonfatal modifier alters this behavior slightlv: Il the dynamic loader
cannot find a symbol in the restricted set, it looks in the global symbol set (the
symbols defined in «all libraries) to resolve the syvnibol. I it still cannot find the
symbol, then a run-time symbol-binding error occurs and the program aborts.

When is -B restricted most useful? Consider a prograni that creates
duplicate symbol definitions by either of these methods:

5-16 Linking and Running Programs

m The program uses shl_load with the BIND_FIRST flag to load a library that
contains symbol definitions that are already defined in a library that was
loaded at program startup.

m The program calls shl_definesym to define a symbol that is already defined
in a library that was loaded at program startup.

If such a program is linked with -B immediate, references to symbols will be
bound at program startup, regardless of whether duplicate symbols are created
later by shl_load or shl_definesym.

But what happens when, to take advantage of the performance benefits of
deferred binding, the same program is linked with -B deferred? If a duplicate,
more-visible symbol definition is created prior to referencing the symbol, it
binds to the more-visible definition, and the program might run incorrectly. In
such cases, -B restricted is useful, because symbols bind the same way as
they do with -B immediate, but actual binding is still deferred.

Linking and Running Programs 5-17

Hiding and Exporting Symbols (-h and +e)

The -h and +e options allow you to hide and export symbols. Hiding a symbol
makes the symbol a local definition, accessible only from the object module or
library in which it is defined. Exporting a symbol makes the symbol a global
definition, which can be accessed by any other object modules or libraries. The
syntax of the -h and +e options is:

-h symbol
+e symbol

The -h option hides symbol; any other global symbols remain exported unless
hidden with -h. The +e option exports symbol and hides from export all

other global symbols not specified with +e. In essence, -h and +e provide two
different ways to do the same thing. For example, suppose you want to build a
shared library from an object file that contains the following symbol definitions
(displayed by the nm command):

$ nm -p sem.o

0000000000 U $global$
1073741824 d $THIS_DATAS
1073741864 b $THIS_BSSS
0000000004 cS sem_val
0000000000 T check_sem_val
0000000036 T foo
0000000000 U printf
0000000088 T Dbar
0000000140 T sem

In this example, check_sem_val, foo, bar, and sem arc all global definitions.
To create a shared library where check_sem_val is a hidden, local definition,
you could use either of the following commands:

$ 1d -b -h check_sem_val sem.o One =h option.

$ 1d -b +e foo +e bar +e sem sem.o 1hucc +e options.

In contrast, suppose you want to export only the check_sem_val symbol.
Either of the following commands would work:

$ 1d -b -h foo -h bar -h sem sem.o 1Nuce =h options.

$ 1d -b +e check_sem_val sem.o One +e option.

5-18 Linking and Running Programs

How do you decide whether to use -h or +e? In general, use -h if you simply
want to hide a few symbols. And use +e if you want to export a few symbols
and hide a large number of symbols.

You should not combine -h and +e options on the same command line. For
instance, suppose you specify +e sem. This would export the symbol sem and
hide all other symbols. Any additional -h options would be unnecessary. If
both -h and +e are used on the same symbol, the -h overrides the +e option.

The linker command line could get quite lengthy and difficult to read if several
such options were specified. And in fact, you could exceed the maximum
HP-UX command line length if you specify too many options. To get around
this, use 14 linker option files, described later under “Linker Option Files (-¢
file)”. You can specify any number of -h or +e options in this file.

You can use -h or +e options when building a shared library (with -b) and
when linking to create an a.out file. When combining .o files with -r, you can
still use only the -h option.

Hiding and Exporting Symbols When Building a Shared Library

When building a shared library, you might want to hide a symbol in the library
for several reasons:

m It can improve performance because the dynamic loader does not have to
bind hidden symbols. Since most symbols need not be exported from a
shared library, hiding selected symbols can have a significant impact on
performance.

m [t ensures that the definition can only be accessed by other routines in the
same library. When linking with other object modules or libraries, the
definition will be hidden from them.

m When linking with other libraries (to create an executable), it ensures that
the library will use the local definition of a routine rather than a definition
that occurs earlier in the link order.

Linking and Running Programs 5-19

Exporting a symbol is necessary if the symbol must be accessible outside

the shared library. But remember that, by default, most symbols are global
definitions anyway, so it is seldom necessary to explicitly export symbols.

In C, all functions and global variables that are not explicitly declared as
static have global definitions, while static functions and variables have local
definitions. In FORTRAN, global definitions are generated for all subroutines,
functions, and initialized common blocks.

Hiding Symbols When Combining .o Files with the -r Option

The -r option combines multiple .o files, creating a single .o file. The reasons
for hiding symbols in a .o file are the same as the reasons listed above for
shared libraries. However, a performance improvement will occur only if the
resulting .o file is later linked into a shared library.

Hiding and Exporting Symbols When Creating an a.out File

By default, the linker exports all of a program’s global definitions that are
imported by shared libraries specified on the linker command line. For
example, given the following linker command, all global symbols in crt0.o and
prog.o that are referenced by libm or libc are automatically exported:

$ 1d /lib/crt0.o prog.o -lm -lc

With libraries that are explicitly loaded via shl_load, this behavior may not
always be sufficient because the linker does not search explicitly loaded libraries
(they aren’t even present on the command line). You can work around this
using the -E or +e linker option.

As mentioned previously in the section “Exporting Symbols from the Main
Program (-E)”, the -E option forces the export of all symbols from the
program, regardless of whether they are referenced by shared libraries on the
linker command line. The +e option allows you to be more selective in what
symbols are exported. You can use +e to limit the cxported symbols to only
those symbols you want to be visible.

5-20 Linking and Running Programs

For example, the following 1d command exports the symbols main and foo.
The symbol main is referenced by libc. The symbol foo is referenced at run
time by an explicitly loaded library not specified at link time:

$ 1d /lib/crt0.o prog.o +e main +e foo -1lm -lc -1d1d

When using +e, be sure to export any data symbols defined in the program
that may also be defined in explicitly loaded libraries. If a data symbol that a
shared library imports is not exported from the program file, the program uses
its own copy while the shared library uses a different copy if a definition exists
outside the program file. In such cases, a shared library might update a global
variable needed by the program, but the program would never see the change
because it would be referencing its own copy.

Linking and Running Programs 5-21

Linker Option Files (-c file)

The -c file option causes the linker to read command line options from the
specified file. This is useful if you have many -h or +e options to include on
the 1d command line, or if you have to link with numerous object files. For
example, suppose you have over a hundred +e options that you need when
building a shared library. You could place them in a file named eopts and
force the linker to read options from the file as follows:

$ 1d -o libmods.sl -b -c eopts mod*.o

$ cat eopts Display the file.
+e foo

+e bar

+e reverse_tree

+e preorder_traversal

+e shift_reduce_parse

Note that the linker ignores lines in that option file that begin with a pound
sign (#). You can use such lines as comment lines or to temporarily disable
certain linker options in the file. For instance, the following linker option file
for an application contains a disabled -0 option:

Exporting only the "compress" symbol resulted

in better run-time performance:

+e compress

When the program is debugged, remove the pound sign
from the following optimization option:

-0

5-22 Linking and Running Programs

Migrating to Shared Libraries

There are cases where a program may behave differently when linked with
shared libraries than when linked with archive libraries. These are the result
of subtle differences in the algorithms the linker uses to resolve symbols and
combine object modules. This section covers these considerations.

Library Path Names

As discussed previously in “Library Location and the Dynamic Loader

(dld.sl)”, 1d records the absolute path names of any shared libraries searched

at link time in the a.out file. When the program begins execution, the

dynamic loader attaches any shared libraries that were specified at link time.
Therefore, you must ensure that any libraries specified at link time are also

present in the same location at run time. 5

As of the HP-UX 9.0 release, you can circumvent potential problems arising
from having the library at a different location at run time (see the earlier
section “Library Location and the Dynamic Loader (dld.sl)”).

Relying on Undocumented Linker Behavior

Occasionally, programmers may take advantage of linker behavior that is
undocumented but has traditionally worked. With shared libraries, such
programming practices might not work or may produce different results. If
the old behavior is absolutely necessary, linking with archive libraries only (-a
archive) produces the old behavior.

For example, suppose several definitions and references of a symbol exist in
different object and archive library files. By specifying the files in a particular
link order, you could cause the linker to use one definition over another. But
doing so requires an understanding of the subtle (and undocumented) symbol
resolution rules used by the linker, and these rules are slightly different for
shared libraries. So make files or shell scripts that took advantage of such linker
behavior prior to the support of shared libraries may not work as expected
with shared libraries.

More commonly, programmers may take advantage of undocumented linker
behavior to minimize the size of routines copied into the a.out files from
archive libraries. This is no longer necessary if all libraries are shared.

Linking and Running Programs 5-23

Although it is impossible to characterize the new resolution rules exactly, the
following rules always apply:

m If a symbol is defined in two shared libraries, the definition used at run time
is the one that appeared first, regardless of where the reference was.

m The Series 300/400 linker treats shared libraries in other respects as if they
were archive libraries, in so far as this affects resolution rules.

m The Series 700/800 linker treats shared libraries more like object files.

As a consequence of the second rule on Series 700/800 computers, programs
that call wrapper libraries may become larger. (A wrapper library is a library
that contains alternate versions of C library functions, each of which performs
some bookkeeping and then calls the actual C function. For example, each
function in the wrapper library might update a counter of how many times the
actual C routine is called.) With archive libraries, if the program references
only one routine in the wrapper library, then only the wrapper routine and the
corresponding routine from the C library are copied into the a.out file. If, on
the other hand, a shared wrapper library and archive C library are specified,
in that order, then all routines that can be referenced by any routine in the
wrapper library are copied from the C library on Series 700/800 computers. To
avoid this, link with archive or shared versions for both the wrapper library
and C library, or use an archive version of the wrapper library and a shared
version of the C library.

Absolute Virtual Addresses

Writing code that relies on the linker to locate a symbol in a particular
location or in a particular order in relation to other symbols is known as
making an implicit address dependency. Because of the nature of shared
libraries, the linker cannot always preserve the exact ordering of symbols
declared in shared libraries. In particular, variables declared in a shared library
may be located far from the main program’s virtual address space, and they
may not reside in the same relative order within the library as they were
linked. Therefore, code that has implicit address dependencies may not work as
expected with shared libraries.

An example of an implicit address dependency is a function that assumes
that two global variables that were defined adjacently in the source code will
actually be adjacent in virtual memory. Since the linker may rearrange data in

5-24 Linking and Running Programs

shared libraries, this is no longer guaranteed. Another example is a function
that assumes variables it declares statically (e.g., C static variables) reside
below the reserved symbol _end in memory (see end(3)). In general, it is a bad
idea to depend on the relative addresses of global variables, because the linker
may move them around.

In assembly language, using the address of a label to calculate the size of the
immediately preceding data structure is not affected: the assemblers still
calculate the size correctly.

On Series 300/400 computers, do not place assembly language labels inside
data structures because the assemblers assume that the inner labels delimit
new data structures; thus, the linker is free to split the data structure up in
memory and to move the pieces around. The Series 300/400 assembler provides
the internal pseudo-op to keep such internal labels from breaking up data
structures.

Stack Usage

To load shared libraries, a program must have a copy of the dynamic loader
(dld.sl) mapped into its address space. This copy of the dynamic loader
shares the stack with the program. The dynamic loader uses the stack during
startup and whenever a program calls a shared library routine for the first
time. If you specify -B immediate, the dynamic loader uses the stack at
startup only.

Although it is not recommended programming practice, some programs

may use stack space “above” the program’s current stack. To preserve the
contents “above” the program’s logical top of the stack, the dynamic loader
attempts to use stack space far away from program’s stack pointer. If a
program is doing its own stack manipulations, such as those implemented by
a “threads” package, the dynamic loader may inadvertently use stack space
that the program had reserved for another thread. Programs doing such stack
manipulations should link with archive libraries, or at least use immediate
binding, if this could potentially cause problems.

Linking and Running Programs 5-25

Text and Data Segment Restrictions
(Series 300/400 Only)

When creating a shared library or executable program, the Series 300/400
linker assumes that anything defined in the data segment is, in fact, data, and
anything defined in the text segment is, in fact, executable machine code. If a
program calls a procedure defined in a shared library data segment or accesses
data in a text segment, it will probably dump core.

Startup Code (crt0.0)

To support shared libraries, /1ib/crt0.o (and /1ib/frt0.o on Series 300
FORTRAN) was modified at the HP-UX 8.0 release. Applications that use
a startup routine other than crt0.o should be linked with the -a archive
option, as they will not work with shared libraries.

A related issue on Series 300/400 computers is the default program entry
point. In previous HP-UX releases, the default entry point was text location
zero, which normally corresponds to the symbol _start in crt0.o0. To
support shared libraries, the location of the default entry point was moved; it
immediately follows a set of tables at the beginning of the text segment. The
symbol _start still identifies the entry point, and the a_entry field of the
a.out file header still gives the correct address, but existing code that relies on
an entry point of text location zero is likely to fail.

Note also that on Series 300/400 computers, address 0 is still guaranteed to
contain the value 0, so NULL pointer dereferencing still returns 0 with shared
libraries. However, it is non-portable and risky programming practice to
depend on this.

5-26 Linking and Running Programs

Version Control

The shared library version control scheme presented in Chapter 4 is robust. If
all the rules are followed correctly, there is little chance of a change made to a
library affecting existing executables adversely. Here are some guidelines to
keep in mind when making changes to a library:

m When creating the first version of a shared library, version control is not an
issue: The default version number is satisfactory.

m When creating future revisions of a library, you must determine when a
change represents an incompatible change, and thus deserves a new version.

m As a general rule, when an exported function is changed such that calls to
the function from previously compiled object files should not resolve to the
new version, the change is incompatible. If the new version can he used as a
wholesale replacement for the old version, the change is compatiblc.

m For exported data, any change in either value or size represents an
incompatible change.

m Any function that is changed to take advantage of an incompatible change in
another module should be considered incompatible.

m When an incompatible change is made to a module, all the old versions of
the module should be retained along with the new version. The new version
number should correspond to the date the change was made.

m If several modules are changed incompatibly in a library, it is a good idea to
give all modules the same version date.

Using the chroot Command with Shared Libraries

Some users may use the chroot super-user command when developing

and using shared libraries. This affects the path name that the linker

stores in the executable file. For example, if you chroot to the directory
/users/hyperturbo and develop an application there that uses the shared
library 1ibhype.sl in the same directory, 1d records the path name of the
library as /libhype.sl. If you then exit from the chrooted directory and
attempt to run the application, the dynamic loader won’t find the shared
library because it is actually stored in /users/hyperturbo/libhype.sl, not in
/libhype.sl.

Linking and Running Programs 5-27

Conversely, if you move a program that uses shared libraries into a chrooted
environment, you must have a copy of the dynamic loader, d1d.sl1, and all
required shared libraries in the correct locations.

Debugger Limitations

As of the HP-UX 9.0 release, shared libraries can be debugged just like archive
libraries with few exceptions. For details on debugging shared libraries, refer to
HP-UX Symbolic Debugger User’s Guide.

Profiling Limitations

Profiling (with the prof and gprof commands and the monitor library
function) is only possible on a contiguous chunk of main program (a.out).
Since shared libraries are not contiguous with the main program in virtual
memory, they cannot be profiled. You can still profile the main program,
though. If profiling of libraries is required, re-link the application with the
archive version of the library, using the -a archive option.

5-28 Linking and Running Programs

Loading Programs: exec

When you run an executable file created by 1d, the program is loaded into
memory by the HP-UX program loader, exec. This routine is actually a
system call and can be called by other programs to load a new program into
the current process space. The exec function performs many tasks; some of the
more important ones are:

m Determine how to load the executable file by looking at its magic number
(see “Magic Numbers”).

m Determine where to begin execution of the program—that is, the entry
point—usually in crt0.o.

m If the program was linked with shared libraries, the crt0.o startup code
invokes the dynamic loader (d1d.sl), which in turn attaches any required
shared libraries. If immediate binding was specified at link time, then the 5
libraries are bound immediately. If deferred binding was specified, then
libraries are bound as they are referenced.

For details on exec, see the exec(2) page in the HP-UX Reference.

Linking and Running Programs 5-29

Magic Numbers

Recorded with each executable program is a magic number that determines
how the program should be loaded. There are three possible values for an
executable file’s magic number:

SHARE_MAGIC

DEMAND_MAGIC

EXEC_MAGIC

The program’s text (code) can be shared by processes;
its data cannot be shared. The first process to run the
program loads the entire program into virtual memory. If
the program is already loaded hy another process, then a
process shares the program text with the other process.

As with SHARE_MAGIC the program’s text is shareable but
its data is not. However, the program’s text is loaded only
as needed—that is, only as the pages are accessed. This can
improve process startup time since the entire program does
not need to be loaded; however, it can degrade performance
throughout execution.

(Series 300/400/700 only.) Neither the program’s text
nor data is shareable. In other words, the program is an
unshared executable. Usually, it is not desirable to create
such unshared executables because they place greater
demands on memory resources.

By default, the linker creates executables whose magic number is SHARE_MAGIC.
Table 5-1 shows which linker option to use to specifically set the magic nwmber.

5-30 Linking and Running Programs

Table 5-1. Magic Number Linker Options

To set the magic number to ... Use this option ...
SHARE_MAGIC -n
DEMAND_MAGIC -q
EXEC_MAGIC -N

An executable file’s magic number can also be changed using the chatr
command (see “Changing a Program’s Attributes with chatr”). However,
chatr can only toggle between SHARE_MAGIC and DEMAND_MAGIC; it cannot
be used to change from or to EXEC_MAGIC. This is because the file format of
SHARE_MAGIC and DEMAND_MAGIC is exactly the same, while EXEC_MAGIC files
have a different format.

For details on magic numbers, refer to How HP-UX Works: Concepts for the
System Administrator.

Linking and Running Programs 5-31

Shareable Executables vs Shared Libraries

Shared executables—that is, executables whose magic number is SHARE_MAGIC
or DEMAND_MAGIC—are distinct from shared libraries. With shared executables,
sharing occurs at the leve] of the a.out file’s text (code) only. With shared
libraries, sharing occurs for any shared libraries the a.out file attaches. The
following examples should help clarify this difference.

Figure 5-1 shows virtual memory usage for three processes whose a.out file is
a shared executable. Virtual memory usage is decreased because each process
shares the text segment.

P P2 P3
4 7 :
: A1 main data main - data
main code /
s libc data libc data
text 4 main bss maimn bss
libe code [libe bss libe hss
I,,"
main data
data -
libe data
main bhss
hss -
libc bss

Figure 5-1. Archive Libraries with One Shared Executable

Now consider virtual memory usage if differcnl a.out [iles are run with archive
libraries only. Figure 5-2 shows virtual meniory usage when two copies ol vi
and 1s run simultaneously.

5-32 Linking and Running Programs

text

data

bss

\/I1

Vi,

Z

IsI

[s

2

rmain code

libe code

main data

libe data

main

hss

libe bss

J main data
{

J libe data

/ main bss

libc bhss

mdain code

libe code

main data

libe data
main bss
libe bss

K libe data

] main data

main bss

libe bss

Figure 5-2. Archive Libraries with Two Shared Executables

Notice that although considerable sharing is attained, still more sharing could
be attained if 1ibc could by shared by all processes. And that is exactly what
shared libraries do. Figure 5-3 shows virtual memory usage when vi and ls are

linked with the shared 1ibc. Imagine the further memory savings that result as
more executables are linked with shared libraries.

ol
oo
{

bhss

\/I1

Vi

Is1

99}

2

main code

main data |\
libc data

main bss

libc bss

Figure 5-3. Shared Libraries with Shared Executables

2
7| main data
libe data
main bss
libc bss
libc code

‘

main code

main data

libe data

main bss

libc bss

main data

libe data

main bss

libc bss

Linking and Running Programs 5-33

Changing a Program’s Attributes with chatr

The chatr command (see chatr(1)) allows you to change various program
attributes that were determined at link time. When run without any options,
chatr displays the attributes of the specified file. Table 5-2 summarizes the
options you can use to change various attributes.

Table 5-2. Changing Executable Attributes with chatr

To do this . .. Use option . ..
Set the file’s magic number to SHARE_MAGIC. -n
Set the file’s magic number to DEMAND_MAGIC. -q

Series 700/800-Only Options
Use immediate binding for all libraries loaded at program startup. -B immediate
Use deferred binding for all libraries loaded at program startup. -B deferred

Use nonfatal binding. Must be specified with -B immediate or -B -B nonfatal
deferred.

Use restricted binding. Must be specified with -B immediate or -B restricted
-B deferred.

Enable run-time use of the path list specified with the +b option +b enable!
at link time.

Disable run-time use of the path list specified with the +b option +b disable
at link time.

Enable the use of the SHLIB_PATH environment variable to +s enable!
perform run-time path list lookup of shared libraries.

Disable the use of the SHLIB_PATH environment variable to +s disable
perform run-time path list lookup of shared libraries.

Do not subject a library to path list lookup, even if path lists are +1 Libname
provided. That is, use default library path stored in the
executable.

Subject a library to path list lookup if directory path lists are -1 hibname
provided. Useful for libraries that were specified with a full path
name at link time,

1 If +b enable and +s enable are both specified, the orcler in which they appear determines which
search path is used first.

5-34 Linking and Running Programs

Stripping Symbol Table Information from the Output File

The a.out file created by the linker contains symbol table, relocation, and
(if debug options were specified) information used by the debugger. Such
information can be used by other commands that work on a.out files, but
is not actually necessary to make the file run. 1d provides two command
line options for removing such information and, thus, reducing the size of
executables:

-s Strips all such information from the file. The executable becomes smaller,
but difficult or impossible to use with a symbolic debugger (such as xdb).
You can get the same results by running the strip command on an
executable (see strip(1)).

-x Strips only local symbols from the symbol table. It reduces executable file
size with only a minimal affect on commands that work with executables.
However, using this option may still make the file unusable by a symbolic
debugger.

These options can reduce the size of executables dramatically on Series 700/300
computers. Note, also, that these options can also be used when generating
shared libraries without affecting shareability.

Linking and Running Programs 5-35

Dynamic Linking (-A and -R)

This section describes how to do dynamic linking—that is, how to add an
object module to a running program. Conceptually, it is very similar to loading
a shared library and accessing its symbols (routines and data). In fact, if you
require such functionality, you should probably use shared library management
routines (see Chapter 8). Nevertheless, some users will want to use this
dynamic linking, which has a long history of use prior to shared libraries.

Overview of Dynamic Linking

The implementation details of dynamic linking vary across platforms. To load
an object module into the address space of a running program, and to be able
to access its procedures and data, follow these steps on all HP9000 computers:

1. Determine how much space is required to load the module.

2. Allocate the required memory and obtain its starting address.
3. Link the module from the running application.
4

. Get information about the module’s text, data, and bss segments from the
module’s header.

(@24

Read the text and data into the allocated space.
6. Clear (zero out) the bss segment.

7. Flush the text from the data cache before executing code from the loaded
modaule.

8, Get the addresses of routines and data that are referenced in the module.

Step 1: Determine how much space is required to load the module.

There must be enough contiguous memory to hold the module’s text, data,
and bss segments. You can make a liberal guess as to how much memory is
needed, and hope that you've guessed correctly. Or you can be more precise by
pre-linking the module and getting size information from its header.

5-36 Linking and Running Programs

Step 2: Allocate the required memory and obtain its starting address.

Typically, you use malloc(3C) to allocate the required memory. On
Series 700/800 computers, you must modify the starting address

returned by malloc to ensure that it starts on a memory page boundary
(address MOD 4096 == 0).

Step 3: Link the module from the running application.
Use the following options when invoking the linker from the program:

-o mod_name Name of the output module that will be loaded by the
running program.

-4 base_prog Tells the linker to prepare the output file for incremental
loading. Also causes the linker to include symbol table
information from base_prog in the output file.

-R hez_addr Specifies the hexadecimal address at which the module will be
loaded. This is the address calculated in Step 2.

-N Causes the data segment to be placed immediately after the
text segment. Required only on Series 700/800; this is the
default behavior on Series 300/400.

-e entry_pt If specified (it is optional), causes the symbol named entry_pt
to be the entry point into the module. The location of the
entry point is stored in the module’s header.

Step 4: Get information about the module’s text, data, and bss
segments from the module’s header.

On Series 700/800 computers, there are two header structures stored at
the start of the file: struct header (defined in <filehdr.h>) and struct
som_exec_auxhdr (defined in <aouthdr.h>). The required information

is stored in the second header, so to get it, a program must seek past the
first header before reading the second one. The useful members of the
som_exec_auxhdr structure are:

Linking and Running Programs 5-37

.exec_tsize Size of text (code) segment.

.exec_tmen Address at which to load the text (already adjusted for offset
specified by the -R linker option).

.exec_tfile Offset into file (location) where text segment starts.

.exec_dsize Size of data segment.

.exec_dmem Address at which to load the data (already adjusted).

.exec_dfile Offset into file (location) where data segment starts.

.exec_bsize Size of bss segment. It is assumed to start immediately after
the data segment.

.exec_entry Address of entry point (if one was specified by the -e linker
option).

On Series 300/400 computers, there is only one header structure at the start
of the file: struct exec (defined in <a.out.h>). The useful members of this
structure are:

.a_text Size of the text segment.

.a_data Size of the data segment.

.a_bss Size of the bss segment.

.a_entry Address of entry point (if one was specified by the -e linker
option).

Step 5: Read the text and data into the allocated space.

Once you know the location of the required segments in the file, you can read
them into the area allocated in Step 2.

On Series 700/800, the location of the text and data segments in the

file is defined by the .exec_tfile and .exec_dfile members of the
som_exec_auxhdr structure. The address at which to place the segments

in the allocated memory is defined by the .exec_tmem and .exec_dmem
members. The size of the segments to read in is defined by the .exec_tsize
and .exec_dsize members.

On Series 300/400, the file location of the text segment is defined by the
TEXT_OFFSET (filhdr) macro, defined in <a.out.h>. When passed the name of

5-38 Linking and Running Programs

the exec structure, TEXT_OFFSET returns the offset of the text segment in the
file. Since the text and data segments are contiguous, you can determine the
total size by adding the .a_text and .a_data members. This one contiguous
block should be read into the address determined in Step 2.

Step 6: Clear (zero out) the bss segment.

On both architectures, the bss segment starts immediately after the data
segment. To zero out the bss, find the end of the data segment and use memset
(see memory(3C)) to zero out the size of the bss.

On Series 700/800, the end of the data segment can be determined by adding
the .exec_dmem and .exec_dsize members of the som_exec_auxhdr structure.
The bss’s size is defined by the .exec_bsize member.

On Series 300/400, the end of the data segment can be determined by adding
the starting address (obtained in Step 2) to the .a_text and .a_data members
of the exec structure. The size of the bss is defined by the .a_bss member.

Step 7: Flush the text from the data cache before executing code
from the loaded module.

Before executing code in the allocated space, a program should flush the
instruction and data caches. Although this is really only necessary on systems
that have instruction and data caches, it is easiest just to do it on all systems
for ease of portability.

On Series 700/800 computers, an assembly language routine named
flush_cache is used (see “The flush_cache Function” at the end of this
chapter). You must assemble this routine separately (with the as command)
and link it with the main program.

On Series 300/400 computers, use the cachecti(3C) function to do this.
Step 8: Get the addresses of routines and data that are
referenced in the module.

If the -e linker option was used, the module’s header will contain the address
of the entry point. On Series 700/800, the entry point’s address is stored in the
.exec_entry member of the som_exec_auxhdr structure. On Series 300/400, it
is stored in the .a_entry member.

Linking and Running Programs 5-39

If the module contains multiple routines and data that must be accessed from
the main program, the main program can use the nlist(3C) function to get
their addresses.

Another approach that can be used is to have the entry point routine return
the addresses of required routines and data.

An Example Program

To illustrate these concepts, the rest of this section presents an example
program, dynprog. This program loads an object module named dynobj.o,
which is created by dynamically linking two object files filel.o and file2.o.

The program allocates space for dynobj.o by calling a function named
alloc_load_space (see “The alloc_load_space Function” later in this chapter).
The program then calls a function named dyn_load to dynamically link and
load dynobj.o (see “The dyn_load Function” later in this chapter). Both
functions are defined in a file called dynload.c.

As a return value, dyn_load provides the address of the entry point in
dynobj.o—in this case, the function foo. To get the addresses of the function
bar and the variable counter, the program uses the nlist(3C) function.

5-40 Linking and Running Programs

The Build Environment

Before seeing the program’s source code, it may help to see how the program
and the various object files were built. Figure 5-4 shows the Makefile used to
generate the various files.

CFLAGS = ~Aa -D_POSIX_SOURCE

dynprog: dynprog.o dynload.o
S300/400 compile line:
cc -o dynprog dynprog.o dynload.o -Wl,-a,archive

S700/800 compile line:
cc -o dynprog dynprog.o dynload.o flush_cache.o -Wl,-a,archive

filel.o: filel.c dynprog.c
file2.o0: file2.c

Must create flush_cache.s on S700/800:
flush_cache.o:
as flush_cache.s

Figure 5-4. Makefile Used to Create Dynamic Link Files

This Makefile assumes that the following files are found in the current
directory:

dynload.c The file containing the alloc_load_space and dyn_load
functions.

dynprog.c The main program that calls functions from dynload.c and
dynamically links and loads filel.o and file2.0. Also
contains the function glorp, which is called by foo and bar.

filel.c Contains the functions foo and bar.

file2.c Contains the variable counter, which is incremented by foo,
bar, and main.

flush_cache.s Series 700/800 Only. Assembly language source for function
flush_cache, which is called by the dyn_load function.

Linking and Running Programs 5-41

To create the executable program dynprog from this Makefile, you would
simply run:

$ make dynprog filel.o file2.o flush_cache.o
cc -Aa -D_POSIX_SOURCE -c dynprog.c
cc -Aa -D_POSIX_SOURCE -c dynlocad.c
cc -o dynprog dynprog.o dynload.o -Wl,-a,archive
cc -Aa -D_POSIX_SOURCE -c filel.c
cc -Aa -D_POSIX_SOURCE -c file2.c
as -o flush_cache flush_cache.s

Here are some things to note about the Makefile:

m The line CFLAGS = ... causes any C files to be compiled in ANSI mode (-Aa)
and causes the compiler to search for routines that are defined in the Posix
standard (-D_POSIX_SOURCE).

m Because Series 700/800 computers must link with a special assembly
language routine (flush_cache), the compile lines for Series 300/400 and
Series 700/800 systems are different. In Figure 5-4, the lines for the Series
300/400 compile line are commented out. If you were to run this on a Series
300/400 system, you would have to remove the comments and comment out
the lines for Series 700/800.

(For details on using make, refer to make(1) and Chapter 13.)

Source for dynprog

Figure 5-5 shows the C source for the dynprog program. Notice how C
preprocessor #ifdef directives are used to conditionally compile code for Series
300/400 or Series 700/800. In particular, symbol names on Series 300/400
begin with an underscore, but don’t on Series 700/800.

#include <stdio.h>
#include <nlist.h>

extern void * alloc_load_space(const char * base_prog,

const char * obj_files,
const char * dest_file);

5-42 Linking and Running Programs

extern void * dyn_load(const char *
unsigned int
const char *
const char *
const char *

const char * base_prog
const char * obj_files

"dynprog";
"filel.o file2.0"; /* name of .o files to combine

base_prog,
addr,

obj_files,
dest_file,
entry_pt);

/* name of this executable

const char * dest_file = "dynobj.o"; /% name of .o file to load

#ifdef __hp9000s800

const char * entry_pt = "foo';
#endif

#ifdef __hp9000s300

const char * entry_pt = "_foo";

#endif

void glorp (const char *);
void (* foo_ptr) ();

void (* bar_ptr) ();

int * counter_ptr;

main()
{
unsigned int addr;
struct nlist nl[3];
/*

/%
/*
/*
/%

/*
/*

/* next, define entry pt name
/* no _ prefix omn s700/800

/% $300/400 requires _ prefix

prototype for local function */
pointer to entry point foo */
pointer to function bar */
pointer to variable counter [file2.c]#*/

address at which to load dynobj.o */
nlist struct to retrieve addresses */

STEP 1: Allocate space for module:

*/

addr = (unsigned int) alloc_load_space(base_prog, obj_files, dest_file);

/*

STEP 2: Load the file at the address, and get address of entry point:

*/

foo_ptr = (void (*)()) dyn_load(base_prog, addr, obj_files,

dest_file, entry_pt);

Linking and Running Programs 5-43

*/
*/
*/
*/
*/

/%

STEP 3: Get the addresses of all desired routines using nlist(3C):

*/
#ifdef __hp9000s800
nl[0].n_name = "bar"; /* S700/800 does not require _ prefix
nl[1] .n_name = "counter";
#endif
#ifdef __hp9000s300
nl1[0] .n_name = "_bar"; /* S300/400 requires _ prefix
nl1[1] .n_name = "_counter";
#endif

nl[2] .n_name = NULL;

if (nlist(dest_file, nl)) {

fprintf(stderr, "error obtaining namelist for %s\n", dest_file);

exit(1);

}

/*

* Assign the addresses to meaningful variable names:

*/
bar_ptr = (void (*)()) nl[0].n_value;

counter_ptr = (int *) nl[1].n_value;

/*
* Now you can call the routines and modify the variables:
*/

glorp("main');

(*#foo_ptr) ();

(¥bar_ptr) ();

(*counter_ptr) ++;

printf("counter = %d\n", *counter_ptr);

}
void glorp(const char * from)
{
printf(“"glorp called from %s\n", from);
T

Figure 5-5. dynprog.c—Example Dynamic Link and Load Program

5-44 Linking and Running Programs

*/

*/

file1.0 and file2.0

Figure 5-6 shows the source for filel.o and file2.o0. Notice that foo
and bar call glorp in dynprog.c. Also, both functions update the variable
counter in file2.o; however, foo updates counter through the pointer
(counter_ptr) defined in dynprog.c.

/***

* filel.c - Contains routines foo() and bar().
sk o s ok ok st sk e ke ok ok sk o o sk ok o s koo ok sk o s s ok sk sk s ke ke ok sk sk o o ok sk sk sk o o ko sk ok sk o sk sk ok ko sk ok sk ok sk sk sk ok sk sk ok ok /

extern int * counter_ptr; /* defined in dynprog.c */
extern int counter; /* defined in file2.c */
extern void glorp(const char * from); /* defined in dynprog.c */

void foo() 5
{

glorp("foo");

(*counter_ptr) ++; /* update counter indirectly through global pointer */

b

void bar()
{
glorp("bar");
counter ++; /* update counter directly */

}
/e ok stk sk sk ok sk o kst e sk ok ke sk s ks ke ok sk ke ke sk ok ks s ke ko ok ks sk ke o sk e sk sk o sk ks e ok sk sk s sk ek ok sk o o ko
* file2.c - Global counter variable referenced by dynprog.c and filei.c.

e sk 3k ok ok ok ok o ok ke ok ok ok ok e ok ke ok ke ok s ok ok ok ok ok sk ok e ok ok e sk ke ok e sk ok e ok ke ok e sk ok ok ok ok ok ok ok ok ok ok s sk ok ke ok sk ok ok sk sk ok 3 ok ok sk ok sk ok sk ok /

int counter = 0;

Figure 5-6. Source for file1.c and file2.c

Linking and Running Programs 5-45

Output of dynprog

Now that you see how the main program and the module it loads are
organized, here is the output produced when dynprog runs:

glorp called from main
glorp called from foo
glorp called from bar

counter = 3

dynload.c

The dynload.c file contains the definitions of the functions alloc_load_space
and dyn_load. Figure 5-7 shows the #include directives that must appear at
the start of this file. Notice that Series 300/400 and Series 700/800 systems
use different header file definitions (as described in Step 4 at the start of this

section).

#include <stdio.h>
#include <stdlib.h>
#include <nlist.h>
#ifdef __hp9000s800

include <filehdr.h>

include <aouthdr.h>

define PAGE_SIZE 4096
#endif

#ifdef __hp9000s300

include <a.out.h>

include <sys/cache.h>
#endif

/*
/*
/%

/*
/%

S700/800 uses different header file */

definitions than the S300/400 */
S700/800 memory page size */
S300/400 header definitions */
S300/400 needs this for cachectl(3C) */

Figure 5-7. Include Directives for dynload.c

5-46 Linking and Running Programs

The alloc_load_space Function

The alloc_load_space function returns a pointer to space (allocated by
malloc) into which dynprog will load the object module dynobj.o. It syntax
is:

void * alloc_load_space(const char * base_prog,
const char * obj_files,
const char * dest_file)

base_prog ~ The name of the program that is calling the routine. In other

words, the name of the program that will dynamically link and
load dest_file.

obj_files The name of the object file(s) that will be linked together to
create dest_file.

dest_file The name of the resulting object module that will by dynamically
linked and loaded by base_prog.

As described in Step 1 at the start of this section, you can either guess at
how much space will be required to load a module, or you can try to be more
accurate. The advantage of the former approach is that it is much easier and
probably adequate in most cases; the advantage of the latter is that it results
in less memory fragmentation and could be a better approach if you have
multiple modules to load throughout the course of program execution.

The alloc_load_space function allocates only the required amount of space.
To determine how much memory is required, alloc_load_space performs
these steps:

1. Pre-link the specified obj_files to create base_prog.

2. Get text, data, and bss segment location and size information to determine
how much space to allocate.

3. Return a pointer to the space. (On Series 700/800 systems, the address
of the space is adjusted to begin on a memory page boundary—that is, a
4096-byte boundary.)

Figure 5-8 shows the source for this function.

Linking and Running Programs 5-47

void * alloc_load_space(const char * base_prog,
const char * obj_files,
const char * dest_file)

{
char cmd_buf[256]; /* linker command line */
int ret_val; /% value returned by various lib calls */
size_t space; /* size of space to allocate for module */
size_t addr; /* address of allocated space */
size_t bss_size; /* size of bss (uninitialized data) */
FILE * destfp; /* file pointer for dest_file */

#ifdef __hp9000s800
struct som_exec_auxhdr file_hdr; /* file header for S700 */
unsigned int tdb_size; /* size of text, data, and bss combined */
#endif
#ifdef __hp9000s300

struct exec file_hdr; /* file header for S300 */
#endif
/¥ ———= - - - ——————————————
* STEP 1: Pre-link the destination module so we can get its size:
* (The -R option need not be specified at this time.)
*/

sprintf(cmd_buf, "/bin/ld -a archive -4 %s -N %s -o %s -1lc",
base_prog, obj_files, dest_file);
if (ret_val = system(cmd_buf)) {
fprintf(stderr, "link failed: %s\n'", cmd_buf);
exit(ret_val);
}

/* - ———————————————— - B e
* STEP 2: Get the size of the module’s text, data, and bss segments from
* the file header for dest_file; add them together to determine size:
*/

if ((destfp = fopen(dest_file, "r")) == NULL) {
fprintf(stderr, "error opening %s to get bss size\n", dest_file);
exit(1);

}

5-48 Linking and Running Programs

#ifdef __hp9000s800
/*
* On S700/800, must seek past after SOM "header'" to get to the
* desired "som_exec_auxhdr":
*/
if (fseek(destfp, sizeof(struct header), 0)) {
fprintf(stderr, "error seeking to header for %s\n'", dest_file);
exit(1);
}
#endif
if (fread(&file_hdr, sizeof(file_hdr), 1, destfp) <= 0) {
fprintf(stderr, "error reading header from %s\n", dest_file);
exit(1);
}
#ifdef __hp9000s800
space = file_hdr.exec_tsize + file_hdr.exec_dsize + file_hdr.exec_bsize
+ 2 * PAGE_SIZE; /* allow for page-alignment of data segment */
#endif
#ifdef __hp9000s300
space = file_hdr.a_text + file_hdr.a_data + file_hdr.a_bss;
#endif
fclose(destfp); /% done reading from module file */
J% ——————— -— - -— e
* STEP 3: Call malloc(3C) to allocate the required memory and get
* its address; then return a pointer to the space:
*/
addr = (size_t) malloc(space);
#ifdef __hp9000s800
/%
* Make sure allocated area is on page-aligned address on S700/800:
*/
if (addr % PAGE_SIZE != 0) addr += PAGE_SIZE - (addr % PAGE_SIZE);
#endif
return((void *) addr):

¥

Figure 5-8. C Source for alloc_load_space Function

Linking and Running Programs 5-49

The dyn_load Function

The dyn_load function dynamically links and loads an object module into the
space allocated by the alloc_load_space function. In addition, it returns the
address of the entry point in the loaded module. Its syntax is:

void * dyn_load(const char * base_prog,
unsigned int addr,
const char * obj_files,
const char * dest_file,
const char * eniry_pt)

The base_prog, obj_files, and dest_file parameters are the same parameters
supplied to alloc_load_space. The addr parameter is the address returned by
alloc_load_space, and the entry_pt parameter specifies a symbol name that
you want to act as the entry point in the module.

To dynamically link and load dest_file into base_prog, the dyn_load function
performs these steps:

1.

Dynamically link base_prog with obj_files, producing dest_file. The address
at which dest_file will be loaded into memory is specified with the -R

addr option. The name of the entry point for the file is specified with -e
entry_pt.

. Open dest_file and get its header information on the text, data, and bss

segments. On Series 700/800, read this information into a som_exec_auxhdr
structure, which starts immediately after a header structure. On Series
300/400, read this information into an exec structure, which begins at the
start of the file.

. Read the text and data segments into the area allocated by

alloc_load_space. On Series 700/800, read the text and data segments
separately. On Series 300/400, read them as one contiguous block.

Initialize (fill with zeros) the bss, which starts immediately after the data
segment.

. Flush text from the data cache before execution. On Series 700/800, use the

flush_cache routine (see “The flush_cache Function” later in this chapter).
On Series 300/400, use the cachectl(3C) routine.

. Return a pointer to the entry point, specified by the -e option in Step 1.

5-50 Linking and Running Programs

void * dyn_load(const char * base_prog,
unsigned int addr,
const char * obj_files,
const char * dest_file,
const char * entry_pt)

{
char cmd_buf[256]; /* buffer holding linker command */
int ret_val; /* holds return value of library calls */
FILE #* destfp; /* file pointer for destination file */
unsigned int bss_start; /* start address of bss in VM */
unsigned int bss_size; /* size of bss */
unsigned int entry_pt_addr; /* address of entry point */

#ifdef __hp9000s800

struct som_exec_auxhdr file_hdr; /* file header for S700 */
unsigned int tdb_size; /* size of text, data, and bss combined */
#endif
#ifdef __hp9000s300
struct exec file_hdr; /* file header for S300 */
#endif
/* ——— ————————
* STEP 1: Dynamically link the module to be loaded:
*/

sprintf(cmd_buf, "/bin/ld -a archive -4 %s ~R %x -N %s -o %s -lc -e %s"
base_prog, addr, obj_files, dest_file, entry_pt);
if (ret_val = system(cmd_buf)) {
fprintf(stderr, "link command failed: %s\n", cmd_buf);
exit(ret_val);

}

Linking and Running Programs 5-51

g — e
* STEP 2: Open dest_file and read its header for text, data, and bss info:
*/
if ((destfp = fopen(dest_file, "r")) == NULL) {
fprintf(stderr, "error opening %s for loading\n", dest_file);

exit(1);
}
#ifdef __hp9000s800
/%

* On S700/800, get header information from "som_exec_auxhdr" struct, which
* is after SOM header.
*/
#endif
if (fread(&file_hdr, sizeof(file_hdr), 1, destfp) <= 0) {
fprintf(stderr, "failed reading file header: %s\n", dest_file);
exit(1);
}
/% e
* STEP 3: Read the text and data segments into the buffer area:
*/
#ifdef __hp9000s800
/%
* On S700/800, read text and data separately. First load the text:
*/
if (fseek(destfp, file_hdr.exec_tfile, 0)) {
fprintf(stderr, "error seeking start of text in %s\n", dest_file);
exit(1);

}
if ((fread(file_hdr.exec_tmem, file_hdr.exec_tsize, 1, destfp)) <= 0) {
fprintf(stderr, "error reading text from %s\n", dest_file};
exit(1);
}
/%
* Now load the data:
*/
if (fseek(destfp, file_hdr.exec_dfile, 0)) {
fprintf(stderr, "error seeking start of data in %s\n", dest_file);
exit(1);
}

5-52 Linking and Running Programs

if ((fread(file_hdr.exec_dmem, file_hdr.exec_dsize, 1, destfp)) <= 0) {
fprintf(stderr, "error reading data from %s\n", dest_file);

exit(1);
}
#endif
#ifdef __hp9000s300
/*
* On S300/400, load text and data as one contiguous block:
*/

if (fseek(destfp, TEXT_OFFSET(file_hdr), 0)) {
fprintf(stderr, "error seeking start of text/data in %s\n", dest_file);
exit(1);

}

if (fread((void *)addr, file hdr.a_text + file_hdr.a_data, 1, destfp) <= 0) {
fprintf(stderr, "error loading %s\n", dest_file);

exit(1);
} 5
#endif
fclose(destfp}; /* done reading from module file */
2 —— — — e
* STEP 4: Zero out the bss (uninitialized data segment):
*/

#ifdef __hp9000s800
bss_start = file_hdr.exec_dmem + file_hdr.exec_dsize;
bss_size file_hdr.exec_bsize;

#endif

#ifdef __hp9000s300
bss_start = addr + file_hdr.a_text + file_hdr.a_data;
bss_size = file_hdr.a_bss;

#endif
memset(bss_start, 0, bss_size);

Linking and Running Programs 5-53

e - e

* STEP 5: Flush the text from the data cache before execution:
*/

#ifdef __hp9000s800
/*

The flush_cache routine on S700/800 must know the exact size of the
text, data, and bss, computed as follows:

Size = (Data Addr - Text Addr) + Data Size + BSS Size
where (Data Addr - Text Addr) = Text Size + alignment between

Text and Data.

* X ¥ ¥ ¥

*/
tdb_size = (file_hdr.exec_dmem — file_hdr.exec_tmem) +
file_hdr.exec_dsize + file_hdr.exec_bsize;
flush_cache(addr, tdb_size);
#endif
#ifdef __hp9000s300
/*
* On S300/400, call the system library routine cachectl(3C):
*/
cachectl(CC_FLUSH, 0, 0);
#endif
/* - - —— e

* STEP 6: Return a pointer to the entry point specified by -e:
*/
#ifdef __hp9000s800
entry_pt_addr = (unsigned int) file_hdr.exec_entry;

#endif
#ifdef __hp9000s300

entry_pt_addr = (unsigned int) file_hdr.a_entry;
#endif

return ((void *) entry_pt_addr);

3

Figure 5-9. C Source for dyn_load Function

5-54 Linking and Running Programs

The flush_cache Function
(Series 700/800 Only)

On Series 300/400 systems, the cachectl function (see cachectl(3C)) can be
used to flush text from the data cache before execution. Since there is no
similar routine on Series 700/800, you must create one. Figure 5-10 shows the
assembly language source for such a function.

; flush_cache.s

; Routine to flush and synchronize data and instruction caches
; for dynamic loading

; Copyright Hewlett-Packard Co. 1985,1991

; All HP VARs and HP customers have a non-exclusive royalty-free license 5
; to copy and use this flush_cashe() routine in source code and/or object
; code.

.code

; flush_cache(addr, len) - executes FDC and FIC instructions for every

; cache line in the text region given by starting addr and len. When done,
; 1t executes a SYNC instruction and then enough NOPs to assure the cache

; has been flushed.

; Assumption: Cache line size is at least 16 bytes. Seven NOPs is enough
; to assure cache has been flushed. This routine is called to flush the
; cache for just-loaded dynamically linked code which will be executed

; from SR5 (data) space.

; %hargO=GR26, %argl=GR25, %arg2=GR24, %arg3=GR23, %sr0=SRO.

; loopl flushes data cache. arg0 holds address. argl holds offset.
; SR=0 means that SID of data area is used for fdc.

; loop2 flushes inst cache. arg2 holds address. arg3 holds offset.
; SR=sr0 means that SID of data area is used for fic.

; fdc x(O,y) -> 0 means use SID of data area.

; fic x(%sr0,y) -> SRO means use SRO SID (which is set to data area).

.proc

Linking and Running Programs 5-55

.callinfo
.export flush_cache,entry

flush_cache

k]

3

Extract SID (SR5) from address
SID -> SRO

offset = length -1

Copy address from GR26 to GR24
Copy offset from GR25 to GR23

Flush data cache @SID.address+offset
Decrement offset by cache line size

; Flush data cache @SID.addresstoffset

; flush first word at addr, to handle arbitrary cache line boundary

.enter

ldsid (0,%arg0),%r1

ntsp %r1,%sr0

ldo -1(%arg1),%argl

copy %arg0, %arg?2

copy hargl,harg3

fde hargl(0,%arg0)
loopl addib,>,n -16,%argl,loopl ;

fdc harg1(0,%argo)

fdc 0(0,%arg0)

sync

fic harg3(%sr0,%arg2)

loop2 addib,>,n

fic

%arg3(%sr0,%arg2)

’

’

Flush inst cache @SID.address+toffset

-16,%arg3,loop2 ; Decrement offset by cache line size

Flush inst cache Q@SID.address+toffset

; flush first word at addr, to handle arbitrary cache line boundary

fic

sync
nop
nop
nop
nop
nop
nop
nop
.leave

0(%sr0,%arg2)

.procend

.end

Figure 5-10. Assembly Language Source for flush_cache Function

5-56 Linking and Running Programs

6

Profile-Based Optimization
and Data Access Optimization

This chapter describes two kinds of optimizations that are performed with the
linker:

m data-access optimizations

m profile-based optimization (PBO)

Note These optimizations are available only on Series 700/800
computers.

Profile-Based Optimization 6-1
and Data Access Optimization

Optimizing Access to Data
(Series 700/800 Only)

On Series 700/800, the linker supports the -0 option, which optimizes
references to data. (For readers familiar with Series 700/800 assembly code,
this optimization involves removing unnecessary ADDIL instructions from the
object code.) For example, the following 1d command results in a smaller,
faster executable:

$ 1d -0 -o prog /lib/crt0.o prog.o -lm -lc

Invoking -O from the Compile Line

The compilers automatically call the linker with the -0 option if compiler
optimization level 3 is selected. For example, the following cc command
invokes full compiler optimization as well as linker optimization:

$ cc -o prog +03 prog.c +03 invokes -0 for 1d

If invoked with +03, the compilers generate object code in such a way that
the linker can better optimize the code. Thus, the linker does a better job of
optimizing code that was compiled with +03.

Incompatibilities with other Options

The -0 option is incompatible with these linker options:

-b The -0 option has no effect on position-independent code, so -0 is not
useful when building shared libraries with 1d -b.

-4 Dynamic linking is incompatible with optimization.

-r Relocatable linking is incompatible with optimization.

-D Setting the offset of the data space is incompatible.

Also, -0 is incompatible with symbolic debugging (as are any other compiler
optimizations).

The linker issues a warning when such conflicts occur. If you require any of
these features, do not use the -0 option.

6-2 Profile-Based Optimization
and Data Access Optimization

Profile-Based Optimization
(Series 700/800 Only)

In profile-based optimization (PBO), the compiler and linker work together

to optimize an application based on profile data obtained from running the
application on a typical input data set. For instance, if certain procedures call
each other frequently, the linker can place them close together in the a.out
file, resulting in fewer instruction cache misses, TLB misses, and memory page
faults when the program runs. Similar optimizations can be done at the basie
block levels of a procedure. (A basic block is a contiguous section of assembly
code, produced by compilation, that has no branches in except at the top, and
no branches out except at the bottom.)

This functionality was first available in the 8.05 release of HP-UX on Series 700
computers. At that time, it was known as feedback-directed positioning, since
repositioning of procedures based on profile data was the only optimization
performed. More powerful optimization capabilities were added at the 9.0
release, as well as support on Series 800 computers.

This section describes

when to use PBO

how to use PBO

instrumenting the application

gathering profile data for the application
optimizing based on profile information
management of the profile database files
a simple example of using PBO
restrictions and limitations of PBO
compatibility with 8.05 PBO

Note The compiler interface to PBO is currently supported only on
C and FORTRAN compilers.

Profile-Based Optimization 6-3
and Data Access Optimization

When to Use PBO

PBO should be the last level of optimization you use when building an
application. As with other optimizations, it should be performed after an
application has been completely debugged.

Not all applications will benefit from PBO. Nevertheless, two types of
applications may benefit greatly from PBO:

m Applications that exhibit poor instruction memory locality. These are usually
large applications in which the most common paths of execution are spread
across multiple compilation units. The loops in these applications typically
contain large numbers of statements, procedure calls, or both.

m Applications that are branch-intensive. The operations performed in such
applications are highly dependent on the input data. Compilers, editors,
database managers, and user interface managers are examples of such
applications,

Of course, the best way to determine whether PBO will improve an
application’s performance is to try it.

How to Use PBO

Profile-based optimization involves these steps:

1. Instrument the application—prepare the application so that it will generate
profile data.

2. Profile the application—create profile data that can be used to optimize the
application.

3. Optimize the application—generate optimized code based on the profile
data.

Instrumenting (+1/-1)

Prior to the 9.0 release, instrumentation was performed solely by the linker.
As of the 9.0 release, the compiler and linker work together to instrument the
code. Although vou can still use just the linker to perform PBO, the best
optimizations result if you use the compiler as well; this section focuses on this
approach.

6-4 Profile-Based Optimization
and Data Access Optimization

To instrument an application (with C and FORTRAN), compile the source
with the +I command line option. This causes the compiler to generate

a .o file containing intermediate code, rather than the usual object code.
(Intermediate code is a representation of your code that is lower-level than
the source code, but higher level than the object code.) A file containing such
intermediate code is referred to as an I-SOM file. (I-SOM is an acronym for
“Intermediate code-System Object Module.”)

After creating an I-SOM file for each source file, the compiler invokes the linker
as follows:

1. Instead of using the startup file /1ib/crt0.o, the compiler specifies a
special startup file named /1ib/icrt0.o.

2. The compiler passes the -I option to the linker, causing it to place
instrumentation code in the resulting executable.

3. The compiler passes the -Fb option, which tells the linker which code
generator to use to compile the I-SOM files.

You can see how the compiler invokes the linker by specifying the -v option.
For example, to instrument the file sample.c, to name the executable
sample.inst, to perform default optimizations (-0), and to see verbose output
(-v):

$ cc -v -o sample.inst +I -0 sample.c

/1ib/cpp sample.c /tmp/ctm123

/lib/ccom /tmp/ctm123 sample.o -02 -I

/bin/1d /lib/icrtO.o -I -u main -o sample.inst sample.o -lc \

-Fb /usr/lib/uccom

Pay particular attention to the linker command line (/bin/1d ...). Notice
that the application is linked with /1ib/icrt0.o, the ~I option is given, and
the code generator /usr/lib/uccom is specified.

The Startup File icrt0.0

Prior to the 9.0 release, the icrt0.o startup file did not exist. Instead, you
linked your application with the file /1lib/measure.o, which redefined the
system exit function (see exit(2)) to write out profile data. A different
approach is used at the 9.0 release.

Profile-Based Optimization 6-5
and Data Access Optimization

At the 9.0 release, the icrt0.o startup file contains a function that writes out
profile data; /1ib/measure.o is no longer needed. The icrt0.o startup file
uses the atexit system call to register this function to be called when the
application exits.

Note atexit allows a fixed number of functions to be registered from
a user application; therefore, applications linked with -TI will
have one less atexit call available. For details on atexit, see
atezit(2).

The -I Linker Option

When invoked with the -I option, the linker instruments all the specified
object files. Note that the linker instruments regular object files as well

as I-SOM files; however, with regular object files, only procedure call
instrumentation is added. With I-SOM files, additional instrumentation is done
within procedures.

For instance, suppose you have a regular object file named foo.o created by
compiling without the +I option, and you compile a source file bar.c with the
+I option and specify foo.o on the compile line:

$ cc -c foo.c

$ cc -v -0 foobar -0 +I bar.c foo.o

/1lib/cpp bar.c /tmp/ctm456

/lib/ccom /tmp/ctm456 bar.o -02 -I

/bin/1ld /1ib/icrt0.o -I -u main -o foobar bar.o foo.o \
-Fb /usr/lib/uccom

In this case, the linker instruments both bar.o and foo.o. However, since
foo.o is not an I-SOM file, only its procedure calls are instrumented; basic
blocks within procedures are not instrumented. To instrument foo.c to the
same extent, you must compile it with the +I option—for example:

6-6 Profile-Based Optimization
and Data Access Optimization

$ cc -v -c +I -0 foo.c

/1lib/cpp reg.c /tmp/ctm432

/lib/ccom /tmp/ctmé432 reg.o -02 -I

$ cc -v -o foobar -0 +I bar.c foo.o

/1ib/cpp bar.c /tmp/ctm456

/1lib/ccom /tmp/ctm456 bar.o -02 -I

/bin/1d /lib/icrt0.o -I -u main -o foobar bar.o foo.o \
-Fb /usr/lib/uccom

A simpler approach would be to compile foo.c and bar.c with a single cc
command:

$ cc -v +I -0 -o foobar bar.c foo.c

/1ib/cpp bar.c /tmp/ctm352

/1lib/ccom /tmp/ctm352 bar.o -02 -I

/1lib/cpp foo.c /tmp/ctm456

/lib/ccom /tmp/ctm456 foo.o -02 -I

/bin/1d /1lib/icrt0.o -I -u main -o foobar bar.o foc.o \
-Fb /usr/lib/uccom

Specifying a Code Generator to the Linker (-Fb) 6

As discussed in “Looking “inside” a Compiler” in Chapter 2, a compiler driver
invokes several phases. On Series 700/800, the last phase before linking is code
generation. When using PBO, the compilation process stops at an intermediate
code level. The PA-RISC code generation and optimization phase is invoked

by the linker. The code generator for C is /usr/lib/uccom, while the code
generator for FORTRAN is /usr/lib/uf77passi. To see how -Fb is used,
refer to the previous examples.

Note Since the code generation phase is delayed until link time with
PBO, linking can take much longer than usual when using
PBO. And compile times are faster than usual, since code
generation is not performed.

Profile-Based Optimization 6-7
and Data Access Optimization

Profiling

After instrumenting a program, you can run it one or more times to generate
profile data, which is ultimately used to perform the optimizations in the final
step of PBO.

Choosing Input Data

For best results from PBO, use representative input data when running an
instrumented program. Input data that tests infrequent corner cases or error
conditions usually is not as good to use when profiling a program. In other
words, run the instrumented program with input data that closely resembles
the way the program is used in the user’s environment. This results in the
optimizer focusing its efforts in the parts of the program that are critical to
performance in the user’s environment.

You should not have to do a large number of profiling runs before the
optimization phase. Usually it is adequate to select a small number of
representative input data sets.

The flow.data File

When an instrumented program terminates with the ezit(2) system call, special
code in the icrt0.o startup file writes profile data to a file called flow.data in
the current working directory. This file contains binary data, which cannot be
viewed or updated with a text editor.

Note The flow.data file will not be updated if either of the
following occurs:

m The process does not terminate.
m The process terminates without a call to exzit(2).

There are many things that can cause a process to terminate
without calling exit. For instance, the process aborts due to
an unexpected signal, or the program calls exzec(2) to replace
itself with another program.

If flow.data does not exist, the program creates it; if flow.data exists, the
program updates the profile data. (To save the profile data to a file other than

6-8 Profile-Based Optimization
and Data Access Optimization

flow.data in the current working directory, use the FLOW_DATA environment
variable as described later in “Specifying a Different flow.data File with
FLOW“DATA”.)

As an example, suppose you have an instrumented program named prog.inst,
and two representative input files named inp1 and inp2. Then the following
lines would create a flow.data file:

$ prog.inst < inpl Redirect input from inpl.

$ 1s flow.data Was flow.data created?

flow.data Yes.

$ prog.inst < inp2 Now flow.data s updated to in-
clude profile data from the second
input set.

Storing Profile Information for Muiltiple Programs

A single flow.data file can store information for multiple programs. This
allows an instrumented program to spawn other instrumented programs, all of
which share the same flow.data file.

To allow multiple programs to save their data in the same flow.data file, a
program’s profile data is uniquely identified by the executable’s basename (see
basename(1)), the executable’s file size, and the time the executable was last
modified.

When an instrumented program begins execution, it checks whether the
basename, size, and time-stamp match those in the existing flow.data file.

If the basename matches but the size or time-stamp does not match, that
probably means that the program has been re-linked since it last created profile
data. In this case, the following error message will be issued:

program: Cannot update counters. Program data exists
but does not correspond to this executable. Exit.

Profile-Based Optimization 6-9
and Data Access Optimization

You can fix this problem any one of these ways:
m Remove or rename the existing flow.data file.
m Run the instrumented program in a different working directory.

m Set the FLOW_DATA environment variable so that profile data is written to a
file other than flow.data.

m Rename the instrumented program.

Sharing the flow.data File Among Multiple Processes

A flow.data file can potentially be accessed by several processes at the
same time. For example, this could happen when you run more than one
instrumented program at the same time in the same directory, or when
profiling one program while linking another with -P.

Such asynchronous access to the file could potentially corrupt the data. To
prevent simultaneous access to the flow.data file in a particular directory, a
lock file called flow.lock is used. Instrumented programs that need to update
the flow.data file and linker processes that need to read it must first obtain
access to the lock file. Only one process can hold the lock at any time. As long
as the flow.data file is being actively read and written, a process will wait for
the lock to become available.

If there does not appear to be any activity in the flow.data file, the process
attempting to obtain the lock gives up after a short period of time. This may
happen when a program that holds the lock terminates abnormally. In such
cases, you may need to remove the flow.lock file.

If an instrumented program fails to obtain the database lock, it writes the
profile data to a temporary file and displays a warning message containing the
name of the file. You could then use the +df option to specify the name of the
temporary file instead of the flow.data file.

If the linker fails to obtain the lock, it displays an error message and
terminates. In such cases, wait until all active processes that are reading or
writing a profile database file in that directory have completed. If no such
processes exist, remove the flow.lock file.

6-10 Profile-Based Optimization
and Data Access Optimization

Forking an Instrumented Application

When instrumenting an application that creates a copy of itself via the fork
system call, you must ensure that the child process calls a special function
named _clear_counters(), which clears all internal profile data. If you
don’t do this, the child process inherits the parent’s profile data, updating the
data as it executes, resulting in inaccurate (exaggerated) profile data when
the child terminates. The following code segment shows a valid way to call
_clear_counters:

if ((pid = fork()) == 0) /* this is the child process */
{

_clear_counters(); /* reset profile data for child */

/* other cocde for the child */
¥

The function _clear_counters is defined in icrt0.o. It is also defined as
a stub (an empty function that does nothing) in crt0.o. This allows you

to use the same source code without modification in the instrumented and
un-instrumented versions of the program.

Optimizing Based on Profile Data (+P/-P)

The final step in PBO is optimizing a program using profile data created in the
profiling phase. To do this, rebuild the program with the +P compiler option.
As with the +I option, +P option causes the compiler to generate an I-SOM .o
file, rather than the usual object code, for each source file.

Note that it is not really necessary to recompile the source files; you

could, instead, specify the I-SOM .o files that were created during the
instrumentation phase. For instance, suppose you have already created an
I-SOM file named foo.o from foo.c using the +I compiler option; then the
following commands are equivalent in effect:

cc +P foo.c
cc +P foo.o

Both commands invoke the linker, but the second command doesn’t compile
before invoking the linker.

Profile-Based Optimization 6-11
and Data Access Optimization

The -P Linker Option

After creating an I-SOM file for each source file, the compiler driver invokes the
linker with the -P option, causing the linker to optimize all the .o files. As
with the +I option, the driver uses the -Fb option to instruct the linker which
code generator to use to perform various optimizations.

To see how the compiler invokes the linker, specify the -v option when
compiling. For instance, suppose you have instrumented prog.c and gathered
profile data into flow.data. The following example shows how the compiler
driver invokes the linker when +P is specified:

$ cc -o prog -v +P prog.o
/bin/1ld /1ib/crtO.o -P -u main -o prog prog.o -lc \
-Fb /usr/lib/uccom

Notice how the program is now linked with /1ib/crt0.0 instead of
/1ib/icrt0.o since the profiling code is no longer needed.

Using The flow.data File

By default, the code generator and linker look for the flow.data file in the
current working directory. In other words, the flow.data file created during
the profiling phase should be located in the directory where you relink the
program.

Specifying a Different flow.data File with +df

What if you want to use a flow.data file from a different directory than
where you are linking? Or what if you have renamed the flow.data file—
for example, if you have multiple flow.data files created for different input
sets? The +df option allows you to override the default behavior of using
a flow.data file in the current directory. The compiler passes this option
directly to the linker.

For example, suppose after collecting profile data, you decide to rename
flow.data to prog.prf. You could then use the +df option as follows:

$ cc -v -o prog +P +df prog.prf prog.o

/vin/1d /1lib/crt0.0 -P +df prog.prf -o pro rog.o -lc \
prog.p prog prog
-Fb /usr/lib/uccom

6-12 Profile-Based Optimization
and Data Access Optimization

Note that the +df option overrides the effects of the FLOW_DATA environment
variable (see “Specifying a Different flow.data File with FLOW“ DATA”).

Specifying a Different flow.data File with FLOW_DATA

The FLOW_DATA environment variable provides another way to override

the default flow.data file name and location. If set, this variable defines

an alternate file name for the profile data file. For example, to use the file
/users/darraj/projectX/prog.data instead of flow.data, set FLOW_DATA:

$ FLOW_DATA=/users/darraj/projectX/prog.data Bourne and Korn shell
$ export FLOW_DATA

$ setenv FLOW_DATA /users/darraj/projectX/prog.data
C shell

Interaction between FLOW_DATA and +df

If an application is linked with +df and -P, the FLOW_DATA environment
variable is ignored. In other words, +df overrides the effects of FLOW_DATA.

Specifying a Different Program Name (+pgm)

When retrieving a program’s profile data from the flow.data file, the linker
uses the program’s basename as a lookup key. For instance, if a program were
compiled as follows, the linker would look for the profile data under the name
foobar:

$ cc -v -o foobar +P foo.o bar.o
/bin/1d /1lib/crt0.o -P -u main -o foobar foo.o bar.o -lc \
-Fb /usr/lib/uccom

This works fine as long as the name of the program is the same during the
instrumentation and optimization phases. But what if the name of the
instrumented program is not the same as name of the final optimized program?
For example, what if you want the name of the instrumented application to

be different from the optimized application, so you use the following compiler
commands?

Profile-Based Optimization 6-13
and Data Access Optimization

$ cc -0 +I -o prog.inst prog.c Instrument prog.inst.

$ prog.inst < inpi Profile it, storing the data under the
$ prog.inst < inp2 name prog.inst.
$ cc +P -o prog.opt prog.o Optimize it, but name it prog.opt.

The linker would be unable to find the program name prog.opt in the
flow.data file and would issue the error message:

No profile data found for the program prog.opt
in the database file flow.data

To get around this problem, the compilers and linker provide the +pgm
name option, which allows you to specify a program name to look for in the
flow.data file. For instance, to make the above example work properly, you
would include +pgm prog.inst on the final compile line:

$ cc +P -o prog.opt +pgm prog.inst prog.o

Like the +df option, the +pgm option is passed directly to the linker.

Selecting an Optimization Level with PBO

When -P is specified, the code generator and linker perform profile-based
optimizations on any I-SOM or regular object files found on the linker
command line. In addition, optimizations will be performed according to the
optimization level you specified when you instrumented the application.

PBO has the greatest impact when it is combined with level 2 or greater
optimizations (-0/+02 or +03). For instance, this compile command combines
level 2 optimization with PBO:

$ cc -v -0 +I -o prog prog.c

/1ib/cpp prog.c /tmp/ctmi23

/1lib/ccom /tmp/ctmi23 prog.o -02 -I

/bin/1ld /lib/icrt0.o -I -u main -o prog prog.o -lc \
~Fb /usr/lib/uccom

6-14 Profile-Based Optimization
and Data Access Optimization

The optimizations are performed along with instrumentation. However,
profile-based optimizations are not performed until you compile later with +P:

$§ cc -v +P -o prog prog.o

/bin/1ld /1lib/crt0.o -P -u main -o prog prog.o -lc \
-Fb /usr/lib/uccom

A Simple Example

Suppose a user wants to apply PBO to an application called sample. The
application is built from a C source file sample.c. Discussed below are the
steps involved in optimizing the application.

First, the user compiles the application for instrumentation and level 2
optimization:

$ cc -v -o sample.inst +I -0 sample.c

/1ib/cpp sample.c /tmp/ctm123

/1ib/ccom /tmp/ctm123 sample.o -02 -I

/bin/1ld /lib/icrtO0.o -I -u main -o sample.inst sample.o -lc \
-Fb /usr/lib/uccom

At this point, the user has an instrumented program called sample.inst.
The user has two representative input files to use for profiling, input.filel
and input.file2. Suppose that the user now executes the following three
commands:

$ sample.inst < input.filel
$ sample.inst < input.file2
$ mv flow.data sample.data

The first invocation of sample.inst creates the flow.data file and places

an entry for that executable file in the database. The second invocation
increments the counters for sample.inst in the flow.data file. Then, the user
moves the flow.data file to a file named sample.data.

To perform profile based optimizations on this application, the user needs to
re-link the program as follows:

Profile-Based Optimization 6-15
and Data Access Optimization

$ cc -v -o sample.opt +P +pgm sample.inst +df sample.data sample.o
/bin/1d /1lib/crt0.o -P +pgm sample.inst +df sample.data -u main \
-o sample.opt sample.o -lc -Fb /usr/lib/uccom

Note that it was not necessary to recompile the source file. The +pgm

option was used because the executable name used during instrumentation,
sample.inst, does not match the current output file name, sample.opt. The
+df option is necessary because the profile database file for the program has
been moved from flow.data to sample.data.

Restrictions and Limitations of PBO

This section describes restrictions and limitations you should be aware of when
using PBO.

Temporary Files

The linker does not modify I-SOM files. Rather, it compiles, instruments, and
optimizes the code, placing the resulting temporary object file in a directory
specified by the TMPDIR environment variable. If PBO fails due to inadequate
disk space, try freeing up space on the disk that contains the $TMPDIR
directory.

Source Code Changes and PBO

To avoid the potential problems described below, PBO should only be used
during the final stages of application development and performance tuning,
when source code changes are the least likely to be made. Whenever possible,
an application should be re-profiled after source code changes have been made.

What happens if you attempt to optimize a program using profile data that is
older than the instrumented I-SOM files? For example, this could occur if you
change source code, re-instrument the code, but don’t gather new profile data
for the re-instrumented code.

In such a sequence of events, optimizations will still be performed. However,
full profile-based optimizations will be performed only on those procedures
whose internal structure has not changed since the profile data was gathered.
For procedures whose structure has changed, the following warning message is
generated:

6-16 Profile-Based Optimization
and Data Access Optimization

profile-based optimization: control flow structure for procedure
name changed

Note that it is possible to make a source code change that does not affect the
control flow structure of a procedure, but which does significantly affect the
profiling data generated for the program. In other words, a very small source
code change can dramatically affect the paths through the program that are
most likely to be taken. For example, changing the value of a program constant
that is used as a parameter or loop limit value might have this effect. If the
user does not re-profile the application after making source code changes,

the profile data in the database will not reflect the effects of those changes.
Consequently, the transformations made by the optimizer could degrade the
performance of the application.

I-SOM File Restrictions

For the most part, there are not many noticeable differences between I-SOM
files and ordinary object files. Exceptions are noted below.

ld. Linking object files compiled with the +I or +P option takes much longer

than linking ordinary object files. This is because in addition to the work that

the linker already does, the code generator must be run on the intermediate 6
code in the I-SOM files. On the other hand, the time to compile a file with +I

or +P is relatively fast since code generation is delayed until link time.

All options to 1d should work normally with I-SOM files with the following
exceptions:

-b When used with the -P option, the -b option builds an optimized
shared library from I-SOM files that were compiled with the +z or +Z
option. However, the resulting shared library will contain only object
code, not I-SOM code. If specified with the -I option, the -b option is
ignored and the linker generates a warning message.

-r The -r option works with both -I and -P. However, it produces an
object file, not an I-SOM file.

-s Do not use this option with -I. However, there is no problem using this
option with -P.

-G Do not use this option with -I. There is no problem using this option
with -P.

Profile-Based Optimization 6-17
and Data Access Optimization

-A Do not use this option with -I or -P.
-N Do not use this option with -I or -P.

nm. The nm command works on I-SOM files. However, since code generation
has not yet been performed, some of the imported symbols that might appear
in an ordinary relocatable object file will not appear in an I-SOM file.

ar. [-SOM files can be manipulated with ar in exactly the same way that
ordinary relocatable files can be.

strip. Do not run strip on files compiled with +I or +P. Doing so results in an
object file that is essentially empty.

Compiler Options. Except as noted below, all cc, CC, and £77 compiler options
work as expected when specified with +I or +P:

-g This option is incompatible with +I and +P.

-G This option is incompatible with +I, but compatible with +P (as long as
the insertion of the gprof library calls does not affect the control flow
graph structure of the procedures.)

-p This option is incompatible with +I option, but is compatible with +P
(as long as the insertion of the prof code does not affect the control
flow graph structure of the procedures.)

-s You should not use this option together with +I. Doing so will result in
an object file that is essentially empty.

-S This option is incompatible with +I and +P options because assembly
code is not generated from the compiler in these situations. Currently, it
is not possible to get assembly code listings of code generated by +I and

+P.

-y/+y The same restrictions apply to these options that were mentioned for -g
above.

+0 This option is incompatible with +I and +P. Currently, you cannot get

code offset listings for code generated by +I and +P.

6-18 Profile-Based Optimization
and Data Access Optimization

Compatibility with 8.05 PBO

Procedure-level repositioning using the linker option -I and -P was introduced
in the Series 700 8.05 release. The 9.0 release has introduced features that are
incompatible with the 8.05 release:

m The FLOW_DATA_DIR environment variable, which specified an alternate
directory for reading and writing the flow.data file, has been replaced by
the FLOW_DATA environment variable, which specifies an alternate file name
for the profile data file.

m There are differences in the flow.data file’s internal format:

o New instrumented applications cannot update flow.data files that were
built with the old format.

o Similarly, old applications cannot modify profile database files created in
the new format.

The application will exit and an error message will be issued if either of the
above is attempted.

m The linker will accept old flow.data files with the -P option. However, only
procedure-level repositioning will be performed using this data; additional
optimizations available from the new format will not be possible.

m At the 8.05 release, a program stored its profile data using the name it had
when it was created by the linker. Even if you renamed the application, it
would still store its data under the name it was given at link time. Now the
program stores its data under its the basename specified at run time; the link
name is no longer used.

Profile-Based Optimization 6-19
and Data Access Optimization

Position-Independent Code

This chapter discusses

m relocatable object code

m position-independent code (PIC)

m PIC generated by compilers for Series 700/800 computers
m PIC generated by compilers for Series 300/400 computers

Throughout this chapter, examples of PIC are shown in assembly

code. This chapter is useful mainly to programmers who want to write
position-independent assembly language code, or who want to convert existing
assembly language programs to be position-independent. It is also of interest to
compiler developers.

Note Before reading this chapter, you should have a good
understanding of virtual memory concepts and memory
management on HP-UX. These topics are covered in detail
in the book How HP-UX Works: Concepts for the System
Administrator.

Position-Independent Code 7-1

What Is Relocatable Object Code?

Relocatable object code is machine code that is generated by compilers and
assemblers. It is relocatable in the sense that it does not contain actual
addresses; instead, it contains symbols corresponding to actual addresses. The
linker decides where to place these symbols in virtual memory, and changes the
symbols to absolute virtual addresses.

For example, if you write a program that references the external variable
errno, the object code created by the compiler contains only a reference to the
symbol errno. Only when this object code is run through the linker does the
reference to errno change (relocate) to an absolute address in virtual memory,
say 0x40009000. Similarly, for a call to a function, say sum_n, the relocatable
object references the symbol corresponding to the start of the sum_n function;
the linker assigns the absolute virtual address for this symbol at link time
(relocation).

Therefore, all function and variable references in an a.out file must reside at
a specific position within the process’s address space at run time. That is, a

process depends on all data and routines residing at a specific position at run
time.

Note that relocatable object code does not contain physical addresses. Physical
addresses refer to exact locations in physical memory. Relocatable object code
contains virtual addresses within a process’s address space. These virtual
addresses are mapped to physical addresses by the HP-UX virtual memory
management system. (Virtual memory management on HP-UX is described in
detail in HP-UX System Administrator Concepts.)

Because relocatable object code may contain virtual addresses, the HP-UX
program loader, exec, must always load the code into the same location
within a process’s address space. Because this code always resides at the same
location within the address space, and because it contains virtual addresses,

it is not suitable for shared libraries, although it can be shared by several
processes running the same program.

7-2 Position-Independent Code

What Is Position-Independent Code?

Position-independent code (PIC) is relocatable object code that does not
contain absolute virtual addresses. This is crucial to being usable in a shared
library.

In order for the relocatable object code in a shared library to be fully sharable,
it must not depend on its position in the virtual address space of any particular
process. The relocatable object code for a shared library may be attached at
different points in different processes, so it must work independent of being
located at any particular position in a process’s virtual address space. (Thus
the term position-independent code.)

Position independence is achieved by two mechanisms: First, PC-relative
addressing is used wherever possible for branches within modules. Second,
indirect addressing through a per-process linkage table is used for all accesses
to global variables, or for inter-module procedure calls and other branches and
literal accesses where PC-relative addressing cannot be used. Global variables
must be accessed indirectly since they may be allocated in the main program’s
address space, and even the relative position of the global variables may vary
from one process to another.

The HP-UX dynamic loader (see did.sl(5)) and the virtual memory
management system work together to find free space at which to attach
position-independent code within a process’s address space. The dynamic
loader also resolves any virtual addresses that might exist in the library.

Calls to PIC routines are accomplished through a procedure linkage

table (PLT), which is built by the linker. Similarly, references to data are
accomplished through a data linkage table (DLT). Both tables reside in a
process’s data segment. The dynamic loader fills in these tables with the
absolute virtual addresses of the routines and data in a shared library at run
time (known as binding). Because of this, PIC can be loaded and executed
anywhere that a process has free space.

On compilers that support PIC generation, the +z and +Z options cause the
compiler to create PIC relocatable object code. PIC is different on Series
300/400 and Series 700/800 architectures, as explained in the following
sections.

Position-Independent Code 7-3

Series 700/800 Position-Independent Code

To be position-independent on Series 700/800 computers, object code must
restrict all references to code and data to either PC-relative or indirect
references, where all indirect references are collected in a single linkage table
that can be initialized on a per-process basis by d1d.sl.

Register 19 (%r19) is the designated pointer to the linkage table. The linker
generates stubs that ensure %r19 always points to the correct value for the
target routine and that handle the inter-space calls needed to branch between
shared libraries.

The linker generates an import stub for each external reference to a routine.
The call to the routine is redirected to branch to the import stub, which
obtains the target routine address and the new linkage table pointer value
from the current linkage table; it then branches to an export stub for the
target routine. The linker generates an export stub for each externally visible
routine in a shared library or program file. The export stub is responsible for
trapping the return from the target routine in order to handle the inter-space
call required between shared libraries and program files.

Shown below is the PIC code generated for import and export stubs. Note that
this code is generated automatically by the linker; you don’t have to generate
the stubs yourself.

; Import Stub (Incomplete Executable)

X’: ADDIL L’lt_ptr+ltoff,idp ; get procedure entry peoint
LDW R’1t_ptr+ltoff(Yri),%r21
LDW R’1t_ptr+ltoff+4(Jrl) ,%rl9 ; get new ril9 value.
LDSID (%4r21),%r1
MTSP %ri,%sr0
BE 0(%sr0,%r21) ; branch to target
STW %hrp,-24(hsp) ; save rp

; Import Stub (Shared Library)

X’: ADDIL L’ltoff,%ri1d ; get procedure entry point
LDW R’1toff (%rl),%r21
LDW R’1toff+4(%ri1),%rid® ; get new ril9 value
LDSID (%r21),ir1
MISP Jrl,%sr0

7-4 Position-Independent Code

BE 0(%sr0,%r21) ; branch to target
STW hrp,-24(}sp) ; save rp

;Export Stub (Shared libs and Incomplete Executables)
X’: BL,N X,lrp ; trap the return
NOP
LDW -24(sp) , hrp ; restore the original rp
LDSID (Yrp),hrt
MTSP %ri,%srO
BE,N 0(%sr0,%rp) ; inter-space return

The remainder of this section describes how the Series 700/800 compilers
generate PIC for the following addressing situations:

a PIC requirements for compilers and assembly code
m long calls

m long branches and switch tables

m assigned GOTO statements

m literal references

m global and static variable references

m procedure labels

You can use these guidelines to write assembly language programs that
generate PIC object code. For details on Series 700/800 assembly language, 7
refer to the Assembly Language Reference Manual.

PIC Requirements for Compilers and Assembly Code

The linkage table pointer register, %ri19, must be stored at %sp — 32 by all PIC
routines. This can be done once on procedure entry. %19 must also be restored
on return from a procedure call. The value should have been stored in %sp—32
(and possibly in a callee-saves register). If the PIC routine makes several
procedure calls, the routine should copy %r19 into a callee-saves register as
well, to avoid a memory reference when restoring %r19 upon return from each
procedure call. Just like %r27 (%dp), the compilers treat 4r19 as a reserved
register whenever PIC mode is in effect.

Position-Independent Code 7-5

In general, references to code are handied by the linker, and the compilers act
differently only in the few cases where they would have generated long calls
or long branches. References to data, however, need a new fixup request to
identify indirect references through the linkage table, and the code generated
will change slightly.

Note Any code which is PIC or which makes calls to PIC must follow
the standard procedure call mechanism.

When linking files produced by the assembler, the linker exports only those
assembly language routines that have been explicitly exported as entry (that
is, symbols of type ST_ENTRY). Compiler generated assembly code does not
explicitly export routines with the entry type specified, so the assembly
language programmer must ensure that this is done with the .EXPORT
pseudo-op.

For example: In assembly language, a symbol is exported using

.EXPORT foo, fype

where type can be code, data, entry, and others. To ensure that foo is
exported from a shared library, the assembly statement must be:

.EXPORT foo,entry

Long Calls

Normally, the compilers generate a single-instruction call sequence using the BL
instruction. The compilers can be forced to generate a long call sequence when
the module is so large that the BL is not guaranteed to reach the beginning of
the subspace. In the latter case, the linker can insert a stub. The existing long
call sequence is three instructions, using an absolute target address:

LDIL L’target,rl
BLE R’target(/sr4,rl)
COPY wri,frp

7-6 Position-Independent Code

When the PIC option is in effect, the compilers must generate the following
instruction sequence, which is PC-relative:

BL .+8,%rp ; get pc into rp
ADDIL L’target - $LO + 4, Yrp ; add pc-rel offset to rp
LDO R’target - $L1 + 8(Yr1l), ¥ri1

$L.0: LDSID (%r1), %r31

$L1: MTSP %r31, %sro0
BLE 0(%sr0,%r1)
COPY hr3i,hrp

Long Branches and Switch Tables

Long branches are similar to long calls, but are only two instructions because
the return pointer is not needed:

LDIL L’target,’rl
BE R’target(¥sr4,%r1)

For PIC, these two instructions must be transformed into four instructions,
similar to the long call sequence:

BL .+8,%r1 ; get pc into ri

ADDIL L’target-L,jrl ; add pc-relative offset
L: LDO R’target-L,%rl ; add pc-relative offset

BV,N o(hr1) ; and branch

The only problem with this sequence occurs when the long branch is in a
switch table, where each switch table entry is restricted to two words. A long
branch within a switch table must allocate a linkage table entry and make an
indirect branch:

LDW T’target()ri19),%rl ; load LT entry
BV,N o(%ri) ; branch indirect

Here, the T’ operator indicates a new fixup request supported by the linker for
linkage table entries.

Position-Independent Code 7-7

Assigned GOTO Statements

ASSIGN statements in FORTRAN must be converted to a pc-relative form. The
existing sequence forms the absolute address in a register before storing it in
the variable:

LDIL L’target,tmp
LDO R’target (tmp) ,tmp

This must be transformed into the following four-instruction sequence:

BL .+8,tmp ; get rp into tmp

DEPI 0,31,2,tmp ; zero out low-order 2 bits
L: ADDIL L’target-L,tmp ; get pc-rel offset

LDO R’target-L(Jr1) ,tmp

Literal References

References to literals in the text space are handled exactly like ASSIGN
statements (shown above). The LDO instruction can be replaced with LDW as
appropriate.

An opportunity for optimization in both cases is to share a single label
(L) throughout a procedure, and let the result of BL become a common
sub-expression. Thus only the first literal reference within a procedure is
expanded to three instructions; the rest remain two instructions.

Global and Static Variable References

References to global or static variables currently require two instructions
either to form the address of a variable, or to load or store the contents of the
variable:

; to form the address of a variable
ADDIL L’var-$global$+x,%dp

LDO R’var-$global$+x(¥%ri) ,tmp

; to load the contents of a variable
ADDIL L’var-$global$+x,’dp

T ™7

LDW R’var-$global$+x(%ri) ,tmp

7-8 Position-Independent Code

These sequences must be converted to equivalent sequences using the linkage
table pointer in %r19:

; to form the address of a variable

LDW T’var(%ri9),tmpl

LDO x(tmpl),tmp2 ; omit if x == 0
; to load the contents of a variable
LDW T’var (}r19),tmpl

LDW x(tmpl) ,tmp2

Note that the T’ fixup on the LDW instruction allows for a 14-bit signed offset,
which restricts the DLT to be 16Kb. Because %r19 points to the middle of the
DLT, we can take advantage of both positive and negative offsets. The T’
fixup specifier should generate a DLT_REL fixup proceeded by an FSEL override
fixup. If the FSEL override fixup is not generated, the linker assumes that the
fixup mode is LD/RD for DLT_REL fixups. In order to support larger DLT table
sizes, the following long form of the above data reference must be generated to
reference tables that are larger. If the DLT table grows beyond the 16Kb limit,
the linker emits an error indicating that the user must recompile using the +Z
option which produces the following long-load sequences for data reference:

; form the address of a variable
ADDIL LT’var,%ri9

LDW RT’var(jr1) ,tmpi

LDO x(tmpl) ,tmp2 ; omit if x ==

; load the contents of a variable

ADDIL LT’var,%ri9 7
LDW RT’var(ril),tmpl

LDW x(tmp1l) ,tmp2

Procedure Labels

The compilers already mark procedure label constructs so that the linker can
process them properly. No changes are needed to the compilers.

When building shared libraries and incomplete executables, the linker modifies
the plabel calculation (produced by the compilers in both shared libraries and
incomplete executables) to load the contents of a DLT entry, which is built for
each symbol associated with a CODE_PLABEL fixup.

Position-Independent Code 7-9

In shared libraries and incomplete executables, a plabel value is the address of
a PLT entry for the target routine, rather than a procedure address; therefore
$$dyncall must be used when calling a routine via a procedure label. The
linker sets the second-to-last bit in the procedure label to flag this as a special
PLT procedure label. The $$dyncall routine checks this bit to determine
which type of procedure label has been passed, and calls the target procedure
accordingly.

In order to generate a procedure label that can be used for shared libraries and
incomplete executables, assembly code must specify that a procedure address
is being taken (and that a plabel is wanted) by using the P’ assembler fixup
mode. For example, to generate an assembly plabel, the following sequence
must be used:

LDIL LP’function,jrl

LDO RP’function(%ri), %r22

; Now to call the routine

BL $$dyncall, %r31 ; r22 is the input register for $$dyncall
COPY ¥%r31, %r2

This code sequence generates the necessary PLABEL fixups that the linker needs
in order to generate the proper procedure label. The $$dyncall millicode
routine in /1ib/milli.a must be used to call a procedure using this type of
procedure label; that is, a BL or BV will not work).

7-10 Position-Independent Code

Series 300/400 Position-Independent Code

A shared library comprises several PIC object modules combined by the
linker, 1d. Object modules may contain unresolved references and require
relocation, but relocation of text (code) is done when the object modules are
combined with 1d. The text of a shared library should contain no absolute
virtual addresses requiring further relocation. To ensure that no absolute
virtual addresses remain within the text segment, all subroutine calls and data
references use indirect or PC-relative addressing modes.

When invoked with +z or +Z, the C and FORTRAN compilers generate such
code. The remainder of this section describes how the compilers generate PIC
for the following addressing situations:

m branches
m subroutine calls
m data references

You can use these guidelines to write assembly language programs that
generate PIC object code. For details on Series 300/400 assembly language,
refer to the book HP-UX Assembler and Tools.

Branches

Branches (both conditional and unconditional) generated by Series 300/400

compilers always transfer to a target within the same function as the 7
instruction itself. For direct branches to a label, the bra instruction (or a

conditional equivalent), which takes a displacement rather than an absolute

address, is generated:

PIC direct branch
bra.l L1

Position-Independent Code 7-11

For switch statements in C and computed GOTOs and multiple returns in
FORTRAN, an index register is loaded with a displacement from a switch table
based on the controlling expression. A PC-relative code sequence accesses the
switch table, which resides in the text segment. A PC-relative jmp is then
issued using the index register:

PIC switch statement:
mov.l switch_expression, fd0
lea.l (L1,%pc,%za0) ,%a0
mov.1l (0,%a0,%d0.1%4) ,%do0
jmp L2(%pc,%d0.1)

L2:
lalign 4
L1:
long L3-L2
long L4-L2
L3:
code for first case
L4:

code for second case

For FORTRAN assigned GOTO statements, PIC requires a PC-relative load of
the label address.

PIC assigned goto
lea.l (L1,%pc,%za0),%a0
jmp (%a0)

Subroutine Calls

If the caller and subroutine are in the same module, then a bsr instruction,
which takes a displacement rather than an absolute address, transfers control
directly between the two. If the subroutine is not in the same file as the caller,
the call must be resolved indirectly through a vector which can be referenced
directly by the shared library text and can be initialized at run time by

the dynamic loader. This vector, called the procedure linkage table (PLT),
contains absolute addresses and is not sharable. It is inserted into the data
segment of a shared library by the linker.

7-12 Position-Independent Code

Each PLT performs an absolute branch to its target. The subroutine call
code in the text performs a bsr to the appropriate PLT entry. The assembler
emits a special RPLT relocation which is resolved by the linker to give the
displacement from the point of call to the PLT entry for the symbol:

PIC intra module function call

bsr.1 _foo # PC relative displacement
PIC external function call
bsr.1l _foo # RPLT relocation

Data References

A data linkage table (DLT) resolves all data references. This table, like

the PLT, is constructed by the linker and placed in the shared library data
segment. Each entry contains the absolute address of a data item. The
prologue of each PIC function loads the absolute base address of the DLT using
a statically determined PC-relative displacement. Each data reference then
accesses the item indirectly through a table entry. The assembler emits a
special RDLT relocation record which is resolved by the linker to an offset from
the base of the table:

PIC prologue
Li:
mov.l &DLT,%a0l # PC relative relocation
lea.l Li(%pc,%a0.1),%a2
PIC data reference
mov.1l _foo(%a2),%a0 # RDLT relocation
mov.l (%a0),%do

Note that this offset is a 16-bit signed offset. If the linkage table is larger than
32K, then the more expensive

mov.l (_foo,%a2,%za0),%a0 # RDLT relocation (long)

must be generated. The +Z option produces code for the larger tables. The
linker emits a warning if you try to build a shared library that requires +Z but
the code was not compiled that way.

Position-Independent Code 7-13

The fpa_loc Symbol and PIC

The symbol fpa_loc, used when programming the 98248 floating point
accelerator in assembly language, is treated specially by the assembler. If
you use the 98248 FPA, the %a2 register should not be used as the DLT base
because the FPA uses it. And the instruction normally used to load fpa_loc
into %a2 should remain:

lea fpa_loc, %a2
Do not change it to the PIC-style reference:
mov.l fpa_loc(DLT _base), %a2

7-14 Pasition-Independent Code

8

Shared Library Management Routines

Normally, when creating an executable program, you specify on the command
line any libraries the program needs. Such libraries are loaded when the
program begins execution; this is known as implicit loading.

Occasionally it is not possible to know what libraries a program will need at
run time, so you cannot specify the libraries at link time. Instead, the program
must load the required libraries at run time.

For example, suppose you write a graphics program. The program must

work with any graphics device (display, plotter, printer) that it might run

on, including any device that might be supported in the future. One way

to ensure that the program works with any supported graphics device is to
create a shared library of routines for each graphics device. Then, at run time,
determine which device the program is running on, load the appropriate shared
library, and call routines from the library. Loading a library at run time is
known as explicit loading.

This chapter describes how to

m write and compile programs using shared library management routines

m explicitly load a shared library

m call routines and reference data of an explicitly loaded shared library

m get information on currently loaded shared libraries 8
m get descriptor information for a shared library

m define or redefine a shared library symbol

m unload a shared library

m initialize a shared library

Shared Library Management Routines 8-1

Linking with Shared Library Routines

The shared library management functions described in this chapter reside
in the library 1ibdld.sl. The shi_load(3X) page in the HP-UX Reference
describes them in detail.

Here are the shared library routines:

shl_load Explicitly loads a shared library.

shl_findsym Finds the address of a global symbol in a shared library.
shl_get Gets information about currently loaded libraries.
shl_gethandle Gets descriptor information about a loaded shared library.

shl_definesym (Series 700/800 only.) Adds a new symbol to the global
shared library symbol table.

shl_getsymbols (Series 700/800 only.) Returns a list of symbols in a shared
library.

shl_unload Unloads a shared library.

To use these functions, a program must be compiled or linked with the
command-line option -1d1d.

If a program uses explicitly loaded libraries that reference symbols defined in
the program, link the program with the -E option. The -E option ensures that
all global symbols needed by the library are exported from the program.

Since the compilers do not pass -E to the linker, you must use the -W1 option
to pass -E to the linker:

$ cc -Aa prog.c -Wl,-E -1d1d

8-2 Shared Library Management Routines

Shared Library Header File (dl.h)

The shared library management routines use some special data types
(structures) and constants defined in the C-language header file
/usr/include/dl.h. When using these functions from C programs, be sure to
include d1.h:

#include <dl.h>

If an error occurs when calling shared library management routines, the system
error variable errno is set to an appropriate error value. Constants are defined
for these error values in /usr/include/errno.h (see errno(2)). Thus, if a
program checks for these error values, it must include errno.h:

#include <errno.h>

Throughout this chapter, all examples are given in C. To learn how to call
these routines from FORTRAN or Pascal, refer to the inter-language calling
conventions described in the HP-UX Portability Guide.

Shared Library Management Routines 8-3

Explicitly Loading a Shared Library

A program needs to explicitly load a library only if the library was not linked
with the program. This typically occurs only when the library cannot be
known at link time—for example, when writing programs that must support
future graphics devices.

However, programs are not restricted to using shared libraries only in that
situation. For example, rather than linking with any required libraries, a
program could explicitly load libraries as they are needed. One possible reason
for doing this is to minimize virtual memory overhead: Each process that uses
a shared library gets a copy of the library’s data. To keep virtual memory
resource usage to a minimum, a program could load libraries with shl_load
and unload with shl_unload when the library is no longer needed. However, it
is normally not necessary to incur the programming overhead of loading and
unloading libraries yourself for the sole reason of managing system resources.

Note that if a shared library initializer has been declared for an explicitly
loaded library, it will be called after the library is loaded. For details, see
“Declaring an Initializer for a Shared Library” later in this chapter.

To explicitly load a shared library, use the shl_load routine.

shl_load Syntax

shl_t shl_load(const char * path,
int flags,
void * address)

path A null-terminated character string containing the path name of the
shared library to load.

flags Specifies when the symbols in the library should be bound to
addresses. It must be one of these values (defined in <d1.h>):

BIND_IMMEDIATE Bind the addresses of all symbols immediately upon
loading the library.

BIND_DEFERRED Bind the addresses when they are first referenced.

In addition to the above values, the flags parameter can be ORed with
the following values:

8-4 Shared Library Management Routines

BIND_NONFATAL
BIND_VERBOSE

BIND_FIRST

DYNAMIC_PATH

BIND_NOSTART

BIND_RESTRICTED

Allow binding of unresolved symbols.

Make dynamic loader display verbose messages
when binding symbols.

Insert the loaded library before all others in the
current link order.

Causes the dynamic loader to perform dynamic
library searching when loading the library.

Causes the dynamic loader to not call the initializer
(even if one is declared for the library). This will
also inhibit a call to the initializer when the library
is unloaded. See “Declaring an Initializer for a
Shared Library” later in this chapter.

(Series 700/800 Only) Causes the search for a
symbol definition to be restricted to those symbols
that were visible when the library was loaded.

address Specifies the virtual address at which to attach the library. Set this
parameter to O (zero) to tell the system to choose the best location.
On Series 700/800 computers, this argument is currently ignored;
mapping a library at a user-defined address is not currently supported.

BIND_NONFATAL Modifier

If you load a shared library with the BIND_IMMEDIATE flag and the library
contains unresolved symbols, the load fails and sets errno to ENOSYM. ORing
BIND_NONFATAL with BIND_IMMEDIATE causes shl_load to allow the binding
of unresolved symbols to be deferred if their later use can be detected—for

example:

shl_t 1ibH;

1ibH = shl_load("libxyz.s1l", BIND_IMMEDIATE | BIND_NONFATAL, 0);

Shared Library Management Routines 8-5

BIND_VERBOSE Modifier

If BIND_VERBOSE is ORed with the flags parameter, the dynamic loader
displays messages for all unresolved symbols. This option is useful to see
exactly which symbols cannot be bound. Typically, you would use this with
BIND_IMMEDIATE to debug unresolved symbols—for example:

shl_t 1ibH;

1ibH = shl_load("libxyz.sl", BIND_IMMEDIATE | BIND_VERBOSE, 0);

BIND_FIRST Modifier

If BIND_FIRST is ORed with the flags parameter, the loaded library is inserted
before all other loaded shared libraries in the symbol resolution search order.
This has the same effect as placing the library first in the link order—that is,
the library is searched before other libraries when resolving symbols. This is
used with either BIND_IMMEDIATE or BIND_DEFERRED—for example:

shl_t 1ibH;

1ibH = shl_load("libpdq.sl", BIND_DEFERRED | BIND_FIRST, 0);

BIND_FIRST is typically used when you want to make the symbols in a
particular library more visible than the symbols of the same name in other
libraries. Compare this with the default behavior, which is to append loaded
libraries to the link order.

DYNAMIC_PATH Modifier

The flag DYNAMIC_PATH can also be ORed with the flags parameter, causing

the dynamic loader to search for the library using a path list specified by the
+b option at link time or the SHLIB_PATH environment variable at run time.

For details on the use of +b and SHLIB_PATH, see “Library Location and the

Dynamic Loader (dld.sl)” in Chapter 5.

8-6 Shared Library Management Routines

BIND_RESTRICTED Modifier
(Series 700/800 Only)

This flag is most useful with the BIND_DEFERRED flag; it has no effect with
BIND_IMMEDIATE. It is also useful with the BIND_NONFATAL flag.

When used with only the BIND_DEFERRED flag, it has this behavior: When a
symbol is referenced and needs to be bound, this flag causes the search for the
symbol definition to be restricted to those symbols that were visible when

the library was loaded. If a symbol definition cannot be found within this
restricted set, it results in a run-time symbol-binding error.

When used with BIND_DEFERRED and the BIND_NONFATAL modifier, it has the
same behavior, except that when a symbol definition cannot be found, the
dynamic loader will then look in the global symbol set. If a definition still
cannot be found within the global set, a run-time symbol-binding error occurs.

shl_load Return Value

If successful, shl_load returns a shared library handle of type shl_t.
Otherwise, shl_load returns a shared library handle of NULL and sets errno to
one of these error codes (from <errno.h>):

ENOEXEC The specified path is not a shared library, or a format error was
detected in this or another library.

ENOSYM A symbol needed by this or another library could not be found. On
getting this return value, a program should terminate immediately,
as this indicates that the program’s symbol bindings are in an
inconsistent state.

ENOMEM There is insufficient room in the address space to load the shared
library.

EINVAL The requested shared library address was invalid.
ENOENT The specified path does not exist.
EACCESS Read or execute permission is denied for the specified path.

Shared Library Management Routines 8-7

shl_load Usage

Since the library was not specified at link time, the program must get the
library name at run time. Here are some practical ways to do this:

m Hard-code the library name into the program (the easiest method).

m Get the library name from an environment variable using the getenv library
routine (see getenv(3C)).

m Get the library path name from the command line through argv.
m Read the library name from a configuration file.
m Prompt for the library path name at run time.

If successful, shl_load returns a shared library handle (of type shl_t),
which uniquely identifies the library. This handle can then be passed to the
shl_findsym or shl_unload routine.

Once a library is explicitly loaded, use the shl_findsym routine to get pointers
to functions or data contained in the library; then call or reference them
through the pointers. This is described in detail in “Accessing Routines and
Data in Explicitly Loaded Libraries”.

shl_load Example

Figure 8-1 shows the source for a function named load_1ib that explicitly
loads a library specified by the user. The user can specify the library in the
environment variable SHLPATH or as the only argument on the command line. If
the user chooses neither of these methods, the function prompts for the library
path name.

The function then attempts to load the specified library. If successful, it
returns the shared library handle, of type shl_t. If an error occurs, it displays
an error message and exits. This function is used later in Figure 8-2.

8-8 Shared Library Management Routines

#include <stdio.h> /* contains standard I/0 defs */
#include <stdlib.h> /* contains getenv definition */
#include <dl.h> /* contains shared library type defs */

shl_t load_lib{int argc,

{

char * argv[]) /* pass argc and argv from main */

shl_t lib_handle; /* temporarily holds library handle */
char lib_path[MAXPATHLEN]; /# holds library path name */
char *env_ptr; /* points to SHLPATH variable value */
/*
* Get the shared library path name:
*/
if (argc > 1) /* library path given on command line */
strcpy(lib_path, argv[1l);
else /* get 1ib_path from SHLPATH variable */
{
env_ptr = getenv("SHLPATH");
if (env_ptr !'= NULL)
strepy(lib_path, env_ptr);
else /* prompt user for shared library path */
{
printf("Shared library to use >> ");
scanf("%s", lib_path);
}
}
/*

* Dynamically load the shared library using BIND_IMMEDIATE binding:
*/

lib_handle = shl_load{ lib_path, BIND_IMMEDIATE, 0);

if (lib_handle == NULL)
perror("shl_load: error loading library"), exit(1);

return lib_handle;

Figure 8-1. load_lib—Function to Load a Shared Library

Shared Library Management Routines 8-9

Accessing Routines and Data in Explicitly Loaded
Libraries

To call a routine or access data in an explicitly loaded library, first get the
address of the routine or data with shl_findsym.

shl_findsym Syntax

int shl_findsym(shl_t * handle,
const char * sym,
short (ype,

void * walue)

handle

sym

A pointer to a shared library handle of the library to search for
the symbol name sym. This handle could be obtained from the
shl_get routine (described later). handle can also point to:

NULL

PROG_HANDLE

If a pointer to NULL is specified, shl_findsym
searches all loaded libraries for sym. If sym is
found, shl_findsym sets handle to a pointer to the
handle of the shared library containing sym. This
is useful for determining which library a symbol
resides in. For example, the following code sets
handle to a pointer to the handle of the library
containing symbol _foo:

shl_t handle;
handle = NULL;
shl_findsym{(&handle," _foo",...);

This constant, defined in d1.h, tells shl_findsym
to search for the symbol in the program itself. This
way, any symbols exported from the program can
be accessed explicitly.

A null-terminated character string containing the name of the
symbol to search for.

8-10 Shared Library Management Routines

type

value

The type of symbol to look for. It must be one of these values
(defined in <d1.h>):

TYPE_PROCEDURE Look for a function or procedure.
TYPE_DATA Look for a symbol in the data segment
(e.g., variables).

TYPE_UNDEFINED Look for any symbol.

A pointer in which shl_findsym stores the address of sym, if
found.

shl_findsym Return Value

If successful, sh1_findsym returns an integer (int) value zero. If shl_findsym
cannot find sym, it returns —1 and sets errno to zero. If any other errors
occur, shl_findsym returns —1 and sets errno to one of these values (defined
in <errno.h>):

ENOEXEC
ENOSYM

EINVAL

A format error was detected in the specified library.

A symbol on which sym depends could not be found. On getting
this return value, a program should terminate immediately.

The specified handle is invalid.

Using shl_findsym to Call a Routine

To call a routine in an explicitly loaded library

1. declare a pointer to a function of the same type as the function in the
shared library

2. using shl_findsym with the {ype parameter set to TYPE_PROCEDURE, find the
symbol in the shared library and assign its address to the function pointer

declared in Step 1

3. call the pointer to the function obtained in Step 2, with the correct number
and type of arguments

Shared Library Management Routines 8-11

Using shl_findsym to Access Data
To access data in an explicitly loaded library

1. declare a pointer to a data structure of the same type as the data structure
to access in the library

2. using shl_findsym with the type parameter set to TYPE_DATA, find the
symbol in the shared library and assign its address to the pointer declared in
Step 1

3. access the data through the pointer obtained in Step 2

shi_findsym Example

Suppose you have a set of libraries that output to various graphics devices.
Each graphics device has its own library. Although the actual code in each
library varies, the routines in these shared libraries have the same name and
parameters, and the global data is the same. For instance, they all have these
routines and data:

gopen () opens the graphics device for output

gclose() closes the graphics device

move2d(z,y) moves to pixel location z,y

draw2d(z,y) draws to pixel location z,y from current z,y

maxX contains the maximum X pixel location on the output device
max¥ contains the maximum Y pixel location on the output device

8-12 Shared Library Management Routines

Figure 8-2 shows a C program that can load any supported graphics library at
run time, and call the routines and access data in the library. The program
calls load_1ib (see Figure 8-1) to load the library.

Remember that on Series 300/400 computers, linker symbols begin with an
underscore, but Series 700/800 linker symbols do not. The #ifdef statements
in the following program allow it to compile and run successfully on both
architectures.

#include <stdio.h>
#include <stdlib.h>
#include <dl.h>

/*

/* contains standard I/0 defs */
/* contains getenv definition */
/* contains shared library type defs */

* Define symbols appropriately for the architecture:

*/
#ifdef
#define
#define
#define
#define
#define
#define
#endif
#ifdef
#define
#define
#define
#define
#define
#define
#endif
shl_t

__hp9000s300
GOPEN "_gopen"
GCLOSE "_gclose'
MOVE2D "_move2d"
DRAW2D '"_draw2d"

MAXX "_maxX"
MAXY "_maxY"
__hp9000s800

GOPEN '"gopen"
GCLOSE 'gclose"
MOVE2D "move2d"
DRAW2D "draw2d"
MAXX "maxX"
MAXY "maxy"

load_lib(int argc, char * argvl]l);

Shared Library Management Routines 8-13

main(int argc,

{

char * argv[])

shl_t 1lib_handle;

int (*gopen) (void);

int (*gclose)(void);

int (#move2d) (int, int);
int (*draw2d) (int, int);
int *maxX;

int *maxy;

lib_handle = load_lib(argc,
/*
* Get addresses of all func
*/
if (shl_findsym(&lib_handle,
perror("shl_findsym: error
if (shl_findsym{(&lib_handle,
perror("shl_findsym: error
if (shl_findsym(&lib_handle,
perror("shl_findsym: error
if (shl_findsym(&lib_handle,
perror("shl_findsym: error
if (shl_findsym(&lib_handle,
perror("shl_findsym: error
if (shl_findsym(&lib_handle,
perror("shl_findsym: error
/*
* Using the routines, draw
*/
(*gopen) () ;
(*move2d) (0,0);
(*draw2d) (*maxX,*maxy);
(*gclose) OO

Figure 8-2. Load a Shared Libr

/* handle of shared library */
/* opens the graphics device */
/* closes the graphics device */
/* moves to specified x,y location */
/* draw line to specified x,y location #*/
/* maximum X pixel on device */
/* maximum Y pixel on device */

argv); /* load required shared library */
tions and data that will be used:

GOPEN, TYPE_PROCEDURE, (void *) &gopen))
finding function gopen"), exit(1);

GCLOSE, TYPE_PROCEDURE, (void *) &gclose))
finding function gclose"), exit(1);
MOVE2D, TYPE_PROCEDURE, (void *) &move2d))
finding function move2d"), exit(1);
DRAW2D, TYPE_PROCEDURE, (void *) &draw2d))
finding function draw2d"), exit(1);

MAXX, TYPE_DATA, (void #) &maxX))

finding data maxX"), exit(1);

MAXY, TYPE_DATA, (void *) &maxY))

finding data max¥"), exit(1);

a line from (0,0) to (maxX,maxY):

/* open the graphics device */
/* move to pixel 0,0 */
/* draw line to maxX,maxY pixel */
/* close the graphics device */

ary and Call Its Routines and Access Its Data

8-14 Shared Library Management Routines

Shown below is the compile line for this program, along with the commands
to set SHLPATH appropriately before running the program. (Of course, this
example assumes you have created 1ibgrphdd.sl.) Notice that load_1ib(),
defined in Figure 8-1, is compiled along with this program:

$ cc -Aa -o shl_findsym shl_findsym.c load_lib.c -1dld

$ SHLPATH=/1ib/libgrphdd.sl
$ export SHLPATH
$ shl_findsym

Shared Library Management Routines 8-15

Getting Information on Currently Loaded Libraries

To obtain information on currently loaded libraries, use the shl_get function.

shl_get Syntax

int shl_get(int indez,

inder

dese

struct shl_descriptor **desc)

Specifies an ordinal number of the shared library in the process. For
libraries loaded implicitly (at startup time), index is the ordinal
number of the library as it appeared on the command line. For
example, if 1ibc was the first library specified on the 1d command

line, then 1ibc has an index of 1. For explicitly loaded libraries, index
corresponds to the order in which the libraries were loaded, starting
after the ordinal number of the last implicitly loaded library. Two index
values have special meaning:

0 Refers to the main program itself
-1 Refers to the dynamic loader (d1d.sl).

A shared library’s index can be modified during program execution by
either of the following events:

m The program loads a shared library with the BIND_FIRST modifier to
shl_load. This will increment all the shared library indexes by one.

m The program unloads a shared library with shl_unload. Any
libraries following the unloaded library will have their index
decremented by one.

Returns a pointer to a statically allocated buffer (struct
shl_descriptor **) containing a shared library descriptor. The
structure contains these important fields:

tstart The start address (unsigned long) of the shared library
text segment.

tend The end address (unsigned long) of the shared library
text segment.

dstart The start address (unsigned long) of the shared library
data segment.

8-16 Shared Library Management Routines

dend

handle

filename

initializer

The end address (unsigned long) of the shared library
bss segment. The data and bss segments together form
a contiguous memory block starting at dstart and
ending at dend.

The shared library’s handle (type shl_t).

A character array containing the library’s path name as
specified at link time or at explicit load time. On Series
300/400, the name of the main program is not known,
so shl_get uses the filename <a.out> for the main
program.

A pointer to the shared library’s initializer routine
(see “Declaring an Initializer for a Shared Library”).
It is NULL if there is no initializer. This field is useful
for calling the initializer if it was disabled by the
BIND_NOSTART flag to shl_load.

This buffer is statically allocated. Therefore, if a program intends to
use any of the members of the structure, the program should make
a copy of the structure before the next call to shl_get. Otherwise,
shl_get will overwrite the static buffer when called again.

shi_get Return Value

If successful, shl_get returns an integer value 0. If the index value exceeds the
number of currently loaded libraries, shl_get returns —1.

shl_get Usage

Other than obtaining interesting information, this routine is of little use
to most programmers. A typical use might be to display the names and
starting/ending address of all shared libraries in a process’s virtual memory

address space.

Shared Library Management Routines 8-17

shi_get Example

The function show_loaded_libs in Figure 8-3 displays the name and start
and end address of the text and data/bss segments the library occupies in a
process’s virtual address space.

#include <stdio.h> /* contains standard I/0 defs */
#include <dl.h> /* contains shared library type defs */
void show_loaded_libs(void)

{

int idx;

struct shl_descriptor *desc;

printf("SUMMARY of currently loaded libraries:\n");
printf("%-25s %10s %10s %10s %10s\n",
"___library___", "_tstart_", "__tend__", "_dstart ", "__dend__");

idx = 0;
for (idx = 0; shl_get(idx, &desc) != -1; idx++)

printf("%-25s Y#101x Y#10lx %#10lx %#10lx\n",
desc->filename, desc->tstart, desc->tend, desc—->dstart, desc->dend);

Figure 8-3. show_loaded_libs—Display Library Information

Calling this function from a C program compiled with shared 1ibc and 1ibdld
produced the following output on a Series 700/800 computer:

SUMMARY of currently loaded libraries:

__-library___ _tstart_ __tend__ _dstart_ __dend__
./a.out 0x1000 0x1918 0x40000000 0x40000200
/usr/lib/1libdld.sl 0x800ac800 0x800ad000 0x6df62800 0x6df63000
/1ib/1libc.sl 0x80003800 0x80091000 0x6df63000 0x6df85000

8-18 Shared Library Management Routines

On a Series 300/400 computer, it produced this output:

SUMMARY of currently loaded libraries:

__library___ _tstart_ __tend__ -dstart_ __dend__
<a.out> 0 0x1000 0x1000 0x1288
/usr/lib/libdld.sl 0x80004000 0x80005000 0x80005000 0x80006000
/1lib/libc.sl 0x80006000 0x8007c000 0x8007c000 0x8009ec38

Shared Library Management Routines 8-19

Getting Descriptor Information for a Shared Library

The shl_gethandle routine returns descriptor information about a loaded
shared library.

shi_gethandle Syntax

int shl_gethandle(shl_t handle,
struct shl_descriptor **desc)

handle The handle of the shared library you want information about. This
handle is the same as that returned by shl_load.

desc Points to shared library descriptor information—the same
information returned by the shl_get routine. The buffer used
to store this desc information is static, meaning that subsequent
calls to shl_gethandle will overwrite the same area with new
data. Therefore, if you need to save the desc information, copy it
elsewhere before calling shl_gethandle again.

shil_gethandle Return Value

If handle is not valid, the routine returns —1 and sets errno to EINVAL.
Otherwise, shl_gethandle returns 0.

8-20 Shared Library Management Routines

shi_gethandle Example

Figure 8-4 shows a function named show_1ib_info that displays information
about a shared library, given the library’s handle.

#include <stdio.h>
#include <dl.h>

int show_1lib_info(shl_t 1ibH)
{

struct shl_descriptor *desc;

if (shl_gethandle(libH, &desc) == -1)

{
fprintf (stderr, "Invalid library handle.\n");
return -1;

¥

printf("library path: hs\n", desc->filename) ;
printf("text start: %#101x\n", desc->tstart);
printf("text end: %#101x\n", desc->tend);
printf("data start: %#101x\n", desc->dstart);
printf('"data end: %#101x\n", desc->dend);
return O;

Figure 8-4. show_lib_info—Display Information for a Shared Library

Shared Library Management Routines 8-21

Defining or Redefining a Shared Library Symbol
(Series 700/800 Only)

The shl_definesym function allows you to add a new symbol to the global
shared library symbol table. Use of this routine will be unnecessary for most
programmers.

shl_definesym Syntax

int shl_definesym(const char *sym,
short iype,
long wvalue,

int flags)
sym A null-terminated string containing the name of the symbol to
change or to add to the process’s shared library symbol table.
type The type of symbol—either TYPE_PROCEDURE or TYPE_DATA.
value If value falls in the address range of a currently loaded library, an

association will be made and the symbol is undefined when the
library is unloaded. (Note that memory dynamically allocated via
malloc(3C) does not fall in the range of any library.) The defined
symbol may be overridden by a subsequent call to this routine or
by loading a more visible library that provides a definition for the
symbol.

fags Must be set to zero.

shi_definesym Return Value

If successful, shl_definesym returns 0. Otherwise, it returns —1 and sets
errno accordingly. See shi_definesym(3X) for details.

8-22 Shared Library Management Routines

shi_definesym Usage

There are two main reasons to add or change shared library symbol table
entries:

m to generate symbol definitions as the program runs—for example, aliasing
one symbol with another

m to override a current definition

Symbol definitions in the incomplete executable may also be redefined with
certain restrictions:

m The incomplete executable will always use its own definition for any data
(storage) symbol, even if a more visible one is provided.

m The incomplete executable will only use a more visible code symbol if the
main program itself does not provide a definition.

Shared Library Management Routines 8-23

Retrieving Symbols Defined in a Shared Library
(Series 700/800 Only)

The shl_getsymbols function retrieves symbols that are imported (referenced)
or exported (defined) by a shared library. This information is returned in

an allocated array of records, one for each symbol. Use of this routine is
unnecessary for most programmers.

shl_getsymbols Syntax

int shl_getsymbols(shl_t handle,
short {ype,
int flags,
void * (xmemfunc) (),
struct shl_symbol #**symbols)

handle The handle of the shared library whose symbols you want to
retrieve. If handle is NULL, shl_getsymbols returns symbols that
were defined with the shl_definesym routine.

type Defines the type of symbol to retrieve. It must be one of the
following values, which are defined as constants in <d1.h>:

TYPE_PROCEDURE Retrieve only function or procedure symbols.

TYPE_DATA Retrieve only symbols from the data segment
(e.g., variables).

TYPE_UNDEFINED Retrieve all symbols, regardless of type.

8-24 Shared Library Management Routines

flags

memfunc

symbols

Defines whether to retrieve import or export symbols from

the library. An import symbol is an external reference made
from a library. An export symbol is a symbol definition that is
referenced outside the library. In addition, any symbol defined by
shl_definesym is an export symbol. Set this argument to one of
the following values (defined in <d1.h>):

IMPORT_SYMBOLS To return import symbols.
EXPORT_SYMBOLS To return export symbols.

One of the following modifiers can be ORed with the
EXPORT_SYMBOLS value:

NO_VALUES Do not calculate the value field of the
shl_symbol structure for symbols. The value
field will have an undefined value.

GLOBAL_VALUES For symbols that are defined in multiple
libraries, this flag causes shl_getsymbols
to return the most-visible occurrence, and
to set the value and handle fields of the
shl_symbol structure (defined below under
the description of the symbols parameter).

Points to a function that has the same interface (calling
conventions and return value) as malloc(3C). The
shl_getsymbols function uses this function to allocate memory to
store the array of symbol records, symbols.

This points to an array of symbol records for all symbols that

match the criteria determined by the type and value parameters.

The type of these records is struct shl_symbol, defined in

<dl.h> as: 8

struct shl_symbol {
char * name;
short type;
void * value;
shl_t handle;

};

The members of this structure are described next.

Shared Library Management Routines 8-25

The shi_symbol Structure
The members of the shl_symbol structure are defined as follows:

name Contains the name of a symbol.

type Contains the symbol’s type: TYPE_PROCEDURE, TYPE_DATA, or
TYPE_STORAGE. TYPE_STORAGE is a data symbol used for C
uninitialized global variables or Fortran common blocks.

value Contains the symbol’s address. It is valid only if EXPORT_SYMBOLS is
specified without the NO_VALUES modifier.

handle Contains the handle of the shared library in which the symbol is
found, or NULL in the case of symbols defined by shl_definesym.
It is valid only if EXPORT_SYMBOLS were requested without the
NO_VALUES modifier. It is especially useful when used with the
GLOBAL_VALUES modifier, allowing you to determine the library in
which the most-visible definition of a symbol occurs.

shil_getsymbols Return Value

If successful, shl_getsymbols returns the number of symbols found; otherwise,
—1 is returned and shl_getsymbols sets errno to one of these values:

ENOEXEC A format error was detected in the specified library.

ENOSYM Some symbol required by the shared library could not be found.
On getting this value, a program should terminate immediately.
EINVAL The specified handle is invalid.

8-26 Shared Library Management Routines

shl_getsymbols Example

Figure 8-5 shows the source for a function named show_symbols that displays
shared library symbols. The syntax of this routine is defined as:

int show_symbols(shl_t Andl,
short ({ype,
int flags)

hndl The handle of the shared library whose symbols you want to display.

type The type of symbol you want to display. This is the same as
the type parameter to shl_getsymbols and can have these
values: TYPE_PROCEDURE, TYPE_DATA, or TYPE_UNDEFINED. If it is
TYPE_UNDEFINED, show_symbols will display the type of each symbol.

flags This is the same as the flags parameter. It can have the value
EXPORT_SYMBOLS or IMPORT_SYMBOLS. In addition, it can be ORed
with NO_VALUES or GLOBAL_VALUES. If EXPORT_SYMBOLS is specified
without being ORed with NO_VALUES, show_symbols displays the
address of each symbol.

Shared Library Management Routines 8-27

#include <dl.h>
#include <stdio.h>
#include <stdlib.h>
int show_symbols(shl_t
short
int

hndl,

type,
flags)

int num_symbols, sym_idx;
struct shl_symbol *symbols;

num_symbols = shl_getsymbols(hndl, type, flags, malloc, &symbols) ;
if (num_symbols < 0) {
printf("shl_getsymbols failed\n");

exit(1);
}
for (sym_idx = 0; sym_idx < num_symbols; sym_idx++)
{
printf(" %-30s", symbols->name); /* display symbol name */

if (type == TYPE_UNDEFINED)
switch (symbols—>type) {
case TYPE_PROCEDURE:

/% display type if TYPE_UNDEFINED #/

printf(" PROCEDURE");
break;

case TYPE_DATA:
printf (" DATA "),
break;

case TYPE_STORAGE:
printf(" STORAGE ");

}
if ((flags & EXPORT_SYMBOLS)
&& (flags & NO_VALUES)==0)

/* export symbols requested */
/* NO_VALUES was NOT specified */

printf(" 0x%8X'", symbols->value); /* so display symbol’s address */
printf("\n"); /* terminate output line */
symbols++; /* move to next symbol record */
}
free(symbols); /* free memory allocated by malloc */
return num_symbols; /* return the number of symbols */

}
Figure 8-5. show_symbols—Display Shared Library Symbols

8-28 Shared Library Management Routines

Figure 8-6 shows the source for a program named show_all.c that calls
show_symbols to show all imported and exported symbols for every loaded
shared library. It uses shl_get to get the library handles of all loaded libraries.

#include <dl.h>
#include <stdio.h>
int show_syms(shl_t hndl, short type, int flags); /* prototype for show_syms */
main()
{
int idx, num_syms;
struct shl_descriptor * desc;

for (idx=0; shl_get(idx, &desc) '!'= -1; idx++) /* step through libs */
{
printf("[%s]\n", desc->filename); /* show imports & exports for each */
printf(" Imports:\n');
num_syms = show_symbols(desc->handle, TYPE_UNDEFINED, IMPORT_SYMBOLS);
printf (" TOTAL SYMBOLS: %d\n'", num_syms);
printf(" Exports:\n");
num_syms = show_symbols(desc->handle, TYPE_UNDEFINED, EXPORT_SYMBOLS);
printf(" TOTAL SYMBOLS: %d\n", num_syms);

Figure 8-6. show_all—Use show_symbols to Show All Symbols

The program in Figure 8-6 was compiled with the command:

$ cc -Aa -o show_all show_all.c show_symbols.c -1dld

Shared Library Management Routines 8-29

Figure 8-7 shows partial output produced by running this command on a Series
700 system.

[show_alll
Imports:
_start PROCEDURE
malloc PROCEDURE
free PROCEDURE
exit PROCEDURE
printf PROCEDURE
shl_get PROCEDURE
shl_getsymbols PROCEDURE
TOTAL SYMBOLS: 7
Exports:
errno STORAGE 0x4000122C
_SYSTENM_ID DATA 0x40001008
__dld_loc STORAGE 0x40001228
_end DATA 0x40001230
main PROCEDURE 0x6DF86362

TOTAL SYMBOLS: 5
[/usr/1lib/libdld.sl]

Imports:
errno STORAGE
__dld_loc DATA

TOTAL SYMBOLS: 2

Figure 8-7. Output of show_all Program

8-30 Shared Library Management Routines

Unloading a Shared Library

To unload a shared library, use the shl_unload function. One reason to do this
is to free up the private copy of shared library data and swap space allocated
when the library was loaded with shl_load. (This is done automatically when
a process exits.)

Another reason for doing this occurs if a program needs to replace a shared
library. For example, suppose you implement some sort of shell or interpreter,
and you want to load and execute user “programs” which are actually shared
libraries. So you load one program, look up its entry point, and call it. Now
you want to run a different program. If you unload the old one, its symbol
definitions might get in the way of the new library. So you should unload it
before loading the new library.

Note that if a shared library initializer has been declared for a shared library, it
will be called when the shared library is unloaded. For details, see “Declaring
an Initializer for a Shared Library” later in this chapter.

shi_unload Syntax

int shl_unload(shl_t handle)

handle The handle of the shared library you wish to unload. The handle
value is obtained from a previous call to shl_load, shl_findsym, or
shl_get.

shi_unload Return Value

If successful, shl_unload returns 0. Otherwise, shl_unload returns —1 and
sets errno to an appropriate value:

EINVAL Indicates the specified handle is invalid.

Shared Library Management Routines 8-31

shi_unload usage

When a library is unloaded, existing linkages to symbols in an unloaded library
are not invalidated. Therefore, the programmer must ensure that the program
does not reference symbols in an unloaded library as undefined behavior

will result. In general, this routine is recommended only for experienced
programmers.

8-32 Shared Library Management Routines

Declaring an Initializer for a Shared Library

A shared library can have an initialization routine—known as an initializer—
that is called when the shared library is loaded or unloaded. Typically, an
initializer is used to initialize a shared library’s data when the library is loaded.
The initializer is called for libraries that are loaded implicitly (at program
startup) or explicitly (via shl_load).

When calling initializers for implicitly loaded libraries, the dynamic loader
waits until all libraries have been loaded before calling the initializers. On
Series 700/800, it calls the initializers in depth-first order—that is, the
initializers are called in the reverse order in which the libraries are searched for
symbols. On Series 300/400, it calls the initializers in the same order in which
the libraries are searched for symbols. On both architectures, all initializers are
called before the main program begins execution.

When calling the initializer for an explicitly loaded library, the dynamic
loader waits until any dependency libraries (available on Series 700/800 only)
are loaded before calling the initializers. As with implicitly loaded libraries,
initializers are called in depth-first order on Series 700/800, and in the library
search order on Series 300/400.

Note that initializers can be disabled for explicitly loaded libraries via the
BIND_NOSTART flag to shl_load; see “Explicitly Loading a Shared Library”.

Declaring the Initializer

To declare the name of the initializer, use the +I linker option when creating
the shared library. In addition, the shared library must reference the initializer.

The +I Linker Option
The syntax of the +I option is:
+1 initializer

initializer is the initializer’s name. (On Series 300/400 systems, be sure to
prefix the name with an underscore.) For example, to create a shared library
named libfoo.sl that uses an initializer named init_foo, use this linker
command line on Series 700/800:

Shared Library Management Routines 8-33

$ 1d -b -0 libfoo.sl libfoo.o +I init_foo

On Series 300/400, use this command line:
$ 1d -b -o libfoo.sl libfoo.o +I _init_foo

Referencing the Initializer from the Shared Library

Note that it is not sufficient to use +I to declare the initializer; the library
must also contain a reference to the initializer. The actual definition of the
initializer can appear in the shared library or in the main program.

For instance, suppose init_foo is defined in 1ibfoo.sl in the preceding
example. To ensure that init_foo is registered as the initializer, you could
include the following line in the library’s source:

void (*init_foo_ptr)() = init_foo;

If, on the other hand, init_foo is defined outside the library (say, in the main
program), you would need to declare init_foo as an external symbol:

extern void init_foo();
void (¥init_foo_ptr){() = init_foo;

The Default Initializer
(Series 300/400 Only)

On Series 300/400 systems, if a routine named _INITIALIZER is referenced in
the shared library, it is assumed to be the initializer for the shared library, and
no +I option is required to declare it. However, for compatibility reasons, it is
probably best to always use +I __INITIALIZER to declare such initializers.

8-34 Shared Library Management Routines

Initializer Syntax

void nitializer(shl_t handle,
int loading)

instializer The name of the initializer as specified with the +I linker option.

handle The initializer is called with this parameter set to the handle of
the shared library for which it was invoked.

loading The initializer is called with this parameter set to —1 (true) when
the shared library is loaded and 0 (false) when the library is
unloaded.

Example: An Initializer for Each Library

One way to use initializers is to define a unique initializer for each library. For
instance, Figure 8-8 shows the source code for a library named 1ibfoo.sl that
contains an initializer named init_foo.

Shared Library Management Routines 8-35

Note The examples shown in this section are all for Series 700/800
computers. The examples will also work on Series 300/400 if
you prefix all symbol names with an underscore.

#include <stdio.h>
#include <dl.h>
/%
% This is the local initializer that is called when the libfoo.sl
* is loaded and unloaded:
*/
void init_foo(shl_t hndl, int loading)
{
if (loading)
printf("libfoo loaded\n'");
else
printf("libfoo unloaded\n'");

}
void (*init_ptr){) = init_foo; /* must reference initializer */
float in_to_cm(float in) /* convert inches to centimeters */
{
return (in * 2.54);
}
float gal_to_l(float gal) /* convert gallons to litres */
{
return (gal * 3.79);
}
float oz_to_g(float oz) /* convert ounces to grams */
{
return (oz * 28.35);
}

Figure 8-8. C Source for libfoo.sl

Note that the reference “void (*init_ptr) = init_foo;” ensures that
init_foo is registered as the initializer. Here are the commands used to create
libfoo.sl on a Series 700/800 system:

$ cc -4a -c +z libfoo.c
$ 1d -b -o libfoo.sl +I init_foo libfoo.o

8-36 Shared Library Management Routines

To use this technique with multiple libraries, each library should have a unique
initializer name. Figure 8-9 shows an example program that loads and unloads
libfoo.sl, and Figure 8-10 shows the output of running this program.

#include <stdio.h>

#include <dl.h>

main()

{
float (*in_to_cm)(float), (*gal_to_1)(float), (*oz_to_g)(float);
shl_t hndl_foo;

/*

* Load libunits.sl and find the required symbols:

*/

if ((hndl_foo = shl_load("libfoo.sl", BIND_IMMEDIATE, 0)) == NULL)

perror("shl_load: error loading libunits.sl"), exit(1);

if (shl_findsym(&hndl_foo, "in_to_cm", TYPE_PROCEDURE, (void *) &in_to_cm))
perror("shl_findsym: error finding in_to_cm"), exit(1);

if (shl_findsym(&hndl_foo, "gal_to_l", TYPE_PROCEDURE, (void *) &gal_to_1))
perror("shl_findsym: error finding gal_to_1"), exit(1);

if (shl_findsym(&hndl_foo, "oz_to_g", TYPE_PROCEDURE, (void *) &oz_to_g))
perror("shl_findsym: errror finding oz_to_g"), exit(1);

/%

* Call routines from libunits.sl:

*/
printf("1.0in
printf("1.0gal
printf("1.00z
/*

* Unload the library:

*/
shl_unload(hndl_foo);

%5.2fcm\n", (*in_to_cm)(1.0));
%5.2f1\n", (*gal_to_1)(1.0));
%5.2fg\n", (*oz_to_g)(1.0));

Figure 8-9. C Source for testlib

libfoo loaded

1.0in = 2.54cnm
1.0gal = 3.791
1.00z = 28.3bg

libfoo unloaded

Figure 8-10. Output of testlib

Shared Library Management Routines 8-37

Example: A Common Initializer for Multiple Libraries

Rather than have a unique initializer for each library, libraries could have one
initializer that calls the actual initialization code for each library. To use this
technique, each library declares and references the same initializer (for example,
_INITIALIZER), which calls the appropriate initialization code for each library.

This is easily done by defining 1load and unload functions in each library.
When _INITIALIZER is called, it uses shl_findsym to find and call the load
or unload function (depending on the value of the loading flag). Figure 8-11
shows the source for such an _INITIALIZER function.

#include <dl.h>
/%
* Global initializer used by shared libraries that have registered it:
*/
void _INITIALIZER(shl_t hand, int loading)
{
void (*load_unload)();

if (loading) /* find the 1lib’s load function */
shl_findsym(&hand, "load", TYPE_PROCEDURE, (void *) &load_unload);
else /* find the 1lib’s unload function */

shl_findsym(&hand, "unload", TYPE_PROCEDURE, (void *) &load_unload);

(*load_unload) (); /* call the function */

Figure 8-11. C Source for _INITIALIZER (file init.c)

8-38 Shared Library Management Routines

Figure 8-12 and Figure 8-13 show the source for two shared libraries that have
registered _INITIALIZER.

#include <stdio.h>
#include <dl.h>

void load() /* called after libunits.sl loaded #*/
{
printf("libunits.sl loaded\n");
}
void unload() /* called after libunits.sl unloaded */
{
printf("libunits.sl unloaded\n");
}
extern void _INITIALIZER();
void (*init_ptr)() = _INITIALIZER; /* must reference initializer */
float in_to_cm(float in) /* convert inches to centimeters */
{
return (in * 2.54);
}
float gal_to_1l(float gal) /% convert gallons to litres */
{
return (gal * 3.79);
}
float oz_to_g(float oz) /* convert ounces to grams */
{
return (oz #* 28.35);
T

Figure 8-12. C Source for libunits.sl

Shared Library Management Routines 8-39

#include <stdio.h>
void load() /% called after libtwo.sl loaded */
{
printf("libtwo.sl loaded\n");
}
void unload() /* called after libtwo.sl unloaded */
{
printf("libtwo.sl unloaded\n");
¥

extern void _INITIALIZER();
void (*init_ptr)() = _INITIALIZER;

void foo()
{

printf("foo called\n");
}
void bar()
{

printf("bar called\n");
}

Figure 8-13. C Source for libtwo.sl

Here are the commands used to build these libraries:

$ cc -4a -c +z libunits.c

$ 1d -b -o libunits.sl +I _INITIALIZER libunits.o
$ cc -Aa -c +z libtwo.c

$ 1d -b -o libtwo.sl +I _INITIALIZER libtwo.o

Figure 8-14 shows a program that loads these two libraries.

#include <stdio.h>

#include <dl.h>

main()

{
float (*in_to_cm)(float), (*gal_to_1)(float), (*oz_to_g)(float);
void (*#fo0){(), (*#bar)(};
shl_t hndl_units, hndl_two;

8-40 Shared Library Management Routines

/%
* Load libunits.sl and find the required symbols:
*/
if ((hndl_units = shl_load("libunits.sl', BIND_IMMEDIATE, 0)) == NULL)
perror("shl_load: error loading libunits.sl"), exit(1);

if (shl_findsym(&hndl_units, "in_to_cm", TYPE_PROCEDURE, (void *) &in_to_cm))
perror("shl_findsym: error finding in_to_cm"), exit(1);

if (shl_findsym(&hndl_units, "gal_to_1", TYPE_PROCEDURE, (void *) &gal_to_l))
perror("shl_findsym: error finding gal_to_1"), exit(1);

if (shl_findsym(&hndl_units, "oz_to_g", TYPE_PROCEDURE, (void *) &oz_to_g))
perror("shl_findsym: errror finding oz_to_g"), exit(1);

/*
* Load libtwo.sl and find the required symbols:
*/
if ((hndl_two = shl_load("libtwo.sl", BIND_IMMEDIATE, 0)) == NULL)
perror("shl_load: error loading libtwo.sl"), exit(1);

if (shl_findsym(&hndl_two, "foo", TYPE_PROCEDURE, (void *) &foo))
perror("shl_findsym: error finding foo"), exit(1);

if (shl_findsym(&hndl_two, "bar', TYPE_PROCEDURE, (void *) &bar))
perror("shl_findsym: error finding bar"), exit(i);

/*

* Call routines from libunits.sl:

*/
printf("1.0in
printf("1.0gal
printf("1.00z
/*

* Call routines from libtwo.sl:

*/

(*f00) ();
(*bar) () ;
/*

*# Unload the libraries so we can see messages displayed by initializer:

*/
shl_unload(hndl_units);
shl_unload(hndl_two);

%5.2fcm\n", (*#in_to_cm)(1.0));
%5.2f1\n", (*gal_to_1){(1.0));
%5.2fg\n", (*0z_to_g)(1.0));

Figure 8-14. C Source for testlib2

Shared Library Management Routines 8-41

Here is the compiler command used to create the executable testlib2:

$ cc -4a -W1l,-E -o testlib2 testlib2.c init.c -dld

Note that the -W1,-E option is required to cause the linker to export all
symbols from the main program. This allows the shared libraries to find the
_INITIALIZER function in the main executable.

Finally, Figure 8-15 shows the output from running testlib2.

libunits.sl loaded
libtwo.sl loaded
1.0in = 2.54cm
1.0gal 3.791
1.00z = 28.35g

foo called

bar called
libunits.sl unloaded
libtwo.sl unloaded

Figure 8-15. Output of testlib2

8-42 Shared Library Management Routines

9

Standard Input/Output Library Routines

This chapter describes how to use standard input/output library routines—that
is, routines that are designated as section “35” in the HP-UX Reference. The
standard input/output library is a collection of routines that provides efficient
and portable input/output services for most C programs. The standard
input/output library is available on each system that supports C, so programs
that confine their system interactions to its facilities can be transported from
one system to another essentially without change. Specifically, this chapter
describes:

m an overview of standard input/output routines

m input/output to standard input (stdin) and standard output (stdout)
m input/output to strings

m input/output to ordinary files

m stream status and control routines

m inter-process communication

All the examples in this chapter are written in C. Nevertheless, these routines
can be called from other languages, although this normally isn’t necessary as
each language has an extensive set of input/output routines. For details on
calling C library routines from other languages, refer to the HP-UX Portability
Guide.

Standard Input/Output Library Routines 9-1

Overview of Input/Output

To call standard input/output routines, a C program must #include the
header file <stdio.h>:

#include <stdio.h>

This file contains function prototypes and type definitions required for standard
input/output routines.

In HP-UX terminology, files are often referred to as streams. Fach stream has
an associated buffer, through which input or output data is passed. When a
program writes data to a stream (for example, using the fprintf routine), the
data is actually passed to the buffer. The data can then be flushed from the
buffer. Flushing is usually performed automatically by standard input/output
routines, but sometimes you might want greater control over flushing; this is
accomplished through stream status and control routines.

Before reading or writing data to a stream, a program must open it. When a
program begins executing, HP-UX automatically opens three streams for the
program: standard input, standard output, and standard error. These files are
referred to as stdin, stdout, and stderr, respectively.

Typically, stdin corresponds to terminal keyboard input; stdout corresponds
to terminal screen output; and stderr is used for displaying error messages to
the terminal screen. However, all of these can be redirected to or from other
sources, as described in the Using HP-UX with HP Vue.

The files stdin, stdout, and stderr are different from ordinary files in that
they store small amounts of data that exists only until it is read or written.
(One exception is that characters can be “pushed back” into the input stream,
described later in this chapter.) Another difference is that stdin is a read-only
file; a program cannot write to stdin. Similarly, a stdout and stderr are
write-only files; they cannot be read.

By default, the buffers used with stdin and stdout are _DBUFSIZ bytes long,
where _DBUFSIZ is a constant, defined in <stdio.h> as 8192. In fact, all fully
buffered files use a buffer _DBUFSIZ bytes in length, by default. In contrast,
stderr is not buffered; data is transferred to stderr one byte at a time. Due
to terminal driver characteristics, data typed at the keyboard is not sent to
stdin until (Return) (or its equivalent) is pressed.

9-2 Standard Input/Output Library Routines

A program is not limited to using only the standard input and output streams.
A program can also open ordinary text files for reading, writing, or both at
the same time. Directories can also be opened, but only for reading. These
features are discussed later in this chapter. The next section discusses the use
of routines that work with stdin and stdout; stderr is described later.

Input/Output Using stdin and stdout

This section describes three pairs of input/output routines that interact with
stdin and stdout. They are:

m getchar and putchar for single-character input/output
m gets and puts for string input/output

m scanf and printf for formatted input/output of all types

Single-Character Input/Output

This section describes the two basic input and output routines, getchar and
putchar. getchar is a macro defined in <stdio.h> which reads one character
from stdin. Similarly, putchar is also a macro defined in <stdio.h>. putchar
writes one character on stdout.

As an example, consider the following program, which simply reads stdin and
echoes whatever it finds to stdout. The program terminates when it receives
an at-sign (@) from stdin.

#include <stdio.h>
main()

{

int c¢;
while((c = getchar()) != ’@’)

putchar(c);
putchar(’\n’); 9

Standard Input/Output Library Routines 9-3

Why is ¢ declared an int instead of a char? For most applications, char
works fine. In certain cases, however, sign extension, bit shifting, and similar
operations cause strange results with chars. Therefore, int is used here, and in
all following examples, to be safe.

The final putchar statement in the program is used to output a new-line so
that your shell prompt appears at the beginning of a new line, instead of at the
end of the last line of output. Type it in and give it a try! Remember that
your input is not available to the program until you press @).

getchar and putchar are most useful in filters which are programs that accept
data and modify it in some way before passing it on. Suppose you want to
write a program which puts parentheses around each vowel encountered in the
input. It’s easy to do with these routines:

#include <stdio.h>

main()
{
int c¢;
while((c = getchar()) '= ’\n’) {

if(vowel(c)) {
putchar(’ (?);
putchar(c);
putchar(’)’);

}else
putchar(c);
T
vowel(c)
char c;
{
if(c==’a’ || c==A" || c==’¢e’ || c==E’ || c==’1’ || c==1"
[l c==’0’ || ¢==’0" || c=="u’ || c=="U’)
return(1);
else
return(0);
}

9-4 Standard Input/Output Library Routines

The vowel test is placed in the function vowel, since it tends to clutter up the
main program. This program terminates when it encounters a new-line.

String Input/Output

The gets function reads a string from stdin and stores it in a character

array. The string is terminated by a new-line in the input, which gets replaces
with a NULL character in the array. Its companion function, puts, copies a
string from a character array to stdout. The string is terminated by a NULL
character in the array, which puts replaces with a new-line in the output.

The simple “echo” program from the last section can be rewritten using gets
and puts:

#include <stdio.h>
main()

{
char 1ine[80], *gets();

while((gets(line)) != NULL)
puts(line);
}

This program, as written, runs forever. To terminate it, press (or
its equivalent). Later, when string comparison and string length routines
are introduced, an intelligent termination condition can be written for this
program.

Formatted Input/Output with scanf

scanf is the formatted-input library routine. Its syntax is:

scanf (format, [item [,z'tem]]);

where format is a character pointer to a character string (or the character
string itself enclosed in double quotes), and item is the address of a variable.

format specifies the format of incoming data to be read from stdin, and what
types of data are found there. format is composed of two elements: conversion
specifications and literal characters.

Standard Input/Output Library Routines 9-5

Conversion Specifications

A conversion specification is a character sequence which tells scanf how

to interpret the data received at that point in the input. For example, if a
conversion specification says “treat the next piece of data as a decimal integer”,
then that data is interpreted and stored as a decimal integer.

In the format, a conversion specification is introduced by a percent sign (%),
optionally followed by an asterisk (*) (called the assignment suppression
character), optionally followed by an integer value (called the field width). The
conversion specification is terminated by a character specifying the type of data
to expect. These terminating characters are called conversion characters.

When a conversion specification is encountered in a format, it is matched
up with the corresponding item in the item list. The data formatted by
that specification is then stored in the location pointed to by that item.

For example, if there are four conversion specifications in a format, the first
specification is matched up with the first item, the second specification with
the second item, and so on.

The number of conversion specifications in the format is directly related to

the number of items specified in the item list. With one exception, there

must be at least as many items as there are conversion specifications in the
format. If there are too few items in the item list, an error occurs; if there

are too many, the excess items are simply ignored. The one exception occurs
when the assignment suppression character (*) is used. If an asterisk occurs
immediately after the percent sign (before the field width, if any), then the
data formatted by that conversion specification is discarded. No corresponding
item is expected in the item list, This is useful for skipping over unwanted data
in the input.

9-6 Standard Input/Output Library Routines

Conversion Characters

There are eight conversion characters available. Three of them are used to
format integer data, three are used to format character data, and two are used
for floating-point data.

The integer conversion characters are:

d A decimal integer is expected.
) An octal integer is expected.
X A hexadecimal integer is expected.

The character conversion characters are:

c A single character is expected.
s A character string is expected.
[A character string is expected.

The floating-point conversion characters are:

e, f A floating-point number is expected.

Integer Conversion Characters

The d, o, and x conversion characters read characters from stdin until an
inappropriate character is encountered, or until the number of characters
specified by the field width, if given, is exhausted (whichever comes first).

For 4, an inappropriate character is any character except 4+, —, and 0 through
9. For o, an inappropriate character is any character except +, —, and 0
through 7. For x, an inappropriate character is any character except 4, —,

0 through 9, and the characters a — f and A through F. Note that negative
octal and hexadecimal values are stored in their 2’s complement form with sign
extension. Thus, they may look unfamiliar if you print them out later (using
printf — see below).

These integer conversion characters can be capitalized or preceded by a

lower-case L (1) to indicate that a long int should be expected rather

than an int. They can also be preceded by h to indicate a short int. The
corresponding items in the item list for these conversion characters must be

pointers to integer variables of the appropriate length. 9

Standard Input/Output Library Routines 9-7

Character Conversion Characters

The c conversion character reads the next character from stdin, no matter
what that character is. The corresponding item in the item list must be a
pointer to a character variable. If a field width is specified, then the number of
characters indicated by the field width are read. In this case, the corresponding
item must refer to a character array large enough to hold the characters read.

Note that strings read using the c conversion character are not automatically
terminated with a NULL character in the array. Since all C library routines
which utilize strings assume the existence of a NULL terminator, be sure you
add the NULL character yourself. Otherwise, library routines are not able to
tell where the string ends, and you’ll get puzzling results.

The s conversion character reads a character string from stdin which is
delimited by one or more space characters (blanks, tabs, or new-lines). If

no field width is given, the input string consists of all characters from the

first non-space character up to (but not including) the first space character.
Any initial space characters are skipped over. If a field width is given, then
characters are read, beginning with the first non-space character, up to the first
space character, or until the number of characters specified by the field width
is reached (whichever comes first). The corresponding item in the item list
must refer to a character array large enough to hold the characters read, plus a
terminating NULL character which is added automatically.

An important point to remember about the s conversion character is that it
cannot be made to read a space character as part of a string. Space characters
are always skipped over at the beginning of a string, and they terminate
reading whenever they occur in the string. For example, suppose you want to
read the first character from the following input line consisting of 10 spaces
followed by “Hello, there!” (the vertical bar shows the beginning of the line but
is not included in the text string):

| Hello, there!

If you use %c, you get a space character. However, if you use 1s, you get “H”
(the first non-space character in the input).

The [conversion character also reads a character string from stdin. However,
this character should be used when a string is not to be delimited by

space characters. The left bracket is followed by a list of characters, and is
terminated by a right bracket. If the first character after the left bracket is a

9-8 Standard Input/Output Library Routines

circumflex ("), then characters are read from stdin until a character is read
which matches one of the characters between the brackets. If the first character
is not a circumflex, then characters are read from stdin until a character not
occurring between the brackets is found. The corresponding item in the item
list must refer to a character array large enough to hold the characters read,
plus a terminating NULL character which is added automatically.

The three string conversion characters provide you with a complete set of
string-reading capabilities. The ¢ conversion character can be used to read
any single character, or to read a character string when the exact number

of characters in the string is known beforehand. The s conversion character
enables you to read any character string which is delimited by space characters,
and 1s of unknown length. Finally, the [conversion character enables you

to read character strings that are delimited by characters other than space
characters, and which are of unknown length.

Floating-Point Conversion Characters

The e and £ conversion characters read characters from stdin until an
inappropriate character is encountered, or until the number of characters
specified by the field width, if given, is exhausted (whichever comes first).

Both e and f expect data in the following form: an optionally signed string of
digits (possibly containing a decimal point), followed by an optional exponent
field consisting of an E or e followed by an optionally signed integer. Thus, an
inappropriate character is any character except +, —, ., 0 through 9, E, or e.

These floating-point conversion characters can be capitalized, or preceded by

a lower-case L 1), to indicate that a double value is expected rather than a
float. The corresponding items in the item list for these conversion characters
must be pointers to floating-point variables of the appropriate length.

Literal Characters

Any characters included in the format which are not part of a conversion

specification are literal characters. A literal character is expected to occur in

the input at exactly that point. Note that since the percent sign is used to

introduce a conversion specification, you must type two percent signs (“%%”") 9
to get a literal percent sign.

Standard Input/Output Library Routines 9-9

Examples. Suppose that you have to read the following line of data:
NAME: Joe Kool; AGE: 27; PROF: Elec Engr; SAL: 39550

To get the vital data, you must read two strings (containing spaces), and two
integers. You also have data that should be ignored, such as the semicolons
and the identifying strings (“NAME:”). How do you go about reading this?

First, note that the identifying strings are always delimited by space characters.
This suggests use of the s conversion character to read them. Second, you

can never know the exact sizes of the NAME and PROF fields, but note that
they are both terminated by a semicolon. Thus, you can use [to read them.
Finally, the d conversion character can be used to read both integers.

The following code fragment successfully reads this data:
char name[40], prof[40];
int age, salary;
scanf ("fxshx[1AL ;I %kchxsihdlxchxshx[1407 ;1 %*ch*shd",\
name,&age,prof ,&salary) ;
For easier understanding, break the format into pieces:

h*s Reads the string “NAME:”. Since an asterisk is given, the string is
simply read and discarded.

wx[] Gets rid of all blanks occurring between “NAME:” and the
employee’s name. Note that this gets rid of one or more blanks,
giving the format some flexibility.

AR Reads all characters from the current character up to a semicolon,
and assigns the characters to the array name.

h*c Gets rid of the semicolon left over after reading the name.
h*s Reads the next identifying string, “AGE:”, and discards it.
hd Reads the integer age given, and assigns it to age. The semicolon

after the age terminates %d, because that character is not
appropriate for an integer value. Note that the address of age is
given in the item list (&age) instead of the variable name itself. If
this is not done, a memory fault occurs at run time.

hxc Gets rid of the semicolon following the age.

9-10 Standard Input/Output Library Routines

Yoxs Reads the next identifying string, “PROF:”, and discards it.
hxl] Removes all blanks between “PROF:” and the next string.

W5l Reads all characters up to the next semicolon, and assigns them to
the character array prof.

h*c Gets rid of the semicolon following the profession string.

h*s Reads the final identifying string, “SAL:”, and discards it.

hd Reads the final integer and assigns it to the integer variable salary.
Again, note that the address of salary is given, not the variable name
itself.

Although somewhat confusing to read, this format is quite flexible, since it
allows for multiple spaces between items and varying identifying strings (that
is, “PROFESSION:” could be specified instead of “PROF:”). The following
scanf call reads the same data, but is much less flexible:

scanf ("NAME: %[~;]; AGE:%d; PROF: %[~;]; SAL: %d4",\
name,&age ,prof ,&salary) ;

Here, literal characters are used to exactly match the characters in the input
line. This works fine if you can be sure that the data always appears in this
form. If one typing variation is made, however, such as typing “SALARY:”
instead of “SAL:”, the scanf fails.

scanf waits for more data as long as there are unsatisfied conversion
specifications in the format. Thus, a scanf call like

scanf ("YfAEAE", &floatl, &float2, &float3);

where float1, float2, and float$ are all variables of type £loat, allows you to
enter data in several ways. For example,

14.77 29.8 13.0

is read correctly by scanf, as is

14.77

29.8 (RETURN)
13.0 (RETURN) 9

Using decimal points in floating-point data is recommended whenever
floating-point variables are being read. However, scanf converts integer data

Standard Input/Output Library Routines 9-11

to floating-point if the conversion specification so demands. Thus, “13.0” in the
previous example could have been entered as “13” with no side effects.

As a final example, suppose the following code fragment is used to read the
input string “abcdef137 d14.77ghijklmnop”:

char arri[10], arr2[10], arr3[10], arr4[10];
float floatil;
scanf ("%4ch[~3]1%6c)th[ghijk1]",arrl,arr2,arr3,&floatl,arrd);

To determine what values are stored in the variables listed, break up the
format into separate conversion specifications, and see what data is demanded
by each (as done before):

héc Reads four characters and assigns them to arri. Thus, the string
“abed” is assigned to arri. Note that an extra character, NULL,
is appended to the end of the string.

hL~3] Reads all characters from the current character up to the
character “3”. This assigns “efl”, along with an added NULL

character, to the array arr2.

héc Reads the next six characters and stores them in the array arr3.
Thus, “37 d14” is assigned to arr3, terminated by a NULL
character.

Wt Reads a floating-point value which, due to the lack of a field

width, is terminated by the first “inappropriate” character. Thus,
the value “.77” is assigned to floatl.

#Lghijk1l] Reads all characters up to the first character not occurring
between the brackets. This stores the string “ghijkl”, along with
an appended NULL character, in the array arr4.

Note that there are some characters left in stdin that were not read. What
happens to these characters? Any characters left unread in the input stream
remasin there. This can cause unexpected errors. Suppose that, later in the
above program fragment, you want to read a string from stdin using %s.

No matter what string you type in as input, it won’t be read because the s
conversion specification is satisfied by reading “mnop”—the characters left over
from the previous read operation! To solve this, always be sure you have read
the entire current line of input before attempting to read the next. To fix this

9-12 Standard Input/Output Library Routines

in the previous scanf example, just add a %*s conversion specification at the
end of the format. This reads and discards the left-over characters.

Formatted Output with printf

For output, printf is the companion routine to scanf. It enables you to
output data in formatted form. Its syntax is the same as scanf:

printf (format, [item [, item]]);

format is a pointer to a character string (or the character string itself enclosed
in double quotes) which specifies the format and content of the data to be
printed. Each item is a variable or expression specifving the data to print.

printf’s format is similar in many respects to that of scanf. It is made up of
conversion specifications and literal characters. As in scanf, literal characters
are all characters that are not part of a conversion specification. Literal
characters are printed on stdout exactly as they appear in the format.

Literal Characters

Included in the list of literal characters are escape sequences, which are
sequences beginning with a backslash (\) which stand for other characters.
The following list shows the escape sequences defined for printf (and scanf,
though less frequently used):

\b Backspace.

\n Newline (carriage-return/line-feed sequence); output begins at the
beginning of a new line.

\r Carriage-return without a line-feed; output begins at the beginning of
the current line (data already printed on that line is over-printed).

\t Tab.
AN\ Literal backslash.

\nnn The character represented by the octal number nnn in the ASCII
character set. nnn must begin with a zero. For example, \007 is an

ASCII BELL character, which beeps the terminal bell (if the bell
function exists on the terminal).

Standard Input/Output Library Routines 9-13

Conversion Specifications

A conversion specification for printf is very similar to that of scanf, but is a
bit more complicated. The correct sequence for the components of a conversion
specification are

1. a percent sign (%), which signals the beginning of a conversion specification
2. zero or more flags, which affect the way a value is printed (see below)

3. an optional decimal digit string which specifies a minimum field width
4

. an optional precision consisting of a dot (.) followed by a decimal digit
string

«

an optional 1 (lowercase L) or h, indicating a long or short integer argument

6. a conversion character, which indicates the type of data to be converted and
printed

Note To output an actual percent sign character, you must type two
p p g
percent signs (“%%”).

As in scanf, a one-to-one correlation must exist between each specification
encountered and each item in the item list.

The available flags are:

- Causes the data to be left-justified within its output field. Normally,
the data is right-justified.

+ Causes all signed data to begin with a sign (4 or —). Normally, only
negative values have signs.

blank Causes a blank to be inserted before a positive signed value. This
is used to line up positive and negative values in columnar data.
Otherwise, the first digit of a positive value is lined up with the
negative sign of a negative value. If the “blank” and “4” flags both
appear, the “blank” flag is ignored.

Causes the data to be printed in an “alternate form”. Refer to the
descriptions of the conversion characters below for details concerning
the effects of this flag.

9-14 Standard Input/Output Library Routines

A field width, if specified, determines the minimum number of spaces allocated
to the output field for the particular piece of data being printed. If the data
happens to be smaller than the field width, the data is blank-padded on the
left (or on the right, if the — flag is specified) to fill the field. If the data is
larger than the field width, the field width is simply expanded to accommodate
the data. An insufficient field width never causes data to be truncated. If no
field width is specified, the resulting field is made just large enough to hold the
data.

The precision is a value which means different things depending on the
conversion character specified. Refer to the descriptions of the conversion
characters below for more details.

A field width or precision can be replaced by an asterisk (*). If so, the next
item in the item list is fetched, and its value is used as the field width or
precision. The item fetched must be an integer.

Conversion Characters

Conversion character specifies the type of data to expect in the item list, and
causes the data to be formatted and printed appropriately. Integer conversion
characters include:

d An integer item is converted to signed decimal. The precision, if given,
specifies the minimum number of digits to appear. If the value has fewer
digits than that specified by the precision, the value is expanded with
leading zeros. The default precision is one (1). A null string results if a
zero value is printed with a zero precision. The # flag has no effect.

u An integer item is converted to unsigned decimal. The effects of the
precision and the # flag are the same as for d.

o An integer item is converted to unsigned octal. The # flag, if specified,
causes the precision to be expanded and the octal value is printed with
a leading zero (a C convention). The precision behaves the same as in d
above, except that printing a zero value with a zero precision results in
only the leading zero being printed if the # flag is specified.

X An integer item is converted to hexadecimal. The letters abcdef are 9
used in printing hexadecimal values. The # flag, if specified, causes the
precision to be expanded, and the hexadecimal value is printed with a
leading “0x” (a C convention). The precision behaves as in d above,

Standard Input/Output Library Routines 9-15

except that printing a zero value with a zero precision results in only
the leading “0x” being printed if the # flag is specified.

Same as x above, except that the letters ABCDEF are used to print the
hexadecimal value, and the # flag causes the value to be printed with a
leading OX.

The character conversion characters are as follows:

C

The character specified by the char item is printed. The precision is
meaningless, and the # flag has no effect.

The string pointed to by the character pointer item is printed. If a
precision is specified, characters from the string are printed until the
number of characters indicated by the precision has been reached, or
until a NULL character is encountered, whichever comes first. If the
precision is omitted, all characters up to the first NULL character are
printed. The # flag has no effect.

The floating-point conversion characters are:

£

The float or double item is converted to decimal notation in style f—
that is, in the form:

[~]ddd. ddd

where the number of digits after the decimal point is equal to the
precision. If no precision is specified, six (6) digits are printed after
the decimal point. If the precision is explicitly zero, the decimal point
is eliminated entirely. If the # flag is specified, a decimal point always
appears, even if no digits follow the decimal point.

The float or double item is converted to scientific notation in style e;
that is, in the form:

[~]d.ddd exddd

where there is always one digit before the decimal point. The number of
digits after the decimal point is equal to the precision. If no precision is
given, six (6) digits are printed after the decimal point. If the precision
is explicitly zero, the decimal point is eliminated entirely. The exponent
always contains exactly three digits. If the # flag is specified, the result

9-16 Standard Input/Output Library Routines

always contains a decimal point, even if no digits follow the decimal
point.

Same as e above, except that E is used to introduce the exponent
instead of e (style E).

The float or double item is converted to either style f or style e,
depending on the size of the exponent. If the exponent resulting from
the conversion is less than —4 or greater than the precision, style e is
used. Otherwise, style f is used. The precision specifies the number

of significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if it is followed by a digit. If the # flag is
specified, the result always has a decimal a point, even if no digits follow
the decimal point, and trailing zeros are not removed.

Same as the g conversion above, except that style F is used instead of
style e.

The items in the item list can be variable names or expressions. Note that,
with the exception of the s conversion, pointers are not required in the item
list (contrast this with scanf’s item list). If the s conversion is used, a pointer

to a ch

aracter string must be specified.

Examples

Here are some examples of printf conversion specifications and a brief

descrip

hd

h-*d

Y+7.2f

tion of what they do:

Output a signed decimal integer. The field width is just large
enough to hold the value.

Output a signed decimal integer. The left-justify flag (—) and the
blank flag are specified. The asterisk causes a field width value to be
extracted from the item list. Thus, the item specifying the desired
field width must occur before the item containing the value to be
converted by the d conversion character.

Output a floating-point value. The + flag causes the value to have

an initial sign (+ or —). The value is right-justified in a 7-column

field, and has exactly two digits after the decimal point. This 9
conversion specification is ideal for a debit/credit column on a

Standard Input/Output Library Routines 9-17

finance worksheet. (If the + sign is not necessary, use the blank flag
instead.)

Consider the following program, which reads a number from stdin, and prints
that number, followed by its square and its cube:

#include <stdio.h>
main()

{

double x;

printf("Enter your number: ");

scanf ("YF", &x);

printf("Your number is %g\n", x);

printf("Its square is %g\nIts cube is Jg\n", x*x, x*x*x);

}

The g conversion character is used so that the decision about whether or not to
use an exponent is automated. Note that the item list contains expressions to
calculate x squared and x cubed. Also note that the address of the variable is
required in order to read a value for it, but printing requires the variable name
itself.

9-18 Standard Input/Output Library Routines

The following program accepts a decimal integer, then prints the number, its
square, and its cube in decimal, octal, and hexadecimal:

#include <stdio.h>
main()
{

long n, n2, n3;

/* get value */

printf("Enter your number: ");
scanf ("%D", &n);

/* print headings */
printf("\n\n Decimal Octal Hexadecimal\n");
/* do the computation */

n2 = n *x n;
n3 =n *x n *x n;

printf("n itself: %714 %9lo %6lx\n", n, n, n);

printf("n squared: %71da Y9lo %61x\n", n2, n2, n2);

printf("n cubed: %71d %9lo %#6lx\n", n3, n3, n3);
}

Standard Input/Output Library Routines 9-19

Strings are especially easy to manipulate using printf. The following simple
program illustrates this:

#include <stdio.h>
main()
{
char first[15], last[25];

printf("Enter your first and last names: ");
scanf ("%sls", first, last);
printf("\nWell, hello %s, it’s good to meet you'!\n", first);
printf("%s, huh? Are you any relation to that famous\n", last);
printf("computer programmer, Mortimer Zigfelder }s?\n", last);
printf("No, sorry, that was my mistake. I was thinking of\n");
printf("0°%s, not %s.\n", last, last);

}

This program shows how easily strings can be inserted in text. Try variations
of your own.

Input/Output from/to Strings

Two library routines, sscanf and sprintf, enable you to read data from a
string, and write data into a string. These routines behave identically to scanf
and printf, respectively, except that sscanf reads data from a character
string instead of from stdin, and sprintf writes data into a string instead of
on stdout.

Reading Data from a String

sscanf enables you to read data directly from a string. The syntax for an
sscanf call is

sscanf (string, format, [z’tem [, z’tem]]);

where string is the name of a character array containing the data to be read,
and format and item are familiar terms from the previous section. Thus, the

9-20 Standard Input/Output Library Routines

only difference between sscanf and scanf, is sscanf’s string parameter from
which data is scanned.

The following program simply reads a string of your choosing from stdin,
stores it in the character array string, and prints out the first word of that
string:

#include <stdio.h>
main()

{
char string[80], word[25], *gets();

/* get the string */

printf("Enter your string: ");
gets(string);

/* get the first word */

sscanf (string, "%s", word);
printf("The first word is ¥%s.\n", word);

¥

However, sscanf is rarely used in this way. sscanf is; more often used as
a means of converting ASCII characters into other forms, such as integer or
floating-point values. For example, the following program uses sscanf to
implement a five-function calculator:

Standard Input/Output Library Routines 9-21

#include <stdio.h>

main()

{
char 1ine[80], *gets(), op[4];
long n1, n2;
double argl, arg2;

printf("\n> "); /* print prompt (>) and get input */
gets(line);
while(line[0] != ’q’) {
sscanf(line, "%*s¥s", op);
if(op[0] == *+7) {
sscanf(line, "YF/*s)F", &argl, &arg2);
printf("Answer: Jg\n\n", argl+arg2);
} else if(op[0] == *-?) {
sscanf(line, "YF/*s%F", &argl, &arg2);
printf("Answer: ¥%g\n\n", argl-arg2);
} else if(op[0] == ’%7) {
sscanf(line, "/F/*s)F", &argl, &arg2);
printf("Answer: Jg\n\n", argl*arg2);
} else if(op[0] == */’) {
sscanf (line, "}F/4xs%F", &argl, &arg2);
printf("Answer: %g\n\n", argl/arg2);
} else if(op[0] == *¥%’) {
sscanf(line, "%D¥%*s¥%D", &ni, &n2);
while(nl >= n2)

nl -= n2;
printf("Answer: %1ld\n\n", ni);
} else
printf("Can’t recognize operator: J%s\n\n", op);
printf ("> ");

gets(line);

9-22 Standard Input/Output Library Routines

The calculator program accepts input lines having the form

value + value addition
value - value subtraction
value * value multiplication
value / value division
value % value remainder

*

where value is any number, and any operator symbol shown can be used for the
corresponding type of operation. All functions except remainder are handled
internally in floating-point, but values for these functions can be typed with or
without a decimal point. Values for the remainder function must not have a
decimal point. There must be at least one space between each value and the
operator.

Note the use of sscanf in this program. The entire input line is read using
gets. Then, the different parts of the input line are read from line using
sscanf. Notice that the input line is stored as an ASCII string in line, but
portions of it are converted to floating-point or integer values, depending on
the operator.

Examples of valid entries are

15.778 * 3.89
27 4 8

17 + 39.72
etc.

The program terminates when it reads a line beginning with q, such as “quit”.

Two things differ between reading data from stdin and reading data from a
string: First, remember that when you read data from stdin, the data no
longer exists in stdin. This is not true for a string. Also, since the data is
stored in a string, it is always there, even if that data has been read several
times. Second, since the data read from stdin disappears as you read it,

the next read operation from stdin always begins where the previous read
operation terminated. This is not true when you read from a string using
sscanf. Fach successive read operation begins at the beginning of the string.
Thus, if you want to read five words from a string stored in a character array,
you must read them in a single sscanf call. If you try to read one word in five

Standard Input/Output Library Routines 9-23

separate sscanf calls, each call starts reading at the beginning of the string,
and you end up reading the same word five times.

Writing Data into a String

The sprintf routine enables you to write data into a character string. Its
syntax is:

sprintf (string, format, [z’tem [, z'tem]]);

string is the name of the character string into which the data is written.
format and item are familiar terms from the previous discussion of printf. In
fact, the only difference between sprintf and printf is that sprintf writes
data into a character array, while printf writes data on stdout.

The following program acts as a “formatter” for personal data. Suppose that
this program is used to provide a “friendly” user interface to gather personal
data. The data received is then reformatted into a string which is passed along
to another program, such as a data base maintainer. The string contains the
data entered by the user, but in a form using strict field widths for the various
pieces of data. The data base program requires these field widths in order for
the data to be processed correctly, but there is no reason to burden the user
with this requirement. This “formatter” program lets the user enter data in a
convenient form (without the fixed field restrictions imposed by the data base).

9-24 Standard Input/Output Library Routines

#include <stdio.h>
main()

{

b

char name[31], prof[31], hdate[7], curve[3], string[81];
char *format = "%30s%2d%30s%61d%6s%2d%2s";

int age, rank;

long salary;

printf ("\nName (30 chars max): "); /* start asking */
gets(name) ;
while(name[0] != °1’) {

printf("Age: ");
scanf ("}d%*c", &age);
printf("Job title (30 chars max): ");
gets(prof);
printf("Salary (6 digits max, no comma): ");
scanf ("%D%*c", &salary);
printf("Hire date (numerical MMDDYY): ");
gets(hdate) ;
printf("Percentile ranking (omit \"%#%\"): ");
scanf ("%d/*c", &rank);
printf("Pay curve: ");
gets(curve) ;
/* format string */
sprintf(string,format,name,age,prof,salary,hdate,rank,curve);
printf("\n¥s\n", string);

printf("\nName (30 chars max): "); /* start next round */
gets(name) ;

This program asks you questions to obtain typical company information such
as name, age, job title, salary, hire date, ranking, and pay curve. This data is
then packed into a 78-character string using sprintf. The string is printed
on your screen in this program, but in an actual working environment, this
string would probably be passed directly to the data base program. Note that
sprintf’s format is specified as an explicit character pointer. When lengthy,

Standard Input/Output Library Routines 9-25

unchanging formats are used, this is often more convenient than typing the
entire format string, especially if the item list is long.

As an exercise, consider the scanf calls in the previous program. Notice that a
%*c conversion specification is included in the formats of the scanfs which are
reading integer values (age, salary, rank). Why is this necessary? If you aren’t
sure, take the ¥ *cs out of those formats, re-compile the program, run it, and
note its behavior. (Remember that a new-line character terminates the read
operation for %d and %D conversions, and leaves the new-line unread in stdin.)

Input/Output Using Ordinary Files

So far, you have been using library routines which can perform input/output
only by using stdin and stdout. This section introduces routines that enable
you to open existing ordinary files for reading, writing, or both, and to create
ordinary files. Routines that enable you to perform input/output to and from
ordinary files are also described.

Opening Ordinary Files

Before a file can be read from or written to, it must be opened. A file is opened
using the fopen library routine. The syntax of an fopen call is:

fopen(filename, type);

where filename is a character pointer to a character string specifying the
name of the file to be opened, and type is a character pointer to a one- or
two-character string specifying the input/output operation for which the file is
opened. The available types are:

r Opens the file for reading at the beginning of the file. The file must
already exist, or an error occurs.

W Opens the file for writing at the beginning of the file. If the file exists,
its previous contents are destroyed. If the file does not exist, it is
created.

a Opens the file for writing at the end of the file (appends data to the end
of the file). If the file does not exist, it is created for writing.

9-26 Standard Input/Output Library Routines

r+ Opens the file for both reading and writing, starting at the beginning of
the file. The file must already exist, or an error occurs.

W+ Opens the file for both reading and writing, starting at the beginning of
the file. If the file already exists, its previous contents are destroyed. If
the file does not exist, it is created.

at Opens the file for both reading and writing, starting at the end of the
file. If the file does not exist, it is created.

When a file is opened for an append operation (type a or a+), it is impossible
to overwrite the existing file contents. fseek can be used to reposition the file
pointer to any position in the file, but when output is written to the file, the
pointer is disregarded. When the append operation (which begins at the end of
the existing file) is completed, the file pointer is repositioned to the end of the
appended output.

In exchange for a filename and a type, fopen opens a “pathway” between your
program and the file. This “pathway” is called a stream. If you open the file
for reading, then the stream provides one-way data transfer from the file to
your program. If you open the file for writing, then data transfer flows from
your program to the file. Finally, if the file is opened for both reading and
writing, the resulting stream is bi-directional.

fopen also associates a buffer with the stream. This gives the stream the
ability to store a small amount of data. By default, the capacity of the buffer is
equal to _DBUFSIZ bytes, where _DBUFSIZ is a constant, defined in <stdio.h>
as 8192.

The buffer size can be increased, decreased, or set to zero by using setbuf or
setvbuf. If the buffer size is allowed to remain at default size, a maximum of
BUFSIZ bytes of data can be present on the stream at any given time. If the
buffer size is reduced to zero, then the stream can transfer only one byte at a
time.

When opening a file for both reading and writing (r+), be sure to use fflush

or £seek when switching from reads to writes (or vice versa) because,

otherwise, buffering can become corrupted. For example, if a program has

written to a file repeatedly and you want to start reading from the file at the 9
current file pointer, use ££1lush to flush the output buffer before reading.

Standard Input/Output Library Routines 9-27

Since fopen takes care of all the intricacies of building a stream and allocating
a buffer, all you need to know is how to find your end of the stream. fopen
provides you with this information by returning to you a value called a

file pointer (often called a stream pointer). A file pointer “points” to the
newly-created stream, and keeps track of where the next input/output
operation takes place (in the form of a byte offset relative to the beginning of
the associated buffer).

Once you have a file pointer in your possession, you need never refer to the
open file by its name again. A file pointer provides access to all the information
needed by other standard input/output routines to read from or write to the
file.

The following program fragment shows how the fopen routine is used:

#include <stdio.h>
main()
{

FILE *fp;

fp = fopen("/users/tom/bin/datafile", "r");
if(fp == NULL) {
printf("Can’t open datafile.\n");
exit(1);

}

This fopen call, if successful, opens /users/tom/bin/datafile for reading. The
file pointer name returned by fopen is stored in fp. Note that fp’s value is
checked to see if it is NULL. This is because fopen returns a NULL pointer
if the indicated file cannot be opened. It is good practice to check the value
of a file pointer because this is the only error indication facility that fopen
provides.

The previous example also introduces a new type declaration, FILE. The FILE
declaration is defined in <stdio.h>. In the example above, it defines fp as a
variable containing a file pointer. Note that explicit declarations of functions
returning file pointers is unnecessary because <stdio.h> declares all such
functions for you.

9-28 Standard Input/Output Library Routines

Before moving on, keep in mind that several things can stop you from
successfully opening a file. First, HP-UX limits the number of files
simultaneously open in a process (the limit for your system is specified in the
System Administrator Manual supplied with your system). Remember that
stdin, stdout, and stderr are automatically opened for you, so unless you
close these files, the maximum you can explicitly open is three fewer than

the system limit. Second, you must have permission to open the file for the
particular type you have specified (this permission is granted or denied by the
file’s mode). Third, trying to open a non-existent file using type r or r+ always
fails. Fourth, if filename is specified incorrectly, is a non-existent directory
name, or contains an intermediate component that is not a directory, the open
fails. This is not a complete list, but gives you several common reasons why an
attempt to open a file might fail.

fclose

fclose flushes the buffer associated with the specified stream, and, if the
buffer was allocated automatically by the standard input/output system, frees
the space allocated to that buffer. The stream is then closed, breaking the
connection between your file pointer and the stream.

You may wonder why some example programs in this chapter open files but
never explicitly close them. There are two reasons why this is permissible:

m First, all programs in this chapter that open files end with a call to exit.
The exit system call automatically performs an fclose for every open file in
that process.

m Second, when a program is compiled with cc (or fc, or pc), an exit call is
automatically compiled into your code.

Keep in mind, however, that it is generally bad programming practice to rely
on the system to close files. A program that explicitly opens a file should
also explicitly close the file. If this is inconvenient, a program should at least
include an exit call at each termination point in the program.

Standard Input/Output Library Routines 9-29

Single-Character Input/Output

Now that you know how to open files and obtain file pointers, you have a whole
new set of input/output routines at your disposal, enabling you to perform all
kinds of input/output operations. In fact, there are about three times as many
available routines that utilize file pointers as there are routines that are limited
to stdin and stdout only!

In this section, only those routines that read or write one character at a time
are discussed. These routines are getc, putc, fgetc, and fputc. getc and
putc are macros defined in <stdio.h> that respectively read and write a single
character on the specified stream. Syntax is as follows:

getc(stream) ;

putc(e, stream) ;

where stream is a file pointer obtained from fopen, and ¢ is a variable of type
char (or int) indicating the character to write on the indicated stream.

9-30 Standard Input/Output Library Routines

Here is a simple version of the HP-UX cat command written using these
routines:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

int c;

FILE *xfp;

if(arge !'= 2) {
printf("Usage: cat file\n");
exit(1);

+

fp = fopen(argv[i], "r");

if(fp == NULL) {
printf("Can’t open ’%s.\n", argv[il);
exit(1);

}

while((c = getc(fp)) !'= EOF)
putc(c, stdout);
putc(’\n’, stdout);

exit(0);
}

This program accepts a single argument which is assumed to be the name of
a file whose contents are to be printed on the user’s terminal. The specified
file is opened for reading, and the resulting file pointer fp is used in getc to
read a character from the file. Each character read is written on stdout using
putc (note that stdout, as well as stdin and stderr, are perfectly legal file
pointers). The reading and writing loop is terminated when the constant EOF
(defined in <stdio.h>)is returned from getc, indicating that the end of the
filesize has been reached.

Standard Input/Output Library Routines 9-31

Note that getc and putc can be made to behave exactly like the getchar and
putchar routines discussed earlier by specifying the appropriate file pointer. In
other words,

getc(stdin);
is identical to
getchar();
and
putc(c, stdout);
is identical to
putchar(c) ;
Thus, the putc call in the previous program could just as easily have been:
putchar(c);

without altering the behavior of the program. However, if the destination of
the data is somewhere other than the user’s terminal, the flexibility of putc is
required. Take, for example, the following program, which is a simple version of
the HP-UX cp command:

9-32 Standard Input/Output Library Routines

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

int c;

FILE *from, *to;

if(arge '= 3) {
printf("Usage: cp fromfile tofile\n");
exit(1);

by

from = fopen(argv[i], "r");

if(from == NULL) {
printf("Can’t open %s.\n", argv[i]);
exit(1);

¥

to = fopen(argv[2], "w");

if(to == NULL) {
printf("Can’t create %s.\n", argv[2]);
exit(1);

+

while((c = getc(from)) '= EOF)
putc(c, to);

exit(0);
T

This program accepts two arguments. The first is the name of the file to be

copied, and the second is the name of the file to be created. The first file is

opened for reading, and the second file is created for writing. The data from
the first file is then copied directly to the newly-created file.

The fgetc and fputc routines are actual functions, not macros. Their syntax

and usage is identical to getc and putc. However, here are some distinctions 9
between the macro and function versions of these routines to help you decide

which to use:

Standard Input/Output Library Routines 9-33

m A function call takes time, since the function call still exists at run time. A
macro call, however, takes no time at all, because the macro call is replaced
with the actual code making up the macro during compilation, before run
time. Thus, generally speaking, programs containing macros run faster than
programs containing the equivalent function calls.

m A function’s code is localized in one section of the program. Each function
call causes a jump to that section to execute the function. A macro call,
however, is replaced with its code everywhere that macro call appears. Thus,
programs containing macro calls generally require more space than programs
containing the equivalent function calls.

m The address of a function can be passed as an argument, but the address of a
macro call cannot.

Given these guidelines, decide which routines to use based on your own
constraints.

Character Push-Back

The ungetc routine enables you to push back a single character onto an input
stream. This character is then returned by the next getc call (or equivalent).

ungetc’s syntax is as follows:

ungetc(c, stream) ;

where ¢ is the character to be pushed back, and stream is the input stream
where the push-back is to occur. Note that ¢ must be the character that was
last read from stream.

The following program simply reads one character from stdin, pushes it back
onto stdin, re-reads the character, and checks to make sure that this character
and the character originally pushed back are the same. A message is printed on
stdout stating the outcome of the comparison.

9-34 Standard Input/Output Library Routines

#include <stdio.h>
main()
{

int c1, c2;

cl = getchar();
ungetc(cl, stdin);
c2 = getchar();

if(cl == c2)
printf("They’re the same!\n");
else

printf("Oops! They’re different!\n");
+

One character of push-back is guaranteed as long as something has been

read from the stream prior to the push-back attempt, and provided that

the stream is buffered. More characters could possibly be pushed back, but
determining exactly how many characters of push-back you can safely perform
is quite possibly not worth the effort. However, for completeness, the following
statement is included as a method for determining the number of characters of
push-back available at any given time:

numpb = ftell(stream) % BUFSIZ + 1;

where ftell is a function discussed in a later section, stream is a file pointer,
and BUFSIZ is a constant defined in <stdio.h> containing the size of the
buffer in bytes. After execution, numpb contains the number of characters of
push-back available at that time.

String Input/Output

The fgets and fputs routines enable you to read or write strings from or to
specified streams. Their syntax is:

fgets(string, n, stream);

fputs(string, stream) ; 9

where string is a pointer to a character string, and stream is a file pointer to
the input or output stream.

Standard Input/Output Library Routines 9-35

fgets reads a character string from the specified stream and stores it in

the character array pointed to by string. fgets reads n—1 characters, or

up to a new-line character, whichever comes first. If a new-line character

is encountered, it is retained as part of the string (contrast this with gets,
which replaces the new-line with a NULL character). fgets appends a NULL
character to the string.

fputs writes the character string pointed to by string on the specified stream,
stopping when a NULL character is encountered. fputs does not append a
new-line character to the string when it is written. This is because fputs is
intended for use with fgets, which incorporates a new-line character into the
string if a new-line is encountered in the input.

9-36 Standard Input/Output Library Routines

The cp program written earlier can be re-written using fgets and fputs:

#include <stdio.h>
main(argc, argv)
int argc;

char *argv[];

{

}

char ¢, line[2568], *fgets();
FILE *from, *to;

if(arge != 3) {
printf("Usage: cp fromfile tofile\n");
exit(1);

}

from = fopen(argv[i], "r");

if (from == NULL) {
printf("Can’t open %s.\n", argv[il);
exit(1);

+
to = fopen(argv[2], "w");
if(to == NULL) {

printf("Can’t create %s.\n", argv[2]);
exit(1);

3

while(fgets(line, 256, from) != NULL)
fputs(line, to);

exit(0);

This program functions exactly like the previous version of cp above. Note
that fgets’s return value is compared to NULL in the while loop, since fgets
returns the NULL pointer when it reaches the end of its input.

Standard Input/Output Library Routines 9-37

This program can easily be converted to a simple cat command. It only
requires four changes. Can you see what they are? First, change the arge
comparison such that it reads

if(arge !'= 2)

(You might also want to change the associated usage message!) Second, remove
the to file pointer, since you don’t need it anymore. Third, remove the block of
code which uses fopen to open the new file, and assigns a value to to. Fourth,
change the fputs call such that it reads:

fputs(line, stdout);
Here’s the new cat command:

#include <stdio.h>
main(argc, argv)

int argc;
char *argv([];
{

char c, line[256], *fgets();
FILE *from;

if(arge < 2) {
printf("Usage: cat file\n");
exit(1);

¥

from = fopen(argv([1], "r");

if(from == NULL) {
printf("Can’t open %s.\n", argv[1]);
exit(1);

}

while(fgets(line, 256, from) != NULL)
fputs(line, stdout);

exit(0);

9-38 Standard Input/Output Library Routines

Formatted Input/Output

Just as there are versions of scanf and printf which perform string
input/output, so there are versions which enable input/output using files.
fscanf enables you to read data of all types from a specified stream, and
fprintf provides the capability of writing data on a stream. Their syntax is:

fscanf (stream, format, [ﬁenz{, ﬁenm]...]);

fprintf (stream, format, [ﬁenz[, denﬂ ...]);

stream is a file pointer to an open stream. format and stem should be familiar
terms from previous discussions.

The following program illustrates the use of the fscanf and fprintf routines:

#include <stdio.h>
main(argc, argv)

int argc;
char *argv[];
{

int count = 0;
FILE *file;

if(arge '= 2) {
fprintf(stderr, "Usage: wdcnt filename\n");
exit(1);

}

file = fopen(argv[1i], "r");
if(file == NULL) {
fprintf(stderr, "Can’t open %s.\n", argv[i]);

exit(1);
}
while(fscanf(file, "Y%*xs") !'= EOF)
count++; 9
printf("Number of words found: %d\n", count);
exit(0);

Standard Input/Output Library Routines 9-39

This program, named wdent (for “word count”), counts the number of “words”
in the file specified as its only argument. A word is defined as a string of
non-space characters.

Note how fprintf is used in this program. You learned in a prior discussion
that stderr is typically used to output error messages or warning statements.
In this program, fprintf is used to direct error messages to stderr. You don’t
lose anything by doing this, since data written on stderr appears on your
terminal by default. However, you gain some important flexibility. Now that
error output is written on a different stream than normal output, the error
output (or the normal output) can be redirected to another destination. For
example, invoking the previous program as

wdent filel &2> errmsgs

causes all output arising from erroneous conditions to be collected in the file
errmsgs. For the wdent program, this is somewhat trivial, since the program
terminates upon any error. However, for programs which output any number of
warnings without terminating, this is a very useful capability. Not only does it
keep normal, desired output from getting cluttered up with error messages, but
it enables you to save output for later examination at your leisure. Thus, it is
good programming practice to write error messages and warnings on stderr,
and use stdout (or whatever your destination file is) to output normal data.

Binary Input/Output

The routines described in this section deal with data in its binary form; that is,
the data is never converted to ASCII for user viewing. These routines are used
to transfer raw data between two points, such as from a variable to a data file,

Or vice versa.

Note The alignment of members within structures can differ from
one architecture to another. Thus, binary input/output can
create data file incompatibilities between architectures. In C,
you can get around such alignment problems with alignment
pragmas. For details on the use of these pragmas, see the C
language documentation for your system.

9-40 Standard Input/Output Library Routines

Two routines, getw and putw, are used to read or write an integer word (an
int) to or from a stream, respectively. Their syntax is:

getw(stream) ;

putw(w, stream);

where stream is a file pointer to the input or output stream, and w is the
integer word to be output by putw.

The following program “sorts” an existing data file containing raw integer
data. The program divides this data file into two new data files; one containing
integer data whose absolute value is less than or equal to 32767, the other
containing data whose absolute value is larger than 32767.

Standard Input/Output Library Routines 9-41

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{
int word;
FILE *dfile, *datale, *datagt;

if(arge !'= 2) {
fprintf(stdérr, "usage: intsort filename\n");
exit(1);

}

dfile = fopen(argv[i], "r");

if(dfile == NULL) {
fprintf("Can’t open ¥s.\n", argv[i]);
exit(1);

¥

datale = fopen("dfle", "w");

if(datale == NULL) {
fprintf(""Can’t create dfle file.\n");
exit(1);

}

datagt = fopen("dfgt", "w");

if (datagt == NULL) {
fprintf("Can’t create dfgt file.\n");
exit(1);

¥

while((word = getw(dfile)) != EQOF) {
if(word <= 32767 && word >= -32767)

putw(word, datale);
else
putw(word, datagt);
}
exit(0);
}

This program reads a word from the specified data file. If its absolute value
is less than or equal to 32767, the word is written on a file called dfle in the

9-42 Standard Input/Output Library Routines

user’s current directory. Otherwise, the word is written on a file called dfgt in
the current directory.

Note that this program works only on machines that use four-byte integers.
Also, the comparison between word and the constant EOF is faulty, since EOF
is defined to be —1, a valid integer. The section entitled Stream Status Inguiry
Routines describes standard input/output routines which fix this problem.

Both oi these routines transier four bytes at a time. Again, there is 1o
ASCII conversion associated with these routines, so if you attempt to print
the contents of a file containing integer data output by putw, you will get
meaningless results. Note that it makes little sense to input binary data from
stdin, as in

getw(stdin);

unless stdin is redirected from a file containing binary data. Using getw to
read data from your keyboard is futile. If you type in a valid-looking integer,
like “1728”, getw reads the ASCII values of those characters and stores them as
an integer. It is unlikely that ever get what you intended using such a method.

Two other routines, called fread and fwrite, provide much more flexible
binary data input and output. Their syntax is:

fread((char *)ptr, sizeof Ckpir), nitems, stream) ;

fwrite((char *)pitr, sizeof (xpir), nitems, stream);

where ptr is a pointer to the beginning of a block (array) of data. This
argument is cast as a character pointer because these routines expect a pointer
of this type. The second argument specifies the number of bytes per unit of
data (four bytes per int, one byte per char, x bytes per struct, etc.). The

C operator sizeof is usually used to obtain this value. The third argument,
nitems, is an integer specifying the number of units of data to read or write.
For example, if pir points to the beginning of a structure, sizeof (*pir) tells
how many bytes make up that structure, and nitems tells how many structures
to read. Actually, the second and third arguments above can be reversed in
the argument list with no ill effects, because internally these routines simply
multiply the two integers together to obtain the total number of bytes to read. 9
Finally, stream is a file pointer to the input or output stream.

Standard Input/Output Library Routines 9-43

As an example, suppose you use a program to keep track of certain employee
data where each employee is to be described in a single structure. Here is a
simple program to do that:

#include <stdio.h>
struct emp {

char name[40]; /* name */

char job[40]; /* job title */

long salary; /* salary */

char hire[6] /* hire date */

char curve[2] /* pay curve */

int rank; /* percentile ranking */
}
#define EMPS 400 /* no. of employees */
main()
{

int items;

struct emp staff[EMPS];
FILE *data;

data = fopen("/usr/lib/employees/empdata"”, "r");
if(data == NULL) {
fprintf(stderr, "Can’t open employee data file.\n");
exit(1);
¥

items = fread((char *)staff, sizeof(staff[0]), EMPS, data);
if(items '= EMPS) {

fprintf (stderr, "Insufficient data found.\n");

exit(1);
}

fclose(data);
archive("/usr/lib/employees/empdata”);

/* Employee information processing goes here. */

.processing goes here. */

9-44 Standard Input/Output Library Routines

/* Processing is done. Write out new employee records. */

data = fopen("/usr/lib/employees/empdata", "w");

if(data == NULL) {
fprintf(stderr, "Can’t create new employee file.\n");
exit(1);

+

items = fwrite((char *)staff, sizeof(staff[0]), EMPS, data);
if(items !'= EMPS) {

fprintf(stderr, "Write error!\n");

exit(1);
T

exit(0);
¥
archive(filename)
char *filename;
{
.processing goes here. */

3

This program reads the employee information contained in the binary file
Jusr/lib/employees/empdata. The data in this file consists of concatenated
streams of bytes describing each employee of a certain 400-employee company.
The bytes are written such that, when read correctly, the bytes correspond
exactly with the emp structure defined in the program. The staff array is an
array of structures containing one structure for each employee.

In the fread call, the sizeof (staff[0]) expression returns the number

of bytes in the emp structure. Since the same number of bytes are in each
employee structure, any element of the staff array could have been specified
as the sizeof argument; staff [0] is used in this example. (By counting the
number of bytes in each structure member, you can get an approximation of
the number of bytes returned by the sizeof operator: 40 + 40 + 8 + 6 + 2
+ 4 = 100 bytes. This may vary due to padding performed by a programming
language, or by machine architecture.) Specifying EMPS as the nitems
argument tells fread to read 400 such structures. Thus, 100 x 400 = 40000

Standard Input/Output Library Routines 9-45

bytes are read, filling in the information for the members of each structure
contained in the staff array.

The archive function is not shown here, but simply saves the old employee
information in empdata in an employee information archive of some kind. After
the information is archived, the empdata file is overwritten with the new,
updated employee information.

A new routine, called fclose, is introduced here. fclose simply closes the
stream associated with the file pointer specified. This is necessary in order
to re-open the file for writing. Once it is open for writing, fwrite is used to
overwrite its previous contents with the new data.

One final note about these two routines: they return the number of items of
data which have been read or written. Thus, you can compare this number
with whatever you specified for nitems to see if everything you wanted read or
written actually was. This return value is used twice in the above program to
flag probable read and write errors.

The fread and fwurite routines can be made to read any type of data. The
following examples show various fread calls used to read different types of
data:

m to read a long integer:

long nint;
fread((char *)&nint, sizeof(nint), 1, stream);

m to read an array of 100 long integers:

long nint[100];
fread((char *)nint, sizeof(nint[0]), 100, stream);

m to read a double precision floating-point value:

double fpoint;
fread((char *)&fpoint, sizeof(fpoint), 1, stream);

m to read an array of 50 floating-point values:

float fpoint[50];
fread((char *)fpoint, sizeof(fpoint[0]), 50, stream);

To get the equivalent fwrite calls, just substitute “fwrite” in place of “fread”
in the previous examples. You can see how much more flexible fread and

9-46 Standard Input/Output Library Routines

furite are than getw and putw. Whereas getw and putw are limited to
reading or writing a single four-byte integer per call, fread and fwrite can be
made to read or write any number of variables of any type.

Stream Status and Control Routines

This section discusses standard input/output routines which enable you to

m determine whether or not an error has occurred on an open stream (feof,
ferror, clearerr)

m re-position the location of the next input/output operation on an open
stream (rewind, ftell, fseek)

m control various attributes of an open stream, such as buffering, flushing, etc.
(fclose, setbuf, fflush, freopen)

m convert a file pointer to a file descriptor, and vice versa (fileno, fdopen)

Stream Status Inquiry Routines

This section describes three routines, feof, ferror, and clearerr, which
enable you to determine the status of an open stream at any given time.

feof is a macro defined in <stdio.h> which returns a non-zero value if the
end-of-file has been reached on an input stream. Its syntax is:

feof (stream) ;

Do you remember the example program which illustrated the use of getw and
putw? It was noted that comparing getw’s return value to the constant EOF

was faulty, because getw returns an integer, and EOF is defined to be a valid

integer (—1). How then do you determine if end-of-file has been reached when
routines like getw are being used? You use feof.

Standard Input/Output Library Routines 9-47

The example program for getw and putw can be changed to use feof:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{
int word;
FILE *dfile, *datale, *datagt;

if(arge !'= 2) {
fprintf(stderr, "usage: intsort filename\n'");
exit(1);

¥

dfile = fopen(argv[1i], "r");

if(dfile == NULL) {
fprintf("Can’t open ¥s.\n", argv[i]);
exit(1);

}

datale = fopen('dfle", "w");

if(datale == NULL) {
fprintf("Can’t create dfle file.\n");
exit(1);

}

datagt = fopen("dfgt", "w");

if (datagt == NULL) {
fprintf("Can’t create dfgt file.\n");
exit(1);

}

for(5;) {
if((word = getw(dfile)) != EOF) {
if (word <= 32767 &% word >= -32767)
putw(word, datale);
else
putw(word, datagt);

9-48 Standard Input/Output Library Routines

} else {

if (feof (dfile))
break;
else
putw(word, datale);
¥
¥
exit (0);

by

An infinite loop is set up around the getw/putw process. Whenever getw
returns an integer equal to EOF, feof is used to find out if end-of-file has been
reached. If it has, the loop (and the program) terminates; if not, the integer is
written on dfle, and the loop continues.

ferror is a routine which examines the specified stream to determine whether
or not a read or write error has occurred. Its syntax is

ferror (stream) ;

ferror, like feof, is intended to clarify ambiguous return values from standard
input/output routines. Actually, only getw and putw require the use of ferror
to determine if an error has occurred. Both of these routines return EOF on
end-of-file or error. Since these routines deal with integer data, however, you
need feof and ferror to determine if the EOF returned actually indicated an
error or an end-of-file, or if it’s just a —1.

If an error has occurred on a stream, ferror returns a much non-zero value.

Whenever an error occurs on an open stream, a flag is set to indicate the

error. It is this flag that ferror checks to determine whether or not an error

has occurred. This flag is not reset when it is checked. Thus, if an error

has occurred, the error flag for that stream remains set. This could lead to

misleading information if an ferror call indicates that an error has occurred,

when in reality the error occurred long ago. The clearerr routine clears {or

resets) the error indication flag for the specified stream. This routine should

be used whenever an error has been indicated, so that the same error is not 9
indicated at a later time. clearerr’s syntax is:

clearerr(stream) ;

Standard Input/Output Library Routines 9-49

Because ferror and clearerr are used infrequently in typical programs, no
examples are given specific to their use. The feof example above illustrates
the general scenario in which all three of these routines are used.

Repositioning Stream Input/Output Operations

There are three routines, rewind, ftell, and fseek, which enable you to move
the location of the next input/output operation on an open stream.

Its syntax is

rewind(stream) ;

For example, suppose a particular application program can put a password on
a data file it uses. This password is stored in encrypted form on the first line of
the file. The line is recognized as a password line if the first two characters are
“¥P”, If the file has no password line, then access to the file is unrestricted. If
a password line is found, the user is prompted for the password before access is
permitted. The following code can be used to look for a password line:

9-50 Standard Input/Output Library Routines

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{
FILE *pswd;
char line[256];

if(arge '= 2) {
fprintf(stderr, "Usage: getpswd file\n");
exit (1) ;

}

pswd = fopen(argv[1i], "r");
if(pswd == NULL) {
fprintf(stderr, "Can’t open %s.\n", argv[1i]);
exit(1);
}

fgets(line, 256, pswd);
if(line[0] == ’x’ && line[1] == ’P’) {

/* ask for and check password */

} else
rewind(pswd) ;

./* application program goes here */s

exit(0);
}

If the first two characters of the first line are *P, then code is executed which

asks for and checks a password. However, if the first line is not a password line,

the file is assumed to be unprotected, and the line just read is probably part of

the data. Thus, the file must be rewound so the data contained in the first line 9
is available to the application program.

Standard Input/Output Library Routines 9-51

The ftell routine returns a long integer specifying the current position of the
next input/output operation on an open stream. This position is expressed as
a byte offset relative to the beginning of the open file. Its syntax is as follows:

ftell (stream) ;
The fseek routine enables you to re-position the next input/output operation
on an open stream to any location you wish. Its syntax is:

fseek(stream, offset, ptrname) ;

where stream is a file pointer to the open stream, offset is a long integer
specifying the number of bytes to skip over, and ptrname is an integer
indicating the reference point in the file from which offset bytes are measured.
The possible values for ptrname are:

0 Move offset bytes from the beginning of the file.
1 Move offset bytes from the current position in the file.
2 Move offset bytes from the end of the file.

offset can be either negative or positive, indicating backward or forward
movement in the file, respectively.

The following program illustrates the use of the ftell and fseek library
routines. The program prints each line of an n-line file in this order: line 1,
line n, line 2, line n—1, line 3, ... from the beginning of the file.

9-52 Standard Input/Output Library Routines

#include <stdio.h>
main(argc, argv)

int argc;
char *argv[];
{

char line[256];
int newlines;
long front, rear, ftell();

FILE *fp;
front = O;
rear = 0;

if(arge < 2) {
fprintf(stderr, "Usage: print filename\n");
exit(1);

}

fp = fopen(argv[i], "r");

if(fp == NULL) {
fprintf(stderr, "Can’t open ¥%s.\n", argv[1]);
exit(1);

¥

newlines = countnl(fp) % 2;

fseek(fp, 0, 2);
rear = ftell(fp);

while(front < rear) {

fseek(fp, front, 0);
fgets(line, 256, fp);
fputs(line, stdout);
front = ftell(fp);
findnl(fp, rear);

rear = ftell(fp);
if(newlines == 1) {

if(rear <= front)

Standard Input/Output Library Routines 9-53

break;
}
fgets(line, 256, fp);
fputs(line, stdout);
}

exit(0);
¥

countnl(fp)
FILE *fp;
{
char c;
int count = 0;

while((c = getc(fp)) != EOF) {

if(c == ’\n’)
count++;
}

rewind(fp);
return{count) ;

3

findnl(fp, offset)
FILE *fp;

long offset;

{

char c;

fseek(fp, (offset-2), 0);
while((c = getc(fp)) != ’\n’) {

fseek(fp, -2, 1);

}
X

9-54 Standard Input/Output Library Routines

This program uses ftell and fseek to print lines from a file starting at the
beginning and the end of the file, and converging toward the center. The
countnl (count new-lines) function counts the number of lines in the file so
the program can decide whether or not to print a line in the final loop (this
prevents the middle line being printed twice in files with an odd number of
lines). The findnl (find new-line) function seeks backwards in the file for the
next new-line. When found, this positions the next input/output operation
such that fgets gets the next line back from the end of the fiie.

Note the use of fseek in this program. All three types of seeks are represented
here. The first £seek of the program is done relative to the end of the file. All
other fseeks in the main program are done relative to the beginning of the file.
Finally, findnl contains an fseek which is relative to the current position.

Recall the employee data routine, where each employee is described by the
structure:

struct emp {

char name[40]; /* name *x/

char job[40]; /* job title */

long salary; /* salary */

char hire[6]; /* hire date x/

char curve[2]; /* pay curve x/

int rank; /* percentile ranking */

Standard input/Output Library Routines 9-55

That routine simply read in the data for 400 employees all at once. Suppose
you want the program to be selective, so that you can specify (by employee
number, 1 through 400) which employee’s information you want. This is easily
done using fseek. The following program fragment shows how:

int empno, bytes;
long total;

FILE *data;

struct emp empinfo;

/* check for usage error and open data file */

sscanf (argv[1], "%d", &empno);

bytes = sizeof (empinfo);

total = (empno - 1) * bytes;

fseek(data, total, 0);

fread((char *)%empinfo, sizeof(empinfo), 1, data);

/* print out desired information */

In this program, argv[1] contains, via a command-line argument, the
employee number about whom information is desired. This employee number

is converted to integer form using sscanf. The number of bytes per employee
structure is obtained using sizeof and is stored in bytes. The total number

of bytes to skip in the data file is found by multiplying the employee number
(minus one) times the number of bytes per employee structure. This is stored
in total. fseek is then used to seek past the specified number of bytes relative
to the beginning of the data file. This leaves the next input/output operation
positioned at the start of the specified employee’s information. The information
is read using fread.

9-56 Standard Input/Output Library Routines

Note If you have a stream which is open for both reading and
writing, a read operation cannot be followed by a write
operation without one of the following occurring first: a
rewind, an fseek, or a read operation which encounters
end-of-file. Similarly, a write operation cannot be followed by a
read operation unless a rewind or fseek is performed.

Stream Control Routines

The routines described here help you control certain attributes of file pointers.
The routines described are setbuf, setvbuf, fflush, and freopen.

setbuf

setbuf and setvbuf routines enable you to assign your own buffering to an
open stream. setbuf syntax is:

setbuf (stream, buffer);

where stream is a file pointer to an already-open stream, and buffer is a pointer
to a character array or is NULL.

Normally (without user intervention), a standard input/output buffer is
obtained through a call to malloc (see malloc(3C)) upon the first call to

getc or putc (which all input/output routines eventually call). The standard
input/output system normally buffers input/output in a buffer which is BUFSIZ
bytes long. Exceptions are stdout, which, when directed to a terminal, is
line-buffered, and stderr, which is normally unbuffered.

Standard Input/Output Library Routines 9-57

setbuf enables you to change the buffer used for all standard input/output
routines. For example, the following code fragment causes the array bufger to
be used for buffering:

FILE *fp;
char buffer[BUFSIZ];

fp = fopen(argv([1i], "r");

setbuf (fp, buffer);

This fragment shows the correct order of events. First, the file is opened (it
need not be opened for reading), then the buffering is assigned using setpuf.
From that point on, any input. taken from

Buffering can be eliminated altogether by specifying the NULL pointer iy place
of the buffer name, as in

setbuf (fp, NULL);
This causes input or output using fp to be completely unbuffered.

setbuf is limited to buffer sizes of either BUFSIZ bytes or zero. setbuf
assumes that the character array pointed to by “buffer”is BUFSIZ bytes.
Passing setbuf a (non-NULL) pointer to a smaller array can cause severe
problems during operation because the standard input/output routines may
overwrite memory following the end of the too-small buffer.

9-58 Standard Input/Output Library Routines

Note

Using an automatic array as a standard input/output buffer
can be dangerous. Automatic variables are only defined in the
code block in which they are declared. Thus, buffering which
relies on an automatic array is only in effect during the current
code block (main program or function). If you pass a file
pointer to another function, and the stream pointed to by that
file pointer is buffered using an automatic array, then memory
faults or other errors can occur. If you use an automatic array
for stream buffering, the stream should be used and closed only
in the code block containing the array declaration. To avoid
this restriction, use ezternal arrays for buffering:

extern char buffer[BUFSIZ];

setbuf (fp, buffer);

setvbuf

setvbuf, like setbuf, enables you to assign a character array for buffering, but
also provides the means to specify the size of the buffer to be used and the type
of buffering to be done. setvbuf syntax is:

setvbuf (stream, buffer, type, size)

where stream is a file pointer to an already-open stream, buffer is a pointer
to a character array or is NULL, type tells how stream is to be buffered, and
size defines how large the buffer is. Acceptable values for type (defined in
<stdio.h>) include:

_IOFBF
_IOLBF

_IONBF

Input/output is fully buffered.

QOutput is line buffered. The buffer is flushed each time a new
line is written, the buffer is full, or input is requested.

Input/output is completely unbuffered.

Standard Input/Output Library Routines 9-59

If type _IONBF is specified, stream is totally unbuffered. Since no buffer is
needed, values for buffer and size are ignored. For example, the following two
calls, though different, are functionally identical:

setvbuf (fp, NULL, _IONBF, 0)
setbuf(fp, NULL)

When type is _I0FBF or _IOLBF, buffering for stream is determined by buffer
and size. If buffer is not the NULL pointer, it must point to a character array
of size bytes. All buffering of stream is then handled through this array.

FILE *fp;

char buffer [256]

char *filename;

int ... retcode;

fp=fopen(filename, "w'");
retcode=setvbuf (fp, buffer, _IOFBF, 256);
if (retcode !=0) error c);

This fragment buffers stream fp through a 2048-byte buffer that is allocated by
the system.

fflush

The ££f1lush routine forces all buffered data for an output stream to be written
out to that file. Its syntax is:

fflush(stream) ;
where stream is a file pointer to an output stream.

fflush is performed automatically by fclose (and, therefore, by exit).
Therefore, there is often no reason to call £flush explicitly. Situations do arise,
however, where it is necessary to manually £fflush a stream. For example, data
written to a terminal is line-buffered by default, which means that the system
waits for a new-line before writing the buffer onto the terminal screen. This

is often satisfactory, but there are times when you want whatever has been
written so far to be written to the screen without waiting for the new-line. In
such situations, £flush must be used.

9-60 Standard Input/Output Library Routines

Another situation when explicit ££f1lushing is necessary arises whenever you
have written less than a buffer-full of data to a file, and you want the contents
of that file processed by another function or by an HP-UX command. Since
less than a buffer-full of data was written, the data is still in the buffer and

the file is still empty. Performing an fflush causes the buffered data to be
written out to the file, enabling other functions or commands to access the file’s
contents.

Yet another situation in which a program should call £flush explicitly is when
it has opened a stream for both reading and writing (r+). When switching
from writing to reading, the program should call £flush (or fseek) before
reading.

freopen

The final routine in this section is freopen. As its name implies, frebpen
enables you to, in a single step, close a stream and then re-open it with a
different type and/or file name. Its syntax is:

freopen(filename, type, stream);

where filename is a pointer to a character string specifying the name of the
source or destination file for the newly-created stream. type is identical to that
of fopen discussed earlier. stream is a file pointer to the old stream, which is
closed and then re-opened. The name of the file pointer remains the same.

Standard Input/Output Library Routines 9-61

For example, the following program accepts lines of data from your terminal
and writes them into a file. When only a new-line is typed from the terminal,
the program quits reading data, and echoes the contents of the file to the
terminal.

#include <stdio.h>
main()
{
FILE *fp, *oldfp;
char 1ine[80], *fgets();

fp = fopen("datafile", "w");

if(fp == NULL) {
fprintf(stderr, "Can’t create datafile.\n");
exit(1);

}

fgets(line, 80, stdin);
while(line[0] != "\n") {
fputs(line, fp);
fgets(line, 80, stdin);
+

oldfp = freopen('datafile", "r", fp);

if(oldfp == NULL) {
fprintf(stderr, "Can’t re-open datafile.\n");
exit(1);

}

while(fgets(line, 80, fp) != NULL)
fputs(line, stdout);

fclose(fp);
exit(0);
}

Just like fopen, freopen returns a NULL pointer if an error occurs. If
successful, freopen returns the value of the old file pointer.

9-62 Standard Input/Output Library Routines

freopen is commonly used to attach the names stdin, stdout, and stderr
to other files so that the source or destination of these file pointers can be
redirected. For example:

freopen("/usr/lib/data/datafile", "r", stdin);

attaches stdin to the data file fusr/lib/data/datafile. Other functions can
now be called that read from stdin, with the result that their source of input
has been redirected. Similarly,

freopen("/users/bill/archives/cal.a", "a", stdout);

attaches stdout to the indicated file, thus redirecting any future stdout data
to that file.

Converting between File Pointers and File Descriptors

A file pointer is actually a pointer to a structure containing information about
a stream. This information includes a pointer to the beginning of the buffer;
a pointer to the current location in the buffer; a flag specifying whether the
stream is open for reading, writing, or both; a count of the characters in the
buffer; and an integer called a file descriptor.

System calls, such as open and creat, return a file descriptor when a file is
opened. System calls use file descriptors to refer to open files in much the
same way that library routines use file pointers. (The main difference between
using a file descriptor and using a file pointer is that a file descriptor has no
associated buffering.) Since a program often contains both system calls and
library routines, a way of converting between file pointers and file descriptors is
provided.

Standard Input/Output Library Routines 9-63

Note Exercise caution when converting between file pointers and file
descriptors. When converting a file pointer to a file descriptor,
a program should call fflush first.

In general, never convert file pointers to file descriptors unless
you need a file descriptor for a system call that provides a
utility not available in the C library package (such as dup(2) or
fentl(2)). Similarly, file descriptors should never be converted
to file pointers unless a file descriptor has been created by

a system call which provides a utility not provided in the C
library package and you want to assign system buffering to it.

Two routines, fileno and fdopen, provide a way to convert between the two
types of parameters. fileno is a macro which, given a file pointer, returns the
associated file descriptor. Its syntax is

fileno(stream) ;

where stream is a file pointer to an open stream whose associated file descriptor
is desired. Thus,

FILE *fp;

int fd;
fp = fopen("filel", "r");

fd

fileno(fp);

returns the integer file descriptor in fd, associated with the file pointer £p.

9-64 Standard Input/Output Library Routines

The fdopen routine enables you to convert a file descriptor into a file pointer.
Its syntax is:

fdopen (fildes, type);

where fildes is an integer file descriptor obtained from the open, dup, creat, or
pipe system calls. type is the same as that for fopen discussed earlier. Thus,

int fd;
FILE *fp;
:/* obtain fd via appropriate system call */

fp = fdopen(fd, "r");

if(fp == NULL) {
fprintf (stderr, "Can’t convert file descriptor.\n');
exit(1);

converts the file descriptor f£d into a file pointer, fp. fdopen returns a NULL
pointer if the operation fails,

fdopen can be useful for opening a file in a way unlike any of the standard
types of fopen.

include <fcntl.h>

int fd;
FILE *fp
char *filename;

fd= open(filename, O_WRONLY|O_CREAT, 0666);
fp= fdopen(fd,"w");
fseek(£d,0L,2)
This code fragment uses the open system call to open a file for general
write access, then uses fdopen to assign buffering to the file. The constants 9

O_WRONLY and O_CREAT are defined in the include file /usr/include/fcntl.h,
and are described in open(2). (0_WRONLY causes open to open the file for

Standard Input/Output Library Routines 9-65

writing only; 0_CREAT creates the file if it does not already exist.) This
technique opens the file in a way that does not correspond exactly to any of the
available types in fopen: “w” would truncate the current file contents, “r+”
would fail if the file does not already exist (and would allow reading of the

file), and “a” does not permit seeking backwards and rewriting the current file
contents.

Inter-Process Communication

So far, you've been communicating between an active process (your program)
and a passive object (a file). What if you want to communicate between two
active processes? Suppose you want to create a stream between two programs,
with one program (process) pumping data onto the stream, and the other
reading data from the other end. How is this done? The popen routine exists
for this purpose. Its syntax is:

popen(command, type) ;

where command is a pointer to a character string specifying a command line.
type is a pointer to a single-character string which is either "r" (for reading) or
"w" (for writing).

For example, suppose you are writing a program that processes text in some
way. Your program handles normal text perfectly, but unfortunately your
source files are all coded in troff constructs. If you could filter out all the
troff constructs, your program would work fine. This can be done using pipes
and the HP-UX command called deroff, which filters out troff constructs.
All you have to do is make sure that all input to your program passes through
deroff first. Here’s how:

9-66 Standard Input/Output Library Routines

#include <stdio.h>
main()

{
FILE #popen(), *fp;

fp = popen('deroff /users/bin/text/*.tx", "r");

if(fp == NULL) {
fprintf (stderr, “Can’t create stream.\n');
exit(1);

}

/* begin processing text; read text from fp! */

pclose(fp);

popen returns a file pointer to the newly-opened stream. If an error occurs, a
NULL pointer is returned. When successfully executed, popen enables your
program to read from the file pointer fp, the data from which is the standard
output from the deroff command. In this example, deroff is invoked such
that it processes all files in /users/bin/text which end with .tx. Note that
popen’s return value must be declared explicitly because it is not declared in
<stdio.h>.

Because deroff processes stdin if no arguments are given, the following popen
call enables your program to receive filtered text from stdin instead of from
ordinary files:

fp = popen("deroff", “"r");
The result of executing the previous example is exactly the same as if you had
typed

deroff /users/bin/text/*.tx | yourprogram
at your keyboard in response to a shell prompt.

Streams that are opened by popen must be closed with pclose. Thus, the
following call closes the stream created in the previous example:

pclose(fp);

Standard Input/Output Library Routines 9-67

If a type of w is specified instead of r, then the data flow is reversed, with the
result that your program supplies the data for the specified command.

Note that, though popen’s return value is called a file pointer, it is actually
somewhat different than the file pointers you are already familiar with.

In general, a file pointer returned by popen should not be used in those
previously-discussed library routines which modify file pointers returned by
fopen. Also, file pointers opened by popen must be closed with pclose;
fclose is not sufficient.

So far, popen has been characterized as a “filter-maker”, in that streams to

or from a command have been created so that data can be modified in some
way before being passed on. Sometimes, however, popen is used to execute a
command which supplies information valuable to the program. For example,
the find command accepts dot (.) as a valid directory name. Upon receipt
of a dot, find discovers the actual path name of dot by creating a stream from
the pwd command, as follows:

char dir[100];
FILE *popen(), *fp;

fP = popen(“pwd", "I‘“);

if(fp == NULL) {
fprintf(stderr, "Can’t execute pwd.\n");
exit(1);

}

fgets(dir, 100, fp);

pclose(fp);

The preceding example reads the output of the pwd command into the
character array dir, thus supplying the current value of dot. The following
program creates a list of the login names of users currently logged in:

9-68 Standard Input/Output Library Routines

#include <stdio.h>
main()

{

}

char name[10], 1ine[80], *fgets();
FILE *popen(), *fp;

fp = popen("who", "r");

if(fp == NULL) {
fprintf(stderr, "Can’t execute who.\n");
exit(1);

}

printf ("Users currently logged in:\n');

while(fgets(line, 80, fp) != NULL) {
sscanf(line, "%s'", name);
printf("\t¥s\n", name);

}

pclose(fp);
exit(0);

A stream is created for reading from the who command. Each line from who is
read, and the first field from each line is read and printed.

You can have only one popen-ed stream in a process at any given time.

Standard Input/Output Library Routines 9-69

10

Standard Character, String, and Date
Manipulation Routines

This chapter describes standard 1ibc routines that
m convert character case

m classify characters

m manipulate strings

m perform date and time manipulation

Converting between Uppercase and Lowercase

Four routines are documented under conv(3C) which enable you to convert
between upper- and lowercase. They are toupper, tolower, _toupper, and
_tolower.

toupper and tolower are functions which accept a single integer argument

in the range —1 through 255. If the integer taken as a character represents a
lower-case character, toupper returns the corresponding upper-case character.
Similarly, tolower returns the corresponding lower-case character. Both
routines return the argument unchanged if it does not represent a lower-case
character (toupper) or an upper-case character (tolower).

_toupper and _tolower are macros defined in <ctype.h>. _toupper accepts
a single character argument and returns the corresponding upper-case
character. Similarly, _tolower returns the corresponding lower-case character
for its argument. If a character is specified that is not a lower-case character
(_toupper) or an upper-case character (_tolower), the macros simply return
that character. Negative values, however, will not convert properly.

Standard Character, String, and Date Manipulation Routines 10-1

10

10

The macro versions of these routines are faster than the functions. The
function versions are useful when you need to pass such a function to another
routine.

Character Classification

The ctype(3C) entry in the HP-UX Reference lists routines which test their
single argument and return a non-zero value if the test is positive, and 0
otherwise.

All of these routines are macros defined in <ctype.h>. Because the syntax for
all ctype macros is identical, the following example can easily be be modified
for all ctype macros:

for(i=0; array[i] !'= NULL; i++) {
if(islower(array[i]))
array[i] = _toupper(array[i]);

This program fragment shows one way to change all occurrences of a lowercase
character in array to uppercase using the macro _toupper. The call to the
islower macro ensures that only lowercase characters are passed to _toupper.

String Manipulation Routines

String(3C) in the HP-UX Reference manual documents an extensive list of
string manipulation routines enabling you to perform several operations on
character strings. This section describes the string(3C) package in detail.

10-2 Standard Character, String, and Date Manipulation Routines

Concatenating Strings

strcat and strncat enable you to append a copy of one string onto the end of
another. Their syntax is:

strcat(sl, s2);

where s1 and s2 are character pointers to NULL-terminated character
strings. strcat appends the entire string pointed to by s2 (up to the first
NULL character encountered) on the end of string s/. strncat does the
same thing, except that at most n characters are appended to sI (or up to

a NULL character, whichever comes first). (Note that string s2 need not be
NULL-terminated when using strncat if n is less than or equal to the length
of s2.) Both routines return a character pointer to the NULL-terminated
result.

Neither of these routines checks to make sure that there is room in sI for

the additional characters of s2. Thus, to be safe, s/ should always be a
declared array having plenty of space for the additional characters of s2, plus a
terminating NULL character.

Copying Strings

strcpy and strncpy copy one string of characters into another. Their syntax
is:

strcpy(s!, s2);
strcpy(sl, s2);

stroncpy (s, s2, n);

where s2 is a character pointer to the string to be copied, and s! is a character
pointer to the beginning of the string into which the contents of string s! are
copied. strcpy copies the entire string, up to (and including) the first NULL
encountered. strncpy copies up to n characters, or up to (and including)

the first encountered NULL, whichever occurs first. (String s2 need not be

Standard Character, String, and Date Manipulation Routines 10-3

10

NULL-terminated when using strncpy if n is less than or equal to the length
of s2.) Both routines return the value of sf.

The following program uses the strcat routine discussed earlier and strcpy to
build a character string representing the lowercase alphabet, one character at a
time.

#include <stdio.h>

main()

{
int b = ’b’, z = ’2’, i;
char alpha[30], chr[4];

chr[1] = NULL;
strcpy(alpha, "a");
printf("%s\n", alpha);

for(i = b; i <= z; i++) {
chr[0] = i;
strcat(alpha, chr);
printf("%s\n", alpha);

}

The array chr is always going to be a two-character array consisting of the
next character in the alphabet followed by NULL. Thus, the second element

of chr is set to NULL early in the program. The first chr element is then
successively set to the next lowercase character in the for loop, and the
resulting two-character string is concatenated onto the end of the alphabet
assembled so far in alpha. Note the use of strcpy to initialize alpha.
Remember that C transforms one or more characters enclosed in double quotes
into a character pointer to those characters followed by a NULL. Thus, the
strcpy statement above copies the character “a” followed by a NULL character
into alpha.

There are some things to be aware of when using strcat, strncat, strcpy,
and strncpy. These routines all modify string s/ in some way, but none

of them check for into overflow in that string. Therefore, be sure there is
enough room in s! to hold the added or copied characters plus at| terminating
NULL. Also, be sure you use a character array for sI (not just a character

10-4 Standard Character, String, and Date Manipulation Routines

10

pointer), especially when using strcat or strncat. This is because an
explicitly-declared array has sufficient memory allocated to it to contain all

of its elements, but a character pointer simply points to a single location

in memory. Concatenating a string to the end of a string contained in an

array is guaranteed to work, provided the array is large enough. However,
concatenating a string to a string of characters referenced by a simple character
pointer is dangerous, since the concatenated characters could overwrite data in
memory. I'or exampie,

char array[100], *ptr = "abcdef";

strcat(array, ptr);

works fine, since you are guaranteed that 100 storage elements have been set
aside for the array. However,

char *ptrl = "abcdef", *ptr2 = "ghijkl";

strcat(ptrl, ptr2);

is asking for trouble. Although C makes sure that there is enough room for
the initializing strings (“abcdef” and “ghijkl” in this example), there are no
guarantees that there is enough room to add characters to the end of one of
these strings. Therefore, the last fragment could easily overwrite valid data
occurring after the string pointed to by ptri.

Comparing Strings

strcmp and strncmp compare two strings and return an integer indicating the
result of the comparison. Their syntax is:

stremp(sl, s2);

stracmp(sl, s2, n);

where s/ and s2 are character pointers to the. NULL-terminated character
strings to be compared. strcmp compares the entire strings, stopping as soon
as the result is determined. strncmp compares at most n characters of, both
strings (neither string need be NULL-terminated if n is less than or equal

to the length of the shorter string). The integer returned uses the following
convention:

Standard Character, String, and Date Manipulation Routines 10-5

10

<0 s1 is lexicographically less than s2.
=0 sl and s2 are equal.
>0 sl is lexicographically greater than s2.

The following program fragment uses strncmp to analyze the contents of a file
coded with the man macros (see man(7)). It reads each line of the file and
keeps a count of the number of times selected macros are used, and prints a
summary of its findings at the end.

#include <stdio.h>
main(argc, argv)

int argc;
char *argv[];
{

char *fgets(), 1line[100];
FILE *fp;
int nsh, npp, ntp, nrs, nre, npd, nip, nmisc, nlines;

nsh = npp = ntp = nrs = nre = npd = nip = nmisc = nlines = 0;

if(arge '= 2) {
fprintf(stderr, "Usage: count file\n");
exit(2);

}

fp = fopen(argv[1], "r");

if(fp == NULL) {
fprintf(stderr, "Can’t open %s.\n", argv[il);
exit(1);

¥

while(fgets(line, 100, fp) != NULL) {
if(strncmp(line, ".SH", 3) == 0)

nsh++;

else if(strncmp(line, ".PP", 3) == 0)
npp++;

else if(strncmp(line, ".TP", 3) == 0)

10-6 Standard Character, String, and Date Manipulation Routines

ntp++;

else if(strncmp(line, ".RS", 3)
nrs++;

else if(strncmp(line, ".RE", 3)
nre++;

else if(strncmp(line, ".PD", 3)
npd++;

else if(strncmp(line, ".IP", 3)
nip++;

else if(line[0] == ’.?)
nmisc++;

nlines++;

0)

0)

1l
]

0)

0)

b

printf("No. of lines: %d\n\n", nlines);
printf("No. of .SH’s: ¥%d\n", nsh);
printf("No. of .PP’s: %d\n", npp);
printf("No. of .TP’s: %d\n", ntp);
printf("No. of .RS’s: %d\n", nrs);
printf("No. of .RE’s: }d\n", nre);
printf("No. of .PD’s: %d\n", npd);
printf("No. of .PD’s: %d\n", npd);
printf("No. of .PD’s: J%d\n", npd);
printf("No. of .PD’s: %d\n", npd);
printf("No. of .IP’s: %d\n", nip);
printf("No. of misc. macros: %d\n", nmisc);

fclose(fp);
exit(0);
}

In the above program, strncmp is used to compare the first three characters
of each line read. If the first three characters match a particular macro, the
appropriate counter is incremented. If the line begins with “.”, but is not one
of the macros being searched for, the “miscellaneous” counter is incremented.
The total number of lines in the file is also given.

Standard Character, String, and Date Manipulation Routines 10-7

10

Finding the Length of a String

The strlen routine returns an integer specifying the number of non-NULL
characters in a string. Its syntax is:

strlen(s);

where s is a character pointer to the NULL-terminated string whose length is
to be taken. For example, if you execute

len = strlen(string);

then the integer len contains the total number of non-NULL characters in the
string pointed to by string. Thus,

string[len]

points to the terminating NULL in string.

Finding Characters in Strings

The strchr, strrchr, and strpbrk routines enable you to locate a particular
character within a string.

strchr and strrchr return a character pointer to an occurrence of a specified
character in a string. Their syntax is:

strchr(s, ¢);

strrchr(s, ¢);

where s is a character pointer to the string of interest, and ¢ is a variable of
type char specifying the character to search for.

strchr returns a character pointer to the first occurrence of character ¢ in
string s. Similarly, strrchr returns a character pointer to the last occurrence
in string s. Both routines return a NULL if the character does not occur in the
string pointed to by s. For example,

char *ptr, *strchr(), string[lOO];

while((ptr = strchr(string, ’@’) != NULL)
*ptr = #7;

10-8 Standard Character, String, and Date Manipulation Routines

replaces all occurrences of @ in the array string with #, starting from the
beginning of the array and working toward the end. The same operation can
be done using

while((ptr = strrchr(string, ’@’)) '= NULL)
*ptr = '#7;
which replaces all @’s with #’s, starting from the end of the array, working
backward toward the beginning.

The strpbrk routine returns a character pointer to the first occurrence in
string sI of any character contained in string s2, or NULL if none of the
characters in s2 occur in s!. Its syntax is:

strpbrk(si, s2);

For example, suppose you have to read lines of input in which are embedded
numerical data which must be read. For simplicity, assume that the following
conventions are used: '

m Positive numbers do not begin with +.
m Fractional numbers always begin with zero, as in 0.25.

m The first occurrence of a digit in the string signals the beginning of the
number to be read.

Given these rules, the following code fragment does the job:

char 1ine[100], *chrs = "-0123456789", *ptr;
float value;

sscanf (ptr, "f", &value);

The character pointer chrs is initialized to point to a string of characters
which might introduce the embedded number. strpbrk then finds the first
occurrence of one of these characters in line, and returns a pointer to that
location in ptr. Finally, ptr is passed to sscanf, which interprets ptr as if it
were a pointer to the beginning of a string from which input is to be taken.
The number is read correctly because ptr points to the beginning of a number,
and because the 4f conversion terminates at the first inappropriate character.

Standard Character, String, and Date Manipulation Routines 10-9

10

10

Finding Characters Common to Two Strings

The strspn and strcspn routines return an integer giving the length of the
initial segment of string s/ which consists entirely of characters found in string
s2. strcspn is similar, but returns an integer giving the length of the initial
segment of s1 which consists entirely of characters not found in string s2.
Their syntax is:

strspn(sl, s2);

strcspn(sl, s2);
For example, suppose you have the following two strings:
"A tattle-tale never wins."
for string s1, and
" -Aatle"
for s2. Executing
strspn(sl, s2);

with the strings shown returns a value of 14, since the first 14 characters (4
tattle-tale) in s1i all occur in s2.

strcspn(sl, s2);

using the same strings, you get 0, because there is no initial segment of s1
which contains characters not found in s2.

Breaking a String into Tokens

A token is a string of characters delimited by one or more token delimiters.
The strtok routine divides string sI into one or more tokens. The token
separators consist of any characters contained in string s2. Its syntax is:

strtok(sl, s2);

where s is a character pointer to the string which is to be broken up into
tokens, and s2 is a character pointer to a string consisting of those characters
which are to be treated as token separators.

10-10 Standard Character, String, and Date Manipulation Routines

strtok returns the next token from s/ each time it is called. The first time
strtok is called, both s7 and s2 must be specified. On subsequent calls,
however, s! need not be specified (a NULL is specified in its place). strtok
remembers the string from call to call. String s2 must be specified each call,
but need not contain the same characters (token separators) each time.

strtok returns a pointer to the beginning of the next token, and writes a
NULL character into sI immediately following the end of the returned token.
strtok returns a NULL when no tokens remain.

For example, suppose you are reading lines from /etc/gettydefs, which is the
speed table for getty(1M). The lines in this file contain several fields delimited
by hash mark characters (#). Thus, the following code could be used to read
the fields of each line:

int count = 0;
char *delims = "#", *token, *argl, *strtok(), line[256];

argl = line;

while((token = strtok(argl, delims) !'= NULL) {

count++;
printf("field %d: Y%s\n", count, token);
if(count == 1)

argl = NULL;

}

This code makes sure that strtok’s first argument is NULL after the first call.
Also, note that delims did not change from call to call, but it could have. This
greatly increases the power of strtok, since it enables you to change the token
delimiters between calls.

Standard Character, String, and Date Manipulation Routines 10-11

10

10

Date and Time Manipulation

ctime(3C) describes a set of routines which enable you to access the date and
time as maintained by the system clock. This package knows about daylight
saving time, and automatically converts between standard time and daylight
saving time when appropriate. These routines are part of 1ibc.

Most of the ctime routines require the quantity returned by the time system
call (see time(2)), which is the number of seconds that have elapsed since
00:00:00 GMT (Greenwich Mean Time), January 1, 1970.

The ctime routine converts the time(2) value into a 26-character ASCII string
of the form

Fri May 11 09:53:03 1984\n\0

where \n is a new-line character, and \0 is a terminating NULL character.
ctime’s syntax is:

ctime (value) ;

where value is a pointer to a long integer value representing the number of
elapsed seconds since 00:00:00 GMT, January 1, 1970 (as returned by time(2)).
Note that value is a pointer to the quantity returned by time(2), not just the
quantity itself. Using time(2) and ctime, you can write your own simplified
version of the date command:

#include <stdio.h>
main()
{
char *str, *ctime();
long time(), nseconds;

nseconds = time((long *)0);
str = ctime(&nseconds);
printf("%s", str);

}

The rest of the routines in ctime(3C) require the include file <time.h>, which
contains the definition of a structure called tm. This structure is made up of

10-12 Standard Character, String, and Date Manipulation Routines

several variables which contain the various components of the date and time. It
looks as follows:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int +tm_isdst;

}s
The meaning associated with each structure member is:
tm_sec The “seconds” portion of the system’s 24-hour clock time.
tm_min The “minutes” portion of the system’s 24-hour clock time.
tm_hour The “hours” portion of the system’s 24-hour clock time.
tm_mday The day of the month, in the range 1 through 31.
tm_mon ; The month of the year, in the range 0 through 11 (0 =

January).

tm_year The current year — 1900.
tm_wday The day of the week, in the range 0 through 6 (0 = Sunday).
tm_yday The day of the year, in the range 0 through 365.
tm_isdst A flag which is non-zero if daylight saving time is in effect.

The localtime and gmtime routines accept a pointer to a quantity such as
returned by time(2), and fill in the various components of the tm structure.
localtime corrects the time for the local time zone and possible daylight
saving time, while gmtime converts directly to GMT time (this is the time used
by HP-UX). Both routines return a pointer to a structure of type tm which can
be used to access the various components of the tm structure.

For example, the following code fragment assigns values to the tm structure
members for the local time zone:

Standard Character, String, and Date Manipulation Routines 10-13

10

10

#include <time.h>

struct tm *ptr, *localtime();
long time(), nseconds;

nseconds = time((long *)0);
ptr = localtime(&nseconds);

Once this code is executed, you can use ptr to access the different components
of the local time. For example, ptr->tm_mon references the month of the year,
and ptr->tm_wday references the day of the week. (gmtime is used in exactly
the same way, so this example suffices for it also).

The asctime routine converts the time contained in a tm structure into ASCII
representation such as that returned by date(1) and ctime. Its syntax is:

asctime(pir) ;

where pir is a pointer to a structure of type tm whose members have previously
been assigned values with localtime or gmtime, or explicitly by you. asctime
returns a character pointer to the same NULL-terminated 26-character string
as returned by ctime.

asctime provides a way for you to obtain the current time, modify it explicitly
in some way, and then print the result in ASCII form. The date command
shown earlier can be re-written using localtime and asctime:

10-14 Standard Character, String, and Date Manipulation Routines

10

#include <stdio.h>

#include <time.h>

main()

{
long time(), nseconds;
struct tm *ptr, *localtime();
char *string, *asctime();

nseconds = time((long *)0);
ptr = localtime(&nseconds);

/* the user can modify the current time in tm here */

string = asctime(ptr);
printf("}s", string);
}

This program illustrates a rather indirect way to obtain the date, but it does
enable you to modify the date stored in tm before you print it out. If all

you want to do is print the date, the quickest way is to use the time/ctime
combination.

Of all the ctime routines, perhaps the most useful is localtime. It enables you
to break the current time up into chunks which can then be examined for such
applications as personal calendar programs, program schedulers, etc. Many of
the tm values can be used as indices into arrays containing strings identifying
months and days. For example, declaring an external array like

char *month[] = { "January", "February”, "March", "April",
“"May", "June'", "July", "August", "September",
"October", "November", "December"”

};

enables you to use tm_mon as an index into this array to obtain the actual
month name. The same thing can be done with tm_wday if you initialize an
array containing the names of the days of the week. The ctime(3C) package
makes it easy to design programs that depend upon the time or date. Try
creating your own versions of calendar(1), at(1), or even cron(1M)!

Standard Character, String, and Date Manipulation Routines 10-15

11

Standard Math Routines

This chapter describes standard math library routines found in the SVID math
library 1ibm, the POSIX math library 1ibM, and the standard library libec.
The math functions do such things as

m calculate absolute value
m exponentiation

B square roots

logarithms

trigonometric functions

m random number generation

Note For details on floating-point concepts, refer to Series 700/800
HP-UX Floating-Point Guide. That book provides detail on
such topics as the IEEE floating-point standard, exception
handling, and math libraries.

The math.h Header File

To use math routines, a program should usually #include the header file
<math.h>. This file contains type declarations of all the math routines that do
not return an int, and a definition of the constant HUGE. Many math routines
return a “huge” value when an error occurs, so HUGE is set equal to this “huge”
value, enabling a program to check for errors easily.

Standard Math Routines 11-1

11

11

The Math Libraries

Some of the math routines reside in the standard C library, 1ibc, but many
reside in the SVID math library, 1ibm, and the POSIX math library 1ibM.
Therefore, when writing programs that use the routines described here, be sure
to link a program with a math library. For example, to compile a C program
named mprog.c that calls math routines, you could use:

$ cc mprog.c -1m

If your program must be ANSI-compliant, be sure to compile in ANSI mode
and to use the POSIX math library:

$ cc -Aa mprog.c -1M

To determine precisely which library contains a particular math routine, refer
to the HP-UX Reference page that describes the routine.

Note On Series 700/800 systems, faster and more precise versions
of the math libraries reside in the directories /1ib/pal.1
and /usr/lib/pal.1. To link with these libraries, use the
+DA option, as described in the section “Selecting Faster
Libraries” in Chapter 2. These libraries also contain many
useful non-standard functions in addition to the standard ones
described in this chapter (see the HP-UX Floating-Point Guide
for details).

By default, Series 700 compilers automatically link with the
faster PA1.1 libraries because exceptional performance is the
primary concern of Series 700 applications. Since compatibility
is usually the goal of Series 800 applications, Series 800
compilers link with the slower PA1.0 libraries by default.

11-2 Standard Math Routines

Absolute Value Functions

The abs (abs(3C)) and fabs functions (see floor(3M)) return the absolute
value of their integer or floating-point argument, respectively. For example, the

following program calculates integer absolute values until a zero is entered from
the keyboard:

main()
{

int value;

printf("Enter value: ");

scanf ("%d", &value);

while(value !'= 0) {
printf("Absolute value of %d is J%d.\n", value, abs(value));
printf("Enter value: ");
scanf ("}d", &value);

}

exit(0);

T

The floating-point equivalent of the previous program is shown below:

main()

{
double value, fabs();

printf("Enter value: ");
scanf ("%1f", &value);
while(value !'= 0.0) {
printf("Absolute value of }.12g is %.12g.\n",value,fabs(value));
printf("Enter value: ");
scanf ("}1f", &value);
}
exit(0);
¥

Standard Math Routines 11-3

11

11

Power, Square Root, and Logarithmic Functions

This section describes the following five functions, all of which are found under
exp(3M) in the HP-UX Reference:

exp(z) Returns e to the z power.

log(x) Returns the natural logarithm of z (In(z)).
logi10(x) Returns the common logarithm of = (log(z)).
pow(z, y) Returns z to the y power.

sqrt(z) Returns the square root of z.

All functions return double values, and expect double arguments. Since their
syntax is similar, the following logarithm calculator example shows all five of
these functions:

#include <math.h>
main(argc, argv)

int argc;
char *argv([];
{

double value;

sscanf (argv[1], "J1f", &value);
printf("Natural logarithm of %.12g = %.12g\n",
value, log(value));
printf("Common logarithm of %.12g = %.12g\n",
value, loglO(value));
}

This program accepts its single argument, and returns the natural and common
logarithms of that argument.

11-4 Standard Math Routines

11

Trigonometric Functions

A full set of trigonometric functions are provided in the math library. They are
as follows:

sin(z) Returns the sine of the radian argument z.

cos(z) Returns the cosine of the radian argument z.

tan(z) Returns the tangent of the radian argument z.

asin(z) Returns the arc sine of z in the range -pi/2 to pi/2, where —1
<=z <= 1.

acos(z) Returns the arc cosine of zin the range 0 to pi, where open —1
<=z <=1

atan(z) Returns the arc tangent of zin the range -pi/2 to pi/2.

atan2(y, z) Returns the arc tangent of yzin the range -pi to pi.

sinh(z) Returns the hyperbolic sine of the radian argument z.
cosh(z) Returns the hyperbolic cosine of the radian argument z.
tanh(z) Returns the hyperbolic tangent of z.

Figure 11-1 shows a program that uses some of these routines, as well as two
routines from the previous section, to obtain the dimensions and angles of a
right triangle:

#include <stdio.h>
#include <math.h>
main()
{
double sided, sideB, sideC, anga, angb, tempC;
double pi = fabs(acos(-1.));
double torads = pi/180.;
double todegs = 180./pi;
double angc = 90.;

printf("Using the following conventions for sides and angles:\n");
triangle();

printf("\nEnter all known information:\n");

printf("\t4h = ");

Standard Math Routines 11-5

scanf ("%1f", &sided);
printf("\tB = ");
scanf ("), 1f", &sideB);
printf("\tC = ");
scanf ("%1f", &sideC);
printf("\tAngle a = ");
scanf ("1f", &anga);
printf("\tingle b = ");
scanf ("41f", &angb);
if(sideh && sideB && sideC) {
tempC = sqrt(pow(sided, 2.) + pow(sideB, 2.));
if(fabs(sideC - tempC) > 0.001) {
printf("Sides invalid.\n");
exit(1);
+
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;
} else if(sideA && sideB) {
sideC = sqrt(pow(sided, 2.) + pow(sideB, 2.));
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;
} else if(sideB && sideC) {
sided = sqrt(pow(sideC, 2.) - pow(sideB, 2.));
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;
} else if(sideh && sideC) {
sideB = sqrt(pow(sideC, 2.) - pow(sided, 2.));
anga = acos(sideB/sideC) #* todegs;
angh = 90. - anga;
} else if(sided) {
if(anga && angb) {
sideC = sideA/cos(angb*torads);
sideB = sqrt(pow(sideC, 2.) - pow(sided, 2.));
} else if(anga) {
sideC = sideA/sin(anga*torads);
sideB = sqrt(pow(sideC, 2.) - pow(sided, 2.));
angb = 90. - anga,;
} else if(angb) {
sideC = sideh/cos(angb*torads);
sideB = sqrt(pow(sideC, 2.) - pow(sided, 2.));
anga = 90. - angb;

11-6 Standard Math Routines

T else {
printf("Insufficient information.\n");
exit(1);

}

} else if(sideB) {
if(anga && angb) {
sideC = sideB/sin(angb*torads);
sideA = sart(pow(sideC, 2.) - pow(sideB, 2.));
} else if(anga) {
sideC = sideB/cos(anga*torads);
sided = sqrt(pow(sideC, 2.) - pow(sideB, 2.));
angb = 90. - anga;
} else if(angb) {
sideC = sideB/sin(angb*torads);
sidel = sqrt(pow(sideC, 2.) - pow(sideB, 2.));
anga = 90. - angb;

} else {
printf("Insufficient information.\n");
exit(1);

}

} else if(sideC) {
if(anga && angb) {
sided = sideC * cos(angb*torads);
sideB = sideC * sin(angb*torads);
} else if(anga) {
sideA = sideC * sin(anga*torads);
sideB = sideC * cos(anga*torads);
angb = 90. - anga;
} else if(angb) {
sidelA = sideC * cos(angb*torads);
sideB = sideC * sin(angb*torads);
anga = 90. - angb;
} else {
printf("Insufficient information.\n");
exit(1);
}
¥ else {
printf("Insufficient information.\n");
exit(1);

Standard Math Routines 11-7

11

11

printf("\n\tSide
printf("\tSide B
printf("\tSide C

%.2f\t\tAngle a = %.2f degrees\n", sideA, anga);
t.2f\t\tAngle b = %.2f degrees\n", sideB, angb);
%.2f\n", sideC);

I u &=
X<

}

triangle()

{
FILE *fopen(), *tri;
char line[50], *fgets();

tri = fopen("triangle", "r");

if(tri == NULL) {
printf("Cannot open triangle file.\n");
exit(1);

}

while(fgets(line, 50, tri) != NULL)
fputs(line, stdout);
fclose(tri);

Figure 11-1. triangle.c—Get Dimensions of Right Triangle

The triangle function prints out the contents of a file in the current
directory called triangle. The contents of this file should contain an ASCII
approximation of a right triangle:

/1

/|

/|

/ a |

/ I
c/ | B

/ I

/ I

/ I

/b c _|

[__ I_|

A

This triangle made up of slashes, vertical bars, and underscores, shows the
naming convention for the sides and angles. The program then asks for the

11-8 Standard Math Routines

known data; enter a value of zero for those parameters that are unknown. The
dimensions and angles are then calculated based on the data you have supplied.
If there is insufficient information, you are told about it.

The hyperbolic functions are found under sinh(3M) in the HP-UX Reference.

Calculating Upper and Lower Bounds

Two functions, floor and ceil (see floor(3M)), enable you to obtain integers
(returned as doubles) defining an upper and a lower bound for a number or a
series of numbers. floor returns a double precision representation of the the
largest integer which is still not greater than floor’s argument. Similarly, ceil
returns a double precision representation of the smallest integer which is still
greater than ceil’s argument.

The following program returns the floor and ceiling values for the number

specified as its argument:

#include <math.h>
main(argc, argv)

int argc;
char *argv[];
{

double value;

sscanf (argv[1], "%1f", &value);
printf("Floor = jg; Ceiling = Yg\n", floor(value), ceil(value));
}

If you type this in and run it, you see that floor and ceil provide two double
values representing the smallest range in which the numbers used to obtain
that range will fit. For example, if you have a program which reads three
values from a source file, and these values are 4.79, 19.6, and 21.1, you can get
the smallest possible range in which these numbers fit by running floor on
each number (and keeping the smallest floor value), and then running ceil

on each number (and keeping the largest ceiling value). For the above three
numbers, this yields a floor value of 4, and a ceiling value of 22.

Standard Math Routines 11-9

11

11

Calculating Remainders

This section covers two functions, fmod and modf. The fmod function (see
floor(3M)) returns the remainder (in double precision form) resulting from
dividing fmod’s first argument by its second. For example,

fmod(10., 4.)

divides 10 by 4, and returns the remainder (2.0, in this case). The following
program accepts two numbers, divides the first by the second, and displays the
results in a form showing the number of times the divisor goes evenly into the
dividend, and the remainder, if any:

#include <math.h>
main(argc, argv)

int argc;
char *argv[];
{

int result;
double number, div, rem;

sscanf (argv([1], "41f", &number);
sscanf(argv[3], "/1f", &div);

result = number/div;
printf("%g = (%d) (Yg)", number, result, div);
if((rem = fmod(number, div)) != 0.0)

printf(" + %g\n", rem);
}

This program is set up so that it can be invoked in sentence style. If you name
the compiled version of this program “divide”, then you can say

$ divide 33.27 by 11

Since argv[2] is ignored in the code, by is harmless, and the two numbers are
parsed correctly.

11-10 Standard Math Routines

The other function, modf (see frezp(3C)), is not really a remainder function in
the same sense that fmod is a remainder function. In fmod, a division actually
takes place. In modf, however, no division takes place. modf simply accepts a
double value, and splits it into its integer and fractional parts. Syntax is:

modf (value, iptr) ;

where value is the number to be split into two parts, and iptr is a pointer to a
double variable where the integer part of value is to be stored. modf’s return
value is the signed fractional part of value.

The following program shows a way to use modf:

main(argc, argv)

int argc;
char *argv[];
{

double value, iptr, frac, modf();

sscanf (argv[i], "%41f", &value);

frac = modf(value, &iptr);

printf("Integer part: Y%g; Fractional part: Jg\n", iptr, frac);
}

The program accepts one argument, the value, and then prints the integer and
fractional parts of that value. Note that the address of iptr is passed to modf,
because modf expects the address of a double variable where the integer part
can be stored.

Standard Math Routines 11-11

11

11

Calculating A Hypotenuse

The hypot function (see hypot(3M)) returns the square root of the sum of the
squares of its two arguments, yielding the length of the hypotenuse of a right
triangle, or the Euclidean Distance.

Thus, in the previous program which calculated the sides and angles of a right
triangle, the line of code which read

sideC = sqrt(pow(sided, 2.) + pow(sideB, 2.));
could be replaced with

sideC = hypot(sideA, sideB);

thus eliminating some function call overhead.

Generating Random Numbers

The rand and srand routines (see rand(3C)) exist for the generation of random
numbers. rand is the random number generator itself, and srand enables you
to specify a starting point (or seed) for rand.

The following program simply sets up an infinite loop and lets rand run for
awhile (to terminate it, press or its equivalent):

main()

{
unsigned value;
srand(1);
for(;;) o

value = rand();
printf ("Random number is %u\n", value);
sleep(1);

11-12 Standard Math Routines

Note that rand and srand deal only with unsigned integers. If you let this
program run for awhile, you’ll notice that the random values returned are quite
large, and don’t often venture below 1000. If your application requires smaller
random numbers, take the value returned by rand modulo the range desired.

srand initializes the random number generator to a particular starting point.
In the above program, 1 is used, but you can specify any positive integer you
like.

The sleep library routine causes the program to suspend operation for the
number of seconds specified (1, in this case).

Floating-Point Exponentiation Routines

Two routines, frexp and ldexp (see frezp(3C)), are covered in this section.
frexp accepts a double value, and returns two values, x and n, such that

value =z % 2°n

where 2 is a double quantity of magnitude less than 1, and n is an integer
exponent. frexp’s syntax

frexp(value, eptr);

where value is the value to be processed, and epir is a pointer to an integer
variable where the exponent n is to be stored. The quantity z is returned as
frexp’s return value.

Standard Math Routines 11-13

11
The following program accepts a number argument and uses frexp to output
that number’s representation in the form shown above:

main(argc, argv)

int argc;
char *argv[];
{

double value, x, frexp();
int eptr;

sscanf (argv[1], "41f", &value);

x = frexp(value, &eptr);

printf("%g = g * 2°%d\n", value, x, eptr);
¥

ldexp accepts a value of type double and an integer exponent ezp, and returns
a double quantity equal to

valuex 2" exponent

The following program accepts two number arguments, value and exp, and
outputs the result:

main(argc, argv)

int argc;
char *argv[];
{

double value, result, ldexp();
int exp;

sscanf (argv[1], "%1f", &value);

sscanf (argv[2], "%d", &exp);

result = ldexp(value, exp);

printf("%g * 2°/d = %g\n", value, exp, result);

11-14 Standard Math Routines

12

Advanced HP-UX Programming

This chapter describes how to write programs that interface with the HP-UX
operating system in a non-trivial way. This includes programs that use files by
name, that use pipes, that invoke other commands as they run, or that attempt
to catch interrupts and other signals during execution. Specifically, this chapter
describes

m getting command line arguments and environment variable values from a C
program

m handling errors using stderr and the exit system call

m performing input/output using low-level system calls such as read, write,
and lseek

m managing processes using system calls such as system and fork
m handling interrupts using system calls such as signal

The routines described in this chapter are covered only at a general level. For
details on the routines discussed here, refer to the appropriate pages in the
HP-UX Reference.

All the examples are written in C, but you are not restricted to using C. For
details on calling the routines from other languages, see the HP-UX Portability
Guide.

Advanced HP-UX Programming 12-1

12

12

Program Arguments and Environment Pointer

When a C program runs, the main function is passed three arguments: the
number of arguments on the command line when the program was invoked,
an array of pointers to the command line arguments, and a list of pointers to
environment definitions strings. Traditionally, programmers have named these
parameters argc, argv, and envp, respectively.

int argc

The argc parameter contains the number of command line arguments specified
when the program was invoked. The name of the command is also counted as a
comment line argument. For example, the following command line sets argc to
4:

$ cmd one two three

Note that invoking a program via the exec system call can cause the program
name to not be passed as argv[0]! Programs that use argv[0] usually assume
that it contains the program name, so this alternate invocation could cause
strange failures.

char *argv[]

The argv parameter is an array of pointers to null-terminated strings
containing command line arguments. argv[0] is always the name of the
command as it was invoked on the command line. So, for the command line

$ /users/michael/bin/foo -lpp 60 < infile

argc is 3, and the elements of argv are set as follows:

argv[0] is /users/michael/bin/foo
argv[1] is -1pp
argv[2] is 60

Notice that the redirection symbol < and infile are not command line
arguments. Only the arguments preceding any redirection or pipe symbol are
passed to the command as arguments.

12-2 Advanced HP-UX Programming

char **envp

The envp parameter is a list of pointers to environment definition strings for
the process. These strings are of the form

12
VARIABLFE=value
and are actually environment variable definitions. You can step through the
strings by incrementing the envp pointer until *envp is NULL.

Example

The following C program displays argc, argv, and envp values:

#include <stdioc.h>
main(argc, argv, envp)
int argc;
char *argv[];
char **envp;

{
int n;
printf("Number of arguments: %d\n", argc); /* display argc */
printf("\nArguments:\n"); /* display individual arguments */
for (n = 0; n < argc; n++)
printf("arg[%d] = %s\n", n, argv[nl);
printf("\nEnvironment Strings:\n'");
while (xenvp !'= NULL) /* display environment strings */
printf ("%s\n", *envp++);
+

Advanced HP-UX Programming 12-3

12

Compiling and running this program produced this output:

$ cc -o args args.c
$ args foo bar
Number of arguments: 3

Arguments:

argl[0] = args
arg[1] = foo
arg[2] = bar

Environment Strings:
_=/user/michael/bin/args
HOST=hpfcmas
HOME=/user/michael
HISTSIZE=64
SHELL=/bin/ksh
MAIL=/usr/mail/michael

12-4 Advanced HP-UX Programming

Error Handling: stderr and exit

stderr is assigned to a program in the same way that stdin and stdout are.
Output written on stderr appears on the user’s terminal even if the standard
output is redirected. wc writes its diagnostics on stderr instead of stdout so 12
that if one of the files can’t be accessed for some reason, the message finds its
way to the user’s terminal instead of disappearing down a pipeline or into an
output file.

The program actually signals errors in another way, using the function exit to
terminate program execution. The argument of exit is available to whatever
process called it, so the success or failure of a program can be tested by
-another program that uses it as a sub-process. By convention, a return value
of 0 signals that all is well; non-zero values signal abnormal situations. The
preceding example, wc, has only a one-exit condition, so it provides no means
for detecting errors when it is used as a sub-process.

exit itself calls fclose for each open output file, to flush out any buffered
output, then calls a routine named _exit. The function _exit causes
immediate termination without any buffer flushing; it may be called directly if
desired. Use of _exit becomes necessary when terminating a parent and child
process because both processes set up variables and buffers that are duplicates
of each other. If _exit is not used during termination of at least one of the
processes, both sets of buffers are flushed, causing duplicate output.

Advanced HP-UX Programming 12-5

12

Low-Level Input/Output

This section describes the bottom level of input/output on the HP-UX system.
The lowest level of input/output in HP-UX provides no buffering or any other
services; it is in fact a direct entry into the operating system. You are entirely
on your own, but on the other hand, you have the most control over what
happens. And since the calls and usage are quite simple, this isn’t as bad as it
sounds.

File Descriptors

In the HP-UX operating system, all input and output is done by reading or
writing files, because all peripheral devices, even the user’s terminal, are files
in the file system. This means that a single, homogeneous interface handles all
communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to
inform the system of your intent to do so, a process called “opening” the file.
If you are going to write on a file, it may also be necessary to create it. The
system checks your right to do so (Does the file exist? Do you have permission
to access it?), and if all is well, returns a small positive integer called a file
descriptor. Whenever input/output is to be done on the file, the file descriptor
is used instead of the name to identify the file. (This is roughly analogous to
the use of READ(5, ...) and WRITE(6, ...) in FORTRAN) All information
about an open file is maintained by the system; the user program refers to the
file only by the file descriptor.

The file pointers are similar to file descriptors, but file descriptors are more
fundamental. A file pointer is a pointer to a structure that contains, among
other things, the file’s descriptor.

Since input and output involving the user’s terminal are so common, special
arrangements exist to make this convenient. When the command interpreter
(the “shell”) runs a program, it opens three files, with file descriptors 0
(stdin), 1 (stdout), and 2 (stderr), called the standard input, the standard
output, and standard error. All of these are normally connected to the
terminal, so if a program reads file descriptor 0 and writes file descriptors 1 and
2, it can do terminal input/output without needing to open extra files.

12-6 Advanced HP-UX Programming

If input/output is redirected to and from files with < and >, as in

prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the

terminal to the named files. Similar observations hold if the input or output 12
is associated with a pipe. Normally file descriptor 2 remains attached to the

terminal, so error messages can go there. In all cases, the file assignments are

changed by the shell, not by the program. The program does not need to know

where its input comes from nor where its output goes, so long as it uses file 0

for input and 1 and 2 for output.

read and write

All input and output is done by two functions called read and write. For
both, the first argument is a file descriptor. The second argument is a buffer in
your program where the data is to come from or go to. The third argument is
the number of bytes to be transferred. The calls are:

n_read = read(fd, buf, n);

n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually
transferred. On reading, the number of bytes returned may be less than the
number asked for, because fewer than n bytes remained to be read. (When the
file is a terminal, read normally reads only up to the next new-line, which is
generally less than what was requested.) A return value of zero bytes implies
end of file, and -1 indicates an error of some sort. For writing, the returned
value is the number of bytes actually written; it is generally an error if this
isn’t equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most
common values are 1, which means one character at a time (“unbuffered”),
and 1024, which is a convenient buffer size. Buffered 1024-byte blocks are
more efficient, but one-character-at-a-time input/output is not inordinately
inefficient. (Some character special files insist on reads or writes of a specified
or minimum size. Refer to the appropriate HP-UX Reference entry for more
information.)

Advanced HP-UX Programming 12-7

By combining these concepts, we can write a simple program to copy from a
specified input file to a specified output file. This program can copy anything
to anything by specifying redirected input and output files.

#define BUFSIZE 1024
main() /* copy input to output */
{

char buf [BUFSIZE];

int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(1, buf, n);
exit(0);
¥

If the file size is not a multiple of BUFSIZE, some read will return a smaller
number of bytes to be written by write; the next call to read after that will
return zero.

It is instructive to see how read and write can be used to construct higher
level routines like getchar, putchar, etc. For example, here is a version of
getchar which does unbuffered input.

#define CMASK 0377 /* for making char’s > 0 */
getchar() /* unbuffered single character input */

{

char c;

return((read(0, &c, 1) > 0) 7 c & CMASK : EOF);
¥

c must be declared char, because read accepts a character pointer. The
character being returned must be masked with 0377 to ensure that it is
positive; otherwise sign extension may make it negative. (The constant 0377 is
appropriate for Series 300 computers, but not necessarily for other computers
and systems.)

12-8 Advanced HP-UX Programming

The second version of getchar does input in big chunks, and hands out the
characters, one at a time:

#define CMASK 0377 /* for making char’s > 0 */
#define BUFSIZE 1024
getchar() /* buffered version */
{
static char buf [BUFSIZE] ;
static char *bufp = buf;
static int n = 0;
if (n == 0) { /* buffer is empty */
n = read(0, buf, BUFSIZE);
bufp = buf;
¥

return((--n >= 0) ? *bufp++ & CMASK : EOF);

open, creat, close, unlink

Other than the default standard input, output and error files, you must
explicitly open files in order to read or write them. There are two system entry
points for this, open and creat.

open is similar fopen, except that instead of returning a file pointer, it returns
a file descriptor, which is just an int.

int fd;

fd = open(name, oflags);

As with fopen, the name argument is a character string corresponding to the
external file name, The oflags argument is different. It consists of one or
more flags that are logically ORed to indicate what types of file operations are
to be allowed while the file is open. One of the three flags 0_RDONLY (open for
read only), 0_WRONLY (open for write only), or 0_RDWR (open for read/write)
must be included. Refer to open(2) in the HP-UX Reference for a complete list
of flags, some of which can be changed while the file is open. open returns -1 if
any error occurs; otherwise it returns a valid file descriptor.

Advanced HP-UX Programming 12-9

12

If you need to open a file that does not exist, use a third argument to specify
the filemode as follows:

fd = open(name, oflags, mode) ;

As before, open returns a file descriptor if it was able to create the file called
name, or -1 if not. If the file already exists, open truncates it to zero length.
mode defines the access mode that is to be assigned to the file if the file does
not already exist.

In the HP-UX file system, mode defines nine bits of protection information
associated with a file that control read, write, and execute permission for the
owner of the file, for the owner’s group, and for all others. Thus a three-digit
octal number is convenient for specifying the permissions. For example, 0755
specifies read, write, and execute permission for the owner; and read and
execute permission for the group and everyone else.

12-10 Advanced HP-UX Programming

To illustrate, here is a simplified version of the HP-UX utility cp, a program
which copies one file to another:

#define NULL O
#define BUFSIZE 512

12
#define PMODE 0644 /* RW for owner, R for group, others */
main(argc, argv) /* cp: copy f1 to f2 */
int argc;
char *argv(];
{

int f1, £2, n;
char buf [BUFSIZE];

if (argc !'= 3)
error("Usage: cp from to", NULL);

if ((f1 = open(argv[il, 0)) == -1)
error("cp: can’t open }s", argv[1l);
if ((£f2 = creat(argv[2], PMODE)) == -1)

error("cp: can’t create Ys", argv[2]);

while ((n = read(f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) !'= n)
error("cp: write error", NULL);

exit(0);
¥
error(sl, s2) /* print error message and die */
char *s1, *s2;
{
printf(sl, s2);
printf("\n");
exit(1);
}

As mentioned earlier, there is a limit (typically 60) on the number of files
which a program may have open simultaneously. Accordingly, any program
which intends to process many files must be prepared to re-use file descriptors.
The routine close breaks the connection between a file descriptor and an open

Advanced HP-UX Programming 12-11

12

file, and frees the file descriptor for use with some other file. Termination of a
program via exit or return from the main program closes all open files.

The function unlink(char *filename) removes a file from the file system.
filename points to a null-terminated string containing the name of the file to
unlink.

Random Access: Iseek

File input/output is normally sequential: each read or write takes place at a
position in the file right after the previous one. When necessary, however, a file
can be read or written in any arbitrary order. The system call 1seek provides
a way to move around in a file without actually reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position
offset, which is taken relative to the location specified by origin. Subsequent
reading or writing will begin at that position. offset is a long; fd and origin
are ints. origin can be 0, 1, or 2 to specify that offset is to be measured

from the beginning, from the current position, or from the end of the file
respectively. For example, to append to a file, seek to the end before writing:

lseek(fd, OL, 2);
To get back to the beginning (“rewind”),
lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (long) 0.

12-12 Advanced HP-UX Programming

With 1seek, it is possible to treat files more or less like large arrays, at the
price of slower access. For example, the following simple function reads any
number of bytes from any arbitrary place in a file.

get(fd, pos, buf, n) /* read n bytes from position pos */
int fd, n;
long pos;
char *buf;
{
lseek(fd, pos, 0); /* get to pos */
return(read(fd, buf, n));

Error Processing and errno

The routines discussed in this section and, in fact, all routines that are direct
entries into the system can incur errors. Usually they indicate an error by
returning a value of —1.

Routines can also specify additional information on what caused an error by
setting an error code in the external variable errno. Routines set this variable
only when they incur errors. Thus, a successful call to a routine does not reset
the value of errno to zero.

The errno(2) page in the HP-UX Reference provides a detailed listing of

the possible values for errno. In addition, individual man-pages for various
library routines usually document the values that can be set in errno for the
particular routine.

The header file <errno.h> (/usr/include/errno.h) contains symbol constant
definitions for error codes returned in errno. Use these constants to compare
against the value of errno, rather than comparing against hard-coded numbers.
This will ensure your code is portable for subsequent releases if the values of
the constants were to change for some reason.

Error constants can be used by a program, for example, to determine whether
an attempt to open a file failed because it did not exist or because the user
lacked permission to read it. In many cases, you may want to print the reason
for failure. The routine perror prints a message associated with the value

of errno. More generally, the strerror routine can be used to return an

Advanced HP-UX Programming 12-13

12

12

error string that your program can print. For details on these routines, see
perror(3C).

Processes

It is often easier to use a program written by someone else than to invent one’s
own. This section describes how to execute a program from within another.

The system Function

The easiest way to execute a program from another is to use the standard
library routine system. system takes one argument, a command string exactly
as typed at the terminal (except for the new-line at the end) and executes it.
For instance, to time-stamp the output of a program,

main()
{
system("date");
/* rest of processing */

b

If the command string has to be built from pieces, the in-memory formatting
capabilities of sprintf may be useful.

Remember that getc and putc normally buffer their input; terminal
input/output will not be properly synchronized unless this buffering is
defeated. For output, use £flush; for input, see setbuf in the appendix.

Low-level Process Creation: execl and execv

If you’re not using the standard library, or if you need finer control over what
happens, you will have to construct calls to other programs using the more
primitive routines that the standard library’s system routine is based on.

The most basic operation is to execute another program without returning,
by using the routine execl. To print the date as the last action of a running
program, use

execl("/bin/date", "date", NULL);

12-14 Advanced HP-UX Programming

The first argument to execl is the file name of the command including the

directory path because you have to know where it is found in the file system.

The second argument is conventionally the program name (that is, the last

component of the file name), but this is seldom used except as a place-holder.

If the command takes arguments, they are strung out after this; the end of the 12
list is marked by a NULL argument.

The execl call overlays the existing program with the new one, runs that, then
exits. There is no return to the original program if exec succeeds.

More realistically, a program might fall into two or more phases that
communicate only through temporary files. Here it is natural to make the
second pass simply an execl call from the first.

The one exception to the rule that the original program never gets control back
occurs when there is an error, for example if the file can’t be found or is not
executable. If you don’t know where date is located, say

execl("/bin/date", '"date", NULL);
execl("/usr/bin/date”, "date", NULL);
fprintf(stderr, "Someone stole ’date’\n");

A variant of execl called execv is useful when you don’t know in advance how
many arguments there are going to be. The call is:

execv (filename, argp) ;

where argp is an array of pointers to the arguments; the last pointer in the
array must be NULL so execv can tell where the list ends. As with execl,
filename is the file in which the program is found, and argp[0] is the name of
the program. (This arrangement is identical to the argv array for program
arguments.)

Neither of these routines provides the niceties of normal command execution.
There is no automatic search of multiple directories — you have to know
precisely where the command is located. Nor do you get the expansion of
metacharacters like <, >, %, 7, and [] in the argument list. If you want these,
use execl to invoke the shell sh, which then does all the work. Construct

a string commandline that contains the complete command as it would have
been typed at the terminal, then call;

execl("/bin/sh", "sh", "-c", commandline, NULL);

Advanced HP-UX Programming 12-15

12

The shell is assumed to be at a fixed place, /bin/sh. Its argument -c says
to treat the next argument as a whole command line, so it does just what
you want. The only problem is in constructing the right information in
commandline.

In addition to the execl and execv system calls, HP-UX provides several other
similar routines, including ones that search the process’s environment space.
These are listed on the Programming on HP-UX Quick Reference card. For
details on these other routines, see ezec(2).

Control of Processes: fork and wait

So far what we’ve talked about isn’t really all that useful by itself. Now we
will show how to regain control after running a program with execl or execv.
Since these routines simply overlay the new program on the old one, to save
the old one requires that it first be split into two copies; one of these can be
overlaid, while the other waits for the new, overlaying program to finish. The
splitting is done by a routine called fork:

proc_id = fork();

It splits the program into two copies, both of which continue to run. The only
difference between the two is the value of proc_id, the process ID. In the child
process (that is, the newly created process), proc_id is zero. In the parent
process (that is, the original process), proc_id is non-zero; it is the process
number of the child. Thus the basic way to call, and return from, another
program is:

if (fork() == 0)
execl("/bin/sh'", "sh", "-c¢", cmd, NULL); /* in child */

And in fact, except for handling errors, this is sufficient. The fork makes two
copies of the program. In the child, the value returned by fork is zero, so
it calls execl which does the command and then dies. In the parent, fork
returns non-zero so it skips the execl. (If there is any error, fork returns -1).

12-16 Advanced HP-UX Programming

Often, the parent wants to wait for the child to terminate before continuing
itself. This can be done with the function wait:

int status;

if (fork() == 0)
execl(. . .);
wait(&status);

This still doesn’t handle any abnormal conditions, such as a failure of the
execl or fork, or the possibility that there might be more than one child
running simultaneously. (The wait returns the process id of the terminated
child, if you want to check it against the value returned by fork.) Finally, this
fragment doesn’t deal with any funny behavior on the part of the child (which
is reported in status). Still, these three lines are the heart of the standard
library’s system routine.

The status returned by wait encodes in its low-order eight bits the system’s
idea of the child’s termination status; it is 0 for normal termination and
non-zero to indicate various kinds of problems. The next higher eight bits are
taken from the argument of the call to exit which caused a normal termination
of the child process. It is good coding practice for all programs to return
meaningful status.

In addition to the wait system call, you can use the waitpid system call,
which waits for a specific process to terminate before continuing. For details,
see wait(2).

When a program is called by the shell, the three file descriptors 0, 1, and 2

are set up for stdin, stdout, and stderr, respectively. All other possible

file descriptors are available for use. When this program calls another one,
proper etiquette suggests making sure the same conditions hold. If the parent
is buffering output that must come out before output from the child, the parent
must flush its buffers before the execl. Conversely, if a caller buffers an input
stream, the called program will lose any information that has been read by the
caller.

Advanced HP-UX Programming 12-17

12

Pipes

A pipe is an input/output channel intended for use between two processes:

one process writes into the pipe, while the other reads. The system looks after
buffering the data and synchronizing the two processes. Most pipes are created
by the shell, as in

$ 1s | pr

which connects the standard output of 1s to the standard input of pr.
Sometimes, however, it is most convenient for a process to set up its own
plumbing; in this section, we will illustrate how the pipe connection is
established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and
writing, two file descriptors are returned; the actual usage is like this:

int fd[2];

stat = pipe(£d);
if (stat == ~1)
/* there was an error . . . */

£d is an array of two file descriptors, where £d[0] is the read side of the pipe
and £d[1] is for writing. These may be used in read, write and close calls
just like any other file descriptors.

If O_NDELAY is not set (see read(2) and write(2)) and a process reads a pipe
which is empty, the process will wait until data arrives. If a process writes into
a pipe that is too full, the process will wait until the pipe empties somewhat. If
the write side of the pipe is closed, a subsequent read will encounter end of file.
If 0_NDELAY is set, read and write both return immediately with the value 0.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen(emd, mode), which creates a process cmd (just as system does), and
returns a file descriptor that will either read or write that process, according to
mode. That is, the call

fout = popen('"pr", WRITE);

creates a process that executes the pr command; subsequent write calls using
the file descriptor fout will send their data to that process through the pipe.

12-18 Advanced HP-UX Programming

popen first creates the the pipe with a pipe system call; it then forks to

create two copies of itself. The child decides whether it is supposed to read or

write, closes the other side of the pipe, then calls the shell (via execl) to run

the desired process. The parent, likewise, closes the end of the pipe it does

not use. These closes are necessary to make end-of-file tests work properly. 12
For example, if a child that intends to read fails to close the write end of the

pipe, it will never see the end of the pipe file, just because there is one writer
potentially active.

#include <stdio.h>
#define READ O
#define WRITE 1

#define tst(a, b) (mode == READ ? (b) : (a))
static int popen_pid;

popen{cmd, mode)

char *cmd;
int mode;
{

int pl2];

if (pipe(p) < 0)
return(NULL);

if ((popen_pid = fork()) == 0) {
close(tst(p[WRITE], p[READ]));
close(tst(0, 1));
dup (tst(p[READ], p[WRITE]));
close(tst(p[READ], p[WRITE]));
execl("/bin/sh", "sh", "-c", cmd, 0);

_exit(1); /x disaster has occurred if we get here */
}
if (popen_pid == -1)
return(NULL) ;
close(tst(p[READ], p[WRITE]));
return(tst(p[WRITE], p[READ]));

Advanced HP-UX Programming 12-19

12

The sequence of closes in the child is a bit tricky. Suppose that the task is to
create a child process that will read data from the parent. Then the first close
closes the write side of the pipe, leaving the read side open. The lines

close(tst(0, 1));
dup (tst(p[READ], p[WRITE]));

are the conventional way to associate the pipe descriptor with the standard
input of the child. The close closes file descriptor 0, that is, the standard
input. dup is a system call that returns a duplicate of an already open file
descriptor. File descriptors are assigned in increasing order and the first
available one is returned, so the effect of the dup is to copy the file descriptor
for the pipe (read side) to file descriptor 0; thus the read side of the pipe
becomes the standard input. (Yes, this is a bit tricky, but it’s a standard
idiom.) Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed
to write from the parent instead of reading. You may find it a useful exercise
to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe
created by popen. The main reason for using a separate function rather than
close is that it is desirable to wait for the termination of the child process.
First, the return value from pclose indicates whether the process succeeded.
Equally important when a process creates several children is that only a
bounded number of unwaited-for children can exist, even if some of them have
terminated; performing the wait lays the child to rest. Thus:

12-20 Advanced HP-UX Programming

#include <signal.h>

pclose(fd) /* close pipe fd */
int fd;
{ 12
register r, (*hstat)(), (xistat)(), (*qgstat)();
int status;
extern int popen_pid;

close(fd);

istat = signal(SIGINT, SIG_IGN);
gstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN);
while ({(r = wait(&status)) '= popen_pid && r !'= -1);
if (r == -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, gstat);
signal (SIGHUP, hstat);
return(status);

}

The calls to signal make sure that no interrupts, etc., interfere with the
waiting process; this is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at
once, because of the single shared variable popen_pid; it really should be an
array indexed by file descriptor. A popen function, with slightly different
arguments and return value is available as part of the standard input/output
library discussed below. As currently written, it shares the same limitation.

Advanced HP-UX Programming 12-21

12

Signals (Interrupts)

This section is concerned with how to deal gracefully with signals from the
outside world (like interrupts), and with program faults. Since there’s nothing
very useful that can be done from within C about program faults, which

arise mainly from illegal memory references or from execution of peculiar
instructions, we’ll discuss only the outside-world signals:

Interrupt Sent when the Interrupt character is typed (user configurable,
usually DEL)

Quit Generated by the Quit character (user configurable, usually

File Separator character obtained by CTRL-\)
Hangup Caused by hanging up the phone
Terminate Generated by the kill command.

Unless other arrangements have been made (see setprgp(2) and signal(2)),
when one of these events occurs, the signal is sent to all processes that were
started from the corresponding terminal, terminating the process(es). In the
quit case, a core image file is written for debugging purposes.

The routine that alters the default action is called signal. It has two
arguments: the first specifies the signal, and the second specifies how to treat
it. The first argument is just a number code, but the second is the address,
and is either a function, or a somewhat strange code that requests that the
signal either be ignored or that it be given the default action. The include
file signal.h gives names for the various arguments, and should always be
included when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN);
causes interrupts to be ignored, while
signal(SIGINT, SIG_DFL);

restores the default action of process termination.

12-22 Advanced HP-UX Programming

In all cases, signal returns the previous value of the signal. The second

argument to signal may instead be the name of a void function (which has

to be declared explicitly if the compiler hasn’t seen it already). In this case,

the named routine will be called when the signal occurs. Most commonly this

facility is used to allow the program to clean up unfinished business before 12
terminating, for example to delete a temporary file:

#include <signal.h>
main()
{

void onintr();

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);

/* Process . . .*/
exit(0);

}

void onintr()

{
unlink(tempfile);
exit(1);

}

Why the test and the double call to signal? Recall that signals like interrupt
are sent to all processes started from a particular terminal. Accordingly, when
a program is to be run non-interactively (started in the background with

&), the shell turns off interrupts for it so it won’t be stopped by interrupts
intended for foreground processes. If this program began by announcing that
all interrupts were to be sent to the onintr routine regardless, that would undo
the shell’s effort to protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to
continue to ignore interrupts if they are already being ignored. The code

as written depends on the fact that signal returns the previous state of a
particular signal. If signals were already being ignored, the process should
continue to ignore them; otherwise, they should be caught.

Advanced HP-UX Programming 12-23

12

A more sophisticated program may wish to intercept an interrupt and

interpret it as a request to stop what it is doing and return to its own
command-processing loop. Think of a text editor: interrupting a long printout
should not cause it to terminate and lose the work already done. The outline of
the code for this case is probably best written like this:

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbuf;

main()

{
int (xistat)(), onintr();
istat = signal(SIGINT, SIG_IGN); /* save original status */
setjmp(sjbuf); /* save current stack position */

if (istat '= SIG_IGN)
signal (SIGINT, onintr);

/* main processing loop */

+
onintr()
{
printf("\nInterrupt\n");
longjmp(sjbuf); /* return to saved state */
+

The include file <setjmp.h> declares the type jmp_buf, an object in which

the state can be saved. setsjbuf is such an object; it is an array of some

sort. The setjmp routine then saves the state of things. When an interrupt
occurs, a call is forced to the onintr routine, which can print a message,

set flags, or whatever. longjmp takes as argument an object stored into by
setjmp, and restores control to the location after the call to setjmp, so control
(and the stack level) will pop back to the place in the main routine where the
signal is set up and the main loop entered. Notice, by the way, that the signal
gets set again after an interrupt occurs. This is necessary; most signals are
automatically reset to their default action when they occur.

12-24 Advanced HP-UX Programming

Some programs that want to detect signals simply can’t be stopped at an

arbitrary point, for example in the middle of updating a linked list. If the

routine called on occurrence of a signal sets a flag and then returns instead

of calling exit or longjmp, execution will continue at the exact point it was
interrupted. The interrupt flag can then be tested later. 12

There is one difficulty associated with this approach. Suppose the program is
reading the terminal when the interrupt is sent. The specified routine is duly
called; it sets its flag and returns. If it were really true, as we said above, that
“execution resumes at the exact point it was interrupted”, the program would
continue reading the terminal until the user typed another line. This behavior
might well be confusing, since the user might not know that the program is
reading; he presumably would prefer to have the signal take effect instantly.
The method chosen to resolve this difficulty is to terminate the terminal

read when execution resumes after the signal, returning an error code which
indicates what happened.

Thus programs that catch and resume execution after signals should be
prepared for errors are caused by interrupted system calls. (The ones to watch
out for are reads from a terminal, wait, and pause.) A program whose onintr
program just sets intflag, resets the interrupt signal, and returns, should
usually include code like the following when it reads the standard input:

if (getchar() == EQOF)
if (intflag)
/* EOF caused by interrupt */
else
/* true end-of-file */

Another aspect of error handling that must be dealt with is associated with
programs where the user has elected to catch an asynchronous signal such,

as an interrupt or quit signal, and the signal occurs during a system call
producing the error EINTR. If execution is resumed after processing the signal,
it will appear as if the interrupted system call returned the EINTR error unless
the system call is restarted. For more information, refer to sigvector(2).

Advanced HP-UX Programming 12-25

12

A final subtlety to keep in mind becomes important when signal-catching

is combined with execution of other programs. Suppose a program catches
interrupts, and also includes a method (like “!” in the editor) whereby other
programs can be executed. Then the code should look something like this:

if (fork() == 0)

execl(. . .);
signal (SIGINT, SIG_IGN); /* ignore interrupts */
wait(&status); /* until the child is done */
signal (SIGINT, onintr); /* restore interrupts */

Why is this? Again, it’s not obvious bul not really difficult. Suppose the
program you call catches its own interrupts. If you interrupt the subprogram,
it will get the signal and return to its main loop, and probably read your
terminal. But the calling program will also pop out of its wait for the
subprogram and read your terminal. Having two processes reading your
terminal is very unfortunate, since the system figuratively flips a coin to decide
who should get each line of input. A simple way out is to have the parent
program ignore interrupts until the child is done. This reasoning is reflected in
the standard input/output library function system:

12-26 Advanced HP-UX Programming

#include <signal.h>

system(s) /* run command string s */
char *s;

{

if

}

int status, pid, w;
register int (*istat)(), (xgstat)();

((pid = fork()) == 0) {
execl("/bin/sh", "sh", "-c", s, 0);
_exit(127);
}
istat = signal (SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
while ((w = wait(&status)) != pid && w != -1)

if (w == -1)

status = -1;
signal (SIGINT, istat);
signal (SIGQUIT, gstat);
return(status);

As an aside on declarations, the function signal obviously has a rather strange
second argument. It is in fact a pointer to a function delivering an integer, and
this is also the type of the signal routine itself. The two values SIG_IGN and
SIG_DFL have the right type, but are chosen so they coincide with no possible
actual functions.

Advanced HP-UX Programming 12-27

12

13

make: A Command for Maintaining
Computer Programs

In a programming project, it is easy to lose track of which files need to be
reprocessed or recompiled after a change is made in some part of the source.
make provides a simple mechanism for maintaining up-to-date versions of
programs that result from many operations on a number of files. It is possible
to tell make the sequence of commands that create certain files, and the list of
files that require other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the make command
will create the proper files simply, correctly, and with a minimum amount of
effort.

The basic operation of make is to find the name of a needed target in the
description, ensure that all of the files on which it depends exist and are up to
date, and then create the target if it has not been modified since its generators
were. The description file really defines the dependencies.

make also provides a simple macro substitution facility and the ability to
encapsulate commands in a single file for convenient administration.

This chapter describes

an overview of using make

basic features of make

the format of Makefiles and how to do macro substitutions
syntax and usage of make

implicit make rules

an example of using make

suggestions and warnings about using make

suffixes and transformation rules

using make with SCCS

make: A Command for Maintaining 13-1
Computer Programs

13

13

Overview

It is common practice to divide large programs into smaller, more manageable
pieces. The pieces may require quite different treatments: some may need

to be run through a macro processor, some may need to be processed by a
sophisticated program generator (such as yacc or lex). The outputs of these
generators may then have to be compiled with special options and with certain
definitions and declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries under the control
of special options. Related maintenance activities involve running complicated
test scripts and installing validated modules. Unfortunately, it is very casy for
a programmer to forget which files depend on which others, which files have
been modified recently, and the exact sequence of operations necded to make
or exercise a new version ol the program. After a long editing session, one may
easily lose track of which files have been changed and which object modules
are still valid, since a change to a declaration can obsolete a dozen other files.
Forgetting to compile a routine that has been changed or that uses changed
declarations will result in a program that will not work, and a bug that can be
very hard to track down. Oun the other hand, re-compiling all files just to be
safe is very wasteful.

The program described in this report mechanizes many of the activities

of program development and maintenance. If the information on inter-file
dependencies and command sequences is stored in a file, the simple command
make is frequently sufficient to update the interesting files, regardless of the
number that have been edited since the last “make”. In most cases, the
description file is easy to write and changes infrequently. It is usually easier to
type the make command than to issue even one of the needed operations, so the
typical cycle of program development operations becomes

think — edit — make — test ...

make runs on the HP-UX operating system, and is most useful for
medium-sized programming projects; it does not solve the problems of
maintaining multiple-source versions or of describing huge programs.

13-2 make: A Command for Maintaining
Computer Programs

Basic Features

The basic operation of make is to update a target file by ensuring that all of
the files on which it depends exist and are up to date, then creating the target
if it has not been modified since its dependents were. make does a depth-first
search of the graph of dependencies. The operation of the command depends
on the ability to find the date and time that a file was last modified.

To illustrate, let us consider a simple example: A program named prog is

made by compiling and loading three C-language files z.¢, y.c, and z.¢ with

the S library. By convention, the output of the C compilations will be found 13
in files named z.0, y.0, and z.0. Assume that the files z.c and y.c share some
declarations in a file named defs, but that z.c does not. That is, z.c and y.c

have the line:

#include "defs"

The following text describes the relationships and operations:

prog : Xx.0 y.o z.0
¢c xX.0 y.o z.0 -15 -o prog
X.0 y.o : defs
Note make prefers tab characters instead of space characters in front

of the cc or other dependent command.

If this information were stored in a file named makefile, the command:
make

would perform the operations needed to recreate prog after any changes had
been made to any of the four source files z.c, y.¢, z.c, or defs.

make operates using three sources of information:

m a user-supplied description file (as above)
m file names and last-modified times from the file system
m built-in rules to bridge some of the gaps

In our example, the first line says that prog depends on three .o files. Once

these object files are current, the second line describes how to load them to

make: A Command for Maintaining 13-3
Computer Programs

13

create prog. The third line says that 2.0 and y.o depend on the file defs. From
the file system, make discovers that there are three .c files corresponding to the
needed .o files, and uses built-in information on how to generate an object from
a source file (that is, issue a cc -c command).

The following long-winded description file is equivalent to the one above, but
takes no advantage of make’s innate knowledge:

prog : Xx.0 y.o Z.0
cc x.0 y.o z.0 -1S -o prog

Xx.0 ¢ x.c defs

cc -¢ X.cC
y.0 ¢ y.c defs

cc -c y.c
Z.0 ¢ z.c

cc -c¢ z.c

If none of the source or object files had changed since the last time prog was
made, all of the files would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been
edited, z.c and y.c (but not z.c) would be recompiled, and then prog would be
created from the new .o files. If only the file y.c had changed, only it would be
recompiled, but it would still be necessary to reload prog.

If no target name is given on the make command line, the first target
mentioned in the description is created; otherwise the specified targets are
made. The command

make x.o
would recompile z.0 if z.c or defs had changed.

If the file exists after the commands are executed, its time of last modification
is used in further decisions; otherwise the current time is used. It is often
quite useful to include rules with mnemonic names and commands that do not
actually produce a file with that name. These entries can take advantage of
make’s ability to generate files and substitute macros. Thus, an entry save
might be included to copy a certain set of files, or an entry cleanup might

be used to throw away unneeded intermediate files. In other cases one may

13-4 make: A Command for Maintaining
Computer Programs

maintain a zero-length file purely to keep track of the time at which certain
actions were performed. This technique is useful for maintaining remote
archives and listings.

make has a simple macro mechanism for substituting in dependency lines and
command strings. Macros are defined by command arguments or description

file lines with embedded equal signs. A macro is invoked by preceding the

name by a dollar sign; macro names longer than one character must be

parenthesized. The name of the macro is either the single character after

the dollar sign or a name inside parentheses. The following are valid macro
invocations: 13

$ (CFLAGS)
$2

$(xy)

$Z

$(2)

The last two invocations are identical. $ is a dollar sign. All of these macros
are assigned values during input, as shown below. Four special macros change
values during the execution of the command: $*, $@, $7, and $<. They will be
discussed later. The following fragment shows the use:

OBJECTS = x.0 y.0 z.0
LIBES = -1S
prog: $(0OBJECTS)
cc $(0BJECTS) $(LIBES) -o prog

The command
make

loads the three object files with the 1S library. The command:
make '"LIBES= -11 -18"

loads them with both the lex (-11) and the Standard (-18) libraries, since
macro definitions on the command line override definitions in the description.
(It is necessary to quote arguments containing embedded blanks in HP-UX
commands.)

make: A Command for Maintaining 13-5
Computer Programs

13

The following sections detail the form of description files and the command
line, and discuss options and built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of information: macro definitions,
dependency information, and executable commands. Also, as in (' and shell
programming, any characters following a a hash mark (#) are treated as

a comment and ignored, as is the hash mark itself. Blank lines and lines
beginning with a hash mark are also totally ignored. If a non-comment line
is too long to fit on a single source line, it can be continued to one or more
subsequent lines by using a backslash. If the last character of a line is a
backslash, the backslash, newline, and following blanks and tabs are replaced
by a single blank.

A line containing an equal sign (=) is a macro definition line. A macro
definition has this syntax:

macro_name = macro_value

macro_name is a string of letters and digits which is replaced by macro_value
when expanded. The macro_name must start in the first column; it cannot be
preceded by blanks or tabs. However, the equal sign can be surrounded by any
number of tabs or blanks, which are not part of macro_name or macro_value.
The following are all valid macro definition lines:

2 = xyz
abc = -11 -1y -1S
LIBES =
The last definition assigns LIBES the null string. A macro that is never

explicitly defined has the null string as value. Macro definitions may also
appear on the make command line (see below).

Other lines give information about target files. The general form of an entry is:

target! [target,?]: [: Hdependentl] [; commands] [#]
[(Tab) commands][<“#°> ... | ...

13-6 make: A Command for Maintaining
Computer Programs

Items inside brackets can be omitted. Targets and dependents are strings

of letters, digits, periods, and slashes. (Shell metacharacters * and 7 are
expanded.) A command is any string of characters not including a sharp
(except in quotes) or newline. Commands may appear either after a semicolon
on a dependency line or on lines beginning with a tab immediately following a
dependency line.

A dependency line may have either a single or a double colon. A target name
may appear on more than one dependency line, but all of those lines must be of

the same (single or double colon) type:

13
1. For the usual single-colon case, at most one of these dependency lines may

have a command sequence associated with it. If the target is out of date
with any of the dependents on any of the lines, and a command sequence
is specified (even a null one following a semicolon or tab), it is executed;
otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with
each dependency line; if the target is out of date with any of the files on
a particular line, the associated commands are executed. A built-in rule
may also be executed. This detailed form is of particular value in updating
archive-type files,

If a target must be created, the sequence of commands is executed. Normally,
each command line is printed and then passed to a separate invocation of

the Shell after substituting for macros. (The printing is suppressed in silent
mode or if the command line begins with an @ sign). make normally stops if
any command signals an error by returning a non-zero error code. (Errors

are ignored if the 1 flags has been specified on the make command line, if the
fake target name .IGNORE appears in the description file, or if the command
string in the description file begins with a hyphen. Some HP-UX commands
return meaningless status). Because each command line is passed to a separate
invocation of the Shell, care must be taken with certain commands (such as
cd and Shell control commands) that have meaning only within a given shell
process. Results from a previous line are forgotten before the next line is
executed.

Before issuing any command, certain macros are set. -$@ is set to the name of
the file to be “made”. -$7 is set to the string of names that were found to be
younger than the target.

make: A Command for Maintaining 13-7
Computer Programs

13

If the command was generated by an implicit rule (see below), -$< is the name
of the related file that caused the action, and -$* is the prefix shared by the
current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in
rules, the commands associated with the name .DEFAULT are used. If there is
no such name, make prints a message and stops.

Command Usage

The make command takes [our kinds of arguments: macro definitions, flags,
description file names, and target file names.

make [flags | [macro definitions | [targets |

The following summary of the operation of the command explains how these
arguments are interpreted.

First, all macro definition arguments (arguments with embedded equal signs)
are analyzed and the assignments made. Command-line macros override
corresponding definitions found in the description files.

Next, the flag arguments are examined. The permissible flags are

-1 Ignore error codes returned by invoked commands. This mode
is entered if the fake target name .IGNORE appears in the
description file.

-s Silent mode. Do not print command lines before executing,.
This mode is also entered if the fake target name .SILENT
appears in the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them.
Even lines beginning with an @ sign are printed.

-t Touch the target files (causing them to be up to date) rather
than issue the usual commands.

13-8 make: A Command for Maintaining
Computer Programs

P

Question. The .IT command to make returns a zero or
non-zero status code depending on whether the target file is or
is not up to date.

Print out the complete set of macro definitions and target
descriptions

Debug mode. Print out detailed information on files and times
examined.

Description file name. The next argument is assumed to be
the name of a description file. A file name of - denotes the
standard input. If there are no -f arguments, the file named
makefile or Makefile in the current directory is read. The
contents of the description files override the built-in rules if
they are present).

13

Finally, the remaining arguments are assumed to be the names of targets to be
made; they are done in left-to-right order. If there are no such arguments, the
first name in the description files that does not begin with a period is “made”.

make: A Command for Maintaining 13-9
Computer Programs

13

Implicit Rules

The make program uses a table of interesting suffixes and a set of

transformation rules to supply default dependency information and implied

commands. (Descriptions of these tables and means of overriding them are
included at the end of this chapter.) The default suffix list is:

.0 Object file.

.C C source file.

.€ Efl source file.

.r Ratfor source file,

f Fortran source [ile.

.8 Assembler source lile.

.Y Yace-C source grammar,

yr Yacc-Ratfor source grammar.
.ye Yacc-Efl source gramumar

A Lex source grammar

Figure 13-1 summarizes the delault transformation paths. If there are
two paths connecting a pair of suffixes, the longer one is used only if the
intermediate file exists or is named in the description.

.C r e f .5 Y o oyrooye d
/N ||
vy yr .ye

Figure 13-1. Default make Transformation Paths

If the file 2.0 were needed and there were an z.c in the description or directory,
it would be compiled. If there were also an ./, that grammar would be run

through lex before compiling the result. However, if there were no z.c but

there were an z.l/, make would discard the intermediate C-language file and use

the direct link in the graph above.

13-10 make: A Command for Maintaining
Computer Programs

It is possible to change the names of some of the compilers used in the default,
or the flag arguments with which they are invoked by knowing the macro
names used. The compiler names are the macros AS, CC, RC, EC, YACC, YACCR,
YACCE, and LEX. The command

make CC=newcc

causes the newcc command to be used instead of the usual C' compiler. The
macros CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause
these commands to be issued with optional flags. Thus,

make "CFLAGS=-0" 13

causes the optimizing C compiler to be used.

Example

As an example of the use of make, we will present the description file used to
maintain the make command itsell. The code for make is spread over a number
of (' source files and a Yacce gramimar. The description file contains:

Description file for the make command

P = und -3 opr -r2 # send to GCOS to be printed

FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.c
gram.y lex.c gcos.c

OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -18

LINT = lint -p

CFLAGS = -0

make: $(0BJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make
size make

$(0OBJECTS): defs
gram.o: lex.c
cleanup:

-Im *.0 gram.c

make: A Command for Maintaining 13-11
Computer Programs

13

~du
install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make
print: $(FILES) # print recently changed files
pr $7 ¢p
touch print

test:
make -dp | grep -v TIME >1zap
/usr/bin/make -dp grep -v TIME >2zap
diff l1zap 2zap
rm lzap 2zap
lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c
arch:

ar uv /sys/source/s2/make.a $(FILES)

make usually prints out each command hefore issuing it. The following output
results from typing the simple command

make

in a directory containing only the source and description file:

cc =-c version.c

cc -c main.c

¢c¢c -c doname.c

cc -c¢ misc.c

cc -c files.c

cc —c dosys.c

yacc gram.y

mv y.tab.c gram.c

cc —¢ gram.c

cc version.o main.o doname.o misc.o files.o dosys.o gram.o -1S -0 make
13188+3348+3044 = 19580b = 046174b

13-12 make: A Command for Maintaining
Computer Programs

Although none of the source files or grammars were mentioned by name in the
description file, make found them using its suffix rules and issued the needed
commands. The string of digits results from the size make command; the
printing of the command line itself was suppressed by an @ sign. The @ sign
on the size command in the description file suppressed the printing of the
command, so only the sizes arc written.

The last few entries in the description file are useful maintenance sequences.

The print entry prints only the files that have been changed since the last

make print command. A zero-length file print is maintained to keep track of

the time of the printing; the $? macro in the command line then picks up only 13
the names of the files changed since print was touched. The printed output

can be sent to a different printer or to a file by changing the definition of the P

macro:

make print "P = opr -sp"
or

make print "P= cat >zap"

Suggestions and Warnings

The most common difliculties arise [rom make’s specific meaning of dependency.
If file w.¢ has an #include d¢fs line, then the object file 2.0 depends on defs;
the source lile 2.¢ does not. (If defs is changed, it is not necessary to do
anything to the file x.e, while il is necessary to recreate z.0.)

To discover what make would do, the -n option is very useful. The command
make -n

orders make to print out the commands it would issue without actually

taking the time to execute them. If a change to a file is absolutely certain

to be benign (e.g., adding a new definition to an include file), the -t (touch)
option can save a lot of time: instead of issuing a large number of superfluous
re-compilations, make updates the modification times on the affected file. Thus,
the command

make -ts

make: A Command for Maintaining 13-13
Computer Programs

13

(“touch silently”) causes the relevant files to appear up to date. Obvious care
is necessary, since this mode of operation subverts the intention of make and
destroys all memory of the previous relationships.

The debugging flag (-d) causes make to print out a very detailed description
of what it is doing, including the file times. T'he output is verbose, and
recommended only as a last resort.

Suffixes and Transfdrfnation Rules

The make program itsell does not know what file name suffixes are interesting
or how to transform a [ile with one suflix into a file with another suffix. This
information is stored in an internal table that has the form of a description file.
If the -r flag is used, this table is not used.

The list of suffixes is actually the dependency list for the name .SUFFIXES.
make looks for a file with any ol the sullixes on the list. If such a file exists, and
if there is a transformation rule for that combination, make acts as described
earlier. The transformation rule names are the concatenation of the two
suffixes. The name of the rule to transform a .r file to a .o file is thus .r.o. If
the rule is present and no explicit command sequence has been given in the
user’s description files, the command sequence for the rule .r.o is used. If a
command is generated by using one of these suffixing rules, the macro $* is
given the value of the stem (everything but the suffix) of the name of the file
to be made, and the macro $< is the name of the dependent that caused the
action.

The order of the suffix list is significant, since it is scanned from left to right,
and the first name that is formed that has both a file and a rule associated
with it is used. If new names are to be appended, the user can just add an
entry for .SUFFIXES in his own description file; the dependents will be added
to the usual list. A .SUFFIXES line without any dependents deletes the current
list. (It is necessary to clear the current list if the order of names is to be
changed).

13-14 make: A Command for Maintaining
Computer Programs

The following is an excerpt from the default rules file:

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .8

YACC=yacc
YACCR=yacc -r
YACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.C.0 :
(CC) $(CFLAGS) -c $<
.e.0 .r.o .f.o :

(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

5.0 :
(AS) -o $@ $<
.y.0
(YACC) $(YFLAGS) $<
(¢C) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@
.y.c

(YACC) $(YFLAGS) $<
mv y.tab.c $@

make: A Command for Maintaining 13-15
Computer Programs

13

Using make with SCCS

You can use make to ensure that changes to header files maintained by SCCS
will cause a recompile. The following example illustrates such use:

SRCS=
GRPA=
GRPB=
GRPC=

test:
13

$ (GRPA) :
$ (GRPB) :
$ (GRPC) :

testl.c test2.c test3.c test4.c head.h head2.h head3.h
testl.o test2.0 test3.0 testd.o
testl.o test3.o0
test4.o
testl.o test2.0 test3.0 test4.o
cc -0 test testl.o test2.o0 test3.o0 test4d.o
head.h
head2.h
head3.h

sources: $(SRCS)
$(SRCS) :

get s.%Q

13-16 make: A Command for Maintaining
Computer Programs

14

SCCS: Source Code Control System

This chapter describes SCCS (Source Code Control System), which is simply
a set of HP-UX commands that enable you to

track all changes made to a text file
retrieve the current (latest) version of a file

retrieve any previous version of a file, ignoring any changes made to the
original after a given revision

control who changes a file

keep track of the date and location of each change made to a file along with
the name of the person making the change

add comments when indicating the reason for each change

Note SCCS does not support Access Control Lists (ACLs) and

cannot be used in an environment where ACLs are used to
enhance system security.

SCCS: Source Code Control System 14-1

14

14

Overview

One application of SCCS is to keep track of source files during the development
and maintenance of large systems. This chapter is directed towards this use of
SCCS. However, it can be used in any project that involves supporting groups
of related text files. Object code cannot be maintained under SCCS.

Once you store a program source file under SCCS, all of its versions, plus
additional log information, are kept in a file called the s-file. S-files are also
referred to as SCCS files and must have an s. prefix on their name. Three
major operations can be performed on the s-file:

1.

Get a file for some non-editing purpose, such as compilation. This operation
retrieves a read-only version of the file from the s-file. By default, the latest
version of the file is retrieved. This file is specifically NOT intended to be
edited or changed in any way, so any changes made to a file retrieved in this
way will probably be lost.

. Get a file for editing. This operation also retrieves a version of the file from

the s-file, but this file is intended to be edited and then incorporated back
into the s-file. Only one person at a time can edit a particular version of an
s-file at a time (unless you have specifically allowed concurrent edits on the
same version).

. Merge a file back into the s-file. This is the companion operation to (2). A

new version number is assigned, and comments are saved explaining why
this change was made.

14-2 SCCS: Source Code Control System

Terms

You need to know the meaning of several terms before using SCCS:

S-files

An s-file is a single file that holds all the different versions of your source file.
The s-file is stored in a differential format meaning that only the differences
(deltas) between versions are stored, rather than the entire text of the new
version. This saves disk space and makes it casy to remove selective changes
later if needed. The s-file also contains header information for each version.
The header also contains the comments provided by the person who created the
version, explaining why the changes were made. A description of what this
header information includes is presented later in this chapter.

14
Deltas

Each set of changes to the s-file (approximately equivalent to a version of the
file) is called a delta. Although technically a delta includes only the current
changes made, in practice it is usual for each delta to be made with respect to
all the deltas that preceded it. This matches normal usage, where the previous
changes are not saved at all and all changes are automatically based on all
other changes that have happened through history. However, it is possible to
get a version of the file that has selected deltas removed out of the middle of
the list of changes. All of the deltas of a file maintained under SCCS are stored
in an s-file.

SIDs (Version Numbers)

A SID (SCCS ID) is a number that represents a particular delta. This is
normally a two-part number consisting of a release number and a level number.
The form of two-part SIDs is:

release. level

where release and level are non-zero, positive integers. Normally the release
number stays the same while the level increments with each delta. However,
you can move into a new release of a file if some major change is being made.
Since all past deltas are normally applied when a given version is retrieved, the

SCCS: Source Code Conirol System 14-3

14

SID of the final delta applied is used to represent the version number of the file
as a whole.

Deltas applied to one SCCS file can be treated as nodes of a tree, where the
initial version of the file is the root node. The root delta (node) normally

has the SID number 1.1 and the deltas that follow are 1.2, 1.3, etc. The
naming of successor deltas by incrementing the SID level number is performed
automatically by SCCS when you retrieve a file for editing with get -e,
although the delta itself is not created until you execute delta.

Figure 14-1 illustrates the development of an SCCS file where each delta
depends on all of the previous deltas.

11— |2 =] 5= 21— 22

A New Release

Figure 14-1. Development of SCCS File

ID Keywords

When you retrieve a version of a file from SCCS with intent to compile it (or,
rather, do anything other than edit it), some special keywords are expanded
by SCCS when they are found in the file. These ID keywords can be used to
include the current version number or other information into the file. All ID
keywords are of the form %z, where z is an uppercase letter. For example,
%17 is the SID of the latest delta applied in retrieving a particular version,
WY includes the module name, SID, and a string of characters that makes

it accessible by the what command, and %G% is the date of the latest delta
applied. A list of all of the ID keywords can be found in the Quick Reference
section at the end of this chapter and in the entry for get(1) in the HP-UX
Reference.

For example, assume that you have a source file stored under SCCS and it
contains the line of code:

static char SccsId[] = "}W%";

When you retrieve the file for editing, the text file will contain the line just as
it appears above. However, when you retrieve the file for compilation the %W
is expanded to indicate the module name, SID, and the string of characters
recognized by what:

14-4 SCCS: Source Code Control System

static char ScesId[] = "@(#)prog.c 1.2 05/15/84";

The what command is a valuable tool for quickly finding out information about
a particular version of a program. To use it the program’s source code must

be contained in SCCS files. In the SCCS files, any string of information that
you want to be accessed by what must begin with the ID keyword %Z%. (%W%,
mentioned earlier, is actually a combination of several ID keywords, including
%Z%.) When the files are retrieved for compilation, this ID keyword is expanded
to the string: @(#). When you invoke what on a file, the command prints out
anything it finds between this string and the first ", >, \, newline, or null
character. Refer to the section “Using ID Keywords” for more information
about what.

When you retrieve a file for editing, the ID keywords are not expanded; this

is so that after you store the file back into SCCS, they can still be expanded
automatically when the file is retrieved for compilation. If you edit and store a
version of a file in which the ID keywords are expanded, SCCS can no longer
control the updating of the ID keywords’ values. For example, if you use the ID
keyword for the file’s version and then store the keyword’s expanded value, all
of the following versions will indicate that same version number—SCCS cannot
increment it. Also, if you compile a version of the program without expanding
a version number ID keyword that appears in it, it is impossible to tell what
version it is since all that the code will contain is %I%.

Creating SCCS Files

To put source files into SCCS format, use the admin command. The following
stores a file called s.file under SCCS:

admin -ifile s. file

The -1 option indicates that admin is to create a new SCCS file (called

an s-file) and initialize its contents with the contents of the file file. The
s.file argument is the name of the s-file. All s-file names must begin with
s.filename. The initial version of s.file is a set of changes (delta 1.1) applied to
a null s-file.

After creating a new s-file, admin returns the message:

SCCS: Source Code Control System 14-5

14

14

No id keywords (cm7)

if you have not included any ID keywords in it. This is just a warning message
and it is discussed further in a later section.

Since you have stored the contents of s.file under SCCS, you can now remove
the original file:

rm file

Note that if the name of the SCCS file is the same as the original text file
except for the s. prefix, the original file must be removed or moved to another
directory. This is because when you retrieve a version of an SCCS file, the
name of the resulting text file is the SCCS file name with the s. removed. If
there is already a writeable file with this name in your current directory, SCCS
does not allow you to retrieve the SCCS file version in most cases.

Assume that your current HP-UX directory contains several C source files
that you want to maintain under SCCS. The following shell script stores each
under SCCS with the required s. prefix added onto its name and removes the
original source files.

#! /bin/ksh specifies a Korn shell script
for 1 in *.c
do
admin -i$i s.$1i
rm $i
done

If you want to have ID keywords in the files, it is best to put them in before
you create the s-files. If you do not, admin prints “No Id Keywords (cm7)”
after each s-file is created. If you create an s-file without ID keywords then
later decide to add them, simply retrieve the file for editing, add the ID
keywords, store the changes, then state that ID keywords have been added
when you are prompted for comments.

14-6 SCCS: Source Code Control System

Removing SCCS Files

In order to protect s-files, SCCS does not supply a direct method of removing
them from your system. S-files are protected from accidental deletion in two
ways:

m They are created as read-only files.
m There is no SCCS command that removes them.

Because of this protection, you must make the files writeable before you can
remove them. Use chmod to change the access permission on an s-file:

chmed +w s.file

The +w indicates that you are adding write access to the file s.file. Once you

have a writeable s-file, you can remove it using the HP-UX command:

14
rm s.file

Getting Files for Compilation

To get a copy of the latest version of the SCCS file s.file, type:
get s.file

get respouds, for example, with:

1.1
87 lines

indicating that version 1.1 was retrieved and that it has 87 lines. The retrieved
text is placed in a file in the current directory whose name is formed by
deleting the s. prefix. The file is read-only to remind you that you are not
supposed to change it. If you do make changes, they are lost the next time
someone does a get.

To retrieve all of the SCCS files in a directory so that they can be compiled,
specify the directory name as an argument to get:

get directory

SCCS: Source Code Control System 14-7

14

The retrieved text files are place in your current directory and any non-SCCS
files (files without the s. prefix) in the directory are silently ignored.

Note that if the s-file (or the directory containing s-files) that you want
to access is not located in your current directory you must specify its full
pathname.

Changing Files (Creating Deltas)

Getting a Copy to Edit

To edit a source file, first use get with its -e (e for edit) option to retrieve it:
get -e s.filc

get responds, for example, with:

1.1
87 lines
New delta 1.2

The retrieved file file (without the s. prefix) is placed in your current directory
with read and write access permissions added to it. Edit the file using a
standard text editor such as vi.

To retrieve all of the SCCS files in a directory for editing, specify the directory
name as an argument to get -e:

get —e directory

Merging the Changes Back Into the S-File

When the desired changes have been made to the text file, use the delta
command to store the changes back into the SCCS file:

delta s.file

assuming that the s-file is located in your current directory. If it is located in
a different directory you must also specify a pathname for the s-file. delta

14-8 SCCS: Source Code Control System

prompts you for Comments? before merging the changes into the previous
version. At this time you should type a one-line description of what the
changes mean (more lines can be entered by ending each line except the last
with a backslash \). delta then responds, for example, with:

1.2

5 inserted

3 deleted

84 unchanged

saying that delta 1.2 was created, and it inserted five lines, removed three lines,
and left 84 lines unchanged. (Changes to a line are counted as a line deleted
and a line inserted.) Finally, SCCS removes file from your current directory.
To retrieve it again, use get.

Note that the comments that you are prompted for are not maintained as part
of the text body of the s-file. They are kept in another section of the s-file that
is used internally by SCCS.

When To Make Deltas

In general, it is unwise to make a delta before every re-compilation or test
unless other people need to edit the file at the same time. Creating too many
deltas can result in unclear comments such as fixed compilation problem in
previous delta or fixed botch in 1.3. However, it is very important to delta
everything before installing a module for general use. A good technique is to
edit the files you need, make all necessary changes and tests, compiling and
editing as often as necessary without making deltas. When you are satisfied
that you have a working version, delta everything being edited, re-get them,
and recompile everything.

Working on a project with several people presents a problem when two people
need to modify a particular version of a file at the same time. SCCS prevents
this by locking the version while it is being edited (unless concurrent editing

of one version has been specifically allowed). This means that you should not
retrieve a file for editing unless you are actually going to edit it at that time,
since you will be preventing other people on the project from making necessary
changes. As a general rule, all source files that you are editing should be stored
with delta before being used in compilations. This gives other users a better
chance of being able to edit files when they need to.

SCCS: Source Code Control System 14-9

14

14

What’s Going On: The Sact Command
To find out who is currently editing an SCCS file, use:

sact s.file

For each editing session taking place on the file, sact (SCCS activity) tells
you which SID (version) is being edited, what SID will be assigned to the new
delta when editing is done, who is doing the editing, and the date and time
that editing began (when get -e was invoked). If no one is currently editing
s.file, sact returns an error message telling you that a p-file does not exist for
the file (the “Types of Files” section later in this chapter discusses p-files).

You can specify more than one SCCS file name as arguments to sact; each file
is checked one at a time. You can also specify a directory, in which case sact
checks every SCCS file in that directory and silently ignores non-SCCS files
(files without the s. prefix).

Using ID Keywords

ID keywords inserted into your file are expanded when you use get to retrieve
a file for compilation. They record information about the file such as the time
and date it was created, the version retrieved, and the module’s name. For
example, a line in an SCCS file such as:

static char ScesId[] = "¥Wh\tAGH";
is replaced with something like:
static char SccsId[] = "e(#)prog.c 1.2 08/29/80";

in the retrieved source file. This tells you the name and version of the source
file and the time the delta was created. The string @(#) is the expanded form
of the keyword %Z% and is searched for by the what command. (Note that

the %W% ID keyword shown above is shorthand for several other ID keywords
including %Z%.) Thus you can use what to conveniently and quickly locate
expanded ID keywords in text file. Note that when you retrieve a file for
editing, keywords are not expanded. This keeps them in their original form
when you store the file again with delta.

14-10 SCCS: Source Code Control System

Approximately 20 ID keywords are provided for use in SCCS files. They are
listed in the Quick Reference section at the end of this chapter and in the
get(1l) entry in the HP-UX Reference.

The what Command

When %27, is used, expanded ID keywords in files can be located using what.
To find out the current version number of a source file and what version of it is
used in an object file and final program (assuming you have previously inserted
the necessary ID keywords in the SCCS source file), use:

what file.c file.o a.out

what prints all strings it finds that begin with @(#) in the three files. It works
on all file types, including binaries and libraries. Typical output from such a
commend resembles the following:

14
file.c:
file.c 1.2 08/29/88
file.o:
file.c 1.1 02/05/88
a.out:
file.c 1.1 02/05/88

From this, it is quickly evident that the source in file.c does not compile into
the same version as the binary in file.o and a.out.

what searches the specified files for all occurrences of the string @(#), which

is the replacement for the %Z% ID keyword. It then prints what follows that
string until the first double quote ("), greater than (>), backslash (\), new-line
character, or (nonprinting) null character. Note that you can locate and
display constant text as well as ID keywords with what if you precede that text
with %Z%.

For example, assume an SCCS file s.prog.c contains the following line:
char id[] "RZhAMA:AI%;

Note that the colon (:) is not part of an ID keyword. It is left unchanged
when the ID keywords are expanded. Next, the command line

get s.prog.c

SCCS: Source Code Control System 14-11

14

is executed. The retrieved file prog.c is then compiled to produce prog.o and
a.out. The command:

what prog.c prog.o a.out

produces:

prog.c:
prog.c:1.2

prog.o:
prog.c:1.2

a.out:
prog.c:1.2

indicating that version 1.2 of the file prog.c was used in all three files.

Where to Put Id Keywords

ID keywords can be inserted anywhere in SCCS files, including comments. ID
keywords that are compiled into the object module are especially useful, since
they let you compare what version of the object is being run to the current
version of the source.

When you put ID keywords into header files, it is important that you assign
them to different variables. For example, you might use:

static char AccessSid[] = "%W% %G4";
in the file access.h and:
static char OpsysSid[] = "%W% %G%A";

in the file opsys.h. Had you used the same variable name in both, compilation
errors would result because the variable is redefined. Also note that if you
place ID keywords in a header file as code that is eventually compiled then
include that same header file in multiple modules that are loaded together,
the same version information will appear several times in the resulting object
module. To prevent the problem, insert header file ID keywords as comments.

14-12 SCCS: Source Code Control System

Creating New Releases

When you are ready to create a new release of a program, you can specify the
new release number using get’s -r option. For example:

get -e -r2 s.prog.c

retrieves the latest release 1 version of s.prog.c and causes the next delta to be
in release 2 (an SID of 2.1). Future deltas are automatically in release 2.

To assign a new release number for all of the SCCS files in a directory, use:

get -e -r2 directory

assuming that the previous release was release 1, and then execute:

delta directory
All SCCS files in the directory are assigned a new delta SID of 2.1.

Canceling an Editing Session
If you retrieve a file for editing with get -e then decide that you do not want
to edit it, cancel the editing session with:
unget s. file
unget returns the SID of the canceled delta. Only the person who began
an editing session can cancel it. unget can accept more than one filename
argument or, alternatively, use:
unget -
in which case unget accepts file names from standard input.
If you are currently editing a number of SCCS files in one directory and want
to cancel all of the editing sessions for them, you can specify the directory:
unget directory

In this case unget checks every SCCS file in the directory. If one of the files is
not currently being edited, unget returns an error message indicating that its

SCCS: Source Code Control System 14-13

14

14

associated p-file does not exist (see “Files Used by SCCS” section later in this
chapter).

If you are currently editing more than one version of a file, unget’s -r option
allows you to specify which version’s editing session you want to cancel:

unget -r2.3 s.file

If you find that you retrieved a file for editing when you actually needed it for
some other purpose, you would like to cancel the editing session but keep the
file in the current directory. Normally when you cancel an editing session,
unget removes the retrieved text file from the current directory. You can
request that it not be removed with the -n option:

unget -n s.file

This leaves the text file file still available for inspection or compilation, but any
changes made to the file cannot be stored back in the SCCS file with delta.

You can request that unget execute silently (not print out the file’s canceled
delta’s SID) using the command’s -s option:

unget -s s.file

Restoring Old Versions

This section discusses how get’s -r, -x, and -i options are used to retrieve
various versions of a file. They can be used in any combination. The -e option
can also be used with them to create a new delta based on particular versions.

Reverting to Old Versions

Normally, get retrieves the latest version of the specified file. However, you can
request a particular version using get’s -r option.

Suppose that after delta 1.2 was stable you made and released a delta 1.3.
However, this introduced a bug, so you made a delta 1.4 to correct it. Then
you found that 1.4 was still buggy, and you decided you wanted to go back to
the old version. You can access delta 1.2 by choosing the SID in a get:

get -rl.2 s.prog.c

14-14 SCCS: Source Code Control System

This produces a version of prog.c that is delta 1.2. Any changes that you made
between delta 1.2 and the most recent delta are ignored.

If you specify a release number but not a level number, the highest level
number that exists within that release is retrieved. get -r also allows you
to retrieve particular branch deltas. Branches are discussed in the section
“Maintaining Different Branches” later in this chapter.

If you try to retrieve for compilation a particular version that does not exist,
SCCS responds with an error message. There is one exception: if you specify
only a release number and that release doesn’t exist, SCCS retrieves the delta
with the highest release number that does exist, and with the highest level
number within that release.

In some cases you don’t know what the SID of the delta you want is. However,
get allows you to revert to the version of the program that was running as of a
certain date using its -c (cutoff') option. For example, 14

get -c840722120000 prog.c

retrieves whatever version was current as of July 22, 1984 at 12:00 noon.
Trailing components can be stripped off (defaulting to their highest legal
value), and punctuation can be inserted in the obvious places; for example, the
above line is equivalently stated with:

get -c"84/07/22 12:00:00" prog.c

Selectively Excluding Old Deltas

Suppose that you later decided that you liked the changes in delta 1.4, but that
delta 1.3 should be removed. You could do this with the -x option:

get -e -x1.3 s.prog.c

When delta 1.5 is made, it includes the changes made in delta 1.4, but excludes
the changes made in delta 1.3. You can exclude a range of deltas using a dash.
For example, if you don’t want to include 1.3 and 1.4 you can use:

get -e -x1.3-1.4 s.prog.c
which excludes all deltas from 1.3 to 1.4. Alternatively,

get -e -x1.3-1 prog.c

SCCS: Source Code Control System 14-15

14

excludes a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using the -x option (or -i, see below) there are conflicts
between versions. For instance, it may be necessary to both include and delete
a particular line, in which case SCCS always prints out a message telling the
range of lines affected; these lines should then be examined very carefully to see
if the version SCCS got is correct.

Since each delta (in the sense of “a set of changes”) can be excluded at will, it
is usually useful to put each semantically or conceptually distinct change into
its own delta.

Selectively Including Deltas

Just as get’s -x option allows you to exclude deltas from a version in which
they are normally included, the -i allows you to include deltas that are not
normally included.

For example, assume that you have an SCCS file containing five deltas, 1.1
through 1.5. To retrieve a version of a file containing only deltas 1.1, 1.3, and
1.5, request that version 1.1 be retrieved and force the inclusion of deltas 1.3
and 1.5:

get -r1.1 -i1.3,1.5 s.file

To retrieve version 1.5 all of the deltas must be used. All of the following get
command lines accomplish this.

get -r1.5 -i1.2 s.file
get -r1.5 s.file
get s.file

Note that the -1 option in the first command line has no effect since delta

1.2 is already used to construct version 1.5. The -r option is not required
either since delta 1.5 is the most recent delta and, by default, get retrieves the
version incorporating it.

If there are conflicts between versions when you use the -1 option, SCCS
provides a message indicating the range of lines affected, just as it does when
the -x option is used. You should examine these lines in the retrieved file to
make sure that they are correct.

14-16 SCCS: Source Code Control System

Removing Deltas

get -x allows you to exclude deltas from the retrieved file; however, the deltas
are not removed from the SCCS file and the information they contain is still
available and consuming space. To permanently remove a delta from an SCCS
file, use rmdel. rmdel requires that you use the -r option to specify which
delta is removed:

rmdel -r1.3 s.file

Before you can use rmdel to remove a delta, all of the following requirements
must be met:

m The specified version of the file is not currently being edited.

m The SID must be the most recent delta on its branch of the delta chain for
the named file: No other deltas can depend on it.

m You originally created the delta or you are the owner of the SCCS file and
the directory that it is in.

The Help Command

Error messages returned by the SCCS commands have the form:

ERROR : message (code)

If it is not clear from message why the error occurred, use the associated code
as an argument to the help command. Invoking:

help code

often provides a little more explanation about the cause of the error. For
example, if you execute get program you could receive the following message:

ERROR[progmm] : not an SCCS file (col)
Executing:
help col

produces:

SCCS: Source Code Control System 14-17

14

14

col:

"not an SCCS file"

A file that you think is an SCCS file
does not begin with the characters "s.'".

Auditing Changes

The prs Command

When you create deltas, you presumably give reasons for the deltas in response
to the comments?" prompt. To print out these comments later, use:

prs s.filc

Note that prs provides information about each of the deltas used to create the
requested version of the file; therefore, it is a way to list the deltas upon which
a particular version depends. It produces a report for each delta providing the
time and date of creation, the user who created the delta, and the comments
associated with the delta. For example, the output of the above command
might be:

s.file:

D 1.3 84/04/12 08:21:35 becky 3 2 00020/00008/00021
MRg:

COMMENTS :

inserted 20 lines, removed 8 lines

D 1.2 84/04/11 09:21:08 becky 2 1 00008/00000/00021
MRs:

COMMENTS:

inserted 8 lines

D 1.1 84/04/10 06:37:14 becky 1 O 00021/00000/00000

MRs:
COMMENTS :

14-18 SCCS: Source Code Control System

date and time created 84/04/10 06:37:14 by becky

The report indicates that the file’s initial delta (created with admin -i)
inserted 21 lines, delta 1.2 inserted 8 lines and left 21 unchanged, and delta 1.3
inserted 20 lines, removed 8 lines, and left 21 lines unchanged.

You can request information about a particular version of a file using prs’s -r
option:

prs -r2.3 s.prog.c

prs can accept multiple file names or directory names as arguments. If you
request information about all of the SCCS files in a directory, you should
probably redirect prs’s output to a file and look at it at your leisure:

prs directory >output

When a directory is specified, the effect is as if each SCCS file it contains were 14
named and any non-SCCS files are ignored.

prs also allows you to modify the information it provides using its -d option.
Refer to the prs entry in the HP-UX Reference to see how this is done.

Determining Why Lines Were Inserted

To find out why you inserted various lines in a file, you can get a copy of the
file with each line preceded by the SID of the delta that created it using:

get -m s.prog.c

where the retrieved copy is called prog.c. Once you have determined which
delta inserted the line you are interested in, use prs to find out what that
particular delta did by looking at its comment line.

Another way to find out which lines were inserted by a particular delta (e.g.,
1.3) is:

get -m -p s.prog.c | grep ’~1.3’

The -p flag causes get to output the retrieved text to the standard output
rather than to a file.

SCCS: Source Code Control System 14-19

14

Comparing Versions
To compare two versions of a file, use sccsdiff. For example,
sccsdiff -r1.3 -r1.6 s.prog.c

outputs the differences between delta 1.3 and delta 1.6 in a format similar to
the format used by the diff command.

You can specify any number of file names with sccsdiff but the same two
SIDs specify which versions are compared for all of them. You cannot specify a
directory as an argument.

Files Used by SCCS

As a user of SCCS, you do not need to know all of the information covered in
this section; however, it should give you a feel for the inner workings of SCCS.

There are 8 types of files that are used by SCCS and all of them are ASCII
text files. They are:

S-files SCCS files created by admin -i.

G-files Text files containing the “body” of SCCS files and created by
get.

L-files Files containing delta dependency information and created by
get -1.

P-files Files created and used by SCCS to keep track of multiple edits.

D-files Temporary files created and used by SCCS during the
execution of delta.

Q-files Temporary files created and used by SCCS to update p-files.

X-files Temporary files created and used by SCCS to update s-files.

Z-files Lock-files created and used by SCCS to prohibit simultaneous

updating of s-files.

14-20 SCCS: Source Code Control System

Normally, only 4 of these file types are visible to users of SCCS: s-files, g-files,
l-files, and p-files. The remaining 4 types are temporary files used internally by
SCCS during the execution of particular commands.

S-Files

S-files are often referred to as SCCS files in this chapter. They contain all of
the versions of files you are maintaining under SCCS. You create and name an
s-file when you initially enter a file into SCCS:

admin -ifile s. file

s.file is the new s-file and file can now be removed. Accessing a file maintained
under SCCS using SCCS commands is done using its s-file name. S-file names
must begin with the prefix s..

14
The Contents of the S-File

S-files are composed of lines of ASCII text arranged in the following 6 parts:

Checksum A line containing the logical sum of all the characters
of the file, not including the checksum itself.

Delta Table Information about each delta, such as type, SID, data
and time of creation, and user inserted comments.

User Names A list of login names and/or group IDs of users who
are allowed to modify the file by adding or deleting
deltas. Use admin to modify.

Flags Indicators that control certain actions of various
SCCS commands. Use admin to modify.

Descriptive Text Arbitrary text provided by the user; usually a
summary of the contents and purpose of the file. Use
admin to modify.

Body The actual text that is being administered by SCCS,
mixed with internal SCCS control lines. Use get -e
and delta to modify.

The Body section of the s-file is modified whenever you create or delete deltas.
Use the admin command to modify User Names, Flags, and Descriptive

SCCS: Source Code Control System 14-21

14

Text sections (see the “System Protection Using admin” section later in this
chapter). The Checksum and Delta Table are modified internally by SCCS.

Since the entire contents of an s-file is ASCII, the file can be processed with
various HP-UX commands, such as vi, grep, and cat. This is convenient

but somewhat risky in those instances where an SCCS file must be modified
manually (such as when the time and date of a delta are recorded incorrectly
because the system clock was set incorrectly) or when you simply want to look
at its contents.

Note If you modify an SCCS file directly (instead of using SCCS
commands), the Checksum value may be incorrect, causing an
error whenever you try to retrieve a version of the file. This
problem is discussed in a later section, “Restoring the S-File”.
Do not edit an s-file directly unless you thoroughly understand
its format.

G-Files

The get command creates a text file that contains a particular version of an
s-file, obtained by applying deltas to the initial version. This text file is called
a g-file and its name is formed by removing the SCCS file’s s. prefix. It is
this file that you use for inspection, compilation, or editing purposes.

G-files are created in the current directory and are owned by the real user.
Their file mode depends on how get is invoked. If you use:

get s.file

the resulting g-file file has mode 444 (read only) and is produced for inspection
or compilation, but not for editing. Note that any ID keywords in the file are
expanded to their appropriate values.

If you use:
get -e s.file

then file can be edited. Note that any ID keywords in the file are not
expanded, allowing them to be stored back in the file when you use delta.

14-22 SCCS: Source Code Control System

L-Files
When retrieving an SCCS file with get, you can request that an 1-file be
created. Use the command’s -1 option:

get -1 s.file

The name of an l-file is formed by replacing the s. prefix of the SCCS file with
1.. It contains a table indicating what deltas were used to create the retrieved
version of an SCCS file. You must specifically request the creation of 1-files
with -1. get does not create them by default.

To send delta dependency information to standard output instead of placing it
in an l-file, use:

get -r2.3 -1p s.file
14

P-Files

When you retrieve an SCCS file for editing (get -e), besides creating a
writeable g-file containing the version’s text, a p-file is also created. The
name of a p-file is formed by replacing the s. prefix of an SCCS file with p..

P-files are used internally by SCCS to keep track of multiple edits on the same
SCCS file (see “Concurrent Editing”). For each edit that is in progress on a
particular SCCS file (get -e has been executed but not the associated delta),
the file’s p-file keeps track of

m the SID of the retrieved version

m the SID that will be given to the new delta when delta is executed
m the login name of the user that executed get -e

m the date and time that the get -e was executed

If a p-file is accidentally destroyed, it can be regenerated with:

get -e -g s.file

The -e -g combination suppresses the retrieval of a writeable text file (g-file),
but the associated p-file is created. A p-file must exist for an SCCS file before
you can use delta on it.

SCCS: Source Code Control System 14-23

14

When you use the sact to request information, the data is obtained from a
p-file.

D-Files

D-files are used internally by SCCS during the execution of delta to hold a
temporary copy of the original retrieved g-file before any editing was done. The
name of a d-file is formed by replacing the s. prefix of the associated SCCS file
with d.. When you retrieve an SCCS file for editing (get -e) and then invoke
delta, SCCS creates a d-file and compares the edited g-file with the contents of
the d-file to determine what has changed. These changes are then stored in the
SCCS file (s-file).

When you invoke delta, you can request that the differences between the d-file
and the g-file (the file that you retrieved and the file that you are now storing)
be sent to standard output using:

delta -p s.file

Once delta is executed, you can request the same information with the
sccsdiff command.

Q-Files

A gq-fileis a temporary copy of a p-file that is used internally by SCCS. Its
name is formed by replacing the p. prefix of the p-file with q.. Whenever a
p-file needs to be updated (because editing of a version of a file was completed
with delta or started with get -e), a g-file is first created. The change is
made to the g-file and then the p-file is removed and the g-file is renamed to
become the new p-file. This strategy is used to ensure the integrity of the p-file
in case there are any problems adding or deleting entries from the table.

X-Files

An x-file is a temporary copy of an s-file that is used internally by SCCS.
All SCCS commands that modify an SCCS file do so by first creating and
modifying an x-file. This ensures that the SCCS file is not damaged if the
processing terminates abnormally. The name of this temporary copy is formed
by replacing the s. prefix of the SCCS file with x.. When processing is
complete, the old s-file is removed and the x-file is renamed to be the s-file.

14-24 SCCS: Source Code Control System

Z-Files

Z-files are lock-files SCCS uses to prevent simultaneous updating of an SCCS
file. They are discussed later in this chapter in the section “SCCS Protect
Facilities”.

Concurrent Editing

Concurrent Edits on Different Versions

SCCS allows different versions of one SCCS file to be edited at the same

time. This means that a number of get -e commands can be executed on the
same file provided that no two executions retrieve the same version, unless
concurrent edits on the same version are allowed (see the discussion in the next
section).

SCCS uses a p-file to keep track of the edits that are in progress on one file.
The first execution of get -e causes the creation of a p-file for the specified
SCCS file. Subsequent executions of the command update the p-file, adding
entries in the file for each edit session that is in progress. Each entry in the
p-file specifies the SID of the retrieved version, the SID that will be assigned to
the new delta, and the login name of the person doing the editing. When an
editing session is terminated (with delta or unget), the corresponding entry in
the file’s p-file is removed. If no other versions of the file are currently being
edited, then the p-file itself is removed.

Before SCCS allows an editing session on a particular version of an SCCS file
to begin, it makes sure that if a p-file for the file already exists there is no
entry in it specifying that the version has already been retrieved. If there is no
entry with that SID, SCCS adds an entry for the new editing session. If there
is an entry with the same SID, SCCS generates an error message and does not
allow the version to be retrieved for editing (unless multiple edits of the same
version are allowed). SCCS informs you if editing is currently being done on
another version of the file you request to edit.

SCCS: Source Code Control System 14-25

14

14

Note Multiple executions of get -e must be done from different
directories. This is because each time any version of one file is
retrieved, the resulting g-file (text file) is assigned the same
name. As a result, SCCS prohibits multiple edits on the same
file in the same directory because the g-file would constantly be
overwritten.

In practice, multiple editing sessions are performed by different
users with different working directories; therefore, this
restriction normally does not cause a problem.

Concurrent Edits on the Same Version

By default, SCCS does not permit multiple executions of get -e on the same
version of one SCCS file. Each editing session on a version begun with -e must
be ended with delta before another session can begin. However, you can allow
concurrent edits by a single user on the same version of a file by setting the
file’s j flag with the admin command (see “System Protection Using admin”
later in this chapter).

Note that if you do set a file’s j flag, multiple editing sessions on the same
version must be done in different directories, just like multiple edits on different
versions. In addition, these edits can only be performed by the first user

to check out the file. Traditionally, users needing to edit the same s.file
concurrently (like several working on a joint project) have done so by using a
single login account (perhaps a project name) to do this.

14-26 SCCS: Source Code Control System

Recovering from Problems

Making Temporary Changes

If you use get -e to retrieve a file so that you can edit it, SCCS requires that
you delta the changes that you make back into the associated s-file. Sometimes,
however, it is necessary to make modifications to a file that you do not want
saved.

To make temporary changes to a file possible, retrieve it from SCCS with:
get s.file

SCCS does not expect changes to be made to the file; therefore, it gives it
read-only access. You must now change the mode of the file so that you can
edit it: 14

chmod +w file

Chmod +w adds write access to a file. Any changes that you now make to file
cannot be stored in SCCS.

Recovering an Edit File

Sometimes you may find that you have lost a file that you were trying to
edit. Unfortunately, you can’t just execute get -e again; SCCS keeps track of
the fact that someone is trying to edit that version, so it won’t let you do it
again. Neither can you retrieve it using get, since that would expand the ID
keywords. Instead, you can say:

get -k prog.c

This retrieves the file and does not expand the ID keywords, so it is safe to do
a delta with it.

SCCS: Source Code Control System 14-27

14

Restoring the S-File

You may find that the SCCS file itself is corrupt. The most common way

this happens is when someone edits the file directly, not through the SCCS
commands. SCCS keeps a checksum that contains the logical sum of all of the
characters in the file. If you modify the SCCS file directly the checksum may
have the wrong value. No SCCS command will process a corrupted SCCS file
except admin -h and admin -z as described below.

You should audit all SCCS files for corruption on a regular basis. The simplest
way to do this is to execute admin using the =h option on all of the SCCS files
of interest:

admin -h s.filel s.file? ...
or:
admin -h directory

This checks to see if each file’s checksum is correct. The message corrupted
file (c06) is produced for a file whose checksum is not correct.

If you have a corrupted SCCS file, you must first determine why its checksum
is incorrect. If it is due to someone having directly modifying the file, the
problem is often corrected by merely recomputing the checksum. Do this with
admin’s -z option:

admin -z prog.c

The checksum is recomputed to bring it into agreement with the actual
contents of the file.

Note Before using admin -z, first find and correct the corruption
problem. If you don’t, once the checksum is recomputed, the
corruption is no longer detectable. Admin -z does not find or
fix the problem, it merely recomputes a new checksum.

14-28 SCCS: Source Code Control System

Using the Admin Command

The admin command creates new SCCS files and changes parameters of
existing ones. When an SCCS file is created, its parameters are either
initialized with options or are assigned default values if no options are specified.

Newly created SCCS files are given mode 444 (read-only) and are owned by the
effective user. Only a user with write permission in the directory containing the
SCCS file can use admin on it.

Creating SCCS Files
As discussed earlier, an SCCS file for a file called prog is created using:
admin -iprog s.prog

The name of the SCCS file is s.prog. If no file name is specified with the -i 14
option, the text is read from standard input:

admin -i s.prog prog

When the SCCS file is created, the release number assigned to its initial delta
is normally 1 and the level number is always 1, meaning that the first delta of
the fileis 1.1. You can assign a different initial release number using admin’s
-r option when the file is created:

admin -iprog -r3 s.prog
Here, the initial delta is 3.1.

Adding Comments to Initial Delta

When you create an SCCS file, you can supply a comment stating the reason
for the creation of the file. This is done with the -y option:

admin -ifile -y"The reason this file was created" s.file

If you do not specify an initial comment with -y, SCCS gives the initial delta a
comment line of the form:

date and time created YY/MM/DD HH:MM: 5SS by logname

SCCS: Source Code Control System 14-29

14

Descriptive Text in Files

A portion of an SCCS file is reserved for descriptive text, text that summarizes
the content and purpose of the SCCS file. When you are creating an SCCS file
you can insert descriptive text using admin’s -t option followed by the name of
a file containing the text:

admin -ifile -tdescrip s.file
You can either add descriptive text to an existing SCCS file or replace the
descriptive text it already contains with:

admin -tnew_descrip s.file

where new_descrip is the name of the file containing the descriptive text. To
remove descriptive text from an SCCS file, use -t without a file name:

admin -t s.file
To see the descriptive text for an SCCS file, use prs as follows:
prs -d:FD: s.file

The prs command’s -d option allows you to specify what information about
the file that you want returned. The :FD: indicates that you want to see the
file’s descriptive text. Refer to the HP-UX Reference manual entry for prs for
more information about the command’s -d option.

Setting SCCS File Flags

SCCS files have a number of parameters called flags that can be added and
deleted using the admin command. These flags are maintained in a particular
section of SCCS files along with their associated values where appropriate. Add
flags with admin’s -f option and delete them with its -d option. For example:

admin -fd2.1 prog.c

sets the d flag to the value 2.1. This flag can then be deleted using:
admin -dd prog.c

You can use admin -f to add or admin -d to delete the following flags:

b Allow branches to be made using get -e -b.

14-30 SCCS: Source Code Control System

dSID

cceiling

f floor

1list

Default SID to be used on a get. If this is just a release
number, the default is the highest version number for that
release.

Sets the highest release number for a file that can be
retrieved with get -e to ceiling. ceiling must be a number
less than or equal to 9999. The default release ceiling for a
file is 9999.

Sets the lowest release number for a file that can be
retrieved with get -e to floor. floor must be a number
greater than 0 and less than 9999. The default release floor
for a file is 1.

Give a fatal error during get or delta if there are no ID
keywords in a file. This is useful to guarantee that a version
of the file does not get merged into the s-file that has the ID
keywords inserted as constants instead of internal forms.

Allow concurrent edits on the same version (SID) of the

SCCS file.

A list of releases that cannot be retrieved for editing (get
-e). The list has the following syntax:

range = RELFASE_NUMBER | a

The character a is equivalent to specifying all of the releases
for the named SCCS file. If you do not specify a list with
the 1 flag, a is assumed by default.

To delete one or more “locked” releases with admin’s -d
option you must also use a list to specify which releases are
to be “unlocked”. For example, admin -dla s.file unlocks
all of the releases of s.file so that they can be edited.

Causes delta to create a term|null| delta in each of those
releases (if any) being skipped when a delta is made in a
new release (for example, when making delta 5.1 after delta
2.7, releases 3 and 4 are skipped). These null deltas serve as
“anchor points” so that branch deltas may later be created

SCCS: Source Code Control System 14-31

14

14

qtert

mmodule

tiype

v[pgm]

from them. If this flag is not set for a file, skipped releases
are non-existent in the SCCS file, preventing branch deltas
from being created from them in the future.

Replace all occurrences of the ID keyword %Q% with the
contents of file text when the SCCS file is retrieved for
inspection or compilation. If the q flag has not been set for
a file, occurrences of %Q% are not replaced with anything.

Replace all occurrences of the ID keyword %M} with the
specified module name when the SCCS file is retrieved for
inspection or compilation. If the m flag has not been set for
a file, occurrences of M}, are replaced with the name of the
SCCS file minus the s. prefix.

Replace all occurrences of the ID keyword %Y%, with the
specified type when the SCCS file is retrieved for inspection
or compilation. If the t flag has not been set for a file,
occurrences of %Y}, are not replaced with anything.

Causes delta to prompt for Modification Request (MR)
numbers as the reason for creating a delta. If you set this
flag when you create an SCCS file, admin’s -m option must
also be specified, even if its value is null.

You can optionally specify an MR number validation
checking program called pgm with admin -fvpgm.

Specifying Who Can Edit a File

admin’s -a option allows you to specify who can edit an SCCS file. Use it as

follows:

admin -alogin s. file

where login is a user’s login name or an HP-UX group ID. If it is a group 1D,
the effect is equivalent to specifying all login names common to that group ID.
Several -a options can be used on a single admin command line.

Note that admin can accept one or more SCCS file names or directory names as
arguments. For example, the command line:

14-32 SCCS: Source Code Control System

admin -abill -ajane -ajohn directory

gives HP-UX users bill, jane, and john editing privileges to all of the SCCS
files in directory. The list of users for each SCCS file in the directory is
updated to show this. No one else can edit those SCCS files unless specifically
authorized by using admin -a.

If no one has been assigned editing privileges to a file with admin -a, the file’s
list of users is empty and anyone can edit the file (as long as they have write
access to the file’s parent directory).

To remove a user’s ability to edit an SCCS file, use admin ~e. For example:
admin -ebill directory

removes bill from the list of users allowed to edit the SCCS files in directory. 14

SCCS: Source Code Control System 14-33

14

Note Before a user can be prohibited from editing a file, the file’s list
of users must be non-empty. If the list is empty everyone has
editing privileges and using admin -e has no effect.

If a file’s list of users is non-empty, any user not added to the
list with admin -a is already prohibited from editing the file.
Thus, you can remove a specific user’s editing privileges only if
you have previously added him to the list of users using admin
-a.

Maintaining Different Branches

Sometimes it is convenient to maintain an experimental version of a program
for an extended period while normal maintenance continues on the version in
production. This can be done using a “branch.” Normally deltas continue in a
straight line, each depending on the delta before. Creating a branch “forks off”
a version of the program.

For example, Figure 14-2 shows there is one branch delta having an SID of
2.1.1.1:

1] e 1.2 —pm 2.1 —= 3.1

|——2,1.1.1

Figure 14-2. Example Branch Delta

The ability to create branches off of the latest main “trunk” delta must be
enabled in advance by setting the file’s b flag:

admin -fb prog.c

The b flag can also be set when the SCCS file is first created. It is not
necessary to set a file’s b flag in order to create a branch off of an older delta.

14-34 SCCS: Source Code Control System

Creating a Branch
To create a branch off of the latest main trunk version, use:
get -e -b prog.c

If the retrieved version has an SID of 1.5 and no branch was previously created
on it, a branch with SID 1.5.1.1 is created when the file is modified. The deltas
for this branch are numbered 1.5.1.n where “n” increments by 1 with each
delta.

If you retrieve an old version of an SCCS file for editing, SCCS automatically
assigns a branch SID to the new delta. The file’s b flag need not be set to do
this. For example, assuming that the latest delta of prog.c is delta 1.5 you can
create a branch off of delta 1.2 using:

get -e -rl1.2 prog.c

SCCS will automatically number the new branch delta 1.2.1.1 if it is the first
branch off delta 1.2,

Retrieving a Branch

Deltas in a branch are not normally included when you use get. To retrieve
these versions, you have to use:

get -rl1.5.1 prog.c
specifying the requested branch’s SID.

Branch Numbering

SCCS uses the following SID numbering scheme for recognizing branch deltas:

release . level. branch. sequence

release.level is the SID of the delta on the main trunk from which the branch
descends. A branch number is assigned to each branch path that originates
from a particular delta on the main trunk. A sequence number is assigned to
each delta on a particular branch. Branch deltas always have all four of the
above components in their SIDs and the release and level numbers are always
those of the ancestral main trunk delta.

SCCS: Source Code Control System 14-35

14

When you retrieve a branch, specifying only the release, level, and branch
components of the SID returns the most recent version on a particular branch.

Although SCCS maintains enough internal information to remember delta
dependencies of branch deltas, the SID number itself does not always indicate
all of the deltas between a branch delta and its main trunk ancestor delta. For
example, given delta 1.3.2.2 you know that the main path ancestor is delta 1.3
and that it is the second delta (sequence=2) on the second branch (branch=2)
descending from delta 1.3. However, the diagrams below indicate two possible
development paths for delta 1.3.2.2:

1.3.1.2

(Branch 1) T (Branch 2)
1311 —w 1321 —1.32.2

f

A =12 — 13— 2.1—22
Figure 14-3. Diagram 1

1.3.1.2

(Branch 1) T
1.3.1.1

T

1= 2 — 13— 2] — 2.2

1.3.21—1.322
{Branch 2)
Figure 14-4. Diagram 2

Note that in Diagram 1, version 1.3.2.2 is dependent on deltas 1.1, 1.2,
1.3, 1.3.1.1, and 1.3.2.1, while in Diagram 2 the delta with the same SID is
dependent on 1.1, 1.2, 1.3, and 1.3.2.1.

14-36 SCCS: Source Code Control System

A Warning

Branches should be kept to a minimum. After the first branch from the main
trunk, SIDs are assigned rather haphazardly, and the structure gets complex
very quickly.

SCCS Protection Facilities

The protection facilities that SCCS provides for a system fall into two
categories:

m general protection of files inherent to SCCS (using general HP-UX file system
protection by appropriately setting the modes of various files)

m specific system protection strategies controlled by the SCCS administrator by 14

using the admin command

General File Protection

New SCCS files created with admin are given mode 444 (read only). This mode
prevents any direct modification of the files by any non-SCCS commands. The
mode of the files should not be changed to allow direct modification.

SCCS files must not be linked to more than one filename because of the way
SCCS modifies files. Commands that modily SCCS files (delta, admin) create
a copy of the file. The copy, called an x-file, is modified; the original SCCS file
is removed, and the copy is renamed. 1 the original SCCS file has any links,
they are broken when it is removed. SCCS generates an error message if you
try to process any file under SCCS that has multiple links.

To prevent simultaneous updates to SCCS files, a lock-file (called the z-file)
is also created whenever an x-file is created. A z-file contains the process
number of the command that created it, and its existence is an indication to
other commands that the SCCS file is being updated. Other SCCS commands
that modify SCCS files will not process an SCCS file if a corresponding

z-file exists. For example, assume that two people are editing two versions

of an SCCS file. When one of them executes delta, a z-file is created which
keeps the second person from successfully invoking delta. When delta has

SCCS: Source Code Control System 14-37

14

completed, the z-file is removed and the second person is free to create his own
delta. z-files are created with mode 444 (read only) in the directory containing
the SCCS files and are owned by the effective user.

SCCS checks for the corruption of an SCCS file by maintaining a checksum.
Whenever the file is modified with an SCCS command, its checksum is updated
to reflect the logical sum of the number of characters the file has. Most SCCS
commands will not allow you to access a file that is corrupted. The admin
command allows you check for corrupted file and to correct them.

SCCS files should be kept in directories that contain only SCCS files and any
temporary files created by SCCS commands. This simplifies protection and
auditing of SCCS files since most of the commands allow you to operate on all
of the SCCS files in a directory by merely specifying a directory name. The
contents of directories should correspond to convenient logical groupings, such
as subsystems of a large project.

System Protection Using admin

admin allows the system administrator of a project to control five major areas
of protection:

1. prohibiting concurrent editing of a given version of a file
2. specifying a list of users that have permission to edit a file
3. prohibiting editing on particular releases

4. setting range limits to what releases users can access

5

. making the recognition of no ID keywords in a file by SCCS commands a
fatal error

The admin command allows you to use these protection strategies on either
a file-by-file basis or on a directory basis. For details on how to do this, see
“Using the Admin Command” earlier in this chapter.

14-38 SCCS: Source Code Control System

Using SCCS With Make

If you are using make to create and maintain systems and are using SCCS to
maintain the source files for the systems, you can make the two work together
by including SCCS commands in make’s makefiles. The following discussion
assumes that you already know how to use make. For more information, refer
to the make(l) entry in the HP-UX Reference or Chapter 13 in this book.

Most makefiles should have a few basic target entries:

a.out (or whatever the makefile generates). This target entry
regenerates whatever this makefile is supposed to regenerate.
If the makefile regenerates several intermediate things, this
should be called “all” and should in turn have dependencies on
everything the makefile can generate.

install Moves the objects to their final resting place, doing any special
chmod’s or ranlib’s as appropriate.

sources Creates all the source files from SCCS files.

clean Removes unneeded files from the directory.

The clean entry should not remove files that can be regenerated from the SCCS
files since it is sufficiently important to have the source files around at all
times,

Note that the examples of makefiles that follow are only partial and do not
illustrate all of these target entries fully. Also note that the example makefiles
require that you execute make in the same directory as the SCCS files.

To Maintain Groups of Programs

Frequently there are directories with several largely unrelated programs (such
as simple commands) and these can often be maintained by one makefile. For
example, the makefile below maintains “prog” and “example”:

LDFLAGS= -i -s
prog: prog.o

$(CC) $(LDFLAGS) -o prog prog.o
prog.o: prog.c prog.h

SCCS: Source Code Control System 14-39

14

14

example: example.o
$(CC) $(LDFLAGS) -o example example.o
example.o: example.c

.DEFAULT:
get s.$<

Note that the source for the programs is maintained as SCCS files and that
these files must exist in the same directory as the makefile for the makefile to
be able to retrieve them. The .DEFAULT rule is called every time something is
needed that does not exist, and no other rule exists to make it. The explicit
dependency of the .o file on the .c file is important. Another way of doing the
same thing is:

SRCS= prog.c prog.h example.c

LDFLAGS= -1 -s

prog: prog.o
$(CC) $(LDFLAGS) -o prog prog.o
prog.o: prog.h

example: example.o
$(CC) $(LDFLAGS) -o example example.o

sources: $(SRCS)
$(SRCS) :
get s.%Q

There are some advantages to the second approach:
m The explicit dependencies of .o files on .c files are not needed.

m There is an entry called sources so if you just want to get all the sources you
can just say make sources.

m The makefile is less likely to do confusing things since it won’t try to get
things that do not exist.

14-40 SCCS: Source Code Control System

To Maintain a Library

Libraries that are largely static are best updated using explicit commands,
since make doesn’t know about updating them properly. However, make can
adequately handle libraries that are in the process of being developed. One
problem in maintaining libraries is that the object (.0) files must be kept out of
the library as well as in the library.

configuration information

JOBJS= a.o b.oc.od.o

SRCS= a.c b.cc.cd.s x.h y.h z.h
TARG= /usr/lib

programs

GET= get
REL= 14
AR= -ar

RANLIB= ranlib

lib.a: $(0BJS)
$(AR) rvu lib.a $(0OBJIS)
$ (RANLIB) 1lib.a

install: lib.a
cp lib.a $(TARG)/lib.a
$(RANLIB) $(TARG)/lib.a

sources: $(SRCS)
$(SRCS) :
$(GET) $(REL) s.$@

print: sources
pr *.h *.[cs]
clean:
rm -f *.0
rm -f core a.out $(LIB)

The $(REL) in the $(SRCS) entry allows you to retrieve various versions of the
SCCS files. For example:

SCCS: Source Code Control System 14-41

14

make REL=-r1.3

Note that for the install entry to execute properly, no one should be editing
any of the SCCS files when it is invoked.

To Maintain a Large Program
Consider this example makefile:

0BJS= a.o b.o c.o d.o
SRCS= a.c b.c c.y d.s x.h y.h z.h

GET= get
REL=

a.out: $(0BJS)
$(cC) $(LDFLAGS) $(0OBJS) $(LIBS)

sources: $(SRCS)
$ (SRCS) :
$(GET) $(REL) s.$@

(The print and clean entries are identical to the previous case.) This makefile
requires copies of the source and object files to be kept during development. It
is probably also wise to include lines of the form:

a.c: x.h y.h
b.o: z.h

c.o: x.h y.h z.h
z.h: x.h

so that modules are recompiled if header files change.

Since make does not do transitive closure on dependencies, you may find in
some makefiles lines like:

z.h: x.h
touch z.h

This would be used in cases where file z.h has a line:

#include "x.h"

14-42 SCCS: Source Code Control System

in order to bring the date of z.2’s last modification in line with the date of
the last modification of 2.h (or rather, when the system thinks 2.~ was last
modified). Alternatively, the effect of the touch command can be achieved by
doing a get on z.h.

Using SCCS on a Multi-User Project

This section describes the how SCCS is configured to maintain files for a large
project that involves several users. The person that configures and controls
the SCCS files is called the “SCCS System Administrator”. Only you need
the information covered in this section if you are your project’s SCCS System
Administrator.

If you plan to use SCCS on a project that involves several users, first develop a
system of controlling access to the SCCS files and commands. Thus far, this
chapter has only discussed a one-user system, where that user has write access
to the directory containing the SCCS files. The user also has full use of all of
the SCCS commands and can modify protected files (by first making read-only
files writeable).

As an SCCS System Administrator, you should provide an interface program
that gives temporary write access to the SCCS directory when users execute
certain SCCS commands, but restricts users to read-only access at all other
times. When SCCS files are used on a project, they are grouped in one
directory (or more if necessary). The SCCS System Administrator is the owner
of the SCCS directory, has write access to it, and has full use of all of the
SCCS commands. Other users involved on the project should only have read
access to the directory, which means that they cannot directly use the SCCS
commands that require write access.

The SCCS interface program is a C program that provides a filter for the
commands requiring that the user have directory write access. If, instead of
using the interface program, you give all of the users write access to the SCCS
directory, you greatly restrict the protection facilities SCCS provides. Use

of the interface provides users with only temporary write access when they
execute one of the commands. The two SCCS commands that require directory
write access and that must be available to the users through the interface
program are get and delta. rmdel, cdc, and unget also require write access

SCCS: Source Code Control System 14-43

14

14

and can also be made available to users through the program. The remaining
SCCS commands either do not require write access to the SCCS directory or
are usually used only by the SCCS System Administrator (admin for example).

How the SCCS Interface Works

The SCCS interface program invokes a specified SCCS command and
causes the command’s process to inherit the privileges of the SCCS System
Administrator for the duration of its execution. This allows the process to
obtain write access to the SCCS directory.

The names of the commands that you want filtered through the interface
program must be linked to the program so that invoking the command name
executes the program. The interface program is written in C and when a

C program is executed, the name that invoked the program is passed as
argument 0 and is followed by any user-supplied arguments. By looking at the
value of argument 0, the program knows which command to execute. Thus,
the command name used to invoke the interface program determines which
SCCS command the program executes. How other arguments, such as SCCS
file names, are processed is often system dependent, but they can be passed
directly to the SCCS command by the program.

Configuring an SCCS System Using the Interface

As the SCCS System Administrator, there are six basic steps to carry out
before allowing other users to access SCCS files:

1. Create and move to an SCCS directory.

2. Write and compile the interface program.

3. Change the mode of the program.

4. Set up links between the program and the SCCS cdmmand names.
5

. Modify each user’s search path so that the directory containing the interface
program is searched before /usr/bin, the directory containing the SCCS
commands.

6. Create the SCCS files.

14-44 SCCS: Source Code Control System

Creating the SCCS Directory

Before you can successfully use the SCCS interface program, you must create
one or more directories for storing the SCCS files and the program. You, as the
SCCS System Administrator, should be the only one with write access to the
directory.

For example, to create a directory called /system/sccs and then deny write
access to all but yourself, use:

mkdir /system/sccs
chmod 755 /system/sccs

Now move to the SCCS directory since you must be in that directory when
writing and maintaining the SCCS interface program:

cd /system/sccs
14

SCCS: Source Code Control System 14-45

14

Writing and Compiling the Program

The SCCS interface program is written in C and this section assumes that you
already know how to program in that language.

Write an SCCS interface program that is customized to the needs of your
system. To get started, here is a general-purpose interface program:

#define LENGTH 100 /* length of command string */

main(argc, argv)

int argc;

char *argv[];

{

register int 1i; /*counts command line arguments*/
character cmdstr[LENGTH] ; /*holds SCCS command namex/
/%

* Do any required processing of file name arguments that
* follow the SCCS command name (arguments that don’t begin

* with -)
*/
for (i = 1; i<argc; i++)
if (argv[i][0] '= ’-?)

argv[i] = filearg(argv[i]);
/*
* Get "simple name" of name used to invoke this program
* (i.e. strip off directory-prefix name, if any).
* This step may not be needed in your system.

*/

argv[0] = sname(argv[0]);

/%
* Invoke actual SCCS command, passing arguments.
*/

sprintf(cmdstr, "/usr/bin/%s", argv[0]);
execv(cmdstr, argv);

}

This example program calls two routines that you must supply and that allow
you to customize the SCCS interface. filearg acts as a preprocessor for SCCS
commands. In the program above, it is used to modify SCCS file name. This
modification often involves appending the path name of an SCCS directory to

14-46 SCCS: Source Code Control System

the SCCS file names so that users can access the files without having to specify
full path names.

The second routine that you must supply is sname. Its purpose is to modify

the name with which the user invoked the interface program so that it agrees
with the name of the associated SCCS command. The statement calling this
routine is not required when the link names of the interface program are the

same as the names of the SCCS commands.

Once you have written an SCCS interface program designed for your system,
compile it. Assuming that your source code file is called interface.c, use the
following to compile it:

cc interface.c -o interface

The name of the resulting executable program is interface.

14
Specifying Program Access Permissions

The interface program must be owned by the SCCS System Administrator,
and must be executable by the other users involved on the project. It must
also have its set user ID on execution bit enabled so that when the program
is executed, the user obtains write access to the SCCS directory. Assign these
necessary characteristics to the program with:

chmod 4755 interface

where “interface” is the name of the executable interface program.

Assign Name Links to the Program

Now that you have an executable interface program, use the ¢p command to
assign name links to it. It is convenient for the users if these name links are the
same as the SCCS commands that are executed by the program.

To illustrate, assume that you want to allow users to access the get and delta
commands through the interface program. Create the necessary links with:

cp interface get

cp interface delta

You now have three names that point to the same program: interface, get, and
delta. All of the other SCCS commands that require write access to the SCCS

SCCS: Source Code Control System 14-47

14

directory will be inaccessible to the users since you have not linked them to the
program.

Modifying the Users’ Search Path

Once you have linked the appropriate SCCS command names to the SCCS
interface program, you must modify each user’s HP-UX search path so that the
directory containing the the interface program is found before the actual SCCS
commands. PATH is the HP-UX variable that specifies where the system looks
for a command when a user executes it. When any command is executed, the
system searches for the command in the directories defined by the user’s PATH
variable. The directories are searched in the order in which they appear in the
variable’s list. Your HP-UX system has a default definition for