HP 3000 Series I

Reference/Training Manual

(D i

HP 3000 SERIES lli
COMPUTER SYSTEM

REFERENCE/TRAINING MANUAL

Manual Part No. 30000-90143
3HDWR.350.30000-90143 Updated 2/80

Printed in U.S.A. 6/79

HEWLETT-PACKARD COMPANY
19447 PRUNERIDGE AVE,, CUPERTINO, CALIFORNIA, 95014

NOTICE
The information contained in this document 1z subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL. INCLUDING.BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing. perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied. reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copvright £:1980 cv HEWLETT-PACKARD COMPANY

i

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition. Within
the manual, any page changed since the last edition is indicated by printing the date the changes were made on the bottom
of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears as a
prior update.

FrontCover.......... ..., Original
TitlePage. i i e 2/80
1 2/80
11 2/80
ivthruxx. oo i i i e Original
1lthrul9 i e Original
B 2/80
3 0 Original
1 CS Original
2-1thru2-11 i i Original
8 2/80
213thru 215 i Original
2 2/80
2 Original
2 2/80
2-19thru2-68ot Original
31thrud-26c .. Original
B 2/80
3-28thru3-30 i Original
41thrud-b50 i i Original
B-1thrub44t ieneennn Original
6-1thru6-30 i Original
TAlthru7-4 it ien Original
5 2 2/80
B e e e i e e e e e 2/80
TTthru7-47o i it Original
3 Z 2/80
3 2/80
TH50thruT52 i, Original
81thru828 Original
91thru926 0., Original
e 2/80
10-2 . e e e 2/80
10-3thrul0-6 v Original
11.1thru11-20.o oo i Original
Blank i Original
BackCover.......... .o, Original

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

The software product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and

conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one
correspondence between product updates and manual updates.

First Edition. Jun 1979

iv

PREFACE

This manual contains hardware-oriented reference information for
the HP 3000 Series III Computer Systems. Specifically, this man-
ual contains reference reading material for all persons that are
to attend Hewlett-Packard’s 3000 Series III Computer System Hard-
ware Training Cour ses. Since the information contained in this
manual is approximately the same as that presented during class-
room lectures, this manual should be used for classroom refer-
ence, ncte taking purposes, and post schccl reference.

The HP 3000 Series III Computer Systems are divided into two pro-
duct lines; the HP 3242]1A Series III and the HP 32435A Series
III. Unless otherwise stated, the content of this manual applies
equally to both product lines.

CONTENTS

SECTION I - INTRODUCTION

Paragraph Page
SYSTEM FEATURES ..ueteecccoscesososssscsssassssssssssssasnsasas
Stack ArchitectuUre ...ceeeeeececscescssccecsssscsassasnns
Microprogrammed Operationsc.ce.e.
Data Base Management Facilities
Five Programm ing LanguagesS .eeecessee
VIrtual MEMOLY «ceeeeeeccccosccasoscsosssssosssssasscssosssns
Fault CONtrol MEMOLY ceesesscecsosccscscsscsccscosssccnsces
Concurrent I/0 and CPU OperationsS .ceeeeeesesccccscncsens
Reentrant Code and Private Data@ .eecececececcccecccccceces
Operating SYStem .eeeeseceesseccsscccs
HARDWARE FEATURES
SOFTWARE FEATURES «eteecceccsssscoceacsasssasssassscsascsnssssnasne
SYSTEM CONFIGURATIONS ceeceecesossccccsas

ol

® 2 2 0o e s e e 0 et P S0

et e
[T T R

® 60 90 00 00 000000 0000

!
B wwwdhroNhod oo

HF*F‘HPTF‘HF“

® 5 s 80 006 800000 0000

SECTION I1 - SYSTEM/CPU OVERVIEW

Paragraph

)
[
Q
(13

HARDWARE ORGANIZATION 4ccceeseccssscscsascessasssssvsscssescs
Bus Systeém ..iieecesssccssosescccscncs
CTL BUS ticeessocessscssonssssnssss
JOP BUS ceteececcnessscscsoacosccessoscssssossossnsssascsnscs
SELECTOR CHANNEL BUS .cccescescoscs
PORT CONTROLLER BUS secevesesosecsnses
MULTIPLEXER CHANNEL BUS .vcceececen
POWER BUS tveeeecssosccasocssssesscssssssascsassnsscsscas
Functional Hardware Elements ...es2.:-
CENTRAL PROCESSOR MODULE ¢veeossoses
MAIN MEMORY cceceocsvececsocsacossossscscssososcscssssccse
MULTIPLEXER CHANNEL teecveevcecccccae
PORT CONTROLLER/SELECTOR CHANNEL ..
DEVICE CONTROLLERS ccccccsoscsassnsse
CTL BUS Priority seeeececcessceccsscccsss
OPERATING ENVIRONMENT .cveeescossoccsonssesasnsscsossssasocssees
Virtual MEMOLY ceeeesecsosssccsssoonsssscsscncsscsscssssssss
Variable—~Length SegmentatiOn .cceeecececccccscsscsscscsssssecse
PrOCESSES teeeessecscssassassssssescscsscsccscosnsssooscscsesssscs
Data StACKS teeeeeeeccsccscccssseossssssoscsccsscsscsscscscs
CPU REQiSterS tveeeeeesesosssossssonssssersssssssossasensnsaes
CODE SEGMENT REGISTERS .ceceveocccscs
DATA SEGMENT REGISTERS tccecevceces
Basic Table StruCtUreS .ueeeeeeessossessesnscassscsscssoss
CODE SEGMENT TABLE AND CODE SEGMENT TABLE EXTENSION .

!
DN

® 0 00 00 0000000080000

DD NN
{

2 * o2 e 22222002020 2220

® o 506 0000000000000 ¢

® 060 90 00 000 000000000

{
= =0 W O~ WWW WWw

B

| o

e o8 005 8008800000000

NN NN NN DN DN
!

)
o
CREEN

t

vi

CONTENTS (continued)

SECTION II (CONT)

Paragraph Page

DATA SEGMENT TABLE .cccecevccccosccccsscsscosccoscscscccse 2-16

Code Segment LinKage «..eeececscsccsssssccsosscsccnsenssss 2716
Stack Operation .eeeecececccecsesscsscssessnscoscscancocnne 2-22
INSTRUCTION AND STATUS WORD FORMATS
Instruction FOrMAtsS <eceeseeeososssscsssasossssasssscsscacsss 227
GENERAL FORMAT cceceecevoscsacsccccsscsosassssscccscscoce 2-28

STACK OP 4 veeeveoessssosoesosssosnsssanssssssssssacssss 2728

SHIFT © © 000 0000006000606 06060600006063 0006000000000 0000000000 2—'28
BRANCH e cececcecooscococcscscscsscsosssosscsccscscssscssscscccscosscssos 2"28

BIT l].‘E;ST © 0 0 0 000606006060 0606006000060606060600000000060000000000 00 2"30

MOVE © 00 0 0000609690606 000060060000 060600005 0000000000000 2—-30

SPECIAL +vecovossccccccscscccscscscsscsssosssscsocsssscscsccnccss 2-30
IMMEDIATE
FIELD 4veeeeeeoeoscocscsccsccsasscsassscssasssssssssscece 2730
REGISTER CONTROL +eoeecececccccscscvcsscsssasoonsssscsss 230
PROGRAM CONTROL soseececccoccscscccscsssasscsssncscscse 2-30
I/0 AND INTERRUPT cccccscesocsosccccscsossscssssscoascccscs 2-30
LOOP CONTROL seeeeecsccccasscccssccassscssasccsccsccssss 2730
MEMORY ADDRESS ceceoscoscccoscsccccscscscsoscsnscsssaccnse 2-31
Status WOrd FOIMAt .eeeeeeccsscoscccccccsscccoscccssoccs 2-31
CONAition COAES seveeevesecccssasnssssssssssnssssnnscsss 2732
OPERATING MODES «eeeeecesccoocccccscsssccsssosssssssscsssssse 2-34
ADDRESSING CONVENTIONS .cccececccccoscscscoccoccscsosscsccsosocsscse 2-35
Memory AddresSing .eeceeecccscscscscccsccccccccscsscscccce 2-35
Indirect AJAreSSiNg veeeececeeccsosccososssccccsssssccees 2736
CODE INDIRECT evesocsssccescccccsscssssscsscscncosnne 238
DATA INDIRECT ¢eveeoesooscesensccssssassssssssccceacsses 238
INAEXING oeeeeseeocecsscssssssssscssssscssssssssessssess 238
CODE INDEXING eovecccecesosccscsccscsssscsssosnsssssossene 2-38
DATA INDEXING ecesoscccscecscccccsssasssessscccccccee 2-40
Byte AJArESSING eeeeeceeccsssccoscsasassesscscsscsscccsss 2740
DIRECT BYTE ADDRESSING «eeeecccsccsssososssccscccccsss 2-40
DIRECT, INDEXED BYTE ADDRESSING ececcosesccccccscccsne 2-41
INDIRECT BYTE ADDRESSING cccoeccecccssssscccsscscccsscse 2-41
INDIRECT, INDEXED BYTE ADDRESSING cecccescsccescccsscs 2-41
Double~WOrd INAEXIiNg eeeeeccccssssscsccscoccscccsssssesass 2742
ACCESSING DB= Ar€@ eeeeeescsscsscsssssccooscsccnssssssssas 2742
WORD ADDRESSING eveeeoseeccccscacsscsssssssosnoscsssscses 242
BYTE ADDRESSING eeveeceeccccocssccsssssseanosocsscsssssse 2742
Bounds CheCKingccccccccccccccocosasosncanssssscsses 2743
PROGRAM TRANSFER LIMIT .ececececcscassssssscccscccnes 2-45
PROGRAM REFERENCE LIMITS .cecccceccccsccccccccscocscossce 2-45
DATA REFERENCE LIMITS ceeececoecccscssoscssccccscsasses 2-45
STACK OVERFLOW LIMIT cccccscccccescccscccossocccsoscsccse 2-45
STACK UNDERFLOW LIMIT «eeeeevccccssossssccsosssascees 2-45
CPU OVERVIEW

Pipelines © 0 0 5 00 00660000000 0000050606000000000000008s000009 00 2.‘46
DATA PIPELINE

e s e0es 0000t ss 00000000 2—27

© 6006560000 0000060000000 0900600000900 06000000000o00 2-‘30

© 5 0692 0000060000500 0606000600060 0606006006060606000000 00090900 2‘.45

® © 06 0 0 00 0 00 00000000 G0 00000 O eSO NOSEPSS 2‘.46

MI CROCODE PIPELINE

e 000000 000000000 0e0s s 00000000 COOSOSE 2—49
CPU Component DeSCIiptiOI’IS ee s s s e e e v s 0000 cs s 0RO ESLI BSOS 2"50
NIR'....‘....'..'........... 2_50

vii

CONTENTS (continued)

SECTION II (CONT)
Paragraph

CIR
CMUX AND CMUX CONTROL

MAPPER AND MAPPER CONTROL

LUT ROM

@ 9 9 9 0 00O GO E O S0 E S eeEPE OO e TN

VBUS MUX AND VBUS CONTROL ..

RAR
SAVE REGISTER

® ® 5 60000600000 00000 000000000

® 0 0 0000000000000 0000006000000 P00 0000088000000

® % 0 00 000000 s 000000000

® ® 0. 000000 000000000000 L L 0L E0 0L LLPGOCEISIESEOSIEEESE

ROM ® 2 2T EOC OB 00N 0P0S P00 0L S L 6L L0000 LIEOIEGCEGESESEOGEOEOLEOEOSIOOEEEOEEOE

ROR1 AND ROR2
Microcode Jumps
S-Bus Field Decoder
Store Field Decoder

Skip Field Decoder

® © 0 0506000 0000000 00000000 PLCELLOELOLIOGOEOCSEESIITOOES

® 9 060000000 0000090000000 00000000e0000e

(S) ® e 0000 v 0000000000000 000000

(STORE)
Function Field Decoder (FCN)

(SKIP)

Shift Field Decoder (SHIFT)
Special Field Decoder (SP) .

MCU Option Field Decoder (MCU)

R-Bus Field Decoder
PROCESSOR REGISTERS

® o @0 00 0000008000000 0000

® 0 0 0000 00 000080000000
® & 959060000000 000 00000
® 600000 0000000000000
® 60 0060 0000000000000 00

(R) e 0000000000000 00000000

Renamer LOgiC ® © © 9 0 ¢ 500 200 000 CO O LOEEOINESTOERS OSSP EOEON
TOS Registers ® 0 2 0060000006000 0000000000000 000000000

Index Register (X)

Program Base Register

Data Limit Register

Stack Memory Register

Data Base Register

Scratch Pad 2 Register

Stack Limit Register (2)
Program Limit Register (PL)
Scratch Pad 0 Register (SPO0)
Scratch Pad 1 Register (SPl)
Stack RegiSter (SR) teeeeeseescccesccscosososososs

(DL)

(PB) .

(SM) .

® 0 0 0 8000000000000 0000

® 6000000 0000 B0 000

(DB) ceeeeececececsosossnsoananas

Q RegiSter (Q) teeeeeoovooeenoeancsosonssansssosscess

(SP2)

Scratch Pad 3 Register (SP3)

Process Clock Register (PCLOCK) ceeececoccccsccncs
Program Counter Register

Operand Register (OPND)
Status Register (STA)
Counter Register (CNTR)
OVERFLOW FLIP-FLOP (OVFL)

CARRY FLIP-FLOP (CRRY)

PRE-ADDER
R-BUS REGISTER
S-BUS REGISTER
ALU
SHIF TER
DECIMAL CORRECTOR

(P)

® @ 8006000000800 000000e00

CONDITION CODE LOGIC (CCO AND CC].) ® © 0 0 00 000 000 00 0 e

viii

® 00 0000000 PR OO LLOOLLELOLEEOLOEDLDIEOEOIOEOIOEOPOEOLEEOSOEEOEES
® 6 8 0. 0060060 0000000800000 00 0600000000 E GG
® & & 0 000 00 00 0000008000000 0000 LseeseOOTOGE
© 0000000000000 0000009000000000000000006000000000000
® & 5000000000060 0000000000000 0000 002000000000 O0O0

® © 0 0 00 00000 000000 EE PO PO OESOGSETSLE

ADDRESS COMPUTER OUTPUT REGISTER (ACOR)

DATA COMPUTER OUTPUT REGISTER (DCOR)
INTERRUPT STATUS REGISTER 1 (CPX1)

Page

2-50
2-51
2-51
2-51
2-52
2-52
2-52
2-53
2-53
2-54
2-55
2-55
2-55
2-55
2-55
2-55
2-55
2-55
2-56
2-56
2-57
2-57
2-57
2-57
2-57
2-57
2-57
2-58
2-58
2-58
2-58
2-58
2-58
2-58
2-58
2-59
2-59
2-59
2-59
2-59
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2~-61

CONTENTS (continued)

SECTION II (CONT)

Paragraph Page

INTERRUPT STATUS REGISTER 2 (CPX2) cecececscscesscocsscs 2-61
CPU Servicing Information .ceeeceesescccsccscsscccccccce 2-61
READ-ONLY MEMORY (ROM) PCA cccecscaccsccccscccscocccs 2-61
SKIP AND SPECIAL FIELD (SSF) PCA
S-BUS PCA .eeeccscescscsossscsscsssscscsosscscscsssscsssscsscse 2-63
CURRENT INSTRUCTION REGISTER (CIR) PCA .cceccoccccosce 2-64

¢ e 6 0060 0000000800 00 00 2-62

SECTION III - SYSTEM VERIFICATION AND TROUBLESHOOTING

Paragraph e

o
Q
= Qa

DIAGNOSTIC AND VERIFICATION PROGRAMS
On-Line Verification ProgramsS seceeecsccsccscscscccssscsccce
Stand-Alone Diagnostic ProgramsS eceesessceccsscscssccccvccs
Microdiagnostics
SLEUTH 3000 .ececcevocscoccscscscsscssccscscssscsscscssscscccccs

SYSTEM TROUBLESHOOTING AND REPAIR ccceeeececsccccsccccccecces

SYSTEM CONTROL PANEL

MAINTENANCE PANEL ¢cccccecoccsccssccscsaccscscsssscsssccsscsccoccse
Switch/Lamp Identification and Descriptioncceeceece.
Operating Precautions ..ceccececcccccccscsccssccscccccnnns
Preparation FOr USE .seeeeesssccccccccscccsccccccscccnrone
General Operating Method .eieeeeccceccecccsccsccccnccncce
Using Maintenance Panel and System Control Panel .ceeeee
Stack Register LoadinNg .cececssesscccccccscccscccccccane
CPU Register DiSPlayS eceescsscsceccccscscscccscccccccsnce
General-Use DisSplay csceceesscsesccsccccscssossccccrccans
Maintenance Panel TeSt ceeccccccccscsccccscscscssssccccosss 3-26

IAMP TEST ccecessoscesosssscsscscscsscscosccscscscaccssscscccce 3-26
SWITCH TEST

® © 0 06 00000 00000000 06000

wwww
{

t

wo‘ow

t

{
MOV ND N

U W

PEET Ty

wc'ow
N NN
o OO

© 0 6 9000686060600 08 5060606000060 060600008s0s000s00000 00 3-28

SECTION IV - MACHINE INSTRUCTIONS AND STACK OPERATIONS

Paragraph

g
o}
Q
o

INSTRICTION DECODING ¢scecocscccsscsocscsscscccsccscsccsccccscscssss
TRAPS AND INTERRUPTS
CONDITION CODE ceecssccsccscscsscoscscscscsccsscsscscccscssssnccscccce
INSTRIJCTION FORMATS ccccoccosssscscsnccsossssccscosnscscccssscons
INSTRUCTION DEFINITIONS ecccccoscccssscsccsscscoscssccccsconcnos
Stack Op INStLUCLIONS .eececsseecacccccccccsccnncccncccs
Shift INStrUCLIONS ceeescssccsssssscssassccssssscsccsssssns
Branch INStruCtiONS .ececesccssccsscssssossccscscsccscccsccccs
Move INStruCtiOnNsS eceeesesescscsccccsosssscssssccssaccssccscae
Privileged Memory Reference InstructiOns ..ececeecccecsce 4-13
Immediate INSErUCLIONS sevecececccccsscscsssssascssssssss 4-13
Register Control InstructionNS .ccceececcscccccccscccccns 4-14

Program Control and Special Instructions .eececeeccccsss 4-15
I/0 Instructions

© 6068606060600 0006000060000 00008000s00000000000

PPN QN N S
{ [

o

1

> >)

{
W WwwwHH
—

>
!

[

[\

© 6 8 00 060060 0000008066080 9 0600060008000 0000000 4"]-7

ix

CONTENTS (continued)

SECTION IV (CONT)

Paragraph Page
Memory Address INStrucCtioOnNsS .ceeesececceccscoscccscccsecs 4-19

Instruction COmmMENtary ceeeeesessesscsesssscscscscscsnaes 4-21
STACK OPERATION EXAMPLES

ceeeesssscssscsssssccsccsssscscsses 4-37
Basic ArithmeticC suieeeececcecceccoosocncooonsnsancsenese 4=-37
Procedure CallsS .eeieessscccccsscccscccsccsscccncsncncsas 4=-39
RECUISION teeveceessseccssococcsccocccossssccsssnsscsssess 4-43
MAIN PROGRAM CALL +eeeecccccccscccscaccaccsocscssccess 4—46
TEST FOR ZERO e veecsosooccccccscosascsascccsssssnscssss 4-46
FIRST RECURSIVE CALL coceeceeescccocscocsscccccnscscsss 4-46
SUCCESSIVE RECURSIONS cecececovovoceonsocsscacsssasassssse 4-46
FIRST EXIT teeeevoooansccsoasscscascsccsasscccsssossnssss 4-48
FIRST RECURSIVE EXIT ¢cececcoccccscocscncsscscsocsssscsss 4-48
SUCCESSIVE EXITS teeeceoccccosccncsosoosssocsnsssssssss 4-48

SECTION V - SYSTEM MICROCODE

Paragraph Page

GENERAL INFORMATION

® 2 86 6 0 00 5 00 500 0 ° 508 050 PSP S eSS S PO S S S SE 5-‘1.

Stack Element LOCAtiONS eeeeoecscscscssscsccccscsscssssse 5S—1
PUSH teeeeecoscsssoceoosccsconcoccsssosossocssseassossassss D=2
POP v veeeccesossssssessssessssssssscsssscsscossssssscsses D=2
QUP tteeesessssscosasosesssnssossnsssoscsasscssssssscsscsssssss 92
ODWN suieececcsccccsscssasccssssesscsccssscssscsscsccssscscscnee 53

Reading Microprogram LiStingsS ceesececesscsoscscsscsoessss 5-3

MICROINSTRUCTION DESCRIPTIONS ccececccccscscoscssscscssoccses 5-3
R-BUS Fi€ld .seveeeceseccccccssnsscscsscscsnsscnsscsnncnses bH—d
S-BUS Fi€ld .eceeeeccescccsscscccsosscsssssscsssesssssssssnsss 55
Function Field ..eeeecececesccscsscssscoscssssossssosssosssses D=5
Shift Field .seeeeeeescesscccsceceoseacasossocssssseasess 5=

Store Field ® @ 0 08 90 0 00 0 S O S O S OO S S SO S PO OO S OO SO SO OO T PO OSSN
Special Fie ld ® & & & 9 0 0 O " O PO T OO O S OO O OO OO P OO SO P OGO S SEPEPN DS
MCU Option Field

Skip Field ® ® 6.0 060 0000000000 000000000 OP L LEeLLLLsP e LS

5

5-5

5-5

- A

5-5

MICRODIAGNOSTICS 5-5

SECTION VI - MODULE CONTROL UNIT/MAIN MEMORY OVERVIEW
Paragraph Page

MCU OPERATIONS «cceeecesososscscasosasssssssssssosssosssscscs
Fetch Next Instruction (Operations
CPU ADDRESS TRANSMIT .c.ccecccccccscssscsssccssscnssanss
MEMORY RECEIVE AND TRANSMIT

CPU RECEIVE t.veeuvsscsscsccscsosessssacssssnsssasssscs

Fetch An Operand Operations ..seceeeesesesesscscssasasssns
CPU ADDRESS TRANSMIT cceesescosossoscsosessscsosesnss

MEMORY RECEIVE AND TRANSMIT
CPU RECEIVE

® 2 6 9 0 55 20860 0808000530000 00

OO OO OV OV OV OV
|
oot W HEH -

3 % 5 % % 5 S 8 S S S S5 P ST S SV E T RS S I ER LSS EEE ST

CONTENTS (continued)

SECTION VI (CONT)

Paragraph Page
Store An Operand OperatiOnS ..ceececccccscsccscccccccnccs
CPU ADDRESS TRANSMIT eeesccccssessssssscscccccsssscccnse
MEMORY RECEIVE cccccovecscocssccscscsccscsscnsvescsccccos

CPU DATA TRANSMIT
MEMORY RECEIVE
Command A MOAUlE .ecececccssccscscscscsscsccsscssssancccscsce
MCU SERVICING INFORMATION
ENABLE

READY ceceoscocccscscscscccscssscssscsscscscssssscscscanccsocsosnse

CPU NUMBER cceeececscccssssssccsesssssscsssscccscsssssssccs

CPU MODULE NUMBER 2 0 9 © 8 ¢ 060 ¢ 060606060000 060000800020 00055000
MCU RESET

MAIN MEMORY0........0....I.'.............O......0..
Memory PCA InterfacCing ceceeeccesscccscosccccscccccccocecs
ClITl BUS'...0..0.0....'......"

IOP BUS o.o.oo...o-....ovt..coo.ooooooc..to.....o.o.o

FAULT LOGGING INTERFACE BUS ccccoccccocccccccccccccscs
POWER BUS ccecoccccscscsccsscssssscscscsscscssossscccscsscsccscscccse
Memory PCA DesScCriptiOnsS ceeecceccccccccsscsccccccccccces
SMA PCA ceeescccscsvcoscsossoscscscsscsssscsssssssncscsosssoccos 6-12
MCL PCA cecececocsscsssessosscscsscsssnsccsssscscsssnescssocscsos 6-12
FLI PCA +eeeseocscsssscsccscoccososssssosscscsssosnssscsce 6-12
Memory Operations
READ o vvevececcecscesoanasesssscsssssssssesssoscssssses 0713
WRITE cccevcocccecscccccce
NOP o eeececceessessosssesseeencsssssascsssansosscass 0-14
FAULT CORRECTION AND ERROR LOGGING ccscevcsocccceaccce 6-14
Memory Servicing Information ..ccececcccccccccccccccccns 6-14
FAULT CORRECTION ccecccocscscccscscsscccsscosncscsccscocs 6-14
MEMORY ERROR LOGGING FACILITY cccecccccoccccccsccnccce 6-17
OULPUL ceeeesessosscsssscssssossossccscscsscccccocccs 6-21

Errors 0........I..'Q......................'....'. 6-‘21
Obtaining Memory Errors COPY eesececsccsosccccscene 6-21

FLI PCA PROGRAMMING 2 a0 0608 8 s c B s e P EPSOREECEOESOEOEEOLEOTDSODL OSSN 6_21

TIO Command + 2085 0668 88 08 00803 es v IR TEOCENEODs IS0 6—23
CIO Command 20 20 08 3¢ e &>

WIO Cc)rﬂmand © 6 5 0 0 0606060600000 060600000 06000060806000000 0000 6..26

RIO Command €0 066 006 060605600606 0606060 0060006000000 006000 000000 6-27
Sm PCA SERVICING © 60 0 69 695 0 0 006006060600 0 9506006000000 000000 6—27

MCL PCA SERVICING © 00 0 565 © 92 0 6065 06099 0800600000000 0000000 6"28
FLI PCA SERVICING © 9606 609060006060 0060006000e0060000000 058 6—‘29

|

|

|
OO ASN OO

f

© 0 0606 06000 0000600606 000606000000000000 0000

0\0\@0‘\0\0\0\

® 8 9 0 006 0060060806000 00600 0000000000000

J

it

!
HHWOWW WO

O\O\O\C{\ [e))]

!

e

1

O\O‘\O‘\O\O\C\
1

e

N -

66 606 6060686060006 006060000206 06002000000000 0000 6“12

© 2 0 9 90 0 060606060890 0660060000000 0000 6_13

> 2 2 B 2 8 2 0P 3 DI DD S OB E DL I I IS 624

SECTION VII - I/O SYSTEM

Paragraph Page

INTRODUCTION caeeecooccoscsscsecosccsscscsssscscsscsccsesssscsscssscsce
FILE SYSTEM OPERATION
CEFINITION OF TERMS
I1/0 INSTRUCTIONS

2 2 9 9 35 9 9 8 5 5 9 5 66 ¢ 68 08 SO SO 0SSOSO eSS

\l\l\'l\l
N w N

2 0 %1 8 5 6 6 e 0 e B S I PEEELS OIS OETIEBSTE TSN EOO LN

x1i

|
|

CONTENTS (continued)

SECTION VII (CONT)
Paragraph

GENERAL I /0 OPERATION ® e e e e s e s ess s e s eerscs st escsteen s 0see
DIRECT I/0 OPERATION “e e eesececssescstrrsersetescs0secsanee
Direct Read
DIirfeCt WEIte tuereeeseeccseoceecscooaceocoosssannocnsess
BLOCKEL /JUNBLOCKED I/0
BlOCKEA I/0 tevcvsncecscssnsccssccsoesoscncasessoccocssse
UNDB1OCKEA I/0 tuneeresoenococconocesonoanneascasccncesses
I/0 HARDWARE ELEMENTS
I1/0 Processor
I/0 COMMAND
TOP CONTROL sovecesccascccacsoaossssessacocncsscsocses
INTERRUPT CONTROL
INT DEVNO I I R P T T T T T T T T R
DATA OUTPUT REGISTERS D T
DATA INPUT REGISTERS ceeeccecossoascsacsscessccsssess
Module CONtrOl UNit seeeeecececcossooonnscccasccoconcesss
Multiplexer ChanNel s.eeeeeessscccecccccocossnsssosanses
S5eleCctor Channel ..ceecececccececsoccascsscassosscscssscsss
I/0 SYSTEM FUNCTIONAL OPERATION teeessessessceensscssesscecs
I/0 PriOritieS seeeececsesescessoosesssccsasncaasccsosss
I/0 Data ROULES ceveeeoececcsseesosscsacosccacsscncesssss
I/0 Transfer MOAES seeeceeceecccccocessssssescssensccoasse
DIRECT I/0 eeeeceecccccscascccooscsccsoscscscsesscssonsscss
PROGRAMMED I/0 tieeececcccccosccscoccscsccnsnsnnncnssss
I/0 Program WOLd «eeeeceeseeceassoasoosccsscessases
Typical I/0 Program OPeratiOn e.eeeeseceecssssscsss
Multiplexer Channel TranSfersS ceeeececececcesscscnass
Selector Channel TranSferS veeeesscecsscssscecssocsss

Multiplexer Channel @erations LI I I I B B B B N I I Y B B B B B N I A
INI’IIIALIZE ® 0 5 4 000 00000 SO0 EN O OSSR OOSOCOESTESEOIESTEOE SO DRSNS

D S L) 1
I/0 PROGRAM WORD TRANSFERS ¢.vececccorcncencsnnncanses
JOCW FEtCh cieeeceenseesctcsccasacncccccscocnnscsse
JOAW FetCh ceeeceeescesosscsccccnscsacaoncnsnsacnecses
IOAW Store ® 0 0 % 9 0000 O OO H SO PG O OO SO0 O LSO G OGS E OSSO GCTS
Next Operation ..eeeeeessscccsscccsccssasccccscaca
DATA TRANSFERS teeeesesossccscocscscccnocasnssnsossassscss
Address TranSfer ..eeiesececescesceccaacasasecsansss
Output Transfer t.ieeeeceeceescecceccenscnsesansssses
INPUt TranSfer cieeeeeceecececsoccannsosssnssscscess
End Of Transfer By WOrd COUNt eceeeeseconnccsccases
End Of Transfer By DEVICE t.eeeeesccossosccsscones
Selector Channel and Port Controller Operations seeeeeces
PORT CONTROLLER 4aetevecccacocsocsconcasssssnsoncssess
INITIATOR SEQUENCE s evesecosscoccssoccscnccscscoccaness
FETCH SEQUENCE ¢ eeeeensocsscecsosscasnosecscosansencsss
EXECUTE SEQUENCES 4 ceeeescssoonscscecaccscaconsonsses
SENSE ceeeeesececosessossssssnssscssssassssoosascssns

Interrllpt ® 0 5 000000080000 CN 00 OOLOLENINE SO OPOOIORIOESIEOCEOIBRTEETDS

Jump L2 L B N B B B B BN BN R AN B BN BB Y B BN RN R R Y R IR I I N R N NN Y I N N R N N Y

® 0 00000000 ¢ 00000000 LLELLELITOEOOEOOECEEIPBSIOEOSEBREOOROOE

¢ 0 20000 00000 2000000000000 GLGLITLIEOIBSOOE

® 80 00000000000 LN O OEBERTE S EPPETEES
LA A L A L A A BN BN A I R A I N A A N A N A N N N NN NN EEE RN

® 5 00002 00000000000 SO SPICEEELEOIOIOEOIEOCEOIEOEOSE STBROOS

® 9 0 00000000 000000000090 CELOELELESIEOIOESTOCE

ContrOl LA I B B AN L B B I B B B R B R I R Y I BE B B I B A B I I Y I B)

xii

CONTENTS (continued)

SECTION VII (CONT)
Paragraph Page

Set Bank oo...ooooo.l..ot.'.o..'.otoaeo..'oooonol. 7—43

REAA <veseseeasccesssssassssossscsssassscccncasscccsses 7-43
Return RESIiAUE seeeescssccvsssescosscasscoconncccece 7-44
WEILE coeeeesescccasssssesssscsacssscccssecccsscnsocce 7-45
ENCQ teeecesesesscssscossssssssasssscsssssasccsssssscoce 7-46

I/0 SYSTEM SERVICING INFORMATION esescccccccoccoccrscecrcccne 7-46
IOP PCA SEIrVICING cecesesccccsessccsccscacsssccccccacscccccs 7-46
ENABLE/DISABLE ececececcsccscesoscrsscsrsossnsscocccnsscccs 7-46
MEMORY SIZE ceeecsascssccscsscsscscossssssssnsscccccasne 7-46
MEMORY INTERLEAVING ecccocoscccsoscsccccenscsnscccnaces 7-46

Selector Channel Maintenance Board PCA ceececscsccscscscscss 7-46
Multiplexer Channel PCA SErvViCing seecescccccescssssccsccs 7-47

Port Controller PCA ServiCing ececeececsssscccccsocccccne 7-48
Selector Channel Se€rviCiNg eeeescessescssccccesaccccaccce 7-48
SELECTOR CHANNEL REGISTER PCA cccecccecceccccccccscce 7-48
Port Controller Channel NUmMbEer .ececccscecceccascccs 7-48
MEMOrY SiZE@ seessecsssssscccscccccsccanncccocccess 7-48
Memory Interleaving seeeceecccccecccccncccccocncncce 7-48
SELECTOR CHANNEL CONTROL PCA ¢cccccccccccccscccccnsce 7-48
SELECTOR CHANNEL SEQUENCER PCA «cccceccscoscaccccccons 7-48

SECTION VIII - INTERRUPT SYSTEM
Paragraph Page

INTRODUCTIONo-oo...O....Q‘..0.000.0..0'..0...'...0...0
INTERRUPT SYSTEM OVERVIEW Q.QQQQOOC.QQOQ.o...-..ouoo....eéa

INTERRUPT CONTROL STACK 0..000...0.....0...00.00....00.-0..
INTERRUPT TYPES .coonooooo.ooooo.ocoocooooonooooouooooooo.o

External INterruptsS eceeececscascccscscsssccscanscccccescccss
ICS Internal INtEerruptsS cceeescccscecccaccosccccancrcccs
Non-ICS Internal INterruptsS eeesecececcssessccccoccccccccense
EXTERNAL INTERRUPT PROCESSING scscecocscsccccacscceocscscsce
Interrupt Prioriti€sS ceeeccescssceccccoccccocssccccccces
Interrupt Program POinter ceecececcccssceccccccasccccces
Sequence Of Operations seeeeeccccscsccccsssccccccsssscces

INTERNAL INTERRUPT PROCESSING 00-0.000.-..0.0‘...‘..0.0.0..
Gene[al DeSCfiptionS ooo..'oo..'.....0.00..0.-...‘0...0.

BOUNDS VIOLATlON QQ...........‘Q..l.........l.....'..

ILLEGAL IVIEMORY ADDRESS0...0...............0QQI.
NON—RESPONDING MODULE ooo...ooo-oooo.t.-oooo-ootuoooo

SYSTEM PARITY ERROR e I I SR B I B I BT B L 8"14
ADDRESS PARITY ERROR cccecencecsccscccscssccccnncesscs 8-14
DATA PARITY ERROR P e N I I RN B L 2 S 8"14
MODULE INTERRUPT ccoccsceccessccssccccsccccscsacccrcocsess 8“15
POWER FAIL ..o..oooono.--o-ooooooo'ooooo.too..otoooo. 8"15
UNIMPLEMENTED INSTRUCTION ceccsacsccccccccsasnccsccace 8-15
STTVIOLATION 0..0.0.0.000..0...I.O.'....QCO..t.l.... 8'15
CsT VIOLATION o.ooooo.ooo.oooooooooooooo'oo...o-.oooo 8-15
DST VIOLATION -.-oo.oooooooo-onoooonooooo-oo..o..oooo 8"15

0o 00 0 O
[T O I A
oUWk -

!

00 00 o 00 O
1 1oLt 1
= b= \O 00 0 ©
BB o W

ooooolocooo
t

-

>

xiii

CONTENTS (continued)

SECTION VIII (CONT)
Paragraph

STACK UNDERFLOW

0..-00......00...0...o'..'i...o...t..

PRIVILEGED MODE VIOLATION

20 30 2ss 00t eoPs OO OLOLOL DS

STACK OVERFLOW L A R I I I I R I

INTEGER OVERFLOW
FLOATING-POINT OVERFLOW

FLOATING~-POINT UNDERFLOW

INTEGER DIVIDE BY ZERO

FLOATING-POINT DIVIDE BY ZERO
EXTENDED PRECISION FLOATING-POINT OVERFLOW
EXTENDED PRECISION FLOATING-POINT UNDERFLOW

@0 sos 000000000t crco000s0es0es 0B E

A A A A N N I N N N RN)

® 20000000090 OCOELI IO OCEOEOEOEOISETOREOES
®0 0000 s PR OO RLOOIEOLILOELIOEONOSEOEECEOEEOETDLE
® 00 850000020000 e0 00990
® o0 200000

"o e ev 0 e

EXTENDED PRECISION FLOATING-POINT DIVIDE BY ZERO

DECIMAL OVERFLOW +.....
INVALID ASCII DIGIT
INVALID DECIMAL DIGIT
INVALID WORD COUNT

DECIMAL DIVIDE BY ZERO
ABSENT CODE SEGMENT
TRACE
STT ENTRY UNCALLABLE
ABSENT DATA SEGMENT

POWER ON

COLD LOAD

@000 essr 0P LEs RN OGO OOOE
e s s v00 s 0000000000000 0 0000 0e

® 000000 eO L LR LOELIOICEOEOLEIOENOEOTEOEEORTS S

RESULT WORD COUNT OVERFLOW

® s 00000t LOLOPeCLISTOIOOEOEDBTE

e e e ev 000 rrNROCeEL eI OERNOEORIOEOES

S e 000 rs0 P e screer 0000 RGO OGDRLEEES
Oo.o...'.......-...o".o'.....oo.....c...c...o.
® S0 0L P0G ELLOOEOIOCEOSLEPIOGEOTEOIEOLOEIOEOIOSTOBONETSRTTS
8 0000000000000 EORPOBOEBRLEOEE
A A A O R I I T S SO

® % 0000000 LLLNLLOLOIELIOLIOLIEIOIOEOEOEOSIOEOIEOEOTOEOSOSOOEEOEOEOEEOES

Sequence FOr ICS-Type INLEIIUPES veeeeeeconcocecnnnnnnes
Sequence For Non-ICS Type Interrupts .ceveeeeseececenccss

INTERRUPT HANDLER
DISP Instruction

A A R R I I I I I R S S

®e s e e teLPIRORLEOOESLEERLOIEOEORIOEN ORGSO TOGESE

Pseudo Enabling/Disabling The DiSpPatCher seeeeeeceeceoes..

IXIT Instruction

SECTION IX - HP 32421A SERIES
Paragraph

INTRODUCTION
HP 30310A OPERATION
Primary Power Circuit
Preregulator A9

Preregulator Control Al
Inverter A7
Inverter Driver A2

20-Volt Regulators
Current Limiter A4

Preventive Maintenance

HP 30310A Adjustments
PREREGULATOR ADJUSTMENT

M R I I R I I I

INTERRUPT SYSTEM SERVICING INFORMATION

IITI POWER SUPPLIES

.......O..l.l....'...'.......0..0‘........l...

® 000 r 0P NP LL ORI LIOIELIEOIEIOEOEOEOIEOCIEOEOEOEOEOEOBOEOBRTSTE

® et s 0000000 PeLLLEOEOICEOILEOLIOEOEOEGREOEOIEOEOROGEEOEEOETS S
® 0 % 0080000 O OO EIELTOECEEOEOEOIEBDBROEOIOETTE
000.'.......0.0...0..-.0..-..000...-0..‘.0..

MR A A R R R I R I I I I Y

Full-Wave Rectifiers and Filters

® 690 000000 0000000000000 e

LA A A R I R I I R I T Y Y S S

M L A R R I R I I I I

Vol tage Protection and Control A5
30310A SERVICING INFORMATION

S 69 00 e P s LPOERNOIETPOEOEOSEI ORGSR TSRS

@ ® s 000000 0PPeL LIS ELEOEIESIOIEEEIESE OSSR GOTS

©8 05000000000 IPPELERESEIOENINSEOESIOTLTBOETSRETS

LA L L B B Y B B BE IR I IR R I I S N

xiv

Page

8-15
8-16
8-16
8-16
8-16
8-16
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-18
8-18
8-18
8-18
8-19
8-21
8-23
8-23
8-23
8-24
8-24

Y
]
o]
D

PELLLY

{

tt

t
WWOONU UL b d b et o

LD\D\.O\Q\.F\D\.O\O\D

CONTENTS (continued)

SECTION IX (CONT)

Paragraph Page
ZO‘VOLT ADJUSTMENT 2 98 5 €0 0060606000 000080000¢0 000 CCSOSECEOIESTSE 9"10

VOLTAGE PROTECT PCA ADJUSTMENT Q..’.....'......II.... 9‘10
HP 30310A Troubleshooting

HP 30311A OPERATION © 6 06006 0060800009606 9060600000000 000000000C0 e 9-11
HP 30311A SERVICING INFORMATION eveeecccccsssccccscsssscceee I—14
Preventive Maintenance
VOLATGE CHECKS
BATTERY TEST seeecececcecsccccccsssssascsssscsscsccses I-16

HP 30311A AdJUStMENtS ceeecesscccsosssssosccssssccncsccccs 9-16
BATTERY (FLOAT) VOLTAGE ADJUSTMENT

412 VOLT ADJUSTMENT eeeecececcccsccsssssasscssccccsesse I-18

+5.00 VOLT INTERNAL REFERENCE ADJUSTMENT .eeeececeeees 9-19
Replacement Procedures

AR EEREEEEE NI IR I A ECECEE BRI I A A A 9-—]-].

® 9 066 00008 00 090 S0 50 9L OO P OO SO0 NIIOS 9”15

® 2 2 € 000 Q0 00 S S S0 00 C 000000000 NO eSS 9“15

e e s e evs0essos e 9—16

'EEEREEREEEIEII I A A AR R R R B I B I A 4 9-19

POWER SUPPLY REPLACEMENT eceeoscsocccscncccocssansesss =19
BATTERY PACK REPLACEMENT ceccevccosssccsccosccsassssse 9I-20
CONTROL PCA REPLACEMENT cecesvvasssssccscocscccnceacs 920
MOTHERBOARD PCA REPLACEMENT ..cecccescccecsccscscccce 9720
HP 30312A OPERATION +eceeececcccscosesosossasascsssncsssssce 9721

OVercurrent ProteCLiON seseeececosecccsssssssscscsssssssce I=22
Undervoltage ProtecCtion ceececeessscscccscccccscnscscccsce 9-22
Power Failures
DC ENAD1E eveevecccscascssssassscsasssssassssssssascssssss 9-24
HP 30312A SERVICING INFORMATION cececoecoevcscccsscecsccccsccccse 9-24

© 5 9 © 5 60000000 0000 950 8060008060000 0000000¢ 200 00 9—22

SECTION X - HP 32435A SERIES III POWER SUPPLIES
Paragraph Page

INTRODUCTION © 5 06 8 685 060 89 5 3 5 08 %989 09 9052 0850008000000 S0 00 10-1
PO“ER SUPPLY TROUBLESHOOTING 2 00 2 98 9 0 0606060060000 09 ° 000 0C 000 e 10‘-1

POWER SUPPLY ADJUSTMBNTS e © ¢ 8 0 0 &0 00 88 080 0 00
REPAIR AND REPLACEMENT

se s e s s 0 s o0 10_3

2 © 6 008 00 0% 22 e P TECTLTITETIT TS O SO OSSO0 0O OO]-0_5

SECTION XI - SYSTEM INSTALLATION
Paragraph Page

PART 1
HP 32421A SERIES III COMPUTER SYSTEM INSTALLATION

EQUIPMENT BAY INSTALLATION ccesocesscscccccsccossssccsscscascse 11-1
Power Distribution Unit
Power CONtrol UNit eeeeeecscecescscesscssscsssssscsanessses L1-5
Power Control Module
BUs Cable CONNECLIONS seeesssssscccsscssvsesssssasssossssss 11-9

Interrupt Poll, Data Poll, and MCU Clock Connections ... 11-9
PERIPHERAL DEVICE INSTALLATIONI"'..Q................. ll—ll

NEW INSTALLATION TURN—ON © © 86 5000689000000 000 SOESESOSOEEODNOECETOSTTES TS ll—ll
SYSTEMVOLTAGE ADJUSTMENTS ©© 0 08 000 3060008000000 00SDSITOCEOCTOTDS 11-12

N EEREEEEEE I A B A B R R BN RN B A N 4 11—2

® © 9 8 0 @ 98 8 SO SO 800 CO0 0TSSP SOECE TSRS ETSOES 11—8

xv

CONTENTS (continued)

SECTION XI (CONT)
Paragraph
SYSTEM VERIFICATION

PART 2
HP32435A SERIES III COMPUTER SYSTEM INSTALLATION

EQUIPMENT BAY INSTALLATION

Isoclation Transformer

Cable Connections

Strapping

PERIPHERAL DEVICE INSTALLATION ...

NEW INSTALLATION TURN-ON

SYSTEM VOLTAGE CHECKS .ttt eteeesnesessoccecscancssns

® e ° 2 00 0000000000

® e o 6 o0 o0

SYSTEM VERIFICATION «iiveeeecnesoceasensssoanaascsoacccaceacs

Xvi

Page

11-14

11-15
11-15
11-18
11-18
11-18
11-19
11-19

ILLUSTRATIONS

Title Page

HP
HP
HP
HP
HP
HP

3000 Series III Computer System SOftware eceeceececccecscee 1-5
32421A Series III Computer System, 2-Bay Model 1-6
32421A Series III Computer System, 3-Bay Model ceeeeeee 1-6
32435A Series III1 Computer System, l1-Bay Model 1-7
32435A Series III Computer System, 2-Bay Model .ieceee. 1-7
3000 Series III Computer System Hardware Organization . 2-2

CTL Bus Priority Number AsSignments eceeecscecscecccccccsns 2-8
'Ilypical Data Stackl..'..I.....‘....'Q.....'....ll..'. 2_10
CPU Segment Pointer RegiStersS eeeecececcccccccccccccccsnenne 2-13

Basic Data Structures

..-.o.oo..o...00...0.....0.0........ 2-17

Formats Associated With Code SeGmentsS ceesecceccossccssccns 2-18
Data Segment Table Entry FOIMat cececececssccccccccoscccnce 2-19
Code Segment Linkage cecececscscscccsscscscsscccaccacnccce 2-20
CPU Registers and Stack Basic Operations eeecececececsccccccs 2-23

CPU TOS Registers ® e 80 00 06000090000 0

"R EEEEEE IR RN AR R R A 2—24

Stack MAark Chain eececccecssssesscscsssssscsccccsssssscccccscse 2-25
Standard Stack Marker FOImat ecececeesesescccccscocscsccscccce 2-28
INStruction GIOUPS cecescocssscscssccscscossscssscsscccsccce 2-29
Memory Addressing MOdeS eeeecsescsccccsccsscsccsccsccscccncce 2-36

Indirect Addressing Examples
Indexing Examples

PRPEP PR T S B A B BRI B B A 2—37

oc.oo-ooo..oocooo.ooooooo.ooo-o.oooooooo 2—39

Byte Addressing EXampleS ceeecececscsccscsccccerscccccoces 2-41
ACCesSSing DB— AI€@ sececssscsscsscocssscscsssccssoscsncescs 2-43
Addressing and Stack BOUNAS eeeseccccscscccscccccccscccccs 2-44
CPU Simplified Logic Diagram eeeececssssssccccassccsssccce 2-47
ROM PCA Jumper LOCAtiONS ceeecscsccccccscsscccoscccnncsces 2-62
SSF PCA Jumper LOCAtiONS ceescesesccssccscssccccccncsnccce 2-63

S-Bus PCA Switch Locations

ee s 0 00 e 000 0c0 00 CCR SRR OOOOSSOTONECE DTS 2—65

CIR PCAJumper LocationsO'....O.................. 2..66
System ContIOl Panel €90 006600 00 0000860600000 8 060000000000 0es0 3-3

Maintenance Panel
Maintenance Panel 1/0 Overlay

.o-.on--.otonoaa..oooooooo.o.oooooo.oo.o 3-5

©0 0 0 ¢ 00000 00 00000 QSO0 00 3-24

Maintenance Panel Operating CONNECtiONS .ecececsiccsscccsne 3-25
Switch Test Lamp INdicationsS seecececscccsccccsccccccccncs 3-29

Sub-Opcode 00 Formats
Sub-Opcode 01 Formats
Sub-Opcode 02 Formats
Sub-Opcode 03 Formats
Sub-Opcode 04 thru 17 FOrmats sceeecssccscccccsccscccacens 4-
Deleting A High Order WOrd ceececescescsscccccccene
Single mrd Shifts0........Q.........l...l.......’... 4
Indirect Branch Via Stack
Move Examples cecceceees
Subroutine Call and EXit ceccccsccccscccsccoscscsccccccconse
PCAL Instruction FlowChart ececeecccsccccsscscscsccccccsscns
EXIT Instruction FlowChart eeccccssceccsccsssccscccsccccccocee

...0.0...0..'.0.00......‘....0..0... 4-4

.................Q...0..........'... 4

[)W S)}

..'......'.......'.....O....'.‘....' 4—

QC..0..........................Q.‘.. 4..

!

o 0 0 0 00 4

............CO“‘GGGGSQEQQ!!QQQQ

...................0...'...........

WR NN DN
WO ~ U W

xvii

" ILLUSTRATIONS (continued)

Title

IXIT Instruction Flowchart
I/0 OFder PairS tieeeeeesceceaceceeesoocacooecesaconsnseess
Basic Arithmetic Stack Operations
Declaring and Calling A Procedure
Executing A Simple ProCedUIE .eeeeeeesscssccecssccecccssss
RECUILSIVE PIOGIAM «oeceeeeeeececacesoocscasasococcocsocesseess
Recursive Procedure FlOWCHAIL eceeeeeessssssnasscscoccoceses
Stack Operations During ReCUrSive CallS seveecececococeocess
Stack Operations During RECUISive EXItS sevececccccscecsss
MicroinsStruction SUMMALY eeeeeecesscecconssaccoccenasseses
MCU Simplified LOGiC Di@GLAM «e e v veeescceeccccscescnenness
Memory Module Simplified Logic Diagram
MCU PCA Jumper LOCAtiONS sueveececceeocooeccaossoocscscnsees
Memory Module Interface Diagram
SMA PCA Chip Arrangement
Error CorrecCtion COGES cueeeeeececesossossanssssccascsssss
Decode of HO1l through HO5
MEMLCGAN Table «.veeeennssssccocccoecasoocoecenesccscnccssss
Typical MEMLOGAN Printout
TIO Word Format
CIO Word Format
WIO Word Format
RIO WOrd FOIMAL eeeeeseeeeeascccncenssassssasscacesscsssss
SMA PCA SwitCh LOCALIiON teieveeecesesecccoocssanansccccess
MCL PCA SwitCh LOCALIiONS teseevecsscccccacecansoncnoncesss
BasicC I/0 ACCeSS MEthOAS .eeeeeeocscssoccsncscccccanoosoens
File System BasSicC OPEration ceeeeeeeeeecessscessansssocesss
I1/0 System Fundamental Elements cesces s s esesseasssssesecns
Device Reference Table
I/O SYStEM OVEIVIEW teeseoocceencsncnssssesscsecoocnsossess
Direct Read FOr Terminal DEVICES eeveeecesaceoossconeoessns
Direct Write FOr Terminal DEVICES s uesseeecccccscacecoeesess
Blocked and Unblocked I/O
I/0 Hardware EleMENtS teeeeeeeccocecoonssscsaacesccsssoesse
IOP Simplified LOGiC DiAGraM eueuveeeossssceccascccoscoosess
Interrupt POll and Data POLl seeeeeccecccccsecsocaaacscass
I/O0 Data ROULES eeeeseesnsscsssoccescennnssoscennnacssncess
I/0 Program Operation seeeeeeeceeseeesesseesaceescocensess
Multiplexer and Selector Channel COMPAriSONS eeveesoceosss
Multiplexer Channel and Device Controller Simplified

LOGIiC DiAGTaM teveroosoooececeecosooosseseesocccscessss
Multiplexer Channel Simplified Logic Diagram
Port Controller Simplified Logic Diagram seeeesceecccsecsss
Selector Channel and Device Controller Simplified

LOGiC Di@gra@M seeeeeeeeseocecossesccoccnceceenssecsnsss
Selector Channel Simplified Logic Diagram
IOP PCA Jumper and SwitCh LOCAtIiONS ceeeseeecceccccessenns
Multiplexer Channel PCA Jumper LOCAtiONS seveeeceoceoeeoens
Selector Channel Register PCA Jumper /Switch Locations
ICS DiSpatCher MAarKEr sueeeecceeeossessasssssssnsosonneses
Interrupt SYStem OVEIVIEW teeeeecescescoecscosonsecsnsnses
First Level EXternal INtEIIUPL eeeeseeocessscccecsoncossess
Second Level Interrupt or Dispatcher Interrupted eoeeees..

® 00 000000000000 000 0000 OGLIGIGOIEOETOIETITOE

® 90 0000 0e0 00 s O OO OCEOISEOEPRLETPBSETIE

® 9 @ 00000000 e OO OCO OO RO

® e 0 0000000000000 000

® 508000000 eOOIOLEGEOIEOOTSTS

® % 0000009000000 00 000 0P PGSO OIOEOSIOEOICCEEOETE
® © 20 0000000000000 C0 GO0t LLIRPSIOEEOOTRS

® 0 0000200000000 OOGEIOEOERIOEOIOOGEOSEOCE
0020000000000 P00 ROSIRPOEOCEOIOEOCOORDRTOEEOETS
® 0002 90 0000 LI)OO 0L LPOLOOOLPOEOGEOOEOLEOLSEEEIEBRBOOS

© 0 S P P RPNOLLLLELOLOEEOLOISIOCIOEOLIOCEOEOLEOIONIOIEOIOIOSEOEOPOEOESEOEORECEEOETSE

® 0 02 000 00 00O SS OO NNOIOSECLSIOELIOSEETSTTDTE

L B BB R R I Y N I S W'Y

xviii

ILLUSTRATIONS (continued)

Title Page

ICS-Type Internal INterrupt eeececececceccrssncncccccccccce 8-20
Non-ICS Type Internal INterrupts eeceseccscecccccccccoccce 8-22
Interrupt Handler Flowchart seececsccccccceccccccscsceccace 8-25
Power Controls and INdicatoOrsS eeeececesscosscccsccccccsccncce 9-2
HP 30310A Power Supply Block Diagram .cecesecececscccccccccses 9-3
HP 30311A Power Supply Block Diagram eeeeccecsceccccccccccs 9-1
Control Board Adjustment LOCAtiOnsS .eeececesccccccccccccce 9-1
HP 30312A Power Supply Block Diagram ee.ceecsccccccscccccas 9-23
Power Supply Control and Display Assembly eeceeccecceccccee 10-2
PDU SchematicC Diagram eecececcscecssscssssscsssssccccoccccscs 11-4
PCU SchematicC Diagram sssescscscsssscesccscsccscosscacococcsce 11-6
PCU/PCM Line Filter COnnecCtionS sseceecesccessscccoscccccccne 11-7
PCU to PCU/PCM Interconnecting Cable ccceececssccccccccccce 11-7
PCM Schematic Diagram sseseceecececcscsssccscsccsscscscscoccscoscs 11-10
Isolation Transformer Strapping OptioOns ecececcsccccccccsee 11-17

X 1X

TABLES

Title Page

HP 32421A Series III 2-Bay Model PCA Slot Assignments 1-8

HP 3242]A Series III 3-Bay Model PCA Slot Assignments 1-9
HP 32435A Series III PCA S1Ot ASSIigRMENtS eeveseeecssseees 1-10
Central Processor Module Features tesecsscsccscssvessssssses 2-5
Main Memory Configurations csecesssecscssssessscsecscssssece 2-6
Machine Registers *essesscescesnsssecnssssssrsssssssessnes 2-12
Reserved Low Main Memory LOCALIiONS seeeeeceenccccccoseenes 2-16
Condition COAES ceeescesecooeocccncesnsocnnsassansssssnanse 2-33

Bounds CheCkS SUMMALY eeeeescceccesasoocanaccnncocscessses
TOS Namer RelatiOnShiPS seeeecesceececoscceesconncesccncas 2-56
Memcry Interleaving Switch CONfigUrationsS seeeceececeooccesss
System Control Panel Switches and LAMPS eeeecoscescscccess
Maintenance Panel Switches and Lamps
MPI PCA J3 Pin Connections
Stack Element LOCALIONS tuiueeoeeereeeocccnsnsasecessacooess
R-Bus Field Code Definitions
S-Bus Field Code DefinNitiONS seeececececcesoocsoosncconoees
Function Field Code DefinitiONS eeeeeeeecessscecceccoococeses
Shift Field Code DefiNitiOnS seeeeeeeecscesscosccoscocoesess
Store Field Code DefinitiOnsS ceeeeeeeeeeecececococooeosccnses
Special Field Code DefinNitiONS ceeeeceeecessscscecccnosses
MCU Option Field Code DefinitiOnsS eueeeeeesssescccccsccesss
Skip Field Code DefinitiONS seeeeeceeeoeocsscoosccesncnnas
INterrUPt TYPES tueevorcecscccsocccocscscossscssascasoncss
HP 30310A DC Output VOLtAgeS seeeceeesseccoscsnosnsssscsss
HP 30311A Power Supply Controls and INGicatOrsS eeesseeceses
DC Output VOltaAgeS ecieececesccssceccsoosonssosasasssccosss
Float Voltage Versus TemPeratUre .ueeeeeecssoscccssscocoses
DC Power Supply SpcificationS seeeeececececeoesooecssoasees 10-3
DC STATUS/POWER Indicators and SWitCheS ..eeecececccoscesses 10-4

[
|
F-S
)]

U
w o
N

~

® 6 0200000000000 0008000000800 OOOE

LA B AN B BE IE BN 2R 2L BRI BN BN BB X BN BN BN B RN N R I Y

[HNN T T S A Y T DN B
wn WD O O U W

WOUWVYWWVWOUTULIILMOTLITULTULTOUTLT W W WIN
{
HHFONWWNODNNEHEOYONDNDS

f
b
[0 o]

PDU Strap Connections at TBl seveeceeeeeoecossacessosnesses 11-3
PDU to PCM CONNECtiONS suiveeeeeeoocoeoonososssseecsoscscsea 11-5
PDU Ac Service Strip Wiring seeeececececoessseoceccsseeees 11-5
HP 30311A Test Jack VOLtAQgeS seeeseesooscsssscccccssesnens 11-14

Primary Power Voltage Tolerances
System DC Voltage Tolerances

®® s 0000000000 CePOeIOLEBIREOEDREOODS 11‘16

® S 000020000000 P PIOIOEOEOIEPIOEOLEEEOETPVYEOETP ll_lg

XX

INTRODUCTION

The HP 3000 Series III Computer Systems are general purpose com-
puters with true multiprogramming and multilingual capabilities.
They can simultaneously handle many interactive and batch opera-
tions; each in any of several programming languages. The HP 3000
Series III Computer Systems feature hardware stack architecture,
var iable-length code segmentation in a hardware-assisted virtual
memory scheme, user protection, dynamic storage allocation, and
integrated hardware/software design. The hardware and software
work together in an interrelated manner with the hardware per-
forming many operations conventionally performed by software.
The HP 3000 Series III Computer Systems have a single, comp rehen-
sive operating system, the Multiprogramming Executive (MPE). MPE
is a general-purpose, disc-based software system that supervises
the processing of user programs. MPE relieves the user of many
program control, input/output, and other housekeeping responsi-
bilities by monitoring and controlling the compilation, run prep-
aration, loading, execution, and output of user programs. MPE
also controls the order in which programs are executed and allo-
cates the hardware and software resources they require.

+1. SYSTEM FEATURES
The HP 3000 Series III Computer Systems incorporate many features
usually found only on very large computer systems. These fea-

tures are summarized in paragraphs 1-2 through 1-10.

12 Stack Architecture

The system’s stack architecture provides private, hardware-
protected data storage for each user as well as an automatic
method for moving this data to and from the central processor
registers. The major operating features derived from this design
are:

a. Fast execution

b. Code compression

c. Hardware-protected execution

d. Dynamic allocation of subprogram data space

e. FEase of parameter passing

f. Efficient subprogram linkage

g. Rapid interruption and restoration of user environments

h. Subprograms being able to call themselves (recursion)

1-1

Introduction

13. Microprogrammed Operations

Many system operations that were previously programmed in soft-
ware are now microprogrammed. These operations are requested by
machine instructions which in turn execute multiple microin-
structions built into the central processor hardware. Micropro-
gramming eliminates repetitive coding otherwise required for
recurring operations.

4. Data Base Management Facilities

The computer systems provide software facilities that allow the
user to create, access, and maintain large data bases. The in-
formation in these bases can be accessed both interactively from
a keyboard terminal and programmatically from user programs writ-
ten in any of the the available programming languages.

15 Fve Programming Llanguages

The computer systems provide the user with a true multilingual
programming environment. The six available languages are COBOL,
RPG, FORTRAN, BASIC, SPL (a language developed especially for the
HP 3000 Series Computers), and APL.

16. Virtual Memory

The operating system’s hardware-assisted virtual memory scheme
offers each user program a memory space that exceeds the maximum
main memory size of 1024K words. Virtual memory consists of both
main memory and a flexible storage area on disc. Virtual memory
is implemented using a segment trap frequency algorithm that en-
sures the automatic presence in main memory of only those seg-
ments of code and data which are currently required by the
executing program. Main memory is thus efficiently shared by
the users in a manner that gives each programmer the impression
of working with a much larger computer system.

+1. Fauk Control Memory

The computer systems employ high-speed semiconductor memory mod-
ules that provide automatic fault detection and single-bit cor-
rection with no loss in performance.

+8. Concurrent 1/0 and CPU Operations

Many I/0 operations can be per formed concurrently with Central
Processor Unit (CPU) and memory operations. This is possible
because, in addition to the CPU, the computer has an Input/Output
Processor (IOP) with its own dedicated data transfer path (IOP
bus) to which are connected a Multiplexer Channel(s) and one or
more Asynchronous Terminal Controllers. All of this hardware
Operates under control of the MPE operating system which handles
all queuing and device scheduling.

Introduction

19. Reentrant Code and Private Data

Within the MPE environment, many user and system functions can be
active concurently without interferring with each other because
the hardware provides protection of programs and guarantees the
privacy of user data areas. The hardware keeps code and data
physically separate by organizing them into reentrant code seg-
ments and data segments. (The code segments can be shared among
users, but not altered. The data segments cannot be shared, but
can be altered by the creating user.) This segmenting ability
facilitates the operation of virtual memory in that 1; code seg-
ments need never be swapped out since an identical copy always
exists on disc, and 2; code segments can be swapped indirectly
from wherever the program file resides on disc without having to
be copied first to a special swapping disc.

+10. Operating System

A single, comprehensive operating system (MPE) supervises the
processing of all user programs and provides the user with an
extensive set of system functions. The major features of MPE are:

a. Interchangeable batch and interactive processing

b. Uniform, device-independent, and language-independent file
system

c. File coordination and security
d. Input and output spooling (concurrent usuage of I/0 devices)
e. Console job control

f. Autocmatic schedul ing (under control of the installation’s
management)

g. System back-up facility

h. Power fail/auto restart

i. System tailoring (under control of installation’s management)
j. System logging facility

1. HARDWARE FEATURES

The hardware design of the HP 3000 Series III Computer Sys tem
will be discussed in detail throughout the remainder of this man-

val. Briefly, the hardware features are:

a. Up toc 1024K words of high-speed, fault correcting, semicon-
ductor memory

b. High-speed selector channels for block transfers between main
memory and high-speed I/0 devices such as discs

’..J

Introduction

C. I/0 multiplexer channels for word transfers between main
memory and low- to medium-speed 1I/0 devices such as card
readers, line printers, and magnetic tape units

d. Asynchronous terminal controllers for data transmissions be-
tween main memory and interactive terminals

e. High-speed disc storage devices that provide storage capaci-
ties from 15 to 120 million bytes and data transfers of near-
ly one megabyte per second

f. 800 or 1600 character-per-inch magnetic tape units

g. Line printers with operating speeds from 165 to 1800 lines
per minute

h. CRT display terminals

i. Card readers and high-speed punched tape equipment

H12. SOFTWARE FEATURES

The HP 3000 Series III Computer Systems offer a wide range of
software including the MPE operating system, six programming lan-
guages, a text editor, a flexible file copier, a fast sort/ merge
package, two libraries of commonly used mathematical, statisti-
cal, and utility procedures, data base management facility, and
data communications products. Currently available software is
shown in figure 1-1,

+13. SYSTEM CONFIGURATIONS

The HP 3000 Series III Computer Systems are available in two pro-
duct lines; the 32421A Series III and the 32435A Series III. The
3242]1A Series III is available in two hardware models; a standard
2-bay model and an optional 3-bay model (Option 200). The 32435A
Series III is also available in two hardware models; a standard
l-bay model and an optional 2-bay model (Option 200). All models
use the same operating system, language processors, utility pro-
grams, data base management programs, and data communications
programs. All models operate in both batch and interactive modes
with full spooling capabilities. Rack layouts for the four mod-
els are shown in figures 1-2 through 1-5. (HP 29425A Cabinets
that contain the system discs are not shown.) The printed cir-
cuit assembly (PCA) slot assignments for the models are listed in
tables 1-1 through 1-3,

Introduction

OPERATING SYSTEM
System c nd File Input/
Configurator Initiator Console | :mmat Management Output
Manager nterpreter System System
Virtual Disc Private Serial Tape
Memory Space Volumes Disc Labels
Manager Manager Facility Interface Facility
Spooling Job/Session Process Segmenter Loader User
Facility Scheduler Dispatcher g ade Trap
Manager
Utility Accounting Logging Backup/ PovE/er
Intrinsi Eacilit Facilit Restore Fail/
rinsics acility actiity Facility Auto Restart
LANGUAGES
CcoBOL RPG FORTRAN BASIC SPL APL
UTILITIES
Data
. File Compiler Scientific
Text Editor . Sort/Merge g . Entry
Copier Library Library Library
DATA MANAGEMENT DATA COMMUNICATIONS
DBMS
KSAM (Image & Query) FORMS DS RJE MRJE MTS

Figure 1-1.

HP 3000 Series III Computer System Software

Introduction

BAY NO. 2

BAY NO. 1

PERIPHERAL BAY

CPU BAY o

i

I?—v

| CARD CAGE NO. 7

B

INOT USED)

E‘E FAN FILTER

">1
TAPE ORIVE !

;La-ml. “ee |

CARD CAGE NO. 1

CARD CAGE NO. 2
-

CARD CAGE NO. 3

T —

CARD CAGE NO. 4

ek
b

:
N

FAN FILTER

FRONT VIEW

{DOORS OMTTED FOR CLARITY)

BAY MO 1 28y No. 2
__crumay PERIPHERAL 1/0 BAY
°° WP 303104 HP 30310A
!
Jrnsaauyduvuovy
-HP 300624 5
O power O
DISTRIBUTION UNIT
POWER CONTROL (|
T MODULE
S
LIt |

REAR VIEW

(DOORS REMOVED FOR CLARITY)

Figure 1-2,

HP 32421A

Series III

Computer

System,

2-Bay Model

BAY NO. 3 BAY NO. 2 BAY NO. 1 BAY NO. } BAY NO. 2 BAY NO. 3
PERIPHERAL BAY 1O BAY CPU BAY o CPU BAY 1/0 BAY PERIPHERAL BAY
_,__H Devr ves
ﬂ i i i CARD CAGE NO.§
- | wemme \| o -
: " vare oRive)| CARD CAGE NO. }
i —~ i
! TN ‘cmo CAGE NO. & | ®® W aod0a
’) J ‘ CARD CAGE NO. 2
L) -
i Q ! CABLE GAP PN
i
I ! i ;
et | | |
! n0.7 | CARD CAGE NO.3
CABLE GAP
! (BLANK PANEL)
;
! W oA : fvyuuLabe Ly LY
(NOT USED) | CARD CAGE NO. 4 HP 30062A o
= == ==
I O rowen O O powEn
DISTRIBUTION UMIT DISTRIBUTION UNIT
NOT USED) HP 30311A POWER CONTROL (BLANK PANEL)
D MODULE
| | @ Q FAN FILTER
FAN FILTER FAN FILTER | FAN FILTER
‘ | i I .
: ! [
] | i]
L1t [1 [] i

. FRONT VIEW
(DOORS OMITTED FOR CLARITY)

{DOORS REMOVED FOR CLARITY)

REAR VIEW

Figure 1-3.

HP 32421A Series III Computer System, 3-Bay Model

1-6

Introduction

o °
SYSTEM CONTROL PANEL PO2 31
‘ HP 63312F l HP 62606M
o

puuruuunuu
= HP30082A =
fm— (==} —

CARD CAGENO. 1

CARD CAGE NO. 2 CARD CAGE NO. 2

CARD CAGE NO. 3
CARD CAGE NO.3

CARD CAGE NO. 4

CARD CAGE NO. 4

POWER SUPPLY CONTROL
AND DISPLAY ASSY

o
o| ° o
ISOLATION o)
POWER CONTROL UNIT
{| TRANSFORMER ° o
2 o o
FRONT VIEW REAR VIEW
(DOOR REMOVED FOR CLARITY) (DOOR REMOVED FOR CLARITY

Figure 1-4. HP 32435A Series III Computer System, 1-Bay Model

-] o o o o O
— 1
SYSTEM CONTROL PANEL Po2 P31 1
HP mlzd HP 62505M HP 62605M
o O] O o L
CARD CAGE NO. 1 o RD CAGE NO.
CARD CAGE NO.5 — P 30062A = S CARD CAGE NO. 5
— | | —_
O e
CARD CAGE NO.2 CARD CAGE NO. 2 S
CARD CAGE NO. 6 CARD CAGE NO. 6 S
o
o
o O
° CARD CAGE NO. 3 °
° CARD CAGE NO. 3 o
o o
° H
S =
o 9] 2 o
C O o i
o o
o O
o CARD CAGE NO. 4 3
o o
o CARD CAGE NO. 4 °
° &) o
g 0
S POWER SUPPLY CONTROL. ° °
o AND DISPLAY ASSY
o
o
9 o © © °
o
o o o
FILTER o S o
e
o o g °
o
° ° o o
1SOLATION o o ° o o
TRANSFORMER S o POWERCONTROLUNIT
o
o ° .l o o ° o °
FRONT VIEW REAR VIEW
(DOOR REMOVED FOR CLARITY) (DOOR REMOVED FOR CLARITY)

Figure 1-5. HP 32435A Series III Computer System, 2-Bay Model

Introduction

SLOT PRINTED CIRCUIT ASSEMBLY
Al Reserved for maintenance panel PCA.
A2 30012-60001 Expanded Read Only Memory
A3 30003-60021 Read Only Memory
A4 30003-60022 Skip and Special Field
CARD A5 30003-60003 Arithmetic and Logic Unit
CAGE A6 30003-60004 R Bus
N0 A7 30003-60025 S Bus
A8 30003-60006 Current Instruction Register
A9 30003-60007 Module Control Unit

A10 30003-60028 Input Qutput Processor

Al 30032-60001 Terminal Data Interface

A2 30061-60001 Terminal Control Interface

A3 Reserved for 204 Modem capability

A4 30009-60002 Fault Logging Interface
CARD A5
CAGE A6 30008-60003 Memory Array (128K)
NO.2 A7 Available to add 128K

A8 Available to add 128K

A9 Available to add 128K

A10 30007-60005 Memory Control and Logging

Al Available for add-on memory
A2 Available for add-on memory
A3 Available for add-on memory
A4 Available for add-on memory
CARD A5 Available for add-on memory
sLoT PRINTED CIRCUIT ASSEMBLY CAGE A6
NO.3 A7 30030-60020 Selector Channel Port Controller
Al Auvailable for programmed (SI10) or direct 1/0 A8 30030-60021 Selector Channel Register
A2 30215-60002 Magnetic Tape Controller Processor A9 30030-60003 Selector Channel Control
A3 30215-60006 Magnetic Tape Controller A10 30030-60011 Selector Channel Sequencer
A4 Auvailable for programmed (SI10) or direct 1/0
CARD Ab Available for programmed {S10) or direct 1/0 Al 30036-60002 Multiplexer Channel
CAGE A6 Available for programmed {(SI0) or direct 1/0 A2 Available for programmed (SIO) or direct 1/0.
NO.7 A7 Available for programmed (SIO) or direct I/0 A3 Available for programmed (SIO} or direct /0.
A8 Available for programmed (SI10) or direct 1/0 A4 Reserved for Selector Channel maintenance.
A9 Availabie for programmed (SI10) or direct 1/0 CARD A5 30031-60001 System Clock
A10 Available for programmed (S10) or direct {/0 CAGE A6 Reserved for maintenance.
NO.4 A7 3022960001 7905A/20A/25A Interface
A8 13037-60028 Disc Controller
A9 13037-60024 Error Correction

A10 13037-60001 Microprocessor

Table 1-1. HP 3242]1A Series III 2-Bay Model PCA Slot Assignments

Introduction

sLOT PRINTED CIRCUIT ASSEMBLY SLOT PRINTED CIRCUIT ASSEMBLY
Al 30036-60002 Muitiplexer Channel Al Reserved for maintenance panei PCA.
A2 30215-60002 Magnetic Tape Controller Processor A2 30012-60001 Expanded Read Only Memory
A3 30215-60006 Magnetic Tape Controller A3 30003-60021 Read Only Memory
A4 30031-60001 System Clock A4 30003-60022 Skip and Special Field
CARD AS Available for programmed (S10) or direct 1/0 CARD A5 30003-60003 Arithmetic and Logic Unit
CAGE AB Available for programmed (SiO) or direct 1/0 CAGE A6 30003-60004 R Bus
NO.5 A7 - Available for programmed (SIO) or direct /0 NO.1 A7 30003-60025 S Bus
A8 Available for programmed (S10) or direct 1/0 A8 30003-60006 Current Instruction Register
A9 Available for programmed (S10) or direct 1/0 A9 30003-60007 Module Control Unit
A10 Available for programmed (S10) or direct |/O A10 30003-60028 Input Output Processor
Al Available for programmed (SI0) or direct /0 Al 30032-60001 Terminal Data Interface
A2 Auvailable for programmed (S!0) or direct |/O A2 30061-60001 Terminail Control Interface
A3 Available for programmed (SIO) or direct {/O A3 Reserved for 203 Modem capability
Ad Available for programmed (SIO) or direct 1/0 A4 30009-60002 Fault Logging Interface
CARD A5 Available for programmed (SI10) or direct 1/O CARD A5
CAGE A6 Available for programmed (SIO) or direct |/0 CAGE A6 30008-60003 Memory Array (128K)
NO.6 A7 Available for programmed {SI0) or direct 1/0 NO.2 A7 Available to add 128K.
AB Available for programmed (SIO) or direct 1/0 A8 Available to add 128K.
A9 Availabie for programmed (SIO) or direct 1/O A9 Available to add 128K.
A10 Available for programmed {(SIO) or direct /0 A10 30007-60005 Memory Control and Logging
Al Available for programmed (S10) or direct 1/0 Al Awvailable for add-on memory
A2 Available for programmed (S10) or direct 1/0 A2 Auvailable for add-on memory
A3 Available for programmed (SIO) or direct 1/O A3 Auvailable for add-on memory
A4 Available for programmed {S10) or direct |/0 A4 Available for add-on memory
CARD Ab5 Available for programmed (SIO) or direct 1/O CARD A5 Available for add-on memory
CAGE A6 Available for programmed (SIO) or direct 1/0 CAGE A6
NO.7 A7 Available for programmed (SIO) or direct 1/0 NO.3 A7 3003060020 Selector Channel Port Controller
A8 Reserved for second disc controlier A8 30030-60021 Selector Channel Register
A9 Reserved for second disc controlier A9 30030-60003 Selector Channei Control
A10 Reserved for second disc controller A10 30030-60011 Selector Channel Sequencer
Al Reserved for second Selector Channel
A2 Reserved for second Selector Channel
A3 Reserved for second Selector Channe!
. A4 Reserved for Selector Channel maintenance.
CARD A5 Reserved for second 7905A/20A/25A Interface
CAGE AB Reserved for maintenance.
NO.4 A7 30229-60001 7905A/20A/25A Interface
A8 13037-60028 Disc Controller
A9 13037-60024 Error Correction
A10 13037-60001 Microprocessor

Table 1-2. HP 32421A Series III 3-Bay Model PCA Slot Assignments

Introduction

Slot PRINTED CIRCUIT ASSEMBLY Slot PRINTED CIRCUIT ASSEMBLY
Al Available for programmed (S10) or direct /0 Al Reserved for maintenance pane! PCA.
A2 Available for programmed (S10) or direct 1/Q A2 30012-60001 Expanded Read Only Memory.
A3 Available for programmed (S10) or direct 1/0 A3 30003-60021 Read Only Memory
A4 Available for programmed (S10} or direct 1/0 Ad 30003-60022 Skip and Special Fieid
CARD A5 Available for programmed (S10) or direct 1/0 CARD A5 30003-60003 Arithmetic and Logic Unit
CAGE A6 Available for programmed {S10) or direct 1/0 CAGE A6 30003-60004 R Bus
NO.5 | A7 | Available for programmed (SI0) o direct 1/0 NO-1 1 A7 | 3000360025 S Bus
A8 Auvailable for programmed (S10) or direct 1/0 A8 30003-60006 Current Instruction Register
A9 Available for programmed {S1O) or direct 1/0 A9 30003-60007 Module Control Unit
A10 Available for programmed (S10) or direct /O A10 30003-60028 tnput Output Processor
A1 Available for programmed (SIO) or direct 1/0 At 30008-60003 Memory Array (128K}
A2 Available for programmed (SIO) or direct /0 A2 Available to add 128K
A3 Available for programmed (S10) or direct 1/0 A3 Available to add 128K
A4 Available for programmed (S10) or direct 1/0 Ad Available to add 128K
CARD A5 Available for programmed (SI0) or direct 1/0 CARD A5 30007-60005 Memory Control and Logic =1
CAGE AB Available for programmed (S10) or direct 1/Q CAGE AB Available to add Memory Control and Logic =2
NO. 6 A7 Available for programmed (S10) or direct 1/0 NO. 2 A7 Available to add 128K
A8 Available for programmed (S10) or direct 1/0O A8 Available to add 128K
A9 Available for programmed (S10) or direct 1/0 A9 Available to add 128K
A10 Available for programmed (SI0) or direct 1/0 A10 Available to add 128K
Al 30135-60063 System Clock/FLI
A2 30032-60001 Terminal Data Interface
1/0 BAY A3 30061-60001 Terminal Control Interface
CARD Ad 30030-60020 Selector Channel Port Controlier
CAGE A5 30030-60021 Selector Channel Register
NO. 3 A6 30030-60003 Selector Channel Control
: A7 30030-60011 Selector Channel Sequencer
A8 Available for programmed (S10) or direct | O
A9 Available for programmed (S10) or direct 1,0
A10 Available for programmed (S10) or direct 1,0
A1l Auvailable for programmed {S10) or direct 10
A2 Available for programmed {S10) or direct |0
A3 Available for programmed {S10} or direct I,0
CARD Ad Available for programmed (S1O) or direct 1,0
CAGE A5 Available for programmed (S10) or direct 1/0
NO. 4 AB Available for programmed (S10) or direct t/0
. A7 30215-60002 Magnetic Tape Controlier Processor
A8 30215-60006 Magnetic Tape Controller
A9 30036-60002 Multiplexer Channel
A10 30229-60001 Disc Control interface

CPU BAY

Table 1-3. HP 32435A Series III PCA Slot Assignments

1-10

FEBRUARY 1980

Introduction

NOTES

Introduction

NOTES

1-12

SYSTEM/CPU OVERVIEW

This section contains a brief description of the computer sys-
tem’s hardware organization and detailed discussions of the sys-
tem’s operating environment, instruction formats, addressing
conventions, and CPU operations. The topics that are summarized
in this section are discussed in more detail throughout the re-
mainder of this manual. 1In addition, this section contains prin-
ciples of operation and servicing information for the CPU.

2-1 HARDWARE ORGANIZATION

The hardware elements of the computer system are organized as
shown in figure 2-1. This basic structure of independent modules
organized around a Central Data (CTL) Bus permits high-speed in-
ternal data rates. When not communicating over the CTL Bus, each
module can run independently at its own speed. This structure
also allows new equipment to be added without going through a
major hardware reconfiguration. The separate Input/ Output Pro-
cessor (IOP) Bus is totally dedicated to input/output (I/0) data
transfers which allows the computer system to immediately respond
to I/0 device needs regardless of what transfers are currently in
progress between the various system modules. The 1IOP Bus also
permits many I/O operations to be handled concurrently with CPU,
Main Memory, and Selector Channel operations. Data can be
transferred directly between Main Memory (Bank 0 through Bank 15)
and high-speed 1/0 devices in block mode via the Selector Channel
Bus, Selector Channel, Port Controller, and CTL Bus. For lower-
speed I1/0 devices, data can be multiplexed on a word-by-word
basis via the IOP, IOP Bus, Multiplexer Channel, and Multiplexer
Channel Bus. In both cases, the I/0 channels operate in parallel
with CPU operations. In addition, I/0 devices attached to the
IOP Bus can be directly controlled through the use of the CPU’s
direct I/0 instructions.

2-2. Bus System

The computer s bus system is a network of data, control, and pow-
er lines necessary to effect the transfer of data between comput-
er modules and between I/0 devices and memory. The individual
buses are discussed in paragraphs 2-3 through 2-8.

2-3. CTL BUS. The CTL Bus provides the communications path
between all computer modules. This bus consists of a 50-conductor
flat cable and connectors and is connected to each Module Control
Unit (MCU) and Port Controller in the computer system. (Refer to
paragraph 2-15.)

2-1

System/CPU Overview

M
C |Banks0-7
v
Lower Memory Module
M
C|Banks 8-15
U . .
Interactive Terminals
Upper Memory Module {Up to 16 terminals per controlier)
TR
Central Multiplexer
g Procegsing Multiplexer Channel Bus Asynchr_onous Asynchr.onous
@ ™ Unit Channel Terminal Terminal
< CPU anne Contrcller Controller
- C
< U —_ 1 -_——
a h]
Upto15
;l Input/Output Device I additional |
T Processcr Controller device
= 10P |
2 controllers
g Lo ——a
o L)
|
¥
I0P BUS
Device
Controller
Note: Each device controller on
the Multiplexer Channel can
Port Selector have from 1 to 8 devices
Controller Channel connected to it depending
Selector Channel Bus on the type of device.

Figure 2-1. HP 3000 Series III Computer System Hardware
Organization

2-4. IOP BUS. The IOP Bus provides the means for the IOP to
send control signals and control words to any Device Controller
and for the IOP to accept interrupts from any Device Controller.
(For multiplexed 1I/0 devices, all data transmissions also occur
via the IOP Bus. For high-speed devices connected to the Selec-
tor Channel Bus, data transmissions for direct 1I/0 instructions
also occur via the IOP Bus.) This bus consists of a 50-conductor
flat cable and connectors and connects the 1IOP to every Device
Controller and Multiplexer Channel in the computer system.

2-5. SELECTOR CHANNEL BUS. The Selector Channel Bus (one for
each Selector Channel) provides the communication path for the
Selector Channel to select one of up to eight I/0 devices for
transmission. Data transmissions on the Selector Channel Bus,
occuring as a result of an SIO instruction, are by block transfer
(data burst). This bus consists of a 50-conductor flat cable and
connectors and connects a Selector Channel to each of its as-
sociated high-speed Device Controllers.

System/CPU Overview

2-6. PORT CONTROLLER BUS. The Port Controller Bus (not shown
in figure 2-1) provides the communication path between each
Selector Channel and the Port Controller which interfaces with
the CTL Bus. This bus consists of a 50-conductor flat cable and
connectors and connects each Selector Channel to the Port
Controller.

2-7. MULTIPLEXER CHANNEL BUS. Except for minor signal nomen-
clature differences, the Multiplexer Channel Bus (one per Multi-
Plexer Channel) is identical to the Selector Channel Bus. This
allows certain high-speed 1I/0 devices to be connected inter-
changeably to either bus. The major difference is that data
transmissions are under control of a Multiplexer Channel instead
of a Selector Channel. All data transmissions in this case are
via the IOP Bus and are multiplexed among the I/0O devices on a
word-by-word basis. (The equivalent data lines on the Selector
Channel Bus are used as service request lines on the Multiplexer
Channel Bus.) This bus consists of a 50-conductor flat cable and
connectors and connects each Multiplexer Channel to each of its
associated Device Controllers.

2-8. POWER BUS. The Power Bus (not shown in figure 2-1), unlike
the previously discussed flat-cable buses, 1is a rigid PCA with
fixed 56-pin connectors. The Power Bus provides dc power and and
socme IOP Bus related signals for each PCA mounted in a particular
card cage module. There is one Power Bus for each card cage mod-
ule and each Power Bus is individually wired to the computer’s
power supply. Although dc power is not distributed from card
cage module to card cage module via the Power Bus, a 20-conductor
flat cable is connected between the Power Buses for the distribu-
tion of the IOP Bus related signals. In addition, each Power Bus
contains connector pins reserved for the data poll, interrupt
poll, and system clock signals.

2-9. Functional Hardware Elements

Brief descriptions of the principal hardware elements illustrated
in figure 2-1 are contained in paragraphs 2-10 through 2-14.

2-10. CENTRAL PROCESSOR MODULE. The Central Processor Module
determines the basic characteristics of the computer system’s
hardware and consists of the MCU, CPU, and IOP. Significant
features of the module are listed in table 2-1.

The MCU resolves CTL Bus priority conflicts between the CPU and
IOP and interfaces both to the CTL Bus. Refer to paragraph 2-15.
A detailed discussion of the MCU is contained in Section VI.

The CPU translates received instruction words into microprogram
starting addresses, decodes microprograms into fixed control sig-
nal sequences, executes various arithmetic functions, and either
transfers the results out of the Central Processor Module or
stores the results in various internal registers for future wuse.
The CPU shares the MCU with the IOP. A detailed discussion of
the CPU is contained in paragraphs 2-71 through 2-133.

2-3

System/CPU Overview

The IOP provides the I/O ccntrol link for the computer system and
resolves priority conflicts for I/0 interrupts and multiple
Multiplexer Channel access tc the CTL Bus. The IOP performs
different functions for each of the three T/0 transfer modes.
{(Refer to Section VII.) buring direct TI/0 transfer mcde and
depending on received direct I/O instructions (RIO, WIO, TIO,
CIO, SIN, and SMSK), the 1IOP transfers either data, device
status, or control information between the CPU and a Device Con-
troller. During programmed I/0 transfer mode via a Multiplexer
Channel, the IOP transfers I'/O program words between memory and
the Multiplexer Channel, and transfers data between memory and a
Multiplexer-Channel-selected Device Controcller. During pro-
grammed TI/0O transfer mode via a Selector Channel, the IOP only
trensfers initialization information tc a Device Controller
asscciated with the Selectcr Channel; it does not become involved
in any part of the I/O program execution. During all I/O trans-
fer modes, the IOP interrupts the CPU on behalf of the Device
Controllers. The IOP shares the MCU with the CPU.

Physically, the Central Processor Module consists of nine PCA’'s
contained 1in slots A2 through Al0 of Card Cage No. 1 of all HP
3000 Series III Computer System models. Card Cage No. 1 is a
dedicated card cage module and the nine PCA’s must be installed
exactly as shown in tables 1-1 through 1-3.

2-11. MAIN MEMORY. Main Memory is a high-speed, semiconductor,
randan access memory that provides high-speed stcrage for the
computer system. Main Memory operates as an error correcting
memory with single-bit fault correction and some double-bit de-
tection. (Main Memory can operate as a non-error correcting mem-
ory with a parity bit, but this is not the normal operating
mode.) Main Memory can vary in size from 128K (K=1024) words to
1024K words and, due to its modular design, it can easily be ex-
panded from one size tc another.

A maximum word capacity system .consists of 16 64K-wcrd memory
banks (Bank 0 through Bank 15) divided into twc 512K-word memcry
modules. Each 512K-word memory module contains its own MCU which
contrcls wcrd transfers between the module and the other system
modules connected to the CTL Bus. The word length transmitted
over the CTL Bus is 17 kits; 16 bits of data (cone word or ¢two
bytes) and one parity bit. (Within the memory modules, word
length is expanded to 22 bits; 16 bits of data and six bits for
automatic fault detection and correction.) A detailed discussion
of Main Memory is contained in Section VI.

Physically, Main Memcry consists of three basic PCA"s configured
as shown in table 2-2. It should be noted that each Semiconduct-
or Memory Array (SMA) PCA contains 128K wcrds of memory, that one
Memory Control and Logging (MCL) PCA can support up to four SMA
PCA’s (512K), and that one Fault Logging Interface (FLI) PCA can

support the computer system’s maximum memory capacity of e ight
SMA PCA's (1024K). The Main Memory PCA’s are arranged in Card

Cages No.2 and No.3 as shown in tables 1-1 thrcugh 1-3. Conven-
ticnally, card cage slots 246 through 2A9 (HP 32421A Series III)

2-4

System/CPU Overview

Table 2-1. Central Processor Module Features

— -

ARCHITECTURE

Hardware- implemented stack
Separate code and data
Non-modifiable reentrant code
Variable-length code segmentation
Virtual memory for code

Dynamic relocatability of programs

IMPLEMENTAT ION

I

I

|

|

|

l

I

|

I

I

I

I

I Microprogrammed CPU

| 175 nancsecond microinstruction time
| Automatic restart after power failure
| CTL Bus

| Bus parity checking

[Concurrent CPU and I/0 operations
|
I
|
|
|
l
I
I
l
I
I
I
I

INSTRIUCTIONS

209 instructions

All instructions except stack operations are 16 bits
in length. (Stack operations can be packed two per
per word.)

16- and 32-bit integer arithmetic

32- and 64-bit floating point arithmetic

28-digit packed decimal arithmetic

Special instructions that optimize operating system
efficiency

or 2A1 thrcugh 2A4 (HP 32435A Series IIL) are reserved for the
Lower Memory Module (Banks 0 - 7) and card cage slots 3AZz through
3A5 (HP 32421A Series II1L) or 2A7 through 2A10 (HP 32435A Series
III) are reserved for the Upper Memory Module (Banks 8 - 15).

2-12. MULTIPLEXER CHANNEL. The Multiplexer Channels are design-
ed to operate with moderate-speed I/0 devices. Each Multiplexer
Channel can handle up tc 16 Device Controllers. The Multiplexer
Channel, in conjunction with the IOP, allows its associated De-
vice Controllers to run concurrently, interleaving their trans-
fers to or frem Main Memory on a wcrd-by-word basis. The
Multiplexer Channel resolves priority conflicts between its
associated Device Controllers for access to the 1IOP, translates
I1/0 program doubleword instructions intc operating commands for
its Device Controllers, and maintains the operating status of
each Device Controller. Physically, the Multiplexer Channel con-
sists of one PCA which is conventicnally installed in Card Cage
No. 4 or 5 (depending on the ccmputer system model) as shown in
tables 1-1 through 1-3. A detailed discussion of the Multiplexer
Channels is contained in Section VII.

2=-5

System/CPU Overview

Table 2-2. Main Memory Configurations

A | T
| | | PCA s Required I
| I |
| Bank | System I I T I
| No. | Word Capacity | MCL | SMA | FLI | Total |
| | | [| |
Y R | | T
| 2 | 128K I 1 | 1 1 1 | 3 |
| 4 | 256K | 1 1 2 1 1 | 4

| 6 | 384K Il 1 | 3 | 1 | 5 |
| 8 | 512K I 1 1 4 | 1 | 6

| 12 | 768 K | 2 1 6 | 1 | 9 |
= 16 | 1024K 1 2 1 8 | 1 | 11 |

|

2-13. PORT CONTROLLER/SELECTOR CHANNEL. The Port Controller and
Selector Channels are designed to operate with high-speed 1I/0
devices. The Port Controller contains the MCU logic required to
interface the Selector Channels with Main Memory via the CTL Bus
and also resolves priority conflicts between Selector Channels
for accessing the CTL Bus. (Although the Port Controller contains
three selector channel ports, only two Selector Channels can be
installed in the computer system at one time.) Physically, the
Port Controller consists of one PCA and, as shown in tables 1-1
through 1-3, is conventionally installed in Card Cage No. 3. De-
tailed discussions of the Port Controller and Selector Channel
are contained in Section VII.

Each Selector Channel can handle up to eight Device Controllers.
Unlike the Multiplexer Channel which switches between Device Con-
trollers on demand (based on hardware priority), the Selector
Channel uses only one Device Controller at a time and that Device
Controller monopolizes the channel until the device’s I/O program
is complete. Thus, only one I/O program is current at a given
time for any one Selector Channel. Also, the Selector Channel
directly accesses Main Memory for data and 1I/0 program weord
transfers rather than indirectly as the Multiplexer Channel does
through the IOP. Physically, each Selector Channel consists of
three PCA’s and, as shown in tables 1-1 through 1-3, are conven-
tionally installed in Card Cage No. 3 and Card Cage No. 4 depend-
ing on the computer system model.

2-14. DEVICE CONTROLLERS. The computer system can handle up to
125 Device Controllers. Device Controllers provide the hardware
I1/0 linkage between the computer system and external I/O devices.
Primarily, a Device Controller translates programmed I/0 commands
(from a Multiplexer or Selector Channel) or direct I/0 commands
(from the IOP) into unique control signals required by its as-
sociated external I/O device(s). A Device Controller also gen-
erates the interrupts required by its associated I/O device (s)
and the interrupts required by direct or programmed commands.

2-6

System/CPU Overview

A Device Controller consists of one or more PCA’s and, depending
on the particular type of controller, can drive one or several
external I/0 devices. There are three types of Device Control-
lers; controllers used only for direct I/O, controllers used only
for programmed I/0, and controllers used for both direct and pro-
grammed I/O. Regardless of the type, every Device Controller can
accept all or some direct I/O instructions, can denerate inter-
rupts, and has a unique device number for addressing. Device
Controllers can be installed in any of the available card cage
slots designated in tables 1-1 through 1-3.

2-15. CTL Bus Priority

All computer system modules contain MCU logic that interfaces
each module to the others via the CTL Bus. Each module gains
access and control of the CTL Bus on a priority basis via its MCU
logic. (The CTL Bus is only available to one module at a time.)
For example; if two modules attempt to gain access to the CTL Bus
simultaneously, the module with the higher priority will get the
bus and the module with the lower priority will not get the bus
until it is released by the higher-priority module. CTL Bus
priority is resolved by assigning priority numbers to each system
module with jumper switches located in each module’s MCU logic.
The system modules assigned the lowest priority numbers have the
highest priority for accessing the CTL Bus.

Figure 2-2 illustrates the CTL Bus priority number assignments
for each module in a typical computer system. It should be noted
that the highest CTL Bus priorities (lowest priority numbers) are
reserved for Main Memory and that the lowest CTL Bus priority
(priority number 5) is reserved for the Central Processor Module.
The lower memory module responds to both priority numbers 0 and
1. The upper memory module responds to both priority numbers 2
and 3. The required MCU logic for Main Memory is contained on
the MCL PCA(s). (Priority for Memory Banks 0 through 7 is con-
trolled by one MCL PCA and priority for Memory Banks 8 through 15
is controlled by a second MCL PCA.) If installed, the Selector
Channel(s) has the next highest CTL Bus priority (priority number
4) after Main Memory. The required MCU logic for the Selector
Channel(s) is contained on the Port Controller PCA. As previous-
ly discussed, the Central Processor s MCU resolves CTL Bus prior-
ity conflicts between the IOP and CPU. The IOP always has higher
priority than the CPU. Therefore, the CPU always has a lower CTL
Bus priority than any other module in the computer system.

2-16. OPERATING ENVIRONMENT

2-17. Virtual Memory

Virtual memory is a memory management scheme that wuses semicon-
ductor Main Memory and disc storage secondary memory. Due to a
technique called memory segmentation, many programs stored in
secondary memory can concurrently access the computer system and

share its Main Memory. The svstem organizes programs into vari-
able-length segments of code and data in secondary memory which

2-7

System/CPU Overview

CTL BUS
PRIORITY PRIORITY PRIORITY PRIORITY
NO. 8 AND 1 NO. 2 AND 3 NO. 5 NO. 4
512 K WORDS 512 K WORDS
PORT
LOWER MEMORY MODULE UPPER MEMORY MODULE CPU/IOP COT;QOb
BANKS @ - 7 BANKS 8 - 15
Y
MAIN MEMORY

Figure 2-2, CTL Bus Priority Number Assignments

can be transferred in and out of Main Memory on demand. (Code
consists of executable instructions and unchanging constants of a
program or subprogram. As the code is executed, the manipulated
values are referred to as data.) When a program is executed, only
those segments of code and data required at a particular time
actually reside in Main Memory and all other related segments
remain in secondary memory until they in turn are required. When
a particular code segment is no longer needed, it is overlayed in
Main Memory by the next required code segment. (Code segments
are non-modifiable and reentrant.) If a code segment is needed
again, it is again copied from the secondary memory disc where it
resides. Data segments, however, are dynamic and their contents
can be changed during the programs execution. Therefore, when a
particular data segment is no longer needed, it is copied back
into the secondary memory disc and replaces the original data
segment version. The vacated Main Memory space is then available
for other segments. This process of transferring segments be-
tween secondary memory and Main Memory is referred to as swapping
and permits large programs that actually exceed Main Memory ‘s
word capacity to be executed concurrently and still allow Main
Memory space for additional user programs.

2-18. Variable-Length Segmentation

Variable-length segmentation of code and data is used to facili-
tate multiprogramming. It minimizes waste of memory resources
due to internal fragmentation and allows the operating system to
deal with logical rather than physical entities. This means that
a particular subprogram can be contained within one segment
rather than arbitrarily divided between two physical pages, thus
minimizing the amount of swapping that need be accomplished while
executing the subprogram. The location and size of all executing
code segments are maintained in a Code Segment Table and the lo-
cation and size of all associated data segments are maintained in

2-8

System/CPU Overview

a Data Segment Table. These tables are known to both software
and hardware. Software uses the tables for dynamic memory man-
agement by the operating system. Hardware uses the tables to
perform references and transfers between segments and to make
sure that all the segments required for current execution are
present in Main Memory. {Refer toc paragraph 2-24.) Code segments
can be up to 16K words in length and data segments can be up to
32K words in length.

2-19. Processes

In an MPE environment, programs are run on the basis of processes
created and handled by the operating system. A process is the
basic executable entity in MPE. A process is not just a parti-
cular program; it is the unique execution of a particular program
by a particular user at a particular time. When a user requests
the execution of program, the system creates a private, hardware-
protected data segment called a stack for that particular execu-
tion. Data segments separate from the stack can be obtained
dynamically during process execution. Data segments can also be
expanded and contracted by the operating system as required.
This includes system handling of the stack overflow interrupt
(paragraph 2-69) during which the data segment may automatlcally
be expanded to accommodate operation of the stack. The program ‘s
changing set of code segments operating on the data stack consti-
tute the process. (The code segments used by a particular pro-
cess can be shared with other processes, but each individual
process data stack is private.) In order for a prccess tc exe-
cute, its data stack and code segment containing the procedure
currently in execution by the CPU must be present in Main Memory.

2-20. Data Stacks

As prev1ously discussed in paragraph 2-19, data for each user is
organized into a data stack. In general, a stack is a storage
area where the last item stored in is usually the first item tak-
en out. In actual use, programs have direct access to all items
in the stack by specifying addresses relative to several CPU reg-
isters. (Refer to paragraph 2-21.) All features of the stack,

including the automatic transferring of data to and from CPU reg-
isters and checking for stack overflow and underflow, are imple-
mented in the hardware. When programming in high-level languages
such as COBOL or RPG, all stack manipulations are accomplished
autcmatically by the language processor. The user can, however,
manipulate the stack directly by writing programs in SPL. Figure
2-3 illustrates the general structure of a data stack as viewed
from a subprogram. The white areas represent locations filled
with valid data and the shaded area represents available unfilled
locations. The stack area is delimited by the locaticns defined
as Data Base (DB) and Stack Pointer (S-pointer). The DB and S-
pointer addresses are retained in dedicated CPU registers. (Re-
fer to paragraph 2-21.) The Q-minus relative addressing area con-
tains the parameters passed by the calling program. The area
between the S-pointer and Q contains the subprogram’s local and
temporary variables and intermediate results.

2-9

System/CPU Overview

DB

GLOBAL VARIABLES DB - pius direct reiative
addressing {up to DB+255)

GLOBAL ARRAYS DB - plus indirect relative
addressing

PARAMETERS Q minus relative

addressing (up to Q - 63)

LOCAL VARIABLES Q - plus direct relative

addressing (up to Q+127)

LOCAL ARRAYS } Q - plus indirect relative

addressing

TEMPORARY VARIABLES &
INTERMEDIATE RESULTS

/ / B P A
74
o

s :/4

S - minus relative
addressing (up to S - 63)

ya

/

Z 7% ///

Figure 2-3. Typical Data Stack

The data in the DB location is the oldest element on the stack.
The data in the S-pointer location is the most current element on
the stack. (The S-pointer location is referred to as the Top of
the Stack (TO0S). Conventionally, TOS is represented downward
from DB to correspond to the normal progression of writing soft-
ware programs where the most recently written statement is fur-
ther down the page than previously written statements. The area
from S+1 to 2 is available for adding elements to the stack.
When a data word is added to the stack, it is stored in the next
available 1location and and the S-pointer is automatically incre-
mented by one to reflect the new TOS. (This process is said to
"push" a word onto the stack.) When data is deleted from the
stack, the S-pointer is decremented which puts the deleted word
in an undefined area. S-minus relative addressing is used to
refer to recently stacked elements of data and is one of the
standard addressing conventions. Under this convention, S-1 is
the second element on the stack, S-2 is the third element on the

stack, etc. The other standard addressing conventions are
DB-plus relative addressing, Q-minus relative addressing, and

2-10

System/CPU Overview

O-plus relative addressing. (Q separates the data of a calling
program or subprogram frcm the data of a called subprogram.)

Since the four TOS elements are the most frequently used, there
are four corresponding CPU registers (RA, RB, RC, and RD) theat
can at various times contain these four elements. The use of the
four CPU registers increases stack operation execution speed by
reducing the number of memcry references needed when manipulating
data at or near TOS. The fcur CPU registers are implicitly ac-
cessed by many of the machine instructions and whenever stack
locations S, S-1, S-2, or S-3 are specifically referenced. (Refer
tc paragraphs 2-96 and 2-97.) During execution, data stacks are
automatically expanded by the operating system up to a maximum of
32K words.

The system is also capeble of operating in a split-stack mode.
(Refer to paragraph 2-64.) 1In split-stack mode, the DB Register
points to the current extra data segment and the other stack reg-
isters continue to point to the stack data segment. This is par-
ticularly efficient for system routines with tables in system
data segments. In split-stack mode, these data segments can be
accessed relative to the DB Register while using the other stack
registers for computation. In addition to split-stack mode, the
system contains instructions for moving data between data seg-
ments. These instructions cause an "absence trap" if either of
the required data segments is not present in Main Memory. There-
fcre, the system can access very large address spaces outside of
the stack and can provide buffering and other data storage facil-
ities without having to reserve space for these functions within
the stack data segment.

2-21. CPU Registers

The computer system contains 38 special purpose registers which
perform the specific functions summarized in table 2-3. Since
all addressing of code and data segments is accomplished relative
tc hardware address registers, the segments can be dynamically
relocated in memory by simply changing the register base
addresses. (The few instances where absolute addresses are re-
guired are privileged operations handled by the operating
system.) Several of the hardware registers are used for defining
the 1limits and operating elements of the code and data segments.
As shown in fiqure 2-4, fcur of the CPU registers point to loca-
tions in a code segment and eight of the CPU registers point to
locations in a data segment. It should be noted that there will
normally be several segments in Main Memory at one time, but only
one code segment and one data segment will be active at any given
time. The CPU registers always pcint to the currently active
segment . The functions of the CPU segment pointer registers are
discussed in paragraphs 2-22 and 2-23. The remaining special
purpose registers will be discussed later in this manual.

System /CPU Overview

Table 2-3. Machine Registers

| [

| Register | Furiction | Register | Function |
| I | | I
I o I T T I o |
| PB | | SWCH | Switch Register I
| P | Code Segment | | |
| PL | Pointers | PCLK | Procecss Clock

| PB-Bank | | | Register I
I | I I |
| CIR | Current Instruction| SPO | I
| | Register | SFl1 | |
| | | SE2 | I
| NIR | Next Instruction | SP3 | Scratch Pad, Flag, |
| | Register | CTR | and Interrupt I
| | | ABS-Bank | Registers I
| DL | | CPX1 l [
| DE I | CPX2 l I
I Q | | MOD I |
SM	Data Segment		
SR	(Stack) Pointers	IOA	I/0 Registers
2z		I0D	
DE-Bank			
S-Bank I	ACOR	Memory Address and	
I I	DCOR	Data Registers	
RA l	OPND I I		
RB	Top Of Stack (TGS)		
RC	Registers { RAR	Firmware Address	
RD [SAVE	Registers	
	I I		
X	Index Register	STA	Status Register I
I | | I I

———— " ———————— —— . - | ——— ————— - ——— -

2-22. CCDE SEGMENT REGISTEES. The functions of the CPU code
segment registers are as fcllows:

The PB Register defines the program base cf the code segment be-
ing executed. The PB Register contains a 16-bit absolute address
pecinting to the first memory location of the ccde segment.

The PB-Bank Register is a 4-bit register used in conjunction with
the PB Register tc define in which memory bank the code segment
recides.

The PL Register defines the program limit of the code segment
being executed. The PL Register contains a 16-bit absolute ad-
dress pcinting to the last memcry location of the code segment.

The P Register is the program ccunter. The P Register contains a
1l6-bit absclute address pocinting to the memcry location of the
next instruction to be executed. The P Register can never point
tc a location beyond the limits defined by the PB and PL Regist-
ers.

2-12 FEBRUARY 1980

System/CPU Overview

CODE SEGMENT DATA SEGMENT
POINTING POINTING
REGISTERS REGISTERS
PB Stack
CODE DATA
Bank SEGMENT Bank SEGMENT
D [P8 Register D [OLRegister
(Program Base) (Data Limit)
DB
Bank
D r DB Register J—D
(Data Base)
r P Register J—P
(Program Counter}
PL Register
[i(Programg:.sumit) r Q Register
(Stack Marker)
(Top-of-Stack in Memory)
{ [SM Register f >
isplacemen r———-‘-—,-_ﬂ i
U INCREASING Y L_fs_PSL“If__JJ
ADDRESSES (Logical Top-of-Stack)
r Z Register
(Stack Limit)
Figure 2-4. CPU Segment Pointer Registers
2-23. DATA SEGMENT REGISTERS. The functions of the CPU data
segment (stack) registers are as follows:
The DL Register defines the data limit of the current data seg-
ment. The DL Register contains a 16-bit absolute address point-
ing to the first word of memory available to the user’s data
space.
2-13

System/CPU Overview

The DB Register defines the data base of the current user’s
stack. The DB Register contains a 16-bit absol ute address point-
ing to the first memory location of the directly addressable glo-
bal area of the stack.

The DB-Bank Register is a 4-bit register used in conjunction with
the DB Register to define in which memory bank the stack or split
stacks (paragraph 2-64) reside.

The Q Register defines the current stack marker in the current
data segment. The area of the stack between Q and S represents
data that is incurred by the current procedure or routine. The
Q Register contains a 16-bit absolute address pointing to the
fourth word of the current stack marker being used within the
stack. The location pointed to by the 0@ Register must be within
the limits defined by the DB Register and 27 Register. (During
privileged mode (paragraph 247), Q can be moved below DB.

The SM Register defines the last memory location of the current
stack. The SM Register contains a 16-bit absolute address point-
ing to the 1last accessed data location in memory. It should be
noted that the contents of the SM Register may not necessarily
point to the actual (or logical) TOS. The location pointed to by
the SM Register must be within the limits defined by the DB Reg-
ister and Z Register.

The SR Register defines the number of TOS elements that are in
the CPU stack registers. The SR Register contains a 3-bit number
that has a value from 0 and 4. This number is a positive dis-
placement which, when added to the address contained in the
SM Register, indicates the logical TOS. (The contents of the
SM Register plus the contents of the SR Register always defines
the S-pointer.)

The S-pointer is not a physical register, but is logically com-
posed by adding together the contents of the SM Register and
SR Register. The S-pointer always defines the logical TOS. (The
principle of using two physical registers to create the S-pointer
is employed for hardware convenience in achieving fast execution
times.) The following relationship exists between the S-pointer
and the CPU stack registers:

RA = S-pointer = SR Register + SM Register
RB = S-pointer - 1
RC = S-pointer - 2
RD = S-pointer - 3

The Z Register defines the stack limit of the current user’s
stack. The Z Register contains a 16-bit absolute address point-
ing to the last memory location available to the stack. (Actual-
ly, each data segment has several locations beyond Z that are
used for bounds checks (paragraph 2-65) and stack markers due to
an interrupt (paragraph 2-28).

System /CPU Cverview

The S-Bank Register is a 4-bit register used in conjunction with
the S-pointer and DL, Q, and Z Registers to cdefine which memory
the S-Bank is not necessarily equal tc the DE-Bank.

2-24. Basic Table Structures

The first few locaticns of Main Memory are reserved for the sys-
tem pointers 1listed in table 2-4. During system cold load,
memory locaticon 0 is set to point tc the location of the Code
Segment Table (CST) as shown in (1), figure 2-5, The CST con-
tains a single four-word entry for each Segmented Library segment
currently in use 1in the system. (Segmented Libraries permrit
separate prcgrems to share procedures.) Memory location 1 (2),
figure 2-5 points to the Code Segment Table Extension (CSTX) area
allocated to the prcgrem keing executed by the CPU. The CSTX is
used to keep track of the code segments in the varicus prcgrem
files being executed. Therefore, the contents of memory location
1 will shift to point to various sections of the CSTX as differ-
ent progrems are executed by the CPU. For example, figure 2-5
shows that Prcgrem X is currently being executed by user prccess
A. Also during system cold load, memory locaticns 2 and 3 are
set to point to the Data Segment Table (DSET) and Process Control
Block (PCE) Base respectively. See (3) and (4), figure 2-5.
There is a four-word DST entry for each data segment in use in
the system as discussed in paragreph 2-25. There is a PCE allo-
cated to each prccess runrning in the system. The PCB entry for a
proccess points to the DST entry for its stack data segment
although, fcr simplicity, this is not shown in figure 2-5,
Memory location 4 is set by the software to pcoint to the PCB of
the currently executing process (5), figure 2-5, The linkage
frcm the PCB to the CSTX area (6) is used tc set memory location
1. It should be noted that if process B anc¢ process C happen toc
be executing the same prcgram (7), the program file segments will
be shared. The CFU Status Register (STA Register) then pointe tc
the current segment of the current prccess holding CPU resources.

2-25, CODE SEGMENT TABILE AND CODE SEGMENT TABLE EXTENSION. The
CST contains a list of code segments thet are being referenced by
executing programs. Its length is determined at system genera-
ticn time. The actual number of entries in use at any time is
variable, limited cnly by the length cf the table. Entries are
dynamically allocated by the operating system as prcgrams are
loaded and unloaded. Each entry contains contrcol information
abcut the segment and gives ite length an¢ starting address in
the forwrat shown in figure 2-6. The first %30C entries are re-
served fcr Segmented Library segments. The CST entry for segment
0 contains control infcrmation. Segment 1 contains the rcutines
needed to service internel interrupts. Segments 2 thrcugh 191
($277) contain code such as service routines fcr external inter-
rupte, system intrinsics, and library procedures. The reméeinder
of the CST entrieg fall in the CSTX area and keep track of pro-
gram SsScgments. Each program can have up tc 62 segments. The
table is accessed via the PCAL, EXIT, IXIT, and DISF instructions
(Secticn IV) and is completely invisible to the user.

System/CFU Cverview

Table 2-4. Reserved ILow Main Memory Locaticns

——— - - — - — - T " W e Swo T3 e W . W e —— o S ——

|
Memory Location | Contents |
i

| I

| Code Segment Table Base I

| Code Segment Table Extension |

| Data Segment Table Base i

| Prccess Control Block Base |

| Current Prccess Contrcl Block|

| Interrupt Stack Base |

| Interrupt Stack Limit |

| Interrupt Mask |

$10-%17 | |
$20-%777(mex.) |

Reserved
| Device Reference and External
| Interrupt Table]
210CG0 | System Global Table (Pointers
I

tc resident tables, etc.)

l
|
e - - e |
Note : The % symbol preceding a number indicates|
an octal value. |

I

—— - - -~ —— —— - —

2-26, DATA SEGMENT TABLE. The DST contains a list of the various
data secments currently in use by the <cperating system and user
prcgrams., These segments include I/0 buffers, system and user
prccess stacks, and extra data segments. The DST length is de-
termined at system generation time and it contains a fcur-word
entry fcr each data segment in the fcrmat shown in figure 2-7.
The actual number of entries in use at any one time is variable,
limited only by the length cf the table. Entries are dynamically
allocated by the operating system as programs are loaded ané un-
loaded@ or as special capebility processes request or release ad-
ditional data segments.

2-21. Code Segment Linkage

During the execution of one user process, there will usually be
several code segments in memory and a single data segment. As-
sume that the current process presently has two code segments in
memory as shown in figure 2-8, The purpcse of figure 2-8 is to
illustrate how the system keeps track cf where code segments are
and to show how references can be mede from one segment to ancth-
er. Although figure 2-8 illustrates hardware, it is the respon-
sibility of the MPE operating system tc contrcl the tables showrn.

The CST Pointer is permanently resident in Iocation 0 and it
contains an absolute address pcinting to the starting location of
the CST (1), figure 2-8. The CST tells where each code segment
(presert or absent) 1is located. If the segment 1is a program
segment, Location 1 is used. Each entry in the CST has a urique
numoer (code segment number) theat identifies the rerticular seg-

2-16 FEBRUARY 1980

System /CPU Overview

Low Main Memory

Data
Segment
Entries

Segmented
Library
Code
Segment
Entries

Program X

CSTBase . L
CST Extension ..} @
— DST Base
- PCB Base
Process Control - Current PCB
Block Table - Segment Tables {4-word entries)
T I]
| | |
| DATA |
| @ l SEGMENT |
Process @ | TABLE |
A
PCB h | l
| N i
B 1
| | '
Process | |
B 7 ‘ CODE |
Pee (2) | SEGMENT |
| I TABLE |
|
| !
Process
C -]
CST
Pcs EXTENSION
| _
]

o NN

Code Segment
Entries
Program Y
Code Segment
Entries

Figure 2-5,

2-17

Basic Data Structures

D

CPU Overview

Figure 2-6.

CODE SEGMENT TABLE Doubleword

T T T
01727374 5 677 8 910 111213 14 15
AIM[a]T[L4

Reserved
Reserved B
Address

A Absence Bit = 1 if segment is absent from main
memory.
M Mode Bit = 11f segment executes in Privileged
Mode (Code only).
R Reference Bit = 1 tf segment has been referenced
(set by microcode}.
T Trace Bit = 1:f trace feature is used. Checked by
PCAL instruction.
L Length Field = segment length divided by 4.
B Bank Address. Points to memory bark (:f resident
1IN main memory)} in which segment resides
ADDRESS Absolute address of PB within B if the
segment 1s present, otherwise the 3rd
and 4th words contain the absolute
disc address.

SEGMENT TRANSFER TABLE Words
STT Length

o1 2 3 4’5'6[7'a'9[1?n’vz[|3’14'u5

[ofulrlc]o o o o] LENGTH

U Uncallable bit

P Patch Area Bit = 1 if patch area
exists

C Code Segment Bit (0 = SL code
segment; 1 = program code seg-
ment)

LENGTH Maximum = 225 (Calls
from external segments may re-
ference only the first 127 entries.
PL-1 thru PL-127.)0(PL-0-STTL.)

Local Program Label

[} 1'2'3{4'5'517' 5'9[10'11'12113‘14?5

fo]u] ADORESS

U Uncallable bit
ADDRESS PB relative, + only

External Program Labe!

0 1'2'3[4'5'5]7'a'glw'n'\zl]z'm'ts

K STT = | SEG =

STT = STT entry number in target segment,
maximum - 127

SEG = Target segment

STATUS word

T

2 3[4 5" s]7ﬁ ' 9[»0'”'12113'14‘15

mi1]TIRr]o]c] cc | SEGMENT =

Mode bit (=1 for privileged mode)
Interrupt enable {1}/disable(0}, external
Traps enable(1)/disable(0), user

Right Stack Opcode bit (pending = 1)
Overflow bit

Carry bit

CC Condition Code

SEGMENT # currently executing

Q0o+~

Formets Asscciated With Cocde Segments

2-18

FEBRUARY 1980

7787910 11 12 13 14'15

A|JCI|R L/4
Reserved

Reserved B
Address

= Absence Bit = 1 if segment is absent from main memory.

= Clean bit. Used to eliminate unnecessary output swapping.

Reference Bit = 1 if segment has been referenced (set by microcode).

= Length Field = segment length divided by 4.

= Bank Address. Points to memory bank (if resident in main memory) in which segment resides.
ADDRESS = Absolute Segment Address within given bank in third word of segment. If segment is
absent, words 3 and 4 contain absolute disc address.

-0 P>
1

90020-6

Figure 2-7. Data Segment Table Entry Format

ment. Each entry consists of a four-word descriptor which in-
cludes the absolute address of the related segment and its
length. Entry number 0 in the table is unique in that it simply
points to the final entry in the table (2). This defines the
length of the table for the benefit of the operating system in
allocating space for the table itself. Segment number 0 does not
exist. Assume that one user is executing a process which re-
quires code segments 22 through 25. Also assume that segments 22
and 23 are in Main Memory and that segments 24 and 25 are not
presently needed and, therefore, are on disc. The process is
presently executing instructions in code segment 23. This means
that the address value contained in the fourth word of CST entry
23 has been loaded into the PB Register. Therefore, the PB
Register is pointing to PB(a) as shown in (3), figure 2-8. The
PL Register, using a value derived from the segment length, 1is
pointing to PL(a). The P Register is advancing from PB(a) toward
PL(a) .

The last nine locations of segment 23 are not part of the seg-
ment ‘s code, but are added by the operating system when the seg-
ment is loaded into virtual memory. These locations contain
linking references for every procedure call (PCAL) in the Segment
Transfer Table (STT). A PCAL is an instruction that references a
set of instructions elsewhere in the code segment. This set of
instructions is structured as a procedure to perform a standard-
ized operation or computation and then return control to the
instruction immediately following the call instruction. It
should be noted that entries in the STT are numbered from the end
back towards the code. Entry number 0 gives the STT length as
shown in figure 2-6. This indicates the number of the last STT
entry (4), figure 2-8 , so that the hardware can make validity

2-19

System/CPU Overview

[csTPoinNTER Location 0 or 1

| CST END

I . |
Code :
Sogmentl L] l
Number l : ' @ CODE SEGMENT 22
® > PB(b)
——————— °
2f— —— — - = .
~ T PBlD) ~ BEiIN <+
""""""" END
Bt— — — — — — .
—————— 3 L]
PB(3) 0.0 — .
—————— 5
Ut— — ~ — — — » 4[0]U] P8 Rel Acdress SEGMENT
————— bl TRANSFER
________ | 12 TABLE
I
________ PL(b)
A % e
SEG i M i ;
[]
No 22 | . | | CODE SEGMENT 23
l : l | —p PB(a)
_____ — :
—_—_—— - | PCAL (4) —4—ou
_______] | .
' : (®
' .
| PCAL (5) ———
I .
' :)
| (&) — BEGIN
! ¢
—— =S —-— e END
§TTNoa ST .
Entry .
Number °
8
7
6
_ s[1\[stT=] sec = je—' SEGMENT
~———— 4 [0[uU[PB Rei Address ——— | TRANSFER
3 TABLE
2
@ ;
~— 0 Last STT# =8 PL{a) J

Figure 2-8. Code Segment Linkage

2-20

System/CPU Overview

checks on PCAL references. For example, a call toc entry to num-
ber 9 wculd be invalid. (If a call from within the segment is
made to entry 0, the reference will be taken from the TOS instead
of from the STT. A call from outside a segment tc entry 0 starts
execution at P = PB after checking the U bit.) When the execution
sequence reaches the first PCAL instructiocn, a reference (5) is
made to the fourth entry of the STT. (Since the PCAL instruction
uses PL-addressing, the instruction references cell PL -4.) This
location contains a lccal program label (figure 2-6) which im-
plies that the called procedure is loccated within the same seg-
ment. The reference 1is a PB-relative address pointing to the
beginning of a procedure or block (6), figure 2-8. After some
preparatcry operations, which include saving the return address
on the stack, the PCAL instruction transfers control tc the pro-
cedure. When an EXIT instruction is enccuntered in the proced-
ure, control is returned to the instruction immediately following
the first PCAL. 1In this example there were no references outside
the current segment. In the following example, an external ref-
erence is made.

When the execution sequence reaches the second PCAL, another call
(7), figure 2-8 is made to the STT. The call requests the fifth
entry in the table which happens tc be an external program label
(indicated by a logical 1 in bit 0). This implies that the called
procedure is in some other segment. The 1label contents tell
which segment and also give the STT number in that segment which
must contain the lccal reference. The PCAL instruction, after
the usual preparatory operations (which include bringing the seg-
ment intc Main Memory if it is absent), transfers control to the
called procedure as follows. The segment number given in the
external program label (8) points tc a specific entry in the CST,
assumed to be entry number 22. A value for PB is picked up in
the fourth wcrd of this entry and lcaded intc the PB Register.
This causes the PB Register to point (9) to the starting location
of code segment 22; PB(b). The limit, PL(b), is also establish-
ed. Meanwhile, the STT value given in the external program label
is pointing to entry number 4 (10) of the STT. This causes a
PB-relative address to be picked up for the P Register. The P
Register ncw points toc the starting address of the procedure or
block (11) and execution begins. If an STT number of 0 was giv-
en, execution would begin at PB(b). Calling procedures outside
the segment in this manner 1is subject to a number of rules,
checks, and safegquards to ensure that the call is allowable and
that other users are fully protected from invasions of privacy.
The manner in which the operating system sets up the STT ensures
that all transfers are legal for that process. At the conclusion
of the called procedure, control is returned to the original seg-
ment by the EXIT instruction. This instruction restores the STA
Register which gives the caller s segment number, and the PB Reg-
ister value (12) returns back to PB(a). The saved P-relative
address on the stack reestablishes the return point and execution

continues at the location immediately following the second PCAL
instruction.

2-21

System/CPU Overview

2-28. Stack Operation
No te

When the letters P, @, DB, etc., are
used alone in the follcwing paragraphs,
the letter is interpreted to mean "the
location pointed to by the P Register,
Q Register, DB Register, etc."

Figure 2-9 illustrates the basic construction of the stack area
and how the CPU stack registers delimit the various areas. It
should be noted that there will normally be several stacks in
memory (one for each process), but only one stack will be active

at a given time. The CPU stack registers always point tc the
currently active stack.

As shown in figure 2-9, the stack area is bounded at the low end
by the DL Register and bounded at the high end by the Z Register.
The DB Register points to the base location of the stack and di-
vides the stack area into two major parts. (The area between DB
and Z is the actual user stack. The area between DB and DL is
not part of the stack itself, but is closely associated with the
stack. This area provides a dynamic area for such applications
as dynamic arrays, symbol tables, etc.) The SM Register points to
the current top-of-stack (TOS) location in memory.

Whereas the contents of the DB Register and Z Register are stat-
ic, the ccntent of the SM Register is constantly changing as the
program progresses, moving up and dcwn the stack area. The area
between DB and SM is always filled with wvalid data and the area
between SM and Z is always available for additional data. (If the
quantity of data should exceed the available space, the attempt
to move SM past Z will cause an interrupt to the operating system

which may then grant additional space (new Z value) one or more
times.

Unl ike the cell-at-a-time movement of SM, Q moves sporadically in
jumps. The purpose of the Q Register is to retain the starting
point of data relating to the current procedure. Therefore, when
a new procedure begins, Q jumps ahead to establish a new starting
point at the current TOS. Conversely, when a procedure ends, Q
jumps back to the place it had marked previously for the preced-
ing procedure. As far as the current procedure is concerned,

stack data consists of the locations from a base of Q to the
current TOS.

In the previous discussion, the SM Register was assumed to point
at the absolute TOS. This is true only for the portion of the
stack in memory. Actually, as many as four of the top words of
the stack <can spill over into TOS registers RA, RB, RC, and RD.
Figure 2-10 illustrates where three of the topmost words are in
TOS registers RA, RB, and RC. It should be noted that the SM
Register points to the last stack element in memory, but that

2-22

System /CPU Overview

CPU MEMORY
Stack Registers Stack and Array Area

I DL Register

e =
—_—

® Own
® Array
: Area
®
L]
L
. _ _‘
[DB Register J 7 1%
Base
of :
Stack .
L]
.
®
. Filled

l Q Register

-H

-
T y
s
|

I SM Register

Increasing
Addresses

Avail-
l able

| ZRegister |

90020-35

Figure 2-9. CPU Registers and Stack Basic Operations

the logical TOS 1is in the third CPU register and is defined by
the S-pointer (S). The four TOS registers are reserved for the
four topmost wcrds of the stack and are employed only by CPU
hardware. The TOS registers cannct be addressed externally.
Externally, the programmer is interested only in location S and
and the hardware defines this address for him. Using figure Z2-10

2-23

Systeni/CPU Overview

CPU MEMORY

Stack

[Q Register j —P

[SM Register F

SR Register

{

S _ (SM) + (SR)
Address Address + 3

Figure 2-10. CPU TOS Registers

as an example, the hardware will define address S as being equal
to the SM Register value plus three. The value three is obtained
from the SR Register which, as previously discussed, retains the
number of TOS elements that are in the TOS registers. (S = SM +
SR; RA =5, RB =S - 1, etc.) The address value S obtained by
adding the SR Register contents to the SM Register contents is a
completely valid address. 1In fact, when the CPU must be cleared
for some other operation (e.g., a new procedure or an interrupt),
the register ccntents are physically transferred to the numeri-
cally corresponding memory locations. 1In this example, SM would
move up by three and the SR Register contents would become zero.

Figure 2-11 illustrates the actions of the C Register in marking
the starting location for each procedure’s data. Figure 2-11
shows that the currently executing code segment was working with
data in the temporary stcrage area immediately following the
First Q area. At that time, the Q Register was pointing at First
Q, S was defining TOS, and the Z Register was pointing to the end
of the data segment. (If the executing code segment never called
another procedure, the stack would never get more complicated.)
As illustrated however, the code called a procedure at some point
by means of a Procedure Call (PCAL) instruction that caused ad-
ditions tc the stack as indicated by Procedure A. New data was
incurred as the procedure began and S pointed to the top of that
data as it was generated. Then, Procedure A called Procedure B

2-24

System/CPU

Overview

DB q
GLOBAL
- — — —DATA — — —
AREA
FirstQ _xy
(
1
]
1
|
! Temporary
: Storage
I
1
|
|
[}
1
|
| Procedure Parameters
1
\ ~
Previous Q
(
1
Procedure A :
|
I
1
|
i
|
t
__P__ !
: Procedure Parameters
I
\
N
Previous Q »
(
|
1
Procedure B |
|
]
|
|
|
|
|
1
—— 1,
Allocations S—] Procedure Parameters
duel to |)
calling | \
Procedure C N
10—
-
| Local Variables
I ———————— —
|
. |
Allocations 1
local to <
Temporary
Procedure C | Storage
|
|
|
L s

71—

Primary
{256)

Secon-
dary

Stack
Marker

Stack
Marker

Stack
Mar ker

Figure 2-11.

Stack Mark Chain

2-25

System/CPU Overview

and caused new additions to the stack as indicated. Next, Pro-

cedure B called Procedure C and caused the final stack picture as
shown.

As the program progresses, Procedure C will end and, after saving
its answer in a convenient place for Procedure B to access, lissue
an EXIT instruction. Then, all the other stack additions due to
Procedure C will be eliminated by moving S and Q back and Pro-
cedure B will continue its computations on its own data stack.
In the same manner, Procedure B will end, save its data, and
exit. This eliminates the data stack for Procedure B. Finally,
Procedure A will exit and return the net answer to the new TOS on
the main temporary storage area.

Each time control is returned from the called procedure tc the
caller ‘s procedure (within the code segment), the stack registers
also return to the caller’s data area. Thus, the stack marker
chain virtually eliminates system overhead in keeping track of
nested procedures. For example, the simple return sequence pre-
viously discussed (C-to-B-to-A-to main program) is not impera-
tive. Procedure C could have been called again before the return
to the main program was complete or other procedures could have
been called. Regardless, the return for both code and data will
always remain perfectly in step; from the called to the caller.

Note that the area between DB and First Q in figure 2-11 is the
global data area. The locations in this area are reserved by the
precess for variables which the process has declared tc be global
for all procedures called by that process. That is, any proce-
dure wusing this particular data segment may reference the vari-
ables in this area. The individual locations in the global area
can contain an actual value or an indirect address pointing to
some other location that either contains the value or is the
start of an array. Since DB-relative addressing (paragraph 2-49)
is restricted to a maximum of DB+255, only the first 256 loca-
tions of this area can be addressed directly. These areas are
called the primary global data area. If the number of entries
exceed 256, indirect addressing (paragraph 2-50) must be used.
These locations are called the secondary global data area.

When the operating system has completed assigning space for the
global variables, it points Q at the next succeeding location
(First Q, figure 2-11). This is the actual start of the data
stack. Since there is not data on the stack, S also points to
this location. As the executing code segment proceeds to obtain,
manipulate, and generate data for the stack, S moves away from Q,
always indicating the top of such data. At some time during the
execution of the code segment, it is assumed that Procedure A is
called. Usually, a set of procedure parameters accompany the
call and these parameters are placed on the stack just prior to
the issuance of the PCAL instruction. These are actual param-
eters to be substituted for formal parameters in the procedure
and are referenced by Q addressing. (Refer to paragraph 2-49.)

System/CPU Overview

Calling the procedure causes a four-word stack marker to be
placed on the stack as shown in figure 2-11. The marker format
is shown in figure 2-12. The first word saves the current con-
tents of the Index Register (X Register). The second word saves
the return address for the code segment (P Register address plus
one relative to the PB Register contents). The third word saves
the STA Register contents (M, I, T, R, 0, C, and CC) and the code
segment number of the caller in case the <called procedure is
external to the current code segment. The fourth word contains a
value called Delta Q which designates how far back it is to the
previous location to which the Q Register was pointing. In this
case, Delta Q is pointing to First Q. The Q Register now points
at this Delta Q location.

The previously described sequence of events are repeated when
Procedure B (figure 2-11) and Procedure C are called. Each time,
the Q Register will point to the Delta Q lccation of the «current
stack marker and the contents of that location will point to the
previous Q setting. Therefore, when Procedure C 1is executing,
there is a chain of Delta Q stack marks linking the present Q
setting back to the First Q.

The 1links are used and eliminated as the procedures are exited
the same as they were established when the procedures were
called. When Procedure C ends, the EXIT instruction returns S to
equal Q, essentially placing the Delta Q value temporarily on the
TOS. This allows the EXIT instruction to compute a new value for
the Q Register (Previous Q) and it appropriately moves Q back.
The EXIT instruction causes S to decrement step-by-step through
the stack marker, restoring status, P Register contents, and X
Register ccntents for Procedure B.

Lastly, S is moved back to eliminate the unwanted parameters of
Procedure C. Presumably, one or more parameters will be answers
computed by procedure C and, therefore, S is only moved back so
far as tc preserve the desired answers which are now on the TOS.
The sequence of events discribed in the last two paragraphs is
repeated until all stack marks are eliminated and only the final
answer is on the TOS. For additional information on stack oper-
ations, refer to paragraph 4-17.

2-29. INSTRUCTION AND STATUS WORD FORMATS

2-30. Instruction Formats

The machine instruction set is designed for maximum efficiency of
bit usage in the instruction words and, therefore, the instruc-
tion formats dc not necessarily fall into rigid field boundries.
There are 23 distinct instruction set formats. In addition to
the instruction formats, there are 13 instruction groups as shown
in figure 2-13. The formats of the individual instruction groups
are discussed in paragraphs 2-31 through 2-44. For additicnal
information, refer to Section IV.

System/CPU Overview

of172"3[a"576[7 8 9]0 1112]13 14 15

X Register Contents

PB Relative Return Address for P Reg
mit|T[r[o]c] cc | Code Segment #
Delta Q

Figure 2-12. Standard Stack Marker Format

2-31. GENERAL FORMAT. The first format shown in figure 2-13 is
the general scheme for dividing the instruction word into code
fields. Only the first field is rigidly adhered to. This field
(bits 0 through 3) defines either a specific instruction code in
the memory address group (or locp control group) or one of the
sub—opccde groups. There are four sub-iopcode groups; 1, 2, 3,
and stack ops. The field for the sub- cpcodes varies. For sub-
opcode groups 2 and 3, bits 4, 5, 6, and 7 are used as shown.
For subopcode group 1, bits 5 through 9 are used and, for stack
Ops, the remainder of the word is used. In some cases, the sub-
opcode will enable a third field (mini-opcode or special opcode)
in bits 8 through 11. The remainder of the word has a variety of
special uses and commonly is part of an argument field.

2-32. STACK OP. The stack op format is defined by four (°g in
the first four bits. The remaining 12 bits are divided into two
fields; stack op A and stack op B. Either or both of these
fields may contain any of the 63 stack cp instruction codes.
Execution sequence is from left to right (A first, then B). 1In-
terrupts may occur between the execution of A and B. It should
also be noted that indicators (Carry, Overflow, and Condition
Code) are set by the last executed stack cp. If using only one
of the two stack op fields, it is more efficient to use stack op
A since the hardware always looks ahead to see if stack op B is a

NOP. This permits the hardware to ignore the second field which
results in saving time.

2-33. SHIFT. The shift instructions use about half of the sub-
opcode group 1 codes. Sub-opcode group 1 is defined by 0001 in
the first four bits. 1If the index bit (bit 4) is 1, the contents
of the Index register (X Register) is added to the shift count in
bits 10 through 15 tc specify the number of places each data bit

is shifted. Bits 5 through 9 encode the specific shift
instruction.

2-34. BRANCH. The branch instructions use 11 of the sub-opcode
group 1 codes. Bit 4 is used as an indirect bit (indirect if bit
4 is 1 and direct if bit 4 is 0). Bits 5 through 9 encode the
specific branch instruction. Bits 11 through 15 give a P-rela-
tive displacement from 0 through 31 and bit 10 specifies whether
the displacement is + or - relative to P (0 =+, 1 = -).

System/CPU Overview

012 3456 7 8 9101112131415

1 2 34 5 6 7 8 9101112131415

IMME
ES:;’Z’}L[HIHIIHIHIIH D'A“IIIIIIIIIIIIIIIIJ
Men:ory Sub- opcode Mini- opcode Sub- opcodez |mmodlate
Opcode or: 1 Sub-opcode 3 Operand
or Spocnal
Sub-opcode Opcode
Group
01 2 3456 7 8 9101112131415 0123456789101112131415
op ¢ [ofofefel TTTTTTITTITIT] |T**®° lefolvfol TITTITTTITT]
\ A J
StackvOp A S!ackVOp B Sub- opcoda 2 J- Fueld K- Fleld
SHIET 01 23456 7 8 9101112131415 N GISTER 01 23 456 78 9101112131415
Llele LI TTTTTTTITTT] [Eonrnor [elelefel TTTTTTTTTITT]
. iy A v 7 Except “———— DBDLZSaX Q S
Sub-opcode 1 shift XCHD, ADDS Sub-opcode 2\
Index Count SUBS ’ Rogmer
Bit Name
01 23 45 6 7 8 91011121314 15 PROGHAM 01 2 34 56 7 8 91011121314 15
saanct [ofolo [T T T TT-T TTT 1] |conmor LTI TTTTTTITTTT]
et b AND SPECIAL
. Sub- opcode 1 P Reiatvve Except Sub-opcode 3 N- led
Indirect +/- Displacement PAUS, HALT
Bit Relative XEQ, IXIT,
DIsp
01 2 3 4 5 6 7 8 9101112131415 01 2 3 456 7 8 9101112131415
orvofefololrx] [I [T T11 T 1] iveniupr lofo[1Trofofool TTTT T T
v A v- J ;' A v A v J
Sub-opcode 1 Bit Position Sub-opcode 3 Special K-Field
Index Opcode (or not
Bit used)
01 2 345 6 7 8 9101112131415 01 2 3 456 78 9101112131415
MOVE [ofol*ToJoJoloJo] T T T8l T T [] |comror [CLTol T T TelT TTTTTTT]
Except —_— A — —— —— < - /
Mvew Sub-opcode 2 Move SDEC Opcode P Relative
Opcode PB/DB Displacement
Relative or +/-
Additional Relative
Code Bit
01 2 3456 7 8 9101112131415 01 2 3 45 6 78 9101112131415
SPECIAL I°ll1llllolllllllloll Nooness LIITDITTTTTTITTTT]
E \ v J . v 7
LBl Sub-opcode2 Mini- Excopt Memory Mode and
Opcode agditional LOPN Opcode Displacement
Code Bit Index Indirect
Bit Bit
2152.33

Figure 2-13.

2-2

Instruction Groups

9

Sys tem/CPU Overview

2-35. BIT TEST. The bit test instructions are also in subop-
code group 1 and use bits 5 through 9 to encode the specific in-
struction. Bits 10 through 15 specify a bit position in the TOS
word for testing. If the index bit (bit 4) is 1, the contents of
the X Register is added to the specified bit position.

2-36. MOVE. The move instructions use 12 of the codes specified
by the sub-opcode group 2 code 0000. Sub-opcode group 2 1is de-
fined by 0010 in the first four bits. Bits 8 through 10 encode
the specific move instruction. Bit 11 is used by some instruc-
tions to specify whether the source of the moved data is PB-rela-
tive (bit 11 = 0) or DB-relative (bit 11 = 1). In some cases,
bit 11 is also used as an additional code bit for specifying the
instruction. Bits 12 and 13 are not used. Bits 14 and 15 are
used to specify an S-decrement value to delete, if desired, the
move parameters from the TOS.

2-37. SPECIAL. The special instructions use four mini-opcodes.
The mini-opcode group is also specified by the sub-opcode group 2
code 0000. Bits 8 through 11 plus bit 15 encode the specific
special instruction. Bits 12 through 14 are not used.

2-38. IMMEDIATE. The immediate instructions use codes in both
sub-opcode group 2 (coded 0010) and sub-ocpcode group 3 (coded
0011) . Bits 4 through 7 encode the specific immediate instruc-
tion. Bits 8 through 15 are used for the immediate operand.

2-39. FIELD. The field deposit and extract instructions are
specified by two of the sub-opcode group 2 codes. Bits 4 through
7 encode the specific field instruction. Bits 8 through 15 are
divided into a J-field and a K-field. The J-field specifies the
starting bit number and the K-field specifies the number of bits.

2-40. REGISTER CONTROL. The register control instructions use
bits 9 through 15 to name a register. Bits 4 through 7 encode
the specific register control instruction.

2-41. PROGRAM CONTROL. The program control instructions use four
of the sub-opcode group 3 codes. Sub-opcode group 3 is specified
by 0011 in the first four bits. Bits 4 through 7 encode the spe-
cific program control instruction. The N-field (bits 8 through
15) is used for either a PL-displacement (PCAL and SCAL) or to
specify a number of parameters to be deleted on return from a
procedure or subroutine (EXIT or SXIT).

2-42. 1I/0 AND INTERRUPT. The I/0 and interrupt instructions use
11 of the special opcodes (bits 8 through 11) defined by the
subopcode group 3 code 0000. The K-field (bits 12 through 15) is
used by some of the instructions for an S-displacement to locate
a device number given in the stack.

2-43. LOOP CONTROL. The loop control instructions are defined by
a special coding of bits 4, 5, and 6 for memory opcode 05 (which
is otherwise defined as the STOR instruction). Bits 8 through 15
give a P-relative displacement for a branch address and bit 7

2-30

System/CPU Overview

specifies whether the displacement is + (bit 7 = 0) or - (bit 7 =
1) relative to P.

2-44. MEMORY ADDRESS. Bits 0 through 3 encode the specific mem-
ory address. Bits 6 through 15 give both an addressing mode and
a displacement. (Refer to paragraph 2-48.) Bit 5 is used to
specify direct or indirect addressing (1 = indirect, 0 = direct).
Bit 4 is used to specify indexing (1 = indexing), if desired. If
both indirect addressing and indexing are specified, post-index-
ing (paragraph 2-54) will occur.

2-45. Status Word Format

There is a status word for each code segment in the system. At
all times, the status word associated with a given process indi-
cates the machine status following the execution of the most re-
cent instruction in that segment. The status for the currently
executing segment 1is resident in the STA Register and is con-
stantly being updated as each instruction is executed. For seg-
ments that are not current (suspended by either an interrupt or
procedure call), the status word exists in a stack marker in a
data stack as discussed in paragraph 2-28. As shown in figure
2-6, status word bits 8 through 15 indicate the segment number of
the currently executing code segment (when the particular status
word is resident in the STA Register). Therefore, when a status
word is pushed into a stack marker by an interrupt or procedure
call, bits 8 through 15 identify the segment that is to be re-
turned to when execution is later resumed. The following des-
criptions of the status bits assume that the status word under
discussion is resident in the STA Register. All references to
"current" conditions can also be inferred as "then current" con-
ditions in the case of suspended segments or procedures.

Bit 0 is used to indicate whether the current segment is running
in privileged mode (bit 0 = 1) or user mode (bit 0 = 0). (Refer
to paragraph 2-47.) The state of this bit cannot be changed by
machine instructions while resident in the STA Register except in
privileged mode. (The PCAL, IXIT, and EXIT instructions include
checks to prevent illegal mode changes by altering the noncurrent
status mode bits.)

Bit 1 is used to enable or disable external interrupts. This bit
cannot be changed in user mode while current and the EXIT in-
struction invokes a trap if a non-privileged wuser illegally al-
ters the bit while non-current. The state of bit 1 can only be
changed in privileged mode.

Bit 2 is used to enable or disable user traps. The state of this
bit can be changed in any mode while current or non-current with
a SETR instruction. (The state of this bit is not affected by the
EXIT instruction.)

[\®)
I
(98]
=

System/CPU Overview

Bit 3 is normally used only by the hardware which sets this bit
to 1l if the right stack opcode (bits 10 through 15) contains a
valid instruction other than NOP. The hardware requires this
information in case an interrupt occurs between the execution of
the left and right stack ops. The state of bit 3 cannot be
changed in user mode while current.

Bit 4 1is the overflow bit and is one of the three indicators
which are set or cleared as an incidental operation by many of
the machine instructions. In general, bit 4 is wused only by
signed integer and floating-point computations. If bit 4 is set
(1), it indicates that the result of the computation is too large
to be represented in the number of available bits in the data
format. (For floating point, it can also indicate that the result
is too small.) If user traps are enabled (bit 2 = 1), an inter-
rupt to segment 1 will occur in lieu of setting bit 4; except for
integer overflow which causes both bit 4 to be set and an inter-
rupt to segment 1. This permits the system to generate a message
to the user which indicates which type of overflow or underflow
occurred. All user traps will set bit 4 if traps are disabled.

Bit 5 is the «carry bit and is one of the three indicators which
are set or <cleared as an incidental operation by many of the
machine instructions. Bit 5 is used primarily by logical and
integer arithmetic and wusually indicates a carry (bit 5 =1) or
lack of carry (bit 5 = 1) out of the most significant bit during
a computation. Bit 5 is also used by some instructions as an
indicator for special purposes which are stated in the individual
machine instruction definitions. (Refer to Section 1IV.)

Bits 6 and 7 are used to encode the condition codes discussed in
paragraph 2-46 and are one of the three indicators which are set
or cleared as an incidental operation by many of the machine
instructions.

2-46. Condition Codes

Although several instructions make special use of the condition
code bits (status word bits 6 and 7), the condition code typi-
cally indicates the state of an operand or a comparison result
with two operands. The operand can be a word, byte, double word,
or triple word and can be located on the TOS, in the X Register,
or in a specified memory location. Three codings are used; 00,
01, and 10. (Code 11.is not used.) Except for special interpreta-
tions, there are four basic patterns for interpreting the codes.
The four patterns (CCA, CCB, CCC, and CCD) are summarized in
table 2-5 and discussed in the following paragraphs.

2-32

System/CPU Overview

Table 2-5. Condition Codes

| —— o e o . S A S e T o T o S S W Y S T o T S o ot o ok o e e e i T T o

| CCA sets CC = CCG (00) if operand > O
CCL (01) if operand < 0
CCE (10) if operand = 0

— e i S - - - " T B Tt T S 0 S T s o o S T S ——————

|
|

|

|

-f.'

CCB sets CC = CCG (00) if numerical (%060 - 071) |
i

I

i

|

|

I CCL (0l1) if special character (all

I other octal values)

[CCE (10) if alphabetic (uppercase,

[%101 - 132; lowercase, %141 -
I 172)
|
l
|

CCC sets CC = CCG (00) if operand 1 >
CCL (01) if operand 1 < 2
CCE (10) if operand 1 =

———— . . T o T o+ | T ——

CCD sets CC = CCG (00) if device is not ready
CCL (01) if non-responding Device
Controller
CCE (10) if responding Device
Controller and/or external
device is ready

I
|
|
I

Notes: CC = Condition Code |
I
l
I
l

CCG = Condition Code Greater
CCL = Condition Code Less
CCE = Condition Code Equal
The most common condition code pattern is pattern A (CCA). In

CCA, the condition code is set to 00 if the operand is greater
than zero; to 01 if the operand is less than zero; and to 10 if
the operand is exactly zero.

Condition code pattern B (CCB) is wused with byte or iented
instructions. In CCB, the condition code is set to 00 if the
operand byte is an ASCII numerical character which would be
represented by octal values 060 through 071. The code is set to
10 if the byte is an ASCII alphabetic character which would be
represented by octal values 101 through 132 for upper-case
letters and 141 through 172 for lower-case letters. The code is
set to 01 if the byte is an ASCII special character which would
be represented by the remaining octal values.

Condition code pattern C (CCC) is used with comparison instruc-
tions. In CCC, the condition code 1is set to 00 if operand 1 is
greater than operand 2; to 01 if operand 1 is less than operand
2; and to 10 if operand 1 is equal to operand 2.

2-33

System/CPU Overview

Condition code pattern D (CCD) is used with some (not all) 1I/0
instructions. In CCD, the condition code 1is set to 00 if the
external device is not ready. (This condition is usually caused
by the device being busy.) This code is only used with instruc-
tions that will (WIO and RIO) or could (SIO) require data to be
moved. The code is set to 01 if the Device Controller does not
respond. (This condition can be caused by loss of power in the
external device or Device Controller, a malfunction in the ex-
ternal device or Device Controller or, more normally, the ex-
ternal device or Device Controller wa1t1ng for a response to an
interrupt request.) The condition code is set to 10 if the ex-
ternal device or Device Controller has responded normally and the
instruction has been completed properly.

2-4]. OPERATING MODES

The computer system can be operated in either privileged or user
mode and has the capability of switching from one mode to the
other depending on the type of operation being executed at a
given instant. The operating mode currently in effect is indi-
cated at all times by the STA Register s bit 0 as discussed in
paragraph 2-45.

Privileged mode operation is characterized by the ability to ex-
ecute privileged instructions and to call segments that have been
declared uncallable. (The method of declaring a code segment un-
callable involves the use of the uncallable bit (bit 1) in the
associated STT local program label shown in figure 2-6.) Priv-
ileged operations such as 1I/0 operations are performed by the
operating system operating in privileged mode. For an non-priv-
ileged user to perform such operations, it is necessary to call
one of the callable intrinsics of the operating system which, in
turn, will call the uncallable intrinsics that will perform the
operation on behalf of the nonprivileged user. However, a priv-
ileged mode user can use the computer as if he were the operating
sys tem.

CAUTION

The normal checks and limitations that apply to
the standard non-privileged users in MPE are
bypassed during privileged mode. It is possi-
ble for a privileged mode program to destroy
file integrity including the MPE operating sys-
tem software. Hewlett-Packard cannot be respon-
sible for system integrity when programs
written by users operate in the privileged
mode.

System/CPU Overview

2-48. ADDRESSING CONVENTIONS
2-49. Memory Addressing

Throughout this manual the terms "displacement", "effective ad-
dress", ‘"relative address", and "base" are used in connection
with memory addressing. These terms are defined as follows:

Displacement is a positive number given in the instruction
word pointing to a location plus or minus that number of lo-
cations from a given reference cell which is also given in the
instruction word.

Ef fective address 1is always an absolute address. It may or
may not be the location indicated by the displacement number.
The effective address is the final computed address after
displacement calculation, indirect addressing (if any), and
indexing (if any) have all been resolved.

Relative address is the address obtained by subtracting the
base from the effective address.

Base is either the program base (PB) address or the data base
(DB) address.

The computer system uses relative addressing almost exclusively.
Addressing can be relative to the location pointed to by the
P Register, DB Register, Q Register, or S-pointer. As shown in
figure 2-14, memory address instructions (paragraph 2-44) use
bits 6 through 15 for "mode and displacement" and addressing can
be + or - relative to P or Q, but only + relative to DB and -
relative to S. The relative addressing displacement ranges for
the various modes are also shown in figure 2-14. (It should be
noted that these ranges apply only to direct, unindexed addres-
sing. 1Indirect addressing and indexing are discussed separately
in paragraphs 2-50 and 2-53.) The variety of displacement ranges
is due to the particular coding required to specify a given mode.
For example, only two bits (6 and 7) are required to specify the
P+, P-, and DB+ relative modes. This leaves bits 8 through 15
available for displacement which, therefore, can be any value
from 0 through 255. For Q+ relative mode, bits 9 through 15 give
a displacement range from 0 through 127. For Q- and S-relative
modes, bits 10 through 15 give a displacement range from 0
through 63. In order to provide the most efficient usage of
bits, the mode codes are assigned according to the respective
needs of each displacement range.

Referring to figure 2-14, note that the DB+, Q-, Q+, and S-ranges
can overlap. Also, DB+, Q+, and S- can actually address words
currently held in the TOS registers. P+ and P- addressing modes
are typically used for branches and referencing of literals. The
DB+ mode is used for referencing global variables and pointers
(i.e., 1indirect addresses). The Q+ and Q- modes are useful for
local variable storage and passing of procedure parameters
respectively. The S- mode is typically used for accessing param-

2-35

System/CPU Overview

ADDRESS INSTRUCTION BITS
MODE si 7{ 8 |9]10[11]12]13|14[15
P+ Reiative 0 0 |e Displacement 0: 265 ———»
P- Relative 0 1 Displacement 0: 265 ———
DB+ Relative 1 0 Displacement 0: 2565 ———»
Q+ Relative 1 1 T}Q_T- Displacement 0: 127 ———»
Q- Relative 1 1 1 0 |4——— Displacement 0: 63 ——»
S- Relative 1 1 1 1 —— Displacement 0: 63 ——»
CODE DATA
SEGMENT SEGMENT
PB oL
DB —p
DB+ Relative 255
P- Relative 255 Q- Relative }63
Q
P Q+ Relative } 127
P+ Relative 255
S- Relative } 63
S —»
PL—» Z—»

Figure 2-14. Memory Addressing Modes

eters in subroutines. Not all memory address instructions are
capable of using all six relative modes. Each instruction defi-
nition (Section IV) will specify which modes are applicable for
each instruction.

2-50. Indirect Addressing

As shown in figure 2-15, indirect addressing uses the 1location
referenced by the initial displacement (the Indirect Cell) to
specify another locaticn within the same code or data segment.
For code references, the Indirect Cell <contains a self-relative
address. For data references, the Indirect Cell contains a DB+
relative address. For memory address instructions (paragraph
2-44), indirect addressing is specified by bit 5 of the instruc-

2-36

System/CPU Overview

CODE, Indirect
LOAD P+4, 1 LOADP 4,1

PB PB

P-4 -3 Indirect
j Cell
P — j P —9
P+4 3

Indirect
Cell

P+7
PL —¥ PL —
DATA, Indirect
LOAD Q-4,1
LOAD DB+4, | LOAD Q+4,1 or LOAD S-4,1
DB DB DB
DB+4 7 Indirect
Cell
DB+7 D8+7 DB8+7
Q-4 7 Indirect
Cell
Q —»
Q —¥]
Q+4 7 Indirect
Cell S-4 7 Indirect
‘7 Cell
s—] >
4 Z —»j Z

Figure 2-15. Indirect Addressing Examples

2-37

System/CPU Overview

tion word. (A logic 1 specifies indirect addressing.) For most
branch instructions (paragraph 2-34), indirect addressing is
specified by bit 4.

2-51. CODE INDIRECT. Both P+ and P- examples of indirect ad-
dressing in a code segment are shown in figure 2-15. The first
example shows the actions occuring for an assumed "LOAD P+4, 1I"
instruction. The displacement (+4) points tc the Indirect Cell
at P+4. The Indirect Cell contains a +3 self-relative address.
This points to a location three addresses higher, or P+7. It is
the contents of P+7 that will be loaded onto the TOS by the "LOAD
P+4, I" instruction. The second example shows the actions occur-
ing for an assumed "LOAD P-4, I" instruction. The displacement
(-4) points to the 1Indirect Cell at P-4. The Indirect Cell con-
tains a -3 self-relative address. This points to location P-7
which is the effective address for th "LOAD P-4, I" instruction.

2-52. DATA INDIRECT. The first example in figure 2-15 of indi-
rect addressing in a data segment shows the actions occuring for
an assumed "LOAD DB+4, I" instruction. The displacement (+4)
points to the Indirect Cell at DB+4. The Indirect Cell contains
a DB+7 relative address. This is not a self-relative address
and, therefore, the effective address is at location DB+7. It
should be noted that it is possible for the effective address to
be below as well as above the Indirect Cell. The second example
shows the actions occuring for an assumed "LOAD Q+4, I" instruc-
tion. The displacement (+4) points to the Indirect Cell at Q+4.
The Indirect Cell contains a DB+7 relative address and, therefore,
the effective address is again at location DB+7. The third ex-
ample shows the actions occuring for an assumed "LOAD S-4, I" or
"LOAD Q—-4, I" instruction. The displacement (-4) points to the
Indirect Cell at either S-4 or Q-4 depending on the instruction
and, since the contents of the Indirect Cell is assumed to be+7,
the effective address for both instructions is again DB+7.

2-53. Indexing

The memory address instructions (paragraph 2-44) use indexing to
modify an operand address. Indexing is specified by bit 4 of the
instruction word. (A logical 1 specifies indexing.) Figure 2-16
shows examples of indexing when combined with positive and neg-
ative addressing modes (both direct) and an example of indirect,
indexed addressing (positive mode only) for both code and data
segments. It should be noted that in each example, the index is
assumed to be 5. This is established by the "LDXI5" instruction
that preceds each LOAD instruction used in the examples. This
instruction loads the value 5 in the Index Register (X Register).

2-54., CODE INDEXING. The first example in figure 2-16 shows the
actions occuring for an assumed "LOAD P+4, X" instruction. The
displacement (+4) would by itself point to location P+4. How-
ever, by adding the index of 5 to the displacement, the 1locaticn
P+11 (octal) is addressed. It is the contents of this location
that will be loaded onto the TOS by the "LOAD P+4, X" instruc-
tion. The second example shows the actions occuring for an

2-38

System/CPU Overview

CODE, Indexed

LDOXI 5 LDXI 5 LDXI 5
LOAD P+4, X LOADP 11, X LOAD P+4 1, X
P8 PB PB
e[TTTTTTTT]
? P —
X=5
B
P+q 3 Indirect
i) Cell
P P—»)) Seteiele
j X:5
L2210
_________ P+14
X 5
Pel
PL —¥ PL PL —¥
DATA, Indexed
LDXI 6 LDX! 5 LDXtI 5
LOAD DB+4. X LOADS 11, X LOAD Q+4, 1, X
wen T
-1 2710
X 5
X =5
DB+10
0oB8+11
s [TTTTT] ?
X=5
» '
a v
s — / j
Q.4 3 Indirect
Cell
b4 Zz Z —

Note: Address Calculations in Octal

Figure 2-16.

2-39

Indexing Examples

System/CPU Overview

assumed "LOAD P-11, X" instruction. The displacement (-11) is
added to the positive index of 5 and the final address is P-4.
The third example shows code indexing combined with indirect
addressing. In all cases, post-indexing 1is used; i.e., the
indirect addressing is accomplished first (either positive or
negative direction), and then indexing proceeds in a positive or
negative direction from the indicated location. As shown in the
example for the "LOAD P+4, I, X" instruction, the displacement of
+4 points to the Indirect Cell at P+4. The contents of P+4 is a
self-relative address of 3 that points to P+7. However, indexing
adds 5 to this value and the final effective address becomes P+l4
(octal).

2-55. DATA INDEXING. The first example in figure 2-16 shows the
actions occuring for an assumed "LOAD DB+4, X" instruction. The
displacement (+4) points at DB+4 which is then modified by the
index of 5 to point at DB+11. The second example shows the ac-
tions occuring for an asumed "LOAD S-11, X" instruction which is
similar to the actions occuring for the "LOAD P-11, X" instruc-
tion discussed in paragraph 2-54. Since a positive index is
specified, indexing proceeds in a positive direction from the
location indicated by the displacement. The third example shows
data indexing combined with indirect addressing. Again, post-
indexing 1is used. The displacement (+4) points to the Indirect
Cell at Q+4 which contains the value 3. Since indirect addresses
for data are always DB+ relative, this points at 1location DB+3.
This 1is modified by the addition of the index 5 and the final
effective address becomes DB+10 (octal).

2-56. Byte Addressing

The Load Byte (LDB), Store Byte (STB), and five Move Instructions
(Section IV) use the byte addressing convention. Since the CPU
is not specifically organized as a byte processor, the byte ad-
dressing convention uses the contents of the X Register, an in-
direct «cell, or a stack word to specify the desired byte. For
memory addressing (Load Byte and Store Byte instructions), the
displacement value remains a word displacement. The byte data
label in an indirect cell is an inflated value of two times the
word displacement from DB. The contents of the X Register and/or
an indirect cell indicate the desired byte in a byte array. For
Move instructions, one or two of the TOS locations give a PB+ or
DB+ relative byte index. The byte addressing range is therefore
restricted to 32K words; 15 bits for word addresses and one bit
for byte number. Four examples of byte addressing for memory
address instructions (LDB and STB) are shown in figure 2-17. (The
convention for the Move Instructions corresponds to the Direct,
Indexed example in figure 2-17. The difference is that the byte
index would be obtained from a TOS word rather than the
X Register.)

2-57. DIRECT BYTE ADDRESSING. For direct, unindexed byte ad-
dressing, the displacement value given in the instruction word is
strictly a word displacement and only the left byte of each word
is addressable. As shcwn in fiqure 2-17, an "STB DB+7" instruc-

a2 S S 83

2-40

System/CPU Overview

DIRECT DIRECT, INDEXED INDIRECT INDIRECT, INDEXED
LDXI 5 LDXI 5
STB DB+7 STB DB+7, X STB DB+7, | STB DB+7,1, X
DB 08 —¥] DB —# DB
+1 +1 +1 +1
21~ +2 +2 +2
3 Not 3 3 '3
¥ Ao +4 ¥ 4
+5 +5 +5 +5
+6 6 6 6
7 +7 0 1 —t7 46 +7 40
2 3
4 5
+20 40 41 +20 0 1
+21 42 43 +21 2 3
L’ +22 44 45 22 4 5
+23 46 47
S —» S —» S —¥ S —

Figure 2-17. Byte Addressing Examples

tion would store a byte from the TOS into the left byte of the
DB+7 location.

2-58. DIRECT, INDEXED BYTE ADDRESSING. In the examples shown in
figure 2-17, the index is assumed to be 5. This is established
by the "LDXI5" instruction that precedes each STB instruction.
The "STB DB+7, X" instruction directly addresses location DB+7
and the index of 5 accesses the sixth byte. It should be noted
that the byte index starts at zero and that all even indexes are
left bytes and all odd indexes are right bytes.

2-59. INDIRECT BYTE ADDRESSING. For indirect, unindexed byte
addressing, the byte index is given in the indirect cell. As in
all indirect data addressing, the indirect reference is relative
to DB. Therefore, the "STB DB+7, I" instruction shown in figure
2-17 initially addresses the 47th byte in respect to DB. This
will be the 1left byte of DB+23. (Since there are two bytes per
word, divide the byte index by two to identify the word location;
a remainder of zero indicates the left byte and a remainder of
one indicates the right byte.)

2-60. INDIRECT, INDEXED BYTE ADDRESSING. For indirect, indexed
byte addressing, the displacement points to the indirect cell,
the indirect cell points to the start of the byte array, and the
index in the X Register points to the desired byte in the array.
This is shown by the "STB DB+7, I, X" instruction in figure 2-17.
The index in the X Register is again assumed to be 5. The dis-

2-41

System/CPU Overview

placement points to the indirect cell at location DB+7 that con-
tains the value 40. Dividing 40 by two gives the starting word
address of the array as DB+20. Since the index is five, the lo-
cation accessed is the sixth byte of the array. In this manner,
the X Register acts as a byte index for ease of stepping through
byte strings or byte arrays.

2-61 Double-Word Indexing

The Load Double Word Onto Stack and Store Double On TOS Into Mem-
ory instructions (Section IV) permit double-word indexing. When
indexing 1is specified for these instructions, the hardware auto-
matically multiplies the X Register contents by two during compu-
tation of the effective address. Therefore, an index value of 4
would imply the fifth double word in a double-word array.

2-62. Accessing DB- Area

The area between DB and DL can be accessed through indirect ad-
dressing and indexing. Figure 2-18 illustrates the technique of
indirect addressing to access this area using both word address-
ing and byte addressing.

2-63. WORD ADDRESSING. The first example in figure 2-18 shows
how to load the contents of the location at DB-10 onto the stack
assuming that location DB+4 can be used for the indirect cell.
The "LOAD DB+4, I" instruction initially references the indirect
cell at DB+4. Instead of the usual positive number, location DB+4
contains the two’s complement of the desired DB displacement. In
octal, the two’s complement of 10 is 177770. Remember that the
contents of an indirect cell in a data segment is always DB+ re-
lative displacement. Therefore, since addressing arithmetic is
modulo 65K, adding 177770 to DB causes wrap-around and addresses
the desired DB-10 location. From this point, indexing via the
X Register can be applied.

2-64. BYTE ADDRESSING. The second example in figure 2-18 shows
how the DB-10 byte can be loaded onto the stack assuming that
location DB+4 can again be used for the indirect cell. The "LDB
DB+4, I" instruction initially references the indirect cell which
contains the two’s complement (177770) of the desired byte dis-
placement (-~10) from DB. Remember that byte indexes are con-
verted to word indexes by dividing by two. This would indicate
location DB+77774 (left byte) which may or may not exceed the
upper limit of memory, depending on the current absolute value of
DB. (To allow for byte addressing in additional data segments
where DB may not be between DL and Z, a check for this condition
is made. Refer to paragraph 2-65.) If DB is not between DL and 2
(this should happen only during privileged mode and is then
called split stack), the byte will then be accessed without fur-
ther bounds checking. If DB is between DL and %, then the LDB
instruction (or any other byte addressing instruction) tests this
address to see if it is within the required DL to 2 range. If
the address is not within the range (which should be the case
whe ther or not wrap-around has already occured), the instruction

2-42

System/CPU Overview

WORD BYTE
ADDRESSING 0 ADDRESSING 0
LOAD DB+4,1 LDB DB+4, |
DL —¥
DL—¥ \ 4
ps-a{ -10 -7
-6 5
_4 _
y >t
DB-10 DB—»__ 0 X
DB+4 177770
DB —¥
S —»
DB+4 177770
Z—» j
oes77774 [T" " T T A
177777 177777 1
;_] -

Address Calculations in Octal: WORD DB+ 177770 -DB - 10
BYTE DB+ (177770+2) + 100000 = DB - 10

Figure 2-18. Accessing DB- Area

will add 32K (%100000) tc the DB+77774 value. Assuming that
wrap—around has not yet occured, this addition will cause it to
occur and thus address the byte at byte address DB-10 (left byte
in location DB-4). At this time, a second test is made to check
if the effective address is within the DL to Z range. If the
technique has been applied properly, the test will be affirmative
and the byte will be transferred. If the test fails during user
mode, there will be a bounds violation interrupt. If the test
fails during privileged mode, the test results will be ignored
and execution will continue (even if out of bounds), using the
second referenced byte.

2-65. Bounds Checking

The CPU routinely checks all address references and TOS movements
to ensure that such operations remain within legal bounds. Suf-
ficient <checks are made for all machine instructions to ensure
that a nonprivileged user cannot adversely affect other users or
the operating system. The basic bounds checks that are made for
the applicable instruction types are discussed in paragraphs 2-66
through 2-70 and summarized in table 2-6. The boundry limits
checked are illustrated in figure 2-19. 1If any of the bounds
check fail during non-privileged user mode, there will be a
bounds violation interrupt. Those checks whose results are ig-
nored during privileged mode are so indicated.

2-43

System/CPU Overview

CODE
PB ~— S
Legal
Addresses
(for Program
Transfers
P > and User
References)
PL—)
DATA
N
| Stack
Underflow
DL —¥
DB —> <
Legal
Addresses
for
User
References
User
> Stack
Area
SM —
S —»
z <
Stack
INCREASING
ADDRESSES r Overflow

Figure 2-19. Addressing and Stack Bounds

2-44

System/CPU Overview

2-66. PROGRAM TRANSFER LIMIT. Program control cannot be passed
to any location beyond the 1limits defined by the contents of the
PB and PL Registers. For indirect branches, bocth the indirect and
direct references must be within limits. This also applies when
branching indirect via the data stack, except that the initial
reference must be within data stack limits DB and S rather than
code segment limits PB and PL.

2-67. PROGRAM REFERENCE LIMITS. Some of the Memory Address in-
structions, all Loop Control instructions, and some Move instruc-
tions are capable of addressing locations in the code segment.
During privileged mode, these references can be made as desired.
During non-privileged user mode however, these references (both
direct and indirect) must be within the limits defined by PB and
PL.

2-68. DATA REFERENCE LIMITS. During privileged mode, data ref-
erences are not subject to bounds checking. During non-privileged
user mode however, these references (both direct and indirect)
must be within the user’s area defined by DL and S.

2-69. STACK OVERFLOW LIMIT. Stack overflow is defined as moving
the S-pointer beyond the stack limit. Stack overflow occurs when
SM exceeds Z. Since SM is not necessarily the actual TOS (SM may
egqual S or be up to four locations lower) and to allow marker
space for the remote possibility of a procedure call and an in-
terrupt while SM is at Z, there is a zone of approximately 128
locations beyond Z which could be filled with stack related data.
A stack overflow causes an interrupt which, under discretion of
the operating system, may extend the stack limit.

2-70. STACK UNDERFLOW LIMIT. Stack underflow is defined as mov-
ing the S-pointer below the data base or, more strictly, moving
SM below DB. Since SM may not equal S, underflow can occur even
though S is up to three locations above DB. During privileged
mode, stack underflow 1is not subject to checking. During non-
privileged user mode however, stack underflow will cause an in-
terrupt. Users can access the area between DL and DB by indirect
addressing or indexing (paragraph 2-62) as long as SM does not
become less than DB. Although the hardware does address ar ithme-
tic modulo 64K, code segments and data stacks can not cross mem—
ory bank boundries. This restriction is handled by the operating
system.

2. CPU OVERVIEW

Operation of the CPU is controlled by the software set of in-
structions and the microprogram. Logically, the CPU (figure
2-20) consists of three sections; a microprocessor, processor
registers, and an arithmetic logic unit (ALU). The microproces-
sor receives an instruction word from Main Memory and translates
it into a microprogram starting address. The microprogram is
then read out of read-only memory (ROM) and is decoded into a set
sequence of control signals. The processor registers are flip-
flop registers that can be loaded from the U-Bus (i.e., output of

2-45

System/CPU Overview

Table 2-6. Bounds Checks Summary

Check Definition Mode
Program Transfer PB < E < PL Privileged, User
Program References PB < E < PL User only

(except moves)

Data References DL < E € S User only
Stack Overflow SM > Z Privileged, User
Stack Under flow SM < DB User only

E = effective address of memory address

the ALU) and read onto the R-Bus and/or S-Bus (inputs to ALU).
The ALU executes various functions (add, subtract, etc.) on the
R- and S-Bus inputs (with or without a shift) and outputs the
result to either of the CPU registers for transmission out of the
Central Processor Module or to the U-Bus for storage in one of

the internal registers. For a more detailed discussion of the
CPU logical components, refer to paragraph 2-75.
2-12. Pipelines

There are two pipelines in the CPU; a microcode pipeline and a
data pipeline. Basically, the microcode pipeline consists of the
Current Instruction Register (CIR), CMUX, Mapper, Look Up Table
(LUT), VBUS MUX, ROM, RORl, and ROR2. See figure 2-20. The data
pipeline basically consists of the Store Logic, various regis-
ters, R- and S-Bus Logic, ALU, Shifter, and Decimal Corrector.

2-73. DATA PIPELINE. In general, the data pipeline picks up two
operands via the R- and S-Bus Logic and R- and S-Bus Registers
(figure 2-20) and inputs them to the ALU where a mathematical
calculation can be performed. The result is then outputed to
either the Shifter or Decimal Corrector where it can be either
shifted (shift left 1, shift right 1, or swap bytes with or
without clearing either byte), or its decimal arithmetic cor-
rected. The final result is then put on the U-Bus and either
stored in any one of the registers or input to the ALU a second

time for additional calculations.

To give the data time to propagate through the entire pipeline,
the data is stepped through in two steps. The first step is to
read the operands from the two source registers to the input
lines for the R- and S-Bus Registers. This is accomplished in
one l75-nanosecond clock cycle. The second step is for the data

to go through the ALU, Shifter or Decimal Corrector, and Store
Logic and then be on the input to the selected store register.

This is accomplished by the next 175-nanosecond clock cycle.

2-46

System/CPU Overview

CIR
PREADDER CONT PREADDER CONT
usus UBUS
ROM OPND
e
| — ADDER SAVE RAR
conT
Lt
A .
o
(4] ROR1
.
: M s ROR2
M s 16 v STORE STORE ——
c < I Rl :::D s FON FoN —
! : : 1 — ~ nom [—] sxie b— sKiP —
R o 18 u SHIFT SHIFT -
X £ SRPe . x
R -t 'SP/ MCU sp/mcu -~
SRP1 . =
! ™ [Tsrez
Meve =14 [— a NOP NOP2
rce H 2
v 12
NIP w)
JLUt B
MUX MAPPER
I CONT conT
l SP.MCU
NEXT 1§
CONT [V s (SKiIP
\
|
) { [J
Q
Lo Ewox SR PREADJUST s v 8us Fen
CONT {8 PENDING ADDER abse CONT
SR
INT
ADDRESS
=V EXT INT EXT INT
CPX 2
r CPX 1

o=][m&msJ }

CPU

Figure 2-20. CPU Simplified Logic Diagram (Sheet 1 of 2)

2-47

System/CPU Overview

MATES WITH 10P

CIR
PREADDER CONT
U.BUS U-BUS
SMIFY
FCN FCN
MOD
STORE -4j— Dcap
FCN c
0o
€ R
SHIFT = . ca
- PRE '€
x ADDER ™
X L] Ay —
u Lo
X R
R
R
ROM OPND ROMOPND B
u (]
" — TROR “ s ‘sj
" 1 L
: P — TRIR FHH— ¢ L A "
P - 4—oa P -_—
spmcu A o H TR2A ; [R L < ;
A R — TR3R 4 & G 13 U | gus
€ L ' G €
- x c B Ll AL
L z s — c
[
]
b L
[sPo OVFL
c sP1 i
™M
= !
L et] s :
€
A s S
THaMED cco
— B w
NAMER ADDER) u
TNAME? !
) —1 ° cct T
cPX2 . R H
E i
PANEL G | M
WITCHES ! [+
. U BUS u
cPx1 PREG
M TROS F—a ™ s
U BUS & TRIS R :
¥ A 1 ¢ . [ocor]
— TR3S 4 u
e B
Y " — SP/MCU
H ™ B i
T G
o o8 !
[Q c
3 P2 s / SELECY
- . sP3
° PCLOCK | AYO! ATO02 MAP
G ‘ m
' l L
c | [
FAST OPND | o
| [
STATUS b— i [
I entr | :
|STORE, — .
5 10A8 7) > :
s b ABS BANK
o M
PBBANK —
s ¢ ’
X - DBBANK —
C STACK BANK |— '
SP/MCY |
j I |
U-BUS 1ON SP'MCU
N B OPINP
TONIR 4—> - - 0,
cPx1 « |4 cPx 1
I
STORE U =HS 10A 10D jcvo
PARITY

Figure 2-20.

CPU Simplified Logic Diagram

2-48

{Sheet 2 of 2)

System/CPU Overview

The entire data calculation is accomplished by one microcode in-
struction which is also executed in two steps. During the first
step, the microcode instruction is held in RORI. Ef fectively,
the only two microcode instruction fields being decoded during
this clock cycle are the R- and S-Bus fields. (Refer to Section V
for microcode instruction format descripticns.) These two fields
cause the R- and S-Bus Logic to select the correct registers for
the two operands and gate the operands to the R- and S-Bus Reg-
isters. The same clock cycle that gates the operands into the
R- and S-Bus Registers also gates the current microcode instruc-
tion into ROR2 and gates the next microcode instruction into RORL
as discussed in paragraph 2-74. It also gates the previous mic-
rocode instructions’s final result into the register specified by
the instruction’s Store field. During the second step (current
microcode instruction in ROR2) , the instruction’s Function field
specifies what calculation is to be accomplished by selecting
either the Shifter or Decimal Corrector and the instruction’s
Shift field specifies what the Shifter or Decimal Corrector is to
accomplish. Also, the instruction’s Store field specifies to the
Store Iogic which register to select to gate the final result
appearing on the U-Bus. During the next clock cycle, the now
conpleted microcode instruction is discarded by loading the next
microcode instruction into ROR2 and the final result of the exe-
cuted instruction is gated into the register specified by the
Store ILogic.

Each microcode instruction also contains two octher fields that
are decoded during execution; a Skip field and a Special field.
The Special field controls the hardware that performs such oper-
ations as setting condition codes, popping the stack, and incre-
menting and decrementing the stack’s SR Register. A complete
listing of the operations specified by the Special field is con-
tained in Section V. The Skip field specifies test conditions
such as the status of internal flags, the contents of the
SR Register as compared to zero through four, and operand results
that appear on the T-Bus as compared to zero, non-zero, odd, and
even. A complete listing of the test conditions specified by the
Skip field is contained in Section V. The Skip field determines
which condition will be tested for a possible skip. If the con-
dition is met, ROR2 executes a No Operation (NOP), effectively
skipping one microinstruction word. Other signals, such as NEXT,
also come from the Skip field.

2-74. MICROCODE PIPELINE. In general, the microcode pipeline
receives a requested instruction from Main Memory via the CTL
Bus, MCU, and Next Instruction Register (NIR). See figure 2-20.
The instruction 1is clocked into the CIR and then intc the CMUX.
If the pipeline has not been previously filled, the NIR output is
clocked into the CIR and CMUX simultarecusly, thus saving one
clock cycle. Ten bits of the CMUX output go to the Mapper and 8
bits go to the Mapper Control. The 8-bit cutput of the Mapper
goes to the Look Up Table (LUT) ROM. The LUT ROM produces a
12-bit microprogram starting address from the received instruc-
tion and also eight special use bits. The SRPO, SRP1, and SRP2
special use bits go to the SR Preadjust Adder. The Z, PCO0, PC1,

2-49

System/CPU Overview

and W special use bits go tc the Preadder Control. (The W bit
also goes to the iMepper Contrcl.) The JULI srecial use bit goes
to the BMUX Control and CMUX Contrcl.

The 12-bit microprogram starting address from LUT is applied to
the VBUS MUX. The VBUS MUX outputs 16 bits tc the ROM and In-
crement (INC). The 16 bits applied to the ROM 1is the starting
address for the microccde instruction providing no special cocn-
diticns such as stack pre-adjust are needed. The 32-bit RCOM
output is clocked 1into ROR1. At the same time that the ROM is
being accessed, the starting address is being sent tc the INC
circuit. During the same clcck cycle that clocks the RCM output
to RORl, the address-plus-one is applied to the Address Register
(RAR) . The output of RAR goes back to the VBUS MUX. When, docing
the next clock cycle, the incremented address goes to ROM, the
new microcode instruction goes tc RORL and the criginal microcode
instructicn goes from ROR1 to ROR2. The microcode pipeline is
now packed, functioning, and incrementing one step at a time
through the microcode. (Refer to paragraph 2-86 for microcode
jump information.)

2-75. CPU Component Descriptions

The logical components of the CPU shown in figure 2-20 are des-
cribed in paragraphs 2-76 through 2-128.

2-76. NIR. The NIR is a 16-bit register that is loaded with an
instruction from Main Memory and provides storage for that in-
struction until the current instruction has been executed. This
allows an instructiorn to be fetched from memcry concurrently with
the execution of the current instruction. The NIR is lcaded bty
an NIP signal from the MCU operation decoder. The NIP sigral is
generated as a result of a microccde instruction Skip field code
NEXT or the MCU field code NIR as described in Section V.

2-77. CIR. The CIR is a 16-bit register that contains the in-
struction currently being executed by the CPU. The CIR is loaded
by an NIRTOCIR signal from the Next Control. The NIRTOCIR signal
is generated as a result of a microcode instructior Skip field
code NEXT or by the clock cycle after a Special field code CCPX
as described in Section V. As previously discussed, if the pipe-
line has not been filled, the contents of the NIR goes directly
tc both the CIR and CMUX to save cne clock cycle. The NIR and
CIR allow one clock cycle to fetch one instruction from memor y
while the previous clock cycle is still executing an instruction.
Instruction translation is accomplished from the CIR twoc clock
cycles after the execution has begun until the execution is com-
plete unless it is the right instruction of a stack-op. In the
case of a Right Stack-Op instruction, the entire translation is
accomplished from the CIR. The controlling factor concerning the
execution of a Right Stack-Op instruction is the BMUX Control.

System/CPU Overview

2-78. CMUX AND CMUX CONTROL. The CMUX is controlled by the Next
Control and CMUX Control to determine whether the instruction

from the NIR or CIR goes into the Mapper.

2-79. MAPPER AND MAPPER CONTROL. The Mapper combines the inputs
from the CMUX and Mapper Control and generates an 8-bit output
that addresses a specific location in the LUT ROM.

2-80. LUT ROM. The LUT ROM outputs a 12-bit address and eight
special use bits as determined by the Mapper. The 12-bit address
is applied to the VBUS MUX and the VBUS MUX generates a l6-bit
output that addresses the initial microcode instruction that
starts the accomplishment of the instruction from the NIR or CIR.
The eight special use bits specify the mode of addressing being
utilized for the memory reference instructions. The SPQ, SPl,
and SP2 bits are applied to the SR Preadjust Adder to define how
many TOS registers must be valid before execution of the in-
struction can begin. Data bit 0 in the LUT ROM is the W-bit and
bits 1 through 12 contain the starting address of the micropro-
gram for the instruction to be executed. When a new instruction
is to be executed, the W-bit is stored in the W-Bit Register.
The W-bit has different meanings for different instructions and
has a fixed, known value for every instruction as follows:

a. For STACKOPS (CIR (0:3) = %00) instructions, the W-bit has no
meaning; it is set to logic 1 merely for convenience.

b. For SUBOP 1 (CIR (0:3) = %01) instructions:

(1) The W-bit is set to logic 1 for instructions regarding
P-relative addresses (some branches). In this case, CIR
(10) is treated as a sign bit for the P-relative dis-
placement in CIR (11:15). This bit controls the function
of the Pre-Adder (add or subtract) so that a positive or
negative number can be obtained from it.

(2) The W-bit is set equal to logic 0 for shift instructions.
In this case, the pre-added output is CIR (10:15), a
6-bit shift count, with zeros in all other bit positions.

c. For SUBOP 2 (CIR (0:3) = %02) instructions, the W-bit con-
trols the function of the Pre-Adder. 1In all cases, the input
to the Pre-Adder is CIR (8:15). When the W-bit is logic O,
the Pre-Adder is set to add. Since the second input to the
Pre-Adder is logic 0 (no indexing), the output is -CIR (8:15)
(= 317 - CIR (8:15)), a negative number.

d. For SUBOP 3 (CIR (0:3) = %03) instructions:

(1) For SPECOP 00 (CIR (0:3) = %03), the W-bit is set to
logic 0 which forces the Pre-Adder to the add function.
In addition, only CIR (12:15) is applied to the Pre-Adder
input. Therefore, the output is the K-field CIR (12:15).

[\]

-51

System/CPU Overview

(2) For SPECOP 01 through 17 (CIR (4:7) = %01 - %17), the W-
bit causes the same action as in paragraph c¢ akove.

€. GSUBOP %04 through %17 (CIR (0:3) = %04 - %17) instructicns
generally reference an operand in memory. The operations
necessary to obtain the effective address is this operand are
common to most of the instructions and, therefore, one micro-
program is used for this calaculation. When one of these
instructions is to be executed, it maps thrcugh the LUT to
this microprogram to obtain the operand address. When this
is done, the instruction then jumps to the microprogram that
executes the specified instruction and the W-bit now becomes
effective. The W-bit is set to logic 1. When the foregoing
address calculation routine has been completed, a micro-
operation (JLUI) in the ROM Skip field is executed. 1If the
instruction does not specify indirect addressing or if one
level of indirect addressing has been completed, the execu-
tion of JULI forces a microprogram jump to an address
contained in the LUT. Since the contents of the CIR have not
changed, the LUT would normally still be pointing to the
address of the foregoing address calculation routine and an
infinite loop would result. However, the W-bit now modifies
the LUT entry address to a different, but related, address.

This LUT address contains the microprogram address of the
desired instruction to be executed.

2-81. VBUS MUX AND VBUS CONTROL. One of the nine inputs to the
VBUS MUX is selected by the VBUS Control to be fed through the
VBUS MUX which becomes a 16-bit address for the ROM. This ad-
dress is also applied tc the Incrementcr (INC) which increments
the address by one and applies this new address to the ROM Ad-
dress Register (RAR).

2-82. RAR. The RAR is a 16-bit register that holds the address of
the next microinstruction tc be executed if no preempting condi-

tions (interrupt, jump, etc.) occur. The RAR is loaded with the
ROM address incremented by cne and is autcmatically incremented
every 175 nancseconds by the INC until the end cf the micropro-
gram for the instruction is reached. Normally, the RAR is loaded
from the INC. However, if a repeat is specified, the contents of
the RAR does not change until the repeat is terminated. In ad-
dition tc the 12-bit output from the LUT ROM, the RAR <can be
loaded from the ROM Output Register Rank 2 (ROR2), by a JMPGATE
signal generated in response to a Function field code Jump (JMP)
or Jump .To Subroutine (JSB), by the interrupt 1logic due to an
interrupt or power failure, from the U-Bus in response tc an RAR
store specified, or from the Hardware Maintenance Panel.

2-83. SAVE REGISTER. When a JSB is decoded by the Function Field
Decoder, a JSB1 signal is generated and the contents of the RAR
is lcaded into the Save Register until a Return from Subroutine
(RSB) is decoded by the Skip Field Decoder. The RSB signal lcads
the contents of the Save Register back into the VBUS MUX and from

there back into the ROM which continues executing the micropro-
gram with the microinstruction follcwing the JSB.

2-52

System/CPU Overview

2-84. ROM. The ROM accepts 16-bit addresses from the VBUS MUX
and outputs 32-bit microinstructions of a microprogram tc the ROM
Output Registers (ROR1 and RCR2). The ROM contains 4096 (&%7777),
32-bit instruction words. Each instruction generally calls sev-
eral microinstructions from the ROM. For example, instructions
that affect TOS will first call a microprogram routine to check
that there are enough filled or vacant TOS registers tc carry out
the operation. Then, after one or more memcry transfers to ad-
just the stack, the remaining microinstructions called by the
instruction will begin. Updated addresses for succeeding micro-
instructions called by the instruction are furnished to the ROM
every 175 nanoseconds by the RAR.

2-85. ROR1 AND ROR2. The 32-bit microinstruction words from ROR1
and ROR2 are divided into eight fields, each field containing
frocm three to five bits. Each field, when decoded, produces a
set of microcode signals that control the operation of the CPU.
(Refer to Section V of this manual.) The 32-bit output of the ROM
is lcaded into ROR1 on each 175-nanosecond clock cycle. On the
next clock cycle, six of the seven microinstruction word fields
are transferred from ROR1l into ROR2 while ROR1 is receiving the
next microinstruction word. (Initially, it takes two clock cycles
to fill the pipeline, but thereafter ROR2 receives a new micro-
instruction wcrd on each successive clock cycle.) Twoc ROM output
registers allow the S- and R-Bus fields to be decoded in advance
of the rest of the instruction word. Therefore, the S- and R-bus
selection occurs is ROR1 and the selected data will be ready and
waiting on the U-Bus by the time the rest of the word is decoded
in ROR2. Each field of the ROM output word is separately decoded
as discussed in Section V. The S-Bus field selects one of 31
registers or sets of lines to be lcaded intc the S-Bus Register.
The R-Bus field selects one of one of 15 processor registers or
sets of lines to be loaded into the R-Bus Register. The Store
field selects one of 29 registers in which to store the U-Bus
data. The Function field specifies the function that the ALU is
to perform on the two operands in the S- and R-Bus Registers. The
Shift field specifies how the T-Bus data will be shifted ontc the
U-Bus. The Special field performs many varied operations in-

cluding the generation of POP and memory opcode and CTL Bus re-
quest signals.

The Skip field specifies a test condition, which if true, causes
the microcode instruction in the next ROM address not to be exe-
cuted. (A complete list of test conditions that can be specified
by the Skip field is contained in Section V.) However, if the
current instruction is a microcode jump instruction, the jump
will be executed only if the condition being tested is true. In
the case where the next microcode instruction is not to be exd-
cuted, the skip condition is tested while the microcode instruc-
tion 1is in ROR2. This means that the instruction to be skipped
is in RORl. The clock cycle that moved the instruction to be
skipped from RORl into ROR2 also sets the NOP2 flip-flop. This
causes the ALU to add, forces the Shift field to a pass function,
and the Store field not to be decoded. However, the operands
specified by the R- and S-Bus fields of the instruction to be

2-53

System /CPU Overview

skipped were already clocked into the R- and S-Bus Registers so
that the data on the U-Bus at the end of the NOP cycle is the sum
of the contents of the source registers.

2-86. Microcode Jumps. Microcode jumps can be taken from either
ROR1l or ROR2. The jumps can be taken from ROR1 only under the
condition that the jump has an unconditional skip code and the
instruction in ROR2 meets one or more of the following condi-
tions: 1is cancelled by NOP2; is a ROM Immediate type instruction
without a data-dependent skip; contains a NOP skip function;
and/or contains a non-data-dependent skip test (skip codes 14
through 27, 32, 33, and 34) which is not met or if an ROR1 j ump
has just been completed. All other microcode jumps will be ex~
ecuted from ROR2.

An unconditional jump is a jump that occurs without regard to the
data. If the microcode calls for an unconditional jump, a jump
target address 1is selected out of the Shift, Special, and R-Bus
fields of the microcode instruction in ROR1 (ROR2 if previous
microcode instruction contained a data-dependent skip condition)
and applied back to the VBUS MUX so that the new ROM microcode
instruction is sent to ROR1. The target address goes to the INC,
is incremented by one, and the new target address plus one is
stored in the RAR until the next clock cycle when it is applied
to the VBUS MUX for consecutive addressing of the microccde in-
structions.

The jumps that are executed from ROR2 because none of the
fast-jump conditions were present for RORlL and the conditional
junps that are always executed frocm ROR2 behave as follows: Not
Taken, next line in seqguence executed on next clock;
Non-Da ta -Dependent Taken, one overhead clock required (NOP2 ef-
fective) before target line executed; Data-Dependent Taken, two
overhead clocks required (FREEZE, NOP2) before target line ex-
ecuted. Execution of jumps in ROR2 inhibit any fast jumps from
ROR1 being executed. Therefore, if there are two consecutive
lines of microcode containing jumps, the jump in ROR2 will be
taken and the jump in RORl will be ignored.

The microcode instruction calling for a jump comes out of ROM and
into ROR1 which decodes the R- and S-Bus fields as discussed in
paragraph 2-85. The R- and S-Bus field information is sent
through the R- and S-Bus Iogic and is waiting at the inputs of
the R- and S-Bus Registers. On the next clock cycle, the j ump
instruction goes to ROR2 and the R- and S-Bus field data is
clocked through the R- and S-Bus Registers. The T-Bus data is
loaded from ROR2 to feed ROM so that, on the next clock cycle,
the address of the jump-tc-microcode instruction goes to ROM. As
the new instruction is clocked intoc ROR2, the jump-to-microcode
address plus one goes into the RAR and the operation resumes
stepping through the microcode.

2-54

System/CPU Overview

2-87. S-Bus Field Decoder (S). The S-Bus Field Decoder (bits O
through 4) selects one of 32 registers or sets of lines to be

1 caded into the S-Bus Register. S-Bus field code definitions are
contained in Section V.

2-88. Store Field Decoder (STORE). The Store Field Decoder (bits
5 through 9) selects one of the Store Logic registers or other
destinations outside the CPU for the U-Bus data. Store field
code definitions are contained in Section V.

2-89. Function Field Decoder (FCN). The Function Field Decoder
(bits 10 through 14) specifies the function to be performed by

the ALU on the twc operands in the R- and S-Bus Registers. Func-
tion field code definitions are contained in Section V.

2-90. Skip Field Decoder (SKIP). The Skip Field Decoder (bits 15
through 19) determines which condition will be tested for a pos-
sible skip. If the condition is met, ROR2 will execute a NOP,
effectively skipping one microinstruction word. The Skip field
also specifies the conditions under which a JMP or JSB will be
executed if coded in the microinstruction. Other signals, such
as NEXT which calls the next instruction from memory, are also
decoded from the Skip field. Skip field code definitions are
contained in Section V.

2-91. Shift Field Decoder (SHIFT). The Shift Field Decoder (bits
20 through 22) specifies how the T-Bus data will be shifted. 1In
addition, the shift field generates the Scratch Pad 1 and Scratch
Pad 3 Register shift signals used in conjunction with the Func-

tion field. The Shift field code definitions are contained in
Section V.

2-92. Special Field Decoder (SP). The Special Field Decoder (bits
23 through 27) performs varied operations such as generating mem-
ory operation code signals and the POP signal. Special field

code definitions are contained in Section V.

2-93. MCU Option Field Decoder (MCU). The MCU Option Field De-
coder (bits 23 through 27) uses the same bits as the Special
Field Decoder. The Special Field Decoder is disabled and the MCU
Option Field Deccder is enabled when executing an S-Bus field
code RBR or a Store field code BUS, BSPO, BSPl, or SBR. The MCU
Option Field Decoder initiates transfers to or from memory and
transfers from ACOR to the Operand, Next Instruction, or Command
Registers via the CTL Bus. MCU Option field code definitions are
contained in Section V.

2-94. R-Bus Field Decoder (R). The R-Bus Field Decocder (bits 28
through 31) selects one of 16 registers or sets of lines for
loading into the R-Bus Register. R-Bus field code definiticns
are contained in Section V.

2-55

System/CPU Overview

2-95. PROCESSOR REGISTERS. Except for the Operand (OPND), 1/0
Address, 1/0 Direct Data 1In, CPX1l, and CPX2 Registers, the pro-
cessor registers can be selectively loaded from the U-Bus and
selectively read into the R- and/or S-Bus Registers. The proces-
sor registers are illustrated in similar readout groups in figure
2-20. For example, the X, Z, PL, SPO, and SR Registers can be
read out only to the R-Bus Register. The SP1 Register can be
read out to either the R- and/or S-Bus Registers. Similarily,
the PB, DL, SM, DB, Q, SP2, SP3, PCLOCK, and OPND Registers can
be read out only to the S-Bus Register. Descriptions of the in-
dividual processor registers, including the renamer logic, are
contained in paragraphs 2-96 through 2-115. In addition, the
actions of many of the processor registers in an operating envi-
ronment are discussed in paragraphs 2-16 through 2-70.

2-96. Renamer Logic. The renamer logic consists the Namer, Adder,
three Mappers, four TOS registers (TRO through TR3), and the
SR Register. These components are designated as the TOS register
renamer, or simply, the renamer. The renamer permits fast access
to the TOS elements by renaming the registers when stack elements
are added or deleted (rather than transferring data from register
to register). The ROM microprograms know TRO through TR3 only by
the names RA (top), RB, RC, and RD. The namer includes a 2-bit
Namer Register that tells the Mappers which of the four TOS reg-
isters (TR0 through TR3) is RA, RB, RC, and RD as listed in table
2-7. The Namer Register is decremented each time a stack element
is added (PUSH) and incremented each time a stack element is de-
leted (POP). To keep track of how many elements are in the TR0
through TR3 registers, the 3-bit SR Register is incremented by
PUSH and decremented by POP in step with the Namer Register.
When the SR Register count is zero, there are no elements in the
TRO through TR3 registers. This would indicate to a ROM micro-
program not to look for the TOS in the CPU and that one or more
memory fetches may be required. The Adder combines the outputs
of the Namer Register, SR Register, and Scratch Pad 1 Register
(SP1) and generates the TNAME signals (bits 0 and 1) for the
Mappers. (Refer to table 2-7.) The Mappers use the TNAME code to
control access to the TOS registers (TRO through TR3). The TNAME

code specifies which of the TOS registers is RA, RB, RC, and RD
as listed in table 2-7.

Table 2-7. TOS Namer Relationships

|
| |
| |
| RA = TRO TRl TR2 TR3 |
| |
| RB = TRl TR2 TR3 TRO |
I |
I| RC = TR2 TR3 TRO TRl |

I
| RD = TR3 TRO TR1 TR2 |
I

T T T e o o o o - ————————— = —————

System/CPU Overview

2-97. TOS Registers. The TOS registers consist of eight 1l6-bkit
registers designated TROR through TR3R and TROS through TR3S.

The two groups of registers always contain the same data (i.e.,
TROR = TR0OS, TRIR = TR1S, etc.). The registers contain up to

four of the top elements of the current data stack. The TOS
registers are read by R-Bus field ccdes RA, RB, RC, RD, and MREG
and by S-Bus field codes RA, RB, RC, RD, and QDWN as discussed in
Section V. The TOS registers are licaded by Store field codes RA,
RB, RC, RD, PUSH, and QUP as discussed in Section V.

2-98. Index Register (X). The Index Register (X Register) is a
16-bit register that contains the index word to be used by memory
reference instructions if indexing is specified. Certain other
instructions use the X Register for parameters or addresses.
(Refer to paragraph 2-48.) The X Register is read by R-Bus field
codes X and XC and lcaded by Stcre field code X.

2-99. Stack Limit Register (Z). The Stack Limit Register (Z
Register) 1is a 16-bit register that contains an absolute address
pointing to the top memory location available to the current data
stack. Al though there are 128 word 1locations above the stack
limit, they are reserved for stack markers in the event of an
interrupt. (Refer to paragraph 2-28.) The Z Register is read by
R-Bus field code Z and lcaded by Store field code Z.

2-100. Program Limit Register (PL). The Program Limit Register
(PL Register) 1is a 16-bit register that contains the absolute
address of the upper location of the current program segment.
(Refer to paragraphs 2-24 through 2-23.) The PL Register is read
by R-Bus field code PL and lcaded by Store field code PL.

2-101. Scratch Pad 0 Register (SP0). The Scratch Pad 0 Register
(SP0 Register.) is a 16-bit register that is used by the CPU to
store partial results during various CPU routines and as address-
es during memory transfers. The SP0 Register is read by R-Bus
field code SP0 and locaded by Store field codes SPO and BSPO.

2-102. Scratch Pad 1 Register (SPl). The Scratch Pad 1 Register
(SP1 Register) 1is a 16-bit register that is used by the CPU to
store partial results during various microprogram routines. The
SP1 Register can be left shifted and provides serial data input
to bit 15 and output from bit 0. The SP1l Register is read by
R-Bus field code SPl, loaded by Store field code SPl, and shifted
by Function field ccdes CTSD, DVSB, and QASL. In addition, the
SP1 Register can be read onto the S-Bus by S-Bus field code SP1
(code is not the same as R-Bus field code SPl).

2-103. Stack Register (SR). The Stack Register (SR Register) is
a 3-bit register counter that provides the number of TOS regist-
ers that are currently in use. The SR Register works in con-
junction with the Namer Register to lccate and access any of the
top four elements of the data stack. (Refer to paragraph 2-21.)
The SR Register is read by R-Bus field code SR and modified by
Store field code PUSH and Special field codes INSR, DCSR, POPA,
CLSR, and POP.

System/CPU Overview

2-104. Program Base Register (PB). The Program Base Register (PB
Register) is a 1l6-bit register that contains the absolute address

of the bottom location of the current program segment. (Refer to
paragraphs 2-21 through 2-28.) The PB Register 1s read by S-Bus

field code PB and loaded by Store field code PB.

2-105. Data Limit Register (DL). The Data Limit Register (DL
Register) is a 16-bit register that contains the absolute address
of the bottom usable location in the current data stack. (Refer
to paragraphs 2-21 through 2-28.) The DL Register is read by
S-Bus field code DL and loaded by Store field code DL.

2-106. Stack Memory Register (SM). The Stack Memory Register (SM
Register) is a 16-bit register that contains the absolute address
of the top element of the data stack in memory. Depending on the
number of TOS registers 1in use (specified by contents of
SR Register), this address can be from zero to four locations
below the actual TOS. (Refer to paragraphs 2-21 through 2-28.)
The SM Register 1is read by S-Bus field code SM and loaded by
Store field code SM.

2-107. Data Base Register (DB). The Data Base Register (DB
Register is a 16-bit register that is one of the stack limit reg-
isters. The DB Register contains the absolute address of the
first 1location of directly addressable storage in the current
data stack. (Refer to paragraphs 2-21 through 2-28.) The DB
Register is read by S-Bus field code DB and loaded by Store field
code DB.

2-108. Q Register (Q). The Q Register is a 16-bit stack marker
register that contains the absolute address of the current stack
marker being used within the data stack. (Refer to paragraphs
2-21 through 2-28.) The Q Register is read by S-Bus field code Q
and loaded by Store field code Q.

2-109. Scratch Pad 2 Register (SP2). The Scratch Pad 2 Register
(SP2 Register) 1is a 16-bit register that is used by the CPU to
store partial results during various microprogram routines. The
SP2 Register is read by S-Bus field code SP2 and loaded by Store
field code sP2.

2-110. Scratch Pad 3 Register (SP3). The Scratch Pad 3 Register
(SP3 Register) is a 16-bit register used by the CPU to store
partial results during various microprogram routines. The
SP3 Register can be right shifted and provides serial data input
to bit 0 and output from bit 15. The SP3 Register is read by
S-Bus field code SP3, loaded by Store field code SP3, and shifted
by Function field codes CTSD, MPAD, and TASR.

2-111. Process Clock Register (PCLOCK). The Process Clock Reg-
ister (PCLOCK Register) is a 16-bit register counter. The
PCLOCK Register is loaded and read by software instructions and
is continuously incremented as long as the CPU is not executing
on the Interrupt Control Stack (ICS FLAG = 0) or is not halted.

System/CPU Overview

The clocking interval is 1.001 ms. The maximum range of the
clock before rollover is approximately 65.5 seconds.

2-112. Program Counter Register (P). The Program Counter Regis-—
ter (P Register) is a 16-bit register that contains the absolute
address of the next program instruction to be fetched from mem-
ory. During execution of Skip field code NEXT, the P Register and
PB-Bank Register are used to select a memory module and prefetch
the instruction following the one which is about to be executed.
(Refer to paragraphs 2-21 through 2-28.) The P Register 1is read
by S-Bus field code P and loaded by Store field code P.

2-113. Operand Register (OPND). The Operand Register (OPND
Register is a 16-bit register that provides storage for data read
from memory by the CPU. The OPND Register is loaded by an OPINP
signal from the Operand In Process (OPINP) flip-flop in the MCU
operation decoder as a result of MCU options OPND, RNWA, RWA, and
RWAN. The OPND Register is read by an RDOPND signal from the
S-Bus Decoder as a result of S-Bus field code OPND. When the CPU
freezes for an operand, the operand from memory goes directly to
the S-Bus Logic as well as into the OPND Register. It is then
loaded into the S-Bus Register to await CPU operation.

2-114. Status Register (STA). The Status Register (STA Register)
is a 16-bit register that indicates the current status cf the CPU
hardware. (The status word format is discussed in paragraph 2-
45.) The STA Register is read by S-Bus field code STA and
loaded by Store field code STA. Status bits are also affected by
Function field ccdes CADO, SUBO, INCO, and ADDO; and by Special
field codes CCB, SCRY, CCRY, POPA, SOV, CLO, CCz, CCL, CCG, CCE,
and CCA.

2-115. Counter Register (CNTR). The Counter Register (CNTR
Register is a 6-bit register that is used as a repeat counter by
the CPU. The two’s complement of the desired count is loaded into
the CNTR Register and the register is then incremented for each
repeated execution wuntil it contains all ones as indicated by a
CTRM code from the Skip field. The CNTR Register is affected or
referenced by S-Bus field codes CTRI and CTRH, Function field
code REPN, Store field codes CTRL and CTRH, Special field «code
INCT, and Skip field ccde CTRM. Additionally, the CNTR Register
saves the contents of the SR Register when the CPU is put in the
Halt Mode. Therefore, after a halt has occured, the CNTR Register
can be displayed to show what the contents of the SR Register was
just prior toc the halt.

2-116. OVERFLOW FLIP-FLOP (OVFL). The Overflow flip-flop con-
trols the status word overflow bit (bit 4) and stores the state
of the Overflow signal from the ALU when the OFCENB signal is
true. The Overflow flip-flop is set and cleared by Special field
codes SOV and CLO respectively. Refer to paragraph 2-45.

System/CPU Overview

2-117. CARRY FLIP-FLOP (CRRY). The Carry flip-flop controls the
status word carry bit (bit 5) and stores the state of the Carry
signal from the ALU when the OFCENB signal is true. The Carry
flipflop is set and cleared by Special field codes SCRY and CCRY
respectively. Refer to paragraph 2-45.

2-118. CONDITION CODE LOGIC (CCO AND CCl). The condition code
logic controls the condition code. Refer to paragraph 2-46.

2-119. PRE-ADDER. The Pre-Adder is used to gain a speed in-
crease for instructions that use or perform computations on CIR
bits. For example, when executing indexed memory reference in-
structions (not indirect), the proper CIR displacement field is
pre-added to the X Register contents. Therefore, the final abso-
lute address can be computed in only one clock cycle by adding
the output of the Pre-Adder to the contents of the base register
(pB, DB, Q, or 2Z).

2-120. R-BUS REGISTER. The R-Bus Register is a 16-bit register
that provides buffer storage between the R-Bus and the ALU. The
R-Bus Register can be left-shifted one bit position (refer to
Function field code OQASL, Section V) and is 1loaded from the
R-Bus. Refer to R-Bus field code definitions.

2-121. S-BUS REGISTER. The S-Bus Register is a 16-bit register
that provides buffer storage between the S-Bus and the ALU. The
S-Bus Register can be right-shifted one bit position (refer to
Function field code QASR, Section V) and is loaded from the
S-Bus. Refer to S-Bus field code definitions.

2-122. ALU. The ALU combines the R- and S-Bus data and gener-
ates functions that are divided into two modes or groups; arith-
metic functions and 1logic functions. The 16-bit output of the
ALU is placed on the T-Bus for either the Shifter or Decimal
Corrector.

2-123. SHIFTER. The Shifter performs all shifts and rotates (left
shift, right shift, right-left swap, etc.) on the T-Bus data as
directed by the Shift Field Decoder. The output of the Shifter
is placed on the U-Bus for storage in one of the U-Bus registers.

2-124. DECIMAL CORRECTOR. The Decimal Corrector adds six to each
group of four bits in the output from the ALU and generates car-
ries to the next group as required to yield a correct decimal
addition. Each group of four bits in the source operands must be
in the range of 0 to 9. If an invalid digit is detected during
the add cycle, overflow will be true.

2-125. ADDRESS COMPUTER OUTPUT REGISTER (ACOR). The ACOR is a 16-
bit register that functions as a memory address buffer between
the U-Bus and the CTL Bus.

2-126. DATA COMPUTER OUTPUT REGISTER (DCOR). The DCOR 1is a 16~

bit register that functions as a buffer for memory bound data and
-Operand address transfers between the U-Bus and the CTL Bus.

2-60

System/CPU Overview

2-127. INTERRUPT STATUS REGISTER 1 (CPX1l). The Interrupt Status 1
Register (CPX1 Register) provides 16 bits that are used to monit-
or the system Run Mode interrupt status. When a Run Mode inter-
rupt occurs, the CPU reads the CPX1 Register and checks its con-
tents for the cause of the interrupt. The CPX1l Register is read
by S-Bus field code CPX1l and is affected by Special field code
CCPX as discussed in Section V. Each of the CPX1 Register’s 16
bits (when true) signifies a specific Run Mode interrupt as fol-
lows:

Bit 0: Integer Overflow Bit 8: External Interrupt
Bit 1: Bounds Violation Bit 9: Power Fail Interrupt
Bit 2: Illegal Address Bit 10: O

Bit 3: CPU Timer Bit 11: ICS Flag

Bit 4: System Parity Error Bit 12: DISP Flag

Bit 5: Address Parity Error Bit 13: Emulator

Bit 6: Data Parity Error Bit 14: I/0 Timer

Bit 7: Module Interrupt Bit 15: Option Present

2-128. INTERRUPT STATUS REGISTER 2 (CPX2). The Interrupt Status 2
Register (CPX2 Register) 1is used to monitor the system’s Halt
Mode interrupt status. When a Halt Mode interrupt occurs, the
CPU reads the CPX2 Register and checks its contents for the cause
of the interrupt. The CPX2 Register is read by S-Bus field code
CPX2 and is affected by Special field code CCPX as discussed in
Section V. Each of the CPX2 Register’s 16 bits (when true) sig-
nifies a specific Halt Mdde interrupt as follows:

Bit 0: Run Switch Bit 8: Execute Switch

Bit 1: Dump Switch Bit 9: Increment Address
Bit 2: Load Switch Bit 10: Decrement Address
Bit 3: Load Register Bit 11: 0

Bit 4: Load Address Bit 12: 0

Bit 5: Load Memory Bit 13: Inhibit PFARS

Bit 6: Display Memory Bit 14: System Halt

Bit 7: Single Instruction Bit 15: Run Flip-Flop

2-129. CPU Servicing Information

Physically, the basic CPU consists of the nine PCA’s contained in
slots A2 through Al0 of Card Cage No. 1 as shown in tables 1-1
through 1-3. All CPU PCA’'s are nonrepairable PCA's and must be
replaced if found defective. No repair procedures are required.
However, four of the six CPU PCA’'s contain jumpers or switches
that must be properly configured as discussed in paragraphs 2-130
through 2-133.

2-130. READ-ONLY MEMORY (ROM) PCA. The ROM PCA contains four
jumpers (W5 through W8) that must be installed to reflect the
type of ROM’s loaded on the PCA. If the ROM PCA is loaded with
ROM‘s having a capacity of 1K words, install the four jumpers
nearest the 1K marking as shown in fiqure 2-21. If the ROM PCA

is loaded with ROM’s having a capacity of 2K words, install the
four jumpers nearest the 2K marking.

2-61

System/CPU Overview

TOP 1,3, 79

BOTTOM 2,4, 80 , 4,
1 [T [T,

N -

ROM PCA
30003-60021

2,4, 2,4,
BOTTOM 1,3,~—49 1,3, 49 1,3, 49
1K
: :}1KPOSH10NS
w5 . .
aﬁ . :}ZKPOSHWONS
2K

Figure 2-21. ROM PCA Jumper Locations

2-131. SKIP AND SPECIAL FIELD (SSF) PCA. The SSF PCA contains
two synchronizing jumpers (Wl and W2) that must be installed to
reflect that there is only one CPU in the system. Ensure that
jumpers W1 and W2 are installed exactly as shown in figure 2-22.

2-62

System/CPU Overview

TOP 1,3, 79 1.3, 7
BOTTOM 2,4, 80 2,4, 80
e T .
[\
e 8 8
=] =
N\
s 8 &
=] 2 =]
.—@—. SKIP AND SPECIAL
FIELD PCA
30003-60022
w2}
.S
31 J2 3
TOP 2,4, =50 2,4~ =5 2,4, 50
BOTTOM 1,3, =~ 49 1,3 49 1,3, 49

Figure 2-22. SSF PCA Jumper Locations

2-132. S-BUS PCA. The S-Bus PCA contains three selector switch-
es (S1, S2, and S3) as shown in figure 2-23. Set switch S3 to
match the computer system’s Main Memory size. Switches S1 and S2
are used for memory interleaving. At present, memory interleav-

ing is not factory supported and switches S1 and S2 must be con-
figured for non-interleaving in accordance with table 2-8.

Memory interleaving requires two Memory Control and Logging PCA’s
be installed in the system, each supporting one, two, or four
Semiconductor Memory Array PCA’s. The memory sizes that can be
interleaved are limited tc 256K, 512K, and 1024K words. The re-
quired switch confiqurations of switches S1 and S2 on the S-Bus,
I0P, and Selector Channel Register PCA’s for memory interleaving
are listed in table 2-8.

System/CPU Overview

Table 2-8. Memory Interleaving Switch Configurations

I I
R U R e S A e e
2131415161 112131 4151]6]

|
(
|
{
]
{
{
|
|

|
]
L}
|
{
|
|
|
|

Interleaving
1024K
4 PCA ‘s/MCL

|
{
|
{
|
!
|
|
|

Interleaving
512K
2 PCA s/MCL

Interleaving
256K
1 PCA/MCL

|
|
|
|
* 0 1
[
|
1
1

——— . ———— . — v —————— v———— ——— . m—— e - —— v ———— —— v em w— emew e -

*Applies to IOP PCA only.

|
|
|
I
|
|
I
|
I
I
I
|
|
|
|
I
|
|
|
|
I
|
|
I
I
|
I
[
| On the S-Bus, IOP Bus, and Selector Channel Register PCA’s,

| open all switch positions of S1 and S2. Then, close those

| switch positions indicated with a C on all three PCA’s for the
; applicable mode.

TR ST S A e o e e v S — = ———— . —— — = —_———————— - —— - —_— ——— —— - —— ——— = — —— - —— - ————

2-133. CURRENT INSTRUCTION REGISTER (CIR) PCA., The CIR PCA con-
tains eight jumpers (Wl through W8) as shown in figure 2-24, If
neither the HP 32105A APL (A Programming Language), HP 32233A
COBOL ‘74 or, the Extended Instruction Set (EIS) PCA, part no.
30012-60001 are installed in the system, W1 through W8 are all
installed. If the EIS PCA is installed in the system, remove
jumpers W1l and W8 from the CIR PCA. Removing jumper W1 enables
the floating point instructions and removing Jjumper W8 enables
the decimal instruction set. If the HP 32105A APL ROM’s are in-
stalled on the EIS PCA, remove jumper W2 from the CIR PCA to en-
able the APL instructions. If the HP 32233A COBOL ‘74 ROM’'s are
1nstalled on the EIS PCA, remove jumper W4 to enable the COBOL
“74 instructions.

2-64

System/CPU Overview

TOP 1.3, 7 1,3, 79
BOTTOM 2,4 80 2,4, 80

3
TOP 2,4~ =50
BOTTOM 1,3, 49

MEMORY SIZE

(WORDS)
S3

1-128K
2-256K
3-384K
4-512K
5-768K
6 - 1024K

S-BUS PCA

2, 4'4_————>m
1, 3'.—————49

Figure 2-23.

S-Bus PCA Switch Locations

System/CPU Overview

TOP 1,3, 79 1,3, 79
BOTTOM 2, 4 80 2,4, 80
P1
CIR PCA
30003-60006
XW
‘W1
W2
w3
w4
w5
wé
W/
~
ws £y
i
)
(-]
J1 J2 J3
TOP 2,4, ~—————=5g 2,4, ~—+50 2,4=————=50
BOTTOM 1, 3, 49 1,349 1,3~——————=49

7522-37

Figure 2-24.

CIR PCA Jumper ILocatiocns

2-66

System /CPU Overview

NOTES

N
1
N
~J

System /CPU Overview

NOTES

2-68

SYSTEM VERIFICATION AND
TROUBLESHOOTING || m

This section contains a brief discussion of available verifica-
tion procedures that can be used to determine if the computer
system is operating properly, a brief discussion of system
troubleshooting procedures, and a discussion of how to use the
System Control Panel and the HP 30354A Maintenance Panel.

3-1. DIAGNOSTIC AND VERIFICATION PROGRAMS

The computer system uses three types of test programs; on-1line
verification programs, stand-alone diagnostic programs, and
microdiagnostics.

3-2. On-Line Verification Programs

The on-line verification programs are used to confirm proper op-
eration of peripheral devices (i.e., printer, terminals, readers,
punches etc). These programs run concurrently with other programs
under control of the Multiprogramming Executive Operating System
(MPE) and permit uninterrupted system operation. If the minimum
hardware configuration required for MPE 1is inoperable, on-line
verification programs cannot be run and the stand-alone diagnos-
tics must then be used. For detailed information on the use and
functions of the on-line verification programs, refer to the in-
dividual on-line verification program manuals.

3-3. Stand-Alone Diagnostic Programs

The stand-alone diagnostic programs allow Customer Engineers to
run maintenance and troubleshooting tests on system hardware and
peripheral devices. Each of these programs is independently
operated and runs directly on the central processor. MPE is not
required and the operating system is shut-down while stand-alone
prcgrams are running. When a problem occurs that prevents the
use of both on-line or stand-alone programs, then the microdiag-
nostics must be used. The stand-alone diagnostic tapes are cre-
ated under control of SDUPII (Stand-Alone Diagnostic Utility Pro-
gram II). Updating stand-alone diagnostics is also accomplished
under control of SDUPII. For detailed information on the use and
functions of SDUPII, refer to the Diagnostic Utility Program II
Manual, part no. 03000-90125. For detailed information on the
use and functions of stand-alone diagnostic programs, refer to
the individual stand-alone diagnostic program manuals.

3-4. Microdiagnostics

The microdiagnostics are microprograms that are built into the
system. These are microprograms that replace the instruction set
microprograms in the central processor and in some controllers.

3-1

System Verification and Troubleshooting

They identify problems by checking the hardware from the most
basic level. The operating procedures for the built in micro-
diagnostics are contained in the HP 3000 Computer System Install-
ation Manual, part no. 30000-90147. The program is listed in the
HP 3000 Series III Computer System Microprogram Listing, part no.
30000-90136.

3-5. SLEUTH 3000

SLEUTH 3000 is a stand-alone utility written in SPL/3000. It is
designed to give Customer Engineers the capability of generating
unique I/0 test programs that run under the <control of SLEUTH
3000. These programs allow isolation of I/0 problems and ease
the troubleshooting of these problems. SLEUTH 3000 has the abil-
ity to run up to five different types of I/0 devices concurrent-
ly. It can also write and execute SIO programs, store and
restore programs on magnetic tape, and edit the programs.
Peripheral devices that do not have on-line and/or stand-alone
verification programs require that SLEUTH 3000 programs be writ-
ten to test these devices. For additional information, refer to
the Stand-Alone SLEUTH Diagnostic D411A, manual part no. 03000-
90123.

3-6. SYSTEM TROUBLESHOOTING AND REPAIR

The HP 3000 Series III CE Handbook, part no. 30000-90172 con-
tains system troubleshooting procedures that are designed to iso-
late malfunctions to specific functional areas of the system.
Repair of a defective functional area is usually accomplished by
replacing the defective PCA. Only the main memory PCA's are re-
paired to the component level.

In order to run the available diagnostic and verification pro-
grams and to be able to perform the system troubleshooting pro-
cedures, it is mandatory that Customer Engineers know how tc use
both the System Control Panel and the Mintenance Panel. De-
tailed information on how to use these panels and "hands-on" ex-
perience will be obtained while attending the hardware training
course. For reference purposes, the panels are described in par-
agraphs 3-7 and 3-8.

3-1. SYSTEM CONTROL PANEL

The System (ontrol Panel (figure 3-1) is located at the top front
of the CPU Equipment Bay and provides the switches and lamps re-
quired to perform the following operations:

a. Cold load and run diagnostics.

b. Load and run user programs.

c. Halt programs.

d. System dump.

e. Observe Current Instruction Register.

f. Reset CPU.

g. Enable and disable auto restart function after power failure.

System Verification and Troubleshooting

PF/ARS PANEL [=1]
DSBL ENBL DSBL ENBL RESET
A) A)
NOTE: \ |y ’,
1. SWITCHES LOCATED BEHIND FACEPLATE. :‘\‘: :’\ 1 rl1
L_J L.l L-J

2. PLACARDING LOCATED ON REAR COVER PLATE
OF SYSTEM CONTROL PANEL.

CURRENT INSTRUCTION REGISTER ” i SYSTEM HALT RUN

OIC..IOOOQ..IQOQICQ‘

14 15

SYSTEM SWITCH REGISTER

o 1 2 3 a 5 8 7 8 9 10 11 12 13 14 15

CHHAFBHABEEHEEEEE B8

DuMP

ENABLE

Figure 3-1. System Control Panel

All front panel switches are three-position, spring-return, rock-
er switches with a center-off position. To perform a specific
operation, press either the top or bottom half of the appropriate
switch as indicated by the placardlng. When released, the switch
will return to its center—-off position. The switches and lamps
shown in Figure 3-1 are identified and described in table 3-1.

In addition to the switches described in table 3-1, there are
three switches locted behind the upper-right corner of the panel
that are accessible when the cabinet door is opened. See figure
3-1. The CPU RESET switch is a two-position, spring-return
switch that resets the CPU circuits. The PANEL DSBL/ENBL switch
is a two-position switch that disables or enables the System Con-
trol Panel for use. The PF/ARS DSBL/ENBL switch is a two-p051—

tion switch that disables or enables the auto restart program in
the event of a power failure.

Table 3-1. System Control Panel Switches and Lamps

e o - = — i —— — ———— — . o

Panel Marking Function

CURRENT INSTRUCTION
REGISTER (lamps)

Displays the contents of the CIR.

the switches on or off. Switches
provide a 16-bit wecrd to be used as
a device number and control byte
for cold load procedure.

RUN (lamp) Indicates the system is executing a

~
|
I
I
|
|
I
SYSTEM SWITCH REGISTER Displays the contents of the Sw1tch:
I
I
I
I
|
I
program. |

I I
| I
I I
I |
I I
I I
| |
| I
| (lamps and switches) | Register as determined by pressing
I I
I I
| I
I I
I I
I |
I I
I I

System Verification and Troubleshoot ing
Table 3-1. System Control Panel Switches and Lamps (Continued)

I Panel Marking | Function |

- —_——.-.———-—-—.—-—-.—--—----—..—_-—--—--.-_—....-I

Indicates a system halt caused by
an irrecoverable error detected by
the firmware.

SYSTEM HALT (lamp)

Reverses the run/halt condition of
the system.

RUN/HALT (switch)

ENABLE (switch) Must be held in the ENABLE position
to permit the LOAD or DUMP switch
function to become active.

DUMP (switch) Sends the contents of memory and
CPU registers to the system mag-

netic tape unit.

LOAD (switch)
specified