
HEWLETT- PACKARD 

D 

Using HP BASIC 
for Instrument Control 

A Self-Study Course 



Notice The information contained in this document is subject to 
change without notice. 

Hewlett-Packard makes no warranty of any kind with 
regard to this material, including, but not limited to, the 
implied warranties of merchantability and fitness for a 
particular purpose. Hewlett-Packard shall not be liable for 
errors contained herein or for incidental or consequential 
damages in connection with the furnishing, performance, or 
use of this material. 

Hewlett-Packard assumes no responsibility for the use or 
reliability of its software on equipment that is not furnished 
by Hewlett-Packard. 

©1988 by Hewlett-Packard Co. 

This document contains proprietary information which is 
protected by copyright. All rights are reserved. No part of 
this document may be photocopied, reproduced, or 
translated to another language without the prior written 
consent of Hewlett-Packard Company. 

Restricted Rights Legend. Use, duplication, or disclosure 
by the U.S. Government is subject to restrictions as set forth 
in subdivision (b)(3)(ii) of the Rights in Technical Data and 
Computer Software clause at 52.227-7013. 

Corvallis Workstation Operation 
1000 N .E. Circle Blvd. 
Corvallis, OR 97330, U.S.A. 



Using HP BASIC for 
Instrument Control 

A Self-Study Course (Volume 1) 

Fli;W HEWLETT 
a:~ PACKARD 

Edition 1 October 1988 

82302-90001 



Printing 
History 

Edition 1 October 1988 Mfg. No. 82302-90001 



Contents 

Introduction 

About This Course . . . . . . . . . . . . . . . . . . . . . . .. 1 
What You'll Need . . . . . . . . . . . . . . . . . . . . . .. 2 
Where to Begin the Course ................. 3 

Before You Begin ........................ 4 
Use BASIC Keyboard Overlays! .............. 4 
Load Those Binaries! . . . . . . . . . . . . . . . . . . . .. 4 
Learning About Your Computer . . . . . . . . . . . . .. 5 

Calling All PC Users... ..................... 7 

Part 1: Basic ·BASIC Programming 

Lesson 1 The Display and Keyboard 

Using the Keyboard ...................... 1-2 
The [ENTER] Key ..................... 1-2 
[SHIFT] and [CAPS LOCK] ............... 1-4 
Number Keypad ....................... 1-4 
[CTRL] ................ 0 •••••••••••• 1-5 
[Alt] .............................. 1-5 
Softkeys . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-5 

The Display ........................... 1-8 
Output Area ......................... 1-8 
Display Line ......................... 1-10 
Keyboard Area ....................... 1-10 
Message and Results Line ................. 1-11 
Softkey Labels ........................ 1-11 

Contents-1 



Erasing What You Don't Want ............... 1-12 
CLEAR LINE . . . . . . . . . . . . . . . . . . . . . . . . 1-13 
CLEAR SCREEN ..................... 1-13 
KEY LABELS ON/OFF ................. 1-14 

Math Functions ......................... 1-14 
Keeping a Trail of Your Work .............. 1-14 
Addition ........................... 1-15 
Subtraction ......................... 1-15 
Multiplication ........................ 1-16 
Division ............................ 1-16 
Raising a Number to a Power .............. 1-17 
Exponents and Powers of 10 ............... 1-17 
Other Math Functions ................... 1-18 
What About Longer Expressions? ............ 1-21 

Fun Functions ......................... 1-23 
Review Quiz .......................... 1-25 

Lesson 2 Your First Program 

Solving a Problem in Calculator Mode ........... 2-2 
Writing a Program . . . . . . . . . . . . . . . . . . . . . . . . 2-3 

What Is a Program? ..................... 2-3 
Edit Mode ........................... 2-3 
Line Numbers ......................... 2-4 

Running a Program ....................... 2-7 
RUN .............................. 2-7 
If the Program Doesn't Work ............... 2-9 

Parts of the Program ...................... 2-9 
Statements and Functions vs. Commands ....... 2-10 
Using the [STEP] Key ................... 2-11 
INPUT ............................ 2-11 
Variables ........................... 2-11 
LET .............................. 2-12 
The DISP Statement .................... 2-13 
The All-Important END ................. 2-14 

2-Contents 



Editing Your Program . . . . . . . . . . . . . . . . . . . . . 2-15 
Editing a Line ........................ 2-15 
Entering New Lines . . . . . . . . . . . . . . . . . . . . . 2-17 
Moving Program Lines . . . . . . . . . . . . . . . . . . . 2-18 
Renumbering Lines . . . . . . . . . . . . . . . . . . . . . 2-19 
Run the Edited Program .................. 2-20 
Clearing the Screen ..................... 2-21 
Waiting, Waiting ...................... 2-21 
A Friendlier Display .................... 2-22 

Review Quiz ........................... 2-23 

Lesson 3 Saving Your Program 

Write a New Program ..................... 3-2 
Run the Program ........................ 3-3 

[PAUSE] and [CONTINUE] ............... 3-3 
The Run Light . . . . . . . . . . . . . . . . . . . . . . .. 3-4 
REMarks ........................... 3-5 
Telling Output Where to Go ............... 3-6 
The FOR-NEX'[ Loop . . . . . . . . . . . . . . . . . .. 3-8 
PRINT vs. DISP ................... " .... 3-9 
Comma vs. Semicolon ................... 3-10 
Getting Out of Edit Mode . . . . . . . . . . . . . . . . . 3-10 

Listing Your Program ..................... 3-10 
Partial Listing ........................ 3-11 
What About LIST BIN? .................. 3-11 

Making Your Program Permanent ............. 3-14 
Specifying Mass Storage Is .................. 3-15 
Initialize a Disk . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 

Format and Interleave Factor ............... 3-19 
About Disks ......................... 3-19 

Storing and Loading ...................... 3-22 
Re-Storing the Program .................. 3-23 
What About File Names? ................. 3-23 
Scratching a Program from Memory ........... 3-23 
Loading the Program ................... " : 3-24 

Saving and Getting a Program ................ 3-25 

Contents-3 



Seeing a Catalog ........................ 3-26 
Directing Output ...................... 3-27 
Purging a Program from Mass Storage ......... 3-27 

Review Quiz .......................... 3-27 

Lesson 4 Handling Numbers 

Pre-Run and Run ........................ 4-2 
Variables ............................. 4-2 

Variable Names-How Long? ............... 4-3 
Types of Variables ...................... 4-3 
Declaring Variable Types . . . . . . . . . . . . . . . . . . 4-4 

Assigning Numbers to Variables in a Program ....... 4-6 
The Dynamic Duo of DATA and READ ........ 4-6 
The Data Stream ....................... 4-7 
The Data Pointer . . . . . .................. 4-9 
Restoring the Data Pointer ................. 4-9 

Assigning Numbers from the Keyboard .......... 4-10 
Declaring a Variable . . . . . . . . . . . . . . . . . . . . 4-13 
Rounding a Number .................... 4-14 
Be Careful With INTEGER ............... 4-15 

Review Quiz .......................... 4-15 

Lesson 5 Handling Words in Strings 

What Is a String? . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 
String Variables . . . . . . . . . . . . . . . . . . . . .... 5-2 
The String and the Variable ................ 5-3 

Assigning Strings to Variables . . . . . . . . . . . . . . ... 5-4 
Reserving Memory . . . . . . . . . . . . . . . . . . .... 5-5 
INPUT and LINPUT .................... 5-8 

4-Contents 



Fun With Strings ........................ 5-9 
The "Null String" ...................... 5-9 
Replacing a String ..................... 5-10 
Putting Words Together ... . . . . . . . . . . . . . . . 5-10 
Reversing a String . . . . . . . . . . . . . . . . . . . . . . 5-11 
Using Parts of Strings ................... 5-12 
Replacing Part of a String . . . . . . . . . . . . . . . . . 5-15 
Finding the Length of a String .............. 5-16 
Finding Position Within a String . . . . . . . . . . . . . 5-16 

Strings, Semicolons, and Spacing .............. 5-17 
Conversions ........................... 5-19 

Converting Strings to Numbers .............. 5-19 
Characters to Numbers ................... 5-20 
Numbers to Characters ................... 5-21 
Inserting Quotation Marks ................ 5-21 
Lowercase and Uppercase Conversions ........ 5-22 

Useful String Functions .................... 5-23 
Review Quiz ........................... 5-25 

Lesson 6 Decisions, Decisions 
The GOTO Statement ..................... 6-1 

Changed Line Numbers .................. 6-3 
Line Labels .......................... 6-3 
Forget GOTO! ........................ 6-4 

Subroutines ........................... 6-4 
Subprograms .......................... 6-7 

Subprogram Components ................. 6-8 
Why Use Subprograms? .................. 6-9 

Making Decisions . . . . . . . . . . . . . . . . . . . . . . . . 6-10 
IF-THEN ........................... 6-10 
Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 6-11 
Be Careful With Comparisons .............. 6-12 
IF-THEN with AND-OR ................. 6-13 
IF-THEN with END IF .................. 6-15 
IF-THEN with END IF and ELSE . . . . . . . . . . . . 6-15 
SELECT -CASE ....................... 6-27 

Review Quiz ........................... 6-29 

Contents-5 



6-Contents 

Lesson 7 Repetition, Repetition 

The FOR-NEXT Loop ..................... 7-1 
Specifying a STEP ...................... 7-2 
Negative Step ......................... 7-3 

REPEAT and UNTIL . . . . . . . . . . . . . . . . . . . . .. 7-4 
Indenting to Taste ........................ 7-7 
WHILE-END . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-8 
LOOP-END ............................ 7-9 
Live Keyboard ......................... 7-11 
Functions ............................ 7-13 

Local Variables ....................... 7-15 
Functions vs. Subprograms ................ 7-16 

Review Quiz .......................... 7-16 
Laboratory Exercise ...................... 7-17 

Lesson 8 The Marvelous Array 

What Is an Array? . . . . . . . . . . . . . . . . . . . . . ... 8-2 
Subscripted Variables ...................... 8-3 
Putting Data into an Array ................... 8-4 

Setting the Base Element .................. 8-4 
Dimensioning the Array . . . . . .............. 8-5 

Putting Data into the Array .................. 8-9 
U sing a Loop ......................... 8-9 
Using the Asterisk ..................... 8-11 
Using Elements of an Array ............... 8-11 

Strings in Arrays ........................ 8-12 
Special Array Functions ................... 8-18 

Finding the Dimensions . . . . . . . . . . . . . . . . . . 8-18 
Finding Out the Option Base . . . . . . . . . . . . . . . 8-19 
Finding Out the Data ................... 8-20 
Summing the Array ..................... 8-21 

Structured Programming ................... 8-23 
Review Quiz .......................... 8-24 



Lesson 9 Printing to Please 

Formatting the Easy Way . . . . . . . . . . . . . . . . . .. 9-1 
More Sophisticated Formatting ............... 9-4 

Using PRiNT USiNG ................... 9-5 
Printing Numbers ...................... 9-6 
Multiple Images in One Statement . . . . . . . . . . .. 9-9 
Printing Strings ..................... .. 9-11 

Other Uses for PRINT USING ............... 9-13 
Using an Image ......................... 9-15 
Review Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17 
Laboratory Exercise ...................... 9-20 

Lesson 10 Using Mass Storage 

A Data Storage Example ................... 10-2 
Reviewing Program Storage ........... ...... 10-3 

Specifying Mass Storage ............... " .. 10-3 
Initializing a Disk ....................... 10-3 
Storing a Program . . . . . . . . . . . . . . . . . . . . . . 10-4 

Adding a Label ......................... 10-4 
Programs vs. Data ....................... 10-5 
Create a Data File ....................... 10-5 

All About Files ....................... 10-6 
What Kind of File to Use? . . . . . . . . . . . . . . . . . 10-7 
How Large a File? ..................... 10-8 
The CREATE Statement ................ 10-10 

Open a Path to the File ................... 10-13 
Output Data Along the Path ................ 10-14 

Serial Access ........................ 10-14 
Random Access ...................... 10-14 

Close the Path to the File . . . . . . . . . . . . . . . . . . 10-15 
Entering Data from Disk .................. 10-16 
A Random Example ..................... 10-20 
Review Quiz .......................... 10-23 
Laboratory Exercise ..................... 10-24 

Contents-7 



Part 2: Instrument Control with HP-IB 

Lesson 11 Introduction to HP-IB 
What Is an Interface? ..................... 11-3 

Interfaces in Your Computer ............... 11-3 
Compatibility: Four Vital Areas ............. 11-5 

The HP-IB ........................... 11-5 
Computer Bits and Bytes ................. 11-5 
HP-IB Features ....................... 11-7 
What's the Difference? .................. 11-7 

On the Bus ........................... 11-8 
Roles on HP-IB ....................... 11-9 
What a Device Can Do ................. 11-10 

The Bus Lines ........................ 11-12 
Data Lines . . . . . . . . . . . . . . . . . . . . . . . .. 11-12 
Handshake Lines ..................... 11-13 
Bus Management ..................... 11-14 

Review Quiz ......................... 11-16 

Lesson 12 Installing HP-IB Hardware 
Identifying HP-IB Devices .................. 12-1 

Pins on the Connector . . . . . . . . . . . . . . . . . . . 12-2 
Inside the "HP-IB-Capable" Device ........... 12-3 

Determining What an Instrument Can Do ........ 12-3 
Setting Addresses ....................... 12-8 

Interface Select Code ................... 12-9 
Device Address . . . . . . . . . . . . . . . . . . . . . . 12-10 
Reading a Device Address ............... 12-10 
Secondary Addresses .................. 12-12 
Changing a Device Address .............. 12-12 

What Cables to Use ................ . . . . . 12-15 
How to Connect Devices ............... . . . 12-16 

What About Cable Length? .............. 12-18 
Keep Those Instruments On! . . . . . . . . . . . . . . 12-18 

Review Quiz ......................... 12-19 

8-Contents 



Lesson 13 Take Control of Those Instrumentsl 

Addressing Instruments (A Quick Review) ........ 13-1 
Using a Name ........................ 13-2 
Using a Path ......................... 13-3 

Calling Instruments to Attention .............. 13-3 
Using ABORT ........................ 13-4 
The REMOTE Statement ................. 13-5 
Going Back to LOCAL . . . . . . . . . . . . . . . . . . . 13-6 
Taking Control- And Keeping It ............ 13-6 
The LOCAL Statement .................. 13-7 
U sing CLEAR . . . . . . . . . . . . . . . . . . . . . . . . 13-8 

A Programmed Example .................. 13-11 
Entering the Program .................. 13-11 
Running the Program ................... 13-12 

Review Quiz .......................... 13-13 

Lesson 14 Telling Instruments What to Do 

What the Instrument Needs ................. 14-1 
A Manual Example ....................... 14-2 
Doing It With HP BASIC ................... 14-5 

The OUTPUT Statement ................. 14-5 
What OUTPUT Does ................... 14-7 

Instrument Commands .................... 14-7 
Where to Find Instrument Commands ......... 14-9 
Specifying the Instrument Command .......... 14-9 

An HP-IB Example ..................... 14-10 
Set the Voltage ...................... 14-10 
Vary the Output ...................... 14-11 
Watch Those End Lines! ................. 14-12 

Review Quiz .......................... 14-13 

Contents-9 



10-Contents 

Lesson 15 Getting Information from an Instrument 

A Manual Example ..................... . 
Using ENTER ........................ . 

What ENTER Does ................... . 
Specifying the Device ................ .. . 
Specifying the Variable ................. . 

OUTPUT and ENTER: Hand-in-Hand ........ . 
Triggering an Instrument . . . . . . . . . . . . . . . . . . 

The Instrument's Trigger Command ........ . 
The TRIGGER Statement .............. . 

Instruments Are Smart Too! . . . . . . . . . . . . . . .. 
Review Quiz 

Lesson 16 How an Instrument Summons Service 

15-1 
15-2 
15-3 
15-3 
15-5 
15-8 

15-10 
15-11 
15-11 
15-14 
15-17 

Requesting Service ...................... 16-2 
Reading Registers with STATUS ............ 16-3 
HP-IB Status Registers .................. 16-5 
When an SRQ Is Issued . . . . . . . . . . . . . . . . . . 16-7 

How to Detect the SRQ .................. 16-12 
Detecting a Status Change ............... 16-12 
Using an Interrupt .................... 16-15 
Enabling Other Interrupts ............... 16-19 
Do You Need to Mask the SRQ? ........... 16-20 

The Status Byte Tells All . . . . . . . . . . . . . . . . . . 16-20 
The Status Byte . . . . . . . . . . . . . . . . . . . . .. 16-20 
Unmasking the Status Byte . . . . . . . . . . . . . . . 16-22 
The Beauty of Bit 6 . . . . . . . . . . . . . . . . . . .. 16-23 
Reading the Status Byte . . . . . . . . . . . . . . . . . 16-23 

No Masking Necessary ................... 16-29 
Review Quiz ......................... 16-29 



Lesson 17 Saving and Reusing Instrument Data 

What Is Instrument Data? .................. 17-2 
Data Formats ........................ 17-2 
Data Fiies . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3 
Data OUTPUT ....................... 17-3 
ENTERed Data ....................... 17-4 
The Number Builder .................... 17-5 

Storing Instrument Data .................. 17-11 
Retrieving Data ........................ 17-16 
Using OUTPUT USING .................. 17-17 
Review Quiz .......................... 17-19 
Laboratory Exercise ..................... 17-20 

Lesson 18 Making the .Keyboard Work for You 

How to Use Softkeys ....................... 18-2 
Softkeys as Typing Aids ..................... 18-3 

Listing the Softkeys ..................... 18-3 
Rewriting a Softkey Definition .............. 18-4 
Changing a Key from a Program ............. 18-8 
Common System Keys .................. 18-11 
Storing Softkey Definitions ............... 18-11 
Erasing Softkey Definitions . . . . . . . . . . . . . . . 18-12 
Loading Softkeys ..................... 18-12 

Keys for Program Branches . . . . . . . . . . . . . . . . . 18-17 
Using ON KBD ........................ 18-21 
Review Quiz .......................... 18-21 

Lesson 19 Data on Display 

The Graphics Display ................ ..... 19-2 
Showing the Graphics Plane ............... 19-2 
Locations in the Graphics Area ........ ..... 19-3 

Contents-11 



12-Contents 

Graphics Fundamentals ................... 19-5 
Initializing Graphics .................... 19-5 
Clearing Graphics ..................... 19-5 
Drawing with the Pen ................... 19-6 
Choosing Pen Type . . . . . . . . . . . . . . . . . . . . . 19-6 
U sing PLOT . . . . . . . . . . . . . . . . . . . . . . . . . 19-8 
Choosing Line Type ................... 19-10 
Turning Graphics OFF ................. 19-11 
Showing the Alpha Plane ................ 19-11 

A Typical Graphics Application ............. 19-12 
Know Your Instrument ................... 19-13 
Initialize the Graphics Plane ............... 19-13 

Specify the Plotter .................... 19-13 
Turn Graphics On .................... 19-14 
Clear and Initialize . . . . . . . . . . . . . . . . . . . . 19-14 
Use FRAME ....................... 19-14 

Set the Viewport . . . . . . . . . . . . . . . . . . . . . . . 19-14 
Using VIEWPORT .................... 19-15 
A Different VIEWPORT ................ 19-16 

Scale the Plotting Area . . . . . . . . . . . . . . . . . . . 19-18 
Put in Axes Lines ...................... 19-22 

More AXES Control ................... 19-25 
Plotting the Trigolator Axes .............. 19-26 

Put in a Grid ......................... 19-26 
Label Your Plot ....................... 19-29 

Clipping and Unclipping ................ 19-30 
Using LORG ....................... 19-32 
Using CSIZE ....................... 19-33 
Using LDIR ........................ 19-34 

Plot Your Data . . . . . . . . . . . . . . . . . . . . . . . . 19-36 
Dump to a Printer ................ . . . . . . 19-42 
There's a Lot More... .................... 19-42 
Review Quiz ......................... 19-43 
Laboratory Exercise . . . . . . . . . . . . . . . . . . . . . 19-46 



Lesson 20 How to Design a Complete Program 

Writing a Structured Program ................ 20-2 
Determine a Manual Solution ................ 20-5 
Check Out Hardware ..................... 20-6 
Create a Warnier-Orr Diagram ............... 20-6 
Determine Subprograms and Subroutines . . . . . . . . 20-10 
Write the Program Code .................. 20-11 
Test and Debug . . . . . . . . . . . . . . . . . . . . . . . . 20-19 

Debugging Aids ...................... 20-19 
Hints for Debugging ................... 20-20 

Document the Program ................... 20-21 
Review Quiz .......................... 20-22 
Laboratory Exercise ..................... 20-24 

Part 3: Increase Your Instrument Control 

Lesson 21 Sending Custom Bus Messages 

Levels of Control ........................ 21-3 
Bus Messages .......................... 21-4 

Using SEND ......... " ................ 21-5 
The Bus Messages . . . . . . . . . . . . . . . . . . . . . . 21-8 
A Few Points .......................... 21-11 

Sending Bus Messages .................... 21-12 
Message Mnemonics ................... 21-13 
Some Common Bus Activities .............. 21-16 
How to Send a Bus Message .............. 21-19 

"Hands-On" Experience ................... 21-20 
Simulating an OUTPUT Statement .......... 21-20 
Simulating an ENTER Statement ........... 21-21 
Simulating SPOLL .................... 21-21 

Review Quiz .......................... 21-28 

Contents-13 



14-Contents 

Lesson 22 Multiple Instruments, Multiple Controllers 

Addressing Multiple Instruments .............. 22-1 
Multiple Listeners ..................... 22-2 
Secondary Addressing . . . . . . . . . . . . . . . . . . . 22-3 

The Parallel Poll . . . . . . . . . . . . . . . . . . . . . . . . 22-5 
Configuring Instruments to Respond .......... 22-6 
Conducting a Parallel Poll ................ 22-7 
Using PPOLL UNCONFIGURE ............ 22-9 

More Than One Controller ................ 22-10 
Passing Control . . . . . . . . . . . . . . . . . . . . . . 22-10 
Interrupts While Non-Active Controller . . . . . . . 22-12 
Addressing a Non-Active Controller ......... 22-17 
Requesting Service . . . . . . . . . . . . . . . . . . . . 22-18 
PPOLL RESPONSE . . . . . . . . . . . . . . . . . . . 22-19 

Review Quiz 22-21 

Lesson 23 Controlling Register Contents 

Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1 
Reading a Status Register .................. 23-3 
Changing a Control Register ................ 23-5 

Using the CONTROL Statement ............ 23-5 
READIO and WRITEIO Registers ........... 23-6 

Review Quiz .......................... 23-8 

Lesson 24 Subprogramming 

Calling and Executing a Subprogram ........... 24-2 
A Word about Context .................. 24-2 
Calling Subprograms from the Keyboard ....... 24-3 



Passing Parameters ....................... 24-3 
Passing By Value ...................... 24-4 
Passing By Reference . . . . . . . . . . . . . . . . . . . . 24-4 
Parameter Lists ....................... 24-9 
OPTIONAL Parameters ................. 24-10 
Using NP AR . . . . . . . . . . . . . . . . . . . . . . . . 24-10 

Using Common Blocks ................... 24-13 
COM vs. Pass Parameters ................ 24-17 
Hints for Using COM Blocks .............. 24-18 

A Practical Example ..................... 24-22 
Deleting a Subroutine .................... 24-25 
Review Quiz .......................... 24-26 
Laboratory Exercise ..................... 24-28 

Lesson 25 Output Data in Different Formats 

Types of OUTPUT ....................... 25-2 
Free-Field OUTPUT ..................... 25-2 

Separators and Terminators ............... 25-3 
Array Separators ...................... 25-4 

Free-Field 0 UTPUT with END . . . . . . . . . . . . . . . 25-7 
END with OUTPUT to HP-IB .............. 25-8 
END with OUTPUT to Files ............... 25-8 

OUTPUT with Attributes ASSIGNed ........... 25-8 
The ASSIGN Statement .................. 25-9 
Finding Information About I/O Paths . . . . . . . . . 25-11 
Assigning Attributes ................... 25-12 
Changing the EOL Sequence .............. 25-15 

OUTPUT Using Images ................... 25-19 
The OUTPUT USING Statement ........... 25-20 
Images .......... ' .................. 25-20 
How the Computer Looks at an Image ........ 25-21 
Image Definitions During OUTPUTS ......... 25-23 
Additional Image Features ............... 25-34 

END with Images ....................... 25-36 
END with HP-IB ....................... 25-37 
Review Quiz .......................... 25-39 

Contents-15 



Lesson 26 Entering Data in Different Formats 

Free-Field Enters .................... 26-2 
Item Separators . . . . . . . . . . . . . . . . . . . . . . . 26-2 
Item Terminators ...................... 26-2 
Entering Numeric Data with the Number Builder .. 26-3 
Entering String Data . . . . . . . . . . . . . ....... 26-9 

Terminating ENTER Statements ............. 26-11 
EOI Termination ..................... 26-11 
EOI with Numeric Characters ............. 26-13 

ENTER with Assigned Attributes ............ 26-14 
Using Files ......................... 26-14 
Specifying Data Size with ASSIGN .......... 26-15 

ENTERs with Images . . . . . . . . . . . . . . . . . . . . 26-16 
The ENTER USING Statement ............ 26-16 
Images ........................... 26-17 
How an Image Is Used for ENTER . . . . . . . . . . 26-17 
Numeric Images with ENTER ............. 26-19 
String Images ........................ 26-21 
Ignoring Characters ................... 26-23 
Binary Images . . . . . . . . . . . . . . . . . . . . . . . 26-24 
Terminating ENTERs That Use Images ....... 26-26 
Redefining EOI ...................... 26-26 
Changing Terminations for ENTER USING .... 26-28 
Other Image Features .................. 26-31 

Using Instrument Data Formats ............. 26-35 
ASCII Data Example .................. 26-35 
REAL Data Example .................. 26-38 
Using the Instrument's Internal Format ....... 26-42 
The Instrument Learn String .............. 26-46 

Review Quiz ................... 26-49 
Laboratory Exercise ..................... 26-50 

16-Contents 



Lesson 27 Buffers and Buffered 1/0 
The TRANSFER Statement ................. 27-1 

How TRANSFER Works ................. 27-4 
TRANSFER Parameters . . . . . . . . . . . . . . . . . . 27-4 
When Can You Use TRANSFER? ............ 27-6 

Buffers .............................. 27-6 
Types of Buffers ....................... 27-8 
Buffer Registers ...................... 27-11 
Buffer Pointers ...................... 27-11 

A Real-World Example ................... 27-19 
Review Quiz .......................... 27-22 

Lesson 28 All About Interrupts 

Using Interrupts ........................ 28-2 
What Happens in an Interrupt? ............. 28-2 
Using RECOVER ...................... 28-2 

How Many Interrupts? .................... 28-3 
Real-Time Interrupts .................... 28-7 
Timeouts ........................... 28-8 
Data Transfer Interrupts ................. 28-9 
Error Trapping ....................... 28-9 
The Mouse ......................... 28-11 

External HP-IB Interrupts ................. 28-16 
What an Interrupt Needs .................. 28-20 

Setting Up a Branch ................... 28-20 
Enabling the Event .................... 28-20 
Logging the Event . . . . . . . . . . . . . . . . . . . . . 28-21 
Software Priority ..................... 28-21 
Hardware Priority ..................... 28-27 

Review Quiz .......................... 28-29 

Contents-17 



Lesson 29 Streamline Your Programs 

Slashing Space Requirements ................ 29-2 
Use BDAT Files ...................... 29-2 
Reduce Remarks ...................... 29-3 

Boosting Speed ......................... 29-3 
Benchmarking ........................ 29-3 
Use Look-Up Tables .................... 29-7 
Use Integers ... Sometimes ................. 29-8 
Subprograms and Speed . . . . . . . . . . . . . . . . . . 29-9 
Use COM ......................... 29-11 
Hardware Improvements ................ 29-11 

Review Quiz ......................... 29-12 
Laboratory Exercise . . . . . . . . . . . . . . . . . . . . . 29-12 

Lesson 30 Tricks and Techniques 

Simulating a Key . . . . . . . . . . . . . . . . . . . . . . . . 30-1 
Sneaking Past Errors ..................... 30-2 
Extending Control . . . . . . . . . . . . . . . . . . . . . . . 30-3 
Use Subprogram Libraries .................. 30-5 

Loading Subprograms ........... . . . . . . . . 30-5 
Loading Subprograms One at a Time . . . . . . . . . . 30-6 
Loading Several Subprograms at Once . . . . . . . . . 30-6 
Deleting Subprograms Automatically ......... 30-8 

Use Pass through Mode ................... 30-13 
Review Quiz ......................... 30-16 

Appendixes and Index Appendix A: Answers to Review Questions 

Appendix B: IEEE-488 Interface Capability Codes 

Appendix C: HP-IB Status and Control Registers 

Appendix 0: HP-IB Bus Messages 

Index 

18-Contents 



Sidebars 

The Trouble Killers ....................... 8 
Whither QWERTY? ...................... 1-6 
A Bit of BASIC History . . . . . . . . . . . . . . . . . . .. 2-6 
If You Have Printing Problems... .............. 3-12 
Initializing a Disk on a PC .................. 3-21 
Five Fail-Safe Rules for Variables ............. 4-5 
Figurative Flowcharts ..................... 6-22 
The Bubble Sort ........................ 8-15 
Of Files HP-UX and DOS ................. 10-12 
HP-IB: A Short History .................... 11-2 
HP-IB Addresses and Switch Settings .......... 12-13 
To Mask or Unmask? .... ' ................ 16-27 
Editing Softkeys on a PC .................. 18-13 
Self-Computing the Scale .................. 19-49-
HP-IB Handshaking ..................... 21-25 

Contents-19 



Featured HP Instruments 

The HP 3326A Two-Channel Synthesizer . . . . . . . . . 13-9 
The HP 6624A Multiple Output Power Supply ...... 14-3 
The HP 438A Dual Sensor Power Meter ......... 15-6 
The HP 8753 Network Analyzer .............. 16-8 
The HP 8590A Portable RF Spectrum Analyzer ..... 17-7 
The HP 8980A Vector Analyzer ............. 18-14 
The HP 3325B Synthesizer/Function Generator ..... 20-3 
The HP 3456A Digital Multimeter ............. 20-4 
The HP 8340B Synthesized Sweeper ............ 21-2 
The HP 8720A Microwave Network Analyzer ...... 22-4 
The HP 6030A Autoranging System Power Supply .. 24-20 
The HP 8510B Network Analyzer ............. 26-32 
The HP 3457A Multimeter .................. 27-18 
The HP 3852A Data Acquisition and Control System 28-13 
The HP 8757A Scalar Network Analyzer ........ 30-10 
The HP 8350B Sweep Oscillator ............. 30-12 

20-Contents 



Introduction 

About This 
Course 

Welcome to Using HP BASIC for Instrument Control. This 
self-study course consists of 30 lessons, in three parts. You 
can start with part 1, part 2, or part 3, depending upon your 
abilities and experience. 

The course is designed to teach you how to use a computer 
to control electronic instruments. The computer must be 
running the HP BASIC language, and most of the control 
operations you'll learn require the interface known as 
HP-IB (or IEEE-488). 

Part 1 of the course is an introduction to programming in 
HP BASIC. 

Part 2 explains HP-IB and simple instrument control. By 
the time you've finished this part, you should be able to 
control most functions of Hewlett-Packard instruments with 
HP-IB. 

Part 3 shows you more elegant and powerful programming 
for instrument control. This part will help you speed up 
your programs, and you will learn techniques to control 
instruments with non-standard formats, whether those 
instruments are from HP or other manufacturers. 

The HP BASIC Instrument Control Examples disk contains 
examples, laboratory exercises, and utility programs. 

I ntrod uction-1 



What You'll Need To work through the examples in this course, you should 
have one of the following systems: 

2-lntroduction 

• An HP 9000 Series 200 or 300 computer with HP BASIC. 

• An HP PC-305 or PC-308 HP BASIC Controller. 

• An HP Vectra personal computer with the HP BASIC 
Language Processor card installed. 

• An IBM AT or AT-compatible personal computer with 
the HP BASIC Language Processor installed. 

Most of the examples in part 1 can be done with any version 
of HP BASIC. Newer versions (3.0 and up) have a greater 
number of statements created specifically for instrument 
control, so you'll be better off using one of these for parts 2 
and 3. 

You don't need HP-IB or instruments to do any of the 
examples ill part 1 of this course. Parts 2 and 3 will certainly 
be more interesting if you can try some of the examples with 
actual electronic test instruments connected to your 
computer via HP-IB. But if you don't have any interface 
cables or HP-IB instruments yet, you can learn a lot just by 
looking closely at the program code. Many of the examples 
are themselves actual "real-world" applications, so they'll be 
a good reference later when you do bring your HP-IB 
instrumentation on line. 

This course doesn't cover all of HP BASIC- it concentrates 
on the most often-used features and on techniques you'll 
need specifically for instrument control. Your other HP 
BASIC documentation is the place to look for further 
details and for a full list of statements and commands. 



Where to Begin 
the Course 

Depending on your experience and knowledge of BASIC in 
general and HP BASIC in particular, you may be able to 
jump into part 2 or part 3, or to skip around without doing 
lessons in order. 

New to programming? If you're a brand-new programmer 
in BASIC, read the rest of this introduction carefully. Then 
start with part 1 (lessons 1-10) and work through it 
carefully. Do the examples and the review quizzes. Be sure 
you understand everything in part 1 before you go on to part 
2 and part 3. 

Memory hazy, or new to this version of BASIC? If it's 
been a while since you've used HP BASIC, or you're new to 
the latest version, start with part 1 and skim over the 
material you already know. HP BASIC does have some 
bells and whistles you haven't discovered yet - features 
you'll appreciate when you begin to write code. Read the 
rest of this introduction, skim part 1 quickly, then go on to 
part 2 (lessons 11-20). 

Already comfortable with HP BASIC? Then finish this 
introduction and dive right into part 2 - you're ready to 
learn how to handle instrumentation using the 
Hewlett-Packard Interface Bus. You'll find yourself using a 
lot of old familiar HP BASIC statements, as well as some 
new ones created specifically for instruments. 

Already using HP-IB? Perhaps you've gotten your 
instruments working, but want to do more. Part 3 (lessons 
21-30) is for you. In it, you'll learn tricks and techniques to 
increase control and make your program smaller and faster. 
Read this introduction, then go right to the beginning of 
part 3. 

No matter where you start, you'll find each lesson is 
self-contained and "bite-sized" for easy digestion. Work 
through a lesson today, a lesson tomorrow, a lesson next 
week. Skip around if you like. In no time at all, you'll be 
writing sophisticated control programs. 

Introduction-3 



Before You 
Begin 

Use BASIC 
Keyboard 
Overlays! 

Before you start this course, you should be able to turn on 
your computer and load BASIC - that is, get the HP BASIC 
screen on your computer's monitor. If you don't know how 
to do this, refer to the manual for your computer (or the HP 
BASIC Language Processor card) or get someone to help 
you. 

Because this course covers all HP computers that can run 
HP BASIC (as well as the HP BASIC Language Processor 
for a Vectra or other personal computer), you won't be 
shown the location of every key on your computer's 
keyboard. 

This won't be a problem. Either your computer is already 
clearly labeled for BASIC, or you can affix a handy 
keyboard overlay that shows which keys to press on your 
computer. HP BASIC and the Language Processor come 
with these overlays, so you can turn whatever computer you 
have into a "dedicated" BASIC machine. 

And if you don't see a particular key on the keyboard or 
overlay? Again, no problem: you can execute any command 
you need just by typing it in, character by character. 
Naturally, if you see a "shortcut" or a key that does 
something in one keystroke that it takes you 10 to type, by 
all means use it! 

Load Those One other thing: HP BASIC has a number of binary 
Binaries! programs available that add functions to the language. 

4-1 ntrod uction 

When BASIC is first put into your computer, whoever 
installed it had the option of loading these programs along 
with it. Most people load the binaries as a matter of course. 
And if you have a choice (and enough memory) you should 
make sure they're all loaded before you begin this course. 



Learning About 
Your Computer 

Note 

If you don't (or can't) load them all at once, you'll get error 
messages when you try to run some of the examples. Then 
you'll have to stop to load the required binary program 
before proceeding. 

There are times in this course when you need to know things 
about your computer. The SYSTEM_EX program on your 
disk of examples is a fast, easy way to see what your current 
configuration is. 

If you get an error message during the procedure below, look 
at lesson 3, Saving Your Program, for a more detailed 
explanation of how to use disks and disk drives. 

Here's how to use the disk: 

1. If you loaded BASIC from a floppy disk, insert the disk of 
examples in the same disk drive from which you loaded 
BASIC. Be sure to insert the disk all the way in. Close the 
drive door or turn the latch if there is one. Then go on to 
step 3. 

2. If you loaded BASIC from a hard disk, you'll need to specify 
a floppy disk drive as the current "MSI" device. If you are 
using an HP Vectra PC or other personal computer with the 
HP BASIC Language Processor (or a PC-305 or PC-308), 
type: 

MSI ":,1500,0" 

If you are using an HP 9000 Series 200 or Series 300 
computer, your disk drive may have one of several 
addresses. Typically, you would type: 

MSI ":,700,0" 

Refer to your owner's manual for further information. 

I ntroduction-5 



6-1 ntrod uction 

Then press the [ENTER] key, or whatever key ends a line 
on your computer. 

Now insert the disk of examples in the computer's top or 
left-hand disk drive, and proceed with step 3 below. 

3. Now type: 

LOAD "SYSTEM EX" 

Then press [ENTER] (or [RETURN], or whatever key 
ends a line on your computer). 

4. You should see an asterisk in the lower right corner of 
the screen for a moment as the program is copied into 
your computer's memory. 

5. Now type: 

RUN 

Then press [ENTER]. 

You should see a display similar to this one: 

SYSTEt1_EX PROG 
AVAILABLE 11Et10R'I • 
CRT ID 
DUMP DEUICE 
GRAPHICS IHPUT 
PLOTTER 
KEYBOARD LAHGUAGE • 
LEXICAL ORDER 
HASS HEt1OR'x' 
HASS STORAGE IS 
I1SI 
PRIHTALL 
PRINTER 
SERIAL NlJ1BER 
SYSTEM ID 
SYSTEt1 PRIORITY 
TRIG I10DE 
BASIC VERSION 

18 25& Z55B £rApr-BB B: 21 
!I 15558 
&. B8H G 1 
7Bl 
B 
B 
ASCII 
ASCII 
BB8eeeBBB8888BB8 
.csee, 1588, Z 
: csse, 1588. 2 
1 
1 
11111111111 
!lBlr. 

8 
RAD 
5.e 

'd''' ''P,._tp'#P'' ",tIi.""""m"hi"W''PR1'tII" 

The display gives information about your system - what 
BASIC version, what current printer, etc. If you can't 
understand it all now, don't worry; by the end of the course 
you'll know all about this display. 



Calling All PC 
Users ... 

You can get the same information at any time with the 
SYSTEMS statement. Just type SYSTEMS, followed by 
what you want to see (in parentheses and quotation marks). 
Then press the [ENTER] key. Here's an example: 

SYSTEM$ ("VERSION: BASIC") 
[ENTER] 

This shows you the version of HP BASIC you're using now. 

That's it! It's time to begin. Turn to the right part of the 
course for you and start programming! (Unless you're using 
an HP Vectra PC or other IBM AT-compatible personal 
computer. If you have one of these machines, then read on 
a little further.) 

The HP BASIC Language Processor card can be used in 
virtually any IBM AT-compatible computer, such as the HP 
Vectra PC. 

If you're working with a PC, you must use different key 
combinations to perform BASIC commands and statements. 
For instance, you'll sometimes need to press the [CTRL] key 
and another key, or the [Alt] key and another key. 

You'll find these key combinations shown on the Language 
Processor keyboard overlays for your computer. And all 
key combinations are shown in the programmer's reference 
guide for the Language Processor card. You may want to 
copy the list and keep a copy at your work site for handy 
reference. 

If you don't have an overlay, or if you can't remember a key, 
it's no problem; you can usually type the command or 
statement, letter by letter. Then press [ENTER] or 
[RETURN] to execute it. 

Introduction-7 



The Trouble Killers 

It happens to everyone - the computer "hangs," goes off into some 
number-crunching never-never land and doesn't return. Here's how to cure 
trouble without resorting to violence: 

1. Gentlest: Press the [CLEAR LINE] key. This gently washes the offending line 
off the screen without affecting your program or anything else. 

2. Next gentlest: CLEAR SCREEN (either press the key or type the statement). 
Again, this doesn't affect anything in the computer, just the screen. 

3. If a program is running, try: The [CLEAR I/O] key followed by [STEP] or 
[CONT]. This suspends any current input and output and makes the program 
pause, then resume. It's a good solution for things that cause the computer to 
"hang" indefinitely - such as printing to a printer that isn't turned on. 

4. To scrub memory clean of all program lines: SCRATCH or SCRATCH A 
clears out any program currently in memory.· Don't worry-it can't affect mass 
storage, such as your disks or tape. 

5. When all else fails: The [RESET] key stops a running program, clears all 
input/output, and generally takes charge. (It leaves your program still in memory, 
though.) 

6. Last resort: The on-off switch is inelegant, but sometimes you'll just have to 
turn the computer off, then on again to get its attention. When you use this, you 
lose everything not stored on disk: that means you'll have to reboot BASIC, and if 
you had a program in the computer, it's gone, too. 

8-1 ntrod uction 



Part 1 
Basic BASIC Programming 

This first part of the course consists of lessons 1-10. It 
teaches simple programming in HP BASIC, beginning with 
the most fundamental concepts. 

You'll begin by learning about the various parts of the 
display and keyboard, but you'll soon be writing elementary 
programs. Here you learn essential techniques that you'll 
put to use later as your programming becomes more 
sophisticated. 

Later in part 1 you'll learn how to handle numbers, words, 
and arrays of both. This part also teaches you how to 
change the format of printed output and how to store 
programs and data on disk. 

If you're new to programming, or need a fast refresher 
course, start here. If you decide to skip right to part 2 
(lessons 11-20) now, use the table of contents and index to 
refer back to part 1 if you hit something you don't 
understand. 

Turn the page now to begin lesson 1. 



1 
The Display and Keyboard 

In this section, you learn to use the HP BASIC language in a 
simple way, from the computer keyboard. This section 
begins at the very beginning, with the two parts of the 
computer you use most: 

• The keyboard. 

• The HP BASIC display. 

To help you get comfortable with the computer and 
understand it better, you'll also learn a few simple HP 
BASIC commands: 

• CLEAR LINE. 

• CLEAR SCREEN. 

• KEY LABELS. 

• PRINTALL IS and [PRT ALL]. 

• Math functions and exponents of 10. 

• The time, the date, and the BEEP. 

The Display and Keyboard 1-1 



Using the 
Keyboard 

Whether you're a lightning-fast touch typist or the 
hunt-and-peck variety, you'll find an old, familiar friend at 
the center of the keyboard. It's the same layout (called 
QWERTY, for the arrangement of these keys) that's been 
on nearly every typewriter, Teletype, and computer 
manufactured in the last 100 years. 

[]g:] ~El 

~~~D~u~~O~~O~D~~ 
~~~~~u~~u~DOD~~~ 
(;] EJ~~EJ~(!]EJ~EJ~[]EJ LJ~LJ 
[;;J Ell l~ ~C!J~ 

Look at the rest of the keyboard. Do you see a lot of keys 
that aren't on a typewriter? These are special keys to help 
you enter and control your programs. We'll tell you about a 
few that you need to know now: 

The [ENTER.-J] Key Over on the right, where your little finger can find it easily, 
is the [ENTER] key. It's usually marked with a hooked 
arrow:.-J. 

1-2 The Display and Keyboard 

Depending on your computer, this key may be labeled as 
[CARRIAGE RETURN], [END LINE], [RETURN], or 
[CR]. These are all different names for the same key. No 
matter what computer it's on, it often has the hooked arrow 
.-J, too. 

As you work through this course, if you don't have an 
[ENTER.-J] key, just press the appropriate one on your 
keyboard every time you're asked to press [ENTER.-J] or .-J. 



The [ENTER~] key is the most important key on your 
computer. It's how you tell the computer you're finished 
entering a typed line or a command to do something. 

To see how [ENTER~] works: 

1. First type these characters: 

CAT 

In HP BASIC, this tells the computer to show you a list 
(a "catalog") of all the programs that are now in the 
computer's memory. But nothing happens yet. 

2. Now press [ENTER~]. The screen display changes to 
something like this: 

:csee. 1589. Z 
UOLLt1E LABEL: HPU_C 
FILE HAME PRO 1YPE REt/FILE BYTE/REt ADDRESS DATE TIME 

REUID ASCII 
S\'STEt1_BAS SYSTI1 
COUHT]RHT ASCII 
COUNT_DISP PROG 

Z 
Z363 

1 
Z 

ZS6 
ZS6 
ZS6 
ZS6 

16 
18 7-Sep-87 13: 15 

2399 3-Har-88 9: SS 
2392 3-Har-88 9'47 

--------
When you pressed [ENTER~], you told the computer you 
were finished typing the line. The computer then did as you 
ordered - it produced a "catalog" of programs, complete 
with information about each program. 

The Display and Keyboard 1-3 



[SHIFT] and 
[CAPS LOCK] 

The [SHIFf] key lets you type capital letters or the symbols 
that are on the upper part of a key. For example, to type an 
asterisk: 

1. Press and hold the [SHIFf] key. 

2. Press the number 8 key on the upper part of the 
keyboard. The computer displays: 

To "lock" the keyboard so it types only capital letters, press 
the [CAPS LOCK] (it may be called CAPS) key. Press the 
key again to "unlock" capital letters. On most keyboards, a 
[CAPS LOCK] lamp lights to show when the keyboard is 
locked for capitals. 

Unlike a typewriter's lock, the [CAPS LOCK] key locks only 
the 26 letter keys. It doesn't affect the number keys or other 
keys. 

Number Keypad Way over on the right side of most keyboards you'll find a 
"10-key pad." That's because it has 10 number keys (0 
through 9) and arithmetic keys in a special arrangement 
that's easier to use for many people. (It's the same key 
arrangement you'll find on an adding machine or calculator.) 

1-4 The Display and Keyboard 

Some keyboards have a [NUM LOCK] key. This functions 
like [CAPS LOCK], except it "locks" the number keypad for 
numbers; or "unlocks" it to allow other functions on these 
keys (such as [HOME], [PG DOWN], and the arrows). If 
you have trouble using either numbers or keypad functions, 
be sure to check the setting of [NUM LOCK] - it may be 
"locked" when you don't want it to be. 



[CTRL] This is the control key. It may be written as [CONTROL] 
on your keyboard. You use it in combination with other 
keys. (If you have a Vectra or IBM-compatible personal 
computer with the HP BASIC Language Processor card 
installed, you use [CTRL] to perform some BASIC functions 
you see on the keyboard overlay, but don't see on the 
keyboard.) 

[Alt] If you have an HP Vectra PC or other IBM-compatible 
computer, you'll need the ALTERNATE or [Alt] key. This 
is another special key, used with other keys to perform 
BASIC functions. You'll find the keys used with [AIt] on the 
keyboard overlay. 

Soft keys Along the top of the keyboard, or the left side (or both), 
you'll see several keys numbered fl, f2, f3, or perhaps kl, k2, 
k3, and so on. These are the user-definable, or "soft" keys. 

The functions of these softkeys are defined by the 
user-that is, by y'ou. When you first load the HP BASIC 
language program in your computer, the softkeys are 
automatically assigned certain functions by that program. 
For example, f7 may perform the function LIST BIN. 

As you'll see, you can easily change the assignments of these 
softkeys. You can assign any function or group of 
keystrokes to any softkey. 

Every softkey actually has two functions, just as do other 
keys: 

• If you press the softkey and nothing else, you execute one 
function. 

• If you press SHIFf and the softkey, you execute another 
function. 

You'll understand this better when you see how the softkey 
functions appear on the display. 

The Display and Keyboard 1-5 



Whither QWERTY? 

If you think the QWERTY arrangement of keys on your keyboard isn't the most 
efficient for typing, you're right. How did this layout, which requires both hands 
and several fingers to type even simple (and very common) words such as "and" 
and "the" come to be adopted? 

The story begins in 1873. Christopher Latham Sholes and Carlos Glidden are 
turning out the first production models of a new office machine they call the 
"Type-writer." On the keyboard, keys are arranged in alphabetical order; since 
most people already know their alphabet, it is thought this will make learning the 
machine that much easier. 

Problems soon develop, however. As typists gain speed, Sholes sees that many 
often-used combinations of letters cause keys to clash and jam the machine. He 
commissions a complete redesign, so that on most combinations, keys come up 
from opposite sides to strike the paper in the center. 

The result is called the QWERTY arrangement, named for the keys at the upper 
left of keyboard. Although Sholes promotes it as being more efficient, the truth 
is that from its very beginning, QWERTY was actually designed to make typing 
slower. 

After a widely publicized type-off between a touch typist using the Sholes 
keyboard and a "hunt-and-peck" typist with a competing design, the Sholes layout 
gains wide acceptance. In 1905, the QWERTY arrangement was adopted as the 
industry standard -largely due to the efforts of teachers of typing, who had the 
greatest interest in maintaining the status quo. 

1-6 The Display and Keyboard 



D~mCDCDCDCD(f)mCDrnmCDD 00 
CJG000000000mOOOO 
00000~8000®0~CJOO 
o DCD®0000®B00D 000 
o DC )0 000 

The Dvorak Keyboard 

Over the years, a number of other, more efficient layouts have been proposed. 
Dr. August Dvorak's keyboard, to take one example, has been shown to give 30 
percent more speed with fewer errors and less fatigue. 

Although QWERTY is still solidly entrenched, it makes less sense in the age of 
computers. Since it's relatively easy to "rearrange" the keyboard on a computer, 
perhaps you'll want to experiment with other keyboard layouts. 

The Display and Keyboard 1-7 



The Display 

Output Area 

Display Line 

Keyboard Area 
Message and 
Results Line 
Softkey Labels 

Look at the computer's display screen now. Seems complex, 
doesn't it? But the truth is, there are just a few parts to this 
screen. They are: 

• Output area. 

• Display line. 

• Keyboard area. 

• Message and results line. 

• Softkey labels . 

• eS811, 15911, 2 
UOLUME LABEL' HPU C 
FILE NAI1E PRO TYPE REt/FILE BYTE/REC ADDRESS 

REUJD 
SYSTEM_BAS 
COUNT]RHT 
COUNT_DISP 

ASCII 
SYSTt1 
ASCII 
PROG 

2 
2363 

1 
2 

256 
256 
25& 
25& 

1& 
18 

Z3911 
2392 

DATE TIME 

7-Sep-87 13' 15 
3-ttar-88 9' 55 
3-Har-88 9'47 

'M' '.'._Ii,,",,' _lijl",,"""t-i'!!!f''PRitt!!ft 

Output Area This is the largest part of the display. It takes up most of 
the screen. And there's more - although you see only 18 
lines, there are actually 39 lines in the output area. The 
screen is like a "window" on the output area. 

1-8 The Display and Keyboard 



To see how the window works, try this: 

1. Type the following: 

CAT.J 
CAT.J 
CAT.J 

This fills the output area with information - a repeated 
catalog of all HP BASIC programs now in memory. (If 
you haven't written any programs yet, you'll still see a few 
lines containing system information.) 

2. Press U], the down arrow key. See the list of programs 
move down through the display? 

3. Now press and hold [t], the up arrow key. See the 
catalog listing move the other way? It may move right 
out of sight. 

) 

Output Area 18 Lines 39 Lines 

) 

The Display and Keyboard 1-9 



At any time the screen can show only part of the output 
area. But use the up or down arrow key, and presto! 
Everything in the output area "scrolls" through the window. 

When you were scrolling the window, did you notice that the 
bottom part of the screen didn't change? This bottom area 
is reserved for other uses: the display line, keyboard area, 
message line, and soft key labels. 

Display Line This line is used for prompts from a program to you, the 
operator. When a program needs some information from 
you (your name, for example), it asks you for the 
information here. You'll see this as you write programs that 
prompt for input values. 

Keyboard Area See the underscore mark or small highlighted area on the 
screen? This is called the "cursor." It's a place mark that 
shows where the next character you type will appear. On 
some computers, the cursor blinks. 

Right now the cursor is at the beginning of the keyboard 
area. This area is actually two lines. To prove it: 

1. Put your finger on the "E" key and hold it down. Watch 
the sturdy little E's march across the screen. 

I EEEEEEEEEEEEEEEEEEEEEEE_ 

2. Keep holding the E key down. When they reach the 
screen's edge, the E's, undeterred by this artificial 
boundary, wrap around to the next line and keep right on 
marching. 

1-10 The Display and Keyboard 

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 
EEEEEEEEEEEEE 



Message and 
Results Line 

This shows something about HP BASIC: You can type 
statements that are up to dozens of characters long. 

Now that you have the keyboard area filled with E's, you're 
ready to look at the message/results line. Press [ENTER-l]. 
The screen displays an error message: 

I ERROR 935 Identifier is too long 

When you pressed [ENTER-l], the computer thought you 
wanted to "enter" an HP BASIC command. But all those E's 
weren't anything the computer could recognize. So it did 
nothing, and told you you'd have to change that line to 
something it could recognize. 

Error messages and the results of keyboard operations 
always appear in the message/results line. 

Incidentally, do not fret over error messages. They don't 
hurt the computer or your programs. They're just the 
computer's way of telling you to fix a mistake before going 
on. 

Softkey Labels The bottom line on the screen shows softkey labels for these 
user-definable keys. The left label is for key fl, the next for 
key f2, and so on. 

Here's an example of softkey labels: 

On this keyboard now, the softkeys are "typing aids" for HP 
BASIC commands. To type the command LIST BIN (listing 
all the binary programs available to HP BASIC), you'd press 
key fl. 

The Display and Keyboard 1-11 



Erasing What 
You Don't 
Want 

The "default" softkey labels and functions (the ones you see 
when you first turn the computer on) are different, 
depending on your computer and the version of software 
you have. HP 9000 Series 300 computers, for example, give 
you a display like the one above; you can summon different 
displays with the [Menu] and [User/System] keys on the 
keyboard. If you have an HP 9000 Series 200 computer, 
you'll see 10 softkey labels corresponding to softkeys 
numbered kO through k9. Your computer's documentation 
is the place to look for more information. 

Remember, you can change the labels and the functions of 
the softkeys. Later on in this course you'll learn how to do 
just that. 

To erase a character you don't want, press the [DEL CHR] 
(delete character) key. This may also be called [DEL C] or 
[Delete char] or simply [DEL]. Try it now on an E: 

1. Use [BACK SPACE] or the left arrow key [+-] to move 
the cursor under one of the E's in the keyboard area. 

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 
EEEEEEEEEEEEE£ 

2. Press [DEL CHR]. One E is erased. 

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 
EEEEEEEEEEEEE 

1-12 The Display and Keyboard 



3. Now use [BACK SPACE] or the left arrow key to move 
the cursor into the middle of the line of E's. (Anywhere 
in the line will do.) 

EEEEEEEEEEEEE 

Hold down the [DEL CHR] key and watch the cursor 
gobble up E's. Like most keys, the [DEL CHR] key 
automatically repeats if you hold it down. 

CLEAR LINE The [CLEAR LINE] key or a CLEAR LINE statement 
erases a line at a time. To see how it works: 

1. Make sure the keyboard area on the screen is filled with 
E's. 

2. Press the [CLEAR LINE] key. 

The entire keyboard area is cleared; that's because the 
computer sees this entire area as a single line. 

CLEAR SCREEN You can clear the entire screen with the CLEAR SCREEN 
statement or the [CLR SCR] key. Try it now. 

When you execute the CLEAR SCREEN command, 
everything disappears from the screen except the cursor. 
This affects only the screen - not the computer's memory, or 
any programs or anything else. 

If you're uncomfortable staring at the trackless void of a 
blank screen, type CAT -1 to see a catalog of programs 
again. 

The Display and Keyboard 1-13 



KEY LABELS 
ON/OFF 

Math 
Functions 

Keeping a Trail of 
Your Work 

If you decide you don't want the softkey labels at the bottom 
of the screen, use the KEY LABELS OFF command to turn 
them off. Use KEY LABELS ON to turn them on again. 

This doesn't affect the softkeys themselves; it merely turns 
the labels on or off on the screen. Try this: 

1. Make sure the key labels are on the screen, then press 
one soft key. When you press the softkey, its function is 
"written" in the keyboard area, just as if you had typed it 
there. Try this one, if it's on your softkey display: 

LIST BIN 

2. Press [ENTER.J]. You can see that the function is 
executed. 

3. Now turn off the softkey labels: Type KEY LABELS 
OFF.J. The key labels are gone. 

4. Press the same softkey again. The results are the same. 
Whether the key's label is displayed or not, the key 
function operates normally. 

5. To see the softkey labels again, type: 

KEY LABELS ON.J 

Just like a pocket calculator or adding machine, HP BASIC 
gives you a number of mathematical functions. Later you'll 
see how to use these in a program to calculate answers 
automatically. For now, though, learn to use these math 
functions from the keyboard. 

To keep a record of your calculations on the screen, type 
this: 

PRINTALL IS 1.J 

1-14 The Display and Keyboard 



Then press the [PRT ALL] key. 

This keeps a record of your keyboard operations on the 
screen, so if you make a mistake, you can see what you did 
wrong. 

Addition First, something simple: to add 2 and 2, just type 2 + 2 
[ENTER.J]. HP BASIC does the rest. Try it! 

1. Type: 

2 + 2 

2. Press [ENTER.J] 

The answer appears on the message/results line: 

If your keyboard has more than one + sign, it doesn't 
matter which one you use. You can press either the + sign 
on the upper right-hand portion of the keyboard or the + 
sign on the numeric keypad if your computer has one. 

Subtraction To subtract one number from another, use the hyphen ( - ) 
or the minus sign on the numeric keypad. For instance, to 
subtract 13,771 from 18,405: 

1. Type: 

18405-13771 

2. Press [ENTER.J]. 

The computer displays the result: 

4634 

The Display and Keyboard 1-15 



Multiplication To multiply two numbers together, you don't use a 
multiplication sign (x); instead, use the asterisk (*). For 
example, to multiply 12 x 185, type: 

12 * 185.-J 

The computer displays the answer: 

1
2220 

Division In place of the division sign ( + ), use the slash (I) to divide 
one number by another. 

Note Don't try to divide two numbers with the back slash (\). This 
character has other uses in your computer; it doesn't perform 
division. 

The slash you use to divide two numbers is in the lower right 
corner of the keyboard, with the question mark over it. It 
may also be on the numeric keypad. 

For example, try dividing 78,234 by 1,250, type: 

78234 / 1250.-J 

The computer displays the result immediately: 

62.5872 

1-16 The Display and Keyboard 



Raising a Number 
to a Power 

Exponents and 
Powers of 10 

To raise a number to a power, use the A sign. For example, 
to calculate 25 (that is, 2 to the 5th power; or 2 x 2 x 2 x 2 x 
2), type: 

2"5..J 

The computer displays the result: 

To see an example of an exponent display, calculate 220 by 
typing: 

2"20..J 

The result is displayed as: 

11.048576E+6 

The "E" (for "exponent") shows that the next number after it 
is an exponent - that is, a power of 10. So this number is 
really 1.048576 x 106

. (That is, 1.048576 x 10000000, or 
1,048,576.) 

HP BASIC also shows numbers with negative exponents. 
Always use parentheses around negative numbers and 
exponents. To see why, enter this simple-looking 
expression: - 12. 

Type: 

1 " 2 ..J 

The computer displays: 

1 

The Display and Keyboard 1-17 



Other Math 
Functions 

But is -1 the correct answer? No! The right answer is 1. 
(M ultiplying two negative numbers together always gives a 
positive number.) 

What happened? The computer sees _12 as - (12). You 
should always use parentheses so the computer can't make a 
mistake. To do it right, type: 

Now the computer displays the correct answer: 

Use parentheses for negative exponents, too. For example, 
to calculate 10- 12

, type: 

10 " (-12)..J 

The computer displays: 

Il.E-12 

This display means "1.0 x 10 -12 ". 

There are a number of other mathematical functions you 
can use in your programs. These produce an answer based 
on what is in parentheses after the function. 

Take the square root function, for instance: when you type 
SQRT (77), the computer calculates the square root of 77: 

SQRT (77)..J 

1-18 The Display and Keyboard 



The answer is displayed: 

18.77496438739 

In this example, the number 77 is called the argument of the 
function. Most functions need an argument. 

If you don't want all those trailing decimal places in your 
answer, use another function: PROUND. Try it with this 
example again. Type: 

PROUND (SQRT(77),-2).J 

PROUND rounds off the answer to two decimal places: 

1 8 •77 

Here is a list of some of the general math and trigonometric 
functions in HP BASIC. You can use all of them from the 
keyboard. Or you can use them in your programs. 

Function What It Does 

ABS Calculates the absolute value of an 
argument. 

ACS Returns the arccosine of an 
argument. 

ASN Returns the arcsine of an argument. 

ATN Returns the arctangent of an 
argument. 

COS Returns the cosine of an angle. 

DEG Sets the degrees mode. 

The Display and Keyboard 1-19 



Function What It Does 

DIV Divides one argument by another 
and returns the integer portion of 
the quotient. 

DROUND Returns an expression's value, 
rounded to a specified number of 
digits. 

EXP Raises the base e (2.71828182846) 
to a specified power. 

FRACT Returns the fractional portion of an 
expression. 

INT Returns the integer portion of an 
expression. 

LGT Returns the logarithm (base 10) of 
an argument. 

LOG Returns the natural logarithm (base 
e) of an argument. 

MAX Returns the largest value in a list of 
arguments. 

MAXREAL Returns the largest number 
available. 

MIN Returns the smallest value in a list 
of arguments. 

MINREAL Returns the smallest number 
available. 

MOD Returns the remainder of integer 
division. 

PI Returns an approximation of 'iT, 

PROUND Returns the number rounded to the 
specified power of 10. 

RAD Sets the radians mode. 

1-20 The Display and Keyboard 



What About 
Longer 

Expressions? 

Function What It Does 

RND Returns a pseudorandom number 
from a seed. 

RANDOMIZE Randomizes the seed used by the 
RND function. 

SGN Returns the sign of an argument. 

SIN Returns the sine of an angle. 

SQRor SQRT Returns the square root of an 
argument. 

TAN Returns the tangent of an angle. 

It's very nice to be able to add 2 and 2. But the real 
usefulness of any computer lies in its ability to quickly 
crunch through long, complex expressions. Let's see how 
HP BASIC handles longer expressions. 

For one thing, you must always use a function or an 
arithmetic sign before a set of parentheses. Thus, HP 
BASIC does not recognize this: 

2(3+4) 

But if you add an asterisk before the parentheses, you tell 
the computer to multiply the quantity inside the parentheses 
by 2. Try it: 

2*(3+4)-1 

The computer displays: 

14 

The Display and Keyboard 1-21 



Another thing to remember is that HP BASIC performs 
operations according to a definite order. Here it is: 

Step Number Operation 

1 Parentheses: The first thing HP 
BASIC does is calculate everything 
in parentheses, working left to right. 

2 Functions: Next, functions are 
calculated. 

3 Exponentiation: Next, all exponents 
( A) are calculated. 

4 Multiplication (*) and division (I) 
are performed next. 

5 Addition ( + ) and subtraction ( - ) 
are performed after everything else. 

You can see the difference with this simple test: 

If You Type: The Answer Is: 

2*3+4..J 10 

2*(3 + 4)..J 14 

See the difference? When you typed 2*3 + 4, the computer 
performed multiplication first (2*3 = 6) and did addition 
last (6 + 4 = 10). 

However, when you added the parentheses, the computer 
first calculated what was inside the parentheses (3 + 4 = 7), 
then multiplied (2x7 = 14). 

1-22 The Display and Keyboard 



Cardinal Rule W 

Fun Functions 

What about this one: 4[28-3(5 + 3)]/2? 

Brackets such as [ and] aren't used for mathematics in HP 
BASIC (they have other duties to perform). But you can 
place one set of parentheses inside another one, like this: 

4*{28-3*{5+3}}/2~ 

This is called "nesting" parentheses. Like a good scout, HP 
BASIC follows its rules to calculate this expression, so the 
answer is: 

There is virtually no limit to how deep you may nest 
parentheses (that is, how many layers of parentheses you 
may have). There's just one cardinal rule: 

You must have an equal number of left and right parentheses. 

Want to find out the date or the time? Want to play music 
on your computer? HP BASIC has a way to do all of this. 

For instance, TIMEDATE returns the current value of the 
real-time clock in the computer. Use it together with 
TIME$ and DATE$, like this: 

TIME$(TIMEDATE)~ 

This gives the current time: 

10:01:31 

The Display and Keyboard 1-23 



For the date, type: 

DATE$(TIMEDATE)~ 

You see today's date displayed on the screen: 

12 July 1988 

What about sound? Use the BEEP function; type: 

BEEP 200, l~ 

You hear a looong, looww tone. The first number (200) is 
the frequency. The number after the comma (1) is the 
duration in seconds. 

Now try this one: 

BEEP 1000, .5~ 

This time the tone is higher (1000 Hertz) and shorter (1/2 
second). 

1-24 The Display and Keyboard 



Review Quiz 

-

Take this quiz to see how well you've learned the material in 
lesson 1. Try to do the test without referring to the earlier 
explanations. 

When you've finished the quiz, check your answers against 
those in appendix A. Then go back and review any areas 
where you had difficulty. 

1. You're helping a new user learn HP BASIC. He wants a 
catalog of the programs in the computer, so he types the 
following characters: 

CAT 

Nothing happens. What did he forget to press? 

2. When you turn on your computer, the bottom of the 
screen looks like this: 

- -
What key would you press for the command RE-STORE? 

3. Dozing, you accidentally set your elbow on the keyboard 
and fill the keyboard line with Z's. How can you erase all 
those Z's easily, without the DEL key? 

4. Conscientious city planner Madeline Bray is comparing 
the population densities of New York and Tokyo. She 
finds New York's density by dividing the number of 
people (14,598,000) by the area (1,274 square miles): 

INT(14598000/1274).J 

11458 

The Display and Keyboard 1-25 



However, when she tries to find the population density of 
Tokyo, by dividing the number of people by the area, she 
has a problem. Here is what she types: 

INT(25434000\1089).J 

Can you help her? What has she done wrong? 

5. How would you solve this equation? 

3
4 

10 (5 - 15 - 3 ( 37 - 14) ) 

1-26 The Display and Keyboard 



2 
Your First Program 

This lesson shows how to write and edit a simple HP BASIC 
program. You will learn about: 

• SCRATCH. 

• Commands and statements. 

• EDIT mode. 

• Running a program with RUN. 

• Running a program with STEP. 

• INPUT. 

• Variables. 

• RENumber. 

• COPYLINES and MOVELINES. 

• DISPlay. 

Your First Program 2-1 



Solving a 
Problem in 
Calculator 
Mode 

o 

2-2 Your First Program 

If you worked through lesson 1, you know how to use math 
functions on the computer keyboard. Everything in lesson 1 
was done in BASIC's calculator mode. This means that 
whatever you press on the keyboard is executed immediately. 

Let's solve a problem in calculator mode, just to refresh 
your memory. 

Example: The nine planets in our solar system aren't 
perfectly round. Still, if you know a planet's diameter, you 
can get an approximation of the area of its surface by using 
the formula for the surface area of a sphere: 

A='lTd2 

Where: 

• A is the surface area of a sphere. 

• 'IT is the quantity pi (3.14159 ... ). 

• d is the known diameter of the sphere. 

The earth, for instance, has a diameter of 7926.41 miles. If 
we assume it is perfectly spherical, what is its surface area? 

Solution: At the HP BASIC keyboard, you can solve this 
problem in calculator mode with a few keystrokes. Just type: 

PI*(7926.41~2)~ 

The answer is: 

I 1.97379906233E+8 

This means 1.97 x 108; or 197,379,906.233 square miles. 



Writing a 
Program 

What Is a 
Program? 

Edit Mode 

If you know the diameters of all nine planets, you can 
calculate their surface areas using the same technique. But 
why press all those keys over and over when you have a 
computer to do the work? Let's write a program that will 
calculate the surface area of any sphere. 

A program, whether in BASIC or any other computer 
language, is just a list of statements that are executed by the 
computer. They're executed in order, one by one, just as if 
you were entering them from the keyboard. But the 
computer is automatic and much, much faster. 

Up to now, you've used BASIC only in calculator 
mode - whatever you typed in was executed immediately" 
just as if you were using a desktop calculator. Now you're 
going to switch to edit mode to enter a program. 

For this example, first make sure there are no other 
programs ready to run in the computer. Type: 

SCRATCH..J 

SCRATCH (you may have to type SCRATCH A) erases any 
other program that may be in the computer. It "clears 
memory" to a blank slate for you to put in your own program. 

The first thing you must do to write a program is to "switch" 
the computer to edit mode~ To do this, press the [EDIT] 
key. Or simply type the command: 

EDIT..J 

Your First Program 2-3 



The computer displays the line number of the first line in 
your program, inserts blank spaces, and places the cursor 
ready to type the line: 

Line Numbers The computer keeps track of your program's statements by 
means of line numbers. Each statement has a line number; 
when the computer executes the program later, it executes 
line number 1 first, then line number 2, then 3, and 
continues until it reaches the end of the program. 

2-4 Your First Program 

Unless you tell it a different way to number lines, the 
computer automatically gives the first statement a line 
number of 10, the second statement 20, and so on. This 
makes it easier to go back later and insert extra lines in your 
program. 

Now type the first line of the program: 

INPUT D..J 

When you press [ENTER..J] in edit mode, the current line 
is checked to make sure it's something the computer can 
understand. Then it's entered in the program. 

The computer understands you've typed a program line if 
the line has a line number, then at least one space, then a 
keyword. A keyword is something -like INPUT - that has 
meaning to the HP BASIC system. 

(Incidentally, you can type keywords as either upper- or 
lower-case letters; the computer automatically changes them 
to upper case for you.) 



Cardinal Rule ~ 

After the computer enters the line, it automatically types 
the next line number for you, and moves the cursor so you're 
ready to type again. 

10 INPUT D 
20 

If you don't press [ENTER.J], the line is forgotten. Here's 
another cardinal rule: 

If you type or change a line, it isn't entered in the program 
until you press [ENTER_H. 

Finish typing the program, just as it's shown here. If you 
make a mistake, use [BACK SPACE] and/or [DEL CHR] 
(or the equivalent on your keyboard) to "back up" and 
correct it. Remember to press [ENTER.J] after each line. 

10 INPUT D 
20 LET A=PI*(DA2) 
30 DISP A 
40 END 
50 

Your program to calculate the area of a sphere is now in the 
computer. Now all you have to do is run the program. 

Your First Program 2-5 



A Bit of BASIC History 

Unlike spoken languages such as English and Chinese, BASIC does have a known 
birthdate: May 1,1964. That's when two faculty members and a handful of 
students at Dartmouth College first saw correct answers emerge using a new 
language they had created for their timesharing computer system. 

Before BASIC, most programming used batch 
processing: a student or engineer would write a 
program, punch out a card for each instruction, 
then hand over the pack of cards to a computer 
center. Then, hours (or days) later, the cards 
were returned, along with a printout showing 
error codes. It was tedious and time-consuming, 
usually requiring several "runs" to get the 
program right. 

Those pioneers at Dartmouth created an alternative. They called it BASIC, for 
Beginner's All-purpose Symbolic Instruction Code. From the outset, it was clear 
that the word "Beginner's" was a misnomer, since BASIC quickly found favor with 
a full spectrum of the sci~ntific and technical community. 

For one thing, it was easier to use: statements were easy-to-remember words like 
GO TO, PRINT, and IF ... THEN. There was one instruction per program line, 
and each line began with a keyword. Another advantage of BASIC was its instant 
feedback: when a user on the timesharing system typed a program line, it was 
checked immediately for syntax. Error messages popped up right away if the 
statement was wrong, so correction could be immediate. 

Finally, BASIC was hardware-independent. A user didn't have to know anything 
about file structure to save a program, for instance. 

Those early BASIC programmers had a tiny vocabulary to work with - just over a 
dozen commands and statements in all. By contrast, today's HP BASIC boasts 
more than 300 keywords! 

2-6 Your First Program 



Running a 
Program 

RUN 

When you run a program, the computer begins with the first 
line of the program and executes the statement in that line. 
Then it moves to the next line and executes that statement, 
then the next - just as if you were executing them from the 
keyboard. This is known as run mode. 

The easiest way to run a program is with the [RUN] key. 

Here's how to run the program to calculate the area of a 
sphere: 

1. Press [RUN]. The computer displays: 

The question mark means the program is halted, awaiting 
input; in this case, it's waiting for you to enter a value for 
D, the diameter. 

2. Type a diameter, then press [ENTER.J]. For instance, 
to calculate the surface area of a sphere the size of 
Earth, type: 

7926.41.J 

The computer finishes running the program and displays 
the answer: 

1.97379906233E+8 

Your First Program 2-7 



2-8 Your First Program 

You can see how much faster the HP BASIC program could 
calculate the area of a sphere. Try calculating the surface 
areas of these other planets: 

Planet Diameter in Miles 

Mercury 3100 

Mars 4200 

Jupiter 88,000 

To calculate the surface areas, just run the program and 
input the diameter for each planet; the computer does the 
calculations for you: 

RUN..J 

3100..J 

1300190705401E+7 

RUN..J 

4200..J 

15054176944093E+7 

RUN..J 

? 



If the Program 
.Doesn't Work 

Parts of the 
Program 

88000..J 

12.43284935094E+IO 

Although you couldn't see it because the program runs so 
fast, BASIC displays a small square in the lower right 
portion of the screen when a program is running. This 
square is the run indicator (or run light). You'll learn more 
about it in the next lesson. 

If the program doesn't seem to run correctly, don't 
worry - even if you made a mistake entering the program, 
you can't hurt the computer or other programs in memory. 
Should you encounter problems, double-check the program 
listing to make sure you entered everything correctly. 

Then try the trouble-killers. (They're listed in the 
introduction to this course.) 

Finally, erase the current program and reenter it, by typing: 

SCRATCH..J 
CLEAR SCREEN..J 
EDIT..J 

Enter the program again, exactly as it's supposed to be 
written. 

Now let's take a closer look at what happens when you run 
the program. Just to make things easier to read, clear the 
screen, either with the [CLEAR SCREEN] key or by typing: 

CLEAR SCREEN..J 

Your First Program 2-9 



Statements and 
Functions vs. 

Commands 

2-10 Your First Program 

To see every step of the program as it runs, you'll use the 
[STEP] key. 

In BASIC, anything that can be part of a program - that is, 
given a line number - is called a statement. You can 
execute most statements from the keyboard, of course, but 
they're usually executed as part of a program. For example, 
each line in your program contains a statement: INPUT, 
LET, DISP, and END are all statements. 

A function, such as PI or SQRT (square root), can be used 
as part of a statement. And like statements, functions can 
be executed directly from the keyboard or as part of a 
program. 

A command is different. A command is an order from you 
that tells the computer to change status, execute a program, 
etc. For example, RUN, EDIT, and DEL are all commands. 
In general, you cannot store a command as a line in a 
program. 

Here is how you use functions, statements, and commands: 

Question Functions Commands 
and 
Statements 

Part of Yes No 
program? 

Use line Yes No 
numbers? 

When When From keyboard 
executed? program is 

run, or from 
keyboard 



Using the [STEP] 
Key 

INPUT 

The [STEP] key is like [RUN], except it moves slowly-one 
"step" at a time. [STEP] lets you see exactly how a program 
works. (It's great for finding "bugs" in your programs, too!) 

Press [STEP] now to see the first line of the program: 

110 INPUT D 

Line 10 is an input statement. It means "pause for input 
from the keyboard." When a running program executes line 
10, it pauses, signals you with a question mark, and waits for 
you to type the value for the diameter, D. 

Press [STEP] again to execute line 10. The screen displays: 

You can see line 10 was executed and the computer is now 
waiting for you to input a diameter. Let's use the diameter 
of Mercury: 

3100..J 

You just typed in the value of a variable, D. 

Variables At the beginning of this lesson you used the keyboard to 
solve for the surface area of a sphere. In calculator mode, 
you simply typed numbers - such as the diameter of a 
sphere - whenever they were needed. 

A running program, however, keeps track of numbers by 
means of variables, such as D. By changing the value of the 
variable, you can change the outcome of the program. 

Your First Program 2-11 



You can name a variable almost anything you want. It's 
easiest if you use names that relate to what the variable 
does. For example, in our example program, we used D for 
diameter, A for area. 

Y ou'lllearn more - much, much more - about numeric 
variables in lesson 4. But for now, just remember: 

• Use variables for all numeric quantities in your programs. 

• Give variables only meaningful names. 

LET You can now see the second line of the program: 

2-12 Your First Program 

1 20 LET A=PI* (0"2) 

The LET statement assigns a value to a variable. In line 20, 
the variable for area, A, is assigned the value 'iT x D2. 

The LET statement always has an equals sign to show what 
value you're assigning to the variable. 

Incidentally, the actual keyword LET is optional. So these 
two statements are exactly the same: 

110 LET A=PI*(0"2) 
10 A=PI*{D A2) 

Here are some examples of LET statements: 

130 LET X=100 

Line 30 assigns the value 100 to the variable X. 



70 Sum=X+S 

Line 70 adds 5 to the current value of X and places the 
result in the variable called Sum. 

1 10 A=PI*(DA 2) 

Here, line 10 assigns the value 'iT D2 to the variable A. 

I 100 LET 1=1+1 

In line 100, the LET statement increments (adds 1 to) the 
variable I. 

As you see, a variable name is like a person's name - it 
begins with a capital letter . 

The DISP Press [STEP] again to execute line 20 and see the third line 
Statement of the program: 

130 DISP A 

This means "display the current value of the variable A." 

The display is always on the display line of the computer 
screen. You can use the DISP statement to display 
variables and other information. 

Your First Program 2-13 



The All-Important 
END 

2-14 Your First Program 

If you enclose something for display in quotation marks, 
DISP shows exactly what's written. For example, look at 
this program segment: 

30 Dickens=100 
40 DISP Dickens 
50 DISP "Dickens" 

When the program segment is run, line 30 stores the value 
100 in a variable called Dickens. Line 40 displays the value 
of the variable: 

1
100 

Line 50, though, gives this display: 

I Dickens 

Later on in this lesson you'll use the DISP statement to 
make your program friendlier and easier to read. 

In any program, there is just one statement that's 
required - that the program cannot exist without. It's the 
END statement. 

Press [STEP] again to see the last line of your program: 

140 END 

END tells the computer that it's the last line of the program. 
When the computer executes line 40, it halts and switches 
back to calculator mode, ready to run the program again. 



This brings us to another cardinal rule: 

Cardinal Rule ~ Every program must have an END statement as the last line. 

Editing Your 
Program 

Press [STEP] one last time to execute the END statement 
and end the program. 

Now that you've run your program a few times, you've seen 
that it easily handles the job of calculating the area of a 
sphere. But the program is not at all "friendly" or easy to 
use. 

Think about it: If you came back to this program and ran it 
after several months, would you remember what the 
question mark meant? Would you have to read through 
every step to understand what the program does? 

Let's alter your program to make it better - and give you 
some editing practice to boot! 

Editing a Line The EDIT command puts you back in edit mode, ready to 
type new program lines or edit old ones. Use EDIT now to 
go right to the first line you want to edit; type: 

EDIT 30.J 

You see the computer switched to edit mode - and you're 
right on line 30! 

Your First Program 2-15 



2-16 Your First Program 

10 INPUT D 
20 LET A=PI*{D A2) 
30 DISP A 

40 END 

Now change line 30 to read: 

130 DISP "The surface area is";A 

You have a number of ways to edit this line: 

• You can simply type over the characters of the old line. 

• You can turn INSERT on (press the [INSERT] or [INS] 
key). This means that new characters don't over type old 
ones; instead they're inserted in the line. (To turn 
INSERT off and go back to overtype, press [INSERT] or 
[INS] again.) 

• You can type a new line with the same line number: move 
the cursor all the way to the left and type the new line 
number. Leave a space, then type the statement. 

No matter how you edit the line, be sure to press 
[ENTER.J] when you're done. 

You can use the cursor movement keys to go to any chosen 
line and edit it. 



Entering New Lines Now you should be at line 40: 

140 END_ 

To enter new lines, move the cursor to the left of the screen, 
and type the new line number. Then leave at least one 
space, and type the statement. (That's right, type right over 
the END statement!) Be sure to end the line with 
[ENTER.-J], like this: 

50 CLEAR SCREEN.-J 

See what happened? Because you began the line with a 
different line number, you didn't affect line 40 - even 
though you typed over it. Your new line 50 appears after 
line 40 when it's entered: 

140 END 
50 CLEAR SCREEN 

Now enter the rest of the new lines, so the program has the 
lines shown here: 

10 INPUT D 
20 LET A=PI*(DA2) 
30 DISP "The surface area is";A 
40 END 
50 CLEAR SCREEN 
60 DISP "Enter a diameter" 
70 WAIT 3 
80 

Don't worry if the lines don't line up on your screen. It 
makes no difference to the computer. 

Your First Program 2-17 



Moving Program 
Lines 

2-18 Your First Program 

You've entered the new program lines, but they're in the 
wrong place; you want to move them to the beginning of the 
program, not the end. 

For this you'll use the MOVELINES command. Move the 
cursor all the way to the left of the screen and type: 

MOVELINES 50,70 TO 10 ~ 

This command "picks up" lines 50 through 70, and moves 
them to line 10. The other program lines are renumbered 
and move down to make room for the new lines. Your 
program now looks like this: 

10 CLEAR SCREEN 
11 DISP "Enter a diameter" 
12 WAIT 3 
13 INPUT D 
14 LET A=PI*(DA2) 
15 DISP "The surface area ·i s";A 
16 END 

The MOVELINES command is handy for moving one line 
or any number of lines to a new location. 

Another command, COPYLINES, is similar to 
MOVELINES. COPYLINES inserts a copy of the lines you 
specify in the new location; the lines also remain in their 
original location in the program. 



Renumbering 
Lines 

You could run your program just as it is now. But most 
programmers in BASIC use line numbers in increments of 
10, as you did before. You can use the REN (renumber) 
command to renumber the program lines. 

Move the cursor to the left and type the REN command. Be 
sure to erase any other characters on the line, then execute 
the command: 

REN.J 

Your program is changed to: 

10 CLEAR SCREEN 
20 DISP "Enter a diameter" 
30 WAIT 3 
40 INPUT D 
50 LET A=PI*(DA2) 
60 DISP "The surface area is";A 
70 END 

When using the REN command, you can specify the line 
number to begin with, to end with, and the interval. Look at 
these examples: 

REN 1000 

This command renumbers lines, assigning line number 1000 
to the first line of the program. 

REN 50, 25 

Here, lines are renumbered beginning with line 50, in 
intervals of 25; the first line in the program becomes line 
number 50, the next 75, then 100, 125, and so on. 

Your First Program 2-19 



Run the Edited 
Program 

2-20 Your First Program 

REN 10, 10 IN 5 

This begins with line 5 and changes its number to 10; then 
renumbers in intervals of 10. 

If you don't specify a line number or interval, the computer 
begins with line 10 and uses intervals of 10. 

The REN command can be extremely useful when you 
modify a program. For instance, to add 15 new program 
lines between lines 10 and 20, you'd first want to renumber 
using an interval of, say 20; that is, REN 10,20. Then you 
could add the new lines with no problem. 

To run the edited program, type RUN or press the [RUN] 
key. You can run the program now to calculate the surface 
areas of other planets in our solar system: 

Planet Diameter in Miles 

Saturn 71,000 
Uranus 32,000 
Neptune 31,000 

To calculate the surface area of Saturn, press ( or type) 
RUN. The computer displays: 

I Enter a diameter 

Then: 

Enter the diameter of Saturn: 

71000.J 



The computer gives you a more meaningful answer than 
before: 

The surface area is 1.58367685667E+I0 

You can run the program again to calculate the surface 
areas of Uranus and Neptune, if you like. 

Now let's see how the changes you made to the program 
affect it. 

Clearing the You've changed the program, and the first line of the new 
Screen program is now: 

110 CLEAR SCREEN 

This shows that CLEAR SCREEN is a statement, not a 
command - you can use it from the keyboard or in a 
program. If you want to be sure there's no "garbage" on 
your screen from previous program runs, a CLEAR 
SCREEN statement early in your program is a good idea. 

Waiting, Waiting The next three lines of the new program show how you can 
prompt for input without stopping the program. Look at 
lines 20 through 40: 

20 DISP "Enter a diameter" 
30 WAIT 3 
40 INPUT 0 

Can you figure out what happens when line 20 is executed? 
That's right, the characters in quotation marks are displayed 
exactly as they are written. 

Your First Program 2-21 



A Friendlier 
Display 

2-22 Your First Program 

Line 30 is a WAIT statement. It causes the computer to 
wait before proceeding to line 40. Since you've specified 
WAIT 3, the computer waits three seconds, displaying the 
words "Enter a diameter." Then execution automatically 
moves on to line 40 and continues. 

Line 40 is our old friend, the INPUT statement. Remember 
that it displays a question mark and waits for input - and 
doesn't continue until you type a number and press 
[ENTER.J]. 

After the calculation is performed in line 50, line 60 displays 
the value for A - the surface area of the sphere. But 
because you've added the words in quotation marks, line 60 
also displays a message. 

160 OISP "The surface area is";A 

When line 60 is executed, the computer displays the words 
inside the quotation marks, exactly as they are written. On 
the same line, it also displays the current value of variable 
A. So what you see is: 

I The surface area is 1.58367685667E+I0 

See the semicolon just before the A? This tells the 
computer to leave just one space before it displays the value 
of the area. Y ou'lliearn more about spacing in lesson 3. 



Review Quiz 1. What's the only statement required in a program? 

2. How do you put a computer in edit mode for typing or 
editing program lines? 

3. What appears on the screen when this program is run? 

10 LET Dta=1000 
20 DISP "YOU OWE";Dta;"DOLLARS!" 
30 END 

4. What key is used to single-step through a program? 

5. Write a short program to compute the squares of 
numbers. The program should stop to prompt for input, 
then display both the original number and the answer; as, 
for example: 

What is the number? 

The square of 5 is 25. 

Your First Program 2-23 



2-24 Your First Program 



3 
Saving Your Program 

In this lesson you'll write and edit a new program. You'll 
learn to list the program, and you'll learn to direct program 
output to the screen or the printer. Here's what you'll be 
studying in this lesson: 

• [PAUSE] and [CONTINUE]. 

• The run light. 

• PRINTER IS. 

• LIST. 

• REMarks and the exclamation point. 

• Specifying MASS STORAGE IS. 

• Initializing a disk with INITIALIZE. 

• STORE, LOAD, and RE-STORE. 

• SA VE, GET, and RE-SA VE. 

• DISP vs. PRINT on the screen. 

• The difference between a semicolon and a comma in the 
PRINT and DISP statements. 

Saving Your Program 3-1 



Write a New 
Program 

3-2 Saving Your Program 

For this lesson, begin typing in a new program. First, clear 
any program that might be in your computer, and switch to 
edit mode. Type: 

SCRATCH.J 
EDIT .J 

Now type in the following program, exactly as it's written 
here: 

10 !This program counts 
20 PRINTER IS 1 
30 FOR 1=1 TO 50 
40 DISP "The current value of I is",1 
50 PRINT "The current value of I is";1 
60 WAIT.l 
70 NEXT I 
80 END 
90 

Be sure you use a comma in line 40 and a semicolon in line 
50. 

Once you've typed in the program, switch out of edit mode 
and run the program. 



Run the 
Program 

[PAUSE] and 
[CONTINUE] 

To get out of edit mode and run the program, press the 
[R UN] key. The computer begins displaying the numbers 
from 1 to 50: 

The current value of I is 1 
The current value of I is 2 
The current value of I is 3 

The current value of I is 48 
The current value of I is 49 
The current value of I is 50 

The current value of I is 50 

As you can see, the program counts up to 50, then stops. 

While the program is running, press [PAUSE]. Execution 
"freezes" in mid-program, and the display shows the next 
line to be executed. 

Now press [CONTINUE]. The program resumes right from 
where it left off. 

You can use [PAUSE] and [CONTINUE] along with 
[STEP] to help write and debug your programs. 

Saving Your Program 3-3 



The Run Light 

3-4 Saving Your Program 

Do you see the small square in the lower right-hand corner 
of the screen while the program is running? This is the run 
light. 

The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 

is 24 
is 25 
is 26 
is 27 
is 28 
is 29 
is 39 
is 31 
is 32 
is 33 
is 34 
is 35 
is 36 
is 37 
is 38 
is 39 
is 49 
is 41 

Run Light 

The current value of I is 41 

The run light tells you the current status of the computer in 
BASIC. This chart shows what the different displays of the 
run light mean: 

Run Light What It Means 

Blank Program stopped. 

Solid box Program running. 

- Program paused. 

I/O Program paused, but transferring 
data. 

? Awaiting input from the keyboard. 

* Executing a command from the 
keyboard. 

Before we store our counting program, let's look at some 
new statements it introduces. 



REMarks First, examine line 10: 

EDIT 

110 ! Th is program counts 
, 

Line 10 is a remark. When you use an exclamation point or 
the keyword REM as the first item in a line, that line is 
ignored by an executing program - that is, the line is 
skipped. 

These lines are all examples of remarks, and they're all 
skipped during execution: 

10 !This program is useful for calculating the area 
20 !of a sphere. When prompted, input the diameter of 
30 !the sphere, D. The area, A, is printed. 

100 REM The next section of code produces a graphed output 
110 !of the user's biorhythm chart. 

You use remarks to annotate your programs for others (or 
yourself). Remarks should tell what the program does and 
how it does it. 

Since they're not executed, you're probably wondering "Why 
use remarks at all?" 

Here's why: As your programs grow in size and number, you 
won't always remember what each program does. And 
trying to deduce the meaning of a complex program by a 
laborious examination of each individual line is an exercise 
you won't want to do often. 

Saving Your Program 3-5 



Cardinal Rule ~ 

Telling Output 
Where to Go 

3-6 Saving Your Program 

Use remarks throughout every program to document how it 
works. 

The next statement, PRINTER IS, tells where you want the 
output from this program to appear. It specifies where the 
answers or other output will be printed: 

120 PRINTER IS I 

When you specify PRINTER IS 1, the number "1" means 
that any printed output is directed to the computer's display 
screen. It's actually "printed" there on the screen. You can 
also use the PRINTER IS statement to redirect output to a 
printer, plotter, or other device. 

The PRINTER IS statement uses a select code to identify 
which printer or other device will receive what you print. 
The select code is unique. It is based on which interface 
(for example, HP-IB or another interface) you're using 
between the computer and the printer. 

(If you have more than one printer attached to the same 
interface, you'll need a little more information. Besides the 
interface select code, you'll also need a code for the device 
itself; this corresponds to numbers set on a switch in the 
printer or other device.) 

Look at these examples of PRINTER IS statements: 

120 PRINTER IS I 

Line 20 specifies the computer's internal CRT display. 



100 PRINTER IS 26 

Line 100 specifies a printer with interface select code 26. 
This statement can be used with a Vectra or other PC that 
has a standard MS-DOS printer as the system printer. 

1 PRINTER IS 701 

This statement directs printed output to a device with 
address 01 on HP-IB (interface select code 7). 

You can also use some special words to specify some parts 
of the computer, such as: 

1440 PRINTER IS CRT 

Line 440 redirects output to your computer's CRT display 
screen. It's the same statement as PRINTER IS 1. 

The words you can use are: 

Word Value 

PRT 701 
KBD 2 
CRT 1 

Another way to direct printer output is to a variable, such as: 

PRINTER IS Laser_jet 

You'Ulearn more about directing output to variables and 
path names in lesson 10. 

Saving Your Program 3-7 



The FOR-NEXT 
Loop 

3-8 Saving Your Program 

The PRINTER IS statement lets you change your output 
device in mid-program. For instance, you could have a 
section of code like this: 

120 PRINTER IS 1 
130 PRINT A 
140 PRINTER IS 701 
150 PRINT A 

This program segment first prints the value of variable A on 
the computer's display. Then it prints the same value on a 
printer with address 01 on HP-IB. 

When you first turn on the computer or BASIC, it "wakes 
up" set to PRINTER IS 1, so line 20 is really unnecessary 
right now. Later on in this lesson, though, we're going to 
change line 20 to put our count on a printer instead of the 
display. 

Lines 30 through 70 make up a "for-next" loop. You'll find 
more -lots more - about loops in lesson 7 of this course. 
For now, though, here's a brief explanation of what happens 
in lines 30-70: 

30 FOR 1=1 TO 50 
40 DISP "The current value of I is",I 
50 PRINT "The current value of I is";I 
60 WAIT.l 
70 NEXT I 

The first time line 30 is executed, variable I is set to 1. Line 
40 displays the value of I on the display line. Line 50 then 
prints the value of I to whatever is the current printer - that 
is, to whatever is set with the PRINTER IS command. 



Line 60 causes the program to pause for 1/10 second. Then 
line 70 causes execution to go back to line 30 for the "next 
I," which is 2. 

The "loop" repeats, adding 1 to the value of I each time, and 
printing the value of I when I = 3, I = 4, and so on. When I 
= 50, execution continues with the END statement in line 
80, and the program stops. 

PRINT vs. DISP What's the difference between PRINT and DISP? The 
DISP statement always puts output on the display line of the 
computer's screen. PRINT can display output on the 
screen, or it can send output to a printer, depending on the 
previous PRINTER IS statement. 

PRINT output appears 
in output area ----+ 

DISP output always 
appears here ----+ 

The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 
The current value of 

is Z4 
is Z5 
is Z6 
is Z7 
is Z8 
is Z9 
is 39 
is 31 
is 3Z 
is 33 
is 34 
is 35 
is 36 
is 37 
is 38 
is 39 
is 49 
is 41 

The current value of I is 41 

In your mini-program, the PRINT statement (line 50) puts 
its output in the output area. The DISP statement always 
produces output in the same place - on the display line. 

Saving Your Program 3-9 



Comma vs. 
Semicolon 

Getting Out of Edit 
Mode 

Listing Your 
Program 

3-10 Saving Your Program 

You probably noticed that the output on the display line is a 
little different than in the output area. That's because the 
DISP statement in line 40 has a comma between "The 
current value of I is" and the variable I, while the PRINT 
statement has a semicolon in the same location. 

40 DISP "The current value of I is",1 
50 PRINT "The current value of I is";1 

The comma between elements of a PRINT or DISP 
statement leaves a wide gap between the elements when 
they're printed. The semicolon prints or displays them next 
to each other, with only a single space or a minus sign (for 
numbers) or no spaces at all (for words). You'll learn a lot 
more about how to control printed output in lesson 9. 

To get out of edit mode, you can run the program, of course. 
But if you want to get out of edit mode without running a 
program, use another key, such as [PAUSE]: 

[PAUSE] 

Commands such as LOAD, CAT, LIST, and RUN and keys 
like [STEP], [PAUSE], and [CLEAR SCREEN] also take 
you out of edit mode. 

You have already seen that switching to edit mode displays 
the program on the screen. To list a program without going 
into edit mode, use the LIST command. Try it now: 

LIST ..J 



You see a listing of the program currently in memory. 

10 !This program counts 
20 PRINTER IS 1 
30 FOR 1=1 TO 50 
40 DISP "The current value of 1 is",1 
50 PRINT "The current value of I is";1 
60 WAIT.1 
70 NEXT I 
80 END 

Available memory = 917692 

At the bottom of the screen, you can see how much memory 
(in bytes) you have available in the computer for more 
program lines. 

Partial Listing To see just a partial listing of a program, just list/rom a 
certain line number, or from one line number to another. 
For example: 

What About LIST 
BIN? 

LIST 30, 70 .J 

This gives a listing of just lines 30 through 70. 

Once a program is listed, use the up and down arrow keys to 
see the entire listing. 

The listing is always sent to the current printer. To make 
sure your listing appears on the display, type PRINTER IS 1 
before you type LIST. 

Another list command available to you is LIST BIN. This is 
really like CAT; it lists the binary programs currently in the 
computer. These binaries are used for certain tasks by 
BASIC. 

Saving Your Program 3-11 



If You Have Printing Problems ... 

BASIC is supposed to be hardware-independent. This means that, usually, you 
simply direct your output to a select code (7, for example, or 26, or PRT) with the 
PRINTER IS statement. Usually, you don't need to worry about how the printer 
is connected, or what kind it is. 

Usually, that's all true. 

Computers are unusual creatures, though, and problems do develop. Especially 
if you are using the HP BASIC Language Processor in a Vectra, IBM PC AT, or 
other personal computer, you may have to make some changes before you can 
print. 

Here are some trouble-killers for printing: 

1. If the program doesn't print, and seems to run forever without stopping, it 
probably means you've told the program to print to a nonexistent printer. Press 
the [CLEAR I/O] key to regain control. Then try the other trouble-killers below. 

2. Make sure the cable between the printer and computer is plugged in securely 
at both ends. 

3. Make sure the printer's power cable is connected, the printer power switch is 
on, and the printer has paper. 

4. Look at the printer and make sure its ON LINE lamp is on. If it isn't, there 
may be an [ON LINE] pushbutton; press it until the ON LINE lamp comes on. 

5. To find out the printer's select code, type: 

PRINTER IS 7.J 
PRINT "HELLO".J 

3-12 Saving Your Program 



If that doesn't work, do the same thing, substituting other select codes after 
PRINTER IS. Try PRINTER IS 26, PRINTER IS 9; in fact, try all of these: 

26 701 9 15 19 23 24 25 

When the printer finally prints, you've found the select code. From now on, use 
the correct select code in the PRINTER IS statement in your program. 

6. If your printer won't print a short listing or program, you may have to send it a 
form feed. Type this after your program has run: 

PRINT CHR$(12).J 

If this produces an output from your printer, include it as a line in your program. 

7. If you have a Vectra or other PC and all else fails, you may need to modify the 
HPW.CON file as described in the documentation for the BASIC Language 
Processor card. Remember to reboot BASIC after you modify this file. Good 
luck! 

Saving Your Program 3-13 



Making Your 
Program 
Permanent 

Before we continue, you should know a little about your 
computer's memory. It's measured in bytes. The number 
for "Available memory" you see when you LIST a program 
shows how many bytes are left for program lines in your 
computer. 

All your computer's memory is volatile, which means any 
program in it is lost when you turn the computer off. Before 
you turn the computer off or type another program, you 
should store or save the current program in a mass storage 
unit. 

LOAD 

STORE 

SAVE 

GET 

Computer Memory 
(Volatile) 

Mass Storage 
(Non-volatile) 

3-14 Saving Your Program 



Specifying 
Mass Storage 
Is 

Mass storage units are usually outside the computer itself. 
They include disks, diskettes, magnetic tapes, and bubble 
memory. These mass storage units can contain many 
programs. 

To run a program, it must be in your computer's memory; 
you can type it in or bring it in from a mass storage unit. In 
general, your computer can have only one program in it at a 
time. 

There are two commands for putting your program onto 
disk or tape: they are STORE and SAVE, and they differ 
mainly in the format in which your program is placed into 
mass storage. 

Before you can store or save a program, though, you'll need 
to tell the computer where to save it, and you may need to 
initialize a disk. Read on! 

A mass storage unit can be a floppy or hard disk, magnetic 
tape drive, or other unit. It might be located right inside 
your computer, or attached to it. Or it could be in a remote 
location and used by many computers. 

Your computer probably has at least one mass storage unit, 
and maybe more. One way to verify the current mass storage 
unit is to do a catalog. Type: 

CAT-1 

The top line of the CAT display (you may need to scroll 
down to see it) shows the mass storage unit for which you're 
seeing the catalog; that is, the default unit. 

Saving Your Program 3-15 



3-16 Saving Your Program 

:CS80, 1500, 2 
VOLUME LABEL: HPW C 

The way you tell the computer which mass storage unit to 
use is by "addressing" the unit. 

The statement MASS STORAGE IS (you can abbreviate it 
as MSI) tells your computer what is the current, or default, 
mass storage unit. Here's an example: 

I MASS STORAGE IS ":CS80,I500,O".J 

This tells the computer that the default mass storage 
unit - the one that will be used for storing and loading 
programs - is the drive called CS80, 1500,0. This means 
drive A (the top or left internal floppy disk drive on most 
personal computers). 

Incidentally, you usually don't have to use the first part of 
the specifier. So these two statements are the same: 

MASS STORAGE IS ":CS80,1500,0"~ 
MASS STORAGE IS ":,1500,0"~ 

Notice that you still need the colon and the comma, though. 



Initialize a Disk 

Cardinal Rule ~ 

Here are examples of how you'd address some mass storage 
units: 

This Statement: Makes This the Default Mass 
Storage Unit: 

MSI ":,1500,0" Internal drive A in Vectra or other 
PC 

MSI Internal disk drive in HP Series 200 
":INTERNAL" 

MASS External drive at address ° on 
STORAGE IS interface 7 (usually HP-IB) 
":,700,0" 

MSI ":,1500,2" Internal hard disk C in Vectra or 
other PC 

If a disk is brand-new, you must initialize it before you can 
use it to store programs or data. Since initializing wipes out 
everything on a disk, any data or files on that disk will be 
lost. So always do a CAT of the disk before you initialize it. 

Always verify that a disk doesn't contain anything valuable 
before you initialize it. 

This procedure is to initialize a floppy disk in drive A. (If 
your computer is different, use the disk drive you have, and 
just substitute the correct mass storage unit specifier.) 

1. Insert a new floppy disk in drive A. (On most computers, 
drive A is the top or left-hand floppy disk drive.) 

Saving Your Program 3-17 



Note 

3-18 Saving Your Program 

2. Type: 

MSI "CS80,1500,O"..J 
CAT..J 

You see a catalog of the disk in drive A, so you can 
decide whether or not you want to initialize the disk. If 
the disk has never been initialized, you'll see a message 
such as: 

I Medium uninitial ized 

3. Type: 

INITIALIZE ":,1500,O"..J 

The initialization process can take several minutes. Then 
you'll see a message telling you initialization is completed. 

If you are using a Vectra or other IBM AT-compatible 
personal computer, see the sidebar titled "Initializing a Disk 
on a PC. " You'll find the sidebar later in this lesson. 

Here's what INITIALIZE does to a disk: 

• Erases all data and checks all bits on the disk. 

• Sets up sectors of magnetic media, and establishes 
interleave pattern between sectors. 

• Establishes a volume label and a directory. 

• Establishes the amount of memory for storage. 



Format and 
Interleave Factor 

When you use INITIALIZE as in this example, without any 
other specifiers, the computer chooses the best format and 
interleave factor for you. You can specify interleave factor 
and format like this: 

INITIALIZE "Mass storage unit", Interleave factor, Format 

If you're only using the disk in this drive, and if your disks 
aren't becoming too full, you probably don't need to specify 
interleave factor and format: the computer automatically 
makes the best choice for you. 

For more flexibility in disk usage, refer to more detailed 
explanations of disk media and the INITIALIZE command. 
You'll find these in other manuals for HP BASIC. 

About Disks The disks you're most likely to use are the 5-1/4 inch disk 
and the smaller but more rugged 3-1/2 inch disk. 

Write-Protected 

BASIC storage capacity of the 5-1/4 inch disk is 360K 
bytes-in fact, it's over 360,000 bytes of memory. (Just for 
reference, one typed character, like the letters on this page, 
occupies one byte.) 

Not Write-Protected 

Don't Touch! 

Saving Your Program 3-19 



3-20 Saving Your Program 

When a tab covers the notch, the disk is write-protected. 
This means you can't copy any files or data to it. You can't 
initialize it, either. Use write-protect tabs to save your 
valuable programs and data against being erased or 
overwritten. 

Don't touch the oxide surface of these flexible disks. Just 
the tiniest bit of dirt or oil from your skin can make it 
impossible to transfer information. 

Although the 3-1/2 inch disk comes in capacities of 720K 
bytes and 1.44M bytes, HP BASIC can only format 720K 
bytes of mass storage. (So if you have a 1.44M byte disk, 
you'll be wasting half the storage capacity of the disk. Save 
your money!) 

The disk has a sliding tab for write-protection. If you slide 
the tab so you can see through the hole, the disk is 
protected against writing or initialization. 

Write-protected when 
you can see through 
the hole 



Initializing a Disk on a PC 

If you are using the HP BASIC Language Processor card in a Vectra or other 
AT -compatible personal computer, you may get this message when you try to 
INITIALIZE a disk: 

FORMAT UTILITY NOT FOUND 

This is because on a Vectra or other PC, the DOS FORMAT utility program is 
called and used by HP BASIC's INITIALIZE statement. 

The easy way out: The easiest way of handling the problem is to exit to DOS 
and initialize the disk in the usual way from DOS: Insert the disk in drive A, type 
FORMAT A:, and let DOS do it. 

Temporary fix: If you want to initialize a disk from HP BASIC, you can add a 
path to the HP BASIC file right from the keyboard. Do this: 

1. Exit to DOS. 

2. Type CD \.J 
3. Specify a path to the HP BASIC directory. For instance, if HPW is the 
directory in which HP BASIC is loaded, type: 

PATH=C: \HPW.J 

4. To get back to HP BASIC, type: 

CD\HPW.J 
BASIC (or HPBASIC).J 

5. Now use the INITIALIZE statement normally. 

You only need to do this temporary fix once each session, although the path is 
"forgotten" when you turn off power to your computer. So you'll have to perform 
this procedure every time you turn on your computer. 

Saving Your Program 3-21 



Permanent fix: If you're going to be initializing many disks, a better way of 
handling this is to add to the PATH command that's in your personal computer's 
AUTOEXEC.BAT file. 

The AUTOEXEC.BAT file contains a list of paths - places to look for executable 
files - so the computer knows to look not only in the root directory but also in the 
directory in which HP BASIC is loaded. 

For instance, if HP BASIC is in directory HPW on hard disk C, you'll need to add 
the following command to the AUTOEXEC.BAT file: 

PATH=C:\HPW 

Storing and 
Loading 

Note 

3-22 Saving Your Program 

The STORE command puts a copy of your program safely 
away in mass storage, so that if you change the program or 
pull the plug on the computer, the copy is unaffected. 

The program is stored in afile in mass storage. Specifically, 
it's stored in a kind of file known as a PROG file. 

To place your program into mass storage, use STORE 
followed by a file name in quotation marks. For example: 

STORE "COUNT_DISP"~ 

Your program is now stored as the program 
"COUNT DISP". 

This stores the program on the current mass storage unit. 



Re-Storing the 
Program 

What About File 
Names? 

Scratching a 
Program from 

Memory 

Once a program has been stored, a copy of the program 
always remains in mass storage. If you want to store a 
program under that same name again (for instance, if you've 
modified it), you must use the RE-STORE statement. To 
re-store the program "COUNT_DISP", type: 

RE-STORE "COUNT_DISP"~ 

(There's also a statement called RESTORE. It is different 
than the RE-STORE statement.) 

File names can be any combination of letters and numbers, 
up to 10 characters long. You can't have spaces between 
characters. You can use uppercase or lowercase 
letters- and these file names are "case-sensitive." (That is, a 
file name of "Nautilus" is different than a file name of 
"NAUTILUS"). 

Here are some legal file names for programs: 

DATA 17 
Watch N Wt 
Customer 1 
PROGRAM A 

Now a copy of your "COUNT_DISP" program is stored 
permanently in mass storage. It's also still in the computer's 
BASIC memory. Use the command SCRATCH to erase 
everything from computer memory: 

SCRATCH~ 

To prove that nothing remains in memory, you can try to 
LIST the program, or try to RUN it: 

RUN~ 

Saving Your Program 3-23 



Loading the 
Program 

3-24 Saving Your Program 

Since there's nothing in memory for BASIC to run, you get 
only an error message: 

I ERROR 5 Improper context terminator 

Don't worry - a copy of your program is safely tucked away 
in mass storage. 

To load a program from mass storage, use the LOAD 
command and a file name. Try loading your 
"COUNT_DISP" program now: 

LOAD "COUNT_DISP"~ 

This statement first clears any previous programs from the 
computer's memory, then brings in the program 
"COUNT_DISP." You can't see it unless you do a LIST, but 
the program is loaded. To prove it, just hit [RUN]: 

The current value of I is 1 
The current value of I is 2 
The current value of I is 3 

LOAD can also load and auto-start a program. Try this: 

SCRATCH~ 

LOAD "COUNT DrSP", 10~ 

Did you see what happened? You know that the computer's 
memory was cleared because you typed SCRATCH. 

But when you typed the next line, LOAD "COUNT_DISP", 
and followed it with a comma and line number, presto! The 
program began running. 



Saving and 
Getting a 
Program 

In fact, a LOAD statement with a line number after it does 
three things in order: 

1. It clears the computer's memory of any previous program. 

2. Then it loads the new program. 

3. Then it runs the new program beginning with the line 
number. 

And here's another feature of the LOAD statement: it's a 
statement. Remember what that means? That's right, you 
can use it in a program, like this: 

1110 LOAD "PART2" 

When line 110 is executed in a program, it clears the 
computer's memory, loads the program named "PART2", 
and resumes execution with the lowest-numbered line of the 
new program. If you specify a line number, execution begins 
with that line number. 

Another way to save a program is with the SAVE statement. 
Like STORE, the SAVE statement places a copy of your 
program into mass storage. It saves the program in a 
different format, though. SAVE puts the program into 
something called an ASCII file. 

The ASCII file is different from the PROG file you created 
earlier with the STORE statement. You'll see this 
difference later when you look at a catalog. 

To retrieve a copy of a saved program from mass storage, 
you use the GET statement. This is similar to the LOAD 
statement used with stored programs. To re-save a program 
in ASCII format after you've modified it, use RE-SA VE 
Gust like RE-STORE). 

Saving Your Program 3-25 



Seeing a 
Catalog 

3-26 Saving Your Program 

If you worked through lesson 1, you already used the CAT 
command to generate a "catalog" of programs in your 
current mass storage unit. Let's try CAT again to see how 
the programs look: 

CAT..J 

The computer displays a list of BASIC programs in this 
mass storage unit. You can see that "COUNT_DISP" is a 
PROG file. It requires two "records" for the file in memory. 

: CSB9, 1599, 2 
UOLUME LABEL: HPU C 
FILE NAHE PRO TYPE REC/FILE BYTE/REC ADDRESS 

REUID 
SYSTEH BAS 
COUHT_PRtIT 
COUHT_DISP 

ASCII 
SYSTH 
ASCII 
PROG 

2 
23&3 

1 
2 

251> 
25& 
25& 
25& 

11> 
1B 

2399 
Z39Z 

DATE TIME 

7-Sep-B7 13' IS 
3-Har-BB 9: 55 
3-Mdr-BB 9'47 

"lit 'e'. ,,,tWh""", ,,'51:ft """"!If' 'bitW' "'51':!!!! 

In this example, "COUNT_PRNT" is an ASCII file. It 
requires only one record for the file. As you probably 
guessed, PROG files chew up more mass storage space than 
ASCII files - an important point if you're concerned about 
saving space on a disk or tape. 



Directing Output The catalog from CAT, and the program listing from LIST, 
are sent to the current printer - that's the display if you've 
specified PRINTER IS 1. You can redirect them by 
changing the printer, or by adding the number sign (#) 
followed by the printer's select code, like this: 

Purging a 
Program from 
Mass Storage 

Review Quiz 

LIST #701 

This prints a program listing on the printer with address 01 
on the HP-IB interface. 

CAT TO #26 

This prints a catalog on an MS-DOS printer. 

OK, you're writing and saving (or storing) programs. Mass 
storage is filling up fast. How do you erase a program from 
mass storage? 

Use the PURGE statement. PURGE erases the named 
program from the current mass storage unit. (If there's no 
such program in the current mass storage unit, nothing 
happens.) 

To erase "COUNT_PRNT" from mass storage, type: 

You can use PURGE for any kind of file-a PROG file, an 
ASCII file, or a data file. (You'll learn about those in lesson 
10.) 

1. You want a program to prompt a computer operator - to 
make an instruction appear in the same place, no matter 
what else is on the screen. Do you use a PRINT or a 
DISP statement? 

Saving Your Program 3-27 



3-28 Saving Your Program 

2. When this program is run, what is printed on the current 
printer? 

10 PRINT "It was" 
20 !PRINT "the best of times," 
30 !PRINT "It was" 
40 PRINT "the worst of times." 
50 END 

3. Which of the outputs, a, b, c, or d, is generated by the 
program below? 

10 A=lll 
20 B=222 
30 C=333 
40 PRINT A,B;C 
50 END 

a. 111 222 333 

b. 111 222 333 

c. 111 222333 

d. 111 222 333 

4. An engineer wants to keep using the display for his 
output device, but needs to print a catalog of all 
programs on the printer addressed by select code 9. 
What should he type at the keyboard? 

5. Write a program that: 

8. Halts and asks for the user to input a number. 

b. Prints the number on the display screen. 

c. Prints the number on a printer addressed by select 
code 26. 

d. Stores itself as a PROG file called "PRINTER." 



4 
Handling Numbers 

This lesson teaches you how to work with numbers in 
numeric variables. Here are the topics you'll cover in this 
lesson: 

• Pre-run and run. 

• REAL and INTEGER variables. 

• Declaring variable types. 

• Using DATA, READ, and RESTORE to put data into 
variables. 

• Multiple INPUT on one line. 

When it comes to doing problems in the real world, your 
handling of variables and data will determine just how 
effective your programs are. 

Handling Numbers 4-1 



Pre-Run and 
Run 

Variables 

4-2 Handling Numbers 

When you press [RUN], it seems as though the computer 
executes your program immediately. In reality, though, 
there's a two-step process that occurs. The computer must: 

• Step 1: Pre-run the program. 

• Step 2: Run the program. 

During pre-run, the program is laid out in memory before 
the actual run. When it pre-runs a program, the computer: 

• Identifies the main program and any subprograms and 
functions. 

• Checks to make sure variable labels and statements all 
match. 

• Checks nesting of subroutines. 

• Reserves computer memory for variables. 

If errors are detected during pre-run, the computer gives 
you an error message. For instance, if your program doesn't 
have an END statement (a definite no-no), you'll see an 
error message after pre-run. 

In BASIC, your computer keeps track of numbers and 
words by means of variables. A variable is actually a name; 
you use it to identify a number, a series of numbers, a single 
word, even all the words in a book! 



Variable 
Names-How 

Long? 

Types of Variables 

Variable names can be as long as 15 characters. The first 
character must be a capital letter , and all the rest lowercase. 
You can use any combination of letters and numbers, but 
the only other character you can use is the underscore line 
L) or a trailing dollar sign ($). Look at these examples: 

Legal Variable Illegal Variables 
Names 

Location 1 a Location 1 a 
A1 1A 
I i 
I no 1 1#1 
Mr Wonderful Mr. Wonderful 
Ajax$ AJAX 
Income 1988 Income-1988 

There are several types of variables: 

• Real numbers. 

• Integer numbers. 

• Strings. 

• Complex numbers. 

Let's look at each of these in turn. 

Real: A real number is a full-precision floating-point 
number. It needs eight bytes of computer memory for each 
number stored. What this means is that real variables can 
be very large (up beyond 1 x 10308!). But they use more 
memory, and it takes more time for the computer to get to 
them. 

Handling Numbers 4-3 



Note 

Declaring Variable 
Types 

4-4 Handling Numbers 

Unless you tell it otherwise, your computer assumes any 
numeric variable is real. This guarantees maximum precision 
in all calculations. 

Integer: This is also a number, but it's one that is rounded 
to the nearest whole number. (So 1.0035 is rounded to 1.) 
The number uses only two bytes of memory for these 
integers. Integer quantities can be between - 32768 and 
+32767. 

String: This variable isn't a number, but rather is made up 
of alphabetic and numeric characters. It can be text, a 
name, month, book title, or anything else you want to save 
and use as alphabetic information rather than numbers. A 
string variable has a dollar sign ($) at the end to identify it 
as a string. 

You'll learn more about strings in the next lesson. 

Complex: Complex numbers are written as the sum of a 
real number and an imaginary number. (An imaginary 
number is any real number multiplied by the square root of 
-1.) You won't use complex variables in this course. 

Another thing you'll often want to do early in your programs 
is to declare variable types. You can use INTEGER and 
REAL to declare that a variable is a certain type. For 
instance, if you wanted the variables I and Number to be 
integers (cutting off any numbers after the decimal point), 
you could use this statement: 

10 INTEGER I, Number 



Five Fail-Safe Rules for Variables 

Having trouble with variables in your programs? Remember these five simple 
rules for using LET or implied LET: 

1. If there's just one variable, it's always on the left of the = symbol. 

100 LET V= 12 is correct 100 LET 12=V is wrong 

2. The variable on the left of the = symbol always stands alone. 

50 V=A*B is correct 50 A*B=V is wrong 

3. The variable on the left of the = symbol receives a new value, equal to the 
number on the right. 

90 LET A=4/2 This statement means A is now 2. 

4. If a variable appears on both sides of the = symbol, its old value (on the right) 
is replaced by the new, calculated value on the left. 

30 LET A=10 
40 LET A=A/5 The new value of A is now 2. 

5. If a variable appears only on the right of the = symbol, its value isn't changed. 

10 A=5 
20 B=100 
30 B=A*2 

The new value of B is 10. A keeps its original 
value, 5. 

Hint: Try reading LET statements from right to left. First determine the number on 
the right of the = symbol, then assign it to the variable on the left of the symbol. 

Handling Numbers 4-5 



Assigning 
Numbers to 
Variables in a 
Program 

The Dynamic Duo 
of DATA and READ 

4-6 Handling Numbers 

If you've worked through lesson 2 of this course, you already 
know one way to assign a number to a variable; it's the LET 
statement: 

10 LET A=25 

Remember, you don't need the word LET. You can simply 
use: 

110 A=25 

Another way of assigning numbers to variables in a program 
is with the DATA and READ statements. 

DATA and READ are used to assign numbers to variables 
from within a program. The READ statement "reads" 
whatever is in the DATA statement. 

Look at the two statements together: 

DATA 143 
READ A 

Line 10 places the number 143 in the computer's memory. 
The READ statement in line 20 then assigns that number to 
the variable A. It's just as if the computer had executed a 
LET statement: 



10 A=143 

You can combine variables in READ statements and 
numbers in DATA statements, like this: 

DATA 11,25,143 
READ A,B,C 

This is the same as three LET statements: 

A=ll 
B=25 
C=143 

The Data Stream The computer actually puts numbers (or strings) from all 
DA TA statements into its memory in one long stream. It 
does this during pre-run. 

The READ statement is executed at runtime, after all data 
has been placed in memory. This means that it doesn't 
matter whether a READ is before or after a DATA. It also 
means that a single READ can get data from many DATA 
statements. 

Quickly type in this mini-program: 

SCRATCH.J 
EDIT.J 

Handling Numbers 4-7 



4-8 Handling Numbers 

10 DATA 1,2,3 
20 READ A,B,C 
30 PRINT A;B;C 
40 DATA 4,5,6,7,8,9 
50 READ A,B,C 
60 PRINT A,B,C 
70 READ A,B,C 
80 PRINT A,B,C 
90 END 

Then run the mini-program. The output should look that 
shown below. 

RUN.j 

5 
8 

6 
9 

What happened? At pre-run, the computer looked at all the 
DA T A statements, and linked them to store a data stream in 
memory. 

123 4 5 6 789 

Later, at runtime,the READ statement in line 20 read the 
first three numbers and placed them in variables A, B, and 
C. 

123 4 5 6 789 

1 
The READ in line 20 
reads to here 



The Data Pointer 

Restoring the Data 
Pointer 

Line 50 read the next three quantities. 

1 234 5 6 789 

t 
Line 50 reads to here 

Line 70 read the last three: 

1 234 5 6 789 

t 
Line 70 reads to here 

When reading data, the computer marks its place with a 
"data pointer." There is a separate data pointer for each 
program segment; if execution leaves one segment, the 
pointer in that segment waits until execution returns. (This 
will be more clear after you've worked through lesson 6, 
which explains subroutines and subprograms.) 

The RESTORE statement resets the data pointer to the 
beginning of the data stream. For example, add a line to the 
mini-program you just ran: 

EDIT .J 

165 RESTORE 40 

Then run the program again. Now the output looks like this: 

123 
456 
456 

Handling Numbers 4-9 



Assigning 
Numbers from 
the Keyboard 

4-10 Handling Numbers 

Here's what the modified mini-program looks like: 

10 DATA 1,2,3 
20 READ A,B,C 
30 PRINT A;B;C 
40 DATA 4,5,6,7,8,9 
50 READ A,B,C 
60 PRINT A,B,C 
65 RESTORE 40 
70 READ A,B,C 
80 PRINT A,B,C 
90 END 

During pre-run, of course, the data from lines 10 and 40 is 
placed in a data stream in memory. At runtime, line 20 
reads the first three numbers, and line 50 reads the second 
three. Line 65 restores the data pointer to the beginning of 
the data specified in line 40, so the next READ statement 
begins with that data again. 

If you don't use a line number or label in the RESTORE 
statement, the data pointer is restored to the first element in 
the first data statement. 

LET and READ/DATA assign numbers to variables within 
a program. You can also assign numbers to variables from 
the keyboard. For this you'll use the INPUT statement. 

Using the INPUT statement, you can write a single line that 
lets you input several different variables. 



FIXER-UPPER handyperson 
special! 2BR 1 BAwith materials 
for deck, carport, kitchen. Roof 
partially open for lots of fresh 
air. $69,900 
CUTE 3BR has pink trim, inte
rior, exterior. Very close to 

I 

freeway for easy commute. 
$125,700 
IDEAL STARTER HOME. Love at 
first sight with this 1 BR beauty. 
Sleeps 4, if they're on good 
terms. Just $105,000 
COUNTRY SQUIRE. Real 
country living in this "ranch" 
house. Hear the coyotes howl, 
see the grass grow. 4WD 
vehicle a must! $179,250 
NOTRE DAME, move aside! 
8BR, 4BA, features 2 spas, 6 car 
garage, pool, tennis, rec room. 
Wine cellar or in-law quarters. 
$485,990 

Example: Perpetually impecunious Wilkins Micawber has 
finally saved $20,000 - enough for a down payment on his 
dream house. He figures his meager salary as a clerk will let 
him buy as long as the payments are no more than $1000 per 
month. 

Micawber knows the formula for figuring the payment, P: 

[ 
(1 + i)n J P = iA 
(1 + i) n -1 

Where 

• A is the amount of the loan. 

• i is the monthly interest rate. 

• n is the number of payments he has to make to payoff the 
loan. 

He knows the first thing he must do is convert the yearly 
interest rate and the number of payments per year to 
something that fits in this formula, that is: 

• i = Yearly interest rate/12/100 

• n = Years x 12 

Micawber has pored over the newspaper classified 
advertisements and found five houses of interest. This table 
shows the amount of the mortgage for each one, and the 
terms he can get from the bank for each house: 

House Amount of Loan Interest Rate Years to Pay 
Fixer-Upper $49,900 11% 20 
Cute 3BR $115,700 10.2% 25 
Ideal Starter $85,000 10.2% 30 
Country Squire $159,250 9.5% 35 
Notre Dame $465,990 8.8% 40 

Handling Numbers 4-11 



Amount 

Interest rate 

Years 

Solution: To help Micawber, get the disk of examples that 
came with this course, and put it into a disk drive. Make 
sure you've specified that disk drive as the mass storage 
device, the way you learned in lesson 3. (Use the statement 
MSI ":,700,0" or MSI ":,1500,0".) Then load the program 
called "MORTGAGE" by typing: 

LOAD "MORTGAGE"..J 

Now run the program to find out Micawber's monthly 
payment for the "Fixer-upper." 

RUN..J 

When the program asks for "Amount," press keys on the 
keyboard to enter the cost of the home (less Micawber's 
minuscule $20,000 down payment, of course): 

49900..J 

Enter the interest rate when you're asked for "Interest rate": 

11..J 

Now enter the number of years to payoff the loan: 

20..J 

The monthly payment for a loan of $ 49900 at a rate of 11 % 
for 20 years is $ 515.06. 

4-12 Handling Numbers 



10 ! MORTGAGE 
20 INTEGER Years,Amount 

The answer is $515.06, well within Micawber's budget. 

How it works: List the program, or follow along on the 
listing here: 

LIST .J 

30 INPUT "Amount",A,"Interest rate",Rate,"Years",Years 
40 LET I=Rate/12/100 
50 LET N=Years*12 
60 LET P=I*A*(((l+I)AN)/(((l+I)AN)-l)) 
70 Pmt=PROUND(P,-2) 
80 PRINT "The monthly payment for a loan of $";A;"at a rate of ";Rate;"%" 
90 PRINT "for";Years;"years is $";Pmt 
100 END 

Declaring a 
Variable 

20 INTEGER Years,Amount 

The key to this program is the INPUT statement in line 30. 
If you worked through lesson 2, you know that the INPUT 
statement stops the program and waits for input from the 
keyboard. 

Line 30 is an example of a multiple INPUT statement. It 
waits for three variables: A, Rate, and Years. 

Line 30 also shows something else about INPUT. You can 
display words (such as "Amount" or "Interest rate") to 
prompt for input. 

Micawber doesn't need to use real variables for the number 
of years (the variable "Years") and the amount of the loan 
("Amount"). So these are declared as integer variables in 
line 20: 

Handling Numbers 4-13 



Rounding a 
Number 

70 Pmt=PROUND(P,-2) 

Micawber also doesn't need more than two decimal places 
of trailing numbers after his answer. So he uses line 70: 

This means "round the contents of the variable P to two 
decimal places, and put the result in the variable Pmt." 

Now run the program again to find the monthly payments 
for mortgages on the remaining houses. S tart with the 
Fixer-Upper: 

The monthly payment for a loan of $ 49900 at a rate of 11 % 
for 20 years is $ 515.06 

Cute 3BR: 

The monthly payment for a loan of $ 115700 at a rate of 10.2 % 
for 25 years is $ 1067.72 

Ideal Starter: 

The monthly payment for a loan of $ 85000 at a rate of 10.2 % 
for 30 years is $ 758.53 

Country Squire: 

The monthly payment for a loan of $ 159250 at a rate of 9.5 % 
for 35 years is $ 1308.42 

4-14 Handling Numbers 



Notre Dame: 

The monthly payment for a loan of $ 465990 at a rate of 8.8 % 
for 40 years is $ 3522.88 

Be Careful With 
INTEGER 

20 INTEGER Years, Amount, I 

Review Quiz 

Hmmm. It looks like Micawber can afford only the 
"Fixer-Upper" and the "Ideal Starter." 

Integer variables are useful and save memory. But 
sometimes they can get you in trouble. 

Try this: Change line 20 to the following: 

Then run the program again for-say, Notre Dame: 

I ERROR 31 IN 60 Division by 0 or X MOD 0 

The computer rounded I to the nearest integer. Since the 
number is a decimal (.09 for an interest rate of 9%), the 
nearest integer is zero. This causes line 20 to attempt 
division by zero, giving an error. 

1. In this program, what is the final value of the variable 
Number? 

10 A=5 
20 Number=A*2 
30 Number=NumberA2 

Handling Numbers 4-15 



4-16 Handling Numbers 

2. Which of these are legal variable names? 

Result 
ABC 
P47 
Array in 
Frank-Cheerybyle 
21B 
Volts rms 
Word_and_figures 

3. What will be the output from this program? 

10 READ A, B, C, D 
20 PRINT A; D 
30 RESTORE 10 
40 DATA 43, 87, 91, 12 
50 PRINT B; C 
60 END 

4. Write a program that asks a user to input his or her age, 
weight, and number of children. Print the data with 
appropriate labels. 

5. Write a program that uses READ and DATA to 
compute and print the sines of three angles: 0 degrees, 45 
degrees, and 90 degrees. 

Hint: BASIC "wakes up" assuming angles are in radians. 
So to compute the sines of angles specified in degrees, 
include a DEG statement early in your program to set the 
computer to degrees mode. Like this: 

10 DEG 



Handling Words in Strings 

Lesson 4 showed you how to work with numbers in simple 
variables. This lesson explains how to work with words in 
string variables. 

In this lesson you'll learn: 

• What a string variable is. 

• Reserving memory for strings with DIM. 

5 

• Using LINPUT and INPUT to enter string data from the 
keyboard. 

• The null string. 

• Replacing words in a string with other words. 

• Joining strings together. 

• Reversing words with REV. 

• Using only parts of a string. 

• Using LEN to find length. 

• Using POS to find position. 

• Strings, semicolons, and spacing. 

• String-number conversions: VAL, V AL$, NUM, CHR$. 

• Converting uppercase and lowercase letters with UPC$ 
and LWC$. 

Handling Words in Strings 5-1 



What Is a 
String? 

String Variables 

Strings are important because they make your work look 
sharp and professional. Moreover, some kinds of programs 
will use strings as often as they'll use numbers. For 
instance, if you're controlling instruments using HP-IB, 
those instruments need their instructions as ASCII 
code - that is, as strings of characters. 

In BASIC, a string is text within quotation marks. It can be 
words, letters, or even numbers. If you worked through any 
of the previous lessons, you've already used the simplest 
form of a string: 

110 PRINT "HELLO" 

In line 10, the word HELLO is a string. 

A single string can be any length - even as long as an entire 
book! But when you have a long string, it's a waste of time 
to type the string over and over again. 

To simplify the handling of strings, we use string variables. 

Let's review what a string variable is: It looks like a simple 
numeric variable, except it has a dollar sign ($) at the end. 

Like a numeric variable name, a string variable name can be 
up to 15 characters long. You have to use an uppercase 
letter for the first character; the rest can be either lowercase 
letters or numbers. The only other characters you can use 
in a string variable are the underscore line (_) and the 
dollar sign. 

The string itself - that is, the actual text - can be as long as 
you want. It must be enclosed in quotation marks, though. 

5-2 Handling Words in Strings 



The String and the 
Variable 

Type this example and run it: 

SCRATCH.J 
EDIT .J 

10 LET Dl$="This is a string" 
20 OISP 01$ 
30 END 

RUN.J 

When you run this mini-program, the output is: 

I This is a string 

Remember, you need the dollar sign ($) at the end of the 
variable, and you must enclose the string itself in quotation 
marks. 

Each character in a string (including spaces) occupies one 
byte of computer memory. 

In this example, the string variable is Dl$. Its string is "This 
is a string". When you run the program and line 20 asks the 
computer to display Dl$, it shows you the string. 

And remember: a string variable name always ends with a 
dollar sign ($). Any time you see a dollar sign, you can be 
sure you're dealing with a string. 

Handling Words in Strings 5-3 



Assigning 
Strings to 
Variables 

When you make string variables, use names that make sense 
to you. Look at these examples of legal and illegal string 
variables: 

These Can Be These Can't Be 
String Variables String Variables 

Meter$ Meter 
Kingjames$ King-james$ 
A$ A $ 
Hemingway _12$ 12_ Hemingway$ 

Once you've decided on a string variable name, the next 
step is to assign a string of characters to it. 

The simplest way of assigning words to a string variable is 
with the LET statement, like this: 

10 LET A$="HELLO" 
20 LET Hemingway$="The son also rises" 

As with numeric variables, you don't need the keyword 
LET. These two statements are the same: 

50 LET B$="GOODBYE" 
50 B$="GOODBYE" 

So far, so good: you assign strings to variables with the LET 
statement, just as with numeric variables. 

5-4 Handling Words in Strings 



There's one more thing to remember about strings, though. 
If a string is more than 18 characters long (including 
spaces), you have to reserve memory for it before you can 
assign it to a string variable. 

Reserving Memory You've been working with strings that are smaiL If a string 
is large -longer than 18 characters, for example - you must 
reserve memory space for it before you manipulate it. 

117 1iI11II1 - ___ 

In order for your computer to use long strings, it has to 
know how much of its memory area the string will require. 
It's your responsibility to reserve this memory for a long 
string before you actually put any information into that 
string. 

Although memory is automatically reserved for strings of 18 
characters or less, it's better programming practice to 
always reserve memory for every string variable. That's 
because, as you will see, you can manipulate and add to your 
strings - they can grow and grow. 

Reserve memory for all strings. 

Don't worry about reserving too much memory for a string. 
The computer simply doesn't use the excess memory. (That 
memory is reserved, though, and can't be put to other uses.) 

Handling Words in Strings 5-5 



Here are statements you can use to reserve memory for 
strings: 

DIM Dimensions and reserves memory 
for strings (also for REAL number 
arrays). 

ALLOCATE Dimensions and allocates memory 
"on the fly" while a program is 
running. Use this in the program if 
you don't know how large the string 
will be. 

COM Reserves a common area for use by 
more than one part of a program. 

You'll learn more about COM in part 3 of this course. 

To reserve memory space, use the variable name, followed 
by brackets. In the brackets, place the number of characters 
you want to reserve for the string, like this: 

1 20 DIM AS[ 25] 

Line 20 reserves memory space for a 2S-character string in 
variable A$. 

130 DIM Quote$ [500] 

Here, line 30 reserves enough memory for a SOO-character 
string called Quote$. 

You can dimension several variables (strings and other 
types) in one statement: 

5-6 Handling Words in Strings 



10 DIM A$[100], Buffer$[512] , Circum(500) 

Line 10 reserves space for two strings: 100 characters for 
variable A$ and 512 characters for variable Buffer$. It also 
reserves memory for a REAL numeric array. (You'll learn 
more about arrays in lesson 8.) 

What if you forget to reserve memory? First type in and run 
this mini-program with the DIM statement: 

SCRATCH.J 
EDIT.J 

10 DIM Eliot$[25] 
20 LET Eliot$="Let us go then, you and I" 
30 PRINT Eliot$ 
40 END 

RUN.J 

The computer prints the string Eliot$: 

I let us go then, you and I 

But watch what happens if you don't reserve memory - that 
is, if you omit the DIM statement from the mini-program. 
Just "comment out" the DIM statement in line 10 by placing 
an exclamation point in front of it. 

EDIT 10.J 

10 !DIM Eliot$[25] 

Handling Words in Strings 5-7 



The exclamation point turns this line into a remark, not a 
statement. So now when you run the program, the DIM isn't 
executed: 

RUN..J 

ERROR 18 IN 20 String ovfl. or substring err 

You can see that without the DIM statement, the computer 
gives you "string overflow" error. 

The moral here is that you need to reserve memory for 
strings. 

INPUT and LINPUT Remember the INPUT statement. It lets you assign data to 
variables right from the keyboard. 

You can do the same thing for strings, using either INPUT 
or a new statement, LINPUT. Like INPUT, the LINPUT 
statement stops a running program and waits for you to 
enter a string from the keyboard. It puts everything you 
type, including spaces, into the variable's storage area. 

Enter and run this "friendly" little mini-program: 

SCRATCH..J 
EDIT..J 

10 DIM A$[100] 
20 LINPUT "HOW'S YOUR HEALTH?",A$ 
30 PRINT "GLAD TO HEAR YOUR HEALTH IS ";A$ 
40 END 

RUN..J 

When you run the program, line 20 causes it to wait for you 
to enter a string from the keyboard: 

5-8 Handling Words in Strings 



Fun With 
Strings 

The "Null String" 

HOW'S YOUR HEALTH? 

If you're feeling OK, type: 

FINE..J 

The computer then responds with a friendly, interested 
answer: 

I GLAD TO HEAR YOUR HEALTH IS FINE 

You can also use the INPUT statement to have a program 
wait for multiple strings, as well as numbers. For example, 
look at this line: 

1110 INPUT A$,B$,X 

Line 110 causes a running program to stop and wait for you 
to type in two strings and a number. You'd need to type in a 
string for A$, a string for B$, and a number for the numeric 
variable x. 

We're going to fool around with strings now. Remember 
these little "games" later, though-you'll need them when 
you use strings in your programs. 

Somewhere, sometime, you're going to hear about a "null 
string." It's nothing, really - in fact, a null string is a string 
containing just that: nothing. Here's an example: 

40 A$="" 

Handling Words in Strings 5-9 



The double quotation marks in line 40 assign a null string to 
the variable A$. 

Replacing a String As with numeric variables, string variables contain the latest 
string assigned to them. Try this: 

Putting Words 
Together 

A$="HELLO"..J 
B$="GOODBYE" ..J 
A$=B$..J 
DISP A$..J 

Can you figure out the current value of A$? That's right, 
it's: 

I GOODBYE 

Just as with numeric variables, you should read from right to 
left when evaluating something like A$ = B$. The variable 
on the left of the equals sign is always the one that's 
changed. 

You can join strings together - the fancy word is 
"concatenate." Use the ampersand (&) to concatenate 
strings, as shown in the mini-program below: 

SCRATCH..J 
EDIT..J 

10 A$="A MAN" 
20 B$="A PLAN" 
30 C$=" " 
40 PRINT A$ & C$ & B$ 
50 END 

Now run the mini-program and see the results: 

5-10 Handling Words in Strings 



RUN..J 

I A MAN A PLAN 

Reversing a String Use REV$ to get a string that's the reverse of an existing 
string - that is, to reverse the order of the letters in the 
string. 

To see an example of concatenated strings and the REV$ 
function, load "PANAMA" from the examples disk (or type 
it in yourself using the listing below-it's not very long). 

To load and run the program, type: 

LOAD "PANAMA"..J 
RUN..J 

A MAN A PLAN A CANAL PANAMA 
AMANAP LANAC A NALP A NAM A 

Here's a listing of the "PANAMA" program: 

10 ! RE-STORE "PANAMA" 
20 DIM Total$[30],Palindrome$[30] 
30 A$="A MAN" 
40 B$="A PLAN" 
50 C$="" 
60 D$="A CANAL" 
70 E$=" PANAMA" 
80 Total$=A$&C$&B$&C$&D$&C$&E$ 
90 PRINT Total$ 
100 Palindrome$=REV$(Total$) 
110 PRINT Palindrome$ 
120 END 

Handling Words in Strings 5-11 



Note 

Using Parts of 
Strings 

The statement in line 80 joined all the strings together and 
put them in the string variable Total$. Line 90 printed 
Total$ (A MAN A PLAN A CANAL PANAMA). 

The REV$ statement in line 100 reversed the order of all 
characters and spaces in Total$ and assigned the new string 
to Palindrome$. The order of the string was reversed by 
REV$. 

If you look closely, you'll see that A MAN A PLAN A CANAL 
PANAMA is a famous palindrome - a series of letters that are 
the same whether read backward or forward. 

Want to use only part of a string (called a "substring")? Just 
use the string variable and put brackets after it. Numbers 
inside the brackets specify which characters in the string to 
use. 

For instance, try this exercise. Type in and run this 
mini-program: 

SCRATCH.J 
EDIT .J 

10 DIM A$[22] 
20 A$="USING PART OF A STRING" 
30 END 

RUN.J 

Now look at how you can use parts of strings: 

A$[2].J 

SING PART OF A STRING 

5-12 Handling Words in Strings 



A$ [8]..J 

I ART OF A STRING 

If you have only one number in brackets, it specifies the part 
of a string from that character's position in the string to the 
end of the string. 

So A$[2] begins with the second character in the string 
(reading from the left), the character "S". It continues to 
the end of the string. So all you see is SING PART OF A 
STRING, even though the actual string in A$ is still USING 
PART OF A STRING. 

A$[8] begins with the eighth character in the string and 
continues to the end, so you see only ART OF A STRING. 

You can also use two numbers in the brackets, separated by 
a comma. These specify the beginning and end - that is, the 
first and the last characters you want to see in the string: 

A$ [2,10]..J 

I SING PART 

A$ [ 12 , 13 ] ..J 

The two numbers specify the first and last positions, and 
include all characters and spaces in between. 

Another way to use just part of a string is with brackets 
surrounding two numbers separated by a semicolon (;), like 
this: 

A$[2;9] 

Handling Words in Strings 5-13 



In this case, the first number is the first character specified. 
The second number is the number of characters you want. 
For instance: 

A$ [2; 9]-.J 

I SING PART 

The [2;9] specifies a substring beginning with the second 
character of A$, and containing nine characters in all. 
Here's another one: 

A$ [ 15 ; 7] -.J 

I A STRIN 

This feature is very useful in programming electronic test 
instruments, which usually require very detailed and specific 
strings for control. For instance, a voltmeter needs a string 
sent to it that looks like this: 

R S V T 3 

YLL 
Function Code 
(F1-F4) 

Range Code 
(R1-RS) 

Here's a short section of code that sets up the voltmeter for 
measurement: 

80 A$="" !Null string to clear A$ 
90 A$[1,2]="RS" !String's 1st two characters reset meter. 
100 A$[3;3]="VT3" !Next three characters set trigger mode. 
110 INPUT "Enter function code (F1-F4)",A$[6,7] 
120 INPUT "Enter range code (R1-R5)",A$[8,9] 

5-14 Handling Words in Strings 



Replacing Part of 
a String 

When the operator runs this program, lines 110 and 120 stop 
the program and ask him or her to type in the function code 
and range code for the voltmeter - that is, to specify how the 
voltmeter is to make a measurement. 

Vn'1'1 t"u~ft ... A ..... 1~,..A n ... ,.. .... ~nI"l'A n~ ... t of ~ cot ... ;nn- 111ct l1C'P 
..I. vu. ",all .I. "'p ... u."","" V.L "'Ll.U..u.6"" pU..&.L V.L u. 13L.L.&..L£.5, JU.l3L u.~v 

brackets. Try this one: 

SCRATCH.J 
EDIT .J 

10 A$="WIDESPREAD" 
20 PRINT A$ 
30 A$[5]=" OPEN" 
40 PRINT A$ 
50 END 

RUN.J 

The program prints the A$ you specified in line 10, then the 
new, change~ A$ you specified in line 30: 

I WIDESPREAD 
WIDE OPEN 

The statement A$[5] =" OPEN" in line 30 replaced 
everything in A$ from position 5 to the end of the string 
with" OPEN". 

If you leave unassigned spaces before the last character of a 
string, they're filled with blanks. Unassigned positions after 
the last assigned character are undefined and ignored. 

Handling Words in Strings 5-15 



Finding the Length 
of a String 

Finding Position 
Within a String 

The LEN statement gives the length of a string. Try this 
example: 

SCRATCH..J 
EDIT..J 

10 DIM A$[100] 
20 A$="Able was I ere I saw Elba" 
30 X=LEN(A$) 
40 DISP X 
50 END 

RUN..J 

Line 30 puts the length of A$ into the variable X; then line 
40 prints X: 

Notice that the length of the string computed by LEN is not 
the same as the memory reserved for it by the DIM 
statement. 

The POS function gives you the position of a substring 
within a string, like this: 

I POS (Stringl$, String2$) 

This statement finds the beginning position of String2$ in 
Stringl$. 

5-16 Handling Words in Strings 



10 DIM Alpha$[26] 

Here's a handy mini-program that uses POS to deliver the 
number of any capital letter in the alphabet: 

SCRATCH.J 
EDIT .J 

20 Alpha$="ABCDEFGHIJKlMNOPQRSTUVWXYZ" 
30 LINPUT "Type in a capital letter",letter$ 
40 X=POS(Alpha$,letter$) 
50 PRINT "The position of the letter ";letter$;" is";X 
60 END 

Strings, 
Semicolons, 
and Spacing 

When you run the program, it asks for you to type in a 
capital letter , then prints the position of that letter in the 
alphabet. For example, to find the position of the letter 
"M", type: 

RUN.J 

I Type ina capital 1 etter 

M.J 

I The posit i on of the 1 etter Mis 13 

As you know, you need a separator for items in your PRINT 
or D ISP statements; you can use a semicolon or a comma. 
Remember the difference? 

If you use a semicolon to separate items in a PRINT or 
DISP statement, they appear close together. A comma 
moves them apart. 

Handling Words in Strings 5-17 



The current X is 13 truly 

The semicolon can help make your output look 
prettier - but it works slightly differently with strings than it 
does with numbers. If you've just run the mini-program 
above, you can try this: 

PRINT liThe current X isl;X;"truly" 

Here, the semicolons before and after the numeric variable 
X leave a nice space around it: 

Now modify your PRINT statement (the [RECALL] key 
makes it easy) to try a leading and trailing semicolon with a 
string variable: 

PRINT liThe current Alpha$ is";Alpha$;"truly" 

This time, there are no spaces before or after the string: 

The current Alpha$ isABCDEFGHIJKLMNOPQRSTUVWXYZtruly. 

In its wisdom, HP BASIC knows that you probably don't 
want to run numbers together, but that you do want 
complete control over how words appear. Just remember to 
add spaces as needed when you PRINT or DISP strings. 

5-18 Handling Words in Strings 



Conversions 

Converting Strings 
to Numbers 

As you know, the computer sees all strings as words, not 
numbers - you can't do calculations with them. But there 
are times in programming when you'll need to convert 
strings to numeric data, or vice versa. Luckily, HP BASIC 
has a host of functions you can use for this purpose. 

Suppose you had a list of names and account balances, all in 
strings, like this: 

I Al$="Heep, U; $152.40" 

Right now you can't do calculations (such as addition) with 
that $152.40 because it's still string data. To convert it to a 
number, you can use VAL. 

The VAL function converts a number that's in a string to 
something the computer can use for calculations. Try this 
mini-program to compute a 20% discount for U. Heep's 
account: 

SCRATCH.J 
EDIT.J 

10 Al$="Heep, U; $152.40" 
20 X=VAL(Al$[II]) 
30 X=.2*X 
40 PRINT X 
50 END 

When you run this mini-program, it gives you the discount: 

Handling Words in Strings 5-19 



Characters to 
Numbers 

RUN..J 

1 30 . 48 

How it works: The entire Al$ variable, including the 
characters "152.40", is a string. Line 20 uses VAL to find 
the numerical value of the item beginning in position 11 of 
the string Al$. Since 152.40 begins in position 11, the 
program puts that value in variable X, then calculates and 
prints 20% of the value. 

The first character in the substring to be handled by VAL 
must be a digit, a plus or minus sign, decimal point, or a 
space. The remaining characters have to be digits, a 
decimal point, the sign of E, or an E (which is interpreted as 
an exponent of 10). 

If you need to convert a character in a string to a number, 
use NUM. This function converts the first character of a 
string to its corresponding ASCII code value. 

What's an ASCII code? It's just a number. (ASCII is the 
American Standard Code for Information Interchange.) In a 
computer, each character - whether it's a number, letter, or 
symbol- can be represented by a seven-bit ASCII code. 

NUM returns the ASCII code value of its argument. Try 
this mini-program: 

SCRATCH..J 
EDIT ..J 

10 A=NUM("A") 
20 DISP A 
30 END 

5-20 Handling Words in Strings 



Numbers to 
Characters 

Inserting 
Quotation Marks 

RUN-l 

The decimal value 65 is an ASCII character code - that is, 
it's the ASCII value assigned to that character. In the 
ASCII code, uppercase and lowercase letters have different 
numbers assigned to them. 

Use CHR$ to convert ASCII codes (numeric values) to 
individual characters. 

Try this: 

CHR$ (35)-l 

The CHR$ function assumes the number in parentheses is 
an ASCII code and produces the character associated with 
that number. You can think of CHR$ as the "reverse" of 
NUM. 

CHR$ gives you more programming flexibility. 

There's a special problem in using quotation marks within a 
string. If you try to insert quotation marks, the computer 
sees them as the beginning or end of the string. So what you 
must do is type double quote marks to produce a single 
quotation mark within the string. 

Try this; type: 

PRINT """Come in, come in,"" he leered." 

Handling Words in Strings 5-21 



Lowercase and 
Uppercase 

Conversions 

The computer displays: 

I "Come ; n, come ; n," he 1 eered. 

The double quotation marks cause a single quotation mark 
to be printed. 

You can use UPC$ and L WC$ to convert a string to all 
uppercase or all lowercase characters. Try this one: 

PRINT UPC${"UP down UP down")-1 

I UP DOWN UP DOWN 

The UPC$ function converts the string "UP down UP down" 
to all uppercase letters. 

Uppercase and lowercase letters have different ASCII 
values. (An uppercase "A" is 65, for instance, while a 
lowercase "a" is 97.) But you can use UPC$ or LWC$ to 
make sure a program processes either character the same 
way. Look at this code: 

100 LINPUT A$ 
110 A$=UPC${A$[l,l]) 

No matter what the user of this program types for A$ at the 
LINPUT statement, line 110 converts it into the uppercase 
first letter of the word. So the user could type Yes, yes, Y, 
or y, and the program would evaluate A$ the same way. 

5-22 Handling Words in Strings 



Useful String 
Functions 

Here are some of the most helpful functions to help you 
evaluate and manipulate strings in your programs: 

Function What It Does 

CHR$(N) Converts the numeric value N into 
an ASCII character. 

DVAL(S$,B) Returns the whole number value of 
S$ using base B. B describes the 
base of the number and must be 2, 
8,10, or 16. 

DVAL$ (N,B) Returns the string equivalent of 
whole number N using base B. B 
must be 2, 8, 10, or 16. 

IVAL(S$,B) Returns the integer value of S$ 
using base B. B must be 2, 8,10, or 
16. 

IVAL$ (N,B) Returns the string equivalent of 
integer N using base B. B must be 2, 
8,10, or 16. 

LEN (S$) Returns the number of characters in 
the string S$. 

LWC$ (S$) Replaces all uppercase characters 
in S$ with lowercase characters. 

NUM (S$) Returns the decimal value of the 
frrst character in string S$. 

POS (S$,T$) Returns the beginning position of 
T$ in S$. 

REV$ (S$) Returns a string that is the reverse 
of string S$ 

Handling Words in Strings 5-23 



Function What It Does 

RPT$ (S$,N) Returns a string that contains N 
repetitions of string S$. 

TRIM$ (S$) Strips all leading and trailing blanks 
from S$ and returns result. 

UPC$ (S$) Replaces all lowercase characters in 
S$ with uppercase characters. 

VAL (S$) Converts string S$ into a numeric 
value; used to convert ASCII 
numbers to real values. 

VAL$ (N) Converts numeric value N into a 
string expression. 

5-24 Handling Words in Strings 



Review Quiz 1. Which of these a.re not legal names for string variables? 

Spenlow$ 
A$5 
Volts 
Volume 12$ 
ZONES 
7M$ 
Anagram$ 
Taxpayer 43$ 

2.How would you set the variable N$ equal to an "N" without 
using quotation marks? 

3. In this section of code, what's wrong with line 20? 

10 A$="Varden, 1102905" 
20 A= VAL (A$) 

4. What will be the result if you run this program? 

10 READ Meterstring$ 
20 PRINT Meterstring$ 
30 A$= "1103295" 
40 PRINT "The new input is "; A$ 
50 DATA "JCX3428911MLP" 
60 Meterstring$= Meterstring$&A$ 
70 PRINT Meterstring$ 
80 END 

Handling Words in Strings 5-25 



5. Write a "string evaluator" program. It should: 

5-26 Handling Words in Strings 

8. Accept a string of up to 100 characters from the 
keyboard. 

b. Print the string. 

c. Tell how many characters are in the string. 

d. Print the inverse of the string without leading or 
trailing spaces. 



6 
Decisions, Decisions 

The GOTO 
Statement 

This is a very important lesson. In it, you will learn how 
your programs can make decisions - something that turns 
your computer from a large, comparatively expensive 
calculator into a "thinking" machine. 

You will learn about these topics: 

• GOTO. 
• Subroutines: GOSUB and RETURN. 

• Subprograms: CALL and SUBEND. 

• Decision-Making: IF-THEN-ELSE, ON, SELECT CASE. 

• Comparisons. 

When a GOTO statement is executed in a running program, 
it causes the program to jump immediately to the specified 
line number (or line label-more about these in a moment). 
Execution then resumes at the new location. This jump is 
called a "branch." 

Decisions, Decisions 6-1 



6-2 Decisions, Decisions 

180 R=R+2 
190 Area=PI*R"2 
200 GOTO 240 
210 Width=Width+1 
220 Length=Length+1 
230 Area=Width*Length 
240 PRINT Area 
250 ! 

When line 200 is executed, the program jumps (branches) 
immediately to line 240. It skips lines 210-230. The value 
for Area that's printed is PI*R A 2, not Width*Length. 

GOTO used in this way is called an unconditional branch, 
because it always branches execution, no matter what the 
condition of any variable. 

GOTO can put a program into an endless loop. Type and 
run this mini-program: 

SCRATCH.J 
EDIT.J 

10 A=A+1 
20 PRINT A 
30 WAIT .1 
40 GOTO 10 
50 END 

RUN.J 

Every time line 40 is executed, execution branches back to 
line 10. The variable A is incremented (that is, the value 1 
is added to it) and the new value for A is printed. Then the 
loop is repeated. 



Changed Line 
Numbers 

This endless loop will continue executing forever, or until 
you turn off the computer or press [STOP] or [RESET]. 

What happens if you change a program's line numbers with 
the REN command? No problem - all your GOTO 
statements and other branches are renumbered 
automatically as well. 

Line Labels Besides line numbers, HP BASIC also uses line labels for 
branches. A line label looks like a variable, except it has a 
colon (:) at the end and is always followed by a statement. 
The simplest statement is an exclamation point (a remark) 
after a line label, like this: 

1210 PrintJoutine: 

When the GOTO statement is executed, it causes branching 
to the line label. 

210 Print routine: 
220 
230 
240 
250 Gala Print routine 

Like variables, line labels can be up to 15 characters long. 
The first letter is always uppercase, and the rest are 
lowercase. You can use numbers or letters in a label; the 
only other character that's legal is the underscore line (_). 

The line label can include statements besides the 
exclamation point, of course. These are examples of line 
labels in a program: 

Decisions, Decisions 6-3 



120 Print routine: PRINT "Waltz step" 
200 Task 1: ! 
90 Calculate: A=PI*RA 2 

Forget GOTO! Now that you've learned the unconditional GOTO 
statement, forget it! If you design your programs well, you 
should never need GOTO. There are other statements for 
branching that are much better, including GOSUB, CALL, 
and FN. You'll soon learn how to use them. 

Car4ioaJ ~'Iii Don't use unconditional GOTOs. 

Subroutines Using GOSUB to branch to a subroutine is a much better 
way than GOTO to do an unconditional branch. When a 
running program encounters a GOSUB statement, it 
transfers execution to the specified label or line number. It 
then executes until it encounters a RETURN statement. 

Program Lines Subroutine Lines 

300 R=R+2 1000 PRINT Area;"square in" 

310 Area = PI*R~2 1010 Cent=Area*6.4516 

320 GOSUB 1000 1020 PRINT Cent;"square em" 

330 Width=Width+1 1030 PRINT 

340 Length=Length+1 1040 RETURN 

350 ! 

6-4 Decisions, Decisions 



The RETURN after a GOSUB call causes execution to 
"return" to the main program and continue. 

Line 310 calculates a value for the variable Area. Line 320 
is the GOSUB call; it transfers execution to line 1000 which, 
of course, is in a different part of the program. 

The print routine in lines 1000-1030 prints the value of area 
in square inches and in square centimeters. 

When line 1040 is executed, the RETURN statement 
transfers execution back to the main program. Execution 
then continues with line 330, line 340, and so on. 

The same subroutine may be called from many different 
places in a program. 

Example: The fun-loving Alfred Jingle loves to 
gamble - especially rolling those dice. He's recently gone 
electronic, though, with his program called ROLL_DICE. 
If you dare to play with Jingle, load the program 
ROLL_DICE from the disk of examples: 

LOAD "ROLL_DICE"~ 

When you press RUN, the program simulates the roll of a 
pair of dice. It prints two numbers from 1 to 6: 

RUN~ 

DIE IS 2 
DIE IS 3 

Decisions, Decisions 6-5 



6-6 Decisions, Decisions 

To see how it works, list the program: 

LIST .J 

10 !RE-STORE "ROLL DICE" 
20 
30 CLEAR SCREEN 
40 PRINTER IS 1 
50 GOSUB Roll one die 
60 GOSUB Roll one die 
70 STOP 
80 Roll one die: ! 
90 RANDOMIZE 
100 Die=INT(RND*6)+1 
110 PRINT "DIE IS"; Die 
120 RETURN 
130 END 

When you run ROLL_DICE, the statement GOSUB 
Roll_one _ die in line 50 causes a branch to that label (in line 
80). 

In the subroutine, RANDOMIZE in line 90 creates a 
random seed for use by RND, the random number generator 
in line 100. The statement Die = INT(RND*6) + 1 gives an 
offset that keeps the value for Die a number from 1 through 
6, just like a real die. 

After the value for one die is printed by line 110, the 
RETURN in line 120 sends execution back to the main 
program. Then the subroutine is called again by line 60, and 
it calculates and prints the value for another die. 

Since there are two dice, this is a perfect use for a single 
subroutine that is called twice. 



Subprograms 

A few points about subroutines: 

• The subroutine and its RETURN must be before the 
program's END statement. 

• Branching to a subroutine "freezes" some parts of 
execution, such as a data pointer being used by a READ 
statement. When execution returns to the calling 
program, the "frozen" pointer or other element continues 
as before. 

• All variables in subroutines are global; they have the 
same meaning in the subroutine and in the main program. 

A subprogram is another way you can transfer execution 
temporarily and return. A subprogram is like a "program 
within a program," so you treat it as you would any program, 
including reserving memory and declaring variables at the 
beginning. 

A subprogram is separate from the main program; in fact, 
it's after the END statement. But when it's called from the 
main program, execution returns to the main program after 
the call just like with a subroutine. 

100 
110 CALL Subprogram_1 
120 
130 END 
140 SUB Subprogram_1 
150 ! 
160 
170 SUBEND 

Decisions, Decisions 6-7 



Subprogram 
Components 

6-8 Decisions, Decisions 

To use a subprogram, insert a CALL statement in your main 
program. 

The first line in a subprogram always begins with SUB 
followed by the subprogram's name. The last line is always 
SUBEND. The SUB END statement acts like a RETURN 
for a subroutine - it returns execution to the calling 
program. 

(Incidentally, CALL can call a subprogram or a/unction. 
Functions are like subprograms, in that they are placed after 
the end of the main program. Y ou'lliearn about functions 
later on, in lesson 7.) 

The keyword CALL, like LET, is optional. So these two 
statements accomplish exactly the same thing: 

1450 CALL Home 
460 Home 

Both line 450 and line 460 branch execution to the 
subprogram named "Home". 

To see how subprograms are used, load the program 
SUBPR_DICE. (It's another dice-playing program for 
Alfred Jingle.) 

LOAD "SUBPR_DICE"-.J 
LIST -.J 



Why Use 
Subprograms? 

10 !RE-STORE "SUBPR DICE" 
20 
30 CLEAR SCREEN 
40 PRINTER IS 1 
50 CALL Roll one die 
60 CALL Roll one die 
70 END 
80 SUB Roll one die 
90 RANDOMIZE 
100 Die=INT(RND*6)+1 
110 PRINT "DIE IS";Die 
120 SUBEND 

When you run the program, the results for you (or Jingle) 
should be the same. 

A few words about subprograms: 

• Subprograms begin with SUB and end with SUBEND. 

• Subprograms always come after the main program's END 
statement. 

• Subprograms have local variables. Their usage and 
meaning may be different in other subprograms or in the 
main program. 

Because they're appended after the end of the program, 
subprograms have advantages over subroutines and other 
structures. For instance, you can write a program that 
appends a subprogram from a disk, runs the subprogram, 
then wipes it out and appends another subprogram, and so 
on. You'll learn some of these programming techniques 
when you reach part 3 of this course. 

Decisions, Decisions 6-9 



Making 
Decisions 

One of the most useful features of any computer is its ability 
to make decisions based on facts. 

In BASIC, the computer asks the question "Is such-and-such 
true?" Then execution branches or not, depending on the 
answer to the question. For example, if A is greater than B, 
execution may branch to another part of the program. If B 
is greater than A, execution continues uninterrupted. 

I F-TH EN The simplest branch decision-making statement in BASIC is 
IF-THEN: if a condition is true, then the program prints, or 
branches, or shoots off fireworks. If the condition is not 
true, execution continues unaffected. 

6-10 DeCisions, Decisions 

False 

In this example, if the condition is true, Task 1 is executed. 
If the condition is false, it's not executed. 



Here's how you could accomplish this with IF-THEN: 

150 IF A=1 THEN GOSUB Task 1 
60 
70 
80 
90 

STOP 

100 Task 1: 
110 PRINT A 
110 RETURN 

Comparisons How do we make comparisons? One way is with the equals 
sign: 

1 100 IF A-O THEN PRINT "IT'S NOTHING" 

You can also find out if one variable is greater or less than 
another: 

1200 IF A<O THEN PRINT "IT'S BIG" 

In line 200, if A is less than zero, then the message is 
printed. 

Combinations are also allowed: 

1350 IF A>-B THEN 

If, when line 350 is executed the variable A is greater than 
or equal to B, then some action is taken. 

Decisions, Decisions 6-11 



You can compare strings, too: 

I 570 IF A$=B$ THEN GOSUB Same name 

Here, if the characters in string A$ exactly match those in 
string B$, then the program branches to subroutine 
Same name. 

Here are the comparisons you can use: 

A>B If A is greater than B ... 

A<B If A is less than B ... 

A>=B If A is greater than or equal to B ... 

A<=B If A is less than or equal to B ... 

A=B If A equals B ... 

A<>B If A is not equal to B ... 

Be Careful With You must be careful when comparing for equality. For 
Comparisons instance, try this comparison: 

6-12 Decisions, Decisions 

SCRATCH..J 
EDIT ..J 

10 A=32 
20 B=2"5 
30 IF A=B THEN PRINT "EQUAL" 
40 END 

Now run the program. The variables should be equal, since 
we know that 2 to the 5th power (that is, 2 x 2 x 2 x 2 x 2) is 
the same as 32. 



RUN..J 

What happened? They should be equal. But because of a • • _ c _ _ __ 
roundIng error In the computer, 2J as calculated is not 
exactly the same as 32. It's the same for all practical 
purposes, but it's not exact. So line 30 is not true, and the 
program continues to the END statement without printing. 

To get around this problem, you could use a range of values, 
like this: 

30 IF B<=32.1 AND B>= 31.9 THEN PRINT "EQUAL" 

Or you could use the math function ROUND to round the 
calculated number, like this: 

30 IF A=DROUND(B,2) THEN PRINT "EQUAL" 

Now line 30 rounds B to two decimal places, then compares 
it to A. This result is also true. 

Don't compare real numbers for exact equality. Use a range 
instead, or round the numbers. 

Decisions, Decisions 6-13 



IF-THEN with 
AND-OR 

10 INTEGER A. B 
20 A=3 
30 B=4 

You can base an IF-THEN decision on more than one 
choice, using AND or OR. Try this: 

SCRATCH..J 
ED IT..J 

40 IF A=3 OR B=3 THEN PRINT "CONDITIONS MET" 
50 PRINT "ENDING PROGRAM" 
60 END 

RUN..J 

Since one condition (A = 3) is met, the program prints: 

I CONDITIONS MET 
ENDING PROGRAM 

If you use AND instead of OR in the IF-THEN statement, 
both conditions must be true for THEN to be executed. 
Change line 40 to IF-AND-THEN: 

EDIT 40..J 

40 IF A=3 AND B=3 THEN PRINT "CONDITIONS MET .. ..J 

6-14 DeCisions, Decisions 

Now see what happens when you run the program: 

RUN..J 

I ENDING PROGRAM 

Since both conditions arell't true now, execution "falls 
through" to line 50 without printing in line 40. 



IF-THEN with 
END IF 

IF-THEN with END 
IF and ELSE 

If A= 1, this 
is executed { 

If A not equal to --{ 
1, this is executed 

Execution '1alls 1 
through" and continues 

When you have several steps to perform after THEN, use 
IF -THEN with an END IF statement later, like this: 

580 IF A=O THEN 
590 A=B 
600 PRINT "A is zero, so A=B" 
610 END IF 
620 !Program continues 
630 ! 

In line 580, if A equals zero, everything after it to line 610 is 
executed. If in line 580 A is not equal to zero, execution 
skips immediately past the END IF statement and proceeds 
with line 620. 

When you have two long alternatives, you can use an 
IF -THEN statement with ELSE and END IF like this: 

100 IF A=1 THEN 
110 
120 
130 
140 ELSE 
150 
160 
170 END IF 
180 
190 

In this case, if A equals 1, everything between THEN and 
ELSE (that is, lines 110-130) is executed. 

If A is not equal to 1, execution skips to the ELSE statement 
in line 140 and executes lines 150-160. 

Decisions, Decisions 6-15 



6-16 Decisions, Decisions 

No matter whether THEN or ELSE is executed, the 
program eventually "falls through" to the END IF statement 
in line 170. 

Here's how to choose which IF-THEN to use: 

• To perform one task or a subroutine call, then continue, 
use IF-THEN: 

1160 IF Pointer >=1 THEN Pointer=1 

• To perform more than one task after THEN, use 
IF -THEN and END IF: 

100 IF Ph>7.7 THEN 
110 PRINT "Final Ph=";Ph 
120 GOSUB Next tube 
130 END IF 
140 ! Program continues here 

• To choose one of two long alternatives, use IF-THEN and 
ELSE, followed by END IF: 

40 IF X <=0 THEN 
50 BEEP 
60 DISP "Improper argument" 
70 ELSE 
80 Root=SQRT(X) 
90 END IF 

Now it's time to try an example. 



Example: Like most algebra students, Barnaby Drudge is 
terrified of quadratic equations of the form Ar + Bx + C 
= O. Even with his computer, it's tough for him to figure 
out the two roots: 

/ " 

R1 
- B + \j B~- 4AC 

2A 

- B-~ B2_ 4AC 
R2 = 

2A 

He does have a secret weapon: it's the QUADRATIC 
program on the disk of example programs. Help Barnaby by 
loading the program now and running it to find the roots of 
this equation: 

r+x-6=O 

LOAD "QUADRATIC"~ 
RUN~ 

I The value for A is 

1~ 

I The value for B is 

1~ 

I The value for C is 

-6~ 

Decisions, Decisions 6-17 



10 !RE-STORE "QUADRATIC" 
20 PRINTER IS 1 
30 CLEAR SCREEN 
40 PRINT "To find the two 

Rl= 2 
R2=-3 

Now list the program to see how it works: 

LIST ..J 

roots, enter" 
50 PRINT "the values for A, B, and C." 
60 INPUT "The value for A 
70 INPUT "The value for B 
80 INPUT "The value for C 
90 D=BA2-4*A*C 
100 GOSUB Root_1 
110 GOSUB Root_2 
120 STOP 
130 Root_1:! 
140 R1=(-B+SQR(D))/(2*A) 
150 PRINT "R1= ";R1 
160 RETURN 
170 Root 2:! 
180 R2=(-B-SQR(D))/(2*A) 
190 PRINT "R2= ";R2 
200 RETURN 
210 END 

is",A 
is",B 
;s",C 

Barnaby is happy with his program - as far as it goes. But 
he still has problems with some conditions: 

1. What if the quantity B2_4AC is a negative number? (The 
program won't compute the square root of a negative 
number.) 

2. What if A = O? (The equation isn't a quadratic at all.) 

6-18 Decisions, Decisions 



Barnaby is tearing his hair. But you'll fix these problems 
and put Barnaby at his ease. 

To handle the problem ifB2_4AC is a negative number, 
add this statement: 

91 IF D<O THEN PRINT "CAN'T COMPUTE COMPLEX ROOTS!" 

To take care of a condition when A = 0, add this code: 

92 IF A=O THEN 
93 PRINT "A=O. NOT A QUADRATIC!" 
94 GOTO 40 
95 ELSE 

115 END IF 

Also add an END IF to go along with the IF -THEN 
statement in line 92. Add the END IF as line 115, before 
the STOP statement: 

When you're done, list the modified program. It should 
look like the one on the following page. 

[PAUSE] 
LIST..J 

Decisions, Decisions 6-19 



10 !RE-STORE "QUADRATIC" 
20 PRINTER IS 1 
30 CLEAR SCREEN 
40 PRINT "To find the two roots, enter" 
50 PRINT "the values for A, B, and C." 
60 INPUT "The value for A is",A 
70 INPUT "The value for B is",B 
80 INPUT "The value for C is",C 
90 D=B~2-4*A*C 

91 IF D<O THEN PRINT "CAN'T COMPUTE COMPLEX ROOTS!" 
92 IF A=O THEN 
93 PRINT "A=O. NOT A QUADRATIC!" 
94 GOTO 40 
95 ELSE 
100 GOSUB Root_ 
110 GOSUB Root 2 
115 END IF 
120 STOP 
130 Root_I:! 
140 R1=(-B+SQR(D))/(2*A) 
150 PRINT "R1= ";R1 
160 RETURN 
170 Root 2:! 
180 R2=(-B-SQR(D))/(2*A) 
190 PRINT "R2= ";R2 
200 RETURN 
210 END 

6-20 Decisions, Decisions 

Now try the modified program for the equation 
x2 + 2x +2=0: 

RUN.J 

I The value for A is 

1.J 

The value for B is 



2.J 

I The value for C is 

2.J 

This generates an error, as well as the message: 

I CAN'T COMPUTE COMPLEX ROOTS! 

Now try it for A = 0: 

RUN.J 
O.J 
1.J 
2.J 

You see that you've "trapped" this error, too, for Barnaby: 

I A-D. NOT A QUADRATIC! 

If A is not zero, the program skips lines 93 and 94 and goes 
right to the ELSE statement in line 95. It executes all 
statements after ELSE until it comes to END IF in line 115. 

Now that Barnaby is smiling, you can move on to the next 
topic. 

Decisions, Decisions 6-21 



Figurative Flowcharts 

No programming course worth its salt would be complete without a discussion of 
flowcharts. These collections of boxes, triangles, circles, and arrows are often a 
much better way to see how a program works than are code listings. 

If you've been programming without flowcharts, there's no need to fall into a 
frenzy of self-flagellation over it. But as your programs grow and become more 
complex, you may want to use flowcharting techniques, both to help write your 
programs, and to document them for others after you've gotten them to work. 

There are really only two rules to remember: 

1. Flow is generally from top to bottom, left to right. 

2. A diamond means a decision. 

Besides these two (more or less) hard-and-fast rules, there are some other 
conventions followed by many programmers. 

Circle: The beginning or end of a program. 
Parallelogram: Input or output. 
Rectangle: Computation. 
Hexagon: Function or subroutine. 

You should know that these are customs only, more honored in the breach than in 
the observance. In the real world, you'll see all kinds of flowcharts. 

You can use flowcharts to help write the actual code for a program. To begin, you 
draw a chart that shows the major flow of a program. (The facing page is an 
example: it shows a flowchart for the modified QUADRATIC program.) Then 
you just follow the chart when you begin writing the code. 

6-22 Decisions, Decisions 



Flowchart for Modified QUADRATIC Program 

Decisions, Decisions 6-23 



Using ON 

6-24 Decisions, Decisions 

You know how to make a decision for one of two paths 
using IF-THEN. But what if you need to provide several 
alternatives? 

If the alternatives can be specified in terms of integer 
values, the ON statement is good for this purpose. ON lets 
you choose from a list of tasks to do. Here's an example: 

T = (1 or 2 or 3) 

1 2 3 

Task 1 Task 2 Task 3 

~ 

50 ON T GOSUB TaskI, Task2, Task3 

In line 50, if the variable T is equal to 1, execution transfers 
to the first label in the list; that is, to Taskl. If T = 2, the 
second line label in the list (Task2) is executed. When 
T = 3, Task3 is executed. 

You can use ON to specify either labels or line numbers. 



Example: Although he's sailed the seven seas, Captain 
Cuttle of the merchant marine isn't much of a linguist. So 
he's written a program to help him greet people around the 
world. If you want to see it, load the program MORNING 
from the disk of examples. 

LOAD iiMORNINGii.J 
RUN.J 

To select a language, type a number: 
English--l 
French--2 
German--3 
Spanish--4 
Japanese--5 
Chinese--6 

This program lets you type a number to select a language, 
then shows you how to say "Good morning!" in that 
language. Try it for German: 

3.J 

I 

If you choose 3 say 
. GUTEN MORGEN! 

What about Japanese? 

RUN.J 
5.J 

If you choose 5 say 
OHAYO GOZAIMASU! 

Decisions, Decisions 6-25 



! RE-STORE "MORNING" 
10 INTEGER Number 
20 PRINT 

How it works: List the program to see how it works: 

LIST.-J 

30 PRINT "To select a language, type a number:" 
40 PRINT "English--1" 
50 PRINT "French--2" 
60 PRINT "German--3" 
70 PRINT "Spanish--4" 
80 PRINT "Japanese--5" 
90 PRINT "Chinese--6" 
100 PRINT 
110 INPUT Number 
120 PRINT "If you choose";Number;"say" 
130 ON Number GOSUB English, French, German, Spanish, Japanese, Chinese 
140 STOP 
150 English: PRINT "GOOD MORNING!" 
160 RETURN 
170 French: PRINT "BONJOUR!" 
180 RETURN 
190 German: PRINT "GUTEN MORGEN!" 
200 RETURN 
210 Spanish: PRINT "BUENOS DIAS!" 
220 RETURN 
230 Japanese: PRINT "OHAYO GOZAIMASUI" 
240 RETURN 
250 Chinese: PRINT "NI HAO MA!" 
260 RETURN 
270 END 

6-26 Decisions, Decisions 

The INPUT statement in line 110 stops the program and 
waits for you or Captain Cuttle to type the number of the 
desired language. 



Then the ON statement in line 130 branches execution to 
one of the subroutines based on the number you typed. So 
when you input the number 3, line 130 branches execution to 
the third subroutine (line label) in the list - that is, to the 
subroutine labeled German. This subroutine prints the 
words for a hearty "GUTEN MORGEN!" 

SELECT-CASE Suppose you want to choose from among many tasks, but 
can't use ON because you can't guarantee that the variable 
is an integer. What then? 

One solution is the SELECT statement, followed by several 
CASE statements. 

Volts = Ato D 

A 

130 SELECT Volts 
140 CASE <= 1 
150 GOSUB Taskl 
160 CASE = 2 
170 GOSUB Task2 
180 CASE >= 5 
190 GOSUB Task3 
200 CASE ELSE 
210 GOSUB Task4 
220 END SELECT 
230 ! 

8 c D 

Decisions, Decisions 6-27 



6-28 Decisions, Decisions 

In the example above, line 130 examines the current value 
for the variable Volts. Then the SELECT statement 
compares the value to each of the CASEs below it. If a 
CASE is true, the next statements are executed; if false, the 
program skips to the next case. 

In the example, a different subroutine is executed, 
depending on the case: 

• If Volts is less than or equal to 1 (line 140), execution is 
branched to the subroutine Taskl. 

• If Volts is equal to 2, subroutine Task2 is executed. 

• If Volts is greater than or equal to 5, Task3 is executed. 

• If Volts doesn't match one of the other cases, Task4 is 
executed. 

So if Volts = 6, the SELECT statement would look at all the 
cases, with these results: 

1140 CASE<=l 

Line 140 is not true. 

1160 CASE=2 

Line 160 is not true. 

1180 CASE>=5 

Line 180 is true, so subroutine Task3 is executed. 

1200 CASE ELSE 

Line 200 is not true. 



Review Quiz 

220 END SELECT 

When there are no more cases, line 220 continues execution. 

In your programs, CASE ELSE should take care of any 
condition that doesn't fit one of the other cases. 
Incidentally, it's usually a much better programming 
practice to use SELECT-CASE instead of ON-GOTO. 

1. Where will execution halt for this section of code: line 60 
or line 70? 

10 A=1 
20 B=2 
30 C=3 
40 D=4 
50 IF A<B AND C<=D-2 THEN 70 
60 STOP 
70 END 

Decisions, Decisions 6-29 



6-30 Decisions, Decisions 

2. What's wrong with this section of a mini-program? 

10 GOSUB Init 
20 GOSUB Print 
30 STOP 
40 Init:! 
50 DIM A$[40] 
60 INTEGER I 
70 RETURN 
80 Pri nt: ! 
90 PRINT "Printing" 
100 SUBEND 
110 END 

3. Remember the MORNING program? Modify it to use 
SELECT-CASE instead of ON. 



7 
Repetition, Repetition 

The 
FOR-NEXT 
Loop 

Repeating one task over and over again, perhaps with a 
small change to a variable each time, is another fundamental 
tool of any programming language. HP BASIC gives you a 
number of ways to repeat a task. 

In this lesson, you'll learn about: 

• Loops: FOR-NEXT, REPEAT UNTIL, WHILE, 
LOOP-EXIT IF. 

• INDENT 

• The live keyboard. 

• FN functions. 

If you worked through lesson 3 earlier, you already met the 
FOR-NEXT loop. To refresh your memory, here's how one 
looks: 

70 FOR 1=1 TO 50 
80 GOSUB Task1 
90 NEXT 1 
100 

The first time program execution reaches line 70, it sets the 
variable I equal to 1. Then it executes subroutine Taskl and 
returns. 

Repetition, Repetition 7-1 



100 

The NEXT I statement in line 90 sends execution back to 
line 70 again, where the value of I is increased to 2, Task1 is 
executed again, and the NEXT I statement again returns 
execution to line 50. 

This is called a "loop." The program stays in this loop until I 
equals 50. Then execution continues with the next line of 
the program after the loop - that is, with line 100. 

Specifying a STEP In the example above, I is the "loop counter." If you don't 
want to change a loop counter by 1 each time, you can 
specify a STEP. Try this example: 

7-2 Repetition, Repetition 

SCRATCH.J 
EDIT .J 

10 FOR J=1 TO 150 STEP 5 
20 PRINT J 
30 WAIT.l 
40 NEXT J 
50 END 



When you run the program, you can see that the loop 
counter, J, changes not by one, but by five each time through 
the loop: 

RUN..J 

1 
6 
11 

141 
146 

The program exits the loop when the value for J in line 10 
becomes 151- before the PRINT statement in line 20. 

Negative Step Another way to use STEP is to specify a negative step 
interval; this way, the loop counts down. 

To see a negative step in action, modify the mini-program so 
it looks like this: 

EDIT 10..J 

10 FOR J=150 TO 1 STEP -1 
20 PRINT J 
30 WAIT.l 
40 NEXT J 
50 END 

RUN..J 

Repetition, Repetition 7-3 



Cardinal Rule ~ 

REPEAT and 
UNTIL 

7-4 Repetition, Repetition 

You can see the program counts down from 150 to 1: 

150 
149 
148 
147 

When do you use STEP? When can you omit it from your 
FOR statements? Luckily, there's a rule on the subject: 

Unless the step interval is + 1, you always need to specify 
STEP. 

The FOR-NEXT loop executes until its counter reaches a 
specified number. Another way of creating a loop is by 
using REPEAT and UNTIL. This loop repeats over and 
over again until a specified condition occurs. 

False 

True 



10 ! RE-STORE "GUESS_GAME" 
20 1=0 
30 RANDOMIZE 
40 A=INT(RND*10)+1 
50 REPEAT 
60 INPUT "Enter your guess, 
70 1=1+1 
80 UNTIL A=N 

50 REPEAT 
60 GOSUB Taskl 
70 UNTIL A>lO 
80 ! 

This is an indefinite repeat. The loop of lines 50, 60, and 70 
keeps going until the variable A is greater than 10. Then 
execution exits the loop and continues with line 80. If A 
never becomes greater than 10, the loop continues until you 
press [RESET] or turn off the computer. 

The REPEAT-UNTIL loop is a good way to check whether 
a value is correct or within a range. 

Example: Young clerk William Guppy is fond of games of 
chance. He's written a program that lets you guess a 
number in the range from one to 10. To see and try the 
program, load GUESS_GAME from the disk of examples, 
or type it in using the listing below: 

LOAD "GUESS_GAME"~ 
LIST~ 

1-10",N 

90 PRINT "Congratulations, that took only";I;"guesses!" 
100 END 

Line 30 of the program generates a random seed for the 
random number generator in line 40. The expression 
INT(RND* 10) + 1 in line 40 "scales" the number so it's in 
the proper range of 1 through 10. 

Repetition, Repetition 7-5 



7-6 Repetition, Repetition 

Once the random number A is generated, the program 
begins executing the REPEAT-UNTIL loop. The loop waits 
for you to input a number N in line 60, then repeats. The 
loop continues until your guess (N) is finally the same as the 
number generated (A). 

To keep track of how many guesses it takes, Guppy has 
included a loop counter I. Each time through the loop, 1 is 
added to the counter. When you finally guess correctly, I 
tells the world how many guesses you needed. Give it a try! 

RUN.J 

I Enter your guess, 1-10 

I Enter your guess, 1-10 

I Enter your guess, 1-10 

Congratulations, that took only 3 guesses! 

The REPEAT-UNTIL loop is endless, if you don't guess 
right. But if you want to weasel out of the loop without 
giving the correct answer, you can press [STOP], [PAUSE], 
or [RESET]. 



Indenting to 
Taste 

As you've worked through this course, you've probably seen 
that HP BASIC automatically indents some parts of your 
program (such as the statements within a loop) and outdents 
others (such as subroutine labels) to make it easier to read. 
But you can set indenting just the way you like it - with the 
INDENT command. 

With the GUESS_GAME program still loaded, type this: 

INDENT 5,3.J 
EDIT .J 

You can see what happened to the way the program appears: 

10 ! RE-STORE "GUESS_GAME" 
20 1=0 
30 RANDOMIZE 
40 A=INT(RND*10)+1 
50 REPEAT 
60 INPUT "Enter your guess, 1-10",N 
70 1=1+1 
80 UNTIL A=N 
90 PRINT "Congratulations, that took only";I;"guesses!" 
100 END 

The command INDENT 5,3 moved the starting column for 
showing the first character of most statements to column 5. 
It also specified an indent of three positions for "nested" 
structures-things like loops. INDENT makes it a lot easier 
to read a program listing; it lets you see at a glance just 
where the beginning and end of loops are, and where labels 
are. 

Notice that INDENT doesn't move remarks that begin with 
an exclamation point. (It does move REM remarks, though.) 

Repetition, Repetition 7-7 



To remove all indenting, use 0 for the second number. Try it: 

INDENT 5,0-, 

All indenting is removed: 

10 ! RE-STORE "GUESS_GAME" 
20 1=0 
30 RANDOMIZE 
40 A=INT(RND*10)+1 
50 REPEAT 
60 INPUT "Enter your guess, 1-10",N 
70 1=1+1 
80 UNTIL A=N 
90 PRINT "Congratulations, that took only";I;"guesses!" 
100 END 

WHILE-END 

7-8 Repetition, Repetition 

With REPEAT-UNTIL, the loop is executed until a 
condition is true. In a WHILE loop, the instructions are 
executed over and over while a condition is true. When the 
condition becomes false, the loop is exited. 

False 



LOOP-END 

50 WHILE A<=10 
60 GOSUB Task1 
70 END WHILE 
80 ! 

Here the loop is executed over and over as long as the value 
of A is less than 10. As soon as A is equal to or greater than 
10, execution exits the loop and continues with line 80. 

The most powerful loop uses a statement called LOOP. The 
loop is between LOOP and END LOOP, with exits from the 
loop if an EXIT IF condition is true. 

40 
50 LOOP 
60 
70 
80 

GOSUB Task1 
EXIT IF A=2 

90 GOSUB Task2 
100 EXIT IF B=3 
110 END LOOP 
120 ! 

In this example, the loop is between lines 50 and 110. The 
loop is endless unless A = 2 or B = 3. If either of these 
conditions becomes true, execution exits the loop and 
continues with line 120. 

Repetition, Repetition 7-9 



7-10 Repetition, Repetition 

You can have any number of conditions, each with its own 
EXIT IF statement. By using LOOP and END LOOP with 
EXIT IF statements, you can provide multiple ways of 
exiting the loop while changing tasks and conditions within 
the loop. 



Live Keyboard One feature of HP BASIC that's especially useful during 
loops is the active, or "live," keyboard. You can read the 
value of a variable, or change its value, while a program is 
running. 

Enter the simple program shown below: 

SCRATCH..J 
EDIT ..J 

10 PRINTER IS 1 
20 WHILE 1<100 
30 1=1+1 
40 PRINT I 
50 WAIT.1 
60 END WHILE 
70 END 

Now press RUN. The program should begin displaying the 
current value of I: 

RUN..J 

Now put your fingers on the keyboard and type: 

I..J 

Repetition, Repetition 7-11 



7-12 Repetition, Repetition 

Look at the display line. You see the value to which I was 
set when you executed I..J. Even though the program 
continues printing new values for I, you still see the old one 
on the display line: 

This shows an important fact about HP BASIC - the 
keyboard is "live" even during program execution. 

You can use the live keyboard to change a variable's value 
in mid-program, too. With the same mini-program running, 
put your fingers on the keyboard and type: 

I=l..J 

See what happened? The program uses your new value for I 
and begins the loop again with that new value. Try it again: 

RUN..J 

1 
2 

45 
46 

I ~ 
The live keyboard can change the number assigned to a 
variable just as if a LET statement was executed in a 
program. 



Functions 

10 INPUT "Enter degrees F",F 

Remember what a/unction is? If you worked through lesson 
1, you know that a function usually takes an argument and 
gives you a result. HP BASIC already has some functions in 
it, such as: 

PI Returns the value of 'IT. 

SQRT (45) Returns the square root of 45. 

You can also write your own functions for use in programs. 

A function is like a subprogram. (You learned all about 
those earlier in this lesson.) Like a subprogram, a function: 

• Is located after a program's END statement. 

• Has local variables that can have different values - or 
even different meanings - in another part of the program. 

• May require that you reserve memory and declare an 
OPTION BASE within the function. (You'll learn more 
about OPTION BASE in lesson 8.) 

Let's create a program with a simple function that converts 
temperature in Fahrenheit to Celsius (older thermometers 
call it Centigrade), using the formula C = 5/9(F - 32). 

SCRATCH.J 
EDIT .J 

20 PRINT F;"degrees F is";FNCel(F);"degrees C" 
30 END 
40 ! 
50 DEF FNCel(F) 
60 C=5/9*(F-32) 
70 RETURN INT(C) 
80 FNEND 

Repetition, Repetition 7-13 



7-14 Repetition, Repetition 

Now run the program to find the Celsius equivalent of 40 
degrees Fahrenheit: 

RUN..J 

1 Enter degrees F 

40..J 

140 degrees F is 4 degrees C 

How it works: The function itself is in lines 50 through 80. 
lt is named FNCel. (All function names begin with FN.) The 
parts of the function are: 

• DEF FN statement: Line 50 defines the function as 
FNCel(F). 

• RETURN statement: The RETURN statement in line 70 
is different from a RETURN in a subroutine. Here it 
means "return a value from this function to the calling 
program." 

• FNEND statement: Line 80 ends the function. 

The main program uses a function just as if it were one of 
the functions resident in HP BASIC. In line 20, the function 
operates on the current value of variable F, and replaces the 
expression FNCel(F) with a calculated value. 

Since FNCel is now a function, you can use it from the 
keyboard just as you do any function. 

For example, if it's 100 degrees Fahrenheit, how hot is it in 
degrees Celsius? Type: 

FNCel (IOO)..J 



The answer is a steamy 37 degrees C: 

Local Variables Like those of a subprogram, a funciion's variabies are an 
local- they have no meaning to other parts of the program. 
So even though line 30 of the program calls the function as 
FNCel(F), you don't have to use F as the variable within the 
function (in lines 50-80). 

Try this: change lines 50 and 60 so the function uses - oh, 
say, Heat as a variable. 

EDIT 50.J 

50 DEF FNCel (Heat) 
60 C=5/9*{Heat-32) 
70 RETURN INT{C) 
80 FNEND 

Run the program now to find the Celsius equivalent of 0 
degrees F: 

RUN.J 

I Enter degrees F 

o degrees F is -18 degrees C 

Repetition, Repetition 7-15 



Functions vs. 
Subprograms 

Review Quiz 

7-16 Repetition, Repetition 

Later in this course you're going to find that functions and 
subprograms can pass parameters to the main program and 
back. For now, though, just remember: 

• If you want to take data and generate a single value, use a 
function. 

• If you want to manipulate data, do input/output, or 
generate more than one value, use a subprogram. 

1. You're running a program for the first time, and it seems 
to be in an endless loop. (It prints "What if?" over and 
over again.) How can you stop the program and exit the 
loop without turning off the computer? 

2. Modify the program GUESS_GAME from the disk of 
examples to EXIT IF Guppy types O. Use LOOP and 
END LOOP with an EXIT IF statement in between. 

Modify line 60 to read "Enter your guess, 1-10 (0 to 
exit)." If Guppy exits by pressing 0, print "You failed to 
guess right after __ guesses." 

3. As years pass, the data paths of popular microprocessors 
increase by powers of two: first 16 bits (24

), then 32 bits 
(25) and so on. 

Write a program that predicts the future of the 
microprocessor; that is, that prints all the powers of 2 up 
to and including 2101. Use a REPEAT-UNTIL loop and 
exit when you reach 1.27 x 1030 • (Careful with that 
comparison!) 

4. Write the program LAUNCHER. It should count down 
from 100 to 0, displaying each number. When 0 is 
reached, the program should display the words 
"BLAST -OFF!" 

5. Write a function FNR that rounds any number to two 
decimal places. 



Laboratory 
Exercise 

This exercise tests what you've learned in lessons 6 and 7. 

Many programmers overuse ihe program siaiemeni GOTO. 
HP BASIC has a number of other statements that are much 
more efficient and easy to use. GOSUB, 
IF-THEN-ELSE-END IF, SELECT CASE, FOR-NEXT 
STEP, REPEAT-UNTIL, WHILE-END WHILE are all 
better than GOTO. 

Here's what to do: 

1. Load LAB7 _SHL from your disk of examples. The 
program works, but it's convoluted and difficult to follow. 
You may want to run it once to see how it works. It 
counts down from 10 to 0, then back up from 0 to 10. 
After that, it asks you to input a value for voltage from 
the keyboard. Depending on the value you type, you'll 
see a different message. 

2. List the program to see the code. 

3. Before you change a line of code, plan how you're going 
to proceed. Then change lines according to the 
instructions in the program's remarks. 

Hint: The main part of your program should look like the 
code on the next page. 

Repetition, Repetition 7-17 



7-18 Repetition, Repetition 

Main! 
GOSUB Count down 
GOSUB Count_up 
GOSUB Process 
DISP "Program terminated" 
STOP 

There's a solution on your disk of examples; you'll find it as 
SOL LAB7. 



The Marvelous Array 

Congratulations! You're now an expert on the use of 
variables and loops. With those under your belt, you're 
ready to learn about giant arrays, made up of individual 
numbers or strings. 

In this lesson you'll learn about: 

• What an array is. 

• Subscripted variables. 

• Dimensioning with DIM. 

• Setting the OPTION BASE. 

• Putting data into an array. 

• String arrays. 

• Using RANK, SIZE, BASE, and SUM to investigate 
unknown arrays. 

• Structured programming. 

• Sorting. 

8 

The Marvelous Array 8-1 



What Is an 
Array? 

8-2 The Marvelous Array 

An array is a "holding area" in the computer's memory. It 
holds data in the form of numbers or strings or both. You 
use arrays to keep and manipulate the large amounts of data 
you need. 

Each number in the array is in a unique location - it's like a 
sports stadium, where each spectator's ticket places him or 
her in a specific seat. A ticket reading A-5-M, for instance, 
would plop you down in section A, the 5th row, seat M. 

Arrays can have many dimensions. An array with one 
dimension is a single row of data, like this: 

2 3 4 5 6 

You can think of a two-dimensional array as having both 
"rows" and "columns:" 

Columns 

2 3 4 5 6 

o 23 4 9 85 27 2 

Rows 

o 3 9 18 4 0 17 

HP BASIC allows arrays of up to six dimensions. 



Subscripted 
Variables 

Each piece of information in an array is assigned to a 
variable. These are called subscripted variables; they're 
shown with parentheses after them, like this: 

Array (5) 
C{4,2) 
Seat (2,12,3,35) 

The name of the entire array is shown by the variable itself, 
so Array, C, and Seat are all names of arrays. 

The numbers in parentheses (the subscripts) show the 
location of a particular piece of data within the array. The 
variable C( 4,2) shows the location of one piece of data 
within the array named C. The variable C( 4,3) shows the 
location of the adjoining piece of data. 

You use subscripted variables just as you do ordinary simple 
variables: 

10 Array(5)=45 
110 C{4,2)=C{4,2)*PI 
80 PRINT "The winner is"; Seat 
(2,12,3,35) 

The Marvelous Array 8-3 



Putting Data 
into an Array 

Setting the Base 
Element 

8-4 The Marvelous Array 

There are three steps to putting data into an array: 

1. Set the option base: Decide whether the lowest element of 
the array will be at 1 or 0 (that is, have a subscript of 1 or 
0). 

2. Dimension the a"ay: Decide the size and subscripts of the 
array and reserve memory space for it. 

3. Fill the array: Fill the array with data. 

Your first question to answer is "what is the lowest element 
of the array?" You make this decision using the OPTION 
BASE statement. 

OPTION BASE 0 sets the subscript of the base element to 
zero. OPTION BASE 1 sets the base element to one. 

Look at these two arrays: 

D 2 3 4 5 

Array_a ~ I I I I I I I 
Option 
BaseD 

2 3 4 5 6 

Array_b : I I I I I I I Option 
Base 1 

The two arrays are the same size. The subscript of the 
lowest element of Array_a, though, is O. The lowest element 
of Array_b has a subscript of 1. 



Dimensioning the 
Array 

The first row of Array_a, then, consists of subscripted 
variables Array_a(O,O), then Array_a(0,1) then Array_a(0,2) 
and so on. The second row comprises Array_a(1,0), 
Array_a(1,1), Array_a(1,2), etc. 

Since you've set Array_b to OPTION BASE 1, the subscript 
of its lowest element is 1. The subscripted variables begin 
with Array_b(1,1), Array_b(1,2), and so on. The 
highest-numbered element of Array_b is Array_b(2,6). 

You can use OPTION BASE only once in any program or 
subprogram. You set the OPTION BASE for a/l arrays at 
once. 

The computer "wakes up" set to OPTION BASE 0, so if you 
forget to use an OPTION BASE statement in your program, 
all arrays are automatically set with their lowest elements at 
zero. To prevent confusion, it's better to always declare the 
base element early in your program. Use something like: 

110 OPTION BASE 0 
or 

110 OPTION BASE 1 

Your next step is to set the dimensions of the array - that is, 
its size and shape. 

The DIM statement is one way of dimensioning an array. 
Look at this line: 

20 DIM M(2,10) 

The Marvelous Array 8-5 



Line 20 reserves space in memory for a two-dimensional 
array of 20 elements. The array is named "M", and its 
structure is 2 rows by 10 columns. 

One DIM statement can dimension more than one array. 
For example: 

10 OPTION BASE 0 
20 DIM Array_a(2,6), K(15), B(2,2,4) 

Line 20 creates three arrays. They look like this: 

02345 

ArmL a ~ I I I I I I I 
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

K IIIIII1111111 II 

8-6 The Marvelous Array 

o 2 3 

B 0 

You can, if you like, use more than one DIM statement in a 
program. DIM dimensions and reserves memory for real 
numeric arrays, strings, and string arrays. 



You can use DIM to specify the actual bounds of the array, 
too. Just use a statement with colons, like this: 

I DIM 8(1:5, 2:6) 

This dimensions an array of five rows and five columns. The 
rows begin with subscripts of 1 through 5, the columns with 
subscripts of 2 through 6. 

1 

2 

3 

4 

5 

2 3 4 5 6 

DIM isn't the only statement for reserving memory, either. 
Look at these examples of other statements that dimension 
arrays: 

110 INTEGER A(2,10) 

Line 10 dimensions array A as a 2 x 10 array of integer 
numbers. 

150 REAL Array _b(15) 

Here, line 50 dimensions an array with one row of 15 
full-precision real numbers. 

The Marvelous Array 8-7 



8-8 The Marvelous Array 

100 COMPLEX A(S12) 

The statement in line 100 declares a one-dimensional array 
of 512 complex variables and reserves memory space for 
them. 

140 COM INTEGER Array (-128: 127) 

Line 40 declares an array of integer values in a common 
area (for use by more than one variable). The elements are 
from Array( -128) to Array(127). 

14180 ALLOCATE TempS(N) [100] 

Line 4180 dynamically allocates memory for an array of N 
strings of 100 characters each. 

DIM and COM must be placed after OPTION BASE (if you 
use an OPTION BASE statement), and before you refer to 
the variable or array. 

A program can have more than one DIM, COM, or 
ALLOCATE statement. You can reserve memory for a 
particular array or variable only once using DIM and COM. 

ALLOCATE lets you reserve memory dynamically - that is, 
when you don't know how large an array will be. Unlike 
memory reserved with DIM, ALLOCATE makes a 
temporary reservation. You can later DEALLOCATE that 
memory and use it for something else. 



Putting Data 
into the Array 

Remember, an array is just a group of variables, so when 
you "put data into the array," you're just setting those 
variables equal to numbers or strings. You can put data into 
an array using statements you;ve already used for this 
purpose: LET, INPUT, and READ, for example. 

Suppose you wanted an array of the squares of whole 
numbers. You could fill the array with data using individual 
LET statements (or implied LET statements since you don't 
need the LET keyword). 

30 LET A{l)=l 
40 A(2)=4 
50 A(3)=9 
60 LET A(4)=16 
70 LET A(5)=25 

Lines 30-70 show one way to fill an array - the hard way. 

Using a Loop The beauty of an array is that it makes handling large 
amounts of data easy. Try this mini-program to see a fast, 
efficient way to fill array A: 

SCRATCH..J 
EDIT ..J 

The Marvelous Array 8-9 



8-10 The Marvelous Array 

10 OPTION BASE 1 
20 DIM A(5) 
30 FOR 1=1 TO 5 
40 A(I)=I"2 
50 NEXT I 
60 PRINT A(*) 
70 END 

Now run the program: 

RUN..J 

4 9 16 25 

See how it works? In line 10, you declared an OPTION 
BASE of 1; in line 20 you dimensioned an array A, 
consisting of five elements. So the elements are A(l), A(2), 
A(3), etc. 

The FOR-NEXT loop in lines 30-50 fills the array. The first 
time through the loop, 1= 1, so A(I) is A(l). The statement 
A(I) = I A 2 sets this element equal to 1 squared. 

The second time through the loop, I = 2, so line 40 sets 
A(2) =2 x 2. 

When the FOR-NEXT loop is completed, the PRINT("') 
statement in line 60 prints the values in the array. 



Using the Asterisk In line 60, the asterisk means "all elements of the array." If 
you put a seUlicolon after the asterisk, i,t prints ~~e elerqeJjlts 
close together. To try it: . , 

Using Elements of 
an Array 

EDIT 60.J. 
60 PRINT A(*);..J 
RUN.J ' 

The elements of the array are printed close together: 

11 4 9 16 25 

Once an array is filled, you can use its elements just as you 
do any variable. For instance, you can use the keyboard to 
see the value of any subsoripted variable in the array: 

A(3).J 

A(5).J 

25 

The Marvelous Array 8-11 



Strings in 
Arrays 

8-12 The Marvelous Array 

Naturally, arrays aren't limited only to numbers. You can 
also use strings of characters and words in arrays. 

Example: For Jonas Chuzzlewit, today's friends are 
tomorrow's enemies, so he's written a program, FRIENDS, 
that keeps track of who his friends are. Load it now and run 
it: 

LOAD "FRIENDS".J 
RUN.J 

I Type a fri end I s name 

Start typing the names of friends. Answer the question "Any 
more names?" with Yes until you can't think of any more. 
Then answer the question with No. 

Mark Tapley.J 

I Any more names? (Yes/No) 

Yes.J 

I Type a fri end I s name 

Charity Pecksniff.J 

I Any more names? (Yes/No) 

Y.J 

Type a friend's name 



Sarah Gamp..J 

I Any more names? (Yes/No) 

No 

Your real friends are: 
Mark Tapley Charity Pecksniff Sarah 
Gamp 
You have 3 friends 

How it works: To see how the FRIENDS program works, 
list it: 

10 ! RE-STORE "FRIENDS" 
20 OPTION BASE 1 
30 DIM Friend$(100)[40] 
40 1=0 
50 CLEAR SCREEN 
60 REPEAT 
70 1=1+1 

LIST ..J 

80 INPUT "Type a friend's name",Friend$(I) 
90 INPUT "Any more names? (Yes/No)",No$ 
100 No$=UPC$(No$[l,l]) 
110 UNTIL No$="N" 
120 PRINT "Your real friends are:" 
130 PRINT Friend$(*) 
140 PRINT "You have";I;"friends" 
150 END 

The Marvelous Array 8-13 



8-14 The Marvelous,Array 

Line 30 reserves space for a string array called Friend$; the 
arr.ay hflS 100. elements, apd each element has space for a 
40-character name. ' 

A REPEAT-UNTIL loop in lines 60-110 lets you type names 
into the array. Each time through the loop, the loop 
counter I is incremented. The INPUT statement in line 80 
.stqps to let you type in a name; that name is assigned to the 
current variable Friend$(I). 

The first time through the loop, this happened: 

1=1 
Name$(I)="Mark Tapley" 

The second time through the loop, I was incremented, so: 

1=2 
Name$(2);"Charity Pecksniff" 

Line 90 asks you to answer the question with "Yes" or. "N 0", 
then waits for your input. The statement 
No$ = UPC$(No$[l,l]) in line 100 sets the variab~e to the 
uppercase first character of the answer you type. If you type 
anything except a word beginning with N, the loop is 
repeated. 

The loop repeats UNTIL you answer the question with a 
word beginning with N (such as "No" "no" "NOr,lE" , " " 

"NEVER"). Then the variable No$ is equal to "N"; this 
causes execution to exit the loop. 

The PRINT Friend$(*) statement in line 130 means "print 
all elements of the array named Friend$." 



The Bubble Sort 

Among the ways that computers can manipulate numbers and strings in arrays, 
nothing is handier than sorting. You can sort names into alphabetical order, or 
numbers into ascending or descending order. 

The "bubble sort" (so-called because the lowest number or word "bubbles" to the 
top) is one way of sorting data. In a bubble sort, two nested loops are used, and a 
temporary variable allows switching the positions 
of two elements of the array. €) 
This program features a bubble sort of three 
names. (You'll find the program as BUBBLE on 
your disk of examples.) By changing the 
dimensioning and the value of N, you can use it to 
sort any number of elements. 

10 ! RE-STORE "BUBBLE" Sort 
20 OPTION BASE 1 
30 N=3 
40 DIM Name$(3)[20], Temp$[20] 
50 DATA Noggs, Pipchen, Claypole 
60 READ Name$(*) 
70 FOR 1=1 TO N-1 
80 FOR J=I+1 TO N 

(j) 

f) 

o 

90 IF Name$(I»Name$(J) THEN GOSUB Exchange 
100 NEXT J 
110 NEXT I 
120 PRINT Name$(*) 
130 STOP 

The Marvelous Array 8-15 



140 Exchange: ! 
150 Temp$=Name$(I) 
160 Name$(I)=Name$(J) 
170 Name$(J)=Temp$ 
180 RETURN 
190 END 

Let's "walk through" the sorting process. 

After the READ statement, the three names are in the array like this: 

Variable 
Name$(l) 
Name$(2) 
Name$(3) 

Name 
Noggs 
Pipchen 
Claypole 

1. The first time through the J loop, the counters are set as shown here: 

I Name$(I) 
1 Noggs 

J Name$(J) 
2 Pipchen 

In the alphabet, N is lower ("less than") P, so line 90 is false: Noggs is not greater 
than Pipchen. The positions of the names aren't changed. 

2. Look what happens the next time through the J loop: The variable I stays the 
same (1), but the variable J is incremented to 3: 

I Name$(I) 
1 Noggs 

J Name$(J) 
3 Claypole 

Now line 90 is true: Noggs is greater than Claypole in the alphabet. The 
IF-THEN statement causes a branch to the Exchange subroutine in line 140. 

8-16 The Marvelous Array 



Within the Exchange routine, the positions of Noggs and Claypole are swapped. 
It goes like this: 

1. Line 150 copies Noggs into TempS. (Remember, what's on the right of the 
equals sign goes into the variable on the left.) 

150 Temp$=Name$(I) 

Name$(I) Name$(J) Temp$ 
Noggs Claypole Noggs 

2. Line 160 copies Claypole into NameS(I). 

160 Name$(I)=Name$(J) 

Name$(I) NameS(J) TempS 
Claypole Claypole Noggs 

3. Finally line 170 copies Noggs into NameS(J). 

170 Name$(J)=Temp$ 

Name$(I) NameS(J) TempS 
Claypole Noggs Noggs 

You can see that Claypole and Noggs have switched places, so the array now 
looks like this: 

Variable 
NameS(l) 
NameS (2) 
NameS(3) 

Name 
Claypole 
Noggs 
Pipchen 

You can sort huge arrays of names (or numbers) with virtually the same program. 
Just increase the value for the number of elements, N. 

The Marvelous Array 8-17 



Special Array 
Functions 

Finding the 
Dimensions 

8-18 The Marvelous Array 

A number of special functions in HP BASIC let you identify 
the elements of an array, copy arrays into other arrays, add 
all the elements of an array, search an array, and do other 
useful tasks. Let's try a few of them on another array. 

Example: The proprietor of Nadgett's Investigations is in 
the midst of his latest caper, delving into the mysteries of a 
particular HP BASIC array. He has one clue, and only one. 
And though he won't admit it, he needs you - and your 
knowledge of arrays - desperately. 

To see N adgett's single clue, load and run the program 
MAGIC from the disk of examples. But be fair - don't list it 
yet. 

LOAD "MAGIC".J 
RUN.J 

I'm the mystery array. My name is M. 
What else can you find out about me? 

You know the array's name is M. You can use that name to 
find out other things about the array. For instance, to find 
out how many dimensions it has, use the RANK function. 
Type: 

PRINT RANK {M).J 

The display line shows the answer: 

2 



Finding Out the 
Option Base 

RANK returns the number of dimensions of an array. In the 
case of M, you now know it has two dimensions: rows and 
columns. 

Armed with this knowledge, you can now determine the 
array's size. For this you'll need the SIZE function. SIZE 
returns the number of eiements in a dimension of an array. 
Try this: 

PRINT SIZE (M,l).J 

The SIZE function here means "how many elements in M's 
first dimension?" The answer is 5, so you know it has five 
rows. 

But M has two dimensions: use SIZE again to find out how 
many elements in the second dimension: 

PRINT SIZE (M,2).J 

Aha! You're dealing with a 5 x 5 array. 

Now what about the variables themselves. How are they 
addressed? Use the BASE function to determine the lower 
bounds of the variable subscripts in the rows and columns: 

PRINT BASE (M, 1).J 

PRINT BASE (M,2).J 

The Marvelous Array 8-19 



Finding Out the 
Data 

8-20 The Marvelous Array 

1 

Now you're getting somewhere! This mystery array is set to 
OPTION BASE 1. The elements are M(l,l), M(1,2), 
M(1,3) and so on, right up to M(5,3), M(5,4), and M(5,5). 

2 

3 

4 

5 

2 3 4 5 6 

What about the data that's in the array? Nadgett needs to 
know that, too. 

Remember the mighty asterisk? Use it with PRINT to see a 
list of the data in the array: 

PRINT M(*);.J 

14 10 1 22 18 20 11 7 3 24 21 17 13 9 5 2 
23 19 15 6 8 4 25 16 12 

That's all the numbers in the array. They're printed in a 
long line, but since you've uncovered information that 
they're in the array in five columns and five rows, even 
Nadgett should be able to determine exactly what the array 
looks like. 



Summing the Array One other thing you can do for Nadgett is tell him the sum 
of all the elements. Use the SUM function, like this: 

DISP SUM(M).J 

1
325 

The sum of all those numbers is 325. 

At this point, Nadgett is off writing a mini-program to print 
the array. However, you can do the same thing by merely 
modifying one line of the program. Type: 

EDIT 50.J 

1 50 ! GOSUB Pri nt 

There's the culprit! The exclamation point here "comments 
out" the GOSUB call, so the array is never printed. Remove 
the exclamation point (don't forget to "enter" the line by 
pressing ENTER.J) Then run the MAGIC program again: 

50 GOSUB Pri nt.J 
RUN.J 

14 10 1 22 18 
20 11 7 3 24 
21 17 13 9 5 
2 23 19 15 6 
8 4 25 16 12 

The Marvelous Array 8-21 



10 ! RE-STORE "MAGIC" 
20 GOSUB Init 
30 GOSUB Data 
40 GOSUB Clue 
50 !GOSUB Print 
60 STOP 
70 Init: ! 
80 CLEAR SCREEN 
90 OPTION BASE 1 
100 DIM M(5,5) 
110 RETURN 
120 Data: ! 
130 READ M(*) 

There's the array, all right! If you look closely, you'll see 
why Nadgett pursued his investigation so intently: this array 
is a "magic square." If you add up the numbers in any row, 
any column, or even any diagonal, you'll find the same sum. 
Nadgett knows that ancient seers ascribed great and 
mystical properties to magic squares - and now, thanks to 
you, he has one of his very own! 

Here's a listing of MAGIC: 

140 DATA 14, 10, 1, 22, 18, 20, 11, 7, 3, 24, 21, 17, 13, 9, 5, 2, 23, 19, 15, 6, 8, 4, 25, 
16, 12 
150 RETURN 
160 Clue: ! 
170 PRINT "I'm the mystery array. My name is M." 
180 PRINT "What else can you find out about me?" 
190 RETURN 
200 Print: 
210 PRINT M(1,1), M(1,2), M(1,3), M(1,4), M(I,5) 
220 PRINT M(2,l), M(2,2), M(2,3), M(2,4), M(2,5) 
230 PRINT M(3,1), M(3,2), M(3,3), M(3,4), M(3,5) 
240 PRINT M(4,1), M(4,2), M(4,3), M(4,4), M(4,5) 
250 PRINT M(5,1), M(5,2), M(5,3), M(5,4), M(5,5) 
260 RETURN 
270 END 

8-22 The Marvelous Array 



Structured 
Programming 

Take a good look at the structure of MAGIC. It's a good 
example of a technique known as a "structured" program. 

The actual program - the main part - is separated into a 
number of different tasks, each performed by its own 
subroutine. The main part of the program (lines 20-60) is 
very short and consists entirely of subroutine calls. 

This structure makes it easy to "comment out" different 
parts of the program when you're writing it. That way, you 
can run and debug one section of code at a time. Then, 
when all the individual sections run correctly, you strip off 
the comments and voila! Your entire program is bug-free. 

The Marvelous Array 8-23 



Review Quiz 

8-24 The Marvelous Array 

1. Make a quick drawing of the array Amps using the 
information in these two program lines: 

10 OPTION BASE 0 
20 DIM Amps (3,5) 

2. What's wrong with this program? 

10 PRINTER IS 26 
20 CLEAR SCREEN 
30 OPTION BASE 1 
40 FOR C= 1 TO 20 
50 A(C)=C*2 
60 NEXT C 
70 FOR P= 1 TO 19 
80 PRINT P;" ";A(P+l)*A(P) 
90 NEXT P 
100 END 



3. This program sorts numbers according to size. Will the 
smallest or largest number appear at the top of the list? 

1

10 OPTION BASE 1 
20 DIM A(20) 
30 FOR C= 1 TO 20 
40 DISP 
50 DISP "Please enter any number" 
60 INPUT A(C) 
70 NEXT C 
80 FOR K= 1 TO 19 
90 FOR L= 1 TO 19 
100 IF A(L»A(l+l) THEN 140 
110 T=A(L) 
120 A(L)=A(L+l) 
130 A(L+l)=T 
140 NEXT L 
150 NEXT K 
160 FOR C= 1 TO 20 
170 PRINT A(C) 
180 NEXT C 
190 END 

The Marvelous Array 8-25 



8-26 The Marvelous Array 



9 
Printing to Please 

Formatting 
the Easy Way 

It's sad but true - no matter how powerful your programs or 
how elegant your solutions to knotty programming 
problems, nobody looks at your actual code. People see 
only the output that's printed or displayed. 

This lesson shows how to turn the output from your 
programs into a thing of beauty. You'll learn about: 

• Printing in fields on your screen and printer. 

• Formatting output with PRINT USING. 

• The IMAGE statement. 

• Multiple images in one statement. 

When you control the appearance of a number or string to 
print it out, it's calledfonnatting. 

Formatted printing changes only the appearance of the 
item-it doesn't affect the actual number or string that's in 
the variable. No matter how a number looks, you can be 
assured that calculations using any real number are always 
performed with the full accuracy of that number. 

You already know one way of formatting your printed 
output. You learned it clear back in lesson 3. Do you 
remember what it is? 

Printing to Please 9-1 



Here's a hint. Type and run this mini-program: 

SCRATCH..J 
EDIT ..J 

10 A$="HELLO" 
20 B=130295 
30 C$="WELCOME TO SIRIUS" 
40 PRINT A$,B,C$ 
50 PRINT A$;B;C$ 
60 END 

Be sure you separate the items in line 40 with commas (,). 
Use semicolons (;) in line 50. Then run the program: 

RUN..J 

HELLO 130295 WELCOME TO SIRIUS 
HELLO 130295 WELCOME TO SIRIUS 

You remember now, don't you? The semicolon causes items 
to be printed side by side (as in line 50), while a comma puts 
space between them. 

How it works: What actually happens is that the display 
screen or print area is divided into fields. There is room for 
10 characters in each field. 

10 11 I 2 13 141s1 6 171 81 910 I 11 21 31 41 sl 61 71 81 91 
I " I 

9-2 Printing to Please 

I I 
1 st Field 2 nd Field 

When you use a comma between items, the first item is 
printed in the left-most field. The next item begins printing 
at the beginning of the next field. 



PRINT A$, B, C$..J 

I HELLO 130295 WELCOME TO SIRIUS 

, , 
New fields begin here 

When you use semicolons, the fields are ignored, and the 
items are printed close together. As you know, for a 
number that means one space (or a sign) before, and one 
space after: 

PRINT A$; B; C$..J 

I HELLO 130295 WELCOME TO SIRIUS 

When you use semicolons to separate strings, they're 
printed with no spaces between them: 

PRINT A$; C$..J 

I HELLOWELCOME TO SIRIUS 

Printing to Please 9-3 



More 
Sophisticated 
Formatting 

9-4 Printing to Please 

Using commas and semicolons is the easiest way to control 
what your printed output looks like. For more control and 
sophistication, try a PRINT USING statement. 

For an example of what PRINT USING can do, type and 
run this mini-program: 

SCRATCH..J 
EDIT..J 

10 FOR 1=1 TO 3 
20 PRINT RND 
30 NEXT I 
40 END 

RUN..J 

.0174532923929 

.337485246983 

.114546045249 

The program prints three random numbers. (The RND 
function in line 20 generates a random number from a 
"seed." Since we haven't told the computer to 
RANDOMIZE first, the number's seed is always the same. 
This makes the "random" numbers in this example always 
the same, too.) 

As it is now, the program prints a lot of digits for each 
number. Let's put a PRINT USING statement in line 20 to 
make these numbers easier to read. Change line 20 exactly 
as shown. 



Using PRINT 
USING 

EDIT 20.J 
20 PRINT USING "S2D.3D";RND.J 

Then run the program again: 

RUN.J 

I +.017 +.337 
+.115 

Isn't that better? The numbers are rounded off to three 
decimal places, and each has a sign ( + ) attached. 

Here are some of the things you can do with PRINT USING: 

• Eliminate leading and trailing blanks. 

• Line up all decimal points. 

• Make columns right-justified (that is, lined up along the 
right instead of the left). 

• Insert commas in long numbers for readability. 
Control the number of digits shown. 

In short, PRINT USING makes your printed output cleaner, 
tidier, and easier to read. 

To format your printed output, put a PRINT USING 
statement in your program. Look at the statement in our 
example again: 

20 PRINT USING "S2D.3D";RND 

Printing to Please 9-5 



The characters "S2D.3D" form the image in which the 
number is printed. The parts of this particular image mean: 

• The "s" adds a sign to what's printed. 

• The "2D" prints two digits. 

• The "." prints (can you guess?) the decimal point. 

• Then the "3D" prints three more digits. 

The semicolon (;) separates the image from what you want 
to print (RND, in this case). 

Printing Numbers Besides "D" and the decimal point, there are several other 
specifiers you can place in your PRINT USING statements. 
Some you'll use with numbers, some with strings, and some 
with all types of output. You'll find a complete list back in 
lesson 25. 

9-6 Printing to Please 

Here are the most common specifiers you'll use in images to 
print numbers: 

Image Specifier What It Does 

D Prints a digit. If this is a leading 
zero, a blank or the number's sign is 
printed. 

Z Same as D, except leading zeros are 
printed. 

Prints the decimal point. 

S Prints the sign of the number: either 
+ or-. 

M Prints - sign if the number is 
negative; print a blank if number is 
positive. 

E Prints "E" followed by a sign and 
two digits of the exponent. This is 
the same as "ESZZ". 



Image Specifier What It Does 

ESZZ Prints "E" followed by a sign and 
two digits of the exponent. 

ESZZZ Prints "E" followed by a sign and 
thrpp pvnnnp.nt i1imtc: 
~~ -- - •• t'~~-~~ .... &~~u. 

K Prints the entire number without 
leading or trailing spaces. 

X Prints a blank. 

* Like Z, except asterisks are printed 
instead of leading zeros. 

5( ) Repeat the specifier or group of 
(or any number) specifiers 5 (or any number of) 

times. 

Let's print the number 123.4567 several different ways with 
PRINT USING. 

PRINT USING "000.00"; 123.4567~ 

1123.46 

The computer prints one digit for each D in your PRINT 
USING image. There are three digits to the left of the 
decimal point and two digits to the right. The "2D" after the 
decimal point rounds the number off to two digits and prints 
them. 

You get the same effect with this: 

PRINT USING "30.20"; 123.4567~ 

1123.46 

As you can see, numbers can be used as "multipliers" for 
image items such as D and Z. So "3D" is the same as "DDD". 

Printing to Please 9-7 



9-8 Printing to Please 

Now try these other examples with the same number, 
123.4567: 

PRINT USING "K"; 123.4567~ 

1123.4567 

"K" prints the entire number. 

PRINT USING "S5Z.2D"; 123.4567~ 

1+00123.46 

Here the "s" prints the sign. "5Z" prints two leading zeros 
and three digits (filling a total of five spaces). 

PRINT USING "SD.3DE";6.023E+23~ 

I +6. 023E+23 

PRINT USING IS3D.3DE";6.023E+23~ 

I +602.300E+21 

These examples show how a number with an exponent can 
be easily formatted with PRINT USING. 

Asterisks in your printed output can help you see fields and 
spaces better. And PRINT USING lets you put them into 
your printouts: 

PRINT USING "5*.DDD";123.4567~ 

I **123. 457 



Multiple Images in 
One Statement 

In this example, the computer tries to print asterisks in the 
five spaces to the left of the decimal point. Three spaces 
are occupied by numbers, so you see them, along with two 
leading asterisks. The three D's round the number to three 
digits to right of the decimal point. 

Several images can be placed in a single PRINT USING 
statement. Just separate the images with commas, like this: 

PRINT USING "DD,SDD,DD"; 10, 20, 30~ 

110+2030 

The first element in the image, DO, formats the first 
number. The second number is printed immediately after 
the first, using the image SOD (sign plus two digits). Then 
the third number is printed using the third image (~O). 

Notice that the PRINT USING image overrides the commas 
separating the numbers 10, 20, and 30, so the fields are 
ignored. 

You can, of course, print to different fields on the same line, 
but you must set it up with the image in the PRINT USING 
statement. Try this mini-program to see an example: 

SCRATCH~ 

EDIT~ 

10 PRINT USING "5(''''1234567890'''')'' 
20 PRINT 
30 PRINT USING "50.40";1.1,22.22,333.333,4444.4444,55555.55555 
40 PRINT USING "5*.40";1.1, 22.22, 333.333, 4444.4444, 55555.55555 
50 ENO 

Printing to Please 9-9 



RUN~ 

12345678901234567890123456789012345678901234567890 

1.1000 22.2200 333.3330 4444.444455555.5556 
****1.1000***22.2200**333.3330*4444.444455555.5556 

9-10 Printing to Please 

See what happened? Line 10 printed numbers to show the 
fields and the position of each character. (Line 10 actually 
prints a string five times; the double quotation marks are 
necessary to output this string in a PRINT USING 
statement. You'll soon learn more about string output.) 

Line 20 prints a blank line, then line 30 prints the numbers. 
It prints the first number (1.1) in the left-most field, then 
the next number (22.22) in the next field, and so on. Line 40 
prints the same numbers with leading asterisks so you can 
see the positions better. 

There are two major points to remember about lines 30 and 
40 in this mini-program: 

• You can use a single image to print several numbers . 

• Here, it is the image "50.40" or "5'" .40" that makes each 
number occupy a single 10-space field. 



Printing Strings The PRINT USING statement can also help you print 
words, names, and other strings. You can use the image 
specifiers shown here for strings: 

Image Specifier I What It Does 

A Prints a single character of the 
string (or trailing blank if all 
characters have been printed). 

K Prints entire string without leading 
or trailing blanks. (Good for 
printing strings of unknown length.) 

X Prints a blank (space) in this 
position. 

"Characters" Prints the characters that are 
between the quotation marks. (Use 
double quotation marks if the 
characters are inside the PRINT 
USING's quotation marks.) 

5( ) Repeats the specifier or group of 
(or any number) specifiers 5 (or any number of) 

times. 

Let's go through a couple of examples. Try these: 

PRINT USING "ISA"; "TOO LONG INDEED" 

I TOO LONG INDEED 

PRINT USING "BA"; "TOO LONG INDEED" 

TOO LONG 

Printing to Please 9-11 



9-12 Printing to Please 

When you specified l5A in your image, all 15 characters of 
the string "TOO LONG INDEED" were printed. But when 
you left room for only eight characters (via the image "8A"), 
only the first part of the string was printed. 

Now try some other examples of the PRINT USING 
statement. Remember the "page header" that let you see the 
fields earlier? Try this: 

PRINT USING "K"; "12345678901234567890".J 

112345678901234567890 

That's a start, but it's sure a lot of numbers to type. Use this 
instead: 

PRINT USING "3(""1234567890"")".J 

1 123456789012345678901234567890 

(Notice that you needed double quotation marks around the 
characters since they're actually inside the PRINT USING's 
image.) 

Now you're ready to type in some names with PRINT 
USING: 

PRINT USING "5X,10A,2X,13A"; "RUTH PINCH", 
"MONTAGUE TIGG" 

123456789012345678901234567890 
RUTH PINCH MONTAGUE TIGG 

The PRINT USING statement printed five blank spaces 
(5X), then the 10 characters of Ruth Pinch's name (lOA). 
Next it printed two more spaces (2X), and finally printed 
the 13 characters of Montague Tigg's moniker. 



Other Uses 
for PRINT 
USING 

Besides making your names and numbers look shipshape, a 
PRINT USING statement can do a lot of other work for 
you. Other image specifiers let this statement increase 
control over printing and your printer. 

Look over this list of additional image specifiers for PRINT 
USING: 

Image Specifier What It Does 

B Specifies that one byte of data is 
output. The effect is to print the 
corresponding ASCII character 
(similar to CHR$). 

# Suppresses current end-of-line 
(EOL) sequence. The effect is that 
the printer doesn't go to the next 
line after printing this line. 

/ Sends a carriage return (CR) and 
line feed (LF). Use this to get the 
printer to advance the paper one 
line. 

L Sends the current end-of-line 
(EOL) sequence. On printers the 
EOL sequence is usually a CR/LF, 
so this is normally the same as the 
slash (I). 

@ Sends a form feed to advance the 
paper one page. 

There are other specifiers besides the ones shown here; 
you'll find a complete list in lesson 25. But these are the 
most common characters for specifying PRINT USING 
images. 

Printing to Please 9-13 



9-14 Printing to Please 

Try this sequence in order: 

PRINTER IS 1...1 
PRINT "PAGE 1 "...1 
PRINT USING "@,6A";"PAGE 2"...1 

PAGE 1 

PAGE 2 

After "PAGE 1" was printed, the PRINT USING statement 
sent a form feed to the current printer (the display screen). 
This advanced the "paper" one page, causing "PAGE 2" to 
be printed at the top of the next page. 

Now try this mini-program: 

SCRATCH...1 
ED IT...1 

10 A$="SWEEDLEPIPE" 
20 B=77 
30 C=82 
40 PRINT USING "B,B,X,#";B,C 
50 PRINT A$ 
60 END 

RUN...1 

The output shows that you can get some interesting effects 
indeed with PRINT USING: 

I MR SWEEDLEPIPE 



Using an 
Image 

In this mini-program, the PRINT USING statement in line 
40 prints variable B as a byte, prints variable C as a byte, 
and prints a space. The "#" suppresses the CR/LF that 
would usually cause line 50 to be printed on another line. So 
the output from line 40 and line 50 are printed together. 

If you find yourself with the same PRINT USING statement 
over and over in a program, you can use it to refer to an 
IMAG E statement. 

Here's an example: 

1100 Oataformat: IMAGE 530.20 

This IMAGE statement has a label of "Dataformat". It says 
"print data with a sign, three digits, a decimal point, then 
two more digits." The colon (:) in line 100 isn't actually part 
of the label, but it identifies this statement as a label. 

Notice that you don't need quotation marks in the IMAGE 
statement. 

Now you can refer to the IMAGE statement each time you 
have PRINT USING: 

100 Oataformat: IMAGE S30.20 
110 PRINT USING Oataformat; A,B 
120 PRINT USING 100; C,O,E 

You can refer to the IMAGE statement by its label 
(Dataformat) or its line number (100). 

Printing to Please 9-15 



9-16 Printing to Please 

Take a few minutes and tryout this mini-program: 

SCRATCH..J 
ED IT..J 

10 Printform: IMAGE S5D.2D 
20 DATA 1.11,22.22,333.33,444.44,555.55 
30 READ A,B,C,D,E 
40 PRINT USING Printform;A,B,C 
50 PRINT USING 10;D,E 
60 END 

The run the program to see the output: 

RUN..J 

+1.11 
+444.44 

+22.22 
+555.55 

+333.33 

Notice that both PRINT USING statements use the same 
IMAGE, the one in line 10. 

The IMAGE statement is one of the most powerful 
implements you have in your programming toolbox. You 
can refer to an IMAGE using all of these statements: 

• PRINT USING. 

• DISP USING. 

• OUTPUT USING. 

• ENTER USING. 

• LABEL USING. 

If you're doing instrument control, you'll use IMAGE not 
only for printing, but also for formatting instructions to 
instruments. Parts 2 and 3 of this course show how to use 
IMAGE with some of these other statements. 



Review Quiz 

If you're doing instrument control, you'll use IMAGE not 
only for printing, but also for formatting instructions to 
instruments. Parts 2 and 3 of this course show how to use 
IMAGE with some of these other statements. 

1. What's another way to type the image "DDDDD.DDD"? 

2. What does this code print? 

10 Image1: IMAGE 32 (n*n) 
20 PRINT USING Image1 

3. Look at this mini-program: 

10 DATA 1234, ABCD 
20 READ X, Y$ 
30 
40 END 

Write a PRINT USING statement for line 30. It should 
print the data in line 10 as: 

1234ABCD 

Printing to Please 9-17 



4. See if you can predict the output from this mini-program: 

10 DIM A$ [62] ,8$ [20] 
20 A$="This shows how images give you data the way you like it." 
30 8$="From Hewlett-Packard" 
40 C=1234567 
50 PRINT 
60 PRINT USING "K,7D";"An example number is ",C 
70 PRINT 
80 PRINT USING ''''''Another example number is "",7D";C 
90 Use_this: IMAGE 5X, 20A 
100 PRINT USING "35A,/";A$ 
110 PRINT USING Use_this;8$ 
120 END 

9-18 Printing to Please 



5. Remember the MAGIC program from lesson 8? Take a 
look at the listing again. 

10 ! RE-STORE "HAGIC" 
20 GOSUB In it 
30 GOSUB Data 
40 GOSUB Clue 
50 !GOSUB Print 
60 STOP 
70 Init: ! 
BO CLEAR SCREEN 
90 OPTION BASE 1 
100 DIH H(5,5) 
110 RETURN 
120 Data: ! 
130 READ H(*) 
140 DATA 14, 10, I, 22, 1B, 20, II, 7, 3, 24, 21, 17, 13, 9, 5, 2, 23, 19, 15, 6, B, 4, 25, 
16, 12 
150 RETURN 
160 Clue: ! 
170 PRINT "I'm the mystery array. Hy name is H." 
1BO PRINT "What else can you find out about me?" 
190 RETURN 
200 Print: ! 
210 PRINT H(l,l), H(l,2), H(l,3), H(l,4), H(l,5) 
220 PRINT H(2,l)~ H(2,2), H(2,3), H(2,4), H(2,5) 
230 PRINT H(3,l), H(3,2), H(3,3), H(3,4), H(3,5) 
240 PRINT H(4,l), H(4,2), H(4,3), H(4,4), H(4,5) 
250 PRINT H(5,l), H(5,2), H(5,3), H(5,4), H(5,5) 
260 RETURN 
270 END 

Look at the Print subroutine in lines 200-260. Rewrite 
these lines using two nested FOR-NEXT loops to print 
the array. Each row of numbers should be printed on a 
separate line, so you can see the magic square when 
you're done. 

Printing to Please 9-19 



Laboratory 
Exercise 

Load the program called LAB9 _SHL from your disk of 
examples. This program is a shell- it's your job to fill in the 
necessary code. 

In the program, you are given this data: 

A=1234567 
8=-1234567 
C= .1234 
D="FORMATTING" 

Your new program lines should format and print the data on 
the CRT like this: 

12345678901234567890123456789012345678901234567890 
FORMAT 
-1234567.000 
+1234567.0 

1234567 
1.235E+006 

-1234567.00 
0.123 0.123 

1234567.00 
0000000.12 

1. 235E+06 

0.123 

9-20 Printing to Please 

~ Use two statements to 
~ generate these four lines 

You should be able to generate the bottom four lines with 
just two statements. 

The solution is also on your disk of examples, as SOL_LAB9. 



10 
Using Mass Storage 

Throughout this course, you've learned about "computer 
memory." This is the memory inside your computer that's 
used by your programs. You can store words and numbers 
in memory (usually in arrays), but everything is wiped 
out - cleared completely - whenever you turn the computer 
off, lose power, or use SCRATCH. 

Another kind of memory that you can use is called "mass 
storage." Mass storage can be the so-called "floppy" or 
"minifloppy" disks, hard disks, magnetic tape, and more. 

In lesson 3 you learned how to initialize a disk and save 
programs on it. In this lesson you'll learn more details on 
using mass storage, and how to store data as well as 
programs. 

You'll learn about: 

• Using PRINT LABEL and READ LABEL to identify 
your disks. 

• ASCII, BDAT, and HP-UX files. 

• Using CREATE to create a data file. 

• Using ASSIGN to open or close a path to a file. 

• Serial and random access. 

• Putting data in a file with OUTPUT. 

• Reading data from a file with ENTER. 

Using Mass Storage 10-1 



A Data 
Storage 
Example 

10-2 Using Mass Storage 

Why put data into mass storage? That data may be 
priceless, for one thing. It may be the result of hundreds of 
experiments or thousands of hours of collection. 

Or it may be voluminous-something like the New York City 
telephone directory- that your computer must process in 
small bites rather than in one large gulp. 

The best way to learn about data storage is to "walk 
through" an example. 

Example: In her current project, eminent engineer Emma 
Haredale uses the square roots of the numbers 1 through 
100 over and over - so often, in fact, that she wants to store 
a "square root table" on disk, ready to load into an array for 
use. Can you help her? 

How to do it: Whether you're storing programs or data, 
you'll need these two steps: 

• Specify which mass storage unit. 

• Initialize the disk in the storage unit (if it's a new disk). 

Then, to store data, you'll also need to: 

• Create a data file on the disk. 

• Open a path to the data file. 

• Output data along the path to the file. 

• Close the path to the file. 



Reviewing 
Program 
Storage 

Finally, to actually get and use the data again, you must: 

• Open a path to the file. 

• Enter the data from the file. 

• Close the path. 

You'll go through these steps one at a time. 

In lesson 3, you learned how to specify mass storage and 
initialize a disk. But before you put Emma Haredale's data 
on disk for her, take a moment to review program storage. 

If you worked through lesson 3, you know how to specify 
mass storage and how to initialize a disk. You should also 
remember how to copy a program from your computer's 
memory to disk. Take a moment for a quick review. 

Specifying Mass You use the MASS STORAGE IS or MSI statement to 
Storage specify the disk or other mass storage unit, like this: 

MSI ":CS80, 700,0" 

This statement makes the disk drive at interface 7, address 
0, the default mass storage unit. It means that any STORE, 
SAVE, LOAD, or GET operations will automatically be to 
or from that disk. 

Initializing a Disk Unless a disk is new, you don't have to initialize it. In fact, 
before you initialize a disk, you should always find out if 
there is anything valuable on it: 

CAT.J 

Using Mass Storage 10-3 



This catalogs the disk and checks to see what's on it. If the 
disk has already been initialized once, you don't have to do 
it again. 

If you do want to initialize, use a statement like this: 

INITIALIZE" :CS80, 700,0"..J 

This statement initializes the disk - that is, it wipes out 
anything on the disk and prepares it to receive data or 
programs. 

Storing a Program To store a program as a PROG file, use the STORE or the 
RE-STORE statement with a program name, like this: 

RE-STORE "FILENAME"..J 

If you want an ASCII program file, use SAVE or RE-SA VE. 
You'll normally use ASCII files for your programs only if 
you're using the same program on different types of 
computers. 

Adding a Label When you initialize a disk, HP BASIC gives it a volume label 
to help identify it. You can change this label with the 
PRINT LABEL statement. 

1 0-4 Using Mass Storage 

For example, to label the disk in drive A of a personal 
computer as "FILES", type: 

PRINT LABEL "FILES" TO ":CS80,1500,0"..J 

(If you don't specify the mass storage unit, the label is 
printed on the disk in the current unit.) 



The label, up to six characters long, lets you identify the 
disk. For instance, this short section of code checks to see 
if you have the correct disk in drive A: 

520 READ LABEL Label$ FROM ":CS80,1500,0" 
c"')n Tr- I _L._'''' ...... "r-TI'(""II TIU-i' nnTliT "" .. ____ .I!_I.I" 
~0U lr LdU~I~ " rILC~ Inc~ r~I~1 wrong OISK! 

Programs vs. 
Data 

Create a Data 
File 

Programs you store or save are sets of BASIC instructions 
that make the computer do some task. Data you put into 
mass storage can be numbers or ASCII characters or both. 
But it's just that - data and nothing more. It has meaning 
only when it's brought into the computer by a program and 
added, formatted, printed, plotted, or otherwise used for 
something. 

You know how to store programs on disk. And you know 
the difference between programs and data. Now read on, as 
you learn how to put Emma Haredale's data on disk for her. 

For program storage, one statement (STORE or SAVE) 
does it all. In data storage, you create the data file 
separately, then open a path to the file, and finally output 
the data. 

Here's the statement you'll use to create the data file: 

190 CREATE BOAT "SERJILE", 4 

Before you continue, you need to learn a little more about 
files and file types. 

Using Mass Storage 10-5 



All About Files All information you place on mass storage is held there in 
files. A file, in turn, can have any number of records. A 
record is the smallest unit of data storage you can address. 

10-6 Using Mass Storage 

File Name: 256 256 256 256 

SER FILE Bytes Bytes Bytes Bytes 

4 Records 

In the illustration the file name "SER _FILE" is made up of 
four records. Each record in this file has 256 bytes of 
memory. All records in a file have the same number of 
bytes, although different files can have different record sizes. 

When you do a CAT of a mass storage unit, you can see 
information about all files on the unit. Here's an example: 

• CSBB. 15aB 
UOLUME LABEL. FILES 
FILE NAME PRO TYPE REC/F1LE BYTE/REC ADDRESS DATE TIME 

SER FILE BDAT 4 25& 2& 4-Apr-88 13.12 
RAND FILE BDAT IBB 8 31 4-Apr-88 13. Z3 
RAND-ROOTS PROG 4 25& 35 4-Apr-88 14.21 
MORTGAGE PROG 3 25& 39 5-Apr-88 B.35 
PANAMA PROG 2 25& 42 5-Apr-88 B.3& 
ROLLDICE PROG 2 25& 44 5-Apr-88 B.3& 
QUADRATIC PROG 3 25& 4& 5-Apr-88 B.37 
HORNING PROG 5 25& 49 5-Apr-88 B·38 
GUESS GAME PROG 2 25& 54 5-Apr-88 B'38 
SER ROOTS PROG 3 25& 5& 5-Apr-88 B.44 
MAGIC PROG 4 25& &B 5-Apr-88 B.41 
COUNT DISP PROG 2 25& &4 5-Apr-88 7.Z9 
COUNT:PRHT ASCII 1 25& && 5-Apr-88 7'39 

3 

'1'" • _ •• " .••• ,,&1'. "'''''·''''''I''h''h''''''''·'''''' 



File Name: Each file name is unique. Remember that file 
names are case-sensitive, though, so the file "RANDOM" 
and the file "Random" are not the same. 

Pro Type: The type of file is next to its name. PROG and 
ASCII files hold programs. BDAT, ASCII and HP-UX files 
hold data. 

Rec/File: Number of records in this file. 

Byte/Rec: Number of bytes per record. 

Address: The address is the beginning location of the file 
on the mass storage unit. 

What Kind of File When creating a file to hold data, you have to choose what 
to Use? type of data storage you want: BDAT, ASCII, or HP-UX. 

• BDAT (binary data) files offer fast, efficient transfer of 
data, and serial or random access - you can get to the 
data in one big chunk or piece by piece. They let you 
choose the format - whether you want the data 
represented in an internal bit format or as ASCII 
bytes - and they usually take less memory than ASCII 
files. However, BDAT files aren't usable by other types 
of computers. 

• ASCII files save all data as strings of ASCII characters, 
so they chew up a lot of memory. You can access the 
data serially only - in one big chunk - and outputting to 
the file or reading from usually takes more time than with 
BDAT files. But they do have one big advantage: data is 
in a Logical Interchange Format (LIF) used by many HP 
computers, so you can use the data file on different 
systems. 

• HP-UX files are similar to BDAT files. 

In general, BDAT files are the best choice for your data, 
unless you need to move it back and forth to other systems. 

Using Mass Storage 10-7 



I 

How Large a File? Part of creating a file is determining how large it must be to 
hold your data. 

I I 

I I I 
I 

Header 

Data in BOAT files: BDAT integer values require two 
bytes per number, while real values need the full-precision 
eight bytes per number. 

ASCII strings use one byte per character, plus an additional 
four bytes. If the total number of characters is an odd 
number, one more "pad" byte is added to make it an even 
number. 

The first four bytes in a string are used for a header that 
tells how long the string is. 

Integer Numbers 

I I 
2 Bytes/Element 

Real Numbers 

I I I I I I 
8 Bytes/Element 

ASCII Strings 

0 
I 

0 
I 

0 
I 

3 
I 

A 
I 

B 
I 

C 
I 

PAD 

4-Byte Header 

+ 1 Byte/Character 

+ Pad to Even Number 

10-8 Using Mass Storage 



I I 
I 

I 
Header 

Data in ASCII files: In ASCII data files, every 
item - string, real number, or integer number - is stored as 
ASCII characters. The item uses one byte per character, 
with an additional two-byte header. If the number of 
characters is an odd number, one "pad" byte is added to 
make it even. 

A real number stored in ASCII requires one byte for each 
character, plus one byte each for the sign, decimal point, 
exponent, exponent sign and exponent value. 

0 3 I A I B I C I PAD I 
2-Byte Header + 1 Byte/Character 
(Pad to Even Number) 

Data in HP-UX files: HP-UX files are very similar to 
BOAT files. The difference is that string data in HP-UX 
files doesn't have a header, but does have a termination 
character that occupies one byte. 

The chart below compares storage using different file types 
for some typical values of data. 

Using Mass Storage 10-9 



Data: In BOAT In ASCII In HP-UX 
Requires: Requires: Requires: 

125 2 bytes 6 bytes 2 bytes 
(Integer (2-byte header, 3 
number) bytes for 

characters, I-byte 
pad) 

5.04 8 bytes 8 bytes 8 bytes 
(Real number) 

1.2345E + 10 8 bytes 14 bytes 8 bytes 
(Real number) (5 bytes for 

characters, 6 bytes 
for sign, decimal 
point, etc., 2-byte 
header, I-byte pad) 

HELLO 10 bytes 8 bytes 6 bytes 
(String) 

125 8 bytes 
(As string data) 

The CREATE 
Statement 

10-10 Using Mass Storage 

6 bytes 4 bytes 

With all this information about files and records and bytes 
under your belt, let's look at that CREATE statement once 
again: 

190 CREATE BOAT "SERJILE", 4 

This statement creates a BDA T file named SER FILE. The 
file has four records of 256 bytes each. 

In the CREATE statement, you must name the file and 
specify the number of records. You can, if you like, specify a 
record length; if you don't, each record is automatically set 
at 256 bytes. 



(HP-UX files are a special case. You can't specify a record 
length - records in these files are always 1 byte long. And if 
you try to specify a number lower than 256 for the number 
of records, BASIC automatically gives you 256 records.) 

Look at these examples of CREATE statements: 

1100 CREATE BOAT "Datal", 5 

Line 100 creates a BDA T file called Datal. The file 
contains 5 records of 256 bytes each. 

I CREATE ASCII, "WORDS", 2000, 32 

This statement creates an ASCII file named WORDS. The 
file is 2000 records of 32 bytes each (64,000 bytes total). 

If you don't specify ASCII or BDAT, CREATE produces an 
HP-UX file: 

1160 CREATE "File", 512 

Line 160 creates an HP-UX file consisting of 512 records, 
each 1 byte long. 

Consider the record length carefully if you have large files. 
Try to use integral powers of 2 (that is, 4, 8, 16, 32, 64, 128) 
up to a record length of 256 bytes. Above 256, use multiples 
of 256 (for example, 512, 1024, etc.). 

Using Mass Storage 10-11 



Of Files HP-UX and DOS 

As you might suspect from the name, HP-UX files are designed for sharing data 
between BASIC and the UNIX environment. But the truth is, you don't need 
UNIX to benefit from using this file type. 

For instance, if you're using the BASIC Language Processor card in a Vectra or 
other personal computer, HP-UX files give you an added "plus" over other file 
types: transportability to DOS. 

Here's how it can work: 

1. You create an HP-UX file in HP BASIC. 

2. You can use HP BASIC's OUTPUT statement to place string data in the file. 

3. From a DOS word processor or spreadsheet program, you can read that data. 

4. And, naturally, you can also read and write to the same file using HP BASIC. 

For this application, HP-UX files are superior to ASCII files created using 
BASIC, because HP BASIC's ASCII files are burdened with additional 
information (headers and pad bytes). 

Incidentally, all HP-UX files are write-protected for use in the DOS 
environment; this prevents you from accidentally corrupting an HP-UX file by 
writing to it with your word processor. To write to an HP-UX file from a DOS 
application, you'll have to change the read-only file attribute - perhaps with the 
Norton Utilities or another similar utility program. 

10-12 Using Mass Storage 



Open a Path 
to the File 

Whew! All that just to create the file. And before you can 
stick any data in it, there's more - you have to open the file. 

You use the ASSIGN statement like a key, to open a path to 
the file for input/output (I/O). Here's the one we'll use for 
Haredale's file: 

100 ASSIGN @Access_path TO "SER_FILE" 

This statement opens an I/O path to the file SER _FILE. 
Now, when you actually output data to the file, you don't 
refer to the file at all- you just refer to the path, like this: 

110 OUTPUT @Access_path; Root_array(*) 

An I/O path name is just like a variable name (first letter a 
capital, all others lowercase, etc.). You can tell an I/O path 
name because it always has the "at" sign (@) in front. 

Assigning an I/O path name to a file lets the computer 
"remember" the type of file and where it is. The I/O path is 
then used instead of the actual file name for input/output 
operations such as OUTPUT, ENTER, and TRANSFER. 

If you don't mention the mass storage unit in an ASSIGN 
statement, the system looks on the current unit for the file. 
You can add the mass storage unit's specifier to ASSIGN a 
path name to a file in a different storage unit. For example: 

700 ASSIGN @Datapath TO "DATA2:,1500,2" 

Line 700 opens an I/O path to the file DATA2, located on 
drive C of an HP Vectra PC or other personal computer. 

Using Mass Storage 10-13 



Output Data 
Along the Path 

You've created a file and opened a path to it. The next step 
is to output data along the path. For this, you use the 
OUTPUT statement: 

110 OUTPUT @Access_path; Root_array(*) 

This statement instructs the computer to output all data 
from an array called "Root_array" along the I/O path called 
n@Access_path." 

This is a serial output - all the data flows out in a big 
chunk - so you'll be able to bring it back in only with serial 
access. 

When you OUTPUT data to a file, you should decide 
whether you will want serial access or random access to that 
data later. 

Serial Access Serial access means that the data transfer between your 
computer's memory and the mass storage unit goes very 
quickly. But to get any specific piece of data, you must 
bring all the data back into memory. 

Random Access In random access, you can get to any part of the data in the 
file. If you need to bring in all the data at once, though, 
random access makes transfer slower - a lot slower - than 
does serial access. 

10-14 Using Mass Storage 

When you make the decision for serial or random access, 
you'll have to consider how the file is structured, and how 
the data is placed into the file. 



Close the 
Path to the File 

Cardinal Rule ~ 

After you've opened a path to the file and output data to it 
(or even after you've entered data from a file), you should 
close the path. You close the path by assigning the I/O path 
name to an asterisk, like this: 

1180 ASSIGN @Access_path TO * 

That's all there is to it! Line 180 closes the access path 
(called "@Access_path") to the file "SER_FILE." 

There are other ways of closing an I/O path. A path is 
closed: 

• When a program stops running or is affected by STOP, 
END, SCRATCH, EDIT, etc. 

• When execution moves to a subprogram, or back to the 
main program from a subprogram. 

• When the path name is reassigned - for example, to a 
different file. 

It's good programming practice to always use a statement 
like the one in line 180 to close a path you've opened. 

Always use ASSIGN @ __ TO * to close a path when you've 
finished moving data. 

Using Mass Storage 10-15 



Entering Data 
from Disk 

Cardinal Rule ~ 

10-16 Using Mass Storage 

Now that you've figured out how to save Haredale's data on 
disk, how does she bring it back in? The answer is the 
ENTER statement. 

As with OUTPUT, you don't ENTER data directly from a 
file. Instead, you must: 

1. Open an I/O path to the file. 

2. Use ENTER to bring data in. 

3. Close the I/O path. 

The code might look like this: 

130 ASSIGN @New_path; TO "SER_FILE" 
140 ENTER @New_path; Read_array(*) 
150 ASSIGN @New_path; TO * 

Line 140 reads data from the path called "@New_path" into 
an array called "Read_array." 

If you output string data to the file, be sure to bring it back 
into string variables. If you used random output, bring it 
back the same way. Remember this very important cardinal 
rule: 

ENTER it the way you OUTPUT it! 

Now it's time to put Emma Haredale's square roots into a 
file for her. 



Insert the disk with examples into the drive you've been 
using. Type: 

LOAD "SER ROOTS".J 

Then remove the disk of example programs and replace it 
with your formatted data disk (which you named FILES). 

To see a listing of the SER_ROOTS program, type: 

10 ! SER_ROOTS 
20 OPTION BASE 
30 PRINTER IS 1 
40 MASS STORAGE IS ":,1500,0" 

LIST .J 

50 DIM Root_array(100),Read_array(100) 
60 FOR 1=1 TO 100 
70 Root_array(I)=SQRT(I) 
80 NEXT I 
90 CREATE BOAT "SER_FILE",4 
100 ASSIGN @Access_path TO "SER_FILE" 
110 OUTPUT @Access_path;Root_array(*) 
120 ASSIGN @Access_path TO * 
130 ASSIGN @New_path TO "SER_FILE" 
140 ENTER @New_path;Read_array(*) 
150 ASSIGN @New_path TO * 
160 FOR 1=1 TO 100 
170 PRINT "The square root of";I:"is";Read_array(I) 
180 WAIT .1 
190 NEXT I 
200 END 

Now run the program. 

Note This program creates a fue on a disk in drive A (that is, on 
":, 1500, on). If you want to use a different drive, you'll have to 
change the MASS STORAGE IS statement in line 40 so it 
refers to your drive. 

Using Mass Storage 10-17 



10-18 Using Mass Storage 

1. Make sure there's an initialized disk in drive A (or the 
drive you're using). 

2. Type: 

RUN.J 

The program takes a few moments to create the file and put 
data on the disk. Then it brings the data back and prints the 
square roots of numbers from 1 to 100: 

The square root of 1 is 1 

The square root of 99 is 9.94987437107 
The square root of 100 is 10 

If the file SER _FILE is already on the disk, you don't need 
to CREATE it; in fact, you'll get an error like this: 

I Dupl icate fi 1 e name 

In this case, just "comment out" line 90 by inserting an 
exclamation point that turns that line into an unexecuted 
remark: 

EDIT 90.J 

90 ! CREATE BOAT "SER_FILE", 4 



20 OPTION BASE 1 
30 PRINTER IS 1 

How it works: Lines 20-50 set up mass storage and the 
arrays you need: 

40 MASS STORAGE IS ".,..('01\ 1~f\f\ " .. 
;l..JOU,l.;JUU,U 

50 DIM Root_array(100), Read_ariay(100) 

60 FOR 1=1 TO 100 
70 Root_array(I)=SQRT(I) 
80 NEXT I 

90 CREATE BOAT "SER_FILE", 4 

Lines 60-80 are a loop that calculates the square roots of the 
numbers from 1 to 100 and puts them in an array called 
"Root_array": 

Line 90 creates a file of four 256-byte records - more than 
enough to hold 100 real numbers. Then lines 100-120 open 
a path to the file, output the numbers in the array, and close 
the path: 

100 ASSIGN @Access_path TO "SER_FILE" 
110 OUTPUT @Access_path; Root_array(*) 
120 ASSIGN @Access_path TO * 

That's the end of storing data into the disk. The next 
section of code brings the data back. It uses a different path 
and puts the data into a different array. In fact, the code 
below could be part of another program, or on a different 
computer entirely- just as long as the file "SER_FILE" was 
available on the current mass storage unit. 

Using Mass Storage 1 0-19 



130 ASSIGN @New_path TO "SER_FILE" 
140 ENTER @New_path; Read_array(*) 
150 ASSIGN @New_path TO * 
160 FOR 1=1 TO 100 
170 PRINT "The square root of";I:"is;Read_array(I) 
180 WAIT .1 
190 NEXT I 

A Random 
Example 

10-20 Using Mass Storage 

What about random access? As luck would have it, your disk 
of examples also contains an example of a random-access 
file. It's similar to the earlier example, SER_ROOTS, but 
since it's for random access, it's called RAND_ROOTS. 
First, put the examples disk in your disk drive, and load and 
list the program. 

LOAD "RAND_ROOTS"~ 
LIST~ 



10 ! RE-STORE "RAND_ROOTS" 
20 OPTION BASE 1 
30 PRINTER IS 1 
40 MASS STORAGE IS ":CS80,1500,0" 
50 DIM Root_array(100), Read_array(100) 
60 FOR 1=1 TO 100 
70 Root_array(I)=SQRT(I) 
80 NEXT I 
90 CREATE BDAT "RAND_FILE",100,8 
100 ASSIGN @Access_path TO "RAND_FILE" 
110 FOR 1=1 TO 100 
120 OUTPUT @Access_path,I;Root_array(l) 
130 NEXT I 
140 ASSIGN @Access_path TO * 
150 ASSIGN @New_path TO "RAND_FILE" 
160 FOR 1=1 TO 100 
170 ENTER @New_path, I;Read_array(l) 
180 NEXT I 
190 FOR 1=1 TO 100 
200 PRINT "The square root of";I;"is";Read_array(I) 
210 WAIT.1 
220 NEXT I 
230 END 

Now substitute an initialized disk for the write-protected 
examples disk, and run the program. (You may need to 
change line 40 to "point to" your mass storage unit.) 

You'll probably have enough time to make coffee, as each 
random root is laboriously output to its own record on the 
disk: 

RUN-I 

How it works: The CREATE statement in line 90 creates a 
binary data file of 100 records with 8 bytes per record - just 
the right size for 100 real numbers. 

Using Mass Storage 10-21 



10-22 Using Mass Storage 

The key to random output is the OUTPUT statement in line 
120: 

120 OUTPUT @Access_path,I;Root_array(I) 

The: "I" after the comma is the record number. It tells where 
this piece of data will be stored on the disk. 

The ENTER statement in line 170 also uses the record 
number to get to the data on the disk. (Read it like you 
wrote it, remember?) 

Although it's faster to bring the data into an array, then use 
it, you can use the record number to get to any piece of 
random data in mass storage. Try this mini-program: 

SCRATCH..J 
EDIT ..J 

10 ASSIGN @Mypath TO "RAND FILE" 
20 ENTER @Mypath, 20; What_is_it 
30 PRINT What is it 
40 ASSIGN @Mypath TO * 
50 END 



Review Quiz 

RUN.j 

When you run this, line 20 reads the data in record 20 to the 
variable What_is_it, which is then printed: 

4.472135955 

Random access of data, then, is slow - but surgically precise. 

1. You have a lot of data in the form of integers to store on 
disk. What's the best type of file for maximum speed and 
efficiency? 

What files allow the use of data on other computers? 

Which files provide random access of data? 

2. How much mass storage is needed for these quantities 
stored in a BDAT data file? In an ASCII file? 

Quantity Bytes in Bytes in ASCII 
BOAT 

6.02E+2 ? ? 
(Real) 

3.14159 ? ? 
(Integer) 

NOW IS 
THE TIME ? ? 
(String) 

Using Mass Storage 10-23 



Laboratory 
Exercise 

10-24 Using Mass Storage 

3. Put these statements in the order you'd execute them in a 
program to put data on a disk: 

ASSIGN 
MSI 
OUTPUT 
CREATE 

4. Write a CREATE statement for an ASCII data file 
called CITIZENS. The data will be 1000 names of 
citizens. No name will be longer than 30 characters. 

In this exercise, you fill arrays with random data and ASCII 
data, and benchmark them against a serial array. 

Load the shell program LAB10_SHL from your disk of 
examples. This shell contains code to generate 100 integer 
numbers, as well as program lines that use the TIMEDATE 
function to time how long it takes for storage and retrieval. 
(You'll learn more about TIMEDATE in lesson 29; for now, 
you can just watch as this function calculates the time 
needed for different operations.) 

Use comments within the shell to help you write the code. 

There's also a solution on the examples disk. It's the 
program SOL_LAB10. But try to get the program to work 
yourself, before looking at the solution. 



Part 2 
Instrument Control with HP-IB 

This part consists of lessons 11-20. Here you'll learn about 
HP-IB and the fundamentals of using this interface to 
control electronic instruments and test equipment. 

Before beginning this part, you should already be familiar 
with programming in BASIC. Perhaps you've just completed 
Part 1, Basic BASIC Programming, and are itching to 
continue .. Or maybe you already have a good BASIC 
background and are beginning the course here. 

Either way, turn the page now. And start controlling those 
instruments! 



11 
Introduction to HP-IB 

If you worked through Part 1 (lessons 1-10) of this course, 
congratulations! You're ready to begin learning how to put 
all that programming knowledge to work controlling devices 
on HP-IB. 

If you already have a BASIC programming background and 
skipped Part 1, welcome! You should have no trouble with 
Part 2 (lessons 11-20), especially if you use the index to 
refer back to Part 1 for anything you don't understand. 

This lesson is an introduction to HP-IB. In it you'll learn 
about: 

• What an interface is. 

• The interfaces in your computer. 

• Bits and bytes in BASIC. 

• Roles in HP-IB: talker, listener, controller, system 
controller. 

• HP-IB signal lines: data, handshake, bus management. 

You usually don't need to know how HP-IB works, 
especially if you're using it with Hewlett-Packard 
instruments and HP computers. Still, to guarantee you 
make the best use of HP-IB with HP BASIC, be sure to 
work through this lesson. 

Introduction to HP-IB 11-1 



HP-IB: A Short History 

Adding interface capabilities to electronic instruments and measuring 
devices - so they could "talk" to computers and other instruments - seemed like a 
wonderful thing in the early 1970s. But engineers and designers soon found 
themselves with a major-league headache: nothing worked with anything else. 

Oh, sure, the ABC company's multimeter worked with a microcomputer, all right. 
But it didn't use the same interface as the XYZ company's signal generator, nor 
the LMN company's power supplies. Every solution was unique. 

And even though countless hours were being chewed up developing ways for 
devices to communicate, there was another problem, too. As soon as one of these 
rudimentary interfaces was developed, everybody- manufacturers, customers, 
and designers - tried to leapfrog to applications far beyond its capabilities. 

Enter the International Electrotechnical Commission (IEC). In 1972, this august 
body began to look for a single interface that could be applied worldwide, a 
standard that would be usable with a wide variety of products. 

Among the plethora of standards proffered by manufacturers around the world 
was one developed at the Hewlett-Packard Company of Palo Alto, California. 
Originally designed to link the company's test equipment, this standard was 
known as the Hewlett-Packard Interface Bus (HP-IB). It was chosen as a model 
by both the IEC and by a United States subcommittee from the Institute of 
Electrical and Electronics Engineers (IEEE). 

In the next two years, several refinements were added to the interface: extended 
addressing beyond the primary addresses, a capability to poll many instruments at 
once, and a mechanism allowing control to be passed from one device to another. 
Finally, in 1974, the IEEE Standards Board approved what is now known as IEEE 
Std 488. 

The standard was revised in 1978, and a supplement added in 1980. Meanwhile, 
the international standard, known as IEC 625-1, was published in 1979. No 
matter what you call it - HP-IB, IEEE-488, GPIB, or IEC-625 - all forms of this 
bus are essentially the same. HP-IB is truly an international standard. 

11-2 Introduction to HP-IB 



What Is an 
Interface? 

Interfaces in Your 
Computer 

Simply put, an interface is an intermediary between 
incompatible systems. 

When you drive an automobile, the steering wheel, brake 
and accelerator pedals, and gear shift lever are interfaces 
between you and various systems on the car. Each interface 
translates your foot or hand motion into something that can 
be understood and used by part of the automobile. 

A computer interface, such as HP-IB, makes it possible for 
different systems, or different parts of a computer, to talk to 
each other - and to be understood. 

Even if you haven't used HP-IB, you've already used 
interfaces. You see, within your computer, each of the 
different parts requires an interface to connect it to other 
parts, and to the CPU (the central processing unit - the 
computer's "brain"). 

I/O Backplane 

For additional 
memory or 
interfaces 

Introduction to HP-IB 11-3 



11-4 Introduction to HP-IB 

A disk interface connects the disk drive, a keyboard 
interface links the keyboard, there's yet another interface 
for the CRT display, and so on. 

Chances are, you plug other interface boards into your 
computer. You might use an RS-232-C interface to talk to a 
modem, or a Centronics parallel interface to communicate 
with a printer. You can even add additional HP-IB 
interface cards. (As long as they don't have the same 
interface select code as your internal HP-IB. More about 
select codes later.) 

Although it was originally developed at Hewlett-Packard, 
HP-IB is an industry-standard interface. As something 
called "GPIB" or "IEEE-488", it's used by- and available 
from - many different manufacturers. It's not the only 
interface you can use, either. Look at these examples of 
other standard interfaces found in the computer and 
electronics industries: 

Interface Name Primary Use 

Centronics Controlling printers 

RS-232-C Controlling printers, external disk 
drives, data communications 

BCD Controlling instruments 

Datacomm Data communications 

GPIO Controlling instruments, specialized 
applications 

You may find HP-IB and one or all of these other interfaces 
in the same computer. 



Compatibility: 
Four Vital Areas 

The HP-IB 

Computer Bits and 
Bytes 

As an interface, HP-IB has to make sure all devices hooked 
to it are compatible in four areas: 

1. Mechanical: It must physically connect all devices. All 
connectors must fit. 

2. Electrical: It has to meet voltage and current 
requirements of all devices. 

3. Functional: Since data formats may not be the same, 
intelligence within HP-IB converts data from the 
computer's internal representation to that of other 
devices. 

4. Timing and Handshake: It must move data between 
devices at a known rate, or with a "handshake" after each 
data item that acknowledges receipt. 

The Hewlett-Packard Interface Bus, or HP-IB, is 
Hewlett-Packard's version of a 1978 standard known as 
IEEE-488. (IEEE means Institute of Electrical and 
Electronics Engineers.) 

Your computer is a digital computer. That means it sees 
everything, including words, numbers, commands, and 
statements, as collections of ones and zeros. These ones 
and zeros are called "bits." 

For easy movement and manipulation, data bits in BASIC 
are formed into collections known as bytes. In this scheme, 
one byte is eight bits. 

Introduction to HP-IB 11-5 



11-6 Introduction to HP-IB 

A single character occupies a single byte. Look at the 
difference between the bits for an ASCII "A" and a "B": 

Bit 7 0 

A I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 

Bit 7 o 

B I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 1 1 0 1 

The difference is only in bits 0 and 1. (In reality, bit 8 isn't 
used for the character at all. It's called the parity bit. But 
it's still part of the byte.) 

In HP-IB, message transfer is bit-parallel, byte-serial. This 
means that one 8-bit data byte is sent at a time. 

Data Byte Data Byte Data Byte 

Bit-parallel, byte-serial transmission means data transfer is 
quite fast. 



HP-IB Features Here are a few features of HP-IB you'll want to know: 

What's the 
Difference? 

Cardinal Rule ~ 

• Maximum data rate on HP-IB is 1 megabyte per second. 
(Typical rates are 5 to 20 kilobytes per second.) 

• You can pass control from one controller to another on 
the same bus. 

• You can have up to 15 devices (including controller) on 
the bus. 

• It's for short-distance control. Maximum total cable 
length is 20 meters, although you can purchase extender 
circuits. 

You will see references to GPIB, to IEEE-488-1978, to 
IEC-625, or to HP-IB. These are all the same thing. The 
four areas of compatibility - electrical, mechanical, 
functional and operational- are all the same. (IEC-62S is 
different mechanically, using different cables and 
connectors.) 

HP-IB is electrically the same as GPIB, IEEE-488-1978 and 
IEC-62S. 

GPIB and HP-IB are the same, but the interface known as 
GPIO is different. 

Introduction to HP-IB 11-7 



On the Bus If your test setup has only one instrument and a computer, 
you needn't worry much about what kind of activity you'll 
find on HP-IB. As you get into more complex systems, 
though, you'll need to understand the different roles that 
devices play in HP-IB. To visualize, think of HP-IB as a 
club meeting. 

Example: The Pickwick Club: As president, Mr. 
Pickwick brooks no nonsense at the Pickwick Club. He 
limits membership to 14 persons, plus himself. There are 
four ironclad rules: 

1. Pickwick controls the meeting. He decides who is 
permitted to talk. 

2. There can be only one talker. All others may be listeners. 

Mould 
Linkinwater (Listener) Allen 

(GErDHaWk D D 
Smike 
(Talker 
only) 

D 
Blimber 

D 

Pickwick 
(System 

Controller) 

D 

Feenlx Me~'ChD Mogers sn~ls q 
(Talker) (Controller) Winkle 

Vensopht 

11-8 Introduction to HP-IB 



3. The strangest rule is that Pickwick also controls who 
listens. Nobody can listen unless Pickwick says so. 

4. Pickwick can allow other persons to control who talks 
and who listens. But as president, Pickwick always 
asserts control at the beginning of the meeting; and he 
sometimes reasserts control right in mid-meeting. 

Today's meeting is typical. Pickwick tells Feenix to talk to 
Mould. Then Pickwick tells Mould to listen. Feenix spews 
out story after story to Mould, until he has no more 
information. 

Now Pickwick lets his favorite, Montflathers, control the 
meeting. Montflathers directs Tupman to talk and everyone 
(including herself and Pickwick) to listen. 

Within the club, there are limitations on what each member 
can do. Smike, for example, can only talk; he can't listen. 
Only Pickwick, Montflathers and Linkinwater are capable of 
controlling the meeting. And, of course, only Pickwick can 
be the overall controller. 

Roles on HP-IB HP-IB is surprisingly similar to the Pickwick Club. It also 
can have up to 15 "members" - devices on the bus. Instead 
of names, though, each device is identified with an address 
of 0 through 30. 

Each device on the bus can act as at least one (and often 
more) of these: 

Listener: Can receive data over the bus from other devices. 

Talker: Can transmit data (but not commands) over the 
interface to other devices. There can be only one talker 
active at once. 

Controller: Can specify the talker and listeners (including 
itself) for an information transfer. 

Introduction to HP-IB 11-9 



What a Device 
Can Do 

11-10 Introduction to HP-IB 

System Controller: The master controller in a 
multi-controller system. The system controller takes control 
of the bus when power is turned on or when something goes 
wrong with normal bus operations. 

Device 21 

H 

Device 22 
p 

I 
Device 01 

B 

B 
Device 07 U Device 11 

S 

Device 12 Device 20 

In systems with more than one controller, only one 
controller can be active at one time. The active controller 
can pass control to another controller; but only the system 
controller can assume control. 

Depending on the instrument or other device, you'll find 
different capabilities. 

A computer, of course, can be a talker, a listener, or a 
controller. 

A voltmeter can be a talker or listener, but probably not a 
controller. 



Computer: 
Able to Talk, 
Listen, and 

Control 

A printer is an example of a device that can only be a 
listener. 

AnA-to-D converter can be a talker, but not a listener or a 
controller. 

Voltmeter: 
Able to Talk, 

and Listen 

HP-IB Bus 

Printer: 
Able to 
Listen 

A-to-D 
Converter: 
Able to Talk 

All data transfer takes place at the rate of the slowest 
listener. That's why the ability to choose listeners is so 
important- because you can eliminate slow listeners (such 
as printers) when they're not needed, and make data 
transfers from a talker much more quickly. 

Today's electronic instruments, of course, are very powerful. 
You'll find instruments that not only can act as a talker or 
listener, but that can even be a controller or system 
controller. 

The system controller doesn't have to be a computer. A 
"smart" instrument such as the HP 8753A RF Network 
Analyzer, for instance, can act as a system controller on 
HP-IB. 

Introduction to HP-IB 11-11 



The Bus Lines HP -IB has 16 lines, used for data, for handshaking, and for 
bus management. 

If you're working with a computer and one or two 
instruments, you probably won't care what's on these lines. 
Even with more instruments, you can write successful, 
working control programs without so much as a scintilla of 
knowledge about them. 

As your programming becomes more sophisticated, though, 
and as you try to speed up your programs, you'll want to 
know every detail of how HP-IB program lines operate. So 
read on now-you'll thank yourself later. 

Data Lines As you know, HP-IB is a bit-parallel, byte-serial interface. 

11-12 Introduction to HP-IB 

In order to send an entire 8-bit byte of data at one time, 
eight separate data lines are used. These are numbered 
0101 through 0108. 

All data communication takes place between the talker and 
the listener (or listeners). The end of data is usually 
indicated by a CR/LF (carriage return/line feed). When the 
listener receives a CR/LF, it assumes all data has been sent. 

DATA BUS 

: == DATA INPUT OUTPUT --,:\:\\. 



Note Instruments are picky creatures. Usually, when an instrument 
sees a CR/LF in a data block, it assumes that's the end of the 
data-whether you intended it or not. Pay attention to CR/LF 
in your data, and you'll be a giant step ahead when debugging. 

Handshake Lines The so-called "handshake" coordinates the passing of data 
from talker to listener. 

HP-IB uses a three-wire handshake to guarantee the 
integrity of data, even among devices operating at different 
transfer rates. Every transmitted byte undergoes a 
handshake, so there's no way you can lose data. The 
transfer takes place at the rate of the slowest device. 

HANDSHAKE 

~
• DAV --- DATA VALID 

NRrD - NOT READY FOR DATA 
___ • NOAC - NOT DATA ACCEPTED ----

Each line is always in one of two states: true or false. 

The handshake lines are: 

DAV: Data Valid. Controlled by the talker or controller. 
When true, it indicates data is available. 

NRFD: Not Ready For Data. Controlled by the listener, or 
devices receiving commands. When false, it indicates the 
device can receive data. 

NDAC: Not Data Accepted. Controlled by listener or 
devices receiving commands. When false, it indicates data 
has been accepted. 

Introduction to HP-IB 11-13 



Bus Management There are five lines for management of the bus. They are 
IFC, ATN, REN, SRQ and EOI. 

11-14 Introduction to HP-IB 

BUS MANAGEMENT 

IFe - INTERFACE CLEAR 
ATN --- ATTENTION ----
REN -- REMOTE ENABLE 
SRQ - SERVICE REQUEST 
EOI - END OR IDENTIFY 

Here's how the bus management lines operate: 

IFC: Interface Clear. Controlled only by the system 
controller. It stops all activity on the bus. 

ATN: Attention. This line is controlled by the active 
controller, and specifies what's being sent on the data lines. 
If ATN is true, it's a command. If ATN is false, data on the 
lines is just that - data. 

The Attention line separates data from commands. 

REN: Remote Enable. Controlled by system controller. 
When REN is true, devices respond to remote program 
(computer) control. When it's false, instruments and other 
devices are in local operation - that is, controlled from the 
instrument's front panel, not from a computer. 

SRO: Service Request. Controlled by any device except 
the controller. When this line is true, it signals to the 
controller that a device needs attention. (For example, if 
there's an error condition, data to send, etc.) 



EOI: End or Identify. This line is controlled by the talker 
when ATN is false (data mode); or by the controller when 
ATN is true (command mode). EOI indicates the last byte 
of data in a multibyte sequence (that is, the end of data) if 
controlled by the talker. If the system controller has turned 
EOI on and ATN is true, it indicates the controller is doing 
a parallel poll. (A parallel poll is a way of checking the 
status of devices on the bus.) 

With few exceptions, you won't need to worry about any of 
these lines until you get to the more sophisticated 
techniques for instrument control in part 3 of this course. 
In this part of the course, the lines are almost transparent. 
But you'll be reminded of them from time to time, and you'll 
need to know about them when you yourself want to check 
instrument status. 

Introduction to HP-IB 11-15 



Review Quiz 

11-16 Introduction to HP-IB 

1. True or False: HP-IB is a byte-parallel, bit-serial 
interface? 

2. What's the difference between HP-IB and IEEE-488? 

3. In HP-BASIC, how many bits are there in one byte of 
data? 

4. Imagine for a moment that you are a listener on HP-IB. 
Suddenly your lines DIOl-DI08 begin to fill with data! 
You quickly check ATN and find it's on (true). Do you 
interpret the incoming signal as data or as a command? 

5. Name two ways to detect the end of a data block. 



12 
Installing HP-IB Hardware 

Identifying 
HP-IB Devices 

This lesson explains all about HP-IB hardware. It explains 
how to physically connect devices together, and what signals 
are available on an HP-IB cable. In this lesson, you'll learn 
about: 

• How to identify HP-IB devices. 

• How to determine HP-IB capability. 

• Setting device addresses. 

• What cables to use for HP-IB. 

• How to connect devices together. 

• Star and linear arrangements. 

• Cable lengths. 

In order to be connected via HP-IB (or GPIB), an 
instrument or computer must have an HP-IB connector. 

It's a 24-pin female connector. Not just any 24-pin 
connector will do, either. The computer or instrument must 
have this special HP-IB connector. 

When you locate the connector, make sure the screws are 
colored black. (They may be colored black or silver.) 
There are very good reasons why. 

Installing HP-IB Hardware 12-1 



Cardinal Rule 

Pins on the 
Connector 

• Black connectors are for HP-IB; they have metric threads. 

• Silver connectors have English threads. They're not used 
for HP-IB (except for some very early models of HP-IB 
instruments). Don't try to use a black-connector cable on 
a silver-connector device, or vice versa. Although the 
signa/lines and pins are the same, the threads are 
different, and you might destroy both connectors. 

Don't try to mate silver with black connectors. Nearly all 
HP-IB connectors are black. 

The pins and their corresponding lines on an HP-IB 
connector are always the same. Every HP-IB (or GPIB) 
instrument, computer, printer, or other device has exactly 
the same set of pins. They look like the illustration. 

HP·IB Gnd 
HP·IB Gnd 
Hp·IB Gnd 
HP·IB Gnd 
Hp·IB Gnd 
Hp·IB Gnd 
HP·IB Gnd 

REN 
0108 
0107 
0106 
0106-

Hp·IB Gnd 
ATN 
SRQ 
IFC 
NOAC 
NRFO 
OAV 
EOI 
0104 
0103 
0102 
0101 

12-2 Installing HP-IB Hardware 



Inside the 
IIHP-IB-Capablell 

Device 

Determining What 
an Instrument 

CanDo 

Within instruments, and other devices, there is a wide range 
of HP-IB or GPIB capabilities. Some devices make use of 
every line of the HP-IB interface. Others use just a few. 

In order for a device to be "HP-IB-capable", all it must have 
are: 

• An HP-IB connector 

• A termination for each line of the interface. 

A typical termination has a driver and a receiver, along with 
a pair of resistors connected to Vee and ground. 

Driver 

Bus 

--
Until you examine a device's manuals, or try it out, you 
don't know what capabilities it has. 

Although all HP-IB devices have the same signal lines, they 
cannot all perform the same functions on the interface. 
Interface functions are capabilities that may be in an HP-IB 
device or instrument. 

Installing HP-IB Hardware 12-3 



Depending on the device, this is how you'll find the 
capabilities shown (on the device's cabinet, or in its manual): 

Designation Meaning Capability 

T,TE Talker or Required for a 
Extended device to be a 
Talker talker. (An 

extended talker can 
talk to other 
devices at its 
address.) 

L,LE Listener or Required for a 
Extended device to be a 
Listener listener. 

SH Source Required to 
Handshake properly transfer a 

multiple message. 

AH Acceptor Required to 
Handshake guarantee proper 

reception of a 
multiline message. 

RL Remote/Local Can select between 
two sources of 
input: local 
corresponds to 
front-panel 
controls, and 
remote corresponds 
to input from the 
bus. 

SR Service Can asynchronously 
Request request service 

from the controller. 

12-4 Installing HP-IB Hardware 



Designation Meaning Capability 

PP Parallel Poll Device can 
uniquely identify 
itself if it requires 
service and the 
controller is 
requesting a 
response. Differs 
from SR (service 
request) in that it 
requires the 
controller to 
periodically 
conduct a parallel 
poll. 

DC Device Clear Device can be 
initialized to a 
pre-defined state. 
The effect of this 
command is 
described in the 
device's operating 
manual. 

DT Device Trigger Device can have its 
basic operation 
initiated by the 
talker on the bus. 

C Controller Device can send 
addresses, universal 
commands to other 
devices on the 
HP -lB. It may also 
be able to conduct 
polling to 
determine devices 
requiring service 

Installing HP-IB Hardware 12-5 



Designation Meaning Capability 

E Drivers This code describes 
the type of 
electrical drivers 
used in a device. 
El is open 
collector, E2 is 
tri-state. 

Remember, these are just possibilities. You won't find all 
these capabilities in every instrument. 

To find out what functions a device can perform, look next 
to the HP-IB connector or in the manual. 

0 
HP-18 • • 
SHI • • 
AHI • • 
Ho • • • • 
L4 • • 
~AY • • • • 
II • • 

PPO • • Dyl • • 
D 1 • • 

COI-3.21 
E I 

0 

The example shown is for an HP 8340B Synthesized 
Sweeper. 

On the Sweeper's cabinet, next to the HP-IB connector, is a 
list of codes that show the instrument's interface 
capabilities; each capability is shown with a number after it. 

The number 0 means "not capable." The number 1 means 
"capable." Numbers above 1 show how much capability. 

12-6 Installing HP-IB Hardware 



The letters and numbers are called "mnemonics" 
(pronounced "ni-mon-iks"). They're a kind of shorthand 
notation to show you the device's capabilities. The 
mnemonics you see are part of a set of standard mnemonics 
for IEEE Standard 488-1978. 

You donit need to worry about the speciiic details oi each of 
these mnemonics right now. There's a complete list of 
meanings in appendix B, and you'll learn more about them 
as you work through this course. However, so you'll 
understand how mnemonics show an instrument's 
capabilities, here's what the mnemonics on the sweeper 
mean: 

Mnemonic Meaning 

SHl Source Handshake: Complete 
capability. 

AHl Acceptor Handshake: Complete 
capability. 

T6 Talker: Capable of basic talker, 
serial poll, and unaddress if my 
listen address (MLA). 

TEO Talker, Extended address: No 
capability. 

L4 Listener: Capable of basic listener 
and unaddress if my talk address 
(MTA). 

LEO Listener, Extended address: No 
capability. 

SRi Service Request: Complete 
capability. 

RLl Remote Local: Complete capability. 

PPO Parallel Poll: No capability. 

Installing HP-IB Hardware 12-7 



Setting 
Addresses 

Mnemonic Meaning 

DC1 Device Clear: Complete capability. 

Controller capability options: CO, 
CO, 1-3,28 no capability. C1, system 

controller. C2, send interface clear 
(IFC) and take charge. C3, send 
remote enable (REN). C28, send 
interface messages. 

E1 Electrical: Electrical specification 
indicating open collector outputs. 

Don't worry too much about such arcane words as "my talk 
address" and "remote enable" now - you don't really need to 
know this level of detail until you get into part 3 of the 
course. 

Once you've determined what HP-IB capabilities an 
instrument or other device has, the next step in installation 
is to set the HP-IB address of the instrument. 

First, make sure you know the difference between the 
instrument address and the interface select code. 

Here's how they appear in a program statement: 

100 OUTPUT 725 

Interface 
Select Code 

Device 
'"-- Address 

12-8 Installing HP-IB Hardware 



Interface Select 
Code 

The interface select code for HP-IB is factory set at 7; and it 
usually remains set at 7. 

Remember, the computer sees all of its components, 
including CRT display, keyboard, disk drives, etc., as 
interfaces. Each interface in the computer, whether internal 
or external, has a unique select code. You're already 
familiar with some of them. 

Look at these examples of typical interface select codes 

Select Code Interface 

1 CRT display(alpha) 

2 Keyboard 

3 CRT display (graphics) 

9 Serial interface 

7 HP-IB interface 

Each interface must have a unique select code. Some codes, 
such as those of the CRT and keyboard, are fixed. You can 
change other select codes, however, usually by means of a 
switch or jumper on the interface card. 

You sometimes specify the interface select code, with a 
statement such as: 

I PRINTER IS 1 

or 

LIST #26 

Installing HP-IB Hardware 12-9 



The select code tells the computer where to look for the 
interface. The select code for each interface is fixed; it can't 
change unless you do it with hardware. 

Unless you're really getting fancy, with more than one 
HP-IB interface connected, it's best to leave HP-IB at its 
factory setting of 7. 

Device Address Although the select code is enough to identify a serial or 
parallel interface, you need to be more specific to identify 
devices on HP-IB. Each device-whether it's an instrument, 
a printer, a plotter, or something else-must have a unique 
address. Even if there's only a single device on the bus, 
you'll still need to know its address. 

Reading a Device 
Address 

On HP-IB, you can assign addresses of 00 through 30. You 
usually do this with a small switch located inside the 
instrument or on its rear panel; or by manipulating front 
panel controls. 

The device address is set at the factory, so you usually don't 
have to change it. The only time you need to change it is if 
more than one instrument or device on the same bus has the 
same address. 

The device address is factory-set, and you can find this 
information in the manual. If all you have is the switch itself 
to go by, remember this: the address is determined by five 
switches. Sometimes they're labeled AO-A4, sometimes 
AI-AS, and sometimes just ADDR. 

If there are other switches, they determine other 
capabilities. 

12-10 Installing HP-IB Hardware 



Here's an example: 

Not Used 
Instrument Address 

::=:::::::-, 
o~ 

A1 

The address switches are "binary-weighted." This means 
that the switch farthest right (AI in the illustration) carries 
a "weight" of 1 if on, 0 if off. 

A2 is 2 if on, 0 if off. 

A3 is 4 if on, 0 if off. 

A4 is 8 if on, 0 if off. 

AS is 16 if on, 0 if off. 

To determine the decimal value, you just add up the 
numbers. 

The switch shown above adds up like this: 

Position Value 

Al 1 

A2 +2 

A3 +0 

A4 +0 

AS +16 

Total=19 

The switch is set to address 19. 

Installing HP-IB Hardware 12-11 



Secondary 
Addresses 

Changing a 
Device Address 

In this example, the TALK ONLY/ADDRESSABLE switch 
must be set to ADDRESSABLE if you want the instrument 
to be programmable via HP-IB. 

Some instruments have more than one HP-IB address. The 
HP 8753A Network Analyzer, for instance, occupies two 
addresses: one for the instrument, and another for the CRT 
display. 

Multiple-address devices often have fewer switches; so four 
switches (A2-A5) set the addresses. The setting of Al 
doesn't matter, because the instrument uses a pair of 
sequential addresses (for example, addresses 12 and 13, or 
18 and 19). 

You'll find a complete list of HP-IB switch settings and 
addresses elsewhere in this lesson. 

Besides primary addresses (00-30), many devices can also 
have secondary addresses, up to six per device. This lets 
you address, say, a particular card or register in the device. 

If you've determined that, yes, you really need to change a 
device address, here's how to do it: 

1. Turn off power to the instrument. 

2. Set the switch to the new address. 

3. Turn on power to the instrument. 

4. Mark the front of the instrument with the new address so 
you won't forget it when you begin programming. 

Not all instruments need a switch to set the HP-IB address. 
When you turn on the HP 8757A Scalar Network 
Analyzer,for instance, it shows you the current HP-IB 
address right on its CRT screen. To change the address (to 
16, say) you press number keys, then press these keys on the 
front panel: 

[LOCAL] 8757 16 [ENT] 

12-12 Installing HP-IB Hardware 



HP-IB Addresses and Switch Settings 

This chart shows settings for switches AI-AS, and the primary HP-IB addresses. 

Address Switch Setting Decimal HP-IB Address 

5 4 3 2 1 

0 0 0 0 0 00 

0 0 0 0 1 01 

0 0 0 1 0 02 

0 0 0 1 1 03 

0 0 1 0 0 04 

0 0 1 0 1 05 

0 0 1 1 0 06 

0 0 1 1 1 07 

0 1 0 0 0 08 

0 1 0 0 1 09 

0 1 0 1 0 10 

0 1 0 1 1 11 

0 1 1 0 0 12 

0 1 1 0 1 13 

0 1 1 1 0 14 

0 1 1 1 1 15 

1 0 0 0 0 16 

1 0 0 0 1 17 

1 0 0 1 0 18 

Installing HP-IB Hardware 12-13 



Address Switch Setting Decimal HP-IB Address 

1 0 0 1 1 19 

1 0 1 0 0 20 

1 0 1 0 1 21 (Always controller) 

1 0 1 1 0 22 

1 0 1 1 1 23 

1 1 0 0 0 24 

1 1 0 0 1 25 

1 1 0 1 0 26 

1 1 0 1 1 27 

1 1 1 0 0 28 

1 1 1 0 1 29 

1 1 1 1 0 30 

1 1 1 1 1 31 (Untalk or unlisten) 

A few points: 

The computer's factory-set address is 21, and you shouldn't try to use this for an 
instrument address. 

Address 31 isn't really an address, but rather "untalk" or "unlisten." You'll learn 
more about these in part 3 (lesson 21) of this course. 

12-14 Installing HP-IB Hardware 



What Cables 
to Use 

Caution , 

Be sure to use only cables specifically designed for HP-IB, 
IEEE-488-1978, or IEC-625-1. 

The standards IEEE-488 (that is, HP-IB) and ANSI MC1-1 
use a 24-pin connector and cable. This is what you'll find in 
North America. 

As an example, here are Hewlett-Packard part numbers for 
some typical HP-IB cables: 

Part Number Length 

HP 10833A 1m (3.3 ft.) 

HP 10833B 2m (6.6 ft.) 

HP 10833C 4m (13.2 ft.) 

HP 10833D O.5m (1.6 ft.) 

Make sure your cables and connectors are either all-black 
(metric fittings) or all-silver (English fittings) in color. 
Don't connect black screws to silver - you'll damage the 
hardware. 

IEC 625-1 requires a 25-pin cable and connectors. 
Unfortunately, the 25-pin connector used for IEC 625-1 is 
the same used for the RS-232-C interface. 

But, although it's easy to do, make sure you don't connect 
an RS-232-C circuit to an IEC 625-1 instrument. This 
connection can damage the instrument! 

Don't mistakenly connect IEC 625-1 instruments to 
RS-232-C circuits. 

Installing HP-IB Hardware 12-15 



How to 
Connect 
Devices 

Standard HP-IB cables and connectors look like this: 

Some "captive" cables on HP-IB devices differ slightly. 

You now have the instrument addresses set and the front 
panel of each instrument labeled with its address. (Don't 
you?) You have the cables you need. Now it's time to 
connect everything together. 

HP-IB Cables 

Instrument 

Controller 
Instrument 

The cable connectors snap together easily. Connectors are 
designed with a male connector on one side and a female on 
the other. So you can "piggyback" more than one cable on a 
single instrument connector. 

12-16 Installing HP-IB Hardware 



Note 

Star Linear 

You can connect instruments in a star pattern around the 
system controller. (The controller is usually a computer, 
but it can also be a "smart" instrument.) Another scheme is 
to connect everything in a linear pattern: that is, in a line. 

The star configuration keeps cable lengths shorter. As 
you'll see when you start making connections, though, it 
becomes awkward to hook more than four cables to a single 
instrument or computer connector. Lumping devices 
together in a star can also produce high capacitance, which 
may create transmission errors. 

The linear configuration often means your cables must be 
longer, but it gives you more control of capacitance for 
error-free transmission. 

You're not limited to one of these two schemes. You can 
connect instruments in combinations of star and linear 
patterns. 

Installing HP-IB Hardware 12-17 



What About Cable 
Length? 

Keep Those 
Instruments On! 

You can connect as many devices together as you want with 
cables of any length, except that you're restricted to the 
lesser of: 

• An average length of 2 meters per device. 

• A total length of 20 meters. 

The length of cable between any two devices doesn't matter, 
as long as these two rules are met. 

Suppose you had a linear arrangement as shown here, with a 
controller and two instruments. 

I nstrument A 

5m 1m 

Controller Instrument B 

If the cable between the two instruments is 1 meter long, the 
cable from the controller can be as long as 5 meters. (3 
devices x 2 meters each = 6 meters total.) 

What happens if you exceed these lengths? You'll probably 
start to see more errors, and some commands may not give 
you the results you desire. 

If you're tempted to turn off HP-IB instruments to save 
electricity, don't! The HP-IB specification says you can 
turn off 1/3 of the devices connected. But as a general rule, 
you should always keep all instruments turned on. Loading 
on the bus from devices you've turned off can cause system 
errors. 

12-18 Installing HP-IB Hardware 



Review Quiz 

Also, remember the 2-meters-per-device and 
20-meters-total cable limits if you start to disconnect 
instruments. 

In the example above, if you disconnect instrument B, the 
total cable length allowed falls to 4 meters. (2 meters per 
device.) The cable between controller and instrument A is 
now too long. 

1. In a dusty attic, you come across a rare model of the 
Murdstone Modulator. On the instrument's front panel 
is a decal that reads "with HP-IB" and on the rear is a 
black HP-IB connector. What capabilities can you safely 
say the instrument has? Can it respond to any signal on 
any HP-IB line? 

2. The HP 8753A RF Network Analyzer has the following 
Interface Function Codes: 

SHl, AHl, T6, TEO, L4, LEO, SRl, RLl, PPO, DCl, DTO, 
CO, Cl, ClO, E2. 

What is the capability of this instrument: 

a. For Acceptor Handshake? 

b. For Remote Local? 

c. For Device Trigger? 

Installing HP-IB Hardware 12-19 



Controller 

4m 

A 

3. What is the device address of an instrument whose 
address switch is set as shown here? 

o 

4. What is the maximum length of cable X in this 
configuration? 

------ =5iiiHtH E 

5. In the previous illustration, what is the maximum length 
of cable X if you disconnect instrument D? 

12-20 Installing HP-IB Hardware 



13 
Take Control of Those Instruments! 

Addressing 
Instruments 
(A Quick 
Review) 

In lesson 11, you learned a little about HP-IB and 
IEEE-488. In lesson 12 you connected your computer to 
your instruments with HP-IB. Now it's time to use the HP 
BASIC language to take control of those instruments. 

In this lesson you'll learn about: 

• ABORT. 

• REMOTE. 

• The [LOCAL] key and statement. 

• LOCAL LOCKOUT. 

• CLEAR. 

Within a computer, the central processing unit (CPU) 
locates the alphanumeric and graphics portions of the CRT 
display, the keyboard, and HP-IB by means of select codes. 
The select code for HP-IB is usually 7. 

On HP-IB, each instrument is identified by its address. 
When the CPU wants to control a specific instrument on 
HP-IB, it must send a combination of the HP-IB select code 
and the instrument address, such as "718" or "702". 

Take Control of Those Instrumentsl 13-1 



I/O Select 
Devices Codes 

AI~ha 
C T Part = 1 

Keyboard 2 HP-IB Devices 
with Device 

Graphics Addresses 
CRT Part 3 

14 

Floepy 
Dis 4 13 

Power 5 02 
Fail 

Not 6 18 
Used 

Built-in 7 HP-IB 23 
HP-IB 

8-31 Available for external 
interface cards 

You don't need to remember the interface select code and 
instrument address every time you want to address an 
instrument. Instead, you can refer to it by a name or a path 
name. 

Using a Name You can use a name for an instrument, just like a variable 
name. Here's an example: 

30 Source = 718 

13-2 Take Control of Those Instrumentsl 



After line 30 has been executed, you can refer to the 
instrument at address 718 as "Source," like this: 

1100 REMOTE Source 

Use names that are easy to remember, such as, oh, "Meter," 
or "Scope," or "Dvm" (for "digital voltmeter"). 

Using a Path You can also use apath to the instrument. First, you 
ASSIGN a path name to that select code and address. 

Calling 
Instruments 
to Attention 

Once you've assigned a path name, from then on you can 
refer to the device by that easy-to-remember name. For 
example: 

10 ASSIGN @Source TO 718 
20 CLEAR @Source 

You can use either an I/O path or a variable name. Using 
an I/O path (the ASSIGN statement) is faster-it typically 
gives a 10-20% increase in speed. 

If you worked through lesson 11, you remember that the 
HP-IB was likened to the Pickwick Club, with Pickwick 
himself as system controller. 

The first rule of public speaking at a place like the Pickwick 
Club is "get the audience's attention." That rule is also true 
for HP-IB. 

Take Control of Those Instrumentsl 13-3 



Suppose you just walked up to your computer. You know 
it's the system controller and it's hooked to a few 
instruments. Moreover, you suspect those sneaky little 
devils are engaged in some activity - passing data, perhaps, 
or under control of a different active controller. What do 
you do? 

Using ABORT You take control, that's what! You use the ABORT 
statement. 

Note 

ABOR T causes all activity on the bus to cease. To try it, 
type: 

ABORT 7..J 

The hooked-arrow key signifies an [EXECUTE] (or 
[ENTER], or [CRD key on your computer keyboard. 
Whenever you see this symbol, it means you should press that 
key. 

The ABORT 7 instruction aborts all activity on the interface 
with select code 7 (usually HP-IB). If you have instruments 
connected, you mayor may not see a response from them. 
But be assured, they've all stopped what they're doing and 
are waiting attentively. 

Here's what ABORT does: 

• Stops all HP-IB activity . 

• If the statement is issued by the system controller, it 
causes the system controller to become the active 
controller. 

Suppose another instrument on the bus is the active 
controller (while the system controller cools its heels in the 
background). When sent by the system controller, the 
ABORT statement transfers control from the active 
controller back to the system controller again. 

13-4 Take Control of Those Instrumentsl 



The REMOTE 
Statement 

At its simplest, programming an instrument is merely 
sending it a series of codes that tell it what to do. It's just as 
if you were standing in front of the device, pressing its 
buttons and turning its knobs. 

When you first turn on an instrument, it "wakes up" in local 
mode. This means that the instrument's front-panel 
controls take precedence over commands you try to send 
over HP-IB. 

Well, this will not do! You want instant, unquestioned 
obedience. So you send a REMOTE command to the 
instrument. 

Try it on your own instrument. Type REMOTE, followed by 
your instrument's select code, like this: 

REMOTE 718.J 

You should see the REMOTE lamp illuminate (or some 
other indication, depending on the instrument). You'll also 
see the LISTEN lamp illuminate. 

Now you're free to send commands to the instrument over 
HP-IB. The instrument is in remote mode, and all of its front 
panel controls are disabled. 

To put all instruments currently addressed to listen on 
HP-IB in REMOTE mode, you can send the statement to 
the entire bus, like this: 

REMOTE 7.J 

This statement is sent automatically to all devices whenever: 

• The system controller is turned on. 

• The system controller sends an ABORT command. 

• You execute RESET at the system controller. 

Take Control of Those Instrumentsl 13-5 



Going Back to 
LOCAL 

Taking 
Control-And 

Keeping It 

Remember, if you don't name a specific instrument, only 
instruments currently addressed to listen are affected by the 
REMOTE 7 statement. 

Now move from the computer to the instrument - that is, to 
the synthesizer. If you're sitting in front of an instrument 
and see its REMOTE lamp come on, you know it's now 
being controlled via HP-IB. If you turn knobs or push 
buttons on the instrument itself, they have no effect. 

Except for one button: the [LOCAL] key. 

The [LOCAL] key on an instrument's front panel puts it 
back into local mode. It slams the door in HP-IB's face and 
gives control back to the operator. 

Try it. Press the [LOCAL] key on the synthesizer's front 
panel. (Or on the front panel of your own instrument.) The 
REMOTE lamp is extinguished. 

Now you can change frequency or amplitude from the 
instrument again. The computer can't affect the instrument 
until it sends another statement to put it in remote mode 
again. 

Back at the computer, you see some statements sent over 
HP-IB aren't affecting the instrument. The operator has 
pressed the [LOCAL] key. 

You have another control trick up your sleeve, though. It's 
the LOCAL LOCKOUT statement. 

LOCAL LOCKOUT disables all front-panel control of 
instruments on the bus. (The instrument must first be in 
REMOTE mode, though.) A person can't change any of the 
instrument's controls; not even the [LOCAL] button has any 
effect. 

13-6 Take Control of Those Instrumentsl 



The LOCAL 
Statement 

Note. 

To try it, type: 

REMOTE 718.J 
LOCAL LOCKOUT 7.J 

Now go to the synthesizer's front panel and press any 
button, turn any knob. It's all in vain-the computer has 
absolute control over everything but the power switch. The 
[LOCAL] button is as ineffective as the other controls. 
Only the mighty computer can tell the instrument what to do. 

Once the computer has sent a LOCAL LOCKOUT 
command, there are only three ways an instrument's front 
panel controls become active again. 

1. You turn the instrument power off, then on again. 

2. You send a LOCAL statement from the computer (or 
other active controller). 

3. You press the [RESET] key on the computer. 

The LOCAL statement cancels REMOTE and LOCAL 
LOCKOUT. It puts the instruments on the bus back into 
local mode again. To try it, type: 

LOCAL 7.J 

The REMOTE lamp goes out; you can now control the 
synthesizer from its front panel again. The LISTEN lamp 
stays illuminated to show the instrument is still listening to 
the bus. 

You can send a LOCAL statement to a specific instrument 
(for example, LOCAL 713). However, this doesn't cancel 
LOCAL LOCKOUT. 

Take Control of Those Instrumentsl 13-7 



LOCAL is the only statement that cancels local lockout. 
(Not even ABORT interferes with the LOCAL LOCKOUT 
status.) 

Using CLEAR You've already seen how ABORT cancels all HP-IB activity. 
What if you want to be a little more ... gentle ... in calling 
instruments to attention? The answer is the CLEAR 
statement. Try it: 

CLEAR 718.J 

This clears only the specified instrument (at HP-IB address 
18). 

Of course, you can clear all instruments on the bus with this 
statement: 

120 CLEAR 7 

This statement re-initializes each device on bus 7 that is 
capable of responding. (That is, all instruments that are 
addressed to listen.) CLEAR can only be used by the active 
controller. 

For many HP-IB instruments, CLEAR doesn't affect 
LOCAL or REMOTE status. It sets the instrument back to 
its power-on state but leaves it in REMOTE ( or LOCAL) 
mode. 

13-8 Take Control of Those Instrumentsl 



This Lesson's Featured Instrument: 
The HP 3326A Two-Channel Synthesizer 

One of the problems in a self-paced course like this one is this: 

• Computers are similar. 

• HP BASIC is HP BASIC. 

• But: instruments are different. 

This means that you may be happily reading about controlling a power supply and 
digital voltmeter, but your test setup includes only a function generator and 
oscilloscope. 

For this reason, each lesson will feature one instrument (or perhaps two). You'll 
learn everything you need to know about the instrument, such as: 

• What it does or tests. 

• Front-panel controls you'll be programming. 

• HP-IB address (the one assigned to it when it's shipped from the factory). 

• The necessary command strings that operate the instrument on HP-IB. These 
are presented just as you'll find them in the instrument's manual. 

If you're lucky enough to have that particular instrument hooked up to your 
computer via HP-IB, you're in luck. You'll be able to follow and try every step in 
the lesson. 

If you don't have the featured instrument, don't despair. These general 
procedures apply to nearly all HP-IB instruments, and also to many devices 
compatible with IEEE standard 488-1978. 

You can follow along step by step: referring to the instrument description when 
there's something you don't understand. 

In most cases, you'll even be able to try most steps in these pages. Just substitute 
your own device address and command strings. (You can type all HP BASIC 
statements, of course, without modification.) 

Take Control of Those Instrumentsl 13-9 



Naturally a lot will be different from one instrument to another, including even 
the front-panel display of such fundamental conditions as local and remote. 

However, the statements and programming techniques you learn in this part and 
part 3 can be used with all instruments on HP-IB. Study them carefully and 
modify them for your own programs. 

The HP 3326A Two-Channel Synthesizer 
This instrument combines two synthesized signal sources, each of which has a 
frequency range of from 1 to 13 MHz. It produces sine waves, square waves, dc 
or pulsed output. You can operate it as: 

• Two independent signal sources. 

• A two-tone source. 

• A two-phase source. 

• A precision pulse source. 

The default synthesizer HP-IB address (as it's shipped from the factory) is 18. 

HP-IB functions are: SHl, AHl, T6, L4, SRI, RLl, PPO, DCl, DTl, CO, El. A 
quick glance at appendix B of this course tells you the synthesizer has capability 
to be a listener (L4) or a talker (T6), but not a controller (CO). 

In this lesson, we'll only be 
concerned with one portion 
of the HP 3326A's 
front-panel display: the 
status lights. 

,..-.---HP-IB STATUS ---....... 

These status lights are how 
the HP 3326A shows its 
current operating 
conditions. 

13-10 Take Control of Those Instrumentsl 

BUS ADRS 

" REWOTE (I LISTEN 

~ TALK CI SRQ 



A 
Programmed 
Example 

Entering the 
Program 

To see an example program containing many of the 
statements you've learned about in this lesson, type in the 
program below. If your instrument is at a different address 
than the one shown, substitute your instrument's address 
wherever you need to. 

To enter the program into the computer, follow the 
procedure given here. 

1. Type: 

SCRATCH.J 

This clears any program that might already be in the 
computer. 

2. Type: 

EDIT .J 

This puts the computer in edit mode, ready for you to 
enter program statements. 

3. Type each program statement exactly as it's shown. Press 
[EXECUTE] (or [ENTER], or [CR] -whatever is on 
your computer's keyboard) after each line to "enter" it. 

Take Control of Those Instrumentsl 13-11 



10 !REMOTE OPERATION 
20 PRINTER is 1 
30 Instrument=718 
40 REMOTE Instrument 
50 PRINT "Instrument is in REMOTE mode" 
60 PRINT "Press CONTINUE to see next condition" 
70 PAUSE 
80 REMOTE Instrument 
90 LOCAL LOCKOUT 7 
100 CLEAR SCREEN 
110 PRINT "Instrument front panel is in LOCAL LOCKOUT" 
120 PRINT "Try some front-panel keys" 
130 PRINT "Press CONTINUE to see next condition" 
140 PAUSE 
150 LOCAL 7 
160 CLEAR SCREEN 
170 PRINT "Local mode. Instrument front panel is active" 
180 PRINT "Try some front-panel keys now" 
190 END 

Running the 
Program 

Instrument is in REMOTE mode 

If your instrument is different: If you're using an 
instrument with a different HP-IB address than 18, change 
line 30 so the variable "Instrument" is equal to the address 
of your instrument. That's the only change you'll have to 
make in the program. If your instrument doesn't have a 
[LOCAL] key, refer to its manual to determine how to 
switch from remote to local mode. 

To run the program, make sure your instrument is 
connected and turned on. Then: 

1. Press [RUN]. The screen displays: 

Press CONTY NlJE to see neyt cond i t ion 

The REMOTE and LISTEN lamps on the instrument 
should be on. If you try to use any of the instrument's 
front-panel controls, nothing happens. You may even see 
an error. 

13-12 Take Control of Those Instrumentsl 



2. There's one key you can use, of course. Press the 
[LOCAL] key on the instrument. The instrument's 
REMOTE light goes out, and you can operate it from the 
front panel again. 

3. Now go to the computer and press its [CONTINUE] key. 
The computer displays: 

Instrument front panel is in LOCAL LOCKOUT 
Try some front-panel keys 
Press CONTINUE to see next condition 

When you try front-panel keys now, none of them work. 
Press [LOCAL]. This key, too, is "locked out" and 
inoperative. 

4. To continue execution, press [CONTINUE] again. The 
computer screen displays: 

LOCAL mode. Instrument front panel is active 
Try some front-panel keys now 

Review Quiz 

The instrument's REMOTE lamp is extinguished. If you 
press some front-panel keys, you'll see that they're all 
active again. 

1. Answer both a and b. 

8. What statement can you use to stop all activity on 
HP-IB? 

b. For most HP-IB instruments, what statement can you 
use to set the instrument at address 7 to its power-on 
state, without affecting its remote or local status? 

Take Control of Those Instruments! 13-13 



2. Which of these, a or b, will probably give faster input and 
output to the instrument? 

a. 

b. 

10 Sweeper = 719 
20 REMOTE Sweeper 

10 ASSIGN @Sweeper TO 719 
20 REMOTE @Sweeper 

3. If LOCAL LOCKOUT has not been performed, name 
three ways to change an instrument from remote mode to 
local. 

4. What is wrong with this statement? 

150 LOCAL LOCKOUT 718,720 

5. Martin Chuzzlewit has five instruments connected to his 
computer with HP-IB. They are at the following 
addresses: 

707 712 717 718 725 

Chuzzlewit wants to put all these instruments in remote 
mode. Moreover, he wants the last three (717, 718, 725) 
to be in a "remote -locked out" condition, so the local 
operator can never affect their operation. 

Write a section of HP BASIC code that will do this for 
him. 

13-14 Take Control of Those Instrumentsl 



14 
Telling Instruments What to Do 

What the 
Instrument 
Needs 

At last, you're ready to start controlling instruments! In this 
lesson you'll learn about: 

• Using ASSIGN to open an I/O path. 

• How to read a code chart in an instrument manual. 

• Using OUTPUT to send instrument codes. 

• The all-important terminator. 

Using HP-IB (or any interface) to tell an instrument what to 
do is really just another way of operating the instrument. 
Instead of punching buttons and twisting knobs, though, you 
use a computer and HP-IB to send the instrument a bunch 
of characters - ASCII characters - that it recognizes. 

When you want to program an instrument to do something, 
then, it's really a three-step process: 

1. Decide how you'd get the instrument to perform the 
measurement or function manually (that is, in local 
mode.) 

2. Switch the instrument to remote mode. 

3. Use OUTPUT to send the necessary ASCII codes to the 
instrument over HP-IB. 

Telling Instruments What to Do 14-1 



A Manual 
Example 

Note 

In this example, you will set a power supply's output voltage 
to 10 volts. Then you'll set it for an output current limit of 
500 milliamperes. 

... y 
1 2 3 .. CV CC ~ OCP ERR RMT ADDR SRO 

- a.JTPUT - ENB...D 

To set the output voltage of channell to 10V, first go to the 
front panel of the HP 6624A power supply. 

Make sure the power supply is in local mode. (You 
shouldn't see an annunciator arrow over the RMT 
indicator.) Then: 

1. Press the [OUTPUT SELECT] button on the power 
supply until the annunciator arrow on the display is over 
OUTPUT 1. (This shows that you've selected channell.) 

2. To set the voltage of channell to 10 volts, press [VSET] 
[1] [0] [ENTER]. The power supply's display reads: 
10.0V O.OOA. 

3. Now set this output to a current limit of 500 rnA; press: 
[ISET] [.] [5] [ENTER] 

Now that you've set the output manually, do the same thing 
with HP BASIC and HP-IB. 

The HP 6624A can be set for either constant voltage or 
constant current operation. In this lesson, you'll use it only in 
constant voltage mode, with current limiting. 

14-2 Telling Instruments What to Do 



This Lesson's Featured Instrument: 
The HP 6624A Multiple Output Power Supply 

The HP 6624A is one of a family of multiple-output DC power supplies from 
Hewlett-Packard. It has four separate outputs, and each output has two ranges, 
as shown here: 

Output Voltage and Current 

Output 1 7V @ 5A or 20V @ 2A 

Output 2 7V @5Aor20V@ 2A 

Output 3 20V @ 2A or 50V @ O.8A 

Output 4 20V @ 2A or 50V @ O.8A 

The power supplies are all 
housed in the same cabinet, 
and controlled by a single 
front-panel display. (You 
switch from one channel to 
the next with an [OUTPUT 
SELECT] button.) 

You can set overvoltage 
and current limits 
individually for each 
channel. 

Function 

System 
Function 
Keys 

When shipped from the factory, the power supply's HP-IB address is 5. 
Naturally, you can change the address if you prefer. 

Numeric 
Entry 
Keys 

The HP 6624A can be either listener or a talker on HP-IB. The full list of HP-IB 
interface capabilities is: SHl, AHl, T6, L4, SRl, RLl, PPl, DCl, DTO, CO, El. 

Telling Instruments What to Do 14-3 



As explained in this lesson, you program the four power supplies by sending 
instrument command strings (they're actually ASCII strings) using the HP BASIC 
OUTPUT statement. 

Although you can use the same HP BASIC statements for any instrument on 
HP-IB, the instrument command strings themselves are different for each type of 
instrument. 

Here are afew of the instrument commands for the HP 6624A, reprinted directly 
from the power supply's operating manual. 

Command Description 

CLR Returns the entire power 
supply (all outputs) to the 
power on state, except that 
the supply is not unaddressed 
and its store/recall registers 
are not changed. 

ISET < ch> , < current> Sets the current of the 
specified output channel. 

VSET < ch>, < voltage> Sets the voltage of the 
specified output channel. 

This is just a sample of the instrument commands for the HP 6624A. Its 
operating manual (like those for other HP instruments) has the full list of 
commands, along with plenty of examples. 

14-4 Telling Instruments What to Do 



Doing It With 
HP BASIC 

In previous lessons you learned some rudimentary control 
using statements such as LOCAL and REMOTE, CLEAR, 
ABORT, etc. These are universal HP BASIC statements, 
and they have the same effect on all instruments. 

When it comes to actually controlling the operation of an 
instrument, though, things get trickier. You see, 
instruments are a lot different from one another. You'd 
want to control voltage and current in a DC power supply, 
for instance; but in a counter, you'd want to be able to 
change the frequency and amplitude. 

For this reason, each HP-IB or IEEE-488 instrument has its 
own unique set of commands. You send the commands to 
the instrument with the HP BASIC OUTPUT statement. 

The OUTPUT Instrument commands are actually ASCII strings of letters 
Statement and numbers. 

To send a command to an instrument, you normally use the 
OUTPUT statement. Here's an example: 

HP BASIC 
Statement 

HP-IB 
Device 

L-____ Instrument 
Command 

This means "Output the ASCII string VSET 1,2 to the 
instrument at HP-IB address 705." The ASCII string VSET 
1,2 is the instrument command. 

Telling Instruments What to Do 14-5 



You can use OUTPUT to send instrument commands to: 

• A device at an HP-IB address. 

• A device referred to by a name. 

• A device addressed by an ASSIGNed I/O path. 

OUTPUT to a named device: This short section of HP 
BASIC code shows how you can output an instrument 
command using a name to refer to a device: 

100 Pwr source = 705 
110 OUTPUT Pwr_source; "VSET 1,2" 

Line 100 gives the name Pwr_source to the instrument at 
HP-IB address 705. Then line 110 outputs the instrument 
code VSET 1,2 to that instrument. 

The advantage of using a name is unified I/O: if you change 
the address of an instrument, you need to change only the 
line that refers to the address (line 100), not the lines that 
refer to the instrument by name. 

OUTPUT to an I/O path: This section of code shows how 
you can use ASSIGN to open an I/O path to the instrument, 
then OUTPUT instrument commands along the path: 

100 ASSIGN @Source to 705 
110 OUTPUT @Source; "VSET 1,2" 

This is similar to using a label for the instrument. The 
added advantage is that an I/O path is faster. 

For simple commands, it probably doesn't matter; but if you 
have long command strings or data, an ASSIGNed I/O path 
can cut execution time. 

14-6 Telling Instruments What to Do 



What OUTPUT 
Does 

Instrument 
Commands 

You can recognize an I/O path by the "at" sign (@) at the 
beginning of the path name. 

Once you've opened an I/O path using ASSIGN, it's good 
programming practice to close the path when you're done. 
You can do this by ending the program, or by assigning that 
path to the asterisk (*), like this: 

I 110 ASSIGN @Source TO * 

In the HP 6624A power supply, as in most HP instruments, 
the OUTPUT statement from the controller does three 
things: 

1. It puts the instrument in remote mode. 

2. It makes the instrument a listener, able to receive 
commands. 

3. It causes the instrument to "listen" for the string data, 
(and execute the string, if it's a valid command for that 
instrument) . 

This means, of course, that when you're using OUTPUT, 
you often don't need the REMOTE statement, since 
OUTPUT puts the instrument in remote mode. 

OUTPUT transfers the instrument command to the 
instrument just like it transfers data to a mass storage file. 
(In fact, you may want to review lesson 10 in part 1, for 
more details of using ASSIGN and OUTPUT.) 

The difference, of course, is that the "data" is an instrument 
command. 

At least, it should be. Read on. 

Telling Instruments What to Do 14-7 



Cardinal Rule ~ 

The key to getting an instrument to do what you want is in 
its instrument command. And because this command is 
really just an ASCII string - a bunch of letters and 
numbers - you have to be extra-careful and vigilant! 

Instrument commands, you see, are unique to each 
instrument. And instruments are picky - they don't like it 
when you send them a command meant for a different 
device. 

You won't always know if you're sending the wrong 
command, either. Remember, if you try to type an illegal 
HP BASIC statement, the computer gives you an error right 
away. 

But you can put a statement like this in your program: 

1150 OUTPUT 705; "Yo! Give me 20!" 

The computer will blithely send this, unaware that there's 
anything wrong. It may go into its own never-never land 
while it waits for a response. (A response 
that - shudder - never comes!) In some cases the instrument 
may even seem to accept a bad command; but you'll get 
unpredictable results. 

As you may have guessed, there's a cardinal rule afoot: 

Be extra-careful with instrument commands. 

14-8 Telling Instruments What to Do 



Where to Find 
Instrument 

Commands 

Specifying the 
Instrument 
Command 

The place to look for instrument commands is in the 
instrument's manual. These aren't HP BASIC statements; 
they're the characters that belong inside quotation marks 
after the OUTPUT keyword. 

Usually, you'll find instrument commands in an appendix at 
the back of the instrument's manual. 

For your convenience, throughout this course an excerpt 
from the instrument codes for each featured instrument is 
contained in that lesson's sidebar. So elsewhere in this 
lesson, you'll find selected instrument codes for the HP 
6624A Power Supply. 

Naturally, even if it's a group of difficult-to-remember 
characters, you can explicitly spell out the string you want to 
send to an instrument each time, like this: 

1100 OUTPUT 705; "VSET 1,2" 

However, since the instrument command is really just an 
ASCII string, you can output it as a variable: 

100 VoltageS = "VSET 1,2" 
110 OUTPUT 705; VoltageS 

Line 100 places the command VSET 1,2 in the string 
variable VoltageS. 

Then line 110 outputs the contents of the variable to the 
instrument. 

When you output data (whether it's an instrument command 
string or other data), it's normally sent as a series of 7-bit 
ASCII characters. 

Telling Instruments What to Do 14-9 



An HP-IB 
Example 

There are times when you'll want to specify the format of 
data you send to an instrument. Y ou'lllearn a simple way to 
do this in lesson 17, and you'll explore many, many more 
data formatting options in lesson 25. 

Now you know how to set up the power supply manually. 
And you know how to use the OUTPUT statement, and 
where to turn to look for the HP 6624A's instrument 
commands. It's time to put your knowledge to work and 
program the power supply. 

Set the Voltage Here's how you're going to program the power supply. 
(This assumes, of course, that you've already connected the 
HP-IB cables from your computer to the instrument.) 

• Use the OUTPUT statement. 

• Use the instrument's HP-IB address (705 for the HP 
6624A). 

• Use the instrument command to set voltage. 

To find the instrument command, you look in the 
instrument's manual, and see this: 

Command Description 

VSET <ch>, Sets the voltage of the specified 
<voltage> output channel. 

In this case, the quantities inside the brackets < > are 
added. So to set the voltage of channell to 10 volts, you 
type: 

OUTPUT 705; "VSET 1,10" 

14-10 Telling Instruments What to Do 



What about setting the current limit to 500 milliamperes? 
Again, you look in the instrument manual for what you want 
to do. Aha, there it is: 

Command 

ISET <ch>, 
<current> 

Description 

Sets the current of the specified 
output channel. 

Thus, to set the output of channell to a current-limit of 
500mA, type: 

OUTPUT 705; "ISET 1,.5"....1 

If you look back at how you did this manually, you'll see the 
programmed instrument commands are astonishingly similar 
to the power supply's front-panel buttons you pushed. 

Vary the Output Naturally, one of the benefits of programming an instrument 
such as a power supply is that it can quickly perform tasks 
that would be extremely tedious if you tried to do them by 
hand. 

Here's an example. This program causes the channel 1 
power supply to ramp output voltage in steps of O.lV from 0 
volts to 5 volts. It limits current to 1.0 ampere. 

10 ASSIGN @Supply TO 705 
20 OUTPUT @Supply; "CLR; ISET 1,1" 
30 FOR Voltage = 0 TO 5 STEP 0.1 
40 OUTPUT @Supply; "VSET 1,"; Voltage 
50 WAIT 0.2 
60 NEXT Voltage 
70 END 

Telling Instruments What to Do 14-11 



Note 

Watch Those End 
Lines! 

How it works: Line 10, of course, opens an I/O path to the 
power supply at HP-IB address 705. 

Line 20 returns all power supply outputs to the power-on 
state; then it sets the current limit of channell to 1.0 
ampere. 

See the semicolon inside the quotation marks in line 20? 
This separates the two commands, CLR and ISET 1,1. Line 
20 shows how you can link several HP 6624A commands in 
the same OUTPUT statement. 

Remember, the instrument commands and structure inside the 
quotation marks are unique to this instrument. Another 
instrument may require that you use a comma, or a space, or 
something else to separate commands inside quotation marks. 

Lines 30-60 are a FOR-NEXT loop that increments the 
voltage in 0.1 V steps from 0 to 5 volts. 

Line 40 sets the voltage of channell to the variable 
"Voltage." The comma inside the quotation marks separates 
the channel number (1) from the voltage (the value of the 
variable "Voltage"). You could also use a space instead of 
the comma. 

In line 40, the semicolon after the quotation marks 
suppresses the CR/LF (carriage return and line feed) that 
the computer would send if you used a comma. 

40 OUTPUT @Supply; "VSET 1,"; Voltage 

Separates --1 L Suppresses 
channel and CR/LF 
voltage 

14-12 Telling Instruments What to Do 



Cardinal Rule ~ 

Review Quiz 

If you use a comma instead of a semicolon, the computer 
sends a CR/LF here, causing an error in the power supply. 

You're going to have to watch end-line conditions, and take 
special care that they occur when needed and are 
suppressed when they're not. 

Instruments are picky! By some estimates, 90% of all 
instrument lock-ups occur because of CR/LF problems. 

A final cardinal rule: 

Watch those end-of-line sequences when programming 
instruments. 

1. How can you recognize an ASSIGNed path name? 

2. Show three ways to output the command "PR" (for 
preset) to an HP 438A Power Meter at HP-IB address 
713. 

3. Write a program for controlling the HP 6624A Power 
Supply that sets channell output to 7.5 volts, and 
channell current limit to 450 milliamperes. 

Telling Instruments What to Do 14-13 



4. The HP 3314A Function Generator produces sine, square 
and triangle waves. Its default HP-IB address is 707. 

The following program sets the generator to produce a 
square wave of 1 volt peak-to-peak at 10 kHz: 

10 OUTPUT 707; "PR" 
20 OUTPUT 707; "FU2" 
30 OUTPUT 707; "API.OVO" 
40 OUTPUT 707; "FR 10.OKZ n 

50 END 

Here are a few of the HP 3314A's instrument commands 
as shown in the generator's manual: 

3314A HP-IB CODES 
FUNCTION 

Amplitude AP 
milli-Volt p-p MV 
Volt p-p VO 

Frequency FR 
Hertz HZ 
kilo-Hertz KZ 
Mega-Hertz MZ 

Function FU 
off-dc only 0 
sine 1 
square 2 

triangle 3 

Preset PR 

Change the program so that: 

a. The output is a sine wave. 

b. The amplitude is 100 millivolts peak-to-peak 

c. The frequency is 1.0 megahertz. 

14-14 Telling Instruments What to Do 



5. Your boss, the Brobdingnagian and bulimic Sampson 
Brass, has departed for lunch - again. And he's left you 
to complete his assignment - again. He's writing a 
program to control the HP 6624A Power Supply, but all 
he's given you to go on is the scrawled note below. 

From the Brass Hat 

If) ASSIGN @ Ii ro '()5' 

to INPtJr 'Enter- a VDlt~e ~r ~ 1 ".J VL 

30 INPUT ·Enfe1-'4 Cl.i~nr ;'mit ~clu:tnnel1.~· Zl 
40 

GD/ltL./Uuf.., ( 

tak over. /l-PM,a/ -«e etSer -to ~ 
~~~ a.nd ~ ~ ~ 2..) 

'1yjLf ~? ~ ()u/id- iC all 

*' -flt. 'f~ ~I'~. 

-I/rt.ue -ifL- fYU',ra- dtJ)d ~ 
-f F b4d!." h ~ ... 

Can you finish the program before Brass returns from 
lunch? 

Telling Instruments What to Do 14-15 



14-16 Telling Instruments What to Do 



15 
Getting Information from an Instrument 

A Manual 
Example 

You're already halfway to complete instrument control. 
You've learned how to tell an instrument what to do. Now 
you must get the instrument to give you information. 

In this lesson, you'll learn about: 

• Using ENTER to "read" an instrument. 

• Using OUTPUT and ENTER together. 

• Triggering an instrument-with or without TRIGGER. 

• Using an instrument's internal capabilities. 

To use a voltmeter, you apply a signal to the input and read 
the voltage on a display. It's the same with many other 
instruments - counters, oscilloscopes, power meters, etc. 

For instance, how do you read power from a power meter 
such as the HP 438A ? You connect the meter to a power 
source using the correct sensor, and read the power from 
the instrument's front panel. 

Getting Information from an Instrument 15-1 



Using ENTER 

RF Power HP 
Source 438A 

Sensor 

Power 
Meter 

With an instrument connected to a computer via HP-IB, the 
ENTER statement is almost the same as visually reading an 
instrument. 

Look at this statement: 

130 ENTER 713; P 

In the case of the HP 438A Power Meter, the statement 
means "Read the current power from the meter and place it 
in the variable P." 

If you worked through part 1 of this course, you remember 
ENTER from lesson 10; you used it to get data from a file 
on mass storage. 

When you "read" an instrument, you're actually getting data 
from it, too. And with a computer, HP BASIC and HP-IB, 
you use ENTER to get data from instruments almost like 
you used it to get data from mass storage. 

15-2 Getting Information from an Instrument 



What ENTER Does An ENTER statement from the controller to an instrument 
such as the HP 438A Power Meter does three things: 

Specifying the 
Device 

1. It puts the instrument in remote mode. 

2. It makes the instrument a talker, able to send data or 
status information to the controller (or to another 
instrument) . 

3. It assigns data or status information to a variable. 

Using the ENTER statement, you can specify the instrument 
or other device in any of three ways: 

• With a device address. 

• With a device name. 

• With an ASSIGNed I/O path. 

Using ENTER with a device address: To specify the 
instrument you're reading, you can use the old, familiar 
device address, consisting of the HP-IB interface code 
(HP-IB is usually 7) and the instrument's address. 

Here are some examples: 

ENTER 705;Number 

Reads the device with address 5 on HP-IB. 

ENTER 718; Freq 

Reads the device with address 18 on HP-IB. 

Using ENTER with a device name: Another way to 
specify an instrument is to give it a name, just like a numeric 
variable. Here's an example: 

10 Analyzer = 718 
20 ENTER Analyzer; Trace a 

Getting Information from an Instrument 15-3 



Line 10 gives the device at address 718 a name of 
"Analyzer." Then line 20 "reads" the device, putting the 
current reading in a variable called "Trace_a." 

This technique has the advantage of "unified I/O" (you can 
change the address in line 10, and it automatically changes 
throughout the program). But input and output of data and 
commands to and from the instrument is no faster than with 
a device address. 

Using ENTER with an I/O path: You can also use 
ASSIGN to open an I/O path to an instrument, then use the 
I/O path with ENTER to "read" the instrument. Here's an 
example: 

10 ASSIGN @Pwr meter to 705 
20 ENTER @Pwr_meter; P 

Line 10 assigns the path @Pwr_meter to the device at 
HP-IB address 705. 

Line 20 then "reads" the device and places the value in 
variable P. Here's another example: 

100 ASSIGN @Analyzer TO 718 
110 ENTER @Analyzer; Freq 
120 ASSIGN @Analyzer TO * 

In line 100, the path name @Analyzer is opened to the 
instrument at address 718. Line 110 "reads" the current 
analyzer value and places it in a variable called Freq. 

Line 120 closes the path. Although I/O paths are 
automatically closed when a program ends, it's a good 
general practice to close a path (by assigning it to the 
asterisk, *) if you won't be using it again. 

15-4 Getting Information from an Instrument 



Specifying the 
Variable 

Just as with OUTPUT, using an I/O path with ENTER has 
two distinct advantages over using a device address or name. 

1. An I/O path makes data transfer faster. 

2. An I/O path gives "unified I/O": if you change devices or 
addresses, you need to change only the ASSIGN ... TO 
statement to redirect all parts of the program to the new 
device. 

With OUTPUT, you must send specific strings to the 
instrument to give it commands. When you read the 
instrument, though, you're bringing in data and assigning it 
to a variable. 

Since P is a variable, not a string in quotation marks, you 
can use any variable, like this: 

130 ENTER 713; Power 

30 ENTER 713; PI 

30 ENTER 713; Output_pwr 

These statements all "read" the meter; they just save the 
result with different variable names. 

You can even take an entire group of readings and place 
them into an array, like this: 

I 270 ENTER 718; Trace_array (*) 

Of course, all this won't mean much if you don't know what 
you're reading! 

Getting Information from an Instrument 15-5 



This Lesson's Featured Instrument: 
The HP 438A Dual Sensor Power Meter 

The Hewlett-Packard HP 438A is a perfect example of a power meter sized for 
the field, yet fully capable of computer-controlled testing. 

Although it's only 3.5 inches high, the HP 
438A has two inputs (channel A and channel 
B), as well as a 1.0 milliwatt reference 
oscillator output on the front panel. The 
LED display shows channel A or B power in 
watts or dBm. It also reads A - B or B - A; 
and it shows ratio (AlB or B/A) in percent or 
dB. 

Power 
Ref A B 
o 00 

You choose from several sensors to connect to the input jacks. Together these 
sensors give a frequency range of 100 kHz to 26.5 GHz, over a power range of 
-70 dBm to +44 dBm (100 pW to 2SW). 

HP-IB interface compatibility of the 438A is: SH1, AH1, TS,TEO,L4, LEO, SR1, 
RL1, PP1, DC1, DT1, DO. You can control all instrument functions using HP-IB, 
with the exception of the power switch, clear entry, and HP-IB address. 

Here are selected HP-IB programming codes (instrument commands), just as 
they're shown in the HP 438A's documentation: 

Front Panel Accessible 

Description Code 

Pre-Measurement 
Preset PR 
Zero ZE 
CALADJ CL 
RefOsc On OCl 
RefOsc Off OCO 

15-8 Getting Information from an Instrument 



Front Panel Accessible 

Description Code 

Measurement 
Channel A }1J> 

Channel B BP 
Ratio Measurement 

AlB AR 
BfA BR 

Difference Measurement 
A-B AD 
B-A BD 

Measurement Units 
Log (dBm or db) LG 
Linear (Watts or %) LN 

Non-front Panel Accessible 

Description Code 

Trigger Hold Mode TRO 
Trigger Immediate TRI 
Trigger with Delay TR2 
Trigger-Free-R un TR3 

Interface Management 
No Action in Resp to Group GTO 

Execute Trig 
TRI in Resp to Group Execute Trig GTI 
TR2 in Resp to Group Execute Trig GT2 

Getting Information from an Instrument 15-7 



HP 438A Triggering 
Before a power measurement can be taken, the meter must be triggered. The 
438A has four triggering modes that can be specified under REMOTE control. 

TRO: Hold mode. Puts the meter into HOLD mode. No measurements are 
taken. 

TRl: Trigger immediate. Causes the meter to send the next available data point 
when the 438A is addressed to TALK. The 438A then enters HOLD mode. 

TR2: Trigger with delay. Causes the 438A to wait until the digital analog filters 
have fully settled before taking a reading. The meter then enters HOLD mode, 
and the reading is held until the 438A is addressed to TALK. TR2 will be used 
for most REMOTE applications. 

TR3: Free run. Puts the meter into free-run mode, continually displaying new 
readings. The 438A is set to free-run mode upon PRESET. 

OUTPUT and 
ENTER: 
Hand-in-Hand 

Remember the bad old pre-digital-instrument days? When 
you read a multimeter, oscilloscope, or power meter, you 
could see a reading - a meter needle or trace. The question 
was "what does it mean?" 

Chances are, you had to look at a bunch of other buttons 
and knobs to determine what scale, what range, what value 
to use. 

If you're not careful, instruments on HP-IB can be just as 
maddeningly obtuse. You know you get data when you use 
ENTER; the question is, "What data? What does it mean?" 

Luckily, OUTPUT comes to the rescue again! You use 
OUTPUT to "set up" the instrument for the measurement 
you want. Then you use ENTER to "read" the instrument. 

15-8 Getting Information from an Instrument 



Here's an example of a measurement using the HP 438A 
Power Meter: 

Device 
Under Test 

Sensor 

HP438A 
Power 
Meter 

10 OUTPUT 713; "PR" 
20 OUTPUT 713; "ZEn 
30 OUTPUT 713; "LN" 
40 OUTPUT 713; "TR2" 
50 ENTER 713; P 
60 DISP P 
70 END 

HP-IB 

Controller 

Line 10 presets the HP 438A Power Meter. Among other 
things, this sets it for autoranging. 

Line 20 zeros the meter; this takes about 15 seconds. Then 
line 30 sets the meter to read in watts. 

Line 40 triggers the power meter to make a measurement; in 
this case it's a trigger with delay. It "holds" the reading until 
you "read" it with ENTER. 

All those OUTPUT statements keep the power meter in 
listen mode. They're all instructions to set it up, then make 
a measurement. 

Getting Information from an Instrument 15-9 



Note 

Triggering an 
Instrument 

Now it's time for line 50: 

150 ENTER 713; P 

This line puts the power meter in talk mode, then "reads" 
the value for power (in watts) that was "held" by line 40. 

Line 60, of course, causes the computer to display the value 
for P (that is, the value in watts measured by the power 
meter). Since you changed it to talk mode with line 50, the 
HP 438A Power Meter remains in that mode until you 
change it again. 

Here's how OUTPUT and ENTER are used together: 

1. OUTPUT makes the measurement. 

2. Then ENTER reads the measurement into a variable. 

The examples and techniques in this lesson all show data from 
the instrument as real numbers, unformatted. This means 
they're read in the computer's internal format, which is usually 
fine for getting data from most instruments. You can get data 
and output in other formats, too; see lesson 25 in part 3 for 
more about data formatting. 

When power (or frequency, or amplitude, or a waveform) is 
constant for a long time, chances are it doesn't matter when 
you make a measurement. 

There are times, though, when you want to know exactly 
when a measurement is made. Or you want several 
instruments to act at the same time - for instance, a function 
generator puts out a pulse, and an oscilloscope trace starts 
simultaneously. 

15-10 Getting Information from an Instrument 



The Instrument's 
Trigger Command 

The TRIGGER 
Statement 

For this, many instruments require a trigger. The trigger 
says "Make the measurement...now!" 

As in line 40 of the example above, sometimes you'll trigger 
an instrument using the OUTPUT statement and an 
',.,Ct .. lln'\P,.,t ,.nn'\n'\~,.,A ct .. ',.,n
...... .a.Io,J" ... '""~....,&.&.'" '"'''' .......... .&..I..u..&..I..'\06. "-'L.a. ... .&. ... 0. 

The HP 438A Power Meter, for instance, actually has four 
different triggering modes. You can specify TRO, TR1, 
TR2, or TR3 with the OUTPUT statement. 

Most instruments, including the 438A, also respond to a 
TRIGGER statement. 

This is an HP BASIC statement you can use to trigger one 
device, or several instruments at once. TRIGGER sends a 
trigger message to a selected device, or to all devices 
addressed to listen on HP-IB. (For this reason, it's 
sometimes called a "group execute trigger" or "GET.") 

Look at these examples: 

10 ASSIGN @Hpib TO 7 
20 TRIGGER @Hpib 

Line 20 above sends a trigger to every device currently in 
listen mode on the HP-IB. 

10 ASSIGN @Device TO 707 
20 TRIGGER @Device 

Here, line 20 sends a trigger only to the device at address 07 
on the HP-IB interface. 

Getting Information from an Instrument 15-11 



VHF·FM 
Transmitter 

What does TRIGGER do? It depends on the instrument: 
You don't know until you look at the instrument's manual. 
Many instruments, including the HP 438A Power Meter, let 
you use instrument commands to control how the device 
responds to a trigger. 

Example: Your assignment is to check the output power of 
FM -VHF radio transmitters on a production line. The 
bench setup is simple enough; it looks like this: 

Sensor 

The program below uses the HP BASIC TRIGGER 
statement to take a reading from the HP 438A: 

To enter the program, type: 

SCRATCH.J 
EDIT .J 

10 ABORT 7 
20 PRINTER IS 1 
30 ASSIGN @Meter TO 713 
40 CLEAR @Meter 
50 OUTPUT @Meter; "PR AP LN GT2" 
60 TRIGGER @Meter 
70 ENTER @Meter; Pwr 
80 PRINT "The power is"; Pwr; "watts" 
90 END 

15-12 Getting Information from an Instrument 



Line 50 shows how in the HP 438A multiple instrument 
commands can be in the same OUTPUT statement. The 
commands are: 

Code Description 

PR Presets the HP 438A Power Meter. 

AP Sets the meter to measure power on 
channel A. 

LN Sets measurement units to watts. 

Sets the meter to respond to a 
GT2 group execute trigger as a trigger 

with delay. (The same as if you had 
sent OUTPUT "TR2".) 

Line 60 is the TRIGGER statement: 

160 TRIGGER @Meter 

It triggers everything currently addressed to listen on 
HP-IB. This includes the 438A, of course, since it was 
addressed to listen by the previous OUTPUT statement. 

You specified "GT2" as the meter's response to a group 
trigger, so the 438A responds to HP BASIC's TRIGGER 
statement just as it responds to "TR2". It waits until the 
analog and digital filters have settled, then takes a reading 
and holds it until the instrument is addressed to talk. 

Line 70 addresses the 438A to talk and reads the value for 
power into the variable Pwr: 

70 ENTER @Meter; Pwr 

Getting Information from an Instrument 15-13 



Instruments 
Are Smart 
Too! 

To run the program: 

1. Make sure all hardware is connected, including the 
sensor between the HP 438A and the transmitter. 

2. Key the transmitter. 

3. Press RUN on the computer. 

The computer display shows something like this: 

The power is 2.23 watts 

When you write instrument control programs, don't forget 
to use the innate intelligence of the instruments themselves. 
Often you can save much time and many programming steps 
by exploiting the full range of instrument features. 

Example: Never the most original of thinkers, Thomas 
Gradgrind is trying to test attenuators using an 
HP-IB-controlled 438A Power Meter. 

HP 9000 Series 300 Computer 

HP 438A Power Meter 
Hp·IB 

Ref AB 

15-14 Getting Information from an Instrument 



10 ABORT 7 
20 ASSIGN @Meter TO 713 
30 CLEAR @Meter 

Gradgrind is smart enough to use the HP 438A's internal 
reference oscillator and dual-input capability, along with a 
power splitter. 

He plans to feed a known output from the oscillator through 
a splitter. Half the power will pass through an attenuator 
and hait win not. Then he pians to use the channei A power 
and channel B power to calculate the ratio of A to B, and 
the difference (A-B), which together will tell him what he 
wants to know about the attenuator. 

Luckily for Gradgrind, there's less calculation involved than 
he thinks. That's because the HP 438A has functions built 
in to compute AlB and A-B. 

To see the easy way to check Gradgrind's attenuator, look at 
the program. 

40 OUTPUT @Meter; "PR OC1 LG TR2" 
50 ENTER @Meter; A 
60 PRINT CHR$(12) 
70 PRINT "CHANNEL A POWER IS "; A; "watts" 
80 OUTPUT @Meter; "BP TR2" 
90 ENTER @Meter; B 
100 PRINT "CHANNEL B POWER IS "; B; "watts" 
110 OUTPUT @Meter; "AR TR2" 
120 ENTER @Meter; Ar 
130 PRINT "THE RATIO AlB IS "; Ar;"dB" 
140 OUTPUT @Meter; "AD TR2" 
150 ENTER @Meter; Ad 
160 PRINT "THE DIFFERENCE A-B IS "; Ad; "watts" 
170 END 

Getting Information from an Instrument 15-15 



Cardinal Rule ~ 

How it works: The OUTPUT statement in line 40 presets 
the HP 438A Power Meter, turns on the reference 
oscillator, selects log mode, and triggers a measurement. 
Line 50 reads what the meter measured on channel A, and 
stores the value in variable A. 

Line 60 prints a form feed, advancing the paper (or CRT 
screen) to the top of the next page. Then line 70 prints the 
value for channel A power. 

The statements in lines 80-100 change the 438A to read 
channel B power, then print the value. 

The OUTPUT statement in line 110 sets the meter for A/B 
ratio calculation, then triggers the measurement. The 
ENTER statement in line 120 reads this value, and line 130 
prints it. 

The difference of A - B is also calculated internally by the 
438A, then printed. 

Of course you could have written a program to actually 
calculate AlB and A-B. But it's easier to use the 438A 
internal functions. 

There's a cardinal rule lurking here: 

To make your programs simpler, let your instrument do the 
work. 

15-18 GeUing Information from an Instrument 



Review Quiz 1. What HP BASIC statement can you use to "read" any 
instrument and place the result into a variable in the 
computer? 

2. What are the two ways of triggering a measurement on 
the HP 438A Power Meter (and most instruments)? 

3. Rewrite this program segment for unified I/O - that is, 
use an I/O path to HP-IB and to the instrument (it's a 
spectrum analyzer) at address 718. 

10 ABORT 7 
20 CLEAR 718 
30 OUTPUT 718; "MKA?" 
40 ENTER 718; Amp marker 
50 OUTPUT 718; "MKF?" 
60 ENTER 718; Freq_marker 
70 PRINT Amp marker, Freq marker - -
80 END 

Getting Information from an Instrument 15-17 



4. A HP 438A Power Meter is set up for measurement as 
shown here: 

HP-IB 

Power HP438A 
Source to Power 

be Meter 
Measured 

Computer 

RFOut Ref AB 

Write a brief program that will 

a. Abort all activity on HP-IB. 

b. Clear the 438A power meter (at address 713). 

c. Preset the meter. 

d. Zero the meter. 

e. Set the meter to measure watts. 

f. Set the meter for channel B. 

g. Use trigger immediate (TR1) to trigger the meter. 

h. Read the value into a variable called "Watts." 

i. Print the value of "Watts" on the screen. 

15-18 Getting Information from an Instrument 



16 
How an Instrument Summons Service 

Ponder for a moment the poor instrument: when the 
controller sends a command string with OUTPUT, the 
instrument does as it's told. When the controller executes 
an ENTER statement, the device delivers data. 

But what if the instrument is busy, and can't process the 
OUTPUT or ENTER statement? Or even - heaven 
forbid - the device should want to request service itself? 
(Perhaps because the device has finished with its 
measurement, or because an error has occurred.) What 
then? 

This lesson shows how instruments can be given a "voice" on 
HP-IB. In this lesson you'll learn about: 

• Using STATUS to read the HP-IB status register. 

• Using BIT to determine a bit's setting. 

• Using ENABLE and ON INTR to interrupt a program. 

• Using SPOLL or commands to read an instrument's 
status byte. 

This lesson shows how an instrument can get service - and 
respect-from the computer. 

How an Instrument Summons Service 16-1 



Requesting 
Service 

When an instrument wants service - because of an error, 
say, or because it's ready to accept a command string - it 
can send a service request (SRQ) out on HP-IB. 

The service request doesn't cause the computer to take any 
action. In fact, all the SRQ does is to turn on specific bits in 
the computer's HP-IB status registers, as well as turn on one 
bit within the instrument - in its status byte. 

All interfaces have status and control registers associated 
with them. These registers are actually memory locations on 
interface cards or within the computer. They're used by the 
computer to keep track of what's happening. 

Computer 

I I I I I I I I 
I I I I I I I I 
I I I I I I I I 
Status Registers 

There are many kinds of status and control registers. One 
set of registers maintains information on I/O paths, while 
another tells the current CRT status (what color, what the 
next print position is, etc.). There are also registers for the 
keyboard, as well as a set of registers for HP-IB status and 
control. 

16-2 How an Instrument Summons Service 



Reading Registers 
with STATUS 

How big is a "register"? It depends. Some registers are just 
a few bits; others have one or even two 8-bit bytes of 
information. 

Here's the difference between status and control registers: 

• Status registers iet you read status but not change it. 

• Control registers let you actually go in and change bits to 
control the status of an interface. 

In this part of the course, you won't be directly changing any 
control registers - you'll just read status registers. 

To "read" a status register, you use the STATUS statement, 
along with the interface select code, the register number 
(optional), and a numeric variable to receive the register 
contents, like this: 

STATUS 7, 5; Stat 

Intenace ~ L Numeric variable to receive 
register contents select code 

Register number 

This statement reads the value of status register 5 on 
interface 7. (The interface with select code 7 is usually 
HP-IB.) The value of that register is placed in a variable 
called Stat. 

If you don't specify a register number, you'll get the status 
of register 0 of the interface. 

You can use STATUS to read more than one register in a 
row; the "read" begins with the register number you specify, 
and continues for the number of variables you have. 

How an Instrument Summons Service 16-3 



Example: Unless you've changed it, the CRT display is at 
select code 1. Here are a couple of CRT status registers, as 
they're shown in the BASIC Condensed Reference: 

STATUS Register 12 Key labels display mode: 
o = typing-aid key labels displayed. 
1 = key labels always off. 
2 = key labels always on. 

STATUS Register 13 CRT height (number of lines to be 
used for alpha display.) 

Type this mini-program: 

SCRATCH.J 
EDIT.J 

10 PRINTER IS 1 
20 STATUS 1, 12; Keymode, Height 
30 PRINT "Key mode is"; Keymode 
40 PRINT "CRT height is"; Height; "lines" 
50 END 

Now switch out of edit mode; press: 

[PAUSE] 

Then type: 

KEY LABELS ON.J 
RUN.J 

The screen displays something like this: 

Key mode is 2 
CRT height is 25 lines 

16-4 How an Instrument Summons Service 



HP-IB Status 
Registers 

Now turn off the softkey labels at the bottom of the screen 
and try again. Type: 

KEY LABELS OFF.J 
RUN.J 

The screen dispiays: 

Key mode is 1 
CRT height is 25 lines 

How it works: Line 20 "reads" two status registers of 
interface 1, beginning with register 12. It places the 
contents of register 12 in the variable Keymode, and the 
contents of register 13 in the variable Height. 

When you use the KEY LABELS ON or KEY LABELS 
OFF statement, it changes the contents of status register 12, 
yielding a different output from your mini-program. 

The HP-IB has eight status registers (and eight control 
registers). You'll find a complete list of them in appendix C. 

Most of the HP-IB status registers contain two 8-bit bytes of 
information. 

Register 4, for instance, has two bytes (16 bits) of 
information. The bits are labeled 0-15, and each bit is 
"binary-weighted." So if bit 1 (SRQ received) is set to 1, and 
all other bits are off (i.e., 0), the statement: 

100 STATUS 7, 4; Stat 

puts the value 2 in the variable Stat. (Because the decimal 
value of bit 1 is 2.) 

How an Instrument Summons Service 16-5 



STATUS Register 4 

Bit 15 Bit 14 

Active Parallel 
Control- Poll Con-
ler figuration 

Change 

Value = Value = 
-32768 16384 

Bit 7 Bit 6 

Trigger Hand-
Received shake 

Error 

Value = Value = 
128 64 

Each set of HP-IB status and control registers has a unique 
function. Register 4, for example, tells what condition 
caused an interrupt, while register 5 (a mirror image of 
register 4) tells what interrupts are currently enabled. (That 
is, what interrupts are currently allowed to occur.) 

Interrupt Status 

Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 

My Talk My Lis- EOI SPAS Remote/ Talker/ 
Address ten Ad- Received Local Listener 
Received dress Change Address 

Received Change 

Value = Value = Value = Value = Value = Value = 
8192 4096 2048 1024 512 256 

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Unrecog- Secon- Clear Unrecog- SRQ IFC 
nized dary Received nized Ad- Received Received 
Univer- Com- dressed 
sal Com- mand Com-
mand While mand 

Ad-
dressed 

Value = Value = Value =8 Value =4 Value =2 Value = 1 
32 16 

16-6 How an Instrument Summons Service 



STATUS Register 7 
T"'t .... .... ~ n~ ....... A Bit 13 DIl .U DIl 1.'+ 

ATN DAV NDAC 
True True True 

Value = Value = Value = 
-32768 16384 8192 

Bit 7 Bit 6 Bit 5 

0108 0107 0106 

Value = Value = Value = 
128 64 32 

When an SRQ Is 
Issued 

Register 7 shows the current status of the HP-IB bus control 
and data lines. 

Bus Control and Data Lines 

-0:.1" Bit 11 B:" 1(\ B:"O B:· Q .un ~~ ~L ~v U.7 U.U 

NRFD EOITrue SRQ IFCTrue REN 
True True True 

Value = Value = Value = Value = Value = 
4096 2048 1024 512 256 

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

0105 0104 0103 0102 0101 

Value = Value =8 Value =4 Value =2 Value = 1 
16 

When an instrument requests service by issuing a service 
request (commonly called an "SRQ"), it makes the HP-IB 
SRQ line true (set to 1). 

If you look at HP-IB status registers 4 and 7, you can see 
that both of them respond to an SRQ: 

• Bit 1 of status register 4 is set to 1. (If enabled.) 

• Bit 10 of status register 7 is set to 1. (If this is the active 
controller. ) 

Once any instrument on the HP-IB issues a service request 
the SRQ line (and these bits) stay true until you reset them. 
So even if there's a momentary glitch in one instrument, the 
SRQ line stays true until you can find out which instrument 
and what glitch. 

How an Instrument Summons Service 16-7 



This Lesson's Featured Instrument: 
The HP 8753 Network Analyzer 

The HP 8753 is an 
easy-to-use measurement 
system with a large, 
annotated display, its own 
set of softkeys, and two 
independent channels for 
measuring transmission and 
reflection characteristics 
simultaneously. The 
analyzer covers a frequency 
range of 300 kHz to 6 GHz, 
with resolution to 1 Hz. 

Data can be displayed on the 
analyzer's CRT screen in 

HP 8753.\ 
Network Analyzer Plot18r 

many different formats: log magnitude, linear magnitude, SWR, phase, group 
delay, polar, real, or Smith chart. The two independent display channels can be 
viewed separately or at the same time. 

HP-IB Capability 
All HP 8753 functions are completely programmable. The instrument's default 
HP-IB address is factory set at 16 (it can easily be changed), and its capability 
codes are: SH1, AH1, T6, TEO, L4, LEO, SR1, RL1, PPO, DC1, DTO, CO, Cl, 
C10, E2. 

Under HP-IB control, the HP 8753 can operate as a talker/listener, as a system 
controller, or as a pass control device. Because the 8753 can act as the active 
controller, you can store or print data or print on HP-IB devices without using a 
computer. 

16-8 How an Instrument Summons Service 



Here are the HP 8753 instrument command strings you'll use in this lesson: 

ACTION MNEMONIC DESCRIPTION 

Clear CLES Clears the status byte. 

Interrogate ESB? Returns event status 
register B. 

ESR? Returns the event status 
register. 

OUTPSTAT?F255D Returns the status byte. 

Enable ESE[D] Enables event status 
register. (0 < D < 255) 

ESNB[D] Enables event status 
register B. (0 < D < 255) 

SRE[D] Enables SRQ. 
(0< D< 255) 

Error OUTPERRO Outputs the oldest error 
in the error queue. The 
error number is 
transmitted, then the 
error message, in ASCII 
format. 

Status byte OUTPSTAT Outputs the status byte. 
ASCII format. 

How an Instrument Summons Service 16-9 



Status Reporting 
The HP8753A status reporting structure consists of three registers: 

STATUS BYTE 

~ '" EVENT STATUS EVENT STATUS 
REGISTER REGISTERB 

The top level register is the status byte, which consists of summary bits. Each bit 
reflects the condition of another register or a queue. If a summary bit is set 
(equals 1), the corresponding register or queue should be read to obtain the 
status information and to clear the condition. 

Reading the status byte, which can be done with a serial poll or by issuing 
OUTPSTAT, does not affect the state of the summary bits: they always reflect the 
condition of the summarized queue or register. Any bit in the status byte can be 
selectively enabled to generate a service request (SRQ) when set. 

Setting a bit in the service request register with SREnn enables the 
corresponding bit in the status byte. For example, SRE24 enables status byte bits 
3 and 4 (since 2 A 3 + 2 A 4 = 24), and disables all the other bits. SRE will not 
affect the state of the status register bits. 

The event status register and event status register B are the other two registers in 
the status reporting structure. They are selectively summarized by bits in the 
status byte via enable registers. 

The event status registers consist of latched bits. A latched bit is set at the onset 
of a specific trigger condition in the instrument, and is cleared only by a read of 
the register. The bit will not be set again until the condition occurs again. If a bit 
in one of these two registers is enabled, it is summarized by the summary bit in 
the status byte. The registers are enabled by ESEnn and ESNBnn, which work the 
same as SREnn. 

16-10 How an Instrument Summons Service 



If a bit in one of the event status registers is enabled and the summary bit in the 
status byte is enabled, an SRQ will be generated when the event status register bit 
is set. The SRQ will not be cleared until one of four things happens: 

1. The event status register is read, clearing the latched bit. 

2. The summary bit in the status byte is enabled. 

3. The event status register bit is disabled. 

or 

4. The status registers are cleared with CLES; or a preset. 

SRQ's generated when there are error messages or when the instrument is 
waiting for Group Execute Trigger (GET) are cleared by reading the errors or 
issuing GET, disabling the bits, or by clearing the status registers. 

Error Output 
When an error condition is detected in the HP 8753, a message is displayed on 
the instrument, and that message is placed in an error queue within the analyzer. 
The error queue holds up to 20 errors (in the order they occur) until you read 
them out using the OUTPERRO command. 

If there are any errors in the queue, bit 3 of the instrument's status byte is set. 

The instrument command OUTPERRO causes the instrument to output one 
error message, which consists of an error number followed by an ASCII string of 
up to 50 characters. 

How an Instrument Summons Service 16-11 



How to Detect 
the SRQ 

Detecting a Status 
Change 

100 LOOP 
110 STATUS 7,7; Stat 

Remember, even though the SRQ line is true and the SRQ 
bits in the computer's HP-IB status registers are set to 1, the 
computer doesn't automatically take action. No indeed! 

You have to detect the SRQ. There are several ways to do 
this; here are a couple: 

1. Use STATUS to read the SRQ bit on one of the status 
registers. 

2. Use ENABLE INTR and ON INTR to allow interrupt 
status register 4 to interrupt a program. 

One way of detecting a service request is to use STATUS to 
"look at" one of the SRQ bits in the status registers. 

Here's an example: 

120 IF BIT (Stat, 10) = 1 THEN GOSUB Service 
130 END LOOP 

In this example, line 110 "reads" the value of HP-IB status 
register 7 into the variable called Stat. 

In line 120, BIT looks at the entire byte, and returns a 1 or a 
o representing the value of the specified bit of its argument. 

What BIT (Stat, 10) does is: 

1. Converts the value in Stat from a decimal value to a 
16-bit binary byte. 

2. Looks at bit 10 of the byte to see if it's a 1 or a o. 

16-12 How an Instrument Summons Service 



Thus line 120 of the program branches to the subroutine 
"Service" if bit 10 (the SRQ line) of HP-IB status register 7 
is true. 

Incidentally, you don't need to use the" = 1"; the BIT 
statement assumes you mean" = 1" every time. So these two 
statements are the same: 

10 IF BIT (Stat,2) 1 THEN GOSUB Handle 

20 IF BIT (Stat,2) THEN GOSUB Handle 

To specify" = 0", though, you have to be specific: 

1130 IF BIT (Stat,4) - 0 THEN 120 

Example: "Lines, shmines!" snorts the suspicious Harold 
Skimpole. "Registers, smegisters! I don't trust anything I 
can't see." 

Specifically, Skimp ole wants to see a readout of what the 
HP-IB lines are set to at anyone time. 

You can help him. Your disk of examples has a handy 
program to help analyze the current state of HP-IB. To 
load the program "HPIB_LINES" and list it, type: 

LOAD "HPIB_LINES"~ 
LIST~ 

How an Instrument Summons Service 16-13 



10 !RE-STORE "HPIB_LINES" 
20 PRINTER is 1 
30 PRINT 
40 PRINT "HP-IB Interface Status" 
50 PRINT 
60 STATUS 7,7; Bus 
70 PRINT "Bus line decimal total is"; Bus 
80 IF BIT (Bus,8) THEN PRINT "REN true" 
90 IF BIT (Bus,9) THEN PRINT "IFC true" 
100 IF BIT (Bus,10) THEN PRINT "SRQ true" 
110 IF BIT (Bus,ll) THEN PRINT "EOI true" 
120 IF BIT (Bus,12) THEN PRINT "NRFD true" 
130 IF BIT (Bus,13) THEN PRINT "NDAC true" 
140 IF BIT (Bus,14) THEN PRINT "DAV true" 
150 IF BIT (Bus,15) THEN PRINT "ATN true" 
160 END 

The program checks each of bits 8-15 of HP-IB status 
register 7 (assuming HP-IB is at address 7) and tells you if 
that line is on. 

To run the program, just type: 

RUN-1 

The display will vary, depending on the state of HP-IB in 
your computer. Here's a typical one: 

Bus line decimal total is-24225. 
REN true 
NDAC true 
ATN true 

Besides soothing Skimpole, you can use this program 
whenever you want to find out the current state of HP-IB. 

This program also shows how you can modify program 
execution based on the setting of any bit (not just SRQ). 

16-14 How an Instrument Summons Service 



Using an Interrupt Uyou look closely at using STATUS to "read" a status 
register, you'll see that the "read" is usually done from 
within a loop in the program. And while this is OK for 
suspending execution temporarily (if you're waiting for the 
instrument to finish making a measurement, for instance), 
it's not the best way to handle errors and some other 
conditions. 

10 !RE-STORE "8753_INTR" 
20 ABORT 7 
30 ASSIGN @Inst TO 716 
40 REMOTE @Inst 
50 ON INTR 7 GOSUB Message 
60 ENABLE INTR 7;2 

Sometimes you'll want to use an interrupt to request service. 
An interrupt is something that lets a program continue. It 
doesn't need a loop. 

Example: The program "8753_INTR" on your disk of 
examples shows an interrupt that occurs if you send the HP 
8753 Network Analyzer an illegal instrument command 
string. Here's the code: 

70 OUTPUT @Inst; "CLES;" !Clears 8753 status bytes 
80 OUTPUT @Inst; "ESE 32;" !Enables bit 5 of 8753 event status register 
90 OUTPUT @Inst; "SRE 32;" !Enables bit 5 of 8753 status byte 
100 FOR 1=1 TO 100 
110 WAIT. 5 
120 PRINT I 
130 NEXT I 
140 STOP 
150 Message: ! 
160 PRINT "You sent me a BAD instrument conmand!" 
170 OUTPUT @Inst; "ESR?" 
180 ENTER @Inst; Estat 
190 PRINT "My status byte now contains";Estat 
200 !ENABLE INTR 7 
210 RETURN 
220 END 

How an Instrument Summons Service 16-15 



Remember, the instrument command strings and the 
separators - everything within quotation marks after the 
OUTPUT statement - depend on the instrument you're 
programming. The HP 8753 and many other instruments 
use semicolons or commas as separators, but your 
instrument may be different. 

When you run this program (you'll have to have an HP 8753 
connected, or change the program for your own 
instrument), the computer begins printing the value of I 
each time through the loop: 

RUN..J 

The loop is executed with nothing else happening - until you 
use the "live" keyboard to OUTPUT a bad instrument 
command string to the HP 8753. At the computer keyboard, 
type: 

OUTPUT @Inst; "HELLO" 

The computer immediately interrupts its execution of the 
loop and prints: 

You sent me a BAD instrument command! 
My status byte now contains 32 
11 
12 
13 

Then execution continues with the loop. 

16-16 How an Instrument Summons Service 



STATUS Register 5 

Bit 15 Bit 14 

Active Parallel 
Control- Poll Con-
ler figuration 

Change 

Value = Value = 
-32768 16384 

Bit 7 Bit 6 

Trigger Hand-
Received shake 

Error 

Value = Value = 
128 64 

Bit 13 

How it works: The ON INTR 7 statement in line 50 isn't 
inside the loop. But it "remembers" that if HP-IB (address 
7) is interrupted, execution branches to the "Message" label. 

Another statement goes hand-in-hand with ON INTR: it's 
the ENABLE INTR statement in line 60. ENABLE INTR 
determines what conditions are allowed to interrupt 
execution. 

The conditions on HP-IB that cause an interrupt are found 
in HP-IB status register 4, the Interrupt Status Register. 
These conditions are enabled by register 5, the Interrupt 
Enable Mask. Register 5 contains the bits you specify with 
ENABLE INTR, and "allows" only those bits to turn on 
register 4. 

Interrupt Enable Mask 

Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 

My Talk My EOI SPAS Remote/ Talker/ 
Address Listen Received Local Listener 
Received Address Change Address 

Received Change 

Value = Value = Value = Value = Value = Value = 
8192 4096 2048 1024 512 256 

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Unrecog- Secon- Clear Unrecog- SRQ IFC 
nized dary Received nized Ad- Received Received 
Univer- Com- dressed 
sal Com- mand Com-
mand While mand 

Ad-
dressed 

Value = Value = Value =8 Value = 4 Value =2 Value = 1 
32 16 

How an Instrument Summons Service 16-17 



You can see that line 60 of the program enables only bit 1 
(decimal value 2). When this bit is set to a 1, it indicates 
there's been an SRQ issued somewhere on HP-IB. 

50 ON INTR 7 GOSUB Message 
60 ENABLE INTR 7; 2 

Interface for ~ 
which interrupt 
is enabled 

L Total decimal 
value of bit(s) 
enabled 

Line 50 enables program interruption according to the 
setting specified in line 60. So it interrupts execution only if 
bit 1 (decimal value 2) of the computer's interrupt enable 
mask (register 5) is set. In essence the computer says "The 
only interrupt I recognize - from anybody on the bus - is bit 
1 of my status register." 

When bit 1 is set, line 50 branches execution to a subroutine 
called "Message." 

The way the program is written now, the interrupt works 
only once. Why? Because line 200 is "commented out." 

1200 ! ENABLE INTR 7 

ENABLE INTR, you see, is a "one-shot" statement: When 
the enabled interrupt finally occurs, it has to be re-enabled 
if you want to use it again. To re-enable the interrupt, you 
can remove the exclamation point from line 200 and turn it 
into another executable ENABLE INTR statement. 

200 ENABLE INTR 7 

16-18 How an Instrument Summons Service 



Cardinal Rule ~ 

Enabling Other 
Interrupts 

Be sure to re-enable an interrupt after you process it. 

If you don't specify a bit mask value in ENABLE INTRt it 
assumes the value in the previous ENABLE INTR statement 
is still active. That's why in this program these two 
statements are equivalent: 

200 ENABLE INTR 7; 2 
200 ENABLE INTR 7 

The interrupt you'll use most often is the SRQ. But you can 
use other interrupts as well. For instance, bit 6 of the 
computer's HP-IB register 5 enables an interrupt if a device 
doesn't respond to the interlocking handshake during an 
OUTPUT statement. (This could indicate a device is not 
connected or its power is ofQ. To enable the interrupt, you 
use an ENABLE INTR statement to "turn on" this bit. 

Here's an example: 

500 ENABLE INTR 7;64 
600 ON INTR 7 GOSUB Process 

Notice that it doesn't matter whether the ENABLE INTR 
statement is before or after the ON INTR statement. 

If you don't specify a bit mask value, and there was no prior 
ENABLE INTR statementt the value of 0 is used. This 
disables all interrupts, so the program won't be interrupted. 

If you have an instrument - any instrument - connected to 
your computer with HP-IB, you can rewrite the program to 
interrupt on an error condition in your own instrument. 
Look at your instrument's manual to find out more details of 
how it can generate interrupts. 

How an Instrument Summons Service 16-19 



Do You Need to 
Mask the SRQ? 

The Status 
Byte Tells All 

One more thing about interrupts. Some instruments such as 
the HP 8753 "wake up" unable to generate an SRQ. That's 
because their status byte inside the instrument is masked. 

And what's a status byte? Glad you asked. 

Suppose you have many instruments on HP-IB. How does 
the computer determine which instrument requested service? 

Or what about instrument conditions? How can the 
computer find out about instrument-specific errors and 
other status? 

That information is in the instrument's status byte. 

The Status Byte Instruments are different. But all HP-IB instruments have a 
status byte. Don't confuse HP-IB status registers and 
instrument status bytes . 

• Status registers are in the HP-IB interface in the computer. 

• Status bytes are within individual instruments. 

Instrument I J Computer 

Status Byte I I I I I I I I I 
I I I I I I I I I I I I I I I I I I 

I I I I I I I I I 
I I I I I I I I I Status Registers 

Extended Status 
Byte or Registers 
(if present) 

16-20 How an Instrument Summons Service 



Example of a status 
byte with two 
extended bytes (HP 
8753A) 

Condition 

Bit 

Example of Position 

one-byte status 
Bit 

byte (HP 6030 
Power Supply) 

Weight 

• RQS 

7 6 

128 64 

Where • 
FAU 
PaN 
aoy 
ERR 
RQS 

ERR RDY • • PON FAU 

5 4 3 2 0 

32 16 8 4 2 

Not Used - Fault Condition 

- Power on Reset - Ready to Process Commands - Programming Error - Requesting Service 

How an Instrument Summons Service 16-21 



Unmasking the 
Status Byte 

·HIN'Q··1Iiff~·r 

• The HP-IB status registers tell you about the state of the 
HP-IB interface . 

• An instrument's status byte gives you specific information 
about that instrument. 

The status byte of one instrument is different from another. 
Some instruments, like the HP 6030 Power Supply, have 
only a single byte; others, such as the HP 8753 RF Network 
Analyzer, have additional bytes. (Here they're called 
"registers.") You get to the information in these "extended" 
bytes in different ways, depending on the instrument. 

In the case of the HP 8753, if any of the bits in its event 
status register is set to 1, it also sets bit 5 of the status byte 
and sends an SRQ. If any of the bits in event status register 
B is set, it sets bit 2 of the instrument's status byte. Bits 2 
and 5 are called "summary bits", because they summarize the 
condition of the extended registers. 

The status byte is sometimes called the status word, or, as in 
the HP 6030 Power Supply, the serial poll register. Except 
for bit 6 - which on HP-IB is always used to request 
service - you'll have to look in the instrument's manual to 
find out what's in its status byte. 

Remember the program "8753_INTR" that showed how to 
interrupt a program? When the HP 8753 wakes up, its 
status byte is masked-it doesn't generate SRQ's or give you 
any other information. 

When an instrument awakens this way, you have to unmask 
the status byte, using an instrument command for the 
purpose. In the case of the HP 8753, you use this code: 

70 OUTPUT @Inst; "CLES;" !Clears 8753 status bytes 
80 OUTPUT @Inst; "ESE 32;" !Enables bit 5 of 8753 event status register 
90 OUTPUT @Inst; "SRE 32;" !Enables bit 5 of 8753 status byte 

16-22 How an Instrument Summons Service 



Line 70 of this sequence clears the instrument's status 
reporting system. Then line 80 enables bit 5 of the event 
status register, allowing a syntax error to be reported. Line 
90 enables bit 5 of the status byte, which allows conditions 
reported by the event status register to generate an SRQ. 

Not all instruments awaken with their status byte masked. In 
fact, you'll even see instruments with an [SRQ] key right on 
the front panel, so you can generate an interrupt with the 
press of a button. 

The Beauty of Bit 6 In IEEE-488 instruments, bit 6 of the status byte is always 
the bit that is set to request service. 

Cardinal Rule ~ 

Reading the 
Status Byte 

Remember, the status byte for each instrument is 
different - except for bit 6 of the instrument's main status 
byte. 

Notice that in both the HP 8753 and the HP 6030 Power 
Supply, bit 6 of the status byte is the same: it is used to 
request service from the controller. By the definition of 
IEEE-488, an instrument that requests service will have bit 
6 of its status byte true (set to a 1). 

Instruments and their status bytes are different. But bit 6 of 
every HP-IB instrument's status byte is always set by that 
instrument's SRQ. 

You could use STATUS to "read" an instrument's status 
byte, like this: 

1110 STATUS 716; A 

This puts the value of the status byte in the variable A. 

How an Instrument Summons Service 16-23 



But STATUS puts the instrument into remote mode to read 
its status byte. A much better statement for reading a status 
byte is SPOLL. 

SPOLL (serial poll) goes to each instrument on the bus 
(starting with the lowest-numbered address) and looks at its 
status byte. 

Try this: with your own instrument connected (use its 
address), type: 

PRINT SPOll(716)..J (Use your instrument's address.) 

You'll see the current status of your instrument's status byte. 

Here are some examples of SPOLL statements: 

110 Sta t= SPOll (707) 

This reads the value of instrument 707's status byte into a 
variable called Stat. 

100 ASSIGN @Device TO 716 
110 Status = SPOll (@Device) 

Line 110 uses an assigned I/O path to read the value of the 
status byte of the instrument at address 716. 

SPOLL (serial poll) is an HP-IB function dedicated to 
getting status information quickly. It doesn't cause the 
instrument to go into remote mode. 

This means you can use SPOLL to find out (and change) an 
instrument's status even if it's being operated from the front 
panel. For instance, you could permit a user to operate the 
instrument until he or she committed an error, then "lock 
out" the front panel and return control to the computer. 

16-24 How an Instrument Summons Service 



100 lOOP 
110 STATUS 7,7; Stat 

You can use SPOLL to find out which instrument wants 
service. Here's an example of how to poll two devices: 

120 IF BIT (Stat,10)= 1 THEN GOSUB Service 
130 END lOOP 
140 ! 

480 Service:! 
490 Source_stat= SPOll (717) 
500 Volt_status= SPOll (722) 
510 IF BIT (Source_stat,l) THEN GOSUB Treat 
520 IF BIT (Volt_status,l) THEN GOSUB Read_data 
530 RETURN 
540 Treat:! 

Code for Treat subroutine here 
850 RETURN 
860 Read_data:! 

Code for Read_data subroutine here 
950 RETURN 
960 END 

In the main program loop (lines 100-130), when the SRQ 
line goes true, the program branches to the subroutine 
"Service." It does a serial poll on each instrument, then 
branches further to take care of any service requests. 

When the computer determines that a particular instrument 
is calling for service, it can then analyze the instrument's 
status byte (or bytes) to find out just why the device wants 
service. 

In the program segment above, line 500 assigns the value of 
instrument 722's status byte to the variable "Volt_status." 
Then line 520 examines bit 1 of the status byte; if it's set to 
1, the program calls subroutine "Read_data". 

How an Instrument Summons Service 16-25 



10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 

!RE-STORE "8753_ERRS" 

DIM Err$ [50] 
REPEAT 
Stat = SPOll (716) 
UNTIL BIT (Stat.3) = 1 
OUTPUT 716; "OUTPERRO;" 
PRINT "HANDLING ERRORS" 
ENTER 716;Err.Err$ 
PRINT Err. Err$ 
lOCAL 716 
BEEP 600 .. 01 
END 

Example: When an error occurs in the HP 8753 Network 
Analyzer, bit 3 of its status byte is set, and the error is 
placed in an error queue. The following program finds out 
if the error bit is set and, if it is, reads and prints the error. 
(The program is on your disk of examples as "8753_ERRS".) 

How it works: Lines 40-60 are a loop that repeats until bit 
3 of the instrument's status bit is set. Line 50 reads the 
instrument's status byte into the variable Stat, while in line 
60, if the error queue summary bit is not set, the program 
loops until it is set. 

If the error queue has something in it, line 70 places the 
8753 in remote mode and instructs it to send the error 
number and error message. Line 90 "reads" the error 
number into the variable Err, and the error message into 
Err$. 

Line 110 returns the HP 8753 to local mode so the front 
panel is available to the operator. Line 120 gives an audible 
signal that something is wrong. 

16-26 How an Instrument Summons Service 



To Mask or Unmask? 

When you enable a bit in the interrupt register 
or read a bit of a status byte or another status 
register, what you are actually doing is creating 
a "mask" for the register. A mask opens a 
window on the bits you want to see, while 
suppressing undesired information. 

Why is it called masking? Because it's actually 
the Boolean AND operation: 

Register Mask 

0 0 
0 1 
1 0 
1 1 

Result (Register AND 
Mask) 

0 
0 
0 
1 

You can see that when the mask is 1, the result of the register bit AND the mask 
bit can be 1. When the mask is 0, the result can never be 1- that is, never 
enabled. 

When you enable an interrupt, what you're actually doing is writing a mask. The 
mask is HP-IB status register 5, called the Interrupt Enable Mask. It masks (or 
unmasks, if you prefer) status register 4. 

Thus, to unmask bits 1,2,3 and 4 of the interrupt status register, you need a mask 
that looks like this: 

00000000 
00011110 

You do this, of course, with an HP BASIC statement: 

How an Instrument Summons Service 16-27 



ENABLE INTR 7; 30 

What this statement actually does is to store the bit mask in HP-IB's 
Interrupt-Enable Register-which you know is register 5. 

Most of the time you won't have to worry about masking, because it goes on 
behind the scenes. But it's a commonly-used computer term, and you should be 
aware of what's happening. 

If you get confused, remember it this way: 
A mask unmasks what you want to see. 

Got it? 

16-28 How an Instrument Summons Service 



No Masking 
Necessary 

Review Quiz 

Notice that you don't have to mask the status byte for a 
serial poll like you did for an interrupt. That's because 
you're actively polling the instrument - you're not waiting 
for it to generate an interrupt. 

You can use the HP BASIC statement SPOLL to find out 
information about any instrument. Some instruments also 
have an instrument command string (such as OUTPSTAT 
for "output status") that allows you to get status information 
by using the OUTPUT statement. For example: 

50 OUTPUT 716; "OUTPSTAT" 

1. Name three ways a computer can find out if an HP-IB 
instrument needs service. 

2. You can enter and run the following mini-program: 

10 STATUS 7,4; Stat 
20 PRINT Stat 
30 END 

The result that's printed on the screen is: 

Assuming interface code 7 is HP-IB, what bits are set in 
this status register. Is the "SRQ received" bit set? 

How an Instrument Summons Service 16-29 



3. In the section of code below, lines 100 and 110 cause an 
interrupt when a handshake or bus error occurs during 
an OUTPUT statement. If there are three such bus 
errors while the FOR-NEXT loop is being executed, how 
many times will the value for V be printed? 

INTR 7 GOSUB Read volts 
ENABLE INTR 7; 64 
FOR I = 1 TO 100 
NEXT I 
STOP 

100 ON 
110 
120 
130 
140 
150 
160 
170 
180 
190 

Read volts:! 
ENTER 722;V 
PRINT V 
RETURN 
END 

4. Bit 6 of the HP 8753's event status register is "User 
Request." It is set when the operator presses a front 
panel key or turns the knob. 

Write a brief section of BASIC code that will enable bit 6 
for reporting. If the user presses a front panel button, 
branch to a subroutine called "Button" that prints 
"Interrupted by LOCAL yokel!" 

5. Change line 50 of the program "8753_ ERRS" to two 
statements that use the HP BASIC OUTPUT and 
ENTER statements and one of the HP 8753's instrument 
command strings to "read" the status byte. 

16-30 How an Instrument Summons Service 



17 
Saving and Reusing Instrument Data 

Data manipulation, storage, and retrieval in HP BASIC can 
be a highly complex subject for study. There are many 
things you can do, many pointers to keep track of. 

Added to which is the mysterious instrument tethered at the 
end of a cable, pumping in who-knows-what over HP-IB. 
It's enough to make you throw up your hands! 

But if you just remember two little words - "unified 
I/O" - data storage and retrieval can be fairly simple. In 
part 3 of this course you'll learn some fancy formatting 
that'll speed up your programs and make them more 
efficient. In this lesson, though, you'll learn ordinary 
blue-collar methods to save data on discs, and re-use it later. 

This lesson covers: 

• Instrument data. 

• Free-field format. 

• Data OUTPUT to instruments. 

• Data ENTERed from instruments. 

• The number builder. 

• Storing instrument data on disk. 

• Retrieving data from disk. 

• OUTPUT USING. 

Saving and Reusing Instrument Data 17-1 



What Is 
Instrument 
Data? 

As you know, there's a big difference between HP BASIC 
statements that make up your programs and data. Within 
the computer, there are three kinds of data: 

• Real numbers. 

• Integer numbers. 

• ASCII strings. 

You can usually think of instrument data as a long ASCII 
string or series of strings - unless you've specifically 
changed the format. 

Data Formats As you'll learn later in lessons 25 and 26, you can change the 
format of data. 

The general formats are: 

1. Free-field: No format, or "K" specifier; standard number 
format. (This is the most common type.) 

2. Free-field with attributes: Attributes (FORMAT OFF, 
PARITY ON, etc.) specified in I/O path ASSIGN 
statement. Data transfer must conform to attributes. 

3. Fixed-field: Uses image (such as OUTPUT USING or 
PRINT USING). This overrides an I/O path ASSIGN 
statement. 

In this lesson, you'll deal mostly with free-field format. But 
you should know that you can change the data format in the 
computer, by using images (ENTER USING, OUTPUT 
USING) or by specifying attributes when you ASSIGN path 
names. 

17-2 Saving and Reusing Instrument Data 



In addition, some instruments, including the HP 8590A 
Portable Spectrum Analyzer featured in this lesson, can 
deliver data in different formats. In this lesson, though, 
you'll work with data that's in the most common 
format - ASCII characters. 

Data Files Don't confuse the data type with the three types of Jiles: 

• BDAT files. 

• HP-UX files. 

• ASCII files. 

You can, for instance, store real numbers in an ASCII file. 
Or ASCII strings in BDAT files. 

For free-field OUTPUT and ENTER operations, you can 
think of an instrument as a kind of ASCII Jile. The data are 
strings - of characters, real numbers, or integer numbers. 
INPUT and OUTPUT to and from an instrument are just 
like to and from an ASCII file. 

(In part 3, lessons 25 and 26, you'll learn to manipulate data 
using images and ASSIGNed attributes that specify exactly 
what type it is.) 

The default data representation used with devices like 
instruments is ASCII. So for now, assume all data is made 
up of ASCII characters. 

Data OUTPUT Getting commands to an instrument is usually pretty 
straightforward; you insert the command string in quotation 
marks in an OUTPUT statement, like this: 

40 OUTPUT @Analyzer; "SNGLS;TS;" 

Saving and Reusing Instrument Data 17-3 



Remember, the exact fonn at of the command string depends 
on the instrument. In some cases you'll be able to separate 
commands with a space, other times (as in the 8590A) you'll 
need a comma or semicolon. 

The data, of course, is in the form of a string of characters. 

ENTERed Data Just as with OUTPUT, all ENTER statements from 
instruments interpret the data as ASCII characters. 

But, if you remember, you can't calculate with ASCII data; 
to the computer it's just a big mess of characters with no 
meaning. You can print it just as it comes in, of course. But 
to do anything with the data - calculate with it, add or 
subtract it, make a meaningful plot - you have to first turn it 
into either integers or real numbers. 

You can do this by either: 

• Using VAL$ to calculate the value of each number after 
you've brought it in . 

• Using ENTER to generate numbers as the data comes in. 

"But wait!" you're thinking. "I've already used ENTER over 
and over. And I rarely so much as smelled a string variable." 

It's true; most of your ENTER statements look like this: 

1100 ENTER 718; Frequency 

or 

1250 ENTER @Vo 1 tmeter ; Readings (*) 

The reason you haven't had to worry about what kind of 
data is coming in is a wonderful HP BASIC feature known 
as the number builder. 

17-4 Saving and Reusing Instrument Data 



The Number 
Builder 

The number builder used with ENTER is a built-in firmware 
routine that evaluates incoming ASCII characters and then 
"builds" them into an integer or real number. 

Your disk of examples has a file called DATA_17, that you 
can use to demonstrate the number builder. First, find out 
what's in the file: 

1. Put the disk in the disk drive and address it using MSI, 
like this: 

MSI ":,700,0" 

(Within the quotation marks, substitute the address of 
the mass storage unit you'll use on your computer.) 

2. Type and run this mini-program: 

SCRATCH-I 
EDIT -I 

10 DIM StringS [50] 
20 ASSIGN @Path TO "DATA 17" 
30 ENTER @Path; StringS 
40 PRINT StringS 
50 END 

RUN-I 

The display shows what's actually in the ASCII string: 

I The number is 123. 4SeSabcde 

The string is "The number is I23.45e5abcde". That's the full 
string; it could be data just as it's sent from an instrument. 
Since you specified a string variable (String$), you see all the 
ASCII characters. It doesn't go through the number builder. 

Saving and Reusing Instrument Data 17-5 



Now put the same data through the number builder: change 
lines 30 and 40 to specify a numeric variable: 

EDIT 30.J 

1

30 ENTER @Path; Var 
. 40 PRINT Var 

RUN.J 

This time you see a number: 

11. 2345E+7 

See what happened? When you put data into a numeric 
variable, it goes through the number builder. The number 
builder strips leading characters and non-numeric 
characters, leaving just the number in your numeric variable. 

The number builder uses some fairly arcane rules to decide 
what it keeps and throws away. It sees numbers as being 
made up of the characters 0 through 9, ".", "+ ", "- ", "E" and 
"e". Characters other than digits have to occur in 
meaningful positions. 

There are many more number-building rules. But in 
general, you can let the number builder work for you 
without worrying about what it does. If the instrument is 
sending numeric data, then numeric data is what you'll get. 

17-6 Saving and Reusing Instrument Data 



This Lesson's Featured Instrument: 
The HP 8590A Portable RF Spectrum Analyzer 

The HP 8590A weighs just 30 pounds and is small enough to fit under an airplane 
seat, yet boasts many of the features of much 
larger models. It has a frequency range of 10 
kHz to 1.5 GHz (1.8 GHz optional) and an 
amplitude range of -115 dBm to +30 dBm. 

Operation is easy; you center the signal with a 
[FREQUENCY] control, resolve it with 
[SPAN], and move it up and down on the screen 
with [AMPLITUDE]. Functions such as [PEAK 
SEARCH] let you put a marker on displayed signal, then read the frequency and 
amplitude. 

HP-IB Operation 
The HP 8590A's HP-IB codes 
are: SH1, AH1, T6, L4, SR1, 
RL1, PPO, DC1, DT1, C1, C2, 
C3, C28. 

The analyzer has over 80 
instrument commands you can 
use for controlling it. Here are 
a few of them: 

CF 
Center Frequency 

Description: The CF 

.. 

... - •••• _ IITT ....... 

"Ale 
~. ~-~~+-+-+-4-4-~~~ ., 

eDiT'" _ •• _ 

lieS ....... 

, 
\ 

Vft_h .... 
"AM ..... MHa . ... .... 

command specifies the value of the center frequency. 

Saving and Reusing Instrument Data 17-7 



IP 
Instrument Preset 

Description: The instrument preset command, IP, executes the following 
commands (this is an abbreviated list): 

AUNITS DBM: Selects dBm amplitude units. 
FA: Sets the start frequency. (0 MHz) 
FB: Sets the stop frequency. (1500 MHz) 
MDS W: Selects data size of one word,which is two 8-bit bytes. 

MDS 
Measurement Data Size 

Description: The MDS command formats binary measurements: 

B selects a data size of one 8-bit byte. 

W selects a data size of one word, which is two 8-bit bytes. 

MKCF 
Marker to Center Frequency 

Description: The MKCF command sets the center frequency equal to the 
marker frequency and moves the marker to the center of the screen. 

MKPK 
Marker Peak 

Description: The MKPK command positions the active marker on signal peaks. 
Executing MKPK HI, or simply MKPK, positions the active marker at the highest 
signal detected. If an active marker is on the screen, the parameters move the 
marker accordingly. 

17-8 Saving and Reusing Instrument Data 



SNGLS 
Single Sweep 

Description: The SNGLS command sets the analyzer to single-sweep mode. 
Each time single sweep is pressed or TS (take sweep) is entered, one sweep is 
initiated. 

SP 
Span 

Description: The SP command changes the total displayed frequency range 
symmetrically about the center frequency. The frequency span readout refers to 
the displayed frequency range. Divide the readout by ten to determine the 
frequency span per division. 

TDF 
Trace Data Format 

Description: The trace data format, TDF, command formats trace information 
for return to the controller. 

M, measurement units, returns values in display units from -32768 to + 32767. 

P, parameter units, returns absolute measurement values such as dBm or Hz. 

A returns data as an A-block data field. The MDS command determines whether 
data comprises one or two 8-bit bytes. 

I returns data as an I -block data field. The MDS command determines whether 
data comprises one or two 8-bit bytes. 

Specifying B enables binary format. The MDS command determines whether 
data comprises one or two 8-bit bytes. 

A, B, I, and M are defined in the analyzer's internal amplitude units (log: 
hundredths of dBm; linear: 8,000 = top of screen and 0 = bottom of screen). P 
is in the current parameter unit specified by AUNITS. 

Saving and Reusing Instrument Data 17-9 



TRAlTB 
Trace Data Input/Output 

Description: This command provides a method for reading or storing values 
into a trace. Adding a question mark (TRA?) queries the analyzer for trace data. 
The form of the query response is dependent upon the previously used Trace 
Data Format command as follows: 

UEASUREMENT OR 
PARAMETER UNlT--___ +t 

ASCII 

BINARY 

17-10 Saving and Reusing Instrument Data 



Storing 
Instrument 
Data 

Cardinal Rule ~ 

If you remember the techniques used to put ordinary data 
on mass storage such as disk or tape, you'll find storing data 
from instruments is the same. (And if you don't remember, 
sneak a peek at lesson 10 before continuing.) 

For a file, you OUTPUT data to the file, then ENTER it 
from the file. With an instrument, though, you're more 
likely to ENTER data from the instrument, then OUTPUT 
it. The same cardinal rule applies, though: Read it the way 
you wrote it. Or, in the case of an instrument: 

OUTPUT data the way you originally ENTERed it. 

Saving data is just like storing any other kind, except you 
have to get the data from the instrument first. 

ENTER OUTPUT 

I~~ - ~ :I~! 
_- ~~- I 

Instrument 

Computer 
Disk Drive 

Saving and Reusing Instrument Data 17-11 



10 !RE-STORE "8590_STORE" 
20 GOSUB Init 
30 GOSUB Get_data 
40 GOSUB Print_data 
50 GOSUB Create_file 
60 GOSUB Store_data 
70 STOP 
80 
90 Init: ! 
100 REAL Trace_a(1:401) 
110 ABORT 7 
120 ASSIGN @Analyzer TO 718 
130 CLEAR @Analyzer 
140 RETURN 
150 

Much simplified, the sequence of events, then, is: 

1. Get data from the instrument. 

2. Create a data file on the disk or other mass storage unit. 

3. Output data to the file. 

For manipulation, you'll probably want to store numeric 
data from instruments in BDAT files. That's because: 

• ASCII files can't be accessed randomly; BDAT files can. 

• ASCII data can't be formatted; binary data can. 

Example: The program "8590_STORE" on your disk of 
examples shows how a 401-point trace from the HP 8590A 
Portable RF Spectrum Analyzer is stored on disk. 

Here's the complete program: 

17-12 Saving and Reusing Instrument Data 



160 Get_data: ! 
170 OUTPUT @Analyzer;"IP;" 
180 OUTPUT @Analyzer;"TOF P;" 
190 OUTPUT @Analyzer;"SNGLS;" 
200 OUTPUT @Analyzer;"CF 300MZ;" 
210 OUTPUT @Analyzer;"SP 200MZ;" 
220 OUTPUT @Analyzer;"TS;" 
230 OUTPUT @Analyzer;"MKPK HI;" 
240 OUTPUT @Analyzer;"MKCF;" 
250 OUTPUT @Analyzer;"TS;" 
260 OUTPUT @Analyzer;"TRA?;" 
270 ENTER @Analyzer;Trace_a(*) 
280 ASSIGN @Analyzer TO * 
290 RETURN 
300 
310 Print_data: 
320 PRINT Trace_a(*) 
330 RETURN 
340 
350 Create_file: 
360 MASS STORAGE IS ":,700,0" ! (or ":,1500,0" for a language processor) 
370 CREATE BOAT "TRACE_A" ,13 
380 RETURN 
390 
400 Store_data: 
410 ASS IGN @Fi le TO "TRACE_A" 
420 OUTPUT @File;Trace_a(*) 
430 ASSIGN @File TO * 
440 RETURN 
450 END 

The program is an example of structured programming: 
every major step is a subroutine called from the main 
program. This makes changing or debugging the program 
quite easy. 

Saving and Reusing Instrument Data 17-13 



The main program calls all the subroutines: 

10 !RE-STORE "8590 STORE" 
20 GOSUB Init 
30 GOSUB Get data 
40 GOSUB Print data 
50 GOSUB Create file 
60 GOSUB Store data 
70 STOP 

The Init routine sets up a 401-point real-number array, 
clears HP-IB, and assigns a path to the HP 8590A Portable 
Spectrum Analyzer. 

90 Init: ! 
100 REAL Trace_a(I:401) 
110 ABORT 7 
120 ASSIGN @Analyzer TO 718 
130 CLEAR @Analyzer 
140 RETURN 

17-14 Saving and Reusing Instrument Data 



The Get_data subroutine sets up the analyzer. 

160 Get data: ! 
170 OUTPUT @Analyzer;"IP;" 
180 OUTPUT @Analyzer;"TDF P;" 
190 OUTPUT @Analyzer;"SNGLS;" 
200 OUTPUT @Analyzer;"CF 300MZ;" 
210 OUTPUT @Analyzer;"SP 200MZ;" 
220 OUTPUT @Analyzer;"TS;" 
230 OUTPUT @Analyzer;"MKPK HI;" 
240 OUTPUT @Analyzer;"MKCF;" 
250 OUTPUT @Analyzer;"TS;" 
260 OUTPUT @Analyzer;"TRA?;" 
270 ENTER @Analyzer;Trace_a(*) 
280 ASSIGN @Analyzer TO * 
290 RETURN 

Line 180 sets the trace data format to produce data in 
absolute measurement values, such as dBm. 

Lines 190-240 set the analyzer for single-sweep mode, 300 
MHz center frequency, 200 MHz span; and puts one marker 
at the highest signal and another at the center frequency. 

Line 260 queries the analyzer for its 401-point sweep. Line 
270 then enters the data into an array, Trace_a. 

The Print_data subroutine isn't necessary, of course, but it 
lets you verify the data as it comes in. 

310 Print data: ! 
320 PRINT Trace a(*) 
330 RETURN 

Saving and Reusing Instrument Data 17-15 



Retrieving 
Data 

Lines 350-370 specify the mass storage unit and create a 
binary data file on it. 

350 Create file: 
360 MASS STORAGE IS ":,700,0" 
370 CREATE BDAT "TRACE_A",13 
380 RETURN 

To determine the number of records, multiply the 401-point 
trace by 8 bytes per point, then divide by 256 bytes per 
record. The result is rounded to the next largest integer, so 
you'll need 13 records for the file. 

Finally, the data is stored on disk: 

400 Store data: ! 
410 ASSIGN @File TO "TRACE A" 
420 OUTPUT @File;Trace_a(*} 
430 ASSIGN @File TO * 
440 RETURN 

Remember, assigning the path to an asterisk as in line 420 
closes the path. 

Once you've stored data on disk (or in other mass storage) 
you can turn off the computer, remove instrument cables, go 
on vacation - your data is preserved. 

To get it back again, you: 

1. Open a path to the file. 

2. ENTER data from the file back into an array. 

17-16 Saving and Reusing Instrument Data 



Using 
OUTPUT 
USING 

Here's another program (also on your disk of examples, as 
"8590_ GET") that brings data back into the computer from 
mass storage: 

10 !RE-STORE "8590 GET" 
20 REAL Trace_a(I:401) 
30 MASS STORAGE IS ":,700,0" 
40 ASSIGN @File TO "TRACE A" 
50 ENTER @File;Trace_a(*) 
60 ASSIGN @File TO * 
70 END 

Line 20 dimensions an array of real numbers, called 
Trace_a. Line 40 opens an I/O path to the file "TRACE_A" 
on the disk. Then line 50 brings data from the file into the 
array Trace_a. Once data is in the array in the computer, 
you can manipulate or plot it. 

You remember PRINT USING, don't you? The statement 
that let you format printed output the way you wanted it? 
You can do the same thing-use images-with OUTPUT 
and ENTER. 

Why use images? You've seen how OUTPUT can control 
an instrument by sending it instrument commands. You 
have the instrument's manual in front of you, so you always 
know exactly what to send. Who needs OUTPUT USING 
or IMAGE, anyway? 

Well, suppose your program prompts a user to input values 
for, say, frequency. Now you have a problem- because even 
if your prompts are very specific, you don't really know what 
the operator will type. 

Saving and Reusing Instrument Data 17-17 



10 ASSIGN @Analyzer TO 718 

A frequency of 20 MHz may come in as any of these: 

20 
20.0 
20 MHz 
20.000000 

This is a job for OUTPUT USING and IMAGE. With these 
HP BASIC statements, you can guarantee that no matter 
how the operator inputs a value, the instrument receives its 
command strings in the proper format. 

Example: In his attempts to introduce automated testing at 
the Snagsby Corporation, industrial engineer Allan 
Woodcourt is plagued by the haphazard key entries of 
Simon Snagsby, a data entry operator and son of the owner. 

Young Snagsby, you see, has never been able to entirely 
fathom units such as "kilo", "mega", and "giga". So when 
prompted to enter a frequency of 750 MHz, he is likely to 
play it safe and type "750000000 [ENTER]". How can 
Woodcourt make sure that Snagsby types the frequency in 
the correct MHz format? 

Solution: Woodcourt uses an image statement that allows 
entry only in megahertz. Something like this: 

20 INPUT "Type the fundamental frequency in MHz", Fund 
30 IMAGE "CF;", 000.00, "MZ;" 
40 OUTPUT @Analyzer USING 30; Fund 

The IMAGE statement in line 30, coupled with line 40's 
OUTPUT statement, force Snagsby to type a number with 
no more than three digits to the left of the decimal point 
(DOD). If he types a number that's too large, an error is 
generated, and the OUTPUT isn't executed. 

17-18 Saving and Reusing Instrument Data 



Review Quiz 

In part 3, lesson 25, you'll learn about more things you can 
do by using IMAGEs with OUTPUT and ENTER. 

1. Data from instruments is usually in what form? 

2. How can you convert ASCII data into numbers? (Two 
ways!) 

3. Name two ways of changing the data format with HP 
BASIC. 

4. A 401-point trace from the HP 8590A Portable RF 
Spectrum Analyzer is on your examples disk as 
8590_TRACE. Write a program that gets the data from 
the disk and displays it on the screen. 

Saving and Reusing Instrument Data 17-19 



Laboratory 
Exercise 

Modify the program "8590_STORE" so that: 

1. Data is read from the instrument into an array called 
Data_array. 

2. Data is stored in a file called 8590 DATA. 

3. Data is stored in the file 8590_DATA using an I/O path 
called @Path. 

You'll find a solution on your disk of examples, as 
SOL LAB17. You can list it and see how it works. 

17-20 Saving and Reusing Instrument Data 



18 
Making the Keyboard Work for You 

Up to this point, your use of the computer keyboard has 
been limited to the dedicated function keys and 
preprogrammed "soft" keys. 

Now you're going to become a master of the keyboard 
instead of its slave. In this lesson you'll learn: 

• The two ways to use softkeys. 

• How to use LIST KEY to list the softkey definitions. 

• How to change a softkey with EDIT KEY. 

• How to use SET KEY to make a new key definition from 
a program. 

• Storage of softkey definitions with STORE KEY. 

• How to erase key definitions with SCRATCH KEY. 

• A way to load keys with LOAD KEY. 

• How to use ON KEY to generate a program interrupt. 

Making the Keyboard Work for You 18-1 



How to Use 
Soft keys 

When you first load HP BASIC into your computer, you see 
a list of labels across the bottom of the display. Here's an 
example: 

1E:~~[11~0~~~m~II~~~lls:c:m~~ml 

Note 

Those are labels for the softkeys, keys [£1], [f2], [f3] (or [kl], 
[k2], [k3]), etc., on your keyboard. 

In fact, depending on your combination of software and 
hardware, you may have as many as 24 softkeys. For 
instance, a Vectra or other personal computer using the HP 
BASIC Language Processor has three sets of user functions 
and each set has eight "keys". (You "cycle through" the 
system keys and the three different user menus with a 
combination of keyboard function keys and the SHIFT key.) 

For a description of the softkey functions at "wake-up", refer to 
your computer user manual. 

Are these softkeys inviolate? Certainly not! In fact, you can 
give them your own definitions and labels - make them do 
your bidding. (On some computers, including a PC with the 
BASIC Language Processor, there's also a set of "system" 
softkeys that you can't change.) 

With good softkey labels and definitions, you can make your 
programs much more elegant - and a lot easier to use, too! 

18-2 Making the Keyboard Work for You 



Softkeys as 
Typing Aids 

Listing the 
Softkeys 

Softkeys are used for either (or both) of two purposes: 

• Typing aids: Pressing the key automatically "types" a 
series of keystrokes, just as if you'd typed it yourself. 

• Program branches: Pressing the key interrupts a 
running program, causing it to branch or halt execution. 

When you look at the label for a softkey, what you actually 
see is part of the actual keystrokes that key automatically 
"types" when you press it. To see more information, you can 
list the softkeys. 

To list the softkeys, use the LIST KEY statement. Unless 
you specify otherwise, the listing is to the current PRINTER 
IS device. 

For instance, to list the keystrokes for all softkeys on the 
CR T screen, type: 

PRINTER IS 1.J 
LIST KEY.J 

Here's an example of a listing for softkey 1. (It may be 
different on your computer): 

Key 1: 
System key: # 
EDIT 

Making the Keyboard Work for You 18-3 



Rewriting a 
Soft key Definition 

The listing shows the soft key number, and any keys "typed" 
by the softkey. (The # character here is actually the system 
key [CLEAR LINE)). In these listings, system keys such as 
[ENTER], [CLEAR LINE], and [INSERT CHAR] are 
shown as "System key:" followed by a special character. 
You'll learn more about these in a moment. 

You can see that when you press softkey 1, it first "types" 
[CLEAR LINE], then it types the characters E D IT. 

You'll probably want to list to a printer because the list of 
keys can be three or four pages long. 

For example: 

LIST KEY #26.J 

This lists all softkey definitions on a printer at address 26. 

Or: 

LIST KEY # 701.J 

This lists the current key definitions on a device (probably a 
printer) at address 701. 

To change one of the softkey definitions, you can use the 
EDIT KEY statement, followed by the number of the 
softkey, like this: 

EDIT KEY 2.J 

This displays the definition for softkey [f2] and lets you 
write a different definition if you want. 

18-4 Making the Keyboard Work for You 



Example: The clockwatching Richard Carstone wants a 
soft key redefined so it gives him the time with a single 
keystroke. 

Cars tone knows about the TIME function that returns the 
current time when he types: 

TIME$ (TIMEDATE).J 

111:14:02 

That's way too many keystrokes for the slow-fingered 
Carstone to type, though. To help Carstone, and make this 
function accessible from softkey [f2], type: 

EDIT KEY 2.J 

(Or just press the [EDIT] key followed by the [f2] softkey 
and [ENTER].) 

The screen displays the current [f2] definition on the 
keyboard input line. 

It also shows you a system message that indicates you can 
modify the softkey definition - something like this: 

lIB # STEP 

Edltlng key 2 

Now press and type the keys shown here: 

[CLEAR LINE] 
TIME$ (TIMEDATE) 
[CTRL] [ENTER] (Press these two keys together.) 

Making the Keyboard Work for You 18-5 



Key label 
shows new 
function 

What you're actually doing is writing the softkey's new 
definition - what it will "type" when you use it. Pressing the 
[CTRL] key at the same time as the system key [ENTER] 
(or [RETURN], or [END LINE], etc.) tells the computer 
not to execute that key now, but to make it part of the 
softkey program. So it substitutes an "E" for the [CTRL] 
[ENTER]. You see the entire "program" now: 

1 TIME$ (TIMEDATE)iBE 

Now press the "real" [ENTER] key to end the line: 

[ENTER] 

You can see that the label for softkey [f2] changes 
immediately to show its new function: 

Press softkey [f2] to see the time: 

111:14:05 

A softkey definition is essentially one typed line. So you 
should make sure never to exceed the maximum length of 
your display's keyboard input line - usually 160 characters. 

18-6 Making the Keyboard Work for You 



What happened to the softkey label? The label you see is 
actually just a "window" onto the first few keystrokes of the 
key's definition: 

You see the first part of the 
soft key definition in its label 

In this case (depending on your computer) you see most or 
all of the TIMES (TIMEDATE) keystrokes. 

But if your definition is long, you won't see it all. Only the 
first few keystrokes are displayed. 

One other thing: if you begin a sequence of keystrokes with 
a system key, such as [CLEAR LINE], you won't see that 
key displayed in the label. 

In its infinite wisdom, the computer realizes that you 
probably don't want leading system keys such as [CLEAR 
LINE] to appear in the label. So it simply doesn't display 
them. 

For instance, take a series of keystrokes such as this: 

'[8Sd!Z,Z,!If!M!_"iI'. The time is now 
[CTRL] [CLEAR LINE] TIME$ (TIMEDATE) 
[CTRL] [ENTER] 

These keystrokes might show up as: 

The time 
is now 

11# 
TIME$(TIMEDATE) 
liE 

Leading system key 
not displayed 

You see only these 
characters in the label 

Not displayed 

Making the Keyboard Work for You 18-7 



Changing a Key 
from a Program 

The added spaces after the words "The time is now" give you 
a "clean" label. They ensure you don't see subsequent 
characters of the definition. 

EDIT KEY works well for "on-the-spot" softkey definitions. 
But when you want your program to automatically change 
the soft key definition, use a SET KEY statement. 

To use SET KEY, you assign the string of characters to be 
"typed" by the softkey to a string variable. Then you use 
SET KEY to assign the variable to a softkey. Look at this 
simple illustration: 

10 A$ = "SIN" 
20 SET KEY 5, A$ 
30 END 

Line 10 assigns the characters SIN to the string variable A$. 
Then line 20 assigns that string to softkey [f5]. 

After running this section of code, you'd see the characters 
SIN in the softkey 5 label. And pressing [f5] would "type" 
the characters: 

I SIN 

Example: Tired of remembering- and typing- long 
strings such as MSI ":,1500,0" every time you want to change 
the default mass storage unit? The example program 
"MSI _KEYS" lets you use softkeys to change MSI. 

Load and run the program MSI_KEYS from the disk of 
examples (or type it in following the code below). 

LOAD "MSI_KEYS".J 
LIST.J 

18-8 Making the Keyboard Work for You 



10 !RE-STORE "MSI_KEYS" 
20 DIM A$ [50] 
30 DIM B$ [50] 
40 A$=CHR$(255) &"#"&"Floppy disk "&CHR$(255) &"I"&"MSI"":,1500,O"""&CHR$(255) &"E" 
50 B$=CHR$(255) &"#,,&"Hard disk "&CHR$(255) &"I"&"MSI"": ,1500,2"''''&CHR$(255) &"E" 
60 SET KEY 4,A$ I ~~ ~~~ KEY 5.8$ 

Note This program was written for a Vectra or other PC with a 
single floppy disk at ":,1500,0" and a hard disk at ":,1500,2". If 
your MSI addresses are different, you'll have to change lines 
40 and 50 to the new addresses-say ":INTERNAL" and 
":,700". Naturally, you'll want labels such as "Internal DO" and 
"External DO" instead of "Hard disk" and "Floppy disk", too. 

How it works: Lines 20 and 30 create memory space for 
the strings A$ and B$. Line 40 uses" &" to join several 
characters and strings. It assigns the following string of 
keys to the variable A$: 

[CTRL] [CLEAR LINE] Floppy disk 
[CTRL] [CLEAR LINE] MSI ":,1500,0" 
[CTRL] [ENTER] 

In the string, the expression CHR$(255) is how you generate 
the [CTRL] key. The pound sign (#) after [CTRL] is how 
you generate the system key [CLEAR LINE]. 

The extra spaces after "Floppy disk" guarantee that only 
those characters appear in the label. 

Making the Keyboard Work for You 18-9 



In order to have the key "type" the string MSI ":,1500,0", you 
need to enter two quotation marks everywhere the string is 
to contain one quotation mark. So it looks like this: 

"MSI"":,1500,O""" 

The expression CHR$(255) &"E", of course, is our old 
friend [CTRL] [ENTER]. 

Line 50 is similar to line 40, except it's for the hard disk 
instead of the floppy. 

Line 60 assigns string A$ to key [f4], while line 70 assigns 
string B$ to key [f5]. 

Try it! Type (or press): 

RUN.J 

You can see that softkeys [f4] and [f5] have new labels: 

You can now use [f4] and [f5] to switch the current MSI 
between two mass storage units. 

18-10 Making the Keyboard Work for You 



Common System 
Keys 

Storing Softkey 
Definitions 

Here are some common system keys and the characters 
you'll see when you use them with the [CTRL] key, or with 
CHR$(255). For a complete list, look in your HP BASIC 
reference (or condensed reference) material under Second 
Byte of Non-ASCII Key Sequences. 

Character System Key 

# [CLEAR LINE] 
% [CLR END] 
* [INSERT LINE] 
+ [INSERT CHAR] 
- [DELETE CHAR] 
/ [DELETE LINE] 
< [ +-] 
> [-+ ] 
B [BACK SPACE] 
E [ENTER] 
G [SHIFT] [-+] 
H [SHIFT] [+-] 
I [CLR I/O] 
K [CLEAR DISPLA y] 
L [GRAPHICS] 
M [ALPHA] 
U [CAPS LOCK] 

Just like using STORE and RE-STORE to store programs, 
you can use STORE KEY and RE-STORE KEY to save 
softkey definitions in a file on mass storage. 

For example, to save the current softkey definitions as a file 
called MY_KEYS on the current mass storage unit, remove 
the disk of examples, insert an initialized disk, and type: 

STORE KEY "MY_KEYS"~ 

The key definitions are stored as a BDAT file on the disk or 
other MSI. 

Making the Keyboard Work for You 18-11 



Erasing Softkey 
Definitions 

Use SCRATCH KEY to erase all current softkey 
definitions. Type: 

SCRATCH KEY..J 

You can see all user softkeys and their labels are erased. 

Not to worry, though! You have them in mass storage, 
remember? 

Loading Softkeys To get the default user softkeys again, just type LOAD 
KEY. Try it: 

LOAD KEY..J 

Im~~mll~~mf~~011~~~II~C:~~~hll 

You can see all the original softkeys are back again. 

What about your own keys? To reload softkeys from a file, 
use LOAD KEY with the file name, like this: 

LOAD KEY "MY_KEYS"..J 

Presto! Your softkeys are back in place, ready for you to 
use them again. 

18-12 Making the Keyboard Work for You 



n,t 
If you're using a Vectra or other personal computer equipped with the HP 
BASIC Language Processor, EDIT KEY allows you to enter most keys into a 
softkey definition. 

Most, but not all. 

You may have noticed some differences already. For instance, on some monitors 
the [CTRL] key doesn't appear as a reverse-video I. And there's more: 

Exactly what you can and cannot enter using EDIT KEY depends on your 
keyboard and the version of software for the Language Processor. In general, 
though, you won't be able to enter key combinations that require three keys on 
the personal computer. 

For example, on a Vectra keyboard, you normally press [SHIFf] [DEL] to delete 
a line. As you remember with EDIT KEY, it seems as if you'd simultaneously 
press: [CTRL] [SHIFT] [DEL]. 

Since you can't enter three keys using EDIT KEY, though, this combination 
doesn't work. 

Naturally, you can use SET KEY normally, to put any combination of keystrokes 
into a softkey - even on a Vectra or other PC. 

Or else you can use EDIT KEY; just keep in mind that you won't be able to enter 
some key combinations this way. 

Making the Keyboard Work for You 18-13 



This Lesson's Featured Instrument: 
The HP 8980A Vector Analyzer 

The HP 8980A is similar in concept to a two-channel sampling oscilloscope. 
Unlike general-purpose scopes, though, the Vector Analyzer has 350 MHz X-Y 
(vector) bandwidth, and excellent 1/0 channel matching. It also has a 12-bit AID 
converter and many specialized functions, the result of its own internal software. 

The HP 8980A provides a real-time visual display of phase and magnitude, 
making it highly useful in evaluating radar receivers, or looking at the baseband 
I/O signals of digital communications systems. 

In a typical application, calibrating a radar or digital microwave receiver, a signal 
generator supplies a test signal. The HP 8980A Vector analyzer displays 
quadrature, gain, and dc errors. You adjust the receiver while watching the 
results of the vector display. 

HP 8970A Vector Signal Generator 
HP 8980A Vector Analyzer HP-IB 

g;! =§III:aa §sa 
~ 8 ::"II::q, RIO ........ 

RFOut 
Receiver 
Under Test 

..... -----I~= ~ ~ elk 

Q 

r-------~--------~ 

Controller 

The instrument's Auto Scope function automatically scales voltages, offsets, 
timing, and trigger for the best view of a signal. 

18-14 Making the Keyboard Work for You 



HP-IB Capabilities 
Default HP 8980A address is 9. All functions are programmable except the 
power switch and a few other functions not needed for remote operation. The 
HP 8980A's interface capabilities are: SH1, AH1, T5, TEO, L3, LEO,SR1, RL1, 
nn1 ~ro1 ~"T"n ron n'l 
r r .1., U\"".1., U.l v, \....V, LJ"'. 

The HP 8980A has lamps for RMT, LSN, TLK, and SRQ. You can configure the 
8980A for talk/listen or talk only. Talk/listen allows the instrument to both 
transmit and receive data over HP-IB. Talk only, of course, sets the instrument 
to transmit data only. 

To switch back and forth, you press the [HP-IB] button on the 8980A's front 
panel. Then you press the applicable softkey on the 8980A front panel. (Yes, 
some instruments have user-definable keys, too.) In this lesson, leave the 
instrument in talk/listen. 

Here are some selected instrument command strings, sent over HP-IB with the 
HP BASIC OUTPUT statement. Many strings can be used either normally, or as 
queries (with a question mark-for example "ERR?"). A query interrogates the 
Vector Analyzer as to its current state. 

CMD Description 

*RST Performs an HP 8980A reset, 
and sets the instrument to its 
PRESET condition. Also 
clears all pending operations. 

AUT Causes the HP 8980A to 
execute an Auto Scope 
function. Takes several 
seconds. Alternate 
mnemonics: 
AUT, AUTOSCALE, 
AUTOSCOPE. 
Example: AUT; 

Making the Keyboard Work for You 18-15 



CMD Description 

DISP This command selects the 
DISPlay subsystem. This 
subsystem controls markers, 
display mode, split screen, 
and signal intensity. 

MODE Used to set and query the 
display mode that is to be 
used. Query responses and 
preferred command data: 
CHANI, CHANIQ, CHANQ, 
CONALlGN, CONST, 
THREED, VECALlGN, 
VECTOR. 
Examples: DISP:MODE 
VECTOR; DISP:MODE? 
ASCII input and response. 

ERR? Used to query the next error 
in the error queue. The error 
queue is 16 registers deep, 
and operates on a first-in, 
first-out basis. A "0" is 
returned if there are no 
further errors. A large 
negative number returned 
indicates there has been an 
error queue overflow. 
Returns numeric integer data. 

18-16 Making the Keyboard Work for You 



Keys for 
Program 
Branches 

Lesson 16 (you did do lesson 16, didn't you?) explained 
what a program interrupt is. Remember, an interrupt 
branched execution if (and only if) it occurred. 

You can use a softkey the same way - to branch execution 
when it's pressed. The secret is the ON KEY statement, 
and it looks like this: 

100 ON KEY 6 LABEL "Whoa!" GOSUB Stop 

Soft key Soft key's 
label when 
program is 
running 

What to do if 
soft key is 
pressed 

The ON KEY statement lets you specify what softkey you'll 
use, what the key's label is, and what action to 
take - generally a GOSUB, GOTO, or CALL. 

To try a simple example, type: 

SCRATCH.J 
EDIT .J 

Making the Keyboard Work for You 18-17 



10 1=0 
20 ON KEY 5 LABEL "Whoa!" GOTO Halt 
30 LOOP 
40 I = 1+1 
50 PRINT I 
60 END LOOP 
70 Halt: PRINT "Saved by f5!" 
80 END 

Now run this mini-program: 

RUN.J 

The program takes off like a sprinter, filling the screen with 
the current value of I: 

Like the sorcerer's apprentice of fairy-tale fame, you seem 
powerless to halt the program - except that you've built in 
an "escape" with your ON KEY statement. 

Look at the soft key labels. They're just as you specified 
earlier- except for key [f5]. 

18-18 Making the Keyboard Work for You 

Label changed while 
program is running 



The label for [f5] is changed to "Whoa!". Press it to stop the 
program: 

I Saved by f5! 

How it works: Line 20 "sets" softkey [f5]. After line 20 is 
executed, the computer remembers what it must do: "If 
soft key [f5] is pressed, I branch immediately to the label 
Halt." 

If you don't press [f5], the computer goes through its loop 
endlessly (unless you stop it with [PAUSE] or [RESET] or 
some equally inelegant and heavy-handed solution). It does 
prompt you with the softkey label while it's running, though. 

When you press [f5], execution branches immediately to the 
label "Halt" (line 70), and execution halts. 

Notice that when the program is finished, the softkey reverts 
back to its duties as a typing aid. Remember: 

• Softkeys can be used as typing aids whether or not a 
program is running. 

• ON KEY is active only in a running program. 

Making the Keyboard Work for You 18-19 



10 ASSIGN @Hpib to 7 
20 ASSIGN @Va TO 709 
30 ABORT @Hpib 
40 CLEAR @Va 
50 LOOP 

Example: This following program uses one softkey to set 
up the HP 8980A Vector Analyzer and scale it for a 
meaningful display, and another soft key to read errors that 
may have occurred. 

60 ON KEY 1 LABEL "ERRORS" GOSUB Ersub 
70 ON KEY 2 LABEL "SETUP" GOSUB Setup 
80 END LOOP 
90 Setup: 
100 CALL Clear_screen 
110 OUTPUT @Va;"*RST" 
120 OUTPUT @Va;"AUT" 
130 OUTPUT @Va;"DISP:MODE CHANIQ" 
140 RETURN 
150 Ersub: ! 
160 CALL Clear_screen 
170 OUTPUT @Va;"ERR?" 
180 ENTER @Va;Error_num 
190 PRINT Error_num 
200 IF Error_num <>0 THEN 170 
210 RETURN 
220 END 
230 SUB Clear_screen 
240 OUTPUT 2 USING "#,B";255,75 
250 SUBEND 

In this case, the two softkeys ([fl] and [f2]) are specified. 
within the loop. 

Line 240 in the Clear_screen subprogram could be replaced 
by a CLEAR SCREEN statement. However this shows 
another way of clearing the screen; it works for older 
versions of HP BASIC (before version 5.0) that lacked the 
CLEAR SCREEN statement. 

18-20 Making the Keyboard Work for You 



Using ON KBD 

Review Quiz 

The ON KBD statement causes a branch when you press 
almost any key. Here's an example: 

410 LOOP 
420 ON KBD GOlO Halt 
430 END LOOP 
440 Halt:END 

This loop keeps the program running until you press a key; 
then the program ends. 

Most keys except major system keys cause a branch with ON 
KBD. For maximum effect, add the keyword ALL, like this: 

1420 ON KBD ALL GOlO Halt 

Now, pressing any key except [RESET], [SHIFf], or 
[CTRL] causes a branch. 

1. What are the two ways softkeys can be used? 

2. Not content with viewing only the time at the press of a 
key, the clockwatching Richard Carstone also wants to 
have the date similarly handy. 

Write a mini-program that lets Carstone press softkey 
[f8] to see the date. Give the key a clean label, like this: 

:!¥~¥:: 
:Oat~:::: 

Making the Keyboard Work for You 18-21 



Hint: The date is shown by the function 
DATE$(TIMEDATE). 

3. Modify the soft key definition for LOAD " " shown here so 
that it copies a file from the current MSI to ":,1500,0". 
For example: 

COpy "(File name)" TO ",1500,0" 

Key 5: 
System key: # 
LOAD "" 
System key: H 
System key: > 
System key: > 
System key: > 
System key: > 
System key: > 
System key: > 
System key: > 
System key: % 
System key: < 
System key: + 

18-22 Making the Keyboard Work for You 



Data on Display 

19 

There's a whole world awaiting you in this lesson - a world 
of graphics. Charts, illustrations, graphs, tables, all can be 
created using HP BASIC. And if you happen to have a 
color monitor, printer, or plotter, your data and displays can 
really dazzle! 

Sadly, though, you'll get only a glimpse of the wonders of 
graphic displays. You see, just as HP BASIC contains 
dozens of powerful statements specifically for instrument 
control, it also features a phalanx of graphics statements. 
So many, in fact, that graphics deserves its own complete 
self-paced study course. 

In this lesson, then, you'll learn the rudiments of graphics 
for instrument control, along with some specialized graphics 
routines. You can drop these "cookbook" sections of code 
into your programs; they'll display and print your data in 
meaningful ways. 

You'll learn about: 

• The graphics display. 

• GRAPHICS ON and GRAPHICS OFF. 

• ALPHA ON and ALPHA OFF. 

• CLEAR and GINIT. 

• GDU's and UDU's. 

• DRAW and PLOT and MOVE. 

• PEN DOWN and PEN UP. 

• Choosing pen type with PEN. 

Data on Display 19-1 



The Graphics 
Display 

Showing the 
Graphics Plane 

19-2 Data on Display 

• Choosing LINE TYPE. 

• Specifying the plotter with PLOTTER IS. 

• FRAME. 

• Specifying the VIEWPORT. 

• WINDOW and SHOW. 

• CLIP ON and CLIP OFF. 

• AXES and GRID control. 

• Creating labels with LABEL, LORG, LDIR, and CSIZE. 

• Plotting data. 

• Dumping to a printer with DUMP DEVICE IS and 
DUMP GRAPHICS. 

Every lesson in this course -up to now, that is-has used 
what's called the alpha display: What you type or print is 
shown as alphanumeric characters. When you first load 
BASIC, it automatically "wakes up" showing the alpha 
screen. 

There's another display hidden away, though: the graphics 
screen. You use the graphics display to show things such as 
plots, charts, and drawing with labels. 

In most computers, the alpha and graphics displays occupy 
different portions of memory, so you can think of them as 
being on two different planes. To show the graphics plane, 
use the GRAPHICS ON statement: 

GRAPH I CS ON.J 

When you type this, you mayor may not see graphics on 
your screen- depending on what's in your computer's 
graphics memory right now. 



Note 

Locations in the 
Graphics Area 

To see the area your screen has available for graphics, type: 

GCLEAR.-J 
GINIT.-J 
FRAME.-J 

You'll see a square drawn on your computer's CRT screen. 

This is the hard clip area. You can't put graphics outside of 
it. 

If graphics won't stay on your screen, press the [Graphics] or 
[Graph] key. On some computers with the BASIC Language 
Processor, you'll have to press the [Graphics] key to return to 
the graphics screen after most programs and any keyboard 
operation. 

The area you see is divided into arbitrary measuring units, 
called GDU's (for graphic display units). Depending on 
your display, the graphics screen is usually about 130 GDU's 
wide (0-130) and 100 GDU's high. 

Data on Display 19-3 



Another Note 

19-4 Data on Display 

You can think of it as 130 GDU's along the x-axis, and 100 
along the y-axis. 

r 
0, 100 130, 100 

100 GDU's 
Cf-axis) 

130 GDU's 
(X-axis) 

0,0 130,0 
"-

On some displays, you may not be able to see the entire 
viewable area at once. Don't worry, though - you can set your 
viewport so it displays only on the screen. See the heading "Set 
the Viewport" a few pages after this. 

To specify any location within the graphics area, you use its 
x,y coordinates Gust as if it were a map). So position 0.0 is 
the lower left-hand corner. Position 40, 60 means: 

• 40 GDU's along the x-axis, and 

• 60 GDU's along the y-axis. 

r " 

60 ~40,60) -

\. 
140 



Graphics 
Fundamentals 

Initializing 
Graphics 

Incidentally, a GDU is an entirely arbitrary unit; it's not 
related to resolution, or the actual number of dots (pixels) 
on a CRT screen. 

Before you begin to plot data on the screen, take a few 
moments to learn about some fundamental graphics 
operations. 

Graphics initialization is a job for GINIT. This statement 
(it means "graphics initialize") sets most parts of the 
graphics plane back to initial values and locations. It's a 
good way of getting to known conditions before you begin. 

Here's a partia/list of what GINIT does: 

PEN 1 
CLIP OFF 
CSIZE 5, 0.6 
LDIR 0 
LINE TYPE 1 
LORG 1 
MOVE 0,0 

You'll learn more about what these mean later in this lesson. 

Clearing Graphics Notice that GINIT doesn't erase the graphics screen. 
Neither does GRAPHICS OFF. Another statement, 
GCLEAR, erases graphics for you. 

To clear the graphics display, type: 

GCLEAR.J 

This erases everything from the graphics plane, giving you a 
clean slate to draw on. 

Data on Display 19-5 



Drawing with the 
Pen 

Choosing Pen 
Type 

19-6 Data on Display 

HP BASIC was created for use with, among other devices, 
HP plotters. That's why when you "draw" on the graphics 
area, you use statements that make it seem as though you're 
working with a plotter. 

For instance, you "draw" with a "pen." To draw with the pen, 
you can use the DRAW statement. This draws a line from 
the current position to the one you specify. 

To move the pen without drawing, use MOVE. 

Try this example. Type: 

MOVE 0, O..J 
DRAW 60, 20..J 

This moves the pen to location 0,0. Then it draws a line 
from there to location 60, 20. 

Y=20 60,20 

X=60 

After GINIT or at "wake-up," the pen type is 1. This draws a 
line. 

You can also use other PEN statements, such as PEN 3 or 
PEN - 2. These are interpreted in different ways. 



PEN >0 draws 
PEN = 0 complements 
PEN < 0 erases 

(On a color monitor or plotter, of course, the PEN numbers 
also specify color.) 

To see how this works, enter the following mini-program: 

SCRATCH.J 
EDIT .J 

10 FOR 1=1 TO 100 
20 DRAW 1,1 
30 WAIT .1 
40 NEXT I 
50 END 

Now press: [PAUSE] to get out of edit mode. 

Then type: 

GCLEAR.J 
GINIT .J 
FRAME.J 
RUN.J 

Data on Display 19-7 



You can see a line is drawn from 0,0 to 100,100: 

Now type: 

MOVE 0, O..J 
PEN-l..J 
RUN..J 

You can see what happens. By changing the pen type to 
PEN -1, then redrawing the line from 0,0, you erased the 
original line. 

Using PLOT The PLOT statement is like DRAW-it lets you draw or 
plot a line from the current pen position to the specified 
one. PLOT is more sophisticated, though - it also lets you 
specify pen control and, under certain conditions, plot 
entire arrays. Here's how you use it: 

140 PLOT X,Y,-1 

11 
Pen moves from Pen control 
current location to digit 
this location 

19-8 Data on Display 



The pen control digit works like this: 

Pen Control Action 
Digit 

-Even Pen up before move 
(-2,-4, etc.) 
-Odd Pen down before move 
(-1,-3, etc.) 
+ Even (1,3, etc.) Pen up after move 
+Odd (2,4, etc.) Pen down after move 

If you don't specify pen control, + 1 is assumed (pen up 
after move). 

Try an example. Change line 20 of your mini-program to a 
PLOT statement: 

EDIT 20..J 

120 PLOT I. I 

Then clear the screen. Press: [PAUSE]. Then type: 

GINIT..J 
GCLEAR..J 
FRAME..J 

(GINIT, remember, moves the pen location back to 0,0, and 
selects PEN 1.) 

Now run the program: 

RUN..J 

And the result is ... the same line is generated. 

Data on Display 19-9 



Choosing Line 
Type 

19-10 Data on Display 

To help differentiate the parts of your plot or graph, you 
can choose different line types for operations such as 
DRAW and FRAME. 

Use the LINE TYPE statement, along with a number, to 
choose the type of line, like this: 

LINE TYPE 3 

Here are the different line types: 

LINE T'J'PE 11::, 

LINE TYPE 9 
... _-., 

-----. LINE TYPE 8 .. _ .. - .... _. 
-------, 

I Llr.JE T'rF'E ? ._----_. ----
-------, 

~--- L n·IE TYPE I; _._----
- --, 

- - LINE TVPE 5 - - -
................ 

e ... ~ ...... _ ................ LINE TYPE .. . ......................... 

LINE TYPE :3 

LINE TYPE 2 

LINE T'r'PE 

The last line type specified stays active in a program unless 
you change it. 

Try this. Type: 

GCLEAR..J 
GINIT..J 
LINE TYPE 5..J 
RUN..J 

The line is plotted with the new line type. 



Turning Graphics To turn the graphics display off, type: 

OFF 

Showing the Alpha 
Plane 

GRAPHICS OFF.J 

Even though you "turn off' graphics with GRAPHICS OFF, 
whatever is drawn on the graphics plane remains- to see it 
again, just use GRAPHICS ON or the [Graphics] key. 

HP 9000 Series 300 computers normally display the alpha and 
graphics planes together. t 
'P' $ 7' 7 E St " . . ...... ~ '2 t_~" 

You use the ALPHA ON and ALPHA OFF statements (or 
the [Alpha] key) to turn the alphanumeric display on and off: 

ALPHA ON.J 
ALPHA OFF.J 

On some (not all) computers, the alpha and graphics 
screens can both be on at once: 

ALPHA ON.J 
GRAPHICS ON.J 

Oh, and one other thing: You have to turn graphics on and 
off with statements, but the computer defaults to alpha 
whenever anything is sent to the alpha display. 

This means that pressing any key, or running a program, 
gives you the alpha display. So on computers that can't 
display both alpha and graphics together, it'll seem like you 
can't ever examine the graphics screen; it always defaults to 
alpha. 

Data on Display 19-11 



A Typical 
Graphics 
Application 

19-12 Data on Display 

Don't worry, though. Everything from the alpha or graphics 
screen is stored when you specify ALPHA OFF or 
GRAPHICS OFF, so you don't lose anything. 

As you work through this lesson, if you try graphics 
statements only to have the alpha display return (after a 
fleeting, tantalizing display of the graphics screen), press 
the [Graphics] key to "freeze" graphics. 

Perhaps the easiest way to learn about graphics for 
instrument control is to work through a typical application: 
taking data and plotting it on the screen, then printing or 
plotting it to set a hard copy. 

Here's a checklist to follow to create useful graphics for 
most instrument control applications: 

1. Know your instrument and data. 

2. Initialize the graphics plane. 

3. Set the viewport. 

4. Scale the plotting area. 

5. Put in axes lines. 

6. Put in a grid. 

7. Label your plot. 

8. Plot your data. 

9. Dump to a printer. 

You'll learn how to do each of these-in order, of course. 



KnowVour 
Instrument 

Initialize the 
Graphics 
Plane 

The first thing you need is at least a general idea of what the 
data from your instrument will be. Will there be negative 
and positive numbers? Will it be integers or real 
(full-precision) numbers? What will be the maximum and 
minimum values? 

Since it's difficult to predict what your data will be, for 
purposes of this illustration you'll work with the famous 
"Turveydrop Trigolator." Invented by one Thomas 
Turveydrop as part of a failed experiment in perpetual 
motion, the Trigolator has a highly unique characteristic: 
no matter what amplitude, frequency, phase, or number of 
signals are applied to it, the Trigolator responds by 
producing the trigonometric functions sine and cosine of 
angles from 0 to 360 degrees. 

This means that to plot a sine function, one set of data (the 
angles) is from 0 to 360; another set (the sines) is from 0 to 
1 in size. 

When creating a new plot or drawing, the first thing you 
want to do is to initialize the graphics plane - clear graphics 
from the screen, set all graphics elements to standard, 
known locations, maybe put a frame around the graphics 
area, etc. 

Specify the Plotter Your initializing routine needs a PLOTTER IS statement to 
tell it where to make its plot. Type: 

PLOTTER IS CRT,"INTERNAL"~ 

This uses the computer's internal CRT. 

Data on Display 19-13 



Turn Graphics On The next thing you might want is to turn on graphics and 
turn off alpha. Type: 

GRAPHICS ON..J 
ALPHA OFF..J 

Clear and Initialize Next you'll initialize graphics. Type: 

GINIT..J 
GCLEAR..J 

Use FRAME It's not mandatory, but often you'll want to know just how 
big your usable graphics area is. You know how to do that, 
don't you? Of course! You just type: 

Set the 
Viewport 

19-14 Data on Display 

FRAME..J 

FRAME puts a frame around the last area or sub-area you 
specified. (You'll see in a moment how to create sub-areas.) 

The graphics area you see now is the entire area available 
for graphics. You can't draw anything beyond the limits of 
that frame. (It's sometimes called the hard clip area.) 

Often it's not convenient to use that entire area for a graph. 
You may want to leave space for the alpha or softkey 
display, or to put in some labels later. 

To define the user graphics area, reach into your bag of 
tricks and pull out VIEWPORT. 



Using VIEWPORT The VIEWPORT statement lets you define a smaller 
plotting area - a "sub-area" within the full graphics area. 

The statement looks like this: 

190 VIEWPORT 0,120,15,100 

Leftedge~ I I L Top edge 

Right Bottom 
edge edge 

To try a viewport now, type: 

VIEWPORT O,120,15,lOO.J 
FRAME.J 

This puts in a viewport that extends along the x-axis from 
0,0 to 0,120; and from 15 to 100 along the y-axis. The 
display now looks like this: 

Viewport 

But that viewport is too large. Where will you put labels? 

Data on Display 19-15 



A Different Try a different, smaller viewport. Put it in the right of the 
VIEWPORT viewing area: 

19-16 Data on Display 

GCLEAR.-J 
FRAME.-J 
VIEWPORT 60,90,60,80.-J 
FRAME.-J 

Viewport 

Now you have plenty of room for labels, all right. Maybe 
too much room: 

Let's try again. Type: 

GCLEAR.-J 
GINIT.-J 
FRAME.-J 
VIEWPORT 30,IOO,20,80.-J 
FRAME.-J 

Voila! A nice-sized and centered plotting area, with plenty 
of room for labels. 



Note 

Viewport 
(Soft clip aiea) 

If you have a Vectra or other personal computer and the 
BASIC Language Processor, you may need to use 
VIEWPORT to make sure everything you draw is in the 
viewable area of the CRT. A good statement to use for most 
monitors, including an EGA, is VIEWPORT 0,130,10,85. 

You can specify more than one viewport; but other graphics 
statements apply only to the last viewport specified. 

The viewport is a soft clip area. You'll learn more about 
clipping later. 

You now have a display area that's 70 GDU's by 60 GDU's 
in size. These values are in the computer's graphic display 
units; you can't change them. 

But your data is in degrees (0-360) and in sine values ( -1 to 
1). How can you scale the plotting area? 

Simple: you use WINDOW or SHOW. 

Data on Display 19-17 



Scale the 
Plotting Area 

19-18 Data on Display 

Everything you've done so far has been in GDU's. Now it's 
time to specify your own units - call them "user-defined 
units," or UDU's-for the plotting area. 

The WINDOW or SHOW statement assigns whatever values 
you specify to the boundaries of the viewing area defined by 
VIEWPORT. 

Here's how: 

50 WINDOW -10,10,-10,10 

Left value __ J 

Right 
value 

Bottom 
value 

Top value 

This example makes a horizontal scale (x-axis) that extends 
from -10 to + 10; and a vertical scale (y-axis) that's 
also-10 to + 10. 

You could use this for a semiconductor current/voltage 
curve, with current in milliamperes on the vertical and bias 
voltage on the horizontal scale. 

SHOW or WINDOW defines the values which must be 
displayed within a viewport. Once you specify WINDOW or 
SHOW, you can forget GDU's: everything (well, almost) 
from here on assumes your own user-defined units of 
measure. 

What's the difference between SHOW and WINDOW? 



• SHOW forces isotropic units- UDU's that are an equal 
size in x- and y-directions. Even if you try to make 
unequal units, the statement forces them to be equal. 

• WINDOW lets you specify units any way you want. 

Try an example that demonstrates the difference between 
SHOW and WINDOW. First, type and run the 
mini-program below: 

SCRATCH.J 
EDIT.J 

10 GCLEAR 
20 GINIT 
30 GRAPHICS ON 
40 VIEWPORT 0,130,10,85 
50 FRAME 
60 WINDOW 0,360,-1,1 
70 END 

RUN.J 

The WINDOW statement in line 60 scales the viewport area 
into a plotting area that extends from 0 to 360 along the 
x-axis, and -1 to 1 along the y-axis. 

o 

-1 o 360 

Data on Display 19-19 



19-20 Data on Display 

This just happens to be a good scale for plotting the 
Trigolator's data. 

Now draw a line to a few typical points of the Trigolator's 
sine data. 

The sine of 90 degrees is 1, so type: 

DRAW 90, 1.J 

The sine of 180 degrees is 0, so type: 

DRAW 180, O.J 

And the sine of 270 degrees is -1, so type: 

DRAW 270, -1.J 

270, -1 

You can see the values are scaled nicely on your screen. 

Now change line 60 to use a SHOW statement: 

EDIT 60.J 

50 SHOW 0,360,-1,1.J 



RUN.J 

Try drawing the same sine data again. Type: 

DRAW 90,1.J 
DRAW 180, O.J 
DRAW 270, -1.J 

See what happened? The SHOW statement ignored your 
specification of -1 to 1 for y, and instead scaled everything 
for isotropic (square) units, based on the x-axis 
specification. 

What you have now, whether you like it or not, is a drawing 
area that's 360 x 360 units. It's the same as if you'd used this 
statement: 

60 SHOW 0,360,-180,180 

Data on Display 19-21 



Cardinal Rule 

Put in Axes 
Lines 

19-22 Data on Display 

SHOW always scales your drawing area with isotropic 
(square) units. 

Which statement to use for the Trigolator plot? 

• You know your x-axis data will be from 0 to 360 . 

• You know your y-axis data will be in the range -1 to + 1. 

So it doesn't make sense to use isotropic (equal) units here. 
You'll use this: 

230 WINDOW 0,360,-1,1 

To help make your plot or graph meaningful, you can use 
axes lines with tic marks along them. You use the AXES 
statement to create tic marks. Here's how it's used: 

100 AXES 45,.1,0,0 

spacing~ 
along I Y Point where the ---two axes cross 
x-axis Spacing 

along y-axis 

Try the following examples. First, type and run this 
mlnt-program: 

SCRATCH.J 
EDIT .J 



10 GCLEAR 
20 GINIT 
30 FRAME 
40 VIEWPORT 20, 100, 10, 80 

I ~~ ~~~~W -10,10, -10,10 

RUN.J 

The WINDOW statement in line 30 scaled the graphics area 
into an area - 10 to + 10 divisions in x, and -10 to + 10 
divisions in y. 

Now type: 

AXES 1,1,0,0.J 

This statement adds axes lines with tic marks spaced one 
division apart. The axes line~ cross at point 0,0. 

0,0 

Tic marks spaced 
one division apart 

Data on Display 19-23 



Units between 
tic marks along 
x-axis line 

19-24 Data on Display 

The AXES statement puts in tic marks according to this 
scheme: 

AXES 1,1,0,0 

~ 1 Y Location where 
'----- axes lines cross 

Units between tic 
marks along y-axis line 

These are tic marks every unit along the x- and y-axis lines. 
The lines cross at 0,0. 

Try moving the axes lines to the edges of the window. Type: 

RUN....] 
AXES 5,5,-10,-10....] 

Now the tic marks are spaced 5 units apart; and the axes 
intersect at -10, -10 - that is, in the lower left corner of 
the window. 

+10 

}-
Ticmarks 
every 5 units 

Axes intersect 
at -10, -10 

/' 
-10, -10 o 

Tic marks 
every 5 units 

I 
+10 



More AXES Control You've seen a simple AXES statement. But this statement 
also lets you put in axes lines with small and large tic marks. 
Here's how: 

Units between x axis tic marks 

Units between y-axis tic marks 

Crossing 
point 

1....-____ Major tic 

mark height 

Every 5th y-axis mark is long 

Every 2nd x-axis mark is long 

Try this one to put tic marks on your mini-program window: 

RUN...1 
AXES 1,1,0,0,2,5,3...1 

This gives x- and y-axes with 1 unit between tic marks. 
Along the x-axis, every 2nd tic mark is a major mark-it's 
longer. 

Along the y-axis, every 5th mark is long. 

1 unit per tic 
mark; every 

-I- 5th mark is 
large 

I 

1 • I .1 I k I I I I 

1 unit per tIC mar ; 
every 2nd mark is 
large - .... 

Data on Display 19-25 



The length of ordinary tic marks is 1 GDU. The length of 
the longer, major marks is 3 GDU's. (Unlike the other 
numbers in the statement, the size of tic marks is a/ways in 
GDU's.) 

PloHi ng the 
Trigolator Axes 

What tic marks to use for the Trigolator plot? Remember, 
the window is: 

Put in a Grid 

19-26 Data on Display 

WINDOW 0,360,-1,1 

So use an AXES statement that puts tic marks every 45 units 
along x, and every .1 unit along y, with the axes crossing in 
the center: 

270 AXES 45,.1,0,0 

Another way you can make your data more meaningful is to 
draw a grid over the plotting area. 

You specify the grid in much the same way as you do axes; 
except you use the GRID statement, like this: 

220 GRID 45,.1,0,0 

Units between 
grid marks 
along x_axis 

'--__ Intersection point of 
two lines of grid 

Units between 
grid marks along 
y-axis 



This is a perfect grid for the Trigolator plot, of course: 
each "box" of the grid is 45 x-axis units by 0.1 y-axis unit. 
One set of grid lines crosses at coordinates 0,0, and all other 
crossings are based on that one. 

As with AXES, you can specify major "boxes" and minor 
crossings within the grid, like this: 

Minor grid 
intersections 
at 1 unit x 1 

Size of minor 
"--- Major grid tic marks 

I ntersection boxes at 5 
point of two units x 5 units 
lines of grid 

This draws a grid with minor intersections at 1 unit x 1 unit; 
and major "boxes" of 5 units x 5 units. The "5,5" portion of 
this expression actually specifies the number of minor tic 
intervals between major grid lines. 

To see how it works, type: 

RUN.J 

(Remember, this gives you a window using a WINDOW 
-10,10,-10,10 statement.) Now type: 

GRID 1,1,O,O,5,5,3.J 

Data on Display 19-27 



19-28 Data on Display 

The result shows how this full-featured GRID statement lets 
you be very specific in plotting. 

.. + .... .. + .. + + .. + + + .. + .. 
+ + + .. .. + + + + + + + + + + + 
+ ... + .. + + + + + + .. • + + .. 
~ .. ~-+ -+ ... -+ .. ... ~ .. ~ ... -+ ... -+ 

.. .. +- -+ -+ ........ ... ~ .. .. .. -+ .. -+ 

..... ~ -+ -+ ... -+ + .. +- .. ~ ........... 
~ .. .. ... ... ... ... ... .. +- .. .. ... ... .. -+ .. .. .. ... -+ .. -+ ... .. +- ..... .. ... .. -+ 

............ ... + ... t ... .. ... .. ... ... + ... 

... + ...... ... ......... ... ... + 1- + ... ... .. 

............ ... ... .. ... ... ... ... ... ... .. ... .. 

... + ..... ... + ... + ... ... ... .. + ... t ... 

.. + ..... .. + ..... + .. ... .. + ... + -+ 
+ + .. + .. • .. + + + + + + .. + .. 
.. + + .. .. + .. + + .. • .. + .. + .. 
+ ..... .. • .. + + to + + + .. + .. 

For the Trigolator plot, you'll use this statement: 

1310 GRID 45,.1,0,0,4,5,3 

It gives you a grid with: 

• Small intersections at 45 x .1. 

• Large boxes every 4 minor tic marks x 5 minor tic 
marks - that is, at 180 x .5. 

• Major lines that are 3 GDU's long. 



Label Your 
Plot 

You're almost ready to plot some data! You have a 
viewport, a window, axes, lines and a grid. But what do they 
mean? You need to add some labels so that the world will 
know this is a Trigolator plot, and not merely a drawing of a 
checkerboard or a chain-link fence. 

First, write a mini-program that sets up most of your 
Trigolator plot so far. Type: 

SCRATCH.J 
EDIT.J 

10 GCLEAR 
20 GINIT 
30 FRAME 
40 VIEWPORT 30,100,20,80 
50 FRAME 
60 WINDOW 0,360,-1,1 
70 GRID 45,.1,0,0 
80 END 

RUN.J 

Data on Display 19-29 



Clipping and 
Unclipping 

19-30 Data on Display 

You see the viewport and the grid you'll use for the 
Trigolator output plot. 

The LABEL statement lets you put labels in your graphs 
and plots. To put the label TRIGOLATOR OUTPUT at 
the bottom of the plotting area, move the pen to where you 
want the label. Then use the LABEL statement. 

Try it. Type: 

MOVE 180, -1.J 
LABEL "TRIGOLATOR OUTPUT" 

This moves the pen to the bottom of the plot area. But what 
you see probably isn't where you want the label, or how you 
want it to look. What's wrong with this picture? 

L!,,~ ~L. ~\, ~~ 

The problem is clipping. 

Remember, the plot area (the viewport you specified 
earlier) is also called the "soft clip area:· With clipping on, 
you can't plot anything outside the viewport limits. 

You have to turn clipping off to allow plotting outside the 
viewport. 



Try it this way; type: 

CLIP OFF-I 
MOVE 180,-1-1 
LABEL "TRIGOLATOR OUTPUT"-I 

That's a little better. Now you can plot outside the viewport. 

" ... ~VL \,1" \, UTPUT 

When clipping is on, you can't put labels or drawing outside 
the viewport. To turn clipping on, you can use: 

CLIP ON-I 

When you need to put something outside the viewport (such 
as a label), use: 

CLIP OFF 

Remember: 

• To limit plotting to areas inside the viewport only, use 
CLIP ON . 

• To allow plotting outside the viewport, use CLIP OFF 
first. 

You can never plot or draw outside the graphics area. For 
this reason it's sometimes called the "hard clip area." 

Data on Display 19-31 



Using LORG Your label is looking better. But it's still not below the 
viewport. There are a few techniques for putting it there, 
but the surest is with the LORG (label origin) statement. 

19-32 Data on Display 

LORG specifies the relative origin of labels with respect to 
the current pen position. 

3 6 9 

+ + + 

() ill 0+ 
1 " 7 

+ + + 
For example, in the case of the label ODD, the following 
statement centers the label below the current pen position 
(marked here by cross 6): 

LORG 6 
LABEL "ODD" 

Lines 100 and 110 below put the label above and to the right 
of the current pen position. 

1100 LORG 1 
~10 LABEL "ODD" 

Since you want the label to be centered beneath the current 
pen position, you'll use LORG 6. 



So type: 

RUN-1 
CLIP OFF-1 
MOVE 180, -1-1 
LORG 6.J 
LABEL "TRIGOLATOR OUTPUT"-1 

That's better. The label is right where it's supposed to be. 
But it's a little small, don't you think? 

Using CSIZE To change the size of a label, use the CSIZE (character 
size) statement. You can specify the size alone, like this: 

CSIZE 7 

Or you can specify the size and aspect ratio (ratio of width 
to height), like this: . 

100 CSIZE 5,0.6 

Height is 
5 GDU's 

Width is.6 
of the height 

Data on Display 19-33 



For the Trigolator plot label, try CSIZE 7. Type this: 

RUN..J 
CLIP OFF..J 
MOVE 180, -1..J 
LORG 6..J 
CSIZE 7..J 
LABEL "TRIGOLATOR OUTPUT"..J 

TRIGOLATOR OUTPUT 

Not bad! Now add one more label, Trigovalue, along the 
left-hand side of the plot. 

Using LDIR The LDIR (label direction) statement lets you rotate a 
label. It looks like this: 

19-34 Data on Display 

LDIR 120 

This means "rotate the next labels 120 radians (or degrees)." 

The angle is in the current angle unit (degrees or radians), 
and is interpreted as counterclockwise, from three o'clock. 



To add another label, "Trigovalue," at the left of the plot, 
use LDIR 90 to rotate the label 90 degrees. The computer 
"wakes up" in radians mode, remember, so change to 
degrees mode with DEG. Type: 

MOVE -30,0-1 
DEG-1 
LDIR 90-1 
CSIZE 4-1 
LABEL "Trigovalue"-1 

.~~-r~----~~~~~ 
~~~~~--~~~~~ 
-;;~~-r~--~~~--t~ 

&~=~==~=~==~=~==t=~=~ 
~~-f--+-~--f-.+--+--+~ 

TRIGOLATOR OUTPUT 

The last LORG statement you used, LORG 6, is still active 
unless you change it. 

This example shows something else: you can specify 
locations outside the viewport, using your own UDU's. In 
this case, typing MOVE - 30,0 placed the pen 30 units to 
the left of 0,0 - that is, left of the viewport. 

Data on Display 19-35 



Plot Your Data 

19-36 Data on Display 

At last, you're ready to actually plot data. If you've 
followed all the previous steps - and were especially careful 
in using WINDOW or SHOW to scale the plotting 
area - you should have few problems. 

Alas, no more models of the Turveydrop Trigolator exist. 
However, you can simulate the Trigolator's data by plotting 
the sines of angles from 0 to 360. 

First, add lines 80-120 to your mini-program: 

EDIT 80.J 

80 CLIP OFF 
90 MOVE 180,-1 
100 LORG 6 
110 CSIZE 7 
120 LABEL "TRIGOLATOR OUTPUT" 

Now type the following to simulate data from the Trigolator: 

130 MOVE 0,0 
140 DEG 
150 FOR I = 0 TO 360 
160 DRAW I, SIN(I) 
170 NEXT I 
180 END 

Finally, run the mini-program to see the data plotted: 

RUN.J 



f "-
/ \. 

I 
I , 

f \ 
I , 

1III11Jl
/
1 

TRIGOLATOR OUTPUT 

If you have problems, or want to see a completed Trigolator 
plot, load the program "TRIGOLATOR" from your disk of 
examples. That program draws both the sine and cosine of 
angles from 0 to 360 degrees . 

• :I 

'; 
) 
o 
III 

L .... 

It also uses an improved grid, along with additional labels. 
But it's essentially the same program you just finished 
writing. There's a listing on the next few pages. 

Data on Display 19-37 



10 !RE-STORE "TRIGOLATOR" 
20 GOSUB In it 
30 GOSUB Set_view 
40 GOSUB Scale 
50 GOSUB Place_axes 
60 GOSUB Place_grid 
70 GOSUB Set_labels 
80 GOSUB Draw 
90 STOP 
100 Init: ! 
110 DEG 
120 GRAPHICS ON 
130 ALPHA OFF 
140 GINIT 
150 GCLEAR 
160 FRAME 
170 RETURN 
180 Set_view: 
190 VIEWPORT 30,100,20,80 
200 FRAME 
210 RETURN 
220 Scale: 
230 WINDOW 0,360,-1,1 
240 RETURN 
250 Place_axes: ! 
260 CLIP ON 
270 AXES 45,.1,0,0,4,5,3 
280 RETURN 
290 Place_grid: ! 
300 LINE TYPE 4 
310 GRID 45,.1,0,0,4,5,3 
320 RETURN 

19-38 Data on Display 



330 Set_labels: 
340 CLIP OFF 
350 LINE TYPE 
360 MOVE 0,1 
370 LORG 1 
380 CSIZE 4 
390 LABEL "0" 
400 MOVE 350,1 
410 LABEL "360" 
420 MOVE 0,0 
430 LORG 8 
440 LABEL "0" 
450 MOVE 0,1 
460 LABEL "I" 
470 MOVE 0,-1 
480 LABEL "-I" 
490 MOVE 180,1 
500 LORG 4 
510 LABEL "180" 
520 MOVE 180,1.1 
530 LABEL "Degrees" 
540 MOVE -30,0 
550 LDIR 90 
560 LABEL "Trigovalue" 
570 LDIR 0 
580 MOVE 180,-1 
590 LORG 6 
600 CSIZE 7 
610 LABEL "TRIGOLATOR OUTPUT" 
620 RETURN 
630 Draw: ! 
640 MOVE 0,0 
650 FOR 1=0 TO 360 
660 DRAW I, SIN (I) 
670 NEXT I 
680 MOVE 0,0 
690 LINE TYPE 5 
700 FOR 1=1 TO 360 
710 DRAW I, COS(I} 
720 NEXT I 
730 RETURN 
740 END 

Data on Display 19-39 



Self-Computing the Scale 

Sometimes you don't know the limits of the data, so it's difficult to specify 
parameters for WINDOW, SHOW, GRID, etc. 

If this happens to you, don't despair. The following section of code shows how a 
plot subroutine used with the HP 8980A Vector Analyzer automatically scales the 
plot area to the correct user units. (You'll find more details about the HP 8980A 
in back in lesson 18.) 

350 Plot: ! 
360 ALPHA OFF 
370 I_max=MAX(I(*)) 
380 I_min=MIN(I(*)) 
390 I_max=MAX(ABS(I_max),ABS(I_min)) 
400 Q_max=MAX(Q(*)) 
410 Q_min=MIN(Q(*)) 
420 Q_max=MAX(ABS(Q_max),ABS(Q_min)) 
430 Max=MAX(I.2*I_max,I.2*Q_max) 
440 ! 
450 GINIT 
460 GRAPHICS ON 
470 VIEWPORT 30,105,15,90 
480 CLIP OFF 
490 MOVE 75,0 
500 DEG 
510 LDIR 0 
520 LORG 6 
530 LABEL "I AXIS" 
540 MOVE 0,52 
550 LDIR 90 
560 LORG 4 
570 LABEl "Q AXIS" 
580 CLIP ON 
590 SHOW -Max,Max,-Max,Max 
600 GRID Max/5,Max/5,Q,Q 

19-40 Data on Display 



610 AXES Max/25,Max/25,0,0,5,5 
620 FRAME 
630 PEN UP 
640 FOR M=O TO Num_pairs-l 
650 I_value=I(M) 
660 Q_value=Q(M) 
670 PLOT I_value,Q_value,1 
680 NEXT M 
690 ! 
700 PENUP 
710 DISP "" 
720 RETURN 

How it works: When this subroutine is called, the data points are in two arrays, I 
and Q. There's also a variable, Numj>airs, that contains the total number of data 
pairs. 

Line 370 finds the maximum value of I, and line 380 finds its minimum (which 
may be below zero). 

Line 390 then uses I_max and I_min to determine the largest existing value for I 
in the array. 

Lines 400-420 find the largest value for Q in the same way. 

Then line 430 determines the maximum limits. By multiplying I _max and Q_ max 
by 1.2, the program guarantees a comfortable 20% margin at the edges of the 
plotted data. 

Once the maximum value (Max) is determined, it's then used in the SHOW, 
GRID, and AXES statements (lines 590-610) to specify the plotting area units, 
and grid and axes lines. 

Data on Display 19-41 



Dump to a 
Printer 

There's a Lot 
More ... 

19-42 Data on Display 

To get a hard-copy output of your plot, you can dump 
graphics to any printer, including the HP LaserJ et, that 
conforms to the HP Raster Interface Standard. 

You use the DUMP GRAPHICS and DUMP DEVICE IS 
statements: 

100 DUMP DEVICE IS 26 
110 DUMP GRAPHICS 

Line 100 specifies a printer at address 26 as the device to 
which graphics will be dumped. Then line 110 dumps the 
entire graphics area, which is printed. 

You also can put the address of the printer right in the 
DUMP GRAPHICS statement Gust like LIST and CAT}: 

100 DUMP GRAPHICS #26 

As you may suspect, you've barely scratched the surface of 
HP BASIC's graphics capabilities. To learn about all the 
myriad things you can do with graphics, you'll want to refer 
to other HP manuals that deal with this subject in more 
detail. 

No matter how elegant and technically sophisticated your 
programs are, nobody sees your code. All that's visible to 
the outside world is how your data is displayed. That's why 
good graphics are so important. 



Review Quiz 1. Following this WINDOW statement: 

WINDOW -10,10,-50,50 

What statement would you use to draw the axes lines 
shown here? 

50 

I 

. 

-50 
-10 

2. Which statement always scales your viewport for 
equal-sized units vertically and horizontally? 

10 

Data on Display 19-43 



19-44 Data on Display 

3. Clara Peggotty is using a spectrum analyzer to monitor 
the signal passed through a filter. With a 
constant-amplitude input, the filter gives an output 
between 180 MHz and 220 MHz that looks like this: 

OdBm 

-3dBm 

220 MHz 

Write a WINDOW statement that scales the plotting area 
to allow this curve to be shown. 

All that Peggotty cares about is the area between 180 and 
220 MHz. 



4. The following code establishes a viewport and a plotting 
area within the viewport. 

10 GCLEAR 
20 GINIT 
30 FRAME 
40 VIEWPORT 20,110,20,80 
50 WINDOW 0,10,0,20 
60 FRAME 
70 CSIZE 7 

Write additional code to add labels as shown here: 

VOLTAGE 

(Don't forget the trigonometric mode!) 

Data on Display 19-45 



Laboratory 
Exercise 

19-46 Data on Display 

Modify the program "TRIGOLATOR" to provide two 
plotting areas; and plot the sine curve in one area, the 
cosine curve in the other . Your output should look like this: 

't 

+ 
Of 

+ 

I) I) 

:J :J .. o!- +- + -;; 
> > 
0 .. + + 0 
CD co 

+ ~ + 
L- .. + '-
~ 0!- f" + ~ 

One solution is shown as SOL_LAB19 on your disk of 
examples. 



20 
How to Design a Complete Program 

You've come to the end of part 2. If you worked through 
lessons 11-19 (and perhaps part 1, lessons 1-10 as well), you 
should now have a pretty good idea of the programming 
techniques needed for plain-vanilla BASIC instrument 
control. 

There's just one thing left-writing a complete program. 
And as you begin to write more complex "real-world" 
programs, you'll find a structured approach usually gets you 
to the solution more quickly and easily. 

In this lesson you'll learn a structured approach to 
programming for instrument control. You'll learn about: 

• A step-by-step procedure for writing a program. 

• Warnier-Orr diagrams. 

• Pseudocode. 

• Modularizing code into small segments. 

• Debugging aids and hints. 

How to Design a Complete Program 20-1 



Writing a 
Structured 
Program 

Now, there are a lot of ways to write a program. This lesson 
shows you a structured procedure. It has the advantage of 
modu/arizing your program - breaking it down into simple 
tasks for easier testing, debugging, and documentation. 

And it'll give you a program that's easier for other people to 
understand. 

There are a number of "tools" you can use to build your 
program: flowcharts, diagrams, pseudocode, etc. You may 
find some of these helpful, others not. 

Here are the general steps you'll follow to create the 
program in this lesson: 

1. Determine how you'd make the measurement manually. 

2. Check out the hardware setup. 

3. Use structured programming techniques and pseudocode 
to create a Warnier-Orr diagram. 

4. Determine subroutines and subprograms. 

5. Write the program code. 

6. Test and debug. 

7. Document the program. 

Follow these steps as you create a solution for the problem 
below. 

The problem: Your task is to determine the frequency 
response of a filter over the range from 1 kHz to 10 kHz. 
You have: 

• The filter. 

• HP 3456A Digital Voltmeter. 

• HP 3325B Function Generator. 

20-2 How to Design a Complete Program 



This Lesson's Featured Instrument: 
The HP 3325B Synthesizer/Function Generator 

This high~performance instrument includes a synthesizer with 11 ~digit resolution, 
a function generator with precision waveforms, a wideband sweeper, and full 
HP-IB capability. 

Frequency range for a sine wave is 0.000001 Hz to 21 MHz (to 11 MHz for square 
and triangle waves). Resolution is 1 mHz above 100 kHz, and 1 J.l.Hz below 100 
kHz. At 1 V p-p output, sine wave amplitude accuracy is ± 0.4 dB in the 100 kHz 
to 20 MHz range. 

HP-IB Capabilities 
HP-IB interface capabilities are: SHl, AHl, T6, L3, SRI, RLl, PPO, DCl, DTO, 
CO, El. The default HP-IB address is 17. 

The HP-IB instrument command strings you'll use in this lesson are listed as 
comments right in the program "FILTER_TST." 

How to Design a Complete Program 20-3 



Another Featured Instrument: 
The HP 3456A Digital Multimeter 

This Digital Multimeter (often called a digital voltmeter, or DVM) is a 
microprocessor-based, fully guarded integrating instrument for measuring dc and 
true rms ac voltage, as well as resistance. 

Resolution on the I V ac scale is I JJ. V, with an input impedance of I megohm. 

HP-IB Capabilities 
The instrument's HP-IB capability codes are: SHI, AHI, T5, L4, SRI, RLI, PPo, 
DCI, DTI, CO, El. Default address on HP-IB is 22. The HP 3456A has an SRQ 
button on its front panel that can be used to signal or interrupt the controller. 

As with the HP 3325B, you'll find descriptions of the HP 3456A's instrument 
command strings included as remarks in this lesson's program. 

20-4 How to Design a Complete Program 



Determine a 
Manual 
Solution 

HP 33258 Function 
Generator 

Cl 

To find out the frequency response of the filter, you'd 
connect it as shown below. 

Then you'd follow this procedure to test the filter: 

1. Set the function generator to 1 kHz, sine wave output, 1 
Vrms. 

2. Read and record the value of input to the digital 
voltmeter. 

3. Set the function generator to the next frequency- say, 1.1 
kHz. 

4. Read and record the value of input to the DVM. 

5. Continue with steps 3 and 4 until you've reached 10 kHz. 

6. Plot the data on graph paper. (Frequency response is a 
lot easier to read if it's graphed!) 

True, this procedure would probably take most of a day - or 
two. But it shows how you'd make the measurements. And 
lucky for you, you're going to do the same thing with HP 
BASIC and HP-IB, and let the computer do the grunt work. 

HP 3456A Digital 
Voltmeter 

ClCl ClCl 
ClClClCl 

Filter 

ccc 
ccc 
ccc 
ccc 

How to Design a Complete Program 20-5 



Check Out 
Hardware 

Create a 
Warnier-Orr 
Diagram 

Your next step is to make the hardware setup. Attach 
HP-IB cables to the instruments, determine their addresses, 
and test each instrument with the REMOTE and LOCAL 
statements to see if you have control. 

Next you draw up a Warnier-Orr diagram for the procedure. 
The Warnier-Orr diagram is used to break down a task into 
smaller tasks. Then it breaks down these tasks into smaller 
ones yet. 

You start off by writing the main task on the left-hand side 
of a big piece of paper: 

20-6 How to Design a Complete Program 



Then you decide what primary functions you'll need to do. 
These will eventually become subprograms, or different 
parts of a main program. 

'!"ifi4.h't;e 
Va .. ia.ble.. 
lh.-H1s 
Se+up 

How to Design a Complete Program 20-7 



Keep subdividing tasks into smaller ones as you go from left 
to right: 

'!fJitiQ,"~e. 
WA~ia.b/e. 
li-H1s 
Sefll.p 

Confi;ure 
9eneya,-f-or 

Ccr,f'j'ure 
DVM 

This level will be the subroutines in your program. 

20-8 How to Design a Complete Program 



You can write pseudocode - a kind of shorthand - that 
outlines exactly what you'll do to complete each task: 

/' 
! nil-ietl/r.e 

Va .. ia.h!e. 
Pa:H1s 
Se+lI.p 

Ideally, you should know all your variables now, so you can 
initialize them. But to be honest, even hotshot programmers 
have to come back to the Initialize pseudocode and add 
variables later. So leave yourself a little room here. 

How to Design a Complete Program 20-9 



Determine 
Subprograms 
and 
Subroutines 

This is the easy part, if you've drawn a good Warnier-Orr 
diagram. The tasks on the left become your main program 
(or subprograms, if the program is very large). Tasks in the 
middle are subroutines. 

Main program and 
subprograms Subroutines 

tnjt~h'r.e 
Vel ... i Q,hle. 
Fl#ts 
5e+up 

Pseudocode 
becomes actual 
code 

20-10 How to Design a Complete Program 



Write the 
Program Code 

You can use the pseudocode on the right to create the 
actual code. 

Now you can write the actual code for the program. Write 
the code on paper first, then enter it into the computer later. 

You can make your subprograms and subroutines the same 
names as on the Warnier-Orr diagram. 

This is also the time when you'll want to look at the 
instrument manuals to decide what instrument command 
strings to OUTPUT. 

Once you've written the code on paper, type it into the 
computer. As you do, "comment out" all subprogram and 
subroutine calls (with REM or an exclamation point), so you 
can test and debug each task separately later. 

The program to test the filter is on your disk of examples as 
"FILTER _ TST". There's a listing of the program on the 
next few pages. 

How to Design a Complete Program 20-11 



10 RE-STORE "FILTER_TST" 
20 
30 LAST REVISED: August 15, 1988 
40 
50 This program measures the frequency 
60 response of a filter. The output from 
70 a function generator is applied to the filter 
80 and stepped through a range of 1 kHz 
90 to 10 kHz. Output from the filter is 
100 fed to a digital voltmeter, and a reading 
110 o~the DVM is taken at each frequency step. 
120 
130 Equipment required: 
140 HP3456A Digital Voltmeter at 722 
150 HP3325B Function Generator at 717 
160 
170 
180 XXXXXXXXXX MAIN PROGRAM XXXXXXXXXX 
190 
200 Variables: ! 
210 OPTION BASE 1 
220 INTEGER First,Freq,Incr,Last,Nr,Size 
230 First=1000 
240 Last=10000 
250 Incr=100 
260 Size=(Last-First)/iNCR)+l 
270 ALLOCATE REAL Reading (Size) 
280 ALLOCATE Cmd$[80] 
290 First = First frequency in the range 
300 Freq = Current frequency setting 
310 Incr = Frequency increment size 
320 Last = Last frequency in the range 
330 Nr = Number of the current reading 
340 Size = Size of the array 'Readings', 
350 and the total number of readings. 
360 Readings = Array to hold all readings 
370 Cmd$ = Temporary command string 
380 

20-12 How to Design a Complete Program 



390 ! ++++++++++++++++++++ 

400 ! 
410 Paths: 
420 ASSIGN @Crt TO 1 
430 ASSIGN @Kbd TO 2 
440 ASSIGN @Gen TO 717 
450 ASSIGN @Dvm TO 722 
460 
470 
480 ++++++++++++++++++++ 

490 
500 Setup: ! 
510 GOSUB Clear_crt 
520 GOSUB Config_gen 
530 GOSUB Config_dvm 
540 
550 
560 ++++++++++++++++++++ 

570 
580 Measure: ! 
590 GOSUB Take_data 
600 GOSUB Print_data 
610 PAUSE 
620 DISP "PRESS [CONTINUE] TO PLOT DATA" 
630 GOSUB Clear_crt 
640 GOSUB Plot_data 
650 ++++++++++++++++++++ 

660 Stop: ! 
670 DISP "PROGRAM FINISHED" 
680 STOP 
690 
700 ! 

How to Design a Complete Program 20-13 



710 ! XXXXXXXXXX SUBROUTINES XXXXXXXXXX 
720 ! 
730 C lear_crt: ! 
740 CLEAR SCREEN 
750 RETURN 
760 
770 ! ++++++++++++++++++++ 

780 ! 
790 Config_gen: ! 
800 DISP "CONFIGURING GENERATOR" 
810 CLEAR @Gen 
820 WAIT 2 
830 OUTPUT @Gen;"FU1 AM1VR RFl" 
840 DISP " 
850 RETURN 
860 , 
870 CLEAR @Gen resets a baseline state 
880 FU1 = Set Function 1, Sine output 
890 AM1VR = Amplitude is 1 Volt RMS 
900 RF1 = Use Front panel output jack 
910 Note: The 3325 ignores spaces 
920 
930 Some other conditions set by 'CLEAR': 
940 FR1KH = Frequency 1 KHz (to be set below) 
950 OFOVO = No offset voltage 
960 Single frequency mode - not sweeping 
970 
980 

20-14 How to Design a Complete Program 



990 ! ++++++++++++++++++++ 

1000 ! 
1010 Config_dvrn: ! 
1020 DISP "CONFIGURING VOLTMETER" 
1030 CLEAR @Dvrn 
1040 WAIT 2 
1050 Cmd$="T 4 F2 R3 ZO 1 STI" 
1060 OUTPUT @Dvm;Cmd$ 
1070 DISP " 
1080 RETURN 
1090 
1100 CLEAR @Dvm resets a baseline state 
1110 T4 = Trigger hold, to stop readings 
1120 F2 = Function 2, AC Volts 
1130 R3 = Range 3, 1 Volt RMS full scale 
1140 ZO = Auto Zero off, for higher speed 
1150 1STI = Integrate over 1 Power Line Cycle 
1160 Note: The 3456 ignores spaces 
1170 
1180 Some other conditions set by 'CLEAR': 
1190 MO = Math off 
1200 1STN = 1 reading per trigger 
1210 FLO = Filter off 
1220 RSO = Reading Storage off 
1230 SOl = System output on 
1240 Default delay for ACV is 60 ms 
1250 
1260 

How to Design a Complete Program 20-15 



1270 ! ++++++++++++++++++++ 
1280 ! 
1290 Take_data: ! 
1300 DISP "TAKING DATA ON THE FILTER" 
1310 Nr=O 
1320 FOR Freq=First TO Last STEP Incr 
1330 Nr=Nr+1 
1340 Cmd$="FR"&VAL$ (Freq) & "HZ" 
1350 OUTPUT @Gen;Cmd$ 
1360 OUTPUT @Dvm;"T3" 
1370 ENTER @Dvm;Reading(Nr) 
1380 NEXT Freq 
1390 DISP " 
1400 RETURN 
1410 
1420 If Freq=1000, then Cmd$="FR1000HZ" 
1430 VAL$ ( ) converts a numeric value into a 
1440 string of characters that represent it. 
1450 This is one way of getting the value for 
1460 frequency into the instrument. 
1470 Here are some equivalent techniques: 
1480 
1490 , 10 Fmt1: IMAGE "FR", K, "HZ" 
1500 20 OUTPUT @Gen USING Fmt1;Freq 
1510 or 
1520 10 OUTPUT @Gen;"FR";Freq;"HZ" 
1530 
1540 'T3' triggers the DVM for a single 
1550 reading, which is 'read' by ENTER 
1560 
1570 

20-16 How to Design a Complete Program 



1580 ! ++++++++++++++++++++ 
1590 ! 
1600 Print_data: ! 
1610 DISP "FILTER DATA, TOTAL POINTS = ";Size 
tn~O PRINT Reading (*) 
1630 WAIT 2 
1640 RETURN 
1650 
1660 
1670 ++++++++++++++++++++ 
1680 
1690 
1700 Plot_data: 
1710 GINIT !Initialize graphics 
1720 GRAPHICS ON !Turn on the graphics screen 
1730 PEN 1 !Select a pen 
1740 VIEWPORT 15,120,30,95 ! Specify a viewport 
1750 Min-yaxis=O 
1760 Max-yaxis=.5 !Filter output can't exceed .5V or it won't plot 
1770 WINDOW First,Last,Min_yaxis ! Set the window for: 
1780 Minimum x = first frequency 
1790 Maximum x = last frequency 
1800 Minimum y = 0 volts 
1810 Maximum y = maximum y-axis volts 
1820 CLIP ON 
1830 GRID Incr*10,(Max_yaxis-Min-yaxis)/10,Min_yaxis,First !Plot a grid 
1840 MOVE First,Reading(l) !Move to the first point to be plotted 
1850 
1860 ! Plot the data 
1870 ! 
1880 FOR 1=1 TO Size 
1890 DRAW First+(1-1)*lncr,Reading(l) 
1900 NEXT 1 
1910 ! 

How to Design a Complete Program 20-17 



1920 ! Label the x-axis grid divisions 
1930 ! 
1940 DEG 
1950 LDIR 0 
1960 LORG 6 
1970 CLIP OFF 
1980 FOR X=First TO Last STEP Incr*10 
1990 MOVE X,Min-yaxis 
2000 LABEL USING "SDD";X/1000 
2010 NEXT X 
2020 
2030 ! Label every second y-axis grid division 
2040 ! 
2050 LORG 8 
2060 FOR Y=Min_yaxis TO Max-yaxis STEP (Max-yaxis-Min-yaxis)/5 
2070 MOVE First,Y 
2080 LABEL Y 
2090 NEXT Y 
2100 
2110 ! Change the viewport to the entire screen 
2120 ! 
2130 VIEWPORT 1,100*RATIO,1,100 
2140 WINDOW 1,100*RATIO,1,100 
2150 
2160 Put a nice label at the bottom of the plot 
2170 
2180 MOVE 65,20 ! Absolute screen position 
2190 LDIR 0 
2200 LORG 5 
2210 LABEL "FREQ (kHz)" 
2220 ! 
2230 ! Put a nice label on the y-axis 
2240! 
2250 LORG 5 
2260 LDIR 90 

20-18 How to Design a Complete Program 



2270 MOVE 3,60 ! Absolute screen position 
2280 LABEL "VOLTS RMS" 
2290 ! 
2300 RETURN 
2310 ! 
2320 ! ++++++++++++++++++++ 

2330 End: 
2340 END 

Test and 
Debug 

It's time to run the program ... and inevitably, that means 
testing and "debugging" it too. 

"Commenting out" the subprograms and subroutines makes 
this part of the process easier: 

First, run the program without any subroutine or 
subprogram calls. (That is, leave them all commented out.) 
Fix any errors you find. 

Next, delete the REM or exclamation point in front of the 
first subprogram or subroutine call (Init_ var in the example) 
and run the program again. Fix any new errors. 

Continue this way, stripping out remarks and running and 
fixing the program, until everything runs correctly. 

Debugging Aids Debugging is often more of an art than a science. However, 
HP BASIC and your computer have some features that can 
help in your search for those elusive little critters known as 
bugs . 

• Pre-run: Pre-run checks for proper program structure 
before the program actually runs. 

How to Design a Complete Program 20-19 



Hints for 
Debugging 

• [STEP]: The [STEP] key lets you execute a line at a time 
to determine program flow. 

• Live keyboard: You can check or change the values of 
variables while a program is running or paused. 

• PAUSE: Put PAUSE statements in your programs for 
debugging, then remove them later. 

• PRINT: Like PAUSE, you can insert PRINT statements 
to find out the value of a variable or register at any point 
in the program. 

• TRACE ALL: This makes the computer "trace" program 
flow and variable assignments on the current PRINT ALL 
IS device - CRT or external printer. 

• TRACE PAUSE: Causes program execution to pause 
before executing the specified line. So if you suspect a 
problem in line 4010, type TRACE PAUSE 4010 before 
you press [RUN]. 

• WAIT: Some instrument lockups are caused by a 
computer that's too fast for the instrument, or vice versa. 
While not the most elegant solution, plugging WAIT 
statements into your program to allow "settling" time just 
may get you running. 

Be logical when you're ferreting out bugs. Break the code 
into small segments and check each segment individually, 
working from the beginning of the program to the end. 

Some errors such as mismatched structures occur at 
pre-run; others at runtime. Here are some hints for 
debugging: 

• Fix bugs as you find them: Fix each bug as soon as you 
find it, so it doesn't cause other problems. 

• Use test cases: Use values that test inside and outside all 
the limits you think you have in the program. 

• Determine if a bug is repeatable: Is it intermittent or does 
it occur all the time, with every test case? 

20-20 How to Design a Complete Program 



Document the 
Program 

• Look for simple mistakes: Somehow, the simpler they are, 
the easier they are to overlook. 

• Don't assume anything: Verify the value of variables 
before and after subroutine calls. Step through the 
program and make sure everything works the way you 
designed it. 

• Go home: Sometimes all it takes is a good night's sleep 
and a fresh outlook to find a problem. 

Once the program is written, it's easy to hit the [RUN] 
button and let it work while you take a well-earned break. 
Or to forget it entirely as you move on to new challenges. 

Not so fast! 

You still have to document the program, to make it easy for 
others (and yes, you too) to use. 

Two things you want right up front are the program's name 
and the date it was written - or revised. 

10 ! RE-STORE "FILTER TST" 
20 
30 !LAST REVISED: July 4, 1988 

Then you'll want a general description of what the program 
does. You needn't write A Tale of Two Cities - just an 
overall statement will be fine. 

You'll probably want a similar description for each 
subprogram, since these can be used in more than one 
program. 

How to Design a Complete Program 20-21 



Review Quiz 

If you've chosen subroutine labels that make sense, you may 
not need to add remarks. Then again, for the sake of 
clarity, a brief comment can't hurt, can it? 

1. Put these steps in the proper order: 
Write code. 
Create Warnier-Orr diagram. 
Document the program. 
Test and debug. 
Determine a manual procedure. 
Check out the hardware setup. 
Determine subroutines and subprograms. 

2. How would you test this section of code? What values for 
Stat would you use? 

50! 
60 Stat = SPOll (@Mna) 
70 IF NOT BIT (Stat,S) THEN GOTO 60 
80! 

3. What's one way to eliminate instrument lockups resulting 
from timing problems (a computer that's too fast for an 
instrument, or vice versa)? 

20-22 How to Design a Complete Program 



4. The following Warnier-Orr diagram is for testing a 
microwave amplifier. Write the main program and the 
subroutine calls. 

l{fJ4Sure { Mea.s W'e Sourtl!! po~e'" 
1?eflAJ"l1 Loss Measl!l'e ref1ecied pDwer-

Mea.sul'e {Mea.swe SOItIY'ce ~wer 
Ga.,i"" Measure +rtl.nS'hli~ pow~r 

Ou.f/,~f dflta. { Plof da.fo-
Pr;l1-t tiL ff).... 

Don't worry about filling in the actual program steps in 
this example; just put a remark (!) line where the code 
would be, like this: 

100 Init:! 
120 
130 RETURN 

How to Design a Complete Program 20-23 



Laboratory 
Exercise 

Poor Fitz Binkle! He's written a program that purports to 
get data from the data file called "8590_ TRACE" on the disk 
of examples. He wants to print and plot the data (with a 
meaningful plot), then store the data in an ASCII file under 
another name. 

Unfortunately for Binkle, though, his program is not very 
structured, and is riddled with errors. Can you structure the 
program and debug it for him? Binkle is at his wit's end, 
and would be ever so grateful. (The program is on your disk 
of examples as "FITZ_FOLLY".) 

You'll need all the debugging tricks at your command to 
help out Binkle. When you're done, compare your solution 
with SOL _ LAB 20 on your examples disk. 

20-24 How to Design a Complete Program 



Index 

Volume 1 contains Introduction and Lessons 1-20. 
Volume 2 contains Lessons 21-30 and Appendixes. 

A 
A image specifier, 9-11, 25-26, 26-21 
ABORT, 13-4 
ABORT, bus sequence, 21-18 
ABS, 1-19 
Absolute value, 1-19 
ACS, 1-19 
Addition, 1-15 
Address, changing, 12-12 
Address, device, 12-10, 13-1 
Address, instrument, 12-8 
Address of file, 10-7 
Address, secondary, 12-12 
Address, setting, 12-8 
Address, using with ENTER, 15-3 
Addressing multiple instruments, 22-1 
Addressing non-active controller, 22-17 
ALLOCATE, 5-6, 8-8 
Alpha display, 19-2 
ALPHA ON/OFF, 19-11 
Alpha plane, 19-11 
[Alt] key, 1-5 
AND, 6-14 
Answers to review questions, A-I 
Arc sine, 1-19 
Arccosine, 1-19 
Arctangent, 1-19 

Argument, 1-19 
Array separators, 25-4 
Arrays, 8-1 
Arrow keys, 1-9, 1-12 
ASCII characters, 5-20, 21-20 
ASCII data format, 26-35 
ASCII file, 3-25, 10-4, 10-7 
ASCII file, data size in, 10-9 
ASCII value, returning, 5-20 
ASCII vs. BDAT data files, 17-12 
ASN, 1-19 
ASSIGN, 10-13 
ASSIGN, specifying data size with, 26-15 
ASSIGN with attributes, 25-8 
ASSIGNed attributes and ENTER, 26-14 
Assigning data to variables, 5-8 
Assigning numbers to variables, 4-6 
Assigning strings to variables, 5-4 
Asterisk as image specifier, 25-23, 26-19 
Asterisk, multiplication with, 1-16 
Asterisk, using to close I/O path, 10-15 
Asterisk, using with array, 8-11, 8-20 
At sign (@) as image specifier, 25-30, 26-21 
ATN, 1-19 
ATN line, 11-14 
Attention, 11-14 
Attributes, assigning, 25-12 
Auto-starting a program, 3-24 

Index-1 



AXES, 19-22 
Axes lines, graphics, 19-22 

B 
B image specifier, 9-13, 25-27, 26-24 
[BACK SPACE] key, 1-12 
BASE, 8-19 
Base element of array, 8-4 
BASIC history, 2-6 
BCD interface, 11-4 
BOAT file, 10-7 
BOAT file, data size in, 10-8 
BOAT files and storage space, 29-2 
BOAT vs. ASCII data files, 17-12 
BEEP, 1-24 
BENCHMARK example program, 29-6 
Benchmarking, 29-3 
Binary data file, 10-7 
Binary image with ENTER, 26-24 
Binary image with OUTPUT, 25-27 
Binary programs, Intro-4 
Binary programs, listing, 3-11 
BIT, 16-12 
Bit-parallel, byte-serial transfer, 11-6 
Bits, 11-5 
Blank COM, 24-13 
Branch, 6-1 
BUBBLE example program, 8-15 
BUFF _PTRS example program, 27-12 
BUFFER, 27-9 
Buffer pointers, 27-11 
Buffers, 27-1 
Bus control and data line register, 16-7 
Bus control level, 21-3 
Bus lines, HP-IB, 11-12 
Bus management lines, HP-IB, 11-14 
Bus messages, HP _IB, 21-1, 21-4, 0-1 

Index-2 

Bus messages, sending, 21-19 
Byte, 11-5, 25-18 
BYTE attribute, 26-15, 26-24 
Byte, entering, 26-24 
Byte/Rec, 10-7 Byte, specifying with 

image, 25-27 
Byte, status, 16-20 

C 
Cable length, HP-IB, 12-18 
Cables, European, 12-15 
Cables, HP-IB, 12-15 
Calculator mode, 2-2 
CALL, 6-8, 24-2 
CALL and interrupt, 28-2 
Capability codes, HP-IB, 12-7, B-1 
[CAPS LOCK] key, 1-4 
[CAPS LOCK] key, simulating, 30-2 
CASE, 6-27 
CAT, 3-15, 3-26 
CAT TO, 3-27 
CAT to determine subprograms, 30-5 
Catalog display, 3-15 
Catalog of programs, 3-26 
Centronics interface, 11-4 
Changing address, 12-12 
Changing variable while running, 7-11 
Character size, graphics, 19-33 
CHRS, 5-21, 5-23 
CLEAR, 13-8 
CLEAR, bus sequence, 21-17 
[CLEAR LINE] key, 1-13 
CLEAR SCREEN, 1-13, 2-21 
[CLEAR SCREEN] key, simulating, 30-1 
Clearing graphics, 19-5 
Clearing screen, alternate method, 18-20 
CLIP OFF, 19-31 



CLIP ON, 19-31 
Clipping, 19-30 
Closing path to file, 10-15 
[CLR I/O] key, 28-2 
[CLR SCR] key, 1-13 
CMD, 21-19 
CMD bus message, 21-9 
Co-processor, 29-11 
COM, 5-6, 8-8, 24-13 
COM area, used with ASSIGN, 25-10 
COM blocks and subprograms, 30-7 
COM, increasing speed with, 29-11 
Comma as array separator, 25-7 
Comma as separator, 25-3 
Comma, in printing, 3-10 
Comma, overridden by PRINT USING, 9-9 
Comma, spacing with, 5-17, 9-2 
Comma, using with ENTER, 26-2 
Command, 2-10 
Command, instrument, 14-5, 14-7 
Command vs. data, separating, 11-14 
Common block, 24-13 
COMMONER example program, 24-14 
Comparisons, 6-11 
Compatibility, HP-IB, 11-5 
COMPLEX, 8-8 
Complex number, 4-4 
Concatenating strings, 5-10 
Connecting HP-IB devices together, 12-16 
Connector, HP-IB, 12-2 
CONT with TRANSFER, 27-5 
Context, 24-2, 24-15 
[CONTINUE] key, 3-3 
CONTROL, 23-5 
[CONTROL] key, 1-5 
Control registers, HP-IB, 16-3, 23-5, C-l 
CONTROL, re-positioning pointers, 27-15 
Control table, buffer, 27-11 
Controller, 11-9 

Controllers, multiple, 22-9 
Converting ASCII value to real number, 5-24 
Converting characters to numbers, 5-20 
Converting lowercase and uppercase, 5-22 
Converting number to string, 5-24 
Converting numbers to characters, 5-21 
Converting string to numbers, 5-19 
Copying program lines, 2-18 
COPYLINES, 2-18 
COS, 1-19 
Cosine, 1-19 
COUNT with TRANSFER, 27-5, 27-21 
CREATE, 10-5, 10-10 
CSIZE, 19-33 
[CTRL] key, 1-5, 18-6 
Custom bus messages, 21-1 
Cutting execution time for I/O, 14-6 

D 
D image specifier, 9-6, 25-23, 26-19 
DAB mnemonic, 21-14 
DATA, 4-6 
Data and commands, separating, 11-14 
DATA bus message, 21-9 
Data byte, 21-14 
Data files, 10-5, 17-3 
Data formats, 17-2 
Data formatting, 25-1 
Data, instrument, 17-2 
Data lines, HP-IB, 11-12 
Data pointer, 4-9 
Data rate, HP-IB, 11-7 
Data, storing on mass storage, 10-2, 17-11 
Data transfer interrupt, 28-9 
Data transfer speed, HP-IB, 11-11 
Data valid, 11-13 
Data vs. program, 10-5 

Index-3 



Datacomm interface, 11-4 
DATE$,1-24 
Date, returning, 1-24 
DAV line, 11-13 
DCL mnemonic, 21-14 
DEALLOCATE, 8-8 
Debugging, 20-19 
Decisions, making, 6-10 
Declaring a variable, 4-13 
DEF FN, 7-14 
DEG, 1-19 
Degrees mode, 1-19 
[DEL CHR] key, 1-12 
DELAY, 25-17 
Deleting a subroutine, 24-25 
Deleting characters, 1-12 
DELIM with TRANSFER, 27-5 
DELSUB, 24-25, 30-8 
Device address, 12-10 
Device clear, 21-14 
DIGITIZE, 28-12 
DIM, 5-6, 8-5 
Dimensions of array, 8-2, 8-5 
Dimensions of array, finding, 8-18 
DIO lines, 11-12 
DIO lines and parallel poll, 22-6 
Directing output to device, 3-27 
Disabling front-panel control, 13-5 
Disk, 3-19, 10-1 
Disk drive, addressing, 3-17 
Disk, using, Intro-5 
DISP, 2-13, 2-22, 3-9 
DISP USING, 9-16 
Display, 1-8 
Display line, 1-10, 3-9 
Distance between devices on HP-IB, 11-7 
DIV, 1-20 
Division, 1-16 

Index-4 

DOS files with HP-UX files, 10-12 
DRAW, 19-6 
Drawing a line, 19-6, 19-8 
DROUND, 1-20 
DUMP DEVICE IS, 19-42 
DUMP GRAPHICS, 19-42 
DVAL, 5-23 
DVAL$,5-23 
Dvorak keyboard, 1-7 

E 
E image specifier, 9-6, 25-24 
E in number display, 1-17 
e, base, 1-20 
EDIT, 13-11 
ED IT KEY, 18-4, 18-13 
Edit mode, 2-3, 2-15 
Edit mode, leaving, 3-10 
Editing a line, 2-16 
Editing softkeys on PC, 18-13 
ELSE, 6-15 
Empty pointer, buffer, 27-11 
ENABLE INTR, 16-17, 16-28, 28-16 
Enabling interrupt, 16-17, 16-28,28-16,28-20 
END, 2-14 
END and HP-IB, 26-3 
END as termination for ENTER, 26-26 
END IF, 6-15 
END LOOP, 7-9 
End or identify, 21-14 
End or identify line, 11-15 
END SELECT, 6-29 
END termination, 26-11 
END WHILE, 7-8 
END with files, 25-8 
END with free-field OUTPUT, 25-7 
END with HP-IB, 25-8, 25-17, 25-37 



END with images, 25-36 
END with TRANSFER, 27-5 
End-of-file pointer, 25-8, 26-14 
End-of-record with TRANSFER, 27-5 
ENTER, action of, 15-3 
ENTER, bus sequence, 21-17 
ENTER data from disk, 10-16 
ENTER format, 26-1 
[ENTER] key, 1-2 

Erasing soft key definitions, 18-12 
ERRDS, 28-10 
ERRL, 28-10 
ERRM$, 28-10 
ERRN, 28-10 
Error, ignoring, 30-2 
Error message, display, 1-11 
Error trapping, 28-9 
ESZ image specifier, 26-20 

ENTER, simulating, 21-21 
ENTER, terminating, 26-18 
ENTER USING, 9-16, 26-16 

ESZZ image specifier, 9-7, 25-24, 26-20 
ESZZZ image specifier, 25-24 
Examples disk, Intro-1 

ENTER, using with device address, 15-3 
ENTER, using with device name, 15-3 
ENTER, using with I/O path, 15-4 
ENTER, using with OUTPUT, 15-8 
ENTER with ASSIGNed attributes, 26-14 
ENTER with data, 17-4 
ENTER with image, 26-16 
ENTER with instrument, 15-2 
Entering a program, 13-11 

Exclamation point (remark), 3-5 
EXIT IF, 7-9 
EXP, 1-20 
Exponent of number, 1-17 
Extended addressing, 22-3 
Extended register, 16-22 
Extending distance of HP-IB, 30-3 

F Entering new lines, 2-17 
EOF pointer, 25-8 Fields, output, 9-2 
EOI, 26-3, 26-9 File, 10-6 
EOI, adding with ASSIGN, 25-17 File, ASCII, 3-25, 10-4 
EOI line, 11-15 File, creating, 10-10 
EOI mnemonic, 21-14 File, data, 10-5, 17-3 
EO I, redefining, 26-26 File name, 3-23, 10-7 
EOI, terminating ENTER, 26-18 File pointer, 25-8 
EOI termination, 26-11 File size requirements, 10-8 
EOL OFF, 25-18 File type, 10-7 
EOL sequence, changing with ASSIGN, 25-15 Files and I/O paths, 26-14 
EOL sequence, suppressing, 25-4, 25-7, 25-36 Fill pointer, buffer, 27-11 
EOR with TRANSFER, 27-5 FILTER_TST example program, 20-11 
Erasing, 1-12 FITZ_FOLLY example program, 20-24 
Erasing a program from memory, 3-23 Fixed-field data format, 17-2 
Erasing program from mass storage, 3-27 Fixed-field OUTPUT, 25-19 

Index-5 



Floating-point data format, 26-38 
Floating-point math board, 29-11 
Flowcharts, 6-22 
FN, 7-14, 24-2 
FNEND, 7-14 
FOR-NEXT, 3-8, 7-1 
Form feed, 3-13 
Formal parameter list, 24-9 
Format of data, 17-2 
FORMAT OFF attribute, 25-12, 26-38 
FORMAT ON attribute, 25-12, 26-15 
Format, disk, 3-19 
Format, using instrument, 26-35 
FORMAT_TST example program, 25-13 
Formatted ENTER, 26-1 
Formatted OUTPUT, 25-1 
Formatting, 9-1 
FRACT, 1-20 
Fractional portion of number, 1-20 
FRAME, 19-14 
Free-field data format, 17-2 
Free-field ENTER, 26-2 
FRIENDS example program, 8-12 
Function, 2-10, 6-8, 7-13 
Function, calling, 24-2 

G 
GCLEAR, 19-5 
GDU's, 19-3 
GET, 3-25 
GET mnemonic, 21-14 
Getting a program, 3-25 
GINIT, 19-5 
Go to local, 21-14 
GOSUB, 6-4 
GOSUB and interrupt, 28-2 
GOTO, 6-1, 6-4 

Index-6 

GPIB, 11-4, 11-7 
GPIO, 11-4, 11-7 
Graphic display units, 19-3 
Graphics, 19-1 
Graphics application, 19-12 
GRAPHICS OFF, 19-11 
GRAPHICS ON, 19-2, 19-11 
Graphics plane, 19-2 
Graphics scale, self-computing, 19-40 
Graphics, turning off, 19-11 
GRID, 19-26 
Grid, placing in graphics, 19-26 
Group execute trigger, 21-14 
GTL mnemonic, 21-14 
GUESS_GAME example program, 7-5 

H 
H image specifier, 25-25, 26-20 
Handshake, HP-IB, 21-25 
Handshake lines, 11-13 
Hard clip area, 19-3, 19-31 
Hardware, increasing speed with, 29-11 
Hardware, installing, 12-1 
Hardware priority, 28-27 
Hewlett-Packard Interface Bus, 11-5 
History of HP-IB, 11-2 
HP 438A Dual Sensor Power Meter, 15-6 
HP 3325B Synthesizer, 20-3 
HP 3326A Two-Channel Synthesizer, 13-9 
HP 3456A Digital Multimeter, 20-4 
HP 3457A Multimeter, 27-18 
HP 37201A HP-IB Extender, 30-4 
HP 37204A HP-IB Extender, 30-3 
HP 3852A Data Acquisition and Control 

System, 28-13 
HP 6030A Autoranging Power 

Supply, 24-20 



HP 6624A Power Supply, 14-3 IF-THEN with END IF and ELSE, 6-15 
HP 8340B Synthesized Sweeper, 21-2 IFC line, 11-14 
HP 8350B Sweep Oscillator, 30-12 IFC mnemonic, 21-14 
HP 8510B Network Analyzer, 26-32 IMAGE, 9-15, 17-18,25-20 
HP 8590A Portable Spectrum Analyzer, 17-7 Image specifiers, 9-6 
HP 8720A Microwave Network Analyzer, 22-4 Image specifiers, boundaries for, 26-29 
HP 8753 Network Analyzer, 16-8 Image specifiers for PRINT USING, 9-13 
HP 8757A Scalar Network Analyzer, 30-10 Image specifiers for strings, 9-11 
HP 8980A Vector Analyzer, 18-14 Image, evaluating, 25-21 
HP 98365A, 29-11 Image, using, 9-15 
HP-IB addresses and switch settings, 12-13 IMAGE with ENTER, 26-16 
HP-IB bus messages, D-1 Image with OUTPUT, 9-6,17-17,25-23 
HP-IB capabilities, 12-4 Inbound transfer, 27-6 
HP-IB interrupts, external, 28-16 INDENT, 7-7 
HP-IB lines, 21-16 INITIALIZE, 3-17, 10-4 
HPIB_LINES example program, 16-13 Initializing a disk, 3-17, 10-3 
HP-IB status and control registers, C-1 Initializing a disk on a PC, 3-21 
HP-UX and DOS files, 10-12 Initializing graphics, 19-5 
HP-UX file, 10-7 INPUT, 2-11, 4-10, 4-13, 5-8, 8-9 
HP-UX file, data size in, 10-9 Installing HP-IB hardware, 12-1 

Instrument command, 14-7 
Instrument command, specifying, 14-9 

I/O path, 10-13 
I/O path, closing, 10-15 
I/O path, finding information about, 25-11 
I/O path name, 10-13 
I/O path name for instrument, 13-3, 14-6 
I/O path, using with ENTER, 15-4 
Identifying HP-IB devices, 12-1 
IEC-625, 11-7 
IEC-625 cables, 12-15 
IEEE-488, 11-4, 11-7 
IEEE-488 interface capability codes, B-1 
IEEE-488 mnemonics, 21-13, D-7 
IF-THEN, 6-10, 6-16 
IF-THEN with AND-OR, 6-14 
IF-THEN with END IF, 6-15 

Instrument data, 17-2 
Instrument data format, 26-35 
Instrument features, using, 15-14 
INT, 1-20 
INTEGER, 4-4, 4-13, 4-15, 8-7 
Integer number, 4-4 
Integer portion of number, 1-20 
Integer, returning after division, 1-20 
Integer, using for speed, 29-8 
Integer value, returning, 5-23 
Interface, 11-3 
Interface clear, 11-14, 21-14 
Interface select code, 12-9 
Interleave factor, 3-19 
Internal data format, instrument, 26-42 
Interrupt, 16-15, 28-1 

Index-7 



Interrupt, disabling, 28-18 
Interrupt enable mask, 16-17, 16-28, 

22-13, 28-17 
Interrupt enable register, 22-20 
Interrupt, non -active controller, 22-12 
Interrupt status register, 16-6, 16-17 
Interrupt, using softkey for, 18-17 
Item separator, 26-2 
Item terminator, 26-2 
IVAL, 5-23 
IVALS, 5-23 

K 
K image specifier, 9-7, 9-11, 25-24, 25-26, 

26-19, 26-21 
KEY LABELS ON/OFF, 1-14, 16-4, 23-5 
Key, simulating, 30-1 
Keyboard, 1-2, 1-6 
Keyboard area, display, 1-10 
Keyboard, live, 7-11, 20-20 
Keyboard overlay, Intro-4, 1-5 
Keypad, 1-4 
Keys, system, 18-11 
Keyword, 2-4 
KNOBX, 28-11 
KNOBY, 28-11 

L 
L image specifier, 9-13, 25-32, 26-21 
Label, 6-3, 19-30 
Label, adding to disk, 10-4 
Label, softkey, 18-18 
LABEL USING, 9-16 
Labelled COM, 24-13 
Labelling graphics, 19-29, 19-32 
LAG mnemonic, 21-15 

Index-8 

LDIR, 19-34 
Learn string, instrument, 26-46 
LEN, 5-16, 5-23 
Length of string, 5-16 
LET, 2-12, 4-6, 5-4, 8-9 
Levels of control, 21-3 
LGT, 1-20 
Line label, 6-3 
Line numbers, 2-4 
LINE TYPE, 19-10 
Line type, choosing, 19-10 
Linear pattern, 12-17 
LINPUT, 5-8 
LIST, 3-10, 3-27 
LIST BIN, 3-11 
LIST KEY, 18-3 
Listen address, 21-5, 21-15 
LISTEN bus message, 21-10 
Listener, 11-9 
Listing a binary program, 3-11 
Listing a program, 3-10 
Listing softkeys, 18-3 
Literal as image specifier, 26-23 
Literal in string image, 25-26 
Live keyboard, 7-11, 20-20 
LLO mnemonic, 21-15 
LOAD, 3-24 
LOAD KEY, 18-12 
Loading a program, 3-24 
LOADSUB, 30-5 
LOADSUB ALL, 30-5 
LOADSUB FROM, 30-6 
LOCAL, 13-7 
LOCAL, bus sequence, 21-17 
[LOCAL] key, 13-6 
LOCAL LOCKOUT, 13-6, 21-4, 21-15 
LOCAL LOCKOUT, bus sequence, 21-18 



Local mode, 13-6, 14-2 
Local variables, 7-15 
Local variables and COM, 24-18 
LOG, 1-20 
Logarithm of number, 1-20 
Logging an event, 28-21 
Look-up table, 29-7 
Loop, 6-2, 7-1 
Loop counter, 7-2 
LOOP-END, 7-9 
Loop, filling array with, 8-9 
Loops, 3-8 
LORG, 19-32 
Lowercase, converting to, 5-22 
LWC$,5-22 

M 
M image specifier, 9-6, 25-23, 26-19 
MAGIC example program, 8-18 
Magic square, 8-22 
Masking, 16-27, 16-29 
Masking the SRQ, 16-20 
Mass storage, 3-15 
Mass storage, addressing, 3-17 
MASS STORAGE IS, 3-15, 10-3 
Mass storage, specifying, Intro-5 
Mass storage, using, 10-1 
Math functions, 1-14 
Mathematics, order of expressions, 1-22 
MAX, 1-20 
Maximum value, returning, 1-20 
MAXREAL, 1-20 
MC 68881 co-processor, 29-11 
Memory, 3-14 
Memory, reserving space in, 8-6 
Message and results line, display, 1-11 
Message, displaying, 2-22 

MIN, 1-20 
Minimum value, returning, 1-20 
MINREAL, 1-20 
Minus sign ( - ), 26-28 
MLA bus message, 21-11 
MLA mnemonic, 21-15 
Mnemonics, IEEE-488, 0-7 
MOD, 1-20 
MORNING example program, 6-25 
MORTGAGE example program, 4-12 
Mouse, 28-11 
MOVE, 19-6 
MOVELINES, 2-18 
Moving program lines, 2-18 
MSI, Intro-5, 3-15, 10-3 
MSI _KEYS example program, 18-8 
MTA bus message, 21-10 
MTA mnemonic, 21-15 
Multiple images, 9-9 
Multiple instruments and controllers, 22-1 
Multiple listeners, 22-2 
Multiplication, 1-16 
My listen address, 21-11, 21-15 
My talk address, 21-10, 21-15 

N 
Name, using with ENTER, 15-3 
Named buffer, 27-8 
Named COM, 24-13 
NDAC line, 11-13 
Negative step in loop, 7-3 
Nested images, 25-36 
New lines, entering, 2-17 
NEXT, 7-1 
Non-active controller, 22-12 
Not data accepted, 11-13 
Not ready for data, 11-13 

Index-9 



NPAR, 24-10 
NPAR_COUNT example program, 24-10 
NRFD line, 11-13 
Null character, 26-15 
Null string, 5-9 
NUM, 5-20, 5-23 
Number builder, 17-5,26-3 
Number, building from ASCII stream, 26-3 
Number, converting to ASCII, 5-23 
Number of devices on HP-IB, 11-7 
Numeric image for OUTPUT, 25-23 
Numeric image with ENTER, 26-19 
Numeric variable and number builder, 17-6 

o 
ON, 6-24, 6-27, 28-3 
ON CDIAL, 28-4 
ON CYCLE, 28-4, 28-8 
ON DELAY, 28-4, 28-8 
ON END, 28-4, 28-9 
ON EOR, 28-5, 28-9 
ON EOT, 28-5, 28-9 
ON ERROR, 28-5, 28-9 
ON HIL EXT, 28-5 
ON INTR, 16-17, 28-6, 28-16 
ON KBD, 18-21, 28-6 
ON KEY, 18-17,28-6 
ON KNOB, 28-6, 28-11 
ON SIGNAL, 28-6 
ON TIME, 28-7 
ON TIMEOUT, 28-7 
Opening path to file, 10-13 
OPTION BASE, 8-4 
Option base, determining, 8-19 
OPTIONAL, 24-10 
OR, 6-14 
Order of evaluation, 1-22 

Index-10 

Outbound transfer, 27-7 
Output area, 3-9 
Output area, display, 1-8 
OUTPUT, bus messages for, 21-11 
OUTPUT, bus sequence, 21-17 
OUTPUT, formatting, 25-1 
OUTPUT, free-field, 25-2 
OUTPUT of data, 14-7, 17-3 
OUTPUT, rounding, 25-2 
OUTPUT, simulating, 21-20 
OUTPUT to I/O path, 10-14, 14-6 
OUTPUT to instrument, 14-5 
OUTPUT to keyboard, 30-1 
OUTPUT to named device, 14-6 
OUTPUT, used with ENTER, 15-8 
OUTPUT USING, 9-16, 17-17,25-19 
Overscore, meaning, 21-16 

P 
PANAMA example program, 5-11 
Parallel poll, 21-15, 22-5 
Parallel poll configure, 21-15 
Parallel poll disable, 21-15 
Parallel poll enable, 21-15 
Parallel poll response byte, 22-8 
Parallel poll response mask, 22-20 
Parallel poll unconfigure, 21-15 
PARAM_PASS example program, 24-5 
Parameter list, 24-9 
Parameters, finding how many, 24-10 
Parameters, optional, 24-10 
Parentheses, using in mathematics, 1-21, 1-23 
Part of string, 5-12 
Partial listing, 3-11 
PASS CONTROL, 22-10 
PASS CONTROL, bus sequence, 21-18 
Pass parameter list, 24-9 



Passing by reference, 24-4 
Passing by value, 24-4 
Passing parameters, 24-3 
Pass through mode, 30-13 
Path name, 10-13 
Path name, using for instrument, 13-3 
PAUSE, 20-20 
[PAUSE] key, 3-3 
PEN, 19-6 
Pen control digit, 19-9 
Pen, graphics, 19-6 
Percent sign (%) as image specifier, 25-32, 

26-29 
Period (.) as image specifier, 25-24, 25-32, 

26-19 
Personal computer, using, Intro-7 
PI, 1-20 
Pi, value of, 1-20 
Pickwick club, 11-8 
PLOT, 19-8 
PLOTTER IS, 19-13 
Plotter, specifying, 19-13 
Plotting area, scaling, 19-18 
Plotting data, 19-36 
Plus sign ( + ) as image specifier, 25-32, 26-28 
Pointer, buffer, 27-11 
Pointer, data, 4-9 
Pointers, re-positioning with 

CONTROL, 27-16 
POS, 5-16, 5-23 
Position pointer, I/O path, 26-14 
Position within string, 5-16 
Pound sign (#) as image 

specifier, 9-13, 25-32, 26-28 
Power of 10, 1-17 
PPC mnemonic, 21-15 
PPD mnemonic, 21-15 
PPE mnemonic, 21-15 

PPOLL, 22-7 
PPOLL CONFIGURE, 22-6 
PPOLL mnemonic, 21-15 
PPOLL RESPONSE, 22-19 
PPOLL r-esponse byte, 22-8 
PPOLL UNCONFIGURE, 22-9 
PPU mnemonic, 21-15 
Pre-run, 4-2, 20-19 
Pre-run and COM, 24-17 
PRINT, 3-9, 20-20 
PRINT LABEL, 10-4 
PRINT USING, 9-4 
PRINT ALL, 23-6 
PRINTALL IS, 1-14 
PRINTER IS, 3-6, 3-27 
Printing, 9-1 
Printing graphics, 19-42 
Printing strings, 9-11 
Printing, trouble-killers for, 3-12 
PRIORITIES example program, 28-23 
Priority, hardware, 28-27 
Priority, software, 28-21 
PROG file, 3-22, 3-26 
Program, designing, 20-1 
Program, documenting, 20-21 
Program, storing on mass storage, 10-3 
Program vs. data, 10-5 
Programs, binary, Intro-4 
PROUND, 1-19,4-14 
[PRT ALL] key, 1-15 
Pseudocode, 20-9 
PURGE, 3-27 

Q 
QUADRATIC example program, 6-17 
Quotation marks, inserting, 5-21 
QWERTY keyboard, 1-6 

Index-11 



R 
R image specifier, 25-24, 26-19 
RAD, 1-20 
Radians mode, 1-20 
Raising to a power, 1-17 
RAND_ROOTS example program, 10-20 
Random access of data in file, 10-14, 10-20 
Random number, 1-21 
RANDOMIZE, 1-21, 9-4 
RANK, 8-18 
RE-SA VE, 3-25, 10-4 
RE-STORE, 3-23, 10-4 
Re-using images, 25-35 
READ, 4-6, 8-9 
READ LOCATOR, 28-12 
Reading a status register, 16-3, 23-3 
Reading an instrument with ENTER 15-2 
Reading status byte, 16-23 ' 
READIO, 23-6 
REAL, 4-4, 8-7 
REAL data format, 26-38 
Real number, 4-3 
Rec/File, 10-7 
Record, 10-6 
Record number, 10-22 
RECORD with TRANSFER, 27-5 
Records, 3-26 
RECOVER, 28-2 
Register, 16-2 
Register contents, controlling, 23-1 
Register control level, 21-3 
Register, READIO and WRITEIO 23-6 
Register, status, 16-20 ' 
Registers, 23-1 
Registers, buffer, 27-11 
Registers, HP-IB, C-1 
REM, 3-5 

Index-12 

Remainder, returning, 1-20 
Remarks, 3-5, 20-21 
Remarks and storage space, 29-3 
Remarks with INDENT, 7-7 
REMOTE, 13-5 
REMOTE, bus sequence, 21-17 
Remote enable, 11-14, 21-16 
Remote mode, 13-5 
REN, 2-19, 6-3 
REN line, 11-14 
REN mnemonic, 21-16 
Renumber, effect of, 6-3 
Renumbering program lines, 2-19 
Repeat factor in image, 25-34 
REPEAT -UNTIL, 7-4 
Repeating a string, 5-24 
Repeating a task, 7-1 
Replacing a string, 5-10 
Replacing part of string, 5-15 
REQUEST, 22-18 
Requesting service, 16-1 
Reserving memory for strings, 5-5 
RESET, 13-5 
[RESET] key, 13-7,28-2 
RESTORE, 3-23, 4-9 
Retrieving data from disk, 17-16 
RETURN, 6-4 
RETURN with ASSIGN, 30-2 
RETURN with function, 7-14 
REVS, 5-11, 5-23 
Reversing a string, 5-11 
Review quizzes, answers to, A-1 
Rewriting softkey definition, 18-4 
RND, 1-21, 9-4 
ROLL_DICE example program, 6-5 
Rounding a number, 1-20, 4-14 
Rounding to power of 10, 1-20 
RPTS, 5-24 



RS-232-C interface, 11-4 
Run indicator, 2-9, 3-4 
Run mode, 2-7 
Running a program, 2-7, 13-12 

s 
S image specifier, 9-6, 25-23, 26-19 
SAVE, 3-25, 10-4 
Saving a program, 3-1, 3-25 
Saving instrument data, 17-1 
SCRATCH, 2-3, 3-23,13-11 
SCRATCH and COM, 24-17 
SCRATCH KEY, 18-12 
SDC mnemonic, 21-16 
SEC bus message, 21-10 
Secondary addresses, 12-12, 21-3, 21-10, 22-3 
SELECT-CASE, 6-27 
Select code, 3-6, 12-8, 13-1 
Selected device clear, 21-16 
Semicolon as array separator, 25-7 
Semicolon as separator, 25-4 
Semicolon, in printing, 3-10 
Semicolon, spacing with, 2-22, 5-17, 9-2 
Semicolon, using to suppress CR/LF, 14-12 
Semicolon, using with ENTER, 26-2 
SEND, 21-5, 21-17, 21-19, D-1 
SEPARATE ALPHA FROM 

GRAPHICS, 19-11 
Separating instrument commands, 14-12 
Separators, 25-3 
Separators with ENTER, 26-2 
SER_ROOTS example program, 10-17 
Serial access, 10-14 
Serial poll, 16-24 
Serial poll disable, 21-16 
Serial poll enable, 21-16 
Serial poll register, 16-22 

Service request, 16-1, 16-7 
Service request from non-active 

controller, 22-18 
Service request line, 11-14 
SET KEY, 18-8, 18-13 
Setting the HP -IB address, 12-8 
SGN, 1-21 
[SHIFT] key, 1-4 
SHOW, 19-18 
Sign, returning, 1-21 
SIGNAL, 28-6 
Simulating a key press, 30-1 
SIN, 1-21 
Sine, 1-21 
SIZE, 8-19 
Size of array, 8-5 
Size of array, finding, 8-19 
Slash (I) as image specifier, 9-13, 25-30, 26-23 
Slash (I), division with, 1-16 
Soft clip area, 19-17, 19-30 
Softkey, 1-5 
Softkey as typing aid, 18-3 
Softkey, changing from program, 18-8 
Softkey definitions, erasing, 18-12 
Softkey definitions, storing, 18-11 
Softkey label, 1-11 
Softkey, redefining, 18-4 
Softkey, using for program interrupt, 18-17 
Softkeys, editing on a PC, 18-13 
Softkeys, listing, 18-3 
Soft keys, loading, 18-12 
Softkeys, returning to default, 18-12 
Softkeys, using, 18-1 
Software priority, 28-21 
Sorting, 8-15 
Space, reducing, 29-2 
Spacing, 5-18 
Spacing for DISP and PRINT, 5-17 

Index-13 



SPD mnemonic, 21-16 
SPE mnemonic, 21-16 
Speed, increasing, 29-3 
SPaLL, 16-24 
SPaLL and interrupt, 28-18 
SPaLL, bus sequence, 21-18 
SPaLL, simulating, 21-21 
SQR, 1-21 
SQRT, 1-18, 1-21 
Square root, 1-18, 1-21 
SRQ, 16-2, 16-7 
SRQ, bus sequence, 21-18 
SRQ, detecting, 16-12 
SRQ line, 11-14 
SRQ, masking, 16-20 
SRQ, non-active controller, 22-18 
Star pattern, 12-17 
Statement, 2-10 
Statement control level, 21-3 
STATUS, 16-3, 16-12, 16-23,23-3 
Status byte, 16-20, 16-23 
Status byte, unmasking, 16-22 
Status change, detecting, 16-12 
Status, detecting with instrument 

command, 16-29 
STATUS of ASSIGNed I/O path, 25-11 
Status register, 16-2, 16-20, 23-2 
Status register, reading, 23-3 
Status registers, HP-IB, C-l 
Status word, 16-22 
STEP, 7-2 
[STEP] key, 2-11, 20-20, 27-12 
Stopping activity on HP-IB, 13-4 
STORE, 3-22,10-4 
STORE KEY, 18-11 
Storing a program, 3-22, 10-4 
Storing data on mass storage, 10-2 
Storing instrument data, 17-11 
Storing soft key definitions, 18-11 

Index-14 

String image, 25-26 
String overflow error, 5-8 
String variable, 4-4, 5-2 
Strings and number builder, 17-5, 26-9 
Strings in arrays, 8-12 
Strings, printing, 9-11 
Stripping blanks from a string, 5-24 
Structured programming, 8-23, 20-1 
SUB, 6-8, 24-2 
SUBEND, 6-8 
SUBPR_DICE example program, 6-8 
Subprogram, 6-7, 6-9, 7-16 
Subprogram, calling from keyboard, 24-3 
Subprogram, deleting, 30-8 
Subprogram, effect on speed, 29-9 
Subprogram libraries, 30-5 
Subprograms, 24-1 
Subprograms, loading, 30-5 
Subroutine, 6-4, 6-7 
Subroutine, deleting, 24-25 
Subscripted variable, 8-3 
Substring, 5-12 
Subtraction, 1-15 
SUM, 8-21 
Summary bit, 16-22 
Summing elements of array, 8-21 
Switch settings and HP-IB addresses, 12-13 
Switches, address, 12-10 
System controller, 11-10 
System keys, 18-11 
SYSTEMS, Intro-7 
SYSTEM_EX example program, Intro-5 



T 
TAD mnemonic, 21-16 
Take control, 21-16, 22-10 
Talk address, 21-16 
TALK bus message, 21-10 
Talker; 11-9 
TAN, 1-21 
Tangent, 1-21 
TCT bus message, 22-10 
TCT mnemonic, 21-16 
Terminating ENTER statement, 26-11 
Terminating ENTER with image, 26-26 
Termination, changing with ENTER 

USING, 26-28 
Termination image specifiers, 25-32 
Terminator, number, 26-8 
Terminators, 25-3 
Terminators with ENTER, 26-2 
Tic marks, axes, 19-24 
Tic marks, grid, 19-27 
Tic marks, major, 19-25 
Time, returning, 1-23 
TIME$, 1-23, 18-5 
TIMEDATE, 1-23, 18-5 
Timeout interrupt, 28-8 
TRACE ALL, 20-20 
TRACE PAUSE, 20-20 
TRANSFER, 27-1 
TRANSFER, interrupting, 28-9 
TRANSFER parameters, 27-4 
TRIGGER, 15-11 
TRIGGER, bus sequence, 21-17 
Triggering an instrument, 15-10 
Trigolator, 19-13 
TRIGO LA TOR example program, 19-37 
TRIM$,5-24 
Trouble killers, Intro-8 

U 
UDU's, 19-18 
Unconditional branch, 6-2 
Unified I/O, 14-6 
UNL mnemonic, 21-16 
Unlisten; 21-5; 21-10; 21-16 
Unmasking status byte, 16-22 
Unnamed buffer, 27-9 
Unnamed COM, 24-13 
UNT bus message, 21-10 
UNT mnemonic, 21-16 
Untalk, 21-10, 21-16 
UNTIL, 7-4 
UPC$, 5-22, 5-24 
Uppercase, converting to, 5-22 
User defined units, graphics, 19-18 

V 
VAL, 5-19, 5-24 
VAL$, 5-24, 17-4 
Variable, 2-11, 4-2 
Variable, array, 8-11 
Variable name, 4-3 
Variable name, using for instrument, 13-2 
Variable, rules for, 4-5 
Variable, specifying for ENTER, 15-5 
Variable, subscripted, 8-3 
Variable type, 4-3 
Variable within function, 7-15 
VIEWPORT, 19-14 
Viewport, setting, 19-14 

Index-1S 



w 
W image specifier, 26-24 
WAIT, 2-21, 20-20 
WAIT with TRANSFER, 27-5, 27-15 
Warnier-Orr diagram, 20-6 
WHILE-END, 7-8 
WINDOW, 19-18 
WORD, 25-18 
WORD attribute, 26-3, 26-15, 26-24 
Word, entering, 26-24 
Word, specifying with image, 25-28 
WRITEIO, 23-6 
Writing a program, 2-3 

x 
X image specifier, 9-7, 9-11, 25-30, 26-23 

't' 
Y image specifier, 25-29, 26-25 

z 
Z image specifier, 9-6, 25-23, 26-19 

Index-16 

Numbers 
3457_READ example program, 27-21 
3457_TRANS example program, 27-19 
8510_ASCII example program, 26-36 
8510_DATA example data file, 26-50 
8510_INTL example program, 26-42 
8510_LEARN example program, 26-46 
8510_REAL example program, 26-38 
8590_GET example program, 17-17 
8590_STORE example program, 17-12 
8590_TRACE example data file, 17-19 
8720_PASS example program, 22-11 
8753_ERRS example program, 16-26 
8753_INTR example program, 16-15, 16-22 



Flin- HEWLETT 
~~ PACKARD 

82302-90001 
Printed in U.S.A. 10/88 
English 


	00001
	00002
	00003
	00004
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	19-33
	19-34
	19-35
	19-36
	19-37
	19-38
	19-39
	19-40
	19-41
	19-42
	19-43
	19-44
	19-45
	19-46
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	20-22
	20-23
	20-24
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	xBack

