
HP 2000

COAIFUTEn SY s Till~i

SOURCES AND LISTI~GS

DCCl;1,:tl:TATION

HF PART NU1illER 226B7-90020

PREFACE

This manual is a guide to the sources and listings of the HP 2000

Computer System." The source of the system can be used to make
I

modifications to the system; the listings and tilis manual can be

used to help understand the internal workings of the HP 2000 ,

Computer System.

This manual is divided into three parts. Part I js ·a description

of the physical format of the magnetic tapes (22703-l000l-Listing,

22703-l0002-Sources, 22703-l1001-Listings on 1600 bpi magnetic

tape, and 22703-l1002-Sources on 1600 bpi magnetic tapes) and a

description of the BASIC program supplied to extract portions

of the listings. Part II is the inLernal maintenance specifica­

tions for the system processor. It includes details on the oper­

ation of the system master program, the system loaders, the BASIC

language processor, and the operating system. Part III includes

details on the Input/Output Processor program and its configurator.

PART I

SOURCES AND LIS'l'lNGS

SQuc.c:es

T~e source listings are supplied as BASIC Formatted Files on e
se1ective dump tape of account Z10l. Eac~ line Of source Is
stored In one ,strln9. The Files are:

APPROXIMATE NUMBER'
~a~E OE_e~OC~s ~OQULE

S2A83 715

55155 725

57900 71~

57905

SA5FH
SRSTLD
5C2A83
5CSIS5

5C7900
5C790S

SCIl)
SCRn
5CRC
SCR5LD
5004
50110
0511C
05120
5012C
50130
SD13C
50140
5014C
502741
5D274C
50274£
50340
S034C
5043
5DSOCD
5051
SOS30
SD53C'
5061

72~

228
2b

34b
344

340
344

135
11
85

7
52
11

120
12

107
10
70
10
68

115
27
27
13

214
b3

218
SSl

9
22~
332

System processor loader wi t~ 2883 d t sc
driver

System processor loader wi tn 7905/2883
dl sc driver

Sistem processor loader wi tho 7900 dl sc
dr I ver

System processor loader ~.th 7905/7900
disc dr\var

A5FH (lOP mOdule)
Paper tape bootstrap loader
Conversion program For 2883 disc system
Conversion program For 7905/2883 disc·

system
Conversion program for 7900 disc system
Conversion program for 7905/7900 diSC

system
CIO (lOP module)
CRO (lOP module)
CRC (lOP module)
2100 Cross loader
0.04 (lOP mOdule)
0.110 (lOp module)
D.llC (lOP module)
O.l~O (lOP module)
D.12C (lOP module)
D.IJO (lOP module)
D.l3C (lOP module)
0.140 (lOP module)
D.14C (lOP module)
0.2141 (lOP module)
D.2/4C (lOP module)
0.274E (lOP mOdule)
0.340 (lOP module)
0.34C (lOP module)
D.4~ (lOP mOdule)
D.SOCD (lOP mOdule'
0.51 (lOP modu I e)

O.SJO (lOP ~odule)
D~S3C (lOP module)
0.61 (lOP mOdule)

i-I

A~PRO)(IMATl:.

~8~t. L.E~Glt' ~ODWl.f::
5Dh2 62 D.bt! (lOP f"';Odule)
SDb3 200 D. b:i (lOP MOdule)
SDUMP 29 UUM.., (lOP mOdulI;')
SHIO 62 MIO (lOP r'lodule)
SHL'(J 14 hLO (loP mOtiUle)
SHLC lHU hLC (lOP mOdul~)
S~MO C:;~ HMU (lOP Mocule)
SM~O l·~ 12 Ht-lllI-i (In~ mO("llJl~)

SHI-JO 14 ""1) (1 ()!J '1"!Odule)
s ""c 1~1 H~<': (J o~ mOrlu'e)
c:.IC~~ c:',:)'-, J Cf(1-1 (lOP ""Odulil!')
SIt)r ~q~ InC (I ()J:.' mOoul@)
SIf)IoJC 1~14- Inpc (lor' moou'e)
SLPO 11 LtlO (J np rr.O~·I',J • p)

SLj:J~ ~~ LPC (I0P mOdule)
CiLTO H LTO (I ('I~ mO("'lulf?)
SLTC r.hh LTC (lOP f"!"IOdu'P)

S'-4C~~C; ~h ~aster Pr ot:u" c!!!'P'I

SMt::M Y 4-4- ~f:·'·.H~Y (r nP mOC1ul~)
S'-4N 1~3 MI\J (I (IP MOr~u Ie)
SMN~CP 1~ Mt..JRCO (InP mOC"lule)
SMNk>IQ .117 twlt.J"~ I H (10"" ",ol'1ul~)

5~1I)(H h~ (1 t)~ mOdulf')
SPPO 1 1 ~po (IO~ mooulr)
c;p~C 72 ~PC (101-1 I"\otiulp.)
C;P~O ~ f.-.Jv (1 OJ..' "..Odu.I p)

~~~o 4 '~Pu ( I n~ ~o"ule) 
S~~C 1~7 t-f~C ( r f'\P ''1<"'au I p) 

C:;S''t'NCi I Cll4 ~Y~'C1) ( IOIJ mOdule) 
Co\c:: V "JJ ~ jl;).., SV"J 1 H (I o~ mOdulf:o) 
S 1 .. 1(., .... It"> 'rP'-1b~ ( I C"P I"flOdule) 
c:, Tes;, '7 -f~ t) ~y 5 t ",~I"'I foJrOCp.5sor 
SWS~I.d., ~~h w~rmst~rt oro~rCt"" 

AoorO)l1 mC!'te Tota I 14clfU r)l SC t- t OCKS 

Tn~ sourCE' cOde 'IS H~ ~lfJO ~ss~mr:"Y l;.,ncucHJ(;\. ""'~ SlJCOorteo 
~SSI?~t'1ler~ I!I!Ire dval 1~t')I(' foor riP DOS ~nd H~ ,jUl'tJ c;ysterns" An 
~sse~nler IS ~vall~ble from tne H~ ~ontrl~uteo I ~br~ry fO~ us~ on 
IHM ,jAO/~70 svste~s. c~r~ must b~ tBK~n to ~ssure sufficient 
sv~no~ t~hle SD~ce €XIstS. Ps~ecldl Iv for the syste~ oroc~ssor. 

1-2 



LlSIl~GS 

The system so~t~are I *stfngs are supplied as BASIC form~tted 
~t les on a selective' dump tape of account Zl02. Each line of 
the listing Is stored as a string •.. Tne first char~cter of. 
each string Is actually a 11ne printer eTl COde which should be 
written to the line pr'nter be~ore the line In order to .nsure 
orooer spactnq on the outout 'istinq • 

. The orogram LISTER. has been sUDol led to prOduce I istings for the 
user In the proper format. To use this program, log on to 
account Zl02. Then: 

EXE-L ISlER 
LISTE~ 

Enter name o~ mOdule to be listed i XXXXXX 
Enter I isting destination (Hit <CR> for terminal) YYY 

DONE , 

xxxxxx Is the name 0'+ the mOdule to be listed, )(XX is the file 
desjqnator 0+ the I *stlnq device. 

The ~ i I es ar e: 

APP~OXIMATE NUMe£R 
OE_eLOC~S ~OQULE 

1429 System processor loader with 2883 disc 
dr i ver 

L'iISS 1497 System processor loader with 790S/2d83 
disc driver 

L7QOO 1429 System processor loader with 7900 dl sc 
driver 

L790S 1454 System orocessor loader wi th 7905/7905 
d.sc driver 

LASFh 191 ASFH ( lOP module) 
LBSTLD 56 RSTLD (lOP module) 
LC2883 79b Conversion Program for 2883 Of sc. System 
LCSISS 795 Conversion Program for 790b/2b83 01 sc 

.SyS tem 
LC7900 798 conversion Program for 1900 Oi sc System 
LC7905 797 Conversion Pro.qram for 7905/7900 .D i sc 

System 
LCIC 12b CIO (lOP mOdule) 
LCRO 12 CRO (lOP mOdule) 
LCRC 77 CRe ( lOP mOdule) 
LCQSLD 13 2100 Cr os s Loader 
LD04 42 D.04 ( lOP module) 

"1-3 



tl~PROX I~'ATt. 

bla~E LE~C2It;j ~OOULt:. 
LOllu to; 0.110 (lOP mOdule) 
LOllel 115 L>.llC ( lOP I'lOdule) 

.LI11?O 1 1 U.l.?O ( lOP 1"I0dule) 
LD12C ~2 u.lc'C ( lOP MOdulp.) 
L0130 ~ U.13u ( lOP mOdule) 
'- 0 13C 72 D.13C (lOP I"'\odule) 
Ln140 f.j U. J.4(1 ( InloJ mOdulp.) 
Lr·14C "9 U. 14r; ( lot-J mOc1ulp.) 
LD?14l <13 LJ.2741 ( J Of.' r"'Iodule) 
tD274C 17 U.~74C ( J np MOc1UIf1) 
LD?74 ... · 14 L>.~-/4F ( I Of..> mOc1ulp.) 
LD:it.,.l) 1 1 lJ. ,:,,"- (J ( In~ mOriule) 
Lf')~4C 1 ';0 U.,j"c ( I f)f.J ITIOoul p ) 
L04.1 6~ L> • .:.. .i ( J OP "'OOll Ie) 
L050r::n 221 L; • ~) 0 C I~ ( In~ MOr."'lJl~) 

LD~OTioo\ d14 U.~Gl~ ( I uf.' "IOOU I e) 
LDC,1A C)t?O lie ::»1 for 1 c, Dorts ( lOP MOrJU Ie) 
Ln~lH C)r7 U.~l for .i~ norts ( 10 .... mo,;u Ie) 
Ln~30 t". L). ':t 1 0 ( I ~~ f")(')dulp.) 
LI)c;3C 1H4 U.":;C ( t n~ mOdlJ I£') 
l DI-.l .jl~ (J.,.,i ( I f)P '"0 dlJ I (1) 

L:),",~ bet U.t"t~ ( I Of-' mOoulp.) 
Ln,..~ 172 l.;. t"1~ (r()~ mOdule) 
Lnl.JM~ 27 l)\)Mi.l ( 1 (l ~ monule) 
LI-iIocl'i ~(" t"1tv for r.OC ( I ("I~ MOnu I (.) 
LHIOI"'i ~4 hlO for IHM ( 10P r."',0C1 u If» 
LHLflCn 14 r-tL 1I for coe ( T r,j;) ""otju I ~~) 
LHL 0 I ~ 1"'- HLf) ;'or T ... ~. ( I ()?-- ~ooulp) 

LHlCCiJ 1 ~ I hLC +-or Ciie ( J nj.J MOC1U I p) 
LrlLCtH 16v HLC for r ~~ tA, ( T nPJ mOr1ult:) 
L .... '.1 OCr) bf, •. HMU ~ ('!.., CuC ( J OP rr"Od u I (.) 

LH\~()T~ :;] HII.=I; ;'or I~M ( I PP mOdule) 
LHj.oIOlrl 13 . H~II ~nr I H"': ( 1 tjp ""ot":ulf') 
LH""OCn 14 HL.,)I.I 4-or Cfl~ ( I ()~ "'Ooulf=') 
LH~OIk 14 ""~ u for T ';r'" ( I () P i.lOC1lA I P) 

Lrl~CCD 12~ H~C . f. or cue ( T nP MoclJlp) 
LHh'Ct~ Id7 t"1~C fo" I f, IV' ( 1 (lP mOeju Ie) 
LICt\~ ?-Sl lCKh ( 1 ('1~ rrlodule) 
L J..:; TI=: k' 1 f-rOC1,.~m to O"'OdlJC:~ I 1St I no s 
LIne ?~ :, 1 ('C ( I ()~) m('\("tul~) 

Llf')IJC 1004 1 ()tJC ( 1 ()P m("J"uI '=?) 

LLj.oIO 1 1 LroJO. ( J nP ,.,onule) 
LLt-lC hC, LI-'C ( J ()~ mOdule) 
LLTO ioj L TO (lOP mOdul~) 
LLTC d.i3 .L TC ( I f'lP "'ooule) 
l. ~C$J P(; IhJ r.-1i'1S t C'>r PrOQr~"" 

LM~~~Y 37 ~,~t·.,~y ( I nf.J m.o~u 'E-) 

LM" .. lhe; fo.lN ( 1 ()~ !""IOClLllp) 
LMh'I.JCf) f,7 ~"·"I.oiC': u ( I () j.J mor.!u Ie) . 

1-4 



~at:1E I.Et:J{lII::t ~OQUL.E 
LMNRIF.I 101 MNRIH ( lOP mOdule) 
LMLJXH 65 MUXH ( lOP mOdule) 
LPPO 10 PPO ( lOP mOdule) 
LPPC &9 PPC ( lOP mOdule) 
LPFotO 5 PRO ( lOP mOdule) 
LRPO 9 RPO ( lOP "'0 du Ie) . 
LRPC 132 kPC ( lOP mOdule) 
LSVNCD 197 SVNCO (lOP mOdule) 
LSVNIfi 328 SVNIP- ( lOP mOdule) 
LTA~H 15 Tf:SGH (lOP modu I e) 
LTSA A257 System processor 
LWSPRG 84 wa,..", sta,..t proqram 

Aooro)(imate Total 24987 Disc blocks. 

1-5 





PART II 

INTERNAL MAINTENANCE 

SPECIFICATIONS 



TABLE OF CONTENTS 

INTRODUCTION ••••••••••••••• .... -..... .... . . . · ...... . • .1-2 
Hardware Configuration ....................... . ............ . ..... · .... •· .. 1-2 

• ·1-3 Memory Map· ••• · •••••••••••••••••••••• 

MASTER PROGRAM 
Introduction. . . ... . . . . . . . . . . . . . • · . 
Conventions for use of Id ·Records •• · ... 
I/O Configura tor Methodology. · . ... 
Id Records ••••••••• ; ••••• · . Master Tape •••••••••••••••••• · . . . 

· .. 

· . · .. . . . . . · .. · . 

· . . .... 

· . . . · ..... · .. · .. · . 
.. .. · . . . 

· . . 

· . · . 

.2-1 
• •• 2-2 

.2-3 
••• 2-5. 
• •• 2-6 

Patching the Master Tape ••••• 
Loading the Master Program on 

. .. · ........ . · .. · . .2-7 
..2-8 a 2100 based system ••• 

LOADERS 

Loaders ••••••••••••••••• . . " ....... . . . 
General Description. 
System Update.· •••••• 

· . · .. 
Mag Tape Reload. 
Disc Re'load ••••• 
Access-1A Upgrade. 

. . . · ... 
· ..... 

· . 
· . 

Disc Bootstrap •••••.••• 
Sleep and Hibernate. 

· . · . • ••• · .......... . 
System.and Feature Level Codes •••••• 
Patch Date Codes •••••••••••••• 
Selective LOAD/DUMP/RESTORE. · .. 

Loader Routines •••••••••••••••••••• . . . 
· . . . . . . . . . . . 

. . . 

· .... • .3-1 
· . • •••• 3-2 

. ..........•... . 3-3 

· ..... . .. 

· ... .3-3 
. •.••.• 3-4 

· .. .3-4 
.3-5 

..3-5 · ... · ..... • .3-5 
· ...•........• . 3-7 · ...... . . . . . · .... · . 

. •..•. . 3-7 
· ... • .3-11 

· . 
• ••••• 3-17 

• •••• 3-21 
Warm Start Program •• 
System Generation. 
Disc Reload ••••• . .. . . • •• 3-22 
Mag Tape Reload ••••••••• 
System Update ••••• 
Disc Organization •• 
Disc Error Routines. 
Cold Dump Program ••••• 
Magnetic Tape Format •• 

· .. 
. . . . 

· ..... · .. · . · .. · . · .... · .. 
Sleep and Hibernate Tape Formats. 
Dump Tape Fomia t ••••••••••••••••••••• 

i. 

· ..... · ... ~ .. . .. · ..... .. 
· ....... . 

.. . 
. . 

• .3-23 
.3-25 
.3-26 

..3-39 

..3-44 
• .3-'49 
.3-50 

• •• 3-52 



OPERATING SYSTEM 

Scheduling ••••• 
Communications. , . .. '. 

System Modules. 
Disc Driver •• . . . '. '. ' ... ' .. 
System Console Driver~ •• 

Processor ,to Processor •••••••• 
Processor Interconnect ••• 

. '. 
..... 

System processor to I/O processor. 
I/O processor to System processor. 

Power F ai lure and Reco'Tery •• 
System Tables •• 

Directory •• 
Direc •••• 
Id Table ••• 
Idee •••••• 
Swap Areas Table. 
Ad t .. ' ............ . 
Locked Blocks Table •• 
Fuss ••••• 
Comtab1e ••••••• 
Loggr ••••••••••••• 
Teletype Table •. 
Equipment Table. 
Master Segment Table. 
Muerto •••••••••••••••• 
Moving 
Device 

Head Disc Table •. 
Table ••••••••••• 

BASIC INTERPRETER 
Notes On Basic. 

Syntax •••••• 
Phase II •••• 

Compilation •• 
Va1ue'Tab1e •• 
Decompi1ation ••• 
PRNST ••••• 

Execution ••••••••• 
Main Loop •••.• 
Statement Execution •• 

LET •• 
IF •••• 
GOTO ••• 
GOSUB. 
FOR •••• 
NEXT •• 
RETURN. 
INPUT ..•• 

.. 
.. 

, .. 

. . . .. 

ii 

... . . . . 

· .. 
.. 

••• 

· . 

· , 

· .. 
.. . 

.4-1 
• •• 4-5 

.4-6 

.4-6 
· ... . 4-8 

..4~10 

..4-11 

..4-13 
• •• 4-26 
..4-32 

.4-46 
• •• 4-47 

.4-49 

.4-50 

.4-50 
..4-52 

• •• 4-52 
.4-52 

•• 4-53 
..4-55 

• •••• 4-61 
• ••••• 4-62 

· . ..4-69 
.4-71 

••• 4-72 
• •• 4-73 

• •••• 4-74 

.5-1 
. .... . 5-2 

• .5-2 
• .5··2 
.5-3 

• .5-4 
.5-4 

.. •• 5-5 
' •• 5-5 
• .5-5 
.5-5 

..5-5 
.5-6 

' •• 5-6 
.5-6 

' .. 5-6 
.5-7 

• .5-7 



BASIC INTERPRETER (Continu~d) 

ENTER ••• 
READ ••• 

. '. '. ' .. . '. '. 
.......... . ... . . · ..... ' .. '.". '. LINPUT. 

PRINT •• 
PRINT USJ:NG. 
RESTORE. 

' .. ' ... '. '.u." .. ". . . 
MAT .... 
END ••• 
CHAIN. 
ASSIGN •••• 
SYSTEM •• 
CONVERT. 
LOCK/UNLOCK. 
CREATE •• 
PURGE •••• 
ADVANCE •• 

. . . 

... . . . 

.. ' . ... ". . .. 
· . · ......... . ., ... 

. ... 
· .. . ... 

· ' .. . ..... . ". '. '. 
.5-9 
.5-9 

' .. ' .... '. ..5-9 
.5-10 
.5-11 
.5-11 
.5-11 
.5-13 

. . . ~ 
......... 

· . ~ .... . .. 
• ••• 5-13 

.5-14 
• .5-14 
.5-15 

..5-15 
•••• 5-16 

..5-17 
• ••••• 5-17 

·UPDATE ••••••••• 
IMAGE, COM, DIM, 

Formatter ••••••••• 
Error Routines •• ~ 

DEF, DATA, FILES, REM. 
..5-17 
..5-17 
..5-18 

BASIC Core Maps •. . ~ . 
Syntax ••••••• 
Compilation. ... 
Value Storage Allocation •• 
Execution ••••••••••• 

Internal Representation •• 
Variable Operands. 
Constant Operands ••• 
BASIC Operators •••••• 

· . 

BASIC Statement Types. 
Pre-defined Function Table: 

. .. 

Extended String Representation. 
Examples •• 

Symbol Table ••••••••• 
Files •••••••••••••••• 

Table Entry 
Table Entry 

(ASCII 
(BASIC 

files) 
files) 

File 
File 
File Table ••••••• . . . . . . . . . 
File Contents ••••••••• 
BASIC Formatted Files •• 
Update Last Changed Date 

Run Time Stacks •• 
Return Stack •••••••••••• 
For Stack •••••••••••••• 
Operator/Operand Stack. 

Language Processor Tables •• 
Flow Charts 

Syntax ••••• ' ••. 
Compilation •••• 
Decompi1ation. 
PRNST .. 
SSYMT. 

Routine •• 

· . 

. ... 

iii 

., .. 

· .. 

.5~19 

•• 5-21 
• .5-21 
..5-23 
..5-24 
•• 5-26 
.5-28 
.5-28 
.5-29 

..5-31 
.5-32 
.5-33 
.5-34 

•• 5-35 
·5~38 
.5-39 

••• 5-39 
.5-40 

•• 5-41 
.5-41 
.5-42 
.5-46 
.5-47 

••• 5-47 
.5-48" 

• e ••••••••••••• 5-49 
.5-50 

.1 

.1 thru 

.1 
· .1 thru 
.1 

4 

2 



BASIC INTERPRETER (Continued) 

ASYMT •• 
RSTPT •• 
ALCOM. 
VALUE. 
Execution. 

LIBRARY OVERLAY REGION. 

User Overlays •• 
Append. 
Assign. 
Bye ••••• 
Catalog. 
Chain •• 
Csave •••• 
Delete. 
Device •• 
Directory. 
Echo •••• 
Dump •••••••• 
Execute ••• 
File Command. 
Files Statement. 
Get ••• 
Hello •• 
Purge •••••••• ...... Length. 
Library •• 
Group ••• 
List/Punch. 
Load •.•• 
Message. 
Name ••••• 
Create ••• 
Unrestrict •• 
Protect ••••• 
Lock/Unlock. 
Private •• 
SWA., ••• 
MW'A •••••• 
Pause •••• 
Renumber •• 
Report ••••• 
Save ••••• 
Supersave •• 

. . . 

Tape Mode Clean-up •• 
Time •••••••••• 

Console Overlays. 
Announce. 
Assign •• 
Awake •.• 
Banner •• 
Bestow •• 

e .••• 

. . 

" . 

.' . 

iv 

.1 

.1 
..1 
.1 
.1 

thru 
thru 

.6-1 

.6-2 
..6-2 
.6-2 

•• 6-3 
..6-4 
.6-5 

••• 6-6 
.6-7 

• •• 6-7 
.6-8 

• .... 6-10 
... :6-10 
..6-14 

.. •• 6-15 
.6-17 
.6-18 

..6-20 
.6-21 
.6-22 

. .6-22 
.6-22 

• •• 6-23 
.6-24 

•• 6-26 
.6-28 

..6-28 
• •• 6-29 

.6-29 

.6-30 

.6-30 

.6-30 

.6-31 

.6-32 
• •• 6-32 

.6-34 

.6-35 
• •• 6-37 
..6-41 
..6-42 
.6-42 

..6-42 
• ••• 6-43 

..6-44 

..6-44 

..6-45 

5 
2 



LIBRARY OVERLAY REGION (Continued) 

Break •••• 
Changeid. 
Copy ••••• 
Hibernate •• 
Divice •••• 
Directory. 
Dump ••••••• 
Disconnect. 
Kii1id ••• 
M1oek •••• 
Mun1ock ••• 
Newid •••• 
Supernew. 
Phones. 
Purge •• 
Report •• 
Reset ••••• 
Roster ... 
RJE •••• 
Sleep ••• 
Status •• 

. ' .. 

. . . . . ... 

. . . .. . . 

v 

. .. 

. . .'. 
.. . . . . . . . 

. ... 

. . 
.... 
. . 

· .. 

••• . .... 

.6-45 
..6-46 

.6;..47 

.6;..48 

.6'-48 
• •• 6-49 

.6-50, 

.6-50 
• ••••• ·.6-51 · . 

. . . , ..... 

.6-52 

.6-52 
• •• 6-52 .. 

• 6-53 

. ...... . 
.6-53 
.6-53 
.6-54 

. . 

•••••• 6-56 
• ••••• 6-56 

• ••• 6-56 
.6-57 

..6-58 





INTRODUCTION 

The ~OOO System consists o~ severat 
seQarate programs wh.Ch are run on two processors. The 1/0 
Processor Pro~ram .S resQonSlble for handling ~tl multiplexed 
1/0 ~rom user termlnats. f~r I/O· to optional non-shar~able 
dev.ces and for remote system data· communications. . 
The system conta.ns the BASIC interQreter. ex.cut've~ and library 
routines and runs on the main processor. The Loader, Which also 
runs on the main processor, .S responsible for generating 
'nttial systems, backing uP the system on mag tape, reloading 
the entire system and user library, and selectively reloading or 
backing UP users' ',brarles. The Loader also contains the cold 
dump routine whiCh isa used to dump the contents of core from 
both processors, as wei t as selected portions of the disc, to mag 
tape. 

Hardware Conf I gurat ion 

I. SYST£M PROCES~O~ 

.. -..... -.. ---~------ .. 
10-11 Processor Interconnect 

12 System console 
13 Time base generator 
14 FIrst diSC 

11-20 Mag tape (can OCCUPy·any unused select codes) 

II. I/O PROC~SSOH 
.. -- .... -_ .. ,.. ..... -
A. See the operator's guide (22687-90005) and I/O 

processor I~S for details. 

1-1 



...... 
I 

I\.) 

MODEMS 

~ 

~ 
PHONE 
LINES 

MULTIPLEXOR 

I/O 
1£ I ;PROCESSOR 

AUTO 

DISCONNEC··· 

INTERCONNErR 1/ 

SYSTEM 
It: I PROCESSOR 

. DIAGRAM OF S:' ;M HARDWARE 
/ 

I 
I 

I 

/ 

~ 
';V 

I 

I 
t, 

DISC 
STORAGE 

- DISC -
\ STORAGE \ 



APPROXIMATE:. 
OCTAL 

LOCATION 

0 

100 

200 

User 1231 

LIBUS 1235 

24000 

26000 

27700 

30401 

30451 

31571 

31605 

54600 

57414 

60000 

b0447 

62641 

64000 

65417 

70000 

71200 

Interrupt linkage ana untnittaltzed system 
variables 

Equipment tabte 

Constants and system variaoles 

Registers saved by clock 

User swap area and system library work area 
(10240 wordS ~rom cOOO to 25777) 

For disc-resident salvage routtnes 

DiSC driver 

Device table 

IDEC 

DIRe:C 

ZOISC (disc driver driver) 

BASIC 

Formatter 

Power ~al I/~estart routines 

System conSOle driver 

Teletype tables 

I/O processor communication drivers 

Magnetic tape driver 

SYstem ~al lure. retry, and salvage routines 

Scheduler 

SWAPR 

1-3 



71&10 

72242 

L I I:H-'" A 7~UUO 

.,., 0 00 

Comm~nd table 

System libr~ry subroutines 

System I ibr~ry proyrams swap dre~ (~l~ 

'Nor'dS) 

Cold oump 

1-4 



I • I NT~ODuCT ION 

T~e M~ster PrOQram (M.P.) supervtsps the qeneratlon or recon­
fiourt'3tion" of Access Systems invoklnQ the desired con~lgurator 
(loP confiqur~tor or TSH SYstem ~Oader) and providing them Njt~ 
uti I ity services. The M.P. Is hOotstrapoed into the System 
Procp.ssor (SP) memory Initially from the Master TdPe and there­
afte~remains reSident unti I loadlnq of the SP program. Since It 
Co"tains drivers for t~e system console and magnetic ta~e unit, 
the ~.P. IS stored onto the disc along with the T58 System Loader 
so t~"t it can be recal Ip.o ~or servlcp. during system shutdo~n. 

Proqr~ms Intended to be co-resident with the M.P. must not al"ter 
the following areas of memory durinQ their execution: 

2-7: 

30 un -"'7 (~f: 
2000(~)-3777(R) : 

MAGSC: 

Ioentlcal with th~ vatues used by the TS8 
System Loaders and the TS~ System Progra~ 
(except that the latter ChangeS location 4 to 
enable powerfall reCOVery). 
M.P. temporaries and I inkaqe locations. 
~ontalns th~ M.P. code and system console 
buffer. 
contdins thP"magnetic tape unit select code and 
System console type. This corr"espondS in 
location to part of tne SP crogram'S equipment 
tdble and will be In the range lOO(b)-177(8). 

Add it I ona I I y. a Cd I I to the • find -' d' rout i ne (..158 758. I) w i ~ I 
use d buffer orlgined at 300(8). potential ty extending to 477(8). 
Complete safety c~n be ~ssurp.rl bv uslnq only locations 
lO(A)-27(A). lOOO(b)-1/77(~), and ~OOO(8)-77b77(8). 

Po orooram loaoed in response to tne "LOAD WHICH MODULE?" ouestlon 
is inVOke(1 by ~ ..JSIj 4UOOf.'. SuCh a oroqram can returncontro. to 
the M.P. after completion with a ~MP 4000~,I. Certain errors 
detpcted by the M.P. wi t I cause It to rewind tne Master Taoe and 
restart Itsel4= with the "LOAD wHICH MODULE.?" Question. 

The fol lowino services ~rp. crovlded by the M.P.: 

1. M~qnptic tape unit rlriver (see' Isting for cal I Inq seQuences) 
-tnvokpd bY a ..JSd 77~.I. 

2. system console orlver (see I istino for c~1 I In9 seQuences)­
i~voked bv a ..Jse 7b~.I. 

3 • • Fin aid r" e cor o. 0 n M ft S t e r T '" e e - i n v 0 K e 0 0 y a ..J 5 fj 75 B • I 
with tne io number of the deSired recoro in (AO and zero in 
p.:q _ (A -1 in (El) is used under special circumstances oy the 
In~ conflqurator only). MOdules should assume that only a 

~-l 



sir" C I e S Ii? cup. n t r ~ I ;:) ~ SIS.... ; I I .., P. m n d r" t /"'t r () u I'J "" the M r3 S t eo r ,~ 0 I? • 

4 • ' I.' E' ~ {) a CI r tar (,;' c '- r ,." - i n v o·q .... d by (Ii ...I c: h /4 r:; • I * r t P"\ c=J b u f fer 
':''''O'''~:SS tn (r-'). "I"'~ '''''.'''. Io' i II dp.lrve'" thP. next record fro", 
tf"\'? ~·\~stpr T~oe 1d' rt~corc:l~ ,1rp. riF.:'leterj fro", th~ strea" of 
rpcordS ~rl Ivproc. T~ls routlr"e ~r~suocoses ~dJust~~nt of 
t ..... · rr:bOnl?tlC tdPt,: ny somp orqviOll.~ rnvoc:r=ttion of 'tind in 
r f" C'" 0 r C'I , • T r. f ~ r ceo r .:~ ~ t I" lJ c; r en ri Cl reo res u"" e r.:1 t 0 h a v e bee n 
n~npr~t~~ Oy ~n h~ A5s~mcler ~n~ thUS to oe b4 or fewer Nords 
in I~nnth~ uoon r"turn (A) ""ol~s thp r~corrl 'enoth;n 
npoct IV~ \l'lor'.1S or IS 7corC') I" rin f.'nd-nf-f I Ie occurred (the 
r I') uti r', ~ C" I.J to", " t r c (:, I I y .~ A C K S 0 ~ C P. 5 0 V e r t n P. F. () F. suo S P. 0 uPon t 
r...:a I 1 5 .".' ill ~ I~ r u r r: «(l) = 1.1 U n t I I • fin d i ('] r f· cor d " I SUS Po r1 

t:,:"' c' (,. Sit ion t ~ ( t Col L"'I f.' t () ,.:. n ? t h d r ~ i I (. ) • C n e C K S U:'Tl S f c r bot h 
rr.ol('jc~t~r'le .~rlc, e:n<;alut(:l r'~("~rds ~re cr"If:c-<er.'l. ChPCKSUTI 
..... ,.. r c" ~ I/o. r I I .~ !"") ;.) r' l t P"\ 0 C,),.. I'j c- ('. S S • 

~ L C C ,:0 t I 0 p"\ ., .1 t'n (,) 1 (" s t ..... I) i· ('I ("j r Po S S 0 f t r'\ (" fHH1- 0 f - t ~ 0 e fin 0 • Tn e 
'N ("\ r c r ~ t c r H n c ~ Cl oN I I I ~.) l=". 7 P. r 0 un Ips s the I 09 S t ", a Q n P. tic tao e 
')":'H:,r~tlon tl:"Sh('n L')·=;C;t thP. fOT ""Arll o+- tne trlJ':>t?· 

h. Qftpr return frcm ~n .nout rp.ou~st olrr.cted to t~e syste~ 
c()nS("Ile. loc..· . ..,t Ion If!t~ .\At; II cnnt~ln "., chcarr-!cter oOinter to 
t I'" (? r (' S c· c '"' ~ P f) t r i ri'J (I) t 0 .r ~ c: h c=- ,.. ..:. C t p r S t 0 I I ,,} wen 0 y ;, 
<: c:'i r r • ~ C f' - r P. t ' .. '" r' j • .:.:. Inc f' t his IN 0 r., I S r f+ S P. t Ii i the ~ c h c::=t I I .. 
"""'''''ule~ r:~r' frp.~IY ,~It("r It oS nf'srrf.'o. 

'I. Atter rf'tllr~ frc.Hl1 .:::" 'rE?~d Mara record' req~est (...ISo /"tj"l) .. 
''''c-r.-t ior' Il~ N' II contr.'.n fA COOy 0+ the r,uffer address 
""oollf.:n In ('-\) lvtl"'\1'l cc-Ile,.. c:;ince thIS NOrd IS reset 
lNith F.'rCh C~JII, r~lC)f:lU'A'S c~n fIIlte'" It (.ter axa!'l'lPle. usp It "3S 
~n Axtrac:tlon D0lnter. A~Vdnr:lna It ~ft~r 10~~lnq e~Ch word 
C' f t .... p r f' ("" Q r,., ,.. (" rj (";). C nlJ t' ; (') n : '9 c.=-' Ito rOll t i r'I e 'f I n d i 0 
r t'~ cor r: • ( ..J ~ I., .. , ~ t· • i) ,''; 1 S C '"' I t e r S t h 'S InC" ,'n ; 0 n • 

T J • ( r:> r v £:) n t I .:"1" ".:. t (: r II ~ • '\ I I" I c !oJ ~ cor r- ~ 

S t r r t:: t (=I .... r' (> r' p n C .' t 0 

rI)o IJ t ,.. f' Cl f ("I r t'l r ':'1 c) :~ r 
str~tpQv. tut t~Plr 

.",-){ I "HJ"" + I ~)( I r\ I I It., 

tl"'l"'1 (:,JrVf"nt 10nS OlJt I I n(~~, h~rt'? r'ire not 
tunctlO~lno Of t~r ~~st~r co~.~~uraticn 

I,~ ::i fit..;. rev ~ n Io?' C ~ C ('l n SIS t P'r'\ too" r 0 a c .... '#II i t h 
tl)r flJtlJr~ cr.f""Itlnc~nCles. 

A • f. I I t' for IT' ~ t 

1 ) IJ 1 I 
1 (IP 

C") 

r) 

C': ) 

C'l ) 

f I I '" S (~ .. C f.:'\ .j t t ~ p , , ~ c:; t p r ~ r ':' ~J r c:- rn an ':1 t nee n n f ; d u,.. eo 
or n "'l r' i~ ,r, ~ I '.1\ 'i "" ('I U 1 .. 1 t""I .'-=! V P. t .... f' f 0 I J. 0 oN j n q tor m ti t: 
F i ,;~ i 0 r e c "r -!. 

(i n P. ,., r ;:j 0 r r I"j ~ t e. c,.. 0 I J t:'I S (-'1\ I I ~ n S () I ute 0 r d I I 

r ~ Inc,;.:: t C' I:' I 1') • 

I- n,... I ~~ r ~ cor 'i • 

~'f""I0-~;" -tl I p :;'''r to(. 

2-2 



2) l~e configured lOP program FI Ie must have the format: 
a) File 10 recoro (td number is bSOOO(lO». 
~) o~e or more date records In a format suJtable for 

transmission to the lOP's protected' loader or 
no recordS if no confiqured lOP program exist~ on 
the tape. 

c) End-of-fi Ie m~rk. 

A. ~~tCh tape form~t (reCOmmended) 
1 ) Mas t e rid r e cor d (i d n u'm b er i sO). 
2) o~e or more data oroups In ~scending Id number order, 

(bot~absolute and reloc~table data groups c~n be 
p~esent on the patch taee). 

3) Ena id record (id number must be ~S535 =177777(8». 

c. DatCi oroup format 
1) Group io record (hit 15 of info word = 1 if NAM 

record fol lows. U otherwise). 
2) None or more rlRta records. If the data group is 

r~locatab'e. the recordS from one complete program 
unit beginninQ with the NAM recora and termtnatlng 
with the ~NO record; if the data group is ~bsotute, 
p.~Ch recorrl is in tne standard aosolute btnery form. 

Thp. use of id recordS for relocatable mOdules I s straightforward. 
Th~ a')s~mbler outout 'for 'eaCh separately assembled proqram unit 
is oreeeoeo by an 10 recorn, formino a data group. Such a group 
Is ~ co~~lete suo~art of a patCh t~oe or ·is combined with otner 
qroup~ into ~ fi Ie on tne ~aster Tace. 

The use of id recordS for absolute mOdules .S somewnat ~rbttrary; 
the numb~r and ulacement should be Chosen to facil It~te genera­
tion of correction recordS on a P~tck t~Pe. ld recordS can oe 
conveniently generateo as oart of the absolute dssemoiy by sltua­
tina them just crior to e~c~ ORG Osuedo-statement of the program 
crocer (i.e •• Just oeforp. the ENU statement). Of course, e~ch 
~rouc Of absolute reCOrdS on a catCh t~oe should be preceded oy 
~n irl record to indicate ~here they should oe merged during 
Qen~ratlon of a new (I.P.. p~tChed) Master Tape. 

III • 1/0 Confl9urator 4ethodo'OOy 

To confiqure an TOP croaram: 
1) C:~I t 'find id' routine (..JSB -{:'8.1) with (B) - U and (A) = Id 

numher of stanoaro modules file (20UO(10». 
2) R~ad the file sequent ietl Iy by calls to 'read oata record7 

(JSB 748.1 With (b) - buffer dddrpss) untl I the end-of-ft Ie 
is reachPd «~U - 0 on rpturn). 

?-3 



1) i-Iosition tnr.' ~oster T~of' to tl""l€' oot,onal mOdules -File by a'" 
J c:; H 7 "l F:h I IN i t h ( tj ) = CJ M nCl ( A v = :.; 0 U (j ( 1 () ) (i tj n u rn 0 e r 0 f 
0ctio~~1 mOdules f, Ie). 

k) '""ean the -File seovnnCialtv oy calls to 'rer!Jd t'r13ta record' 
( ,l:-:i r, I .. H.. I wit h C t') = h U 4= f P. r n d C1 r ~ S s) u nt, lei the r the 
pnn-of-fi In is reeChPO «A) - 0 on return) or ai' desireo 
~Odutps h~vC been rp.~c. 

If ~ cC"nf, ourF'':J r:CCy cf tl"\€' 10F-' oroor,=,'T'I is to oe wr i tten o~ the 
M~~tp.r T~cp. cont,nue ~jth steP ~ bPlnw. nt"erwise oroceed to 
St(':lO 4. 
'"' ) P ('I Sit i C'I n t n c ~, 0 s t e" r ,.:II t; f' tot h P. Con f i 0 u r e ~ 1 ') P f i 'e bY a ..J S !; 

7 ~ • I 'Ir i t n ~ U = - .1. ~ n r1 ( A ,J .;: b :, U U 0 ( 1 () ) (, ri n lJ rT'I t) e r 0 f 
Ct:"lnf., .. ,ur~(j I') ... + " ... ). 

~) ";rit(.' th~ c:.)nfic:tur(;" J(,~ oroQr~,., usin,) o,rect calls to the 
m ., (J n (, tic t ('! 0 I.) C'r i "~r ( ..J S .... , 7":( t 10 • """ e f. 0 r e ~ t t Po ." 0 t , n 9 t 0 

'v r I t f' (,' l!'t r:.... t'"1;; t ere c: (,; r ('f. c: h P. r. k: t h pen c- 0 f - t ,=, 0 e f' a q (7 :i 8 • 1 ) • 
I 4- ,t i s non - :': ( r c • 's S l J P a r~ ~ C k' f I I P. / for'll fj r d r e cor 0 r e Que s t 
t fj ,. II r Q P t "" f'? + I I e AI r , t: t E?' ,.. ~ 0 f. !III r -

CC.C b!lCKf;le 
eLf".. 1 "'1"1 

• ..JS h '1 -,"; • 1 
OCT 4 
,.:pp 

for~~ra on~ r~coro 

reoupst ~ctior) 

(oositlonlnq r0oupst) 
thPse returns 

will not ne tal'(en" 

rhen i ss ~e "'! c~ I C"Qnos t 'C f.'t"'jd oroc~ed to s teo -, be low. 
"':') t p. : r 4= t h'~ C ",ecl< ; or e .",r i t e r i n<":l I s I'!larj~ by a stat us ca I 
tn thp dr I Vf':r be tor"r.> o(')r fO~ no steo '='. tne COd i nt;l of the 
"., .:" s t (' r Pre 0:"" ~:!"l w' I I ~ I I 0 VI' rj I s r." 0 u'" tin 9 t '"' P. t doe d n ti r e "'0 u n tin Q 

It.,. I t h ~ .,. r' tar I ,",.") • to r f' win a c; h 0 u I d t h en b e iss IJ edt 0 en-
~u",p. t;:aOf.' IS et lo..,·.,.nClnt. 

T) '.II.'rltf' fin p.nn-ot-filf!' "'(=Irk (thiS is to OP done ev~n if thP 

r-nCl-of-tAD(" .. Iolot IS spt) ano h(l'lCIofSpnCP. over it. (A) = ~ 
cnnvenip.nt Id nu~~~r (th~ id nu~ber Of the 10P con-Fiaurator'S 
("Inn Id recor'j, presu"':l.=.blv !;I"f'1(lU). will 00 nicely) • 

.. ~ ) 0.( P t II r f"\ tnt;... t? tv)...... '" t h ~ ..J fvo """ '" () 0 U t-1 • I • 

1) ~ositlon tne t~on to tne Con~ioura~ 10P f' Ie by a JSd 
1""".1 With (n) = -1 ~r.r:I (,q = l'-\"')uOJ(lt)). 

?) Re~d tne .. , I E;' us, nr d, rect CPt I I S to the meqnet, c tepp 
rriver (~Sl- ·I(~~.L)." t\fter the en,..,-ot-file m~rK is r-ead. 
nnCk'SPcice over it. J f no rr.H:oros were read, tnen no 
conf,ourea lOr- oroqr~m E''(tst~ on thP. Mdst(llr TdPe: infor", 
t 1"'1 P 00 er ~ t or • 

~) ~ruositlon t~e t~CA hv a JS~ l~H,I with (~U = -1 and 
(Q) -= i:. ccnvo"'t)nt ir:1 nUf'lt'ler (e.Q •• 1"14'1(10.) ~s In steo·$j 
CitlOVP). 

2-4 



4) ~eturn to the M.P. ~ith a ~MP 40008,1. 

I V. Ie RF.CO~D~ 

An Id record i s exactly five wordS long and has the ~o I tow i ng 
~orm: 

Yoord o : 1000d 
word 1 : C'OOl~ 

word 2: 10 number 
word 3: Info wor.i 
y.;crd 4: Checlo<sum 

The j:1 ""umber IS a 16-0;t positive Integer (0 < td < 65535). 
F.~cn file on the master configuration tape must oegin with an 
id rucoro whose Id value is a multiple of 1000(10) (altowing UP 
to A~ oistinct files on the ~dster Tape: btt 15 must be set 
t f the i d recor 0 or eceoes a NA·~ r' ec,,-)r d (i. e.. is the 'group i d 
of ~ non-nul I ralocatahle dota group). In al I otner cases It 
~ust he zero (abSolute data group). This convention Is used 
to d~termine ~hlCh of two checKsu~s to calculate as recordS of 
~ ~odulp are read +rom th~ Master Tace. An 'absolute ~hecksum 
\.hec~ pe~formed. NO Ch~cksum chPCk Is per~ormed on records of 
the confjqured IO~ Since these recordS are In core I~age format. 

Thp fol IOwino dbsolute orooram fragment will aenerate an id 
r ec or rl: 

0'-':(, ?GOIB 
ARS IDV~L 

GEC 0 
hSS 1 

lUV#lLlJE' 
1I'JF'Q wORD 
fO~CE END OF' ~ECORD 

Currently ~ssioned fi Ie id numbers are as fot lows: 

FILE 
lOOP C()NFIGU~ATO~ 

lOP STANDARD MODULe 
In~ OPTIONAL MOUUL~S 
WARMSTA~T 

In I\4Ur..1f::tER (OECIMt1.L) 
J.\100 

7QO 0 LOADE R 
2~H3 LOADER 
7Q05/7900 LOADER 
7905/2MM3 LOADEF< 
TSH SYSTt:tvI 
7QOO FILE 
2~Ho\1 FILE 
1QOr:;/79uO FILE 
7g0~/2RH] FILE 

CONVt.RSION 
CONVERbION 
CONVt:.t-<SI0N 
CQNVt:.kSION 

dOOO 
3000 
10uO 

10\)uO 
J.1uOO 
1dUIJ0 
J. .:Hl 0 0 
dUOOO 
2':)OuO 
d60uO 
21UOO 
2~OO() 

2-5 ' 

DATA FO~MAT 
ABSOLUTE 
RELOCATA.BLE 
RELOCATABLE 
ABSOLU"r£ 
At:3S0LUTI£ 
ABSOLUTE 
ARSOLUTE 
A8S0LUTE 
A~SOLUTE 

ABSOLUTE 
AASOLUTE 
AdSOLUTE. 
A8S0LUTE 



c: ("'I ~ ... " I ' 01 ! ... 1":. I.' I (I ~ 

Th~ cnntpnts of tnp moster t"~e for ACCESS ~onsist of R+2 
f i I~s. ec~(""!"1 follow~cJ by o:9n ~nn-C'f-f i Ie mar"<. Tnt). first. 
f i I~ i!=i tf"f?o Mastpr ~roar.=.m, comDCC;Pd of a St.:>o,-,pnce of recoros in 
t=I !? S ('I I u t p. (j i ,., ~ r 'ItO r "' ci t ( rHJ fI'll.-\ P ,. 0 f f1 e t n W 0 r C1 s. rn e ." () r y 0 r j Q in. 
"1~t~ .... or~s. FIno Chec~sum). Th£? 'VI.P. must be IO.::l<:~e·d fro,," mEilc 
tAnn: t"'f'r~c=!ft'er It f.JrOVI"'~s t"'~ t~ci I itl€"s tor loadine thE' CO". 
t i ~ l J r :7:1 t lor. moo U I 1;' 5 • 1 ~ E? I tit S t t; I €' i S I ri I tin I I v e ~n c t y e )( ceo t tor 
t~r~ file' iC"'l reC(OH":-1. It enn be overwrittp.n "'Itn n confiaured In"" 
orC'Jr.=tr." thrOllcr'\ rHI oCltl')n nf thn in.., conf,(Jurertor .. Tna middle n 
fi I~~ c:;rp th£" I')t-J cont ,r:ur~tor. InO proqr:::t" f'llo.:hJleS I Wdrmstart. 
10''3·'''1''''''5, thr-> .oCCt:':i~ SystP.r,'\, ~nd t~~ fi Ie conversion mOdules. 
E~c~ of tf""se fi Ic~ COnsists nf ~ fi I~ i~ racord, bn~ or more 
'jnt~ ,rOI.H·S. an~, nn uc:\tloP"\~I. but rpcolTt'TIenop.a. end td record. A 
d~l~ ~roun conSists ot ~ aroup I~ r~cora fel lowed 0'1 a relocat­
abln ·."JrOlJt> (NAP.' r-f·corO t~rouon EN£) rE'corn). or sec~uence Ot 

.=. ~ SOl tJ t f:) r" I n a r 'If tor m c4 t r ~ cor d s, or ~ nul I r P. cor d set (I. e •• a 
arou~ recorn mdY ~~ ful lo~ed ~y ~not~pr 10 recorc or the fl ID'S 
p.nCl-O~-" I Ie me-r.-<). ~ I I I,., r(:'cordS h=-v() the same t ormat. the 
~~~ti~ctlons ~~ove ~r~ tunctio~~I. fpch ie recorc cont~jns a 
un i v lJ ~ i n t r c ('> r (I d) ~ hie", r'I u 5 t '" e Cl r e t=3 t e r t h ,.~ n t ~ E? i d 0 f the
p~v~i~~1 Iv orec8d,n9 i~ r~cord.

2-6

l~e I Oc~ t db 1 e F i .1 e Absolute Fi 'e

F'i Ie id r I Ie Id
Record Record

(,roup Id Group· id
Record Record

NAt-A FIRST ABSOLUTE
Recor d l)C'tta Group Record

• •
• •
• •
• •
• •

E-ono Absolute
Record , Record

(,roue id Group Id
Recora ~ecord

NAM Last Aosolute
kp.cord Oata Group Record

• •
• •
• •
• •
• •

End Absolute
~ecord Record

Eno Id End id
Record Record

EOF EOr

VI. ~atchlnQ the Master Tape

Th~ Master Proqram does not support catching o~ modules'uslng
a oap~r tape containtnq catches. However, the Master Tape can
be rlirectly patChed in the fo' lowlnq manner.

2-7

ThA alb 4dster l~ce m~Y np ~erqen with ~ P~tCh taoe'cr~attnq ~
n e IN Nt ~ s t P. r T e p'e • "" s Sum i not h ~ t t n epa t c n, t" p e f 0 I low s the
conv~"tions for id record~. the n~NIY created ~aster Taoe wi I I
cont~in the new PdtchCS. Hence ~hen any mOdule is IOdrlen tne
o~tC~AS ~~vP atre~oy.~p.pn incluned. Note th~t the sOftw~re to
do this ~s not' part ot tne ACC~SS syste~ itself and the ~~ster
~roar~m c~n not ~e PdtC~~a as It does not cont~in an 10 record.

Wh~ne-v€" 'it IS oeSlreo to use the "4~ster t-'roornrn on ~ ~l\JO baseo
systr~ for ~~~tever re~son: system rr~Sh. ch~n~inq lO~s. system
uo~~t~. etc. the tot IONlno prccPdur~ shOulrl be fOI lo~e~.

Thp. on)E'ctive IS to rEt,.,rl th~ r1aster ~rO·.lrnrn .ro'1" lldO tace uSinq
the ~~Q t~ce haotstra~ ~ontH.n~d on o~c~r t~oe. Tnis oootstrao
must ~e cross-loddCd from the Io~ to the system orocessor usinq
th~ ACC~~S cross loeoer i.nC9 thp system 6rocpssor hdS no Dnoto­
r e.,d Ar •

The cross IO~der ~ust he re~C. from sceclal ACC~~S ~asic ~Inery

Lo~~~r. ~once to rcl~~~ t~~ systpm orocessor. the In~ must oe
ctOD~p.r(~ wit'"' t~R crossto~orr. noviouslv t~e !O~ must be
relo~opn prior to r~lo~olno tn~ svste~ orocessor.

T~~ ~~a teop oootstrep. oncp ~ross IO~de~ Into the syst~m
O~OCA~sor. ~~y oe used t~jcP. once to lOAn or relOdd the lOP
~nrl cnc~ to rplOdO lne systP.~ procp~sor.

clOu cross Loaner

Th~ ~~c~~s Cross L060cr bjn~ry rpSidOS on tne first fi Ie o. the
r."'os~ LO~der/Pootstrap p~o~r t~pe. Thp. Cross LOdoer IS re~d from
th~ In~'s p~ppr t~~e rc~~pr uSlnc t~e ~CCES~ protected rleSlc
"':";r'I-"rv LC"'r=:tder.

Onco tt'le cross Lo~oer n-:'iS hPp.n rf?"'ci into tl"\F" IOP's rnemor,y the
contents of the A a~d ~ r~aistcrs s~ould not be ~Itered ~s they
cont~in th~ splect COop~ of t~e PdPer t~DP re~der and the inter­
conn~ct Kit. T~e ~CCt~~ orotected lo~derconveniently sets these
rea.sters for tl"\e tross lo~~~r.

To cross IO~d thA Doctstr~n (or ~ny orcorem). st~rt tne syste~
procpss~r.s protect~o lo~~pr (rp60lnc frOM tne interconnect kit).
on t~~ I0P. ol~cn tt'le prooram In the Dhotore~oer and set P = ~
r!lnd oress "run". ;;.. nolt 77,... on noth orocesors siqnals t9 success­
ful cross lo~o. Tne Lross Lo~~er ~~y oP restarted ~fter ~ h~tt

77r;:., "'v Simply DreSSlno "run" It it is dPsiren to cross lo~n

(i'nnt"'''''r· troorern.

2-8

clOO ~dq fdPe 800tstrap

The mao taoe bootstrap ;s the second ~i Ie on the crossloader/'
bootstrap paper tape. The cross loader sendS tne bootstrap across
thP. int~rconnec~ kit to the system processor where it 6s read ~nd
pl~cerl into memory byt the protected loader. The bootstr~p may
then be started at either 2000B or 4000B (2000B contains a Jump
to 4000~). However, i~ the bootstrap has just been used to
relo~~ or configure the lOP it mu~t be started at 40006 the
seconn time •. This ts reouired because th8'IOP conflqurator
destroys the JUMP at !ocation 20008.

once the execution of th~ bootstrap is started. the user Is
pro~Pted at the console for the select COde of mag tape unit o.
V~I id v~lues are 14~ thru 26e. '

Th~ ~~s~er Proqram is then read off of mag taoe and loaded into
me~ory. At this point the taoe is' rewound, the select of the
mao taoe is placed into bits 6 thru 11 of the s~itch reoister
and the execution Of the ~nster Pro~rB~ begins.

2100 lOP easie 8inary Loader

The lOP on 2ioo based systems contain a spec'ial ACCESS version of
the orotected ~asic btnary Loader. Consult the Loader manual for
orocerlures for loading this loader.

This loader has two stnrtlno dddresses for eaCh of three possible
memory sizes. To reaa from the Interconnect Kit. start the
IO~rler at location X7700. To read. from the paper taoe reader
st~rt the loader at location x77~O.

whprp. x=7 for a 34 K lOP
X=5 for a c4K lop
X=3 ~or a 10K lOP

In elth~r case. succeSsful execution, ts indtcated by a h~lt 77B.
If successful. the select codes of the photoreader and the
Interconnect Kit are left In the A and B reqisters respectively.
The~p reqister settings are required by the Cross Loader.

~9

2000 ACCESS LOADERS

There ~re f~ur loaders avai lable for 2000 ACCESS systems.
The soecific loader to be ~sed dependS on the tYPe of
discs on the system. All loaders are functional I y eauivalent.
Therp, is a uniQue ACCESS loader for each of the fot lowi9
combinations of discs:
7900 only
2883 only
7905 and 7,900
7905 and 2i;83

Note t~at ~I I other combinations of diSCS on a slng'e sYstem
Rre e~p1 icity disallowed. AI I SUbSeQuent references to
liLoarler" imp I y a I I four. un less exp I I c i .ty noted.

Th~ Loader is a separate pro~ram which runs on the sYstem
comouter. It is expl iCitly loaded by the operator to perform
the fol lowing functions:

1. Generate a new system from maq t~pe.

2. UPdate an existing disc-resid~nt system ~rom mag tape.

3.' Reloao ~ system from maqnetic tape.

4. Q~IOad a sYstem from disc ustnQ the master tape.

5. t)parane an ACCESS lA SystE'm to an ACCE.SS ld system.

The IO~der is implicitly loaded when the operator requests any
of thp. foil-owing functions:

6. A normal load trom disc of a Slept or warmstarted system
usino the diSC bootstrao loader.

7. ~ sleep or hibernate.

In a~dltion. the loader contains thP. movinq head disc driver
for the system. the cOlo ou~o bootstrap, ann cold dumo orogrem.

3-1

GENERAL DESCRIPTION

Thf' t..o~der oen('r~tes the systefTI tal"'lles OY ~sio(ino the
COP"'fir:"uration ootion questions. If no opttons ~re soeciflen
th~n it sets the ~~T to dp.~au't values: 1 diSC on the system,
~ ~i~ctcry trecK oer eISC. ~n~ 1 ID trac~. If tne system discs
~re nxclusivCly 7~UuS tnen thP. def~ult is 1 directory tracK
oer --iisc.

~i~c~ ~re checKeo tor lanels.
inlt'i~lized to zeros only when
and t~p ooerator.Wdnts It to h~

The Locwed Hloc~s facie is
the disc is not I~oeled for
l~b€'leo.

TSh

Tnn ~isc sr"~ce clalmin,') strntP.t"Jy is nS follows: First bui Id ai,
ADT's In corl"' frolT') LOCk~':l ~'I(')CkS Tat"des. TP"'cr" cl.::lim disc scC'ce
for" t""e system. lrJ"ls. "UTs r.rtnd directory tracr(s uslno the AOTs
in cnre. ~hlCh ~rp. then written to nISC. {The disc sP~ce
reouirf'o Cy ~ystE;.'m I Ibr·~ry rout Ines (~nn user' swao :treas are
cl~i~pc after the farst SysteM I inrary routine is read in ceceuse
t~~t routine IS a t~ble of th~ lenaths of al I the system I lorary
routines. ~ccoroln~ tc w~iCh the olsc SO~CD for the I inrary c~n
~~ co~puteo ana cta.men.

Thp. TnT. ~DT ane directory tr~cKS are j2 contlouOUS olOCkS eeCh
Rn""l the s",ap trc.=tc~s dre 4?. cOl"\tloUOlJS r:>IOCKS eacn.

In orrl~r to mtnlmize cyl Inoer S~!tcnino. thp. fot towing ~tQorithm
IS u~~d for cl~i~ln~ olse SD~ce for t~e systpm taoles ~nd swao
tr~cKS:

~. Get tnp next uie~r Of ~vall~ol~ ~ISC sOdce.
~. If it dC~S not cross p~YStcat Cyl ind~r bOUndary.

take It.
(' • I fit C r 0 S s. & s rJ'" y sic a Icy I I n ~ n r t", 0 un ".'l r:! r y the n t a k e

t h ~ n t3 l(t ~ ICC ~ 0" ~ v a i I r,:, nip. "1 S eSC;) ~ c ~ W 1"'1 i C h S tar t s .
on Ohvsicdl cvl Incer hounosrv.

Tnl~ sIl"'Iole ~lqOrltnfTI worKS for alt /diSr. tyoes.

Th~ r~t iOl"\alE' tor oeln, ~hl~ to olJ,'d ~II ~JT's In core at 14>00\'3
AI or ·1 ~ e ~ c han a t 0 h d vet n em r e'" a in,., ~ 1'1'10 r y -r psi a P. n t w h i I e c I ~ i 'TI i n Q

dl~r. !;Odce IS as fOllOws:

A. ~~C~ AOT i~ OUI It fro~ Lock~~ ~Ioc~s T~rIO ~hich is i oloCk
lona C~SA woros) c~nt-jnino at ~cst 12~ entries. or 3d7

IN or t:'I s (:0\ ",or 0 S len try) •

R. T cre-forE' er:.cl"'l Inltl~1 AIH hnS at most IcY pntries. or jt;7
wordS (3 v-oros/entrv).

3-2

c. ~I"\en cla'mina space for the System segments, the number 0+
A,..,T entr i es 'I/.i t t not i ncr ec!)se because they do not have to
start 6n cyl ;ndar boundaries so that the ADT entries c!!re
either shortened Or removed. only claiming space for lOT,
AnT c!)nd dir,ctory tracks may cc!)use an increase of ADT entries
because they nave to meet the Cyl inoer boundary conditions.
The increase 0+ ADT entries is at most:

3(IOTs) + ~ (ADTs) + lOxd (directory tracks) = 91 entries
or 273 'Woros.

D. Hence ec!)ch ADT buffer needS at most 387 + 273 words = 660 (or
12248) wordS.

E. PlckinQ a nice even nu~ber, mawe It 1400H wordS 'on~ each.
T~en the buffer. lenQth .for 8 AOTs is 140008 which can eC!)si Iy
fit in memory $tartin~ at 320008.

The system Is re~d from maq tape and remains in"memory. After
tne first system. library routinp. i5 ,.eao, the system segments 1
and 2 occupyinq locations 32uOOb through 520008 are written out
to t~e disc so that thiS oortion of 'memory can be used for ADT
buffer when claiming disc space for system librc!)ry and swap
~re~s. (The other system.segments are written out after the
COiv1f) .tab I e I s set uP.)

w~en at I the system binaries are read, the remainder of the
system is written to the diSC. Then the pre-boot processOr
nna final aisc bootstrap are written to each disc; the system
segments a~e restored in memory; the user swap areas are
initialized ana tne DATF.-TIME se~uence is entered. control
Is then transferred to TSB.

? Syste~ UPdate

System UPdate uses only the system binarY lO~d section of the
load seQuence. HOwever instead of gener~ting the EQT. it
re~ds the EQT from rlisc. It returns tne diSC soece occuoied
bv the original System I ibrary to AOT and cl~jms new disc
soace for the new I iorary in order to ~I tow exoansion of
syste~ I ibrary as wei I as Poss'ble savinq 0+ diSC space. It
does not Change any diSC ere~ other th~n the system COde.
SAlecttve load ana dump Is processed before entering the
DATE-TIME se~uence. .

Mag tape retoao rendS the EQT e,nd OIREC from the hibernate
or sleep tape rather than oelng initial ized. Also, before
t~e system is read. IDTs and directory traCKS are read from
tnpe and distributed evenly on .disc.

r3-3

~fter the sYstem h~s ~~en wrjtte~ to disc. tne user' jbrerY
Ie; $o~ded r::lnd stcre~ on disC dccordino to the alloc~tion'
oct Ion soecitled.

S~lective LOAD/OU~~

TIM~ seOue"ce. It
LOed/Dumc Section.

4. DISC ReloRds

is oroc~ssed before enter.nq the DATF.­
is describ~d further in the Selp.cttve

T~ere are t~o procedures to reload a sv~tem ~rom disc. Tne
, 0 a c'1f:' r i sex p I i CIt 'y I 0(9 C'H? d .i n t 0 IT' e 1"0 r y for 0 neD r oce d u r e
~n~ i~DI iCltly loo~~~ for tMP other. T~n latter wi I I OP.

p)(pldlned in Item he'

The ~~stpr T~pe must nO usp~. If nCltM~r system generation
or Ma~ tape relu~a i~ soectfled. a disc relo~o is 'mol leo.
control is trans+er"'ed oirectlv to the section of the IO~(ier

Nhere it rpa~s the ~isc bootst,..ao end SST from bloCkS ~ ~nd

~. After ChocKin,=" for vdlid conditions. it redds In the
system accOrding to SST. Then .It orocesses the configuration
o~tions. returns the 010 swao ~re~ to ADT. claims disc soece
for ne~ swap dreas. orocesses selective LOAu/OU~P commandS
~nd enters tha DATE-TI~E seauenc~. If the syste~ (~S re~d

f,..Orrl diSC) is not in ~ 'slcpt' st~te. Wnrmst~rt may oe
:=-tterrlpted.

~. ACCES~-lA UOqrade •
...",

Th~ L("~AI>F.~ (I-IC(t:~~-Hq kno~s th~t dur in'J ~ mF.tc] taoe rei oad
It ~dv oe r~'odoin~ ~n ACCFSS-IA system. If so. So&ci~1

prOCCSSlno)s reQ~I,..eo. The fel lowlnq shoulo ha~a occured
o,..lor to ~ttemptln~ thP. relo~d.
1. ~pcenflqurc th~ svst~m oroc~s~or ~nn IIO processor

n6rdware ~s reaUlr~rl.

2. Con + i our r:~ C:I n ~ c c p. s s 1 ~~ 1 10 Dr c c e s s 0 r • (It "ust be
r lJn", I nq •)

r) urI n q the 1TI.3 q t n (.J e ,.. flo t 0 C' O. ':I i s C sot her t t-\ and j s CO, m u s t
reconfiqureo uSIng the' nISC commano. Thp. 'iiffering system
IpvelcOdes are I~nored. Aftp,.. the opportunity to oerForm
LnAD or DU~P commanrl~ the syste~ halts 17~. Instead of
~oinq throu~h th~ normal ~ate and time seQuence. At this
Doint in tl~e~ the so~tware is IA (~s far ~s the syste"
o,..ocessor is concernP'd)~ ane the hare~~re and IO~ ~re l~.

Ih o,..der to I"stal I
run. The I~ master
ucnate speclFieo.

the IH softw~re. set p=~UOO~ and press
tnop should hp. tOMoeo ~n~ a system

T~is COITIDI~t~s the u~orade to ACCESS-Ih.

3-4

The loader is entered impl'lCitly tnrou9h the bootstrap
oroceolJre:

A. The memory or ~OMrestdent disc loader reads In
sector O.off disC 0 Into memory starting ~t location
20558. enter ing t.,e pre-boot" processor.

~. The pre-boot processor reads in the disC bootstr~p
~nd SST ~rom bloCkS 1 and 2 of disc 0 Into core
starting at loc~tion 14~~OB end jumps into It.

c. The disc bootstrap ~hen reads In the system aCCOrding
to SST and the same seouence of events occurs as out~
I i np.d in Item 4.

7. Sleep or r.lbernate

~or a normal sleep or hibernate. the loader is re~d Into
Memory accoro I ng to S'5T by tr;e Sy stem I I Crary rout I ne and
control is transferred to the loC,ltder. It first COPies the
DIkECT and E(~T to d'SC c?\"nd then If DUMP was specl-fled. It
5 t C'r t s t he mag t ape dump or ocedur e. I f RE.LO~D was spec 1ft ed.
d disc reload IS performed (see item 4). " If no option was
soecified. it just ndlts with 778 (SYSTEM SHUTDOWN).

T.,e SeQuence of aumoinq is as specified In the sleepl
hibernete tape fOrm~t section. If sleep, the user files
du~ped are only those chanQed since the last hibernate; If
nibern~te. at I user fi les ar~ dumped.

q. System/Feature Level Codes

~~Ch system ~nd 10~der is asse9ned a syste~ level code un­
uniQuely tdenti~yinQ tnat system (but not. in general. dif­
ferp.nt versions). ~ach time ~ system is loaded, the 10~der

wi I I ensure that it is the correct one for that system.

A. on Initial syste~ Qeneratlon or system UPdate the loader
wi I I verify that tne mag tape contains Its system level
COde.

R. on magnetic tape reload tne loader wi I I vertfy that the
set of tdP~S w~s qenerated by its system. The only ex­
cept ion -. s an ACCESS-l A UPCH" ada (s ee item 5).

C. on diSC reloaas (bootstraps) the IOdder wi I I verify that
the system on tne disc paCkS- is its system.

3-5

If thr system is not ~cceot~ole In a~y of t~e aoove. the
loaoer wi I I or i nt ILLFGAL SYSTEM CODE. LOAD/DUMP
AAO~TED on the system consol~. enn termln~te 'o~dinq.

~~ course. thiS Should never occur.
COdes assiqnea dre:

?OOOC (HIQn-SOe~~)

200ur (ootion cuu/20~)
2UOOF Cnetion ~lU/~l~)
~OOO Access k~ledse A
200\) Access Relp.~se ~

C:::O()U
31JOO
J..,(IO
~uOO

bOUO

The system level

ThP 'Vi=': I ues ~re i nceoenC"~'nt o~ thP. feature I eve I cOdes
I"'J0scr;bed oelow.

FACh svStPM IS also ~ssioned a fp~turp level code identifv­
ina the level of f~~turps It supoorts.

2000C (Hi~h-Spe~d)

~000F cnotlon ~uO/du~)
~OuOF (O~tlon ~10/~1~)

2000 Access ~p.lp.~se A
2uOO AcC~SS ~elease H

2UlJ
~uu

~ tJ lJ

J.OUu

~OUu

The ~ssumotlon is th~t ~I I SyStPMS .~i I I be mauntained as
concp.ntric suns~tS. nut t~~ SChemp. is flexible enOUQ~ to
~~rooate tniS If necess~rv. The featurp lever cOde is
used by the loaoer to p.nsure that d svst~m is not IO~ded

with a I ibrery ccnt~;nlnc oroar~ms wlt~ f~~tures it does
not suooort. when s~lectively. losoino oroqrans and files
fro~ m~onptlc taues. If thA t~oes were oroduced by ~ SysteM
with a "'ianer feClture Ij::Ivel thp lo~C':er WI I , or'tnt:

TAFE ~AY Cnt~T~ll'<l F"t:I\TU'""t-:~ NnT C:;UP.,J(h~Tt-:.P O.'J THI~ SYSTEM
()t)C)(VS YVY) .

[d) Y 0 1I T A K E. f. 5 P n "J <3 I M r LIT Y ":'

If the ooerator on~~ers Nn. the r~questen selective lo~o is
I"" Y pas sed ~ n c1 t he L n " n ()..., l HI r.4 P COM N' A i-.lO S? Me s s t=l q ere 0 p. ate d t 0
~I IO~ lo~nln~ to contlnup. If th~ operator Knows th~t In
~~ct none Of t~e ProorRms or fi les to ne loac~d cont~jn the
extr~ features (XX)(IS the featurp lev.' ~ode of the system.
~yy is the fe~ture I~v~' COde from th~ magnetic taoe), he
m~y ~nswpr YES 6na r~~ sel~ettve loen wi I I be oerformed. Any
other canswer WI I I c~use repetition Of tne meSSiaQe:

wh@" perf0rmln~ ~ svstP~ UPdate. If the feature lev~1 COde
o .. t h P d; s c..: -r p s ; 0 (j n t I i h r l=! r y ISh i a h ~ r t '"' ~ n t \"1 a t 0 f the s Y s -
t0~ ~~ina lo~neo. tnp lo~dPr orints:

3-6

OISC M~Y CONTAIN F~ATu~ES NnT SU~PORTEO ON THIS SYSTEM
(xxx VS yyy) DO YOU TAKE RESPQNSIHILITY?

If th~ operator answers YES t~e system uPd~te proceeds' any­
w~y. retain.nq the hiaher level code. If he answersNQ the
massage LOAU/DU~~ AAO~T~D is printed and loadinQ terminates.
An\' otner answer' 'II II I cause repet It i on of the message:

DO YOU TAKE ~ESPONSIHILITY?

9. Patc~ Date COdes.

In ~n effort to ~eeo tne system software and lOP software
compatible. d scheme usinq date cooes h~S been 1mplemented.
r~einjtial IB so+t~are ~as a date COde of Ib24 for both
the syste~ ano the I~P. Each time either processor Software
is updated the oate co~e of both processors wi I I be uPdated.
Mcnce. both processors. s~ould ~Iways have the same date
COde.

Each time the system IS brl,)u ..Jhl uP, the dates codes are
co~pared. If unequal the fot lowing message is printed.

IO~ MAY CONTAIN F'EATURe:S NOT SUPPO~TEO O~ THIS SYS'TEM
(XXX VS YYY) DO YOU TAKE RESPONSIBLITY?

Here xxx is th9 patCh dp.te COde of the system and yyy Is the
patch date COde of tne lOP.

If t~e ocer~tor answers no. the load is aborted (must reload
I nP. load abor t eo) •

10. Selpcttve LOAD/DU~P/RESTOR~

Selective LOAU.Du~P. and RESTORE s~are most Of the code with
o~ch other dS wei I as with maq tape reload and mag tape dump.

It stc.rts in the suhroutlne RLDC .,;ith tt'\e question "LOAD OR
DUMP C"MMANDS", crocess,s t~e command. qoe~ to mag taoe
reiOdC section for LOA~ or RESTOR~ ano mdq tace dumo section
for DUMP. when it ~inis~es toaolnq or eumping, It comes
rl.=!ck to RLOC ana aSl<s age" I n "LOAD OR DUMP CO~MANOS?". Th is
cycle repeats unti I t"P. response is "NO" or a carri~ge
rp.tur~ ane then it exists from ~LDC. LOFLG IS set to non-O
for LOAD or ~ESTORE and 0 ~or DUMP.

SLF'Lb = ? for LOAD ~II or DUMP all
= 1 for selective LOAD or
= 0 for mag t,.,oe reload
=-1 for selective ~F:STO~E
=-2 for RE:.STORE ALL

3-7

If,; 0 r c: 11) of e ...:,c h a Ire C tor y e r'\ try i sus eo M s t ~ e II r e c 0 v e r v II
flflln for- th6t A'ntrv. The .f:ollowlr'\9 vallJC?s ot the "reco"er-v"
f'~~ ~r-P Mndnln~ful.

-1 _lImu S t oe r- p.covpr- ec'" dur i nQ L()~f) or- RESTOi-lE if the
entry'pr-~vjouslv did not eXIst ,n the director-v.

_If"nust CP. liurnoerl" our,no DUlv1 0 • "should 09 recover-('d"
C"iurlng kt:.~TnRE (i.e. thP. cr-c9r-altl/file alrerltdv eXIsts
in tne ~ir-~ctorY).

T~~ spou~nCA of eve"t~ for LO~O/~FSTO~~ is:
0:1. C'('ar- 1·r-~,t.Ov('>r-ytt flMC +or- all (,.rectory entr-ies.
b.

c.
C'o~r 'lconstrl.lctP~ TI)"

As~ tne o~er~tor- fer ~

< F I L 1-. t." ~ I'v, t. > ,:~ ... , t r- I ~ c:; •

ttlllblt?
, i ~ t 0 f

n. If i!!'n <lU> IS pntpr-t=;". it is pldCPci Into tne table -­
Cr.o I lit !Icons truct('("1 ll> tc=tb I pll.

f', • I" < It.'> • < f'~ ~H" r." > I S P. n t e r fI' ('1: 5 C t t h ~ rl I r" e c tor yen t r' y • S

r pcovl'~r y + lou.
to •
~ . j..Ipw I n::1 t nO m,=it::l

hlp':;':1 t 1"\0 I dtH'? I

'pvel Cact'.

tat'"lP.
on IOf-!r.

i. ~~~~ In flr~t rpcor~. ~hir.1"\ ~~q,ns witn t~e nirp.ctory
e r try tor t n ~ t f I I f·· •

J • If tl"\R ~ntry Ie:; not
0t,.,pr ,SE;. Ch'.~CI'<, tnt-'
t("'\ st(">rJ ,.,.

I n t '"" p (" i r- r- C t n r ''I

"r- f!',C':ovpr y" t I fiC.:

~o to step ':l.
If not spt.

k • I f. t h r:- c:; t?~ t I. !-' t· :") IJ ,C'" r. f'~ ,.. (.• r. ('0 v (\ r- po cj.1 f I ,.."J ISS ~ t r p t urn
SD.-=j('(l ta tn& Ll'')T.

~o

I. ,",eF-r" In J.;l;rS of-rCll"'\ r",SC onp. nt ;:;. tl''''':t~ to fInd the '.:1isc
SPt.='Ice tor th~ "iIE" · ltnOut r~r:"cvlna so~c:e foro,"" the
Ar>T yt-'" t •

r. UPdate tr"\€ alr-pc-tery ('ntry for tl"'lis fil~ WitI"' the
I. m l.J != t ~ (:> r fI c.. f') 1/ t::. r ~ (" • • f I ,., Cl ('; I f.'? r f!' "1 •

n • I"U~ r:. t'"! ~ r e c c r-., ""i t ..=! tim e. fro,." In a \-:J t ~ ~.J (-? ~ 1"'\ ('] II'" I t P. t 0 dis C

unt, I tr"l(' .. <.+ :I!rl<.·

o • W'" i t PUP (16 t ~ ,; .., I ,.. pet 0 r y t r COl c to(t 0 ('] I Si C •

o • \..> f? t9 ('i I ~ ,... t." 1 n :1'; I r. n n " c ~ I I t:"~, n A L; t (,) ,.. ~ rn 0 '1/ e s 0 ~ C f"!' of- r 0 I"l

1l11T.

3-8

Tht1

Q. If there are more ft I~s to load. 90 to step t. other­
w~se. re~.na ~nd st~nd by.

r. Reao in one 10 track at ~ time. For each IU, read in
one dJrectory track at a ttme and compute the total
disc space USPa by that 10 ana UPdate tne lOT. enter
PLOt aqain.

s • 1ft he 1 () is, n t e II can s t r u c tea I D t Bo tell, put t n e
fi Ie· into the directory and gO to step t; ot"herwlse
to steD h.

sequence of. events for [JUMP t s :
a. San"e as ste~ ~ for LOAD/P":C;TO~E

b. SamE' as step n for LOAO/k'ESTQRE
c. ~c=tmp as step c fer LOAL)/~I=:STORE

o. Sane as step ("I for LOAf)/f,:(EST()~t.

e. Same as step ~ ~ar LnA[\/~ESTO~E

f • Samf? as step f for LOAO/RE<;T()J.JE

Q. Reouest "ver I loy" oct ion.e

h. ~et uo tape l~o~1 ~nd write to mn9 tape.

i. write EO~ mar~.

J. kea~ in one ~irectory track at a ti~e. For eaCh
entrY. cheCk tne "recover lt tlag: if-set. read the
fi Ie from CISC one record at ~ time and write to
tape. The first recoro.iS prece~ed by the directory
entry: the Inst record is fol loweo by an EOF mark.
If not c;et. cheCk tnl?> "con~tructec:1 10 taole": if tne
1D is in the tahle. cump thP. fi Ip to m~q taPe.

k. w~en nl I the oirp.ctory tr~CKS are 90~e throuqh. write
~n extr~ ~Of m~r~. ~ ~Inal tape '~Mef and EOF m~rK.
~p.win~ tne t~op..

I. C ec~ verify finO. i~ not w~nted 00 to steP o.

Ifl. Verify tdPe Innpi and £o~ mMrK.

n. Peed in one dir~ctory track at a tiMe. For eacn entry,
cneck tne tlrecovp.ry" f I dO: if set. re-3:i the f i I e one
recorn at d time from disc into buffer ~t 320008 and
rPRo from taoe ~nto oUffer at 5~OOO~. Verify the
contents ot r.h~se two buff~rs Nith pacn other. If the
f I ~ q I S not set. C h e C K the It con s t rue ted I L) tab I e 18 and

.dO the same vC?rificntlon If the I() is in the table.

3-9

c. ~pwj~n tne st~nn hv.

~1. Pr In t III)ot .. t:. II.

3-10

Th~S section contains brief descriptions of some routines in the
'o~der. arranged an alph~betical order.

BUMP

COB

CF'F'w

CKFC

CLAIM

CLMSW

OAC"

DISCL

This short routine bumPs the pOinter to next AOT track in
the AOT buffer wnen al I AOT tracks are core reSident.
It ts" cal lee by CLAIM for settjnq UP pointers to searCh
next AUT track. (See paraqraph on CLAIM).

This~outine is cal led by SVSLB to claim disc sp~ce for
the system lab,..ary and swap tracKs. It cal"ls F'SDAD to
find ~pace for I ibrarY whiCh can be allocated anywhere" On
any dj~c. It"calls CLMSWfor cl~tming swap areas cecause
they etther start on PhYSical cylinoer oOundary or dO not
cross Physical CyCI 'nder boundaries.

C~Fw converts the first 4 words of a directory entry (10
and NAME) into printable ASCII format in a specified
buffer.

CKF'C CheCKS for val id feature or patCh date COde. The
feature Coce on tape or ulSC Is conSidered Inval j~ if It
is gredter than the feature COde of the System. The lOP
patCh date COce Is conSidered inval id if it is greater
than the patCh date cOde of the 'Odder. In these cases.
the"user may Choose whether" to take resoonslbi lities or
not; If not. then CKFC exists through P+2; otherwise exit"
to P+3.

ThiS routine finds a-piece of disc space from ADT. which
either starts on Physical cyl ineer bOUndary or does not
cross phYSical Cylinder boundary, thus takinq care of
minimizlnq the interrupts resulting from switching of
PhYSical eyl inders on both 1900 eisc and ~~a3 disc.

The AOTs useo by this routine may be ei~her at I In core
buffer of 14000(H) wordS lonq Or on disc to oe reao in
one at a tame. The sucroutlne whjch uOdates the ADTs and
pointers i~ either BU~P or NUADT. The entry pOint Of the
appropriate suoroutine is passea to CLAIM In the word
CL~FL and CL~lM calls It Indi,..ectly througn CL~FL.

CLMSw claims swap areas of 40 blockS each and saves the
diSC addresses In the table TRKTb wnlCh is written to
aisc. Before enterinq the DATE-TIME seQuence, the loader
uses T~KTB to initial ize the SWdP areas and TTV table.

It converts a positive number of b digits from decimal to
ASCII ana puts into a j-word buffer, right justified with
leSd'ng zeros set to nul I c~aracters.

ThiS routine provides the necessary environment fo~ the
moving heaa olSC driver and transfers inout/output/seek

3-11

EOTCH

FN.lSC

FSDAf)

lSAOT

lSAOT

LUlOl

requests to the actual driver.

In conjunction with the GMQ~D routi~e.' OISCl provides a
buffer tor olSe driver ~enerated error messages and
~rints any SUCM errors that occur.

When certain diSc errors occur. OlSCZ cneCKS the disc
error .Iag L>St:.t-tZ. 1+ it is zero. it halts. otherwise it
gives control to the cal I ina olace throUqh eXit to p+~.
US~~F is al~ays cleareo before DISCZ exits.

The D~~N routine IS us~o to insert a 12 word directory
entry' Into the directorv. If the proper directory
track is +-ull" SUPDP IS calleo to redistribute the dire
tracks. ~ee tMe svstem documentation for supersave for
a oescrlPtlon of its ooeration.

Th is rout-i ne CheCKS +-or an end-o+-taDe (our i ng M~g Tape
Sleep operations). It is cal led when end of tape is not
allowable (before +Irst fil~ mark). An end of tape
prints a tape too Short mess(3qe ane halt,S. Pressinq run
re~tarts the eump.

~~ZSC •• ndS tMe next active diSC ~~ith non-z~ro select
COde) and returns with certain pOinters set.

~SDAD lOOKS for nisc space from the ADT. If insufficient
room in A01. It returns to P+l; other~ise ot returns to
~+2 with AU1t:.~ set to pOint to the ADT entry and A-~
registers set to the oisc address. Disc sp~ce is not
removed from ADT if DCfLb is -1 ane is removed otherwise.

ThiS routine provio~s 0 place~ox for
It aSKS for an error messaqe buffer.
or DISCL wil I print o~t the messaqe.

the eise driver when
ilt~er this routine

ThiS routine Inserts an ent~y into AUT and UPdates the
AUT lenqth ShOuld be in core bu~~er and cartain pOints
and PBrameters set.

1hlS rout.ne Inserts an entry Into AOT and uPd~tes the
ATD length v-ord in the E,(JT.on entry, the approor lC!!te
~OT shoulo be In core buffer ~nd certain oOinters ano
oarameters set.

ThiS routine performs the fol lOWing .unct.ons:

A. ~eaos boCK Into core t~e ~our system segments th~t

were overlayed bv the ADT and rUT buffers.
b. CMeCKs the lOP's c~te COde in al I C~seS except mag

tape reloao. If e mag tnpe relOdO is In croqress.
the lO~'s d~te was ch~cked previously.

3-12

LDR30

LDRSO

L. Initialize the random number seed.
u. ~rite out the swapping cortion of the language

processor for eaCh port •. ~rior to writing the swap
track'out for a part initialize the pOinter to the?
10 word that port's teletype table entry.

E. Save the Old device table in a bu+fer beginning at
250006.

F. If upgrading ~rom ACCESS lA to lB, set the system
. status into' EQT to slept and go to step m.

"b. Get the new ~e~ice table from the lOP.
H. UPdate the device assignment wor.d for eaCh entry. i·n

the new device table thet nas a corresponqlnq entry
In the 010 device table. Thus maintain old device
assignments in the new table.

I. Get the oate from the operator.
~. Clear the switch register.
K. Get the time from the operator.
L. CO~y the Operators time and status of not slept Into

the EQT.
M. Save the olsc ad~ress of the EUl ane the IDEC table

where the system ~r~~~s~~r can find them.
N. Write the EQT to diSC.
O. configure the mao .tap~ driver.
P. If Upgrading from ACCESS lA to Ib halt (HLT 77B).
~. Start the clock tlCKinQ every 100 mil Ijse~onds.
R. Print part ~umoer and date COde on the console.
S. Enable console interrupts.
T. Enaole power fai I reCOvery.
U • 5 tar t IOF-t ac t i v I t y •
v. Disable ~JE command if reQu~stec.
w. Begin 1 imesharing.

This routine Cheeks eaCh disc in the disc portion of EQT
for a non-zero select COde. For each disc found, the
elsc'S label is read and Verified (woros band 9 Of the
label whiCh contain the system level and feature level
codes are not veri+ied). If any diSC does not contain a
valid label, the operator Is given a Change to have the
diSC labeled Of TSB. Should the operator decide not to
have such a disc labeled for TSb it is removed fro~ the
diSC EUT ana the MHTHL (whiCh is reconfigured to reflect
the removed cisc). Disc 0 m~y never be removed. ShOuld
the operator aeclde to label a disc 'n question. the bad
blockS table (block J) Is zeroed and the TSB label Is
written to the diSC.

This routine. startinq at loc~tion 32000B. bui IdS an AOT
in 'core for eaCh active (select code #0) disc. For eaCh
active disc in the disc £QT, the disc's lOcked bloc~s
table is reaa into a buffer originating at 773008. The
AUT IS bui It in core reflecting only the lOCked blOCks
for thiS OISC. During the but 10 process, the length'of

3-13

LD~60

LDR7~

NUADT

the ADT for this entry (in the oisc AUT descriPtors part
of the lYT) IS UPdate as e~ch entry is added to the AuT.
When the AuT for a p~~ticular diSC is completed, the
st~rting core address .s bumpeo by 14008 wordS and
another active disc is SOUQht. This routtne is
terminated When no more active disc ccn be located.

ThiS routtne Claims diSC blockS ~or:

A. the system
b. the 10 tacle
C. the AUT
D. the directory

Sp~ce IS claimeo in such a manner th6t .t wi I I not cro~s
acyl tnder bOunory untess the space also oegins on a
cyl inder bOunOary. 5pacea claimed ~or the system must be
resloent on olsc O. Also the d.SC addresses of the
segments ot the sYstem are UPdated in the MST. The other
spaces neeaec may be cla,med from other· diSCS if
necessary. when the space for the oirectory tr~ckS .s
claimed the Initial pseUdO entries are also wr.tten to
disc. Finally the ADT's Which have remained core
reSistent thus far are written to diSC.

ThiS routine reaos system and system I tbr~ry from mag
tape and writes tne overlays to otsc.

EaCh recoro after be,ng read from meg tape into a bUffer
at 77300b is processes as fot lows:

A. if end-of-tile-wrlte I~st overlay to disc, rewind the
routine.

~. If the record Is orig'ned at location 4002b 6ssume it
is the Loader-System LinkaQe table and ·gO to step D.

C. CheCK both the st~rtino and endiny loca~ion of the
recoro. If eitMer location corresponds to an area of
memory that Should not contain system COde, abort the
loao.

U. CheCK the starttn~ location of the record. If tt
beginS at 7~OOU~ tt must be a system overlay so ca. I
SYSLb to ~rite the preCeding OVerldyto disc~

E. Perform a c~ecksum CheCK on the record. Abort the
load if the checksums conflict. Lacy the record from
the butter to the appropriate core location.

f. Process the next record.

Thts routine is cal led by CLAIM indirectly thrOuQn CLMFL
to read a spectfied AOT ,nto ADT Dufter and to set OCADT
to COlnt to the beginning of the oufter ~nd clear t~e

~tag LTM~l for SubSe~Uent FSDAu Cdt t.

3-14

RDISL

RDL8L

RQINT

RTAOT

F(TSwP

SLoe

SUPDP

SYSLA

This subroutine is c~lled eaCh time the diSC' EQT Is or
might be changed. It sets th~ ~nterrupt locat.ons ~or

al I existing eiscs. using the select code and bit 15 o~
eaCh w~rd In the disc EQT. this routine decides what type
each disc is and recon~igures the MHTBL ~or discs 1 thru
7. All woreS except word ~ of a disc entry in the ~HTBL
mey b~ Changed. Also the value of MAXSC (truncated ninth
entry) which contains a double Integer spec'~Y'ng the
ftrst absolute sector number which doeS not maP onto the
system disc confiquration.

RDLBL calc~lates the disc address of a scecified disc
label, readS the 32-word ~abel into the disc label buf~er
and checks the CheCksum for val id label.

This routine prints a SPecified prompt and Interprets the
use,. 's • n put. Ani n val i din put P r I n t s II I LL E G AL I NPU T II
and aSKS the Question again. A'Simple CR or "NO"
returns to p+~. otherwise, return to P+l with the
i n t eger (1 t hr u 10) t n (A).

This routine returns any number of blOCkS of disc sPace
to the ACT on disc. It cnecks to see which ADT the
returning 'space belongs to and readS in the correct
one. Then i~decides'whether to insert the new entry
or to mOdify th~ existing entry/entries and uPdates the
AUT to diSC and UPdates the length word o~ ADT in EQT
if necessary.

This routine returns the swap areas to ADT according to
tne SWA~ A~~A~ TA~LE (SAT) pn disc. It reads the table
jnto core location l~SOOb and returns 40 blOCkS for
every non-zero diSC address in the table using RTAOT.
Then it zero's qut the disc address and writes the table
baCk to diSC inorder to have the table kept up with the
current status of ADT. It is cal led during disc reload
and system u~ddte before. claiming diSC space for new
swap areas.

Th.S routln~ processes the LOAO/DUMP/kESTQRE command. It
on t,y returns to the ca I I I nQ po' nt when no more LOAD/DUMP/
RESTORE commandS are wanted. otherwise, it ta~es the .
input I ine from the console and prOcesses it. If only an
ID is entereo. it is claced into a table of IO's. If
fl Ie names are entered as wei I, the entry Is clacedlnto
the directory with the "recovery" set.

ThiS routine is used to balance at I the directory tracKs.
with or ~ithout inserting a new oirectory entry as
specified by the flaQ SUPTG.

This routine is cal led by both system generation and

3-15

TPLI-<

wOLTE

WTLAL

svstem UPdate to write an overlav to#~tsc. Mag tape
reload cat Is SYSLH after loadlnQ each overlay. However
bOt~ svstem generation end system upoate cal I SYSLB
prior to IOdding e~c", overlay, ~ence the ~'rst call in
t~ls cas~ IS always iqnored. If bit 15 of the switc~
register is set, the load ~alts (HLT 15!:U to allow, for
on-I ine patc~inq prior to writing the overley to disc (to
continue Simply press 'run~).

~rior to wrltlnq thP. first over lev to diSC, the system
and level COdes are cheCKed. InconSistent ~eature level
Codes (excluoing system UPdate) at low the user to take
res pon s i 0 iii t y •

Adoltional lv, system segments one ana two are written to
oisc to al lo~ room fro~ ADT buffers for space claiming
purposes. The lenQth of the overlav in blOCKS is cal­
culated from the first overlay (I .orary sizes table) and
space for the overlavs end the user SWdP trecks is
claimed.

This routine reaos a mag tape label into the first tape
label buffer TL~T and makes sure that it has a TSB label
and a reel number of one. Aefore reaoing, it initializes
the system level and feature COdes in the buffer to zeros
because the T~A tapes prior to Option 200 did not have
such cooes ana the tace levels were 7-wordS lonq Instead
Of 9.

T~ls routine sets UP t~e disc label. ~rltes the label,
pre-boot processor ano the ~ntermeoiete and final diSC
bootstrao onto edCh of the active.

ThiS routine comoutes the cheCKsum Ot tne diSC label and
writes the entrie laoel sector onto the speCified oisc.

3-16

Re-Pto NE-1.'­
Rec040 t:Nom M""!, ~,.~ PG"

>---@

FLOWCHART 1

"l!N~~£Irt"lI/r
Nt.A ~.~ 0':-

F'I.Pt~,,,,G. 0
~',J"'~'~S

F'L. IT (., t.r ,.,jT" fQ Y
AS ~l",,::;T" 8~

~t:(!oI.JI£RSO

1..1 pC IT e-
01 ~c.'T'O~y
'r~JIt(!'" Bi')(! t;:

"-0 O'~C

Rei 1.4 rQ AJ 1'1-1 I S
Ew T"til'l' S
sP",c. TO

",or

)JO

~oo :t.£) ,- 0

T A a L.e

NOT IFfy
c:.Pc..~A r ~"'I~

G; --------.

FLOWCHART 2

tJo

seT I..ltsr
CHI'! N')£. C "i. , ... ,
D'R£c. r ot:!'1
&"I~'Q.

WR Ire
'PRo 6,:)') r'f'I
c.~ F I';'J.:

TOO ,Sc.

We'T£ I.4fCl~"'SC.
"\Re:eT',o~"",

I~"~~ TU

C't.C

R£~o,,~

SPAC£ "o~
"\'" H • ~ t: t.,J"I"'1' "

FRo ", ,iO"

FLOWCHART 3

~Ew INC "Nt)
lANL.() AI)

rnA".., T' litPE

p~OCS$~
~C~/~~I~&.
~F IIIEliT
TA P E'

'P"~r
"T"pr EfNioll. •

.(.: J) > < N AntE> "j) i...,. ,I

ON (ON,SOc.E'

m"" J ,: Y ._.....,
PAtlllm- !
.,. 0 Ie (: -r Eoi' .!:I :
DI~ t:FLCt'r i

CerDIIl.~1
F ... ,~L.. 'I

. - ...

....

'"' .',
LA4C':::O"-

1,"0/· ~~

tiz)-_·

FLOWCHART 4

" II"r'IT~
\. ~(:

LAPortTE fH .. '­

:CD ~ 1""0
~e P"L i, (t',-

lJl,s C So yl/U €
L4~t:.D

f..~ P 0 AT ~ f\ .. L.

I) IQ~ c:. .,.~ ~ -"
C'NTR,C ~ T (.)

Re I"L.e<! T 1: 1)

C,tlPA9H ITIC'S

FLOWCHART 4
Continued

To ~ttempt to warm start a non-slept system. read the 10~der Into
core USing the p~otected disc loader. The I ineal disc bootstrap
will detect that tha system has not been slept and the loader
wi II ·prlnt the message "SYSTEM NOT SLEPT; FOR WARM START ATTEMPT.
L6~D MAS1~~ TAPE ANU P~ESS RETURN. OThERWISE MUST RELOAD F~OM
MAG TAPE. Loaa the Master Tape on the tape drtVe and select -0
of th~ mag t~pe un't and press r~turn on the system console.
The warm start program wt II be read o~~ the tace and wi II auto­
matically begin execution.

The crogra", starts by printing u*.u.wARM STAkT PRQGRAM.u..". At the
beginning of eaCh meJo~ test. warm start •• II print the test.s
title. If the test is success~ul the program will print "OK",
otherwise the reason +-or fai lure is printed, ~ollo",ed by "WARM
SlART FAILU~E - ATTE~PT SALVAGE DUMP?". A response o~
UN-carriage return ll or "carriage return" wil' result In a halt
77~ and the system can then be reloaded from mag tape. A
nY-carriage return" response wi' I result in a cal, to the salvage
dump routine which wi II attempt to retrieve al. o~ the files and
programs I isted In the directory ~nd dump them to mag tace. Any
other response will cause "ILLEC,AL INPUT" to be pr i nted fO,1 lowed
by a repeat o~ the Question "-ATTEMPT SALVAGE UUMP?U

If the warm start attempt is successful "wA~M START CHECK
COMPLET~" is printea at the console. Then the system slept flag
is set (to sleet o+- COurse) and COntrol is returned to the
Intermediate aisc bootstrap. Hence the loader is read back into
memory and the system slept flag Is cheCKed again by the final
disc ~ootstrac. This time the state of the system on diSC is
"Sleot" and the system .S nearly uP. The ooeator is given the
opportunity to reply to tne orompt "LOAD OR OUMP COMMANDS?" and
then the date and time seQuence is executed brinq the system uP.

The fO' lowing Is a list of the printed test titles and their
associateo olagnost.c messaQes and their meanings:

I. ADT CHECK-
A. BAD TWACK L~NGTH - an ADT traCk length is not a

multiple 0+ 3 or an ADT track length does not fall
within the ranqe ~1~2 to O.

B. BAD DISC AuuRESS - tne diSC address for an ADT track
is out of coundS.

3-17

II. IDT CHECK-
A. BAD T~AC~ LeNGTH - ~n JuT track length as posItive or

not evenly divislole by 12.

~. TOO MANY ~N1RIES ON TRACK - the nUMber of entries
exceeds o8~.

C. RAD UISC AuDRESS - the disc address for an lOT trac~

is out of boundS

D. INCO~SIS1~NT ENT~Y - the IDfC table entry's idcbde IS

not the same as the first idcode on
the corresponoing lDT tr~cK.

l. ENTkY OUT O~ O~UfR - an 'ocode has been toun~ out Of
alphabetical oroer.

f. B~D lOCOD~ - an impossible ·'dcode has been found (i.e.
"an Idcode >79~~).

G. B~D DISC S~~C£ £NT~Y - the amount of disc sp~ced used
for an tdcode entry exceedS the
r:JfTlount alloweo.

h. ~AD T~ACK ~OUNT the number Of IU1 track entries in

III. DlwECTOkY CHlL~-
~. B~D T~AC~ L~NGTH

the lOT table ooes not eOual the
number Indlcateo by the Eouipment
Table"entry.

~ directory traCK ien9th is positive
or not evenly ~~vtslole by ld.

b. TOO MANY tNl~lES of\! TRACK - the nlJmber of entr t es
exceedS bhd.

c. ~AD D1SC ~UU~ESS - the diSC adaress for a directory
t r ~ c k Iso u t 0 f t) 0 U n d s •

D. INCONSl~llNT ENT~Y - the first 4-word iocooe-name
seouence on a oirectory track is not
equal to the traCK'S corresoondinq
se~uence in the ()I~EC Table.

~. eNTRY ouT Of O~OlR - an tdcooe-name sequence is out of
alphahetical oreer.

f. bAD PROGRA~ STARTING ADO~ESS - a proqram entry has a
starttno aOdress ~hich does not fal I
witni~ the range +rom ~OOOM to
c::!uUUUH.

3-18

(,. SAD PHOGH~~'" LE.NGTh a proqram entry has c! length which
does not fa. I with In tne range from
-~'toOOOB to o.

H. bAD FILt:. LE."~G TH a f i Ie entry has a length ",hlch does
not fa t I within the range from
3c!.lb7.

1. bAD PSEulio ·l:.NTRY - the directory entry t s not the
pseUdO entry.

~. BAD TH~CK COUNT - the number o~oi~ectory tr~c~ entries
in the DIH~C Table dose not eQual
the number o~ discs on the system
times the number of directory

Iv. 015C S~ACE US~O CH£CK-

INCQNSISTE:.Nl

tr aCk s Per dis C •

th~ tot~1 disc space used summed
from the Directory Entries.

If ~ disc error occurs during the warm Start program
testing, the messaqe "DISC ER~OR - COwR£CT AND RETRY"
Is printed and the computer wi II halt with 518
displayed.

war~ Start functions as ~ol lows:

I. . AUT-CHECK
A. Chec~ th& select cooe for each of eight pOSSible discS

in the core resident ADT Disc Address Table. If the
select cooe is zero, zero the remaining two wordS of
this entry. Otherwise, cheCK the val 'dlty Of the disc
address ana ensure that the length of the table is both
a multiple Of 3 and between 0 ane -B19~ words long.

II. IUT CHECK
A. L.ero ID~f.(O

~. Get next IUl:.C table entry.

c. If oisc aeeress is zero, qo to step Q.

U. Increment traCk counter.

~. Length o. tratk mus~ be neoatlve.

-3-19

III •

~. Length 0+ track nust ce a multiple of twelve~

G. Trac~ mcY cont~ln no more than ~oH2 entries.

h. ~eed in lu trecK from disc.

1. ~Irst 10 on trdCK must eQual the eorrespondinQ 10 in
the IDl:.C table •

..J. 10 must ce greeter than- IDwRU.

~. Seve 10 In 1DWk0

L. ~umerlc part of ID must bP in the range of U to ~9Y.

M. Aloha part Of ID !"lust be in the range of A to z.

~. ~da numoer Of bloCKS used hy thiS 10 to a dOUble word
ouenlty.

o. UPdete pOlnt~r to next entry.

~. If there are more entries on thiS trdC~ go to step ..J.

U. The track counter must eQual tne number of 10 trackS
(NO H·l1) •

uIRl:.CTOkY CHt.t~

A. Set pOinter to first entry 0+ DI RcC table.

H. Lero lUlle end I~st entry ~ncount~red.

c. Length 0+ treek must be neq~tlve.

u. Lengtn must oe a multiple of tNe'vp.

~. Number at ~ntrles on traCk can not exceed cd~.

~. kead.n Olrectory frOM disc.

G. Fir S t f 0 u r w or d s 0 f t r de k m uS t e Q 1..1 a I ~ Irs t four W 0 r d s .
0+ DU=Ct:.<.;.

H. 1+ .nit.al ~seUaO entry ha~ not been encountered
ChPCK for It ~no oc to stpp K.

1. ThiS entry must be oreater than tast ent'''Y.encountered.

3-20

~. ~aKe last entry encountered equal to tn's entry.

K. I~ thiS entry is a .i Ie gato step p.

L. Program started aodress must be bet~een ~OOOB and
26000b.

~. Program length must be between -~4000B words and -38
words.

~. Convert ~rogrdm 'en~th to positive bloCKS.

o. Go to step ~.

~. ~ake sure length of ft Ie is positive.

Q. Add length in hlocks to double wore qUdnity.

k. Advance POinter.

s. I~ there are any ~ntrl~S left on thiS traCK qO to
step I.

T. Set patnter to next Dl~eC entry.

u. Increment trdc~ counter.

v. 1+ pOinter to next OIREC entrY IS not Qeyond the end
of the table go to step C.

W. Last entry must be the +inal pseuoo entry.

X. TraCK counter must equal the number of discs times the
number of OISCS times the number ot directory tracks
per aisc.

IV. uISC SPACE U5eU CH~CK

A. Tne two oauble Nord Quantities calculated in the lOT
cheCK (ste~ N) and the DIRECTOkY chec~ (step Q) must
be equal.

System ueneratlon

1. Laro IDEe ana UIHEC tables.

2. Set system i.aentl~icc3tion to blanks.

3-21

3. Set number of Olrectory tracks per diSC. set NOIRT eQuel
to one for 7,"="uO I OC!!taers. In ~l I other cases, set NOI~T
eQual to SIX.

4. Set numoer of IU trdC~S (NDIJ.<T) eoual to one.

'. uet system ;e~ntificetion fro~ ooerator.

6. ASk operator if confiQurations ootions ere wanted.
If so. SOliCit eisc ano format com~dnd.

7. Check O.ISCS for valid labels. '(LD~30)

H. ~esume contlyur"ction options. From t~e oPerator get the
+ 0 I low i nQ :
A. Mlock ane munlOCK commandS
~. nu~oer of Olrectory traCkS per diSC
t. number 0+ 1U tr~cks

9. bUI 10 AUT for eaCh dctive diSC (LU~4~)

10. Claim diSC olOCKS (LlJ~OU)

11. Configure cqlc CUMC prooram.

I? uet the numcer of ports from the lOP.

11. Loed the system ane the system IIOrary from MdQ tape.
ThiS inc1udes ~ritjnQ the System I ior~ry to diSC.

14. ~ewlnd ena unload the m~ster t~ce.

15. write the system to dlac.

~er+orm the tlnel seQuence. (L01ul)

DI~C f.<t::LOAD

1. Check system level COde 0+ disc O.
A. If system level COde 0+ diSC 0 is not e~ual to

the system level COde 0+ the loader 3uout the 10dd.

2. Load the flnel o;SC bootstrap using the i"ntermediate
e I" s c bOO t s t r d J,.; •

3. ~erfor~ the tlnal elSC bootstrap.
A. "~ead the 10eder ane! the systerrt from diSC 0
~. ~ead eaCh eisc's I~oel and verity correct unit

number, system Identiflcati6n fedture level ana
.s y s t em I eve I •

3-22

c. ~estore con+iourator I inkaQe (~OISL)

D. If. system is not's I ept. al low user to attempt
warm Star t

E. Get number Of oorts from lOP. "If this number h~S
changed, return unneedea trac~s ana claim one
swap track tor each port.

F. ~ewlna ana unlOad Master Tape.

4. Processs Loaa or Dump Commands.

s. Balance airectory tracks.

6. write DIREC table to clse.

7. £ero Fuss Tacle and wr.te to diSC.

~. Perform the final sequence (LDIOI).

MAc., TI\PE PELOAD

1. Chec~ lOP's cate COde (CKfC)

2. Chec~ system level COde of. the first reel. It it is not
the same as that of. the loaaer (18), abort the mag tape
reload unless it IS a 1A system level code in which
case the system wi' I be upgraded to a lb.

3. ~ead the equipment table f.rom mag tape and uPdate the mag
tape select coce tn the eQuipment table.

4. kestore aisc I in~aqe (RDISL)

5. ~ead the IDEC table f.rom mag tape.

6. keaa the DIR~L table from maQ tape.

7. ~eaa the deVice table from maQ tape.

8. Count and save the number of lOs.

9. Count and save 'the number of directory entries.

10. £ero IOte and ulR~C tables.

11. Zero AOT descrl~tors.

ASk operator i+ configuratton options are wanted.
are do the follOWing.
A. get new system identificatton from operator
B. accept diSC and format commandS.

3 23

If they

13. CheCK oiSCS for v~lld labels (LO~30)

14. Hesume configuration oPttons.
From the operator oet the fOI lowing:
A. mlock ana munloCk commands
b. number of directory tracks per disc.
c. number 0+ lu tracks.

l~. bui Id AOT for eaCh ~ctive olsc (LOR~O)

1~. Claim disc blOCKS (LDf..'bO)

17. If configuration oPtions were wanted. eSK if the alternate
al location option IS wanted.

lA. Distribute the ID entries evenly accross a. I at located
tracks uPdet Ing IDEC in the process.

lYe Ulstribute directory entries evenly accross al I al foceted
trackS UPdat I nCii t).I~EC I n the process;
A. Set all real (i .e. not Pseudo or not nonShareable

device file) directory entries to "l"'Iust De recovered".
b. uncount eech nonreel entry from the number Of

directory entries as counted in step ~.

20. Configure colo OUMP crocrem.

21. Get the numoer of corts from the lOP.

22. keao the system nlnary from m~v tabl~.

23. ~estore oisC I Inl<,;atqe (Ht)I~L)

~~. ~edc the syst&m Ilbrarv from mac tape end write al I
overlays to CISC.

25. ~rlte the system to MISC.

26. kecover magnetic tape I lor~ry (MT~)

27. ~rocess IOdO or cump co~m~ndS.

28. balance tne dlrec~orv tracl<s.

2q. write DI~~t table to disc.

30. lero FUS~ table an~ ~rite it to diSC.

31. ~er+orm final seQuence (LDlul)

3-24

Svstem UPdate

1. Check the svstem level cOde of disc O. If tne system level
COde of disc 0 is not the sa~e as the system 'evel COde of
the 'oader, abort the update.

2. Read the Master segment Table from block 1 of disc 0 In a
buffer. COpy the disc address of each segment from the
buffer to the a~proprlate entry in tne loader's Master
Segment. Tab Ie.

3. wead the IDEL and DIREC tab'les from disc.

4. kead the device tdble from disc.

5. ~ead the eQuipment taole from disc.

6. kestore diSC I inkaqe (RDISL) .

7. Disal low else reload (should the uPdate fal') by setting
the status 0+ the system on uisc to "not slePt".

8. ~eturn space frOm the svstem library to the AUT. (RTADT)

9. Return space +rom the swap trackS .to the ADT. (RTAOT)

10. ConflQure CO'd dump proqram.

11. Get the number Of ports from the lOP.

12. Load the system and the system I ibrary from mag tape.
This inclUdes wr,t.nq the sistem 'iorary to disc. (LOR7S)

13. ReWind and unload master tape.

14. write the system to disc.

l~. Process load or dump commands.

16. Balance the d.rectory traCKS.

17. write OIR£C table to diSC.

18. l.ero FUSS table and write It to eisc.

19. ~erform fina' seQuence (LU10l).

3-25

DISC O~bANIZ~TION

3-26

The di$C space available to the system "is determined by the
nUMber and type of alscs whic~ exist on the system. The discs
are aivl~ed into 2Sb ~ord bloCkS. There are 29592 SUCh bloCks
on a 1Y05 disc. 4bb90 blocks on a 2b83 disc and 91~4 on a"1900
disc.

The first 4 blocks 0+ eaCh disc are reserved for use by the
sYstem. 6'oc~ 0 is a label. wh'c~ looks I ike this:

WO~D 0
1
2

3-7
tJ
':J

lu-.JO
31

3~-121

tiTS"
logical alsc number
system .aentificat'o~

system level COde
feature level COde
\)

cheCKsum of words O-JO
pre-coot processor

Disc space for system usage is assigned as fol lows:

Resident

IUT
AOT
Uirectory
S y stem I i br ar y

Swap Area

Variable

J~ blocks/track
Jt! bloCks/traCk
Jc! b I.ock s/ tr aCk
Variable
4~ b' OCk.s/tracK

The resioent system is always on logical disc O. In order to
obtain gOOd disC uSdge and easy expansion of the system library.
the disc space occuPied by the system I ibrary dependS on the
sizes of the I .orary routines, eaCh of which is either 1 or 2
bloCKS. long. AI I t~e system library routines are contiguouS to
one another on diSC.

All remaining blocks ere avai lable for storage of user programs
and files. ~rograms and fi les are each reqUired to be stored as
contiguous bloCkS Of disc. Since the disC is al located by
blocks. each program may cause part of Its last block to be
wasted. When a program is stored' (by the SAVE routine), it is
first decompi leo ana .s stored In that form. only the enCOded
text is stored, ~o that a program may reqUire "as little as 3
wordS of diSC space. When a program .s stored (by the CSAV~
r ou tin e) i tis s a v eo I n a s em I -c omp I led f or m , i. e. the for mit i S
in after the Symbol table is built. Both the encOded text and
the symbol table are stored, plus b wordS of necessary
informatIon.

3-27

Fj les always OccuPy 6n Inte~ral number of recordS (1-327b1). each
fi Ie occupying a contlqUOUS area on the aiSc. bASIC treats the
Indivlaual recordS In the same logical seQuence as tne Physical
seQuence.

3-28

TStj DISC FORMAT
2000 COMPuTER SYST~M

DISC FOJ.lMAT

~IOCk 0

BloCk 1
and 2

BloCk 3

-----~~-~---~-~-

~--------~-----~ Final Otsc
bootstrao

----->Word 0
1

St~rt->2
with 0 :3

---------------- 4
LOCKed bloCK <-for this 5

Table dtsc file 6 ________________ t only 7

Label Format

.-------~---~------~ uLsn
"TS"
Logical dtsc #

System
10"

lOT Tracks ~ System level COde
Claimed 32 blOCKS eacn

as space .----------------
ava i I ab I e
on d t sc
in tn is
oroer

"ADT Tracks
32 blOCKS eacn

OlREC10toCY

Tracks
32 blOCkS eacn

------~------~--System
LII::H(~kY

------~---------Swap
TraCkS

42 blOCkS each

:--------~-------

user

Storage

~'Feature level COde:
10 0

•
•
•

JO
Software->Jl
generated 3~

33

•
•
•
•
•
•

lc!1

3-29

o
Partty Check word

Pre-boot

-----~-------------

tiP 288:) Disc

logic~' Disc
~uC)bec.

o
1
2
J
·4

~

6
1

o
46690
9:3:38U

140070
l~b760

~33450

2i1014U
320830

HP 28d'~ [) I SC

Cv'inder
~uC)bet

0
1
2
3
4

~

6
7
8
'J

First k'e'ative.
_ ___ t;jlgc:~ ____ _

0
c:.:sU
4~U

b"JO
Y20

1150
IJbO
1010
IM40
2070

3-30

c,! t t nder
~umbec.

o
10
C:!O
30
40
~O

60
70
bO
YO

100
110
le::O
130
140
1~0

16U
170
IdO
1~0

~uO

HP 2tH~.;i D. sc

First ~elatjve
61QC:ts

o
~300
4600
b"iOO
9c!OO

11500
1JSOO
16100
18400
20100
23000
25.300
~7IbOO

i9900
32~OO

34500
3edOO
3':ilOO
4140U
~J'700

4bOOO

HP 2tH~3 Di sc HP 2Bc3 L> i sc

First
b~gg_ea.lmbeC BgJ.g.t.l~e_elQC~ Se(;"gC_~UmbeC 6J.gcts

0 0 0 0
1 11 1/2 1 1/2
i! 23 2 1
3 34 1/2 3 1 1/2
4 40 '-' 2
~ f::J"l 1/2 '5 2 lIe
0 of..J 6 3
7 bV l/~ 7 3 1/2
8 9~ ~ 4
Y 103 1/2 9 4 1/2

10 115 10 5
11 1~o 1/2' 11 5 1/2
12 13d .L~ b

13 149 1/2 13 6 1/2
14 101 14- 7
I!:) 17~ J./~ 15 1 1/2
10 1b4 10 8
17 lY~ 1/2 1,1 8 1/2
Ifj 207 l~' 9
19 2:&'8 1/2 19 9 1/2

~o 10
~1 10 1/2
~2 11

3-31

HP 7~OO Uisc

Loqic~1 Uisc
t::IumbftC

o
1
2
J
4
S
b
7

HP 7900 U.sc

o
9744

194B8
c::"j~3~

3t;~7t:l

4H7~O

~8404

b~20t:i

Cy Ii nder
_t:tUmbeC-

f erst Hel~t.ve
____ ~lQC;ts ____ _

o· u
1 4fj

2 ~o

3 144

4 19c:
S 240
b c:: tH'i

7 336
8 3b4

9 4:;~

3-32

~'! tinder
~umbeC

o
10
20
:;JO
40
~O

00
70
~u

90
lOU
110
1~0

130
140
1~O

.LbO
17U
1~0

l~O

200

HP 7900 Disc

First Relative
Bl,u:ts

o
~~O

'100
1440
1~20
c400
2~dO

33bO
3~40

.. 320
4dOO
S~dO

57bO
o~40

6720
7eOO
7680
t;160
8640
~120
~oOO

HP 7900 Di sc HP 1900 IJ t sc

Farst
tle~d_~umQec. ~~!Q~i~~_6!QC~ sectQc._t:lU/]lb~C. , 6!Qcts

0 0 0 0
1 12 J. i/2
2 24 2 1
3 30 '3 1 l/~

4 2
5 ~ 1/~
(; 3
7 3 lIe
t5 4
9 4 lIe

10 5
1-1 5 1/2
l~ 6
1'3 6 l/~
14 7
1!::) 7 1/2
16 8
11 8 1/2
Its 9
19 9 1/2
20 10
21 10 1/1
~~ 11
23 11 1/2

3-33

HP l\juS DISC

LOQicat First Cv I l~ger First
U.Lsc:_~umbeC 6J.g,ts ~umbeC aeJ.etJ.~e_t:llQC:ts

0 0 0 0
1 ~~~9.2(lO) 1 72
2 49J. ~4 (10) 2 144
3 ~b77b 3 21b
4 11b308(10) 4 ~H8

5 147960 ~ JbO
6 177~bc 6 432
7 i:!07J.44 7 504
tj ~3b73b(10) tS 57b

f..J b4=.:J
J.O 7t!0
cO .14+40
JU 2.100
40 ccU~O

~O 3bOO
bO 4+320
70 ~O40

~o ~7.bO

90 0480
100 7cOO
110 7~20

l~u db40
Cv I i nder .. irst 1.;0 ':i~bO

tlumcec b~l~tJ.~C_b!QC:ts
J.4U .100t:JO
l!:)O .10dOO
100 11~20

0 0 .110 .1~C40

1 71::. lbO J.C:!~bU

2 144 1\j0 l~bl:SO

3 ~lb cOO 14400
4 2bb JOO ~lbOO
!::) JbU 400 ~8dOO

0 4+3c
7 504
t:S ~70

'i 043

3-34

HP 1905 Uisc Relative ~Iock Numbers

o
1
"2

t- tr s t
~~!CI.1.~e ... ~!QC:~

o
24
48

3-35

~ec:tor
~umgeC

0
1
C!
:3
4
5
6
1
e
9

10
11
12
13
14
1~
16
11
let
19
20
JO
40

Fir st
et1.Letj,~e_a!QC:~

0
0 1/~

1
1 1/2
2
~ 1/2
~

.3 1/2
4-

4- 1/2
5
~ 1/2
fJ
fJ 1/2
1
1 1/2
t:;

ts 1/2
9
~ 1/2

10
1~

cO

15
b "'

o

I----------------~--:---~--~---------------:
I NOT USE:.U : CYLINOEk NUMBEP

I---~-----------~----I----~----------------~:

15 13 Ii H 1 o
:-------~1-----------:--------:-------------:

HluM OISC
AUD~ES~ wORD

: L'Ow DISC
:NOT USlD:~EAD NUM~Lk:NOT USEOISlCTOR NUMbER: AOO~ESS wO~D

:--------I-----~-----J~-------I---~---------:

hlo\t-(OWARE
DISC ~UDRE:.SSING

FORMAT fOR H~ ~~dJ

(32 bit uat~ Channel Word)

(ORIVE S~LiCT COUe is
CONTAINEO l~ COMMANO WORD)

3-36

15 A 1

I----~---------------:--~-------------------I :
I NOT USED : CYLINDER NUMBER : WORD 1
1--------------------1----------------------:

15 10 9 8 7 5 4 o
:--------:-----------:--------:-------~-----: • •
INOT US~utHEAD NUMbER:NOT USEOISECTQR NU~e£R: ~ORO 2

:~-------:-----------:--------:-------------:

HAHUwAR~

DISC AOQR£SSlNG
FORMAT FOR HP 7~OO

(32 ~It Data Cnannel word)

(OkIV[SELECT cou£ IS
CONTAIN~D IN COMMAND WORD)

3-37

Q

:----~------------~--:--------------~-~--.--: I .

•
: N01 USi:.U : CYLINOER NUMBER

:-----------------~--:---------------~------:

Jl5 13 le 8 7 o

:~------I-----------:---~------~-----------I I
•

: 0 :MEAD NUM~tk: S~CTOk NUM8ER

:------~-l-----~-----:~-------------------~-:

H~~UwARE.

Dl~~ ~tJD~£:.:SSINu

fO~MAT fOk H~ 7~ij~

(32 bit U~ta Channel word)

WO~D 1

wO~D 2

(OkIVE S~L~CT COO~ IS
CONTAINED IN COMMAND WO~O)

3-38

or~c E~WO~ ROUTINE~

Svstp~@rror recovery Is predtc~ted on thr~e different types of
f~llure: 1) inaoility to r~aci or writE' a portion Of the disc
orl 2) totet system fa, lure due to ~ completp d~SC failure •.
erocpssor ~elfunctlon (esPPcl~lly memory eerity errors). soft~are
f~1 lures. etc; or 3) lOP fet lure. Recoverv from disc fBI lures
ent~i Is cel I ing of a routine d~pendent on the tyee of entity
involved (user SW~~ tr~c~. directory track. IUT tracK. ADT tracK.
com~~nd overlay. etc.). ~ecoverv ~rom a tot~1 system fa. lure
entai Is use of the war~start eroor~m (oet~i led in t~e sect.on of
t"'is t"lOClJment concernino t"'f.' loaoers) in conjunction ~ith some
oroohytdctlc Me~sures ~t~~yS t~ken hv the sy~tem. ~ecovery from
~n J"P +al turp ent~i Is t~e use of the lOP ~~~IC routine.

An unrecoverebl~ oisc ~rror whtl@ S~PlpPlno n user In or out ot
m~norv cau~es ~ Cd" to the P0 Q T ZAPPfP routine (PTlA~). Ar
error In re~ding an overlay C~U5es ~ cal I to ~~erqencv Sleep
(STCKP). In~bll i tv to r~(II<1 a sys~e,." track (oarectory. lOT. AOT.
etc.) typicet Iv causes ~ c~1 I to SJC~p. Occ~sional ty, ho~ever.
the mpSS(IIIQe DISC Ekf.«(Jt-t .. CAN'T 00 IT is outPut *nen tne error in
re~~ino the syste~ traCK IS re'~ten to ~ minor command. An error
in writinq ~ system tr~cK causes ~ c~1 I to tne SALV~G£ routine
(SLVAr,). Any non-recOverdole read/write fai luras (e.c_~ oort
7epo~r end s~lv~qe are disc reSident: a ~~I lure in redninq tne~
int.o mel"'lorv is d non recoverc=,blp. redd fai 'Lire)· causes ~ ca"1 to
t t"I p S Y S t e r:"I de a t h roo uti n e ([) F.. A 0'") • T '" pro lJ tin esc 0 r t Zoo per ..
!I;~IVlllnf'. rmercency step-o. (lind ne..,c:f'ar·("- oiscussed Delow.

t

In O~rl~r to ellow recov~ry from ~ tot~1 svstp~ fai lure. the
t~nlp~ on the nlSC m~st ~e uP to ~~tp dna conSistent. lnlS is
qenprAI Iv thP c~se wit", t~e excp.otlon of thp. r)l~~C ~nd IOFC
me~ory resident t~b'es ~nd the eauloment t~nle whicn contelns
news o1tbout thP system AUT ~ntries. T""eretore. e~cn til"\e a
~trp.ctory tr~c~ is Snortp.neo or lenothencct. dn 10 tr~c~ is
.s",ort~ned or len?tnenerl. or a svstp~ trecK is ~oved (see sa'v~oe.
below) the eouipment. the ()TJ.lEC -!nd tht" llJt.c tdr.>les ere ued.dted
on di,C. Tnis preventive I"\pesure ensures 6 ~oo~ cn~ncp. that al I
disc reSident system t~bles ~r~ uD-to~o~te dna co~~istent. The
wermstart proara~. ~nich would bP used In c~se of tot~1 system
fei lure- thUS hdS 0 gond Che'lnce o~ ~in<1ina t",P. diSC In aooC1
Sh~OP..

3-40

W n en the 1·0 P f a I Is. L.t s e r s are Ins t rue ted toe x e cut e the lOP P A 1\1 I C
r 0 LJ tin e • J his r 0 uti n e sen d S tot h e 5 P a 0 u f· fer e'" 0 t Y not t f i cat ion
for ~nCh port. This ensurps t~nt the SP ~Op.s not hang because of
l!t nuffer full bit set in a user's ?F'LAG word. In addition, it
resoonds to al I requests from the SP with a O. IF any user
reoulre", .ncut. thiS U f~kes a resoonsE' (all system COde wrlich
receives characters tro~ the lOP treat a 0 as a carriaQe return
-., null (ASCII 0) Is never leQa~ as an input Character' since
nul Is are strioced by the lOP). This 0 also satisfies ~ny other
SP r~quests (e.q •• SysteM sends transfer incut ouffer ~nd lOP
respondS with O. SYstem Interprets th~s ~~ zero length transfer
and is sdtisfied). Final Iv. the lOP is I isteninq for send cold
dumn (~SN) comMandS so ~ COld duma can oe cerformed When the lOP
is in ~ANrC.

Thp ~p.t result of ~~NIC is to get the system processor to a pOint
whore d SLEEP (or HlbERNAT~) comm~nd can be entered at the system
console. The constant ~~E's and zero responses from the lOP
al low the system to be success~ul Iy sloot.

3-41

T~p. ~p~a routine intorms al I users that the system is gOing dONn,
cla~rs ~I I non~sharea6lp devices (to fre~ the lOP), tel Is the io~
th~t thP. syste~ is gOino down, Informs the console oper~tor of
imp~"nin9 d~~th. ~nd. fin~1 Iy. helts the syste~.

ThP. emerQency sleep routine does the same thin~ dS DEAD wit~ two
exc~otions: memory resident t~bles a~e uPddteo on the.disc and
th~ ~ystem slept flag is set to sleet. keCovery IS gu~renteed
from ~n eneraency slee~.

Hot~ Jp.ttison port (~lZAP) and s~lvnQe reSide on t~e disc. They
arp. reaM into the area ~etween the usar ar~d ~nd the disc driver.
If ~ f~i lur~ occurs ~hen r~adtng, we cal' 0~AD.

Jettison eort KiCKS a uspr off the system. maK'ng his port
unc!v"'1 ',=tole +or further usp. It first removes the user from the
SCheduler cueue ane cle~rs MAIN in case It w~s set. The user's
?FL~r, wora is c'earec ~nd non-Shereaole oevices are rele~see.
The user'S aree of the FlJ~S tatde is cle~red to release env f,'es
he ~Icht h~ve been USlnQ. Findlly. we inform the user Of the
loss of ~IS port, set thp. port's stetus to un~vai lable. tel I the
Sy~t~~ n~er~tor of the ~rror. ~nd return to normal syste~

ocp.r~tion m,nus one POrt.

S~lv~oe Is c~1 leo on B f~i Ip~ write of a system table. It
~s~u~p.S thet the traCK is in memory startino at LlbUS ana that
wo~n ~ontd.ns the 'enQth ·of the tr~~k. It also ~ssumes that
STDAP contains thf:' alsc ~adress where thp tr~co(has fai led to
h~v~ been written. In the worst casp. an entire trac~ (d19~

wOrd~) ano ~ tan'e (SUCh ~s the one createo by the system
op~r~tor'S foJURGE or MLOCK comfTlt=tnC'ls) is In n1p.",ory. we are a'lNays
Ou~r~nteeo th~t the SPAce occuoled nOPS not e~teno p~st ~4U006.
FxeclJt i on i s ~s fot I Off'!; :

1. ~eao aocroxim8tely l~ (71~M ~orrlS (3 oo~s not diVide evenly
into lK) chunks Of thP. ADT into ~~vOOH (tnrow away the AOT
If we c~n't redO it) ~nd se~rc~ for a free area 'arqe enouo~
to holo thP. traCK. If no so~ce .S founo and track to oe
s~tvaQed was ~n ~~T. throw It ~w~y ~no pXlt. otherwise ~e
~ust dip because W~ can't ",oVP the trac~.

2. If space is founa. SUbstitute the new diSC add~ess jn the
~pmory resident tablp. that points to t~e resoectlve tr~c~.

3. write trecK to its new location on the diSC (jf we c~ntt. we
~ie - o.oto DEATh).

3-42

4. ~e~ove the spoce fro~ the AnT for th~ ne~ area Just claimed,
tp.1 I the ooerntor that a tracK was fTtOVed, and return to
normal oroce~sing.

C~LD DUMP PROGRA~

Preparation for runninq the cold dump croor~m

1 •

3.

If the I/O crocessor is halteo, note the register vBlues
~nd start It at "PaniC" (Iocetio 2000H .).

~ ... I t the main' crocessor and record the va,lue of the

J

~ -r e Q i s t e r •

Mount t3 maq tape wit~ C! write rino and sFdect unit o.

Set the P-regjster to 77UOO~ (the startinq loedtion of
the MemOry resident bootstrap that reaos ~he cold dumc
crOQram from diSC.

The cold dump bootstr~c performs the fol lOWing functions
seQuentially.

1. turn off the interrupt system
2. s~ve A.~. t and 0 r~Qisters
3. disable power fai I recovery
4. read the final rlisc bootstrac in memory starting at

location 40000~.
S. oet the rtisc address and Size of the Cold Dumc Progr~m

from the Master ~egMent T~ble portion of the final disc
bootstrap.

b. re~d the Colo Dump Program into meMory startinq ~t
location 40000M.

7. jumc to the COld Dump ProoraM.

The cold dump program is ~ssembled ~t loc~tlo~ ~4000B

hut is read Into memory at location OSCOA (currently
loc~tlon 40000h).

T~e cold dump program cerforms the followina taskS
seauentlally:

1. Checks thet unit· 0 Is on line.
~. Checks thet the m~g tape has a write ~ing~
J. Rewinds tece.
4. writes colo oump label.
S. \oIrites reqister values (A,8.E ana 0).
b. writes system crocessor memory~
7. ~eads t~e fanal rliSC bootstrep le~ds ,nto memory at

locetlon 32000A. The ~ST portion IS needed as It
contains the OISC addresses of the disc reSident
cortlon of the system. The in.tidl time the final
OISC bootstrap was read into memory. it wasoverl~yeo
by thf!' cold dUmc oroara.M after the 01 sc d:tdress and
length of the COld rlump CrOQrdm ~as extr~cted. This

3-44

minimizes the amount of memory that gets clobbere~ p~ior
to beinq dumped to mao tape.

8. If possible (If t",e lOP Is "'istenino'l), the lOP memory
is dumped .n ChunKs into ~ 127 Nord syst~m crocessor
buf fer. Af ter each tr6ns fer i s co~p I ete.d. the buf fer Is
oumped to maq tnee.

~. ~ead system diSC ~rlver i~to memory.
au. ~estore disc driver:

A • C led r M b US Y
H. Suppress disc ~rror meSSdqeS
C. Restore pOinter to the MHTBL
U. Restore oisc driver interrupt ooints
f.. Set i nterruet locat Ions for all oi S.CS.

11. Dump swao traCks:
A. read system-loader ',nkaoe table ~rom disc. on

fal lure. forQet ~bout dumping swap trac~s.
~. From the I inMao~ dre~ n~t the maximum length of

'a user swap tr~ck. starting core address of user
, swap area. length of a TTY table. and the pointer

to the eisc arldress of theSwao trac~ for port O.
C. Dump at I Swap tracks, stoclng after ~~ have been

dumped or ~ disc address of zero Is encountered.
1?. Dump I iorary sizes t~h'e ann FUSS table.
13. Dump directory trac~s stopptno after ~O trac~s have been

dumped or a CISC. ~cdreSS Of zero is encountered.
14. Dump 10 Tabl~. stopoinO ~fter 10 tr~cKS haye been dumped

or a diSC ador~ss of zero Is encountered.
l~. Dump Avai lable Disc Tahle, stOPPino after l::J tracKS have

been dumped or ~ diSC address of zero Is encountered.
Ih. Terminate Colo Dump:

A. write 8 end-of-ft Ie marks
d. Issue a reNind/standhy to mag tace unit o.
C • Hal t -'7t;j

TI-IC fel lowinq errors are correctable by correcting the
problem and t"en cresslno '~UN'. Ot~er errors are not
recoverable.

Err or s

DISC 0 ~OT READY
NO w~IT~ RING ON MAG TAPE

'-ilT 22t-1
HlT 338
rilT 44A
HLT 55B

MAb TA~~ UNIT 0 IS NOT ON-LINE
MAl" T~J-ot:. HAD OP TOO SHOI=iT

COLD DU~~ ~APE FOk~AT

Th~ COld dump tape IS written in variacle
a m~Xlmurr record length of 1~1/10 wordS.

3-45

length recordS with
The tape "IS written

in t e ~o I low i nq ~ormat.

Co
L~oel LD

A DlJ
Qeoisters b MP

EXXXXO (E.xter"d/ ~OOO

System Ovf I) 10

~"'OCC?4SS0'" loc 2

Mem"r" v
loc 3

I/O loc 77777

Prqcessor

Me"o,..v
loc 0

EOF'
loc 1

•
~wc!to •

•
T,..PIIICKS

Swc!o Nt: I"PEP 1st 4

T,..ltCK nATA WO,.. d-s

0 of TTY
T~bl~

£OF
SWc!o

Tr~cK 1
EOF

•
•
•

Swap
Tr aCt< 31

FO~ EOF

• ~OF

•
•

3-46

•
•

L i "'". e"" y
Si7.p.s
T~blp

F..
FUSS
Table

fo.OF

flO
f)irp.ctory:
Tr.,a,cl<s

----------.-.-

10
Ii)
Tr ;'~Ck s

:F.OF

COLD 1.)IJA.lfP T APE FORMAT (con t •)

--.--~-----... ~--
•
•

Library
Sizes tablp
(25t1 WO;'d~)
FUSS, t(l!ble
(lOC:'4 WOrdS)

:t::OF

" .
•

-.... ---_ ... - ---

: 0 i. r ec tor y
:track 1

: EOF

•
• ---------------

: e I r ec tor y
:tracK HO

: EOF

: t:OF

: 11)
:trdc~ 1

: EoF

•
•

: 10
:tracl< Iu

: t OF

: t::oF

:Dl~EC Entry 0:

:OATA

--.. -------... ---
:HEAOF.R: :IDEC Ent,..y \J

... _-------------
DATA

3-47

P­
AnT
T,. ~ck S

COLD OUMP TA~f FO~MAT (cont.)

------------_ ...
IADT : Hf.ADF.R: IADTAT Entry 0:
I track 0 ..;-----------_ .. -

IDATA
IE.OF

•
•
•

1/.4.0"T
I track 7

I i-.Of

I£OF

3-48

MAGNETIC TAPE FORMATS

2000 COM~~TE~ ~YST~M
Sl~£P ~NO HIB~~NATi:.

TAPE FOk~ATS

-----------------~--
, lAf1t:.L

----------~---------
EQUIP~f:.NT

TAbLE

[)1~t:.C

TAHlf.:

10 TAblE

-----------------~--
DI~t:.C10RY

DI~l_;.CTORY

----------------~---.
•
•
•

-----------------~--
OI~f.:c..'OkY

SYSlf:.M
SE<.;~E"'T
TAtsli:.

------~---------~---I
~E("t.-1~NT 1-
INTf:.t-(~UPT

TAHLi:.
--------------------:

SEGME:.NT 2-
HASl_;. tJAGE

--~-------~-------~-SI:::GME:.f'II' 3-
SYSTi:.M LINKAGt:.
TAdlt:.

----~--------~------SEGMf:.Nl 4-
SYSTt::~ St:.bMt::NT
1

~-~-----------------(Contlnuea on ~age 2)

first word of .first record only
ts the recoro word count
(neq~tive) p'aced there by
the Maq Taoe driver

Format the same as UUMP TAPE
format

uumoed in 1024(10) word recoras.
UP to bU(lU) recordS

Dumped in lOc4(10) word records.
UP to 040(10) recordS

Last Directory record IS <= ~OOO(~)
woros and >= l~ wordS

From IO~derMLTdL to MLT~E -­
defines segments vet to be
oumped

core loc~t'ons 2 to ~1(8)

core loc~tions +rom end o~
~qujpment Tae.e io 1777(8)

core loc~tions containing loader
system I Inkage intO-~OU~(8) to
21J1~(ts)

core locations from end Of DI~~C

Table to ~1771(H)

3-50

2000COM~U1E~ SYS1~~
SLEEP MNU HIB~kNAT~
lAPE FOkMATS
(Paqe' 2)

--~---~-------------SEG,.,iI:,NT 5-
SYSTt:.M
SEGMENT G

----~-----------~---SE<';foAENT 0-
SYSTt:.~

St.GMt:,NT :3

---~-----~------~---
SEGt.-lt:NT 7-
SYSll:.M
SEC .. ME:Nl 4

---~-~--~~----~-~---
SEGMI:.NT 8-
SVSTt.M
SEGME.t-.T ~

--~--~----------~---
Lll:'lto(A~Y

LEN(,TH
TAHLE:

-~------~~------~~--
•
•
•

(a I I 0 f I i br ar y
one per recora)

•
•
•

--------~-----------

EOF

---------------~--~-

Core locatlons 42000(8) to ~1177(8J

core, locations ~2000(d) to 61177(8)

core locations b2000(d) to 11117(8)

Core locations 12000(d) to 77671(b)

Tape must be long enougn to
record at least to ~ere, plus
an end o~ tape marker

I~ tape Is long enougn, user
program ~nd ~lles wltl be
recorded here In same ~orm~t as
on DUMP TAPE - HI~£~NAT£ recordS
at I fi les and programs. SLEEP
recordS al I programs and ~i las
that ~re new since last
t-III:1t:.kNATE

3-51

2000/CQMPUTER SYSTtM
DUMP. TAJ.'E.
FO~MAT E.XAMPLE 1

wor·dS
Aiioc:eted

Tape 1

1 wora count=-lO

- - - - - - ~ -
9 L~dI:.L

I:.OF

12 Directory E.ntry
•••••••••••••••

256 F tie 1 • Logical
blOCk 1
•••••••••••••••

256 F i Ie 1,.LoC;ical
bloCk 2 . '

25b F I' e 1, LOQiCel
t:tlock 3
••••••••••••••••

256 F i • e 1. LogIcal
bloCk 4

C?C3J6 F I Ie 1, LOQicel

b~OCk 5

----------~----
E.QF

·-~-~-----------I
12 utrectory ~ntry:

••••••••••••••• 1
256 F~le 2, LOC;Icall

tslOCk 1

--....----------
~OF

E:.OF

Negative ~ord count'of recoro

Decooes ~s:
: ---------_.

word .1 :"Lts"
~ :"TS"
~ :,not useo
4 reel num09r (oe~in

wtth 1)
S year
6 nour Of year .
7 tentns Ot secondS

-3600U
b system level cOde
~ feature leve' COde

----------------~-Ident'c~ to DI~ECTO~Y format
oescrlbed e'se_nere

Dotted lines aenote IOQlcal
tnformatton divisions'

sol'd lines denote record
(E.OR) g4!ltPS

Last Pnysical ClOCK of a ~

b'OC'< FlLE
End-of-flle

1 bloCkfi Ie

3-52

1 :v-ora count
:

7 :LAbt.L

:---------------
:t:.OF
:-----------------

£nd-9~-taPe. but not end of
ent ire dump

3-5·3

2000/COMPUT~~ SYST~M

DUMf-' TAPE
FO~MAT ~XAMPL~ 2

woros
61lgc;eted

1 :word count
1---------------;
I •

9 : L14t:H:.L

__ 1 ______ ---------

ll)lrectory t:::ntry
12 l

:
1024 IProgram A

--~--------------

:--------~----~~:

-------------~---:t:.ot-

I •
12 Uirectory ~ntry:

• ••••••••••••••
256 fj Ie 3~ logiCal

fjloCk 1

• ••••••••••••••
256 Fi le3,Logtcei

tiloCk i

---------------~-: ~Of

----------------~

12 Directory Entryl
· . • •••••••••••••••

L tJrogram t;

------------~----

}.

)

<-- Programs are dumped to exact
length - lenQth derived
fro~ DIR£CTO~Y le < M < 1024
wores.

} <-- ~-bloCk fa Ie
}

)

<-- L< lO~~ wordS

I~OF }
-----------------)

3-54

1 :woro count ~)
: ••••••.••••••••• :) <-- Ena-of-taPe
: . :)0

:LAb~L l)
)

----------------- >
lEaF)0

--------~--------

2000/COMPUT~~ SYST~k

DUMP TA E.
FO~MAT EXAMPLE 3

TAPE:. 3

~------------------: "'ord count • •
• • • ••••••••••••••••••
i • • •
: L~bel

: EOF

Directory Entry

•••••••••••••••••
Proqrem C

------------~------: EOF

---------~---------: EOF

-------------~--~--: EOF)

----~---------~----) : word count J-

<-E.nd 0+ tke

ANOTHE.R POS~IBLE
FOkM OF' TAPE 3

-------------------Word count . . •
I ••••••••••••••••• :
• •
I Label

-------------~-----
: EOf

-------------~-----: EOF

-------------------: l::.OF

-------~-----------: word count
: :
: LABEL :

I EOF
---~--------...-

set of DUMP "
tapes tnaic~tor Less common terminatton-­

last tQPe is used to
• • • ••••••••••••••••••
• • • •

.> <-E:.no-of-tape
)

contain only the nend
of the set of DUMP tapes"
indicator : LAt1E.L.)

)-

----------------~-~
)-

: EOF)

-------------------)

" Normc!tl
last entries

3-56

2000/caM~uTER SYST~M

DUMP TA~t:.

FO~MAT I:.XAMPL£ 4

TA~£ N

----------------~--: word count
• • • ••••••••••••••••••
• • I •

: LAAEL

---~--------~-~~~--

Directory E.ntry
:
~ File 4, LogiCal
: t:3lock 1
.: --_ .. --------.--.----
: Ft Ie 4. Logical
• tjlOCK 2

-~----------~-~--
F i 'e 4, Log i ca I
Block 3

--------~--------F', Ie 4, LOQical
~Iock 4

~~---~-----~--~~~ }
: Ear

---~--~~-~--------~
~ word count
• • • ••••••••••••••••••
: LABEL • •
---~---~---~-~-----
I EOF

-------~-----------

)0

)

)

)

)

)

)­

)0

3-57

TA~E. N +1

-~~----------------: Word count
I ••••••••••••••••• I

I •
I LABEL
I

I.
I

I •
~---~~------~~-~---

F i 'e 4, LOg j ca I
Block 5

I ______ ---~-------•
: Fi Ie 4, Logical
I E; loCk 0

I--~--------~-----.
: File 4. Logical
: BloCk 7
-~-~----~-~-~-~----
: EOF

----~~~------------
•
•
•
•
•

SCr-4EDULl~G

4-1'

SCtjEOUL.lt:H2

Th~ h~StC Chi IOSOhy ot the TSH sCheoul Inq a'aorithm Is to orovlde
short re5Ponse times ~or short. interactive)005 at the possiole
co~t 0+ ~pl~ys In longer runninQ jons. The imbla~entatlon o~

this tnvolves a Queue Of jObS to run which IS ordered according
to ~ o'ority scheme. The ou~u~ Is a I inKed I ist of from 1 to J4
entries. e~ch entry pOinting to the next entry, and the t~st

entry pOintinQ baCk "to thP. first. The 34 oossiole entries in the
oU~\Je ~re the 12 user LI"'t< entr,es, l' LINt< \Nord In a truncated
TELETYPE tenle reserve~ for th~ syste~ conSOle. Rnd a Queue he~d.
Thp, aup.ue hedri consists of ttie loc~tlons ~"LI"'r< (0:2). c"\nd IS
~Iw~vs tn the Queue. T~e Qu~ue heao has a oriority Of 7/717(H),
Nhi~h is stored in loc~tio~ MLINK+2. ~nd it IS always the last
~ntry in the Queue. As ~n eXB~ple of hON this ~orKS. ~ssume th~t

usprs 1. J ~nd 6 ~re on the QUeu~ In tndt order and so IS the
svste~ ~onsole. in e 00sj tlon ~etw~~n users 3 and b. Then tne
QU~UP' wi I I have the tOI lowlnq ~opeRranco:

TTy II 1 +? LIN K

TTYlJ3+?LINK

TTYOt+":LINK

't~LFV

~-------- <------.---:-----­
:-------:

u

--------- <---.---:-----­
.: -------1

----~----- <~--. --~ : -.. ---­
:-------:

----.. _--- <---
. --- : -------

:-----~-I
4

--------- <---.---:--------
:-------:

11"111 :

4-2

S.nc~ the MLI~K entry i~ d'w~yS ,t~~ last entry on the aueue.
MLl~~+l is a painter to the first ~ntry. which in thls case is
TTvOI. In the case of en emoty Queue. MLIN~+l ~i I I paint to
Itsptf. i.e •• CONT~NTS(~LINK+l) = CONTENTS(~LINK). Each ent~y on
the ~ueue has a priority no less in numerical value than that of
the one its points to. When an entry is to b9 added to the
ou~ue. It is asslqneo a priority according to the rules described
below. and th,en INSE:.Q i4S cal led. INSEQ computes a new priority
u~lnq the fot lowin~ formul~:

New oriority = -(ala ~riority)*(nU~ber of ports logged on +1)/4

T~e oueue ordering 's o~eserv~d by Insertina the new entry Just
ahe~M of the first entry Nith a lower (more negative) priority
nU~bQr. Note that When the ~irst @ntry in the queue hes priority
o. it wi II maintain that position unti I it is removed from the
QUp.up' entirely. To ensure th~t al I jObS wi I t eventually reach
t~p top of the aueue. the priority of the entry Just behind the
new entry is incremented ny one. Note th~t bv uslnQ the number
of ports loqoea on the system as a factor in oeterminlng
priority. we base the speed at whlch JObS re~ch the top of the
ou~ue on th~ system load.

Th~ fol lowinq rules are used to aSSign (ana reaSSign) priorities
by rout i np.s wh i cn ca I I INSF (~:

I'. tJoon first enterino t"'e Queue, jobS are assi(~ned priorities
-31; follows:

~YNTAX lines dna JOhS rp.turnlnQ from I/O suscend: 0
HASIC commandS H<UN, LIST. ~UNCH. LOAD) 1
comnands for oiSc-resideht rout'ines (G~T. dYE. Etc.): c

2. Priorities of jObS ~re reassiqnerl in the fol lowing wey:

.Jobs of priority 2. when they reach the toe of tne oueue. are
r"p.Bssignea criority O.

RtJf'04 Jobs, when they exceed their time slice. are reassigned
crlor,ity 4. ana recoSitioned in the aueu~ according to that
priority. EaCh ~UN JOb is aSS'Qned a time sl ice Of two
spcontjs. and it' it eXhausts tnat It. Is assi~ned another.
when executinq a <CHAIN statement>, a <SYSTEM statement>. ~

<C~~ATE statement>. ~ <LOCK statement>. an <UNLOCK
statement>. a <FILES st~tement>. or an <ASSIG~ statement>,
~ RUN jOb is reassioned a prior~ty of O.

The C~FATr command is re~ssioned a criorlty of 4 when It is
susonnoea after wrltana file m~r~s in 40U blOCKS.

Aft~r ~n abort during oroaram execution a user is re-asslgned a

4-3

oriority of 0 to run the routine which uPd~tes the last c.hanQe
date +or f i I es.

LI~ coi ('Its to· the I ocai on I n the COMTABLE of the di sc ~ddress of
the library routine in core. LIH = 0 when none is present.

Th~ fol lowjnQ conditions must exist for the scneduler to permit
ex~clJtion:

A) for Syntax ~no HA~lC commends;
~AIN set td potnt to correct user t~ble

R) for diSC reslcent comm~nds:
MAIN = 0
LIR ~et to corr~ct ~isc reslden~ routine

Th~ ~chedul~r routine S~APR is responsible for creatine these
conrlitions. and makes its decisions ~cCOrdlnQ to the values o~

MAIN, LIb, end tne entry on top of the Queue.

4-4

SCHEDULER

8u;.tr
-re~jIo\lj,ler
::c':i)
C.OUHT

('HE.c.)< ~!\.

UU~ fAUSt:
(.... "'~M.'·,)
IIM~ CI u·i'

UPDATE THE
TIME OF THE

.. HOUR.

SAVS REGISTERS
ANO BLOCS< THE
CLOCK.

CLFCLOCK

PRIORITY-4
REMOVE FROM
QUEUE.

ODD

·ves

NO

NO

FLOWCHART
1 of 13

CLFCLOCK

SCHEDULER

INSERT THE USER
ON THE QUEUE
BY PRIORITY.

ADVANCE
POINTER TO
NEXT TTY.

Cc..EAf\ THE
PAC .,.
alT.

FLOWCHART
2 nf 11

SCHEDULER

c..:, ""s.,..~u(.t"

l!"iV..1. Me;-::O!).\GIO

A)..Ii) U i' j) ,;'T"~

Qve:lJS"

No

SETPOINTEA
BACK TO FJ RST
TTY TABLE

UPDATE COUNT
ANOMEe5AGc
BUFFER POINTER.

UPDATE COUNT
AND SUlLO
LOG MeSSAGE.

FLOWCHART
'1 !~ 1 3

C"~~T~lJc:.T'
MG'~~A"~

S(HE:DULE ~

St:N.b TUo\ 10 :tOt:.

~E.;.elv': "'ES~"".J

01)1\1" '':'10. HT A ... ~

M€SS"'" Pc; I"'T~I\

StiNI)

M Ii OS :. ,\ C; L!
'T~

-roP

FLO~7CHART
4 of 13

SCHEDULER

YES
PRINT Un?""

GET COMMAND

PREPARE TO
PLACE THE CON·
SOLE ON THE
QUEUE.

SET POINTERS
FOR QUEUE
INSERTION.

NO

YES

S E'T PAc.T
8,T' F9g.
'])IiV,<.E'" U~ e It

SCHEDULER

ONLY 8ASIC
PROGRAM
EXECUTION IS
TIMED.

...... _----_._- - -

INTERRUPT OFF

UNBLOCK THE
CLOCK.

seT THE TIMER.

SETTIMEF IF
THIS IS RUN,

LasT -,. P";IIICt4

RESTORE
REGISTEnS.

RESTOR! DISC
BUSY FLAGS.

ENABLE INTER·
RUPT AND EXIT
VIAPREG.

FLOWCHART
(:; nf= ,~

LIBRARY TYPE
PROGAAM$ MUST
RUN TOENO
BEFORE BilNG
SWAPPI!D OUT.

PRIOR'TY O

PREG 1RSTR
7ASTA",

SCHEDULER
AN INPUT H.AS
BEEN TYPED OR
AN OUTPUT HAS
ALMOST
COMPLETED.

___ _ -10--------'

RESTORE THE
ACTUAL STATUS
(SAVED IN
?PLEV).

SETPLEV"'O.

ADJUST POINTER
FOR TTY TABLE.

SETUP FOR
RUNNING CORE
RESIDENT ABUCO
ROUTINE.

tErMc,vo! IiSa~

F;'f..oi'\ QuEUS,

C.LEAI. S",j\'f\I~ (.oLe)

·"et.\. :toP ~

Use "~<:l.TI~" ~

kiLL. ov,,: ftLG

IF p~t!''';';N'''''

S<.a.AfC.tt P~(;4it~
IP ... 6L.L.O cit

A,.. .. THq~ U:'.:~ 's
L.e><'KeD r'~o,j(MJ\

II :'STefl"

REMOVE USER
FROM QUEUE.

HEMOVE OUTPUT
WAIT .4\"'1) C.HAIN
S,TS' F.(o,"l 1 F .. A,

KILL OUTPUT.

IH"!lA\"L.,uW Aa"~r~ ."'
Si:T Pl\lo~IT'i ¢

FLOWCHAP.T

CODE TO
HANDLE ABORT.

SCHEDULER

SKiP RJ!START
MEANS ENTER
TtMEOOUT.

REMove USER
FROM aucus.

CLEAR ABORT
FL~GS.

"-_____ 1-- - RS·rR ASTA+1,

FLOWCHART
R n-F ,~

CODE FOR
FORCED DtS­
CONNECT
(USE R HUNG UP).

AN ENTEA
STATEMENT- HAS
TIMED OUT.

SCHEDULER

PRINT "PLEASE
LOGIN"

A LINE HAS BEEN
ENTERED FOR AN
IDLE USER.

------------._ _"------_

?PLEV ~O

SET ?RSTR FOR
SYNTAX.

STATUS-+-
, SYNTAX SeT B

FOR INSeQ.

PRINT LINE
FEE'C.

FLOWCIlART

PRINT"???"

TELL COM­
MUNICATfONS
PROCESSOR THAT
ANOTHER LINE
IS ALLOWABLe:

SCHEDULER

Cl£'ftR

""Ar~ Mone
FLAG-

CLEAR TAPE
ERROR FLAG.

e
FLOWCHART
10 of 13

COME HERE
WHEN A VALID
COMMAND HAS
BEEN FOUND.

CHANGE COM- .
MAND TO -rAPe
eRltOR PMS!NT··

SCHEDULER

SET PROGRAM
STATUS.

SET STARTING
ADDRESS IN
LIBUS.

?PLEV ~2

SET B ~?LINK
FOR INseo.

II

SET STARTING
ADDRess.

?PLEV ~1

SWAPR

SAVE DtSC 8USV
FLAG IN'TTY
TABLE.

---- ----p.-------...
THIS ROUTINE
PREPARES THE
PROGRAM ON
THE TOP OF THE
QUEUE TO RUN.

FLOWCHART
12 of 13

SCHEDULER

5 I C.KP

WRITE OtJTPR~
GRAM '''' C-...A!.
MAIN"'O

SMAIN +--1
INITIATE
READING
LIBRARY
PROGRAM.

e

RETURN

SCHEDULER

e

COMMUNICATION ~ETwFE~ SYSTEM MODULiS

4-5

Therp. ~rp. six system mOdulps th~t communic~tp. Nett' each other in
v~rious ways: t~e elsc rlrtvrr. lin Processor driver, syste~

console oriver. scheduler. HASIe. and system I lorary routines
(HELLO. ~YE. KILLIu, etc.).

Any section of t~e Syste~ m~y c~1 I the nlSc'nrlvpr' to perform ~

(mov,~o-~e~d) elSC transf~r. Thr~c Pdra~~t~rs are oassed to t~~

or ivpr:

A = ,uointer to elSc a~~r~ss (thp corp aodress ot e t~o ~ord

IO~lc~1 oisc bloc~ numoer et
Which the tr~nsfer is to beqin)

f-4 = core ~orJress (bits 14-0 - co~e address at
Nhlch trdnsfpr is to oeqln; bit
l~ = i for rp.nd from diSC to
core; vits 1~ = 0 for write from
core to ,-jisc)

T~p. v~rleble MWO~u = the neQ~tive of thp. nUMner of words to oe
tr~nsf.err~d. If MWtJ!;U>=O. tt"te dr iver Ni II cause no tr~nsfer. but
will oositicn the dCJurooriatp disc unit fl\t th~ soecified blOCK.

The ~ISC orlv'er is celled by ..JSt-i UISCA,.I.

Th~ driver determines the 10aic~1 nlsc on whic~ the ~pecified
blOCK I ies. and, It th~t 10oic~1 diSC is pre~ent on the system.
ornco~ses the requested tr~nsfer. whi Ie e request is bein~
orOCPssed ~n~ transfer t~~ina ot~ce, the orlver OUSY fl~e. ~~USy,

is s("'t to -1. If the "rlv,?r IS c~lled whilp MfjUSY IS so set, it
wi I I return without cOlne anythino. Jf the diSC OIOCK number
O~SS~rlto tt"te nriver OOPs not I Ie on onp. Of t"e discs oresent on
t p, system, the r.rr .ver Will jncrement the return c!lddresS by one
~n~ return ~it"out dOlnq ~nvthjna. If the nriver accepts the
rPQUp.~t. it v- ill .ncremE=!'nt t~e return ""oorp-ss :lY two and return
~ft~r orocessine Ot the r~ouest has b~en initi~ted.

A Movlnq M~~d else transf~r tnvolv~s two steos: OOSitjoninQ the
he~ns to the correct dr~M c~ the dtsc ~no c~rforming the ~etua'
c1;,t trtolnsfp.r. Th,~ e.se driver returns to j'ts cc:'1 ter w,",i Ie e~Ch
o~ these is <;lOlnq on. COmrnl=!nd channel interruots return control
to thp. driver ~hp.n the oo~r~tions arp comol~tp: t"e driver checKs
for successful comclet,on of the oopr~tions before oroceedinQ.

4-6

fl, sin' 1 I e ci 13 t c!I t ran S fer 0 n a (1 I sec s,n not aut 0", a tic a I lye 0 n tin u e
from one cylinder to the next. The 7~Ou diSC has the further
restriction that a transfer cannot cross the IImld-cyl Inder n

bounct~ry (between trac~ 1 and trac~ 2). when·a data tr~nsfer .S
rpcuestoo whiCh crosses one or more o~ these boundaries, the disc
-driver br~aks uP the transfer to .conform with the restrictions.

When the driver completes hand' tng a reauest and returns to the
C~ I I p.r, ~HlJSY is set to I nd i cate the o.u~come of the. transfer as
follows:

0: The requestea tr~nsfer has been successfully completed.
1: The transfer has f~i led; the seeK (cosltion) operation

could not bPcomolpted.
2: T...,e trdnsfer. hdS fni 'ed; the nata transfer was

unsuccessful.
3: Th~ transFer hnS fai leo; p~rt of the data lies on. or

woulC'S oe written to. a disc' whiCh IS not cresent on
the system.

A COMPlete oisc trans+~,.. Celn be Pf!!rForrned by the fOllowing
SPQupr"'tce:

.JS~ DISC~.I
<return ~or rtr I ver 'bUSV>
<return for disc not cresent>
LOA r-1RU:;'Y
SSA
~MP -;s.-2
SZA
<process elSC ~rror>
<crocess su~cp.ssful tr~nsF~r>

Th~ rlisc driver does not ~OOlfy thp. contents o~ MWORD and tne A
~n~ ~ reolsters. lhe system never suspends ~ orogram for a disc
tr~nsf.er.

4-7

SVc)Tf.M CONSOLI:: f)~IVt:.~

The syste~ console oriver ~ajn~jns three flaqs. TJ~Fl. lJ5Fd. and
T1~F3. which netermines Its st~tus. Tne meaning 0+ these flaqs
ar~ ~s follows:

T3SF 1 : = •• 1- driver is buSy. l) othPr""lse
T3~1o="2: Norm,::, I I y o. t t is set to -1 bY t e drtver at the con-

clusion 0+ inout. .enn clecltred to u externally.
T 3Sf 3: NorrT'le I I y o. it is set to -1 by th~ dr i ver at tne con-

clusio~ of Inout. ~nd cle~reo to u by tne drtver after
output nBS heE?n initiated.

ThR co~t)lnpC vRlues ot tnes~ fl~os are ~ore slanlflcant:

Fl F2 ~j

0 0 0 [Jr I vpr . ~ ccc~ptinc inC'lut
0 -1 -1 lnout COmlllbr'lC1 receive,., lItr'lc:l I s belno orocessecte cut

outPut h~S not hefJn Inltic!l'teo.
0 -1 0 out out termln~ted frorT'l I! SystP,,., commt9nd -"hicn Is to

reinltiated.
-1 0 0 outoutting
-1 -1 0 outouttina. .. t thp. ene:: of which the current syste"

comM.;:,nlj Vw I I I be reinlticllttp.rl.

W h p n r:.- 2 = - 1. the 0 r I v e r w I I, I not .e c c e eta n yin 0 u t • Tn i s
nu~rAntees SysteM 'Ibr~ry proQr~~~ tnat t~P.y wi I I not be
int~rfered witn. TheSe routines ~re ~p'sponsloIQ for c'a~ring

F? Ai"',,"n tney cc!11 tha "r i ver .for thl) last tiMe. Fi: .dnrl tne
consol~ st~tus (T3b~T) ~re cl~ar~d if e K~y i~ struc< on t~e
co,",!:nle durino outout +or certnin ,console routin~s. TnlS ~i I
eft-p.ctivPly t~·r"'lncte suc,,", routines -=ts f>I;'<ectortes. ~EPorts ~nd

!=:lAttJ~es.

Wnp.n F3 = -1. log-on en~ loo-of~ r~oorts ~s w~1 I as the ~ess~q~
t'] tJ ~ l J ear e h (' too + + • ,. n i Ii cUr! r ~ n t ~ P. S t h n t t n e s e ." P. S S a q e s W I I I
not n~ interf-p.r/Sld ~i tn bv th~ SystP'rTI t Inrary oroqram outout.

F 1 n~r'I set v- i I I 1""0 I c of f loel-on ffnC"f I o,(J-of t r900r t s ~s we I I as
tnp l"'Iessaae OlJHue. .. 1 is set our i no OlJtout. F 1 I S a I so set for
(~O ~"c) ~hen~ver th~ user or~ssps ~ key (exceot CR).

T~n fnl lowln~ v~ridoles ~nd fl~OS are ~Iso. maintained for ~

tp.r~lnct consol~ ny th~ conscle ar;ver. These ~re necess~ry

be

be (" ~ IJ set he con sol emu s t n p t lJ r n E" a 0 f f a 4- t f.:t r ItS C"'I e e n i;j I e for
,=,onro)(i~(lJt~ly 50 seconos ~n("J turned nn 8ct=!ln wnen there' is outPut
to h~ orlnt~n. The term,"pt. console ~Iso r~cutres fl"
cn~r~cters ~ft9r d L~.

4-8

TO:
Tnsu:
r~ITST:

TFC~T:

~it I!:>· if ~et indicates a tp.rm;nct console
Normally U,.} when d ~otor Shutco~n Is In orogress
Nor~al1y 0, 1 when·a motor shutdown is In progress
Contains th~ ~otor st~tP. 0 is off, 1 if on
Cont~ln number of f' 115 left to·outout

T., e c ~ I lin q S? Que nc e is:
A: bit 1~ = 0 .if C~Lf is to be aooended. oits (14:0) - # of

Char s.
~: oit 15 = 1 If ~unchinq is to taKe place in ~ddltion to

orlntin<;l. bits (1,+:0) = core r::tocrpSS of outout buffer •
.. J S ~ TTY 35 • 1

The ~r.vpr uses the ~b word ~uffer T3~RF as ~n inout ouFfer.
~ost of the I iorary rout ines use it For output, and occasionally
For t~~oorery storc~e bet~epn lines of outPut.

4-9

SYS1~~ ~kOCf~~Ok-I/n ~HOC~SSO~

'CO~MU~lCATJO~

4-10

The bl~Ck d~agram for the Processor Interconnect Is on the
second page ~ol lowing. In the IDLE state. the 'nter~ace cardS
are set UP as follOwS:

Cl (CHI)

C~(CH~)

CONT~OL & ENOCOU~:
"L~'" & IRQ:

CONTROL ~ ENCOD~:
FLAb:
lk<at:

SE..T
CLEAR

CLEA~
SE.T
CLEAR

A data transm'ssion.O~er~tion occurs thusly:

l. ~enoinQ machine wnlts ~or flaa to be set on C2(CH2)
indicating that the prf'vi<",q'lt tra.,smission· has been
processed.

2. ~ending machine claces data word In output register of
C~(eH2) thereby placing it on the Input register Of CHI
(el). (OTA/b Ct!(eH~».

3. SenainQ maChine issues STet CLF to C~(CH2) making the
~NCOOe LIN~ 90 high, setting FLAb on eMl (el), clearing
E~eOOE on CH1(Cl). and strohina the data word tnto CHI(Cl).

4. Sending machine tssues CLC to C~(CH~) to prevent an
interruct from that card. The sending maChine is now
~ree to return to other tasl(s.

~

5. In the receiving CTlachine. T~ will set the IR~ on CMI(el).
l~ the interru~t syste~ IS enableo and the priority. line
IS high, the lkY wi" Ceuse an Interrupt to a service
routine.

6. The service routine ooes an LIA/~ from CHl and deCOdes
t~e lb ~it ddtc Nord.

7. If 0 response IS c~lleo tor. the receiving maChine can IO~d

the output re~ister with a data word (oTA/~ CH1(Cl».

H. ~hen the receiving maChine has comotetea its processing, It
issues an ST~.~(eL~) to CH1(Cl) whICh restores the cards to
the idle state.

The .ollowlnq IS the resuitant statuses of the sendtng two
computers atter a command has been sent. recejved ana
acknowieaged:

4-11

a) The tlaq IS set on Ca(CH~) of the SendIng computer
inolcatinQ th~t another trcnster is now al 'owed. This
occurred wnen the receivina computer issued ~n STC.C to
CH1(Cl) after it h~d decoaed ana executed the command.
The STC.~ IS the ec~nOWledQement to the SEND cOMPuter
that the M~C~IVE computer dio rec~ive tne transmission.

b) The control on C2(CH2) is cleareo by the CLC to
'C2(CH2). l h ls was done to inhIbIt t~e interrupt th~t
normal Iy W~Uld occur atter the StN(i computer outputted
the commeno.

c) The control IS s~t ~nd the flag IS cleared on CHi (el)
(from the ~lC.C ~c~nowledoement) Inoicatin1 readiness
to receive anot~er transmiSSion.

4-12

The system processor sendS communications on 1/0 11 channel and
receives them on 110 channel 10. An exception 6s.a communication
sent by the system processor whtCh reQuires ~ response, w~'Ch
wit t be received on 1/0 channel 11. communicat·lons are In.tlated
by JSA SUVRP,I with the commun'c~tlon 'in the A register.

The system proc~ssor Cdn i~itiate reQuest.s an~ commands ~or the
1/0 ~rocessor. Six 0+ these are o~ genera' nature (I.e. not
I imlteo to a sln~le user). They include PHS. PRR, ~jE, SCI and
reM.

User commands associated NttM hardware control InclUde ECO. ECF
and STP. User commanas associated with bu~fer control are poe.
POSt H~S. FNC. ~IS. kLd. ssp, and_kBP. User commands associated
with the general status are STE. wTP, UIH, UNR. lwT. HUU, ULO,
TOP. NU<';. KTQ. AL.I. OwT. IBA ,and ~BT.

Co,,"m~ndS concerned with control of ASCII devices areSTR. AD",
RDV, ~Ltl. Xkb and KDO.

4'-13

IS 1~ 12 ~ 7 o

: oP CODE ~0RT # DATA FIELD :
• • . --------~-----------------~--~-------- .

l~ Ie:: ., b o

: oP COU£ D£VIC~ # DATA FIELu:
• •
,-------------~----~~-----------------.
The above format holdS ~or COMmand COdeS 0 thru 5

Command COdes b ana 7 are micro-COded and have one of the
~o, lowing formats:

l~ 13 1~

OP COOt. PO~T 1#

d

MICRO
COUt

o

• • . -------------------~------------------.
IS 1=:S li

oP CQUE D£VICE .,

I 4

MIC~O

COOt

----~~-------~-----------------~------

o

Comm~ndS in the above format whiCh must supely data are two word
comM~nos wIth the aata suppl teo In the second word.

4-14

Numeric
Value o+-
Oe __ Cgc.e

0
1
2
3
4
5
6
7

Mlt<RQ 0
~l cc. CU;Cdf:

0
1

~IKPO

~lc:c.Qc:Qae

0
1
2
3
4

5
6
1

10
11
l~

13
14
IS
Ifl
11
20
21
22
23
24
25
26
27
30

~YST~~ PROCESSOR --> 1/0 PROC~SSO~

~oim~olc

poe
STi:.
STI-'
PHS
PC .. ·
PQS
MI~kO 0
MIKkO

~OfmgOlc:

(unuSed)
wT

~o~mgOlc

P~k

Ulfot
UNk
IwT
HUU
ULO
£co
ECF
T~O

STt-t
NUC
KTu
ALI
Owl
Ib~

ADV

~D"
ALe
Xkc
I::H<'~

KOO
FNC
~.Jt:.

Abi
PIS

Process output character
start ENTER Timing
Subt~Qe information
Phones timing parameter
Perform C9ntrol funct.on
Process output string
Micro COde grouQ 0
Micro COde group 1

Oe~C:l:let12o

what terminal type

Inttlaiize lOP/preempt reauest
User Is runnlnQ
user not running
input· wa it
Hang user UP

User lOgged on
ECho-on
Echo-off
TaQe mOde
start timed retries
New user called
Ki I I terminal outPut
A t low i npu t
Output watt
Is buff~r avat lable
AI locate device
Release device
Pot locate buffer
Transfer input ~uffer
BaCkspace terminal Duffer
KI II device output
Fet next character
R..JE command
Us~r Is being aborted
Process 'nput string

4-15

31
32
33
34
35
36
37

(unUSed)
SCI
~Lt::i

SSU
SB~

~tH"

TC~

Sene core iMaqe
~elease buffer
System shutdown
Seve buffer pointer
wele6se buffer pointer
Transmit console messege

4-16

eoc
The crocess outPut Ch~rBcter command cpntalns a port number tn
bits· 12 thru 8 and an ASCII character In o*ts 1 thru O. The
character Is to be Pla~ed in the port's outPut buf~er.

SI~

The start enter timtng commana conta.n~ the Port numbe~ In bits
12 thru ~ and dn tnteger oetween 1 ~nd 25~ in bits 7 thru O. The
tnteqer specified IS the maximum number of secondS the user port
.s to be enabled for enterinq a 'Ine of data. If the time
elaps~s without the USer completing a I ine. the lOP retu~ns the
comm~nd ETO. OtherwiSe the lOP returns the command·HVL whiCh
contatns the actual response time in bits 7 thru u.

SIe

The suctype infor~ation command contains the port number In bits
12 thru 8 and the term~n~I' type COde In bits 7 tnru O. The
terminal type COde .s a~ inteqer betwe&n 0 and 8 and specifies
t~e ter~inal type 0+ the port. ThiS command is sent by the SP to
the lOP ~hen the S~ IS executing the HELLO command and has
ev~lu~ted the terminal type pa~ameter.

The Phones ttminq perameter contains ~n Integer value between 0
and 255 In bits 7 thru O. ThiS value is the number of secondS
that a user is permitted' ~or logginQ on. This command is sent
when ~he system operator Issues the PHONES command at the system
console. I~ no command IS given, the default logon time Is 120
secondS.

eCE

The perform control function command contains a logical unit
nu~ner in bits l~ thru 7 dnd a control COde in bits 0 t~ru O.
T~e control COde corresponos to the device control COde In the
table of elL ~unctlon values and inolcates tne operation to be
performed on the device whose loqical un~t numoer Is specified.
The SP sendS this command as the result o~ evaluating a elL
f~nction in a PRINT state~ent t is~. The Io~ returns a word
response. See the section on 1/0 responses ror possible return
values.

4-17

~os

The process output string command contains a port number in bits
12 thru 8 and ~n InteQer character count in bits b thru O. This
comn~nd signals the lOP th~t the SP is readY to tr~nsmit ~n

outout strjng to the Soecified ~ort. The lO~ sendS theSP a one
woro res~onse - zero If OK to send the string. non-zero if not.
1+ it's Ok to send, the S~ sends the string uSing DMA. If not.
the loP wltl sene a ~FE commane tO'the SP when ~ buffer becomes
~v~i IRbte.

The whet terminal ty~e request cont~ins e port number in bits 12
thru b. The lO~ sencs th~ SP a one word response containing the
intecer value of the SPp.clf.eo port's terminal type. This
comm~nc IS sent when d ~ASIC proqram executes the SYS commene
wit~ paro~eter 4.

The initial ize lOP/preempt reQuest Is sent by the loader and
never occurs ourin9 normal system operation. See loader for
additional oetails.

The user is running c9mmand contains a port ,numoer in bits 12
thru 8. ThiS commano is spnt to the lOP wnenever a user program
beolns execution on the speCified port.

The user not running -com~and contains a port numoer in bits 12
thr~ 8. ThiS comm~ne informs the lOP that the user program on
thO sceclfied port is no lonqer runninq due to normal termJnation
or orogr~m error.

lWI

Th~ input wait commanc contains e port nUMber in oits 1~ thru 8.
This com~~nd is sent to the lOP to enaole ,nput on the soectfied
port. The 5~ then SUSpendS the oo~t with status of input wait.
The lOP wi I I wake the user with a HVl. HVP, or rilL.

4-18

~he hanQ user UP command contains a port number In bits 12 thru
A. Thls command fs sent whenever a user executes the BYE command
or If the jettison port "routine determines thet tt'\e, user swep
trecKs is ,unusable for the specified port.

Ul.O

The user loggeo on command contains a port number in bits l~ thru
~. This command informs the IO~ that a user has succesSfully
looqeo on~o the system.

~co

The echo-on COMmand contains ~ port number in bits l~ thru 8.
Tni s com~and t s sent to the l(lPN/v,,,,, the user at the spect~ ted
port executes the ~~HO-ON COMmand. The effect is to .n.tt~te"~n

eChO for ~ul I duplex termln~ls.

t::CE

The eCho-o~f commano contctns a port number in btts 12 ,thru H.
It is sent to the lO~ ~nen the user at the specified port
executes the ECHO-UFf comma~d. The ef~ect is to Inhibit echo
for halt-ouplex termlnd's.

Ieo
The tape mOde command contains a port number In bits 12 thru 8.
This commano is sent When the user on the specified port exe­
cutes the TAPE commano~

SIB

The start timed retries command contains a logical unit number in
bits 12 thru 7. ThiS commanc is sent after an unsucceSSful I/O
operation. ~as attempteo on the specified device to retry the
op~ration. The IO~ walt return a ~UU whenever the retrY Is
success+ul.

4-19

The n~w user celleo COmm~nd contains a port number tn btts 1~-8.

This command ts sent to inform the lOP that the user logged on
the spec,fj'ed port is executing ~ HELLO command.

4-20

~IO

The kl I I terminal output command contains a ~ort number tn bits
"12-8. This command Is used to com~letely purge any. output cur­
rently in. the speCified port's IO~ buffers. It Is sent when the
user hits BREAK. i. the SysteM operator types SL~EP, o~ If the
SP is shutting down the system dUe to a hardware failure.

The ~llow input command contains a port number In bits 12-d.
This command is sent to the loP to enaote the specified port to
enter I ines of syntax Nnen the terminal Is in tape mOde.

O~I

The output walt commano contdi"~ ~ ~ort numoer in bits 12 thru 8.
Th~s command tel Is the lOP to se~d a 8FF command when the
spaclfied port has a buffer avai lable. The S~ sends thiS reQuest
for user terMinal commands WhiCh generate several lines of
outout. ThiS a' lows US to re-schedule the user after he has
successfully output a I ine and a terminal buffer is once egaln
av~.'~ole.

108

The ;s buffer available commano contains a port numcer in bits 12
thru 8. ThiS commano is sent'when .the system operator is
executing an ANNOU~C~ and the lO~ returns a one word reSponse
indiccting either buffer aval tab~e (response =0) or not available
(resconse <> 0). ~hen tne response is affirmative the SP wi' I
send the message via ~os.

The al locate device COmmand contains a logical unit number In
bits 12 tnru 7. The Second word Of the command indicates the
size o~ the bu~fer which Should be at located for the soecified
device. The IO~ returns a one word response ;ndicatlng success
(resoonse = 0) or deVice busy (response <>.0). TniS command is
sent whenever an ASCII file is opened on a given lOP device.

4-21

RDV

The release device command contains a logical unit number In bits
12 thru 7. This commQn~ tel Is t~e loP that the speci~led device
is no longer needeo and that al I remaining cuffers for the deVice
should be written and then de-al loc~ted. The lOP returns e one

. word response. See section on 1/0 responses for pOssible return
v~lues.

8L..8

The alloc~te b~.fer comm~nd contains a log.cal unit number in
bits Ie thru 7. The second word of the command contains the
lenqth of the output buffer In bytes. The IO~ then returns a
one word response. 1+ the responSe 's zero. then the SP sendS
the output buffer to the lOP via DMA. See section on 1/0
responses for other pOsslole return values.

The transfer input buffer command contains a logical unit nu~oer
in bits 12 thru 7. lhe lOP returns a one wore response
indiCc!'ting whether It hes a full input buftp.r. on the sDecl~ied
device. If it aoes (~esconse = 0). then the SP ac~nowledQ~s the
response (STC.ClF) and then the next word ontha send channel is
the size of the buffer (in byteS). After acknowledQing the
buffer size the S~ transfers the Inout buffer using DMA. The SP
aCknowlee~es receipt of the huffer by another ~TC. ClF.

tU~S

The h~CKspace terminal cuffer command cont~lns a port number in
bits 1~ thru b. lhe Commen~ causes the IO~ to oackspace the
speciflee terminal's .ncut buffer pOinter one Character.

~OO

The ki I I device output command contains a 10qlCdi unit number in
bits 12 thru 7. This command tells the lOP to comPletely pur~e
and de-at locate aMy buffers or activity on the specifjed deVice.
USURllv sent due to unrecoverable 1/0 f~i lures or abnormal
proqram terminetron.

The fetch next Character commend cont~ins a port number in bits
12 thru 8. The lO~ returns a one word res~onse whiCh is the next
character in the speCified Dort's incut buffer. The Input
bu~~er pOinter ,·s 6dvenceo to the oe')(t-cnaracter.

4-22

~JE

The remot~ JOb entry command contains a word count in bits 12
thru 7. The ~ommano *s sent when the system operator types an
RJE command on the system console. The word count is the length
of the ~essage. The lOP always rejects the R~E command the first
time. The lOP w. I I send 'WRU when It Is ready for the meSSage. '
The RJE'command IS then guaranteed to be accepted and the ~essege
IS then transmitteo to the lOP via DMA.

8~I

The user ls aborting commdnd contains a cort nu~ber In bits 12
thru 8. Th,s commano informs the lOP that the user program on
the spec.fieo port being aborted oue to the user hitting the
B~EAK ~~Y.

215

T~e crocess input str.no Command contains ~ port numoer in bits
12 tnru~. Tne secone word Is the buffer lenqth w~iCh the
specifieo port has allocatee for)nput. The IO~ reSPo~dS with
the.~ctual numoer Of Characters it haSt WhiCh ~. I I be ~ th~

specif.ea·buffer lenqth. Tne S~ aCKnowledqes the ouffer length
with ~ STC. ClF and proceeeS to transfer the Input buffer via
OMA. The transfer is acknowledged with an adoltlona' STC. ClF.
If the lO~ actually hed more characters than would fit in the
port's S~ buffer, It WI t I transfer one buffer ful I and remember·
the buffer position. ~ SUbSequent PIS reauest WI» I receive
Charactprs starting from the pOSItion that t~e previous request
finiShed.

SCI

The Sp.nd core Image comMand contains a word count in bits 12 thru
7. The second wore of the co~mand i~ the starting address. The
lOP res~onaS by senoinq the specified number of worrds. starting
w.th tne specifieo aOaress. The sP. receives the reSPonse via
UMA. lnis commano js sent whPn the user AUUO uses the DUM~
com~and to oump the lOP memory.

4-23

RLB

T~p. release buf~er command cont~ins a cort number in bits l~ tnru
A.. T~iS command is sent to ~orce t~e lOP to print and release
any output which is in ~ buf~er ~or the specified terminal. This
c~mmand IS sent by the SP whenever it wishes to enSure th~t al I
user outPut has been printed 'i .e. whenever a .port is swapoed
out) •

sso
The system shut aOwn comm~no is sent to inform t~e IO~ tnat the
5 yst em i s be i ng Shut down due to the syS tern oper ator aexecut I ng
the SL~EP command.

see

The save buffer pOInter command contains a cort number in bits
12 thru 8. ThiS command tells the lOP to save the current value
of the terminal input buffer Dotnter on the specified port. The
pOinter value can be restored by the RBP command. These commandS
al low the SP to reaa the next ~ew characters in the bu~fer (via
FNC) and to return to the current oosition without sendIng
multiole BKS'S.

Bee
The restore buffer pOinter command contains ~ port number in bits
12 thru~. This command tel Is the lOP to restore the terminal
input buffer pOinter On the specifl~d port to the value saved via
a SSP.

The tr~nsmtt console mess~ge command tel Is the lOP to send a
console message to t~e SP. The transfer is hanoled vt~ OMAG
Th'S comm~nd is sent by the SP after the S~ has received an SCM
comm~nd from the IO~.

4-24

SP. The PoSSible values are as ~ol lows:

-3 No data available on RJE or LT
-2 eno-of-~ile
-1 bu+~er not reaoy

U op~ration successful
1 oevice not ready
2 device error
3 attention needed
4 redd/wr,te fat lure.

In the case of a -1 resoonse. the lOP wi I I send a WUU for the
aooropriate dev,ce when a bu~fer beCOMes aveilable. I~ the
responSe ;s greater than O. the S~ wi II eventually send either an
ST~ .(,n wh'Ch case the lOP wi« I sena a wUU When the condition has
been fixeo) or a KUO.

4-25

I/O P~OC~~SO~ COMMU~lCATIONS TO SYSTEM P~OC~SSOH

The system processor receives communications ~rom the lID
processor on lID Channel Iv. The system processor ignores
inconsistent communications, e.g. ~ccects a I ine of input only
when the user's status IS IDLE or INPUT wAIT. The receive driver
communicates with the sCheouler by setting th~ ~ACr bit in the
?FLAG word o~ the port's teletype tahle and settinq the
acorocrlate status.

COMmunication re~uests initiated by the 1/0 ~ocessor are divideo
Into three general Qroucs. user port commandS affect one
perticulbr port dna incluoe HVL. HLP, HLL. AO~. ~FL. ~FE. ~TO and
UHU. Another group o+~ects operation o~ the R~~ faci I Ity and
inclu~es ~CM, AU~. kUk. and ~AU. The remaln,nq commana. WUU,
concerns oceration 0+ ~ non-shareab'p. deVice.

4-26

~UME.RIC

VALUE OF
QI: __ COUE. ~~I:.~(J~lC Of..SCBleilCt:.I

0 HVL Have a line
1 HLf-i t1~ve a line - par j tv error
2 HLL Have a lane 'ost cheracter
3 (UnUsed)
4 (unuSed)
5 (UnuSed)
6 (unuSed)
7 MIKRO Micro Codeo

4-27

MIr<RO
_CODE ~~"~U~.lC QE~CEleI1CJ~

0 At:H< User abor t reouest
1 tjFL Buf: fer +u I I
? oFt::. t'juffer empty
3 £10 ~nter timed out
4 UHlJ User hunQ UP
5 ~CM Send console message
,.., AUk Allocate device tor RJE
7 kUk kelease oevic& from ~.JE

10 wUlJ wake use,.. UP

11 wt-(U wake PJi-_ UP

12 (unused)
13 (unuSed)
14 (UnuSed)
15 (unUSed)
1~ (UnUSed)
11 (unUSed)

4-28

l~ 13 Id 8 7 o
-~-------~~-~-~--~--~-~--~---~-~---: COUf PORT ~. DATA FIELD : · . . • __________ ~--~-~--~----~~--~-~ __ ~ __ I

Comm~n~ COde 7 is micro-coded and has one 0+ the fol lowjng
formats:

Ib 13 12 d 3 o
----~---~----~-~---------~---~---~-CODE ~O~T # MIC~O:

CODE:
• • . ---~----~--~~--~---~-~~-~~~~--~---~,
l~ 13 12 7 3 o

OEV # MIC~O:

CODE:
• • . ~-~----~~-----~~----~-----~~-~--~~~.

l~ l~ Ie 1 3 o
--~-----~-----------~~-~--~-----~--Cuu~ DATA MICROI

CODE: , .
'---~-------~-~---~~---~----~-------'

ThPse corn~anas contain a port number in bits 12 tnru ~ and a
response time in o.ts 7 tnru U. Tne commands Indicate that the
user on the spec,~.ea port has input a complete I ene'terminated
by a carriage return. The response time field contains the
nU~ner ot secondS that It took the user to respond if the line
was sent In response to an STE reouest by the ~p. This v~lue is
saved In the user tal~type table. The S~ WI II set the PACT bit
in tne port's teletype table only if the user's status is IDLE
or Input wait. The lktR~ bit is set if HUP or HVL was received.
EaCh Ot the commanos causes the user to oe re-scheduled at a
dif~erent adaress.

4~9

The abort command contains a port number in bits lc tnru 8. The
~~ rec€'lves th.S 'command when the user on the soecif=ied oort has
hit t~e bHEAK Key. If the user has disabled CreaK (P~~L6=1) ~nd
the system operetor hes not re-enBbled it (CHFLG=O), the ABTRY
bit Bn the user teletYoe table is set. AHTkY is elso set it the
system IS executing crltlcel cOde end he~ set tne UNA~T bit. A
special check IS mace to al low the user to abort out of the LOAD
comm~nd i+ his status Is outPut weit or pause. It CreeK is not
dis~oleo and UNAdT IS clear, then a cheCK IS made to see if the
user Is in an unabortable I ibr~ry orooram. If not. hiS status is
set to A~O~T anc th& ~ACT ~It in the part's teletype table IS
set,

t::2·EL.

The ou+fer ful I command contains a port number In bits 12 thru ~,

Ths commanc indicates that the speCified port.s outPut buffer IS
ful Ie When thiS COmm~nd IS rec~lved. the S~ sets the OUT~UT WAIT
Cit in the port's teletype table. ThiS bit is elways CheCKed
prior to issuing a ~OC for the port ana the user is susoenoed
pena i ng bf E i fit IS,

The huffer empty commeno cont~lns a port numcer In bits le thru
H. This command inolC~tes that the. speCified port now has an
ou·tout ouffer dvaj I~ole. upon receipt of this comman~. the S~
clc~rs the OUTPUl ~~11 bit In the port.s teletyoe table. If the
port's s't€!tus IS ()ul"'uT wAll (Inoicating that tna user Is
suspcnoeo due to d reJecten ~OS or ~ delcyeo ~OC). then the ~ACT
bit IS set,

t:lo

Thp. enter timed out com~~n~ contains a oort nUmber jn nits !~

thru H. Th.S command Indicates tnat the time periOd ~pecifiea in
~nd ST~ comnand has el~psed without the us~r ~t the specified
port haVing typed a COmPlete I .ne. If the port's status.*$ not
currently A~O~T. hiS rest~rt adoress is incremented t~1ce. n*s
status set to T IMt.UlJT. and'"' i s ~ACT b ttl s se't.

4-30

UHU

The user hung UP command contains a port number in bits la thru
M. This command. InOlCates that the user on the speCi~jed port
has disconnected hiS ter~inal. 1+ the user's "status js currently
syntax or library program running and he is at the head OF the
queue. h~UIS is set. otnerwise the user status Is set to
DISCONNECT and the ~~CT bit Is set.

Thp spnd console message com~ana contains a messag. lenqth in
bits l~ thru 7. This comm~nd In~orms the SP that the lOP has ~n
~~E message for the SYsteM consote. The SP saves the meSS6Qe
length in .CONML. At a I~ter point In time the scheduler wi.1
reauest the message VIa ~ TCM command.

Tne al tocate deVIce tor ~~E com~and contains a logiCal unit
num~er in bits l~ thru 1. ThiS command IS a r~Quest ~rom the lOP
to ~I locate the spec. tied dAvice. The S~ C~ecWS the device tabl"e
and ,. the device is dVdilahlp allocates it to RJE and returns
a zero to tne loP. If the device Is not aval labia, a minus one
is returned.

The releasp device from H~E reQuest contains d loqlcal unit
nUMbp.r in bits 12 tnru 7. Th.S .s a request from the lOP to
rplease a device whiCh was al located in resoonse to an ADk.

~uu

Tne wake user UP commano contains a loqicat unit number in bits
12 thru 1. The command Inolcates tnat the speCified device nas
oonr. recoy. an outPut bufter ts aval laole. or an inout bu~+er Is
ready. ThiS commano is receIved to wake uP the user control ling
t~~ ~ev.ce when he h~S been suscended a+ter an STR command Or
after d -1 response was receiveo~~or B PC~. ALd. XR8. or RDV
COMMand. Tne SP lOOkS at the status o~ the port to WhiCh the
sDeci~lea device has been ellocated. If that port has a status
of either Input ~dlt Or outout wait then the OUTwT cit In tne
oort's teletype tdole IS cleared and PACT bit set.

4-31

Th~ wdKe ~~E Uo commend h~s no perameters. When received It
s'Qnifies to the ~~ that the lOP is now reedy to accept the R~E
commeno which was ~reviously rejected. The SP chec~S thet an
k~E messaqe is pen01no nno s~ts ~~fFb= -! so that the scheouler
can re-send the k~~ request.

T~e two processors In t~e time share system ~ave ind$pendent
cower suppl.es ~no conseQuentlY~ power fai lure InterruPts in
either machine may OCCur at oi+ferent times.

A orohlem ~~ises It one COMPuter is eO~ereo oown, ano the other
machine atteMots to send a transmission. uate wi II be lost as
wei I ~s possible SUbseauent data tranSMISSIons. Th'S is
apo~rently caused by stray encode and data levels while power .Is
co',.". no uP.

The extern~1 consequences of d lost doto transmission are these:

1. A I Ine (syntdx~ comman~. or input) b~lnQ processed wi II oe
Qerbled.

2. outP~t char~cters wi I I oe lost. ThiS prOblem wi' I be hidden
bY t he f act t h d t the cur r en t o·u t ou t C ~ "r d C t e r i s a arb I e.d

(MUx Quits seno.nq durinq char~cter).

3. Ter~inals on ~h'Ch d c~rr'aoe return has come in may never
have that line processed by the system processor. The
terminal wi I I not ~ccePt Input end the OreaK Key must be
used to re-establiSh communic~t.ons ~hen power is restored.

4. The system orocessor mdY lose th~ signal thdt Inoicates
thdt the bu+fer tor thiS user is alMost emoty. The
terminal wi I I stoe tYPlna ~no the crogram wi II remain tn
1/0 suspend. The oreak key must be usee to r~-establ ISh
communications ~hen oo~er is restorea.

5. If sever~1 users are tveing on the 110 processor '~nd the
syste~ prdcessor IS not runntnc, al I multiolexor act*vjty
may cease (1/0 processor waltlnQ for trensmission to be
~CKnowleogeo). lnlS leadS to tne classic symptoms~ t.e ••
no ·respons€ to any strucK key (~ven oreaK)~ ~no term,netion
0+ al I output operations, per~aps with ~ soace on t~e line
(tel~type chatterino).

4-32

If th~ primary po~er Sourc~ fai Is. the two machines w., I gO down
within ml 11 iseconds of one another and it is not so I jkely that
any transmission wi I I be in progress thereOy being lost. If,
however, only one proCessor's power is lost, one of the above
symptoms is sure to occur if there is significant activity on the
sYstem.

To solve these proolems, a cable is inst~1 leo b~tween the two
sYstems. ThiS cable causes the power to fai I on both'processors
whenever a power fail,s detected on one pro~essor. Bec~use one
processor fai IS within ndnoseconds of the other, the prObabl I ity
of oata oelng lost or o~ a cort lOCKout IS ~In.mized.

Unfortunately, some Comoinatlons Of different hardware processor
mOdels 00 not permit use' of the above mentioned caole. If the
orimary power source fai Is. both processors wil I power down
almost simultaneously, ~'t.qat'ng the prOb~oi' Ity of the above
oroolems occ~rrjnq. If, however. only one orocessor lose~ power
dUrlnq normal system activity. there is almost certain to be som~
transmiSsion lOSS. conseQuently. if the system must be manually
oowered-down. either use a co~mon power sWitch or turn Off the
I/o-Processor'S power first. In thiS case the I/O Processor
Shpul~ be powereo-up last w~en resUMing system activity.

4-33

The TSB/G power-~al ,/power-up recovery routines In tne two
processors reQuire close coordin~tlon to properly restore the
interconnect kit. ~II ot the following contingencies must be
covered by tne ~esIQn: seCOnd~ry power fal lures during one or
botn processor recovery routines, Initiation o~ reCOVery oy one
processor before completion of the poweroown routine by tne other
processor, power fai lure during ~ D~A transfer on tne
Interconnect, and power fai lure ~ol lOWing a system Shutdown but
before the system restarts aq~tn. The strategy .discussed below
provides the mechanisms ~nd restor~ti·on seouencing necessary to
recover from any combinRtlon of these.

Each orocessor must maintBin six wordS of inform~tion. one of
these. ~OwFF. is ~ flaq local to the power-fai I/power-up
routines. It is useo to assist in Identlftcation of power
failures occurring ourinQ recovery from a preCeding one. wCHNO
ana SCHNO contain the I~st ~ord sent (exclusive of a OMA
tr~nsfer) on the Interconnect receive and send ch~nnel
respectively. These.are ObViOUSly ~eedeo to restore the state of
the Interconnect. OMAFL is a state v~r~ab'e cont~ininQ the D~A­
on-interconnect status of the processor crogram. It is used to
determine if the power fal lure disrupted a O~A transfer. The
f~nal two wordS recora the length. st~rtlng memory ~ddress. end
direction bit of the most recent OMA transfer on the
Interconnect •. Their existence al lows the recovery routine to
rest~rt an ~borted transfer.

Since the oreer In whiCh the processor WI I I complete their
recovery routines ~annot oe preaicted. two seouencing
reQuirements must be observea. First. eaCh word Placed on the
interconnect Is to oe recorded In elt~er ~CHNO or SCHNO ~s

~ppropriate before issuance of the 'STe n.c' wniCh slgn~ls its
presence to the other processor. Second. neither processor can
proceee to ats Interconnect OMA routine unti I after execution Of
tne lest Instruction afectlnQ tne sYstem processor's send flag
~nn I/O processor's receive fl~O. reQ~rdless of wnich processor
wi I I execute the instruction (i.e •• one processor may h~ve to
w~tt ~or Its fl~g to be set bY the other crocessor). This
condition IS autom~tical Iv met by the hanoShaKe .requirements o~
Pos. AL~. ana ~~~. It's also a f~1 lout Of tne deSiQ~ for SCI.
TC~. ana the reQuests for the device table or COLO·OUMp core
im~ge. However. use Of X~B reQut~es that the I/O processor weit
for Its receive flag to become set, after ·transmltting the
transfer length word. oefore tnvoktnQ its interconnect DMA
routine.

4-34

lhe power-down routine d'st'ngu,sh~S bet~een four possible
·cases. 1) 'I f power fa I I sour; nq norma I t I Me-Sher I n9'
PO~FF = 0 and the restart aOdress is not within the recovery
procedure. Both processors must sav~ their hardware registers
end th~ flag sta~es 0+ the Interconnect and Interrupt system.
The system processor (SP) also records the flag ~tates of its
pertoheral devices. 2) If power failS while the SP is not
time-s,harlng (during System Shutdown, system lOading, or after
the SP has completeo Shutdown or fai,led). the SP will not save
its state or attempt to recov~r. The 1/0 processor (lOP
is normalty sti I I active (waiting fOr the S~ to Signal resumption
of system activity) and does not distinguish th;s case from the
oreceoinq one. 3) ~0w~F = 1 ioenttfles a power fai lure from the
recovery routine orlor to restoration of the interconnect. Since
no sYstem aCltivity has occurred on either processor as yet,
their current states are iqn6red and recovery begins anew from
the i nforrr.at jon recoroed at the i nl t I al fai lure. 4) If PowFF =
2 or the restart aoaress I ies within the recovery routine, then
the enterconnect was restoreo but th~ processor had not net
completed the remalna~r of its recovery. ThiS d~ff~rs from case
3 In that the other processor might ,hav~ completed its recovery
and returned to its pre-~ailure actiVity. Mdvlng done so, it
Miqht .. urtner hdve executed ~n instruction whiCh legitimately
at teredo the stdte of the I nter~nnect •. ,EaCh processor is
rpspons.ble for correctly restorina its send channel
(Simultaneously restoring the other processor-s ,...ceive Channel).
ThUS the processor in this situatIon need only determine if its
send channel flag IS not set (it could not have been cleared by
the other processor) and_ if so. overlay the previously recorded
state. The state variable OMAFL al lows detection o~ aborted OM~
transfers on the interconnect. It'must be set to zero whenever
tt~e-shar.n9 beginS In orcer to synchronize the processor states.
EaCh entry to the interconnect OM~ routine +irst saveS the
transfer parameters dna then increments, D~AFL to the next Odd
value. When the processor's hardwar~ UMA ~Idg comes set. it
increments its U~AFL to the next even value. exeCuting not less
than three instructlons (inclUding the SFS 7) to ensure that the
otMer processor has time to complete Its current instruction,
last cycle ~or OMA Ch6nnel 7 •. If the last t~o bjts of both
processor's state variabl~s are even (00 vs. 00 or 10 vs. 10)
then no transfer is active. OMAFL wi I I t'Je Ood (01 or 11) whi Ie
a processor is In the crltlc~1 portion ot its transfer routine.
The other processor's OMAFL wi I I be one less (00 VS. 01 or 10 VS.
11) I+- it has not reaChed its transfer routine. or will be eQual
(01 v s. 0 1 or 11 v s. '11) i f a Iso i nit s t ran s fer rout i ne. or w i I I
be one more (lU vs. 01 or UO vs. 11) if the transfer completed.
The remaIning combinations (UO vs. 10 or U1 vs. 11) cannot occur
since the orocessors can never be mor~ th~n one state apart.

4-35

The IO~ power-up recovery routine is stralqhtforward except for
restoration of the Interconnect. It begins bY setting POwFF to 1
and then re-enabl ing power-fai I interrupts. Since recovery
reQuires an eXChanQe of information. the lO~ must clear its
receive channel fldQ and then walt enOugh time for the SP to
complete Its power-cown routine. clear Its receive channel flag,
and transmit its data. The lOP routine does thiS bY
Incorporating a timing factor into Its wait loop. If the loop
times out. then the S~ must not be active and the lOP shoulo
restore itself to the same state as it woula be In following
recpption of a SSD from the SP •. After clearing its receive
ch~nnel flag. the 5~ wi I I ~xecute at least eighty Instructions
(al lowinq ample time for the IO~ to reaCh its wait looP) ana then
send ~ wore containing zero bits except for the direction ~it of
th~ I ~st OMA transfer (1 if from the lOP. U if frorn the SP) In
bit 0 ~nc t""e last t¥tO bits of Its DMAFL in bits c!. and 1. The
recovery routines are not In SynChronization. The lOP respondS
with its most recent DMA direction bit (0 if from the lOP, l·lf
from the SP) and the low two bits of tts D~AFL in the same
format.

At thiS point ooth processors have ~'complete record of the
interconnect.ts state at power-fal I. The IO~ automatically
placps the current velue of kCHNO on Its receive Channel ~nd

send~ it to the SP. If the IOP'S DMAFL is odd and the SP's
InforMation indicates that the transfer' ala not complete. the lOP
makes a note to reinltld' Ize Its UMA routine later In the
recovery process. The 10~ now waits for the S~ to set the lOP's
sena chennel flag. ~hen thiS occurs~ the lOP exam.nes its record
of the +laQ at the time when power fai leo. If it was clear, the
lOP restore~ the wora from SCHNO and issues the 'STC n.C' to
t ran s,." Itt t • Fin a' I y. P n w F F i s I nc rem en ted tOe s. n c e the
Interconnect IS not completely restoreo (the S~ wj t I not fin~sh

its recovery unti I wei I ~fter the lOP finiShes al I of the abOve).
The remajnder of the lOp routine conSists of ensur*ng that an
aoorteo DMA tranSfer On the Interconnect wi t I be restarted,
performing the ~ut-o.-I jne deVice recovery routines, resetting
POWFF to 0 after returning to the power-up routine, restoring the
hardware registers ana interrupt system fla9, and resuming time­
sharing.

The Sf.> recovery routine is someWhat .more complex. It first sets
F'owFF to 1 and re-endbl~s power-fat I interrulDts. Tne'SP then
reconstructs the POSSible nesting of power-+ai I, receive Channel.
's'ystem consO.le, ana t Ime-bese generator drivers. It does thi s by
comperinQ the return ~ddress of eaCh active routine (power-fai I
is de f~ctQ active to injtiate this searCh) with the ooundarles
of the tower-priority routines it mlQht heve interrupted. EaCh
fl~g whiCh was clear at· t'ne power failure is cleared during tnis
crocess (the receive 'Channel f lag is ~tways cleared here) ana an
interrupt is forceo tor eaCh active routine whose flag was set,'

4-36

to cledr the flag bu+fe~ and p~event a false ~nterrupt f~ter. At
'e~st .eighty 'nstructlons WI ,. be executed by completion of thts
~ctlvlty. The" SP assumes that the lOP has reaChed the w~"i"tloop
of Its recovery routine and transmits the ~nformatlon WOrd
described above.on Its send channel. The two processors ~re now
in SynChron'z~tion.

At thiS point both processors have a complete record of the
Interconnect.s state dt power-fa' I. The SP ~eits for the lOP to
set the SP's send channel flag and 'is then ready to perform final
resto~atlon of the interconnect. If'both processors were tn
thei~ O~A rout~nes or one was and the other had not yet reached
its. then the abortea transfer must be restarted. The SP either
cle~rs Its s.nd Channel flag 'f the transfer wes .romlt to the
lOP or leaves it set if the transfer was from the IOP~ If the SP
was in Its OMA routine, and the transfer must oe restarted. it
restores the OMA parameters; if the transfer was comPleted It
le~ves the routine's length parameter at zero. If neither
processor was In its uMA routine but the SP's send channel flag
was clear •• t restores the word from SCHNO and issueS the
'STC n.C' to transmit it. Flnal'y, the SP automatical Iv ~'aces
the current value of kCHNO on its receive Channel, sendS' .t to
the IO~ (~htch Is walttnq to re~tore Its' send channel), and
increments ~owFF to ~ to sinqnal restoration of the interconnect.

Tne SP now completes preoarations ~or restdrting an acorted
inerconnectterconnect DMA trans~er. It cheCKS the return adoress
of each interrupt routine. except those WhiCh were identi+led as
interrupting other interrupt routines in the logiC above. to see
if it I ies within the critical P9rtlon of t~e transfer routIne.
For those that ad, the return aaoress is replaced w~th the
tF~nsfer restart instructi'on's addr~ss. This ~~ I I have no effect
except tor the one (If any) actlve routine which actual ty did
inter~upt from the transfer routine. If the trans~er had
completed, the length word was teft at zero end the restart wi I I
not invOke DMA. If a tr~nsfer was aborted. then the parameters
were restored aoove and the transfer wil I be repeated correctly.
The r~mainoer of the ~p routine consists of performing the
out-of-I Ine oevice recovery routines. resetting POWFF to 0,
resto~ing t~e haroware r~Qisters and interrupt system flag, and
resu~,nq time-sharing.

4-37

se loe
00 00

00 01

01 00

oi OJ.

01 lu

10 01

10 10

10 11

11 10

11 11

11 00

00 11

Neither processor in its trans.fer routine.

loP aOlng tr~nsfer. SP not yet to Its transfer
routine

SP doing transfer, rop not yet to its transfer
routlne.*

~oth 5~ ana IOP in their transfer routines

SI-J In Its trans+-er routine but transfer is
complete.

lO~ In its trans+-er routIne but transfer is
comPlete.

~either processor in its tr6ns+er ro~tine.

lOP aOlng transfer. SP not yet to its tr~nsfer
rou~lnE!.'"

SP do.nq transfer. Inp not yet to Its transfer
routine.","

Both Sf.- ane lOP' in the~> transfer rout ines.*

SP in its trdnsfer routine eut transfer is
com~lete.

lOP In Its transfer routine out tra~sfer is
com",'ete.

~Transfer wi I I oe restart~d. The SP must set Its send Channel
flROI IO~'s receive Channel flag accordinQ to the transfer
direction.

Imposible D~AfL Combinations

Sf-':
10 :

uu
lU

01 10 11
i-J. UO 01

4-38

i0fi'1 ..
a!d02 ..

-"'~9H"3 ..
. ,1004 ..

'05 *
d0~6 ..
~0"'J ."
8008 ** ..
8009 .*

TH~ FOlt.OWtNG A~f MOD~LS FOR ROUTINES TO SHUTDOWN AND RESTART
THE TSB/G lOP. THEY ARE MERELY SKELETONS lLLU~TRATlNG THE
PRO Toe 0 L . AN 0 TIM I N G NEE 0 EDT 0 coo R 0 I NAT E . WIT H THE $ p t s·- "R-OU "j N E S ..
RC tS THE SELECT CODE OF THE INTERCONNECT RECEIVE CHANNEL.
SC IS THE SELECT CODE OF THE INTERCONNECT SEND CHAN~~~ •. :.:

0010 .PbwER~F~IL/POWER-UP RECOVERY ROUTIN~
9011 ••

.. ...
•• ..
•• &012 •••

801"3 *'
0014 ..
9015 *
8015" " •

• ••
THIS ROUTINE PROVIDES AN O~OERLV SHU1DOWN OF THE 1/0 PROCESSOR
WHeN POwER FAILS. WHEN POwFR RETURNS IT RESTORES THE PROCESSOR

1Il0tJ •
8~1~ *
9019 ..

TO A N E Q ur V A L~' N T S TAT E', RES TAR l' S T H ~ I N T F. ReO NN F. C T I N--e ONt: E R" f ~ I t H-- .
. THE SYSTEM PROCF5S0R, ANO HESTARTR THOSE P~RIPHERAlS FOR WHICH.

,H,20 *
8021 ..
0022 POw
8023
S024
1It025 •

RECOVERY IS POSSIBLE. POWER FAILURES DURING A RECOVERY ~BORT
IT. THE POWER ... UP PORTION IS RESl ARlEO AFRESH WHEN POWEH'~t11JRN'S
AGAIN.

NOP
SFC -1
.j MP POWlIP

IS INTERRUPT FROM POWER~UP1
YES

...
0026 SHUTDOWN THE t/O PROCESSOR **
~~j27 *
ta02~
9029
'03t1
,.1031
}:f032 ..
~03J ..
S034 '*
~0.35 ...
~036 ..
9037 ..
B03~ ..
~039 ..
B0~~ ..
j04.6 t ...
80 .. 2 ..
~0 3
a0~4

0045
904.66
801~1
00~d
a0~9

005(1
:.}051
i)CiJ52
i-305J
B~54
:1055 ..
H~56 ..
ti;057 ..
0~J58 ...
~H:'59 ..

OST PowTl
ERB,BLS
SOC
JNS

TEMPORARILY SAVE
(A) AND CB),

fE) AND CO)
REGISTERS

CHECK IF INTERRlIPT OCClIRRED WHILE RECOVERING f-ROM A PREVIOUS
POwER FAILURE. IF so, THERE HAS AEEN NO SySTEM ACTI~ITy ANO'
TH~ ORIGINAl. SHUToOWN STATUS 15' STILL VALID WITH ONE POSSIBLE
EXCEPTION. IF THf SP COMPLETEO ITS RECOVFRY BF-FOME THE NEW
F AlL U REA NOR E T I J R NED 'r 0 ITS R F ell V E 0 R I v f R, I T MIG H T tot A V E S F-r
THe IOP.S SEND CHANNfl FLAG. THIS CANNOT HAPP~N AS LONG AS
PowfF-l. THE FLAG'S VALUE WIll NOT OTHERWISE CHANGE. THE
top DOtS NOT RECORD r T S RECE r VE CHANNEL FL AG, TRUST'I NG 'TH£ - .­
SP TO RESET TT CORRECTLY.

LDA POWFf FAILED FROM POWER-UP ROUTINE
filA SF.FORE I N'TFRCONNt::CT RESTORED'?
JMP POI.ttf)3 VE::S, RETAIN P R f V I 0 lJ 5' S TAT lJ S
SZA ~JO , FROM OUT-Of-LINE RF.COVERY?
,) MP PO~!D~ YES, CHE:.CK SFND CHANNEL ONLY
I.DA paw NO, COULD INTERRlfPT
ADA POW~l BE FROM IN-LINE
~SA POWER-LIP CODF.?
JMP POWDl NO
ADA POWR2 YES
SSA IS IT?
JMP POWD2 YES, CHECK SEND CHANNEL ONLY

4-39'

.. ., 0 6"
.,061
806:?
8063
",064

... p n ~ F R F' A Il t: f) f) URI "J G N n R MAL ~ Y :1 T [" MAC 1 I V TTY ~
" RFCORD THE 1/0 PRnC~SSOFPS STATlJS~

e~65
~066
8067
e~6ti

i069
8070
8071
e~72
8073
0074
8075
8076
S077
S07tJ
8"79

...
POwDl STB POW EO

rJLO POWl1
f)Sl POwAA
LOA POIlI
5TA PowRA
l. I A t
5TA POWSW
LOR ClF0
SFC 0
l.on STF~
STO pawlS

pown2 CLA

...

Sf'C SC
INA
STA PowFL

"'0A'" POW03 CLC ~
80fil HLT ~

'SAVE
REGISTERS

SAVE POWER-UP
RESTART ADORF.SS

~AVF. THE
SwtTC~ REGISTER

NOfE. IF
INTERRUPT ~YSTfM

ra BE ON O~ OFF
AF'E~ ~E:.COVE~Y

SAVE lHt:. STAlE
OF THE IN1ERCO~Nt:.CT

SENU C~ANNEL FLA~

f:NABI E IN1FHPUPT ANI.)
WAIT FOR Pf1wER-l,JP

4-40

8001
1002
~00J

f6e"'4
10~5
.,006
SQJ07
S00a
80ti19
8010
9011
111012
6013
8014
8015
9016
0011
S0ll:)
~0t9
e~20
8021
9022
8~23
8024
8025
(6026
8021
6028
8029
9030
J031
803~
0033
8034
8035
~tJ6
SQ137
903~
8039
8040
8041
1042
80~3

80 .. 4
8045
8-046
tJ047
B04a
804Q
905VJ
8051
8~52
8053
8054
8~55

"~55
005!
S~58
8059

..
* *. RLSTORE ~TA1UR AND RESTART 110 PROC~S50~ **

• * powUP ·CLA,INA NOT~ INTERCONNfCT STATUS NOT
STA POWFF RESTORED IF RECOVERY ABORT~O
9TC ~ . ENABLE POWER~FAIL I~TERRUPTc
elF RC . READY RECElvr CHANNEL

(. ... ,:. '/J c: t...F ~ 1." H 1./$ 1.: -; 1111 T I:.RIt l) (' r·s
* THI:. SP.REQUIR"ES A CERTAIN AMOUNT OF TIME TO SHUTDOWN, ENABLf!
•.. - A -P·OWER~UP· INTER~-UPT, RESPONOTO IT, AND CLE-(R ·lTs"'~REcE-1v.T· .. ;:~;7~"·
• CHANNEL· FLAG II THE WA I T LOOP AELOW Kt.EPS TH~:.10·P·:: FROM SENf) .. %?NG
• . ITS OMA .. ON.INTER.CONNECT STATUS UNTIL THE SP IS REAOY •... ' THE· ~ ..
.. sP wILL' THEN wAIT FOR-THE lOP's RFsPONSE, SYNtHRONttING-eofH
.. INTE·RCONNECT RESTORATION ROlJTJNE:.S. \IF THE WAIT TIMES OUT,
.. THEN THE SP IS NOT CURRENTLY TIME-SHARING (SHUTDOWN OR
• CRASHFO)-· ANO·THE lOP SHOULD RESTORE ITSELF TO-THe fcC! .-~-~.
• (POST~SySTEM SHUTDOWN) STATE. .
•

eLB
IN8,5IR,RSS
JMP « ? »
SFS RC
JMP 3
LIB RC
5T8 powrl
Oll) OMAT2
RRR 15
ANO -7
orA SC
STe sc,c

SP 'NOT THERE.'
TtM~ .. OIJT1

YES, ACT AS TF '550' RECEIVED
~O, WAIT FOR SP'S

DMA-ON~INTtRCONNECT STATUS
SAVE

IT
M a v t: I .. A S 1 D MAD IRE C T ION R 1 T

TO A(f6) ANO DMA ROUTINE fLAt;
(MODULO 4) TO A(~) AND A(t)

INFORM SP OF lOP'S .
OMA-ON~lNTFRCONNECT STATUS

* THt SP WATTS FOR THE IOP TO RE~TORE THE LAST wnRO S~NT ON THE
.. IOP'S RECFIVE CHANNEL COUTSIOF. OF A OMA TRANSFER). THE SP IS
• Rt:· SPONS t alE FOR Rf" Sf TTl NG THE lOP t S RFCf 1 'if CHANNFL FLAG OR ~ .
* LEAVING IT CLEAR AS OJCTA1ED nv THE powEH"OOWN STATUS. ..

..
•
*
* ..
'*
'*
."

*
* ..

LOB RCHNA,t
OTB RC
STC RC,C
LOB POWT1
RRS
ARS
XOR R
RlB
RAR,SLA
CLA,RSS
eCA
srA POWT~

RESTORE THE lAST WORD SENT
(OUTSIne:: OF A OMA TRANSFER)

ANO CLf.AR THE RECEIVE FLAG

HE-MOvE DMA
DIRECTION 81'5

WAS lOP'S OMA ROUTINE FLAG ann
~ SP IN OR BEFOR~ Irs ROUTINE?

NO
YES, NOTF. DMA TRANSFFR

Tn BE RESTARTED

"4-41

806'"
8061
8062
8063
'064
8"65
8066
8067
8068
1069
807A
8071
8072
8073
8074
,,075
8076
8077
le7a
8079
8080
8081
808'2
8083
8084
"~85
8"86
8087
8088
8089
8090
1091
1092
80QJ
8094
8095
8096
8097
8098
8~Q9

8100
8101
81r,,2
Sl~3
el~4

8105
8106
8107
1110~
81A9
elle
8111

·C112
8113
8114
811!i
8116
1117

,..
,.. THl SP wILL RfSTORE lHE SP SEND/lOP HECFIVE flAGS EITH~R .5 AT
• pnwfR-DOWN OR AS NEEOFD TO RtSTART A n~A TRANSFER. THEN IT
• RESTO~ES THf LAST WORD SENT TO THf lOP'S SEND CHANNtL. THE tOP
• MUST lEAVl ITS SlNO CMANNEL FLAG"SEt OR CLEAK"IT ACAIN, AS
• DICTATED Ay ITS POWER.DOWN STATUS. THE REMAINOER Of THE SPtS
• R~COVERY ROUTINE TS LONG ENOU~H TO ENSURE THAT THE lOP HAS TIME
.. TO· MAKE' THIS oEr.lsION BEFORE THE SP HERUMES TIME';;SHARING.· ..

LOA POWFl LOAD STATt:: OF SEND CHANNEL FLAG
S-FS -se WAIT FOR
JMP .~t HANDSHAKE
StA WAS SEND fLAG Cl;EAH?
JMP POWUl NO
LOB SCHNA,l YE. S, Rf.STOHE
OT6 sc THf LAST WORD SENT
8Te se,c A.NO CLEAR THE flAG

POWIt1. CLC se JNHIRIT SEND CHANNEL INTERRUPTS
ISl POWFF NOTE INTERCONNECT RESTOREO

• * PERFORM OFVICf RECOY~RY ROUTINES
• ...
• «APPROPRIATF. COOE »
...

ISZ POWT~
J~1P POWU?

< APPROPRIATE r.UOf>
p O'WIJ2' ""C L A

STA POWFF
LOA PowSW
OTA 1
LD.A PowE.O
elf)
SlA,ELA
STO
OLD POWAR

pow'IS NOP
JMfJ POWio(A,I

...

~EP~AT DMA ON INTERCONNFCT?
NO
YES
RACK

IN",LINE
RESTORE THE

SWTTCH REGTSTER
RESTORE.'

eEl
AND

(0)
REST~R~ (A) ANO (B)
'STF 0' OR 'eLF PJt
RES lJ '4 E TIM f; - 5 H A R I N G

POWRl ABS .. powuP
POwR~ ASS POWlJP-POw~1
...
POWFF
...
•
POwT l'
POWT2
POWFL
P'OWSw
POWRA
PowEO
POWlS
•
RCHNA·
SCHNA
eLF@
STF~

OCT

B-SS
fQU
BSS
BSS
RSS
RSS
ass

OEF"
DfF
ELf
5TF

0

2
... 1
1
1
1
1

.~

RCHNO
SCHNO
@.I

QI

c0 WHEN NOT TN POWER~UP ROUTINE
-1 BEFORE INTERCONNECT RESTORFO
-2 DURING OUT-OF-lINE ReCOVE.Rv

-I IF SEND CHANNfL FLAG WAS SET
SAVES SwITCH RlGIS1ER
SAYES POWER.UP RESTART ADDRESS
SAVES CE) AND (0) REr,YSTFHS
SAVfS CA) AND (8) REr,lSTE~S

-> LAST WORn SENT ON RC
a> LAST wORD SENT ON SC

4-42

~201 • ...
~002 'II. INTERCONNECT DMA ROUTINE ••
~00J • •
:o!~;J4

1'005
JIJ96
e~~7
a0~8

2~~l9

20113
9011
~et2

20t3
'3014
0315
J0\..5
2017
d ~j t 8
B0 i 9.
3U2Z,
jj~21

H:d 22
'Jv123
~024

HZ?,S
!3~26
~021
i6~)2~

~Qj2q

~t ~:3 10
: ra3!

g032
~~33
l:}034
J"J35
~036
~U37
:.oj 0 J ,"3

r.J£"<3Q
:il']" ~~
~I£)~ 1
d0~2

• PFRFORMS A DM~ TRANSFER FROM (TO) THE SP TO (fROM) T~E lOP.
• THE RECEIVE'C~ANNEL FLAG MUST BE CLEAR BEFORE ~NTRY r~·TMI~
* '~OUTINf IF- THE. TRANSFER IS FROM THE· SP (BCt5) -.-1)-•. --... -
* ON FNTRY CAl = TOTAL TRANSFfH LENGTH (POSITIVE WORDS)
* (B)". BUFFER MEMORY ADDRESS (BITS 14p0) ANO
... 'tRAN~FER OIRECTION (b'IT- is' .-~l:~IF-FR·OM--SPY
* IF A POWER-FAIL A~ORTS A 1 RANSfER , IT IS REST APTEDF;~O"'·;.:;<;:
.. TH~ BEG~~NING. " ;": . ~'.

•
Df-oiAXR NOP.

•

CMA,INA
OST DMATl
I Sl OMAFl

NEGATE TRANSFER LENGTH
SAVE FOR POWER~FAIL'RESTART
NOTE IN ROUTINE COMAFL NO~ 000)

• R F' S TAR TAN I NT E ~ R II PTE D T RAN S F F. R BY t 0 L 0 D MAT l' A N.D
,., JUMPING TO THE FOLLOWING LABEL.
•
DMXRS SZA,RSS

JMP DMAXl
STC 3

. nrA 3
CLC 3
OTA :3
LDA' DMACW
nTA 7
STC 7,e
SFS 7
.JMP ... -1

DMAX, 15Z I')MAF-L
~JOP

.]MP D~IAXR,l

•

ZERO~LENGTH TRANSFER?
YES
~o, OUTPUT OMA

WORD COUNT
OUTPUT DIRfCTION !:iIT

ANO RUFFER ADDRESS
ASK FOR 'STC' ON EACH WORO

AND 'CLC' ON IF.RMtNATIO~
~TART OMA
WAIT FOR

COM P LET ION . Co ~c. ::;
ADVANCE AOUTTNE FLAG TO f~EN
(ROLLOVERS DO ,OCCUR)

• I1t-'1AFl. MUST F'OLLOW DMA'T2 FOR POWER~FAIL PlJRPOSE~

* DMAT1 ASS 2 SAVES TRANSFFR LENGTH
OMAT2 ~QU "'-1 SAVE$ SUFFER ADDRESS
nMAFL nCT 0 7ERO WHENEVER SP SENDS tINI'
DMACW ASS 12~~~0A.~C

4-43

lOP

CLF RC
•
•
•

OLD OMATZ
RRR 15
AND =7
CLA

..JMP *-~
OTA SC
OLC SC
STc SC"C
I Nth SLb. t-<~S
«time out»
SFS ~C

LIH QC

STR p()WTI
LOA ~ChNA.I
OTH RC
STC ~C.C

LOti powTl

•
•
•
•
•
•

LOA POwFL
SFS 9C
JfIoiP *-1

SLA

LOB SCHNA"I
OT~ SC
STC SC,C
..JM~ *+4
CLC SC

reaoy receive channel

prePdre
Interconnect

UMA in~o

sena it

\ilia It for
hcnCShdKe

DfvlA info

save ~PLs info
res tore

receive channel
last sent word on ~C

CheCk for
UM~ r e s't~r t

Yfa.t tor
hanash~Ke

lost-sent wore on. CHI

<--~~-------~------

restore
sena

Chonnp.1

4-44

CLF CHI ready receive

•
•
•

ULU UMAT4 prepC!lre
~~R 15 tnterconnect
ANU • + , Orw1A info
SES CHI wait for
~MfJ -u--l handshake

Llts Chi load lOP's Info

OT~ ChZ send
STC Ct-'2.C OMA infO
SFS CHi walt for
~Mt-' *-1 handShaKe

CLI:::..t:.J.<b CheCt< for

OMA restart
(LDh SerlNA,I restore)
<QTH ChL Send)
~STC CHL.C Channel)

•
•
•

CLC CH£
LOt:3 t-(CH'''A,l restore
OT~ CHI receive

STC C.HI,C channel

ISl~O~FF note inter­
connect restoreo

•
•
•

ISZ ~O~FF

•
•
•

note interconnect
rest~red

4--45

.20 Ou Sy~ TEM TABLES

4-46

I. DIRECTORY

The D~rectory Is a tabla which contains all necessary Inform~t.on
about each ~rogram or •• ,e .nthe svst,m. library. It restdes on
the diSC ana may OCCUPy from 1 to ~o tr~c~s. depending upon how
many discs there are specified (maximum is 10 per diSC) bv the
operator at 'oad time. A core reSident table called OIREC
contains information on the dlrectorv Itself.

Each dlrectorv track occupies 3~ contiguous blOckS. A directory
entry consists of 1~ words. The entry format Is deta61ed on the
fol lowing page. The oirectory entrtes are kept sorted on words
0-3. bit 15 of WordS 1 through 3 are"not considered In the
sortlng. Names of fewer than 6 characters are fi .Ied out with
sPaces. The tast reference date Is the most recent date on whiCh
the program or file was referred to, whi Ie the last change date
is the most recent oate ~n which It was altered. The directory
conta.ns two pseudO entries which are the first and last entries
in the table.

4-47

D U-<ECT()HY
ENT~Y

FORMAT
NORMAL ENTRY

First tntry Last ~ntry WORD CONTENT

o
o

o

o

o

o

-1
o

-1

o

o
o

-1
-1

-1

-1

-1

-1
o

-1

o

o
u

o
1

USE.R 10
PROGRAM

OR FILE

NAME

BIT l~ = 1 IF AN
ASCII FILE

= 1 I F A FILE..
o IF A
PJ.<OGRAt-o'

= 1 IF SEMI­
COMPILED,
o IF UNCOM­
PILE:.()

4 PROGkAMS - STAkT OF
FILES - R£CO~D SIZE

PROGHAM POINTE~I

S LAST REFE~~NCE DATE (YEA~ - ~IT~
15:9, DAY - ~ITS 8:0)

b LAST CHANGE OAT~ (~OUH OF THE YEAR)
7 PkOGkAM STATUS

bIT ,
1~ OEVICE./FIL~ SUPPORTS INPUT
14 O£VIC~/FIL~ SU~~O~TS OuTPUT
1~ ~ROGRAM'FILl ~AS ~FA
1~ FILE HAS MWA ACCESS
11 ~ROGRAM/FIL~'S OWN£~ H~S FCP
10 UNUSED
~ UNUSED
d UNUSED
I UNUSED
o UNUSED
:i UNUSED
4 UNUSEU
J PRIVATe:
d LOCKED
1 PRnTECTt:.D
o UN~ESTRICTED

8 DISC ADDRESS IF

O~

=1 INDICATES NON­
SHAREABLe...
DEVICE.

9 Dl~C FILE/~ROuRAM DEVIC~ OESXG­
NATOt-(. 3 :,-8IT
Flt:LDS

10 USED ONLD tiV THt LOAOER
11 LENGTH (-WORDS FOw PO~Ou~AM.

+ HtCO~DS FOR FILE)
(0 FOR NO~-SHAkEAdLE DEVICE)

4-48

II. DlkEC

DIREC Os e 560 word memory resident table w~'ch contains
Informetion about the directory. DIREC entries consist
of the ~irst ~our wordS of the first entry on eaCh of t~e

dtrectory tracks, as wei' as the track disc addresses and
lengths. Thjs fact' itates rapid loca~ion of dtrectory
track entries by system programs using a method whiCh Is sImilar
in concept to the use of the wordS at the top of dictionary
pages.

The OIREC Table has the following structure:

Dlk~C + o -length In wordS of first directory track

1-4 same as first four wordS o~ ftrst directory
traCk

5-& diSC address of first oirectory traCk
7-13 same as 0-0 ~ut appi ied to ~nd directory track

•
•
•

SS3-~S9 same as 0-6 but applied to 80th directory traCk

A diSC address of 0 imp'tes that there is no suCh directory
track. When word 0 is 0, wordS 1-4 are meaningless.

When qenerattng a system or reloadtnq from mag tape, the system
operator has the opportunity to spectfy the number of dtrectory
traCkS per diSC, in the range of 1-10, whtCh 6s saved In NDIRT.
The total number of directory traCks Is thiS number times the
number of discS on the s·ystem. Each directory track may contain
as many as 8184 WordS = b82 dir.ectory entries.

4-49

I I 1 • 1 0 1 A t::lL t:.

The 10 table (lOT) is e disc resident table of from 1 to 10
" trackS wntch contains one 12-word entry for eaCh 10 COde on the

system. Tne entries are ~ept sorted acCording to the 10 COdes.
An entry nas the fol lowing format:

WORD
o
1
2
3
4

5
b
7
11

9-10

CONTE.NT
USI:.R 10
PASSWORD (FILLeD

wITH O.S If f£wE~

THAN SIX CHARACTERS)
TIME ALLOW£O (IN MINUTES)
TIME USEO (IN MINUTES)
DISC SPACE. ALLOwED (IN ~LOCKS)
DISC SPAC~ US~D (IN BLOCKS)
USER CAPA~IL1TIES - IF THE BIT
CAPAt:!ILiTY

bIT
15
14
13
12
11
10

9

Mt.ANING IF SET
UNUSt:.O
~p - keADER PUNCH
~T - ~Ob TRANSMITT£R
~L - ~Ob LINe PkINTI:.R
..JP ,JOb PUNCH
~I - ~Ob !NUUIWY
,JM - ,JOb MESSAGE
MT MAbN£TIC TAPE UNIT
~~ - P~PE~ TAPE PUNCH
PH - ~API:.~ TAPE ~EADER
L~ - LlNE PHINTER
CJ.l - CARD REAlJEF<
UNUSE.U

IS S~T. THE USER HAS THE

~

7
6
5
4
3
2
1
o

~FA - ~kOGRA~/FIL£ ACCESS
Fep - FILE C~E.ATE/PuRGE
MwA - MULTI wRITE:. ACCESS

UNUSE.O

10l:.C TABLt:.

---~---- .. -
IO£C is a 40 wora memory resident table whiCh contains
in~ormation about the io table. There is one 4-word entry for
each id treeK ana each entry h~S the fot lOWing format:

word
o
1
2
3

FlkST 10 ON THE:. THACK
U 15C ALJlH<ESS

OF THl;. TRACK
LE.N(';'TH 1"'" -wORDS

4-50

BIT

ID FORMAT

14 10 9 o
------~-----~----~------~---~-~-------~---~~------~-:NOT . •
:USEO

IDE.NT CHARACTER

ASCII EQUIVALENT - luOB

EXAMFJLE: M100 = 3~144B

IDENTIFICATION NUMERAL
:
• •

RANG~ FROM 0 TO 99~
OK 0 TO' 17478

---~---~-~--~~---------~~-~---~-------------------~--

o 1 1 o 1 o o o 1 1 o o 1 o

• •

0:

-------~----------~--~-~---~~-----~--------~-~--~--~

158 +
01448

lSd

1006 = 115 = 100
10

ASCII

4-51

Tne Swap Areas Table (SAT) is a disC reSieent table of 64 wordS
long wnich contains 3~ two-word entrIes, one for eaCh swap trac~
on the system. The llb entry is the disc address of the lIb swap
traCK. A zero entrY Indicates tne absence of tnat swap .traCk.

Tnis table Is built, use~ and upoated by the Loader only.

v. 8U!

The avai lable elisC tacle (ADT) Is a diSC resieent table which
contains one three-wore entry for each area of the disc which is
unal located. ~acn AOT tracK OCCUPies 3~ contiguous blOCks. An
entry has the fol lowing form:

o
1
l:!

di sc
address

lengtn 0+ area in bloCkS,

There is one ADT track for each diSC on the system and only
entries for one particular diSC appear on a traCk. The first 4
bLOCkS of eaCh di sc are used by the system and are therefore
always unevei lable. ThuS. there are no contiguouS areas whiCh
overlap diSCS.

The 24-word available diSC table address table (AUTAT) in the EQT
table refers to A~T In the +ollowi~Q format:

wOF<O 0-1
2

•
•
•

diSC aoeress of first traCK
length 0+ first traCK In - wordS

~1-22 oisc address of the ~th traCK
23 length 0+ the ~th traCk

The Lockeo BlOCKS l~ble is a disc-resident table which reSides in
the 2Sb wordS 0+ blOCk. 3 of e~Ch diSC. It conta~ns oine two-word
entry tor each area 0+ the eisC that has been MLOCKEU. An entry
has the fol lOWIng format:

4-52

WORD o
1

diSC adaress relative to thi~ disc
lepgth of area In bloCkS

The rest of the table Is a zero filled.

The disc address is stored as If the disC were logical· disc O.
The Locked BlockS Table is cleared only when It Is determined
dUring the lOading prOcedure that tn. disc does not have a
val td T58 label ana the operator reQuests that one be wr.tten.
This meens that the pact<s "remember" whiCh blocks are unaval.abl-e
even jf a different 2000 system, .s loaded.

The FU&S table is a 1024 word disc resident table. It tsdivOded
into 32 sect tons of 32 wordS eaCh. The 32 wordS In each section
are the two word disc addreSs\of tke 16 Possible ~.tes currently
betng accessed by, the user correSPOnding to that sect ton.
Addresses of 0 indicate no file or a non-dISC ASCII file entrv.
The high word of the disc address may heve one or two of the high
bits set Indicating:

bit meaning if set
1~ fit e • s read-only to this user
14 f i • e was lOCKed bv th,s user
13 W~ r as tr let. on was imposed by this user
12 Rk restriction was Imposed bY this user

If otts 13 and 12 are not set. an NR restriction was Imposed by
the user. ,The fUSS table is written to the disc an two halves
by the LOAOE~. It must OCCUPY two contiguous diSC blOCkS.

The reasons .or maintaining the FUSS table are:

(1) To prevent Simultaneous write-access by two or more users
unless the file has MwA and no user has specified WR or ~R on the
~,i Ie.

(2) To at low co-operating users of B fA Ie exclus've use o~ a
flle vta the LOCK and UNLOCK statement$.

(3) To pevent moving or removtng an active fA Ie In the routines
PURGE and MLOCK. ~o Check is made for the routinesa COpy and
BESTOW.

A user's FUSS (i.e. his section O~ the FUSS table) Is set by
the FIL~S routine, whiCh is cal led from BASIC at the statement.
Indivtouat entries in a user's FUSS are changed by the execution
of ASSIGN statements. The user"'s FUSS 'is cleared by HELLO, BYE,
and normal or abnormal program terminat,on.

4-53

FUSS

FUSS

FUSS TABLE

---------~---------------+ 0 : d j S C ~ddr es s 0 f 4= i Ie j n:)
+1 : use by port 1), -UP to 10 files per port

------~--~--~-----------~ +2 :dtsc adaress of file tn:)
+3 : use by port 1)

+4

+30
+31

+32
+33

+34

bSS
t:I~S

b~S

t:5S
hSS

b~S

•
•
•

•
•
•

-------------------------· • •• · • •
) -Zero fill indicates no
) file
} · • •
) · • • · • •)

)-· • •
) · • •

------------~------------:diSc ~aaress of file In: J
: use by Port 1)

~--------------~---------;diSC aaaress of fi Ie in: <
: use by port 2

32 Por t 0
32 ... or t 1
32 tJort i:

E.ntries
Entries
Entries

)

)

)

.
" .

~it 15 of first word
ind'c~tes Reaa-only

access (=1) or
Read/write (=0)

) Initialized to
j SECTION) zeroes and disc
) ONE) space reserved
)) Just prior to

32 por t l~ Entries } j library being
32 . Port J.b Entries) written on disc

) SECTION) on disc to ensure
) Two } sections one and
)) two are wr i t ten on-

32 tJort 31 Entries)") to conttgUOUS di sc
) sectors--wil I be"

read into user area
during later system
usage.

- unprotected fi les storea unoer system
or broup"lO's ow. I I be accessed dS redd­
only by other IO's.

4-54

VIII. COMTABLE.

The COMTA~LE .s ~ list of alt user and system comm~nds con­
ta.ning thear ASCII cOdlngs and d'.sc "locations or core addresses.
The ,structure of the COMTABL£ .s as follows:

COM1

COM2

CQM3

COM4

COMS

CO~\O

COdes for commands which are
executed I mmed' ate t y by" the
sYstem
cOdes tor commands which are
executed by
~ASI(;

user commands w~.Ch are
executea bY diSC resident
Pf"OCi)rams
svstem CommandS -- al I are
executea by diSC res.dent
progr ams
starting addresses for those
commanas which are listed
under COMl ANO COM~
disc aCdresses for thos.
commands wnjCh are "sted
under COMJ and COM4

(thiS section Is
fl I led by the
ioader)

Since eaCh command is recognized onl'y 0)' its first 3 letters, the
sca"ner converts eaCh letter Into a number from 0 to 31(d), and
then paCkS tne three COdes into one word as tnree ~-D.t bytes.
In addition. bit l~ is set for system commancs. Codes of -1 *n
tions ~. 3, ana 4 dO not correspond to any possible 3-letter
COde. Their purpose is to generate room tn COMb for disc
addresses of routines tnat are called indirectly, or for tables
like FuSS.

4-55

1~ 14 10 9
COMMAND
WORO
FORMAT

--~-~ t;VTt. ONE bYTE TwO BYTE THREE :
___ ... __ - ___________________ - ____________ 1 _____ ...

+ ir s t 3
bytes of

set if command must be from
system console.

cOf'l'lmc!!!nc
name iaentify
tne command

COMMANO
TABLE .. OktwlAT

f-trografTI Name
cf_8Cea
COMl

COM3

COM4

COM~

BYTE = ASCII ~HA~ACT£~ VALUE
lOlt:s

"l)escrlPtton of
Ig~!e_CQoIeo.ti
Part 1 - SteTION

SE::CTION

1-

11-

core reSident user
commandS, executed
Immediately.
core reSident user
commandS, need user
program in core be­
fore execution can
proceed.

S~CTION 111- diSC restdent co~mandS

J-IAwT 11

4-56

--user commandS
--system" console commandS

core starting addresses
for ~A~T It SE::CTIONS 1
~ II. ~ ~ord diSC
adoresses for ai'
diSC reSident commandS,
ana error meSsages.

· e · . .
:SYSTEM L18kARY:
• · · •
----~~~~------~~

coeE_8ESlQE~I_U~~B_'a~~A~a_
E~ECUlt.a_l~t:!JEOlaI~L~

SCRATCH
TAPE.
KEY

SCR
TAP
KEY

COeE_&ESI0~~I_US~~_~O~~A~as
~EEO_USEe_e~Ob~e~_j~_CO~E_BEEOBE
E~ECUIlo~_ca~_e~ot~~u

Jo<UN
LIST
PU~CH

LOAD

HUN·
LIS
PUN
LOA

4-57

---------~------
:SYSTE:M LIBRA~Y:

-------~--------
OlSC_~~~lO~bI
S~SI~~_CO~~a~OS_t~O~_USEB_CO~SOLE

l.JUM~

OI~£CTO~Y
kEPOkT
STATUS

DUM
UIR •
REP
STA

Q1SC_bf.~lOf.~I
StSI~~_CO~~a~C5_l~Q~_S~SI~~_CO~SO~E

ANNOUNCE ANr...
kt:.PO~T REfJ
kE:.~t.T RE:.S
ChANGE CHA
Olkt;.CTORY DIR
STATUS STA
SLlE.~ SLE
Hlbc.~NATt. Hlf:S
Nt:.·w I () NEw
KILlID KIL
MU,""LOCK MUN
tvlLOCfc. MLO
CO~Y COP
I='I:.~TOw 8t:S
fJu~(,E. f.JU~

kOSTi:.J.,t f.loS
f.>HO"'I:.S PHO
1:j~E.AK dRI:.
Ul:.vlCE L>EV
~SSIGN ASS
k~£ R~E
(JUMP DUM
uISCONNt:..CT DIS
bANNER BAN
AwAKE AwA

4-58

----~-~--~~-----. . .
: SYSTEM LI BRAHY.: .

o

------~---.--.. -.....

SAVE
CSAVE
G~T
APPEND
HE.LLO
t;YE.
J-IUJ.lGE
k~NUM6t.k

NAME.
CATALOc.;
L.IBf.<AFotY
(.7ROUP
L)E.Lt:::TE
TIMt:.
LENGTH
I:.Ct-IO
Mi:.~SA('£

E.XI:.CUTE
OI:.VICt.

.UNRE.STkICT
",t.<OlE.CT
LOCK
PJ.<IVATI:.
Sw.A
MWA
~~uSE

C~I:.ATE

SAY
CSA
GET
APP
HEL
fJYE
PU~

REN
NAM
CAT
LIB
GRO
DEL
TIM
LEN
EC.H
MES
EXI:.
DEv
UNR
PRO
LOC
~~l

SwA
MWA
PAU
C~E

4-59

:SYSTEM LlfjRAFotY:

"lLE.:~ P~OCESSOk
AS~lGN ~TAT~ME.:NT PROCESSOk
SY~TEM ST~T~M~NT ~~OC£SSO~
LOCK/UNLOCK 5TA1EMENT PROCESSOR

SAVt:. OVE:.~LAY

STATUS (U~~R ~ONSOLE) OVEkLAY
STATUS (~YST~M CONSOL~) OVEkLAY
MLOCK OVt:.RLAY
DUM~ OVE.RLAY

Li:.NGTH TAdLE.
FUS~ lABL~ - ~ ~ARTS
I:.kkOR MtSS~uE:. T~~LES

1~~~ MOD~ CLt:.~NUP

4-60

IX. lOGGR

LOGGR is a b.-word Queue wh6ch contains COdes forprinttng
LOGON/OFF messages. ~ntr'es are placed on the Queue by HELLO.
BVE, ~nd SLEEP. Each entry consists of ~ words. with the
~ol'ow'ng ~ormat:

WORO 0: user ad (~lT l~=O for ON. 1 for OFF)
·1: b t ts lS-!:) = 60)c. hrs + .mins

bits 4-0 = terminal number

The representdtion of a user id is as fOI lows:

BIT 5 14-10 = let t er (A = I. B =~. •••• Z = 32 (8))
dITS 9-0 = (0-999)

Tne fo' lowing variables are relevant:

LOGeT = # Of un~rocessed entries in LOGGR
l06P1 = points to word 1 of last processed entry
LOuPe = potnts to word 1 of last unprocessed entry

Note that LObeT = 0 <=> LOGP1=LOGP~

4-61

This set of 32 t~bles. one ~or each user, contains relevant
information abou~ the vartous terminals. The structure o~ the
t~bles is as fol lows:

~oro

~umbec:.
o

1

4

6
7

10

11
12

13

14

15

16

17

20

21

23

25

wore
~cme

'iF LAC,

'! TNUM

?DISC

110

?NAMt

?TlfVit.

?C.LOC

?RSTR

?STAT

?LI"'K

?PLE.V

'?OREC

?OUTfJ

?NRE:.C

?P~IU

?kTIM

lJe~~c.J.etlQo
lJser Cit ~Iags

~ort numoer In bits Ie to b

Aeeress of 5*ap area on oiSC of program
(~ words)

POints to last used address 0+ proqram
When In core

User 10 (=0 if no current user)

.) 0 character (or less)
) oroQram

0.) name

) s~artjn9 time (set to DATIM and
) DATIM+l at LOuON)

User's ~UN time time-out ClOCK

~estdrt aodress for suspended programs

user status

~otnts to lLlNK of next port on ~ueue

~riority of user on Uueue
It user not In the Queue. contains
program type (temcorary storage of
?~TAT)

kecord Size o~ OUT= fj Ie

LOgical unit number or diSC address of
ouT= f i Ie

Numoer of records in OUT= fl Ie

uwner IU o~ program in ~wap area

~esponse time for ENT£~

4-62

2b
27
30-

?TEMP)­

)­

)

Tempo ... a es
used.by

Librc!')rv routines

?FLAG bIT DEFINITIONS

Bit
~umbec

0

1

2

3

4

5

7

t:lcme

TERR

CFLAG

HFLAC,

TAPEF

UNA8T

Is set

OCJC:ClstJ.QO

~rror detected on tape input bY user

Program in swap area is compiled

Ht.LLO is runnlnQ

User is in tape mOde

Unable to ~bort user when set

when comoilation .~ occuring
When comp.ler executes a diSC routine
(~I lows port a Chance to aoort just
prior to runnlnq of diSC routine)

FILES
CHAIN
ASSIGN

when UPdate Last Reference Date For files
is being run

Is not set, but simi I a ... e+fect (i.e •• unable to
ebort) when Library routines are runnIng - except

+ro,;, (.
user <.

console -(

LIBRARY
CATALOG
GROUP
L>IRECTORY
REPORT

- STATUS

ouT \lilT

PACT

A8TRY

user output buffer +ul I-output wait

~ort needS to be orocessed by SChedule ...

Abort attempt that has been delayed due to
UNABT 0'" shoul'd Just be f.lagged due to Pt3FLG

4-63

8 uFCHK u.rty f i I es fl~Q-uSed (-or last chC!nge

9 CHNFG CMAI~ IS runntnq-tnnib.t cer ta i n aetlvj·t.es

10 ~PAC(J List has a I loeated an output bY (- (- er for the
user

11 MblJST useo to (-lag di se trans .. er error s

12 t-J~FLG bkK. funetton otsabled the bre~&< ~ey eapab iii t y

13 (,;~fL6 SYstem operator enabled the or eaK Key

14 OU1=~ The command runninq has an OUT: (- i Ie

15 l~E.J.<W lransmtsston err or on por t

4-64

?TNUM:

?~ROG:

?10:

?NAtwtE:

?CLOc..;:

?kSTk:

?STAT:

Teletype numbe~ In bAts 12-b; usea fO~ sencinQ in­
fo~mation to the 1/0 p~oces~o~.

OiSC aed~ess of use~'s swap a~ea

~hen use~ is on the disc P~OG ~ot"nts to the last
co~e location used by th~ p~ogram. when the use~
is loaded into co~e, PROG 's placed into PBPTR.
When he 's w~ltten back to disc. PdPTR .s eopled
into p~Ou. BASIC ts reQuired to maintain PBPTR as
a bOUne on the co~e it Is using.

Use~'S ad, 0 If none.

A three word entry contatning the user's pogrem
name. It is set by tne ~out;ne NAME ~ GET ~ CHAIN.
and cleared by HELLO. When ~ewer than & cha~acte~s
are In the name. blanks are appended. Each wO~d of
the ent~y contains a flag in bit l~. Meaning of the
flags. if set, a~e : (1) p~og~am lOCKed (2) p~ogram

p~ivate o~ (3) p~Og~aM pr.otected

This IS the time' out ClOCK used to dete~mine the
,'ength of a use~'s time sl Ice. See the discussion
on s~heauling +o~ fu~the~ information.

ThiS IS set. when a use~ is placed on the Queue, to
hiS starting add~ess In co~e. when the use~ Is
actually initiated, RSTR is set to O. Wheneve~

RSTR = O. the transfer a~dress o~ the user can be
+ouna in location PREG.

Indicates user's status. The user's status Isas
follows:

Numer' i c
ee;c"esectgtiQC Oescc.i.gtlcc_

-4

-3 " 'Ali:.NTO

-2 ~l.)l~C

-1 ~AbORT

o ~lDLE

~ort is unavailable due to hardwa~e
fa i I ur e.

An ~NTER statement has timed out

Disconnect this user,.

User wants to ABORT

Idle - no user. or waiting for
commanas or syntax

4-65

1

2

3

4

~5

?LINt\:

?PLE":

o

%()UTw

waiting for device ~ttention or PAUSE
co,"m~nd timeout

Waiting ~or input from user

Wa.t*ng for output to user to complete

ProceSSing user synt~x or {
{

{

{

{

{

<
{

<
(

<
0(

F'IL[-::S
CHAIN

library
ASSIGN
SAVE
CSA\lE
LOCKI
UNLOCK
SYSTEM
bYE.
CREATE.
PURGE

Processing a commano - v~lue wi II
correspond to command table entries,
e.g ••

5 = RUN
b = LIST
7 = PUNCH
etc.

The LIN~ ~oroS In the tables are used to form a
Queue o~ act. ve user s. A I I user s v.those status is
~4 are In the Queue.
~ee diSCussion on schedul ing for turther
Information.

ThiS wore QlveS the priority level of the user When
the user is on the Queue. When the user's status IS
set to 2 or 3, the previous value of 1STAT is COPied
into ?~L~V. and the user IS removed from the Queue.
The POSSible values of ?PLEv are:

____ ~_~ ____ Oescclgt!QO ____ ~ _________ _

Syntax processing
Return from"input or output wait
~eturn from ENTE~ time out
When COMllI commandS (?PLEV=~) reaCh the

heee of the Queue

4-66

1

2

4"

OPEN command when ~t reacnes heed of Queue
(from ?PLEV=4)

Core reSident ~rogram to U~date Last
Chanoe Date for files

When compiler calls a disc resident
~,..ogram, the running of whiCh causes
the user ?CLOC to be incremented by one

FILES
CHAIN
ASSIGN

COMII commandS

COMMIII CommandS

kUN
Ll~T
PUNCH
XPUNCH

Compute bound programs, wnen time-slice
has been exhausteo .

OPEN command after each group Of ;.R0
blockS "has been initialized '

Takes on value of ?STAT during Input/output wait, ENTER wait,
or wnen program to UPdate Fi les Change Date is runnino.

?OREC:

?OUTP:

?N~£C:

?TEMP:

NP = EP * N~ORT/4
NP = new priority
EP = entering prtority
NPOkT = -(number of ports logged on +1)

Logical record size for the ASCII out= fil~.
Bit l~=l If the file is on diSC.

Either (a) tog i ca t un I t number of the OUT= f i Ie, if
a non-shareable device or (b) two word diSC address
if the OUT= file is on diSC.

Number of recoras .n the OUT= fl Ie if diSC file.

10 Of the owner of the program in the user's swap
area. bit 15 = 1 if user has FCP capac" ity.

The length of the time in seconos tnat it tOOk a
user 'to resPQno to an <ENTER ~TATEMENT>.

Used (a long with '?RT 1M) to 'save var, ao I es when

4-67

O~~N. C~lALOG, 6kOU~, LIHRAkY, STATUS, DIRECTORY,
ena ~£PukT are swapped out.

Assoc~atea w~th e~Ch item in these tables is a symbol which is
EQU~tea to the correSPonding number ~~ the item. For example:

?FLAu E:.QU 0
?TNUM t:.CJU 1
?TEMP i:.<.;U clts

These symbOls are primer. ty used for adjusting pOinters to the
table. FOr example, I~ the 8 reQister contains a pOinter to the
LINK entry Of some user. the instruction

~U8 .+?lU-riLINK
wt I I pOint B to hiS Iu entry •

• is a SymbO I 10CC!lteo I n base page at the 0 entry of e tab I e of
constrants from -2b to +~l. A word containing the value Nt where
-28~NS~1 c~n be rc+erenced by .+N.

4-68

The ecuipment taote (EQT) Is the area of memory whtch describes
the resources available to, the System. It res.d~s In 'oc~ttons
100 17b as follOWS:

100
101

'102-131
13c-141

142-143
144

145-1:;1
152

153

1S4
155-1Sb

15 gl

100

NIOT
NDlkT
ADlAl
DKT8L

DAOSL
OLf'4SL
SY~lO

MAGSC

NPORT

YE.Ak
uATIM

HOATE

SLEt-JT

number of 10 tracks
number of directory track~ per ajsc
AuT address table
There is one word in this area for e~ch of the
& discs. When the wora is zero. the particular
diSC does not exist. otherwise, alts 1~:8

contain the high ~rlortty select COde ~nd 7:0
the un i t number.
cl,SC address of system library
len9th of system I tbrary in + olOCks
A ten-Character system identification.
ni9h criorlty select code for mag tape. 8tt 15
is set if console Is a terminet.
Two's comp1ement of the number of ports on the
S'yS tem. Tne por t s ~va i I ab I e are numoer s 0 thru
-NPORT -1.
Year of the century
Time of year. The first ~ord IS the hour of
the year4 and the secone is the number ~f 100
ms units in the hour minus 36000.
hour 0+ year that the system was last
h'bernated.
o says that the system has ceen sleet. -1'that
It has not. This word IS mooified only by the
sleep and reload procedures and ensures that
the system may no~ be reloaded from disc if it
has not ~ee~ slept.

F'ol lowing the eQuiPment table •• n locet*on~ lb1-17~ are another
set of words whiCh must correspond with the IQader. They are
defined ~s fol lows:

Ib1

lo~

163 E:.kIDX
1~4 ~HAD

16~ GMQBP

160 Dl~CA

1b7 DISCb

17U MHUS'Y

core dddress' in the loaaer of the final disc
bootstrap.
Core address of the first 10dder segment in
the Master segment Table (MST).
~olnter to salvage portIon 0+ ~ST

Core address of the MOVing Head Disc Table
(MHldL)
Lore address Of the routine to qet a buffer
for diSC error messages.
Lore adoress ot disc driver entry po'nt.
~ore adoress 0+ disc oriver interruct entry
J,Jolnt.
[)fsc driver bUSy flag.

4-69

171
17~

173-174
175-170

~WO~()

UREDP

EQTAO

~ord count fOr disc driver.
~ore address of oisc driver auto restert entry
po,nt (used by cowerf~il/auto ~estart routine).
Uisc address of the Equipment T~ble
DiSC aadress of t~e ID~C T~ble.

4-70

Tne Master Segment Table (MST) is a 6~-word tacle resident In
t~e loader. It Is the first portion of the bootstrap and ts
potnted to by the ~Irst word of tne EQutpment Table. ·The ~trst
wOrd Of tn& table contaIns - th& number of s~stem seg~ents. £ach
group Of 4 words fo. lOwing the first word. has the following
~ormat:

WORD 1
2

3-4

length of segment in -words
absolute, be~lnnlng core address of tne segment
diSC address of the se~ment

There are 16 segments, oraerea as fot lo~s:

SEGMENT 1 Interrupt locations (2(t!r "to" JO(t:s»
i:! System case page (end of I:.<.IT "to" 1711(8»
3 System linkage area "(4tl02Un "to" 40J,7(ts)
4 DiSC ~rror Recovery area (~bOOO(~) to (25117(8»
5 System segment 1 (end of OIRECT lito" 41711(8»
b System se9ment t:!. (42000(d) "to" 517"17(8»
7 System segment 3. (~~OOO (d) "to" b1177 (8»
8 System segment 4- (b~OOU(d) uto" 7J.777(tt»
9 Sy stem seqment :l (7 ~OU 0 (to "to .. ·/7b17 (H))

10 E.Quipment Table (100(8) .. to" 17b(tt»
11 L)irect Taole (.j04ul(~) uto" 31S30(b»
13 Loaaer seqment ~ (l~~uO(~) to 23777(d»
14 Loaaer Segment 1 '(~OO(J(H) "to" 14~o7(C:n)
15 Cofa LJumo Segment (~4000(~) Uto" ~4705(a))
Ib U8SC ariver (dbOOO(d) lito" C'=!7617(ts»

Note thet this incluaes all core resident portiOns Of the loader
arid· system e)(cept tor • ocat ions 14::'00 (b) uto" 1':J777 U:5). Tne
first 1000(8) of tnese wordS comprise the diSC bootstrdP and are
resident on blOCKS 1 ana c:: of each diSC. LocCittons 15~uO(8) "to"
lS577(~) may only be usea for temporaries.

4-71

AlII. ~UE.~Io

MUERT0. as the name suggests. Is 6 table of all system halts.
All of the system halts can be referenced by tne label "DEATH".
~UERTO explains the meaning Of eaCh halt ana gives an indication
of possible recovery or fai lure. The follow,ng is a COPy of tne
t.:!Jble:

5 -
ll~ -

301"i
31!"(
3c:B

34~ -

3bb
318
40~

42H

Erroneous, non-recover.:!Jble system transfer has
occurrea.
A Darity error has occurred; CheCK the hardw.:!Jre.
unexcectea Interrupt from the processor' Interconnect,
take a cola dU~C of thiS unrecoverable system.
D,sc driver Is bUSY. ~ecovery not poss;icle.
DiSC called is not pesent. NO way to recover.
Unable to read diSC recovery routines into core. No
way to recover.
Disc error causing tne system tables to be
incompatiole. ReCOvery is out of the question.
Powerfat I nas occurred. check restart SWltch·Position.
~ad AUT diSC address generated. kecovery - no way.
ImDossiole condition occured. NO way to recover.
owner 0+ a a'rectory entry is not in the lOT. NO
recovery •.

44H - lOP aSked fOr non-ex, stent RJ£ command c1 NO recovery.

4-72

wo~o 0-1

2

3
4
5

6-1l

•
•
•

42-47

Two-word absolute sector number o~ the
fArst 128-word h~rd~are sector on logical diSC 0
POints to select ~ode/unit number In DKTBL for
locteal diSC 0
numcer of sectors/cvllnder
number of sectors/track
current cyl 'nder position o~ heads for loglce'
diSC 0 (used only ~or 7900 discs)
Same as 0-5 app.led to l09;c~1 disc 1

Same as 0-5 applied ;to 'ogtcal diSC 7

Note that the address In the first two wordS of each section of
the t~ble is a sector address and m~st be divided by two to
obtain the blOCK aaaress. The last: 'entry is fol lowed by ~

truncated ntnth entry, MAXSC, which, always contains ~ double
Integer speclfytng the ~.rst absolu~e sector numoer Which does
rtfft ex i st." The actua I number s ~or the J I< I nds o~ a I scs used on
ACCESS ~re as follows:

WORDS 1-2

J
4

~b~~

0
93384.1(10)

ItS67bO(10)
260140(10)
37J~cO(lO)
4669(JO(10)
~60C:bO(lO)

653660(10)
400 (10)
~4 (1 u)

l~!lg l~O~

0 u
1'=*4odd(lUi) ~9J.~4o(10)

3d~'ro (10i) Ild36~(10)

!:;)d464 (10:) 177552(10)
7 19!J2 (10:) c36736(10)
97440(10:) ~9~920(lO)

116":1~d(lO) 3~tilO4(lO)
1 .3 0 4 1 a (1 (} ,) 414~8~(lO)

~c (lOi) 144 (10)
4d (i 0;)

" 4-73

UE~ICE TABL£ INITIALIZATION

The Non-shareeble uevice Table IS a teble of 321 words consisting
0+ the number of non-shareeble devices and a five word entry for
each device. The 1/0 Processsor Confi9urator bUI IdS thiS table
from the Information suppl led by the sYstem operator.

The table can contain UP to 64 entries. ~ach entry is
internel,y re+erencee by a logical unit number 0 thrOUgh 63.
Thp t~ble eopears as +ollows:

U\llt::'L # of non-Shareable
deVices (neQative)

--------~~~-------------entry tOr logical
unit 0

-----~------~----------entry for logical
un.t 1

---~--------------------

---~----------~---------entry fOr last
log.cal unit

one wore

five woreS

five wordS

five wordS

During system Inital iZat.on. the loader orogram wi II send the lOP
a pre-emctory re~uest With sena device table ~uo-code. Tne lOP
wi" respond with the deVice table. creceeea by the number of
pOrts configured ano the number of non-Shareable devices
speCified. The entries in the teble have the follOwing fields:

WO~D

o

1

. C.ONTt.t"T
device

oeSlgnator

select COde

[)ESC~lPTION

Tne deSignator .is composed of two
letters and one or two diQlts.
octal 101 Is subtracted from the ASCII
v~lue of each letter, allOWing COd9ng
0+ the destqnator as 3 five-bit fieldS
In bits 14-U. The number. Which Is be­
tween 1 and ~l. is not coded.

Bits 1-0 contain the select COde 0+ the
device. ~it 15 is 1 if the device
supports ~nput. bit 14 Is 1 if tt
supports outout, btt 13 is set if the de­
vice user is trapping errors and en error
occured on hiS lest use of this device,
bit ld is 1 .~f it supports CT~ functions
but not output. If Cit l~ is set, so is
bit 1't.

4-74

2

3

4.

Maximum record
si~e

assignment

tty table

The maximum record size that can be
requested when USing the device.

Th.S entry can have one o~ the ~o'low'ng
va~ues:

idC~de only users w'th this idcode
can helve access

1 device r~served
~or R..JE.

o all ~sers can
have access

-1· no user can have
access

If o. tne device is not bUSY; i~ it
.n use by R..JE; otherwise it points to the
?FLAG entry o~. the control I ing user.

The content s of the dev t ceo tab J e can be d i sP' ayed by use of the
Df::VIC£ command.

4-- 7 5

SU~PLEM~NTAkY NOTES ON ~ASIC

5-1

I. SYNTJ.\X

The Qeneral process of ~nalyzinQ an input to the lan­
uage processor .s displayed jn the flow charts.
The annotations in the I istinq exPlain the actions
of the SUbroutines, whi Ie the core map and sectjons
on Internal representation describe the obJects/
structures being created or manipulated. The ~ASIC
syntax, in conjunction with the listing, exolains the
method of ieent.f'cation·and recognition Of legitimate
bASIC statements from the Input string.

II. PHA!:>t:. 2

A. Lomp I t at ion
The prel iffllnary section of CMPLE prepares for execution
of the orogram fOI lowing a successful compilation. Nul I
programs reQUire no crocessinq. If a seQuence number
fol lows the kUN (e.Q •• ~UN - ~~O) the interpreter's pro­
Qrarn counter is set to the first statement whose seQuence
number eauals o~ exceeds the reference, otherwise it is
set to the first st~tement of t~e user program. If the
comMon area has not been al located, ALCOM is cal ted to
compute the space needed ane move the ~rogram accord­
tn~ty. Common IS initial Izea to -51~. If the progr~m
is seml-compilea (S~TR=~, SYMTB<>O) we may skip bui IdlnQ
the symbol table. otherwise FILTb is set to 0 so PkNST
wi I I not termlnete compi lat.on by mistaking It for decom­
cllatlon.

The symbol table IS then built as explained in the
listing (~e+er to the flow Chart for general loqiC flow
nno to bASIC varie~le Stor~ge AI location ~r a v'Su~1

exa~ple). Also, at this time statement number references
are replaceo bY bbsolute eodresseS. ThiS IS faci I itated
by dividing the ProQr~m Into 3~ carts ~ne butldinQ a b4
wore table in ~kSEC (an unused storage blOCK in the user
~ree on base page) containing the first ~tatement number
and aadress 0+ eaCh part. DurtnQ compi latlon SPTR pOInts
to the program wora oelnQ processed. POinters to <FILES
statements> are stored In FLSTS and a count of them 6s
kept in FILeT. An error In CO~CI lation WI I I cause e call
to U~~~L to restore the source form of the proqram fol­
lo~ea by a cdl I to the error. routine. If after a success­
ful compi'~tlon at least one <FIL~S statement> has been
found, BASIC cal Is the system to bUild the +1 5e control
o I 0 C k s • f I I lin 9 a, I b·U t the f i f t h. s txt h, n 1 nth, ten t h •
fl fteenth, ana 's,eventeenth ~ords 0+ eaCh entry.

5-2

The symbol routine nas two entry pOints: SSYMT used ~or
~unctions ana simple variables, and ASYMT for arr~y ~nd

str.ng ~ariables. Because the d'mensional Ity o~ ~n arrey
variable may not be Known local,y (e.g. MAT A=B) some
symbols may. have tHO entries. l~ tn.s .s the case. the
"don.t know" entry will always be farther down In the
teble (l.e •• have a htdher core addres.) than It~djmen­
sioned counter.part.

tie VALUE

VALUE is responsible ~or detecting ae~jcienc'es in the
symbol table, al loc~ting storaqe for the ~alues o~ Sym­
bols Initial izing the values o~ al I variables except
those in common. The crocess o~ bui Icing the value ta­
ble IS descrioed in the Iistin~. Note that for arrays
tn common. the declared dtmensions in the <COM state-
ment> are Checked against those In the common area. If
they match ana the dyn~mlc dimensions are conSistent
(i.e. <= dec8ared dimensions) then the values are left
~'one. otnerwise they are set eaual to those in the
<COM statement>. For strings. the pnY$ical length is
checked against the declared length and the logical
length tested to be less than or eQual to the Physical
length. If these tests fai I. the PhyS Ical length is
set to the declared length and the ,ogical length is
set to zero. Smple variables In common are left
untouched.

several errors may be encountered whl Ie but lang the
value table. The occurrence of a' nul I symbol (bit p~t­
tern of 0) in the symbol table means thdt an array sym­
bor is used in the orogramt but never in SUCh a way that
its dImensionality can be determined. If the second
word of a function entry is zero, no <D£F statement>
for that function aopears In the progrdm. Arrays of
more than 5000 elements are not allowed.

The next step IS to at tocate two bu~fers for program
input and output. The output buffer has a pseUdO fi Ie
control blOCk Which conSists of the first e.even wordS
of a file table entry. 1+ the output deVice is the user
terminal. the third wore of the bloCk (logical. unit number)
is set to -2 a~d the record length set to 1~ bytes. If
RU~*OUT=~i Ie nbme* has been spectflea. then the ?OREC and
?OUTP entries of the user teletyce table Indicate the
device ana logical record size to be used for the program
output device. A buffer large enOUgh to hold one loqlcal
record is al located. except ~or .ASCII diSC files whiCh
reQuire a 2~b word ouffer to contain one Physical btock
(ASCII f.'es are blOCked). lhe routine STFC~ IS responsible
for .'1 ~in9 the entries in t,he fi I€ contrOl block. If the

5-3

prograM was Ch~lNed to. and the output oevice ;s an ASCII·
diSC fl Ie. then the current disc address is set to t~e first
diSC block which was not written to by the CHAINing program.

T~e .nput buffer. only requires a two word control blOCk
con sis tin 9 0 f the ten t.h and e I. eve nth w 0 r d s 0 f· a f i I e
table entry (current buffer oOlnter ana 10Qlcai ena Of
reCOrd). The b~ffer al located is the same size as the
out~ut buffer.

During program execution, the variables INFIL and OUTTH
pOint to the tlrst lIoro of the "fi Ie tarde entry" for
the Dr09ram in~ut/outout aevices. The non-existent por­
tions of the entry are not needed ana are never referenced.
OUTT~ pOints to the entry for the outout deVice. bit 15
IS set if that oevlce I~ the user terminal. INFIL is set
to zero ~nd pOints to the input device entry only during
execution of an ~NT~w, LINPUT, or REA~ statement.

NoTE: See ~SCII file handl ing for special use
of INFIL and OUTTb

c. l)ecomp i I at ion

~rograms are oecomPI led when an error occurs durinq com­
oi lation, bui'alnq of the fi I~ table, or ~hen the program
is to be mOdlfiea or S6ved in the user library. Sinee
in the first of these only a portion of the program is
comPI led, the pOinter 5PTR is used to determine hOw
muCh to be decompiled (a ful Iv comPI leo program alwavs
has SPTw oointin~ to the first word fol lowiny the oro­
qram). The proqram is ~oveo so that SP~OG=PdUFF (no
common area). lhe orocess is ex~lained in tne I isting G

I). rhe wout i ne PkNST

PkN~T is used by bOth CMPL~ and DCMPL to scan the program
~nd skiD over those portions not affecteo by compi ling.
~kNST assumes resconsjbj Ijty ~or recogniZing extr~ <~ILES
statements> and <COM statements> that are out o~ ordero
If such· an error condition js encountereo. SPT~ is set
to potnt before. the st~tement which ca~sed the. error (it
hasn.t been compi leo). Then PRNST cal Is UCM~L. which
cal Is P~NST. The stdtement c~using the error is not
seen this time, so ~~NST and ·DC~PL can eXit correctly.

5-4

III. I:. X l:.CU 1 ION

A. M~ln l.oop

upon completion O~ the value assignment In phase 2. con­
trot trans~ers to XEC. A~ter printing the program name
(unless the program was CHAINed to) XEC proceeds to ini­
t i a I j z e t he ~ i 'e· t db Ie. Abu ~ ~ er the s I z e 0 ~ a· I 09 I c a I
retord Is allocated for eaCh ff Ie, ·except ASCII drse
f.les which reQUire bu~~ers of ~S6 wordS regardless of
.lOgiCal record size. Pointers to the word fol'owing
the bu~.er are placed in wordS nine and ten of the ~ile
table. The ~irst woro o~ t~e disc address o~ the record
in the .bu~~er (word ~) • s set to 100000 (octal) to indi­
cate that no recOrd IS present. Word 17 Is set to zero,
"indicating that no:end-o~-record/end-o~-fl Ie exit has
~een specj~iec. word 15 Is set to 0 as a nul I protect
nask.

Following the preoaration o~ ~tles the initial execution
status is set. The initial execut~on stacks are claimed
~rom free user· sPdce ana pOinters are set to the first
positton counter (CHRCT) Is set to zero by outputting a
carriage return. Phase· a has already set the bASIC pro­
qram pointer (PkGCT) to the ~irst statement to be executed.

Execution of a statement Simulates the execution o~ an
instruction on a 'BASIC machine'. lhe seQuence number
ot the statement referenced by PRGCT is saved for pos­
Sibl~ use by the error routne. PRGCT is aavanced to
reference the following statement. The type of the
current statement is used to branch to the appropr iate
routine via d Jump table. Individual statement routines
return to the .top of t~e loop.

~. 5tatement execution

<LEl statement> execution consists Simply of evalu­
ating the formula W~lch is known to contain at least
one assignment OPerator and to have type compati~t 1-

Ity (numeric vs. string) by Its accePtance bY PhaSe
1.

<l~ statement> execution forKS on the symbol ~ol 'owing
the IF. The construction 'IF END' causes the following:
the ~ i Ie referen.ce'·.i s eva I uated and tested for ex i s­
tence as one of the oroqram's reouested files; if a
legitimate reterence. the statement reference fol lOwing
the THEN is placeo In the end-of-f. Ie word of the
~ i Ie's tab lee n't r y • The con s t rue t ; 0 n • 1 F ERR 0 R' c au s e 5

5-5

the st~tement reference followlnq the THEN to be pl~ced
in the b~se page v~rt~ble UTRAP (which .s set to 0 on
progr~m termination, abort. or ~xecution of ~ CHAIN
statement). If not 'IF END' or 'IF £RRQR', the deci­
sion formula Is evaluated and if true the stetement.
ref.rence replaces the v~lue of the int~rpreter's pro­
gram counter. PkbCT. via the GOTO mechanism.

<GOTO statement> execution consl~ts of choosing a
statement reference to replace the program counter.
For simple G010's this is done trivially; +or,multl­
branch GOTO'$ thiS is done by evaluating the Index
formula and choosing the statement re+erence In the
corresPOnding I .st position. If the Index v~lue lies
outSide the I tst of statement references, the proqram
counter remains unch~nQed.

<GOSUB statement> execution fol lows the Dattern for the
GOTO except that after choosing the new value for the
prOQram counter, the Old vaue Is savea on the return
st~ck (staCk overflow generating an error condition).

, ,

<FOk statement> execution opens an active program loop.
The for-stack is searChed. for an entry with the same
for-variable; i+ found. the entry Is eliminated (i .e ••
the previous <FOR statement> with thiS forveriable' Is
closed). A new ~ntry is set on top of the for-stack
(extending the for-stacK by six wordS If no entry was
allmlnated) and a pointer to the for variable'S v~lue
entry Is' put into word 1., Since the +- irst +ormula In
the FOk contains an assignment operator, the formula
evalu~tor, FO~MX. Initializes the for-variable when
It determines the Initial value. A reference to the
statement followlnQ the <FOR statement> IS put-Into,
word b of the for-stack entry (the start-of-Ioop aOdreSs).
wordS 2 and 3 save the result of evalueting the limit
value formula. If ~ step size formula appears expl i­
citly It Is evauateo, othe~~lse 1.0 is taken as the steo
size. In either case the value of the step size Is left
In wordS 4 and 5 of the far-staCk entry. The program
counter is set to the st~tement fol lowing the associated
<~EXT st~tement> end control transfers to the <NExT
statement> executt on COde to comp~re ,the in ttl al and
limit values (see flow Chart).

<N~XT statement> execution decides whether to iterate
a loop or close it. Tne for-st~ck is searChed for an
entry with the same for-variable. If none is +ound the
statement is ignOred and contrOl casses to the followinq
statement. 1 f 'the entry Is +-ound, ~ny entr I es above it
(more rece~t entries) ere eliminated; i.e •• they are
assumed to be.ong to nested loo~s wlCn were not clo~ed

5-6

by eXCeedng their limit value but exited ot~erw'se.
The v~lue of the ~or-vari~ble is then ~ncremented by
the step size ana the new value tested by suotracttnQ
the limit val~e and uSing the Sign of the step size to
determine ~hether a non-negattve Or non-positive result
Indicates 'success'. l~ the result Is 'success', the
program counter is loaded ~rom word b of the ~or-stack
entry (the reference to the statement ~ollowlng the <FOR
STATEMENT». If the result I'~ not 'success', the ·for­
stack entry is eliminated. At this pojnt the ~rogram
countera'readY potntsto the stetement .~ollowlng the
<NEXT statement> so exit Is simoly to the main execution
tooP.

<RETURN st~tement> execution merely loads the program
counter ~rom the top entry o~ the return stac~. An
error condition is generated i~ the return stac~ is
empty.

<INPUT statement> execution assigns vdlues to the In­
out list for both INPUT and MAT INPUT. !NITF=O and
MCNT Is meaningless when executing. an <INPUT state­
ment>; for MAT INPUT. INITF = -1 ana MCNT holds the
number (In 2's complement) of elements of the cur­
rent erray as yet unasslqnea values. IFCNT holdS
.the ordinal number of the .curr.ent item In the current
record. (NQte that IFCNT is not cumulative over the
entire execution o~ a statement reQuesting input un­
less the reQuest Is met entirety by one line ~rom the
teletype).

The <INPUT statement> executor IS alSo used Oy tne
<H~AD statement> executor when READinq ASCII ~t les.
The routines INCAL (used to Qet an input record) and
G~TCR (used to obtain a chBracter from an input re­
cord buf+er) operate on user terminal Input or ASCII
tile input (either disc files or devices) depending
upon tne value ot the varla~le INFIL. If INFIL=O,
the user termInal Is the Input device. INCAL wi "
initialize tne terminal input bu~~er contrOl blOCk
ana set INFIL to point to this· fi Ie contrOl bloc~
(actually 9 wordS be~ore the control blOCk since we
always point to the ~irst word o~ fi Ie control blocks
but in thIS case we have a pseudo contrOl blOCk o~ 2
wores). bit lb o~ INFIL is set to ind,cdte a user
termanat instead O~ an ASCII '~i Ie. INCAL then readS
an input record from the appropriate device and GETCR
retrieves Characters from the bu~fer. Note that in
the case of an <INPUT statement> we are always deal tng
with the user terminal. INFIL IS cleared before pro­
ceeolng to the next statement.

5-7

The general approacn in execution is to determine tne
~daress and type of a variable In the input list and
then attempt to satisfy It from the Input record.
when an error occurs In the above process, it .s ex­
plained along With any necessary correct.ve act ton
so tnat errors In tne input record wi I t not terminate
program executton. For simple Input If the next variable
in tne I ist Is of numeric type its value table address is
placed into S~PTk: for array inout the base address of tne
is put into S~~Tk. After fl I I .nQ a SImple variable the
next variable from the I ist is t~Ken ano a new address
qenerated: after fi I I inQ an array element SdPTH nas oeen
~dvanced to the next element bv the numeric input routine
so no new address need b~ calculatea. When MCNT rOI Is over
to zero (an array nas been fil led) control exists to the MAT
IN~uT COde, WhiCh mBy return with another arraY's base
aOdress In S~~TR and ~CNT reset appropr.ately. If the input
record Is empty but the varIable I ist is not yet exhausted
a reQuest for dda.tional inout is made (signified by "i?'
rather than the Initial '1'). SEWH is needed as a flag to
Indicate It unaer/over+low ocurreo whl Ie converting the
latest numeriC input. since the error meSsdqe wi II have
destrOyed any aoalt.onal Information in the input recoro.
When lOOKing for a number, the input record .s scanned for
the +Irst sign (+ or -), digit, or oecimal point. which
begins the number. Any otn~r Characters wi II be ignOred
except the ", Which WI I I generate a recoveraole error.

string Input reQuires fairly complicated analYSiS~
the data transfer. If the strlno variable does not
speCify the tra~sfer len~th (does not have a dOUble
subscriPt), then th~ next strinQ in the .nput record
is tr ans ferrea in its ent i rety and the log i cel I enqth
of the varidCle set approprietely. If the next strino
variable specittes the tr~nsfer length then exactly
that much of the next strino in the input record wi II
be transferreo, either truncated or extended by blenks
as necessary to aChieve the specl~led lenqtn. The
'next string' .n the input record begins with tne next
non-blank Character or. if it Is a II, the +ollowino
character", blant<s included. The strin~ endS with
first II (whiCh is not p~rt of the strin~) encountered
or ~ith the carri~Qe return (elso not pert of the
5tr fng) if no .. appears.
Every date Ite~ in the Input record must be followed
by a comma or carr i~Qe return and a conlma must" be fol­
lowed by another det~ item. Fal lure to ooserve the a­
bove wi I I gener~te recoverable errors. I~T~P holds the
type of data beinq sou~ht, INTMP = 0 for ~ number or
I~T~P <>0 ~or ~ strlnQ, and is used by tne error recovery
COde to prepare for the entry.

5-8"

<ENTEW statement> execution assigns a value to a string
variable or a simple variable. If a '#' fol lows the
t::Nlt.:R, the user.s port number (0-31) .S assIgned to the
first variable. The <ENTER statement> is timed and the
length of t i.me it took to respond (, n secondS) t s ~s­

Signed to anotner varja~le. The inout analysis proeeedS
much like an Input statement with one variable. With the
notable excet*on that no error messages are printed.
Instead, the response time ver~abl'e is negated If an
error occurs. If the user does not respond withtn the
at located time. the r.esponsetlme variable Is 'set to
-256. Parity error returns -iS1, lost Character
returns -2Sb. Tn,s is non-ambl9uOuS since response
tImes are be~ween 1 .an·d dS!:i SecondS inclus·tve. Also.
for string Input leddlng blanks are non stripped off
and Quote markS are al lowea as characters.

The <ENTER statement> executor Is also used to perform
the ass~gnment for the LlhPUT statement. The common
cooe occurs after the Input record has been read.
STINF IS calleo to set :up the pseudO f i'e control blOCk
for tne user term i na I (I n the case of LINPUT from en­
other oevice, the ft Ie control block for that device is
used). In' either case. INFIL ·polnts to the flle,control
blOCk (or pseuoo block) with btt 15 = 1 If we'r. using
the user terminal. The GETeR routine is used to obtain
Characters from the Input buffer. when the evaluation
and assignment are complete. control is returned to the
LINPUT executor i~ the statement is LIN~UT (LFLAG = -1
for LINPUT. =0 for ENT~R).

<~EAD statement> execution asslens values to variables
in the <read variable I ist>. If a file re~erence is
present It is evaluated by the routine VLFIL. which
sets INFIL to pOini to the fl Ie contro, ClOCK if the
file is of type ~SCII (INFIL =0 otherwise). If the
file is ASCII or if the fl Ie Is f; Ie zero (corres­
ponding to the USer terminal). the <INPUT statement>
executor is usee to assign the values. otherwise the
routine FOAT~ is used to Obtain values from either a
BASIC formatteo +1 Ie or from <DATA statement>s. A
mismatCh in type between a variable in the <read vari­
able I ist> and the next data Item. or a string too
long to fit into its deSignated destination, will
generate an error ano terminate program execution
(see Notes on error routInes for exception).

<LINPUT statement> execut~on aSSigns a vdtue to a
string variable. If a f,'e reference IS oresent it
is evaluateo by the routine VLFIL. which sets INFIL to

.point to the tile contrOl block If the file Is o-f type
ASCII (INFIL =0 OtherWise). If there is n.O ~ile re-

5~9

terence or if the ~Ie re~erence is ~or ~ile 0, an in­
out recprd. is reauesteo ~rom the user terminal. l~

~ fj Ie reference is pres~nt, ~ check *s made to insure
that the ~"e ts ASCII ~nd not AASIC ~ormatted (an er­
ror reslts If the ~I Ie Is BASIC). An Input record is
reeo from the appropriate device. In any case. the
<ENT~R statement> executor Is used to evaluate the in­
out record ano assign the values. The <LINPUT state­
ment> sets LFLAu=-l to indic~te to ~NT~~ that we ere
really doing LI~~UT. The <~NTER statement> executor
wi I I return control to the <LINPUT statement> executor
to per form necessary cleanup (I nc I ud'i no the c I ear i nq of
INFIL. ~nd LFLAb).

<PkINT statement> execution consists ot identifying
items in the print list ano sendtng them to the user
or other outout oevlce. A ~ile reference is evalu~ted
hy VLFIL (acsence of ~ ~i Ie reference or d reference to
file 0 indicates the user terminal). If the PHINT is to
a hASIC ~ormatted ~I Ie then O<=FIL~#=l~ ~here FILE#=~I Ie
re~erence-l. 1+ output is to the user terminal OuTTa
h6S bit IS set and OUTMP=U. l~ output IS to an ASCII
deV ice then OUT~'" po i nts to the user term I na·1 contro I
blOCk (~no has bit l~ set) and OUTTB ~oints to the ~Ile
control blOCk for the ASCII devic~.

It the PRINT IS to a BASIC file, the end-o~-I ine mOde
fla9 is turneo off ·(EOL=-l). A user terminal or ASCII
oevlce print turns on the end-o~-I Ine Mooe flag (EOL=O).
A comm~ or semiCOlon in the <orint I tst> turns o~~ EOL
but a comma also generates enouoh blan~s to advance to
the next fle'c ot l~ characters if not ~ cASIC ~ile. A
I iter~1 string is written as ~ string of Cnaracters •• ess
q~otes. ano turns on EOL if not a ~ASIC flle~ An END
writes en eno-of-~i Ie merk to ~n ASCII aevice or ~ASIC
f i Ie.

Formula in the <print list> are ev~'ueteo and the re­
sults examineo. Formulee which are string vari~bles
evaluate to their contents. whiCh arc tnen treeted as
literal strnqs. If not ~ strine var,aole out ~it~in a
print to a bA~lC fl'e. the f'oating pOint vatue o~ the
formula ev~ludtion IS written in the file In t~o-word
floeting point torm~t. If ~ orlnt to an A~CII device or
user terminel, the·floattnq point v~lue IS converted to
~n ASCII character strine of the cecimal eQutv~lent. LIN,
S":;:A, TAe. end tTL are ienoreo ~or pr ints to t:sASIC fi les.
~or ASCII or term,n~1 prints. eVB'uetion of the function
prOauces the oesered action, so the return value is
thrown Bway·. alono ~ith the fo. lOWing oel imiter .~ one.
existS. For termin~1 or ASCII dev·ice prints, al. for­
Mulae turn on ~OL. If ~OL is on after processing the

5-10

last prnt item, a ca~rlage return line feed is printed
on a terminal, or the output record enaed for an ASCII
device. In adaitlon, ASCII fi les must reset OUTTe ~nd
OUTMP and ASCII aiSC fj les s.t the last operation was
a print bi~ in the fi Ie control block, unless a CTL(24)
was the last item printed.

Before writing a Quantity BASIC Insures that sufficient
sP~ce Is available ~o accommodate it. CHRCT keepstr~ek
of the current print position on the teletype line· (0-
71) •. If the character string sent to the teletype would
require non-blanK Characters to be printed Past pOSi­
tion 71, a carriage return-line feed Is output first and
CHRCT set to o. Bu~fer contents ere alwayS sent to the
lOP at the eno 0+ the print statement when doing ter~l­
nat output. 1+ an Item sent to a ~i Ie requires more
wores than remain In the current recoro, BASIC automa­
tical Iy advances to the next record i~ In serial mode
or exits to the end-of-record COde if tn record mode.

cPWINT USING statement> execution is covered in .the
section on the fOrmatter.

<ktSTQRE statement> execution resets th~ pointers to the
DATA bloCk. beginning at the statement speclfiea. or at
the first statement in the proqram 1+ none is specified,
th~ pointers are set to the first <DATA statement> founa,
or to the out-Ot-data condition if none is tound.

~MAT stat~ment> execution involves many disparate taskS.
The forms of the <MAT statement> may be classified as
erray 1/0. array asslqnment. array initial tzatton, and
the array functions TkN and INV. For conciseness tn
COding. al I forms other than array 110 use some common
program segments.

Array 110 prepares each array in the list In the same
~ashion. S~PTk IS set to the dynamic otmenstons of the
array .(base aadress -2) and the operator fol lowing the
array tdent.~ter is picked UP for exam.inat~on. At thiS
pOint MAT PRiNT USING cal Is the formatter just as PRINT
USING does. The EVEXP routine in the formatter takes
care of PICKing UP the elements o~ the array one by one,
in rows. MAT P~!NT foe lows a separate path than MAT
R~AO and MAT INPbT. The fol lowing operator ts noted as
scacing the elements (comma or end-of-statement) or
cecklng them (semicolon). VCHK e~amines tne array and
generates an error i+ any of Its elements have value
'unoefined'. The dynamiC row and COlumn lengthS are saved
in 2's complement. 1+ the MAT PRINT references a BASIC
file. the array elements are written one bY one in rows.
eaCh element In Its two-word binary forM. I? the MAT

P~lNT references the u~er terminal or an ASCII fi Ie rows
~re aouble spaceo ana the elements within ~ row ~re
spaced or packea as noted above, each element in its
ASCII aecimal form. Both MAT READ ana MAT INPUT redimen­
sion the array, In'2's ,comolement. MAT ~EAD c~1 Is FUATA
for elemen~ values w~ile MAT INPUT transfers to the
<I~PUT statement> execution to obtain element values.
MAl ~EAD #0 is treated as a MAT INPUT statement. ~TO

acts as a flag tor MAT INPUT, differentiating the first
cal I for input from sucseQuent cal Is ana saving the In­
put record. After completing 1/0 on an array, a common
section of coce prepares the next array In the I ist or,
if no more remain. terminates the statement execution.
MAT IN~UT returns to the input coae to clean UP there.
MAT P~INT and MAT READ return directly to the main
execution loop.

Array assignment consists of preparing the oestination
ana source arrays ana executinq a loop W~ICh aSSigns the
destination array elements one bv one. The general pro­
cecure IS to aSsign a Jump to the element computation
COde to MO~, an exit address to MExIT to use after com­
oletin9 the destln~tlon ~rray, and a count of the ele­
ments to MC~T, in 2's complement. The code to compute
an element returns to MLOP1. MLOP~. or MLO~~ dependinq
on the number 0+ arrays involvee Which reQuire UPdating
of the element address. Each operetlon CheCKS t~e aimen­
si~ns Of the arrays involved to Insure that the oper~tion
is wet I-defineo; ~nd ~I I elements of the source matrices
are cheCkec to maKe sure none have value 'undefined'. '
Matrix multlPI ,cation does not use the element computa­
tion lOOP. insteed it uses row ~nd COlumn counters to
tel I when It IS aone ano comoutes destination arr~y ele­
ments by Innt~r prOducts of the rOws ano columns of its
source matrices.

Array inltlol Ization also uses the element computet Ion
tooP. The In'tiol ,zetion oroqram firSt redimensions the
destination array (If e matrix sUbscript IS given) ~na

then chooses the approcriete constant tor the element
values. IUN act~ like ZEk except t~at it InSists that
the destination drr~v be 'sQu~re' and sets a speci~t coun­
ter to choose l.u for the v~lue of main alagonal elements.

TkN and IN~ are henoled apart from the ot~er matrix func~
tlons. For both of these. the elements of the sour~e
matrix ere chec~eo ~qeinst. the 'undefined v?'ue'. The
source and oestlnation matrices ~rp. then CheCked ~or

trenspositional comp~tlbi Iity. It T~N, tnen proceed to
transfer the colUmns of the source matrix to the rONS of
the destination matrix.

5-12

l~V, ~ses the bauss-~ordan ~Igor.thm with row pivoting.
T~is procedure converts a COPy of the source matrix Into
the 'dentity matrix and converts an 'identltv matrtx tnto
the inverse by applying tne same set of operations to
both. Since the ~ource matrix Is destrOYed In the pro­
cess. It is first copied Into free user space and the
COpy treated thereafter as the source. A side effect
of the copying prOduces the 'element of largest absolute
value, which Is used to com~ute a lower eound on the al­
lowable magnituae of pivot elements. INV then cal Is ION
to set the destination matr'ix to an identity matrix.
~avln9 the side ef'fect of Checking that the matrix is
sQuare.

Dtagon~llzation Of the source m~trix and prOduction of
t~e inver~e now proceedS on a row-by-row basis. The
next unreduced COlumn of the source is searChed for the
pivot element (the lar~est In magnitUde). If necessary,
rows are swappec to put the pivot element on the main
dtagonal (tne corresponding rows of the aesttnation mat­
rix must also be swapped). If the pivot matrix is too
near I y s I ngu I ar to inver t execut'j on is term i nated.
otherwise, tne pivot rows of both matrices are divided
throu9h by the Pivot e.ement.

<E~D statement> and <STQ~ state~ent> execution termi­
nates the program run. user error trapping is terml­
ated. files with "dirty" buffers in core are written.
non-sh~reab'e deVices released, last Change date ~or eaCh
~"e Is UPdated and the user's section of the FUSS taele
is clearea. The word UQN£ is 'sent to the user termlna'
ana user not runn t ng (UNR) • s sent to the lOP. P8F'LAG,
AbT~Y. and CoFLAb bits in the user teletype table are
cleared and contro' returned to the termination logic
in the scheauler.

<CHAIN statement> execution beQlns by evaluating tne ad­
dress o~ the return variable (if present), the address
o~ the program aeSlqnator, and the optional expression.
user error trapPing 's disabled (UT~AP=O) and a jump Is
maoe to the CHAIN library overlay.

The CHAIN overlay cheCKS tne va' Idity 0+ the program
aesignator. performs a directory search,on the name. and
verifies user access to the prOQram (~~A j~ needed, pro­
qram not private, etc.). The program length is cheCked
to insure it Viill fit, the last reference date is UP­
oateo. ana varicbles set for return to the tn-core state­
ment executor (protected. locked, and crivate bits set
j~ needed).' Return Is made through the SCheduler which
first checks for aoort or disconnect and remaining time
qn time-out clOCk.

The In-core executor then t~kes an error extt if an error
occurred in the CHAIN overlay and no return variable was
specified. If a return varldble was specified. its value
is set and progrem execution continues with the next
statement.

It nCl error occurred in the overlay, any "dirty" fi Ie buf~
fers are written, the last chanoe oates updated, end any
devices releasee. If an *QUT=* fi Ie IS in use. a dirty
buffer (if present) is written. If tl-OUT=* file is an
ASCII disc file. the adoress of the next diSC blOck t~

saveo. The new proqram IS then read into core. The
C~NFG in the user teletvpe table is set, non-shareable
deVice aSSignments cleared, and excess common area (if
any) initial izeo to undefined. The executor then exits
to the comPI Ie logiC.

The compile logiC for CHAIN differs only sl iQhtly from
normal comPIIatiun. The program name is not printed.
eno the diSc a~cress of the ASCII diSC *OUT=* file
(saved above) IS used instead of the diSC case address.

<AS~l~N statement> executi~n changes the file refer~eo
to by a speclfieo fl Ie number. The first operand is
either a ~ or a f,'e designator ~ne the second is a
fi Ie number, whiCh is ev~luated. The return var'~ble
adoress is evaluated ano saved in ATM~+l (a dummy ad­
dress is used If no variaole Is.specified). If the cur­
rent file buffer Is IIdirty". It is Vtrltten: !Ind if it is
a non-Shereable oevlce. it is releasee. The count of
I 0 eke d f. I e siS c e cr em en. t ed i f the f i lei s I 0 eke d • The
fl Ie position IS marked not in use by cleari~g the first
woro Of the +1 Ie control clOck ana the protect maSK is
cleared. The protect maSk (if present) IS evaluated c1!nd
the restriction (If present) is saved in Tt:.M~7. Control
is then transferreo to the ASSIGN library overlay.

The ASSIGN OVerldy UDdates the directory entry for the
current fi Ie. verifies user Bccess to the new fi Ie. and
sets UP t~e file control block for the now fl Ie. If the
010 fl Ie is lOCKed, it is unlocked ana a c~ec~ made to
'insure SuffiCient core sp~ce for the buffer of tne nev.
file. Errors are returned to the in-core executo~
through the v6riabte OPU~O.

upon return to the In-cor~ ASSIGN executor. if no error
occurred. tne ~rotect mes~ is evaluated dnd stored .n

'the fi Ie control btOCk.

<SYST£~ statement> execution consists of cal ,jng the SYS­
T~M library overl~y. The overl~y first evalu~tes the re­
turn vdrlacle aooress and notes whether Its type IS

5-14

numeric or str'ng. The command strlnQ is evaluated and
the command cheeked ~or validity. The type of tne re­
turn variable is-also cnecKe~ against the t~pe of the
command respons~. The command parameter (that POrtiOn
of tne string fol lowing tne hYPhen after tne command
name) ts movea into FILBF. The proper command overlay
is then read .nto core replacing the SYSTEM library
over1ay~ However. SYSFL- ~as been set· non zerO to indi­
cate that the SXSTEM statement called the command ov.rlay.

When the command overlay .S finished. it CheCKS the value
of SYSFL to see if it should cal I In the SYSTEM statement
overlay for cleanup. The cleanup routine sets the re­
turn var jable value (str ing or nurner iC) and control is
returned to the in core (SYSTEM statement) executor which
reports a string resPonse overflow (if It occurred) or
else proceedS to the next statement.

<CONVfRT statement> execution involves conversion between
string and numeric data. The first operand is evaluated
to determine the direction of the conversion. If the
first operand is numeric It is converted into a- string
using the same-rules as In LIST. 1+ the first oper-
and is a str.ing-it Is converted to a number. I~an er­
ror occurs during the conversion. a Chec~ .S made for an
exit label. If One exists. execution conttnues there.
otherwise a +atal error occurs.

<LOCK statement> dnd <UNLOCK statement> executton con­
SistS of sett.ng ~SO=O for LOCK or -1 for UNLOCK ~nd then
call jng the LOCK/UNLOCK 'tbr~rY overlay a~ter evaluating
the fi Ie reference and saving it in OkDNO. Tne overl~y
then evaluates the address 0+ the return variable - if
none is present a dUmmy address is usee. The variable
Alfv1P is set to 0 if e return variable- is present. A
check is maae to Insure that the fi I~ -.s not ASCII. At
thiS point the LOCK and UNLOCK statement executors
diverge.

The UNLOCK executor insures that the F.-Ie is lOCked. (by
checking the lOCK bit In the file control OIOCK) then
scans the loc~ Queue to re-SChedule the first user on
the Queue who is waitinq to LOCK this +ile.' The fi Ie
locked bit .n the FUSS taole entry for thiS Fi Ie 6s
cleared, LCKFL is eecremented (count 0+ lOCKed Fi les For
thiS user), ano the tocked bit in the fi Ie control block
is cleared. The active buffer pointer for t~e file is
bumped to the end of buffer _~nd the buffer contents are
written to aise If the buffer is dirty.

lhe LOCK executor CheCKS that the fi Ie is not alreadY
loCked by this USer (thru the FeB lock oit). I~ it Is.
a fatal 'error exit is taken unless a return variable IS
specifiea. in ~hich case a one Is returned. The FuSS
table is scannee to see if any other user has LOCKed the
+1 Ie. If the ft Ie is already locked ana a return vari­
able was specified the valu~ one is returned (file
alread~ 10cKee/unlocKee). If no return varidble was
specified. tbe USer .is put on a LOCK Queue and the diSC
address of the ti Ie is placed In the teletype table TEMP
wordS. If the file is not currently lOCKed. a check is
mace to see 1+ thiS user currently has any other fi·'es
lOCKed (LCKFL=O). If so. a return vari~b'e must be
present or a fatal error results. The FUSS entry for
this fi Ie IS mcrKed lOCKed. as Is the FCB entry. The
count of lOCked +i les (LCKFL) Is incremented. I~ the
user currently has 0 record In the buffer. it is writ­
ten to diSC (if dirty). The recore is always·read anew
from the elsc·ane the active pOinter IS reset to the
beginning 0+ the record. Control IS then returned to

. the tn-core stetement executor through the scheduler.

The In-core executor reports fatal errors. If ~Iso
takes care 0+ releaslnQ terminal output buffers for
prlntinQ and ~'aCing the user In output walt if he
tried to lOCK an alreedy lacked fi Ie.

The scheme of ~rittino dirty reords on LOCK or UNLCOK
anc al~ays re-reddlnQ the current recoro on a LOCK, in­
sures the user that he always has the ~ytceol diSC re­
cord. It IS alse Imoortant to note that a user Placed
on the lOCk Queue must not be swaoped out by the SChe­
duler before hiS st~tus is cha~c.ed to output wait -
otherWise the user wno has the fi Ie lOCKed may unlOCK
the fi Ie and reSChedUle the use by resetting the PACT
bit. However, if the status tsn't out~ut walt the user
wit I not be reSCheduleo (the PACT bit WI I I oe turned
off and tgnored).

<Ck~~TE statement> execution st~rts by setting erMP=-l
to flag the statement as a CREATE ana not d ~URGE whiCh
uses the same in-core executor hut WhiCh uses e djf~
ferent Ilcrary Overlay. The return varl~ole address Is
ev~luated and Sdved. the +i Ie n~~e is evaluated. and the
fl Ie length IS ev~lu~ted. The record size is evaluated
if present. The C~EAT~ library overlay IS called.after
first setting ~YSFL·to indicate a orogramm3tiC call.

5-16

The CREATE I iorary overlay Is also used to crocess the
CREATE commana~ Tne overlay creates the ~I Ie with the
s~ect~led parameters tf room extsts on the system and
In the user's account. EaCh record of 'the file is Ini­
tial tzed to. an end-of-ftte. Success or failure is Indi­
cated via the return variable. see listing for addttional
details.

<PUHGE statement> execution sets BTMP=O to ~Iag the
statement as a ~URGE. The return variable address IS
eveluated and saved ~nd the file name .s evaluetea.
SYSFL Is set to indicate a proqrammatlc cal I and tne
stetement execution continues In the PU~G£ "brarY
overlay.

The user's library Is searched for the file name and
a cneCk made to insure tnat the file is a-data fife and
not a program file. The FUSS table .s cheCKed to deter­
mine whether the file ,Is in use and, If not. the file Is
deleted. Success or faiure Is Indicated Oy settino the
return variaole. See listing for addjtio~al detal's.

<ADVANCE statement> execution f·trst evaluates tne file
reference ~nd tne SKip count. A ~CK is made to Insure
that the file is not ASCII. Items tn the file are
SKipped until either the SKip count is satts~led or en
ena of file IS encountered. The return variable address
is evaluated ana the number of Items net sKiPDed (if EOF
was encountered) IS placed in the veriao'e.

<U~UATE statement> execution evaluates the file re­
ference eno checks that tne ~i Ie .s not ~SCII~ Tne fi Ie
control blOCk IS cneCked for write C6Pdbii itv. Tne ex­
pression or strlnq is evaluated. The type, of the next
item in the f. Ie is CheCked. If an EO~. an error exIt
is taken. It the fi Ie contains a numcer, the expres­
sion in the U~uAT£.statement must have evaluated to a
number. If so, the number is placed In the fl Ie. If
the ~ile contelns a string the e~cresslon must have eVal­
uateo to a str,ng. The strino .s transferred, and is
either truncatea or blank-padded te the same length as
the ort~indl fi Ie strinQ. If an ucdate was successfully
performed, the dirty ~uffer bit Is set in the file
control blOCk.

<I~AGE statement>. <COM statement>, <DIM statement>,
<DEF statement>. <DATA statement> and <FILES statement>
dO not reQuire statement executors as they only contain
in~ormation whiCh is reauired for comei latlon or during
the execution of other statements. The <~EM statement>.
of course. reculres no executor by oetlnition.

5-17

1 he· F" or mat te r

The formdtter is responstblQ +or PRINT USING and MAT ~RINT

USING statements. It consists 0+ three sections: the ~RINT
~nd MAT PkI~T syntax routines. the E~RUS subroutine cal led
from PRINT ~nd ~AT ~~!NT executors, ~nd the formatter pro~er.
IMAGE statement syntax and·execution will not be expl tc~t'y
discussec beyond mentioning that Syntax merely stores the
IMAGE string without any val lolty cheCKs and that IMAGE stete­
me"t execution Is ~ no-oPe '

PkINT U~lNG eno MAl ~kI~T USING Syntax

After rpCOrding an oPtional fi Ie reference the PRINT and ~AT
~RI~T syntax routln~s Ch~CK for ~ USING keywOro (suoroutine
U~TCK). U~TCK all" ... s a strlnQ vdri1ahle (USING A$), a striny
constBnt (USINu' ""'.~LJII). or a state'ment nUfTlner (uSIN'3 .1~.:J4).
1+ end of stc!llternent, accp-ot it. otherwI·se oemano 0 semicolon
and return to (P+~). For PRINT USING, we dccept a print func­
tion (Cll, LIN. S~A, or TAM), a strine vcrleole. or an expres­
Sion. Multiple items must be separated by commas. MAT PRINT
USING only al 10-5 ~rtnt functions or errav ;oentifters,
seoar~tec by commas.

PRINT USING C!!Ind "",,AT f-'kINT USING Exe..cutlon

After valloattng a POSSible fi Ie refp.rence (VLFIL), a cal.I to
execute ~klNT USl~b (~P~US) Is made from ooth execute pr'nt
ano ~xecute mat print. EP~US det~rm'nes whet~er or not we
he v e' ~ f.J to< 1 NT lJ ~ I Nu 0 r. ... 1v1 A T P ~ I NT US I N u • set s F t=" L \3 t 0 i n d i -
cete the respective type of print st~tement. ~nd then sets
uP A pOinter to the format strin9. Finally, the length of
the +ormat strinq IS C~lcul~ted and th~ formatter is)umoeo
to.

formdtter Execution

The formatter WorKS In t~o pdsses. The first oass scans for
a leQal speclflcat,on. After this. P~ss two is entered to
either output a number or B string. BlanKs are output on the
fly in pass 2. After outouttlng ~ number or strlno accordln~
to soeCtflcation, pass one is returned to dnO processtnQ con­
tlnueo. T~e comments in tne I ,sting are unusually creer and
snouln·qulce well.

5-18

NOTES ON TH~ ERROR ROUTINtS

Errors ~re handled bY routine SERR, reached by a jump t~rou9h the
base ~age error Jump taole SERRS. A JS~ SEkRS + i. I signifies
detection of errQr i. The SUbdivisions SE~RS. RERHS. FERRS end
WER~S of the Jump table correspond to sections of tne error
mess~ge table containing syntax, run-time, format and wern'ng­
only messaoes, respectively.

Syntex error s, except wne.n detecte.d in tape mode, are 'prompted by
the message E~ROR. Any response ~xcept a carriage return wi' t
cause the apPro~rlate error message blOCk to be read into tne
I ib~ery overlay region. The message wit I be transferred to the
ERSEC table and printed on the user terminal.

Syntax error detecteo while In tape mode are handled by accepting
error psueao-statements tnplace of the erroneOus statements.
T~ese psuedo-statements wi II be replacea bY any subseQuently
recetved statements With the same line number. conseQuently,
provision .s made'.n fNOPS. Which returns t~e locat.on of a
statement when given its seQuence number, to decrement tne error
counter (ERRCT) whenever the statement found is an error psuedo­
statement. (Note: An error psuedo-statement wi. I only be found
by FNOPS when another statement with the same seQuence number IS
readY to replace Itt. over/underflows aetected during number
converSions In syntax mOde cause warning messages to be issued
Only after accePt.n~ the statement, If Jt is otherwise correct.
Since no printing can be done while In tape mOde, the ~outlne
CHOUF suppresses settlnq of the flaq and t~ese potentia' e~rors

are not reported when In tape moae.

If the error Is not a syntax erro~. a check Is made to determine
if the user has enabled program error trapping via the 'IF
ERROR' statement. If ne nas. and the error is not either PROGRAM
BAD or a compile error (Which are not trapped), tnen the error
number is saved tn LER~ and the .ine number In LSTAT. The user
can access the va.ues bY use of the SYS function. If the error
wes only a ~arntng, statement execution continues. If it was a
run-time or format error. the current statement is terminated and
program execution resumed ~t the I,ne number soeci~ied in the
'IF ERRO~' statement.,

If tne user Is not trapPing errors and the error Is either a run­
ti~e or format error, the ASCII ~I Ie print ~'ag Is turned 'Off
(if set), UNR Is sent to the IO~, and PBFLAG, C~FLG, and ABTRY
bits in the teletype table are cleared. The er~or message Is
prtnted (as in t~e case of syntax). If a buffer has been
at located for LIST. indicated by SPACQ=l in the teletype table.
it Is ae-al located. The CHNFG and SPACQ bits are cleared and tne
OUT= file is killea (if one exists). All open ASCII files 'are
Kit leo. Any dirty buffers for bAStC formatted files are written
to dl"sc. The last changed dates are updated. the user's FUSS

5--19

cleareo and B)UmD IS made into tne scheouler's termin~tjon
logic. Tne user status wi I I be set to iole ana he wi II be
removed from the Queue.

5-20

U5F->

SPRQG=PBUFF->

pcPTR=SbUf."A->

SYN1Q->

SSlAK->

LwAlJS->

17777

etLi. 0 t ec: ~

BASIC Core Maps

SYNTAX (Phase 1)

o ~----~-----~-----~-----------~

System Base Page

~----~~------~~--------~-----
Subrouttne Entry
POints and User VarIables

------------------~---~--------
~reviously - entered
~rogram Statements

------------------------------- user Swap Area

Current Statement 1#---------.. -------------_ .. _---
buf fer (1 \J:l WOr dS)

-----------~-~--~~--------~---

Syntax Stack
•

--~~-~---------~~~-------~~--.

Avai table user .Space

----~----~--~-----~------------
bA~IC and System

• ..
_ ... --..... --.. _-_ .. _ .. _-.. ,11 ___ -- __ -------

(10240 WOr d·s)

US~ Fixed, f~rst word Of user swap area.

PbUfF Fixeo, first word of program space.

SP.J.<OG Fixed, ttrst woro of crogram.

5-21

~t1lJFA

PBPTFoI

Sf{~TR

sy",ru

SSlAK

L \\- AUS

variaole. ~irst word of statement
being ~Ynt~xed.

Variable. first word of program soace
not usee by previously acceptee program
statements.

variable. ·first word not useo by statement
oelng syntexed.

v~rlable~ first wore of syntax staCk.

Variable. I~st ~ord of syntax staCK.

Fixee, ~irst word not In user S~dP area.

5-22

CQQ)gJ..LatiQO

o -~-~------------~---~

System ~~se Page

lJSE-> -.------.. ---------------

SubroutIne Entry
points Ii. User
variables

-------~~-~--~-~-----
PbUF~-> I Common A~ea

-~-----------~~~-----t::sASIC
Program

--------------------- <-SYMT~

LWAlJS->

SYstefT'

17777

I Symbol
: Table

:---------~-----~~--

Ava, I cO I e
,I user ~pac:e

• •
---~-~----~----------

BASlC and

5-23

<-Pf::SPTR

: System Base Page

. '

•

USE-> ---------------------

Subroutine Entry
: Points & User

Vartables

-------------~-------PbUfF-> : Common Area

SPT~=SyMTt5->

LWALJS->

77777

---~-----------------bASIl,;
: Program

Symbol
Table

: F i I e Tab I e

-----------~--~------

Value T~ble

--------~~---------

Ava'. I Clb Ie
User Soace

---~----~-----~-~---~

tsA~lC and
System

-~---~--------------

<-FILT~

<-"ALTt:;

SPRQG - Variable, +trst word of orooram.
SY~TH - variable, first word o~ sy~bol table.
S~T~ - vari~ble. word Of program being processed.

FILTH - Variable. first word of file table.

5-24

VALTS

P~PTR

SYMT~

FILlS

- ~ar'able, ~trst word o~ symbol value tacte
(FILTB = VALTb i'~'no <FILES statement> Is in program)
Vartabble, first word available of user space.

and SPTR are not Changed after compilation.
ana VALl8 ere not changed a~ter al locating value storaoe.

5-25

o -----~-------~-----~-

U5E->

: System Base Page

--~------------------
Subroutine Entry
pOints & user
var I Cib Ie s

--~-----------------PbUFF-> : common Area

---~-~---------------SfJkOG-> : tiASl(';
: Program

--~--~---------------SYMTB->
: Symbol Table

-----~---------------f"ILTfi->
: F I I e Tab I e

------~--------------VALTc-> : Value Taole

------~--------------IfSS-> : ~ormat StacK

~ woras

LwAUS->

77777

-----------------~---

----~----------------I"<eturn stdCk

---~-----------------: For-St,..cK

---~~----------------: Temporary ~tack

QPerator/ouerand
: ~tack

--------~------------: Avai .. aole
: user Space

dASIC and
System

5-26

<-RT~~Q

<-RTNST
<-FOkO

<-OPT~(J

<-OfJUST
<-P~PTk

IFSS
FCQRE
~TRNQ

RTNST
FQRQ

FORST

TMPST

OPTRQ
OPOST
PBPT~

'Jar lab Ie, first word ot: 'forma,t stack
Variable, first word not used by Phase II.
variable, bottom of return staCk
ret ur n s t !3Ck)
Variable, top ot: return stack
Variable, bottom ot: t:or-stack (Sixth word preceding
for-s tack)
Variable, t~P ot: for-staCk (points to latest 6-word
entry)
Variable, top ot: temporary stack (points to latest
2-word entry)
Variable, bottom ot: operator staCk.
variable. top of operand staCk.
Variable, top 0+ operator steck.

FCORE. RTWNG. and ~OkY are not Chanqed a+ter initiating
execut Ion.

Entries on the operator ana operand stdCk are one ~ord each and
interleave (i.e., alternate wordS belong to one stack). All
staCks beyond the return stack grow and Shrink as needed sO long
as user space is available.

~-27

~A~lC Internal ~epresentatlon

~A5IC statements are reoresented internally by the sequence
nU~ber fol lowed by the len~th in words (incluaing the sequence
nU~b~r ana length woros) fol lowed by the statement bOdy. The
statement boay IS composed ~Imost entirely of operator-operand
pa~rs whjCh occuPy from one to three wordS each. Nul I operandS
ana operators are usea when neceSs~ry to maintain the
oper~tor-operana correspondence. The operator resides in bits
14-9 Ot a word; the OPerand uses bit l~. bits 8-0, and sometimes
whole eaaitlonal ~oras immeoi~tely following.

-------~-------~----------------o : Operator u: Nul I ooerand

~----------------------~----~--

--------~-----------------------: 0 : op~rator : ~ame : o string variable

------~-------------------------

-------~-------~----------------: 0 : operator : Ncme : 1-3 Array Varlaole

------~--------~------~---------

------------~----~-~--~---------o : Operator: Name : ~-16(d): Simple Vnrlable

------~-------------------------

---------------~~---------------: 0 : Operator : Name: 17 (b) Function Varlaole

------~-------------~----------~

Hits 8-0 are oeneral Iy diVided into two fielos as fol lows:
.a n~me .Ield (oits b-4) ~no a type fielo (bits 3-U). The name
field ~oldS a value between 1 and ~~(~) corresPOnding to A-Z (for
functions, corresponainQ to FNA throuOh FNZ). A ~ype of 0
ident*fles a strln~ variable (e.g. 3,~ represents C$). Types 1
2 identify arr~y vcrlcbles of almensttonallty one ana two
respectively (e.q. 4,d. represents D[~.oUo] whj Ie type 3 identi ftes
an array ariable whose dimensionality cannot oe determined by its
immediat~·context. Tyee 4 ioentj~ieS a simple variable with nO
d I Q I t (e • 9 • I. 4 r e pr e Sen t sA) w '" .1 e t y pes :> - 1 6 (-d) ide n t i f y ,
'simple varic!lbles whose n~mes inclUde the digit' 0-",(10)
respectively (e.g. b,7 reoresents F~J,. Type 17(d) identities ~

proqrammer-definea tunctlon (e.g. ~~(~), 17(d) represents FNl).
Nane ~ielo values of 3~(~) thru ~C(b) correspono to extended
strinq re~resentations (e.q. A0i thru 21$).

5-28

--~~----------~---~-~------~-
: 1 : operator: Name : 4-16(~): ____ ~4BZEIc:m~~_---_______ . ____ ~ ____ ... __ .. _

~-~--~~-----~--~-~~-~------~---~
: 1 I o~erator : Name I 17(6)

-~~--~------~~---~------~----~

~--~-~~---~-~-~--~~-----~------
: 1 : Operetor : . 3

. -----... ---... ~-------~---.-.. --------
• .. E:tlnary Integer

-~----------------~---~-----~---

--------~~-~--~------------------t2inary Integer

--~~---~-------~----~-~---~--~-~

--~--------~-~----------~-------lIt operator : o
----~-~--~--~~-----------~------High MantIssa

---~------~-~~~----~~--~-------~
I LOw Mant : i::xponent

--------~---~--~-~-~~--------~-

-~----------~----~--~----------~ : 0 I I (Ill Oc::S5 (10)

--~~-------------------------~--

-~---------------~~-----------~-I Cheract er : Character

---~-~-~--------~~----~-----~--

Parameter

Pre-defined Function

Formel Dimenslonl

Hrench Address
l.ist

Numerical Constant.

String constant

A p~r~meter (whiCh can only appear inside a <DEF statement»
d'~fers from a simple variable only in that bit IS Is set. The
name 0+ a prede~ined function may renQe. in the standerd sYstem,
f:rom 0 to 31 (8) or 33 (8) to J1 (d). (CTl to SYS or ZER to TRN). A
fla9Q9d (bit IS set) ooerand of 3 Identl~tes either a formal
dimensio~ in a <DIM statement> or <COM statement> (value in
fol lOwing word) or a branCh address list (one or more statement
sequence numbers In the ~o'lowinq wordS). A flaQged operand of
o tndicates that the tol lowinQ two wordS hold d floatinq-point
constant Cal I numerical constants within a pro~ram are so
represented). The operator with internal COde 1 Is fI, Which
siqnals the start of a strtnq constant. The operand portion Of
the wore h~S a .value .rom 0 to 2~5(lO), inolcating the number o~

5-29

cn~racters in the constant. The string fol lo~s. t~o characters
per word, ~nd the closing" is not expl icitly reoresented
intern~1 IY.

5-30

Th9 t~ble below gives the Interna'" representation of the BASIC
oper~tors. Those operators· whICh manipulate the formula
evaluation stack dur*ng execution hae associated priorities.
~ASIC statement types are represented in the fol lowing table.
They can be difterentjated from BASIC operators because statement
type~ must appear only as the first operator in a statement. Atl
numbers are In octal notation.

BASIC operator s
OP PRIORITY ASCII OP P~IORITY ASCII

0 0 (end-of-formula) ::11 4 (unused)
1 0 .. 3~ 4 and
2 • 33 .3 OR
3 • 34 b MIN •
4 # (F ILE) 3~ ~ MAX
5 (unused) 30 5 <>
b (UnUSed) 37 :. >=
7 (UnUSed) 40 ~ <=
10 1) 41 11 NOT
11 1) 4~ 12 •• (Dower)
12 13(1) (4:; USING
13 11 (44 PR
14 11 + (UNAkY) 45 WR
15 11 (UNAI·fY) 40 NR
16 "2 • (sub s cr I P t) 47 ERROR
11 2 = (assignment) ~O-~7 " (unused)
20 1 + 00 END
21 1 01-02 (UNUSED)
2i:! 10 * b~ INPUT
23 10 I 04- REAO
24 12 1\ o~ PRINT
CJ5 5 > 00-13 (UNUSE:.D)

2t-. 5 < 1' .. OF
27 5 # 1~ THEN
30 5 = (eQua I) 76 TO

1-' STEP

5-31

8ASIC Stc1!tement Types

OP ASCII oP ASCII

0-31 (unused) 55 NE:.XT
32 SYSTEM !:)b GQSUB
33 CONVE~T 5·(Rt:.TURN
34 LOCK 60 t:.ND
45 UNLOCK 01 STOP
36 C~EATE:. 02 DATA
37 ~UkGt:. 03 INPUT
40 AOVANCE 04 Rt:.",L)
41 UPDATE 05 PklNT
4~ ASSIGN 60 Rt.STO~E

43 L I~PUT b7 MAT
44 IMAGE. -, 0 FILt.S
45 C.o~; 11 CHAIN
46 LET 7ii:!. ENT£~

47 DIM "I".j • I MJ-IL 1 t:.L> LET'
5u DE.F 74 (unu sed)
5J. RE.M 7':J (unused)
52 GOTO 70 (unUsed)
'53 IF 77 (unused)
54 FOR

5-32

Pre-Oef*ned Function Tabl~

OPerator - operand Pair Format

15 14 9 d 4 3 1 0

--~--~-----~-~------------------------~~-~-~-
III . operator I COd~ I 17 I
-------~--------~-... --~---.. -.~---.-----------.. ------

CODE ASCII COOl:. ASCII

0 eTl 20 SIN
1 TAfi 21 COS
2 LIN GC BRK
3 SPA 23 ITM
4 TAN 24 REC
5 ATN cS NUM
6 t.XP 2b PQS
7 LOG c7 CriRi
10 ~BS 30 UOS'b
11 SQ~ 31 SYS
12 INT ::S2 (unused)
13 RNO 3..:J ZER
14 ~GN 34- CON
1 S· L.E.N 3~ IDN
16 TYP 36 INV
11 TIM ;J7 TRN

Extended String ~epresentation

15 14 9 d 4 3 o
--------------~----------------------------------101 Oper C!Jtor 1 Name 1 SUb-QPI

-----------~-----------------------~-------------
STRl~G VA~IAbLf NAME SlJt:S-OP

A$-Zj, 1-::t2 0
AO~-t-JO'i> 33 0-17
~O'6-Z0:b ;j4 0-11
Al$-P1$ 3~ v-l"'
l.Il~-ll'b .jo U-11

5-34

Some examples of eASICstatements In their internal form are
given below. Note that actual function parameter formulas, <OfF
statements> formulds, and subscrIpt formulas app~arlng ,n·<MAT-­
statements> reQu~re end-of-formuta operators to signal their end
whereas mos t for.mu I as end e"I ther w. th the f I I" S t operator wh a·ch
does not manipulate the form~.la evaluation stac~ or with the end
of the statement. Note also that constants are ~onsldered signed
on.·y ~ith'n a <DATA.statement>. ASCII numbers are decimal,
Internal numbers' are octat in the presentation below.

10 . L~T WI = Y = (b = C) ~ l*A(I,~+KJ

12 seQuence number 20 DIM A(~]. C[c,,12]
20 length

0 46 21 6 LET WI 24
0 11 31 4 = Y 14

0 17 0 = 0 41 1 1
0 13 2 4 B 1 12 3
0 30 3 4 = C ~

0 10 0 0 11 0

1 24 0 1\ o· 2 3 2
OhOOOO 3.0 1 12 3
000004 b

0 22 1 2 .. A 1 16 ·3

0 12 11 4 (I 1"-
0 16 12 4 • .J 0 11 0

0 20 13 4 + K

0 11 0 .1

5,-35

30 Dt::F FNC (X) = X + AO 40 REM A~K

36 50
10 :>

0 ~O 3 17 0 ~l 4U

1 13 30 4
0 10 0
1 17 30 4

20 1 5
0 {J 0

~o GO TO A OF 10, 2lJ • ;30 bO lJATA -.1, IfAHC"

62 ·/4
7 .11

0 52 1 4 1 02 0
1 74 J 100UOU

l~ OOOOUO
24 0 2 0
3b 0 1 J

040~UC!

04140u

70 ~AT kl::.AD tit< : A [I 1

lOb
11

0 f.7 0

0 f,4 0
0 4 13 4

0 3 1 1
0 Id 11 4

0 0
0 11 0

5-36

BASIC V~riable Stcrage Allocation

PROGRAM FRAGMENT

~-"~-.- '.

DEF FNC . (x
VALUE TABLE FRAGMENT - x
~

-
A -.. -.~, + ,

~ C

~ 0 "; 0601tJ00 ",.

- ____ i.~ rtJ000iJ4 ~
r'I

4
>--S¥MBOL TABLE FRAGMEtJT

1 J

3
~

~ ~- --< .- ... - .- .,_ - ~
1

1/
, "

r\
100000 FNC ~~

",.

A[1] "0"'000

'" D3 040ltJ00

A[2] ""'00.02 - ,
... I A [1~] dimensionality 1 00ItJ 00 rzJ

)
A[3] ""''''''''' 'l)

~ A[] dimensionality
locally unknown -)

[oJ

as 8 .~

) .. A B ",.

1---- --
~ . C 0

..... ---_ ... 1'-- t --~
E '-- ,) -

[I

~
5-37 ~.-

.. ~

value of

simple variable

declared

dimensions

dynamic

dimensions

act ive

elements

Inactive

element'

physical length/
109 i ca 1 I eng t h

character

string

The symco,t .tab I e cO'ns I sts of two-word en·tr i es, one for each
unique symbol occurrln~ In the user's program. The first word of
an entry is the.lnterna' representation of the symbol as
previously descrlDeo. The second word of the entry is a pointer
to the value of the Symbol. For a programmer-defined'functlon
the value IS the defining formula in the <DEF statement>. The
value of a SimPle vcrlable is a two-word floating point number.
The value pointer 0+ an array is its base adoress (t.e. the
adoress 0+ its first element); When an array is dynamical ty
redimensioned to OCCUPy less than its Physically al located
storeae, It occupies a contlquous block Justified to the 'ow core
portion of its element space. Since ~rray symbolS may not have
dimensionality locally defined (e.g. MAT A=8). array symbols may
have a "oon.t t<now" entry In the Syrrtbol table in addition to the
dimensioned entry. both entries have the same value pointer.
The declared end dynamiC dimensions OCCUPy the four wordS
preceding the element space In the value table. The value of a
strine is alSO its baSe aooress. A string IS a Character array
(p~cked t~o elements Per word in contrast to the two wordS per
element for numerical arraYs). Its Physical (declarea) length
and. logical (dynamic) I ength OCCUPY the woro immediatel y
preCeding its value space.

The v~lue tab'e ana common ar~a are simply the concatenation o~
the values +or the symbols In the program, excepting programmer­
defined functions.

5-38

FIL~ TABLE ENTRY (ASCII ~i les)

dirty record bit
dirty ~tle bit --

-----~----~~------~---~-------~~
: 11 number of recordS, in fit e

(0 if not disc ft Ie)

-------~-~----~~--~-~-~----~~----
logicat record Size

----------------~----~------~-----1
LU#

for
for

ASCII disc file
non-Shareable device

------------~--~~~-----~~--~~---- last oa:»er--
re~d access ------- :-:
write acces s----- l-:-l

I-I-:-l--at.on was
a wr t te -... --... ---.. --.. ---~-~-~-~---...... ---.. -

t nput
1--

.output

next disc adoress
to be read
d t s c a dar e s s • n
buffer

I
I

--I

----------~--~---~--------------~

:--
base

diSC

address

--I

---~----~-~--~~----~--------~---~
I~st word + 1
of buffer

byte
(pointer

---~-----~--------~--------------cur r e.n t b u f fer
pOinter

byte
pOinter

---------~~-------------------~~-outpu t
input

-bytes left in record
=>Iogical record end

--~-~----~~--~--------~--------~

:--

:-­
t·
t

f i Ie

neme

-----~------~~----~----~-~------~
(unUsed)

-----------------------------~-~-• . . f tIe owner's
id

-------~------~---------------~--eof/eor exit
address

----------~----~-----~---~------~
sof:t
(not

error"' exit
Implt?mented)

5-39

FILl:. TAI-iLE ENTRY (BASIC f i I es)

dlrtv record bit
dirty file bit

read ~ccess ------­
write access ------

---------------------------------number of recordS in fl Ie

--------~------------------------1-:
:-1-1

loqical record sizo

-------------------.. ---------._---
(unuSed)

--------------------------~------:-:
: -:-: : -:
-----~------------------~----~---

:--

:--

disc
of

f i Ie

address
record
buffer

base

disc
address

--:

--I

------------------~---~------~---
I~st

of
word +

buffer
1 word

pointer

---------------------------------current buffer
oo.nter

'lford
pointer

----------------------------~----outout
input

-bytes ,eft in reCQrd
=>Iogical record end

---~----------------~------------
f I Ie

nc'l!me

protect
mast<

-------------~----------~--------f I I e owner's
id

--------------------~-----------~ eof/eor ex.t
adoress

----~--------------~---~-----~---soft
(not

err or ex i t
imclementeo)

5-40

--~f i I e Is
locked
by this
user

The file table cons1sts of one eighteen word entry for each file
6r place-holder (It ...) In the FILES sta~ement. Bit 15 of the
first word dtstlngu'Shes BASIC flies from ASCII files. eit 15 of
the secOnd word is set when an Item 'Is stored .n the buffer, so
that only records which are Changed wi I I b~ written to the
appropriate device. ~It 14 is set when a record Is.wrltten to
the device and Is used during program termination as a bas's for

. ugdat I no the las t changed date word t n the .f- i Ie' s d' rectory.
entry. Bits 15 and 14 of word four are used to tndieate that the
user has read and/or write access to the fi Ie (if set). Bit 0 of
the same word is set if the file 's BASIC and the user has
executed a LOCK s t.stement. Bit .1 • s used to • nd I cate that the
last oper6t'on on an ASCII disc f"e was a write.

A 'og' ca ,. record-s' Zed buffer • s assoe I ated w t th eaCh f I I e tab I e
entry. and .s accessed throuQh pOinters in the entry. An
intra-buffer pointer deSlqnates the next portiOn of the record to
be wr~tten or reaa. A fixed pointer to the first. word .not In the
buffer acts as a bound on the Intrabuffer pOinter.

EILE_COblIEtiIS

There are 4 data types Po~sible in a BASIC fi Ie. A string has
bit 9=1 and tne length In characters In th~ lowest 7 bits of the
first wora, followed cy the string pa~ked ~ Characters ger word.
A two-word flOating pOint number has the ucper tHO bits of the
first word dIfferent, except for a zero. whiCh has both wordS
zero. An end-of-ft Ie Is 6 -.1, and an end-of-record is a -~, in
the ~Irst Vforo.

Data written to or read from a ~j Ie Is first exclusively ORed
with the fifteenth word of the file taole entry. This has no
effect, of course. unless that word is nonzero. It wi II be
nonzero only if an ASSIGN statement has oeen used to speCify the
fl Ie. ana the statement inclUded a orotect maSK garameter. End­
of-file marks. end-of-recoro markS, floatinq poInt zero. and the
first word of strings are not maSked. The entire buffer. IS
maSKeo or unmaskea Vfhen written or read from the diSC.

ASCII files contain only str'lngs. ASCII diSC files are blOCked.
Eacn record conSists O~ a one word byte count followed by the
actual Character string. No carrtaQe return or I ine feed .s
appended to the string - these are conSidered to be the record
terminator' only for ~ser term.nals. Non-diSC ASCII fi les are not
blOCked. Each PhySical record eouals a 109ical record and the
lenqth of the record is deterMined to be t·ne lenqth of the
PhYSical record.

5-41

2000/COM~UTE~ SYST~M bASIC FO~MATTED FILES

BloCk Size logical size from 64 to 2~b words
default size is d5b wordS
Physical size Is alw~ys d~b ~ordS

Fi'e Buffers in core - one recore's length buffer per. file de­
cl~ree In progr~m

Access Moces

- written to disc When dlf.ferent bloCk
of t~at fl Ie reQuested by uSer
progrem

written to disc by nOrmal program
term i nat i ·on

buf~ers are ~wapped In dn~ out with
rest of user progr~m

seQuential

reneom

like Mag tape
automatically pass over recoro markS

until file mark encountered

logical blocks are aeoressable
within a block, sti I I sequentla'

~ecord ana F i Ie
Indicators - logical fi Ie mark (LEOF)

creetinQ ~ fi Ie ~Iaces a logical ~OF

mark as first wore in each block
~ritlnQ In that blOCk erases that

'oQical EOF marK
user proqrarn may write LEOF uSinQ

P~INT •••••• eNU (out continuing
to write seQuent'd"y from that
point wil I erdse It)

- Lt0F repl~ces L~OR that mlQht other­
wise be written

logical record mark (LEOk)
auto~atical Iv written after last datum,

if blOCk not fut t. and if ~~INT ••••• ,
E"'D not used

phySical record mark (PtOk)
- oetlnes t~e absolute size a blOck; size

defined bv user creating the file
Physica, file mark (PEOF)

- the absolute end of the last blOCk of
c!' f I Ie

- IF ~NU.· •••• statement wi I I be executed in t~e
circumstances aescr~bed in the table
on following PSQe

5-42

:--~------~--~-~I---------------
\t4RITE REAO

~-------------~:------~--~----~
--~-----------~~~--- ---~---___ --__ I ___ --__ ~----~-

SER IAL

----~---~-~-------~-

RANDOM

-~-~---~--------~-~-

PEOF

---------------_ ..
PEOF
PEOf.(

-.. ----------~-..

'5-·43

Pf:::.OF
LEOF

-_ - .. _---..--.. ---1·
PEaR
Lt:.OR
PE.OF
LEaF

----------------1

Ell.~_lIt;.t:1
QEEl~lIla~~

eECOBC_t:JAB~S

-2 = 17777b(~) = logiCal record merk
loglcel record mark may elso be detected as the ~hysical

end-of-record

-1 = 177777(6) = loglc~1 file mark
logiCal ftle mark may also be detected as the last record

mark of a ftle - i.e., the number of records In any
fi Ie is pre-defined in the system

SIel~uS

bit 15 10 '-i d o

First word
Format

:-~----------I-I-J----~~---------~---~---: • • • •
000000 : il 0: string length

:---------~~-,-:-:-~---------------------:
~trinq

Ioant I f i er'
F- lag

In pOSitive Characters
1 <= length <= c~~

ASCII String characters are then packed into consecutive words.
two per Word9 lett Justified with byte wdsted If Odd length
string.

5-44

- Identified by de~ault (I.e •• none Of tne above three)

- standa~d H~ 2100 format

bit 15 d 7 o
I--I-----~--~-~~-~--~--~~-~-------~---I
I .:

word 1 I S.l MSt1 Of ·~,.act ion
I--:-~~-~---~---~-:--~--------~--~I

I
wora 2 LSd of fraction : ex~onent

...
• •
: S I : ----~--.. ~ ---.. ~---I "'~"---"---~-,-'-----I

s j gn of fr ac t • on

5-45

sign o~
exponent

upoate Lest Change Date Routine

Each file and program entry in the directory has a word
containing the hour 0+ the year when the entry was last changed.
It is necessary to upoate this word ~or fl les ~hen a program is
terminatee for any of the fol 10wlnQ reasons: normal termination,
CHAINing to a new program, error termination, aoort and when a
SLEEP or HIBERNAT~ command is Issued.

The OFChk bit In the user's ?FLAG word in his TTY table Is set to
1 If there were any tIles statements in the program. This
determines whether the LCD routine wl'l I be cal led~ When it IS.

each fl Ie table entry Is examined. If bit 14 of wore ~ = 1, the
~i I~ has been wrItten on. so'the last Change date must oe
uPdated. This bit IS set by the ~RRlIF or OUTHF routjnes
dependlnq uPon whether the fi Ie is BASIC or ASCII respectively.

The only abnormal tty In cal I In9 L~D occurs fot lowing an abort.
The user is taKen oft the aueue ano re-jnserted with priority 0
to run a core resioent routine c~1 leo AHuCU WhiCh writes the user
to the s~ap tracK, cel,s LCD, and returns to the SCheduler to
finish aborting the u~er.

5-46

~ASIC Run-Time StacKS

------~~~~~---~--
RTRNQ-->

-----~-~--~~---~-: return aad~ess: }

~---~------~----- >
}

RS~ST--> } ~ words
I)

---~----~-~---~-: >

,5-47

The return stack Is
of f heed ;, erH~tn,
hol~lng from 0 to
20 one-word entries
at any time. An en­
try .~ the absolute
ad~r es s oft he
statement fol lowing
the GOSU8 which
placed the entry
on t e stack.

For-Stack Entry

:pOinter to value:
IO~ ~or-varlable :

) two-word
I Imi t)

)

)

value) floating pt.

)

step) numbers
)

)

size)

----:--

Program ~raqf'Tlent

--~-------------

----~-------------

--->: succeeoing
: statement

5-48

The -for-stack i s o~

varic'ble length.
containing one six­
word entry for eaCh
for-looP which is
currently active.
Since the limit
value and stop Size
are kept In the en­
try, tney m~y not
be Cnanged wit~in
t~e for-loop. The
value o~ the for­
varleole is tne one
~ePt in the value
table, so this may
be altered by state­
ments within the
for-loop.

LET A = B+C '':0
........ --.........

~
Temporary

Stack

j A e

..

OPTRQ' .> (unused)

"
B

start-of
formula oRerator

/ C

-
~ ./

0
Opu.., ,.

+

(unused) .
PBPTR ,'c

ava i 1 ab Ie user

space

LWAUS ,)-

)

'" ----..

TMPST+'

OPTRQ. -t

OPOST

------&0

PBPTR

LWAUS+

OPOST

OPTRQ+

-- -
floating point

number
. ~

1 \
" A

(unused)

,
B+C*O

start-of-
formula operator

(unused)

•

avaIlable user
space

......... L -

~----------------~

(unused)

(unused)

) TEMPORARY J STACK

TEMPORARY
STACK

+PBPTR

All operands (checked words) are addresses (i.e., C represents a pointer to

thp value of ~he ~imple variable C). Bits 7 ~ ~ of an operator entry contain the

:':-'ors identifying code (See 'Basic Operators' Tab'f'e) while bits 15-8 contain

the op~rator's priority. Note the alternate-word structure'of the stacKs. The

temporary $tack holds intelmediate values during the formula evaluation.

5-49

~ASIC Languaqe P~ocesso~ Tables

The two areas o~ core label led SB~TB and USE~ contain the
mechanism aflowtng oif~e~ent users to exercise dtffe~ent portions
o~ the language processo~ without jnte~fe~ence. The lanQUage
processo~ makes its SUb~outine cal Is to the labels in the.area
beginning with USEk. The wO~d following a SUb~outine ent~y point
is an indirect jump th~oU~h the app~opr'ate ~doress in the area
following SB~TB. when a user Is displaced by the system. his
reqlsters a~e saved at USER and the area of core from USER to
PBPTR.I inclusive IS aumped onto his track o~ the di~C. ThUS, a
complete record of the lanquaQe erocesso~'s status with respect
to him is preserveo. The onlv thing particular to a user which
remains ~hen he is S~epped out is his own teletype table.

The tables heBded by ~UFTB (whICh must oe in case cage). SYNTb,
XECTH, ano FO~T are Jume tables. The methOd in the .ast three
cases is to compute a decision number, aad the base address of
the table. and transfer thrOugh the entry thus deSignated. The
ere-defined function iable Is used bv the formula evaluato~ to
ente~ the COde for evaluating pre-defned ~unctions.

The t~bles headed bv UUOTE and MC~OS nave seve~al uses. Their
entries are eXDlaln~d in the I Isttnq and their use wi I' oe
explained in those routines which access them. The Error ~umc
Table (at SEk~S) is explained alonq with the error routines.

5-50

CLE'AH "uP
Fa ... New

P~oG-~AM

'])!;cRMIN ~

S li~Ue-NC E"

NVIW\'&\i"R

'D ~ L.e''' e"

STI\,.S'M e'NT

REFe~~NCe'~

No

6" X. l"'")
'----

5 Y NT A X

No

A..., Itt L.-V 1. ,.

S 'TA.,.EM e N j'

e-x,"

FLOWCHART
1

ADt>

>-"------1 51"""''E'M e NT
To
p~o &~A""

EMGe''D
E"Rft,OI\ \N

1> I\OG ~ Af'A..

C OMPILAT,oN

SAVE" FtR\T'

STATe"""ENT

N ",H" -oE' Po. .

F tNt> S"TIt\-'T

Af)t)RiSi of

PRo C'r~ A~

Yes ex I'" To
'':bONE I

SCI C rLAG­

~:::.....--.... ! \,. IN.

FLOWCHART
1 of 4

fFLA Go-

l..OtJ\PILAT'oN

COUNT'

NU"'6e~ OF

~ or AT &:ME'NTS

'BUIL-lt TI'&L.~

os: S",,"er\EtIT

M.ove 10

N I:X,.. ¥loft'S)
of 0

STATE"" e"N-r

WHEN ,ItNSl" IS
~NTffi.el)
1huc:r&.'1 ,1"
.... "'~~\."t ''''ITS

~If'''

FLOWCHART
2 of 4

S.Pt~C.H Fof&.,
RE"FEReN!c:O

S1""ATEM e:N-r

REtLA(!'E'"
~",ewT' r#:
. F.~rr .. P.~NCE'
w lTH A~'D'le:sS

COM P I L. AT IoN

~;"('ONt) Wot'S)

__ ----II:tN S '1M~ 0 L.

TA~&''' EHTJ\ Y ... -,
J\'Ot) It)

>---t Fof\ QueuE

FLOWCHART
3 of 4

Mo"!" ' PAs'­
~--f FUNCTlON

'DE"P'N~-rl ON

CO,"" P t L ATIO N

'fI'S

NEGATe
PO'N"!R 'To
Co
~Tt.Te M !'N-r

A1)VANtS'
Po I NT!l ?"cs."
1),t#\ENSlON S

FLOWCHART
4 of 4

VL.Ft.G- .. 0
FI~j'! :;> eND

o f 'S~M~ oL.
"T'Ae\.E'

PRNST cX11S
HEftE' oN
END 0.-

S"T'flltTfME'N

eRRoR. E:X I"f"

ReTURN '-0
C.SAv f ~o"Ta ~ e

VAI..TB '*
>-_ ~N:D 01=

S"IMeOl..
"'AG~e"

]) Ec.o ~PI L..A~I oN

C LE'AR. C.FI...AGr

Sar- IN
!FLAw Wo~1)

SPTR+- FILT&
't- Po TE,. .,-0

ftU> of
?RO&I:t.f\tI\

PRto.lS'­
f~ITI He~€

___ • wMew

f'l\c-JfI To
N.,cT Wo-.» of

~T'iMeN"

RiINTeItEJ>
1)1'-1c.1'L'I

'1f!!S

PSPTR. +­
POltn'fR To
= ""I) of

P,-oGAAM

SVMT6 ~ 0

(PR,o <-'-'Af'\
U W (OMP I~'J))

Move' P~O"~A'"

S ~(.\C. 0 ve.~

Co"'~o..... A '-SA

No

FLOWCHART
1

REPLAC.E
SYM'OL iA6LI:
POINTE~ W,"H
VARI"&'! NA"'£'

Mo",,,
NexT WoA3)

or:
STATc~cNT

MoVE"

PAS'­
:b1fo\!N\IONS

Re"LA~S'
.-_ A~l)Re~, WITti

''''Iin'it\ENi
NuMt.."

SET EXt/.

F=oR E'N::D.

OF S'-A iE'ME' NT

':-IL..C..,... ~ -S'
C.o,,","N +- 0

I='LftG NoT'
'USn~'"

• L NUt!\ <4:­
sT"~E'Mewr- :/:I:

NSP~" ~e.x-r
STAT!MENT'

FLAG­

lusn~c;.'

bC.Mf>L

SA'/rE P~'N -= R
J-N_o--,r 0 ' FILE S I

·riATEME'N-r

~ Tr:rt"r~ E HI

FLOWCHART
1 of 2

s\<\p ~E'$I
OF

ST"Te M E'N 'I

Move /0

NeXi WO~O OF

STATIiMeN"'"

J="I.AG- NoN­
VAtl,,, SL.E'

orE~p\ND

5 PAC.e' 0,,£ P-.

~iRI t-J G-

CONSTAN-r

'iES. SPAC.E OVE~
FLOATING--

'POlt-lT COH!a'T1tN

FLOWCHART
2,0£ 2

1 N ''rl AL.I'%. eo
S"tMeo\. ,.~~~C

P 0 11'-4 ie I<.

A PPED New

>-.;;......11--_---1 eN"jt 'Y To
S'l'MeOL. -r~s\.E'

R~ ~\"AC.E'
>-----'i.---_~ 5 "I~ Go\.. , N

PP.OErf!AM WITH

Pou",. 10

Nex'- S"''''~OI..
""l1\~Le: E NTR,!

ReLATIvE' ~nl~S

FLOWCHART
1

SeT R.eTUftN
AnOfleSS is

~eT MATC.ti
F LI\G- FALS C'

MO\lE To.

ASYM T

SAVe P.' .. TE'tl
"7'"0 eNT(l..Y

(~""C:'i Fl.AGr)
T·lvE

POUlT' ":noN I ,..

~".w If EHT1Y. >---t

c. R.eATE NuLL

7D J)'Mi"''', O"'D
ONE

€NTQ.Y A'boVt ~_~
Wsw ONe"

FLOWCHART

No

POINT l'lIoN IT

KNOW" iN1"'l'l

To New EtlTf."f

POINT 10

'SeGINNtN& 0 F

P~OGftA~

E)tT~AC.,.
Ope"~Top.,

fOINT "0 NE~""
'''ft.,. &" "" 1M T

EXTflAc:.,­

s..,~eoL. FROM

S"tM.a~L. TABLe

Se''' Sac:oNO
wo~~ of
S'YM&OL. T/Il &1.E"

To -I

~o",e To
NeXT S..,~&O'­

IN

STATE't.\e t.lT

R ST PT

Po lI~lT To
r---~ f:4 e: ISo tN." til" oa::

~'1~(.\o1.. lASt.."

"IES

W4tlD 0' 5.,,,,,0,"­
TAiL! f HTlt.y To

tHO...,"" t:NnY

SET Po , ""T'eR.
oro 'l) tM!""" IONS
I tV 5..,"'601..

TA,&f..E

FL.A& 'STOC" ••
. NOT A~1.0~"Tfl)

C I..e:All SEco .. D

lu~l) ot=

''''Mao\. TA'''c
r:w T-."1

too\o,,(To

NtEx. ''YMSoL

TASLE ENTJt Y

N E'&AiS"

po INTel'

Move P"'~T

FLOWCHART
1

No

ALe 0 M

COMfo#.oN AL.~

~OI"'T T. ~,jt.s"
STATe'~ E ,..,..

COMPUTE' s~
. R£ClII,(t.fb

F'o«. VAst\A~L.E

UPl>/t"'rf

AMOUtri 0':

COMII\ON ~-rotA

Mcwe 'To N Exi

V~l'~ (!,I.E"

IN STATE'",e .. ,...

MOV6 PP.o6AA

;0 M""! ~oo""
Fo-' CoM~O N

FLOWCHART
1

No

V A L U E

t'\O\l; "-0

NeXT S'1f'\60L

VALUE

- __ .1..-__

T tot''TUU,I'%6

Co",~otot· fa.,n'EIl

P.'HT" T. F,~s""
S.,,,,eO\. TA8LI ~'""''t

FLOWCHART
1 of 5

J:Nt-nAL.l"Z.&"

E~Ro~ iRAP
I="L.AGS

V A LUE

SeT POINTe",

T. VALUE It-I

SY,-.aoL lA''''£'

St:,- V "LV e
,-.

U N1)E F t N e 1)

FLOWCHART
2 of 5

~
E'" POlNTe1t.

"'0 CO~M.'" A«.eJf\
upnATE Cot'lfo\ON

Po.IIITe,..

V A L U E

'S,,. Sy~.o,­

'TAG"'I' etitltY
. ~O\WT'A .,...

~O~"'. ~

~Ave tpW'IS''''l
l.~N'TH AND
L04ilc.A\, L;N"Tti

.e: -ZE It 0

UPt>ATf!

C.Otl\fI'\ON

flOtN'TEI2.

S.:.,. s.,M, 6 ~L.

TA ''''E' e M""~
P.'H -rea. To

STIt,..NG-

<&AVE PH~"C.AL.
LetHrTH AND
l OGoIC.~1. l..N' 1"..,

OF -Z!~O

FLOWCHART
3. of 5

V A L U E

"T~e" POINTt~
10 VALIJE TA!&.E'

>---~ ~--~

S E'T 1'0 I NTEIl
To Afl..('lAY

IN S"'~eol.
TAQ.L.E"

LoAD Dec;",,,fl. eD
l)IMEN$IO"~

RtOfl\ PtO& ~ A",

f\IT p"'IS Ie A.l..
DIM.; ""~It. filS
INTO V "LV f:

Afl.6A

PUT l>vwAt-\ , (..
thtA.;N!.IQNS IN
VALUe" ""A~L.e-

I", 5.,,,, • ., ..
"-"GLE

L.Ol'D ~'''''NS'O~~
O~ (IOJI)

ott ('IOJIO)

FLOWCHART
4 of 5

IN,.,.,,, L,-z.e
Atfl.."y cO

'UNtI& F' ED I

VA L U E

'S E' 'r POIIIIT'Eft.

,. COfo\M.ON

Aa..EA IN

Syt-\6o\.. -r-'SLIi

Sn PHYS.C.AL.

AND '»"IH """c.
~:':"'--r---...., lhMIi ... S I ~NS =

,c:.o,",t\lTIl" 51'%.;"

'oF l)Sc.&.Afl.eD

A Rr..ff,/

Co M'unr oS ''Z.!"'
As S p~(.. F. eD 8y

)'1HA~\('
:.b,~eMs,o"S

No

:DEC.U\A,EJ) 1).t'.

C.O~tUT8"
N"~t.e{l at:
t-.~u.'f 'CLEMeN

IN 1T,"L.,t. e­
At .. ",,, 1'0

UPl)ATE
C.o,",,,,oN

PO'~T'tt

FLO~lCHART
5 of 5

1:> t! C: OM PH.€"

P t\ oertl Aft\

IN ITIAL.I·'Z.E

V "fl)~a L. e-.,S

AL.LOC."T~
8UFFI!R.. Awe
IN ITIItLI"LF

CONTlIlOl- ~L.ot.K

MovE" To

NeXT 1='11.1:

E)(ECU-rlON

A. MAIN Loa f

C.LEAft CWA.N

FL.A'- SIT

FLOWCHART
1 of 2

SET .s'Tf\C.~

Po I NTEtl.S AND

. c.Le/t&N uP

"Se\\le:- C'-'AAEXT

5rtc'TEM eN-r

NUM&e"-

AlVMH.e­
'R.06l~f't
COIINTER. To
N~ S''''l«e~~ NI

FINS) C"':'flE'HT
S'T,..,.fMeNT TYPE
ANa:. 600 TO
/It Ptf..OP" ,,.-rf

".u"I',Me

No

13.

Lo~

"'-litHe. \of

A~t)ftE~S

~"~C.K

~G'"N~N
ADI)~e-S5

. ~,,~ L.\.IATE'

ND SI\ANC.'"

:l:NDEX

FLOWCHART
2 of 2

·Yes.

InENTIF),

Fop.- VARIAS~

~L.I MIN "T~

J=o,.. - S,. Pte.. ~

t:NTR.'(

Sci" '-Q
~~ANC.ti Pftsr
"'so C.'h-rED

N£X'-

Se'T To
B~~wc.t-f To

~"~~eN"i Arnlt
, Fott.1

t3e'NT, r-Y

~- VA"\~GL~

Abo
eNTt:t'Y To

Fa It - .£T~C.K

Mov," OLb

CHT~Y ,-.:.

~r DF STAC.t..

'''lie' S'Tef

SI"Z& ,..,
e:NT~Y

ADb STefl

" l'tE" "-0
Foll.- VIt"'IJ.L~

FLOWCHART
1

No

PUT Fo~-VAft'A&l.

vAl.u-e Al)1)~E"s.s

IN eNTRY

No

LoAl>]

t • ¢
'-----

SEr
For.- VA~I~IL=

'0
I U IT1AL VALU~

cNTE'It
A1)2)~fU of

Fo&.&.o,"",'" Go-

S T'ATE'ME'NT

'5A.."~ LI MI"r

V"'I.~E 'I'll
E'NTP-'f

SYSTEM LI~RAPY ROUTINES

&-1

T"9 AP~f~D routine ~s cal led bv ~ user to BPoend a I iDrary
OrOO,.,.,m to his currept orooram. The operation is the same as
GFT for steps I-B. enc then continues as fol IONS:

9. c~eck th~t tne proqr~m to be aoo~~oed IS not semicomoi led ~nd
h~s no com~on area. set the rl~te into word ~ of the
Mirectory entry an~ write it beck.

10. Loeo user's current oroqra~ and cel I OCM~L. Chec~ that the
or"oaram to oe aopended wi I I fit. Bnd If so. "e~d it in at
the f)nd of· the current proqram. If the redO liS unsuccessful.
f~ i I •

11. If the current p,.OQrnm is not nul I. s~~rCh It for t"e
SPQuence numher ot the first st~tement of the ~Opended
or"oQram. If OKay. up~ate PHPTR.

1 2 • 1ft h p. (IJ P pen 0 P. e bel 0 n q s tot n e use,.. (r(1 [) = I"! ~ ~ 1£)) the n
cle~r orotectlon bits In the ?NA~~ NO"~S.

13. If the ~p~p.noent.s In is not thp same as the user's ID or
?P~ID .then cut the ~opendent's ID into ?~klD. Also inclusive
or the protect bit In the user's TTY te~le (the third woro of
?~A~l. bit l~) if the r:30ceno.=jnt is crotected.

The ASSIGN Overl3y is used ov HASIe to O,.ocPss an ASSIGN state­
ment in a user's prog"~m. The functton of the ,.outlne is to
reol~ce Inform~tion In tne fi Ip control OIOCK O~ tne referenced
ft Ip with information th~t pertains to t"e ~~w file. We p"oceed
~s Follows:

1. Fino old ., leIS Clrectory ent,.y ~nd uoct~t~ it, If necessery.

2. v~t In(lllte user '5 stat i c fltccess to tne new f I I·e ..

~. ~rlte out cirectory pntry o~ new fl Ie with uOd~ted Idst
reference ddte.

4 • V ~ I I 0 ~ tea c c e sst 0 an ("j a I I 0 cat e f I I e .i f t v c e AS C I I •

~ • V IIIJ tid ate use r • s C y n ~ M j C ~ C c e sst 0 the f i I e .(use F lJ sst a b Ie) •

6. write out FUSS t~ble with type of access or~nte~.

6-2

-7. F"ill in ne-v inform.:,tlon into f:tle control ol~ck. Adjust
~emory pOinters If f:i Ie buffer larqerlsmaller than that
in thts position.

A. q~turn to t~e 'dngU~QP' processor.

6~E

Tna RYE routine is used to loq ~ user off:. ThiS routine ~ay be
cel te~ by the user as a com~and from kis termln~1 or
pronr~metically. by uSino the SYSTEM statement. dVE Is alSO
c~ll~d to 109 a user Of:f when thp. rop detects e disconnect on a
port.

1. If there is no rOOm in lo~ table then reaueue the user at tne
lowest priority. Restart at LIBRA.

2. If tne user hdd an *nuT=* ft Ie then kit I output.

3. Cleer output wait Dlt In the fla~word ~f set.

4. If: 10 Is zero. the user is not loaaed on. then qO to 15.

c:;~ Clear ?P~If) nna 10.

~. If DFCHK=O then there ~re no files that require their last
Chang~ d~te ucoated. Go to~. otkerwise read In the user
oroor ~rn and ca I I LCI) to nO it.

7. Qefease non-sharablp deVices User has in use.

A. ~~move thP. user from the 10c~ Queue If he is on it.

9. n9cre~ent the numoar 0+ ~ctive oort count.

10. Cle~r the user'S ~U~5 tabl~.

11. Put deto9 off entry ,nto the toa table.

12. lIro,r.ate thE' ti''!'1e used In tne user in thP lOT.

13. ~pna ~ 109 off mess~~p. to the user via POSTR. I~ the 10~
r p) e c t s the rn e s s a q e ~ (l S T ~ wi' t S F) t the 0 u t put II a i t ·b i tin
t~e· user's flag WOrd r=tnd t(=ll<e thP reject r-eturn. Other~i se
00 to 10.

6-3

14. If th~ messa~e was not reJPcted 00 to step lo~ Otherise,
loop to uP to one ~inute whil~ watting for the out~ut
w~~t btt to ~e cle~ree by d buffpr fre~ (BFE) from the IO~.

r~ timed-out QO to step l~. If not 00 to steo 13.

15. Send a ~OC to the In~ in the form of a LF to tne terminal •.
Tnts is requirea by the lOP to force it out of. an
undesirable state.

1~. Sene ~ hanq user uo (HUlJ) to the rOPe

17. C I e~r and set the un~b I e to !lbor t bit the user" s f.l ~q iiord.

1 p. C I eClr ma in.

The r.I\T~L()G c(,mmano lists al I (or ~ ine If called via the SYSTEM
s t ~ t e"" ant) 0 f the pro Q ram san d 'f tie 4S s tor eo () n t 1"\ e S y s t em 0 f. a
user. CATALOG lists. With thrp.9 entries cer I ~ne~ the entry
name ~ prooram/fi Ie aescriotor, ~n ~ccess restrlctton proQre~
fl~q. the lenoth and the recorM t~noth.·

... , A MI;.

~p.nr,~AM/FILE DE~C~lPTO~

ACCFSS RFST~lCrIO~

thP. name of t~e entry •
A / F / ~ / C I ~ L A N.K AS C I· I F I L. E / F' I L F.

MWA FILf/CSAV~D P~OG~A~/PROG~AM
U/J.J/L/8LANI(u"'.:.(I:.ST~ICTEU/PR()TFCTED/

LOCto<FDIPRIVAT"
the lenqt.., in blOCKS if a file or
prOqr~M. a cevlC~ d~siqnntor If it
w~$ ~ non-sl"\~rp~bl~ device.

print the record len~th in bytes for
~n soeclfiec device desiQnator or
in word for files ~~~b.

The ooer~tion at tnv co~m~n~ IS as fol tows:

1. ~et t~e ?TEM~ words to blanks
?. C~€Ck if a startlno pntry name has be~n specified. If so.

out the name Into t~e 'tTfMP word4S.
3. ilecremer"\t th(.· last hvtP. of thE' nt=Jme In ':TF;MP OV one.
~. If this w."S d call f.rom ·th~ system thon ~o to steo b.
~. Get'6 buffer from LouT ana hui I·d t~e he~oinq lri it. eel t

I.Jl U T top r i n tit •
~. ~nvp the user.s lU into LT~MP and move the entry n~me

t n rt T F MP i n t 0 L 1 t:: t-i"J (::,).
;.

7. c,et a buffer from LOUT to bui Id th~ cat.;loq line.
~. C~I I PLonK to find the first ~irpctory entry oOYOnd the

6-4

one SOuoht in (Ll~~P 0:3).
q. If th'e t dcode of t""e new entry • s the same ~s the one

Sought then gO to steo 13.
10. If the line contains ~t least one entry qo to 12 to print

th~ I ,ne anq terminate.
11. F~.t to the system statement clean uo routine if c~t~lo9

was called ~rom the language processor. otherwise,
terminate. .

I? Set the success fu I ,wr t te return t n Lout to term I n~te (LL.ENO).
Go t'o step 18.

13~ Put the n~me, the orooram/flle descriptor, the access'
restructlon. the lp.nQt~ ~nd the record length into the
huffer for the entry.

14. If thiS Is not the third entry on the line then go get the
next entry. If thp.re ~rp. no more Antries then go to ld.

15. Put the n~Me 0+ t~p. tnlrd entry on the line Into ?TEMP.
16. Snt UC LOuT to mOve L TEMP (1: 3) to ?TEMP wordS • f' the

write is rejected In LOUT. This will insure that catelOQ
wi I I resume orocesslng at the correct entry.

17. 5Gt the ,successful r~turn of LnUT to steo 4.
r~turn ts ~Iso step 4.

lA. 1+ cetalco w~1 cal led from the l~nQuaqe Qrocessor then exit
to thp systp~ statement clean uo routine ,(SYSCU) with the
I i "e.

lQ. Print the linp anc su~pend.

Thp. CHAIN routlnp is lJSe~ by AASIC to crocess a CHAIN st~tement
in ~ user's crooram. Th~ function the CHAIN routine is to find
thp. orooremnamed in the C~AIN st~·tpment. retr.eve .t f=rom the
di~c, ~nc n~Qin execution. It ocer~tes 3S follows:

1 • I) ufT1P f. Ie ou + fer s •

? lIr.lCh"te the I ast Cho"Q~d date entry in tne d I rectory for each
fl Ie whiCh was written on.

~. Tr~nsl~t~ name of oroora~ fro~ CHAIN statement. Inv~1 id
naMes ex I t to error. If preceded by a"Cfl"" set UP AOOu
sear~l"'I; if orE'!'Ceoed ,",v Hit". set UP grouo I,'orary se~rch~

of:h€.\rw I SP. sot for se~rch i no on uSf"r' s 10. :;dve the line
number If dny IS Specified.

, Perform directory sp.~rch. Ex I t to error I f not found.

'i. C~eck to ma'<9 sure th,~t the entry I s a program, that it. S
r.ot i I 'stored, dna that it i II fit. If ony of these are
n~t true. eXit to the approprlat~ error.

6-5

f-.. "nnate o~t~ entr.Y in d;rpctory ,-,nd wr i tf' <1irectory tracK
o.qck to niSC.

7. ~~~d in th3 o~s'c oortion of the prevlou~ oroora~. includinq
the COMmo~ area dnri then aoppnd thP n~~ proqr~m. If t~e rea~

i~ unsuccessful. redO in the orevious orooram aOdin and exit
tn ~rr~r. If successful. move t~e new oro~ram name into the
user's table. ~nd ;. this is B run only progrem, set the run­
only oit. unless the oroqr~m IS in this user's ONn library.
C~I I SEMIC. whiCh sets UP oointer~ for the IdngUaqe
orocessor. neoenoent upon whether the program is unco~pi lea.
or 5em,comoll'?o. C::;E"~IC also sets the "proqr~rn unal tered oi tit
In the uspr's Tr~ T~nle.

~. C~cc~ if an coort N~S nttemcteo nurinq t~p orevious steos.
;ano If 50. dnort t",e user.

"1. 14- n line r'\lJMr.er ~nS ~of'clfieci" Sf?'C!r'Ch the orogram for the
c; tat pm en tan ~ " 1ft 0 lJ '" "1. put I t 5 ;=, t"J sol lJ ten rj r.W €' S sin t 0

", P ('C T • I f no I I n e n u rn bE' r we!; S P P. C- I f i ~ Ci" set .'Q GeT e c u a I

to SPkOG. If the croarom IS nul I. or If tne line number c~n­

not bp. found. clear the chein c.t In tne flaQs word. In'~ny

c~sp.. exit to SeMeL.

CS8iE

T h 9 C 5 ~\ V t. r 0 uti n e I S C:III I I f\ ~ t) yo Pus @r t 0 S a v ('? ~ t,H" 0 q r d ~

cOMo'fe~ form. This.s the form it ~~s 6fter the svmoOI
is OUI It. CSAVi ncerates liKe SAVF with tne followina
excpotions.

in se'TIj­
tablE?

3. If oroor~m ·15 not c~~Di len t~en ~I IOC8tp co~mon If n~cesserv.
c~~ro~ t~e usor st~tus to synt~~. Initial IZ~ somp, como. Ie
routine vari~nles ~n~ pnter the cOMoi Ie routine. Return to
step '3n y..h~n oone CO!";IL) iii n~.

3a. 'C~I I kSTPT to ·restore the sy~nol tatde to Its aOcear"nce just
~4=ter It W-=3S nui It. l-t'pstnre thP. user's 5.tatus to CSAVE.

C',. c,",eck If orO'.lrarrl till I fit In SWF!C r=tr~~ (It tn~ I ,m.t pOinter
(FIL lr) clus t) ISS LwAU~)" if not or int ~'''''~O~j.~A~ TOn LA~c.;,t.

~nd ~Xlt. Use thl. npw v~lue for sp~cP reQUirements
C·IIIJ leu' e t I on s •

1 2. j.. iii n . the s·j x w 0 r (1 S ;=, .. t €' r t ~ s y t"1 b 0 I t r'It n Ie:
1. s ymbO I t r'lb I e DO. n t er
?. Jt ·0+ f. I a sldt~ME'nt!i= in thp. cr(')(']r~1'Tl
.3-6 t~p nodresses of th€'SP. f i Ips t~tjOme-nt s

6-6

l~. set the s~micompl led ott in tne directory entry template
(LT~~P+3. bit l~).

DEL-ElE.

TnenEL~TE commana allows a user to delete a section of his
ornQr~m. He can specl~y t~o parameters. M and N. M ·refers to
t~e first I Ina to be. deleted' ~ to the last. If N Is not
speCified. the entire croqram'lS deleted. stertlng at I'lne M.
The ooeratlo~ 's as ~ol lows:

1. Translete and chec~ parameters. If N Is nqt speci~led. set
It to 99q9.

? ~p.compi Ie proora~.
3. Locate ranQe 0+ st~te~ents to be deleted.
4. Move portion 0+ proor~m ~ol lowina delp.ted are~ UP ~9atnst

cortion oreCedlnq.
5. ~p.set PBPT~ ana eXit.

QE~lCE

Thp. DEVICE" commc=lnd or ints a ,tst of devices on tne system the
user l""Iay fl!ccess alono ..vith thp. deVice's .select COde and st~tus.
The st~tus is ~/A If the device IS assiqneo to a name or to an 10
not thp S~f1lP as tn~ us~"r's. It is bUSY if. the device is betng
userl.

1. Get the user's I~l entry ~nd p.xtr~ct the capac' Iity word cut
Into t~e ~irst ~or~ of ?lE~P.

2. If there are no aevice t~hle p.ntr,es tnen ter~indte.

3. In.tiR' ize the device t~r.le entry-to-orocess oolntp.r (stored
i n t'" e 2 n d W 0 r a 0 f ? T E ~1 P f tot he fir s ten try 0 f t ned e 'II ice
table. Also intt'~1 IZ~ a pointer (3ra word of 1TEMP) to the
Pono of the devic~ td~le +1.

4. ~rlnt the t~o I tne n~ddina.

~. CODy the ?TE~~ wor~s to a three wora but~er (pointed to by
ljl)V TH) •

6. Gpt t~@ nevicp. table entry-to-oroc~ss painter. If this
oointer aces beyOnd t~e oevlce tnbl~ (?TF.~P+l=?TEMP+2) then
ter"'In~te.

7. Gpt th~ oe'llicp. oesiQn~tor ~rom the rlevic~ table. If tne user
does not havp the nCcess caoabil ity thpn bump the device

6-7

t~bl~ p.ntry-to-~roc~ss pointer to the next ~evlce entry and
to to steo 5.

p. Get a buffer from LOUT to hui Id t~e data lIne.

9. Put the device oesignator. the select COde ~nd the st~tus
Into the buffer alonQ with the rp.cord t@rm;notor (XOFF,
C-<LF).

10. Set one of tne PC1r;=,meters in thE' LOUT call to cause LOUT to
sw~P '?Tft.'J.J wltr, trE' 3.worn r'\uffer)oointed to Oy lJDVT8) if
the uri~t is rejected. This wi I I cause the routine to
rest~rt oroceSSln~ dt the right ~evice t~~la entry.

11. ~et t e returr. odoress frCM LntlT to st~[': ") '3nd call LOUT.

alSECIOb:~

Th~ nI~ECTORY .allotl'$ ~ user on AlJUO to I I st I l~r~I'"Y croarems
~nd fl ~es ~ccordi"nQ to the us@r IdCOd@S. The line for entry
inclUde:

10

NAMF
PlIPGE [)AT~

~~O(;/F I Lt: FLAG

PR(lT~C1ION FLAh

LF~GTH

I')Ev IA',,)O~

PECLFft.J

the i~ COdP of thp. owner. printed Only for
the first entry of ~ccount
name of the proqr~m/fi Ie
the I~st referp.ncp. nate
A/F I'''/C/RLANK ASCII F ILF.IF ILE/FILE WITH vWAI

CSAV€iJ I-'~OG/P~nG

Li/~/L/f1L~NK LJNkEST~ICTEl>/P~Or£crE()/LOCKED/
F-ikIVATE

in olOCk of oroQ/fi Ie
diSC dc~ress if Mise tl Ie or oevice desl9nator

1+ non-sh~r~ahle nevlce.
inclu~~ for .,Ies if its record length #2~b

T~p. noer~tion is as fOI lows:

1. c~eck If th~ user.s iocode is AOUu.
~0MMAND ana eXit.

If not. print PRIVILEGE

? If a st~rtinq IdCOde hes been soeclfied then dp.crement the
idcode hv one and store It in ?PTIM. otherNlse store" 1 in
?RT!M.

3. ~UI Id thp system he~~ino conslstin9 of the svste~ Id, tne
date ~n;:L the t Imp..

6-8

5.

Try to outout tne ne~dina and susoend.
r~ject~d go to 3.

If: t~e write WI!S

Trv to o~tcut the directorY hp.~dinq ana susceno.
rejected ap to ~.

~. Set LTE~P wjth the 10 saved In ?~TIM and LTEMP(1:3) to -is.

7. set the orevtous 'Nr i te .. taQ to successf:ul (0) end, entry
found flaq to not founa (0).

~. call OLO(')t:<' to finrl thp. entry '(In LT£Mt=t 0:3)·. set the
entry f:ound ~ccordinaly.

q. (;et a bu ~ f:er fr'om LouT to blJ i I d a new --I i ne of: tne d t rect or y.

10. If t~e prevtous write flag in~jc~tes the I~st write
~nS successful then o~t th~ next entry.

11. ~dve the ne~ entry.s idcod~ In ?~TI~.

I?. t~ the' idcOde IS -1 (Psuedo entry) then ter",lnate.

13.

lc:..

set bit l~ of ?kTr~ If: th~ npw id COde is not tne same as
t~e idcode of the orevious entry (now in LT~~P).

Th.S forcEls' the tdCOdP. to be IncludAd in tna data line.

'~UI Id the tine 0+ directory tnformatlon. Include the
'deoca If bit l~ of ?~TiM Is ~et. Ins~rt the entry nBme.
The DrOQr~m cooe, tne protection COdP. the length, the
device/address end tne reco",~ fenqtn.

1~. out t~e entry ndmA in the ?TE~P word~.

17. Trv to ~utcut (he line eno susoe"o.
sP.t tl"\9 prevIous write ~Ift~ to fall

If the write f~1 lad.
(1) and qO to stop 19.

1~. set oreviOus write flag to succe~sful (0) and cle~,. bit
1 5 0" ?R T I ~" •

?O. ~nve the IdCOo~ into LTE~P from ?qTIM and move the entry
to lT~~P (1:3) from the lTEMP wordS.

~l. GO to steo e.

6-9

Echo

~n~~ devjc~S. ~ost not~olv tMe tp'etYOe. heve an tndeoendent
l<evhOdrd and PI'" I ntel'".. -The PI'" Inter ooeretes u~on data from the
co~~uter only. In orcer to ~e~e it prir.t ~ typed Character, t~e

co~outer must echo baCK tne ch~r~cter. when bit 12 of ~ port's
recei ve channel o'=!)rcmE'tpr is set (4?ClJ~' to 1). tn,e port is
oper~t;nq in ful I oUP'ex ~Ode and the multlolexer wi I I echo each
Ch~r~cter it receives on ~ hit by btt basIS.

rhe FCt"fO commcnr:1 can be used to turn the f0.9ture Ion or o~f. The
COrr'l~.1I)nc neterml nes I f thE> user wants to turn ~c~o on or, Off and
sen~s to tne IO~ ~n ~Cn or ~n FCF. The form~t of the command is:

ECHr.-nf\1 for tU I I .. 1UO I PX
F{.;t"1Cl-()FI- f...,r halt Quole)t

ou~~ User

T h p I) I J f\r' ~ co r.'I '!I (,~ n a cl I I 0 it S ~ lJ S e ron A 0 I.i l) t 0 c. u ~ P Co,, ten t S 0 f s y s t em
rT1p."""rv. IOfJ mr-rT'Iory. "'liT ~nri sw~C'l tr~CKS. Th€"' for:nat of the
cO"'I"!'I·~nd IS:

f)Ut·~t->-SYS [.STIo4MTI~b .,inkl)]

0u~~-la~ 1.STA~Tl~G wn~D]

f>tJ~ -S~~ [.~n,,",Tnl[.ST"'''''TTNG "-n~nl
f)Ut-rP-ADT [.Ti-<~CKI:]

Tne r>tJMfJ routine reSidPS If"l two 'Iibre:-ry ove"l~ys. The first
ov~rt~y cont~ins the routln~ to ou~o thP system ~emory. the
routine to oUr."O tne s~~o tr~CKs. (lind uti Iity SUbroutine. The
sec~nd ~verl~v. ~hiCh nvprlays th~ first o~rt of t~e f1rst.
co"t~ins thP. routine to -turH:,. thP IriP f'~orv ~nci th~ ADTs. Tne
ser:onn cv~rl~y uses some C'+ t f:\ utility sue·routlnes .n th~ first
ov("'r' ~y so it mLIS t eno t.)f="for~ the usn rout I ne 0+ the + ir St
oVt3rl;l\y.

1ft ne lJ s el'" i s not on 11IJ v U t hpn 4= d i I •
2. r,Mec if rIUM~ IS ~n..=trJ'I1C'l. If not. ~al'.

1 • ,)e t (: r m j net H com F'Il-3 n d d psi r e C1 •
4. ,Jut the startlnq word. oortr:. or troCK;.l If o"e was

~c·ec if i ed I n vI •. ":"ut U j'" V I if. nr)t.
~.. ~rench to t ~ a~pro~rldt~ routine. rcadin~ in the seconH

C'lvpr I·ey if necess~ry.

6-10

Thp cont~nts Of mem~ry ~re I tsted. Eaen I jne cons.sts o~ a five
dlolt oct~. ~ddresS foe lOwed by etQht SIX digit octal numbers
e~cn reQresentinq c location in memory. The user swap aree
c~~nnt he" isted.

1 0 Pr I n t the rep 0 r the ad i no eon Sis tin q 0 ~ the s y s t em, d , the
nate end the time.

2. print SYSTE~ PRUCESSOR MEMORY
...

3. Gpt the start in9 ~ddr~ss (In Vi).
A. J~ the adoress j, beyond t~e sw~p area then set tne

t~rmindl aodr~ss (VA) to thp"end Ot ~emory clus
on~. GO to steo 4.

R. If the address is in tne swac area then set the startlnq
addr~ss to th~ eno of tne swaP ar~a plus one. Print
SWAP A~<E:.~ CANNOl Rt-, DUMPED RY LJSE~. set the tarmi ne I
address (VA), to thp. end Of memory p I us one. Go to steD
4.

C. If the Rddress Is I~ss than the beginning of the swap
~rea th~n set the terminal addrASS to the neginntng of
the swap area. Go to steo -.

4e G~t ~ buffer from LnUT ~nd out Id a I ine in it. During thiS

orocess V4 Is set to the +trS,t loc~tion PdSt tne last
:9ooress dUfT1C~a.

~. If the I jne is nut I then the st~rtinQ ~Odress must nave
~oualpd t~~ termin~1 a~dress (Vl-VA).
A. If the ter~~nal ~doress pOints to the end of memory Plus

one then term'n~tp..

~. I~ the tp.rmlnal ondress ootnts to the oeginning o~ the
sw~p traCK tnen ~o to Jb. ThiS WI I I orint a message
~nd rest1rt the listino aftpr the SWdD area.

~. J.)ut (V4) thP. first location past last onE:' 0,", th@ line .nto
'? TFI-'f-'.

7. ~et UP LOllT to move the startine;:: address ('11). Into ?Te:~P i~

the print is rej~cted.

~. call LOUT to outPut tne line and suscen~.

9. ~estor~ the startl~a ~odrpss (V10 ~rOM ?TE~P.

10. GO to st~o J.

, 6-11

The location from U5~ to ?PUnG is I isted for d oort.

1. Get the ~ort #:I to stRrt (V-:!). Terminate tmmediately If not
(0 <= port numoer <= 32).

?. Get the starting ad~r~ss. If It IS I~ss thdn the beqinn.nq
nf the swap nrea the" set the st",rt ina ~t"lrjress (13) to USE.

~. ~etermine ~f the oort hdS ever heen US~d.

4. If port has been use~ th~n QO to steo r.

c:,. ~U~D to thp ne~t oort ~no s~t V3 to U5t.
morp port~. Otherwis~ 00 to 3.

TerTllnate if: no

7. ,.'se v3 the start ino ~(]dress Of t e next I ine~ to determine
the olsc nlock aodress of the locetion to be ou~ped.

~. If the startin~ ad~ress is qre~t~r the ?P~Qb then qo to
stec ':).

Q. peed in tNO disc blOCKS in c~se the locations to be dumped
span ~ diSC blOCK.

10. Get f1! buffer: from LOt)T and bui Id CI I ine of tr"le /'jump in It.

1 1. -nut '-~ lJ t f) n d sus pen C'1 •

12. Go to steo 7 it the orint w~s re)~ctp'd.

13. If the print SUCCep.op.d then bu~o V3 u~ti
~v 1 v fl.

14. GO to step 7.

it is divisable

The user mav ootlonal tv scecitv d startinq address. The routine
has -no wey of determlnina the size of the !n~ ~emOry so the dumo
Is s~t to termin~te at loc~tion 1777/A. ThiS ~eans that for lOPs
with lpss t~~n 3~K redunddnt informAtion is du~oed.

1. ~rlnt the reoort ~eadin~ CO~Sjstlnc of t"e systemid, tne
date ~na the t.m~.

~. put st~rtln~ aooress In V~.

6-12

3. 5~t maximum ~OdreS5 to th~ pnd of memory plus one.
/

ASk the lOP .or eignt wordS by sending eSCI then tne
~dctress (in v:u.

5. Transfer the woro into. memory at LIBD.

b. If the starting add~ess Is ~aual to the maximum then
ter'1in4!!!te.

7. Get a bufFer ~rom 'LOUT to but Id e tine.

~. Print t~e I ine and suspend.

9. If the wr.ite succeeded tnen bump thP. starting address by UQ
to ~ to maKe it d;vlsBble by lOA.

10. Go to step 4.

ou~~_aUl (resident on th~ overlay)

Th~ system av~i lable cisc .tracKS are dumped five entries ~er
line. a track at d time. The user mey octional Iv specify a
startinQ tr~c~ number.

1 • Chec~ i~ the trdC~ #(Vl) sP~clfipd is leqa'. F'3i I I f not.

2. Print report heaotnQ consisting of tna svste~jd the d4!!!te
~nC1 the time.

3. {nitiallze the last seen diSC addr~ss (V2. V3) to
zeroes.

4. If the trdck number is ei9ht then terminate.

5. Cdlculate the trac~ lenqth. If nul I thenoumo the track
numeer (Vl) to the n~xt track ~nd QO to step 4.

6. Print the messaye I.\!)T-TPACK #n.

7. calculate the trac~ lenoth aga'n because It may h~ve

c~anoed. If zero. 00 to step 4.

~. ~eaa In the ~DT tr~ck into the user SWdC ared at LIAUS.

9. savp. a pointpr to t~p entry to croc@.ss In V~.

10. (.,et the last seen disc adt:lreSS in V".j and V3+1.

6-13

]1. Search the AUl tr~c~ for thP fjrit entry ~Ith ~ disc ~ddr~ss
oreater tnen the I~st spen diSC ~Oaress. Set V5 to point to
t~e entry if founa.

I? If ti-le searCh +-ai len. 90 to steo 10.

13. Get d buffer from LOUT to put thp outPut in.

14. process thp entry rnd cut into tne ouffpr.

l~. If this wdS the fi~th pntry on the
orlnt th~ Irne.

ine qo to steo 11 to

11-... It there are no more entrip.s (thl=> entry Just processed w~s
the I~st one on thP. track) then qO to steo to print the
fine i ~ no t nu I I • 1ft he I i np is nu I I then bU1l0

vI to tr-f' nc::nct tr~clo(Plnri '10 to stet> 4.

17. Prep~rp. the print by

1 FoO •

·1 q.

A. ~ut the traer< number, in Vl_ into \/4
~. set the Id~t seen disc arldresS, no~ OOlnted to bv V~

into V":J and ,,~

c. Put V4. V~ and v6 into ?TFMP to soecl+Y Nhere to restart
the list after the write.

o. Set LouT to move VI_ Vd and V3 into ?T£~P jf the write
f..,I Is. This Will c~use the line to be r(~oui It on
return trom Ll"lllT.

r.-all LOUT to output the line r:-nd suspenC".
wi II tr,-,nsfer "fTt.M.P to v. V'2 ar'lct V3.

('0 to step .,.

()n return LOUT

E~t.Cult.

The ~)t'E-.tl!T~ comm,'lfHl ell I ONS tnp user to Of"'t ~nC1 run n Oroora!Tl.

Thp nocr~tion of the cnmm~n~ is ~s fol lows:

1. nE"'cooe nal"lp. ano S~VI3 if PFA is reOu I r4?O for the user to .
~ccess thi~ oroor~~.

2. Search the directory for thP entry. If it is not founo
or I nt NO SUCH J.-kO(;~~~ and ex it.

3. If tnf:- entry is ~ f.i Ie then orlnt ENTI--'Y IS A FILE ~nd

pxit.
Chec~ the oroqram ~ntry to s~e iF the o~ner hdS ~FA.

not anrl itts reQuire~ ti-len print N0 SUCH E~T~Y dnd
exit.

If

~. (+ the proqram owner is the user t~p.n co t~ steo b. Other­
wise Chec~ if the crooram is orlvet~. Print ~o SUCM ENT~Y

6-14

if. it i, s.
6. Checw to see It there is enouqh roo~ +or the ~rogram.' If

It is too bi~ print, PROGRA~ TOO LARGE and exit.
1. I]Pdate the last re~e,..ence dat~ o~ the prog,..am's directory

e~try and .wrlte the directory track out to disc.
A. ~ead In the user swap erea to PBUFF.
9. Re~d tn the program from disc. If th~ read fat's print

UN~8LF TO RETRIEVE FROM LIBRARY and ex~t.
,10. Set the ~rotectton ~jts In the ?NA~f words~ Set bit 15 of

the first wore if the proqram was locked. olt 15 'of the
second if private and bit 15 of the third .'f orotected.

11.'· Set the proqram owner wo,..o (?P~IO) in the user's TTY table.
set bit IS if the owner h~S rep ano Is a group libr~rlan.

12. cal I SEMIC to initialize comol Ie variaoles before compl ling
(see the GET command for a more complete descriPtion).

13. Turn off the ~nterruot system and set the HELLO flag In the
use,..'s flB9 woro and Ch~nqe his status to RUN.

14. s~t the user UP to run ~or two secondS and set the tt~e flag
to tim~ this user.

l~. ~umo to t~e compl Ie routi~e.

Thp FILE:: command serves two purposes. 'First. it is used to
aSSOCiate a file narne (C"nd crp.~te a dlrect~ entry)'wlth either
~ soeciflC or ~ class of "On-Sh~,..eab'e devices. Second, it Is
userl to ellocate space on the disc (~nd create ~ directory ent,..y)
for a disc ASCII fi Ie.

1. ~~g.n buildin~ a directory entry by first extract,nq the
oroeosed name of t~p entry.

? ~~tt.n~ the user'S ?CLOC word to -1 wi' I cause suspension of
the user if the Comm~"d was C~I led programmatically. Th;s
is aone to Keep us~rs whO are proqramm~tlcally USing the
fi Ie command from tylno uP t~e system.

3. ~xtr~ct tne specifie~ devico deslon~tor dnd the proposed
r e cor d s j Z ~ • S ~ lot 0' s t eo b for AS C I, I diS C f I I e s be for e
oettinq the thlra o~ramet~r.

4. Search t~e device table ~or the device. Demano th~t the
~evice is aval table on the sy~t~m ena that the user has the
capabi I ity to acc~ss it.

~e Insert the new airectory entry in the orooer directory traCk
(cal I InQ SUDersave If the tra~K is ful I) and UPdate the
nI"':Er:. IDEe. ana FauicMent tardes on oiSC. t::xit routine.

h. For ~SCII diSC files. the next carameter is the fi Ie lenoth

6-15

(in blockS). Extract it and t~e possi~le record size (set
to 63 iF not pre~ent) ~nd val i~ate th~se t~o parameters.

7. Check th~t there is sufficient account scace and enOugh
system diSC space to accomooate the new fj Ie. Set disc
adoress to appropri~te spot on the oisC and insert new
directory entry. We don·t set read/write access oits yet
becduse we don.t ~~nt u$er to have access before file is
in it i ~ Ii zeo.

A. UPdate tne dccount.s IDT entry ~nd remove the neceSS.I!IIry
sc~ce frOM the AUT.

4. lIsino thp. user space, fi I I ~OO blocKS worth of sP~ce with
FOF marks (user's h~ve ~een Known to plav triCKS to reBo loT
info from d bCloly Crp.atpd fi Ie).

lQ. If mor~ th~n 400 blOCkS in the f. Ie, suspend with rest~rt at
~isr. initi~1 IZdtion overl~y (it I ives in the MWA overlay).
ot ... erwise. Qive th~ ~.ser read/write access ov re<9dinq
dlrnctory Odck Into ~rMorV 5nd then termin~te.

6-16

EILES

The FILES rout' ne i Sused by BASIC· at run t. me' t·o, !:'rocess' Pft.ES'­
stat~ments in a use~'s program. Th~ ~unction of the FILES
routinp is to translate the fi Ie names in the user's progr~m
into fll~ control bloCKS for use durinq execution.

Durtn~ operetton of tne FILES routlne. a temoorary buffer is used
as ~ table to stor~ intermeolate data. Nine words Of the buffer
are used for e~Ch fi Ie. The ooeratlon Is as fol lows:

1. Transl~te Characters in F"ILES statements Into the buffer
t~ble. FILES stat~ments are oolnted to bY a four word teble
in the user swap area which is cointed to bY OFILT. FILeT =
-5+ # of FILES statements. Tharp. ~ay be UP to 4 such state­
~ents. Fi lenames are extenden to six ~naracters. I~

necessary. and those whiCh are soecified to be sYstem library
are marked by setttno Hit 15 of their first word to 1. Those
w~iCh ~re specified to be group Ilbrdry +iles are marked by
settln~ bit 7 of their first word to i. A alone as a
file namp is ~ place holder. The buffp.r taole for the
p.ntry Is zeroed. POSSible errors founa In thts step are:

~. File nam~ of 0 or > 0 ch~racters

n. More than Ib files reauestod

2. Pprform directory search for ~aCh specitled ~ile. OIRWO
POI~ts to the diSC ~ddress o~ thP. directory traCK in core
so t~at OLOQK ooesn't have to read ~nd ~rtte tne directory
~cr eeCh fl Ie. ~ave the fi le's diSC codress, ~i Ie lenQtn,
~na 'OQ'C~I recora size in it~ po~tlon of the buffer t~ble.

The rearl-only bit is set if the filp. is a I iorary file and
t~e user is not the owner. An error occurs If the file Is
nonextstent or protected. UPdate the last reference date
woro in the directory entry for thiS file.

3. V~I ioate access to dn~ al locate fl I~ if type ASCII.

4. Test to m~Ke surp. th~t there Is sufficient room in the user
Area for tne file control blOCKS and bu~fers.

s. V~I Idate user's OYnd~~C acc~ss to the fi Ie (use FUSS teole).

~. write out FUSS taele with type of access qr~nted.

7. Rut Id fi Ip. control olOCKS (see section on como; latton ~or

format) •

6-17

TMe GET command al lows d user to Qet ~ croQram from tMe library.

CO"'H~A""'O F(JkMAT

GET-NAt.4E
r,fT-iiNAMf.

GE T _r·JAt-ft. D. 10

FULL ACCESS Tn USEP'S OWN ACCOUNT
SYST~M LI8RA~Y PROGPAM RtFERENC~O. PRQG MUST

Sf lJNR OJ.l ~~o
Gk0U~ LI~PARY PROGRAM wEF~~ENC~U. PROG MUST

bE-. UtJ~ ()P fJRn
~~~UIRtS nwN~p HAVE ~FA ANO uSER MUST HAVE 

STATIC ACCFSS To nWN~R'S ACCOUNT 

1. ~eCOd~ n~me ~no not~ If proqr~m ~I I I nF~n ~~A. Le~ve 1D 
~no ne~e in LT~MP 0-1. 

?. 'SPeir CM f or en try. Pr In t N() SUCH PR0(j~ AM i f no t found. 

6. If the entry aoes not nave P~A but's reculreo print NO SUCH 
PkOGRAM ~no eXit. 

~. If the user owns oroaram aoto ~. 

~. If t~e oroqram is crivdtp orlnt NO ~UCM ~~06~~M and eXit. 

7. If the oroQram is ~OC~~d orlnt EXECUTE ONLY and exit. 

~. Check if the oroar;.,,,, will fit ,nto the user ::tr~e. ThiS IS 
"~C~SSdry In ces~ ~ oroar~m th~t was s~v~~ under ~n old 
verSion of the Syst~m c~n no 10nQer fit With t~e current 
v~rSlc,,'. If it IS too hla orint PRI)(~~~M 100 LA~GE t=lnn Poxit. 

9. UPotl!!te thP. If.tst refprf'r"ICP nate of th~ C'irectory entry C!lnd 
wrltr. ~~CK to else. 

10. ~cad in SN~OOQC'c b~SP. pnQe. 

11 •. Peed in tne oroQr~~ ~eOlnnlnn nt the st~rtl~q dd~rp.ss 
SPp.Clfied In t~e ~lrectorY entry. If tne disc transfer 
ft=ll Is then orint lINMMLF Tn J:.It:.TRIEVE F,.<;nM LIHI-(A~V t3nd eXit. 

12. ~ove tho n~me of t~~ OroorR~ from LTE~~+! to LTEMP+J Into 
the ?NAM~ Norcs in the user's TTy tno.e entry. 

13. set bit 15 of the first wore of ?~AM~ If t~e oro~ram is 
tocken. the s~con~ wOrd If orivate ana tne tnlrd word 
if orotecteo. 



)4. Put o~ner's 10. from LTEMP+O, Into ?PR~D in the user's TTY 
table. 

15. C~, I SEMJC which.wl I I ~or unco~Di led prOQrams. c'e~r QFLAG. 
SV~T~. res~t ~bPTR to the e~d of the new DrOgram. c'ea~ 
the compile bit in the user's TTY taole. set main and set 
~PRO&. For a compl 'ed ~r09ram ·SF.MIC will set PBPTR. and 
FILTS to the ena o~ the ~rogr~m -6. SE~IC then moves the 
~trst wo~d o~ the six a~ter P8PTR to SYMT8; the second, 
the ~.Ie statement counte~. to FILCT; the next 4 words. 
~ile statement pOlnters~ Into FLSTS+O to FLSTS+3. Then the 
compi ~e bit In the use~'s TTY ta~le is set, ~AIN is set and 
SiJJ.<OG. 

l~. AloCk the ClOCK and initialize common IF any, From P~UFF to 
SP~OG, with -1'$. 

17. Fxit. 

. 6-19 



t:lEL.LO 

Tne H~LLO command IS ~sed to 109 a user on t~e system. Its 
oper~tion is e~ +01 lows: 

1. I~ the current l~ is O. there Is no user to 100 o~~. so gO 
step~. otherwise. tel I the 110 processor (service routine 
NUC) that a new user' called. This wi II force the user to 
be dtsconnected i~ he does not successfully log' on. 

2. Read the lOT. l~ there is no user to be lo~ged o~+, go to 
step~. 1~ user has ~OUT=~ fl Ie then remove it. 

3. Decrement the numcer o~ active ports by one. 

4. Find the Old user's IUT entry and UPdate hiS total time 
useo. ~da an entry to LOGbW to be pr.inted on. the system 
console. Set tne user's lu word to o. 

5. Transl~te the ne~ IU COde and se~rch for It in the IUT. If 
not found. print dn error message end terminate. compere 
the password typed to the c.orrect one. and fat I if they 
disagree. 

6. CheCk it a termtnal type was input. If not. assume terminal 
type #0 and go to Step I. otherWise cheCK i~ terminal 
type is In th~ kanQe 0 thrOugh d. I~ not print an error 
messeQe. 

7. Tell I/O processor (service routine STP) whiCh terminal is 
connected to the port. CheCK that the time used to date 
IS I&SS then the time al lowed. 

H. CheCk I~ user nas anytime left. Fa; I tt none left. 

9. Initial tze CofLu ott in user's tty table ?FLA~ word to O. 

10 Ada a LO~ON entry to LOGG~ and set the starting time into 
the· user's TTY tdble. Also Insert the 10 COde. clear 
name. scratch the proqram. Telt the 1/0 processor Of 
the success+ul Logon (service rOutine ULO). 

11. Increment tne num~er of active ports by one. 

l~. ~rlnt banner message If presen~. 
reaa from diSC. 

Ignore t+ it can't be read 

13. search the airectory for a program named H~LLO In the 
Ilbrt!!r'y ot user AOOU. If not founa. or .t jt is a file. 
or it It Will not ."It in core. or if It cannot be 'read 
from aisc. print READY and ter~inate. 

6-20 



14. ~ut name Into ?N~M~+O to 1NAME+~ In user's TTY table. Set 
bit 1~ of first word loCked, s~cond If private and th'rd 
if protected. 

15. Set ?PRID wlth program o~ner's ID. 
also set bit 15. 

If owner has FeB tnen 

16. :Read In the f.xea user area and appena HELLO. Call SEMIC. 
which sets program po'nte~s as In S~VE. C~ange tn& user's 
status to ~UN, set tne chain fla9. Issue a LF, and transfer 
to 8ASIC. 

eU&GE Command 

Tne ~UR~~ command deletes a dtr,ectorv entry (proQram, file, dtsc 
ASCII fi te, or non-shareable device) and returns any space 
occuPie~ by that ent.ty to the system's AUT. lhe Overlay can be 
invokea by a commana, a ~ASIC statement, or some of Its 
sUbroutines may oe inVOked a~rectly from other overlays. 

1. ,If cal led programm~ttcal Iy, skip this step as BASIC has 
~Ireeay saved the entry name and owner's Id In LTEMP (0:3). 
otherwise, extract entry name and s~ve in LT£MPS. 

2. For,ce the user WhO pro9rammatlcal Iy invokes the command to 
be susp~naea at comMana completion by setting ?CLOC to -1. 
This Keeps users doing a I~t of seQuential PURGEs from 
tying UP the system. 

3. If cal led programmatically and tf it passes necessary 
criteria. at Iowa group master to purge a group member's 
locked bASIC formatted ~.'e. 

4. ~ino specifieo alrectory entry. For +i les ensure thet the 
entry is not In use. 

5. oelete entry .rom directory tracw. Terminate routine i~ 
no space IS to ee returned to system. 

b. Retwrn space to ~DT and uPda~e owner's luT to re~lect lost 
space. ~pdate memory resident tables on d~SC (Dl~EC, IDEe 
and ~auipment lable). Exit'routine. 

E-21 



The LENGTH command prints the length of the user's program. in 
both ~oros and diSC recoros. tn~ total disc sp~ce cu~rently used 
In the account ana tne tot~1 disc space permitted e • This command 
may oe cal leo programmtical Iy by uslnQ the SYST~M statement. The 
ooeration .S as fol lo~s. 

1. keao In program so we can access sWBPpacie base page 
variables. 

~. The length of dn uncompi leo proqram in woros is ?PROG-S~ROG. 
?~H06 points to the last word If the program +1 and S~kOG 
the be~inning. for a com~i led program the length in words 
is SYMTb-SPHOb, ~YMTb IS the start of the symbol table whiCh 
Just fol lOWS the prOQra~. The lengtn in recordS Is the 
Integer part o. the sum of the lenqtn In wordS plus 255 
dlvloed bY ~~o. 

3. convert the len~th in wordS and recordS Into ASCII and put 
Into output buft~r. 

4. ~edo in the luT entry of the user to get the total space 
US~d (reCOrdS) and the total al lo~ed. convert these to 
A~Cl1 ana also ~ut into the output buffer. 

~. 1+ L£NGTh was not cal le~ programmatica"y then go to. step 
b. otherWise move thp. output buffer to flLBr so the SYSTEM 
overla~ may be brOUQnt tn. Exit to the I~nguage processor 
(~YSCU). 

6. ~rlnt outPut outter and terminate~ 

The LILk~kY routine ~rints a I ist of al I proqrams and ft les in 
the publ ic I ibrary. Its operation Is iaentical to that of 
.CATALO~ except tnatAouO IS used tor directory searChes Instead 
of the user's io. ana orotected programs are not I isteo. 

G&OU~ 

The GWOu~ routine prl·nts·a I ist of· al I prOQrams and f. les In the 
user's 9roup I tbrary (tne liDr~ry of the .ocooe ~ndin~ in Ou 
whicn hes the same letter ~no first n~mber as th~ user). Its 
oper~tion .s Ident.c~1 to thet of Ll~RA~Y pxcept that the Qroup 
I Ibr~r.an's 'dco~e IS used for dtrectory searches instead of 

6-22 



AQOO. 

The Ll~T end PUNCH commands are cal led by t~e user to LIST or 
PUNCH t~e program currently in core on th~ user's term'nal~ The 
In-core executor sets LTO=O (LIST) or LTO=-l (~UNCH). 

, , 

1. If the prOgram IS null~ 'terminate after printing a 
I.ne-feed. 

2. Evaluate tha oeglnning end ending I ina numbers and determine 
whether t~e pagination option was sp~ctfied. 

3. A oummy, file control block Is establishea ~or the output 
device. If *OU1=* was seecifled, the block is inltiellzed 
from the Pdrameter ?OH~C in t~e user teletype table. other­
wise it ts set uP for the user terMinal. In either case. a 
bu.fer is a. located and the SPACQ bit .s set In the user 
teletype tacle to .noleate that ,the buffer is at located. 

4. The pag'n~tor flag .s cleared .f the output device Is ASCII. 
If tne commano is PUNCH, a. check is meae thet tne output 
device is either the user terminal or a paper tape punch. 

5. out~ut the program name fot towed by an emoty I ine. If In 
the PU~CM commana output feed frames for leader. 

6. It at end of progrdm, gO to step 12. otherWise get the 
line number ana place in .LNU~. If thiS line is pest the 
end tine number, qo to step l~. If a new Page is reQuired 
For the pagination option, outout the reQuired number of 
'ine feedS. Flag +trst Pos'tion operator. 

7. If at ana of statement. print the current line and gO to 
step o. otherWise qo to step ~. 

A. Extr~ct next operator. If nul I cO to step~. If tne fIrst 
cosatton operator flag Is set then outPut tne multtCharecter 
operator (InclUding tne rest of the line If REM. FILES, or 
I~AbE) end gO to steo 7. I~ the operator Is single euote 
co to step 11. if t~e operator IS a single charecter. out­
put tne Character and to to step 9. otherwise output a 
multicharacter operator and gO to step ~. 

9. ~xtract next operand. If the constant flag IS set. go to 
step 10. If nul I go to step 1. If program is compl led 
retrjeve actua~ name from symbol table. If the operand Is 
an.extenaed string output the letter. digit (I~ present), 
~nd $ and gO to step 7. If the operand is a user defined 

6-23 



function output FN fol lo~ed cy the letter an~ gO to step 7. 
otherwise out~ut tne letter followea by a dlQit (if present) 
or a ~ (if d simple strinq variable). 60 to step 7. 

10. If tne operena IS a numerical constant, output the number 
ana go to step 7. If a pre-oefined function print the name 
~nd gO to ste~ 7. If parameter symbol orjnt it and gO to 
step 7 •. The renlgininq case is that of ~ progr'am integer. 
If ~Ithln e Ul~ or COM stetement output the inteqer and 
~nd QO to step 7. otherwise output the integer statement 
reference. 1+ ct the end of the statement print the ',ne 
dne 90 to b. it not at ena of stctement but within a 
0SIN~ go to step d. otherWISe we're in a computed ~OTO 
so enllt a comn,o ana ~eep printinQ ,::.:rOgrdm integers until 
stctement ena IS founa then gO to step ~. 

11. List ~ string const~nt. orefixeo ana su.flxe~ by single 
Quotes. bo to step 1. 

12. outPut trailing feed frermes if "'UNCH, write t:.OF if *ouT=oCIo 
to ~SCII elsc tl Ie, ae-~llocate buffer, reset the S~ACQ 
hit. output a line-feed tIInc·return. 

L.080 

The LO"'u comm~ne 0 I lows the us'er to input 6 ,",rO(~rdm from an 
ASC 1.1 t I Ie. ' 

1. Cledr Cerrlcq~ return flaq 0+ LCH~~. 

~. ~IOcK tne ClOCK so ~4IN can be cleareo and the user area 
written out to eISC. 

3. oecooe +i~en~me ono recore 1+ ~FA is required. 

4. SearCh tor the +1 Ie. 
eXit. 

1+ not founa orint NO SUCH E:.J\iTkY and 

s. If J-I .... A i s re~l.£ireCl but t'; Ie ownp.r does not hdve the CC9P­
~oll Ity, print ~U ACC~~S ALLOWED ona &xlt. 

~. Cdt I ~tChK tocneCk If user has statjc access to fi Ie 
oy..n~r's ~ccount. If not. tnen cr;r,t NO ",CCt:.SS ALLOWf"U 
anc exit. 

7. Call AFIL~ to +Ind If the +1 Ie is ASCII. tne file not bUSy 
ano the user has the cac~bi I Ity to access it. If not. print 
~n error mess~gs ~nn eXit. Set ?O~~C. ?OUT~, and 1N~EC 
With ~ppropridte v~lues if the cheCkS succeeo. Also UPdate 
lest reference dna Chanae date of the fl Ie ane write out 

6-24 



directory trac~. 

a. Reed the user program back Into "core "and set MAIN. 

9. Initlal tze syntax variables and decamp, Ie pro9ram tf 
compiled. 

10. Check If there Is enough space left In the user area ~or a 
d~v'ce buffer (=record length), and a Feb (11 wOrds). 
~rint OUT OF ~TO~AG~ ana exit If not. 

11. Turn off the interrupt system and Check the yser's status 
word. If %Ab~l t~en exit to scheduler (SCHL). 

12. set t~e unaole to acort bit and set the tape made cltl~ 
the user's ?~LAb word. 

13. ~eenable Interrupt system and unbloCK the clock. 

14. Move the user ~rogram Into higher core so th~ FeB and ~he 
oCVlce buffer may oe placed at peU~F. 

15. set IN~IL point to the FeB and cal I STreh to fi I I the FCB. 

16. ~~t a record tram LINRD. If EOF detected 90 to step 21. If 
the recoro does not start with a digit then susoend by set­
tin9 ?PLE~ to 4 end restart to step 11, reQueue and enter 
the sc~eduler at 5CHl". 

17. It the abort attempted bit is set then QO to step 21. 

IP. Jump to syntax to process the record. 

19. on return, sus~end i~ the dscli fl Ie was not a disc ft Ie. 
Restort at step 10. 

20. If the d*SC recordS in core have been exhausted then 
suspend restarting et step 10. otnerwise get a record and 
qO to step lb. 

The fol lowing steps describes the clean UP necess~ry before 
exiting: 

21. Sat I~FIL to'zero ~nd remove the Feb ana device record 
b~ffer from the user swap area. 

22. AdjUst PBPT~. 

23. Clear the unable to abort and the a~ort attempted bits in 
tne users tla9 ~oro. 

6-25 



24. t\I I I tne eSC ill nput dey Ice. 

2~. Clear the tdPe Oidde oit. 

26. 1~ t~e tace error·oit was set then gO to steo ~7 to schedule 
the t~~e maoe cl~anup routine. other~,se terminate. 

The fol lowing step sChedules the tape mooe clean-up routine. 

27. ~IOCk the ClOCK. 

28. Set the restart 6doreS5 to th~ heglnnlnQ of the tape mOde 
clean-up rout.n~. 

?y: set t~e the user or i or I ty to 4. 

30. S~t the status to tnpe mOde cle~nup unless the user status 
is olreaoy ~ul~~. 

40. ueQueue the user ane reoueue at the oottom of the Queue. 

50. ~nt~r sCheouler ~t 5Chl. 

The M~S~~b~ commana IS. used to send B meSSdQe from ~ user console 
to the. system console. The message is ~Ideeo in a Queue* ana is 
ulttMd~.'Y output to the system console by the scneauler. The 
routin~ operetes fl~ tOI lows: 

1 • CheCk if message Queue is ful I. If so. tail. 

2. Put a Ck-LF dnO tne ASCII representdtion ot the user's port 
numoer In the meSsdoe bufter. 

3. lrC:lnsfer the messene +rom t~e user's teletype buffer in tt-\e 
1/0 urocessor to the message buffer one Character at a time 
(lgnorln9 char~cter5 <4U(d) and >111(d) except oel I 1(d». 
~top when C~ encountered or after I~ char~cter$ transferren. 

4. IncreMent messc~e counter ana set pointer to next meS56<;1e 
I")uff~r. 

5. Terf'!":lnete. 

*Th15 Is a Circul6r Queue maoe UP of five ~~ MO~d butfers. 
~elevant variaole Incluae, MS~CT, a positive count of +ul I 
buffers, MSQPJ. whicn contain the address ot tn~ next aV~1 lacle 
butter. ana MSuPl, a pointer to tne butter beinq orOCAssed. 

6-26 



The NAM~ command allows ~ user to ~ssign s name to his program. 
The crogram name .s placed in his teletype table. Tne oceratlon 
is ~s +01 lows. 

1. Get e cheracter. I~ it is acerriage return tnan change It 
"into e blank. 

2. If tn~ character Is not a blank. ,"etter or digit then zero 
name area. whi Ie oreserving the protection bits, and take 
the t Ilegel ~crmat ex'~ CILFER). 

3. Save tne character .n the NAME wordS 0+ the user's TTY 
table, ana Keep protection bits. 

4. 1+ less than b Characters go to step 1. 

s. 1+ first word is bla~k then zero the ~ord except for the 
protect'on olts that are set and get another Input 
c~aracter. If the next ch6racter isa carriage return then 
exit. otherWIse output" the warning mess~ge "ONLY 
6 CMARACTEH5 AC~~~r~D" be~ore exiting. 

c~~aI~ command 

The C~EA1~ command al locates SPdce on the dISC for a ~ASIC 
formattea fi Ie. gives It ,d na~e. and creates ~ directory entry 
to COlnt to it. The space on the dISC jSlnitj~1 ,zed with EOF 
marks to Keep clever users from being able to read any 'eft over 
tables tnat previously occupied memory. The overlay can be 
inVOKed by elthor a system command or by en executing BASIC 
prOQrn~. In the 'dttbr case BASIC sets UP the parameters In ~ 
alrectory temelate (L1EMPO •• ll) anc sets SVSFL. 

1. I~ called proyr~mmatlc~1 Iy, continue at step a. other.tse, 
extract proposea fl Ie name, +1 Ie length. and record length 
(opttonal psrdmeter). Save in directory temclate (LT~MPO •• 
11). 

2. Set ?CLOC wore in TTY table to -1 so, i+ c~1 led program­
m~tlcal Iy. user WI I I oe suspendea at end 0+ routine. This 
~eeps users from inordinately tyln~ u~ the system. 

3. If name is ouallfiea, cemano that 1) we were cal led 
programmatically, 2) user .s a qrouD master, j) user nas 
FC~ capabi I Ity, and ~) potential owner io has PFA. 

6-27 



......... 
0\... . 

~ ." 

MSQPI,-; / 
~. 

! 
i , 

" 

E" '" P T 't '~ 

'. 

-.------,_. 
EMPTY 



4. verity sufficient space exists In account and System. Set 
disc address 0+ space to be removed from ~DT. 

5. Insert new directory entry In the proper directory track 
(ca I I i n9 s~per save i ~ necesscery). UPdate· owner' s· lOT antr y 
and remove space from AOT. Note that tnls order IS 
important In the event of ettner being unable to Insert 
dir~ctory entry or unable to update lOT entrv. In these 
cases, no space has been removed from the AOT vet., 

&. Initial .ze f.le with EOF marks. If more tnan 40 recordS, 
suspend user with restart a~ diSC file tnltidll~ation .(MWA 
overlay reSident). When done, read bacK directory and 
give user reaa/write access. 

7. Note that Ol~t::.c.., lDEe, and EQuipment Table are uPdl!lted on 
the aisc as necessary. 

u~e~SIt:tlCI 

The UN~£STRICl commana al lows a user to unrestrict a program or 
file. ~n unrestricted program allows any user having statiC 
access to the ownerts account to bET, EX~ or CHAIN to It. An 
unrestr icted file al" ows any user nav U"tq stat iC access to ,the 
owner's account to read/-Nr,'te on It (SUbject to dynamic 
restrtctioris). The uperation Is as follOWS. 

1. CheCk for legal name. outPut an error message i~ not. 
SearCh directory for program/fite. output an error message 
if not found. 

3. Clear bIts 0:3 In the status word ana set bit 0, the 
unrestrict bit. in the directory entry. 

4. write the directory back out on disc and terminate. 

~~OIECI 

ThP. PROT~CT command allows a user to protect a program or ille. 
A protected ~i Ie allows any user ~avinQ statiC access to t~e 
~I'e to read it. A ~rotected program al lows any user With static 
access'to the ownerts account to ~XECUT~. CHAIN to or GET t~e 
proorRm but not I'st. punCh or save tt. The operation of PROTECT 
IS the Sdme as UNR~~TRICT but 

6-29 



3. C~ear bits 0-3 In the status word and set oit 1. the pro­
tect bit, in the dtrectory entry. 

L.OCts 

The LO~K command allows a user to loCk a fjfe ~r pr~gram. ~ny 
user ~avi~g static access to the owner's f Ibrary may ExECUTE 
or CHA IN to the- beg i nn l·nQ of the pr ogr am. A locked program fr om 
the owner's program owner's account may CH~lN to other than the 
beg*nntn~ Of the locked program. A~Y user having static access 
of t he owner's I i br dr y has r ead/wr I te capab 1,1 it y INh I f e execut i ng 
a lOCked program from tne own.r's account. The operation of the 
LOCK command is the S6me as the UN~EST~ICT except: 

3. Clear bits U-3 in the status word and set Olt ~. the LOCK 
bit. in the directory entry. 

The PRIVATE commano allows a user to place a fl Ie or program 
in the private state. A fj Ie or prOQram In the pr,vate st~te 
may not be accesec oy anyone but the owner. The operation of 
~~IVAT~ is the same 0+ UNRlSTRICT except. 

3. Clear bits 0-3 of the STA1US wor~ and set Cit 3 the orivate 
bit. in the air·ector.,. entry. 

The SW~ command allows a user to Place d fi Ie in the SWA stete. 
A file in the SWA state restricts write access to the file t~ 

at most one user. 

The ooeratlon IS as +01 lows: 

1. bet ana checK for legal name specified. 
error message one exit. 

If not. output an 

2. Search the directory for the directory entr.,.~ output an. 
error message if not found or If a arogram and exit. 

3. Clear MW~ bit in the entry If set. write the diectory back 
out to diSC ano t~rmlnate. 

6-30 



The MWA command allows a user to place a fire ih the 
multjp'e-~r~te access. state. T~is permits simultaneous access, 
to tne .i'e (su~ject to oynamlc restrictions) bY any users whO 
hes static access to the owner's library. only users with the 
MWA capabi.ity may execute the MwA command. Tne operation i. 
as foe lows: 

1. Check and save the parameter I ts~ of tne command. If 
bad output a message and exit. 

2. Cheek If tne user has MWA. I. not. output a message and 
eXit. 

3. search dIrectory ~or the entry. output an error message If 
not found. a program, or an asci I fi Ie; exit. 

4. Set MWA bit in entry, ~rite beck out to diSC and terminate. 

A fite ~ay be made M~~ programttcal Iy by the use of tne SYSTEM 
statement to execute the MWA command. 

1 •. Check and save the parameter' ist of tne command. If bad 
s~t return coce to fa" and exit. 

2. Note if the fl Ie to oe MWAed has bean Qua'lfled 
(tt lename.1D) or not. 

3. Check if the file owner has ~WA. If not. set return COde to 
fai I ana exit. 

4. search for the file. I. the entrY turns out to be an ASCII 
fl Ie or a pro~rcm tnen set tne return COde to fall and extt. 

s. Set the MWA bIt In the files dlr~ctory entry. 

6. If +1 lename was not Qual ,fied then gti to 7. otnerwlse cneCk 
if file Is locKea. file owner has PFA, tne file owner is in 
the group of the proqra~ running and the oroqram owner's Id 
IS a group master. print an error message and term~nate If 
~ny 0+ tne Chec~s fat lec. 

7. wrIte out d.ectory traCk ana exit. 

6-31 



The p~use statement al lo~s ~n executing program to suspend for ~ 

period of time from 1 to 3c7b7 seconds. The user,s suspended 
with the %~~U~ status unti I the time eXPires or tne console 
~wakens him with tne ~wAK~ command. 

1. If user typeo in ~AUSE as a command tnen terminate. 

2. NeQc1!Ite the time specl'fled by the user and put into 'lkTI",,£. 

3. Cledr tne user's unacle to ~bort b.t so the user mav brea~ 

unless the he had atSabled It (P~FLG=l). 

4. Set the user's st~tus to pause anc suspend with tne restart 
aocress set to ~~u~S-I. When restartea after the time has 
elaspeo or awakened by the console, the program enters. with 
(b)=O Indicating success, the system statement clean UP 

routine. 

The function of ~~N~~bER is to aSSlq~ a new set of sequence 
nUMbers to e user pro~r~m. The user may specify the sequence 
num~p.r of the first statement and the increment between 
stetement~. If uns~ecif'ed. these ~re set to 10. He may also 
s pe c i f y t he fir s t s tat me n t to be r en u moer e a and t ne I ~ s t 
statement ,to be renumbered. If unspeci + led tnase are set to the 
f'irst statement ot, the program ana the last statement of the 
proQram respectively. 

There are actual Iy t~v sets Of numbers that must oe mOdified. 
one set is the sequence numoers the~selves. eaCh of WhiCh 
occupIes the first ~ord of its statement. The other is the set 
of references, WhiCh are labels in CONV~kT, bO rOt bOSUH. 
R£STOR~. P~INT USINb~ MAT ~RINl USING, ~nd I~ statements. Each 
of tn~se also OCCU~I~S one word. Fo~ programs In compt led mOd •• 
they ~re pointers to the statement they reference; in decompi led 
mode they ~re tne ~ctual statement number. 

The.prlm~ry teChnique used Is· to Ch~nge· ~I I the references to 
~bsolute pointers (it in decom,pi led mOde). then to Change all the 
seouence numbers, dna then (if in decomp. led mOde) to chanQe tne 
references to the.new st~tement numbers. ~eferences to 
nonexistent I~cels ar~ left unchenqed. 



8ecause the process ot changing al I the reierences to absolute 
pOlnters ~an become quite time consuming (due to the se~rch that 
must be performed for eaCh reference). a table is built In 
advance alviatng the QrOQram into ~c parts. eacn conta'ining the 
same number of s~atements. For large programs with many 
references, this eitectivelv euts the time cown by a factor of 
32. 

The sUbr6u~i~e ~EN~K is usee to scan for references. It 
me'ntains two polnters~ RENP and RENQ. Whenever It Is called, 
it moves REN~ to the next reference. and sets HENQ to point at 
the statement fol lo~'nQ the one that ~EN~ Is pointing at. It 
ta~es advantage of the fact that any references within a 
statement are, alWdVS the last wore or wordS of t~e statement, 
except In the case of ~RINT USING and MAT PWINT USING, in which 
case It takes advantage of the iaet tnat there .S only one 
statement number reterenee. AI' PRINT and MAT PRINT statements 
are scanned unti I either a U~ING is found or it Is determined 
that no uSING IS in the statement. If a USINb IS found. a check 
8S made tor tne statement reterence. Before calling ~ENSK for 

·the ftrst time. REN~ Is set to pOint at the first statement to be 
renumhered. R£NP is set ~ENQ-l. 

Tne ooeratton of ~~NUMB~~ is ~s fol lows: 

1 •• IF nu" progrdm. terminate immediatelv. otherwise, read In 
user program. 

2. Perform statement length Check on al I statements in program. 

3. Trcnsl.ate and cnec~ parameters M and N. Set to default 
values if not ~resent. 

4. Transl~te parameters P and Q. Set R£~tiA = First statement 
to be.renumoeree, ~£NLA to last statement to be renumbered. 

5. Set kE~LA to point to the I~st seQuence q ,RENLA. Also set 
~~NHA to pOint to the first seeuence ~ ~ ~ENBA. 

b. Insure that tnere ~i I I be no seQuence number overl~p at 
either end Ot the portion Of the program to be renumbered 
ana that the new seQuence numoers wi I I not exceed 9~~9. 

1. If program IS In compi led mOde. 90 to Steo 10. otherwise, 
set UP a table In ~~SeC whcih alvides the program Into 3~ 
parts. The result is that for each I ~ro~ 0 to 31: 

6-33 



E~S~C(l] = seQuence number of first statement in pert I, 
EkSEC(I+32l = aosotute address of thBt statement 

If there are 3~K + L stc!tements (0 < L. S 31) in the program. 
ERS£C [11 IS the seQuence number Of statement: 

(K + 1)*1 + 1, If I < L 
K*I + L + 1, If I~ L. K ~O 
undefined If 1 ~ L, K=O 

Set R~NQ=SPRO~, kENP=k~NY-1. (SPROG 
points to the first st~tement) .• 

8. Cal I kE~SK to find the next stc!tement reference. If there 
are none left. QO to step 10. Find the largest I for which 
£HSt~ (ll , (k~N~). If there is none. the statement 
referenced coes not exist. so go to step~. otherwise. test 
a" statements from (ERSEC [1 + J2] to either (E~SEC (I + 
33]) or PBPTR, cepending upon whether 1 < Jl or I = 31. If 
found. set (~tN~) to the locc!~'on of the statement referred 
to. and repeat this steo. utherwise. gO to step ~ •. ' 

9. set (kENP) = (ktNP) + lUuuOu(o) anc go baCK to step 7. 

10. Ch~nge the seauence numbers for all statements to De 
changed. accoralng to the kENM. R£NN. kENtlA and ~ENLA 
values. If com~"ed mOde. terminate. otherwIse. set RE~Q = 
S~~OG and ~~N~=ktNQ-). 

11. cat' keNS~ to find the next statement reference. If none 
left. terminate. If (~fNP) < 0, the reference was 
unde~lned. so set (R£N~). = (kEN~)-lUU~OO(d). c!nd reoeat 
this step. 

a~eOBI User console 

The RE~OkT command allows c! user on AUUO to list user lOT 
Information. ~c!Ch user 10 IS listed along with the time. 
dtsc useo. its c~pebi It~ies. ~nd Its device oestQn~tors. The 
routine LOUT ts usea tor I 'sting to the terminal. This routine 
wll I suspend the user ~fter eech line. 

6-34 



The operation of the comm~nd is as follows: 

1. Check. If the user is on AOOO. 
CO~MAND ana exit. 

If not, print PRIVILEGED 

2~ Check if the user specified an 10 to start with. If so •. 
save it In the uSer's TTY table 1RTIM word otherwise save 
a nu II. 

3. Print.the f.irst·two lines of. the heading. 

4. Get the 10 coce +rom ?RTIM and searcn the 10 tracks for It. 
If the 10 coce is oreater than any on the svstem then 
term*nate. If the ID COde is not tnere. then Choose the 
next one. 

s. ~uj 10 the line in FIL~F. tor tne Iu consisting of the 
iocode its time useQ, its diSC space used, tts c~pab"lties 
ana its device eesiqnators. 

6. Check if the ID .s the last one on.the system. If so. set 
the return ~tom a successful wrlta to LEND otherwise set 
to step 4. 

7. Try to outPut tne line. If unsuccessful tnen go to~. If 
successful exit to LLENO *f there are no more IDs. otherwise 
bum~ the 10 in 1HTIM tnen gO to step 4. 

The SAV~ routine is cal ted ~v the user to save a program 
(uncomPI led from S~kOb to PBPTR) In library. 

1. Test for the existence of a program name ~nd a non-nul' 
program. ~rint ~O P~OGRAM NAME or NO PkOGRAM if not and 
e)C.it. 

2. ~eae in user program from swac area. 

3. 1+ ~rogram is compj led then decomp, Ie it. AI locate common 
If any • 

. 4. write the program out to the swap area. 

5. Allocatee to CSAVE for numbering compstlo' litv. See CSAVE. 

6. co~pute tne sPoce reqUired to save the program In negative 
woreS and positive recorcs. Put the negative word lengtn 
into the clrectory entry temPlate (at LT~M~ to LTEMP+ll) 
leneth wore. Save the recora length +or the AOT searcn 

6-35 



later • . 
7. Get user IUr·entry. ChecK the user cap~bi I tttes and set the 

PFA and FC~ bIts .In the directory entry template 
acCordingly. Also the set private bit. 

8. If there is not enOuQh s~~ce left in tne ·user's ~ccount then 
print LIBRARY S~ACE FuLL and exit. 

~. Search the AUT for the space. In the process any AUTs 
encountered that could not be reBa oecause of diSC errors 
Bre oeleted trom tne system (length = 0 ana the disc 
eoarcss = 0). 1+ the se~rch fa' Is print SYSTEM OVERLOAD 
and exit. 

10. Save the ADT else address, the position on track of th. 
entry, ana the SPace remaining after the program space has 
been al locateo. Put diSC Bddress of the space into the 
directory entry template eisC address word. 

11. Read the progrcm b~Ck in from the swap cree. 

12. For C~AVE only. 

13. write the program out" (from SPROG to PbPT~) to aisc. 
If unsuccessfu,1 Oecause of. elsc error the go to steD ~O. 

14. Move na~e f.rom 11y table (/NAME) to the directory entry 
te~plate (LT~MP l:J). stripping protection bits if present. 

l~. See CSAVE. 

16. Search for a cupl icate entry. If touna. print DuPLICAT~ 
E.~Tk,( and eXit. 

17 If the directory tr~c~ that the new entry Is to 00 on is 
f.u I I· then Cc31 I lne SlJt-JEkSA\ta:. rout i ne to reo I 's'tr i bute the 
n~rectory. ~v~~kSAVE will perform step Id dnd proceed to 
step l~. 1+ ~U~~~SAVE f~' Is then print SYST~M OVERLOAD and 
eXit. 

lR ..... , II In the stdrt of program pointer. the last reference 
'date end the last Ch~nge date in the alrectory entry tem­
Dlate end insert Into ·the d'rectory. 

19. ~eed the user's IDT entry ana UPd~te the diSC space usee. 

20. I. tne ADl tracK lenqtn is zero or the AUT COUld not be 
reaa from diSC then go to steD ~l. UPdate the AOT end write 
It out again. 

21. 1. the program ~as successfully wrItten to tne 

6-36 



library tnen UPdate the system tables (~QT. Ul~~C. IDEe) 
on diSC. 

22~ 'If the writer of t~e pr09rem to the us'er's I ibrary had 
~~lled then. print UNSUCCESSFUL. TRY AGAIN. 

23. Termtnate. 

sueEBsa~E 

The &U~E~SAV£ routine Is called by the SAVE. CSAvE. COpy~ BESTOW, 
F'ILE and CREATE routInes when they want to ma~e a dtrectory entry 
on a track that IS already full. SUPE~SAV~ assumes that the 
fol lowing ~oros are set properly: 

(LT~MP:LT£MP+3) = first 4 woras of entry. 
(Ll~~P+4) = pointer to DIReC entry for appropriate directory 

track 
(LTE~P+~) = core address of entry WhiCh is to precede the 

new entry 
(LTEMP+b:LTEMP+7) = oisc address of entry 
(LTEMP+8) = length of entry 
(LT~M~+lO) = start of program potner/record size 

Note that (LT~M~+4) and (LTEM~+5) are set correctly by 
ULOOK. 

SU~~RSAVE attempts to redistr'but~ the directory trac~s so that 
they wi I I be as eQual In lenqth as Possible. Tnis wi., generally 
prevent it from being cal ted very ~reQuently. The operation 'S 
as follows: 

1. Scan through OI~cC and determine tne total length of at I 
cHrectory traCKS, and add It!. for the new entry. If all 
directory trdc~S ~re ~ul I. exit through fat lure location. 

2. Oiviae total alrectory length bv numcer of available disc 
traCkS to determine tneir ne'w IndiVIdual lengthS. Insert 
these in the table at (OEFNN+l:OEFNN+dU) as negative. 

3. NOW SQueeze ai' the directory entries to the last most of 
the avai lable tracks. ThiS 'S done by reading the treckS In 
reverse oraer ana writing dld4 wordS on eaCh traCk until we 
run out of directory e~tries. The +01 lowlnq variables are 
used in this section: 

SU~Kl 

5UPL 1 

pOInts to the Olk~C entrY for trac~ being read 
( i nit I c I I y tJ I REL) 
~oints to the Ul~~C entry for traCK being written 
(Initially lJlkEL) 

6-37 



SuP~~ = -# of wordS ~n core 

4. 1+ (# 0+ ~ordS on trock SUPK1-SU~Kd) > dl~4, go to ~. 
otherwise upoate SUPK2 end reed this trac~ to the core 
buffer et locdtion LUL~N + ~~PK~ (S~PK~ being negative). 
If SUPK2 • -bl&4, go to ti. otherwise set tne length into 
the SUPLI Ulk~Ll ~ntry eno write the dlb4· word buffer to 
track ~UPL1. Set SUPK2=O ~no gO to 7. 

s. ~et SU~ES = (#Of words on tr~Ck SUPKl-SPUK2-dld4)/~5b. Th~t 
IS the numoer of extr~ blOCKS on tne tracK to be read. 
set ~~P~X = ~u~tS ~ c~b. This is the numoer of extra wordS. 
Then read tt"le lost ('It of woros on tracK ~0rJr<1-5UPl:.X) wordS 
fr om track SutJt<.l to I oca t i on (LUL~I·~ + ~UPt< ~ .- " Of wor d s 
on trac~ ~U~Kl + ~UPEX) and UPdate 5U~Kc. 

~. write 81d4 woros to track SUPLl from location LULEN-dld4 ano 
set t~e length in the SUPLl DIREC entry. Move tne leftover 
-81~4-SU~Kc woras to tt"le end of tne bu+ter. resetting SU~K~. 
lhen reaa the SU~EX wores left on track ~0P~1 to location 
LUL~N+SUPK2-S~~~X. Set SU~K~=SUP~~-~U~~x. 

7 • UP 0 ate 5 UP L 1 t 0 JJ 0 i n t tot hen ext t r a c ~ tow r ~ t e • 

8. upoate SU~Kl to point to the next track to read. If we've 
finished al I traCKS. to to~. otherwise qo to 4. 

·9. It ~uPK2 = ~. 90 to l~. Ott"lerwlse write out the -SUPK2 
WordS to tracK S~~Ll ana.set the lenqtn in tne SVPLl UIHEC· 
entr y. 

10. lero o~t the len~tt"ls in thp ~I~EC table o~ al I those trackS 
tt"lBt no longer hQve anything written on them. 

11. NO~ redistribute the nirectory t~acKs. The oastc toea of 
the olgorltt"lm IS to +1 I I the swap area with as mucn o~ the 
directory ~n~ormdtion as we can. readln~ from the beQinnlng. 
and then to ~rite out es much es we can. ~.ways ma~tnQ sure 
that when writln~ we don't overlay any portion tt"lat hasn't 
been reao yet. The ~ol lOWing v~riables are used: 

S~~~1 pCints to the nlk~C en~ry for tracK bejng read 
( I ni t j a I I y LJ! k t. CO) 

SUf-'LJ. pOI·nts to the DI~EC entry ~or tracK oeing written 
(Inatal'y Ulkt.CU) 

~U~K~ = # 0+ ~oros read so +ar from tracK SJPKl 
(initially v) 

S~~L~ = # of woras written so ~ar on tracK SUPLI 
(initially 0) 

~~~ = • of wordS in core 
(in~tially U)

SU~p pOints to U~FNN entrY. tel I ing how many are to be

6-38

wr*tt~n on ~U~Ll.
SU~T& = 1 if we have already Inserteo the new entry.

12. If SUPL2=-(SU~P). we have completely wrItten tracK SUPLl so
cheCk for SUPLl = DIREL. If tt Is, ~e've _rltten al I the
tracks, so go to stec 1~. Otherwise, aovance SUPLl to the
next otrectory track advance SUPP. set SUPL2 = O. end repeet
this step. If SUPL2=(SUPP) 90 to step 13.

13. It -sup ~. lO~3~, '\tIe h~ve read ~s muCh as· we can. so gO to
step 15. If ::)uPKl = DIREU. there is nothing ·Ieft to read,
so gO to step 1~. If SUPK~ = • Of wordS on trac~ 5UPK1,
we've re~d the entire track, so advance SU~Kl to the next
traCk, set SU~~2 = 0, and repeet this step. otherwise.
compute the number of wores we can read. If there Is no
rOom to read the balance of the traCk, we will. otherwtse
we wj I I rea~ the maximum nU~ber of ful I blOCkS POssible •.
If thiS is zero .. go to step 15. If It .is not zero. read
from oloc~ SU~K~/~~b into core loc~tion LIBUS +SUP. Add the _
number of wOres read to SUP and to SUPK2.

14. If SUPTG = O. determine if we can insert the new entry. To
d~ thiS we first determine where t~e even entry bOundary
occurs in the'core buffer since we may have read only part
0+ "an entry (l~ does not divide ~5b evenly). If the last
entry in the buffer is greater than the entry we 8re
inserting, the entry Qoes on this traCk. If this '5 not
the case, go b~CK to step 13. otherwise, set SUPTG to 1,
maKe a l~-woro hOle, tnsert the new entry, set SUP = SUP +
12, end go baCK to step lJ.

l~. ~c~te_sectigO. ~et SUP~ = O. ThiS is the number of wordS
wr ~ t ten.

l~. Com~ute number of woros we can w~'te on traCK SUPL1. First
set A = - number of words left to wr1te on the track. If
sU~L1 = SUPK1, we hdven't finiShing reaoing everything from
traCK SuPL1, so if SU~L~ - A > SUPK2 Change A to SUPLc­
SuPK~' whiCh is the number of wordS we can write without
destroying any unread dire.ctory tnformation. If
SU~-SUPS<-A, we oon't ~ave as mUCh in core as we are
cd~able of writing so set A = - ((SU~-~UP) divide
2~6) x 2S6), an exact number of blOCkS.

17. If A = O. we can.t write anything. so if SUPS=O Slide the
remain SUP-Su~~ woros en core UP to locatlon'LI~US, set
SUPS = 0 dn~ ~UP = Su~-SU~S. Then go bac~ to step 12.

If A#O. write -A wordS to block SU~L~ dlvjde ~~o of track
Su~Ll. If 5UPLd = 0, set the first 4 words 'of the SUPLl

6-39

nlR~C entry to ~he first 4 wOrdS written. Set SUPL2 to
SUPL~-A. SUP~ to SUPS-~. ~nd ~o bbCk to step lb.

l~. set the new d'recto~y lengths into ulR~C and gO b~ck to the
cal I inQ program.

6-40

Tnis overlay prints errors embedded in the proqram after tne user
nas entered a program under taoe mode of after a LOAD. The
embedded errors ~re '3 word psuedO statements: statement number,
length (=3) and error number.

Tnis routine is cal lea in place of any command typed If the tape
error flag in the user.s flag word Is set. It is also celled
directly, if the error statement count (ERRCT) is non-zero. at
the end 0+ LOAD.

The ooeratton of th.s rOl.,lttne is as f=ollows:

1. Read in'the user proqram from the disc.

2. If on entry the error statement count (ERRCT) is zero then
qo to 13. Thas is the case if the user .aborted the print­
out of the errors.

3. striP out embeaded error statements bY scanning the program
tor error statements and mo~tnQ eacn One found to the e~d of
the program as t~o word entries (the length wordS ere
deleted). Oec~em&nt the error statement count by one
-For eaCh one moved •. --.too the, scan When the count ret!'tches
zero.

4. put into ?T~MP a pOinter to the -First two-word error entry
to print.

s. write out to diSC the program ,and errors to uPdate the disc
COPy Of the user's swap area.

o. uet the statement number of the error.

7. Read in the appropriate error message blOCk into the swap
area starting at LIBUS.

A. Move the desirea error message to Llf4US and append "IN LINEn
ana the I ine number.

9. ~rint the error messaqe. The reader should note that in
the print routine (LOuT) "the user has output wait status for
a brief perioa of time. ,Th6s al lows the user to break this,
an otherWise unbreakable routine.

10. If the pr i nt fal I s (reject return from LouT), read t n the
program. qet the pointer to the error to print from ?TEMP
ano go to 6.

11. kead In the program again.

6-41

12. Bump the pOinter (in ?TEMP) to the next error entry to
print. If there are no more error entries then gO to 13.
otherwise go to 7.

13. set m~'n; set the user's status to syntax; reset P~PTR to
the end of the program; clear the t~pe error flag ~nd exit·
to H£RRS+33.*

*RERRS+33 prints the mess~ge LAST INPUT IGNORED. RETYPE IT and
sets the user.s status to Idle.

Il~E

The TIMt command pr'nts the user's 10. port numoer. time useo
during the session. the total time used to date and the total
time permitted. The TIME command Is callable from a proqram
from a program via the SYSTEM statement.

The oper-ation Of TIM~ Is as fol lows:

1. Get user's 10 ana port number and compute time used in.the
current session from the TTY table. Put these values into
output buffer.

2. He~d in the lOT to get total time usea (excluding the
current seLsion) and the total time permi·ited.

3. compute the total time used and put it Into the output
buffer along with the total time permitted.

4. Print it on the terminal or e~.t to SVSCU with the output
huffer If It was e programmatic cal I.

8bH~OU~Ct.

The ANNOUNCE Is useo ey the system operator to send a message to
a port or at I the ports.

The operatton of the command is as follows:

1. Oeterm i ne if the mes sat;:le is to qO to one. por t ,or e I I por t s.
Fai I if the tlALL" was not typed or the port number IS
<0 or >31.

2. Save the number of ports and the'+irst port to outPut the
message to.

6-42

3. Put a Ck. ~F. LF into FIL~F. Appeno the message end
~nother CR, LF, LF.

4. ~loCk the ClOCk •
.

5. Get the stetus of the report to outPut. If user Is to
run a type III program and execution had not yet begun
(?RSTR=LIBRA) then we must abort the program because
the buffer whiCh now contains t~e parameter 'I~t for the
program will be used to hold the message. ~Irst clear
the port.s sta~us. deaueue the por~ and clear the ~orts
OUT=P bit If set and then's'end "STOP" to the termina' to
ebort the executing of the command.

6. If announce was to one port go to 7. otherwise loop In
step 5 unti I all ports are cheCked.

7. Send the message to the port(s).

8. UnblOCk the clOCk.

9. Check the status o~ t~e port(s) that had the message out~ut
to it. If a port.s status Is Inout wait then $end an Input
walt command (Iwl) to the lOP for that po~t.

ASS1Gt:I Commano

The ASSIuN command allows the sYstem operator to esslgn a non­
shareable device for exclusive eccess to al I users, one user, no
users. or to the R~~ ~actlity. Word 3 of the devlce's device
table entry contains thiS Information: -1. no USer; 0. al I users
(default); 1. ~~E only; <idcode>. only that ldcode.

1. £xtract SPecific device deslqnator.

2. Sear~h deVice table for corresPonding entry.

3. Determine whether assignment Is to all. one user. none. or
R..JE.

4. set word 3 of oevlce table entry.

5. If assignment was to none. find if a user Is currently In
control. If so, set user's PACT bit and set status to
abor t (~AB~T). th is wi I I f.orce the user off the dev ice •

. 6-43

a~a~E Comm~nd

The AWAKE command is responsible ~or waKing UP a suspended user
when the use~ h~s suspended ~or either an ATTENTION NEEDED
(device error condition 3) or beceuse o~ a programm~tlc execut.on
04 the ~AUSE command.

1. Determine whether comm~nd '5 AWAKE-<port number> or AWAKE­
<specl~lc device desIQn~tor>. If the latter, .continue at 4.

2. Extract and val id~te port number; use port number to
construct ~ pointer to user's p~rt of TTV tabSe.

3. If user Is sus~ended (status = %PAUS) ana it's because of a
PAuS~ comm~nd (sion o~ 1RTIM set) then set his PACT bit
whiCh will automatically wake him uP. Exit routine.

4. Extract specific aevice deSignator and ~ind device in dev~ce
table. If the device Is buSy, the user· IS suspended With
?PAuS status, ~nd if this oevlce was the one that c~used
suspenSion, then we can awake him.

s. If device IS not the mag tape we Change his status to
output wait (?O~Tw) ~nd send start timea retr~es (STR) to
the lOP. The IO~ wi II retry the device unti I it 's ready at
whiCh point it w.I. wake UP the user.

6. If tne device is the m~g tape all we need to do is to set
hiS ~ACT bit. When he is re-sc~eduleo. he wi I.
~utomatic~1 Iy retry the operation.

The BANNER. commano accepts a message entered bY tne system
operator saves It on the disc In the I~st half o~ blOCk 0 on the
system diSC. The ~ormat o~ the message is ~ word with a byte
count fol lowed by th~t m~ny bytes of the message. If the message
Is null, the count word wil I be zero. ThiS message, If any, IS
displayed to users when they log on (see H~LLO comm~nd).

1. .Read in blOCK 0 Of diSC O.

2. Initialize pOinters to u~e byte fil ling routfnes.

3. Extract messaoe from console. If non-null, termlnete it
with CR/LF.

6-44

4. Set the count word to. the number cf bytes in the messaQe.
write out olOCK O. and terminate.

eESIQ~ Command

The BESTOW comm~nd tranSfers ownerShtD of librar~ entr .• ~s from
one 8ccount to. another.· optionally, we al low either all entrl ••
or a single entry. All entries may be transferr~d only when no
users are ,~gged on the system. only protected or unrestricted
en~r'es w~fCh dO .not ~upi Icate names in the target account are
betstowed. The methoa is to scan for ~n entry In the dlrectorv.
move it to the LTEMPS with a new account (adjUsting MWA, PFA, and
FCP bits if necessary). a~lete the old entry, and Insert it where
it now belongs. A running count Of space deleted from source
acco~nt and ·space adaed to target account is kept to UDdate the
lOT when the commend completes.

1. Extract o'did, newid. and optional single entry.

2. Qemand no users 10Qed on if entire library to be bestowed.

3. Extract newidts capabilities, ~ccount space used. ~nd
account space al lowed and seve them away.

4. Find entry ana determine feasibt I ity of moving it.

5. save and delete Old entry.

6. Insert entry for newid.

7. LOOP back to step 4 untl I no ~ore entries leFt in O.did.

A. UPdate Oldid ona newtd lOT entries for space used.

9. output any notifications of thinQs not aone becuase of
protection, no space, duplicate names. or no entries
bestowed. Note t~at only one of these messages is output
t+ more than one condition .s met.

6BE8~ Command

The BREAK command overrides a user's diSacled dREAK capability.
Tnp.re are two bits 0+ interest in tne ~Iag (?FLAG) word of the
user's TTY table: PbfLG and CBFL6. PBFL6 is set when a user
programmatically disables 8~EAK. The receive driver enables
a 6R£AK attempt i~ ~bFLG <> 1 or CBFLG <> O. ThUS, this Command

6-45

can set t~FLG whjch wt I I al low BREA~ regardless of the state o~
PBFLC,.

1. Extract port number, validate It. and ensure user Is
logged on.

2. set C8FLG (which wi II override P8FLG, if set), clear
~bTRY (so crevlous ~~EAK attemcts w' II not cause trouble)
ana exit.

Ct:l8~GEIU

The CHANGEID command allows the system operator to mOdify the
parameters In an ID entry. The password, time al lowed. disc
scace al lowed and capabl I itles may be mOdified. The mOdiflcatoon
of the M~A. PFA and F'CP may reQuire 10's dtrectory entries to
also be modified.

1. Get the 10 track the specified 10 shoula be on. If no other
parameters specified print ILLEGAL FORMAT and exit.

2. Search the 10 traCK for the entry.
NO SUCH NO 10 ana exit.

It not found print

3. If a new passwora was specified then cleer the password area
in the 10 entry and'cut the new one in its place.

4. MOdify the disc and time I'mit If specified.

s. save the initia' states of ~WA, PFA, and FCP.

b. Moaify the lOts capabt I Ity If any were specified.

7. write out the ~Pdated ID entry out to disc.

8. If tne IC had MW~ but now doesn't or if t~e user's PFA or
FC~ capabll tty had changed. the lU's airectory entries
must be mOdlfiea, otherw,ise gO to step 10.

9. Read I,n the IU'S directory entries and mOdifY the MWA. PFA
and FeB bjts'ln the status word approPriately.

10. Terminate.

6-46

The Copy command allows the system operator to COpy a
program/file frOm one Id to another.

The operation of this command .s as follows.

I'. Get an~ save Oldld and Qldname. Put the 10 and name tnto
LTEMP 0:3 ,and ~Iso tnto a temporary bUffer.

2. searCh the directory for the oldname. If It does not exist
print NO SUCHl:.~TRY and exit.

3. Move the old remaining part of the Old directory entry. The
ne~ directory template.

4. If the entry .S larger th~n 200 blockS and there are users
logged on then prInt USERS LOGGED ON and exit. If the
entry Is LOCKEO or PRIVATE then crlnt ~RO~RIETARY ITEM NOT
COPIES and exit.

s. 'If the entry is a file and the file has neither the read
nor ~r'te capabi lity then print PRIOPIETARV ITEM NOT
COPIED. The f.'e was In the pocess of beIng created.

6. Get the new 10 and new name and put into LTEMP 0-3.

7. coPy the protection bits from the Old directory entry to the
name wordS of the directory template.

8.' In the status ~ord of the directory entry temp.ate clear the
MwA bit if set it the new id does not have thiS capability.
set or clear the PFA and FCP bits according to the new ids
capab,' I j ties.

9. Check if there is enOugh room in the newid1s account for the
new entry. If not print LIBRARY SPACE FULL and exit.

10. If the entry to be copied is non-shareable device go to
step 12.

11. Search the ADTs for space for the new entry. Print SYSTEM
OVERLOAD and exit if space COUld not be found for it. Save
pOinter to ADT entry and put the disc address into the new
directory entry template.

12. search the directory trackS for a dupl icate entry.
is one print uU~LICATE ENT~V and exit.

If the,..e

13. COPy if necessary the entry into the sp~ce found in 40
blOCK chunks. ~ead the chunk first into the user area then

.6-4.7

write to the new space.

14. Determine Where In the directory the new directory entry
Should go. Cal I SUPERSAVE 1+ necessary. SUPERS AVE wi' I
per form the next s tee and go to lb •.

15. Set the last re+erence and last change date ~n the template.
Insert the entry Into tne directory, upaate the DIREC and
wr.te the directory track back to disc.

16. If new space was not allocated (entry copied was a non­
sn~reable device) then go to lb.

17. UPdate the space used In the new ideS lOT entry and uPdate
tne ADT.·

18. Upaate the system tables on disc ana terminate.

The HIB£RNATE command Is Identical to the SLEEP command exceet
for the following additions/changes:

o.
9.

or

set the current time Into HOATE.
Set A = -1 (hibernate) and jumc to the cume.
I oeaer) •

QE~lCE System Console

(20000B of the

The DEVICl commend lists information of all deVices on the
system. Tne d~vice oeslqnator. select COde (tn octal). the
record size assignment (al I. a specific ID. IIR..J£1t or "NONE"). and
user (6n 10 and port Or tlR..JE" or blank) are printed for each
device"

T~e routine operates as follows:

1.· Print first two lines of headtnQ.

2. Get tne number of device tables entries. 'If none then
term i nate.

6-48

3. Save pOinter t~ the head of the device tab'e.

4. Decode and put into the output buffer (T35~F) the device
designator, the aevice select code the maximum record
size, the assignment and the user (if the device is
busy).

5. Print.

6. 8~mp ·the device table pointer. If there are no entrtes left
then term t nate t otMarw i sa gO to 4 .•.

C18EClaa~ System consOle

The OIR~CTORY command I ist on the svstem tonsol~, bv 10,
directory tnformation. This information includes tne.IO, printed
only with the first entry of an account, the entry name,
the last reference oate. the 'engtn. the device/address and tne
record length. The user mav oPtionally specify a starting 10.

The operatton o~ tMe command is as fol lows:

1. Determine if a starting 10 had been specified. If so, save
It in 10 otherWise save 1 in 10.

2. Decrement the lU by one and save in T~5BF+35.

3. print the first Meading line and suspend.

4. Move the second headtng 'ine into T3~BF and print and
suspend.

5. Retrieve the 10 save in T~~~F+~S put into LTEMP. Set
LTEMP(1:3) To 171777H~ Thts wi' I cause the "st to start
Bt the 10 specI+ied or the first one beyond if tne 10 does
not exist.

6. Search the directory to fina the first entry beyond the One
Sought. save the 10 of thiS entrY In T3~dF+35.

7. If the 10 is -1 (psuedO entry) then terminate.

8. If the 10 code was different from the crevious (SOUght) 10
tnen InclUde the 10 In the line we are bui Iding.

9. continue bui ldlng the I tne by adding tne entry name, the
tast reference oate. the 16ngth, the device/address ~na
the record length.

.6-49

10. ~rent ~na suspeno.

11. Retrieve the 10 COde from T35BF+35 and the n~me Of the entry
from right byte Of T35AF+4 to left byte of T3S+7.

12. Put this into LTeMP(O:3). This is the new entry sought.

13. Goto 6.

ou~e command (System Ooerator)

The DUMP command entered by the system operator either enables
the use of AOOO's DUMP command or disaoles it. The routine sets
the wordS DUMP1 and OUMP2 (wnlCh reside currently In tne library
SUbroutines area) to the time It wi II be ~hen the DUMP capObl1 Ity
wi" expire. The ~OOO DUMP command demandS that the current time
be less than thiS value.

1. Extract, convert to binary, and valiaete that time
specified is between 0 and bO.

2. Add this time to the current time of day and save in
DUM~~. Exit the routine.

ClSCO~~ECI Command

The DISCONNECT commana logs off the specified users from the
system. It is done by merely chenQln~ the user status to
disconnect (90DI5C); this effectively semu'lates the Situation
when a user h~S·phYSiCa"y disconnected from the system.

1. Determine Whether command is DISCON~ECT-ALL or DISCONN£CT­
(port number). Set LTE~P+l to minus number Of ports to be
disconnectea ana LTEM~+J to point to tne first port.s TTY
table.

2. LoopinQ on the counter (LTEMP+l). set eacn u'ser's stetus
to disconnect ana set the user's PACT bit to force the
scheduler to notice th~ disconnect.

6-50'

~lLLIQ

The KILLIO command "Is used to remove ID COdes from the system.
KILLID fIrst deletes the 10 from the 10 traCk. Then the
directory Is scaoned backwards to delete entrles belonging to the
10. A ~atch table is constructed at LIBUS + 8192 to aid the
return of space to the ADT. The patch table holds three word
entries: a two word diSC address and the length. The routine
RTAOT ~hiCh resides on disc "is called to Interogate the catch
table and return the space to the ACT.

The operatton of KILLID IS as f0110ws.

1. If users are lOgged on the system then print USERS LOGGED
on and exit.

2. If the 10 speclfled .s AOOO then print AOOO NOT ALLOWED end
exit.

3. SearCh the lOT for the 10." If not founa print NO SUCH 10
and extt.

4. Delete the lOT entry from the 10 track and UPdate the"IOT
and its IDEC entry.

5. Scan the directory backwards for an entry which belongs to
the 10 to be kl"ed. .

6. Put an entry in the patch table for the program or file.

7. If the patCh table cannot hold'another entry then go to
9.

A. Get the next entry on the directory track. If the next
oirectorv entry belongs to the 10 to be kit led then go to 6.
If the next entry does not then gO to 10.

~. col lapse the airectory trac~. write It out, UPdate the OIREC
and return the s~ace In the patCh table to tne ADT.

10. GO to the next directory traCk ~nd go to 5.

11. col lapse the directory traCk, write It out, UPdate the
DIR£C and return tne space In the patCh taole to the ADT.

12. UPdate the diSC COPy of the DIREC. IDEe and EQT and
terminate.

6-51

The MLOCK command allows the system operator to remove diSC
bloCks from general usaoe either because they are bad or beceu~e
the-Instal 'at~on wishes to preserve some oloCkS for other
purposes (one use could be a disc with both Access and RTE or DOS
resident). MLOCK is one o~ those ~ew comm~ndS where any
additional documentation would be redundant. See I istlng for
any adaltfonal detai Is. Also see data structures ~or the ~ormat
of the locked olockS table.

~U~L.OC~ command

The ~UNLOCK commanc frees disc blocks lOCked by the MlOCK
commanc. See listing ~or additional detai Is.

~E~lO

The NEwID routine acas an entry to the lOT. lhe new lOT entry is
built in NEwBF be~ore insertinq into the lOT.

1. Scen the parameter list for the 10 ~nd read in the 10 trac~
it Should go on.

2. Get the passwora and put it into the 10 entry template.

3. Get the disc space e I loweo and t I me a I lowed and ·Put - Into
template. I~ d L~ follows then QO to step ~.

4. scan the parameter I ist for c~pabi I ities end device deSigna­
tors. Cel I the attribute search routine (SAT) to get the bit
position for eaCh parameter. Set these bits in the capabl'­
itv word o~ the template.

5. Put the new 10 into the template.

6. If the 10 tracK
the 10 traCkS.

is ~u' I then cal I SUPER~~w to redistribute
(,0 to step '7.

7. search the 10 traCk for a dupl icate entry. If not ~ound
then Insert the entry. UPdate the IOEc·~ntrv for the traCk
~nd wrete the trac~ back to disc.

8. Terminate.

6-52

This Is a routine In theNEWID overlay that .s used to evenly
redistribute the Ius On the 10 trac~s. SU~ERNEW operates

,very simIlarly t.o SUPE.~SAVE except that it does not but Id a
tab'e to save ~he new length o~ eech track or Insert the new 10
entry into the lOT. '

The routine first ca'culate~ the size ,each t~ack should be when
redistributed If t"e new 10 entry had alreadY b~en Inse~ted. 'A
fat. extt Is ta~en if there Is no room for the new entry. Next
t'ne IDS ar.e pac~ed Into the "ast most 10 trackS., Tnen the trecks.
starting with the .Irst one .s filled to the reQuired length.
The track the new entry I s to gO on Is fill eo 'IIi tn one less 'entry
and the first word of the track's IDEe is set to the new 10.
this Is so the FIoT routine wil I find this traCK. to Insert the
new 10. ~hen SUPEk~£~ returns to st.P 7 of NEWID.

et::iO~ES Command

The PHONES command Informs the lOP of the number of secondS that
a user As allowed to have for log on attempts before we hang UP

the Phone. Tne IO~ starts this ttmln~ when a port Initially
brtngS UP data set ready. The time Is initially set to 120
secondS at lOP generation. It can be set to 0 to effectively
prohtblt access to the system (tne'IOP ooes tnis by sett'ng ,a
nomtnal time of .2 secondS which Is too Short to al low anyone to
loa 01"\).

1. 'e:xtract. convert to .blnary. a.nd val idate t~e time value.

2. Send tnis value to th~ lOP and exit the routine.

eueG~ Command (System operator)

The PURG~ command aeletes ~ny programs, fi les, or non-sh~reab'e
device deSignators that nave not been referenced on or after tne
aate specified. The metnod is to SC~I"\ tne alrectory for
Qualified entries. aeleting them as theY are found. As the
entries are found~ ~e bui Id a table of them immediately beYOnd
the directory track in memory. ~henever the tabl. fi I Is. we
temporar; Iy suspend processing the directory to ca. I in an
overlay whicn returns the space occupied by purged entries to the
lOT and the ADT.

6-53

1. Iriterpret ~nd val id~te the date oiven.

2. Reject command It any ~I les ~re in use by scanning the TTY
t~bles ~or any OUT= ~i les and ~or any FUSS table entries.

3. U~date the I~st re~erence date of the H~LLO progam (.~ any)
so It does not ols~ppear.

4. Scan al I directory tracKs on system. deleting entries when
they Qualify. AOd entry to petch taole.

5. When patch tabl e is ful I. remove space f,rom lOT and ADT.

6. when last directory trc!ck 'has t:-.een scanned. rlemove'space
from lOT and AUT i. any entries In patch taole (see user's
PU~G~ comm~nd for a oescrlption of ~TluT and ~TAUT). RTIOT/
RT~DT ~Ijl exit O~CK to the system if last cal I.

~~eQ~1 System Console

The ~EPO~T commeno prints lOT .n.ormation on the system console.
For eaCh lOT entry, the user 10. the time useo. the disc space
used. Its c~P~bi Iities. and its device des.gnc!tors. Note that
the time used does not include time consumed of active users.

1. If an 10 was speci~led get It and save it In REPLN. If
not save 1 In k~~LN.

2. Print the first headinq.1 ine ~nd suspenc.

3. Retrieve tMe lU In ~E~LN ~no ~ind the ID or the ~irst ID
passed It. It the Iu Is beYOnd the last one on the system
then print the seCond I ina o~ the heeding dnd termtn~te.
otherwise set ~~~LN = -number of wordS from the 10 entry t~
the end o~ the tracK and set PEPpT to pOint to the -length
of the 10 trac~ In tMe IDEe table.

4. Print the second I ine o~ the heading end suspend.

5. Determine from k£~LN ana R~PPT the olOCk on the disc the ID
entry resides.

6. keaa in the IU entry and set REPID t·o point to it In memory.

7. ~uild the report I ine in TJ~HF.

8. Hump ~~PLN by 12. If the result is zero (the entry just
processed ~as the I~st one on the ID traCK) go to Y.
otherwise print the line. Suspend and go to ~.

6-54

9. If there are no more 10 trackS then prant the line and
terminate.

10. Reset R~PPT to po~nt to the ID track's-Iength and REPLN
to the -length of the ne~ track. Pr.nt the 'ine. suspend
ana go to 5.

6-55

~ESEI

The RES~T command mOdi~ies the time used to a date o~ a 'user's
lOT entry. It operates as ~ol'ows:

1. set 10 = ~EST = O.

2. If tne I dcode = "ALL" QO to 3. otherw i se ,set 10 eQUa I to the
specified 10 cooe and read tne proper IDT trac~.

3. If no time speCIfied, go to 4. otherwise set REST e~ual to
spec I +. ed t i'me.

4. I~ lu = O. go to 5. otherwise search for tne speci~ied
idcode. Fail If not found. If found. set its time ent,ry
to REST, write the lOT traCk back and ter~inate.

5. Set the time entry ~or etl the idcodes on tnlS tr~ck to
R~ST end write It back to else.

6. Move to the next lOT track. If al t are finished, terminate.
otherwise reao the lOT traCk and go to ~.

~CSIEe

The ~05TEk routine prints a I Istlnq of the idcodes ,of all ec~lve
users •. These are Obtained from the 110 woro In the 3~ TTY
TA~LeS. The absence Of a user .s indicated by tne word being
zero.

t:hJE Commano

The R~E command extracts ~n k~E messaqe ·from th. conSole buf~~r
and notifies the IO~ that a message Is pending. At some later
point in time, the 10~ is supposed to send the system a wake R~E
UP (wRU) command. lhis sets a ~laQ whiCh the SCheduler- interro­
gates and, If a message Is pending, wit I seno tne message to the
lOP. Tne RJE interconnect kit comm~nd serves t~o- purposes.
within thiS command it only noti~ies the ·IOP that a message is
pending; we do not bother to check for acceptance since we know
that It is always rejected the first time (thiS is' Incredibly bad
prOgramming end snoula be Changed,at the ~irst opportunity). In
the SCheduler we actually cheCK for accePtance and. if accepted.
send the W~E message.

6-56

1. ~eJect commana if prev~ous mess~qe is stj" pending.

2. Extract message and·Qleee Into R~E command bu~~er (currently
resid.nt ~ol lowing the ~lbrar~ ov.rlay area).

3. Save meSsage length In first word Of bu~+er.

4. Nof6ty lOP that RJE command Is pending. we do not need to
ptCk UP .the reply code'since ~t wit t sit on the 'nter­
conneet k.t without harm. The STC. C done by the lOP serves
as our acknowleagement that the command w~s accepted.

SLEEe

The SLEEP command is used for system Shutdown.
follows:

It operates 8S

1. Remove at t users ~rom the Queue and make sure they can.t
~et baCk by:

a. Clearing eaCh user's 1FLAG word except for the DFCHK
bit. In hiS TTV table.

b. Setting at I status wordS to -2 (~OlS~).

c. Sending a KTu to all active terminals (110 =0).
d. Setting T3~LK to point to ~LINK+l.

2. Kil I al I DUSY devices ana clear the flftn ~ord o~ each
deVice table entry.

3. output the steep message to al I active users, preceeded and
fol lowed by a CkLF.

4. Tel I the I/O processor were Qolnq oown bY sending a SSD.

s. Cal I LCD to upoete the last ch~nQe date ~or fi les ~or eaCh
port that h~s its OFCHK bit stll I set. Clear the DFCHK bits
when done With each port.

b. UPdate the lUT entry for eaCh active user and create a
logOff entry in LOGGR.

7. Walt for the console to finiSh outPutting.

8.- ~ead· in the loader. turn off all the IIO and the interrupt
system. set pov-er ~ai I to t"\att.

9. Set A = 0 (sleep) and jump to the dump (~00008 in the
I ocoer) •

.6-57

The ST~TUS routine prints a summery of the vartous system
resources and the extent of their uti tlZation on the system
console. It operates as fol lows:

1. print thti heaaing consisting of system io, date and time and
suspend.

2. print the logical unit, select cOde, unit number, first
bloCk and last .bloCk Of the discs on the system.

3. Print a I ist of those disc bloCkS whlC~ have been ~LOCK£D.

4. Print the disc aadresses ana tenoths of the lOT. AOT ana
Directory tracks.

5. Print the disc addresses and lenqths Of the system se9ments.

b. print the user s~ap track diSC addresses.

7. Terminate.

6-58

PART III

I/O PROCESSOR PROGRAM

HEWLETf-PACKARD 2000 S~SrEM I/O PHUC~SSUR

CONTENTS

I. OVERVIEW

II. SYSTEM SERVICES AND DATA STRUCTURES

I 1 I • r~: R MIN A I, S

IV. NON-SHAR~AHL~ DEVICES

V. RJE

VI. PROBLEM ISOLATION

V II. lope

OVERVIEW

I. Introduction

I/O procEssor s6ftvare in the HP2000 ACCESS sys~9m provides
tvo concurrent and ostensibly independent functicns: " The
si.ultan~ous supp~rt of up tc 32 time share users and a" Bemote Job
!nt~y ~JE) facility for access to batch systems in IB! 360 and
370 computers. This acc~ss'is gained through "a line printer and
card reader attached to the I/O Processor ClOP) of the HP2000
ACCESS system. The TSB USEr also has access to the remote batch
system ,via a remote file transfer capability.

The RJE function utilizes the IBM multileavinq communications
protocol. This protocol was originally only available with IBM
opgrating systems including HASP but is nov also sUFPorted by
IBM's ASP, VS1-JES, VS2-JES2, and VS2-JES3. The protoccl provides
for concurrent operation of multiple data streams, both
transmitted and received, an~ includes data streaas specifically
us€:d for remote ope,rator control. This multiple stream cal=ability
vill be sp6cifically exploited in futu~e system enhancements.

The time-share functicn includes more comprehensive error
detection, automatic speed detect, and" terminal user access to
non-shareable devices atta~hed to the IOP (~.9. card readers and
line FI:intars).

1-1

II. Design o~erv1ew

~!§ign JSSU!B~12n!

Certain ale.ants of bardva~e required by this project are nev
to a 2000 series tiae sha~e systea. !icroproqraaming is used to
improve perfor.anc. througb .pecial purpose instructlons. 'fhe RJE
communications l/C support is based OD a 12618 synchronous
transmit/receive interface. I Y&riety of card readers, line
printers and paper tape punches aay be used as peripherals
available to both the TSB and B~! user.

~~~i~a!l A§!!!EtioDS 

The RJE function typically requires specific attention on the 
part of an operator. He is tequired to activate and deactivate 
the function as vell as to control its activities (operator 
control and co •• ands; reader and printer operaticns, and 
communications line .anage.ent). Although it is not ~equired that 
tha operator be knowledgeable of host systea (IBft 160 or 310) job 
processing, be should be faailiar with reaote operational 
procedures. This knowledge ca n cnly be acquired in cooperation 
with IB! and personnel at the host site. 

It is expected that this software will be 
~nviron.ent having a requirelent for both ti.e sharing 
batch processing but haviDg no need for interaction 
t~o. Reaote file transfer capability Frovides the TSB 
to the RJE function. 

used in an 
and reaote 
bttween the 
user access 

Performance of the systea is designed around the assuaption 
~hat the TSB user and his reepcnse tiaes are more i.portant than 
the, RJE function. For this reason, the RJE function vill 
generally receive lover priotity than !SB and aay show degraded 
performance when TSB activity is beayy. 

].uiSll S!J1I m AU 

The structure ot the I/O Processor software is an 
interrelated collection of aedgles each pe'rforaing a Fredefined 
task. Tvo groups cf .odules exist. O~e group consists of the IOC 
(I/O Control) a04u1e and all I/O drivers. Based on the aevlett­
Packatd Basic Control Syste. ,(BCS), this group of .odules 
~ncompasses all I/O service, scheduling, and control. The second 
group of modules aakes u~ the' actual data 'processing systea. 
These modules are divided into three general classea: supervisor, 
manager, and function handler. The supervisor seetieD provides 
run time control of which modules are executed; the manager 

1-2 



section provi de,s services utilizable by any other lDodule in the 
system; and function handlers control, devices and/or lDajor 
processes in the system. 

The supervisory task is carried out by th~ Dispatcher, which 
controls the execution of furction handlers on a priority basis. 
Function handlers are dispatched when an I/O operation,' initiated 
by them, completes; or when eXFlicitly scheduled through the Queue 
Manager. This explicit scheduling of a ~andler is called 
"priming." All such eX::jcuticn centrol is perforlled by the 
Dispatcher and control is always returned to the Dispatcher vh9n a 
handler completes its processing. . 

Managers provide communication and support services for the 
handlers. Interhandler cOMlunication is provided througb the 
Qu~ue Manager (Q~). The Q~ is the central aessage switching 
routine in th~ system; maintaining work queues, buff~r routing, 
and priming cf handlers when work is queued. The Buffer !tanager 
(aM) controls all buffer acquisition and relgase, and administers 
all' buffer pools in the system. The Allocate/Deallocate Manager 
(ADK) ~ntrols the use of nen-shareable resources by the toP. 
Through its services a-not-shareab16 resource, such as the l1n9 
printer, may be assigned to a -particular task, such as RJE. In 
addition to these managers, several general purpose data handling 
routines and common subroutines are included. 

Punction handlers contrel device's or ma jor pro-cesses in the 
systeme Associated with each handler is a qU3ue or queues. These 
queues are the source of wotk for the device or process which the 
handler controls. Handlers ty~ically initiate I/O operations to 
devices (through the use of queued IOC) and perform necessary 
processing when the operation completes. Other handlers never 
perform I/O. Instead they ~erform major processing functions and 
are driven strictly by Dispatcher priming. Through the services 
of tha Q", handle~s inform (ne another of work to be performed by 
making entries on work queues. The handlers also acquire and 
release buffers and the use of non-shareable resou~ces where 
appropriats. The term "handler" or "function handler" should not 
be confused with "driver" at the aCS IOC level. The function 
handlers in current use are: 

1. Interconnect Kit Handler 
2. Multiplexor Handler 
3. ASCII File H~ndler 
4. Time Base Generatcr Handl~r 
5. Line Printer Handler 
6. Card Reader Handler 
7. Synchro nous Communications Handler 



8. Console I/O HandlE~ 
9. Host Inguire Coapxession Handler 

10. Host !essage Decol~reasion Handler 
11. Host Reader co.pression Handler 
12. Host List Dece.pression Handler 
13. Paper Tape Punch Handler 
14. Photo-reader Bandler 
15. Reader/punch/lntexpxeter Handler 

Ti.e-ll!a., l.Y.ll£.t~ 
The tiae-share fUDcticn cf the I/O processor is graphically 

illustrated in figure 1. Tvc distinct types of data flow are 
implicit in this function: the terainal user/systea dialogue and 
comaunications with lSCII file devices.' Seyera.l handlers 
participate, so.. on a shared basis, in these co •• unications: 
specifically, the interconnect kit, the ASCII file, the 
multiplexor, the card reader, the paper tape punch, the photo­
reader, the reader/punch/interpreter, and line printer handlers. 

The user/syste. dialogue is conducted exclusively tbrough the 
interconnect kit, serving as an interface with the systea 
processor, and the aultiplexor, functioning as the'ter.inal/user 
interface. llthough each hatdler is seryed by a single guene, the 
connection does provide the capability for 32 concurrent and 
independent data strea.s (one for each tar.ina1 user). Meither 
handler is allocatable by the lllocate/Deallocate !anager since 
they are peraanently associated with each other. Operations on 
any, data strea. are controlled by the interconnect kit handler at 
the dictate of the systea prccessor. This control is esercised by 
4:he dispensation of buffer. by the inte'rconnect It'it for r.ading, 
writing, and centrol operations. The only exception to this 
structure is the ability of the aultiplexor handler to request 
sp~cial processing for unusual conditions, i.e., line break, or 
break character received. 

ASCII file co •• unicatioDs are carried on betw.en tbe system 
processor via the l~CII file handler, and an external I/Od.vice 
via the handler de~icated to its operation. !be ASCII file 
handler is served by a single werk qneue supporting aultiple data 
strea.ms as in the case of the interconnect kit handler. Such is 
not the case, however, for the external deyice bandlers which are 
single queue, single data streaa ~rocesses. The intormation 

1-4 



1:1 
Q/ 

~ 

\ 
~\ 
\tl 
&J\ 

.J\ 
~ 

~ 
reo 
.~. 

INTER-. 
COWNECT 
KIT 

. HANDLER 

MULTIPLEXOR 
HANDLER. 

. f 

DATA FLOW OF TIME ·SHARE FUNCTI~ 

. ASCII 
FILE 
HANDLER 

CARD 
REl\DER 
HANDLER 

LINE 
PRINTER 
HANDLER 

r-I 

riI p::; 
::> 
C> 
H 
~ 



necessary for data stream identification is solely a function of 
the ASCII file handler and need not concern the external handlers. 
The connections between handlers performing Ase!'I file operations 
are not permanent, since tte devices themselves, the card reader 
and line printer, are also required by the RJE function. While 
the connections are established~ hovevar, control is vested in the 
ASCII file handler as it is in the interconnect kit for ter.inal 
traffic. That is, control is exercised by dispensing tuffers for 
reading,' writing, and control o~erations. 

The following message flow is possible among handlers for the 
time-share function: 

lni!I~Qnn§£l !l! - ~ransmitE buffers to the aultiplexor for read, 
vrit~, and control operations. Receives buffers from thg 
multiplexor for write and control operations and empty 
buffers for discretionary use~ 

~~!1iRl!!2! - transmits empty buffers to the interconnect kit for 
its discretionary use atd also sends buff~rs for write or 
control operations. Receives buffers from the interconnect 
kit to bg used as directed; read, vrite, or control. . 

A~~II iil£! transmits tUffers to the card reader and line 
printer to be used as directed; read, write, cr centrol. 
Receives buffers from these handlers for transmittal to the 
SP (write or control) Ot for discretionary use •. 

£ll.9 ~~!1t" - transmits card images to the ASCII file han'dler and 
receives buffers from the ASCII file handler to be used as 
direct~d (read cr contrel). 

~~n! ~~!~i!£ - transmits empty buffers to th~ ASCII file handler 
for its discretionary use and rec~ives buffers from the ASCII 
file handler to be used as direct:d (write cr contrel). 

1-5 



Figure 2 illustrates .the RJE function components. sc.~ of 
thas'e cOIIPonents represent Ilcn-shareable, allocatable resourc'as 
for lihich' the RJE function 'competes along with'1'S8 users. Some 
software modules depicted in figure 2, therefore,' are the same 
ones shown in figure 1. 'rhree gene ral le vel s of soft ware exist. 
Central to the design is the synchronous communications handler. 
Here are isolated (as much as possible) details of line protocol 
and control. All line I/O occurs at this level. This module is 
also adaptable to the configuration of the remaining tvo levels. 
At system initialization time, it determines that configuration 
and, subsequently deals with it. Thus, for exaaple, the Duaber of 
input data streams need net be kncwn to this level in advance. 

At the second level are all modules which interface' directly 
with the level one communications module. Some are input related 
modules which acquire and ire~~ocess data to be transmitted. In 
the case of aultileavinq, preprocessing involves blocking and 
co.pression of data. Other modules are output related. They 
accept blocks of data fro. the synchronous com.unications aodule 
and prepare it for out~ut. Kith multileav!ng ttis .eans 
deblocking and decompressing.' At s,ystem initialization time, the 
synchronous communications handler at level one deter.iDes how 
many input and outpu't module s exist at 1e vel two. At run time it 
then provides instructions to these modules about current runninq 
conditions. 

Level three modules are ccncerned with actual I/O operations. 
These modules may represent allocatable resources (e.q., a line 
printer) which a leval tvo .odul~ must acquire. These 
acquisitions are typically iritiated by operator commands or other 
signals from the communications line. Once the acquisition is 
complete, the associated lavel two module 9ither provides data to 
or accepts data from the level three module. These se-called 
lev91 thr~e modules are not unigue to the RJE function. They are 
in fact the same modules which will be used by the ASCII files 
handler. In the case of remcte file transfer, the level three 
module role is played by the.ASCII f~les handler. 

Consola communications require special attention. Th~ 
console (ASR-35) is attach~d to the system processor, not to th9 
IIO processor. For this reason, minor change,s to the system 
processor have been design~d to allow transfer of aessagEs to and 
from the I/O processor. These messages either originate from' or 
arrive at a level three module concern9d ~ith console I/O. Due to 
the often unique nature of ccnsole me~sages, required intEraction 



b~t.,een this module and any ether module i·n the systell is made 
possible. 

~j2~ ~2~l! jelat~onsh1R! 

Seven level three mo~ules viII be used. The line printer 
handler will bE the same module used by the ASCII file handler. 
It does rapresent an allocatable resource and will therefore haye 
no ~~I!anent connection to the level tvo module (host list 
decompression) with which it ccmaunicates during the RJE function. 
A card reader handler vill also exist. It represents a 
potentially allocatable resource. Like the printer handler, it 
will have no 2§IJAD!~ connection to the leyel two aodule (host 
reade'r compression) with which it co.municates. The card reader 
handler is being designed for general purpose future use and vill 
be able to read data in several aodes. The'third level three 
module is a console I/O module. This module is not allocatable 
since it represents a resource shared by everyone. lny .odule aay 
prasent output messages to it for display on the console. Also, 
it vill route messages received from the console to the intended 
recipient of the .essage. tte fourth level 3 module is a paper 
tape punch handler. It alse represents a potentially allocatable 
resource and vill have no pet.anent connection to the level tvo 
module (host punch decompression handler). The fifth level three 
module is the, photo-reader handler. It represents an allocatable 
device and vill have no permanent connection to the host reader 
compression handler. The sixth level' three module is the 
r~ader/Punch/interpreter handler. It also represents a 
Fotentially allocatable resotrce and may be temporarily connected 
to the host reader compression handler or the host list or punch 
deco.pression handlers. The seventh level three aodule is the 
ASCII files handler. While it normally plays a level tvo role in 
behalf of a TSB program vhich is accessing some peripberal, it 
here plays a level three role. It may com. unica te with either the 
host list decompression, host punch decompression, or host reader 
compression handlers to perfer. the job list, job punch, or job 
transmit functions for the TSB user. 

Five level two .odule~ will be a part of the design. One 
host list decompression module and one host punch dacompression 
mod ule . will exist. The module is directed by the sJnchrono'us 
handler to obtain a printer cr punch. Following such acquisition, 
11ata is accepted, deblocked, decompressed,· and translated for 
delivery to the associated printer or punch handler. A siailar 
function is performe~ by a single host message decompression 
module. One difference is that no allocation takes place as the 
console is alvays available.' One host reader compression module 
also ezists. It is activatEd by the synchronous hAndler and 

1-7 



, 

CARD READER 
COMPRESSION 
HANDLER 

CARD 
. READER 
HANDLE~ 

.. 

____ 1 

--r , . 

i . 
PRINTERJDE­
COMPRESSION 
HANDLER· .. 

LINE 
PRINTER· 
HANDLER 

\.tEVEL 1: 

SY1~CHRONOUS 
COMMUNICATS. 
HANDLER 

LEVEL II 

CONSOI.E 
INPUT . 
HANDLER 

LEVEL III 

CONSOI,E 
I/O 
HANDI,ER 

CONSOLE 
OUTPUT 
COMPRESSION 
HANDLER 

ASCII 
FILE 
HANDLER 

PUNCH DE­
COMPRESSION 
HANDLER 

PAPER 
TAPE PlUltH 
1I1\.NDLER 

N 

rz:l 
fY, 
p 
{j 
H 
~ 



op~rator co •• ands in order to allocate a reader for reading, 
compressing, and blocking of data. These data blocks are then 
delivered to the synchronous handler. A similar modulE Ferforms 
preparation of console input messages. Centralized coaFr9ssion 
and decompression subroutines r~duc9 the redundancy of SEctions of 
these modules. 

Some special comments about the design of the host list 
decom~ression and host reader compression modules at level two are 
needed. In anticipation cf future requirements for multiple 
streams, these level two modules vill be coded 'in a "serially 
reusable" manner. This means that all potentially volatile data 
associated vith a particular data stream will be isolatEd frca the 
code itself. In essence, the code may be viewed as a sutroutin9 
which operates en a data stIucture provided to it. Then the 
actual level two function handler'consists only of the block of 
data for a s~ream. plus those instructions needed to invoke this 
"serially reusable" subroutine. To add a s~cond or third card 
reader 'stream would require, cnly the replication of this data 
structure component. Aq~it, due to the unique natur~ cf console 
activity and requirements, lEvel tvo console modules will not 
!ollow this design. 

The synchronous communications handler at level one is unique 
in that it is driven by nine distiLct input work queues. Pifteen 
distinct output work queues are also supported. The nu.ber of 
queu~s actually used is determined at system initialization time. 
Dna console input stre.m atd up to seven card input streaas make 
up eight of the input vork qteues. The ninth is a general purpose 
vork queue used to receive operator control co •• ands and other 
items such as tuffers. The fifteen possible output work queues 
ar~ a console output work queue, seven printer output werk queues 
and seven punch&d card output work queuas. Obviously very few o~ 
thase vill be utilized initially. communications line activity is 
initiated and deactivated by this handler as dictated by operator 
control commands. 

The following message flew is ~ossible among handlers in the 
RJE function: 

.&21l..!21~ UQ Sends reader centrol commands to t.he hest reader 
compression module, communicaticns lin~ control ccmmands to the 
synchronous handler, and Iemote inquiry commands to the host 
inquire compression handler, and remot~ inquiry replies to -the 
ASCII files handler for the job messag'=!! fUDctio.n. Beceives 
console .essages from virtually anyone. 

1-8 



112.§S ingl\;'!.' ~U~§§.i2n. Sends blocks of 
ingu~ries to the synchronous handler. Receives 
from console I/C and -operational control 
synchronous handler. 

compressed remote 
reaote inquiries 

signals from the 

H2il ~!~ d~c2!a£i§si2n Sends messages to console I/O and 
control,inforllation-to the synchronous handler. Receives blocks 
of console messages from the synchronous handler. 

~aIg '!~ Sends card 1.ages to host reader co.pression. 
Rec~ives control signals frol card reader compression. 

]g!~ '!AS!' ,ompressi2D Sends blocks of card iaages to the 
synchronous handler, r9ader activity messages to console I/O, and 
control signals to the leyel 3 handler (card reader handler or 
ASCII files handler). Receives control siqnals from the 

, synchronous handler, reader control com.ands fro. console I/O, and 
card i.aqes frca the level 3 handler. . 

~iD~!' Sends control sigaals to host list decompression. 
Receiv .. s print iaages fro.' hest list deco.pre~sion. 

H2~ li!1 12'-2gn~ desomp,ession - Sends control signals to the 
synch.tonous handler, print or punch images to the level 3 handler 
(printer handler, paper tape punch handler, or ASCII files 
handler), and printer activity aessages to console I/O. Receives 
control siqnals from the level 3 handler aDd synchronous handler, 
and blocks of cutput images fro. the s ynchrono us han'dlar. 

~nshIgnou§ h!~~ - Sends 18ssaqes to console I/O in response to 
connection requests, blocks cf output data to all level tva output 
modules (host message d9cc.~ress and host list decomptess), and. 
control signals to all secend leyel modules. Receives input 
blocks from all level tvo input .odules (host inquire co. pression 
and host reader co.pression), co •• ands from console I/O, and 
control signals from output lodules. 

ja~ll fll~§ !aaSl!~ - When ~layinq its level three handler role, 
the ASCII files handler can be the source of data for the host 
inquire and host reader co.pression handlers. At the sa •• tiae, 
it can be the sink for the data provided by the host message and 
host list and host punch decoa pression handlers. In this 
capacity, the aodule is the link between the TSB user and the RJ! 
subsystem. 

i-9 



PUDctioD hA!Sl~ 

III 
sectioDs. 
follows: 

system functi.ol! handlers are deseri bed i.n the followillg 
la.as associated with these function handlers are as 

Haa. 
lelB 
ftUIH 
151'B 
'l'BGH 
LPRa 
CBa 
SpH 
CIO 
HIO 
HflO 
HIO 
BLO 
HPO 
PPB 
paR 
iPR 

Level , 
1 
2/3 
1 
3 
3 
1 
l 
2 
2 
2 
2 
2 
3 
3 
3 

Handler 
Interconnect Kit Handler 
ftulti~lexor Handler 
lSCI! Piles Handler 
Ti.e Base Generator Handler 
Line trinter Handler 
Card Feader Handler 
Synchronous Communications Handler 
Console I/O Handler 
Host Inquire Coapression Handler 
Host !essage Decompression Handler 
Host meader Compression Handler 
Host list Deco.pression Handler 
Bost ~unch Decompression Handler 
Paper Tape Punch·Randler 
Photo-reader Handler 
Reader/Punch/Interpreter Handler 

Handlers are roug~ll classified into three leyels. Level one 
handlers are typically in centrol of aajor processing areas. 
Level two handlers also are involved vi th lIa jor· processing areas 
and are often tery closely tied to a level one handler. (In 
exaaple is the activity bet\een Haa or HLO and SPH.) However, the 
aain point which distinguishes a level two handler fro. a level 
one handler, is that a level tvo handler vill acquire and control 
a leyel three handler to pe~for. work on its behalf. In order 
that a given level three handler ean be used by &al leyel two 
handler (e.q. lSFH-CRB or HRC-CBB), a definite message and control 
flow protocol 1s defined for usinq a level three .odul.. This 
protocol is defined as follows: 

1. I level tvo aodule (L2) allocates a level three .odule 
(Ll) using the AD!. L2 sends a "st.art" co •• and to L3. 
This coaaand is s.ent in a centrol buffer and is .used to 
activate the connEction. In this buffer are paraa.ters. 
n •• ded by both L2 and L3 to aaintain the connection as 
vell as to injtiate it: 

vord 
Bell 1 

Bit (s) 
15-11 
7-4 

1-10 

Punction. 
ptay be used by L2 to infor. Ll 
about any desired operational 
modes 



2· 13-8 

3 14-0 

7 '5-0 

8 15 

14-2 
1-0 

D~ta 1 , 5-0 

Informs L3 of data streaa 
identifier to be used in Bell 
of all future aassag. exchanges 
Queue naa. of L2 to which tutur. 
aassag'es ar e ratu'rned 
Length of required buffers 
·in positive bytes 
1 • RJB aod ale issued start 
o • ISPB issued start 
Ray be used as needed 
Indicates basic operational aodes 
Por input: 
OO-read ASCII 
10-read EBCDIC 
Par printer output: 
OO-Space then print 
01=Print then space 
Por pa pe r tape p uuch out pat: 
OO-punch .ode in Data word 1 
01=punch aode changed by control 

operation 
luaber ·of buffers needed 
for the connection 
(Zexo is not a legal Du.her) 

Opon receipt of 'this .. ssage, L3 is expected to: 

a. Retain supplied infor.ation. 
b. Pertor. any initial I/O operations (such as 

.a1tting punched tape leader). 
c. lcquire the nuaber of buffers specified in 

data lord 1, interlock thea, and return 
them to L2 vithBCW3 containing the queue 
naae found in the start co •• and, and Bel2 
containing a "nop" co •• and and data streaa 
identifier as noted above. 

d. Pree tbe control buffer containing the 
·start" .assage. 

2. L3 accepts read cr write commands fro. L2. These will 
appear in the buffers supplied ~o L2 by L3 as noted in 
(1) above. Bew word 7 is used by L2 to indicate the 
desired positive length in bytes (characters) of reads 
or ~rites. Upon co.pletion of the operation, the 
following occurs: 

a. If a read, the doa.and is changed to ~rite. 
b. If a write, the com.and is changed to nOPe 

1-11 



c. T he buffer is [eturned to L2 with a • PUTQ 
if a write or with .PRlQ if a nOPe 

If an .operation co.pletes in error, the following 
occurs: 

a. The criginal operation is held by L3 for 
later retry either after a tiaed pause or 
at operator direction. 

b. A control buffer is acquired by L3 and is 
set with an ~rrcr co •• and (6), appropriate 
BCi word 8 general error indicators, and 
stream identification. This buffEr is sent 
to L2. 

c. For all errors, a retry must be indicated 
by receipt of a type 9 co •• and. This .ay 
come directly from an operator OT .ay be 
generated internally by L2. Por a type 1 
or type 2 error (see Bey vord 8 
description), a timed retry is perforaed by 
L3. ODly when a d~vice .akes a transition 
from ready to not ready should L3 report 
the etror to L2. A continued not ready 
condition after timed r.etry is not 
reported. For type 3 error.s, an i •• ediate 
retry is performed upon receipt of the type 
9 CO •• 8 nd. . 

3. LJ aay receive control commands froD L2. These are 
defined by L3, and the buffers are discarded by L3. 

5. A ·purge" co~.and from L2 to L3 may appear in a buffer. 
The co •• and vill te in a non~interlocked buffer which 
~hould be releaSEd by L3. In response to the purge, L3 
should: 

a. Purge any pending operations and reto~n the 
buffets to L2 as nop·s.· .. 

S. 1 "stop" co •• ~nd frcm L2 to L3 may appear in a buffer. 
The stop co •• and lust be ~n an interlocked buffer for 
eventual return to L2. L3 must do the follcvinq in 

. response to the sto~: 

a. Complete any pending operations. 
b. PerfOIS any final task (such as emittinq a 

·punch tape trailer). 

1-12 



"c. Betura: the "stop" aessage to . L2 atter 
havinCj J:eturnad .. 11 read or·' write baffers 
to L2. It is always the responsibility ot 
L2 to release buffers. lead and writ.e 
buffers active at' the ti •• of a stop are 
consideJ:8d purged. It is not necessary to 
cc.plet~ operations with thea, aDd they a" 
be returned as naps. 

1-13 





SECTION II 

SYSTEM SERVICES AND DATA STRUCTURES 



--
~~WL~TT-PArKAHn ?OOO SYST~~ T/O PROC~S5UR 

SYSTt:-;V, ~F.RVTCF.S AJ.tD DATA ~TRUr'f"Rr.S 

. 
1 • rnc 

'). ACW·S 

-~ . OM & ('\T1' 

-
4. .rOM. f.- InuT 

. -. 
~. API.. Sr.nT., RPRT 

~ 

6. AnM 

7. flAM & na1' 

OtlEflF:O TOC' 

-
r.T.nRATI 11::;1\(;F' nf Rrvl wnHns 

onEH~; ~'I\NAGF:~ AND. 
OflFtJF INF'npMATInN 'l'''I-H,F: 

- -
()TSPA"CHF:~/CU~M(JT"TnR AND 

TIO DTSPATr.l-fTN(; TARJ.~ 

- . . 
A"F'~r:R MAt.l'A~fo:R. STJHPf)nL r.nN"'HnlJ I,TST, 

RflFFfo:P PENOTNr; PF.0UF.ST TA~LF. 

p~v reF ~SSI \,~JMEMT M AN AGF~ A "'D 
D ... II T r. F ~ 5 S J G N ~ .. : N T T " BTl r-: 

R. MTsrFT,t.ftN"'OtTS UTHIO"R f-HJ .c;~~PVTCF: ROTJTTr"F:-S 

q. n~VTr.F" TAR),'" 

10. D.04 

11. n.4':l 

1 ? TP.~H 

SYST~M ~TAHTUP/P~SlAHT 

rJ:'NTH1\I,TZF:V cnN~nT..F: IH1']'PlJT 

DftTa rn~V~RSln~ ATU~ . - . 
D~rnMPHJ:'S~InN S~RVTr~ 

rnMnRFS~TnN S~RVlrF 

1'~(~ nOIVER 

1 n C; II " N f' L F H 

J-o 



I. Introductio~ 

Queued • laC. is the input/output control s.u brau.tine within 
the I/O ·subsystem of the IOP ·pz:oqrall for the HP2000 ACCESS systea. 
It provides for scheduling of I/O requests and notification· of the 
completion of these requests. Queued .IOC. differs frcm existing 
versions of .IOC. (non-buffered and buffered) in that it vill 
maintain qU9ues of I/O requests for ihdividual devicEs and a 
priority queuE of completed requests for all devicEs. Also, 
facilities are availabl~ to ·interrogate the queue of completed 
requests and to manipulate the scheduling of I/O.. D"1 use and 
conflicts for use are also lIanaged and scheduled by Queued .IOC • 

. 
Queued .IOC. is being dEveloped tc make viable the use of Bes 

type operating ~ystem in the IIO processor of an HP2000 ACCESS 
system. However, Queued .IOC. need not be restricted to this use. 
This dccument vill deal primarily with the features of Queued 
.IOC. which are different from current versions of .IOC. 
Reference to existing documects en Bes and .IOC. is suggEsted for 
answers to que stions not covered h'ere. 

II. Design OV Ervi ew 

The major goal for QU9ued .IOC. is to generate a grcup of new 
9~!i~nsl services which will er.able Bes to functicn in an 
~nvircnment baving time de~endenci~s and a require.ent for 
priority handling of. events. 

~2!£i!! I!gYi'~!~n~ 

Queued .IOC. vill require an qquipment table (EQT) of larger 
size than previous versions of .IOC. The sp~cial microcod~ 
developed for use in the lOP scftware of the HP200C ACCESS systems 
is also required. 

J2~.2ign j.lln~.I 

Quau~d .IOC. will b~ mcdular in organization. The functions 
~o be p~rformEd by Queu~d .IOC. are very distinct so that 
modularity is quite natural. In addition, processing which is 
common to several functions can be implemdnted as subroutines. 

2-i 



Three primary modules vill exi~t. First is thE sodule 
associated with the .IOC. entry point. This module receives 
control froa th6 user prcgram and processes the request 
appropriately. secondary IIodules vill process the 'various types 
cf requests read, write, control, status, etc. Seyeral of 
thase modules vill process :the request directl y or queue it for 
1a ter proce,ssing by the I/O driver. In other cases the I/O driver 
will be ant~red, to process or start processing the request. 

The second primary module is that associated with the .BOFR 
~ntry point. Here the completed requests aay be placed on a 
prioritized queue with other co.pleted requests (the CBO or 
completed request queue). If ancther operation has :been reguested 
and queued for the device, it vill be initiated at this peint. 

The third prisary scdule is that associated with the .ONS. 
~n try point. • OMS. a110"s a dri ver to place in to ,the co.pleted 
reg'uest queue, an entry containing information about soae 
unsolicited asynch~onous eyett. Such events are unsolicited in 
that no .IOC. call brings the. about. (An exaaple might be the 
receipt of a BREAK charactet fro. a co •• unicatioDs line.) By 
placing such events into the co.pleted request queue, infer.ation 
can be passed back to the use~ progras for action at that level. 

11.Ql! ~ ~ntI.2l 

It is i.perative that the capabiliti~s available to the user 
program through Queued .IOC. be understood. A su •• arJ of the 
capabilities fellovs. 

Perhaps .ost iaportant is the fact that all capabilities 
forllerly available throuqhnen-buffered .IOC. are still available' 
and in an identical fer.. this is also true of buffered .IOC. 
with the exception that aultiple RuffeI!S output requests vill not 
be possible with Queued .IOC. A reading of the re.ainder of this 
section vill reveal that aultiFle output requests can be deDe but 
in a slightly different aanDer. 

A significant new caFability exists ,to allow scbeduling Of. 
multiple read, write, or cont~ol requests. coupled with ~his is 
tha ability .to handle the coapletion of these requests on a 
Eriority basis. The flow of control is as follovs--

1. The calling .proqral uses an .IOC. paraaeter word ha'ving 
bit 15 set to indicate a .9l!!~ IUuest. (!ay te read, 
vrite, or control.) 

2-2. 



2. Por .~eads and writes, the buffer supplied for the call 
is assumed to be preceded by 5 quaueinqand control 
words for_use by Queued .IOC. 

3. The- • IOC. call is made. • IOC. may enter the I/C driver 
immEdiately (if the drive~ is idle) or _ que~eth9 
request for l~ter processing by the driver. This 
latter queue is refer~ed to as the device request queue­
or DRQ. 

Certain specialized I/O drivers do not dapend on the 
device request queue but handle queueing of aultiple 
reque-st.s - themse lvas. An exam pIe is the. D.51 
lIlultiplexer driver-. The EQT associated vith such a 
driver is marked as using no device request queue. All 
requests are immediately pr~sented to the driver in 
this case. (See the section entitle~ "Self-queuing I/O 
drivers" 9lsev~erE in this document.) 

4. The driver completes the re9u~sted operation and exits 
through .BOPR (an entry point in .IOC.). 

5. .BOPR places thE completed request into the cc.p!et,d 
reques~ueue. - -This queue is arranged in priority 
order. The logical unit number is used as a default 
priority. However, the priority for a given ccmpleted 
request may optionally be selected by the user Eroqram. 
This capability is discussed belove 

6. The user program us@s an interrogate request to inspect 
the completed request. 'queue. . In . this way the 
observance of the cCSFleted request is made. 

Since available DKA channels ara shared by all I/O drivers 
needing DKA, contention for these channels exists. An I/O driver 
which needs OM! but which is unable to acquire a OKA channel vill 
reject the I/O call with ths B register set to 1 (DKA needed but 
unavailable). Fo~ queued r9guests only, Queued .IOC. will 
r.esolve this conflict. A reject of this sort will cause the I/O 
operation to r~main queued and the EQT to be marked with a flag 
indicating "wait for DMA." As 'other I/O operations. cc~plete, 
Quaued .IOC. will note the availability of OMA channels. and ,will 
reschedule an EQT suspended for this reason. Note that ncn-queu3d 
I/O requests are not handled in this mann~r and will still r~sult 
in the traditional reject at the .IOC. call. 

The interrogate request is a special • IOC. call which asks 
for notification of a completed requ9st or unsolicited event. Th9 
unit reference number in this .IOC. call designates the lowest 
priority to be inspected. Ir. ether words, if it is dEsirad to 
inspect for ccmplated requests at priority x or highgr «x), then 
x is the unit reference number used in the .IOC. call. A 



rejection raturn is used to lndicate that no completed requests at 
the designated priorities va~e found. For a successful return, 
regist~rs are set to sup~ly inforllation about sOlie ccmpleted 
request or unsclicited event. 

Three other capabilities exist. One allows the user program 
to supply the address of a subroutine which .BUFR vil1 use to 
choos~ the priority at ·whic~ a completed request is to be gueued. 
Between steps 4 and 5 noted above, this subroutine is activated. 
The priority it returns fot the completed request will over-ride 
th~ default priority (logical unit nUllber) for the device. 
Another capability allows a device request queue to be purged. 
All pending requests are i •• ediately moved to the co.pleted 
request queue. Finally, an .IOC. call is available to activate a 
~evice request queue which has been suspended due to an lIe error. 
Such suspension is indicated as necessary to • IOC. whene,er an I/O 
drivar indicates a need for cperator attention in the EOT status 
word. 

III. Design structure 

Q~gA»ii!~ 2! ~!y~ 
,Queued .ICC.· is concernEd vith tvo queues. One is the Device 

Request Queue (ORO), and tbe other is the Completed Bequest Queue 
(C RQ) • 

Por each EQT, a DBQ can be maintained to hold multiple I/O 
requests for the unit. The'crganization of the DRQ is based on 
two things. One is a word in the EQT called the DRQ head. It 
holds the address of the curtent request. 'The second thing is the 
set of five queue control vords associated with each request to be 
queued. For read or write reguests these control loxds are 
provided by the user program. (See "Buffer use with queued 
requests" under the section cn "Data formats and .IOC. calls".) 
For centrol tegues ts the centrol vords are obtained by .IOC. 
Using the DRQ head and the five control vords, the DBQ is, 
organized as shown in the illustration on the next page. 

The CRQ has a very si lila t organization. The caQ head is 
location within the .IOC. lodu1e which addresses the highest 
priority completed request. Other completed requests are then 
chained in priority order. ~he same five control words used for 
requests on the DRO are used for the CRQ. CRa organization is 
~lso illustratEd on the next page. 

As shown in the illustlation, the first of the queue control 
words is used to link requests together. The appropriate head 

2-4 



addresses the fr;ist request and each r-aguest in turn addresses its 
successor. The last request has a zero link word. In the ease "of 
tha CRQ, th~ priority of the request is stored in anotber of th9 
five vords (thE last). 



EQT 
r---------, 

1----------

I----~....,':----

1-.. ----------

1----------
DBC 

Head 
1----- ..... _-

L--------• ..J 

r---------, 
eRe 

Head 
L-- -.-- ----" 

r--------------------(current request) 

L---~----------------

(3rd request) 

(last request) 

L--------------------
r-------~------------(2nd request) 

L-~-------~-~-------~-

Link 
vords 

Entry 
priotity 
(as b:ScSd) 

r-----~------------~~---~-
(3rd request) c 

L-~-~----------------~~----

r-----~---~-----~----------
(last request) I d 

r-~--~-----~---------~---~-
(2nd request) t 

L----~-~-------~--~--~-~---

r--------------------------
(to p request) a 

L .. -~------- ... - ---~~ .............. ~ .. --

2-6 



Q U f. LJ £ D I 0 C 

QUEUED .IOC. IS THE INPUT/OUTPUTCONTROL ROUTINE WITHtN THE 1/0 
SU8SYSTE.... IT IS RE:SPONSI8LE FOR THE SCHEOULING OF' I 0 REQUESTS 
AND THE NOTIFICATION OF' THE COMPLETION OF THESE REQUESTS. THE 
FOLLOWING TWO QUEUES ARE MAINTAINED BY QUEUED ~IOC' TO AID THE 
SCHEDULING OF THESE TASKS~ . 

DEVICE REQUEST QUEUa ~DRQ) 

FOR f~CH QUEUING DRIVER EQUIPMENT TABLE fEQT). A DEVICE ~EQlJEST 
QUFUE IS MAINTAINED TO HOLO ~ULTIPLE ·1/0 REQUESTS EACH DEVICE 
QEQfJEST. QUEUE HAS A DqQ HEAD (EaT WOfJO 4l WHICH CONTAINS THE 
AOnQESS OF THE CURRENT 1/0 REQUEST AND A LINK~n LIST OF FIVE 
QUEUE CONT~OL WORDS ASSOCIATED WITH fACH REQUEST TO RE QUEUED. 
F'Oq CONTROL REQUE<;TS THE QUEUE CONTROL WORDS A~E OATAINE'D RY 
THF .IOC~ SUBROUTINE VIA A CALL TO ~GET. FOQ READ AND WPITE 
PEQUESTS THE CONTROL WORDS ARE SUPPLl~D BY THE CALLING ~ODULE 

.AS FOLLOWS: 
EACH READ A~O WRITE REQUEST HAS A BUFFER AssnCIATED 
WITH IT. A ALOCK OF NINE BUFFER CONTROL WORDS RCW 
WO~DS) IS ATTACHED TO THE BEGINNING OF' EACH t=itJFFER. 
~Cw WORDS S THROUGH 9 ARE USED AY .IOC~ AS TH€ SET 
OF DRQ CONTROL WORDS. 

THE f)RQ QUEUE: CONTROL wORDS ARE DEF I "'En AS FOLLOW5 
WORD 0 (F3CW WOPO 5) - QUEUE LINKAGE 
WORD 1 ('3CW W()~D 6) - .IOC'. 1/0 REQUEc:;T PAQA~F.:TE.R 
WOPD 2 (BeW WORD 7) - BUFF'ER SIZE (N/A FOQ CONTROL 
WQPD 3 (SCW WORD 8) - NOT USED 
WORD 4 (~CW WORD 9) - NOT USED 

COMPLETED PEQUEST QUEUE (C~Ql 

PE'QUESTS) 

THE CRQ IS ~ PP.IORITIZ~D QUEUE OF ALL COMPLETED I 0 ~EQUESTS AND 
OF, ALL UNSOLICITF.n EVENT ~EQUESTS (UNSOLICITED IN THAT NO .IOC. 
CALL BRINGS THE~ A~OUT). THE CPQ ~EAO IS LOCATEI') WITHIN .IOC. 
AND IT CONTAINS THE AODRE~~ OF THe HIGHEST PPIORITY CRQ ENTRY. 
OT~ER PEQUESTS ARE LINKED I~ PRIORITY ORDER~ THF.:SAME FIVE 
QuEUE CONTROL WOROS USED FOR DR'Q ENTR I ES ARE uc:;e:n FOR CPQ 
FNTRIES. QUEUE CONTROL WORDS FOR UNSOl.ICITED F.VF.:~TS ARE OATAINED 
~y T~E ~UNS. MODULE VIA A CALL TO .GET. THE COMDLETION PRIORITY 
OF A eRQ ENTRY FOP SOLICITED EVENTS IS THE UNIT REFERENCE NUMBER 
or: THE DEvICE FOp. WHICH THE E~TRY IS AEING MAO~~ THE CO~PLETION 
PRIORITY FOR UN50LICITED EVENTS CAN RE ~PECIFI~f) AY THE CALLING 
nRIVF.:R OR THE UNIT REFERENCE NU~BEP CAN BF.: uC:;En AS A DEFAULT 
PRIORITY. (SEE' .lJNS. r.>F.C:;CQIPTION) THE C~Q CONT~OL WOQDS ARE 
DFFINED AS FOLLOW5: ". 

2-7 



ALL CRQ ENTRIES EXCE~T UNSOLICITED EVENTS 
WORD 0 (sew WORD 5) - QUEU~ LINKAGE 
WORD 1 (SCW WORD 6) - .IOC. I/O REQUEST PAR~~~TER 
WORD 2 (sew WORD 7) - TRANSMISSION LOG FROM E~T 
WORD 3 (8Cw wo~n 8) - STATUS FROM rQT WORD 
WORD 4 (~ew wOPD q) - COMPLETION PRIO~ITY 

CRQ ENTRIES FOR UNSOLICITED EVENTS 
WO~D 0 - QUEUE LIN~AGE 

1 
WORD 

WORD 1 - TSB LOGICAL u~lT NUMBER/UNIT REFERENCE NUMRFR 
WOQD 2 - NOT U~ED 
WORD 3 - EVENT DATA 
WO~D 4 - CO~PLETION PRIORITY 

2 

~ CRQ ENTRY IS RECOGNI7ED AS BEING FOP AN UN~OLICIT£D 
EVENT BY THE FACT THAT THE COM~AND AITS OF eRQ WORD 1 
(BITS 14:12) ARE 7ERO. IN THIS CASE CRQ WORO CONTAINS 
THE EVE~T DATA W~ICH IS DEFIN~D BY THE DRIVEQ PQESENTING 
THE UNSOLICtTEn EVENT. 

2-8 



QUEUE'n .IOC. IS,MADF. UP O~ THREE PPI~ARY MOOULE.S AND THEIR 
SUPPORTIVE SU8ROUTINES. EACH MODULE HAS AN EXTER~AL ENTRY 
POINT.' 'A DESCRIPTION OF THE WORK PERFORMED 8Y TH£SE BIG 
TH~EF FOLLOWS: 

• I 0 C • 

THIS MODULE RECEIVES CONTROL FROM ~ALLING HANDLER~ TO PROCESS 
VARIOUS TYPES OF 1/0 PEQlJ£STS SUCH AS READING. W~ITING. CONTROL. 
STATUS. ETC. SOME REQUESTS ARE IMMEDIATELY PROCESSED BY .tOC. 
AND OTHERS,RESULT IN A CALL TO THE APPROPRIATE I/O DRIVER FOR 
PROCESSING. I~ ADDITION .IOC. IS RESPONSI~LE ~OR QUF.UING READ. 
WRITE. AND CONTROL REQUESTS TO BUSY. QUEUING 1/0 DRIVERS ON THE 
OEVICE REQUEST OUEUE (DRQ~. SELF:OUEUING D~IVERS ~RE ALWAYS 
CALLED AS THEY MAINTAIN THEIR OWN QUEUES. THESE QUEUED ENTRIES 
WILL RE RESCHEDULED 8Y .IOC. AFTER THE DRIVER BECOMES NOT-BUSY. 

WHEN A ~USY DRIVER COMPLETES AN 1/0 OPERATION. IT CALLS .BUFR 
~S ITS LAST ACTIVITY PRIOR TO EXITING (~Nn THUS ~F.COMING NOT­
~U5Y) • ONE OF THE OPERATIONS ·.8UFR PERFORMS IS TO CHECK THE 
ORQ OF EACH DRIVER THAT COMPLETES AN 1/0 REQUEST~ IF ANY EVENT 
IS QUEUED •• BUFR WILL SET THE uPENDING OR,Q ACTIVITV FLAG (P FLAG) 
IN THE DRIVERtS EQT FLAGS WORD AND IT WILL INCREMENT THE PENDING 

,DPO ACTIVITY COUNTER. ALL .IOC~ CALLS EXIT THROUGH THE CO~~ON 
ROUTINE. RETN~ IF THE PENDING ORQ ACTIVITY COUNTER IS NON-ZERO. 
EVERY EQT IS CHECKED FOR PENDING I/O~ WHEN PENDING ACTIVITY IS 
rOUNn. THE P FLAG IS CLEARED AND T~E IIC IS INITIATED (5££ .IOC. 
1/0 ~ESCHEDULING) 

.IOC. ALSO ~AINTAI~S THE SCHEDULING OF DRIVERS WHICH REQUIRE THE 
liSE" OF" OMA. IF AN 1/0 REQUEST CANNOT BE HONORED ~ECAUSE THERE 
I~ NO FREE DMA·CHANNAL •• IOC. WILL SET THE .. REQUIRES OMAn FLAG 
(R FLAG) IN THE DRIVER'S EQT FLAGS WORD AND THEN INCREMENT THE 
PENDING OMA ACTIVITY COUNTER. WHEN AN .IOC~ REQuEST EXITS THROUGH 
RFTN. A CHECK IS MADE OF THE PENDING OMA ACTIVITy COUNTER. IF IT 
IS NON-ZERO AND IF A OMA CHANNEL IS FREE. A ROUNQ ROBIN S~ARCH OF 
THf EQT'S IS ~ADE FOR ONE ~wAITING D~A USAGE~ WHEN ONF- IS FOUND. 
ITS R FLAG IS CLEARED AND THE 1/0 REQUEST IS RE-ISStJED TO THE 
DP.JVER. (SEE .IOC. 1/0 REQUEST RESCHEDULING) 

.10C. 1/0 REQUEST RESC~EDULING 

THf DRIVER.S EOT I~ CHECKED TO SEE IF IT IS SELF-QU~UING (EaT WORD o. 
AIT14). IF IT IS SELF-QUEUING. THE DRIVER'S eRQ HEAD CEQT WORD 4) 
IS CLE~RED AND CONTROL IS RETURNED TO THE CALLER. HENCE ~ELF-QUEUING 
DRIVERS MUST NOT ONLY SCHEDULE THEIR OWN 1/0 REQUESTS THFY MUST ALSO 
RESCHEOULE THEIR OWN PfNDING DMA USAGE. OTHERWISE THE 1/0 REQUEST 
IS RETRIEVED AND THEN SENT TO THE DRIVE~. NORMALLY THE DRIVER wILL 
RFTUQN BUSY AND' THEREFOR 1/0 REQUEST RESCHEDULING IS DONE'. I~ Tt:iE 

2-9 



REQUEST IS REJECTED. THE ~UFFER IS MARKED AS PURGED EaT WORD 1 = 
140311), THE ENTRY IS REMOVED FROM THE DRQ AND PLACED ON THE CRQ, 
AND THE ORa IS SUSPENDED (EQT WORD 1. RITI3=1)~ I~ THE REQUEST 
IMMEDIATE COMPLETES. THE ENTRY IS REMOVED FROM THE ORQ AND PLACED 
ON THE CRQ. IF ATTENTION IS REQUIRED (EQT wORD 1. RITI4=1), THE DRQ 
IS SUSPENDED. OTHERWISE, THE DRQ HE~D IS AGAIN CHECKED FOR MORE 
PENDING 1/0. IF THE DRQ IS NOT EMPTy. THE CYCLE WILL RESTART • 

• IOC. REQUEST PARA~ETER 

A SINGLE WORD PARAMETEP IM~EDIATELY FOLLOWING THE J~A TO .IOC. 
oEFINES THE TYPE OF 1/0 REQUEST AND DEVICE TO BE USED IT HAS 
THE FOLLOWING FORMAT: 

Q= 

15 14 12 11 ~ 
~ : FUNCTION : SU8FUNCTION 

c; 0 
UNIT REFERENCE 

QUEUED REQUEST INDIC~TOR 
1 REQUEST IS TO BE QUEUED FOR P~OCESSING ~Y THE 

1/0 DRIVER~ THIS INCLUDES SU8SEQUENT QUEUING 
OF THE OPERATION IN THE COMPLETED REQUEST 
QUEUE WHEN DRIvER PROCESSING 15 FINISHED. 

o NO ·QUEUING OF THE I/O REQUEST AS IT IS TO BE 
PPOCESSED IMMEDIATELY RY THE nRIVER. 

NOTE: MIXED USE OF QUEUED AND NON QUEUED REQUESTS 
'WILL RESULT IN REJECTION O~ THE REQUEST ~Y 
.IOC. MIXED USE IS POSSIALE ONLY IF ALL 
REQUESTS FOR THE DRIvER HAVE REEN COMPLETED. 
ONLY READ. WRITE, AND CONTROL REQUESTS CAN 
fiE QUEUED". 

2-10 



F'UNCTION= A NUMERIC VALUE INDICATING A GE~E~AL CLA$S OF 
PROCES~ING. LEGAL VALUES ARE: 

o CLEAR 
l' READ 
2 WRITE 
3 CONTROL 
4 STATUS 
5 INTERROGATE COMPLETED REQUEST QUEUE 
" ·S~ECIAL 

CLEAR - USED T~ TERMINATE I/O AND CLEAR THE HARD­
WARE INTERFACE. ~IOC. ISSUES THE CLEAR REQUEST 
TO THE D~tVER ANO AFTER RETUPNING IT RELEASES 
ANY PENDING D~A USAGE AND PURGF.S ANY OUTSTANDING 
QUEUED I/O REQUESTS ~OP THE DRIVER THIS IS DONE 
RY REMOVI~G THE ENTRIES FROM TH~ DRQ. MARKING 
THEM AS PURGED. ANO PLACING THEM ON THE CRQ. 

READ - USED TO REQUEST ANY QEAO oPEPATION. .IOC. 
PUTS QUEUED REAOS ON THE DRIVER'S DRQ AND IF' THE 
QUEUE IS EMPTY. IT ISSUES THE REAn REQUEST TO THE 
DRIVER. NON~QUEUEO READS ARE IMMEDIATELY ISSUED. 
FOR ACTIVITY PERFORMED AFTER THE DRIVER RETURNS TO 
.IOC •• SEE "READ/WRITE/CONTROL REQUEST PETURNSu. 

WRITE - USED TO REQUEST A~Y WRITE OPERATION. .IOC. 
PUTS QUEUED WR I TES ON THE DR I VEQ S· DRQ AND I F THE 
QUEUE IS EMPTY. IT ISSUES THE WRITE PEQUFST TO THE 
DRIVER. NON~QUEUEO ~RITES ARE IMMEDIATELY ISSUED. 
FOR ACTIVITY PERFORMEO.AFTEP THE DRIVER RETURNS TO 
.IOC •• SEE "READ/WRITE/CONTROL REQUEST RETURNS". 

CONTROL - USED TO PERFORM DRIVEP DEFINED CONTROL 
OPERATIONS SUCH AS A PEADF.R/PUNCH FEED REQUEST • 
• IOC. PUTS QUEUED CONTROL PEQUE~TS ON THE DRIVER'S 
ORQ AND IF THE QUEUE IS EMPTY. IT ISSUES THE 
CONTROL REQUEST TO THE DRIVER~ NON QUEUED CONTROL 
qEQUESTS ARE IMMEDIATELY ISSUEn TO THE DRIVER. 
FOR ACTIVITY PERFOR~ED AFTER THFa DRIVER RETURNS TO 
.IOC •• SEF.: "READ/WPITE/COP>.lTPOL REQUEST RETURNS". 

STATUS - USED TO OATAI~ THE LAST ~ECORDED STATUS 
FOR A DEVICE~ ~IOC~ RETURNS WITH 

A = STATUS tEQT WORD 1) 
~ = TRANSMISSION LOG ~EQT WORD 2) 

INTERROGATE ~ USED BY THE COMMUTATOR TO INTERROGATE 
THE COMPLETED REQUEST QUEUE'. F'OR A COMPLETE 
OEseR I PT ION SE.E "I NTERROGA T I ON QEQUESTS". 

2-11 



5UAF"UNCTION= 

SPECIAL - USED TO PERFOR~ UNIQU~ OPERATIONS 
WHICH ARE DETERMINED BY THE SU~F"UNCTION. THESE 
OPERATIONS ARE: 
o PRIORITY APPENDAGE - USED TO SUPPLY .IOC. THE 

ADDRESS OF A MODULE TO BE USED TO DETERMINE 
THE PRIORITY AT WHICH A CO~PLETEO I/O REQUEST 
IS TO BE PLACED ON THE CR6~ IOC. RETRIEVES 
THE APPENDAGE ADDRESS AND PLACES IT IN EQT 
WORD 5. 

1 PURGE - USED TO ~EMOVE QUEUED REQUESTS FOR A 
DRIVER. THE PURGE REQUEST IS SENT TO THE 
DRIVER AND UPON RETUR~. ANy PENDING DMA USAGE 
IS RELEASED AND ALL PENDING I 0 REQUESTS ARE 
PURGED BY REMOVING THEM FRO~ THE DRIVER'S DRQ. 
~ARKING THEM AS PURGED. ANn PLACING THEM ON 
THE CRQ. PURGE DOES NOT INCLUDE CLEARING THE 
HARnWARE INTERFACE. . 

2 REL~ASE ~ USED TO ACTIVATE A SUSPENDED DEVICE. 
SUSPENSION OCCURRS WHEN A DEVICE TERMINATES AN 
OPERATION WITH AN INDICATION THAT 5PECIAL 
ATTENTION IS REQUIRED~ IF THE DRQ IS NOT 
SUSPENDED. NO ACTION I~ TA~EN IF IT IS 
SU~PENDEO. THE SUSPENSION RIT IS REMovED (EQT 
WORD 0, BIT"=O'. THEN IF THERE IS AN I/O· 

. REQUEST ON THE ORQ. IT IS ISSUED TO THE 
DRIVER. IF THE REQUEST IMMEOI~TE COMPLETES 
WITHouT ATTENTION NEEDED. THE DRQ IS AGAIN 
CHECKED F"OR MORE 'ENTRIES AND THE CYCLE IS 
PEPEATED-·. 

A NUMERIC VALUE INDICATING OPTIO~S ~OR THE 
FUNCTION. THESE OPTIONS ARE ALL ORIVER nEFINED 
EXCEPT FOR THE SPECIAL FUNCTIO~ AND THE 
FOLLOWING UNIQUE FUNCTION/SUBF'Ur..JCTION COMAINATIONS: 

0/0 SYSTE~ CLEAR. 
4/0 SYSTEM STA'TUS* 
3/0 DYNAMIC STATUS 

* ~UST ALSO HAVE A UNIT REFERENCE OF O. 

SYSTEM CLEAR ~ US~D TO TERMINAT~ ALL DRIVER 1/0 AND 
PURGE ALL PENDING 1/0 REQUESTS~ 

S~STEM STATUS ~ USED TO DETERMINE IF ANY OEVICES 
ARE ACTIVE. ~10C~ WILL RETURN WITH THE A-REG. 
BITIS = 1 IF AT LEAST ONE DEVICE IS BUSY. 

nYNAMIC STATUS ~ USED TO ORTAI~ THE ACTUAL CURRENT 
DEVICE STATUS~ IF THE REQUEST 15 ~ON-PRiORITY 
(1/0 REQUE~T. BITq=n). THE REQUEST IS PUT ON THE 
ORO ANO THE COMPLETION IS PUT ON THE CqQ. PRIORITY 
DYNAMIC STATUS REQUESTS ARE NOT puT ON EITHER 
QUEUE. 

2-12 



NOTE: AIT 9 OF QUEUED READ, WRI~E OR CONTROL 
REQUESTS INDICATES PRIORITY. SUCH A REQUE~T wILL 

. BE QUEUED IN FRONT OF CURRENT REQUESTS. 

UNIT RF.F'ERENCE= A NUMRER USED· TO REFER TO A SPECIFIC DEVICE. 

READ/WRITE/CONTROL REQUEST RETURNS 

WHEN .~ CALLED DRIVER RETURNS TO ".IOC". AFTER P~OCe:C;SING p. READ. WRITE. 
OR CO~TROL·REQUEST, THE A AND B REGISTERS CONTAI~ 5TATUS INFORMATION 
WHICH RESULTS IN THE FOLLOWING ACTION: 

P.-~EG 

1 
1 

BIT15=1 
o 

a-REG 
8110=0 
BI10=1 

MEANING 
(DRIVER RE~ECT RETURN) 
(DMA REQUIRED RETURN) 
(IMMEDIATE COMPLETIO~ RETURN 
(NORMAL RETURN' 

QUEUED ORIVERS MAKING QUEUED REQUEST~ 

(DRIVER REJECT RETURN) - THE D~IVER'S EQT STATUS WORD IS 
FLAGGED AS REQUEST REJECTED '(EOT wORf) 1 = 140"'-'77 THE. REQUEST 
IS REMOVED FROM THE ORO AND IS PLACED ON THE CQQ THE ORO IS 
TH~N SUSPENDED (EQT WORD O. AIT 11 = 1). CONTROL IS RETURNED 
TO THE CALLER. 

(DM~ ~EQUIREO RETU~N) - THIS DRIVER Ie; SCHEDULED FOR DMA 
USAGE BY SETTING THE "REQUIRES OMAn FLAG fR. FLAG IN HIS EQT 
FLAGS WORD (EOT WORD 0, BIT 1~ = i, ANn THEN CONTROL IS 
RETURNED TO THE CALLER. 

(IMMEDIATE COMPLETION RETURN, .:.. THE REQUEST Ie; REMOVED FROM 
THE ORO AND IS PUT ON THE CRO'. THe: DRIVER.S E~T STATUS IS 
CHECKED FOR REQUIRED ATTENTION (EQT WORD 1. BITI IF" ATTENTION 
IS REQUIRED (BI't = 1) THE DRQ IS SlJSPENOED (EOT WORD 0. RIT13=1) ,. 
CONTROL IS THEN RETURNED TO THE CALLER. 

(NORMAL RETURN) - CONTROL IS RETURNFD TO THE CALLER. 

SELF-QUEUING DRIVERS AND NON-QUEUED REQUESTS 

(DRIVER REJECT RETURN) - CONTROL IS RETURNED TO THE CALLER 
AT HIS .IOC. REQUE~T REJECT RETURN POINT~ 

(OMA REQUIRED RFTURN) - SAME AS DRIVER REJECT ~ETlJRN. 

(IMMEDIATE COMPLETION RETURN, - CONTROL IS PETURNED TO THE 
CALLER. 



(NORMAL RETURN) - CONTROL IS RETURNED TO THE CALLER. 

INTERROGATION REQUESTS 

THE COMMUTA~OR USES THIS REQUEST TO INTERROGATE r~E COMPLETED REQUEST 
QUFUE. EACH DRIVER IN THE 1/0 PROCESSOR HAS AN .IOC INTERROGATION 
~EQUE5T CALLiNG SEQUENCE IN THE CO~MUTATOR~ THE UNIT REFEQ~NCE 
NUM~ER. CONTAINED IN THE .IOC. 110 REQUEST PARA~F.:TF.:P REPRESENTS THE 
LowEST PRIORITY TO AE fXA~INED IN THE CRQ. THE HIGHEST PRIORITY 
COMPLETED REQUEST OR UNSOLICITED EVENT IS AT THE TOP OF THE CRQ. 
IF THI~ ENTRY-S PRIORITY IS NOT EQUAL TO OR GRE~TER THAN THF. UNIT 
REFERENCE NUMBER IN THE INTERROGATIO~ REQUEST •• IOC WILL TAKE THE 
RE~ECT RETURN. IF THE REQUEST IS SUCCESSFUL. THF.: ENTRY IS RE~OVED 
FRO~ THE CRQ AND THE NOP~AL RETURN IS TAKEN WITH THE FOLLOWING 
INFOR~ATION IN THE A AND A REGISTERS: 

COMPLETED REQUEST ENTRY 

1/0 REQUEST PAQA~ETER 

R-REG BUF"FER ~DDRESS 

UNSOLICITE~ EVENT .ENTRY 

BIT 15 SY~TE~ OVERLOAD FLAG 
14-1~ ZERO 
II-I, TSA LOGICAL UNIT NUNt8EQ 

5':'0 UNIT REFERENCE NUMAER 
EVE~T DATA 

NOTE: THE SY5TEM OVERLOAD FLAG IS SET IN THE EVENT T~AT 
ALL AVAILA8LE SYSTE~ QUEUE SPACE IS IN USE~ THE FLAGGEO 
ENTRY WAS OBTAJNED FROM EMEQGENCY STORAGE AND I~DICATES 
THAT SOME SUASEQIJENT UNSOLICITED EVENTS MAY HAVE ~EEN LOST. 

2-14 



• B U F R 

THIS MODULE IS CALLED FROM THE CONTINUATOR SECTION OF ALL DRIVERS 
~~EN AN 1/0 REQUEST HAS COMPLETED: IF THE REQUEST WAS NOT QUEUED 
(PUT ON THE DQIVER'S DRQ). THE ORQ HEAD WILL 8E ZERO AND A ~ETURN 
TO TH£ CALLING DRIVE~ IS IMMEDIATELY MADE. ~HOWEVER SELF-QUEUING 
DRIVERS CAN MAKE USE OF THE CRQ BY FCLLOWING THE STEPS OUT-LINED 
IN THE SECTIO~ "SELF-QUEUING 1/0 ORIVEPS.) OTHERWISE THE REQUEST 
I~ PLACED ON THE CRQ AND IS REMOVED FROM THE ORQ~ 

THE EQT FOR THE CO~PLETED 1/0 REQUEST IS NOW 'CHECKED IF THE EQT 
INDICATES THAT THE DRIVER IS SELF~QUEUING CEQT WORD AITI4=1),· 
THE nRQ HEAD (EOT WORD 4) IS SET TO ZEPO AND CONTROL IS RETURNED 
TO THE CALLER. FOR A QUEUING DRIVER THE EQT STATUS IS CHECKED. 
IF THE EQT STATUS INDICATES THAT ATTENTION IS NEEDED EQT WORD 1. 
HIT14=1). THE ORQ IS SUSPE~DED fEQT WORD O. BIT1~= ANO .BUFR 
WILL RETURN TO THE CALLER. OTHERWI~E~ THE D~IV£R'S DRQ IS CHECKED 
FOR ANY PENDING 1/0 REQUESTS. IF THE ORQ HEAD IS ZERO •• 8lJFR WILL 
RETURN TO THE CALLER. IF THE DRQ HEAD IS NOT ZERO THE UPENDING 
ORQ ~CTIVITY" FLAG IS SET IN THE EOT FLAGS WORD CEQT WO~D 0, 
AITll=l) AND THE PENDING ORQ ACTIVITy COUNTER IS I~CREMENTED. 
CONTROL IS THEN RETURNED TO THE CALLER. 



SELF-QUEUING 1/0 DRIVERS 

A SELF-QUEUING 1/0 DRIVER"IS ONE ASSOCIATED WITH AN EQT HAVTNG BIT 
14 OF EQT'WORD 0 SET. SUCH AN 1/0 DRIVER IS UNIQU~ IN THAT NO 1/0 
REQUEST IS, EVER QUEUEO FOR IT BY QUEUED .IOC'. THAT IS. NO ORQ IS 
MAINTAINED. INSTEAI"), .ALL 1/0 REQUESTS ARE IMMEDIATELV PASSED TO 
THE DRIVER AND IT MUST MAINTAIN ITS OWN REQUEST QlJ~UING INTERNALLY. 
THIS DEFINITION IS TO ALLOW FOR DRIVERS WHICH HANDLE MULTIPLE 
DEVICES. ESPECIALLY MULTIPLE DEvICES SERVICED VIA A SINGLE HARDWARE 
1/0 INTERFACE SUCH AS THE HP 1~q~n ASYNCHRONOUS MULTIPLEXER. THIS 
TYPE OF DRIVER DOES NOT wANT THE 1/0 QUEUING SERVICES OF QUEUED .IOC. 
SINCE REQUESTS ~AY AE OI~ECTED TO DIFFERENT SUBUNIT5 OR SURCHANNELS. 

5F.LF-QUEUING DRIVER5 DO. HO~EVER. HAVE ACCESS TO MOST OF THE 
CAPABILITY OF QUEUED .IOC. SPECIFICALLY. THE COMPLETED REQUEST 
QUEUE AND THE UNSOLICITED EvENT FACILITY ARE AVAILABLE. USE OF 
THE UNSOLICITED EVENT FACILITY REQUIRES NO SPECIAL INFORMATION, 
AUT USE 'OF THE COMPlE TED REQUEST QUEUE MUST 8E PLANNED. QUEUED 
.IOC. REQUIRES FIVE WORDS OF STORAGE IMMEDIATELY PRECEDING THE 
BUFFER ASSOCIATED WITH A READ, WRITE. OR CONTROL REQUEST. HENCE. 
IF A NON-QUEUING DRIVER PLANS TO USE THE COMPLETED REQUEST QUEUE, 
110 REQUESTS TO IT SHOULD. IN TURN. EXPECT THE CALLING PROGRAM TO 
SUPPLY THESE FIVE WORDS. (NOTE T~AT INCIDENTALLY THESE FIVE WORDS 
COULD BE USED BY THE 1/0 DRIVER TO PERFORM ITS OWN REQUEST QUEUING.) 
~JTH THESE FIVE WORDS AVAILAALE. TH~ I/O DRIVER CA~ HAVE A REQUEST 
ADDED TO THE CO~gLETED ~EQUEST QUEUE BY PERFORMING THE FOLLOWING 
STEPS: 

1. UPDATE THE EQT WITH ALL NEC~SSARY STATUS AND TRANSMI5SION 
LOG IN~ORMATION. 

2. COpy THE .tOC. REQUEST PARAMETER INTO THE SECOND WOPD OF 
tHE FIVE PREFIX WORDS. (THE LOGICAL UNIT NUMBER IS THE 
MAIN REQUIREMENT.) THIS SHOULD PQORABLY AE nONE IN THE 
INITIALOR ~ECTION OF THE DRIVER wHEN THE 1/0 REQUEST IS 
MADE. 

3. PLACE THE AODPESS OF THE ~UFFEP (NOT THE A~DQESS OF THE 
FIVE WORD P~EFIX) INTO EQT WORD 4 (THE DQQ HEAD). 

4. CALL .RU~Q IN THE NOPMAL WAY~ 

2-16 



• U N c:: • 

THI5 MOOULE IS CALLED.~V Q~IVERS FOR UNSOLICITED F.VF-NT NOTI~ICATION 
PPOCES<;JNG. .UNS. CALLe; • .,ET TO ObTAIN THE F'I·VE I')lJF.UE CONTQOL WORD~ 
N£CF.:'C:;C:;AQY FOR COMPLETFD RF."QlJEST QUE:.UF. ENTQI£S'. IF 1\10 ~OPF SPACE IS 
AV~ILA~LE •• UNS. WICL ATT~MPT TO USE THE FIVF WOQns 'OF EM£~GENCY 
STOP~c;E. IF THIS TOO IS UNAVAILABLE. T .... E LOST J:.NTPY COUNTER IS 
AUMP~D AND T~E ENTRV IS IGNORED~ ONCE THF. ENT~Y <;TORAGF. IS OBTAINED • 
• UNS. WIL~ BUILD THE CPO.ENTRV A~O INSERT IT ON T~~ ~RQ ACCORDING 
TO ITS CO~PLETION PRIORITV. THE COMPLETION PRIOQIT~CAN ~E'CO~PUTEn 
PY A C:;PF.CIAL DRIVER SUPPLIED PPIORITV APPENOAGE C<;EE BELOW) OR IT CAN 
RE SUPPLIED BY THE CALLING DRIVEP OR'THE DEFAULT pqrOQITV CAN BE 
~EQtJE~T~D BY SUPPLYING A PRIORITY OF OCTAL '77~ Trl~ DEFAULT PRIORITY 
WILL AE THE DRIVEQ'-:; UNIT PEFERE"'CE. NUM~F.R·. AFT~P EN(lUEUING THE CPQ 
E~TRV •• UNS~ WILL RETURN CONTQOL TO THE nRlv~R~ 

PQIORITY APPENOAGt 

IF A PPIORITV APPc:.:"'r)AGE IS E'STA~LIS""F'D FOR A (;rv~~IOEVICE. IT WILL 
RF Et-·JTER€D AS A SIJAROUTI~E wHENF"E:.~ ~N OPERATIOPlJ ~O~ THE DEVICE' 
CO~PLETES. WHEN THE oOUTINE I~ ~NT~PfD. THE A A~n' ~ PE'GISTEPS wILL 
CONTAIN THE FOLLOwING INFOQMATION~ 

A-REG = 4nnpE~S OF AUFF£w 
n-~EG = AnOQFS~ OF EQT 

THF QOUTINE IS EXPECTFD TO RETURN wIT~ T~E A-~EGt~TFR CONTAINING 
THE PRIORITV AT WHICH THF RUFFE~ IS TO' PE PLACED ON THF CO~PLETED 
RF.:rJlIEST QUE.lJE:. ZERO 15 T~F HIGHEST PRIOPITV Ar-'l[) OCTAL 77 IS THE 
LowEST PQIO~ITV. 

A p~tnQITY APPE~D4GE IS F~TA~LISHED PV MAKIN6 AN .Inc PRTOPITv 
APp~NnAGE' REQUEST WITH THE AOORESS OF T .... F APPF~n4G~ SUPPLI~O AS 
A PAQA~~TFP. AN AODUESS OF'7ERO ~ILL DEACTIVATF THE PPIOPITY 
4PPf/'~DAr;E • 

2-17 



o 

1 

2 

3 

4 

5 

TAB L E 

15 14 13 12 11. 10 q A o 
----------------------------------------------./~,-------D • . • • 5 p : CHANNEL • · ----------------------------------------___ ---1 !:-------

IS 14 13 8 7 o 
-~---~------~-~--~~--~-~----------------------. I~! ____ ---

A STATUS 

---~--~----------~----~-----------~--~-~------

IS 14 

-------------------------------------~--------, TRANSMISSION LOG 
----------------------------------------------

15 

___ ~---~-------------~--~-----~----~----------. f 

ORIV~R ADDRESS 

o 

l ______ _ 

o ------_ .. 
• • 

-----------------------------------------_____ ;/~. ___ ----
IS 0 __ --______ -------_--------________ -------_---_" " ____ ---. . nEVICE REQUEST 9UEUE HEAD 

----------------------------------------------, I~ . ____ ---

15 0 

-~---------~---------~------------------------. ._------PRIORITY APPENDAGE ADDRE~S 

----~--~~---~--------------------------------- --------

WOP£) 0 o - DI~ECT ~E~OPY ACCESS CHA~~fL INDICATO~ 

N -

5 -

1 OMA REQUIRED ~6R ALL n~TA TRANSMISSIONS 
o D~A NOT PEQUIRED 

NON-QUEUING INDICATOR 
1 NO DE.VICE REQUEST QUEUE IS USED. THE 

1/0 DRIvER ACCEPTS ALL I 0 REQUESTS 
IMMEDIATELY 

o A DE.VICE REQUEST QUEUE IS TO R£ 
MAI~TAINED RY ~IOC~ 

DRQ SUSPENSION INDICATO~ 
1 DEvICE RECUEST QUEUF 
o DEVICE REQUEST QUEUE 

2-18 

IS 5USPE"'DED 
I C; NOT SU!=iPENDE[) 



wo;.)r· 1 

Q -

p -

PF::')IJJf;;F:S O..,iA IN()ICATO~ 

1 THE liRQ IS rsUC:;PE'NDEI) ~ECAlJSE' A DMA 
CH~NNEL IS NEFOED HUT WA~ NOT AVAILARLF 
AT THE TI~E THE DRIVE~ WAS ENT~QED 

o THF.: ORQ I 5 ~,"OT SUSPF."NOED FOQ r).~4A 

PENnING ORG ACTIVITY 
1 THE DRIVEQ IS ~O LON~~Q BUSY AND SO THE 

110. REQt.fEST ON TOP OF" THE DPQ CAN 8E 
INITIATEO 

o T~EP~ IS ~O_PENDINb hpQ ACTIVITY 

SUR-CHANNEL - THE UNIT NU~~EP n~ A DEVTCE ON A MULTI­
DEVICE CO~T~OLlF~ 

CHAN"'JEL -

A -

STATUS -

THE C~·ANf'.JEL "'U~foct:P t SELECT CODE) FOP THE 
OF.vICE I~T~~FACF. 

AVAILAHLILITY OF OEVIC~: 

o AVAILAt:l.E - PQF='VIOU''; OPEPATIO"l CO~f.lLETE 
wITt-tOUT EPPOP 

1 AVAILA~LE - PRFVIOU~ np~RATI0~ COMPLETE~ 
wITti f.kJ.J.OP 

2 ~OT AVAJLAfLF - JIO QF~UEST TN p~OGRE~S 
1 PURGED Rfo (vl 't="~T - r .... F I")Q I VF ~ r..'E' .JEeTED 

TH~ LAST 110 PF (,)UF.C:;T AI\ID THE rJE"OUEST 
\~AC:;. ~E::~OVE.(1· F"PO~ T~~ t)qn A"J!") P'IT ON THE 
CQ(,) Oh' ~t.L T 10 4E(JU~C:;TC::; F'OR THIC:; I1EVICE' 
~EQ~ p~~GfO. I~ ~ITH~R EVE~T. TH~ CPq 
F.:t.JT~If.5 F'or.; PURGFD TIO P£QUF.:5TS wILL 
CON TAl N A en p v 0 F T ... ISS T·A T 1I S 

STATU!=; of THF ht.VIC~·. IF=' THF AVAILA"ILTTY 
VALUE 1<; -:a. T"'f STATU~ wTLL ~E 7F;,",,() T~ TH~ 
p E' Q" F. S T \II. A 5 P U Foi G ~- n n R I T l~ r l. L R F. 7 7 IF; T H F. 
QEQU~c:'\T wAS PF.JfCTE'O 

M - ~onE n~ TPANS~ISSION 

1 HI~JA~Y 

o ASCII 0 0 ~Cf) 

T R A,." S M T ~ S r 0 f\J L 0 (; - N U M t:s ~ ~ n F' C H A R ACT f ~.:; I) ~ III 0 PO S 
T~ANC;MITTFD 

OQIVER A()n~ESS - AH50LUTt. AO(,>f:.iF~C:; OF THTS t)~vlrF'c:; 
I/O nYvER 

DFV I C~ qF.QuF.: ST OllF.' JE Ht-: AO _ A[)OPF='SC:; OF CUP,:/F.NT MI J~FF~ 

~EIN(., pqOCEC:;C;F.O IF f')UEUfO Pf'QIJF:<;r f.'()C.J QI,FUrNt; DRIVER. 
THIS Ann~~sC; MuC;T ~E' SU~PLIE:n RY SF.L~-QUE'UINC; nj::;lTV~pc:; 
J F" THF-- QE(HJF S TIS TO ~E r:-L. t\ CFO ON T t-4F CO~~PLE TE'r) 
~EQUFC:;T l~ur:ttE. 

2-19 



WOPD 5 . PRIORITY APPEND~GE ADDRESS - THE A·ASOLtJTF:: ADDRESS OF 
THE PRIORITY APPENDAGE ROUTIN~~ . 

2-20 



- DATA TRANSMI~SIO~ (PEAD/~RIT~) 
F'tJNCTIONC; = II? 

J5F1 • IOC. (P) 
(p· ... I) 
(P+2) 
(P+3) 

(P+4) 

(u+S) 

(Q.FUNCTtON.SUAFUNCTr~N.UNITl 
(~EJECT RETURN, 
(F.HJFFER AODQE SC:; l 
(AUFF"f'P Lf"lGTH) 
(NOQMAL RETURN, 

,:'t,I'\ICT 101'-1 c;ELEC T 
F'IJf\JCTION = 1 

JC;R • T t)C • (P) 

(P+}) 
(P+?) 
(P+3 ) 

(F'IJ"JCT I ON" 5U F1 F"UNC T ION .ll,.11 T) 
(PF.JEt:T ~ETtJr,.,N) 

(NORMAL RETU~N) 

- C;TATlJ~/CLE~Q 

F"'''')CTIO~CS =4/0 

(P) 

(;,) ... 1) 

(P+2) 

J<;R • I OC. 
(F'UNC T I O~" I. IN T T , 
nJOQ~Al. ~F.:TU~N) 

I ~ITF.~~OGA T I n"J 
F'I.I"JCTION = '5 

(P) 
(P+l) 
(P+? ) 
(P+ 1) 

J~A • IOC. 
(,:'Ijf\JCT I ()N" U".JI T , 
(PEJF.CT ~E'TUQ~, 
(~()~." 1.\(. ~E T Ut'-.lN 1 

P\JQGE"/REL£AC:;F. 
t:"I,f\ICTION = f, 

,J C; ~ • I n t: • CP) 
(P"'l) 
(P"'~) 

( F' I J NeT ION " S II ~ F' l ! ~I C T lOr-; • lJ I'\i IT' 
("'I")'J~AL RF.TUP"J\ 

00***0********************************************** 

2-21 



III. Design Structures 

~l~RAl .g~! §1ruc1~ 

In the following sectiens, precise bit-level definitions of 
system-wide or global data structures are given. In the strictest 
sense of the vord, only the SCW's are truly global data structures 
since they are known to virtually every module of the systell. 
None of the ether data structures outlined here are known to any 
modules except the system lanagers or supervisory ccmponents. 
Hence" they are not global. However, because all of these data 
struct~r9S are of major importance to the total system design, 
they are gathered together here for completeness and clarity's 
sake. ' 

Nine buffer control vords are contained in the first 9 vords 
of each buffer. Words 5 thrcugh 8 are required by Queued .IOC. 
for I/O scheduling, but these vords may also be used for 
interhandler comaunication whenever no intervening I/O would 
destroy the contents. Word 9 is used for queueing and is 
therefore volatile at the interhandler level. However, vord 9 may 
be used to co •• unicate between a handler and a driver. Words 1 
through 4 are used for inter- and intrahandler communication and 
for retaining such fixed information as buffer pool nu.ber and 
size. These vords are never destroyed by IOC. 

Word 1 

Word 2 

Bi t (s) 
15-11 
10 

9 

8 

7- q 
3-0 

8i t (s) 
15-14 
13- 8 
7-4 

Function 
Handler defined status flags 
Reject 
=0 - acce pted 
=1 - message rejected 
Purge 
=0 - no purge 
=1 - massage purged 
Interlock . 
=0 - no interlock 
=1 - return buffer to sender 
Handler defined st~tus flags 
Buffer Pool nu.ber 

Function 
(Reserved for fut ure use) 
Data stream id number 
(Reserved for fut ure use) 

2-22 



Word 3 

Word 4 

Word 5 

Word 6 

Word 7 

Word 8 

Word 9 

3- 0 .' 

Bi t (s) 
15 
14-0 

6i t '(s) 
15-0 

6i t (s) 
15- 3 
2-0 

Bi t (5) 
15- 14 
13- 8 

Buffer type in4icator 
sO - no op~ration 
=1 - write 
-2 - read 
=3 - enable or start =. - disable or stop 
=S - purge 
-6 abort or error 
=7 - operator command or directive 
=8 - control operation 
=9 - start error retry operation 
=10-1~ -reserved for future use 
=15 - allocat~d buffer 

Funct,ion 
Unused . 
Name of sender* 

Punction 
Buffer length (vo,rds) 

Used by • ICC. onl y 

Used by .IOC. only 

Used by .IOC. and by handlers, 
to communicate message length 

Used by .IOC. and for inter­
handler status information 
Function 
Defined by individual handlers 
General error type indicator 
(as used by ASCII files 
handler, eta al.) 
=0 no err~r . 
=1 not ready condition (type 1 error) 
=2 read check error (type 2 error) 
=3 data check error (type 3 error) 
=7 .end of file 

Used by handlers to communicate 
this infcrmation to I/O drivers: 
Funct ion 
Driver specific flags, 
Stream id~ntifiers (to identify 

2~~23 



7-0 

cne of several devices controlled 
by a driver such as the 12920 
aultiplezor driver) 
D~iver specific flags 

Used by the Queue ftanager as the 
chain or ~ink word when linking 
buffers onto a work queue 

The appropriate BCW words are set by the sending handler 
before queueing for another tandler. It'should be Doted that 
.IOC. will not disturb words 1 through 4 of the BCW·s. 

*The tera "nalle" is used for clar ity's sake (See QIT). Here it 
refers to the address for the OIT entry of the sender. 



In the follo~i~g secticns are discussed th~ system managers: 
Queue ~anager, Buffer Managet, and Allocate/Deallocate Manager • 

..f.Y.I!~ t i.Q!lsl g~2g:j. ".~~: ion 

The Queue ~':anager prcvides the cOMl1unications link between 
function handlers. Much work created for a function handler is by 
qU-3ue p.ntries, auii the Queue Manager manipulates the proper queues 
to route commands.' messages, etc., in tuff~rs to and frca function 
handlers. 

Th~ Que.ue .. ::.mager has several entry points each sUPFlying a 
service to callil"l:] ftlncticn handlers. The ent.ry points are: 

1. .PUTQ whic:l Hill enquEue .work for a gi~len function handler. 
2. • PRIQ uhich is the same as • P UTQ exce pt that thE entry is 

placed first in the desJgnated queue. 
3.. .GETQ \lhi(~': rf'.:turns a queue ent1:Y for processing to the 

calling hant1:~~c and d~queues the entry. 
4. .SEEQ whic::\ is the same as .GE'rQ except that t.he entry is 

nrit removed irom the queue so that on subsequent ~SEEQ. calls 
the same qUGla entry is returned to the handler. 

S. .PURQ which removes all entries from u queue and returns 
buffers t.c t:l.a proper lccation. 

All uses 01: 
iu~ue. The queuo 
address c:..ppears 
the queue name. 

the QM depend on identification 'of a specific 
in question will be the one VhOS9 CIT entry 
in registeI A. This parameter is referred to az 

Upon receiviraq control ftcm a .POTQ or .PRIQ call,'the queua· 
manager uses the destination name to access an entry in the QIT. 
Tha buff~r is then chained intc the vork queue associated ~ith the 
QIT entry. If the queue ~as em~ty, tha pri~e gate is s~t. to 
~ispatch the function handlqr that is to process the qU€U€ entry. 
If the queue wa~ !lot empty,· the QZ-t returns to the caller. 

Opon receiving control from a .GETQ call, the Q~ u~es th~ 
calling handler name to dequeue the first entry in the quau~. Thq 
r~~aining queue depth court is placed in re~ister A, and th~ 
address of the queue e~~~ent is placed in register B. In ca~e of 
a .5EEQ call t~e action is the same as .GETQ except the queue 

2-,25 



~ntry is not rEmoved from the queue. If the designated queue has 
been purg~d, both .GETQ and .SIBQ will return this indication with 
a zero valu,e in register B. This is to be considered a "10gi(:a1" 
work entry. Por this reasen, .SEEQ will continue to return this 
indicator until it is relievEd via .GETQ. If a queu~ entry is not 
prasent, the prime gate for the calling handler is closed to 
prevent dispatching the handler again, and th~ handler is notified 
of thE empty queue condition • 

• PURQ uses .GETQ to empty a 'queue, routing buffers back to 
the sendar (if the sew word 1 interlock bit is set), cr freeing 
thgm through the Buffer Manager. 

Calling Sequences 

1. .PUTQ or' .PRIQ 
Calling sequenc~ js: 

LDA 
LDB 
JSB 

NAME 
BUFAD 
• PUTQ 

2. .GETQ or .SEEQ 

Load destination queue name 
Lead buffer address for enqueue 
Call OM 

Calling sequenc~ is: 

LDA 
JSB 
JMP 
STA 
5TB 

NAME 
• GETQ 
NOQ 
QCNT 
BUFAD 

Lead calling handler queu3 name 
Call OM 
Ne queue antry available 

Save addr~ss of queu~ elememt 
returned 

Note that if a queue ettry is nct availabl~, a r~turn to the 
calling handler is to the wOId immFdiately following the jump-to­
~ubroutine instruction; when a queue ~ntry is available a skip is 
taken to tha SEcond word. fcllcwing th~ J5B instruction. Cn - return 
to th~ caller, the QM plac~s in R~g A th~ curr.ntdeFth of the 
qu~ue (number· of werk ~ntries curr€ntly in the queue). 

In case the qu~ue was purged previous to the .GETC call, 
return is with 'a'skip, how8ver, rGgister B is zero. 

2-26 



3. . • PURQ 
Calling sequenc9 is: 

LDA 
JSB 

RAttE 
• puaQ 

Name of queue to be purged 

The Queue Managet maintains all work qu~ues as linked lists 
chained by addtess. QI~ votd one pcints to the fitst queue 
~lement and the link word of that queue element ~oints to the next 
queue element and so on. 011 WOt~ two points to the last queue 
element in the linked list. The link word fo~ each element is BCW 
word 9. 

2-27 



The Queue Information ~atle contains one entry for each work 
quaue in the system. Generally, one work queue exists for each 
function handler, although ~ultiple vc~k queues could ccnc@ivably 
be associated with a 5ing19 function handler. It is through thes~ 
queues that one function handl~r gives work to anothEr via the 
Qu a~e Manager. 

The term "name" is asseciated with the addr'9Es cf a OIT 
entry. A name is obtained from the Allocate/Deallecate Manager 
an1 1S· used by a producing f~nction handler to designate the 
consuming or receiving function handler. 

The QIT consists of tvo segments. First are all of those 
entries which represent non-allecatable resources. The second 
segment consists of all those entries which represent allccatable 
resources. This sEcond segment is ord~red by TSB logical uni~ 
number (not to be confused with logical unit numbers for lep .IOC. 
calls) • 

Each entry consists of j 

Word 1 

Word 2 

Bi t (s) 
15- 0 

Bi t (s) 
15-0 

Word 3. 

Word 4 

8i t fS) 
·15- 0 

Bit (s) 
15 

verds as follows: 

Funct ion 
Address of first buffer on thE 
work queue or zero if no wotk is 
queu~d. This word may be thought 
cf as the queu~ head. 

Function 
Address of last buffer en the 
wcrk gueue or the address of this 
wcrd if no work is qu~ued. This 
wcrd may be thought of as the 
g,ne ue ta i 1. 

Function 
Queue entry count (number of 
buffers on the work queue) 

Function 
Allocatable r~source flag 
=0 - not allocated 
=1 - allocated 

2-28' 



Word 5 

Word 6 

Word 1 

14 

13- a 
7-6 

5- 0 

B1 t (5) 
15-0 

Bit (s) 
15-0 

81 t (s) 
15- 0 

Queue status flag 
=0 - queue normal 
=1 - 'queue has been purged 
.IOC. logical unit number 
Unused . 
~~B logical unit number 

Function 
Address of associated handler's 
~l:ime 9& te 

function 
Address of associated ha~dler's 
initialization entry point or zero 
if no initialization is required' 

. Function' 
Device name (class and number) 
fer device associated with this 
QIT (see Allocate/DeallocatE eanager) 

. 2-29 



In the following secticns,· supervisory components of the 
system are discuG~ed. 

The Oispat.c'~0.r module js the master 'interface betwEen queued 
.IOC., the Queuu :~nager, and the various function handlers in the 
rop. The Disp(\' ~her Dlu~t perform scheduling offuncticn hahdlers 
in tvo cases, npn~ I/O 'event cc~pletion and ~hen primed b~ th~ 
Qu~ ue Manager. 

Function h :-..:Jlers arg nodules \1hich perf orm ~ ajor pr.ocessing 
ta sks. USl1Clll y .. \ ':.11 are assccia ted ui th an I/O devica. These 
han~lers have ~~\ ~ources of wcrk: coupleted IIO operations uhich 
th-ay have previo' ,;17 schedulErl ilnd work given to them 'by other 
handlers 'Tia th,::5.c work queuE. for this reasen, handl·ers have tvo 
types of entry p~tnts in ~ddition to an initialization entry 
foi n t. One i!~ ::or dispatc hing vhen I/O oper ations co m fleta, and 
the other is fer dispatching uhen uork appears on a work queue. 
Thr:! folloui!lg :':\ming convar.tions for these entry points are used 
vh ~ re xxx is a b~·,!.'i ic module namE: 

XXI BIl 
XXlaC 

scheduleu cr prime entry 
I/O cc~pletion entry 

''Iha HP entry po~.!lt is always entere(~ via JSB. The He entry point. 
is entered via Ji;P. ~ll G~cits from these ·modules folloHing a 
dispatch (i.e. i~ntry at alther typa of entry point) must be done 
with a JMP to tho ~xtc~nal sy~tol .• COll. ~hich is the be9inning of 
th3 dispatcher's cc~mutator. 

f~£~§.§1ng alg2~ith~§ 

. The Dispatcher has two ~art5: 
dispatcher •. 

2-30 

a commutator . and an I/O 



The commutator conEists cf several levels of' dispatching 
soft ware. Each level has a ssocia ted wi th ita soft ware' priority. 
The levels of the commutator ex£cute in priority ord~t. At the 
gnd of the commutator, following the las~ level, is a JHP back to 
the top of the commutator. !hus tbe entire lOP syste~ will loop 
in the, commutator. As .wcrk ',becomes available, it' will ba 
dispatched from its appropriate level by leaving this lccp. 

'Dispatching softllare at a commutator level consists of an 
.IOC. completed event r:gu~st and one or more functicn handler 
prime gates. 'The .IOC. call removes completed I/O events from 
IOC's completed. event queue. These are than turned. over to th3 
I/O dispatcher. Function handl&.~ prime gates are simple two 
instruction sequences of this form: 

GAT E R 55 
JSB ENTRY 

Th9 JSB is to a prime entry point in a function handl~r. Tha 
UGA'fE" is generally an RSS instruction to prs-:;rent entry to the 
handler. The Queue Mana"ger manipulates this gate, making it 
aither an RSS or a-NOP, depending on availabl~ vork. The gate is 
o~en€d (NOP) when .PUTQ' s cr • PRIQ=s of i~'ork are dCllE:: alld is 
closed CRSS) when th~ work q ceue has been ef~'! ptied via • GETQ' s. 
Note that due to the use of the J5B, a handler is abla to open· or 
'close its own ga te. 

The I/O dispatcher receives centrol from all commutator 
levels ,whenever a completed IIO ~vent is located. Using the 
lcgical unit number for the I/O op~ration~ the IIO dispatcher 
performs a table look-up and dispatches the associated handler at 
its I/O completion entry Fcitt. 

12£A4 ~A1s 2~~]~1~~~ 

Since the system is based on a BCS environment, an .IOC. 
logical unit numb~r is associated with ~ach IIO device. Also, a 
specific function handler ~ill ~xist to control each I/O devic~. 
Therefor.~, association betweEn the logical unit numbers and the 
function handlers is nec~ssary in crd~r to dispatch the proper 
function handler tc process the completed IIO ~vents for th; 
device. . Thus, a table of tr.e function hand19r I/O compl~te entry 
point addresses is kept., !he table is ordered by logical uni~ 
number and is called th€ IIO DiE patching Tabl~ or lOOT. 

2-31 



ILQ Q.~~!ching Ie.h12 JIQQ!l 

The lOOT is a tablE cf function handler antry point 
3ddresses. These ara the entry points for the' s~ctions of the 
handlers vhich handle ccmlleted I/O events. This table 'is 
maintained 'in .ICC. logical unit number order so that an 
association bet\-1,,!'~n I/O events and function handlers can be made. 
The lOOT is used by the dispatcher to ent~r a functicn handler 
wh3n a completEd :~,:O event i~fcund. The lOOT format is: 

Word 1 .~ ddress of l/e completion entry point fer 
:.09 local unit number 0 

Word 2 .\ ddress of I/O completion elltry point for 
~~. "1 ical unit number 1 

• 
• 
etc. 

since no BCS standard unit numbers (logical unit numbers 0 through 
6) are used in tl! '! system, ~"cIds 1 throl1gh 7 contain tho address 
of .COM. and y1<;:'.0 no effectivta dispatching. 

2-32 



l!!.ti~.u,gjl.sl g!!.§giEll-21l 

The Suffer Manager is a modu19 which provides a central 
control point for obtaining and releasing buffers by function 
handlers. It manages the centralized buffer storage area or pool. 
The buffer pool is divided into subpools of two general types. 
structured sub~ools are pr~built with a fixed number of fixed size 
buffers. These subpools are typically used vhen hardware or other 
system requirements demand a guaranteed number of tuffers. A 
single unstructured subpool js also availabla. From it, buffers 
of varying size can b6 obtained. All storag~ not used tY'program 
modules or fixed dat~ structures ~s available to this subpool. 
The Buffer Manager has two entry points: .GETS and .FREB. .GETB 
provides a buffer from a sub~ocl and .FREB allows a handler to 
release a buffer to a subpool. 

When called, the 8u ffer Manager useS-- the tu ffer subpocl 
. number to map to a Subpool Ccnttol List (SCOL) ~ The seCt holds 
necessary information about the subpool, such as what tuffers are 
free and how many requests fcr these buffers may be outstanding. 
As well as maintaining the tuffer subpools a provision is made to 
stack .GETB requests for handlers when .GETB requests fail due to 
buffer unavailable conditicns. ·A Buffer Pending Request Table 
(SPRT) is associated with each seOL to record information about 
handl~rs with buffer pending requests. These requests vill be 
9vantually satisfied when the buffers becom~ available through 
.PRES. When the tuffer manager is entered via .FREB and the SCOL 
for the buffer heing returned shows a handler waiting for a 
buffer, that handler will te given the buffer via a .PRIQ. In 
this case BCW word 3 will be cleared and sew word 2 vill be set 
with a command code of 15. (See Buf·fer contr,ol Words.) 

The SPRT retains infcrmation. about handlers which request 
buffers when 'no bu ffers are ava ilab le. Th~ number of s lets in th~ 
BPRT is equal to the number of work queues in the QIT. Each BPRT 
slot then corresponds to a sfecific work qu~u~. The contents of 
the slct indicate the number cf buffers required by tha associated 
work queue. Initially this EPBT has all z-aro tantries. If a 
handler requests a buffer from th~ associated subpool and none is 
available, the following processing occurs: 

1. The queue nam6 of tha caller is used to generate an 
index to the 3.ssociated SPRT slot. This slot is 

2-33 



incremented to shew the requirement of the caller for a 
buffer. 

2. A master count of required buffers in the seOL (word 
three) is also incremented. If this master count vas 
zerc~ the seOL fetch pointer is set to address this 
nevly incremented BPRT slot. The handler's pri.e gate 
is close to prevent further processing until the 
requested buffer is available. A "no b~ffer"returD is 
effected. 

When a buffer is returned to the subpool via .FBEB, the 
following procEssing occurs: 

,. If sew lIord 1 bit 8 is set, then the buffer is 
interlocked. In this case a true .PREB is tot done. 
Rather, a .PUTQ tc the name in Bew word 3 is done.~ 

2. If the aaster count is zero, no further processing 
occurs. 

3. The fetch pointer in the BPRT is used to calculate the 
queue name index. 7he queue naae is then generated, 
and the free buffer is assigned to that queue. The 
count for that queue'naae is reduced as is the .aster 
count. 

4. If the aaster count is now non-zero, the fetch pointer 
is advanced to the 1lext non-zero BPRT slot ... This fetch 
poi1lter is always nsed in a round robin fashion. That 
is, each BPRT entty vill be exaained equally often so 

'that a handler requesting aultiple buffers vill not 
receive all of thEa prior to other handlers. This is 
to prevent lockoat conditions by handlers making heavy 
demands of this sabpool. 

lL1!tUJ,ang 

ca~ling Sequences 

.GETB, - o bt ain bu f fer 

Re~ister A must contain the nase of the calling 
handler. RegisteI B must contain the desired buffer 
sub pool number. ~he calling sequence is: 

2-34 



LDA - NAr!E 
LDB PULNO 
J5B .GETB 
JltP NOEUF 
5TB SUlAD 

• 
• 

• FREB - free a buffer 

Register A must ccntain thE buffer address of the 
buffer to be releasEd. The calling sequence is: 

LOA BUFAD 
J5B • FREB 

• 
• 
• 

Requests for buffers frem sub Fool zero are for tuffers of 
length supplied by the callet. Th~ calling sequence to ."GETS for 
this subpool is modified as fellcws: 

LDA NAME 
LOB LNGTH 
C MB, INB 
JSB • GETB 
JMP NOBUF 
STa BUFAD 

QUEUE NAME OF CALLER 
LENGTH OF REQUIRED BUfFER 
COM P L E M E NT LEN GT H 
REQUEST BUFFER 
RETURN IF NO BUFFER 
NORMAL RE'!'URN 

It should be noted tha~ this calling s~quence to .GETB differs 
from ether calls to .GETB in its use of register B. Normally, 
regist~r B supplies the r.uabet of the subpool' from which th~ 
allocation is to occur. In this case, ~egister B indicates ~he 
length of the cuffer required. The negating of this length then 
implies use of sub~ool zero. ~his is the only subpool for which 
this is tru~. The lenqth ~hculd nct include the 9 BCW words. 
These are automatically sU~Fli~d by the Buffer Manager. 

In order to handle trese- rEquests, the buffer manager will 
use the BPRT for this subpool in a diffar~nt manner. In the event 
no buffer is available, the requested length will be saved rather 

2-35 



than a count. The ,module !EMRY will be used to perform 
allocations. If the requ~stEd length is such that the tuffer can 
never be supplied, centrol vill be returned to the calling handler 
as in a nor.al return, and t 1:e B register vill contain the aaxiau. 
size of buffer that can ever be requested. The A register -ill 
contain a -1 value. Note that the subpool zero SPRT can only 
retain information about 2~i size of request at a tiae by a given 
handler. If multiple outstalding requests occur, they vill all 'be 
satisfied with the last requEsted size. It is assumed that this 
is the mode of use for this sutFool. 

The use of the SCOL fetch pcinter when a buffer is returned 
to the subpool is as follows: 

1. The buffer is returned using nEMRY. 

2. The BPBT entry addressed by the SCOL fetch Fointer is 
used to ottain the length of a buffer ,required by a 
vaiting handler. 

3. If a buffer of this length is available, it is given to 
the requesting hatdler. The fetch pointer is adjusted, 
and processing continues at step 2 for othel Fossible 
buffer allocations.~t the first occuranee of non­
availability, processing ceases. 

If any ~equests tor buffers cceur when other handlers are 
waiting on the BPRT, those requests are not satisfied (they are 
added to the BPRT). The eoatination of this technique and the one 
of satisfying BPRT entries it crder guarantees that all requests 
will even'tually be satisfied. No lockouts can occur. 1 .aster 
count of pending requests is aaintained in the SCOL. This is used 
to detect pending requests at the'tiae of new requests. 

For this subpool, BCi word 4 is especially iaportant. It 
holds the length of a buff9r allccated from subpool zero. It is 
needed by the Buffer !anager in releasing the buffer to the 
subpool. Therefore, no user of such a buffer aay .odify BCW word 
4. 

2-36' 



§. ub e~.21 £ c n t,!.s.l 1i.§~ 1.§£2U 

One Subpool Control List is .associated with each buffer 
subpool and is used by the Euffer Manag.r to control buffer 
,llocation/deallocation. It is also used in conjuncticn with its 
associated Buffer Pending Request Table (BPRT) to control delayed 
allocation of tuffers vte~ r@qu~sts" cannot be immediately 
sa tisfied. 

A pointer list to the ~COL's is maintained a~ locaticn PULP! 
as follows: 

PULPT DEF 
OEF 

SCOLO 
SCOL1 

• 

etc. 

Each SCOL has the fcllo~ir.g fermat: 

Word 1 * 

Word 2 • 

Word 3 
Word 4 

Word 5 
Word 6 

At load time - contains the address cf the 1st 
word" of the buffer subpool. At run time 
contains the address of the 1st free kuffer (or 
zero if none are availabla.) 
At load time - contains the address of the oat.3, 
area (1st wcrd after 9 sew words) of the last 
buffer in the subpocl. At run time - contains 
the address cf the last free 'buff~r (or the 
address of this word if none are availarIE). 
Helds a master count of pending buffer requests. 
Holds address of next BPaT slot ccntaining ~ 

pending raquest. 
Hclds the address of th~ 1st 8PRT slot. 
Holds th~ address of the last word cf the BPRT 
plus one. 

* For "subpool zero (variable size buffers), wotds 1 and 2 
of the seCL are initially zero and are not used. 

The term "address of l:uffer lf always means the addrESS of th.:: 
first data word of the buffet. It is assump.d that the preceding 
wo rd s a r ~ the B CW w 0 r ds • Be if w 0 r d 9 is us e d by bot h the 8 u f f e = 
Manager and Queue Mana~er to link buffers tog~ther on the free 
list (SCOL) or work quau-a (QIT entry) resp9ctively. 

2-37 



The following subpools are currently in use: 

o variable length buffers 
1 . Control buffers (available for general use) 
2 Console messa9E buffers 

(Terminal user buffers are taken permanently from subpool 
zero during system initialization.) 

2-38 



!H!~l.s!: .f~.n.<l1l!.9 i§.9l!~'§! 1 a b 1 ~ lftf!iD.. 

One Buffer Fending Request Table is as~ociated with each 
SCOL. It retains inform~tion, about outstanding requests for 
buffers. Each slot in the EPRT is one word long and 'is equated 
with oneQIT entry, retaining informatiQn about pending buffer 
requests for that associated QIT name. Hence, the number of slots 
in the BPRT is the same as tte number of QTT ~ntrys. The format 
of all SPRT' s ~!£~~ the one for subpool zero is as follows: 

Word 1 
Word 2 
• 
• 
etc. 

For subpool 
. 

Word 1 
Word 2 
Word .3 
'iord 4 

• 
• 
etc. 

., 

Number of pending requ~sts for 1st QIT entry 
Number of pendirig requests for 2r.d OIT entry 

zero, the BPR! has this format: 

Number of required buffers for 1st QIT entry 
Size of r~quired buff~r for 1st QIT entry 
Numb~r of requirAd buffers for 2nd QIT entry 
Size of required buffer for 2nd QIT entry 

2-39 



!~ngSi2n!! ~~~[i2~~ 

The Allocate/Deallocate Manager provides a facility tc assign 
and release handlers and queues for non-shareable resources such 
as line printers, card readers, and papar tape punches. All such 
allocation is done in cooperation with the system processor of the 
HP2000 ACCESS system. this is to prevent uncontrolled 
interference between the TSB and RJE functions. The ADM is also 
us~d by all handlers to acguire queue names for appropriate QIT 
antries so that .PUTQ's, ·.GE1Q's, etc., among handlers can b~ 
:3one. 

Designators are associated with each of these resources. 
Ihese designators reflect the class or type of· de~ice and th9 
numb€r of the dEvice (in case more than one is present). Th~ 
designators are formed from a two character class'designator and a 
single digit device number. For example: 

LP1 - line printeI class - number 1 
CRO - card reader class - number 0 

A device class and number are represented in one 16 bit computer 
word as follows: 

Bit 15 Zero 
Bits 14-10 (1st class character) minus 101 (ectal) 
Bits 9-5 (2nd class character) minus 101 (octal) 
Bits 4-0 (deviCE numbEr) minus 57 (octal) 

10 request allocation of any devic~ from a given class (no digit 
supplied), bits 15-5 are as abcve,and bits 4-0 are zeros. Thg 
following designators are currently in use: 

Designator 
IKO 
ft XO 
'IGO 
SCO 
CIO 
HIO 
HMO 
SIO 
HLO 
HRO 
HPO 
AFO 

Octal value 
(20501) 
( 31 341) 
(46301 ) 
(44 10 1) 
(4401) 
(16401) 
( 16601) 
( 44401) 
( 16541) 
( 17041) 
(16141) 
(241 ) 

Asscciated quau~ and handler 
Intarconnect Kit Handler 
Multiplexor Handler 
~ime Base Genarator Handler 
Synchronous Communications Handler 
Ccnsole I/O Handler 
Host Inquira Compr9ssion Handler 
Hcst Message Decompression Handler 
Synchronous Input Queue Handlers(s) 
Hcst List Decompression Handler(s) 
Hcst Feader Compression Handler (5) . 
Host Punch Decompression Handler(s) 
ASCII Files Handler 

2-40 



LPO 
CRO 
PPO 
PRO 
BPO 

·'(26741) 
(50 q 1) 
(36741) 

,( 37041) 
(42741 ) 

Line Printer Handler(s) 
Card Beader Han~ler~) 
Tape Punch Randle~(s) 
Phcto-reader Randler(s) 
ie~der/Punch/Interpreter Handler(s) 

Three entr, points ara ~rovidEd: 

1. .ALL - Allpcata a resource 
2. .DEAL - Deallocate or release a resource 
3. .FIND - Request information about a resource 

An allocation request uses the device class supplied by the 
caller to request the use of a device of that class fro. the 
system processor. If ,successful allocation occurs, the SP returns 
the TSB logical unit number cf the device to the Allocate !anager 
which then passes t'his infotaation on to the requestor as vell as 
th~ appropriate QIT name. Cc •• unication between the SP and the 
Allocate Manager is via an .IOC. call to the interconnect kit. 

A deallocation request uses the CIT naae supplied in the 
.DEAL call to release the device. The TSB logical unit nuaber in 
thg CIT entry is passed to the SP through an .lOC. call to the 
interconnect kit driver. This shovs the deallocation to the SP. 

A .FIND request is usea to obtain information about a device 
or class of device. OtT namE and/or class information is returned 
to the caller. 

1. • ALL 

Calling Sequence is: 

LDA 
JSB 
JPJP 
STA 
STB 

2. • DEAL 

DnCL 
• ALL 
HOOEV 
LOGUN 
NAME 

DEvice Class desired 

No device available return 
Save logical unit t 
Save OIT name 

calling sequence is: 

2-41'" 



LDA 
JSB 

3. .FIND 

NAME 
• DEAL 

OI'I name 

Calling Sequenc~s are: 

CLA 
LDB 
JSB 
JMP 
STl 
STB 

LOGUN 
• PIND 
NODEV 
DEVCL 
NAME 

LDA DEVCL 
CtB 
JSB • FINO 
STA LOGUNI 
STB NAME 

or 

Zero A-Reg 
logical uni t I 

Nc device by that I 
Save device class 
Save OIT name 

D~vice class & number 
ClEar B-Beg 

Nc such device 
Save QIT name 

NOTE: The two .FIND calling sequences are required to 
9xtract informaticn by supplying either loqical unit 
numcer or device class and number. 

The Allocate/DeallocatE Manager d~pends upon the second 
segment of the QIT being ordered by TSB logical unit nuaber for 
all non-shareable devices. 

The manager forms an IOC call to the ICK driver of th~ 
following form for Allocaticr.: 

STA DEVCL Sto~e device class 
JSB .IOC. 
OCT 220XX Write control 
JftP HODEV 
DEP PARM 
DEC 2 . 

• THE ALLOCATED TSB LOGICAL UNIT NUMBER WILL 
• REPLACE DEVCL 

PA.RM OCT 
DEVCL BSS 

• 
• 
• 

1 EO 006 
1 

For Deallccation the IOC call is: 

2-42 



LDA LOGUN 
ALP,ALP 

-BAR 
lOR RDR 
STA PIRl'!D 
JSa • IOC. 
OCT 220XX 
HLT OB (cannct happen) 
DEl PAR!D 
DEC 1 
• 
• 

PI·R!D ass 1 
RDR OCT '60007 



~S!ice !§§ign~eD1 a~nAg~~ 1Q!~ 

Iga£~isnAl ~~£~iptio~ 

The Device Assignment Manager provides the mechanism for 
establishing and activating linkag(;'s between handlers. ~equesting 
handlers obtain permission to activate linkages and the necessary 
information to do so through calls to the manager. The required 
inforaation is contained in the Device Assignment Table (OAT) 
which is created at system configuration time (see LCCAL DATA 
STRUCTURES) • The manager is also responsible for modifying the 
contents of the OAT as ~irected by the system oper.tor through use 
of the Device Assignment (DA) command. 

Three entry points tc the Device Assignment ~anager are 
pro vided: 

, •.• 01 - processes Dev ice Assignment com mands. 

2. .BSY - processes reguests to activate linkages tetveen 
handlers •. 

3. .UBSY - processes directives to d9activate linkages 
between handlers. . 

A device assignment request (.DA) uses the parameters input 
with the D1 command tc medify the contents of the Device 
Assignment Table. If the host function specified is not currently 
active, th~ OAT entry for that function is updat~d to reflect the 
new assignaent and a skip return is mads to the caller. If the 
host function is busy, the entry is not altered and a 'reject 
return is made to the ca 119r. 

An activate linkage request (.8SY) uses the device naae 1 of 
the caller to determine if tte linkage can be established. This 
~etermination is made by first obtaining the device name of the 
assigned handler fr~m thaDA1. If th~ assigned device is a real 
device (i.e. card reader, line -printer, etc), then the aanager 
attempts to allocate tho:! dEvic~. If +;he allocation is 
unsuccessful, a reject return is made to the .BSY caller. If the 
allocation is successful the QI~ name and logical unit number of 
the assigned handler a·re,' r Eturne-d t.o the • BS Y caller. For other 
devices the DAT is searched fer other assignments of the same 
device. If none exist or if existing ones are marked as not 
active, a FIND call is mada to obtain th~ Qname and logical unit 
number of the assigr.ed device which is returned to the .BSY 

2-44 



caller. Otherwise a reject teturn is aade to the caller. Before 
making a successful return the caller's entry in the DAT is aarkad 
active. 

A ·deact~.,ate call (.OBSY) uses the device nalle of the caller 
to locate the appropriate DA ~ entry and .ark it as Dot active. It 
the assigned device is real, a deallocate call is .ade before. 
returning to the requestor. 

1. .DA 

calling sequence is: 

LDA DNA!! Host function name 
LOB HRA!E Device name to be assigned 
JSB .D! 
Jf!P NA!SG command net appropriate return· 

• 
• 
• 

2. .BSY 

3. 

Calling sequence is: 

LDA DNA!E caller's device nalle 
JSB • BSt 
JMP PJCT reject return 
STA lOGUB save assigned LO • 
STB CNA!! save assigned Q nalle 

.OBSY 

Calling sequence is: 

LOA DNA!! 
JSB • UBS Y 

caller's device naae 

• 
• 
• 

Note: . Reject returns froll .ESt and .UB5! vill affect the extend 
(E) register as follows: 

E=1 - call vas fo~ a pseudo device 
E=O - call 'vas fo~ a real device 

2-45 



the Device Assignment Manger issues calls to the allocationl 
deallocation manger as follo,s: 

For allocation: 

LDA ANAME 
JSB .ALL 
JrtP N,0DEV 
STA LOGUN 
STB QNAME 

assigned device name 

device not available re~urn 
saVE lcgical unit I 
save Qname 

For d't?all ecat ion: 

LOA lCGU N 
JSB • DEAL 

logical unit number 

• 
• 
• 

For obtaining qname an d LU.: 

LDA A NAME a!:signed device's name 
JSB • FIND 
JI1P NCDEV no device re turn 
STA L~GUN save LU. 
STS ON!"E save qname 

12~~1 ~s1A ~1I]~!~~~ 

~~!i~! A§§ign!£~! l!R~ jQAll 

The Device Assignment .!able ccntains one 2-vord entry for 
each "Host function" d~fined at system configuration time. The 
allowable host function are: 

1. HRl through HR7 for hest reading f.unctions. 

2. HL1 through HL7 for host line printing functions 

3. HP1 through HP7 for best punching functions. 

The DAT is prefixed by cne word, which is a pointer t6 the 
second. 

Each entry ~s definded as fcllcvs: 

WORD 1 BIT S- 0-· 1 5 host fu r.eticn na me 1 

2-46 



WORD2 BIT 15 -=1 if function is active 
=0 if function not active 

BITS 0-14 - assigned device name l 

The last two vords of DAT arE -1. 

eRn - card reader n 
LPn - line printer n 
JTn - job transmitter n 
JLn - job line printer cutFut n 
JPn - job punch output n 

1 the function and device nales are encoded as follows: 

BITS 14-10 .1st charactet cf device name 
minus 101 octal 

BITS 9-5 2nd charact~~ of dEyice name 
.inus 101 octal 

BITS 4-0 device nu.bet ainus 57 octal 

'2-.. 47 



!Yll£:!:i.Q!lal. 9.~£!.i.~.~~2Il 

This routine is the' starting point for the lOP software. It 
'also contains an :';lltry point fer system restart and a panic 
routine. The p~rpose of SYSTR is to dispatch all handlers 
during system stn:~up or. rastart and then to start the dispatcheru 
SYSTRls panic ),:",t1tine provides normal responses to the SP in th.~ 
·3v~n t of an IO P ~:,:, .il ure • 

.§1l!2~Q,g~1~ t:Y.n~lJ q ".' ,§ 

The only':; ' .. ~.Eerence bEtween the START and RSTUT routines i:s 
the setting of J.!. :::tion STATE. The routine START sets STATE=O and 
RSTRT sets it ~o 1. Subsequent precessing is the same in both 
cases and con:,;t.,;~:.s of searching through OIT for handler 
initinlization ~;l:::r.ies. Each handler is called by: 

LOA ~"fl\. TE 
JSB :~\try,I 

'-'" 
After all entric: . .i are cor.Jpleted the routines exit by a 

JMP ,.coa. 

PANIC simplJf provides tie necessary r-asponses to the SP so it 
may be SLEPT in ~~se of an Iep failure. 

Calling seql\~llces: 

At system startup tile SYSTR is entered at location START. 
En try is made 1:y set ting the START address in the P-reg and 
pushing .nUN. This routine Exits via a JMP .COM. 

At system restart tiCle SY5TR is ent.ered at location BSTRT by 
a JMP RSTRT. Exit is through a JUP .co~. 

The, entry point I?Al~IC p:tovidE:s for autcmatic responses to tlle 
SP in the event of an lOP ,crash. The routine is started by 
9ntering 'the PANIC address in the P-reg and ~ushing START. It 
will continue to run until HAL'! is pushed. 

Called routines: 

2-48 



During the startup and restart processing, SYSrR calls all 
device handlers. control is passed by a JSB to the indicated 
address with A reg=O on a sYEtem star~up and A r~g~O on a restart. 

~al S.an §.tt~n§. 
None (see OIT in Global data structuras). 



~t.nJill.9 cons21~ out,E}11= 

~~~iE!1gn ~~ !~nction 

This system service Ioutins (.~~O.) performs the task of
transferring a aessage to the console output queue. Any handler
may contain a group of ccnsole messages. The handler can then
mark a message for output and call the centralized console output
routine~ This routine viII acquire a console buffer, locate the
marked message, move the message to the console buffer, re.ove the
mark from the message, and place the console buffer on the console
output work queue. In the Event that no console buffer is
available, the routine leaves the message marked and returns to
the calling handler. In this case, the calling handler viII
eventually receive a conscle buffer on its vork queue. This
buffer can be provided to the centralized console output routine
to finally dispose of the matked message.

lnte'!~5iing

Handlers using this cEntlalized console output roatine must
construct their Jlessage lists similar to the following exalple: .

KSGO ABS
OCT
ASe

ftSG', ASS
OCT
Ase

ftSG2 •
•
•

ftSGL OCT

MSG 1-MSGO- 2
x
n,message 0 text
ftSG2- MSGl-2
x
n,lIessage 1 text

o

The first vord of each individual message contains the length (in
vords) of the message text. This value !!!..Yn be positive. 'The
word following the last m9ssage must be ~ero. The second vord is
used to construct scw word 8 in the console buffer for the
mes~age. In this way a handler can pr.esent special flags in J8CW
word 8 to the conscle output mcdul~. Bits 3-0 of BCV word 2 vill
be set t.o the value of 1 •

. A handler marks a message by setting bit 15 of the length
word.

Calling sequences ate:

1. If no console buffer is .supplied:

2-50

eLl (ind~cates no buffer)
LDB OR (calling handler's queue name)
JSB • ceo.
DEP PlSGO (address of 1st message in a list)
J"!P X (return if no console buffer a vailab le)
••• (not_al r~turn)

2. It a console butfer is supplied:

LDA" Bl (address of supplied buffer)
JSB .cco.
DEF Pl5GO (address cf 1st message in a list)
HOP (alvays a skip return)

.ceo. lIay be unabl~ to dispose of a aessage because of
unavailability of console buffers. This is ususall! DC proble.
since a buffEr vill later be .ade available to the handler that
in_oked .CCO. However, orte problem does exist. A handler aay be
required to issue a aessage again, and it may still be marked fro.
some previous call to -.Cco. The handler ,has t vo options. It _y
ignore this problem, in which case the duplicate aessages are
lost.· A second option is to teaporarily suspend processing if the
message is already marked. In this latter case, a conscle buffer
will eventually become available to'relieve the handler of the
message. Then the message can be remarked and reissued.
Obviously, the second option is the better choice when message
content may change or when the number of responses sbculd equal
the number of events which elicit responses.

On entry to this routine, three para.eters are provided. The
first is-the address of a 9~cuF of one or aore console messages.
Tha second is the addrass of a console buffer if cne can be
supplied or a 2ero to indicate tha:t no console buffer is being
supplied. Parameter three is the name of the calling handler's
work queue.

If no console buffer is supplied, a .GETS is issued to obtain
ona using the calling handlet's vork queue name. If this atte.pt
is uDsuccessful, the routine returns to the caller.

Next the list of messages is searched for a marked .essage.
If none is found, the console buffer is returned via .PREB, and a
return to the calling handler is made. If a marked aessage is
located, the mark is removed, and the message is transferred to
the console buffer (i.e. the one just acquired or the one ~roYided
as a param~ter).

Pinally, the console buffe~ is place~ on the consele output
queue. A return to the calling handler is made.

several general purpoEe system services have be~n designed
which aid in data conversion. since the RJE function is based on
the EBCDIC code, .uch conversion between ASCII and EBCDIC takes
~lace. There are also requirements for conversion between binary
integer values and their printable ASCII counterparts. These
conv~rsions are handled by the following routines:

.ATOE -

• ETOl -

.BTD. -

.DTB. -

converts a string of ASCII characters to EBCDIC. The
conversion is done in place. The B register provides
the address of the string, and the A register provides
the length.

converts a strilg of EBCDIC characters to ASCII. The
conversion is done in place. The B register provides
the address of t~e string, and the A register provides
the length.

converts an integer value to a string of characters
consisting of one space and five decimal numerics. If
the intager is negative, the ~pace is replaced by a
minus sign. The J register provides the integer value,
and the B register ~rovides the byte address of a six
byte area to receive th£ string.

converts a stritg of ASCII decimal nu~eric characters
to an integer value. The B register provides t~e byte
address of the stIing of characters, and the A register
provides the length of the st~ing. The result is
retarned in the J ~egister. The detection of a length
greater than five or any illegal non-nuaeric character
vill cause a nc-skip return. A five digit value
greater than 32761 will also cause a no-skip return.
The normal return" is "plus cne."

2-52

All of the above ~outines are used as follows, where "na.e" is one
of the four routine names:

E IT nalle
•
LDA (A ragister paramgter)
LDB (8 regi$ter p~ramet~r)
JSB naae,

Only the .DTB. routine has an alternate return.


~~~IiEti2n An~ lunction 

• DCOK provides a data dece.pression service to Expand IB! 
multileaving compressed reco~ds into uncompressed for.at for unit­
r~cord devices. It is ty~ically called bt output deco.pression 
handlers and is thought to bE an RJE related aodule~ 

Inl~I~s£in.9. 

The routine is entered via a JSB with calling paraaeters in 
registers and follcwing the call. It vill return -tvo 'values 'in 
registers. The calling sequence is: 

LOA <from addr> 
LDB <to addr> 
JSB • DCO! 
DEC <buffEr length> 

<from addr> is the byte address of the data to be 
decompressed. This must be the address of the 
first seB it the data. 

(to addr> is the byte address of the destination of the 
dEcompressed data. 

<buffer length> is the positive byte length of thE buffer to 
rEceive the decca pressed record. 

Upon return the rggisters vill contain the following: 

A-register: Length of decompressed record (9 if EOl record). 

a-register: Pointer to next RCB in source buffer. 

!2S!: If there, is more data in the compressed record than is 
availab19 in the b.uffer, excess data will be truncated. The 
l~ngt.h ·returned vill never be greater than (buffer length>. 

2-54 



~i§~~11ane2Y~ §I~!~ §2~~i~ rcutine~ 

The following service rcutines are available 
for use by any modules: 

". COMP provides a dat a cOllpression service to co.pact records 
according to the IBM lDultileaving" forma t. It" is typically called 
by inpot compression hand19rs and is thought to be an BJ! r~lated 
lIodule. 

The routine" is enterEd via a JSB with the parameters in 
registers and following thg call. It returns a value in a 
register. The calling sequence is as follows: 

LOA <fro II add r> -
LDB <from length> 
JSB • COMP 
DEF (~o addr> 

<from addr) is the byte address of the data to be co-pressed. 
<fro. length> is the number of bytes of data in the block to 

be compressed. 
(to addr> is the byte address of the destination of the 

compressed data. The RCB and saCB are not 
supplied by .COMV. The caller is assumed to have 
already inserted these characters. This address 
aust point to the location where the first seB is 
to go. 

Upon return, the B-r~gister will contain the byte address of 
the next location in the- destination buffer following the 
co.pressed data. 



The Device !able is" constructed by the I/O configurator 
Program to provide information about non-shareable devic~s 
supported by the total system. The fo~mat of the table is as 
follows: 

• DVTB DEF *+1 
DEC n 
DEC m 

". 

OCT a,b,c,a,e 
OCT f,g,h,j,j 

contains # of supported TSE ports 
Contains # of following entries 
Five word entry for 1st device 
Five Mord entry !o~ 2nd device' 

• 
• 
etc. 

A total of "mit five word c1evice &ntri~s ui,).} exist. 'the format 
for each is as follows: 

Word 1 

Word 2 

Word 3 
Word 4 
Word 5 

Device designato~ 0~ name 
(Refer to Allocat ,/Deallocate Manager) 
Dev ic~~ se 1 ect. cc.<,,': in bits 5-0 
fit '5 is a one j,"": the device is 
capable of inp-ut "nd bit '£1 is 
one if the dtavic':; j.s ca pable of 
output. Eit 12 i:; set if the only 
output allo~ed i~, CTL. . 
Maximum record si~,~ for davice 
Zero 
Zero 

A TSB logical unit number is associated with ~ ~ch deviCE. Devic~ 
Table entry numbor corresponc1s tc TSD logical ',,}lit numbe!: 0 and so 
forth. 

2-56 



2-5.7 



I. . Introduction 

lb.Q! l!.Q~£ t:~i1L~.ll~U l12.S.Y.l~ 

'Ih is mod ul e v ill sto re- the sta te of the system in the I/O 
Processor (lOP) at power failur~ time. At power recovery time, 
working closely with all I/O drivers and cooperating with the 
System Proc~ssor (SP), the saved information vill be used to 
restore the software to its cperating state. It is e tasic design 
point of this module that sufficient r9cov9ry information is 
maintained to "'insure thE completion of all scheduled I/O 
op~ratlons. However, due to the impact of power loss at the 
actual I/O devices, some IIC OFerations will necessarilJ ccmplote 
in error or with data loss. ~his is a point to be addressed by 
the individual I/O drivers. 

II. Design Overview 

Two primary processing sections make up 0.04. Both are 
triggered by . an interrup-e through . in te rrupt vector 4. The 
direction of the interrupt (pover failure cr pover restart) is 
inspected in order to dispatch. the appropriate processing section. 
Power failure processing saves register contents, l/e device 
states, and DMA processing states and then halts the cpu. (This 
rontine does take into account the possibility of a power failure 
during some previous power recovery operation.) 

Power recovery processlng includes a cooperative restoration 
qf interconnect kit states with the system Processot. Then device 
states are restored, and. I/O driver pover fail appendages are 
given centrol to correctly restore their states relative to their 
r~spective devices. Finally, registers and interruFt system 
states are restored, and the operating system ~egains centrol. 

III. Design structures 

R2!sSiQD§hi~ 21 ~~. 12 !h~ Syst!! fI~sess~I 

Proper restoration ~f the system following a povEr failure 
requiras close cooperaticn with the System Processor. 
sp~cifically, the correct operational state of the interconnect 
kit must be maintained, ~ince it is mora properly viewed as an 
9xte~sion of each central processing unit than as a peripheral. 
An a~xifiary catle between the two CPU~s ensures that each vill 
receive the pover loss signal at the same point in 'time •. This 
techni'3ua constraIns their pcver failure interrupts' to occur ft'O 

2-58 



t:"S9 



more than one instruction a~art and insur~s that the state of the 
interconnect kit device flags can be. saved. However, the status 
of any DftA transfer over the interconnect kit must be 
reconstructed. (DMA is inhitited by a power failure interrupt.) 
Also, power failures occurring during previous pover recovery 
attempts must te carefully ncted, so as to prevent improper 
changes in the recorded systam state. Obviously, D.04 FtCCessing 
rp.lated to the System Processor is very dep~ndent on toe 0.61 
Interconn~ct Kit I/O driver. Much of what is stated here is 
further documented in the D.€1 Base Design Specifications. 

<3 

Each processor must maintain six words of information. One 
of these, POWFF, is a fla~ local to the power-fail/power-up 
routines. It is used to assist in identification cf pover 
failures occurring during recovery from a pr9ceding one. BCRNO 
and SCHNO contain the last words sent (exclusive of a DMA 
transfer) ~n the interconnect rec~ive and send channels 
respectively. These are obvicusly needed to restore the state of 
the interconnect. OMAFL is e stat~ variable ccntaining the DMA­
on-interconnect status of the proc~ssor program. It is used to 
determine if the power failuIe disrupted a OMA transfer. The 
final two wotds record thE length, starting memory addrESS, anj 
direction bit of the most recent n~A transfer on the interconnect. 
Th~ir existence allows tha recovery routine to restart an aborted 
transfer. . 

Since the order in wh fch the pre ~ssors lifl1 COlD Fleta their 
recovery routines cannot b~ predicted, ~~o sequencing requirements 
must be observed. First, each word placed on the intarconnect is 
to be r€corded in either RCHNO cr SCHNO as appropriate before 
issuance of the 'STC SC,CI which signals its presence to the other 
processor. Second, neith~r processor can proc~ed to its 
interccnnect DMA routine until after exscution of the last 
instIuction aff~cting the system proc~ssor's send fla~ and I/O 
proc~ssor's rEceive flag, r6gardless of which prOCEssor vill 
execute the instruction (i.e., cne processor' may have to wait for 
its flag to be set by thE ether· procassor). This ccn~ition is 
automatically m~t by the handshake requirements of POS, ALE, and 
RJE. It is also a fallout of the design for SCI, TC~, and the 
requests for the devic~ tabl~ (SDT) or cold dump core imagE (KSN). 
However, use cf XRe requires that the I/0 processor wait for its 
receive flag to become set, aft€r transmit~ing the transfer length 
word, before invoking its interconnect ·DMA ·routine.· (Note:" POS, 
ALB, etc. are.all mnemonics for commands processed by D.61 in 
conjunction with thp. System· Erocessor.) 

2-60 



~E~~l !i~~2EIgg£A!3!Ag ~ R9~ ~lLrest~£S 

Three special microprcgrams vill' be written to aid I/O 
driv~rs in power' recovery processing. Ther. are two basic 
questions which an I/odri ler vll1 need to answer in' dete.r2ininq 
correct power recovery action: 

1) Has a specific llC instruction been executed? 

2) Is an interrupt section engaged in p'rocessing an 
int~rrupt at the time of a pover failure? 

The first question can indicate vhether an interrupt was 
being anticipated at the time of a failure or whether specific I/O 
interface conditions had bGen established. The best way to answer 
this guestion is to set a software flag which marks the fact that 
an associated I/O instruction has occurred. Hoveyer, using the 
basic instruction set, a power failure could occur between the 
I/O instruction and the instruction which sets the software flag. 
This would result in an inability to answer question one easily. 
Por this reason, a microprcqram vill exist that vill inccrporate 
the execution of'the I/O instruction with the setting of the 
software flag. Its calling sequencevill be as follovs: 

PlRIO EQU 221 E 

• 
• 
RAft PPB'IO 

Ie STC sc,C 
FLAG OCT 0 

IO can be any I/O instruction which does not involve k Ot B. PLAG 
will be set to 1 by PlRIO. It is assumed that PLAG vill be 
cleated by an interrupt handler or other point where the effect of 
the I/O instruction has been noted. 

The second question lust be answered in order to deteraina 
the ptOp9r action to occur telat~ve to a pending or existing 
interrupt condition. Thtough the use of tvc special 
microprograms, the value of the interrupt ent~y point can be used 
to ascertain the activity of a driver's continuator seg.ent. Por 
purposes of discussion, let I.XI denote an entry point for a 
driver continuator section. An interrupt typically invokes a JSB 
to I.XX. Hence if I.XX is assembled as zero, the interrupt vill 
force I.XX nen-zero. Thus, a test of I.XX can indicate activity 
IJf the segment. The only r91aining problem is . to incctporate a 
clearing of I.XX when exiting through I.XX. The tvo sicroprograas 

Z--61 



perform this function. On3, in addition, incorporates the PP'RIO 
microprogram noted above. calling seguences are: 

PFREX EQU 223 E 
• 
• 
RAM PFEEX 
DEF I.XX 

PFREI EQU 2~2E 

• 
• 
RAM PFREI 

Ie STC sc,c 
FLAG OCT 0 

DEF I.XX· 

In both cases, control will be transferred to the location whose 
add'ress is found in 1.11 (as in a JMP I.XX,I). Also, I.XX, vill ba 
set tc zero. 

lLQ driv!I ~2n~i~!Ia!i2a§ 

During pcver recovery ~rcc~sslng, each 1/0 driver must be 
given an opportunity to ncte the failure and take ~ossibla 
corrective action. D.04 assumes that aach IIO driver contains a 
subroutine entry point, P.XX, in addition to its D.IX and I.XX 
3ntry points (that is, its initiat'or and continuator entry 
points). After restoring the state cf the int~rconnect kit, D.04 
will f:nt~r ea ch 0 f the P. X X subroutines. It is assum Edt hat p. xx 
will de some or all of the fclleving things: 

1. SincE it is possible for power to fail during a pover 
recovery op€ratio~, P.XX may not be able to' ccmplete. 
In addition, shoeld this cccur, P.XX vill be restarted 
not continued. Per this reason, P.XX must not alter 
i~i data or variables which it n~eds to perform its 
work. 

2. I/O interface ccrtrcl word regist~rs may.nEEd to be 
restored. An example would be the speed and other 
paramet~rs for th3 ports on the asynchronous 
multiplexer int~rface. 

3. Power fail or other status may n~ed to be rEccrded in 
the E OT status wo td. (Th is is onl y necessar y if needed 
by other portions cf the dtiver or as a part of status 
return€d in IOC calls.) 

2-62 



4. Due to the fact that the correct nesting of active 
interrupt sections (c~ntinuators) .ust be restored at 
pover recovery ti.e, D.04 requires that· no continuator 
allow itself to be . intel:~upted by lover . priority 
con tin Uators. 

5. When pover ~~ restored to the system, all devices flags 
are set artd all centrol flip/flops are clear. That is, 
an interrupt is pending. In addition, the state of 
device flags at pcver failure time vill be sayed. Each 
P.I! appendage must restore its driver relative to 
thes.e fla 9S: 

State of I/O 
driver interruFt 
section 

Idle 

Idle 

Active 

Active 

state of 
saved flag 

Clear 

set 

Clear 

set 

Action 
to be perforlled 

Clear deyice flag if 
appropriate. aeissue any 
I/O instructions which 
may have been lost (see 
PP~IO microprogram). 

If an iDterrupt is 
pending, issue an STC 
instruction to allow it. 
otherwise, clear the 
flag. Reissue any lost 
I/O. instructions. 

Allow an interrupt to 
occur in order to restore 
the proper nesting of 
interrupts (see D.041 
below). Then clear the 
de~ice flag. Reissue any 
lost I/O instructions. 

Allow an interrupt to 
occur. Reissue a~y lost 
I/O instructions. 

As noted above, in the discussions of the PPREX and 
PPREI microprograms, the activity of an !n~errupt 
section can be determined from the value of its entry 
point. Testing the saved state of the device flag and 
allowing an intetruFt for pIoper interrupt nesting are 
tvo functions provided by D.04. A subroutine called 

. 2~63 



D.04? may be called by any P.lt appendagE with the 
select code of a device 1n Iegister A. D.041 always 
returns a non-ZEro A if the saved state of the device 
flag is set and a ZEIC A otherwise. In addition, if 
register B is set to a -1 valu~, D.041 viII allow an 
interrupt on the select code in order to restore its 
nested interrupt condition. 

~2!~~ ~n E~~!~~ a!S1i2E 

The power-down routine distinguishes between four possible 
cases. 1) If power fails during normal time-sharing, powrF = 0 
and the restart address is not within the recovery proc9dure. 
Hard ware regis ters are sa ved (A, B, P, 5, E, 0, an d F). . Th9 
states of the interrupt system ~nd all device flags are saved. 2) 
If powEr fails while the SP is not time-sharing (during systam 
shutdo~n, system- loading, cr after the SP has completed shutdown 
or fail~d), the SP viII not s~ve its state or attempt to recover. 
Ihe I/O processor (lOP), howev~r, is normally still active 
(waiting for the SP to signal resumpti.on of system activity) and 
does not distinguish this case frcm th9 preceding one. 3) POWFP 
= 1 identifies a pover failute fro~ the recovery routine prior to 
restoration of the interccnnect. Sinc~ no system activity has 
occurred on eith~r processor as yet, their current states are 
ignored and rEcovery begins anew frcm the information recorded at 
the initial failure. ij) If EOWPF = 2 or the restart address lies 
within the rEcovery routite, then the intarcon~ect vas restored 
but the processor had not yet completed the remainder of its 
recovery_ This differs f tom case 3 in that the other processor 
might have completed its rsccvery and returnad tc its pre-failure 
~ctiv1ty. Having donp so, it might further have executed an 
instruction which legitimately altered the state of the 
interconnect. Each procesEor is responsible for correctly 
restoring its send channel (5ilultaneously restoring the other 
processor's r=c~ive channel). Thus the processor in ~his 
situation need only determine if its send channal flag is now set 
(it ~ould not have been cleared by the othar processor) and,. if 
so, overlay the previously rEcorded state. 

The state variabl~ D!AFL allows detaction of atorted D"A 
transf~rs on the interconn~ct. It must b~ s~t to zero whenever 
time-sharing begins in orj~t to synchronize the processcrstates.­
Each entry to the intercor.nect DMA routine first saves the 
transfer parameters and then increments DMAFL to the' next odd 
value. Wh~n the processor's hardware DMA flag com~s set, it 
increments ·its D"AFL to the next even value, executing net less 
than thrae instructions to ensure that th~ other prOCEssor has 
time to complete its current instructicn, possibly steal one cycle 

2-64 



for OMA channel 6, and then ~erfor. the last cycle for D!l channel 
7. (All interconnect Dl!A act~vity occurs on channel 7.) Note that 
this is only a convention,based on the assuaption that D"A channel 
6 can not steal III cycles. ,If channel 6 did steal all cycles 
th~n the required three inst~uction sequence vould fail to insure 
that' the other processor had in fact completed its Dftl transfer. 
(No procedure can guarantee ccim~letion if DftA cbannel 6 perfor.s, 
in this manner.) l~ the last tvo bits of both processor's state 
variables are EV&n (00 VS. 00 or 10 vs. 10) then no transfer is 
active. DKAPL vill be odd C01 or '1) while a processor is in the 
critical portion of its transfer routine. The other processor's 
CMAPL will be one less (00 95. 01 or 10 vs. 11) if it bas Dot 
reached its transfer'rontine, or vill-be equal'(01vs. 01 or 11 
VS. 11) if also in its tra r.s fer rout ine, or will be one .ere (10 
vs. 01 or 00 vs. 11) if the transfer completed. The reaaining 
combinations (00 vs. 10 cr 01 vs. 1') cannot occur since the 
~rocessors ,can never be more than one state apart. This assumes 
t.hat both' processors reset Dl!APL'to zeto at system initialization 
time. 

.af 

00 
00 
01 
01 
01 
10 
10 
10 
11 
11 
11 
00 

12f 
00 
01 
00 
01 
10 
01 
10 
1 1 
10 
11 
00 
11 

Possib14 IMA~L Combinations 

Neither processor in its transfer rQutine. 
lOP doing transfer, SP not yet to its transfer routine •• 
SP dOing transfer, lOP not yet to its transfer routine •• 
Both SP and lOP in their transfer routines •• 
SP in its transfer routine but transfer is cCBplete. 
lOP in its transfer routine but transfer is ccaplete. 
Neither processor in its transfer routine. 
IOP doing transfer, SP not yet to its transfer routine •• 
SP doing transfer, lOP not yet too its transfer routine •• 
Both SP and IOP it their transfer routines •• 
SP in its transfer routine but transfer is co.plate. 

. IOP in its transfer routine but, transfer is ccaFlete. 

* Transfer vill be restarted. The SP must set its send channel 
flag/IOP's receive channal flag according to the transfer 

.direction. 

Impossible D"APL Ccmbinations 
SP: 00 01 10 11 
Iep: 10 '1 00 01 

2~65 



The lOP power-up reoovery routin~ is straightforward except 
for restoration of the interccnnect. It begias by setting POWFP 
to 1 .and then re~enabling ~ower-fail interrapts. The WCS module 
is restored. Then the P.61 interconnect kit iriver power recovery 
appendage is entered. P.61 ~erforms as follows: since recovery 
requires an exchange of infcrm~tion~ th~ lOP must cl~ar its 
r~ceive 'channEl flag and then waft, enou~h time for the SPI to 
complete its power-down routine, clear its receive ,channel flag, 
~nd transmit its data. Th~ lOP routine do~s this by inccrporating 
a timing factor into its wai~ loop. If the loop times out, then 
the SP must not be active and th~ IOP shou1d restore its£lf to thg 
same stat9 as it wculd be in fcllowing rec~ption o£ an SSD from 
the SP. 'fter clearing'its receive channel. flag, the S P will send 
a word containing zero bits Except for the diraction bit of the 
last DM! transfer (1 if frcm the lOP, 0 if from the SF) in bit 0 
and the last two bits of its CHAFL in bits 2 and·'. The recovery 
routines are now in synchlcnization~ thE lOP responds with its 
most 'recent DMA direction bit (C if frcm tl:a· IOP,. 1 if. from the 
SP.) and the low two bits of its QMAFL in the same format. 

At this point both prccessors have a complete' record of the 
interconnect's state at pow~I-fail. The lOP automatically. places 
thg current value of BeHNO cn its r~ceive channel and sends it to 
th~ SP. If the lOP's DMAFL is od1 and the SP's information 
indicates that the transfer 'did not complete, the IOP makes a note 
to reinitialize its DHA routine later in the recovery process. 
The lOP now waits for the SP td set the IOP's send channEl flag. 
When this occurs, the rop examines its record of the flag at the 
time when power failed. If it vas clear, the lOP restor~s the 
word from SCHNC and issues tte 'STC n,C' ,to t~ansmit it. Finally, 
POiPF is incremented to 2 sitc~ the interconn~ct is now completely 
r~stored (the SP ~ill not fitish its recovery until well after the 
IOP finishes all of the above). The remaind~r of the rop routine 
~onsists of ensuring that an a~orted OMA transfer cn th~ 
interconnect will be restarted, ptrforming the out-of-line device 
recovery routines, res~tting POiFF to 0 after r&turning to the 
power-up routine, restoring the harav~re registers and interrupt 
s.ystem flag, and resuming tiDe-sharing. . 

2-66 



I. Introduction 

D~ 43 is a . somewhat unusual driver in that it .ay becal.led . 
direc:;:tly" by other' drivers as vell as by standard .lOC. 'calls trail 
a user program. For convenience, driver calls ~ill be designated 
as Line' Timer Bequests and .10C. calls as System Tiller Bequests~ 
The' followin.9 fu.nctions are available frail this dri ver: 

1. "star~"" - EnaHles clock inte trupts. 15ust be executed at 
system startup to enable timing facilities. 

2. "Set Timer" . Request by .caller to be notiti!d atter 
specified tim~ interva.l expires. 

3.· "Cancel Timer" - Ca~cel previous timing request. Beturns 
tesidual time, interval. 

II.~ :, .. ~e_~i9n . 0 v Erv i ev 

t ~!t~!~Ul .§.!!ml!la r I 

The driver is a module of the IOP so£twa~e for the HP2000 ACCESS 
system." "The driver will provide .1 second timing resolution for 
requests. Hardware requirements ara'~ 2100 computer and time base 
generator 12539A. The HP2000 ACCESS I/O processor microccde is 
·required •. 

III. Design Structures 

.Q~ll §!~y£tY.U§ 

tha term TOE is used to' refer to a 1i!!£ 2~~u~ ll!!!DS. The 
~ddress of an area to be used as a TQE must be passed to the 
driver as a parameter in all calls. The form of a TQE is shown 
belove (Only the first two words must be preset by the caller. 
These ~ords are not disturbed by D.4J.) 

12J t2l: .tin! n!!!ll: l!.!g,y!l!:t. 

LTQE DEC 
DE·!' 
ass 

Number of • 1 sec6~d ticks tb time 
Exit address upcn. timet completion 
1 Flag/link word used by driver 

Bit 1~ =0 - sy~tea ti~er request 

2-07 



ass 

STQE DEC 
DEF 
BSS 

sss 

1 

=1 - line timer request 
Bits 14-0 link address 
Expiration clock val ue for TQE 

Number of .1 secor.d ticks to time 
Exit addrase for timer completicn 
1 Flag/lick wcrd used by driver 

Bit 1~ =0 - system timer request 
=1 - line timer request' 

Bits 14-0 link address 
1 ExpiraticD clock value for TOE 

thg start r~gu~st puts. the Time Base Generator "9n line" and 
~nables all timing requests and must be executed by the user 
~rogram to enable !i! timing functions. 

the start algorithm is outlited below: 

1. Enable I/O board interrcpts. 

2. Return. 

Th3 calling s~quanc6 is as fcllcws: 

JSB • IOC. 
OCT XI where XX is logical unit numher. 

~!! !i.m:ZI 
The s~t timer requ~st enablES timing to causa asynchroncus return 
after caller s~ecified time interval. The execution s~guenc~ for 
this routine fcllo~s: 

1. Insert request in timer queue. 

2. Return 

The calling seguence for this routine is as follows: 

'2-68 



1. Line Timer Request 

ATO! DEE 
LDA 

, 'JSB, 

TQE 
ATOE address of TQE to "A" 
.LTS. ·Beques~ Line Timer set 

2. System Timer Request 

JSB • lOC. 
OCT 2.sJJXX Where XX is logical unit'number 
JPlP B!JCT 
DEP STQE Address of TQE 
ass. 1 

When the time interval e%pires for a line tiller reques-t, the 
address of the TOE is placed in register B, and a JSB to the exit 
routine specified in the ~QE is .ade. The system is disabled 
during this exit. Por syste. ti.er requests, the address of the 
.expired TOE is returned through .IOC. as an unsolicited event. 

!hs cancel timer request is used to ~ancel a previous tiainq 
request. The driver will return the nuabar of ticks re.aining to 
expiration in vord four cf the TQE. The execution alogrithm 
follows: 

1. Search timer queue fer specified TQE. If ,Dot found, take 
reject ad dress. 

2. Remov'! 
word 4. 
word 4. 

TOE from queue, and store residual tick count in TOE· 
Note that' nor.al TOE expiration results in a zero 

J. Return. 

The calling sequences for this routine are as shown belel. 

1. Line Timet Requests 

LDA ATQE Load J with address ,of TOE 
JSB • LTC. Request cancel 
,J~P ERROR Reject address 



2. System Timer Requests 

JSB 
DEF 
JMP 
DEF 
BSS 

.IOC. -IOC call 
1P~XX Request cancel 
REJ aej~ct address 
-SlQE TOE address 
1 • 

A reject· indicatEs the specified TQE was not in the ti~er queue. 
!his may indicate th~ timer ~as already expired before the call 
was made to cancel it. 

The P.43 ap~endage receives centrol from C.04 at pover 
recov~ry time. The timp b~se generatdr decade value is Ieset. If 
th~ 1.43 interrupt handleI was active, th9n D.041 is invo~ed to 
restore the interrupt condition of the interface. otherwise, an 
STC is issued to reactivate the timer. 

2-70 



..... :1. ,~' 

This handler ~BGH) provides system timer service throQgh,the 
D.43 tile base generator dri,er. In one sense TSGH is not a true 
handler since it does not cc: •• unicate with other handlers .tbroaqh 
the .ediua of work queues and the queue manager. Instead " its 
services are utilized throuqh JSB calls. TBGH does use .IOC. to 
drive the time base generator and is dispatched by DSPCH upon 
completed event' notifications. It passes control to other aodules 
also through JSB ~alls. Specifically, TBGH provides calling 
.odules the ability to: 

1. set a timer 

2. can cel a tiller 

3. provide a routine to be called when a tiller e%pires 

. During system initia lization TBGH is entered at location 
~BGHI. A START call to the ~BG driver is issued and the routine 
exits. 

Por tiaer requests TEGH is entered at entry point TBGHQ. 
Processing consists of a SET TI!ER request to the TBG driver using 
the TOE providEd by the callEr and exit to the caller. 

Por purqing of tiaer requests the entry point is ~BGHP. 
Processing consists of a CANCEL TI!EB request to the TBG driver 
with the TOE poi~ter provided and an exit to, the caller. 

Expired timer request ptocessing occurs at entry peint TBGHC. 
Word 2 of the 8zpired TOE contains the address of a Frocessing 
routine. It is entered via a JSB call, return is to the location 
following the JSB. Exit is to the dispatcher. 

calling sequences: 

TBGH 
expires. 

is entered at lccation TBGBC vhene':.,~r a ti.Er request 
The call1ng sequence is: 

2-11 



LDA 
LtB 
Jl'P 

par am' 
par 8112 
'!BGHC 

Th 03" exit proce dure is: 

JPlP • CO!. 

copy ef IOC parameter word 
address cf TOE 

To queue a timer reqcest TEGH is entered at locaticn TBGHO 
by; 

LOA 
JSB 

param 1 
TBGHQ 

The routine ezits by: 

Jl1P TBGHQ,I 

address of TOE 

To purge an outstanding timer request TBGH is Entered at 
location TBGHP by: 

LDA 
JSB 

par am 1 
TBGHP 

address of TOE 

Th~ exiting prccedure is: 

Jr1P 

ISZ 
JMP 

TBGHP,I 

TBGHP 
TBG HP, I 

if thE ~QE cannot be located 

if thE tCE is purged 

TBGH is given contrel during system initialization at 
location TBGHl ty a 

JSB TBGHI 

control is returned through a 

JMP TBGHI,I 

called routines: 

TBGH 
standard 
processed 
by: 

makes requests ef the tille base generater through 
.IOC. calls. Tiler completion notifications are 

by a caller provided routine." The routine is accessed 

2-72 



RAM 
JSB 
,JftP , 

LAI+TQEV2 
A,I. 
.Co!. 

~~~51 gA~ s~~~H!~ 

address of service routine to reg A
call toutine (reg B cOll1tains TOE addr)
exit after return

Every timer ·request is ccmmunicated to 1BGH through a ~l.er -
Queue Element (TQE). The TOE is 4 vords long and is defined "as
follows:

.,

WORD 1 ,
15 , 0

time r inter val

number of .1 second ticks in requested imterval.

WORD 2
1S 0

.process pointer

address of a routine to be given control at time interval
expiration

WORD 3
.15

1 q-O

WORD 4
15

=0 - system timet request'
=1 - line timer teques~
lil!k wc'rd

clock expiration value

two system link ~ordt to be used bI the device driver.
'allowing any cancel or axpiration, the fourth TOE. word
contains the number cf ticks remaJ.nl.ng (0 in the latter
case). This is referred to as the interval residual.

2-7-3

I. Product Idantification

~i~~Q]Igg£am £2mE2~~n12 :2£ tli~QQ A£~j~~ lL~ E!~§22I

Microprogramming will make a signific~nt contribution to the
Froject. Of primary concern is efficiency. Microprograms are
being designEd and impl~mented to reduce processing time for
certain fr~qu~nt high-overh~ad instruction sequences. A secondary
gain will be mad~ in the areas cf fl9xibility and storage
utilization.

II. GEneral Desigr. Overvi~w

This microprogram saves the contents of the registers, which
is a ccmmon a~tivity in interrupt handling, subroutine entry, etc.
A, S, E, and 0 are "push~d" onto the stack a i1ressed by register
F. (It is assumed that this stack. pointer is initially loaded
using an OTA instruction to s~lect cod~ 5.) Pushing is in the
direction ~f higher memory addr9sses. the contents of A, B, E,
and 0 are not char.ged.

This microprogram has been assigned to macro 105362. An
exam~le of its use follows.

SAV E EOU
SUB OCT

RAM
•
•
etc.

) 628
o
SAVE

DEFINE SAVE MACRO
SUBROUTINE ENTRY POINT
SAVE REGISTERS ON ENTRY

since a stack mechanism is used for saving of registers,
nesting of saves is possible. Note that the save microprogram
does no· checking for ~xceeding the size of the stack area. ~he
size of this area must be carefully chosen to handle the maximum
possitle number of nest~d saves.

~his microprogram complements the save register prcgram. It
"pops" A, A, E, and· 0 from the stack address~d by register F.

This microprogram has b~~n assigned to macro 105340. An
example of its use follows.

2-74

RESTR EQU 340B D'EFINE RESTORE ttACRO
SAVE EQU 3628 DEFINE SAVE ttACRO
SOB CCT 0 SU~BOUTINE ENTRY POINt

RAM SAVE SAVR REGISTERS ON ENTBY~
•
• SUBROUTINE PROCESSING
•
RAM . RESTR RES~ORE REGISTERS
JMP SUB, I· EXIT FROM SUBROUTINE

.!!~~g I ng~!iI

This microprogram' loads the A register with the current
content of the F register. This will allow saving the valua of P

-accross power failures.
this microprogram has been assigned to macro 105220. An

example of its use follows.

READF EQU
BAM
STA

•
•

220B
READl
SAV"EP

SAV EF ESS 1

DEFINE READ F !ACRO
LOAC A FROM F
STOBE F VALUE

I.9i\d.Jllj:!,

This microprcgram allows loading of bytes (8 bits) into the A
register. Character handling, message handling, and. buffer
unpacking can ce facilitated by this microprogram. A byte address
is defined as a word addre~s shifted left one bit into bits 15-1.
Bit 0 is ·then used to addr~ss byte 0 in the vo~d (bits 15-8) or
byte 1 (bi~s 7-0). The load byte micrc~rogram loads an addressed
byte into A register bits 7-0 and clears A registar tits 15-8.
The byte ~ddress is supplied to the microprogram in the B
register. The microprogram increments B to the next byte address
after loading A.

!his microprogram ·has been assigned to macro 105320. An
example of its use follo~s.

LBYTE EQfJ 320B DEFINE LOAD BYTE !leBO
LOB BYTEA GET ADDRESS OF 'WORD
BBL DEVELOP ADDRESS OF BYTE 0
RA [1 LBYTE LOAD THIS BYTE
STB NEXTA SAVE ADDRESS OF BYTE 1

• (A New CONT AINS 000 377)

•
BYTEA DEF DATA

2-7~

OAT A OCT
NEXTA ESS

171401
1

~2l:~.Jl:tll

This micrcprog~am is the store ccunterpart to loa~ byte. It
will be us~ful in buffer packing and ether kinds of character
handling. As in the case of load byte, the B register is used to
address in1ividual byt~s. A register bits 7-0 are stored·into the
sp~cified locaticn without modifying the acco~panying byte in the
same word. A register bits 15-8 are ignored, and the contents of
A are not altered. B is incremented te the next byte address.

This microprogram is assigned to macro 105300. An example of
its USE follows.

SBYTE EQU 300B DEFINE STORE BYTE ~ACRC
lOB BYTEA GET ACDR ESS OF WORD
HBL DEVELOP ADQRESS
INB OF· BYTE 1
LDA ONE GET CHARACTER "1"
EAM SBYTE STORE THE " 1"
STB NEXT SAVl NEXT B YT E ADDRESS

• (DA'TA NOW CON7AINS "A 1")
BYTEA DEF DATA.
DATA ASe 10, A
NEXT BSS 1
ONE ~sc 1 , 1

l£Jl.9Y.!

Many operations in the project involve the use of queues
which are maintained as linked lists of elements. Fer each such
queue, a pair cf queue centrel words is maintained. The first
word addresses the first element in the queue (the head), and the
second word addresses the last element in the queue (the tail).
An empty queue is defined such that the head is 0 and the tail
~oints to itself.

The engue microprogram places an element on a queue.
Regist~r A addr~sses the pair of queue control words and regist~r
B addreSs~s tbe element to be add~d tc the queue. (the link vord
for an elemant is assumed to be at the address in B minus one.)
The microprogram causes a .skip wh~neyer the element is added to a
non-em~ty queue. Normally, the enque microprogram places the
element at th~ end of the linked list (via the tail). However,
the element may cFtionally b~ placed at the beginning of the
linked list. This is referred to as a priority engue. Registers
A'and B ar9 not alterea.

2-76

This micrcprcgram is assigned to macro 105240. An exa.ple of
its use follows. Macro 105257 provides the optional priority
enque.

ENQ EQU
tD!
LOB
RAM'
JMP
•
•

QCW A DEF
EtA ~EF

240B
QCRA
ELA
ENQ
FIRST

AT
ELEfIt

~Slll~

DEPINE ENQ !AeRO
ADDBESS OF 8~AD. TAIl
ADDBESS OP !LE!ENT
ENQUE THE ELEMENT
(Q U E 0 E WAS E l1 PT Y)
(QUEUE WAS NOT EMPTY)

ADDBESS OF HEAD, TAIL
ADDRESS OF NEW ELEMENT

The deque microprogram removes an ~lement from a queue. A
skip is performed whenever an element is successfully removed from
the queue (q u.eue vas non-empty). As in the case of the enqae
micro~rogram, register A add~esses the head and tail words. The B
teqlster is used to return the address of the dequeued ale.ent.
Register A is not altered.

This micrcprogram is assigned to macro 105260. An example of
its use follows. .

DEQ EQO
LDA
BAM
JMP
•
•

QCWA DEF

2608
QCWA
DEQ
EMPTY

RT

DE.FIN E DEQ ! AeRO
ADDRESS OF HEAD, TAIL
GET AN ELEMENT
(QUEUE IS EMPTY)
(QUEUE ~AS NO~ EMPTY)

HEAD, TAIL ADDRESS

In the event the* queue is em~ty (no-skip return), the B
teqister will contain zero.

. this microprogram facilitates access to control blocks,
tables, etc. It uses the B register as the base addr4ss of an
area cf storage up to 32 words long. An ind~x value from -16 to
15 may then be added to th~ contents of B in order to load A from
any of these 32 locations. The index value is supplied as a
signed four bit number in the low order five bits of the macro
which invokes the microprogram.. B is not altered by the
micro£:togram.

~his microp~ogram is assigned to macros 105020 to 105057.
Note the special use of bits q-O. An example of its use follows.

2-77 .~

LA!

ATAB
WO
Wl

W14

EQU
LDB
RAM
•
•
RAM'

•
rEF
sss
ESS
ESS
ESS

040B DEFINE LOAD A INDEXED . MACRO
ATAS SET EASE ADDRESS
LAI+l LOADS CONTENTS OF W1 INTO A

LAI+14 LOADS CONTENTS o F ~ 14 INTO A

wo
1
1
12
1

Stor~ A indexed is exactly the store cour.terpart of load A
indexed. R~fer to that description for basic details.

This micropto~ram is assigned to macro 105060 to 105117.
Note the special use of bits 4-0.

This microprogram cc~putes cycl~c redundancy check characters
required in telecommunications error detection procedures. The
eRe result is developed by operating on each character of the
messagE vi~b this microprogram. A cha~acter is supplied to the
micro~rogram in the A register bits 7-0. The eRe result is
develo~Ed in thE word follcving the macro invoking the
micro~Iogr:3:m •

1bis microprogram is assigned to macro 105150. An Example of
its use follows. A and B are not modifi~d. The ir.itial value of
the CRC r~sult shculd be zero.

CRe EQU
LDA
FAr!

RSULT OCT
•

, SOB
NEXTC
eRC
o

DEFINE eRe MACRO
NEXT CHARACTEF TO BE APPLIED
APPLY TO CRC RESULT
eRe RESULT
RETURN TO HERE

Word move transfers blocks of Un" words of storage from one
are~ of me~ory (source) to another area (destination). The A and
B registe:s supply the source and destination addresses
respectively, and the count or Un" is supplied as an inline
param~ter in th~ location following the invoking macro. The count
must be a positiv~ integer. A negative or zero value vill result
in an eff~ctive NOP. Th9 microprogram is interruptable. For this

2-78

reason, it requires a second in11ne parameter word for interrupt
use which must be assembled as zero. A and B vill be modified.

this mic~opregram is assigned to macrc 105200. An example of
its use follows. .

tiMOVE EQU 200B DEFINE WORD ~OVE ~ACBC
IDA PROM LOAD SOURCE ADDRESS
LDB TO LOAD DESTINATION ADDRESS
BAM WMOVE ftOVE DATA
DEY FIVE ADDRESS OP AMOUNT TO ftOV!
CCT 0
•
•

paor! DEF *+1
ASC 5, ABCD::!.FGrG.J

TO DEP *+1
ESS 5

PIVE DEC 5

:Ill '!Q!s!

Byte move is like the vord move microprogram with these
additional facts. Bytes rather than werds are moved. " byte is 8
bits. Tha source and destination addresses in A and B aust be
byte addresses. (A byte address is defined as: bits 15-1 contain
the vcrd address and bit 0 contains the byte number.)

This microprogram is assigned to macro 105120. An example of
its use follow s.

BMOVE EQU 120B DEPINE BYTE MOVE MACBC
IDA FROM GET SOURCE ADDRESS
CLE,ELA CREATE BYTE ADDRESS
IDS TO GET DESTINA~ION ADDRESS
CLE,ELB eREA~E BYTE ADDRESS
BAl! BMOVE f!OVE THE BYTES
DEl NINE ADDRESS OF AMOUNT TO !DVE
CCT 0
•
•

FROM DEF *+1
Ase 5,A1B2CJD4ES

TO DEF *+1
ESS 5

NIN E DEC 9

Follo~ing the acove execution, the characters "A1B2C3D4E" vill
have been moved. The byte fcllowing the E in the destination area
will net h~v~ been modified.

2-79 0:.

1'~n21!!~2

This microprogram performs -a translation of a string of
characters according to a translate table. If Y is the byte
address of the translate table and X is a character (8 bits) to be
translated, th~n:

x (-- character at location ~+X

The A regist~~ Frovides the word address of the translate table,
vhile B suppli€s the byte addr9ss of the strinq to be translated.
An inline parameter provides a positive -count of the number of
characters to h~ translated. The microprogram is interruptable.
Hence, the inline count is volatile and may be modified. A and B
are modified.

~he micrcprcgram is assigned to macro 10S1f.O. An example of
its use follows.

TRstT lQU 160B
IDA I!IAPAD
LOB SAD
CLE,ELB
RAM TRSLT
eRC 5 ..
•
•

MAPAD DEF
ASC

SAD DEF
Ase

*-101B
5,1234567890
*+,
3,AIEECG

DEFINE ~RANSLATE MACae
LOAD- TRANSLATE TABLE ADDRESS
LOAC ADDRESS OF STRING
!AKE IT A BYTE ADDRESS
TRANSLATE THE STRING
AMOUNT TO TRANSLATE

Following the atove execution, the characters "AIEBCG" will have
been Ieplac~d by the characters "19523G".

In~i!~£1 Asg£~~~ li!l
!his microprogram generates a list of indirect address

pointe~s useful- In accessing unique storage areas. Such a
technique has been used in the programming of serially reuseable
modules to access individual control blocks. The address in
register A is d~posited into the location addressed by an in11ne
address list pointer. A is then incremented as is the location
pointer, and the process is repeated fo~ a spe~ified number of
Fointers. The B register is left untoucheu. A will be updated by
the number of pcinters gen9rated. .

The microprcgram is ~ssigned to macro 105000. ~n example of
its use follows:

2-80

IlL EQU 0008 DEFINE IAL MACRO
LOA ILIST LOAD ADDRESS OF STORAGE AB!A
BAM IAL GENERATE ADDRESS LIST
DEP PTRS ADDRESS OF .ADDRESS LIS~1
DEC 3 NU"BER OP POINTERS
•
•

ILIST DEF A
A ESS J
PTR S ESS 3

Pollowing axecution of the above example, PTns vill contain values
equivalent to:

DEF A
DEp· A.1
tEF 1+2

This microprogram is used to simultaneously execute an 1/0
instruction and mark the occurance of this execation. This is
done by using a m&cro followed by the desired IIO instruction and
a flag word which -will b4 set non-zero by ~he microprograa. IIO
instructions are limited to those not involving A or B.

The microprogram is assigned to macro 105221. An example of
its use follows:

PFn 10 EQU
RAM
STC
OCT

221B
PFRIO
108
o

DEFINE THE MACRO
EXECU~E STC AND FLAG SAftE

FLAG WORD

Following execution of this example, th~ control bit of the
selected interface will have been set (normal STC), and the OC~ 0
will have b~en changed to a one •

.fg}!.~;: iAil ~lil
this microprogram allows a module to exit from a subroutine

and simultaneously clear the subroutine entry point location.
This is especially useful in interrupt handler,s to allow for the
simple inspection of the value of the interrupt entry point in
order to d7termine if an interrupt is active. This is a necessary
decisicn for power recovery ~rocessing. .

The microprogram is assigned to macro 105223. An ezample of
its use follows:

2-~1

PPREX EQU
BAM
I:EF

223B
PFREX
I.10

DE.FINE THE MACRO
EXI1 THROUGH 1.10

contrel is transferred to 1.10 indirectly just as in a J~P I.l0,I.
However, in addition, the l.10 location will b& cl~ared.

This
and pcwer
flagged,
claar€d.

microprogram incorporates the actions of Fov~r fail I/O
f~il exit. That is, an I/O instruction is ~xecutea and
~nd an indir~ct exit is made with the entry pcint being

The microprcgram
its use follows:

PFREI EQU
FAM
~TF

ceT
DEF

is assigned to macro 105222.

2228
PFREI
OB
o
1.10

DEFINE THE MACRO
EXECUTE THE MACRO

An Example of

~he stF instruction is ~xecuted and the inline OCT 0 flag is set
non-zero. Control is given to the location whcse address is in
location I.10. I.l0 is cl~ared.

III. Design Structures

Some of the efficiency cf the microprograms is due to th~
design assumption that the wcs module is module one. It is
therefore the macro "entry" wodule. This can ·eliminate some
wasted microproc~ssor cycles for jump tables.

In t.he r~mainder of this section, each of th~ individual
micro~rogr~ms is discussed in detail.

these microFroqrams will use the F register. as a stack
~ointer. This has two impacts. First, memory protection can not
be us~d since the +wc uses of the F register would conflict.
Second, no oth~r microprograms may use th~ F register
indiscrimi~antly. This use of the F register is justified on th~
basis of efficiency. Memory protection does not appear to be a
future requirement, and other micrcprograms do not seem to be
heavily restricted in not using F. It should be noted that the

2-82

tasic instructicn set never modifies F. Should this use of P
become a problem, other forms of save and restore can be
implemented. '. However, all other forms will suffer an increase in
execution time OVEr the current design •

.§U.@ ".i.9!st~£!.

The save mictoprogram de~ends on the use of a macro having
bit 1 set and bit 0 clear (105xx2 or 10Sxx6). This is because the
IR is us~d to develop the saved value of the 0 register. ,since
saving of the registers requires three co~e writ6s (one for A~ one
for B, and one for E and 0), it is desireable to have the
micrc~rogram initiate the first write as soon as possible. By
assigning the macro 105362 to this microprogram, the primary jump
table can be a voided. There ~':..:, ~~ iI the first microinstruction for
this microprogram can initiate the first core write and does not
ha va to be a, J MJ? microinstruction. The microprogram thus fully
.e~ecutes in the minimum number of storage cycle times.

While the ~o~e writes for A and B register values are
occu~inq, the values of E and,O must be developed. This is done
using the eNTR. Bit 1 of the CNTB is set if 0 ,is clear by using
bit 1 of th~ IR as a constant (hence th~ requirement for 10Sxx2 or
105xx6). Also, if E is set, bit" 0 of the CNTR is sst. H~nce, the
net ~esult of this macro is as follows:

1. A is writ ten to the location addressed by P.
2. F is incremented.
3. CNTR is cleared.
4. eNT B (') is set if 0 is clear. (Thus, CNT'R (1) saves the

complement of o.)
5. B is written to the location addressed by P.
6. E is transferred to FLG.
7. F. is incremented.
8. CNTB(O) is set if E is set.
9. CNTR value is written to the location addressed by F.
10. E is restored from PLG.
11. F is incremented.

E~~2I~ ~~i~~~§

This microprogram performs nearly the inversE opEration of
the save r~gisters microprag.ram.

1.
2.
3.
4.

F is decremented.
A core read for E and 0 is started.

'0 i's assumed set.
FLG is set. with bit zero from the data read from core.
(Th is is the sa ved va lue of E.)

5. P is decremented.
6. A core read for B is started.
7. E is leaded from FLG.
8. 0 is cleared 1f bit one cf th~ data from (2) is set.

(This is th~ complement of the saved value of 0.)
9. B is leaded from the data read from cor~.
10. F is dEcrem~nted.
11. A core read for A is started.
12. A is leaded from. the data read from core.

1. F is transferred to A.

12!.S &I!~

tnis microprogram must initially have a default NOP in the
IR. Therefore, IR is cleared by the JMP in the primary jum~ t~ble
This microprogram is also used as a subroutine by scme other
microprograms. In this case, the JSB clears the IR.

1. A 32 bit logical right shift of B and A places "B(15-1)
in S1 (1U-0) an,j B (0) in A (15). (Address of word
contai~ing byte in S1 and byte number in A(15).)

2. A rea~ of the word addressed by S1 is started.
3. If A(15)' is clear, an ALF instruction is built in the

IR.
ij. The data read is plac~d in Q as operated on by either

two NOP's or two ALEfs. (Thus th~ desire1 byte is
plac~d in Q(7-0).)

S. B is incremente~.
6. Q is transferred to A with A(15-8) cleared.
7. The microprogram ~ither r€turns to tyte move or exits

phase three.

~!2I~ J2.I~

Ihis microprogram must initially have a default NOP in the
IR. Therefore, th~ IR is cleared by the JMP in the primary jump
table. This microprogram is also us~d as a subroutine by some
other Dicroprograms. In this case, th~ JSB clears the IR.

1. B (15-1) are shifted to S1 (14-0). FLG is set with 8(0).
(Address of word containing byte to S1 and byte number
to FLG.)

2. ~ read of the word addressed by 51 is started.
3~ B is incremented."

2-84

En.gJJ!!

LI.
s.

6.·
7.

8.
9.
10.

1.
2.

3.

LI.
5.
6.

7.

8.
9.

10.

11.
12.

13.

14.

If PLG is clear, an ALP instruction is built in the IR.
The data read is placed in Q as opera.ted on ty either
two NOE's or tvo ALP·s. (Thus the byte to be.,saved 'is
mOVEd to 0(15-8).) .
Q (7-0) are cleared and Q 1s 1Ioved to 52. ·
1·(7-0) and 52(15-8) are .merged and 'positioned either
with two NOP's or two ALP's.
A core vrit~'is initiated.
The merged valu~ is' written to core.
The microprogram. either returns to byt~ move or e%its
phase t~ree.

The address of the h;-=,t,i pointer is placed in 52.
The CNTR is set from the IR for use in detectinq the
priority enque request.
The new element link word address is placed in 53. If
the request is not priority, S2 is changed to the ·tail
pointet.
A read of the appropriate ~ointer is $tart~d using 52.
The tail pointer address is developed in 51.
Q receives th~ old element address just read. S4
receives the proper 'link word· content for the new
element.
The carry flip/flop is set if the request is priority
and the head vas clear.
A core write of the head or tail pOinter is started.
~he contents of B are written into the pointer. (Tail
or head now addresses new element.)
If the reques~ is not priority, then 51 is changed to
rewrit. the old element link rather than the tail.
The link word of the new element is written fIom SLI.
If a priority engue and the list was not empty, the
remainder of the micrcprogram is a NOP.
a is written into the core location addressed by 51.
(Old element now ~cints to new tail alement or for
priority with an e~pty list, the tail points to the new
ale men t.)
The carry flop is set for non-priority r~quests to
refl~ct the emptiness of the list.

1. The head pointer is read into E.
2. If a.is clear, an exit is made. (P is not increment~d.

The list is empty.)

2-85

3. The link vord of the degueued element is d~velcped in S' and is rea d •
4. [» is incramented.. (The list is not empty ..)
'5. The link word value just read is placed in 54.
6. The head is r~written with the value in 54. (Read

point~r now addresses new hea~ element.)
7. If the head Fointer is going to zero, the tail pointer

is rewritten to address itself.

These microFrograms are very simil~r and vill be described
together.

1. Bits 4-0 of the instructicn register represent a signed
index to be added to B. Due to the function of the AOR
S-bus micro-order, bits 9-0 are added to B first. The
result goes to Q. If X repres~nts bits 9-0 of the
instruction register with bits 4-0 clear, then this
step produces: Q=B+X+N where N is the desired index. '

2. X must be removed. two subtraction st~ps nov occur to
=emove X from Q. The final result (B+N) goes to 52.
The value X is based on the macro assignment for the
microprograVls.

3. For load, a core read is star~ed to the address in S2.
For' stcre, a write is started.

4. A is appropriately loaded from or stored to the memory
location in ques~ion.

the eRe corputation is a division of a message by an error
detecting polynomial. The remainder of the division is the CRC
result. ijy beginning with a clear CRe result and applying each
successive bit of ~he message to the division process, the CRe
result may be computed. This microprogram handl~s a character of
th~ messag9 and applies each of the 8 bits of the character
successiv~ly. The polynomial involved hera is:

XI6+X15+X2+1

This is ~he standard eRe poltnomial fqr IB~ binary synchronous
communications. In these ccmlunications, the cae result is
maintained with i~s low order bits in high. order positions of the
computer m~mory werd. The division is carri~d out with 1 bit
shifts and modulo 2 addition (an exclusive or).

2-86

Por more details on the subject cf err~r detacting codes and
on the technique used by this microprogram, refer to the following
publication:

Jalles l!artin, I~~.2£.!§§iD.g l!!.1.!~n 2~nJ.lati.9a,
p~entice-Hall~ Inc., Euglevood Cliffs~ New Jersey,
1910, ·pages 76-95. (especially .pages 95 and 91-93)

1. A and B are saved in S4 and Q respectlv~ly.
2. CNTR is set for an 8 cycle loop using a constant value

of 10 ~ctal) from the lB. (Hence, the requirement for
a macre assignm~nt of 105150.)

l~ A constant (polynomial) and an RIB instruction are
built •.

q. The supplied charac~~7 is moved from A to B.
5. The current eRC result (addressed by P) is read and

rotated right into 52. A is cleared.
6. B and A shift right together. B(O) becomes 1(15). 52

is then exclusive ·cr'ed with A. This applies the
constant (or 1) part of the polynomial. Result goes to
A.

7. If 'thE rasult of 7 is a ", in A (1"5), then the reaainder
of the polynomial 1s· applied. ""~\

8. 52 is set with the new rotated value of 1.
9. CNTR will cause cycling on steps 7 through 9 for each

of the 8 bits in B. A is cleared on JMP's to step 7.
10. The CRe result is ~evritten to cora.
11. P is incremented. A and B are restored.

Normal processing

1. The count addressed by the inline parameter is read and
the result is loaded into Q (-count-1). If the result
is not a positive value, the microprogram exits a~ step
10.

2. The' destination address in e is moved to 52.
3. A source word is read as addressed by A.
q. A and E are incremented.
5.· 53 (or Sq if used in ccnt~ol store module 0 or 2)

receiVES the scurce word content.
6. The count is decremant~d in Q. When zero a skip occurs

to an Exiting JMP to step 10.
7. The destination word write is started using the address

in 52.

2-"S'k.

8. The source cont~nt in 53 (or 54) is written to the d~s­
tin~ticn. If an interrupt is p~nding, procged at step
11.

q. B is transferr~d to 52 as t.he new source address. The
miQroprogram continues ~t step 3.

10. P is increment~d past the in1ine param~ters and en1 of
pha s e is set.

Int~rrupt processing

11. The ccunt in Q is d~crement~d, and the microprogram
continues at st~p 10 if the count goss to zero.

12. If mor4~ movin9 is required, t.h~ current count is
rewritten to th~ location ad1ressed by P and P is
decremented to cause the macro to bp. re-eX9clltl9d.

!his microprogram uses the load and stor~ byte microprograms
as su1:routines.

1 •

Normal processing

The count acquisition
.microprogr~m is llsed as a
COU!l<t:.

code in
su t:rollt. ir.e

the
to

mov~ words
o1:+.ain t.he

2. B is ~aved in 54 as th~ d~s~indtion address. A is
~ov~d to B as the first sourc~ address.

3. Loa1 byte is us~d to ob~ain th~ n~xt byte.
,. 53 r9tains th~ next soutce adir~ss =eturn~d by load

byte in B.
5. B i$ r~stored\ with the next ·jes~ination a3iiress from

54.
6. 54 is used ~o ra~ain Q accross storg byta which also

us'?s Q.
7. Th~ sto~e byt3 is p~rform~o and Q i3 restcred. The

next destination address prcvided by store byte in B is
saved in 54. If an int~rrurt is ppn1ing, proceed'as in
m 0 v ~ w or ti s •

8. B rec~ives the next scurce address savel in 53.
9. The count is decr'emented, an1 tha micrcpro·gram exits if

it goas to zero. otherwise procagd at step 4.
10. P is advanced b~ycnd th~ inline count. End of phase is

s-et.

2-88

U5nAl~.t!

This microprogram US4S ~he load and store byte microprograms
as subroutines.

1.

2.

3.
4.
5.

6.
1.

8.
9.

10.

11.

Normal pro<:e ssipg

The count is read into Q in two's complement form. If
the result is not negative, an immediate exit occurs.
The tyte address of th~ translate table is created in
54.
The byte addressed by B is loaded (function byte).
The address of this byte is retained in 53.
The f~nction byte is added. toS4 to generate the
address of the Obj3Ct Lyte within the table.
The object byte is loaded.
The address of the function byte is restored to B from
53. Q is saved in·S3. (Stc~e byte uses Q.)
The object byte is stered over the old function byte.
53 is incremented into o. (Count check.) If a zero
,results, an exit is begun.
If an interrupt is pending, interrupt processing
beg ins.
Processing continues at step 3 until the count goes
zero when P is incr9mented to skip the inllns count.
Then end-phase is set.

Interrupt 'processing

12. A is restored. The' positive counterpart of Q is re­
written as the inline count.

13. P is decrement~d for reinvocation of the microprogram.

1. Th~ inline parameter, 'which is the addrEss of the
indirect address lis~, is read from memory.

2. P is incremen~ed past this inline parameter. The B
register is sav~d in register·S1.

3. The data read in 1 above is now moved to ~~gister .B.
q. A memory read is started to obtain the inline parameter

which is the addres~ list size. This information is
transferred to the Q r~gister, and P is incrementad
past the parameter.

5. A memory writ~ is started using tha a~d~ass contain~d
in the B regist~r. This is· the address of a cell in
the indirect addr~ss list. The contents of the A
register are deposited into this location.

2.:"89

6. Both A and B ar~ incr~mented_
7. The count is decremented in Q. When this count reaches

zero, E is restored from 51 and end phase is set.
Until this occurs, processing continues at step 5.

1. The firs~ inlin~ param~t~r is r~ad using the P
regis~Er. This is th~ I/O instructior. which is to be
executed. P is incremented to skip this parameter, and
the IR is loaded with the instru9tion as read from
memory_

2. A m~mory write is s~artcd to the n~xt inlin~ parameter.
This is the flaq which will mark th~ occuranCE of the
execution of the I/O instruction. A constant one is
deposit~d into ~his location.

3. P is incremented to skip th~ inline flag. Th~n the rOG
decoder is enabled to qx£cute th3 I/O instruction in
.... he IR •.

4. If the microprogram iz in use by power fail exit wi~h
I/O, then a return from subroutine is effected.
oth~rwis~, this is a nop and end ph~se is set.

1. The inline paramet9r addressed ty the P register is
read from memory. This is the address of the vord
which contains thq r~turn addrsss. The contents are
deposited into 52.

2. ~ =ead is now started using the address in 52. This
will crtain the return addr~ss to which control is to
be transferred. Th~ v~lue in that lccation is
deposited into P.

3. rh~ location address~d by S2 is now written with: a
zero. This marks the fact that the exit has been taken
and th~t no processing is active in the associaten
module.

4. End phase is' set.

1. The. pcwer fail I/O micrcFrogram is invoked as a
subroutine.

2. Th~ microprogrlm th~n falls in~o the power fail exit
microprogram.

IV. Implementaticn

2-90

All microprograms are tested and debugged using KCS.
However, it is expected that in the final HP2000 ACCESS systems,
PROMs vill be turned with the microprograms described herein.
Thase PRO!s vill become a standard part of the CPU for the HP2000
ACCESS I/O processor.

SECTION III

TERMINALS

If r. w L t:: T T - f:J A C K A R 0 2 000 S ~ S 1 f~ M I /0 P P UC t: S S 0 R

1. n.61

2. rCKH

~. ~L1XIi

4 • 1).5 1

TJ::HM1NALS

CClNTE:.;NTS

INTERCONNECT KIT DRIVER

INTt:;RCONNEC'l' KIT HANDLER

MUI,TIPLEXOH HANI.)[,~:R

~AIIL'J'IPL~~XOP I)RT'vER

~-o

I. Introduction

Tha D. 61 Int erconn ect Kit Dri ver is designed
Processor of the Hewlett-Packard HP2000 ACCE~S
System •. It vi 11 pi:ovide but fa ring of input and
System Processor and 'prcper channelling
information throughout the sIstem~

II. Design overview
-:,

~~~ign ~~§Ym2~i2~ 

for US9 in the I/O 
'fimes hare Basic 
output from/to the 
of centrol-type 

The hardware required for 
2100A processor. used as the 
system. Also required is 
numbor 128158). 

operation of the progra~ includes a 
I/O Processor on a at ~coo ACCESS 

a processor interconnect k~t (part 

The software environment is assumed to contain the BP2COO ACCESS 
I/O processor microcode. Also assuaed are special purpcse HP2000 
ACCESS driver extensions in the 0051 multiplexer driver • 

..Q~~lgD. 2Y!m~£1 

The design approach uses as a starting point an analysis of'the 
functicns required of the I/O Processor and the bufferGd I/O 
r~quirements of Queued .IOC. 

'. 
Kany of the functions requested of the IOP are of an asynchronous 
nature, unrelated to activity on the IOP.· An example is tha 
PHONES command execution. ~o optimize performance, this driver 
will process these by dispatching appropriate appendages in co­
~xisting drivers and ~hE base level program. Base level 
app~ndages are also occassionally dispatched using the technique 
of unsolicited event noticas. 

Another subset of the requirements for the driver is a ~uffered 
I/O interface with Queued .ICC. This requires synchroni2ation of 
an input from the System P~ocessor with .IOC. READ calls and 
output to the SP with .IOC. WRITE calls. It is noted in the SP 
connection protocol that. all WRITE calls must be i~mediately 
followed by READ calls, so a special WRITE/READ operation. is 
provided. ' 



l!s.j2I modJ!J..l§ 

Command Dispatcher - This mcdule will interpret co.mands from the 
SP and pass contr~l to the module/routine responsible for 
execution of the command. 

External AppendagEs -' This "medule" consists of a collEction of 
routines scat~e~ed throughout th~ Eystem responsible for execution 
of asynchronous control/information commands from the system 
processor. Since these routines are coded in different, External 
modules, no sp9cific outline of their functioning vill be made 
here. However, Table 3 contains a list of the routines,· entry 
parameters, and 9xpected r3turns to the SP where appropriate. 

Input Buffering This module processes poe and POS eo •• ands to 
buffer data frem the SP to the lOP. It also notifies the SP of 
Buffer rull .an d Bu ffer Empty cond! +. ions. 

Data Output 
the SP. 

This service medule is usad to output commands to 

Output Transmission - This lodule handles transmission cf data to 
the SP. It also is responsitle fer execution of Backspace and 
Sav~estore Buffer Pointer·commands. 

READ Inierface - This module iDterfaces an .IOC. READ reguest with 
tha Input Buffering module. It must referenc~' and adjust table 
information to reflect input tuffer availability. 

WRITE/R EAD In terf ace - This Icd ul£· in terfaces an • :roc. WRITE/READ 
request with the Output Translission module. .It also notifies the 
SP of data availability. 

wRITE CONTROL Interface - This module int~rfaces an .IOC •. WRITE 
CONTROL request with the SP. Centrol information from the user 
program is passed directly tc the SP. 

III. Design Structures 

One of the kEY features of the driver is simultaneous control of 
up to 32 data streams through a single .lOC. logical unit Dumber. 
Implementation of this featare requires control tables in the 
driver for each of the 32 stIe~.s. 'This table, called a Logical 
unit Table (LU~) is illustrated in Table 1. 

3-2 



l1sjg,£ !~!211!1 !!gg.Yl~ 

The Command Dispatcher is Entered to obtain commands fro. the SP 
and transfer control to the appropriate routine. It vill 
relinquish control via a JSB with the following para.eters set: 

A-regist9r: Logical Onit Number 
a-register: copy cf SP ~om~and 

Tha algorithm used is as outlined belove 

1) Use bits 15-13 as offset into major cOllmand J"P table. If 
15-13 ~ 7, goto routine via ~SB. On return goto step 3. 

2) If 15-13 = 1, use bits 4-0 as offset into micro-cc.mand J!P 
table. Goto routine via JSB. 

3) On return clear flag to allow further SP interrupts. 
Terminate interrupt processing_ 

Se~ table 1 for a list cf SP commands and where control is 
transferred for the various com.ands. 

External Appendages are a collection of device specific routines 
usad to quickly eXEcute device s,peciflc SP COllmands. An example 
of such a command is ABT, vhich requires the !Ul driver to change 
status of the user. No description of the processing require.ants 
for each External Appendage is given hera, but is given within the 
Base Design Specification for the module in which it is coded. 

The Input Buffering modula is used to receive characters fro. the 
SP and assemble them into a lessage buffer. It obtains control to 
process the following SP commands: poe, KTO, IWT, ALI, STE, OiT, 
IBA, RLB, OIR, UNR, TPO, 1ST, and POSe It may also trans.it the 
following commands to the SP: BFL. And it may ultimately pass 
control to the terminator section of the READ Interface aodule. 
References to the LUT use the co_ponent name as shown in 7able 1. 
Implicit in every LUT reference is subscripting by the aFpropriate 
device number. The' Input Buffering module is also responsible for 
generating all unsolicited event notices. SP co •• ands which 
unconditionally generate an unsolicited event notice are IN!, SSD, 
HUU 6 ULO, and Nue. The notification and interpretation of these 
commands are included as fcotnotes to Table 2. Buffer Full~ SP 
Input Killed, User Running, User Not Running, an~ Use~ Aborted 
status indications may also cccur in unsolicited event notices if 
no prcc~ssing is in progress when these status' are obtainEd~ 

3-3~ 



Data Output consists of the single routine OKTOft. This module is 
entered for all IOf to SP ccmmand transfers. Upon ent~y, the 
command should be in th~ A-register. Enter via a JSB O!TCK. 

The output Transmission' module has the responsibility of feeding 
the SP from a WRITE buffer ODe character at a time. It cbtains 
control from the Command DisFatcher for the following ccmmands: 
FMC, SBP, RBP, EKS. It does nct transmit any commands to the SP. 

The READ Interface module is responsible for initiating READ 
requests from .IOC. and queuing READ completions' through .IOC. 
the user interfacE is through two .IOC. calls, as descritEd below. 

READ FEQDEST 

J 58 • IOC. 
'OCT 1P9XX (XX is logical unit n~.ber) 
Reject Address 
Buffer starting Address 
Buffer Lengt h 

The high-order byte (bits '~-8) of the vord immediately preceding 
the buffer is assullmed to conta.in the logical strea.m numter' '(sub­
unit number) for the requEst. The driver will reject if a READ 
request is alrEady pending. status returns for the BEAD are qfven 
in Table 2. It shou'ld te noted that these status returns, as 
~verything elsE in this driver, arE; specific to the HP2000 ACCESS 
system. 

The algorithms for this lodule consist of one for READ request 
execution and ene for READ ccm~letion processing. READ request 
execution vill adjust pOinters in the Logical Unit Table for th~ 
Input Buffering module and it necessary tran~mit a SFE cOII.and to 
the SP to re-enable data tIansfe:r. READ completion precessing 
will ccpy current status to the equipment table log'and queue the 
input by a JSB .BUFR. Nc s~ecial handling is required by this 
routine. 

'the WRITE/READ. Interface is used to request data output to the.SP, 
an·do 

turnaround of the devic~ upon WRITE compl~tion t~ READ status. 
The form of this call is as fellcws: 

3-4 



WRITE/READ REQUEST 

JSB • laC. 
OCT 2~2XX 
Beject Address 
Buffer start Address 
Buffer counts (high byte is 

vri te count, "low 
byte is read count) 

Again, the high~crder byte of the word i •• ediately preceding the 
'buffer is assumed ·to contain the logical stream nu.bet for the 
request. Further, bit 13 shculd be set if a parity error occurred 
and bit 14 should be set if a character vas lost. Both should not 
be set, but parity errors vill override lost characters. The 
driver will reject if a WRITE request is already pending. status 
returns for the WRITE are given in Table 2. 

The algorithm for the WRITE interface is very straightforward, as 
outlined belo v •. 

1) If WRITE/READ. request already queued, reject. 
2) Store WRITE buffer infor.ation in LUT for output Trans.iasion 

module. 
3) Transmit HVL command to SP. 
4) Exit. 

Upon WRITE completion initiate a READ operaticn by direct entry 
to the READ interface. 

Tha WRITE CONTROL Interface .odule is used to trans.it the 
following "special" commands to the SP: ABR, ·ETO, and·OHU. These 
may all be sent via the follcwing .IOC. call. 

WRITE CeNTROL ~EQUEST 

JSB .10C. 
OCT 2~4XX 
Reject Address 
Buffer Address 
DEC 1 (ccnstant) 

A reject will never occur. ~he "buffer address" should point to 
ons word, consisting of the command to be sent to the SP. Upon 
return, the request will be co.pletely executed; hence no 
completion notice will be give~. 

3-5 



The execution .algorithm ccnsists of loading the cc •• and to 
transmit, calling the Data output routine, then returning. For 
reference, ABR is an Abort request, code OCT 16UU~' (UU IS Logical 
stream number): ETC is ENTER tile out, OCT 1600P3; aHO is User 
hun9 up, OCT 16UU94;· and ADR is Allocate Device foi BJE, beT 
16UN06 where UN is the logical ucit number • 

.f2.:ul: U£!2!.UI R~.£I.§§i.n.s 

Much information about restoration of the interconnect kit 
follcving a pover failure is outlined in the D.04 Pover 
Fail/Restart mcdule specifications. (Se9 "Relationship of D.04 to 
the System processor.") There can be found details on the data 
~xchanqed between the lOP and SP during power rEcovery as vell as 
a description cf interface flag restoration. 

3-6 



Table 1 
LOGICAL UNI7 ~ABLE DEPINITION 

• IB 1. 
.IL 1. 
.1STA 
.IS1V 
.081.' 
• OL 1. 
• CSTA 
.OSAV 
.00AL 
• ICP 
.IeL 
.ocp 
• eCL 

Input Buffer Pointer 
Input Buffer Length 
Input Status * 
Input Sa ve .Word 
Output Bu ffer Poi nter 
output Buffer Length 
Output Status ** 
Output Save Word 
Output Save Length 
In~ut Current Pointer 
Input Current Length 
out~ut Currgnt Pointer 
Output Curr9nt Length 

• .1STA bit s ha ve the follcvinq defini tions: 

7-0 

8 
9 
10 
11 
12 

.* .OSTA 

15 
14 

Copy of EQT status for stream. Cleared by operation 
completions; if any bits set on READ call, operation 
terminates immediately. 
"BPE" must be sent to start read. 
Input character saved in .ISAV. 
RLB received for message. 
Character 2 saved in .ISAV. 
IBA indicated to base program. 

bits have the following definitions: 

BPS1V - Buffer Pointer is saved. 
WRITE/READ operation in progr~ss. 

3-7" 



Table 2 
EQT STATes BIT DEFINITIONS 

r----7 ---.... ---6 ----~--"':'"5----- --4--------3----~- ---2-·-------1-------0----., 
I ~ I' I I I· I I I 
I Buffer J start I Allow I SP I User I User I Tape I User I 
I Full I ENTER I Mux I Input I Running I Not I ~ode I Aborted I 
I I Timing* I Input , l<illed I I Running I Cn I I 
I I I I I I I I I 

Note: A tit on indicates condi~icn is t,rue. Bit off has no 
meaning. 

The definitions of th€ above and associated actions required ara 
listed below: 

~Jl!".!U Lul! This indicates a READ operation has terllinated 
under conditions requiring another READ to follow. Such 
conditions are READ buffer filled or OiT state entErEd. The 
next ope~ation schaduled should be a READ operation. It may 
also occur in an unsolicited event notice if the SF attempts 
to transfer data while co input buffer is assigned. . 

~~~~ I!I:! tiling -- This bit is set if ENTER timing is requested 
by the SP at the terminaticn of a READ operation. It cannot
occur unsolicited. ~t.e ENTER tima parameter, in seconds,
will be returned as the last character in the buffer. After
receiving this notic~ a MUX READ should be initiated and the
ENTER timing should ba started.

!U.Q'! lUll inlU!! This indicates the SP has requested a MUI READ
operation. It cannot occur unsolicited. A MUI READ should

. be starte d.

~f ln2!t lill!~ This CCCUIS as th~ termination of a READ
operatio~ and indicates the data should be purged instead of
output to the" MUI. It may occur unsolicited, also, in which
case current !UI output should be purged, followed ty a ftUX
READ.

Q§U .:unnin9. -- This may occur at the completion of an operation.
It indicat~s a state transition from conversational to RUN
lIode.

3-8

y§u ~ £.Y!!..ning -- This also may occ·ur at the completion of an
operation. It indicates a state transition froll BUN to
conversational mode.

la~ mode on --,This .ay cccur' only in the completion of a BEAD
operation. It indicates a state transition to TAPE .cde, and
processing should be adjusted,accordingly.

Y§:!.I ab2I1!g -- This is set when an ABORT is indicated by the SoP.
It implies the· User is lot Running; 'it does !l2~ purge ,active
I/O on the device. It may occur at operation co.~letion or
as an unsclicited event.

In the 'case of an unsolicited event' notice, the above sta,tus vill
be returned in bits 7:0 of the B-register. Additional status
returns are defined as follows:

Bit 12 -~,System Shut Dovn
Bit 13 Hang User'Up requested by SP.
Bit 14 U'er Logged On indicated by SP.
Bit 1S Nev User Called indicated by SP.

Bits 11:6 of the A-reqiste~ ~ill contaiD the device number.

An unsolicited .vent with status' of all zeros indicates an INIT
re quest froll the S P.

3-9

'Iable 3
SP CC~!AHD DEPINITIONS

Bits 15:13 of all co •• ands received from the SP contain the
co •• and value. Represented in octal, these bits give a range of
00 to 16. Obviously, more SE commands are defined than this range
vi1l permit. Therefore, one of these commands is inter~~etEd as a
"micro-coded" cOluend with the aetua 1 command indicated ty other
bits. In many cases, both primary and micro-coded com.ands use
bits 12:8 to indicate the Tse ~ort number. Several other co •• ands
usa bits 12:7 to indicate a TSB logical unit number. Certain
other coamands use thesa and other bits for entirely different
pur~oses. In the su.mary which follows, these exceptions are
noted. Ssveral commands arE followed by a second para.et'ar word
froll the SP. This mechanism is used to supply length and other
such indicators. "ost co •• ands do not require a response to the
SP. However, for those whicb do, the responses are outlined as
notes.

Command --00-- b~!.2ni~

.Etlan S.2!l!lll's'§

f.!m.£ti211 .. ll£a!aj:eLSRliU
Character <7:0>

Notes --
02
04
06
10
12
14

16

£.2Sl!!.n~
00
01'
02
03
04
05
06
07
10
1 1

,poe
STE
STP
PRO
PCP
POS
TIN

r1!l~!2n.i£

aIR
UNR
IWT
RUU
ULO
EON
EOF
TPO
STR

Process output character
start enter'timing
Subtype infermation
Phones tim i ng
Perform contrel function
Process out~ut string
Terminal information

Micro-cod~d ccmmar.d

lJmai2n
Micro-micro-cemmand
User is runlinq
User 'is not running
Input wait
Hang user u~
User l09g€~d cr.
Echo on
Echo off
Tape mode all

Time in seconds <7:0>
s ub type 4C 7: 0 >
Time in seconds <7:0>
Fun ction (6: C>
String length <7:0>
Port< 12: 8>
~icro-coR.and <5:0>
Micro-command <5:0>

Start tim€d retry (ASCII files)

3-10

,
2

Ngt@s
3

12
13

'4
15
16
17
20
2·'
22
23
24
25
26
21
30
31
32
33
34
35
36
37

00
01

NUC
KTO
ALI
OiT
IBA
ADV
ROV
ALB
X'RB
BKS
'KDO

,PNC
RJE
lBT
PIS
NOP
SCl:
RLB
NOP
SBP
RBP
CBE

WTP
SBL

Nev user called
Kill terminal output
Allow input
output wait
l:s buffer available
Allocate de.ice (ASCII files)
R~lease device (ASCII files)
Allocate output buffer (ASCII files)
Transfer in~ut buffer (ASCII files)
Backspace
Kill device output (ASCII files)
F et ch next cha racte r
RJE command
User aborted
Process input string
(Reserved fer future use)
Send core i.age
Release buffer
(Reserved fer future use)
Save buffer pointer
Restore buffe~ pointer
Console buffer eapty

What tar.inal type
Send buffer length.

~tes

1. PCP is an ASCII files related co •• and. PCP returns ODe of
the follo~ing responses to the SP:

o - command accepted
1 - device not ready
2 - illegal data input fro. device
3 - hardware read error OD device
" - unrecoverable device error
-1 - no buffer available
-2 - device end of file
-3 - no data available frcm device

In the non-zero cases, the response is simply an echo of the
current, dEvice status.

2. POS responds to the SP as follows:

3-11~

" 5
6
7
8

9

10

o - command accepted
-1 - no buffer available

3. The _ following aicro-micre-coded commands are defined bY,bits
9:7 of the command:

o INI Initialize lOP
1 KSB Col d dump
2 SNP Send number of potts
3 SDT Send device table
4 SSD System shutdown

For the INI command, the fclloving SP r~sponse is given:

o - RJE is present in system
1 - RJE is not present in system

other commands yield obvicus respcnses.

4. IEl responds to the SP as fellows:

o - buffer is available
-1 - no' tuffer available

5. AOY is a two word command. The sacond word receivEd fro. the
SP contains the buffer length to be associated with the
device baing allocated.

6. ROY responds to the SP as follows:

o - device was released
-1 - device is still bUEY

7. ALB is a tvo word co~mand. The second word receivEd fro. the
SP contains the buffer length to be allocated. ALB then
responds the SP as follcws:

o - buffer was allocated
~O - same as PC, (see ncte 1)

8. IRa responds to the SP as fellows:

o - buffer available
~O - same as PCF (see ncte 1)

9. RJE responds to the SP as follows:

O. - buffer available

3-12

-1 - no buffer available

10. SCI is a tvo word com.and. The second word receiv~d frca the
SP contains the start address for the area of the ICP to be
returned to the SP.

3-1~

The interconnect kit handler (IeKH) manages comllunications
between the system processor (SP) and the I/O processor (lOP) at
the user prograa level. Those communications consist of the
dialogue between a separate handler, managing time share
terainala, and the system processor. By definition the inter-

'connect kit has characte~istics which require special
consideration.

1. Although the interconnect kit is a single physical
device, it must SUp~OIt 32 separate· and independent
data streams (onE' for each potential user of tbe tiae­
shaz:e system).

2. The identity of these . separate data streams must be
aaintained in its interactions with ether handlers as
vell as with .IOC.

3. Each of the data streams 1s bidirectional, used for
aeslages froll the SP to the external handler and for
messages fro. the e~ternal handler to the SP.

r
4. For reasons of performance the ICKH and the handlel;s

with which it interacts vi1l not utilize the dynaaic
baffering facilities offered by the buffer aanager.

5. The systell processcr "controls" each data strea.. The
nature of communication is that every input tc the SP
evnkes ~ response in the f~rm of a co •• and or output.

The illpact of these characteristics on the ICKH handler is
outlined below:

1. control and status information must be maintained for'
individual data streams (see Local data structures
below) •

2. stream identIfication is embedde-d in all coa.unications
vith external routines. The necessary infor.atien ~s
maintained in the control words attached to each
buffer.

3. since information" flow between handlers is
bidirectional, contrel information in the fora of a

3-14

co.mand code and status inforaation is attached to
every buffer queuEd.

4. Buffers are managEd by the IeKH. All data buffers used
are dedicate4,to the handler. The leKS queues .apty
butfers for other ha,ndlers to fill; or, alternatively,
queues full ones as output to another ,handler and
receives thea badk as vork in its own queue. !his is in,
lieu of the dynamic facilities of the buffer •• nager.

'5. Buffering and processing techniques are dictated by the
Sp through its refponses t,o inputs it receives. These
are co.municated to the handler through co.plated event
notifications.

1 data strea. can be in one of three operating states. The
states and buffering techniques associated with each are:

1. Co~ yersation state all data received ~ another
handler and trans8itted to the SP is, single buffered.
Every trans.isslOD 19 the SP is followed by a
trans.iesion !lSI the SP. If a transaission ~ the
SP is terainated with an indication of aore output to
follow, double buffering is used. Outputs "ter.inated
with a transmit co.plete indication cause input fro.
the other handler tc be enabled.

2. Runninq state - input fro. the other handler is enabled
only at the direction of the SP and is sinqle buffered.
outputs fro. the SP to the other handler are double
buffered under the sa.e conditions as conversation
state. outputs terainated with a transmit co.plete
indication cause input fro. the SP to be enabled.

3. Tape state - input fro. the other handler to the SP is
doutle-tuffered. 'there is no output to the other
handler in tape state.

state transitions occur at the direction of the Sf either
through an explicit co •• and or iaplicitly' due to an unexpected
occurrance.

"-

3-15

~R.!~.Dls ~l!D.¥ll2!l!

Iaplicit to this discussion is the understanding that each
data streaa is independent of all others. processing require.ents
are determinEd by the ·state" of the stream as described
previously. The "initial" Ot native state of each data streaa is
can versation. state transitions occur because of an explicit
directive fro. the SP or due to the occurence of a'n unexpected
event. The valid state transitions and causes are:

1. conversation to running - occurs when the SP indicates
UIB (user is running)

2. conversation to tape - occurs when the SP indicates TPO
(tape mode)

3. running to conveIsation - occurs when the SP indicates
OIB (user not runting) or ABR (user aborted)

4. tape to conversation - occurs on the first data output
fro. the SP.

5. tapE to running - occurs when SP indicates UIR (user is
running) •

Because of performance considerations relatiYe to the SP
software and bEcause the IeKB (and the IOP) .are in effect ~i,'en
by the SP, the sequence of operations is normally a WRITE to the
SP i •• edia'telr followed by a BEID ter.ina ti ng vi th output fro. the
SP and/or an indicaticn cf action to be perfora.d. The
indicators, as documented in Ease Design Specifications of the
Inter-connect Kit Driver are:

1. Buffer full (8FL) - the SP has data to sond

2. start ENTER tiaing (ENT) - th~ SP requests atia.d read
frow the tar.inal

3. Allow !Ol input (ALI) - the SP requests an unti.ed read
from the terminal

4. SP Input Killdd (SIK) - all output operations to the
• ux should be pur ged and an input is requested.

5. User running (Uli) - directs a state transition fro.
conversation or tape.to running

3-16

6. User net running (ONR) - directs a state transition
fro. running to ccnversation

7. Tape mode on (tftO) - directs a state transition fro.
conversation to taFe

8. User aborted (lEB) - directs a state transition from
running to conversation

9. no indicators on at the ter.ination of a RElD or WRITE
is a valid return su~jectto state dependent processing

Unsolicited events can occur to direct:

1. Buffer Pull (BFL) - indicates SP output pending

2. SP Input Killed (SIX) - indicates a request to purge
terminal output

3. User Itorted (IEB) ~directsa state transition fro.
running to conversatien

4.

5.

Hang user up (BOO)
disconnected

User logged on (OLO)
logged on

the SP requests a user be

the SP indicates a user has

6. Nev user called (IDC) - the SP indicates a nev user has
called

7. system"Shutdown (SSD) - the SP is shutting down and all
terainals should te disabled.

8. Initialization (INI) the SP is directing
reinitialization cf the syst ••

In addition there is one 9vent which is processed as an appendage
to the ICK dri,er:

, . Phones (PHO)
received

a ~hones timing para.eter bas been

3-i7

ICKH consists of four major segments; an I/O co.plete
seq.ent, a Pri.er seg.ent, an Initialization seg.ent, and a Timer
segment. Each of these is cutlined in soae detail below and in
the acco.pan1~nq flow charts.

The initialization segaent (ICKHI) is entered at system
startup time (i.e., IOP load). processing consists of:

1. initializing all SIE indicators

2. acquire and stote identification for the IC! and ~ux
han dlers.

3. exit to the calling routine

The initialization segment is reentered at srste. IIIT ti.e
(i.e., SP startup) and the pxccessing ~roceeds as follows:

1. purge the queues for the ICK and "UX handlers
2. issue a Clear call to the interconnect driver.

3. eapty the ICK quaee and'm~ke buffers availablE.

4. purge all TQE's aJJd set stream status word to zero.

S. queue an ENABLE oteration on each data streaa.

6. exit to the calli~9 routine.

The Priaer entry (ICKHP)
handler has queued vork for the

is activated whenever another
ICKH. Processing proceeds as

follows: .

1. obtain gueue e~trJ frcm queue manager

2. locate proper SIB

3. branch to appropriate processing state routine

Conve~sation state processin~ (peON)

1. determine gueue e~t~J type and process accordingly

2. Ter.inal input issue WRITE/READ call to the ICK
dri ver and exi.t. _. All writes contain status as
co •• unia ted by the mux handler. If 'the line connect
flag in Bewa is set, start LOGON ti Iling.

3-18

3. Empty buffer retuIn (NOP) - mark buffer as available if
flags W=I=O=P=C=D=C. Otherwise use the tuffer as

. dirEcted by those flgas and exit.

4. Control (break or line drop) - issue a WRITE CCRTROL to
the ICI driver vitq the appropriate indicator set and
exit.

5. Control (line ccnnect) - queue READ through the. queue
manager, queue tiwer element, L=1, exit.

Running state ~rocessing (PRUI)

1. determine queue entxy type and process accordingly.

2. terminal input - if ENTER timing is in progress, purge
the TOE and insert tise in BCi9. Always issue.
WRITE/READ call to ICK driver, then exit. III writes.
contain status as cc •• unicated by the aux handler.'

3. empty buffer return (HOP)' - sa.e as conversation state
with the follwoing exceptions. If W=1, queue a zero
length write to PoOIH with Bit 15, BCW1 set to 1, clear
Wand exit. If BCW' Bit15=1, start ENTER state.ent
tiaing, queue a READ to the ter.inal, and exit.

4. Control (break or line drop) - issue a WRITE CONTROL to
the ICK driver with the appropriate indicator set, then
exit.

Tape state processing (PTAP)

1. All work queued is input fro. the ter.inal. Issue a
WRIlE/BEAD to the ICK driver, then exit. III writes
contain status as cc •• unicated by the mux handler.

2. or CONTROL (lite dro~ issue a WRIT! COBTROL
indicating user bung up and exit.

The exit procedure for ICKHP is a J!P .COM.

3-1~

The 1/0 co.~lete s9qlent (ICKHC) is activated by ccapleted
event notifications for the ICK. ICKBC processing is state
sensitive and proceeds as follows:

1. obtain I/O complete entry

2. locate appropriate SIB

3. observe state change indicators, change state if
necessary and bratch to processing. state routine.

Conversation state processing (CCON)

1. determine event type and process as follows

2. SP Output if. character count is non-zero, qtteue
output as WRITE through queue .anagar, else free
buffer. ·Then,
a. If BPL=1, issue a BEAD to the leI d~iver if a

buffeI;' is available else set 0=1. Exit.
b. If ALI=1 cr ALI=BFL=SIK=O, queue a buffer with

RElD requeste~ through the queue a.nager if a
buffer is available, else set 1=1. Exit.

c. If SIK=1, queue ,an available buffer with CClfTBOL-
PORGE requested and set I=1. If no tuffer is
available set P=1. Exit.

3. Initialize (INI) - jump to system restart routine

4. Hang user up (8UU=') queue a buffer with control
disable. Queue a timer element with.1 sec interval,
set U=L-E=O, and Exit

5_ Dser logged on (ULO=') set L=O,O= 1, if T-1 purge
the ti.er queue element and exit.

6. Hev user called (NUC) set' L::1,U=1, queue tiaer
ale.ent with interval=PHONE, and exit.

7. System Shutdown (SSD) disable tiaer routine, I/O
co.plete segment, and all data streaas. Reset to
native state with no op~rations pending_

Running state ~rocessing (CRON)

1. Determine event type and process accordingly

3-20

2. SP Output if character count is non~zerc, queue
output as WRITE through queue aanager, else free the
buffer and then~

a. If 8PL=1, or ALI=BPL=SIK=EIIT=O, issu.e a
·R EAD to the IC K dri ve r if a tu·ffer is
available, else set 0=1. Exit.

b. . ALl a 1, queue a RE.ID through the queue
aanaqei if a buffer is available, else set
1=1. Exit.

c. SIK=1, queue a CORTROL-PURGE througb the
queue manager if a buffer is available and
set 1=1. Else set P=1. Exit.

d. ENT=1, set E=1 queue zero length WRITE to
terminal and save ti.e parameter. If no
buffer is available for writing set Va 1 and
exit.

3. Hang User UP (HOU) - queue a DISABLE requ.st, set a
timer with a one seccnd expiration, and set O=E=L=S=O.

Tape state processing (CTAP)

1. deter.ine entry type

2. must be 1LI=1, queue READ throuqh queue aanager, 1=1,
exit. If ALI=O, then return to Conversation state.

Th~ exit procedure for ICKHC is a J"P .CO!.

PROCESSING
IO STATE
COMPLETE COMVEBSATICN BUNNING TAPE
INDICATORS BEAD UNSOI READ UNSOL BEAD UNSOL

BlL X X X X • *
EST 'x X
ALI X 1 X x
SIlt X I 'I X
UIR *

,. •
UNR •
'rP!O * ABB * •
BUO X * OLO X
HUC X
RLB X X

(BPL=ALI=SIK=O)
INI I
SSD X

][occurence possible

* I!PlkES STATE TBliSITION

3-22

The timer sEgment (ICKHT) is used as a subroutine by the
other segments and th~ TBG handler. There are three parts:

Cr9ate tlmar queue,element (15tR)

1. qet TOE address ftoa A-reg

2. set T=1 in SIB

3. JSB to timer enque routine

4. J"P TSTR, I

Purge timer queue element (T ERG)

1. get TQE address flO. A-reg

2. J'SS to timer dequeue routine

3. set T=O

4. J!P TPRG,I

Proc~ss timer expiration eTE JP)

1. locate SIB, set T=O

2. If L=1, queue a CCNTBOL-DISABLE (=) purge), exit.

3. If E=1, queue a CONTROL-PURGE through the' queue
II an ag er. E xi t.

4. If L=E=O, queue a CONtROL-ENABLE through the queue
lIanager. Exit

5. JPlP TEXP,I

3-23

Ill!".f!~~D.9.

calling Sequences:

ICKS has four entry pcints. '.the primer en-try, ICKHP, is
entered froll the dispatcher .hen verk is queued for ICKH. The
calling sequence is

NOP
JSB ICKBP

Exit is via:

switch locaticn

the I/O complete entry, ICKHC, is called by the dispatcher
whenever an event completes cn the interconnect kit. The calling
sequence is:

LDl
LDB
JMP ICKBC·

and "it exits through:

J!!P • CO!.

1 third entry point, ICKHI, is used, only during system startup.
The calling sequence is:

JSB ICKHI

and it e xi ts b J

.JMP ICK HI, I

The fourth entry point, ICKHl,. is us~d for timer servicEs. The
calling sequence is:

LDl
JSB

TOE
ICKHT

and exit is vi a

J"P ICKBT,I

TOE address

3-24

Called Routines:

The interconnect kit bandler use·s the service-s of the queu'!
manager, buffer .anager~ allccate/deallocate .anager, and the TBG
hand-ler. The 'haJ;ldler manages the interconnect kit tht:ough .IOC.
and the_ ICK dr iver.

Lo~§.l n~ §t'..»~i:J1IU

Associated with every data streall is a block containing
status and control inforaaticn, buffer pointers, and a tiaer queue
area. The stream inforaaticn blocks (SIBs) are ordered by strea.
1d nu.ber (0-31) into a streal inforaation table (51!). Each
block is 8 words long so that any SIB address can be built by the
compatation

SIBadd=SItadd+8*(stream id)

The SIB entries are defined as fellows:

woaD 1 S!lTUS INDICA!ORS
15 14 13 12 11 10 9 8 7 6 5 4 1-0
POI C D W E L Z t U R S

P - purge flag
=1 the SP has requested all output be tilled
=0 no purge in p~ogress

o output flag
=1 output frOB SP pending
=0 no output pending

I - input flag
=1 the SP is waiting for input
=0 no input reqiest pending

C - enatle flag
=1 enable operation pending
=0 no enable pending

D - disable flag
=1 disable operaticn pending
=0 no disable pending

i-special -write flag
.1 zero length write to terminal pending
=0 no write pending

! - ENTER flag .
=1 ENTER statem~nt timing in progress
'-=0 no ENTER statement timinq active

L - Logon flag
-1 Phones tiling in progress
=0 no Phones tim~ng in pr6qress

.3-26

Z - disable timing flag
=1 disable timing in proqr9ss
=0 no disable tiling active

T - timer flag
=1 timer element queued
=0 timer element net queued

o - user activity flag
"=1 user signed on
=0 no user activE

R - read activity
=1 read active on IeK
=0 no read active

S - state flag
=0 conversatian state
=1 running state
=2 tape input state

WORD 2 - BUfFER ACTIVITY fLAGS

5 ~ 3 2 1 0
B2 81

B2 buffer allocation flag
=1 tuffer is allccated (sea 8S2)
=0 buffer 2 is available

~, - buffer 1 allocaticn flag
same as B2 definiticn

WORD 3 - Suffer 1 Address

15
POINTER TO BUPFER 11

WORD ~ - Su"ffer 2 Address

15
POINTER TO BUFFER .2

o

o

WORDS 5-8 - System Timer Queue Element

15 0
S TI~E INTERVAL IN '/1C ths OF SEC
6 ADDRESS OF TI~ER EXPIRATION PROCESSOR.

3'"-27

7 TBG DRIVER LINK WORD
8 TBG DRIVER LINK woae

*ICKHT

The que-uing and contlol· ,information required by the queue
.anager, 'handlers, drivers, and .IOC. is contained in a set of
buffer control words (BCW's) appended as a pref~x to each buffer.
Descriptions are found under _"Glebal data structures." Word a and
Word 1 of this prefix are jcintly defined by the interconnect bit
and multiplexor handlers for communication of status in£o~mation.
All other USES confo,rm tc the de scriptions un'der GLOBAL DATA
S'l'RUC'IURES.

Word 8 Event Status

bit Usage
15 inclusive OR of bits 111-10
14 record received with lost da ta error
13 record received with parity e,rror
12 line connect

l' line disconnect
10 break character received

8 last . ct:~ration i-ndica to r
1:terminal output
O=terminal input

Word 1 Buffer 'type

Bit Usage
1S special zero length write to terminal or

timed read completing·

3-28

!!!ll£:t.i2n~l. ~1a~[lltio!\

The multiplexor handl~r (MUtH) manages communicaticns between
~hos@ d~vices attached to the 129201 multiplexors and the
interconnect kit .handler. Because'of its close interel~tionship
with ICKH and 1:Ecaose .of the natur~' of the physical device it
controls, Moxa has som9 unique characteristics:

1. Since the 12920) multiplexor is a single physical
device which runs multiple logical devices, all
communication must be specific to a logical device.
Por this reason, all communications directEd to or
emanating from MUXH must contain device indentifiers.
This is true for toth IOC and Q~ traffic.

2. The logical devices .attached to the max are
bidirectional. Hcv they are used is dictated by rCKR;
therefore, all ccmmunications between Muxa and ICKH
contain explicit directives on action~ to be performed.

3. Each lcqical device (or data stream) is inde~endent of
every other data stream. Separate status and control
information is maintained for each.

4. Buffering is mataged by ICKR and all buffers are
interlocked. MOXH disposes of empty buffers by' queuing
them to ICKH and is ignorant of all processing states
as defined for ICRH.

~ye!.2SlIli ~li,gjl'!

As alluded. to earlier the aux handler is coaprised of three
segments; an i~itialization !egaent called at syst.. startup~ a
Priaer section which proc;essEs vork queued for the' .ux handler 'and
an- I/O complete section which pxocesses I/O event complete
notifications. Iliplicit tc the subsequent di,scussicn of aux
handler processing is .the understanding. tha teach Iclata streaa is
separate and ind,pendent.

The Priaer section (!DIHP) processes all work queuEd for AUX8
by other handlers. Work consists of data and/or control requests
as defined by the buffer contrel vords prefixing each qUEue entry •
. !DXHP processing proceeds as fellows:

1. obtain queue entry from Q"

2. establish strea. '1d and save

3. obtain command code and process as .follc)vs:

a. WRITE
'9 xit.

issue WRITE .IOC. call to driYer, and

b. READ - issue READ • IOC. call to dri ver, and exit.

c. CONTHOL-PURGE - issue PURGE • IOC. call to driver,
return buffer as a Nap, and exit •.

d. CONTROL-ENABLE - configure streaa for auto-speed
detect and issue ENABLE .IOC. call to driver, and
exit.

e. CONTROL-DISABLE issue DISABLE .IOC. call to
driver, returD buffer as NOP, and exit.

f. AlLOCATED fUllER -·use as directed'by the first
nen-zero en try in the Port Ta bie (PT1B) and z·ero
t he entry.

the 'I/O com~lete secticn (!UIHC) processes completed event
and unsolicited event notifications. Notifications consist of a
copy of the ICC paraaeter verd, and the queued request entry (see
GLOBAL) !UXHC ~~ocEssing is as follows:

1. establish stream id and save

3-30

2. if notice vas solicited go to 3; else

a. if line drop, acquire control buffer and queu9
event notiflcation through Q", then exit

b. if break received, acquire control tUffer and
queue notification through OM, and exft.

c. if unable tc cbtain a control-buffer, save event
status in P1AB and exit.

3. If the operatiot vas purged, set CftD=O, queue the
buffer, and exi~

4. Write complete - set CMD=O, queue the buffer, and exit

S. Read complete set CKD:l, save completicn status,
queue the buffer and exit

6. Enable complete -set CftD=1, indicate line connect,
queue the buffer and exit

7. Disatle ccaplete - set CKD=O, queue the buffer and 9xit

8. Purge ccmFlete - set C!D=O, gueue the buffer, and exit

The
startup.

initialization section (801H1)
ProcEssing require.ants are:

entered at system

1. obtain identificaticn for !Ul and ICK handlers.

2. issue CLEAR .IOC. call for all data streams

3. e xi t

callinq sequences:

flUIR
(MUIHI), a
(MUIHC) •
has queued
by

consists of thrEe se9m~nts, an lnitiali~aticn section
Primer section (fl DXHP), and an I/O co.pletE section
"DIHP is activated by the OM whenever another handler
work for !lUIH, 'it is entered from the -system dispatcher

NOP activE gate set by Oft
JSB !!UXHP

The priaer exits by a J!P .CO!!.

MUIHe is entered from the system dispatcher for notification
of co.pleted events on .u% devices or to inform the handler of
unsolicitad occurrences on t~~ devices. The calling sequence is

LDA IOCpcinter
LDB buffer ~o~nter/status ,vord
J!P MUIRe

and the completed event section exits

JftP • CO PI.

The initialization section (MUIRl) is entered at system
startup by

JSB rlUXHI

and returns control via

J"P rlUIHI,I

called ro utines:

MUXH calls ~pon the queue manager (.GETQ,.PUTQ,&iSEEQ) and
the services of .Ioe.

3-32

•

1.2~.tl data §ll.Y~!.Y~§

Attached to each buffer queued to MOIH is a niue vord prefix
of centrol words. These' BCa's as vell as those menticned above
are described under, "Global data structures." Word 8 of the BCls
is jointly used by the multi~lexor and interconnect kit handlers
to . communicate event status inforaation. 111 other ~ses conform

, too· t he descriptions 'under "G lobal da ta structures."

Word 8 Event status

Bit Usage
15 inc In si 'Ie OR of bits 14-10
14 record received with lost 'data error
13 record received with parity error
12 line connect
11 line' disconnect
10 break character received

A Port Table (PTAB) is maintained with a one-vord entry for each
port configured (the entries a~e in ~Ott number order). 1 non­
zero entry indicates that an allocated control buffer is expected
for that port. The content of the entry is the event status which
caused the buffer request.

3-33

I. Functional specificatioDS

The multiplexer data interface driver provides an interface
for inp·ut/output operations between an HP2100 computer and
asynchronous devicEs attachedtc the 12920& multiplexer.

The multiplexer dri,er vil~ handle up to two· 12920A
multiplexers simultaneously 48 maximum of)2 I/O channels).

3-34

119

91

511

92

Jl2

The following founctions are available thru calls tc .IOC.:

1.0

211

.011

211

j~ characters from the dESig­
nated channel into the designated
buffer. Terllinate on CR.

Bes~rved for future use.

E~R1~ the designated channel:
i.e. allow a user to dial up OD
the designated channel. Terminate
when a user dials u~.

w,i~e the designated nu.ber of
characters from tha designated
buffer. Terminate at end cf
buffer.

~gn~rc! the operation of the
multiplexer by outputting the
given parameter word.

~l~JR1! the d9signated channel.
Do not allow a user to dial uF
the designated channel. No
further OFerations are allo~ed
tc the channel until an Enatle
is executed.

~~~ the current read or 
write or Doth operation(s). 

3-35 



II. Calling Sequences 

General calling sequencEs following the for_ for, regular .IOC. 
calls: . 

EXT 
• 
• 
• 

JSB 
OCT 
JSB or JftE 
DEP 
DEC or OCT 
(normal return) 

.IOC. 

• .Ioc. 
function subfunction unit-reference 
reject address (error ret urn) 
buffex address 
buffe~ length in plus bytes 

the format of vord 2 is in general: (P'!= ~ at all tiaes) 

Note: 

15 ·1211 9 8 7 6 5 0 
function subfunctioD P V! unit-reference 

BITS 
BITS 

The queuEd versiCD cf .IOC. requires each buff.r to be 
prefixed with buffer control vords. This is assuaed to 
hold in the followiDg description. Also note that if 
aore than one multiplexer is attached to . the co.pater 
the "un~t reference" is the select code of the first 
(lowest) multiplexer. Buffer control vord 5 is 
specified as follcwe for all .IOC. calls~ 

6 - 1 
8 - 15 

reserved for PURGE call. 
channel number at which the c:o •• and is 
directed. 

3-36 



!!~!1g: 
JSB 
OCT 
JSB or Jt!P 
DEE 
DEC or OCT 

• IOC. 
function subfuDction unit reference 
rejact address (error return) 
bu~fer addre'ss 
buff~t length in plus bytes' 

fun,ction = P'1 
subfunction = P9 
unit reference = nn 

where nn is the unit reference of the multiplexer. 
buffer address = address of the area into which characters are 

read. 
buffer length = maximum numbEr of characters to be read. 

Returns: If there is no error in the calling sequence and the 
read has been successfully iritiated the normal return is taken. 
·If the reject address i~ taken then registers A and a contain 
pertinent information. 

15 14 13 8 7 10 
A-register = a equiFment type status 
a-register = d---------------ZERO------------------C 

See the status IOC call for registEr A definations. 

d=1 
c=1 
d=c=O 

The device driver is tusy . 
A OMA channel is not available 
The function or subfunc~ion is not valid for this -device 

Asynchronous return: When the read operation is terminated by the 
cccurance of a carriage return or some unusual condition, a 
complet9d event notice is passed to .IOC., which then informs the 
user l~vel program. 

3-37 



.aSUJ!! : 
JSB 

(not currently s~pported) 
.IOC. 

OCT 
DEP 
CEe 
(normal return) 

function = P'1 
subfunction = 19 
unit reference = nn 

fUDction subfuDction 
buffet address 
1 

uni trefErence 

Where nn is the 
status is requested. 
returned. 

uni~ teference of the .ultiplexer for wbich 
If nn is zero then syste. status is 

B~~~~nJ: Ho errors are possible. 

The contents of the 1 and B registers contain the status 
inforaa tion. 

1S 1" 13 _ 87 0 
A-register= a equii.ent type status 

B-register = • trans.iasion log 

a=O: The device is available; the previotis operition is co.plete. 
a=1: The device is available; the previous operation co.plate but 

a transmissioD error has been detected. 
a~2: The device is not available for another request; a requested 

operation is in prograss. 
a=3: Previous operation vas Fu~ged. 

equipment type: These six bits indicate the device type 
The .alue 1s 77 

3-38 



Stat~s bit definition 
Bit 

Bit 

8i t 

Bit 

Bit 

0=0: 
= 1: 

1";:0 : 
= 1: 

2=0: 
= 1: 

3=0: 
== 1: 

4=0: 
== 1: 
m=O 

A character was received 
A character was ttansmitt~d 
No characters lost cn read operation 
One or more chaI8cters have been lost during the read 
operatien 
No break detected during current operation' 
A break charactar was received 
Diagnose mode is not set 
Diagnose mode is set 
The seeking bit is not s~t 
The seeking bit is set 

Transmi ss ion' 
operation. 

leg is the positi va count at the end of the 

3-39 



.!!l:j.:t!: 
JSB 
OCT 
JSB or J"F 
DEP 
DEC or OCT 

function =. P'2 
subfunction = 99 
unit reference = nn 

.IOC. 
function subfunction unit reference 
reject address (error retarn) 
buffe~ address 
buffe~ length in plus bytes 

Where nn = 1s the unit ~eference of the a ultipl1ezer 
buffer address = address of the output buffer 
buffer length = the nu.ber cf characters to be transaitted to the 
designated channel 

Returns: If there is no error in the calling sequence and the' 
operation has been successfully initiated (queued'IOC) the nor.al 
return is taken. If an errcr is detected in the calling sequence 
or the operatien can't be initiated the reject exit ;Ls taken. 

Asynchronous return: When the write operation is co.plete (buffer 
~.pty) or purged by the user .IOC. notifies the user level progra. 
by an entry in the completed event queue. 

NOTE: If a read com.and is active when a wri te co •• and is passed 
to the driver, th~ read is purged before the write is initiated. 

3-40 



iMR1! 
- JSB 

OCT 
JSB or Jft P 
DEl 
DEC or OCT 
(normal return) 

function = 01 
subfunction = 20 
unit r6ference = nn 

.IOC. 
function subfunction unit reference 
reject address (error return) 
buffer address 
" (co nstant 1) 

Where nn is the unit reference of the multiplexer. 
bu~fer address = address of a ote word buffer 

Returns: If there is no error in the calling segu9nce ~nd the 
qpe;ation has been successfully initiated the normal exit is 
\~~9~~ Other~ise the reject exit is taken. 

l§J~~~ro~oQs Return: Tha enabl~ is posted complete ,hen a 
oo~~ect~on is established for the requested channel~ the driver 
~$s~mes ~ connection is Es~ablished when either of t~o cond~t~ons 
~~ ,et: 

1~ Data set ready is asserted by the data communicat!ons 
eq u ip lIent. 

~. A carriage return is received frem the data te~.inal 
egu 1 plDe Ilt,. 

E~ther of the above conditions causes an outstanding enable 
operation to be completed. Conditicn one (1) allcvs proper 
ope;~tion over dialup or dEdicated lines with modems. Condition 
two (2) allows operation with hardwired (thre~ wire) lines. 

~O~B: Be sure that all current operations are co~plEt' before 
issuing the enable. It is best to precede tha enable by a disable 
or purgl! operation. The cUIrent driver impl~mentation 'Furges ~ll 
oparations before processing the enable requ~st. Further note 
taat n~~ all S~,!1a~l! jjll ~~~5~! 2~ ~~ !i~! (send, 
receive, signal grcun~) £i~£ui~ without special ju.p~rs attached 
to the connector at the data terminal end; soma termin~ls require 
the presence of data set ready, and/or claar ,to send and/or 
carrier detect. ' 

3-41 



£.2Jl's • .91: 
JSB 
OCT 
JSB or .. 1ft ~ 
DEP 
DEC or oc~ 
(normal return) 

function = Jf2· 
sub£ unction :: 29 
unit reference = nn 

.IOC. 
function subfuDction 
reject address 
buffer address 
1 (constant 1) 

uni t reference 

Where nn is the unit refe~ence of the multiplexer. 

Returns: Like the write call. 

operation: The parameter word at the given buffer address 1s 
ou~put to the designated channel. 

Parameter vord definition: 

Bi t 15 -= 1 II us t be set toone 
Bit 14 == 0 output paraleters to receive channel. 

Bit 

If Bit 14 = 0, then the following definitions hold: 
Bit 13 = 0 disable receive" interrupts 
Bit 13 = 1 enable receive interrupts 
Bit 12 = 0 .do not Echo received characters. 
Bit 12 = 1 Echo teceived characters 
Bit 11 = 0 disable diagnose logic 
Bit 11 = 1 enable diagnose logic 

14 = 1 
If Sit 14 = 1 ,~ then the following definitions held: 
Bit 13 = 0 disable trans.it interrupts 
Bit 13 = 1 enable trans.it interrupts 
Bit 12 = 0 generate even parity for 8 bit ASCII 
Bit 12 = 1 generatE odd parity for 8 bi t ASCII 
Bit 11 = 0 ·disable diagnose loqic 
Bit 11 = , enablE diag~ose loqic 

·Regardless of the sett.ing cf bit 14 the following definitions 
hold: 

Bits 8-10 
Bits 0-'7 

(character length - 5) !OD(12) 
( , " , 400 IBa u d ra te) - 1 

For a control function tte channel number (Bits 8-15 of Buffer 
prefix word 5) have a special meaning. 

3-42 



Bit 13 = 1 
Bit 14 = C 
Bi t 14 = 1 

d"iagnost1c channel configuration 
first IIlUX 

second- mux 

3-43 



]in!!.!!: 
JSB 
OCT 
JSB or JltP 
DEP 
DEC or OCT 
(normal return) 

function = 92 _ 
subfunction 1: 3, 
unit reference = nn 

.IOC. 
function subfunction 
reject address 
buffer address 
, (co tstant ,-) 

unit refErence 

Where nn is the unit refeIenc~ of the multiplexer. 
buffer address 1: address of a CDe word buffer. 

Returns: If there is no error in the calling sequence and the 
operation has been successfully completed the nor.al exit is 
taken. Otherwise the reject exit is taken •. 

NOTE: Disable vill purge all outstanding read and write 
op9rations before being initiated. The data set control interface 
~or the requested multiplexer channel is set to cause a "ring 
forever" condition; this can only be cleared by an· enable being 
issued to the same multipleXEr channel~ 

3-44 



.fll .. g!!: 
, JSB 

OCT 
JSB or JME 
DEI 
DEC or OCT 
(J)ormal return) 

function = '2 
suhf unction = qp 
unit reference = nn 

• IOC. 
functicn subfunction 
re'je ct address 
buffet addrE'ss 
1 (co nstant 1) 

uni t reference 

Where nn is the unit referenc~of the (first) multi~lexer. 
buffer address = address of a null (9 length) buffer. 
Only the bufferccntrol words (1-5) 'are passed to, and used by th~ 
driver. The word at buffer addrass-1 contains the fcllovinq 
information: 

BITS: 7 6 
o 0 
o 1 
1 ,0 
1 1 

Reser ved 
Purge current read operation 
Purge current write oparation 
Purge current read and write operations 

As usual, b~ts 8-15 contain the channel number on which the purg~ 
op~ration is tc take place. 



III. Unsolicited Event Notifications 

~here are tvo conditions which can cause an unsolicited event 
notice to be passed fro. the 12920 A d~iver to the tase level 
prog~a.. In both cases pertinent information is returned in A and 
B. 

The first is a "line drop" or " connection broken" on tho TP 
line. 

A register 
Bits 0-5 = unit reference number of the !ultiplexer 
Bits 6-11 = stream idantifier (terminal number) 

B register 
Bits 0-15 = Zero 

the second unsolicited return 1s caused by' the dEtection of 
·an unusual conditicn during a data transmission. 

1 register 
Bi ts 0-5 
Bits 6-11 

B registe.r 
Bit 0=0 
Bit n=1 
Bit 1=0 
Bit 1=1 

Bit 2=0 
Bit 2=1 
Bit 3=0 
Bit 3= 1 

unit referencE numb~r of the multipleKer 
streaa identifier (terminal ·number) 

current opetaticn is a read 
current operation is a write 
no characteIslost 
one or mere characters lost during current 
operation 
no break d!tected 
break detp.cted 
diagnose disabled 
dia gnose enab led 

3-46 



IV. Dasign Overview 

'l!.I..21 thE! l£2lQA mYhiRl!xe;:~i.!~ 

The multiplexe~ driver provid'es input, output and data 
link control'facilities fer as~nchronous de~ices attached to 
the 129201 multiplexer. The driver 'is modular in design and 
pro'vides an interface between the 12920A hardware and Queued 
.IOC., 

Tha driver is cognizant of the communicaticn line 
status at all times. All lines must be enabled before any 
read or write operation is issued. When the link is 
established notification is passed to the user level program. 
When the operation (raad/write) is completed notification is 
passed to the user level. 

~gn S~'§J!l!.Ell.2ll.§ 

The software driver for the 12920A multiplexer assumes 
the existence of the HP~OOO ACCESS I/O processor micrccede. 

since the drivel is able to handle more than one 
multiplexer the select codes must be assigned as follows: 
first .u~ lower data select code; first mux upper data select 
coda, first mux data set centrol board s~lect code, second 
mux lower data select code, second' muxupper data select 
code, secon~ mux data set centrol board select code. This 
restriction is imposed because there is only one equipmen~ 
table (EOT) regardless ef the number of multiplexers attached 
to the system. th~ driver also .assumes that thesE select 
codes are consecutive • 

.g.uiga §.!!llsl:.I 

Althougb the multiplexer is physically a single I/O 
davice f.illing three I/C slots in the 2100 CPU, logically it 
must be viewed as 16 full duplex I/O channels. This implies 
that the driver must maintain infotmation for each of the 16 
channels attached to each maltip19xer. This infermation is 
contained in Logical unit Tables (LUTts). internal to the 
driver. Each LUT is cOlposed of three sections, one for rea'} 
comm~nds, one for write commands, and one for terminal 
confi~uraticn. The structure of the LUT is outlined below 
and displayed in Tabl~ 1. 

Like 
(0.51) and 

all Bes dIivers the mux driver has an initiator 
a continuator sEction (I.51). Th~ initiator 

... 3-47 



section . is responsible fer converting a requested operation 
into the appropriate actions. It also queues requests for 
channels which are bus} when the request is .ade. There is a 
read' queue and a write queue associated with each LUT. The 
continuator section iE ~~i.arilJ an interrupt handl~r and 
event co.~lete processor. 

!!.I U9:2.ti1h!· ~~i2Ua.§ 

ASio.a~i~ !R~ S!~~J~ -- The .ultiplexer driver software 
contains logic to deter.ine at wh~t baud rate (speed) an 
attached terminal is transmitting characters. the driver 
assuaes the trans.it speed is the salle as the receive speed. 
Speed detection is facilitated by the hardware feature;! of 
the aultipleser interface. Each interface has 16 full duplex 
input/output channels. Each of ~he charinels is capable of 
operating independently of the otherp at an} baud rate fron 
about 50 to 2400 bits pEr second. In addition to the 16 .ain 
channels there are 5 diag~ostic channels. Bf setting the 
diagnose bit in a aain channel receive para •• tar, the 5 
diagnostic channels· can be tied to the main channel. Each of 
the diagnostic channels can be configured to receive at a 
baud rate different fro. the main channel and the other 
diagnostic channels.' Speed detection opera tes as follc)vs. 
The .ain channel is configured to receive characters at 2400 
baud. The five diagnostic channels are configured to receive 
at 1200, 600, 300, 150, and 110 baud respectively. The user 
at his terminal st~ikes a known key (in the case of this 
dtiver a carriage return which is an octal 15). The· Ilain 
channel receiving at the 2400 baud rate interrupts before any 
associated diagnostic channels do. The software exaaines the 
received character. If it is a carriage return, the main 
channel is operating at the correct speed (2400 baud), and 
the only configuration that need be done is to tutn off the 
diaguose bit in the reCEiVE channel parameter and' turn off 
the speed detect bit i~ the user status vord. If a carriage 
return is Dot seen at. 2400 baud, the driver exits and avnits 
diagnostic channel inteJ:rupts. Eventually, the .diagDoutic 
channel configured for the same speed ·as the transaittinq 
tar_inal vil1 interru~t with ·a carriaqe return as the 
received character. The main channel . is then rEconfigtlred 
(froa 2400 baud) to tbe rate associated with the dia9nO!~tic 
channel which had the interrupt; again the speed dEtect bit 
in the user status word is. turned off. In all cases, 
vhen.ever the correct speed is sensed (carriage return seE.n) , 
the "parity detection in progress" bit of the u£e~ status 
word is set. This bit is used in the automatic parity 
detection algorithm. 

3-48 



Speed sensing for 27ql type terminals is handled in a 
slightly different fashion. Since 2741 terminals operate at 
134.5 baud with 6 bit characters, their carriage return 
character would not te recognized using the algorithm 
described" above. Every 2741 emits a special line control 
character, called a circle C," after each carriage return. 
P~rthermore, this circle C is sean as an octal 100 when 

"received at "300 baud and as an octal 174 when received at 150 
baud. Wh~n the diagnostic channel which is configured to 
receive at 300 baud (channel 18) receives an octal 100, a 
specific flag ("selectric possibility" flag) is set. The 
next diagnostic channal interrupt (at 150 baud) vill be an 
octal 174 if the tetminal is indeed a selectric. If the 
octal 114 is not receivEd at 150 baud, the "possibility" flag 
is r~set. 

A~!Qmsi1~ t!Imins! ~!li!~ ~~£~ion Automatic parity 
datermination is accomplished in connection ~ith autc.atic 
speed detection. Whet s~eed is correctly deter.ined, two 
things are dons. First, the "parity detaction in pro~ress" 
bit is turned on in the user status word. This bit tells thg 
driver that the next character to accept must be a line feed 
(octal 12); all other characters are ignored. Secondly, the 
parity (bit 7) of the ccrrectly received carriaqe teturn is 
saved in the channel !tatus word. When the waited fer line 
feed is received, its parity (bit 7) is also recorded in the 
channel status word. since carriage return and line feed 
have oppcsite parity sense, the parity with which the 
transmitting terminal is operating can b~ determined as shovn 
in the following tabl~: 

Rec~ived 
CR 
o 
o 
1 
1 

parity of 
IF 
o 
1 
o 
1 

1erminal parity 

Ncne - space for parity bit 
Odd parity 
Even parity 
None - mark for parity bit 

Note: An underlying assumption in both automatic speed and 
parity det~ction is that ~he carriage return and line feed 
are received without erIer. If speed and/or Farity ar~ 
improperly determined due to an error, the user viII not be 
able to correctly log en the system. In this caSE, his port 
will b~ disabled and r~-enabled after the PHONES parameter 
time limit has expirEd; always less then 255 seconds. 
Ther~fore, a port cannot be locked out indefinit~ly because 
of incorrect spe~d/parity det~rmination. 

3~9 



11li21: lOd..Yl! au.ti2n!Al.E! 

The aodule rela tiQnships are indicated in Figure 1. 
Data and control flow axe indicated in the same fig1JJ:e. ~~he 
continuator section of the ~river follows the philosophy of 
the 2000F lOP multipleXEr driver q~ite clcisely; indeed, much 
of the 2000P co.de for selectric p.J:ocessing remains intact • 

. 3-50 



FIGURE 1 

r---------------------~-------------------------, J " 
I .IOC. 
I 
l r----------------------------I 
I I . J 
I I .BOFR • UNS. I 
I I . I 

r-----' r-----:'·, 
I , I I 
I D. ~1 I I 1.5, I 
I I I I L------.J L-----.-.J 

r--- ... ". ... _ .. _.-, 

lUTs 

L-...... _ ... -_ ...... ,.,J 

r------, 
I I 
I P.51 I 
I I L------.J 

r------, 
I I 
J A.51 I 
I I L------.J 

r------, 
I I 
J T.51 I 
I t L- -----.J 

Linas to the LUTs are intended to indicate data access cnIy. All 
ether lines indicate flow of centrol. 

Mod ule -0:5-;-
Ie51 
Te51 
P.s, 
A.5·1 

11~.h2£ 21 ~.s!Il: 
• IOC. call 
Interrupt ftem multiplexer channel 
Interrupt flem data set control board 
JSB from 0.(4 following power recovery 
JSB from D.El for special SP commands 

3 51 



v. Design Structures 

Ill! ~~!l .2.ni:t Ia.b1! 

The logical ulit table (LOT) contains all the 
information essential tc the operation of the dri~er. The 
LUT contents are accessed or modified by all aodules in the 
driver. There is one LOT per multiplexer channel and each 
LUT has a read section, a write section, and a termi.nal 
configura tion section. Table 1 shows the contents cf an I,UT. 

3-52 



]~J2_~ICTXQ!i 

RBPAD" 
RByeT 
RReNT 
RSYAD 
BOHED 
ROEND 

iBFAD 
WByeT 
WRCNT 
WBYAD 
WQHED 
WQEHD 

'tYPE 
CDLY,LFOt! 
teNT 
STAT 
STAT2 
PPRl1 
RPR! 
TPRM 
seNT 

OCT 24 
DEF DSTE, I 
OCT 0,0 
OCT nn 

TAELE 1 

LV'I CONtENTS 

Read buffer ad~ress 
Rea d bytA c cunt 
Read request count 
Read byta address 
Read queu~ bead 
R ea d que u e ta i 1 

write buffet address 
write bytp. count 
write requ~st count 
Write byte address 
Write queue h~ad 
W ri te q u"eua tai 1 

T er m ina 1 t Y );e 
Carriag~ return, line feed delay 
Delay counter " 
User status word 
Port status verd 
Data sP.t control bc)ard parameter 
Receive channel param~ter 
Transmit chann61 parameter 
CR-LF delay ccunter fer selectrics 

20 clock ticks (2 seconds) " 
Exit routine for timEr ~xpira~ien 
TimEr queue link and save word 
Port numb~r in bits 13-10 
(Bit 15 set if 2r..d multiplexgr) 

3-53 



STAT -
10000 

1 

" 10 
20 
40 

100 
200 
400 

40000 
100000 

4000 
20000 

2000 
20000 

1000 

STAt2 -
1 
2 
4 

10 
20 
40 

100 
200 
4.00 

1000 
10000 

• 
100000 

tYPE -
2 
4 

10 
20 
40 

100 
200 
400 

1000 

LOT BIT DEFINITIONS 

DSER STATOS WORD 
User is in tape .ode 
Speed detect in progless (not detected) 
Control X vas entered 
Reserved 
Line drop timing in ~rcgress 
Lina feed needed for tape mode p~ompt 
special write active (/CRLF) using receive buffer 
User is in Run moda 
An operation is active 
Input is not allow~d 
Purge in progress (ic;ncre interrupts) 
X-OFF was input from terminet 
Parity detection is in ~rograss 
Input configuration Deeded (Reserved for future use) 
264X ERQ transmitted 
Preceding input was ENe 

PORT STATDS WORD 
1 character was received/transmitted 
A character! vas lost (input) 
A break (input) vas detected 
The port is in diaqncse mode 
The seeking bit is set . 
A parity error (input) has occurred 
The channel'requiras parity 
Channel parity (odd=1, even=O) 
Parity of c,rriage return 
Parity of line feed 
) 
) Teletype subtype 

) 

TERMINAL TYPE PLUS CTEEFS 
Code dEter~1ned· (EBCtIC or CALL/360) 
Upper case mode . 
"CENT" character 
"CENTC" character 
nCR" bit (used for out~ut only) 
control X was entered 
Circle C SEnt 
Circle d (Psuedo) Transmit interrupt 
SYNC " " " 

3-54 



2000 
4000 

10000 

Space 
Space 
Space 

t. 
" 
" 

It 

" 
" 

" .t .. 

PPR! - ,PHONES PARAMETER WORO (See ERS fer definition) 
BPRM - RECEIVE PARAHETER WORe (See ERS for definition) 
TPRM - TRANS!IT PARAMETEE WOED (See ERS for definition) 

3-*55 



VI. "ajor Functional Module~ 

The aux driver consists of five major modules D.S', 1.51, 
A.51, T.S1, P.~1, the initiator section, the continuator section 
(d~ivEr contrel), the appendage section, telephone linE control, 
and p6wer fail/restart section. Each section has specific 
functions distinct from each of th~ others. 

~.t..~l . Ihi Ininat2': ~s!.ig 

The initiator section 0.51 receives control f~c •• IOC. 
as a result of a user call. D.51 checks the requested devics 
to see if it is operablE and the user requested operation and 
user supplied parameters are valid. If these conditions ar~ 
satisfied, 0.51 queu6s the request for processing. Purge and 
control requests are net queued; thet are executed 
i.aediately. 

In the event tha user r~quest can't be satisf1ed,the B 
register indicates the teason: 

B: 100000 ThE device is busy or inopgrable. 
B= 000000 The request is not legal. 

In these twc cases the A register 
request vas successfully initiated 
successfully queued) the A register 
register contents are uldefined. 

is set to 1. If the 
(this may 89an 

is zero and. the B 

The continuator section I.51 receives control wheneyer 
one of the multipl~xers attached to the lOP causes an 
interrupt, or it may be entere4 directly by a call from D.S1 
to start an operation. 

Upon rece:i'vinq control I.51 saves A, B, and Eo Next 
I.51 determines whethar·the cause of the interrupt derives 
from a solicited reqcest (read or write) on an unsolicited 
(asynchroD.ous) event ci.e., 'break key struck).' If tl;le 
inter~upt is due to a read/write request a character is 
appended tO/re~oved frcm thE buffer associated with the 
current operaticn(s) fOl the interrupting channel. Note that 
the channel nu.ber (O-'~) must be associated with the correct 
multiplexer (0 or 1) tc arrive at a user "stream number" (0-
31). The appropriate cede and/or protocol conversions are 
done on a per-charact~r basis. 

3-56 



Interruptions due to unsolicited events are handled in 
a special way. Notification is returned to the ~ser level 
via an unsolicited ett~y in th~ completed event~ queue of 
.IOC.. Included in the notification is the caUSE cf the 
unsolicited interrupt. certain unsoli~ited interrupts ·are 
transparent to th.e user lav'!l program. . The occurrence of any 
of these special Events causes driver dependent actions to 
occur. An example is the backspa~e character~ The user 
level program is not informed of the receipt of a as 
character; rather the current byte pointer is decremented and 
normal precessing continues. 

The continuator secticn is also responsible for notifying 
.IOC. when operations are complete and for initiating the 
next queuEd rEq~est (if a~y). 

A~21 ~h! lB~endag~ £2n!I~ ~~12n 

The Appendage ecnt~cl section A.51 receives expli6it 
control from th~ ICK dIiver via a. JSB instruction~ Th~ 
pu.rpose of A.51 is tc respond to certain syst911 processor 
initiated requests for information which is containEd in the 
LUT for. a given channEl. A.51 decodes the request, obtains 
and formats the data frcm the LUT, and returns tc the leg 
driver. 

It is desirable to ·make this code as logically 
indap9ndent of the mux driver as possible. 

1",2.1 I~ lli.5£2R!.!!!Y!l.l~a1is.n.§ 11112 ~.2ll~ ~~ion 

The Telecommunications line control sectien T.51 is 
responsibl$ fer monitoring the status of user connections 
(phone lines or hardwited) to the lOP. When a change in any 
line stat~s is detected, the user 19vel program is made aware 
of the change via an unsolicited entry in the completed event 
queue of .IOC.. The two possibl~ lina states ar~ "connection 
established" and "ccDtection brcken." T.51 will time short 
line drops ~o deter~ine if the line is permanently or 
temporarily down. Any line drop of 2.0 seconds ~r greater 
duration on an established lina will cause a ··connection 
broken" to ba passed to th& user level program. 

T.51 will access the LUT's for the channel and Bodify 
cartain status information. When an initial connEction is 
establishEd T.51 tells the driv~r control section, 1.51, to 
bagin auto-speed detect fer the new~y conn~cted channel. 

3-57 



~~2l, Ih~ f2X!~ !A11Lt2§lsI1 £2n1I~1 ~~cti2n 
P.S1," the" pover fail reccv9ry section of the driver 

receives control frca D.04 after pewer is restored to the CPU 
following a pover failure. P.51 is responsible for restol~il\g 
the multiplexer interface and data set control inter:Eace 
cards to the status they vere in when the power failure 
occurred. I~ addition ~o restoring the device flag and 
control status, t.he proper .input and output channel 
parameters must be restored in the multip~exer interface 
memory. The dataset centrel board interface parameters Hust 
also be restored, and any interruptions pending fer "either 
the multiplexers or data set control interfaces must be 
handled appropriately. Any ~ultiplex~r channels which were 
actively engaged in outFut at power fail time are restarted 
following the last ckaract~r previously output. Any 
multiplexer channels which were in the input wait state have 
their receivE operations terminated with a character lost 
indication; this allows th~ EASIC program to rEissue the 
input operation. 

3-58 



SECTION I 

OVERVIEW 



SECTION IV 

'NON-SHAREABLE DEVICES 



C IJ N T E "I 'f S 

1 • f).h3 J ~ T f: ~ C 0 "J f·r I:. C T KIT D I~ I V E h' (ASC 1 I FILES) 

2. ASFH ASC I I Flf,~ HANDLER 

j. Ct·'H CA~l> r~FA[)r:P HA~JDLEP 

4. o • 1 1 CAHU H t::\ P F H DkJVEk 

5 • LPH l'. I Nr: t>RINTt:R H A rll.>l, r: K 

6. 1).12. LINt:: PR I ~JTF4 Ok I V r .. ~ 

7 • PPH P,'H·)L~ TAP,,: Pll~rH rlJ\NDLr:"-

d • I.J • 1 3 PAPf.K T ~f'l:.: P lit. (' H l>~ 1 Vt-:k 

9. PHO/CPH PAPEH TAPt', 'HFAP~k H A NlJ LEI. 

10. I) • 1 'f PHIIT!l R r~AUI:.H L) R I V F-: f( 

11 • RPH 4F,~L>~~ PUNCH 1 N T r~ H P l·n: T E P. HANDLFR 

1 'J. • o • 3 ,+ pt:ADFI-I PU~CH I NTEHPkEl F~R DHIVI::F 

1 i • LTH :; ~. \~ 1 1\ IJ L] '~I'. Tt~RMINAL tL\ N DLER 

14. I) • ~ 3 S f·. R I Ai.. Lit ~ t\ TEP~~ I N AL U R 1 V 1": ~I 

4",0 



* D.63 is the ~SCrI fILES portion'ot the interconnect 
.' kit driver. The documentation on this module is broKen 
* into the following sections: 

• I. UN I'r CON'rROI .. TABLE 

* II. SYSTEM PROCI::SSOR ~EQUESTS 

* Ill. IOe R F. QUE: 5 'r S 

* IV. UNSOLICITED EVE::NT~ 

* v. ijCW USAGE 

* VI. lOP - SP. PRO'rOCAL 

b 

4-1 



* I. UNIT CONr~OL TAKLF (UeT) 

* 
* 
* 
* 
* 
* 
* * * 
* 
* * 
* 
* 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* * 
* 
* 
* 
* * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* •• 
* 
* 
* 
* * 
* 
* 
* 

lOPC builds d table for D.n3 cn.lled the unit 
control table. The UCT contains one 6 word entry tor 
each Ascii File Device configured into the tOP. Each 
b word entry Is called a unit control blocK (UCH). A 
llCB consists of the following elements: 

1. tJOHED head of request queue tor this device 

2. UFunT tail of request queue tor this d~vice 

3. USrAT loclcal status of the device (relative to 
S~ and ASFH) 

4. 

5. 

"b • 

BIT 15 device online 
set when AuV received 
cledred wt)en HUV, KDU received 

BIT 1.4 1J1IU - WAKE lJS~k LIP MliST BE SENT 
set 'lThen RDV, ALB, XR~ rejected 
set wnen 5TH received 
cleared wnen WUU sent or KDU received 

BIT 13 R()V - ~ELEASI=.: [)E\llC"~ RECI::IVJ:;D 
set ~hen HOV first received 
cleared when RDV finally accepted 

Blr 12 UNIT TYPE 
set UP by IOPC and never modified 

=0 normal (real) device 
=1 nse\ldo rlevice 

B I l' 1 1 ALB / X R t; U t., S () LTC I T~: D EVE j.J T F LAG 
set when on allocate butter (ALB) or 

transfer input butfer (XRH) unsolicit~d 

event is sent to the Ascii File Handler 
cl~~rea wh~n a read or write butter 

arrives dt the driver as a result of 
the unsolicited event 

BlT 10-0 N0T US~D 

UNlit'" rSB loaical unit numoer 

lJHLEN butter lenqth 

LJDS'fS Physic.al (leV ice s·ta t us 

-3 RI..JE not ready 
-2 to: OF read 
-1 no but fer available 

n device ready 
1 device not. .reddy 
2 de.vicp. error 
J attention flp.eded" 
4 reaM/write tailure 

4-2 



* . II. REQU£e:STS F-RO~f SYSTJ:O:M . PROCr-:SSIJR 
* 
* * 
* * 
* * .. * 
* 
* * * 
* 
* 
* 
* * 
* 
* 
* * 
* * 
* 
* * 
* * 
* 
* * 
* * 
* 
* 
* 
* * * 
* • 
* 
* * 
* * 
* 
* 
* 
* 

1. ADV - Allocate Deiice 

The system processor sendsADV when a BASIC 
proqram has ·assigned an Ascii Yile Device. ADV 
will eventually.qet passed to the device as a 
start comm~nd. Any preparation at tne device driver 
level should be done at this time. 

0.63 always accepts this command. 
event Is put 'on the CRO for the ASFH. 
is set in the unit status (USTAT). 

2. XRB - Transfer lnput Bufter 

An.unsolicited 
The online" bit 

The system processor sends this command when 
it wants to have data read trom a device. 

A checK is first made of the pending request 
qupue for this device. 

If a write to the SP for the device is pending, 
an lOP to SP transfer of the data is done via DMA. 

If a write/control for the device is pendinq, it 
1s executed. A cneck is then made of the newly 
updated device status (UDSTS). If the device status 
1s good (zero), we go back to the oeqinninq ~nd 
checK tor more pending requests. If the status Is 
bad, the command is rejected by sending the bad 
status across tne receive channel. If the bad 
status was minus three'(RJ~ not ready)~ no other 
processing takes place. For all other device 
errors, WUU 1s set in the unit status (USTAT). 

If a read from the SP for the device Is pending, 
it is forced to completion and processing continues 
as if there Wd~ no write queued. 

If there is not a write to the SP queued, the 
device status (UDSTS) 1s checked. It the status 
Is bad, the same bad status processing described 
previously for write/control is invoked. If the 
status 1s good, an X~B unsolicited eventis sent 
tot h e AS F' H d n d the X R B / A [, B b 1 tis set 1 nth e un 1 t 
st"tus. the SP command is then rejected by sendinq 
a minus tnree across the receive channel for pseudo 
devices, and a minus one across for real devices. 
If the devic~ is real, the wUU bit in the unit 
status is also set. 



.. 
* .. 
.. 
* .. .. 
* 
* 
* 
* * 
* 
* 
* .. .. 
* * 
* 
* .. 
* 
* * 
* .. 
* .. .. 
* .. .. 
* .. 
* .. .. .. .. .. .. 
* .. .. .. .. 
* 

J. ALH - Alloc~te Buffer 

The sys t em proces so r# sends thi s command when 
it nas data to be written"to the, soecitied device • 

A check is first made of the pendin~ reqest 
queue tor the device • 

] f a read trom the SP for ttle device is pendi.nq, 
an SP to lOP data transfer is done via DMA. 

It a write/control for toe rlevice is pending, 
it is executed. A check is then made ot the newly 
upt1ated device status (UDS'fS). If the device status 
is good (zero), we go back to the beqinninq an~ look 
for more pending requests. If the status is bad, the 
command 1s rejected by sending the bad status across 
the receive chdnnel. It the bad status was minus 
three (RJg not ready), no other processing takes 
place. for all other device errors, WUU is set 
in the unit status (lJSTAT). 

If" a write to the SP 1s Queued, it Is forced 
to completion and processing continues as if there 
were no read queued. 

If there is no read queued, the device status 
is ch~cked. It the status Is bad, the same bad status 
processing descrioed previously for write/control Is 
invoke~. It the status is good, an ALB unsolicited 
event is s~nt ot the ASfH and the XRH/ALB bit 15 set 
In the unit status. The SP command is then rejected 
by sendinq a minus three across the receive channel 
for pseudo devices, and a minus one across tor real 
devices. It the device is real, the wUU bit in the 
unit status is also set. 

4. PCF - Perform Control Function 

The SP sends this comman~ when it executes a 
eTL tunction 1n a RASIC program • 

. The device status (UDSTS) is checked. If· the 
StdtllS is bad, the command is rejec'ted bV sending the 
bad status across the receivp. channel. If the bad 
status is minus three (RJE not ready); no other 
processing occurs. for all other device errors, 
WUU is set in the unit status (USTAT). 

4-4 



• 
* 
* 
* * 
* 
* 
* * 
* 
* • 
* * • 
* 
* * 
* * 
* 
* • • 
* 
* 
* * * 
* * • 
* • 
* 
* * 
* * • 
* * 
* 
* .' * • 
* 
* 
* 

If the device status 1s good, the command Is 
accepted by sending zero across the rec~!ve channel 
and the a per unsolicited event is sent to the ASFH. 
~he cOntrol function' to be perform~d i~ included in 
tne unsolicited event data sent. The device status 
is then set to minus three for pseudo, devices and 
minus one for real device~. The ASFH will later 
send a write/control down for the device to clear 
this status. 

5. STR - Start Timed Retries 

The SP eventually sends this command when the 
previous SP request was rejected due to a device 
error. It tells the lOP to periodically retiy the 
current I/O request until the device comes up. 

A S'rR unsolici ted event ts sent to the ASFH 
and the WUU bit 15 set in the unit status (USTAT). 

6. RDV - Release Device 

The' SP sends this command when it ls de-assigninq 
tne device from the current user. 

First, the request queue' for the device 1s purged. 
Pllrg 1ng 1 s descr Ibed in the IOC ,Meques ts ,sect ion ot tht s 
document. 

For pseudo devices, the command is always accepted 
and an ROV unsolicited event is alwaYs sent to the ASFH. 

For real devices, ~rocessinq differs. The first 
time the command 15 .rece:Lved, it is always rejected, a 
ROV unsolicited pvent is sent to the ASFH, and ROV and 
wuU are set 1n the unit status (USTAT)~ On succeeding 
R D V • s, n 0 un S 0 11 cit e d €I V en tIs pre 5 en ted' , t he com man d 
1s rejected if the device 1s down (UDSTS # 0) and accept­
ed if tne device is up. 

7. KDD - Kill Device Output 

The System Proces~or senrls this command when it is 
aborting the current user of tne specified device. 

The devicp request qu~ue for the device is first 
purged. Purging is described in the IOC requests section 
of this document. A purqe unsolicited event is then 
sent to the ASFH and then both the device status (UDSTS) 
and unit status (US'fAT) are .cleared. 

4"-5 



* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* .* 
* 
* 
* 
* 
* 
* 
* 
* * 
* 
* 

r 1 I • IOC k t:-: V lJ ~: S (' ~ 

Cont.rol worn Fllnctior, SubfllTlct.lo"n Operation 

IJ 0 0 () ,(.( 0 00 Jnit/Clear 
lll) 0 X. ,( 1 00 Read 
1200XX ') DO ~ritp 

122{)XX ~ 20 write· Control 
1 :l.~ 0 X X 2 40 Purge 

xx = IDC Unit. Reference NIJmber of lCK tor Ascii Files 

1 • Jnit/Cl~ar 

J I ) per u t. s a ~ 0 r li 1 n t ron tOt ttl e U C T N n i chi s 
t~ count of tnt-' "sci i r"ile l'evi.ces confiqured' into 
tr'lP T'lP •. Tn~ lnit/Cle~r processc')r uses t.nis as the 
1 1. 11 itt 0 ·1 1 0 0 ~' I. n i c rl doe 5 a P II r . .1 e 0 t t h P. r e Cl u est 
q iJ e lJ P t (1 red end p vic ~ • Pur '1 i n ('J i s ~1 esc r 10 e din ('j eta 11 
later in this section. 

/.. Rend 

A r f.:' ~ li r e q u ~ s t $ a n ,ll ~J t () .T () ,.. t ran s fer 0 t d a t a 
for d r"1evice. 

A re~a renuest is mdd~ rlS a result ot the SP 
5 e ~ :j i q 0 1\ 1.1 Po tor t n f' r1 e vic e • T n e 0 U t t p r i s q II e u e don . 
thta re(Jl;lpst qlJE'llt' in tt)e UCH tor thE' device. The 
de vic e ::; t ~ t lJ 5 (U D ~ 'I' S) 1 5 C 1 e d red • A 1, b / X H H i nth p 

lj nit s t ,;j t u s (U [.; l' A·I ) i. s c 1 e rt r f' d • 1 t the .~ U 11 h 1 t 1 n 
thf' unit stdttJ~ is spt, ~ake User 110 wIll be sent to 
t. tl t-' S P • T r\ i s 'Ii ill IJ ~ U ~ 1 1 Y res II 1 tin the S Pre sen Ii t n q 
t n e "L B ); n i c·, 'A.i 1 1 no #i t> P r.i C C e p t p d sin c e t n e 0 u t fer 1 s 
t'lPre. 

r~ ... ·rIte rf'qlJest.s dO lClJ to ~Il trdnster tor d 
.;evice. 

'\ 'Ii r i t p r I? (1' J t' 5 t 1 Sir! d 1'1 e .:j 5 d res u 1 tot t. he SP 
sen din q X .~ H tar t h ~ (~e \' i (" e .• 1" i) P S d rn p pro c e s s 1 n q 1 s 
d 0 i) e .:::to sis d n n P. tor T e ri Ii S • 

4-6 



* 
* 
* 
* • 
* ." • 
* 
* • • • 
* 
* 
* * 
* 
* 
* * * • 
* * 
* 
* * 
* 

4. Write/Control 

A Nrite/control requests the device status (UDSTS) 
in the UeB be updated to the value soecified. 

The Dutter is queued on the request queue in the 
UeB tor the device. Actual execution of write/controls 
(le~ actual updating of UDSTS) does not happen when the 
request 1s queued. write controls are execuied on 
reception of ~CF, ALB, ~nd XRB commands from the system 
processor, and during purge processing. See the des­
cription of tne related routine for details. 

5. Purge 

A purqe requests tne clearing of "all requests from 
tne specified devices request queue. 

Besides being executed as a result of an IOC call, 
the Purqe processor 1s also called by the KDO and ~DV 
PfocesslnQ routines. 

Purged status is stuffed In 0.63'5 EOT status word. 
Each existing entry on the request queue for the device 
1s dequeued. Any Write/Controls are executed. Other 
operations are placed on the CHQ via .BUFR. They will be 
De marked as purged oy .BUFR because of the 
purge EQT status. When all operations have been purged, 
the EOT status is restored. 



* Unsolicited event notices from D.b3 ~111 give tnp 
* tollowinq intormittion. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* * 
* 
* 
* 
* 
* 
* 

A. 

n 

Heyister 
HIts 1~-12 

Kits 11-n 
.~I ts 5-U 

J.<~cJist~r 

~DV ti t t 
dlts 

K l)j I rlit 

XRH Hits 

f\.L,B dit 

JJCf nits 
.~1 t 

Pi) iJ H1.t 

Sl'~ 8it 

"Jot 
TSA 
IOC 

0 
1':1-1 

3"7 

3 

1')-/1 

4 

~ 

h 

SPt 
.'i e '~ rl t i v e ~ lJ t t e r 1 p n '1 t h tor rl P. vic e , 

"Nitrlotlt sign nit 
5p.t loctal 2) 

~et loct"l 14) 

Set (actdl 10) 

Control Lntormdtion 
SP.t 

Set (octe,l -.lO) 

. S~t (octol 1(0) 

4-8 



* v. sew USAGE 

* * * Although there are nine HC~ words prefixing each buffer 
* only the last five are considered at the IOC/Driver level. 
* Furthermore, since D.63 is a self-queing driver handling 
* many possible streams, some tnings are handled ditferently * than normal. lOC does not set up the HCW's before calling * the driver - the driver does that ltself. Also, before 
* calling .BUFR, the driver mu~t set up the DHQ and transmis-
* s10n log in the EQT with information that is relevant to 
* the' completinq stream. 

* * 
* 
* 
* 
* * 
* 
* * 
* * 
* 
* * 
* * 
* 
* 
* 
* 

wORD 
WORD 
wORD 
WURD 

WORD 

WURD 
"JUHO 
WURD 
WORD 
WORD 

1 
2 
3 
4 

5 

1 
2 
3 
4 
5 

SCw'S 

(BCw 5) 
(Bew b) 

(BCw 7) 
(HeW 8) 

csew 9) 

SCw'S 

(Hew 5) 
(SCw 0) 
(sew 7 ) 
(AC If 8) 
(BC~ 9) 

I NCOM I NG fhJr'FERS 

Queuing word 
lUC request 

,Reques t' lenqth 
Device status on 

write/Controls 
'fSH LU If in left 

byte 

OUTGOING RUF~'I:!:RS 

Queuinq woro 
IOC request 
Transmission log 
Status 
TSA LU • In lett 

oyte 

, 4-9 

Set up by driver 
Set up by driver 
Set UP by driver 
Set up at handler 

Set up at handler 

Set up by .8UFR 
As above 
Set up by .BUFR 
Set up by .BUf'R 
As above 

(CRQ) 



* V I. -lIJP/SP PJJOTdCAtJ 

* For every Ascii ~i1e Device related ~ommdnd the SP sends 
* tne ln~' q1ves hoCk' r:t response across its J,q':CEIVt~ channel. 
* fo·011owing are two :tables 1 i5tinq thf' lOP responses and 
* exoected Sf:> action ~s c:t result. rnP. tirst table covers 
* the use r not u sIn q 1 F' F: toUH 1 H • ft) e s fI con d C 0 v e r s the use r 
* usina If ~~HOH. 

* T UP I ::; P p P, U T (1 CAL - ~ tJ J~ MAL 

* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* * 
* 
* •• 
* 
* 
* 
* 
* 
* 
* 
* 

-2 

-1 

o 

2 

3 

4 

Hecord not reddy 

Command dccepted 

() e v 1 c P Not r-< e a d y 

Devicp r:rror 

At tent ion ''4epded 

FXPt..CTrD SP ACTION*-

lrv rlqdl~ l~ter ~SP dequeues 
and then reQueues the guy) 

K~lease Uevice (RDV) 

Swan auy out, requeue when lOP 
sends Wl',ike User Up (~Ull) 

Continue ~rocessing 

5~nd Start' Ti~ed Ketries (STR) 

~ p n d f; t t=l r t T i 'Tl e d Ret r i e s (S T R :) 

Sen rj S tar t '{ i rrl e ci Pet r j e s 'W h f" n 
operator Awt\l<es device 

He..:tfl/Write F,jlufP Senn "ill I>evice uutput (KDn) 

* heside!:; the ~p€'citieri f'xpected t3ction, a KOO "lay 
COlT e a c r 0 s S d t it n y t.i:n e itt he use r hit 5 b rea K • 

4-10 



* 
* 
* 
* * 
* 
* * 
* 
* * 
* * 
* 
* * * 
* 
* * 
* 
* 
* 
* * 
* * 
* * * 

kESPONSE 

-2 

-1 

o 

1 

2 

3 

4 

IOP/SP PROTOCAL - IF ERHOR 

M~";AN I NG 

RJl:: not ready 

Record not ready 

Command accepted 

Device Not peady 

Device Failure 

Attention Needed 

EXPECTED SP ACTlnN* 

fry again l~ter (u~er can 
do other thinqs and retry 
the 110 later in his program) 

Release Device (RDV) 

Swap quy out, requeue when lOP 
sends Wake User Up (WUU) 

Continue orocessing 

Send Start Timed Retries if the 
user retries the 110, send 
Kill Device Qutut If the user 
de-assigns the 'Ascii File 

Same as Device Not Ready 

Same as Oevice Not Ready 

Read/~rite Failure Same as Oevice Not Ready 

* Besides the specltierl expected actton, a KDO may 
come across at any time it the user hits break. 

.. 
4-11 



lY]£llQna1 g~SI1Pti~ 

The ASCII f.ile hand'ler coordinates communication between 1~he 
,System Processor (SP) , and the handlers for those 'de.ices 
designat~d as ASCII files cn the HP2000 ACCESS system. like the 
interconnect kit, the ASCII file handler vill support .ultiple 
data streams (UP to 64) through a single physical device. It is 
tO'be understood that individual streams are independent of one 
another. ASPH functions both as a level 2 and a level 3 handler, 

~ dependent upon th:.j charactaristics of the particulQr data strea.lI. 
Th9refore, it n~y acquire buffers which are in effect controlled 
hy another handler (ASFH~level 3) or it may direct another handler' 
to acquire buf£er~ uhich are ccntrolled by ASPH (ASPH=level 2). 

Tho handler ~ainta~ns centrol and status information for each 
data stream (see Local data structures) as vell as embEdding t~e 
control illformation in the euffer Control Words (Bell) (see Global 
data structures). Buffering and processing techniques are 
determined by the device class as returned by the 
Allocation/~eallocation manage~. Duffaring is generali2ed to n­
levels where n is determined by the device class. All 'buffeirs 
will be dedica'ted for the lura ticn of act! vi ty on the device. 

The handler .ust ·res~ond to a number of events, both 
scheduled and unsolicited~ which emanate from the SP. In ,additi.on 
it will be served tJ: a single gueue through which it receiva~ work 
from other handlers. 

'Ihe fo1lo wing ansolici ted notification S 0 ccur: 

1. Per forti Con trol P unction (PCP) carr y out the 
specified control function on the indicated devic~. 

2. Allocate D~vic9 (ADV) - the indicated deviCE and data 
stream should be initialized. This may imp~y 

. generating a· start directive to another tandler or 
acquiring and dis~atching buffers. 

3. Release Device (BDV) - the indicated d~vicE and data 
stream should be deactivated. This implies generating 
a stop directive tc another handler. 

4. Allocate Buffer (ALE) - a buffer ,is required for data 
from the SP on thE indicated device. 

4-12 



5. Transfer Inp.ut Btffe,r (IRB) - a record for transfer to 
the SP'is required frcm the ~ndicated deyice. 

6. Kill Device Out~ut (KDO) 
i'ndicated dev-ica and data 
(ill Flies RDV) .' 

all 
stream 

operations 
should be 

on the 
purged 

Scheduled event noti£icaticns occur in response to REID, WRITE, 
and WRITE/CONT&ot requests made to the driver. 

Queue entries direct the ASCII Pile Handler to perfor. vork 
at the request 'of other handlers in the system. The type of 
processing vill be determined by the Buffer Control Words (see BCW 
in Global data structures). Allowable indicators and their 
Ilea ning s are: 

1. No operation 
reuse •. 

an empty buffer is being r~turned for 

2. Write - a full beffer is available for transfer to the 
SP. 

3. Bead - for lev9l 3 devices a request for data frcm the 
SP has been made 

4. stop - an end of file condition has been reachEd on an 
I/O d~vice. 

5. Error - a devica error has occurred. 

6. Allocated buffer 
become available. 

a previously requested tuffer has 

7. Start this otly applies to leyel 3 devices and 
i_plies that streaa is nov available for use 

Likewise the ASCII Pile Handler queues work to other handlers in 
the system and specifies precessing through the Bew·s. Valid 
queue entry types are: 

1. write - output the data to th~ I/O device. 

2. Read input data from the I/O device and send to the 
ASCII File Handlet. 

3. start 
device. 

perforl necessary initialization for the 

4-13 



4. Purge - purge all current operations on the device. 

S. Control - a contEol request (deYice specific) is bei:Dq 
made of tte deyice. 

6. stop 
stria. 

perform necessary functions to deactivate the 

4-14 



~.Q.m!&Yl! !Y!\£~lln'§ 

The AseXI File Handler (ASFO) is ccaprised of three sections. 
the initialization section, ASFHI; the I/O co.plate section, 
ASP8C; and the ~rimar sectic~, ASrHP. 

The initialization section is entered at syste. startup time 
(i.e. lOP load) and at syste. lHlT tille (i.e., SP ready). At 

,startup time ASPSl must: 

1. Configure all ICC calls with the logical unit 'Dumber 
for ASCII files. 

2. Do a FIND on all lcgical units to obtainQ naaes and 
device types to ccmplete the SIB entr~es. 

3. Exit to caller. 

At system INl! time ASFSl is entered so that it can: 

1. Purge all device gueues that are not idle and _ark them 
a.s idle. 

2. Purge its ovn queue and empty it, returning any buffers 
to the buffer aanager. 

3. Exit to caller. 

The primer section, lSPHP, is activated when an entry exists 
in the queue for ASFH. PrOCEssing consists of: 

1. Obtain entry from the queue manager. 

2. Locate proper SIS entry. 

3. Determine entry t1~e and branch to processing routine. 

4. NOP entt:y processing 

a) if device is idle, free the buffer and exit. 
b) for input files, queue buffer with read reguest 

to external handler. 
c) for output files, issue a read call to the 

driver. 
d) for input/output files, use the taffer as 

indicated by the stream status flaqs (i.e., read 
from SP, tead from external device, or show 
buffer as available) • 



6. Read entry P;OCESS - if the device is active issue il 
read call to the ~river, else free the buffer and exit. 

7. write entry process - if the device is active issue a 
vri te call to the d r1 ver, else free the tuffer ani! 
exit. 

8. stop entry proce~s - issue a write/control call to the 
dri ver. 

9: Error entry procEssing - if the device is active issue 
a write/control rEguest indicating the error condition~ 
else free the buffer and exit. 

10. Allocated buffer received - if a data bQffer give it to 
requestor by queueing as NOP through Qft. If aore 
buffers are required for this unit issue requests until 
satisfiEd or suspended. If all requests are satisfied~ 
search SIS's for. units with pending requests and 
attempt to obtain buffers for thea. If the buffer is a 
control buffer restart the suspended device and use th.! 
buffer as directed. 

11. . start en try process - mark the dev ice as a vailable fOl~ 
use. If the device is a level 3 handler and an lD' has 
been received, enter the buffer acquisition routine. 

All of th. above processes exit through -CO!-. TheIC co.pleto 
section, ISPHC, vill be dispatched whenever an I/O operatio~ 
completes on the logical unit. for ASCII files. frocessing 
fellows this sequence: 

1. Obtain and save 1/0 ccaplete entry. 

). Locate designated SIB. 

. 3. Determine event type 
processing routinE. 

and dispatch a ~propriat~~ 

4. Eterfora control fUnction - obtain a control tuffer anli 
queue the required operation to the indicated bandler~ 

5. Allocate Device .ark device as activei fer ~e.el 2 
devices issue a S1AR~ to device handler. For leyel 3 
devices acquire buffers if a START has beeD recei.ed, 
als E eslt. 

4-16 



6e Transfer Buffer If there is an unused buffer 
available (read/write devicel queue it for reading to 
the indicated batdler. If ~one available set the Bead 
"requested flag. for tevel 3 devices present a type" 1 
"device error if the host system is not· connected. IQ 
all other cases nc processing is necessary. 

7. Allocate Buffer. - If there is an unused baffer 
available (read/vI:ite device) use it to read fro. the 
interconnect kit. If none is available, set the output 
pending flag. POI level 3 devices, present a type' 1 
device error if the host system is not connected. In 
all other cases, no processing is necessary. 

Be Kill Device out~ut - purge the queue of the indicated 
handler and set the SIB to show device inactive. 
Generate" a stop command for associated handler. Por a 
L3 device turn off the active flag and exit. 

9. Release device - Generate a stop ccmmand and queue to 
the associated tandler. Mark the SIS entry as 
inactive. For a 13 device turn off the active f~aq and 
exi t. 

10. READ complete "if the stream is inactive o~ KILLIO 
status is given, free the buffer. Otherwise queue the 
buffer for vritin9 to the indicated handler. 

11. WHITE coaplate if the stream is inactive or KILLIO 
status is returned, free the buffer. If the device is 
a read/vrit~ d9vice perform the action indicated by the 
SIB I and 0 flags (i.e., read from external handler, 
read from SP, or show buffer as available). Par other 
devices (read only) queue the buffer to the indicated 
han dler for readitg. 

12. WRITE/ceNTROL ccmFlete' - if the buffer is non­
dedicatEd, free it. otherwise process like a WRIT! 
coapletion. In the case of a level 3 device STOP 
co. plating, the buffer is queued back to the level 2 
handler as a STOP. 



The calling sequences atd exit p~ccedures for the three entry 
points to ASPH are: 

!'§.f.!j! 
entry: 

exit: 

entry: 

exit: 

J~lll£ 
entry: 

exit: 

LDA 
LDB 
JSB 

Jf!P 

LDB 
HOP 
JSB 

J!lP 

LDA 
LDB 
JftP 

Jf!P 

SRFLG 
LOTNO 
ASFHI 

ASPHI,1 

ENTAD 

ASFHP 

PB!!WD 
BUlAD 
ASPHC 

sta rt/re sta rt f1 &9. 
logical unit for ICK 

entry address 

IOC para vo rd 
buffer address/status 

The ASCII file handler utilizas the services of the buffer 
manager, queue aanager, and allocate/deallocate .anager. All 
de vice operations are carried out through the services of QlQe anol 
th~ ASCII file extension of the D.61 driver. 

4-18 



~~l ~ata stry~tuhe~ 

~ssociated with every ASCII file data stream is a block 
containing status and control information. The streaa inforaation 
blocks are ordered contiguo~sly by stream id number (0-63). Each 
block is 6 words long so that any SIB address can be computed by 

SIBnn = SIBCO.+ 6 • (stream i~ 

The SIB entries are defined as follows: 

WORD 1 -~TATUS 

15 14 13 12 11 10 
p q I T W R 

f - action required flag 

9 
5 

8 
A 

1 
B 

= 1 inclusive OR of bits 13 & 14 
= 0 otherwise 

o - o~tput requested fl~g 
= 1 if SP output is pending 
= 0 otherwise 

I - input requested flag 
a 1 if SP input is needed 
= 0 otherwise 

T - level 3 translate mode 
= 1 no translation to EBCCIC 
= 0 translation to EBCDIC 

W - level 3 wait for buffer 

6 
p 

5 
X 

3 2 
Be 

= , if level 2 module controls buffer when RDV received 
a 0 if ASPH had buffer orvregained buffer following RDV 

R - restart flag 
= 1 stream is awaiting allocated control buffer 
= 0 stream not beld 

5 start flag 
= 1 a start command has bEen sent or received 
2 0 a stop or purge ccmmand has been sent or received 

1 - activity flag 
2 1 an ADV has been rec~ived 
= 0 an RDV or KDO has been received 

4-19 

o 



E* - buffer availatility flag 
= 1 buffer avail 
= 0 buffer in use 

P - buffet' request pending. 
= , this stream has a ~uffer request pending 
= 0 other vise 

x - start timed retry under~ay'for read/write device 
= , if yes 
= 0 if no 

EC - buffer count 
number of buf~ers in USE for this stream 

WORD.2 - Queue name 

name of queue to which operations for this device are directed. 

woaD 3 - Device Requirements 

15 - -
RCD 

- - ~ .- --12 9 - B 
DBC 

7 
J 

6 - 5 " L 

RCD - restart code for allocatEd central tuffers 

3 - issue START 

" - issue STOP 
5 - issue PURGE 
6 - issue EBROR 
7 - issue WRITE/CONTHOL 
8 - issue CTRL 
9 - issue RETRY 

tBC- device buffer count 

3 - 2 
ft 

number of buffers needed for stream operation. 

J - JI device flag 
= , - th~s is the JI device 

T - device tYFe flag 
= 0 - raad/vrite 'CTL only 
= .1 - write only 
= 2 - read only 
= 3 - read/write •• 

~ -mode 
= 0 - for card reader 

4-20 

1 - 0 
.T 



= 1 - for printer 

L - de~ice class flag 
= 0 device class is level ~ 
=~ 1 device class is level 3 

woaD q .- "Buffe r Ad dress. 

address of buffer for this data stream** 
or buffer size 

iORD 5 - r9start status if vaitirig for tuffer 

status vord for allocatEd control tuffer 

WORD 6 - ASPS code restart address 

~olds address ~f locaticn within ASPH to receive control 
when buffer is obtained 

Queuing and control information for inter-handler and 
handler-driver c03manications are contained in the buffer control 
voras (BCW's) prefixing all buff.ers. contsnt descriFtions are 
found .under "Glebal data st~tctures.~ 

* significant for read/write (type=l) devic~s ~nly. 

**read/write (type 3) devices are always single buffe~ed. 



£~~ jeadgr ~~ 

~§£n.2!~on u] nnction 

This card reader handler (CRa) can be activatEd by other 
handlers in order to read caIds. The card images and any error 
indications are returned to the activ~ting handler. CRB supports 
the reading of cards in ASCII or EBCDIC modes. The progra •• ing 
for this module is serially reusable. eRH is a level 3 function 
handler and responds to the defined level 2 - level 3 protocol. 

CRH accepts these work entry commands: 

1. 

2. 

3. 

4. 

Start - received frcm a level 2 handler. 
activate. 

Read - received fre. a level 2 handler. 
read a card for tte level 2 handler. 

5to~ - received from a level 2 haridler. 
comaence deactivaticn. 

Retry command may be received from 
handler.- causes eRH to retry reading 
previously suspended due to data errors. 

Causes eRH to 

Causes CRR to 

Causes CRH to 

the level 2 
a fter being 

5. Allocated buffers - received from the buffet manager. 
These are buffers which vere pre viously requEsted but 
not available at the time of the request. 

6. Control may te received from the level 2 handler. 
Causes eRa to S9t device specific actions or cptions. 

CRH returns these commatds to its activator: 

1. Nop an alloca ted, read buffer (f ollowing a st'art) is 
being returned. 11so r~ad buffers outstanding at the 
time of a stop vill be returned as nOPe 

2. write - a compl~tEd read is being returned. 

3. stop - the rec9ived stop ccmmand is returne~ fcllowing 
the return of all read buffers and deactivation. 

4. Error - an indication that a read error has .occurred. 

4-22 



~~~!1-S!li-str~~~~§ 

The start co •• and is dafined by. the following BCI verds:

BCW word 2 - Bits 13-8 .. stream identifier
3-0 co IIlIand=3

BCi word 3 Bits 14-0 activating handler queue na.a
BCW vord 7 - Bits 15-0 buffer length
Bew word 8 - Bits 15-2 (unused)

1-0 00 - ASCII
10 - EBCDIC

Data vord 1 Bits 15-0 no.ber of buffers

Card i.ages returned by caa contain the following BCI
definitions:

BCW vord 2 - !!its 13-8 stream identifier
3-0 co •• and= 1

BCW word 7 - Bits 1·5-0 Nu.ber of data bytes ·Cexclud iD9
trailing blanks)

BCW word 8 Bits 15-2 (un used')
1-0 OOzno errors

11 2 8nd of file

All other commands returned to 'the level 2 handler contain
the appropriate stream id in BCW2-bits 13-8. For the error
command, BCWS.-bits 1-0 indicate the correct general errCl: type.

These
by CRa:

STOB
RVO
FtW2T2 -
BIOCP -
BACBe -
RSIZE -

BQUIT -

BID

RTYPE -

symbolic indirect pointers to local data are also us~d

a read retry TOB (tiaer queue ele.ent)
holds na.9 cf associated vork queue
holds the i2T2 queue name or is zero if inactive
bolds configured IOC ~ead parameter
holds the current active buffer count
retains length in negative bytes for read
operations
holds address of stop buffer if a stop is
pending, ottervlse zero
holds straaa id in bits 13-8, error condition
bits in bits 1-0, and ready/not ready
transitions in bit 15.
zero if a card reader; one if a photo-rEader (see
description cf Fhoto-reader handler)

4-23

Alg2li1ll!

eRR has four entry points:

CRCHI handler initialization, invoked by syste.
initialization

caeHP receives contrel f~om systea dispatcher when
primed by s,stem queue manager

CRCHe receives control ftom system dispatcher when
scheduled rEad operations have completed

BTEI receives centrol from tha time base ge~erator
handler when a timed pause expires (for read
retries £ollo~ing not ready states)

At each of these entry pcints, register A centains the
address of the local data structure for some card read fUDction.
Subroutine RIDDS is used by all four sections to generat~ a list
cf indirect addresses for access to the actual data. Beferences
to the local data names herein should be viewed as indirect access
to the actual data locations.

CRCHl receives the Bes logical unit number .for its associated
card reader frcm the system initialization module. This nu.ber is
merged into aIOCP for use as an Ioe param~ter vo~d throughout the
CRR module. eRCHI then ~SSUES a .FIND for its own qUEue naae.
This is needed by cQCHP to .ake .GETQ ~eguests_ The queue naae is
retained in RiQ.

The entire handler is initially in an idle state. It is
re.o~ed fro. this state by being primed with a start command
containing the queue name of an activating handler as well as that
handler's desired mode of reading_ Read commands are accepted
following the start. Once started in this manner~ CRH continues
until a stop cemmand appears. Then CRa returns to its idle state.
The activating handler car. I~-activate CRH with a new start
cOIDlland.

CRCHP processes all entries on its queue once ptt.ed. It
then exits with its prime ogaOte closed. These types of entries liar
be processed:

1. start - the activator's queue nama is retained as well
as the indicated stream identifier in Ri2T2 oand RID.
The reading mode is configurp.d into RIOCP. The read

4-24

2.

length is saved in RSIZE. Then the desired number of
buffers are acqui~ed .and returned to the activator.

read using
queued. The
llicremented~

the RSIZ! length, a r~ad operation is
active buffer count in SleBC is

·3. stop any pending tiaed retry is cancelled. Pending
reads are purged. If the active buffer count is zero,
the stop is i •• ediately returned. Other~ise it is
saved in RQUIT fot future return.

4. operator command
released.

the device request queue 1s

5. allccated buffer a read buffer is given to the
activator (if still alive). A control buffer is used
to dispose of an error aessage· to the activator.

6. control undefined control parameters are ignored.
others allow switching of read aodes.

CHCHC proc~sses completed read operations. The active buffer
count is decremented. If a stop is pending, the tuffer is
returned as a NOP. If any abo~tive error ~ccurred (purged DBQ),
the buffer is teturned as a HOP. If no error has occurred, the
buf'fel: is return~d as a write with end-of-file possibly indicated.
If'an error has occurred, the buffer is placed back on the vork
qU~Qe for CRCBP to retry. An error aessage is sent to the
activator, and if a not ready type, a timed retry is scheduled.

I. Product Identification

The D.11 cal:d reader driver is designed for use with. the
HP2000 ACCESS system. It sUFPorts both the 7261 and 2892 card
readers. (The elder 2767 cal:d reader uses an interface identical
to that of the 7261. Thus it may also be used. However, this
document claius no specific support.) The module is written in a
serially reuseable manner. Hence, it wi11 support multiple
readers of an y mi X. (The H E2000 ACCESS systt:! m will support up to
seven.)

II. Design Overview

Q§..2ig,n s §.§l!!!E t i 0 ~

The module assumes a ~100 or 21MX s~ries computer. It also
r~quires the HP2000 ACCESS I/O processor microcode. The 2892
hardware end-of-file faatur~ is supported.

Q!.2igll !H!!!m.a!:.I

The complete driver ccnsists of tvo distinct modules(D~1'O
and D.11C). The D~110 module defines the actual driver initiator,
continuator, and power rgccvery entry points associated with any
given card. reader~ This is the only module which must be
replicated to sUFPort mul~jple readers. Th~ D.lle module, which
conta~ns the actual code, is used by all copies of D.110. In
~ddition, 0.110 contains all da ta of a varying or potentially
volatile nature which is required by each reader. This includes
related 'I/O instructions, tutfer pointc:!rs, r~adinq modES, flaqs,
etc.

Cards may be read by the reader and optionally ccnvert~d to
ASCII er EBCDIC charact~r cocas. The original column binary cara
ioag~ ·may also be ::equasted. All r~ading is done with DMA.

Power recovery proc~5singallows for proper t~rmfnation of
all scheduled reads even though reader power may be lost. Error
status will be appropriately s~t in this case.

F. ~ r ~ i:" h ?~ n ~~ 1 i. n 9 a 1 1...-, J :3 +- :" '~ .~ '"1 t '.~ ~-: •. i :>;1 a f pi. c ::: i a i. I, he p p = i. ~
·~·.!~l, ~!:!:'::i (·~·J~lfl~~~·;.::.;it)~~1 c.rl~ .-:.:.':~~:~: -.··::--~:():.. .. s. ~·i~:·?;.'".~. ~~':1~ ~'2Jj f:I"l1d .~!;jJ2

differ, e~=ors are converte·d to a ccrncc~ ~as~. Th~ occurranc~ of
a n:: .. (colon-colen) sequence in columns 1 and 2 of a card is
traated as end-af-file. F0r the 2892, hardware end-of-file may be
substitut.ed for use of the "::" car::!..

4-26

~~ng.n §IH~roas.h.

As stated above, tha driver is written in a serially
reuseable manner. Thus, the one copy cf code, D.11C, . serves all·
readers. D.1le. accesses a given 0.110 storage block througb a
series of indirect . poi nters. The use of these 'pointers is
seriall!~ed by· D.11C. However, the driver vill accept multip19
card reader int~rtupts, queueing each such interrupt for ~.entual
service.

The method of distinguishing between a 7261 and 2892 is via
the subunit number (bits i:E) in lOT word one. sutunit 0
de~i9nates a 2892, subunit 1 a 7261.

~gg~!@ 2.gan·izA!ig~

D.11C contains code for I/O initiation (D~ 11C), I/O
continuation (I. 11C), and power recovery (P.llC). Since calls to
the D.1le section may originate both in the base level Frogram (a
JSB to .IOC.) and from Ioe (a result of a· call to .BOFi), D.lle is
forced' into serial use by a CLF 0 instruction. In this section,
the call parameters are analyzed and a read is initiated.
Allocation 10f a DMA chantel also occurs. If no D~A channel is
available, the call is r'9jEcted. (Queued .lOC. manages this
condition by later rescheduling.-)

I.llC, the continuator section, consists Of three segments.
The first accepts interrupts and queues them for service. It vill
also dispatch the second segment for the first interrupter only.
Th~ second segment processes an interrupt. The third segment
dequeues a processed interrupt and reenters the second segment to
process additienal queued interrupts if any. When no interrupts
remain, I/O retires are rescheduled as requirad. Note that only
segments one and thrEe need to ~un disabled.

The P.11C pover recovery section is enter6d for each card
reader (via P.110) from 0.04. If the associated I.ll0 sEction, vas
actiVE, D~04? is used to rastcrA this condition. However, if the
reader vas not having an intErrupt processed, but a read bad been
sch~duled, an interrupt is forced to cause normal I.11C error
J;:roc~ssing to effect recov~ery.

!n~!~~~~~ ~~i~!

The second segment of I.11C first astatlishes the driver's
indirect pointer' list to access th~ D.110 storage block for thg
reader whose interrupt is being processed. N e.xt, error detection
is done using a different status examination .procedure for each

tt-27

reade~ type. For the 7261 only, up to 10 retries are attempted
for pick failur~s before the error is considered "hard." ~be 2892
hardware end-of-file status is recorded. (It may be overridden by
siaultaneous occurrence of a "::" card.)

Next the significant data count is obtained using the,D~A
length control word.' Note tl:at this allows the 40 coluan feature
of the, 7261 to be suppotted. Since th~ 7261 and 2892 column
images are oppcsite, the 7261 image is r9verS6d at this point.
Rov 9 will appear in computer word bit 0 and the "twelve" rov in
word bit 11.

Tha reading mode is Exaained next. Note that reading does
not occur· direct If in to the calle r 0 s buf fer. Rather, an
intermediate 80 ~ord' buffEr in 0.110 is used~ The data is now
moved and converted from this intermediate buffer into the
caller's buffer. The caller's length is honored and ove~r1des the
actual significant read lergth. In all casas, the returned
transmission log reflects the Lumber of columns read less any
trailing blanks. This count may b~ l.ess than the requestor's read
length. Data is .oved to the requestor's buffer afte~ Fossibla
conversion to ASCII or EBctIC character representations. The
~etection of any erroneous punch combinatio'ns in this case vill
result in a data error status. The completed read operation is
now signalled via .BUFR, and the used OMA channel is released.

IT!. Design Structures

In~!;t~£~ d1~~iE1i2n§

. Any current op~ration is abortEd. DMA is releasEd. The
driver enters an idle, available s~ate.

JSB .IOC.
OCT OOOOxx

.R29.

(xx:1ogical unit t)

A card is read and transferred to the supplied buffer.
Optional data conversion may cccur.

JSB • IOC.
OCT 010nxx
J PoP REJCT
DEl BUFFR
DEC m

4-28

(x,X =109i cal unit.)

m=positive numtcr of desir~d card columns
n=O·- ASCII r~ad mode

1 - column binar1 read mode
2 - EBCDIC rEad mode

.
The returned transmission log alway~ rsflects the number of

card columns requested !!§! any trailing blanks. The st~tus word
includes these bit definitiocs:

1L1 = error
1:0 = 0 - no error

1 - pick fail or othar not ready ccndition
2 - da ta ~rror

'3 - and-of-file .

]~§£r~pti2n ~ 1~~!j2n

The Line Printer Handler is responsible for nor.al flow of
print lines to the printer and notification of its call4r of
printer errors and printer cOI~let~on (end-of-file; obtained from
calling program). The Line Printer Handler vill eff.ct the
emptying of tuffers throug! the queue manager and calls to .IOC.
to print user output on the line printer. The handler vill adhere
to the defined level 2-levEl 3 protocol. This module is written
in a 'serially reusable' lanner with all locally used data
accessed fro. a unique storage block. Thus~ additional Frinters
may be added by re~licating this storage block •

. 'The hand19r has thre~ entry points: a "prime" entry which is
used when a queue entry exists and is to be processed and an "IO
complete" entry which is used when an operation initiated by the
"priae" entry, has finishEd and the queue entry processEd aust be
returned tq the proper place; and an initialization entry called
during system startup and restart. .

The "pri.e" eRtry will obtain an entry from the input queue
and attempt to do a .lOC. call tc process the buffer.

The lila ccmplete" entry will examine the ret·urned inforaati,on
from a completEd operaticn aId da~ermine if an error 6ccurred. If
an error occurred, the handler will issue a priority .IOC. call 'to
reschedule the request and irform the· level 2 hankler of the
~rror. If nc error occurred, the entry will be returned to the
proper handler queue.

Input queue entries may be cne of the follovin,g:

1. start received 'from a level 2 handler in a control
buffer. It activates the handler.

2. Write - receive' frcm a level 2 handl~r. Contains data
to be output to tte printer.

3. Sto,p -~ received from
buffer. It causes the
pro ce 5S in 9 .'

a level 2 handler in a print
handler to begin teraination

4-30

4. Allocated buffer received fro. the buffer .anager.

5.

The buffer is reCEived as a queue entry if DC buffers
were available at the tiae cf the initial request.

Control operation
level tvo handler.
carriage control
space mode. 1'he
handler.

- recieved in a centrol butfer by a '
,It is used to perfor. special
cperations when in the print-then­

'control buffer is freed by this

6. start timed retries - received from a level 2 handler
when the printer bas indicated a not ready ccndition.

7. Purge received fro. a :Leyel 2 handler. A clear IOC
call is .ade to purge any outstanding writa requests •.

Output queue entries may be ~ny of the following:

1. NOP 'an allocated write buffer or a completed write
buffer is being I:etul:Dad to the caller. '

2. stop the sto~ command received by this handler is

3.

The

BCW

SCi
BCW
BCW

being returned to the caller to indicate ter.inatioD
process ing is COli ~lete.

Error - a notification that a write error bas occurred.

star't; command is :iefined as fellows:

vord :2 - Bits 13-8 stream identif1er
3-0 coamand:3

word 3 - Bits 14-0 activating handler queue naae
vord 7 - Bits 15-0 buffEr length
word 8 - Bits 1-0 OO:zspace then print

01.print then space
Data word 1 Bits 15-0 nUBber of buffers'

The print buffer is defined as follows:

BCW vord 2 - Eits 3-0 command=1
BCW word 7 - Bits 15-0 length
Data word 1- Bits 15-0 pri n t-then- space, not used

spa ce-then- pr int , control
Bits 1-0 zero

4-3).

A19PIi:t.b!

ERSWT is set when a printer error occurs and is not reset
until a line is successfully printed. This mechanisa is used to
provide only one error notification to the oriqinal sender when a
printer aalfuhction occurs. PRBUF is used to store the address of
the printer buffer in case Euspension due to buffer not available
occurs during error processing.

The four entries to the handler are: LPRI~ the
initialization entry; LPHP, the primer entry: LPHC, the I/O
co.plete entry; and LPHT, the timar expiration entry. At each
entry point, subroutine PADDS is used to create a list of indirect
addresses to the local data structure.

In .the initialization section LPHI, the logical unit number
of the device is saved and the handler's queue name is "found and
sa ved. ""

LPHP handles one queue entry at a time when it is primed.
The queue entries are procassed as follcvs:

1. start· - the acti vat~r' s queue name", the strea. ID, aad
the print .ode ate, saved. The required nu.ber of
buffers are obtained and returned to the activator. In
print-then-space lode, a vri te IOC call is .ade- 1111 th
control code aqua] tc one to cause"a skip to top-of~
forll.

2. print - in space-then-print mode, the PCF control code
is .oved froa Data word 1 to BCW9 and the IOC call is
issued. In print-then-space mode, the centrol code
saved in LPCON is .eved to BCW9 and the IOC call is
issued." LPCON is then reset to the default control
cod"e (space 1). .

3. control the FCP control code is saved at LEeCN and
the control buffer is "freed.

4. stop . - the print buffe~ containing the stop co •• and is
used to issue an IOC call with length equal to 0 and
BCR9 control cod~ equal to 3 (space 1).

5. all ccat Ed bu ffer - the buffer lIay be a con trol bu:Efer
or a print buffqr. 'the con"trol buffer is used to ~Iend
an error indicatien to the activator when a net ready
condit~on occurs. ~he allocated print buffer is made

4-32

interlocked, the stream ID and NOP com.and are placed
in BCW2 and it is sent to the activator.

6. sta.rt· timed rat~y - il tiller is st arted il.nd the buffer
is freed. In t.he tiaer exit, a release IOC request is

7.

.ade to reinitiate the operation. .

purge
freed.

a clear loc request is made and the buffer is

ihen control is received with indication of an I/O co.plete
ev~nt the follewing sequence of events cccurs: The 'status of the
request is checked· to determine success of thi·s operation. If
successful; bits 15 & 14 of ~egist·er I or word 3 of the buffer
prefix will be zero. In this case, the buffer is returned to the
activator with com.and code=O~ If ava~ilability is set tc one the
device was net ready and the handl.·r vill issue a priori.ty .IOC.
call to requeue the unprocessed buffer. A centrol tuffer is
obtained and sent to the activator with co •• and code=6 to indicate
the occurrence of the error.

4'-33

I. Product Identification

.fI2S.Y£1 abstrA£t

The D.12 line printer driver is designed. for USE with the
TSB/2000G System and will !u~pcrt both post-spacing and pre­
spacing .print modes for tte 2607, 2610, 2613, 2614, 2618, 2767,
and 2778 line printers.

II. Design OVErviEw

Y~ign A!2Y~2!i2n§

!his dri~er is designgo to run on a 2100 series ccaputer and
requires anyone or ~ore of the interfacas for the printers listed
above. It also requires tte microcode described in the Phase II
Base Design.

Qe§~g.D Jymmau

Tvo modes of operaticn are supported. In the pre-spacirig
print mode, the carriage contrcl will be issued and then the
characters in the tuffer vill be transferrpd to the printer. This
line vill not actually be printed until the next control operation
is performed ,carriaq~ contrcl for th9 next lirie). The~efore~ it
will be nece~sary to issue a control operation tb the drivEr vhen
~nd-of-file is reached.

A post-spacing mode will also be supported.
th~ characters in the buffer vill be transferred to
before the contrel operation is i~sued.

I n this mc)de,
thE pril~ter

All printer types listed above will be supported by this
driver. The a~Fropriate control function routine is detErmined by
the unit number in the EQT.

The following functions will be performed by D.12:

CLEAR reset all status. words and issue a clear control
request tc thE printer.

WRITE transfer a blcck of dat a to the printer and i.s$ue a
centrol operation either tefore or after the charactErs ar9'
transferred.

4-34

~.§i.9n n.n£2.A",l!

This drivEr- is written in a seriallyrellsable manner. In
crder to si.plify· the additicn of printers to the -system, the
~river is composed of twc separate and distinct modules. The
first contains the unique entty points and the local data storaqe
for a given printer. When another printer is added to the system,
only this code ~s ~e~licated. .

The second mudule is the serially reusable code use~ by all
copies of the first module. This common code, D.12C, is composed
of three basic units; the initiator section, the ccntinuator
section, and the·pover recovery section. The initiator section is
;~ntered on an IOC call and is all disabled code. This is
necessary because it may be Entered by -.BUFR on the completion of
a print line for any printer driver. The ccntinuatcr section
handles onG printer interrupt at a time. If another interrupt
cccurs while this section 1s in use, th~ interrupt vill bE queued
and processed when the actiVE cne is completed. In the pover
recovery section, the status of the printer driver is checked and
~ set control 1s issued if required to create an interru~t.

~.§.g"i.a~iQ!l

The printer is cleared with a eLC instruction and all status
words are cleared.

JSB .IOC.
OCT OOOOXX XX-is the logical unit number

No rejects are possible.

1. Get printer sta~us.

2. Issue etc to tha ~rinter.

3. O~data status word in the lQT.

4-35-

4. Clear driver status flags.

5. Return to caller.

Q~~Ii~I12~ .ans ~n£!i2n
Transfer a block of data to the printer. !he contrel

operation is issued before or after the characters' are transferred
depending on the subfunction code in th~ IOC call.

The contrel operation is translated to the appropriate format
control code required by the printer interface. The proper
routine fo~ the translaticn is d~termined by the unit number in
tha EQ~. The EQT unit numbers are d~fined as follows:

o
1
2
3

tti.n:t i! l.IEi

2607, 261C, 2614
2613, 261A
2767
2778

The contrel code for eaeh printer line is located in Sits 15-
8 of BCW 9. Control codes are defined as follows:

£2~ !~i2n n~~~~!~g t!2.Il!al ~ll~~

0 end-of-file ignored by driver
1 skip to cha nnel 1 top of fora
2 skip to channel 2 bottom of form
3 skip to cha nnel 3 ngxt line
4 skip to channel 4 next double line
5 skip to charnel 5 next triple line
6 skip to channel 6 next half page
7 skip to cha nnel 7 next quarter page
8 skip to channel 8 next sixth page
9 skip to cha tnel 9 noaxt line

10 skip to chann el 10 next line
11 skip to cha tnel 11 next line
12 skip to channel 12 next line
13 suppress spacing suppress paper advance
14 true single space same
15 true double sFace same
16 true triple space same

4-36

Channels 9 through 12 exist on 'line printer
2618 for optional installation 4efinition of
c~pabilities. They are identical tc channel 1
supplied VFU tape. These channels do not exist on
and 261~ models and thesE cedes will result in
action for these printers.

ID.H':~~1! . §.2~l:~~lJm§

mode Is 2613 and
additional VFU
on the factory­
the 2607, 2610,
the 'next line'

JSB • IOC.
OCT 020Y.IX where XX is logical unit 'number

Reject Address
Buffer Ad dress
Buffer length

and Y=O for pre-spacing print mode
Y=1 fer post-spacing print mode

The c~ll may be rejected if the driver is busy. .If so, ~he
return is made with:

1=1
8=100000

The transmission log will reflect the number of characters
transmitted to the printer.

If th~ driver is not busy, the print operation is started in
the initiator SEction of the driver. Either the format control
word (pre-spacing) or the first character in the buffer (post­
spacing) is output to the printer.

In the continuator section, the n~xt character is output to
tha printer. When the buffer:' is exhausted, the format centrel
word is output (post-spacing mcde) to ~h~ printer and then .BUFR
is called. Interrupts that cccur while this s~ction i$ in use are
qu~ued for later processing. Before exiting, this queue is
checked for .work and all qu~ued interrupts are processed.

All commands to th~ print~r are channel type commands.
single and doutle spacing are accomplished' with 'skip to channel
3' and 'ski p to channel 4 t ccmmands respective lye

The Paper Tape Punch Handler is responsible for nor.al flow
of output to the paper tap9 ~unch 'and notification of its call.er
cf errors and completion (end-of-file; obtained frca calling
program). The Paper Tape PUJ::ch Handler "il1 effect the eaptyj.ng
of buffers through the queue manager and calls to .IOC. to punch
user output on the paper tape punch. The handler is written in a
• sar ially reusable' aanner a nd will adhere to the defined level 2-
level 3 protocol.

The handler has four entry points; a "priae" ent~J wbich is
used when a queue entry exists and Ls to be processed; an ~IO

.co.plete" entry which is used when an operation initiated by the
"priae" entry bas finished.a Ild the que ue en try 'processed .ust be
returned to the proper place; a timer ent'ry used whEn a tiller
expires; and an initializaticn entry called during syste. start,up
and restart.

The "~rille" entry vill cbtain an 9ntry fro. the input queue
and atte.pt to do a .IOC. call tc process the buffer.

The "IO complete" entry vill examine the returned inforaati.oD
fr:om a co.pletE d operation a r.d deterlline if an error occurred. If
an error occurred, the handlEr vill issu~ a priority .IOC. call to
reschedule the request and inform the level 2 handler of the error
condition. If· no error occurred, the entry vill be returned to
the Eroper handler queue.

ln~!A~ing

Input queue entries may be cne of .the following:

1. start received from a level 2 handler in a control
buffer. It acti vates the handler.

2. . write - received frem a level 2 handler. contains data
to be output to tte paper tape punch.'

3. stoF rec~ive~ from
buffer. It causes the
processing.

a level 2 handler in a write
handler to begin teraination

4-38'

4.' Allocated buffer received from the buffer manager.
The buffer is recEived as a queue entry if nc buffers
were' available at the time of' the· initial request.

S. ,Start timed rattiES - received from a level 2 handler
'~hen the paper ta~e punch has indicated a net ready
can dition.

6. Purge received from a level 2 handler. I clear IOC
call is made tc p~tge any outstanding write requests.

output queue entries may.be any of the following:

1. NOP an allocated write buffer or a coapleted write
buffer is being returned to the caller.

2. Sto~ -. the sto~ ccamand ~eceived by this handler is
being returned to the caller to indicate teraination
processing is ccml~ete.

3. Error - a notification that a write error has occurred.

the start co.mand is defined as follows:

BCW word 2 - Bits 13-8 streaa identifier
3-0 co •• and=3

BCW word 3 - Bits 14-0 activatinq handler qUlue naae
BCW word 7 - Bits 15-0 butfer length
BCW word 8 - Bits 1-0 OOspunch .ode in Data verd

01=punch mode changed by
control operation

Data vord 1 Bits 15-0 number of buffers

The write buffer is defined as follows:

BCW word 2 - Bits 3-0
BCW word 7 - Bits 15-0
Data word 1- Bits 15-8

7-0

eo.mand=1
length - positive bytes
punch .ode - RJE
zero

The algorithm for processing is given below:

1

ERSWT is S4t when a punch error occurs and is not reset until
a line is successfully printEd. This mechanisa is used to provide
only one error notif~cation to the original sender when a d~vice
malfunction occurs. BUPPH is used to stor~ " the address of the

write buffer in case suspension due to buffer not available occurs
during error p~ocessing.

The four entries to the handler are: PPCHI, 'the
initialization entry; PTHP, the primar ~ntry; PPCHC, the I/O
complete entry; and PPCHT, the timer expiration entry.

In the initialization section PPCHI, th~ logical unit number
o£ the device is saved an~ tte handler's queu~ name is found and·
sa ved.

PPCHP handles one queue entry at a time when it is primed.
The queue ~ntries are processed as follows:

1. start - the activator's queu~ name, the stream ID, and
the mode are saved. The reguired number of tufters are
obtain£d and returned to the ·activator. An ICC call is
made to create thE tape leader.

2. write - an IOC call is made to output the characters in
the buffer.

3. stop - the output buffer containing the stop c~mmand is
used to issue an IOC call which causes the driver to
ami t a tr ailer.

4. allccatEd buffar - the buffer may be' a control buffer
or a write buffer. 7he centrol buffer is used to send
an error indicaticn to the activator when a net ready
condition occurs. the allocated write buffer is made
interlocked, the stream I D and NO P command are pla~:ed
in BCw2 and it is sEnt to the activator.

5. start timed retry - a timer is started and the buffer

6.

'is freed. In the timer exit, a release IOC rEquest is
made to reinitiatE the operation.

purge
freEd.

a clear IOC request is made and the buffer is

When control is received with indication of an IIC complete
avant the following sequenc9 of EVEnts cccurs: The status ~f the
request is checked to detetmine success of this operation. If
successful; bits 15 & 14 of Iegister A cr word 3 of the buf:Eer
pr~fix vill be zero. In this caSE, the buffer is returned to the
activator with command code=C". If' availability is set to one the
levice vas not ready and the hand13r vill issue a prioIity .IOC.
call to'requeuE the unproc~ssed buffer. A control tUffer is

4-40

obtained and sent to the activator with co.mand code=6 tc indicate
the occurrence of the error.

I. Product Identification

.f·!:2.9'!!~ a~~!U.£1:

The D.13 tape punch driver is designed for use with the
HP2000 ACCESS system. tt SUFPorts the HP 12926A paper tapE punch
subsystem. The mcdule is vIitten in a serially reuseatle manner.
Hence, it can support multiple tap~ punches. ~he HP2000 ACCESS
system vill su~port up to seven.)

II. Design OVErviEw

The module assumES a ~10C or 21MI series ~ompute~.
requirEs the special microccde d~ve1cFed for use in
Processor of the HF2000 ACCEfS system.

nl~iS1.n '§.Y!m.~U

It also
the I/O

The complete D.13 driver consists of two dist!nct modules
(D.130 and D.13C). The D.13C mcdule defines the actual driver
initiator, continuator, and Fower recovery entry points associated
with any given tape punch. In addition, it contains all storage
{cOnstabts, pointers, I/O instructio~$, atc.) which is unique to
that given tapE punch. Th~ C.13C module contains the actual code
used to drivE the device. It is called by th~ D.130 module and
then utilizes the uniqu~ stcraqe provided by ·the caller to
associate itself with a spccJfic tape punch.

The operation of the tape punch includes provisions for
punching laaders and trail~rs and for punching data in ree-crd mode
or transparent mode.· Ir. the ~ecord mode, each buffer cf data is
~unched and an X-OFF, carriage return, line feed s~quencE is then
appended by the driver. Each record may be punched with.aven, odd
or no parity. The parity putches are supplied by the driver.
(Except for no parity for which no alteration of ~EvEl eight
occurs.) lfi th& transparent lode, no mcdifications to the data are
made.

Power recovery ·operation ir.clud'3s the punching of a record
delete sequence (control-X, ~arriage return, line feed). Also,
any record currently bging pcnched is restart9d.

Error handling a110\5 only for a "not r~ady" er~or
indication. A non-process timeout is a .provision of the driver
intended to make up for the general lack of status bits in the
tape punch interface. ~ach titre·a tape fram~ is punched ("i.~.

4-42

started), a 1 second timer is started. If the timer expires prior
tc a punch complete "interrupt, the punch 1s considered down and a
"not ~eady" error is sat. The occurr~nce of a lov tape supply
also causes a "not ready" ~rtOt.

Is stated above, the driver is written in a serially
reuseable mannEr. This meana that a single copy of D.13C (the
code) is used by" multiplE copies (and, he~ce, multiple tape
punches) of D.130. Access te the storage in a given-D. 130 module
by D.13C is done via indirect addressinq through an indirect
pointer list. This "pointer list can only address one D.130 module
at a time. t.13C is thus forced to run serially to preserve the
integrity of this list. LatEr descr.iptions vill shov, hovever,
that this does not impare the driver's ability to handle multiple
interrupts frOID different ta,e J:unches." "

The following documentation will confine itself to a
description of the D.13C module.

D.13C ccntains code for I/O . initiation (D.13C), I/O
continuation (I.13q, pov~r r.covery (P.13C), 8ndncn-process
timeout handling (T.13C). since calls to the D.lle section may
originate both in thebas"e level prograll (a JS B" to • IOC.) and from
IOC (a result of a call to .EUlR), D.lle is forced into serial use
by a eLF 0 instruction. In this section, the I/O call parameters
are analyzed and established, and th9 initial I/O operation is
begun. .

I.13C, the continuatot section, consists of three segments.
In the first segment, an 1nterru~t is accepted, and the D.130
storaga for the associatad punch is enqueued to a linkEd list of
storage blocks which require interrupt service. This is dona
without disturbing any of the module's indirect polnt~r list. If
this enqueueing process determines that the interrupting punch is
not the first (at least cne ether storage block is already
enqueued), then an interrupt exit is immediately made. This is
possible becaUSE the first stcrage block to ba enqueued will cause
entry to the second segment cf I.13C which will begin to process
~ll such interrupts.

In the second segment, the tOt 0.130 storage blcck on the
interrupt 'service queue is ptocessed. !ha indirect pointer list
is set for ~his block, and the int9rrup~ is precessed. (Sea
"discussion of actual interrupt SI? rvice below.) Pollowing

4-43 ..

interrupt service, the third I.13C segment receives control. It
disables the system and reMoves th~ top 0.130 storage bl~ck from
the interrupt service queue. If other blocks are still queued,
the second segment of I.13C is entered. again. When all D.130
storage blocks have been serviced and dequeued, required
additional I/O is begun for all punches needinq same. ~hen an
=!xit from the original (vary first) ta ~e punch interrupt is made.

The P.13C power recovery section of th~ module is entered for
~ach tape punch (via P.130) at pover recovery time. It is called
as a subroutine fro. 0.04 a~d takss a~Eropriate action to restore
service. p.1le always emits a record delete sequance consisting
of control-X, carriage rettrn, line feed. This is to canc~l the
affect of any spurious punches associated with power IEstoration
at the punch itself. (This sequencp. is punched with even parity,
since it may be impossihle tc d~termine tha mod~ in current use.)
Finally, the ~roper state cf the device's flag-and centrol bit
settings is restored.

since the driver uses timed punch operations to detEct "down"
punches, a common T.13C ncn-~tccess timeout exit is a part of th9
driver. It receives control from the D.43 time case gener,ator
module. T.13C first checks for a set flag on the punch. 'rhis
would indicate. that ar. intErrupt is pending but has not yet· been
allowed. No error is indicatpd in this case. However, if the
flaq is clear, the non-precess timecut error bit is set, and an
interrupt is fcrced in ord~r tc effect recovery by the interrupt
processor.

In~!~I~E~ ~~£!1£~

the second segment of I.13C proc~ssing is thE inte~rupt
service segment. Interrupts occur eith.er beca use of ii sched lllled
operation compl~tinq, or tecaus~ an interrupt is forced wh~n a
non-process timecut occurs.

The first action of the intertupt service code is to
acknowledge the interrupt with a CLC instruction. Next, errors
are. checked. If a non-prOCESS timeout or lov tape supply exists,
tha operation is immediately terminated with a call to .BUPR. If
no eIro~s ha~e cccurred, the pow~r re~overy flag is tested. If
set, the original I/O operation parameters are r~s~ored so as to
~ffect a ccm~l~te r~start cf the current operation in the
remainder of the proces3ing. Finally, the character output
routine is invoked to select and cutput the next appropriat9
frame. If no mor~ data remains, the operation is instead
terminated via .~UFR.

'4-44

The character output rcutine is used both by D.13C to output
the first frame and by Z.13e for subsequent frames. -The routine
first checks for operation e~d, updating buffer pointers and
lengths in the process. That the mode is checked. Either a feed
frame is selected or a record datum. In the case of record data,
parity is applied as required. Additionally,.at record end for
ASCII modes, an X-OFP, carriaga return, line f.ed sequence is
appended. When the charactet has been selected and output, the
type of entry is check9d. If entered fro. D.13C, an "STC
instruction and its ti~er are invoked to start the punching. If
an I.13C entry,' the STC instruction is enqueued for "future
axecution by the third segmant of I.13C. This is to prevent an
interrupt on a punch whose 0.130 storaqe block is engaged in
servicing other tap\! punch interrupts. (That is, it vas the
original intarrupt~r.)

III. Design structures

,&}.ear

Any current operation is aborted.
available and idle state.

The driver ent~rs an

JSB • IOC.
OCT OOOOzx " (xx=logical unit t)

!"llf
A block of data is t=aDsferred to paper tape. optionally, a

leader (or trailer) may be Froduced. All such operations are
scheduled with a basic write command with appropriate aod9
settings for the various punch typ~s.

JSB • IOC.
OCT 02nnxx
J"P REJCT
DEF DATA
DEC m

(xx=logical unit t)

m=number of bytes of data to be output (or number of
leader/trailer frames) in ~~ a~~

nn=OO - ASCII mode with eV9n parity
01 - ASCII mode with ~dd ~arity

.02,- ASCII mode with no parity
03 - transparent mode

4-4·5

20 - Ip.ader/trailer mode

In the nti=20 case, ~he data buffer address is insignificant. Por
~he 00 to 02 modes only, X-OFF, carriage return, line feed is
appended by the driver to all records. No parity means that no
alteration of the eigth level cccurs. It is forced neither high
nor low. It remains as supplied by the calle:.

~Ial~~ 1nf2~mA!iQn

The transmission log always returns the original length of
the caller's request. This is to facillitate retries. The status
bits include bit 14 which indicates the occurance of some ~rror
and bit 0 which is one to indicate the occuranC0 of a' punch "not
ready" conditicn.

4-46

12!!.§SD:R!i2n. §.llg ,~'ynctioll

The programming for this handler is the same 'as that for the
card reader handler. Where it is necessary to' distinguish between
a card r~ader and a photo-reader, the dode tests a variable in the
respective local storage to determine the' appropriate action.
Actions specific to the photc-reader are outlined belove

In CReRI, the photo-reader type causes an alternate device'
designator to te used in finding the associated queue name.

In CRCijP, these alternate command. processes occur:

1. start - differing read m~~e indicators are established
in the .IOC. paraletex word

2. control different set of control parameters is
allowed to set varying .IOC. parameters.

In CRCHC, if EBCDIC reading is selected, the translation from
ASCII to EBCDIC occurs at this level •

...
4-47

I. Product Identifjcation

g!QgY£~ A~~1!A~1

The· D.14 pa~er tape preto-reader driv~r is designed for use
with the 2000 ACCE$S SystErs~ It supports thp. 27~8 reader.
Because it is w.ritten in a serially re·u9!able manner, it will
suppcrt multiple readers. (~he 2000 ACCESS system vill SUFPort a
maximum of seven)

II. Design OVErview

The module assumes a 2100 or 21MX series computer. It also
requires tb~ 2000 ACCESS. FiilllDare cpticn (13~6A or 1320;A).

]~.§igll ~]ml!l~I.I

The c6mplete driverccnsists of two distinct modules (D.140
~nd D.1~C). The 0.140 modulE defines the act~al driver initiator,
continuator, timer, and pcw~r r~ccvery entry points associated
with any given reader. This is the only mo~i!:nle which must ba·
replicated to support multiple readers. Th~ D.14C modulE, which
contains the actual code, is used by . all cop,ies of D.140. In
addition, D.140 contains all data of a v~rying or ~ctentially
volatile nsture which is required 'by sach rea·ilier. This includes
related I/O instructions, buffer pointer~, fl~gs, etc.

The driver supports four modes of tape leading. Three modes
. provide for varying types of ASCII data formats, and the fourth
mod~ allows tranSFar~nt reading. The only differencg tetween the
ASCII modes is in the form of Farity testing leven, odd, or none).
In· tha transparent ~ode, any and all frame p.nch combinations are
valid.

Power recovery proc~ssini allows for proper_termination of
all scheduled x:eads Even t he ugh reader powe r may be lost. Erl;or
gtatus will be appropriately set ic this case.

Error handling allows the det~ction of parity errors for
appropriate reading modes.~· !ince. the: reader interface has'- no
inhere n t Un ot rea dyt. st at us, all rea d 0 p.;ra tions are ti DIE d, anci a
read tim~out is USEd to effe~t net r~ady errors. For the ASCII
r~adin9 modes, an end of file condition is defined by the
occurrence of 80 or more consecutive· null frames.

4-48

]iligA !B.E~2~.b

Since ·t~e driver l's written in a serially reuseatle manner,
one copy of code (D. 14C) serves all readers. D.14C accesses a
given- D.140 storage block via a serias of sy.bolie indir~ct
Fointers. The use of these J;:cinters i.s- se rlali zed . by D.14C.
However, the driver will accept Ill.ultiple reader interrupts,
queueing each for eventual service.

~gg~l! g;qa ni!ss12a
D.14C contains code for I/O initiation (D.14C), I/O

continuation (I.14C), pover recovery (P.14C), and timerezpiration
(T.14C). Since calls to thE initiator section may originate from
both a base level Froqram (a JSE to .IOC.) and from IOC (a result
of a call to. B UPR), D.14C i~) forced into serial use ty a CLF' 0
instruction. In this section of the driver, the call ~ara.eters
are analyzed and a read may te initiated.

I.14C, the continuator section, consists of three segments.
1ha first seqment runs disatled and enqueues the interrupting
I0140 module for eventual inte~rupt service. The first such
lDod'ule enqu~ued causes the second segment to be entered. Seqllent
two remov~s an enqueued I.1QO medale and establishes the indirect
symbolic pointers to the module data. Then the system can be

. enabled while tha interru~t is serviced. Interru~t service
includes accepting the input datum-and adding it to the caller's
buffer. parity, end of file, and other tests are perfermed. At
the end of interrQ~t service, SEgment three gains control. The
system is disabled, and the ~odule is degueued. If other modules
require service, segment two vill be re-entered.

P.14C gains centrol fIom the D.04 power fail/r~start module
for each P.140 entry point. If the associated I.140 section was
active, D.041 is used to restore this condition. However, if the
reader was inactive (I.140 itactivE) but a read had been started,
an interrupt is forced to cause I.14C to effect recovery.

T.14C gains control if a given T.140 timer has expired. This
indicates a failing read. Crlees an interrupt is pending, one is
fo~ced to cause normal recovery.

~s.d;gl.f !2n!;il

These symbolic indir~ct fointers .re used in D.14C to access
0.140 data:

PREQT - holds related ECT address

11-49 .

PRIOR - hclds address of last .IOC .. parameter list
PFLAG - driver flags:

15 - tusy driver
1 4 - ski F (:i ng f 0 JC CR
13 - IeSUIIE reading after control-X
12 - 1=data has been read

10:8 - device status
O=ready
1=read tille out
2=unrecoverable read error
3=data error
7=end of file

2:1 - C=even parity
1=cdd pa ri ty
~=no parity

o - t=transpatent mode (bits 2:1 ignored)
C=ASCII mode (bits 2:1 apply)

PBUFR - hclds byte address of input
PLENG - holds negativf:! tEad length"
PLL - bolds original Iead length
PEOFL - holds negative count for EOP detection
PSTC - STC subroutine (uses PFRIO and',' therefore has STC flag

word) .."
PTQ! - a four word TOE fer read timing:
peLC - associated eLC instruction '
PLIA - associated LIl ~nstruction
PSFS - aSEoeia~ed SFS instruction
PSTF - associated STF instruction

These data are specific to D.14C:

PIOO - a queue for pendJng STC instruction
PEXIT- pointer to int~rrupting I.140 entry point
PlNQ - a queuE for i~telru~t service
I.14 - pointer to 1st interrupti~q I.140 entry point
• BUFP- • B DFR EQTparame ter

The following ~structured" description provides internal
module detail.

D.140:
D.14C:

JSB to D.1QC;
disable; save r~gisters;
establish indirect Fcinters to 0.140 storage
using contents of D.14C as basE address;
transfer conten~s cf D.140 ·to n.14C;
res tore registers;
storE A into PREQ1 and B into PRIOR;

4-50

8.14C:

load and isolate tits 14: '120£ I/O request
parameter in register A (PRIOR indirect):
if A=O (clear) then do;

issue eLC tt stop interface;
purge tim~r using .LTC.; disable on return;
clear driver flags (PPLAG);
set EQT status to zero;
exit via 0.14(;
end:

if PFLAG bit 15 is SEt then do;
set A:1 to shew reject;
set B=10000C tc show device busy:
ena~le interrupts;
exit via D. 14C;
end:

if A=1 ~ead) the~ do;
load B from PRIOR;
load buffer address into A(LAI+2):
ccn'vert to byte address and sa ve in PBU!R:
load read length into I(LII+3);
copy in to PLt; ,
negate and save in PLENG;
load request parameter (LAI+O);
isolate bits 8:6
and align tc A register 2:0;
merge A int c EPL'G;
set PFLAG bit 15 to show driver 'busy;
clear PFLAG tit 12'to show no
data yet read;
set EOT word 2 tit 15 to show EQT busy;
set PEOrL tc -80 for possible EOF detection;
JSB to R.14C to start read operation;
clear A to shew r~ad started;
enable interrupts;
exit via D. 14C;
end;

,set 1=1 to show reject;
set B=O to show illegal request;
enatle interrupts
e xi t vi a D. 14C:

RSS if D.14C in ccnttol via .IOC. call;
J l1P TO R. 1 4 E (i ft. 1 4 C inc en t to 1 'I hi 1 e I.' 4 C act i v e) i
J5B to FSTC;
call .L!S. with '~lQE;
disable on return from .LTS.;
return;

4-5'1

R.14E:

1.140:
I.14C:

E.14C:

10ao address of PIOC into A;
load address of PSTC into B;
enqueue PSTC to PlOC;
ret urn;

JSB to I. 14C;
disable 1nterrupts; sav~ registers;
move address of I.140 to PEXIT;
clear PSTC flag fer power recovery;
q~nerate address cf associated TQE in register A;
call • LTC. to can eel timer, and dis,able interrupts cln ret urn;
load contents of I.14C into Band decre.ent B;
load address of PINe into A;
enqueue 1.140 stotage to PINQ;
if not first st~rage enqueued then do;

restore registers;
exit using PEREI to restore
interrupts and exit via PEXIT;
end;

mOVE PEIIT to I.'~;
change RSS at B.1LC to nop;

enatle interrupts;
load address of enqueued I.1L~O storage (PINQ) i
e~tablish contents of indirect pointers;
issue etc to ackncvledge in terrupt . (PCLC) ;
ifEFLAG; bits 9:8=1 or 2 then go to E.14C;
if PFLAG' bit 0 is set then do;

use PLIA to lead datum;
load B from PEUPR:
store byte frel A via B and store 8 into PBUFR:
increment PLENG;
if zero then go to E. 'L~C;
JSB to B.14(fer next frame:
go to F.' 4C ;
end:

else do:
use PLIA to lead datum;
if PFLAG bit 12. is cle.ar an~ A=O then do;

increment PEO~L:
if ze~c then do;

set PFLAG tits 10:8:
ge to E~14C;
end:

J 58 . t c· B. 14C;
go to F. 14C;
end:

if PFLAG bit 2 is cleat then do;

4-52

E.14C:

calculate number of bits in 1:
if eVED and PPLAG bit 1 is set
or if odd and P1L1G bit 1 is clea~
then do;

set PFL'IG bits 9;8;·
er.d; ,

.ask A to SEven bits;
if A=carriac;e return then go to E.14C:
i~ PFLAG bit 14 set then do;

JSB tc B.14C:
go to p.1L1e;
en ti ~

if 1=0 \.. ,\ ~17 ". ua2.~ ..: 1=177
t hen do;

JSb 't.!: E
go t.\l F.14C;
end;

if. 1=30 th-9D do;
restate criqina 1 length;
set o~iginal buffer point9r:
set PPtAG bits 14 and 13;
JSB tc B.14C;
go to P.14C:
end:

if 1=10 thaD do;
reduce length;
reduce buffer pcinter;
JSB tc B.14C;
go to P.14C;
end;

'load 8 from PI!UPR;
store byt~ from A and ~9store B to PBUlB;
set PFLAG bit 12 to show data read;
increment PLENG;
if zero then de;

s et P P LAG bit 1 4 ;
end;

JSB to B.14(;
go to P .14C ;

load PFtAG into A; if PFLAG bit 13 is set
then do;

clear PFLAG bits 14 and 13;
JSB to R.14(;

. go to P.14C;
end;

isolate bits 10:8 of A into bits 2:0 of A;
if A not 0 then SEt A bit 14;

'i-53

P. 14C:

G.14C:

T.140:
'I.1QC:

P.140:
P.14C:

store A into EQT status word;
add PLL and PLE~G and move to
EQT transmission lcg:
move PREQT to .BD!P:
JSB to .BDPR with return to F.14C;

disatlE interrupts:
dequeue 1.140 stolage from PINQ;
if PINQ not empty then go tc B.14C;

dequeue PSTC from PIOQ;
if none then do;

restote RSS at R.14C;
restote registers;
exit using PFREI to restore
int~r~upts and exit via I.14;
end;

JSB to the dequeuEd PSTC;
call .L1S. to stalt associat~d timer;
disable.on return frcm .LTS.;
qo to G. 14C;

JSB to T.14C;
use TOE address tc generate add~ess of
a'ssccia ted SFS;
execute SFS;
if flag set then exit via T.14C;
generate address cf PFLAG;

'set PFLAG bit 8;
genErate address cf FSTC and execute same;
generate address 'cf PSTF and axe cute same;
exit;

JSB to E. 14C;
set PFL.AG bit 9;
if I.140 not 0 thEn do;

set E=-1;·
load ILIA i~to A;
call I:. C" 1;
exit;
end;

if PSTC flag = zelC then exit;
load PSTC instructicnj
change to STC (no clear flag) :
execute in-line;
exit;

III. De sign Str uct ur es

4-54

. .£l~

. Any current. operation is aborted.e The ariver enters an idle,
availacle stat E •

. JSB
OCT

• IOC.
OOOOxx . (xx=logical unit ~

A record is read frcm paper taps and transferred to the
supplied buffer.

JSB
{)CT
JMP
DEl
DEC

• IOC.
010nxx

. ·REJCT
BUFFR
III

(x:x.=logic·al unit ')

m=positive numter of frames to be read
n=O - even parity ASCII mode

, - transparent mode
2 - odd parity ASCII mode
4 - no parity ASCII mode

~~~~ In~~!~Si~n 

The returned transmissicn log is al~ays equal to thE number 
of data. frames read. The status word includes these definitions: 

14 - ~rror 
2: 0 - 0 no errcr 

1 reader not rea~y 
2 power failure 
3 parity error 
7 ~nd of file 

~-55 



~~~]t~Qn_An~~nction 

The reader/punch/intar~reter handler (RPm aanages all I/O
for .th~. reader punch driver. It may be activated by other
handlers to read cards, ~unch cards, or print on cards. When
activated by the ASCII files handl~r it may be used for both read
and write operations. When activated by an RJE module it will be
used either as a card read~r handler or a card punch handler, but
not both simultaneously.

The handler supports the reading of cards·in column binary,
ASCII, or EBCDIC. It supports punching cards in Hollerith or
column binary. The handlE~ is written as a serially reusable
module~ It is a level 3 functicn handler and r~sponds to the
defined level 2-level 3 protccal.

InlU!.acing

RPH has one input qUEue fer all werk entries. These commands
may appear on the input work queue:

1. Start received frol a level 2 handler. Activates 1:be
handler •.

2. Read - received from a level 2 handlar. The handleI uses the
buffer to rEad a card.

3. Write - received frc. a level 2 handler. The buffer contains
data to be punched and/cr printed.

4. Control received from a leval 2 handler in a contl:ol
buffer. It contains a PCP code in the data word.

s. stop -·received from ~ level 2 handler and causes the handler
to begin termination precessing.

6. Retry - 'received fro~. a level 2 handler and causes th~
handler to retry the reed or write operation.

7. Purge received from a l~vel 2 handler. A clear call is
made to IOC' tc purge any outstanding.I/O requests.

8. Allocated buffers received from the buffer .anager in
dp.layad response to a request for a buffer.

4-56

The following commands lay be returned to the activator:

1. NOP a completed write buffer is being returned to the
caller-, or an allocated buffer is be~ng sent to the
activator.

2. write a cOllpleted read buffer is being returned to the
caller.

3. stop - the received step cell.and is being returned following
the completion of all outstanding I/O requests.

4. Error an indication that a read or vrite error has
occurred •

.L.2~1 ,ga ta ~!"~n~

The star~ co •• and is defined by the following SCi vords:

SCW vord 2 - Bits 13-8 stream identifier
sew vord 3-- Bits 14-0 activating hand~er queue nal.
SCW vord 7 - Bits 15~0 tuffer length
BCi vord 8 - sit 1S start for read only or write only

(BJE lIode) .
1-0 read lIode (if bit 1S on)

CO=lSCII
C1 a cclumn binary
10=E BCDIC

Data word 1 - Bits 15-0 number of buffers

Card images returned tc the activator have the follvcing sew
definitions:

Bew vord 2 - Bits 13-8 stream identifier
3-0 co IIlIand=1

~ew vord 7 - Bits 15-0 number of data bytes
Cexcludinq trailing blanks)

Bew vord 8 - Bits 15-2 unused
1-0 (O=no err~rs

11=end Of(file

For the error command, BCW2-bits 13-8 contain the streaa
identifier and BeWS-bits 1-0 contain the general error type.

Ths following define indirect pointers to local data:

tQE TOE
ONA!E RPR queue name

4-.57

AHQR"
RIOCP
WIOCP
CIOCP
STAT
STID
RLEN
BUFFR
STOPB
ACTBC
FLAGS

activating handler gueue name
read IOC para
vri te I CC par a
con trol ICC parm
error status
stream ID
read length
buffer address
stop buffer address
active read buffer count
flags .
bit 15 not ready error condition

'4 purge act i ve
l' stacker salectior.
10 hopp9r salecticn
o 1= RJE mode

O=TSB mode

Tha readsr/punch/interpreter handler has four entry points:

·RPHHI - handler initialization, invoked by ..
~ ystem initializa t~on

BPHMP - rec9ives control from sy~tell dispatcher
when ~ri.ed by 2ystea queue manag~r

RPHHC - receives control from system dispatcher
when scheduled lead, write, or control
operations have completed

RPTAP - receiv4s cotnrol frem the time base 9~neratcr
handler when a tiDIed paus~ expires (for
rEad or write retries follcving not ready states)

The following "structured" dascription provides internal
module detail.

RPOHI:

RP HMI:

entry poin~ fer initialization section.
JSB to commcn code (RPHHI)
return through ~ntry point

initialization section of 'common code;
if restart, returr.; if start, merge logical unit
number with icc calls; use • FIND to deter.ine queue
name; exit;

4-58

BPOHP:

BPHHC:

START:

STBUP:

BEAD:

WRITE:

entry point fer prime section; J5B to co •• on code.
return.through entry point;

prime seetien cf com.cn code.
establish addressing for local .. storage: .
chec,k work. queue; .
if no vork, exit via .coe.
else; if queue vas purged,

use PiGE5 subroutine to clear device:
exit to ec.mutator:

save vork ettry addre SSt
use co •• and type to enter appropriate
routine (STAB~, REID, WRITE, CHTRL, STOP,
PURGE, BETSY, ALLBP)

routine to tandl~ sta~t co.mand.
save strea. ID;
save activating handler gueue naae;
if read only mcde or v~ite only, indicate IJ! .ode:

set default aodes for stacker 1, hopper 1:
set R clleri th punch II ode;
set BEeDlC read .mode;
set tc Funch, ~rint saae data
iss ue control IOC call to set stacker
ove If Ie v mode;
continue STABT processing at STBUl

it read/write .cde" indicate TSBmode:
s~t default aodes for stacker 1, hopper 1,
set ASCII read mode;
set Hollerith punch mode;
set to punch, print same data;
issue centrol IOC call to set stacker
sal Ect .ode;

acquire but fers:
give to actiYating handler as ROP;
free start bufter;
exit to comautator;

rEad command processing.
create IOC ~ar. from flags and read .ode;
zero out read buffer;
issue IOC call.
indicate read buffer active;
exit to comlutator;

write command processing
if RJE mode, get panch mode fro. buffer;

4-5'9

CNTRL:

STOP:

RETRY:

PURGE ::

ALLBP:

else get putch mode ftem write IOC par_,
create IOC ~arm with flags and punch mode;
iss u e I OC c a 11 ;
exit to comrutator;

control COM rand processing.
i f illl me d fa t e type con t IO 1, 59 t mod e ;

free control buffer;
. exit to commutator;

else; set u~ centrol call to driver;
issue IOC call;
free ccnt~ol buffer;
exit to commutator;

stop command FIocessing.
purge tim~r if running;
if read buffers active, issue CLEAR IOC call;
else; issue clear wait station IOC call;
indicate step in progress;
save addrass of stop buffar;
exit to ccmlutator;

retry comma nd . processor.
start a ti lIer;
free retry cemmand buffer;
exit to ccmlutator;

purge command processing.
purge timar if running;
purge deviCE rEquest queue;
£r96 purge ccmma~d buffer;
indicate purg~ processing;
exit to ccmautator;

allocated buffer processing.
if no longaI running, frea the buffer:
elSE; if cCttrcl buffer; use for error report to

activating handler;
else; give to activating handler as NCP;

exit to comlutator;

!he following modules make up the I/O complete section of the
handler.

,RPOHC: entry point fer I/O ccmplet~ section.
~SB to commcn.code;
f?nd;

4-60

RPHHC:

CiRIT:

CREAD:

BPTAP:

i

I/O complete sEction cf common code.
est.ablish addressing for local storage;
if call was clear wai t station, 'then:

return step buffer to activatinq handle~;
exit to commutator; .

if call vas read, enter CREAD:
else call was write;

handle writE cc.plete.
if no error, return to activating handl.r as HOP;
else; save tuffer address;
it first tile, then;

turn cn error flag;
send error co •• and to activating handler:
issue priority IOC call with samE buffer;
exit:

else; start timer;
issue priority IOC call with saa. buffer:
exit:

ha~dle read ccmplete.
decrement active buffer count:
if stop in Frogress, give buffer to activating

handler as HOP;
else; check status;
it no error; give buffer to activating handler:

turn eft error flag;
exit to cc.mutator;

else; handle error:
if first tile or Eor. send error co •• and to

activating handler;
exit to cc •• utator;

else: do start timer;
pat beffer back cn handler's queue:
exit to commutator;

ti.er appendage.
establish addressinq for local storage;
issue release IOC call to release request gueue;
ret urn i

4-61
10

I. Product Identificatio,n

.f~od'y£.!: Ab.§.tt~

this drive~ is designed fer use with the HP2000 ACCESS system
to support the HP12989A. readEr/Punch/int~rpreter subsystem. Th~
module is written in a serially reusable manner in order t~
support mUltiple (up to 7) reader/punch/interpreters.

II. Design 0 v er 'Ji ew

.Q~.2i!Ul !§§J!m.lllQ.~

'This dri ver assumes. a 2100 or 21M X ser ies compu tEt and the
HP2000 ACCESS Fi~mware optiot (13206A or 13207A)~

T~e reader/punch/intar~reter driver consists of two separat~
modules, 0.340 and D.34C. the 0.340 modul~ contains .the
initiator, continuator, and ~ower recovery entry points and all
~otentially volitil~ lccal storage for a given
reader/punch/inter~r~~er. Cnly this module must b~ replicated to
sUFPort additional devices. The other module, D.34C, ccntains the
actual driver code and is used as a subroutine by all copies of
0.340.

The D.3~ driver is·a lead/write driver and will support th~
follc~ing functions:

Clear-

Read-

Write-

Control-

any card in the visibla wait statio~ !s ejected
to the selected stacxdr and the device status is
cleared.

Cards may be read in ASCII, EBCDIC or column
bin ary form at •

. cards may be pl1nch .. ~d in Hollerith or column
binary format. ASCII data may be printEd on the
top edge ef th~ card. The. print data may be
different fter the punch da~a.

control operations supported are
-feed a card frem selected hopper
-s~t stacker sel~ct mode
-sat stacket overflow mode
-clear th~ .visible wait station by ejecting

ca.rd to selected stacker.

4-62

The power recovery routine allows for. the proper termination
of any read/write operations that were active at the timE. of pover
failure. .

Th. error handiing se~tion provides for the detection of
empty hepper, full stacker, ·data conv'9rsion errors, pick fail,
·eject fail, er not ready conditions. The oecurrance of a'::'
sequence in columns 1 and 2 cf a card is treated as end cf file.

The driver is written in a ser.ially reusable lIanner. That
is, one copy of 0.34C serves multiple cepies of D.340. Access to
local data storage for each dEvice is through an indirect pointer
list. Int9rru~ts from multiple devices are queued and handled
serially by the driver.

D.34C contains code for the initiator saction (D.J4C), the
continuator SEction (I.34C) and the power recovery section
(P.34C). In the initiator section, the call paralleters ara
analyz9d, initial conditions are established, and a read, write,
or control operation may be initiated. Because the initiator
secticn may b~ entered from tase level programming (.IOC.) or the
continuator sEcticn (.BOFR), the initiator s@ction is entirely
d.isabled. '

I.34C, the continuator section, consists of three ~arts. The
first part, which runs disabl6d, 'queues the interrupt for service.
If this interrupt is the first to ba qua ued, the second part is
entered. otherwise, an exit is made immediately.

In the second segment cf I.34C, the interrupt is handled. A
1etailed description of the interrupt handling process is given
belcw. When interrupt serviCE is compl~t~d, the third segment is
entered.

In the third segmer.t, which also runs disabled, the storage
block 1ust serviced is remOVEd from the queue. If aorE storagg
blocks remain in the queue, the second segment is ente~ed again.
Otherwise, an exit is made from th~ original interrupt.

The P.34C section is entered fot each
reader/punch/interpreter d~vjce at powar recovery time. If the
assocaited I.340 section was active, 0.041 is entered to restore
th~ condition. If the intartu~t secticn was not active, but an

... 4-63

operation had. been scheduled, an interrupt is forced to cause
I.34C to effect recovery.

!!2g'y!~ .Qn~iL

The follcving define the indirect pointers in D.34C used to
access theloc~l data in D.340.

EOT!
BUFP
BDU PF
NLEN
LNGTH
PPOFF
IOREQ
FLAGS

CHAR
STCL
STCH
CLeL
CLCH
LIAL
LIAH
OTAL
OTBH
PSTAT

POJ?T
SSTC

EQT addr4?ss
tuf fer addr ess
byte addr~ss cf buffer
ne,gative read/write length
original reguest length
print/punch buffer offset
I/O request word

, d ri ver f la 9 s
bit 15 driver busy

14 sta cter mode

13
12
1 1

10-8
7

6-2
0-1

=0 stacker select mode
=1 stacker overflow mode
write operation started
feed after write
first input character read
not used
inhitit input
not used
rl3ao/punch mode
=0 ASCII/HollsIith
=1 Colu~n Binary
=2 EBCDIC

first input character
SEt control instructicn for low select code
set control instruction for high select code
clear contrel instruction forlov sel~ct code
clear contrel instruction for high' select code
LIA instructicn for lew select code
LIl instruction for high select code
O!A instructicn for low select code
OTB instructicn for high sel~ct code
pseudo status verd
bit 15 not rEady condition

14 sta cker full
8 hOPF~r 1 ~mpty
7 hop Fer 2 ~m~ty
o card in. wait st~tion

print/punch options fer write request
STC subroutine with power/fail instruction

4-64

The following define data specific to D.34C

SQAoR
IQlDR

. TEMP1
TE!P2
TEMP3

Queue for S1C instructions
Queue for interrupts
Temporary

storage
.for conticuatcr Section

The. following "structured" d~scription provides internal
modul@ detail.

0.340: entry poin~ for initiator section.
Jsa to commcn initiator code D.34C:

The following modules make uF the initiator section of the
co •• on code.

D.34C:

REJCT:

READ:

entry into initiators9ct~on of co •• on code.
disable interupts; save EQT address;
save EOT pointers;
establish addzessing for local data:
establish rEal return address and
save at D.34.
get user reguest code;
if clear, ecter CLEAR routine;
if driver already busy, then;
set bit 15 in B-reg;
enter REJCT;
set to i900[e int on low channal;
save requ9st code status;
if read raqcest, ente~ READ routine;
if write request, ent~r WRITE routine;
1f control teguest, enter CNTRL routine;
indicate reqUEst code reject (B=O);

indicate re 4 Ect return (A=1);
enable intetru~t;
exit;

routine to start the read operation.
JSB to aWSTF to s~t up initial conditions;
zero the transmission log;
if device ir.put buffer is full,

set to handle interrupts on data channel;
use LIA subroutine to read first character;
save at PRCHC;
indicate character. read in driv~r flags;

.issue STC,C on low channel;

4-65

WRITE:

B WSTR:

eNTBL:

If!RET:

taka tormal exit (NEXIT):
use FEED sutrcutine to feed card:
if +1 return frcm FEED, take hot ready Exit (NRED!)
if +2 returt, take normal exit (NEXIT)

routine to initiate punch or print operation.
use RWSTR subroutine to set up initial conditions;
copy write length to transmission log in
case immediate r~turni .
if punch re~uest, set to eoable punch;
if print reguest, set to enable print:
if separate print/punch data, set SPD bit,
save print/~unch options; .
if card in ~ait station, then;

set B-reg with print/punch options;
indicate write started in drivar flags;
skip text instruction;

clear B;
use FEED sutrcutine to start operation;
if +1 return, take not ready exit (IKRET).
if +2 return, take normal.exit (NEXlT).

subroutin~ to set up initial conditions
for read or write operations.
get buffer address and save (RPBUF);
get buff€r length and save (RPLEN);
negate and save for count (RPLNG);
get 10 request vord and save (RPREQ);
make driver busy (EOT and driver flags);
return;

routine to handle centrol requests.
get subfunction code;
if feed reqte~t then:

JSB tcFEED subroutine;
take net ready exit (IMBET):
skip return--take normal exit (NEXIT):

if clear walk station [equest, then;
entet EJECT subroutin~:
tak~ not ready exit(IMRET):
take tOImal exit (NEXIT);

~f set stlck.r select mode, then;
set iridicator in driver flags;

if set stacker cverflcw mode, then;
set indicator in driver flags;

set bit 15 jn A-reg, clear B=reg;
enablA inta~rupts;
exit:

NEXIT:

~LEAR:

EJECT:

clear A-reg:
enable inte~ru~ts;
exit;

routine to handle clear requests.
zero transmissicn log:
use ST1TS subroutine to get device status;·
if + 1 r etlt~ 12 bec:a use not read 1', then:

issue etc to both channels;
clear status in EQT;

.clear d~vice flags;
"exit via 0.34;

use EJECT subroutine to eject card;
exit via D.34;
exit via 0 • .34;

subroutine to "" the visible wait station;
·set to inhitit input on fged operations;
clear B-reg;
enter FEED sutroutine;
rEturn;
increment return address; return;

The follcwing are subrcutines used by both the initiator and
continuator sections of the common code.

PEED: subroutine tc feed a card. When'
entered, the B-~eq'contains print/punch
options. A plus one return is made if
the device js not ready. Oth9rvise, a
plus tvo return is made.
enter subroutine MTINS to clear device
input buffet:
clear buffer full flag in data channel;
enter STATS subroutine to check status;
return if nct ready;
if stacker full, then return;
if selected hcpper is empty, . then return;
set command channel control word by

mergiIg B-reg with hopp~r/stacker
selection bits 'in IO request;

output word to command,channel:
enter FILL subroutine to fill a waiting
output buffer if necessary;
if in initiatcr section, then issu~ STet
else queue the STC request;

. increment return address;
ret urn;

4~67

f!i'INB:
EAt:

LIA:
LIlL:

PILL:

FLUP:

CKRDY:

STATS:

SK HIS:

subroutine to empty the device input buffer.
use LIA subtoutine to read character;
if buffer elpty, return;
J!P to EAT to empty the buffer;

subroutine tc read data channel.
read the low select channel;
if buffer elpty, return;
if data not rEady, JMP to LIlL;
else issue s~c to get more data;
issue CLC tc low ~elect channel;
return:

subroutina to fill a waiting output buffer.
indicate fitst time through;
enter CKRD! subroutine to see if device is ready
fer comaandJ .
return to caller on plus one return;
read da ta c 1':a nnel;
if device flag is set,
or first tile throuqh;
issue STC t c fill bu f fer;
J"P to FLUP :tc repeat;

subroutin~ to check the ready for command bit.
read the cOlmand channel;
if not ready, then increment retUrn addtess:
else return;

subroutine to check and update the device status;
read low s91ect channel;
if status net availabl~ then check high (CKHIS);
if input ChECk, then;

indicate not ready condition;
if read ch~ck, th~n;

indicate data error condition:
if hopper 1 empty, ~hen;

indicate hopper 1 empty; .
if output check, then;

indicate not ready condition:
if stacker full, then;

indicate not ready con1ition;
save low channel status;
rEad high select channel;
if hopper 2 P..~ty, then;

.indicate h~pper 2 empty
if card in wait station, then;

indicate card in wait station;

4-68

if not ready, then;
indicate not ready;

merge low and high status;
update EOT status word;
if no not ready condition~ then increment return
address;
return;

The following routines lake up the continuator
section of D. 34.

1.340:

I.34C:

I.GO

tREAD:

entry point for ccntinuator section.
JSB to ~ommon continuator code (I.34C);

entry point into continuator section of common code.
disable interrupts; ~~VC r~qisters;
indicate interrupt received in local data;
queue the interru~t; .
if ~ot ~irst on q~eue, then;

g.et return address:
restore raglsters;
exit with enable;

else set up returt address for exit;
set switch in FEEt and LIA subroutines to
indicate continuator in control;

establish addressing f~r local data;
establish EQT poitters;
enable interrupts;
set for no interrupts on data channel;
gat 10 request ~otd;
if completion frou CLEAR,

go to I.END;
if cOMpletion fret CNtRL,

go to I.END;
if completion froD WRITE,

go to IWRIT;
else completion flC~ READ;

handle read interrupt.
if read
IRCBI:

I HC Bt:

cclumn bitary rEquested, then;
if first character already in,
us~ subroutine WRISZ to store character
and ircrement ccunters;
US9 CELIA subroutin~ to read character;
use WSISZ subroutina to store character
and increment counters;
JMP I ~CBL to loop un til done;

'l-69

IRASC:

IRASL;

IREND:

IWRIT:

if ASCII read requested, then
set ASCII ccnversion tabl~ address;
enter IRASC rcutine;

if EBCDIC read reguEsted, then
set EBCDIC ccnversion table address;
enter IRASC rcutine:

subIoutine to rgad ASCII or EBCDIC.
change buffer add tc byte address;
if first characteI already read, skip
over reading character;

usa subroutine CRlIA to read character;
use ACRT or ECVRT subroutina to convert character;
use BRISZ subrcutlne to store character
and increment counters;
JMP IRASL to loop until done;

routine to complgte"read.
use "TINB to empty buff~r if necessary;
put • of characteIs less trailing blanks in transmission log;
enter I. BU"FR;
go to I.END:

routine to handle write interrupt.
if feed before write, then;

set print/pcnch options (PPOPT);"
enter FEED sutroutin€ to start write;
go to I.END;

if ~rite completicn, then
set t ra n S IJ iss i c n log;
s et E QT s tat us;
go to .BUFR tc complete writ~:
go to I.END;

else set temporary counter to -80 for punch operation;
if punch tinary request, then

set print buffer offset to -80;
gat buf fer address;
lead data vctd;
output to device using OTA subroutine;
increment btffer printer;
use CWISZ subroutine to count down;
lcop until dcne;

else for ASCII punch;
set print buffer offset to -41;
convert buffer address to byte address;
get character from buffer;
US9 CATCH subroutine to convert character;

4-70

I.CND:

I. ENC:

I. DOH

output character~
use CWISZ to count down;
loop until done;

~ake driver not busy; clear. driver flags;

dis.atle system;
rellove storage blcck from queue;
if queue not empty, go to I.GO;
else; dequeue pending STC;
if any on. STC queue, then;

issue the S1C;
check for mere entries on STC queue;

else;

restore req~ests;
exit with enable;
end

The following subroutines are used by the r~ad
routines.

CRLIA:

BRISZ:

iiRISZ:

ACVRT:

ECVR 'I:

subroutine to get character froll device input buffer.
use LIl subroutine to read character;
if data present, then;
return:
else; enter IREND to complete read;

routine tc store character and increment counters.
store the byte in user buffer;
increment charactEr count;
ret urn;

routine to store word and increment counters.
store word in US9r buffer;
increment buffer address;
increment charactEr count;
return;

subroutine converts to ASCII •
if blank, load oASCII tlank: return
else convert card cclumn punch to ASCII;
if illegal punch, thEn enter IROCK;
indicate significant character;
ret urn;

subroutine converts column binary to EBCDIC.
if tlank, lo~d EBCDIC blank; return:

IRDCK:

else convert to EBCDIC;
if illegal, then Enter IRDeK;
count significant character;
ret urn;

use ~TINB to clear device in~ut buffer;
set status in EQT;
GO TO· I. BFR;

The following subroutines are used by th~ write routines.

CiISZ:

OTA: .

CATOH:

WFILL:

subroutine to coutt dcwn on punching.
increment count of characters;
~ount down usirig ~rite length;
when done, return plus one; else return plus 2;

sucroutine to out~ut charactor.
out~ut character to buffer;
read data channel;
if not ready, loo~ until ready;
else execute STC instruction;
return;

subroutine to convert ASCII to Hollerith.
check for nor.-valjd character;
if not valid, set to output blank;
Rlse get Hollerith from table;
return; .

routine. entered at End of punch.
fill up output buffer if necessary;
if separate print· data requested, then:

get buffer address:
add print data cffset;
ccnvert to tyte addr~ss:

. set temporaty. counter to -80; ,
output. byte;
loop ~n out~ut until dene:

disable interrupt;
. indicate feed after wri~e:
go to I.END;

The following is a descIiFtion of the po~er
recovery routine.

P.340 entry point for pcwer r~covery routine
JSB to P. 34C;

4-72

P •. 34C common code for pcwer recovery routine
qet and save return add~ess;
get address of interrupt entry point· and save:
qet.address as. STC instruction and save;
get address of STC flag .and'· sa va;
if interrupt section was active, then

enter D.04? tc restore condition;'
exit;

if STC instruction was-executed, then
issue STC' instruc~ion to caus~ interupt

exit;

III. Design structures

!ns!I:~~! ~e~Ii21i2D

,ge~~

Any current operation is aborted. Any card ~n the visible
wait station is ejecte.d to tte selected stacker. Device status
bits are cleared ~nd the driver ente~s an idle state •

JSB
OCT

• IOC.
OOOOxx xx:logica~ unit number

.is.I~

A card is read and transferred to the supplied buffer.
Optional data conversion may occur. If the device read tuffer is
full (card was fed by previcus operation), no card movement takes
place. Otharwis~ a card is fed from the selected hopper. If the
device read buffer is ~m~ty, but a card is in the visible wait
station, it will be ejected to the selected stacker wh~n the next
card is fed.

JSB • IOC
OCT parameter word
JMP REJCT
DEF BUPFR

~he parameter ~ord is defined as follows:

Bit 15
14- 12

'1

queued request
function
=1 read
stacker selEct
=0 stac ker 1

4-7 .. 3

=, stacker 2
10 hopper select

=0 hopper 1
=1 hopper 2

9-8 not used
7-6 read mode

=0 ASCII
=1 column binary
=2 EBCDIC

5-0 unit refErenCE number

!.Iil!.

Data is punched and/or ~rinted on a card. The punch data may
b~ Hollerith or column binary fermat. The print data aust be
ASCII format. The pririt/pcnch data may be the same or different
data.

JSB .IOC'
OCT parametEr vord
J"P REJCT
DEP BUFFR

The parameter word is defined as follows:'

bits 15
1"-12

11

10

9
8-7

6

5-0

queued requ Est
Function
=2 write

stacker select
=0 stac ker 1
= 1 stacker ~

hopper selec't
=0 hopper 1
=1 hopper 2
not used
punch/print o~tions
=00 punch,plir.t same data
=01 punch only
=10 print orly
=11 punch,ptint separate data

punch mode
=0 Ho11 eri t t
=1 column binary

logic~1 unit nu~tEr

The control request is used to perform special

4-74

functions and set device modES.

JSB • laC.
OCT parameter word
JMP RBJCT

The parameter word is defined as follcws:

bit 15
14-12

11

10

9
8-6

5-0

queued rE'quest
. function
=3 control
stacker sglEct
=0. stac kar 1
= 1 stacker 4
hcpper select
=0 hopper 1
=1 hopper 2
not used
subfunction
=0 feed card from selected hopper
=1 enable stacker control mode
=2 enable stacker overflow mode
-3 clear visible wait station
logical unit number

On a read operation, the t~ansmission log contains the number
of card columns read l~§~ trailing blanks. On a write cperation,
the transMissien log contains the number of characters printed
and/or punched.

Th~ status word is defined as follows:

hits 14
2-0

error
=c no error
=1 not ready condition

hopper e D);:ty
stacker full
pick fail
eject fa i1

=2 data convetsic~ gtror on read
-= 3 power fa il
=7 end of fjle

4-75 ...

Serial Link Terminal Hdndler

DescriPtion and Function .. .,-~---~
The Serial Link Terminal Handler is responsible for normal

flow of input, output and control rp.quests to the Serial Link Terminals
and notification of its caller of error"and completion conditions.

This handler 15 written in a serially-reusable manner.
In order to simplify the addition of new terminals to the system, the
handler is composed of two separate and distinct modules. The first
module contains the unique entry points and local data storage for a
given terminal, so that ~hen another terminal is added only this code
is replicated. The second module is the serially-r~usable code used
by all copies"of the first module.

This handlerarlheris to tne defined levet-2 level-3 protocol.

Interfacing

1,TH accepts these work entry comm~nds

START - received from a level-2 handler In a control ouffer
It dctivates the handler.

wHITr. - received from a level-2 handler in a d~ta butter. Contains
a line of characters to oe output to a terminal.

READ - received from a level-2 handler in a data buffer. Causes
LTH to obtdin data or intormation from a terminal.

STOP - received from a levpl-2 handler in a control bufter. Causes
the handler to begin termination processing.

~LT,OCATI::D BUFFERS - received from Butfer r-tanager. TheSe are "
bufters which ~ere previously requested but not available
at the time of the request.

STAHT TIM~D R~TRrES ~ received from a level-2 handler in: response
to error notifications. Causes th~ handler to restart the
erroneous operation after a cause.

P II H (; F - r e c e i v ~ tj t r 0 i'1 ale vel - 2 han 1.1 1 e r ina con t r 0 1 but t e r •
Causes all outstandinq reouests to be purqed and stares
termin~tion processinn.

4-76

CONTRU[t OPERATIONS - received from level-2 handler in a control
buffer. It is used to initiate special control operations
on the terminal.

LTH returns these commands to its activator :

Nap - an allocated buffer, a .completed write or a purged data
b~ffer is being returned.

WRITE - a completed read 1s being returned.

STOP - the received stop command Is returned following the return
of all data buffers and de-activ~tion •

. ERROR - a notification that an error has occurred is sent.

Local Data Structures

The buffer in tne input queue

START command :
Be vJ - 2 B 1 t S 1 3 - 8

3-0
Bcw-3 Sits 14-0
SCW-7 Hits 15-0
Data word-l

WRITE/HEAD commands :
Bcw-2 bits 3-0
BCiN-7 bits 1S-0

CONTRUL commands :
BCW-2 bits 3-0
Oa'ta word-l

are defined as follows :

stream identifier
command code (3)
activating handler queue name
ouffer length
number of buffers (1)

commana code (lor 2)
lenqth of data in characters

command code (tj)

control function code

The buffers 1n toe outout queue dre defined as follows:

tlRITe: type
HCW-2 nits 13-8 stream identif.ier

3-0 command code (1)
HCW-7 Bits 15-0 number of Characters in but fer
HCtJ-8 Oits 15-2 unuseci

1-t) no error (0)

ERROR type . .
HC~~-2 Bits 13-8 stredm identifier

3-0 commano code (6)
HCW-~ Bits 1-0 error tvpe

NOP type . .
BCIJ-2 aits t3-8 stream identifier

3-0 COffil'i'dnd code (0)

STOP type . .
bC~-2 Bits 13-8 stream identifier·

3-0· co:n:nand code (4)

4-78

These symbolic painters to local data are used :

TEHMA - address of terminal on Serial Link
TALKA - addre~s of ~urrent input unit

bits 15-14 not used
13-5 : terminatinq mode of special keys
4-0 : input unit address

STATU - status at terminal
bits 15: terminal busy

14 : powe~ f~il occured oM requeSt
13-3 : not used

2-1 : input completion type
o : service requested at terminal

LIGHT - state of prompting lights on terminal's display
CO~FG - configuration options

LUN
QUENM
AHQUE
SID

bits 15-9 : not used
8 : HPIB lstrument option present
7 CP" unit state
6 C f\ . I.i t ~ , .~ ~ ~ s '
5 : no t ; ~ :' e \J

4 : Card/8adge reader option present
3 : Printer unit state
2. : Printer option present
1 : Display unit state

- .IOC. logical unit number
- 'name of associated work queue
- name of level-2 activating handler

stream identifier
FLAGS - internal loqic conditions

bits 15 (REQOH) request In progress
·14 : (ERFLG) error' detected dur Ing command
13 : (CT8EX) control expected back
12 :- (INPEX) read da ta expected
11 : (PRI~X) print of data expected
10 (RD[EX) read status information expected

9 (STDUN) status request In progress
8 (SRION) service request identification on
7 : (PFAIIL) power failed during command
6 : (IBCEX) HPIS command expected
j : (tITEX) llqht numbers expected
2 (RESTO) environment being restored
1 (AUTRO) automatic read selection in effect
o : (PUGRQ) termination procedure in progress

BYTEI ~ information status byte "
bits 15: type of information (address or status)

14-6 : not used
5-0 : informa,t ion part (address of uni t or status)

TCTBf _. control buffer address for use in delegation of control
tHl !-" f P. - t1 e ~ dot wa i t que u e
STO~B - tail ot wait queue
TOE - timer Queue elements

Algorithm

LTH has four entry points :

(JTHHI : "handier initialization" : invoked by system initialization
module. It issues a call to Fr~D routine tor its own
queue name. The queue name is retained In QUENM and will
be needed for issueing GETQ requests.

LTHHP : "handler priming" : receives control from System Dispatcher
when .primed by system Queue Manager. PADDS is used to
qenerate a list of indirect addresses for access to the
loc~l storaqe ~rea. Initially tne handler 'is in an idle
state. It is removed from this state by b~ing
primed with a START command containing the queue name
of the level-2 activatinq nandler. All other commands
are accepted following the START. PURGE, START-TIMED­
PETRY and ALLOCATED BUFFER commands a~e processed as soon
as ~hey are received. READ, WRITE~ CONTROL and STOP
commands dre queued on the handler local wait queue.
If the wail queue is empty upon reception of a command
that command is immediately processed. LTH stays in t~e
active state until a STOP or a PURGE command is processed.
Then it returns to its idle state an~ a new START command
is needed to re-activa~e it.

L T H han dIe son e que u e en try a t a' tim e w rfl nit i s p rim e d •
The queue entries are processed as follows l

START : th~ activator·s queue name and the stream
identifier are saved in AHQU~ and SID respectively.
The r~st of the local storage area is initialized.
The STAMT ouff~r 15 returned to the Buffer Manager
and one data ouffer of appropriate size is
requested from the Buffer Manager.,
Once obtained tnis buffer Is tised to issue an
IFe call to .IOC. which causes the driver to
initialize the terminal.

WRrr~ the data in the buffer is interpreted according
to the value of selected bits in FLAGS :

a) if bit-3 1s set the buffer contains a list of
light numbers. The appropriate sequence of
requests to .lOC. is issued to correctly
position the prompting lights. LIGHT 15 updated
to r~flect the state of eacri liqht on the display.

oJ it 01t-4 is ~~t tne butter cont~in~ ~ list ot
specidl function keys. The appropriate sequ~nce
ot' requests to .IOC. is issued to correctly set
the terminatinq mode of th~ keys. SfKS is

4-80

updated to reflect the mode of each special
function key.

c) if bit-b is set the buffer contains an HPIB
message. That message will be decoded and emulated
according to its 'meaning.

d) otherwise the buffer contains ASCII characters.
An .IDC. call is issued to cause the driver to
print a line of characters cn the terminal.

READ; if an input unit is deflned~ that 1s if bits 4-0
~ALKA word are not all set to one a read request
is issued to enable the current input unit on
the terminal and start an input operation.
If no input unit is defined the read buffer 1s
used to issue a WAIT on SRQ request to IOC.
Then when the SRQ line goes LOW the address
of' the input unit will be d~termined and a
normal read issued to this unit.

STOP: the data bufter containing the command Is used
to issue an'IFC call to .IOC •. which causes the
driver to reset the terminal to its initial state.
PUGRQ condition is set in 'FLAGS and any pending
operation Is canc~lleda

~

ALLOCATED BUfFER : the buffer may be a control buffer
or a datn butter. The control buffer is used to
send an error notification to the activator. The
data buf~er is used to issue an IFC call to
.,IOC. to cause the driver to initialize the
terminal. SUbSequ~ntly the buffer is made
interlocked. The stream identifier and NOP command
are placed in BCW2 and it is sent to the activator.

START TIMED RETRY : a timer 15 staLted and the buffer Is
freed. when the timer finally exits, the operation
at the top of the walt queue Is re-initiated.

PURGE: an IFC call ls issued to .IOC. which causes the
driver to reset the ~erminal to its initial
state. PUGRQ .condition 15 set 1n FLAGS.

CONTROL : it is used to perform special operations
on the terminal and its optional units. Those
special operations are emulated as a series of
write requests to the associated driver.
Control functions 11 to 81 are related to the
display, keyboard, prin~er, badge and CRT units
of a terminale At tne ~nd of the actual oper~tion
the control buffer is released by this handler.
Control function 70 is related to instruments
connected to a terminal via its internal HPIH.

4-81

Once a control request with code 70 has been
receIved the normal control functions (codes 71
to 81) become ineffective. The control buffer is
kept in TCT~f word for use i~ case at the HPIB
"deleqate control" command.

The CALL routine is invoked whenever a call to .JOC. 15
necessary. It prepares the required code sequence and
saves In word sews the address of the local storage area
associated with tnis terminal.
The IOeMO and IOCM2 routines format special co~mand
write requests to the driver (pure HP[B commands are issued
that way).

4-82

Ll'HHC "handler lID completion" : receives control from System
Dispat,cher ',oIl"len scheduled read or write requests have
comoleted.
The address of local data storage Is found in word SeW1
of the returned buffer. PADOS routine is used then to
qenerate the correct pOinters to the local area associated
with the terminal. It PUGRQ condition holds, tnat is If
a PU~GE command has been previously. received" the butf~r
Is returned to level-2 handler as NOP (if a data buff~r)
or freed (if a ~ontrol buffer).

The followinq error detection/correction procedure Is used
when the error bit is set by the driver :

- If ERFLG is already on, that is If an error was
detected on that same operation during the
previous attempt, a timer is started for 1 second
and the request is requeued at the head of the
wait queue.

- otherwise ERFLG condition is set and a control
but fer is requested to notify the level-2 handler
of a type-2 or type-3 error condition. The buffer
is requeued at the top ot the wait queue and will
be reactivated when a timed retry 1s scheduled.'

If no error has occured the command type is analysed to
determine tne next ~ction to undertaKe~ One of the
following nay take place :

- the operation has not completed and the buffer
Is used to send the next request to the driver.

- the operation has, co~pleted and the data buffer
Is returned as NOP (if ,a WRITE command), as
WRITE (if a READ command) or as STOP (if a
STOP command), while the control buffer is freed
by this handlere If PUGRO condition hDlds the
wait queue is emptied and all the bufters returned
to the system ...
If the wait queue is empty control 1s passed to
the System Dispatcher. Otherwise, the top entry
of the wait queue is obtained and passed to LTHHP
section for orocessing.

r.THT: "tirner-expiration tf section : receives control from the
time base generator l"landler when a timed pause expires
(for operation retries following not ready states).
Upon entry the content of the A reqister (address of timer
hlock) is used to qenerate the pointers to the local area
associated with tois terminal.
1'rl e b 11 t fer ~ t t n ~ t, 0 P 0 f the wa1 tau e u e i sob t a in e dan d
ads::»eJ to LT:if"!? for re"'proc~ssinC:j.

4-8'3

Soecial cases

1) Restarting a Read operation through the SKQ alarm button.

When the presence of an SRQ is sensed at ttle end of a Read request
the tollowing takes place :

- the SRQ is aCKnowled~ed
the terminal is restored to toe state recorded in
handler's local tables (lights, keys, in~ut/output units)

- the .read operation is automatically restarted.
If the requesr could not be acKnowledged at the beginning of the
procedure then d type-3 error is notified (operator intervention).

2) Power fail condition.

The handler receives"!n STATU an indication of the occurence of power­
tailures (it records this condition in PFAll. flag).

If at the end of an operation PFAlL condition holds, the following
takes place :

- the syst~m is notified of an error if the operation was
a read since one cha~acter may have been lost.

- the operatIon is retried if it was d ~RITE' of promptIng
light codes.

- the operation terminates normally in all other cases.

3) Instruments in use.

When a control function 70 has been executed the terminal is viewed
as a set of HPIH compatible instruments (keyboard is an input unit with
address 29, display Is an output unit ~ith address 29, •••••).
No recovery procedure is attempted in this case as tne handler does
not keep track of tne state Of the complete HPIR. The SRQ condition
is no lonqer Interpreted as dn input restart indication.

4-84

HP 2000 ACCESS rIb PROCESSUR
BAS~ DESIGN SPECIFICATIONS
0.53 S~RrAL LINK CONTROLLER DRIVER

I. Product identification.

1.1 Product abstract.

The 0.53 Serial Link Controller driver Is designed for use
with the HP20l)O -Access System-.- It provides an interface for
input/output operations between an HP21MX series co~puter
and 3070 d~ta collection terminals connected to a 40280A
controller via a Serial Link.
The 0.53 driver will nandle up to 8 Serial Link Controllers
simultaneously ~hlth up t~ 31 terminals on each Serial Link
(the system will limit to 31 the total number of 3070 terminals
configured in the I/O processor). Transmission rates between
25 and 250 characters are supported by each controller.

II. Design overview.

II.l Desiqn as~uwptions.

The driver module assumes a 21MX series computer and requires
the HP2000 Access I/O processor microcode.

11.2 Design summary.

The complete driver consists of two distinct modules (0.530
and D.53C). The 0.530 defines the actual driver initiator,
continuator and power fail recovery entry paints associated
~lth any given Serial Link Controller. fhis is the only
module whicn must be replicated to support multiole controllers.
It includes dll data associated ~itt\ a specific controller
such as related 110 instructions,· list pointers •••••••
The D.S3C which contains the actual code is used by all copies
ot 0.530 to drtve the 3010 terminals controlled by a Serial
Link Controller. -

4-e5

11.3 Design dporoach.

[1.3.1 Controller logic.

Although the Serial Link Controller is physically a single
I/O board, it may be viewed as a multiplexer for up to 31 data
collection terminals of the 3070 family.
The controller uses a polling technique to communicate
witn the terminals. A polling cycle consists- of a series
of elementary messdges conforming to the Serial Link Protocol
and cQnstructed from a table· of informations passed by the
driver before startin~ a cycle. The format of an information
word is desc~ibed 1n Table-I.
Upon the end of tt1e cycle the controller will interrupt the
CPU if one of the two following conditions holds :

1) an interrupt has been requested by the driver
2) at least one operation programmed in tne cycle has

completed (either a character has been accepted or
one cnaracter hns been received)~

I f none -0 f the con d i t i on sIs f u 1 f i 11 edt h e con t r 0 11 e r
automatically reoeats the cycle.

Il.3.2 Driver 16gic.

O.S3c is written in a serially reusable manner and serves
all Serial LinK Controllers.
It accesses d qiven D.530 storage block through a series of
indirect ~ointers. In addition it has access to the calling
handler stora~e block wnere jt finds -inf6rmation about a
specific terminal. D.53C finds in BC~-5 the address of the
jata block associated with the terminal to whiCh tne request
is directed. The structure of the oart ot the data block that
D.S3C accesses has oeen detailed in Table-2.
For each controller the driver maintains a linked list of
data bloCKS called the Actlve Terminals List. The head of
the list is part ot that controller local data structure (.ACTQ)
~hile tne elements are the calling handlers data blocks.
Each tim~ a request. is accepted by the driver, the calling
handler data block is inserted into the Active List of that
co~troller aCCording to the termin~l number (contained in
TERMA 'Nord).
Normally the driver ·.-rill reject a request if the previous one
has not completed. The only exception to that rule is the
" in 1 t i ali Z e t e r in ina 1" r e que 5 t 'JJ h i c h 'If i 11 c a use t he cur r e n t r e que s t
to be aoorted.
U~on request completion by the driver, the data block is unlinked
fro m t rH~ 1-\ c t i v ~ Lis t •

4-86

11.3.3 Driver ~Lgorithm description.

Like all ReS drivers the Serial Link Controller driver has an
initiator section (1.53C),a continuator section (O.5JC), a
power-fail/restart control section (P.S3C) and a time out exit
(T.53C).

The initiator' section is responsible for .converting a requested
operation into appro~riate actions~ .
The following prologue takes place at request initiation 1n D.53C :

1) validity of request is checked
2) handler data olock is located, initialized and linked

to the Active List .
3) if the Controller Is already active an interrupt Is requested

at the end of the current polling cycle and step 4 is skipped.
4) if the Controller is not active the table of information

is constructed, passed to the controller which starts a cycle.

The continuator section Is primarily an interrupt handler and
event complete processor. The following procedure is activated
upon acknowledqment of an interrupt from a controller :.

1) the table at informations is obtained from the interruptinq
controlleF

2) for eacn terminal present in the Active List the op-code and
the step-number are used to determine the .next action l.e :

eitner a transition to the next step takes place and the
next element of the information table Is prepared

- or the request is completed If it has reached its final step~
3) it not all terminals have completed their requests the tahle

at informations prepared in step 2 Is used to· start the next
cycle. .

If another interrupt occurs while this section is in use, that·
interrupt is queued and processed only when tne active interrupt
Is completed.

The power fail recovery section receiVes control from 0.04 after
power is restored to the CPU following a power failure.
P.S3C is responsible for ·restoring the controller interface
board to the status it was In when power failed.

4-87

Ill. Design Structures.

[11.1 Handler ---) Driver Interface structure.

'rh~ handler and the driver levels of software interface thru
calls to .IOC.,. The following functions are issued by the handler:

Function SUb-function Operation

01

02

00
01
00
01
02
03
04
05
06

Normal read of data
Transparent read of data
Normal write of data
Terminal initialization
Special write of HPIB commands
Remote Control Enabling
Remote Control Disabling
Service Request 'Condition Monitoring
Service Request Identification

III.2 Driver ---) Handler interface structure.

Tne driver returns requests to the handler level thru calls to
.BUFR •• The transmission log information Is passed in that handler
data blOCK (SUfL word), while the address of that data blOCK is
placed in BCW-7 of the returning buffer upon request completion.

When a call is rejected tne following return codes will appear
in the A and B registers :

1) A =1 B =0 : if the request parameters are illegal
(code, arguments •••)

2) A =1 , B =100000 : if the terminal is busy executing the
previous request.

4-88

[11.3 ~ajor functional modules.

The D.51C driver is modular 1n its internal architecture. Each
module may be viewed as a "function processor" (modules which dre
responsible for executino a particular r~quest) or as a "common
modul e It (modlJ 1 es 0 r sub rout ines \"Ih iC.h aid func t ion processors).

Normal Read·

Description ~nd function

Inouts a line of data from the current input unit of a terminal.
A line is considered terminated when a terminating character
is received (LF, Eor line LOW, SRQ line LOW or any special
function key defined as a terminator in TALKA).

Interface Description

JSR
OCT
JMP
Dt:.:F"
OEf

• IDe •
0100XX
RE,JCT
HUffR
TJt::N

xx is ·the LU of a Controller
·Exit to reject nddress
Start address of buffer
Length of bufter 1n + characters

The input unit is:speeified in TALKA bits 4-0.

All.lor i thm oeser iotion

1. Put terminal in input mo~e
2. Enable input unit
3. Inout cnaracters until terminator detected
4. Disable inDut unit
5. Updat~ STATU, BUFL and return buffer.

It-.B9

Transparent Read

Description and function

Inputs characters from the HPIB, where it assumes that an input
unit has been pr~viously defined by a local controller. ReQuest
terminates upon-receipt of any normal terminating cha~acter,
any command message (whith ATN line LOW) or when bufter is full.

Interface Descri9tion

JSB
OCT
JMP
DEF
D£C

.IOC.
OlOlXX
R~JCT
BUfFR
L£N

~lqorithm Description

XX is the LU for the Controller
Exit to reject address
Start address of buffer
Length of buffer in + characters

1. Input characters until termination condition Is detected
2. Uodate STATU, BUFL and return buffer.

4-90

Normal ~~rite

() esc rip t ion and ~. un c t ion

Sends characters to the output units of a terminal. The line
of data is terminated by a LY char~cter unless the buffer
ends wIth a" < - II •

Interface Description

JSB
OCT
JNP
OEF
DEC

.lUC.
020()XX
REJCT
BUfFL
LEN

Algorithm Description

XX is the LU of the Controller
Exit to reject address
Start address of bufter
Length of data in + characters

1. Output characters in successive polling cycles·
2. End lIfith Lf (unless buffer termi.nated with "<_It)
3. Return buffer.

4-9'1

Initialize terminal
~------~-~-----~---

Descriotion and Function

Resets terminal to a well-defined initial state (display .cleared,
liohts off).

Interface Description

JSA .IOC~

OCT 0201XX
JMP HEJCT
D~F BUFFR
DEC LEN

~lqorlthm Description

XX Is the LU of the Controller
Exit to reject point
Start address of b~ffer
Not used

1. Send command message with IFC LOw
2. Send comm"nd message witn IFC HIGH
3. Send Devic~ Clear command
4. Return buffer. .

The following error detection procedure is used :
-if terminal does not respond in steps 1, 2 or 3 the error

bit 1s set in BCw-8 word'
- if terminal is busy, the current request is aborted and

terminal initialization is started.

4-92

Command write

Oescriotlon and Function

Sends H~IH command messaqes constructed from data passed ip butfer •

. Interf~ce Uescriotion

JSB .IOC.
OCT 0202XX
.} ~\ P BE J C 'f
DEF BUFFR
DEC LEi~

XX is the LU of tne Controller
Exit to reject address
Start dddress of bufter
Number of commands to send

Commands are packed 2 per word 1n the buffer.

Alaorithm Description

1 .. For'TIat comlland messages by ddrlin9 the A'fN oit to the data
bytes and send the~ one per pollinq cycle

2. Return bufter.

4-93

Remote Control Enacle

Description and function

Sets terminal and associated instruments in re~ote control mode.

Interface Description

,,),SA
OCT
\.H'1?
Df::F
DEC

.IOC.
0203XX
HEJCT
HUFFR
LE.:N

Algorithm Description

XX is the tu of the Controller
Exit to reject point
Start address of buffer
Not Ilseej,

1. Set REN nit in T£RMA word,
2. Send messaqe with REN line LOW
3. Het'lrn buffer.

Disable Remote Control

Description and Function

Resets the terml~al antj its associated instruments in their local
control mode.

Interface Oescriptlon

JS8
OCL'
\J~'P
DEF
DEC

.IOC.
0204XX

kEJCT
Btl F'~' R
LF~N

A110rithm Description

XX is the LU ot tne Controller
Exit to reject point
Start address at but fer
Not used

t. Zero out REN bit in TERMA word
2. Sen a com:n a n dm e; s 5 age with R E N line HIGH

_3. Return butter.

4-94

~~lt Until Service Requested

----------~-----------------

Description and Function

Watches the SHQ line until a uhit on the terminal requests service.

Int~rtace Descriction

JSB
nCT
J:I\P
Dt=;F
r)SC

.IOC.
0205XX
Rf!~JCT
BUFF'R
LEN

Alqorithm Description

Xi is the LU of the Controller
·Ex i t to re j ect point
Start address of buffer
f\lot used

IG Put termindl in input mode
2. when SRQ line qaes LOW return buffer.

Identify· Unit Requesting Service

Description and function

Determines whicn unit on the terminal requested service. Units
to explore are taken tram a list of units specified in the buffer.

Interface Description

JSB
OCT
Jt-1P
l)l-~F

Dt:C

.fOC.
0206XX
HEJC'f
UUfFR
LEi·J

Aloorithm Description

XX is the LU of the Controller
Exit to rejett· point
Start address of buffer
Minus number of units to explore

1. Dis~ble all output units
2. Disable all inout unitss
~.·~nahle Serial Poll Procedure
4. for each unit to be explored

4.1 Endole in~ut unit
4.2 Head status from unit ana store into buffer
4.3 If SRQ bit set in status byte proceed witn step 5

5. Dis~ble dll input units
6. Disable Seridl Poll Procedure
7 .. Check ',t.it\ether SRQ qone
~. () 'J r1 " to? ~.; r ,\ r r I .. ~ 0 r d -1:1 d ret urn b ~l t f. P. r •

Get - ~; e 'II - Wo r d Sub r 0 uti n e' (G E T N ~-J)

----~~--~-~-~~~-~-~~~----~-~~--

Description and function

Builds a new ~ord of the information table according to the
contents of T~RMA word bit 15-6 (operation-code and step numbE!rl.
~f the information table shows an input operation that nas
successtully completed, the character of t~e table is stored
in the butfer.
The step-number part of TER~A word is updated and the current
request 1s com~leted 1f the very last step has been reached.
The structure ot the step number information is described in
Taole-3.

Send-New-word Subroutine (SEND)

Description and Function

Once the information table has oeen built, this routine ciutputs
it to the controller. The transfer is programmp.d _ usinq the skip
on flag technique and only the relevant part of tne information
table is passed to the controller (the last word nas its STOP
bit set to 0).
·The· followinq error. detection/correction procedure 15 used :

1) if power failure occured just after the table has been sent,
the transfer is restarted

2) it the flag on the controller board is not comming back after
the transfer, the power fail condition is checked as 1n 1.

3) atter the whole .table has been sent, a time-out of 2 seconds
is progra~~ed to be sure to come-back even it power tails
durlnq the polling cycle and prevents tne controller from
interruPting.

4-96

lnt.:ormation word format.

Driver ---> Controller.

to Termindl in input mode

Bits

15

14 .
13-12
11-0

2. Termindl

Bits

15
1 '1
13-12
1 l'
10
9
A
7-0

'Interpretation

Last word of table indicator (STOP) :
o : last word
1 : not the last ~ord

Not used
00 tar input mode
Not llsed

in output mode :

Interpretation

Last word of table indicator
Not used
01 for output mode
TI:'C line state
HI:: r.I 1 in e· s t d t e
f':U I 1 i £'le. 5 tea t e
"TN line st-3te
Data byte .. 1 lnes

3. Terminal in idle mode:

bits Interpretation

15
1 (~
1 3
12-0

LdSt word of table indicator
Not usee
t for iC11~ :node
i~O t tl S ed

Controller ---? Driver.

1. Terminal in input mode

Bits

15
14

13-12
1 t
10

9

B

., -()

Intertlretation

Last ~ord of table indicator
Transmission error flag:

o : transmission error detected
1 : no error during transmission

00 tor input mode
Not used
Data byte present fldg :

o : no data byte transmitted
1 : valid datd byte transmitted

~O[line state if data present
SHQ line state if no data present
ATM line state if data 'present
Not used it no data present
Data byte if data present
N~t used if no d~ta present

2. Terminal in output mone :

Bits

15
14

13-12
11-0

]. Terminal

Bits

15
1.'.
13-12
11-0

Interpret2ltion

Last ~ord of table indicator
Data byte accented flag :

o : data byte not accepted
1 : data byte accepted

01 tor output. mode
'., ~ s sag e be i n q 0 u t P tl toy d r i ve r

in idle state :,

Interpretation

TJast wor:i of table indicdtof
flot used
10 for icile mode
Not usp.d.

4-98

Tanle-) Data block structure.

[0 0.53n (n=O to 7 stands for controller number) module:

- head of Controller Active Terminals List
- power-fdil/r~cov~ry indicator

1 recovery tram power failure occurred during cycle
o : 'no power failure during cycle

In T,TxxH (xx stands for the terminal number) module :

LiNK
'1'1!: H r·1 A'

TA.LKA

ST J\ TU

- link in Active List
- terminal address specifications

bits 4-0: address of terminal on Serial Link
5 not used
6 start of request flag
1 : R~N line state (1 1f LOW)

1 1 - 8 s t e pre a c h e din r e q II est ex e cut ion
15-12 : op-code of current operation

- ter~inal input unit specifications
bits 4-0 input unit number (37 if none)

13-5 : special function keys' mode indicators
o : key is not a terminator.
1 : key is'defined as a terminator

14 : SRQ line terminating ~ode
o :. SRQ 'detection' 'Nill not iend input
1 : SRQ detection terminates input

15 not used
- terminal status word

bits 0 : service requested indicator (SRQ)
o : SPQ line was rlIGH
1 : SRQ line was LUW

2-1.: read request completion condition

7-3
4-13

14

15

o normal completion
1 : HPIB command message received (ATN L
2 : but fer has been filled

unit identified as requesting service
not used
power fail indicator :

u : power did not fail during request
1 : potential error due to power failure

terminal bUSY indicator :
o terminal not busy
1 : terminal busy executi~g a request

4-99

Table-3 : Step numb~~ information structure.l

Bits

15

14-13

12-0

-----~-----~~---~~----~~~---~--~~-

Interpretation ----- .. -.. -~ .. -.. -
Source of next information word :

o : computed by routine whose address is
in bits 14-0

1 : word 1s encoded in remainIng bits
(40 d i fie at 10 n s to ap ply to in for rn at 1 C) n W 0 r d :

o : not any modification
1 : merge with TALKA bits 4-0
2 : merqe with BUFA word

Bits 12-0 of the information word before
applying the modifications.

4-100·

SECTION V

RJE

1 • ·0.62

2. Ctu

3. SYN

4. O.~O

5. Hl.O

6. tH~O

7 • Hi'.10

ij. 1110

9. Appendix A

1 o. CDC R.J ~:

RJE

COt~TE,;NTS

INT~~cnNNECT·KIT DRIVER (RJE)

C ON SOl,~: J N P LJ,. IfHl 'I' lJtJ 1 HA ~ f) LF.R

SYNCdHnN()US CUMMlINICATTONS HANOLEH

SYNCHKI)NUUS CO"~MlJN ICA1IUNS OHI VER

Hu~l' L] Sf lH':ClJMPPt-~SS ION HA r~DLER

liUST tU·:AnE~ CU~PRES~ 1 UN HANDLt:R

HOST MF.SSAG~ U~:cnMPR~SS I flN HANDLFH

H (I S l' L f\! Q LJ I ~ r.: C (J M P R 1:0: S::; l fJ N it A ~ D L F R

M Ut, r I L P. A V 1 "1 G S P ~~ C 1 r' 1 CAT I r) I~ S

I. Introducticn

These modifications setve as 'an ~xtension of the C.61 Driver
to allcw RJE Console operaticns. Function~ i.plemented arE READ~
WRITE, and INI!. .

II. Design overview

This driver is desi~ned to run in the HP2000 ACCESS
~nvircnmant.

The modifications vill allow the RJE console" feature to bg
implemented as a Buffered (Queued) I/O device. READ ASCII, WRITE
ASCII, and INIT/CLEAR requests will be accepted. The processor­
to-processor interface provides for operation synchronization vith
a" ftreguest-to-send," "permission~to-send" approach.

Major modules include rEAD request processing, WRITE request
~rocessing, INIT request processing, and SP command processors.
All routines have access to the output routine OHTOM.

III. Design Structures

~~jg~ !~~l2nAl ~~Yl~~

The INIT processor must be invoked to initialize BJE Console
~rocessing. The calling sequence is as follows:

INIT REQUES1

JSB .IOC.
OCT ~~99XX (XX is logical unit number)'

This request saves ~he EQT address of the unit for later
reference.

It may also be us~d to CLEAR operations active on the driver.
An active operation will be ~Rported ty a ~8UFR call, c~eating a
eRa entry.vith "a":3.

The READ processor is entered to process READ r9guests from
an .IOC. call. The calling sequenca is:·

~ 5-1

B EA D RE QU E S 'I

JSB .IOC.
OCT 91991x (119911 for queuing)
<reject add tess>
DEF BurR ,
<buffer length)

The <reject address> is entered if the driver is bus),.
(buffer length) is the numbe~ of characters in the buffer. Only
ASCII READ's with byte data (positive buffer length) are valid.
READ processor ezecution is su •• arized in the aecoapanying
flowcharts.

'Ihe va lTE· processor is entered to process • IOC. IRI~rE
requests. The calling sequence is:

II BITE REQUES'r

JSB • IOC.
OCT 112/1/1Xl (12,8,1X'X for queui nq)
<reject addtess)
DE,P BUFa
< bu ffer len~t h>

Again, only ASCII records with byte data are valid. The
ax~cution sequence is given in the accompanying flowcharts.

The SP
These are:

16001"
160026
160037

cc •• and processors process the 2 sP-to-IOP co •• ands.

Wake RJE up
Have console 8essage
Console buffer empty

Have console
~laced on the eRQ.

message results in an unsolicited event being
~ts form at is:

A: '99911 (wbere IX is console logical
un! t nu.b Er)

A READ should be issued when such a Ague st is receiVEd.

A write cclftlland to D.62 results in· an lOP to SP co •• a'nd beiltlg
sent (16LLOS where LL is length of message) e, upon receiFt of tbe
"console buffer ellpty" cO.llamd fro. the SP, the •• ssaqe :Ls
transmitted to the SP via D!l.

5-2

A read command is is~ued when the SP indicates it bas data
for the RJE sutsystem through a "have consol~ message" command.
Upori getting the read command from the RJE subsystem, an lOP to SP
command is issued to tell ~he SP to send the data. That command
is "wa ke RJ E u pt' (1600.11).

5-3

~.2!!.2gJ& IlP u t /0 u t .Ell.! Han dl it.£

~~§£IiRSion lng typcti2n

The console input/out~ut handler (CIO) is respcnsible for
initiating all input and output requests to the console. It
accepts console messages f~o. various handlers and issues queued
write requests through .lOC.

The handler :responds to an attention request and issues a
priority read to the console via queued .IOC.

Another function of this handler is to identify the .essages
read from the console. This is necessary so that the message may
be transferred to the appropIiate handler •

. The handler .~st also rEcognize the responses to reguests for
the 'System Connect· (SC command) and 'System Disconnect' (SD'
cosmand). It will then be ~ossible to filter out ina~propr:Late
RJE commands before they are transferred to other handlers.

, The console input/output h~dler can rece ive consolE .essclges
fro. several different handlers. The buffer is freed when the
write request is complete with two exceptions. If the console
message vas received from thE host message decompression handler,
it is 9i van to the ASCII files handler for the job aessage log.
If it vas received from ASCII files (jot inquire functicn), it is
given to HIO.

The unsolicited event indication received by this handler
vill be a request to read flom the console, an indication of
system shut down, or an indication of system initialization.

This handler will transfer messages to other handlers as
follows:

SC,SD,ER synchronous handler
SR',TRt,RR' host r~ader compr£ssion handler
Re-msg hest inguireccmpression handler

The DA command is handled within this 'routine as described belove
Any other command is assum~d to be an inquiry to the host and is
sent to HIO.

If the command from the console is 'to be transferred as a
block. of data to the synchronou,s handler (RC- m5g), it is fj~rst

5-4

converted from ASCII to EBCDIC via a call to the central
conversion routine (.ATOE).

INBUP
QNA!'!E
SHNAPl
CICNM
SYSGT

address of tuffer used for console input
console input/output queue name
synchronous handler queue nalle
host inquire compression queue nalle
'system activity' gate is set to 'nope if the RJE
system is ccnnected and set to 'skip' it is not

The buffer control verds associated with messages to be
printed on the ccnsole are defined as follovs:

Word 2
iord 7
word 8

Data word 1

Bit (s)
3-0
15-0
15-13
12-0
15
14

P'uncLioll
coa.and=1
.essage size
Synchronous handler run status
(unused)
.essage is fro. HKO
aessage is fro_ ASCII files handler

The buffer control vords associated with aessages transferred
from the console to other haDdlers are defined as follows:

Word 2.

Word 7

Bit (s)
15-4
3-0
15-0

Function'
(unused)
cOII.and=7
IIEssage size

The unsolicited event indication is defined as follows:

A-reg -

B-reg -

!lg2~1!h1!

15

14-12

1 5
o

1-system overflow flag
O-normal unsolicited event
zeroes

system shut down
system initialization

The console input/output handler has 3 entry points:

CIOHI -
CIOHP -

initiali%ation section
scheduled pIimer section

5-5

CIOHe - com~leted event section

In the initialization routine, (CIOBI), system service .FIND
is used to determine the queue names of all handlers with v'hieh­
communication is required. On entry, it saves the logical unit
number and merges thi~ number into all of its .IOC. eall
parameters. A clear .IOC. call is made to purge any previous
outstanding requests and to initialize.the ICK driver.

In the SchEduled section (CIOHP), all queue entries are
inspected and appropriate .ICC. calls are m~de. Ift~e Entry is a
buffer, a rea~ request -is gteued and i:f it is a message to print,
a write request is queued. SYSG~ is o~ened or closed when the
handler recognizes: a 'CC~r!UNICATIONS ESTABLISHED' or 'SYSTEM
DISCONNECTED' message, ras~ectively. When ciommunications are
established, start commands are sent to ASCII ~iles handler to
start the. job· message and job inquiry functions. At discOnlrlect
time, stop messages are s~nt to terminate these functicns. While
RJE is active, console messa~es received from ASCII files vill be
sent to HIO and messages received frcm HMO will be sent to ASCII
files hancller.

There arE th~ee main ~arts of the 10 complete ~ection
(CIOHI). When an unsolicited reguest for a read occurs, a buffer
is obtained and a priority read request is made. When system shut
down occurs, the queue is pUIged and all console messages are
ignored until system initiallzstion is received •.

When an 10 complete indication is received, it is first
n&cessary to determine if the ccropleted event was a read or write.
I:: a wri te, t be buffer is t hen freed or. passe d cn to HIO cr ASCII

-files as required.

If the completed event was a read, the type cf co~sol9
message must be determined se that it may be transferred' to the
appropriate handler. If the RJE system is not connected, RJE
co~mandsa~e inappropriate and an 'RJE COMMAND NOT APPROPRIATE'
message is printed on the cOIscle.

In the case of a 'RJE-tA;hf<dev' or 'RJE-DA,hf>dev' command,
the text is scanned for syntactic errors. If correct, CIC uses
the device assi~n,ent manager to make the assignm~nt. If the
~ s s i Ii ~~ Lo~~ n t is n c t"S II C (; .? oS sf: t.1 I a.n ::. ~. p ~ : l .p z: i 3t. ~ u!"t' 0 ': m ~:S da <J ~ ~ s
? -= :. ., ~ '3.i -'

If the oessag~ ~s
messages are printed on
assignments.

a 'RJE-DA' ccmmand, the DAT is scanned and
the ccnsc19 reflecting current devic~

5-6

ax~£hro~2Y~ ~~~~s!i~n~ ~dler

]~§~J;iE!i2n s.!l..2 i!lJ ct ;0D.

The synchronous commulica tions handler (5H) managEs all I/O
cn the communications. line •. Once activated, it mariipulat~sand·
control$ the trunsmission and receipt of data within the def~ned
IBM multileaving p.r.otocol ... SH is activated at the request of the
operator via the sc command. Activity then continues until an SO
command or aborti'lQ communications line error occurs. sa vill
report data regaraing line ccndition to the operator when directed
to do so with ERe

IBM's multilcnving p~otcccl provides for' the support of up to
seven input streaus (card image) and. fourteen output streams
(seven print and sev~n punch r~~d image) as vell as a remote
operator console input/out~ut stream. These 23 streams are
supported and managed by SH using 23 work. queues~ 'the number
actually used· dep'juds on the software and har.dv.are configurati"n·
of which sa is a.part. At system initialization time, these 23
work queues are enabled cr disabled as required by the
configu1:ati·on. O~1a other centrol work queue is also .associated
with sa for US~ in buffer acquisition" etc._:

When a ·systen connection is made, the ena bled work queues are
attached to other function tandlers which either produce data
(input streams) or consutnE data' (output streams). SR. then
inte~fac~s with the host· system via the multileaving prctocol in
order to control the flow cf data appearing on tho~e queues. In
appendix A of this base design document, is a specification of the
multileaving I=rc-tocol. Some terms which appear here (stlch as ~~CB
and FCS) are fully defined in appendix A. .

I.nJ:~I~5!~11llJ.

SH interfaces directly with the console I/O handler as
follow::;:

1. SH accepts the SC~ SO, and EH commands at any time.
These must appear in console . buffers and en the SH
control york queuE.

2. SH places messages on the console I/O vork queue via
• ceo.

SA interfaces with anI cne cf its inFut modules as follows:

5-7

· '

1. 58 places a 'SH running' message on the handler's uork
queue. This message inforas the handler of current SH
parameters and indicates that the handler may ~roceed.
It is also used te inform the handler that it may
con tin ue. (This la.tter point applies wlien the hancller
suspends itself after having reached the queue 1i.it
prescribed by SH.) Ccntained in the aessage are:

RCB - stream id~ntification which the handlar is to use
in constructing its data blocks.

Buffer size - curlent communications buffer size

Queue name - name of 5H input work queue on which the
handler is to place its data blocks "

Queue limit - maximum number of data blocks the "handler
should place on the queue. At the limit, thE handler
should suspend itself (or at least refrain fro. further
data handling) until a new 'SH running' signal is
recei VEd.

!ode - a flag to indicate when the system is in ACCESS­
to- ACCESS lIode.

2. 5H accepts a start ccmmand from the handler (except for
the host inquire stream). SH then proeedes ~o initiate
the transmission of this stream to the host. The
producing handler is expected to quiesce until this has
occurred. 5H will issue a new 'SH running' cc •• andto
the "handler once the transmission has been initiated.

3. SH accepts data blocks from the handler on the
specified work qUEue. A BCW definition for the final
block in a series cf "blocks must be adhered to.

4. S8 will purge t 1:e handler' s work que"ue if an abortive
line arror occurs cr when a normal disconne~t cccurs.
The handler shoeld view this as an ISH not running'
signal.

5H interfaces with any ene of its output .odules as follows:

1. 58 places a reguest to receive data signal on the
handler's work qUEUE. This signal vill be ccntained in
a ccmmunications tuffer. ~hen the handler has acquired
all needed resources it is expected to return this
buffer to 58 in crder to signal permission for the

5-8

request. ACCE5S-to-ACCE55 mode vill be indicated in
this request to receive message. (This entire process
doe~ not apply to ccnsole output.)

2. . 58 plact!s data blocks on the handler's vcrk queue.
When the handleI: disposes of a block , it must. be'
returned to 5H tc signal a reduction in that handler's
que.ue .level.

3. SH .at purge the handler's work queue if an abortive
error occurs and vill definitely purge when SB performs
a sign off. This should be viewed as a signal to
quiesce. In this case, blocks of data ~hich are
partially disposed of, should ngS be returned to SHe

1&Q£Al SUA UI.Jt~~&!!§.

These local data are uSEd by SH:

SHiE

SilAD

SOL

STFCS

SRPes

5RSVB

SACQ

SSTBY

seTRL

S5IZE

5IHBT

a switch uSEd to indicate whether or net to .PRES
the current SA work queue entry

holds address of current work entry

online/offline switch plus signon
active tldql Flus siqnoff activity
A CC e S s - to - A C. C ! S S II orl e t 1 a <} s P 1 u s
flags

current tralslit FCS

current receive Fes

active/not
flags plus

auto restart

holds address of reserve receive butfEr, when
negative a tuffer is r.ending

used tQ determine if any input queues are act1~e

holds address of buffer available after IIO
COli plet ion

holds contrel queue name

holds specified cosmunications buffer si%e

holds number of outstanding console messages
which must be disposed of before continuing

5-9-

SIMQS

SACQO
r

holds number of input work queues actually
available

holds number of active output q~eues

Definition of 'SH runnitg' message which appears in a control
buffer:

BCi Word 2

Word 3

W:ord 7

Word 8

Data W'ord 1

fits 15-4
3-0

Bits 15
14-0

Bits 15-0

Bits 15-1
0

Bits 15-8
7-0

Zero
command=3
(un used)
Queue name (SH

work input queue)
communications tuffel~ size
(nega ti ve 2's co .pleDlent
number of words)
(un used)
0 = normal mode , = ACCEsS-to-ACCESS

stream RCB
Queue limit

mode

Note: this message is !l!!~! placed on the recipient's vork queue
using • PRIQ (prior:it y •. PUTQ) •

Definition of blocks appearing on input ~ort queues is as
follows. Most of these defititicns are internally generated by
5ft:

BCW Word 1

.Word 2
Word 7

Word 8

15

14
13
12

11
Bits 3-0
Bits 15-0

15

control transmissions
(perm issions/reguests:)
signon transmission
signoff transmission
BCB and pes ate to be
19ft alone
BeB is to be left alone
comm,and=2
length of the input data
in po s1 ti ve bytes
(see below)
O=not end-file
1=end-file

Note: the position of the data in input blocks must be as shown
below •. The communications buffer size noted above in the '58
running' lIessage allows fer this format and size. The .axiaull

5-10

size of the inFut data seetien of this format will be dictated by
the operator's specification in the sc command.

Oat a Word 1
Word 2
Word 3
•
•
Word n

··reserved··
··reserved*·
beginning of inp~t data

end of input data (length of "ord~ .
3 through n is reflected in Bew "ord 7)'

The firs~ 5 tytes (characters) of the input data are supplied by
the synchronous handler but lust be included in the length. The
last byte must contain an ETE character (octal 46).

Definition of aessages g;."~n to output handlers by SHe
~eSSage appears in a ccm.unications buffer:

BCI word 2 Bits 3-0

Word 3 Bits 15
14-0

Word 8 15-8
7-1.

0

cODuland=3
(request t~ receive)
command.:1
(data block)
(unused)
Queue name for
response
RC B s treall id
(unused)
o = normal .ode
1 = ACCESS-to-ACCESS mode

Note: these buffers are net interlocked. Response to the queue
name in word 3 is cooperativE not mandatory. The console output
decompression handler vill never receive a buffer with a ccmmand
of 3. .

Iha responses to SH by output handlers must follow these
def i.ni tions:

Bew Word 2

Word 8

Bits 3-0

15-8
7-0

command=3
(persission to Iscaive)
·coamand.:5
(data block finished)

RC B stream id
(unused)

When messages are queuEd for the console IIO handler. thase
Bew definitions are made. Their purpose is to allow ccnscle I/O
to note the running state of sa:

5-11'"

SCW W9rd 2
Word 7
Word 8

Bits 3-0
15-0
15-14

13-0

command='
message length
OO=no raal message
01=communicaticns

established
10=disconnecticn
(un used)

Tables are defined which contain appropriate data regarding
each input and output str~am. The tables allow for suppcrt of the
maximum possible" number" of each type of data stream. However, the
numbe~ of streams actually present is determined at system
initialization time, with these not present being disabled.

The aynchronous Irans lit ,atream lable (STST) defines each
possible input stream:

STST entry 0 - console input

S'IST entry
!.2l:.9
0
1
2

J

"
5

1 - card reader nu.be~ 1
2 - card readEr nuaber 2
•
7 - "card reader n~mber 7

fot'll at:
I!ll~ £.£!l!!.n.t~
15-0 stream pes defini tioD
15-0 stream FCS state
15 Pe~mission t"o transmit requested
14-2 (unu,std)
1 • S8 runni ng • message needed
0 Permission to transmit granted
15 Stream presence or absence
14-0 Queue name for producing handler
15-8 stream RCB
7-'0 Queue depth limit
15 (unuse d)
, 4-0 5H input gue ua name

5-12

The §ynchronous Receile ~tream labIa (SRST) defines each
~ossible output stream:

SRST entry

SRST an tr y
!!U:.9
o ,
2

3

4

o - console output
.1 - printer nUllber 1
•
•
7 - printer number 7
8 - punch nuster 1
•
•
1L1- punch

format:
fait§
15-0
15-0
15
14-1
o
15
14-0
15-8
7-0

number 7

~.s~u
Streaa pes definition
stream les state .
Peraission to transmit requested
(unused)
Permissicn to transmit granted
stream presence o~ ab$ence
Queue name fer consu.ing handler
stream ReE
Queue depth limit (the aaxi.ua nusber
of blocks which vill be received prior
tc suspending the stream via peS)

Two local data structurES are of special significance. These
are the synchroncus Translit Streams Table (STST) and the
synch~onous Receive Streams Table (SBST). The eight entries in
the S7ST define the possible input vork queues. The fifteen
~ntries in t be SRST d@fite th.~ possible output vork queues.
contained in the tables are all paxaaeters (flags, queue na.es,
9tC.) needed to use theSE gueu'es .el.Y.§ all paraaeters needed to
control thg producers and cotsuaers of these queues. Entries in
thase tables are used sequentially in a priority fashion. Por
axampla, the STST is ordered as follcvs: console in~ut, card
stream 1, •••• , card strea I 7. Thus, tranSl:lissions for card
stream n vill tend to take precedence over card strea.s greater
than n. The console will al1iays have greatest priority. This is,
of course, subject to the metering of data by the line protocol.
snST entries are used in a sisilar manner.

The system initializaticn entry peint to sa is SYNHI.
con trol que ue name is fo und and sa ved in SCTR L. l'in ally,
"configurgs" SH by initializing the S~~.T and 5RST tatles.

5-13

The SH
5.Y SHI
This

involves attempting a .FIND fer all possible work queues and
associated producers and consumers. Those table entries for wh.ich
the .FIND's are successful a~e enabled. Remaining table entries
are disabled. On a syste.restart, if the auto-restart flag is
on, a l:estart is attempted.

The prime entry to SH is SYNHP. All work queues associated
with S8 activate this same pIiH entry. SYNHP consists of tbree
main sections. "The first is the entry point section which removes
vork from the control queue and invokes processing of the vork
entries. Section tvo consists of a group of processing sections,
each of which processes a control queue vork entry. the third
section is an I/O scheduler which is also used by the I/O complete
~ntry point to 5H. The I/O scheduler performs the task of
axaaininq the STST entries for transmission or ether I/O
sc heduling.

SYNHP is entered by a system prime. It then invokes
processing of each work entry found on the control wcxk queue.
The routines which handle these work entries ~ll return to a
common point where th"e current work entry is released to its
buffer pool if appropriate. Other work queue "entries ara
processed in turn until none remain. At this point' the I/O
scheduler is entered for possible I/O initiation.

These aessages may appear on the S8 control vork qUEue:

~~ §.Q.... 2I n "s.!!aJl.S! the cCllmand is recei ved f·ro. 'the
console I/O handler and is processed by routine SBJEC. r_e
vork entry is in a conscle buffer.

~UU e.n.2l!1 !lgf~![this is a commun ications block vh.ich
vas previously received, has been disposed of via ene"of the
output work queues, and is now being returned" to 58 by the
associated consuming hatdler. Its function for S8 is to
siqnal a reduction in the number of blocks on that output
vork qu~ue. 58 uses this technique to~onitor the flow of
data and use of comluDications buffers.SQCHK processes
these entrie"s.

R.inU.£ ~l!~llW' .§.i.9Jlj.l rec43ived f rom a consuming dllta
handler tb indicate that all of its needed resources are
available and that S8 may commence receipt of data for the
output stream. SPALL PIocEsses these entries. This work
entry ~ppt~rs in a commcnications buffer.

5-14

All~~t~ s£m!yn~c~tio~~ ~!I received from the buffer
manager in belated respcnse to a tuff~r request aade by the
I/O scheduler. SCOMB Flccesses this work entry.

41~~~ £2~§2l! RYi1!~ received from the buffEr manager
in belated response to. some pr~vious request for a console"
buffe~. SCONS p~ocesses the entry. .

!11~~~ ji.52ntr sl: Ryffel rece.ived froll the buffer manager
in bel~ted response to a previous request for a control
buffer. SeTLB Frocessas the ent~y~

Work ent~y processing by SYNHP is as follows:

~.fALt. locates th~ . SliST for t he associated out ~ut stream.
When in ACCESS-to-ACCESS ID~:,l'), the ReB received is
temporarily changed frc:J an' input type RCB to a printer type
RCB in order to locate the SRST entry. A ftper.ission to
transmit" control record for the stream is constructed in the
vork entry buffer (a co.munications buffer). This tuffer is
placed at the beginning of the console input work queue
(h'ighest priori ty STS'r en try) .for subsequent tra.nsmission.
This is really just a trick ~o allow these"high priority
m'!S5ages to be selected for transmission as soon as pcssib,le.

~2~HK - lccates the SRS! fer the associated output stream and
determines the current _ork queue depth. When in ACCESS-to­
ACCESS mode, the RCB received is ,temporarily changed froa an
inp~t type RCB to a printer type RCB in order to lcca~e the
proper entry in the SBS~. If below the SRST defined limit,
the stream control bit in the send function control sequence
(peS used in ~ultileavir.g protocol) is enabled.

~CQt1!! - if the system is not onl.ine, the buffer is released.
Otherwise, its address is saved in SRSVB for use by the I/O
schaduler.

3~I1~ - if the syste~ is not online, the buffer is released.
Otherwise, it is supplied to saBUN for the issuanc~ of "SH
running" messages to a1ailabla producers of input vork queue
data.

3£Q!~ - the buffer is supplied to .CCo. for console output.

~B~~ for an ER command, the data is acquirEd and the
messages are constructed and issued.

5-15

lor an SC command:

1. If SB
online,
issued.

'is online .2.I not onli ne but engaged in gc.inq
the 'SYS7E~ ALREADY CONNECTED' aessaqe is

2. If 5H ;is not cnline ADS is not going online, thEt SC
data (buffer size and signeD record) are processed.
Then the signoD activity signals are set, the 'SYSTEM
READY' message isdissued, and the data line enable I/O
operaticn is started.

For an .SD command:

1. If a signoff is alr~ady in progress, the co •• andis
ignored.'

2. If 5H is not online or engaged in a signon, the 'SYSTE8
DI5CCNNECTED' message is issued.

3. otherwise, the signeff record is processed. 5i911;off
conditions are established and the auto-restart fla~1 is
turned off to disable the restart feature.

All IIO scheduling (except for the initial data link enable
and terminal clear) is perfolmed by SIO. SIO is entered by SYHHP
when control work queue is exh.usted. SIO is also used by S!NHC
to initiate succesive I/O operations. If I/O is active when SIO
is entered, it exits to the central system commutator. otberll'ise
it perforas the following se~uence of steps:

1. If S8 is no longer enli~e, SPRGE is entered to clean up
all queues, etc. .

2. If the host has temporarily disabled trans.i.slons to
it (WABT or vait-!-bit), processing continues at step 7
in order to attempt a receive only operation. This
vill not occur when in ACCEss-to-ACCESS .ode~ .

J. A scan of all input work queues nov occurs:

A. The first inFut work qU9ue (n~r.ally console
input) may cont~in permission to trans.it control
records. If so, these are immediately selected
fer transli!sicn.

5-16

B. A local variable, SICQ, is used in thE remainder_
of the scat to note the presence of active
transmit streaas.

c. If a data block appears on an input ~orkqueue,
- then:

a. If the stream's current pes state is
disabled (host has temporarily suspended
thi$ stream), then no further processing of
this stream occurs.

b. Otherwise~ SACQ is set to show at least one
activE input work queue.

c. If perllj,' jc': to initiate transaission has
been teceived fto. the hQst, the data block
is removedfroa the work queue. If the
queue depth drops below the STST defined
li.it, an 'SH running' com.and ~s re-issued
to the associated handler so that it .a1
continue. If·the block contains end-file,
the 51ST transmit permission is' cleared.
(If 510 is currently active because of

SYNHC and a secondary communications buffer
is available, it is nov released.)
Translission of the block is scheduled.

d. If no permission to transmit exists but has
been requested, no further ~rccessing
occurs. otherwise, if a tuffer is
available, the request is constructed and
scheduled for transmission.

4. This ~oint is reached if no WABT exists and no input·
work queue transmissions can be scheduled. If SACQ
sho~s active input work queues, processing continues at
step' 7 to attempt a receive operation.

S. If there are no active input queues, the output queues
are checked. If so~e are active, a receive operation
is attempted as at step 7.

6. If no wotk queue~ are active and.a.signoff is pending,
th~ transmission cf the signoff record is scheduled.
otherwise, a receive operation is attempted.

5-17

7. Processing continues at this point if .ng traJlsmit
operations· can be scheduled. If a tuffer is available,
a receive only CFeration is scheduled. Othervi~;e an
exit occurs.

8. I/O scheduling always involves applicaticD of the
current SH transmit FCS which inforas the host about
the desired receipt of data by 5H. I/O is then b,.gUD,
and I/O activity is flagged. Finally, an exit occurs.

SIO utilize~ a subroutine called SIOBP. This subroutine
provides, if possible, the a~dress of a communications tuffer to
its caller. The buffer .ay ccae frcm either of tvo sources. A
standby buffer is one that 51MBC has determined is of nc further
usa. This one, if available, is alvays given a~ay first by SIOBP.
otherwise, if ~ primary btiffer·is availab~e, it will be supplied.
If there is no primary buffer, an attempt is made to acguire one.
If this fails, one vill appear later as han~led by seOKS.

SYNHC is the I/O complete entry pcint to SHe .It proceSSEtS as
fo110lls:

1. I/O activity flags are cleal:ed. If any abortive .arror
has occured, 5PRG! is entered to clean up.

2. If the operation ccapleting is a signoff trans.ission,
a clear I/O operation is performed and SPBG1~ is
invoked.

3. If the operation is a successful connection fclloving
the SC command's data line enable, Bewe is cbecked to
determine the .ode of operation. If in normal .ode, or
ACCEss-to-ACCESs/slave .ode, the sign-on rE~cord
transmission is bEgun. If in ACCESS-to-1CCESS/.!Lster
modE, the handler waits to receive the sign-cn record
fro. tbe slave syst~ ••

4. If the operatiot is signen completion, SH is placed
online and the 'CCM~UNICATIONS ESTA~LISHED' .essag. is
issued. If a signoff has been requested, tbe si~Jnoff
transmission sectJon of SIO is invoked. ·otherwise, th~
'SH runningf control signals· are issued to all

. associated inputha ndlers using SHRUN.

s. If the operaticn is a completed transmit/receive
sequence, the recEived Fes is processed.

5-18

6. The RCB in the received data is then exaained. In
ACCESS-to-ACCESS .ode, an input type RCB is cbanged to
a printer-type RCB in orde~ to locate the proper entry
1n the SRST. ~hey type of RCB deter.ines the
processing as follcvs:

A. If a request to transmit, and a signoff 1s
pending, the tequest is ignored. Otherwise, the
associated cutput handler is activated.

B. If a permission to transmit, the STST is '.arked.
In this case and in the case where step 1 leads
to ignoring the reguest, the tuffer is
established as a secondary buffer fcr SIOBF.
Tben SIO is entered.

c. If data, the block is enqueued to the proper
output work queue. If that queue liait is
reached, the associated PCS bit for the strea. is
disabled.

saRUN is a subroutine used to present signals to associated
input handlers informing them of sa activity and para.eters. It
s~arches for marked STST's tequiring this signal, and transmits a
massage to the handler containing its intended RCB, input work
queue name, queue limit, and current comaunicatioDs buffer size.
SHRUN is invoked either by SYNHC following ~ signon or ty SCTLB in
belated response to the req~est for control buffers. It can also
be invoked by SIO when an in~ut work queue drops below its queue
limit.

5PBGE purges all input and output vork queues and associated
handler queues. It resets 58 to initial conditions, and issues
th: 'SY5TE~ DISCCNNECTED' lessaqe. Pinally, it clears the purge
indication frol all 5H work gueues and closes the 5H priae gate.
If auto-restart is requested, a new sign on is attempted.
otherwise, processing is terminated.

5-19

Note: This document assumes knowledge of IB!'s Binary
Synch~onous Communications pIocedure, and the HASP Multileaving
conventions. For those petscns unfa milia r with the Multilea" ing
discipline, Appendix A of the HP2000 ACCESS BasE Design
Specifications for the base level ~rogram describes the ~{ASP
Multileaving protocol.

I. Product Identification

Thg D.50F Driver interfaces 21 00 com~uters to telecomllunications
devices usinq the subsEt of IBM's Binary Synchronous
Communications required by. HASP Multilgaving. In addition to the
standaId facilities of Multileaving~ an autd an~wer capability is
included in the program.

II. Design OVErviEw

Q~~iSD s§§Ym~12~§

Th~ program reguires the fcllowing for
q~nerator driver CO.43), ar.d thE: 12618
synchIcnous transmission. System must
comllon carrier ~quipment.

operation: tiae base
in terface boards for

also havE a~propriat9

Addi~ional software required by this Frogram includes the HP2000
ACCE?S I/O processor micrccode.

Q~§ig!l §Yl!!.!!.~U

O.SOF is an input/output driver designed to operate in the HP2000
ACCESS I/O processor. It will perform the following functions:

1. "Clear", - puts I/O toard in "on-hook tt conditicn. Resets
status words.

2. "Write" - Tr~nsmits a data blcck. ~o error correction is
done. No reception from remote is initiated.
Used prima lily t6 transmit a final block such as
a signoff.

3. "Write/read" S~tds a block of data to the ~emote and
then waits·fot acc~ptance/rejection frcm remote.
If block is rejected, l~ will te rEsent. If
'accepted, ary incoming data overlays thE buffer.

5-20

4. "Answer" - Allows data line to be established by answering
phone or ty operator manual .dial. It then
initiates signeD protocol with the rellote.'

5. "Extended status" - Establishes a table for collection of
statistics on d~vica performance during a
session.

Beca use' the Mult ileaving ~rotocol' raql~ires tlie EBCDIC cede, the
driver supports only the EBetIe transmission code.

With one exception the driver always operates in a !ii~-Before­
U~ll§.!!l! !~'"~.!l~gg!!D!en!· DIede. WAST allows the processor to
indicate a "temporary not ~eady. to receive" conditicn to the
transmitting station. When in ACCEss-to-ACCESS mode, the driver
vill nct respond with WAfT when it receives WABT in a nor.al
aRITE/READ operation. Instead the driver will respond with ACK9
and continue tb9 rEad oper~tion.

The driver also supports l.£ansFYrul! J!!~, which allows data link
cont~ol characters to be transmitted as data without taking on
contrel meaning_

..Q'uign .a.2.2£gASl!

D.SJF is modular in its intetnal architecturg. Each module may ba
classified as a "function prcceEsor" (mcdules are responsible for
9xecuting a particular function: i.e., "read", "write") or as a
fecommon module" (modules cr subroutines which aid function
proce ssors) •

III. Design struct ures

NOTE t 1: When a call is rejectqd, the following return
codes will appear in tha "A" and' na" registers:

l=R!Q!~I~E n=!~Qj~lI]

1 C
1 1

1 100(00

5-21 '

~

Illagal request
Local terminal is
"0 ff-line"
Dri ver bus y

Q!~S.iBS12n ass !ynctign

Puts I/O board in "on hook" condition (drops line). Clears status
vords except "Extended status".

!~!,!S~! ~~~~iR~ign

~ha following calling sequence should te used:

JSB • IOC.
OCT XX where XX is logical unit number.

!his call is naver rejected.

jlg~~!h! Si~~liR112~

1. Turn off I/O toards (drcp telephone line).

2. Clear status word in EQ1 entry.

3. Return.

Do not use the clear function with the intent of merely clearing
the "px:esent operation" since it will drop the communications
line.

~s~~1~lign An~ 1~D£1i2n

This request is not directly availabla. It is a part of
wRITE/nEAD processing. Read a block of dat a from . the rello.te
terminal. Execute error Jet~ction and correction on the new data
block.

The following error detecticn/correction procedures are used by
the ~~cgram:

1. The driver wi.11 ·re-r-aad l:lccks of data received in incorrect
parity up to 25 times. . If still· in error, a "DLE EOT"
sequence will :be sent tc the remote and the line drcpped.

5-22

2. If more than 3 secotds pass without receipt of a "StN"
chaiacter from the remote, the driver will consider the block
in ar;or and utilize thE err~~ processing in (1).

3. If a "11K" is the fiI:st con trol character race! ved, the
driver will resend its ackncwled9~ment $eq~ence.

Ihe following optional operational mode may be used:

1. The driver viII automatically d~t~ct transparent text, delete
"DLE" charact~rs, and eJasine the characters following "DLE"
fer control characters.

lUji'us.£!! §'E~U1s.u.l on

Th~ calling sequence for this r~guast is discussed under
WRITE/READ below.

The transmissicn leg will reflect:

a) Characters ~eceived •

. ti) Include S'IX, SOH, and E'II characters.

1. Process write request. (~ee he 10 w.)

2. Receive data block from remote.

1. Check parity on received block, requesting retransaission if
th~ block was received in errer.

4. Check for WAST rec~ived. If so, respond with ACK~ and
continue the read operation. Else enable "WABT" timE delay
generation and terminatE the read.

ll~~£.i~i2~ ans 1Yn~tiQn
Sends a block of data to the remote then waits,for an acceptance
or rejection of thE block. A data block may be read as an
acknowledgdiD-=nt, as well as an ACKf,1. If the block is rejEcted by
a NAK, it will be retransmitted.

5-23

The following error detection/correction facilities are
i mplemen ted:

1. If re.ote fails to tespond within three seconds after the
block has been sent, a "NAK" is transmitted to request
retransaisssidn of tha Iesponse.

2. If the remote's re-'ply is inval:i1, a "NAK" is sent and the
driver set to receive a new'reply. This procedure will be
repeated up to 25 timEs, whEr~upon a "OLE EDT" will be sent
and the line dropped.

3. If thf? remote "NAK"s the block 25 times, a "OLE EOT" sequ.!nce
will be sent and the lite droPP9d.

4. . If DATA SET READY signal status from the local modem dr()ps,
the I/O board vill be turned off and the driver freed.

5. A reply of "OLE EOT" will cause the I/O board to be tUl~ned
off, and operation ended.

!he following eptional operations may te regu~sted:

1. 'Transparent mode allows all data, including the normally
restricted data-link' line-centrel characters to bg
transmitted as data. Transparent mode is indicated by a "DLE
STX" at the beginning of the block.

InsiI!s~! ~~£'~iE!iQn

!he following calling sequ~nce should be used:

'Ihe

JSB .IOC.
OCT 22~XX where XX is the logical unit number
Reject Address
Start Address of Buff~r.
Length of buffer to ba sent

~1l1!!':

WORD '1: Len gt h of

WORD • 1 : start cf

woan '3: start of

call may be re ject ed for the

receivE bu ffer.

re: CE: i ve buffer.

data to transmit.

following reasons:

5-24

1. Local terminal "off-line".

2. Drive~ busy.

The following considerations aFply when using a WRITE Be9uEst:

1. User program must place the following .data-link control
characters in the block to be sent:

a) Place SOH, STX or DLE, STX at beginning of data.

b) Place ETB at end cf buffer.

2. A WRITE only operation can b~ specified by a request code of
2991X. This call should be used only for the final write of
a session and should be followed by a CLEAR request.

1. S~nd data block to th~ remcte.

2. Send block ChECk chal:acters.

J. Wait for remote to reply.

4. Take appropriate action for remote's reply.

ACK9, DATA BLeCK

NAK

WAB'!

Q!l§£UJ21ir.2)l s.n..!l ll~.ti2U

Enable vai~-before-trans.it
gene~ator and end operation

Rasand the block.

Reply with ACK~ and continue the
read operation.

Establishes line for l,cal t~rminal.
connection or auto answer cOlnection.

Allows either manual

Tha following error detecticn/correction facilities are utilized:

5-25

1. If remote fails to IesFcnd to the "SOH, ENQ" within three
seconds, another "SOH, ENe" will be sent. The process vill
be repeated up to 25 times, after which a "DLE Eel" will be
sent and the line dropped.

2. If the remote repli~s with anything other than "ACK9",
processing will continue as if a tim90ut had occurrEd in (1)
. above.

The following calling sequence should· b~ used:

J S8 • lOC.
OCT 3'9XX where XX is the logical unit number
He ject A ddr ess

lhe call may be rejected for the following reasons:

1. Local terminal already "cn-line".

2. Driver busy.

!lg~;i!h! ~~iS~iEIi2n

1. Prime I/O board to send.

2. Wait for carrier frcm mcdem.

3. Send "SOH i ENQ" to remot~.

ij. Wait for response from IEmote~

5. If responS09 is ACKft', then we are in normal mode. Proceed to
number 9.

6. If responsE is SO~/ENQ, ~hen we are in ACCESS-to~ACCESS mode
and vill take on the rc"le of slavE. Proceed to numter 8.

7. If re~pons~·is ACK1, thEn we are in ACCEss-to-ACCESS mode arid
will take on the- role· of n:aster.

8. Indicat~ ACCESS-to-ACCESS mode and master/$lave role in EOT
status word complete thE ar..swe:r request.

9. Activate "Wait-before-tIar.smit" generator.

5-26

J2u~!i.2!!2n. AIlS 1l!~ti2n

the usaq9 of this call is .to pass statistics on the d9vice's
performanc~ during a session.

Th~ following calling sequence is used:

J.SS
OCT
Reject
DEl
DEC

• ICC.
12PXX
Address

Buffer
7

wher~ xx is the logical unit number

Suffer ass 7
After this call statistics 0& device performance will be
maintained in the buffer specified by th$ requestor. The call
should be made before beginning a session. The call vill. never b~
reject~d ~nd will always yield an immediate completion return.

1. The following statistics are maintained in the rEquestor's
buffer:

woaD 1

WORD 2

WORD 3

WORe 4

Num ter

Number

Number

NUDlb.ar
data.

,of buffer overruns.

of timeouts.

of "NAK"s recei ved.

of, da ta checks on incoming

WORD 5· Number of unrecognized responses.

WORD 6 Carrier lesses.

WORD 7 ~rrcr code - contains reascn that th~
line wa 5 d to ppei.

5-27

o

1

2

3

"
5

n~I1Rsi2n aa~ ~~D~1i2n

Dropped d u.e to CIEA]~
request.

Message sent/received
25 times with line
errors each tile.

~odem dropped read Yo

Received "DLE ECT"
from rEIlO tee

(Not used.)

POV9r failure

Ihis· request is used to pass to the user WORD 12 (device status)
and WORD 13 (transmission leg) of the device's entry in the
egui ~Jlent table.

lU~nA~i g,~Iil!~iSUl .

~he calling sequence for this function is as follows:

JSB
OCT

• IOC.
4/1/1 IX whEre XX is lcqical unit number.

Upon return the A and B register will contain status information
as outlined below:

A - register ccntains status.
B - register contains transmission log·.

~Ull! Eit!!!:

§.!!

Lin* dropped due
to abcrtive e rrcr

5 28

No error

f2!!, ~Q!~'~ EI2S!§!ins

The P.SO pover rEcovery appendage is called from the D.04
module. It first restores tte int6rrupt section states a.50 and
J.50) using D.041 if necessaty •. Pinally, the occurance of a pover
failuJ:e is lIarke4 for possib Ie use by DIE as a disconnect type.

The abo~e processing is inadequate if interrupt rcutines are
not active. This is bec~use the driver' may be ~n901ved in a·
receive or transmit operaticn and pover loss to the lodem will
cause these operations to fail to complete. However, this problem
is overcome in the receive state by the receive timeout wbich is a·
standard part of all reCEive oFeratlons~ The timeout vill
discover loss of data set ready and will lead to a disccnnEct.

For the transmit state, a 15 second ."vatchdog tiaer" is
~mployed to lIenitor all tIlLn::imifision attempts. This tilleout
should never occur unless a power failure (or other modem
catastrophe) kEeps a transmission from compl9ting. The timeout
forces an interrupt leadinq to a disconnect.

Thg transmission log refl6cts
received in a writE/read operatior..
status word is defined as follows:

bits 1q =0 no etrcr
=1 error

the number of characters
On answer completien, the

1 -=0 slave rcle in ACCESS/ACCESS lIodE
=1 ma$ter role in ACCESS/ACCESS mode

o =0 normal mod~
=1 ACCESS/ACCESS mo1~

5-29'

~ ~ 2lcompress!gn HAndlS£

R!~~,ietion A!S'i~Dk~iQ~

The host list decompIessioD handler (8LO) has as its .aiD
responsibility the transformation of cc.pressed data blccksfroa
the synchronous handler to print or punch lines which are p2Lssed
to the appropriate leyel 3 handler. It is a~so responsible for
performance of the following centrol functions: Accept Frinter ·or
punch allocati9D requests and perform the desired allocation,
printing the BJE AiAITING PRIN!EBn or RJE AWAITING PUBCBD .essages
if necessary. Accept disconnect requests and force priDtel~ or
punch_ disconnection. AcceFt printer or punch error notice!; and
produce ATTENTION BEQUIRED messages. Accept device end-of-file
notices and release the device. This handler does not have an I/O
Co.plete section, since it dceA n~~ issue IOC calls. the .odule
is coded in a "serially reusable" fashion, with all locally used
data accessed fro. a unique storage block. ~hus, additional
printer or punch streams may be added by replicatinq this ste.rage
block.

BLO interface's with the level 3 handler as follows:

1. 1 start command is placed on the level 3 handler's vork
queue to activate it. It contains the strea. RCB, the
communications buffer size, the naae of the queue to
receive the response, and a flag to indicat'e Dor.al. or
lCCEsS-to-ACCESS Rcde.

2. Allocated print or punch buffers and e.ptied prillit or
punch buffers are accepted fro. the level 3 hand,ler.
Th.seare filled with decc.~ressed data and givEln to
the level 3 handler. At termination they are fxeed by
SLO. ..

3. Error message buffers from the level 3 handler are used
to repoxt error ccnditions to the operator~

~. A stop co •• and is sent to the level 3 handler at end­
of-file or synchrcnous handler disconnect.

S. 1 'start timed retries' cCBmand is sent to the level 3
handler when HLO is notified that the printer or punch
is not ready.

5-30

HLO interfaces with the synchronous handler by accepting
blocks of compressed data for the print~r or punch.

No . BCW definitions are .ade by this han.dler. It conforas to
those defined ty the synchro~ous handler and printer handler.

A significant feature of the inputs to the routine is that
they include a mixture of norlal .essages entered by .POTQ calls
(print. blocks, allocate requests, purge queue request) and
priority messages entered by • PBIQ calls (prin·ter error, printer
EOP, and buffer messages). As a result, upon entry to the handler
the queue must be inspected to detect priority calls. Hence, a
.SEEQ call is used to create a latch to different message
~rocessors. These message processors are discussed telov. When a
processor has finished it vill execute a .GETQ to.re.ove its entry
and return to the .SEEQ latch or .CO!.; depending on the· type of
~rocessing performed.

~ISCO is entered for purge-queue requests, which cDly result
fro. a communications disconnect. If a device is allocated, the
:'olltine deallocates the -device, issues a purge com.and to the
level 3 handler, releases any unused buffers, and resets local
storage.

ALLOC is entered for printer"or punch allocation requests.
If the device is already allocated to this handler, the allocation
request is delayed. otherwise the routine atteapts to allocate
the device, sends an "AWAITING PBINTER" or "AWAITING PUNCa"
message to the console, jf necessary, and sets a tiaer loop to
retry allocation. A pathological case of special interest is when
a buffer cannot be obtained for the console aessage. In this case
th3 entry latch for the routine is reset to allow no further
actions until the buffer is received as a aessage. This technique
is' used elsewhere in the handler, but is not further elatorated in
this documen t.

PRBLK is entered for ~rint or punch block queue entries. 1
buffer is obtained from the free list and entry is .ade to .DCO"
to decompress lines for output. the routine also sets carriage
control, if necessary, and then ships lines to the level 3
handler. It is also ras~onsible for indicating print or punch
blcck processed to· the SynchIonous Handler when finished. Again,
suspension may occur dua to unavailability of a buffer, and the
latch-I9start technique is used to continue processing.

5-31

PRPLT is entered for Frinter or punch faults. ~BEBR is
intered when the printer is Dot ready. PRERR issues an "I'1'TEHT1CON
BEQUIRED" aessage to the console and is done. Again, a latch­
restart for buffer n~t available sus~ension is used.

PREOP is ente~ed when the step command is returned by the
level 3'handler. All print cr punch buffers are freed by HLO aDd
the device is deallocated.

PRBUF . is enter.ed for tuffer messages. It stores the buf1:er
iRe ssage to allow proper operation of the latch-restart routiEles
and then goes to .SEEQ to allow ccntinuation of the suspended
operation.

The only other entry to this handler is the initialization
entry. This simply :calls .FlND to find its own queue Daae f:or
future refp.rence.

~~!~Yl!'~1ietions

PDCC is the funct ional module in the handler which reeeiv'as
control after a printer buffer is obtained and deteraines the
carriage contIol character to insert in ~he buffer. Print-then­
spac~ mode is alvays utilized by this handler, so centrol is
always executEd before printing. In ACCESS-to-ACCESS·.ode, the
value in the SRCB (PCP contrel codet is moved intact to tbe hiqh­
order byte of the fi~st data verde In normal mode, PDCC .aintains
the following data to determine the spacing and conv&rt
multileavinq control charactErs to PCF control codes:

STATE

CH

State indicator
o _. Last control vas immediate (1)
1 - Last control vas after print ~)

Contrel held
stores last control for control after
print o1=e ra tion s.

Input SRCB's may be ,considered as ordered pairs of data:
(V,C), where W is when the· centrel function is to be perfor.ed, I

immediate, A - after print, and C is th~ control operation.. Ie
raay nov define the' operation of PCCC in terms of possible
(S TAT E, (if, C» CO Il b in a t ion s •

. j.L.~

(I,e) Carriage centrol (- C
Decompress data and queue

5-32

0 I (A, C) Carriage c.cntrol <- space 0
CH <- c. STATE <- A
Decompress data and queue

1-A (A, C) carriage ccntrol <- Cft
C8 <- c;
Decoapressdata and queue

1-A (I, C) carriaqe control <- CH
·S'rlTE <- I
Data <- one blank; Queue data
Adjust pointers to reprocess
this block

,
5-33 '

This handler (HRO) allccat~s and manages a card reader
ha~dl~r in order t~ pre-piocess the card data for the synchronous
~ommunications h~adler. Ple-p~ocessinq involves compressing and
blocking card imag~3 into thE acceptable communications format.
Th~ code for thi::; handler vill be written as a sepa.rate "serially
r~usable" module. The actual handler vill consist of a block of
storagp. .for the local da ta struct Ut'9 and appropriate calling
sequences to the c'~de. HRO is a level 2 function handler, and its
interfacing to a cdrd reader handler follows the level 2 - level 3
protocol.

HRO utilizes its allocated reader as follows:

1. .1 start buffer is placed on the reader's vork queue to
initially activate it or to reactivate it. ~he fors of
this b~ffer is as p~escribGd by the level 2 -lovel 3
protocol.

2. Allccat~d re~der buffers are accepted from the card
reader ~andler. 1h~y are set to a read' command and
returned. These same buffers return as writes to H~O
with us~able data. They are always given back ·to the
allocat·:d readar as reads except when termina tin9, :Ln
which caSE they ate freed. .

3. Error commands from the allocated reader are used to
report ~e error to the operator.

4. HHO sends a sto~ ccmmand to the alloc~tod reader when
HRO is deactivating due to a TR command or synchronous
handler disconnect.

HBO interfaces with the synchronous handler by:

1. Placing compressEd blocks Jof card images on the work
queue .indicated in the 'SB running' message. If the
limit of this queue ~s reached, HRO susFends until

. reactivated with a newiSH running' message.

End-of-flle signals from the reader are indicated to
the synchronous handler as prescribed by its' base
des j gn.

5-34

~li giB §.S1.:..Y52:t.Yn.§

The following symbolic names are associated with the local
data structure used by HRO. In fact, these na.e~ are ·u$ed as
indire~t pointers to the .local data and d~ not contain the data.

CCCPG

CCQNft

CCFLG

ceRDa

. CCSHQ

ceCCB

CCCBP

CCCBE

CCCBS

ccaeB

holds th9 address of the priaegate for"the
active functicn handler

hold the vert quetie name for the activ. function
handler

contains several flags:

ceSHR synchronous h~~dler status (+~iunning,
O=not a f ; , -;:running but eRe is at queue
limit) .

CCPCR set = ck to precess card data

CRDTA set .: all cOII~ression resources available
(communications buffer and not at queue
li.it)

CCEOP set = at end-of-file with not ready reader

CCTBC set = TB com~and is pendi~g

CCWST set = waiting for level 3 handler to stop

CCSPN set = start reader is pending

CCATA S9t = ACCESS-TO-ACCESS mode

holds queue name of allocated reader

holds queue name tc which compressed data is
delivered

holds a·ddress of cOllllunications buffer

current position within communications tuffer

address of end cf ccmmunications buffer ... c

holds siza cf communications cuffer

holds straal Bca for input to CCSHQ

..
5-35

CCSRC

CCQLf!

CCRET

helds carriage control for sacs when in ACCESS­
to-ACCESS mcde.

holds queue limit for maximus nu.bet cf buffers
to place OD CCSHQ

holds return address for delayed returns fro.
subt;outin9 CGeB

No buffer definitions are forced by HRO. It ccnfor.s t~
those required by the synchrcDcus handler and the level 2 - level
3 protocol.

When this module is entered, register A is loadEd with the
address of the block of lecal stcrage for the specific co.~ression
function handler which is being primed.or initialized. 1 routine
named CADDS generates a series of indire~t address pointers for
the local storage in questio~.

HROHI is the s1ste. initialization entry poLot tc 8BO. The
only function performed is tc .FIND the HRO work queue naae. Th;Ls
naae is stored in CCQNM.

KROHP is the prime entry to H80. Work queue entries
processed include:

~.H ,¥n.niD.9 - a signal flO. the synchronous handler that it =ls
runnl-ng. This message is received in a control buffer and
informs HHO that it aay initiate processing at any ti... (jet
also infoIas HRO that it aay continue if suspended due 1:0
queue limitations.) 8;0 vill not do any work until this
message is received. In the message are paraa.ters needed to
operate: the streaa RCE, the communications buffer size, t)~e
naae of the queue to receive data from HRO, the queue li.it
for this queue, and a flag to indicate 1f the syste. is in
ACCEss-to-ACCESS mode. HBO is designed to include 58 co •• auld
processing as an inherent part of the 'SH running' .essage
processin g.

~j.&. ~ ~.u.g 11 S2!!And,! these aessages are received fr4)a
tha console I/O handlar as operator ~equests to &ctiYate and
control use of a read9r. 'Ihese aessages ar4 not valid unle:ss
preceded ty an 'SH running' message.

5-36

BeAder ~!A card ilages from the reader allocated by CRC
are blocked and compressed. Error indications froa the
reader are also processed •

. ' En:g~ m!!.!!! the H BO vork queue can be purged by the
synchronous handler due to abo~tive errors O~ normal
tarQlination ~roced·uras. In· any case, BBO deactivates its
allocated reader, deallccates sallE, and guiesces until the
next • 5 H running' message is recei ve"d. 1 stop cOlllland sent
to the reader as a part of purge pr~c9ssinq vill also return
to HRO later.

~~'~l~ ~~21i£ !nS ss •• unica~t~§ ~uffers
received from the buffEr manager in belated
requests .for buffers.

these aay be
respense to

~9ntrol. SJ2~a:tion§ vlu:: 11 .Ln normal lIode, a control 0
represents end-of-file and all other controls are ignored.
When in lCCEss-to-ACCESS mode, central 0 represents end-of­
file and all other cont Iols are for carriage control.· The
value is saved at CCSRC and is passed along in the saCB for
the next data to be co.~ressed.

Allocation and manage lent of the card reader handler is
affected by three sources: activity signals from the synchronous
handler, operator directives and device status signals frcm the
card reader handler itself. The sync:h.roDOUS handler inforas RRO
(as vell as other lIodu19s) that 'it is functioninq by placing an
'SH running' work entry on the HRO work queue. only when this
signal has teen processed can other signals be effective.
Similarly, a purged HRO work qugue (purging done by the
synchronous handler) indicates that the synchronous handler is
ceasing to function.

Between the "running" and "purged" signals, cpera tor
directives (~tart leader, Restart !eader, and Ierminate jeader)
are accepted. Note that the synchronous handler connection signal
internally causes an SR ccmmand to be processed. A purge signal
also implies a TR command. !he sa ccmmand causes an allecation of
a card reader handler to be attempted. A message indicating the
result is issued in either case. If successful, initial
conditions are established and a start buffer is acquired. This
buffer is put on the card reader handler work queue with EBCDIC
reading mode and the HRO name indicated. This will activate the
card reader handler as describ~d in its base design. An BEl
command is routed to the allecated reader for actual .handling.
Th9 TR command inspects an HRO activity indicator and either
leallocates the associated handler immediately if no cards are

being processed or flags the TR condition to be effected at end-
of-file. .

Once allocatEd and start.ed, the received card i.ages are
comFressed by the central cOllpression module and put on 'the
associated synchronous handler vork queue. Tvo prcbleas can
interrupt this co.pression flew. When a communications buffer is
not available, an indicator of this condition is set. I~ a card
image appears on the BRO vork queue prior to the needed
communications buffer, that card image is replaced on the RRO
qU-3ue (via .PRIO) and the HBO handler exits after cl,csin9 its
prime gate. This prevents further precessing of card iaages until
th~ needed coamunications buffer becomes available. Any errors
indicated by the card reader handler to HRO will result in the
issuing of an error aessage. An end-of-file signal is propogated
through the central compIession rcutine to' the synchronous
handler. Folloving the processing of an end-of-file, the TB flag
is inspected and appropriatE action is taken. Read butfers are
always returned to the allccated reader imaediately following
processing of the data i~ thea. This technique insures that a
read operation is continually teing attempted and is the vay in
whioh the "hot reader" featuIe is iaple.ented.

5-38

!l2~ ~§n.!lll QecolIEression HM~

Q~~~Rsl~ ~g :yns~~on

The· function of the host message decompression handler (HKO)
is to receive blocks of co.p~ess.d data from the sYDchronous
handler, decomp~ess th~ data, a~d transfer it to the console
input/output handler.

Xn:.t!tl~siD.S.

This handler communicates with the synchronous handler and
tha console inEut/cutput handler. Its input queue entries are
aithe~ blocks of compressed data fro. the synchronous bandler or
console output buffers requested by the handler itself.

Input buffers received fro. the· synchronous handler are
returned when the entire block has been decompressed. ~his vill
serve as a signal to the sytchrcnous handler that this handler is
able to accept more work.

INBUF
OUTBP
HOAT!

SIZE

KDDe1

KDOBr

QNAME
CIONM

address of the input data block.
address of the output tUffer.
address of the next data block to be
decompressed. NDATA vill be zero when there is
no input blcck being processed.
retains the size (number of bytes) of a
decompressed message.
normally an unconditional skip'- set to 'DOP' 1f
a decompressed message must be fo14ed intQ a
second conscle buffer.
normally unconditional skip set tc 'nope if
the handler is suspended because it cannot obtain
a buffer.
console output decom~ression handler queue name.
console input/output handler queue namE.

Buffer control words associated with input queue entries are
as defined by the synchronous handler.

Buffpk contrel ~ords associated with output queue entries are
?t. s 1 '6 fin :.~ 1 by. tit!3 ~ Y n c h r 0 r. ::> u ~ han d 1 a r (9 X h au s t ~ din put b u E .fer s)
and by th~ conso'le 1/0, handler (cutput messages).

"
5-39

This handler has two ~~t~y points: an initialization section
(HMOHI) and a main queue ent~y processing section (HMOHP). At
initialization, the gueua names of this handler and the console
input/output handler are foutd via .PIND and saved.

The host message d~ccmpression handler receives blocks of
compressed console messagEs frcm the synchronous handler. One
blcck may contain sever~l ccnsole messages. It is therefore
necessary to determine whether or not a block of data is already
baing processed. If so, the output buffer processing section of
the handler is entered. If Dot the input queue processing. section
is entered. ·

In the input queue landling section, a queue entry. is
obtained. It vill be either an input block or a buffer. If it is
a buffer, the decompress routine is entered. If it is an input
block, and the handler is waiting for a buffer, the entry is put
back on the top of the queue. Otherwise the outEut bu:Efer
processing section is entered.

In the output buffer ~rocessinq routine~ a ~heck is made to
determine if a buffer has al~Eady been requested. If so, the
input queue handling sEction is entered. If not, a console buffer
is reguested. If the regu~st is satisfied, the ~eccm~ression
section is entered. If not, the handler suspends itself until a
buffer is acquired.

In the decompressiot section, one line of data is
decom~~essed into an intermediate buffer using .DeOH. Depending
on the size of the decompr~ssed message, either one or tva console
buffers receive the'text and are sent to the console I/C handler.
If the input block is compl9ted, it is returned to the synchronous
handler. If net, no further processing takes place and the
handler simply exits.

5-40

D~§criEt~2n sn~ i~nction

. The primary function of the host inquire compression handler
(HIO) is to receive remote. command messages' froll the· console'
input/output handler, ~compEess them, and transfer thea to the
synchronou$ handler.

Interfacing

The host inquire com~ression handler will co •• unicate with
the console input/output handler and the synchronous handler.

·Queu~ entries received fro~ the console input/output handler
will be RC-msg type commands. ~hp ~~~saqe mayor aay not have
'RC,' in front'of it. This tandler vill compress the messages and
give them to the synchronous handler.

The only queue entry received from the synchronous handler is
a control buffer indicating a ISH runningf command. The buffer
will contain the synchroncus handler queue name, queue limit,
communications buff~r size, and the RCB for the console.

Buffers received as input vill be communicaticns buffers
requested by this handler.

1~£s1 ~Za §!~~~~~~

One constant is estatlished at initialization time and is
never modified.

QNAf!E console input compre~sion queue naae.

Two constants are USEd in the calling sequence of the
centralized comFression routjne.

INBUF

OUTBF

address of the input tllffer.

address of the output buffer •.

Three constants
com~ression handler.

are used only by the console input

BFLl'IT established when an output buffer is ottained and
is used to determine whether or not another entry
~i11 fit into the output buffer.

5-41

QSIZE

SFLAG

establish6d when an inp ut queue entry is
obtained. If there are no more entries on the
queue, the cutput buffer vill. be i.mediately
transferred to the synchronous handler.

normally zero. It is set to -1 if the handler is
suspended bEcause the SH queue limit has been
reached.

Four constants are passed to the handler by the synchronous
handler wi"th the '5:H running' ccmmand.

OLI!!

SHNA"

CBSIZ

CRCB

the maximuJ number of ~ntries that may be in the
synchronous handler's input queue.

synchronous handler queue name. ilhen this va,lua
is zero, the handler is not operational and will
discard any inl=ut queue entries.

communicaticns buffer
required in the requ~st
buffer.

RCB for the console

size.
for

This value is
a cOIIJlunicati.ons

The console input com~ression handler has two entry points.
In the initialization section, H10HI, the handler's own gueue na.e
is found via .lIND and sav9d.

The operation of this handler is controlled by the
synchronous handler. It will not rec~ive any input queuE entries
until communications hav~ bean established and it bas received a
'SH running' command from the synchronous handler. If
communications arE broken, the input queue will be purged by th~
synchronous handler. and all gueue entries will be discarded until
the next 'SH running' cOlmand is received. If the synchronous
handler input queue limit is reached, the host ,inquiry coapressio.D
handle~ will suspend itself. Any queue entries received while the
handler is suspended will be I=ut back at the ·top o~ the queue.
Th~ handler will not process any entries until the Dext 'SH
running' command is r9ceiv~d.

The HIO handler
~ossible at one time.

will process as man'i queue entries as
When there are no more queue entries, it

5-42

will complete the output buffer and transfer it to the synchronous
handler aven if it con~ains en!y ofie console .es~aqe.

5-41

Appendix A

. "Multileaving" is a term which describes a cc.puter-~~o­
computer commutication protocol originally developed by IBM for
us-=! with its HASP system. lBtt's ASP, V51-JES, VS2-J'ES2, and YS2-
JESJ nov also support the lultileaving protocol. In a qrC)SS

se'nse, multileaving can bE defined as the fully synchronized,
pseudo-simultaneous, bi-directional transmission of a variable
number of data streams betveeen tvo er more computers utilizing
binary synchronous communications facilities. It must be
~mphasized that this is ~2! a full duplex protoc~l, although full
duplex equipment may be used. Binary synchronous, comllunicatictns
im~lies bi-directional transaissions, but in only one direction at
~ time. This protocol is as viable on half duplex com.unications
links as it is on full dupleJ.

~~j2~ £2!22~!§

At the heart of the protocol is a technique commonly referred
to as "conversational aCKnowledgement." Many communicatie,ns
~rctocols provide for acknowledging the correct receipt of d&ta
with special ccntrol sequences (ACK or ACKO and ACK1). These
protocols have the disadvantage of wasted time in the s~nse that
th~ communicaticns line must be "turned around" to transmit the
acknowledgement. ~he ackhovledgement is then transmitted, and the
line is "turned around" a second time for more data transmission.
l1ultileavinq acknowledges the correct receipt of data with data.
!hus, the pr~tocol is cODversational--transmit data, receive data,
~ransmit data, receive data, etc. Only when an error occurs vhlcih
r~guires retransmission, or .hen one of the two parties bas no
data to. transmit, does this flow break. In these cases, error
correction Qr band-sbaking pIccedures a~e initiated. It should be
cbvious that this conversational technique ,has a potential for
greater ~ommunications linE, utilization. It also ~ives the
participating computers greater potential since processinq of

,received data may be overlap~ed with the transmission of data.

Another aspect of the multileaving protocol is its SUFPort of
~ vari~ble numt~r of ~ndepandant data streams in each direction.
Sc!~h bl::).;::: of f1at~~ t=ans:ilitted .fro~\ cOlnputer A to cO."1pu"ter B lsay
contain ona or mors individu~l messages or record~. Each massage
is tagged with its unique data stre~m identifier sc that the
receiv~r (computer B) can sort the messages out and rout~ them to
~ppropriate destinations. An additional feature of the Frotocol

5-44

allows the receiver of messages (computer a) to control its
initial and continued receipt of the messages for each data
streame This is done as a part of the conversational
transllissions back to the sender of the Dlessages(coaputer 1). It
should be remembered tha t this prctocol is bi-directional.
Therefore, each computer may play both the roles of sender and
receiver. So the statements just made about data streams in the A
to B direction are also simultaneously' true about those data
streams in the a' to A direction. It must nov be apparent that the
data making up each transmiseion typi~ally contains at least three
things: the inherent acknowledgement of any previously received
data, one or 'aore messages, and control information regarding data
streams which may te returnad.

A third important aspect of the lIultilea ving protocol is its
use of data compression. Each ~~ the m~ssages included in a
transmission is compressed in order to rellove character ~edundancy
via encoding. This, of course,' can alse improve liDe utilization
by reducing the actual number 0'£ characters in the transaissions.

7he basic element of each multileaved trans.issicn is the
character string. One or more character strings are for.Ed from
each aessaqe input to the computer for transmission. Messages ar~
usually of the classical types (card i.ages, printed lines,
magnetic tape. records, gtc.) • .Por efficiency in transmission,
9ach message is reduced to a series of character strings ot two
types. These are (1) a lariable length ,nonidentical series of
characters, and (2) a variable number of identical characters.
Due to the high frequency cf blank characters, a special case is
.ada,in (2) above when the duplicate character is blank. An eight
bit control field, termed a ~!Iing cont~2! BIt! (scQl, precedes
each character string to identify its type and length. Thus a
string as in (1) is reptesented by an sea followed by the
nonduplicate characters. I string as in (2) above can be
represented by an sea and a single character (the seB indicates
the duplication ~ount and the character fclloving is the character
to be duplicated). In thE case of an all blank string, only an
sea is required to indicate toth the type and' the nu.be~ of blank
characters. A .essage to 1:9 transmitted is therefore a group of
character strings, each precEded by its respective seB. 1 special
trailing null (~ero) sea delimits the message.

In order for the receiver of messages to be able to associate
each message with a given data stream, an additional eight bit
control field ~recEdes the 9IcuF of character strings representing
the original m~ssage. This field, the !2~2£~ £2nt£21 lls~ JRCll" . ,

indicates the general type, fUDction, and unique identification of
each data stream. Note that the ReB also pro vides for the
grouping of multiple aessages of various types into a single
transmission block. A null (zeto) BCB delimits the block. 1
second eight bit control. field, the ~JlR~~· £52D1£Sll Il~ '~R£JU.
is also included im.ediately following the RCB. This field .~y
provide additional information concerning the message to the
receiving prograa. For exaa~le, in the transmission of messages
to be printed, the SRCB can be ·usad for carriagE contrc)l
information.

For actual .ultileaYin~ transmissions, a variable number of
messages may be combined into a variable sized block (i.e. RCB,
sa c B , S CB 1 , SC B 2 , . • •• , S C B I , ReB, SR C B, S C B 1, ••• etc.) • T be
Frotocol allows for th~ conversational exchange of such
transmission blocks. To allcw optimu. use of this capability,
however, the participating ccmputers aus't have the ability 1:0
control the flow of particular data streams while continuiJlg
normal transmission of others. !his reguirement baco.es obvious
if cne considers th~ case of the siaultaneous transaissicn of two
data streams tc a slste. for i.mediate transcription to physical
I/O devices of different s~eEds (such as tvo print streaas). It
is also an obvious need in tbe case where one of the transcribing
devices becomes not ready, and it is necessary to sus~.nd the
associated data stream. To ~rovide for •• tering and susFensioD of
the flow of indi vidual data streams, a l!lnct~ll. ~ontrcl ~!gu,.DS'-!
j[~~l is add~d to each trans.lssion block. The FCS, which is
receiver oriented, contains a sequence of bits, each associated
with a pa.rticular data' stream. The receiver of sevEral da1:a
streams can temporarily suspend a stream by setting the
corresponding pes bit off in its next transllissien to the send.tr
of that streaa. To resulle the strea a, the pes bi t can be turD~!d
on. In transmissions fro. A to a, the les nn~ by 1 tells B abo11t
those streams A vants to rEceive. The pes £i~!i!!S by 1 tells A
about those streaasB vants to receive.

For error detection ana correction purposes, a ~£i' '9ntI'U
l!~l:! j~l is added as the first character of each tt:ans.itt4id
block. The' SCB, in addition to control information, contains ~
module 16 block sequence. count. These counts are aaintained and
verified by toth sending a~drec~iving systeas in o~der to
ex~rcise positive control over lost or duplicated trans.issic)n
blocks.

Transmission blocks are deliaited by standatd binary
synch~onous co •• unications ccntl:ol characters (STX, E~B, etc.).
~ultileaving also uses the ACKO and 11K control sequences. ICtO
is used as time fill for handshaking wh~n data is 'not available

5-46

for transmission.
i~tervals. NAK is
in,dica tes tha t the
received.

Normally, handshaking occurs at tvo second
used as ·the only negative response and
previous transmission vas not successfully

Pigure A illustrates a' typical IDultileaving transllission
block.

5-47

lig.!!r~ .!

Im£ll ulll!.!wll.9 1.:~.n.§.!!iss1gn R.l.2,!

r"~---~--- ~-,

DLE

STX

BCB

pes

Fes

ReB

saCB

sca

DATA

SCB

DATA
-.---------

see

RCB

SRCB

SCB

DATA
----------- ... -

seB ---_-._--- ..
ReB

OLE

ETB
L---.. ---- --.I

BSC Leadel:

BSC Start of Text

Bleck Contl:ol Byte

PUDction Control sequence

Function Control Sequence

Record Control Byte for recor~ 1

Sub-Record Control Byte for record 1

string Control Byte for record 1

Character string

string control Byte for record 1

Character string

terminating SCB for record 1

RCB for l:ecord 2

SRCB for record 2

SCB for record 2

Character string

Xerminating SCB for record 2

~xansmissicn block terminator

BSC Leadel:

esc Ending Sequence

5-48

l1ll!tilu!~n9. ~.sll!I.s1 .u~ll .§ntlfica ti.9!!'§

Following is a complete specification of multileaiicg control
fi~lds. Th~ rEader should keeF in mind that not all of tha
capabilities im~lied by these,definitions'have been impleaented by
IS,.. At the end of . this' a~pendix, s~ecffic omissions in the
implementation are 'noted.

usage:

Definition:

Notes: 1.

10K L J J J J J I

L-----------------~ " o 7

This field identifies the type and length of a
character string. One or more of such char~cter
strings represent a record or message for
t ransmissiot.

c = 0 = End of record (KLJJJJJ=O)
o = 1 = All other SCB's

K = a = Duplicate cha:act~r string

L = 0 = Duplicate character is blank
L = 1 = Duplica t-a· character is ncnblank

(and follows SeB)

JJJJJ = Cuplication count

K = 1 = Non duplicat 9 cha,racter string

LJJJJJ = Character string length

If KLJJJJJ = C and 0 = 1, seB indicatas record is
continued in next tIansmission block.

2. count units are normally', but may be in ~ny
other units. ~he units utilized may be indicated
dynamically in the SRCB or other methods of
indication could be designed.

'5-49

Usage:

Definition:

r~--- - - ... - ~---- _"
I 0 I I ITT T ~ I
L-----------------~ o 7

This field identifies each record type within t;be
transmissiol block. Further, it uniquely
identifies individual data strea'as when t]~e
record types are the same.

o = 0 = End of trans.ission block (IIITTTT=O)
o = 1 = All ether RCBls

III = Stream identifier used to identify streaas of
multiple identical functions (i.e •• ultiple

. print streams toa multiple printer syste.,
etc.)

III = Control information if TTtT = 0 (ccnt~ol record)

= 000 = Reserved for future expansion
= 001 = Request to ini tiate a fu.a-ction trans.lssioD

(Erototype ReB for function.in SaCB)
= 010 = Perlission to lnitiate a function trans-

mission (RCB for function 'contained in SRCB)
= 011 :I Reserved
= 100 = Reserved
= 101 = Available for local modification·
= 110 = Available fc~ local .odification
= 111 = GEneral control record (type indicated

it SRCB)

TTTT = Record type identifier

= 0000 = Control record
= 0001 = Cperator message display request
= 0010 = Cperator ccmmand
= 0011 = Normal input record
• 0100 = ~rint record .
= 0101 = ~unch record
= 0110 = tata set record
z 0111 = 1erminal message routing request
= 1000 - 1100 = Reserved for future expansion
= '101 - 1~11 = Available for .local aodif1cations

5-50

Usage:

Oaf ini tion:

r------~---~------,
lOS 5 S 55 5 5 J

o 7

This field provides supplemental infcrmation
a tout a reccrd.

o = 1 (Must always be on)

SSSS5SS - Additional information - actual content is
dependett cn reccrd type. Several exaaples
are listed belove

saCB for General control reccrd

Usage:

Def in1 tion:

. (character)

o

Identifies
record.

the

7

type of generalized control

character ~ A = Initial terminal signoR
= B = Final terminal signoff
= C = Print initialization rEcord
= D = Punch initialization record
= E = Input initialization record
= F = Data set transmission initialization
= G = 5yst~m configuration status
= H = Diagnostic control record
= I - R = Reserved
= 5 - Z = Ivailabl~ for local modification

SRCB for Print records

Usage:

Definition:
' ..

r--~----~---~~~~--,
10M C C C C eel

o 7

Provides carriage control information for print
rEcords.

o = 1 (Must always be on)

5-51

" = 0 = Nor~al carriage control
= 1 = BesErved for future use

CCCCCC = Carriage control information
:: 1000RN = Space immediately NN spaces
.: 11NMBN. = Skip imaediately to channel
= OOOONN = Space NN lines after print

BRIllf

= 01NNHN = Skip to channel BNNN after print
= 000000 == SU ~pre S8 space

SRca for Punch records

Usage:

Definition:

r-----~--~-----~~~,
I 0 ! " B R R 5 5 I

o 7

Provides
rEcords.

additional inforaation abcut punch

0 = 1 (!lust always be on)

5S = Punch stacker sel~ct inforllation

B = 0 = .Nor la1 EBCDIC. card image
= 1 = Column binary card image

f! = 00 = SC E count units = 1
= 01 .: SCE count units = 2
= 10 = SC B count units = 4
= 11 .: Reserved

RR = Reserved for future expansion

SRea for Input records

Osage:

De f ini tion:

r---~~~-~--------~,
I 0 " B B R R B R I
L-----------~-----~ o 7

To provide additional inforaation for input
records.

o .. 1 (ftust alvays be on)

" = 00 = seE counts = 1
= 01 = seE counts = 2

5-52

= 10 = SCE counts = 4
= 11 : Reserved

B = 0 = Ncr la 1 EBCDIC card image
= 1 = Colulln binary card ill age

BRRR = Reservac

SRca for T9rminal message routing Iecords

r-----------------, lOT T T T T Ttl
L-----------------~ o 7

Usage: Indicates th~ destin~tion of a terminal me~saqeo

Df:!fini tion: a = 1 (Must always be en)

TTTTTTT = Remot~ system number (1ST~99)
= Remota system qroup . (100STSf27)
= Broadcast to all remote systems (T=O)

5-53

r-~--~-~--~---~-~--~~------~-~------,
lOS BRA BCD lOT B R i X Y Z I

o 7 8 15

Usage: controls the flow of individual fancticn streaIl2 ••

~efinition: o = 1 (f!ust a lllays be on)1

Note:

S = 1 = Sus~end A.ll stream transmission (iait-a··bit)
(A handshaking response of lCKO implies the
clearing of this bit.)

= 0 = Norlal state

T.= Remote console stream identifier

R = Beserved for futuIe expansion

ABCD ••• WXYZ = Various function stream identifiers (oriented
only to recipient.)

- Normal ~rint (or input) = A, S, C, •••
Normal ~unch str~a.s = Z, I, I, •••

- Other functions = •• ~ - •••

Note - a bit on = continue function transaiss:i.on
- a tit off = suspend function tIansaission

Bits for the print and punch .streaas may have
overlapFed meanirgs for terminals with' multiple
d~vices. For ~Jample, bit "V" specifies function
continue/suspend for both ~rinter 5 and punch 4.

5-54

r-----------------, t 0 X X X C C C C I

o 7

Usa.ge: o = " (Must a~ways be on)

eccc = ftodulo '6 block sequence count

xxx = Control information as follows

= 000 = N (r Jlal bloc k
= 001 = Bypass sequ@nce count validation
= 0'-0 = Reset expected block'sequence ccunt to ecce
-= 011 = RESel. ved
= 100 = Reserved
= 101 = Available for user modifica tion
= 110 = Available for user lIodif ica tieD
= 111 = Reserved for future expansion

!~i!i!l1ng ~ all1ileav~ng ~2~DEctioD

The Frocedure for establishing the connection of co.puter A
to coaputer B is performed BE fellows:

1. A t~ansmits a tvo character ~equence (SOH,EHQ) to B.

2, B responds with lCKO.

J. A responds with the transmission of a block containing
a single message which must be a signoD general control
record:

4.

DLE,STX,BCB,FCS,RCB,SRCB,signon message,DLE,B!B

RCB must be 11110000. SHeB must be 11000001. The
signoD message is as defined by system Band dces not
appEar in compressed fora •

. Assuming acceptance of the signoD ty B,
processing .ay ensue. (Otherwise.
transmissions frol B to A viII usually cease.)

norllal
furth,er

.f!.'!:.2!.!!.u ! gIll §t.J;eaa 1U.1l§.!i.Yi~

The procedure for initiating and perforaing a data
transmission frem A to B is as fcllovs~ In the example, le~ X be
the unique RCB associated with the data stream in questicn:

1. 1 transmits to B a request to initiate a trans.issioD:

DLE,STX,BCB,FCS,RCB,X,O,O,DLE,ETB

RCB must be 10C10000. SRCS must be X Jthe prototype
RCB for v:hich pe~ lission is b~ting requested).

2. B responds with a per.ission:

DLE,STX,BCB,lCS,BCB.I,O,O,DLE,ETB

RCB must be 10100000. SRCB lIUst be I ·(tbe RCB for
which permission is being granted).

3. A nov proceeds to transmit the data stream .essageis.
(Refer to "Transmi$sion philosophy.")

4. A indicates' end of a data stream (end-of-file) by using
a terminal message which bas a zero seB for its first

5-56

ses. Note that an all blank message cannot be
transmitted as a null message.

NOTE Fer console strea ItS, permission is never sought· nor
9ranted~ End-of-fila is never used. Cnly the
processing noted' in step 3 occurs.

Each transmissicn block is initially chscked using convential
cyclic r4dundancy check techniques. NAK is used to r~quest
retransmission when the check yields an error. NAK is also used
when no data is r4ceived'for a period of three seconds.

Several other logical eIror conditions can also occur:

lt~§ .§.2.!I.!!.!!lS..! £!l.§~! - Tc l:lSUl.Cl that data blocks ·are received
in order and that no blccks are missed, the follcwing Bea
testing is' done: Let x be the recei ved Bce and Y be the
expected ECB.

If I-Y>O then a block has beer. missed and a·sequence error is
detected.

If X-Y=O then the prcper block has been received and it is
processed. (Y is incre lented as teh ndxt expected x.)

If .X - Y (0 the n :

a. If 16+X-Y>2, then a sequence error is detected.

b. If 16+X-I ~2, then the received blcck is a
duplicatE acd is discatded.

If a sequence error is detected, the following transmission
is used~

DLE,STX,BCB,FCS,RCB;Z,DLE,E!E

Bca usually indicates reset tlcck check count. RCB is 11100000 to
show the error. Z reflects .hat the ex~ected BCB vas (Y 'in abova
~xample). The receiver of this message may reset his t~ans~itted
Bca to Z. However, data has probably be~n lost, and restarting
tha curr~nt transmissicn3 cr aborting the connection may be more
appropriata ..

5-57

!!.Y.el~~nsi.!;Ul 2! .r§.g~l§ ~2 llu§ail; - these may be ignored,.
However, the IBft HASP system aborts the connection in this
case.

!2n-ixt§~!nl ~§ ~ RrotgtlR~ RCBls - these are ignored.
Any unprocessed messages in the transmission are ignored.

~.e~~1al ~!Jl'§

certain features of the multileaving protocol, though
1efined, have not been i.ple.ented by IBM. These include:

1. Record types otler than ~rint, punch, card input,
console, and contIel are not supported.

2. only ~he signoD general control record is USEd.

3. see counts other than one are not used.

4. No "continued" seE's are used.

s. No support for not-EBCDIC transmissions exists.
. .

6. Although the protccol allows a mixing of Bce tYF8S in it
givEn "transmissict block, th'is is not done in pra.ctice.
Consid~r message~ A, B, C in a transmission block eacb
for a. different data strea. (mixed RCa's). If the
I:esource's to ha tdle messa g8 A, are not available, the:tl
messaqes Band C light be locked out as vell. Thus,
data streams Band C are being artificiall, inhibited.
By keeping like RCS's in a transaission block, streaa l
could be suspanded vhile transmissions fer a and C
could continue.

5-58

I. lntroduct ion

As outlined in the Product Requir~lIi&nts of s"~ptellber 25,
19"14, this project will be an option to the currently defined IBM
RJE co~ponent of the "HP2000 ACCESS system, a CDC cOMpa~ible RJE
component. This RJE function, emulating th~ CDC 200 User
Terminal, will provide remote acc~ss to a CDC machine. Concurrent
with this RJE capability," the I/O Proc~ssor will continua to
support tha 32 terminals accessing the TSB systam.

II. fdribtional Spe~ifications

Following the impld~~ntation .1 th~se enhancem~nts, two
distinct functions will exist in the HP2000 ACCESS syst~m~ The
obvious function is the TSB s:,.;! I." t!.Q which will continue to exist
and o~erate as in the past. In"addition, the I/O Pr~ce~sor vill
be able ~~ function a~ an BJE station. In this way the HP2000
ACCESS syst.em may serve an installaticn for time sharing at the
same time it provides aCcess to a remote CDC system (referred to
as the host system).

The RJE function will be based on the CDC 200 Oser Term"inal
synchronous telecommunications protocol. It will operate on data
in the ASCII or BCD codes. Job input" to the bost is in the form
of 80 column card image data. Job output from th~ host is in the
fora of printed lines. Rost oper~ting syst~ms g~nerally ~efer to
thgsa types of inputs ~nd outputs as read~rs and printQrs
respectively. (There is also input ar.d outPllt in the form of
console data.) The design of this software, howev~r, is such that
there need not b~ a fixe1 association with physical devices. It
vill be "possible through HP2000 ACCESS opera~or commands to
designate the actual devices to be used. In ~ddition to real card
readers and line printers attached to the t/O ~roc~ssor, data
streams bet~een the TSB system and the I/O Processor vill be
available. Functioning as ASCII tiles availaole to BASIC
programs, these data streams will also b~ av,ilabl~ for
communication with the host system. Thus, transmissio~ of data to
th~ host from a BASIC program might be substituted for
t~ansmissions from a real card reader. Similarly, outpu~ might be
directed to a BASIC program rather than to a real line printer.
Thare will also be BASIC ASCII file access to th~ console data
streams. Since the CDC 200 User Terminal will op-=rate ili~h
several CDC host operating s1st~ms, no attempt is m~de in ~his
docum~nt to outline hl)st-specific operati~g procejur9:; •. Appendix
A ~f this document does provide a list of ~ome CDC Manuals which
lIa y "be use f u 1.

5-59

~ lUi~'!

The 32 users attach~rlto the TSB system through the I/O
Processor vi1l continue to uLilizc th: system exactly as described
in the HP2000 ACCESS u3~r's manual. Use of the special ASCII
files for host co.aunication~ will follow normal" ASCII "file rules.
The names for these ASCII files will be JTO, JLO, JIO, and JKO
(Job Ttansmitter, Job Line printer output, Job Inquiry, and Job
Messages). The term "job" is used by CDC host systems to refer to
a unit of work performed for a us~r of such a system. The job
inquiry and message functions correspond to console input to the
host and console output from the host r~spectively. -

Except wh~re nec~ ;s~ry, the remainder of this document will
deal primarily with th~ Ql~ function as it relates to the use of
real devices. For inLJ~m~tion on th~ use of the ASCII files,
refer to appropriate sections of the HP2000 ACCESS user's .an~al.

the TSB operator assumes a~ added rol~ as ~ result of the
enhancements. In addition tc managing the TSB system, he becollles
an op8tator of the BJE station ~s well. He is both a ~SB .operator
and an RJE operator. In this capacity he has these naw duties:

1. Initiate the connection of the system to a host
CDC system.

2. Assign input and output devices to the host
r6ading ahd printing functions.

3. -Operate the input devices in order to trans.it
jobs to the CDC system.

4. Monitor the line printer in order to separate
listings a nd load forms.

s. Kake reaote operator inquiries and/or control the
job flow via remote operator commands.

6. Initiate disconnection of the system from the CDC
system.

7. Request a report of ccmmunications errors.

Before describing the' operational d~tails of these new
duties, it is appropriate to d~scribe the function of the operator
conscle. The operator console is physically attached to the

5-60

System Processor, not to the I/O Proc~ssor. Comaunications
betwe9n the tvo processors is via a computer to computer
interconnect kit. Enhancem~nts to the System Proc~ssor will allow
messages (commands or inquiries) d€stin~d for tbe rellote CDC
syste·m t.o 009· entered on the S yst~ m P roc~ssor t s consol":!. These
will be s~nt to the I/O Processor via the interconnect kit for
actual handling or·t.ransmission. In addition, operator messaqes
received from the CDC syst~m vill be sent through the interconnect
Jti t to the System Processor for dis·~' lay on t.he 5yst em console. It
is important to note that messag~s receiv~d lS a r~sult of TSB u~e
(inquiry via JIO) will also be logqp.d on th~ syst~m console.

III. Interface Specifications

In this section, all comrnar.cl.. for the RJE function are
described. - Specific responses to each command ar-:t discussed.
However, if the RJE commann ::'~Il nut be interpre:t:~t.l as on':? of the
legal command~ shown, the following '~::ror m.::!ssag'3 will be
r~ceived:

RJE COMMAND EPROR

Another possible error is the use of c~mmands at inappropriate
times. Some commands are inappropriate if enter~d when the RJE
function is ~ot connected to a host CDC syste~. If this fact
applies to a command, it will be noted in the d~scription of the
command. The following 1eneral message is then used in response
to a command entered at an i.proper tim~:

RJE CO!MAND NOT APPROPRIATE

Not~ that all commands ~nd all related responses begin vith the
characters "RJE" which allows Q~sy visual s~paration of RJE
functional activity from TSB activity. The RJF. function vill take
a "back seat" to TSB US9rs if the system becomas heavily loaded
with work. Should this occur, responses eo commands may be
delayed, and activity on the associated I/O davices may degrade.
This is done to prevent int9rf~rence with ~he TSB user.

;a.Y.ll~ £Q!lJl ~li2n.

If the operator wishes to connect (or r..:-connect.) the HP2000
ACCESS syst~m to a host CDC system, he does the following:

1. Enter the followicg commdnd on the sys~em

. Proc~ssor console:

5-61

RJE-SC,n,m (SC=2ystem £onnection)

where n is the site ~ddr9SS (oct al 160 to 177)-.
This number is determined by the host CDC system.

m is th~ code (ASCII, lOCO, or nco) to be used
for the duration of th~ connection to tbe host
CDC. Default specifications of nand m will be:

n=160
a=ASCII

Subsequently, they will 1efault to the last
values u~1. ~ith&t op~rand may be omitted. If
n is omit~~d~ the form ot the command must b~:

R.JE-SC, , II

Aft~r .'?tl":~rir.g this command, the op€ratcr may
receive th~ message:

RJE $~STE~ ALREADY CONNECTED

This message indicates that a previous connection
is still in effect. ·Thp. ')perator lIay then accept
this existing connp.ction or force 4 disconnection
(see below) and retry tha system connection
described here.

Normally, tha following messag~ will be received:

RJE SYSTEM READY

The operator should proceed to s~~p 2.

2. Ready the communication line. This vill
typically involve dialing the CDC system, waiting
for an' answer, and then placing the data set in
data .ode. If non-switched communications
facilities are in use (a "rtedicated" or "leased"
line), no action is ~sually r~qu!red to ready the
line. If it is possible for the CDC system to
call its remote stations ~nd the data set in use
has an auto-answer capability, the TSB operator
may elect to ready the communications line by
enabling the auto-answer. ihen the CDC system
calls, the RJE function will then continue
automat ically.

5-62

3. As soon as tile connection has b~·'?n established,
the TSB operator vill receive this m~ssage:

RJE coaMUNICATIONS ESTABLISHED

~.!i~ !§2i..gJUl~nt

A data source or d~stination must b~ associated with each
host readinq and prin~in'g function. When tile I/O Processor is
loadad and started, a ti,'efault assignml?nt of +:hese sourCE:S and
destinations vill occur. Hov~ver, the op'1ra~or Inay vish to change­
this assignment from tim~ to time, so a command is available for
this purpC!5e.

Physical devices
ASCII fil~3 fa: host
character name and
devices:

CRn
,JTO
LPn
JLO

att :~h~J to , .. I.'; I/O Pt'oc~ssor and th~ TSB
communications are rtgsignated by a tvo

a n u m beL IJ :: ;;0 d t 0 j i 51: i n 9 ui s h !Il U 1 tip 1 eli k ~

carri read&rs
ioh transmitt '~r
lind printers
job line prill~~r output

All ASCII file names ar~ numberad relative ~o zero. Hence, th~
"n" value in these names is also relat1ve to z~ro.

Similarly, the individual host rgadin~ and printing functions are
designated as follows:

HRn
HLo

host rcadin~ functior.
host lin~ printing function

For these names, the "n" valu~s start with one. This is to
provide for be~ter association with the names commonly used by the
host syst~ms to refer to these functions.

For compl~ten~ss' sake it should b~ noted that there also 9xis~
host inquiry (HIO) and host m~ssag~ (HMO) functions. Thesp.
functions are, hovev~r, al~ays associated with the system
~p9rator's oonsole ~nA the Job inquiry/Job message ASCII files.
Ther~fore, th~y are not assignable by operator command. For ~he
operator t~ make a device assignmant, ha naad s t~ d~sig~ate an
associatio~ between one of the physical jevic8s o~ ASCII fil~s ~nd
one of the host functions. Nat~rally, some ~ssignm~nts would not
make sens~, for example a c~rd read~r with ~ printing function.
Tharefore, in order to assist the operator in making th~ pr~per
assignment-5, i!n "arrow" ("<" 0= ")'.) is used in tha command to

5-63

show the direction of the data flow.
ccmmand is as follows:

The general form of the

RJE-DA,hf(dt.;:v
2£ BJE-Dl,hf)dev

where hf designates one of the host functions a~d day designates
one of the available devices. The first form is used to assign
devices to the reading function (the arrow indicates flow of data
from the devica to the host: RJE-DA,HR1(CRO). Th~ s~cond form ie
used to assign devices to the printing function (t~e arrow
indicates flow of data tram the host to tha d~vice: RJE­
DA, HL 1)LPO) •

These assignment;..; Ih;~t be mad-:- at any tim~. Howev.er, they
will cnly become effective·t the timH the use of a device hegins.
Por input" devices, use begins at th~ time 9f ·the SR command and
ends at th~ time of a TR command (see below). For output d~vices,
use begins with the initial receipt of da~a from the host and ends
when that output is comple~~. Ob~iously, no use of Jevices can
occur except b~tween a sys~~m c6nnaction and disconnection.

When the I/O processor is initially loada~,
assignments vill be made. These defaults are determined
operator at the z1me his system is configur~d.

defcLult
by the

One other form of the co.mand is availabla to be used for
display of the current device assignments:

RJE-DA

Responses will be of the form:

RJE hf<dev
2I RJE hf>dev

where hf and dev are as discussed above.

~.!i~a ~.bIa:~S!,mi.£§.

The aforementioned dey ices have the follouinq
characteristics:

I!!.ng,nllg;: n~§~tig!l tia! .l!lllll §ii.i Iy.!l£1i.2£

CRn Card read-::r 40 words r?ad only
JTO Job transmitter 40 words write only
LPn Line printer 66 words write only
JLO I Job line printdt" 67 worns read only

5-64

JIO
JMO

Job inquiry
Job message

36 words
60 words'

write only
read only

For the JL device only, the first word of each buffer is usad to
supply carriage control information to the BASIC program. This
inf~rmation is in the form of a carriage control character
followed bV a null charact~r. The actual print data bagins in th~
second word of the buffer. Carriage control characters for JL are
equivalent'to those for the BASIC CTL construct. They vill
generally require use of the NU" functio:l in a B~SIC. program for
proper use.

nu..ci!!HI 2ll:l£U12ll§

Let us refer to the d~vicc ~s~tgn~d to the host reading
functicn as a reader. Two commands a!: ~ dVililahle for activatin<J
or daactivating the read~r with r~spect to th~ HJE function. To
attach the reader, the followiny command is US~'l: .

RJE-SRl

If th'e reader is or can be assi:ll.~d ~o ~ he nJE' function, the
following message is received:

BJE READER1 AVAILABLE

If the r~ader is presently active with some oth~r function, the
following message vill be rec~ived:

RJE READER1 NOT AVAILA~LE

!o detach th~ reader from the RJE function, issua the following
command:

RJE-TRl (TR=!~rmir.ate R~ader)

As soon as the reader is finished readina ~ny r&maining data, th~
following message will be':eceived: -

RJE READF.~1 NOT AVAILABLE

These commands are al~o generated intArnally by the systam at,
certain points. A start read'~r ccmmand will b~ attempted
automatically at the sase time as th€ connection to the nost CDC
is completed. A terminate reader command will be done
auto.atically at the same time a system di~connection is don~. In
these cases the appr~priate mes~ages will b~ shown to the
o p ~ rat 0 r • T hat, is, 11 e will se ~ t h'? ' " R J E £? E AD E R 1 A V A I L ~ B L E II 0 r
URJE READER1 NOT kVAILABLE" messag~. Aftar th~ reader is onCE:

5-65 -

started, it is alva~s active and attemptinq to read. Thus, the
operator need only raady the reader for the data to be read. This
action is equivalent to Jepressing the "LOAD" key on a CDC 200
USg~ 'Ierminal.

Since 50.e card readers do not have an "end-of-file" feature,
it is necessary to use a special card image to delimit tha end of
a set of data read by the reader. The format of this card is:

.. . . (tvo colvc.;:;))

The tvo colons begin ~n column one of the card image. The
accidental appearance of the "::" imaq~ at any point other than
the end of :1 s~t of data i~.; ('onsidere.l lin operator err:>r. If t:his
occ urs, th~ ill&~qe '1,111 b E ~,y Lorad.

Two typES of problems may o~cur at the reader vhich require
operator attention. One type of problem includes the normal
physical errors (such as card jams, etc.) and failure to terminate
a set of data vith the "::" card ima9~. Should any of these
situations occur, the following .essay~ will b9 issued:

.RJE READER' ATTENTION REQUIRED (bell)

The operator should correct the problAm and r~ady the reader.

,The second problem area is the d~tection of illegal
characters in the da ta r eati fr om a card. (This problem can oc:cur
only with card reader devices.) Only valid Hollerith codes can be
read and transmitted to the host system. If any illegal
characters arg detected, the reader will halt and the following
message vill be issued:

Bd! BE~DER1 DArl ERROR (bell)

The o~erator vill find the off~ndir.g card la~t in tne ~tacker. He
may correct the card and r~place it in the hoppar, or he may
ignore, the card. After taking .s:ither of these actions, he IDust
issue the following command to c~use the reader to continue:

BJE-RR1

All three reader commanc1s (SR, TR, and RR) are inappropriat'e it:
used when the RJE function is not connecta~ to a host. OSP at
such ti.es vill result in ~he "NOT APPROPRIATE" response.

One additional RJE command is related to reader operations.
occasionally, when using a 200 User Terminal, the host vill
ter.inate card reading b~cause of some erroneous data found on the

5-66

cards being read. The usual response-is' for the ~perator to
correct the deck of cards, reposition th~ cards in the input
hopper, depress the 200 Us~r Terminal "LOAD" key, and then enter a
command to the host to restart reading. Obviously, the use of the
"LOAD" key is optional, depending on wh~:her card repositioning is
necessary or not. For this HP2000 ACCESS RJR softw~r~, the "L01D"
key is emulated 'with the following command:

BJE-LO (LO=Load)

It is intended for use only in correcting problems as noted above •
. The command is not needed to effect any initial rE·ading of cards.
Use of the command at inappropriate times vill rd$ult in the
discarding of any cards alr.aady read hut not 'yet tL"ansmitted to
the host. Of course, this is eXd,:tly th~ dpsired ·action when
correcting problems as nct€ above.

Tvo s~ecial codes are used in card i~aqes for the 200 User
Tar.inal. 'J.'hese are the "6/1/8/9 and 7/8/9 punches. Use of these
codes from a real card readqr is straightforward. Ho~ev9r, if the
JTO ASCII file capability is being us~d, th~ cod~s must be entered
as follovs. For the 6/7/8/9 cod~, substitut~ th~ Jxtended.string
literal '28. Por the 7/8/9 code, substitute tne ~xt~nded string
11 teral • 30. . -.

Let us refer to the device associated with host output as a
printer. Whenever data is ready for tra~sfer from tha host to the
HP2000 ACCESS system, it will be acc?pt~d unless some other
process (such ~s a TSB user) currently controls ~h: print9r. In
the case of such contention, the RJE function will wait until the
printer is relsasdd by the usar befor9 accepting ~ha data from the
host CDC systam. Whenever the RJE function is unabla to allocate
thd printer, this message will be issued:

RJE AWAITING PRINTERl

Except to correct errors and to load forms, etc., the
OpArator's function is largely passive. If any papar jams or
other "not ready" conditions occur at the printer, ~he operator's
attention will" be required. In this case, he will be notified of
thg problem with the following me~sage:

RJE PH INTER 1 ATTE NT IO N HEQUIR ED (bell)

A CDC host does no~ necessarily indicate the end of a print
op~ration to the 200 User Terminal. For th'9 H£?2000 ACCESS system
this could mean that deallocation of a lin~ print~r by the RJE

5-67 '.

function would be delayed. For this reason, two m~thods are used
to release the printer. Whenever th~ host switches ftom printer
to console· output, the printer will be deallocated. In addition,
the ope.rator may force Jl::allocatioll by using the follo"ring
co •• and:

R.JE-TP1 (TP=Ierminate frinter)

One additional co •• ent about printed output should be made.
The RJE software allows a maximum of two blocks of print lines to
be received from the host at any given point in ti.e. If for some
reason, th9 output device (JLO or PRO, ~tc.) does not dispose of
this output, degradation of other RJE functions (card reading) may
occur. However, the op~r~tor will always be able to transmit
co n sol e in put tot he 1·:; 't: • T his g e n~ ra 11 y c a us ·l s a h 0 S t to
interrupt printed o,utput 1..':' vill prevf-1'lt d~adlo.ck situations if
serious output problems should occur.

!u2!! lD.9Jlu'1:l§ ~ £2iUL.S§

The CDC system generally has available a set of commands and
inquiries which the RJE operator may UEe. It is assum~d that the
operator bas access to or knowledge ~f the commands be may use.
Por the TSB operator, such commands and inquiriAs. are entered
through the Syste. Processor console as follows: .

RJE-RC,II

where _ is a string of characters making up one
of the legal CDC commands or inquiries.

Any responses from the CDC host or any other operatoI messages
received at any time from the CDC host will be sent to the System
Processor for display on the. console as follows:

RJE 1ft

where m is the string of charact~rs making up the
message received.

The ae com.and is inappropriat~ if the R~I function is riot
connected to a host •. The "NOT APPROPRIATE" response wouid be
received. The "INT" k~y function of a CDC 200 User T~rllinal is
not directly emulated by this RJk software. This is because
access to the con.ole is alvays possibl~ even when card reading or
line printing is active. Thus, the HC command may be used at any
time.

5"-68

When the TSB operator wishes to discontinue the RJE function,
he pe~forms the following steps:

1. Enter the follo:ving command on the System Processor
console: ..

RJE-SD (SD=~ystem ~i~connect)

2. Receive the messa.ge:

RJE SYSTEK DISCONNECTED (T~PE' n)

The lin" in the above m~~c;sa'Je indica;.p.,; t·.he type of ~lisconnEction
that occurred.. This tftes~~a'l'~ may h:.:. r : iad a t. times unrelated to
the use of an so command. For example, simply hanqing up the data
set without entering SD first 'foul,} r~s111t in a type 1 disconnect.
These types of disconnections are possible:

o normal disconnection
operator)

(a lways i n vok~d by t be RJE

1 line break or other failura in ,the commnnications
equ~pm'ent

2 apparent host failure (no rec~ption from host for two
minutes)

3 power failure

Following any system disconnect, a new system connection may be
performed. Any repeated use of this command will result in a
repeat of the above response •

.£2.!J!Ylll£!ti2!l§. E"rg£§ ~.22.[:t.

To aid in observing communications line quality, a report of
communications errors may be requested as follows:

RJE-ER,R (E R=~rt'or ,Re po rt)

wherq R is an optional parameter described below. The following
report vill be received:

RJE n1 ERRONEOUS STATION ADDRESSES
RJE n2 ERRONEOUS CONTROL CODES
RJE 03 CHARACTER PARITY ERRORS
RJE nq MESSAGE PARITY ERRORS

5-6"9

RJE n5 CARRIER LOSSES
RJE n6 MISSING WRITE CONTROL CODES

Each n is a count of the particular ~rror.
optionally be reset to ~ero when the r~port is
specifying thE R (reset) parameter. The error types

counters
requested
ar e:

may
by

ERRONEOUS STATION ADDRESSES tha station addrass contained
in the message vas incorrect or for a non-existent station.

ERRONEOUS CONTROL CODES
host.

CHARACTER PARITY
character.

ERRORS

an invalid op~rdtion from the

bad parity on a rec~ived

MESSAGE PARITY ERRORS -- LRC character is incorrect.

CARRIER LOSSES -- carrier on signal dropped befora ASCII end­
of-text vas recognized.

MISSING WRITE CONTROL CODES -- write .~ssag4 with no E1, E2,
or E3.

This com.and may be issued at any time and as often as desired.

~O • .!!!lg ,a..\I!S§.

A real 200 User Terminal uses a CRT for display of console
output. This is obviously a much faster device than the HP2000
ACCESS system console. The CDC host, not awar~ of this problem,
could flood the TTY console with output. For this reason, the RJE
software introduces pauses vhich allow the operator to enter'
commands. This is, in .ost cases, an action analogous to the
effect of the "INTfl key us~d at the 200 User Terminal. The pauses
are approximately 1S seconds long.

E2~~ IAilL&!!~~

If a pover failure occu~s, some or all of these things vill
happen:

1. The communications equipment (modem) may lose pover.

2. Terminal ready signals from the computer to the modem
vill drop.

3. The hQst system will be unable to communicate with the
RJE function of the HP2000 ACCESS system and will

5-70

initiate error recovery procedures. This typically
involves disconnecting the attached remote station.

For these reasons, if the BJE function is active at the ti.e of a
pover failure, a system dis~onnect1on will be perfor.ed on a
restart followingpover failure.

IV. Operating specifica~i'bns

B4I~'~ !2~Y1£2menS! .

The HP2000 ACCESS RJE component requires th~ following
hardware:

12618 Synchronous Jata Set lr~ ,. ,~r face Kit

In~s~s~~o~~ '2£ lQ~s!ng

The I/O Processor is configured and loaded by th~ I/O
Configuration program.

v. Appendices

Appendix .\ aepresentatiYe list of useful CDC manuals

5-71

~J!!:!!§~nU~in lis.s gI ~§!t!ll £ll£ !i.D.!1s.U -

For information regarding the CDC 200 User Terminal, refer to
the following manual. It contains a description of. the termi:nal
hard.ware and general operating procedures. Analogous capabilities
have been included in the HP2000 ACCESS RJE componant.

CDC 200 User Terminal (Publ.ication NO. 82128000)

Por CDC host system operating information related to the CDC
200 user T~rminal, refer to the following ma~uals. In most cases,
these manuals vill contain further references to oth~r useful CDC
11 te ra t ure •

Co~puter Systems H~ference Manual (Publicat{on No. 60100000)
INTERCOft Reference Manual (Publication No. 60307100)
SCOPE 3.4 Reference Manu-al (Publication No. 60307200)
KRONOS General Information ~anual (Publication No. 60407100)

5-72

~escrietion-!n~ funct~on

The synchronous communications handler (SH)· manages all I/O
on th-3 communications line. Once acti va ~ad, it .aanipulates and
controls t~e trans.~ssion and receipt of data within the defined
CDC U200 Communications protocol •. sa is activated at the request
of· the operator via the BJE-SC command. Activity th~n continues
until an RJE-SO command or abortive communications lina error
cccurs. SH will report data regarding line condition to the
operator when di~ected to do so with RJE-ER.

The U200 provides.:.' r the SUt~1 ')rt ot O!l~ card image input
stream, one printer ima~~ output ~rcaam, and remot~ console
op~rator input/output str~amR~ ~he iUfut streams ara managed via
two distinct SR input work qu~ues. Communications between SH and
its data producers and con~umers follows conventionai handler work
queue exchang4s.

When a system conll~ction .is made, han.:il-:l:.'; 'ar; enabl-:d to
either produce data (input str~~ms) or consum~ data (outpu~
streams). 58 then intertaces with the host systea via the U200
protocol in order to control the flow of data appearing on these
queues. Addi~ional infor~ation about the U200 protocol may be
found in the DSOCD synchronous driver base design •.

l&S!*f!~

S8 interfaces direc~ly with the console I/O handler as
follows:

1. 58 accepts the SC, SD, and EB co •• ands at any time and
the LO command during an RJE session. These must
appear in console buffers and on the sa control work
queue.

2. sa placp.s ,messa gas on the console I/O· work queue via
.cco.

5H interfaces with ~~ one of its input modul~s as follows:

1. 58 places a ISH running' m€ssag~ on th~ handler's work
qusue. This message informs the handler of current SH
par~aeters and indicatds that tha handler may procGad.
·Contained in th~ messag~ are:

5-73

Q~~ue name - name of SH input work queue on which the
handler is to place its data blocks.

2. SU accepts data blocks [L'om the' handler on the
spE:cified work queut3. (A HeirJ definition for the!! final
block in a seri~s of blocks is adhered to by the card
im~ge input handler.)

3. 56 may purg9 the handler's ~ork queud if an abortive
line error occur~ and will definitely purg~ when a
normal disconnect occurs. Tue: handler should view this
as an 'SH not running' signal.

4. SH will place "1 ·.!:t~ command (in a consolE' buffer)
handler's work. 1\11U':' if a i..Jf~off i.:; to occur.
is nct true for the console input handler.)

Ofl t.h~
rrhis

5. SH will purga the card compression handler's work queue
wh6n it receives an LO command. It will the plac~ an
"SH runniny" m~ssage on the card comprassion handler's
queue to restart the reader.

5H interfaces with any cne of its output modules as follows:

1. 5H ~laces data blocks on the handler's work queue.
When the handler disposes of a block, it must be
returned to 5H to signal a reduction in that handler'S
queue It::vel.

2. SH may purge th~ handl~r's work queu~ if an abortive
error occurs and will definit~ly purge when 5H performs
a signoff. This should be viewed as a signal to
quiesce.

3. sa will place a TP command on the printer output work
qu€ue if it has bean active and the host starts writing
to the console instead of the printer.

Th~se local data are used by SH:

eTtQ holds control 1ueue name

cgENT holds address of current work entry from prime qata

DCENT holds address of current work entry from I/O compl~tion

5-74

SIaSi indiciates current host communications activity

SIO I/O activity fl~g

Cefinition of 'S~ running' messag~ which appears in a control
buffer:

sew Word 2

Word 3

*.Note**. this lIessag~ ;;,
queue using .PRIQ (prio~~l.

Bits 15-4 . Zero
3-0 cODlma!'ld=3

Bit.s 15 (un us ~;i)
14-0 Qu~ue' name (3li

input work qu-aue)

a.!~aI'§ pLl("'t;d on th~ recipient ';.'; work
• PUTQ) •

Definition of 'end-fil~' flQg tor blocks appearing on input
wox:k queues:

Bew Word 2. Bits 15-4 (ur. us.::.: d)
3-0 COIII:U ,1 n .1= 2

Word 8 Bits 15 O=not end- f i1;i
l=end-fil~

D43finition' of messages given to output handlers by SHe
Message appears in a communicationg butfer:

sew Word 2

Word ·3

Bits'15-8

7-4
3-0

Bits 15
14-0

5-75

davic~ ~scap~ code ,ft E" code)
(lIn used)
comm~\ nd= 1
(data clock)
(un usaj)
(Ju-3ue nama f')r
r,~sponse

Th~ responses to S8 by output handlers must follow these definitions:

BCW Word 2

Word 8

Bits 15-8

Bit 15

7-4
3-0

devit~ escape cede
(nE" code)
(unused)
command=2
(data block finished)

for console output handlers
only, this bit set indica t.es
that a command pauss has been
tarruinated by console input.
s,t us-=!s the indication to
su~pend consol~ output until
~tte= t~e console input
transmission.

When messages are gueued for the cons'ol~ I/O handl'3r, th,cs-=
scw d~finitior.s are made. Their ~urpose is to dllow console I/O
to note th~ running state of SH:

BCW Word 2

Word 7

Bits 15-14

13-4
·3-0

15-0

OO=normal message
U1=communicaticns

as ta blis h03d
(un used)

command=1
nl E:ssa ga 1 ~n gt h

Tables are defined which contain appropriat~ data re9ardin~
each input and output stream.

5-76

For input the aynchronous !ransmit ~tream !able (STST)
defines each stream:

STST entry 0 - console input
1 - car'd r~ader

S'IST ::!ntry forllat:

!2~s Dll.2
0 15

14-2
1
0

1 1 C',

1 .'.;
2 15-8

7-0
15

3 14-0

~Sn.!~D.~.2
permission to transmit requested
(un used)
• sn running' message needed
perlJlissi on to tr ;:lnsmit .jrant.6d
(unus~d)
Q I) '."ll,· name
Quau~ depth limit
Stream Escape Code
(un used)
Queue name for prod-ucing hand16r

the Sychronous R.;,ci'i.ve ~tream lab1c (SRST~ dt!fincs -=ach
possible oii'tput sttfam: .

saST

saST

~ntr.f

entry

~2~g
0

1

2

3

o - console
1 - printar

forma t:

Bits -1"5-

14-t
1
o

1S
14-0
15-8

7-0
15-0

~utput

£.2.n1.5.nS.~
sus Fend console output
pending a console transmission
(un used)
handler suspanded b~cause of q depth
(un used)
(un used)
Queue name for consuming handler
Queue depth limit (the maximum number
of i:locks which will 'be receivf:] pr.iOI
to suspending the stream via pes)
Stream Escape CodQ"
(un used)

lwo local data structures are of sp6cial significance. these
are the synchronous Transmit Stream.3 Table. (STST) and the
Synchtonous Receive Streams Tahle (SRST). The entries in the 5TST
define the possible input work queues. Thd ~ntries in the saST

'"5-77

defin~ thd. possible ou~put work queu~~. Contain~d in the tables
ar~ all paraaeters (flags, queue flameS, ate.) needed to use 'thlese
queues llY.§. all paramet~rs nei::.jed t.u cont.::-ol the produc6rs i!lnd
consumers of these queu~s. Entrias in 'these tables ar~ usad
sequentially in a priority fashion. For ~xamplel, the STST is
orderEd as follows: console input, then card input. Thus, the
console will always have. greatest prioLity. SRST ~ntries are used
in a similar manner.

To insura availability of communic~tions bufters in order to
prevent de~dlocks and 1n~ure performanc~, four communications
buffers are an assembled part of SHe These four buffers ar~
interlockt!:i to SH with the Sf{ conrol qc-::ue n~lDe in :Jew word 3.
Tha buffers !re managed wit.hin SH u3ing a simplp linked list tor
free buffers. All I/O ~i~h th~ cue ho~t is scheduled into and
from these bufters. They.are giv~n to the data produc~rs (console
input/card input) and consumers (console oUtput/pr~ntar output) by
SH, and ~hese handlers always return tne buffers to SHe 5H
attemFts tl double buffer to th~ print~r and from the r~ajer but
will always hold one of the buffers in reserve fer ccnsol~
communications ~ith th~ ho~t. In this way, the operator is
assured th~t h-3 can int-:;rvene at any time.

The system initialization entry pc::'nt 1':0 SH is SYNnI •. 'Ihe SH
contIol queue riame is found and saved in CTLQ. Finally, SINHI
"configures" SH by initializing the STST and SHST tabl~s. This
involves issuing a .FIND for all werk ~udues for assocLated
producers and consumers. The table entri~~ are then initialized.

The priae entry to 58 is SYNH? SYNHP consists of three main
sections. The first is the entry point section which removes vork
from the control queue and invokes proc~ssing of the work entries.
section tvo consists of a ~roup of procassin~ section~, each of
which processas a control queue work entry. The third section is
an I/O scheduler which is also used by the I/O compl~ta .entry
point "to SHe Tbe I/O scheduler pe:forms the task of a~amining th~
.STST entries for transmission'or oth~r I/O scheduling.

A s~cond prim& entry point to SH is SINHP. Tbis entry point
receives control whenever any data is placed oft eithar input
stream vork queue (console" or card tra~smissions). Tba 5H
r6sponse is to er.ter the I/O scheduler for possible I/O
initiation.

SlNHP is entered by a system prime. It then invclkes
proc~ssin9 of ~~ch work en~ry found' on th~ control work· queua.
Th~ routi~es which h~ndle th~sa werk Rntries all r~turn ~o a
commcn point ~hare the curre&t work entry is released tc its

5-78

buffer pool if appropriate. Other work queua entries are
processed in turn until none remain. At this point the I/O
scheduler is entered for possible I/O initiation.

if bese lIessages may appear on the sa con trol work queue:

~Q. ~~. ~!!, 2l: Ii £2!!!lla,ng,§ - the command is recsived'from the
console·I/O handler and is ~rocessed by ro~tine SRJEC. The

-work entry is in'a' console buffer.

!!2~ 2!SSY! h~!!£ - this is a communications block wbich
was previously receiv~d, has been dispos~d of via one of the
output work yueues, and is now bein1 r~turnej ~o SH by the
associated cohsumir~ handler. Its function for SH is to
signal a reductic.. n the nlilllL,' r of blocks on that output
tiork queue. SH uses this techniqu~ to monitor the' flow of
data and use of com;I~f}it;ations t'uffers. SQCHK procassas
these entries and then returns tbe buffer to the 58 free
buffer list.

1'2~ ~~a!~n~~!Si2n~ ~~i~iI - communications buffars relaasarl
due to putge processing at system disconn~ct ~im~ are add~d
tc SHes freE: buffer list. SCOMS (-rocess€:s this. work entry.

~ll~at~' £2nsgl~ ~~!!!I ~ cecaived from the buffer manager
in belated respons~ to some previous request for a console
buffer. SCONB processes th6 entry.

sl!2£l~~ £2ni£9l ~~!~£ - received from the buffer manager
in belated response to a previous raqu~st for a control
buffer. SCTLB processes the ectry.

wort entry processing by SYKHP is as follows:

.§g£]! - locates tha SRST for tnt) associated. output stream and
determine the current Q duptb. If the stream 1§ n21
srisp~nded, release the h~ffer. If thd str~am i~ suspended,
decrement the count and ~se this tuffer to signal "go ah~ad"
to th~ host.

~£QM - the buffer is adled to .tht.; tr-ag buffer list.

SCI~B - if the syst&m is not online, the buffer is released.
Otherwise, it is ~uppliej to 5HRUN for the issuance of "SA
running" messages to available producers at inpu~ work queue
data •

.3~mm - Tne bufter is supplied to .ceo. for console output.

5-79

~&l!£ for an EB cOII.anel, the data is acquired and the
"~essages are constructed and issu~d. Por an LO command, the
ieader handler is pur9~d and res~arted (with "SH running") to
effect a fresh card transmission.

For an SC command:

1. If 5H
online,
issued.

is online 2I not online but Gnga9~d in going
the 'SYSTEM ALREADY CUNNECTED' message is

2. If 5H is ndt onlin~ An~ is not goipg online, the SC
data ~tation adiress and mod~ are procdssed. Then th~
signon activity signals ~te set, the 'SystEK READY'
message is i$.. :"!d, and til-:: data linlC: enab16 1/0
operation is started.

For an SO ccmmand:

1. If a siqnoff is alr~ady in prograss, the command is
ignored.

2. If SH is not online or engaged in a signon, the 'SYSTEM
DISCONNECTED' massage is issued.

3. Signoff conditions are establish~d and a disconnect is
forced immediately.

All I/O scheduling (~xcept tor the initial data link enable
and terminal clear) is performed ~y 510. SIO is entered by SYNHP
when control" work guaue is ~xhausted. 510 is also used by S~NHC
to initiat~ successive I/O operations. If I/O is active when 510
is ~ntered, it ex~ts to the centr~~ system commutator. Otherwise
it petforms the following sequence of steps:

,. If SH is no ionger online, SPRGE is entered to clean up
all queues, etc.

2. Nov 5IOSW is inspl!ct::d to" determine if th~ host is
waiting on input. If not prOCeed to step 3. Else:

A. inspect the inpu~ vork qU~U9S (consol~ first) for
a data block to transmit. If ncc~ is found, then
issue a r~ad request.

B. iDit1~te transmission of th~ first available data
block and assign n~w communications buffer to~he

5-80

reader. If an end of fila is indicated the STST
transmit permissio~ flag is claared, then exit.

3. If no work queues are acti ve .a.nd a signoff is pending,
a disconnect is performed. Otherwise, a read is
issued· •

. ·SYNHC is the I/O complete entry peint to SHe It processes·as
follows:

1. I/O activity flags arc cleared. If any ab~rtiv6 ~rror
has occured, SPRGE is dntered to clean up.

2. If the· o~t:rl"'ion completing is a disconnect, SPRGE is
invoked.

3. If the oparation is a successful connection, SH is
placed· online and the 'COMMUNICATIONS ESTABLISHED'
aessage is issued. If a signoff has bean requested,
the disconnect ~ection of 510 is invoked. Otherwise,
the 'SH running' control signals are issued to all
associated input handl~rs u~ing sHRUN.

ij. If it is a completed tr~nsmit/recaiv~ sequence, the
raq~est type is then examinad.

A. if the host is re~uestin9 input, set SIOSW and
enter SIO.

B. if the host has output data, locate the ·sRST
entry and engue the data block to tha appropriate
handler's work queue. Than if q depth limit has
been reached set the suspe,nded flag and exit. If
the maximum depth has not been reachdd, tell ehe
host to go ahead by~

a. transmitting a ~ending console message.

or

b. acquiring a communications buffer and
initiating a t.ransmit/raceive operation.

Then exit.

s. If the I/O t3vent is an ALERT or an unsolicited attempt
to write by the host, a communications buff~r is
acquired and a receive ~nly ~peration i~ scheduled.

5-81

SHRUN is a subroutine used to present signals to associated
input handlers informing them of SH ac~ivity and parameters. It
searcbes for marked STST's requiring this signa.l, and transmit,s a
message to the handler containing its intend~d input work queue
name. SHRUN is invoked either by SYNHC following a signon or by
SCTtB in belated response to the request for control buffers.

SPRGE purges all input and output work queue3 and associated
handler qu~ues. It resets SH to lnitial conditions, and issues
the • S XSTB~ DISCONN·EC'I' ED' l1€:ssag.;. Finally , it clear s the purge
indication from all SH work gueues, clcses the SH prime gate, and
exits.

5-82

~~ £s~~~ ~2!R£~§!i2n h~agl~

I2.!..§£.tiJ21ion~n.L.tllp's;tiQn

This handler (CRC) allocat~s and manages a card reader
handler or other similar data source in ordgr to pre-process the
card data for the synchronous communications handler. Pre­
processing involves blo~king card imag~s into the acceptabl~
comaunications format. CRe is a level 2 func~ion handler, and its
interfacing to a card r&ader handl~r follows the lavel 2 - level 3
protocol.

CBe lltili zes its a!. ... , ted rec1<ir' '2.=3 follows:

1. 1 start buffer is l]ac~d on the reader's work queue to
initially activate it or to reactivate it. The form of
this . buffer is as prescri ted by t he level 2 - leyel 3
protocol.

2. Allocated read~r buffers ar~ accepted from the card
reader handler. They are set witb a read command and
returned to the card reader handler. these same
bufters return as writes to CRe with useable data.
They are always given back to ~he allocatad reader as
reads except woen terminating, in which case they are
freed.

3. Error coamands from the allocated reader dre usad to
report the error to the operator. ~or hardware error
types (type 1 or type 2), a retry coamand is
immediately sent to the allocated reader. For a type 3
data error, the retry is signalled by the cperator's
use of the RR command. This also then rasults in a
retry command being sent to the reader.

4. CRe sends a stop command to the allocated reader when
cae is deactivating due to a TR command or synchronous
handler disconn~ct.

CBe interfaces with the synchronous handler by:

1. Placing blocks of card iNag&S on the work queue
indicated in tha ISH running· message.

S-83

2. End-of-file signals from the reader are indicated to
the synchronous handler as· prescribed by its base
design.

J,g~Al g!..2 n~SJ!£!§

the following symbolic names are associated with the local
da ta s truct ure used by cae.

ceQ."

CCFLG

CCRDB

CCSHQ

CCCCB

. CCCBP

CCQLt!

CCRET

holds th~ work queue name for th~ active function
handler

co~tain~ ~~v~ral flags:

ceSHR syn\~·~&.:onous .. ~ uJler status (+=running,
a-not active, -=running but CRe is at queue
li.it)

CCPCR set = ok to process card data

CRDT! set = . all resources'
(communications buffer and· not
li.it)

a vai:Lable
at ~Iueue

CCEOP set = at end-of-fil~ with not ready reader

CCTBC set = TR command is pending

holds queue name of allocated reader

holds queue name to which compressed data is
delivered

holds address of communications buffer

curren.t position within communications buffeJt:'

holds queue limit tor maximum number of buffers
to. plac e on CCS BQ

holds return· address for delayed returns from
subroutine CGeB

No buffer definiticns are forc~d by CRee It confor.s· to
those tequired by the s~nchronous ~andler and the level 2 - 16vel
3 protocol.

5:-84

CRCHI is the syste. initia~ization entry point to cac. The
only function performed is t~ .FIND the eae work gueue naae. This
name, is stored in CCQNK.

CHCHP is the prime entry to CRC.
processed include:

Work qu~ue entries

~B ~n!ng - a signal from the synchronous handl~r that it is
running. This messag~ 1s rec&ived in a centrol buffer and
informs CRe that it may initiate Etocessing at any time. eRe
will not do any work until this mess:age is rectaived. In the­
message drt:! parama L: ::s needed to operate: naae of the 'I,ueue
to receive data fro .. l , "c. CRC ~!:j d~signad to includ~ 58
command processing as an inherent part of the ISH running'
message processing.

~!~ 114 A~ DR commands these messag~s are rsceived from
the console I'ioha'ndler as operatcr r'aquests to a.ctivate and
control use of a read·:r. 'these .essages, are not valid unless
preceded by an ISH running' ~~ssa~e.

iJl£!£ Sa~ card images from the reader allocated by eRe
are blocked and placed into the ccmmunications buffer. Error
indications fro. the reader are also proc.ssed.

iDIged gy~9! the eRC work queue can be pq~ged by th&
synchronous handler due to abortive arrors or normal
termination procedur~sG In any case, CRC deactivatEs its
allocated reader6 deallocates same, and quie~ces until the
next 'S8 running' message is received. A s~o~ command sent
to th~ reader as a part of purge proce~sing will also return
to cae later. Buffers returned by the allocat~d reader at
this time are released.

~~~21~ Sg~l~ ~ng s2!!Yni~~S~A§ BY,1sI! 
received from the buffer manager in belated 
teguests fo~ buffers. 

these .ay be 
response ,to 

Allocation and management ot the card read~r handler i~ 
affected by three sources: activity signals from the synchronous 
handl~t, operator directives and device status ~ignals frc. thq 
card read~r handler itself. The synchtonous handlur inforas CRe 
(as well as other modulas) that it is ~unctioning by placing an 
'SH running' work entry on the CRe work queue. only vhen this 
signal has been processed can other signals b~ affective. 
Similarly, a purged CRe work queue (purging dene by the 

'5-85 



synchronous handler) indicates that the synchronous handl,er is 
ceasing to function. 

Bet.wean the "running" and "purged" signals, operator 
directives (It art Reader, lestart iead~r, and Ierminate leader) 
are accepted. Note that tha synchronous handler connection signal 
internally causes an SR command to be ~rocessed. A purge signal 
also impli~s a TB co.mand. The sa command causes an allocation of 
a card reader handler to be attempted. A message indicaticg the 
result is .issued in either case. If successful, initial 
conditions are established and a start buffer is acquired. This 
buffer is put on the card reader handler work gueue with ASCII 
reading .ode and the CRe na~a indicat~j. This will activate the 
card rEtad~r handler as n43scribed in its bas~ design. An RS 
command is routed to the al:ocated I "~der for actual handling. 
The TR command inspects a eRe activity indicator and ~ither 
deallocates the associated han.Jler immediately if no cards are 
being processed or flags thd TR condition to b~ affected at end­
of-file. 

Once allocated and started, th~ rec~ived oard imaY6s are 
added to the communications buffer after being. c~.pressed using 
the .COMP aodule and put on the associated synchronous handler 
work queue. Tvo problems can interrupt this flow. Whe~ a 
communications' buffer is not available, an indicator of this 
condition is set. If a card image appears on the CRC work queue 
prior to the needed communications buffer, that card iaa~e is 
replaced on the c~c gu~ue (via .PRIQ) and the eRe handler exits 
after closing its priae gate. This. prevents further processing of 
card imaqas until the needed communica tions buffer" becomes 
available. Any errors indicated by the card reader handler to CRe 
will result in the issuing of an error .essag~. An end-of-file 
signal is propogated through to the synchronous handler. 
Folloving the processing of an end-of-file, the TR flag is 
inspected and appropriat~ action is taken. Read buffers are 
al.ays ~eturn~d to the allocated r~ader imm~diat~ly following 
processing of the data in them. This technique insures that a 
read operation is continually beiny att~mpted and is the way in 
which the "hot rEader" feature is implemented. 

·5-86 



EIiJlt!l: 2ISi:9Ulia§igll liAnslJ..!!l: 

2!.scriniton ng ignciislll 

~he printer decompres~ion handl~r (PD) has as its .ain . 
responsibility the transformation of compressed data. blocks from 
the synchronous handl~r to print lines which ara passed to the 
appropriata level 3 handler. It is also r~sponsible for 
performance of the following control functions: Accept printer 
allocation requests and perterm the desired allocation, printing 
the BJB AWAITING PRINTER1 message if necgssary. Accept disconnect 
requests and force printer disconnection. Accept printer error 
notices, produce ~TTEHTION BEQUIRED messages, and notify the 
synchronous handler of th~ printer error. Accept device· end-of­
file notices and relead~ ~he devicb. this handl~r does not have 
an I/O co.ple~e section, since it does not issue toe calls. The 
module is coded in a "serially 'reusable" fashion, with all locally 
used data ~ccessed from a unique storage block~ T~us, additional 
printar streaas may be add~d by replicating this storage block. 

l11UUacing 

PD interfaces with th~ level 3 handler as follows: 

1. 1 s~art cemmand is placed O~ the level 3 handler's vork 
queue to activate it. 

2. Allocated print buffars and emptied print buffers are 
accepted fro. the level 3 handler. These are filled 
with decompressed data and given to the level l 
handler. At termination they are treed by PD. 

3. Error aessage buffers from the level 3 handler are used 
to report erro~ conditions to the operator. 

q. A stop command is sent to the level 3 handler at end­
of-file or synchronous handl~r disconnect. 

S. A coamand type 9 is sent to the leval 3 handler to 
ini~iate timed retries when the printer is not ready. 

PD interfaces with th9 synchronous handl~r by acc~ptin9 
blocks of compressed data for the printer or punch. -

No BeW definitio~s are mad~ by this handler. It conforms to 
those defined by the synchronous handl~r and print~r handler. 

5-87 



lhe d~tailed processing algorithm iz given in flowchart form. 
A summary of the algori~hm is given bel~w. 

A significant feature of the inputs to the r~utine is that 
they includa a mizture of normal messag~s entered by • PUTQ caLlls 

. (print blocks, purge queue request) and priority messages entered 
by .PBIQ calls (printer error, printer EOF, and tuffer messages). 
As a result, upon entry to the handler thd queue must be inspected 
to detect priority calls. Hence, a .SEEQ call is us€d to cr~ate a 
latch to different .essa~e processors~ These message processors 
are discus!:ied below. Wh...:h a proce3sor has tinished it 'rill 
ex~cute a -.GETQ to remOVi jt3 ~ntry aLJ r~turn to ~h~ .SEEQ latch 
or .CO!., depending on the !pe of Pt~c_$sin~ pe~for.~d. 

DISCO is entered for purge-queua r~qu~sts, which cnly r~sult 
from a comaunications disconnect. If a dcvic9 is allocated, the 
routine deallocates the device, i~~ues a stop ccmmand to tbe l~vel 
3 handler, releases any unused buffers, ~nd =~sets local storage. 

ALLoe is entered for prin~sr alloca~ion requ9sts. If the 
printer is alraadyallocat~..;d to this hal!.ller, the routine va~its 
until the printer 1s d~allocat~d before it attemp~s another 
allocation. dther~ise the routine attempts to allocate tha 
device, sends an "AWAITING PRINTER" m~ssage to the console, if 
necessary, and sets a timer loop to ret:y. allocation. A 
pathological case of special interest is wh~n a buffer cannot b~ 
obtainEd for the console m~ssage. In this case the entry latch 
for the routine is res~t to allow co further actions antil the 
buffer is received as a message. This t~chnique is used elsewhere 
in the han1ler, but is not further elatorat~d in this document. 

~RBLK is entered for print block queue ~ntries. If a pri~t 
buffer is received and a print~r has net yet be~n allocated, ALLoe 
is entered to perform the allocation. If a prin~e~ has been 
allocated, a buffe~ is obtained from the fr~~ list and dntry is 
made 'to .DCO" to decompress lines for output. The routine also 
sets carriage control, if necessary, and then ships linas to the 
level 3 handler. It is also respcnsihla tor indicating pl~int. 
b~ock p~ocessed to the Synchronous Handl&r when finished. Again, 
suspension aay occur du~ to unavailability of a bu~f~r, andthA 
latch-restart technique is used to con~inue processing. 

PRFLT is entered for printer 
not ready, PRERI issues an "ATtENTION 
console. Again, a latch-rest~rt 
suspension is used. 

5-88 

faults. Wh6n the printer is 
REQUIRED" messags to th~ 
for bu f fer not a vailab 1·:? 



PBBOF is entered when th~ stop command is returned by tha 
level 3 handler. All print or punch buffers are freed by PD and 
the 4evice is d~-allo~ated. 

pasu? is entered for ~uffer mess~ges. It stores the buffer 
message to allow proper operatiori of the. latch-restart routines 
anfi then 90eS to .SEEQ to allow con.tinua.tion of "'the suspended 
operation. 

th~ only other entry to this ha.ndler is the initialization 
entry. This siaply calls .FIND to finn its own queu~ name for 
future reference. 

~!1!21!2~!l!.i i!~~tlB.u.2.n.§ 

PDCC is the functional modul~ if; the handler which rec~ives 
contrel after a printer buffe~ i~ obtained. and determines the 
carria99 control character to insert in the buffer. Print-then­
space mode is always utilized by this handt~r, so control is 
always ezecuted bafor& printing. 

5-89 



n~~£iE1!2n Anj fun~!i2n 

.COMP prgpares buffers of ca:d imag~s for tr~nsmission under 
the etc U200 protoco1. 

I!l~!'iSl~W 

The routine is entered via 
registers and following ~h~ call. 
re g i s t e r • The call i n g oS ~ (fi'l ~ 11 C e is as 

a JSB with the param~ters in 
It returns a valu~ i& a 
f: ~ lows: 

LOA <from addr> 
LOB (from length> 
JSB • COMP 
DEF (to addr> 

<from addr> is the byta addres~ of the data 'to be add.:.ad. to 
the buffer. 

(from length) is the numbar of bytes of data in tha record to 
be added to tb~ buffer~ 

(to addrj 1s th~· byte addres~ of the d~stination· buffer. 
This address must point to th~ first available 
location in the buffet~ 

Upon return, the B-regi3ter will cont~in the byte addr~ss of 
the next available location in the destination buffer. 
Comprassion consists primarily of moving th-e card image to the 
dastination buffer. The occurance of 200 User T~rminal end-of­
recOrd or eni-of-file codes in the first by~e of the scurce card 
image are ancoded with the pro~er preceding escape code before 
moving the card image to the buffer. 

• DCO! 
com pr·~ssed 
devices. 

provides 
records 

a data deCOmpr€5Sion s~rvice to ~xpand CDC 
into uncom~r~ssed format for unit-record 

5-90 



the routin~ is ~ntered via a JSB with calling parameters in 
registers and following the call. It will rdturn . two values in 
~egisters. The calling sequence is: 

LDA <from addr> 
LOB (to addr> 
.ISS • DCOL'! 
DEC <tuffer length> 

<from addr) is the byte address of tha data to be 
decompress~d. ·This must be the address of the 
first cha:acter following tb~ format control 
charactE":.t 

(to aJdr> is the byt.a addrass of the destination of the 
decompress~d ~~~~. 

<buffer length> is the positive byt~ length of the buffer to 
receive the decomprass£d record. 

Upon return the registers ~ill ccctain the following: 

A-register: Leng~h of deco.pressed racord (1 if 20F record). 

B-register: ~ointer to next format control character ir. 
source tuffer • 

.!!~: If there is more da~a,in the compressed record than is 
available in the buffer, excass data will be truncated. Th~ 
length returned will never be greater than <buffer l~ngth>. 

·5-91· 



NOT!: This document assumes knowledga of tne HP2000 ACCESS Queued 
IOC module and Cootiol Data Corporation's (CDC) telecommunications 
protocol used with the 200 Oser Terminal (200UT). Th~ following 
CDC manual3 are recommended fer additional ·information on the 
protocol. TlLase· manuals dascribe ir detail the actual hardware 
emulated by this software. 

200 User Terminal Hardware Heierenc~ Manu~l (Pub. No. 82128000) 
217-2 Equipment Controller (Pub. No. 82128100) 

I. Eroduct Identification 

The C50CD driver int~~~~ ~D 21.00 ~ :rie~ cowput~rs to a remot~ 
contlol Data Corporation CPU via a dial-~F or dedicated 
communications line. Th~ line disci~line is bit serial 
synchtonous and the link ~rotocol is that smployed by the CDC 200 
user Terminal. The drivar assum~s th~ use of the 1261A 
synchronous interface kit. 

II. Design Overview 

. .Q~ ~ ~ S.n .s!,§J1!2!~!!.§ 

Th~ program requires the microcode d~signgd for usa in the HP2000 
ACCESS I/O PrOCEssor. The driver also requires thi: D.43 tilDe bast; 
generator driver. 

NOTE: In ordEr to avoid loss of characters on input/output 
operati~ns, the interface boards should be placed at a relatively 
high interrupt priority. This does not mean the driver uses a 
large portioD of available CPU tim~, indeed only a few percent of 
CPU cycles are taken by OSOCD. It does mean that the interrupts 
do need to be processed quickly. 

DSOCD is an input/ouiput 1river d~sigDEd to operate in the HP2000 
ACCESS I/O Processor. The following funct.ions will be perfclrlled 
by C50CD. 

1. CLEAR 

2. READ 

I; 
I 

resets all status words. Puts I/O boa~d in "on-
hook" con·li tion. ' 

Accept a! block of dat~ from the host system. 
Error dltecticn and r€portir.~ tc the host are 
autcmatically handled~ 

5-92 



3. WRITE 

4. ENABLE' 

5. EXTENDED 

Send a block of data to the host. As in the READ 
operation, error detection and reporting to the 
host are. automatically handled. . 

Allows the communications line to be established 
by answering the phone or by .operator .anual 
dial. Certain operating parameters are passad to 
DSOCD via the ENABLE call •. 

STATDS Accumulates statistics on device 
performance during a terminal session. 

NOTE: Th~ WRI~E operation may be either a straight,vrite to the 
host or a writa/read; in the case Of a vritu/read operation, after 
data is written to the host, the hutfer is USed to receive data 
from the host. 

The driver is composed of two fundam~ntal units: the 
initiator section and the continua tor section. Each of these tvo 
sections is further modularized to 'handl~ . the various driver 
functions. Each module performs some specific function ("read" or 
"write") or common "service functions" (code conversion, establiSh 
synch~onizat;on, send character, receive character, etc.). 

the initiator section sets up service .r-aC)U9Sts for the 
continuator section. The requests' are for either input (read), 
output (write), or output/input (write/r9ad). The continuator 
section raceives aessages from the host and vhan possible, 
satisfies the requests made from the initiator section. It must 
be noted that the driver is rdsponsible for maintaining the line 
protocol. It is the rgsponsibility of the calling program to 
ensure the proper message content and sequenc~; DSOCD has no 
knowledge of the messaga content. 

When a request is made from the calling progtam to the 
initiator section' of D50CD, a check is made to see if there is a 
pending re~uest. If so, the call is rejected. If th~re is no 
pending request, the request is passad to the continuator section 
for action. (Passing th~ request consists 0 f setting flags in a 
co~mon data structure. Obviously, tpis must be done in a·disabled 
state.) 

the cont~nuator sec~ion of U5QCD monitors data source (host 
system) measages and polls and satisfies the initiator section 
request appropriately. In the case ot an input operation (read), 
the' conti~uator acknovledg~s any host write operation and fills 

5-93 



the caller's buffer. In the case of an output (write) operation, 
the data is sent to the host all the n.ext POLL. In all cases whare 
thare is DO input buffer, host writ~ messages are rejected. 
Likewise, when there is no o~tFut buffer, host POLLs are rejected. 

For a complete understanding of DSOCD, the operation of the 
continuator section of the driver must be undarstood. It is here 
that mest of the e~ulation of the 200 User Terminal c~mmunications 
Frotocol is done. The operation of th~ continuator 'or interrupt 
handle~ portion of D50CD is completely ind~pende~t of almost all 
other activities in the system. It is totally interrupt driven 
and communicates with the host system all by itself, ~ven when no 
I/O (LaS hQdn rt!lqu~sted by the callil~q program., This interrupt 
handler switches bac~ ~nd forth cetween transmissions and 
receptions, controllin\j bli .. ,. interfac - uoards a~ retjuirad. 

All acti vities begin at tl.E label INPUT where receive 
operations are initiat&d. A real 200 User Terminal is normally in 
a receive mode, waiting for the host to indicate the next dasired 
action. ~hat is, the protocol is a polling/selection type of 
protocol. and, ther~fo:~i the terminal (driver in thi~ case) must 
be directed through each action by the host. During any of the 
actions being perfor.ed asynchron,ously by this interrupt handler, 
the initiator section of DSOCD may' cause various buffer addresses 
and lengths, et·c. to be set. These will be noted by theinter·rup·t 
handler for action at apptopriate times. 

When a receive operation irom thd host begins, the common 
message header is fi~st analyzed character by character. It the 
inco.ing message contains a site address other than the one 
designated in the ·ENABLE operation, the reception is ignored. 
This woull make multidrop operation possible. Normally, however, 
the message is accepted, and the message control code vill be 
detected. This causes dispatching of a routine designed to handl~ 
each incoming message type • 

.fQll.L If the initiator section has scheduled a read cperation, 
then it is out of phase with th~ nost. Such a read is terminated 
with !·QT status of 1. (Thisfeat'ure of the driver allcwsi the 
calling program toattemptto.anticipat~ ho~t input at times when 
no other 1/0 is indicated.) If the initiator section has scheduled 
a write operation, the correct message headar is transmitted to 
th~ host, followed by the data supplied by the call~r. Finally, 
the trailing ETI and message parity codes lre ~ransmitt6d. If the 
calling program has indicated a write/read op~ration, the read is 
now enabled. 

5-94 



!iIll -- Diagnostic writes fro. the host are not supported by this 
driver. 'All other forms of vrit~ m6ssages are processed 
identica~11. If the calling pro9~dm 'has not ~cheduled a read 
operation, 'the incoming mess~ge is still scanned to a~ter.ine the 
a~sociated "E" code. ~his 'is then passed.to the upper.leyel 
program in the form of an unsolicited event. Then .the host is 
responded to ,with a REJECT aessage. 'Howcvar, if a read operation 
is active, the incoming data is b~ffer~d an4 checked. If no 
errors occur, a completed I/O operation is returned .,ia .BUFi. 
Then the ~ost is sent an lCI aessage. The d.tection of any error 
results in the trans.ission of an ERROR message to the host. 

AUi~ If a calling program read oFeration is active, the host 
is sent an ACK messAge. If no read o~~r~tion is activ~, the upper 
level program is shown 'the occuriDce of the ALEST with an 
unsolicited aessaga. 

~2gs S.211;U~s j,o ll§ ~ 1QQ.UI !.!lI1Sl.!2~ 

the 200UT emulator operates internally in ASCII mode. All 
buffers transfer,red between the dri vet· and the caller are in 
ASCII. The central system may use ~CD (internal or external) or 

"ASCZI). The former requires code conversions be done on received 
and transmitted data. 

Received data (INTERNAL or EXTERNAL BCD) is translat.d via 
translate tables (INTAS, EXTAS) to ASCII. 

Transmitted data is translated from ASCII via translate 
tables (ASINT, ASEXT) to Internal or External BCD. 

In addition, conversion of inbound codes following an escape 
code are converted to ASCII using tables lASES and EASES if a non­
ASCII code is in use. 

5-95 



III. Design Structures 

Puts the I/O board in "on hook" co~ditiJn (drops data terminal 
ready). Clears all status word's '~xcept "cxtcnd:d status". 

JSB • IOC. 
OCT OOOOXX where Xi. i,;.;; lcgica ~ u;,it numbJr 

No rejacts ar~ possibl~. 

1. Turn off data tarminal r~ady. 

2 • C 1 ear the d ri ver and re S~ t t 0 i ~ll ~ s tat a • 

3. Clear status word in EQT. 

4. Disable 1/0 int~rface. 

NOTE: CLEAR is iS3U~1 to t~rmin~tA all activity 6n the 
communication link. Th-a CLEAR should cnl y b·~ issu~,j afte, all 
operations are completq (no outstanding r&~ds or wri~es). 

5';"'96 



ll.A] 

DesQ'i~i2n_ang runGtion 

Read a bl~ck of data from th~ hest system. 
detection on the incosing data bl~ck. 

Execute error 

The ~ollovin9 conditions will result in an error message being 
sent to the host system. 

1. Nonexistent Station 

2. Station addr~33 of 1ijO or 160 in al~Y mc::.:~ .. ;a;J-=' other than 
POLL. 

3. Unr9cognized message control cod~. 

q. No E code or erroneous E code in message. 

5. Word parity error (in auy chdracter). 

6. Message parity error. 

7. Carrier dropped before EOT cr LRC cnaracter received. 

JSB .IOC. 
OCT 0100Xl 
aeject Address 
Buffer Address 
Buffer Length 

wh~re XX is logi~al unit number ' 

( po si ti ve byte s) 

the call may be rejected for ~he tollowin~ reasons: 

1. Terminal "off-line" (E valti£ not compl~te) 
2. Driver is busy_ 

Notes: 

a) ThE# transmission loy wi 11 rafl ect tha :lulI,ber of 
characters rac~ivej. 

b) The transmission log includes the control cod~ after 
the site addr!ss through the ETX character. 

c) A buffer ovarrun will b~ treat~d a~ a carrier loss 
error. 

5-97 



d) If an o~eration ether 'tha~ ~NITE or ALERT is received 
from the host, the rea1 op~ration is terminated with a 
status of 1 in the DSOCD EyT. This indicates that the 
read operation is inapprcpria~e for host activity and 
allows the caller to alt~r its I/O operations •. ~rhus, 
when no other I/O can b~ schadule~, a read operation is 
al ways safe. 

, . 

1. Await a host POLL oparation. 

2 • a e c e i v 13 and n : 1 f f .:; I. t h~· ddt d t rom t. h € L 0 ~ to , (~c Her ii tiL g 
messagE. pariti '"'''' 3 per chtract-=!' ba~i:-{. 

3. Ch~ck LHe on receiv10g mi5sage parity character~ If 
th6re is a parity error or any .othor error mention~d 
above, send an arror messag~ to th6 host. 

Read is the op~ration issued in reslonse t~ a h~st system' WRITE 
messaqe or ALERT messag~. 

5-98 



}JRlli 

D!',§£Ull:S~QJl..AD.d F!lna12.!l 

Sends a blocx of data to the host system. 

ln~!I!s¥!-Q!§~Iiet~2D 

JSB • IOC. 
OCT 1)200XI 
Reject. Address 
Address of Buffer 

where xx is the loyical unlt,number 
~'-~ 

Length of B uff,er 

~be call may be reje~' d for tb~ fOllowiLY r~asons: 

1. Termi~al "'off-line" 
~. Driver busy 

NOTE: Tha caller must supply only data in the tuffer through the 
associated "EU'code. The drivar will supply th~ messaga prefix 
and t~ailing EfX coda. 

'5-99 



!HUIUB~ 

~~IiR!i2n_!Ag_lYnctign 

As the WRITE operation except th~ writ~ buffer is used for a r&ad 
op~ration at the termination of the WRITE. 

JSB .IOC. 
CCT 0210lX where XX i~ th~ logical unit number 
lieject address 
write Butfer addr~5~ 
Length of writu buffG~ 

The call may be rejected becaus~ th~ dr~~er is brisy or the 
terminal is "off-line". The rdad length is always assu~ed to be 
1040 cbaracters. The read buffer is th~ same as the write buffar~ 
Therefore, any incoming data oVArl.lYs. th~ orig :"nal writ~ data. 

The write vill send data to the best in responea to a POLL from 
the host. lft~r all da~a is sent a read ~s p~:forme~. The r~a~ 
accepts da~a from an incominy host WRr~E mess~~~. 

NOTE: Tha driver doas not suppor~ writ€ dia'}nostic oparatiolls. 

5-100' 



!~l!1t! 

~~~~!pt~on_~L~runSl19n 

Establishes the communication line for the ~erminal. Allows
eith$r lIanu~l connections or auto answer conn.ection.

JSB .IOC.
OCT 0220XX
Reject address
Buffer address
Buff~r lengt h

where IX is thp logical unit number

Word '1: BIT 0 = 1
BIT 1 = 1
BIT 2 = 1
BIT 8 - 15

Operate in ASCII mod~
Operat~ in In~=rnal BCD mo1~
operate in E~ternal BCD mode
S l'rE ADDR I:;~S

The call can b~ rejected for the following reasons:

1. The"terminai is already "on-line".
2. The driver is busy.

1. Prime the I/O board.
2. Wait for carrier from modem.
3. Enable host receive op9raticns.

, 5'-101

~ll~!ti!I!!..a.!AI.Y~

~!§S~lB1i2n_an~_~~

The use of this call is to pass ~tatisticson the interface's
perfotmanca during a terminal session.

JSB • IOC.
OCT 0120XX
Beject. address
Buffer address
tEe 6

where XX is thg:loyical unit Dumber

After this call statistics ~re kept in th~ buffer addr~ssed by the
vordin tha calling parame~Lr list.

The call should be made before the ENABLE call i~ issued. The
caller will never be rejected.

1. The following ~tatistics ar~ maintained in the storage
addressed by the reguestor:

~oRD 1
WORD. 2
WORD 3
WORD "
WORD 5
WORD 6
WORD 7

erroneous sta~ion address~s
erroneous control cod~s
character parity error~
messAgE parity errors
carrier losses
missing write centrel COd6S
cod~ indicating type of line drop
(O=clear reques~, 1=loss of data set
ready condition, 2=failure to receive
any data from hcs~ for 2 mi~ute period)

(see the project ERS for amplification).

Notes: Whenever a call to D50CD is rajected the following return
codes tilll appear in the "A" and "BI1 rE:gisters:

A

,
1
1

B

o
1

"00000

Raason tor R~ject

IllE~yal rl3quest
Terminal is otfline
Driv~r i::i busy

5-102

~n~li~iteg_lX~n!!

The following unsolicit~d 6vents are d~fined for D50CD.

ALERT received

WRITE received

LINE DROP OCCURED

A=logical unit number
B=000001

A=logical unit number: .
B=000002" (also, bits 15:8
ccn~ain th& ~rit. message
.. En code) .

A=logical unit number
B=OOOOOO

In the case of an unso~icited write operation the driver will
reject writes (station busy) until ~ read operation i3issued.

The dxi~er is completely responsible for line quality monitoring.
the monitoring is accomplished by th~ alternating station
addresses in messages received from the host • .,....
All data passed to .CSOCD is assumed to be ASCII. All data passed
to the cal19r is also AS~II. Code conversions are don~ by D50CD
froa/to ASCII and IH1/EXT BCD.

Summary of DSOCD IOC calls

f.Yl!£llflB
00
01
01
02
02
02

~!!'§!y~U5U!
00
00
20
00
10
20

gllJAIIQ.tl
CLEAR
READ
EXTENDED STATUS
WHITE
W HITE/R EAt
ENABLE

·.5-103

i~1!!!l!
Immediate
Asynchronous
Immediate
As ynchronous
Asynchronous
Asynchronous

SECTION VI

PROBLEM ISOLATION

PRUBL~M ISOLATION

Un~ortunatelv, there Is no one way of localizing any prob­
lems which mlqht occur In the lOP. However, tracks dO exist
Which could help you in localizing the bug or posSibly solving
it. Outlined In the tollowing paragraphs are essentially those
tracks which YOU can check to, if nothing else, eliminate certain
modules as suspects. '

,1) LooKing at the entry pOint of .GETQ
This will qlveyou the handler who last got something from
his work queue.

; 2) In addition, entry points of .PUTO, .PRIO, .FRER and .GETS
give YOIl the same type of information.

3) Due to the nature of power fail recovery, the I.XX entry
p~lnts ot all drivers ~ll1 be cleared. Hence, If a HLT 2
should occur and the I.XX entry point of a driver is non­
zeta, then he was the last one In control and most likely the
cause of the problem.

There' is one exception 'to this rule. The interconnect kit
driver 0.61 contains the code to process a cold dump request.
As a result, If a cold dum~ is taken, the 1.61 entry point
and some OMA r~lated information get wiped by the dumping
process. Since this data is recoqnlzed as valuable, the
dumping routine saves it before executing. The information
can be found within 0.61 as follows:

KSNI. contents ot 1.61
K~NI.+1 OMA routine return address
KSNle+2' DMA buffer address
KSNI.+J OMA buffer lenqth

4) There exists a trace table of SP to IUP communications,
(entry pOint D.b15 in O.bl). This will give you the last 50
ICK transmissions. You cannot conclude, that the last th1ng
received from tne SP was the culprit, remember many things qO
on a~ynchronously. Its just another source of information on
wh~t~ happe~inq in the syst~m at the time of the crash.

5) The entry point ot .IOC. will show who was the last to cross
the bounQary from system (handler level) to I/O (driver
level).

b) QIT entries will show you what·s pend1nq on the work queues
of all the handlers. ~hat is on the work queue can almost be
eliminated from the cause of the prOblem by the fact that the
processinq thPV invoked has not yet taken place •

. 6-1

7) The CRO will snow YOU what 1/0 f'vents hav~ completed but have
not yet been processed.,

H) F:OT entries 'Alill Yield information about all DR\)·s: whethpr
a cievlce 15 Stlspen<i~d, whetner thf' 1a!;t event for that device
como1eted, dnd flndlly, the hardware status.

~) OTOP in D.43 paints to those events wnich are oeing timed.

10) Rutfer oendina qupues ~i11 snow If tnere is a bottleneck In
thP rpturnin~ of ouffers. Tf the count for each handler
hecomes laroe, thpn someone I!; hOqqlng the ~utters ~nd not
ret urn i n q t ~H.:II m • T r\ is" hoC] q i n '-lit s t) 0 IJ 1 d n eve roc cur •

1 1) Tn e "I ~ i n t r ,:,t c eta hIE' t r n c P. S C 0 fII 0 let e d e v f' n t s, (~ 0 t h sol i cit. e ri
and unsolicited) an~ all calls to .PklQ and .~UTQ. This
table hr=t5 rooUl tClr titty entries (100 worns). The tr~ce

routinp. is tound in tne ~odule ~N. TTPTH will be pointing to
thE' next slot in wnich an evp.nt will be traced. The orevlous
slot will contain the l~st pvpnt ~ut on the tr~ce table.
~vents ~re tracE'd ~s follows:

a) .PUTO/.PRl~: A reg - address ot ~IT to receive butter
B req - chleiress ot t;np. t'luffpr

bJ Completed events:

NnTfo:S:

sollcitpd - A req - oriqinal l/0 cdll pardmeter
H reg - aaaress ot the butter

un 5011 cit e r1 - Are q - t 11 net i on p lLJ S un i t ret ere n c ~ ,
~ r~q - evpnt data driver ~~nerat~d

a) • pur (,) an ri • P R 1 f) C til.L ttl e t r ac e ro l1 tin e i m m e did t. ely
after they ar~ cdlled. This me~ns the tr~ce entrY Is
rr. rl C1 e '.a1 hE' nth E' P lJ T~) I P H T () hap, len 5 • 'r 11 e C U I~ P Lor pro c e S so r
c ri 11 5 t n P. t r d C ~ r 0 uti net 0 t r d c e co rrt plea t e (1 J / n • ThE'
C () ~1 P L 'f' pro c €' s s 0 r i s i u m p P. d tot r 0 Pi the com m u t ,\ tor w hen
dn l(lC Interroodte reouest has reve~lpd cnmoletpd 1/0
tor so~e handler to proce~s. This me~ns thdt tne trace
~ntr'v Is made ~fter the event ndscomJ..'leted at t.ne
orlver level ~nd after ·the event has been rpmoveo trom
the CHO, but jmmerllatplv hetore th~ He entry point of
t~e rel~ted' handler Is c~lled.

6-2

b) Decoding the main trace 'table sometimes appears a fine
art. to the uniniitiated. Using the following algorithm
will help.

1. LOOK ONLY AT THE A REGISTER

2. Compare the A register contents to the OIT
addresses. If the A register paints to the
beginning of a QIT entry, this is a .PUTQ/.PRIQ
to the handlet represented by that OIT eritry.

3. If it is not a .PUTQ/.PRIQ, then it should be a
completed I/O event. The last six ·bits of· the
A reqister give you the IOC unit reference number
for the device. The Equipment Table CEQT) is In
unit refe~ence numbe~ order (first ~ntry is unit
reference. 7). Use the unit reference. to index
into the EQT and find the select code of the
device. This will usually tp.1I you what device it
is. If you don-t know the configuration, go to
the Device Table. It contains both the select
code and designator for each device configured
in the rOPe Now that you know the device, go
to the documentation for the driver of same and
find out what kind of IOC requests/unsolicited
p.vents it handles.
Some IOC requests will be obvious. Bit 15 tells
if it is a queued request or not. Bits 14-12
qlve the function. The most common functions
~re read (1) and write (~)., Some examples are:

010010 non-queued read request - unit ref • 7
020011 non-queued write request - unit ref # 11
020210 non-queued write request - unit ref # 10
012011 non-queued read request - unit ref. 11
110015 queued read request - unit ref # 15
120015 queued write request - unit ret • 1~

If it·s not some type of read ~r write, it~s most
likely an unsolicited event. The B reqister
contains the relevant unsolicited event data. See
tne documentation on the driver presenting the
unsolicited ~vent to decode the event d~ta.

12) The int.rrupt trace table Is another trace of past lOP
activitv. .TINT (found 1n module ~lN) is called from every
IoXX entry point. The address of the I.XX entry pOint and
the contents of th~t location (Ie. what module got l~terrupt­
ed) are recorded. The interrupt trace table has room for 50
entries (100 words). TtPTR will ~e pointing to the next'slot
in whiCh an enterrupt will be traced. The previous slot will
be the last interruot that occured.

6-3

13) A list of addresse~ ~nd other paramaters is qenerated oy lOpe
dnd loaded into the rup at configuration time. The address
of this list is movpd to location 3 of the lOP at system
start-un. If any lor module detects a serious problem, a
system OEATrl routine is called which saves the environment In
this same list. Similarly, if the operator executes the lOP
PAN IC loop and the env 1 ronment has not al ready been .saved, it
Is saven oS above. This list exists prtmnrlly for the cold
dump analvzer·s use, hut is very helptul if no an~lyzer is
available.

WOHl>,

o
1
2
J

'4
5

b
7
k
9
10
11
12
13
1 4
1~
16
17
tt=t
lY
20
21
~2
iJ
24
2~

26
'1.7

CULD L>lI~P ANAI,'iZF~ LI~T

lOP dnte code
A reqlster
H rA ,11 s ter
Fl~qs - bit 2 = 1nt sys status

bit 1 = E register
, bit 0 = 0 reaister

F r~qlster (register save stack
p re.gister

pointer)

= 0 info saved when PANIC executed
0 Info sdvert when D~ATH executed

and this is address tram Which
it waS" call1~d

D~f .OAT address at device dssiqnmenl taol
DEI"' .DVTH arldress at aevice tdhle
I.)ff" ,VITAl> address of <.>IT·s
DF:F PULPl' atidrsss at Senl, list
Dt-:t-' O)'llP nddress of (').43 TOt:; Chain heaci
Dt::f LlIT51 address ot U.S1 unit tables
Dfo:F L,OTht address of n.61 unit tables
0":1-" Ur.'J'OO address of n.ft3 unit tables
I>EF' SIBIK address of lCKH unit tables
n~f StRAY address at A5YH unit tables
DEf D.btS address of D.b1 trace pointer
I)F.~' rTPTR address of main trace pointer
DEY CPO address of .IUC. CRQ he~d
D~ .. F 'QHEAD address at .IO'f. tree storaqe
OfF 51'ST address ot SYN(IH/CD) tables
D~f P~TR address of MEMRY tree list
OEF EOT dddress of equipment table
Cnp~ of lOPC·s .MOPT word
AriJress at tirst hut fer in pool 1
Address ot last bufer In pool 1
A~rlr~~s of first outfer 1n pool i
Aadress at last Ol1ffer in pool -;.

6-4

If a cold dump analyzer Is available, it will use the above
1 1st top r"i n t 0 uta 1m os tall the tab Ie s and t rae e sin the lOP
in a neatly formatted listing. The interrupt trace table Is
not broken out by the analyzer. The other two trace tables
are, with the most recent event printed at the top of the

. ta·b1e.

6-5

SECTION VII

lope

I. Product ldent if ication

lL2 il:SS!H2..-: CO n 'ig~~~~ jlQ~l
The purpose of. this program is to configure I/O Processor

(lOP) programs for the .HP20 CO ACC~SS·· systems. Since· the lOP
program can contain various compon9nts and .features, a techn'ique
is required to selectiveli,lcad and merge needed modules to make
up the lOP system desired by the user. SOllle of the possible
features which may be configured are: number of rSB ports, IOP
memory size, 2741 support, ASCII files support (line printers,
card readers, tape punches, EtC.), and RJE access to various hos~
systems.

A secondary purpose of Iope is to perform loading (reloading)
of the lOP.

II. Design overview

ge!JaSll .A§!y.!nJiQ~'§

IOPC is not .. a stand alene program, although it is written in
absolute form. It is one of several 'programs whic~ ,are used to
configure complete HP2000 ACCESS systems (the others being the
7900 loader, 2883 loader, etc.). Tne MCP or Master Configurator
Program controls the loading and invocation' of the various
configuration routines. . The ftCP contains I/O drivers for the
system console and magnetic tape units. lOPC utilizes these
drivers and several oth&r parameters and subroutines in the !CP.
One special capability of the MCP is the application of "patches"
or "fixes" to the program binarys which it readSe While this 1s
transparent to lOPC, it do~s allow the application of such patches
to the lOP program which IOPC creates.

The entire HP2000 ACCESS system is distributed on a master
magnetic tape. File one of the tape is tha !CP. A 8.al1
bootstrap program is used to lead and initiate the Rep. The MCP
then can load lope. Each master tape file after the first (~CP)
is identified by a fila jd record. Within the file, groups of
binary records are identified by group id racords. The antire
file is terminated by a file end id record. The purpose ot these
id reco~ds is to allow MCP tc identify files for tape positioning
and to identify binary records for the application of patches.
IOPC is only ccncerned with the file id records for the files
which it uses. One file is the standard modules file. The second
ls the optional modules file. Third is the rop core image file.
A complete outline of the files and file id reco~ds assumed by

7-1

rope ~ay be fotind in Table 1. Further details on the use of thes9
filas will follow.

Other design assumptions for lope are:

1. select code 11 is assumed to be the trans.it channel
interconnect kit interface to the lOP •.

2. Salect code 12 is assumed to be the system console •.

7-2

tab,a 1
I12 n.£2n~ An ID reco~d is exactly 5 words 10D9 and has the
follcwing form:

15 14-12 11-9 e-6 5-3 2-0
r-~-~~-~~~~~-~-~~~~-~~--~~~~--~~-,

10 0 ·1 101 '0 10
J ----- ----~-.. ----------- - - -~------I~
10 0 2 101 0 J 1, I
I------~~~~~~---~----~~~-~~-~~~--I

(id number)
I~~--~~~----~~~-~--~~-~~~~~~~~-~-I
I P . . (info. w crd)

(checksulI)

Tha ID number is an unsigned 16 bit positive integer (0~n~6S535).
Pile ID numbers must be a multiple of 1000. The information word
does not apply to ID records appearing on the master tape. This
word is used on patch ta~es only (see ~CP). The "P" bit
designates a relocatable (set) or absolute (clear) group of binary
records. An ID record can be assembled as follows:

OBG 2001 E
IBS IDVAL
DEC 0
ass 1

A~~~~ ~!E~ ~gsni!A!i2n At the time of this docuaent, the
master tape had the following file organization:

lilt.
1
2
3

" 5
6
7
8
<)

~gn~111.§
MCP
lope
Std. top modules
Opt. lOP modules
7900 Loader
2883 . Loader
7905 Loader
TSB system
lOP copy file

IllL1J2
none
1000
2000
3000
10000
11000
12000
20000
65000

l.2n~!
absol ute
absol ute
relocatable
relocatable
absolute
absol ute
absol ute
absal ute
absol ute

!Qf~ ii~ At the timE of this document, the master tape
organization of lOPC related files was:

lilLl~
1000

~.9!!ll.n!.§
IOpe pr 09 ram

7-3

2000 2010 ftN
2020 DUftP
2030 'ISGH
2040 IeKH
2050 "OXH
2060 ftE! RY
2070 IOC
2080 Dil3
2090 D61

3000 3010 D51S
3020 DS1A
3030 D63
3040 D62
3050 DSOIS
3'060 DSOCD
3070 0110
3080 0120
3090 0130
3100 D140
3110 0340
3120 D11C
3130 D12C
31QO D13C
3150 D14C
3160 D34C
3170 • 2741
3180 .274E
3190 .274C
3200 !SHBIB
3210 rlNRCD
3220 WCSL
3230 004
3240 lSPH
3250 SYRIB
3260 SYNCD
3270 ' CIO
3280 CICIS
3290 CICCO

,3300 ceDIS
3310 CODeD
3320 CCOIB
3330 ceOCD
3340 PDOIS
3350 peOCD
3360 PPO
3370 CRO
3380 PRO
3390 RPO

7-4

3400
3410
3420
3L130
3440,
3450
3460
3470
3480·
3490

LPO
PUOIB
ceCIB
CCCCD
PDCIB
P·DCCD
cae
LPC·
PPC
RPe

lQ.f~ 1§§J.lI9.tl1~§ - The orda!: of t h.t:! binary groups in t he standard
and optional modules files (IDs 2000 and 3000) is not random.
Modul·es in the' standard mcdules f11-= are UJ!A.I§ loaded by Iope.
This is true even if the module can not be identified by·Iope (see
.NAMT). Further, it is required that th~ first module in th9
standard modules file be the ftN or managers modulec This is to
insure its lQadinq at location 2000 which, in turn, assures the
documented start addresses fer PANIC (2000) and the lOP to Iope
unloader (2002).

Not all needed modules are in the standard modules file.
Even a minimum system requires loading of the appropriate D.S1
module and 0.04 module from the cptional modules file. Generally,
the modules in the optional modules file a~e ones which ar~
va~iant in some wa~ Some dEtai~s about this file are:

10 0.04 must follow ill dri'ver modules.
2. Variant RJE modules are assumed to have names (HAM

records) with the last tvo characters indicating the
version (e.g. IB for IBM, CD for CDC, etc.)

7-5

na§ign A££~2i\~.h
IOPC has three distinct processing sections. First is the

system configuration dialogue. During this section all questions
about configuration are ask6d. The operator's resFonses are
~nalyzed. The outcome is the establishment of various
configuration parameters and control blocks .which vill determine
further processing. .

The second section of IOPC is essentially a relocating
loader. ftodules are selected from the master tape as required.
These are relocated and linkEd together to create the IOP program.
In addition, a number of binary module modification processes are
al~o involved. The purpose of these processes is to contruct
ne~ded IOP control blocks, buffers, etc. Also, such things as the
merging of select codes into I/O instructions can be done. 1
final function of section twc is to create an optional ccpy of the
configured IOP prograa. .

Section three of lOPC produces a aemory map and report of the
configured lOP prograa.

III. Design Stucture

.Qsis Jl'-Y~~U'§

·Several control blocks and parameter lists are used during
the configuration Frocess. 1hese are outlined here.

This table, located en base page, contains most of the
configuration parameters. While it does contain so.e default
values, most of this table is filled in as a result of operator
sp~cifications during: the systea configuration dialogue section.

!2.£,dj.§) !Au

9 II 1t!!S
1 '. SP N

·2-33 .fiPBS

34 • flO PT

highest me.ory address in lOP
zero relative Dumber of ports (default is 31)
,TTY buffer size for each port in words
(defa ult is 60)
optioz:s flags:
Dit l1UnlIHl
15 2741 fBCD code
14 2741 CALL 360 code
12 IEI' RJE

7-6

35
36
37-43
44
45-51
52
53-59
60
61
62
63
64
65
66
61
68
69
70-1

!2I£

o
1

2

3

4

• PlSeK
• KHBD
--~~~

• f!H tD ---_.-
• ftH PO -------
• KACR
• !lLP
• "APU
.!ABP
• MAPS
• KCNT
• JT.
.JLt
II) JP'
• !APN
• lIASF

11 CDC RJE
1 create master tape lOP copy
o create separat e t ape lOP co1=1

hiqhast used select code in lOP .
number of host readers (default is 1)
devic~ assignments for host readers
nUBber: of host line ·printers (default is 1)
device assignments f~r host line print~rs
number of host punches (default is 0)
devicE assignments for host punches
numb9r of card readers
n ullbe r of line printers
number·of tap~ punches
number of· r~ader/punch/interpreter
numh9r of photo-readers
number cf IOP' modules to be loaded
number of job transmitters
numb9J: cf job transmitters
numb9r of job transmitters
negative numb~r of ASCII files
3-vord ASCII file apecifications:
!!~g ~,gDtent

o device designator
1 15: 12 ch a racteris tics

7: 6 subtype
5: 0 sele ct code

2 record size in words

~~2£~ 11l2~ali2n Iabl~

This table keeps track cf IOP memory as it is allocated.

l!~!!! ~Qtl:t2Jl!

PWBP holds address of 1st word of base page links
FWABP holds address of 1st vord of available

bas ~ I=a ge
LWASP holds add.ress of last word of available

bas·3 I=agE
PiA M holds address of 1st word of available

program memory
LilAH holds address of last word of available

program memory

This table· controls the system configuration dialogue for
ASCII files. It also prcvid9s basic parameters for the

7-7

~stablishm~nt 'of the
ASCII files dialogue.
follows:

.MASP entries which are generated fro. the
Each eight word entry in .ACt. is as

!.2Ia
o ,
2
3
4
5

6

7

8

~2ALen~§
Device type name (2 ASCII characters)
Basic devicE designator
Klnimum numbet of this device allowed
ftaxiaua numter of this device allowed
Default reccrd size in words or a negative value
Maximum reccrd size or address of aevice subtype
table if word 4 is negative (see note below)
Device characteristics and flags:
Bit 1S = , if input device
Bit 14 • 1 if output dev~ce
Bit 12 s 1 if cnly output allo~ed is CTt.
Bit 7 = , if BtlE pseudo device (causes this
entry to be bypassed in no RJE. llso prevents
request' for select code.)
Bit 6 = '1 if Sf device
Bits 5-0 contain select code for SP devices and
Dumber of associated select dodes if lOP device.
Address of 'list of addresses of vords to receiYe
n umber of these devices to be c!,n~gured (list
is terainated by ainus ODe value)
Address of vord to receive address of' first .ft1SP
entry corresponding to this type of device

Note: for devices which co •• in several flavors, vord 5 addresses
a subtype table. This is indicated ·by a negative vord 4. In this
case, word q represents the aaxi.ua subtype expressed negatively.
All subtypes are zero re1ati vee 1 subtype table is as fellows:

l!.2Ig
o
1
2

'ml.ti.D1!
Default (and maxi_us) record size for subtype 0
Sase for suttype 1
Etc.

Nev types of ASCII filas can be included by si.ply adding nev
~ntries to this table. 1 nega.tiye one word terminates the table.
Tha ord9r of the table aust be as follows: all system processor
devices, all RJE pseudo devices, all lOP devices.

This tatle contains
load/Doload decisions about

all inf ormation required to .ake
modules encountered. in the binary

7-8

input files. In addition, oth-:!r information is present to be used
in configuring various tables (EQTs, etc.). The order of .HAST
.antries for drivers and handlers indicates relative -IOC and TSB
logical unit numbers which lIust be deri ved- froll this order and
cth6r inforlla tion such as that in .MeT. Entries in .ll&ST for
standard file modules Must centain a copy coun t of 1. Other copy
counts are establ-ished during the initial dialogue. The forllat of
.HAST is as follows: .

4
5

6
7
8
9

10

~.2!lant§
r10d ule namo!
Module characteristics:-
Bit 0 = 1 if module is handler
Bit 1 :: 1 if Dlcdule is dri ver
Bit 2 = 1 if module is varying RJE module_
Bit 3 = 1 if module is RJE module
Bit 4 = 1 if module is ASCI~ file .odul,
Por handlers: -
Bit 15 = 1 if module has prime entry point
Bit 14 = 1 if module has I/O complete entry point
Bit 13 = 1 if .odul~~as initialization entry point
Bit 12 :: 1 if .oduls r:a pre $l3n ts allocatable resource
For dri ver 3 :
Bits 15-14 are EQT characteristics
Humber of ccpies to load
D esigna tor ta me (if handler)
Dri ver numb4r in bits 7: 0 and nU'mber
of assoc~atEd select codes in bits 15:8
(if driver)
DBL exit address
ENT exit address
END exit address
!odule index number (for use as index to special
processing toutines)
For handlers, this word contains the logical unit
number associated vith same. If multiple COpi9S
of the .od~le are loaded, this will be the first
of the assigned unit numbers. For drivers, the
basic select code of the module is contained
here. For drivers whioh are loaded .ultipl~
times for use as ASCII files, this word contains
the address of the first .MASP entry which
corresponds. For several basic lIodules, this
wor-d initially contains the Dumber of associated
select cod;)s.

Iha order of entries in .NAKT is as follows: all drivers, all
- handlers, all ether modules. The drivers and handlers sections

.#

7-9

ar~ in relative logical unit number order both for IOC and TSB
logical unit nUMbers. A negative one value delimits,. the table.

f:!.!!~2 ltas e fA~

One memory page of IO~C is reseved for use as a pseudo base
~age. ' On this page is contructed the base page whicb is
=v~ntually loaded into the Iep. 50ae locations are asseabled into
this page which are assuaed by the lOP program. These are:

c
w

6
7

Content
JiP~:I for system start
HLT 5 fer memory failure
CLC 6 for DMA channel 6
eLC 7 for DKl channel 7

Location 3 is later filled ty lope with the last (hopefully only)
transfer address encountered in the processed' binatys. Location 4
is configured by the 0.04 mQdule .odification a~pendages.
Locations 10 through 77 ar~ initially zero to indicate that none
of the select codes hav~ ,e't been allocated. They are set non­
zeto as they are allocated during the system dialogue processing.

j!2gU! .!1lR lAll! , • r!" T .&.l.

Each 5 word· entry in this table saves the name and beginning
and ending addressEs of each mcdule loaded into the IOP:

H.2l:~jn
0-2
3

"

£onte.n1
e.odulE name
~odulE starting address
e.odule ending address

the table is terminated by a word containing a -1 value.

Each 5 word ~ntry in this list contains the name of an lOP
program entry point plus its entry point address and base paga
link· address. This list is kept in a reverse order froa hiq:tl
memory down var d:

~2IlljU!t.§

1 st w crd of naae
2nd werd of name

7-10

2
1
o

Jrd verd of name
address of entry point
address of base page link

In addition, 'a count of all such entries is kept in variable LST~
The LSTP routine described bElow, will establish five indirect
pointers to' a given entry with LST1 addressing vord 4, LST2
addressing word 3, etc. '

~J!~li2J1U f! e~ .£i!i cC\ t i qn'.§

~!ls12.!l 1 - ~.§S.!l! ~.2!l!ig.\!.£A112.n. Q.~ls.gS!

Before discussing the actual dialogue process, several
subroutines will be 6utlin~d. All are used by section 1. The
READ routine is used as a central console read subroutine. In
addi tion to requesting a console read via the MCP console driver',
a line feed is output to acknowledge the input. Also, the first
input character is tested fQI centrol-G tBELL). The occurrance of
this code is the operatorfs abort signal. READ then issues an
abort message and terminates lope. No~mally, however, BEAD simply
returns to the caller.

The LD8YT subroutin~ extracts character. from the console
input buffer and inserts thea into the A r~gister. The high order
8 bits of A are not disturbed. LDBYT advances ~he tuffer pointer
as charact~rs are extracted. If a carriage retarn is detec~ed, a
space character is returned and a "+0" return is made. Normally,
return is to "+1".

A YESNO subroutine processes res~ons~s intended to be yes or
no. The caller provides th~ address of the question which YESNO
~utputs. Next, the response is read and the first character is
input. A NO response ("N" or null input) causes a "+0" return. A
yes response . (ttyft) . causas a "+1" return. Any othel: response
causes the question to be as~ed again.

seREA is a selEct cod-a input and analysis subroutine. Input
is a value in A which represEnts tha number of total salect codes
associated with the basic select coda to be input. The E register
inputs the address of a message part which describes the desired
select c01e. seREA first outputs the s91ect,code question. Then
th~ OCTIN routine (see b~low) analyzes the input. Any error
results in an appropriate diagnostic and reasking of the question.
Correct octal input is validated as a legal select code. If

7-11

valid, the 'given code plus all associated codes are checked for
pr~vious specification. This prevents overlap. As SeRJ!:A
allocates the select codes, it marks their allocation, in
corresponding locati~ns on pseudo base page. Before returning,
the select code is checked against, • l!SCl! (aaxilJua select code]"
and .!SCl! is UFdatEd if necessary.

DECIH and OCTIN process numeric input and return an internal
binary value plus an indication of the terminator of the nuaer:Lc
string. Both use a ccmmen routine but set up a different
conversion radix.

"i51.2~Ul! .2I~!.§ill.SJ

IOPCM is the entry point which receives contr.ol fro. ftCP (v=La
the IOPC entry point)~ lope is identified to the operator, and
the optional reload question is asked. A yes ansver leads to the
re load routine desct'ibed in appendix B. Nor.ally, a series c)f
configuration questions is asked. Processing of these is as
follows. Note that.in aany cases, the outcoae of the processing
is to set • "CT. values. other important details include the
setting of copy counts and na.es in the aodule loading table.
these settings vill determine the eventual module selection.

DATE?

Any input, except null input, is accepted and aoved to the header
message which is part of the ouput of section 3 processing.

r1ErtORY SIZE?

Decimal input is accepted and compared to a list of valid
specifications. The correspcnding actual high memory add~ess 1s
established in ."EMS.

NUf'2BER or PORTS?

tha decimal nu.ber of ports is input and validated. De~eDdiDq on
th9 specificaticn, the requited version of the aultiplezer driver'
is selected (1 or B). This is done by setting the aI=propria'te
name ·in the module loading table. Also, the associated nuaber lof
select codes is set at either 3 or 6.

BUFFER SIZE OPTION?

A no answer to this' question results in no further processing, a'Dd
the .PI.CT. default TTY buffer sizes are used. l yes answer allows
input of alternate siz9s. Any of the three formats of buffer size

7-12

specification are input and analyzed repetitively until an 'END'
is input. Each specification is validated, and a range of ports
is found (may be one port). The given size is then set in the
corresponding slcts of the .MCT. tabl~ts .MPBS entries.

IXX SELECT CODE?

SCREA' is used to input" each of the select codes for the time base
generator, interconnect kit arid ·multiplexer. The module loading
table for the asscciated drivers initially contains the number of
associated select codes (at cffset .NAUN). This value is input to
SCR!A and is then cverlaid by the select coda returned from SCREA.

2741 TYPE TERMIN~LS?

A yes answer causes ~he ClPY count to ba set to one in the modula
loading table entry for th~ 2741 module. At least one 2741 code
must then be selected ~lso. These questions are asked and the
code module copy counts ar~ also set as required.

INCLUDE RJE PUNCTICN?

A no response causes this section to be skipped. A yes response
leades to two other questions asking which version of RJE is to bg
included. Next a scan of the modul~ loading table occurs. All

'RJE related modules receive a copy count of one. In addition,
those which are variant CISM vs. CDC) have the module names
modified to raflect the apprcptiateOrequirad version •. then the
seREA routine is invoked to cbtain the syrichronous modem interface
~elect code. For the IBM v~rsion only, the number of each type of
host function is input. these values ar~ stored in resp~ctive
.~CT. cells (.l!HBD, .MHLD, and .MHPD) and in respectivE .ACT."
cells for specification of the "maximum number of JT, JL and JP
ASCII file types. Finally, the copy counts for HR, HI, and HP
modules are set sinca thasE may be loaded in multiple. Next ths
ASCII files question is skip~ed since RJE requires ASCII files.

NON-SHAREABLE DEVICES?

For th9 y~s answer to this qu~stion, all processing is controlled
by the .ACT. table. Por eac1: .ACT. entry, th.9 follollinq is . done:

,. If no RJE compo~ent is to ba included and the fil~ type
is RJE related, then the .ACT. 9ntry is skipped •

. 2. If only one possible quantity of the file type can be
specified, then the quantity question is skipped.
Otherwise it is asked.

7-13

· 3. The· specified numbe~ is checked against maxi,mum and
minimum. If acceptable, the mod1l1e loading table
entries which a~e related receive appropriate copy
counts. The total Dumber of ASCII files is updated .
(. l!APH) •

4. For each file .of the type r9quested, the fcllcvinq is
done:

a. A .KASP ~ntry is started with the correct device
des igna tor.

b. Device chatacteristics from the .ACT. entry are
moved to the .!ASP entry. (This includEs select
code for SP devices.)

c.. Por real lOP devices, the select code is input
and added to the .aASP entry.

d. If a subty~e is indicated by the .ACT. entry, ;it
is obtained and merged into the .ftASP entry.

e. Finally, the' record size is input and added '1:.0
the entry.

At the end of this. processing, ccmmon ASCII file modules are set
with appropriate copy COUDts (unless ·only SP devices are
requested) • An important fact about the above processing is thilt
it results in the generation of .BASF entries in an crdet opposite
that required for the IOP device table (.DVTS). This vas only
done as a matter of convenience bere.However, it forces tack to
fron~ processing of the tablE during later sections.

XX DEFAULT DEVICE ASSIGNftENT?

This question is processed only if RJE is included. First,
validity checks of the nuaber of ASCII files to the number of host
functions is done. This is tc insure tha t not more .host functions
3xist than devices "to be potentially associated ~ith the_. Next,
thg question is aSke'd fot each defined host functio!). Tile
response is validated as a legal file type for association vi1~h
th~ type of host function. If valid, a designator is contructed
and stored in the a~propriate .!HRO, ."HLD., or .!~PO entry.
These are later used to construct the lOP .OAT table.

MAGNEtIC TAPE COPY?

The correct lOP copy option is set in .KOPT.

S~veral .final activities ate new perfo~med by section 1.

7-14

..

1.

2.

3.

4.

5.

6.
7.
8 •
9.

. .
~~.2..Y~.iU§,

The select coj~ for D.61 is copied to associated
driv9rs D.62 and D.63.
For all unspecified select codes from 10 u~ to the
maximum lOP sdlect code, a HLT instruction is
configured 'into the corr~sponding pseudo base page
select code loc'at ion.
The· total number of. modules to be loaded is calculated
and saved. .
Logical unit; numbers are calculated and inserted into
module loadir.q tatle entries. This is done c~ly for
function handlers which are to be loaded and which have
I/O complete. entry points.
The first available base page location (.eSC!+1) is
set.
The standard modules file is select~d via the MCP.
The starting of the lOP loader is requested.
The IOP is loaddd with zeros.
Section 2 is entaIed.

Several subroutines weich are a major part of section 2
processing are d~scribed first. NOt9 that some of these routines
(e. 9. D IAG)ar E USEd by sect i<:ns 1 and 3.

LINK is a routine used to allocate base page indirection
pointers (link words). ThesE link words are required for tha
r~solution of eff-page references of locations by memory reference
instructions and DEFs not on the same page. LINK accepts input in
reqistar A. If A is zero, then a new bas~ page link is forced to
be allocated. !f A is non-zero, a scan of existing links is made
to see if one already exists. In any case, register B is used to
return ~he address of the required base page link. LINK aaintains
its base page image on the fseudo base page but returned register
B values are actual base pagE addresses. An overflow of base page
re sul ts in an tlbort.

LSTI and LSTP are rcutines used to access the ~ntry point
list. LSTI prepares LSTP for a scan of the list by s~tting a
controlling count and an initial sat of pointers. FivE pointers
are used to allow indirect referenc~s to' a given list entry.
Thase pointers are adjusted by LSTP. LSTP returns "+0" when the
list is exhausted. Normal return is at "+1".

7-15

S~veral terminal error exits are defined for com.on error
~ypes. All have entry points of the form LERx. All produce an
appropriate message~ and the~ abort. ftost add special inforaation
'to thE message to, te' output.

DIAG is a general console output routine. An inline DEP to
tha messag~ is the only required input. If the DEl is indirect,
this implies that lOPC is to be terminated and is not really an
indirect DEl. In this case, DlAG returns to the !CP after
~rop6rly repositioning th~ .aster tape. "essaqes are preceded by
a positive count of the number of vords in the message.

PACK, PUNCH, PPPP, and CKSS are routines used to prepare
~bsolute load records for transmission to the lOP protected loader
(sae IOPLD). PACK adds a verd to the absolute record and updates
th-= checksum •. PUNCH completes the checksum using CKSS and then
calls IOPLD to load thg record. PPPP is then caLled to reset
pointers for new PACK calls.

IOPLD accepts input in register B indicating that a'record is
~o be loaded into the IOP (B=O) or that the IOP protected loader
is to be forced to stop (B=-1).' A 'timout technique is used to
insure that the lOP loader is running. Failure to receive a
response from the lOP prior tc the ti.aout will result in an lope
abort (unless 8=-1 input raqoested this action). Normally, each e
hit byte of A' is output to the rop via the interconnect kit (blts
15:8 first).

~~£!ign l 2~~li~~

section 2 processing is essentia.lly that of a relocati,ng
leader'like the one used in les or MTS syste.s. However, there
ar·? additional functions. The overall fl01l of section 2 is:

1. Load modules from the standard m~dules file.
2. position to the optional modules file. select aDd load

required optional .odules (there are always soae).
3. Construct 1012 systell tables, control blocks, etc.

(. D AT, • DV T B, • C a Po., Q IT' s , et. al.)
4. Create a magnetic tape copy of the' lOP program .1£

required. '

Sev~ral important extensions to th9 normal type of processing
performed by a relocating loader are a standard part of steps 1
and 2 above:

1. The modul~
be loade~.

loading table is used to select .odules to
Unneeded modules are discarded.

7-16

2. ~odules which are to be replicated are copied to an
Iope in-core buffEr and repetitively processEd froll
th'at area. This is to prevent the need for ma·ster" tape
rereading and to allow singular application of patches
by the "CPa "

3. Select cod"as and IOC logical unit numbers are aerqed
into the relocated modules. "

4. optionally,Dlodcle modification appendages can b.e
invoked to perform sp~cial p~ocessing of the relocated
image of a mcdule being loaded. Also, special
processing at the end of module loading can be done.
These appendages are indicated in the modula loading
table entries. Three are defined as follows:

~!I !xl! -For aach module entry point (except .SCxx or
.LUxx), an exit is made. Registers are set as follows:

A = address of ENT entry as it appears in the ENT
record

B = base address of the module being loaded

The exit routine is exp~cted to return as follows: "

+0 - normal return, retain the entry pcint

+1 - optional r&tu~n, discard th~ entry pcint

n~~ ill! Following the relocation of each modulg
location, the exit is made. This is dona prior to
loading the location into the IOP. ReqisteIs are set
as tollows:

A = relocatEd value of location

B = location address

On return, B is cf no consaquence. However, A is used
as rgturned. Thus, the exi~ may modify the value to ba
loadfd. Th~re arc no optional returns.

END ~xj1 - Aft~r relocation and loading of the modul~,
this exit is taken. No regist~r values are provided to
the exit, and no optional r~turns may b~ made. Th~
exit has access tc FiAM and an indication of the 'next
available locat.icn and may use tho ENT exit to define
needed addresses within the loaded module. FiA~ can be
modified up or down by this exit as required •. '.

7-17

B~lg£~ling l2A~I

Processing of both the standard and optional aodule files is
sequential. Routine LDBIN reads through the current file and
performs minor validity checks on each record read. Each record
is a singl-e relocatable bina Iy record a.s produced by an asseable:r:.
NA!, ENT, EXT, DSL, and END records are accepted. Further, it is
assumed tha tall E NT and EXT records precede any OBL Iecord;s.
(Note that LORIN can ,be forced to rea.d frcm an in-cora copy buffer
for modules vhich are repetitively loaded).

LDRIN invokes the NA! record processor in all cases. This is
to allow for the selection decision. other record type processol~s
ara also invoked unless the HAM selection process dictates thnt
the module is to be skipped. 'Ihe PLFLG variable (progra. loading
flag) is controlled by the HAM processor.

LDRIN includes E~D record processing. At END process~ng. any
transf9r address is set as the lOP program start address on pseudo
base page. Note that only one such transfer address is assuaecl.
N~xt, the entry point list is scanhed, ~nd the sixth byte of all
names is set to zero. Criginally this is an external ordinnl
which is used in each binary module to associate the' "nth" ElCT
definition w~th any given external reference in a memory ref9rence
instruction or DEP. Next, t be end appendage for the .odule ls
invoked. Folloving this, the module map tab19 is updated for the
~nd address of the· module. The total module count is th~D
adjusted. If more modules are to be loaded, LDRIN continues.
Otherwise, con trol is passe a to section 2 table constructic)n
processing.

LORIN vill ~osition to the optional modules file for further
module selection at the end cf the standard' modules file •

.HAll ~~~~§.§.i.ng

The main purpose of N AM process inq is to lIIake a lcad/nofoa.d
~eci~ion about the current mcdule. Note that all module selection
is ,based on HAM ~ecords. other actions include recording the
module in the modulellap tab le ~ defining the module 'relocatic'n
base, and copying the module to an in-core buffer if a repetiti1'e
load.

NAltR first tests for an in-progress repetitive lead. If a
previously select~d module is. to .be loaded more than cnce, the
copy count is reduced. ihen it reaches zero, the binary is
finally discarded. otherwise, the un~t nusber if ~nJ is

7-18

e~tablished (see below). !hen the in-core copy is medified to
give it the appearance of a new module:

1. ·The third or fifth character of the module name is
incremented (third if a han~lar and fifth if a driver).
For example,. eRa tecomes CR1 and 0.110 becomes 0.111.

2. All ENT entries having nam~s of the form XXdII
(handlers) or XXXXd (drivers), whar~ "d" is a digit,
haVE the d incremented. prcc~ssing continues at l~bel
NM 3.

For new occurrances cf modules, the module medification
appendages are set to a dummy exit. Then the module loading tabla
is scanned for the nam9 in question. If not found but the
standard modules file is curIent, the module is force loaded.
This will allow the inclusion of sp9c~al routines such· as line
printer core dumps. If no.t: fc:und .:1nl1 the optiol)al modules file is
current, the module is skipped. If the module is located, the
following is dcne:

1.
2.

3.

If the copy coun~ is zero, tha module is skip~ed.
If only one copy is need~d, the module unit number is
set as are its a~pendages. ~rocessing continues at
liM3.
If multiple copies are required, the modula·is copied
to an in-core buffer. Then the module unit number and
appendages are set.

At the NM3 label, module leading is set. The module name is
copied to the module map table. Pcint~rs to the table entry for
recording module size are set. the program relocation base is set
and possibl~ memory overflow is checked. Contrel returns to
LDR IN.

Two routines in the HAM procassor are
usad to establish the existerce cf any select
number which might be associated with the
This is used by the OBL proc~ssor for
instructions and paramet.ers.

of concern. NftBUN is
code or logical unit
module to be loaded.
merging into I/O

CORED' is used to pecfcrm in-core re~ds in place of calls to
the magnatic tape driv~r. This is don~ for r~plicated mcdules.

:3liI .e~$2~~~i.ng

All ENT names are fir.:3t testF.-d £0::- the forms. Scxx or .LUxx.
Th~se ~ntry points define locations in a module to which the

7-19

moJule's unit Dumber (select code or IOC logical unit number) .us~
be added. The occurance of such an ENT is discarded frca further
proc~ssing after calculatitg the address of the location in
quastion. These addresses a~e counted and added to a special list
used by the DBL processor.

Normal ENT p~ocessing is as follows. The ENT e%it is taken,
~nj on return, the entry point may be discarded. If kept, the
pr=vious occurrance of the name in the entry point list is
checked. If not found, the entry poin~ is added to the list. No
base page link is generated at this time since no extern,al
references to it are yet indicated. Thus, the entry point list
entry word 5 is set to zero.

If the name is found aId the entry point address (vord 4) is
nen-zero, then the entry point cccurred previously. This is a
duplicate erroneous entry ~oint and IOPC is aborted. otherwise,
some previous refere,nce to the entry point has occurred. In this
caS9, word q in the entry ~oint list is completed vith the entry
point address. The ass~ciatEd base page link also receives the
~ntry pcint address.

The EXT name is first locked up in the entry point list. If
not presen1:, it is added to the list. The proper external ordina,l
is set. Also, a base page link is defined. This link vill be
us~~ to resolve references tc the external name with indirect
references via base page.

An external ordinal is a non-zero value assigned to each
external symbol defined by an EIT statement. This definition is
done by an assembler. the assembler then uses this value when
assembling memory reference instructions and DEls which reference
the ~xternal. That is, aseellbled with the instruction or DEP :ls
an indicati~n that. the ref~rence is external plus the associated
external ordinal.

If the EJT name already exists in the entry point list, only
the external ordinal is changed in the entry.

~l!1£ R .. ~~!!in..g

Words to be relocated cccur in 5-word groups in OBI records.
rhese groups are preceded by a vord containing 53-bit indicators.
Each defines the type of telocation to be perfor.ed on the
rgspective subsequent 5 values:

7-20

l11gi£al~
o
1
2
3
4
5

lIR~ 2! £~lggali2~
Absol ute val ue
Progr~m relocatable
Base page relocatable (unsupp.orted)
Common relocatabl e (un'supported)
External ref9rence
Memory reference instruction:
Ihis is a two word entry.
Word 1 contains the op code
~lus an indicator of the type
of reference --

'0 - program relocatable
1 - bast09 page relocatable (unsupported)
2 - common relocatable (unsupported)

Wcrd 2 contains the 15 bit address.
of the referenced location.

th3 OBL processor loops cn th~sa 5-word groups and ~erforms
relocation as noted below. ihen the relocated value is ready, a
scan of the unit. merging table is done to see if the word requires
addition of a select code or logical unit number. Next the DBL
~xit is taken. Pinally" the .PACK routine is called to add the
value to the absolute record. PUNCH is called whenever the
absolute record is filled.

For type 0 and type 1 relocation, the value in the ISI record
is simply added to zero or t.he module relocation base
respectively.

For external ref~rences, the entry point list ·is scanned for
th~ corresponding external ordinal. When found, the base page
link address is merged into the word and the indir~ct referenc9
bi t is set.

For memory referenca instructions, th~ address of the
referenced location is gen~rated. An on-page refer~nces causes
merging of th-a page offs'3t bits into tha instruction. For off­
.page refer&nces, a base page link is generated. It receives th9
~ddress 'of the refer~nc~~ location and an indirect bit if the
instruction is an indirect referenc~. Th. instruction in this
case is made to indirectly reference th9 allocat.ed basa page link.

A.E.E!ll,gs.9's§

Sp~cific module modification appendages are outlined b9lc~.

7-21

0.61 Th~ ENT exit is used to locate vords which the DSL exit
will set (RJE indicator, DMA linkage vords, and memory si%8). The
END exit is used to return storage frnm unused LUT tables.

0.63 The END exit is used to construct the ASCII file unit
control tables.

C.51 - Th~ END exit is used ,to release unused TTY tablas.

All r~plicated handler aodules- The ENT exit locates a vord which
tha DBL exit fills with the relativ~ copy number of tbe loaded
module.

0.04 Th~ pover fail interrupt linkpage is set on pseudo bi!lSe
page. The END exit then constructs the pover recovery appendi!lge
list and count. It is assumed that 0.04 is loaded after il11
dri verse

MUXH - The END exit deletes unused tables.

IeKH - Unused unit tables are deleted. Then the TTY tuffers elre
allocated, constructed and leadEd.

,ASPH 'The lNT exit locates the file characteristics list. 'fhe
CBL exi t sa ves a copy of these. The END exit overlays ~~he
ch~rac~eristics list with constructed file tables

IOC - Tha DMAC2 variable is set to permanently allocate channel 7
to 0.61.

MN Int~rconnect kit logical unit number is merged to IOC
parameter lists in the ailocate aanager.

IAR1! ssn!S£~1i2n
"any lOP tables and contrel blocks are built as follows:

.a.~.QJl.s.' .2l1!, W l2.l2I

A pass is .ade on the handler entries of the module loading
table. Durinq this pass, thE ccmmutator is co'nstructed and loa,Cled
directly into the lOP. ~Tha IODt and OIT's are built in SP storage
for later loading into the Iep. '

The .COR. entry point is defined. An indirect JSB to IOC is
built for use in building ~he .CO!!. CBa calls. An indirect ,J!tP
to the C"PLT routin~ is built, also for use in building eRQ calls.

7-22

Th~ seven entries of IOOT which handl~ arron~ous references to
units 0 through 6 are built.

For each handler entry in the module loading table
corresponding to a loaded module this is done:·

1. The first 3 characters of the module name are saved for
use in constructing handl3r gnt:y pbint names.

2. If the handler has a prime en'try, a ccmmutator gate and
JSB to the entry point ar~ contructed. the gate
address is saved for use in building the QIT.

3. If the handler has an I/O complete entry ~oint, the
IOD! co~y is updated.

4. A QIT is construct~d.
5. steps 2 through 4 are repeatad for replicated modules.
6. A .COM. CRQ call is built if the handler ccntains an

I/O complete entry ~cint.

Finally a catch-all eRa call is add~d to the' .COM. as veIl as a
'final JMP to • COM.

Th~ lOOT is ccmpleted ard'is transferre1 to the IOP.

N~xt, tha QIT's are ttanferred to the IOP. Sev~ral special
DEFs are also contructed as fellows:

QITAD
QITND
QITNR
QITMX
QITAF

DEpt
DEF
DEl
ASS
DEF

o

first QIT
QI!NO (follows QITs)
first allocatable QIT
max TS8 unit numb~r
ASCII files handl~r QIT

Addresses of each of tte three SPRTs is saved as each is set
to zeros and loadEd into the lOP.

Buff~r subpools 1 and 2 are construct~d. AddreSS9S of the
first and last buffers in aach pool are saved for inclusjcn in the
SCOLs. Tha numbEr of conttcl buffars constructsd is either fiv9
or 1/2 the number of TSB Forts, whichever is greater~ Pive
console buffers are always htilt •

. Ea:ch SCOL is built using addr4?sses saved from building the
BPR!s and subpools.

Finally, . the buffer manager's PULPT list is overlayed with
the three SCOL addresses.

.t..I2!l~

The ~DVTB entry point is defined and loaded with a DEF *+,.
The negative number of ports is loaded followed by the negative
number of ASCII files. Finally, the .MASP entries are processed
in reverse order tc yield aach 5-vord .DVTB entry.

,DAT

The uDAT en~ry point iE defined and loaded with a DEP *+1.
then the ."HRD, .!HLD, and .!HPD lists are used to construct the
.DAT entriGs. Tvo -1 valuas are added to terminate the .DAT •

. A scan of the driver entries in the aodule loading table is
done. Por each loaded drivet, the following is done: .

1. rhe driver nuabet is converted to ASCII character fora
for use in na me lcokup.

2. The nu.ber of related select codes is sayed as are the
driver characteristics (used to build EQT vord one).

3. The related select code is derived and saved.
4. The number of ECTs is inereaented. ThE EOT is

constructed in SP stcrage using saved information.
5. Por each related select code, an interrupt vEctor value

is Established. It is assumed that I.II is the first
interrupt entry point and that J.XX, K.~I, etc. are
related to susequent select codes. If a given entry
point is not defineQ, a halt is installed in the
interrupt, vector. Note· that the related undefined
entry point is skipped. These vectors are built on the
pseudo base page as at;'e the related interrupt linkages.

!h9 XEQT entry point in IOC is nov overlaid with the 1st address
for the EQTs. This address is alse saved for section 3 report
generation use. Fin.lly the lQTs are loaded into the lOP.

7-24

The memory table is overlaid with a copy of the memory
allocation table and addres$ cf the cold dump analyzer list.

~lg Q.~ l.na!Ia~ ~1

A . list of addresses and other parameters is generated and
loaded int~ the rop. Th~ address of this list is moved to
location 3 of the IOP by the IOP software at system start.
Undefined addresses result it zero valu~s. The content of this
list is:

!2~g £~ten!~

0 DEF .DAT
1 DEF .DiTS
2 DEP QITAD (address of QITs)
3 DEP PULPT (a.ddress of SCOL list)

" DEF QTOP (address of 0.43 TOE chain bead)
5 DEF LtlT 51 (addre ss of D. 51 unit tabl as)
6 DEF LUT61 (addrsss of D.61 unit tables)
7 DEF UCTOO (·address of 0.63 unit tables)
8 DEP SIBlK (address of ICKH uni t tabl es)
9 DEF SIBAF (address of ASFH unit tables)
10 DEF D.61S (address of 0.61 trace pointer)
11 DEl TTPTR (address of MN trace pointer)
12 DEP eRQ (addrl?ss of • IOC. eRO head)
13 DEP QHEAD (address of .. IOC. free storage)
14 DEF STST (addr€-ss of SYNxx tables)
15 OEF PNTR (addrf.-ss of MEMFY free list)
16 DEF EQTs (addrEss of EOT tables)
17 Copy of • riO PT
18 A ddress of 1st buff9r in pool 1
19 Address of last buffer in pool 1
20 Address of 1st buff~r in pool 2
21 Address of last buffer in pool 2

~'§!l .Es.9!! !.9.a~1:11g

After aLl table construction, the pseudo base pagE is loaded
into actual IOP base page. If any required modul~s were not
loaded, a warning message is issued.

Ia~ ~.QR.I .

If no tape copy is request~d, section 3 is entered. Por a aaster
tape copy, the presence of a write. ring is insured. Then the
master tape is positioned to the last file of the tape which has
file ID 65000. This is the eptional copy file.

For a separate tape, the .aster tape is unloaded. The
oparator is asked to mount the separate tape. When this is done,
th~ presence of a write ricg is insured. Next, a loader program
is written to the tape followed by a file mark. (See A1?pendix A
fo= a descriptien of the leader program).

The operator is asked to start t"he lOP at location 2002.
This causes a J!P to an unloeder program which is'part of the lOP
D.61 driver. The unloadet transfers all of the lOP core i.age
back to the SP. This data is foraetted back into absolute records
and written to the t~pa. Finally, the' report generator is
entered.

aect!~_1 - ~,~ Gene£lto~

The report produced ty Iope is described belove Pirst a
summary of the sources of the data for this report is given.

ILQ 11ll.5!g~ .!i!l - the pseudo base page select code vectors are
scann~d in order. For each ene, a line of "output is. produced
(potentially 3 for the interconnect ·kit, a special case). The
linkage is shown, and if the select code can be related to an EQT,
the EQT information is added."

~a~~ R~~ l!n!§, m~!2~ tOUDS! the memory allocation table
provides the data for this otit~ut. Also, an estimate of ne~ded
fr~e storage is made, and a ~arning is issued if:

Available storage S100+100*R+(HR+HL+HP) +100*A

where R=O if no RJE
1 if BJE

Hx=repective host functions
A=~umber of ascii files

It must be pointed out th"t this estillat.e is !ill ~ rough. I~
~ttempts t~ reflect the need for RJE buffers by one-halt cf all
host func~.ion s ccncurrent 1 y and all ASCII files concurrently.
However, the formula assumes a 400 byte communications buffer
which may b~ incorr~ct fer some IBM systems and is certainly
incorrect for CDC host systaas.

7-26

!~£!l !il§~ - a summary of the .MASF entri~s is produc~d

A2!! ~Y~iQ~ ~~i~n~~!~ - the .MHRD, .MHLO, and .KHPO tables are
sumaarized

!2gyl~ !~2 - The contents of the module map table is listed

~1..I §l!!U,£.I The in-core c'opyof the QITs previously built is
used to calculate CIT addr~ssEs and designators.

,g1l1'&:I ·.E.21ni l1:11 The' entry poi nt list. is sorted and then
prin ted •

.B~.e21~ QYll1~

The report produced I:y lOPe. supposedly contains sufficient
information to assist the ~nalyst in resolving program problems.
It also gives certain information of value to the user. This
would be information about tte siz~ of a given configuration as
well as available and/or unused memoty space. Such inforaation
can be valuable in making decisions about system performance as
veIl as upgrades which may te ccn5idere~. The report is outlined
bela w. .

I/O PROCESSOR MEMORY MAP DATE=8/6/75

This line of the report is the first lin~ output. It identifies
the map and also identifies the particular configuration with the
information supplied by th~ oFerator to ~he DATE? question of tb9
ini~ial dialogue sequenca. It is not nacessary that that
information be restricted tc a date. In fact, some other
id~n~ification of the systam type might be advisable.

I/O LINKAGE
s. C. CR IVER I. L. I. E. U. ~. EO'!
ABC D g F

Th~ I/O linkage list gives a ccmple~e summary of the relationship
of select codes to int~rrupt er.try points, • IOC. logical unit
numb~rs, and equipment ~ables (EQTs). Each line of the report
corresponds to a given sel~ct code, and th~ select codas are all
t~ported from 10 through the maximum salact codg used (.MSCK).
Not all of the A, a, c, etc. values will appear in each line.
This is true in thosp. si~uations wh~r~ multipla select cedes argo
associated with a given EQT. !he cont~nts of each line are as
follows:

A Sel ect co de

7-27

B Nam~ of driver (sase as driver's initiator section
antry point nama). This field of the report any
con tain blanks if the select code is one cf sever2Ll
associated with a giveD driver. Th~ field may also
contain the word "HLT" if there is no interruFt entry
point associated 'ith the select code. In this case,
the actual locaticn vill contain a HLT instruction with
a halt value corres1=cnding to the 'select ,code.

C Base page address which is object ~f indirect JSB
located in select cede vector. The 'content of, this
base page location is the address of the associated
interrupt entry point. These locaticns are
collectively referred to as interrupt linkages.

D Interrupt entry point (same as entry point name of
driver's continuatcr section).

E . • IOC. logical unit nUllber.
F Address of EQT 'associated witb this select COdE. This

value and the E value vill appear only for the first
select code (baSE select code) associated vith a giVEtD
EQT. Note that fer multiple select code devices, the
lOP program currently assumes that the select codes are
contiguous.

Th~ select code associated with the interconnect kit is a special
cas~ any may result in one, tvo, or three lines in this report.
This is becaus~ in additicn to the basic D.61 driver, tvo other
driv~rs may also be loaded i~tc the system (D.62 and D.63).

EASE PAGE LINKS - X··y

Her~ are reported the first and last base page addreSSES used as
indirect linkages. All othel: base page locations fro. Y+1 to 171'7
are available.

AVAILABLE MEMORY - X-Y

Unused memory from locaticn X to lccation Y is reported. Note
~hat this area of memory and'any unused base page are the free
ar~as available for dynamic tuffer allocatio,n.

AsetI PILES
L.U. DESIGNATOR SELECT CODE SECORD SIZE
ABC D

This report appears only if at least one ASC!! file is defined
into the system. Each line cf the rSFort describes one ASCII file
as follows:

7-28

A Logical unit number cf the ASCII file as used by BASIC

B

c

D

HOST
FUNCTION

A

programs.
ASCII file device designator and possible device
subtype indicator. Subtypes appear only for those
devices which ccme ,in several flavors such as line
printers and card readers.

i

The salect coda of the, device is given if a~plicable.
No select codes ale associated with RJE pseudo devices.
Note that-the select code for MT and PH devices are SP
select codes.
Default- record size in words which will be allocated
for use with th~ device. This value may be over-ridden
by the BASIC progcalmer.

DEPA OtT
DEVICE

B

This report is not produced if no' RJE component is included in the
system. The report. shows .. he default assignment of ASCII files to
host functions which will bE mad~ in a freshly loaded system. In
other words, this report r9flects the initial content of the .DAT
table.

MODULE MAP

Each line of this report may con~ain up to three entries. Each
entry describes th~ name nf a loaded module as veIl as its
beginning and ending addresses. Note that if any module
modification appendages adjust the image of the loaded module, the
size may not correspond to th9 assembl~d modul~ size. One exaaple
is the int~rconnect kit handler. For this module, the END exit
discards unused tables and then constructs all TTY buffers. These
mamory occupied by thes~ buffers will be reflacted in this report
as a part of the interconnact kit handler.

QIT SUf!MARY

For each function handl~r in the lOP program, a QIT contrel block
is constructed. T'his major centrol block is used to hold work in
ths form of buffers for tha t:andler. In addition, various handler
=ntry' points are noted in the QIT. Each QIT contains a name very
much like the ASCII files device designators. In fact~ some names
correspond directly, while ethers are unique (e.g. the one for the
interconnect kit handlpr). This ~ raport gives the designator
associated with aach OIT as well as the QIT address.

7-29

ENTRY PO~NT ~AP

R~re are. listed all entry points in the system together with their
~ntry point location values. If any entry points a~e discarded by
ENT ~xits, these vill not ap~ear. Also, the .Scxx and .LOxx entry
poin~s will net appear. The list is alphabetized. If an entry
point is referenced but is lever defined, th9 report vill reflect
this fact by using "---~-" rathE~ than an entry point lccation
value. Certain of these unresclved referencas are acceptable. 1n
~xample is the reference to the 2741 modules by 0.51. It is, in
f.act, the caSE the 0.51 detects the presence of the 27q1 modules
by observing the resolution cf the reference •

. IV. Appandices

Th~ following appendicee are attached to this document:

Appendix A
Appendix B
Appendix C
Appendix D

Separate tape lOP leader description
optional lOP reload procedure
"aintainetce guidelines
R~stricticns on relocatable .odules

7-30

When the optional copy of the configured IOP E~o9~am is
~ranscrib~d'to a magnetic taEe different from the'mastar tape, a
spgcial IOP loader program is also written to the tape. This
loader program.is suitable fer loading by the HP2000 ACCESS
bootstrap program which is distributed in paper tape form. When
this loader program has been loaded, it is given control. by the
bootstrap program and proceeds to load the configured lOP program
into the IOP. The forma~ of a tap~ writt~n for this purpose by
tope is as follows:

r---...... .., .. - .. ---.-. -- -~-- ... --. .. -_ ' .. ·o._ ... ____ ~._, _ -_ ... --- - --- ... ~ .. -,..

I I I I I
I Loader program I T.M. I Copy of lOP program I T.A_ I
I I I I I

'I. M. = Tap e Mar k

Th~ lcad~r program reads tt.e seccnd file and transfers it to the
lOP protected loader. This is similar to the lope optional reload
process which reads the special mastar tape ~OP copy file and
transfers it to the lap protEcted loader.

The loadEr program is initially an assembled part of ropc
itself. The memory page which it cccupies in lope is the same
memory page which it will occupy when loaded hy the HP2000 ACCESS
bootstrap. This is to say that when lope copies the loader to th~
first file of th~ separate tape, its absol~te reccrd images
sp~cify this given memory page. Additional instructions are added
to causa a JMP to th~ loader from location 4000 which is the
assumed start address for all Frcgrams loaded by the boctstrap.

Th4 internal flow of the loader program is as follows. Thu
program contains thrAe small IIO drivers ~ach of which is non­
interruptable (SFS l~gic). ~he first of these drivers is a simple
-consol~ output driver. This is used to output operator assistance

messages. An interconnect kit driver is also included. This
driver is used to output t~e absolute records read from the
magnetic tapa.i.to the IOP protected load~r. This dtiver contains a
timeout procedure which is us~d todet'3ct a non-operational IOP
loader. The third driver is, of ccurse, the magnetic ta~e driver.

7-31

This driver em~loys D~A to read the copy of the lOP program from
th~ magn6tic tape.

The loader receives cont~ol f~om the bootstrap. The S
registar is preset by the boctstrap vith the magnetic ta~e select
co:~e. This select code is configured into all magnetic tape 1:/0
instructions. Next, the operator is asked to start the lOP
Frotected loader and to signal the completion of this action by
pressing CR. (Actnally, any input is accepted.) A prograa loop is
now en-cered in which tape records are read froll the second fila of
t.h9 tapa and transferred tc the lOP. (Note that no taLpe
posi tioninq is nec.essary, since the bootstrap prograa will ha. ve
advanced to the second file by reading the first file which is the
loader program.) The length of the records read froll the tape is
used to determine the amount of data to be transferred to the lOP.
If any tape errors occur, an error lIessage is issued, and t~he
loader halts. No timeout by ~he interconnect kit driver should
occur prior to the occura tce Qf the tape mark at the end of 1~he
rop program copy file. If one does occur, an error .essage is
issued, and the loader halts. At the end of the file, zeros are
loaded int:) the lOP until a tille.out does occur. This vill instlre
that the lOP protected loader will go to a normal halt.

Messages and halt codes used by the loader progta. are as
follows:

START lOP PROTECTED LOADER. PRESS RETURN
Ihis message is issued tc the operator to infor. hi, that the
loader program is ready to proceed with loading. ~he operator
should at this point insure that the lOP protected leader is
running and then press CR to signal that the loader may contin11e.

lOP IS NOT RESPONDING
This message indicates that the lOP protected loader has stoPlped
accepting data from the loader prematurely. This message is
followed by a RLT 66. No recovery is possible short of restarting
tha entire loading process f%om scratch.

TAPEERRon
Some ·tape error has occurred such as parity, tiaingi etc. The
message is follovedby a HLT 22. No recovery is possible short of
restarting the entire loadin~ Frocess fro. scratch.

7-32

!E.E~.n.Q.!~ ~

.2.eti2!!sl 1.~.f n.!~g .E;oc~~:f

A y95 answer ·to the RELOAD? question of the initial lope
dialoqu~ s3ction indi~ates ttat thp.optional lOP copy file is to
be loaded intc the lOP. Such a copy can· be created by lope at. an
earlier point in time for use in ,r~storing th~ IO~ prcgram for
production us~. The flow cf control of the reload procass is
outline belo v.

A message is issued to the operator instructing him to start
th~ lOP pro~ected loader. wten this is done, the operator signals
tha co~pletion of the acticn by pressing CR. The reload program
then I=ositions to the optional copy file on the master 'tap:e. This
file has lO 65000. Next a loop is ~ntered in which records are
read from the tape and transfar~ed to the rop. The magnetic tap9
driver in the MCP and the irterconnect kit driver in lope (lOPLD)
are used to accomplish these actions. Th~ records read frcm tape
ar~ in the form of absolute binary records. Th= length values in
th~se records Jictates the amount of. data to be transferred to the
toP. Several error possibilities exist. If the IOP should fail
to accept the data, an appro~riate message is issued, and centrol
is returned to the MCP. If no lOP copy exists on th~ tape
(indicated by imm~diat~ tape mark)~ an appropriate message is
issued, and control is returned to th9 MCP. It is also assumed
that: the magnetic tape driv9t in the MCP will 'take appropriate
correctiv~ action for any ta~e ~rrors. Normal completicn of th9
load proc~ss is indicated by fcrcing the IOP protected loader to
go to a normal halt. This is don~ cy sending zeros to the IOP
un~il it fails to raspond. centrol is then given to the ~CP.

7-33

!.El'~!!!UI £

!1S1!lUinence gyigeline,§

There are sOlie minor and/or obscure detai ls about IOPC and/or
~h~ configured top systems which are of importance to .aintainence
F.e-rso~ne~_. :As many of these details wbich can be reDlelbered nra
out.line below:

1~ 111 modules in the standa:rd modules f119 are loacied
into the lOP by tepe. This is true even if the module
cannot be located in .HA!T. only those .odules fro.
the optional modules file will be loaded vhich are
required. this can be a handy tool to force-load
specialty programs such as stand alone a.aory du.ps,
performance analysis tools, etc.-

2. A simple techniqoe to effect patches in confi9ured lOP
programs exists. The use of unused base page for the
location of patches is generally siaple. In crder to
place patches on base page, simply patch the second
word of the • ME!!. table to reserve as auch base pl!lqe
as necessary. Thls...location defines the last vord of
a vailable base ~age .for use in satisfyinq dyna aic
buffering requests. If this location is modified prior
to starting the system, the area vill neVEr be .ade
available to any ether part of the srste ••

3. Patches can be made in the configured prcqram prior to
copying the IOP p~ogram to the magnetic tape. This is
done p~ior to starting the lOP at location 2002 when
directed to do so by IOPC.

4. The cold dump analyzer list is outlined elsewhere in
this docUment. When the lOP proqram is started, the
address of this fixed length list is placed in location
3. It can be use d tc forma t cold dUll ps as well as to
~xamine import~nt control blocks, et. ale in a running
system (with DUr!) •

S. Although there are several control blocks which are not
assembled, thesa sa.e control blocks can te easily
located. Examples are 'the • COlt., QITs, EQTs, and
SCOLs. Finding most of these control blocks is done as
follows:

.COM. is found via' its .COK. entry point.

7-34

QITs can be locat~d using the oIT summary in the lope
report.

EQTs can be located using the I/O linkage list in the
rope report.

SCOLs and BPRTs are located by finding thePULPT entry
point. At that lccaticn are the three a'ddr~sses of'tha
SCOL ta bles. These, in turn, address the S'PB'Is.

The .DVTB and .tAT taol(~s may be found vi'a their
res~ective entry ~oints.

7-35

'Po 'NT 10

'SEGINNtN. 0 F

P"'OGftAM

.... 0

E)tTt\Ac:r
OP!""TOP-.

fOINT 'To Ha~.,..
S''T'~'T &" ~ 1M T

EKTItAC.,­

s..,~eoL. FRoM

S'tMe,,~L.. TA6LE

SE'- $1(0"''0

WO~t) of

Sn'\SOL T,. &l.e"
I To -/

""'0"1: To
Ne)l.T s"",eo&"

IN

STATE'Me NT

'1ES

R ST PT

POIIIJT To
,...---1 'BE:lSotNtH"'& or:

S;""~601. TA61..1:

W~tt.D 0' 51"",0'­
T"&L& ~NTAy To

"HOWN I:N~Y

SET Po INT'!"

'-0 :D ,~eNt IONS

IN S"'~8oL.
T~&LE

FLA& 'STo'''6.
. NOT A&''''O~''TfI)

C L.e'AIl SEeo .. !)

luofl 1) o~

S~Mao\. TAalc
titJ T'-'1

Mavl' To
NEX, ~'YMSol

TASLE' eNTft Y

N E'&A'ie

PO'NTE'~

Move P"ST

FLOWCHART
1

!£.e!ndi,! 12

~nu£tio~ ,g.,n re loca.t~, !.~J&i

,",t '~'Thg "'I'Ol'prograll modul~s, which IOPC configures into a running
sY:$te-m, .. ~r-e-'eicpe'cted to be asseabled following certain quidelinE~s.
Th~s;e 'are':' '

',. I'f-' 'the module is a driver or handler which depends on
some I/O'unit reference number (select code or IOC
logical unit nUlber), this number can be merged into
I/O instructions and parameter words by IeEe. This
vill allov the aodule to ba written excluding
initi~11zation code normally intended to perfor. this
act'lvity.' The. leth.od by which this is dcne is to

',aSSEmble' ,eachsnct instructicn or para'lIeter word vjLth
·its relative S9~Ect code or IOC unit reference Dumber.
-"Most drivers, for example, vhich use only one selEtct
code vill assemble all I/O instructions using a zoro
select code. Those which depend on tvo or more should
be 'assembled using 0 for the first, 1 for the second,
and so on. In addition, all such instructions must be
identifi~d with an entry point of the form ".SCxx" or
".LUxx" for select codes and logical' units
respect,ively. (Tt.e "xx" aay be any unique character~;.)
rope will add the base select code or unit Duaber to
these inst~;~tions when configuring the lOP program.

2. The names assigned to program modules are very
illlpcrtant." All IIcdule selection is on the basis of 1:.he
nalle found in the HAft statement. In additicn, certain
parts of names are expected to .have certain forms jEor
lope use:

variant 'RJE modules are expected to reflect themselves
via different nallES consisting of a basic .o~ule naae
and a version indicator. ,Par example, the synchronous
fUnction handler is expected to have the name "SIN"
follovedby eithet "IB" for the 18K version or "CD" for
the CDC version. '1hus, "SYNla" 'or "SYMCD" vill be
ap~topriately saledted by IOpe.

The first t hrE e characters of a,1l functien handler
module names are tsed to generate corresponding .od~le
entry point names for prime, I/O complete, and
initiatot entry pcints. Por example, the SYNIB aodule
is expected to have entry points with names "SYIHP",
"SYNHC", and "SYNHI". Of-course, - these entry points

7-36

are not ne&ded if' the module does not rEquire the
respective type o~ ',en:~~t:y. pOint.

For handlers which ~ JDay be, replica~.e4,"~ ~h-e ~ tbird
, charact er of the ra Ire, as ,we 11 as the 'third vc;har·act~,_.o:f.'
entry point namas is expected to be a digit. ~·;r:hus;".~;£,·6,r·.:,
example, the card reader handler module has a' '~ame"""o'f '.
eRa and entry ~clnts CROHI.f , eRO HC, ,an,d~CROHP •.. :IOPC
will increment thes~ 'd1g~ts,' .ach: time~'~ modd~~ is
replicated. ' .,

For drivers which- may be r~plicatgd,' .the fifth
cha'ract a~ of the tame as we:11 as th e fif til character of
ant ry point names is 'e£p~ct"'e'd~o be a 'digit;': 'thus, for
example, the card reader, ,dr'i vet mod ull! has~~}"a' n~lIe of
D.110 and entry pOin1:sofD ~ 110, I. 110;> '':and P.ll0.
lope increments the:.;..: digits for each ";'CO'P1 of the
module. ,'"

7-37

	0001
	0002
	0003
	0004
	1_000
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	2_000
	2_001
	2_002
	2_003
	2_004
	2_005
	2_006
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_2-09
	2_2-10
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_3-06
	2_3-07
	2_3-08
	2_3-09
	2_3-10
	2_3-11
	2_3-12
	2_3-13
	2_3-14
	2_3-15
	2_3-16
	2_3-16a
	2_3-16b
	2_3-16c
	2_3-16d
	2_3-16e
	2_3-17
	2_3-18
	2_3-19
	2_3-20
	2_3-21
	2_3-22
	2_3-23
	2_3-24
	2_3-25
	2_3-26
	2_3-27
	2_3-28
	2_3-29
	2_3-30
	2_3-31
	2_3-32
	2_3-33
	2_3-34
	2_3-35
	2_3-36
	2_3-37
	2_3-38
	2_3-39
	2_3-40
	2_3-41
	2_3-42
	2_3-43
	2_3-44
	2_3-45
	2_3-46
	2_3-47
	2_3-48
	2_3-49
	2_3-50
	2_3-51
	2_3-52
	2_3-53
	2_3-54
	2_3-55
	2_3-56
	2_3-57
	2_3-58
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-04a
	2_4-04b
	2_4-04c
	2_4-04d
	2_4-04e
	2_4-04f
	2_4-04g
	2_4-04h
	2_4-04i
	2_4-04j
	2_4-04k
	2_4-04l
	2_4-04m
	2_4-04n
	2_4-05
	2_4-06
	2_4-07
	2_4-08
	2_4-09
	2_4-10
	2_4-11
	2_4-12
	2_4-13
	2_4-14
	2_4-15
	2_4-16
	2_4-17
	2_4-18
	2_4-19
	2_4-20
	2_4-21
	2_4-22
	2_4-23
	2_4-24
	2_4-25
	2_4-26
	2_4-27
	2_4-28
	2_4-29
	2_4-30
	2_4-31
	2_4-32
	2_4-33
	2_4-34
	2_4-35
	2_4-36
	2_4-37
	2_4-38
	2_4-39
	2_4-40
	2_4-41
	2_4-42
	2_4-43
	2_4-44
	2_4-45
	2_4-46
	2_4-47
	2_4-48
	2_4-49
	2_4-50
	2_4-51
	2_4-52
	2_4-53
	2_4-54
	2_4-55
	2_4-56
	2_4-57
	2_4-58
	2_4-59
	2_4-60
	2_4-61
	2_4-62
	2_4-63
	2_4-64
	2_4-65
	2_4-66
	2_4-67
	2_4-68
	2_4-69
	2_4-70
	2_4-71
	2_4-72
	2_4-73
	2_4-74
	2_4-75
	2_4-76
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	2_5-05
	2_5-06
	2_5-07
	2_5-08
	2_5-09
	2_5-10
	2_5-11
	2_5-12
	2_5-13
	2_5-14
	2_5-15
	2_5-16
	2_5-17
	2_5-18
	2_5-19
	2_5-20
	2_5-21
	2_5-22
	2_5-23
	2_5-24
	2_5-25
	2_5-26
	2_5-27
	2_5-28
	2_5-29
	2_5-30
	2_5-31
	2_5-32
	2_5-33
	2_5-34
	2_5-35
	2_5-36
	2_5-37
	2_5-38
	2_5-39
	2_5-40
	2_5-41
	2_5-42
	2_5-43
	2_5-44
	2_5-45
	2_5-46
	2_5-47
	2_5-48
	2_5-49
	2_5-50
	2_5-50a
	2_5-50b
	2_5-50c
	2_5-50d
	2_5-50e
	2_5-50f
	2_5-50g
	2_5-50h
	2_5-50i
	2_5-50j
	2_5-50k
	2_5-50l
	2_5-50m
	2_5-50n
	2_5-50o
	2_5-50p
	2_5-50q
	2_5-50r
	2_5-50s
	2_5-50t
	2_6-01
	2_6-02
	2_6-03
	2_6-04
	2_6-05
	2_6-06
	2_6-07
	2_6-08
	2_6-09
	2_6-10
	2_6-11
	2_6-12
	2_6-13
	2_6-14
	2_6-15
	2_6-16
	2_6-17
	2_6-18
	2_6-19
	2_6-20
	2_6-21
	2_6-22
	2_6-23
	2_6-24
	2_6-25
	2_6-26
	2_6-27
	2_6-28
	2_6-29
	2_6-30
	2_6-31
	2_6-32
	2_6-33
	2_6-34
	2_6-35
	2_6-36
	2_6-37
	2_6-38
	2_6-39
	2_6-40
	2_6-41
	2_6-42
	2_6-43
	2_6-44
	2_6-45
	2_6-46
	2_6-47
	2_6-48
	2_6-49
	2_6-50
	2_6-51
	2_6-52
	2_6-53
	2_6-54
	2_6-55
	2_6-56
	2_6-57
	2_6-58
	3_000
	3_001
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_1-04a
	3_1-05
	3_1-06
	3_1-07
	3_1-07a
	3_1-08
	3_1-09
	3_1-10
	3_1-11
	3_1-12
	3_1-13
	3_1-14
	3_2-000
	3_2-001
	3_2-01
	3_2-02
	3_2-03
	3_2-04
	3_2-05
	3_2-06
	3_2-07
	3_2-08
	3_2-09
	3_2-10
	3_2-11
	3_2-12
	3_2-13
	3_2-14
	3_2-15
	3_2-16
	3_2-17
	3_2-18
	3_2-19
	3_2-20
	3_2-21
	3_2-22
	3_2-23
	3_2-24
	3_2-25
	3_2-26
	3_2-27
	3_2-28
	3_2-29
	3_2-30
	3_2-31
	3_2-32
	3_2-33
	3_2-34
	3_2-35
	3_2-36
	3_2-37
	3_2-38
	3_2-39
	3_2-40
	3_2-41
	3_2-42
	3_2-43
	3_2-44
	3_2-45
	3_2-46
	3_2-47
	3_2-48
	3_2-49
	3_2-50
	3_2-51
	3_2-52
	3_2-53
	3_2-54
	3_2-55
	3_2-56
	3_2-57
	3_2-58
	3_2-59
	3_2-60
	3_2-61
	3_2-62
	3_2-63
	3_2-64
	3_2-65
	3_2-66
	3_2-67
	3_2-68
	3_2-69
	3_2-70
	3_2-71
	3_2-72
	3_2-73
	3_2-74
	3_2-75
	3_2-76
	3_2-77
	3_2-78
	3_2-79
	3_2-80
	3_2-81
	3_2-82
	3_2-83
	3_2-84
	3_2-85
	3_2-86
	3_2-87
	3_2-88
	3_2-89
	3_2-90
	3_2-91
	3_3-001
	3_3-002
	3_3-01
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-06
	3_3-07
	3_3-08
	3_3-09
	3_3-10
	3_3-11
	3_3-12
	3_3-13
	3_3-14
	3_3-15
	3_3-16
	3_3-17
	3_3-18
	3_3-19
	3_3-20
	3_3-21
	3_3-22
	3_3-23
	3_3-24
	3_3-25
	3_3-26
	3_3-27
	3_3-28
	3_3-29
	3_3-30
	3_3-31
	3_3-32
	3_3-33
	3_3-34
	3_3-35
	3_3-36
	3_3-37
	3_3-38
	3_3-39
	3_3-40
	3_3-41
	3_3-42
	3_3-43
	3_3-44
	3_3-45
	3_3-46
	3_3-47
	3_3-48
	3_3-49
	3_3-50
	3_3-51
	3_3-52
	3_3-53
	3_3-54
	3_3-55
	3_3-56
	3_3-57
	3_3-58
	3_3_002
	3_4-0001
	3_4-0002
	3_4-001
	3_4-002
	3_4-003
	3_4-004
	3_4-005
	3_4-006
	3_4-007
	3_4-008
	3_4-009
	3_4-010
	3_4-011
	3_4-012
	3_4-013
	3_4-014
	3_4-015
	3_4-016
	3_4-017
	3_4-018
	3_4-019
	3_4-020
	3_4-021
	3_4-022
	3_4-023
	3_4-024
	3_4-025
	3_4-026
	3_4-027
	3_4-028
	3_4-029
	3_4-030
	3_4-031
	3_4-032
	3_4-033
	3_4-034
	3_4-035
	3_4-036
	3_4-037
	3_4-038
	3_4-039
	3_4-040
	3_4-041
	3_4-042
	3_4-043
	3_4-044
	3_4-045
	3_4-046
	3_4-047
	3_4-048
	3_4-049
	3_4-050
	3_4-051
	3_4-052
	3_4-053
	3_4-054
	3_4-055
	3_4-056
	3_4-057
	3_4-058
	3_4-059
	3_4-060
	3_4-061
	3_4-062
	3_4-063
	3_4-064
	3_4-065
	3_4-066
	3_4-067
	3_4-068
	3_4-069
	3_4-070
	3_4-071
	3_4-072
	3_4-073
	3_4-074
	3_4-075
	3_4-076
	3_4-077
	3_4-078
	3_4-079
	3_4-080
	3_4-081
	3_4-082
	3_4-083
	3_4-084
	3_4-085
	3_4-086
	3_4-087
	3_4-088
	3_4-089
	3_4-090
	3_4-091
	3_4-092
	3_4-093
	3_4-094
	3_4-095
	3_4-096
	3_4-097
	3_4-098
	3_4-099
	3_4-100
	3_5-0001
	3_5-0002
	3_5-001
	3_5-002
	3_5-003
	3_5-004
	3_5-005
	3_5-006
	3_5-007
	3_5-008
	3_5-009
	3_5-010
	3_5-011
	3_5-012
	3_5-013
	3_5-014
	3_5-015
	3_5-016
	3_5-017
	3_5-018
	3_5-019
	3_5-020
	3_5-021
	3_5-022
	3_5-023
	3_5-024
	3_5-025
	3_5-026
	3_5-027
	3_5-028
	3_5-029
	3_5-030
	3_5-031
	3_5-032
	3_5-033
	3_5-034
	3_5-035
	3_5-036
	3_5-037
	3_5-038
	3_5-039
	3_5-040
	3_5-041
	3_5-042
	3_5-043
	3_5-044
	3_5-045
	3_5-046
	3_5-047
	3_5-048
	3_5-049
	3_5-050
	3_5-051
	3_5-052
	3_5-053
	3_5-054
	3_5-055
	3_5-056
	3_5-057
	3_5-058
	3_5-059
	3_5-060
	3_5-061
	3_5-062
	3_5-063
	3_5-064
	3_5-065
	3_5-066
	3_5-067
	3_5-068
	3_5-069
	3_5-070
	3_5-071
	3_5-072
	3_5-073
	3_5-074
	3_5-075
	3_5-076
	3_5-077
	3_5-078
	3_5-079
	3_5-080
	3_5-081
	3_5-082
	3_5-083
	3_5-084
	3_5-085
	3_5-086
	3_5-087
	3_5-088
	3_5-089
	3_5-090
	3_5-091
	3_5-092
	3_5-093
	3_5-094
	3_5-095
	3_5-096
	3_5-097
	3_5-098
	3_5-099
	3_5-100
	3_5-101
	3_5-102
	3_5-103
	3_6-001
	3_6-01
	3_6-02
	3_6-03
	3_6-04
	3_6-05
	3_7-001
	3_7-01
	3_7-02
	3_7-03
	3_7-04
	3_7-05
	3_7-06
	3_7-07
	3_7-08
	3_7-09
	3_7-10
	3_7-11
	3_7-12
	3_7-13
	3_7-14
	3_7-15
	3_7-16
	3_7-17
	3_7-18
	3_7-19
	3_7-20
	3_7-21
	3_7-22
	3_7-23
	3_7-24
	3_7-25
	3_7-26
	3_7-27
	3_7-28
	3_7-29
	3_7-30
	3_7-31
	3_7-32
	3_7-33
	3_7-34
	3_7-35
	3_7-35a
	3_7-36
	3_7-37

