
•

Computer Numbers

Logon Message

SYltem Backup Time

For AUistance, Call

R.A.l.R., Inc.
969-2800 10 CPS
969-2918 30 CPS

HELUI-

5,30 TO 6,00 P.M.

g64-0413 (daya)

~====~(~eve•.)

2(fODT:
AGUIDE TO TIME-SHARED BASIC

#""

f) c /~
/--- -

,

(' ~,·-c
_. l'~

I

2000C:

A GUIDE TO TIME-,SHARED BASIC

For Reference and Self-Instruction

HEWLETT~PACKARD

Software Publications
Cupertino, California

95014

HP 02000-90016 April 1971

,/

© CopyJUght, 1971, by

HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

All rights reserved. No part of this publication may be reproduced.
stored in a retrieval system (e.g., in memory, disc or core) or
transmitted by any means, electronic, mechanical, photocopy, re­
cording or otherwise, wi thout prior written pennission from the
publisher.

Printed in the U.S.A.

I~

',--"

PREFACE

This publication is designed to meet two requirements:

1. To serve as a clear and concise reference text
for Time-Shared BASIC, and

2. To serve as an instructional aid to the TSB
user.

All example programs may be used as practice exercises (as well as for
reference). They were chosen for maximum teaching value, and include
pertinent remarks. Beginners are encouraged to try the examples
1l 0n-line. 1l

The syntax requirements of BASIC have been Iltranslated ll into English
from the traditional Backus Naur Form. Each element of a statement
is underlined.

The text is divided into learning-units. Each page presents a separ­
ate item or feature, and sections are arranged in a coherent instruc­
tional sequence. All items are presented in a standard, consistent
format.

III

CONVENTIONS USED IN THIS TEXT

SAMPLE

PLEASE LOG IN

20 PRINT X,Y
LIST

This section ...

line number PRINT X,Y

return linefeed

esc ctrl

alt-mode break

Note: Both X and•.•

LISTING A PROGRAM

o
o

EXPLANATION

All capitals in examples indicates computer­
output information ...

or a statement or command typed by the pro­
grammer.

Mixed upper and lower case is used for regu­
lar text.

Lower case italics indicates a general form,
derived from BASIC syntax requirements
(Sect. IX).

Underlining indicates an essential part of a
general form; each underlined item is a separ­
ate, essential element.

Represents the terminal keys:
Return, Linefeed, Escape, Control,
Alt-Mode, and Break.

Mixed upper and lower case italics is used
for notes.

Oversized type is used for page headings.

The letter "0"
Zeroes are slashed.

IV

CONTENTS

iii PREFACE
iv CONVENTIONS USED IN THIS TEXT

1-1 SECTION I
AN INTRODUCTION TO TIME SHARED BASIC

1-4 SPECIAL KEYS
1-5 USING THE TELEPRINTER TERMINAL
1-6 COMMUNICATING WITH THE TSB SYSTEM
1-7 EXAMPLES OF BASIC STATEMENTS
1-8 STATEMENT NUMBERS
1-9 INSTRUCTIONS (STATEMENT TYPES)
1-10 OPERANDS

~.
1-11 A PROGRAM
1-12 THE FORMAT OF STATEMENTS
1-14 BEFORE GOING ON-LINE
1-15 PRESS RETURN AFTER EACH STATEMENT
1-16 DELETING OR CHANGING CHARACTERS
1-17 DELETING OR CHANGING ASTATEMENT
1-18 LISTING A PROGRAM
1-21 CHECKING THE CONNECTION
1-21 YOUR ID CODE and PASSWORD
1-21 CONTROL CHARACTERS
1-22 SAMPLE LOG IN AND LOG OUT
1-23 MISTAKES DURING LOG IN
1-24 ENTERING THE SAMPLE PROGRAM
1-25 HOW TO OBTAIN A DIAGNOSTIC MESSAGE
1-26 RUNNING THE SAMPLE PROGRAM
1-27 STOPPING A PROGRAM: THE break KEY
1-28 HOW THE PROGRAM WORKS

r'

V

CONTENTS CONTINUED

~

2-1 SECTION II
THE ESSENTIALS OF BASIC

2-1 HOW TO READ THIS SECTION
2-2 TERM: NUMBER
2-2 TERM: liEu NOTATION
2-3 TERM: SIMPLE VARIABLE
2-4 TERM: EXPRESSION
2-4 THE ASSIGNMENT OPERATOR
2-6 ARITHMETIC OPERATORS
2-7 RELATIONAL OPERATORS
2-8 MIN AND MAX OPERATORS
2-9 THE AND OPERATOR
2-10 THE OR OPERATOR
2-11 THE NOT OPERATOR
2-12 ORDER OF PRECEDENCE OF EXECUTION
2-13 STATEMENTS

~,
2-14 THE ASSIGNMENT STATEMENT
2-15 REM
2-16 GO TO AND MULTIBRANCH GO TO
2-17 IF ... THEN
2-18 FOR... NEXT
2-20 NESTING FOR... NEXT LOOPS
2-21 READ, DATA AND RESTORE
2-24 INPUT
2-26 PRINT
2-30 END AND STOP
2-31 SAMPLE PROGRAM
2-34 RUNNING THE SAMPLE PROGRAM
2-35 COMMANDS
2-36 HELLO
2-37 BYE
2-38 ECHO-
2-39 RUN

~2-40 LIST

VI

CONTENTS CONTINUED

2- 41 SCRATCH
2-42 RENUMBER
2-44 BREAK
2-45 PUNCH AND XPUNCH
2-47 TAPE
2-48 KEY
2-49 TIME
2-50 MESSAGE

3-1 SECTION III
ADVANCED BASIC

3-2
3-3
3-5
3-5
3-6

3-7

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-18

3-19

3-21
3-22

3-23

3-24
3-26

3-27

ROUTINE
TERM: ARRAY
TERM: STRING AND STRING VARIABLE
TERM: FUNCTION
TERM: WORD
STORING AND DELETING PROGRAMS
LENGTH
NAME-
SAVE- AND CSAVE-
GET- GET-$, AND GET-*
KILL-
APPEND-
DELETE­
LIBRARY-GROUP-CATALOG
SUBROUTINES AND FUNCTIONS
GOSUB ... RETURN
MULTIBRANCH GOSUB
NESTING GOSUBIS
FOR... NEXT WITH STEP
DEF FN
GENERAL MATHEMATICAL FUNCTIONS
TRIGONOMETRIC FUNCTIONS

VII

r

I

\

CONTENTS CONTINUED

~

3-28 THE LEN FUNCTION
3-29 THE TIM FUNCTION
3-30 CHAIN
3-32 COM
3-34 ENTER

4-1 SECTION IV
FILES

4-2 TERM: FILE
4-3 SERIAL FILE ACCESS
4-5 OPEN-
4-7 KILL-
4-8 FILES
4-10 ASSIGN
4-12 SERIAL FILE "PRINT
4-14 SERIAL FILE READ

.~

4-16 RESETTING
'--

4-17 THE TYP FUNCTION
4-18 LISTING CONTENTS OF A FILE
4-19 TERM: END-OF-FILE
4-20 IF END# ... THEN
4-21 PRINT# .•. END
4-22 STRUCTURE OF SERIAL FILES
4-23 EXAMPLE OF SERIAL FILE MODIFICATION
4-27 TERM: RECORD
4-28 STORAGE REQUIREMENTS
4-29 MOVING THE POINTER
4-30 SAMPLE USE OF READ#M,N
4-31 SUBDIVIDING SERIAL FILES
4-32 USING THE TYP FUNCTION WITH RECORDS
4-33 SAMPLE OF READ#M,N AND TYP(-M)
4-34 HOW TO COpy A FILE
4-35 TERM: RANDOM FILE ACCESS
4-36 SAMPLE OF RANDOM FILE ACCESS

VIII

CONTENTS CONTINUED

" 4-37 PRINTING A RECORD
4-38 READING A RECORD
4-40 MODIFYING CONTENTS OF A RECORD
4-41 ERASING A RECORD
4-43 UPDATING A RECORD
4-44 AN ALPHABETICALLY ORGANIZED FILE

5-1 SECTION V
MATRICES

5-2 DIM
5-3 MAT ... ZER
5-4 MAT... CON
5-5 INPUT
5-6 MAT INPUT
5-7 PRINTING MATRICES

"
5-8 MAT PRINT
5-10 READ
5-11 MAT READ
5-12 MATRIX ADDITION
5-13 MATRIX SUBTRACTION
5-14 MATRIX MULTIPLICATION
5-15 SCALAR MULTIPLICATION
5-16 COPYING A MATRIX
5-17 IDENTITY MATRIX
5-18 MATRIX TRANSPOSTION
5-19 MATRIX INVERSION
5-20 MAT PRINT#
5-21 MAT READ#

6-1 SECTION VI
STRINGS

6-2 STRING

r-' 6-3 STRING VARIABLE

IX

CONTENTS CONTINUED
.~

6-4 SUBSTRING
6-6 STRINGS AND SUBSTRINGS
6-8 THE STRING DIM STATEMENT
6-9 THE STRING ASSIGNMENT STATEMENT
6-10 THE STRING INPUT STATEMENT
6-11 PRINTING STRINGS
6-12 READING STRINGS
6-13 STRING IF
6-14 THE LEN FUNCTION
6-15 STRING IN DATA STATEMENTS
6-16 PRINTING STRINGS ON FILES
6-17 READING STRINGS FROM FILES

7-1 SECTION VII
LOGICAL OPERATIONS

7-1 LOGICAL VALUES AND NUMERIC VALUES ~

7-2 RELATIONAL OPERATORS
7-4 BOOLEAN OPERATORS
7-6 SOME EXAMPLES

8-1 SECTION VIII
FORMATTED OUTPUT

8-2 DEFINITIONS
8-5 SUMMARY
8-6 STRING FORMAT SPECIFICATIONS
8-8 INTEGER FORMAT SPECIFICATIONS
8-10 FIXED-POINT FORMAT SPECIFICATIONS
8-12 FLOATING-POINT FORMAT SPECIFICATIONS
8-14 POSITION OF THE SIGN
8-15 GROUP FORMAT SPECIFICATIONS
8-15 TERM: FORMAT STRINGS
8-16 TERM: EXPRESSION LIST
8-17 PRINT USING ~
8-19 MAT PRINT USING

X

CONTENTS CONTINUED

" 8-20 FORMAT IN A STRING VARIABLE
8-21 IMAGE
8-22 USING CARRIAGE CONTROL
8-23 NUMERICAL OUTPUT
8-25 REPORT GENERATION
8-27 FATAL ERRORS
8-28 NON-FATAL ERRORS

9-1 SECTION VIII
FOR THE PROFESSIONAL

9-2 SYNTAX REQUIREMENTS OF TSB
9-10 STRING EVALUATION BY ASCII CODES
9-11 MEMORY ALLOCATION BY A USER

A-1 APPENDIX A

"
HOW TO PREPARE A PAPER TAPE OFF-LINE

B-1 APPENDIX B
THE X-ON, X-OFF FEATURE

C-1 APPENDIX C
DIAGNOSTIC MESSAGES

D-1 APPENDIX D
ADDITIONAL LIBRARY FEATURES

INDEX

XI

SECTION I: AN INTRODUCTION TO TSS

SECTION II: THE ESSENTIALS OF BASIC

SECTION III: ADVANCED BASIC

SECTION IV: FILES

SECTION V: MATRICES

SECTION VI: STRINGS

SECTION VII: LOGICAL OPERATIONS

SECTION VIII: FORMATTED OUTPUT

SECTION IX: FOR THE PROFESSIONAL

APPENDICES AND INDEX

SECTION I

AN INTRODUCTION TO TIME-SHARED BASIC

This section is for novices and programmers in need of a "brush-up" on
mechanical skills. The information presented here is arranged in a tu­
torial sequence. It is assumed that the reader has access to a Time­
Shared BASIC terminal, and will use some or all of the examples as practice
exercises, depending on his own personal requirements.

If you are familiar with the following procedures, skip this section,
and begin at Section II:

Log in and log out
Correcting mistakes and changing lines
Obtaining a diagnostic message
Running and terminating a program.

A time-shared computer system consists of a central computer, a system
of peripheral devices at the computer site, and a number of independent
terminals. The terminals, also called ports, may be connected directly
to the computer through a multiplexer, or may be located remotely and
connected by telephone lines.

The Hewlett-Packard 2000C Time-Shared BASIC system uses two computers -­
one for actual computation and the other for controlling access to the
main computer -- plus magnetic mass storage devices and other equipment
used by the system operator. This system can support up to 32 terminals,
all operating simultaneously. The typical user's terminal is a standard
teleprinter with a paper tape punch and reader. The user can enter pro­
grams into the system either through the keyboard or through the paper
tape reader; system output can be punched on paper tape as well as be­
ing typed out. The system is so designed that no user should encounter
more than a few seconds delay between entering a command and receiving
a response from the system, even when all terminals are busy.

1-1

The user can work in a simple interactive mode, entering and running
programs and reading the results from the teleprinter, or can take ad­
vantage of the large storage capacity of the system by using library
programs and by storing his own programs for later use.

Time-Shared BASIC employs two distinct languages: BASIC, one of the
simpler programming languages, and a series of COMMANDS that permit the
user to control system functions such as listing and running programs,
storing and retrieving programs and data, and obtaining diagnostics and
lists of library programs.

COMMANDS consist of three alphabetic characters: some of these commands
require that parameters, such as line numbers within a BASIC program, be
stated, while others permit the addition of certain parameters. The sys­
tem examines the first three characters, then ignores any additional
characters except a hyphen (used when additional parameters are either
required or permitted). The system takes no action until the carriage
return is pressed. As an aid to learning the COMMANDS, characters may
be added to make the COMMAND more meaningful. For example, the log-on
COMMAND "HEL" may be typed IIHELLO II or the "CAT II COMMAND, requesting a
program catalog, can be typed "CATALOG. II COMMANDS serve the follow~

ing functions:

~,-':",

Logging

Program control

COMMANDS used to log on and off the
system.

COMMANDS used to refer to the current
program.

Terminal control -- COMMANDS used to control tape reading
and punching.

Library access

Miscellaneous

COMMANDS used to manipulate programs
or files in mass storage.

Messages to the system operator, time
checks.

1-2

Special (non-printing) keys on the teleprinter are used to control line
spacing, return, delete lines or characters, and to terminate programs
before they run to completion.

The user can communicat~ with the system operator by using the MESsage
command described in Section II. The operator can send messages to
all users or to a specified terminal.

1-3

SPECIAL KEYS

NOTE: Superscript "e" indicates a control character.
(Hold down ctrl while typing a character.)

KEY FUNCTION

ctrl Converts normal keys to non-printing control charac­
ters.

alt-mode

esc

break

CC

linefeed

return

} Deletes a line being typed.

Tenminates a running program, listing, or punching

Terminates an input loop (Cc return); causes a jump
to the END statement.

Causes the teleprinter to advance on line.

Generates a linefeed when used in a PRINT statement.

Generates a return when used in a PRINT statement.

1. Must follow every command or statement.

2. Causes the teleprinter typeface to return to
the first print position.

3. TSB responds with a linefeed.

Backspace. Deletes as many preceding characters
as +'s are typed in.

1-4

~
\

USING THE TELEPRINTER TERMINAL

The terminal can be operated in either of two modes, on-line (con­
nected to the computer) or off-line (independent of the computer).
After the user has established the connection to the computer and
logged in properly, the user is in contact with the computer through
the Time-Shared BASIC System. The system will execute any legal
command, and will detect and reject any illegal command, usually
printing a message informing the user why the command was rejected.

To enter a command, type either the short form or the full form of
the command; if additional parameters are required or pe~mdtted,

type a hyphen, then the parameters. Terminate the command with a
return. Some commands cause an obvious response from the system;
CAT(ALOG) and LIB(RARY) and GRO(UP) all result in the printing of
a list of programs. Other commands result in computer operations
and the only indication at the user1s terminal is the generation

of a linefeed, indicating that the system has accepted the com­
mand and is "waiting" for another.

The teleprinter can also be used off-line to prepare paper tape.
Off-line operation of the teleprinter is described in Appendix A.

1-5

COMMUNICATING WITH THE TSS SYSTEM-

THE BASIC LANGUAGE

There are many types of languages. English is a
natural language used to communicate with people.
To communicate with a computer system we use a
formal language, that is, a combination of simple

English and algebra.

BASIC is a formal language used to communicate with
the Time-Shared BASIC System.

Like natural languages BASIC has grammatical rules,
but they are much simpler. For example, this series
of BASIC statements (which calculates the average of
five numbers given by you, the user) shows the funda­
mental rules:

10 INPUT A,B,C,D,E
20 LET S = (A+B+C+D+E)/5
30 PRINT S
40 GO TO 1.0

50 END

The frames on the following pages show how to interpret
these-rules. Notice how the statements are written.
What they do is explained later.

1-6

EXAMPLES OF BASIC STATEMENTS

This is a BASIC statement:

l~ INPUT A,B,C,D,E

COr+1ENTS

A statement occupies one teleprinter line.

A statement may also be called a line.

1-7

STATEMENT NUMBERS

Each BASIC statement begins with a statement number

(in this example, 20):

20 LET S=(A+B+C+D+E)/5

COMMENTS

The number is called a statement number or a line

number.

The statement number is chosen by you, the programmer.
It may be any integer from 1 to 9999 inclusive.

Each statement has a unique statement number. The
system uses the numbers to keep the statements in
order.

Statements may be entered in any order; they are
usually numbered by fives or tens so that additional
statements can be easily inserted. The system keeps
them in numerical order no matter how they are entered.
For example, statements are input in the sequence 30,10,
20; the system arranges them in the order: 10,20,30.

1-8

INSTRUCTIONS (STATEMENT TYPES)

The statement gives an instruction to the TSB
system (in this example, PRINT):

30 PRINT S

COMMENTS

Instructions are sometimes called statement types

because they identify a type of statement. For
example, the statement above is a "print" statement.

1-9

OPERANDS

If the instruction requires further details, operands

(numeric details) are supplied (in this example, 10;
on the previous page, "S"):

40 GO TO 10

COMMENTS

The operands specify what the instruction acts upon;
for example, what is PRINTed, or where to GO.

1-10

A PROGRAM

The sequence of BASIC statements
given on the previous pages is
called a program.

The last statement in a program,
as shown here, is
an END statement.

COMMENTS

10 INPUT A,B,C,D,E
20 LET S=(A+B+C+D+E)/5
30 PRINT S

40 GO TO 10
50 END

The last (highest numbered) statement in a program must be
an END statement.

The END statement informs the computer that the program is
finished.

1-11

THE FORMAT OF STATEMENTS

BASIC is a "free format" language--the system ignores
extra blank spaces in a statement. For example, these
three statements are equivalent:

30 PRINT S
30 PRINT S
30PRINTS

COMMENTS

When possible, leave a space between words and numbers
in a statement. This makes a program easier to read.

1-12

~,

•
(Spot check)

Be sure you are familiar with these terms before continuing:

statement
instruction (statement type)
statement type
statement number (line number)
operand
program

All of these terms are defined in this section.

1-13

BEFORE GOING ON-LINE

The following pages explain the mechanics of entering,
correcting, and checking statements.

Since you will probably have to make several corrections
in your first attempts to work with the TSB system, these
features should be learned before beginning.

1-14

PRESS RETURN AFTER EACH STATEMENT

The return key must be pressed after each statement.

Examples: 10 INPUT A,B,C,D,E return

2~ LET S=(A+B+C+D+E)/5 return

30 PRINT S return

40 GO TO l~ return

50 END return

COMMENTS

Pressing return informs the system that
the statement is complete. The system
then checks the statement for mistakes.
(The checking process is explained later.)

1-15

DELETING OR CHANGING CHARACTERS

Typing the reverse arrow (+) key deletes the immediately
preceding character. One character is deleted for each +.

Typing:
is equivalent to typing:

And typi ng:
is equivalent to typing:

20 LR+ET S=10 return

2~ LET S=l~ return

30 LET+ ~ + PRINT S return

30 PRINT S return

COMMENTS

The + character is a "shift ll 0 on most terminals.

1-16

5 LET esc

DELETING OR CHANGING A STATEMENT

To delete the statement being typed, press the esc or alt-mode key. This
causes a \ to be printed, and deletes the entire line being typed.

To delete a previously typed statement, type the statement number followed
by a return.

To change a previously typed statement, retype it with the desired changes.
The new statement replaces the old one.

Pressing the ~ key deletes
the statement being typed: 20 LET S = esc

NOTE: The system responds with a \ when ~ is typed, like this:

20 LET S = \

To delete statement 5 in the

sequence: 5 LET S = 0
10 INPUT A,B,C,D,E,
20 LET S = (A+B+C+D+E)/5

NOTE: \ and / are different,and have very different functions.

type: 5 return

Or, to change statement 5 in
the above sequence, type: 5 LET S = 5 return

The old statement is re-
placed by the new one.

Typing an esc (or alt-mode)

before a return prevents
replacement of a previously
typed statement.

For example, typing:
or:

has no effect on the orig­
inal statement 5.

5 esc

1-17

LISTING A PROGRAM

After you have made several corrections you may wish to inspect the
entire program. Typing LIST return produces a listing of all lines
accepted by the computer.

NOTE: The program has already been entered.

LIST return

The system skips two lines,
separating the listing from pre­
viously printed information.

linefeed indicates that the
listing is complete.

linefeed

linefeed

linefeed

10 INPUT A,B,C,D,E
20 LET S = (A+B+C+D+E)/5
30 PRINT S
40 GO TO 10
50 END
linefeed

The LIST command followed by a dash and statement number causes the
listing to begin at the statement specified.

A list of the same sample program
produces these lines:

1-18

LIST-30 return

linefeed

linefeed

linefeed

30 PRINT S
40 GO TO 10
50 END
linefeed

~ .
\,

1. Be sure you understand the use of these features:

return to end statements
How to delete characters
How to delete a statement
How to change a statement
How to list statements

The following pages explain how to make the connection with
the computer and log-in to the TSB system.

1-19

CONNECTION TO THE COMPUTER

To enter a program into the computer, first make a connection between the tele­
printer and the computer. There are several ways of doing this, depending on
the terminal equipment used. The input-output device, such as teleprinter or
optical mark reader, on your end of the line is called terminal equipment. Not
all users have the same type of equipment.

IF YOUR TERMINAL EQUIPMENT IS A TELEPRINTER WITH

ACOUSTIC COUPLER AND TELEPHONE:

1. Turn teleprinter control knob to
LINE.

2. Turn on coupler power.
3. If coupler has a duplex switch,

set to FULL or FULL/UP.
4. If coupler has a line switch set

it to ON-LINE.
5. Call the computer number.
6. When the computer answers with a

high pitched tone, place the hand­
set in the coupler (Be sure to
check that the handset is inserted
in the correct position; the con­
nection will not be made if it is
reversed. (The correct position
should be marked on the coupler.)

HALF-DUPLEX COUPLER AND TELEPHONE
1. Fo11 ow ins t ruct ions 1, 2,4 ,5,6

given above.
2. Log in. (See Log In and Log Out

in this section.)
3. Type ECHO-OFF return

1-20

DATA SET:

1. Tum tel eprinter contro1 knob to
line.

2. Press TALK button on the Data Set.
3. Call the computer number.

4. When the computer answers with a
high pitched tone, press the DATA
button until the DATA light is on,
and replace the handset.

NOTE: When the connection is
through telephone lines,
the user must WG IN
within a time period
(nominally two minutes)
specified by the
operator.

DIRECT CONNECTION TO THE COMPUTER:
Turn the teleprinter control knob to
the LINE position.

CHECKING THE CONNECTION

The computer does not respond when the connection is established. If
you wish to make sure that the connection has been made, type ~. When
the connecti on is made, the· computer responds wi th a II \ • II Type any
numeral plus return.

EXAMPLE: 3 return

The system responds with the message:

PLEASE LOG IN return linefeed

NOTE: linefeed causes the teleprinter to advance to the next line.

return causes the teleprinter typeface to return to the first

print position.

The above step is optional.

YOUR 10 CODE AND PASSWORD

You need your identification code and password to log in.
assigned by the system operator. The 10 code is a single
by a three digit number. The password consists of one to

can tro1 cha ra cters .

CONTROL CHARACTERS

These are
1etter followed
six re gu1ar 0 r

Control characters are non-printing. They are represented with a super­
script "C II to indicate that they are control characters. By using these
non-printing characters, you may keep your password a secret. For example,
on the teleprinter the password SEcCcRcEcT prints as:

ST

Control letters are input by pressing the letter and ctrl keys
s imu1taneous1y .

1-21

SAMPLE LOG IN AND LOG OUT

H2~0 is used as a sample identification code.

User H2~0 for example, logs in by
typing:

HELLO- is a command, not a statement.

Commands are orders to the system

which are acted upon (executed) im­

mediately. Unlike statements, com­

mands do not have line numbers.

The system acknowledges that the

user has correctly logged in, ~y

outputting three linefeeds and
a message, if the operator has put
a message into the system for users:

NOTE: This message can be terminated
by hi t·ting break.

If there is no message, the system
responds with a linefeed, then READY,
indicating that it is awaiting
input.

To LOG OUT, type:

The elapsed time since log in is
then printed.

1-22

HELLO-H2~~,password return

linefeed

linefeed

linefeed

MESSAGE TO USERS FROM OPERATOR

- - - - - - - - - - - - - - - -

linefeed

READY
linefeed

BYE return

0~1 MINUTES OF TERMINAL TIME

MIST.AKES DURING LOG IN

If you make a mistak~ while logging in, the system responds with a
message informing you that something is wrong. For example, if user H20~

forgets the hyphen while entering the HELLO command:

HELLO H200,password return

the computer responds with the message:

ILLEGAL FORMAT return linefeed

and the user then enters the command in the correct form.

If user H2~0 enters his password incorrectly:

HELLO-H200,password return

the response is:

ILLEGAL ACCESS return linefeed

and the user tries again.

NOTE: The messages ILLEGAL ACCESS and ILLEGAL FORMAT

indicate that some or all of the input is not

acceptable to the system.

1-23

ENTERING THE SAMPLE PROGRAM

The frame below shows how to enter a program. If you are not sure how
the system responds when a line is entered, use it as a practice
exercise.

NOTE: Connection to the computer is made.

Log in:

or

NOTE: The system responds wi th a

linefeed after each line is

entered. This indicates that

the line has been checked and

accepted as a legal BASIC

statement. It informs the

user that the computer is

wai ting for further input.

HELLO-H200,password return

OPERATOR'S MESSAGE TO USER

READY return linefeed

10 INPUT A,B,C,D,E return

linefeed

20 LET S = (A+B+C+D+E)/5 return

linefeed

30 PRINT S return

linefeed

40 GO TO 10 return

linefeed

50 END return

linefeed

Now the program ;s ready to run.

1-24

~.

HOW TO OBTAIN A DIAGNOSTIC MESSAGE

If you make a mistake while entering a program, the system responds with an ERROR
message. This indicates that the previous line has not been accepted. There are
two possible responses to the ERROR message. The frame below shows how to obtain a

diagnostic for the probable cause of the error and how to avoid printing the diag­
nostic if you recognize the mistake.

If the user types:

The system responds:

The user then types in a colon
(or any other character) fol­
lowed by a return. This causes
the diagnostic to be printed
on the same line. The result­
ing output looks like this:

To correct the statement,
retype it in the proper form:

If you know the cause of the
ERROR message and do not wish
to see the diagnostic, type a
return after the ERROR message
is output, then retype the line:

30 PRIMT S return

NOTE: PRINT has been misspelled.

ERROR

ERROR: return

ERROR: NO STATEMENT TYPE FOUND
NOTE: PRIMT has not been recognized

as a legal statement type, and

the line was not accepted.

30 PRINT S return

30 PRIMT S return

ERROR

30 PRINT S

Appendix "e" contains a 1ist of TSB diagnostic messages and probable
causes.

1-25

RUNNING THE SAMPLE PROGRAM

This frame shows what happens when the sample program is run. The
program does not begin execution (does not run) until the command RUN
followed by a return ;s input.

NOTE: The program (averaging 5 numbers) has been entered.

The system responds with three linefeed's

indicating that the command is being
executed.

The question mark indicates that input is
expected. The five numbers being averaged
should be typed in, SEPARATED BY COMMAS,
and followed by a return.

The answer is printed:

NOTE: This program continues executing

indefinitely, unless terminated

by the user. To stop the program,
c

type a C return (control "C") when

more inpu t is reques ted:

The program ;s finished:

Log off:

Time used is printed:

1-26

RUN return

linefeed

linefeed

linefeed

? 95.6,87.3,80.5,90,82.8 return

87.24 return linefeed

?-12.5,-5~.6,-32,45.6,6~return

2.1 return linefeed

c? C return

DONE

BYE return

003 MINUTES OF TERMINAL TIME

STOPPING A PROGRAM: THE break KEY

When the commands RUN or LIST are typed,
TSS "takes over" the user1s terminal
until the program or listing is complete
or until the user terminates the procedure.

To terminate a program or listings press s then releases the
break key:

When a program is running or being listed s TSS responds
with the message:
after break is pressed.

Remember that:
and not break is used to terminate input loops (when the

system is expecting a number to be typed in).

COr+1ENTS

break must be held down for at least
1/10 seconds then released.

1-27

break

STOP

cC return

HOW THE PROGRAM WORKS

Line 10 tells the system that five numbers will
be input, and that they should be given the labels
A,B,C,D,E in sequence. The first number input is
labeled "A" by the computer, the second liB II , etc. 10 INPUT A,B,C,D,E
A,B,C,D, and E are called variables. When the pro-
gram is run, the system will print a question mark
(?) at this point and wait for input from the termi-
nal keyboard. The ENTER statement, Section III
can also be used to input data.

After line 10 is executed, the variables and their
assigned values, typed in by the user, are stored.
For example, using the values entered by the user
in the previous example, this information is stored:
A = -12.5; B = -50.6; C = -32; D= 45.6; E = 60

Line 20 declares that a variable called Sexists,
and is assigned the value of the sum of the vari­
ables A,B,C,D,E divided by 5:

Line 30 instructs the system to output the
value of S to user's terminal:

NOTE: If the PRINT statement were not given,
the value of S would be calculated and
stored, but not printed. Explici t in­
structions must be given for each oper­
ation to be performed.

Line 40 tells the system to go to line 10 and
execute whatever instruction is there:

1-28

20 LET S = (A+B+C+D+E)/5

30 PRINT S

40 GO TO 10

NOTE: A "loop" is formed by lines l~ to 4~. The sequence
of statements in this loop execute until the user
breaks the loop. This type of loop is called an in­
put loop (because the user must repeatedly input
data). Each time the system prints the value of S
(line 39) execution continues to line 4~, returns
to line l~, then prints the question mark (?) -­
requesting fi ve new inputs. The only way a user
can escape from a program that is wai ting for input
is to type C

C
(the character C with the CONTROL key

depressed). Execution will then proceed to the last
statement in the program, line 5~ in this example,
and the system will print DONE. When the program is
actually running (computing the values or printing
results) the break key is used to interrupt the pro­
gram, as described previously.

Line 50 indicates that the program is finished:

1-29

50 END

SECTION II

THE ESSENTIALS OF BASIC

HOW TO READ THIS SECTION

This section contains enough information to allow
you to use BASIC in simple applications, without
using the capability of storing programs.

Proceed at your own pace. The information in the
vocabulary and operators subsections is included
for completeness; experienced programmers may skip
these. Programmers with some knowledge of BASIC
may also concentrate on capabilities of the TSB
system presented in the commands subsection.

The "Operators" subsections contain brief descriptions,
rather than explanations, of the logical operators.
The novice should not expect to gain a clear under­
standing of logical operators from this presentation.
Section VII presents more details and examples of
TSB logical operations. Readers wishing to make best
use of TSB logical capabilities should consult this
section. Those unfamiliar with logical operations
should also refer to an elementary logic text.

A simple program is included at the end of this
section for reference; it contains a running commen-
tary on the uses of many of the BASIC statements presented
in the section.

2-1

TERM: NUMBER

DEFINED IN TSB AS: A positive or negative decimal number
whose magnitude is between an approxi­
mate minimum of 10-38 (or 2-129) and an
approximate maximum of 1038 (or 2127).
Zero is also allowed.

COMMENTS

The precision of all numbers in TSB is 23 binary digits (6 to 7 decimal
di gi ts) .

If the user types a BASIC statement which contains a number that is not
representable in TSB, the system will output a warning and change the
number in the statement to the closest representable one.

If an executing program makes a calculation which results in a non­
representable number, that number will be set to the closest represent­
able one and a warning message will be printed.

TERM: E NOTATION

DEFINED IN TSB AS: A means of expressing numbers having more than six
decimal digits, in the form of a decimal number
raised to some power of 10.

EXAMPLES: 1.00000E+06 is equal to 1000000 and is read:
111 times 10 to the sixth power ll (lx106).

1.02000E+04 is equal to 10200
1.02000E-04 is equal to .000102

COMMENTS
IIE II notation is used to print numbers greater than six digits. (See PRINT.)
It may also be used to input any number. When entering numbers in IIE II no­
tation, leading and trailing zeroes may be omitted from the number; the +
sign and leading zeroes may be omitted from the exponent.

2-2

DEFINED IN TSB AS:

TERM: SIM PLE VARIABLE

A letter (from A to Z); or a letter immediately
followed by a number (from 0 to 9).

EXAMPLES: A0
M5
Z9

B

C2
o

COMMENTS

Variables are used to represent numeric values.
For instance, in the statement:

10 LET M5 = 96.7
M5 is a variable; 96.7 becomes the value of the variable MS.

There are two other types of variables in TSB, array
and string variables; their use is explained in Sec­
tions V and VI respectively.

2-3

DEFINED IN TSB AS:

EXAMPLES:

TERM: EXPRESSION

A combination of variables, constants and
operators which has a numeric value.

(P + 5)/27

(where P has previously been assigned a
numeric value.)

Q - (N + 4)

(where Qand N have previously been assigned
numeric values.)

"-

T~~M: ARITHM ETIC EVALU·ATION
'.

DEFINED IN TSB AS: The process of calculating the value of
an expression.

2-4

THE ASSIGNMENT OPERATOR

SYMBOL:

EXAMPLES:

GENERAL FORM:

=

l~ LET A = B2 = C = 0
20 LET A9 = C5
30 Y = (N-(R+5))/T
40 N5 = A + 82
50 P5 = P6 = P7 = A = B = 98.6

LET variable =expression

yariC'.bl~ = expression

PURPOSE

Assigns an arithmetic or logical value to a
variable.

COMMENTS

When used as an assignment operator, = is read
II takes the value of, II rather than "equa1s II • It
is, therefore, possible to use assignment state­
ments such as:

100 LET X = X+2

This is interpreted by TSB as: "LET X take the
value of (the present value of) X, plus two. II

Several assignments may be made in the same
statement, as in statements 10 and 50 above.

See Section VII, ilLOGICAL OPERATIONS" for a
description of logical assignments.

2-5

SYMBOLS:

EXAMPLES:

ARITHMETIC OPERATORS

t * / + -

40 LET Nl = X.:.5

50 LET C2 = Nt3
60 LET A= (B-C)/4
70 LET X= ((Pt2)-(Y*X))/N+Q

PURPOSE

Represents an arithmetic operation, as:

exponentiate: t

mul ti ply: *

divide: /
add: +

sUbtract:

COMMENTS

The "-" symbol is also used as a sign for negative numbers.

It is good practice to separate arithmetic operations with
parentheses when unsure of the exact order of precedence.

The order of precedence (hierarchy) is:
t

* /
+ -

with t having the highest priority. Operators on the same level
of priority are acted upon from left to right in a statement. See
"Order of Precedence" in thi s Section for exampl es.

2-6

SYMBOLS:

EXAMPLES:

RELATIONAL OPERATORS

= # <> > < >= <=

1~~ IF A=B THEN 90~

110 IF A+B >C THEN 91~

120 IF A+B < C+E THEN 920
130 IF C>= D*E THEN 930
140 IF C9<= G*H THEN 940

150 IF P2#C9 THEN 950

160 IF J <> K THEN 950

PURPOSE

r
\

r"

Determines the logical relationship between two expressions t as
equality: =

inequality: # or: <>
greater than: >

1ess than: <

greater than or equal to: >=
1ess than or equa1 to: <=

COMMENTS

NOTE: It is not necessary for the novice to understand the nature of
logical evaluation of relational operators, at this point. The
conunents below are for the experienced progranuner.

Expressions using relational operators are logically evaluated t and assigned
a value of IItrue ll or IIfalse ll (the numeric value is 1 for IItrue ll

t and 0 for
fa1se).

When the = symbol is used in such a way that it might have either an

assignment or a relational function t TSB assumes it is an assignment
operator. For a description of the assignment statement using logical
operators, see Section VII, ilLogical Operations. II

2-7

EXAMPLES:

MIN AND MAX OPERATORS

10 LET A=A9=P2=P5=C2=X=7.5
20 LET B5=D8=Q1=Q4=Y=B=12.0

80 PRINT (A MIN 10)
90 LET B=(A MIN 10)+100

100 IF (A MIN B5) > (C2 MIN 08) THEN 10
110 PRINT (X MAX Y)
120 IF (A9 MAX B) <= 5 THEN 150

PURPOSE'

Selects the larger or smaller
value of two expressions.

COMMENTS

In the examples above, statement 110
selects and prints the larger value:
since X = 7.5 and Y = 12.0, the value
of Y ;s printed. The evaluation is
made first, then the statement type
(PRINT) is executed.

2-8

SYMBOL:

EXA~lPLES:

THE AND OPERATOR

AND

6~ IF A9<Bl AND C#5 THEN l~~

7~ IF T7#T AND J=27 THEN l5~

8~ IF Pl AND R>l AND NAND V2 THEN l~

9~ PRINT X AND Y

PURPOSE

~.
\

Forms a logical conjunction between two expressions. If
both are "true", the conjunct ion is II true"; if one or both
are "false", the conjunction is "false".

NOTE: It is not necessary for the novice to understand how this
operator works. The comments below are for experienced
programmers.

COMMENTS

The numeric value of "true" is 1, of "false" is ~.

All non-zero values are "true ll
• For example, statement 9~

would print either a ~ or a 1 (the logical value of the ex­
pression X"AND Y) rather than the actual numeric values of

X and Y.

Control is transferred in an IF statement using AND, only
when all parts of the AND conjunction are "true". For in­
stance, example statement 8~ requires four "true" conditions
before control is transferred to statement 10.

See Section VII, ilLogical Operations" for a more complete
description of logical evaluation.

2-9

SYMBOL:

EXAMPLES:

THE OR OPERATOR

OR

100 IF A>l OR B<5 THEN 500
11~ PRINT C OR D
120 LET D= X OR Y
130 IF (X AND Y) OR (P AND Q) THEN 600

PURPOSE

Forms the logical disjunction of two expressions. If
either or both of the expressions is true, the OR dis­
junction is "true"; if both expressions are IIfalse ll the
OR dis j unct ion is II fa1se" .

NOTE: It is not necessary for the novice to understand
how this opera tor works. The comments below are
for experienced programmers.

COMMENTS

The numeric values are: "true" = 1, "false" = (tL

All non-zero values are true; all zero values are false.

Control is transferred in an IF statement using OR, when
either or both of the two expressions evaluate to "true".

See Section VII, "Logical Operations" for a more complete
description of logical evaluation.

2-10

~
\'

THE NOT OPERATOR

SYMBOL:

EXAMPLES:

NOT

30 LET X = Y = 0
35 IF NOT A THEN 300
45 IF (NOT C) AND A THEN 400
55 LET B5 = NOT P
65 PRINT NOT (X AND Y)
70 IF NOT (A=B) THEN 500

PURPOSE

Logically evaluates the complement of a given expression.

NOTE: It is not necessary for the novice to
unders tand how this operator works. The
comments below are intended for experi­
enced programmers

COMMENTS

If A = 0, then NOT A = 1; if A has a non-zero value,
NOT A = 0.

The numeric values are: "true" = 1, "fa1se ll = 0; for
example, statement 65 above would print 111 11 , since the
expression NOT (X AND Y) is true.

Note that the logical specifications of an expression may
be changed by evaluating the complement. In statement 35
above, if A equals zero, the evaluation would be "true ll (1);

since A has a numeric value of 0, it has a logical value of
"false ll

, making NOT A "true ll
•

See Section VII, "Logical Operations" for a more complete
description of logical evaluation.

2-11

ORDER OF PRECEDENCE OF EXECUTION

The order of performing operations is:
t highest precedence

NOT

* /
+ -

MIN MAX
Relational Operators

AND
OR lowes t precedence

COMMENTS

If two operators in an expression are on the
same level, the order of execution is left to
right within the statement.

5 + 6*7
7/14*2/5

is evaluated as:
is evaluated as:

5 + (6x7)
(7/14)x2

5

A MIN B MAX C MIN D is evaluated as:

((A MIN B) MAX C) MIN D

Operations enclosed in parentheses are performed
before any operations outside the parentheses.
When parentheses are nested, operations within
the innenmost pair of parentheses are performed
fi rst.

2-12

STATEMENTS

Be sure you know the difference between statements

and commands.

Statements are instructions to the system. They

are contained in numbered lines within a program,

and execute in the order of their line numbers.
Statements cannot be executed without running a pro­

gram. They tell the system what to do while a

program is running.

Commands are also instructions. They are executed

immediately, do not have line numbers, and may not

be used in a program. They are used to manipulate
programs, and for utility purposes, such as logging
on and off.

Here are some ex~mples mentioned in Section I:

Statements

LET
PRINT
INPUT

Commands

HELLO
BYE
LIST

Do not attempt to memorize every detail in the
"Statements" subsection; there is too much material

to master in a single session. By experimenting
with the sample programs, and attempting to write

your own programs, you will learn more quickly than
by memorizing.

2-13

THE ASSIGNMENT STATEMENT.

EXAMPLES:

GENERAL FORM:

10 LET A = 5.02
20 X= Y7 = Z = 0
30 89 = 5* (Xt2)
40 LET D= (3*C2tN)/(A*(N/2))

statement number LET variable ~ number or expression or string or variable . •.

or

statement number variable ~ number or expression or string or variable ...

PURPOSE

Used to assign or specify the value of a variable.
The value may be an expression, a number, string
or a variable of the same type.

COMMENTS

Note that LET is an optional part of the assignment
statement.

The assignment statement must contain:
1. The variable to be assigned a value.
2. The assignment operator, an = sign.
3. The number, expression or variable to be

assigned to the variable.

Statement 20 in the example above shows the use of
an assignment to give the same value (~) to several
variables. This is a valuable feature for initial­
izing variables in the beginning of a program.

2-14

~
I

REM

EXAMPLES: l~ REM--THIS IS AN EXAMPLE
20 REM: OF REM STATEMENTS
3~ REM-----/////*****!!!!!
4~ REM. STATEMENTS ARE NOT EXECUTED BY TSB

GENERAL FORM: statement number REM any remark or series of characters

PURPOSE

Allows insertion of a line of remarks or comment
in the listing of a program.

COMMENTS

Must be preceeded by a line number. Any series of
characters may follow REM.

REM lines are saved as part of a BASIC program, and
printed when the program is listed or punched; how­
ever, they are ignored when the program ;s executing.

Remarks are easier to read if REM is followed by a
punctuation mark, as in the example statements.

2-15

GO TO AND MULTIBRANCH GO TO

EXAMPLES:

GENERAL FORM:

10 LET X= 20

40 GO TO X+Y OF 410,420,430
50 GOTO 100
80 GOTO 10
90 GO TO N OF 100,150,180,190

statement number GO TO statement number

statement number 00 TO expression OF sequence of statement numbers

PURPOSE

GO TO transfers control to the statement specified.

GO TO expression ..• rounds the expression to an integer n and transfers control
to the nth statement number following OF.

COMMENTS

00 TO may be written: GOTO or GO TO.

Must be followed by the statement number to which control is transferred, or
expression OF, and a sequence of statement numbers.

GO TO overrides the normal execution sequence of statements in a program.

If there is no statement number corresponding to the value of the expression, the
GO TO is ignored.

Useful for repeating a task infinitely, or "jumping" (GOing TO) another part of
a program if certain conditions are present.

GO TO should not be used to enter FOR-NEXT loops; doing so may produce unpredict­
able results or fatal errors.

2-16

IF...THEN

~----------------SAMPLE PROGRAM: 1~ LET N = 1~

2~ READ X
30 IF X < N THEN 60
4~ PRINT "X IS 1~ OR OVER"
50 GO TO 8~

60 PRINT "X IS lESS THAN 10"
70 GO TO 20
80 END

GENERAL FORM: statement number IE expression THEN statement number

PURPOSE

Transfers control to a specified statement if a specified condition is
true.

COMMENTS

Sometimes described as a conditional transfer; "GO TO" is implied by
IF... THEN, if the condition is true. In the example above, if X<· 10,
the message in statement 60 is printed.

Since numbers are not always represented exactly in the computer, the
= operator should be used carefully in IF ... THEN statements. <=,>=, etc.
should be used in the IF expression, rather than =, whenever possible.

If the specified condition for transfer is not true, then the program
will continue executing in sequence. In the example above, if X>=10,
the message in statement 40 will be printed.

See "logical Operations," Section VII for a more complete description
of logical evaluation.

2-17

EXAMPLES:

FOR...NEXT

1~~ FOR P1 = 1 TO 5
11~ FOR Ql = N TO X
12~ FOR R2 = N TO X STEP 1
13~ FOR S = 1 TO X STEP Y
140 NEXT S
15~ NEXT R2
16~ NEXT Ql
17~ NEXT P1

Sample Program - Variable Number Of Loops

4~ PRINT "HOW MANY TIMES DO YOU WANT TO LOOp lI
;

5~ INPUT A
6~ FOR J = 1 TO A
7~ PRINT "THIS IS LOOp lI

; J

8~ READ Nl, N2, N3
9~ PRINT "THESE DATA ITEMS WERE READ: II N1; N2; N3
1~~ PRINT IISUM =11; (Nl+N2+N3)
11~ NEXT J

129.) DATA 5,6,7,8, 9, 1~, 11, 12
130 DATA 13, 14, 15, 16, 17, 18, 19, 2~, 21
14~ DATA 22, 23, 24, 25, 26, 27, 28, 29, 30
15~ DATA 31, 32, 33, 34
16~ END

GENERAL FORM:

statement number FOR simple variable ~ initial value TO final value

or

statement no. FOR simple variable ~ ini tial value TO final value STEP step value

(Statements to be repeated)

statement number NEXT simple variable

NOTE: The same simple variable must be used in both the FOR and NEXT statements
of a loop.

2-18

FOR..."NEXT, CONTINUED

PURPOSE

Allows repeti tion of a group of statements
within a program.

COMMENTS

Initial value, final value and
step value may be any expression.

How the loop works:

The simple variable is assigned the value
of the initial value; the value of the sim-
ple variable is increased by 1 (or by the optional
step value) each time the loop executes.
When the value of the simple variable passes
the final value, control is transferred to the
statement following the "NEXT" statement.

STEP and step value are optional.

For further details on the STEP feature, see
II FOR... NEXT with STEP" in Section III.

Try running the sample program if you are not
sure what happens when FOR... NEXT loops are
used in a program.

2-19

NESTING FOR...NEXT LOOPS

Multiple FOR ... NEXT loops may be used in the same
program; they may also be nested (placed inside one
another). There are two important features of
FOR ... NEXT loops:

1. FOR... NEXT loops may be nested.

-----10 FOR A1 = 1 TO 5
11 r--20 FOR 82 = N TO P

Range of loop A1/ -;~ [30 FOR C3 = X TO Y STEP R
;~

Range of loop 82,.. /1/ :
Range of loop C3~ 80 NEXT C3

"--90 NEXT 82
~100 NEXT Al

2. The range of FOR ... NEXT loops may
not overlap. The loops in the ex­
ample above are nested correctly.
This example shows improper nesting.

---10 FOR 1= 1 TO 5

--30 FOR J = 1 TO N

The range of loops {

I and J overlap.
-r.--50 NEXT I

1-90 NEXT J

2-20

READ, DATA AND RESTORE

Sample Program using READ and DATA

15 FOR 1=1 TO 5
2ft) READ A
4ft) LET X=At2
45 PRINT A;" SQUARED =";X
50 NEXT I
55 DATA 5.24,6.75,30.8,72.65,~9.72

6~ END

Each data item may be read only once in this program.
TSB keeps track of data with a "pointer. 1I When the
fi rst READ statement is encountered, the "poi nter"
indicates that the first item in the first DATA state­
ment is to be read; the pointer is then moved to the
second item of data, and so on.

In this example, after the loop has executed five
times, the pointer remains at the end of the data
list. To reread the data, it is necessary to reset
the pointer. A RESTORE statement moves the pointer
back to the first data item.

2-21

READ, DATA AND RESTORE, CONTINUED

Sample Program Using READ, DATA and RESTORE

20 FOR 1=1 TO 5
30 READ A
40 LET X=At2
50 PRINT A; "SQUARED =";X
60 NEXT I
80 RESTORE

100 FOR J=1 TO 5
110 READ B
120 LET Y=Bt4
130 PRINT B; liTO THE FOURTH POWER =II;Y
140 NEXT J
150 DATA 5.24,6.75,30.8,72.65,89.72
160 END

GEN ERAL FO RM :
statement number READ variable ..!.. variable..!.. • ••

statement number DATA number or string ..!.. number or string .!. •••

statement number RESTORE
statement number RESTORE statement number

PURPOSE

The READ statement instructs TSB to read an item from a DATA statement.

The DATA statement is used for specifying data in a program. The data
is read in sequence from first to last DATA statements, and from left to
right within the DATA statement.

The RESTORE statement resets the pointer to the first data item, allowing
data to be re-read.

RESTORE followed by a statement number resets the pointer to the first
data item, beginning at the specified statement.

2-22

r'
\

READ, DATA AND RESTORE, CONTINUED

COMMENTS

READ statements require at least one DATA
s ta temen t in the same program.

Iterns in a DATA s ta temen t mus t be sepa ra ted
by commas. String and numeric data may be
mixed.

DATA statements may be placed anywhere in a
program. The data items will be read in se­
quence as required.

DATA statements do not execute; they merely
spec i fY da ta .

The RUN command automatically sets the pointer
to the first data item.

If you are not sure of the effects of READ,
DATA t and RESTORE t try running the sample
programs.

Programmers mlxlng string and numeric data
may find the TYP function useful. See liThe
TYP Function" t Secti on IV.

2-23

INPUT

This program shows several variations of the INPUT statement and their effects.

Sample Program Using INPUT

5 FOR M=l TO 2
10 INPUT A
20 INPUT Al,B2,C3,Z0,Z9,E5
30 PRINT "WHAT VALUE SHOULD BE ASSIGNED TO R";
40 INPUT R
50 PRINT A;Al;B2;C3;Z0;Z9;E5;IR=";R
60 NEXT M
70 END

RESULTS ------------------------------------

RUN
?1 return

?2,3,4,5,6,7 return

WHAT VALUE SHOULD BE ASSIGNED TO R?27 return

R=277654123
?1.5 return

12.5,3.5,4.5,6.,7.2 return

118. 1 return ?? indicates that more input is expected

WHAT VALUE SHOULD BE ASSIGNED TO R?-99
1.5 2.5 3.5 4.5 6 7.2
8. 1 R= -99

DONE
GENERAL FORM:

statement number INPUT variable .!.. variable .!..•••

PURPOSE

Assigns a value input from the teleprinter to a variable.

2-24

INPUT CONTINUED

COMMENTS

The program comes to a halt, and a question mark is print­
ed when the INPUT statement is used. The program does not
continue execution until the input requirements are satis­
fied.

Only one question mark is printed for each INPUT statement.
The statements:

10 INPUT A, B2, C5, D, E, F, G.
and

20 INPUT X

each cause a single "?" to be printed. Note that the "?"

generated by statement 10 requires seven input items,
separated by commas, while the "?" generated by statement
20 requires only a single input item.

The only way to stop a program when input is required is
entering: CC

return. Note that the CC aborts the program;
it must be restarted with the RUN command.

Relevant Diagnostics:

? indicates that input is required.
?? indicates that more input is needed to satisfy an INPUT statement.

??? indicates that TSB cannot decipher your input.
ENTRA INPUT-WARNING ONLY indicates that a) extra input was

entered; b) it has been disregarded; and c) the program
is continuing execution.

See the description of the "PRINT" format this section for
variations on output formats.

2-25

PRINT

EXAMPLE

10 LET A=B=C=D=E=F=G=14
20 LET D1=E9=20
30 PRINT A,D1 ,B,C,E9
40 PRING A/B,B/C/D1+E9
50 PRINT "NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THEil
60 PRINT "VALUE IN THE SAME STATEMENT. II
70 PRINT
80 REM: "PRINT" WITH NO OPERAND CAUSES THE TELEPRINTER TO SKIP A LINE.
90 PRINT IIIA I DIVIDED BY IE9 1 =";A/E9
100 PRINT
110 PRINT 11111111,1222221,1333331,IAAAAAI,"BBBBBI,"CCCCCII
120 PRINT 11111111,12222211,1333331,IAAAAAI,"BBBBBI,IICCCCC"
130 PRINT A,B,C,D,D1,E,F,E9,G
140 PRINT A;B;C;D;D1 ;E;F;F;E9;G
15~ PRINT
160 PRINT TAB(8);ICARRIAGEI ;SPA(5);ICONTROL";LIN(2);IIFUNCTIONS"
170 END

_____ - - - - - - - - - - - - - RESULTS- - - - - - - - - - - - - - - - - - -

RUN

14 20 14 14 20
1 20.05

NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE
VALUE IN THE SAME STATEMENT.

IA I DIVIDED BY IE9 1 = .7

~

~

11111 22222 33333
CCCCC
111112222233333AAAAABBBBBCCCCC
14 14 14
14 14 20
14 14 14 14 20 14 14

CARRIAGE CONTROL

FUNCTIONS

DONE

2-26

AAAAA BBBBB

14 20
14

20 14

~

PRINT, CONTINUED

GENERAL FORM:
statement number PRINT. expression L expression L

or

statement number PRINT ~any text~ i.... expression i.... •••

or

statement number PRINT "text" 1.... expression i.... :text~ L :text~ L. •••

or

statement number PRINT any combination of text and/or expressions and/or

or TAB, LIN, and SPA

statement number PRINT

PURPOSE

Causes the value(s) of the expression(s) to be output to
the teleprinter or terminal device.

Causes the teleprinter to skip a line when used without an
operand. Causes text within quotes to be printed literally.

COMMENTS

Note the effects of , and ; on the output of the sample
program. If a comma is used to separate PRINT operands,
up to five fields will be printed per teleprinter line.
These five fields begin in columns 0, 15, 30, 45, and
60. If semicolon is used, up to twelve "packed" numeric
fields will be output per teleprinter line; the exact
number depends on the size of each numeric field. If
semicolons are used between text in quotes, it is pos­
sible to print a full 72 characters on a line.

2-27

PRINT, CONTINUED

A carriage return and 1inefeed are output after the execution of any PRINT state­
ment unless the list of items to be printed is terminated by a comma or semico1on~

in which case the next PRINT statement will begin on the same line.

Values output by PRINT statements are in one of four possible numeric formats~

depending on the value. These values and their formats are:

Value Field Examples

-999 < integer ~ 999 -;:ddd",,,, 733
-214

-32767 ~ integer ~ -1000 ~ddddd",,,,,,, -1234

1000 < i nteger ~ 32767 7515

all other integers -;:ddddddd",,,,,,,,,, 131072.

.000001 < and all < 999999.5 (one d is 11.11
14.6

- - trailing zeroes -.003456
rea1s in range are suppressed.) ~

All numbers n such that 1.97343E+06

n < .000001

999999.5 < n ~d.dddddE~dd",,,,,,, -6.91112E+15

Each IId ll represents one decimal digit; each 11-;:11 means the sign if negative~

a space if positive; each 11,,11 means a space; each ~ means the sign. An
example of these formats is the following program~ which prints the powers of
2 from -5 to 30.
EXAMPLE:

1~ FOR N=-5 TO 3~

2~ PRINT 2tN;
3~ NEXT N
4~ END
RUN
·~3125 •~625 '. 125 .25 .5 1 2
4 8 16 32 64 128 256 512 1~24 2~48
4~96 8192 16384 32768. 65536. 131 ~72. 262144.
524288. 1.~4858E+~6 2.~9715E+06 4.1943~E+~6 8.38861E+~6 ~
1.67772E+~7 3.35544E+~7 6.71089E+07 1.34218E+08 2. 68435E+08 '
5.36871E+08 1.07374E+~9

DONE

2-28

PRINT, CONTINUED

Insertion of the special functions TAB, SPA, and LIN into the output
list provides carriage control:

TAB (expression)

SPA (expression)

LIN (expression)

Causes the carriage to move to the specified
print column (071). No action is taken if the
move would be to the left. The carriage moves
to the beginning of the next line if expression
>71.

Causes carriage to skip specified number of
spaces (" print that number of b1anks ll

). A
negative expression does nothing. If more spaces
are requested than remain in the line, the car­
riage moves to the beginning of the next line.

Generates a carriage return and the specified
number of linefeeds. If .the expression is
negative, then no carriage return is generated.
LIN (0) produces a single carriage return.

aC printed in a character string causes a carriage return to be output
instead.

NC printed in a character string causes a linefeed to be output instead.

The PRINT USING statement, which provides increased output formatting
capabilities, is described in Section VIII.

2-29

END AND STOP

EXAMPLES:
2~~ IF A # 27.5 THEN 35~

300 STOP

35~ LET A = 27.5

500 IF B # A THEN 9999

550 PRINT liB = A"
6~0 END
9999 END

GENERAL FORM:
any statement number STOP
any statement number END
Highest statement number in program END

PURPOSE

Terminates execution of the program and returns control to TSB.

COMMENTS

The highest numbered statement in the program must be an END statement.

END and STOP statements may be used in any portion of the program to
terminate execution.

END and STOP have identical effects; the only difference is that the
highest numbered statement in a program must be an END statement.

2-30

SAM PLE PROG RAM

If you understand the effects of the
statement types presented up to this
point, skip to the "COMMANDSII section.

The sample program on the next two
pages uses several BASIC statement
types.

Running the program gives a good idea
of the various effects of the PRINT
statement on teleprinter output. If
you choose to run the program, you may
save time by omitting the REM statements.

After running the program, compare your
output with that shown under IIRUNNING
THE SAMPLE PROGRAW' . If there is a dif­
ference, LIST your version and compare
it with the one presented on the next
two pages. Check your PRINT statements
for commas and semicolons; they must be
used carefully.

2-31

SAM PLE PROGRAM
~

10 REMARK: IIREMARK II OR IIREM II IS USED TO INDICATE REMARKS OR COMMENTS
20 REMARK: THE USER WANTS TO INCLUDE IN THE TEXT OF HIS PROGRAM.
30 REM: THE COMPUTER LISTS AND PUNCHES THE "REM" LINE, BUT DOES NOT
40 REM: EXECUTE IT.
50 REM: IIPRINT II USED ALONE GENERATES A IIRETURN" "LINEFEED"
60 PRINT
70 PRINT "THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY."
80 PRINT
90 PRINT "IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS. II

100 PRINT
110 PRINT IIPRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY. II

120 PRINT
130 PRINT
140 REM: FIRST, ALL VARIABLES USED IN THE PROGRAM ARE INITIALIZED
150 REM: TO ZERO (THEIR VALUE IS SET AT ZERO.)
160 LET A=N=R1=S=0 ~

180 REM: NOW THE USER WILL BE GIVEN A CHANCE TO SPECIFY HOW MANY
190 REM: NUMBERS HE WANTS TO AVERAGE.
200 PRINT IIHOW MANY NUMBERS DO YOU WANT TO AVERAGE II ;
210 INPUT N
220 PRINT
230 PRINT "O.K., TYPE IN ONE OF THE II;N;IINUMBERS AFTER EACH QUES. MARK. II

240 PRINT IIDON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER."
250 PRINT
260 PRINT IINOW, LET'S BEGIN II

270 PRINT
280 PRINT
300 REM: IIN II IS NOW USED TO SET UP A "FOR-NEXT" LOOP WHICH WILL READ
310 REM: 1 TO "N II NUMBERS AND KEEP A RUNNING TOTAL.
320 FOR 1=1 TO N
330 INPUT A
340' LET S=S+A

350 NEXT I ~

360 REM: 111" IS A VARIABLE USED AS A COUNTER FOR THE NUMBER OF TIMES .

2-32

r'
\

~

~

SAMp·LE PROGRAM CONTINUED

370 REM: THE TASK SPECIFIED IN THE IIFOR-NEXT II LOOP IS PERFORMED.
380 REM: 111 11 INCREASES BY 1 EACH TIME THE LOOP IS EXECUTED.
390 REM: "A II IS THE VARIABLE USED TO REPRESENT THE NUMBER TO BE
400 REM: AVERAGED. THE VALUE OF "A" CHANGES EACH TIME THE
410 REM: USER INPUTS A NUMBER.
420 REM: IIS" WAS CHOSEN AS THE VARIABLE TO REPRESENT THE SUM
430 REM: OF ALL NUMBERS TO BE AVERAGED.
440 REM: AFTER THE LOOP IS EXECUTED "W I TIMES, THE PROGRAM CONTINUES.
460 REM: A SUMMARY IS PRINTED FOR THE USER.
470 PRINT
480 PRINT
490 PRINT N; IINUMBERS WERE INPUT. II

500 PRINT
510 PRINT "THEIR SUM IS:";S
520 PRINT
530 PRINT IITHEIR AVERAGE IS: II ;S/N
540 PRINT
550 PRINT
570 REM: NOW THE USER WILL BE GIVEN THE OPTION OF QUITTING OR
580 REM: RESTARTING THE PROGRAM.
590 PRINT 1100 YOU WANT TO AVERAGE ANOTHER GROUP OF NUMBERS?"
600 PRINT
610 PRINT IITYPE 1 IF YES, 0 IF NOli
620 PRINT "BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER. II

630 PRINT
640 PRINT "YOUR REPLY";
650 INPUT R1
660 IF R1=1 THEN 120
670 ~EM: THE FOLLOWING LINES ANTICIPATE A MISTAKE IN THE REPLY.
680 IF R1#0 THEN 700
690 GO TO 720
700 PRINT liTO REITERATE, YOU SHOULD TYPE 1 IF YES, ~ IF NO."
710 GO TO 640
720 END

2-33

RUNNING THE SAMPLE PROGRAM

RUN return

THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY.
IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS.
PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY.
HOW MANY NUMBERS DO YOU WANT TO AVERAGE? 5 return

O.K.,TYPE IN ONE OF THE 5 NUMBERS AFTER EACH QUES. MARK.
DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER.
NOW, LET'S BEGIN
? 99 return

? 87.6 return

? 92.7 return

? 79.5 return

? 84 return

5 NUMBERS WERE INPUT.
THEIR SUM IS: 442.8
THEIR AVERAGE IS: 88.56
PO YOU WISH TO AVERAGE ANOTHER GROUP OF NUMBERS?
TYPE 1 IF YES, ~ IF NO
BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER.
YOUR REPLY? 2 return

TO REITERATE, YOU SHOULD TYPE 1 IF YES, ~ IF NO.
YOUR REPLY? 1 return

HOW MANY NUMBERS DO YOU WISH TO AVERAGE?
DONE

2-34

cC return

COMMANDS

Remember the difference between commands
and statements (See "Statements" in this
section).

Commands are direct instructions to the
system, and are executed immediately.
They are used to manipulate programs,
and for utility purposes.

Note that all TSB commands may be
abbreviated to their first three letters.

If information is required or permitted
after a command, a hyphen "_" must be in­
cluded. For example, when logging in:

c c c cHEL-H200,SE eRE T return

Do not try to memorize all of the details
in the COMMANDS subsection. The various
commands and their functions will become
clear to you as you begin writing programs.

2-35

EXAMPLE:

GENERAL FOR~1:

HELLO -

cHELLO-D007,POS T return

or
CHEL-D007,POS T return

HELLO-IDcode ~ password

or

HEL:-:IDcode ..1. password

PURPOSE

The command used to log in to the TSB system.

COM~1ENTS

TO codes and passwords are assigned by the
system operator.

Several users with the same 1.0. code may
be logged on to the computer simultaneously,
using different terminals.

2-36

EXAMPLE:

GENERAL FORM:

BYE

BYE return

009 MINUTES OF TERMINAL TIME

BYE

PURPOSE

The command used to log out of the TSB system.

COMMENTS

Causes the amount of terminal time used to be
printed.

Breaks a telephone connection to the computer.

2-37

EXAMPLES:

GENERAL FORM:

ECHO-

PURPOSE

ECHO-OFF return

ECHO-ON return

ECHO-ON
or

ECHO-OFF

Allows use of half-duplex terminal.

CDr1MENTS

Users with half duplex terminal
equipment must first log on, then
type the ECHO-OFF command; then
input and output becomes legible.

ECHO-ON returns a user to the full­
duplex mode.

May be abbreviated to its first three
letters.

2-38

EXAMPLE:

GENERAL FORM:

RUN

RUN return

or

RUN- 300 return

RUN
RUN- statement number

PURPOSE

Starts execution of a program at the lowest numbered
statement when used without specifying a statement
number.

Starts execution of a program at the specified statement
when a statement number is used.

COMMENTS

Note that when RUN- statement number is used, all statements be­
fore the specified statement will be skipped. Variables defined
in statements which have been skipped are therefore considered
to be undefined by TSB, and may not be used until they are de­
fined in an assignment, INPUT, ENTER, READ, or LET statement.

A running program may be terminated by pressing the break key;
or, to terminate a running program at some point when input is
required, type:

cC return

2-39

EXAMPLE:

GENERAL FORM:

LIST

LIST return

LIST -19}9} return

LIST -l~~, 2~~ return

LIST
LIST- statement number

LIST- statement number ~ statement number

LIST- ~ statement number

LIST- statement number ~ statement number ~

LIST- P
LIST- statement number ~~

LIST- ~ statement number Lt

PURPOSE

Produces a listing of all statements in a program (in statement number
sequence) when no statement number is specified.

When a statement number is specified, the listing begins at that statement.

When a second statement number is specified, listing ends with that statement.

When a 11,11 and a statement number appear, listing starts at the beginning
and ends with the specified statement.

When IIp lI is specified, the listing is spaced for cutting into ll-inch sheets
sized for binding or filing. IIp lI must be the final parameter, and must be
preceded by a comma if it follows other parameters.

COMMENTS

A listing may be stopped by pressing the break key. Library programs
designated IIRUN ONLyll (protected) by the System Master or Group Master
cannot be listed. LIST may be abbreviated to its first three letters.

2-40

EXAMPLE:

GENE RAL FORM:

SCRATCH

SCRATCH return

or

SCR return

SCRATCH
or

PURPOSE

Deletes (from memory) the program currently
being accessed from the teleprinter.

COMMENTS

Scratched programs are not recoverable. For

information about saving programs on paper
tape or in your personal library, see the NAME
and SAVE commands in the next section, and PUNCH
in this section.

2-41

EXAMPLES:

GENERAL FORM:

RENUMBER

RENUMBER return

REN· return

REN-100
REN-10, 1 return

REN-20, 50 return

REN-10, 10, 50, 100 return

REN
or

REN-number assigned to first statement

or

REN-number assigned to first statement -!.. interval between new statement numbers

or

REN-number assigned to first statement, interval between new statement numbers,

starting statement number, ending statement number

or

REN-number assigned to first statement, interval between new statement numbers,

starting statement number

PURPOSE

Renumbers statements in the current program.

2-42

RENUMBER, CONTINUED

COMMENTS

GO T01s, GO SUB1s, IF ...THEN1s, RESTOREls and PRINT USINGls are automatically
reassigned the appropriate new numbers.

Starting statement number and ending statement number refer to line
numbers in the original program at which the renumbering is to start
and end.

If ending statement number is not specified, it is assumed to be the
last statement in the program.

If starting statement number is not specified, it ;s assumed to be the
first statement in the program.

If both starting and ending statement numbers are omitted, the entire
program is renumbered.

If no interval is specified, the new numbers are spaced at intervals of
10, from the beginning statement.

If no parameters are stated, the entire program is renumbered starting
with statement 10 at intervals of 10.

RENUMBER can not be used to change the order of statements in a program.

Any parameter may be omitted, but all parameters following it must also
be omitted.

Numbers or text contained in REM and PRINT statements or in the expression
list of PRINT USING statements are not revised by RENUMBER.

2-43

BREAK

EXAMPLES: break (Press the break key.)

PURPOSE

Terminates a program being run.

Terminates the execution of LIST, PUNCH, XPUNCH,
CATALOG, GROUP and LIBRARY commands.

COMMENTS

Pressing the break key signals the computer to
terminate a program, producing the message: STOP.

When break is pressed during a listing, the mes­
sage STOP is output.

Pressing break will not terminate the program if
it is awaiting input from the keyboard while exe­
cuting an INPUT or ENTER statement. In this case
the only means of ending the program is typing:

CC
return

which produces the DONE message.

break will not delete a program. Type RUN to
restart the program. (See also COM, Section III.)

2-44

EXAMPLES:

PUNCH AND XPUNCH

PUNCH return

PUN- 100, 20~ return

PUN- 10~, 200, P return

PUN-65 return

PUN-, 3~~ return

XPUNCH return

XPU- 65, P return

XPU- P return

GENERAL FORM: PUN
PUN- statement number

PUN- statement number ~ statement number

PUN- statement number ~ statement number ~~

PUN- ~ statement number

PUN- P- -
XPU
XPU- statement number

XPU- statement number ~ statement number

XPU- statement number ~ statement number ~ f.
XPU- ~ statement number

XPU- P

PURPOSE

Punches a program onto paper tape; also punches the program name, and
leading and trailing feed holes on the tape; lists the program as it
is punched. Punching can begin and/or end at specified statements;
IIp lI provides the pagination option (see LIST).

2-45

PUNCH AND XPUNCH, CONTINUED

COMMENTS

If the teleprinter is not equipped with a paper tape reader/punch,
only a listing is produced.

Remember to press the paper tape punch "ON" button before pressing
the return after PUNCH.

XPUNCH produces the same results as punch, but adds an X-OFF charac­
ter at the end of each line (before return linefeed) to enable other
BASIC programs to read the paper tape as data. (See Appendix B.)

2-46

EXAMPLES:

GENERAL FORM:

TAPE

PURPOSE

TAPE return

TAP return

TAPE
or

TAP

Informs the system that following input
(a group of BASIC statements) is from paper
tape.

COMMENTS

TAPE suppresses any diagnostic messages which are
generated by input errors, as well as the auto­
matic linefeed after return. The KEY command
(KEY return) or any other command, causes the di­
agnostic messages to be output to the teleprinter,
ending the TAPE mode.

TSB responds to the TAPE command with a linefeed.

2-47

EXAMPLES:

GENERAL FORM:

KEY

PURPOSE

KEY return

KEY

Informs the system that following input
will be from the teleprinter keyboard;
used only after a TAPE (paper tape input)
sequence is complete; causes error messages
suppressed by TAPE to be output to the tele­
printer.

COMMENTS

Any command followed by a return has the
same effect as KEY. Commands substituted
for KEY in this manner are not executed if
diagnostic messages indicating syntax errors
in BASIC statements were generated during
tape input.

2-48

EXAMPLE:

TIME

TIME return

CONSOLE TIME = 12 MINUTES. TOTAL TIME = 1193 MINUTES.

GENERAL FORM: TIME

PURPOSE

Informs user of terminal time used since log on, and
total time used for the account.

COMMENTS

Time used by each ID code is recorded automatically by
TSB. The system operator controls the accounting
system. Consult your system operator for information
about your system's accounting methods.

2-49

EXAMPLE:

GENERAL FORM:

MESSAGE

MES-PLEASE SANCTIFY PROGRAM "DUMMY", USER J122. return

MESSAGE-character string return

or

MES-character string return

PURPOSE

Sends a character string to the system operator, preceded by
the user's port number.

COMMENTS

Can be used to request information from the system operator,
or to have programs sanctified, desecrated, copied, bestowed,
or loaded from or dumped to magnetic tape (see Appendix D)

If the system operator's message storage area is full, the
message:

CONSOLE BUSY

will be printed on the user's terminal ,indicating that the
message has not been sent and should be entered again.

2-50

SECTION III

ADVANCED BASIC

This section describes more sophisticated
capabilities of BASIC.

The experienced programmer has the option of
skipping the "Vocabulary" subsection, and
briefly reviewing the commands and functions
presented here. The most important features
of the TSB system--files, matrices, and
strings are explained in the next three sec­
tions.

"

The inexperienced programmer need not spend
a great deal of time on programmer-defined
and standard functions. They are shortcuts,
and some programming experience is necessary
before their specifications become apparent.

3-1

TERM:

DEFINEO IN TSB AS:

ROUTINE

A sequence of program statements
which produces a certain result.

PURPOSE

Routines are used for frequently performed
operations. Using routines saves the pro­
grammer the work of defining an operation
each time he uses it, and saves computer
memory space.

COMMENTS

A routine may also be called a program,
subroutine, or sub-program.

The task performed by a routine is defined
by the programmer.

Examples of routines and subroutines are
given in this section.

3-2

~.,.."

TERM: ARRAY

DEFINED IN TSB AS: An ordered collection of numeric data.
A single program can have up to about
4900 total array elements (numeric
values).

COMMENTS

In BASIC a simple variable is defined by a single letter or a letter
followed by a numeral. A and Al are simple variables. Subscripted
variables define elements in an array. Al , written A(l), is the
first element in the single-dimensioned array called A. In the example
below, the value would be 5.0:

EXAMPLE:
~ Array A

Element Value

1 5.0
2 3.2
3 1.1
4 0.3

Two-dimensioned array elements are defined by a double subscript, refer­
ring to a row and column position in an array. Element B(l ,3) in the
following example has the value appearing in the first row, third column.
In this case the value is 4.

Array B

Column Column 2 Column 3

Row 1 6 5 4

~
Row 2 3 2 1
Row 3 0 9 8

3-3

ARRAY, CONTINUED

Array B is a three-by-three array. Arrays need not be square.

If an array has more than ten elements, a DIM (dimension) statement is
required. The DIM statement is described in Section V, which covers
matrices; a matrix is a special form of array.

3-4

TERM: STRING

~---------------------.....DEFINED IN TSB AS: o to 72 teleprinter characters enclosed
by quotation marks.

COMMENTS

Sample strings: "ANY CHARACTERS!?*/--_II
IITEXT 1234567 ... II

Quotation marks may not be used within a
string, except when the string is input
using an ENTER statement, described later
in this section.

TERM: FUNCTION

~------------------
DEFINED IN TSB AS: The mathematical relationship between two

variables (X and Y for example) such that
for each value of X there is one and only
one value of Y.

COMMENTS

The independent variable is called an argument;
the dependent variable is the function value.
Fo r ins tance in

l0~ LET Y = SQR(X)
X is the argument; the function value is the
square root of X; and Y takes the value of the
positive root.

3-5

TERM: WORD

DEFINED IN TSB AS: The equivalent of approximately two BASIC
characters or one-half of a number.

COMMENTS

The term Ilword" is used to define the basic unit of computer storage.
The TSB system operates on computers having a word structure of 16
binary bits. Each character in BASIC occupies 8 bits of computer stor­
age; each number (when used in computation) occupies 32 bits. A numeral

that appears in a literal string (Section VI) is not used for compu­
tation, and is considered to be a character.

Therefore, two characters will fit into one computer word, while one

number will require two computer words. Actually, the TSB system re­
quires a few additional computer words of storage, so programs and files
will require slightly more storage than one word for each two characters
or two words for each number. Each user has a working area of 10,000
words. The user need not normally be concerned about computer words.

3-6

~
J

STORING AND DELETING PROGRAMS

Up to this point manipulation of programs has
been limited to the "current" program, that is,
the program being written or run at the moment.
The only means of saving a program introduced
thus far is the PUNCH command.

The commands on the following pages allow the
user to create his own library of programs on
the Time Shared BASIC system. Library programs
are easily accessed, modified, and run.

The experienced programmer need only review
the commands briefly -- they do what their
names imply: NAME, SAVE, etc.

A word of caution for the inexperienced
programmer: it is wise to make a "hard"
copy (on paper tape) of programs you wish
to use frequently. Although it is easy and
convenient to store programs lion-system", you
will make mistakes as you learn, and may ac­
cidentally delete programs. It is much less
time consuming to enter a program from paper

tape than to rewrite it!

3-7

EXAMPLES:

GENERAL FORM:

LENGTH

LENGTH return

3172 WORDS
LEN return

151 WORDS
LEN return

PURPOSE

Prints the number of words in the program currently being accessed
from the terminal. This is the amount of "storage space" needed to
SAVE the program.

COMMENTS

Each user has a working "space" of over 10,000 words (20,000 charac­
ters or 5,000 numbers). LEN is a useful check on total program
length when writing Long programs. During execution, programs have
temporary tables, buffers, etc. which require additional storage
space. This larger total length is not permitted to exceed the
user's working area. See MEMORY ALLOCATION BY A USER, Section IX.

3-8

EXAMPLE:

GENERAL FORM:

NAME-

NAME-PROG.l return

NAM-ADDER return

NAM-MYPROG return

NAME-Program name of 1 to 6 characters

or

NAM-Program name of 1 to 6 characters

PURPOSE

~
\

".,..... ,.r

Assigns a name to the program currently being accessed from the tele­
pri nter.

COMMENTS

The first character of the program named may not be $ or *. These
symbols are used to access the System Library ($) and the Group
Library (*). The comma (,) may not be used in the name of a pro­
gram.

The program name must be used in certain TSS operations (see the
SAVE, CSAVE, KILL, GET, and APPEND commands in this section).

3-9

SAVE- AND CSAVE-

EXAMPLES:

GENERAL FORM:

SAVE return

SAV return

CSA return

CSAVE or CSA
SAVE or SAV

PURPOSE

Saves a copy of the current program in the
user's private library. (CSA stores the pro­
gram in semi-compiled form so that it will
CHAIN more quickly. See CHAIN.)

COMMENTS

A program must be named before it can be saved.
(See NAME, this section.)

No two programs in a user's library may have the
same name. The procedure for saving a changed
version of a program is as follows (the program
name is SAMPLE):

KILL-SAMPLE return

linefeed

NAME-SAMPLE return

linefeed

SAVE return

linefeed

(Deletes the stored version)

(Names the current program)

(Saves the current program, named SAMPLE)

For instructions on opening a file, see Section IV, "FILES."

3-10

EXAMPLES:

GENERAL FORM:

GET-, GET-$, AND GET- *

GET-PROGRAM return

GET-MYPROG return

GET-$PUBLIC return

GET-$NAMES return

GET-*DATES return

GET- name of a program in user's library

GET-$ name of system library program

GET-* name of group library program

PURPOSE

r
\,

GET- retrieves the specified program, making it the program currently
accessed from the teleprinter.

GET-$ retrieves the specified program from the system library, making
it the program currently accessed from the teleprinter.

GET-* retrieves the specified program from the group library.

COMMENTS

GET- performs an implicit SCRATCH. The program that was the current
program prior to using GET- can not be recovered from the system un­

less it was previously SAVed or CSAVed.

For more information on public library programs, see IILIBRARy lI and
IIGROUP" in this section.

3-11

EXAMPLE:

GENERAL FORM:

KILL-

KILL-PROG12 return

KIL-EXMPLE return

KIL-FILE1~ return

KILL- program or file to be deleted

or

KIL- program or file to be deleted

PURPOSE

Deletes the specified program or file from the user1s library. (Does not delete the
program currently being accessed from the teleprinter, even if it has the same name.)

COMMENTS

CAUTION: Files have only one version, the stored one. A KILLed file is not
recoverable.

A file may not be KILLed while it is being accessed by another user.

KILL-should be used carefully, as the KILLed program can not be recovered from
the system unless the KILLed program was also the current program.

SCRATCH deletes the program currently being accessed from the teleprinter, while KILL
deletes a program or file stored on-system. The stored and current versions of a pro­
gram occupy separate places in the system. They may differ in content, even though
they have the same name.

The sequence of commands for changing and storing a program named PROG** is:

GET-PROG** (Retrieves the program.)
(make changes)

KILL-PROG** (Deletes the stored version.)
SAVE (Saves the current version.)

3-12

EXAMPLES:

GENERAL FORM:

APPEND-

APPEND-MYPROG return

APP-MYPROG return

APPEND-$PUBLIC return

APP-$SYSLIB return

APP-*GPROG return

APPEND-program name

or
APP-program name

or
APP-$system library program name

or
APP-*group library program

PURPOSE

Retrieves the named program from the user's own library, or
the group or public libraries and appends it (attaches it)
to the program currently being accessed from the teleprinter.

COMMENTS

The lowest statement number of the APPENDed program must be
greater than the highest statement number of the current
program.

CAUTION: If an APPENDed public library program is "run-only",
the enti re program to whi ch it is APPENDed becomes II run-on lyll .
(IIRun-only" programs may not be listed, punched, or saved.)

The $ preceding system library program names is needed to
APPEND them; the * is needed to APPEND group library programs.
For details, see LIBRARY in this section.

3-13

EXAMPLES:

GENERAL FORM:

DELETE-

DELETE-27 return

DEL-27, 50 return

DEL-statement number at which deletion starts

or

m.-statement no. at which deletion starts .!... statement no. at which deletion ends

PURPOSE

DEL-statement number erases the current program statements
after and including the specified statement. DEL-l has
the same effect as SCRATCH.

DEL-statement number, statement number deletes all statements
in the current program between and including the specified
sta tements.

COMMENTS

It is sometimes useful to SAVE or PUNCH the original version
of a program which is being modified, before using the DELETE
statement.

Deleted statements are not recoverable.

3-14

LIBRARY - GROUP - CATALOG
~

EXAMPLES:

LIBRARY
NAME LENGTH NAME LENGTH NAME LENGTH NAME LENGTH

AAA FPS 2 AB F 230 BAA F 2 BAB P 13
BAC 6 BAD C 18 BB F 46 BBA F 2
BBB F 46 BFILE F 128 BUDGE 12 BUDGET 3431
BUDGEU 12 C F 31 C.R S 1220 CB F 230
CC F 31 CCC F 31 D F 100 F1 F 64
FFF F 34 GARY1 95 GARY2 83 GARY3 188
GOGO P 151 GT F 128 STRING F 1 XY F 256

GROUP
NAME LENGTH NAME LENGTH NAME LENGTH NAME LENGTH

B F 30 B1 F 128 B2 F 128 BLOCK2 F 128

~
CAl CAL 4004 CALC C 4081 MBLOCK 1655 SP1 F 400

CATALOG
NAME LENGTH NAME LENGTH NAME LENGTH NAME LENGTH

BLOCK2 F 128 CHECK C 55 SPl F 800 TEST 3

GENERAL FORMS: LIBRARY return

or

LIB return

GROUP return

or

GRO return

CATALOG return

or

CAT return

3-15

LIBRARY - GROUP - CATALOG, CONTINUED

PURPOSE

To print an alphabetic listing of programs and files stored by the
system. LIBRARY or LIB produces a list of system programs and files.
GROUP or GRO produces a list of group programs and files. CATALOG or
CAT produces a list of programs and files stored in the user's own
program 1i brary .

COMMENTS

Code letters preceding LENGTH indicate

F - the entry is a file.

C - the entry is a program in semi-compiled form.
If neither a C nor an F appears, the entry is a program.

P - The entry is "protected," may be either a program
or a file.

S - the entry is "sanctified," may be either a program or
a file. (See Appendix D.)

Code letters may be combined as in the first entry, AAA in the LIBRARY
listing.

Length is given in words for programs, records for files.

Protected system or group programs may be run but not listed, saved or
punched. Protected system or group files may not be accessed by other
users. A user's own programs may not be protected, but may be sanctified
by the operator.

3-16

"­~"
\

LIBRARY - GROUP - CATALOG, CONTINUED

Each user has access to the three libraries described. He has complete control
over his own library, using any of the commands used to store, delete, or
retrieve programs and files.

The system library is under the control of the System Master, user A000. Only
the System Master (actually any user with access to the password for IDcode A000)
can enter programs or files into the system library, or delete programs and files
from the system library.

Each user is part of a group, all having IDcodes with the same letter and same
first digit. The user whose IDcode ends in 00 is the group librarian, or Group
Master. The Group Master is responsible for maintaining the group library, en­
tering and deleting programs in the same manner as the System Master controls
the system library.

The System Master and all Group Masters have the responsiblity of controlling
access to their libraries. Regular users can not make entries to, deletions from,
or changes to either the system library or their group library. The System
Master and all Group Masters have access to special commands called PROTECT,
which makes specified programs available on a run-only basis and files unavail­
able to regular user, and UNPROTECT, which reverses the procedure. These
special commands are described in the 2000C Operator1s Guide.

A user can call a program from the system library by typing GET-$, followed by
the program name exactly as it appears in the LIBRARY, or append the program
by typing APP-$ followed by the program name. GET-* and APP-* are used to ac­
cess group programs.

Files are accessed with the FILES statement, described in Section IV.

Any of these listings may be terminated by pressing the break key.

The system prints an error message if the user attempts to access a non-existent
program, list or punch or save a protected program, or GET or APPEND a file.

3-17

SUBROUTINES AND FUNCTIONS

The following pages show TSB features useful for repetitive
operations -- subroutines, programmer-defined and standard
functions.

The programmer-controlled features, such as multibranch
GOSUB's, FOR ...NEXT with STEP, and DEF FN become more use­
ful as the user gains experience, and learns to use them
as shortcuts.

Standard mathematical and trigonometric functions are
convenient timesavers for programmers at any level. They
are treated as numeric expressions by TSB.

The utility functions TAB, SPA, LIN, SGN, TYP, and LEN
also become more valuable with experience. They are
used to control or monitor the handling of data by TSB,
rather than for performing mathematical chores.

3-18

EXAMPLE:

GOSUB...RETURN

50 READ A2
60 IF A2<100 THEN 80
70 GOSUB 400

380 STOP (STOP frequently precedes the first statement of
a subroutine, to prevent accidental entry.)

39~ REM--THIS SUBROUTINE ASKS FOR A 1 OR 0 REPLY.
400 PRINT "A2 IS>100"
410 PRINT "00 YOU WANT TO CONTINUE";
420 INPUT N
430 I~ N #0 THEN 45~

44~ LET A2 = 9'

459} RETURN

600 END

GENERAL FORM: statement number GOSUB statement number starting subroutine

.
statement number RETURN

PURPOSE

GOSUB transfers control to the specified statement number.

RETURN transfers control to the statement following the GOSUB
statement which transferred control.

GOSUB ... RETURN eliminates the need to repeat frequently used
groups of statements in a program.

3-19

GOSUB...RETURN, CONTINUED

COMMENTS

The portion of the program to which control is transferred must
end with a RETURN statement.

RETURN statements may be used at any desired exit point in a
subroutine. There may be more than one RETURN per GOSUB.

Variables have the same meaning as in the main program.

3-20

.~

EXAMPLES:

GENERAL FORM:

MULTIBRANCH GOSUB

20 GOSUB 3 OF 100,200,300,4~~,500

60 GOSUB N+1 OF 200,210,220
70 GOSUB N OF 80,180,280,380,480,580

statement number GOSUB expression OF sequence of statement numbers

PURPOSE

GOSUB' espression rounds the expression to an integer ~ and transfers

control to the nth statement number following OF.

COMMENTS

Subroutines should be exited only with a RETURN statement.

The expression indicates which of the specified subroutines will be
executed. For example, statement 20, above transfers control to the
subroutine beginning with statement 300. The expression specifies which
statement in the sequence of five statements is used as the starting one
in the subroutine.

The expression is evaluated as an integer. Non-integer values are
rounded to the nearest -integer.

If the expression evaluates to a number greater than the number of state­
ments specified, or less than 1, the GOSUB·is ignored.

Statement numbers in the sequence following OF must be separated by commas.

3-21

EXAMPLES:

NESTING GOSU B S

100 GOSUB 200

200 LET A = R2/7
210 IF A THEN 230
220 GOSUB 250

250 IF A>B THEN 270
260 RETURN
270 GOSUB 600

PURPOSE

Allows selective use of subroutines within
subrouti nes.

COMMENTS

GOSUB's may be nested logically to a level
of nine. More than nine exits without a
return may cause an error message.

RETURN statements may be used at any desired
exit point in a subroutine. Note, however,
that nested subroutines are exited in the or­
der in which they were entered. For example,
if subroutine 250 (above) is entered from sub­
routine 200, 250 is exited before subroutine
200.

3-22

EXAMPLES:

GENERAL FORM:

FOR...NEXT WITH STEP

20 FOR 15 = 1 TO 20 STEP 2
40 FOR N2 = 0 TO -10 STEP -2
80 FOR P = 1 TO N STEP R
90 FOR X = N TO WSTEP {Nt2-V}

statement number FOR simple variable =. expression TO expression STEP expression

PURPOSE

Allows the user to specify the size of the
increment of the FOR variable.

COMMENTS

The step size need not be an integer. For instance,
100 FOR N= 1 TO 2 STEP .01

is a valid statement which produces approximately
100 loop executions, incrementing N by .01 each
time. Since no binary computer represents all
decimal numbers exactly, round-off errors may in­
crease or decrease the number of steps when a non­
integer step size is used.

A step size of 1 is assumed if STEP is omitted from
a FOR statement.

A negative step size may be used, as shown in
statement 40 above.

3-23

EXAMPLE:

GENERAL FORM:

DEF FN

60 DEF FNA (B2) = At2 + (B2/C)
70 DEF FNB (B3) = 7*B3t2
80 DEF FNZ (X) = X/5

statement no. DEF FN single letter A to Z i simple var. L =. expression

PURPOSE

Allows the programmer to define functions.

COMMENTS

The simple variable is a "dummy" variable whose purpose is to indicate
where the actual argument of the function is used in the defining ex­
pression. After a function has been defined, the value of that function
is referenced whenever the function is used by the programmer. For ex­
ample, in this sequence Mis a dummy variable:

10 LET Y= 1~0

20 DEF FNA (M) = M/1~

39) PRI NT FNA (Y)

49) END
RUN
l~

When FNA (Y) is called for in statement 30, the formula defined for FNA
in statement 2~ ;s used to determine the value printed.

A maximum of 26 programmer-defined functions are possible in a program
(FNA to FNZ).

3-24

DEF FN, CONTINUED

Any operand in the program may be used in the defining expression;
however, such circular definitions as:

l~ DEF FNA (Y) = FNB (X)
2~ DEF FNB (X) = FNA (Y)

cause infinite looping.

See the vocabulary at the beginning of this section for a definition
of IIfunction. 1I

3-25

GENERAL MATHEMATICAL FUNCTIONS

EXAMPLES: 642 PRINT EXP(N); ABS{N)
652 IF RND (0»=.5 THEN 9~~

662 IF INT (R) # 5 THEN 910

672 PRINT SQR (X); LOG (X)

PURPOSE

Facilitates the use of common mathematical functions by pre-defining them as

follows:

ABS (expression)

EXP (expression)

INT (expression)

LOG (expression)

RND (expression)

SQR (expression)

SGN (expression)

the absolute value of the expression

the constant e raised to the power of the expression value ~

(in statement 642 above, etN)

the largest integer ~ the expression (INT (-3.5) would re­

sult in -4)

the logarithm of the expression to the base e

a random number between 0 and 1

the positive square root of the positively valued expression

returns: a 1 if the expression is greater than 0, a 0 if
the expression equals ~, a -1 if the expression is less

than 0.

COMMENTS

All these functions may be used as expressions or as parts of expressions. LOG
and SQR expressions must have a positive value or a terminal error will occur.
A sequence of random numbers generated by RND is repeatable if it follows a call ~

to RND with a given negative argument.

3-26

~'

EXAMPLES:

TRIGONOMETRIC FUNCTIONS

500 PRINT SIN(X); COS(Y)
510 PRINT 3*SIN(B); TAN (C2)
520 PRINT ATN (22.3)
530 IF SIN (A2) <1 THEN 800
540 IF SIN (B3) = 1 AND SIN(X) <1 THEN 90

PURPOSE

Facilitates the use of common trigonometric functions by pre-defining

them, as:

SIN (expression) the sine of the expression (in radians)
COS (expression) the cosine of the expression (in radians)
TAN (expression) the tangent of the expression (in radians)
ATN (expression) the arctangent (in radians) of the expression.

COMMENTS

The trigonometric functions may be used as expressions, or parts of

an expression.

The expressions (arguments) for SIN, COS, and TAN are interpreted as
angles measured in radians. ATN returns the angle in radians.

3-27

EXAMPLES:

GENERAL FORM:

THE LEN FUNCTION

580 IF LEN (B$) >= 21 THEN 9999
800 IF LEN (C$) = R THEN 1000
850 PRINT LEN (N$)
880 LET P5 = LEN (N$)

The LEN function may be used as an expression, or
part of an expression. The function form is
LEN i string variable 1

PURPOSE

Returns the length (number of characters)
currently assigned to a string variable.

COMMENTS

Note the difference between the LEN function
and the LENGTH command. The command is used
outside a program, and returns the working
length of the current program in two-character
words. The LEN function may be used only in
a program statement.

3-28

THE TIM FUNCTION

EXAMPLES:
580 IF TIM (0) - A > 15 THEN 9000
700 LET A3 = TIM (8)

800 PRINT TIM (0) "MINUTES" TIM (l) "HOURS" TIM (2) "DAYS" TIM (3) II YEARS II

GENERAL FORM: TIM CKJ

where if X= 0, TIM (X) = current minutes (~ to 59)- -
X= 1, TIM (X) = current hour (0 to 23)
X= 2, TIM (!J = current day (1 to 366)
X = 3, TIM (X) = current year (0 to 99)

PURPOSE

Returns the current minute, hour, day or year.

COMMENTS

Note the difference between the TIM function and the
TIME command. The TIME command is used outside a
program and gives the console time and total time used.
The TIM function can only be used within a program
statement.

3-29

CHAIN

EXAMPLES:

20 CHAIN IPROG2"
50 CHlUN V$
97 CHAIN " ", A

150 CHAIN "MELVIN", 80
200 CHAIN N$,Q+14
230 CHAIN A$,ll0

GENERAL FORM:

statement number CHAIN "character string"

or

statement number CHAIN string variable

or

statement number CHAI N "character string" ..L expression

or

statement number CHAIN string variable ..L expression

PURPOSE
"To link programs together. "Character string" or string variable specifies
a program in the user's own library, the group library or the system
library, which is retrieved (replacing the current program) and run.

COMMENTS

Strings and string variables are described in Section VI. As applied
to the CHAIN statement, "character string" is the name of a program in
one of the libraries; string variable is an alphabetic character fol­
lowed by a $ that leads to a character string that is the name of a
program. Expression is a line number in the named program. In. the
above examples lines 20, 97, and 150 contain character strings. The
other examples contain string variables.

3-30

CHAIN, CONTINUED

If the first character of the program name, however defined, is $, the
system will search the system library; if the first character is *, the
system will search the user's group library. If the first character is
neither $ or *, the system will search the user's own library. Note that
the $ has different meanings as the first character in a program name and
when used to define a string variable.

If expression is not specified, the program will be retrieved from the
proper library and executed normally -- examples 2~ and 5~. Expression
may be an actual line number as in examples 15~ and 23~, may be a vari­
able as in example 97, or may be computed as in example line 2~0.

In any of the above cases common storage is allocated. (See COM.)
Before execution can begin, the program chained to must be com­
piled. Programs which are often chained to should be stored in
semi-compiled form by use of the CSAVE command. This significantly
reduces the time required to execute CHAIN statements.

Execution of the CHAIN statement can produce the same errors pro­
duced in executing the GET command. Such errors terminate exe­
cution of the program attempting the chaining, which will remain as
the current program, with its common area (if any) intact.

3-31

EXAMPLES:

GENERAL FORM:

COM

10 COM A,B,D$(53),E(3,4),F2
15 COM H2,KB,C$(14)

statement number COM list of variables, dimensioned arrays and strings

PURPOSE

To designate data that can be passed between two or more programs without
intermediate storage. A number of programs may be run sequentially, all
accessing and possiblY changing data in the common area.

COMMENTS

The equivalence of COMmon variables in different programs is determined
by their relative order in the COM statements. Thus, if one program
contains the statement

10 COM A,Bl,C$(l~)

and a second program contains the statements
1 COM X
2 COM Y,Z$(10)

and the two programs are run in order, identifiers A and X refer to the
same variable, as do identifiers Bl and Y, C$ and Z$.

There are certain restrictions on the use of COM:

1. COM statements must be the lowest numbered statements in the program.

2. A variable that is declared COMmon in one program can be accessed by

another program only if all preceding COMmon variables in bpth pro­
grams are of the same type and size. If the COMmon area in one pro-
gram is smaller than that in another program to be run sequentially, ~

only the common variables in the smaller area will be preserved.

3-32

COM, CONTINUED

3. Arrays and strings which are to be in common must be dimensioned in th~

COM statement and they must not also appear in DIM statements.

Variables in COM should be initialized by the first program that uses them.
After that, other programs containing equivalent COM definitions can be exe­
cuted by GET and RUN or CHAIN. The COM variables will still have the same
values. These values are destroyed, however, when a line of syntax is en­
tered. When a program with a common area terminates (whether normally, or
because of an execution error or because the user presses break) the vari­
ables in common storage retain their values and will remain available until
the user GETs a program with a different common area or enters a BASIC
statement.

~
EXAMPLES

10 COM A,B,C,Q$(63),F(3,6),Sl (In program A) All variables in common
10 COM J,K,L,C$(63),C(3,6),V (In program B)

10 COM A,B,C,Q$(63),F(3,6),Sl (In program A) Three variables in common
10 COM H,N,M,O (In program B)

10 COM A,B,C (In program A) No variables in common
10 COM S$(45),A,B,C (In program B)

l¢ COM A,B,C (In program A) All variables in common.

19' COM V (In program B)

30 COM B,C

3-33

I

..

EXAMPLES:

GENERAL FORM:

ENTER

100 ENTER #V
200 ENTER A,B,C$
300 ENTER #V,Kl,K2,K3
400 ENTER 25,L,Q

statement number ENTER # variable 1

statement number ENTER expression, variable 2, variable 3

statement number ENTER! variable 1, expression, variable 2, variable 3

PURPOSE

Allows the program to limit the time allowed for run-time data input, to
check the actual time taken to respond, to read in one string or numeric
variable, to determine whether the input is of the correct type, and/or
to determine the current user's terminal number.

COMMENTS

The form ENTER # sets vari ab1e 1 to. the termi na1 number (between 0 and
31) of the user.

Expression sets the time limit; it must have a value between 1 and 255
seconds. Timing starts when all previous statements have been executed
and all printing at the user terminal is completed.

Variable 2 returns the approximate time the user took to respond. If
the user's response was of the wrong type, the value is the negative of
the response time. If the user failed to respond in time, the value is
set to -256.

3-34

ENTER, CONTINUED

Variable 3, the data input variable, may be either a numeric or a
string variable. A character string being entered should not be en­
closed in quotes, but may contain quotes, leading blanks and embedded
blanks. Only one data item can be entered per ENTER statement.

The ENTER statement differs from the INPUT statement in that a "?" is
not printed on the user terminal, and the TSB System returns to the
program if the user does not respond within a specified time limit.
Also, the system does not generate a linefeed after the user types

return.

A carriage return is a legitimate input to a string.

A string that is too long to be assigned to a requested string variable
is truncated on the right.

3-35

~
J, • Y

SECTION IV

FILES

For those problems that require permanent data
storage external to a particular program, the
TSB system provides a data file capability.
This allows flexible, direct manipulation of
large volumes of data stored within the system
itself. Special versions of the READ, PRINT,
MAT READ, MAT PRINT, and IF statements allow
you to read from and write onto mass storage
fi 1es.

File programming offers two levels of complexity.
Many problems can be solved using files treated
simply as serial access storage devices. In this
case, the program reads or writes a serial list
of data items (either numbers or strings of charac­
ters) without regard to the underlying structure
of the file. However, with additional programming
effort, any file can be used as a random access stor­
age device. In this case, the program breaks the file
into a series of logical subfiles that can be
modified independently.

This section deals with the serial use oT files,
then internal file structure and random access
use. Explanatory programming samples follow each
series of frames in this section.

4-1

TERM: FILE

DEFINED IN TSB AS: An area of meroory external to the
program where numbers and strings
of characters can be stored and
retrieved~ Files are created by,
and belong to, a particular user.

COMMENTS

The user determines the name and size of a file. Files vary
in size from 1 record to a maximum determined by the device
used to store them. The maximum size for files that are to
be SANCTIFIED is 32 records. (See Appendix D.) A record con­
tains between sixty-four and 256 16-bit words.

When a program stores some information in a file, the inform­
ation remains there until it is changed or the file is elimi­
nated. Any program of a particular user can be written to
access this information.

Each program must declare its files with a FILES statement
before it can access them. Each program can access up to 16
different files at one time. Files being accessed by a pro­
gram can be changed by use of the ASSIGN statement.

For each file declared in the program, there is a file pointer
that keeps track of the item in the file currently being accessed
by that program. The RUN command causes all these pointers to be
reset to the beginning of the file. The ASSIGN statement repo­
sitions the pointer to the beginning of a specified file. As
the program reads or writes on a file, the pointer for the file
is moved through the file.

4-2

SERIAL FILE ACCESS

This program writes all the data items out into the file in serial order.
Each write operation begins where the previous one left off. Then, to
retrieve one of these items, the program resets the pointer to the begin­
ning of the file and reads through the items until it comes to the desired
item. There is only one pointer for each file. When the pointer is repo­
sitioned by either a READ or a PRINT statement, it remains pointing to the
next item in the file until it is repositioned by another file control
statement.

SAMPLE SERIAL FILE ACCESS

OPEN-GHIJK,50

NAM-PROG1
100 FILES GHIJK

200 INPUT A,B,C,D
300 PRINT #l;A,B,C,D

The OPEN command creates a new file.
GHIJK is the name of the file.
The file is 50 records long.

The FILES statement links the
file into the program. From
now on, the file is referenced
by number; GHIJK is file #1.
This allows programs to use
different files by changing
only the FILES statement.

This is a serial file PRINT
statement. It is identical
to the normal PRINT statement
except that a file number
appears and the values of the
variables are written onto the
file, not the terminal.

4-3

SERIAL FILE ACCESS, CONTINUED

4~~ INPUT A,B,C,D
5~~ PRINT #l;A,B,C,D

6~~ READ #1,1

7~~ READ #1; H1,H2,H3

8~~ PRINT Hl,H2,H3
9~~ READ #1; H1,H2,H3,H4,H5

1~00 PRINT H1,H2,H3,H4,H5
2000 END

This PRINT stores the new
values of the variables
immediately following the
previous values in the file.

This is a reset operation;
it resets the pointer for
file #1 to the beginning of
the file.

This is a serial file READ
statement. It assigns the
first three values in the
file to the three variables
specified.

This READs the remaining
five values in the file
into the five variables
given. The values in the
file are not disturbed.

Try this example. It should print out the same numbers you type in.

4-4

EXAMPLES:

GENERAL FORM:

OPEN-

OPEN~FILE27, 2~, 64 return

OPEN-SAMPLE, 128 return

OPEN- 1 to 6 character file name L number of records in file

OPE- 1 to 6 character file name L number of records in file L record size

OPE- 1 to 6 character file name L number of records in file

PURPOSE

Creates a file with a specified number of records of a specified size, and
assigns it a name.

COMMENTS

The file that is open is accessible only by the user 1.0. number that OPENED
it. (NOTE: Unprotected system library files can be read by all users, and
unprotected group files can be read by all members of the group.) The file
remains OPEN until the same user KILLs it.

File names must conform to the same rules as program names.

The size of the file may vary from a minimum of 1 record to a maximum deter­
mined by the peripheral devices on the system, the amount of unused storage,
and the user's personal storage limit.

The size of a record must be between 64 and 256 words. If not specified, the
system assumes 256 words. In any case, each record consumes 256 words of
system storage.

If the system does not have enough storage space for the new file, the OPEN
~ command is rejected and an error message is printed:

SYSTEM OVERLOAD

4-5

OPEN-, CONTINUED

If the user does not have enough space left for the new file in the amount
set for him by the system operator, the OPEN command is rejected and an
error message is printed:

LIBRARY SPACE FULL

If the name given in the OPEN command equals the name of an existing file
or program, the command is rejected and an error message is printed:

DUPLICATE ENTRY

The OPEN command marks each record of the new file as empty. If the system
is heavily loaded, this process could take several minutes for very large
files.

4-6

EXAMPLE:

GENERAL FORM:

KILL-

KILL-NAMEXX return

KIL-EXMPLE return

KIL-FILE10 return

KILL-file to be deleted

KIL-file to be deleted

PURPOSE

Removes the named file from the user's library and re­
leases the space it occupied for further storage. Users
can only KILL their own files.

COMMENTS

Files have only one version, the stored one. When a file
is KILLed, all the information in it is lost.

If the file named is currently being accessed by a user
on another terminal, the KILL command is rejected and an
error message is printed:

FILE IN USE

4-7

EXAMPLES:

GENERAL FORM:

FILES

10 FILES MATH, SCORE, AND, SQRT, NAMES
20 FILES *GRP, FILE27, SAMPLE
30 FILES MATH, $DATA, * , *

statement number FILES up to 16 file names separated by commas

PURPOSE

Declares which files will be used in a program; assumes that the files will
be OPENed before the program is RUN.

COMMENTS

Up to four FILES statements can appear in a program, but only 16 files
total can be declared (duplicate entries are legal). The files are assigned
numbers (from 1 to 16) in the order they are declared in the program. In
the EXAMPLES above, MATH is file #1, FILE27 is #7 and DATA is #10.

These numbers are used in the program to reference the files. For instance,
in the same example,

100 PRINT #2; A

would print the value of A into the file named SCORE. This feature allows
most programming to be done independently of the files to be used. The
FILES statements may be added any time before running the program.

4-8

FI LES, CONTINUED

Public or group library files to be read (they cannot be written on) must also
be declared in a FILES statement but with a $ or * preceding the file name.
DATA is a public file in the example; GRP is a group file. When * is used with­
out a program name as one of the arguments in a FILES statement) the position
occupied by the * symbol is reserved for a file to be specified later by an
ASSIGN statement. ASSIGN statements are described on the following page.

Users with the same 1.0. number can share files, but only one user can write
on a file at a time. 1.0. codes beginning with an "A" (e.g., A067) are an ex­
ception to the rule; they may read or write on files at the same time.

4-9

EXAMPLES:

ASSIGN

20 ASSIGN A$, 3, B1, C$
3~ ASSIGN "NEWFL", S2, J

40 ASSIGN I$F2", 6, C, "AX1532"

GENERAL FORM:
statement number ASSIGN file name, file number, return variable, mask

statement number ASSIGN file name, file number, return variable

PURPOSE

To change the file referred to,by a specified file number during the execution
of a program

COMMENTS

The parameters of an ASSIGN statement are:

file name

file number

return variable

The name of a file -- a literal string of up to six
characters (seven if the first character is $ or *)
enclosed in quotes or a string variable leading to
a literal string. The symbol $ as a first character
indicates a system file; * as a first character in­
dicates a group file.

A number, variable or expression whose value is
between 1 and 16, indicating a file position. The
file number should not exceed the number of files
declared in the FILES statements of the program.

One of the following values will be returned to this
variable when the statement is executed, depending
upon the outcome of the execution:

o - the file is available for reading and writing.
1 - the file is available on a read-only basis be-

.cause it is bei ng access'ed by another termi na1•
For users A000 through A999, a return code of
1 indicates only that the named file is being
accessed by another terminal. The file is still
available for reading and writing.

4-10

mask

ASSIGN, CONTINUED

2 - the file is available on a read-only basis
because it is a system library or group
library file.

3 - the requested file does not exist or it is pro­
tected (and the user attempting to ASSIGN it
is not the owner).

4 - the file number in the ASSIGN statement is out
of range; it does not correspond to one of the
positions reserved by the FILES statements.

5 - the requested file has records which are larger
than those of the file previously in this
position.

If the value given to the return variable is 3, 4,
or 5, any access to the requested file will cause a
terminal error. If the returned value is 2, any
print attempt to the file will cause a terminal error.
If the returned value is 1, a print attempt by any
user other than AXXX users will cause a terminal error.

An optional parameter that can be used to insure
security of data in the file. Mask can be either a
literal string of up to six characters or a string
variable of up to six characters used to form a mask
through which data is written to or read from the file.
If the same mask is used to read a data item that was
used to write the item, the results are the same value
that was written.

When the ASSIGN statement is executed, the named file replaces the file pre­
viously referenced by the file number in the statement. Subsequent file
references using this number will apply to the new file. Data written to
the old file will be intact.

4-11

SERIAL FILE PRINT

EXAMPLES:

GENERAL FORM:

125 PRINT #5; A1,B2,C$
130 PRINT #5; D,E,F, "B,C,D,E"
140 PRINT #M+N; B

statement number PRINT #file number formula .!..

list of data items separated by commas

PURPOSE

Prints variables, numbers, or strings of characters consecutively on the
specified file, starting after the last item previously read or printed.

COMMENTS

The file number formula may be any expression; it is rounded to the nearest
integer (from 1 through 16). If the value is ~, then the nth file declared
in the FILES statements (or the file most recently ASSIGNed to the nth
position) is used.

The serial file PRINT always writes the indicated data items into the next
available space in the file. However, since character strings may vary in
length and each string must be wholly contained within a record, some space
in each record may be left unused. You can calcu~ate the number of words
occupied by any string with a formula described under "Storage Requirements"
in this section.

After a serial file PRINT, the file pointer is updated so that it points to
the next available space.

4-12

SERIAL FILE PRINT

The information written in a file remains there even when the program
terminates. Therefore, the user can return a day or week later and
access the data at that time. If a program terminates because of an
error or if the user types break, the files may not have been completely
updated.

NOTE: Matrices can also be written on files using a
MAT PRINT # statement described in Section V.

4-13

SERIAL FILE READ

EXAMPLES: 65 READ #5; A,B,C
70 READ #3; B$
80 READ #N; A,B$, C(5,6)
90 READ #(N+l); A,B$,C

GENERAL FORM:

statement number READ #file number formula .!...

list of data items separated by commas

PURPOSE

Reads numbers and strings into variables consecutively from the specified
file, starting after the last item read.

COMMENTS

The file number formula is evaluated as in the serial file PRINT.

Both strings and numbers can be read, but the order of variable types must
match the order of data item types exactly. The TYP Function provides a
means of determing the type of the next item.

The serial file READ moves from record to record within a file automatically,
as necessary to find the next data item. After a READ, the file pointer is
updated, and a subsequent READ will start with the next consecutive data
item. Record boundaries and unused portions of records are ignored.

4-14

SERIAL FILE READ. CONTINUED

Matrices can also be read from files using a MAT READ # statement described
in Section V.

NOTE: Following a serial file PRINT, the
pointer must be reset to the begin­
ning of the file before the data that
was just written can be read. This
is done using the reset operation
described on the next page. A serial
READ should not directly follow a
serial PRINT.

4-15

EXAMPLE:

GENERAL FORM:

RESETTING

100 READ #1,1

200 READ #2,1
300 READ #M+N, 1

statement number READ #file number formula .L 1

PURPOSE

Resets the file pointer to the beginning of the file specified
by the file number formula.

COMMENTS

READ #N,l is used after a serial PRINT to prepare for a serial
READ.

NOTE: Do not use PRINT #1,1 to reset, as this
erases the first record of the file.

4-16

EXAMPLES:

GENERAL FORM:

THE TYP FUNCTION

100 IF TYP(1)=2 THEN 1000
250 IF TYP (6)=3 THEN 500
300 GO TO TYP(B) of 400,600,800

TYP may be used as an expression or as
part of an expression; the function form is:

TYP (file number formula)

PURPOSE

Determines the type of the next data item in the specified file so that the
program can avoid a type mismatch on a file READ.

There are three possible responses:

1 = next item is number
2 = next item is character string
3 = next item is "end of file."

COMMENTS

If the file number formula is negated «0), the TYP function also detects
"end of record" conditions (explained later under "Random Access") and
returns a value of 4 for them.

If the file number formula equals zero, the TYP function references the
DATA statements. In this case, TYP returns these values for the next
data item: 1 = number; 2 = string; 3 for an "out of data" condition.

4-17

LISTING CONTENTS OF A FILE

Here is a sample program that lists a file of unknown contents. It assumes
that the file (DATUMS) has been previously filled serially by some other
program.

NAM - LIST

100 FILES DATUMS

200 DIM A$[72]

300 IF END #1 THEN 1000 The IF END statement tells the pro-
gram where to go if it comes to the
end of file #1. Without this state-
ment, the program would quit at the
end of the file and give an error

~message.

500 IF TYp(l)=1 THEN 600} TYP checks whether the next data
550 IF TYP(1)=2 THEN 700 item is a number (1) or a string (2).

600 READ #l;A Reads a number from file #1 into
variable A.

650 PRINT A

675 GOTO 500

700 READ #1 ;A$ Reads a string from file #1 into
variable A$.

750 PRINT A$

775 GOTO 5~0

1000 PRINT IIFILE LIST COMPLETED II The program comes here when it
reaches the end of file #1.

2000 END
~

4-18

TERM: END-OF-FILE

If a program attempts to PRINT beyond the
physical end of a file or attempts to READ
more values than are present in the file,
the TSS system detects an end-of-file con­
dition and terminates the program.

COMMENTS

The OPEN command causes end-of-fi1e marks
at the start of every record in the file.
marks can also be written by the user (as
under IIEND II).

to be written
End-of-file

explained later

NOTE: If the user or an error (such as
end-of-file) stops a program
abnormally, it is not possible to
·know which file PRINTs of the pro­
gram were in fact performed.

To avoid termination of a program because of end-of-file,
use the IF END statement on the next page. If this is done,
all of the values preceding the end-af-file are transferred
successfully.

4-19

EXAMPLES:

GENERAL FORM:

IF END#...THEN

300 IF END #N THEN 800
310 IF END #2 THEN 830
320 IF END #3 THEN 9999

statement number IF END #file number formula THEN statement number

PURPOSE

Defines a statement to be branched to if an "end-of-file" occurs on a
specified file.

COMMENTS

The IF END statement defines an exit procedure which remains in effect until
another IF for the same file changes it, or until an ASSIGN statement containing
the same file number is executed.

A different exit procedure can be defined for each file.

IF END is also used with random access to provide exit procedures when an
"end-of-record" occurs. (See "Random Access. ")

If a program does not contain an IF END statement for a file and an
"end-of-file" occurs on that file, the program is terminated and an error
message is printed:

END OF FILE/END OF RECORD IN STATEMENT xxx

4-20

EXAMPLES:

GENERAL FORM:

PRINT#...END

95 PRINT #N: A,B2,END
100 PRINT #(X+1); R3,Sl,N$, "TEXT" , END
110 PRINT #2; G5,H$,P, END

~
I..

statement number PRINT #file number formula l. data item list ..!.. END

PURPOSE

Places a logical "end-of-fi1e" marker after the last value written on the
file; END is ignored if it is not the last item in the statement.

COMMENTS

The "end-of-fi1e" marker written by this statement is a logical marker; each
file also has a physical end-of-fi1e which marks the physical boundary of
the fi 1e.

The "end-of-.file" mark is overlaid by the first item in the next serial
PRINT statement. An l end-of-fi1e" condition that aborts the program or
triggers an IF END statement occurs only on an attempted READ beyond the
available data or an attempted PRINT beyond the physical end-of-file.

END and IF END can be used to modify a serial file.

4-21

STRUCTURE OF SERIAL FILES

When a file is OPENed, you can think of it as looking like this:

INFO = ~ ~
t OPEN-INFO,S

EOF is a mark that shows the end of the data.

PEOF is the physical end of the file, beyond which no data
can be written.

t is the position of the file pointer.

When information is written into the file, the pointer moves
and space in the file is used up.

INFO=~ ~

t

100 FILES INFO
200 PRINT #1; A,B,C,F$,Q1, END

The file is filled solidly from the beginning.

When more information is PRINTED, it follows the previous
data and the pointer is changed.

INFO = IAI BI cIF$I Q11 G11 G21 G$I H$I zl EOFI IPEOF I
t

300 PRINT #1; Gl,G2,G$,H$,Z,END

4-22

STRUCTURE OF SERIAL FILES. CONTINUED

To read this data, the pointer must be reset.

INFO =

t

400 READ #1,1

Now the data tan be read.

t

500 READ #1; M1,M2

M1 now contains the value of A
M2 now contains the value of B

At this point, the program continues to read the data.

INFO = IAIBlcIF$IQ1IG1IG2IG$IH$lzIEOFI IPEOFI

t

600 READ #1; D1

D1 now contains the value of C

4-23

STRUCTURE OF SERIAL FILES, CONTINUED

However, if you PRINT anything in the file at this point,
the rest of the file is effectively lost as far as serial
access is concerned.

INFO =~..... ~

t

700 PRINT #1; D2,END

The correct way to modify an item in the middle of serial
file is to READ all the succeeding items, then PRINT them
and the new value out again.

INFO =

t

700 READ #1; M$, P1, P2, P3, P$, R$, P4
(READ the values)

750 READ #1,1 (reset the pointer)

800 READ #1; A, B, C
(move the pointer out to the correct item)

900 PRINT #1; 02 (PRINT the new item)

1000 PRINT #1; P1, P2, P3, P$, R$, P4, END

(PRINT the old values out)

t

4-24

EXAMPLE OF SERIAL FILE MODIFICATION

OPEN-DATUMS, 128 When the fi 1e is opened, "end-of-fi 1e II markers

are written into every record.

NAM-ADDIT
100 FILES DATUMS
200 DIM A$[72]
300 IF END #1 THEN 1500
400 REM THIS PROGRAM FIRST FINDS THE END OF THE FILE. IT ASKS THE
410 REM USER FOR A STRING AND A NUMBER. IF THIS IS NOT THE PHYSICAL
420 REM END OF THE FILE, IT ADDS THEM TO THE END OF THE FILE.
430 REM THEN THE PROGRAM ASK THE USER IF HE WANTS TO ADD ANY MORE ITEMS.
440 REM IF THE USER ANSWERS YES, THE PROGRAM REPEATS THE INPUT AND
450 REM WRITE LOOP.
800 READ #1;A$,A
850 GOTO 800
1500 IF END #1 THEN 2000
1600 PRINT "STRING";
1650 INPUT A$
1700 PRINT "NUMBER";
1750 INPUT A
1800 PRINT #1;A$,A, END
1900 PRINT "MORE";
1950 INPUT A$
1960 IF A$="YES" THEN 1600
1970 STOP
2000 PRINT "PHYSICAL END OF THIS FILE"
5000 END

NOTE: If the file is empty, the first thing the program
finds is an end-of-file. Therefore, it begins
filling the file from the first location.

4-25

EXAM PLE, CONTINUED

The IF END statement (line 300) is changed once the end-of-file marker is
found. The program is then looking for the physical end-of-file.

You can use the listing sample program to check the contents of the file.

4-26

TERM: RECORD

DEFINED IN TSB AS: A physical division of a file;
consisting of from 64 to 256
words.

The number of records in a file
is subject to several constraints,
but in no case may it exceed 32767.

COMMENTS

E oDATA mFile = Data 0
R

~ + + t t t

PEOR PEOR PEOR PEOR PEOF

where PEOR = the physical end of the record.
EOR = the end-of-record marker written by the system.
EOF = the end-of-file marker written by the system.
PEOF = the physical end of the file.

Following the data in a record, there is always an end-of-record
marker. Every record also has a physical end. (When the record is
completely full, this also acts as the logical end-of-record marker.)

During serial access the end-of-record markers act as skip markers
that say to look in the next record for the data item, but during
random access they cause an end-of-file condition. This will be

expl ained 1ater.

4-27

STORAGE REQUIREMENTS

Numerical data items require two words of storage space per item. If a
full-size record is filled completely with numbers, it contains 128 items.

Strings can be of varying sizes: they require about 1/2 word of
storage per character in the string. The exact formula for the num­
ber of words needed to store a string is:

If the number of characters is odd, then

1 + number of characters in the string + 1
2

If the number of characters is even, then

1 + number of characters in the string
2

Eight 62-character strings will completely fill a 256-word record. Strings
and numbers can be mixed within a record, but each item must fit completely
within the bounds of the record. For example, a 256-word record could con­
tain five strings of 72 characters (each using 37 words) and a maximum of
35 numbers (leaving one word of the record unused).

4-28

EXAMPLES:

GENERAL FORM:

MOVING THE POINTER

200 READ #1 ,N
300 READ #M,N
400 READ #3*J,9

statement number READ #file nwnber formula J.. record number formula

PURPOSE

Moves the pointer to the beginning of a specified record within a file;

rounds the file number formula and the record number formula to integers.

COMMENTS

The READ #M,N statement only generates an end-of-file condition at the
physical end of the file, not for end-of-file markers.

After moving the pointer to the start of a record, you can use the serial
READ and PRINT statements normally.

4-29

SAMPLE USE OF READ# M,N

DETERMINE LENGTH OF A FILE

Here is a sample program that determines the number of records in a file.
It uses the READ #M,N statement through the records until it comes to the
physical end of the file.

NAM-LENGTH
1~ REM THIS PROGRAM PRINTS OUT THE LENGTH IN RECORDS OF ANY FILE.
20 FILES M
30 REM M IS THE FILE WHOSE LENGTH IS SOUGHT
40 IF END #1 THEN 80

50 FOR R=l TO 32767
60 READ #l,R
70 NEXT R
80 PRINT ilL ENGTH IN RECORDS: "; R-1

90 END

4-30

SUBDIVIDING SERIAL FILES

Serial files can be divided into smaller serial files by moving the pointer
and using the PRINT END statement. For example, a file of six records could
be treated as two files of three records.

a record

Fi] e: DATA I DATA I DATA [I] DATA I DATA I DATA rn
______,.".--------'1\------,._-------'1

first subdivision second subdivision

To switch from the first subdivision to the second, use this statement

109.1 READ #1, 4

since the fourth record is the start of the second subdivision.

When using this technique, you must be careful that you do not PRINT more
data into the subdivision than it will hold. If you PRINT too much, the
data will overflow into the next subdivision and destroy its contents.

A logical extension of this concept is to make each subdivision equal to a
single record. The TYP function detects end-of-record markers. The random
access versions of PRINT# and READ# (described later) allow you to access
random records within a file without overflowing the bounds of the record.

4-31

USING THE TYP FUNCTION WITH RECORDS

EXAMPLES:

GENERAL FORM:

100 GO TO TVP(-l) OF 200,250,300,400
2000 A=TYP(-5) + 8*2

TYP is a function and can be used as an
expression or a part of an expression.

TVP (-file number formula)

PURPOSE

Returns a code telling the type of the next item in a specified file.

TVP(- X) = 1 for a number
2 for a string
3 for an end-of-file
4 for an end-of-record

COMMENTS

The file number formula must be negated to detect the end of record. If it
is positive or zero, different results are returned. See TYP Function in
this section.

4-32

r'.

r

r'
'.

SAMPLE OF READ# M,N AND TVPC-M)

LIST CONTENTS OF A RECORD

Here is a sample program that lists the exact contents of any record in a
file.

NAM-RLIST
1 REM THIS PROGRAM LISTS THE CONTENTS OF ANY RECORD OF THE FILE.
5 DIM A$[72]
1~ FILES PETER
2~ IF END #1 THEN 60
3~ PRINT "RECORD NUMBER";
4~ INPUT R
5~ IF R>0 AND R=INT(R) THEN 8~

6~ PRINT "INVALID RECORD NUMBER. II
70 GOTO 30
80 READ #1,R
1~0 GOTO TVP(-l) OF 110,150,220,200
11 ~ PRINT "NUMBER: ";
120 READ #l;X
130 PRINT X
140 GOTO 100
150 PRINT IISTRING: ";
160 READ #l;A$
17~ PRINT A$
180 GOTO 100
200 PR INT II END 0 F RECORD MARK. II

210 STOP
22~ PRINT "END OF FILE MARK. II

23~ END

4-33

"

HOW TO COpy A FILE

Here is a sample program that copies one file into another using only the
statements and functions covered so far: IF END, TVP, FILES, READ #M,N,
serial READ, and serial PRINT.

NAM-COPV
1 REM THIS PROGRAM COPIES FILE #1 INTO FILE #2
10 FILES SAM1, SAM2
2~ DIM A$[72]
30 IF END #1 THEN 170
40 IF END #2 THEN 180
5~ FOR 1=1 TO 32767
60 READ #1,1
70 PRINT #2, I
80 GOTO TYP{-l) OF 90,120,150,16~

90 READ #l;X
100 PRINT #2;X
110 GOTO 8~

120 READ #1 ;A$
130 PRINT #2 ;A$
140 GOTO 80
150 PRINT #2; END
160 NEXT I
170 STOP
180 PRINT "SECOND FILE TOO SMALL II

190 END

4-34

TERM: RANDOM FILE ACCESS

DEFINED IN TSB AS: A READ or PRINT access of a file is
"random" if it specifies a particular
record within the file.

Serial Access: 100 READ #l;A,B,C

(Reads from the file pointer)

Random Access: l0~ READ Hl,5;A,B,C

(Moves to record 5 before reading)

COMMENTS

When files are accessed serially, the record structure of files is ignored.
Serial READs skip over end-of-record markers to the next record and act as
if all data were in a continuous list.

The TSB System does, however, provide statements that take advantage of
this record structure. The file pointer can be moved to the beginning of
any record. Also, any record can be READ or PRINTed independently of the
rest of the file using random access versions of READH and PRINTH. The TYP
function and IF END statement can detect end-of-record conditions. These
extensions to BASIC constitute a random access file capability.

4-35

SAMPLE OF RANDOM FILE ACCESS

This sample program fills each record with two strings of up to 30 charac­
ters each and five numbet~. Then it lists the contents of any record.

OPEN-RNDFL,20

NAM-PROG2

PRINT IIWHICH RECORD WOULD YOU LIKE TO SEE II ;
INPUT J
READ #1, J; A$,B$,A,B,C,D,E This section will read and list
PRINT A$ the contents of record N.

PRINT B$
PRINT A,B,C,D,E
GO TO 700
END

100
150
200
300
400
500
600

700
750
760
770
780
790
800
1000

FILES RNDFL
DIM A$(30),B$(30)
IF END #1 THEN 1000
FOR J=l TO 20
INPUT A$,B$,A,B,C,D,E
PRINT #l,J; A$,B$,A,B,C,D,E
NEXT J

This loop reads in two strings
and five numbers from the user,
then it writes the Jth record
of the fi 1e.

4-36

PRINTING A RECORD

EXAMPLES:

GENERAL FORM:

165 PRINT #N,X;G2,H,I,IITEXT II

170 PRINT #1,3;X,Y4,Z,6127,B
175 PRINT #(N+2),(X+2);F,P5
180 PRINT #2,5;A,B,C,D,END

!;tatement number PRINT #file number formula .L

rRcord number formula 1. list of data items

PURPOSE

Prints a specified list of data items into a specific record of a file,
~ starting at the beginning of the record. (The record number formula

is rounded to the nearest integer.)

COMMENTS

The previous contents of the record are destroyed. An end-of-record marker
is written after the data. If an END occurs in the data list, it acts as
an end-of-record marker too. The random PRINT cannot change the contents
of any record except the one specified. The entire list of data items must
fit within the record. Otherwise, an end-of-file condition occurs which
terminates the program and prints an error message:

END OF FILE/END OF RECORD

An IF" END statement estab1 ishes an exit procedure. See IIIF END" in this
secti on.

4-37

PRINTING A RECORD. CONTINUED

Matrices are PRINTed using the random version of MAT PRINT# described in
Section V. Note, however, that the matrix must fit within a single record,
so a maximum of 128 numerical items can be printed. If this rule is vio­
lated, an end-of-file occurs.

4-38

READING A RECORD

EXAMPLES:

GENERAL FORM:

100 READ #2,3;A,B,C3,X$
110 READ #N,2;N1,N2,N3
120 READ #M,N;R2,P7,A$,T(35)
130 READ #(M+1),(N+1);X,Y,Z

statement number READ #file number formula ,

rAcorn nl1mhpT formula; list of data items

PURPOSE

Reads data from a specified record of a file, starting at the beginning
of the record. (The file number formula and record number formula

are rounded to integers.)

COMMENTS

The contents of the file are not changed.

If the READ encounters an end-of-record marker before filling all the data
items, an end-of-file occurs. The program is terminated unless an IF END
statement has been defined previously. (See IF END in this section.)

Matrices are READ from records using a random version of MAT READ# described
in Section V. If the READ requests more items than the record contains, an
end-of-file condition occurs.

4-39

MODIFYING CONTENTS OF A RECORD

PRINCIPLE:

EXAMPLE:

The contents of a record can be
changed only by READing the entire
record into the program, modifying
the items desired, then PRINTing
it back on the file again.

100 READ #1,5;A,B,C,Z$
200 LET A = Q*2+(M/5)
300 LET Z$ = M$
500 PRINT #1,5;A,B,C,Z$

A,B,C, and Z$ are the entire contents of record 5.

DANGER: When the strings are replaced by longer
strings, the result may no longer fit
within a record. If this happens, an
end-of-file condition occurs.

4-40

EXAMPLES:

GENERAL FORM:

ERASING A RECORD

320 ·PRINT #M+N, R+S
330 PRINT #1,2
340 PRINT #12,Ql

statement number PRINT #file number formula L record number formula

PURPOSE

Erases the contents of a specified record in a file by PRINTing an end-of­
record marker at the beginning of the record.

Moves the file pointer to the start of the specified record.

COMMENTS

Only the contents of the specified record are erased; the rest of the file
is unchanged. The erased record still exists, however, and can be filled
with new data.

Do not confuse this erase operation with the KILL command which permanently
eliminates the entire file.

Here is a sample program that uses the erase operation to erase an entire
file, record by record.

4-41

.---_ _..-- - _-_ _ _.._._._----- ----

ERASING A RECORD, CONTINUED

NAM-ERASE

1 REM THIS PROGRAM ERASES A FILE BY ERASING EVERY RECORD
10 FILES X
2~ IF END #1 THEN 60
30 FOR 1=1 TO 32767
40 PRINT #1,1
50 NEXT I
6~ END

4-42

UPDATING A RECORD IN A FILE

File programming is simplified if every record of a file has the same data
structure. For example t each record might contain a string (e.g. t a
person's name) and a number (e.g. t the amount of money he owes). Here is
a sample program that manipulates such a file. The program searches
through the file until it finds a specified string; then it updates the
number in the record to a new value.

NAM-UPDATE

10 FILES DATA
20 DIM A$(72) t B$(72)
30 IF END #1 THEN 160
40 PRINT "NAME";
50 INPUT A$
60 FOR 1= 1 TO 32767
70 READ #1 t I
80 IF TYP (-1) #2 THEN 150
90 READ #1; B$
100 IF B$#A$ THEN 150
110 PRINT "NEW NUMBER";
120 INPUT N
130 PRINT #1; N
140 STOP
150 NEXT I
160 PRINT "NAME NOT ON FILE."
170 END

4-43

AN ALPHABETICALLY ORGANIZED FILE

If the first item of every record in a file is a string, the records can be
ordered alphabetically. Here is a program that inserts a new record where
it alphabetically belongs. The rest of the file must be moved up one record.
In this example, record 1 contains the record number of the last item.

NAM-INSERT
10 FILES DATA
20 DIM G$[72],H$[72]
30 IF END H1 THEN 29~

40 READ H1,1;N
45 IF END H1 THEN 270
50 READ H1,N+2
60 PRINT "STRING";
70 INPUT G$
72 IF NH0 THEN 80
74 R=2
76 GOTO 180
80 F=2
90 L=N+1
100 R=INT((F+L)/2)
110 READ H1,R;H$
120 IF G$<H$ THEN 210
130 IF G$>H$ THEN 230

4-44

140 FOR I=N+1 TO R STEP -1
150 READ Hl,I;H$
160 PRINT H1,I+1;H$
170 NEXT I
180 PRINT H1,R;G$
190 PRINT H1,1;N+l
200 STOP
210 L=R
220 IF FHL THEN 100
225 GO TO 140
230 F=R
240 IF L-F>l THEN 100
250 R=R+l
255 IF L-FH1 THEN 140
260 F=F+1
265 GOTO 100
270 PRINT "FILE FULL."
280 STOP
290 N=0
300 GOTO 45
310 END

FILE ACCESS ING ERRORS

If a data error occurs while the computer is performing a
requested file read or write, the program will be termi­
nated and one of the following messages will be printed:

BAD FILE READ IN LINE nn
BAD FILE WRITE DETECTED IN LINE nn

As is the case with other errors which terminate a running
program, the specific contents of any file written on dur­
ing execution cannot be easily predicted.

Most of the information in the file on which the data error
occurred may be recoverable. If file errors persist, the
information should be copied item by item or record by re­
cord to another file.

4-45

SECTION V
MATRICES

A matrix is a doubly subscripted array, or a collection of data arranged in rows
and columns. Arrays are described in Section III. This section describes a
series of special instructions used to manipulate matrices. Instructions start­
ing with MAT refer to an entire matrix, or to two or more matrices. Instruc­
tions such as PRINT and INPUT refer to specific elements of the array by row
and column. The DIM statement is used to define the dimensions of the matrix
and to reserve storage space for it. Some typical matrix operations are:

MAT READ A,B,C

MAT INPUT A,B

MAT C = ZER
MAT C = CON
MAT C = ION
MAT PRINT A,B;C

MAT B = A

MAT C = A + B

MAT C = A - B

MAT C = A*B
MAT C = TRN(A}
MAT C = (K}*A

MAT C = INV(A)
MAT PRINT #5;A
MAT READ #M,N+2;D

Read the three matrices, their dimensions having been
previously specified. Data is stored in the matrix
row by row.
Input matrices A and B from the te1eprinter--same re­
strictions as MAT READ.
Fill C with zeros.
Fill C with ones.
Set up C as an identity matrix.
Print the three matrices, with A and C in the regular
format, but B closely packed.
Set the matrix B equal to the matrix A
Add the two matrices A and B
Subtract the matrix B from the matrix A.
Multiply the matrix A by the matrix B.
Transpose the matrix A.
Multiply the matrix A by K. K, which must be in
parentheses, may be a formula.
Invert the matrix A.
Print matrix Aonto a file.
Read matrix D from a file, row by row--same restrictions
as MAT READ.

Use of these statements is described in this section. Formatted printing
of matrices is described in Section VIII.

5-1

EXAMPLES:

GENERAL FORM:

DIM

110 DIM A (50), B(2~,20)

120 DIM Z (5, 20)

130 DIM S (5,25)

140 DIM R (4,4)

statement number DIM matrix variable i integer 1..
or

statement number DIM matrix variable 1.. integer .L integer L ...

PURPOSE

Sets upper limits on the amount of working space used by a matrix in the
TBS system.

COMMENTS

The integers refer to the number of matrix elements if only one dimension
is supplied, or to the number of column and row elements respectively, if
two dimensions are given.

A matrix (array) variable is any single letter from A to Z.

Arrays not mentioned in a DIM statement are assumed to have 10 elements if
one-dimensional, or 10 rows and 10 columns if two-dimensional.

The working size of a matrix may be smaller than its physical size. For ex­
ample, an array declared 9 x 9 in a DIM statement may be used to store fewer
than 81 elements; the DIM statement supplies only an upper bound on the num­
ber of elements. When the working size of a matrix is changed using one of
the MAT statements described on the following pages, the values of excluded
positions are lost.

The absolute maximum matrix size is about 4900 elements; a matrix of this ~

size is practical only in conjunction with a very small program.

5-2

EXAMPLES:

GENERAL FORM:

MAT...ZER

305 MAT A = ZER
310 MAT Z = ZER (N)
315 MAT X= ZER (30, 10)
320 MAT R = ZER (N, P)

statement number MAT matrix variable = ZER
or

statement number MAT matrix variable ~ ZER I expression 1
or

statement number MAT matrix variable ~ ZER i expression ~ expression)

PURPOSE

Sets all elements of the specified matrix
equal to 0; a new working size may be
established.

COMMENTS

The new working size in a MAT ... ZER is an
implicit DIM statement within the limits
set by the DIM statement on the tota1 num­
ber of el ements.

Since 0 has a logical value of "false",
MAT ... ZER is useful in logical initialization.

The expressions in new size specifications should
eval uate to integers. Non-integers are rounded
to the nearest integer value.

5-3

EXAMPLES:

GENERAL FORM:

MAT...CON

205 MAT C = CON
210 MAT A = CON (N,N)
220 MAT Z = CON (5,20)
230 MAT Y = CON (50)

statement number MAT matrix variable ~ CON
or

statement number MAT matrix variable .:. CON i expression 1
or

statement number MAT matrix variable ~ CON 1 expression ~ expression 1

PURPOSE

Sets up a matrix with all elements equal to 1;
a new working size may be specified, within the
limits of the original DIM statement on the total
number of elements.

COMMENTS

The new working size (an implicit DIM statement)
may be omitted, as in example statement 205.

Note that since 1 has a logical value of "true",
the MAT ... CON statement is useful for logical
initialization.

The expressions in new size specifications should
evaluate to integers. Non-integers are rounded
to the nearest integer value.

5-4

EXAMPLES:

GENERAL FORM:

INPUT

600 INPUT A(5)
610 INPUT 8(5,8)
620 INPUT R(X), N$, A(3,3)
630 INPUT Z(X,Y), P3, W$
640 INPUT Z(X,Y), Z(X+l, Y+l), Z(X+R3, Y+S2)

~.
\

statement number INPUT matrix variable 1 expression 1 ...
or

statement number INPUT matrix variable 1 expression .L expression 1 ...

PURPOSE

Allows input of a specified matrix element(s) from the teleprinter.

COMMENTS

Expression should evaluate to integers. Non-integers are rounded to the
nearest integer value.

The subscripts (expressions) used after the matrix variable designate
the row and column of the matrix element. Do not confuse these ex­
pressions with working size specifications, such as those following a
MAT INPUT statement.

See MAT INPUT and DIM in this section for further details on matrix
input.

See ENTER, Section III for an additional means of inputting specific
matrix elements.

5-5

EXAMPLES:

MAT INPUT

355 MAT INPUT A
360 MAT INPUT B(5)
365 MAT INPUT Z(5,5)
370 MAT INPUT A(N)
375 MAT INPUT B(N,M)

GENERAL FORM:
statement number MAT INPUT matrix variable

or

statement number MAT INPUT matrix variable i expression 1...
or

statement number MAT INPUT matrix variable i expression 1.. expression) ...

PURPOSE

Allows input of an entire matrix from the teleprinter; a new working size may be
specified, within the limits of the DIM statement on total number of elements.

COMMENTS

Do not confuse the size specifications following MAT INPUT with element specifications.
For example, INPUT X(5,5) causes the fifth element of the fifth row of matrix X to be
input, while MAT INPUT X(5,5) requires input of the entire matrix called X, and sets
the working size at 5 rows of 5 columns.

Example statements 360 through 375 require input of the specified number of matrix
elements, because they specify a new size.

Elements being input must be separated by commas.

"?" is generated by a MAT INPUT statement, regardless of the number of elements.
II??II response to an input item means that more values are required.

MAT INPUT causes the entire matrix to be filled from teleprinter input in the (row,
col.) order: 1,1;1,2;1,3; etc.

5-6

EXAMPLES:

PRINTING MATRICES

800 PRINT A(3)
810 PRINT A(3,3);
820 PRINT F(X);E$; C5;R(N)
830 PRINT G(X,Y)
840 PRINT Z(X,Y), Z(1,5), Z(X+N, Y+M)

GENERAL FORM:
statement number PRINT matrix variable ..l expression 1 ...

or

statement number PRINT matrix variable ..l expression i expression 1 ...

PURPOSE

Causes the specified matrix element(s) to be printed.

COMMENTS

Expressions (subscripts) should evaluate to integers.
Non-integers are rounded to the nearest integer
value.

A trailing semicolon packs output into twelve
elements per teleprinter line, if possible. A trail­
ing comma prints five elements per line.

Expressions (subscripts) following the matrix variable
designate the row and column of the matrix element.
Do not confuse these with new working size specifica­
tions, such as those following a MAT INPUT statement.

This statement prints individual matrix elements.
MAT PRINT is used to print an entire matrix.

5-7

EXAMPLES:

GENERAL FORM:

MAT PRINT

500 MAT PRINT A
505 MAT PRINT A;
515 MAT PRINT A,B;C
520 MAT PRINT A,B,C;

statement number MAT PRINT matrix variable

or

statement number MAT PRINT matrix variable ..!.. matrix variable

PURPOSE

Causes an entire matrix to be printed.

COMMENTS

The MAT PRINT statement causes the matrix elements to be printed row by row
across the page. Each matrix row starts a new teleprinter line. The spac­
ing between row elements is controlled by the use of , and; in the same
manner as for the PRINT statement. Rows containing more elements than can
be printed on a line are continued on consecutive lines. Each row of a
matrix is started on a new line and is separated from the previous row by a
blank line. Thus the instruction

MAT PRINT A, B;C

will cause the three matrices to be printed A and C with five components to
a line and B with up to twelve.

Singly subscripted arrays may be interpreted as column vectors. Vectors may
be used in place of matrices, as long as the above rules are observed. Since

5-8

~.
\

MAT PRINT CONTINUED

a vector like V(I) is treated as a column vector by BASIC, a row vector has
to be introduced as a matrix that has only one row, namely row 1. Thus

DIM X(7), yo ,5)

introduces a 7-component column vector and a 5-component row vector.

A column vector will be printed one element to the line with double spacing
between lines. A row vector will be printed in the manner indicated by the
form of the statement. For example: if V is a row vector then, "MAT PRINT V"
or "MAT PRINT V," will print V as a row vector, five numbers to the line,
while

MAT PRINT V;

will print V as a row vector with up to twelve numbers to the line.

5-9

EXAMPLES:

READ

~00 READ A(6)
910 READ A(9,9)
920 READ C(X); P$; R7
930 READ C(X,Y)
940 READ Z(X,Y),P(R2, 55), X(4)

GENERAL FORM:
statement number READ matrix variable .L expression 1

or

statement number READ matrix variable ..l expression .2-. expression 1 ...

PURPOSE

Causes the specified matrix element to be
read from the current DATA statement.

COMMENTS

Expressions (subscripts) should evaluate to
integers. Non-integers are rounded to
the nearest integer.

Expressions following the matrix variable
designate the row and column of the matrix
element. Do not confuse these with working
size specifications, such as those following
MAT INPUT statement.

The MAT READ statement is used to read an
entire matrix from DATA statements. See
details in this section.

5-10

EXAMPLES:

GENERAL FORM:

MAT READ

350 MAT READ A
370 MAT READ 8(5),C,D
380 MAT READ Z (5,8)
390 MAT READ N (P3,Q7)

statement number MAT READ matrix variable

or

statement nwnber MAT READ matrix variable 1 expression 1 ...
or

statement number MAT READ matrix variable 1 expression ~ expression 1

PURPOSE

Reads an entire matrix from DATA statements.
A new working size may be specified, within
the limits of the original DIM statement.

COMMENTS

MAT READ causes the entire matrix to be filled
from the current DATA statement in the (row, col.)
order: 1,1; 1,2; 1,3; etc. In this case the
DIM statement controls the number of elements
read.

5-11

EXAMPLES:

GENERAL FORM:

MATRIX ADDITION

310 MAT C = B + A
320 MAT X = X+ Y
330 MAT P = N+ M

statement number MAT matrix variable ~matrix variable ~ matrix variable

PURPOSE

Establishes a matrix equal to the
sum of two matrices of identical
dimensions; addition is e1ement­
by-element.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement, if it has
more than 10 elements, or 10 x 10 ele­
ments if two dimensional. Dimensions
must be the same as the component matrices.

The same matrix ~appear on both sides
of the = sign, as in example statement 320.

5-12

EXAMPLES:

GENERAL FORM:

MATRIX SUBTRACTION

550 MAT C = A - B
560 MAT B = B - Z

570 MAT X= X- A

statement number MAT matrix variable = matrix variable - matrix variable

PURPOSE

Establishes a matrix equal to the
difference of two matrices of
identical dimensions; subtraction
is element-by-element.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has
more than 10 elements, or 10 x 10 elements
if two dimensional. Its dimension must be
the same as the component matrices.

The same matrix may appear on both sides
~

of the = sign, as in example statement 560.

5-13

EXAMPLES:

MATRIX MULTIPLICATION

93~ MAT Z = B * C
940 MAT X = A * A

950 MAT C = Z * B

GENERAL FORM:
statement number MAT matrix variable = matrix variable * matrix variable

PURPOSE

Establishes a matrix equal to the
product of the two specified matrices.

COMMENTS

Following the rules of matrix multiplication,
if the dimensions of matrix B = (P,N) and ma­
trix C = (N,Q), multiplying B*C results in a
matrix of dimensions (P,Q).

Note that the resulting matrix must have an
appropriate working size.

The same matrix variable may not appear on

both sides of the = sign.

5-14

EXAMPLES:

SCALAR MULTIPLICATION

110 MAT A = (5) * B
115 MAT C = (10) * C
120 MAT C = (N/3) * X
130 MAT P = (Q7*N5) * R

GENERAL FORM:
statement number MAT matrix variable:...l expression 1 ~ matrix variable

PURPOSE

Establishes a matrix equal to the product
of a matrix multiplied by a specified num­
ber, that is, each element of the original
matrix is multiplied by the number.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement, if it con­
tains more than 10 elements (lOxlO if two
dimensional).

The same matrix variable may appear on......
both sides of the = sign.

Both matrices must have the same working
size.

5-15

EXAMPLES:

COPYING A MATRIX

405 MAT B = A
410 MAT X = Y

420 MAT Z = B

GENERAL FORM:

statement number MAT matrix variable = matrix variable

PURPOSE

Copies a specified matrix into a matrix
of the same dimensions; copying is ele­
men t- by-e1emen.t.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has
more than 10 elements, or 10xlO if two
dimensional. It must have the same di­
mensions as the copied matrix.

5-16

EXAMPLES:

GENERAL FORM:

IDENTITY MATRIX

205 MAT A = ION
210 MAT B = ION (3,3)
215 MAT Z = ION (Q5, Q5)
22~ MAT S = ION (6, 6)

~
\

statement number MAT array variable =- ION
or

statement number MAT array variable =- ION L expression .L expression 1

PURPOSE

Establishes an identity matrix (all 01 s, with
a diagonal of all lis): a new working size may
be specified.

COMMENTS

The ION matrix must be two dimensional and square.

Specifying a new working size has the effect of a
OIM statement.

Sample identity matrix: 1 0 0
010
~ 0 1

5-17

EXAMPLES:

GENERAL FORM:

MATRIX TRANSPOSITION

959 MAT Z = TRN (A)
969 MAT X= TRN (B)
979 MAT Z = TRN (C)

5 ta tement nllmhAT MAT rna trix variable =- TRN 1. matrix variable 1

PURPOSE

Establishes a matrix as the transposition of
a specified matrix; transposes rows and columns.

COMMENTS

Sample transposition:

Original

123

456

789

Transposed

147

258

369

Note that the dimensions of the resulting matrix
must be the reverse of the original matrix. For
instance, if A has dimensions of 6,5 and MAT C =
TRN (A), C must have dimensions of 5,6. The same
matrix can not be on both sides of the "=" sign.

5-18

EXAMPLES:

MATRIX INVERSION

380 MAT A = INV(B)
390 MAT C = INV(A)
400 MAT Z = INV(Z)

GENERAL FORM:
statement number MAT matrix variable ~ INV 1 matrix variable 1

PURPOSE

Establishes a square matrix as the inverse
of the specified square matrix of the same
dimensions.

COMMENTS

A matrix may be inverted into itself, as in
example statement 400, above.

In performing the inversion, the system must
generate an additional internal matrix, so
that an additional amount of storage equal
to that needed for the original matrix is
required. It may not be possible to invert
an extremely large matrix.

5-19

EXAMPLES:

GENERAL FORM:

MAT PRINT #

52~ MAT PRINT #5; A
530 MAT PRINT #6, 3; B
54~ MAT PRINT #4,M; A
55~ MAT PRINT #N,M; A

statement number MAT PRINT# file number formula i. matrix variable .•.

or

stat. no. MAT PRINT# file no. form • .!... record no. form. i.. matrix var . .••

PURPOSE

Prints an entire matrix on a file, or on a specified record within
a file.

COMMENTS

A random matrix file print (i.e., with a record number specified)
cannot transfer more than 128 numeric values because that is the
maximum a record can hold. Attempting to exceed this generates
an end-of-fi1e condition.

A serial matrix file print, however, can transfer as many elements
as will fit in the entire file.

NOTE: A matrix may also be printed with formatted
output. See PRINT USING, Section VIII.

5-20

MAT READ #

r-------------------...
EXAMPLES:

GENERAL FORM:

720 MAT READ #2;A
730 MAT READ #2,3;B
740 MAT READ #M,N;B(5)
750 MAT READ #M,N;B(P7,R5)

statement number MAT READ# file formula number l- matrix variable ...

or

statement no. MAT READ# file formula no. L record no. formula l-matrix variable ...

or

statement no. MAT READ# file form. no. L record no. form. Lmatrix var. 1 expression) ...

or

stmt. no. MAT READ# file form. no. L record no. form. L matrix var. 1 expr. L expr. 1...

PURPOSE

Reads a matrix from a file, or specified
record within a file. A new working size
may be specified.

COMMENTS

MAT READ# fills the entire matrix in a row-by-row
sequence of elements as: 1,1; 1,2; 1,3; 1,4 ...

Remember that a maximum of 128 numbers may be
transferred on a random read.

5-21

SECTION VI

STRINGS

A string is a set of characters such as "DDDDDE" or 145T,#".
BASIC contains special variables and language elements for
manipulating string quantities. This section explains how
to use the string features of BASIC. There is little dif­
ference in the ,form of statements referencing numeric
quantities and those referencing strings. One important
difference, however, is the use of subscripts which is
explained later.

Lower-case alphabetic characters can be input from or out­
put to user terminals having this capability. When lower­
case characters are output to a terminal not capable of
printing them, most terminals will print such characters
as the upper case equivalent. Lower-case characters are
automatically converted to upper case by the system, ex­
cept when they occur in strings or REM statements. Lower­
case characters in strings used as file names in ASSIGN
statements or program names in CHAIN statements are also
converted to upper case when used.

The examples and comments in this section emphasize modifi­
cations in statement form or other special considerations
in handling strings.

If you are fami 1i ar wi th the concepts "stri ng, II " stri ng
variable," and "substring," skip directly to liThe String
DIM Statement. II

6-1

DEFINED IN TSB AS:

Typical
Strings:

TERM: STRING

A set of 1 to 72 characters enclosed by
quotation marks or the null string
(no characters).

COMMENTS

IIABCDEFGHIJKLMNOp lI

1112345 11

II BOB AND TOM II

IlMARCH 13, 1970 11

Special purpose characters such as. esc (or
a1t-mode) and quotation marks c.annot be used.
within a string. Quotation marks are used
to delimit a string.

NOTE: Quotation marks are accepted in strings
by the ENTER statement.

Apostrophes and control characters are legal
as string characters.

Strings are manipulated in string variables.
For example:

1~~ A$ = IITHIS IS A STRING II

t t
string string

variable

200 B$ = A$(l,10)
t

string
variable

t
substring
(defined later)

6-2

TERM: STRING VARIABLE

DEFINED IN TSB AS: A variable used to store strings; consists of a
single letter (A to Z) followed by a $.

For example: A$, Z$, M$

COMMENTS

String variables must be declared before
being used if they contain strings longer
than one character. See liThe String DIM
Statement. II

When a string variable is declared, its
I physica1" length is set. The "physica1"
length is the maximum size string that the
variable can accommodate. For example:

710 DIM A$(72),B$(20),C$(5)

During execution of a program, the Ilogica1"
length of a string variable varies. The
Ilogica1" length of the variable is the
actual number of characters that the string
variable contains at any point. For example:

100 DIM A$(72)

200 A$ = "SAMPLE STRING"

300 A$ = "LONGER SAMPLE STRING"

6-3

(Sets physical length of A$)

(Logical length of A$ is 13)

(Logical length of A$ is now 20)

DEFINED IN TSS AS:

TERM: SUBSTRING

A single character or a set of contiguous
characters from within a string variable.
The substring is defined by a subscript
string variable.

COMMENTS

A substring is defined by subscripts placed
after the string variable. Characters within
a string are numbered from the left starting
with one.

Two subscripts specify the first and last
characters of the substring. For example:

100 Z$ = "ABCDEFGH"

200 PRINT Z$(2,6)

prints the substring

BCDEF

A single subscript specifies the first
character of the substring and implies
that all characters following are part
of the substring. For example:

300 PRINT Z$(3)

prints the substring

CDEFGH

6-4

.~

TERM: SUBSTRING, CONTINUED

Two equal subscripts specify a single
character substring. For example:

400 PRINT Z$(2,2)

prints the substring

B

6-5

STRINGS AND SUBSTRINGS

A string can be made into a null string (no
value, as distinguished from a blank space
which has a value). This is done by assign­
ing it the value of a substring whose second
subscript is one less than its first. For
example:

l0t> A$= B$ (6, 5) (A$ now contains a

null string)

This is the only case in which a smaller
second subscript is acceptable in a sub­
string.

Substrings can become strings. For example:

100 A$ = "ABCDEFGH" .~

200 B$ = A${3,5)

300 PRINT B$

prints the string

CDE

because the substring of A$ is now a string
in B$.

Substrings can be used as string variables
to change characters within a larger string.
For example:

10rt' A$ = "ABCDEFGH"

200 A${3,5) = "123 11

300 PRINT A$

6-6

STRINGS AND SUBSTRINGS, CONTINUED

prints the string

AB123FGH

Strings, substrings, and string variables
can be used with relational operators. They
are compared and ordered as entries are in a
dictionary. For example:

100 IF A$ = B$ THEN 2~~~

200 IF A$ ~ "TEST" THEN 3000

300~ IF A$(5,6) ~ B$(7,8) THEN 4000

See STRI NG IF.

6-7

EXAMPLES:

GENERAL FORM :

THE STRING DIM STATEMENT

35 DIM A$ (72), 8$(60)
40 DIM Z$ (10)
45 DIM N$ (2), R(5,5), P$(8)

statement number DIM string variable i .number of characters in string 1

PURPOSE

Reserves storage space for strings longer than 1 character;
also for matrices (arrays).

COMMENTS

The number of characters specified for a string in its DIM
statement must be expressed as an integer from 1 to 72.

Each string having more than 1 character must be mentioned
in a DIM statement before it is used in the program.

Strings not mentioned in a DIM statement are assumed to
ha ve a 1ength 0 f 1 character.

The length mentioned in the DIM statement specifies the max­
imum number of characters which may be assigned; the actual
number of characters assigned may be smaller than this number.
See liThe LEN Function" in this section for further detail s.

Matrix dimension specifications may be used in the same DIM
statement ~s string dimensions (example statement 45 above).

6-8

THE STRING ASSIGNMENT STATEMENT

NOTE: These strings have been mentioned in a DIM statement

EXAMPLES:

GENERAL FORM:

20~ LET A$ = "TEXT OF STRING"
21~ B$ = "*** TEXT !!!"

220 LET C$ = A$(l,4)
230 D$ = B$(4)

24~ F$(3,8)=N$

~
"

sta tement number LET string variable ~ .:. string value II

or

stat.ement !lumber LJ:T .string variable ~ string or substring variable

or

statement number string variable.:. .:. string value II

or

statement number string variable ~ string.or substring variable

PURPOSE

Establishes a value for a string; the value may be a literal
value in quotation marks, or a string or substring value.

COMMENTS

Strings contain a maximum of 72 characters, enclosed by
quotation marks. String variables having more than 1
character must be mentioned in a DIM statement.

Special purpose characters, such as + or (~ or alt-mode)

may not be string characters.

If the source string is longer than the destination string,
the source string is truncated at the appropriate point.

6-9

THE STRING INPUT STATEMENT

NOTE: These string variables have been mentioned in a DIM

statement.

EXAMPLES:

GENERAL FORM:

50 INPUT R$
55 INPUT A$,B$, C9, 010
60 INPUT A$(l,5)
65 INPUT B$ (3)

statement number INPUT string or substring variable •••

PURPOSE

Allows string values to be entered from the teleprinter.

COMMENTS

Placing a single string variable in an INPUT statement allows the string
value to be entered without enclosing it in quotation marks~

If multiple string variables are used in an INPUT statement, each string
value must be enclosed in quotation marks, and the values separated by
commas. The same convention is true for substring values. Mixed string
and numeric values must also be separated by commas.

If a substring subscript extends beyond the boundaries of the input
string, the appropriate number of blanks are appended.

Numeric variables may be used in the same INPUT statement as string
variables (example statement 55 above).

NOTE: The ENTER statement (Section III) can be used to input a charac­
ter string. When using the ENTER statement for character strings,
the string being entered should not be enclosed in quotation marks,
but may contain quotation marks.

6-10

EXA~1PL ES:

GENERAL FORM:

PRINTING STRINGS

105 PRINT A$

110 PRINT A$, B$, Z$

115 PRINT C$(8) IIEND OF STRING II B3

120 PRINT C$(1,7)

130 PRINT liTHE TOTAL IS: ";X5

statement number PRINT string or substring variable L. string or substring variable •••

PURPOSE

Causes the current value of the specified string or substring

variable to be output to the teleprinter.

COMMENTS

String and numeric values may be mixed in a PRINT statement

(example statements 115 and 130 above).

Specifying only one substring parameter causes the entire

subs tring to be prin ted. Fo r ins tance, if C$ = II WHAT IS

YOUR NAME?", example statement 120 prints:

WHAT IS

while statement 115 prints

YOUR NAME?END OF STRING 642

Numeric and string values may be " packed" in PRINT statements

wi thout us in g a II; II, as in exampl e statement 115.

OC and NC generate a return and linefeed respectively when

printed as string characters.

NOTE: The PRINT USING statement (Section VIII) can be used to provide
greater control of format over strings and substrings.

6-11

READING STRINGS

-------------------------~
EXAMPLES:

GENERAL FORM:

30" READ C$
305 READ X$, Y$, Z$
310 READ Y$(5), A,B,C5,N$
31 5 READ Y$(1,4)

statement number READ string or substring variable .L string or substring variable -!. •••

PURPOSE

Causes the value of a specified string or substrina vari­
able to be read from a DATA statement.

COMMENTS

A string variable (to be assigned more than 1 character)
must be mentioned in a DIM statement before attempting
to READ its value.

String or substring values read from a DATA statement
must be enclosed in quotation marks, and separated by
commas. See "Strings in DATA Statements" in this section.

Only the number of characters specified in the DIM statement
may be assigned to a string. Blanks are appended to sub­
strings extending beyond the string dimensions.

Mixed string and numeric values may be read (example state­
ment 310 above); see "The TYP Function," Section IV for des­
cription of a data type check which may be used with DATA
statements.

6-12

EXAMPLES:

GENERAL FORM:

STRING IF

34~ IF C$<O$ THEN 80~

350 IF C$>=O$ THEN 90~

360 IF C$#O$ THEN 1000
370 IF N$(3,5)<R$(9) THEN 500
380 IF A$(10)=IENO" THEN 400

statement no. IT string variable relational opere string var. THEN statement no.

PURPOSE

Compares two strings. If the specified condition is true,
control is transferred to the specified statement.

COMMENTS

Strings are compared one character at a time, from left
to right; the first difference determines the relation.
If one string ends before a difference is found, the short~

er string is considered the smaller one.

Characters are compared by their ASCII representation. (See
STRING EVALUATION BY ASCII CODES, Section IX.)

If substring subscripts extend beyond the length of the
string, null characters (rather than blanks) are appended.

String compares may appear only in IF ... THEN statements and not in
conjunction with logical operators (Section VII).

6-13

EXAMPLE:

GENERAL FORM:

THE LEN FUNCTION

469 PRINT LEN (A$)
479 PRINT LEN (X$)
489 PRINT IlTEXT Il ; LEN{A$); B$, C
499 IF LEN (P$) #5 THEN 6~~

5~9 IF LEN (P$) = 5 THEN 6~9

519 IF LEN (P$) =5 OR LEN (P$) = 10 THEN 10
529 LET X${LEN(X$)+l) = "ADDITIONAL SUBSTRING"

6~0 STOP
6~9 PRINT "STRING LENGTH = "; LEN (P$)

statement number statement type LEN i string variable 1 ...

PURPOSE

Supplies the current (logical) length of the specified
string, in number of characters.

COMMENTS

DIM merely specifies a maximum string length. The LEN
function allows the user to check the actual number of
characters currently assigned to a string variable.

Note that LEN is a directly executable command (See
Section III), while LEN (... $) is a pre-defined function
used only as an operand in a statement. The LEN command
gives the working program length; the LEN function gives
the current length of a string.

6-14

EXAMPLES:

GENERAL FORM:

STRINGS IN DATA STATEMENTS

500 DATA "NOW IS THE TIME."
510 DATA II HOW II , "ARE II , IIYOU, II
520 DATA 5.172, "NAME?", 6.47,5071

DATA II. II II. IIstatement number str~ng text _ ..!.. _ str~ng text _ •••

PURPOSE

Specifies data in a program (numeric values may
also be used as data).

COMMENTS

String values must be enclosed by quotation
marks and separated by commas.

String and numeric values may be mixed in a
single DATA statement. They must be separated
by commas (example statement 520 above).

Strings up to 72 characters long may be stored
in a DATA statement.

See liThe TYP Function," Section IV, for
description of a data type (string, numeric)
check which may be used with DATA statements.

6-15

EXAMPLES:

GENERAL FORM:

PRINTING STRINGS ON FILES

350 PRINT #5; "THIS IS A STRING. II

355 PRINT #8; C$, B$, X$, Y$, D$
360 PRINT #7,3; X$, P$, "TEXT", 27.5,R7
365 PRINT #N,R; P$, N, A(5,5), "TEXT"

if the number of characters is even;

statement number PRINT# file number L record number formula !..... string variable

or

statement number PRINT# file number formula L record number formula!..... :.- string text :.­

or

statement number PRINT# file number formula !..... string variable or substring variable •.•

PURPOSE

Prints string or substring variables on a file.

COMMENTS

String and numeric variables may be mixed in a single file
or record within a file (example statement 360 above).

The formula for determining the number of 2-character words
required for storage of a string on a file is:

1 + number of characters in string
2

1 + number of characters in string + 1 if the number of characters is odd.
2

See liThe TYP Function,1I Section IV for description of a data type check.

6-16

READING STRINGS FROM FILES
r· ...

EXAMPLES:

GENERAL FORM:

71~ READ #1, 5; A$, B$
715 READ #2; C$, A1, B2, X
72~ READ #3,6; C$(5),X$(4,7),Y$
730 READ #N,P; C$, V$(2,7),R$(9)

statement no. READ# file no. formula...!... record no. formula .i. string or substring variable •••

or

statement no. READ# file no. formula .i. string or substring variable ••.

PURPOSE

Reads string and substring values
from a fi 1e.

COMMENTS

String and numeric values may be
mixed in a file and in a READ#
statement; they must be separated
by commas.

See liThe TYP Function ll
, Section IV

for description of a data type check.

6-17

SECTION VII

LOGICAL OPERATIONS

Logical evaluation simply determines whether a given statement or
expression is true or false. When applied to numeric values, any non­
zero expression is considered "true"; a value of zero is considered
"false."

When an expression or statement is logically evaluated by the TSS sys­
tem, it is assigned one of two numeric values -- a 1 if the expression
or statement is logically "true," or a 0 if the expression or statement
is logically "false."

Logical decisions are used to select one of two or more paths of exe­
cution through a program. Executing an IF statement, described in this
section, causes the system to perform a specified statement next if the
condition in the IF statement is true, and a different statement if the
condition is false.

The truth or falsity of a statement or expression can also be deter­
mined and printed as a 1 for true or a 0 for false.

7-1

RELATIONAL OPERATORS

There are two ways to use the relational operators in logical evalu­
ations:

1. As a simple check on the numeric value of an expression.

EXAMPLES: 150 IF B=7 THEN 600
200 IF A9#27.65 THEN 700
300 IF (Zj10»=0 THEN 800

When a statement is evaluated, if the IIIF" condition is currently true
(for example, in statement 150, if B=7), then control is transferred to
the specified statement. If the condition is false, the next sequential
statement after 150 is executed.

Note that the numeric value produced by the logical evaluation is unim­
portant when the relational operators are used in this way. The user is
concerned only with the presence or absence of the condition indicated
in the IF statement.

2. As a check on the numeric value produced by logically
evaluating an expression, that is: lItruell = 1, "false" = 0.

EXAMPLES: 610 LET X=27
615 PRINT X=27
620 PRINT X#27
630 PRINT X>=27

The example PRINT statements give the numeric values produced by logical
evaluation. For instance, statement 615 is interpreted by TSB as IIPrint
1 if X equals 27, 0 if X does not equal 27. 11 There are only two logical
alternatives; 1 is used to represent "true," and 0 "false. 1I

7-2

RELATIONAL OPERATORS CONTINUED

The numeric value of the logical evaluation is dependent on, but dis­
tinct from, the value of the expression. In the example above, X
equals 27, but the numeric value of the logical expression X=27 ;s 1,
since it describes a "true" condition.

7-3

BOOLEAN OPERATORS

There are two ways to use the Boolean operators.

1. As logical checks on the value of an expression or expressions.

EXAMPLES: 510 IF A1 OR B THEN 670
520 IF B3 AND C9 THEN 680
530 IF NOT C9 THEN 690
540 IF XTHEN 700

Statement 510 is interpreted: "if either A1 is true (has a non-zero
value) or B is true (has a non-zero value) then transfer control to
statement 670."

Similarly, statement 540 is interpreted: lIif X is true (has a non­
zero value) then transfer control to statement 700."

The Boolean operators evaluate expressions for their logical values
only; these are "true ll = any non-zero value, "false" = zero. For ex­
ample, if B3 = 9 and C9 = -5, statement 520 would evaluate to IItrue,1I
since both B3 and C9 have a non-zero value.

2. As a check on the numeric value produced by logically evaluating
an express ion, that is: II true II = 1, "fa1se" = 0.

EXAMPLES: 490 LET B = C = 7
500 PRINT BAND C
510 PRINT C OR B
529) PRINT NOT B

Statements 500 - 520 returns a numeric value of either: 1, indicating
that the statement has a logical value of "true,1I or 0, indicating a
logical value of IIfa1se."

7-4

BOOLEAN OPERATORS CONTINUED

Note that the criteria for detenmining the logical values are:

true = any non~zero expression value

false = an expression value of ~.

The numeric value 1 or ~ is assigned accordingly.

7-5

SOME EXAMPLES

These examples show some of the possibilities for combining logical
operators in a statement.

It is advisable to use parentheses wherever possible when combining
logical operators.

EXAMPLES: 310 IF (A9 MIN B7)<0 OR (A9 MAX B7»100 THEN 900
310 PRINT (A>B) AND (X<Y)
320 LET C = NOT 0
330 IF (C7 OR 04) AND (X2 OR Y3) THEN 930
340 IF (A1 AND B2) AND (X2 AND Y3) THEN 940

The numerical value of "true" or "false" may be used in algebraic oper­
ations. For example, this sequence counts the number of zero values in
a fi 1e:

90 LET X= 0
100 FOR I = 1 TO N
110 READ #1; A
120 LET X= X+(A=0)
130 NEXT I

140 PRINT N; IIVALUES WERE READ. II

150 PRI NT X; "WERE ZEROES. II
160 PRINT (N-X); IIWERE NONZERO. II

Note that X is increased by 1 or 0 each time A is read; when A ~ 0, the
expression A = 0 is true, and X is increased by 1. N must have been
given a value earlier in the program.

J

7-6

SECTION VIII

FORMATTED OUTPUT

The PRINT USING and IMAGE statements give the user
more explicit and exact control over the format of
his output. Numbers can be printed in three
forms--integer, fixed-point, or floating point-­
with control of + and - signs. Strings may be
printed in specified fields. Blanks can be inserted
wherever needed. Carriage return and linefeed can
be controlled, and lines longer than 72 characters
can be printed. PRINT USING requires more pro­
gramming effort than a simple PRINT, but it prQvides
the ability to output data in whatever format the
programmer needs.

8-1

Term

FORMATTED OUTPUT

EXPRESSION LIST

FORMAT STRING

FORMAT SPECIFICATION

FORMAT CHARACTERS

DEFINIT IONS

Defined in TSB as:

Similar to normal output (PRINT statement) except
that, in addition to an expression list of output
values, the PRINT USING statement also specifies
a format string that determines the form in which
the values are printed.

A list of expressions and string variables
separated by commas and optionally interspersed
with space functions. An expression list must
not contain literal strings.

A string of up to 72 characters, consisting of an
optional carriage control character followed by a
list of format specifications separated by commas
or slashes (/).

A series of format characters and repetition
factors that determines the format (field width,
decimal point, sign, etc.) of one item in the
expression list. Can also be a literal string
in certain situations. Format specifications
can be gathered into a repeatable group through
the use of parentheses.

The characters A, X, D, S, ., and E are used to
specify output fields for strings and numbers.

8-2

~'

~.... ,......FV '-

Term

REPETITION FACTOR

SLASH

LITERAL STRING

SPACE FUNCTIONS

DEFINITIONS, CONTINUED

Defined in TSS as:

An unsigned integer (e.g., 3, 6, 12, 32) that is
placed before a format character or group of
format specifications in order to repeat it
(e.g., 3A = AAA; 2(3A,4A) = 3A,4A,3A,4A). The
repetition factor must be between 1 and 72
inclusive.

A delimiter (I) used to separate specifications
when a carriage return-linefeed is desired before
processing the next specification. Multiple
slashes may be used (III).

Any sequence of characters, other than quote
marks (II), that is surrounded by quote marks
and is to be printed as it appears.

Three functions can appear in an expression list:

TAB(x) - Tabs out to column x before printing
next item.

LIN(x) - Skips Ixl lines before printing next
item. (If x<O, no carriage return
is generated. If x=O, only a carriage
return is generated.)

SPA{x) - Skips x spaces before printing next
item.

8-3

DEFINITIONS, CONTINUED

Term Defi ned in TSS as:

CARRIAGE CONTROL CHARACTERS At the beginning of any format string there may
appear one of three optional characters set off
by a comma:

+ means to suppress linefeed.
- means to suppress carriage return.
means to suppress carriage return and linefeed.

These characters specify action to be taken after
the PRINT USING statement is complete. If no
character is specified, the default condition is
a carriage return and linefeed.

8-4

SUMMARY

FORMAT CHARACTERS
&REPETITION FACTORS

yo

FORMAT SPECS

CARRIAGE CONTROL
CHARACTERS

,

DELIMITERS: / and , I
~--------.,v---------

FORMAT STRING

PRINT USING 1 ~ I EXPRESSION LIST

__________,,_--------.ifJ

PRINT USING STATEMENT
FORMATTED OUTPUT

EXAMPLES: PRINT USING "000.000"
'---v---'

FORMAT STRING

PRINT USING "2X,3(3D.3D,2X)"
'----v----JI

FORMAT STRING

8-5

Zl
'----v---/

EXPRESSION LIST

Zl,Z2,Z3
--__v,_--J'

EXPRESSION LIST

STRING FORMAT SPECIFICATIONS

FORMAT CHARACTERS USED:

A - calls for one ASCII character to be output from a
string in the expression list.

X - specifies that a blank be printed next.
nA - calls for n ASCII characters (n = repetition factor).
nX - specifies that n blanks be printed.

COMBINATION RULES:

Any combination of XiS, Als, and repetition factors
specifies a legal STRING FORMAT SPECIFICATION. When
such a specification is encountered in a format, the
next item in the expression list must be a string.

FORMAT EXAMPLES

AAAA }
4A

2A2A
4X

AXAXAXA
2X20A

equivalent

special case (all blanks, so no variable
required)
alternate characters and blanks

OUTPUT EXAMPLES

Format Spec

6A
SA
8A

2X6A
AXAXAXAXAXA

Contents of
String Variable

ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF

8-6

Format of Output

ABCDEF
ABCDE
ABCDEF""
""ABCDEF
A"B"C"D"E"F

STRING FORMAT SPECIFICATIONS, CONTINUED

COMMENTS

The string is left-justified in the field and any leftover spaces
are filled with blanks. If the string variable contains more
characters than the specification allows, characters on the right
are truncated.

8-7

equivalent

INTEGER FORMAT SPECIFICATIONS

FORMAT CHARACTERS USED:

D - calls for one decimal digit to be printed from a number
in the expression list.

nD - calls for n contiguous decimal digits to be printed
from a number in the expression list.

X - specifies that a blank is to be printed within the
field for the number (nX is also allowed).

S - specifies that the sign (+ or -) of the number is to
be printed.

COMBINATION RULES:

Any combination of Xand D is allowed, but at least one
Dmust be present and only one S is allowed. When such
a specification occurs in a format, the next item in the
expression list must be a number. This number is rounded
to an integer and printed right-justified. Although the
requested number of digits will be printed, only six can
be guaranteed to be significant.

FORMAT EXAMPLES

DDDD
4D
2DDD
2D20
2DX3D
SDDD
S4D
DX3DS

8-8

INTEGER FORMAT SPECIFICATIONS, CONTINUED

OUTPUT EXAMPLES
Format Spec

40
S4D
40S
50

40
DXDDO
S10D
DSDDO
50

40

Value
1234
1234
1234
1234
1234.8
1234
1234
1234
-1234
1234.2

COMMENTS

Format of Output
1234
+1234
1234+
,,1234
1235
1,,234

""""",,+1234
1+234
-1234
1234

If there is not enough room ;n the field for the number (i.e.,
the number of digits is greater than the number of DIs in the
format spec), then the value ;s printed on a separate line in
a floating-point format (SD.5DE) so that the programmer can
analyze what went wrong.

If an S precedes all DIs, the sign is printed immediately
preceding the first digit of the number. If an S appears past
the first 0, the sign is printed at the location of the S.

If an S is not included in the format, then an extra D should
be provided if the value could possibly be negative. When the

value is negative, the - sign is always printed preceding the
most significant digit and a space must be provided for it with a
Dor the field may overflow.

The- ability to insert blanks can be combined with the ability to
overprint (carriage control) in order to produce useful results.
For example, large numbers can be printed with blanks left in

the correct spots for commas to be inserted after each group of
three digits (e.g., $10,937).

8-9

equivalent

FIXED-POINT FORMAT SPECIFICATIONS

FORMAT CHARACTERS USED:
Same as INTEGER FORMAT, plus
. - specifies the location of the decimal point.

COMBINATION RULES:
Any combination of Dand X to the left and right of the
decimal point is allowed, but at least one Dmust be
present and only one S and one 11.11 are allowed. For
this specification, the next item in the expression list
must be a number. The digits to the right of the decimal
point are rounded to fit in the field. Leading zeros
to the left are suppressed, but trailing zeros are
always printed.

FORMAT EXAMPLES

DOD.DDD
DDD.3D
30.30
3D. ODD
S3D.30
DXDXDX.DDXD
XD6X4D.8D
DDSDD.3D

OUTPUT EXAMPLES

Format Spec
30.40
4D.2D
4D.3D
S0020.0
S2D.4D
S.40
0.4D
20.40

Value
465.465
465.465
-465.465
465.465
.465
.465
-.465
-.465

8-10

Format of Output
465.4650
,,465.47
-465.465
,,+465.5
,,+0.4650
+.4650
-.4650
-0.4650

FIXED-POINT FORMAT SPECIFICATIONS, CONTINUED

COMMENTS

If the number to be printed has no digits to the left of the
decimal point but D's are provided to the left, then a zero ("0")
will be printed in the rightmost Don the left side. If an S
is provided to the left, it is moved to the right through D's
and XiS until it comes to the first non-blank character. If
an S is not provided and the number is negative, then one of
three things will happen: 1) no D's to the left causes
overflow; 2) one D to the left will be used for the "_" sign
and the "0" will not be printed; or 3) two or more D's to
the left, then the "_" and "0" .wil1 be printed in the positions
reserved by the rightmost two D's.

8-11

,

FLOATING-POINT FORMAT SPECIFICATIONS

FORMAT CHARACTERS USED:

Same as FIXED-POINT FORMAT, plus
E - signifies floating point format.
X - as defined earlier may follow E.

COMBINATION RULES:

Any legal INTEGER or FIXED-POINT format specification
followed by an E is a legal FLOATING-POINT format. The
E stands for "exponent" and signifies a four-character
field consisting of an "E" followed by "+11 or "_" and
two decimal digits. When 10 is raised to the power
printed after E and multiplied by the number in the
integer or fixed-point field, the result is the value
being output. This format is useful for numbers that
are very large or very small. For example, .00005 =

.5 x 10-4 = .5E-4. XiS may follow the E and they cause
Blanks to be printed between the E and the exponent sign.

FORMAT EXAMPLES

SD.5DE
DDD.DDDXEX
SD.8DXE
S6DE

S6D.E
S6D.XE
S6D.DDDE

OUTPUT EXAMPLES

Format Spec
SDXE
DDDD.DDE
S5DX.X5DEX
SD.5DE
S.10DE3X

Value
4.82716 x 1021

same
same
same
same

8-12

Format of Output
+5", E+21
4827.16E+18
A",,,,+48,,,.,,,27159E,,,+20
+4.82716E+21
+.4827159382E"''''A+22

FLOATING-POINT FORMAT SPECIFICATIONS, CONTINUED

COMMENTS

Note again that the format can specify an unlimited number of
digits in a specification, but only six of these are guaran­
teed accurate. When more than six digits are requested,
non-significant digits are printed as in the preceding examples.

To produce the output, the output value from the expression
list is multiplied or divided by 10, the number of times
necessary to fit the value into the field. It is then
rounded from the right, and the exponent is adjusted to
account for the multiplications or divisions.

If the format allows for more digits than there are significant
digits in the output value, two rules are followed:

1) If there are more than 6 Dis on the right side of
the decimal point, the leftmost diqit is printed
in the first 0 (if any) to the left of the decimal
point or the first 0 to the right of the decimal
point; extra Dis beyond 7 on the right are filled
with non-significant digits. In the following
examples, the arrow indicates the position of the
leftmost digit printed:

00.400
t

XX.00400
t

4000.400
t

2) If there are less than 7 Dis on the right side of
the decimal point, the leftmost digit is printed in
the seventh 0 position from the right (or the leftmost
if there are not 7). In the following examples, the
arrow indicates the position of the leftmost digit
pri nted:

60000.0000
t

00.00
t

8-13

0.60
t

POSITION OF THE SIGN

1. When S is used.

If S precedes any D, the sign position is moved to
the right through XiS and Dis and is printed
immediately to the left of the first non-blank
character. If the number to be printed is a
fraction with no digits to the left of the decimal
point and any Dis appear on the left of the decimal
point, then a "Oil appears in the rightmost Dand
the sign floats up to that "0".

If S is preceded by one or more DiS, the sign is
printed at the position of the S and does not
float.

2. When S is not used.

When the number is negative, an extra Dmust be
present to reserve a place for the sign. The
position of the sign is moved through unused Dis
and XiS to the first non-blank character. If
not enough Dis are provided for all the significant
digits and sign of a negative number, then the
field overflows and the number is printed on a
separate line in SD.5DE format.

8-14

(Ii""
\

GROUPED FORMAT SPECIFICATIONS

One or more format sp~cifications can be gathered within
parentheses to make a group. This group must be repeated
by prefacing it with a repetition factor between 1 and 72
inclusive. Within the parentheses, the specifications
must be separated by commas or slashes and the group must
be set off from other specifications by a comma or slashes,
just as if it were a single specification. Groups can be
nested two levels deep.

EXAMPLES
4(lOA,2X,4D,2X//)
3(lOD,2(3DX,4DX),4A)
3D.3D//3(20A,6D,4(2A2X)/)

FORMAT STRINGS

DEFINED IN TSB AS:

EXAMPLES

A collection of format specifications
(or groups of format specifications)
set off by commas or slashes and
optionally preceded by a carriage
control character set off by a comma.
One format string is used by one PRINT
USING statement. The first character
of a format string must not be a slash
(/) or a comma.

+,20A,2X,S4D.2D
6D,2X,6DSX,13AXAX,2(4D,2X,3AX)
-,20A/20X20A/40A20X/

8-15

TERM: EXPRESSION LIST

DEFINED IN TSB AS: The list of items to be printed using the
format string. The items must be sepa­
rated by commas (not semicolons), and the
list must not contain any literal strings.
The types of the items (numerical or
string) must match the types of items
called for in the format string. Space
functions (SPA,LIN,TAB) may appear in the
list.

8-16

~
\

EXAMPLES:

GENERAL FORM:

PRINT USING

~~0 PRINT USING 2~~;A,B4,C$,TAB(50),67.78

400 PRINT USING A$;A,A3,C$,D$
500 PRINT USING 16DX,25A";A,A$

statement number PRINT USING format string; expression list

PURPOSE

To print out data according to a specified format.

COMMENTS

The format string can be specified in one of three ways:

a. an actual string (16D,X20A")
b. a string variable containing the format string (A$,B$(5,20))
c. the statement number of an IMAGE statement containing

the format string (200).

The expression list is a list of expressions separated by
commas; the semicolon and expression list are optional.

When the PRINT USING statement is executed, the format string
is examined and the carriage control character, if any, is
saved. Each specification is extracted and examined. If it
calls for a string or numerical item, the next expression in
the expression list is taken and printed according to the
specification.

If there are no more specifications or the specification is
of the wrong type, execution of PRINT USING terminates.

If the specification does not require an item from the
list (e.g., a blank or literal specification), the speci­
fication is printed without examining the expression list.

8-17

PRINT USING, CONTINUED

If the end of the format string is reached before the end of
the expression list, processing continues from the beginning
of the format string.

When all expressions have been printed, a carriage return and
1inefeed (modified by the carriage control character) are
printed.

EXAMPLES

In these examples, the variables have these values: A= +12345,
B = -1234, C = 123, D= 12, E = -12345, F = 123456, G = -1, H = 1234.

100 PRINT USING "3(S6D2X)/ ";A,B,C,D,E,F

Output

~+12345AAAA-1234AAAAA+123

AA~~+12AAA-12345AA+123456

100 PRINT USING 13(S6D2X)/";A,G

Output

50 IMAGE "MONEY ",6DX,"COST ",6DX,"INPUT ",6DX
100 PRINT USING 50;H,D

Output

8-18

EXAMPLES:

GENERAL FORM:

MAT PRINT USING

200 MAT PRINT USING 300;A,B,SPA(M),C
350 MAT PRINT USING A$; B,N,M
400 MAT PRINT USING "SD.5DE2X Il ;K

statement number MAT PRINT USING format string i matrix list

PURPOSE

To print out data from matrices in a specified format.

COMMENTS

The format string is the same as in PRINT USING except that
it must not contain any string specifications.

The matrix list ;s a list of matrices separated by commas.
(The semicolon and matrix list are optional.) Space
functions are allowed in the matrix list.

As in MAT PRINT, the matrices are printed in row by row
order.

EXAMPLE

1~ DIM A(5,5)
.

100 PRINT USING "6(SD.5DE)/";A

8-19

FORMAT IN A STRING VARIABLE

One way to specify the format string in a PRINT USING
or MAT PRINT USING statement is by using a string
variable that contains the format string. This allows
the programmer to change the format during the execution
of the program. The following excerpt from a sample
program shows what can be done:

100 LET A$ = "00,,,,,,,,,,,,,,,,00"

110 IF X<Y THEN 130
120 A$(4,8) = "SO.E,"
130 PRINT USING A$;

If X is not less than Y, then the format string becomes

OO,SO.E,OO

instead of

00,00

8-20

EXAMPLES:

GENERAL FORM:

IMAGE

100 IMAGE 6D,"LITERAL STRING Il ,SD.5DE
200 IMAGE XDDXDD.DDE,20A,3D

statement number IMAGE format string

PURPOSE

To specify a format to be used in a PRINT USING statement.

COMMENTS

An IMAGE statement is the one means by which a literal
string can be introduced into a format string. Literal
strings are printed exactly as they appear in the format
string, similar to the way blanks are printed in a blank
specification.

The format string is any legal format string; it is not
enclosed in quotes and can therefore contain literal
strings as format specifications.

8-21

USING CARRIAGE CONTROL

This example demonstrates the use of the LIN function
(statement 5), the carriage control characters (state­
ments 20, 40, and 60), and literal strings in IMAGE .
statements.

PROGRAM

5 PRINT LIN(5)
10 PRINT USING 20
20 IMAGE #,"# II

30 PRINT USING 4~

40 IMAGE -,"SUPPRESSES LINEFEED AND CARRIAGE RETURN"
50 PRINT USING 60
60 IMAGE+,"- SUPPRESSES CARRIAGE RETURN"
70 PRINT USING 8~

80 IMAGE "AND + SUPPRESSES LINEFEED."
9~ END

OUTPUT

SUPPRESSES LINEFEED AND CARRIAGE RETURN
AND + SUPPRESSES LINEFEED. - SUPPRESSES CARRIAGE RETURN

8-22

NUMERICAL OUTPUT

This example program prints out the values of 2tN and {-2)tN,
where N varies from -5 to 20. Floating-point and integer for­
mats are used (statement 350) .

. PROGRAM

200 PRINT USING 210
210 IMAGE II N 1I,3X,1I2 TO THE N",3X,II_2 TO THE Nil
300 FOR N=-5 TO 20
350 PRINT USING 1130,2X,SO.5DE,2X,SO.5DE II ;N,2tN,(-2}tN
360 NEXT N
1000 END

~
OUTPUT

N 2 TO THE N -2 TO THE N
-5 +3. 1250fl)E-02 -3. 1250fl)E-02
-4 +6. 25000E-02 +6.25000E-02
-3 +1.25000E-01 -1.25000E-01
-2 +2. 50000E-01 +2. 50000E-01
-1 +5.00000E-01 -5.00000E-01
0 +1.00000E+00 +1.00000E+00
1 +2. 00000E+00 -2.fl)fl)000E+00
2 +4. 00000E+00 +4. 00000E+00
3 +8. 00000E+00 -8.0fl)000E+00
4 +1.6~~~~E+~1 +1.6~~~~E+~1

5 +3.2~~~~E+~1 -3.2~~~~E+~1

6 +6.4~~~~E+~1 +6.4~~~~E+~1 L

7 +1. 28~~~E+~2 -1.28~~~E+~2

8 +2.56~~~E+~2 +2.56~~~E+~2

~
9 +5. 120fl)0E+02 -5. 1200fl)E+02

10 +1.02400E+03 +1.02400E+03

8-23

NUMERICAL OUTPUT, CONTINUED

11 +2.~48~~E+~3

12 +4.~96~~E+~3

13 +8.19200E+03
14 +1.63840E+04
15 +3.27680E+04
16 +6.55360E+04
17 +1.31072E+05
18 +2.62144E+05
19 +5. 24288E+05
20 +1.04858E+06

-2. 04800E+03
+4. 09600E+03
-8.192~0E+03

+1.63840E+04
-3. 27680E+04
+6. 55360E+04
-1.31072E+05
+2.62144E+05
-5. 24288E+05
+1.04858E+06

8-24

REPORT GENERATION

This program is a sample report generator. It first requests a school number
from the tenminal, then reads and prints out information about the school's
teachers from a file. Note that a carriage control character is used to
advantage (statement 100), slashes (/) are used (statement 200), string and
fixed-point fields are used (statement 210), and an error occurs in the out­
put for the eight teacher (number too large for field; therefore, it is
printed in E format on a separate line).

PROGRAM

10 REM THIS PROGRAM GENERATES A REPORT ON TEACHERS.
50 DIM A$[25],B$[19],C$[19]
60 FILES SCH1,SCH2,SCH3,SCH4,SCH5
100 IMAGE#,"ENTER SCHOOL NUMBER:"

~ 150 IMAGE"TEACHER", 13X, "SUBJECTII, 13X, II SALARY II ,4X, II ATTND. II

175 IMAGE 1- 1,13X,1 1,13X l ",4x,1 "/

200 IMAGEIICENTRAL CITY SCHOOL DISTRICT"/"DAILY REPORT OF 1I,25A//
210 IMAGE 20A,20A,1$",DDD.DD,DD.DDDD
230 PRINT USING 100
250 INPUT Z
260 READ #Z;A$,N
270 PRINT LIN(6)
500 PRINT USING 200;A$
550 PRINT USING 150
555 PRINT USING 175
557 FOR Al=l TO N
560 READ #l;B$,C$,A,B
600 PRINT USING 210;B$,C$,A,TAB(50),B
620 NEXT Al
1000 END

8-25

REPORT GENERATION, CONTINUED

OUTPUT

ENTER SCHOOL NUMBER:?l

CENTRAL CITY SCHOOL DISTRICT
DAILY REPORT OF B. BAKER HIGH SCHOOL

TEACHER SUBJECT SALARY ATTND.------- ------- ------ ------

MISS BROOKS ENGLISH $4591.34 12.5919191
MISS CRABTREE REM. READING $49191.9191 64.32~91

MISS GRUNDIE HISTORY $3591.9191 1.~9119J

MRS. HUMPREY SPELLING $7091.9191 99.999191
COLONEL MUSTARD CRIMINOLOGY $79191.9191 21.459191
MISS PEACH LIFE PREPARATION $232.9191 23.23291
PROF. PLUM AGRICULTURE $777.77 65.091591
MISS H. PRYNNE SOCIAL STUDIES $19191.25
+5. 91915910E+912

MISS SCARLETT P.E. $205.191 25.91919191

MR. SIR HOME ROOM $8991.9191 99.9919191
MR. T. TIM MUSIC $ 191.99 91.059191
MR. WEATHERBY ECONOMICS $767.99 191.049191

8-26

FATAL ERRORS

These errors cause termination of execution of the PRINT USING
statement. An appropriate message is printed, along with the
format specification that caused the error.

1. The replicator is outside the range 1~n~72.

2. Appearance of a D,S,E or . in a string specification.

3. Appearance of an A in an integer specification, a fixed
specification, or a floating specification.

4. Appearance of any character other than A,X,D,S,E,j or . in
any specification but literal.

5. A comma followed by a slash.

6. More than two levels of parentheses.

7. No 0 in a fixed or floating specification.

8. An S in a blank specification.

9. String expression attempted to output in non-string format.

10. A slash followed by a comma.

11. Two or more E's or . in a specification.

12. Literal string not separated by delimiters.

13. Missing quotes in a literal.

14. Specifications enclosed in parentheses without a replicator.

15. Specified statement is not IMAGE.

16. Attempt to print number with string format.

8-27

NON-FATAL ERRORS

These errors do not cause termination of the PRINT USING
statement. The action taken is indicated.

1. String specification field too narrow -- truncate string
on ri ght.

2. Field too narrow for integer or integer part of fixed
specification -- number is printed in SD.5DE format on
next line and printing resumes on following line.

3. Field too narrow for fraction part of fixed or floating
specification -- round from right to fit into field.

4. Specification requires the printing of more than 46
digits -- 46 digits will be printed preceded by blanks
filling the rest of the field.

5. More than one S -- subsequent SiS are ignored.

8-28

SECTION IX

FOR THE PROFESSIONAL

This section contains the most precise reference
authority -- the syntax requirements of Time Shared
BASIC. The syntax requirements are explicit and
unambiguous. They may be used in all cases to
clarify descriptions of BASIC language features
presented in other sections.

The other subsections give technical information
of interest to the sophisticated user.

9-1

SYNTAX REQUIREMENTS OF TSB

LEGEND

::= "is defined as ... "

< > enclose an element of Time Shared BASIC

LANGUAGE RULES

1. Exponents have 1 or' 2 digit integers only.

2. A <parameter> primary appears only in the defining formula
of a <DEF statement>.

3. A <sequence number> must lie between 1 and 9999 inclusive.

4. An array bound must lie between 1 and 9999 inclusive; a
string variable bound must lie between 1 and 72 inclusive.

5. The character string for a <REM statement> may include
the character ".

6. An array may not be transposed into itself, nor may it be
both an operand and the result of a matrix multiplication.

7. A character string that is not a literal can contain the
character ", through the use of the ENTER statement.

8. A replicator must lie between 1 and 72, inclusive.

NOTE: Parentheses, () , and square brackets [] , are
accepted interchangeably by the syntax analyzer.

9-2

SYNTAX REQUIREMENTS OF TSB

<constant> -

<number> : :=

<decimal number> -

<integer> ·.-·.
<digit> ·.-
<exponent part> -

<literal string> ·.-
<character string> -

<character> -

<number>I+<number>I-<number>l<litera1 string>

<decimal number>l<decima1 number><exponent part>

<i nteger> I<i nteger>. 1< integer>. <i nteger>·I. <i nteg~r>

<digit>l<integer><digit>

E<integer>IE+<integer>IE-integer (see rule 1)

"<character string>"

<character> I<character string><character>
(See Rule 7.)

Any ASCII character except null, line feed,
return, x-off, alt-mode, escape, +, II , and
rubout

<variable> ·.- <simple variable> I<subscripted variable>

~ <simple variable> ·.- <letter> I<letter><digit>

<letter> ·.- AIB!C/DIEIFIGIHIIIJIKILIMINIOIPIQIR!SIT!U1V 1wX y Z

<subscripted variable> ·. <letter>«sub1ist»

<sublist> - <expression> I<expression> ,<expression>

<string variable> - <string simple variable>l<string simple variable>
(<sub1i st>)

<string simple variable> ·.- <1 etter>$

<expression> : := <conjunction> I<expression>OR<conjunction>

<conjunction> - <relation> I<conjunction>AND<re1 ation>

<relation> - <minmax>l<minmax><relational operator><minmax>

<minmax> - <sum> I<minmax>MIN<sum> I<minmax>MAX<sum>

<sum> ·.- <term> I<sum>+<term> I<sum>-<term>

<term> - <subterm> I<term>*<subterm> I<term>/<subterm>
~

<subterm> <denia1>I<signed factor>-

9-3

<denial>

SYNTAX REQUIREMENTS OF TSS, CONTINUED

- <factor> 1NOT<factor>

<signed factor>

<factor>

<primary>

<relational operator>

<parameter>

<functional>

<function identifier>

<pre-defined function>

<source string>

<destination string>

<fi 1e reference>

<fi 1e formu1a>

<record formul a>

<array identifier>

<sequence number>

: :=

· .=

• •=

·.-·.

+<factor>I-<factor>

<primary> I<factor>t<primary>

<variable> l<number>l<functional> I<parameter>
(rule2)1{<expression»

<1<=1=1#1<>1>=1>

<letter>l<letter><digit>

<function identifier>{<expression»j
<pre-defined function>{<expression> 1
LEN (<string simple variable»

FN <letter>

SINlcosITANIATNIEXPILOGIABSISQRIINTIRNO\SGNITYPI
TIM

<string variable>l<literal string>

<string variable>

#<file formula>I#<file formula>,<record formula>

<expression>

<expression>

<letter>

<integer> (see rule 3)

<program statement>

<BASIC statement>

<LET statement>

<sequence number><BASIC statement>carriage return

<LET statement>I<IF statement> I<GOTO statement>
<GOSUB statement>I<RETURN statement>I<FOR statement>
<NEXT statement>I<STOP statement>I<END statement> 1
<DATA statement> <READ statement> <INPUT statement»
<ENTER statement>I<PRINT statement> \
<PRINT USING statement~<RESTORE statement> I
<DIM statement> I<COM statement>I<DEF statement> I
<FILES statement>I<REM statement>I<CHAIN statement> I
<MAT statement> I<ASSIGN statement>

::= LET <leftp~rt><expression>1
LET <destination strin~>=<source string> I
<leftpart><expression> I
<destination string>=<sQurce string>

9-4

SYNTAX REQUIREMENTS OF TSS ,CONTINUED

<leftpart>

<IF statement>

<decision expression>

<comparison string 1>

<comparison string 2>

<GOTO statement>

<sequence list>

<GOSUB statement>

<RETURN statement>

<FOR statement>

<for variable>

<initial value>

.. =

.. =

<variable>=I<leftpart><variable>=

IF<decision expression>THEN<sequence number> I
IF END #<file formu1a>THEN<sequence number>

<expression> I
<comparison string 1><re1ationa1 operator>

<comparison string 2>

<string variable>

<string variable>l<literal string>

GOTO<sequence number>
GOTO<expression>OF<sequence list>

<sequence number> I<sequence 1ist>,<sequence number>

GOSUB<sequence number> I
GOSUB<expression>OF<sequence list>

RETURN

FOR<for variable>=<initia1 value>TO<final value>1
FOR<for variab1e>=<initia1 value>TO<final value>

STEP<step size>

<simple variable>

<expression>

<final value>

<step size>

- <expression>

<expression>

o

<NEXT statement>

<STOP statement>

<END statement>

<DATA statement>

<READ statement>

•• = NEXT<for variable>

STOP

END

DATA<constant> I<DATA statement>,<constant>

READ<variable list>IREAD<file reference> I
READ<file reference>;<variable list>

: : =<variable list>

<read variable>

~ <INPUT statement>

<read variab1e>l<variab1e 1ist>,<read variable>

<variable>l<destination string>

::= INPUT<variable list>

9-5

-- ------------ n_ . h __ ._. • n_ .. . , ,_,_, .

SYNTAX REQUIREMENTS OF TSS CONTINUED

<ENTER statement>

<PRINT statement>

<type statement>

<print 1>

<print 2>

<print 3>

<print expression>

<A part>

<:0 part>

<X part>

<rep1i cator>

<empty>

<string spec. comp.>

<string spec. 1>

<string spec. 2>

<string spec.>

<integer spec. comp.>

<integer spec.>

<fraction spec.>

<fixed spec.>

·.-·.

· .-·.
::=

.. =

.. ­..

ENTER #<variab1e>I
ENTER<expression>,<variab1e>,<variab1e>I
ENTER<expression>,<variab1e>,<string variab1e>1
ENTER #<variab1e>,<expression>,<variab1e>,

<vari ab1e> I
ENTER #<variab1e>,<expression>,<variab1e>,

<string variable>

<type statement>l<fi1e write statement> I
PRINT<fi1e reference>

<print l>l<print 2>

PRINTI<print 2>,I<print 2>;I<print 3>

<print l><print expression>l<print 3>

<type statement><literal string>

<expression>l<specia1 function> I
<source string>

AI <A part> AI <rep1i cator>< A part>

01 <D part> DI <rep1 i catol'>< D par1>

XI <X part> XI <rep1 i catol'><X part>

<integer>

<A part>I<X part>

<string spec. comp.>1
<string spec. comp.><string spec. 1>

<string spec. 1>1
<empty>

<string spec. 2><A part><string spec 2>

<0 part>I<X part> IS I<empty>

<0 part>!<integer spec. comp>
<integer spec.><integer spec. comp.>

<integer spec. comp.>!
<fraction spec.><integer spec. comp.>

<integer spec.><fraction spec.>!
<fraction spec.>.<integer spec.>

9-6

SYNTAX REQUIREMENTS OF TSB, CONTINUED

" <floating spec>

<format list element>

<format 1i st>

<carriage control>

<format string>

<special function type>

<special function>

<expression list>

~ <expression list element>

<PRINT USING 1>

<PRINT USING statement>

<IMAGE statement>

<file write statement>

<write expression>

<RESTORE statement>

<DIM statement>

·.-·.

·.-·.

.. ­.. -

<fixed spec.>EI<integer spec.>EI
<floating spec.><X part>

<string spec.>I<fixed spec.>1
<f1oatin~ spec.>I<integer spec.>1
<x part>l<litera1 string>

<format list element> 1
<format list e1ement>,<format 1ist>1
<rep1icator>«format 1ist»1
<format 1ist>/<format list element> I
<format 1ist>/

+1-1#

<format 1ist>l<carriage control>,
<format 1i st>

TASILINlsPA

<special function type>«expression»

<expression list element> 1
<expression 1ist>,<expression list element>

=<expression>l<specia1 function>

PRINT USINGII<format string>"1
PRINT USING<sequence number> I
PRINT USING<string variable>

<PRINT USING l>;<expression 1ist>1
<PRINT USING 1>

IMAGE<format string>

PRINT<fi1e reference>;<write expression> I
<file write statement>,<write expression> I
<file write statement>;<write expression> I
<file write statement><literal string>(
<file write statement><litera1 striDg>

<write expression>

<expression>IENDI<source string>

RESTOREIRESTORE<sequence number>

DIM<dimspec>I<DIM statement>,<dimspec>

9-7

SYNTAX REQUIREMENTS OF TSB CONTINUED

<COM statement>

<com list element>

<dimspec>

<bound>

<DEF statement>

<FILES statement>

<name>

<REM statement>

<CHAIN statement>

<MAT statement>

<MAT READ statement>

<actual array>

<dimensions>

<MAT INPUT statement>

<MAT PRINT statement>

<MAT PRINT 1>

: :=

.. =

::=

COM<com list element> I
<COM statement>,<com list element>

<simple variable>/<string simple variable> I
<dimspec>

<array identifier>«bpund»/
<array identifier>«bound>,<bound»
<string simple variable>«bound»

<integer> (see rule 4)

DEF<function identifier>«parameter»=<expression>

FILES<name>/FILES $<name>/
FILESt name>/FILES*/
<FILES statement>,~name>1
<FILES statement>,$<name>I
<FILES statement>,*<name>/
<FILES statement>,*

a string of up to 6 printing <character>' s
except comma, and not beginning with 11$11 or
11*"

REM<character string> (see rule 5)

CHAIN<source string>/
CHAIN<source string>,<expression>

<MAT READ statement>/<MAT INPUT statement>/
<MAT PRINT statement>/
<MAT initialization statement>/
<MAT assignment statement>

MAT READ<actual array>/
MAT READ<file reference>;<actual array>
<MAT READ statement>,<actual array>

<array identifier> I<array identifier>«dimensions»

<expression>l<expression>,<expression>

MAT INPUT<actual array> I
<MAT INPUT statement>,<actual array>

<MAT PRINT l>I<MAT PRINT 2>

MAT PRINT<array identifier>/
MAT PRINT<file reference>;<array identifier> I
<MAT PRINT 2><array identifier>

9-8

SYNTAX REQUIREMENTS OF TSS , CONTINUED

<MAT PRINT 2>

<MAT PRINT USING statement>

<MAT PRINT USING 1>

<array identifier list>

<array identifier list element>

<MAT initialization statement>

~ <initialization function>

<MAT assignment statement>
(rule 6)

<mat operator>

<ASSIGN statement>

.. =

.. =

: :=

<MAT PRINT 1>, I<MAT PRINT 1>;

<MAT PRINT USING 1>1
<MAT PRINT USING l>;<array identifier list>

<MAT PRINT USING<II>format string>1I1
<MAT PRINT USING><sequence number> I
<MAT PRINT USING><string variable>

<array identifier list element> I
<array identifier list>,

<array identifier list element>

<array identifier>l<special function>

MAT<array identifier>=<initialization function> I
MAT<array identifier>=<initia1ization function>

«dimensions»

ZERI CON IIDN

MAT<array identifier>=<array identifier> I
MAT<array identifier>=<array identifier>
<mat operator><array identifier>
MAT<array identifier>=INV«array identifier»I
MAT<array identifier>=TRN«array identifier»I
MAT<array identifier>=«expression»*<array

i denti fi er>

+1-1*

ASSIGN<source string>,<expression>,<variable>I
ASSIGN<source string>,<expression>,<variable>,

<source string>

9-9

STRING EVALUATION BY ASCII CODES ~_ ._._d_. _

Each teleprinter character is represented by an A.S.C.I.I.
(American Standard Code for Information Interchange) number.

Strings are compared by their A.S.C.I.I. representation.

The A.S.C.I.I sequence, from lowest to highest is:

Lowest: bell

space 5 J a v

! 6 K b w
II 7 L c x
8 M d y

...r

$ 9 N -e z Highest

% 0 f
. & P 9

~

< Q h
(= R i
) > S j

* ? T k

+ @ U 1

A V m
B W n
C X 0

/ 0 y p

0 E Z q --~

1 F [r
2 G \ s
3 H] t
4 I t U--

9-10

i~':'

MEMORY. ALLOCATION BY A USER

Approximate space available for user allocation: 10,000
2-character words.

SOME EXAMPLES OF USER-DETERMINED ALLOCATION*

a) Introduction of each simple, string, or matrix variable
uses 4 words.

b) A 9 word stack is reserved for GOSUB's.

c) 6 X (maximum level of FOR... NEXT loop nesting)

d) Each file name mentioned in a FILES statement reserves
as many words for buffer space as there are words in
each logical record of the file. Each "*" in a FILES
statement reserves 256 words of BUFFER space; each
file and "*" also reserves 15 words of table space.

e) An approximate estimate of space required for a pro­
gram is:

11 words per BASIC statement
+2X(number of matrix elements dimensioned)
+1/2X(number of string characters used)

Semi compiled programs require slightly more space than that
shown by the LEN command. CATALOG gives the actual length
of CSAVED programs.

*This is variable "system overhead"; it is not included in
word count:s produced by the LEN command.

9-11

,~
'~--.-."

'~
......, . .--

APPENDIX A

HOW TO PREPARE A PAPER TAPE OFF-lINE

To prepare a BASIC program on paper tape for input:

1. Turn teleprinter control knob to IIl0CAl'.

2.

3.

4.

5.

Press the "0N II button (on tape punch).

Press the "HERE IS 11 key; or press @C (control shift II pll) several
times to put leading holes on the tape. The function of the
IIHERE IS 11 key may vary on some teleprinters.

Type the program as usual, following each line with return linefeed.

Press "HERE ISII; or press @C several times to put trailing holes on
the tape.

6. Press the "0FF" button on the tape punch.

COMMENTS

The standard on-line editing features, such as esc, +, and repeating
the same line ntlmber may be punched on tape; ~ must be followed by
return linefeed.

Pressing the "B.SP." (backspace) button on the tape punch, then the
"RUBOUT" key will physically delete the previous character from a paper
tape.

Progr.ams punched onto paper tape in the above manner, or produced by the
PUNCH command, may be input to the system through the paper tape reader
after typing the TAPE command. They may not be input as data using
INPUT or ENTER statements. (See Section II and Appendix B.)

A-l

/~
. !

......_-

~...,••••••

-)
'-~

APPENDIX B

THE X-ON, X-OFF FEATURE

Termi na1s equi pped wi tho the X-ON, X-OFF feature mus t be used if it is
desired to input data from a paper tape while a program is running.

Data is punched on paper tape in this format:

line of data items separated by commas x-off return linefeed

(x-off, return and linefeed are teleprinter keys.)

COMMENTS

Remember that each line of data must end with x-off return linefeed.

The X-OFF character causes the paper tape reader to stop reading tape
~ after each carriage return until more input is requested by the program.

Lines output by PRINT and PRINT USING statements are terminated by the

X-off character.

Programs on paper tape produced by the XPUNCH command are in the correct
format to be input as data strings from terminals with the X-ON, X-OFF
feature. No line of such a program should exceed 72 characters (not
counting X-OFF, carriage return, and 1inefeed), since each must fit into
a single string. Programs produced by XPUNCH are not suitable for input
in TAPE mode (Appendix A) from terminals with the X-ON, X-OFF feature.

B-1

,,--"

I~
\ ',-"

,~
.'_.~

APPENDIX C

DIAGNOSTIC MESSAGES

User Command Error Messages

Error messages are listed below with the command which may invoke them.
The message ILLEGAL FORMAT may be typed in response to many commands.
The message PLEASE LOG IN is typed if a command (other than HELLO) or a
line of syntax is entered from a port on which no user is logged in.

APPEND
INVALID NAME
NO SUCH PROGRAM
ILL-STORED PROGRAM
ENTRY IS A FILE
SEMI-COMPILED PROGRAM
NO COMMON AREA ALLOWED

~ PROGRAM TOO LARGE
UNABLE TO RETRIEVE FROM LIBRARY
SEQUENCE NUMBER OVERLAP

CATALOG
CAN'T READ DIRECTORY

CSAVE
See SAVE.

DELETE
NOTHING DELETED

GET
INVALID NAME
NO SUCH PROGRAM
ILL-STORED PROGRAM
ENTRY IS A FILE
PROGRAM TOO LARGE
UNABLE TO RETRIEVE FROM LIBRARY

C-l

DIAGNOSTIC MESSAGES (continued)

GROUP
See CATALOG.

HELLO
ILLEGAL ACCESS
NO TIME LEFT

KILL
ILLEGAL NAME
NO SUCH ENTRY
FILE IN USE

LIBRARY
See CATALOG.

LIST
RUN ONLY

MESSAGE
CONSOLE BUSY

NAME
ONLY 6 CHARACTERS ACCEPTED
ILLEGAL FIRST CHARACTER

OPEN
NAME TOO LONG
ILLEGAL FIRST CHARACTER
LIBRARY SPACE FULL
SYSTEM OVERLOAD
DUPLICATE ENTRY
UNSUCCESSFUL; KILL AND REPEAT.

PROTECT
PRIVILEGED COMMAND
INVALID NAME
NO SUCH ENTRY

C-2

DIAGNOSTIC MESSAGES (continued)

PUNCH
See LIST.

RENUMBER
SEQUENCE NUMBER OVERFLOW/OVERLAP
BAD PARAMETER

RUN
See Execution Errors.

SAVE
RUN ONLY
NO PROGRAM NAME
NO PROGRAM
OUT OF STORAGE IN LINE n
LIBRARY SPACE FULL
SYSTEM OVERLOAD
DUPLICATE ENTRY
UNSUCCESSFUL; KILL AND REPEAT.

UNPROTECT
See PROTECT.

XPUNCH
See LIST.

Language Processor Error Messages

The following messages are output by the BASIC language processor to indi­
cate errors or possible errors in users' BASIC programs.

C-3

DIAGNOSTIC MESSAGES (continued)

Syntax Errors

One of the following error messages will be typed by the system after the
entry of a BASIC statement with incorrect syntax. In all cases but the
last, the line will be deleted.

OUT OF STORAGE
ILLEGAL OR MISSING INTEGER
EXTRANEOUS LIST DELIMITER
MISSING ASSIGNMENT OPERATOR
CHARACTERS AFTER STATEMENT END
MISSING OR ILLEGAL SUBSCRIPT
MISSING OR BAD LIST DELIMITER
MISSING OR BAD FUNCTION NAME
MISSING OR BAD SIMPLE VARIABLE
MISSING OR ILLEGAL 10FI

MISSING OR ILLEGAL ITHEN I

MISSING OR ILLEGAL ITO I

MISSING OR ILLEGAL 'STEp l

MISSING OR ILLEGAL DATA ITEM
ILLEGAL EXPONENT
SIGN WITHOUT NUMBER
MISSING RELATIONAL OPERATOR
ILLEGAL READ VARIABLE
ILLEGAL SYMBOL FOLLOWS IMATI
MATRIX CANNOT BE ON BOTH SIDES
NO '*1 AFTER RIGHT PARENTHESIS
NO LEGAL BINARY OPERATOR FOUND
MISSING LEFT PARENTHESIS
MISSING RIGHT PARENTHESIS
PARAMETER NOT STRING VARIABLE
UNDECIPHERABLE OPERAND
MISSING OR BAD ARRAY VARIABLE
STRING VARIABLE NOT LEGAL HERE
MISSING OR BAD STRING OPERAND
NO CLOSING QUOTE
72 CHARACTERS MAX FOR STRING
STATEMENT HAS EXCESSIVE LENGTH

C-4

....~.

~.

DIAGNOSTIC MESSAGES (continued)

MISSING OR BAD FILE REFERENCE
'PRINT' MUST PRECEDE 'USING '
ILLEGAL OPERAND AFTER 'USING '
VARIABLE MISSING OR WRONG TYPE
OVER/UNDERFLOWS - WARNING ONLY

Execution Errors

This section lists messages output to indicate errors detected during
program execution. Such errors cause termination of the execution.

UNDEFINED STATEMENT REFERENCE
NEXT WITHOUT MATCHING FOR
SAME FOR-VARIABLE NESTED
FUNCTION DEFINED TWICE
VARIABLE DIMENSIONED TWICE
LAST STATEMENT NOT lEND'
UNMATCHED FOR
UNDEFINED FUNCTION
ARRAY TOO LARGE
ARRAY OF UNKNOWN DIMENSIONS
OUT OF STORAGE
DIMENSIONS NOT COMPATIBLE
CHARACTERS AFTER COMMAND END
BAD FORMAT OR ILLEGAL NAME
MISSING OR PROTECTED FILE
GOSUBS NESTED TEN DEEP
RETURN WITH NO PRIOR GOSUB
SUBSCRIPT OUT OF BOUNDS
NEGATIVE STRING LENGTH
NON-CONTIGUOUS STRING CREATED
STRING OVERFLOW
OUT OF DATA
DATA OF WRONG TYPE
UNDEFINED VALUE ACCESSED
MATRIX NOT SQUARE

C-5

DIAGNOSTIC MESSAGES (continued)

REDIMENSIONED ARRAY TOO LARGE
NEARLY SINGULAR MATRIX
LOG OF NEGATIVE ARGUMENT
SQR OF NEGATIVE ARGUMENT
ZERO TO ZERO POWER
NEGATIVE NUMBER TO REAL POWER
ARGUMENT OF SIN OR TAN TOO BIG
TOO MANY FILES STATEMENTS
NON-EXISTENT FILE REQUESTED
WRITE TRIED ON READ-ONLY FILE
END-OF-FILE/END OF RECORD
STATEMENT NOT IMAGE
NON-EXISTENT PROGRAM REQUESTED
CHAIN REQUEST IS A FILE
PROGRAM CHAINED IS TOO LARGE
COM STATEMENT OUT OF ORDER
ARGUMENT OF TIM OUT OF RANGE
BAD FORMAT STRING SUBSCRIPT
BAD FILE READ
BAD FILE WRITE DETECTED
CANIT READ PROGRAM CHAINED TO
ILL-STORED PROGRAM CHAINED TO
PROGRAM BAD
MISSING FORMAT SPECIFICATION
ILLEGAL OR MISSING DELIMITER
NO CLOSING QUOTE
BAD CHARACTER AFTER REPLICATOR
REPLICATOR TOO LARGE
REPLICATOR ZERO
MULTIPLE DECIMAL POINTS
BAD FLOATING SPECIFICATION
ILLEGAL CHARACTER IN FORMAT
ILLEGAL FORMAT FOR STRING
MISSING RIGHT PARENTHESIS
MISSING REPLICATOR
TOO MANY PARENTHESIS LEVELS
MISSING LEFT PARENTHESIS
ILLEGAL FORMAT FOR NUMBER

C-6

~,

DIAGNOSTIC MESSAGES (continued)

Execution Warnings

The following messages are printed by the system to inform the user of
conditions which may be unexpected or undesirable. These conditions do
not terminate execution.

BAD INPUT, RETYPE FROM ITEM
LOG OF ZERO - WARNING ONLY
ZERO TO NEGATIVE POWER-WARNING
DIVIDE BY ZERO - WARNING ONLY
EXP OVERFLOW - WARNING ONLY
OVERFLOW - WARNING ONLY
UNDERFLOW - WARNING ONLY
EXTRA INP.UT - WARNING ONLY
READ-ONLY FILES:

C-7

!~
" I--,'

APPENDIX D
ADDITIONAL LIBRARY FEATURES

Normally, programs and files in a user's library are stored on a mass storage
device called a disc, which is external to the computer. Only the current
program and portions of currently accessed files occupy the user's "working
space" in the computer. TSB also makes use of another, usually smaller,
mass storage device called a drum, on which many system tables are stored.
There may also be room on the drum for a limited number of user programs and
files. In certain cases, programs and particularly files which reside on
the drum have improved (shorter) access times over those on the disc.

The system operator has control over placement and removal of programs and
files on the drum. He also has several other program and file movement
capabilities of which the user should be aware. These operator commands, and

~ their functions, are listed here.

SANCTIFY

DESECRATE

This command enables the operator to move a program (no longer
than 8192 words) or a file (no longer than 32 records) from
the disc to the drum. The area on the disc where it resided
is retained. The entry will remain on the drum until it is
removed by the operator (see below) or KILLED by the user who
owns it. Only entries whose access times are critical should
be sanctified.

This command moves a sanctified file from the drum back to its
original location on the disc, or deletes the drum copy of a
sanctified program. (The disc copy of the program is retained.)

NOTE: If a sanctified program cannot be retrieved from
a user's library because of a data error on the
drum, it may be possible to DESECRATE the program
and retrieve the copy from the disc.

0-1

BESTOW

COpy

LOAD
DUMP

APPENDIX 0

This command enables the operator to remove a program or file
from one user's library and place it in another user's library,
or to transfer ownership of an entire library.

This command is used to make a duplicate copy of any user pro­
gram or file in the library of any other user (or the same user).
The copy may be given a new name.

The LOAD command enables the operator to load selected programs
and files or entire user libraries from magnetic tape. DUMP
allows the operator to write such programs, files or libraries
onto magnetic tape. This can be done only at system start-up
time (commonly once a day) and is a convenient way of trans­
ferring entries between 2000C systems, or dumping TSS files
for other utility purposes. (See the "DOS-M TIME-SHARED BASIC
FILE HANDLER II in the SOFTWARE OPERATING PROCEDURES.)

NOTE: Any of the above may be requested using the MESSAGE
command. All pertinent idcodes and program or file
names must be included.

0-2

INDEX

t 2-6

+ .•.............................1-16

.............................. . 1-17

; .•..•••.....••.....••..•.....•. 2- 27

, 2-22,2-24,2-27
+ 2-6,5-12

- 2-6,5-13

/ ...•............................ 2-6

* 2-6,5-14,5-15
= •••••••••••••• 2-5,2-7,2-18,5-16,6-9
2-7,6-13
<> •••••••••••••••••••••••••• 2-7,6-13
< ••••••••••••••••••••••••••• 2-7,6-13
>••••••••••••••••••••••••••• 2-7,6-13
>= ••••••••••••••••••••• 2-7,2-17,6-13
<= ••••••••••••••••••••• 2-7,2-17,6-13

A
ABS Function 3-26
Accuracy 2- 2
Add 2-6,5-12
Adding Matrices 5-12
Adding to a Serial Fi1e 4-20
Advanced BASIC 3-1
Alphabetical File 4-44
al t-mode•.•................ 1-4
AND Operator 2-9
APPEND Command 3-13
Arithmetic Eva1uation 2-4
Arithmetic Operators 2-6
Arguments 3-5
Array 3-3
Assignment Operator 2-5,6-9
Assignment Statement 2-14,6-9

1-1

ASSIGN Statement 4-10
ATN Function 3-27

8
Backspace 1-16
BAS IC 1-6, 1-7 , 2-1
Before Going On-Line 1-14
BESTOW 0-2
break .•••••••••••••••. . 1-4,1-27,2-44
BYE Command 2-37

C
CATALOG Command 3-15
CHAIN Statement 3-30
Changing Characters 1-16
Changing Statements 1-17
Columns 3-3,5-1
Communication Between Programs .. 3-32
COM Statement 3-32
Commands 1-2,2-13,2-35
Comments 2-15
Comparing Strings 6-13
Conditiona1s 2-17
Connection to the Computer 1-20
CONTENTS v
Control C {CC) 1-4,1-26,1-27,1-29
Control N (NC) 1-4
Control 0 (OC) ••••••••••••••••••• 1-4
Control Characters 1-21
CONVENTIONS iv
COpy 0-2
Copying a Fi1e 4-33,D-2
Copying a Matrix 5-16
COS Function 3-27
CSAVE Command 3-10

ctr1 ...•.•..................1-4,1-21
Current Program 3-7

D
Data Set 1-20
DATA Statement 2-21,2-22,6-15
Data Types 3-24,4-17,4-32
Declaration of Fi1es 4-8
DEF FN Statement 3-24
Definitions, Format 8-2
DELETE Command 3-14
Deleting Characters 1-16
Deleting Programs 3-7,3-12
Deleting Statements 1-17
DESECRATE 0-1
Diagnostic Messages.1-25,4-45,C-1,ff
Divide 2-6

DIM Statement 5-2,6-8
DUMP ...•.......•..•........•..•.•D-2

E
ECHO Command 2-38
End-of-Fi1e 4-19
End-of-Record Marker 4-27
END Statement 2-30
E Notation 2-2
ENTER 3-34
Enteri ng Commands 1-5
Equality 2-7,6-13
Erasing a Record 4-41
Error Messages.1-25,8-27,8-28,C-1,ff
esc 1-4 ,1-17
Essentials of BASIC 2-l
Execution 1-26
EXP Function 3-26
Exponentiate 2-6
Expression 2-4

F
False 2-7

1-2

File Accessing Errors 4-45
File Names 4-5
File Numbers 4-3,4-8,4-10,4-12
File Pointer ..4-2,4-3,4-14,4-16,4-29
Fi1es 4-1,4-2,4-5
FILES Statement 4-3,4-8
Fixed-Point Format 8-10,8-11
Floating-Point Format 8-12,8-13
Format, F10ating-Point 8-12
Format, Fixed-Point 8-10
Format, Integer 8-8
Format, Specifications ..8-6,8-8,8-10

8-12,8-15,8-20

Format, String 8-6

Format, String Variab1e 8-20

Formatted Output 8-1 ,ff
FOR .. NEXT Statements 2-18,2-20

FOR Statement 2-18
Functions 3-5,3-24,3-26,3-27

G
GET Command 3-11
GOSUB RETURN Statements 3-19
GO TO Statement 2-16
Greater Than 2-7,6-13
Greater Than or Equal To 2-7,6-13
GROUP Command 3-15

H
HELLO Command 2-36

I
IDcode 1-21,1-22,2-36
Identity Matrix 5-l7
IDN 5-17
IF END Statement 4-20
IF .. THEN Statement 2-17
IMAGE 8-21
Inequa1 i ty 2-7 ,6-13
Input Logs 1-22,1-23

INPUT Statement 2-24,5-5,6-l0
Inputting a String 6-l0
Inputting Matrix Elements 5-5,5-6
Instructions 1-9
INT Function 3-26
Introduction l-l
INV 5-19
Inverting Matrices 5-l9

K
KEY Command 2-48
KILL Command 3-l2,4-7

L
LEN Function 3-28,6-14
LENGTH Command 3-8,6-l4
Length of Programs 3-8,3-28
Less Than 2-7,6-l3
Less Than or Equal To 2-7,6-l3
LET Statement 2-5,2-14
LIBRARY Command 3-15
Library Features, Additional D-l
Line Number 1-8
LIN Function 8-3
Linking Programs 3-30
LIST Command 1-18,2-40
List Contents of a Record 4-37
Listing a Program 1-18,2-40
Listing a File 4-12
LOAD D-2
LOG Function 3-26
Logging In 1-2l,1-22,1-23
Logging Out 1-22
Logical Length of Strings 6-3,6-14
Logical Operations 7-1
Logical Value 7-1
Loop 1-27
Looping•............... 2-20,3-22

1-3

M
Mathematical Functions 3-26
MAT CON Statement 5-4
MAT INPUT Statement 5-6
MAT PRINT Statement 5-8
MAT PRINT# Statement 5-20
MAT PRINT USING Statement 8-19
MAT READ Statement 5-11
MAT READ# Statement 5-2l
MAT ZER Statement 5-3
Matrix 3-4,5-1
Matrix Addition 5-12
Matrix Element 5-l
Matrix File Print 5-20
Matrix File Read 5-21
Matrix Inversion 5-19
Matrix Multiplication 5-14
Matrix Subtraction 5-13
Matrix Transposition 5-18
Matrix Variab1e 5-2
Maximum Number 2-2
MAX Operator 2-8
Memory Al1ocation 9-11
MESSAGE 2-50
MIN Operator 2-8
Minimum Number 2-2
Modifying A Record 4-40,4-43
Modifying a Serial File 4-24,4-25
Moving the Pointer 4-29
Mu1tibranch GOSUB 3-21
Mu1tibranch GOTO 2-16
Multiply 2-6,5-l4,5-l5
Multiplying Matrices 5-14

N
NAME Command 3-9
Nested GOSUBS 3-22

Nesting Loops 2-20
NEXT Statement 2-18
NOT Operator 2-11
Numbers 2-2

o
OPEN Command 4-5,4-6
Operands l-l0
OR Operator 2-10
Output, Formatted 8-1,ff

p
Paper-Tape A-l
Parentheses 2-6,2-12
Password 1-21,2-36
Physical Length of Strings 6-3
Pointers 2-21
Precedence 2-6,2-12
Preci sian 2-2
Printing Matrix Elements 5-7,5-8

5-20
Printing Strings 6-11
PRINT Statement 2-26
PRINT #.. END Statement 4-21
PRINT# Statement 4-37,4-38
PRINT USING 8-17,8-18
Program 1-11 ,1-28
Public Library Programs 3-15,3-16

3-17
PUNCH Command 2-45

R
Random File Access 4-35,4-36
Random Numbers 3-26
Reading Matrix Elements 5-10,5-11

5-21
Reading Strings 6-l2
READ Statement 2-21 ,6-12
READ# Statement 4-14
READ#M; Statement 6-12
READ#M,N Statement 4-33

1-4

READ#M,N; Statement 4-33
Records 4-27
Relational Operators 2-7,6-13

7-2,7-3
Remark 2-15
REM Statement 2-15
RENUMBER Command 2-42
Resetting the File Pointer 4-16
RESTORE Statement 2-21
Retrieving Programs 3-11
return 1-4 ,1-15
RETURN 3-19
RND Function 3-26
Routine 3-2,3-18
RUN Command 1-26,2-39
Running a Program 1-26,2-34,2-39
Run-Only 3-13

5
Sample Programs ..1-24,1-26,1-28,2-31

4-25,4-30,4-33,4-34,4-36
SANCTI FY 0-1
SAVE Command 3-10
Scalar Mu1tiplication 5-15
SCRATCH Command 2-41
Sequence of Statements 1-8
Serial File Access 4-3,4-10,4-12

4-14,4-16,4-22,4-23,4-31
Serial File Print 4-12
Serial File Read 4-14
SGN Function 3-26
SIN Function 3-27
SPA Function 8-3
Spaces 1-12
Speci a1 Keys 1-4
Spot Checks 1-13,1-19
SQR Function 3-26
Statement Format 1-12
Statement Numbers 1-8,2-42

Statement Types 1-9
Statements 1-7,2-13
STEP 3-23
Stopping a Program 1-27,2-30
STOP Statement 2-30
Storage Requirements 4-28
Storing Programs 3-7,3-10
String Assignment Statement 6-9
String Comparison 6-13
String Eva1uation 9-10
String File Print 6-16
String File Read 6-17
String Variab1e 6-3,6-6
Strings 3-5,4-28,6-1,6-2,6-6
Strings in DATA Statements 6-15
Strings in IF Statements 6-13
Structure of Serial Files 4-22
Subdividing Serial Fi1es 4-31
Subroutines 3-18,3-19
Subscripts 5-1,6-4,6-6
Substring 6-4,6-6
Subtract 2-6,5-13
Subtracting Matrices 5-13

1-5

Syntax Requirements of BASIC .. 9-2,ff

T
TAB Function 8-3
TAN Function 3-27
TAPE Command 2-47
Te1eprinter 1-5
Telephone 1-1
TIME Command 2-49
Time-Out on Input 3-29
TYP Function 4-17,4-32
Time Shari ng 1-1
TIM Function 3-29
Transposing Matrices 5-18
Trigonometric Functions 3-27
TRN 5-18
True 2-7

W
Word 3-6
Working Size 5-2

X
XPUNCH 2-45
X-ON, X-OFF B-1

Z
Zeroing A Matrix 5-3

Notes:

a

Notes·

Notes:

-
~' ,to-<lJ\". - ~nd .

..C)..-.. ,.,....• .,:/,
\

HEWLETTj PACKARD

READER COMMENT SHEET

2000C: A Guide To Time-Shared BASIC

02000-90016 Apr; 1 1971

~i

.~

..
:;
.:
.i

·1

,;..,

Hewlett-Packard welcomes your evaluation of this text.
Any errors, suggested additions, deletions, or general com­
ments may be made below. Use extra pages if you like.

FROM
NAME: _

ADDRESS: _

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE

,f

GUf</Urr ~;~~:7"~ !/"J?SkAl
v ·
f #fJ!rro~ 3 _p_
'~7.,o7~

- .--:- - - - - - - - - - - -. - .- - --:. - - - - - - ~;' - - -

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

MANAGER, SOFTWARE PUBLICATIONS
HEWLETT - PACKARD

CUPERTINO DIVISION
11000 Wolfe Road

Cupertino, California
95014

.-

"'";' \
(J

-------------------------------~-------~-------------~ ---

2000-90016

•

	Preface
	Conventions Used in This Text
	Contents
	Section I An Introduction to Time-Shared BASIC
	Section II The Essentials of BASIC
	Section III Advanced BASIC
	Section IV Files
	Section V Matrices
	Section VI Strings
	Section VII Logical Operations
	Section VIII Formatted Output
	Section IX For the Professional
	Appendix A How to Prepare a Paper Tape Off-line
	Appendix B The X-ON, X-OFF Feature
	Appendix C Diagnostic Messages
	Appendix D Additional Library Features
	Index

