OBS0LeET7TE

l1

Al

HEWLETT hp; PACKARD

OPERATING AND SERVICE MANUAL

2152A
FLOATING POINT
PROCESSOR

oy O

oPY

ii’:ﬂﬁ k

13 -

CONT .
DG & _;‘.2.;.14."34‘.5

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, US.A.

Printed: SEPT 1970

02152-90004

. Model 2152A

Table of Contents

TABLE OF CONTENTS

Section

1 GENERAL INFORMATION
1-1. Introduction
1-4, General Description
1-15. Compatibility
1-17. Identification
1-21. Specifications

I INSTALLATION AND OPERATION
2-1. Introduction ,............
2-3. Unpacking and Inspection
2-5. Mounting
2-7. Installation and Cabling
2-9, Installing EAU Controller in
2116 Computer
2-11, Installing EAU Controller in
2115 Computer.
2-13. Connecting Cables

2-19. Performance Check
2-21, Operation................
2-22, Power On and Power Fail . ..

2-25, Operating Procedure

I PROGRAMMING INFORMATION
3-1, Indroduction
3-3. Instruction Coding
35, DataFormats
3-12. Instruction Definitions
3-14. LDD (Load Double)

3-186. LDF (Load Floating) :

3-18. LDX (Load Extended)
3-20. STD (Store Double).
3-23. STF (Store Floating)
3-25, STX (Store Extended)
3-21, ADF (Add Floating)
3-29. ADX (Add Extended)
3-31. SBF (Subtract Floating) .
3-34. SBX (Subtract Extended) ..
3-36. MPF (Multiply Floating)
3-38. MPX (Multiply Extended). . . .
3-40. DVF (Divide Floating).
3-42. DVX (Divide Extended)
3-44. ABX (Absolute)
3-46. ENX (Entier)
3-48, CMX (Complement)

3-50. CSX (Cosine)

3-52. SNX (Sine)
3-54. TNX (Tangent)
3-56. ATX (Arctangent)
3-58. HCX (Hyperbolic Cosine) .
3-60. HSX (Hyperbolic Sine)
3-62. HTX (Hyperbolic Tangent) . . .
3-64. AHT (Archyperbolic Tangent).
3-66. EXX (Exponential)
3-68. LNX (Natural Logarithm) . ..
3-70. SRX (Square Root)
3-72, FIX (Round to Nearest

: Integer) e e
3-14, RNX (Round to 24 Bits)

3-3

3-3
3-3
3-3
3-4

3-4
3-4
3-4
3-4
3-4

3-4
3-4

3-4
3-4
3-5
3-5

Section Page
3-76. MPY (Multiply Integer) 3-5
3-78. DIV (Divide Integer) 3-5
3-80. DLD (Double Load). 3-5
3-82. DST (Double Store). 3-5

3-84. ASR (Arithmetic Shift Right). . 3-5
3-86. ASL (Arithmetic Shift Left) .. 3-5

3-88. LSR (Logical Shift Right) ... 3-5
3-90. LSL (Logical Shift Left). 3-5
3-92, RRR (Rotate Right). 3-7
3-94, RRL (Rotate Left). 3-7
3-96. Extended Floating Point Numbers 3-7
3-105. Error Conditions 3-7
3-107. No Response 3-9
3-109. Underflow 3-9
3-112. Overflow 3-9
3-117. No Resolution 3-9
3-119. Divide by Zero 3-9
3-121, Improper Variable 3-9
3-123. Improper Opcode 3-9
3-125. Comparison of ENX, RNX, FIX . 3-13
3-130. Power Fail 3-13

THEORY OF OPERATION
FLOATING POINT PROCESSOR UNIT

4-1. ScopeofSection............ 4-1
4-5. Imtroduction 4-1
4-19. FPP Detailed Theory 4-3
4-23. FPP Clock and Timing 4-4
4-27. Read-Only Memory 4-4
4-32. Instruction Register 4-4
4-37. ROM Addressing 4-5
4-39. . Conditional Branching 4-5
4-43, Unconditional Branching 4-6
4-46. JSBControl 4-6
4-50. Constant Call 4-7
4-56, Indirect Addressing 4-7
4-58. A-Register/Shifter/Adder 4-7
4-81. B/C/D Arithmetic Sections ... 4-10
4-86. In/Out Transfer Sequence 4-10
4-91. Power Supply 4-10

THEORY OF OPERATION
EXTENDED ARITHMETIC UNIT

CONTROLLER

5-1. ScopeofSection............ 5-1
5-5. Introduction 5-1
5-20. Phase 1 Operation 5-4
5-27. TST Operation 5-6
5-40. STD Operation 5-8
5-50. TLD Operation 5-10
5-62. FPF Operation 5-12
5-70. EAU Functions 5-15
5-82. Operation Cycle Counter 5-16
5-93. Multiplication 5-19
5-95. Multiplication Theory 5-20
5-112, Multiply Logic. 5-23
5-149. Division 5-26

5-151, Division Theory 5-26

Table of Contents Model 2152A

TABLE OF CONTENTS (Continved)

Section Page Section Page
5-176. Divide Logic 5-28 6-9. Voltage Checks and Adjustments. . 6-1
5-221. Double Ioad 5-33 6-12. +10V Adjustment 6-1
5-235. Double Store 5-33 6-14, +4.75V Adjustment 6-2
5-250. Shifts and Rotates,... 5-35 6-16. -2V Adjustment 6-2
5-251, General 5-35 6-18. Power Fail Threshold
5-262. Arithmetic Shifts 5-37 Adjustments 6-2
5-275. Logical Shifts 5-38 6-21. +4.75V Limit Adjustments. ... 6-2
5-2717. Rotates. 5-38 6-23. -2V Limit Adjustments 6-2

) 6-25. Replacement of Capacitor

VI MAINTENANCE Assembly A5....... e 6-3
6-1. Introduction 6-1
6-3. Access to Assemblies 6-1 VII MAINTENANCE DATA

6-7. Preventive Mainienance 6-1 7-1. Introduction [7-1

ii

List of Illustrations

LIST OF ILLUSTRATIONS

2152A
Figure Title Page
1-1 HP 2152A Floating Point Processor

and Accessories 1-0
1-2 Floating Point Processor as a

Calculator 1-1
2-1 Interconnecting Cabling 2-2
3-1 FPPDataFormats 3-2
3-2 Examples of Shifts and Rotates 3-6
3-3 Normalization, Decimal Example 3-7
3-4 Ranges of Extended Floating Point

Numbers 3-8
3~6 Examples of ENX, RNX,and FIX 3-12
4-1 Processor Section 4-1
4-2 Basic FPP Operations 4-2
4-3 Clock Timing 4-4
4-4 Instruction Execution Timing 4-5
4-5 Addressable Reading by Shifter 4-8
4-6 A-Shifter Selection Process. 4-9
4-7 Power Supply Block Diagram 4-11
4-8 Voltage Limit Ranges 4-12
4-9 Line Fail Sensing 4-13
4-10 ROM Instruction Coding 4-15
4-11 FPP Block Diagram " 4-15
5-1 Controller Section 5-1
5-2 Basic EAU Controller Operations 5-2
5-3 Instruction Decoding Process 5~2
5-4 Phasel Flowchart............... 5-5
5-5 Phasel Timing 5-5
56 TSTFlowChart................. 5-7
57 TST Timing 5-7
5-8 STDFlowchart 5-9
5-9 STDTiming 5-9
5-10 TLD Flowchart 5-11
5-11 TLD Timing 5-11
5-12 FPF Flowchart 5-13
5-13 FPFTiming 5-13
5-14 Presetting and Clocking the Counter . 5-17
5-15 - Equivalent Logic of J-K Flip-Flop 5-17
5-16 Decimal Multiplication 5-21
5-17 Binary Multiplication 5-22
5-18 Decimal Division 5-27
5-19 Binary Division 5-29
5-20 Effects of ShiftSignals 5-35
5-21 Shift Operations 5-36
5-22 EAUBlockDiagram 5-39
5-23 Multiply Cyecle 1 5-41
5-24 Multiply Cycle 2 5-43
5-25 Multiply Cyele 3 5-45
5-26 Multiply Cycle4 5-47
5-27 Multiply Cycle5 5-49
5-28 DivideCyclel 5-51
5-29 DivideCycle2 5~53
5-30 DivideCycle3 5-55
5-31 DivideCycle4 5-57
5-32 DivideCycle5 5-59
5-33 Divide Cycle 6 e e e e 5-61
5-34 Double Load Cyclesland2......... 5-63
5-35 Double Load Cycles3 and4......... 5-65
5-36 Double Store Cyclesland2......... 5-87

Figure

5-37
5-38
5-39
5-40
5-41
5-42
5-43

Title

Double Store Cycles 3 and 4
Arithmetic Shifts, Phase 1
Arithmetic Shift Loops
Logical Shifts, Phase 1
Logical Shift Loops
Rotates, Phase 1
Rotate Loops
Location of Adjustments
EAU Timing Card, Parts Location View.
EAU Timing Card, Logic Diagram
EAU Logic Card, Parts Location View. .
EAU Logic Card, Logic Diagram
EAU Interface Card, Parts Location View
EAU Interface Card, Logic Diagram . . .
Test Card A7, Parts Location View . ..
Test Card A7, Logic Diagram
ROM Address Card A8, Parts Location
View
ROM Address Card A8, Logic Diagram .
Read-Only Memory Card A9, Parts
Location View e e e e e
Read-Only Memory Card A9, Logic
Diagram....................
D-Register Card A10, Parts Location
View
D-Register Card A10, Logic Diagram . .
D-Shifter Card All, Parts Location
View
D-Shifter Card Al1l, Logic Diagram . ..
C-Adder Card Al2, Parts Location
View
C-Adder Card Al2, Logic Diagram
B-Shifter Card A13, Parts Location
View
B-Shifter Card A13, Logic Diagram . ..
B-Adder Card Al4, Parts Location
View
B-Adder Card Al4, Logic Diagram. . .
A-Shifter Card Al5, Parts Location
View
A-Shifter Card A15, Logic Diagram . ..
A-Adder Card Al16, Parts Location
View
A-Adder Card A16, Logic Diagram. ..
FPP Interface Card Al7, Parts
Location View
FPP Interface Card Al7, Logic
Diagram
Regulator Card A2A3, Parts Location
View
FPP Power Supply, Schematic Diagram .
Backplane Wiring Diagram
Entry Routine Flowchart
Entier/Fix/Load/Load I/Round
Flowcharts
Add/Sub/Abs/Neg Flowcharts
Overflow/Normalize Flowcharts
Multiply/Initialize Flowcharts

...........

...........

.......

......................

......................

......................

......................

............

......................

......................

......................

...................

......................

.........

.......

List of llustrations

2152A

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
7-37 Division Routine Flowchart 7-40
7-38 Sin/Cos/Tan/Hyper Prescale Flowcharts . 7-41
7-39 Sin Resolver Flowchart T-42
7-40 Arctan Routine Flowchart 7-43

7-41 Hyperbolic Prescale Flowchart 7-44

iv

Figure Title Page
7-42 Sinh/Cosh Resolve Flowcharts 7-45
7-43 Ln/Arctanh/Sqt Prescale Flowcharts ... 7-46
7-44 Arc Hyper Resolve Flowchart 747
7-45 Diagnostic Routine Flowchart T7-48

2152A

LIST OF TABLES

Title Page
Floating Point Processor Specifications 1-3
Instruction Coding 3-0
Error Conditions 3-10
ROM Addressing Modes 4-6
X-Register Transfer Sequence 4-10
ROM Instructions 4-14
Test Conditions 4-15
Instruction Grouping 5-2
Instruction Group Coding 5-5
IOCodes 5-8
ErrorCodes 5-13
Extended Arithmetic Unit Machine

Codingo v i i v i i vt nn 5-15
Count Sequences for AS/LS/RO 5-18
Count Sequences for MPY/DIV/DLD/

0 4 5-19
MP1 Logic Equations 5-41
MP2 Logic Equations 5-43
MP3 Logic Equations 5-45
MP4 Logic Equations 5-47
MP5 Logic Equations 5-49
D1 Logic Equations 5-51
D2 Logic Equations 5-53
D3 Logic Equations 5-55
D4 Logic Equations 5-57
D5 Logic Equations 5-59
D6 Logic Equations . .:.......... 5-61
DL1/2 Logic Equations 5-63
DL3/4 Logic Equations 5-65
DS1/2 Logic Equations 5-67
DS3/4 Logic Equations 5-69
Arithmetic Shift Equations (1) 5-71
Arithmetic Shift Equations (2) 5-73
Logical Shift Equations (1) 5-75

i

Table

5-26
5-27
5-28
6-1
7-1
7-2

-3

List of Tables

Title
Logical Shift Equatlons (2)
Rotate Equations (1) . e
Rotate Equations (2)
DC Voltage and Current Specifications .
EAU Timing Card, Replaceable Parts .
EAU Logic Card, Replaceable Parts . .
EAU Interface Card, Replaceable Parts
Test Card A7, Replaceable Parts
ROM Address Card A8, Replaceable
Parts.o i i i
Read-Only Memory Card A9,
Replaceable Parts
D-Register Card A10, Replaceable
Parts
D-Shifter Card All, Replaceable
PartsS. .« . v v i e e
C-Adder Card Al2, Replaceable
PartS. . v o v e v v i e e e
B-Shifter Card A13, Replaceable
Parts
B-Adder Card Al4, Replaceable
Parts
A -Shifter Card A15, Replaceable
Parts
A-Adder Card A16, Replaceable
Parts
FPP Interface Card Al7, Replaceable
Parts
Regulator Card A3, Replaceable
Parts
Replaceable Chassis Parts
Contents of ROM
Mnemonic Listing of ROM Contents .

............

....................

....................

....................

....................

....................

....................

..............

Section [

2152A

FtosrTING POINT
PEOCESS OR
UNIT

=

S,

EXTENDED ARTHMETIC UNIT
CONTROLLER

EAU TIMING CARD
HP Part No. 02152-40002

EAY LOGIC CARD
A fPart Na, 02152- 6008

fAU-INTEN\'A(E CARD ;
HP Part No. 021§2-60013

e b et hnrom

STAMDANRD ACCESSOXIES
AND SERVICE ITEMS

AL POVIER (ABLE
R‘P et by,

FI120-134Y
& TR

RACK MOUNT KT
HP fart No.
060~ 0179

A
1
i :

TNPUT/OUTPYT

EXTENDER
POWER COMTROL CABRLE CABLE CARLE
HY Part No. HE Faet N, e et Mo
02150 -6org 02 - 40022 oz - 6097

ENTENDER ROARD
HP et No.
021h~C0YY

TEST CABLE
4P P‘Jlr(A}a.
0252 - COO2S™

N()‘t &I\O\un
Software and f’{auua‘j

Figure 1-1. HP 2152A Floating Point Processor and Accessories

1-0

2152A

Section I

SECTION |
GENERAL INFORMATION

1-1. INTRODUCTION

1-2, This operating and service manual covers
general information, installation, operating and pro-
gramming information, theory of operation, main-
tenance procedures, and replaceable parts lists for
the Hewlett-Packard 2152A Floating Point Processor.
(See figure 1-1.) Two theory of operation sections
are included, one for the processor unit itself (sec-
tion 1V) and one for the controller (section V), The
remaining sections treat the processor and control-
ler as a single entity.

1-3. For brevity, this manual will frequently use
the abbreviation FPP to designate the Floating Point
Processor, and the term FPP unit to designate the
processor exclusive of the controller (i. e., only the
circuitry physically contained within the cabinet
module).

1-4, GENERAL DESCRIPTION.

1-5. The HP 2152A Floating Point Processor
extends the hardware computing capability of the
2115/2116-series computers to include high-speed,
extended-precision mathematical and trigonometric
functions. Precision is increased to 40 bits of man-
tissa with 8 bits of exponent, which is equivalent to
an accuracy of 12 decimal digits. Processing time
is reduced to the range of 50 to 100 microseconds
for floating-point add/subtract/multiply/divide and a
range of 20 to 200 microseconds for the trigonometric
functions. '

1-6. The extended precision is accomplished
through the use of a 48-bit accumulator. The instruc-
tion set includes triple-store and triple-load opera-
tions to transfer the triple-length quantities between
this accumulator and three consecutive memory loca-
tions.

1-7. The greatly increased speed is accomplished
through implementation of 13-field microprogram-~
ming of the algorithms, operating from a read-only
memory. The algorithms for this application employ
unique efficiency techniques of firmware program-
ming, reducing the:amount and complexity of the
hardware required while affording the increase in
speed. Additionally, the FPP is interfaced through
the EAU controller directly to the computer CPU,
rather than through the I/O system. By increasing
the speed of the data transfers in this manner, over-
all system speed is also further increased.

1-8. To provide compatibility with double+precision
data which may be used in conjunction with the b;riple-
precision capability of the FPP, the instructionjreper-
toire includes instructions which will automatically
perform the necessary format conversions. Both

integer and floating-point double precision data may
be used.

1-9. In addition to the 30 floating-point instructions
provided by the FPP unit, the extended arithmetic
unit (EAU) controller adds 10 double-length integer
operations, including long shifts and rotates. For
these 10 instructions, the operand data and results
are given in the computer A- and B-registers. The
FPP unit is not involved. However, all 40 instruc-
tions comprise the repertoire of instructions added
to the system by the HP 2152A Floating Point Proces-
sor.

1-10. Functionally, the FPP can be regarded as a
calculator under the control of a computer. In the
same way that a human operator manually uses a
free-standing calculator, the computer enters a
number into the unit, then issues a command (equiva-
lent to pressing a button) which says, for example,
"'calculate the sine of this number. ' Analogous to
the huntan operator example, the answer appears in
far less time than the computer would have taken to
calculate it. Thus the benefits to the computer are
the same as the benefits derived from a calculator by
a human operator: speed and efficiency.

1-11, As shown in figure 1-2, the computer controls
the FPP unit by instructions issued to the EAU con-
troller installed in the computer mainframe. The
commands from this controller initiate specific firm-
ware routines (programs permanently stored in the
FPP read-only-memory). These routines are re-
sponsible. for interpreting the commands, executing
the commanded function, and transferring data in and
out of the unit.

1-12. One typical mode of operation was mentioned
above; i. e., load data into the unit, then command the
unit to execute a function (such as sine) on that data.
The input data goes into the X-register of the KPP

COMPUTER
MEMORY
x"ly'l
INSTRUCTION
L SNX]
FLOATING POINT PROCESSOR UNIT
EAU ICOMMANDS IFIRMWARE
CONTROLLER IROUTINES
DATA
X REGISTER

Figure 1-2. Floating Point Processor
as a Calculator

1-1

Section I

unit; then, when the unit signals the controller that the
function has been executed, the answer resides in the

X-register, replacing the input data. The X-register
is a triple-length register (48 bits).

1-13. A second mode of operation uses two operands.
The first operand is initially loaded into the X-regis-
ter. Then the instruction is issued to, for example,
add the quantity y to the contents of the X-register.
Since y is in memory, the controller must fetch this
second operand (two or three memory words), then
send it to the FPP. This is followed by an add com-
mand, which tells the unit to add the two numbers.
Again, the answer appears in the X-register of the
FPP.

1-14. Since, in both cases, the answer does not
automatically return to the computer, a final store
instruction is necessary in order to transfer the
result to computer memory. Thus a complete
instruction sequence for an add operation would
typically consist of:

LDX x
ADX y
STX z

1-15. COMPATIBILITY,

1-16. 1In general, the HP 2152A Floating Point
Processor may be used with any Hewlett-Packard
computer that is wired to accept the Extended Arith-
metic Unit option. This excludes the 2114-series
computers, and HP 2116A Computers with serial
prefixes of 74'1- or lower. The FPP power supply
includes circuitry necessary to operate with the com-
puter power fail circuits, including the restart option.

1-17. IDENTIFICATION,

1-18. Hewlett-Packard uses four digits and a letter
(0000A) for standard instrument model designations.

2152A

Options installed as factory modifications to a stand-
ard unit are identified by a three digit suffix following
the model designation (0000A-000). If the model num-~
ber and option suffix on your unit do not agree with
those on the title page of this manual, there are differ-
ences between your unit and the unit described in this
manual. These differences are described in change
sheets and manual supplements available at the near-
est HP Sales and Service Office,

1-19, A two-section eight-digit serial number (000-
00000) located on the rear panel identifies each unit.
The first three digits are a prefix number used to
identify a particular unit configuration. This prefix
does not change unless unit changes are made. The
last five digits identify each specific unit. If the
serial number prefix on your unit does not agree with
that shown on the title page of this manual, there are
differences between your unit and the unit described
in this manual. These differences are described in
change sheets and manual supplements available at
the nearest HP Sales and Service Office.

1-20, Printed-circuit card revisions are identified
by a letter, a date code, and a division code stamped
on the card (e.g., A-1055-22). The letter code iden-
tifies the version of the etched trace pattern on the
unloaded card. The date code (four middle digits) re-
fers to the electrical characteristics of the loaded
card. The division code (last two digits) identifies
the Hewlett-Packard division that manufactured the
card. If the date code stamped on the printed-circuit
card does not agree with the date code shown on the
schematics in this manual, there are differences
between your card and the card described in this
manual. These differences are described in manual
supplements available at the nearest HP Sales and
Service Office.

1-21. SPECIFICATIONS,

1-22, Specifications for the HP 2152A Floating Point
Processor are listed in table 1-1, '

2152A

Section I
Table 1-1. Floating Point Processor Specifications
OPERATIONAL SPECIFICATIONS
Number of Instructions: 6 Transfer instructions (Load/Store)
I 8 Triple-length floating point arithmetic
16 Function instructions (trigonometric, etc.)
10 Double-length integer arithmetic and shifts
40 Total
Data Types: Extended Floating Point (39 bits mantissa, plus sign; 7 bits exponent,
plus sign)
Floating Point (23 bits mantissa, plus sign; 7 bits exponent, plus sign)
Double-word Integer (32 bits)
**Execution Times (microseconds, maximum):
LDD Load Double (integer) 40 ATX Arctangent 100
LDF Load Floating Point 30 HCX Hyperbolic Cosine 125
LDX Load Extended Floating Point 30 HSX Hyperbolic Sine 125
STD Store Double (integer) 27 HTX Hyperbolic Tangent 200
STF Store Floating Point 16 AHT Archyperbolic Tangent 125
STX Store Extended Floating Point 16 EXX Exponential 125
ADF Add Floating Point 43 LNX Natural Logarithm 125
ADX Add Extended Floating Point 43 SRX Square Root 100
SBF Subtract Floating Point 50 FIX Round to nearest Integer 11
SBX Subtract Extended Floating Point 50 RNX Round to 24 Bits 14
MPF Multiply Floating Point 100 MPY Multiply Integer 19*
MPX Multiply Extended Floating Point 100 DIV Divide Integer 21*
DVF Divide Floating Point 100 DLD Double Load (A-/B-reg) 6*
DVX Divide Extended Floating Point 100 DST Double Store (A-/B-reg) 6%
ABX Absolute Value 20 ASR Arithmetic Shift Right 8*
ENX Entier 17 ASL Arithmetic Shift Left 8*
CMX Complement 20 LSR Logical Shift Right 8*
CsX Cosine 160 LSL Logical Shift Left 8*
SNX Sine 160 RRR Rotate Right 8*
TNX Tangent 225 RRL Rotate Left 8*

*Computer cycle time of 1. 6 microseconds assumed (e.g., 2116-series)

**Execution times shownassume the following:

1.

All operands normalized (except for
_ per operand.

LDD); if otherwise, add 12 microseconds

No indirect addressing; if otherwise, add 1.6 microseconds per level of in-

direct addressing.

No direct memory access (DMA) transfers; if otherwise, add 3.2 microseconds

per transfer

Section I

Table 1-1. Floating Point Processor Specifications (Continued)

ELECTRICAL SPECIFICATIONS

Interface Logic Levels (at FPP unit data connector):

Input Data and Encode

"1 gtate +1. 25V or more positive (+2. 5V nominal)
"0 state +0. 5V or more negative (-0. 5V nominal)

Output Data and Flag

"1 state +2. 25V or more positive (+2.5V nominal)
"0'" state -0. 36V or more negative (-0.5V nominal)

Test Logic Levels (at test board A7)i

Input Data and Encode

1" gtate +2. 0V or more positive (+2. 5V nominal)
"0 gtate +0. 9V or more negative (-0. 5V nominal)

Output Data and Flag

1" state +2. 5V or more positive (+2. 5V nominal)
"0'" state +0. 4V or more negative (-0, 5V nominal)

Command Interlocks:

1. OPC (Opcode) command, or ENC (Encode) command, may be given to FPP
unit (""1") only if{ FLG (Flag) from FPP is 1", Loads input lines into FPP
unit, .

2. ENC may not go to "0'" until FLG from FPP goes to '"0"". Acknowledges load.

3. ENC or OPC may not go to "1' again until FLG goes to ""1"". Signifies FPP
operation complete; X Register contents are present on FPP output lines.
(Computer requires that the time interval from FLG "0" to FLG "'1'" be no
less than 0.5 microsecond.)

Power Requirements:

FPP Unit

115 volts ac +10% (approximately 4 amperes), or
230 volts ac +10% (approximately 2 amperes).
Line frequency, 48 to 66 Hz
Power, 500 watts maximum,

EAU Controller (3 cards)
7.7 amperes from +4. 5V supply
5.2 amperes from -2V supply

PHYSICAL SPECIFICATIONS (FPP Unit)

Environmental Limits:

Temperature: 0° to +55°C (+32° to +131°F)
Relative Humidity: To 95% at +40°C (+104°F)

Heat Dissipation: 1700 BTU/hr maximum

2152A

2152A

Table 1-1. Floating Point Processor Specifications (Continued)

Section I

Ventilation: Forced air intake at rear, exhausted through side panels near front. 400
cubic feet per minute.

Weight: 86 1b (39 kg), net

Dimensions:

Width: 16-3/4 inches (425 millimeters); rack mounting kit increases width to 19
inches’' (482 millimeters) ’

Panel Height: 12-1/4 inches (311 millimeters)

Depth Behind Panel: 22-3/8 inches (568 millimeters)

Depth Overall (including handles): 24-3/8 inches (619 millimeters)

Recommended, Air Exhaust Clearance at Sides: 2 inches (50 millimeters) minimum

Recommended Cable Clearance at Rear: 5 inches (127 millimeters) minimum
Cable Lengths:

Input/Output Cable: 15 feet (457 centimeters)

Power Control Cable: 15 feet (457 centimeters)
AC Power Cable: 88 inches (223 centimeters)

1-5

2152A

Section II

SECTION |11

INSTALLATION AND OPERATION

2-1. INTRODUCTION.
2-2. This section contains information on unpacking

mounting, connecting, and operating the HP 2152A
Floating Point Processor.

2-3. UNPACKING AND INSPECTION.

2-4, If the shipping container is damaged upon re-~
ceipt, request that the carrier's agent be present when
the unit is unpacked. Inspect the unit for damage
(scratches, dents, broken parts, etc.). If the unitis
damaged and fails to meet specifications, notify the
carrier and the nearest Hewlett-Packard Sales and
Service Office immediately. (Sales and Service Of-
fices are listed at the back of this manual.) Retain
the shipping container and the packing material for
the carrier's inspection. The Hewlett-Packard Sales
and Service Office will arrange for the repair or re-
placement of the damaged unit without waiting for any
claims against the carrier to be settled.

2-5. MOUNTING.

2-6. The FPP unit is designed for bench installation
or mounting in a standard 19-inch rack. To mount the
FPP unit in a rack, follow the instructions contained
in the rack mounting kit (part no. 5060-0779) furnished
with the unit. All necessary hardware is furnished as
part of the rack mounting kit.

2-7. INSTALLATION AND CABLING.

2-8. Connecting the FPP unit to the computer
consists of two steps: installing the EAU controller
cards in the appropriate slots in the computer, and
then connecting the interconnection cables. The fol-
lowing paragraphs describe the installation of the
EAU controller cards in 2116-series computers
(paragraph 2-9) and 2115-series computers (para-
graph 2-11), followed by the interconnecting cabling
information and a performance check.

2-9. INSTALLING EAU CONTROLLER IN 2116
COMPUTER.

2-10. To install the EAU controller cards in a 2116
series computer, proceed as follows:

a. Press the POWER switch, located on the
front panel of the computer, to switch power off.

b. Open the computer front panel to gain
access to the card cage.

c. Install the 02152-60011 EAU Logic Card
into slot number 110 in the middle rack of cards.

d. Install the 02152-60012 EAU Timing Card
into slot number 109 in the middle rack of cards.

e. Install the 02152-60013 EAU Interface Card
into any desired I/O slot (203 through 218).

NOTE

The EAU interface card has no
interrupt capability and therefore
has no priority significance; this
card need not be immediately
adjacent to the other interface
cards (as is normally required
for priority continuity). The card
simply occupies an I/0 slot to
have access to the I/O buses. It
is normally not addressed, except
during diagnostic testing. Also
note that this card may not be in-
stalled in an I/O extender, as
cable limitations require close
proximity to the EAU timing

card.

f. Proceed to paragraph 2-13.

2-11. INSTALLING EAU CONTROLLER IN 2115
COMPUTER.

2-12. To install the EAU controller cards in a 2115-
series computer, proceed as follows:

a. Set the POWER switch, located on the
front panel of the computer, to the off position.

b. Remove the computer top panel to gain ac-
cess to the card cage.

c. Install the 02152-60011 Logic Card into
slot number 17 in the front rack of cards.

d. Install the 02152-60012 Timing Card into
slot number 16 in the front rack of cards.

e. Install the 02152-60013 EAU Interface
Card into any desired I/O slot (114 through 121 in
rear rack of cards). Refer to the note regarding
priority, addressing, and use of extenders in para-
graph 2-10.

f. Proceed to paragraph 2-13.

2-13. CONNECTING CABLES.

2-14,
normal gperation.

There are three cables to be connected for
(See figure 1-1.) The fourth

2-1

Section 1T

cable supplied (a short extender cable) is used for
test purposes only.

2-15. Figure 2-1 shows the cabling interconnections
for both the 2116- and 2115-series computers. Note
that the input/output cable (02152-60022) has two con-
nectors on one end and a single connector on the other
end. Connect the single-connector end, as shown, to
the top edge connector of the FPP interface card in the
FPP unit. Then connect the other end to the edge
connectors of both the EAU timing and interface cards
as shown.

2-16. Connect the power control cable from J2 on
the rear panel of the FPP unit to the power control
connector of the computer (J2 on a 2116-series com-~
puter or J4 on the power supply of a 2115-series

2152A

computer). If there are other extenders in the sys-
tem, such as I/O extenders, connect the power con-
trol cable from any such extenders to J3 on the rear
panel of the FPP unit. (Internally, J2 and J3 are
directly jumpered, pin to pin.)

2-17. Before connecting the ac power cable, ensure
that the 115-/230-volt switch and the fuse value are
correct for the power source to be used. The access
procedure is as follows:

a. Slide the clear plastic cover of the ac
input power module to the left. (The cover cannot
move unless the power cable is removed.)

b. Remove the fuse by pulling on the tab
marked FUSE FULL.

CABLE CONNECTIONS
FOR 2116 - SERIES COMPUTER POWER CONTROL
CABLE FROM OTHER
2 EXTENDER UNITS, IF ANY
2116 COMPUTER (NOT PART OF 2152A ACCESSORIES)
EAU
INTERFACE
INTEF \ .02160-6018 “ " .
\
== AC
POWER
[« . 8120-1348
. v
02152-60022 ROy
-
FPP
£EAU . INTERFACE
INTERFACE —~"""" CARD
CARD
POWER CONTR
CABLE CONNECTIONS CABLE FROM OTHER
FOR 2115 - SERIES COMPUTER EXTENDER UNITS, IF ANY
(NOT PART OF 21524 ACCESSORIES)
/l
AU
INTERFACE
LCARD
2115 COMPUTER
. 2 43
0216260022 J1
i - -AC
e ‘:‘. ; POWER
'
by [¢/ " 8120-1348
Vol i
=4 1 at
EAU '02150-6018 HAA
TIMING ~—e__| -
CARD
R FPP
y INTERFACE
CARD
2161A POWER SUPPLY
Figure 2-1. Interconnecting Cabling

2152A

¢. I necessary, slide the arrow indicator to
the correct voltage setting for the power source (115
or 230 volts ac). (The indicator cannot move unless
the fuse is removed.)

d. Insert the correctly rated fuse for the line

voltage (6 amperes for 115V, or 3 amperes for 230V).

e. Slide the clear plastic cover back to the
right.

2-18. Now connect the ac power cable (8020-1348) to
the ac power receptable of the ac input power module
and plug the cable into the power source.

2-19. PERFORMANCE CHECK.

2-20. Following completion of the installation pro-
cedure, performance should be checked by running
the diagnostic tests as outlined in the Manual of
Diagnostics. If the test portion of the diagnostic
program is completed without error, the installation
is complete.

2-21. OPERATION.

2-22. POWER ON AND POWER FAIL.

2-23. To place the HP 2152A Floating Point Pro-
cessor in operation, switch on power at both the FPP

Section II

unit and the computer. The power fail interlocks re-
quire that both units be on before either can become
operational.

2-24. In the event of a power failure in either the
FPP unit or the computer, the power fail logic in the
computer is activated. In most cases, depending on
computer model and type of power fail option installed,
this causes an interrupt to a location where the entry
of a power fail subroutine is stored. The subroutine
must be written so as to include saving the contents
of the FPP X-register in addition to saving the con-
tents of the computer registers. Use the STX (Store
X) instruction to save the contents; in a subsequent
restart (if the computer has this optional feature),
restore the X-register contents by using a LDX (Load
X) instruction, referencing the same location used
for STX.

2-25. OPERATING PROCEDURE.

2-26. There are no further operating procedures or
precautions. Once placed in operation, the HP 2152A
Floating Point Processor becomes an extension of the
computer CPU. The net effect is to add 40 instruc-
tions to the basic repertoire of the computer. Section
III defines these instructions and discusses some con-
siderations in their usage.

Section III

Table 3-1.

Instruction Coding

2152A

TRIPLE LOAD AND
STORE

TRIPLE PRECISION
FLOATING POINT
ARITHMETIC

FUNCTIONS

DOUBLE PRECISION
INTEGER ARITHMETIC
(A-/B-Registers)

DOUBLE WORD
LOAD/STORE/SHIFT
(A-/B-Registers)

*n = number of shifts in
binary coded deci-
mal (0 = 16 shifts)

z
%
é
%

1413]12

11]10]9

8|7]s

2]1]o]

STD
STF
STX

ADX
SBF
SBX

DLD

100
100
100

100
100
100

bt ek ek

000

000
000
000

100

000
001
000

010

001
001

000

110
100
001

010
011

000

3~0

2152A

Section III

SECTION 11}

PROGRAMMING INFORMATION

3-1, INTRODUCTION.

3-2. This section provides machine language pro-
gramming information for the floating point processor.
Specifically, this includes instruction coding and in-
struction definitions, plus an explanation of data
formats and error codes. For software documenta-
tion refer to separate programming manuals furnished
with the FPP software.

3-3. INSTRUCTION CODING.

3-4. Table 3-1 lists the machine codes for each of
the 40 FPP instructions. The arithmetic and load/
store instructions require an operand and therefore
use two words of memory. The first word is the 16~
bit instruction code, and the second word is the 15-
bit address reference (plus an indirect address bit).
The remaining instructions, which are shift and func-
tion instructions, require no operand and therefore
use only one word in memory.

3-5. DATA FORMATS.

3-6. Various instructions in the FPP repertoire use
one of three possible data formats, and in some cases
perform conversions from one format to another.
These characteristics are given in the instruction
definitions, beginning at paragraph 3-12. The follow-
ing paragraphs compare the three data formats, and
describe the conversions between double and triple
precision floating point formats. See figure 3-1.

3-7. DOUBLE WORD INTEGER. As shown in the
upper box of figure 3-1, the double word integer for-
mat represents only whole numbers (binary point
assumed at the right of the value), using 31 bits for
the value and one bit for the sign. This format uses
two computer words, and permits an equivalent deci-
mal range of numbers from -2, 147, 483, 648 through
+2, 147, 483, 647. When stored in memory, the
most significant data word is stored in the location
addressed by the operand word of an FPP double-
word instruction (either directly or indirectly), and
the least significant data word is stored in the next
higher memory location. When represented in the B-
“and A-registers of the computer, the B-register
contains the most significant data word, and the A~
register contains the least significant data word.

3-8. FLOATING POINT. Like double word integer,
floating point numbers require two computer words,
and when stored in memory the most significant

word occupies the first addressed location (or the B-
register when loaded into the registers). However,
the mantissa is assumed to be a fractional value
(binary point at the left), and has only 23 bits of sig-

nificance. This is equivalent to a decimal range of
-8,388,608 through +8,388,607. The 7-bit ex-
ponent extends the range by effectively moving the
binary point right or left; the range of exponent pow-
ers; in decimal, is -128 through +127. Note that the
second word of the floating point format is split, such
that bits 8 through 15 are the eight least significant
bits of the mantissa, and the remaining eight bits are
the exponent and exponent sign.

3-9. EXTENDED FLOATING POINT. The only
difference between extended and double-word floating
point formats is the addition of one computer word

(16 bits) to the length of the mantissa. Since the com-
puter registers cannot contain this triple-length word,
it is representable only in memory (3 locations used)
or in the FPP unit (which has 48-bit registers).

3-10. FORMAT CONVERSIONS. As shown in the
lower box of figure 3-1, the conversion from double-
to triple-length format consists of splitting the second
word of the double-word format between bits 8 and 7,
and inserting 16 zeros as the least significant bits

of the mantissa in the triple-word format. Note that
8 of these zeros are present in the second word of the
triple-word format, and the remaining 8 are in the
third word. The reverse conversion, from triple-

to double-length format, consists simply of trunca-
ting the 16 least significant bits of the mantissa. This
means removing bits 7 through 0 of the second word,

and bits 15 through 8 of the third word.

3-11. The conversions between integer and extended
floating point formats (not illustrated) are more com-
plex. Briefly, the process is as follows. For con-
version to integer, the mantissa is arithmetically
shifted right while the exponent value is correspond-
ingly increased (one increment per shift) until the
exponent equals +31. If bit 15 is a ""1" (implying 1/2),
the quantity in bits 16 through 47 is incremented by 1;
this rounds the integer to the nearest whole number.
Bits 8 through 15 are set to 0", and bits 16 through
47 comprise the integer value. The reverse conver-
sion, integer to extended floating point, consists of
filling in zeros for bits 8 through 15, setting the
exponent to +31, and then normalizing the result.
(Normalization is discussed later, in paragraph 3-99.)

3-12. INSTRUCTION DEFINITIONS.

3-13. From a programming standpoint, the addition
of the HP 2152A Floating point Processor to the com-
puter effectively adds a third accumulator, designa-
ted the X-register. This register can be loaded,
manipulated, and its contents stored in memory in
the same way as the A- and B-registers in the com-~
puter. The following instruction definitions make this
assumption.

3-1

Section III 2152A

DOUBLE-WORD INTEGER (32 bits)

1514

Sian

FLOATING POINT (32 bits)

15 1%

s &

- J\ J

Mantissa Exponent
23 bits 7 bits
Mantissa Exf)onent
SISI\ St'gn

EFXTENDED FLOATING POINT (4g bits)

151y
L

Mantissa E'xPov\enf
39 bits 7 bits
M An‘tl'SSQ Ex Powe\nt
Sign Sl'gv\

'x)OUBLE~/TRlPLE~wORD FLOATING POINT CONVERSIONS

First Second
Word Word
- A

2eros

222

Figure 3-1., FPP Data Formats
3-2

2152A

3-14. LDD (LOAD DOUBLE).

3-15. Load the double-word integer from addressed
memory location m (and m + 1) into the X-register
and convert it into an extended floating point number.
The extended floating point result occupies the X-
register on completion of the instruction.

3-16. LDF (LOAD FLOATING).

3-17. Load the floating point number from addressed
memory location m (and M + 1) into the X-register
and convert it into an extended floating point number.

3-18. LDX (LOAD EXTENDED).

3-19. Load the extended floating point number from
addressed memory location m (and m +1 and m + 2)
into the X-register.

3-20. STD (STORE DOUBLE).

3-21. DEFINITION. Convert the extended floating
point number in the X-register into a double-word
integer and store in addressed memory location

m (and m + 1). The integer value occupies.the 32
most significant bit positions of the X-register on
completion of the instruction, and bits 1 through 5 of
the exponent field are set to "1'" (decimal 31).

3~22. COMMENTS. The conversions can cause an
overflow condition (error code 2, overflow set); refer
to paragraph 3-112. Setting the exponent field of the
X-register to 31 permits any succeeding instruction
to use the X-register contents as a floating point
quantity. (If the result is not a normalized quantity,
it will automatically be normalized as partt of the
cxecution sequence of the succeeding instruction.)

3-23. STF (STORE FLOATING).

3-24. Convert the extended floating point number in

the X-register into a floating point number and store in

addressed memory location m (and m + 1). The con-
version is accomplished by truncating the mantissa to
24 bits. The original extended floating point value in
the X-register is not changed.

3-25. STX (STORE EXTENDED).

3-26. Store the extended floating point number in the
X-register in addressed memory location in (and m + 1
and m + 2).

3-27. ADF (ADD FLOATING).

3-28. Load the floating point number from addressed
memory location m (and m + 1) and convert it to an
extended floating point number; then add to the current
value in the X-register. The extended floating point

Section III

* result of the addition occupies the X-register on

completion of the instruction. Overflow or under-
flow error conditions can result; refer to paragraphs
3-110 and 3-113.

3-29. ADX (ADD EXTENDED).

3-30. Add the extended floating point number from
addressed memory location m (and m +1 and m + 2)
to the current value in the X~register. The extended
floating point result of the addition occupies the X-
register on completion of the instruction. Overflow
orunderflow error conditions can result; refer to
paragraphs 3-110 and 3-113.

3-31. SBF (SUBTRACT FLOATING).

3-32. DEFINITION. Load the floating point number
from addressed memory location m (and m + 1) and
convert it to an extended floating point number; then
subtract from the current value in the X-register.
The extended floating point result of the subtraction
occupies the X-register on completion of the instruc-
tion.

3-33. COMMENTS. Overflow or underflow error
conditions can result either from the subtraction or
from initial values of the X-register. Refer to para-
graphs 3-110, 3-111, and 3-113,

3-34. SBX (SUBTRACT EXTENDED).

3-35. Subtract the extended floating point number in
addressed memory location m (and m + 1 and m + 2)
from the current value in the:/X-register. The ex-
tended floating point result of the subtraction occupies
the X-register on completion of the instruction.
Overflow or underflow error conditions can result
either from the subtraction or from initial values of
the X-register; refer to paragraphs 3-110, 3-111,
and 3-113.

3-36. MPF (MULTIPLY FLOATING).

3-37. Multiply the extended floating point number in
the X-register by the floating point number in ad-
dressed memory location m (and m + 1), The ex-

" tended floating point result of the multiplication

occupies the X-register on completion of the in-
struction. Overflow or underflow error conditions
can result; refer to paragraphs 3-110 and 3-113.

3-38. MPX (MULTIPLY EXTENDED).

3-39. Multiply the extended floating point number

in the X-register by the extended floating point num-
ber in addressed memory location m (and m + 1 and
m + 2). The extended floating point result of the
multiplication occupies the X-register on completion
of the instruction. Overflow or underflow error con-
ditions can result; refer to paragraphs 3-110 and
3-113.

3-3

Section III

3-40. DVF (DIVIDE FLOATING).

3-41. Divide the extended floating point number in
the X-register by the floating point number in ad-
dressed memory location m (and m + 1). The ex-
tended floating point result of the division occupies
the X-register on completion of the instruction.
Error conditions due to overflow, underflow, or
divide-by-zero attempts can result; refer to para-
graphs 3-110, 3-113, and 3-120.

3-42. DVX (DIVIDE EXTENDED).

3-43. Divide the extended floating point number in
the X-register by the extended floating point number
in addressed memory location m (and m + 1 and m +
2). The extended floating point result of the division
occupies the X-register on completion of the instruc-
tion. Error conditions due to overflow, underflow,
or divide-by-zero attempts can result; refer to para-
graphs 3-110, 3-113, and 3-120.

3-44. ABX (ABSOLUTE).

3-45. Calculate the absolute value of the extended
floating point value in the X-register; i.e., if the
content of the X-register is negative, convert to
positive. Overflow can result if the negative number
is the maximum negative value; refer to paragraph
3-114.

3-46. ENX (ENTIER).

3-47. Calculate the entier of the extended floating
noint value in the X~register. The calculated result
replaces the original contents of the X-register.
Refer to paragraph 3-125 for comparison of entier,
RNX and FIX instructions.

3-48. CMX (COMPLEMENT).

3-49. Convert the extended floating point value in
the X-register to its two's complement. Overflow
or underflow error conditions can result; refer to
paragraphs 3-111 and 3-114.

3-50. CSX (COSINE).

3-51. Calculate the cosine of the value in the X~
register, where the value is expressed in radians as
an extended floating point number. The result of the
cosine calculation replaces the original value in the
X-register. Excessive complete rotations of the
expressed angle can result in a no-resolution error
condition; refer to paragraph 3-118.

3-52. SNX (SINE).

3-53. Calculate the sine of the value in the X~regis-
ter, where the value is expressed in radians as an
extended floating point number. The result of the
sine calculation replaces the original value in the X-

3-4

2152A

register. Excessive complete rotations of the ex-
pressed angle can result in a no-resolution error
condition; refer to paragraph 3-118.

3-54. TNX (TANGENT).

3-55. Calculate the tangent of the value in the X-
register, where the value is expressed in radians as
an extended floating point number. The result of the
tangent calculation replaces the original value in the
X-register. Error conditions can result from exces-
sive complete rotations of the expressed angle (no
resolution) or from attempts to calculate the tangent
of angles equal to odd values of II ; refer to para-
graphs 3-118 and 3-120.

3-56. ATX (ARCTANGENT).

3-57. Calculate the arctangent of the value in the
X-register, where the result is expressed in radians
as an extended floating point number in the X-register.

3-58. HCX (HYPERBOLIC COSINE).

3-59. Calculate the hyperbolic cosine of the extended
floating point number in the X-register. The result
of the hyperbolic cosine calculation replaces the
original value in the X-register. Overflow or under-
flow error conditions can result; refer to paragraphs
3-111 and 3-116.

3-60. HSX (HYPERBOLIC SINE).

3-61. Calculate the hyperbolic sine of the extended
floating point number in the X-register. The result
of the hyperbolic sine calculation replaces the original
value in the X-register. Overflow or underflow
error conditions can result; refer to paragraphs
3-111 and 3-116.

3-62. HTX (HYPERBOLIC TANGENT).

3-63. Calculate the hyperbolic tangent of the extended
floating point number in the X-register. The result of
the hyperbolic tangent calculationreplaces the original
value in the X-register.

3-64. AHT (ARCHYPERBOLIC TANGENT).

3-685. Calculate the hyperbolic arctangent of the ex-
tended floating point number in the X-register. The
result of the hyperbolic arctangent calculation re-
places the original value in the X-register. An
improper-variable error condition results if the
argument value is equal to or greater than 1; refer
to paragraph 3-122.

3-66. EXX (EXPONENTIAL).

3-67. Calculate the exponential of the extended
floating point number in the X-register. The result

2152A

of the exponential calculation replaces the original
value in the X-register. Overflow or underflow error
conditions can result; refer to paragraphs 3-111 and
3-116.

3-68. LNX (NATURAL LOGARITHM).

3-69. Calculate the natural logarithm of the ex-
tended floating point number in the X-register. The
result of the logarithm calculation replaces the
original value in the X-register. An improper-vari-
able error condition results if the argument value is
zero or a negative number; refer to paragraph 3-122.

3-70. SRX (SQUARE ROOT).

-3-71. Calculate the square root of the extended
floating point number in the X-register. The result
of the square root calculation replaces the original
value in the X-register. An impropér-variable
error condition results if the argument value is a
negative number; refer to paragraph 3-122.

3-72. FIX (ROUND TO NEAREST INTEGER).

3-73. Round-off the extended floating point number

in the X-register to the nearest integer value. The

result remains an extended floating point number and

replaces the original value in the X-register., The

. number of bits affected depends on the exponent
value. A comparison of FIX, RNX, and ENX instruc-

tions is given in paragraph 3-125.

3-74. RNX (ROUND TO 24 BITS).

3-75. Round-off the extended floating point number
in the X-register to 24 bits of precision. An over-
flow error condition can result if the maximum posi-
tive number is rounded-off in the positive direction;
refer to paragraph 3-115. A comparison of RNX,
FIX, and ENX instructions is given in paragraph -
3-125.

3-76. MPY (MULTIPLY INTEGER).

3-T7. Multiply the 16-bit integer value in the com~
puter A-register by the 16-bit integer value in ad-
dressed memory location m. The result is a double~
word integer occupying the computer B- and A~
registers, with the B-register containing the sign bit
and most significant 15 bits of the quantity.

3-78. DIV (DIVIDE INTEGER).

3-79, Divide the double-word integer in the combined
B- and A-registers of the computer by the 16-bit
integer value in addressed memory location m. The
result is a 16-bit integer quotient in the A-register
and a 16-bit integer remainder in the B-register. An
overflow condition can result from an attempt to
divide by zero or from a dividend which is too large
for the divisor. Refer to paragraph 3-106.

Section III

3-80. DLD (DOUBLE LOAD).

3-81. Load the contents of addressed memory
location m (and m + 1) into the computer A- and B-
registers, respectively.

3-82. DST (DOUBLE STORE).

3-83. Store the double-word quantity in the computer
A- and B-registers into addressed memory location
m (and m + 1),

3-84. ASR (ARITHMETIC SHIFT RIGHT).

3-85. Arithmetically shift the combined contents of
the computer B- and A-registers right, n places.
The value of n may be any number from 1 through 16.
The sign bit is unchanged, and is extended into bit
positions vacated by the right shift. Data bits shifted
out of the least significant end of the A-register are
lost. See ASR example in figure 3-2.

3-86. ASL (ARITHMETIC SHIFT LEFT).

3-87. Arithmetically shift the combined contents of
the computer B- and A-registers left, n places. The
value of n may be any number from 1 through 16.
Zeros are filled intovacated low order positions of
the A-register. The sign bit is unchanged, and data
bits are lost out of bit 14 of the B-register. If one of
the bits lost is a significant data bit ('1" for positive
numbers, "0" for negative numbers), overflow'will be
set; otherwise, overflow will be cleared during execu-~
tion. See ASL example in figure 3-2. Note that two
additional shifts in this example would cause an error
by losing a significant "1".

3-88. LSR (LOGICAL SHIFT RIGHT).

3-89. Logically shift the combined contents of the
B- and A-registers right, n places. The value of n
may be any number from 1 through 16. Zeros are
filled into vacated high order bit positions of the B~
register, and data bits are lost out of the low order
bit positions of the A-register. See LSR example in
figure 3-2.

3-90. LSL (LOGICAL SHIFT LEFT).

3-91. Logically shift the combined contents of the
B- and A-registers left, n places. The value of n
may be any number from 1 through 16. Zeros are
filled into vacated low order bit positions of the A-
register, and data bits are lost out of the high order
bit positions of the B-register. See LSL example in
figure 3-2.

3-92. RRR (ROTATE RIGHT).

3-93. Rotate the combined contents of the B- and A-
registers right, n places. The value of n may be

3-5

Section III 2152A

B - REQISTER A- REGISTER
A SR
3 Bits lost
(Arithmetic Shite Right 1011 000 101 000 101|0 101 101 019 166"%1:1. :
Ly ,;lar.cs) ! [
i |
1 111 110 110 011 010l0 010 101 011 010 117
T |
\ {Extended sign) l
ASL §
(Av’ithmettk, Shitt Left Bits lost
5 places) 0 006 °000_111_101 000{1 101 101 000 110 111
1
e |
0 011 110 100 011 o11=0 100 011 011 100 000 4—— Zorns filled
LSR §
(Logical Shift Right
5 places) 1011 000 101 000 101}0 101 101 011 100 111 — 4 gits [ost
Zeros filled ——9 0 000 010 110 001 010{0 010 101 011 010 11] v
LSL S

- I 5.“15 'oSt PO S—
T logical Shift)bt j

& pfaces)

0 101 000 111

-

01 00011 101 101 000 110 111
T

-

0 011 170 100 011 011]0 100 0311 011 100 000 4—— Zeros filled

RRR 8 {

. Ry) —
(Rotate Right 8 places) 0101 110 111 000 010l0 100 010 110 D00 117

1 000 011 101 011 101{1 100 001 001 000 101

RRL 7
(Qotate, Left 7 places)

0 110 011 101 111 00010 110 011 010 00O 111

1 011 110 000 110 011{0 100 001 110 110 011

| I

Figure 3-2. Examples of Shifts and Rotates

2152A

any number from 1 through 16. No bits are lost or
filled in, Data bits shifted out of the low order end
of the A-register are rotated around to enter the high
order end of the B-register. See RRR example in
figure 3-2.

3-94. ‘_RRL (ROTATE LEFT).

3-95. Rotate the combined contents of the B- and A-
registers left, n places. The value of n may be any
number from 1 through 16. No bits are lost or filled
in, Data bits shifted out of the high order end of the
B-register are rotated around to enter the low order
end of the A-register.

3-96. EXTENDED FLOATING POINT NUMBERS.

3-97. Internally, the FPP processes all data as
normalized extended floating point numbers. The
FPP instructions will convert the input data if the
data is not already in this form.

3-98. This requirement of using only normalized
numbers means that a number can be too small for
processing, as well as too large. Figure 3-3 illus-
trates this case. The example uses positive decimal
numbers, and is equivalent to the binary magnitudes
representable in the FPP unit.

3-99. As shown in figure 3-3, normalization consists
of shifting the mantissa left to eliminate any zeros
between the decimal point and the first non-zero digit,
while the exponent is correspondingly reduced by sub-~
tracting 1 for each shift. In the upper example in
figure 3-3, there are two zeros between the decimal
point and the digit 8. Therefore two left shifts are
necessary, and the exponent is reduced from -31 to
-33. In the lower example, the number is too small
to be normalized, resulting in an underflow condi-
tion. The mantissa is shown shifted left seven posi-
tions, which reduces the exponent to its smallest
possible value, -38. (This is equivalent to the
smallest binary exponent of -128.) No further left
shifts can therefore be made, and there is still one
zero left between the decimal point and the digit 8.

NORMALIZATION
Mantissa Exponent
+ .008000000000 -31 (10-31)
+ .800000000000 -33 (10-33)
UNDERFLOW
(Cannot be normalized)
Mantissa Exponent
+ .000000008000 -31 (10-31)
+ .080000000000 -38 (10-38)

Figure 3-3. Normalization, Decimal Example

Section III

3-100. Figure 3-4 defines the ranges of valid binary
numbers that can be processed by the FPP unit. The
shaded areas define overflow and underflow ranges.
In the VALUE column, the mantissa is enclosed in
parentheses, followed by the exponent outside of the
parentheses.

3-101. Note that 0 (middle line of the figure) is rep-
resented by all zeros in both the mantissa and the
exponent. Positive numbers are shown above this
line, and negative numbers are shown below this
line. Inthe far right column, the exponent values
are shown increasing in both directions from the
zero line, from the smallest representable value
(~128) to the largest (+127). Nonrepresentable ex-
ponent values, smaller than -128, are also under-
flow conditions, but this situation is not considered
in the figure.

3-102. For each finite value of exponent, the man-~
tissa is assumed to go through its complete cycle of
valid values. In approximate terms, the positive
mantissa cycles from +1/2 to +1, and the negative
mantissa cycles from -1/2 to -1. More precisely,
the positive range is from +1/2 to the .largest pos-
sible fractional number under the value of 1. The
negative range is from the largest possible fractional
number below (more negative than) -1/2 to -1.

3-103. The significance of +1/2 and -1/2 in deter-
mining mantissa ranges is a result of the normali-
zation requirement, which dictates that there will
be a significant digit immediately to the right of the
binary point. This automatically eliminates all
numbers between +1/2 and -1/2, including the exact
value of -1/2, but excluding 0 and +1/2.

3-104. Figure 3-4 can also be applied to double-
length floating point numbers, which may be used
externally to the FPP unit. The only difference is
that, since there are 16 fewer bits of mantissa, the
three appearances of -39 as a power of 2 when ex-
pressing the VALUE of the mantissa would be
changed to -23.

3-105. ERROR CONDITIONS.

3-106. After execution of most FPP instructions,
overflow should be checked for a possible execution
error. Those instructions which can result in an
error will set the overflow bit, and most of these
will load an error code into bits 10, 9, and 8 of the
computer A-register. These three bits are read as
an octal digit to identify the code, as listed in table
3-2. Table 3-2 lists the possible types of error that
can occur for each of the 40 instructions. (A table
of error codes is also given in section V.) The
following paragraphs discuss the various types of
errors.

3-107. NO RESPONSE.

3-108. An error code of 0 in the A-register following
an affirmative overflow error check indicates that
the FPP unit is not returning Flag signals and is ,

31

Section IIT

BINARY REPRESENTATION
VAL UE _]
(Mantissa) Expowe.nt Mantissa EXFOant
e — . e B {ﬁ?h i} sign\
OVERFLOW ~' .5 7 f e ’,fT ol T e SRV |
: 123 . . . I
(not rvprcscn'tablt) (1) 2 7\ ,
. B o . \-..' - .
) - 0 1111 - Iy I
(,_2-,?} 2:21/ 4 ‘ Foprvitvvigo | +i27
+127
| KANGE OF +63
| POSITIVE MUMBERS
3 + 31
| 0
-32
- 64
% -128
; Ly ,-128
| () 27"
g N 041000 - . « <000 [0000000 41
| SR : - 0,011 . . « 11 | 0000000, |
| UNDERFLOW 279y g6 A A
i (cammot: be .
| wormalized) | :
| | R
7] 040000 . ¢ .+« L 000 [0000000,0
| U NDERFLOW -128 "
(rannot pa (=— % YV a2” 128
o ’. o : . .
horria lizad) > 141000 + « .« -« « - « . 000 |0006060, !
]) a0l L Sl 0000000,
(-4-27%) 7w
-)128
Y
-32
RANMGE OF 0
| NEGATIVE NUMBERS)
i
+03
+127
(.__l) 2 27
S 140000 + = - o+ o s e 000 | 111111140 | 4127
OVER FLOW)
(not reprosentable) i

3-8

2152A

Figure 3-4. Ranges of Extended Floating Point Numbers

2152A

therefore disabled or not connected. Since the FPP
unit is not used in the execution of the last ten in-
structions listed in table 3-2, response checks
cannot be programmed for these instructions.

3-109. UNDERFLOW.

3-110. The floating point add, subtract, multiply,
and divide instructions will produce an underflow
error indication if the result can not be normalized;
i.e., the result falls in one of the shaded areas in
figure 3-4 immediately adjacent to zero. If the
input data is not normalized, the instruction will
normalize the operands before beginning the compu-
tation; if the numbers are too small to be success-
fully normalized, the instruction will attempt nor-
malization as far as possible and then proceed with
the computation. The answer will be correct except
that the sign bit of the exponent will be incorrect
(complemented).

3-111. The CMX, HCX, HSX, and EXX instructions
check the pre-execution contents of the X-register
for a value which, when altered by the instruction,
would produce a result which cannot be normalized.
Similarly, the subtract instructions (SBF and SBX)
check if subtrahends from memory are at the mini-
mum positive value; this would produce an underflow
when converted to negative form during execution.
However, as in all underflow conditions, the compu-
tation will proceed, and only the sign bit of the
exponent will be incorrect.

3-112. OVERFLOW.

3-113. The floating point add, subtract, multiply,
and divide instructions will produce an overflow
error indication if the result exceeds the largest.
positive or negative number which can be represented;
i.e., the result falls in either the top or bottom
shaded areas in figure 3-4. Answers will be correct
except for the sign bit of the exponent (will be com-
plemented). However, the divide instructions, DVF
and DVX, can produce one exception to this general
rule: if the dividend is +126 or +127 and the divisor
is ~127 or -128, the resultant exponent will be in-
correct. In this case, the exponent value will equal
the original value of the dividend, plus two. This
produces a rollover to an apparent negative exponent
of ~-128 (if the original was +126) or -127 (if the
original was +127).

3-114. The subtract instructions (SBF, SBX) also
check the subtrahend from memory before execution
begins. If the subtrahend is at the maximum negative
value, an overflow will result when the number is
converted to positive form during execution. Simi-
larly, the CMX and ABX instructions check the pre-
execution contents of the X-register for maximum
negative value; overflow will result when the number
is converted. However, in all four cases (SBF,
SBX, CMX, ABX) execution will proceed, and only
the sign bit of the exponent will be incorrect
(complemented).

Section III

3-115. The RNX instruction will produce an overflow
if the number is at the maximum positive value and
then is rounded upward. This will cause rollover to
the maximum negative number.

3-116. Overflows resulting from STD, FIX, HCX,
HSX, and EXX produce results which are generally
unpredictable, making it difficult or impossible to
reconstruct correct answers.

3-117. NO RESOLUTION.

3-118. The CSX, SNX, and TNX instructions allow
expressed arguments to include complete rotations
of the angle. These whole rotations use up part of
the available floating point bits, leaving fewer bits
to express the fractional part of the rotation for the
computation. When the number of whole rotations
reaches about 238/ 2, there is not sufficient reso-
lution left to express angles in increments smaller
than 90 degrees. The no-resolution error code
indicates this condition.

3-119. DIVIDE BY ZERO.

’

3-120. If the divisor for DVF or DVX instructions is
zero, the division will not be attempted, and the error
code of 4 will indicate this condition. Also, in the
TNX computation of tangent, odd numbers of quarter
rotations (1/4, 3/4, etc.) would result in a divide-by-
zero condition (sin = 1, cos = 0). This is also indi-
cated by an error code of 4. The sine value (1) will

-remain in the X-register on exit from the instruction.

3-121. IMPROPER VARIABLE.

3-122. Attempts to calculate the square root (SRX) of
negative numbers, or the natural logarithm (LNX) of
zero or negative numbers, will not be executed, and
will leave the X-register unchanged. Attempts to
calculate the archyperbolic tangent (AHT) of numbers
which are +1 or greater will also not be executed,

and will usually leave the X-register unchanged; the
exception is that the attempt to calculate archyperbolic
tangent of -1 will result in clearing the X-register to
zero.

3-123. IMPROPER OPCODE.

3-124. Undefined opcodes given to the FPP unit will
cause the instruction to be ignored, and will indicate
rejection by an error code of 6.

3-125. COMPARISON OF ENX, RNX, FIX.

3-126. The ENX, RNX, and FIX instructions all
alter the representation form of an extended floating
point number, without changing its value. The dif-
ferences in effects are illustrated in figure 3-5 and
are explained in the following paragraphs.

3-9

Section III

Table 3-2. Error Conditions
INSTR |55k T FRROR CONDITION X-REGISTER CONTENTS
LDD None
LDF None
LDX None
STD 2 Overflow X < -231, or Not predictable
x=2 Not predictable
STF None
STX None
ADF 1 Underflow See note 1 Correct, except exponent sign
bit is complemented
2 Overflow See note 2 Same as underflow effect
ADX 1 Underflow See note 1 Same as above
2 Overflow See note 2 Same as above
SBF 1 Underflow See note 1, or Same as above
x = (1/2) 2128
2 Overflow See note 2, or Same as above
x = -2-128
SBX 1 Underflow See note 1, or Same as above
: x = (1/2) 2-128
2 Overflow See note 2, or Same as above
X =-2 Same as above
MPF 1 Underflow See note 1 Same as above
2 Overflow See note 2 Same as above
MPX 1 Underflow See note 1 Same as above
2 Overflow See note 2 Same as above
DVF 1 Underflow See note 1 Same as above
2 Overflow See note 2 See paragraph 3-113
4 Divide by Zero | Divisor =0 Unchaged
DVX 1 Underflow See note 1 Same as ADF underflow
2 Overflow See note 2 See paragraph 3-113
4 Divide by Zero | Divisor = 0 Unchanged
ABX 2 Overflow X = -2127 Same as ADF underflow
ENX None
CMX 1 Underflow x = (1/2) 2'128 Same as ADF underflow
2 Overflow X = -212’7 Same as ADF underflow
CsX 3 No Resolution | |x|= = 238 Unchanged
SNX 3 No Resolution [x]= = 238 Unchanged
TNX 3 No Resolution |x|= = 238 Unchanged
4 Divide by Zero | x = 2k + 1) 7/2 Sine remains in X (= +1 or -1)
for k=0, 1, #2..,
ATX None
HCX Underflow X <-88 Same as ADF underflow
Overflow x > 88 Not predictable

2152A

2152A

Table 3-2. Error Conditions (Continued)

Section III

POSSIBLE ERRORS

ERROR EFFECT ON

INSTR CODE ERROR CONDITION X-REGISTER CONTENTS
HSX Underflow x < -88 Same as ADF underflow
2 Overflow x > 88 Not predictable
HTX None
AHT 5 Improper jx|= 1 Unchanged, unless x = -1;
Variable then contents will = 0.
EXX Underflow x<-87.3 Same as ADF underflow
Overflow x> 87.3 Not predictable
LNX Improper x=0 Unchanged
Variable
SRX 5 Improper x<0 Unchanged
Variable .
FIX 2 Overflow X< ~231, or Not predictable
X = 231 Not predictabie
RNX 2 Overflow zZ = 2127 Same as ADF underflow
INSTR POSSIBLE ERRORS CONDITION EFggg;fSlggRg-/ B-
MPY None
DIV Overflow Dividend/Divisor = Zgi, Not predictable
or <2 Not predictable
Divide by Zero Divisor = 0 Unchanged
DL.D None
DST None
ASR None
ASL Arithmetic Overflow Significant bits lost
LSR None
LSL None
RRR None
RRL None
Notes: 1. Underflow result is in the range 0 < z < (1/2)2 }igs or
0 >z = (-1/2)2

127

2. Overflow result is f ?2127‘ , or

3. All instructions except last 10 (MPY through RRL) can also produce a no-
response error condition, implying that the FPP unit does not respond to
the instruction. Error code = 0.

4, x
z

o

Contents of X-register before execution.
Contents of X-register after execution.

3-11

Section III 2152A

ENX (Entl'er)

Cleared Lo 0's
(truncnted)

RN X (eom to 2¢ s.rr)

i ([xv1] 277%) 2%

Indicates %] ([K+ 4] 272%) o0

24 Wts or greater ~2% ex
p A _\/ (&Iu) ‘\" ([KJZ z)2‘ P
Bebore Fﬂ‘*"’&‘ - ﬁw f@fﬂg“'g .W q;.\ﬁfa TVVO l!ﬂ @ ' 0
| S — .
; exp

(K] 27) 29
(C-K-31277) 2%
(C-k-1727%) 2%

Alter [ourors T

: (aoo)
T T T —
S =

Rounded to next \
higher value cleared

N il

FTX (E’Qum{ to Nearest Iv'tege') ::

C_—b{—- K+ 1

— K+ 2

32 bits
T (29,) C:{.,;.a K
Before mqmm S Fei1101 5

Shift V"l?)ct 2 —» , —- 0
! ¢ Indicates T)
; or greater

(21.,)

4 ~K-1

(After

Ol il 3

Rounded to next € bits

cleared

h{ghcr value K is an integer

Figure 3-5. Examples of ENX, RNX, and FIX

2152A

3-127. ENX. Entier is simple truncation of the
fractional part of a number. As shown in the upper
box of figure 3-5, this is accomplished by noting the
value of the exponent (8 in the example) and saving
that number of places in the most significant part of
the mantissa. The remaining bits of the mantissa
are cleared (to zeros). As shown by the numeric
graph on the right side of the box, the effect for
positive numbers is to reduce the X-register con-

tents (if there is a fraction) to the integer-only value.

For negative numbers, since the representation is
in two's complement form, the value becomes the
next more negative integer (even if there is no
fraction).

3-128. RNX. Rounding an extended floating point
number to 24 bits of significance implies that a
specific number of bits (16) will be cleared. Before
these bits are cleared, however, the most signifi-
cant bit of those to be cleared is examined. If this
bit is a '"1"", indicating for positive numbers that the
part of the number to be cleared represents a value
of 1/2 (or more) of the least significant bit of the

saved part, the saved part is incremented by +1. "As

shown by the numeric graph, if the cleared part of
a positive number is 1/2 or greater, the value is
rounded upward (not necessarily to an integer);
otherwise, the value is rounded downward. If the
cleared part of a negative number is -1/2 or more
negative, the value is rounded in the negative direc-
tion; otherwise, the value is rounded in the positive
direction. Note that if all 23 significant data bits
were ''1's" before execution, rounding upward (in-
crementing by +1) would -cause rollover; unless an

Section III

overflow condition exists, the instruction will éuto-
matically renormalize the number.

3-129. FIX. Rounding an extended floating point

number to the nearest integer involves two steps:
conversion to integer, and rounding. The lower box
in figure 3-5 shows both steps. First, the mantissa
is shifted right while the exponent value is incre-~
mented, once per shift, until the exponent equals
+31. Then the most significant bit of the eight bits
to be cleared is examined. If this bit is a ""1", the
saved part is incremented by +1. For positive
numbers, the 1" bit indicates a fraction of 1/2 or
greater; for negative numbers, it indicates a fraction
smaller than 1/2. After rounding, bits 8 through

15 are cleared. As shown by the numeric graph, if
the cleared part of a positive number is 1/2 or
greater, the saved part is rounded to the next higher
integer; otherwise the number is reduced to the
integer-only value. If the cleared part of a negative
number is -1/2 or more negative, the value is
rounded to the next more negative integer; otherwise
the number becomes the integer-only value.

3-130. POWER FAIL.

3-131. When the HP 2152A Floating Point Processor
is installed in a computer system, the power fail
subroutine must be revised to save the contents of

the X-register (STX). If the computer has the op-
tional restart feature, restore the X-register contents
with LDX.

3-13

2152A

Section IV

SECTION IV

THEORY OF OPERATION
FLOATING POINT PROCESSOR UNIT

4-1. SCOPE OF SECTION.

4-2. As shown in figure 4-1, a complete HP 2152A
installation consists of a floating point processor
unit, external to the computer and a controller
installed internally in the computer. This section of
the manual contains theory of operation of the floating
point processor unit. Section V of this manual con-
tains the EAU controller theory.

4-3, Included in the floating point processor unit
are 10 logic cards (including an interface card), a
test card, and a power supply. The test card is used
only in diagnostic procedures, and is not described
in this section; the description and use of the test
card are included in the Manual of Diagnostics.

4-4, Paragraphs 4-5 through 4-90 describe the
floating point processor logic, including the interface
card. Paragraphs 4-91 through 4-111 describe the
power supply.

4-5. INTRODUCTION.

4-6. The floating point processor has two basic
modes of operation, one for two-operand routines,
and one for function routines. (The load and store
routines are considered to be interface control
routines, and are discussed with the EAU controller
in section V.) Figure 4-2 illustrates these two basic
‘modes of operation.

Figure 4-1.

4-7. In the figure, note that the three registers,

A, B, C, together comprise what was earlier called,
for simplicity, the X-register. Each of the three
registers has 48 bits for data (mantissa), and also
has 8 bits for an exponent byte (E) and 8 bits for a
shift control byte (S). Since the C-register has no
facilities for shifting, the C shift control byte is used
to receive the opcode from the EAU controller.
Shaded areas in the figure indicate the location of
operands at the start of the operations. The following
paragraphs outline the two basic modes.

4-8. FUNCTION ROUTINES. The function routines,
defined earlier in this manual, calculate trigonomet-
ric and other mathematical functions on a quantity
previously loaded into the floating point processor
unit. Box A of figure 4-2 illustrates the operations
involved.

4-9, The operand quantity x is assumed to exist in
the FPP B-register. The operation begins when the
EAU controller decodes the fact that the current
instruction is of the function type. The controller
then puts the opcode (least significant 8 bits of the
instruction) on the interface data lines and issues an
OPC (Opcode) command to the FPP unit.

4-10. The FPP unit, which operates under control
of firmware programs in the ROM (read-only
memory), cycles in a wait mode as long as it is in the
ready state, looking for a command such as OPC.
(The other command is ENC, discussed under two-

THIS SECTION

DESCRIBES FLOATING POINT PROCESSOR UNIT

FPP
POWER

SUPPLY FLOATING

POINT
PROCESSOR UNIT

FPP
INTERFACE
CARD

Processor Section

4-1

Section IV

2152A

A. FUNCTION ROUTINES
MEMORY COMPUTER
INSTR
[snx)
FLOATING POINT
A PROCESSOR UNIT
EaU - FLG /ERR
CONTROLLER oPC LOGIC rROM
oPcove|
$§ & 98-8IT REGISTERS
Al | 1 |
. » SNX 0PcoDE y,
B. TwO-0OPERAND ROUTINES
[MeMORY . o COMPUTER
Y {
I.'NSTR.
ADX
- FLOATING POINT
y 1 PROCE SSOR UNIT
o) Fra/ern
£aV ROM
ConTrOLLER | | ENcfopc | LOGIC
orcou] DATA
[\
§ E 4@-BIT REGISTERS
YR] 1]
3 o 2 WY a7 e "
ADX oxobj
\w W, . V,

DATA (THREE 16-8IT

woneos)

Figure 4-2. Basic FPP Operations

2152A

operand routines.) When the ROM program detects
the presence of OPC, it loads the opcode data into

the S byte of the FPP C-register. Then the ROM
identifies the type of operation by decoding the opcode
bits, and branches to the appropriate function routine.
The opcode is now no longer needed.

4-11. As the program proceeds, the value in the’
FPP B-register is manipulated according to the
algorithm for the particular function, using all three
registers. At the end of the routine, the final answer
resides in the FPP B-register, and a FL.G (Flag)
signal is sent back to the EAU controller. The FLG
signal indicates that the unit is ready for further
commands, having completed the last issued com-
mand.

4-12. The FLG signal, incidentally, has no associa-
tion with the computer flag and interrupt system. It
is simply an interface signal between the FPP unit
and the EAU controller. The FLG signal indicates
to the EAU controller that it should allow the com-
puter to proceed to the next instruction.

4-13. If an error occurs during the calculation, or
if the opcode is improper, an ERR (Error) signal is
simultaneously sent back to the EAU controller with
the FLG signal. This will set the computer Overflow
flip-flop, which may then be tested by an SOS or SOC
instruction. Also, the error code will appear in the

computer A-register, where it may be checked by an .

error routine. It is the user's option to decide what
to do about an error condition. In general, it may be
said that the FPP unit will attempt the calculation,
rather than abort, even if input values will result in
an error. The FPP unit will provide the best answer
it can, along with the error indication. This allows
the programmer some flexibility to reconstruct
correct answers from results which normally could
not be represented. The exception to this generali-
zation is that divisions by zero will not be attempted.

4-14, TWO-OPERAND ROUTINES. The two-operand
routines take two values, one that was previously
loaded into the FPP unit, and one that exists in
memory, and operate on these numbers in some
specified way. The operations include: adding the
two numbers together, multiplying one by the other,
subtracting, and dividing. The value in memory
may be either double-length or triple-length; the
value in the FPP unit (and the answer) will always be
triple-length. Box B of figure 4-2 illustrates the
operations involved.

4-15. Initially the quantity x is assumed to-exist in
the FPP B-register. (It may have been left there as
the result of a previous instruction, or it may have
been loaded by a load instruction. The load instruc-
tions operate similarly to the following procedure,
except that the opcode simply causes the loaded FPP
C-register contents to move up into the FPP B-regis-
ter.) The operation begins when the EAU controller
decodes the fact that the current instruction is of the
two-operand type. The controller first fetches one
word of the three-word operand (y) from memory.

It then puts this data word on the interface data lines

Section IV

and issues an ENC (Encode) command to the FPP
unit,

4-16. As mentioned previously, the FPP unit, under
control of the ROM programs, continuously searches
for ENC or OPC commands as long as it is in the
ready state. When the ROM program detects the
présence of ENC, it loads the data word (in two 8-bit
bytes) into the high order third of the FPP C-regis-
ter.

4-17. After the second byte has been loaded, the
FPP unit sends a FLG signal back to the EAU con-
troller, indicating readiness for the next word of y.
The EAU fetches this next word from memory and
repeats the process: the word is placed on the inter-
face data lines, ENC commands the FPP unit to load
these two bytes, and another FLG signal is issued to
again repeat the process for the third and final time.

4-18, At the end of the three-word transfer, the
quantity x is in the FPP B-register and the quantity
y is in the FPP C-register. The FPP unit now needs
to be told what to do with these numbers. Thus the
entire process described above under function rou-
tines must now be added on. In brief, the procedure
is:

a, The FLG signal allows the EAU controller
to issue OPC.

b. The FPP unit loads the opcodeinto the FPP
C-register.

c. The ROM program interprets the opcode
and branches to the appropriate function routine (add,
subtract, ete.).

d. The function routine calculates the answer,
and leaves it in the FPP B-register.

e. A final FLG back to the EAU controller
tells it that the FPP unit is ready for further com -
mands.

f. In case of error, an ERR signal causes
setting of the Overflow flip-flop and loading of the
computer A-register with the error code.

4-19. FPP DETAILED THEORY.

4-20. The remainder of this section describes in
detail the procedures described above (up to para-
graph 4-90), plus a description of the FPP unit power
supply (paragraphs 4-91 through 4-111), All logic is
positive-true. The high (or true) state ranges from
+1.25 to +2. 5 volts; the low (or false) state ranges
from -0.5 to +0. 5 volts.

4-21. BLOCK DIAGRAM. The block diagram (figure
4-11) at the end of this section can remain folded out
for convenient reference throughout this part of the
section. Facing the block diagram are two tables and
a figure which provide supporting information: the
detailed coding of the instruction register, definitions

4-3

Section IV

of the ROM instructions, and a list of tests used for
branching decisions. These tables and the figure
should be referred to frequently, since definitions will
not be given within the descriptive text.

4-22. LOGIC DIAGRAMS. The logic diagrams for
the FPP unit are given in section VII, Since the logic
itself is comparatively simple (at the gate level), the
logic diagrams will generally not be referred to in
these discussions. Specific signal names have been
given on the block diagram, facilitating direct refer-
ence from a function on the block diagram to the com-
parable function on the logic diagrams. Wiring lists
and signal indexes and signal tracing from board to
board.

4-23. FPP CLOCK AND TIMING.

4-24. The clock generator for the floating point pro-
cessor unit operates at a rate of 5 MHz (200-nanosec-
ond period) supplying a 100-nanosecond clock signal,
and its complement, to the FPP logic. The clock gen-
erator is located on the FPP D-register card.

4-25. The complemented clock signal (Clock) allows
the clock cycle to be split, so that an active bit may be
loaded into a register in the first 50 nanoseconds and
perform its function in the second 50 nanoseconds.
This high-speed feature employs a master/slave pair
of flip-flops for each bit. (See figure 4-3.)

cLoLH F"‘ 100 NS - ““:L_,ﬂ.-...w.ﬁﬁJ
3 ,
corE | oo —o]
Lo aex
|
DATA 1 (], _mrorer | Save ._..: |
FF FF I ,I
| Losic |
| |
]
b
PATA 2
Figure 4-3. Clock Timing
4-26. Note that the Clock signal latches the master

flip-flop, and Clock latches the slave flip-flop. The
master flip-flop loads the data bit (Data 1) at the start
of the Clock signal, and about 45 nanoseconds later
Clock transfers the bit to the slave flip-flop. (There
is a slight offset between clocks.) The output of the
slave flip-flop can then be used in the logic without

the possibility of resultant actions (Data 2) affecting
any conditional inputs that determined the setting of the
master flip-flop. :

4-4

2152A

4-27. READ-ONLY MEMORY.

4-28, The read-only memory (ROM) is essentidlly a
diode encoder. A certain combination of signals on

" the input lines (address) is applied to a diede matrix,

activating a certain combination of output lines (con-
tents). The FPP ROM has nine input lines (RAO through
RA8), thus allowing 512 addresses (29), and 48 output
lines (RO through R47), giving a word length of 48 bits.

4-29. The ROM constantly reads out whatever con-
tents are enabled by the nine address lines. ROM
itself is not strobed. Instead, the ROM output lines
are clocked into either the instruction register (nor-
mally) or the D-register (if the preceding instruction
contained a constant call). All words in ROM are
either instructions or constants. For start-up pur-
poses (power-on), ROM is always forced to start at
address 0.

4-30. The FPP ROM contents are listed in two sep-
arate tables in section VII of this manual. This first
table gives the octal printout of the logic 1/0 bit, pat-
tern for each address. The second table lists the
contents in the form of mnemonics and constants.

4-31. Physically, the matrix is contained in 24
microcircuit packages on a single printed circuit
card. Each package accepts 8 of the 9 address lines
and has 4 of the 48 output lines. (See logic diagram,
figure 7-10.) The ninth address bit (RA8) selects
either the high half or low half of ROM by enabling
one of the two ranks of packages. The lower rank of
12 packages is enabled when RA8 is 0" and is there-
fore active for address 0 through 255 (decimal). The
upper rank of 12 packages is enabled when RAS8 is 1"
and is therefore active for address 256 through 511.
The output of the two ranks are "or'-tied together.

4-32. INSTRUCTION REGISTER,

4-33. The instruction register is clocked to load the
ROM output every 200 nanoseconds. As explained
previously (figure 4-3), the data word is loaded into
the master flip-flop (of the instruction register) by
the block signed and into the slave flip-flop by Clock.
Therefore, at Clock time, the contents of the instruc-
tion register are applied as command lines to various
points throughout the logic (see block diagram).
Loading the instruction register has occupied one
clock cycle. See figure 4-4 (time intervals 1 and 2).

4-34. As soon as the instruction is in the slave latch
of the instruction register (2), execution begins. A
typical execution would read a pair of bytes and add
them during Clock time (2) and store the result during
the next Clock time (3) into the master rank of the
specified register. The next Clock (4) would transfer
the stored result from master to slave, where it may
be used (read) by the next instruction. Notice that
there is a time overlap, and the second instruction
has-already been loaded from ROM (3) and execution
has begun (4).

4-35. Since addresses are not automatically incre-
mented after instruction execution, each instruetion

2152A

Section IV

cLockKk

CLocK

l

|

|
TNSTRUCTION 1 ""’ﬁi

INSTRUCTION 2 rgm-»

32T UP IRN—>~

I
l
BAECLUTE -—-ﬂ

-

ROM ADDRESS

INSTRUCTON 3 |

|
|
|
|
|
|
|
|
|
|
|
|
l
l
|
l
I

Figure 4-4., Instruction Execution Timing

must specify where the next instruction is to be ob-
tained. This is done during time interval 2, either
directly by the contents of the BP and BL fields, or
indirectly by the branching or JSB logic (discussed in
succeeding paragraphs).

4-36. Detailed coding of the instruction register,
plus definitions of the instruction fields, are pre-
sented facing the block diagram. Physically, the
register is split up and located on three separate
cards: ROM address card, D-register card, and FPP
interface card.

4-37. ROM ADDRESSING.

4-38, The floating point algorithms require consider-
able flexibility for branching from one area of ROM to
another. The following paragraphs describe the vari-
ous modes employed to specify the next address
within a current instruction. All addressing modes
are tabularized in table 4-1 for convenient reference;
this table may be referred to throughout the following
discussions.

4-39. CONDITIONAL BRANCHING.

4-40. By instruction, the ROM address may be
caused to branch to one or the other of two specified

addresses, dependent on a certain condition being
either true or false. One of 16 conditions may be
selected for the true/false test by the TS field of the
instruction. These conditions are numbered TO
through T15. (See table 4-4.)

4-41. The block diagram shows the sources of sev-
eral, but not all, of the test inputs; for example, OPC
and ENC from the computer, selected outputs of the
A, B, Cadders, and certain count values of the byte
counter. Note that these signals are applied as one
input to a three-input gate in the conditional branching
block. (This gate represents a series of gates per-
forming this function.) The second input to the gate
is the decoded test number, and the third is the BRN
signal (also decoded from the instruction register)
which must be true for all branching instructions.

4-42. The output of the three-input gate in the condi-
tioned branching block will be either true or false,
depending on the condition of the test input. If true,
the upper of the two other gates in the block will be
enabled; if false, the lower gate will be enabled.
Therefore, if the test is true, the four least signifi-
cant bits of the ROM address (line) will take the value
of the BL field; if the test is false, line will take the
value of the BP field. (The page value remains un-
changed, since the current page value is stored:by the
MP register, and read out by the three-input gate that
is enabled by BRN and TRU.) It follows, therefore,

4-5

Section IV

2152A

Table 4-1. ROM Addressing Modes

NEXT ADDRESS

MODE PAGE LINE
Unconditional
Branching (TS = 0) BP BL
Conditional
Branching
TS True MP (Current Page BL
TS False MP (Current Page BP
Indirect and
Constants
IND CS (4-17) Cs (0-3)
Bit8 =0
CON CS (4-7) Cs (0-3)
Bit 8 = AD9
JSB and Return
JSB BP BL
(JSB and RTN (If JAR = 0, save MP in FP) (If JAR = 0, save TS in FL)
complement JAR (If JAR =1, save MP in GP) (If JAR =1, save TS in GL)
after execution))
RTN If JAR =0: GP If JAR =0: GL
If JAR =1: FP If JAR =1: FL

that conditional branches may be made only to one of
any two lines on the current page.

4-43. UNCONDITIONAL BRANCHING.

4-44, Most of the instructions in ROM call for condi-
tional branches. However, it is also possible to spe-
cify an unconditional branch. This simply gives ROM
the next address, regardless of test conditions. One
example of usage would be to cause execution of two
or more instruction words in a sequential series.

4-45. The page and line values are given by the BP
and BL fields, respectively. The transfer is accom-
plished by coding BRN and TRU in the instruction.
This enables the first of the three gates in the uncon-
ditional branching block, which in turn enables BP
and BL onto the page and line address lines.

4-46. JSB CONTROL.

4-47, The JSB instruction is an unconditional branch
with two special provisions: a specific address value
is stored, allowing return from subroutine completion
to a desired address, and register switching is pro-
vided to allow one level of JSB nesting.

4-48. The decoded JSB signal enables BP and BL
onto the page and line address lines (in the uncondi-
tional branching block), the same as described
earlier when BRN and TRU were enabled for the
unconditional branch. The same JSB signal also

4-6

loads the current page value into either the GP or FP
register (depending on the current state of the JAR
flip-flop), and loads a return line value from the TS
field into either the GL or FL register (also depend-
ing on the JAR flip-flop state). The TS field is used
for line specification since its normal usage (for con-
ditional branches) does not apply for JSB. The net
result is that a return address is stored in either GP
and GL or FP and FL. Since the stored page value is
always the current page value, it follows that sub-
routine returns must be to the same page that con-
tained the JSB call. Furthermore, since only four

of the five page bits are stored, both the call and the
return must be in the lower half of ROM (addresses 0
through 255). The subroutine itself, however, may
be located on any page, specified in the BP field.

4-49. After the return address has been stored (on
block), the JAR flip-flop toggles to its complementary
state (on block). The initial state of JAR is random,
and it is immaterial whether the G or F pair of regis-
ters is the first selected; the important fact is that
JAR toggles after each occurrence of JSB or RTN.
Assume for this discussion that the JAR flip-flop was
in the set state and therefore has loaded the return
address into GP and GL. It then toggled to the reset
state. In this state (note the four output gates of JSB
Control), an RTN signal would read the GP/GL con-
tents onto the address lines and then toggle the JAR
flip-flop back to the initial set state. 1If, however,
another JSB were issued before an RTN (note the four
input gates), a second return address would be loaded
into FP and FL. The JAR flip-flop then toggles to the
sct state, so the first RTN will read back this second

2152A

return address, thus ensuring a return from-the
nested subroutine before going into position for re-
turning from the "outer' subroutine. Any number

of nested subroutines may be called out and com-
pleted before returning to the outer routine, provided
they occur in succession; since storage is provided
for only two return addresses, only one level of -
nesting can exist at a given time.

4-50. CONSTANT CALL.

4-51. As mentioned previously, all words in ROM
are either instructions or constants. Instructions
are loaded into the instruction register, and con-
stants are loaded into the FPP D-register (48 bits).
To obtain a constant, the ROM program must first
load the address of the desired constant into the CS
byte of the C-register, and then issue an instruction
containing the CON code in the BC field. Since CS
contains only 8 bits (and the ninth bit is forced to a
"1'"), constants must be in the upper half of ROM
(addresses 256 through 511).

4-52. The CON signal enables the CS byte onto the
ROM address lines, stops Clock for one cycle only,
and enables a special clock that loads the addressed
ROM contents into the D-register. At this point,
reference should be made to the D-register logic
diagram. When the CON bit (R21) is detected, it is
loaded by TS (equivalent to Clock) into the master
CON latch. At Clock time, the bit is transferred to
the slave latch and inverted by U92B to disable Clock
at U72B. (Note that Clock is not affected.) The low
input to pin 6 (input control code = 01) causes the
master latch to clear, so that at the next Clock CON
will go false. This, inverted to true by U92B, re-
enables Clock. The net result is that one Clock pulse
has been inhibited, temporarily halting program exe-
cution while the constant is being read.

4-53. Note, however, that the TS clock has con-
tinued to run, and this clock, enabled during the in-
terval that CON is high, loads ROM bits RO through
R47 (the constant) into the D-register.

4-54. 1If a series of constants is called, the CIC bit
(R38) may be used to increment the constant address
in CS. The purpose of the CKC flip-flop (which, like
the CON flip-flop, is clocked by TS) is to assume the
function of the CIC flip-flop (disabled in the absence
of Clock) during the CON cycle. Note that this fea-
ture applies only for CS addresses below 24 (decimal).
These 24 locations provide a table that results in a
numerical convergence after 25 steps. The S24 sig-
nal inhibits CIC for addresses 24 or higher in order
to conserve ROM space. The program may continue
to call for constants and keep issuing the CIC com-
mand, but in effect the contents of location 24 will
continue to be read on each further eall.

4-55. The CON signal, which goes off the board at
pin 82, goes to the ROM address card for addressing
the constant, On the ROM address card, note that
CON is "or"-tied with the Indirect command line
(IND); refer to next paragraph.

Section IV

4-56. INDIRECT ADDRESSING.

4-57, IND enables the 8-bit CS byte onto the ROM
address lines, For IND alone, the low half of ROM

is addressable (0 to 255) since the ninth address bit
(RA8) cannot be controlled by the 8-bit CS register.
For CON, however, U61A forces the ninth bit to a "1"
(since AD9 is normally "0"), so that constants will
always be read from the high half of ROM (256 to 511).
For certain purposes (such as the ROM dump routine),
AD9 can be made true, so that CON can also read the
lower half of ROM.

4-58. A - REGISTER/SHIFTER/ADDER,

4-59. The floating point processor contains three
nearly identical arithmetic sections, each typically
consisting of a register, a shifter, and an adder.

The A-register/shifter/adder will be discussed in
detail first; differences for B and C will be described
later.

4-60. The FPP A-register accommodates 48 bits of
data in six separately controllable bytes (A0 through
A5). In addition, there is an exponent byte (AE) and
a shift byte (AS).

4-61. The A-shifter provides a means of selecting
any eight adjacent data bits from the 48 bits stored in
the FPP A-register, irrespective of byte boundaries.

4-62. The A-adder adds an 8-bit byte, selected from
the A-register (unshifted), to another 8-bit byte,
selected from the A-, B-, C-, or D-register (shifted
or unshifted).

4-63. With reference to the block diagram, the logic
will be discussed left to right across the A-register/
shifter/adder block. On the left side of the block is a
series of four transfer mode gates (each representing
eight separate gates for the complete byte). If trans-
fer mode 1 is selected in the ROM instruction, one of
the C-register bytes (on the C50 through C57 lines)
will be transferred as an input to the A-adder. (The
C byte number selected will be the same as the A byte
number selected; refer to paragraph 4-69.) Similarly,
if transfer mode 2, 3, or 4 is selected, the gates will
transfer a shifted B byte (on the B70 through B77
lines), a shifted D byte (on the D70 through D77 lines)
or a shifted A byte (on the A70 through A77 lines).

4-64. The output of the Transfer Mode gates is
applied to a true/complement network consisting of an
"and"'/""nor" pair of gates for each bit. If the CPA
instruction bit is true, each bit is complemented
before being routed to the A-adder on the A90 through
A9T lines,

4-65. The other input to the A-adder (lines A60
through A67) is enabled if the RRA bit of the instruc-
tion register is true. The input consists of one of the
FPP A-register bytes on the A50 through A57 lines
(byte selection described later in paragraph 4-69).

4-66. The result of the addition appears on the A00
through AO7 lines, with a possible carry saved in the

4-7

Section IV

CY bit register. The carry may be used (propagated)
by a PCY instruction in the next cycle. It is also pos-
sible to inject a carry (actually an increment by one)
by means of a CIA signal. PCY and CIA are functions
of the Special field of the instruction word, as is BIS8,
which can force a one on the eighth bit (A97) of the
transferred input to the adder.

4-67. Tests which can be made on the A00 through
AO07 output (see conditional branching, discussed
earlier) are: eighth bit true or false, eighth bit of A
does or does not equal eighth bit of B, and adder out-
put is zero or non-zero.

4-68. The adder output is applied to all eight byte
positions of the A-register. (the data is stored in a
master register at Clock time). At Clock time, the
data will be transferred into a byte position (slave
register) which is selected by one of eight enabling
signals: AYO through AY5, AYE, or AYS. The
enabling signal is derived from the SR, SY, and YC
fields of the instruction register. The SR field speci-
fies the A-register (SRA), and SY either specifies byte
AS, AE, A5 or else enables the YC field (byte counter)
to select one of the six data bytes, AO through AS5.

The byte counter produces an octal output on the ROM
address card, consisting of signals Y0, Y1, Y2,

which is decoded on the FPP interface card to produce
the SYO through SY5 signals. The decoder is not
enabled if the SY field specifies SY5 (store in A5 byte),
SYS (store in AS byte) or SYE (store in AE byte).

4-69. The bytes stored in the FPP A-register can be
selectively read out by read signals derived from the
RY and YC fields of the instruction register. The RY
field either specifies byte AS, AE, or A5 (by RYS,
RYE, or RY5 signals), or else enables the decoded
byte count from the YC field to select one of the six
data bytes (by the RYO through RY5 signals). The
selected byte is routed via the A50 through A57 lines
to the A-adder.

4-70. In addition to the selective byte reading
described in the preceding paragraph, provision is
also made to read any adjacent eight bits in the data
portion of the A-register. Byte boundaries are
ignored, and the register is looked at as a 48-bit data
register. Selection is accomplished by the A-shifter,
under control of the shift byte (AS) in the A-register.

4-T71. The shifter may be viewed as an addressable
reader. (See figure 4-5.) The numerical value: of the
shift byte (decimal) points to the least significant bit
of the desired 8-bit series. This bit and the next
higher seven bits are read out to the transfer mode
gates.

4-T72. As shown in figure 4-5, special cases occur
when the shift byte points to bit positions higher than
40. (Seven of the eight bits of AS are used for addres -
sable reading, so AS can point to values as high as
127.) When the AS value is between 41 and 47 (inclu-
sive), one or more bits selected at the high end of the
series of eight will be nonexistent. These nonexistent
bits are referred to as phantom bits (P); provision is
made to {ill these bit positions on the output lines (A70
through A77) with either zeros or copies of the sign

4-8

2152A
47 8 12 o
{ 72770]
| AS 2 12 ! [
. 47 42 o
H 7 1
2 Phan tom
Bty
WJ
o
1

Figure 4-5. Addressable Reading by Shifter

bit (bit 47). The desired choice is made by control-
ling bit 7 of the shift byte (AS7): if "0", signs will

be copied (arithmetic shifting); if ''1", zeros will be
filled in (logical shifting), Note that when AS is 48 or
higher, all of the selected bits will be phantom bits.

4-73. Details of the selection process are shown in
figure 4-6. The six least significant bits of AS are
decoded octally into two sets of selection signals,
designated SWO0 through SWT7 and SVO through SV7.
(AS6, if true, would result in the all-phantom condi-
tion, so it is not decoded but is simply "or'-tied with
SW6 and SW7; see next paragraph.) The SWO through
SW5 signals accomplish a preselection of 15 out of the
48 register bits, and the SV0 through SV5 signals
sclect 8 out of the 15 preselected bits. These final
eight bits are routed out on the A70 through A77 lines.

4-74. Refer to the A-shifter logic diagram for
details on the generation of phantom bits. Note that
U50C enables sign bit 47 to the higher order SW5
positions if AST is "0". If AS7 is a "1", the output of
U50C is "0". (Final selection of one or more of these
bits is made by the SVO0 through SV7 signals.) For the
all-phantom condition, the shifter network is ignored
completely (all zeros on the A70-77 lines); instead, a
true or false TSA signal is sent to the complementing
networks. Gate U50D is enabled by SW6, SW7 or AS6,
and will provide a true output if phantom signs are
desired (AS7 = "0") and the sign bit happens to be a
"1". Otherwise, if the sign bit is "0" or if phantom
zeros are desired (AS7 = "1"), TSA will be false.
Depending on the transfer mode selected, TSA will
affect one of the three complementers (A, B, or C) by
inverting the existing all-zero output to all ones (TSA
true) or will leave the data as all zeros (TSA false).
The result is eight copies of the sign ("'1" or "0"), or
eight zeros.

4-75. For microprogramming purposes, it is advan-
tageous to have the pointer in AS keep in step with the

2152A Section IV
STEP 1| 474 10 2 2 o 22 s
PRESELECTION Lll[llHHHHIJLIIIIIlllllll]T[llIllllllH]Illl]
BY ASS, ASY, ASD :; g: ‘.:; :t : f
e = swA |
[s\é/s] : ' .

STEP 2

FINAL SELECTION
BY AS52, ASI, AS¢

Swz] i

e o
u .-
=

Sws—» PiP PiP: P Pip: uruwrw 42

5"“/—"5‘“:"5 1¥: '43 V2, ‘” "0 3? 38 31 i36] O 3! 33 32

swz-—-»%nfn 3¢ i35 w 33i32'31 30 21 2g - ,(UW

swz“*'f’°§" 28 27 % 25 ek 13 n 21! \1 |x TANTE

S“"*’"uéll 0 " I7 e lr Wi Io- 9 9 ,

.Wo—-—?w faiizia 5 wiqiglz 5 y ; 2 0 ,': SHIFT BYTE DECODING (AS)
| [u - | 1] | 1 L 1 1 T | ASS ASY AS3 AS2 ASI ASD
e i B ; ? o 7 Sw7 sv7

e 6 sw¢ své
— s R 5 SwWS 173
it — y Sw¥ svy
b 1 o 3 sw3 av2
e e N 2 sw2 sv2

' = | t Swi svi

! 2ve — 0 SwWo svVO

Figure 4-6. A-Shifter

byte counter. This means that when the byte cqunter
is incremented or decremented to enable the next
higher or lower byte position, the shift pointer Bhould
also change value to enable the next higher or lower
series of eight bits. The AY8 adder performs this
function.

4-76. In order for the AS value to point to a new
series of eight bits, its value must increase by 8
when YP1 increments the byte counter and must
decrease by 8 when YMI1 decrements the byte counter.
Furthermore, when the byte counter rolls over from
5 to 0 (incrementing, modulo 6) or from 0 to 5 (decre-
menting), the AS value must change correspondingly:
return to its original value or go to the origindl value
plus 40 (i.e., 5 x 8), respectively.

4-77. Referring to the ROM address card logic dia-
gram, figure 7-8, note that when YP1 increments the
byte counter (via U35E), it also increments the AY8
adder. Since the AY8 adder operates on bits 3 through
6 of the AS register (rather than 0 through 3), each

Selection Process

increment adds 8 to the contents of AS, via the AP3
through AP6 lines. Similarly, when YM1 decrements
the byte counter (by adding all ""1's"" via U35D/C,
U33B, and U324A), it also decrements the AY8 adder
decrementing AS by 8 via the AP3-6 lines.

4-78. Gates U35E, U33A, and U32D cause the byte
counter (and AY8 and BY8 adders) to act as modulo 6
counters when incrementing. When the count of 5 is
detected by U24A and U15D, the next YP1 will inject
a quantity which, when added to 5, will produce zero.
For the 3-bit byte counter this quantity is 3 (via U35
U35E and U33A). For the 4-bit AY8 and BY8 adders
this quantity is 11 (all three gates).

4-79., To achieve modulo 6 when decrementing, gates
U33B and U32A are disabled at the count of zero, and
allow U35D and U35C to inject a quantity of 5. This
reverts the byte counter to the count of 5 and adds 40
to the AS register via the AP3 through AP6 lines.
(Incidentally, the AP3-6 lines are disabled when AS

is originally loaded, by the 'SYSA signal.)

4-9

Section IV

4-80. The method by which the byte counter is
forced to zero (YFO) is to add the current value of Y
to its complement (U35C, U33C, U16B) and inject a
carry (U35A), For the 4-bit adders, U32B injects
the necessary one-bit for the most significant bit
position.

4-81. B/C/D ARITHMETIC SECTIONS.

4-82. The FPP B-register/shifter/adder is identi-
cal to the A section described in the preceding pages,
with only signal nomenclature changes and a different
assignment of inputs for the transfer modes.

4-83. The C-register/adder does not have an asso-
ciated shifter. Instead, the third shifter is assigned
to the D-register. The D-shifter is controlled in
parallel with the A-shifter by the AS shift byte.

4-84. Since the CS byte is used for indirect addres-
sing of ROM (see paragraph 4-51), the CS output is
routed to the ROM address card. Also the $24 signal
(discussed in paragraph 4-54) is made available to the
conditional branching test logic.

4-85. Onthe C-adder card, the CSX line is open
("0"), whereas on the A- and B- adder cards ASX
and BSX are enabled by tying to +4.75 volts. This
disables the CP input lines to the shift byte (CS),
since these lines are not used in the C arithmetic
section.

4-86. IN/OUT TRANSFER SEQUENCE.

4-87. As mentioned in the introduction to this sec-
tion, data is transferred into or out of the FPP unit
in three successive 16-bit words. It was also stated
that EAU sends 16 bits of data with every ENC, and
the FPP unit returns 16 bits of data with every FLG,
whether or not data is actually used at either end.
Data to the FPP is loaded into the C-register (and
transferred to the B-register if a load opcode follows),
and is sent from the B-register. The process is as
follows. (Refer to table 4-2))

4-88. On the first ENC, the entry routine first loads
the high order eight bits (IMO through IM7) into C5
while, simultaneously, B5 is transferred to A4 and
read out to the output lines (A50 through A57). Then

Table 4-2. X Register Transfer Sequence

ENC INPUT OUTPUT
#1 IMO-7T — C5 B5 - A4
ILO-7 - C4 A4 (FLG)
#2 IMO-7 —- C3 B3 — A2
ILO-7T - C2 B2 (FLG)
#3 IMO-7 - C1 Bl - A0
IL0-7 - Convert BO Convert
to FPP format to FPP format
-~C0 (FLG)

4-10

2152A

the byte counter is decremented (pointing to byte 4).
The low order input bits (IL0-7) are loaded into C4,
and B4 is read out to the B50 through B57 lines. A
FLG signal is issued to EAU, telling it that it can
store the 16 bits from A4 and B4.

4-89. On the second ENC, the byte counter decre-

ments to 3, and IM0-7 is loaded into C-3, while B3 is
transferred to A2. Decrementing to count 2 allows C2
to be loaded, and A2 and B2 to be read out (with FLG).

4-90. On the third ENC, the byte counter decrements
to 1, and IM0-7 is loaded into C1. Then, when the
byte counter decrements to 0, a format conversion
occurs which moves the exponent sign bit to the proper
position. (Internally in the FPP unit, this bit is in the
most significant bit position; externally in the compu-
ter, it is in the least significant bit position.) Byte Bl
is now transferred to A0, and A0 and B0 are read out
(with FLG).

NOTE

This completes the discussion of
the logic portion of the floating
point processor unit. The remain-
der of the section discusses the
internal power supply of the unit.

4-91. POWER SUPPLY.

4-92. The power supply of the floating point proces-
sor generates two regulated dc supply voltages for all
logic circuits in the unit; +4.75 volts and -2 volts.

(A third dc voltage, +10 volts, is also generated, but
this supply is used only within the power supply itself)

4-93. Figure 4-7 illustrates the power supply cir-
cuits in simplified form. The 115- or 230- volt ac
input is stepped down to a nominal 12 volts ac and
rectified by a pair of silicon-controlled rectifiers
(SCR). The inductor/capacitor filtered output is 6. 75
volts dc, referenced to ground such that the positive
line is +4. 75 volts and the negative line is -2 volts with
respect to ground.

4-94. The full 35-ampere current capacity is avail-
able to the +4. 75-volt load, and up to 35 amperes is
available to the -2-volt load. Since the -2-volt load
is less than the +4. 75-volt load, the difference
current is diverted through the -2-volt shunt regula-
tor. This regulator acts in the same way as would a
a Zener diode. A variable amount of current is
drawn through the shunt in order to maintain a con-
stant -2-volt level.

4-95. The level of the +4. 75 voltage is maintained
constant by controlling the conduction time of the SCR
SCR's. The +4. T5-volt level is detected by a differ-
ential amplifier, which compares the voltage with a
Zener . diode reference. The difference output is
used to control the slope of a ramp voltage, which is
synchronized to the 120 Hz rectified line frequency.
When the ramp reaches the trigger level of a unijunc-
tion transistor in the ramp generator, the ramp ter-
minates, generating a positive pulse of about 10 volts

2152A

Section IV

l"":" —
F e [P " : +4.75V
12 VAC ‘ — - | m L+."75v
15/230V £ 4 | TR Rl SRR | $LoaD
AC €'] R D ‘ . % v
IJtAC- | o o . e ,l 6'7' REGULATO
' o] $-2v
B ScR =1 b | Svoap
L
I S S R Y
sge . L 30A
ymIuNCTION conpucTion - —
LEVEL I |
- | 3 +4.75V
"Heocse |requLaTOR

=

Figure 4-7. Power Supply Block Diagram

amplitude and 20 microseconds duration. This pulse
triggers the SCR's, which will then continue to con-
duct for the remainder of the half cycle. As shown in
figure 4-7 (note examples of ramp slope and rectified
sine wave), a variance of ramp slope has the net
result of altering the conduction time (shaded area).
Consequently, the energy delivered to the LC filter
will be increased or reduced proportionately, thus
providing the means of controlling the output dc level,

4-96. Refer to the power supply schematic, figure
7-30, for the following detailed circuit descriptions.

4-97., AC INPUT CIRCUIT. Input ac power is
applied to power line assembly Al. This snap-in
module contains the ac line connector, line fuse, rf
interference filter, 115/230V line voltage switch, and
terminals for connection of the front panel POWER
switch, power-on indicator lamp (DS1), and power
transformer. Relay K1 is inserted in series with the
transformer primary, so that power will be turned
off if either the computer loses power (-23. 8V drops)
or the ambient temperature in the FPP unit rises too
high.

4-98. +4.75V REGULATOR. Sensing of the +4. 75-
volt level is made from a point on the backplane bus.
Due to the high currents involved, bus resistance
itself will drop the dc level slightly; power is there-
fore applied to the bus at two points, and the sense
line is connected to a point that represents an average
value.

4-99. The sensed +4. 75 voltage is applied to aidiffer-
ential amplifier at Q1/Q2, which compares a divided
sample (R20/R21) to a pre-settable reference level

from resistor R25 (+4. 75V ADJ). Any voltage differ-
ence between the bases of Q1 and Q2 is amplified and
applied to Q3, altering the charging rate of ramp
capacitor C30. When Q3 has charged C30 to the trig-
gering level of unijunction transistor Q4, Q4 dis-
charges C30 to the -2-volt clamping level. The sharp
negative transition at the base of Q5 turns on Q5 for
about 20 microseconds, dependent on circuit con-
stants, and the resultant positive pulse is applied
through emitter follower Q6 to the SCR trigger inputs
(CR5, CR6). Diode CR22 limits the pulse amplitude
to +10 volts and protects Q6; CR8 protects the SCR's
(which are non-conducting before the pulse arrives).

4-100. The positive pulse turns on CR5 or CR6
(depending on the ac cycle polarity), charging filter
capacitors C11, C12, and C13 through inductor L4.
At the end of the half cycle, ac polarity reverses and
the SCR ceases condiction. Since the other SCR will
not begin its conduction until triggered, neither SCR
is conducting at this time. The inductive field of L4
begins to collapse, building up a reverse voltage
which could be destructive if protection were not pro-
vided. Diode CRT provides this protection by coming
into conduction when the reverse voltage exceeds the
-2-volt level, and provides a current path back to the
filter capacitors. Thus, even when both SCR's are
off, the inductor still delivers current to the load.
When the next SCR is triggered, it abruptly puts out
a positive voltage to the inductor, and thus reverse
biases CR7. In summary: CRT conducts when the
SCR's are not conducting.

4-101. As explained earlier (paragraph 4-95), the
timing of the SCR trigger accomplishes the voltage
regulating function.

4-11

Section IV

4-102. SYNC AMPLIFIER., The primary purpose of
Q17 is to synchronize the unijunction oscillator to
twice the line frequency. A secondary function is to
inhibit the triggering of unijunction transistor Q4
when the crowbar is on, thus reducing current deliv-
ered to the Crowbar, CR80. When the input voltage
(pulsating dc from the input to 1.4) is in excess of +9
volts, QT is saturated (on), providing a low impe-
dance path for the Q3 collector current, diverting it
from C30. Thus the unijunction oscillator is held in
the off state. (Note that a positive input from the
crowbar, via Q29, could permanently hold the oscilla-
tor in this off state.) Then, when the pulsating volt-
age drops below +8 volts, Q7 is cut off, and the
current from the Q3 collector is shunted to ramp
capacitor C30. This results in a voltage ramp on the
emitter of Q4, the slope of which (as discussed ear-
lier) is determined by the collector current of Q3.
The start of the ramp is therefore determined by the
on-to-off transition of Q7, which occurs twice for
each cycle of the line.

4-103. -2V SHUNT REGULATOR. The -2-volt sense
voltage (refer to comment on sensing in paragraph
4-98) is applied through a pre-settable divider to the
base of Q18. The bottom end of the divider is held
constant by a Zener diode reference. The -2-volt
adjustment resistor is set so that the Q18 base is at
zero volts when the -2-volt output is at its nominal
value, This zero-volt-level is compared with the
zero-volt ground at the emitter of Q19. Any differ-
ence is amplified by Q19, Q20, and Q21, altering the
flow of shunt current through Q22. The direction of
change (more or less current) is such as to maintain
a fixed voltage value on the -2-volt sense line. 'As
mentioned earlier (paragraph 4-94), the circuit acts
like a Zener diode in maintaining a fixed voltage out
put. About 5 amperes is passed through Q22.

4-104. CURRENT LIMIT CONTROL. Transistors Q8
and Q9 are normally conducting. When an unusual
current drain increases the dc voltage drop across
inductor L4 to a specific level (determined by the
selected values of R40 through R44), Q8 and Q9 will
be biased off. Under this condition, CR35 clamps the
unijunction input to a level that is below the trigger
point. No pulses are therefore applied to the SCR's,
and no further conduction occurs. Both +4. 75-volt
and -2-volt outputs are thus cut off.

4-105. VOLTAGE LIMITS. There are three separate
circuits involved in detecting and acting on out-of-
limit dec voltage conditions. These three circuits
(-2V limit sense, +4.75V limit sense, and crowbar)
are discussed together under the current heading.

4-106. Figure 4-8 illustrates the actions that occur
when either the +4. 75 or -2 voltages go out of limits,
When the +4. 75 voltage (applied to Q23/Q24 bases)
rises too high, to a level set by R91, Q24 will conduct
and activate the power fail circuit (discussed later
under paragraph 4-110). Similarly, if the +4.75
voltage drops below a negative limit set by R92, Q23
will éonduct and activate the power fail circuit. In
the -2V limit sense circuit, if the -2 voltage (applied
to the top of the divider), becomes too positive, to a
level set by R61, Q14 will conduct and activate the

4-12

3 7 G/ %%

,// curorr ' (ROMGA& "
//// ' g ‘/./
//,

n.m r« mmvu T
_'.__M_f"_“_‘i‘.f‘,"- .’"“ﬁ'z'}"_i’!, L ﬁ

+(v

+4.75v

473V
surely

+UISY TOO NEGATWE

Gy

CAUSES
i POWSR FAIL SISNAL 8V Q23
S .

x

ov ez
-2V Teo PosiTive

\ /-

CAUSHS .
PowIR FATL SIGUAL BY aw

-2V
suPPLY 9 -2
3y cavsHS !bwln. uu. SiemAL BY yr
. \\X\~\ R \\‘\\ N
S SN

W \CUTOFK 33 cRowsA(\ \
NN NS
L \ N AN \\\ \\ \ N

Figure 4-8. Voltage Limit Ranges

power fail circuit. The negative limit sensing circuit
uses a normally conducting emitter follower (Q13).
When the -2 voltage becomes too negative, Q15 will
conduct and activate the power fail circuit.

4-107. If the +4. 75 voltage becomes excessively posi-
tive (above about +6 volts), or if the -2 voltage
becomes excessively negative (more than about -3
volts), the crowbar circuit triggers and cuts off both
supplies.

4-108. The crowbar circuit uses an SCR diode (CR80).
When the -2-volt level goes more negative than the
breakdown level of CRB82 (normally an effective open
circuit), CR82 causes Q30 (and Q31) to conduct. Or,
if the +4. 75-volt level goes more positive than the
breakdown level of CR81, Q31 will again be caused to
conduct. This is because both emitter and base volt-
ages increase together as the +4. 75 voltage rises;
then CR81 breaks down and holds the base low. When,
from either cause, Q31 conducts, SCR diode CR8O0 is
triggered, effectively short-circuiting the +4.75V and
-2V supplies together. This protects logic circuits
from overvoltage damage. To prevent the rectifiers
from delivering any more current to this short cir-
cuit, Q29 (which goes into conduction when the SCR
triggers) inhibits the sync amplifier. Transistor Q7
is driven into saturation, thus preventing further
trigger pulses to SCR rectifiers CR5 and CR6, as
discussed in paragraph 4-102.

4-109. LINE FAIL SENSE. Diodes CR60 and CR61
rectify a sample of the transformer secondary output,
and the resulting pulsating direct voltage is applied to
two RC filters. One filter (R70, C50) has a short
time constant, and the other (R71, R72, C51) has a
long time constant. The filters are isolated from
each otherby CR63. As a result (see figure 4-9), a

2152A

PEAK LEVEL Q6 CONDYCTS

i (AT £mirTER)
HORMAL RANGE '
AT BASE

.--I.---.....\r...
/ \W4
. \'2 A2

Figure 4-9. Line-Fail Sensing

dc voltage representing the peak value of the recti-
fied ac is present at the emitter of Q16, and a
partially filtered waveform is present at the base.
Normally (see half-cycle number 1), the exponential
decay is not sufficient to cause conduction of Q16
before the next half-cycle restores the C50 charge.
If, however, at least two half-cycles are missed
(assume ac power is lost at the end of half-cycle
number 2), the base voltage will drop to the point
where conduction of Q16 will occur. With Q16 con-

Section IV

ducting, Q17 will also be turned on, thus activating
the power fail circuit.

4-110, POWER FAIL., When any of the previously
discussed voltage sensing circuits indicate a failure,
Q26 is caused to conduct. (Note that four of the
sources, Q14, Q15, Q17, and Q23, require inversion
by Q25, whereas the Q24 source does not.) The con-
duction of Q26 in turn causes the other four transis-
tors in the power fail circuit to conduct. The EPF
signal (normally low) goes high to initiate a power
fail interrupt in the computer. A few milliseconds
later, EPO (normally high) goes low; when power is
restored, EPO will go high again, initiating a restart
sequence in computers which have the restart option
installed and enabled.

4-111. +10V SUPPLY. Several circuits in the power
supply require a +10-volt operating voltage. To
supply this, the transformer secondary is rectified
by CR40 and CR41, filtered by C45, and regulated by
Q10. The control for Q10 is the differential amplfier
consisting of Q11 and Q12, The reference voltage
provided by CR42 is compared with a divided sample
of the +10V output, and any difference is applied as a
correction signal to the base of Q10.

4-13

Section IV 2152A
Table 4-3. ROM Instructions
INSTR DEFINITION INSTR DEFINITION
TM1 Transfer Mode 1 SYY Store into Byte Y, designated by byte
C (shifted) to A-adder counter
C (shifted) to B-adder ? .
A gshifted; to C-adder SY5 | Store into Byte 5
M Transfer Mode 2 SYE Store into Exponent Byte
B (shifted) to A-adder SYS Store into Shift Control Byte
A (shifted) to B-adder
D (shifted) to C-adder CON Load Constant into D~-register from
ROM location specified by S byte of
TM3 Transfer Mode 3 C-register (plus A?belt to)speufy
. - upper or lower half of ROM); then exe-
Et(cS)hll_%f-t:gzi;g A-adder cute remainder of instruction word.
B to C-adder (If CIC is used in the same word as CON,
CIC will be inhibited if CS is 24 or
TM4 Transfer Mode 4 higher.)
A (shifted to A-adder BRN Branch conditionallytoline (on current
B (shifted to B-adder page) specified by BL field (test true)
IM* or IL** to C-adder or by BP field (test false); or uncondi~-
tionally to page and line specified by
*if YO =0 BP and BL fields (test specification =
** if YO =1 TRU).
CP ()| Complement TM input to A, B, or C-adder IND Indirect address. Use 8 bits of C-
register S byte for next ROM address.
CI () | Inject Carry into A-, B~, or C-adder (Lower half of ROM, since Sth bit = 0.)
PCY Propagate Carry into all adders JSB Jump to Subroutine at address specified
by BP and BL fields; TS field saved for
IRT Inhibit Result of Test (for diagnostic use return line address; return is always to
only) same page on which JSB was given. One
nested JSB level permitted.
BI8 Inject eighth fit (7) into all adders
RTN Return to address saved by most recent
ERR Error line to computer I/0 JSB instruction; see JSB above.
FLG Flag to computer 1/0 M1 Y Minus One (decrement byte counter)
0) YFO Y Forced to Zero (clear byte counter)
RR Read Register A, B, or C into correspond-
ing adder (add to TM input) YP1 Y Plus One (Increment Byte Counter)
T () | Test specification. Coded to specify 1
RYY Read Byte Y of all registers (Y = 0to 5, of 16 conditions for true/false test.
determined by byte counter) (Refer to table 4-4). Used with branch
instruction BRN.
RY5 Read Byte 5 of all registers
AD9 Ninth Address bit; used only for ROM
RYE Read Exponent Byte of all registers dump routine to read low half in con-
junction with CCN.
RYS Read Shift Control Byte of all registers
BP Branch Page address field; 5 bits.
SR () | Store into Register A, B, or C from output
of corresponding adder BL Branch Line address field; 4 bits.

4-14

e 2.’/5/21/(, FOMPUTER

- —

Mo et

(__;zﬂsg_zii,{:EE:}

Section IV

KLeoix
et <Son . 1
PAGE KAY-8
MASTER ROM
FF's 0 LINE RAD-3
N |
INSTRUCTION N : |
REGISTER R 4 T
{rmlce[cr]sp[rRrTevTsrlsv]ac] ve]rs]ee]aL
_
]
OQUNTER
! cpeciaL ! V] !
; rest | | TEST : ‘
i t Pf(OOEl -
€T fg | —
READ
DECODER %ﬁ" N <)
i | RYS R B ~
| RYY, AL
| KY0-§ \UND L

STORE
DECODER

SYS, SYE, S¥5, 6ye-S$

ogr |
| SWFTER L T2

2152A

Section V

SECTION V

THEORY OF OPERATION
EXTENDED ARITHMETIC UNIT CONTROLLER ,

5-1. SCOPE OF SECTION,

5-2. This section of the manual describes theory
of operation of the extended arithmetic unit (EAU)
controller. The controller portions of the HP 2152A
installation are identified in figure 5-1. The EAU
controller, as shown, is installed internally in the
computer and consists physically of three printed
circuit cards.

5-3. The EAU controller provides interfacing and
initializing functions for the FPP unit; in addition,

it executes 10 of the instructions implemented by
the HP 2152A option. These 10 instructions, which
provide arithmetic and long shifting functions in the-
computer registers, do not involve the external FPP
unit.

5-4. Therefore, the 10 non-floating-point instruc-
tions are independently discussed beginning at para-
graph 5-70. Essentially, this latter part of the
section is a discussion of basic EAU. As such, it
includes a detailed description of the operation cycle
counter and many basic EAU signals. Thus it may
be helpful to refer ahead to this part of the section
whenever the need occurs.

5-5. INTRODUCTION.

5-6. The EAU controller performs two basic func-
tions: to transfer data between memory and the FPP
unit, and to execute integer arithmetic and long

shifts in the computer CPU. Figure 5-2 illustrates
these functions in simplified form.

5-7. Inthe figure, the shaded area identifies the
three cards of the controller. The EAU timing and
logic cards are installed in two dedicated slots of

the CPU section, and the EAU interface card occupies
any one of the 1/0 interface card slots in the 1/0
section.

5-8. The operation begins when a macro group
instruction is read out of memory into the T-register.
The actions that follow depend on the type of instruc-
tion that is read. Decoding of the instruction is
therefore the first operation to occur. Full decoding
is accomplished in two or three distinct steps; figure
5-3 will help to visualize the decoding process.

5-9. The first step in decoding the instruction
occurs in the CPU instruction decoder. Here, the
macro group of instructions is identified by decoding
bits 15, 14, 13, 12, and 10 of the T-register (coded
1-0-0-0--0, respectively). The macro group includes
all EAU and floating point instructions. Then, a
MAC signal to the operation decoder in the EAU
controller enables the second step in the decoding
process.

5-10. Bits 11, 9, and 8 of the T-register are
examined to determine which type, or sub-group, is
coded in these three bits. These bits select one of
eight types of operations, according to the octal
value represented. The specific breakdown of

THIS SECTION

DESCRIBES EAU CONTROLLER

COMPUTER
EXTENDED
ARITHMETIC
UNIT (EAU)
CARDS \
— E—— 223
%7
=
‘ 2

EAU e — L——»

INTERFACE

CARD

Figure 5-1.

Controller Section

5-1

Section V

2152A

COMPUTER

MEMORY

CPU
10,
12-15

3

INST
DECODER

A-REGISTER

B-REGISTER

(OTHER)
1/0 INTERFACE
CARDS

_ FLG/ERR

FLOATING POINT PROCESSOR UNIT

E-REGISTER |

1
— C-REGISTER 1

LOGIC

4

ENC/OPC .

Figure 5-2. Basic EAU Controller Operations

operation groups is shown in table 5-1. In general,
if the octal value is 7, 6, or 3, the in/out control
logic causes bits 0 through 7 to be stored in the op-
code buffer. This 8-bit opcode will later be sent to
the FPP unit, where a third decoding step takes
place. This third step is accomplished by the entry
routine in the FPP ROM programs.

Table 5-1. Instruction Grouping

OCTAL VALUE INSTRUCTION OR
OF BITS GROUD
11-9-8

0 MPY (Multiply), or left
shifts and rotates
1 DIV (Divide)
2 RT (Right) shifts and
rotates
3 TST (Triple Store)
group
4 DLD (Double Load)
DST (Double Store)
FPF (Floating Point
Function) group
7 TLD (Triple Load)
group

5-11. However, if the octal value decoded by the
operation decoder is one of the numbers from 0
through 5, the instruction is not of the floating point
type. Therefore, the instruction will be executed

by the EAU controller, and the remaining instruction
bits, 0 through 7, are then further decoded by the
operation decoder.

5-12. After decoding of the instruction, the succeed-
ing operations depend on whether the basic function

of the instruction is to transfer data or to execute
some function in the CPU. These two functions
include the following instructions or groups.

[s]wu]a]2]n]w]e]e]7]s]s]a]s]2]1]0]

TSI

AN /
v
MAC OPERATION: 7} SEND ALL 8 BITS TO
(DECODED BY (DECODED By 8/ FFP AS OPCODE
INSTRUCTION OPERATION
DECODER) DECODER)

DECODE FURTHER BY
OPERATION E DECODER
FOR SPECIFIC INSTRUCTION

O=NQ&O

Figure 5-3. Instruction Decoding Process

2152A

Data Transfer:

3 TST
6 FPF
7 TLD

Execute Function:

0 MPY, left shifts
1 DIV .

2 Right shifts

4 DLD

5 DST

5-13. The following paragraphs discuss both basic
functions of the EAU controller.

5-14. DATA TRANSFER. There are three types
of transfers to and from the floating point processor
unit. These are: storing in memory a triple-length
word from the FPP unit (TST group), sending an
8-bit opcode to the FPP unit (FPF group), and send-
ing both a triple-length word and an opcode to the
FPP unit (TLD group). :

5-15. Referring to figure 5-2, note that the data
transfer line enables the EAU in/out control logic.
This logic controls the loading and reading of the
three buffers shown on the EAU interface card and
sends or receives the four interface control signals
(FLG, ENC, OPC, ERR).

5-16. To store data from the FPP unit (TST group),
the in/out control logic sends an ENC (Encode) sig-
nal, and the FPP unit responds by sending 16 bits

of data from its B-register with a FLG (Flag) sig-
nal. The in/out control logic loads this data into

the input buffer, then sends the data to memory

while issuing another ENC. This process repeats

for a second and third time, until the entire 48-bit
contents of the FPP B-register are stored in memory.

Section V

5-17. To send an opcode to the FPP unit, the eight
least significant bits of the instruction word (in the
T-register) are loaded by in/out control into the
opcode buffer. The opcode is then read onto the
interface data lines, and an OPC (Opcode) signal

is issued to the FPP unit. The FPP unit loads the
opcode into its C-register, executes the function
specified by the opcode, then returns a FLG signal
to indicate completion.

5-18. To send data plus an opcode to the FPP unit,
in/out control first loads the opcode from the T-
register into the opcode buffer, then fetches a data
word from memory and loads it into the output buf-
fer. Then the data is read onto the interface data
lines, and an ENC (Encode) signal is issued to the
FPP unit. The FPP unit loads the 16 bits of data
into its C-register and returns a FLG signal to ask
for the next word. This process repeats for a
second and third time until the entire 48-bit C-
register is filled with the three words from memory.
Then the opcode is read onto the interface data lines
and an OPC signal causes the FPP unit to load the
opcode into the shift byte of the C-register. After
the FPP unit executes the function specified by the
opcode, it returns a final FL.G signal to indicate
completion.

5-19. EXECUTE FUNCTION. As shown in figure
5-2, some of the instructions decoded by the opera-
tion decoder (such as MPY, DIV, etc.) can cause
EAU timing to directly activate the register control
logic. Primarily, as shown, the computer A- and
B-registers are manipulated. However, all five
CPU registers can be manipulated, and data can

be fetched from memory, in order to execute the
arithmetic functions. Note that this is entirely an
internal operation; the floating point processor unit,
the EAU interface card, and the in/out control are
not involved.

1. Pages 5-4 through 5-13 describe in
detail the operation of the part of
the EAU controller which is respon-~
sible for data transfers to and from
the floating point processor unit.
These descriptions are presented
in time sequence beginning with the
phase 1 operation, in which the
instruction is initially fetched from
memory. '

NOTE .

2. The flowcharts include references

3. All logic is positive-true. The high

to the logic diagrams. These refer-
ences (e.g., U42C) refer to a specific
gate responsible for the action in the
adjacent flowchart symbol.

(or true) state ranges from +1.25
to +2.5 volts, and the low (or false)
state ranges from -0.5 to +0. 5 volts.

Section V

5-20. PHASE 1 OPERATION

5-21. The EAU controller operation begins during
phase 1, on the same cycle that reads the instruction
out of memory. The memory-read cycle occurs -
from about the middle of TO to the middle of T2.
While this is occurring, at T1, the operation cycle
counter is cleared. By T3, the instruction is in the
T-register, so a TIN1 signal is generated to store
opcode bits TRO through TR7 on the interface card
(see figure 7-6) in case the opcode is needed by the
FPP. At the same time, T3, a RESET signal is
generated to clear the shift, HI-LO, and 101/I02
flip-flops. The cycle flip-flop is also cleared since
neither of the inputs clocked by T3 is true at this
time.

5-22. If the instruction decoded by the CPUis an EAU
class instruction (MAC signal true at pin 62 of the
board), the instruction group is decoded and stored

in the operation decoder. The eleven groups are iden-
tified in table 5-2, which shows the T-register bits
required to identify the group. As mentioned on the
preceding page, the EAU-only groups (first seven)
are described later in the section (paragraph 5-58).
This part of the section will discuss in detail the four
FPP groups: TST, STD, TLD, and FPF.

5-23. When the instruction group is decoded at T3,
a multiple branch occurs as shown in the flowchart.
First it is determined whether or not the instruction
is a shift or rotate. If it is, the number of shifts
required is loaded into the operation cycle counter;
T-register bits 0-3 give the number of shifts (see
instruction coding table in section III.) Otherwise
the counter is set to 5 (decimal) for all memory
operand routines, or is simply not used (FPF group
only). Also, for memory operand routines, the
P123 signal is generated. For the rest of the cycle,
this signal is redundant since phase 1 is still in
progress, but it will enable reading the address word
from memory on the next cycle. (Remember that

all EAU instructions using a memory operand occupy
two words in core: an instruction word, and an ad-

2152A

dress word that points to the operand location.) From
this point (T3) the groups are considered separately.
(In all cases, the Overflow bit is cleared at T5.)

5-24. FPF GROUP. From the standpoint of inter-
unit transfers, the only operation required for the
FPF group is to send the opcode to the FPP unit.
(The opcode will tell the FPP what function to per-
form on data that is already present in the FPP unit.)
This is done at T4 by setting the 101 flip-flop if the
FPP Flag is high (ready). This gives an 102/I01
code of 01, which generates an OPC signal. This
OPC signal reads out the stored opcode (see figure

7-6) and is sent to the FPP.unit. When the FPP
unit receives OPC, it loads the opcode and begins
its programmed operation. Meanwhile, at T5, the
Overflow flip-flop is cleared in anticipation of a
possible error. At T5 the CPU is disabled by an
IIR signal, which remains high until exit. For suc-
ceeding operations after phase 1, refer to page 5-10.

5-25. TST/STD GROUPS. At T4, if the FPP is
ready (Flag high), the IO code is set to 01. This is
done by setting the IO1 flip-flop. If STD is true, an
OPC signal is generated, which remains true until
the FPP Flag goes low; this tells the FPP unit to
load the opcode. If TST is true, an ENC (Encode)
signal is generated; this tells the FPP to send the
first 16 bits of the FPP B-register. Since the IO
code is no longer 00, TIN4 and TINS5 are true, thus
enabling the input buffer. (See figure 7-6.) For
succeeding operations after phase 1, refer to page

5-26. TLD GROUP. In the triple-load operation
the opcode is sent to the FPP last (after all three
data words). Since no data is fetched from memory
during the first two cycles, no OPC or ENC is sent
during phase 1. The only operations are to disable
the CPU at T78 and increment the counter to 6 at
the end of T7S. For succeeding operations after
phase 1, refer to page 5-8.

2152A

Table 5-2. Instruction Group Coding

INSTRUCTION GROUPS

IDENTIFYING BITS

AS (ARITHMETIC SHIFT)

ASR
ASL

Arithmetic Shift Right
Arithmetic Shift Left

LS (LOGICAL SHIFT)

LSR
LSL

Logical Shift Right
Logical Shift Left

RO (ROTATE)

RRR
RRL

Rotate Right
Rotate Left

MPY (MULTIPLY)

DIV (DIVIDE)

DLD (DOUBLE LOAD)

LOAD TRO-3
INTO COUNTER

u76C

T6

DISABLE CPU
(I'R,EPH)

T

AS LS RO
A

J/

WV

THESE INSTRUCTIONS ARE COMPLETELY

EXECUTED ON THE TWO EAU BOARDS,
INDENDENTLY OF THE FLOATING POINT

PROCESSOR UNIT. SEE PAGE 5-15.

TLD

?/‘
[[\ e
MPY DIV DLD DST

U14C, U74A

FROM: U92A, U102A, U101C

ug7cC

U67D I T7S

' ‘ NO
GENERATE P 123
YES

] Ta T4

SET COUNTER U114A SET 10 CODE

TO 5 (DEC) To 01"

Ta

OPC TO FPP

DISABLE CPU
(1R, EPH)
U968 T7S
INCREMENT SET 10 CODE TO “01”
COUNTER TO 6 (ENC/OPC)

Figure 5-4. Phase 1 Flowchart

ue67D 1

PHASE 1
! TO(-T2) INITIALIZE AND
LOOK FOR EAU
READ MEMORY TO GROUP INSTRUCTION
T-REGISTER.
DECODE INSTRUCTION (EVERY PH1)
T1
vazc
CLEAR COUNTER
T3
TIN1: SAVE
OPCODE BITS 0-7
! T3
ussc
RESET:
U74E SHIFT FF
U124B
Ueas 101/102
HI/LO
@ NO OTHER INSTRUCTION TYPE
YES
D EAUEGRA?gPéRANCH
ugsC DECODE Al
LOAD AND DECODE
U106 INE
TR4-9,11 (IN EAU) To RoUT
. : YES 7 SHIFT YES
‘ < ~COR ROTATE N
?
U97A (o TA T3s

T5

CLEAR OVF
(CLF,105B)

UG6A

A

T6

(1R,

DISABLE CPU

EPH)
)

DST (DOUBLE STORE)

STD (STORE DOUBLE)

STD

Store Double word, converted from

Extended Floating Point

TST (TRIPLE STORE)

STF
STX

Store Floating point word
Store Extended floating point

TLD (TRIPLE LOAD)

LDD
LDF
LDX
ADF
ADX
SBF

SBX

MPF
MPX
DVF
DVX

Load Double

Load Floating point

Load Extended floating point
Add Floating point

Add Extended floating point
Subtract Floating point
Subtract Extended floating point
Multiply Floating point
Multiply Extended floating point
Divide Floating point

Divide Extended floating point

FPF (FLOATING POINT FUNCTION)

ABX
ENX

Absolute value
Entier
Complement
Cosine

Sine

Tangent
Arctangent
Hyperbolic Cosine
Hyperbolic Sine
Hyperbolic Tangent
Archyperbolic Tangent
Exponential
Natural Logarithm
Square Root

TR11, 9, 8 (Octal) ADDITIONAL
Oor2 TR4 =1
0 or 2 TR5 =1
0or2 TR6 =1

0 TR7=1
1

4 TRT =1
5

3 TR1 =1
3 TR1=0
7

6

Ul122A T4
ENC TO FPP,
OPC TO FPP u1l22c ENABLE
T2 u92D TIN4, TIN5
A J
— SN —
@ FPF

TIME PERJODS

MEMORY CYCLE

TIN|

IIR

MEMORY- OPERAND
ROUTINES ONLY

COUNT

P123

FPF, TST, STD
ROUTINES ONLY

ENC/OPC

ANCH

T5

Table 5-2. Instruction Group Coding
INSTRUCTION GROUPS IDENTIFYING BITS
TRI11, 9, 8 (Octal) ADDITIONAL
AS (ARITHMETIC SHIFT) 0or 2 TR4 =1
ASR Arithmetic Shift Right
ASL Arithmetic Shift Left
LS (LOGICAL SHIFT) Oor2 TR5 =1
LSR Logical Shift Right
LSL Logical Shift Left
RO (ROTATE) 0or 2 TR6 =1
RRR Rotate Right
RRL Rotate Left
MPY (MULTIPLY) 0 TR7 =1
DIV (DIVIDE) 1
DLD (DOUBLE LOAD) 4 TRT7 =1
DST (DOUBLE STORE) 5
STD (STORE DOUBLE) 3 TR1 =1
STD Store Double word, converted from
Extended Floating Point
TST (TRIPLE STORE) 3 TR1=0
STF Store Floating point word
STX Store Extended floating point
TLD (TRIPLE LOAD) 7
LDD Load Double
LDF Load Floating point
LDX Load Extended floating point
ADF Add Floating point
ADX Add Extended floating point
SBF Subtract Floating point
SBX Subtract Extended floating point
MPF Multiply Floating point
MPX Multiply Extended floating point
DVF Divide Floating point
DVX Divide Extended floating point
FPF (FLOATING POINT FUNCTION) 6
ABX Absolute value
ENX Entier
CMX Complement
CsX Cosine
SNX Sine
TNX Tangent
ATX Arctangent
HCX Hyperbolic Cosine
HSX Hyperbolic Sine
HTX Hyperbolic Tangent
AHT Archyperbolic Tangent
EXX Exponential
LNX Natural Logarithm
SRX Square Root

T/ME PpPERJODS

MEMORY CYCLE

TIN/(

IIR

ME MORY- OPERAND

ROUTINES ONLY

COUNT

P123

FPF, TST, STD
ROUTINES ONLY

ENC/OPC

Section V

T0 T T2 T3 T TS Té 77
I I R A I A I
| : ': ; E 5 g | E
.‘ (INSTRUCTION) I '. ; ! !
' l REA D | | WRITE | \ '
. ; ; : : \
| | i % f : , } |
; | e i 5 : ?
: : : | | : :
S T S
_— I
' : ! : | - ?
! ! : : ' : : T ?
| ; : : ! ; ? : !
‘. ! ; : : ; : ’ :
ﬁ ; ! : f) \) '
: | i | ! f : :
; 15— 5 —

Figure 5-5.

Phase 1 Timing
5-5

Section V

5-27. TST OPERATION,

5-28. There are three store instructions in the
2152A repertoire. These instructions were defined
earlier in this manual, but for the purposes of this
discussion they may be defined as follows.

a. STX (Store Extended word): get triple-
length word from FPP unit and store in three con-
secutive memory locations.

b. STF (Store Floating-point word): get
triple-length word from FPP unit, remove bits 8
through 23, and store remaining double-length word
in two consecutive memory locations.

c. STD (Store Double word): tell FPP unit
to reformat its data word to double-length integer;
then get bits 16 through 47 and store in two consec-
utive memory locations.

5-29. Except for differences due to formatting, the
basic storing process is the same for all three in-
structions. The following paragraphs initially de-
scribe the operation for STX; then paragraphs 5-38
and 5-39 discuss the formatting differences for STF.
Since STD requires additional time to send an opcode
to the FPP unit and then wait for the FPP to perform
its format conversion, the timing for STD is con-
siderably different. (Refer to following page.)

5-30. For STX, then, the timing is as shown in
figure 5-7. The first word is stored during cycles
2 and 3, the second word during cycles 4 and 5, and
the third during cycles 6, 7, and 8.

5-31. During cycle 2 (the cycle that immediately
follows phase 1), the EAU controller is waiting for
the FPP Flag to go low, meaning that the FPP unit
has received the ENC signal issued in phase 1, and

is now busy getting the first 16 bits ready for trans-
fer. When the flag does drop (asynchronously, during
TO0), the IO code is changed from 01 to 11.

5-32. Meanwhile, while waiting for the low Flag
signal, EAU proceeds to obtain the address word of
the double-word instruction. This operand address
will tell EAU where to store the data when FPP sends
it. During TO through T2, the P123 signal causes
memory to read the address word into the T-register.
Then, at T7, the MD2 signal (which is high during
the count of 6) causes the T-register contents to be
transferred to the M-register. (Referring to the
EAU logic card diagram, figure 7-4, note that in the
read T block, RTSB is enabled at T6T7; in the add
function block, ADF is enabled at T6T'7; and in the
store in M block, SWSM is enabled at T7S. These
three actions accomplish the T-to-M transfer.)
Unless bit 15 of the address indicates indirect ad-
dressing, the count now increments to 7.

5-33. By cycle 3, the FPP unit has returned a high
Flag signal, indicating that the first 16 bits of data

is now on the input lines. At T1, the IO code changes
to 10, which causes an I0IO signal to load the data
into the input buffer. (See Figure 7-6.) The TIN4
and TIN5 signals, which control the loading of the

5-6

2152A

buffers, are both high at this time, allowing all 16
bits to be loaded. Now the word must be transferred
from the buffer to memory. (Note that an ISG signal
prevents reading memory to the T-register during
store cycles 3, 5, and 8.) The storing process is as
follows.

5-34. At T2 an IOI signal strobes the buffer contents
(IOBI lines) onto the S-bus in the CPU. A DS34 sig-
nal, generated by I0IO, causes EOFB and STBT
signals (see figure 7-4) to load the S-bus into the
T-register. Then the CPU proceeds to write the
T-register into memory while the count and operand
address are incremented. The count increments to

8 on the first loop, and incrementing of the M-register
is enabled by HI (set at T3) and the TIN4 signal,
which generate TS34. (TS34 generates RMSB, RBO,
ADF, and SWSM on the EAU logic card; see figure
7-4. These signals increment the M-register.)

5-35. Also, while the CPU is writing the current
word into memory, EAU sends a new ENC at T4 to
get the next word from the FPP unit. When the Flag
goes low (meaning it has received ENC and is pre-
paring the next word), the IO code is set to 11.

5-36. By the next T1, the FPP unit normally has

its data ready and sends a high Flag signal. This
initiates a repeat of the entire loading-storing process
(to paragraph 5-33).

5-37. During the last cycle, the count increments

to 10, ending ISG. Count 10 also sets the Exit flip-
flop at T4. At T5 the computer A-register is cleared;
and at T6T7 an Exit signal initiates the exit sequence:
the P-register is incremented and stored in P and M
(see figure 7-4), RESET clears the Operation De-
coder flip-flops (which in turn ends P123), and the
CPU is enabled again (EPH ilip-flop set).

5-38. The STF operation inhibits those signals
indicated by dashed lines in the timing diagram. As
mentioned previously, the intent is to remove bits

8 through 23 of the 48-bit FPP word and to store the
remaining 32 bits as two words. In order to inhibit
bits 16 through 23 from being loaded into the input
buffer, the TIN4 signal is low. As shown in the
timing diagram this results in TIN4 being low when
the second data word arrives from the FPP unit
(when the Flag signal goes high during cycle 4).

5-39. Similarly, the TIN5 signal is low in cycle 5

in order to inhibit bits 8 through 15 of the third word,
which arrives during cycle 7. The word in the input
buffer therefore consists of bits 24 through 31 and

0 through 7 of the original 48-bit FPP word. To
prevent the M-register from incrementing twice,
before the word is ready, TS34 is inhibited during
cycle 3. (Note SWSM does not occur.) Consequently,
the location of the first word will continue to be :
addressed during cycles 4 and 5. The ISG signal
must therefore be inhibited (see timing diagram) so
that normal read/write memory cycles will occur;
otherwise the contents would be destroyed by clear/
write cycles. The combined word in the Input Buffer
is stored during cycle 8.

2152A

Py

WAIT — —— —— GET
e FPP ENTRY _rur ADDRESS
I ENC L _ROUTINE _ I READ MEMORY OF
TO T-REG OPERAND
| I L (ADDRESS WORD)_J
I I ! I
SET 10 CODE l MD2: PUT
TO *11”» ADDRESS IN
l (CLEARS ENC) ' M-REG I

- _

-
— | c— — — — a—
I v T4
U74D [T INCREMENT COUNTER INCREMENT
uoeB INCREMENT COUNTER (TO 8,9, 10) OPERAND
ADDRESS |
(ONCE FOR STF,
o TWICE FOR STX) |
U14B AND ISSUE
U31A GENERATE ISG ENC I
p > l uiz2zc SEND ENC TO FPP l
(10 CODE = “01")
I ' [EnTRY —| |
ROUTINE
I ! LR _J I
CTR YES TRO YES
=8 =0 |
? ?
I NO NO U41A
' . T7s IHNIBIT TIN4 (LOAD '
l HIGH HALF ONLY)
U121A SET 10 CODE TO “10". INCREMENT M-REG
U121C 1010: LOAD WORD us3c (TS34) |
O1i1s | FROM FPPINTO BUFFER I
<
— ——— L] —— L J |
SEND
WORD
TO MEMORY l < INHIBIT TIN5 (LOAD
LOW HALF ONLY)

l . r— — —4) -— e e—
usl1D 10l: READ BUFFER T —— —— —
u8zD TO S-BUS Ull1lA T6T7

CTRN\U_YES ulllc EXIT:
10 — RESET
.] sy > l|u1o7c P+1TOP, M l
NO
viic DS34: READ S-BUS l 15
TO T-BUS, STORE IN U74C l 2 775 l
T-REG (STBT) l I SET HI/LO TO LO I ENABLE CPU
2 Ts L —— aam— w— L_ PH1 EXIT
U113A l — — -l e c—
[ermoron] == —
~ |) REPEAT I
v \g LOOP FOR '
WRITE T-REG INTO 1735 ' NEXT
MEMORY | WORD
L (CPU FUNCTION) 1 I
—_———————— U123A
4§ < (CLEARS ENC)
L 1

Figure 5-6. TST Flowchart

MACHINE CYCLES
COUNT

PI123

MEMORY CYCLES
SWSM

156

TINY

TINS

JoIO

101

HiGH (-LOW)
TS34

102

101

ENC

CYCLE 2 3 4 5 {
TIME yfglonz l 1/ I
A 5 6 70 1+ 2 3 § ¢ 710 1 2.3 s 0 ¢ 700 3
SRR MR e AR A 1111711‘|7!L’17’ﬁ14|5 ! L2
: : i : :
. . . X f
D6 — [7 — j 8 —» : i] ?—-
; : t ; '
] ’ !] :
: : [}] ;
: : | | f
: C o sTEr (1) : , :
") 5Tx.; ! :r__ - .'____| (2) |
'] 1
| ﬁs srxH ! ri
; : str"" !
‘ | Uw ; STX ? T4 -
:)] i
:) 9‘_——-'?---?7?---?--—};! i
’ Ty . STX ; Tt :
! ; U_ U ;
t : x : STF 1 » :
]] ' ! i
E | TY . , T4 { s
: i ;U ' . -___.-;.——.....-
X . T3S ' ! »* i ST
i : T T3S : :
! I I) U | :
: ? : : :
! 2 T2 f) sTX
z M ; s .
| ' ! X STF ;
) N) y .
: . TP T3 10 T2
: L L - S
. ' : : [
; ! STX | ! 1
' 1
m_____1 M 1
: x 38 STF | x |
' ' ! i
! : T3$ f' ! T3S .
: ;] I| i i fl
' i ' i i i i
(o1} (1 O BN () : () I R (/) B ()
"n E!TV i N iT, :::T e

"Insigm'g'l‘cant state changes

Section V

CYCLE 2
TIME PERIODS
| ZJ > | 4

/

1

0

MACHINE CYCLES

R R R T S B e B B B T e R R

|10 —»
®
W

T3S
T3S
i (00)

T2
'L
Q)

]

R Tl Bl T T P Stp PP -—— - b

I WA (U AR S AN S R,

: [w [
STX
————

17—
(2)
l w l
Ty
T4
T4

0 L I D

T
[]
x

|
I
|
[B SRRy U AV R T . . B IR VU B,

STX

STF

STX
R —

!

i

1]

1]

|

}

i

t

}

]

]

X
srxﬂ.
er/‘

STF
(o)

sSTx
| I R

Ty
T38
T3%

TY

| 8 —
STx;: (l”
I w]
TY

l 7 —
STF
%
T
ul
r3
T
)

78
¥
]
'
i
|
i
nl
%
x
'
i
5
!
i
i

...... PP I T R S - -———— . e meme [P -

567#/2345‘7'0123": l0,2 4 ‘7! 3 ¥ 5 i Ky l I
N ' R AR AR M AT S S AT AT A R A Nt ST B 4 A B Sl B R R R R LA R A S A 1 M0 o R RN N

O

SRR R S D (U DR IO IR R T

|

el w1

COUNT
P123
SwWwSM

IsG

TINY
TIN5
IoIo

101

HiGH (-LOW)

MEMQRY CYCLES

v

FORLTWO I 1 10 X a

5-17

Figure 5-7. TST Timing

*Insigm@{cant state changes

Section V

5-40. STD OPERATION,

5-41. Paragraphs 5-28 and 5-29 on the preceding
page defined the differences between the three store
instructions. Essentially, STD (store double word)
differs from the other two in format and in the fact
that an opcode is sent to the FPP unit. The format
is double-word integer, converted from triple-word
floating point. This conversion is too complex to be
accomplished by the EAU controller, as in the case
of ST'F. Therefore, the FPP is given the opcode for
STD, and it performs the conversion before any
data is transferred. The opcode has already been
sent to the FPP unit. (Refer to page 5-4, phase 1
operation.)

5-42. When the STD routine begins, in cycle 2, the
EAU controller is waiting for the FPP Flag to go low,
meaning that the FPP unit has received the OPC
command and is busy converting the data. When the
Flag does drop (asynchronously, during T0), the 10
code is changed from 01 to 00.

5-43. This change of IO code represents a signifi-
cant difference from the TST operation, which
changed the IO code to 11 at this point. The 00
state for STD means that the next action will be
another command (ENC), rather than the loading of
data. To explain the significance of the IO codes,
refer to table 5-3. The 00 code is a ready state,
which requires a high Flag signal for any change;
the only change that can be made is to the 01 code.
The 01 code issues either an OPC or ENC command,
which terminates when the Flag goes low. The low
Flag either resets the code to 00 (to repeat the
process for another command), or advances the code
to 11 (to prepare for loading data). If the code is
now 11, the EAU controller is waiting for a high
Flag, indicating readiness to load data. When the
Flag signal goes high, the code changes to 10, which
causes an IOIO signal to load data into either the
input or the output buffer, depending on the routine.
The IOIO signal lasts for about three time periods
(approximately 550 nanoseconds), and then the 10
code resets to 00. Exit occurs during the count of
10, and the 10 code can be either 11 or 10.

Table 5-3. IO Codes

10
CODE SIGNIFICANCE

00 Ready. Next state 01.

01 Issues OPC or ENC. EAU con-
troller waiting for low FLG.
Next state 11 or 00.

11 Waiting for high FLG (or count
10: Exit). Next state 10.

10 Load Buffer (IOIO), (or, count
10: Exit). Next state 00.

5-8

2152A

5-44. Returning to the STD sequence of operations,
the EAU controller proceeds to obtain the address
word of the instruction, while the FPP unit begins
its conversion routine. The address word is read
out of memory into the T-register during TO through
T2 of cycle 2, and transferred to the M-register
during T7 by the MD2 signal. If bit 15 of the address
word indicates indirect addressing, one or more ad-
ditional memory cycles may be necessary to obtain
a direct address. Then the count increments to 7.
The count of 7 enables the TST line (see logic dia-
gram, figure 7-2), since most of the operations
after this point are common to the TST operation.

5-45. After about ten cycles (160 microseconds)
the FPP Flag goes high, indicating that the format
conversion has been completed. Now the EAU con-
troller must tell the FPP unit to read out the first
16-bit word. The IO code is changed to 01 at the
next T4, causing an ENC signal to be sent to the
FPP unit. This occurs during cycle 8. Actually
about 12 cycles have elapsed; the cycle numbers
are for identification purposes. Also occurring at
T4 is the enabling of ISG, TIN4 and TINS5. The ISG
signal prevents reading of memory data to the
T-register during the memory-storing cycles, and
TIN4 and TIN5 enable loading of FPP data into the
input buffer.

5-46. When the Flag goes low, acknowledging the
ENC command, ENC terminates and the IO code
changes to 11. The EAU controller is now waiting
for a high Flag. When this signal arrives, it indi-
cates that data is on the interface lines. At the next
T1, the 10 code changes to 10; causing the IOIO signal
to load the data into the input buffer.

5-47. Then, at T2, the combination of IOI and DS34
transfers the word from the input buffer to the T~
register. During T3 through T5 the T-register con-
tents is written into memory, while (at T3) the HI/LO
flip-flop toggles to the HI state. The combination of
HI and TIN4 causes TS34 to enable incrementing of
the M-register. This occurs once, at T7S of cycle 5.

5-48. Meanwhile, at T4 of cycle 5, the count incre-
ments to 8, and a new ENC is sent to the FPP unit.
This causes the next 16 bits to be loaded and stored,
as in paragraphs 5-45 through 5-47. Then the routine
repeats again for the third time.

5-49. However, on the third loop, when the count is
9, the signals which effect the data transfer are in-
hibited, so no data is stored. Also, the M-register
is not incremented, so that cycles 8 through 10 mere-
ly read and write the location containing the second
transferred word. The signals which are inhibited
are: TIN4, TINS5, ISG, TS34, and IOI. This no-store
cycle accomplishes the requirement of the STD
instruction, to store only the first two words from
the FPP unit.

2152A
WAIT FOR - = l T TO(-T2) GET_I
l PP 1O FFI:'SLEJNTRY —— == ADDRESS l
RECEIVE TINE |— READ MEMORY OF
oPC TO T-REG | OPERAND
| I_‘ADDRESSﬂORD)_I | MACHINE CYCLES
| l | , T7 | COUNT
I SET 10 CODE ' MD2: PUT '
TO 00" I ADDRESS IN
(CLEARS OPC) I M-REG l
l l MEMORY CYCLES
— —_—] —— —— — .._J
. (INDIRECT ADDRESS LOOP) SWEM
r SEND '
WORD TO
V98B M CREMENT COUNTER MEMORY 1sq
TO 7
v TO
ulo2B I I
ENABLE TST TIN l/, TING
uglD 101: READ BUFFER
uszp TO S-BUS
I . T2
REQUEST l uUlilc i
FIRST WORD DS$34: READ S-BUS JOIO
FROM | TO T-BUS, STORE IN
P T-REG (STBT) I
@ l B
l YES T4 I Ull3A l 101
, HI
| ul22c SEND ENC TO FPP | SET HI/LOTO T3(-T5)
(10 CODE = 01 —— e
l) - I l \ !' WRITE T-REG _= I
ol INTO MEMORY
I U148 I 1 (cPU FUNCTION) | HiGgH (‘LO\V’)
U31A GENERATE ISG v | Y | —I
L— — ——— — w—— RSN SN MEmeus Sl SRS St DD CHEED GEE I G Smm—
WAIT FOR I r INCREMENT ' TS3%
EPP TO T4 OPERAND I
RECEIVE LG | ADDRESS
ENG LOW U74D [INCREMENT COUNTER AND ISSUE
I ? l (TO 8,9, 10) ENC |
YES
102
SET IO CODE TO “11" I
I (CLEARS ENC)
| —— e esmmmms G e— D e e—— j
LOAD | I !DIT TIN A I
I Sévggﬁ ' TINS, 1SG,
FPp TS34
| | J I ENC
u74c — e m——
I SET HI/LO TO LO I I
‘ EXIT:
T1 U111A RESET
01328 A I U122C Ta Ulllc P+1TOP, M | FLG
SET 10 CODE TO "10" | U1076 —
1010: LOAD WORD SEND ENC TO FPP '
I Uizic | FROM FFP INTO BUFFER (10 CODE = 01) I
1118
! ' v L IJ l ‘ T7S | I ENABLE CPU OPC
i INCREMENT M-REG l v I
I l PH1 EXIT

-7J-'- —

Y

Figure 5-8.

g

STD Flowchart

CYCLE 2 FPP TRESEPONSE 3 q 5 6 ’
B M
;l’;ElP’ZR:fonSSS 7 (Q"’ 10 CYCLES) J J '] j
11 | 1 |] i |
, [\ i ! ; :
r—— | ; " o l8—->- ‘ ; [
? I

:

.
! |
|[7— |
|
|
]
|
I

w

é l

,_

|
|
I .
| Ty ; : T¥ .
o 5 | o e |
1 i] ‘ .
| ; A 5 l E | ¢ | i L
I ' T T3s } N R
i —— ’ —— — L
é '] I T; :r ?* T3 E '* T3
5 ~' I} ' [ﬂ i | i
| I om ;
: f [| :] | :
E | I 5 ! j é |
f H ' ! . T3S T2
; ; | I i — L
(+9) Loy ORI (T W () NORRE
|| e m e i
| | ! ;
I !
]
|}
11
N
B
]
|

* Inslygncfl'cqnt

state chqnges

“

<

Jdi

omwnwu=-

MACHINE CYCLES

COUNT

MEMORY CYCLES

SwWwsM

Isq

TINY, TINS5

o010

101

HiGH (-Low)

TS&34

102

ol

-
) ENC
] | FLG
7

uig 1

OrC

E

CYCLE 2

FPP RESPONSE
TIME

Section V

/0

o] (e eraed | | | | | | | |
; S — : % : : s e r i
; : ll . . : l : : : i
L6 —» | 7— t ,’ ! |8 — ; | 9 —» | |76 —
: _ : : 3 : ! | ; .
5 ; 1 5 W & o i S
e w] | . ‘;I&]Iw[| [w] . [w | 1 [wW] EEEIE 22 IRUWL__J
. | ‘ , i | ; | !
, : ! : ! : : . ' i ;
5 ' [l o re | | |
| L !1 —— z : i
i H ' T¢ : i TY | : 2
' ! . ' : ' i
3 I | 5 T3 GoTT3s i T 73s ‘
| i ‘] | '] | i] |

| i1 ; ‘ : .) ') .
: ‘ [: N ! 12 ; :
L 3 [! ! T ! ['] : . :
l : L : i | ' ; ; I ! k
: [o « % T3 ‘ x T3 I | : :
: ~' I [M [] l] i’ | 1 |
! : ' ! f ? '- " :
? ; I E r3 : i ! ; !
‘ : | | : : | l - - ' -
! I : ! i ; | : E

: H ; : ? T3S | T35 3 . T3S !

: S S g " 1
i ! YT I GO e |
? h : i ! : i : !
1 d - = = | | ;
; [l . S g v | ;
: P I N ; :
| i; i : | ; » , ; |
: s ’ | | ¢ | .
1 [T || L ' I ? ?
ﬁ : I ; ‘ | } | | |
2l | 0 ' : s J

% Ins{jm‘f{cunt state changes

Figure 5-9.

STD Timing
5-9

Section V

5-50. TLD OPERATION.

5-51. The TLD f(triple load) routine fetches three
words from memory and sends each one, as it is
received, to the FPP unit. There are two variations
unique to the LDF (load floating point) and LDD (load
double integer) instructions. Both of these instruc-
tions have a two-word operand in memory, instead of
three. For LDF the second word is fetched twice
and reformatted, with 16 zeros, to convert the data
to the triple-length format. (Format conversion

is illustrated in section IlI.) For LDD a third word
is actually fetched from the next memory location
and sent to the FPP unit; however, the FPP unit will
disregard this illegal word when it enters its LDD
routine.

5-52. Following completion of the TLD routine, the
instruction opcode is sent to the FPP unit by entering
the FPF routine (floating point function, next page).
The opcode will tell the FPP unit what to do with the
three words it has received. For the three load
instructions (LDX, LDF, LDD) this will consist
simply of moving the data up from the FPP C-register
to the FPP B-register. Other operations would be:
multiply, divide, add, and subtract. There are 11
instructions in the TLD group. This page, however,
describes only the triple-loading process.

5-53. During cycle 2, the cycle that immediately
follows phase 1 (page 5-4), EAU obtains the address
of the first word it is to fetch. During TO through
T2, the P123 signal causes memory to read out the

address word to the T-register, and at T7 the word
is transferred into the M-register. The transfer
is accomplished by the MD2 signal, which is high
during the count of 6. The MD 2 signal generates
RTSB and ADF at T6T7 (see figure 7-4), which put
the T-register onto the T-bus; then at T7, SWSM
stores the T-bus into the M-register. If indirect
addressing i indicated (TB15 = 1), the counter is
prevented from incrementing, and another memory
cycle occurs (not shown in the timing diagram),
which fetches a new address word. Then, if TB15
is 0, the count increments to 7 at the end of T1S.

5-54. Cpycle 3 reads the first word out of memory
to the T-register. At T4 a TIN2 signal loads bits
0-7 into the output buffer. (See figure 7-6.) Since
the computer backplane does not wire all T-register
bits to the EAU slots, a shifting operation is now
necessary to load the high byte (bits 8-15), The
Shift flip-flop is set (at T6) which incidentally turns
off P123 since another word from memory is not
wanted yet. The Shift signal generates RTSB and
SRMB (see figure 7-4), which perform the reading
and shifting, and SWST. The SWST signal is pulsed
by TS on the instruction decoder card in the CPU,
resulting in a repetitive shift. The first two shifts
occur in cycle 3. Then at the next T0, the HI-LO
flip-flop switches to H1 in pPreparation for turning
off the Shift signal at T4.

5-55. Cycle 4 continues the shifting process four
more times, for a total of six. Only six shifts are
required, rather than eight, because T-register

5-10

2152A

bits 8 and 9 are available to the EAU timing card.
The high byte (TR8-15) is therefore shifted to TR2-9.
At T4 the Shift flip-flop is reset and a TIN3 signal
loads the high byte into the output buffer. (See
figure 7-4.)

5-56. Then at T5, if the Flag is high (FPP ready),
the IO code is set to 01. Assuming for now that
the count is still 7, the buffer-reading signals TIN4
and TINS are enabled (U92D now false}, and ENC is
sent to the FPP unit. This tells the FPP to load
the 16 bits that the buffer is now reading out.

5-57. Meanwhile, the M-register is incremented
in preparation for fetching the next word. (The
count is still assumed to be 7, so TIN4, which
permits incrementing to occur, is high.) Jncre-
menting occurs by enabling TS34, which generates
the appropriate signals on the EAU logic card (see
figure 7-4): at T6T7 RMSB, ADF, and RBO read
and increment the M value, and at T7 SWSM stores
the value back into the M-register. The Hi/1.O
flip~flop toggles to LO at TO, in preparation for
loading the next low byte. (L.O enables P123 to
read memory and enables TIN2, which is true at
T4.)

5-58. During TO, in cycle 5, the FPP Flag goes
low, indicating that it has loaded the first data

word and is busy preparing for the next word. The
low Flag clears the ENC signal by resetting IO1.
With 101 and 102 both reset, TIN4 and TIN5 are also
cleared (by U92D). The count now increments to 8,
and the entire read-load process now repeats (to
paragraph 5-54). '

5-59. On the second loop (count 8, cycle 6), a
check is made to see if the instruction is LDF (TRO=
0 and TR1=0). The identiiying bits are stored in the
Bit 0 and Bit 1 flip-flops. If the instruction is identi-
fied as LDF, TIN4 is inhibited from reading the low
byte of the output buffer (see figure 7-6). This
results in reading 8 zeros for the low byte, as
required by the format conversion. (Refer to section
). Also, since TIN4 is low, the TS34 signal is
inhibited, with the result that the M-register is not
incremented. The second operand will therefore be
fetched again in the third loop.

5-60. On the third loop (count 9, cycle 8), checks
are made to see if the instruction is LDF (TRO = 0,
TR1 = 0) or LDD (TRO = 0, TR1 = 1). For LDF,
TINS is inhibited from reading the high byte of the
output buffer, resulting in 8 zeros for the high byte.
For LDD, both TIN4 and TIN5 are inhibited, result-
ing in an all-zero word. The final incrementing of
the M-register in cycle 8 is insignificant since this
register will be forced to P+1 in the FPF routine.

5-61. When the count goes to 10, and the last Flag-
goes high after about 2.2 microseconds (cycle 10),
an OPC signal is generated. This signal reads out
the opcode (still stored on the EAU interface card)
and commands the FPP unit to load the opcode.

This action initiates the FPF (floating point function)
routine, described on the next page.

2152A

\ 1
e ___ToT2 ADDRESS 1 s SEND I
I T READ MEMORY ﬁ OF U124A OPERAND
| TO T-REG [OPERAND SET 10 CODE WORD
L_ (ADDRESS WORD) i TO “01 b I
—— o o ——— I r
U278 T7 I
l MD2: PUT
ADDRESS IN l
M-REG
INHIBIT TIN4 l
(8 ZEROS FOR
LOW BYTE)
o l l
b oumm—— aE——— —— — I
GET I
10 OPERAND |
l INCREMENT COUNTER WORD
TO7 FROM
l MEMORY
> I INHIBIT TIN5 INHIBIT BOTH
r > (8 ZEROS FOR TIN5, TIN4
T0(-T2) HIGH BYTE) (16 ZEROS)
READ MEMORY TO I
| T-REG (1/3 OF I 4 J < J
| OPERAND) 2 ¢ — <
B ' U920 [MREAD OUTPUT BUFFER
[(TINZ, TINS)
N _J
T5
—— — eSS EEAGES GEEEtE CEEE——— CEEE SE—— ul26B
ul22D ENC TO FFP
LOAD
T4 OPERAND >
|U53A TIN2: LOAD WORD
us3s LOW BYTE INTO
I BUFFER -—<-
u54B T6 l FPP i
4c ENTRY
us SET SHIFT FF 175 ROUTINE |
u14C CLEAR P123 u83c J
Ul6c INCREMENT M-REG o
T6S
BEGIN SHIFTING
L _‘ICeHBYTE(X2)] uzac HI/LO TO LO
ulac GENERATE p123
To 1 - I
U74C i
Iu94c SET HI/LO TO HI v
Tos-
T35
—_— —_ -
[SHIFT 4 MORE] YES
—_— —I_ —_——— U1238
CLEAR ENC
T4
U54A|
Iu54c RESET SHIFT FF ——— — e
l L
T4 J U101A[™ |NCREMENT COUNTER IF OPERAND
Jussc >— (TO 8,9, 10) COMPLETE,
TIN3: LOAD » SEND OPCODE
|U53D HIGH BYTE '
YES
e _ _
OPC TO FPP l
— | (10 CODE = “01")

—

Figure 5-10. TLD Flowe

hart

MACHINE
CYCLES

COUNT

P23

MEMORY
CYCLES

"IGH (-Low) |

TINY

TINS

MD2

TINZ

SHIFT
(RTS8, SRMB)
STBT

TINJ

ENC

FLG

/ TS3Y
&EMSBj R BD

CYCLE 2 3 4 5 [4 7
TIME PER\ODS
01 1.3 45 6 7 ' | l | I
A A | , v
| : i ’ é : é
L o— | 7—~ : | 8— : L | T Z
; 3 i ; ! |
: Té ‘ L ' Té
: ; | | ‘ | L
~ ADDRESS Hiak Y3 OPERAND | MIDPLE ¥ OPERAND i . Low U5 OPERAND |
;_J R L_l w l ! R L_J w l : ’ R I l w i ' [r ") !
) ‘ :) : ' _
! ', f : ' ' ;
i ; | L l 1 -
1 l ' IS ’ ‘ 15 :ELDX,LDD :
: 1 : T X er ‘
5 ; f TS ‘ ! TS ! ?
5 i I] | I X
: , : i ; .
; : : : : :
| ; : ; ,‘ |
? [] | : [; | [;
E ' Tb % T n T6 !

‘ADF)

SWSM

orPC

CLEAR,
OVERFLOW

(cLF, I0%B)

Section V

CYCLE 2 3 ¢ 5 6 7 8 7 /0
TIME PERIODS
MACHINE 9" %%/% % 7 | | | |
CYCLES ¢ . : ‘ : :
! | ; . : , ! '
counT &= |7 f |8 = Lro— E E
: , , ! [l i ' ' '
‘ Te A T | " Té | - ' :
PI123 i L J J - I L | ; 3
. ADDRESS | KGR Y3 OPERAND | MIDDLE Y3 OPERAND . LOW U5 OPERAND ' | |
; i . 1 : : ! :
MEMORY TR [w 1 [® W] = Lw] TR w] el vl el Iw] |
: . . . f . i ' X
NGH (CLow) | l L ! [L . é
| : . : 15 :Cux,n.bb : Ty ‘ LpX, LDF ' E
TINY TR l T T TR Cop , ;
', : TS : rs i ; s . g LDX ?
TINS :] | l . ; [___1l f
. : 3 ; 7\ LOF, LDD f !
. : ‘ ’ f : ’
MD2] ; ' ' : :
: T4 ' T4 ; Ty i ‘ :
TIN2 ' [I 'l 7 [; ' : 1
TE % ' 7% T4 : e ! T i :
SHIFT I ! : l : | L : I L ' : i
(RTS8, SRMB) } ; : g 3 ! ; :’
STBT ; : i ' uuy : ' | ; : ;
E i : 4 : ' r4 : ' T* !
TIND | —) — [L : |
' ' i | ' 1
f | 5 : s . ! 15 f |
ENC | ; | i J !]] 1 ' !
; | : ! ! ‘ | E
’ | TS TS f TS f
TS3y - I I. U e o : :
(EMSB: RBo T75 TS LOF™ 176 ! tos 7 1'7:5 ! :
Soio 1 1 [: fl ’ ;
M - ‘ l :
: i ; LDF/"‘, ! Lop o
: : : | : ' ! »
oPC - : : ' :
WSS | il

(cLF, TOSB)

Figure 5-11. TLD Timing
5-11

Section V

5-62. FPF OPERATION.

5-63. The FPF (floating point function) routine pro-
vides an error-checking and exit sequence for the
TLD and FPF groups of instructions. Before this
sequence begins, the opcode has already been sent
to the FPP unit. (Refer to pages 5-4 and 5-10.) The
sequence begins when the FPP unit lowers the Flag,
acknowledging receipt of the opcode. This sets the
10 code (which was at 01) to 11. 1In this state EAU

is waiting for a high Flag. The Flag will remain

low as long as it is executing the function specified
by the opcode. This may be a relatively long period,
from about 10 to 200 microseconds.

5-64. When the Flag goes high, signifying comple-~
tion of its computation, the Exit flip-flop is set at
the next T4, and a check is made for a possible
error. If the ERR signal from the FPP unit is true,
it will load the error code into the input buffer. (See
figure 7-6.) Table 5-4 lists the assigned error
codes (only bits 8 through 15 are used). The ERR
signal also generates the signals that transfer the
input buffer contents to the computer A-register.
The IOIO and IOI signals are enabled at T5, which,
respectively, read the Buffer contents to the IOBI
lines and transfer the IOBI lines to the S-bus in the
CPU.

NOTE

2152A

5-65. 'Then at T5, SWSA and EOFB are enabled.
(See figure 7-4.) In the CPU, SWSA is strobed by TS
to produce STBA (Store T-Bus in A). If an ERR
(Error) signal is present, the IOIO and IOI signals
cause the error code to be loaded into the A-register;
otherwise, the A-register contents remain zero.

5-66. As a testable error indication, the ERR signal
also sets the CPU Overflow flip-flop. This is done
by enabling the OVD line, which generates IOSB (the
1/0 address of Overflow) and STF at T6T7.

5-67. The Exit signal also goes to the EAU logic
card (see figure 7-4), where it generates the signals
necessary to increment the P-register. At T6T7,
RPRB, ADF, and SBO read and increment the cur-
rent value of P, and at T7T SWSM and SWSP store the
values into the P- and M-registers. These registers
are now ready to address the next instruction in mem-
ory.

5-68. Also occurring at T7 is the Reset signal,
generated by the Exit signal. This clears the TLD,
MAC, 101, 102, and Shift flip-flops.

5-69. The final action of EAU is to re-enable the
CPU. This is done at the end of T7S by setting the
EPH (Enable Phase) flip-flop, which ends the IR
signal to the CPU.

This completes the discussion of
the controller portion of the EAU
logic. The section continues on
page 5-15 with a discussion of the
non-floating-point instructions.

5-12

2152A

T
I

LFPP ENTRY ROUNT!NE-J

SET 10 CODE
TO 11" (wait FOR

WAIT FOR FFP
TO ACCEPT OPCODE
AND EXECUTE

THE FUNCTION

HIGH FLG)
|
e . o c—— c— — — -—
r PUT ERROR CODE IN A-REGISTER
T2 AND SET OVERFLOW
l U1228B I l
_ Ul11c SET EXIT
U14A
U17E
l I I U17F T2
1010, 101:
I ERR YES | ol LoADAND READ
?/ ERROR CODE TO $-BUS
l NO |
| v T3
U27D
MP4: CLEAR
' A-REGISTER (SWSA)
I v
| ! .
U15A
DL3: LOAD ERROR
I CODE IN A-REGISTER
| § T6T7
I v1lc
U63C SET OVERFLOW
I I | (STF, 10SB)
l (| :
! 7 | |
U123A —
P+1 TO P,M
| SN
u1o7¢C
I RESET |
775
I ul7¢ ENABLE CPU
v768 (CLEAR IIR)
PHASE 1 I

Figure 5-12.

FPF Flowchart

Table 5-4. Error Codes
ERROR CODE (A- Reg) INSTRUCTION CONDITION
0 No Response 0 0 0 Any, except: AS,
LS, RO, MPY,
DIV, DLD, DST
1 Underflow 0 0 1 ADF, ADX, Result is in the range
SBF, SBX, 0< z < (1/2) 2-128
MPF, MPX or0 >z = (-1/2) 2-128
DVF, DVX
CMX x = (1/2) 27128
HCX, HSX X < -88
EXX x < -87.3
2 Overflow 0 1 0 STD, FIX x < -231
orx = 231
ADF, ADX, 127
SBF, SBX, Result is = 2 127
MPF, MPX, or < -2
DVF, DVX
ABX, CMX x - -2127
HCX, HSX x > 88
EXX x > 87.3
RNX Result = 212'7
3 No Resolution 0 1 1 CSX, SNX, x| = 238
TNX
4 Divide by Zero 1 0 0 DVF, DVX y =0
TNX x = 2k+1)7/2
for k=0, 1, +2,...
5 Improper Variable 1 0 1 AHT x| = 1
LNX x = 0
SRX x < 0
6 Improper Opcode 1 1 0 Any
Notes: x = Contents of X Register before execution
y = Memory contents
X = Contents of X Register after execution

TIME PER|ODS

OoPC

FLG

10|

Io2

N

F
RESPONSE
TIME

EXIT
(roro)
(101)

SWSA

EOFEB

STF, IOSB

OVERFLOW

IIR

- El'_ﬁ

TO

L

Table 5-4. Error Codes
TRROR IC(? DE (E‘)A - Regg INSTRUCTION CONDITION
esponse 0 0 0 Any, except: AS,
LS, RO, MPY,
DIV, DLD, DST
rflow 0 0 1 ADF, ADX, Result is in the range
SBF, SBX, 0<z< (1/2)2-128
MPF, MPX or0 >z > (-1/2) 2-128
DVF, DVX
CMX x = (1/2) 27128
HCX, HSX X < -88
EXX x < -87.3
flow 0 1 0 STD, FIX x < -231
orx = 231
ADF, ADX, 197
SBF, SBX, Result is 2 2 127
MPF, MPX, or < -2
DVF, DVX
ABX, CMX x = -2127
HCX, HSX x > 88
EXX x > 87.3
RNX Result = 2127
asolution 0 1 1 CSX, SNX, |x] = 238
TNX
e by Zero 1 0 0 DVF, DVX y =0
TNX x = (2k+1)7/2
or k=0, =1, +2,
»per Variable 1 0 1 AHT x| = 1
LNX x s 0
SRX x < 0
»per Opcode 1 1 0 Any
Notes: x Contents of X Register before execution

y
X

oo

Memory contents
Contents of X Register after execution

Section V

ro T/ T2 T3 1Y 75 TG T7
TIME PERiODS | | | | | l l l
| | ; . | 3 : |
: ' X :] : i) |
t . ' P t t
- — ‘ ! : ! : ' : ’
0OPC L ' ! : . ' i) : '
] i T 0 B ;
S
i ! ! . ' [
' ' t : f I [}
g L ;
L] . i
| | | : | ! 5 ;
: .' j) . : : ' X
: ! ; : ;) 1]
[0 [| . L
; : ! : ? ! ! ' :
: ' f) : '] ! '
! : i ' ' : ' ["
! : 1 i A i ,
oz _I] | - J
eer : ; | , ' * | '
RESPONSE | ; ‘ . ; :)) '
TIME i ' : ’ , ' ' i
| ! ' ' ' ,) ' ,
[) ' ' ¢ | i T H
EXIT , : I | [
(IO[O) ! ; ; ! . [; ' '
(Ior1) ! : ! ; ! ! ; ' |
! (! : ' X ' ! .
: ' : [4 ! l : !
') ! ‘ ' ' \ \
! : ! ! N ¢ ‘ ! .
j ' ; ' ‘ | ,
SWSA : \) ' l !)
t . A) v ‘ . ,
i \ [\ : ' \ , '
i ' i N , i '] '
i) ' . ’ 1 ! 1 '
: ! :) ! : ! .
| . . | I————I) i
EOFB ; ') ' | P
) ' ! : . ‘) J
: ‘ 3 : K » ! : .‘
.’ i ‘) i
STF, 1058] | ' | L
s |] ' \ ,
: : : ; .’ : ' ! ~
! ! : ! X X ; ' E
t d ' ' H 1 1 .
' ! ’ : : ‘ ‘
OVERFLOW : : ' - : ' i ,
. ! ' : i) \ , !
! : ! : ‘ f ! : 2
IIR : : ' i i !

Figure 5-13.

L

FPF Timing
5-13

2152A

5-70. EAU FUNCTIONS.

5-71. The remainder of this section provides theory
of operation for those functions of the FPP which
operate only on the computer A- and B-registers,
and are not involved with the floating point processor
unit. These functions are: integer multiply and
divide, double load and double store, and long shifts
and rotates. Table 5-5 lists the machine codes for
these instructions. (Instruction definitions are given
in section III of this manual.)

5-72. Figure 5-22 is a generalized block diagram of
the extended arithmetic unit, integrated with the com-
puter CPU block diagram. (Input/output is omitted
since it is not involved in EAU operations.) As
shown, the EAU hardware consists of two printed cir-
cuit cards: timing and logic. All of the signals
entering or leaving these two boards are identified in
figure 5-22. The following paragraphs (through 5-81)

Section V

describe in general terms the functions that these
signals are intended to accomplish.

5-73. STARTING THE EAU OPERATION. When the
instruction register (I-reg) decodes an EAU group
instruction from the T-register (bits 15, 14, 13, 12,
10; refer to table 5-5), a MAC signal is sent to the
EAU timing card. This signal enables EAU.

5-74. TFirst, the MAC signal loads the seven
instruction-determining bits into the operation
decoder, which decodes the type of operation to be
performed (multiply, divide, rotate, etc.). The
resulting decoded output does several things. For
shifts and rotates, it loads TRO through TR3 into the
operation cycle counter, or, for the other instruc-
tions, it presets the counter to a value of 5 (ignoring
TRO-3). (The significance of the number 5 will be
explained later.) The decoded instruction signal also

Table 5-5. Extended Arithmetic Unit Machine Coding
INSTRUCTION 15 14 13 12 11 10 9 8 ki 6 5 4 3 2 1 0
MPY 0 0 1 0 0 0 0 0 0 0
DIV 0 1 0 0 0 0 0 0 0 0
DLD 1 0 1 0 0 0 0 0 0 0
DST 1 1 0 0 0 0 0 0 0 0
ASR 0 0 0 0 0 1 *n
ASL 0 0 0 0 1 *n
LSR 0 0 0 0 1 0 *n
LSL 0 0 0 O 1 0 ' *n
RRR 0 0 0 1 0 0 *n
RRL 0 0 0 1 0 0 *n
Shaded bits define EAU *n = number of shifts or rotates: 8 4 2 1
group (MAC signal); re- _ . S— T ——
maining bits determine ; ; ; :Eig:ﬁ:?ﬁges Binary Value
specific instruction. 3 = 3 shifts or rotates
4 = 4 ghifts or rotates
5 = 5 shifts or rotates
6 = 6 shifts or rotates
T = 7 shifts or rotates
8 = 8 shifts or rotates
9 = 9 shifts or rotates
10 = 10 shifts or rotates
11 = 11 shifts or rotates
12 = 12 ghifts or rotates
13 = 13 shifts or rotates
14 = 14 shifts or rotates
15 = 15 shifts or rotates
0 = 16 shifts or rotates

5-15

Section V

generates an IIR (Inhibit Instruction Register) signal
and a EPH ("not" Enable Phase) signal. Together,
these two signals disable normal CPU operations,
and EAU takes contro!.

5-75. EXECUTING EAU INSTRUCTIONS. Since
memory is disabled (‘'not"-EPH), the T- and M-
registers do not affect memory, so all five registers
are available to EAU for temporary storage of data.
There is one limitation, however, in that direct
memory access (DMA) could insert a phase 5 cycle
at the end of any EAU cycle, and thus destroy the
contents of the T-register. Therefore all significant
data in the T-register must be transferred elsewhere
before the end of the cycle in which it occupies this
register.

5-76. In addition to having complete control of the
registers, EAU can also read or write in memory by
generating a P123 signal. (ISG is necessary for the
store operation, to inhibit loading memory data into
the T-register.)

5-T77. Al of these operations (manipulating the
registers and reading or writing in memory) occur
under strict timing sequences determined by the tim-
ing encoding logic. Inputs to this logic include most
of the basic timing signals of the computer (T0, T1,
T2, etc.), plus the current count of the operation
cycle counter, and the decoded instruction. Outputs
to the EAU logic card comprise the 29 timing signals
shown as direct connections between the two boards.
The three shift signals and two memory signals (P123,
ISG) are sent to the CPU. These 34 signals deter -
mine when and how the registers are to be manipu-
lated, selecting any of the 5 Read signals, 5 Store
signals, 3 Function signals, and 3 Shift signals, plus
when to read or write in memory. For example, the
MP1 through MP5 signals sequentially set up and then
perform the operations of a multiply: first obtaining
the address of the multiplier, then fetching the multi-
plier, then converting negative numbers to positive
form, then doing the step-by-step shift and add series
of operations that accomplish the multiply.

5-78. Shifts and carries into or out of the ends of
registers are treated in different ways, depending on
the operation being performed. The Sign, Link, and
Carry flip-flops provide temporary storage and a
means for manipulating these bits. Bit routing is
provided to and from the high or low end of the CPU
buses (RB15, RB14, RBO, SBO, C16, TB15, TBO).

5-79. Checking for overflow conditions is done on
the logic card, and resultant indications are sent to
the timing card (OVR, OASL, etc.). Depending on
the type of operation, the CPU Overflow flip-flop may
be set immediately or delayed until the end of the
operation. The STF signal with IOSB (Overflow
address) sets the Overflow flip-flop.

5-80. ENDING THE EAU OPERATION. As the EAU
operation progresses, the operation cycle counter is
incremented on each step. When the counter reaches
the final count, it causes an Exit signal to be gener-
ated (via timing encoding). This terminates the IIR

5-16

2152A

signal (and increments the P~ and M-registers) and
thus returns control to the CPU.

5-81. Inthe event that EAU should attempt to store
a double word in an area of core protected by a mem-
ory protect option, an RSDS signal immediately
clears the operation decoder and causes an Exit, as
in the preceding paragraph. The CRS signal clears
the EAU logic in the same way, except that it occurs
under instruction control (CLC 0).

5-82. OPERATION CYCLE COUNTER.

5-83. Most of the logic circuits in the EAU hardware
are relatively simple, consisting largely of gates that
are activated in a set sequence. Therefore, most of
this theory of operation will be presented on the basis
of time sequences rather than circuit descriptions.
However, the counter which generates the sequencing
signals does require some explanation, in that its
operation may not be readily apparent. The following
paragraphs, through 5-92, describe the operation
cycle counter (for brevity, frequently identified in
this text as "the counter").

5-84. Figure 5-14 shows the counter logic. The
counter itself consists of four J-K flip-flops, con-
nected as a 4-bit binary counter. The use of J-K
flip-flops permits accurate marking of time, by
avoiding binary-state propagation delays at the instant
of incrementing, inherent in simple binary counters.
All flip-flops respond simultaneously to the incre-
menting clock signal, changing states as required on
the trailing edge of the Clock.

5-85. Note that is is necessary for the two higher
order flip-flops to use pin 7 of the p