HEWLETT@F PACKARD

BASIC Interpreter

Reference Manual

HP 3000 Computer System

BASIC Interpreter

Reference Manual

il

HEWLETT @ PACKARD

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95050

Printed in U.S.A. 6/76

Part No. 30000-90026
Product No. 32101B

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition.
Within the manual, any page changed since the last edition is indicated by printing the date the changes were made on the
bottom of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is
reprinted, these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears

as a prior update.

First Edition June 1976

Changed Pages

Title Apr 1978
Hooo e Apr 1978
ftoiv. Aug 1978
VIl . L S0 1978
. Aug 1978
-7 Aug 1978
222 e Apr 1978
2.31t02:32. Aug 1978
2-37t0238.Augl978
2:38a ... Apr 1978
243t0243a Aug 1978
251 .. e Apr 1978
256 Aug 1978
28T e Apr 1978
259t0260. Apr 1978
32 Apr 1978
S . oL . Augl978
O Apr 1978
513 . Apr 1978
519t05-20. L Aug 1978
T-23 Apr 1978
8-1to 82 Aug 1978
810to811... e Aug 1978
813to814.Aug1978

AlIG 1978

ii

Effective Date

816 . . . Apr 1978
818 Aug 1978
820 Apr 1978
8-22 Aug 1978
8-23at0823b L Aug 1978
824 . e Apr 1978
826 Apr1978
831to8-31la....... Apr 1978
8-32t0835. Aug 1978
837 . e Aug 1978
9-1t09-36. Aug 1978
9b6t09-6. Aug 1978
1110 .o oo Apr 1978
123 .. Apr 1978
C-b. Apr 1978
C-8. e Aug 1978
D3toD4 Aug 1978
D7 Apr 1978
E-3. . . Aug 1978
R Apr 1978
H-2. Aug 1978
Index-1toIndex-4. Aug 1978
Index-5...... Apr 1978

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition are
incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does not
change.

The software product part number printed alongside the date indicates the version and update level of the software
product at the time the manual edition or update was issued. Many product updates and fixes do not require manual
changes, and conversely, manual corrections may be done without accompanying product changes. Therefore, do not
expect a one to one correspondence between product updates and manual updates.

First Edition. Jun1976 32101B.00
Update Package No. 1 Apr1978.......... 32101B.00
Update Package No. 2 Augl978............... 32101B.00

Contents

SECTION I Introduction to BASIC 11
SPECIAL KEYS 1-2
PROMPT CHARACTERS 1-3
LOGGING ON AND OFF 1-4

Logging On 14
Entering BASIC 14
Leaving BASIC 1-5
Logging Off 1-5
Suspending BASIC 1-5
CORRECTING ERRORS 1-6
BASIC COMMANDS AND STATEMENTS 1-7
BASIC PROGRAMS 1-10
USER’S WORK AREA 1-11
LISTING A PROGRAM 1-12
RUNNING A PROGRAM 1-13
DELETING A PROGRAM 1-14
DOCUMENTING A PROGRAM 1-15

SECTION I Essentials of BASIC 2-1

EXPRESSIONS 2-2
Constants 2-2
Variables 2-4
Functions 2-5
Operators 2-6
Evaluating Expressions 2-8

STATEMENTS 2-10

ASSIGNMENT STATEMENT 2-11

SECTION II (Continued)

REM STATEMENT 2-13
GOTO STATEMENT 2-14
GOSUB/RETURN STATEMENTS 2-16
END/STOP STATEMENTS 2-19
LOOPING STATEMENTS 2-22
CONDITIONAL STATEMENTS 2-25
PRINT STATEMENT 2-31
Print Functions 2-36
READ/DATA/RESTORE STATEMENTS 2-39
INPUT STATEMENT 2-42
ENTER STATEMENT 2-47
>BASIC 2-49
COMMANDS 2-50
RUN 2-51
EDITING COMMANDS 2-54
LIST 2-54
SCRATCH 2-55
DELETE 2-55
RENUMBER 2-56
LENGTH 2-56
LIBRARY COMMANDS 2-59
NAME 2-59
SAVE 2-59
GET 2-61
PURGE 2-61
APPEND 2-62
CATALOG 2-62
SECTION III Arrays 3-1
DIM STATEMENT 3-3
REDIM STATEMENT 3-4
STORING DATA IN ARRAYS 3-6
MAT READ/INPUT Statements 3-6
PRINTING DATA FROM ARRAYS 3-8
MAT PRINT Statement 3-8
INITIALIZING ARRAYS 3-10

SECTION III (Continued)

ARRAY OPERATIONS 3-12
Array Copying 3-12
Array Addition/Subtraction 3-13
Array Multiplication 3-14
Array Inversion 3-16
Array Transposition 3-18
Array Scalar Multiplication 3-19

ARRAY FUNCTIONS 3-20

SECTION IV Variable Types 4-1

TYPE STATEMENTS 4-2
Numeric Constant Forms 4-2
Printing Long and Complex Data 4-6
Numeric Expressions 4-7
Conditional Statement 4-8
Numeric Assignment 4-8
Entering Numeric Data 4-9
Other Uses of Data Types 4-9
Numeric Arrays 4-10
Function Class 4-11

SECTION V Strings 5-1

LITERAL STRINGS 5-1

DIM STATEMENT WITH STRINGS 5-3

REDIM STATEMENT WITH STRINGS 5-5

STRING VARIABLE 5-6

STRING EXPRESSIONS 5-9

STRING ASSIGNMENT 5-10

STRING-RELATED FUNCTIONS 5-12

COMPARING STRINGS 5-16

STRING INPUT AND OUTPUT 5-17
Reading Strings 5-17
Inputting Strings 5-18
Entering Strings 5-18
Printing Strings 5-20

LINPUT STATEMENT 5-21

vl

SECTION V (Continued)
STRING ARRAY OPERATIONS
CONVERT STATEMENT

SECTION VI User-Defined Functions
ONE-LINE FUNCTION
MULTILINE FUNCTION
CALLING A USER-DEFINED FUNCTION

Passing Parameters

SECTION VII Debugging
TRACE/UNTRACE COMMANDS
BREAK /UNBREAK COMMANDS

Legal Commands During Break
ABORT COMMAND
RESUME OR GO COMMAND
SHOW COMMAND
SET COMMAND
FILES COMMAND
CALLS COMMAND
WAIT COMMAND

SECTION VIII Files
CREATING A FORMATTED FILE
PURGING A FILE
OPENING FILES
FILES STATEMENT
ASSIGN STATEMENT
FILES ACCESS
SERIAL FILE PRINT
SERIAL FILE READ
FILE RESTORE STATEMENT
DIRECT FILE PRINT
DIRECT FILE READ
ASCII FILE ACCESS
FILE LINPUT STATEMENT
FILE MARGIN STATEMENT
BINARY FILE ACCESS
DYNAMIC LOCKING

viii

5-22
5-23

6-1
6-2
6-4

6-10

7-1
7-2
7-7
7-8
7-11
7-12
7-14
7-16
7-18
7-20
7-23

8-1
8-3
8-5
8-6
8-7
8-9
8-12
8-13
8-15
8-17
8-18
8-20
8-22
8-23
8-23a
8-24
8-25

AUG 1978

SECTION VIII (Continued)

ON END STATEMENT

ADVANCE STATEMENT

UPDATE STATEMENT

LISTING FILE CONTENTS
DUMP Command

FILE FUNCTIONS
TYP Function
REC Function
ITM Function

FILE ARRAY OPERATIONS
Serial File MAT PRINT Statement
Serial File MAT READ Statement
Direct File MAT PRINT Statement
Direct File MAT READ Statement

SECTION IX Formatted Output

PRINT USING STATEMENT

PRINT # USING STATEMENT
MAT PRINT USING STATEMENT
MAT PRINT # USING STATEMENT
IMAGE STATEMENT

FORMAT STRINGS

SECTION X Segmentation

SECTION XI Communication with Non-BASIC Programs

CHAIN STATEMENT
INVOKE STATEMENT

FILES AND SEGMENTATION
COM STATEMENT

CALL STATEMENT
SYSTEM/RESUME COMMANDS
SYSTEM STATEMENT

SECTION XII Non-Interactive Programs

AUG 1978

CARD READER/LINE PRINTER
PAPER TAPE
Preparing a Paper Tape
Punching Paper Tape Off-Line

ix

8-27
8-29
8-30
8-31
8-31
8-32
8-32
8-34
8-34
8-35
8-35
8-35
8-36
8-37

9-2
9-3a

9-5a
9-6

10-1
10-2
10-4
10-7
10-9

111
11-2
11-10
11-12

12-1
12-2
12-5
125
12-6

SECTION XII (Continued)

Reading Paper Tape 12-7
COMMAND INPUT FROM FILES 12-9
APPENDIX SECTION
APPENDIX A ASCII Character Set Al
APPENDIX B Error Messages B-1
APPENDIX C BNF Syntax for BASIC/3000 C-1
APPENDIX D Summary of BASIC/3000 Statements & Commands D-1
STATEMENT SUMMARY D-1
COMMAND SUMMARY D-6
APPENDIX E Built-in Functions E-1
APPENDIX F Parameter Format F-1
APPENDIX G Compatibility Between BASIC/2000 & BASIC/3000 G-1

APPENDIX H File Structure H-1

SECTION |
Introduction to BASIC

HP BASIC/3000 is a programming language designed for use at a keyboard terminal. It may also be
used for batch jobs on paper tape and cards. To use BASIC at a terminal, the terminal must gain
access to the BASIC/3000 Interpreter through the HP Multiprogramming Executive Operating
System (MPE/3000). The BASIC/3000 Interpreter is the control program for BASIC/3000.

BASIC/3000 consists of statements for writing programs and commands for controlling program
operation. This section describes how to log on and log off, how to enter commands and statements
and make corrections. A few simple programs are used for illustration, but the actual programming
language is not described until Section II.

This manual assumes that the user knows how to connect his terminal, and is familiar with his
terminal keyboard. Special keys with particular functions in BASIC/3000 are described in this
section.

In this section only, characters typed by the computer are underlined to distinguish them from user
input. Subsequent sections assume that this distinction is clear to the user.

return

linefeed

CTRL

CTRL H (HF)

CTRL X (X°)

CTRL Y (Y°)

BREAK

Special Keys

Must be pressed after every command and statement. It terminates the
line and causes the teleprinter to return to the first print position. BASIC
returns a linefeed.

Advances the teleprinter one line.

When pressed simultaneously with another key, converts the key to a
control character that is usually non-printing.

Deletes the previous character in a line. It prints the character \ for each
character deleted.

Cancels the line currently being typed. It types three exclamation points
on the line and then gives a return and linefeed to the beginning of the

next line.

Suspends a particular BASIC/3000 program or command and returns to the
BASIC/3000 Interpreter. To return control to a program, type GO.

Stops all BASIC/3000 activity and returns the user to the operating system
(MPE/3000). BASIC/3000 can be re-entered by typing RESUME.

1-2

Prompt Characters

BASIC/3000 uses a set of prompting characters to signal to the user that certain input is expected
or that certain actions are completed.

>

7

>>

The prompt character for the BASIC/3000 Interpreter; a BASIC command or statement
is expected.

The prompt character for the MPE Operating System; MPE commands such as HELLO or
BASIC are expected.

User input is expected during execution of an INPUT statement.

Further input is expected during execution of an INPUT statement.

BASIC expects a continuation line when the previous line was terminated by a &.
A full line has been deleted with CTRL X.

A single character was deleted with CTRL H.

A BASIC command was mistyped; re-enter it correctly.

1-3

Logging On and Off

LOGGING ON

Once the terminal is connected and ready, the user presses the carriage return. MPE responds with
a colon (:) at the beginning of the line. The user may now log on. He should know his user and
account identification codes, and also the user and account passwords.

To log on, type: $HELLO JOANG.STUDENT

JOANG and STUDENT are sample USER PASSWORD?

u.ser and account.identifica- XXXXXXXXX

tion codes. A period must I

be typed between them. ACCOUNT PASSWORD?

The computer types a mask

over which the passwords XXXXXXXXX

are typed. This preserves SESSION NUMBER = #S5

password privacy. WED, MAY 16§, 15973, 2:26 PM

HP32P00B .Q1l .20

The last line identifies the Multi-programming Executive Operating System (MPE/3000).

ENTERING BASIC

Following log on, the MPE/3000 Operating System signals it is ready for the next command by
printing a colon. The user may now request the BASIC/3000 Interpreter by typing BASIC.

To enter BASIC, type: $BASIC

BASIC signals that it has control with a

greater-than sign at the start of the EAS 1C 21,8
line. —_

BASIC commands and statements can now be entered. Each command or statement is prompted
by the greater-than sign at the start of a new line.

14

LEAVING BASIC

When the user is through, he returns control to MPE/3000 with the EXIT command.

To leave BASIC, type: >EXIT

The computer prints: END OF PROGRAM
and MPE/3000 signals that it has resumed

control with a colon. 2

LOGGING OFF

When a session at the terminal is finished, the user logs off with the MPE/3000 command BYE.
He must have already exited from the BASIC Interpreter by typing EXIT. When MPE /3000 prints
a colon, the user can type BYE.

To log off, type: $BYE

MPE/3000 records the date and the time. CPU (SEC) = 3

It also records the number of minutes CONNECT (MIN) = 2

the terminal was connected and the WED, MAY 16, 1573, 2:28 PM

END OF SESSION

seconds of central processor time used.

SUSPENDING BASIC

The user may want to return to the MPE/3000 Operating System temporarily. He can leave BASIC,
return to MPE/3000 control, enter MPE/3000 commands and then return to the same point in his
BASIC program. To do this, he uses the SYSTEM command or the BREAK key. For operation of
the BREAK key, see Special Keys, this section.

To suspend BASIC operation: >SYSTEM
The computer types a colon: R

The user may then enter MPE/3000 commands. When he wishes to return to BASIC, he types the
MPE/3000 command RESUME. The system responds with a > .

1-5

Correcting Errors

Several types of errors may be made while logging on. We will consider spelling mistakes, format
errors and incorrect passwords or codes. The methods for correcting these errors are general and can
be used in BASIC as well as under control of MPE/3000.

Corrections can be made while the line is being entered if the error is noticed before return is
pressed. The control character CTRL H (H€) can be used to correct a few characters just typed,
or the control character CTRL X (X¢) can be used to cancel the line and start fresh.

Suppose the user misspells the command

HELLO. H€ will delete the last character sHELONLO JOANG,STUDENT
and print a back slash. The user retypes USER PASSWORD?

the character correctly and finishes the
line. When he presses return, the line is
entered correctly.

If several characters have been typed after the error, H® must be typed for each character to be
deleted.

In this case, four characters including 3HELO JOMN\LO JOANG.STUDE NT
the blank are deleted. USER PASSWORD?

Another method is to use X¢ to cancel the line. X¢ must be typed before return is pressed.

To cancel the line, type X¢ SHELO!!!
Three exclamation points are typed HELLO JOANG.STUDENT

and the computer responds with a
carriage return and linefeed. The
user retypes the line:

1-6

BASIC Commands and Statements

Commands

BASIC/3000 commands instruct the BASIC/3000 Interpreter to perform certain control functions.
Commands differ from the statements used to write a program in the BASIC/3000 language. A
command instructs the interpreter to perform some action immediately, while a statement is an
instruction to perform an action only when the program is run. A statement is always preceded by
a statement number; a command never is.

Any BASIC/3000 command can be entered following the BASIC prompt character > . Each
command is a single word that must be typed in its entirety with no embedded blanks. If mis-
spelled, the computer will return an error message. Some commands have parameters to further
define command operation.

For instance, EXIT is a command that signals completion of a BASIC program and return to the
operating system. It has no parameters. Another command, LIST, prints the program currently
being entered. It may have parameters to specify that only part of the program is to be listed, or to
indicate a particular list destination.

Statements

Statements are used to write a BASIC/3000 program that will subsequently be executed. Each
statement performs a particular function. Every statement entered becomes part of the current
program and is kept until explicitly deleted or the user exits from BASIC with EXIT.

A statement is always preceded by a statement number. This number is an integer between 1 and
15999. The statement number indicates the order in which the statements will be executed. State-
ments are ordered by BASIC from the lowest to the highest statement number. Since this order

is maintained by the interpreter, it is not necessary for the user to enter statements in execution
order so long as the numbers are in that order.

Following each statement, return must be pressed to inform the interpreter that the statement is

complete. The interpreter generates a linefeed and prints the prompt character > on the next line
to signal that the statement is accepted. If an error is made entering the statement, the computer

prints an error message.

BASIC/3000 statements have a free format. This means that blanks are ignored.

>30 PRINT S

For instance, all these statéments 2>30 PRINT S
are equivalent. >3@BPRINTS

> 3BPRINTS

AUG 1978 1-7

Any statement except REM (to introduce remarks) can continue on more than one line. Each line
to be continued must end with the character &; only the first line has a statement number. When
the computer expects a continuation line, it prompts with two greater-than characters.

The statement 100 PRINT 35+5 >10808 PRINT&
is entered on two lines: 2>>35+5

Error Messages

If an error is made in a line and the line is entered with return, the interpreter types a message. The
message consists of the word ERROR followed by @ and a number indicating about how many
non-blank characters were read before an error was detected.

If this line is entered; >33 PRING S
the computer prints a ERROR®2
message.

The user then presses return and enters the correct line after the BASIC prompt character > .

If the mistake is not obvious, type any character after the message instead of pressing return. The
computer will print a diagnostic message.

>38 PRING S
ERROR@2
UNRECOGNIZABLE STATEMENT TYPE

For instance:

Typing a semi-colon causes the diagnostic message to be prin'ted. Any other character, except a
colon, could have been typed with the same result. A colon will cause an abort.

1-8

Changing or Deleting a Statement
If an error is made before return is pressed, the error can be corrected with CTRL H (H®) or the line
may be cancelled with CTRL X (X¢). (See Correcting Errors, above). After return is pressed, the

error can be corrected by deleting or changing the statement.

To change a statement, simply type the statement number followed by the correct statement.

To change this statement: >30 PRINT X
retype it as: >38 PRINT S

A change such as this can be made any time before the program is run.

To delete a statement, type the statement number followed by return.

Statement 30 is deleted: 230

The DELETE command, described in section II, is useful to delete a group of statements.

1-9

BASIC Programs

Any statement or group of statements that can be executed constitutes a program.

A program can have as few as one statement.

This is an example of a
program with only one >183 PRINT 35+5
statement.

100 is the statement number. PRINT is the key word or instruction that tells the interpreter the
kind of action to perform. In this case, it prints the result of the expression that follows. 35+5 is
an arithmetic expression. It is evaluated by the interpreter, and when the program is run, the result
is printed.

The statement 100 PRINT 35+5 is a complete program since it can run with no other statements
and produce a result. Usually a program contains more than one statement.

D,E

>10 INPUT A,B,C,
These three statements are a program: 228 LET S = (A+B+C+D+E) /5
>30 PRINT S

This program, which calculates the average of five numbers, is shown in the order of its execution.
It could be entered in any order if the statement numbers assigned to each statement were not
changed.

223 LET S=(A+B+C+D+E) /5

This program runs exactly like the >1® INPUT A,B,C,D,E
program above. ;;.'5 @ PRINT S

It is generally a good idea to number statements in increments of 10. This allows room to inter-
sperse additional statements as needed.

1-10

User’'s Work Area

When statements are typed at the terminal, these statements become part of the user’s work area.
All statements in the user’s work area constitute the current program.

Any statement in the user’s work area can be edited or corrected; the resulting statement will then
replace the previous version in the user’s work area.

When the user exits from BASIC with the EXIT command, the work area is cleared. If, however,

he only suspends BASIC operation with the SYSTEM command, the BREAK key, or the CTRL Y
keys, the user’s work area is not changed.

111

Listing a Program

At any time while a program is being entered, the LIST command can be used to produce a listing
of the statements that have been accepted by the computer. LIST causes the computer to print a
listing of the current program at the terminal.

After deleting or changing a line, LIST can be used to check that the deletion or correction has
been made.

. . >1 @ UNINPUT A,B,C,D,E
A correction is made while >20 PR\\LET S = (A+B+C+D+E)/5
entering a program: >3@ PRINT S
>LIST
180 INPUT A,B,C,D,E
To check the correction, 28 LET S=(A+B+C+D+E) /5
list the program: 3@ PRINT S

Note that the greater-than prompt character is not printed in the listing, but is printed when the
list is complete to signal that BASIC is ready for the next command or statement.

Should the statements have been entered out of order, the LIST command will cause them to be
printed in ascending order by statement number,

220 LET S = (A+B+C+D+E) /5

For instance, the program >38 PRINT S
is entered in this order: >1@ INPUT A,B,C,D,E
>LIST

~ 18 INPUT A,B,C,D,E
for execution: 20 LET S=(A+B+C+D+E) /5
' 30 PRINT S

The list is in correct order

1-12

Running a Program

After the program is entered and, if desired, checked with LIST, it can be executed with the RUN
command. RUN will be illustrated with two sample programs.

The first program has one line: >100 PRINT 35+5
When run, the result of the expression >RUN
35+5 is printed: 42

Because the program contains a PRINT statement, the result is printed when the program is run.

The second sample program averages a >18 INPUT A,B,C,D,E
group of five numbers. The numbers >20 LET S=(A+B+C+D+E) /5
must be input by the user: >30 PRINT S

Each of the letters following the word INPUT and separated by commas names a variable that will
contain a value input by the user from the terminal. When the program is run, the interpreter
signals that input is expected by printing a question mark. The user enters the values following
the question mark. They are entered with a comma between each successive value.

The statement LET S = (A+B+C+D+E)/5 assigns the value of the expression to the right of the
equal sign to the variable S on the left of the equal sign. The expression first adds the variable
values within parentheses and then divides them by 5. The result is the value of S.

When the program is run, the user >RUN
enters input values and the com- _'_3_7 1996,8,9
puter prints the result: A

1-13

Deleting a Program

If a program that has been entered and run is no longer needed, it can be deleted with the SCRATCH
command. Typing SCR or SCRATCH deletes whatever program has been entered by the user during
the current session.

The first program entered was 100 PRINT 35+5. After it has run, it should be scratched before
entering the next program. Otherwise both programs will run when RUN is typed. They will run in
the order of their statement numbers. For instance, if both programs are currently in the user’s
work area, the program with numbers 10 through 30 executes before line 100.

>188 PRINT 35+5
>1® INPUT A,B,C,D,E
>20 LET S=(A+B+C+D+E) /5

Both programs will run >3@ PRINT S
when RUN is typed: >RUN
27,5,6,8,9
7

40

To avoid confusing results, a program that has been entered and run can be deleted with SCRATCH:

21808 PRINT 35+5

After entering and running: >RUN
4
the program is scratched: >SCRATCH

The users work area is now cleared and another program can be entered.

210 INPUT A,B,C,D,E
228 LET S=(A+B+C+D+E) /5
The second program is >30 PRINT S
entered: 2>RUN
215,25,32,11,29
22.4

Unless this program is to be run again, it can now be scratched and a third program entered.

1-14

Documenting a Program

Remarks that explain or comment can be inserted in a program with the REM statement. Any
remarks typed after REM will be printed in the program listing but will not affect program
execution, The remarks cannot be continued on the next line, but as many REM statements
can be entered as are needed.

>5 REM THIS PROGRAM AVERAGES
The sample program to average 5 numbers >T7 REM 5 NUMBERS
can be documented with several remarks: >15 REM 5 VALUES MUST BE INPUT
>25 REM S CONTAINS THE AVERAGE

The statement numbers determine the position of the remarks within the existing program. A list
will show them in order:

5 REM THIS PROGRAM AVERAGES
7 REM 5 NUMBERS
18 INPUT A,B,C,D,E

LS} o sample program 15 REM 5 VALUES MUST BE INPUT
including remarks: 20 LET Sz (A+B+C+D+E) /5
25 REM S CONTAINS THE AVERAGE
38 PRINT S

When run, the program will execute exactly as it did before the remarks were entered.

1-15

SECTION [/
Essentials of BASIC

The first section introduced the user to BASIC programming. This section describes the statements
needed to write a simple BASIC program. It also describes the commands used to run a program, to
edit a program, and to save and manipulate library programs.

The section begins with a description of expressions used in BASIC, and the constants, variables,
functions and operators used in the formation of expressions.

Subsequent sections discuss particular features of more advanced BASIC.

The simple PRINT statement and RUN command used in Section I are used again in this section
prior to the explanation of the full capabilities of PRINT and RUN.

Expressions

An expression combines constants, variables, or functions with operators in an ordered sequence.
When evaluated, an expression must result in a value. An expression that, when evaluated, is con-
verted to an integer, is called an integer expression. Constants, variables, and functions represent
values; operators tell the computer the type of operation to perform on these values.

Some examples of expressions are:

(P +5)/27 P is a variable that must have been previously
assigned a value. 5 and 27 are constants. The
slash is the divide operator. Parentheses group
those portions of the expression evaluated first.

If P = 49, it is an integer expression with the
value 2.

(N-(R+5))-T N, R, and T must all have been assigned
values. + and - are the add and subtract
operators. The innermost parentheses

enclose the part evaluated first.

If N=20, R=10, and T=5, the value of the
integer expression is zero.

CONSTANTS
A constant is either numeric or it is a literal string.

Numeric Constants. A numeric constant is a positive or negative decimal number including zero.
It may be written in any of the following three forms:

o As an integer — a series of digits with no decimal point.

® As afixed point number — a series of digits with one decimal point preceding, following, or
embedded within the series.

® As a floating point number — an integer or fixed point number followed by the letter E and
an optionally signed integer.

2-2

Examples of Integers:

1234
-70
0

Examples of Fixed Point Numbers:

1234.
1234.56
-.0123

Floating Point Numbers. In the floating point notation, the number preceding E is a magnitude that
is multiplied by some power of 10. The integer after E is the exponent, that is, it is the power of 10
by which the magnitude is multiplied.

The exponent of a floating point number is used to position the decimal point. Without this
notation, describing a very large or very small number would be cumbersome:

100000000000000000000000000000000000
.00000000000000000000000000000000001

1E+35
1E-35

Examples of Floating-Point Numbers:

1E+23 =1x 1023 = 100000000000000000000000
1.0E23 (same as above)
.001E26 (same as above)

1.02E+4 =1.02x 10% = 10200.

1.02E-4 =.000102

Within the computer, all these constants are represented as floating-point real numbers whose
precision is 6 or 7 digits and whose size is between 10~77 and 1077,

2-3

Literal Strings. A literal string consists of a sequence of characters in the ASCII character set
enclosed within quotes. The quote itself is the only character excluded from the character string.
By using an integer equivalent of the graphic character, even the quote may be included in a
character string (see Strings, Section V).

Examples of Literal Strings:

“ABC" ne (a null, empty, or zero length string)
"1 IWHAT A DAY!I"™ * " (astring with two blanks)
"Xy z "

Blank spaces are significant within a string.

VARIABLES

A variable is a name to which a value is assigned. This value may be changed during program
execution. A reference to the variable acts as a reference to its current value. Variables are either
numeric or string.

Numeric variables are a single letter (from A to Z) or a letter immediately followed by a digit
(from 0 to 9):

A0
P P5
X X9

A variable of this type always contains a numeric value that is represented in the computer by a
real floating-point number. Other numeric representations can be specifically requested with the
type statement (see Variable Types, Section IV). These types are integer, long floating-point,
and complex.

A variable may also contain a string of characters. This type of variable is identified by a variable
name consisting of a letter and $, or a letter, digit, and $:

A$ AO0$

P$ P5%
The value of a string variable is always a string of characters, possibly null or zero length. String

variables can be used without being declared with a DIM statement (see section V) only if the
variable contains a single character.

If a variable names an array (see Arrays, Section III), it may be subscripted. When a variable is sub-
scripted, the variable name is followed by one or two subscript values enclosed in parentheses. If
there are two subscripts, they are separated by a comma. A subscript may be an integer constant
or variable, or any expression that is evaluated to an integer value:

A1) AO(N,M)
P(1,1) P5(Q5,N/2)
X(N+1) X9(10,10)

A simple numeric variable and a subscripted numeric variable may have the same name with no
implied relation between the two. The variable A is totally distinct from variable A(1,1).

Simple numeric variables can be used without being declared. Subscripted variables must be
declared with a DIM statement (see Section III) if the array dimensions are greater than 10 rows,
or 10 rows and 10 columns. The first subscript is always the row number, the second the column
number. The subscript expressions must result in a value between 1 and the maximum number of
rows and columns.

String arrays differ from numeric arrays in that they have only one dimension, and hence only one
subscript. Also, the name of a string array and a simple string variable may not be the same (see
String Arrays in Section V). Examples of subscripted string array names are:

A$(1) AO$(N)

FUNCTIONS

A function names an operation that is performed using one or more parameter values to produce a
single value result. A numeric function is identified by a three-letter name followed by one or more
formal parameters enclosed in parentheses. If there is more than one, the parameters are separated
by commas. The number and type of the parameters depends on the particular function. The
formal parameters in the function definition are replaced by actual parameters when the function
is used.

Since a function results in a single value, it can be used anywhere in an expression where a constant
or variable can be used. To use a function, the function name followed by actual parameters in
parentheses (known as a function call) is placed in an expression. The resulting value is used in the
evaluation of the expression.

Examples of common functions:

SQR(x) where x is a numeric expression that results in a value = 0. When called, it
returns the square root of x. For instance, if N = 2, SQR(N+2) = 2.

ABS(x) where x is any numeric expression. When called, it returns the absolute
value of x. For instance, ABS(-33) = 33.

BASIC/3000 provides many built-in functions that perform common operations such as finding the
sine, taking the square root, or finding the absolute value of a number. The available functions are
listed in Appendix E. In addition, the user may define and name his own functions should he need
to repeat a particular operation. How to write functions is described in Section VI, User-Defined
Functions.

The functions described so far are numeric functions that result in a numeric value. Functions
resulting in string values are also available. These are identified by a three-letter name followed by
a $. String functions are described with user-defined functions in Section VI; available built-in
string functions are listed in Appendix E.

OPERATORS

An operator performs a mathematical or logical operation on one or two values resulting in a
single value. Generally, an operator is between two values, but there are unary operators that pre-
cede a single value. For instance, the minus sign in A - B is a binary operator that results in sub-
traction of the values; the minus sign in - A is a unary operator indicating that A is to be negated.

The combination of one or two operands with an operator forms an expression. The operands that
appear in an expression can be constants, variables, functions, or other expressions.

Operators may be divided into types depending on the kind of operation performed. The main
types are arithmetic, relational, and logical (or Boolean) operators.

The arithmetic operators are:

+ Add (or if unary, no operation) A+B or+A

- Subtract (or if unary, negative) A-B or-A

* Multiply AXB
/ Divide A+B
** or ™~ Exponentiate (if ™ is used, it is
changed internally to **) AB
MOD Modulo; remainder from division A - B X INT(A + B)

where INT(x) returns the largest
integer < x. If A and B are positive,
A MOD B is the remainder from
A~ B.

2-6

In an expression, the arithmetic operators cause an arithmetic operation resulting in a single numeric
value.

The relational operators are:

= Equal A=B
< Less than A Greater than A>B
<= Less than or equal to A= Greater than or equal to A>=B
<>or# Notequal (if # is used, it is

changed internally to <>) A#B

When relational operators are evaluated in an expression they return the value 1 if the relation is
found to be true, or the value O if the relation is false. For instance, A = B is evaluated as 1 if A
and B are equal in value, as 0 if they are unequal.

Maximum and minimum operators are:

MIN Select the lesser of two values A MIN B
MAX Select the greater of two values A MAXB

These operators are evaluated as follows:

A MIN B = A if A is less than or equal to B; = B if B is less than A
A MAX B = A if A is greater than or equal to B; = B if B is greater than A

Logical or Boolean operators are:

AND Logical “and” A AND B
OR Logical “or” AORB
NOT Logical complement NOT A

Like the relational operators, the evaluation of an expression using logical operators results in the
value 1 if the expression is true, the value 0 if the expression is false.

Logical operators are evaluated as follows:

A ANDB = 1 (true) if A and B are both #0;=0 (false)if A=0orB=0
AORB = 1 (true) if A% 0 or B# 0;= 0 (false) if both Aand B=0
NOT A = 1 (true) if A=0;=0 (false) if A# 0

2-7

A string operator is available for combining two string expressions into one:
+ Concatenation A$ + B$

The values of A$ and B$ are joined to form a single string; the characters in B$ immediately follow
the last character in A$. If A$ contains “ABC”’ and B$ contains “DEF”, then A$ + B$ = “ABCDEF”
(see Strings, Section V).

EVALUATING EXPRESSIONS

An expression is evaluated by replacing each variable with its value, evaluating any function calls,
and performing the operations indicated by the operators. The order in which operations is per-
formed is determined by the hierarchy of operators:

ok (highest)
NOT

* | MOD

+o

+ (string concatenate)

MIN MAX

Relational (=, <,>, <=,>=,<>)
AND

OR (lowest)

The operator at the highest level is performed first followed by any other operators in the hierarchy
shown above. If operators are at the same level, the order is from left to right. Parentheses can be
used to override this order. Operations enclosed in parentheses are performed before any operations
outside the parentheses. When parentheses are nested, operations within the innermost pair are
performed first.

For instance: 5+ 6*7 is evaluated as 5 + (6 X7) = 47

7/14*2/5 is evaluated as ((7/14)X2)/5 = .2
If A=1, B=2, C=3, D=3.14, E=0

then: A+B*C is evaluated as A +(BXC) =7
A*¥B+C is evaluated as (AXB)+C =5
A+B-C isevaluated as (A+B)-C =0
(A+B)*C is evaluated as (A+B)XC = 9
A MIN B MAX C MIN D is evaluated as ((A MIN B)MAXC)MIND=C =3

2-8

When a unary operator immediately follows another operator of higher precedence, the unary
operator assumes the same precedence as the preceding operator. For instance,

B**_B**C is evaluated as (B~B)C = 1/64 or .015625

In a relation, the relational operator determines whether the relation is equal to 1 (true) or
0 (false):

(A*B) < (A-C/3) is evaluated as O (false) since A*B=2 which is not less than A-C/3=0.

In a logical expression, other operators are evaluated first for values of zero (false) or non-zero
(true). The logical operators determine whether the entire expression is equal to O (false) or 1 (true):

E AND A-C/3 is evaluated as O (false) since both terms in the expression
are equal to zero (false).

A+B AND A*B is evaluated as 1 (true) since both terms in the expression
are different from zero (true).

A=B OR C=SIN(D) isevaluated as O (false) since both expressions are false (0).

AORE is evaluated as 1 (true) since one term of the expression (A)
is not equal to zero.

NOTE is evaluated as 1 (true) since E=0.

(I

If any ambiguity exists between the relational operator
sign is treated as an assignment operator:

and the assignment operator, the equal

A=B=1 assigns 1 to both A and B.
A=1=B assigns 1 to A if B equals 1, or 0 to A if B does not equal 1.

For rules governing the evaluation of relational expressions using strings, see Comparing Strings
in Section V.

2-9

Statements

Statements essential to writing a program in BASIC are described here. Statements in general are
described in Section I. It should be recalled that all statements must be preceded by a statement
number and are terminated by pressing the return key. Statements are not executed until the
program is executed with the RUN command.

2-10

Assignment Statement

This statement assigns a value to one or more variables. The value may be in the form of an expres-
sion, a constant, a string, or another variable of the same type.

Form
When the value of the expression is assigned to a single variable, the forms are:

variable = expression

LET variable = expression
When the same value is to be assigned to more than one variable, the forms are:

variable = variable = . . . = variable = expression

LET variable = variable = . . . = variable = expression
Several assignments can be made in one statement if they are separated by commas:

variable = expression, . . ., variable = expression

LET variable = expression, . . ., variable = expression

Note that the word LET is an optional part of the assignment statement.

Explanation

In this statement, the equal sign is an assignment operator. It does not indicate equality, but is a
signal that the value on the right of assignment operator be assigned to the variable on the left.
If any ambiguity exists between the relational operator ‘“="" and the assighment operator, the
equal sign is treated as an assignment operator.

When a variable to be assigned a value contains subscripts, these are evaluated first from left to
right, then the expression is evaluated and the resulting value moved to the variable.

If a value is assigned to more than one variable, the assignment is made from right to left. For

instance, in the statement A=B=C=2, first C is assigned the value 2, then B is assigned the current
value of C, and finally A is assigned the value of B.

2-11

Examples

19 LET A=5.02
20 A=5.82

The variable A is assigned the value 5.02. Statements 10 and 20 have the same result.
30 X=YT7=Z:=Z1=0

Each variable X, Y7, Z, and Z1 is set to zero. This is a simple method for initializing variables at the
start of a program.

35 LET N=2
49 LET AIN)=N=9

First N is assigned the value 2 in line 35. In line 40 N is assigned the value 9, then the array
element A(2) is assigned the value 9.

5@ N:=0
60 LET N=M+1
70 LET AIN]=N

Statements 50 through 70 set the array element A(1) to 1. By repeating statements 60 and 70,
each array element can be set to the value of its subscript.

80 Az10.5,B=7.5
92 B$="ABC",C$=B$

Variable A is set to 10.5, then B is set to 7.5. The string variable B$ is assigned the value ABC,
then C$ is assigned the value of B$ (or ABC).

1828 C$=B$="ABC"

This statement has the same result as statement 90.

110 LET A=10.,5,B=7.5,B$=C$="ABC"

Statement 110 has the same effect as the two statements 80 and 90.

2-12

REM Statement

This statement allows the insertion of a line of remarks in the listing of the program. The remarks
do not affect program execution.

Form
REM any characters

Like other statements, REM must be preceded by a statement number. Unlike other statements, it
cannot be continued on the next line.

Explanation

The remarks introduced by REM are saved as part of the BASIC program, and printed when the
program is listed or punched. They are, however, ignored when the program is executed.

Remarks are easier to read if REM is followed by spaces, or a punctuation mark as in the examples.

Examples

10 REM: THIS IS AN EXAMPLE

20 REM OF REM STATEMENTS.

38 REM -- ANY CHARACTERS MAY FOLLOW REMs " //x*!!&&&,ETC.
40 REM...REM STATEMENTS ARE NOT EXECUTED

2-13

GOTO Statement

GOTO overrides the normal sequential order of statement execution by transferring control to a
specified statement. The statement to which control transfers must be an existing statement in the
current program.

Form

GOTO statement label

GOTO integer expression OF statement label, statement label, . . .

GOTO may have a single statement label, or may be multi-branched with more than one state-
ment label.

If the multi-branch GOTO is used, the value of the integer expression determines the label in the
list to which control transfers.

Explanation

If the GOTO transfers to a statement that cannot be executed (such as REM or DIM), control
passes to the next sequential statement after that statement. GOTO cannot transfer into or out
of a function definition (see Section VI), If it should transfer to the DEF statement, control
passes to the line following the function definition.

The labels in a multi-branch GOTO are selected by numbering them sequentially starting with 1,
such that the first label is selected if the value of the expression is 1, the second label if the expres-
sion equals 2, and so forth. If the value of the expression is less than 1 or greater than the number
of labels in the list, then the GOTO is ignored and control transfers to the statement immediately
following GOTO.

2-14

Examples

The example below shows a simple GOTO in line 200 and a multi-branch GOTO in line 600,

100 LET I:=0

208 GOTO 600

380 PRINT I

400 REM THE VALUE OF 1 IS ZERO
500 LET I:=I+1

600 GOTO I+l OF 300,500,800

700 REM THE FINAL VALUE OF I IS 2
800 PRINT I

>RUN
)
2

When run, the program prints the initial value of I and the final value of 1.

2-15

GOSUB/RETURN Statements

GOSUB transfers control to the beginning of a simple subroutine. A subroutine consists of a
collection of statements that may be performed from more than one location in the program. In a
simple subroutine, there is no explicit indication in the program as to which statements constitute
the subroutine. A RETURN statement in the subroutine returns control to the statement following
the GOSUB statement.

Form

GOSUB statement label
GOSUB integer expression OF statement label, statement label, . . .

RETURN

GOSUB may have a single statement label, or may be multi-branched with more than one state-
ment label. In a multi-branch GOSUB, the particular label to which control transfers is determined
by the value of the integer expression. The RETURN statement consists simply of the word
RETURN.

Explanation

A single-branch GOSUB transfers control to the statement indicated by the label. A multi-branch
GOSUB transfers to the statement label determined by the value of the integer expression. As in a
multi-branch GOTO, if the value of the expression is less than 1 or greater than the length of the
list, no transfer takes place. A GOSUB must not transfer into or out of a function definition

(see Section VI).

When the sequence of control within the subroutine reaches a RETURN statement, control returns
to the statement following the GOSUB statement.

Within a subroutine, another subroutine can be called. This is known as nesting. When a RETURN
is executed, control transfers back to the statement following the last GOSUB executed. Up to ten
GOSUB statements can occur without an intervening RETURN; more than this causes a terminating
error,

2-16

Examples

In the first example, line 20 contains a simple GOSUB statement; the subroutine is in lines 50
through 70, with RETURN in line 70.

10
20
30
40
50
60
108
80
>RUN
SINE

LET B=98@

GOSUB 5@

PRINT “SINE OF B IS "3A

GOTO 8@

REM: THIS IS THE START OF THE SUBROUTINE

LET A=SIN(B)
RETURN
REM: PROGRAM CONTINUES WITH NEXT STATEMENT

OF B IS .893992

The GOSUB statement can follow the subroutine to which it transfers as in the example below.

130
140
>RUN

LET B=90

GOTO 100

REM: THIS IS START OF SUBROUTINE
LET A=SIN(B)

RETURN

REM: OTHER STATEMENTS CAN APPEAR HERE
REM: THEY WILL NOT BE EXECUTED
A=24,B=50

PRINT A3B

GOSuUB 39

PRINT A

REM: A SHOULD EQUAL .8939552
PRINT B

REM: B SHOULD EQUAL 958

«893992

S8

2-17

This example shows a multi-branch GOSUB in line 20. The third subroutine executed has a nested

subroutine.
Conditional

18
20
30
40
50
60
100
110
120
130
150
160
170
180
200
210
220
225
238
240
250
260
2170
280
290
295
300
>RUN
X =
Y =
Y +
SINE

An IF. . . THEN statement is used in the example; should its function not be clear, see

Statements below in this section.

A=@

GOSUB A+l OF 100,150,200

LET AzA+1

IF A<3 THEN GOTO 20

GOTO 300

REM: STATEMENT 58 BRANCHES AROUND ALL THE SUBROUTINES

REM: FIRST SUBROUTINE IN MULTIBRANCH GOSUB

LET X=SQR(A+25)

PRINT *X = "3X

RETURN

REM: SECOND SUBROUTINE IN MULTIBRANCH GOSUB
LET Y=COS(X)

PRINT Y = COSINE X = "3Y

RETURN

REM: THIRD SUBROUTINE IN MULTIBRANCH GOSUB

REM: IT CONTAINS A NESTED SUBROUTINE
LET Y=Y+X

PRINT Y + X = "3Y

GOSUB 268

RETURN

REM: STATEMENT 242 RETURNS CONTROL TO STATEMENT 380
REM: FIRST STATEMENT IN NESTED SUBROUTINE

B=SINCY)

PRINT "SINE Y = 3B

RETURN
REM: STATEMENT 290 RETURNS CONTROL TO STATEMENT 240

REM: PROGRAM CONTINUES WITH NEXT STATEMENT

5
COSINE X = .,283663
X = 5.28366

Y = -.841213

2-18

END/STOP Statements

The END and STOP statements are used to terminate execution of a program. Either may be used,
neither is required. An END is assumed following the last line entered in the current program.

Form
END
STOP

The END statement consists of the word END; the STOP statement of the word STOP.

Explanation

Both END and STOP terminate the program run. END has a different function from STOP only
when programs are segmented (see Section X, Segmentation). When END is executed in a program
segment that has been called by another program with INVOKE, control returns to the statement
after INVOKE.

Whenever STOP is used, the program terminates. STOP in a program called with INVOKE
terminates all program execution, including any suspended programs.

2-19

Examples

These three programs are effectively the same:

10 LET A=2,B=3

20 C=A%xx-A%x*B

30 PRINT C
>RUN

«B15625

10 LET A=2,B=3
20 C=A*xx=A*x*xB
30 PRINT C
40 END

>RUN
«B15625

12 LET A=2,B=3
20 C=A*x=-A%*B
38 PRINT C
40 STOP

>RUN
815625

When<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>