

HP-UX CIO GPIO Monolith

pClock_ct Lock count for the interface

/. Table of per-open values ./

timeout Device timeout in u-seconds

·inChandler Interrupt handler process

inchandler_pid Process id owning the interrupt handler

po_Iock_ct Lock count for an open

• link Pointer to next available per_open_entry

Below are the remainder of dermes and types declared in gpio(tspc.h:

typedef struet {
llio_std_header_type
union {

creation_info_type
do_bind_reQ-type
do_bind_reply_type
bind_req_type
bind_reply_type
cio_dma_req_type
cio_dma_reply _type
ciojo_evenctype
cio_ctrCreq_type
cio_ctrl_reply_type

} u;
} gpio(tmsg..type;

The message types gpioO understands

msg..header;

creation_info;
do_bind_req;
do_bind_reply;
bind_req;
bind_reply;
cio_dma_req;
cio_dm2-,reply;
ciojo_event;
cio_ctrtreq;
cio_ctrtreply;

Drivers breakdown or its major/minor Dumber • ror multiple open support

typedef union {
struct {

unsigned gp_major :8;
unsigned gp_diag :1;
unsigned gp_UDusedl :3;
unsigned gp_pseudo :4;
unsigned gp_lu :8;
unsigned gp_UDused2 :8;

} GP;
int all;

} gpioCtdev;

HP Confidential

/* Defines for ease of use *'
21

HP-UX CIO GPIO Monolith

/* ... related to device number (for multiple opens) */
:#define g..major
:# defme g..diag
:# defme g..unusedl
#defme g..pseudo
defme g..Ju
:#defme g..unused2

GP.gp_major
GP.gp_diag
GP .gp_unusedl
GP.gp_pseudo
GP.gp_lu
GP .gp_unused2

#derme Reg..l
#defme Reg..3
defme Reg.. 7
#defme Reg..9
:# define Reg..A
#defme Reg..B

/* ... related 10 the direct i/o pointer (from the pda) */
ciodio_ptr-> ctlsens.normal
clodio_ptr-> ctlsens.cend
ciodio_ptr-> ctlsens.cendbyte
ciodio_ptr-> statcmd.normal
clodio_ptr-> order .cend
dodio_ptr- > statcmd.cend

/* Definition of the bits in pda->Oag */
:#deflne HD\\,R_DEAD
:#defme BUSI
:# define W Al'."TED
#defme WORD_MODE
:#defme OLD_CARD
:# define CTR_EN
:#defme PEND_EN
:#detme RST_BUSI
:#define RST_WANTED
#defme Il'."TERUPT_EN

/*
C :#deflDe MAX_OPENS

:#defme END_OF _TABLE
:# deflDe REVO
:# defme REVl
#deflne LOGICAL_ZERO

22

ELEMENT_OF _32(0)
ELEMENT_OF _32(1)
ELEMENT_OF _32(2)
ELEMENT_OF _32(3)
ELEMEl\"T _OF _32(5)
ELEMENT_OF_32(6)
ELEMENT_OF _32(7)
ELEMENT_OF _32(8)
ELEMENT_OF _32(9)
ELEMENT_OF _32(10)

True if hdwr off-line, etc.
Someone's using the card
Someone wants the card
Word/byte mode flag
Can the user do 27114B features?
Easier to keep a flag than read the
Hw each time gpioO needs to know
A reset is in progress
Someone wants to do a reset
ATIN-arqs are enabled

Miscellaneous definitions */
16
-1
0x0
0x0100
0xFFFF

The maximum times the device me can be opened

The 27114A can only have a revision number equal to 0 or 1

HP Confidential

#derme D_INT_D
#derme C_INT_D
#derme LDCTR
#derme CLS
#derme CIA
#derme CL3
#derme PRN
#derme DIR
#derme EDGE
#derme CLF
#derme PEN
#define CL2
#derme CLI
#derme CLO

#define PEND_FF
#derme A TIN_FF
define CTR_FF
#derme ST5
#derme ST4
#define ST3
#define peL
#derme PFG
#define OR
#define IR
#define TES
#derme ST2
#define STI
#derme STO

#defme ATIN_EN
#derme PDIR_EN
#defme CTR_RST
#derme PEND_RST
#derme FIFOM
#derme FULLM
#derme FULLS

HP Confidential

HP-UX CIO GPIO Monolith

/* Register layouts or the 271148 • /

/*
Ox4000
0x2000
0x0800
0x0400
0x0200
OxOlOO
0x0080
0x0040
0x0020
0x0010
0x0008
0x0004
0x0002
0x0001

/*
0x2000
Oxl000
0x0800
0x0400
0x0200
OxOlOO
Ox80
Ox40
0x20
OxlO
0x08
0x04
0x02
0x01

•.. 27114 Control Register Layout */
DEND interrupt disable bit, 27114B
Hdshk_ctr=O intrpt disable bit, 27114B
Load elr bit, 27114B only
Control bit #6, 27114B only
Control bit #5, 27114B only
Control bit #4, 27114B only
Poll Response Enable
direction for data transfer
Edge determination for data movement
Clear FIFO
Enable frontplane's response to handshake
These three bits are
used to write information
to the control lines .

... 27114 Status Register Layout ./
Flip-flop indicating PEND was pulled
Flip-flop indicating A TIN was pulled
Flip-flop indicating the hndshk etr = 0
Status line #6, 27114B only
Status line #5, 27114B only
Status line #4, 27114B only
Peripheral Control
Peripheral Flag
Output Ready
Input Ready
Test Hood Present
These bits return the state of the
status lines being driven by the
peripheral.

/. • •• 27114B Control II register layout */
OxOOSO Enable ATIN to cause ARQs
0x0040 cn..s line driven by CrL5 bit or PDIR?
0x0020 Enable/disable(reset) the ctr ARQ flipflop
OxOOlO Enable/disable(reset) the DEND ARQ flipflop
0x0007 Reserved (or handshake mode definition
0x0006 Used for handshake mode definition
0x0004 Used for handshake mode dermition

23

HP-UX CIO GPIO Monolith

5. Outline Of Driver

GpioO is organized as a monolith; that is, gpioO includes both an LDM and a DAM. This
organization is very advantageous for both speed and code size. As a monolith, gpioO can be divided
into two broad areas: the LDM routines and the port server routines.

The LDM routines include all of the standard HP-UX entry points. These routines are explained in
the LDM chapter.

The port server consists of the port server itself and each of the routines it c:alls to process a
particular type of message. The port server itself is just a switch statement with a separate case for
each message type. Each message type which gpioO can receive is processed by a separate routine.
In general, these routines are invoked with a pointer to the incoming message and a pointer to the
pda.

5.1 LDl\f Routines

5.1.1 Useful Macros

A few macros are used by the LDM routines. Every routine uses the macro PDA..)J.AP which takes
a dev_t and returns the pda which corresponds to that device. It does so by examining the
gpioO_pda_map array which is built during configuration.

Two other macros, LV and GPIO_DIAG, are only used by the gpioO_open routine. LU returns the
logical unit number of the device when given tbe dev_t. GPIO_DlAG returns true if the dev_t
passed in is for a diagnostic open.

5.1.2 Direct i/O

All device 8eapters connected to the channel have 8 set of memory mapped registers called the
direct i/o space. The Driver Writer's Manual explains direct i/o in the chapter on the CAM
interface.

GpioO uses direct i/o to read status from tbe card and to initiate dma and do control requests to the
card (via ioed calls). The direct i/o pointer (aodio_plr) is grabbed via a CAM control request
during configuration. Thereafter t to examine or poke a re~ster on the AFI card, gpioO just
references the appropriate offset from ciodio_ptr. A list of registers used follows:

Register
o
1
3
7
9
A
B

o
1
7
A
B

24

R/W
Read
Read
Read
Read
Read
Read
Read

Write
Write
Write
Write
Write

StnJcture Element
dodio_ptr-> data.normal
dodio_ptr->c:tIsens.normal
dodio_ptr-> c:tIsens.cend
dodio_ptr-> c:tIsens.cendbyte
dodio_ptr-> statcmd.normal
dodio_ptr-> order .tend
dodio_ptr-> statcmd.tend

ciodio_ptr-> data.normal
dodio_ptr-> dIsens.normal
dodio_ptr-> c:tIsens.cendbyte
dodio_ptr-> order .cend
dodio_ptr. > statemd.cend

Usage
data register
CIO sense register
m register
27114 status register
CIO status register
transfer counter
transfer counter

data register
CIO control register
27114 control register
transfer counter
transfer counter and 27114 control II register

HP Confidential

HP-UX CIO GPIO Monolith

Gpio(topen is the routine by which a user process gains access to the driver. If an error is returned
from this routine, the user can Dot proceed with other requests to the driver.

Several types o(checking must be done. If the driver is Dot confIgUred (pda is NULL) or the
hardware is bad/missing (pdo->fJags contain HDWR_DEAD), then the open should fail. Also, if
the lu of the device file being opened is bogus (or one reason or another (tbe lu was not configured,
or has improper format) the open should fail. .

Beyond the error checking, the goals of the open routine are to, create a pseudo minor Dumber for
the open in progress (multiple open feature), and initialize those options that are unique to that
open (the timeout, the interrupt bandler, the pid of the interrupt bandler, and tbe per_open lock
count).

If the open is a diagnostic open, lock the interface (don't forget to increment the interface and per­
open lock counts) and drop other locks (don't forget to grab the process id). Only one diagnostic
open at a time is allowed.

5.1.4 gpioO_closeO

The routine closeO is called by the user process to relinquish access to the device. However,
gpioO_close is called by HP-UX only on the last close made to the device fIle.

The goals of the close routine are to, remove any locks that belong to this instance of open, add the
now-free per-open entry to the end of the pot table, and clear the interrupt bandler associated with
the close so that the process won't be signaled on an interrupt after it (the process) has terminated.

Note: the driver has no responsibility for the device.

These routines are used to guarantee exclusive access to the device. Before a request is started,
gpio_busy is called. After the request has fmished, gpio_free is called.

Gpio_busy is simply the exclusive access portion of physioO. It sleeps on buf until buf is available.
Once it becomes available, gpio_busy sets the B_BUSY flag. or course, all of the above is done at
sp15 since it is a aitical section.

Gpio_free simply marks buf as Dot B..BUSY and does a biodone to release the semaphore.

Note that only gpioCLioct1 must use these routines. Semaphoring, in this manner, of the read and
write requests is done for free by physioO.

These two routines are used to provide a watchdog timer for elma requests which are sent to the
CAM. Gpio(tseLtimeout is called right before the iOJendO to the CAM for the dma request.
When the dma reply is received from the CAM, the timer is released. GpioCLservice_timeout will be
called from softclock if the dma request has not fmisbed in the allotted time.

The allotted time for adma request is initially set at one hour and can be changed by the user via
the ioetl GPIO_TIMEOUT. The full timeout value is further broken down into smaller chunks
taIled GPIOTAs (2 seconds each). This is done so that a process with outstanding i/o can be killed

HP Confidential 25

HP-UX CIO GPIO Monolith

fairly quickly by the user instead of waiting for the full timeout.

GpioCLsectimeout calls the timeout routine with a time limit of GPIOTA (or whatever is left in the
full timer, if less). It sets up gpio(L.service_timeout as the routine to call if the timer pops.

Gpio(Lservice_timeout is called whenever the timer pops. If time still remains, the time limit is
decremented and timeout is called again. If no time remains in tbe full timer or if tbe user bas
killed the process, an abort message is sent to the CAM, providing tbe request is still active at the
channel level. This guarantees that the request will complete in the near future. If the request is no
longer active at the channel level (indicated by a re<J-state set to WAITING_ON_INTR), tbe driver
is waiting for data to leave the card; an abort message is not necessary as the reply message to tbe
request bas already been received. The driver needs only clean up after the dma.

These routines are used to write (or read) to (or from) the device. Tbey are identical to each other
except for the direction of data transfer.

pbysioO is called to lock down buffers and do the rest of it's voodoo. Included in this voodoo is the
call to gpioO_strategy and the sleep on buf. Finally, when the associated biodone is done after a dma
reply is received, control is passed back to gpioO_write (or gpioO_read). Note that physioO provides
a semaphoring mechanism for access to the card. No other write (or read) can go through until this
one finishes since physioO bas grabbed buf. The ioctl routine makes use of this fact and uses
gpioO_busy to sleep on buf.

These routines are intentionally structured so that all of the real work is done either in physioO or
in gpioO_strategy.

So, the goals of the \\Tite routine are to,

- Block writes (reads) from processes that do not own the lock [if one exists],

- Refuse word mode writes (reads) that are transferring an odd number of bytes"

- Block other writes (reads) if one is currently in progress,

- CalI physioO,

- Free tbe driver and wake up any processes waiting to write (read), -- Return' appropriate write (read) errors

5.1.8 gpioO_strategyO

Gpio(Lstrategy does all the real work for i/o requests. It pokes registers on the AFI card to
configure the transfer (direction of the dml, transfer counter. PEND) and sends the dma request to
the CAM. The routine consists of three basic cases.

rlrst, if this is a diagnostic request, DO register poking will be done. The diagnostic program is
required to do this itself. Gpio(Lstrategy only marks REQ_STA TE as UNKNOWN and sets up the
VQUAD command for either Ii read Of Ii write.

Second, if this request is a write, a few register pokes are done and tbe VQUAD command is set up
for a write. Note that registers must be poked in different ways depending on whether the last
request done was a write or a read, and depending on whether the transfer counter or PEND are
used. See the 27114B Hardware ERS for details on which registers to touch and how to touch
them.

HP Cnnfidf".nti::.l

HP-UX CIO GPIO Monolith

Third, if this request is a read, some other register pokes are done and the VQUAD command is set
up for a read.

Finally, the common parts of the vquad are set up (count and buffer). A watchdog timer is started
via gpio(tseCtimeout. The dma request message is sent to the CAM via io_sendO.

Note the precautions for powerfail, io_block_serverO and iO_UDblock_serverQ.

Gpio(Lioctl is the grab bag for all other types of requests to the device. There are three basic types
of requests: IO_CONTROL, IO_STA TUS, and IO_ENVIRONMENT. Most of these requests are
simple writes or reads to one or more of the CIO direct i/o registers. The exception is
GPIO_RESET which does a CIO_DA_SELFTEST control request to the CAM.

The body of gpicxLioctl() is bracketed by gpio(tbusy and gpio(Lfree to semaphore access to the
card; and access to the interface is refused if the interface is locked by another process. If the
interface is not locked or is locked by the current process the request is handled as follows,

5.1.9.1 GPIO-LOCK

IO_CONTROL Handle LOCK_INTERFACE, UNLOCK_INTERFACE and
CLEAR,..ALL_LOCKS commands. After each successful Jock or unlock
request, the number of locks for that open is returned in arg{1] and the
number of locks for that interface is returned in arg[2].

IO_STA TUS Return the process id of the locking process in arg[O] and the interface lock
count in arg[1]. If the interface is not locked, return -1 in arg[O].

5.1.9.2 GPIO_TIMEOUT

I O_CO'NTROL Handle requests to change the timeout value from the default value, one
hour. The request is made in microseconds.

When a request times out, an error of ETIMEDOUT is returned to the
user.

History: The pre-7.0 GPIO(dev) manpage stated that a timeout value of 0
was equivalent to infmity (no transaction would timeout). This is incorrect.
A timeout value of 0 is equivalent to the default, one hour. The manpage
has been changed.

Return the timeout value, specific to this open, in arg[O].

5.1.9.3 GPJO_WIDTH

I O_CONTROL Handle requests to set the data path width. The only valid arguments are 8
or 16.

HP Confidential 27

HP-UX CIO GPIO Monolith

Return the width of the data path (either 8 or 16) in Mg[O].

5.1.9.4 GPIO-SIGNAL..MASK

10_CONTROL Save the process id and the process interrupt handler. Also, enable the
27114B to assert ARQ when ATTN is asserted by the device. If signals are
not wante~ the interrupt handler is nulled and the card is disabled from
asserting ARQ.

10_STATUS Return the cause of the interrupt, recorded in int_mask, in arg[O). For
27114 users, the only reason for an interrupt can be because ATTN was
asserted by the device. See gpio(Levent_from_camO.

IO_COl\TTROL This request allows the user to configure the 27114B as best suits the
device. The user creates a mask by OR'ing the following flags (dermed in
gpio.h) as desired,

PFLG_EDGE_LOGIC • When asserted, data will move on the busy-to­
ready (or "falling") edge of the handshake signal PFLG. Otherwise data
will move on the ready-to-busy (or "rising') edge of PFLG.

PDIR_OPT_EN· If asserted, the control lines CfL5 and CTU \\11) be
driven with output from the PDIR bit and the HEND bit (both in register
7). If the flag is not asserted, CTL5 and CfL4 will be driver with whatever
the user· writes to the control lines. See section tn' for more details.

PEND_OPT_EN • If asserted, the device can pull the PEND line of the
front plane which will result in the immediate termination of a data
transfer. See section "" for more details.

TRNSFR-CTR_EN • If asserted, the driver will enable the transfer counter
that exists on the 27114B. See section "" for more details.

Handshake mode .• The choice of handshake is device dependent. There
are three choices, FULL_MASTER, FULL_SLA VE, or FIFO_MASTER.
If neither of the three flags is asserted, FIFO_MASTER is used.

5.1.9.6 GPIO_CTL.LINES

10_CONTROL Handles requests to change the control lines. Since the 27114A has only 3
control lines the maximum value of those lines is less than the maximum
value for the 27114B, which has 6 control lines.

28 HP Confidential

HP-UX CIO GPIO Monolith

5.1.9.7 GPIO.fiESET

IO_CO~"TROL Wait if another reset is in progress. Otherwise, build and send a
CIO_CfRL_REQ_MSG to the CAM. Then wait for the
CIO_CfRL_REPL Y _MSG. Once the reply comes, wake any waiting reset
requests

Since the hardware has just been reset, any software options associated to
hardware should also be reset (e.g. shadow registers). For historical
reasons, purely software options remain unchanged (e.g. timeout).

IO_STATUS Return the value of the status lines in arg[O].

IO_STATUS Return a configuration mask, of several hardware options, in arg[O]:
EDGE_LOGIC_SENSE, PDIR_OPT_EN, PEl'."D_OPT_EN,
TRNSFR_CTR_EN and the handshake mode. The mask definitions are
the same as in IO_CO~"TROL GPIO_SET _CO~1f1G.

5.1.9.10 GPIOJNTERFACE_1YPE

IO_ST ATUS Return the value of the id register in arg[O].

5.1.9.11 GPIO.fiEG7

10_STATUS Return the value of the API-status register in arg[O).

5.1.9.12 IO..ENVIRONMENT

This command is a way to perform multiple 10_STATUS commands via one request. When an
IO_ENVIRONMENT call is made the following information is returned in the env structure: the
status lines, the interface id for the card, the signal mask, the width of the data path, the locking pid,
the timeout value and the conflgUIation mask for the card.

There are other values returned, termftllSOn, Tead..pQttem, speed, and delay, which have no meaning
for the 27114B. The values are there for histerical reasons.

HP Confidential 29

HP-UX CIO GPIO Monolith

Hardly used. Should be cleaned up; even tossed.

Used to time a transaction that is waiting for a lock to clear before it can access the interface. If the
interface is not locked, immediately return zero. U the interface is locked and O_NDELA Y was set
at the time of open, immediately return EACCES. Otherwise, start timing the transaction is
interrupted by the user (return EINTR).

30 HP Confidential

HP·UX CIO GPIO Monolith

5.2 Port Server

The port server, gpioOO, is the routine to which all messages are delivered. Messages delivered fall
into three broad classes:

• Configuration messages from either the conflgurator or the CAM

• Dma replies and control replies from the CAM

• Powerfail and other event notifications from the CAM.

The port server is simply a switch statement with a separate case for every type of message which
gpioO will receive. Each case is a procedure call to the appropriate message handler. Some of the
cases also set retumJrame to FALSE if the incoming message will be reused by the message handler.
Unsupported message types are simply dropped.

The three configuration message handlers - afLdo_bind_msgO, afi_bind_reply_msgO,
afi-8ecptr_replyQ and gpioO_attachO - are explained in the ~nfiguration section. The powerfail
recovery process - afi_power_on_req_msgO and afi_pf...geCptr_rep)yO - are explained in the
powerfail recovery section. The other message handlers - gpioO_reply_from_cam,
gpioCLevent_from_caIn and afi_ctrCreply_msg - are explained in the following section.

A dma reply message, CIO_DMA_REPL Y _MSG, is sent by the CAM to gpioO when a dma request
which gpioO initiated earlier has completed. The processing of the reply depends upon the
configuration of the 27114B and whether the transaction was a read or a write.

The basic processing for write transactions (that do not use the counter) and for all read transactions
is simple. First the untimeout routine is called to release the watchdog timer for this request.
Second, the buf structure associated with this request is filled in. The b_en'or field is set to the status
of the dma reply. If there was an error, pda->buf.bJlags has the B~RROR bit set. Finally,
biodone() is caUed to awake the sleeping physioO and return to the user process.

Some specific handling must be done if PEND was asserted of if the read used the transfer counter.
For instance,

• If PEND was pulled, the PEND flipflop must be cleared so the next assertion of PEND will
register. Also, if PEND was pulled on the write transaction, the FIFO should be cleared.

• If the counter was used for a read, clear the counter.

The onlY.other dma transaction to be discussed is the case where the counter is enabled during a
write tra.nraction. This is a special case from the other transactions because the channel may declare
the transaction complete before it actually is (see the section on write blocking). Because of this
gpioO can only declare the transaction finished if all the data is off of the card, if PEND was pulled
or if the dma reply message was received with bad status.

If PEND was not pulled but data still exists on the card. gpioO must wait for some indication that the
transfer is indeed complete. To do this, the card" is enabled to assert ARQ (when PEND is asserted
of the transfer counter reaches logical zero) and the state of the driver is set to
WAJTING_ON_INTR. This way gpioO need Dot poll the card Dar busy-wait for activity. So if ARQ
is asserted before the timer pops, gpioO receives an event message and can resume completing the
transaction there. Otherwise, the state WAlTJNG_ONJNTR wiD incticate that the transaction
should be terminated immediately with an error (that is, an abort message is not necessary here
since the dma reply has already beeD received).

Note that DO error recovery is done by this routine. If an error is returned in the dma reply
message, it is simply passed up to the user (via the buf structure). The user is responsible for

HP Confidential 31

HP-UX CIO GPIO Monolith

retrying the request, if need be.

This routines handles CIO_IO_EVENT messages sent by the CAM to gpioO. The only type of event
which gpioO will ever receive is an AES ARQ (this is the only type the AFI card can produce). The
27114B asserts ARQ for 3 reasons,

• The device asserted ATTN on the frontplane,

• The device asserted PEND on the frontplane,

• The transfer counter reached logical zero.

If the ARO is due to the device asserting ATTN on the frontplane, the driver notifies all interrested
processes of the event via a psignal call; providing interrupt handlers have previously been set up for
this driver. A search through the per-open table (pot) reveals alI interrested processes. If no
process is interrested in receiving a signal, the event is dropped. Note that when an ARO occurs,
the CAM disables the device adapter from ARQing (for historical reasons). Hence the ARO must
be re-enabled by the user process after an event occurs. This is accomplished via the ioctl
GPIO_SI GNAL_MASK.

If the ARQ is due to PEND asserting on the frontplane or due to the transfer counter reaching
logical zero, a DMA transaction just completed. In such case afi_arq_fmishO is called to clean up
after the DMA (stop the watchdog timer, disable PEND and the transfer counter from causing
AROs, figure the dma residue based on the counter, clear the PEND flipflop, the counter and the
FIFO) and returns to the user. Note that when an ARQ occurs, the CAM disables the de\ice
adapter from AROing (for historical reasons). So if the user previously enabled the card for A TIN
AROs, gpioO should re-enable the card to ARO. Likewise if the card pulled ARQ because of A TIN
yet the driver is waiting on either a PEND or word counter ARQ to terminate a dma transaction, it
behooves gpioO to re-enable the card to ARO.

The driver deciphers the reason for the ARQ by reading register 7 where there are 3 bits reflecting
the state of the A TIN flipflop, PEND flipflop and the transfer flipflop. The 3 bits may indicate that
more than one flipflop is set.

Handles CIO_crRL_REPL Y -MSGs that were caused by CIO_crRL_REQ_MSGs intending to self
test (reset) the 27114B. The driver must match any shadow registers to the now default hardware
configuration.

5.2.4 arLar'l-rmish{)

Handles the clean up of DMA transactions that ended via an ARQ on the backplane. This can only
happen when the driver enables the card to assert ARQ when PEND is asserted by the device or
when the transfer counter reaches Jogical zero.

The driver must figure the residue from the counter, if appropriate, clear the counter, clear the
PEND flipflop, and clear the FIFO.

32 HP Confidential

HP-UX CIO GPIO Monolith

5.3 Configuration

Configuration follows tbe standard sequence as defined by the HPIOSD. The sequence is a seven
part process,

• gpioO receives a creation message from the Configurator and returns it

• gpioO receives a do_bind request from the ComlgUrator

• gpioO sends a bind request to the CAM

• gpioO receives a bind reply from the CAM

• gpioO sends a do_bind reply to the ComIgW'ator

• gpioO sends a control request tot he CAM to get the direct i/o pointer

• gpioO receives a control request, with the direct i/o pointer t from the CAM

The creation message is sent to gpioO by tbe Configurator as the frrst step in the process. This
message is used to communicate resource needs and usage options to the system as a whole. GpioO
fills tbe message in the standard way and returns.

The do_bind request message tells gpioO to bind with a particular lower manager (in this case t the
CAM). GpioO must do four tasks as a result of a do_bind request. First, save its port number,
device adapter number f and CAM port number from the do_bind message. Second, set up tbe
gpioO_pda_map entry for this instance of gpioO. Third, initialize everything in the pda that needs to
be set up. Fourth, send a bind request message to tbe CAM.

The bind request message to the CAM is used to establisb a connection between gpioO and the
CAM. GpioO tells tbe CAM what device adapter it will control and what subqueue the CAM should
send event messages to.

The CAM sends a bind reply message to gpioO as a result of the bind request message. GpioO saves
away the subqueue number which the CAM wants it to use for requests. Then gpioO sends a
do_bind reply to the Configurator. If the bind reply message has status CIO_LVLl_CARD, the bind
was successful and the AFI card is in the correct slot. Successful binds are followed by the sending
of a control request to the CAM for grabbing the direct i/o pointer.

If the bind was unsuccessful (no card was in tbe slot or the card in the slot was not the AFI card),
the control request to get the direct i/o pointer is not done. This instance of the driver \\ill be
unusable. Note that an attempt is made to get the direct i/o pointer again on a powerfail. This
implies that an AFI card can be added to the system on the fly ~uring a power failure.

If the bind was successful, eventllally a control reply is received from the CAM. If the status of tbe
control reply is LLtO_NORMAL, the direct i/o pointer is saved in the pda and the HDWR_DEAD
bit of pdiz->f/ags is turned off. This instance of gpioO can now be used.

Handles the DO_BIND_REQMSG received from the ConflgUrator. First, gpioO saves the
information about its lower manger. Then gpioO initializes its pda values. Finally, gpioO builds and
sends a BIND_REQMSG to the CAM.

Handles BIND_REPLY_MSG from the CAM. Once this message is received witb good status,
binding between tbe CAM and the GPIO monolith is complete. GpioO then builds and sends a
cio_ctrLreq message to the CAM. This is to request its direct i/o pointer. Because there are

HP Confidential 33

HP·UX CIO GPIO Monolith

multiple functions for a cio_ctrCreq message, change the state to indicate how the cio_ctrCreply
message should be handled.

Should the BIND_REPLY _MSG be received from the CAM with bad status, binding has failed. A
do_bind_reply message is built and sent to the Configurator and confJ.guration is complete. Set the
state to indicate this instance of gpioO can Dot be used if opened.

Handles the CIO_CTRL_REPL Y _MSG that was caused by the CIO_CfRL_REQ_MSG sent during
configuration. If the cio_ctrCreply message is received with good status AND the message indicates
the device adapter in the slot is a level 1 type card, the message contains a valid direct i/o pointer
for gpioO. Save the pointer, use tbe pointer to enable the card to function, complete configuration by
sending a do_bind_reply message to the Configurator and dec:1are the driver usable by clearing the
HD\VR_DEAD bit from the pdaflags.

This routines finds a mapping between the device adapters lu number and a pda. A routine from
the old days, it should be replaced by a call to po7tJo_index().

34 HP Confidential

HP-UX CIO GPIO Monolith

5.4 Powerfail Processing

The driver must do special processing whenever powerfail occurs. The driver is notified of a
power fail by the receipt of a POWER_ON_REQ_MSG from the CAM. The CAM sends the power­
on request message to gpioO after power is restored.

No special processing of outstanding. requests to the CAM is needed. The CAM guarantees closure
on all requests that are sent to it. If a request was active at the time of the power failure, a dma
reply (with powerfail aborted status) will eventually be sent to gpioO. This rely can be handled in the
Dormal course of handling dma replies. An error will be returned to the user process.

Note that gpioO does not do any real recovery from a powerfail. For the most part, the user process
is responsible for setting up the card again (if it needs something other than power-on state). In
addition, the user process must set up the device attached to the AFI card.

GpioO must send a POWER_ON_REPLY_MSG to the CAM as soon as the power-on request
message is received. In addition, gpioO attempts to re-establish a valid direct i/o pointer via a CIO
control request message to the CAM. This is also important if the system was initially brought up
with either no card in the AFI slot or the wrong card in the slot. It is, therefore, possible to add the
AFI card to the system during powerfail and have it work.

Once the control reply is received with good status and the status indicates the card is a 27114B, the
direct i/o pointer is considered valid. The card is then reset and enabled.

The reset is an important part of the handling of emulated Fatal Error mode:

HPPB drivers own a page of i/o space and are responsible for checking to see when their page is in
FE mode; eventually clearing the FE bit.

However, CIO drivers do not own an entire page of I/O space. Each page is shared by multiple
drivers. Therefore CIO drivers, not knowing the progress of other drivers, can not clear the page FE
bit; the CAM does.

This brings us to the interesting AFI case of why an explicit reset (one done by touching i/o space
rather than by sending a control request to the CAM) is necessary in AFI powerfail.

Suppose gpioO is in the middle of a transaction at the time pow~r fails. Once power is restored, the
transaction resumes where it left off;gpioO's power on request message will be queued. If the'CAM
has already taken the page which the AFI belongs to out of FE mode, the transaction can now touch
the i/o space; the page that gpioO's address space belongs in will no longer be marked FE mode.
Since we rely on the card being in default configuration after a power failure, it should be reset to
guarantee that default state.

After resetting the card, gpioO must restore the states of software values relating to hardware
confpation.

HP Confidential 35

HP-UX CIO GPIO Monolith

6. Testing
GpioO should be tested in (our different ways:

• Instruction Coverage Analysis (ICA)

• ConflgUration Testing

• Stress Testing

• Powerfail Testing

lCA is done to verify that all the code actually gets executed at least once. This approach has
defInite limitations. For instance, ICA may indicate the code was hit, but you will not know that it
was hit while the driver/card was in different states. The goal is 100% measured coverage.

Configuration testing means building several systems with different properties. For example,

• Build a system with DO gpioO configured. Make sure that it boots normally.

• Build a system with several gpioO's. Make sure that they are all usable.

• Build a system with gpioO's on a second channel. Make sure they are usable.

• Build a system with one gpioO. Try booting without a card in the slot, with different cards in the
slot and with an AFI card in the slot.

Stress testing involves lots of activity simultaneously on one or more cards. For example, try lots of
i/o to one card with two different processes.

Powerfail testing can be done by power cycling the processor while the card is idle, busy with
different requests, and not present. Make sure multiple powerfails work.

A test suite does exist for gpioO. All tests in the suite should pass after any change is made. New
tests should be added as features are added or changed. Currently the suite is in
Wayback:/mnt/azure/suzyz/tests/scaffold.

36 HP Confidential

HP-UX CIO GPIO Monolith

Appendix I: Diagnostic loctls

Certain ioctl calls are only allowed if gpioO has been opened in diagnostic mode. If a non-diagnostic
attempts to invoke any of these calls, EINV AL is returned. These calls involve direct register reads
and Mites. Therefore, the diagnostic program has complete control of the afi card. It is the
diagnostic program's responsibility to put the AFl card back into a good state before it exits. This
can be done by resetting the AFJ card.

10_CONTROL requests Mite to the specified register with the value passed in arg[O]. 10_STATUS
requests read the specified register in arg[O].

Type

la_CONTROL
IO_CO~'TROL
10_CONTROL
10_CONTROL
10_CONTROL
10_CONTROL

10_STATUS
10_STATUS
10_STATUS
10_STATUS
10_STATUS
10_STATUS
10_STATUS
10_STATUS
10_STATUS

HP Confidential

Command

GPIO_REGO
GPIO_REGl
GPIO_REG7
GPIO_CLEAR
GPIO_REGA
GPIO_REGB

GPIO_REGO
GPIO_REGl
GPIO_REG3
GPIO_REG7
GPIO_REG9
GPIO_REGA
GPIO_REGB
GPIO_POLL
GPIO_PORTNUM

Description

write register 0 data register
Mite register 1 •• CIO control register
Mite register 7 _. 27114 control I register
clear data path ... clear flfo, re-enable ftfo
Mite register A .- transfer ctr
Mite register B ... transfer ctr /27114 control 11

read register 0 -- data register
read register 1 .. - CIO sense register
read register 3 ... ID register
read register 7 ... 27114 status register
read register 9 .- CIO status register
read register A .- low and mid bytes of counter
read register B -- high byte of counter
return whether the card is ready for bus requests
return the port number for this interface

37

HP-UX CIO GPIO Monolith

Appendix II: Message Formats , ...
••• All of the messages and constants explained here
... are located in one of the two following fales,
•••
•••
•••
•••

sio/llio.h
sio/iocam.h

•••
•••
•••

These flles are the rmal authority for message
layout and constants .

/** Standard header for all messages" /

typedef struct {
shortint
shortint
int
porCnum_type

} llio_std_header_type;

msg...descriptor;
message_id;
transaction_num;
from_port;

/** Message descriptors used by gpioO ** /

#deflne CREATION_MSG 2
#deflne DO_BIl'.1J)_REQ_MSG 3
#defme DO_BIND_REPLY_MSG 4
#denne BIND_REQ_MSG 5
#defme BIND_REPLY _MSG 6

#define CIO_DMA_IO_REQ_MSG 100
#derme CIO_DMA_IO..REPLY_MSG 101

""!"

"derme CIO_crRL_REQ_MSG 102
#derme CIO_CTRL_REPLY_MSG 103

"derme CIO_IO_EVENT_MSG 104

"derme POWER_ON..REQ_MSG 17
#derme POWER_ON_REPLY~SG 18

#derme TIMER_EVENT_MSG 19

38

•••
•••
•••
•••
• ••
•••
• ••
•••
• •• . .. ,

- HP Confidential

HP-UX CIO GPIO Monolith

/U Configuration messages •• /

typedef struct {
creation_options
int
int
int
bitS
porCnum_type

} creation_info_type;

typedef struct {
io_subQ-type
porcnum_type
int
int
int
porCnum_type
int

} do_bind_Teq_type;

typedef struct {
I llio_status_type

} do_bind_TepJy_type;

typedef struct {
io_subq_type
io_subq..type
sbortim
sbortint
int
int
int
int

} bind_reQ-type;

typedef struct {
llio_status_type
int
shortint
io_suhQ-type
io_suhQ-type
unsigned char
unsigned char

} bind_reply_type;

HP Confidential

create_options;
server_dat~len;
max..msg..,size;
num_msgs;
num_subqueues;
port_num;

reply_subq;
mgr_port_num;
config..,addr_3;
config..,addr_2;
config..,addr_l;
Im_port_num;
load_info;

reply_status;

reply_subq;
hm_evencsubq;
hm_sUbsys_Dum;
hm_meta_lang;
hm_rev_code;
hm_config...addr_3;
hm_config...addr_2;
hm_config...addr_1;

reply_status;
Im_rev_code;
Im_queue_depth;
Im_Iow_reQ-,subq;
ImJ1CreQ-subq;
Im_freeze_data: 1;
Im..aJignment:1;

39

HP·UX CIO GPIO Monolith

In DMA request and reply messages ··1

typedef struct {
io_subq..type
bitS
cio_ vquad_ptr

} cio_dma..reQ-type;

typedef struct {
llio_status_type
cio_ vquad_ptr

} cio_dma_reply_type;

reply_subq;
da..number;
vquad_chain;

llioJtatus;
vquad_chain;

In Quads and DMA commands ··1

typedef struct cio_vquad_type {
cio_cmd_type
int
int
struct cio_vquad_type
data_ptr _type
addr_class_type

} cio_vquad_type;

typedef union {
int
struct {

bitS
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

I·· CIO orders •• /

command;
count;
residue;
·link;
buffer;
addr_class;

order;
suppression:2;
logch_break:1;
bJocked:1;
reserved: 17;
read_ write:1;
conUnue_dma:1;
exact: 1;

#defme CIO_RD_WORD_ORDER 0x60
#defme ClO_WD_WORD_ORDER Ox70

40 HP Confidential

/U 10 Event Message •• /

typedef struct {
int
union {

} u;

int
bitS

} cio_io_event_type;

#defme CIO..ARQ_STATUS

HP-UX CIO GPIO Monolith

event;

inCinfo[(3) + 1);
byte_info[(15) + 1);

1

/ •• CIO control request and reply messages •• /

typedef struct{
io_subq_type
bitS
bit8
int

} cio_ctrLreq_type;

typedef struct {
llio_status_type
int
int

} cio_ctrLreply_t")'Pe;

#defme CIO_DA_SELFTEST
#defme CIO_GET_DIRECT_IO_PTR

typedef struct cio_quadrant {
volatile int
volatile int
volatile int
volatile int
volatile int
volatile int
volatile int
volatile int

};

typedeC strud ciodio {
strud cio_quadrant
strud cio_quadrant
struet cio_quadrant
strud cio_quadrant

} ciodio;

HP Confidential

2
10

reply_subq;
da_number;
ctrLfunc;
ctrLparm;

Ilio_status;
ctrLinfo;
extra_info;

rsvdl[3];
normal;
rsvd2[3];
cend;
rsvd3(3);
chyte;
rsvd4(3);
cendbyte;

data;
dlseus;
order;
statcmd;

41

