
Programming on HP-UX

HP9000
Computers

Programming on HP-UX

HP 9000 Computers

Flin- HEWLETT
.:~ PACKARD

HP Part No. B2355-90026
Printed in USA August 1992

E0892

Notices
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of rnerchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Copyright © 1983-92 Hewlett-Packard Company

All rights are reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in sub-paragraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S .A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).

Copyright © 1980, 1984, 1986 UNIX System Laboratories, Inc.

Copyright © 1979, 1980, 1983, 1985-1990 The Regents of the University of
California.
This software and documentation is based in part on materials licensed from
the Regents of the University of California. We acknowledge the role of
the Computer Systems Research Group and the Electrical Engineering and
Computer Sciences Department at the University of California at Berkeley and
the other named Contributors in their development.

Trademarks. The following trademark is used in this manual:

UNIX UNIX is a registed trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. The manual printing date and part nUlllber indicate its
current edition. The printing date changes when a new edition is printed.
The manual part number changes when extensive technical changes are
incorporated.

August 1992

iv

Edition 1. This manual supersedes Programming on HP- UX
(part number B23.5.5-90010). The main reason for this new
edition is to document new functionality for the HP-UX 9.0
release:

• Series 300/400/800 computers now support the following
features, which formerly were supported only on Series 700
systems:

D shl_gethandle routine

D -h and +e linker options

D BIND_VERBOSE, BIND_NONFATAL, and BIND_FIRSTfiags to
the shl_load routine

D -B nonfatal linker option

D -c linker option (for linker option files)

• Linker functionality is now identical on Series 800 and Series
700.

• A shared library's run-time location can be different than its
link-time location; in other words, shared libraries no longer
have to reside at the same location at run time as they were
when the application was linked.

• Shared libraries can now be debugged with xdb.

• There is a new section on improving the run-time
performance of shared libraries.

• Profile-based optimization (PBO) has changed somewhat.

• On Series 700/800, greater math library performance can
be obtained by linking with the PA89 math libraries (as
described in Chapter 2).

• On Series 700/800, there is a new shared library
management routine, shl_getsymbols.

• New BIND_RESTRICTED flag to the shl_load routine.

• New -B restricted linker option.

• New + I linker option (shared library ini tializers).

The previous edition (part number B2355-90010) superseded
part number B1864-90007. The main reason for the previous
edition was to include information from the Programming on
HP- UX Technical Addendum for the Series 700 HP -UX release
8.05 (part number B2355-90604):

• profile-based optimization-repositioning procedures in an
a . out file to optimize run-time performance

• linker optimization with the -0 option

• new linker option for shared library binding: -B nonfatal

• explicitly hiding and exporting shared library symbols with
the -h and +e linker options

• support for linker option files with the -c option

• shared library dependencies-automatically loading libraries
that are required by other libraries

• new shl_load flags-BIND_ VERBOSE, BIND_FIRST,
and BIND_NONFATAL

• new shared library management routines-shl_definesym.
and shl_gethandle

• support for shared library debugging with the -s option to
xdb

v

Contents

1. Introduction
Manual Contents
Prerequisites . .
Related Manuals
Chapter Summaries
Conventions

2. The HP-UX Software Development Environment
Compiling Programs on HP- UX: An Example
Looking "inside" a Compiler
What Is an Object File?

Local Definitions .
Global Definitions. .
External References .
Using nm to View Symbols

The Link-Edit Phase of Compilation
Linking with Libraries

Library Naming Conventions . . .
Specifying Libraries to the Linker (-1)
Default Libraries
Specifying Libraries on the Compile Line (-1)
Linking with the crtO.o Startup File
The Default Library Search Path

Summary of HP- UX Libraries
Archive and Shared Libraries .

What Are Archive Libraries?
What Are Shared Libraries?
Position-Independent Code .

Compiler Options That Affect the Linker
Renaming the a.out File (-0 name)

1-2
1-3
1-4
1-6
1-8

2-2
2-4
2-6
2-6
2-6
2-6
2-7
2-9

2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-12
2-14
2-16
2-17
2-19
2-20
2-20

Contents-1

Suppressing the Link-Edit Phase (-c)
Specifying Libraries (-1)
Getting Verbose Output (-v)
Passing Linker Options Directly (-WI)
Augmenting the Default Linker Search Path (- Wl,-L)

Selecting Faster Libraries (Series 700/800 Only)
From the Linker Command Line
From the Conlpiler Command Line .
Restrictions on Using Faster Libraries

The Assenlblers
Other Programrning Tools
SoftBench

The Programrning Tools
The SoftBench Framework
SoftBench Encapsulator

3. Creating Archive Libraries
Overview of Creating an Archive Library.
What Does an Archive File Contain?
Creating an Archive Library: An Example
Replacing, Adding and Deleting Object Modules

Replacing or Adding an Object Module
Deleting an Object Module .

Summary of ar Keys
Where to Put Archive Libraries

Using /lib or /usr/lib . . .
Using /usr/local/lib or /usr/contrib/lib

4. Creating Shared Libraries
Creating Position-Independent Code (PIC) .

Example
+z versus + Z.
Compiler Support for +z and +Z . . .

Shared Libraries with Debuggers, Profilers, and Static Analysis .
Creating the Library with Id .
Updating a Shared Library
Version Control

The Version Number Compiler Directive

Contents-2

2-20
2-21
2-21
2-22
2-22
2-23
2-23
2-24
2-24
2-2.5
2-27
2-28
2-28
2-28
2-29

3-2
3-3
3-4
3-6
3-6
3-6
3-7
3-8
3-8
3-8

4-2
4-2
4-2
4-2
4-3
4-4
4-.5
4-6
4-6

Adding New Versions to a Shared Library 4-7
Specifying a Version Date 4-8

Shared Library Location 4-9
Shared Library Dependencies (Series 700/800 Only) 4-10

The Order in Which Libraries Are Loaded (Load Graph) . 4-10
Placing Loaded Libraries in the Search List 4-12

Improving Shared Library Performance 4-13
Exporting Only the Required Symbols . . . 4-13
Placing Frequently-Called Routines Together 4-14
Setting Shared Library Permissions to N on-Writable (Series

700/800 Only) 4-15
Using the +ESlit Option to cc (Series 700/800 Only) 4-16

5. Linking and Running Programs
Linker Overview 5-2

Compiler-Linker Interaction 5-2
The crtO.o Startup File 5-3
Entry Point 5-3
The a.out File 5-3

File Permissions 5-4
Renaming the a.out File 5-4

Specifying Linker Options with the LDOPTS Environment
Variable 5-4

Specifying Libraries (-1) 5-5
Link Order 5-6
Overriding the Default Linker Search Path (LPATH) 5-6
Augmenting the Default Linker Search Path (- L) 5-7

Choosing Archive or Shared Libraries (-a and -1:) 5-8
U sing the -a Option 5-8
Using the -1: Option (Series 700/800 Only) . . 5-9

Linking a Program with Shared Libraries 5-11
Exporting Symbols from the Main Program (-E) 5-11
Library Location and the Dynamic Loader (dld.sl) 5-11

Default Behavior When Searching for Libraries at Run Time 5-11
Moving Libraries after Linking 5-12
The Path List 5-12
Caution on Using Dynamic Library Searching 5-13
Specifying a Path List with + b 5-13

Contents-3

Specifying a Path List with +s and SHLIB_PATH 5-14
Mixing +b and +s 5-14
The Path List and the shl_load Routine 5-14

Binding Routines to a Program 5-15
Deferred Binding 5-15
Forcing Immediate Binding (- B immediate) 5-15
Nonfatal Shared Library Binding (-B nonfatal) 5-16
Restricted Shared Library Binding (-B restricted) (Series

700/800 Only) 5-16
Hiding and Exporting Sytnbols (-h a.nd +e) 5-18

Hiding and Exporting Symbols When Building a Shared
Library . 5-19

Hiding Symbols When Combining .0 Files with the -r Option 5-20
Hiding and Exporting Symbols When Creating an a.out File 5-20

Linker Option Files (-c file) 5-22
Migrating to Shared Libraries 5-23

Library Path Names. 5-23
Relying on Undoculnented Linker Behavior. 5-23
Absolute Virtual Addresses. 5-24
Stack Usage 5-25
Text and Data Segment Restrictions (Series 300/400 Only) .5-26
Startup Code (crtO.o) 5-26
Version Control 5-27
U sing the chroot Comlnand with Shared Libraries. .5-27
Debugger Limitations 5-28
Profiling Limitations 5-28

Loading Programs: exec 5-29
Magic Numbers 5-30
Shareable Executables vs Shared Libraries 5-32
Changing a Program's Attributes with chatr 5-34
Stripping Symbol Table Information frOln the Output File .5-:35
Dynamic Linking (-A and -R)5-36

Overview of Dynanlic. Linking5-:36
Step 1: Determine how much space is required to load the

module.. 5-:36
Step 2: Allocate the required melllory and obtain its starting

address. 5-37
Step 3: Link the lllodule frolll the running application. 5-37

Contents-4

Step 4: Get information about the module's text, data, and
bss segments from the module's header.

Step 5: Read the text and data into the allocated space. . .
Step 6: Clear (zero out) the bss segment.
Step 7: Flush the text from the data cache before executing

code from the loaded module.
Step 8: Get the addresses of routines and data that are

referenced in the module.
An Exam pIe Program .
The Build Environment
Source for dyn prog
filel.o and file2.o .
Output of dynprog
dynload.c

The alloc_load_space Function
The dyn_Ioad Function

The flush_cache Function (Series 700/800 Only)

6. Profile-Based Optimization and Data Access Optimization
Optimizing Access to Data (Series 700/800 Only)

Invoking -0 from the Compile Line
Incompatibilities with other Options.

Profile-Based Optimization (Series 700/800 Only)
When to Use PBO
How to Use PBO
Instrumenting (+ I/ -I) . .

The Startup File icrtO.o
The -I Linker Option
Specifying a Code Generator to the Linker (-Fb)

Profiling
Choosing Input Data
The flow.data File
Storing Profile Information for Multiple Programs
Sharing the flow.data File Among Multiple Processes
Forking an Instrumented Application

Optimizing Based on Profile Data (+ P / -P) .
The -P Linker Option .
U sing The flow.data File

5-37
5-38
5-39

5-39

5-39
5-40
5-41
5-42
5-45
5-46
5-46
5-47
5-50
5-55

6-2
6-2
6-2
6-3
6-4
6-4
6-4
6-5
6-6
6-7
6-8
6-8
6-8
6-9

6-10
6-11
6-11
6-12
6-12

Contents-5

Specifying a Different flow.data File with +df
Specifying a Different flow.data File with FLOW _DATA
Interaction between FLOW_DATA and +df .
Specifying a Different Program N anle (+pgm)

Selecting an Optimization Level with PBO
A Simple Exam pIe
Restrictions and Limitations of PBO

Temporary Files
Source Code Changes and PBO
I-SOM File Restrictions

ld .
nm ..
ar ...
strip
Compiler Options

COlnpatibility with 8.05 PBO .

7. Position-Independent Code
What Is Relocatable Object Code?
What Is Position-Independent Code?
Series 700/800 Position-Independent Code

PIC Requirements for Compilers and Assembly Code
Long Calls
Long Branches and Switch Tables
Assigned GOTO Statements . .
Literal References
Global and Static Variable References
Procedure Labels

Series 300/400 Position-Independent Code
Branches
Subroutine Calls
Data References
The fpa_loc Synlbol and PIC

Contents-6

6-12
6-13
6-13
6-13
G-14
6-15
6-16
6-16
6-16
fi-17
6-17
6-18
6-18
6-18
6-18
6-19

7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-8
7-8
7-9

7-11
7-11
7-12
7-13
7-14

8. Shared Library Management Routines
Linking with Shared Library Routines 8-2
Shared Library Header File (dl.h) . 8-3
Explicitly Loading a Shared Library 8-4

shLload Syntax. 8-4
BIND_NONFATAL Modifier 8-5
BIND_VERBOSE Modifier. 8-6
BIND_FIRST Modifier 8-6
DYNAMIC_PATH Modifier 8-6
BIND_RESTRICTED Modifier (Series 700/800 Only) 8-7
shl_load Return Value 8-7
shLload Usage 8-8
shl_load Example 8-8

Accessing Routines and Data in Explicitly Loaded Libraries 8-10
shl_findsym Syntax 8-10
shl_findsym Return Value 8-11
Using shLfindsym to Call a Routine. 8-11
Using shl_findsym to Access Data. . 8-12
shl_findsym Example 8-12

Getting Information on Currently Loaded Libraries 8-16
shl_get Syntax . . . 8-16
shl_get Return Value 8-17
shl_get Usage 8-17
shLget Example 8-18

Getting Descriptor Information for a Shared Library 8-20
shl_gethandle Syntax . . . 8-20
shl_gethandle Return Value 8-20
shl_gethandle Example 8-21

Defining or Redefining a Shared Library Symbol (Series 700/800
Only) 8-22

shl_definesym Syntax . . . 8-22
shl_definesym Return Value 8-22
shl_definesym Usage. . . . 8-23

Retrieving Symbols Defined in a Shared Library (Series 700/800
Only) 8-24

shl_getsymbols Syntax. . . 8-24
The shl_symbol Structure 8-26
shl_getsymbols Return Value 8-26

Contents-7

shl_getsymbols Example .
Unloading a Shared Library

shl_unload Syntax
shl_unload Return Value .
shl_unload usage

Declaring an Initializer for a Shared Library
Declaring the Ini tia1izer

The +1 Linker Option
Referencing the Ini tializer from the Shared Library
The Default InitializeI' (Series :300/400 Only)

Initializer Syntax
Example: An Initializer for Each Library
Example: A Cornmon Initializer for Multiple Libraries .

9. Standard Input/Output Library Routines
Overview of Input/Output
Input/Output Using stdin and stdout

Single-Character Input/Output . .
String Input/Output
Formatted Input/Output with scanf .

Conversion Specifications
Conversion Characters
Integer Conversion Characters
Character Conversion Characters
Floating-Point Conversion Characters
Li teralCharacters.

Examples
Formatted Output with printf

Literal Characters. . . .
Conversion Specifications
Conversion Characters . .
Examples

Input/Output from/to Strings
Reading Data from a String
Writing Data into a String .

Input/Output Using Ordinary Files
Opening Ordinary Files
fclose

Contents-8

8-27
8-31
8-31
8-:31
S-:32
8-33
8-33
8-33
8-34
8-:34
8-35
8-35
8-38

9-2
9-3
9-3
9-5
9-5
9-6
9-7
9-7
9-8
9-9
9-9

9-10
9-13
9-13
9-14
9-15
9-17
9-20
9-20
9-24
9-26
9-26
9-29

Single-Character Input / Output
Character Push-Back
String Input/Output
Formatted Input / Output
Binary Input/Output . .

Stream Status and Control Routines
Stream Status Inquiry Routines. .
Repositioning Stream Input/Output Operations
Stream Control Routines

setbuf .
setvbuf
mush
freopen

Converting between File Pointers and File Descriptors
Inter-Process Communication.

10. Standard Character, String, and Date Manipulation Routines

9-30
9-34
9-35
9-39
9-40
9-47
9-47
9-50
9-57
9-57
9-59
9-60
9-61
9-63
9-66

Converting between Uppercase and Lowercase 10-1
Character Classification . . . 10-2
String Manipulation Routines 10-2

Concatenating Strings 10-3
Copying Strings 10-3
Comparing Strings 10-5
Finding the Length of a String 10-8
Finding Characters in Strings 10-8
Finding Characters Common to Two Strings 10-10
Breaking a String into Tokens 10-10

Date and Time Manipulation 10-12

11. Standard Math Routines
The math.h Header File .
The Math Libraries . . .
Absolute Value Functions
Power, Square Root, and Logarithmic Functions
Trigonometric Functions
Calculating Upper and Lower Bounds
Calculating Remainders .
Calculating A Hypotenuse

11-1
11-2
11-3
11-4
11-5
11-9

11-10
11-12

Contents-9

Generating Random Numbers
Floating-Point Exponentiation Routines

12. Advanced HP-UX Programming
Program Arguments and Environment Pointer

int argc
char *argv[J
char **envp
Example ..

Error Handling: stderr and exit
Low-Level Input/Output

File Descriptors. . . .
read an d wri te
open, creat, close, unlink
Random Access: lseek .
Error Processing and errno

Processes
The system Function
Low-level Process Creation: execl and execv
Control of Processes: fork and wait
Pipes

Signals (Interrupts)

13. make: A Command for Maintaining Computer Programs
Overview
Basic Features
Description Files and Substitutions
Command Usage
Implicit Rules
Example
Suggestions and Warnings
Suffixes and Transformation Rules
U sing make with SCCS

Contents-10

11-12
11-13

12-2
12-2
12-2
12-3
12-3
12-5
12-6
12-6
12-7
12-9

12-12
12-13
12-14
12-14
12-14
12-16
12-18
12-22

13-2
13-3
13-6
13-8

13-10
13-11
13-13
13-14
13-16

14. SCCS: Source Code Control System
Overview
Terms.

S-files .
Deltas .
SIDs (Version Numbers)
ID Keywords . . .

Creating SCCS Files
Removing SCCS Files
Getting Files for Compilation.
Changing Files (Creating Deltas)

Getting a Copy to Edit
Merging the Changes Back Into the S-File
When To Make Deltas
What's Going On: The Sact Command
Using ID Keywords

The what Command
Where to Put Id Keywords

Creating New Releases. . .
Canceling an Editing Session

Restoring Old Versions
Reverting to Old Versions
Selectively Excluding Old Deltas
Selectively Including Deltas
Removing Deltas

The Help Command .
Auditing Changes ..

The prs Command
Determining Why Lines Were Inserted
Comparing Versions

Files Used by SCCS
S-Files

The Contents of the S- File
G-Files
L-Files
P-Files
D-Files
Q-Files

14-2
14-3
14-3
14-3
14-3
14-4
14-5
14-7
14-7
14-8
14-8
14-8
14-9

14-10
14-10
14-11
14-12
14-13
14-13
14-14
14-14
14-15
14-16
14-17
14-17
14-18
14-18
14-19
14-20
14-20
14-21
14-21
14-22
14-23
14-23
14-24
14-24

Contents-11

X-Files
Z-Files .

Concurrent Editing
Concurrent Edits on Different Versions
Concurrent Edits on the Same Version

Recovering from Problems . .
Making Temporary Changes
Recovering an Edit File .
Restoring the S- File . . .

U sing the Admin Command
Creating SCCS Files
Adding Conlments to Initial Delta
Descriptive Text in Files
Setting SCCS File Flags
Specifying Who Can Edit a File

Maintaining Different Branches
Creating a Branch
Retrieving a Branch
Branch Numbering
A Warning

SCCS Protection Facilities
General File Protection
System Protection Using admin

Using SCCS With Make
To Maintain Groups of Programs
To Maintain a Library
To Maintain a Large Progranl

Using SCCS on a Multi- User Project
How the SCCS Interface Works . .
Configuring an SCCS System Using the Interface

Creating the SCCS Directory
Writing and Compiling the Program. .
Specifying Program Access Permissions
Assign Name Links to the Program
Modifying the Users' Search Path
Creating SCCS Files

Quick Reference
Commands

Contents-12

14-24
14-25
14-25
14-25
14-26
14-27
14-27
14-27
14-28
14-29
14-29
14-29
14-30
14-30
14-32
14-34
14-35
14-35
14-35
14-37
14-37
14-37
14-38
14-39
14-39
14-41
14-42
14-43
14-44
14-44
14-45
14-46
14-47
14-47
14-48
14-48
14-49
14-49

ID Keywords

15. The M4 Macro Processor
Overview of m4 Capabilities
Usage
Defining Macros
Arguments ...
Arithmetic Functions
File Manipulation .
System Command .
Conditionals . . .
String Manipulation
Printing

Glossary

Index

14-51

15-2
15-5
15-5
15-9

15-10
15-11
15-12
15-12
15-13
15-15

Contents-13

Figures

2-1. sumnum.c-Sum the Numbers from 1 to n
2-2. High-Level View of the COlnpilel'
2-3. Looking "inside" a Cornpiler
2-4. Output of nm on a Series 700/800 Computer
2-5. Output of nnl on a Series 300/400 Computer
2-6. Matching the External Reference to sum_n .
2-7. Linking with an Archive Library
2-8. Two Processes Sharing libc.
2-9. Two Processes with Their Own Copies of libc
3-1. Creating an Archive Library
:3-2. length.c-Routine to Convert Length Units
:3-:3. volume.c-Routine to Conve.rt Volume Units
:3-4. mass.c-Routine to Convert Mass Units . .
4-1. length.c-Length-Conversion Routines; New Version.
5-1. Archive Libraries with One Shared Executa,ble
5-2. Archive Libraries with Two Shared Executables .
5-3. Shared Libraries with Shared Executables
.5-4. Makefile Used to Create Dynamic Link Files . .
.5-5. dynprog.c-Example Dynamic Link and Load Progranl
5-6. Source for file1.c and file2.c
5-7. Include Directives for dynload.c.
5-8. C Source for alloc_load_space Function
5-9. C Source for dyn_Ioad Function. . . .

5-10. Assembly Language Source for fluslLcache Function.
8-1. load_lib-Function to Load a Shared Library . . .
8-2. Load a Shared Library and Call Its Routines and Access Its

Data .
8-:3. show _loaded_libs-Display Library Infonnation
8-4. show _lib_info-Display Infonnation for a Shared Library
8-.5. show_synlbols-Display Shared Library Symbols

Contents-14

2-3
2-:3
2-4
2-7
2-8
2-9

2-16
2-18
2-19
3-2
:3-4
3-4
:3-4
4-7

5-:32
5-:3:3
5-:33
.5-41
5-44
5-4.5
5-46
5-49
5-.54
5-56

8-9

8-14
8-18
8-21
8-28

8-6. show_aIl-Use show_symbols to Show All Symbols
8-7. Output of show_all Program
8-8. e Source for libfoo.sl
8-9. e Source for testlib

8-10. Output of testlib
8-11. e Source for _INITIALIZER (file ini t.c)
8-12. e Source for libunits.sl
8-13. e Source for libtwo.sl
8-14. e Source for testlib2
8-15. Output of testlib2. .
11-1. triangle.c-Get Dimensions of Right Triangle .
13-1. Default make Transformation Paths .
14-1. Development of sees File
14-2. Example Branch Delta.
14-3. Diagram 1
14-4. Diagram 2

8-29
8-30
8-36
8-37
8-37
8-38
8-39
8-40
8-41
8-42
11-8

13-10
14-4

14-34
14-36
14-36

Contents-15

Tables

1-1. Related Manuals
1-2. Summary of Chapter Contents
1-3. Typographical Conventions. . .
2-1. Libraries Documented in the HP- UX Reference .
2-2. Comparison of Archive and Shared Libraries
2-3. Programming Environment Tools .
3-1. Useful ar Keys
5-1. Magic Number Linker Options
.5-2. Changing Executable Attributes with chatI'

15-1. Built-in Macros

Contents-16

1-4
1-6
1-8

2-13
2-15
2-27

3-7
5-31
.5-34
1.5-3

1

1
Introduction

This chapter describes

• the scope of this manual

• what you should know before reading this manual

• what manuals to go to for additional information

• the content of each chapter

• conventions used throughout this manual

Introduction 1-1

1

Manual Contents
This book describes the fundamentals of software development on HP -UX. It
shows how the basic pieces of the HP- UX software developnlent environrnent fit
together-the compilers, assemblers, linker, libraries, and object files. It also
describes

• the two kinds of subroutine libraries (archive and shared), how to create
them, and how to link them with your programs

• using the linker, ld, to create executable prograrns

• special considerations for writing position-independent code, which is the
code used to build shared libraries

• lllanaging shared libraries from within a program

• using the standard I/O library

• using character, string, and date/time manipulation routines from the
standard library

• using math routines found in the standard e library (libc) and the math
library (libm)

• advanced system programming techniques

• general-purpose software development tools:

o make-a program for maintaining computer programs.
o m4-the macro preprocessor.
o SeeS-a source code control systems (SeeS).

This book does not discuss in detail the compilers (cc, f77, pc), debuggers, or
language-specific tools (such as cflow, ratfor, and lint). For details on where
to look for a specific topic not covered in this manual, see "Related Manuals".

1-2 Introduction

Prerequisites
Before reading this manual, you should have a good grasp of these basic
HP- UX concepts:

• login and logout

• shells

• environment variables: PATH, HOME, TERM

• standard input, standard output, and standard error output

• processes

• input/output redirection

• pipes

• text editing (for example, with the vi text editor)

For details on these and other important prerequisite concepts, refer to

• A Beginner's Guide to HP- UX

• How HP-UX Works: Concepts for the System Administrator

Introduction 1-3

1

1

Related Manuals

For Information On ...
Table 1·1. Related Manuals

See This Manual ...

Floating-point programming
(Series 700/800 computers)

xdb debugger

HP- UX Floating-Point Gllide

HP- UX Symbolic Debugger User)s Guide

Porting programs across different HP- UX Portability Guide
HP computer systems and from
other vendors' systems to HP-UX

Assembly language programming Series 700/800 computers:

C Programming

c++ Programming

1·4 Introduction

• Assembly Language Reference lid anual

Series 300/400 computers:

• HP- UX Assembler and Tools

Series 700/800 computers:

• HP C/HP- UX Reference Manual
• HP C PrograJnmer's Guide
• C Programming Tools

Series 300/400 computers:

• C: A Reference Manual (2nd Edition; Harbison
& Steele)

• C Programmer)s Guide
• C Programming Tools

• HP C++ Programmer)s Guide
• C++ Quick Reference Card
• The C++ Programming Language (2nd Edition;

Stroustrup)

Table 1-1. Related Manuals (continued)

For Information On ...

FORTRAN Programming

Pascal Programming

COBOL Programming

RCS

See This Manual ...

• FORTRAN /9000 Programmer's Reference
• FORTRAN /9000 Programmer's Guide

Series 700/800 computers:

• HP Pascal/HP- UX Reference Manual
• HP Pascal Programmer's Guide

Series 300/400 computers:

• Pascal Language Reference

• COBOL/HP- UX Implementation Notes
• COBOL/HP- UX Language Reference Manual
• COBOL/HP- UX Operating Manual
• COBOL/HP- UX Utilities Manual
• COBOL/HP- UX Pocket Guide

HP-UX Reference: rcs(l), co(l), ci(l), rcsdiff(l),
rcsintro(5) , rlog(l), rcsfile(4) , acl(5).

Introduction 1-5

1

1

Chapter Summaries

Table 1·2. Summary of Chapter Contents

Chap Title
Description

1 Introduction
What's in this manual.

2 The HP- UX Software De'velopment Environment
Describes the fundamentals of developing programs on HP-UX. Introduces
HP-UX compilers, object files, libraries (archive and shared), the linker
(ld), a. out files, the assemblers, and other useful programming tools. You
should understand the concepts in this chapter before proceeding with other
chapters.

3 Creating Archive Libraries
Creating archive libraries using the ar command.

4 Creating Shared Libraries
Creating shared libraries using the Id command on object files containing
position-independent code (PIC).

5 Linking and Rmwing Programs
U sing the linker, Id, to create executable programs; linking with archive
a.nd shared libraries; migrating to shared libraries from archive libraries;
differences at run time between archive and shared libraries.

6 Profile-Based Optimization and Linker Optimization
How to use profile-based optimization to improve run-time performance,
a.nd how to optimize access to data with linker optimization.

7 Position-Independent Code
Relocatable object code, position-independent code (PIC), and how the
compilers generate certain language constructs in PIC. Describes PIC for
Series 300/400 and Series 700/800.

8 Shared Library Management Routines
How to explicitly load libraries at run time using shared library
management routines. This is useful mainly when it is impossible to know
the name of libraries at link time.

1·6 Introduction

Table 1-2. Summary of Chapter Contents (continued)

Chap Title
Description

9 Standard Input/Output Library Routines
U sing standard library (libc) input/output routines to read/write from/to
the keyboard/screen, files, or strings.

10 Standard Character, String, and Date Manipulation Routines
Describes standard library (libc) routines that manipulate characters and
strings.

11 Standard Math Routines
Describes math routines from the standard C library (libc) and standard
math library (libm).

12 Advanced HP- UX Programming
Describes how to access command line arguments from C programs, how to
handle errors, and how to use system calls, which provide low-level access
to the kernel for input/output, process control, and signal handling.

13 make: A Program for Maintaining Computer Programs
Describes how to use the make program for managing compiles.

14 SCCS: Source Code Control System
Describes the use of the SCCS source code control system.

15 The m4 Macro Preprocessor
Describes how to use the m4 macro preprocessor.

Glossary Glossary
Contains definitions of important terms used throughout this manual.

Introduction 1-7

1

1

Conventions
Table 1-3 summarizes the typographical conventions used throughout this
manual.

Table 1-3. Typographical Conventions
Convention Description

computer font Denotes information displayed by the computer (for example,
login:), file names (for example, /usr/include/stdio .h), and
command names (for example, vi).

underlining Denotes text you must type explicitly:

name(N)

italic

$ cc -c prog.c -1m

Refers to a command, system call, or library routine in the HP- UX
Reference. N refers to the section in which name can be found. For
example, Id(l) refers to the ld page in section 1 of the HP- UX
Reference.

Denotes information that you must fill in-for example:

cc -0 outfi Ie progji Ie. c

means that you should specify your own outjile and progjile name.

Most of the programming examples presented in this manual are in the ANSI
C language. When compiling ANSI C examples, be sure to specify the -Aa
compiler option.

Although most of the examples are in C, the concepts presented apply equally
well in most cases to other HP-UX languages, especially FORTRAN, C++.

1-8 Introduction

The HP-UX Software Development
Environment

2

Because HP-UX has such a powerful, versatile programming environment,
there are many different ways to do things, and no one way is absolutely right.
Rather than trying to describe every possible way, this chapter introduces
program development with a simple example in the first section. Subsequent
sections build on the commands and concepts introduced in the first section.
Specific topics introduced in this chapter are:

• compilers

• object (.0) files

• a command for viewing symbols in object files (run)

• the linker (ld)

• executable (a. out) files

• assemblers (as)

• libraries-archive (. a) and shared (. sl)

• system libraries (libe, libm, etc)

• other programming tools:

D debuggers (xdb and adb)
D source code control systems (ReS and SeeS)
D program compilation manager (make)

• the SoftBench ™ development environment

After finishing this chapter, you should be able to develop your own programs
using HP-UX compilers and the tools described in the rest of this manual.

The HP-UX Software Development Environment 2-1

2

2

Compiling Programs on HP-UX: An Example
To create an executable program, you conlpile a source file containing a tnain
program. For example, to compile an ANSI C program nanH:'C1 sumnum. c,
shown in Figure 2-1, use this command (-Aa says to cOlnpile in ANSI tnode):

$ cc -Aa sumnurn.c

The compiler displays status, warning, and error messages to standard error
output (stderr). If no errors occur, the compiler creates an executable file
nanled a. out in the current working directory. If your PATH environnlent
variable includes the current working directory, you can run a. out as follows:

$ a.out
Enter a number: 4
Sum 1 to 4: 10

The process is essentially the same for all HP- UX compilers. For instance, to
compile and run a sitnilar FO RTRAN program named sumnurn. f:

$ f77 sumnurn.f

$ a.out -.-

The compilet displays any rnessages here.

Run the progtam.

Output from the progtam is displayed here.

Program source can also be divided among separate files. For exanlple,
surnnurn. c could be divided into two files: main. c, containing the main
program, and func. c, containing the function sum_no The command for
compiling the two together is:

$ cc -Aa main.c func.c
main. c:
func.c:

Notice that cc displays the name of each source file it compiles. This way, if
errors occur, you know where they occur.

2-2 The HP-UX Software Development Environment

#include <stdio.h> 1* contains standard I/o defs *1
int sum_n(int n) 1* sum numbers from n to 1 *1
{

}

int sum = 0;
for (; n >= 1; n--)

sum += n;
return sum;

1*
1*
1*
1*

running total; initially 0 *1
sum from n to 1 *1
add n to sum *1
return the value of sum *1

maine)
{

1* begin main program

}

int n;
printf("Enter a number: ");
scanf ("%d", 8m);
printf("Sum 1 to %d: %d\n" ,

1* number to input from user *1
1* prompt for number *1
1* read the number into n *1

n, sum_n(n)); 1* display the sum *1

Figure 2-1. sumnum.c-Sum the Numbers from 1 to n

Generally speaking, the compiler reads one or more source files, one of which
contains a main program, and outputs an executable a. out file, as shown in
Figure 2-2.

main
source

Ir~~-:~~-~I I source
L-_________ ~

: (optional)
•

compiler

Figure 2-2. High-Level View of the Compiler

The HP-UX Software Development Environment 2-3

2

2

Looking "inside" a Compiler

On the surface, it appears as though an HP- UX compiler generates an
a. out file by itself. Actually, an HP- UX compiler is a driver that calls other
commands to create the a. out file. The driver perfornls different tasks (or
phases) for different languages, but two phases are conlmon to all languages:

1. For each source file, the driver calls the language compiler to create an
object file.

2. Then, the driver calls the HP- UX linker (ld) which builds an a. out file
from the object files. This is known as the link-edit phase of compilation.

Figure 2-3 summarizes how a compiler driver works.

main
source

,--------------------------,
I I
I I

(optional) :

compiler driver

Figure 2-3. Looking "inside" a Compiler

The C, FORTRAN, and Pascal compilers provide the -v (verbose) option to
display the phases a compiler is performing. Compiling main. c and func . c
with the -v option produced this output on a Series 700 workstation (\ at the
end of a line indicates the line is continued to the next line):

$ cc -Aa -v main.c func.c
cc: CCOPTS is not set.
main.c:
/lib/cpp.ansi main.c /tmp/ctmAAAa09888 -D __ hp9000s700 \

-D __ hp9000s800 -D __ hppa -D __ hpux -D __ unix -D_PA_RISC1_1 \
-A -I /usr/include

cc: Entering Preprocessor.
/lib/ccom /tmp/ctmAAAa09888 main.o -00 -v -Aa

2-4 The HP-UX Software Development Environment

func.c:
/lib/cpp.ansi func.c /tmp/ctmAAAa09888 -D __ hp9000s700 \

-D __ hp9000s800 -D __ hppa -D __ hpux -D __ unix -D_PA_RISC1_1 \
-A -I /usr/include

cc: Entering Preprocessor.
/lib/ccom /tmp/ctmAAAa09888 func.o -00 -v -Aa
cc: LPATH is /lib/pa1.1:/usr/lib/pa1.1:/lib:/usr/lib
/bin/ld /lib/crtO.o -u main main.o func.o -lc
cc: Entering Link editor.

This example shows that the cc driver calls the C preprocessor (/lib/ cpp) for
each source file, then calls the actual C compiler (/lib/ceom) to create the
object files. Finally, the driver calls the linker (/bin/ld) on the object files
created by the compiler (main. 0 and fune. 0).

Compiling main. e and func. c with -von a Series 300/400 computer produced
this output:

$ cc -v -Aa main.e fune.c
main.e:

/lib/eeom.ansi: cpp.ansi main.c -I/usr/include -D __ hp9000s300 \
-D __ unix-D __ hpux ccom.ansi -YS I

/bin/as: as -0 main.o
func.c:

/lib/eeom.ansi: cpp.ansi func.c -I/usr/inelude -D __ hp9000s300 \
-D __ unix-D __ hpux ccom.ansi -YS I

/bin/as: as -0 func.o
/bin/ld /lib/crtO.o main.o func.o -x -Ie

The compiler creates an object file for each source file specified on the
command line. The files are placed in the current working directory. Each
object file has the same name as its corresponding source file, except that the
language suffix (e.g., . c, . f, . p) is replaced with . o. For instance, in the above
example, two object files were created, main. 0 and func. 0, which we can see
with the Is command:

$ Is *.0
func.o main.o

List all .0 files.

Here are the object files.

The HP-UX Software Development Environment 2-5

2

2

What Is an Object File?
An object file is basically a file containing machine language instructions and
data in a form that the linker can use to create an executable program. Each
routine or data item defined in an object file has a corresponding symbol name
by which it is referenced. A sYlllbol generated for a routine or data definition
can be either a local definition or global definition. Any reference to a symbol
outside the object file is known as an external reference.

To keep track of where all the symbols and external references occur, an object
file has a symbol table. The linker uses the symbol tables of all input object
files to match up external references to global definitions.

Local Definitions

A local definition is a definition of a routine or data that is accessible only
within the object file in which it is defined. Such a definition cannot be
accessed from another object file. Local definitions are used primarily by
debuggers, such as adb. More important for this discussion are global
definitions and external references.

Global Definitions

A global definition is a definition of a procedure, function, or data item that
can be accessed by code in another object file. For example, the C compiler
generates global definitions for all variable and function definitions that are not
static. The FORTRAN compiler generates global definitions for subroutines
and common blocks. In Pascal, global definitions are generated for external
procedures, external variables, and global data areas for each lnodule.

External References

An external reference is an attempt by code in one object file to access a global
definition in another object file. A compiler cannot resolve external references
because it works on only one source file at a time. Therefore, the compiler
simply places external references in an object file's symbol table; the matching
of external references to global definitions is left to the linker or loader.

2-6 The HP-UX Software Development Environment

Using nm to View Symbols

To view the symbols defined in an object file, use the nm command. Its syntax
and output differ slightly on Series 300/400 and Series 700/800 computers, but
it provides basically the same information on both systems. On Series 700/800
computers, nm produces output similar to Series 300/400 computers if invoked
with the -p option. Figure 2-4 shows output from running nm -p on the func. 0

and main. 0 object files on a Series 700/800 computer; Figure 2-5 shows the
output produced on a Series :300/400 computer.

$ nm -p func.o
1073741824 d $THIS_DATA$ Other symbols created from compiling.
1073741824 d $THIS_SHORTDATA$
1073741824 b $THIS_BSS$
1073741824 d $THIS_SHORTBSS$
0000000000 T sum_n Global definition of sum_no
$ nm -p main. 0

0000000000 U $global$ Other symbols created from compiling.
1073741824 d $THIS_DATA$
1073741872 d $THIS_SHORTDATA$
1073741872 b $THIS_BSS$
1073741872 d $THIS_SHORTBSS$
0000000000 T main
0000000000 U printf
0000000000 U scanf
0000000000 U sum_n

Global definition of main.
External reference to printf.
External reference to scanf.
External reference to sum_no

Figure 2-4. Output of nm on a Series 700/800 Computer

The first column shows the address of each symbol or reference. The last
column shows the symbol name. The second column denotes the symbol's type:

T indicates a global definition.
U indicates an external reference.
d indicates a local definition of data.
b indicates a local definition of bss (uninitialized data area).

The HP-UX Software Development Environment 2-7

2

2
Thus, a global definition of SUIn_n is found in func. o. An external reference
to SUIn_n is found in main. o. External references to the C printf and scanf
routines are found in main. o. For details on the use of nm, see nm(l).

$ nm func.o

OxOOOOOOOO T
$ nm main.o

OxOOOOOOOO T
OxOOOOOOOO U
OxOOOOOOOO U
OxOOOOOOOO U

_main

_printf

_scanf

_SUIn_n

View symbols in func .0.

The global definition for SUIn_n appears.
View symbols in main. o.

Global definition for main.

External reference to printf.

External reference to printf.

External reference to SUIn_n.

Figure 2-5. Output of nm on a Series 300/400 Computer

Notice that on Series 300/400 computers, global symbols all begin with an
underscore (for example, _sum_n); on Series 700/800 computers, they do not.

2-8 The HP-UX Software Development Environment

The Link-Edit Phase of Compilation
When called in the link-edit phase of compilation, ld builds an a. out file
from the object files passed by the compiler. ld attempts to match external
references with global definitions. For instance, in the C program example (see
Figure 2-4), main. 0 contains an external reference to sum_n, which has a global
definition in func. o. ld matches the external reference to the global definition,
allowing the main program code in a. out to access sum_n (see Figure 2-6).

extern a I
reference

to "sum_n'

global
definition

mOIn.o

--- call to

fUIlc.o

----+ sum_n
"

~ sum_n

V

~
defined (

o .out

linker (Id)
call to sum_n I--

combine .0 files
and match ~

external references
~ to global defines

sum_n defined f+-

address of "sum_n"
is now known

Figure 2-6. Matching the External Reference to sum_n

If ld cannot match an external reference to a global definition, it displays a
message to standard error output. If, for instance, you compile main. c without
func. c, ld cannot match the external reference to sum_n and displays this
output on a Series 700/800 computer:

$ cc main.c
/bin/ld: Unsatisfied symbols:

sum_n (code)

Similar output is produced on Series 300/400 computers:

$ cc main. c
ld: Undefined external -

_sum_n
ld: output file still contains undefined symbols

The HP-UX Software Development Environment 2-9

2

2

Linking with Libraries
In addition to matching external references to global definitions in object files,
Id matches external references to global definitions in libraries. A library is a
file containing object code for subroutines and data that can be used by other
programs. For example, the standard C library, libe, contains object code for
functions that can be used by C, FORTRAN, and Pascal programs to do input,
output, and other standard operations.

Library Naming Conventions

By convention, library names have the form:

libname. sfT

name is a string of one or more characters that identifies the library.

sfx is . a if the library is an archive library or .81 if the library is a shared
library. For details on archive versus shared libraries, see the section
"Archive and Shared Libraries" later in this chapter.

Typically, library names are referred to without the suffix. For instance, the
standard C library is referred to as libe.

Specifying Libraries to the Linker (-I)

To direct the linker to search a particular library, use the -lname option. For
example, to specify libe, use -Ie; to specify libm, use -1m; to specify libXm,
use -lXm.

Default Libraries

A cOlllpiler driver automatically specifies certain default libraries when it
invokes Id. For example, ee automatically links in the standard library libe,
as shown in this Series 700/800 example:

$ ee -v main. e fune. e Compile with -v to see
the Id command line.

/bin/ld /lib/ertO.o -u main main.o fune.o -Ie Notice -Ie at end.
ee: Entering Link editor.

2-10 The HP-UX Software Development Environment

Similarly, the Series 700 FORTRAN compiler automatically links with the
libel (C interface), libisamstub (ISAJVI file 1/0), and libe libraries:

$ f77 -v surnnurn.f

/bin/ld -x /lib/ertO.o surnnurn.o -lel -lisamstub -le

Specifying Libraries on the Compile Line (-I)

Sometimes, programs call routines not contained in the default libraries. In
such cases, you must explicitly specify the necessary libraries on the compile
line with the -1 option. The compilers pass -1 options directly to the linker,
before the default libraries.

For example, if a C progralTI calls library routines in the curses library
(libeurses), you must specify -leurses on the ee command line:

$ ee -v eursesprog.e -leurses

/bin/ld /lib/ertO.o -u main main.o -leurses -le
ee: Entering Link editor.

Linking with the crtO.o Startup File

Notice also, in the above example, that the compiler linked eursesprog. 0 with
the file /lib/ ertO. o. This file contains object code that performs tasks which
must be executed when a program starts running-for example, retrieving any
arguments specified on the con1mand line when the program is invoked. For
details on this file, see crtO(3) and Chapter 5.

The Default Library Search Path

By default, ld searches for libraries in the /lib and /usr/lib directories, in
that order. (If the -p or -G profiling option is specified on the command line,
the compiler directs the linker to also search /lib/libp.) The default order
can be overridden with the LPATH environment variable or the -L linker option.
LPATH and -L are described in detail in Chapter 5. The -L option is discussed
later in the section "Compiler Options That Affect the Linker".

The HP-UX Software Development Environment 2-11

2

2

Summary of HP-UX Libraries

What libraries your system has depends on what components were purchased.
For example, if you didn't purchase Starbase Display List, you won't have the
Starbase Display List library on your system.

HP- UX library routines are described in detail in sections 2 and :3 of the
HP- UX Reference. Routines in section 2 are known as system calls, because
they provide low-level system services; they are found in libc. Routines in
section 3 are other "higher-level" library routines and are found in several
different libraries.

Each library routine, or group of library routines, is documented on a
man-page. Man-pages are sorted alphabetically by routine name and have the
general form routine(nL), where:

routine

n

L

is the name of the routine, or group of closely related routines,
being documented.

is the HP- [('(Reference section number: 2 for system calls, 3 for
other library routines.

is a letter designating the library in which the routine is stored.

For example, the "printf(3S)" man-page describes the standard input/output
libc routines printf, nl_printf, fprintf, nl_fprintf, sprintf, and
nl_sprintf. And the "pipe(2)" man-page describes the pipe system call.

Table 2-1 summarizes the major library groups defined in the HP- UX
Reference.

Note Certain language-specific libraries are not docurnented in
the HP- UX Reference; instead, they are documented with
the appropriate language documentation. For example, all
FORTRAN intrinsics (MAX, MOD, etc.) are documented in the
FO RTRAN language documentation.

2·12 The HP·UX Software Development Environment

Group

(3M)

(3G)

(31)

(3X)

Table 2-1. Libraries Documented in the HP-UX Reference
Description

These functions are known as system calls. They provide low-level
access to operating system services, such as opening files, setting up
signal handlers, and process control. These routines are located in
1ibc.

These are standard C library routines located in 1ibc. These
routines are described in Chapter 9 through Chapter 12.

These functions comprise the Standard input/output routines (see
stdio(3S)). They are located in 1ibc. These routines are described
also in Chapter 9.

These functions comprise the Math library. The linker searches this
library under the -1m option (for the SV1D math library) or the -1M

option (for the POS1X math library).

These functions comprise the Graphics library.

These functions comprise the Instrument support library.

Various specialized libraries. The names of the libraries in which
these routines reside are documented on the man-page.

1 The routines marked by (2), (3C), and (38) comprise the standard C library libc. The
C, FORTRAN, and Pascal compilers automatically link with this library when creating
an executable program.

The HP-UX Software Development Environment 2-13

2

2

Archive and Shared Libraries
HP- UX supports two kinds of libraries: archive and shared. Archive libra.ries
are the more traditional of the two.

Almost all system libraries are available as archive. In Inost cases, a shared
version is also available. Archive library file names end with . a; shared
library file names end with. 81. If both versions of a library exist, they are
usually found in the same directory. For example, the archive libe is named
/lib/libe. a; the shared version is named /lib/libe. 81.

If both versions of a library exist, ld uses the one that it finds first in the
default library search path. If both versions exist in the same directory, ld uses
the shared version. For example, compiling the C program prog. e causes ee to
invoke the linker with a command like this:

Id /lib/ertO.o prog.o -Ie

This instructs the linker to search the C library, libe, to resolve unsatisfied
references from prog. o. If a shared libe exists (/lib/libe. 81), Id uses it
instead of the archive libe (/lib/libe. a). You can, however, override this
behavior, and select the archive version of a library (see Chapter 5).

In addition to the system libraries provided on HP- UX, you can create your
own archive and shared libraries. To create archive libraries, cOlnbine object
files with the ar command, as described in Chapter 3. To create shared
libraries, use ld to combine object files containing position-independent code
(PIC), as described in Chapter 4.

Table 2-2 summarizes differences between archive and shared libraries. A
detailed discussion of archive and shared libraries follows the table.

2-14 The HP-UX Software Development Environment

Table 2-2. Comparison of Archive and Shared Libraries

Comparing

file name suffix

object code

creation

Archive

Suffix is . a.

Made from object code.

Combine object files with the ar
command (see Chapter 3).

address binding Addresses of library subroutines

a. out files

run time

and data are resolved at link
time.

Contains all library routines or
data (external references)
referenced in the program. An
a. out file that does not use
shared libraries is known as a
complete executable.

Each program has its own copy
of archive library routines.

Shared

Suffix is . sl.

Made from position-independent
object code, created by compiling
with the +z or +Z compiler
option. Can also be created in
assembly language (see
Chapter 7).

Combine PIC object files with
the Id command (see Chapter 4).

Addresses of library subroutines
are bound at run time.
Addresses of data in a. out are
bound at link time; addresses of
data in shared libraries are
bound at run time.

Does not contain library
routines; instead, contains a
linkage table that is filled in with
the addresses of routines. Does,
however, contain some shared
library data. An a. out that uses
shared libraries is known as an
incomplete executable, and is
almost always much smaller than
a complete executable.

Shared library routines are
shared among all processes that
use the library.

The HP-UX Software Development Environment 2-15

2

2

What Are Archive Libraries?

An archive library contains one or more object files and is crea.ted with the
ar cornmand. When linking an object file with an archive libra.ry, Id sea.rches
the library for global definitions that match up with externall'cferences in the
object file. If a match is found, Id copies the object file containing the global
definition from the library into the a. out file. In short, any routines or data a
program needs from the library are copied into the resulting a. out file.

For example, suppose you write a C program tha.t calls printf from the libc
library. Figure 2-7 shows how the resulting a. out file would look if you linked
the program with the a.rchive version of libc.

external
refel'ence
to "printf"

global
definition

for "pr-intf'
,

----..

mOIll.o

~ linker (I d)
call to printf

/'" match extemal ~
r'eference to pr-intf

Ilib/libc_o definition In Ilbe, /
copy that pur-tloll

of libc into a_out

-----------------------~

pl'intf ddined

... --- ... --------------- ---

O.out

call to printf

-----------------_ ---

prr ntf defined

Figure 2·7. Linking with an Archive Library

2·16 The HP·UX Software Development Environment

f--

r-c--

What Are Shared Libraries?

Like an archive library, a shared library contains relocatable object code.
However, ld treats shared libraries quite differently than archive libraries.
When linking an object file with a shared library, ld does not copy object code
from the library into the a. out file; instead, the linker simply notes in the
a. out file that the code calls a routine in the shared library. An a. out file that
calls routines in a shared library is known as an incomplete executable.

When an incomplete executable begins execution, the HP- UX dynamic loader
(see dld.sl(5)) looks at the a. out file to see what libraries the a. out file needs
during execution. The dynamic loader then loads and maps any required
shared libraries into the process's address space-known as attaching the
libraries. A program calls shared library routines indirectly through a linkage
table that the dynamic loader fills in with the addresses of the routines. By
default, the dynamic loader places the addresses of shared library routines
in the linkage table as the routines are called-known as deferred binding.
Immediate binding is also possible-that is, binding all required symbols in the
shared library at program startup. In either case, any routines that are already
loaded are shared.

Consequently, linking with shared libraries generally results in smaller
a. out files than linking with archive libraries. Therefore, a clear benefit of
using shared libraries is that it can reduce disk space and virtual memory
requirement s.

The HP-UX Software Development Environment 2-17

2

2
As an example, suppose two separate programs, prog1 and prog2, use shared
libe routines heavily. Suppose that the a. out portion of prog1 is 256Kb in
size, while the prog2 a. out portion is 128Kb. Assume also that the shared
libe is 512Kb in size. Figure 2-8 shows how physical menlory might look when
both processes run simultaneously. Notice that one copy of libe is shared by
both processes. The total memory requirement for these two processes running
simultaneously is 896Kb (256Kb + 128Kb + 512Kb) .

prog 1 {
(256Kb)

libe.sl {
(512Kb)

•

.,..,..,~~~.,..,..,.

1--------1

• • •

calls
to libe
routines

Figure 2-8. Two Processes Sharing libc

Compare this with the memory requirements if prog1 and prog2 had been
linked with the archive version of libe. As shown in Figure 2-9, 1428Kb
of memory are required (768Kb + 640Kb). The numbers in this example
are made up, but it is true in general that shared libraries reduce memory
requirements.

2-18 The HP-UX Software Development Environment

prog 1

• • •
prog 1 .0

(768Kb) libe

prog2
(640Kb)

routines

libc
routines

•
•
•

calls
to libe
routines

calls
to libe
routines

Figure 2-9. Two Processes with Their Own Copies of libc

Position-Independent Code

Shared libraries are constructed from object files that contain a special kind of
object code known as position-independent code (PIC). All that most users
need to know about PIC is that it has characteristics that make it shareable by
multiple processes, and you create it by compiling with the +z/+2 compiler
option (see Chapter 4).

If you really need to know why: PIC makes sharing possible because it
contains no absolute virtual addresses; only PC-relative addressing is used.
(PC-relative addressing means that all addresses are referenced relative to
the program counter register.) Therefore, PIC can be placed anywhere in a
process's address space without addresses having to be relocated. For details
on position-independent code, see Chapter 7.

The HP-UX Software Development Environment 2-19

2

2

Compiler Options That Affect the Linker
This section summarizes compiler options-common to the C, FORTRAN, and
Pascal compilers-that control how the cOlllpiler interacts with the linker. (For
more information on linker options, see Chapter 4 and Chapter 5.)

Renaming the a.out File (-0 name)

The -0 name option causes Id to nanle the output file name instead of a. out.
For example, to compile a C program prog. c and name the resulting file
sum_num:

$ cc -Aa -0 sum_num prog.c
$ sum_num
Enter a number to sum: 5

The sum of 1 to 5: 15

Compile using -0 option.

Run the program.

Suppressing the Link-Edit Phase (-c)

The -c option suppresses the link-edit phase. That is, the compiler generates
only the .0 files and not the a. out file. This is useful when compiling source
files that contain only subprograms and data, which can be linked later with
other object files. The resulting object files can then be specified on the
compiler command line, just like source files. For example:

$ f77 -c func.f
$ Is func.o
func.o
$ f77 main.f func.o
$ a.out

Produce .0 for func . f .

Verify that func . 0 was created.
Compile main. f with func. o.
Run it to verify it worked.

2-20 The HP-UX Software Development Environment

Specifying Libraries (-I)

When writing programs that call routines not found in the default libraries
linked at compile time, you must specify the libraries on the compiler command
line with the -Ix option. For example, if you write a C program that calls
POSIX math functions, you must link with libM.

The x argument corresponds to the identifying portion of the library path
name~the part following lib and preceding the suffix . a or . s1. For example,
for the libM. sl or libM. a library, x is the letter M:

$ ee -Aa mathprog.e -1M

The linker searches libraries in the order in which they are specified on the
command line (that is, the link order). In addition, libraries specified with -1
are searched before the libraries that the compiler links by default.

Getting Verbose Output (-V)

The -v option makes a compiler display verbose information. This is useful for
seeing how the compiler calls Id. For example, using the -v option with the
Series 700/800 Pascal compiler shows that it automatically links with libel,
libm, and libe.

$ pc -v prog.p
/usr/lib/paseomp prog.p ? prog.o .? ?
/bin/ld /lib/ertO.o prog.o -leI -1m -Ie -z
unlink prog.o

Using the -v option with the Series 300/400 Pascal compiler shows that it
automatically links with libpe, libm, and libe:

$ pc -v prog.p

pc: /bin/ld /lib/ertO.o prog.o -x -lpe -1m -Ie

The HP-UX Software Development Environment 2-21

2

2

Passing Linker Options Directly (-WI)

The -WI option passes options and arguments to Id directly, without the
compiler interpreting the options. Its syntax is:

-WI, argl [, arg2] ...

where each argn is an option or argument passed to the linker. For example,
to make Id use the archive version of a library instead of the shared, you must
specify -a archive on the Id command line before the library. The command
for telling the linker to use an archive version of libm is:

$ Id /lib/crtO.o mathprog.o -a archive -1m -a shared -lc

To pass -a archive directly to the linker from the C conlmand line, use -WI as
follows:

$ cc -Aa mathprog.c -Wl,-a,archive -1m -Wl,-a,shared

Augmenting the Default Linker Search Path (-WI,-L)

By default, the linker searches the /lib and /usr/lib directories for libraries
specified with the -1 option. (If the -p or -G compiler option is specified, then
the linker also searches the profiling library directory /usr/lib/libp.) The -L
libpath option to Id augments the default search path; that is, it causes Id to
search the specified libpath before the default places.

The C compiler (cc) and the POSIX FORTRAN compiler (fort77) recognize
the -L option and pass it directly to Id. However, the HP FORTRAN compiler
(f77) and Pascal compiler (pc) do not recognize - L; it must be passed
to Id via the -WI option. For example, to make the f77 compiler search
/usr/local/lib to find a locally developed library narned liblocal, use this
command line:

$ f77 prog.f -Wl,-L,/usr/local/lib -llocal

For the C compiler, use this command line:

$ cc -Aa prog.c -L /usr/local/lib -llocal

The LPATH environment variable provides another way to override the default
search path. For details, see "Specifying Libraries (-1)" in Chapter 5.

2-22 The HP-UX Software Development Environment

Selecting Faster Libraries
(Series 700/800 Only)

On Series 700/800, some libraries-for example, the math libraries Iibm and
libM-are provided in two versions: PA-RISe l.0 (PAl.O) and PA-RISe l.l
(PAl.l). Derived from an earlier PA-RISe instruction set, PAl.O libraries
are completely compatible between Series 700 and 800. PAl.l libraries, on
the other hand, take advantage of the latest improvements in the PA-RISe
instruction set, resulting in faster code. However, PAl.l libraries run only on
Series 700 models and Series 800 models whose last digit is 7 (that is, 8x7
models). (The file /usr/Iib/sehed.models shows which architecture is used
for a particular model.)

There are primarily two types of application developers who will need PAl.O
libraries:

• developers who have to create programs that will run on older Series 800
models (that is, those whose model numbers do not end with 7)

• developers who require stability and reproducibility of results more than
higher performance and greater precision

The PAl.O libraries are stored in the usual system library directories, /Iib
and /usr/Iib. The corresponding PAl. 1 libraries (if they exist) are stored in
the directories /lib/pa1.1 and /usr/Iib/pa1.1, respectively. For example,
the PAl.O archive library Iibm is /Iib/Iibm. a, while the PAl.l version is
/lib/pa1.1/libm. a. Note that there are no shared versions of 1ibm or 1ibM.

(For details on PAl.O and PAl.l math libraries, refer to the HP- UX
Floating-Point Guide.)

From the Linker Command Line

To link against PAl.l libraries from the linker command line, use the linker
options -L/Iib/pa1.1 and -L/usr/Iib/pa1.1. The -Lpath option causes
the linker to look in the specified path for libraries before looking in the usual
places (/lib and /usr/Iib). Thus, if the PAl.l version of a library exists,
the linker will find it and use it before the PAl.O version. For example, the
following linker command will link against the PAl.l Iibe and 1ibm:

$ Id /lib/ertO.o -u main -L/Iib/pa1.1 prog.o -Ie -1m

The HP-UX Software Development Environment 2-23

2

2
Notice that -L/usr/lib/pa1.1 was not specified in the above example. This
is because the PAl.O versions of both libraries are found in /lib; therefore,
it is really only necessary to search /lib/pa1.1. If, however, the program
were linked with a PAl.llibrary found in /usr/lib, you would specify
-L/usr/lib/pa1.1.

From the Compiler Command Line

To select PAl.O or PAl.llibraries from the compile line, use the +DAarch
option, where arch is 1.0 for PAl.O and 1.1 for PALl. Not only does +DA
cause the compiler to invoke the linker with the correct search path, it also
causes the compiler to generate PAl.O or PAl.l code for each object file
specified on the command line.

On Series 800 computers, the default value for the +DA option is +DA1. 0
because the primary concern for most Series 800 applications is compatibility
across all Series 700/800 nlodels. On Series 700 computers, the default value
for the +DA option is +DA1.1 because the primary concern for most Series 700
applications is maximum performance. For details on the +DA option, refer to
your language reference manual.

Restrictions on Using Faster Libraries

Here are some restrictions on using PAl.llibraries:

• Applications built using PAl.O libraries run on both Series 800 and 700.
However, applications built with PALl libraries run only on Series 700
models and Series 800 models whose last digit is 7 .

• The PAl.l versions of the math libraries are available only on systems
running HP- UX release 9.0 or later.

2-24 The HP-UX Software Development Environment

The Assemblers
In addition to the standard programming languages, HP computers support
assembly language. Although Series 300/400 and Series 700/800 computers
have different architectures, there are some similarities in the assembler on
both computers.

On both systems, the assembler is invoked with the as command. Like a
compiler, an assembler reads a program (in assembly language) and produces
a corresponding object file. Unlike a compiler, however, it does not call the
linker. Assembly language file names end with. s.

Interestingly, Series 300/400 C and FORTRAN compilers convert source
programs to assembly language as an intermediate phase. They then run the
intermediate assembly language through as to produce the .0 file. To suppress
the assembly phase on Series 300/400, invoke the C or FORTRAN compiler
with the -S option, which produces . s files instead of .0 files. For example,
compiling a C program with the -S option produced the assembly language file
shown below:

$ cc -Aa -S hello.c
$ cat hello.s

global _main

link.l %a6,&LF1
movm.l &LS1,(%sp)

Suppress assembler phase with -S.

View the assembly language.

The HP-UX Software Development Environment 2-25

2

2
Series 700/800 compilers do not run the assembler as an intermediate phase,
but they still produce assembly language output if invoked with the -S option.
For example, compiling a FORTRAN program with -S produced the assembly
language ou tpu t shown below:

$ f77 -S prog.f
$ more prog.s

stuff
_start

.SPACE $TEXT$

.SUBSPA $CODE$,QUAD=O,ALIGN=4,ACCESS=44,CODE_ONLY

.PROC

.CALLINFO CALLER,FRAME=O,SAVE_SP,SAVE_RP

. ENTRY
STW
LDO

2,-20(0,30)
48(30),30

;offset OxO
;offset Ox4

Also, both assemblers support instructions and pseudo-ops for generating PIC,
used to create shared libraries. Writing assembly code that produces PIC
object code is described in Chapter 7 and in the following assembly language
manuals:

• Assembly Language Reference Manual (Series 700/800) .
• HP- UX Assembler and Tools (Series 300/400)

2-26 The HP-UX Software Development Environment

Other Programming Tools
In addition to the programlning tools discussed thus far, HP- UX provides a
rich environment of programming tools, summarized in Table 2-3.

Tools

debuggers:
xdb and adb

profilers:
prof, gprof

SCCS
RCS

chatr

file

lorder

m4

make

run

od

strings

strip

Table 2-3. Programming Environment Tools

Description

Help you find run-time errors in programs. (See The HP- UX Symbolic
Debugger User)s Guide.)

Help you locate parts of a program most frequently executed (that is,
possible bottlenecks); using this data, you may be able to improve a
program's performance. (See prof(1) and gpro[(l).)

Source code control systems, which help manage software projects
with multiple programmers. (See Chapter 14 and rcs(l).)

Changes an a. out file's internal attributes. (See Chapter 5 and
chatr(l).)

Determines a file's type and lists its attributes. (See file(l).)

Determines object file dependencies; used with tsort command to
generate more efficient link order for ld on Series 300/400. (See
Chapter 4 and lorder(l).)

A macro preprocessor, which can be used by all languages. (See
Chapter 15.)

A tool for managing program "builds," compilation, and linking. (See
Chapter 13.)

Displays symbol table information in object files. (See "What Is an
Object File?" in this chapter and nm(l).)

Shows octal or hexadecimal dumps of binary files. (See od(l).)

Displays all the printable strings in an object or other binary file.
Useful for seeing the strings in an a. out. (See strings(1).)

Strips symbol table and line number information from an object file,
thus making it smaller, but unusable by symbolic debuggers. Useful
after a program is debugged. (See strip(l) and the description of the
-s option in Id(l).)

The HP-UX Software Development Environment 2-27

2

2

SoftBench
SoftBench is an integrated set of window-based prograrnming tools and an
framework for integrating other tools. Together they provide a development
environment targeted at the program construction, test, and rnaintenance
phases of software developlnent.

The Programming Tools

There are several progralluning tools in SoftBench:

• Program Editor and Program Builder address the program construction
phase, and are used to develop an executable program.

• A symbolic Program Debugger and Static Analyzer are used for program
analysis. Program Debugger is mainly used during the testing phase, helping
to identify bugs in the executable program. Static Analyzer is most valuable
in the maintenance phase, providing information on program structure to
engineers who fix bugs and enhance existing prograrns.

• A Development Manager is used to Illanage the files over which the other
tools operate. In particular, it organizes and maintains the program's source
files during the development process.

The SoftBench Framework

The SoftBench Framework provides the environIllent with

• a multi-window, graphical user interface that is common throughout the
environment

• a pervasive, interactive help system

• communication between the tools, allowing thern to cooperate to accomplish
tasks

• support for both distributed and local tool execution and data accessing

2-28 The HP-UX Software Development Environment

SoftBench Encapsulator

SoftBench Encapsulator delivers the customizability benefit of SoftBench to
the customer. It allows customers to customize and extend the SoftBench
environment by

• automating custom development processes (SoftBench Encapsulator is used
to define actions that will be executed whenever specific events occur in the
SoftBench environment.)

• adding the SoftBench graphical user interface to existing UNIX utilities and
customer tools, without modifying the source code (The tools must use
standard input and standard output.)

• adding the SoftBench graphical user interface and inter-tool messaging to
C or C++ programs with simple library calls for SoftBench Encapsulator
functions

The HP-UX Software Development Environment 2-29

2

3
Creating Archive Libraries

As discussed in Chapter 2, HP- UX provides many useful libraries of routines
you can call from your programs. You can also create your own libraries.
There are two kinds of libraries to create-archive and shared. This chapter
describes how to create your own archive libraries with the ar command.
Specifically, it discusses

• creating an archive library

• viewing an archive library's contents

• replacing object modules in an archive library

• adding object modules to an archive library

• deleting object modules from an archive library

• summary of ar command keys

• where to put archive libraries

For details on creating shared libraries, see Chapter 4. For details on linking
archive libraries with programs, and for a summary of the tradeoffs between
using archive versus shared libraries, see Chapter 5.

Creating Archive Libraries 3-1

3

3

Overview of Creating an Archive Library
To create an archive library:

1. Create one or more object files containing relocatable object code.
Typically, each object file contains one function, procedure, or data
structure, but an object file could have multiple routines and data.

2. Combine these object files into a single archive library file with the aT
command. Invoke aT with the T key.

("Keys" are like command line options, except that they do not require a
preceding -.)

Figure 3-1 summarizes the procedure for creating archive libraries from three
C source files (file1. c, file2. c, and file3. c). The process is identical for
other languages, except that you would use a different conlpiler.

source
files
~

object
files
~

CD Create object files I@

archive
libra ry
~

s.t.

file 1.0

file2.0

Combine with or

Figure 3-1. Creating an Archive Library

By default, aT creates the archive library in the current working directory. You
can then link this library with your programs by specifying it on the command
line, just like an object file.

3-2 Creating Archive Libraries

What Does an Archive File Contain?
An archive library file consists of three main pieces:

1. a header string, "! <arch> \n", identifying the file as an archive file created
by ar (\n represents the newline character)

2. a symbol table, used by the linker and other commands to find location,
size, and other information for each routine or data item contained in the
library

:3. object modules, one for each object file specified on the ar command line

Object modules appear in the archive in the same order in which they were
specified on the ar command line.

To see what object modules a library contains, run ar with the t key, which
displays a table of contents. For example, to view the "table of contents" for
libm. a:

$ ar t /lib/libm.a

cosh.o

erf.o
fabs.o
floor.o

Run ar with the t key.

Object modules are displayed.

This indicates that the library was built from object files named cosh. 0,

erf .0, fabs. 0, floor. 0, etc. In other words, module names are the same as
the names of the object files fronl which they were created.

Creating Archive Libraries 3-3

3

Creating an Archive Library: An Example
Suppose you are working on a program that does several conversions between
English and Metric units. The routines that do the conversions are contained

3 in three C-language files shown in Figure :3- 2 through Figure :3-4:

float
{

in_to_cm(float in) 1* convert inches to centimeters *1

return (in * 2.54);
}

Figure 3-2. length.c-Routine to Convert Length Units

float gal_to_l(float gal) 1* convert gallons to liters *1
{

return (gal * 3.79);
}

float
{

}

Figure 3-3. volume.c-Routine to Convert Volume Units

1* convert ounces to grams *1

return (oz * 28.35);

Figure 3-4. mass.c-Routine to Convert Mass Units

During development, each routine is stored in a separate file. To make the
routines easily accessible to other programmers, they should be stored in an
archive library. To do this, first compile the source files, either separately or
together on the saIne conlmand line:

$ cc -Aa -c length.c volume.c mass.c Compile them together.

3-4 Creating Archive Libraries

length.c:
volume.c:
mass.c:
$ ls *.0
length. 0 mass.o

List the .0 files.

volume. 0

Then combine the .0 files by running ar with the r key~ followed by the library
name (say libunits. a), followed by the names of the object files to place in
the library:

$ ar r libunits.a length.o volume.o mass.o
ar: creating libunits.a

To verify that ar created the library correctly, view its contents:

$ ar t libunits.a
length. 0

volume.o
mass.o

Use ar with the t key.

All the .0 modules are included; it worked.

Now suppose you've written a program, called convert. c, that calls several of
the routines in the libuni ts. a library. You could compile the main program
and link it to libuni ts. a with the following cc command:

$ cc -Aa convert.c libunits.a

Note that the whole library name was given, and the -1 option was not
specified. This is because the library was in the current directory. If you move
libunits. a to /lib or /usr/lib before compiling, the following command line
will work instead:

$ cc -Aa convert.c -lunits

Linking with archive libraries is covered in detail in Chapter 5.

Creating Archive Libraries 3-5

3

Replacing, Adding and Deleting Object Modules
Occasionally you may want to replace an object module in a library, add an
object module to a library, or to delete a module cOlllpletely. For instance~

3 suppose you add some new conversion routines to length. c (defined in
the previous section) and want to include the new routines in the library
libuni ts. a. You would then have to replace the length. 0 lllodule in
libuni ts . a.

Replacing or Adding an Object Module

To replace or add an object lllodule, use the r key (the sallle key you use to
create a library). For example, to replace the length. 0 object module in
libuni ts. a:

$ ar r libunits.a length.o

Deleting an Object Module

To delete an object module from a library, use the d key. For example, to
delete volume. 0 from libuni ts. a:

$ ar d libunits.a volume.o

$ ar t libunits.a

length.o
mass .0

3·6 Creating Archive Libraries

Delete volume. o.

List the c01tients.

volume.o is gone.

Summary of ar Keys
When used to create and manage archive libraries~ ar's syntax is:

ar [-] keys archive [modules] '"

archive is the name of the archive library. modules is an optional list of object
modules or files. Table :3-1 defines some useful keys and their nlodifiers.

Table 3-1. Useful ar Keys

Key Description

t Display a table of contents for the archive.

v Display verbose output.

d Delete the modules from the archive.

r Replace or add the modltles to the archive. If archive exists, ar replaces modules
specified on the command line. If archi've does not exist, ar creates a new
archive containing the modules.

u Used with the r, this modifier tells ar to replace only those modules with
creation dates later than those in the archive.

x Extracts object modules from the library. Extracted modules are placed in .0

files in the current directory. Once an object module is extracted, you can use
run to view the symbols in the module.

f Truncate file names to 14 characters before comparing with file names in the
archive, which are already truncated to 14 characters. Useful with long file
names.

For example, when used 'with the v flag, the t flag creates a verbose table of
contents-including such information as module creation date and file size:

$ ar tv libunits.a
rw-r--r-- 265/ 20 230 Feb 2 17:19 1990 length. 0

rw-r--r-- 265/ 20 228 Feb 2 16:25 1990 mass.o
rw-r--r-- 265/ 20 230 Feb 2 16:24 1990 volume. 0

The next example replaces length. 0 in libunits.a, only if length. 0 is more
recent than the one already contained in libuni ts. a:

$ ar ru libunits.a length.o

Creating Archive Libraries 3-7

3

Where to Put Archive Libraries
After creating an archive library, you will probably want to save it in a location
that is easily accessible to other programmers who Inight want to use it. There

3 are two main choices for places to put the library:

• in the /lib or /usr/lib directory

• in the /usr/local/lib or /usr/contrib/lib directory

Using jlib or jusrjlib

Since the linker, by default, searches /lib and /usr/lib for libraries, you
might want to put the libraries here. Placing a library here eliminates your
having to type the entire library path narne each time you compile or link. The
drawbacks of putting the libraries in these directories are:

• It typically takes super-user (system administrator) privileges to write the
files into these directories.

• HP- UX system libraries reside here, so you should take care not to overwrite
thern.

Check with your system administrator before attempting to use /lib or
/usr/lib.

Using jusrjlocaljlib or jusrjcontribjlib

The /usr/local/lib library typically contains libraries created locally-by
programmers on the system; /usr/ contrib/lib contains libraries supplied
with HP-UX but not supported by Hewlett-Packard. Although ld does not
au tomatically search these directories, they are still often the best choice for
locating user-defined libraries because the directories are not write-protected.
Therefore, programmers can store the libraries in these directories without
super-user privileges.

3·8 Creating Archive Libraries

4
Creating Shared Libraries

As discussed in Chapter 2, HP- UX provides many useful libraries of routines
you can call from your programs. You can also create your own libraries. 4
There are two kinds of libraries you can create-archive and shared. This
chapter describes how to create shared libraries with the Id command.
Specifically, it discusses:

• creating position-independent code (PIC)

• creating a shared library with Id

• updating a shared library

• version control

• where to put shared libraries

• linking with other libraries to create library dependencies (Series 700/800
only)

• improving performance of shared libraries

For details on creating archive libraries, see Chapter 3. For details on linking
shared libraries with programs, and for a summary of the tradeoffs between
using shared versus archive libraries, see Chapter 5.

Creating Shared libraries 4-1

Creating Position-Independent Code (PIC)

The first step in creating a shared library is to create object files containing
position-independent code (PIC). There are two ways to create PIC object
files:

• Compile source files with the +z or +2 cOlllpiler option (described below) .

• Write assembly language programs that use appropriate addressing modes
(described in Chapter 7).

4 The +z (or +2) option forces the cOlnpiler to generate PIC object files.

Example

Suppose you have SOlne C functions, stored in length. c, that convert between
English and Metric length units. To cOlnpile these routines and create PIC
object files with the C cOlllpiler, you could use this comrnand:

$ cc -Aa -c +z length.c The +z option creates PIe.

You could then combine (link) it with other PIC object files to create a shared
library, as discussed in "Creating the Library with ld" later in this chapter.

+z versus +Z

The +z and +2 options are essentially the sarne. Normally, you cOlllpile with
+z. However, in some instances-when the number of referenced syrnbols per
shared library exceeds a predetermined limit-you must recompile with the
+2 option instead. You would discover this condition when creating a shared
library with the ld command. In such cases, ld displa.ys an error lnessage,
telling you to recompile the library with +2.

Compiler Support for +z and +Z

The +z and +2 options work only on these compilers:

Series 300/400 computers

Series 700/800 computers

4-2 Creating Shared Libraries

C and FORTRAN

C, FORTRAN, and Pascal

Shared Libraries with Debuggers, Profilers, and Static
Analysis
As of the HP- UX 9.0 release, debugging of shared libraries is supported. For
details on how debug shared libraries, refer to HP- UX Symbolic Debugger
User's Guide.

Profiling (with prof and gprof) and static analysis are not allowed on shared
libraries. If you need to profile a library, use the archive version.

Creating Shared Libraries 4-3

4

4

Creating the Library with Id
To create a shared library from one or more PIC object files, use the linker,
Id, with the -b option. By default, Id will name the library a. out. You can
change the name with the -0 option.

For example, suppose you have three C source files containing routines to
do length, volume, and mass unit conversions. They are named length. c,
volume. c, and mass. c, respectively. To make a shared library from these
source files, first compile all three files using the +z option, then combine the
resulting.o files with Id. Shown below are the commands you would use to
create a shared library named libunits. sl:

$ cc -Aa -c +z length.c volume.c mass.c
length.c:
volume.c:
mass. c:
$ Id -b -0 libunits.sl length.o volume.o mass.o

Once the library is created, be sure it has read and execute permissions for
all users who will use the library. For example, the following chmod command
allows read/write permission for all users of the libuni ts. sllibrary:

$ chmod +r+x libunits.sl

This library can now be linked with other programs. For example, if you have
a C program named convert. c that calls routines from libuni ts. sl, you
could compile and link it with the cc command:

$ cc -Aa convert.c libunits.sl

Once the executable is created, the library should not be moved because the
absolute path name of the library is stored in the executable. For details, see
"Shared Library Location" later in this chapter.

For details on linking shared libraries with your programs, see Chapter 5.

4-4 Creating Shared Libraries

Updating a Shared Library
The Id command cannot replace or delete object modules in a shared library.
Therefore, to update a shared library, you must re-link the library with all the
object files you want the library to include. For example, suppose you fix some
routines in length. c (from the previous section) that were giving incorrect
results. To update the libuni ts . sl library to include these changes, you
would use this series of commands:

$ cc -Aa -c +z length.c
$ Id -b -0 libunits.sl length.o volume.o mass.o

Any programs that use this library will now be using the fixed versions of the
routines. That is, you do not have to relink any programs that use this shared
library. This is because the routines in the library are attached to the program
at run time.

This is one of the advantages of shared libraries over archive libraries: if you
change an archive library, you must relink any programs that use the archive
library. With shared libraries, you need only recreate the library.

Creating Shared libraries 4-5

4

Version Control
For the most part, updates to a shared library should be cOlnpletely
upward-compatible; that is, updating a shared library won't usually cause
problems for programs that use the library. But sometirnes-for example, if
you add a new parameter to a routine-updates cause undesirable side-effects
in programs that call the old version of the routine. In such cases, it is
desirable to retain the old version as well as the new. This way, old programs
will continue to run and new programs can use the new version of the routine.

4 Version numbers allow a shared library to have rnultiple versions of an object
module.

The Version Number Compiler Directive

A version number can be assigned to any module in a shared library. It applies
to all global symbols defined in the module's source file. The version nUlllber is
a date, specified with a compiler directive in the source file. The syntax of the
version number directive depends on the language:

C: #pragma HP_SHLIB_VERSION IIdate t' (the quotes are optional)

FORTRAN: $SHLIB_ VERSION' date'

Pascal: $SHLIB_ VERSION 'date' $

The date argument in all three directives is of the form month/year. The
month must be 1 through 12, corresponding to January through December.
The year can be specified as either the last two digits of the year (90 for 1990)
or a full year specification (1990). Two-digit year codes from 00 through 40
represent the years 2000 through 2040.

This directive should only be used if incompatible changes are made to a source
file. If a version number directive is not present in a source file, the version
number of all symbols defined in the object module defaults to 1/90.

4-6 Creating Shared Libraries

Adding New Versions to a Shared Library

To rebuild a shared library with new versions of object files, run Id again with
the newly compiled object files. For example, suppose you want to add new
functionality to the routines in length. c, making them incompatible with
existing programs that call1ibuni ts. s1. Before making the changes, make a
copy of the existing length. c and name it oldlength. c. Then change the
routines in length. c with the version directive specifying the current month
and date. Figure 4-1 shows the new length. c file.

#pragma HP_SHLIB_VERSION 1111/92 11 1* date is November 1992 *1
1*
* New version of lIin_to_cmll also returns a character string
* II cmstr ll with the converted value in ASCII form.

*1
float
{

}

in_to_cm(float in, float cmstr)

1* build ttcmstr ll *1
return(in * 2.54);

1* convert in to cm *1

1* other length conversion routines *1

Figure 4-1. length.c-Length-Conversion Routines; New Version

To update libuni ts . sl to include the new length. c routines, copy the old
version of length. 0 to oldlength. 0; then compile length. c and rebuild the
library with the new length. 0 and oldlength. 0:

$ cp length.c oldlength.c

$ mv length.o oldlength.o

Save the old source.

Save oldlength.o.

Make new length.c.

$ cc -Aa -c +z length.c Make new length.o.

$ ld -b -0 libunits.sl oldlength.o volume.o mass.o length.o Relink the library.

Thereafter, any programs linked with libuni ts . sl use the new versions of
length-conversion routines defined in length. o. Programs linked with the old
version of the library still use those routines from oldlength. o. For details on
linking with shared libraries, see Chapter 5.

Creating Shared Libraries 4-7

4

Specifying a Version Date

When adding modules to a library for a particular release of the library, it is
best to give all modules the same version date. For example, if you complete
file1. 0 on 04/92, file2. 0 on 05/92, and file3. 0 on 07/92, it would be best
to give all the modules the same version date, say 07/92.

The reason for doing this is best illustrated with an example. Suppose in the
previous example you gave each module a version date corresponding to the
date is was completed: 04/92 for file1. 0, 05/92 for file2. 0, and 07/92 for

4 file3. o. You then build the final library on 07/92 and link an application
a. out with the library. Now suppose that you introduce an incompatible
change to function foo found in file1. 0, set the version date to 05/92, and
rebuild the library. If you run a. out with the new version of the library, a. out
will get the new, incompatible version of foo because its version date is still
earlier than the date the application was linked with the original library!

4·8 Creating Shared Libraries

Shared Library Location

You can place shared libraries in the same locations as archive libraries (see
"Where to Put Archive Libraries" in Chapter 3). Again, this is typically
/usr/local/lib and /usr/contrib/lib for application libraries, and /lib
and /usr/lib for system libraries. However, these are just suggestions.

Prior to the HP- UX 9.0 release, moving a shared library caused any programs
that were linked with the library to fail when they tried to load the library.
Prior to 9.0, you were required to relink all applications that used the library if
the library was moved to a different directory.

As of the HP- UX 9.0 release, a program can search a list of directories at
run time for any required libraries. Thus, libraries can be moved after an
application has been linked with them. To search for libraries at run tirne, a
program must know which directories to search. There are two ways to specify
this directory search information:

• Store a directory path list in the program via the linker option +b path_list .

• Link the program with +8, enabling the program to use the path list defined
by the SHLIB_PATH environment variable at run time.

For details on the use of these options, refer to the section "Linking a Program
with Shared Libraries" in Chapter 5.

Creating Shared Libraries 4-9

4

4

Shared Library Dependencies
(Series 700/800 Only)

On Series 700/800 systems, you can specify additional shared libraries on the
1d command line when creating a shared library. The created shared library
is said to have a dependency on the specified libraries, and these libraries are
known as supporting libraries. When you load such a library, all its supporting
libraries are loaded too. For example, suppose you create a library named
1ibdep . sl using the cornrnand:

$ 1d -b -0 1ibdep.s1 mod1.o mod2.0 -lcurses -lcustom

Thereafter, any programs that load 1ibdep. sl ~either explicitly with
sh1_10ad or implicitly with the dynaulic loader when the prograrn begins
execution-also automatically load the supporting libraries 1ibcurses . sl and
1ibcustom. s1.

There are two additional issues that may be irnportant to some shared library
developers:

• When a, shared library with dependencies is loaded, in what order are the
supporting libraries loaded?

• Where are all the supporting libraries placed in relation to other already
loaded libraries? That is, where are they placed in the process's shared
library search list used by the dynamic loader?

The Order in Which Libraries Are Loaded (Load Graph)

When a shared library with dependencies is loaded, the dynamic loader builds
a load graph to determine the order in which the supporting libraries are
loaded. The following algorithm is used:

if the library has not been 'visited then

mark the library as visited.

if the library has a dependency list then

traverse the list in, reverse order.
Place the libr'ary at the head of the load list.

4-10 Creating Shared Libraries

For example, suppose you create three libraries-libQ, libD, and libP-using
the Id commands below. The order in which the libraries are built is important
because a library must exist before you can specify it as a supporting library.

$ Id -b -0 libQ.sl modq.o -IB
$ Id -b -0 libD.sl modd.o -lQ -IB
$ Id -b -0 libP.sl modp.o -IA -ID -lQ

The dependency lists for these three libraries are:

libQ ---7

libD ---7

libP ---7

libB

libQ, libB

libA, libD, libQ

Shown below are the steps that would be taken to form the load graph when
libP is loaded:

1. rnark P, traverse Q

2. rnark Q, traverse B
:3. mark B, load B
4. load Q
.5. traverse D
fL mark D, traverse B
7. B is marked, skip B, traverse Q
8. Q is marked, skip Q

9. load D
10. mark A, load A
11. load P

The resulting load graph is:

libP ---7 libA ---7 libD ---7 libQ ---7 libB

Creating Shared Libraries 4-11

4

4

Placing Loaded Libraries in the Search List

Once a load graph is formed, the libraries must be added to the shared library
search list, thus binding their symbols to the program. If the initial library
is an implicitly loaded library (that is, a library that is automatically loaded
when the program begins execution), the libraries in the load graph are
appended to the library search list. For example, if libP is implicitly loaded,
the library search list is:

< current search list> ---+ libP ---+ libA ---+ libD ---+ libQ ---+ libB

The sarne behavior occurs for libraries that are explicitly loaded with
shl_load, but without the BIND_FIRST modifier (see Chapter 8 for details). If
BIND_FIRST is specified in the shl_load call, then the libraries in the load
graph are inserted before the existing search list. For example, suppose libP is
loaded with this call:

lib_handle = shl_load(t1libP.sltl, BIND_IMMEDIATE I BIND_FIRST, 0);

Then the resulting library search list is:

libP ---+ libA ---+ libD ---+ libQ ---+ libB ---+ < currerd search list>

4-12 Creating Shared Libraries

Improving Shared Library Performance

This section describes methods you can use to improve the run-time
performance of shared libraries. If, after using the methods described here,
you are still not satisfied with the performance of your program with shared
libraries, try linking with archive libraries instead to see if it improves
performance. In general, though, archive libraries will not provide great
performance improvements over shared libraries.

Exporting Only the Required Symbols

Normally, all global variables and procedure definitions are exported from a
shared library. In other words, any procedure or variable defined in a shared
library is made visible to any code that uses this library. In addition, the
compilers generate "internal" symbols that are exported. You may be surprised
to find that a shared library exports many more symbols than necessary for
code that uses the library. These extra symbols add to the size of the library's
symbol table and can even degrade performance (since the dynamic loader has
to search a larger-than-necessary number of symbols).

One possible way to improve shared library performance is to export only those
symbols that need exporting from a library. To control which symbols are
exported, use either the +e or -h option. When +e options are specified, the
linker exports only those symbols specified by +e options. The -h option causes
the linker to hide the specified symbols. (For details on using these options, see
"Hiding and Exporting Symbols (-h and +e)" in Chapter 5).

As an example, suppose you've created a shared library that defines the
procedures ini t_prog and qui t_prog and the global variable prog_state.
To ensure that only these symbols are exported from the library, specify these
options when creating the library:

+e init_prog +e quit_prog +e prog_state

If you have to export many symbols, you may find it convenient to use the -c
file option, which allows you to specify linker options in file. For instance, you
could specify the above options in a file named export_opts as:

+e init_prog
+e quit_prog
+e prog_state

Creating Shared Libraries 4-13

4

Then you would specify the following option on the linker command line:

-c export_opts

(For details on the -c option, see "Linker Option Files (-c file)" in Chapter .5.)

Placing Frequently-Called Routines Together

When the linker creates a shared library, it places the PIC object modules into
the library in the order in which they are specified on the linker command line.

4 The order in which the modules appear can greatly affect performance. For
instance, consider the following modules:

a.o Calls routines in c. 0 heavily, and its routines are called frequently by
c.o.

b . 0 A huge module, but contains only error routines that are seldom called.
c .0 Contains routines that are called frequently by a. 0, and calls routines in

a.o frequently.

If you create a shared library using the following command line, the modules
will be inserted into the library in alphabetical order:

$ Id -b -0 libabc.sl *.0

The potential problem with this ordering is that the routines in a. 0 and c. 0

are spaced far apart in the library. Better virtual memory performance could
be attained by positioning the modules a. 0 and c. 0 together in the shared
library, followed by the module b . o. The following command will do this:

$ Id -b -0 libabc.sl a.o c.o b.o

One way to help determine the best order to specify the object files is to gather
profile data for the object modules; modules that are frequently called should
be grouped together on the command line.

Another way is to use the lorder(l) and tsort(l) commands. Used together on
a set of object modules, these commands determine how to order the modules
so that the linker only needs a single pass to resolve references among the
modules. A side-effect of this is that modules that call each other may be
positioned closer together than modules that don't. For instance, suppose you
have defined the following object modules:

4-14 Creating Shared Libraries

Module Calls Routines in Module(s)
a.o x.o y.o
b.o x.O y.o
d.o none
e.o none
x.o d.o
y.o d.o

Then the following command determines the one-pass link order:

$ lorder ?o I tsort

a.o

b.o

e.o
x.o

y.o

d.o

Pipe lorder '8 output to tsort.

Notice that d. 0 is now closer to x. 0 and y. 0, which call it. However, this is
still not the best information to use because a. 0 and b. 0 are separated from
x.o and y. 0 by the module e. 0, which is not called by any modules. The
actual optimal order might be more like this:

a.o b.o x.O y.o d.o e.o

Again, the use of lorder and tsort is not perfect, but it may give you leads
on how to best order the modules. You may want to experiment to see what
ordering gives the best performance.

Setting Shared Library Permissions to Non-Writable
(Series 700/800 Only)

On Series 700/800 systems, you may get an additional performance gain by
ensuring that no shared libraries have write permissions. Programs that
use more than one writable library can experience significantly degraded
loading time. The following chmod command gives shared libraries the correct
permissions for best load-time performance:

$ chmod 555 libname

Creating Shared Libraries 4-15

4

Using the + ESlit Option to cc
(Series 700/800 Only)

Normally, the Series 700/800 C compiler places constant data in the data
space. If such data is used in a shared library, each process will get its own
copy of the data, in spite of the fact that the data is constant and should not
change. This can result in some performance degradation.

To get around this, use the C compiler's +ESli t option, which places constant
data in the LIT text space instead of the data space. This results in one copy

4 of the constant data being shared among all processes that use the library.

Note This option requires that programs not write into constant
strings and data. In addition, structures with embedded
initialized pointers won't work because the pointers cannot be
relocated since they are in read-only $TEXT$ space. In this case,
the linker outputs the error message "Invalid loader fixup
needed" .

4-16 Creating Shared Libraries

5
Linking and Running Programs

This chapter describes how to use the linker, Id, to create executable programs.
It describes the use of many powerful linker options that change characteristics
of the executable. This chapter also describes what the operating system does
when you run a program. Specifically, this chapter describes how to

• specify link libraries

• choose an archive or shared library

• link with shared libraries

• hide and export symbols in a shared library or program

• specify multiple linker options in files

• migrate to shared libraries from archive libraries

• generate shared executables

• generate demand-loaded executables

• strip symbol table information from executables

• change a program's attributes with chatr

• dynamically link and load object modules

This chapter does not cover detailed reference information on the linker. For
such information, refer to ld(l); in the HP-UX Reference.

Linking and Running Programs 5-1

5

5

Linker Overview
The HP-UX linker, Id, produces a single executable file fronl one or rnore input
object files. In doing so, it rnatches external references to global definitions
contained in other object files or libraries. It revises code and data to reflect
new addresses, a process known as relocation. If the input files contain
debugger information, Id updates this infornlation appropriately. The linker
places the resulting executable code in a file named, by default, a. out.

Compiler-Linker Interaction

As described in Chapter 2, the cornpilers autornatically callld to create an
executable file. To see how the cornpilers call Id, run the compiler with the
-v (verbose) option. For exarnple, cornpiling a C prograrn on a Series 700
workstation produced the output below:

$ cc -Aa -v main.c func.c -1m
cc: CCOPTS is not set.
main. c:
/lib/cpp.ansi main.c /tmp/ctmAAAa10102 -D __ hp9000s700 \

-D __ hp9000s800 -D __ hppa -D __ hpux -D __ unix -D_PA_RISC1_1 \
-A -I /usr/include

cc: Entering Preprocessor.
/lib/ccom /tmp/ctmAAAa10102 main.o -00 -v -Aa
func.c:
/lib/cpp.ansi func.c /tmp/ctmAAAa10102 -D __ hp9000s700 \

-D __ hp9000s800 -D __ hppa -D __ hpux -D __ unix -D_PA_RISC1_1 \
-A -I /usr/include

cc: Entering Preprocessor.
/lib/ccom /tmp/ctmAAAa10102 func.o -00 -v -Aa
cc: LPATH is /lib/pa1.1:/usr/lib/pa1.1:/1ib:/usr/lib
/bin/ld /lib/crtO.o -u main main.o func.o -1m -lc
cc: Entering Link editor.

The next-to-Iast line in the above example is the command line the cornpiler
used to invoke the linker, /bin/ld. In this comInand, Id combines a startup
file (crtO. 0) and the two object files created by the c0111piler (main. 0 and
func. 0). Also, Id searches the libm and libc libraries.

5·2 Linking and Running Programs

The crtO.o Startup File

Notice in the previous example that the first object file on the linker command
line is /lib/ crtO. 0, even though this file was not specified on the compiler
command line. This file, known as a startup file, contains the program's entry
point-that is, the location at which the program starts running after HP- UX
loads it into memory to begin execution. The startup code does such things
as retrieving command line arguments into the program at run time, and
activating the dynamic loader (dld.sl (5)) to load any required shared libraries.
It also calls the main program: it calls the routine _start in libc, which in
turn calls the main program as a function. On Series :300/400 COlllputers, it
calls the main program directly, without calling _start.

If the -p profiling option is specified on the compile line, the compilers link
with mcrtO. 0 instead of crtO. o. If the -G profiling option is specified, the
compilers link with gcrtO. o. For details on startup files, see crtO(3).

On Series 300/400 FORTRAN, the startup file is frtO. 0 instead of crtO. 0.

Also, the profiling startup files are mfrtO .0 (if cOlnpiled with -p) and gfrtO. 0

(if cOlnpiled with -G).

Entry Point

The entry point is the location at which execution begins in the a. out file. It
is defined in crtO. o. On Series 300/400 computers, the entry point is defined
by the symbol _start in crtO. o. On Series 700/800 computers, the entry
point is defined by the symbol $START$ in crtO. o.

The a.out File

The information contained in the resulting a. out file depends on which
architecture the file was created on and what options were used to link the
program. In any case, an executable a. out file contains information that
HP-UX needs when loading and running the file, for example: Is it a shared
executable? Does it reference shared libraries? Is it demand-Ioadable? Where
do the code (text), data, and bss segments reside in the file? For details on the
format of this file, see a. out(4).

Linking and Running Programs 5-3

5

5

File Permissions

If no linker errors occur, the linker gives the a.out file read/write/execute
permissions to all users (owner, group, and other). If errors occurred, the linker
gives read/write permissions to all users. Permissions are further rnodified
if the umask is set (see umask(l)). For exarnple, on a systerll with urllask
set to 022, a successful link produces an a. out file with read/write/execute
permissions for the owner, and read/execute perrnissions for group and other:

$ umask
022
$ Is -1 a.out
-rlNxr-xr-x 1 michael users

Renaming the a.out File

74440 Apr 4 14:38 a.out

To override the default name of a. out, use the -0 option. For example, the
following Id command creates an executable nalned sum from the object files
/lib/crtO.o and sum.o:

$ Id -0 sum /lib/crtO.o sum.o -lc -1m

Specifying Linker Options with the LDOPTS Environment Variable

If you use certain linker options all the time, you Inay find it useful to specify
them in the LDOPTS environment variable. The linker inserts the value of this
variable before all other argurnents on the linker comrnand line. For instance, if
you always want the linker to display verbose infornlation (-v) and a trace of
each input file (-t), set LDOPTS as follows:

$ LDOPTS=II_V -til

$ export LDOPTS

$ setenv LDOPTS II-V -til

I{orn and Bo'U,rTle synta~c.

C shell syntax.

Thereafter, the following commands would be equivalent

$ Id /lib/crtO.o -u main prog.o -1 -c
$ Id -v -t /lib/crtO.o -u main prog.o -1 -c

5-4 Linking and Running Programs

Specifying Libraries (-I)

The -1 option tells Id the libraries to search in to find global definitions. Its
usage is:

-Ix

where x is a character string denoting the library in which Id should search for
global definitions. Only the part of the library name following lib needs to be
specified with the -1 option. For example, to specify libc, use -lc; to specify
libm, use -1m.

By default, Id searches for the specified libraries in /lib and /usr/lib, in that
order. The default order can be changed with the LPATH envirolunent variable
or the -L option, described below.

Note On Series 700 computers, you can use the -L option to direct
the linker to search for the faster PAl.l libraries as follows:

-L/lib/pa1.1 -L/usr/lib/pa1.1

For details, see "Selecting Faster Libraries (Series 700/800
Onlyt in Chapter 2.)

You can also use the LPATH environment variable (described
later in this section) to do the same thing. In fact, this is how
the C and FORTRAN compilers cause the linker to search the
appropriate libraries for a particular architecture.

Linking and Running Programs 5-5

5

5

Link Order

The linker seardws libraries in the order in which they a.rC' sp(:'ciIied on the
corllmand line--the link order. Link order is irllportant in that a libra.ry
containing an external reference to another library must precede the llbra,ry
containing the definition. This is why libc is typica.lly the last libra.ry specified
on the linker cOlllllland line: because the other libraries preceding it in the link
order often contain references to libc routines and so must precede it.

Note If rllultiplC' ddiultlons of a symbol OCCli rill 1he spC'ci ned
libraries, Id does not necessarily choose the first definition.
It depends on w!tether the progratn is linked with a.rchi ve
libraries, shared libraries, or a cOlnbination of both. Depending
on link order to resolve such library definition conJiicts is risky
because it relies on undocurnented linker behavior that Iuay
change in future releases.

Overriding the Default Linker Search Path (LPATH)

The LPATH environrnent varia,ble allows you to specify which directories Id
should search. If LPATH is not set, Id searches the default directories /lib and
/usr/lib. If LPATH is set, Id searches only the directories specified in LPATH:
the default directories are not searched ulIl ('SS they a.re s peciIied in LPATH.

If set, LPATH should contain a list of colon-separated directory path naIHes Id
should search. For example, to include /usr/local/lib in the search path
after the default directories, set LPATH as follows:

$ LPATH=/lib: /usr/lib: /usr/local/lib 1{of'1/. (/1/.d BO'lll'ltc 8hcll S,I/II/I/,/',

$ export LPATH

$ setenv LPATH /lib: /usr/lib: /usr/local/lib C shell syn.la:l:,

5-6 Linking and Running Programs

Augmenting the Default Linker Search Path (-L)

The - L option to ld also allows you to add additional directories to the search
path. If - L libpath is specified, ld searches the libpath directory before the
default places.

For example, suppose you have a locally developed version of libe, which
resides in the directory /usr/loeal/lib. To make ld find this version of libe
before the default libe, use the -L option as follows:

$ ld /lib/ertO.o prog.o -L /usr/loeal/lib -Ie

Multiple - L options can be specified. For example, to search
/usr/ eontrib/lib and /usr/loeal/lib before the default places:

$ Id /lib/ertO.o prog.o -L /usr/eontrib/lib -L /usr/loeal/lib -Ie

If LPATH is set, then the - L option specifies the directories to search before the
directories specified in LPATH.

Linking and Running Programs 5· 7

5

Choosing Archive or Shared Libraries (-a and -I:)

If both an archive and shared version of a particular library reside in the
same directory, ld links against the shared version. For example, libc. a and
libc. sl both reside in flib; so by default, ld uses libc. s1. Occasionally, you
might want to override this behavior.

As an example, suppose you write an application that will run on a system on
which shared libraries may not be present. Since the program could not run
without the shared library, it would be best to link with the archive library,
resulting in executable code that contains the required library routines.

There are two ways to select archive or shared libraries-with the -a option
and the -1: option.

5 Using the -a Option

The -a option tells the linker what kind of library to link against. It applies to
all libraries (-1 options) until the end of the command line or until the next -a
option. Its syntax is:

archive
shared

-a default
archive_shared
shared_archive

5-8 Linking and Running Programs

The different option settings are:

-a archive

-a shared

-a default

-a archive_shared

-a shared_archive

Select archive libraries. If the archive library does
not exist, ld generates an error message and does not
generate the output file.

Select shared libraries. If the shared library does not
exist, ld generates an error message and does not
generate the output file.

Select the shared library if it exists; otherwise, select
the archive library. If the library cannot be found in
either version, ld generates an error message and does
not generate the output file.

(Series 700/800 only.) Select the archive library if
it exists; otherwise, select the shared library. If the
library cannot be found in either version, Id generates
an error message and does not generate the output
file.

(Series 700/800 only.) This is the same as -a def aul t.

For example, to link with the shared libcurses but the archive libm and
libc, use this sequence of -1 and -a options:

$ Id /lib/crtO.o prog.o -lcurses -a archive -1m -lc

The following sequence of -1 and - a options causes the linker to use the
archive version of libcurses and the shared versions of libm and libc:

$ Id /lib/crtO.o prog.o -a archive -lcurses -a default -1m -lc

Using the -I: Option
(Series 700/800 Only)

The -1: option works just like the -1 option with one major difference:
-1: allows you to specify the full basename of the library to link against.
For instance, -l:libm.a causes the linker to link against archive library
/lib/libm. a, regardless of whether -a shared was specified previously on the
linker command line.

Linking and Running Programs 5-9

5

5

The ad vantage of using this option is that it allows you to specify an archi ve or
shared library explicitly without having to toggle the state of the -a option.

For instance, suppose you use the LDOPTS envirolunent variable (see "Specifying
Linker Options with the LDOPTS Environlnent Varia,ble") to set the -a
option that you want to use by default when linking. And depending on what
environment you are building an application for, you Inight set LDOPTS to -a
arehi ve or -a shared. If a particular library is available only as shared or
archive, you can use -1: to ensure that the linker will always link against this
library, regardless of the setting of the -a option in the LDOPTS variable.

For example, even if LDOPTS were set to -a shared, the following conlmand
would link against the archive libfoo. a in the directory /usr /mylibs:

$ Id /lib/ertO.o -u main prog.o -L/usr/mylibs \
-l:libfoo.a -Ie -1m

5-10 Linking and Running Programs

Linking a Program with Shared Libraries
When linking with shared libraries, there are some special considerations that
don't apply to archive libraries. This section discusses these.

Exporting Symbols from the Main Program (-E)

By default, the linker exports from a program only those sYlnbols that were
imported by a shared library. For example, if a shared executable's libraries do
not reference the progralll's main routine, the linker does Twt include the main
symbol in the a.out file's export list. Normally, this is a problerll only when
a program calls shared library management routines (described in Chapter 8).
To make the linker export all sYlnbols from a prograrll, invoke Id with the -E
option.

The +e option allows you to be rllore selective about which syrllbols are
exported, resulting in better performance. For details on +e, see the section
"Hiding and Exporting Synlbols (-hand +e)" later in this chapter.

Library Location and the Dynamic Loader (dld.sl)

An incomplete executable contains a list of absolute path names of the shared
libraries searched at link time. When a program begins execution, it attaches
these shared libraries. This activity is actually performed by the dynamic
loader, which is activated by the startup code in ertO. o.

Default Behavior When Searching for Libraries at Run Time

By default, if the dynamic loader cannot find a shared library from the list, it
generates a run-time error and the program aborts. For example, suppose that
during development, a program is linked with the shared library libloeal. sl
in your current working directory (say, /users/hyperturbo):

$ Id /lib/ertO.o prog.o -Ie libloeal.sl

The linker records the path name of libloeal. sl in the a. out file as
/users/hyperturbo/libloeal. s1. When shipping this application to
users, you must ensure that (1) they have a copy of libloeal. sl on their
system, and (2) it is in the same location as it was when you linked the final
application. Otherwise, when the users of your application run it, the dynamic

Linking and Running Programs 5-11

5

5

loader will look for /users/hyperturbo/liblocal. sl, fail to find it, and the
prograrn will abort.

This is nl0re of a concern with non-standard libraries-that is, libraries not
found in /lib or /usr/lib. There is little chance of the standard libraries not
being in these directories.

Moving Libraries after Linking

As of the HP- UX 9.0 release, a library can be moved even after an application
has been linked with it. This is done by providing the executable with a list of
directories to search at run time for any required libraries. There are two ways
to specify this infonnation:

• by storing a directory path list in the prograrn via the linker option
+b patlLlist

• by linking the prograrn with +s, enabling the prograrn to use the path list
defined by the SHLIB_PATH environment variable at run tirue

Note that dynaruic path list search works only for libraries specified
with -1 on the linker cOTIlInand line (for exanlple, -lfoo). It won't
work for libraries whose full path narne is specified (for example,
/usr/contrib/lib/libfoo.sl). However, on Series 700/800 cOInputers, it can
be enabled for such libraries with the -1 option to the chatr COlllInand (see
"Changing a Prograru's Attributes with chatr").

The Path List

V,Thether specified as a pararneter to +b or set as the value of the SHLIB_PATH

environrnent variable, the path list is simply one or nlore path naTIleS separated
by colons (:), just like the syntax of the PATH environrnent variable. An
optional colon can appear at the start and end of the list.

Absolute and relative path nanles are allowed. Relative paths are searched
relative to the program's current working directory at run time.

ReTIwTIlber that a shared library's full path name is stored in the
executable. vVhen searching for a library in an absolute or relative path
at run time, the dynanlic loader uses only the basenarne of the library
path name stored in the executable. For instance, if a program is linked
with /usr/local/lib/libfoo. sl, and the directory path list contains

5-12 Linking and Running Programs

/apps/lib :xyz~ the dynarnic loader searches for /apps/lib/libfoo. sl~ then
. /xyz/libfoo . sl.

The full library path name stored in the executable is referred to as the default
library path. To cause the dynamic loader to search for the library in the
default location, use a null directory path (: :). When the loader comes to
a null directory path, it uses the default shared library path stored in the
executable. For instance, if the directory path list in the previous exanlple were
/ apps/lib: : xyz, the dynamic loader would search for / apps/lib/libfoo. sl~
/usr/loeal/lib/libfoo.sl~ then ./xyz/libfoo.sl.

If the dynamic loader cannot find a required library in any of the directories
specified in the path list, it searches for the library in the default location (: :)
recorded by the linker.

Caution on Using Dynamic Library Searching

If different versions of a library exist on your system, be aware that the
dynamic loader may get the wrong version of the library when dynarnic library
searching is enabled with SHLIB_PATH or +b. For instance, you may want a
program to use the PAl. 1 libraries found in the /lib/pa1.1 directory; but
through a combination of SHLIB_PATH settings and +b options, the dynamic
loader ends up loading versions found in /lib instead. If this happens, make
sure that SHLIB_PATH and +b are set in such a way as to avoid such conflicts.

Specifying a Path List with +b

The syntax of the +b option is

+b path_list

where path_list is the list of directories you want the dynamic loader to search
at run time. For example, the following linker command causes the path
. : / app/lib:: to be stored in the executable. At run time, the dynamic loader
would search for libfoo. sl, 1 ibm . sl, and libe. sl in the current working
directory (.), the directory / app/lib, and lastly in the location in which the
libraries were found at link time (: :):

$ ld /lib/ertO.o +b . :/app/lib:: prog.o -lfoo -1m -le

If path_list is only a single colon, the linker constructs a path list consisting of
all the directories specified by - L, followed by all the directories specified by

Linking and Running Programs 5-13

5

the LPATH environrnent variable. For instance, the following linker cornmand
records the path list as /app/lib: /tmp:

$ LPATH=/tmp ; export LPATH

$ Id /lib/ertO.o +b : -L/app/lib prog.o -lfoo -1m -Ie

Specifying a Path List with +s and SHLIB_PATH

When a prograrn is linked with +s, the dynaruic loader will get the library path
list from the SHLIB_PATH environment variable at run time. This is especially
useful for application devclo pel'S who don't know whel'(_' the li brades will reside
at run time. In such cases, they can have the user or an instan script set
SHLIB_PATH to the correct value.

Mixing +b and +s

5 If a prograrn is linked with both +b and +s, the dynanlic loader builds a path
list according to the order in which the options were specified. For E~xarnple, if
+b is specified before +s, the dynarllic. loa.der will use the path list specified by
+b and append the path list specified by SHLIB_PATH.

Note No spedal provisions rela.ted to security issues are ta.ken for
prograrlls that use 8etuid('2) or 8clgid (2) to change process
pennissions. 'rhe builder of such pJ'ogra.ms lllllst ensure tha.t
users cannot substitute thcir own Hbrary on a. search path all d
gain undesirable privileges. Sincc' dynaillic library searcllinp;
is not the default behavior, this is not considered a SC'ClLl'ity
hole in the program developlw.:'llt c~nvlronrnent; ratlwr. it Is the
responsibility of the program bullckl'.

The Path List and the shLload Routine

If a library is loaded with shl_load (see Chapter 8). the dynarllic loader
searches the path list only if the DYNAMIC_PATH fl ag iss pC'cified in the
shl_load can and the progranl has also been llllk(~d with either +b or +s.

5-14 Linking and Running Programs

Binding Routines to a Program

Since shared library routines and data are not actually contained in the a. out
file, the dynamic loader must attach the routines and data to the program
at run time. Attaching a shared library entails mapping the shared library
code and data into the process's address space, relocating any pointers in the
shared library data that depend on actual virtual addresses, allocating the bss
segment, and binding routines and data in the shared library to the program.

The dynamic loader binds only those symbols that are reachable during the
execution of the program. This is similar to how archive libraries are treated
by the linker; nanlely, Id pulls in an object file froIn an archive library only if
the object file is needed for program execution.

Deferred Binding

To accelerate prograul startup tiIne, routines in a shared library are not
bound until referenced. (Da.ta iterns are always bound at prograrIl startup.)
This deferred binding of sha.red library routines distributes the overhead of
binding across the execution tirIle of the program and is especially expedieut
for prograrIls that contain rnany references that are not likely to be executed.
In essence, deferred binding is similar to demand-loading.

Forcing Immediate Binding (-B immediate)

You might also want to force immediate binding-that is, force all routines
and data to be bound at startup time. With immediate binding, the overhead
of binding occurs only at program startup, rather than across the program's
execution. One possibly useful characteristic of immediate binding is that it
causes any possible unresolved symbols to be detected at startup time, rather
than during program execution. Another use of immediate binding is to get
better interactive performance, if you don't mind program startup taking a
little longer.

To force immediate binding, link an application with the -B immediate linker
option. For example, to force immediate binding of all symbols in the main
program and in all shared libraries linked with it, you could use this Id
command:

$ Id -B immediate /lib/ertO.o prog.o -Ie -1m

Linking and Running Programs 5-15

5

Nonfatal Shared Library Binding (-B nonfatal)

The linker also supports nonfatal binding, which is useful with the -B
immediate option. Like innuediate binding, nonfatal innuediate binding causes
all required sYlubols to be bound at progralll startup. The Inain difference fronl
imnlediate binding is that progralll execution continues even U· the dYTUl.'Tnic
loadet cannot resolve sYlnbols. COlupare this with innllediate binding, where
unresolved synlbols cause the progranl to abort.

To use nonfatal binding, specify the -B nonfatal option along with the -B
immediate option on the linker conllHC:tllcl line. The order of the options is not
illlportant, nor is the placeillent of the options on the line. For example, the
following ld cOlllnland uses nonfatal inllllediate binding:

$ ld /lib/crtO.o prog.o -B nonfatal -B immediate -1m -lc

5 Note that the -B nonfatal nlOdifier does not work with deferred binding
because a SYlllbol must have been bound by the time a progralll actually
references or calls it. If a program attelupts to call or access a nonexistent
symbol, it is a fatal error.

Restricted Shared Library Binding (-B restricted)
(Series 700/800 Only)

The S(~ries 700/800 linker also supports restricted binding, which is useful
with the -B deferred and -B nonfatal options. The -B restricted option
causes the dynanlic loader to restrict the search for ::;y 111bols to those that
were visible when the library was loaded. If the dyuau1ic loader ca.nnot find a
SYlllbol within the restricted set, a run-tilHe ::;Ylllbol-binding error occurs and
the program aborts.

The -B nonfatal modifier alters this behavior slightly: If the dynamic loader
cannot find a synlbol in the restricted set, it looks ill 1.he global synlbol set (the
sYlubols defined in all libraries) to resolve t1H\ sy luhol. If it still cannot find the
sYlnbol, then a run- tilue SYlllbol-binding error occurs a,ud the progranl aborts.

"Vhen is -B restricted lllost useful? Consider a, prOf,!;ra.ll1 that creates
duplicate SYlllbol definitions by either of these nwthods:

5-16 Linking and Running Programs

• The program uses shl_load with the BIND_FIRST flag to load a library that
contains symbol definitions that are already defined in a library that was
loaded at program startup .

• The program calls shl_definesym to define a symbol that is already defined
in a library that was loaded at program startup.

If such a program is linked with -B immediate, references to symbols will be
bound at program startup, regardless of whether duplicate symbols are created
later by shl_load or shl_definesym.

But what happens when, to take advantage of the performance benefits of
deferred binding, the same program is linked with -B deferred? If a duplicate,
more-visible symbol definition is created prior to referencing the symbol, it
binds to the more-visible definition, and the program might run incorrectly. In
such cases, -B restricted is useful, because symbols bind the same way as
they do with -B immediate, but actual binding is still deferred. 5

Linking and Running Programs 5-17

Hiding and Exporting Symbols (-h and +e)
The -h and +e options allow you to hide and export sYlnbols. Hiding a symbol
Inakes the symbol a local definition, accessible only from the object module or
library in which it is defined. Exporting a sYlnbol Inakes the symbol a global
definition, which can be accessed by any other object modules or libraries. The
syntax of the -h and +e options is:

-h symbol
+e symbol

The - h option hides symbol; any other global sYlnbols relllain exported unless
hidden with -h. The +e option exports symbol and hides froln export all
other global symbols not specified with +e. In essence, -h and +e provide two
different ways to do the saIne thing. For exaIllple, suppose you want to build a

5 shared library from an object file that contains the following symbol definitions
(displayed by the run cOllllllancl):

$ run -p sem.o
0000000000 U
1073741824 d
1073741864 b

$global$
$THIS_DATA$
$THIS_BSS$

0000000004 cS sem_val
0000000000 T check_sem_val
0000000036 T foo
0000000000 U printf
0000000088 T bar
0000000140 T sem

In this example, check_sem_ val, foo, bar, and sem arC' aH global definitions.
To create a shared library where check_sem_ val is a. hIdden, local definition,
you could use either of the following cornruands:

$ ld -b -h check_sem_val sem.o
$ ld -b +e foo +e bar +e sem sem.o

Onc - h option.
1'hl'c(' +e options.

In contrast, suppose you want to export only the check_sem_ val symbol.
Either of the following corllrnancls would work:

$ ld -b -h foo -h bar -h sem sem.o
$ ld -b +e check_sem_val sem.o

5-18 Linking and Running Programs

1'hl'Cc - h options.
One +e option.

How do you decide whether to use -h or +e? In general, use -h if you simply
want to hide a few symbols. And use +e if you want to export a few symbols
and hide a large number of symbols.

You should not combine -h and +e options on the same command line. For
instance, suppose you specify +e 8em. This would export the symbol 8em and
hide all other symbols. Any additional -h options would be unnecessary. If
both -h and +e are used on the same symbol, the -h overrides the +e option.

The linker command line could get quite lengthy and difficult to read if several
such options were specified. And in fact, you could exceed the rnaxirnUlll
HP-UX comllland line length if you specify too many options. To get around
this, use ld linker option files, described later under "'Linker Option Files (-c
file)". You can specify any nUlllber of -h or +e options in this file.

You can use -h or +e options when building a shared library (with -b) and
when linking to create an a.out file. When combining .0 files with -r, you can 5
still use only the -h option.

Hiding and Exporting Symbols When Building a Shared Library

When building a shared library, you might want to hide a symbol in the library
for several reasons:

• It can improve performance because the dynamic loader does not have to
bind hidden symbols. Since most symbols need not be exported from a
shared library, hiding selected symbols can have a significant impact on
performance.

• It ensures that the definition can only be accessed by other routines in the
same library. When linking with other object modules or libraries, the
definition will be hidden from them.

• When linking with other libraries (to create an executable), it ensures that
the library will use the local definition of a routine rather than a definition
that occurs earlier in the link order.

Linking and Running Programs 5-19

5

Exporting a syrnbol is necessary if the synlbol nlust be accessible outside
the shared library. But rernernber that~ by default~ nlost synlbols are global
definitions anyway~ so it is seldom necessary to explicitly export synlbols.
In C~ all functions and global variables that are not explicitly declared as
static have global definitions~ while static functions and variables have local
definitions. In FORTRAN ~ global definitions are generated for all subroutines~
functions~ and initialized conlInon blocks.

Hiding Symbols When Combining .0 Files with the -r Option

The -r option conlbines multi pIe .0 files, creating a single .0 file. The reasons
for hiding symbols in a .0 file are the sanle as the reasons listed above for
shared libraries. However~ a performance irnprovement will occur only if the
resulting .0 file is later linked into a shared library.

Hiding and Exporting Symbols When Creating an a.out File

By default, the linker exports all of a program's global definitions that are
imported by shared libraries specified on the linker cornnla,nd line. For
example, given the following linker cornntand, all global synlbols in crtO. 0 and
prog.o that are referenced by libm or libc are automatically exported:

$ Id /lib/crtO.o prog.o -1m -lc

\i\Tith libraries that are explicitly loaded via shl_load~ this behavior nlay not
always be sufficient because the linker does not search explicitly loaded libraries
(they aren't even present on the conlInand line). You can work around this
using the -E or +e linker option.

As mentioned previously in the section "Exporting Syrnbols frorn the lVlain
Program (-E)", the -E option forces the export of all symbols frorn the
program, regardless of whether they are referenced by shared libraries on the
linker command line. The +e option allows you to be more selective in what
symbols are exported. You can use +e to lirnit the exported syrnbols to only
those symbols you want to be visible.

5-20 Linking and Running Programs

For example, the following ld command exports the symbols main and faa.
The symbol main is referenced by libe. The symbol faa is referenced at run
time by an explicitly loaded library not specified at link time:

$ ld /lib/ertO.o prog.o +e main +e faa -1m -Ie -ldld

When using +e, be sure to export any data symbols defined in the program
that may also be defined in explicitly loaded libraries. If a data symbol that a
shared library imports is not exported from the program file, the program uses
its own copy while the shared library uses a different copy if a definition exists
outside the program file. In such cases, a shared library might update a global
variable needed by the program, but the program would never see the change
because it would be referencing its own copy.

Linking and Running Programs 5-21

5

Linker Option Files (-c file)
The -c file option causes the linker to read command line options from the
specified file. This is useful if you have many -h or +e options to include on
the ld command line, or if you have to link with numerous object files. For
example, suppose you have over a hundred +e options that you need when
building a shared library. You could place them in a file named eopts and
force the linker to read options from the file as follows:

$ ld -0 libmods.sl -b -c eopts mod*.o
$ cat eopts
+e foo
+e bar
+e reverse_tree

5 +e preorder_traversal
+e shift_reduce_parse

Display the file.

Note that the linker ignores lines in that option file that begin with a pound
sign (#). You can use such lines as comment lines or to temporarily disable
certain linker options in the file. For instance, the following linker option file
for an application contains a disabled -0 option:

Exporting only the IIcompress ll symbol resulted
in better run-time performance:
+e compress
When the program is debugged, remove the pound sign
from the following optimization option:
-0

5-22 Linking and Running Programs

Migrating to Shared Libraries
There are cases where a program may behave differently when linked with
shared libraries than when linked with archive libraries. These are the result
of subtle differences in the algorithms the linker uses to resolve symbols and
combine object modules. This section covers these considerations.

Library Path Names

As discussed previously in "Library Location and the Dynamic Loader
(dld.sI)", ld records the absolute path names of any shared libraries searched
at link time in the a. out file. When the prograrn begins execution, the
dynamic loader attaches any shared libraries that were specified at link tirne.
Therefore, you must ensure that any libraries specified at link time are also
present in the same location at run time.

As of the HP- UX 9.0 release, you can circumvent potential problenls arising
from having the library at a different location at run time (see the earlier
section "Library Location and the Dynamic Loader (dld.sl)").

Relying on Undocumented Linker Behavior

Occasionally, programmers may take advantage of linker behavior that is
undocumented but has traditionally worked. With shared libraries, such
programming practices might not work or may produce different results. If
the old behavior is absolutely necessary, linking with archive libraries only (-a
archi ve) produces the old behavior.

For example, suppose several definitions and references of a symbol exist in
different object and archive library files. By specifying the files in a particular
link order, you could cause the linker to use one definition over another. But
doing so requires an understanding of the subtle (and undocumented) symbol
resolution rules used by the linker, and these rules are slightly different for
shared libraries. So make files or shell scripts that took advantage of such linker
behavior prior to the support of shared libraries may not work as expected
with shared libraries.

More commonly, programmers may take advantage of undocumented linker
behavior to minimize the size of routines copied into the a. out files from
archive libraries. This is no longer necessary if all libraries are shared.

Linking and Running Programs 5-23

5

5

Although it is irnpossible to characterize the new resolution rules exactly, the
following rules always apply:

• If a symbol is defined in two shared libraries, the definition used at run tirlle
is the one that appeared first, regardless of where the reference was.

• The Series 300/400 linker treats shared libraries in other respects as if they
were archive libraries, in so far as this affects resolution rules.

• The Series 700/800 linker treats shared libraries rnore like object files.

As a consequence of the second rule on Series 700/800 cornputers, progrmlls
that call wrapper libraries rnay becorne larger. (A wrapper library is a library
that contains alternate versions of C library functions, each of which perforrns
some bookkeeping and then calls the actual C function. For exalllple, each
function in the wrapper library might update a counter of how nlany tinles the
actual C routine is called.) With archive libraries, if the program references
only one routine in the wrapper library, then only the wrapper routine and the
corresponding routine frorn the C library are copied into the a. out file. If, on
the other hand, a shared wrapper library and archive C library are specified,
in that order, then all routines that can be referenced by any routine in the
'W7'appel' library are copied from the C libra7'y on Series 700/800 computers. To
avoid this, link with archive or shared versions for both the wrapper library
and C library, or use an archive version of the wrapper library and a shared
version of the C library.

Absolute Virtual Addresses

Writing code that relies on the linker to locate a sYlnbol in a particular
location or in a particular order in relation to other syrnbols is known as
making an implicit address dependency. Because of the nature of shared
libraries, the linker cannot ahvays preserve the exact ordering of symbols
declared in shared libraries. In particular, variables declared in a shared library
rnay be located far from the main progranl's virtual address space, and they
may not reside in the same relative order within the library as they were
linked. Therefore, code that has implicit address dependencies may not work as
expected with shared libraries.

An example of an implicit address dependency is a function that assumes
that two global variables that were defined adjacently in the source code will
actually be adjacent in virtual memory. Since the linker rnay rearrange data in

5-24 Linking and Running Programs

shared libraries, this is no longer guaranteed. Another example is a function
that assumes variables it declares statically (e.g., C static variables) reside
below the reserved symbol _end in memory (see end(3)). In general, it is a bad
idea to depend on the relative addresses of global variables, because the linker
may move them around.

In assembly language, using the address of a label to calculate the size of the
immediately preceding data structure is not affected: the assemblers still
calculate the size correctly.

On Series 300/400 computers, do not place assembly language labels inside
data structures because the assemblers assume that the inner labels delimit
new data structures; thus, the linker is free to split the data structure up in
memory and to move the pieces around. The Series 300/400 assembler provides
the internal pseudo-op to keep such internal labels from breaking up data
structures.

Stack Usage

To load shared libraries, a program must have a copy of the dynamic loader
(dId. sl) mapped into its address space. This copy of the dynamic loader
shares the stack with the program. The dynamic loader uses the stack during
startup and whenever a program calls a shared library routine for the first
time. If you specify -B immediate, the dynamic loader uses the stack at
startup only.

Although it is not recommended programming practice, some programs
may use stack space "above" the program's current stack. To preserve the
contents "above" the program's logical top of the stack, the dynamic loader
attempts to use stack space far away from program's stack pointer. If a
program is doing its own stack manipulations, such as those implemented by
a "threads" package, the dynamic loader may inadvertently use stack space
that the program had reserved for another thread. Programs doing such stack
manipulations should link with archive libraries, or at least use immediate
binding, if this could potentially cause problems.

Linking and Running Programs 5-25

5

5

Text and Data Segment Restrictions
(Series 300/400 Only)

When creating a shared library or executable program, the Series 300/400
linker assumes that anything defined in the data seglnent is, in fact, data, and
anything defined in the text segment is, in fact, executable machine code. If a
program calls a procedure defined in a shared library data segment or accesses
data in a text segment, it will probably dump core.

Startup Code (crtO.o)

To support shared libraries, /lib/ crtO. 0 (and /lib/frtO. 0 on Series 300
FORTRAN) was modified at the HP- UX 8.0 release. Applications that use
a startup routine other than crtO. 0 should be linked with the -a archive
option, as they will not work with shared libraries.

A related issue on Series 300/400 computers is the default program entry
point. In previous HP- UX releases, the default entry point was text location
zero, which normally corresponds to the symbol _start in crtO. o. To
support shared libraries, the location of the default entry point was moved; it
immediately follows a set of tables at the beginning of the text segment. The
symbol _start still identifies the entry point, and the a_entry field of the
a. out file header still gives the correct address, but existing code that relies on
an entry point of text location zero is likely to fail.

Note also that on Series 300/400 computers, address 0 is still guaranteed to
contain the value 0, so NULL pointer dereferencing still returns 0 with shared
libraries. However, it is non-portable and risky programming practice to
depend on this.

5-26 Linking and Running Programs

Version Control

The shared library version control scheme presented in Chapter 4 is robust. If
all the rules are followed correctly, there is little chance of a change made to a
library affecting existing executables adversely. Here are some guidelines to
keep in mind when making changes to a library:

• When creating the first version of a shared library, version control is not an
issue: The default version number is satisfactory.

• vVhen creating future revisions of a library, you must detennine when a
change represents an incornpatible change, and thus deserves a. new version.

• As a general rule, when an exported function is changed such that calls to
the function from previously cOITlpiled object files should not resolve to the
new version, the change is irtcompatible. If the new version can be used as a
wholesale replacernent for the old version, the change is compatible.

• For exported data, any change in either value or size represents an
incompatible change.

• Any function that is changed to take advantage of an incompatible change in
another rnodule should be considered incompatible.

• When an incoITlpatible change is made to a module, all the old versions of
the module should be retained along with the new version. The new version
number should correspond to the date the change was made.

• If several modules are changed incompatibly in a library, it is a good idea to
give all modules the same version date.

Using the chroot Command with Shared Libraries

Some users may use the chroot super-user command when developing
and using shared libraries. This affects the path name that the linker
stores in the executable file. For example, if you chroot to the directory
/users/hyperturbo and develop an application there that uses the shared
library 1ibhype. sl in the same directory, 1d records the path name of the
library as /libhype. sl. If you then exit from the chrooted directory and
attempt to run the application, the dynamic loader won't find the shared
library because it is actually stored in /users/hyperturbo/1ibhype. sl, not in
/libhype. s1.

Linking and Running Programs 5-27

5

5

Conversely, if you move a program that uses shared libra.ries into a chrooted
environment, you must have a copy of the dynamic loader, d1d. 81, and all
required shared libraries in the correct locations.

Debugger Limitations

As of the HP- UX 9.0 release, shared libraries can be debugged just like archive
libraries with few exceptions. For details on debugging shared libraries, refer to
HP- UX Symbolic Debugger User's Guide.

Profiling Limitations

Profiling (with the prof and gprof commands and the monitor library
function) is only possible on a contiguous chunk of main program (a. out).
Since shared libraries are not contiguous with the main program in virtual
memory, they cannot be profiled. You can still profile the main program,
though. If profiling of libraries is required, re-link the application with the
archive version of the library, using the -a archive option.

5-28 Linking and Running Programs

Loading Programs: exec
When you run an executable file created by Id, the program is loaded into
memory by the HP-UX program loader, exec. This routine is actually a
system call and can be called by other programs to load a new program into
the current process space. The exec function performs many tasks; some of the
more important ones are:

• Determine how to load the executable file by looking at its magic number
(see "Magic Numbers").

• Determine where to begin execution of the prograrn-that is, the entry
point-usually in crtO. o.

• If the program was linked with shared libraries, the crtO. 0 startup code
invokes the dynamic loader (dId. 81), which in turn attaches any required
shared libraries. If irnrnediate binding was specified at link tirne, then the
libraries are bound innnediately. If deferred binding was specified, then
libraries are bound as they a.re referenced.

For details on exec, see the exec(2) page in the HP- UX REference.

Linking and Running Programs 5·29

5

5

Magic Numbers
Recorded with each executable program is a magic number that deternlines
how the prograrn should be loaded. There are three possible values for an
executable file's Inagic nUlnber:

The prograln's text (code) can be shared by processes;
its data cannot be shared. The first process to run the
prograIll loads the entire program into virtual Inenlory. If
the prograln is already loaded by another process, then a
process shares the prograrn text with the other process.

As with SHARE_MAGIC the prograrn's text is shareable but
its data is not. However, the prograln's text is loaded only
as needed-that is, only as the pages are accessed. This can
inlprove process startup tinle since the entire prograIll does
not need to be loaded; however, it can degrade perfOrlna,llCe
throughout execution.

(Series 300/400/700 only.) Neither the prograIll's text
nor data is shareable. In other words, the prograrn is an
unshared executable. Usually, it is not desirable to create
such unshared executables because they place greater
demands on lllemory reSOlU'C.('S.

By default, the linker creates executables whose lltagic llluuber is SHARE_MAGIC.
Table .5-1 shows which linker option to use to specifically set the rnagic llUlUb<.:'l'.

5·30 Linking and Running Programs

Table 5·1. Magic Number Linker Options

To set the luagic nUluber to ...
SHARE_MAGIC
DEMAND_MAGIC
EXEC_MAGIC

Use this option ...
-n
-q
-N

An executable file ~s magic number can also be changed using the chatr
command (see "Changing a Program's Attributes with chatr"). However,
chatr can only toggle between SHARE_MAGIC and DEMAND_MAGIC; it cannot
be used to change from or to EXEC_MAGIC. This is because the file format of
SHARE_MAGIC and DEMAND_MAGIC is exactly the saIne, whlle EXEC_MAGIC files
have a different format.

For details on nlagic nUInbers, refer to If ow IfP- U.1 Works: Concepts fot the
System Admini.,:dratoT'.

Linking and Running Programs 5·31

5

5

Shareable Executables vs Shared Libraries
Shared executables-that is~ executables whose magic number is SHARE_MAGIC

or DEMAND_MAGIC-arc distinct fl'O'ln shared libraries. With shared executables~
sharing occurs at the level of the a. out file ~s text (code) only. With shared
libraries~ sharing occurs for any shared libraries the a. out file attaches. The
following exalnples should help clarify this difference.

Figure 5-1 shows virtual menlOry usage for three processes whose a. out file is
a shared executable. Virtual memory usage is decreased because each process
shares the text segment.

P2 FJ 3
~----.., _ .. _ .. __ .-... r======~"'--------------:r======;

/ r(Joln dotci moin cjato
,/

/' libe dota libe dotCi
main code

" te :x:t ,./
,/ libe bss

moin bss mawl bss
libc code I ibc bss

,,/
moin doto

dala {
1-------1

bss {

~----.....

libe doto

rnoin bss

libe bss

Figure 5-1. Archive Libraries with One Shared Executable

N ow consider virtual nlemory usage if (hjJc/'Cul a. out files are run with a,l'cJIi v('
libraries only. Figure 5-2 shows virtual InelllOl'Y usagc' when two copies of vi
and Is run simultaneously.

5-32 Linking and Running Programs

VI
1

moin code

text
libe code

main data

Ilbe doto

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

VI
2

main data

libe dato

main bss

libe bss

Is 1

moin code

libe code

main data

libe dato

I
I

I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I
I

I
I

main data

libe dato

nlain bss

libe bss

data {

bss { I-_-_~-~--~--~~----b~-~~-S-s----I- moin bss

libe bss

Figure 5·2. Archive Libraries with Two Shared Executables

Notice that although considerable sharing is attained, still mo're sha,ring could
be attained if libc could by shared by all processes. And that is exactly what
shared libraries do. Figure .5-:3 shows virtual memory usage when vi and Is are
linked with the shared libc. Imagine the further memory savings that result as
more executables are linked with shared libraries.

VI
1

VI
2

libe code

Figure 5-3. Shared Libraries with Shared Executables

Linking and Running Programs 5-33

5

5

Changing a Program's Attributes with chatr

The chatr conllnand (see chatr(1)) allows you to change various program
attributes that were deternlined at link tinle. When run without any options l

chatr displays the attributes of the specified file. Table 5-2 sunllnarizes the
options you can use to change various attributes.

Table 5-2. Changing Executable Attributes with chatr

To do this ...

Set the file's magic number to SHARE_MAGIC.

Set the file's magic number to DEMAND_MAGIC.

Series 'lOO/800-0nly Options

Use immediate binding for aU libraries loaded at program startup.

Use deferred binding for all libraries loaded at program startup.

Use nonfatal binding. Must be specified with -B immediate or -B
deferred.

Use restricted binding. Must be specified with -B immediate or
- B def erred.

Enable run-time use of the path list specified with the +b option
at link time.

Disable run-time use of the path list specified with the +b option
at link time.

Enable the use of the SHLIB_PATH environment variable to
perform run-time path list lookup of shared libraries.

Disable the use of the SHLIB_PATH environment. variable t.o
perform run-time pat.h list lookup of shared libraries.

Do not subject. a library to pat.h list. lookup, even if path lists are
provided. That. is, use default library path stored in t.he
executable.

Use option ...

-n

-q

-B immediate

-B deferred

-B nonfatal

-B restricted

+b enable!

+b disable

+s enable!

+s disable

+1 libname

Subject. a library to pat.h list lookup if directory path lists are -1 libname
provided. Useful for libraries that were specified wit.h a full path
name at. link time.

! If +b enable and +s enable are both specified, the order in which t.hey appear determines which
search path is used first.

5-34 Linking and Running Programs

Stripping Symbol Table Information from the Output File
The a. out file created by the linker contains symbol table, relocation, and
(if debug options were specified) information used by the debugger. Such
information can be used by other commands that work on a. out files, but
is not actually necessary to make the file run. Id provides two command
line options for removing such information and, thus, reducing the size of
executables:

-s Strips all such information from the file. The executable becomes smaller,
but difficult or impossible to use with a symbolic debugger (such as xdb).
You can get the same results by running the strip command on an
executable (see strip(l)).

-x Strips only local symbols from the symbol table. It reduces executable file
size with only a minimal affect on commands that work with executables.
However, using this option may still make the file unusable by a syrubolic
debugger.

These options can reduce the size of executables dramatically on Series 700/800
computers. Note, also, that these options can also be used when generating
shared libraries without affecting shareability.

Linking and Running Programs 5·35

5

Dynamic Linking (-A and -R)
This section describes how to do dynamic linking-that is, how to add an
object module to a running program. Conceptually, it is very similar to loading
a shared library and accessing its symbols (routines and data). In fact, if you
require such functionality, you should probably use shared library management
routines (see Chapter 8). Nevertheless, sonle users will want to use this
dynamic linking, which has a long history of use prior to shared libraries.

Overview of Dynamic Linking

The implementation details of dynamic linking vary across platforms. To load
an object module into the address space of a running prograrn, and to be able
to access its procedures and data, follow these steps on all HP9000 computers:

5 1. Determine how much space is required to load the rnodule.

2. Allocate the required memory and obtain its starting address.

3. Link the module from the running application.

4. Get information about the module's text, data, and bss segrnents from the
module's header.

.5. Read the text and data into the allocated space.

6. Clear (zero out) the bss segment.

7. Flush the text from the data cache before executing code frOln the loaded
module.

8. Get the addresses of routines and data tha.t are referenced in the rnodule.

Step 1: Determine how much space is required to load the module.

There must be enough contiguous memory to hold the rnodule's text, data,
and bss segments. You can make a liberal guess as to how much mernory is
needed, and hope that you've guessed correctly. Or you can be more precise by
pre-linking the module and getting size information frorn its header.

5-36 Linking and Running Programs

Step 2: Allocate the required memory and obtain its starting address.

Typically, you use malloc(3C) to allocate the required memory. On
Series 700/800 computers, you must modify the starting address
returned by malloc to ensure that it starts on a memory page boundary
(address MOD 4096 == 0).

Step 3: Link the module from the running application.

Use the following options when invoking the linker from the program:

-0 mod_name Name of the output module that will be loaded by the
running program.

-N

Tells the linker to prepare the ou tpu t file for incremental
loading. Also causes the linker to include symbol table
information from base_prog in the output file.

Specifies the hexadecimal address at which the module will be
loaded. This is the address calculated in Step 2.

Causes the data segment to be placed immediately after the
text segment. Required only on Series 700/800; this is the
default behavior on Series 300/400.

If specified (it is optional), causes the symbol named entry_pt
to be the entry point into the module. The location of the
entry point is stored in the module's header.

Step 4: Get information about the module's text, data, and bss
segments from the module's header.

On Series 700/800 computers, there are two header structures stored at
the start of the file: struct header (defined in <filehdr. h» and struct
som_exec_auxhdr (defined in <aouthdr. h». The required information
is stored in the second header, so to get it, a program must seek past the
first header before reading the second one. The useful members of the
som_exec_auxhdr structure are:

Linking and Running Programs 5-37

5

5

. exec_tsize

.exec_tmem

. exec_tfile

Size of text (code) segment .

Address at which to load the text (already adjusted for offset
specified by the -R linker option).

Offset into file (location) where text segment starts .

Size of data segment.

Address at which to load the data (already adjusted).

Offset into file (location) where data segment starts.

Size of bss segment. It is assumed to start immediately after
the data segment.

Address of entry point (if one was specified by the -e linker
option).

On Series 300/400 computers, there is only one header structure at the start
of the file: struct exec (defined in <a. out. h». The useful members of this
structure are:

. a_entry

Size of the text segment.

Size of the data segment.

Size of the bss segment.

Address of entry point (if one was specified by the -e linker
option).

Step 5: Read the text and data into the allocated space.

Once you know the location of the required segments in the file, you can read
them into the area allocated in Step 2.

On Series 700/800, the location of the text and data segments in the
file is defined by the . exec_ tfile and . exec_dfile members of the
som_exec_auxhdr structure. The address at which to place the segments
in the allocated memory is defined by the . exec_ tmem and . exec_dmem
members. The size of the segments to read in is defined by the. exec_ tsize
and. exec_dsize members.

On Series 300/400, the file location of the text segment is defined by the
TEXT _OFFSET (filhdr) macro, defined in <a. out. h>. When passed the name of

5-38 Linking and Running Programs

the exec structure, TEXT _OFFSET returns the offset of the text segment in the
file. Since the text and data segments are contiguous, you can determine the
total size by adding the . a_ text and . a_data members. This one contiguous
block should be read into the address determined in Step 2.

Step 6: Clear (zero out) the bss segment.

On both architectures, the bss segment starts immediately after the data
segment. To zero out the bss, find the end of the data segment and use memset
(see memory(3C)) to zero out the size of the bss.

On Series 700/800, the end of the data segment can be determined by adding
the . exec_dmem and . exec_dsize members of the som_exec_auxhdr structure.
The bss's size is defined by the. exec_bsize member.

On Series 300/400, the end of the data segment can be determined by adding
the starting address (obtained in Step 2) to the . a_ text and . a_data members 5
of the exec structure. The size of the bss is defined by the. a_bss member.

Step 7: Flush the text from the data cache before executing code
from the loaded module.

Before executing code in the allocated space, a program should flush the
instruction and data caches. Although this is really only necessary on systems
that have instruction and data caches, it is easiest just to do it on all systems
for ease of portability.

On Series 700/800 computers, an assembly language routine named
flush_cache is used (see "The flush_cache Function" at the end of this
chapter). You must assemble this routine separately (with the as command)
and link it with the main program.

On Series 300/400 computers, use the cachectl(3C) function to do this.

Step 8: Get the addresses of routines and data that are
referenced in the module.

If the -e linker option was used, the module's header will contain the address
of the entry point. On Series 700/800, the entry point's address is stored in the
. exec_entry member of the som_exec_auxhdr structure. On Series 300/400, it
is stored in the. a_entry member.

Linking and Running Programs 5·39

5

If the module contains multiple routines and data that must be accessed from
the main program, the main program can use the nlist(3C) function to get
their addresses.

Another approach that can be used is to have the entry point routine return
the addresses of required routines and data.

An Example Program

To illustrate these concepts, the rest of this section presents an example
program, dynprog. This program loads an object module named dynobj .0,
which is created by dynamically linking two object files file1. 0 and file2. o.

The program allocates space for dynobj .0 by calling a function named
alloc_load_space (see "The alloc_load_space Function" later in this chapter).
The program then calls a function named dyn_Ioad to dynamically link and
load dynobj .0 (see "The dyn_Ioad Function" later in this chapter). Both
functions are defined in a file called dynload. c.

As a return value, dyn_Ioad provides the address of the entry point in
dynobj .o-in this case, the function foo. To get the addresses of the function
bar and the variable counter, the program uses the nlist(3C) function.

5-40 Linking and Running Programs

The Build Environment

Before seeing the program's source code, it may help to see how the program
and the various object files were built. Figure 5-4 shows the Makefile used to
generate the various files.

CFLAGS = -Aa -D_POSIX_SOURCE
dynprog: dynprog.o dynload.o
S300/400 compile line:
cc -0 dynprog dynprog.o dynload.o -Wl,-a,archive
S700/800 compile line:

cc -0 dynprog dynprog.o dynload.o flush_cache.o -Wl,-a,archive

file1. 0:
file2.0:

filel.c dynprog.c
file2.c

Must create flush_cache.s on S700/800:
flush_cache. 0:

as flush_cache.s

Figure 5-4. Makefile Used to Create Dynamic Link Files

This Makefile assumes that the following files are found in the current
directory:

dynload.c

dynprog.c

file1.c

file2.c

The file containing the alloc_load_space and dyn_load
functions.

The main program that calls functions from dynload. c and
dynamically links and loads file1. 0 and file2. o. Also
contains the function glorp, which is called by foo and bar.

Contains the functions foo and bar.

Contains the variable counter, which is incremented by foo,
bar, and main.

flush_cache. s Series 700/800 Only. Assembly language source for function
flush_cache, which is called by the dyn_load function.

Linking and Running Programs 5-41

5

5

To create the executable program dynprog from this Makefile, you would
simply run:

$ make dynprog file1.0 file2.0 flush_cache.o
cc -Aa -D_POSIX_SOURCE -c dynprog.c
cc -Aa -D_POSIX_SOURCE -c dynload.c
cc -0 dynprog dynprog.o dynload.o -Wl,-a,archive
cc -Aa -D_POSIX_SOURCE -c file1.c
cc -Aa -D_POSIX_SOURCE -c file2.c
as -0 flush_cache flush_cache.s

Here are some things to note about the Makefile:

• The line CFLAGS = ... causes any C files to be compiled in ANSI mode (-Aa)
and causes the compiler to search for routines that are defined in the Posix
standard (-D_POSIX_SOURCE).

• Because Series 700/800 computers must link with a special assembly
language routine (flush_cache), the compile lines for Series 300/400 and
Series 700/800 systems are different. In Figure 5-4, the lines for the Series
300/400 compile line are commented out. If you were to run this on a Series
300/400 system, you would have to remove the comments and comment out
the lines for Series 700/800.

(For details on using make, refer to make(l) and Chapter 13.)

Source for dynprog

Figure 5-5 shows the C source for the dynprog program. Notice how C
preprocessor #ifdef directives are used to conditionally compile code for Series
300/400 or Series 700/800. In particular, symbol names on Series 300/400
begin with an underscore, but don't on Series 700/800.

#include <stdio.h>
#include <nlist.h>

extern void * alloc_load_space(const char * base_prog,
const char * obj_files,
const char * dest_file);

5-42 Linking and Running Programs

extern void * dyn_load(const char * base_prog,
unsigned int addr,
const char * obj_files,
const char * dest_file,
const char * entry_pt);

const char * base_prog = "dynprog"; 1* name of this executable
const char * obj_files "file1.o file2. 0"; 1* name of .0 files to combine
const char * dest file "dynobj.o"; 1* name of .0 file to load
#ifdef __ hp9000s800
const char * entry_pt "foo";
#endif
#ifdef __ hp9000s300
const char * entry_pt = "_foo";
#endif

void glorp (const char *);
void (* foo_ptr) ();
void (* bar_ptr) ();
int * counter_ptr;

maine)
{

unsigned int addr;
struct nlist nl[3];

1*

1* next, define entry pt name
1* no _ prefix on s700/800

1* 5300/400 requires _ prefix

1* prototype for local function *1
1* pointer to entry point foo *1
1* pointer to function bar *1
1* pointer to variable counter [file2. c] *1

1* address at which to load dynobj.o
1* nlist struct to retrieve addresses

STEP 1: Allocate space for module:
*1

addr = (unsigned int) alloc_load_space(base_prog, obj_files, dest_file);
1*

STEP 2: Load the file at the address, and get address of entry point:
*1

foo_ptr = (void (*)()) dyn_load(base_prog, addr, obj_files,
dest_file, entry_pt);

Linking and Running Programs 5-43

*1
*1
*1
*1
*1

*1

5

5

STEP 3: Get the addresses of all desired routines using nlist(3C):
*1

#ifdef __ hp9000s800
nl[O].n_name = "bar";
nl[l] .n_name = "counter";

#endif

1* s700/800 does not require _ prefix

#ifdef __ hp9000s300
nl[O] .n_name = "_bar";
nl[l] .n_name = "_counter";

1* s300/400 requires _ prefix

#endif

}

nl[2].n_name = NULL;
if (nlist(dest_file, nl)) {

}

1*

fprintf(stderr, "error obtaining namelist for %s\n", dest_file);
exit(l);

* Assign the addresses to meaningful variable names:
*1

bar_ptr = (void (*)()) nl[O] .n_value;
counter_ptr = (int *) nl[l] .n_value;

1*
* Now you can call the routines and modify the variables:
*1

glorp("main") ;
(*foo_ptr) 0;
(*bar_ptr) 0;
(*counter_ptr) ++;

printf("counter = %d\n", *counter_ptr);

void glorp(const char * from)
{

printf("glorp called from %s\n", from);
}

Figure 5-5. dynprog.c-Example Dynamic Link and Load Program

5-44 Linking and Running Programs

file1.o and file2.o

Figure 5-6 shows the source for file1. a and file2. o. Notice that faa
and bar call glorp in dynprog. c. Also, both functions update the variable
counter in file2.0; however, faa updates counter through the pointer
(counter _ptr) defined in dynprog. c.

/***
* file1.c - Contains routines foo() and bare).
***/

extern int * counter_ptr; /* defined in dynprog.c */
extern int counter; /* defined in file2.c */
extern void glorp(const char * from); /* defined in dynprog.c */

void foo()
{

}

glorp(lIfoo") ;
(*counter_ptr) ++;

void bare)
{

}

glorp("bar");
counter ++;

/* update counter indirectly through global pointer */

/* update counter directly */

/**
* file2.c - Global counter variable referenced by dynprog.c and file1.c.
**/

int counter = 0;

Figure 5-6. Source for file1.c and file2.c

Linking and Running Programs 5-45

5

Output of dynprog

N ow that you see how the main program and the module it loads are
organized, here is the output produced when dynprog runs:

glorp called from main
glorp called from foo
glorp called from bar
counter = 3

dynload.c

The dynload. c file contains the definitions of the functions alloc_load_space
and dyn_load. Figure 5- 7 shows the #include directives that must appear at
the start of this file. Notice that Series 300/400 and Series 700/800 systems

5 use different header file definitions (as described in Step 4 at the start of this
section).

#include <stdio.h>
#include <stdlib.h>
#include <nlist.h>
#ifdef __ hp9000s800
include <filehdr.h>
include <aouthdr.h>
define PAGE_5IZE 4096
#endif
#ifdef __ hp9000s300
include <a.out.h>
include <sys/cache.h>
#endif

/* 5700/800 uses different header file */
/* definitions than the 5300/400 */
/* 5700/800 memory page size */

/* 5300/400 header definitions */
/* 5300/400 needs this for cachectl(3C) */

Figure 5-7. Include Directives for dynload.c

5-46 Linking and Running Programs

The alloc_load_space Function

The alloc_load_space function returns a pointer to space (allocated by
malloc) into which dynprog will load the object module dynobj . o. It syntax
is:

void * alloc_load_spaceCconst char * base_prog,

const char * obj_files,

const char * desLfile)

base_prog The name of the program that is calling the routine. In other
words, the name of the program that will dynamically link and
load desLfile.

obj_files The name of the object file(s) that will be linked together to
create desLfile.

desLfile The name of the resulting object module that will by dynamically
linked and loaded by base_prog.

As described in Step 1 at the start of this section, you can either guess at
how much space will be required to load a module, or you can try to be more
accurate. The advantage of the former approach is that it is much easier and
probably adequate in most cases; the advantage of the latter is that it results
in less memory fragmentation and could be a better approach if you have
multiple modules to load throughout the course of program execution.

The alloc_load_space function allocates only the required amount of space.
To determine how much memory is required, alloc_load_space performs
these steps:

1. Pre-link the specified obj_files to create base_prog.

2. Get text, data, and bss segment location and size information to determine
how much space to allocate.

3. Return a pointer to the space. (On Series 700/800 systems, the address
of the space is adjusted to begin on a memory page boundary-that is, a
4096-byte boundary.)

Figure 5-8 shows the source for this function.

Linking and Running Programs 5·47

5

5

void * alloc_load_space(const char * base_prog,
const char * obj_files,
const char * dest_file)

{

char cmd_buf[256];
int ret_val;
size_t space;
size_t addr;
size t bss_size;
FILE * destfp;

/* linker command line */
/* value returned by various lib calls */
/* size of space to allocate for module */
/* address of allocated space */
/* size of bss (uninitialized data) */
/* file pointer for dest_file */

#ifdef __ hp9000s800
struct som_exec_auxhdr file_hdr; /* file header for S700 */
unsigned int tdb_size; /* size of text, data, and bss combined */

#endif
#ifdef __ hp9000s300

struct exec file_hdr; /* file header for S300 */
#endif
/* ---
* STEP 1: Pre-link the destination module so we can get its size:
* (The -R option need not be specified at this time.)
*/

sprintf(cmd_buf, "/bin/ld -a archive -A %s -N %s -0 %s -lc" ,
base_prog, obj_files, dest_file);

if (ret_val = system(cmd_buf)) {

}

fprintf(stderr, "link failed: %s\n", cmd_buf);
exit(ret_val);

/* ---
* STEP 2: Get the size of the module's text, data, and bss segments from
* the file header for dest_file; add them together to determine size:
*/
if «destfp = fopen(dest_file, "rll)) == NULL) {

}

fprintf(stderr, "error opening %s to get bss size\n", dest_file);
exit(1) ;

5-48 Linking and Running Programs

#ifdef __ hp9000s800

1*
* On s700/800, must seek past after SOM "header" to get to the
* desired "som_exec auxhdr":
*1

if (fseek(destfp, sizeof(struct header), 0)) {
fprintf(stderr, "error seeking to header for %s\n", dest_file);
exit(1);

}

#endif
if (fread(&file_hdr, sizeof(file_hdr), 1, destfp) <= 0) {

fprintf(stderr, "error reading header from %s\n", dest_file);
exit(1);

}

#ifdef __ hp9000s800
space file_hdr.exec tsize + file_hdr.exec dsize + file_hdr.exec_bsize

+ 2 * PAGE_SIZE; 1* allow for page-alignment of data segment *1
#endif
#ifdef __ hp9000s300

space = file_hdr.a_text + file_hdr.a_data + file_hdr.a_bss;
#endif

fclose(destfp); 1* done reading from module file *1
1* ---
* STEP 3: Call malloc(3C) to allocate the required memory and get
* its address; then return a pointer to the space:
*1

addr = (size_t) malloc(space);
#ifdef __ hp9000s800

1*
* Make sure allocated area is on page-aligned address on s700/800:

*1
if (addr % PAGE_SIZE != 0) addr += PAGE SIZE - (addr % PAGE_SIZE);

#endif
return((void *) addr);

}

Figure 5·8. C Source for alloc_load_space Function

Linking and Running Programs 5·49

5

5

The dyn_load Function

The dyn_Ioad function dynamically links and loads an object module into the
space allocated by the alloc_load_space function. In addition, it returns the
address of the entry point in the loaded module. Its syntax is:

void * dyn_IoadCconst char * base_prog,

unsigned int addr,

const char * obj_files,

const char * desLfile,

const char * entry_pt)

The base_prog, obj_files, and desLfile parameters are the same parameters
supplied to alloc_load_space. The add1' parameter is the address returned by
alloc_load_space, and the entry_pt paranleter specifies a syrnbol name that
you want to act as the entry point in the module.

To dynamically link and load desLfile into base_prog, the dyn_Ioad function
performs these steps:

1. Dynamically link base_prog with o~j_files, producing desLfile. The address
at which desLfile will be loaded into memory is specified with the -R
addr option. The name of the entry point for the file is specified with -e
entry_pt.

2. Open desLfile and get its header information on the text, data, and bss
segments. On Series 700/800, read this information into a som_exec_auxhdr
structure, which starts immediately after a header structure. On Series
300/400, read this information into an exec structure, which begins at the
start of the file.

3. Read the text and data segments into the area allocated by
alloc_load_space. On Series 700/800, read the text and data segments
separately. On Series 300/400, read them as one contiguous block.

4. Initialize (fill with zeros) the bss, which starts immediately after the data
segment.

5. Flush text from the data cache before execution. On Series 700/800, use the
flush_cache routine (see "The flush_cache Function" later in this chapter).
On Series 300/400, use the cachectl(3C) routine.

6. Return a pointer to the entry point, specified by the -e option in Step 1.

5-50 Linking and Running Programs

void * dyn_load(const char * base_prog,
unsigned int addr,
const char * obj_files,
const char * dest_file,
const char * entry_pt)

{

char cmd_buf[256];
int ret_val;
FILE * destfp;
unsigned int bss_start;
unsigned int bss_size;
unsigned int entry_pt_addr;

1* buffer holding linker command
1* holds return value of library calls
1* file pointer for destination file
1* start address of bss in VM
1* size of bss
1* address of entry point

#ifdef __ hp9000s800
struct som_exec_auxhdr
unsigned int tdb_size;

#endif

file_hdr; 1* file header for 5700 */
1* size of text, data, and bss combined *1

#ifdef __ hp9000s300
struct exec file_hdr; 1* file header for 5300 */

#endif
1* ---
* 5TEP 1: Dynamically link the module to be loaded:
*1

sprintf(cmd_buf, "/bin/ld -a archive -A %s -R %x -N %s -0 %s -lc -e %s",
base_prog, addr, obj_files, dest_file, entry_pt);

if (ret_val = system(cmd_buf)) {

}

fprintf(stderr, "link command failed: %s\n", cmd_buf);
exit(ret_val);

Linking and Running Programs 5·51

5

5

/* ---
* STEP 2: Open dest_file and read its header for text, data, and bss info:
*/
if «destfp = fopen(dest_file, "r")) -- NULL) {

}

fprintf(stderr, "error opening %s for loading\n", dest_file);
exit (1);

#ifdef __ hp9000s800
/*
* On S700/800, get header information from "som_exec_auxhdr" struct, which
* is after SOM header.
*/

#endif
if (fread(&file_hdr, sizeof(file_hdr), 1, destfp) <= 0) {

fprintf(stderr, "failed reading file header: %s\n", dest_file);
exit(l);

}

/* ---
* STEP 3: Read the text and data segments into the buffer area:
*/

#ifdef __ hp9000s800
/*
* On S700/800, read text and data separately. First load the text:
*/

if (fseek(destfp, file_hdr.exec_tfile, 0)) {

}

fprintf(stderr, "error seeking start of text in %s\n", dest_file);
exit(l);

if ((fread(file_hdr.exec_tmem, file_hdr.exec_tsize, 1, destfp)) <= 0) {
fprintf(stderr, "error reading text from %s\n", dest_file);

}

/*

exit(l) ;

* Now load the data:
*/

if (fseek(destfp, file_hdr.exec_dfile, 0)) {

}

fprintf(stderr, "error seeking start of data in %s\n", dest_file);
exit(l) ;

5·52 Linking and Running Programs

if «fread(file_hdr.exec_dmem, file_hdr.exec_dsize, 1, destfp)) <= 0) {
fprintf(stderr, "error reading data from %s\n", dest_file);
exit(l);

}

#endif
#ifdef __ hp9000s300

/*
* On S300/400, load text and data as one contiguous block:
*/

if (fseek(destfp, TEXT_OFFSET (file_hdr), 0)) {

}

fprintf(stderr, "error seeking start of text/data in %s\n", dest_file);
exit(l);

if (fread«void *)addr, file_hdr.a_text + file_hdr.a_data, 1, destfp) <= 0) {
fprintf(stderr, "error loading %s\n", dest_file);
exit (1);

}

#endif
fclose(destfp); /* done reading from module file */

/* ---
* STEP 4: Zero out the bss (uninitialized data segment):
*/

#ifdef __ hp9000s800
bss start = file_hdr.exec_dmem + file_hdr.exec_dsize;
bss_size = file_hdr.exec_bsize;

#endif
#ifdef __ hp9000s300

bss start addr + file_hdr.a_text + file_hdr.a_data;
bss_size = file_hdr.a_bss;

#endif
memset(bss_start, 0, bss_size);

Linking and Running Programs 5-53

5

5

/* ---
* STEP 5: Flush the text from the data cache before execution:
*/

#ifdef __ hp9000s800
/*
* The flush_cache routine on S700/800 must know the exact size of the
* text, data, and bss, computed as follows:
* Size = (Data Addr - Text Addr) + Data Size + BSS Size
* where (Data Addr - Text Addr) = Text Size + alignment between
* Text and Data.
*/

tdb_size = (file_hdr.exec_dmem - file_hdr.exec_tmem) +
file_hdr.exec_dsize + file_hdr.exec_bsize;

flush_cache(addr, tdb_size);
#endif
#ifdef __ hp9000s300

/*
* On S300/400, call the system library routine cachectl(3C):
*/

cachectl(CC_FLUSH, 0, 0);
#endif
/* ---
* STEP 6: Return a pointer to the entry point specified by -e:
*/

#ifdef __ hp9000s800
entry_pt_addr = (unsigned int) file_hdr.exec_entry;

#endif
#ifdef __ hp9000s300

entry_pt_addr = (unsigned int) file_hdr.a_entry;
#endif

return ((void *) entry_pt_addr);
}

Figure 5-9. C Source for dyn_load Function

5-54 Linking and Running Programs

The flush_cache Function
(Series 700/800 Only)

On Series 300/400 systems, the cachectl function (see cachectl(3C)) can be
used to flush text from the data cache before execution. Since there is no
similar routine on Series 700/800, you must create one. Figure 5-10 shows the
assembly language source for such a function.

flush_cache.s

Routine to flush and synchronize data and instruction caches
for dynamic loading

Copyright Hewlett-Packard Co. 1985,1991

All HP VARs and HP customers have a non-exclusive royalty-free license 5
to copy and use this flush_cashe() routine in source code and/or object
code .

. code

flush_cache (addr , len) - executes FDC and FIC instructions for every
cache line in the text region given by starting addr and len. When done,
it executes a SYNC instruction and then enough NOPs to assure the cache
has been flushed.

Assumption: Cache line size is at least 16 bytes. Seven NOPs is enough
to assure cache has been flushed. This routine is called to flush the
cache for just-loaded dynamically linked code which will be executed
from SR5 (data) space.

%argO=GR26, %arg1=GR25, %arg2=GR24, %arg3=GR23, %srO=SRO.
loop1 flushes data cache. argO holds address. arg1 holds offset.
SR=O means that SID of data area is used for fdc.
loop2 flushes inst cache. arg2 holds address. arg3 holds offset.
SR=srO means that SID of data area is used for fico
fdc x(O,y) -> 0 means use SID of data area.
fic x(%srO,y) -> SRO means use SRO SID (which is set to data area) .

. proc

Linking and Running Programs 5-55

5

.callinfo

.export flush_cache, entry
flush cache

loop1

loop2

. enter
ldsid
mtsp
ldo
copy
copy

(O,%argO),%r1
%r1,%srO
-1 (%arg1) , %arg1
%argO,%arg2
%arg1, %arg3

Extract SID (SR5) from address
SID -> SRO
offset = length -1
Copy address from GR26 to GR24
Copy offset from GR25 to GR23

fdc %arg1(O,%argO) Flush data cache @SID.address+offset
addib,>,n -16,%arg1,loop1 Decrement offset by cache line size
fdc %arg1(O,%argO) Flush data cache @SID.address+offset
; flush first word at addr, to handle arbitrary cache line boundary
fdc O(O,%argO)
sync

fic %arg3(%srO,%arg2)
addib,>,n -16,%arg3,loop2
fic %arg3(%srO,%arg2)

Flush inst cache @SID.address+offset
Decrement offset by cache line size
Flush inst cache @SID.address+offset

; flush first word at addr, to handle arbitrary cache line boundary
fic O(%srO,%arg2)

sync
nop
nop
nop
nop
nop
nop
nop
.leave
.procend
. end

Figure 5-10. Assembly Language Source for flush_cache Function

5-56 Linking and Running Programs

Profile-Based Optimization
and Data Access Optimization

6

This chapter describes two kinds of optimizations that are performed with the
linker:

• data-access optimizations

• profile-based optimization (PBO)

Note These optimizations are available only on Series 700/800
computers.

Profile-Based Optimization 6-1
and Data Access Optimization

6

6

Optimizing Access to Data
(Series 700/800 Only)

On Series 700/800, the linker supports the -0 option, which optimizes
references to data. (For readers familiar with Series 700/800 assembly code,
this optimization involves removing unnecessary ADDIL instructions from the
object code.) For example, the following Id command results in a smaller,
faster executable:

$ 1d -0 -0 prog /lib/ertO.o prog.o -1m -Ie

Invoking -0 from the Compile Line

The compilers automatically call the linker with the -0 option if compiler
optimization level 3 is selected. For example, the following ee command
invokes full compiler optimization as well as linker optimization:

$ ee -0 prog +03 prog. e +03 invokes -0 for Id

If invoked with +03, the compilers generate object code in such a way that
the linker can better optimize the code. Thus, the linker does a better job of
optimizing code that was compiled with +03.

Incompatibilities with other Options

The -0 option is incompatible with these linker options:

-b The -0 option has no effect on position-independent code, so -0 is not
useful when building shared libraries with Id -b.

-A Dynamic linking is incompatible with optimization.

-r Relocatable linking is incompatible with optimization.

-D Setting the offset of the data space is incompatible.

Also, -0 is incompatible with symbolic debugging (as are any other compiler
optimizations) .

The linker issues a warning when such conflicts occur. If you require any of
these features, do not use the -0 option.

6-2 Profile-Based Optimization
and Data Access Optimization

Profile-Based Optimization
(Series 700/800 Only)

In profile-based optimization (PBO), the compiler and linker work together
to optimize an application based on profile data obtained from running the
application on a typical input data set. For instance, if certain procedures call
each other frequently, the linker can place them close together in the a. out
file, resulting in fewer instruction cache misses, TLB misses, and memory page
faults when the program runs. Similar optimizations can be done at the basic
block levels of a procedure. (A basic block is a contiguous section of assembly
code, produced by compilation, that has no branches in except at the top, and
no branches out except at the bottom.)

This functionality was first available in the 8.05 release of HP- UX on Series 700
computers. At that time, it was known as feedback-directed positioning, since
repositioning of procedures based on profile data was the only optimization
performed. More powerful optimization capabilities were added at the 9.0
release, as well as support on Series 800 computers.

This section describes

• when to use PBO
• how to use PBO
• instrumenting the application
• gathering profile data for the application
• optimizing based on profile information
• management of the profile database files
• a simple example of using PBO
• restrictions and limitations of PBO
• compatibility with 8.05 PBO

Note The compiler interface to PBO is currently supported only on
C and FORTRAN compilers.

Profile-Based Optimization 6-3
and Data Access Optimization

6

6

When to Use PBC

PBO should be the last level of optimization you use when building an
application. As with other optimizations, it should be performed after an
application has been completely debugged.

Not all applications will benefit from PBO. Nevertheless, two types of
applications may benefit greatly from PB 0:

• Applications that exhibit poor instruction memory locality. These are usually
large applications in which the most common paths of execution are spread
across multiple compilation units. The loops in these applications typically
contain large numbers of statements, procedure calls, or both .

• Applications that are branch-intensive. The operations performed in such
applications are highly dependent on the input data. Compilers, editors,
database managers, and user interface managers are examples of such
applications.

Of course, the best way to determine whether PBO will improve an
application's performance is to try it.

How to Use PBC

Profile-based optimization involves these steps:

1. Instrument the application-prepare the application so that it will generate
profile data.

2. Profile the application-create profile data that can be used to optimize the
application.

3. Optimize the application-generate optimized code based on the profile
data.

Instrumenting (+ 1/-1)

Prior to the 9.0 release, instrumentation was performed solely by the linker.
As of the 9.0 release, the compiler and linker work together to instrument the
code. Although you can still use just the linker to perfofw_ PBO, the best
optimizations result if you use the compiler as well; this section focuses on this
approach.

6-4 Profile-Based Optimization
and Data Access Optimization

To instrument an application (with C and FORTRAN), compile the source
with the +1 command line option. This causes the compiler to generate
a .0 file containing intermediate code, rather than the usual object code.
(Intermediate code is a representation of your code that is lower-level than
the source code, but higher level than the object code.) A file containing such
intermediate code is referred to as an I-SOM file. (I-SOM is an acronym for
"Intermediate code-System Object Module.")

After creating an I-SOM file for each source file, the compiler invokes the linker
as follows:

1. Instead of using the startup file /lib/ ertO. 0, the compiler specifies a
special startup file named /lib/ iertO. o.

2. The compiler passes the -I option to the linker, causing it to place
instrumentation code in the resulting executable.

3. The compiler passes the -Fb option, which tells the linker which code
generator to use to compile the I-SOM files.

You can see how the compiler invokes the linker by specifying the -v option.
For example, to instrument the file sample. e, to name the executable
sample. inst, to perform default optimizations (-0), and to see verbose output 6
(-v):

$ ee -v -0 sample.inst +1 -0 sample.e
/lib/epp sample.e /tmp/etm123
/lib/eeom /tmp/etm123 sample.o -02 -I
/bin/ld /lib/iertO.o -I -u main -0 sample.inst sample.o -Ie \

-Fb /usr/lib/ueeom

Pay particular attention to the linker command line (/bin/ld ...). Notice
that the application is linked with /lib/ iertO. 0, the - I option is given, and
the code generator /usr/lib/ueeom is specified.

The Startup File icrtO.o

Prior to the 9.0 release, the iertO. ° startup file did not exist. Instead, you
linked your application with the file /lib/measure. 0, which redefined the
system exit function (see exit(2)) to write out profile data. A different
approach is used at the 9.0 release.

Profile-Based Optimization 6-5
and Data Access Optimization

At the 9.0 release, the iertO. 0 startup file contains a function that writes out
profile data; /lib/measure. 0 is no longer needed. The iertO. 0 startup file
uses the atexi t system call to register this function to be called when the
application exits.

Note atexi t allows a fixed number of functions to be registered from
a user application; therefore, applications linked with -I will
have one less atexi t call available. For details on atexi t, see
atexit(2).

The -I Linker Option

When invoked with the - I option, the linker instruments all the specified
object files. Note that the linker instruments regular object files as well
as I-SOM files; however, with regular object files, only procedure call
instrumentation is added. With I-SOM files, additional instrumentation is done
within procedures.

For instance, suppose you have a regular object file named foo. 0 created by
compiling without the + I option, and you compile a source file bar. e with the

6 + I option and specify foo. 0 on the compile line:

$ ee -c foo.e
$ ee -v -0 foobar -0 +I bar.e foo.o
/lib/epp bar.e /tmp/ctm456
/lib/ecom /tmp/etm456 bar.o -02 -I
/bin/ld /lib/icrtO.o -I -u main -0 foobar bar.o foo.o \

-Fb /usr/lib/ueeom

In this case, the linker instruments both bar.o and foo .0. However, since
foo.o is not an I-SOM file, only its procedure calls are instrumented; basic
blocks within procedures are not instrumented. To instrument foo. c to the
same extent, you must compile it with the +I option-for example:

6-6 Profile-Based Optimization
and Data Access Optimization

$ cc -v -c +I -0 foo.c
/lib/cpp reg.c /tmp/ctm432
/lib/ccom /tmp/ctm432 reg.o -02 -I
$ cc -v -0 foobar -0 +I bar.c foo.o
/lib/cpp bar.c /tmp/ctm456
/lib/ccom /tmp/ctm456 bar.o -02 -I
/bin/ld /lib/icrtO.o -I -u main -0 foobar bar.o foo.o \

-Fb /usr/lib/uccom

A simpler approach would be to compile foo. c and bar. c with a single cc
command:

$ cc -v +I -0 -0 foobar bar.c foo.c
/lib/cpp bar.c /tmp/ctm352
/lib/ccom /tmp/ctm352 bar.o -02 -I
/lib/cpp foo.c /tmp/ctm456
/lib/ccom /tmp/ctm456 foo.o -02 -I
/bin/ld /lib/icrtO.o -I -u main -0 foobar bar.o foo.o \

-Fb /usr/lib/uccom

Specifying a Code Generator to the Linker (-Fb)

As discussed in "Looking "inside" a Compiler" in Chapter 2, a compiler driver
invokes several phases. On Series 700/800, the last phase before linking is code
generation. When using PBO, the compilation process stops at an intermediate
code level. The PA-RISC code generation and optimization phase is invoked
by the linker. The code generator for C is /usr/lib/uccom, while the code
generator for FORTRAN is /usr/lib/uf77pass1. To see how -Fb is used,
refer to the previous examples.

Note Since the code generation phase is delayed until link time with
PBO, linking can take much longer than usual when using
PBO. And compile times are faster than usual, since code
generation is not performed.

Profile-Based Optimization 6-7
and Data Access Optimization

6

6

Profiling

After instrumenting a program, you can run it one or more times to generate
profile data, which is ultimately used to perform the optimizations in the final
step of PBO.

Choosing Input Data

For best results from PBO, use representative input data when running an
instrumented program. Input data that tests infrequent corner cases or error
conditions usually is not as good to use when profiling a program. In other
words, run the instrumented program with input data that closely resembles
the way the program is used in the user's environment. This results in the
optimizer focusing its efforts in the parts of the program that are critical to
performance in the user's environment.

You should not have to do a large number of profiling runs before the
optimization phase. Usually it is adequate to select a small number of
representative input data sets.

The flow. data File

When an instrumented program terminates with the exit(2) system call, special
code in the icrtO. 0 startup file writes profile data to a file called flow. data in
the current working directory. This file contains binary data, which cannot be
viewed or updated with a text editor.

Note The flow. data file will not be updated if either of the
following occurs:

• The process does not terminate .

• The process terminates without a call to exit(2).

There are many things that can cause a process to terminate
without calling exit. For instance, the process aborts due to
an unexpected signal, or the program calls exec(2) to replace
itself with another program.

If flow. data does not exist, the program creates it; if flow. data exists, the
program updates the profile data. (To save the profile data to a file other than

6-8 Profile-Based Optimization
and Data Access Optimization

flow. data in the current working directory, use the FLOW_DATA environment
variable as described later in "Specifying a Different flow.data File with
FLOW"'DATA".)

As an example, suppose you have an instrumented program named prog. inst,
and two representative input files named inp1 and inp2. Then the following
lines would create a flow. data file:

$ prog.inst < inp1
$ Is flow.data

flow.data
$ prog.inst < inp2

Redirect input from inp 1.

Was flow. data created?

Yes.
Now flow. data is updated to in~
elude profile data from the second
input set.

Storing Profile Information for Multiple Programs

A single flow. data file can store information for multiple programs. This
allows an instrumented program to spawn other instrumented programs, all of
which share the same flow. data file.

To allow multiple programs to save their data in the same flow. data file, a 6
program's profile data is uniquely identified by the executable's basename (see
basename(l)), the executable's file size, and the time the executable was last
modified.

When an instrumented program begins execution, it checks whether the
basename, size, and time-stamp match those in the existing flow. data file.
If the basename matches but the size or time-stamp does not match, that
probably means that the program has been re-linked since it last created profile
data. In this case, the following error message will be issued:

program: Cannot update counters. Program data exists
but does not correspond to this executable. Exit.

Profile-Based Optimization 6-9
and Data Access Optimization

6

You can fix this problem anyone of these ways:

• Remove or rename the existing flow. data file.

• Run the instrumented program in a different working directory.

• Set the FLOW_DATA environment variable so that profile data is written to a
file other than flow. data.

• Rename the instrumented program.

Sharing the flow.data File Among Multiple Processes

A flow. data file can potentially be accessed by several processes at the
same time. For example, this could happen when you run more than one
instrumented program at the same time in the same directory, or when
profiling one program while linking another with -Po

Such asynchronous access to the file could potentially corrupt the data. To
prevent simultaneous access to the flow. data file in a particular directory, a
lock file called flow .lock is used. Instrumented programs that need to update
the flow. data file and linker processes that need to read it must first obtain
access to the lock file. Only one process can hold the lock at any time. As long
as the flow. data file is being actively read and written, a process will wait for
the lock to become available.

If there does not appear to be any activity in the flow. data file, the process
attempting to obtain the lock gives up after a short period of time. This may
happen when a program that holds the lock terminates abnormally. In such
cases, you may need to remove the flow .lock file.

If an instrumented program fails to obtain the database lock, it writes the
profile data to a temporary file and displays a warning message containing the
name of the file. You could then use the +df option to specify the name of the
temporary file instead of the flow. data file.

If the linker fails to obtain the lock, it displays an error message and
terminates. In such cases, wait until all active processes that are reading or
writing a profile database file in that directory have completed. If no such
processes exist, remove the flow .lock file.

6-10 Profile-Based Optimization
and Data Access Optimization

Forking an Instrumented Application

When instrumenting an application that creates a copy of itself via the fork
system call, you must ensure that the child process calls a special function
named _clear _counters 0, which clears all internal profile data. If you
don't do this, the child process inherits the parent's profile data, updating the
data as it executes, resulting in inaccurate (exaggerated) profile data when
the child terminates. The following code segment shows a valid way to call
_clear_counters:

if ((pid = fork()) == 0) 1* this is the child process *1
{

1* reset profile data for child *1

1* other code for the child *1
}

The function _clear _counters is defined in icrtO. o. It is also defined as
a stub (an empty function that does nothing) in crtO. o. This allows you
to use the same source code without modification in the instrumented and
un-instrumented versions of the program.

Optimizing Based on Profile Data (+P/-P)

The final step in PBO is optimizing a program using profile data created in the
profiling phase. To do this, rebuild the program with the +P compiler option.
As with the + I option, +P option causes the compiler to generate an I-SaM .0

file, rather than the usual object code, for each source file.

Note that it is not really necessary to recompile the source files; you
could, instead, specify the I-SaM .0 files that were created during the
instrumentation phase. For instance, suppose you have already created an
I-SaM file named foo. 0 from foo. c using the + I compiler option; then the
following commands are equivalent in effect:

cc +P foo.c
cc +P foo.o

Both commands invoke the linker, but the second command doesn't compile
before invoking the linker.

Profile-Based Optimization 6-11
and Data Access Optimization

6

The -P Linker Option

After creating an I-SOM file for each source file, the compiler driver invokes the
linker with the -P option, causing the linker to optimize all the. 0 files. As
with the +I option, the driver uses the -Fb option to instruct the linker which
code generator to use to perform various optimizations.

To see how the compiler invokes the linker, specify the -v option when
compiling. For instance, suppose you have instrumented prog. e and gathered
profile data into flow. data. The following example shows how the compiler
driver invokes the linker when +P is specified:

$ ee -0 prog -v +P prog.o
/bin/ld /lib/ertO.o -P -u main -0 prog prog.o -Ie \

-Fb /usr/lib/ueeom

Notice how the program is now linked with /lib/ertO.o instead of
/lib/ iertO . 0 since the profiling code is no longer needed.

Using The flow. data File

By default, the code generator and linker look for the flow. data file in the
6 current working directory. In other words, the flow. data file created during

the profiling phase should be located in the directory where you relink the
program.

Specifying a Different flow. data File with +df

What if you want to use a flow. data file from a different directory than
where you are linking? Or what if you have renamed the flow. data file­
for example, if you have multiple flow. data files created for different input
sets? The +df option allows you to override the default behavior of using
a flow. data file in the current directory. The compiler passes this option
directly to the linker.

For example, suppose after collecting profile data, you decide to rename
flow. data to prog. prf. You could then use the +df option as follows:

$ ee -v -0 prog +P +df prog.prf prog.o
/bin/ld /lib/ertO.o -P +df prog.prf -0 prog prog.o -Ie \

-Fb /usr/lib/ueeom

6-12 Profile-Based Optimization
and Data Access Optimization

Note that the +df option overrides the effects of the FLOW_DATA environment
variable (see "Specifying a Different flow.data File with FLOWWDATA").

Specifying a Different flow.data File with FLOW_DATA

The FLOW_DATA environment variable provides another way to override
the default flow. data file name and location. If set, this variable defines
an alternate file name for the profile data file. For example, to use the file
/users/ darraj /proj eetX/prog. data instead of flow. data, set FLOW_DATA:

$ FLmLDATA=/users/darraj /proj eetX/prog. data Bourne and Korn shell
$ export FLOW_DATA

$ setenv FLOW_DATA /users/darraj/projeetX/prog.data

C shell

Interaction between FLOW_DATA and +df

If an application is linked with +df and -P, the FLOW_DATA environment
variable is ignored. In other words, +df overrides the effects of FLOW_DATA.

Specifying a Different Program Name (+pgm)

When retrieving a program's profile data from the flow. data file, the linker
uses the program's basename as a lookup key. For instance, if a program were
compiled as follows, the linker would look for the profile data under the name
foobar:

$ ee -v -0 foobar +P foo.o bar.o
/bin/ld /lib/ertO.o -P -u main -0 foobar foo.o bar.o -Ie \

-Fb /usr/lib/ueeom

This works fine as long as the name of the program is the same during the
instrumentation and optimization phases. But what if the name of the
instrumented program is not the same as name of the final optimized program?
For example, what if you want the name of the instrumented application to
be different from the optimized application, so you use the following compiler
commands?

Profile-Based Optimization 6-13
and Data Access Optimization

6

6

$ cc -0 +1 -0 prog.inst prog.c

$ prog.inst < inp1

$ prog.inst < inp2
$ cc +P -0 prog.opt prog.o

Instrument prog. inst.

Profile it, storing the data under the
name prog. inst.

Optimize it, but name it prog. opt.

The linker would be unable to find the program name prog. opt in the
flow. data file and would issue the error message:

No profile data found for the program prog.opt
in the database file flow.data

To get around this problem, the compilers and linker provide the +pgm
name option, which allows you to specify a program name to look for in the
flow. data file. For instance, to make the above example work properly, you
would include +pgm prog. inst on the final compile line:

$ cc +P -0 prog.opt +pgm prog.inst prog.o

Like the +df option, the +pgm option is passed directly to the linker.

Selecting an Optimization Level with PBO

~Then -Pis specified, the code generator and linker perform profile-based
optimizations on any I-SOM or regular object files found on the linker
command line. In addition, optimizations will be performed according to the
optimization level you specified when you instrumented the application.

PBO has the greatest impact when it is combined with level 2 or greater
optimizations (-0/+02 or +03). For instance, this compile command combines
level 2 optimization with PBO:

$ cc -v -0 +1 -0 prog prog.c
/lib/cpp prog.c /tmp/ctm123
/lib/ccom /tmp/ctm123 prog.o -02 -I
/bin/ld /lib/icrtO.o -I -u main -0 prog prog.o -lc \

-Fb /usr/lib/uccom

6-14 Profile-Based Optimization
and Data Access Optimization

The optimizations are performed along with instrumentation. However,
profile-based optimizations are not performed until you compile later with +P:

$ ee -v +P -0 prog prog.o
/bin/ld /lib/ertO.o -P -u main -0 prog prog.o -Ie \

-Fb /usr/lib/ueeom

A Simple Example

Suppose a user wants to apply PBO to an application called sample. The
application is built from a C source file sample. e. Discussed below are the
steps involved in optimizing the application.

First, the user compiles the application for instrumentation and level 2
optimization:

$ ee -v -0 sample.inst +1 -0 sample.e
/lib/epp sample.e /tmp/etm123
/lib/eeom /tmp/etm123 sample.o -02 -I
/bin/ld /lib/iertO.o -I -u main -0 sample.inst sample.o -Ie \

-Fb /usr/lib/ueeom

At this point, the user has an instrumented program called sample. inst.
The user has two representative input files to use for profiling, input. filel
and input. file2. Suppose that the user now executes the following three
commands:

$ sample.inst < input.filel
$ sample.inst < input.file2
$ mv flow.data sample.data

The first invocation of sample. inst creates the flow. data file and places
an entry for that executable file in the database. The second invocation
increments the counters for sample. inst in the flow. data file. Then, the user
moves the flow. data file to a file named sample. data.

To perform profile based optimizations on this application, the user needs to
re-link the program as follows:

Profile-Based Optimization 6-15
and Data Access Optimization

6

6

$ ee -v -0 sample.opt +P +pgm sample.inst +df sample.data sample.o
/bin/ld /lib/ertO.o -P +pgm sample.inst +df sample.data -u main \

-0 sample.opt sample.o -Ie -Fb /usr/lib/ueeom

Note that it was not necessary to recompile the source file. The +pgm
option was used because the executable name used during instrumentation,
sample. inst, does not match the current output file name, sample. opt. The
+df option is necessary because the profile database file for the program has
been moved from flow. data to sample. data.

Restrictions and Limitations of PBC

This section describes restrictions and limitations you should be aware of when
using PBO.

Temporary Files

The linker does not modify I-SaM files. Rather, it compiles, instruments, and
optimizes the code, placing the resulting temporary object file in a directory
specified by the TMPDIR environment variable. If PBO fails due to inadequate
disk space, try freeing up space on the disk that contains the $TMPDIR
directory.

Source Code Changes and PBO

To avoid the potential problems described below, PBO should only be used
during the final stages of application development and performance tuning,
when source code changes are the least likely to be made. Whenever possible,
an application should be re-profiled after source code changes have been made.

What happens if you attempt to optimize a program using profile data that is
older than the instrumented I-SaM files? For example, this could occur if you
change source code, re-instrument the code, but don't gather new profile data
for the re-instrumented code.

In such a sequence of events, optimizations will still be performed. However,
full profile-based optimizations will be performed only on those procedures
whose internal structure has not changed since the profile data was gathered.
For procedures whose structure has changed, the following warning message is
generated:

6-16 Profile-Based Optimization
and Data Access Optimization

profile-based optimization: control flow structure for procedure
name changed

Note that it is possible to make a source code change that does not affect the
control flow structure of a procedure, but which does significantly affect the
profiling data generated for the program. In other words, a very small source
code change can dramatically affect the paths through the program that are
most likely to be taken. For example, changing the value of a program constant
that is used as a parameter or loop limit value might have this effect. If the
user does not re-profile the application after making source code changes,
the profile data in the database will not reflect the effects of those changes.
Consequently, the transformations made by the optimizer could degrade the
performance of the application.

I-SOM File Restrictions

For the most part, there are not many noticeable differences between I-SOM
files and ordinary object files. Exceptions are noted below.

Id. Linking object files compiled with the + I or +P option takes much longer
than linking ordinary object files. This is because in addition to the work that
the linker already does, the code generator must be run on the intermediate 6
code in the I-SOM files. On the other hand, the time to compile a file with + I
or +P is relatively fast since code generation is delayed until link time.

All options to ld should work normally with I-SOM files with the following
exceptions:

-b When used with the -P option, the -b option builds an optimized
shared library from I-SOM files that were compiled with the +z or +2
option. However, the resulting shared library will contain only object
code, not I-SOM code. If specified with the -I option, the -b option is
ignored and the linker generates a warning message.

-r The -r option works with both -I and -Po However, it produces an
object file, not an I-SOM file.

- s Do not use this option with - I. However, there is no problem using this
option with -P.

-G Do not use this option with - I. There is no problem using this option
with -Po

Profile-Based Optimization 6-17
and Data Access Optimization

6

-A Do not use this option with -I or -Po

-N Do not use this option with -I or -Po

nm. The run command works on I-SOM files. However, since code generation
has not yet been performed, some of the imported symbols that might appear
in an ordinary relocatable object file will not appear in an I-SOM file.

ar. I-SOM files can be manipulated with ar in exactly the same way that
ordinary relocatable files can be.

strip. Do not run strip on files compiled with +1 or +P. Doing so results in an
object file that is essentially empty.

Compiler Options. Except as noted below, all cc, CC, and f77 compiler options
work as expected when specified with +1 or +P:

-g This option is incompatible with + I and +P.

-G This option is incompatible with +1, but compatible with +P (as long as

-p

the insertion of the gprof library calls does not affect the control flow
graph structure of the procedures.)

This option is incompatible with +1 option, but is compatible with +P
(as long as the insertion of the prof code does not affect the control
flow graph structure of the procedures.)

-s You should not use this option together with + 1. Doing so will result in
an object file that is essentially empty.

-s This option is incompatible with +1 and +P options because assembly
code is not generated from the compiler in these situations. Currently, it
is not possible to get assembly code listings of code generated by +1 and
+P.

-y / +y The same restrictions apply to these options that were mentioned for -g
above.

+0 This option is incompatible with +1 and +P. Currently, you cannot get
code offset listings for code generated by +1 and +P.

6-18 Profile-Based Optimization
and Data Access Optimization

Compatibility with 8.05 PBO

Procedure-level repositioning using the linker option -land -P was introduced
in the Series 700 8.05 release. The 9.0 release has introduced features that are
incompatible with the 8.05 release:

• The FLOTJLDATA_DIR environment variable, which specified an alternate
directory for reading and writing the flow. data file, has been replaced by
the FLOW_DATA environment variable, which specifies an alternate file name
for the profile data file.

• There are differences in the flow. data file's internal format:

D New instrumented applications cannot update flow. data files that were
built with the old format.

D Similarly, old applications cannot modify profile database files created in
the new format.

The application will exit and an error message will be issued if either of the
above is attempted.

• The linker will accept old flow. data files with the -P option. However, only
procedure-level repositioning will be performed using this data; additional 6
optimizations available from the new format will not be possible.

• At the 8.05 release, a program stored its profile data using the name it had
when it was created by the linker. Even if you renamed the application, it
would still store its data under the name it was given at link time. Now the
program stores its data under its the basename specified at run time; the link
name is no longer used.

Profile-Based Optimization 6-19
and Data Access Optimization

7
Position-Independent Code

This chapter discusses

• relocatable object code

• position-independent code (PIC)

• PIC generated by compilers for Series 700/800 computers

• PIC generated by compilers for Series 300/400 computers

Throughout this chapter, examples of PIC are shown in assembly
code. This chapter is useful mainly to programmers who want to write
position-independent assembly language code, or who want to convert existing
assembly language programs to be position-independent. It is also of interest to
compiler developers.

Note Before reading this chapter, you should have a good
understanding of virtual memory concepts and memory
management on HP-UX. These topics are covered in detail
in the book How HP-UX Works: Concepts for the System
Administrator.

Position-Independent Code 7·1

7

What Is Relocatable Object Code?
Relocatable object code is machine code that is generated by cOlllpilers and
assemblers. It is relocatable in the sense that it does not contain actual
addresses; instead, it contains symbols corresponding to actual addresses. The
linker decides where to place these symbols in virtual memory, and changes the
symbols to absolute virtual addresses.

For example, if you write a program that references the external variable
errno, the object code created by the compiler contains only a reference to the
symbol errno. Only when this object code is run through the linker does the
reference to errno change (relocate) to an absolute address in virtual memory,
say Ox40009000. Similarly, for a call to a function, say sum_n, the relocatable
object references the sYlnbol corresponding to the start of the sum_n function;
the linker assigns the absolute virtual address for this symbol at link time
(relocation).

Therefore, all function and variable references in an a. out file must reside at
a specific position within the process's address space at run time. That is, a
process depends on all data and routines residing at a specific position at run
time.

Note that relocatable object code does not contain physical addresses. Physical
addresses refer to exact locations in physical memory. Relocatable object code
contains virtual addresses within a process's address space. These virtual
addresses are mapped to physical addresses by the HP -UX virtual memory

7 management system. (Virtual memory management on HP- UX is described in
detail in HP- UX System Administrator Concepts.)

Because relocatable object code may contain virtual addresses, the HP- UX
program loader, exec, must always load the code into the same location
within a process's address space. Because this code always resides at the same
location within the address space, and because it contains virtual addresses,
it is not suitable for shared libraries, although it can be shared by several
processes running the same program.

7 -2 Position-Independent Code

What Is Position-Independent Code?

Position-independent code (PIC) is relocatable object code that does not
contain absolute virtual addresses. This is crucial to being usable in a shared
library.

In order for the relocatable object code in a shared library to be fully sharable,
it must not depend on its position in the virtual address space of any particular
process. The relocatable object code for a shared library may be attached at
different points in different processes, so it must work independent of being
located at any particular position in a process's virtual address space. (Thus
the term position-independent code.)

Position independence is achieved by two mechanisms: First, PC-relative
addressing is used wherever possible for branches within modules. Second,
indirect addressing through a per-process linkage table is used for all accesses
to global variables, or for inter-module procedure calls and other branches and
literal accesses where PC-relative addressing cannot be used. Global variables
must be accessed indirectly since they may be allocated in the main program's
address space, and even the relative position of the global variables may vary
from one process to another.

The HP-UX dynamic loader (see dld.sl(5)) and the virtual memory
management system work together to find free space at which to attach
position-independent code within a process's address space. The dynamic
loader also resolves any virtual addresses that might exist in the library.

Calls to PIC routines are accomplished through a procedure linkage
table (PLT), which is built by the linker. Similarly, references to data are
accomplished through a data linkage table (DLT). Both tables reside in a
process's data segment. The dynamic loader fills in these tables with the
absolute virtual addresses of the routines and data in a shared library at run
time (known as binding). Because of this, PIC can be loaded and executed
anywhere that a process has free space.

On compilers that support PIC generation, the +z and +2 options cause the
compiler to create PIC relocatable object code. PIC is different on Series
300/400 and Series 700/800 architectures, as explained in the following
sections.

Position-Independent Code 7·3

7

7

Series 700/800 Position-Independent Code

To be position-independent on Series 700/800 computers, object code must
restrict all references to code and data to either PC-relative or indirect
references, where all indirect references are collected in a single linkage table
that can be initialized on a per-process basis by dId. sl.

Register 19 (%r19) is the designated pointer to the linkage table. The linker
generates stubs that ensure %r19 always points to the correct value for the
target routine and that handle the inter-space calls needed to branch between
shared libraries.

The linker generates an import stub for each external reference to a routine.
The call to the routine is redirected to branch to the import stub, which
obtains the target routine address and the new linkage table pointer value
from the current linkage table; it then branches to an export stub for the
target routine. The linker generates an export stub for each externally visible
routine in a shared library or program file. The export stub is responsible for
trapping the return from the target routine in order to handle the inter-space
call required between shared libraries and program files.

Shown below is the PIC code generated for import and export stubs. Note that
this code is generated automatically by the linker; you don't have to generate
the stubs yourself.

;Import Stub (Incomplete Executable)
X': ADDIL L'lt_ptr+ltoff,%dp ; get procedure entry point

LDW R'lt_ptr+ltoff(%r1),%r21
LDW R'lt_ptr+ltoff+4(%r1),%r19; get new r19 value.
LDSID (%r21),%r1
MTSP
BE
STW

%r1,%srO
O(%srO,%r21)
%rp,-24(%sp)

;Import Stub (Shared Library)

branch to target
save rp

X': ADDIL L'ltoff,%r19 get procedure entry point
LDW R'ltoff(%r1),%r21

R'ltoff+4(%r1),%r19
LDSID (%r21),%r1
MTSP %r1,%srO

7 -4 Position-Independent Code

; get new r19 value

BE
STW

O(%srO,%r21)
%rp,-24(%sp)

branch to target
save rp

;Export Stub (Shared libs and Incomplete Executables)
X': BL,N X,%rp; trap the return

NOP
LDW -24(%sp),%rp ; restore the original rp
LDSID (%rp),%rl
MTSP %rl,%srO
BE,N O(%srO,%rp); inter-space return

The remainder of this section describes how the Series 700/800 compilers
generate PIC for the following addressing situations:

• PIC requirements for compilers and assembly code

• long calls

• long branches and switch tables

• assigned GOTO statements

• literal references

• global and static variable references

• procedure labels

You can use these guidelines to write assembly language programs that
generate PIC object code. For details on Series 700/800 assembly language,
refer to the Assembly Language Reference Manual.

PIC Requirements for Compilers and Assembly Code

The linkage table pointer register, %r19, must be stored at %sp - 32 by all PIC
routines. This can be done once on procedure entry. %19 must also be restored
on return from a procedure call. The value should have been stored in %sp-32
(and possibly in a callee-saves register). If the PIC routine makes several
procedure calls, the routine should copy %r19 into a callee-saves register as
well, to avoid a memory reference when restoring %r19 upon return from each
procedure call. Just like %r27 (%dp), the compilers treat %r19 as a reserved
register whenever PIC mode is in effect.

Position-Independent Code 7·5

7

In general, references to code are handled by the linker, and the compilers act
differently only in the few cases where they would have generated long calls
or long branches. References to data, however, need a new fixup request to
identify indirect references through the linkage table, and the code generated
will change slightly.

Note Any code which is PIC or wruch makes calls to PIC must follow
the standard procedure call mechanism.

When linking files produced by the assembler, the linker exports only those
assembly language routines that have been explicitly exported as entry (that
is, symbols of type ST_ENTRY). Compiler generated assembly code does not
explicitly export routines with the entry type specified, so the assembly
language programmer must ensure that this is done with the . EXPORT
pseudo-op.

For example: In assembly language, a symbol is exported using

. EXPORT foo, type

where type can be code, data, entry, and others. To ensure that foo is
exported from a shared library, the assembly statement must be:

.EXPORT foo,entry

7 Long Calls

Normally, the compilers generate a single-instruction call sequence using the BL
instruction. The compilers can be forced to generate a long call sequence when
the module is so large that the BL is not guaranteed to reach the beginning of
the subspace. In the latter case, the linker can insert a stub. The existing long
call sequence is three instructions, using an absolute target address:

LDIL L'target,j.r1
BLE R'targetC%sr4,%r1)
COPY %r1 , %rp

7 -6 Position-Independent Code

When the PIC option is in effect, the compilers must generate the following
instruction sequence, which is PC-relative:

BL
ADDIL
LDO

$LO: LDSID
$L1 : MTSP

BLE
COPY

.+8,%rp
L'target - $LO + 4, %rp
R'target - $L1 + 8(%r1), %r1
(%r1), %r31
%r31, %srO
0(%srO,%r1)
%r31,%rp

get pc into rp
add pc-reI offset to rp

Long Branches and Switch Tables

Long branches are similar to long calls, but are only two instructions because
the return pointer is not needed:

LDIL L'target,%r1
BE R'target(%sr4,%r1)

For PIC, these two instructions must be transformed into four instructions,
similar to the long call sequence:

BL .+8,%r1 get pc into r1
ADDIL L'target-L,%r1 add pc-relative offset

L: LDO R'target-L,%r1 add pc-relative offset
BV,N 0(%r1) and branch

The only problem with this sequence occurs when the long branch is in a
switch table, where each switch table entry is restricted to two words. A long
branch within a switch table must allocate a linkage table entry and make an
indirect branch:

LDW
BV,N

T'target(%r19),%r1
0(%r1)

; load LT entry
; branch indirect

Here, the T' operator indicates a new fixup request supported by the linker for
linkage table entries.

Position-Independent Code 7-7

7

7

Assigned GOTO Statements

ASSIGN statements in FORTRAN must be converted to a pc-relative form. The
existing sequence forms the absolute address in a register before storing it in
the variable:

LDIL L'target,tmp
LDO R'target(tmp),tmp

This must be transformed into the following four-instruction sequence:

BL .+8,tmp get rp into tmp
DEPI O,31,2,tmp ; zero out low-order 2 bits

L: ADDIL L'target-L,tmp ; get pc-reI offset
LDO R'target-L(%r1),tmp

Literal References

References to literals in the text space are handled exactly like ASSIGN
statements (shown above). The LDO instruction can be replaced with LDW as
appropriate.

An opportunity for optimization in both cases is to share a single label
(L) throughout a procedure, and let the result of BL become a common
sub-expression. Thus only the first literal reference within a procedure is
expanded to three instructions; the rest remain two instructions.

Global and Static Variable References

References to global or static variables currently require two instructions
either to form the address of a variable, or to load or store the contents of the
variable:

; to form the address of a variable
ADDIL L'var-$global$+x,%dp
LDO R'var-$global$+x(%r1),tmp
; to load the contents of a variable
ADDIL L'var-$global$+x,%dp
LDW R'var-$global$+x(%ri),tmp

7 -8 Position-Independent Code

These sequences must be converted to equivalent sequences using the linkage
table pointer in %r19:

; to form the address of a variable
LDW T'var(%r19),tmp1
LDO x(tmp1),tmp2 omit if x -- 0
; to load the contents of a variable
LDW T'var(%r19),tmp1
LDW x(tmp1),tmp2

Note that the T' fixup on the LDW instruction allows for a 14-bit signed offset,
which restricts the DLT to be 16Kb. Because %r19 points to the middle of the
DLT, we can take advantage of both positive and negative offsets. The T'
fixup specifier should generate a DLT _REL fixup proceeded by an FSEL override
fixup. If the FSEL override fixup is not generated, the linker assumes that the
fixup mode is LD/RD for DLT_REL fixups. In order to support larger DLT table
sizes, the following long form of the above data reference must be generated to
reference tables that are larger. If the DLT table grows beyond the 16Kb limit,
the linker emits an error indicating that the user must recompile using the +Z

option which produces the following long-load sequences for data reference:

; form the address of a variable
ADDIL LT'var,%r19
LDW RT'var(%r1),tmp1
LDO x(tmp1),tmp2 omit if x == 0

; load the contents of a variable
ADDIL LT'var,%r19
LDW RT'var(%r1),tmp1
LDW x(tmp1),tmp2

Procedure Labels

The compilers already mark procedure label constructs so that the linker can
process them properly. No changes are needed to the compilers.

When building shared libraries and incomplete executables, the linker modifies
the plabel calculation (produced by the compilers in both shared libraries and
incomplete execu tables) to load the contents of a DLT entry, which is built for
each symbol associated with a CODE_PLABEL fixup.

Position-Independent Code 7·9

7

7

In shared libraries and incomplete executables, a plabel value is the address of
a PLT entry for the target routine, rather than a procedure address; therefore
$$dyncall must be used when calling a routine via a procedure label. The
linker sets the second-to-last bit in the procedure label to flag this as a special
PLT procedure label. The $$dyncall routine checks this bit to determine
which type of procedure label has been passed, and calls the target procedure
accordingly.

In order to generate a procedure label that can be used for shared libraries and
incomplete executables, assembly code must specify that a procedure address
is being taken (and that a plabel is wanted) by using the P' assembler fixup
mode. For example, to generate an assembly plabel, the following sequence
must be used:

LDIL LP'function,%r1
LDO RP'function(%r1), %r22
; Now to call the routine
BL $$dyncall, %r31 ; r22 is the input register for $$dyncall
COpy %r31, %r2

This code sequence generates the necessary PLABEL fixups that the linker needs
in order to generate the proper procedure label. The $$dyncall millicode
routine in /lib/milli. a must be used to call a procedure using this type of
procedure label; that is, a BL or BV will not work).

7 -10 Position-Independent Code

Series 300/400 Position-Independent Code
A shared library comprises several PIC object modules combined by the
linker, ld. Object modules may contain unresolved references and require
relocation, but relocation of text (code) is done when the object modules are
combined with ld. The text of a shared library should contain no absolute
virtual addresses requiring further relocation. To ensure that no absolute
virtual addresses remain within the text segment, all subroutine calls and data
references use indirect or PC-relative addressing modes.

When invoked with +z or +2, the C and FORTRAN compilers generate such
code. The remainder of this section describes how the compilers generate PIC
for the following addressing situations:

• branches

• subroutine calls

• data references

You can use these guidelines to write assembly language programs that
generate PIC object code. For details on Series 300/400 assembly language,
refer to the book HP- UX Assembler and Tools.

Branches

Branches (both conditional and unconditional) generated by Series 300/400
compilers always transfer to a target within the same function as the
instruction itself. For direct branches to a label, the bra instruction (or a
conditional equivalent), which takes a displacement rather than an absolute
address, is generated:

PIC direct branch
bra.l L1

Position-Independent Code 7-11

7

7

For switch statements in C and computed GOTOs and multiple returns in
FORTRAN, an index register is loaded with a displacement from a switch table
based on the controlling expression. A PC-relative code sequence accesses the
switch table, which resides in the text segment. A PC-relative jmp is then
issued using the index register:

PIC switch statement:
mov.l switch_expression, %dO
lea.l (L1,%pc,%zaO),%aO
rnov.l (O,%aO,%dO.1*4),%dO
jrnp L2(%pc,%dO.l)

L2:
lalign 4

L1 :
long L3-L2
long L4-L2

L3:
code for first case

L4:
code for second case

For FORTRAN assigned GOTO statements, PIC requires a PC-relative load of
the label address.

PIC assigned goto
lea.l (L1,%pc,%zaO),%aO
jmp (%aO)

Subroutine Calls

If the caller and subroutine are in the same module, then a bsr instruction,
which takes a displacement rather than an absolute address, transfers control
directly between the two. If the subroutine is not in the same file as the caller,
the call must be resolved indirectly through a vector which can be referenced
directly by the shared library text and can be initialized at run time by
the dynamic loader. This vector, called the procedure linkage table (PLT),
contains absolute addresses and is not sharable. It is inserted into the data
segment of a shared library by the linker.

7-12 Position-Independent Code

Each PLT performs an absolute branch to its target. The subroutine call
code in the text performs a bsr to the appropriate PLT entry. The assembler
emits a special RPLT relocation which is resolved by the linker to give the
displacement from the point of call to the PLT entry for the symbol:

PIC intra module function call
bsr.l _foo # PC relative displacement
PIC external function call
bsr.l _foo # RPLT relocation

Data References

A data linkage table (DLT) resolves all data references. This table, like
the PLT, is constructed by the linker and placed in the shared library data
segment. Each entry contains the absolute address of a data item. The
prologue of each PIC function loads the absolute base address of the DLT using
a statically determined PC-relative displacement. Each data reference then
accesses the item indirectly through a table entry. The assembler emits a
special RDLT relocation record which is resolved by the linker to an offset from
the base of the table:

PIC prologue
L1 :

mov.l &DLT,%aO # PC relative relocation
lea.l L1(%pc,%aO.I),%a2
PIC data reference
mov.l _foo(%a2),%aO # RDLT relocation
mov.l (%aO),%dO

Note that this offset is a 16-bit signed offset. If the linkage table is larger than
32K, then the more expensive

mov.l (_foo,%a2,%zaO),%aO # RDLT relocation (long)

must be generated. The +Z option produces code for the larger tables. The
linker emits a warning if you try to build a shared library that requires +Z but
the code was not compiled that way.

Position-Independent Code 7 -13

7

7

The fpa_loc Symbol and PIC

The symbol fpa_loc, used when programming the 98248 floating point
accelerator in assembly language, is treated specially by the assembler. If
you use the 98248 FPA, the %a2 register should not be used as the DLT base
because the FPA uses it. And the instruction normally used to load fpa_loc
into %a2 should remain:

lea fpa_loc, %a2

Do not change it to the PIC-style reference:

mov.l fpa_loc(DLT_base) , %a2

7 -14 Position-Independent Code

8
Shared Library Management Routines

Normally, when creating an executable program, you specify on the command
line any libraries the program needs. Such libraries are loaded when the
program begins execution; this is known as implicit loading.

Occasionally it is not possible to know what libraries a program will need at
run time, so you cannot specify the libraries at link time. Instead, the program
must load the required libraries at run time.

For example, suppose you write a graphics program. The program must
work with any graphics device (display, plotter, printer) that it might run
on, including any device that might be supported in the future. One way
to ensure that the program works with any supported graphics device is to
create a shared library of routines for each graphics device. Then, at run time,
determine which device the program is running on, load the appropriate shared
library, and call routines from the library. Loading a library at run time is
known as explicit loading.

This chapter describes how to

• write and compile programs using shared library management routines

• explicitly load a shared library

• call routines and reference data of an explicitly loaded shared library

• get information on currently loaded shared libraries

• get descriptor information for a shared library

• define or redefine a shared library symbol

• unload a shared library

• initialize a shared library

Shared Library Management Routines 8-1

8

8

Linking with Shared Library Routines

The shared library management functions described in this chapter reside
in the library libdld. s1. The shLload(3X) page in the HP- UX Reference
describes them in detail.

Here are the shared library routines:

shl_load Explicitly loads a shared library.

shl_findsym Finds the address of a global symbol in a shared library.

shl_get Gets information about currently loaded libraries.

shl_gethandle Gets descriptor information about a loaded shared library.

shl_definesym (Series 700/800 only.) Adds a new symbol to the global
shared library symbol table.

shl_getsymbols (Series 700/800 only.) Returns a list of symbols in a shared
library.

shl_unload Unloads a shared library.

To use these functions, a program must be compiled or linked with the
command-line option -ldld.

If a program uses explicitly loaded libraries that reference symbols defined in
the program, link the program with the -E option. The -E option ensures that
all global symbols needed by the library are exported from the program.

Since the compilers do not pass -E to the linker, you must use the -Wl option
to pass - E to the linker:

$ cc -Aa prog.c -Wl,-E -ldld

8-2 Shared Library Management Routines

Shared Library Header File (dl.h)

The shared library management routines use some special data types
(structures) and constants defined in the C-language header file
/usr/include/dl.h. When using these functions from C programs, be sure to
include dl. h:

#include <dl.h>

If an error occurs when calling shared library management routines, the system
error variable errno is set to an appropriate error value. Constants are defined
for these error values in /usr / include/ errno. h (see errno(2)). Thus, if a
program checks for these error values, it must include errno .h:

#include <errno.h>

Throughout this chapter, all examples are given in C. To learn how to call
these routines from FORTRAN or Pascal, refer to the inter-language calling
conventions described in the HP- UX Portability Guide.

Shared Library Management Routines 8-3

8

8

Explicitly Loading a Shared Library
A program needs to explicitly load a library only if the library was not linked
with the program. This typically occurs only when the library cannot be
known at link time-for example, when writing programs that must support
future graphics devices.

However, programs are not restricted to using shared libraries only in that
situation. For example, rather than linking with any required libraries, a
program could explicitly load libraries as they are needed. One possible reason
for doing this is to minimize virtual memory overhead: Each process that uses
a shared library gets a copy of the library's data. To keep virtual memory
resource usage to a minimum, a program could load libraries with shl_load
and unload with shl_unload when the library is no longer needed. However, it
is normally not necessary to incur the programming overhead of loading and
unloading libraries yourself for the sale reason of managing system resources.

Note that if a shared library initializer has been declared for an explicitly
loaded library, it will be called after the library is loaded. For details, see
"Declaring an Initializer for a Shared Library" later in this chapter.

To explicitly load a shared library, use the shl_load routine.

shLload Syntax

shl_t shl_loadC const char * path,
int flags,

void * address)

path A null-terminated character string containing the path name of the
shared library to load.

flags Specifies when the symbols in the library should be bound to
addresses. It must be one of these values (defined in <dl.h»:

BIND_IMMEDIATE Bind the addresses of all symbols immediately upon
loading the library.

BIND_DEFERRED Bind the addresses when they are first referenced.

In addition to the above values, the flags parameter can be ORed with
the following values:

8-4 Shared Library Management Routines

BIND_NONFATAL Allow binding of unresolved symbols.

BIND_ VERBOSE Make dynamic loader display verbose messages
when binding symbols.

BIND_FIRST Insert the loaded library before all others in the
current link order.

DYNAMIC_PATH Causes the dynamic loader to perform dynamic
library searching when loading the library.

BIND_NOSTART Causes the dynamic loader to not call the initializer
(even if one is declared for the library). This will
also inhibit a call to the initializer when the library
is unloaded. See "Declaring an Initializer for a
Shared Library" later in this chapter.

BIND_RESTRICTED (Series 700/800 Only) Causes the search for a
symbol definition to be restricted to those symbols
that were visible when the library was loaded.

address Specifies the virtual address at which to attach the library. Set this
parameter to 0 (zero) to tell the system to choose the best location.
On Series 700/800 computers, this argument is currently ignored;
mapping a library at a user-defined address is not currently supported.

BIND_NONFATAL Modifier

If you load a shared library with the BIND_IMMEDIATE flag and the library
contains unresolved symbols, the load fails and sets errno to ENOSYM. ORing
BIND_NONFATAL with BIND_IMMEDIATE causes shl_load to allow the binding
of unresolved symbols to be deferred if their later use can be detected-for
example:

shl_t libH;

libH = shl_load(tllibxyz.slll, BIND_IMMEDIATE I BIND_NONFATAL, 0);

Shared Library Management Routines 8·5

8

BIND_ VERBOSE Modifier

If BIND_VERBOSE is ORed with the flags parameter, the dynamic loader
displays messages for all unresolved symbols. This option is useful to see
exactly which symbols cannot be bound. Typically, you would use this with
BIND_IMMEDIATE to debug unresolved symbols-for example:

libH = shl_loadC'libxyz. sIll, BIND_IMMEDIATE I BIND_VERBOSE, 0);

BIND_FIRST Modifier

If BIND_FIRST is ORed with the flags parameter, the loaded library is inserted
before all other loaded shared libraries in the symbol resolution search order.
This has the same effect as placing the library first in the link order-that is,
the library is searched before other libraries when resolving symbols. This is
used with either BIND_IMMEDIATE or BIND_DEFERRED-for example:

shl_t libH;

libH = shl_loadC'libpdq.sltl, BIND_DEFERRED I BIND_FIRST, 0);

BIND_FIRST is typically used when you want to make the symbols in a
particular library more visible than the symbols of the same name in other
libraries. Compare this with the default behavior, which is to append loaded
libraries to the link order.

DYNAMIC_PATH Modifier

The flag DYNAMIC_PATH can also be ORed with the flags parameter, causing
8 the dynamic loader to search for the library using a path list specified by the

+b option at link time or the SHLIB_PATH environment variable at run time.
For details on the use of +b and SHLIB_PATH, see "Library Location and the
Dynamic Loader (dld.sl)" in Chapter 5.

8-6 Shared Library Management Routines

BIND_RESTRICTED Modifier
(Series 700/800 Only)

This flag is most useful with the BIND_DEFERRED flag; it has no effect with
BIND_IMMEDIATE. It is also useful with the BIND_NONFATAL flag.

When used with only the BIND_DEFERRED flag, it has this behavior: When a
symbol is referenced and needs to be bound, this flag causes the search for the
symbol definition to be restricted to those symbols that were visible when
the library was loaded. If a symbol definition cannot be found within this
restricted set, it results in a run-time symbol-binding error.

When used with BIND_DEFERRED and the BIND_NONFATAL modifier, it has the
same behavior, except that when a symbol definition cannot be found, the
dynamic loader will then look in the global symbol set. If a definition still
cannot be found within the global set, a run-time symbol-binding error occurs.

shLload Return Value

If successful, shl_load returns a shared library handle of type shl_ t.
Otherwise, shl_load returns a shared library handle of NULL and sets errno to
one of these error codes (from < errno . h>):

ENOEXEC The specified path is not a shared library, or a format error was
detected in this or another library.

ENOSYM A symbol needed by this or another library could not be found. On
getting this return value, a program should terminate immediately,
as this indicates that the program's symbol bindings are in an
inconsistent state.

ENOMEM There is insufficient room in the address space to load the shared
library.

EINVAL The requested shared library address was invalid.

ENOENT The specified path does not exist.

EACCESS Read or execute permission is denied for the specified path.

Shared Library Management Routines 8·7

8

shLload Usage

Since the library was not specified at link time, the program must get the
library name at run time. Here are some practical ways to do this:

• Hard-code the library name into the program (the easiest method).

• Get the library name from an environment variable using the getenv library
routine (see getenv(3C)).

• Get the library path name from the command line through argv.

• Read the library name from a configuration file.

• Prompt for the library path name at run time.

If successful, shl_load returns a shared library handle (of type shl_ t),
which uniquely identifies the library. This handle can then be passed to the
shl_findsym or shl_unload routine.

Once a library is explicitly loaded, use the shl_findsym routine to get pointers
to functions or data contained in the library; then call or reference them
through the pointers. This is described in detail in "Accessing Routines and
Data in Explicitly Loaded Libraries".

shLload Example

Figure 8-1 shows the source for a function named load_lib that explicitly
loads a library specified by the user. The user can specify the library in the
environment variable SHLPATH or as the only argument on the command line. If
the user chooses neither of these methods, the function prompts for the library
path name.

The function then attempts to load the specified library. If successful, it
8 returns the shared library handle, of type shl_t. If an error occurs, it displays

an error message and exits. This function is used later in Figure 8-2.

8-8 Shared Library Management Routines

#include
#include
#include

<stdio.h>
<stdlib.h>
<dl.h>

1* contains standard I/o defs
1* contains getenv definition
1* contains shared library type defs

shl_t load_lib(int argc,

{

}

char * argv[]) 1* pass argc and argv from main *1

shl_t
char
char
1*

lib_handle;
lib_path[MAXPATHLEN];
*env_ptr;

1* temporarily holds library handle
1* holds library path name
1* points to SHLPATH variable value

* Get the shared library path name:
*1

if (argc > 1) 1* library path given on command line *1
strcpY(lib_path, argv[1]);

else /* get lib_path from SHLPATH variable *1
{

}

1*

env_ptr getenv("SHLPATH");
if (env_ptr != NULL)

strcpy(lib_path, env_ptr);
else /* prompt user for shared library path *1

{

}

printf("Shared library to use » II);

scanf("%s", lib_path);

* Dynamically load the shared library using BIND_IMMEDIATE binding:
*1

lib_handle = shl_load(lib_path, BIND_IMMEDIATE, 0);
if (lib_handle == NULL)

perror("shl_load: error loading library"), exit(1);
return lib_handle;

Figure 8-1. load_lib-Function to Load a Shared Library

Shared Library Management Routines 8-9

8

8

Accessing Routines and Data in Explicitly Loaded
Libraries
To call a routine or access data in an explicitly loaded library, first get the
address of the routine or data with shl_findsyrn.

shL findsym Syntax

int shl_findsyrn(shl_t * handle,
canst char * sym,
short type,

handle

void * value)

A pointer to a shared library handle of the library to search for
the symbol name sym. This handle could be obtained from the
shl_get routine (described later). handle can also point to:

NULL If a pointer to NULL is specified, shl_findsyrn
searches all loaded libraries for sym. If sym is
found, shl_findsyrn sets handle to a pointer to the
handle of the shared library containing sym. This
is useful for determining which library a symbol
resides in. For example, the following code sets
handle to a pointer to the handle of the library
containing symbol _faa:

shl_t handle;
handle = NULL;
shl_f indsyrn (&handle ,11 _fOoll , ...) ;

PROG_HANDLE This constant, defined in dl. h, tells shl_findsyrn
to search for the symbol in the program itself. This
way, any symbols exported from the program can
be accessed explicitly.

sym A null-terminated character string containing the name of the
symbol to search for.

8·10 Shared Library Management Routines

type The type of symbol to look for. It must be one of these values
(defined in <dl. h»:

TYPE_PROCEDURE Look for a function or procedure.
TYPE_DATA Look for a symbol in the data segment

(e.g., variables).
TYPE_UNDEFINED Look for any symbol.

value A pointer in which shl_findsym stores the address of sym, if
found.

shL findsym Return Value

If successful, shl_f indsym returns an integer (int) value zero. If shl_f indsym
cannot find sym, it returns -1 and sets errno to zero. If any other errors
occur, shl_findsym returns -1 and sets errno to one of these values (defined
in <errno .h»:

ENOEXEC A format error was detected in the specified library.

ENOSYM A symbol on which sym depends could not be found. On getting
this return value, a program should terminate immediately.

EINVAL The specified handle is invalid.

Using shL findsym to Call a Routine

To call a routine in an explicitly loaded library

1. declare a pointer to a function of the same type as the function in the
shared library

2. using shl_findsym with the type parameter set to TYPE_PROCEDURE, find the
symbol in the shared library and assign its address to the function pointer
declared in Step 1

3. call the pointer to the function obtained in Step 2, with the correct number
and type of arguments

Shared Library Management Routines 8-11

8

8

Using shL findsym to Access Data

To access data in an explicitly loaded library

1. declare a pointer to a data structure of the same type as the data structure
to access in the library

2. using shl_findsym with the type parameter set to TYPE_DATA, find the
symbol in the shared library and assign its address to the pointer declared in
Step 1

3. access the data through the pointer obtained in Step 2

shL findsym Example

Suppose you have a set of libraries that output to various graphics devices.
Each graphics device has its own library. Although the actual code in each
library varies, the routines in these shared libraries have the same name and
parameters, and the global data is the same. For instance, they all have these
routines and data:

gopen()
gclose()
move2d(x,y)
draw2d(x,y)
maxX
maxY

opens the graphics device for output
closes the graphics device
moves to pixel location x ,y
draws to pixel location X,y from current x,y
contains the maximum X pixel location on the output device
contains the maximum Y pixel location on the output device

8-12 Shared Library Management Routines

Figure 8-2 shows a C program that can load any supported graphics library at
run time, and call the routines and access data in the library. The program
calls load_lib (see Figure 8-1) to load the library.

Remember that on Series 300/400 computers, linker symbols begin with an
underscore, but Series 700/800 linker symbols do not. The #ifdef statements
in the following program allow it to compile and run successfully on both
architectures.

#include <stdio.h> 1* contains standard I/o defs
#include <stdlib.h> 1* contains getenv definition
#include <dl.h> 1* contains shared library type
1*
* Define symbols appropriately for the architecture:
*1

#ifdef __ hp9000s300
#define GOPEN "_gopen"
#define GCLOSE "_gclose"
#define MOVE2D l_move2d"
#define DRAW2D l_draw2d"
#define MAX X "_maxX"
#define MAXY "_maxYI
#endif
#ifdef __ hp9000s800
#define GOPEN "gopen"
#define GCLOSE "gclose"
#define MOVE2D Imove2d"
#define DRAW2D "draw2d"
#define MAXX "maxX"
#define MAXY "maxY"
#endif
shl_t load_lib(int argc, char * argv [J) ;

*1
*1

defs *1

Shared Library Management Routines 8·13

8

main(int argc,

{
char * argv [J)

shl_t lib_handle; /* handle of shared library
int (*gopen) (void); /* opens the graphics device
int (*gclose)(void); /* closes the graphics device
int (*move2d) (int, int) ; /* moves to specified x,y location
int (*draw2d) (int, int); /* draw line to specified x,y location
int *maxX; /* maximum X pixel on device
int *maxY; /* maximum Y pixel on device

lib_handle = load_Iib(argc, argv); /* load required shared library */
/*

* Get addresses of all functions and data that will be used:
*/

if (shl_findsym(&lib_handle, GOPEN, TYPE_PROCEDURE, (void *) &gopen))
perror(" shl_findsym: error finding function gopen"), exit(1);

*/
*/
*/
*/
*/
*/
*/

if (shl_findsym(&lib_handle, GCLOSE, TYPE_PROCEDURE, (void *) &gclose))
perror(" shl_findsym: error finding function gclose"), exit(1);

if (shl_findsym(&lib_handle, MOVE2D, TYPE_PROCEDURE, (void *) &move2d))
perror(lIshl_findsym: error finding function move2d"), exit(1);

if (shl_findsym(&lib_handle, DRAW2D, TYPE_PROCEDURE, (void *) &draw2d))
perror(lIshl_findsym: error finding function draw2d"), exit(1);

if (shl_findsym(&lib_handle, MAXX, TYPE_DATA, (void *) &maxX))
perror(lIshl_findsym: error finding data maxX"), exit(1);

if (shl_findsym(&lib_handle, MAXY, TYPE_DATA, (void *) &maxY))
perror(" shl_findsym: error finding data maxY"), exit(1);

/*
* Using the routines, draw a line from (0,0) to (maxX,maxY):
*/

(*gopen)();
(*move2d)(0,0);

/*
/*

open
move

the graphics device
to pixel 0,0

*/
*/

8 (*draw2d)(*maxX,*maxY); /* draw line to maxX,maxY pixel */
(*gclose) 0 ; /* close the graphics device */

}

Figure 8-2. Load a Shared Library and Call Its Routines and Access Its Data

8-14 Shared Library Management Routines

Shown belmv is the cOlnpile line for this program, along with the commands
to set SHLPATH appropriately before running the program. (Of course, this
exalnple aSSUlnes you have created libgrphdd. s1.) Notice that load_lib (),
defined in Figure 8- L is compiled along with this program:

$ cc -Aa -0 shl_findsym shl_findsym.c load_lib.c -ldld

$ SHLPATH=/lib/libgrphdd.sl
$ export SHLPATH
$ shl_findsym

Shared Library Management Routines 8-15

8

8

Getting Information on Currently Loaded Libraries
To obtain inforrnation on currently loaded libraries, use the shl_get function.

shLget Syntax

int shl_get(int index,
struet shl_deseriptor **desc)

index Specifies an ordinalnulllber of the shared library in the process. For
libraries loaded implicitly (at startup till1e), indea: is the ordinal
number of the library as it appeared on the comrnand line. For
example, if libe was the first library specified on the Id conlll1and
line, then libe has an inde:c of 1. For explicitly loaded libraries, indeJ;
corresponds to the order in which the libraries were loaded, starting
after the ordinal number of the last ill1plicitly loaded library. Two ir"dex:
values have special ll1eaning:

o Refers to the main program itself
-1 Refers to the dynamic loader (dId. sl).

A shared library's index can be rnodified during prograrn execution by
either of the following events:

• The program loads a shared library with the BIND_FIRST modifier to
shl_load. This will increment all the shared library indexes by one .

• The program unloads a shared library with shl_unload. Any
libraries following the unloaded library will have their index
decrell1ented by one.

desc Returns a pointer to a statically allocated buffer (struet
shl_deseriptor **) containing a shared library descriptor. The
structure contains these important fields:

tstart

tend

dstart

The start address (unsigned long) of the shared library
text segll1ent.

The end address (unsigned long) of the shared library
text segrnen t.

The start address (unsigned long) of the shared library
data segment.

8-16 Shared Library Management Routines

dend

handle

filename

The end address (unsigned long) of the shared library
bss segment. The data and bss segments together form
a contiguous memory block starting at dstart and
ending at dend.

The shared library's handle (type shl_ t).

A character array containing the library's path name as
specified at link time or at explicit load time. On Series
300/400, the name of the main program is not known,
so shl_get uses the filename <a. out> for the main
program.

ini tializer A pointer to the shared library's initializer routine
(see "Declaring an Initializer for a Shared Library").
It is NULL if there is no initializer. This field is useful
for calling the initializer if it was disabled by the
BIND_NOSTART flag to shl_load.

This buffer is statically allocated. Therefore, if a program intends to
use any of the members of the structure, the program should make
a copy of the structure before the next call to shl_get. Otherwise,
shl_get will overwrite the static buffer when called again.

shLget Return Value

If successful, shl_get returns an integer value O. If the index value exceeds the
number of currently loaded libraries, shl_get returns -1.

shLget Usage

Other than obtaining interesting information, this routine is of little use
to most programmers. A typical use might be to display the names and
starting/ ending address of all shared libraries in a process's virtual memory
address space.

Shared Library Management Routines 8-17

8

8

shLget Example

The function sholiil'_loaded_libs in Figure 8-3 displays the name and start
and end address of the text and data/bss segments the library occupies in a
process's virtual address space.

#include <stdio.h> 1* contains standard liD defs
#include <dl.h> 1* contains shared library type defs
void show_loaded_libs(void)
{

int idx;
struct shl_descriptor *desc;

printf("SUMMARY of currently loaded libraries:\n");
printf("%-25s %10s %10s %10s %10s\n",

" ___ library ___ ", "_tstart_", " __ tend __ ", II dstart_", " __ dend __ ");

}

idx = 0;
for (idx = 0; shl_get(idx, &desc) != -1; idx++)

printf("%-25s %#10lx %#10lx %#10lx %#10lx\n",
desc->filename, desc->tstart, desc->tend, desc->dstart, desc->dend);

Figure 8-3. show_loaded_libs-Oisplay Library Information

Calling this function from a C program compiled with shared libc and libdld
produced the following output on a Series 700/800 computer:

SUMMARY of currently loaded libraries:
___ library ___ _ tstart_ __tend __ _dstart_ __dend __

./a.out Ox1000 Ox1918 Ox40000000 Ox40000200
lusr/lib/libdld.sl Ox800ac800 Ox800adOOO Ox6df62800 Ox6df63000
Ilib/libc.sl Ox80003800 Ox80091000 Ox6df63000 Ox6df85000

8-18 Shared Library Management Routines

On a Series 300/400 computer, it produced this output:

SUMMARY of currently loaded libraries:
___ library ___ _ tstart_ tend _dstart_ __dend __
<a. out> 0 Ox1000 Ox1000 Ox1288
/usr/lib/libdld.sl Ox80004000 Ox80005000 Ox80005000 Ox80006000
/lib/libc.sl Ox80006000 Ox8007cOOO Ox8007cOOO Ox800gec38

8

Shared Library Management Routines 8-19

8

Getting Descriptor Information for a Shared Library

The shl_gethandle routine returns descriptor information about a loaded
shared library.

shLgethandle Syntax

int shl_gethandle(shl_t handle,

handle

dese

struct shl_descriptor **dese)

The handle of the shared library you want information about. This
handle is the same as that returned by shl_load.

Points to shared library descriptor information-the same
information returned by the shl_get routine. The buffer used
to store this dese information is static, meaning that subsequent
calls to shl_gethandle will overwrite the same area with new
data. Therefore, if you need to save the dese information, copy it
elsewhere before calling shl_gethandle again.

shLgethandle Return Value

If handle is not valid, the routine returns -1 and sets errno to EINVAL.
Otherwise, shl_gethandle returns o.

8-20 Shared Library Management Routines

shLgethandle Example

Figure 8-4 shows a function named sho1iir_lib_info that displays information
about a shared library, given the library's handle.

#include <stdio.h>
#include <dl.h>

int sho1iir_lib_info(shl_t libH)
{

struct shl_descriptor *desc;

}

if (shl_gethandle(libH, &desc) == -1)
{

fprintf (stderr, IIInvalid library handle. \nll) ;
return -1;

}

printf(lIlibrary path:
printf (tIt ext start:
printf (tIt ext end:
printf (t'data start:
printf (t'data end:
return 0;

%s\nll, desc->filename);
%#10lx\n ll , desc->tstart);
%#10lx\n ll

, desc->tend);
%#10lx\n ll

, desc->dstart);
%#10lx\n ll

, desc->dend);

Figure 8-4. show_lib_info-Display Information for a Shared Library

Shared Library Management Routines 8-21

8

8

Defining or Redefining a Shared Library Symbol
(Series 700/800 Only)
The shl_definesym function allows you to add a new symbol to the global
shared library symbol table. Use of this routine will be unnecessary for most
programmers.

shLdefinesym Syntax

int shl_definesymC const char *sym,

short type,

long value,
int flags)

sym A null-terminated string containing the name of the symbol to
change or to add to the process's shared library symbol table.

type The type of symbol-either TYPE_PROCEDURE or TYPE_DATA.

value If value falls in the address range of a currently loaded library, an
association will be made and the symbol is undefined when the
library is unloaded. (Note that memory dynamically allocated via
malloc(3C) does not fall in the range of any library.) The defined
symbol may be overridden by a subsequent call to this routine or
by loading a more visible library that provides a definition for the
symbol.

flags Must be set to zero.

shLdefinesym Return Value

If successful, shl_definesym returns o. Otherwise, it returns -1 and sets
errno accordingly. See shLdefinesym(3X) for details.

8-22 Shared Library Management Routines

shLdefinesym Usage

There are two main reasons to add or change shared library symbol table
entries:

• to generate symbol definitions as the program runs-for example, aliasing
one symbol with another

• to override a current definition

Symbol definitions in the incomplete executable may also be redefined with
certain restrictions:

• The incomplete executable will always use its own definition for any data
(storage) symbol, even if a more visible one is provided.

• The incomplete executable will only use a more visible code symbol if the
main program itself does not provide a definition.

Shared Library Management Routines 8·23

8

8

Retrieving Symbols Defined in a Shared Library
(Series 700/800 Only)

The shl_getsymbols function retrieves symbols that are imported (referenced)
or exported (defined) by a shared library. This information is returned in
an allocated array of records, one for each symbol. Use of this routine is
unnecessary for most programmers.

shLgetsymbols Syntax

int shl_getsymbols(shl_t handle,

short type,

int flags,

handle

type

void * (*memfunc) () ,
struct shl_symbol **symbols

The handle of the shared library whose symbols you want to
retrieve. If handle is NULL, shl_getsymbols returns symbols that
were defined with the shl_definesym routine.

Defines the type of symbol to retrieve. It must be one of the
following values, which are defined as constants in <dl.h>:

TYPE_PROCEDURE
TYPE_DATA

TYPE_UNDEFINED

Retrieve only function or procedure symbols.
Retrieve only symbols from the data segment
(e.g., variables).
Retrieve all symbols, regardless of type.

8-24 Shared Library Management Routines

flags Defines whether to retrieve import or export symbols from

memfunc

symbols

the library. An import symbol is an external reference made
from a library. An export symbol is a symbol definition that is
referenced outside the library. In addition, any symbol defined by
shl_definesym is an export symbol. Set this argument to one of
the following values (defined in <dl.h»:

IMPORT _SYMBOLS To return import symbols.

EXPORT_SYMBOLS To return export symbols.

One of the following modifiers can be ORed with the
EXPORT_SYMBOLS value:

Do not calculate the value field of the
shl_symbol structure for symbols. The value
field will have an undefined value.

GLOBAL_VALUES For symbols that are defined in multiple
libraries, this flag causes shl_getsymbols
to return the most-visible occurrence, and
to set the value and handle fields of the
shl_symbol structure (defined below under
the description of the symbols parameter).

Points to a function that has the same interface (calling
conventions and return value) as malloc(3C). The
shl_getsymbols function uses this function to allocate memory to
store the array of symbol records, symbols.

This points to an array of symbol records for all symbols that
match the criteria determined by the type and value parameters.
The type of these records is struct shl_symbol, defined in
<dl.h> as:

struct shl_symbol {

char * name;

};

short type;
void * value;
shl_t handle;

The members of this structure are described next.

Shared Library Management Routines 8-25

8

8

The shLsymbol Structure

The members of the shl_symbol structure are defined as follows:

name

type

value

handle

Contains the name of a symbol.

Contains the symbol's type: TYPE_PROCEDURE, TYPE_DATA, or
TYPE_STORAGE. TYPE_STORAGE is a data symbol used for C
uninitialized global variables or Fortran common blocks.

Contains the symbol's address. It is valid only if EXPORT _SYMBOLS is
specified without the NO_VALUES modifier.

Contains the handle of the shared library in which the symbol is
found, or NULL in the case of symbols defined by shl_definesym.
It is valid only if EXPORT _SYMBOLS were requested without the
NO_VALUES modifier. It is especially useful when used with the
GLOBAL_ VALUES modifier, allowing you to determine the library in
which the most-visible definition of a symbol occurs.

shLgetsymbols Return Value

If successful, shl_getsymbols returns the number of symbols found; otherwise,
-1 is returned and shl_getsymbols sets errno to one of these values:

ENOEXEC

ENOSYM

EINVAL

A format error was detected in the specified library.

Some symbol required by the shared library could not be found.
On getting this value, a program should terminate immediately.

The specified handle is invalid.

8-26 Shared Library Management Routines

shLgetsymbols Example

Figure 8-5 shows the source for a function named show_symbols that displays
shared library symbols. The syntax of this routine is defined as:

int show_symbols(shl_t hndl,
short type,
int flags)

hndl The handle of the shared library whose symbols you want to display.

type The type of symbol you want to display. This is the same as
the type parameter to shl_getsymbols and can have these
values: TYPE_PROCEDURE, TYPE_DATA, or TYPE_UNDEFINED. If it is
TYPE_UNDEFINED, show_symbols will display the type of each symbol.

flags This is the same as the flags parameter. It can have the value
EXPORT _SYMBOLS or IMPORT _SYMBOLS. In addition, it can be ORed
with NO_VALUE::; or GLOBAL_VALUES. If EXPORT_SYMBOLS is specified
without being ORed with NO_VALUES, show_symbols displays the
address of each symbol.

Shared Library Management Routines 8-27

8

8

#include <dl.h>
#include <stdio.h>
#include <stdlib.h>
int show_symbols(shl_t hndl,

short type,

{

}

int flags)

int num_symbols, sym_idx;
struct shl_symbol *symbols;

num_symbols = shl_getsymbols(hndl, type, flags, malloc, &symbols);
if (num_symbols < 0) {

printf("shl_getsymbols failed\n");
exit(l);

}

for (sym_idx = 0; sym_idx < num_symbols; sym_idx++)
{

}

printf("
if (type

%-30s", symbols->name); /* display symbol name */
-- TYPE_UNDEFINED) /* display type if TYPE_UNDEFINED */

switch (symbols->type) {
case TYPE_PROCEDURE:

printf(" PROCEDURE");
break;

case TYPE_DATA:
printf (" DATA ") ;
break;

case TYPE_STORAGE:
printf(" STORAGE ");

}

if ((flags & EXPORT_SYMBOLS) /* export symbols requested */
&& (flags & NO_VALUES)==O) /* NO_VALUES was NOT specified */

printf(1I Ox%8X", symbols->value); /* so display symbol's address */
printf("\n"); /* terminate output line */
symbols++; /* move to next symbol record */

free(symbols);
return nurn_symbols;

/* free memory allocated by malloc */
/* return the number of symbols */

Figure 8-5. show_symbols-Display Shared Library Symbols

8-28 Shared Library Management Routines

Figure 8-6 shows the source for a program named show_all. c that calls
show_symbols to show all imported and exported symbols for every loaded
shared library. It uses shl_get to get the library handles of all loaded libraries.

#include <dl.h>
#include <stdio.h>
int show_syms(shl_t hndl, short type, int flags); /* prototype for show_syms */
mainO
{

}

int idx, num_syms;
struct shl_descriptor * desc;

for (idx=O; shl_get(idx, &desc) != -1; idx++) /* step through libs */
{

}

printf (II [%sJ \n", desc->filename); /* show imports & exports for each */
printf(" Imports:\n");
num_syms = show_symbols (desc->handle, TYPE_UNDEFINED, IMPORT_SYMBOLS);
printf(" TOTAL SYMBOLS: %d\n", num_syms);
printf(" Exports:\n");
num_syms show_symbols (desc->handle , TYPE_UNDEFINED, EXPORT_SYMBOLS);
printf(1I TOTAL SYMBOLS: %d\n", num_syms);

Figure 8-6. show_all-Use show_symbols to Show All Symbols

The program in Figure 8-6 was compiled with the command:

$ cc -Aa -0 show_all show_all.c show_symbols.c -ldld

Shared Library Management Routines 8-29

8

8

Figure 8-7 shows partial output produced by running this command on a Series
700 system.

[show_all]
Imports:

start PROCEDURE
malloc PROCEDURE
free PROCEDURE
exit PROCEDURE
printf PROCEDURE
shl_get PROCEDURE
shl_getsymbols PROCEDURE

TOTAL SYMBOLS: 7
Exports:

errno STORAGE Ox4000122C
SYSTEM ID DATA Ox40001008
dld_loc STORAGE Ox40001228

end DATA Ox40001230
main PROCEDURE Ox6DF86362

TOTAL SYMBOLS: 5
[/usr/lib/libdld.sl]

Imports:
errno STORAGE

dld_loc DATA
TOTAL SYMBOLS: 2

Figure 8-7. Output of show_all Program

8·30 Shared Library Management Routines

Unloading a Shared Library
To unload a shared library, use the shl_unload function. One reason to do this
is to free up the private copy of shared library data and swap space allocated
when the library was loaded with shl_load. (This is done automatically when
a process exits.)

Another reason for doing this occurs if a program needs to replace a shared
library. For example, suppose you implement some sort of shell or interpreter,
and you want to load and execute user "programs" which are actually shared
libraries. So you load one program, look up its entry point, and call it. Now
you want to run a different program. If you unload the old one, its symbol
definitions might get in the way of the new library. So you should unload it
before loading the new library.

Note that if a shared library initializer has been declared for a shared library, it
will be called when the shared library is unloaded. For details, see "Declaring
an Initializer for a Shared Library" later in this chapter.

shLunload Syntax

int shl_unloadCshl_ t handle)

handle The handle of the shared library you wish to unload. The handle
value is obtained from a previous call to shl_load, shl_f indsym, or
shl_get.

shLunload Return Value

If successful, shl_ unload returns O. Otherwise, shl_ unload returns -1 and
sets errno to an appropriate value:

EINVAL Indicates the specified handle is invalid.

Shared Library Management Routines 8-31

8

8

shLunload usage

When a library is unloaded, existing linkages to symbols in an unloaded library
are not invalidated. Therefore, the programmer must ensure that the program
does not reference symbols in an unloaded library as undefined behavior
will result. In general, this routine is recommended only for experienced
programmers.

8-32 Shared Library Management Routines

Declaring an Initializer for a Shared Library
A shared library can have an initialization routine-known as an initializer­
that is called when the shared library is loaded or unloaded. Typically, an
initializer is used to initialize a shared library's data when the library is loaded.
The initializer is called for libraries that are loaded implicitly (at program
startup) or explicitly (via sh1_1oad).

When calling initializers for implicitly loaded libraries, the dynamic loader
waits until all libraries have been loaded before calling the initializers. On
Series 700/800, it calls the initializers in depth-first order-that is, the
initializers are called in the reverse order in which the libraries are searched for
symbols. On Series 300/400, it calls the initializers in the same order in which
the libraries are searched for symbols. On both architectures, all initializers are
called before the main program begins execution.

When calling the initializer for an explicitly loaded library, the dynamic
loader waits until any dependency libraries (available on Series 700/800 only)
are loaded before calling the initializers. As with implicitly loaded libraries,
initializers are called in depth-first order on Series 700/800, and in the library
search order on Series 300/400.

Note that initializers can be disabled for explicitly loaded libraries via the
BIND_NOSTART flag to sh1_1oad; see "Explicitly Loading a Shared Library".

Declaring the Initializer

To declare the name of the initializer, use the +1 linker option when creating
the shared library. In addition, the shared library must reference the initializer.

The + I Linker Option

The syntax of the +1 option is:

+ I initializer

initializer is the initializer's name. (On Series 300/400 systems, be sure to
prefix the name with an underscore.) For example, to create a shared library
named 1ibfoo. sl that uses an initializer named ini t_foo, use this linker
command line on Series 700/800:

Shared Library Management Routines 8·33

8

8

$ 1d -b -0 1ibfoo.s1 1ibfoo.o +1 init_foo

On Series 300/400, use this command line:

$ 1d -b -0 1ibfoo.s1 1ibfoo.o +1 _init_foo

Referencing the Initializer from the Shared Library

Note that it is not sufficient to use + I to declare the initializer; the library
must also contain a reference to the initializer. The actual definition of the
initializer can appear in the shared library or in the main program.

For instance, suppose ini t_foo is defined in 1ibfoo. sl in the preceding
example. To ensure that ini t_foo is registered as the initializer, you could
include the following line in the library's source:

void (*init_foo_ptr)() = init_foo;

If, on the other hand, ini t_foo is defined outside the library (say, in the main
program), you would need to declare init_foo as an external symbol:

extern void init_foo();
void (*init_foo_ptr)() = init_foo;

The Default Initializer
(Series 300/400 Only)

On Series 300/400 systems, if a routine named _1N1T1AL1ZER is referenced in
the shared library, it is assumed to be the initializer for the shared library, and
no +1 option is required to declare it. However, for compatibility reasons, it is
probably best to always use + I __ 1N1T1AL1ZER to declare such initializers.

8-34 Shared Library Management Routines

Initializer Syntax

void initializerC sh1_ t handle,
int loading)

initializer The name of the initializer as specified with the +1 linker option.

handle The initializer is called with this parameter set to the handle of
the shared library for which it was invoked.

loading The initializer is called with this parameter set to -1 (true) when
the shared library is loaded and 0 (false) when the library is
unloaded.

Example: An Initializer for Each Library

One way to use initializers is to define a unique initializer for each library. For
instance, Figure 8-8 shows the source code for a library named 1ibfoo. sl that
contains an initializer named ini t_foo.

Shared Library Management Routines 8·35

8

8

Note The examples shown in this section are all for Series 700/800
computers. The examples will also work on Series 300/400 if
you prefix all symbol names with an underscore.

#include <stdio.h>
#include <dl.h>

/*
* This is the local initializer that is called ~hen the libfoo.sl
* is loaded and unloaded:
*/

void init_foo(shl_t hndl, int loading)
{

}

if (loading)
printf("libfoo loaded\n");

else
printf("libfoo unloaded\n");

void (*init_ptr)() = init_foo; /* must reference initializer */

float in_to_cm(float in)
{

return (in * 2.54);
}

float gal_to_l(float gal)
{

return (gal * 3.79);
}

float oz_to_g(float oz)
{

return (oz * 28.35);
}

/* convert inches to centimeters */

/* convert gallons to litres */

/* convert ounces to grams */

Figure 8-8. C Source for libfoo.sl

Note that the reference "void (*ini t_ptr) = ini t_foo;" ensures that
ini t_foo is registered as the initializer. Here are the commands used to create
1ibfoo. sl on a Series 700/800 system:

$ cc -Aa -c +z 1ibfoo.c
$ 1d -b -0 1ibfoo.s1 +1 init_foo libfoo.o

8-36 Shared Library Management Routines

To use this technique with multiple libraries, each library should have a unique
initializer name. Figure 8-9 shows an example program that loads and unloads
1ibfoo. 81, and Figure 8-10 shows the output of running this program.

#include <stdio.h>
#include <dl.h>
maine)
{

}

float (*in_to_cm) (float) , (*gal_to_l) (float) , (*oz_to_g)(float);
shl_t hndl_foo;
/*

* Load libunits.sl and find the required symbols:
*/

if ((hndl_foo = shl_load("libfoo.sl", BIND_IMMEDIATE, 0)) == NULL)
perror("shl_load: error loading libunits.sl"), exit(l);

if (shl_findsym(&hndl_foo, "in_to_cm", TYPE_PROCEDURE, (void *) &in_to_cm))
perror("shl_findsym: error finding in_to_cm"), exit(l);

if (shl_findsym(&hndl_foo, "gal_to_l", TYPE_PROCEDURE, (void *) &gal_to_l))
perror("shl_findsym: error finding gal_to_l"), exit(l);

if (shl_findsym(&hndl_foo, "oz_to_g", TYPE_PROCEDURE, (void *) &oz_to_g))
perror("shl_findsym: errror finding oz_to_g"), exit(l);

/*
* Call routines from libunits.sl:
*/

printf("1.0in = %5.2fcm\n", (*in_to_cm) (1.0));
printf("1.0gal = %5.2fl\n", (*gal_to_l)(1.0));
printf("1.0oz = %5.2fg\n", (*oz_to_g)(1.0));
/*

* Unload the library:
*/

shl_unload(hndl_foo);

Figure 8·9. C Source for testlib

libfoo loaded
1.0in = 2.54cm
1. Ogal = 3. 791
1. Ooz = 28. 35g
libfoo unloaded

Figure 8·10. Output of testlib

Shared Library Management Routines 8·37

8

8

Example: A Common Initializer for Multiple Libraries

Rather than have a unique initializer for each library, libraries could have one
initializer that calls the actual initialization code for each library. To use this
technique, each library declares and references the same initializer (for example,
_INITIALIZER), which calls the appropriate initialization code for each library.

This is easily done by defining load and unload functions in each library.
When _INITIALIZER is called, it uses shl_findsym to find and call the load
or unload function (depending on the value of the loading flag). Figure 8-11
shows the source for such an _INITIALIZER function.

#include <dl.h>
/*
* Global initializer used by shared libraries that have registered it:
*/

void _INITIALIZER(shl_t hand, int loading)
{

void (*load_unload)();

if (loading) /* find the lib's load function */
shl_findsym(&hand, "load", TYPE_PROCEDURE, (void *) &load_unload);

else /* find the lib's unload function */
shl_findsym(&hand, "unload", TYPE_PROCEDURE, (void *) &load_unload);

/* call the function */
}

Figure 8-11. C Source for _INITIALIZER (file init.c)

8-38 Shared Library Management Routines

Figure 8-12 and Figure 8-13 show the source for two shared libraries that have
registered _INITIALIZER.

#include <stdio.h>
#include <dl.h>
void loadO
{

printf("libunits.sl loaded\n");
}

void unloadO
{

printf("libunits.sl unloaded\n");
}

extern void _INITIALIZER();
void (*init_ptr)() = _INITIALIZER;

float in_to_cm(float in)
{

return (in * 2.54);
}

float gal_to_l(float gal)
{

return (gal * 3.79);
}

float oz_to_g(float oz)
{

return (oz * 28.35);
}

/* called after libunits.sl loaded */

/* called after libunits.sl unloaded */

/* must reference initializer */

/* convert inches to centimeters */

/* convert gallons to litres */

/* convert ounces to grams */

Figure 8-12. C Source for Iibunits.sl

Shared Library Management Routines 8-39

8

8

#include <stdio.h>
void load()
{

printf("libtwo.sl loaded\n");
}

void unloadO
{

1* called after libtwo.sl loaded *1

1* called after libtwo.sl unloaded *1

printf("libtwo.sl unloaded\n");
}

extern void _INITIALIZER();
void (*init_ptr)() = _INITIALIZER;

void foo()
{

printf("foo called\n");
}

void bar()
{

printf("bar called\n");
}

Figure 8·13. C Source for libtwo.sl

Here are the commands used to build these libraries:

$ cc -Aa -c +z libunits.c
$ ld -b -0 libunits.sl +I INITIALIZER libunits.o
$ cc -Aa -c +z libtwo.c
$ ld -b -0 libtwo.sl +I _INITIALIZER libtwo.o

Figure 8-14 shows a program that loads these two libraries.

#include <stdio.h>
#include <dl.h>
maine)
{

void (*foo)(), (*bar)();

8·40 Shared Library Management Routines

}

1*
* Load libunits.sl and find the required symbols:
*1

if ((hndl_units = shl_Ioad(llibunits.sl", BIND_IMMEDIATE, 0)) == NULL)
perror("shl_load: error loading libunits.sl") , exit(l);

if (shl_findsym(&hndl_uni ts, II in_ to_cm", TYPE_PROCEDURE, (void *) &in_ to_cm))
perror(lIshl_findsym: error finding in_to_cm"), exit(l);

if (shl_findsym(&hndl_units, "gal_to_l", TYPE_PROCEDURE, (void *) &gal_to_l))
perror(lIshl_findsym: error finding gal_to_l"), exit(l);

if (shl_findsym(&hndl_units, "oz_to_g", TYPE_PROCEDURE, (void *) &oz_to_g))
perror(lIshl_findsym: errror finding oz_to_g"), exit(l);

1*
* Load libtwo.sl and find the required symbols:
*1

if ((hndl_two = shl_Ioad(llibtwo.sl", BIND_IMMEDIATE, 0)) == NULL)
perror("shl_load: error loading libtwo.sl") , exit(l);

if (shl_findsym(&hndl_two, "foo", TYPE_PROCEDURE, (void *) &foo))
perror(lIshl_findsym: error finding foo") , exit(1);

if (shl_findsym(&hndl_two, "bar", TYPE_PROCEDURE, (void *) &bar))
perror(lIshl_findsym: error finding bar") , exit(1);

1*
* Call routines from libunits.sl:
*1

printf("l.0in
printf("l.0gal
printf("l.00z
1*

* Call routines
*1

(*foo) ();
(*bar)();
1*

%5.2fcm\n", (*in_to_cm)(1.O));
%5.2fl\n", (*gal_to_I)(1.O));
%5. 2fg\n", (*oz_ to_g) (1. 0)) ;

from libtwo.sl:

* Unload the libraries so we can see messages displayed by initializer: 8
*1

shl_unload(hndl_units);
shl_unload(hndl_two);

Figure 8-14. C Source for testlib2

Shared Library Management Routines 8-41

8

Here is the compiler command used to create the executable testIib2:

$ cc -Aa -WI,-E -0 testIib2 testIib2.c init.c -dId

Note that the -WI, -E option is required to cause the linker to export all
symbols from the main program. This allows the shared libraries to find the
_INITIALIZER function in the main executable.

Finally, Figure 8-15 shows the output from running testIib2.

libunits.sl loaded
libtwo.sl loaded
1.0in = 2.54cm
1.0gal = 3.791
1.00z = 28.35g
foo called
bar called
libunits.sl unloaded
libtwo.sl unloaded

Figure 8·15. Output of testlib2

8·42 Shared Library Management Routines

9
Standard Input/Output Library Routines

This chapter describes how to use standard input/output library routines-that
is, routines that are designated as section "3S" in the HP- UX Reference. The
standard input/output library is a collection of routines that provides efficient
and portable input/output services for most C programs. The standard
input/ output library is available on each system that supports C, so programs
that confine their system interactions to its facilities can be transported from
one system to another essentially without change. Specifically, this chapter
describes:

• an overview of standard input/output routines

• input/output to standard input (stdin) and standard output (stdout)

• input/output to strings

• input/output to ordinary files

• stream status and control routines

• inter-process communication

All the examples in this chapter are written in C. Nevertheless, these routines
can be called from other languages, although this normally isn't necessary as
each language has an extensive set of input/output routines. For details on
calling C library routines from other languages, refer to the HP-UX Portability
Guide.

Standard Input/Output Library Routines 9-1

9

Overview of Input/Output

To call standard input/output routines, a C program must #include the
header file <stdio .h>:

#include <stdio.h>

This file contains function prototypes and type definitions required for standard
input/output routines.

In HP -UX terminology, files are often referred to as streams. Each strealn has
an associated buffer, through which input or output data is passed. vVhen a
program writes data to a stream (for example, using the fprintf routine), the
data is actually passed to the buffer. The data can then be flushed frorn the
buffer. Flushing is usually performed automatically by standard input/output
routines, but sometimes you might want greater control over flushing; this is
accomplished through stream status and control routines.

Before reading or writing data to a stream, a program Inust open it. When a
program begins executing, HP- UX automatically opens three streanlS for the
program: standard input, standard output, and standard error. These files are
referred to as stdin, stdout, and stderr, respectively.

Typically, stdin corresponds to terminal keyboard input; stdout corresponds
to terminal screen output; and stderr is used for displaying error messages to
the terminal screen. However, all of these can be redirected to or frorn other
sources, as described in the Using HP- UK with HP Vue.

The files stdin, stdout, and stderr are different from ordinary files in that
they store small amounts of data that exists only until it is read or written.
(One exception is that characters can be "pushed back" into the input stream,
described later in this chapter.) Another difference is that stdin is a read-only
file; a program cannot write to stdin. Similarly, a stdout and stderr are
write-only files; they cannot be read.

By default, the buffers used with stdin and stdout are _DBUFSIZ bytes long,
where _DBUFSIZ is a constant, defined in <stdio. h> as 8192. In fact, all fully
buffered files use a buffer _DBUFSIZ bytes in length, by default. In contrast,

9 stderr is not buffered; data is transferred to stderr one byte at a time. Due
to terminal driver characteristics, data typed at the keyboard is not sent to
stdin until (Return) (or its equivalent) is pressed.

9-2 Standard Input/Output Library Routines

A program is not limited to using only the standard input and output streams.
A program can also open ordinary text files for reading, writing, or both at
the same time. Directories can also be opened, but only for reading. These
features are discussed later in this chapter. The next section discusses the use
of routines that work with stdin and stdout; stderr is described later.

Input/Output Using stdin and stdout

This section describes three pairs of input / output routines that interact with
stdin and stdout. They are:

• getchar and putchar for single-character input/output

• gets and puts for string input/output

• scanf and printf for formatted input/output of all types

Single-Character Input/Output

This section describes the two basic input and output routines, getchar and
putchar. getchar is a macro defined in <stdio .h> which reads one character
from stdin. Similarly, putchar is also a macro defined in <stdio .h>. putchar
writes one character on stdout.

As an example, consider the following program, which simply reads stdin and
echoes whatever it finds to stdout. The program terminates when it receives
an at-sign (@) from stdin.

#include <stdio.h>
mainO
{

}

int c;

while((c = getchar()) != '@')
putchar(c) ;

put char (, \n') ;

Standard Input/Output Library Routines 9-3

9

9

Why is c declared an int instead of a char? For most applications, char
works fine. In certain cases, however, sign extension, bit shifting, and similar
operations cause strange results with chars. Therefore, int is used here, and in
all following examples, to be safe.

The final putchar statement in the program is used to output a new-line so
that your shell prompt appears at the beginning of a new line, instead of at the
end of the last line of output. Type it in and give it a try! Remember that
your input is not available to the program until you press (RETURN)'

get char and put char are most useful in filters which are programs that accept
data and modify it in some way before passing it on. Suppose you want to
write a program which puts parentheses around each vowel encountered in the
input. It's easy to do with these routines:

#include <stdio.h>
maine)
{

int c;

while((c = getchar()) 1- '\n') {
if(vowel(c)) {

put char (, (') ;
putchar(c) ;
putchar(')');

}else
putchar(c);

}

vowel (c)
char c;
{

}

if (c== , a' I I c==' A ' I I c== , e' I I c==' E' I I c== , i' I I c== , I '

I I c=='o' I I c=='O' I I c=='u' I I c=='U')
return(1);

else
return(O);

9-4 Standard Input/Output Library Routines

The vowel test is placed in the function vowel, since it tends to clutter up the
main program. This program terminates when it encounters a new-line.

String Input/Output

The gets function reads a string from stdin and stores it in a character
array. The string is terminated by a new-line in the input, which gets replaces
with a NULL character in the array. Its companion function, puts, copies a
string from a character array to stdout. The string is terminated by a NULL
character in the array, which puts replaces with a new-line in the output.

The simple "echo" program from the last section can be rewritten using gets
and puts:

#include <stdio.h>
mainO
{

}

char line [80] , *gets();

while((gets(line)) != NULL)
puts(line);

This program, as written, runs forever. To terminate it, press ~) (or
its equivalent). Later, when string comparison and string length routines
are introduced, an intelligent termination condition can be written for this
program.

Formatted Input/Output with scanf

scanf is the formatted-input library routine. Its syntax is:

scanf (format, [item [,item] ...]);

where format is a character pointer to a character string (or the character
string itself enclosed in double quotes), and item is the address of a variable.

format specifies the format of incoming data to be read from stdin, and what
types of data are found there. format is composed of two elements: conversion
specifications and literal characters.

Standard Input/Output Library Routines 9-5

9

9

Conversion Specifications

A conversion specification is a character sequence which tells scanf how
to interpret the data received at that point in the input. For example, if a
conversion specification says "treat the next piece of data as a decimal integer" ,
then that data is interpreted and stored as a decimal integer.

In the format, a conversion specification is introduced by a percent sign (%),
optionally followed by an asterisk (*) (called the assignment suppression
character), optionally followed by an integer value (called the field width). The
conversion specification is terminated by a character specifying the type of data
to expect. These terminating characters are called conversion characters.

When a conversion specification is encountered in a format, it is matched
up with the corresponding item in the item list. The data formatted by
that specification is then stored in the location pointed to by that item.
For example, if there are four conversion specifications in a format, the first
specification is matched up with the first item, the second specification with
the second item, and so on.

The number of conversion specifications in the format is directly related to
the number of items specified in the item list. With one exception, there
must be at least as many items as there are conversion specifications in the
format. If there are too few items in the item list, an error occurs; if there
are too many, the excess items are simply ignored. The one exception occurs
when the assignment suppression character (*) is used. If an asterisk occurs
immediately after the percent sign (before the field width, if any), then the
data formatted by that conversion specification is discarded. No corresponding
item is expected in the item list. This is useful for skipping over unwanted data
in the input.

9-6 Standard Input/Output Library Routines

Conversion Characters

There are eight conversion characters available. Three of them are used to
format integer data, three are used to format character data, and two are used
for floating-point data.

The integer conversion characters are:

d A decimal integer is expected.
° An octal integer is expected.
x A hexadecimal integer is expected.

The character conversion characters are:

c A single character is expected.
s A character string is expected.
[A character string is expected.

The floating-point conversion characters are:

e, f A floating-point number is expected.

Integer Conversion Characters

The d, 0, and x conversion characters read characters from stdin until an
inappropriate character is encountered, or until the number of characters
specified by the field width, if given, is exhausted (whichever comes first).

For d, an inappropriate character is any character except +, -, and 0 through
9. For 0, an inappropriate character is any character except +, -, and 0
through 7. For x, an inappropriate character is any character except +, -,
o through 9, and the characters a - f and A through F. Note that negative
octal and hexadecimal values are stored in their 2's complement form with sign
extension. Thus, they may look unfamiliar if you print them out later (using
printf - see below).

These integer conversion characters can be capitalized or preceded by a
lower-case L (1) to indicate that a long int should be expected rather
than an int. They can also be preceded by h to indicate a short int. The
corresponding items in the item list for these conversion characters must be
pointers to integer variables of the appropriate length.

Standard Input/Output Library Routines 9-7

9

Character Conversion Characters

The c conversion character reads the next character from stdin, no matter
what that character is. The corresponding item in the item list must be a
pointer to a character variable. If a field width is specified, then the number of
characters indicated by the field width are read. In this case, the corresponding
item must refer to a character array large enough to hold the characters read.

Note that strings read using the c conversion character are not automatically
terminated with a NULL character in the array. Since all C library routines
which utilize strings assume the existence of a NULL terminator, be sure you
add the NULL character yourself. Otherwise, library routines are not able to
tell where the string ends, and you'll get puzzling results.

The s conversion character reads a character string from stdin which is
delimited by one or more space characters (blanks, tabs, or new-lines). If
no field width is given, the input string consists of all characters from the
first non-space character up to (but not including) the first space character.
Any initial space characters are skipped over. If a field width is given, then
characters are read, beginning with the first non-space character, up to the first
space character, or until the number of characters specified by the field width
is reached (whichever comes first). The corresponding item in the item list
must refer to a character array large enough to hold the characters read, plus a
terminating NULL character which is added automatically.

An important point to remember about the s conversion character is that it
cannot be made to read a space character as part of a string. Space characters
are always skipped over at the beginning of a string, and they terminate
reading whenever they occur in the string. For example, suppose you want to
read the first character from the following input line consisting of 10 spaces
followed by "Hello, there!" (the vertical bar shows the beginning of the line but
is not included in the text string):

Hello, there!

If you use %c, you get a space character. However, if you use is, you get "H"
(the first non-space character in the input).

9 The [conversion character also reads a character string from stdin. However,
this character should be used when a string is not to be delimited by
space characters. The left bracket is followed by a list of characters, and is
terminated by a right bracket. If the first character after the left bracket is a

9·8 Standard Input/Output Library Routines

circumflex C), then characters are read from stdin until a character is read
which matches one of the characters between the brackets. If the first character
is not a circumflex, then characters are read from stdin until a character not
occurring between the brackets is found. The corresponding item in the item
list must refer to a character array large enough to hold the characters read,
plus a terminating NULL character which is added automatically.

The three string conversion characters provide you with a complete set of
string-reading capabilities. The c conversion character can be used to read
any single character, or to read a character string when the exact number
of characters in the string is known beforehand. The s conversion character
enables you to read any character string which is delimited by space characters,
and is of unknown length. Finally, the [conversion character enables you
to read character strings that are delimited by characters other than space
characters, and which are of unknown length.

Floating-Point Conversion Characters

The e and f conversion characters read characters from stdin until an
inappropriate character is encountered, or until the number of characters
specified by the field width, if given, is exhausted (whichever comes first).

Both e and f expect data in the following form: an optionally signed string of
digits (possibly containing a decimal point), followed by an optional exponent
field consisting of an E or e followed by an optionally signed integer. Thus, an
inappropriate character is any character except +, -, ., 0 through 9, E, or e.

These floating-point conversion characters can be capitalized, or preceded by
a lower-case L 1), to indicate that a double value is expected rather than a
float. The corresponding items in the item list for these conversion characters
must be pointers to floating-point variables of the appropriate length.

Literal Characters

Any characters included in the format which are not part of a conversion
specification are literal characters. A literal character is expected to occur in
the input at exactly that point. Note that since the percent sign is used to
introduce a conversion specification, you must type two percent signs ("%%") 9
to get a literal percent sign.

Standard Input/Output Library Routines 9-9

9

Examples. Suppose that you have to read the following line of data:

NAME: Joe Kool; AGE: 27; PROF: Elec Engr; SAL: 39550

To get the vital data, you must read two strings (containing spaces), and two
integers. You also have data that should be ignored, such as the selnicolons
and the identifying strings ("NAME:"). How do you go about reading this?

First, note that the identifying strings are always delimited by space characters.
This suggests use of the s conversion character to read them. Second, you
can never know the exact sizes of the NAME and PROF fields, but note that
they are both terminated by a semicolon. Thus, you can use [to read them.
Finally, the d conversion character can be used to read both integers.

The following code fragment successfully reads this data:

char name[40], prof[40];
int.age, salary;

scanf (t1%*s%* [] % [~ ;] %*c%*s%d%*c%*s%* [] % [~ ;] %*c%*s%d tl
, \

name,&age,prof,&salary);

For easier understanding, break the format into pieces:

% [~;]

%d

Reads the string "NAME:". Since an asterisk is given, the string is
simply read and discarded.

Gets rid of all blanks occurring between "NAME:" and the
employee's name. Note that this gets rid of one or more blanks,
giving the format some flexibility.

Reads all characters from the current character up to a semicolon,
and assigns the characters to the array name.

Gets rid of the semicolon left over after reading the name.

Reads the next identifying string, "AGE:", and discards it.

Reads the integer age given, and assigns it to age. The semicolon
after the age terminates %d, because that character is not
appropriate for an integer value. Note that the address of age is
given in the item list (&age) instead of the variable name itself. If
this is not done, a memory fault occurs at run time.

%*c Gets rid of the semicolon following the age.

9-10 Standard Input/Output Library Routines

%d

Reads the next identifying string, "PROF:", and discards it.

Removes all blanks between "PROF:" and the next string.

Reads all characters up to the next semicolon, and assigns them to
the character array prof.

Gets rid of the semicolon following the profession string.

Reads the final identifying string, "SAL:", and discards it.

Reads the final integer and assigns it to the integer variable salary.
Again, note that the address of salary is given, not the variable name
itself.

Although somewhat confusing to read, this format is quite flexible, since it
allows for multiple spaces between items and varying identifying strings (that
is, "PROFESSION:" could be specified instead of "PROF:"). The following
scanf call reads the same data, but is much less flexible:

scanfcr'NAME: %[~;J; AGE:%d; PROF: %[~;J; SAL: %dtJ,\
name,&age,prof,&salary);

Here, literal characters are used to exactly match the characters in the input
line. This works fine if you can be sure that the data always appears in this
form. If one typing variation is made, however, such as typing "SALARY:"
instead of "SAL:" , the scanf fails.

scanf waits for more data as long as there are unsatisfied conversion
specifications in the format. Thus, a scanf call like

scanf cr'%f%f%ftJ, &float1, &float2, &float3);

where floatl , float2, and float3 are all variables of type float, allows you to
enter data in several ways. For example,

14.77 29.8 13.0

is read correctly by scanf, as is

14.77 (RETURN)

29.8 (RETURN)

13.0 (RETURN)

U sing decimal points in floating-point data is recommended whenever
floating-point variables are being read. However, scanf converts integer data

Standard Input/Output Library Routines 9·11

9

9

to floating-point if the conversion specification so demands. Thus, "13.0" in the
previous example could have been entered as "13" with no side effects.

As a final example, suppose the following code fragment is used to read the
input string "abcdef137 d14. 77ghijklmnop":

char arr1[10] , arr2[10] , arr3[10], arr4[10];
float float 1;
scanf(I1%4c%[~3]%6c%f%[ghijkl]l1,arr1,arr2,arr3,&float1,arr4);

To determine what values are stored in the variables listed, break up the
format into separate conversion specifications, and see what data is demanded
by each (as done before):

%4c Reads four characters and assigns them to arr1. Thus, the string
"abed" is assigned to arr1. Note that an extra character, NULL,
is appended to the end of the string.

% [~3] Reads all characters from the current character up to the
character "3". This assigns "efl", along with an added NULL
character, to the array arr2.

%6c Reads the next six characters and stores them in the array arr3.
Thus, "37 d14" is assigned to arr3, terminated by a NULL
character.

%f Reads a floating-point value which, due to the lack of a field
width, is terminated by the first "inappropriate" character. Thus,
the value". 77" is assigned to float 1.

% [ghij kl] Reads all characters up to the first character not occurring
between the brackets. This stores the string "ghijkl", along with
an appended NULL character, in the array arr4.

Note that there are some characters left in stdin that were not read. What
happens to these characters? Any characters left unread in the input stream
remain there. This can cause unexpected errors. Suppose that, later in the
above program fragment, you want to read a string from stdin using %s.
No matter what string you type in as input, it won't be read because the %s
conversion specification is satisfied by reading "mnop" -the characters left over
frOIIl the previous read operation! To solve this, always be sure you have read
the entire current line of input before attempting to read the next. To fix this

9-12 Standard Input/Output Library Routines

in the previous scanf example, just add a %*s conversion specification at the
end of the format. This reads and discards the left-over characters.

Formatted Output with printf

For output, printf is the companion routine to scanf. It enables you to
output data in formatted form. Its syntax is the same as scanf:

printf (format, [item [, item] ...]);

format is a pointer to a character string (or the character string itself enclosed
in double quotes) which specifies the format and content of the data to be
printed. Each item is a variable or expression specifying the data to print.

printf's format is similar in many respects to that of scanf. It is made up of
conversion specifications and literal characters. As in scanf, literal characters
are all characters that are not part of a conversion specification. Literal
characters are printed on stdout exactly as they appear in the format.

Literal Characters

Included in the list of literal characters are escape sequences, which are
sequences beginning with a backslash (\) which stand for other characters.
The following list shows the escape sequences defined for printf (and scanf,
though less frequently used):

\ b Backspace.

\n Newline (carriage-return/line-feed sequence); output begins at the
beginning of a new line.

\r Carriage-return without a line-feed; output begins at the beginning of
the current line (data already printed on that line is over-printed).

\t Tab.

\ \ Literal backslash.

\nnn The character represented by the octal number nnn in the ASCII
character set. nnn must begin with a zero. For example, \007 is an
ASCII BELL character, which beeps the terminal bell (if the bell
function exists on the terminal).

Standard Input/Output Library Routines 9-13

9

9

Conversion Specifications

A conversion specification for printf is very similar to that of scanf, but is a
bit more complicated. The correct sequence for the components of a conversion
specification are

1. a percent sign (%), which signals the beginning of a conversion specification

2. zero or more flags, which affect the way a value is printed (see below)

3. an optional decimal digit string which specifies a minimum field width

4. an optional precision consisting of a dot (.) followed by a decimal digit
string

5. an optional 1 (lowercase L) or h, indicating a long or short integer argument

6. a conversion character, which indicates the type of data to be converted and
printed

Note To output an actual percent sign character, you must type two
percent signs ("%%").

As in scanf, a one-to-one correlation must exist between each specification
encountered and each item in the item list.

The available flags are:

Causes the data to be left-justified within its output field. Normally,
the data is right-justified.

+ Causes all signed data to begin with a sign (+ or -). Normally, only
negative values have signs.

blank Causes a blank to be inserted before a positive signed value. This

is used to line up positive and negative values in columnar data.
Otherwise, the first digit of a positive value is lined up with the
negative sign of a negative value. If the "blank" and "+" flags both
appear, the "blank" flag is ignored.

Causes the data to be printed in an "alternate form". Refer to the
descriptions of the conversion characters below for details concerning
the effects of this flag.

9-14 Standard Input/Output Library Routines

A field width, if specified, determines the minimum number of spaces allocated
to the output field for the particular piece of data being printed. If the data
happens to be smaller than the field width, the data is blank-padded on the
left (or on the right, if the - flag is specified) to fill the field. If the data is
larger than the field width, the field width is simply expanded to accommodate
the data. An insufficient field width never causes data to be truncated. If no
field width is specified, the resulting field is made just large enough to hold the
data.

The precision is a value which means different things depending on the
conversion character specified. Refer to the descriptions of the conversion
characters below for more details.

A field width or precision can be replaced by an asterisk (*). If so, the next
item in the item list is fetched, and its value is used as the field width or
precision. The item fetched must be an integer.

Conversion Characters

Conversion character specifies the type of data to expect in the item list, and
causes the data to be formatted and printed appropriately. Integer conversion
characters include:

d An integer item is converted to signed decimal. The precision, if given,
specifies the minimum number of digits to appear. If the value has fewer
digits than that specified by the precision, the value is expanded with
leading zeros. The default precision is one (1). A null string results if a
zero value is printed with a zero precision. The # flag has no effect.

u An integer item is converted to unsigned decimal. The effects of the
precision and the # flag are the same as for d.

o An integer item is converted to unsigned octal. The # flag, if specified,
causes the precision to be expanded and the octal value is printed with
a leading zero (a C convention). The precision behaves the same as in d
above, except that printing a zero value with a zero precision results in
only the leading zero being printed if the # flag is specified.

x An integer item is converted to hexadecimal. The letters abcdef are
used in printing hexadecimal values. The # flag, if specified, causes the
precision to be expanded, and the hexadecimal value is printed with a
leading "Ox" (a C convention). The precision behaves as in d above,

Standard Input/Output Library Routines 9·15

9

9

except that printing a zero value with a zero precision results in only
the leading "Ox" being printed if the # flag is specified.

X Same as x above, except that the letters ABCDEF are used to print the
hexadecimal value, and the # flag causes the value to be printed with a
leading OX.

The character conversion characters are as follows:

c The character specified by the char item is printed. The precision is
meaningless, and the # flag has no effect.

s The string pointed to by the character pointer item is printed. If a
precision is specified, characters from the string are printed until the
number of characters indicated by the precision has been reached, or
until a NULL character is encountered, whichever comes first. If the
precision is omitted, all characters up to the first NULL character are
printed. The # flag has no effect.

The floating-point conversion characters are:

f The float or double item is converted to decimal notation in style f­
that is, in the form:

[-] ddd. ddd

where the number of digits after the decimal point is equal to the
precision. If no precision is specified, six (6) digits are printed after
the decimal point. If the precision is explicitly zero, the decimal point
is eliminated entirely. If the # flag is specified, a decimal point always
appears, even if no digits follow the decimal point.

e The float or double item is converted to scientific notation in style e;
that is, in the form:

[-] d. ddd e±ddd

where there is always one digit before the decimal point. The number of
digits after the decimal point is equal to the precision. If no precision is
given, six (6) digits are printed after the decimal point. If the precision
is explicitly zero, the decimal point is eliminated entirely. The exponent
always contains exactly three digits. If the # flag is specified, the result

9-16 Standard Input/Output Library Routines

always contains a decimal point, even if no digits follow the decimal
point.

E Same as e above, except that E is used to introduce the exponent
instead of e (style E).

g The float or double item is converted to either style f or style e,
depending on the size of the exponent. If the exponent resulting from
the conversion is less than -4 or greater than the precision, style e is
used. Otherwise, style f is used. The precision specifies the nU111ber
of significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if it is followed by a digit. If the # flag is
specified, the result always has a decimal a point, even if no digits follow
the decimal point, and trailing zeros are not removed.

G Same as the g conversion above, except that style E is used instead of
style e.

The items in the item list can be variable names or expressions. Note that,
with the exception of the s conversion, pointers are not required in the item
list (contrast this with scanf's item list). If the s conversion is used, a pointer
to a character string must be specified.

Examples

Here are some examples of printf conversion specifications and a brief
description of what they do:

%d Output a signed decimal integer. The field width is just large
enough to hold the value.

%-*d Output a signed decimal integer. The left-justify flag (-) and the
blank flag are specified. The asterisk causes a field width value to be
extracted from the item list. Thus, the item specifying the desired
field width must occur before the item containing the value to be
converted by the d conversion character.

%+7.2f Output a floating-point value. The + flag causes the value to have
an initial sign (+ or -). The value is right-justified in a 7-column
field, and has exactly two digits after the decimal point. This
conversion specification is ideal for a debit / credit column on a

Standard Input/Output Library Routines 9-17

9

9

finance worksheet. (If the + sign is not necessary, use the blank flag
instead.)

Consider the following program, which reads a number from stdin, and prints
that number, followed by its square and its cube:

#include <stdio.h>
maine)
{

}

double x;

printf(IIEnter your number: ");
scanf(II%F II , &x);
printf(IIYour number is %g\nll, x);
printf(IIIts square is %g\nlts cube is %g\nll, x*x, x*x*x);

The g conversion character is used so that the decision about whether or not to
use an exponent is automated. Note that the item list contains expressions to
calculate x squared and x cubed. Also note that the address of the variable is
required in order to read a value for it, but printing requires the variable name
itself.

9-18 Standard Input/Output Library Routines

The following program accepts a decimal integer, then prints the number, its
square, and its cube in decimal, octal, and hexadecimal:

#include <stdio.h>
maine)
{

long n, n2, n3;

1* get value *1

printf (t'Enter your number: ");
scanf(I%D", &n);

1* print headings *1

printf(lI\n\n Decimal

1* do the computation *1

n2 = n * n;
n3 = n * n * n;
printf(lIn itself: %71d %910
printf(lIn squared: %71d %910
printf(lIn cubed: %71d %910

}

Octal Hexadecimal\n");

%61x\n" , n, n, n);
%61x\n" , n2, n2, n2);
%61x\n", n3, n3, n3);

Standard Input/Output Library Routines 9-19

9

9

Strings are especially easy to manipulate using printf. The following simple
program illustrates this:

#include <stdio.h>
maine)
{

}

char first [15] , last[25];

printf("Enter your first and last names: II);
scanf ("%s%s", first, last);
printf("\nWell, hello %s, it's good to meet you!\nll, first);
printf("%s, huh? Are you any relation to that famous\n", last);
printf("computer programmer, Mortimer Zigfelder %s?\nll, last);
printf (t'No, sorry, that was my mistake. I was thinking of\nll);
printf (tID' %s, not %s. \n", last, last);

This program shows how easily strings can be inserted in text. Try variations
of your own.

Input/Output from/to Strings
Two library routines, sscanf and sprintf, enable you to read data from a
string, and write data into a string. These routines behave identically to scanf
and printf, respectively, except that sscanf reads data from a character
string instead of from stdin, and sprintf writes data into a string instead of
on stdout.

Reading Data from a String

sscanf enables you to read data directly from a string. The syntax for an
sscanf call is

sscanf(string, format, [item [, item] ...]);

where string is the name of a character array containing the data to be read,
and format and item are familiar terms from the previous section. Thus, the

9-20 Standard Input/Output Library Routines

only difference between sscanf and scanf, is sscanf's string parameter from
which data is scanned.

The following program simply reads a string of your choosing from stdin,
stores it in the character array string, and prints out the first word of that
string:

#include <stdio.h>
mainO
{

char string [80] , word [25] , *gets();

/* get the string */

printf("Enter your string: ");
gets(string);

/* get the first word */

sscanf(string, "%Sll, word);
printf (tIThe first word is %s. \n", word);

}

However, sscanf is rarely used in this way. sscanf is; more often used as
a means of converting ASCII characters into other forms, such as integer or
floating-point values. For example, the following program uses sscanf to
implement a five-function calculator:

Standard Input/Output Library Routines 9-21

9

9

#include <stdio.h>
maine)
{

}

char line [80] , *gets(), op[4];
long nl, n2;
double argl, arg2;

printf cr'\n> "); /* print prompt (» and get input */
gets(line);

}

while(line[O] != 'q') {
sscanf(line, "%*s%s", op);
if(op[O] == '+') {

sscanf(line, "%F%*s%F", &argl, &arg2);
printf("Answer: %g\n\n", argl+arg2);

} else if(op[O] == '-') {
sscanf(line, "%F%*s%F", &argl, &arg2);
printf(t'Answer: %g\n\n", argl-arg2);

} else if(op[O] == '*') {
sscanf(line, "%F%*s%F", &argl, &arg2);
printf("Answer: %g\n\n", argl*arg2);

} else if(op[O] == 'I') {
sscanf (line, "%F%*s%fI', &argl, &arg2);
printf(t'Answer: %g\n\n", argl/arg2);

} else if(op[O] == '%') {
sscanf(line, "%D%*s%D", &nl, &n2);
while(nl >= n2)

nl -= n2;
printf("Answer: %ld\n\n", nl);

} else
printf("Can't recognize operator: %s\n\n", op);

printf cr' > II);
gets(line);

9-22 Standard Input/Output Library Routines

The calculator program accepts input lines having the form

value + value addition
value - value subtraction

value * value multiplication
value / value division
value % value remainder

where value is any number, and any operator symbol shown can be used for the
corresponding type of operation. All functions except remainder are handled
internally in floating-point, but values for these functions can be typed with or
without a decimal point. Values for the remainder function must not have a
decimal point. There must be at least one space between each value and the
operator.

Note the use of sscanf in this program. The entire input line is read using
gets. Then, the different parts of the input line are read from line using
sscanf. Notice that the input line is stored as an ASCII string in line, but
portions of it are converted to floating-point or integer values, depending on
the operator.

Examples of valid entries are

15.778 * 3.89
27 % 8
17 + 39.72
etc.

The program terminates when it reads a line beginning with q, such as "quit".

Two things differ between reading data from stdin and reading data from a
string: First, remember that when you read data from stdin, the data no
longer exists in stdin. This is not true for a string. Also, since the data is
stored in a string, it is always there, even if that data has been read several
times. Second, since the data read from stdin disappears as you read it,
the next read operation from stdin always begins where the previous read
operation terminated. This is not true when you read from a string using
sscanf. Each successive read operation begins at the beginning of the string.
Thus, if you want to read five words from a string stored in a character array,
you must read them in a single sscanf call. If you try to read one word in five

Standard Input/Output Library Routines 9-23

9

9

separate sscanf calls, each call starts reading at the beginning of the string,
and you end up reading the same word five times.

Writing Data into a String

The sprintf routine enables you to write data into a character string. Its
syntax is:

sprintf (string, format, [item [, item] ... J);

string is the name of the character string into which the data is written.
format and item are familiar terms from the previous discussion of printf. In
fact, the only difference between sprintf and printf is that sprintf writes
data into a character array, while printf writes data on stdout.

The following program acts as a "formatter" for personal data. Suppose that
this program is used to provide a "friendly" user interface to gather personal
data. The data received is then reformatted into a string which is passed along
to another program, such as a data base maintainer. The string contains the
data entered by the user, but in a form using strict field widths for the various
pieces of data. The data base program requires these field widths in order for
the data to be processed correctly, but there is no reason to burden the user
with this requirement. This "formatter" program lets the user enter data in a
convenient form (without the fixed field restrictions imposed by the data base).

9-24 Standard Input/Output Library Routines

#include <stdio.h>
maine)
{

}

char name [31J, prof [31J, hdate[7J, curve[3J, string[81J;
char *format = 1I%30s%2d%30s%6ld%6s%2d%2s lJ ;
int age, rank;
long salary;

printf(lI\nName (30 chars max): II);
gets(name);

1* start asking *1

while (name [OJ ! = 'J') {

}

printf("Age: II);

scanf ("%d%*c t
" &age);

printf(IIJob title (30 chars max): II);
gets(prof);
printf("Sal ary (6 digits max, no comma): It);

scanf(IJ%D%*c ll , &salary);
printf(IIHire date (numerical MMDDYY): II);
gets(hdate);
printf(IIPercentile ranking (omit \11%%\11): II);
scanf(lJ%d%*c", &rank);
printf (IIPay curve: II);
gets(curve);

1* format string *1
sprintf(string,format,name,age,prof,salary,hdate,rank,curve);
printfC"\n%s\nll, string);

printf(lI\nName (30 chars max): II); 1* start next round *1
gets(name);

This program asks you questions to obtain typical company information such
as name, age, job title, salary, hire date, ranking, and pay curve. This data is
then packed into a 78-character string using sprintf. The string is printed
on your screen in this program, but in an actual working environment, this 9
string would probably be passed directly to the data base program. Note that
sprintf's format is specified as an explicit character pointer. When lengthy,

Standard Input/Output Library Routines 9-25

9

unchanging formats are used, this is often more convenient than typing the
entire format string, especially if the item list is long.

As an exercise, consider the scanf calls in the previous program. Notice that a
%*c conversion specification is included in the formats of the scanfs which are
reading integer values (age, salary, rank). Why is this necessary? If you aren't
sure, take the %*cs out of those formats, re-compile the program, run it, and
note its behavior. (Remember that a new-line character terminates the read
operation for %d and %D conversions, and leaves the new-line unread in stdin.)

Input/Output Using Ordinary Files

So far, you have been using library routines which can perform input/output
only by using stdin and stdout. This section introduces routines that enable
you to open existing ordinary files for reading, writing, or both, and to create
ordinary files. Routines that enable you to perform input/output to and from
ordinary files are also described.

Opening Ordinary Files

Before a file can be read from or written to, it must be opened. A file is opened
using the fopen library routine. The syntax of an fopen call is:

fop en (Ii lena me, type);

where filename is a character pointer to a character string specifying the
name of the file to be opened, and type is a character pointer to a one- or
two-character string specifying the input/output operation for which the file is
opened. The available types are:

r Opens the file for reading at the beginning of the file. The file must
already exist, or an error occurs.

Opens the file for writing at the beginning of the file. If the file exists,
its previous contents are destroyed. If the file does not exist, it is
created.

a Opens the file for writing at the end of the file (appends data to the end
of the file). If the file does not exist, it is created for writing.

9-26 Standard Input/Output Library Routines

r+ Opens the file for both reading and writing, starting at the beginning of
the file. The file must already exist, or an error occurs.

w+ Opens the file for both reading and writing, starting at the beginning of
the file. If the file already exists, its previous contents are destroyed. If
the file does not exist, it is created.

a+ Opens the file for both reading and writing, starting at the end of the
file. If the file does not exist, it is created.

When a file is opened for an append operation (type a or a+), it is impossible
to overwrite the existing file contents. fseek can be used to reposition the file
pointer to any position in the file, but when output is written to the file, the
pointer is disregarded. When the append operation (which begins at the end of
the existing file) is completed, the file pointer is repositioned to the end of the
appended output.

In exchange for a filename and a type, fopen opens a "pathway" between your
program and the file. This "pathway" is called a stream. If you open the file
for reading, then the stream provides one-way data transfer from the file to
your program. If you open the file for writing, then data transfer flows from
your program to the file. Finally, if the file is opened for both reading and
writing, the resulting stream is bi-directional.

fopen also associates a buffer with the stream. This gives the stream the
ability to store a small amount of data. By default, the capacity of the buffer is
equal to _DBUFSIZ bytes, where _DBUFSIZ is a constant, defined in <stdio .h>
as 8192.

The buffer size can be increased, decreased, or set to zero by using setbuf or
setvbuf. If the buffer size is allowed to remain at default size, a maximum of
BUFSIZ bytes of data can be present on the stream at any given time. If the
buffer size is reduced to zero, then the stream can transfer only one byte at a
time.

When opening a file for both reading and writing (r+), be sure to use fflush
or f seek when switching from reads to writes (or vice versa) because,
otherwise, buffering can become corrupted. For example, if a program has
written to a file repeatedly and you want to start reading from the file at the 9
current file pointer, use fflush to flush the output buffer before reading.

Standard Input/Output Library Routines 9-27

Since fopen takes care of all the intricacies of building a stream and allocating
a buffer, all you need to know is how to find your end of the stream. fopen
provides you with this information by returning to you a value called a
file pointer (often called a stream pointer). A file pointer "points" to the
newly-created stream, and keeps track of where the next input/output
operation takes place (in the form of a byte offset relative to the beginning of
the associated buffer).

Once you have a file pointer in your possession, you need never refer to the
open file by its name again. A file pointer provides access to all the information
needed by other standard input/output routines to read from or write to the
file.

The following program fragment shows how the fopen routine is used:

#include <stdio.h>
maine)
{

}

FILE *fp;

fp = fopenC' /users/tom/bin/datafile tl
, t1r");

if(fp == NULL) {

}

printf("Can't open datafile. \n");
exit(1);

This fopen call, if successful, opens /users/tom/bin/datafile for reading. The
file pointer name returned by fopen is stored in fp. Note that fp's value is
checked to see if it is NULL. This is because fopen returns a NULL pointer
if the indicated file cannot be opened. It is good practice to check the value
of a file pointer because this is the only error indication facility that fopen
provides.

The previous example also introduces a new type declaration, FILE. The FILE
declaration is defined in <stdio. h>. In the example above, it defines fp as a

9 variable containing a file pointer. Note that explicit declarations of functions
returning file pointers is unnecessary because <stdio .h> declares all such
functions for you.

9·28 Standard Input/Output Library Routines

Before moving on, keep in mind that several things can stop you from
successfully opening a file. First, HP- UX limits the number of files
simultaneously open in a process (the limit for your system is specified in the
System Administrator Manual supplied with your system). Remember that
stdin, stdout, and stderr are automatically opened for you, so unless you
close these files, the maximum you can explicitly open is three fewer than
the system limit. Second, you must have permission to open the file for the
particular type you have specified (this permission is granted or denied by the
file's mode). Third, trying to open a non-existent file using type r or r+ always
fails. Fourth, if filename is specified incorrectly, is a non-existent directory
name, or contains an intermediate component that is not a directory, the open
fails. This is not a complete list, but gives you several common reasons why an
attempt to open a file might fail.

fclose

fclose flushes the buffer associated with the specified stream, and, if the
buffer was allocated automatically by the standard input/ output system, frees
the space allocated to that buffer. The stream is then closed, breaking the
connection between your file pointer and the stream.

You may wonder why some example programs in this chapter open files but
never explicitly close them. There are two reasons why this is permissible:

• First, all programs in this chapter that open files end with a call to exit.
The exit system call automatically performs an f close for every open file in
that process .

• Second, when a program is compiled with cc (or fe, or pc), an exit call is
automatically compiled into your code.

Keep in mind, however, that it is generally bad programming practice to rely
on the system to close files. A program that explicitly opens a file should
also explicitly close the file. If this is inconvenient, a program should at least
include an exit call at each termination point in the program.

Standard Input/Output Library Routines 9-29

9

9

Single-Character Input/Output

Now that you know how to open files and obtain file pointers, you have a whole
new set of input/output routines at your disposal, enabling you to perform all
kinds of input/output operations. In fact, there are about three times as many
available routines that utilize file pointers as there are routines that are limited
to stdin and stdout only!

In this section, only those routines that read or write one character at a time
are discussed. These routines are gete, pute, fgete, and fpute. gete and
pute are macros defined in <stdio .h> that respectively read and write a single
character on the specified stream. Syntax is as follows:

gete (stream) ;

pute (c, stream);

where stream is a file pointer obtained from fopen, and c is a variable of type
char (or int) indicating the character to write on the indicated stream.

9-30 Standard Input/Output Library Routines

Here is a simple version of the HP- UX cat command written using these
routines:

#inelude <stdio.h>
main(arge, argv)
int arge;
char *argv[J;
{

}

int c;
FILE *fp;

if(arge != 2) {

}

printf(IIUsage: cat file\nll);
exit(1);

fp = fopen(argv [1J, IIrll);
if(fp == NULL) {

}

printfC'Can't open %s. \nll, argv[1]);
exit(1);

while((e = gete(fp)) != EOF)
pute(e, stdout);

pute('\n', stdout);

exit(O);

This program accepts a single argument which is assumed to be the name of
a file whose contents are to be printed on the user's terminal. The specified
file is opened for reading, and the resulting file pointer fp is used in gete to
read a character from the file. Each character read is written on stdout using
pute (note that stdout, as well as stdin and stderr, are perfectly legal file
pointers). The reading and writing loop is terminated when the constant EOF
(defined in <stdio. h>) is returned from gete, indicating that the end of the
filesize has been reached. 9

Standard Input/Output Library Routines 9·31

9

Note that getc and putc can be made to behave exactly like the getchar and
putchar routines discussed earlier by specifying the appropriate file pointer. In
other words,

getc(stdin);

is identical to

getchar() ;

and

putc(c, stdout);

is identical to

putchar(c) ;

Thus, the putc call in the previous program could just as easily have been:

putchar(c);

without altering the behavior of the program. However, if the destination of
the data is somewhere other than the user's terminal, the flexibility of putc is
required. Take, for example, the following program, which is a simple version of
the HP-UX cp command:

9-32 Standard Input/Output Library Routines

#include <stdio.h>
main(argc, argv)
int argc;
char *argv [J ;
{

}

}

int c;
FILE *from, *to;

if(argc != 3) {

}

printf(ltUsage: cp fromfile tofile\nlt);
exit(1);

from = fopen (argv [1J, Itrlt);
if(from == NULL) {

}

printfC'Can't open %s.\nlt, argv[1J);
exit(1);

to = fopen(argv[2J, "Wlt);
if(to == NULL) {

printf("Can't create %s.\n", argv[2J);
exit(1);

while((c = getc(from)) != EOF)
putc(c, to);

exit(O);

This program accepts two arguments. The first is the name of the file to be
copied, and the second is the name of the file to be created. The first file is
opened for reading, and the second file is created for writing. The data from
the first file is then copied directly to the newly-created file.

The fgetc and fputc routines are actual functions, not macros. Their syntax
and usage is identical to getc and putc. However, here are some distinctions
between the macro and function versions of these routines to help you decide
which to use:

Standard Input/Output Library Routines 9-33

9

9

• A function call takes time, since the function call still exists at run time. A
macro call, however, takes no time at all, because the macro call is replaced
with the actual code making up the macro during compilation, before run
time. Thus, generally speaking, programs containing macros run faster than
programs containing the equivalent function calls.

• A function's code is localized in one section of the program. Each function
call causes a jump to that section to execute the function. A macro call,
however, is replaced with its code everywhere that lnacro call appears. Thus,
programs containing macro calls generally require more space than programs
containing the equivalent function calls.

• The address of a function can be passed as an argument, but the address of a
macro call cannot.

Given these guidelines, decide which routines to use based on your own
constraints.

Character Push-Back

The ungetc routine enables you to push back a single character onto an input
stream. This character is then returned by the next getc call (or equivalent).

ungetc's syntax is as follows:

ungetc(c, stream);

where c is the character to be pushed back, and stream is the input stream
where the push-back is to occur. Note that c must be the character that was
last read from stream.

The following program simply reads one character from stdin, pushes it back
onto stdin, re-reads the character, and checks to make sure that this character
and the character originally pushed back are the same. A message is printed on
stdout stating the outcome of the comparison.

9-34 Standard Input/Output Library Routines

#include <stdio.h>
maine)
{

int c1, c2;

c1 = getchar 0 ;
ungetc(c1, stdin);
c2 = getcharO;
if(c1 == c2)

printf(IIThey're the same!\nll);
else

printf(1I0ops ! They're different!\n ll
);

}

One character of push-back is guaranteed as long as something has been
read from the stream prior to the push-back attempt, and provided that
the stream is buffered. More characters could possibly be pushed back, but
determining exactly how many characters of push-back you can safely perform
is quite possibly not worth the effort. However, for completeness, the following
statement is included as a method for determining the number of characters of
push-back available at any given time:

numpb = ftell (stream) % BUFSIZ + 1;

where ftell is a function discussed in a later section, stream is a file pointer,
and BUFSIZ is a constant defined in <stdio. h> containing the size of the
buffer in bytes. After execution, numpb contains the number of characters of
push-back available at that time.

String Input/Output

The fgets and fputs routines enable you to read or write strings from or to
specified streams. Their syntax is:

fgets(string, n, stream);

fputs(string, stream);

where string is a pointer to a character string, and stream is a file pointer to
the input or output stream.

Standard Input/Output Library Routines 9-35

9

9

fgets reads a character string from the specified stream and stores it in
the character array pointed to by string. fgets reads n-l characters, or
up to a new-line character, whichever comes first. If a new-line character
is encountered, it is retained as part of the string (contrast this with gets,
which replaces the new-line with a NULL character). fgets appends a NULL
character to the string.

fputs writes the character string pointed to by string on the specified stream,
stopping when a NULL character is encountered. fputs does not append a
new-line character to the string when it is written. This is because fputs is
intended for use with fgets, which incorporates a new-line character into the
string if a new-line is encountered in the input.

9·36 Standard Input/Output Library Routines

The cp program written earlier can be re-written using fgets and fputs:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv [J ;
{

}

char c, line[256J, *fgets();
FILE *from, *to;

if(argc != 3) {

}

printf ("Usage: cp fromfile tofile\n");
exit(1);

from = fopen(argv[1], "rll);
if(from == NULL) {

}

printf (IICan' t open %s. \nll, argv [1]) ;
exit(1);

to = fopen(argv [2J, IIWIl);
if(to == NULL) {

}

printf(IICan't create %s. \nll, argv[2J);
exit(1);

while(fgets(line, 256, from) != NULL)
fputs(line, to);

exit(O);

This program functions exactly like the previous version of cp above. Note
that fgets's return value is compared to NULL in the while loop, since fgets
returns the NULL pointer when it reaches the end of its input.

Standard Input/Output Library Routines 9-37

9

9

This program can easily be converted to a simple cat command. It only
requires four changes. Can you see what they are? First, change the argc
comparison such that it reads

if(argc != 2) ...

(You might also want to change the associated usage message!) Second, remove
the to file pointer, since you don't need it anymore. Third, remove the block of
code which uses fopen to open the new file, and assigns a value to to. Fourth,
change the fputs call such that it reads:

fputs(line, stdout);

Here's the new cat command:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

}

char c, line [256] , *fgets();
FILE *from;

if(argc < 2) {

}

printf (IIUsage: cat file\n");
exit(l);

from = fopen(argv[l] , "r");
if(from == NULL) {

}

printf("Can't open %s. \n", argv[1]);
exit(l);

while(fgets(line, 256, from) 1- NULL)
fputs(line, stdout);

exit(O);

9-38 Standard Input/Output Library Routines

Formatted Input/Output

Just as there are versions of scanf and printf which perform string
input/output, so there are versions which enable input/output using files.
fscanf enables you to read data of all types from a specified stream, and
fprintf provides the capability of writing data on a stream. Their syntax is:

fscanf(stream, format, [item [, item] ... p;

fprintf (stream, format, [item [, item] ...]);

stream is a file pointer to an open stream. format and item should be familiar
terms from previous discussions.

The following program illustrates the use of the fscanf and fprintf routines:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv [] ;
{

}

int count = 0;
FILE *file;

if(argc != 2) {

}

fprintf(stderr, tlUsage: wdcnt filename\ntl);
exit(1);

file = fopen(argv[1] , tlrtl);
if(file == NULL) {

}

fprintf(stderr, tlCan't open %s.\ntl, argv[1]);
exit(1);

while(fscanf(file, tI%*SII) != EOF)
count++;

printf(tlNumber of words found: %d\n tl , count);
exit(O);

Standard Input/Output Library Routines 9-39

9

9

This program, named wdcnt (for "word count"), counts the number of "words"
in the file specified as its only argument. A word is defined as a string of
non-space characters.

Note how fprintf is used in this program. You learned in a prior discussion
that stderr is typically used to output error messages or warning statements.
In this program, fprintf is used to direct error messages to stderr. You don't
lose anything by doing this, since data written on stderr appears on your
terminal by default. However, you gain some important flexibility. Now that
error output is written on a different stream than normal output, the error
output (or the normal output) can be redirected to another destination. For
example, invoking the previous program as

wdcnt file1 &2> errmsgs

causes all output arising from erroneous conditions to be collected in the file
errmsgs. For the wdcnt program, this is somewhat trivial, since the program
terminates upon any error. However, for programs which output any number of
warnings without terminating, this is a very useful capability. Not only does it
keep normal, desired output from getting cluttered up with error messages, but
it enables you to save output for later examination at your leisure. Thus, it is
good programming practice to write error messages and warnings on stderr,
and use stdout (or whatever your destination file is) to output normal data.

Binary Input/Output

The routines described in this section deal with data in its binary form; that is,
the data is never converted to ASCII for user viewing. These routines are used
to transfer raw data between two points, such as from a variable to a data file,
or vice versa.

Note The alignment of members within structures can differ from
one architecture to another. Thus, binary input/output can
create data file incompatibilities between architectures. In C,
you can get around such alignment problems with alignment
pragmas. For details on the use of these pragmas, see the C
language documentation for your system.

9-40 Standard Input/Output Library Routines

Two routines, get~ and put~, are used to read or write an integer word (an
int) to or from a stream, respectively. Their syntax is:

get~(stream) ;

put~(w, stream);

where stream is a file pointer to the input or output stream, and w is the
integer word to be output by put~.

The following program "sorts" an existing data file containing raw integer
data. The program divides this data file into two new data files; one containing
integer data whose absolute value is less than or equal to 32767, the other
containing data whose absolute value is larger than 32767.

Standard Input/Output Library Routines 9-41

9

9

#include <stdio.h>
main(argc, argv)
int argc;
char *argv [J ;
{

}

int word;
FILE *dfile, *datale, *datagt;

if(argc != 2) {

}

fprintf(stderr, Ilusage: intsort filename\n ll);
exit(1);

dfile = fopen(argv [1J, IIrll);
if(dfile == NULL) {

}

fprintf(IICan't open %s.\nll, argv[1J);
exit(1);

datale = fopen(lIdfle ll , IIWIl);
if(datale == NULL) {

}

fprintf(IICan't create dfle file. \nll);
exit(1);

datagt = fopen(IIdfgt II, IIWIl);
if(datagt == NULL) {

}

fprintf(IICan't create dfgt file.\nll);
exit(1);

while«word = getw(dfile)) != EOF) {
if(word <= 32767 && word >= -32767)

putw(word, datale);
else

putw(word, datagt);
}

exit(O);

This program reads a word from the specified data file. If its absolute value
is less than or equal to 32767, the word is written on a file called dfle in the

9-42 Standard Input/Output Library Routines

user's current directory. Otherwise, the word is written on a file called dfgt in
the current directory.

Note that this program works only on machines that use four- byte integers.
Also, the comparison between word and the constant EOF is faulty, since EOF
is defined to be -1, a valid integer. The section entitled Stream Status Inquiry
Routines describes standard input / output routines which fix this problem.

Both Ol Lhese rouL.illes Lrdw:;[er [OUI bytes at a til!!€;. Aga,iTl, th€;I8 is no
ASCII conversion associated with these routines, so if you attempt to print
the contents of a file containing integer data output by putw, you will get
meaningless results. Note that it makes little sense to input binary data from
stdin, as in

getw(stdin);

unless stdin is redirected from a file containing binary data. Using getw to
read data from your keyboard is futile. If you type in a valid-looking integer,
like "1728", getw reads the ASCII values of those characters and stores them as
an integer. It is unlikely that ever get what you intended using such a method.

Two other routines, called fread and fwri te, provide much more flexible
binary data input and output. Their syntax is:

fread((char *)ptr, sizeof(*ptr) , nitems, stream);

fwrite((char *)ptr, sizeof(*ptr) , nitems, stream);

where ptr is a pointer to the beginning of a block (array) of data. This
argument is cast as a character pointer because these routines expect a pointer
of this type. The second argument specifies the number of bytes per unit of
data (four bytes per int, one byte per char, x bytes per struct, etc.). The
C operator sizeof is usually used to obtain this value. The third argument,
nitems, is an integer specifying the number of units of data to read or write.
For example, if ptr points to the beginning of a structure, sizeof (* ptr) tells
how many bytes make up that structure, and nitems tells how many structures
to read. Actually, the second and third arguments above can be reversed in
the argument list with no ill effects, because internally these routines simply
multiply the two integers together to obtain the total number of bytes to read. 9
Finally, stream is a file pointer to the input or output stream.

Standard Input/Output Library Routines 9-43

9

As an example, suppose you use a program to keep track of certain employee
data where each employee is to be described in a single structure. Here is a
simple program to do that:

#include <stdio.h>
struct emp {

}

char
char
long
char
char
int

name [40J ;
job[40J;
salary;
hire [6J
curve [2J
rank;

1* name *1
1* job title *1
1* salary *1
1* hire date *1
1* pay curve *1
1* percentile ranking *1

#define EMPS 400
maine)

1* no. of employees *1

{

int items;
struct emp staff [EMPSJ ;
FILE *data;

data = fopencr'/usr/lib/employees/empdata ll , Ilrll);
if(data == NULL) {

}

fprintf(stderr, IlCan't open employee data file.\nll);
exit(1);

items = fread((char *)staff, sizeof(staff[OJ), EMPS, data);
if(items != EMPS) {

}

fprintf(stderr, "Insufficient data found.\n ll);
exit(1);

fclose(data);
archive(lI/usr/lib/employees/empdata ll);

/* Employee information processing goes here. *1

... processing goes here. *1

9-44 Standard Input/Output Library Routines

1* Processing is done. Write out new employee records. */

}

data = fopenC' /usr/lib/ employees/ empdata", "W");
if(data == NULL) {

}

fprintf(stderr, "Can't create new employee file.\n");
exit(1);

items = fwrite((char *)staff, sizeof(staff[OJ), EMPS, data);
if(items != EMPS) {

}

fprintf(stderr, "Write error!\n");
exit(1);

exit(O);

archive (filename)
char *filename;
{

... processing goes here. */
}

This program reads the employee information contained in the binary file
/usr/lib/employees/empdata. The data in this file consists of concatenated
streams of bytes describing each employee of a certain 400-employee company.
The bytes are written such that, when read correctly, the bytes correspond
exactly with the emp structure defined in the program. The staff array is an
array of structures containing one structure for each employee.

In the fread call, the sizeof(staff [OJ) expression returns the number
of bytes in the emp structure. Since the same number of bytes are in each
employee structure, any element of the staff array could have been specified
as the sizeof argument; staff [OJ is used in this example. (By counting the
number of bytes in each structure member, you can get an approximation of
the number of bytes returned by the sizeof operator: 40 + 40 + 8 + 6 + 2
+ 4 = 100 bytes. This may vary due to padding performed by a programming
language, or by machine architecture.) Specifying EMPS as the ni terns
argument tells fread to read 400 such structures. Thus, 100 x 400 = 40000

Standard Input/Output Library Routines 9-45

9

9

bytes are read, filling in the information for the members of each structure
contained in the staff array.

The archive function is not shown here, but simply saves the old employee
information in empdata in an employee information archive of some kind. After
the information is archived, the empdata file is overwritten with the new,
updated employee information.

A new routine, called fclose, is introduced here. fclose simply closes the
stream associated with the file pointer specified. This is necessary in order
to re-open the file for writing. Once it is open for writing, fwri te is used to
overwrite its previous contents with the new data.

One final note about these two routines: they return the number of items of
data which have been read or written. Thus, you can compare this number
with whatever you specified for nitems to see if everything you wanted read or
written actually was. This return value is used twice in the above program to
flag probable read and write errors.

The fread and fwri te routines can be made to read any type of data. The
following examples show various fread calls used to read different types of
data:

• to read a long integer:

long nint;
fread((char *)&nint, sizeof(nint), 1, stream);

• to read an array of 100 long integers:

long nint[100];
fread((char *)nint, sizeof(nint[O]), 100, stream);

• to read a double precision floating-point value:

double fpoint;
fread((char *)&fpoint, sizeof(fpoint), 1, stream);

• to read an array of 50 floating-point values:

float fpoint[50];
fread((char *)fpoint, sizeof(fpoint[O]), 50, stream);

To get the equivalent fwrite calls, just substitute "fwrite" in place of "fread"
in the previous examples. You can see how much more flexible fread and

9·46 Standard Input/Output Library Routines

fwri te are than getw and putw. Whereas getw and putw are limited to
reading or writing a single four-byte integer per call, fread and fwri te can be
made to read or write any number of variables of any type.

Stream Status and Control Routines

This section discusses standard input/output routines which enable you to

• determine whether or not an error has occurred on an open stream (feot,
ferror, clearerr)

• re-position the location of the next input/output operation on an open
stream (rewind, ftell, fseek)

• control various attributes of an open stream, such as buffering, flushing, etc.
(fclose, setbuf, fflush,freopen)

• convert a file pointer to a file descriptor, and vice versa (fileno, fdopen)

Stream Status Inquiry Routines

This section describes three routines, feof, ferror, and clearerr, which
enable you to determine the status of an open stream at any given time.

feof is a macro defined in <stdio .h> which returns a non-zero value if the
end-of-file has been reached on an input stream. Its syntax is:

f eof (stream) ;

Do you remember the example program which illustrated the use of getw and
putw? It was noted that comparing getw's return value to the constant EOF
was faulty, because getw returns an integer, and EOF is defined to be a valid
integer (-1). How then do you determine if end-of-file has been reached when
routines like getw are being used? You use feof.

Standard Input/Output library Routines 9-47

9

9

The example program for getw and putw can be changed to use fecf:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv [J ;
{

int word;
FILE *dfile, *datale, *datagt;

if(argc != 2) {

}

fprintf(stderr, lIusage: intsort filename\nll);
exit(1);

dfile = fopen(argv [1J, II r ");
if(dfile == NULL) {

}

fprintf(IICan't open %s.\nll, argv[1J);
exit(1);

datale = fopen(lIdfle ll
, IIWIl);

if(datale == NULL) {

}

fprintf(IICan't create dfle file.\n ll
);

exit(1);

datagt = fopen(lIdfgtll, IIWIl);
if(datagt == NULL) {

}

fprintf(IICan't create dfgt file.\nll);
exit(1);

fore;;) {
if«word = getw(dfile)) != EOF) {

if(word <= 32767 && word >= -32767)
putw(word, datale);

else
putw(word, datagt);

9-48 Standard Input/Output Library Routines

} else {
if(feof(dfile))

break;
else

putw(word, datale);
}

}

exit(O);
}

An infinite loop is set up around the getw /putw process. Whenever getw
returns an integer equal to EOF, feof is used to find out if end-of-file has been
reached. If it has, the loop (and the program) terminates; if not, the integer is
written on dfle, and the loop continues.

f error is a routine which examines the specified stream to determine whether
or not a read or write error has occurred. Its syntax is

ferror(stream) ;

ferror, like feof, is intended to clarify ambiguous return values from standard
input/output routines. Actually, only getw and putw require the use of ferror
to determine if an error has occurred. Both of these routines return EOF on
end-of-file or error. Since these routines deal with integer data, however, you
need f eof and f error to determine if the EO F returned actually indicated an
error or an end-of-file, or if it's just a -1.

If an error has occurred on a stream, ferror returns a much non-zero value.

Whenever an error occurs on an open stream, a flag is set to indicate the
error. It is this flag that ferror checks to determine whether or not an error
has occurred. This flag is not reset when it is checked. Thus, if an error
has occurred, the error flag for that stream remains set. This could lead to
misleading information if an f error call indicates that an error has occurred,
when in reality the error occurred long ago. The clearerr routine clears (or
resets) the error indication flag for the specified stream. This routine should
be used whenever an error has been indicated, so that the same error is not 9
indicated at a later time. clearerr's syntax is:

clearerr (stream) ;

Standard Input/Output Library Routines 9-49

9

Because ferror and clearerr are used infrequently in typical programs, no
examples are given specific to their use. The feof example above illustrates
the general scenario in which all three of these routines are used.

Repositioning Stream Input/Output Operations

There are three routines, rewind, ftell, and fseek, which enable you to move
the location of the next input/output operation on an open stream.

Its syntax is

rewind(stream) ;

For example, suppose a particular application progranl can put a password on
a data file it uses. This password is stored in encrypted form on the first line of
the file. The line is recognized as a password line if the first two characters are
"*P". If the file has no password line, then access to the file is unrestricted. If
a password line is found, the user is prompted for the password before access is
permitted. The following code can be used to look for a password line:

9-50 Standard InputjOutput Library Routines

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

}

FILE *pswd;
char line [256] ;

if(argc != 2) {
fprintf(stderr, IIUsage: getpswd file\n ll);
exit(1);

}

pswd = fopen(argv[1] , Ilrll);
if(pswd == NULL) {

fprintf(stderr, IICan't open %s.\nll, argv[1]);
exit(1);

}

fgets(line, 256, pswd);
if(line[O] == '*' && line[1] == 'P') {

1* ask for and check password *1

} else
rewind(pswd);

exit(O);

.1* application program goes here */s

If the first two characters of the first line are *P, then code is executed which
asks for and checks a password. However, if the first line is not a password line,
the file is assumed to be unprotected, and the line just read is probably part of
the data. Thus, the file must be rewound so the data contained in the first line 9
is available to the application program.

Standard Input/Output Library Routines 9-51

9

The ftell routine returns a long integer specifying the current position of the
next input/output operation on an open stream. This position is expressed as
a byte offset relative to the beginning of the open file. Its syntax is as follows:

ftell (stream) ;

The fseek routine enables you to re-position the next input/output operation
on an open stream to any location you wish. Its syntax is:

fseek(stream, offset, ptrname);

where stream is a file pointer to the open stream, offset is a long integer
specifying the number of bytes to skip over, and ptrname is an integer
indicating the reference point in the file from which offset bytes are measured.
The possible values for ptrname are:

o Move offset bytes from the beginning of the file.

1 Move offset bytes from the current position in the file.

2 Move offset bytes from the end of the file.

offset can be either negative or positive, indicating backward or forward
movement in the file, respectively.

The following program illustrates the use of the ftell and fseek library
routines. The program prints each line of an n-line file in this order: line 1,
line n, line 2, line n-1, line 3, ... from the beginning of the file.

9-52 Standard Input/Output Library Routines

#include <stdio.h>
main(argc, argv)
int argc;
char *argv [] ;
{

char line [256] ;
int newlines;
long front, rear, ftell();
FILE *fp;

front = 0;
rear = 0;

if(argc < 2) {
fprintf(stderr, tlUsage: print filename\n tl);
exit(1);

}

fp = fopen(argv[1], tlrtl);
if(fp == NULL) {

}

fprintf(stderr, tlCan't open %s. \ntl, argv[1]);
exit(1);

newlines = countnl(fp) % 2;

fseek(fp, 0, 2);
rear = ftell(fp);

while(front < rear) {
fseek(fp, front, 0);
fgets(line, 256, fp);
fputs(line, stdout);
front = ftell(fp);
findnl(fp, rear);
rear = ftell(fp);
if(newlines == 1) {

if(rear <= front)

Standard Input/Output Library Routines 9-53

9

break;
}

fgets(line, 256, fp);
fputs(line, stdout);

}

exit(O);
}

countnl(fp)
FILE *fp;
{

char c;
int count = 0;

while((c = getc(fp)) != EOF) {

if (c == , \n ')

}

count++;
}

rewind(fp);
return(count);

findnl(fp, offset)
FILE *fp;
long offset;
{

char c;

fseek(fp, (offset-2), 0);
while((c = getc(fp)) != '\n') {

fseek(fp, -2, 1);
9 }

}

9·54 Standard Input/Output Library Routines

This program uses ftell and fseek to print lines from a file starting at the
beginning and the end of the file, and converging toward the center. The
countnl (count new-lines) function counts the number of lines in the file so
the program can decide whether or not to print a line in the final loop (this
prevents the middle line being printed twice in files with an odd number of
lines). The f indnl (find new-line) function seeks backwards in the file for the
next new-line. When found, this positions the next input/output operation
such that fgets gets the next line back from the end of the file.

Note the use of fseek in this program. All three types of seeks are represented
here. The first f seek of the program is done relative to the end of the file. All
other fseeks in the main program are done relative to the beginning of the file.
Finally, findnl contains an fseek which is relative to the current position.

Recall the employee data routine, where each employee is described by the
structure:

struct emp {
char name[40J; 1* name *1
char job[40J; 1* job title */
long salary; 1* salary *1
char hire [6J ; 1* hire date */
char curve[2J; 1* pay curve */
int rank; 1* percentile ranking *1

}

Standard Input/Output Library Routines 9-55

9

9

That routine simply read in the data for 400 employees all at once. Suppose
you want the program to be selective, so that you can specify (by employee
number, 1 through 400) which employee's information you want. This is easily
done using fseek. The following program fragment shows how:

int empno, bytes;
long total;
FILE *data;
struct emp empinfo;

/* c~eck for usage error and open data file */

sscanf (argv [1J, "%d", &empno);
bytes = sizeof(empinfo);
total = (empno - 1) * bytes;
fseek(data, total, 0);
fread«char *)&empinfo, sizeof(empinfo), 1, data);

/* p:int out desired information */

In this program, argv [1J contains, via a command-line argument, the
employee number about whom information is desired. This employee number
is converted to integer form using sscanf. The number of bytes per employee
structure is obtained using sizeof and is stored in bytes. The total number
of bytes to skip in the data file is found by multiplying the employee number
(minus one) times the number of bytes per employee structure. This is stored
in total. fseek is then used to seek past the specified number of bytes relative
to the beginning of the data file. This leaves the next input/output operation
positioned at the start of the specified employee's information. The information
is read using fread.

9·56 Standard Input/Output Library Routines

Note If you have a stream which is open for both reading and
writing, a read operation cannot be followed by a write
operation without one of the following occurring first: a
rewind, an fseek, or a read operation which encounters
end-of-file. Similarly, a write operation cannot be followed by a
read operation unless a rewind or fseek is performed.

Stream Control Routines

The routines described here help you control certain attributes of file pointers.
The routines described are setbuf, setvbuf, fflush, and freopen.

setbuf

setbuf and setvbuf routines enable you to assign your own buffering to an
open stream. setbuf syntax is:

setbuf(stream, buffer);

where stream is a file pointer to an already-open stream, and buffer is a pointer
to a character array or is NULL.

Normally (without user intervention), a standard input/output buffer is
obtained through a call to malloe (see malloc(3C)) upon the first call to
gete or pute (which all input/output routines eventually call). The standard
input/output system normally buffers input/output in a buffer which is BUFSIZ
bytes long. Exceptions are stdout, which, when directed to a terminal, is
line- buffered, and stderr, which is normally unbuffered.

Standard Input/Output Library Routines 9-57

9

9

setbuf enables you to change the buffer used for all standard input/output
routines. For example, the following code fragment causes the array buffer to
be used for buffering:

FILE *fp;
char buffer [BUFSIZJ ;

~p = fopen(argv [1J, IIrll);

setbuf(fp, buffer);

This fragment shows the correct order of events. First, the file is opened (it
need not be opened for reading), then the buffering is assigned using setbuf.
From that point on, any input taken from

Buffering can be eliminated altogether by specifying the NULL pointer i:n plate
of the buffer name, as in

setbuf(fp, NULL);

This causes input or output using fp to be completely unbuffered.

setbuf is limited to buffer sizes of either BUFSIZ bytes or zero. setbuf
assumes that the character array pointed to by "buffer"is BUFSIZ bytes.
Passing setbuf a (non-NULL) pointer to a smaller array can cause sevete
problems during operation because the standard input/output routines lhay
overwrite memory following the end of the too-small buffer.

9-58 Standard Input/Output Library Routines

Note

setvbuf

Using an automatic array as a standard input/output buffer
can be dangerous. Automatic variables are only defined in the
code block in which they are declared. Thus, buffering which
relies on an automatic array is only in effect during the current
code block (main program or function). If you pass a file
pointer to another function, and the stream pointed to by that
file pointer is buffered using an automatic array, then memory
faults or other errors can occur. If you use an automatic array
for stream buffering, the stream should be used and closed only
in the code block containing the array declaration. To avoid
this restriction, use external arrays for buffering:

extern char buffer [BUFSIZ] ;

setbuf(fp, buffer);

setvbuf, like setbuf, enables you to assign a character array for buffering, but
also provides the means to specify the size of the buffer to be used and the type
of buffering to be done. setvbuf syntax is:

setvbuf(stream, buffer, type, size)

where stream is a file pointer to an already-open stream, buffer is a pointer
to a character array or is NULL, type tells how stream is to be buffered, and
size defines how large the buffer is. Acceptable values for type (defined in
<stdio. h>) include:

_IOFBF Input/output is fully buffered.

Output is line buffered. The buffer is flushed each time a new
line is written, the buffer is full, or input is requested.

Input/output is completely unbuffered.

Standard InputjOutput Library Routines 9-59

9

9

If type _IONBF is specified, stream is totally unbuffered. Since no buffer is
needed, values for buffer and size are ignored. For example, the following two
calls, though different, are functionally identical:

setvbuf(fp, NULL, _IONBF, 0)
setbuf(fp, NULL)

When type is _IOFBF or _IOLBF, buffering for stream is determined by buffer
and size. If buffer is not the NULL pointer, it must point to a character array
of size bytes. All buffering of stream is then handled through this array.

FILE *fp;
char buffer [256J
char *filename;
int ... ret code ;
fp=fopen(filename, lliJll);

retcode=setvbuf(fp, buffer, _IOFBF, 256);
if (ret code !=O) error c);

This fragment buffers stream fp through a 2048-byte buffer that is allocated by
the system.

fflush

The fflush routine forces all buffered data for an output stream to be written
out to that file. Its syntax is:

fflush(stream) ;

where stream is a file pointer to an output stream.

fflush is performed automatically by fclose (and, therefore, by exit).
Therefore, there is often no reason to call fflush explicitly. Situations do arise,
however, where it is necessary to manually fflush a stream. For example, data
written to a terminal is line-buffered by default, which means that the system
waits for a new-line before writing the buffer onto the terminal screen. This
is often satisfactory, but there are times when you want whatever has been
written so far to be written to the screen without waiting for the new-line. In
such situations, fflush must be used.

9-60 Standard Input/Output Library Routines

Another situation when explicit fflushing is necessary arises whenever you
have written less than a buffer-full of data to a file, and you want the contents
of that file processed by another function or by an HP- UX command. Since
less than a buffer-full of data was written, the data is still in the buffer and
the file is still empty. Performing an fflush causes the buffered data to be
written out to the file, enabling other functions or commands to access the file's
contents.

Yet another situation in which a program should call fflush explicitly is when
it has opened a stream for both reading and writing (r+). When switching
from writing to reading, the program should call fflush (or fseek) before
reading.

freopen

The final routine in this section is freopen. As its name implies, freopen
enables you to, in a single step, close a stream and then re-open it with a
different type and/or file name. Its syntax is:

freopen(filename, type, stream);

where filename is a pointer to a character string specifying the name of the
source or destination file for the newly-created stream. type is identical to that
of fopen discussed earlier. stream is a file pointer to the old stream, which is
closed and then re-opened. The nanle of the file pointer remains the same.

Standard Input/Output Library Routines 9-61

9

For example, the following program accepts lines of data from your terminal
and writes them into a file. When only a new-line is typed from the terminal,
the program quits reading data, and echoes the contents of the file to the
terminal.

#include <stdio.h>
maine)
{

}

FILE *fp, *oldfp;
char line [80] , *fgets();

fp = fopenC1datafile ll , IlWll);
if(fp == NULL) {

}

fprintf(stderr, IICan't create datafile.\nll);
exit(1);

fgets(line, 80, stdin);
while (line [0] != lI\nll) {

fputs(line, fp);
fgets(line, 80, stdin);

}

oldfp = freopenC1datafile l1 , IIrll, fp);
if(oldfp == NULL) {

}

fprintf(stderr, IICan't re-open datafile.\n ll);
exit(1);

while(fgets(line, 80, fp) != NULL)
fputs(line, stdout);

fclose(fp);
exit(O);

9 Just like fopen, freopen returns a NULL pointer if an error occurs. If
successful, freopen returns the value of the old file pointer.

9-62 Standard Input/Output Library Routines

freopen is commonly used to attach the names stdin, stdout, and stderr
to other files so that the source or destination of these file pointers can be
redirected. For example:

freopenCI /usr/lib/data/datafile ll , IIrll, stdin);

attaches stdin to the data file /usr /li b/ datal dataf ile. Other functions can
now be called that read from stdin, with the result that their source of input
has been redirected. Similarly,

freopen(II /users/bill/ archives/cal. all, II all, stdout);

attaches stdout to the indicated file, thus redirecting any future stdout data
to that file.

Converting between File Pointers and File Descriptors

A file pointer is actually a pointer to a structure containing information about
a stream. This information includes a pointer to the beginning of the buffer;
a pointer to the current location in the buffer; a flag specifying whether the
stream is open for reading, writing, or both; a count of the characters in the
buffer; and an integer called a file descriptor.

System calls, such as open and creat, return a file descriptor when a file is
opened. System calls use file descriptors to refer to open files in much the
same way that library routines use file pointers. (The main difference between
using a file descriptor and using a file pointer is that a file descriptor has no
associated buffering.) Since a program often contains both system calls and
library routines, a way of converting between file pointers and file descriptors is
provided.

Standard Input/Output Library Routines 9-63

9

9

Note Exercise caution when converting between file pointers and file
descriptors. When converting a file pointer to a file descriptor,
a program should call fflush first.

In general, never convert file pointers to file descriptors unless
you need a file descriptor for a system call that provides a
utility not available in the C library package (such as dup(2) or
jcntl(2)). Similarly, file descriptors should never be converted
to file pointers unless a file descriptor has been created by
a system call which provides a utility not provided in the C
library package and you want to assign system buffering to it.

Two routines, fileno and fdopen, provide a way to convert between the two
types of parameters. fileno is a macro which, given a file pointer, returns the
associated file descriptor. Its syntax is

f ilene (stream) ;

where stream is a file pointer to an open stream whose associated file descriptor
is desired. Thus,

~ILE *fp;

int fd;
fp = fopenC'file1", "r");
fd = fileno(fp);

returns the integer file descriptor in fd, associated with the file pointer fp.

9·64 Standard Input/Output Library Routines

The fdopen routine enables you to convert a file descriptor into a file pointer.
Its syntax is:

f dop en (ft ldes, type);

where ftldes is an integer file descriptor obtained from the open, dup, creat, or
pipe system calls. type is the same as that for fopen discussed earlier. Thus,

int fd;
FILE *fp;
:/* obtain fd via appropriate system call */

fp = fdopen(fd, "r");
if(fp == NULL) {

fprintf (stderr, IICan't convert file descriptor. \n") ;
exit(l);

}

converts the file descriptor fd into a file pointer, fp. fdopen returns a NULL
pointer if the operation fails.

fdopen can be useful for opening a file in a way unlike any of the standard
types of fopen.

include <fcntl.h>

int fd;
FILE *fp
char *filename;

fd= open(filename, O_WRONLY\O_CREAT, 0666);
fp= fdopen(fd, "W") ;
fseek(fd,OL,2)

This code fragment uses the open system call to open a file for general
write access, then uses fdopen to assign buffering to the file. The constants 9
O_WRONLY and O_CREAT are defined in the include file /usr/include/fcntl.h,
and are described in open(2). (O_WRONLY causes open to open the file for

Standard Input/Output Library Routines 9-65

9

writing only; D_CREAT creates the file if it does not already exist.) This
technique opens the file in a way that does not correspond exactly to any of the
available types in fopen: "w" would truncate the current file contents, "r+"
would fail if the file does not already exist (and would allow reading of the
file), and "a" does not permit seeking backwards and rewriting the current file
contents.

Inter-Process Communication
So far, you've been communicating between an active process (your program)
and a passive object (a file). What if you want to communicate between two
active processes? Suppose you want to create a stream between two programs,
with one program (process) pumping data onto the stream, and the other
reading data from the other end. How is this done? The popen routine exists
for this purpose. Its syntax is:

popen (command, type);

where command is a pointer to a character string specifying a command line.
type is a pointer to a single-character string which is either "rff (for reading) or
"W" (for writing).

For example, suppose you are writing a program that processes text in some
way. Your program handles normal text perfectly, but unfortunately your
source files are all coded in troff constructs. If you could filter out all the
troff constructs, your program would work fine. This can be done using pipes
and the HP- UX command called deroff, which filters out troff constructs.
All you have to do is make sure that all input to your program passes through
deroff first. Here's how:

9·66 Standard Input/Output Library Routines

#include <stdio.h>
maine)
{

FILE *popen(), *fp;

fp = popenC'deroff /users/bin/text/*. tx", "r");
if(fp == NULL) {

}

fprintf (stderr, iiCan it crea-ce s-cream. \n!!) ;
exit(1) ;

/* begin processing text; read text from fp! */

pclose(fp);

popen returns a file pointer to the newly-opened stream. If an error occurs, a
NULL pointer is returned. When successfully executed, popen enables your
program to read from the file pointer fp, the data from which is the standard
output from the deroff command. In this example, deroff is invoked such
that it processes all files in /users/bin/text which end with. tx. Note that
popen's return value must be declared explicitly because it is not declared in
<stdio .h>.

Because deroff processes stdin if no arguments are given, the following popen
call enables your program to receive filtered text from stdin instead of from
ordinary files:

fp = popen("deroff", "r");

The result of executing the previous example is exactly the same as if you had
typed

deroff /users/bin/text/*. tx I yourprogram

at your keyboard in response to a shell prompt.

Streams that are opened by popen must be closed with pclose. Thus, the
following call closes the stream created in the previous example:

pclose(fp);

Standard InputjOutput Library Routines 9-67

9

9

If a type of w is specified instead of r, then the data flow is reversed, with the
result that your program supplies the data for the specified command.

Note that, though popen's return value is called a file pointer, it is actually
somewhat different than the file pointers you are already familiar with.
In general, a file pointer returned by popen should not be used in those
previously-discussed library routines which modify file pointers returned by
fopen. Also, file pointers opened by popen must be closed with pclose;
fclose is not sufficient.

So far, popen has been characterized as a "filter-maker", in that streams to
or from a command have been created so that data can be modified in some
way before being passed on. Sometimes, however, popen is used to execute a
command which supplies information valuable to the program. For example,
the find command accepts dot (.) as a valid directory name. Upon receipt
of a dot, find discovers the actual path name of dot by creating a stream from
the pwd command, as follows:

char dir[100];
FILE *popen(), *fp;

fp = popenC'pwd", "r");
if(fp == NULL) {

}

fprintf(stderr, "Can't execute pwd.\n");
exit(1);

~gets(dir, 100, fp);

pclose(fp);

The preceding example reads the output of the pwd command into the
character array dir, thus supplying the current value of dot. The following
program creates a list of the login names of users currently logged in:

9·68 Standard Input/Output Library Routines

#include <stdio.h>
maine)
{

}

char name [10] , line [80] , *fgets();
FILE *popen(), *fp;

fp = popen (llwholl, "r");
if(fp == NULL) {

}

fprintf(stderr, IICan't execute who.\n");
exit(1) ;

printf("Users currently logged in:\n");
while(fgets(line, 80, fp) != NULL) {

sscanf(line, "%S", name);
printf(lI\t%s\n", name);

}

pclose(fp);
exit(O);

A stream is created for reading from the who command. Each line from who is
read, and the first field from each line is read and printed.

You can have only one popen-ed stream in a process at any given time.

Standard Input/Output Library Routines 9-69

9

Standard Character, String, and Date
Manipulation Routines

This chapter describes standard libc routines that

• con vert character case

• classify characters

• manipulate strings

• perfonn date and time manipulation

Converting between Uppercase and Lowercase

10

Four routines are documented under conv(3C) which enable you to convert
between upper- and lowercase. They are toupper, tolo'Wer, _ toupper, and
_tolower.

toupper and tolower are functions which accept a single integer argument
in the range -1 through 255. If the integer taken as a character represents a
lower-case character, toupper returns the corresponding upper-case character.
Similarly, tolower returns the corresponding lower-case character. Both
routines return the argument unchanged if it does not represent a lower-case
character (toupper) or an upper-case character (tolower).

_ toupper and _ tolower are macros defined in <ctype. h>. _ toupper accepts
a single character argument and returns the corresponding upper-case
character. Similarly, _ tolower returns the corresponding lower-case character
for its argument. If a character is specified that is not a lower-case character
(_ toupper) or an upper-case character (_ tolower), the macros simply return
that character. Negative values, however, will not convert properly.

Standard Character, String, and Date Manipulation Routines 10-1

10

10

The macro versions of these routines are faster than the functions. The
function versions are useful when you need to pass such a function to another
routine.

Character Classification

The ctype(3C) entry in the HP- UX Reference lists routines which test their
single argument and return a non-zero value if the test is positive, and 0
otherwise.

All of these routines are macros defined in <ctype. h>. Because the syntax for
all ctype macros is identical, the following example can easily be be modified
for all ctype macros:

for(i=O; array[i] != NULL; i++) {
if(islower(array[i]))

array[i] = _toupper(array[i]);
}

This program fragment shows one way to change all occurrences of a lowercase
character in array to uppercase using the macro _ toupper. The call to the
islower macro ensures that only lowercase characters are passed to _ toupper.

String Manipulation Routines

String(3C) in the HP- UX Reference manual documents an extensive list of
string manipulation routines enabling you to perform several operations on
character strings. This section describes the string(3C) package in detail.

10-2 Standard Character, String, and Date Manipulation Routines

Concatenating Strings

strcat and strncat enable you to append a copy of one string onto the end of
another. Their syntax is:

strcat (s1, s2);

where s1 and s2 are character pointers to NULL-terminated character
strings. strcat appends the entire string pointed to by s2 (up to the first
NULL character encountered) on the end of string s1. strncat does the
same thing, except that at most n characters are appended to s1 (or up to
a NULL character, whichever comes first). (Note that string s2 need not be
NULL-terminated when using strncat if n is less than or equal to the length
of s2.) Both routines return a character pointer to the NULL-terminated
result .

N either of these routines checks to make sure that there is room in s1 for
the additional characters of s2. Thus, to be safe, s1 should always be a
declared array having plenty of space for the additional characters of s2, plus a
terminating NULL character.

Copying Strings

strcpy and strncpy copy one string of characters into another. Their syntax
IS:

strcpy (s1, s2);

strcpy (s1, s2);

strncpy (s1, s2, n);

where s2 is a character pointer to the string to be copied, and s1 is a character
pointer to the beginning of the string into which the contents of string s1 are
copied. strcpy copies the entire string, up to (and including) the first NULL
encountered. strncpy copies up to n characters, or up to (and including)
the first encountered NULL, whichever occurs first. (String s2 need not be

Standard Character, String, and Date Manipulation Routines 10-3

10

10

NULL-terminated when using strncpy if n is less than or equal to the length
of 32.) Both routines return the value of 31 .

The following program uses the strcat routine discussed earlier and strcpy to
build a character string representing the lowercase alphabet, one character at a
time.

#include <stdio.h>
maine)
{

}

int b = 'b', Z = 'z', i;
char alpha [30J , chr[4J;

chr [1J = NULL;
strcpy(alpha, Ila ll);
printf(tl%s\nll, alpha);

for(i = b; i <= z; i++) {
chr[OJ = i;
strcat(alpha, chr);
printf(ll%s\nll , alpha);

}

The array chr is always going to be a two-character array consisting of the
next character in the alphabet followed by NULL. Thus, the second element
of chr is set to NULL early in the program. The first chr element is then
successively set to the next lowercase character in the for loop, and the
resulting two-character string is concatenated onto the end of the alphabet
assembled so far in alpha. Note the use of strcpy to initialize alpha.
Remember that C transforms one or more characters enclosed in double quotes
into a character pointer to those characters followed by a NULL. Thus, the
strcpy statement above copies the character "a" followed by a NULL character
into alpha.

There are some things to be aware of when using strcat, strncat, strcpy,
and strncpy. These routines all modify string 31 in some way, but none
of them check for into overflow in that string. Therefore, be sure there is
enough room in 31 to hold the added or copied characters plus at/ terminating
NULL. Also, be sure you use a character array for 31 (not just a character

10-4 Standard Character, String, and Date Manipulation Routines

pointer), especially when using strcat or strncat. This is because an
explicitly-declared array has sufficient memory allocated to it to contain all
of its elements, but a character pointer simply points to a single location
in memory. Concatenating a string to the end of a string contained in an
array is guaranteed to work, provided the array is large enough. However,
concatenating a string to a string of characters referenced by a simple character
pointer is dangerous, since the concatenated characters could overwrite data in
memory. For example,

char array [100J, *ptr = t'abcdeft';

strcat(array, ptr);

works fine, since you are guaranteed that 100 storage elements have been set
aside for the array. However,

char *ptr1 = t1abcdeftl, *ptr2 = t1ghijkltl;

strcat(ptr1, ptr2);

is asking for trouble. Although C makes sure that there is enough room for
the initializing strings ("abcdef' and "ghijkl" in this example), there are no
guarantees that there is enough room to add characters to the end of one of
these strings. Therefore, the last fragment could easily overwrite valid data
occurring after the string pointed to by ptr1.

Comparing Strings

strcmp and strncmp compare two strings and return an integer indicating the
result of the comparison. Their syntax is:

strcmp (81, 82);

strncmp(81, 82, n);

where 81 and 82 are character pointers to the. NULL-terminated character
strings to be compared. strcmp compares the entire strings, stopping as soon
as the result is determined. strncmp compares at most n characters of, both
strings (neither string need be NULL-terminated if n is less than or equal
to the length of the shorter string). The integer returned uses the following
convention:

Standard Character, String, and Date Manipulation Routines 10-5

10

10

<0

=0

>0

31 is lexicographically less than 32.

31 and 32 are equal.

31 is lexicographically greater than 32.

The following program fragment uses strncmp to analyze the contents of a file
coded with the man macros (see man(7)). It reads each line of the file and
keeps a count of the number of times selected macros are used, and prints a
summary of its findings at the end.

#include <stdio.h>
main(argc, argv)
int argc;
char *argv [] ;
{

char *fgets(), line [100] ;
FILE *fp;
int nsh, npp, ntp, nrs, nre, npd, nip, nmisc, nlines;

nsh = npp = ntp = nrs = nre = npd = nip = nmisc = nlines = 0;

if(argc != 2) {
fprintf(stderr, IIUsage: count file\n ll

);

exit(2);
}

fp = fopen(argv[1] , Itrll);
if(fp == NULL) {

fprintf(stderr, IICan't open %s.\nll, argv[1]);
exit(1);

}

while(fgets(line, 100, fp) != NULL) {
if (strncmp(line , II .SH lt , 3) == 0)

nsh++;
else if (strncmp(line , II .PPII, 3)

npp++;
else if (strncmp(line , II .Tp lI , 3)

-- 0)

-- 0)

10-6 Standard Character, String, and Date Manipulation Routines

ntp++;
else if (strncmp(line , " .RS", 3) -- 0)

nrs++;
else if (strncmp(line , " .RE" , 3) -- 0)

nre++;
else if (strncmp(line , " .PD" , 3) -- 0)

npd++;
else if (strncmp(line , II .IP", 3) -- 0)

nip++;
else if (line [OJ -- , . ')

nmisc++;
nlines++;

}

printf("No. of lines: %d\n\n" , nlines);
printf ('INo. of .SH's: %d\n" , nsh);
printf("No. of .PP's: %d\n" , npp) ;
printf("No. of .TP's: %d\n" , ntp) ;
printf("No. of .RS's: %d\n" , nrs);
printf("No. of .RE's: %d\n" , nre);
printf("No. of .PD's: %d\n" , npd) ;
printf("No. of .PD's: %d\n" , npd);
printf("No. of .PD's: %d\n" , npd) ;
printf("No. of .PD's: %d\n" , npd) ;
printf("No. of .IP's: %d\n" , nip) ;
printf ("No. of misc. macros: %d\n", nmisc);

fclose(fp);
exit(O);

}

In the above program, strncmp is used to compare the first three characters
of each line read. If the first three characters match a particular macro, the
appropriate counter is incremented. If the line begins with" .", but is not one
of the macros being searched for, the "miscellaneous" counter is incremented.
The total number of lines in the file is also given.

Standard Character, String, and Date Manipulation Routines 10·7

10

10

Finding the Length of a String

The strlen routine returns an integer specifying the number of non-NULL
characters in a string. Its syntax is:

strlen(s) ;

where s is a character pointer to the NULL-terminated string whose length is
to be taken. For example, if you execute

len = strlen(string);

then the integer len contains the total number of non-NULL characters in the
string pointed to by string. Thus,

string [len]

points to the terminating NULL in string.

Finding Characters in Strings

The strchr, strrchr, and strpbrk routines enable you to locate a particular
character within a string.

strchr and strrchr return a character pointer to an occurrence of a specified
character in a string. Their syntax is:

strchr(s, c);

strrchr (s, c);

where s is a character pointer to the string of interest, and c is a variable of
type char specifying the character to search for.

strchr returns a character pointer to the first occurrence of character c in
string s. Similarly, strrchr returns a character pointer to the last occurrence
in string s. Both routines return a NULL if the character does not occur in the
string pointed to by s. For example,

~har *ptr, *strchr(), string [100] ;

while((ptr = strchr(string, '@') != NULL)
*ptr = , #' ;

10-8 Standard Character, String, and Date Manipulation Routines

replaces all occurrences of @ in the array string with #, starting from the
beginning of the array and working toward the end. The same operation can
be done using

while«ptr = strrchr(string, '@')) != NULL)
*ptr = ' #' ;

which replaces all @'s with # 's, starting from the end of the array, working
backward toward the beginning.

The strpbrk routine returns a character pointer to the first occurrence in
string 81 of any character contained in string 82, or NULL if none of the
characters in 82 occur in 81. Its syntax is:

strpbrk(81,82);

For example, suppose you have to read lines of input in which are embedded
numerical data which must be read. For simplicity, assume that the following
conventions are used:

• Positive numbers do not begin with +.

• Fractional numbers always begin with zero, as in 0.25.

• The first occurrence of a digit in the string signals the beginning of the
number to be read.

Given these rules, the following code fragment does the job:

char line [100] , *chrs = 11-0123456789 11 , *ptr;
float value;

~scanf (ptr, lI%f II, &value);

The character pointer chrs is initialized to point to a string of characters
which might introduce the embedded number. strpbrk then finds the first
occurrence of one of these characters in line, and returns a pointer to that
location in ptr. Finally, ptr is passed to sscanf, which interprets ptr as if it
were a pointer to the beginning of a string from which input is to be taken.
The number is read correctly because ptr points to the beginning of a number,
and because the %f conversion terminates at the first inappropriate character.

Standard Character, String, and Date Manipulation Routines 10-9

10

10

Finding Characters Common to Two Strings

The strspn and strcspn routines return an integer giving the length of the
initial segment of string 81 which consists entirely of characters found in string
82. strcspn is similar, but returns an integer giving the length of the initial
segment of 81 which consists entirely of characters not found in string 82.
Their syntax is:

strspn (81, 82);

strcspn (81, 82);

For example, suppose you have the following two strings:

I. A tattle-tale never wins."

for string s 1, and

" -Aatle"

for s 2. Executing

strspn(s1, s2);

with the strings shown returns a value of 14, since the first 14 characters (A
tattle-tale) in s 1 all occur in s2.

strcspn(s1, s2);

using the same strings, you get 0, because there is no initial segnlent of s 1
which contains characters not found in s2.

Breaking a String into Tokens

A token is a string of characters delimited by one or more token delimiters.
The strtok routine divides string 81 into one or more tokens. The token
separators consist of any characters contained in string 82. Its syntax is:

strtok (81, 82);

where 81 is a character pointer to the string which is to be broken up into
tokens, and 82 is a character pointer to a string consisting of those characters
which are to be treated as token separators.

10-10 Standard Character, String, and Date Manipulation Routines

strtok returns the next token from 81 each time it is called. The first time
strtok is called, both 81 and 82 must be specified. On subsequent calls,
however,81 need not be specified (a NULL is specified in its place). strtok
remembers the string from call to call. String 82 must be specified each call,
bu t need not contain the same characters (token separators) each time.

strtok returns a pointer to the beginning of the next token, and writes a
NULL character into 81 immediately following the end of the returned token.
strtok returns a NULL when no tokens remain.

For example, suppose you are reading lines from /etc/gettydefs, which is the
speed table for getty(lM). The lines in this file contain several fields delimited
by hash mark characters (#). Thus, the following code could be used to read
the fields of each line:

int count = 0;
char *delims = "#", *token, *arg1, *strtokO, line [256J ;

~rg1 = line;

while((token = strtok(arg1, delims) != NULL) {
count++;

}

printf(lIfield %d: %s\nll, count, token);
if(count == 1)

arg1 = NULL;

This code makes sure that strtok's first argument is NULL after the first call.
Also, note that delims did not change from call to call, but it could have. This
greatly increases the power of strtok, since it enables you to change the token
delimiters between calls.

Standard Character, String, and Date Manipulation Routines 10-11

10

10

Date and Time Manipulation
ctime(3C) describes a set of routines which enable you to access the date and
time as maintained by the system clock. This package knows about daylight
saving time, and automatically converts between standard time and daylight
saving time when appropriate. These routines are part of libc.

Most of the ctime routines require the quantity returned by the time system
call (see time(2)), which is the number of seconds that have elapsed since
00:00:00 GMT (Greenwich Mean Time), January 1, 1970.

The ctime routine converts the time(2) value into a 26-character ASCII string
of the form

Fri May 11 09:53:03 1984\n\0

where \n is a new-line character, and \0 is a terminating NULL character.
ctime's syntax is:

ctime (value) ;

where value is a pointer to a long integer value representing the number of
elapsed seconds since 00:00:00 GMT, January 1, 1970 (as returned by time(2)).
Note that value is a pointer to the quantity returned by time(2), not just the
quantity itself. Using time(2) and ctime, you can write your own simplified
version of the date command:

#include <stdio.h>
maine)
{

}

char *str, *ctime();
long time() , nseconds;

nseconds = time«long *)0);
str = ctime(&nseconds);
printf("%sll, str);

The rest of the routines in ctime(3C) require the include file <time. h>, which
contains the definition of a structure called tm. This structure is made up of

10-12 Standard Character, String, and Date Manipulation Routines

several variables which contain the various components of the date and time. It
looks as follows:

struct tm {

int tm_sec;
int tm_min;
int tm_hour;
i!!t t:m mrhnr·

------~- -- --J ~

int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

The meaning associated with each structure member is:

tm_year

tm_wday

tm_yday

The "seconds" portion of the system's 24-hour clock time.

The "minutes" portion of the system's 24-hour clock time.

The "hours" portion of the system's 24-hour clock time.

The day of the month, in the range 1 through 3l.

; The month of the year, in the range 0 through 11 (0 =
January).

The current year - 1900.

The day of the week, in the range 0 through 6 (0 = Sunday).

The day of the year, in the range 0 through 365.

A flag which is non-zero if daylight saving time is in effect.

The local time and gmtime routines accept a pointer to a quantity such as
returned by time(2), and fill in the various components of the tm structure.
local time corrects the time for the local time zone and possible daylight
saving time, while gmtime converts directly to GMT time (this is the time used
by HP-UX). Both routines return a pointer to a structure of type tm which can
be used to access the various components of the tm structure.

For example, the following code fragment assigns values to the tm structure
members for the local time zone:

Standard Character, String, and Date Manipulation Routines 10-13

10

10

#include <time.h>

struct tm *ptr, *localtime();
~ong time(), nseconds;

nseconds = time((long *)0);
ptr = localtime(&nseconds);

Once this code is executed, you can use ptr to access the different components
of the local time. For example, ptr->tm_mon references the month of the year,
and ptr->tm_ wday references the day of the week. (gmt ime is used in exactly
the same way, so this example suffices for it also).

The asctime routine converts the time contained in a tm structure into ASCII
representation such as that returned by date(l) and ctime. Its syntax is:

asctime(ptr) ;

where ptr is a pointer to a structure of type tm whose members have previously
been assigned values with local time or gmtime, or explicitly by you. asctime
returns a character pointer to the same NULL-terminated 26-character string
as returned by ct ime.

asctime provides a way for you to obtain the current time, modify it explicitly
in some way, and then print the result in ASCII form. The date command
shown earlier can be re-written using local time and asctime:

10-14 Standard Character, String, and Date Manipulation Routines

#include <stdio.h>
#include <time.h>
maine)
{

long time(), nseconds;
struct tm *ptr, *localtirne();
char *string, *asctime();

nseconds = time((long *)0);
ptr = localtime(&nseconds);

1* the user can modify the current time in tm here *1

}

string = asctime(ptr);
printfCI%sll, string);

This program illustrates a rather indirect way to obtain the date, but it does
enable you to modify the date stored in tm before you print it out. If all
you want to do is print the date, the quickest way is to use the time/ ctime
combination.

Of all the ctime routines, perhaps the most useful is local time. It enables you
to break the current time up into chunks which can then be examined for such
applications as personal calendar programs, program schedulers, etc. Many of
the tm values can be used as indices into arrays containing strings identifying
months and days. For example, declaring an external array like

char *month[] = { II January II , II February II , IIMarch", "Aprilll,

};

II May II , II June II , "Julyll, "August", II September" ,
"October ll , "November l' , IIDecember l1

enables you to use tm_mon as an index into this array to obtain the actual
month name. The same thing can be done with tm_wday if you initialize an
array containing the names of the days of the week. The ctime(3C) package
makes it easy to design programs that depend upon the time or date. Try
creating your own versions of calendar(l), at(l), or even cron(lM)!

Standard Character, String, and Date Manipulation Routines 10-15

10

11
Standard Math Routines

This chapter describes standard math library routines found in the SVID math
library libm, the POSIX math library libM, and the standard library libe.
The math functions do such things as

• calculate absolute value

• exponentiation

• square roots

• logarithms

• trigonometric functions

• random number generation

Note For details on floating-point concepts, refer to Series 700/800
HP- UX Floating-Point Guide. That book provides detail on
such topics as the IEEE floating-point standard, exception
handling, and math libraries.

The math.h Header File
To use math routines, a program should usually #inelude the header file
<math. h>. This file contains type declarations of all the math routines that do
not return an int, and a definition of the constant HUGE. Many math routines
return a "huge" value when an error occurs, so HUGE is set equal to this "huge"
value, enabling a program to check for errors easily.

Standard Math Routines 11-1

11

11

The Math Libraries
Some of the math routines reside in the standard C library, libc, but many
reside in the SVID math library, libm, and the POSIX math library libM.
Therefore, when writing programs that use the routines described here, be sure
to link a program with a math library. For example, to compile a C program
named mprog. c that calls math routines, you could use:

$ cc mprog.c -1m

If your program must be ANSI-compliant, be sure to compile in ANSI mode
and to use the POSIX math library:

$ cc -Aa mprog.c -1M

To determine precisely which library contains a particular math routine, refer
to the HP- UX Reference page that describes the routine.

Note On Series 700/800 systems, faster and more precise versions
of the math libraries reside in the directories /lib/pa1. 1
and /usr/lib/pa1. 1. To link with these libraries, use the
+DA option, as described in the section "Selecting Faster
Libraries" in Chapter 2. These libraries also contain many
useful non-standard functions in addition to the standard ones
described in this chapter (see the HP- UX Floating-Point Guide
for details).

By default, Series 700 compilers automatically link with the
faster PA1.l libraries because exceptional performance is the
primary concern of Series 700 applications. Since compatibility
is usually the goal of Series 800 applications, Series 800
compilers link with the slower PA1.0 libraries by default.

11-2 Standard Math Routines

Absolute Value Functions

The abs (abs(3C)) and fabs functions (see fioor(3M)) return the absolute
value of their integer or floating-point argument, respectively. For example, the
following program calculates integer absolute values until a zero is entered from
the keyboard:

maine)
{

int value;

printf (IIEnter value: II);
scanf (tl%d ll , &value);
while(value != 0) {

printf (t'Absolute value of %d is %d. \nll, value, abs (value)) ;
printf (IIEnter value: II);

}

scanf(lI%d ll , &value);
}

exit(O);

The floating-point equivalent of the previous program is shown below:

maine)
{

double value, fabs();

printf(IIEnter value: ");
scanf("%lf ll , &value);
while(value != 0.0) {
printf(t'Absolute value of %.12g is %.12g.\n l' ,value,fabs(value));
printf (t'Enter value: II);
scanf (tl%lf", &value);

}

exit(O);
}

Standard Math Routines 11-3

11

11

Power, Square Root, and Logarithmic Functions

This section describes the following five functions, all of which are found under
exp(3M) in the HP-UX Reference:

exp(x)

log(x)

log10(x)

pow(x, y)

sqrt(x)

Returns e to the x power.

Returns the natural logarithm of x (In(x)).

Returns the common logarithm of x (log(x)).

Returns x to the y power.

Returns the square root of x.

All functions return double values, and expect double arguments. Since their
syntax is similar, the following logarithm calculator example shows all five of
these functions:

#include <math.h>
main(argc, argv)
int argc;
char *argv [J ;
{

}

double value;

sscanf (argv [1], lI%lfll, &value);
printf("Natural logarithm of %.12g = %.12g\nll,

value, log(value));
printf("Common logarithm of %.12g = %.12g\n",

value, log10(value));

This program accepts its single argument, and returns the natural and common
logarithms of that argument.

11-4 Standard Math Routines

Trigonometric Functions
A full set of trigonometric functions are provided in the math library. They are
as follows:

sin (x)

cos(x)

tan(x)

asin(x)

acos(x)

atan(x)

atan2(y,

sinh(x)

cosh(x)

tanh(x)

x)

Returns the sine of the radian argument x.

Returns the cosine of the radian argument x.

Returns the tangent of the radian argument x.

Returns the arc sine of x in the range -pi/2 to pi/2, where -1
<= x <= 1.

Returns the arc cosine of xin the range 0 to pi, where open -1
<= x <= 1.

Returns the arc tangent of xin the range -pi/2 to pi/2.

Returns the arc tangent of yxin the range -pi to pi.

Returns the hyperbolic sine of the radian argument x.

Returns the hyperbolic cosine of the radian argument x.

Returns the hyperbolic tangent of x.

Figure 11-1 shows a program that uses some of these routines, as well as two
routines from the previous section, to obtain the dimensions and angles of a
right triangle:

#include <stdio.h>
#include <math.h>
maine)
{

double sideA, sideB, sideC, anga, angb, tempC;
double pi = fabs(acos(-l.));
double torads = pi/180.;
double todegs = 180./pi;
double angc = 90.;

printf(IIUsing the following conventions for sides and angles:\n");
triangleO;
printf("\nEnter all known information:\n");
printf("\tA = II);

Standard Math Routines 11-5

11

11
scanf("%lf", &sideA);
printf("\tB = II);
scanf("%lf", &sideB);
printf("\tC = II);
scanf("%lf", &sideC);
printf("\tAngle a = ");

scanf("%lf", &anga);
printf("\tAngle b = II);
scanf("%lf", &angb);
if(sideA && sideB && sideC) {

tempC = sqrt(pow(sideA, 2.) + pow(sideB, 2.));
if(fabs(sideC - tempC) > 0.001) {

printf("Sides invalid.\n");
exit(l);

}

anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;

} else if(sideA && sideB) {
sideC = sqrt(pow(sideA, 2.) + pow(sideB, 2.));
anga = acos(sideB/sideC) * tOdegs;
angb = 90. - anga;

} else if(sideB && sideC) {
sideA = sqrt(pow(sideC, 2.) - pow(sideB, 2.));
anga = acos(sideB/sideC) * tOdegs;
angb = 90. - anga;

} else if(sideA && sideC) {
sideB = sqrt(pow(sideC, 2.) - pow(sideA, 2.));
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;

} else if(sideA) {
if(anga && angb) {

sideC = sideA/cos(angb*torads);
sideB = sqrt(pow(sideC, 2.) - pow(sideA, 2.));

} else if(anga) {
sideC = sideA/sin(anga*torads);
sideB = sqrt(pow(sideC, 2.) - pow(sideA, 2.));
angb = 90. - anga;

} else if(angb) {
sideC = sideA/cos(angb*torads);
sideB = sqrt(pow(sideC, 2.) - pow(sideA, 2.));
anga = 90. - angb;

11-6 Standard Math Routines

} else {

}

printf("Insufficient information.\n");
exit(1);

} else if(sideB) {
if(anga && angb) {

sideC = sideB/sin(angb*torads);
sideA = sqrt(pow(sideC, 2.) - pow(sideB, 2.));

} else if(anga) {
sideC = sideB/cos(anga*torads);
sideA = sqrt(pow(sideC, 2.) - pow(sideB, 2.));
angb = 90. - anga;

} else if(angb) {
sideC = sideB/sin(angb*torads);
sideA = sqrt(pow(sideC, 2.) - pow(sideB, 2.));
anga = 90. - angb;

} else {

}

printf("Insufficient information.\n");
exit(1);

} else if(sideC) {
if(anga && angb) {

sideA = sideC * cos(angb*torads);
sideB = sideC * sin(angb*torads);

} else if(anga) {
sideA = sideC * sin(anga*torads);
sideB = sideC * cos(anga*torads);
angb = 90. - anga;

} else if(angb) {
sideA = sideC * cos(angb*torads);
sideB = sideC * sin(angb*torads);
anga = 90. - angb;

} else {

}

printf("Insufficient information.\n");
exit (1);

} else {

}

printf("Insufficient information.\n");
exit(1);

Standard Math Routines 11-7

11

11

}

printf("\n\tSide A = %.2f\t\tAngle a = %.2f degrees\n", sideA, anga);
printf("\tSide B = %.2f\t\tAngle b = %.2f degrees\n", sideB, angb);
printf("\tSide C = %.2f\n", sideC);

triangleO
{

}

FILE *fopen(), *tri;
char line [50] , *fgets();

tri = fopen("triangle", "r");
if(tri == NULL) {

}

printf("Cannot open triangle file.\n");
exit(l);

while(fgets(line, 50, tri) != NULL)
fputs(line, stdout);

fclose(tri);

Figure 11-1. triangle.c-Get Dimensions of Right Triangle

The triangle function prints out the contents of a file in the current
directory called triangle. The contents of this file should contain an ASCII
approximation of a right triangle:

/1
/ I

/ I
/ a I

/ I
C / I B

/ I
/ I

/ I
/ be_I

/ ________ 1_1
A

This triangle made up of slashes, vertical bars, and underscores, shows the
naming convention for the sides and angles. The program then asks for the

11-8 Standard Math Routines

known data; enter a value of zero for those parameters that are unknown. The
dimensions and angles are then calculated based on the data you have supplied.
If there is insufficient information, you are told about it.

The hyperbolic functions are found under sinh(3M) in the HP- UX Reference.

Calculating Upper and Lower Bounds
Two functions, floor and ceil (see floor(3M)), enable you to obtain integers
(returned as doubles) defining an upper and a lower bound for a number or a
series of numbers. floor returns a double precision representation of the the
largest integer which is still not greater than floor's argument. Similarly, ceil
returns a double precision representation of the smallest integer which is still
greater than ceil's argument.

The following program returns the floor and ceiling values for the number
specified as its argument:

#include <math.h>
main(argc, argv)
int argc;
char *argv [J ;
{

double value;

sscanf Cargv [1], lI%lfll, &value);
printf(IIFloor = %g; Ceiling = %g\nll, floor(value) , ceil(value));

}

If you type this in and run it, you see that floor and ceil provide two double
values representing the smallest range in which the numbers used to obtain
that range will fit. For example, if you have a program which reads three
values from a source file, and these values are 4.79, 19.6, and 21.1, you can get
the smallest possible range in which these numbers fit by running floor on
each number (and keeping the smallest floor value), and then running ceil
on each number (and keeping the largest ceiling value). For the above three
numbers, this yields a floor value of 4, and a ceiling value of 22.

Standard Math Routines 11-9

11

11

Calculating Remainders

This section covers two functions, fmod and modf. The fmod function (see
fioor(3M)) returns the remainder (in double precision form) resulting from
dividing fmod's first argument by its second. For example,

fmod (10., 4.)

divides 10 by 4, and returns the remainder (2.0, in this case). The following
program accepts two numbers, divides the first by the second, and displays the
results in a form showing the number of times the divisor goes evenly into the
dividend, and the remainder, if any:

#include <math.h>
main(argc, argv)
int argc;
char *argv[J;
{

int result;
double number, div, rem;

sscanf(argv[1J, lI%lfll, &number);
sscanf(argv [3J, lI%lfll, &div);

result = number/div;
printf(lI%g = (%d)(%g)lI, number, result, div);
if((rem = fmod(number, div)) != 0.0)

printfC' + %g\nll, rem);
}

This program is set up so that it can be invoked in sentence style. If you name
the compiled version of this program "divide", then you can say

$ divide 33.27 by 11

Since argv[2] is ignored in the code, by is harmless, and the two numbers are
parsed correctly.

11-10 Standard Math Routines

The other function, modf (see jrexp(3C)), is not really a remainder function in
the same sense that fmod is a remainder function. In fmod, a division actually
takes place. In modf, however, no division takes place. modf simply accepts a
double value, and splits it into its integer and fractional parts. Syntax is:

modf (value, iptr);

where value is the number to be split into two parts, and iptr is a pointer to a
double variable where the integer part of value is to be stored. modf's return
value is the signed fractional part of value.

The following program shows a way to use modf:

main(argc, argv)
int argc;
char * argv [J ;
{

double value, iptr, frac, modf();

sscanf (argv [1J, lI%lfll, &value);
frac = modf(value, &iptr);
printf C1Integer part: %g; Fractional part: %g\nt', iptr, frac);

}

The program accepts one argument, the value, and then prints the integer and
fractional parts of that value. Note that the address of iptr is passed to modf,
because modf expects the address of a double variable where the integer part
can be stored.

Standard Math Routines 11-11

11

11

Calculating A Hypotenuse

The hypot function (see hypot(3M)) returns the square root of the sum of the
squares of its two arguments, yielding the length of the hypotenuse of a right
triangle, or the Euclidean Distance.

Thus, in the previous program which calculated the sides and angles of a right
triangle, the line of code which read

sideC = sqrt(pow(sideA, 2.) + pow(sideB, 2.));

could be replaced with

sideC = hypot (sideA, sideB);

thus eliminating some function call overhead.

Generating Random Numbers

The rand and srand routines (see rand(3C)) exist for the generation of random
numbers. rand is the random number generator itself, and srand enables you
to specify a starting point (or seed) for rand.

The following program simply sets up an infinite loop and lets rand run for
awhile (to terminate it, press (Break) or its equivalent):

main()
{

}

unsigned value;

srand(1);
fore;;) {

}

value = rand();
printf cr'Random number is %u\n", value);
sleep(1);

11-12 Standard Math Routines

Note that rand and srand deal only with unsigned integers. If you let this
program run for awhile, you'll notice that the random values returned are quite
large, and don't often venture below 1000. If your application requires smaller
random numbers, take the value returned by rand modulo the range desired.

srand initializes the random number generator to a particular starting point.
In the above program, 1 is used, but you can specify any positive integer you
like.

The sleep library routine causes the program to suspend operation for the
number of seconds specified (1, in this case).

Floating-Point Exponentiation Routines

Two routines, frexp and ldexp (see frexp(3C)), are covered in this section.
frexp accepts a double value, and returns two values, x and n, such that

value = x * 2"'n

where x is a double quantity of magnitude less than 1, and n is an integer
exponent. frexp's syntax

frexp (value, eptr);

where value is the value to be processed, and eptr is a pointer to an integer
variable where the exponent n is to be stored. The quantity x is returned as
frexp's return value.

Standard Math Routines 11-13

11

11
The following program accepts a number argument and uses frexp to output
that number's representation in the form shown above:

main(argc, argv)
int argc;
char *argv [J ;
{

}

double value, x, frexp();
int eptr;

sscanf (argv [1], 'I%lfll, &value);
x = frexp(value, &eptr);
printf(lI%g = %g * 2~%d\nll, value, x, eptr);

Idexp accepts a value of type double and an integer exponent exp, and returns
a double quantity equal to

valuex2~ exponent

The following program accepts two number arguments, value and exp, and
outputs the result:

main(argc, argv)
int argc;
char *argv [J ;
{

}

double value, result, Idexp();
int exp;

sscanf(argv[1J, lI%lfll, &value);
sscanf (argv [2J, lI%d ll , &exp);
result = Idexp(value, exp);
printf("%g * 2~%d = %g\n", value, exp, result);

11-14 Standard Math Routines

12
Advanced HP-UX Programming

This chapter describes how to write programs that interface with the HP- UX
operating system in a non-trivial way. This includes programs that use files by
name, that use pipes, that invoke other commands as they run, or that attempt
to catch interrupts and other signals during execution. Specifically, this chapter
describes

• getting command line arguments and environment variable values from a C
program

• handling errors using stderr and the exit system call

• performing input/output using low-level system calls such as read, write,
and lseek

• managing processes using system calls such as system and fork

• handling interrupts using system calls such as signal

The routines described in this chapter are covered only at a general level. For
details on the routines discussed here, refer to the appropriate pages in the
HP- UX Reference.

All the examples are written in C, but you are not restricted to using C. For
details on calling the routines from other languages, see the HP- UX Portability
Guide.

Advanced HP-UX Programming 12-1

12

Program Arguments and Environment Pointer
When a C program runs, the main function is passed three arguments: the
number of arguments on the command line when the program was invoked,

12 an array of pointers to the command line arguments, and a list of pointers to
environment definitions strings. Traditionally, programmers have named these
parameters argc, argv, and envp, respectively.

int argc

The argc parameter contains the number of comrnand line arguments specified
when the prograrn was invoked. The name of the command is also counted as a
comment line argument. For example, the following command line sets argc to
4:

$ cmd one two three

Note that invoking a program via the exec system call can cause the program
name to not be passed as argv [OJ! Programs that use argv [OJ usually assume
that it contains the program name, so this alternate invocation could cause
strange failures.

char *argv[]

The argv parameter is an array of pointers to null-terminated strings
containing command line arguments. argv [OJ is always the name of the
command as it was invoked on the command line. So, for the command line

$ /users/michael/bin/foo -lpp 60 < infile

argc is 3, and the elements of argv are set as follows:

argv [OJ is /users/michael/bin/foo
argv [1J is -lpp
argv [2J is 60

Notice that the redirection symbol < and infile are not command line
arguments. Only the arguments preceding any redirection or pipe symbol are
passed to the command as arguments.

12·2 Advanced HP·UX Programming

char **envp

The envp parameter is a list of pointers to environment definition strings for
the process. These strings are of the form

VARIABLE=value

and are actually environment variable definitions. You can step through the
strings by incrementing the envp pointer until *envp is NULL.

Example

The following C program displays argc, argv, and envp values:

#include <stdio.h>
main(argc, argv, envp)

int argc;

{

}

char *argv[];
char **envp;

int n;

printf(IINumber of arguments: %d\n ll , argc); 1* display argc *1

printf(lI\nArguments:\n ll
); 1* display individual arguments *1

for (n = 0; n < argc; n++)
printf(lI arg [%d] = %s\nll, n, argv[n]);

printf(lI\nEnvironment Strings:\nll);
while (*envp != NULL) 1* display environment strings *1

printf(lI%s\n ll , *envp++);

Advanced HP-UX Programming 12-3

12

12

Compiling and running this program produced this output:

$ cc -0 args args.c
$ args foo bar
Number of arguments: 3

Arguments:
arg [OJ = args
arg [1J = foo
arg [2J = bar

Environment Strings:
_=/user/michael/bin/args
HOST=hpfcmas
HOME=/user/michael
HISTSIZE=64
SHELL=/bin/ksh
MAIL=/usr/mail/michael

12-4 Advanced HP-UX Programming

Error Handling: stderr and exit
stderr is assigned to a program in the same way that stdin and stdout are.
Output written on stderr appears on the user's terminal even if the standard
output is redirected. wc writes its diagnostics on stderr instead of stdout so 12
that if one of the files can't be accessed for some reason, the message finds its
way to the user's terminal instead of disappearing down a pipeline or into an
ou tpu t file.

The program actually signals errors in another way, using the function exit to
terminate program execution. The argument of exit is available to whatever
process called it, so the success or failure of a program can be tested by
another program that uses it as a sub-process. By convention, a return value
of 0 signals that all is well; non-zero values signal abnormal situations. The
preceding example, wc, has only a one-exit condition, so it provides no means
for detecting errors when it is used as a sub-process.

exit itself calls fclose for each open output file, to flush out any buffered
output, then calls a routine named _exit. The function _exit causes
immediate termination without any buffer flushing; it may be called directly if
desired. Use of _exit becomes necessary when terminating a parent and child
process because both processes set up variables and buffers that are duplicates
of each other. If _exit is not used during termination of at least one of the
processes, both sets of buffers are flushed, causing duplicate output.

Advanced HP-UX Programming 12-5

Low-Level Input/Output

This section describes the bottom level of input/output on the HP-UX system.
The lowest level of input / output in HP -UX provides no buffering or any other

12 services; it is in fact a direct entry into the operating system. You are entirely
on your own, but on the other hand, you have the most control over what
happens. And since the calls and usage are quite simple, this isn't as bad as it
sounds.

File Descriptors

In the HP-UX operating systelll, all input and output is done by reading or
writing files, because all peripheral devices, even the user's terminal, are files
in the file system. This means that a single, homogeneous interface handles all
communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to
inform the system of your intent to do so, a process called "opening" the file.
If you are going to write on a file, it may also be necessary to create it. The
system checks your right to do so (Does the file exist? Do you have permission
to access it?), and if all is well, returns a small positive integer called a file
descriptor. Whenever input / output is to be done on the file, the file descriptor
is used instead of the nanle to identify the file. (This is roughly analogous to
the use of READ (5, ...) and WRITE(6, ...) in FORTRAN) All information
about an open file is maintained by the system; the user program refers to the
file only by the file descriptor.

The file pointers are similar to file descriptors, but file descriptors are more
fundamental. A file pointer is a pointer to a structure that contains, among
other things, the file's descriptor.

Since input and output involving the user's terminal are so common, special
arrangements exist to make this convenient. When the command interpreter
(the "shell") runs a program, it opens three files, with file descriptors 0
(stdin), 1 (stdout), and 2 (stderr), called the standard input, the standard
output, and standard error. All of these are normally connected to the
terminal, so if a program reads file descriptor 0 and writes file descriptors 1 and
2, it can do terminal input/output without needing to open extra files.

12-6 Advanced HP-UX Programming

If input / output is redirected to and from files with < and>, as in

prog < injile > outjile

the shell changes the default assignments for file descriptors 0 and 1 from the
terminal to the named files. Similar observations hold if the input or output
is associated with a pipe. Normally file descriptor 2 remains attached to the
terminal, so error messages can go there. In all cases, the file assignments are
changed by the shell, not by the program. The program does not need to know
where its input comes from nor where its output goes, so long as it uses file 0
for input and 1 and 2 for output.

read and write

All input and output is done by two functions called read and write. For
both, the first argument is a file descriptor. The second argument is a buffer in
your program where the data is to come from or go to. The third argument is
the number of bytes to be transferred. The calls are:

n_read = read(fd, buf, n);

n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually
transferred. On reading, the number of bytes returned may be less than the
number asked for, because fewer than n bytes remained to be read. (When the
file is a terminal, read normally reads only up to the next new-line, which is
generally less than what was requested.) A return value of zero bytes implies
end of file, and -1 indicates an error of some sort. For writing, the returned
value is the number of bytes actually written; it is generally an error if this
isn't equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most
common values are 1, which means one character at a time ("unbuffered"),
and 1024, which is a convenient buffer size. Buffered 1024-byte blocks are
more efficient, but one-character-at-a-time input/output is not inordinately
inefficient. (Some character special files insist on reads or writes of a specified
or minimum size. Refer to the appropriate HP- UX Reference entry for more
information.)

Advanced HP-UX Programming 12-7

12

12

By combining these concepts, we can write a simple program to copy from a
specified input file to a specified output file. This progranl can copy anything
to anything by specifying redirected input and output files.

#define BUFSIZE 1024
maine)
{

1* copy input to output *1

}

char buf[BUFSIZE];
int n;

while ((n = read(O, buf, BUFSIZE)) > 0)
write(1, buf, n);

exit(O);

If the file size is not a multiple of BUFSIZE, sonle read will return a snlaller
number of bytes to be written by write; the next call to read after that ,,,,ill
return zero.

It is instructive to see how read and write can be used to construct higher
level routines like get char , putchar, etc. For example, here is a version of
getchar which does unbuffered input.

#define CMASK 0377 1* for making char's> 0 *1
getchar() 1* unbuffered single character input *1
{

char c;

return((read(O, &c, 1) > 0) ? c & CMASK EOF);
}

c must be declared char, because read accepts a character pointer. The
character being returned must be masked with 0377 to ensure that it is
positive; otherwise sign extension may make it negative. (The constant 0377 is
appropriate for Series 300 computers, but not necessarily for other computers
and systems.)

12-8 Advanced HP-UX Programming

The second version of getchar does input in big chunks, and hands out the
characters, one at a time:

#define CMASK 0377
#define BUFSIZE 1024
getchar()
{

static char
static char
static int

1* for making char's> 0 *1

1* buffered version *1

buf [BUFSIZE] ;
*bufp = buf;
n = 0;

if (n == 0) { 1* buffer is empty *1
n = read(O, buf, BUFSIZE);
bufp = buf;

}

return((--n >= 0) ? *bufp++ & CMASK EOF);
}

open, creat, close, unlink

Other than the default standard input, output and error files, you must
explici tly open files in order to read or write them. There are two system entry
points for this, open and creat.

open is similar fopen, except that instead of returning a file pointer, it returns
a file descriptor, which is just an int.

int fd;

fd = open(name, oflags);

As with fopen, the name argument is a character string corresponding to the
external file name. The of lags argument is different. It consists of one or
more flags that are logically ORed to indicate what types of file operations are
to be allowed while the file is open. One of the three flags O_RDONLY (open for
read only), O_WRONLY (open for write only), or O_RDWR (open for read/write)
must be included. Refer to open(2) in the HP- UX Reference for a complete list
of flags, some of which can be changed while the file is open. open returns -1 if
any error occurs; otherwise it returns a valid file descriptor.

Advanced HP-UX Programming 12-9

12

If you need to open a file that does not exist, use a third argument to specify
the filemode as follows:

fd = open(name, oflags, mode);

12 As before, open returns a file descriptor if it was able to create the file called
name, or -1 if not. If the file already exists, open truncates it to zero length.
mode defines the access mode that is to be assigned to the file if the file does
not already exist.

In the HP-UX file system, mode defines nine bits of protection information
associated with a file that control read, write, and execute permission for the
owner of the file, for the owner's group, and for all others. Thus a three-digit
octal number is convenient for specifying the permissions. For example, 0755
specifies read, write, and execute permission for the owner; and read and
execute permission for the group and everyone else.

12·10 Advanced HP·UX Programming

To illustrate, here is a simplified version of the HP-UX utility cp, a program
which copies one file to another:

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644
main(argc, argv)
int argc;

1* RW for owner, R for group, others *1
1* cp: copy f1 to f2 *1

char *argv[J;
{

}

int f1, f2, n;
char buf[BUFSIZEJ;

if (argc != 3)
errorC'Usage: cp from toll, NULL);

if ((f1 = open(argv[1J, 0)) == -1)
error C' cp: can't open %s II, argv [1J) ;

if ((f2 = creat(argv[2J, PMODE)) == -1)
error (II cp: can't create %s II, argv [2J) ;

while ((n = read(f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)

error(lIcp: write error ll , NULL);
exit(O);

error(s1, s2)
char *s1, *s2;

1* print error message and die *1

{

}

printf(s1, s2);
printf(lI\nll);
exit(1);

As mentioned earlier, there is a limit (typically 60) on the number of files
which a program may have open simultaneously. Accordingly, any program
which intends to process many files must be prepared to re-use file descriptors.
The routine close breaks the connection between a file descriptor and an open

Advanced HP-UX Programming 12-11

12

12

file, and frees the file descriptor for use with some other file. Termination of a
program via exit or return from the main program closes all open files.

The function unlink(char *filename) removes a file from the file system.
filename points to a null-terminated string containing the name of the file to
unlink.

Random Access: Iseek

File input / output is normally sequential: each read or write takes place at a
position in the file right after the previous one. When necessary, however, a file
can be read or written in any arbitrary order. The system call1seek provides
a way to move around in a file without actually reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position
offset, which is taken relative to the location specified by origin. Subsequent
reading or writing will begin at that position. offset is a long; fd and origin
are ints. origin can be 0, 1, or 2 to specify that offset is to be measured
from the beginning, from the current position, or from the end of the file
respectively. For example, to append to a file, seek to the end before writing:

lseek(fd, OL, 2);

To get back to the beginning ("rewind"),

lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (long) O.

12-12 Advanced HP-UX Programming

With lseek, it is possible to treat files more or less like large arrays, at the
price of slower access. For example, the following simple function reads any
number of bytes from any arbitrary place in a file.

get(fd, pos, buf, n)
int fd, n;
long pos;
char *buf;
{

/* read n bytes from position pos */

lseek(fd, pos, 0); /* get to pos */
return(read(fd, buf, n));

}

Error Processing and errno

The routines discussed in this section and, in fact, all routines that are direct
entries into the system can incur errors. Usually they indicate an error by
returning a value of -l.

Routines can also specify additional information on what caused an error by
setting an error code in the external variable errno. Routines set this variable
only when they incur errors. Thus, a successful call to a routine does not reset
the value of errno to zero.

The errno(2) page in the HP- UX Reference provides a detailed listing of
the possible values for errno. In addition, individual man-pages for various
library routines usually document the values that can be set in errno for the
particular routine.

The header file <errno.h> (/usr/include/errno.h) contains symbol constant
definitions for error codes returned in errno. Use these constants to compare
against the value of errno, rather than comparing against hard-coded numbers.
This will ensure your code is portable for subsequent releases if the values of
the constants were to change for some reason.

Error constants can be used by a program, for example, to determine whether
an attempt to open a file failed because it did not exist or because the user
lacked permission to read it. In many cases, you may want to print the reason
for failure. The routine perror prints a message associated with the value
of errno. More generally, the strerror routine can be used to return an

Advanced HP-UX Programming 12-13

12

12

error string that your program can print. For details on these routines, see
perror(3C).

Processes
It is often easier to use a prograln written by someone else than to invent one's
own. This section describes how to execute a program from within another.

The system Function

The easiest way to execute a program from another is to use the standard
library routine system. system takes one argument, a command string exactly
as typed at the terminal (except for the new-line at the end) and executes it.
For instance, to time-stamp the output of a program,

maine)
{

system(IIdate ll
) ;

/* rest of processing */
}

If the command string has to be built from pieces, the in-memory formatting
capabilities of sprintf may be useful.

Remember that getc and putc normally buffer their input; terminal
input/ output will not be properly synchronized unless this buffering is
defeated. For output, use fflush; for input, see setbuf in the appendix.

Low-level Process Creation: execl and execv

If you're not using the standard library, or if you need finer control over what
happens, you will have to construct calls to other programs using the more
primitive routines that the standard library's system routine is based on.

The most basic operation is to execute another program without returning,
by using the routine execl. To print the date as the last action of a running
program, use

execl(lI/bin/date ll
, II date II , NULL);

12-14 Advanced HP-UX Programming

The first argument to exeel is the file name of the command including the
directory path because you have to know where it is found in the file system.
The second argument is conventionally the program name (that is, the last
component of the file name), but this is seldom used except as a place-holder.
If the command takes arguments, they are strung out after this; the end of the 12
list is marked by a NULL argument.

The exeel call overlays the existing program with the new one, runs that, then
exits. There is no return to the original program if exee succeeds.

More realistically, a prograrn might fall into two or more phases that
communicate only through temporary files. Here it is natural to make the
second pass simply an exeel call from the first.

The one exception to the rule that the original program never gets control back
occurs when there is an error, for example if the file can't be found or is not
executable. If you don't know where date is located, say

exeelcrl/bin/date ll , IIdate ll , NULL);
exeel cr l /usr /bin/ date ll , II date II, NULL);
fprintf(stderr, IISomeone stole 'date'\nll);

A variant of exeel called exeev is useful when you don't know in advance how
many arguments there are going to be. The call is:

exeev (filename , a,gp);

where a,gp is an array of pointers to the arguments; the last pointer in the
array must be NULL so exeev can tell where the list ends. As with exeel,
filename is the file in which the program is found, and a,gp[O] is the name of
the program. (This arrangement is identical to the a,gv array for program
arguments.)

N either of these routines provides the niceties of normal command execution.
There is no automatic search of multiple directories - you have to know
precisely where the command is located. Nor do you get the expansion of
metacharacters like <, >, *, ?, and [J in the argument list. If you want these,
use exeel to invoke the shell sh, which then does all the work. Construct
a string commandline that contains the complete command as it would have
been typed at the terminal, then call:

exeelcrl/bin/sh ll , IIShll, II_ell, eommandline, NULL);

Advanced HP-UX Programming 12-15

12

The shell is assumed to be at a fixed place, /bin/sh. Its argument -c says
to treat the next argument as a whole command line, so it does just what
you want. The only problem is in constructing the right information in
command line.

In addition to the execl and execv system calls, HP- UX provides several other
similar routines, including ones that search the process's environment space.
These are listed on the Programming on HP- UX Quick Reference card. For
details on these other routines, see exec(2).

Control of Processes: fork and wait

So far what we've talked about isn't really all that useful by itself. Now we
will show how to regain control after running a program with execl or execv.
Since these routines simply overlay the new program on the old one, to save
the old one requires that it first be split into two copies; one of these can be
overlaid, while the other waits for the new, overlaying program to finish. The
splitting is done by a routine called fork:

proc_id = fork();

It splits the program into two copies, both of which continue to run. The only
difference between the two is the value of proc_id, the process ID. In the child
process (that is, the newly created process), proc_id is zero. In the parent
process (that is, the original process), proc_id is non-zero; it is the process
number of the child. Thus the basic way to call, and return from, another
program is:

if (fork() == 0)
execl(t'/bin/sh", "sh", "-C", cmd, NULL); /* in child */

And in fact, except for handling errors, this is sufficient. The fork makes two
copies of the program. In the child, the value returned by fork is zero, so
it calls execl which does the command and then dies. In the parent, fork
returns non-zero so it skips the execl. (If there is any error, fork returns -1).

12-16 Advanced HP-UX Programming

Often, the parent wants to wait for the child to terminate before continuing
itself. This can be done with the function wait:

int status;

if (fork () == 0)
execl(. . .);

wait(&status);

This still doesn't handle any abnormal conditions, such as a failure of the
execl or fork, or the possibility that there might be more than one child
running simultaneously. (The wait returns the process id of the terminated
child, if you want to check it against the value returned by fork.) Finally, this
fragment doesn't deal with any funny behavior on the part of the child (which
is reported in status). Still, these three lines are the heart of the standard
library's system routine.

The status returned by wait encodes in its low-order eight bits the system's
idea of the child's termination status; it is 0 for normal termination and
non-zero to indicate various kinds of problems. The next higher eight bits are
taken from the argument of the call to exit which caused a normal termination
of the child process. It is good coding practice for all programs to return
meaningful status.

In addition to the wait system call, you can use the wai tpid system call,
which waits for a specific process to terminate before continuing. For details,
see wait(2).

'iVhen a program is called by the shell, the three file descriptors 0, 1, and 2
are set up for stdin, stdout, and stderr, respectively. All other possible
file descriptors are available for use. When this program calls another one,
proper etiquette suggests making sure the same conditions hold. If the parent
is buffering output that must come out before output from the child, the parent
must flush its buffers before the execl. Conversely, if a caller buffers an input
stream, the called program will lose any information that has been read by the
caller.

Advanced HP-UX Programming 12-17

12

Pipes

A pipe is an input/output channel intended for use between two processes:
one process writes into the pipe, while the other reads. The system looks after

12 buffering the data and synchronizing the two processes. Most pipes are created
by the shell, as in

$ Is I pr

which connects the standard output of Is to the standard input of pro
Sometimes, however, it is most convenient for a process to set up its own
plumbing; in this section, we will illustrate how the pipe connection is
established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and
writing, two file descriptors are returned; the actual usage is like this:

int fd[2J;

stat = pipe (fd) ;
if (stat == -1)

1* there was an error . . . *1

fd is an array of two file descriptors, where fd [OJ is the read side of the pipe
and fd [1] is for writing. These may be used in read, write and close calls
just like any other file descriptors.

If D_NDELAY is not set (see read(2) and write(2)) and a process reads a pipe
which is empty, the process will wait until data arrives. If a process writes into
a pipe that is too full, the process will wait until the pipe empties somewhat. If
the write side of the pipe is closed, a subsequent read will encounter end of file.
If D_NDELAY is set, read and write both return immediately with the value O.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen(cmd, mode), which creates a process cmd (just as system does), and
returns a file descriptor that will either read or write that process, according to
mode. That is, the call

fout = popenClprtl, WRITE);

creates a process that executes the pr command; subsequent write calls using
the file descriptor fout will send their data to that process through the pipe.

12-18 Advanced HP-UX Programming

popen first creates the the pipe with a pipe system call; it then forks to
create two copies of itself. The child decides whether it is supposed to read or
write, closes the other side of the pipe, then calls the shell (via execl) to run
the desired process. The parent, likewise, closes the end of the pipe it does
not use. These closes are necessary to make end-of-file tests work properly. 12
For example, if a child that intends to read fails to close the write end of the
pipe, it will never see the end of the pipe file, just because there is one writer
potentially active.

#include <stdio.h>

#define READ 0
#define WRITE 1
#define tst(a, b) (mode -- READ? (b) (a))
static int popen_pid;

popen(cmd, mode)
char *cmd;
int mode;
{

}

int p [2J ;

if (pipe(p) < 0)
return(NULL);

if ((popen_pid = fork()) == 0) {
close(tst(p[WRITE] , p[READJ));
close(tst(O, 1));
dup(tst(p[READJ, p[WRITEJ));
close(tst(p[READ] , p[WRITEJ));
execl (I' /bin/sh l1

, II sh ll
, I1_ C", cmd, 0);

_exit(1); /* disaster has occurred if we get here */
}

if (popen_pid -- -1)
return(NULL);

close(tst(p[READJ, p[WRITEJ));
return(tst(p[WRITEJ, p[READJ));

Advanced HP-UX Programming 12-19

12

The sequence of closes in the child is a bit tricky. Suppose that the task is to
create a child process that will read data from the parent. Then the first close
closes the write side of the pipe, leaving the read side open. The lines

close(tst(O, 1));
dup(tst(p[READ] , p[WRITE]));

are the conventional way to associate the pipe descriptor with the standard
input of the child. The close closes file descriptor 0, that is, the standard
input. dup is a system call that returns a duplicate of an already open file
descriptor. File descriptors are assigned in increasing order and the first
available one is returned, so the effect of the dup is to copy the file descriptor
for the pipe (read side) to file descriptor 0; thus the read side of the pipe
becomes the standard input. (Yes, this is a bit tricky, but it's a standard
idiom.) Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed
to write from the parent instead of reading. You may find it a useful exercise
to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe
created by popen. The main reason for using a separate function rather than
close is that it is desirable to wait for the termination of the child process.
First, the return value from pclose indicates whether the process succeeded.
Equally important when a process creates several children is that only a
bounded number of unwaited-for children can exist, even if some of them have
terminated; performing the wait lays the child to rest. Thus:

12-20 Advanced HP-UX Programming

#include (signal.h)

pclose(fd) 1* close pipe fd *1
int fd;
{

}

register r, (*hstat)(), (*istat)(), (*qstat)();
int status;

extern int popen_pid;

close(fd);
istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN);
while ((r = wait(&status)) != popen_pid && r != -1);
if (r == -1)

status = -1;
signal(SIGINT, istat);
signal(SIGQUIT, qstat);
signal (SIGHUP, hstat);
return(status) ;

The calls to signal make sure that no interrupts I etc., interfere with the
waiting process; this is the topic of the next section.

The routine as written has the linlitation that only one pipe may be open at
once, because of the single shared variable popen_pid; it really should be an
array indexed by file descriptor. A popen function, with slightly different
arguments and return value is available as part of the standard input / output
library discussed below. As currently written, it shares the same limitation.

Advanced HP·UX Programming 12·21

12

Signals (Interrupts)

This section is concerned with how to deal gracefully with signals from the
outside world (like interrupts), and with program faults. Since there's nothing

12 very useful that can be done from within C about program faults, which
arise mainly from illegal rnemory references or frorn execution of peculiar
instructions, we'll discuss only the outside-world signals:

Interrupt

Quit

Hangup

Terminate

Sent when the Interrupt character is typed (user configurable,
usually DEL)

Generated by the Quit character (user collfigurable, usually
File Separator character obtained by ~TRL - \)

Caused by hanging up the phone

Generated by the kill cornmand.

Unless other arrangernents ha.ve been ma.de (see setprgp(2) and signal(2)),
when one of these events occurs, the signal is sent to all processes that were
started from the corresponding tenninal, tenninating the process(es). In the
qui t case, a core image file is written for debugging purposes.

The routine that alters the default action is called signal. It has two
arguments: the first specifies the signal, and the second specifies how to treat
it. The first argument is just a nurnber code, but the second is the address,
and is either a function, or a somewhat strange code that requests that the
signal either be ignored or that it be given the default action. The include
file signal.h gives names for the various arguments, and should always be
included when signals are used. Thus

#include <signal.h>

signal(SIGINT, SIG_IGN);

causes interrupts to be ignored, while

signal(SIGINT, SIG_DFL);

restores the default action of process termination.

12-22 Advanced HP-UX Programming

In all cases~ signal returns the previous value of the signaL The second
argulnent to signal Inay instead be the name of a void function (which has
to be declared explicitly if the corn piler hasn ~t seen it already). In this case,
the narned routine will be caned when the signal occurs. Most comrnonly this
facility is used to allow the prograul to dean up unfinished business before 12
terrninating, for example to delete a ternporary file:

#include <signal.h>
maine)
{

void onintrO;

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal(SIGINT, onintr);

}

1* Process .. . *1
exit(O);

void onintr()
{

}

unlink(tempfile);
exit(1);

Why the test and the double call to signal'? Recall that signals like interrupt
are sent to all processe::; ::;LarLed from a particular terminal. Accordingly, when
a prograrn i::; to be run non-interactively (started in the background with
&), the shell turns off interrupts for.it so it won't be stopped by interrupts
intended for foreground processes. If this prograrn began by announcing that
all interrupts were to be sent to the onintr routine regardless, that would undo
the shell's effort to protect it when run in the background.

The solution~ shown above, is to test the state of interrupt handling, and to
continue to ignore interrupts if they are already being ignored. The code
as written depends on the fact that signal returns the previous state of a
particular signaL If signals were already being ignored, the process should
continue to ignore thern; otherwise, they should be caught.

Advanced HP-UX Programming 12-23

A more sophisticated progranl rna.y wish to intercept an interrupt and
interpret it as a request to stop what it is doing and return to its own
command-processing loop. Think of a text editor: interrupting a long printout
should not cause it to terminate and lose the work alrea.dy done. The outline of

12 the code for this case is probably best written like this:

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbuf;

mainC)
{

}

int C*istat)(), onintrC);

istat = signal(SIGINT, SIG_IGN); 1* save original status *1
setjmp(sjbuf); 1* save current stack position *1
if Cistat != SIG_IGN)

signal(SIGINT, onintr);

1* main processing loop *1

onintrC
{

printfCI\nInterrupt\n");
longjmp(sjbuf); 1* return to saved state *1

}

The include file <setjmp .h> declares the type jmp_buf, an object in which
the state can be saved. setsjbuf is such an object; it is an array of some
sort. The setjmp routine then saves the state of things. When an interrupt
occurs, a call is forced to the onintr routine, which can print a message,
set flags, or whatever. longjmp takes as argument an object stored into by
setjmp, and restores control to the location after the call to setjmp, so control
(and the stack level) will pop back to the place in the main routine where the
signal is set up and the main loop entered. Notice, by the way, that the signal
gets set again after an interrupt occurs. This is necessary; most signals are
automatically reset to their default action when they occur.

12-24 Advanced HP-UX Programming

Some progranls that want to detect signals simply can ~t be stopped at an
arbitrary point~ for example in the middle of updating a linked list. If the
routine called on occurrence of a signal sets a flag and then returns instead
of calling exit or longjmp, execution will continue at the exact point it was
interrupted. The interrupt fla.g can then be tested later. 12

There is one difiiculty associated with this approach. Suppose the progranl is
reading the tenninal when the interrupt is sent. The specified routine is duly
called; it sets its flag and returns. If it were really true, as we said above, that
"execution resumes at the exact point it was interrupted", the program would
continue rea.ding the tel'lllinal until the user typed a.nother line. This behavior
rnight well be confusing, since the user lllight not know that the prograrn is
reading; he presunlably would prefer to have the signal take effect instantly.
The rnethod chosen to resolve this difficulty is to terminate the ternlinal
rea,d when execution resurnes after the signal, returning an error code which
indicates what happened.

Thus prograrns that catch and resume execution after signals should be
prepared for errors are caused by interrupted systenl calls. (The ones to watch
out for are reads frorn a tenninal, wait, and pause.) A program whose onintr
prograrn just sets intflag, resets the interrupt signal, and returns, should
usually include code like the following when it reads the standard input:

if (getchar() == EOF)
if (intflag)

1* EOF caused by interrupt */
else

1* true end-of-file *1

Another aspect of error ha.ndling that rnust be dealt with is associated with
prograuls where the user ha,s elected to catch a.n asynchronous signal such,
as a.n interrupt or quit signal, and the signal occurs during a systenl call
producing the error EINTR. If execution is resurned after processing the signal,
it will appear as if the interrupted systern call returned the EINTR error unless
the system call is restarted. For 1110re infonna.tion, refer to sigvector(2).

Advanced HP-UX Programming 12-25

12

A final subtlety to keep in nliud becomes importa.nt when signal-catching
is combined with execution of other prograrIlS. Suppose a program catches
interrupts, and also includes a method (like "!" iu the editor) whereby other
prograrIls ca,n be executed. Then the code should look something like this:

if (fork() == 0)
execl(...);

signal(SIGINT, SIG_IGN);
wait(&status);
signal(SIGINT,onintr);

1* ignore interrupts *1
1* until the child is done *1
1* restore interrupts *1

Why is this'? Again, it's not obvious but uot really difficult. Suppose the
program you call catches its own interrupts. If you interrupt the subprogram,
it will get the signal and ret.urn to its rllaiuloop, and probably read your
terminal. But the calling progl'cun will a.lso pop out of its wait for the
subprogram a.nd read your t.orminaL Ha.ving two processes reading your
ternlinal is very unfort ullate, 1:11 11 co tho systerll figuratively flips a coin to decide
who should get each lilW of input. A siInple way out is to have the pc\r<:mt
prograrll ignore interruptf:l until the child is done. This reasoning is rellec.ted in
the standard input/output libra.ry function system:

12-26 Advanced HP-UX Programming

#include <signal.h>

systern(s)
char *s;

/* run command string s */

{

}

int status, pid, w;
register int (*istat)(), (*qstat)();

if ((pid = fork()) == 0) {
execl("/bin/sh ll

, "sh", "-ell, s, 0);
_exit(127);

}

istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
while ((w = wait(&status)) != pid && w != -1)

if (w == -1)
status = -1;

signal(SIGINT, istat);
signal(SIGQUIT, qstat);
return(status) ;

As an aside on declarations ~ the functIon signal obviously has a rather strange
second argurnent. It is in fact a pointer to a function delivering an integer ~ and
this is also the type of the f:ilgllal routine itself. The two values SIG_IGN and
SIG_DFL have the right typc~ but a,re chosen so they coincide with no possible
actual fUllctions.

Advanced HP·UX Programming 12·27

12

make: A Command for Maintaining
Computer Programs

13

In a programlning project, it is easy to lose track of which files need to be
reprocessed or recornpiled after a cha,nge is 1uade in sorne part of the source. 13
make provides a silllple lnechanislll for lllaintaining up-to-date versions of
prograrns that result from rnany operations on a number of files. It is possible
to tell make the sequence of comrnands that create certain files, and the list of
files that require other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the make command
will create the proper files simply, correctly, and with a minimum amount of
effort.

The basic operation of make is to find the nalne of a needed target in the
description, ensure that all of the files on which it depends exist and are up to
date, and then create the target if it has not been rnodified since its generators
were. The description file really defines the dependencies.

make also provides a SiUlple 111acro substitution facility and the ability to
encapsulate cOIIllnands in a single file for convenient administration.

This chapter describes

• an overview of using make
• basic features of make
• the format of Makef iles and how to do rnacro substitutions
• syntax and usage of make
• implicit make rules
• an example of using make
• suggestions and warnings about using make
• suffixes and transformation rules
• using make with sees

make: A Command for Maintaining 13·1
Computer Programs

Overview
It is COlllmon practice to divide large progranls into slllaller l rnore manageable
pieces. The pieces may require quite different treatnwuts: sonle may need
to be run through a macro processor I sorne rnay need to be processed by a
sophisticated prograrn generator (such as yacc or lex). The outputs of these
generators may then have to be cOlllpiled with special options and with certain
definitions and declarations. The code resulting frolll these transforrnations
may then need to be loaded together with certain libraries under the control

13 of special options. Related lnaintenallce acti vities involve rUllnin~ corllpllcated
test scripts and instanin~ validated rnoduJes. UnfortunatelYI it is very easy for
a prograrnmer to forget which files depend on which others I which Iilcs have
been modified recentlYI all d the exact seq uellce of operations need(~d to lllake
or exercise a new version of' t.hc' prograrn. After a long editing sessioll l one rnay
easily lose track of which lik~ Imve been changed and which object Inodules
are still valid l since a change to a declaration can obsolete a dozen other files.
Forgetting to compile a routiue that has been changed or that uses changed
declarations will result in a. progra,rll that will not work l and a bug tha.t ca.n be
very hard to track down. On Ute' other ha,nd l re-cornpiling an files j llSt to be
safe is very wasteful.

The program described in this report rnechanizes rnany of the activities
of progralll development and lllaintenance. If the infol'luation on inter-file
dependencies and cornllland sequences is stored in a fUel the simple cornmand
make is frequently sufficient to update the interesting files l regardless of the
number that have been edited since the last "rna,kell

• In lllost cases l the
description file is easy to write and changes infrequently. It is usually easier to
type the make command than to issue even one of the needed operations, so the
typical cycle of program development operations becornes

think ---+ edit ---+ make ---+ test ...

make runs on the HP -UX operating system l and is most useful for
medium-sized programming projects; it does not solve the problems of
maintaining multiple-source versions or of describing huge programs.

13-2 make: A Command for Maintaining
Computer Programs

Basic Features
The basic operation of make is to update a target file by ensuring that all of
the files on which it depends exist and are up to date, then creating the target
if it has not been modified since its dependents were. make does a depth-first
search of the graph of dependencies. The operation of the comnland depends
on the ability to find the date and time that a file was last modified.

To illustrate, let us consider a simple example: A program named prog is
made by compiling and loading three C-Ianguage files x.c, y.c, and z.c with
the lS library. By convention, the output of the C compilations will be found
in files named x.o, y.o, and z.o. Assume that the files x.c and y.c share some
declarations in a file named defs, but that z.c does not. That is, x.c and y.c
have the line:

#include IIdefsll

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o y.o defs

Note make prefers tab characters instead of space characters in front
of the cc or other dependent command.

If this information were stored in a file named makefile, the command:

make

would perform the operations needed to recreate prog after any changes had
been made to any of the four source files x.c, y.c, z.c, or defs.

make operates using three sources of information:

• a user-supplied description file (as above)
• file names and last-modified times from the file system
• built-in rules to bridge some of the gaps

In our example, the first line says that prog depends on three .0 files. Once
these object files are current, the second line describes how to load them to

make: A Command for Maintaining 13-3
Computer Programs

13

13

create prog. The third line says that x.o and y.o depend on the file defs. From
the file system, make discovers that there are three . c files corresponding to the
needed .0 files, and uses built-in information on how to generate an object from
a source file (that is, issue a cc -c command).

The following long-winded description file is equivalent to the one above, but
takes no advantage of make's innate knowledge:

prog : x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o x.c defs
cc -c x.c

y.o y.c defs
cc -c y.c

z.o z.c
cc -c z.c

If none of the source or object files had changed since the last time prog was
made, all of the files would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been
edited, x.c and y.c (but not z.e) would be recompiled, and then prog would be
created from the new .0 files. If only the file y.c had changed, only it would be
recompiled, but it would still be necessary to reload prog.

If no target name is given on the make command line, the first target
mentioned in the description is created; otherwise the specified targets are
made. The command

make x.o

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, its time of last modification
is used in further decisions; otherwise the current time is used. It is often
quite useful to include rules with mnemonic names and commands that do not
actually produce a file with that name. These entries can take advantage of
make's ability to generate files and substitute macros. Thus, an entry save
might be included to copy a certain set of files, or an entry cleanup might
be used to throwaway unneeded intermediate files. In other cases one may

13-4 make: A Command for Maintaining
Computer Programs

maintain a zero-length file purely to keep track of the time at which certain
actions were perfonned. This technique is useful for Inaintaining relnote
archives and listings.

make has a simple Inacro Inechanism for substituting in dependency lines and
command strings. Macros are defined by command arguments or description
file lines with embedded equal signs. A macro is invoked by preceding the
nanle by a dollar sign; macro names longer than one character nlust be
parenthesized. The name of the macro is either the single character after
the dollar sign or a name inside parentheses. The following are valid macro
invocations: 13

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical. $ is a dollar sign. All of these macros
are assigned values during input, as shown below. Four special macros change
values during the execution of the command: $*, $@, $?, and $<. They will be
discussed later. The following fraglnent shows the use:

OBJECTS = x.o y.o z.o
LIBES = -lS
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -0 prog

The command

make

loads the three object files with the lS library. The command:

make IILIBES= -11 -lS tI

loads them with both the lex (-11) and the Standard (-lS) libraries, since
macro definitions on the command line override definitions in the description.
(It is necessary to quote arguments containing embedded blanks in HP- UX
comnlan ds.)

make: A Command for Maintaining 13-5
Computer Programs

The following sections detail the form of description files and the command
line, and discuss options and built-in rules in 11101'0 deta.il.

Description Files and Substitutions
A description file contains three types of infonnation: macro definitions,
dependency information, and executable commands. Also, as in C and shell

13 programrning, any charact.ers following a a hash mark (#) are treated as
a comrnent and ignored, a,s is t.he hash lllark itself. Blank lines and lines
beginning with a hash rna.rk are a.lso totally ignored. If a non-comrnent line
is too long to fit on a single SOLUTe line, it can be continued to one or rnore
subsequent lines by using a. ba,cksla.sh. If the last character of a line is a
backslash, the backslash, newlino, a.nd following blanks and tabs are replaced
by a single blank.

A line containing an equal sign (=) is a rnacro definition line. A macro
definition has this syntax:

macro_ name = macro_ value

macro_name is a string of letters and digits which is replaced by macro_ value
when expanded. The macro_name must start in the first column; it cannot be
preceded by blanks or tabs. However, the equal sign can be surrounded by any
number of tabs or blanks, which are not part of macro_name or macro_value.
The following are all valid macro definition lines:

2 = xyz
abc = -11 -ly -IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never
explicitly defined has the null string as value. Macro definitions may also
appear on the make command line (see below).

Other lines give information about target files. The general form of an entry is:

targetl [target2 . ..]: [:] [dependentl ...

[~) commands] [«#" ...]

13-6 make: A Command for Maintaining
Computer Programs

[; commands] [# . ..]

!terns inside brackets can be ornitted. Targets and dependents are strings
of letters, digits, periods, and slashes. (Shellrlletacharacters * and? are
expanded.) A cOIlllnand is any string of characters not including a sharp
(except in quotes) or newline. Conllnands rnay appear either after a semicolon
on a dependency line or on lines beginning with a tab irnmediately following a
dependency line.

A dependency line may have either a single or a double colon. A target name
Il1ay appear on n10re than one dependency line, but all of those lines must be of
the same (single or double colon) type:

1. For the usual single-colon case, at most one of these dependency lines may
have a cornn1and sequence associated with it. If the target is out of date
with any of the dependents on any of the lines, and a command sequence
is specified (even a null one following a sernicolon or tab), it is executed;
otherwise a default creation rule may be invoked.

2. In the double-colon case, a cornrnand sequence may be associated with
each dependency line; if the target is out of date with any of the files on
a particular line, the associated cornmands are executed. A built-in rule
Il1ay also be executed. This detailed fonn is of particular value in updating
archi ve- type files.

If a target IlU1St be created, the sequence of cornrnands is executed. Nonnally,
ea.ch cOlnmandline is printed and then passed to a separate invocation of
the Shell after substituting for rnacros. (The printing is suppressed in silent
Il10de or if the conllnand line begins with an (<j) sign). make normally stops if
any cOIl1mancl signals an error by returning a non-zero error code. (Errors
are ignored if the i flags has been specified on the make cornmand line, if the
fake target narne . IGNORE appears in the description file, or if the command
string in the description file begins with a hyphen. Some HP-UX comrnands
return rneaningless status). Because each cOIlllnand line is passed to a separate
invocation of the Shell, care must be taken with certain commands (such as
cd and Shell control commands) that have meaning only within a given shell
process. Results frorn a previous line are forgotten before the next line is
executed.

Before issuing any command, certain macros are set. -$@ is set to the name of
the file to be "made". -$? is set to the string of names that were found to be
younger than the target.

make: A Command for Maintaining 13-7
Computer Programs

13

13

If the command was generated by an implicit rule (see below), -$< is the name
of the related file that caused the action, and -$* is the prefix shared by the
current and the dependent file names.

If a file must be made but there are no explicit COllllnands or relevant built-in
rules, the commands associated with the naIne . DEFAULT are used. If there is
no such name, make prints a nlessage and stops.

Command Usage
The make command takes fOLLr kinds of arguments: macro definitions, flags,
description file narlles, and ta,rget file names.

make [flags] [macro defini ilOllS] [targets]

The following summary of the opera.tion of the comnland explains how these
arguments are interpreted.

First, all macro definition arguments (argunlents with embedded equal signs)
are analyzed and the assignIllents lnade. Conulland-line macros override
corresponding definitions found in the description files.

Next, the flag arguments are examined. The pernlissible flags are

-i

-s

-r

-n

-t

Ignore error codes returned by invoked commands. This mode
is entered if the fake target name . IGNORE appears in the
description file.

Silent mode. Do not print command lines before executing.
This mode is also entered if the fake target name . SILENT
appears in the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute them.
Even lines beginning with an @ sign are printed.

Touch the target files (causing them to be up to date) rather
than issue the usual commands.

13-8 make: A Command for Maintaining
Computer Programs

-q

-p

d

-f

Question. The . IT command to make returns a zero or
non-zero status code depending on whether the target file is or
is not up to date.

Print out the cOlllplete set of lllacro definitions and target
descriptions

Debug lllode. Print out detailed inforillation on files and times
examined.

Description file narne. The next argument is assuilled to be
the name of a description file. A file name of - denotes the
standard input. If there are no -f arguments~ the file narned
makefile or }\;lakefile in the current directory is read. The
contents of the description files override the built-in rules if
they are present).

Finally, the remaining argurnents are assumed to be the names of targets to be
made; they are done in left-to-right order. If there are no such arguments~ the
first name in the description files that does not begin with a period is "made".

make: A Command for Maintaining 13·9
Computer Programs

13

13

Implicit Rules
The make program uses a table of interesting suffixe::; a.nd a set of
transformation rules to supply default dependency infonnation and implied
commands. (Descriptions of these tables and Hwa.ns of overriding them are
included at the end of this chapter.) The default suffix list is:

. 0 Object file .

. C C source file .

. e Eft source file .

. r Ratfor sourc(\ file' .

.f Fortran source IUC' .

. S Assembler source lile .

. y Yacc- C source graullnar .

. yr Yacc-Ratfor source granllnar .

.ye Yacc-Eft source graullua.r

.1 Lex source granllna,r

Figure 13-1 sumnla,rizes the default transfonnation paths. If there are
two paths connecting a pair of suffixes, the longer one is used only if the
interrnediate file exists or is narned in the description .

. 0

~~
.c .r e .f.s.y .yr· .yl? .1 .d

/\ I I .
. y .1 .yr .ye

Figure 13-1. Default make Transformation Paths

If the file x.o were needed and there were an x.c in the description or directory,
it would be compiled. If there were also an x.l, that grammar would be run
through lex before compiling the result. However, if there were no x.c but
there were an x.l, make would discard the intermediate C-Ianguage file and use
the direct link in the graph above.

13-10 make: A Command for Maintaining
Computer Programs

It is possible to change the names of SOllle of the compilers used in the default~
or the flag argulnents 'Nith 'Nhich they are invoked by kno\ving the lnacro
nalnes used. The compiler nall18S are the lllacros AS~ CC~ RC~ EC~ YACC~ YACCR~
YACCE~ and LEX. The cOllllnand

make CC=newcc

causes the newcc connnand to be used instead of the usual C cOlnpiler. The
lnacros CFLAGS~ RFLAGS~ EFLAGS~ YFLAGS~ and LFLAGS lnay be set to cause
these commands to be issued with optional flags. Thus,

make "CFLAGS=-O"

causes the optimizing C cOlnpiler to be used.

Example
As an exa.lnple of the use of make~ we will present the description file used to
rnaintain the make cOlnnmnd itself. The code for make is spread over a nUlllber
of C source files and a Yaee gl'aUllna.r. The description file contains:

Description file for the make command

P = und -3 opr -r2 # send to GCOS to be printed
FILES = Makefi1e version.c defs main.c doname.c misc.c files.c dOsys.c
gram.y 1ex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -lS
LINT = lint -p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make
size make

$(OBJECTS): defs
gram.o: 1ex.c
cleanup:

-rm *.0 gram.c

make: A Command for Maintaining 13-11
Computer Programs

13

13

-du
install:

@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files

test:

pr $? $p

touch print

make -dp I grep -v TIME >1zap
/usr/bin/make -dp grep -v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

lint dosys.c doname.c files.c main.c misc.c version.c gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

ar uv /sys/source/s2/make.a $(FILES)

make usually prints out eac.h c.ollnnand before issuing it. The following output
results from typing the sirnple c.omnland

make

in a direc.tory c.ontaining only the sourc.e and description file:

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dOsys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o -IS -0 make
13188+3348+3044 = 19580b = 046174b

13-12 make: A Command for Maintaining
Computer Programs

Although none of the source files or graInInars were Inentioned by nallle in the
description file~ make found thenl using its suffix rules and issued the needed
conllnands. The string of digits results frorn the size make conllnand; the
printing of the cOllunand line itself was suppressed by an @ sign. The @ sign
on the size comnul..nd in the description file suppressed the printing of the
conllnand~ so only the sizes are W ri tten.

The last few entries in the description file are useful main tenance sequences.
The print entry prints only the files that have been changed since the last
make print comInand. A zero-length file print is mainta.ined to keep track of
the tilne of the printing; the $? lllaCrO in the COllllllalld line then picks up only 13
the nanles of the files cha,nged since prilll W(l,S touched. The printed output
can be sent to a different printer or to a file by changing the definition of the P
Inaero:

make print lip = opr -Sp"

or

make print "p= cat >zap"

Suggestions and Warnings
~rllC' 1110St COllll110n difficulties a.rise from make ~s specific uleaning of dependency.
If file :v.c ha.s a.n #include (hI,::, line~ then the object file :t.O depends on defs;
the SOLU'ce lile :t.C does not. (11' defs is changed~ it is not necessary to do
anything to the fill' ;t.c~ while it is necessary to recreate x.o.)

1'0 discover wha.t make welldel dOl the -n option is very useful. The cOIn1nand

make -n

orders make to print out the conllnands it would issue without actua.lly
taking the tiIne to execute theIn. If a change to a file is absolutely certain
to be benign (e.g., adding a new definition to an include file), the -t (touch)
option can save a lot of tiIne: instead of issuing a large nUInber of superfluous
re-cornpilations, make updates the Inodification tinles on the affected file. Thus l
the cOInnland

make -ts

make: A Command for Maintaining 13-13
Computer Programs

13

("touch silently") causes the relevant files to a,ppear up to date. Obvious care
is necessary, since this mode of operation subverts the intention of make and
destroys all menlory of the previous relationships.

The debugging flag (-d) causes make to print out a. very detailed description
of what it is doing l including the file tirnes. The output is verbose l and
reconunended only as a last resort.

Suffixes and Transformation Rules
The make prograrIl itself doe::; not know what file name suffixes are interesting
or how to transf'onn a file> wit.h oue suffix into a file with another suffix. T'his
infonnation is stored in (t,n intC\t'llal ta.ble that has the form of a description file.
If the -r flag is used l this ta.ble\ is not used.

The list of suffixes is act ually the dependency list for the name . SUFFIXES.
make looks for a file with any of the suffixes on the list. If such a file exlsts l and
if there is a transforrnation rule for tha,t cOlllbina.tion l make acts as described
earlier. The transforrnation rule na,rnes a,re the conca,tena,tion of the two
suffixes. The nanle of the rule to transfonn a .1' HIe to a. .0 file is thus . r. o. If
the rule is present and no explic.i t cOlIlInancl seq uC'nco has been given in the
userls description files, the conlInand sequence for the rule. r. 0 is used. If a
conlInand is generated by using one of these suffixing rules, the macro $* is
given the value of the stem (everything but the suffix) of the name of the file
to be rnade l and the nlacro $< is the narne of the dependent that caused the
action.

The order of the suffix list is significant l since it is scanned frOIn left to rightl
and the first name that is formed that has both a file and a rule assoc.iated
with it is used. If new names are to be appended, the user can just add an
entry for. SUFFIXES in his own description file; the dependents will be added
to the usual list. A . SUFFIXES line without any dependents deletes the current
list. (It is necessary to clear the current list if the order of names is to be
changed).

13-14 make: A Command for Maintaining
Computer Programs

The following is a.n excerpt frolll the defa.ult rules file:

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s
YACC=yacc
YACCR=yacc -r
YACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.O

(CC) $(CFLAGS) -c $<
.e.o .r.o .f.o :

(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<
.s.o

.y.o

.y.c

(AS) -0 $@ $<

(YACC) $(YFLAGS) $<
(CC) $(CFLAGS) -c y.tab.c
rrn y. tab. c

rnv y. tab. 0 $@

(YACC) $(YFLAGS) $<
rnv y.tab.c $@

make: A Command for Maintaining 13-15
Computer Programs

13

13

Using make with sees
You can use make to ensure that changes to header Iilef:l rnaintained by sees
will cause a recompile. The following example illustrates such use:

SRCS= test1.c test2.c test3.c test4.c head.h head2.h head3.h
GRPA= test1.0 test2.0 test3.0 test4.0
GRPB= test1.0 test3.0
GRPC= test4.0
test: test1.0 test2.0 test3.0 test4.0

cc -0 test test1.0 test2.0 test3.0 test4.0
$(GRPA): head.h
$(GRPB): head2.h
$(GRPC): head3.h
sources: $(SRCS)
$(SRCS):

get s.$@

13-16 make: A Command for Maintaining
Computer Programs

14
SCCS: Source Code Control System

This chapter describes SCCS (Source Code Control S'ystem)l which is simply
a set of HP- UX comlnands that enable you to

• track all changes made to a text file

• retrieve the current (latest) version of a file

• retrieve any previous version of a file 1 ignoring any changes Inade to the
original after a given revision

• control who changes a file

• keep track of the date and location of each change Inade to a file along with
the nalne of the person making the change

• add comments when indicating the reason for each change

Note SCCS does not support Access Control Lists (ACLs) and
cannot be used in an environlnent where ACLs are used to
enhance systenl security.

SCCS: Source Code Control System 14-1

14

Overview
One application of sees is to keep track of source files during the development
and nlaintenance of large systems. This chapter is directed towards this use of
sees. However, it can be used in any project that involves supporting groups
of related text files. Object code cannot be maintained under sees.
Once you store a program source file under sees, all of its versions, plus
additional log information, are kept in a file called the s-file. S-files are also
referred to as sees files and Inust have an s. prefix on their name. Three
Inajor operations can be perfonned on the s-file:

1. Get a file for smne non-editing purpose, such as conlpilation. This operation
retrieves a read-only version of the file from the s-file. By default, the latest
version of the file is retrieved. This file is specifically NOT intended to be

14 edited or changed in any way, so any changes made to a file retrieved in this
way will probably be lost.

2. Get a file for editing. This operation also retrieves a version of the file fronl
the s-file, but this file is intended to be edited and then incorporated back
into the s-file. Only one person at a tinle can edit a particular version of an
s-file at a tinle (unless you have specifically allowed concurrent edits on the
same version).

3. Merge a file back into the s-file. This is the companion operation to (2). A
new version number is assigned, and comments are saved explaining why
this change was made.

14-2 sees: Source Code Control System

Terms
You need to know the rneaning of several tenns before using sees:

S-files

An s-file is a single file that holds all the different versions of your source file.
The s-file is stored in a differential fonnat rneaning that only the differences
(deltas) between versions are stored, rather than the entire text of the new
version. This saves disk space and 1uakes it easy to rerllOVC selective cha,nges
later if needed. The s-file also contains header inforlllation for each version.
The header also contains the conllllents provided by the person who created the
version, explaining why the changes were llla,de. A description of what this
header information includes is presented later in this chapter.

Deltas

Each set of changes to the s- file (a,pproxillut.tely eq ui valent to a version of the
file) is called a delta. Although technically a. delta. includes only the current
changes made, in practice it is usual for ea,ch delta. to be 111ade with respect to
all the deltas that preceded it. T'his ruatches nonual usage, where the previous
changes are not saved at all and all changes a,re a,utOIlla.tica.lly based on all
other changes that have happened through history. However, it is possible to
get a version of the file that has selected deltas removed alIt of the ruiddle of
the list of changes. All of the deltas of a file 1uaintained under sees are stored
in an s-file.

SIDs (Version Numbers)

A SID (SeeS ID) is a nurnber that represents a particular delta. This is
nonnally a two-part number consisting of a release nurnber and a level number.
The form of two-part SIDs is:

release . level

where release and level are non-zero, positive integers. Normally the release
number stays the same while the level increments with each delta. However,
you can move into a new release of a file if SOllle major change is being made.
Since all past deltas are normally applied when a given version is retrieved, the

SCCS: Source Code Control System 14-3

14

14

SID of the final delta applied is used to represent the version number of the file
as a whole.

Deltas applied to one sees file can be treated as nodes of a tree, where the
initial version of the file is the root node. The root delta (node) normally
has the SID number 1.1 and the deltas that follow are 1.2, 1.3, etc. The
naming of successor deltas by incrementing the SID level number is performed
autornatically by sees when you retrieve a file for editing with get -e,
although the delta itself is not created until you execute delta.

Figure 14-1 illustrates the developnlent of an sees file where each delta
depends on all of the previous deltas.

1.1-+- 1.2 -+- 1 .3-+- 2.1-+- 2.2

t
A r~ew ReleClse

Figure 14-1. Development of SCCS File

10 Keywords

When you retrieve a version of a file from sees with intent to compile it (or,
rather, do anything other than edit it), some special keywords are expanded
by sees when they are found in the file. These ID keywords can be used to
include the current version number or other information into the file. All ID
keywords are of the form %x%, where x is an uppercase letter. For example,
%1% is the SID of the latest delta applied in retrieving a particular version,
%W% includes the module name, SID, and a string of characters that makes
it accessible by the what command, and %G% is the date of the latest delta
applied. A list of all of the ID keywords can be found in the Quick Reference
section at the end of this chapter and in the entry for get(1) in the HP- UX
Reference.

For example, assume that you have a source file stored under sees and it
contains the line of code:

static char Sccs1d[] = II%W%II;

When you retrieve the file for editing, the text file will contain the line just as
it appears above. However, when you retrieve the file for compilation the %W%
is expanded to indicate the module name, SID, and the string of characters
recognized by what:

14-4 SCCS: Source Code Control System

static char Sccs1d[] = "@(#)prog.c 1.2 05/15/84'1 ;

The what command is a valuable tool for quickly finding out information about
a particular version of a program. To use it the program's source code must
be contained in sees files. In the sees files, any string of information that
you want to be accessed by what must begin with the ID keyword %2%. (%W%,
mentioned earlier, is actually a combination of several ID keywords, including
%2%.) VVhen the files are retrieved for compilation, this ID keyword is expanded
to the string: @(#). When you invoke what on a file, the command prints out
anything it finds between this string and the first ", >, \, newline, or null
character. Refer to the section "Using ID Keywords" for more information
about what.

When you retrieve a file for editing, the ID keywords are not expanded; this
is so that after you store the file back into sees, they can still be expanded
automatically when the file is retrieved for compilation. If you edit and store a
version of a file in which the ID keywords are expanded, sees can no longer
control the updating of the ID keywords' values. For example, if you use the ID
keyword for the file's version and then store the keyword's expanded value, all
of the following versions will indicate that same version number-SeeS cannot
increment it. Also, if you compile a version of the program without expanding
a version number ID keyword that appears in it, it is impossible to tell what
version it is since all that the code will contain is %1%.

Creating SCCS Files
To put source files into sees format, use the admin command. The following
stores a file called s.file under sees:

admin -ifile s . file

The -i option indicates that admin is to create a new sees file (called
an s-file) and initialize its contents with the contents of the file file. The
s. file argument is the name of the s-file. All s-file names must begin with
s .filename. The initial version of s.file is a set of changes (delta 1.1) applied to
a null s-file.

After creating a new s-file, admin returns the message:

SCCS: Source Code Control System 14-5

14

14

No id keywords (em7)

if you have not included any ID keywords in it. This is just a warning message
and it is discussed further in a later section.

Since you have stored the contents of s.file under sees, you can now remove
the original file:

rm file

Note that if the name of the sees file is the same as the original text file
except for the s. prefix, the original file must be removed or moved to another
directory. This is because when you retrieve a version of an sees file, the
name of the resulting text file is the sees file name with the s. removed. If
there is already a writeable file with this name in your current directory, sees
does not allow you to retrieve the sees file version in most cases.

Assume that your current HP -UX directory contains several e source files
that you want to maintain under sees. The following shell script stores each
under sees with the required s. prefix added onto its name and removes the
original source files.

#! /bin/ksh
for i in *.e

do

done

admin -i$i s.$i
rm $i

specifies a Korn shell script

If you want to have ID keywords in the files, it is best to put them in before
you create the s-files. If you do not, admin prints "No Id Keywords (em7)"
after each s-file is created. If you create an s-file without ID keywords then
later decide to add them, simply retrieve the file for editing, add the ID
keywords, store the changes, then state that ID keywords have been added
when you are prompted for comments.

14-6 SCCS: Source Code Control System

Removing SCCS Files
In order to protect s-files~ sees does not supply a direct method of removing
theln fronl your systerll. S-files are protected from accidental deletion in two
wa.yf:i:

• They are created as read-only files .

• There is no sees comlnand that rernoves them.

Because of this protection~ you must make the files writeable before you can
reIllove theIll. Use chmod to change the accC'f:if:i pCl'Illif:if:iioll on an f:i-lile:

chmod +w s.file

The +w indicates that you are adding write access to the file s.ftle. Once you
have a writeable s-file~ you can remove it using the HP-UX cornmand:

rm s.file

Getting Files for Compilation
To get a copy of the la,tef:it version of the sees file 8.ftle, type:

get s.file

get n~f:ipondf:i~ for exaIllple~ with:

1.1
87 lines

indicating that version 1.1 was retrieved and that it has 87 lines. The retrieved
text is placed in a file in the current directory whose name is formed by
deleting the 8. prefix. The file is read-only to remind you that you are not
supposed to change it. If you do rnake changes, they are lost the next time
SOlneone does a get.

To retrieve all of the sees files in a directory so that they can be compiled,
specify the directory narne as an argurnent to get:

get directory

SCCS: Source Code Control System 14·7

14

14

The retrieved text files are place in your current directory and any non-SeeS
files (files without the 8. prefix) in the directory arc silently ignored.

Note that if the s-file (or the direct.ory containing s-files) that you want
to access is not located in your current directory YOll HUlst specify its full
pathnalne.

Changing Files (Creating Deltas)

Getting a Copy to Edit

To edit a source file, first. llSC get with its -e (e for edit) option to retrieve it:

get -e s . file

get responds, for exa.lnp!.e. witll:

1.1
87 lines
New delta 1.2

The retrieved file file (without the 8. prefix) is placed in your current directory
with read and write access pennissions added to it. Edit the file using a
standard text editor such as vi.

To retrieve all of the sees files in a directory for editing, specify the directory
name as an argument to get -e:

get -e directory

Merging the Changes Back Into the S-File

When the desired changes have been made to the text file, use the delta
command to store the changes back into the sees file:

delta s . file

assuming that the s-file is located in your current directory. If it is located in
a different directory you must also specify a pathname for the s-file. delta

14-8 SCCS: Source Code Control System

prompts you for Comments? before merging the changes into the previous
version. At this time you should type a one-line description of what the
changes mean (more lines can be entered by ending each line except the last
with a backslash \). delta then responds, for exalnple, with:

1.2
5 inserted
3 deleted
84 unchanged

saying that delta 1.2 was created, and it inserted five lines, relnoved three lines,
and left 84 lines unchanged. (Changes to a line are counted as a line deleted
and a line inserted.) Finally, sees relnoves file from your current directory.
To retrieve it again, use get.

Note that the cornments that you are prompted for are not maintained as part
of the text body of the s-file. They are kept in another section of the s-file that 14
is used internally by sees.

When To Make Deltas

In general, it is unwise to rnake a delta before every re-corllpilation or test
unless other people need to edit the file at the sanle tinle. Creating too many
deltas can result in unclear comnlents such as fixed compilation problem in
previous delta or fixed botch in 1.3. However, it is very illlportant to delta
everything before installing a rnodule for general use. A good technique is to
edit the files you need, Inake all necessary changes and tests, compiling and
editing as often as necessary without rnaking deltas. When you are satisfied
that you have a working version, delta everything being edited, re-get thern,
and recompile everything.

vVorking on a project with several people presents a problem when two people
need to rnodify a particular version of a file at the same time. sees prevents
this by locking the version while it is being edited (unless concurrent editing
of one version has been specifically allowed). This means that you should not
retrieve a file for editing unless you are actually going to edit it at that time,
since you will be preventing other people on the project from making necessary
changes. As a general rule, all source files that you are editing should be stored
with delta before being used in compilations. This gives other users a better
chance of being able to edit files when they need to.

SCCS: Source Code Control System 14-9

14

What's Going On: The Sact Command

To find out who is currently editing an sees file, use:

sact s .file

For each editing session taking place on the file, sact (SeeS activity) tells
you which SID (version) is being edited, what SID will be assigned to the new
delta when editing is done, who is doing the editing, and the date and time
that editing began (when get -e was invoked). If no one is currently editing
s.ftle, sact returns an error lnessage telling you that a p-file does not exist for
the file (the "Types of Files" section later in this chapter discusses p-files).

You can specify more than one sees file name as arguments to sact; each file
is checked one at a time. You can also specify a directory, in which case sact
checks every sees file in that directory and silently ignores non-SeeS files
(files without the s. prefix).

Using 10 Keywords

ID keywords inserted into your file are expanded when you use get to retrieve
a file for compilatiOl~. They record information about the file such as the time
and date it was created, the version retrieved, and the module's name. For
example, a line in an sees file such as:

static char Sccsld[] = t1%W%\t%G%";

is replaced with something like:

static char Sccsld[] = t1@(#)prog.c 1.2 08/29/80 tl
;

in the retrieved source file. This tells you the name and version of the source
file and the time the delta was created. The string @(#) is the expanded form
of the keyword %Z% and is searched for by the what command. (Note that
the %W% ID keyword shown above is shorthand for several other ID keywords
including %Z%.) Thus you can use what to conveniently and quickly locate
expanded ID keywords in text file. Note that when you retrieve a file for
edi ting, keywords are not expanded. This keeps them in their original form
when you store the file again with delta.

14-10 sces: Source Code Control System

Approximately 20 ID keywords are provided for use in sees files. They are
listed in the Quick Reference section at the end of this chapter and in the
get(1) entry in the HP- UX Reference.

The what Command

When %Z% is used, expanded ID keywords in files can be located using what.
To find out the current version number of a source file and what version of it is
used in an object file and final program (assuming you have previously inserted
the necessary ID keywords in the sees source file), use:

what file. c file. 0 a. out

what prints all strings it finds that begin with @(#) in the three files. It works
on all file types, including binaries and libraries. Typical output from such a
commend resembles the following:

file.c:
file.c 1.2 08/29/88

file.o:
file.c 1.1 02/05/88

a.out:
file.c 1.1 02/05/88

From this, it is quickly evident that the source in file.c does not compile into
the same version as the binary in file. a and a.out.

what searches the specified files for all occurrences of the string @(#) , which
is the replacement for the %2% ID keyword. It then prints what follows that
string until the first double quote ("), greater than (», backslash (\), new-line
character, or (nonprinting) null character. Note that you can locate and
display constant text as well as ID keywords with what if you precede that text
with %Z%.

For example, assume an sees file s.prog.c contains the following line:

char ide] "%Z%%M%:%I%;

Note that the colon (:) is not part of an ID keyword. It is left unchanged
when the ID keywords are expanded. Next, the command line

get s.prog.c

SCCS: Source Code Control System 14-11

14

14

is executed. The retrieved file prog.c is then compiled to produce prog.o and
a.out. The command:

what prog.c prog.o a.out

produces:

prog.c:
prog. c: 1. 2

prog.o:
prog.c:1.2

a.out:
prog.c:1.2

indicating that version 1.2 of the file prog. c was used in all three files.

Where to Put Id Keywords

ID keywords can be inserted anywhere in sees files, including comments. ID
keywords that are compiled into the object module are especially useful, since
they let you compare what version of the object is being run to the current
version of the source.

When you put ID keywords into header files, it is important that you assign
them to different variables. For example, you might use:

static char AccessSid[] = II%W% %G%II;

in the file access.h and:

static char OpsysSid[] = II%W% %G%II;

in the file opsys.h. Had you used the same variable name in both, compilation
errors would result because the variable is redefined. Also note that if you
place ID keywords in a header file as code that is eventually compiled then
include that same header file in multiple modules that are loaded together,
the same version information will appear several times in the resulting object
module. To prevent the problem, insert header file ID keywords as comments.

14-12 SCCS: Source Code Control System

Creating New Releases

When you are ready to create a new release of a program, you can specify the
new release number using get's -r option. For example:

get -e -r2 s.prog.c

retrieves the latest release 1 version of s.prog.c and causes the next delta to be
in release 2 (an SID of 2.1). Future deltas are automatically in release 2.

To assign a new release number for all of the sees files in a directory, use:

get -e -r2 directory

assuming that the previous release was release 1, and then execute:

del ta directory

All sees files in the directory are assigned a new delta SID of 2.1.

Canceling an Editing Session

If you retrieve a file for editing with get -e then decide that you do not want
to edit it, cancel the editing session with:

unget s .file

unget returns the SID of the canceled delta. Only the person who began
an editing session can cancel it. unget can accept more than one filename
argument or, alternatively, use:

unget -

in which case unget accepts file names from standard input.

If you are currently editing a number of sees files in one directory and want
to cancel all of the editing sessions for them, you can specify the directory:

unget directory

In this case unget checks every sees file in the directory. If one of the files is
not currently being edited, unget returns an error message indicating that its

SCCS: Source Code Control System 14-13

14

associated p-file does not exist (see "Files Used by sees" section later in this
chapter).

If you are currently editing more than one version of a file, unget's -r option
allows you to specify which version's editing session you want to cancel:

unget -r2.3 s.file

If you find that you retrieved a file for editing when you actually needed it for
some other purpose, you would like to cancel the editing session but keep the
file in the current directory. Normally when you cancel an editing session,
unget removes the retrieved text file from the current directory. You can
request that it not be removed with the -n option:

unget -n s.file

This leaves the text file file still available for inspection or compilation, but any
14 changes made to the file cannot be stored back in the sees file with delta.

You can request that unget execute silently (not print out the file's canceled
delta's SID) using the command's -s option:

unget -s s.file

Restoring Old Versions
This section discusses how get's -r, -x, and - i options are used to retrieve
various versions of a file. They can be used in any combination. The -e option
can also be used with them to create a new delta based on particular versions.

Reverting to Old Versions

Normally, get retrieves the latest version of the specified file. However, you can
request a particular version using get's -r option.

Suppose that after delta 1.2 was stable you made and released a delta 1.3.
However, this introduced a bug, so you made a delta 1.4 to correct it. Then
you found that 1.4 was still buggy, and you decided you wanted to go back to
the old version. You can access delta 1.2 by choosing the SID in a get:

get -r1.2 s.prog.c

14-14 sces: Source Code Control System

This produces a version of prog.c that is delta 1.2. Any changes that you made
between delta 1.2 and the most recent delta are ignored.

If you specify a release number but not a level number, the highest level
number that exists within that release is retrieved. get -r also allows you
to retrieve particular branch deltas. Branches are discussed in the section
"Maintaining Different Branches" later in this chapter.

If you try to retrieve for compilation a particular version that does not exist,
sees responds with an error message. There is one exception: if you specify
only a release number and that release doesn't exist, sees retrieves the delta
with the highest release number that does exist, and with the highest level
number within that release.

In some cases you don't know what the SID of the delta you want is. However,
get allows you to revert to the version of the program that was running as of a
certain date using its -c (cutoff) option. For example, 14

get -c840722120000 prog.c

retrieves whatever version was current as of July 22, 1984 at 12:00 noon.
Trailing components can be stripped off (defaulting to their highest legal
value), and punctuation can be inserted in the obvious places; for example, the
above line is equivalently stated with:

get -c Il 84/07/22 12:00:00 11 prog.c

Selectively Excluding Old Deltas

Suppose that you later decided that you liked the changes in delta 1.4, but that
delta 1.3 should be removed. You could do this with the -x option:

get -e -x1.3 s.prog.c

When delta 1.5 is made, it includes the changes made in delta 1.4, but excludes
the changes made in delta 1.3. You can exclude a range of deltas using a dash.
For example, if you don't want to include 1.3 and 1.4 you can use:

get -e -x1.3-1.4 s.prog.c

which excludes all deltas from 1.3 to 1.4. Alternatively,

get -e -x1.3-1 prog.c

SCCS: Source Code Control System 14-15

14

excludes a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using the -x option (or -i, see below) there are conflicts
between versions. For instance, it may be necessary to both include and delete
a particular line, in which case sees always prints out a message telling the
range of lines affected; these lines should then be examined very carefully to see
if the version sees got is correct.

Since each delta (in the sense of "a set of changes") can be excluded at will, it
is usually useful to put each semantically or conceptually distinct change into
its own delta.

Selectively Including Deltas

Just as get's -x option allows you to exclude deltas from a version in which
they are normally included, the - i allows you to include deltas that are not
normally included.

For example, assume that you have an sees file containing five deltas, 1.1
through 1.5. To retrieve a version of a file containing only deltas 1.1, 1.3, and
1.5, request that version 1.1 be retrieved and force the inclusion of deltas 1.3
and 1.5:

get -r1.1 -i1.3,1.5 s.file

To retrieve version 1.5 all of the deltas must be used. All of the following get
command lines accomplish this.

get -r1.5 -i1.2 s.file
get -r1.5 s.file
get s.file

Note that the - i option in the first command line has no effect since delta
1.2 is already used to construct version 1.5. The -r option is not required
either since delta 1.5 is the most recent delta and, by default, get retrieves the
version incorporating it.

If there are conflicts between versions when you use the -i option, sees
provides a message indicating the range of lines affected, just as it does when
the -x option is used. You should examine these lines in the retrieved file to
make sure that they are correct.

14-16 sces: Source Code Control System

Removing Deltas

get -x allows you to exclude deltas from the retrieved file; however, the deltas
are not removed from the sees file and the information they contain is still
available and consuming space. To permanently remove a. delta from an sees
file, use rmdel. rmdel requires that you use the -r option to specify which
delta is removed:

rmdel -r1.3 s.file

Before you can use rmdel to rernove a delta, all of the following requirernents
must be met:

• The specified version of the file is not currently being edited.

• The SID must be the most recent delta on its branch of the delta chain for
the named file: No other deltas can depend on it.

• You originally created the delta or you are the owner of the sees file and
the directory that it is in.

The Help Command
Error messages returned by the sees commands have the form:

ERROR : message (code)

If it is not clear from message why the error occurred, use the associated code
as an argument to the help command. Invoking:

help code

often provides a little more explanation about the cause of the error. For
example, if you execute get program you could receive the following message:

ERROR [program]: not an sees file (co1)

Executing:

help co1

produces:

SCCS: Source Code Control System 14-17

14

14

co1:
"not an sees file"
A file that you think is an sees file
does not begin with the characters liS.".

Auditing Changes

The prs Command

When you create deltas, you presumably give reasons for the deltas in response
to the comments?" prornpt. To print out these comments later, use:

prs s .file

Note that prs provides inforrnation about each of the deltas used to create the
requested version of the file; therefore, it is a way to list the deltas upon which
a particular version depends. It produces a report for each delta providing the
tinle and date of creation, the user who created the delta, and the comnlents
associated with the delta. For example, the output of the above command
might be:

s.file:

D 1.3 84/04/12 08:21:35 becky 3 2 00020/00008/00021
MRs:
COMMENTS:
inserted 20 lines, removed 8 lines

D 1.2 84/04/11 09:21:08 becky 2 1 00008/00000/00021
MRs:
COMMENTS:
inserted 8 lines

D 1.1 84/04/10 06:37:14 becky 1 0 00021/00000/00000
MRs:
COMMENTS:

14-18 sces: Source Code Control System

date and time created 84/04/10 06:37:14 by becky

The report indicates that the file~s initial delta (created with admin -i)
inserted 21 lines, delta 1.2 inserted 8 lines and left 21 unchanged~ and delta 1.:3
inserted 20 lines, removed 8 lines~ and left 21 lines unchanged.

You can request information about a particular version of a file using prs ~s -r
option:

prs -r2.3 s.prog.c

prs can accept multiple file narnes or directory names as arguments. If you
request information about all of the sees files in a directory~ you should
probably redirect prs's output to a file and look at it at your leisure:

prs direct01'Y >o'U,tput

When a directory is specified, the effect is as if each sees file it contains were 14
named and any non-SeeS files are ignored.

prs also allows you to modify the information it provides using its -d option.
Refer to the prs entry in the HP- U}[Reference to see how this is done.

Determining Why Lines Were Inserted

To find out why you inserted various lines in a file~ you can get a copy of the
file with each line preceded by the SID of the delta that created it using:

get -m s.prog.c

where the retrieved copy is called prog.c. Once you have determined which
delta inserted the line you are interested in, use prs to find out what that
particular delta did by looking at its comment line.

Another way to find out which lines were inserted by a particular delta (e.g.,
1.3) is:

get -m -p s.prog.c I grep '~1.3'

The -p flag causes get to output the retrieved text to the standard output
rather than to a file.

SCCS: Source Code Control System 14-19

14

Comparing Versions

To compare two versions of a file, use sccsdiff. For example,

sccsdiff -r1.3 -r1.6 s.prog.c

ou tpu ts the differences between delta 1.3 and delta 1.6 in a format similar to
the format used by the diff command.

You can specify any number of file names with sccsdiff but the same two
SIDs specify which versions are compared for all of them. You cannot specify a
directory as an argument.

Files Used by sees
As a user of sees, you do not need to know all of the information covered in
this section; however, it should give you a feel for the inner workings of sees.

There are 8 types of files that are used by sees and all of them are ASeII
text files. They are:

S-files

G-files

L-files

P-files

D-files

Q-files

X-files

z-files

sees files created by admin -i.

Text files containing the "body" of sees files and created by
get.

Files containing delta dependency information and created by
get -l.

Files created and used by sees to keep track of multiple edits.

Temporary files created and used by sees during the
execution of delta.

Temporary files created and used by sees to update p-files.

Temporary files created and used by sees to update s-files.

Lock-files created and used by sees to prohibit simultaneous
updating of s-files.

14-20 sces: Source Code Control System

Normally, only 4 of these file types are visible to users of sees: s-files, g-files,
I-files, and p-files. The remaining 4 types are temporary files used internally by
sees during the execution of particular commands.

S-Files

S-files are often referred to as sees files in this chapter. They contain all of
the versions of files you are maintaining under sees. You create and name an
s-file when you initially enter a file into sees:

admin -ifile s .file

s .file is the new s-file and file can now be removed. Accessing a file maintained
under sees using sees commands is done using its s-file name. S-file names
must begin with the prefix s ..

The Contents of the S-File

S-files are composed of lines of ASCII text arranged in the following 6 parts:

Checksum A line containing the logical sum of all the characters
of the file, not including the checksum itself.

Delta Table

User Names

Flags

Descriptive Text

Body

Information about each delta, such as type, SID, data
and time of creation, and user inserted comments.

A list of login names and/or group IDs of users who
are allowed to modify the file by adding or deleting
deltas. Use admin to modify.

Indicators that control certain actions of various
sees commands. Use admin to modify.

Arbitrary text provided by the user; usually a
summary of the contents and purpose of the file. Use
admin to modify.

The actual text that is being administered by sees,
mixed with internal sees control lines. Use get -e
and delta to modify.

The Body section of the s-file is modified whenever you create or delete deltas.
Use the admin command to modify User Names, Flags, and Descriptive

SCCS: Source Code Control System 14-21

14

14

Text sections (see the "System Protection Using admin" section later in this
chapter). The Checksum and Delta Table are modified internally by SCCS.

Since the entire contents of an s-file is ASCII, the file can be processed with
various HP- UX commands, such as vi, grep, and cat. This is convenient
but somewhat risky in those instances where an SCCS file must be modified
manually (such as when the time and date of a delta are recorded incorrectly
because the system clock was set incorrectly) or when you simply want to look
at its contents.

Note

G-Files

If you modify an SCCS file directly (instead of using SCCS
commands), the Checksum value may be incorrect, causing an
error whenever you try to retrieve a version of the file. This
problem is discussed in a later section, "Restoring the S-File".
Do not edit an s-file directly unless you thoroughly understand
its format.

The get command creates a text file that contains a particular version of an
s-file, obtained by applying deltas to the initial version. This text file is called
a g-file and its name is formed by removing the SCCS file's s. prefix. It is
this file that you use for inspection, compilation, or editing purposes.

G-files are created in the current directory and are owned by the real user.
Their file mode depends on how get is invoked. If you use:

get s .file

the resulting g-file file has mode 444 (read only) and is produced for inspection
or compilation, but not for editing. Note that any ID keywords in the file are
expanded to their appropriate values.

If you use:

get -e s .file

then file can be edited. Note that any ID keywords in the file are not
expanded, allowing them to be stored back in the file when you use delta.

14-22 SCCS: Source Code Control System

L-Files

When retrieving an sees file with get, you can request that an 1 ~file be
created. Use the command's -1 option:

get -1 s .file

The name of an I-file is formed by replacing the s. prefix of the sees file with
1 .. It contains a table indicating what deltas were used to create the retrieved
version of an sees file. You must specifically request the creation of I-files
with -1. get does not create them by default.

To send delta dependency information to standard output instead of placing it
in an I-file, use:

get -r2.3 -lp s.file

P-Files

When you retrieve an sees file for editing (get -e), besides creating a
writeable g-file containing the version's text, a p-file is also created. The
name of a p-file is formed by replacing the s. prefix of an sees file with p ..

P-files are used internally by sees to keep track of multiple edits on the same
sees file (see "Concurrent Editing"). For each edit that is in progress on a
particular sees file (get -e has been executed but not the associated delta),
the file's p-file keeps track of

• the SID of the retrieved version

• the SID that will be given to the new delta when delta is executed

• the login name of the user that executed get -e

• the date and time that the get -e was executed

If a p-file is accidentally destroyed, it can be regenerated with:

get -e -g s .file

The -e -g combination suppresses the retrieval of a writeable text file (g-file),
but the associated p-file is created. A p-file must exist for an sees file before
you can use delta on it.

SCCS: Source Code Control System 14·23

14

When you use the sact to request information, the data is obtained from a
p-file.

D-Files

D-files are used internally by sees during the execution of delta to hold a
temporary copy of the original retrieved g-file before any editing was done. The
name of a d-file is formed by replacing the s. prefix of the associated sees file
with d .. When you retrieve an sees file for editing (get -e) and then invoke
del ta, sees creates a d-file and cornpares the edited g-file with the contents of
the d-file to deternline what has changed. These changes are then stored in the
sees file (s-file).

"Then you invoke delta, you can request that the differences between the d-file
and the g-file (the file that you retrieved and the file that you are now storing)

14 be sent to standard output using:

delta -p s.file

Once delta is executed, you can request the same information with the
sccsdiff command.

Q-Files

A q-file is a temporary copy of a p-file that is used internally by sees. Its
name is formed by replacing the p. prefix of the p-file with q .. Whenever a
p-file needs to be updated (because editing of a version of a file was completed
with delta or started with get -e), a q-file is first created. The change is
made to the q-file and then the p-file is removed and the q-file is renamed to
become the new p-file. This strategy is used to ensure the integrity of the p-file
in case there are any problems adding or deleting entries from the table.

X-Files

An x-file is a temporary copy of an s-file that is used internally by sees.
All sees commands that modify an sees file do so by first creating and
modifying an x-file. This ensures that the sees file is not damaged if the
processing terminates abnormally. The name of this temporary copy is formed
by replacing the s. prefix of the sees file with x .. When processing is
complete, the old s-file is removed and the x-file is renamed to be the s-file.

14·24 SCCS: Source Code Control System

Z-Files

Z-files are lock-files sees uses to prevent simultaneous updating of an sees
file. They are discussed later in this chapter in the section "sees Protect
Facilities" .

Concurrent Editing

Concurrent Edits on Different Versions

sees allows different versions of one sees file to be edited at the same
time. This means that a nUlllber of get -e commands can be executed on the
same file provided that no two executions retrieve the same version~ unless 14
concurrent edits on the same version are allowed (see the discussion in the next
section).

sees uses a p-file to keep track of the edits that are in progress on one file.
The first execution of get - e causes the creation of a p-file for the specified
sees file. Subsequent executions of the command update the p-file~ adding
entries in the file for each edit session that is in progress. Each entry in the
p-file specifies the SID of the retrieved version~ the SID that will be assigned to
the new delta, and the login name of the person doing the editing. When an
editing session is terminated (with delta or unget), the corresponding entry in
the file's p-file is removed. If no other versions of the file are currently being
edited, then the p-file itself is removed.

Before sees allows an editing session on a particular version of an sees file
to begin, it makes sure that if a p-file for the file already exists there is no
entry in it specifying that the version has already been retrieved. If there is no
entry with that SID, sees adds an entry for the new editing session. If there
is an entry with the same SID, sees generates an error message and does not
allow the version to be retrieved for editing (unless multiple edits of the same
version are allowed). sees informs you if editing is currently being done on
another version of the file you request to edit.

sccs: Source Code Control System 14·25

Note Multiple executions of get -e must be done from different
directories. This is because each time any version of one file is
retrieved, the resulting g-file (text file) is assigned the same
name. As a result, sees prohibits multiple edits on the same
file in the same directory because the g-file would constantly be
overwritten.

In practice, multiple editing sessions are performed by different
users with different working directories; therefore, this
restriction normally does not cause a problem.

Concurrent Edits on the Same Version

By default, sees does not permit multiple executions of get -e on the same
14 version of one sees file. Each editing session on a version begun with -e must

be ended with delta before another session can begin. However, you can allow
concurrent edits by a single user on the same version of a file by setting the
file's j flag with the admin command (see "System Protection Using admin"
later in this chapter).

Note that if you do set a file's j flag, multiple editing sessions on the same
version must be done in different directories, just like multiple edits on different
versions. In addition, these edits can only be performed by the first user
to check out the file. Traditionally, users needing to edit the same s .file
concurrently (like several working on a joint project) have done so by using a
single login account (perhaps a project name) to do this.

14-26 sees: Source Code Control System

Recovering from Problems

Making Temporary Changes

If you use get -e to retrieve a file so that you can edit it, sees requires that
you delta the changes that you make back into the associated s-file. Sometimes,
however, it is necessary to make modifications to a file that you do not want
saved.

To make ternporary changes to a file possible, retrieve it from sees with:

get s.file

sees does not expect changes to be made to the file; therefore, it gives it
read-only access. You must now change the mode of the file so that you can
edit it:

chmod +w file

Chmod +w adds write access to a file. Any changes that you now make to file
cannot be stored in sees.

Recovering an Edit File

Sometimes you may find that you have lost a file that you were trying to
edit. Unfortunately, you can't just execute get -e again; sees keeps track of
the fact that someone is trying to edit that version, so it won't let you do it
again. Neither can you retrieve it using get, since that would expand the ID
keywords. Instead, you can say:

get -k prog.c

This retrieves the file and does not expand the ID keywords, so it is safe to do
a delta with it.

SCCS: Source Code Control System 14-27

14

14

Restoring the S-File

You may find that the sees file itself is corrupt. The IllOst common way
this happens is when someone edits the file directly, not through the sees
comIllands. sees keeps a checksum that contains the logical SUIll of all of the
characters in the file. If you modify the sees file directly the checksum may
have the wrong value. No sees command will process a corrupted sees file
except admin -h and admin -z as described below.

You should audit all sees files for corruption on a regular basis. The simplest
way to do this is to execute admin using the -h option on all of the sees files
of interest:

admin -h s .filel s .file,:: ...

or:

admin -h di'lYxtol'Y

This checks to see if each file's dl('cksLLlll is correct. The message corrupted
file (c06) is produced for a file whose checksum is not correct.

If you have a corrupted sees file, you must first determine why its checksum
is incorrect. If it is due to sorlleone having directly Illodifying the file, the
problem is often corrected by Illerely recomputing the checksulll. Do this with
admin's -z option:

admin -z prog.c

The checksum is recomputed to bring it into agreenlent with the actual
contents of the file.

Note Before using admin -z, first find and correct the corruption
problem. If you don't, once the checksum is recomputed, the
corruption is no longer detectable. Admin -z does not find or
fix the problem, it merely recomputes a new checksum.

14-28 sces: Source Code Control System

Using the Admin Command

The admin command creates new sees files and changes parameters of
existing ones. When an sees file is created, its parameters are either
initialized with options or are assigned default values if no options are specified.

Newly created sees files are given mode 444 (read-only) and are owned by the
effective user. Only a user with write permission in the directory containing the
sees file can use admin on it.

Creating SCCS Files

As discussed earlier, an sees file for a file called prog is created using:

admin -iprog s.prog

The name of the sees file is s.prog. If no file name is specified with the - i 14
option, the text is read from standard input:

admin -i s.prog prog

When the sees file is created, the release nurnber assigned to its initial delta
is normally 1 and the level number is always 1, rneaning that the first delta of
the file is 1.1. You can assign a different initial release number using admin's
-r option when the file is created:

admin -iprog -r3 s.prog

Here, the initial delta is 3. 1.

Adding Comments to Initial Delta

When you create an sees file, you can supply a comment stating the reason
for the creation of the file. This is done with the -y option:

admin -ifile -yllThe reason this file was created ll s.file

If you do not specify an initial comment with -y, sees gives the initial delta a
comment line of the form:

date and time created YY/ MM/ DD HH: MM: SS by logname

SCCS: Source Code Control System 14-29

14

Descriptive Text in Files

A portion of an sees file is reserved for descriptive text, text that summarizes
the content and purpose of the sees file. When you are creating an sees file
you can insert descriptive text using admin~s -t option followed by the name of
a file containing the text:

admin -ifile -tdescrip s. file

You can either add descriptive text to an existing sees file or replace the
descriptive text it already contains with:

admin -tnew_descrip s. file

where new_descrip is the name of the file containing the descriptive text. To
remove descriptive text from an sees file, use -t without a file name:

admin -t s.file

To see the descriptive text for an sees file, use prs as follows:

prs -d:FD: s.file

The prs command's -d option allows you to specify what information about
the file that you want returned. The : FD: indicates that you want to see the
file's descriptive text. Refer to the HP- UX Reference manual entry for prs for
more information about the command~s -d option.

Setting sees File Flags

sees files have a number of parameters called flags that can be added and
deleted using the admin command. These flags are maintained in a particular
section of sees files along with their associated values where appropriate. Add
flags with admin~s -f option and delete them with its -d option. For example:

admin -fd2.1 prog.c

sets the d flag to the value 2.1. This flag can then be deleted using:

admin -dd prog.c

You can use admin -f to add or admin -d to delete the following flags:

b Allow branches to be made using get -e -b.

14-30 sces: Source Code Control System

dSID

cceiling

fflool

i

j

llist

n

Default SID to be used on a get. If this is just a release
number~ the default is the highest version number for that
release.

Sets the highest release nunlber for a file that can be
retrieved with get -e to ceiling. ceiling must be a number
less than or equal to 9999. The default release ceiling for a
file is 9999.

Sets the lowest release number for a file that can be
retrieved with get -e to flooT'. flooT' must be a nurnber
greater than 0 and less than 9999. The default release floor
for a file is 1.

Give a fatal error during get or delta if there are no ID
keywords in a file. This is useful to guarantee that a version
of the file does not get merged into the s-file that has the ID
keywords inserted as constants instead of internal forms.

Allow concurrent edits on the same version (SID) of the
SCCS file.

A list of releases that cannot be retrieved for editing (get
-e). The list has the following syntax:

lzst ::~: T'ange I li.~t;. T'ange

lange = RELEASE_NUAIBER I a

The character a is equivalent to specifying all of the releases
for the named sces file. If you do not specify a list with
the 1 flag, a is assumed by default.

To delete one or more "locked" releases with admin's -d
option you must also use a list to specify which releases are
to be "unlocked". For example, admin -dla s. file unlocks
all of the releases of s.ftle so that they can be edited.

Causes delta to create a termlnulll delta in each of those
releases (if any) being skipped when a delta is made in a
new release (for example, when making delta .5.1 after delta
2.7, releases 3 and 4 are skipped). These null deltas serve as
"anchor points" so that branch deltas may later be created

SCCS: Source Code Control System 14·31

14

14

qtext

mmodule

ttype

v[pgm]

from them. If this flag is not set for a file, skipped releases
are non-existent in the sees file, preventing branch deltas
frOlll being created from them in the future.

Replace all occurrences of the ID keyword %Q% with the
contents of file text when the sees file is retrieved for
inspection or compilation. If the q flag has not been set for
a file, occurrences of %Q% are not replaced with anything.

Replace all occurrences of the ID keyword %M% with the
specified 1Twdule name when the sees file is retrieved for
inspection or cornpilation. If the m flag has not been set for
a file, occurrences of %M% are replaced with the name of the
sees file minus the s. prefix.

Replace an occurrences of the ID keyword %Y% with the
specified type when the sees file is retrieved for inspection
or cornpilation. If the t flag has not been set for a file,
occurrences of %Y% are not replaced with anything.

Causes delta to prompt for Modification Request (MR)
nUlllbers as the reason for creating a delta. If you set this
flag when you create an sees file, admin's -m option must
also be specified, even if its value is null.

You can optionally specify an MR number validation
checking program called pgm with admin -fvpgm.

Specifying Who Can Edit a File

admin's -a option allows you to specify who can edit an sees file. Use it as
follows:

admin -alogin s .file

where login is a user's login name or an HP- UX group ID. If it is a group ID,
the effect is equivalent to specifying all login names common to that group ID.
Several -a options can be used on a single admin command line.

Note that admin can accept one or more sees file names or directory names as
arguments. For example, the command line:

14-32 SCCS: Source Code Control System

admin -abill -aj ane -aj ohn directory

gives HP- UX users bill, jane, and john editing privileges to all of the sees
files in directory. The list of users for each sees file in the directory is
updated to show this. No one else can edit those sees files unless specifically
authorized by using admin -a.

If no one has been assigned editing privileges to a file with admin -a, the file's
list of users is empty and anyone can edit the file (as long as they have write
access to the file's parent directory).

To remove a user's ability to edit an sees file, use admin -e. For exanlple:

admin -ebill directory

removes bill from the list of users allowed to edit the sees files in directory.

SCCS: Source Code Control System 14-33

14

Note Before a user can be prohibited from editing a file, the file's list
of users must be non-empty. If the list is empty everyone has
editing privileges and using admin -e has no effect.

If a file's list of users is non-empty, any user not added to the
list with admin -a is already prohibited from editing the file.
Thus, you can remove a specific user's editing privileges only if
you have previously added him to the list of users using admin
-a.

Maintaining Different Branches
14 Sornetimes it is convenient to nlaintain an experimental version of a program

for an extended period while normal maintenance continues on the version in
production. This can be done using a "branch." Norrnally deltas continue in a
straight line, each depending on the delta before. Creating a branch "forks off"
a version of the program.

For example, Figure 14-2 shows there is one branch delta having an SID of
2.1.1.1:

1.1 ______ 1.2 ______ 2.1 ______ 3.1

L2.1.1.1

Figure 14-2. Example Branch Delta

The ability to create branches off of the latest main "trunk" delta must be
enabled in advance by setting the file's b flag:

admin -fb prog.c

The b flag can also be set when the SCCS file is first created. It is not
necessary to set a file's b flag in order to create a branch off of an older delta.

14-34 sces: Source Code Control System

Creating a Branch

To create a branch off of the latest main trunk version, use:

get -e -b prog.c

If the retrieved version has an SID of 1.5 and no branch was previously created
on it, a branch with SID 1.5.1.1 is created when the file is modified. The deltas
for this branch are numbered 1.5.1.n where "n" increments by 1 with each
delta.

If you retrieve an old version of an sees file for editing, sees automatically
assigns a branch SID to the new delta. The file's b flag need not be set to do
this. For example, assuming that the latest delta of prog.c is delta 1.5 you can
create a branch off of delta 1.2 using:

get -e -r1.2 prog.c

sees will automatically number the new branch delta 1.2.1.1 if it is the first
branch off delta 1.2.

Retrieving a Branch

Deltas in a branch are not normally included when you use get. To retrieve
these versions, you have to use:

get -r1.S.1 prog.c

specifying the requested branch's SID.

Branch Numbering

sees uses the following SID numbering scheme for recognizing branch deltas:

release. level. branch. sequence

release. level is the SID of the delta on the main trunk from which the branch
descends. A branch number is assigned to each branch path that originates
from a particular delta on the main trunk. A sequence number is assigned to
each delta on a particular branch. Branch deltas always have all four of the
above components in their SIDs and the release and level numbers are always
those of the ancestral main trunk delta.

SCCS: Source Code Control System 14-35

14

14

When you retrieve a branch, specifying only the release, level, and branch
components of the SID returns the most recent version on a particular branch.

Although sees maintains enough internal information to remember delta
dependencies of branch deltas, the SID number itself does not always indicate
all of the deltas between a branch delta and its main trunk ancestor delta. For
example, given delta 1.3.2.2 you know that the main path ancestor is delta 1.3
and that it is the second delta (sequence=2) on the second branch (branch=2)
descending from delta 1.3. However, the diagrams below indicate two possible
development paths for delta 1.3.2.2:

1.3.1.2

(Branch 1) t (Branch 2)

1.3.1.1~ 1.3.2.1 ~1.3.2.2

t
.1 ~1.2-.1.3-.2.1~2.2

Figure 14·3. Diagram 1

1.3.1.2

(Branch 1) t
1.3.1.1

t
1.1-'1.2~1.3~ 2.1 ~ 2.2

L1.3.2.1 ~ 1.3.2.2

(Branch 2)

Figure 14·4. Diagram 2

Note that in Diagram 1, version 1.3.2.2 is dependent on deltas 1.1, 1.2,
1.3, 1.3.1.1, and 1.3.2.1, while in Diagram 2 the delta with the same SID is
dependent on 1.1, 1.2, 1.3, and 1.3.2.1.

14·36 sces: Source Code Control System

A Warning

Branches should be kept to a rninirnurn. After the first branch frorn the main
trunk, SrDs are assigned rather haphazardly, and the structure gets cOlllplex
very quickly.

sees Protection Facilities

The protection facilities that sees provides for a system fall into two
categories:

• general protection of files inherent to sees (using general HP -UX file system
protection by appropriately setting the modes of various files)

• specific systelll protection strategies controlled by the sees administrator by
using the admin cornrnand

General File Protection

New sees files created with admin a.re given rllode 444 (read only). This rnode
prevents any direct rnodification of the files by any non-SeeS cOllunands. The
rnode of the files should not be cha.nged to a.llow direct modliicat!on.

sees files must not be linked to 1110re tha,n one Jilena.rne because of the wa.y
sees rnodifies files. eornrnands tha.t rllodlfy SCC:S files (delta, admin) create
a copy of the file. The copy, ca.lled a.n x-file, is modlJied; the original sees file
is removed, and the copy is renarlled. If the original sees file has any links,
they are broken when it is rernoved. sees generates an error rnessage if you
try to process any file under sees that has rnultiple links.

To prevent simultaneous updates to sees files, a lock-file (called the z-file)
is also created whenever an x-file is created. A z-file contains the process
number of the comrnand that created it, and its existence is an indication to
other comrnands that the sees file is being updated. Other sees commands
that modify sees files will not process an sees file if a corresponding
z-file exists. For example, assume that two people are editing two versions
of an sees file. When one of them executes delta, a z-file is created which
keeps the second person from successfully invoking delta. When delta has

SCCS: Source Code Control System 14-37

14

14

completed, the z-file is removed and the second person is free to create his own
delta. z-files are created with mode 444 (read only) in the directory containing
the sees files and are owned by the effective user.

sees checks for the corruption of an sees file by maintaining a checksum.
Whenever the file is modified with an sees command, its checksum is updated
to reflect the logical sum of the number of characters the file has. Most sees
commands will not allow you to access a file that is corrupted. The admin
command allows you check for corrupted file and to correct them.

sees files should be kept in directories that contain only sees files and any
temporary files created by sees commands. This simplifies protection and
auditing of sees files since ITlOst of the commands allow you to operate on all
of the sees files in a directory by merely specifying a directory name. The
contents of directories should correspond to convenient logical groupings, such
as subsystems of a large project.

System Protection Using admin

admin allows the system administrator of a project to control five major areas
of protection:

1. prohibiting concurrent editing of a given version of a file

2. specifying a list of users that have permission to edit a file

3. prohibiting editing on particular releases

4. setting range limits to what releases users can access

5. making the recognition of no ID keywords in a file by sees commands a
fatal error

The admin command allows you to use these protection strategies on either
a file-by-file basis or on a directory basis. For details on how to do this, see
"U sing the Admin Command" earlier in this chapter.

14-38 sces: Source Code Control System

Using sees With Make

If you are using make to create and maintain systems and are using sees to
maintain the source files for the systems, you can make the two work together
by including sees commands in make's makefiles. The following discussion
assumes that you already know how to use make. For more information, refer
to the rnake(1) entry in the HP- UX Reference or Chapter 13 in this book.

Most makefiles should have a few basic target entries:

a. out (or whatever the lnakefile generates). This target entry
regenerates whatever this makefile is supposed to regenerate.
If the makefile regenerates several intermediate things, this
should be called "all" and should in turn have dependencies on
everything the makefile can generate.

install

sources

clean

Moves the objects to their final resting place, doing any special
chmod's or ranlib's as appropriate.

Creates all the source files frorn sees files.

Removes unneeded files from the directory.

The clean entry should not remove files that can be regenerated from the sees
files since it is sufficiently important to have the source files around at all
times.

Note that the examples of makefiles that follow are only partial and do not
illustrate all of these target entries fully. Also note that the example makefiles
require that you execute make in the same directory as the sees files.

To Maintain Groups of Programs

Frequently there are directories with several largely unrelated programs (such
as simple commands) and these can often be maintained by one makefile. For
example, the makefile below maintains "prog" and "example":

LDFLAGS= -i -8

prog: prog.o
$(CC) $(LDFLAGS) -0 prog prog.o

prog.o: prog.c prog.h

SCCS: Source Code Control System 14-39

14

example: example.o
$(CC) $(LDFLAGS) -0 example example.o

example.o: example.c

. DEFAULT:
get s.$<

Note that the source for the programs is maintained as sees files and that
these files must exist in the same directory as the makefile for the makefile to
be able to retrieve them. The . DEFAULT rule is called every time something is
needed that does not exist, and no other rule exists to make it. The explicit
dependency of the .0 file on the .c file is important. Another way of doing the
same thing is:

14 SRCS= prog.c prog.h example.c

LDFLAGS= -i -s

prog: prog.o
$(CC) $(LDFLAGS) -0 prog prog.o

prog.o: prog.h

example: example.o
$(CC) $ (LDFLAGS) -0 example example.o

sources: $(SRCS)
$(SRCS):

get s.$@

There are some advantages to the second approach:

• The explicit dependencies of .0 files on .c files are not needed.

• There is an entry called sources so if you just want to get all the sources you
can just say make sources.

• The makefile is less likely to do confusing things since it won't try to get
things that do not exist.

14-40 sces: Source Code Control System

To Maintain a Library

Libraries that are largely static are best updated using explicit commands,
since make doesn't know about updating them properly. However, make can
adequately handle libraries that are in the process of being developed. One
problem in maintaining libraries is that the object (.0) files must be kept out of
the library as well as in the library.

configuration information
JOBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.c d.s x.h y.h z.h
TARG= /usr/lib

programs
GET= get
REL=
AR= -ar
RANLIB= ranlib

lib.a: $(OBJS)
$(AR) rvu lib.a $(OBJS)
$ (RANLIB) lib.a

install: lib.a
cp lib.a $(TARG)/lib.a
$(RANLIB) $(TARG)/lib.a

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) s.$@

print: sources
pr *. h *. [cs]

clean:
rm -f *.0
rm -f core a.out $(LIB)

The $ (REL) in the $ (SRCS) entry allows you to retrieve various versions of the
sees files. For exan1ple:

SCCS: Source Code Control System 14-41

14

14

make REL=-ri.3

Note that for the install entry to execute properly, no one should be editing
any of the SCCS files when it is invoked.

To Maintain a Large Program

Consider this example makefile:

DBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.y d.s x.h y.h z.h

GET= get
REL=

a.out: $(DBJS)
$(CC) $(LDFLAGS) $(DBJS) $(LIBS)

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) s.$@

(The print and clean entries are identical to the previous case.) This makefile
requires copies of the source and object files to be kept during development. It
is probably also wise to include lines of the form:

a.o: x.h y.h
b.o: z.h
c.o: x.h y.h z.h
z.h: x.h

so that modules are recompiled if header files change.

Since make does not do transitive closure on dependencies, you may find in
some makefiles lines like:

z.h: x.h
touch z.h

This would be used in cases where file z.h has a line:

14-42 sces: Source Code Control System

in order to bring the date of z.h's last modification in line with the date of
the last modification of x.h (or rather, when the system thinks z.h was last
modified). Alternatively, the effect of the touch command can be achieved by
doing a get on z.h.

Using sees on a Multi-User Project
This section describes the how sees is configured to rnaintain files for a large
project that involves several users. The person that configures and controls
the sees files is called the "sees System Administrator". Only you need
the information covered in this section if you are your project's sees System
Administrator.

If you plan to use sees on a project that involves several users, first develop a 14
system of controlling access to the sees files and comrnands. Thus far, this
chapter has only discussed a one-user system, where that user has write access
to the directory containing the sees files. The user also has full use of all of
the sees commands and can modify protected files (by first making read-only
files wri teable).

As an sees System Administrator, you should provide an interface program
that gives temporary write access to the sees directory when users execute
certain sees commands, but restricts users to read-only access at all other
times. When sees files are used on a project, they are grouped in one
directory (or more if necessary). The sees System Administrator is the owner
of the sees directory, has write access to it, and has full use of all of the
sees commands. Other users involved on the project should only have read
access to the directory, which means that they cannot directly use the sees
commands that require write access.

The sees interface program is a e program that provides a filter for the
commands requiring that the user have directory write access. If, instead of
using the interface program, you give all of the users write access to the sees
directory, you greatly restrict the protection facilities sees provides. Use
of the interface provides users with only temporary write access when they
execute one of the commands. The two sees commands that require directory
write access and that must be available to the users through the interface
program are get and delta. rmdel, cdc, and unget also require write access

SCCS: Source Code Control System 14-43

and can also be made available to users through the program. The remaining
sees commands either do not require write access to the sees directory or
are usually used only by the sees System Administrator (admin for example).

How the SCCS Interface Works

The sees interface program invokes a specified sees command and
causes the command's process to inherit the privileges of the sees System
Administrator for the duration of its execution. This allows the process to
obtain write access to the sees directory.

The names of the commands that you want filtered through the interface
program must be linked to the progranl so that invoking the command name
executes the program. The interface program is written in e and when a
e program is executed, the name that invoked the program is passed as

14 argument 0 and is followed by any user-supplied arguments. By looking at the
value of argument 0, the program knows which command to execute. Thus,
the command name used to invoke the interface program determines which
sees command the program executes. How other arguments, such as sees
file names, are processed is often system dependent, but they can be passed
directly to the sees command by the program.

Configuring an SCCS System Using the Interface

As the sees System Administrator, there are six basic steps to carry out
before allowing other users to access sees files:

1. Create and move to an sees directory.

2. Write and compile the interface program.

3. Change the mode of the program.

4. Set up links between the program and the sees command names.

5. Modify each user's search path so that the directory containing the interface
program is searched before /usr /bin, the directory containing the sees
commands.

6. Create the sees files.

14-44 sces: Source Code Control System

Creating the SCCS Directory

Before you can successfully use the sees interface program, you must create
one or more directories for storing the sees files and the program. You, as the
sees System Administrator, should be the only one with write access to the
directory.

For example, to create a directory called /system/sccs and then deny write
access to all but yourself, use:

mkdir
chmod

Isystem/sccs
755 Isystem/sccs

Now move to the sees directory since you must be in that directory when
writing and maintaining the sees interface program:

cd Isystem/sccs

SCCS: Source Code Control System 14·45

14

14

Writing and Compiling the Program

The sees interface program is written in e and this section assumes that you
already know how to program in that language.

Write an sees interface program that is customized to the needs of your
system. To get started, here is a general-purpose interface program:

#define LENGTH 100
main(argc, argv)
int argc;

1* length of command string *1

char *argv [J ;
{

}

register int i; I*counts command line arguments*1
character cmdstr[LENGTHJ; I*holds sees command name*1
1*

* Do any required processing of file name arguments that
* follow the sees command name (arguments that don't begin
* with -)
*1

for (i = 1; i<argc; i++)
if (argv [iJ [OJ ! = '-')

argv[iJ = filearg(argv[iJ);
1*

* Get IIsimple name l
• of name used to invoke this program

* (i.e. strip off directory-prefix name, if any).
* This step may not be needed in your system.
*1

argv[OJ = sname(argv[OJ);
1*

* Invoke actual sees command, passing arguments.
*1

sprintf(cmdstr, II/usr/bin/%sll, argv[OJ);
execv(cmdstr, argv);

This example program calls two routines that you must supply and that allow
you to customize the sees interface. filearg acts as a preprocessor for sees
commands. In the program above, it is used to modify sees file name. This
modification often involves appending the path name of an sees directory to

14-46 sces: Source Code Control System

the sees file names so that users can access the files without having to specify
full path names.

The second routine that you must supply is sname. Its purpose is to modify
the name with which the user invoked the interface program so that it agrees
with the name of the associated sees command. The statement calling this
routine is not required when the link names of the interface program are the
same as the narnes of the sees cornmands.

Once you have written an sees interface progranl designed for your system,
compile it. Assuming that your source code file is called interface.c, use the
following to compile it:

cc interface.c -0 interface

The name of the resulting executable program is interface.

Specifying Program Access Permissions

The interface program must be owned by the sees System Administrator,
and must be executable by the other users involved on the project. It must
also have its set user ID on execution bit enabled so that when the program
is executed, the user obtains write access to the sees directory. Assign these
necessary characteristics to the program with:

chrnod 4755 interface

where "interface" is the name of the executable interface program.

Assign Name Links to the Program

N ow that you have an executable interface program, use the cp cOITlmand to
assign name links to it. It is convenient for the users if these name links are the
same as the sees commands that are executed by the program.

To illustrate, assume that you want to allow users to access the get and delta
commands through the interface program. Create the necessary links with:

cp interface get

cp interface delta

You now have three names that point to the same program: interface, get, and
delta. All of the other sees commands that require write access to the sees

SCCS: Source Code Control System 14-47

14

directory will be inaccessible to the users since you have not linked them to the
program.

Modifying the Users' Search Path

Once you have linked the appropriate sees command names to the sees
interface program, you must modify each user's HP- UX search path so that the
directory containing the the interface program is found before the actual sees
commands. PATH is the HP- UX variable that specifies where the system looks
for a command when a user executes it. When any command is executed, the
system searches for the command in the directories defined by the user's PATH
variable. The directories are searched in the order in which they appear in the
variable's list. Your HP- UX system has a default definition for PATH but it can
be redefined by each user in his .profile file. Refer to your system's HP- UX
System Administrator Manual for more information about the PATH variable

14 and the ".profile" file.

Whether you have to change the PATH variable in every user's .profile file
or just the system's default definition, you must insert the sees directory
name before the appearance of /usr/bin, the directory containing the sees
commands, in PATH's directory list. For example, if a user's PATH variable is
defined as:

PATH=/bin:/usr/bin

you should change it to:

PATH=/bin:/system/sccs:/usr/bin

where /system/sccs is the name of the sees directory containing the sees
interface program. vVhen you execute a command, the system first searches for
it in /bin, then in /system/sccs, and finally in /usr/bin.

Creating SCCS Files

As sees System Administrator, you are the only user able to execute admin
because it requires write access to the sees directory and you did not specify
it as a link name to the sees interface program. Having sole access to admin
means that you can strictly control the creation of sees files and the setting
to their various flags. Refer back to the section "sees's Protection Facilities"
in this chapter for more information.

14-48 sces: Source Code Control System

Note that in order to make full use of sees for a multi-user project, sees
files should be maintained in a central location and logically grouped into one
or more sees directories.

Quick Reference

Commands

In the discussion of the following sees commands, only the most useful
options are discussed. Refer to the HP- UX Reference for complete descriptions
of the commands and all of their options.

get

-rSID

-p

-k

- ilist

-xlist

-m

-cdate

get -e

-rSID

-b

-ilist

-xlist

Gets files for compilation (not for editing). ID keywords are
expanded. Note that get -e is listed separately.

Version to get.

Send text to standard output rather than to the actual file.

Don't expand ID keywords.

List of deltas to include.

List of deltas to exclude.

Precede each line with SID of creating delta.

Don't apply any deltas created after date.

Gets files for editing. ID keywords are not expanded. Should
be matched with a delta command.

Same as get -rSID. If SID specifies a release that does not yet
exist, the highest numbered delta is retrieved and the new delta
is numbered with SID.

Create a branch.

Same as get -ilist.

Same as get -xlist.

sees: Source Code Control System 14-49

14

14

delta

unget

prs

sact

what

admin

-ifile

-z

Merge a file retrieved with get -e back into the s-file. Collect
comments about why this delta was made.

Remove a file previously retrieved with get -e without merging
the changes into the s-file.

Print information about the SCCS file.

Determine who is currently editing a file.

Find and print ID keywords that have been expanded. They
must be preceded by @ (#) (the expanded form of the keyword
%Z%).

Create or set parameters on s-files.

Create s-file, using file as the initial contents.

Rebuild the checksum in case the file has been corrupted.

-(fiag[value] Turn on the flag and optionally give it a value.

-dflag Turn off (delete) the flag.

-tfile Replace the descriptive text in the s-file with the contents
of file. If file is omitted, the descriptive text is deleted from
the s-file. Useful for storing documentation or "design and
implementation" documents to insure they get distributed with
the s-file.

-h Check for corruption in the s-file.

sccsdiff

cdc

Useful flags are:

b Allow branches to be made using the -b flag to get -e.

dSID Default SID to be used on a get.

i Cause No Id Keywords error message to be a fatal error
rather than a warning.

t The module type; the value of this flag replaces the %Y%
keyword.

Compare two versions of an SCCS file.

Change the comment line or MR number associated with a
previously created delta.

14-50 sces: Source Code Control System

rmdel

help

10 Keywords

Remove a delta from an sees file. This delta must be the
rnost recent on its branch or the main trunk - no other deltas
can depend on it.

Supplies additional information about an sees error rnessage.

%Z% Expands to @ (#) for the 1Nhat command to find. Every ID keyword
string that you want 1Nhat to see must be preceded by this keyword.

%M% The current module name; for exanlple, prog.c. Unless set by admin,
it defaults to the file name minus the s. prefix.

%F% The sees file name.

%Y% The value of the t flag as set by admin.

%1% The SID of the retrieved text. The highest delta applied.

%W% A shorthand for %Z%%M% <tab> %1%.

%E% The date of the delta corresponding to the %1% keyword
(YY /MM/DD).

%G% The date of the delta corresponding to the %1% keyword
(MM/DD/YY).

%U% The tirne the delta corresponding to the %1% keyword was created
(HH:MM:SS).

%R% The current release nurnber-that is, the first component of the %1%
keyword.

%L% The current level number-that is, the second component of the %1%
keyword.

%B% The current branch number-that is, the third component of the %1%
keyword, if it exists.

%S% The current sequence number-that is, the fourth component of the
%1% keyword, if it exists.

%D% The current date (YY /MM/DD).

%H% The current date (MM/DD /YY).

secs: Source Code Control System 14-51

14

14

%T% The current time (HH:MM:SS).

%Q% The value of the q flag as set by admin.

%C% The current line number. It is intended for identifying messages
output by the program such as this shouldn't have happened
errors. It is not intended to be used on every line to provide
sequence numbers.

14·52 sces: Source Code Control System

15
The M4 Macro Processor

The m4 macro processor is a general-purpose front end, similar in use to Ratfor
(for FORTRAN) and cpp (for C). It could be used as a front-end for any
programming language, including assembly language. The #define statement
in C language and the analogous define in Ratfor are examples of the basic
facility provided by m4. This chapter describes

• a basic overview of m4

• m4 command usage

• defining m4 macros

• arguments to macros

• arithmetic functions

• file manipulation

• executing HP -UX commands

• conditionals

• string manipulation

• printing to stderr

The M4 Macro Processor 15-1

15

15

Overview of m4 Capabilities
At the beginning of a program, a symbolic name or symbolic constant can be
defined as a particular string of characters. The compiler will then replace later
unquoted occurrences of the symbolic name with the corresponding string.
Besides the straightforward replacement of one string of text by another, the m4
macro processor provides the following features:

• arguments

• arithmetic capabilities

• file manipulation

• conditional macro expansion

• string and substring functions

The basic operation of m4 is to read every alphanumeric token (string of letters
and digits) input and determine if the token is the name of a macro. The
name of the macro is replaced by its defining text, and the resulting string
is pushed back onto the input to be re-scanned. Macros may be called with
arguments. The arguments are collected and substituted into the right places
in the defining text before the defining text is re-scanned.

The user also has the capability to define new macros. Built-in macros and
user-defined macros work exactly the same way except that some of the built-in
macros have side effects on the state of the process. A list of 32 built-in macros
provided by the m4 macro processor can be found in Table 15-1.

15-2 The M4 Macro Processor

Table 15-1. Built-in Macros
Macro N arne Function

changequote Restores original characters or sets new quote characters.

changecom Changes left and right comment markers from the default # and
newline.

decr Returns the value of its argument decremented by 1.

define Defines new macros.

defn Returns the quoted definition of its argument(s).

divert Diverts output to 1-out-of-10 diversions.

divnum Returns the number of the currently active diversion.

dnl Reads and discards characters up to and including the next newline.

dumpdef Dumps the current names and definitions of items named as
arguments.

errprint

eval

ifdef

ifelse

include

incr

index

Prints its arguments on the standard error file.

Prints arbitrary arithmetic on integers.

Determines if a macro is currently defined.

Performs arbitrary conditional testing.

Returns the contents of the file named in the argument. A fatal
error occurs if the filename cannot be accessed.

Returns the value of its argument incremented by 1.

Returns the position where the second argument begins in the first
argument.

The M4 Macro Processor 15-3

15

15

Macro Name

len

m4exit

m4wrap

maketemp

popdef

pushdef

shift

sinclude

substr

syscmd

sysval

traceoff

traceon

translit

undefine

undivert

Table 15-1. Built-in Macros (continued)

Function

Returns the number of characters that makes its argument.

Causes immediate exit from m4.

Pushes the exit code back at final EOF.

Facilitates making unique file names.

Removes current definition of its argument(s) exposing any previous
definitions.

Defines new macros but saves any previous definition.

Returns all arguments of shift except the first argument.

Returns the contents of the file named in the arguments. The macro
remains silent and continues if the file is inaccessible.

Produces substrings of strings.

Executes the HP-UX System command given in the first argument.

Return code from the last call to syscmd.

Turns macro trace off.

Turns the macro trace on.

Performs character transliteration.

Removes user-defined or built-in macro definitions.

Discards the diverted text.

15-4 The M4 Macro Processor

Usage
To use the m4 macro processor, input the following command:

m4 [optionaLfiles]

Each argument file is processed in order. If there are no arguments or if an
argument is "-", the standard input is read at that point. The processed text
is written on the standard output which may be captured for subsequent
processing with the following command:

m4 [files] > outputfile

Defining Macros
The primary built-in function of m4 is define. define is used to define new
macros. The following input:

def ine (name, stuff)

causes the string name to be defined as stuff. All subsequent occurrences of
name will be replaced by stuff. name must be alphanumeric and must begin
with a letter (the underscore counts as a letter). stuff is any text that contains
balanced parentheses. stuff may stretch over multiple lines. Thus, as a typical
example:

define(N, 100)

if (i > N)

defines N to be 100 and uses the symbolic constant N in a later if statement.

The left parenthesis must immediately follow the word def ine to signal
that define has arguments. If a user-defined macro or function name is not
followed immediately by (, it is assumed to have no arguments. Macro calls
have the following general form:

name (argl,arg2, ... argn)

The M4 Macro Processor 15-5

15

15

A macro name is only recognized as such if it appears surrounded by
non-alphanumerics. Using the following example:

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N, even though
the variable contains a lot of N s.

Macros rnay be defined in terms of other names. For example:

define (N, 100)
define(M, N)

defines both M and N to be 100. If N is redefined and subsequently changes, M
ret ains the value of 100, not N.

The m4 macro processor expands macro names into their defining text as soon
as possible. The string N is immediately replaced by 100. Then the string M is
also immediately replaced by 100. The overall result is the same as using the
following input in the first place:

define(M, 100)

The order of the definitions can be interchanged as follows:

define(M, N)
define (N, 100)

Now IVI is defined to be the string N, so when the value of M is requested later,
the result is the value of N at that time (because the M will be replaced by N,
which will be replaced by 100).

The more general solution is to delay the expansion of the arguments of define
by quoting them. Any text surrounded by left and right single quotes is not
expanded immediately but has the quotes stripped off.

Note The direction of the single quote marks is important. The left
(opening) quote is different from the right (closing) quote. See
changequote if this is a problem on your terminal.

15-6 The M4 Macro Processor

The value of a quoted string is the string stripped of the quotes. If the input is:

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the argument is being collected.
The result of using quotes is to define M as the string N, not 100. The general
rule is that m4 always strips off one level of single quotes whenever it evaluates
something. This is true even outside of macros. If the word define is to
appear in the output, the word must be quoted in the input as follows:

define' = 1

Another example of using quotes is redefining N. To redefine N, the evaluation
must be delayed by quoting:

define(N, 100)

define('N', 200)

In m4, it is often wise to quote the first argument of a macro. The following
example will not redefine N:

define(N, 100)

define(N, 200)

The N in the second definition is replaced by 100. The result is equivalent to
the following statement:

define(100,200)

This statement causes an error since only things that look like names can be
defined.

If left and right single quotes are not convenient for some reason, the quote
characters can be changed using the changequote function. The following
example substitutes the opening and closing square brackets for the opening
and closing single-quote characters:

changequote ([, J)

The M4 Macro Processor 15-7

15

15

The original characters can be restored by using changequote without
arguments as follows:

changequote

There are two additional built-in macros related to define. The undefine
macro removes the definition of some macro or function as follows:

undefine(CN')

The macro removes the definition of N. Built-in macros can be removed with
undefine, as follows:

undefine(Cdefine')

But once removed, the definition cannot be re-used.

The function ifdef provides a way to determine if a macro is currently defined.
Depending on the system, a definition appropriate for the particular machine
can be made as follows:

ifdef « S310', C def ine (wordsize, 16) ,)
ifdef (C S550', C define (wordsize, 32) ,)

Remember to use the quotes.

The ifdef macro actually permits three arguments. If the first argument is
defined, the value of ifdef is the second argument. If the first argument is
not defined, the value of ifdef is the third argument. If there is no third
argument, the value of ifdef is null. Example:

ifdef (C hpux', on HPUX, not on HPUX)

15-8 The M4 Macro Processor

Arguments
So far, the simplest form of macro processing has been discussed, which is
replacing one string by another (fixed) string. User-defined macros may also
have arguments, so different invocations can have different results. Within
the replacement text for a macro (the second argument of its def ine), any
occurrence of $n is replaced by the nth argument when the macro is actually
used. Thus, the macro bump defined as:

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1. The bump (x) statement is
equivalent to x = x + 1.

A macro can have as many arguments as needed, but only the first nine are
accessible ($1 through $9). The macro name is $80 although that is less
commonly used. Arguments that are not supplied are replaced by null strings,
so a macro can be defined which sirnply concatenates its arguments like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus, cat (x, y, z) is equivalent to xyz. Arguments $4 through $9 are null 15
since no corresponding arguments were provided. Leading unquoted blanks,
tabs, or newlines that occur during argument collection are discarded. All
other white space is retained. Thus:

define(a, b c)

defines a to be be.

Arguments are separated by commas; however, when commas are within
parentheses, the argument is not terminated nor separated. For example:

de f in e (a, (b, c))

has only two arguments. The first argument is a. The second is literally (b, c).
A bare comma or parenthesis can be inserted by quoting it.

The M4 Macro Processor 15-9

Arithmetic Functions
m4 provides three built-in functions for doing arithmetic on integers (only).
The simplest is iner, which increments its numeric argument by 1. The
function deer decrements by 1. Thus, to handle the common programming
situation where a variable is to be defined as "one more than N ," use the
following:

define(N, 100)
define(N1, 'iner(N)')

Then Nl is defined as one more than the current value of N.

The more general mechanism for arithmetic is a function called eval, which is
capable of arbitrary arithmetic on integers. The operators in decreasing order
of precedence are:

Precedent Operator

Higher unary + and -

** (exponentiation)

15 * / % (modulus)

+-

Lower

==!= < <= > >=
! - (logical not and bitwise not)

& (bitwise and)

I A (bitwise or and exclusive or)

&& (logical and)

(logical or)

Parentheses may be used to group operations where needed. All the operands
of an expression given to eval must ultimately be numeric. The numeric value
of a true relation (such as 1>0) is 1 and false is O. The precision in eval is 32
bits under the HP- UX operating system.

15-10 The M4 Macro Processor

As a simple example, define M to be 2==N+1 using eval as follows:

define(N, 3)
define(M, (eval(2==N+1)')

The defining text for a macro should be quoted unless the text is very simple.
Quoting the defining text usually gives the desired result and is a good habit to
get into.

File Manipulation
A new file can be included in the input at any time by the built-in function
include. For example:

include (filename)

inserts the contents of filename in place of the include command. The
contents of the file is often a set of definitions. The value of include
(include's replacement text) is the contents of the file. If needed, the contents
can be captured in definitions, etc. 15

A fatal error occurs if the file named in include cannot be accessed. To get
some control over this situation, the alternate form sinclude can be used. The
function s include (silent include) says nothing and continues if the file named
cannot be accessed.

The output of m4 can be diverted to temporary files during processing, and the
collected material can be output upon command. m4 maintains nine of these
diversions, numbers 1 through 9. If the built-in macro:

divert (n)

is used, all subsequent output is put onto the end of a temporary file referred
to as n. Diverting to this file is stopped by the divert or divert (0)
command, which resumes the normal output process.

Diverted text is normally output all at once at the end of processing with the
diversions output in numerical order. Diversions can be brought back at any
time by appending the new diversion to the current diversion. Output diverted
to a stream other than 0 through 9 is discarded. The function undi vert brings

The M4 Macro Processor 15-11

15

back all diversions in numerical order. The function undi vert with arguments
brings back the selected diversions in the order given. If the current diversion
is not 0 through 9, the act of un diverting will discard text in the specified
stream(s).

The value of undivert is not the diverted text. Furthermore, the diverted
material is not re-scanned for macros. The function divnum returns the number
of the currently active diversion. The current output stream is zero during
normal processing.

System Command
Any program in the local operating system can be run by using the syscrnd
function. For example:

syscmd(date)

on the HP-UX system runs the date command. Normally, syscmd would be
used to create a file for a subsequent include. To facilitate making unique file
names, the function maketemp is provided with specifications identical to the
system function mktemp. The maketemp macro replaces the string XXXXXX (6
X's) anywhere in the argument with the process ID of the current process.

Conditionals
Arbitrary conditional testing is performed via the ifelse function. In the
simplest form:

ifelse(a, b, c, d)

compares the two strings a and b. If a and b are identical, ifelse returns the
string c. Otherwise, string d is returned. Thus, a macro called compare can be
defined as one which compares two strings and returns "yes" or "no" if they
are the same or different as follows:

define(compare, 'ifelse($1, $2, yes, no)')

15-12 The M4 Macro Processor

Note the quotes, which prevents evaluation of ifelse from occurring too early.
If the fourth argument is missing, it is treated as empty.

The function ifelse can actually have any number of arguments and provides
a limited form of multi-way decision capability. In the input:

ifelse(a, b, c, d, e, j, g)

if the string a matches the string b, the result is c. Otherwise, if d is the
same as e, the result is j. Otherwise, the result is g. If the final argument is
omitted, the result is null, so:

ifelse(a, b, c)

is c if a matches b, and null otherwise.

String Manipulation

The len function returns the length of the string (number of characters) that
makes up its argument. Thus: 15

len(abcdef)

is 6, and len((a, b)) is 5.

The function substr can be used to produce substrings of strings. Using input,
substr(8, i, n) returns the substring of 8 that starts as the ith position
(origin zero) and is n characters long. If n is omitted, the rest of the string is
returned. The call:

substr('now is the time' ,1)

returns the following string:

ow is the time

If i or n is out of range, various actions occur.

The function index(81 , 82) returns the index (position) in 81 where the
string 82 occurs or -1 if it does not occur. As with substr, the origin for
strings is O.

The M4 Macro Processor 15-13

15

The function transli t performs character transliteration and has the general
form:

transli t (s, j, t)

which modifies s by replacing any character found in j by the corresponding
character of t. Using input:

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than j,
characters that do not have an entry in t are deleted. As a limiting case, if t is
not present at all, characters from j are deleted from s. So:

translit(s, aeiou)

would delete vowels from s.

There is also a function called dnl that deletes all characters that follow it
up to and including the next new line. The dnl macro is useful mainly for
throwing away empty lines that otherwise tend to clutter up m4 output. Using
input:

define(N, 100)
define(M, 200)
define(L, 300)

results in a new line at the end of each line that is not part of the definition.
So the new line is copied into the output where it may not be wanted. If
the function dnl is added to each of these lines, the newlines will disappear.
Another method of achieving the same results is to input:

divert(-1)
define(' ..)

divert.

15-14 The M4 Macro Processor

Printing
The errprint function writes its arguments out on the standard error file. An
example would be:

errprint (' fatal error')

The function dumpdef is a debugging aid that dumps the current names and
definitions of items named as arguments. If no arguments are given, then all
current names and definitions are printed. Do not forget to quote the names.

The M4 Macro Processor 15·15

15

Glossary

archive library
A library, created by the ar command, which contains one or more object
modules. By convention, archive library file names end with . a. Compare
with "shared library."

attaching a shared library
The process the dynamic loader goes through of mapping the shared library
code and data into a process's address space, relocating any pointers in the
shared library data that depend on actual virtual addresses, allocating the
bss segment, and binding routines and data in the shared library to the
program.

basic block
A contiguous section of assembly code, produced by compilation, that
has no branches in except at the top, and no branches out except at the
bottom.

binding Glossary
The process the dynamic loader goes through of filling in a process's
procedure linkage tables and data linkage tables with the addresses of
shared library routines and data. When a synlbol is bound, it is accessible
to the program.

bss segment
A segment of memory in which uninitialized data is stored. Compare with
"text segment" and "data segment." (For details, refer to How HP- UX
Works: Concepts for the System Administrator.)

buffer
A temporary holding area for data. Buffers are used to more efficiently
perform input/output.

Glossary-1

child
A process that is spawned by a process (a sub-process).

code generation
A phase of compilation in which object code is created.

compilation phase
A particular step performed during compilation-for example,
pre-processing, lexical analysis, parsing, code generation, linking.

complete executable
An executable (a. out) file that does not use shared libraries. It is
"complete" because all of its library code is contained within it. Compare
with "incomplete executable."

data linkage table
A linkage table that stores the addresses of data items.

data segment
A segment of memory containing a program's initialized data. Compare
with "bss segment" and "text segment." (For details, refer to How HP- UX
Works: Concepts for the System Administrator.)

deferred binding
The process of waiting to bind a procedure until a program references it.
Deferred binding can save program startup time. Compare with "immediate

Glossary binding."

demand-Ioadable
When a process is "demand-loadable," its pages are brought into physical
memory only when they are accessed.

dependency
Occurs when a shared library depends on other libraries-that is, when the
shared library was built (with Id -b ...), other libraries were specified on
the command line. See "supporting library."

depth-first order
Searching a list starting at the end of the list and moving toward the head.

Glossary-2

(N ote that shared library initialization routines are invoked by traversing
the list of loaded shared libraries depth-first.)

DLT
See "data linkage table."

driver
A program that calls other programs.

dynamic linking
The process of linking an object module with a running program and
loading the module into the program's address space.

dynamic loader
Code that attaches a shared library to a program. See dld.sl (5).

entry point
The location at which a program starts running after HP- UX loads it into
memory to begin execution.

explicit loading
The process of using the shLload(3X) function to load a shared library into
a running program.

export stub
Generated by the Series 700/800 linker for a global definition in a shared

library. Glossary

export symbol
A symbol definition that is referenced outside the library.

exporting a symbol
Making a symbol visible to code outside the module in which the symbol
was defined. This is usually done with the +e or - E option.

external reference
A reference to a symbol defined outside an object file.

feed back -directed positioning
An optimization technique wherein procedures are relocated in a
program, based on profiling data obtained from running the program.

Glossary-3

Feedback-directed positioning is one of the optimizations performed during
profile-based optimization.

file descriptor
A file descriptor is returned by the open(2), creat(2), and dup(2) system
calls. The file descriptor is used by other system calls (for example, read(2),
write(2), and close(2)) to refer to a the file.

filters
Programs that accept input data and modify it in some way before passing
it on. For example, the pr command is a filter.

flush
The process of emptying a buffer's contents and resetting its internal data
structures.

global definition
A definition of a procedure, function, or data item that can be accessed by
code in another object file.

header string
A string, "! <arch> \n", which identifies a file as an archive created by ar
(\n represents the newline character).

hiding a symbol
Making a symbol invisible to code outside the module in which the symbol

Glossary was defined. Accomplished via the -h linker option.

immediate binding
By default, the dynamic loader attempts to bind all symbols in a shared
library when a program starts up-known as "immediate binding."
Compare with "deferred binding."

implicit address dependency
Writing code that relies on the linker to locate a symbol in a particular
location or in a particular order in relation to other symbols.

implicit loading
Occurs when the dynamic loader automatically loads any required libraries
when a program starts execution. Compare with "explicit" loading.

Glossary-4

import stub
Generated by the Series 700/800 linker for external references to shared
library routines.

import symbol
An external reference made from a library.

incomplete executable
An executable (a. out) file that uses shared libraries. It is "incomplete"
because it does not actually contain the shared library code that it uses;
instead, the shared library code is attached when the program runs.
Compare with "complete executable."

indirect addressing
The process of accessing a memory location via a memory address that is
stored in memory or a register.

initializer
An initialization routine that is called when a shared library is loaded or
unloaded.

intermediate code
A representation of object code that is lower-level than the source code, but
higher level than the object code.

I-SOM
Intermediate code-System Object lVlodule. Used during profile-based
optimizations.

library
A file containing object code for subroutines and data that can be used by
programs.

link order
The order in which object files and libraries are specified on the linker
command line.

link-edit phase
The compilation phase in which the compiler calls the linker to create an
executable (a. out) file from object modules and libraries.

Glossary

Glossary-5

linkage table
A table containing the addresses of shared library routines and data. A
process calls shared library routines and accesses shared library data
indirectly through the linkage table.

local definition
A definition of a routine or data that is accessible only within the object file
in which it is defined.

lock file
A file used to ensure that only one process at a time can access data in a
particular file.

magic number
A number that identifies how an executable file should be loaded. Possible
values are SHARE_MAGIC, DEMAND_MAGIC, and EXEC_MAGIC. Refer to How
HP- UX lIV01'k8: Concept8 for the SY8tem Administrator for details.

man-page
A page in the HP- UX Refel'ence. Man-page references take the form
title (8ection), where title is the name of the page and 8ection is the
section in which the page can be found. For example, open(2) refers to the
"open(2)" page in section 2 of the HP- UX Reference.

nonfatal binding
Like immediate binding, nonfatal immediate binding causes all required

Glossary symbols to be bound at program startup. The main difference from
immediate binding is that program execution continues even if the dynamic
loader cannot re80lve 8ymbol8.

object code
See "relocatable object code."

object file
A file containing machine language instructions and data in a form that the
linker can use to create an executable program.

object module
A file containing machine language code and data in a form that the linker
can use to create an executable program or shared library.

Glossary-6

parent process
The process that spawned a particular process. (For details, refer to How
HP- UX Works: Concepts for the System Administrator.)

PBO
See "profile-based optimization."

PC-relative
A form of machine-code addressing in which addresses are referenced
relative to the program counter register.

physical address
A reference to an exact physical menlory location (as opposed to virtual
memory location).

PIC
See "position-independent code."

pipe
An input/output channel intended for use between two processes: One
process writes into the pipe, while the other reads.

PLT
See "procedure linkage table."

position-independent code
Object code that contains no absolute addresses. All addresses are Glossary
specified relative to the program counter. Position-independent code can be
used to create shared libraries.

pragma
A C directive for controlling the compilation of source.

procedure linkage table
A linkage table that stores the addresses of procedures and functions.

process ID
An integer that uniquely identifies a process. (For details, r:efer to How
HP- UX Works: Concepts for the System Administrator.)

Glossary-7

profile-based optimization
A kind of optimization in which the compiler and linker work together to
optimize an application based on profile data obtained from running the
application on a typical input data set.

relocatable object code
Machine code that is generated by compilers and assemblers. It is
relocatable in the sense that it does not contain actual addresses; instead,
it contains symbols corresponding to actual addresses. The linker decides
where to place these symbols in virtual memory, and changes the symbols
to absolute virtual addresses.

relocation
The process of revising code and data addresses in relocatable object
code. This occurs when the linker must combine object files to create an
executable program. It also occurs when the dynamic loader loads a shared
library into a process's address space.

restricted binding
A type of binding in which the dynamic loader restricts its search for
symbols to those that were visible when a library was loaded.

s-file

Glossary

An sces file that has an 8. prefix and that contains version and update
log information for a file managed by SCCS.

shared executable
An a. out file whose text segment is shareable by multiple processes.

shared library
A library, created by the ld command, which contains one or more PIC
object modules. Shared library file names end with .81. Compare with
"archive library."

shared library handle
A descriptor of type 8hl_ t (type defined in <dl.h», which shared library
management routines use to refer to a loaded shared library.

Glossary-8

standard error
The default stream for sending error messages-usually connected to the
screen.

standard input
The default stream for collecting character input data-usually connected
to the key board.

standard input / output library
A collection of routines that provide efficient and portable input / output
services for most C programs.

standard output
The default stream for sending character output data-usually connected to
the screen.

startup file
Also known as crtO. 0, this is the first object file that is linked with an
executable program. It contains the program's entry point. The startup
code does such things as retrieving command line arguments into the
program at run tilne, and activating the dynamic loader (dld.sl(5)) to load
any required shared libraries.

stream
A data structure of type FILE * used by various input/output routines.

stub Glossary
(Series 600/700/800) A short code segment that lnay be inserted into
procedure calling sequences by the PA-RISC linker. Stubs are used for
very specific purposes, such as inter-space (e.g., shared-library) calls, long
branches, and preserving calling interfaces across modules (e.g., parameter
relocation). Refer to the manual PA-RLSC Procedure Calling Conventions
Reference Manual.

supporting library
A library that was specified on the command line when building a shared
library (with Id -b ...). See "dependency."

Glossary-g

symbol name
The name by which a procedure, function, or data item is referred to in an
object module.

symbol table
A table, found in object and archive files, which lists the symbols
(procedures or data) defined and referenced in the file. For symbols defined
in the file, an offset is stored.

system calls
System library routines that provide low-level system services; they are
documented in section 2 of the HP- UX Reference.

text seglnent
A segment of read-only memory in which a program's machine language
instructions are typically stored. Compare with "bss segment" and "data
segment." (For details, refer to How HP- UX Works: Concepts for the
System Administrator.)

umask
A field of bits (set by the umask(l) command) that turns off certain file
permissions for newly created files.

version number

Glossary

A number that differentiates different versions of routines in a shared
library.

wrapper library
A library that contains alternate versions of library functions, each of which
performs some bookkeeping and then calls the actual function.

z-file
A lock file used by SCCS to prevent simultaneous updates ..

Glossary-10

Index

9

98248 Floating Point Accelerator, 7-14

A

-Aa e compiler option, 1-8
abs function, 11-3
access mode, file, 12-10
access permissions for sees interface

program, specifying, 14-47
acos function, 11-5
adb debugger, 2-27
ADDIL elimination, 6-2
admin command, 14-5

general usage, 14-29
limiting access to sees files, 14-32
protecting sees files, 14-38
restoring a corrupt s-file, 14-27

a_entry field of a. out header, 5-26
-a linker option, 2-14, 5-8
-A linker option, 6-2, 6-18
alloc_load_space function, 5-46, 5-47
ANSI e examples, 1-8
a.out

a_entry symbol, 5-26
<a.out.h>, 5-38
<aouthdr.h>, 5-37
attributes, changing, 2-27, 5-34
creating, 2-2
entry point, 5-3, 5-26, Glossary-3
exec structure, 5-38
<filehdr.h>, 5-37
format, 5-3

header structure, 5-37
permissions, 5-4
renaming, 2-20, 5-4
som_exec_auxhdr structure, 5-37
$START symbol, 5-3
_start symbol, 5-3, 5-26

<a . out. h>, 5-38
<aouthdr.h>, 5-37
archive library

adding object modules, 3-6
compared with shared, 2-14-15
contents, 3-3
creating, 3-2, 3-4
creation dates, 3-7
definition of, 2-16, Glossary-1
deleting object modules, 3-6
extracting modules, 3-7
header string, 3-3
location, 3-8
migrating to shared, 5-23-28
naming, 2-14, 2-15
replacing object modules, 3-6
selecting at link time, 5-8
symbol table, 3-3, Glossary-10
table of contents, 3-3

ar command, 3-1-8
adding object modules, 3-6
deleting object modules, 3-6
extracting modules, 3-7
keys summary, 3-7
long file names, 3-7
replacing object modules, 3-6

Index-1

Index

Index

table of contents, 3-3
using with I-SaM files, 6-18
verbose output, 3-7

argc, 12-2
*argv [J, 12-2
as command, 2-25
asctime function, 10-14
asin function, 11-5
assembler, 2-25
assembler internal pseudo-op, 5-25
atan function, 11-5
atexi t function, 6-6
attaching a shared library, 2-17, 5-15,

Glossary-1

B

basic block, 6-3, Glossary-1
BIND_DEFERRED flag to shl_load, 8-5
BIND_FIRST flag to shl_load, 4-12,

5-17, 8-6
BIND_IMMEDIATE flag to shl_load, 8-5
binding, 2-15, 5-15, 7-3, Glossary-1

deferred, 2-17, 5-15, 5-35, Glossary-2
immediate, 2-17, 5-15, 5-35, Glossary-4
nonfatal, 5-16, 5-35, Glossary-6
restricted, 5-16, 5-35, Glossary-8

BIND_NONFATAL flag to shl_load, 8-5
BIND_VERBOSE flag to shl_load, 8-6
+b linker option, 4-9, 5-12, 5-13, 5-14,

5-35
-b linker option, 4-4, 5-19, 6-2, 6-17
-B linker option, 5-15-17
branches, maintaining multiple sees,

14-34
branch numbering, sees, 14-35
branch retrieval, sees, 14-35
bss segment, Glossary-1
buffer, 9-2, Glossary-1
buffer flushing, 12-5
buffer size, default, 9-2
BUFSIZ, 9-2

Index-2

C

cachectl function, 5-39, 5-55
-c compiler option, 2-20
cdc command, 14-50
character

character conversion, 9-8, 9-16
classification, 10-2
conversion characters, 9-8
file I/O, 9-30
floating-point conversion, 9-9, 9-16
format conversion, 9-7, 9-8
integer conversion, 9-7, 9-8
I/O, 9-3
literal, 9-9
push-back, 9-34

chatr command, 2-27, 5-12, 5-34
child process, 12-15, 12-16, Glossary-2
chmod and shared library performance,

4-15
chroot command and shared libraries,

5-27
_clear_counters function, 6-11
clearerr function, 9-49
-c linker option, 5-22
close function, 12-11
close sequences in child, 12-19
code generation, 6-5, 6-7, Glossary-2
command line arguments, 12-2
comparing strings, 10-5
comparing versions of a file, 14-20
compiler

assembly file generation (-S), 2-25
code generation, Glossary-2
-c option, 2-20
+DA option, 2-24
default libraries, 2-10
+df option, 6-10, 6-12
driver, 2-4
floW'. data file, specifying (+df), 6-10,

6-12
-g option, 6-18

-G option, 6-18
incompatibilities with PBO, 6-18
instrumenting for PBO (+ I), 6-4, 6-6
+I option, 6-4, 6-6
library search path, augmenting (-

Wl,-L),2-22
link-edit phase, 2-4, 2-9
linker interface, 2-20-22, 5-2
naming the a . out file (-0), 2-20
+0 option, 6-18
optimization levels and PBO, 6-14
optimizing using PBO data (+p), 6-11
overview, 2-2
phases, 2-4, Glossary-2
+p option, 6-11
-p option, 6-18
position-independent code (+z/+Z),

4-2
profile-based optimization, 6-3-19
. s file, 2-25
-s option, 6-18
-s option, 6-18
specifying libraries (-1), 2-11, 2-21
suppressing link-edit phase (-c), 2-20
verbose output (-v), 2-4, 2-21
-WI option, 2-22
+y option, 6-18
-y option, 6-18
+z/+Z option, 2-15, 2-19, 4-2, 7-3

complete executable, 2-15, Glossary-2
concatenating strings, 10-3
concurrent edits on different versions,

sees, 14-25
conversion character

char acter, 9-8, 9-16
floating-point, 9-9, 9-16
format, 9-7
integer, 9-7
integers, 9-15

conversion specifications, format, 9-5
copying strings, 10-3

cos function, 11-5
cosh function, 11-5
creat function, 12-9
crtO.o file, 2-11, 5-3, 6-5, Glossary-9
crtO.o file and shared libraries, 5-26
ctime function, 10-12

o
+DA compiler option, 2-24
data linkage table, 7-3, Glossary-2
data references, optimizing, 6-2
data segment, Glossary-2
data segment restrictions with shared

libraries, 5-26
date and time manipulation, 10-12
debuggers (xdb and adb), 2-27
debugging and -0 option, 6-2
debugging shared libraries, 4-3, 5-28
default libraries, 2-10
deferred binding, 2-17, 5-15, 5-35,

Glossary-2
delta command, 14-3, 14-8, 14-9, 14-49
deltas, when to make, 14-9
demand-loaded executable, Glossary-2
DEMAND_MAGIC, 5-30
dependency, shared library, 4-10,

Glossary-2
depth-first order, 8-33, Glossary-3
description file (make), 13-6
descriptor, file, Glossary-4
+df compiler/linker option, 6-10, 6-12
d-files, 14-24
diff command, 14-20
directory, creating sees, 14-45
directory, reading, 9-2
disk space usage and shared libraries,

2-17
dId. s1. See dynamic loader
<dl.h>, 8-3
-D linker option, 6-2
DLT. See data linkage table

Index-3

Index

Index

driver, 2-4, Glossary-3
dup function, 12-19
dynamic library search, 4-9, 5-12, 5-35
dynamic linking, 5-36-56, 6-2, Glossary-3
dynamic loader, 2-17, 5-11, 5-29, 7-3,

Glossary-3
dynamic loader and stack usage problems,

5-25
dyn_load function, 5-46, 5-50
dynprog program, 5-42

E

editing, concurrent, on different SCCS
versions, 14-25

+e linker option, 4-13, 5-18
-e linker option, 5-37
-E linker option, 5-11, 5-20, 8-2
entry point, 5-3, 5-26, Glossary-3
environment variables, retrieving from

C programs, 12-2
**envp, 12-2
<errno.h>, 12-13
errno variable, 12-13
error names, 12-13
error processing, 12-13
+ESlit option to cc, 4-16
exec function, 5-29, 12-17
execl function, 12-14, 12-15, 12-18
EXEC_MAGIC, 5-30
exec structure, 5-38
execv function, 12-15
exit function, 9-29, 12-5, 12-15, 12-24
exit function and flushing buffers, 12-5
_exi t function to terminate parent and

child, 12-5
explicit loading, 8-1, 8-4, Glossary-3
exponentiation function, 11-4
exponentiation function, floating-point,

11-13
exporting main program symbols (-E),

5-11,5-20, 8-2, Glossary-3

Index-4

exporting shared library symbols (+e),
4-13, 5-18, 5-19, Glossary-3

export stub, 7-4, Glossary-3
export symbol, 8-25, Glossary-3
external reference, 2-6, Glossary-3

F

faabs function, 11-3
-Fb linker option, 6-5, 6-7
f close function, 9-29, 9-57
fdopen function, 9-64
feedback-directed positioning,

Glossary-4. See also profile-based
optimization

feof function, 9-47
f error function, 9-49
fflush before converting file pointer/file

descriptor, 9-63
fflush function, 9-60, 12-14
fgetc function, 9-33
fgets function, 9-35
file, 9-2

access mode, 12-10
binary (non-ASCII) I/O, 9-40
character I/O, 9-30
description file (make), 13-6
descriptor, 12-6, Glossary-4
descriptor-to-pointer conversion, 9-63
files open simultaneously, 12-11
flags, SCCS, 14-30
formatted I/O, 9-39
lock file, Glossary-6
opening, 9-2
pointer, 9-27, 12-6
pointer-to-descriptor conversion, 9-63
random access, 12-12
reading, 9-27
read/write, 9-56
repositioning, 9-50
rewind, 12-12
single-character I/O, 9-3

string I/O, 9-35
types, sees, 14-20
version comparisons, sees, 14-20
writing, 9-27

file access, sees, admin command used
to limit, 14-32

file command, 2-27
file descriptor/file pointer conversion,

9-63
<filehdr.h>, 5-37
fileno function, 9-64
file open for read and write, 9-56
file pointer/file descriptor conversion,

9-63
file protection, sees, 14-37
files, getting from sees for compilation,

14-7
files, sees, creating, 14-48
filters, 9-4, Glossary-4
floating-point exponentiation function,

11-13
floating-point math, 11-1
FLmCDATA_DIR environment variable,

6-19
FLOW_DATA environment variable, 6-13,

6-19
flow. data file, 6-8, 6-12

empty, 6-8
exit function, 6-8
incompatiblity with 8.05, 6-19
location, 6-13
lock file (flow.lock), 6-10
renaming (+df), 6-10, 6-12
sharing among processes, 6-10
storing data for multiple programs,

6-9
flow .lock file, 6-10
flush, Glossary-4
flush_cache function, 5-39, 5-55
flushing a buffer, 9-2, 9-27
fmod function, 11-10

fopen function, 9-27
fopen function and r+ file type, 9-27
fork function, 12-15, 12-16, 12-17, 12-18
fork function and profile-based

optimization, 6-11
fork function, failure of, 12-15
format conversion characters, 9-7, 9-13,

9-15
format conversion specifications, 9-5
formatted I/O, 9-5
fpa_loc symbol and PIC, 7-14
fprintf function, 9-39
fputc function, 9-33
fputs function, 9-35
fread function, 9-43
freopen function, 9-61
frexp function, 11-12
frtO .0 file, 5-:3
frtO.o file and shared libraries, 5-26
fscanf function, 9-39
fseek function, 9-52
fsetbuf function, 9-57
ftell function, 9-51
fwri te function, 9-43

G
-g compiler option, 6-18
-G compiler option, 6-18
gcrtO.o file, 5-3
getc function, 12-14
get char function, 9-3
get command, 14-4, 14-7, 14-8, 14-11,

14-49
concurrent edits on different versions

(-e),14-25
create new release (-r), 14-13
-e option, 14-25
g-files, 14-22
I-files, 14-22
p-files, 14-23
-r option, 14-13

Index-5

Index

Index

get command
-x option, 14-16

gets function, 9-5
getw function, 9-40
g-files, created by get command, 14-22
g-files, editing, 14-22
gfrtO.o file, 5-3
-G linker option, 6-17
global definition, 2-6, Glossary-4
gmtime function, 10-14
gprof profiler, 2-27, 4-3
graphics library, 2-13

H

handle, shared library, 8-7, Glossary-8
hangup signal, 12-22
header string, 3-3, Glossary-4
header structure, 5-37
help command, 14-17, 14-51
hiding shared library symbols (-h),

4-13, 5-18, 5-19, Glossary-4
-h linker option, 4-13, 5-18
HP _SHLIB_ VERSION pragma, 4-6
HP-UX Reference, 2-12
HUGE constant, 11-1
hypotenuse, 11-12

+ I compiler option, 6-4, 6-6
icrtO.o file, 6-5
ID keyword expansion, sees, 14-5,

14-10, 14-11
ID keywords, sees, 14-4, 14-10, 14-50,

14-51
- I linker option, 6-4, 6-6
immediate binding, 2-17, 5-15, 5-35,

Glossary-4
implicit address dependency, 5-24,

Glossary-4
implicit loading, Glossary-4
implicit rules, make, 13-10

Index-6

importing main program symbols, 5-11,
5-20, 8-2

import stub, Glossary-5
import symbol, Glossary-5
incomplete executable, 2-15, 2-17,

Glossary-5
indirect addressing, 7-3, Glossary-5
initializer, Glossary-5
input/output

character file, 9-30
formatted, 9-5
ordinary files, 9-26
redirection, 12-7
single-character, 9-3
string, 9-5, 9-20

instrumenting for PEa (+ I / - I), 6-4,
6-6

integer conversion characters, 9-7, 9-15
intermediate code, 6-5, Glossary-5
internal assembler pseudo-op, 5-25
interprocess communication, 9-66
interrupt, 12-22
Invalid loader fixup needed, 4-16
I-SaM, 6-5, Glossary-5
I-saM files and PEa, 6-17

L

-1 compiler/linker option, 2-10, 2-11,
2-21, 5-5

Id
-a option, 2-14, 5-8
-A option, 5-36-56, 6-2, 6-18
a. out permissions, 5-4
archive libraries, selecting (-a), 2-14,

5-8
archive libraries, selecting (-1:), 5-9
binding, choosing (-B), 5-15-17
+b option, 4-9, 5-12, 5-13, 5-14, 5-35
-b option, 4-4, 6-2, 6-17
-B option, 5-15-17

code generator, specifying (-Fb), 6-5,
6-7

combining obj ect files into one (-r),
5-19, 5-20, 6-2, 6-17

compiler interface, 2-4, 2-20-22, 5-2
-c option, 5-22
data segment, placing after text (-N),

5-37
data space offset, setting (-D), 6-2
DEMAND_MAGIC magic number (-q),

5-31
+df option, 6-10, 6-12
-D option, 6-2
duplicate symbol definitions, 5-6
dynamic library search of SHLIB_PATH,

enabling (+s), 4-9,5-12, .5-14,
5-35

dynamic library search path, specifying
(+b), 4-9, 5-12, 5-13, 5-14, 5-35

dynamic linking (-A), 5-36-56, 6-2,
6-18

dynamic linking (-R), 5-36-56,
Glossary-3

entry point, specifying (-e), 5-37
+e option, 4-13, 5-18
-e option, 5-37
-E option, 5-11,5-20,8-2
EXEC_MAGIC magic number (-N), 5-31
exporting main program symbols (-E),

5-11, 5-20, 8-2
exporting shared library symbols (+ e),

4-13, 5-18
-Fb option, 6-.5, 6-7
FLOW_DATA environment variable,

6-13
flow. data file, specifying (+df), 6-10,

6-12
-G option, 6-17
hiding shared library symbols (-h),

4-13, 5-18
-h option, 4-13, 5-18

instrumenting for PBO (-I), 6-4, 6-6
- I option, 6-4, 6-6
LDOPTS environment variable, .5-4
libraries, specifying (-1),2-10,2-21,

5-5
library basename, specifying (-1:),

5-9
library search path, augmenting (-L),

2-11, 2-22, 5-7
library search path, overriding (LPATH),

2-11, 5-6
link-edit phase, 2-4, 2-9
link-edit phase, suppressing, 2-20
link order, 2-21, 4-14, 5-6, 5-23
-1: option, 5-9
-1 option, 2-10, 2-21, 5-5
-L option, 2-11, 2-22, 5-7
magic number, 5-30
-n option, 5-31
-N option, 5-31, 6-18
-0 option, 2-20, 5-4
-0 option, 6-2
optimizing data references (-0), 6-2
optimizing using PBO data (-p),

6-11, 6-12
option files (-c), 5-22
options passed from compilers, 2-20-22
output file (-0), 2-20, 5-4
performance with PBO, 6-7, 6-17
+pgm option, 6-13
-P option, 6-11, 6-12
profiling (-G), 6-17
program name for PBO, changing

(+pgm), 6-13
-q option, 5-31
relocation, 5-2
resolution rules, 5-23
-r option, 5-19, 5-20, 6-2, 6-17
-R option, 5-36-56, Glossary-3
shared libraries, building (-b), 4-4,

6-2

Index-7

Index

Index

shared libraries, selecting (-a), 2-14,
5-8

shared libraries, selecting (-1:), 5-9
shared libraries, updating, 4-5
shared library, building (-b), 6-17
SHARE_MAGIC magic number (-n),

5-31
SHLIB_PATH environment variable,

4-9, 5-12, 5-14, 5-35
+s option, 4-9, 5-12, 5-14, 5-35
-s option, 5-35, 6-17
symbol table information, stripping

(-s/-x), 5-35, 6-17
unshared executables (-N), 6-18
verbose output (-v), 2-21
-x option, 5-35

Idexp function, 11-12
LDOPTS environment variable, 5-4
level number, sees, 14-3
I-files, 14-22
/lib, 2-11, 3-8
libc, 2-13
libdld. sl library, 8-2
/lib/icrtO.o file, 6-5
/lib/libp, 2-11
libm, 2-13, 11-2
libM, 2-13, 11-2
/lib/measure.o file, 6-5
/lib/pal.l, 2-23,5-5
library, 2-10, Glossary-5

archive, 2-14-15, Glossary-1
default, 2-10
location, 3-8, 5-11
maintaining with sees, 14-41
naming conventions, 2-10
PA1.0 and PA1.1, 2-23
performance, 2-23
search path, augmenting (-L), 2-11,

2-22, 5-6
search path, overriding (LPATH), 2-11,

5-7

Index-8

shared, 2-14-15, Glossary-8
specifying with -1,2-10, 2-11, 2-21
supporting, 4-10, Glossary-9
system, 2-12
wrapper, 5-24, Glossary-10

linkage table, 2-15, 2-17, 7-3, Glossary-6
link-edit phase, 2-4, 2-9, Glossary-5
link-edit phase, suppressing, 2-20
linker. See Id
link order, 2-21, 4-14, 5-6, 5-23,

Glossary-5
literal characters, 9-9
LIT text space and performance, 4-16
-L linker option, 2-11, 5-7
"-1:" linker option, 5-9
load graph, shared library, 4-10
loading of shared library routines, 2-17
local definition, 2-6, Glossary-6
local time function, 10-14
lock file, 6-10, Glossary-6
logarithmic functions, 11-4
longjmp function, 12-24
lorder command, 2-27, 4-14
lowercase/uppercase conversion, 10-1
lower/upper bounds for numbers, 11-9
LPATH environment variable, 2-11, 5-6
lseek function, 12-12

M

m4 command, 2-27, 15-1-15
arithmetic functions, 15-10
conditionals, 15-12
debugging aids, 15-15
errors, 15-15
file manipulation, 15-11
macros, arguments, 15-9
macros, built-in, 15-2
macros, defining, 15-5
macros, user-defined, 15-2
quotation marks, 15-6
string manipulation, 15-13

symbolic constant definition, 15-2
symbolic name definition, 15-2
system command, 15-12

magic number, 5-30
main function, 12-2
make command, 13-1-10

description file, 13-0
example, 13-11
implicit rules, 13-10
suffixes, 13-14
syntax, 1:3-8
transformation rules, 13-14
using sees with, 14-39
using with sees, 13-10
warnings, 13-13

man-page, 2-12, Glossary-o
manual pages, 2-12
<math. h>, 11-1
math library (libm), 2-13, 11-2
math library (libM), 2-13, 11-2
mcrtO.o file, .5-3
measure. 0 file, 0-5
merging changes back into s-files, 14-8
metacharacter expansion not available,

12-15
mfrtO.o file, 5-3
modf function, 11-10, 11-11
moving shared libraries after linking,

5-12, 5-23, 5-35

N

name links to sees interface program,
assigning, 14-47

-n linker option, 5-31
-N linker option, 5-:31, 5-37, 0-18
nlist function, 5-40
nm command, 2-7, 2-27
nm command and PBO, 0-18
nonfatal binding, 5-10, 5-35, Glossary-o

o
object code. See relocatable object code
object file, Glossary-o

creation, 2-5
external reference, 2-0
global definition, 2-0
local definition, 2-0
naming, 2-5
symbol name, 2-0, Glossary-10
symbol table, 2-0, Glossary-10
symbol types, 2-7
using nm to view symbols, 2-7

object module, 3-3, Glossary-o
-0 compiler/linker option, 2-20
+0 compiler option, 0-18
od command, 2-27
offset, used in random file access, 12-12
.0 file. See object file
-0 linker option, 5-4
-0 linker option, 6-2
open files, simultaneous, 12-11
open function, 12-9
opening a file, 9-2-3
open ordinary files, 9-26
optimization, 6-1

compiler optimization level and PBO,
0-14

data references, 0-2
profile-based optimization, 6-3-19
using PBO data (+p/-p), 0-11

optimizing using PBO data (+p/-p),
0-12

O_RDONLY flag to open, 12-9
O_RDWR flag to open, 12-9
O_WRONLY flag to open, 12-9

P

PAl.O and PA1.1libraries, 2-23,5-5
parent process, 12-15, 12-16, Glossary-7
PATH environment variable, 1-3
pause function, 12-25

Index-9

Index

Index

PBO. See profile-based optimization
pclose function, 12-19
+P compiler option, 6-11
-p compiler option, 6-18
PC-relative addressing, 2-19, 7-3,

Glossary-7
performance, library, 2-23
performance, shared library, 4-13
permissions, a. out, 5-4
permissions for SCCS interface program

access, specifying, 14-47
permissions, shared library, 4-15
perror function, 12-13
p-file creation, 14-23
p-file regeneration, 14-23
+pgm compiler/linker option, 6-13
phases, compiler, 2-4
phases of compilation, Glossary-2
physical address, 7-2, Glossary-7
PIC. See position-independent code
pipe, 12-18, Glossary-7
pipes, 1-3
plabel and PIC, 7-9
-p linker option, 6-11, 6-12
PLT. See procedure linkage table
pop en function, 9-66, 12-18, 12-21
position-independent code, 2-19, 7-3,

Glossary-7
assembly language, 5-25
creating, 2-15, 4-2
Series 300/400, 7-11-14
Series 700/800, 7-4-10

POSIX math library (libM), 2-13, 11-2
power math function, 11-4
pragma, G lossary-7
printf function, 9-5, 9-13
procedure labels and PIC, 7-9
procedure linkage table, 7-3, Glossary-7
process, 1-3
process control, 12-15
process ID, 12-16, Glossary-7

Index-10

profile-based optimization, 6-3-19,
Glossary-8

-A linker option, 6-18
ar command, 6-18
atexi t function, 6-6
basic block, 6-3, Glossary-1
-b linker option, 6-17
_clear_counters function, 6-11
code generator, specifying (-Fb), 6-5,

6-7
compatibility with 8.05, 6-19
compiler incompatibilities, 6-18
crtO.o startup file, 6-5
disk space usage, 6-16
empty flow. data file, 6-8
example, 6-15
FLOW_DATA_D1R environment variable,

6-19
FLOW_DATA environment variable,

6-13, 6-19
flow. data file, 6-8, 6-12
flow. data file incompatibility, 6-19
flow. data file, renaming (+df), 6-10,

6-12
forking an instrumented application,

6-11
-G linker option, 6-17
icrtO.o startup file, 6-5
instrumenting (+1/-1), 6-4, 6-6
I-SOM file restrictions, 6-17
limitations, 6-16
linker performance, 6-7, 6-17
lock file, 6-10
measure.o file, 6-5
-N linker option, 6-18
nm command, 6-18
optimization levels, selecting, 6-14
optimizing (+p/-p), 6-11, 6-12
overview, 6-4
profile data file, 6-8, 6-12

profile data for multiple programs,
6-9

profiling phase, 6-8
program name, changing (+pgrn), 6-13
restrictions, 6-16
-r linker option, 6-17
-s linker option, 6-17
source code changes, 6-16
strip command, 6-18
temporary files, 6-16
uccorn code generator, 6-5
when to use, 6-4

profilers (prof and gprof), 2-27
profiling, 2-11
profiling data file for PBO, 6-8, 6-12
profiling phase of PBO, 6-8
profiling shared libraries, 4-3, 5-28
prof profiler, 2-27, 4-3
program arguments, 12-2
protecting sees files, 14-37
prs command, 14-18, 14-30, 14-49
putc function, 12-5, 12-14
putchar function, 9-3
puts function, 9-5
putw function, 9-40

Q

q-files, 14-24
-q linker option, 5-31
quit signal, 12-22

R

rand function, 11-12
random file access, 12-12
random numbers, 11-12
Res, 2-27
read function, 12-7
reading and writing a file, 9-27
recovering lost sees edit file, 14-27
release number, sees, 14-3
relocatable object code, 7-2, Glossary-8

relocation, 5-2, Glossary-8
remainders, calculating, 11-1 °
reposition stream (file) I/O operations,

9-50, 9-56
restricted binding, 5-16, 5-35, Glossary-8
rewind function, 9-50, 12-12
-r linker option, 5-19, .5-20, 6-2, 6-17
-R linker option, Glossary-3
rrndel command, 14-17, 14-50

s
sact command, 14-10, 14-49
scanf function, 9-5
sees, 2-27

branches, maintaining multiple, 14-34
branch numbering, 14-35
branch retrieval, 14-35
canceling an editing session, 14-13
comments, adding to delta, 14-29
concurrent editing, 14-25
creating new releases with get -r,

14-13
deltas, including selected, 14-16
deltas, removing, 14-17
directory, creating, 14-45
excluding selected old deltas, 14-15
file access and the adrnin command,

14-32
file flags, description of, 14-30
file flags, setting, 14-30
file protection, 14-37
files, creating, 14-48
file searches with what, 14-11
files, removing, 14-7
file types, 14-20
help, 14-17
ID, 14-3
ID keyword expansion, 14-5, 14-11
ID keywords, 14-4, 14-10, 14-50, 14-51
ID keywords in header files, 14-12

Index-11

Index

Index

ID keywords in header files as
comments, 14-12

ID keywords, placement in sees files,
14-12

including selected deltas, 14-16
interface program, assigning name

links to, 14-47
interface program, specifying access

permissions for, 14-47
interface program, writing and

compiling, 14-46
interface, used to configure on sees

system, 14-44
level number, 14-3
library maintenance, 14-41
make and sees, 13-16, 14-39
merging changes back into s-files,

14-8
multi-user project, 14-43
old deltas, selectively excluding, 14-15
old versions, restoring or reverting

to, 14-14
print delta comments, 14-18
quick reference, 14-49
recovering an edit file, 14-27
release number, 14-3
removing deltas, 14-17
restoring old versions, 14-14
restoring s-files, 14-21, 14-28
reverting to old versions, 14-14
s-file, 14-3, 14-5, 14-20, 14-21,

Glossary-8
system configured by use of sees

interface, 14-44
version number, 14-3
z-file, 14-25, Glossary-10

sccsdiff command, 14-20, 14-24, 14-50
-s compiler option, 6-18
-s compiler option, 2-25, 6-18
search order for shared library symbols,

4-12

Index-12

setbuf function, 12-14
setgid command, 5-14
setjmp function, 12-24
setpgrp function, 12-22
setuid command, 5-14
setvbuf function, 9-59
s-file, 14-3, 14-5, 14-20, 14-21, 14-28,

Glossary-8
. s files, 2-25
s-files, merging changes back into, 14-8
shared executable, Glossary-8
shared library, Glossary-8

accessing explicitly loaded routines
and data, 8-10

attaching, 2-17, 5-15, Glossary-1
binding, 2-15, 2-17, 5-15, Glossary-1
compared with archive, 2-14-15
creating, 4-4
crtO. 0, 5-26
data linkage table, 7-3, Glossary-2
data segment restrictions, 5-26
debugging, 4-3, 5-28
deferred binding, 2-17, 5-15
definition of, 2-17-19
dependency, 4-10, Glossary-2
disk space usage, 2-17
<dl.h>, 8-3
dynamic library search, 4-9
dynamic loader, 2-17,5-11,5-29,7-3,

Glossary-3
dynamic loader stack usage problems,

5-25
explicit loading, 8-1, 8-4, Glossary-3
exporting symbols, 4-13, 5-18, 5-19,

Glossary-3
frtO. 0, 5-26
handle, 8-7, Glossary-8
hiding symbols, 4-13, 5-18, 5-19,

Glossary-4
immediate binding, 2-17, 5-15

importing main program symbols,
5-11, 5-20, 8-2

incomplete executable, 2-17
libdld. sl library, 8-2
linkage table, 2-15, 2-17, 7-3,

Glossary-6
load graph, 4-10
loading routines, 2-17
location, 4-9, 5-11, 5-23
management, 8-1-42
migrating to, 5-23-28
moving, 5-12, 5-23, 5-35
naming, 2-14, 2-15, 4-4
new versions, 4-7
nonfatal binding, 5-16, Glossary-6
performance, 4-13
permissions, 4-15
position-independent code, 4-2
procedure linkage table, 7-3, Glossary-7
profiling, 4-:3, 5-28
restricted binding, 5-16, Glossary-8
search list, 4-12
selecting at link time, .5-8
supporting library, 4-10, Glossary-9
text segment restrictions, 5-26
updating, 4-5, 4-9
using chroot during development,

5-27
version control, 4-6, 5-27
version date format, 4-8
version number, 5-27, Glossary-10
virtual memory usage, 2-17-19

SHARE_MAGIC, 5-30
shl_definesyrn function, 5-17, 8-22
shl_f indsyrn function, 8-10
shl_get function, 8-16
shl_gethandle function, 8-20
shl_getsyrnbols function, 8-24
SHLIB_PATH environment variable, 4-9,

5-12, 5-14, 5-35
SHLIB_ VERSION directive, 4-6

shl_load function, 5-17, 8-4
BIND_DEFERRED flag, 8-5
BIND_FIRST flag, 4-12, 5-17, 8-6
BIND_IMMEDIATE flag, 8-5
BIND_NONFATAL flag, 8-5
BIND_VERBOSE flag, 8-6

shl_ t type, 8-7
shl_unload function, 8-31
SID, 14-3
SIG_DFL flag, 12-22
SIG_IGN flag, 12-22
signal function, 12-22, 12-26
<signal.h>, 12-22
signal handler, 12-22
sigvector function, 12-25
sin function, 11-5
sinh function, 11-5
+s linker option, 4-9, 5-12, 5-14, 5-35
-s linker option, 5-35, 6-17
SoftBench, 2-28-29

Development Manager, 2-28
Encapsulator, 2-29
Framework, 2-28
Program Builder, 2-28
Program Debugger, 2-28
Program Editor, 2-28
Sta.tic Analyzer, 2-28

sorn_exec_auxhdr structure, 5-37
specifications, format conversion, 9-6
sprintf function, 12-14
square root function, 11-4
srand function, 11-12
stack usage and the dynamic loader,

5-25
standard error, 9-2-20, 12-5, 12-17,

Glossary-9
standard input, 9-2-20, 12-17, Glossary-9
standard I/O library, 2-13, 9-1-69,

Glossary-9
standard output, 9-2-20, 12-17,

Glossary-9

Index-13

Index

Index

$START$ symbol, 5-3
_start symbol, 5-3, 5-26
startup file, 5-3, 6-5, Glossary-9
stderr. See standard error
stderr file descriptor, 12-6, 12-17
stdin. See standard input
stdinfile descriptor, 12-6,12-17
stdout. See standard output
stdout file descriptor, 12-6, 12-17
strcat function, 10-3
strchr function, 10-5
strcspn function, 10-10
stream, 9-2, Glossary-9

control routines, 9-57
repositioning, 9-50, 9-56
status, 9-47

strerror function, 12-13
string I/O, 9-20
strings

breaking into tokens, 10-10
comparing, 10-5
concatenating, 10-3
copying, 10-3
file I/O, 9-35
finding characters common to two

strings, 10-10
finding characters in, 10-5
finding length of, 10-5
I/O, 9-5
read data from, 9-20
write data to, 9-20

strings command, 2-27
strip command, 2-27, 5-35
strip command and PBO, 6-18
strlen function, 10-5
strncat function, 10-3
strncmp function, 10-5
strrchr function, 10-5
strspn function, 10-10
strtok function, 10-10
stub, Glossary-9

Index-14

sub-process, exiting as a, 12-5
supporting library, 4-10, Glossary-9
SVID math library (libm), 2-13, 11-2
symbol, duplicate definitions, .5-6
symbolic debuggers, 2-27
symbol name, 2-6, Glossary-10
symbol table

archive library, 3-3, Glossary-10
object file, 2-6, Glossary-10
stripping from a. out, 5-35

symbol type, 2-7
system call, 2-12, 2-13, Glossary-10
system function, 12-14
system libraries, 2-12

location, 3-8, 4-9

T

tan function, 11-5
tanh function, 11-5
temporary files and PBO, 6-16
terminal I/O, 12-6
terminate signal, 12-22
TEXT_OFFSET macro, 5-39
text segment, Glossary-10
text segment restrictions with shared

libraries, 5-26
$TEXT$ space and performance, 4-16
time and date manipulation, 10-12
tolower function, 10-1
_tolower macro, 10-1, 10-2
toupper function, 10-1
_toupper macro, 10-1, 10-2
transformation rules, make, 13-14
triangle function, 11-8
trigonometric functions, 11-5
tsort command, 4-14

u
uccom code generator, 6-5
umask command, 5-4, Glossary-10
ungetc function, 9-34

unget command, 14-13, 14-49
unlink function, 12-11
unloading a shared library, 8-31
updating a file, 9-27
updating a shared library, 4-5
uppercase/lowercase conversion, 10-1
upper/lower bounds for numbers, 11-9
/usr/contrib/lib, 3-8
/usr/lib, 2-11, 3-8
/usr/lib/pal.l, 2-23,5-5
/usr/local/lib, 3-8

v
-v compiler/linker option, 2-4, 2-21
version control, shared library, 4-6, 5-27
version date format, shared library, 4-8
version number, sees, 14-3
version number, shared library, 4-6,

5-27, Glossary-l0
versions, concurrent edits on different

sees, 14-25
versions of a file, comparing, 14-20
virtual address dependency, 5-24
virtual memory usage and shared

libraries, 2-17-19

W

wait for child process, 12-15
wait function, 12-15, 12-17
wai tpid function, 12-17
what command, 14-4, 14-11, 14-50
-WI compiler option, 2-22
wrapper library, 5-24, Glossary-l0
write function, 12-7
write permissions and shared library

performance, 4-15

X

xdb debugger, 2-27,4-3
x-files, 14-24
-x linker option, 5-35

y

+y compiler option, 6-18
-y compiler option, 6-18

Z

z-file, 14-25, Glossary-l0
+z/+Z compiler option, 2-15, 2-19,4-2,

7-3

Index-15

Index

•

Reorder No. or
Manual Part No.
B2355-90026

rliDfj HEWLETT®
a!~ PACKARD

Copyright © 1992
Hewlett-Packard Company
Printed in USA E0892

Manufacturing
Part No.
B2355-90026

B2355-90026

