Computer Numbers %%%T_%%g% ;:g »
Logon Message _ HELL@~ " '
System Backup Time
For Assistance, Call 964-0413 (days)

. ‘ (eves,)

A GUIDE TO TIME- SHARED BASIC




/’;‘ C ’ j, - «jf?m . / - N
1 - / =
2000¢C:

A GUIDE TO TIME-SHARED BASIC

For Reference and Self-Instruction

I

PLEDVIJ?TT"if%IZA(IKU&RT)

Software Publications

Cupertino, California
95014

HP 02000-90016

April 1971



© Copyrnight, 1971, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

All rights reserved. No part of this publication may be reproduccd,
stored in a retrieval system (e.g., in memory, disc or core) or
transmitted by any means, electronic, mechanical, photocopy, rc-
cording or otherwise, without prior written permission from the
publisher.

Printed in the U.S.A.

()



PREFACE

This publication is designed to meet two requirements:

1. To serve as a clear and concise reference text
for Time-Shared BASIC, and

2. To serve as an instructional aid to the TSB
user.

A11 example programs may be used as practice exercises (as well as for
reference). They were chosen for maximum teaching value, and include

pertinent remarks. Beginners are encouraged to try the examples
“"on-line."

The syntax requirements of BASIC have been "translated" into English
from the traditional Backus Naur Form. Each element of a statement
is underlined.

The text is divided into Tearning-units. Each page presents a separ-
ate item or feature, and sections are arranged in a coherent instruc-

tional sequence. A1l items are presented in a standard, consistent
format.

ITI



CONVENTIONS USED IN THIS TEXT

SAMPLE
PLEASE LOG IN

20 PRINT X,Y

LIST

This section...

line number PRINT X,Y

return linefeed

esc ctrl

alt-mode break

Note: Both X and...

LISTING A PROGRAM

EXPLANATION

A11 capitals in examples indicates computer-
output information...

or a statement or command typed by the pro-
grammer.

Mixed upper and lower case is used for regu-
lar text.

Lower case italics indicates a general form,
derived from BASIC syntax requirements
(Sect. IX).

Underlining indicates an essential part of a
general form; each underlined item is a separ-
ate, essential element.

Represents the terminal keys:
Return, Linefeed, Escape, Control,

Alt-Mode, and Break.

Mixed upper and Tower case italics is used
for notes.

Oversized type is used for page headings.

The letter "O"
Zeroes are slashed.

Iv



iv

1-1

1-4
1-5
1-6
1-7
1-8

1-10
1-1
1-12
1-14
1-15
1-16
1-17
1-18
1-21
1-21
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-28

CONTENTS

PREFACE
CONVENTIONS USED IN THIS TEXT

SECTION I
AN INTRODUCTION TO TIME SHARED BASIC

SPECIAL KEYS

USING THE TELEPRINTER TERMINAL
COMMUNICATING WITH THE TSB SYSTEM
EXAMPLES OF BASIC STATEMENTS
STATEMENT NUMBERS

INSTRUCTIONS (STATEMENT TYPES)
OPERANDS

A PROGRAM

THE FORMAT OF STATEMENTS

BEFORE GOING ON-LINE

PRESS RETURN AFTER EACH STATEMENT
DELETING OR CHANGING CHARACTERS
DELETING OR CHANGING A STATEMENT
LISTING A PROGRAM

CHECKING THE CONNECTION

YOUR ID CODE and PASSWORD

CONTROL CHARACTERS

SAMPLE LOG IN AND LOG OUT
MISTAKES DURING LOG IN

ENTERING THE SAMPLE PROGRAM

HOW TO OBTAIN A DIAGNOSTIC MESSAGE
RUNNING THE SAMPLE PROGRAM
STOPPING A PROGRAM: THE break KEY
HOW THE PROGRAM WORKS



CONTENTS CcONTINUED

2-1 SECTION II
THE ESSENTIALS OF BASIC

2-1 HOW TO READ THIS SECTION
2-2 TERM: NUMBER

2-2 TERM: "E" NOTATION

2-3 TERM: SIMPLE VARIABLE
2-4 TERM: EXPRESSION

2-4 THE ASSIGNMENT OPERATOR
2-6 ARITHMETIC OPERATORS

2-7 RELATIONAL OPERATORS

2-8 MIN AND MAX OPERATORS
2-9 THE AND OPERATOR

2-10 THE OR OPERATOR

2-1 THE NOT OPERATOR

2-12 ORDER OF PRECEDENCE OF EXECUTION
2-13 STATEMENTS

2-14 THE ASSIGNMENT STATEMENT
2-15 REM

2-16 GO TO AND MULTIBRANCH GO TO
2-17 IF...THEN

2-18 FOR...NEXT

2-20 NESTING FOR...NEXT LOOPS
2-21 READ, DATA AND RESTORE
2-24 INPUT

2-26 PRINT

2-30 END AND STOP

2-31 SAMPLE PROGRAM

2-34 RUNNING THE SAMPLE PROGRAM
2-35 COMMANDS

2-36 HELLO

2-37 BYE

2-38 ECHO-

2-39 RUN

2-40 LIST

VI



2-41
2-42
2-44
2-45
2-47
2-48
2-49
2-50

3-1

3-2
3-3

3-5
3-6

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-18
3-19
3-21
3-22
3-23
3-24
3-26
3-27

CONTENTS CONTINUED

SCRATCH

RENUMBER

BREAK

PUNCH AND XPUNCH
TAPE

KEY

TIME

MESSAGE

SECTION III
ADVANCED BASIC

ROUTINE

TERM:  ARRAY

TERM: STRING AND STRING VARIABLE
TERM: FUNCTION

TERM: WORD

STORING AND DELETING PROGRAMS
LENGTH

NAME-

SAVE- AND CSAVE-

GET- GET-$, AND GET-*

KILL-

APPEND-

DELETE-

LIBRARY-GROUP-CATALOG
SUBROUTINES AND FUNCTIONS
GOSUB. ..RETURN

MULTIBRANCH GOSUB

NESTING GOSUB'S

FOR...NEXT WITH STEP

DEF FN

GENERAL MATHEMATICAL FUNCTIONS
TRIGONOMETRIC FUNCTIONS

VII



-—

3-28
3-29
3-30
3-32
3-34

4-10
4-12
4-14
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36

CONTENTS conTINuED

THE LEN FUNCTION
THE TIM FUNCTION
CHAIN

COM

ENTER

SECTION IV
FILES

TERM: FILE

SERIAL FILE ACCESS

OPEN-

KILL-

FILES

ASSIGN

SERIAL FILE PRINT

SERIAL FILE READ

RESETTING

THE TYP FUNCTION

LISTING CONTENTS OF A FILF
TERM: END-OF-FILE

IF END#...THEN

PRINT#...END

STRUCTURE OF SERIAL FILES
EXAMPLE OF SERIAL FILE MODIFICATION
TERM: RECORD

STORAGE REQUIREMENTS

MOVING THE POINTER

SAMPLE USE OF READ#M,N
SUBDIVIDING SERIAL FILES
USING THE TYP FUNCTION WITH RECORDS
SAMPLE OF READ#M,N AND TYP(-M)
HOW TO COPY A FILE

TERM: RANDOM FILE ACCESS
SAMPLE OF RANDOM FILE ACCESS

VIII

4 59



4-37
4-38
4-40
4-41
4-43
4-44

5-1

5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21

6-1

6-2
6-3

CONTENTS CONTINUED

PRINTING A RECORD

READING A RECORD

MODIFYING CONTENTS OF A RECORD
ERASING A RECORD

UPDATING A RECORD

AN ALPHABETICALLY ORGANIZED FILE

SECTION V
MATRICES

DIM

MAT...ZER

MAT...CON

INPUT

MAT INPUT

PRINTING MATRICES

MAT PRINT

READ

MAT READ

MATRIX ADDITION
MATRIX SUBTRACTION
MATRIX MULTIPLICATION
SCALAR MULTIPLICATION
COPYING A MATRIX
IDENTITY MATRIX
MATRIX TRANSPOSTION
MATRIX INVERSION

MAT PRINT#

MAT READ#

SECTION VI
STRINGS

STRING
STRING VARIABLE

IX



6-4
6-6

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17

7-1

8-10
8-12
8-14
8-15
8-15
8-16
8-17
8-19

CONTENTS conTiNUED

SUBSTRING

STRINGS AND SUBSTRINGS

THE STRING DIM STATEMENT
THE STRING ASSIGNMENT STATEMENT
THE STRING INPUT STATEMENT
PRINTING STRINGS

READING STRINGS

STRING IF

THE LEN FUNCTION

STRING IN DATA STATEMENTS
PRINTING STRINGS ON FILES
READING STRINGS FROM FILES

SECTION VII
LOGICAL OPERATIONS

LOGICAL VALUES AND NUMERIC VALUES
RELATIONAL OPERATORS

BOOLEAN OPERATORS

SOME EXAMPLES

SECTION VIII
FORMATTED OUTPUT

DEFINITIONS

SUMMARY

STRING FORMAT SPECIFICATIONS
INTEGER FORMAT SPECIFICATIONS
FIXED-POINT FORMAT SPECIFICATIONS
FLOATING-POINT FORMAT SPECIFICATIONS
POSITION OF THE SIGN

GROUP FORMAT SPECIFICATIONS

TERM: FORMAT STRINGS

TERM: EXPRESSION LIST

PRINT USING

MAT PRINT USING



8-20
8-21
8-22
8-23
8-25
8-27
8-28

9-1

9-2

9-10

9-1

A-1

B-1

C-1

D-1

CONTENTS CONTINUED

FORMAT IN A STRING VARIABLE
IMAGE

USING CARRIAGE CONTROL
NUMERICAL OUTPUT

REPORT GENERATION

FATAL ERRORS

NON-FATAL ERRORS

SECTION VIII
FOR THE PROFESSIONAL

SYNTAX REQUIREMENTS OF TSB
STRING EVALUATION BY ASCII CODES
MEMORY ALLOCATION BY A USER

APPENDIX A
HOW TO PREPARE A PAPER TAPE OFF-LINE

APPENDIX B
THE X-ON, X-OFF FEATURE

APPENDIX C
DIAGNOSTIC MESSAGES

APPENDIX D
ADDITIONAL LIBRARY FEATURES

INDEX

X1






SECTION I: AN INTRODUCTION TO TSB

SECTION II: THE ESSENTIALS OF BASIC

SECTION I11I: ADVANCED BASIC

SECTION IV: FILES

SECTION V: MATRICES

SECTION VIi: STRINGS

SECTION VII: LOGICAL OPERATIONS

SECTION VIlI: FORMATTED OUTPUT

SECTION IX: FOR THE PROFESSIONAL

APPENDICES AND INDEX






SECTION |
AN INTRODUCTION TO TIME-SHARED BASIC

This section is for novices and programmers in need of a "brush-up" on
mechanical skills. The information presented here is arranged in a tu-
torial sequence. It is assumed that the reader has access to a Time-
Shared BASIC terminal, and will use some or all of the examples as practice
exercises, depending on his own personal requirements.

If you are familiar with the following procedures, skip this section,
and begin at Section II:

Log in and log out

Correcting mistakes and changing Tines
Obtaining a diagnostic message

Running and terminating a program.

A time-shared computer system consists of a central computer, a system
of peripheral devices at the computer site, and a number of independent
terminals. The terminals, also called ports, may be connected directly
to the computer through a multiplexer, or may be located remotely and
connected by telephone lines.

The Hewlett-Packard 2000C Time-Shared BASIC system uses two computers --
one for actual computation and the other for controlling access to the
main computer -- plus magnetic mass storage devices and other equipment
used by the system operator. This system can support up to 32 terminals,
all operating simultaneously. The typical user's terminal is a standard
teleprinter with a paper tape punch and reader. The user can enter pro-
grams into the system either through the keyboard or through the paper
tape reader; system output can be punched on paper tape as well as be-
ing typed out. The system is so designed that no user should encounter
more than a few seconds delay between entering a command and receiving

a response from the system, even when all terminals are busy.

1-1



The user can work in a simple interactive mode, entering and running
programs and reading the results from the teleprinter, or can take ad-
vantage of the large storage capacity of the system by using Tibrary
programs and by storing his own programs for later use.

Time-Shared BASIC employs two distinct languages: BASIC, one of the
simpler programming languages, and a series of COMMANDS that permit the
user to tontrol system functions such as listing and running programs,
storing and retrieving programs and data, and obtaining diagnostics and
1ists of library programs.

COMMANDS consist of three alphabetic characters: some of these commands
require that parameters, such as line numbers within a BASIC program, be
stated, while others permit the addition of certain parameters. The sys-
tem examines the first three characters, then ignores any additional
characters except a hyphen (used when additional parameters are either
required Or permitted). The system takes no action until the carriage
return is pressed. As an aid to learning the COMMANDS, characters may

be added to make the COMMAND more meaningful. For example, the log-on
COMMAND "HEL" may be typed "HELLO" or the "CAT" COMMAND, requesting a

program catalog, can be typed "CATALOG." COMMANDS serve the follow-
ing functions:

Logging -- COMMANDS used to log on and off the
system.

COMMANDS used to refer to the current
program.

I
]

Program control

Terminal control

COMMANDS used to control tape reading
and punching.

Library access

COMMANDS used to manipulate programs
or files in mass storage.

Miscellaneous Messages to the system operator, time

checks.

1-2



Special (non-printing) keys on the teleprinter are used to control Tine
spacing, return, delete lines or characters, and to terminate programs
before they run to completion.

The user can communicate with the system operator by using the MESsage

command described in Section II. The operator can send messages to
all users or to a specified terminal.

1-3



NOTE:

KEY

ctrl

alt-mode
esc }

break

CC

linefeed

SPECIAL KEYS

Superscript "C" indicates a control character.
(Hold down ctrl while typing a character.)

FUNCTION

Converts normal keys to non-printing control charac-
ters.

Deletes a line being typed.

Terminates a running program, listing, or punching

Terminates an input loop (CC return); causes a jump
to the END statement.

Causes the teleprinter to advance on line.

Generates a linefeed when used in a PRINT statement.
Generates a return when used in a PRINT statement.
1. Must follow every command or statement.

2. Causes the teleprinter typeface to return to
the first print position.

3. TSB responds with a linefeed.

Backspace. Deletes as many preceding characters
as «'s are typed in.

1-4



USING THE TELEPRINTER TERMINAL

The terminal can be operated in either of two modes, on-line (con-
nected to the computer) or off-line (independent of the computer).
After the user has established the connection to the computer and
logged in properly, the user is in contact with the computer through
the Time-Shared BASIC System. The system will execute any legal
command, and will detect and reject any illegal command, usually
printing a message informing the user why the command was rejected.

To enter a command, type either the short form or the full form of
the command; if additional parameters are required Or permitted,
type a hyphen, then the parameters. Terminate the command with a
return. Some commands cause an obvious response from the system;
CAT(ALOG) and LIB(RARY) and GRO(UP) all result in the printing of
a list of programs. Other commands result in computer operations
and the only indication at the user's terminal is the generation

of a linefeed, indicating that the system has accepted the com-
mand and is "waiting" for another.

The teleprinter can also be used off-Tine to prepare paper tape.
0ff-1ine operation of the teleprinter is described in Appendix A.

1-5



COMMUNICATING WITH THE TSB SYSTEM
THE BASIC LANGUAGE

There are many types of languages. English is a
natural language used to communicate with people.
To communicate with a computer system we use a
formal language, that is, a combination ot simple
English and algebra.

BASIC is a formal language used to communicate with
the Time-Shared BASIC System.

Like natural languages BASIC has grammatical rules,
but they are much simpler. For example, this series
of BASIC statements (which calculates the average of
five numbers given by you, the user) shows the funda-
mental rules:

19 INPUT A,B,C,D,E

20 LET S = (A+B+C+D+E)/5
3@ PRINT S

49 GO TO 19

59 END

The frames on the following pages show how to interpret
these-rules. Notice how the statements are written.
What they do is explained later.

1-6



EXAMPLES OF BASIC STATEMENTS

This is a BASIC statement:

19 INPUT A,B,C,D,E

COMMENTS

A statement occupies one teleprinter line.

A statement may also be called a line.

1-7



STATEMENT NUMBERS

Each BASIC statement begins with a statement number
(in this example, 29):

20 LET S=(A+B+C+D+E)/5

COMMENTS

The number is called a statement number Or a line

number.

The statement number is chosen by you, the programmer.
It may be any integer from 1 to 9999 inclusive.

Each statement has a unique statement number. The

system uses the numbers to keep the statements in
order.

Statements may be entered in any order; they are
usually numbered by fives or tens so that additional
statements can be easily inserted. The system keeps
them in numerical order no matter how they are entered.
For example, statements are input in the sequence 30,10,
20; the system arranges them in the order: 10,20,30.

1-8



INSTRUCTIONS (STATEMENT TYPES)

The statement gives an instruction to the TSB
system (in this example, PRINT):

3@ PRINT S

COMMENTS

Instructions are sometimes called statement types

because they identify a type of statement. For
example, the statement above is a "print" statement.

1-9



OPERANDS

If the instruction requires further details, operands
(numeric details) are supplied (in this example, 10;

on the previous page, "S"):

49 GO TO 19

COMMENTS

The operands specify what the instruction acts upon;
for example, what is PRINTed, or where to GO.



A PROGRAM

The sequence of BASIC statements 19 INPUT A,B,C,D,E
given on the previous pages is 2P LET S=(A+B+C+D+E)/5
called a program. 30 PRINT S

The last statement in a program, 40 GO TO 19
as shown here, is 590 END
an END statement.

COMMENTS

The last (highest nqmbered) statement in a program must be
an END statement.

The END statement informs the computer that the program is
finished.



THE FORMAT OF STATEMENTS

BASIC is a "free format" language--the system ignores
extra blank spaces in a statement. For example, these
three statements are equivalent:

3@ PRINT S
30 PRINT S
3@PRINTS

COMMENTS

When possible, Teave a space between words and numbers
in a statement. This makes a program easier to read.



(Spot check)

Be sure you are familiar with these terms before continuing:

statement

instruction (statement type)
statement type

statement number (1ine number)
operand

program

A1l of these terms are defined in this section.



BEFORE GOING ON-LINE

The following pages explain the mechanics of entering,
correcting, and checking statements.

Since you will probably have to make several corrections
in your first attempts to work with the TSB system, these
features should be learned before beginning.



PRESS RETURN AFTER EACH STATEMENT

The return key must be pressed after each statement.

Examples: 19 INPUT A,B,C,D,E return

29 LET S=(A+B+C+D+E)/5 return
30 PRINT S return

4p GO TO 10 return

590 END return

COMMENTS

Pressing return informs the system that
the statement is complete. The system
then checks the statement for mistakes.
(The checking process is explained later.)



DELETING OR CHANGING CHARACTERS

Typing the reverse arrow (<) key deletes the immediately

preceding character. One character is deleted for each <.

Typing: 20 LR<ET S=1Q return
is equivalent to typing: 20 LET S=1P return

And typing: 30 LET« « « PRINT S return
is equivalent to typing: 30 PRINT S return

COMMENTS

The « character is a "shift" 0 on most terminals.



DELETING OR CHANGING A STATEMENT

To delete the statement being typed, press the esc or alt-mode key. This
causes a \ to be printed, and deletes the entire line being typed.

To delete a previously typed statement, type the statement number followed
by a return.

To change a previously typed statement, retype it with the desired changes.
The new statement replaces the old one.

Pressing the esc key deletes
the statement being typed: 20 LET S = esc

NOTE: The system responds with a \ when esc is typed, like this:
20 LET S =\
To delete statement 5 in the
sequence: S5 LET S =9
19 INPUT A,B,C,D,E,
20 LET S = (A+B+C+D+E)/5

NOTE: \ and / are different,and have very different functions.
type: 5 return
Or, to change statement 5 in
the above sequence, type: 5 LET S = 5 return

The old statement is re-

placed by the new one.
Typing an esc (or alt-mode)
before a return prevents

replacement of a previously
typed statement.
For example, typing: 5 LET esc

or: 5 esc

has no effect on the orig-
inal statement 5.




LISTING A PROGRAM

After you have made several corrections you may wish to inspect the
entire program. Typing LIST return produces a listing of all lines
accepted by the computer.

NOTE: The program has already been entered.

LIST return
The system skips two lines, linefeed
separating the listing from pre- linefeed

viously printed information. linefeed
19 INPUT A,B,C,D,E
20 LET S = (A+B+C+D+E)/5
3P PRINT S
49 GO TO 1P

5@ END
linefeed indicates that the linefeed

listing is complete.

The LIST command followed by a dash and statement number causes the
listing to begin at the statement specified.

A list of the same sample program LIST-30 return
produces these lines: linefeed
linefeed
linefeed
3@ PRINT S
49 GO TO 19
50 END

linefeed




1. Be sure you understand the use of these features:

return to end statements
How to delete characters
How to delete a statement
How to change a statement
How to list statements

The following pages explain how to make the connection with
the computer and log-in to the TSB system.

1-19



CONNECTION TO THE COMPUTER

To enter a program into the computer, first make a connection between the tele-
printer and the computer. There are several ways of doing this, depending on
the terminal equipment used. The input-output device, such as teleprinter or
optical mark reader, on your end of the line is called terminal equipment. Not

all users have the same type of equipment.

IF YOUR TERMINAL EQUIPMENT IS A TELEPRINTER WITH

ACOUSTIC COUPLER AND TELEPHONE:

1. Turn teleprinter control knob to
LINE.
Turn on coupler power.
If coupler has a duplex switch,
set to FULL or FULL/UP.

4, If coupler has a line switch set
it to ON-LINE.
Call the computer number.
When the computer answers with a
high pitched tone, place the hand-
set in the coupler (Be sure to
check tnat the handset is inserted
in the correct position; the con-
nection will not be made if it is
reversed. (The correct position
should be marked on the coupler.)

HALF-DUPLEX COUPLER AND TELEPHONE

1. Follow instructions 1,2,4,5,6
given above.

2. Log in. (See Log In and Log Out
in this section.)

3. Type ECHO-OFF return

1-20

DATA SET:

1. Turn teleprinter control knob to
Tine.
Press TALK button on the Data Set.
Call the computer number.

4. When the computer answers with a
high pitched tone, press the DATA
button until the DATA 1ight is on,
and replace the handset.

NOTE: When the connection is
through telephone lines,
the user must LOG IN
within a time period
(nominally two minutes)
specified by the
operator.

DIRECT CONNECTION TO THE COMPUTER:

Turn the teleprinter control knob to
the LINE position.



CHECKING THE CONNECTION

The computer does not respond when the connection is established. If
you wish to make sure that the connection has been made, type esc. When
the connection is made, the-computer responds with a "\ ." Type any
numeral plus return.

EXAMPLE: 3 return

The system responds with the message:

PLEASE LOG IN return linefeed

NOTE: linefeed causes the teleprinter to advance to the next line.
return causes the teleprinter typeface to return to the first

print position.

The above step is optional.

YOUR [D CODE AND PASSWORD

You need your identification code and password to log in. These are
assigned by the system operator. The ID code is a single letter followed
by a three digit number. The password consists of one to six regular or
control characters.

CONTROL CHARACTERS

Control characters are non-printing. They are represented with a super-
script "C" to indicate that they are control characters. By using these
non-printing characters, you may keep your password a secret. For example,
on the teleprinter the password SECCERCEST prints as:

ST

Control letters are input by pressing the letter and ctrl keys
simul taneously.

1-21



SAMPLE LOG IN AND LOG OUT

H2PP is used as a sample identification code.

User H2PP for example, logs in by HELLO-H2@Q, password return
typing:

HELLO- is a cohmand, not a statement.
Commands are orders to the system
which are acted upon (executed) im-
mediately. Unlike statements, com-

mands do not have line numbers.

The system acknowledges that the linefeed

user has correctly logged in, by linefeed
outputting three linefeeds and linefeed
a message, if the operator has put MESSAGE TO USERS FROM OPERATOR

a message into the system for users:

NOTE: This message can be terminated
by hitting break.

If there is no message, the system

responds with a linefeed, then READY,

indicating that it is awaiting linefeed
input. READY

linefeed

To LOG OUT, type: BYE return

The elapsed time since log in is
then printed. @P1 MINUTES OF TERMINAL TIME

1-22



MISTAKES DURING LOG IN

If you make a mistake while logging in, the system responds with a
message informing you that something is wrong. For example, if user H2p@
forgets the hyphen while entering the HELLO command:

HELLO H20@,password return

the computer responds with the message:

ILLEGAL FORMAT return linefeed

and the user then enters the command in the correct form.

_—

If user H20P enters his password incorrectly:

HELLO-H2@@, password return

the response is:

ILLEGAL ACCESS return linefeed

and the user tries again.
NOTE: The messages ILLEGAL ACCESS and ILLEGAL FORMAT

indicate that some or all of the input is not

acceptable to the system.

1-23



ENTERING THE SAMPLE PROGRAM

The frame below shows how to enter a program. If you are not sure how
the system responds when a 1ine is entered, use it as a practice
exercise.

NOTE: Connection to the computer is made.

Log in: HELLO-H209, password return
OPERATOR'S MESSAGE TO USER

READY return linefeed

The system responds with a 19 INPUT A,B,C,D,E return
linefeed after each line is linefeed
entered. This indicates that 20 LET S = (A+B+C+D+E)/5 return

the line has been checked and linefeed

accepted as a legal BASIC 30 PRINT S return

statement. It informs the . linefeed

user that the computer is 40 GO TO 19 return

waiting for further input. linefeed

50 END return

linefeed

Now the program is ready to run.

1-24



HOW TO OBTAIN A DIAGNOSTIC MESSAGE

If you make a mistake while entering a program, the system responds with an ERROR
message. This indicates that the previous 1ine has not been accepted. There are
two possible responses to the ERROR message. The frame below shows how to obtain a
diagnostic for the probable cause of the error and how to avoid printing the diag-
nostic if you recognize the mistake.

If the user types: 39 PRIMT S return
NOTE: PRINT has been misspelled.

The system responds: ERROR

The user then types in a colon
(or any other character) fol- ERROR: return
lowed by a return. This causes
the diagnostic to be printed
on the same line. The result-
ing output looks 1ike this: ERROR: NO STATEMENT TYPE FOUND
NOTE: PRIMT has not been recognized
as a legal statement type, and

the line was not accepted.

To correct the statement,
retype it in the proper form: 39 PRINT S return

If you know the cause of the
ERROR message and do not wish

to see the diagnostic, type a

return after the ERROR message

is output, then retype the line: 3p PRIMT S return
ERROR
30 PRINT S

Appendix "C" contains a 1ist of TSB diagnostic messages and probable
causes.

1-25



RUNNING THE SAMPLE PROGRAM

This frame shows what happens when the sample program is run. The
program does not begin execution (does not run) until the command RUN

followed by a return is input.

NOTE: The program (averaging 5 numbers) has been entered.

The system responds with three linefeed's
indicating that the command is being
executed.

The question mark indicates that input is
expected. The five numbers being averaged
should be typed in, SEPARATED BY COMMAS,
and followed by a return.

The answer is printed:

NOTE: This program continues executing
indefinitely, unless terminated
by the user. To stop the program,

type a c€ return (control "C") when

more input is requested:
The program is finished:
Log off:

Time used is printed:

1-26

RUN return
linefeed
linefeed

linefeed

? 95.6,87.3,80.5,90,82.8 return

87.24 return linefeed

?-12.5,-50.6,-32,45.6,60 return

2.1 return linefeed

? c® return
DONE
BYE return

@3 MINUTES OF TERMINAL TIME



STOPPING A PROGRAM: THE 2zeax KEY

When the commands RUN or LIST are typed,
TSB "takes over" the user's terminal

until the program or listing is complete
or until the user terminates the procedure.

To terminate a program or listing, press, then release, the
break key:

When a program is running or being listed, TSB responds
with the message:
after break is pressed.

Remember that:

and not break is used to terminate input loops (when the

system is expecting a number to be typed in).

COMMENTS

break must be held down for at least
1/10 second, then released.

1-27



HOW THE PROGRAM WORKS

Line 19 tells the system that five numbers will

be input, and that they should be given the labels

A,B,C,D,E in sequence. The first number input is

Tabeled "A" by the computer, the second "B", etc. 19 INPUT A,B,C,D,E
A,B,C,D, and E are called variables. When the pro-

gram is run, the system will print a question mark

(?) at this point and wait for input from the termi-

nal keyboard. The ENTER statement, Section III

can also be used to input data.

After 1ine 19 is executed, the variables and their
assigned values, typed in by the user, are stored.
For example, using the values entered by the user
in the previous example, this information is stored:
A=-12.5; B =-50.6; C = -32; D=45.6; E = 60

Line 20 declares that a variable called S exists,
and is assigned the value of the sum of the vari-
ables A,B,C,D,E divided by 5: 20 LET S = (A+B+C+D+E)/5

Line 3@ instructs the system to output the
value of S to user's terminal: 3@ PRINT S

If the PRINT statement were not given,

the value of S would be calculated and

stored, but not printed. Explicit in-

structions must be given for each oper-
ation to be performed.

Line 49 tells the system to go to line 1@ and
execute whatever instruction is there: 40 GO TO 19

1-28



NOTE:

A "loop" is formed by lines 1§ to 4¢. The sequence
of statements in this loop execute until the user
breaks the loop. This type of loop is called an in-
put loop (because the user must repeatedly input
data). Each time the system prints the value of S
(line 3¢) execution continues to line 4¢, returns

to line 1@, then prints the guestion mark (?) --
requesting five new inputs. The only way a user

can escape from a program that is waiting for input
is to type C  (the character C with the CONTROL key
depressed). Execution will then proceed to the last
statement in the program, line 5@ in this example,
and the system will print DONE. When the program is
actually running (computing the values or printing
results) the break key is used to interrupt the pro-
gram, as described previously.

Line 50 indicates that the program is finished:

1-29






SECTION i
THE ESSENTIALS OF BASIC

HOW TO READ THIS SECTION

This section contains enough information to allow
you to use BASIC in simple applications, without
using the capability of storing programs.

Proceed at your own pace. The information in the
vocabulary and operators subsections is included
for completeness; experienced programmers may skip
these. Programmers with some knowledge of BASIC
may also concentrate on capabilities of the TSB
system presented in the commands subsection.

The "Operators" subsections contain brief descriptions,
rather than explanations, of the logical operators.

The novice should not expect to gain a clear under-
standing of logical operators from this presentation.
Section VII presents more details and examples of

TSB logical operations. Readers wishing to make best
use of TSB logical capabilities should consult this
section. Those unfamiliar with logical operations
should also refer to an elementary logic text.

A simple program is included at the end of this

section for reference; it contains a running commen-

tary on the uses of many of the BASIC statements presented
in the section.

2-1



TERM: NUMBER

DEFINED IN TSB AS: A positive or negative decimal number
whose magnitude is between an approxi-

mate minimum of ]¢'38 (or 2']29) and an

approximate maximum of 1038 (or 2]27).

Zero is also allowed.

COMMENTS

The precision of all numbers in TSB is 23 binary digits (6 to 7 decimal
digits).

If the user types a BASIC statement which contains a number that is not
representable in TSB, the system will output a warning and change the
number in the statement to the closest representable one.

If an executing program makes a calculation which results in a non-
representable number, that number will be set to the closest represent-
able one and a warning message will be printed.

TERM: E NOTATION

DEFINED IN TSB AS:

A means of expressing numbers having more than six
decimal digits, in the form of a decimal number
raised to some power of 10.

EXAMPLES: 1.0PPPPE+P6 is equal to 10PPPPP and is read:
"1 times 19 to the sixth power" (1x1¢6).

1.020PPE+D4 is equal to 192pp
1.020PPE-P4 is equal to .PPP1P2

COMMENTS
"E" notation is used to print numbers greater than six digits. (See PRINT.)
It may also be used to input any number. When entering numbers in "E" no-
tation, leading and trailing zeroes may be omitted from the number; the +
sign and leading zeroes may be omitted from the exponent.

2-2



TERM: SIMPLE VARIABLE

DEFINED IN TSB AS: A letter (from A to Z); or a letter immediately
followed by a number (from @ to 9).

EXAMPLES: A B
M5 C2
29 D

COMMENTS

Variables are used to represent numeric values.
For instance, in the statement:
19 LET M5 = 96.7
M5 is a variable; 96.7 becomes the value of the variable M5.

There are two other types of variables in TSB, array

and string variables; their use is explained in Sec-
tions V and VI respectively.

2-3



TERM: EXPRESSION

DEFINED IN TSB AS: A combination of variables, constants and

operators which has a numeric value.
EXAMPLES: (P + 5)/27

(where P has previously been assigned a

numeric value.)

Q- (N+4)
(where Q and N have previously been assigned
numeric values.)

i‘E\R\MI ARITHMETIC EVALUATION

DEFINED IN TSB AS: The process of calculating the value of

an expression,

2-4



THE ASSIGNMENT OPERATOR

SYMBOL : =

EXAMPLES: 1WLETA=B2=C=0
20 LET A9 = C5
30 Y = (N-(R+5))/T

49 N5 = A + B2
50 P5 = P6 = P7 = A =B = 98.6

GENERAL FORM: LET variable = expression

variabls = expression

PURPOSE

Assigns an arithmetic or logical value to a
variable.

COMMENTS

When used as an assignment operator, = is read
"takes the value of," rather than "equals". It
is, therefore, possible to use assignment state-
ments such as:

199 LET X = X+2

This is interpreted by TSB as: "LET X take the
value of (the present value of) X, plus two."

Several assignments may be made in the same
statement, as in statements 1§ and 5@ above.

See Section VII, "LOGICAL OPERATIONS" for a
description of logical assignments.

2-5



ARITHMETIC OPERATORS

SYMBOLS: t* )+

EXAMPLES: 49 LET N1 = X-5
50 LET C2 = N+3
60 LET A = (B-C)/4
70 LET X = ((P+2)-(Y*X))/N+Q

PURPOSE

Represents an arithmetic operation, as:

-

exponentiate:
multiply:
divide:

add:
subtract: -

*

+ O~

COMMENTS

The "-" symbol is also used as a sign for negative numbers.

It is good practice to separate arithmetic operations with
parentheses when unsure of the exact order of precedence.

The order of precedence (hierarchy) is:

4

*/

+ -
with + having the highest priority. Operators on the same level
of priority are acted upon from left to right in a statement. See
"Order of Precedence" in this Section for examples.

2-6



RELATIONAL OPERATORS

SYMBOLS:

EXAMPLES: IF A=B THEN 90@
IF A+B >C THEN 910
IF A+B < C+E THEN 929

IF C>= D*E THEN 930
IF C9<= G*H THEN 940
IF P2#C9 THEN 950

IF J <> K THEN 95¢

PURPOSE

Determines the logical relationship between two expressions, as
equality: =
inequality: # or: <
greater than: >
less than: <
greater than or equal to: »>=
less than or equal to: <=

COMMENTS

NOTE: It is not necessary for the novice to understand the nature of
logical evaluation of relational operators, at this point. The
comments below are for the experienced programmer.

Expressions using relational operators are logically evaluated, and assigned
a value of "true" or "false" (the numeric value is 1 for "true", and P for
false).

When the = symbol is used in such a way that it might have either an
assignment or a relational function, TSB assumes it is an assignment
operator. For a description of the assignment statement using logical
operators, see Section VII, "Logical Operations."

2-7



EXAMPLES:

MIN AND MAX OPERATORS

LET A=A9=P2=P5=C2=X=7.5
LET B5=D8=Q1=Q4=Y=B=12.0

PRINT (A MIN 1¢)

LET B=(A MIN 1¢)+19¢

IF (A MIN B5) > (C2 MIN D8) THEN 19
PRINT (X MAX Y)
IF (A9 MAX B) <= 5 THEN 15¢

PURPOSE

Selects the larger or smaller
value of two expressions.

COMMENTS

In the examples above, statement 119
selects and prints the larger value:
since X = 7.5 and Y = 12.9, the value
of Y is printed. The evaluation is
made first, then the statement type
(PRINT) is executed.



THE AND OPERATOR

SYMBOL : AND

EXAMPLES: 6@ IF A9<B1 AND C#5 THEN 100

70 IF T7#T AND J=27 THEN 159
80 IF P1 AND R>1 AND N AND V2 THEN 10
99 PRINT X AND Y

PURPOSE

Forms a logical conjunction between two expressions. If
both are "true", the conjunction is "true"; if one or both
are "false", the conjunction is "false".

NOTE: It is not necessary for the novice to understand how this
operator works. The comments below are for experienced
programmers.

COMMENTS
The numeric value of "true" is 1, of "false" is @.

A11 non-zero values are "true". For example, statement 90
would print either a @ or a 1 (the logical value of the ex-
pression X AND Y) rather than the actual numeric values of
X and Y.

Contrb] is transferred in an IF statement using AND, only
when all parts of the AND conjunction are "true". For in-
stance, example statement 8p requires four "true" conditions
before control is transferred to statement 10.

See Section VII, "Logical Operations" for a more complete
description of logical evaluation.

2-9



THE OR OPERATOR

SYMBOL : OR
EXAMPLES: 199 IF A>1 OR B<5 THEN 5@@

11¢ PRINT C OR D
120 LET D = X OR Y
139 IF (X AND Y) OR (P AND Q) THEN 699

PURPQOSE
Forms the logical disjunction of two expressions. If
either or both of the expressions is true, the OR dis-
junction is "true"; if both expressions are "false" the

OR disjunction is "false".

NOTE: It is not necessary for the novice to understand
how this operator works. The comments below are
for experienced programmers.

COMMENTS

The numeric values are: “true" =1, "false" = 0.

A11 non-zero values are true; all zero values are false.

Control is transferred in an IF statement using OR, when
either or both of the two expressions evaluate to "true".

See Section VII, "Logical Operations" for a more complete
description of logical evaluation.



THE NOT OPERATOR

SYMBOL: NOT

EXAMPLES: JPLETX =Y =290
35 IF NOT A THEN 3¢9

45 IF (NOT C) AND A THEN 4p9
55 LET B5 = NOT P

65 PRINT NOT (X AND Y)

70 IF NOT (A=B) THEN 5p9

PURPOSE

Logically evaluates the complement of a given expression.

NOTE: It is not necessary for the novice to
understand how this operator works. The
comments below are intended for experi-
enced programmers

COMMENTS

If A =90, then NOT A =1; if A has a non-zero value,
NOT A = 9.

The numeric values are: "true" = 1, "false" = 9; for
example, statement 65 above would print "1", since the
expression NOT (X AND Y) is true.

Note that the logical specifications of an expression may
be changed by evaluating the complement. In statement 35
above, if A equals zero, the evaluation would be "true" (1);
since A has a numeric value of @, it has a logical value of
"false", making NOT A "true".

See Section VII, "Logical Operations" for a more complete
description of logical evaluation.

2-1



ORDER OF PRECEDENCE OF EXECUTION

The order of performing operations is:

highest precedence

MIN MAX
Relational Operators

AND

OR lowest precedence

COMMENTS

If two operators in an expression are on the
same level, the order of execution is left to
right within the statement.

5+ 6*7 is evaluated as: 5+ (6x7)
7/14*2/5 is evaluated as: (7/14)x2
5

A MIN B MAX C MIN D is evaluated as:
((A MIN B) MAX C) MIN D

Operations enclosed in parentheses are performed
before any operations outside the parentheses.
When parentheses are nested, operations within
the innermost pair of parentheses are performed
first.



STATEMENTS

Be sure you know the difference between statements
and commands.

Statements are instructions to the system. They

are contained in numbered lines within a program,
and execute in the order of their line numbers.
Statements cannot be executed without running a pro-
gram. They tell the system what to do while a
program is running.

Commands are also instructions. They are executed

immediately, do not have line numbers, and may not

be used in a program. They are used to manipulate

programs, and for utility purposes, such as logging
on and off. ‘

Here are some examples mentioned in Section I:

Statements Commands
LET HELLO
PRINT BYE
INPUT LIST

Do not attempt to memorize every detail in the
"Statements" subsection; there is too much material
to master in a single session. By experimenting
with the sample programs, and attempting to write
your own programs, you will learn more quickly than
by memorizing.



THE ASSIGNMENT STATEMENT

EXAMPLES: 19 LET A = 5.92
20 X=Y71=171=9
30 B9 = 5% (X+2)
49 LET D = (3*C24N)/(A*(N/2))

GENERAL FORM:

statement number LET variable = number or expression or string or variable. ..

or

Statement number variable = number or expression or string or variable...

PURPOSE

Used to assign or specify the value of a variable.
The value may be an expression, a number, string
or a variable of the same type.

COMMENTS

Note that LET is an optional part of the assignment
statement.

The assignment statement must contain:

1. The variable to be assigned a value.

2. The assignment operator, an = sign.

3. The number, expression or variable to be
assigned to the variable.

Statement 2§ in the example above shows the use of
an assignment to give the same value (?) to several
variables. This is a valuable feature for initial-
izing variables in the beginning of a program.

2-14



REM

EXAMPLES: 19 REM--THIS IS AN EXAMPLE
20 REM: OF REM STATEMENTS
3@ REM
4 REM. STATEMENTS ARE NOT EXECUTED BY TSB

GENERAL FORM: statement number REM any remark or series of characters

PURPOSE

Allows insertion of a 1line of remarks or comment
in the listing of a program.

COMMENTS

Must be preceeded by a line number. Any series of
characters may follow REM.

REM 1ines are saved as part of a BASIC program, and
printed when the program is listed or punched; how-
ever, they are ignored when the program is executing.

Remarks are easier to read if REM is followed by a
punctuation mark, as in the example statements.



GO TO AND MULTIBRANCH GO TO

EXAMPLES: 19 LET X = 20

49 GO TO X+Y OF 410,429,439

50 GOTO 190

8P GOTO 19

99 GO TO N OF 199,150,180,199
GENERAL FORM:

statement number GO TQ statement number

statement number G TO0 expression OF sequence of statement numbers

PURPOSE
GO TO transfers control to the statement specified.

GO TO expression...rounds the expression to an integer n and transfers control
to the nth statement number following OF.

COMMENTS
G0 TO may be written: GOTO or GO TO.

Must be followed by the statement number to which control is transferred, or
expression OF, and a sequence of statement numbers.

GO TO overrides the normal execution sequence of statements in a program.

If there is no statement number corresponding to the value of the expression, the
GO TO is 1ignored.

Useful for repeating a task infinitely, or "jumping" (GOing TO) another part of
a program if certain conditions are present.

GO TO should not be used to enter FOR-NEXT loops; doing so may produce unpredict-
able results or fatal errors.

2-16



IF...THEN

SAMPLE PROGRAM: 10 LET N =19
20 READ X
30 IF X < N THEN 60
49 PRINT "X IS 19 OR OVER"
59 GO TO 8¢
6@ PRINT "X IS LESS THAN 1¢"
79 GO TO 20
8@ END

GENERAL FORM: statement number IF expression THEN statement number

PURPQOSE
\ Transfers control to a specified statement if a specified condition is
ﬁww\ true.
COMMENTS

Sometimes described as a conditional transfer; "GO TO" is implied by
IF...THEN, if the condition is true. In the example above, if X<-10,
the message in statement 60 is printed.

Since numbers are not always represented exactly in the computer, the
= operator should be used carefully in IF...THEN statements. <=,>=, etc.
should be used in the IF expression, rather than =, whenever possible.

If the specified condition for transfer is not true, then the program
will continue executing in sequence. In the example above, if X>=10,
the message in statement 4@ will be printed.

@Ms\ See "Logical Operations," Section VII for a more complete description
of logical evaluation.

2-17



FOR..NEXT

EXAMPLES: 199 FOR P1 = 1 T0 5
119 FOR Q1 = N TO X
129 FOR R2 = N TO X STEP 1
139 FOR S 1 T0 X STEP Y
149 NEXT S
150 NEXT R2
160 NEXT Q1
170 NEXT P1

Sample Program - Variable Number Of Loops

49 PRINT "HOW MANY TIMES DO YOU WANT TO LOOP";
59 INPUT A

6@ FORJ =1TO A

7@ PRINT "THIS IS LOOP"; J

80 READ N1, N2, N3

99 PRINT “"THESE DATA ITEMS WERE READ:" N1; N2; N3
199 PRINT "SUM ="; (N1+N2+N3)

119 NEXT J

129 DATA 5, 6, 7, 8, 9, 19, 11, 12

13p DATA 13, 14, 15, 16, 17, 18, 19, 20, 2]

149 DATA 22, 23, 24, 25, 26, 27, 28, 29, 30

150 DATA 31, 32, 33, 34

160 END

GENERAL FORM:

statement number FOR simple variable = initial value 10 final value

or

statement no. FOR simple variable = initial value T0 final value STEP step value

(Statements to be repeated)

statement number NEXT simple variable

NOTE: The same simple variable must be used in both the FOR and NEXT statements
of a loop.




FOR...,, NEXT, CONTINUED

PURPOSE

Allows repetition of a group of statements
within a program,

COMMENTS

Initial value, final value and

step value may be any expression.
How the loop works:

The simple variable is assigned the value

of the initial value; the value of the sim-

ple variable is increased by 1 (or by the optional
step value) each time the loop executes.

When the value of the simple variable passes

the final value, control is transferred to the
statement following the "NEXT" statement.

STEP and step value are optional.

For further details on the STEP feature, see
"FOR. ..NEXT with STEP" in Section III.

Try running the sample program if you are not
sure what happens when FOR...NEXT loops are
used in a program.



NESTING FOR..NEXT LOOPS

Multiple FOR...NEXT loops may be used in the same
program; they may also be nested (placed inside one
another). There are two important features of
FOR...NEXT Toops:

1. FOR...NEXT loops may be nested.

—1@ FOR A1 =1 T0 5

F——Zﬂ FOR B2 = N TO P
Range of loop A],/;ZV ; 39 FOR C3 = X TO Y STEP R
Range of loop BZ///// .
Range of loop C3 8@ NEXT C3
9@ NEXT B2
——10@ NEXT Al

2. The range of FOR...NEXT Toops may
not overlap. The loops in the ex-
ample above are nested correctly.
This example shows improper nesting.

— 10 FOR I

—3@ FOR J

I and J overlap.

The range of loops{

5@ NEXT I

—90 NEXT J

2-20



READ, DATA AND RESTORE

Sample Program using READ and DATA

15 FOR I=1 TO 5

29 READ A

49 LET X=A4+2

45 PRINT A;" SQUARED =";X

50 NEXT I
55 DATA 5.24,6.75,30.8,72.65,89.72
60 END

Each data item may be read only once in this program.
TSB keeps track of data with a "pointer." When the
first READ statement is encountered, the "pointer"
indicates that the first item in the first DATA state-
ment is to be read; the pointer is then moved to the
second item of data, and so on.

In this example, after the loop has executed five
times, the pointer remains at the end of the data
list. To reread the data, it is necessary to reset
the pointer. A RESTORE statement moves the pointer
back to the first data item.

2-21



READ, DATA AND RESTORE, CONTINUED

Sample Program Using READ, DATA and RESTORE

2P FOR I=1 TO 5

3@ READ A

49 LET X=A+t2

5@ PRINT A; "SQUARED =";X

6f NEXT I

8P RESTORE
199 FOR J=1 TO 5
119 READ B

129 LET Y=B+4

130 PRINT B; "TO THE FOURTH POWER =";Y
140 NEXT J
159 DATA 5.24,6.75,30.8,72.65,89.72
160 END

GENERAL FORM:

statement number READ variable , variable ...

statement number DATA number or string , number or string

7 e

statement number RESTORE

statement number RESTORE statement number

PURPOSE

The READ statement instructs TSB to read an item from a DATA statement.

The DATA statement is used for specifying data in a program. The data
is read in sequence from first to last DATA statements, and from left to
right within the DATA statement.

The RESTORE statement resets the pointer to the first data item, allowing
data to be re-read.

RESTORE followed by a statement number resets the pointer to the first
data item, beginning at the specified statement.

2-22



READ, DATA AND RESTORE, CONTINUED

COMMENTS

READ statements require at least one DATA
statement in the same program.

Items in a DATA statement must be separated
by commas. String and numeric data may be
mi xed.

DATA statements may be placed anywhere in a
program. The data items will be read in se-
quence as required.

DATA statements do not execute; they merely
specify data.

The RUN command automatically sets the pointer
to the first data item.

If you are not sure of the effects of READ,
DATA, and RESTORE, try running the sample
programs.

Programmers mixing string and numeric data

may find the TYP function useful. See "The
TYP Function", Section IV,

2-23



INPUT

This program shows several variations of the INPUT statement and their effects.

Sample Program Using INPUT

FOR M=1 TO 2

INPUT A

INPUT A1,B2,C3,20,Z9,E5

PRINT "WHAT VALUE SHOULD BE ASSIGNED TO R";
INPUT R

PRINT A;A1;B2;C3;70;79;E5;"R=";R

NEXT M

21 return
22,3,4,5,6,7 return

WHAT VALUE SHOULD BE ASSIGNED TO R?27 return

1 2 R=27

?1.5 return

?2.5,3.5,4.5,6.,7.2 return

?78.1 return ?? indicates that more input is expected

WHAT VALUE SHOULD BE ASSIGNED TO R?-99

1.5‘ 2.5 3.5 4.5 6 7.2
8.1 R=-99

DONE

GENERAL FORM:
statement number INPUT variable , variable ,...

PURPOSE

Assigns a value input from the teleprinter to a variable.

2-24



INPUT CONTINUED

COMMENTS

The program comes to a halt, and a question mark is print-
ed when the INPUT statement is used. The program does not
continue execution until the input requirements are satis-
fied.

Only one question mark is printed for each INPUT statement.
The statements:
19 INPUT A, B2, C5, D, E, F, G,
and

20 INPUT X

each cause a single "?" to be printed. Note that the "?"
generated by statement 1P requires seven input items,
separated by commas, while the "?" generated by statement
20 requires only a single input item.

The only way to stop a program when input is required is
entering: C¢ return. Note that the C® aborts the program;
it must be restarted with the RUN command.

Relevant Diagnostics:

? indicates that input is required.
?? indicates that more input is needed to satisfy an INPUT statement.
??? indicates that TSB cannot decipher your input.
ENTRA INPUT-WARNING ONLY indicates that a) extra input was
entered; b) it has been disregarded; and c¢) the program
is continuing execution.

See the description of the "PRINT" format this section for
variations on output formats.

2-25



PRINT

EXAMPLE

LET A=B=C=D=E=F=G=14
LET D1=E9=20
PRINT A,D1,B,C,E9
PRING A/B,B/C/D1+E9
PRINT "NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE"
PRINT "VALUE IN THE SAME STATEMENT."
PRINT
REM: "PRINT" WITH NO OPERAND CAUSES THE TELEPRINTER TO SKIP A LINE.
PRINT "'A' DIVIDED BY 'E9' =";A/E9
190 PRINT
11¢ PRINT "11111","22222","33333","AAAAA" ,"BBBBB" ,"CCCCC"
120 PRINT "11111","22222","33333","AAAAA","BBBBB","CCCCC"
13¢ PRINT A,B,C,D,D1,E,F,E9,G
140 PRINT A;B;C;D;D1;E;F;F;E9;G
15@ PRINT
169 PRINT TAB(8);"CARRIAGE";SPA(5);"CONTROL";LIN(2);"FUNCTIONS"
1790 END

14 20 14 14

1 20.95
NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE
VALUE IN THE SAME STATEMENT.

"A'" DIVIDED BY 'E9' = .7

11111 22222 33333 AAAAA BBBBB
cccce
111112222233333AAAAABBBBBCCCCC
14 14 14 20
14 20 14
14 14 14 14 20 14 14 20 14

CARRIAGE CONTROL
FUNCTIONS
DONE

2-26



PRINT, CONTINUED

GENERAL FORM:

statement number expression , expression , ...

statement number "any text" ; expression ; ...

statement number "text" ; expression ; "text! , "text', ...

statement number any combination of text and/or expressions and/or

TAB, LIN, and SPA

statement number

PURPOSE

Causes the value(s) of the expression(s) to be output to
ﬁMh the teleprinter or terminal device.

Causes the teleprinter to skip a 1ine when used without an
operand. Causes text within quotes to be printed literally.

COMMENTS

Note the effects of , and ; on the output of the sample
program. If a comma is used to separate PRINT operands,
up to five fields will be printed per teleprinter line.
These five fields begin in columns 0, 15, 30, 45, and
60. If semicolon is used, up to twelve "packed" numeric
fields will be output per teleprinter line; the exact
number depends on the size of each numeric field. If
semicolons are used between text in quotes, it is pos-
sible to print a full 72 characters on a line.

2-27



PRINT , CONTINUED -
A carriage return and linefeed are output after the execution of any PRINT state-
ment unless the 1ist of items to be printed is terminated by a comma or semicolon,
in which case the next PRINT statement will begin on the same line.

Values output by PRINT statements are in one of four possible numeric formats,
depending on the value. These values and their formats are:

Value Field Examples
-999 < integer < 999 ~ddd.. A
-32767 < integer < -1000 =ddddd. ... -1234
1000 < integer < 32767 7515
all other integers =ddddddd... .. 131072.
.000001 < and all < 999999.5  (one d is "." 18 a5
reals in range trailing zeroes ) -
9 are suppressed.) )
A1l numbers n such that 1.97343E+06
n < .000001
999999.5 < n =d.dddddE+dd.. . . -6.91112E+15

Each "d" represents one decimal digit; each "z" means the sign if negative,

a space if positive; each "." means a space; each + means the sign. An
example of these formats is the following program, which prints the powers of
2 from -5 to 30. '

EXAMPLE :

10 FOR N=-5 TO 3¢
20 PRINT 2+N;

30 NEXT N
49  END
RUN
03125 0625 .125 .25 5 1 2
4 8 16 32 64 128 256 512 1024 2048
4096 8192 16384 32768. 65536. 131972. 262144,
524288. 1.04858E+06 2.09715E+06 4.19430E+06 8.38861E+p6 <
1.67772E+(7 3.35544E+(7 6.71089E+@7 1.34218E+08 2.68435E+08
8N36871E+O8 1.07374E+99
D

2-28



PRINT , CONTINUED

Insertion of the special functions TAB, SPA, and LIN into the output
1ist provides carriage control:

TAB (expression)

SPA (expression)

LIN (expression)

Causes the carriage to move to the specified
print column (@71). No action is taken if the
move would be to the left. The carriage moves
to the beginning of the next line if expression
>71.

Causes carriage to skip specified number of
spaces ("print that number of blanks"). A
negative expression does nothing. If more spaces
are requested than remain in the line, the car-
riage moves to the beginning of the next line.

Generates a carriage return and the specified
number of linefeeds. If the expression is

negative, then no carriage return is generated.
LIN (@) produces a single carriage return.

o¢ printed in a character string causes a carriage return to be output

instead.

N¢ printed in a character string causes a linefeed to be output instead.

The PRINT USING statement, which provides increased output formatting
capabilities, is described in Section VIII.

2-29



END AND STOP

EXAMPLES:
209 IF A # 27.5 THEN 350

309 STOP
350 LET A = 27.5

50p IF B # A THEN 9999

550 PRINT "B = A"
609 END |
9999 END

GENERAL FORM:

any statement number STOP

any statement number END

Highest statement number in program END

PURPOSE

Terminates execution of the program and returns control to TSB.
COMMENTS

The highest numbered statement in the program must be an END statement.

END and STOP statements may be used in any portion of the program to
terminate execution.

END and STOP have identical effects; the only difference is that the
highest numbered statement in a program must be an END statement.

2-30




SAMPLE PROGRAM

If you understand the effects of the
statement types presented up to this
point, skip to the "COMMANDS" section.

The sample program on the next two
pages uses several BASIC statement
types.

Running the program gives a good idea
of the various effects of the PRINT
statement on teleprinter output. If
you choose to run the program, you may
save time by omitting the REM statements.

After running the program, compare your
output with that shown under "RUNNING
THE SAMPLE PROGRAM". If there is a dif-
ference, LIST your version and compare
it with the one presented on the next
two pages. Check your PRINT statements
for commas and semicolons; they must be
used carefully.

2-31



SAMPLE PROGRAM

19 REMARK: "REMARK" OR "REM" IS USED TO INDICATE REMARKS OR COMMENTS
2P REMARK: THE USER WANTS TO INCLUDE IN THE TEXT OF HIS PROGRAM.

30 REM: THE COMPUTER LISTS AND PUNCHES THE “REM" LINE, BUT DOES NOT
49 REM: EXECUTE IT.

50 REM: "PRINT" USED ALONE GENERATES A "RETURN" "LINEFEED"

6@ PRINT

79 PRINT "THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY."
80 PRINT

9% PRINT "IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS."
199 PRINT

119 PRINT "PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY."

129 PRINT

13p PRINT

149 REM: FIRST, ALL VARIABLES USED IN THE PROGRAM ARE INITIALIZED
159 REM: TO ZERO (THEIR VALUE IS SET AT ZERO.)

16@ LET A=N=R1=5=p

189 REM: NOW THE USER WILL BE GIVEN A CHANCE TO SPECIFY HOW MANY

199 REM: NUMBERS HE WANTS TO AVERAGE.
2pP PRINT "HOW MANY NUMBERS DO YOU WANT TO AVERAGE";
219 INPUT N
22p PRINT

23p PRINT "0.K., TYPE IN ONE OF THE ";N;"NUMBERS AFTER EACH QUES. MARK."
249 PRINT "DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER."
250 PRINT

26@ PRINT "NOW, LET'S BEGIN"
279 PRINT
280 PRINT

3@@ REM: "N" IS NOW USED TO SET UP A "FOR-NEXT" LOOP WHICH WILL READ
319 REM: 1 TO "N" NUMBERS AND KEEP A RUNNING TOTAL.
329 FOR I=1 TO N

339 INPUT A

340 LET S=S+A

359 NEXT I

36Q REM: "I" IS A VARIABLE USED AS A COUNTER FOR THE NUMBER OF TIMES

2-32



379 REM:
380 REM:
399 REM:
4pP REM:
410 REM:
429 REM:
430 REM:
44p REM:
460 REM:
479 PRINT
48p PRINT
499 PRINT
500 PRINT
519 PRINT
52 PRINT
530 PRINT
549 PRINT
550 PRINT
579 REM:
580 REM:
599 PRINT
600 PRINT
610 PRINT
620 PRINT
630 PRINT
649 PRINT
650 INPUT

660 IF R1=

670 REM:

SAMPLE PROGRAM CONTINUED

THE TASK SPECIFIED IN THE "FOR-NEXT" LOOP IS PERFORMED.

“I" INCREASES BY 1 EACH TIME THE LOOP IS EXECUTED.

"A" IS THE VARIABLE USED TO REPRESENT THE NUMBER TO BE
AVERAGED. THE VALUE OF "A" CHANGES EACH TIME THE

USER INPUTS A NUMBER.

"S" WAS CHOSEN AS THE VARIABLE TO REPRESENT THE SUM

OF ALL NUMBERS TO BE AVERAGED.

AFTER THE LOOP IS EXECUTED "N" TIMES, THE PROGRAM CONTINUES.
A SUMMARY IS PRINTED FOR THE USER.

N; "NUMBERS WERE INPUT."

“THEIR SUM IS:";S

"THEIR AVERAGE IS:";S/N

NOW THE USER WILL BE GIVEN THE OPTION OF QUITTING OR
RESTARTING THE PROGRAM.

"DO YOU WANT TO AVERAGE ANOTHER GROUP OF NUMBERS?"

"TYPE 1 IF YES, @ IF NO"
"BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER."

"YOUR REPLY";

R1

1 THEN 129

THE FOLLOWING LINES ANTICIPATE A MISTAKE IN THE REPLY.

689 IF R1#p THEN 700

690 GO TO
700 PRINT
719 GO TO
720 END

720
"TQ REITERATE, YOU SHOULD TYPE 1 IF YES, @ IF NO."
640

2-33



RUNNING THE SAMPLE PROGRAM

RUN return

THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY.
IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS.
PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY.

HOW MANY NUMBERS DO YOU WANT TO AVERAGE? 5 return
0.K.,TYPE IN ONE OF THE 5 NUMBERS AFTER EACH QUES. MARK.
DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER.
NOW, LET'S BEGIN

? 99 return

? 87.6 return

? 92.7 return

? 79.5 return

? 84 return

5 NUMBERS WERE INPUT.

THEIR SUM IS: 442.8

THEIR AVERAGE IS: 88.56

DO YOU WISH TO AVERAGE ANOTHER GROUP OF NUMBERS?
TYPE 1 IF YES, @ IF NO

BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER.
YOUR REPLY? 2 return

TO REITERATE, YOU SHOULD TYPE 1 IF YES, @ IF NO.
YOUR REPLY? 1 return

HOW MANY NUMBERS DO YOU WISH TO AVERAGE? C® return
DONE

2-34



COMMANDS

Remember the difference between commands
and statements (See “"Statements" in this
section).

Commands are direct instructions to the
system, and are executed immediately.
They are used to manipulate programs,
and for utility purposes.

Note that all TSB commands may be
abbreviated to their first three letters.
If information is required or permitted
after a command, a hyphen "-" must be in-
cluded. For example, when logging in:

HEL-H20@, SESCSRECT return

Do not try to memorize all of the details
in the COMMANDS subsection. The various
commands and their functions will become
clear to you as you begin writing programs.

2-35



HELLO -

EXAMPLE: HELLO-DP@7,POSCT return

or

HEL-D@@7,POS T return

GENERAL FORM: HELLO- IDcode , password

or

HEL- IDcode , password

PURPOSE

The command used to log in to the TSB system.

COMMENTS

ID codes and passwords are assigned by the
system operator. )

Several users with the same I.D. code may
be logged on to the computer simultaneously,
using different terminals.

2-36



BYE

EXAMPLE: BYE return
P@9 MINUTES OF TERMINAL TIME

GENERAL FORM: BYE

PURPOSE

The command used to 1og out of the TSB system.

COMMENTS

Causes the amount of terminal time used to be

printed.

Breaks a telephone connection to the computer.

2-37



ECHO-

EXAMPLES: ECHO-OFF return
ECHO-ON return
GENERAL FORM; ECHO-ON

or

ECHO-OFF

PURPQSE

Allows use of half-duplex terminal.

COMMENTS

Users with half duplex terminal
equipment must first log on, then
type the ECHO-OFF command; then
input and output becomes legible.

ECHO-ON returns a user to the full-
duplex mode.

May be abbreviated to its first three
letters.

2-38



RUN

EXAMPLE: RUN return

or

RUN- 3@@ return
GENERAL FORM: RUN

RUN- statement number

PURPOSE

Starts execution of a program at the lowest numbered
statement when used without specifying a statement
number.

Starts execution of a program at the specified statement
when a statement number is used.

COMMENTS

Note that when RUN- statement number is used, all statements be-
fore the specified statement will be skipped. Variables defined
in statements which have been skipped are therefore considered
to be undefined by TSB, and may not be used until they are de-
fined in an assignment, INPUT, ENTER, READ, or LET statement.

A running program may be terminated by pressing the break key;
or, to terminate a running program at some point when input is
required, type:

CC return

2-39



LIST

EXAMPLE : LIST return
LIST -109 return
LIST -109, 200 return

GENERAL FORM: LIST
LIST- statement number

LIST- statement number » Statement number

LIST- , statement number

LIST- statement number , statement number ,P
LIST- P

LIST- statement number

LIST- , statement number , P

PURPOSE

Produces a listing of all statements in a program (in statement number
sequence) when no statement number is specified.

When a statement number is specified, the Tisting begins at that statement.
When a second statement number is specified, 1isting ends with that statement.

When a "," and a statement number appear, listing starts at the beginning
and ends with the specified statement.

When "P" is specified, the listing is spaced for cutting into 11-inch sheets
sized for binding or filing. "P" must be the final parameter, and must be
preceded by a comma if it follows other parameters.

COMMENTS

A Tisting may be stopped by pressing the breax key. Library programs
designated "RUN ONLY" (protected) by the System Master or Group Master
cannot be Tisted. LIST may be abbreviated to its first three letters.

2-40



SCRATCH

EXAMPLE: SCRATCH return

or

SCR return

GENERAL FORM: SCRATCH

or

SCR

PURPOSE

Deletes (from memory) the program currently
being accessed from the teleprinter.

COMMENTS

Scratched programs are not recoverable. For
information about saving programs on paper

tape or in your personal library, see the NAME
and SAVE commands in the next section, and PUNCH
in this section.

2-41



RENUMBER

EXAMPLES:

RENUMBER return
REN- return
REN-100

REN-10, 1 return

REN-2@, 5@ return

REN-10, 19, 5@, 109 return

GENERAL FORM: REN

or

REN-number assigned to first statement

or

REN-number assigned to first statement s interval between new statement numbers

or

REN-number assigned to first statement, interval between new statement numbers,

starting statement number, ending statement number

or

REN-number assigned to first statement, interval between new statement numbers,

starting statement number

PURPOSE

Renumbers statements in the current program.

2-42



RENUMBER , CONTINUED

COMMENTS

GO TO's, GO SUB's, IF...THEN's, RESTORE's and PRINT USING's are automatically
reassigned the appropriate new numbers.

Starting statement number and ending statement number refer to line
numbers in the original program at which the renumbering is to start

and end.

If ending statement number is not specified, it is assumed to be the
last statement in the program.

If starting statement number is not specified, it is assumed to be the
first statement in the program.

If both starting and ending statement numbers are omitted, the entire
program is renumbered.

If no interval is specified, the new numbers are spaced at intervals of
19, from the beginning statement.

If no parameters are stated, the entire program is renumbered starting
with statement 19 at intervals of 1.

RENUMBER can not be used to change the order of statements in a program.

Any parameter may be omitted, but all parameters following it must also
be omitted.

Numbers or text contained in REM and PRINT statements or in the expression
1ist of PRINT USING statements are not revised by RENUMBER.

2-43



BREAK

EXAMPLES: break (Press the break key.)

PURPOSE
Terminates a program being run.

Terminates the execution of LIST, PUNCH, XPUNCH,
CATALOG, GROUP and LIBRARY commands.

COMMENTS

Pressing the break key signals the computer to
terminate a program, producing the message: STOP.

When break is pressed during a listing, the mes-
sage STOP is output.

Pressing break will not terminate the program if
it is awaiting input from the keyboard while exe-
cuting an INPUT or ENTER statement. In this case
the only means of ending the program is typing:

C
C~ return

which produces the DONE message.

break will not delete a program. Type RUN to
restart the program. (See also COM, Section III.)

2-44



PUNCH AND XPUNCH

EXAMPLES: PUNCH return
PUN- 100, 2P return
PUN- 100, 200, P return
PUN-65 return
PUN-, 3@@ return
XPUNCH return
XPU- 65, P return
XPU- P return
GENERAL FORM: PUN

PUN- statement number

PUN- statement number , statement number

PUN- statement number , statement number , P

PUN- , statement number
PUN-
XU

XPU- statement number

XPU- statement number , statement number

XPU- statement number , statement number , P
XPU- ,
XPU- P

statement number

PURPOSE

Punches a program onto paper tape; also punches the program name, and
leading and trailing feed holes on the tape; lists the program as it
is punched. Punching can begin and/or end at specified statements;
"P" provides the pagination option (see LIST).

2-45



PUNCH AND XPUNCH, CONTINUED

COMMENTS

If the teleprinter is not equipped with a paper tape reader/punch,
only a listing is produced.

Remember to press the paper tape punch "ON" button before pressing
the return after PUNCH.

XPUNCH produces the same results as punch, but adds an X-OFF charac-
ter at the end of each line (before return linefeed) to enable other
BASIC programs to read the paper tape as data. (See Appendix B.)

2-46



TAPE

EXAMPLES: TAPE return
TAP return

GENERAL FORM: TAPE
or

TAP

PURPOSE

Informs the system that following input
(a group of BASIC statements) is from paper
tape.

COMMENTS

TAPE suppresses any diagnostic messages which are
generated by input errors, as well as the auto-
matic linefeed after return. The KEY command

(KEY return )or any other command, causes the di-
agnostic messages to be output to the teleprinter,
ending the TAPE mode.

TSB responds to the TAPE command with a linefeed.

2-47



KEY

EXAMPLES: KEY return

GENERAL FORM: KEY

PURPOSE

Informs the system that following input

will be from the teleprinter keyboard;

used only after a TAPE (paper tape input)
sequence is complete; causes error messages
suppressed by TAPE to be output to the tele-
printer.

COMMENTS

Any command followed by a return has the
same effect as KEY. Commands substituted
for KEY in this manner are not executed if
diagnostic messages indicating syntax errors
in BASIC statements were generated during
tape input.

2-48



TIME

EXAMPLE: TIME return

CONSOLE TIME = 12 MINUTES. TOTAL TIME = 1193 MINUTES.
GENERAL FORM:  TIME

PURPOSE

Informs user of terminal time used since log on, and
total time used for the account.

COMMENTS

Time used by each ID code is recorded automatically by
TSB. The system operator controls the accounting

system. Consult your system operator for information
about your system's accounting methods.

2-49



MESSAGE

EXAMPLE: MES-PLEASE SANCTIFY PROGRAM '"DUMMY", USER J122. return

GENERAL FORM: MESSAGE-character string return

or

MES-character string return

PURPOSE

Sends a character string to the system operator, preceded by
the user's port number.

COMMENTS

Can be used to request information from the system operator,
or to have programs sanctified, desecrated, copied, bestowed,
or loaded from or dumped to magnetic tape (see Appendix D)

If the system operator's message storage area is full, the
message:

CONSOLE BUSY

will be printed on the user's terminal,indicating that the
message has not been sent and should be entered again.

2-50



SECTION lli

ADVANCED BASIC

This section describes more sophisticated
capabilities of BASIC.

The experienced programmer has the option of
skipping the "Vocabulary" subsection, and
briefly reviewing the commands and functions
presented here. The most important features
of the TSB system--files, matrices, and
strings are explained in the next three sec-
tions.

The inexperienced progranmer need not spend
a great deal of time on programmer-defined

and standard functions. They are shortcuts,
and some programming experience is necessary
before their specifications become apparent.



TERM: ROUTINE

DEFINED IN TSB AS: A sequence of program statements

which produces a certain result.

PURPOSE

Routines are used for frequently performed
operations. Using routines saves the pro-
grammer the work of defining an operation
each time he uses it, and saves computer
memory space.

COMMENTS

A routine may also be called a program,
subroutine, or sub-program.

The task performed by a routine is defined
by the programmer.

Examples of routines and subroutines are
given in this section.



TERM: ARRAY

DEFINED IN TSB AS: An ordered collection of numeric data.

A single program can have up to about

4900 total array elements (numeric
values).

COMMENTS

In BASIC a simple variable is defined by a single letter or a letter
followed by a numeral. A and Al are simple variables. Subscripted
variables define elements in an array. A], written A(1), is the

first element in the single-dimensioned array called A. In the example
below, the value would be 5.0:

EXAMPLE:
@ph Array A
Element Value
1 5.0
2 3.2
3 1.1
4 0.3

Two-dimensioned array elements are defined by a double subscript, refer-
ring to a row and column position in an array. Element B(1,3) in the

following example has the value appearing in the first row, third column.
In this case the value is 4.

Array B
Column 1 Column 2 Column 3
Row 1 6 5 4
Row 2 3 2 1
6§R\ Row 3 )] 9 8



ARRAY, CONTINUED

Array B is a three-by-three array. Arrays need not be square.
If an array has more than ten elements, a DIM (dimension) statement is

required. The DIM statement is described in Section V, which covers
matrices; a matrix is a special form of array.

3-4



TERM: STRING

DEFINED IN TSB AS: P to 72 teleprinter characters enclosed

by quotation marks.

COMMENTS

Sample strings: "ANY CHARACTERS!?*/---"
"TEXT 1234567..."

Quotation marks may not be used within a
string, except when the string is input
using an ENTER statement, described later
in this section.

TERM:  FUNCTION

DEFINED IN TSB AS: The mathematical relationship between two

variables (X and Y for example) such that
for each value of X there is one and only
one value of Y.

COMMENTS

The independent variable is called an argument;
the dependent variable is the function value.
For instance in

199 LET Y = SQR(X)
X is the argument; the function value is the
square root of X; and Y takes the value of the
positive root.

3-5



TERM: WORD

DEFINED IN TSB AS: The equivalent of approximately two BASIC

characters or one-half of a number.

COMMENTS

The term "word" is used to define the basic unit of computer storage.
The TSB system operates on computers having a word structure of 16
binary bits. Each character in BASIC occupies 8 bits of computer stor-
age; each number (when used in computation) occupies 32 bits. A numeral
that appears in a literal string (Section VI) is not used for compu-
tation, and is considered to be a character.

Therefore, two characters will fit into one computer word, while one

number Will require two computer words. Actually, the TSB system re-
quires a few additional computer words of storage, so programs and files
will require slightly more storage than one word for each two characters
or two words for each number. Each user has a working area of 10,000
words. The user need not normally be concerned about computer words.

3-6



STORING AND DELETING PROGRAMS

Up to this point manipulation of programs has
been 1imited to the "current" program, that is,
the program being written or run at the moment.
The only means of saving a program introduced
thus far is the PUNCH command.

The commands on the following pages allow the
user to create his own library of programs on
the Time Shared BASIC system. Library programs
are easily accessed, modified, and run.

The experienced programmer need only review
the commands briefly -- they do what their
names imply: NAME, SAVE, etc.

A word of caution for the inexperienced
programmer: it is wise to make a "hard"

copy (on paper tape) of programs you wish

to use frequently. Although it is easy and
convenient to store programs "on-system", you
will make mistakes as you learn, and may ac-
cidentally delete programs. It is much less
time consuming to enter a program from paper

tape than to rewrite it!



LENGTH

EXAMPLES: LENGTH return
3172 WORDS

LEN return
151 WORDS
GENERAL FORM: LEN return

PURPOSE

Prints the number of words in the program currently being accessed

from the terminal. This is the amount of "storage space" needed to
SAVE the program.

COMMENTS

Each user has a working "space" of over 10,000 words (20,000 charac-
ters or 5,000 numbers). LEN is a useful check on total program
length when writing Long programs. During execution, programs have
temporary tables, buffers, etc. which require additional storage
space. This larger total length is not permitted to exceed the
user's working area. See MEMORY ALLOCATION BY A USER, Section IX.

3-8



NAME-

EXAMPLE: NAME-PROG.1 return
NAM-ADDER return
NAM-MYPROG return

GENERAL FORM: NAME-Program name of 1 to 6 characters

or

NAM-Program name of 1 to 6 characters

PURPOSE

Assigns a name to the program currently being accessed from the tele-
printer.

COMMENTS

The first character of the program named may not be $ or *. These
symbols are used to access the System Library ($) and the Group

Library (*). The comma (,) may not be used in the name of a pro-
gram.

The program name must be used in certain TSB operations (see the
SAVE, CSAVE, KILL, GET, and APPEND commands in this section).

3-9



SAVE-

EXAMPLES:

GENERAL FORM:

AND CSAVE-

SAVE return

SAV return

CSA return

CSAVE or CSA
SAVE or SAV

PURPOSE

Saves a copy of the
user's private 1libr
gram in semi-compil
CHAIN more quickly.

current program in the
ary. (CSA stores the pro-
ed form so that it will
See CHAIN.)

COMMENTS

A program must be n
(See NAME, this sec

No two programs in
same name. The pro
version of a progra
name is SAMPLE):

KILL-SAMPLE return
linefeed
NAME-SAMPLE return
linefeed

SAVE return

linefeed

For instructions on

amed before it can be saved.
tion.)

a user's library may have the

cedure for saving a changed
m is as follows (the program

(Deletes the stored version)
(Names the current program)

(Saves the current program, named SAMPLE)

opening a file, see Section IV, "FILES."

3-10

‘ﬁw



GET-, GET-$, AND GET- *

EXAMPLES: GET-PROGRAM return
GET-MYPROG return
GET-$PUBLIC return
GET-$NAMES return
GET-*DATES return

GENERAL FORM: GET- name of a program in user's library

GET-$ name of system library program

GET-* name of group library program

PURPQOSE

GET- retrieves the specified program, making it the program currently
accessed from the teleprinter.

GET-$ retrieves the specified program from the system library, making
it the program currently accessed from the teleprinter.

GET-* retrieves the specified program from the group library.

COMMENTS

GET- performs an implicit SCRATCH. The program that was the current
program prior to using GET- can not be recovered from the system un-
less it was previously SAVed or CSAVed.

For more information on public library programs, see "LIBRARY" and
"GROUP" 1in this section.



KILL-

EXAMPLE: KILL-PROG12 return
KIL-EXMPLE return
KIL-FILE1@ return

GENERAL FORM: KILL- program or file to be deleted

or

KIL- program or file to be deleted

PURPOSE

Deletes the specified program or file from the user's library. (Does not delete the
program currently being accessed from the teleprinter, even if it has the same name. )

COMMENTS

CAUTION: Files have only one version, the stored one. A KILLed file is not ™
recoverable. o

A file may not be KILLed while it is being accessed by another user.

KILL-should be used carefully, as the KILLed program can not be recovered from
the system unless the KILLed program was also the current program.

SCRATCH deletes the program currently being accessed from the teleprinter, while KILL
deletes a program or file stored on-system. The stored and current versions of a pro-
gram occupy separate places in the system. They may differ in content, even though
they have the same name.

The sequence of commands for changing and storing a program named PROG** is:
GET-PROG** (Retrieves the program.)
(make changes)
KILL-PROG** (Deletes the stored version.) ‘ﬁ%
SAVE (Saves the current version.)

3-12



APPEND-

EXAMPLES: APPEND-MYPROG return
APP-MYPROG return
APPEND-$PUBLIC return
APP-$SYSLIB return
APP-*GPROG return

GENERAL FORM: APPEND-program name

or

APP-program name

or

APP-$system library program name

or

APP-*group library program

PURPOSE

Retrieves the named program from the user's own library, or
the group or public libraries and appends it (attaches it)
to the program currently being accessed from the teleprinter.

COMMENTS

The Towest statement number of the APPENDed program must be

greater than the highest statement number of the current
program.

CAUTION: If an APPENDed public library program is "run-only",
the entire program to which it is APPENDed becomes "run-only".
("Run-only" programs may not be listed, punched, or saved.)

The § preceding system library program names is needed to

APPEND them; the * is needed to APPEND group library programs.
For details, see LIBRARY in this section.

3-13



DELETE-

EXAMPLES: DELETE-27 return
DEL-27, 5@ return

GENERAL FORM: DEL-statement number at which deletion starts

or

DEL-statement no. at which deletion starts + Statement no. at which deletion ends

PURPOSE

DEL-statement number erases the current program statements
after and including the specified statement. DEL-1 has
the same effect as SCRATCH.

DEL-statement number, statement number deletes all statements
in the current program between and including the specified
statements.

COMMENTS
It is sometimes useful to SAVE or PUNCH the original version
of a program which is being modified, before using the DELETE

statement.

Deleted statements are not recoverable.

3-14



LIBRARY - GROUP - CATALOG

EXAMPLES:

LIBRARY
NAME LENGTH NAME LENGTH NAME LENGTH NAME LENGTH

AAA FPS 2 AB F 230 BAA F 2 BAB P13
BAC 6 BAD c 18 BB F 46 BBA F 2
BBB F 46 BFILE F 128 BUDGE 12 BUDGET 3431
BUDGEU 12 C F 31 C.R S 1220 cB F 230
cc F 31 cce F 31 D F 100 F1 F 64
FFF F 34 GARY1 95 GARY?2 83 GARY3 188

STRING F 1 XY F 256

| NAME LENGTH NAME LENGTH NAME LENGTH NAME LENGTH
iB F 30 Bl 128 B2 F 128 BLOCK2 F 128
CAICAL 4004 CALC 4081 MBLOCK 1655 SP1 F 400

-n

(]

| CATALOG
NAME  LENGTH NAME LENGTH NAME LENGTH NAME  LENGTH
{BLockz F 128 CHECK € 55  SPI F 800 TEST 3

GENERAL FORMS: LIBRARY return

or

LIB return
GROUP return

or

GRO return
CATALOG return

or

CAT return



LIBRARY - GROUP - CATALOG, CONTINUED

PURPOSE

To print an alphabetic 1isting of programs and files stored by the
system. LIBRARY or LIB produces a list of system programs and files.
GROUP or GRO produces a list of group programs and files. CATALOG or
CAT produces a list of programs and files stored in the user's own
program library.

COMMENTS
Code letters preceding LENGTH indicate

F - the entry is a file.

C - the entry is a program in semi-compiled form.
If neither a C nor an F appears, the entry is a program.

P - The entry is "protected," may be either a program
or a file.

S - the entry is "sanctified," may be either a program or

a file. (See Appendix D.)

Code Tetters may be combined as in the first entry, AAA in the LIBRARY
listing.

Length is given in words for programs, records for files.

Protected system or group programs may be run but not Tlisted, saved or
punched. Protected system or group files may not be accessed by other
users. A user's own programs may not be protected, but may be sanctified
by the operator.

3-16



LIBRARY - GROUP - CATALOG, CONTINUED

Each user has access to the three libraries described. He has complete control
over his own library, using any of the commands used to store, delete, or
retrieve programs and files.

The system library is under the control of the System Master, user AP@@. Only
the System Master (actually any user with access to the password for IDcode ADDD )
can enter programs or files into the system library, or delete programs and files
from the system library.

Each user is part of a group, all having IDcodes with the same Tetter and same
first digit. The user whose IDcode ends in @@ is the group librarian, or Group
Master. The Group Master is responsible for maintaining the group library, en-
tering and deleting programs in the same manner as the System Master controls
the system Tlibrary.

The System Master and all Group Masters have the responsiblity of controlling
access to their libraries. Regular users can not make entries to, deletions from,
or changes to either the system 1ibrary or their group library. The System
Master and all Group Masters have access to special commands called PROTECT,
which makes specified programs available on a run-only basis and files unavail-
able to regular user, and UNPROTECT, which reverses the procedure. These

special commands are described in the 2000C Operator's Guide.

A user can call a program from the system library by typing GET-$, followed by
the program name exactly as it appears in the LIBRARY, or append the program
by typing APP-$ followed by the program name. GET-* and APP-* are used to ac-
cess group programs.

Files are accessed with the FILES statement, described in Section IV.
Any of these listings may be terminated by pressing the break key.

The system prints an error message if the user attempts to access a non-existent
program, list or punch or save a protected program, or GET or APPEND a file.

3-17



SUBROUTINES AND FUNCTIONS

The following pages show TSB features useful for repetitive
operations -- subroutines, programmer-defined and standard
functions.

The programmer-controlled features, such as multibranch
GOSUB's, FOR...NEXT with STEP, and DEF FN become more use-
ful as the user gains experience, and learns to use them
as shortcuts.

Standard mathematical and trigonometric functions are
convenient timesavers for programmers at any level. They
are treated as numeric expressions by TSB.

The utility functions TAB, SPA, LIN, SGN, TYP, and LEN
also become more valuable with experience. They are
used to control or monitor the handling of data by TSB,
rather than for performing mathematical chores.

3-18



GOSUB...RETURN

EXAMPLE: 59 READ A2
6P IF A2<19P THEN 80
79 GOSUB 4¢P

380 STOP (sroP frequently precedes the first statement of
a subroutine, to prevent accidental entry.)

399 REM--THIS SUBROUTINE ASKS FOR A1 OR @ REPLY.
4p@ PRINT "A2 IS>1¢p"

419 PRINT "DO YOU WANT TO CONTINUE";

420 INPUT N

43p IR N #p THEN 450

449 LET A2 = 0

45p RETURN

6PP END

GENERAL FORM: statement number GOSUB statement number starting subroutine

s;atement number RETURN

PURPOSE

GOSUB transfers control to the specified statement number.

RETURN transfers control to the statement following the GOSUB
statement which transferred control.

GOSUB...RETURN eliminates the need to repeat frequently used
groups of statements in a program.

3-19



GOSUB...RETURN, CONTINUED

COMMENTS

The portion of the program to which control is transferred must
end with a RETURN statement.

RETURN statements may be used at any desired exit point in a
subroutine. There may be more than one RETURN per GOSUB.

Variables have the same meaning as in the main program.

3-20



MULTIBRANCH GOSUB

EXAMPLES: 20 GOSUB 3 OF 10p,209,300,400,500
6p GOSUB N+1 OF 2pP,219,220
79 GOSUB N OF 8p,180,280,380,48p,580

GENERAL FORM:

statement number GOSUB expression OF sequence of statement numbers ...

PURPOSE

GOSUB espression rounds the expression to an integer n and transfers
control to the nth statement number following OF.

COMMENTS
Subroutines should be exited only with a RETURN statement.
The expression indicates which of the specified subroutines will be
executed. For example, statement 20, above transfers control to the
subroutine beginning with statement 3pp. The expression specifies which

statement in the sequence of five statements is used as the starting one
in the subroutine.

The expression is evaluated as an integer. Non-integer values are
rounded to the nearest integer.

If the expression evaluates to a number greater thah the number of state-
ments specified, or less than 1, the GOSUB-is ignored.

Statement numbers in the sequence following OF must be separated by commas.

3-21



NESTING GOSUB s

EXAMPLES: 19p GOSUB 209

20p LET A = R2/7
219 IF A THEN 23¢9
229 GOSUB 259

250 IF A>B THEN 270
260 RETURN
279 GOSUB 6@p

PURPOSE

Allows selective use of subroutines within
subroutines.

COMMENTS

GOSUB's may be nested logically to a level
of nine. More than nine exits without a
return may cause an error message.

RETURN statements may be used at any desired
exit point in a subroutine. Note, however,
that nested subroutines are exited in the or-
der in which they were entered. For example,
if subroutine 259 (above) is entered from sub-
routine 20p, 250 is exited before subroutine
200.

3-22



FOR...NEXT WITH STEP

EXAMPLES: 20 FOR I5 =1 TO 2@ STEP 2
40 FOR N2 = § TO -19p STEP -2
89 FOR P =1 TO N STEP R
99 FOR X = N TO W STEP (N+2-V)

| GENERAL FORM:

statement number FOR simple variable = expression 10 expression STEP expression

PURPOSE

Allows the user to specify the size of the
increment of the FOR variable.

COMMENTS

The step size need not be an integer. For instance,
100 FOR N =1 TO 2 STEP .¢1
is a valid statement which produces approximately
100 Toop executions, incrementing N by .01 each
time. Since no binary computer represents all
decimal numbers exactly, round-off errors may in-
crease or decrease the number of steps when a non-
integer step size is used.

A step size of 1 is assumed if STEP is omitted from
a FOR statement.

A negative step size may be used, as shown in
statement 49 above.

3-23



DEF FN

EXAMPLE: 60 DEF FNA (B2) = A+2 + (B2/C)
70 DEF FNB (B3) = 7*B3+2
8p DEF FNZ (X) = X/5

GENERAL FORM:

statement no. DEF FN single letter A to z ( simple var. ) = expression

PURPOSE

Allows the programmer to define functions.

COMMENTS

The simple variable is a "dummy" variable whose purpose is to indicate
where the actual argument of the function is used in the defining ex-
pression. After a function has been defined, the value of that function
is referenced whenever the function is used by the programmer. For ex-
ample, in this sequence M is a dummy variable:

10 LET Y = 199

2P DEF FNA (M) = M/19
30 PRINT FNA (Y)

49 END

RUN

19

When FNA (Y) is called for in statement 3@, the formula defined for FNA
in statement 20 is used to determine the value printed.

A maximum of 26 programmer-defined functions are possible in a program
(FNA to FNZ).

3-24



DEF FN, CONTINUED

Any operand in the program may be used in the defining expression;
however, such circular definitions as:

1@ DEF FNA (Y)
2p DEF FNB (X)

FNB (X)
FNA (Y)

cause infinite looping.

See the vocabulary at the beginning of this section for a definition
of "function."

3-25



GENERAL MATHEMATICAL FUNCTIONS

EXAMPLES: 642 PRINT EXP(N); ABS(N)
652 IF RND (P)>=.5 THEN 9p@
662 IF INT (R) # 5 THEN 919

672 PRINT SQR (X); LOG (X)

PURPOSE

Facilitates the use of common mathematical functions by pre-defining them as
follows:

ABS (expression) the absolute value of the expression

EXP (expression) the constant e raised to the power of the expression value N
(in statement 642 above, etN) /

INT (expression) the largest integer < the expression (INT (-3.5) would re-
sult in -4)

LOG (expression) the logarithm of the expression to the base e
RND (expression) a random number between P and 1
SQR (expression) the positive square root of the positively valued expression

SGN (expression) returns: a 1 if the expression is greater than §, a @ if
the expression equals P, a -1 if the expression is less
than @.

COMMENTS

A1l these functions may be used as expressions or as parts of expressions. LOG
and SQR expressions must have a positive value or a terminal error will occur.

A sequence of random numbers generated by RND is repeatable if it follows a call fﬁ%g
to RND with a given negative argument. !

3-26



TRIGONOMETRIC FUNCTIONS

EXAMPLES: 509 PRINT SIN(X); COS(Y)
519 PRINT 3*SIN(B); TAN (C2)

520 PRINT ATN (22.3)
539 IF SIN (A2) <1 THEN 8¢9
540 IF SIN (B3) = 1 AND SIN(X) <1 THEN 99

PURPOSE

Facilitates the use of common trigonometric functions by pre-defining
them, as:

SIN (expression) the sine of the expression (in radians)

COS (expression) the cosine of the expression (in radians)

TAN (expression) the tangent of the expression (in radians)
ATN (expression) the arctangent (in radians) of the expression.

COMMENTS

The trigonometric functions may be used as expressions, or parts of
an expression.

The expressions (arguments) for SIN, COS, and TAN are interpreted as
angles measured in radians. ATN returns the angle in radians.

3-27



THE LEN FUNCTION

EXAMPLES: 580 IF LEN (B$) >= 21 THEN 9999
80P IF LEN (C$) = R THEN 19¢@
850 PRINT LEN (N$)
880 LET P5 = LEN (N$)

GENERAL FORM: The LEN function may be used as an expression, or
part of an expression. The function form is

LEN ( string variable )

PURPOSE

Returns the length (number of characters)
currently assigned to a string variable.

COMMENTS

Note the difference between the LEN function
and the LENGTH command. The command is used
outside a program, and returns the working
length of the current program in two-character
words. The LEN function may be used only in

a program statement.

3-28



THE TIM FUNCTION

EXAMPLES:

589 IF TIM (@) - A > 15 THEN 90¢@9

709 LET A3 = TIM (B)

8p@ PRINT TIM (@) "MINUTES" TIM (1) "HOURS" TIM (2) "DAYS" TIM (3) "YEARS"

GENERAL FORM: TIM (X)

where if TIM (X) = current minutes (@ to 59)
TIM (X) = current hour (@ to 23)
TIM (X) = current day (1 to 366)
TIM (X) = current year (@ to 99)

PURPOSE

Returns the current minute, hour, day or year.

COMMENTS

Note the difference between the TIM function and the
TIME command. The TIME command is used outside a
program and gives the console time and total time used.
The TIM function can only be used within a program
statement.

3-29



CHAIN

EXAMPLES:

20 CHAIN "PROG2"

5@ CHAIN V$

97 CHAIN "---", A

159 CHAIN "MELVIN", 8p
20@ CHAIN N$,Q+14

23p CHAIN A$,11¢

GENERAL FORM:

statement number CHAIN "character string"

or

statement number CHAIN string variable

or

statement number CHAIN "character string" , expression

or

statement number CHAIN string variable , expression

PURPOSE
‘To Tink programs together. "Character string" or string variable specifies
a program in the user's own library, the group Tibrary or the system
library, which is retrieved (replacing the current program) and run.

COMMENTS

Strings and string variables are described in Section VI. As applied
to the CHAIN statement, "character string" is the name of a program in
one of the libraries; string variable is an alphabetic character fol-
Towed by a $ that leads to a character string that is the name of a
program. Expression is a line number in the named program. In the
above examples lines 2@, 97, and 150 contain character strings. The
other examples contain string variables.

3-30



CHAIN, CONTINUED

If the first character of the program name, however defined, is $, the
system will search the system library; if the first character is *, the
system will search the user's group library. If the first character is
neither $ or *, the system will search the user's own library. Note that
the $ has different meanings as the first character in a program name and
when used to define a string variable.

If expression is not specified, the program will be retrieved from the

proper library and executed normally -- examples 2@ and 5@. Expression
may be an actual Tline number as in examples 150 and 23@, may be a vari-
able as in exampte 97, or may be computed as in example line 20@.

In any of the above cases common storage is allocated. (See COM.)
Before execution can begin, the program chained to must be com-

@@&A piled. Programs which are often chained to should be stored in
semi-compiled form by use of the CSAVE command. This significantly
reduces the time required to execute CHAIN statements.

Execution of the CHAIN statement can produce the same errors pro-
duced in executing the GET command. Such errors terminate exe-
cution of the program attempting the chaining, which will remain as
the current program, with its common area (if any) intact.

3-31



COM

EXAMPLES: 19 COM A,B,D$(53),E(3,4),F2
15 COM H2,K8,C$(14)

GENERAL FORM:

statement number COM list of variables, dimensioned arrays and strings

PURPOSE

To designate data that can be passed between two or more programs without
intermediate storage. A number of programs may be run sequentially, all
accessing and possibly changing data in the common area.

COMMENTS

The equivalence of COMmon variables in different programs is determined
by their relative order in the COM statements. Thus, if one program
contains the statement

19 COM A,B1,C$(19)
and a second program contains the statements

1 COM X

2 COM Y,Z2$(19)
and the two programs are run in order, identifiers A and X refer to the
same variable, as do identifiers Bl and Y, C$ and Z$.

There are certain restrictions on the use of COM:
1. COM statements must be the lowest numbered statements in the program.

2. A variable that is declared COMmon in one program can be accessed by
another program only if all preceding COMmon variables in both pro-
grams are of the same type and size. If the COMmon area in one pro-
gram is smaller than that in another program to be run sequentially,
only the common variables in the smaller area will be preserved.

3-32



COM, CONTINUED

3. Arrays and strings which are to be in common must be dimensioned in the
COM statement and they must not also appear in DIM statements.

Variables in COM should be initialized by the first program that uses them.
After that, other programs containing equivalent COM definitions can be exe-
cuted by GET and RUN or CHAIN. The COM variables will still have the same
values. These values are destroyed, however, when a line of syntax is en-
tered. When a program with a common area terminates (whether normally, or
because of an execution error or because the user presses break) the vari-
ables in common storage retain their values and will remain available until

the user GETs a program with a different common area or enters a BASIC
statement.

EXAMPLES

10 COM A,B,C,Q%(63),F(3,6),S1  (In program A) All variables in common
19 COM J,K,L,C$(63),C(3,6),V (In program B)

10 COM A,B,C,Q$(63),F(3,6),S1  (In program A) Three variables in common
19 COM H,N,M,0 (In pregram B)

10 COM A,B,C (In program A) No variables in common
19 COM S$(45),A,B,C (In program B)

14 COM A,B,C (In program A) A1l variables in common.
19 COM V (In program B)
30 COM B,C

3-33



ENTER

EXAMPLES: 109 ENTER #V
2pP ENTER A,B,C$
3pp ENTER #V,K1,K2,K3

GENERAL FORM: 4pp ENTER 25,L,Q

statement number ENTER # variable 1

statement number ENTER expression, variable 2, variable 3

statement number ENTER # variable 1, expression, variable 2, variable 3

PURPOSE

Allows the program to limit the time allowed for run-time data input, to
check the actual time taken to respond, to read in one string or numeric
variable, to determine whether the input is of the correct type, and/or
to determine the current user's terminal number.

COMMENTS

The form ENTER # sets variable 1 to the terminal number (between ¢ and
31) of the user.

Expression sets the time limit; it must have a value between 1 and 255
seconds. Timing starts when all previous statements have been executed
and all printing at the user terminal is completed.

Variable 2 returns the approximate time the user took to respond. If
the user's response was of the wrong type, the value is the negative of
the response time. If the user failed to respond in time, the value is
set to -256.

3-34




ENTER, CONTINUED

Variable 3, the data input variable, may be either a numeric or a
string variable. A character string being entered should not be en-
closed in quotes, but may contain quotes, leading blanks and embedded
blanks. Only one data item can be entered per ENTER statement.

The ENTER statement differs from the INPUT statement in that a "?" is
not printed on the user terminal, and the TSB System returns to the
program if the user does not respond within a specified time limit.
Also, the system does not generate a linefeed after the user types

return.
A carriage return is a legitimate input to a string.

A string that is too long to be assigned to a requested string variable
is truncated on the right.

3-35






SECTION 1V
FILES

For those problems that require permanent data
storage external to a particular program, the
TSB system provides a data file capability.
This allows flexible, direct manipulation of
large volumes of data stored within the system
itself. Special versions of the READ, PRINT,
MAT READ, MAT PRINT, and IF statements allow
you to read from and write onto mass storage
files.

File programming offers two levels of complexity.
Many problems can be solved using files treated
simply as serial access storage devices. In this
case, the program reads or writes a serial list

of data items (either numbers or strings of charac-
ters) without regard to the underlying structure

of the file. However, with additional programming
effort, any file can be used as a random access stor-
age device. In this case, the program breaks the file
into a series of logical subfiles that can be
modified independently.

This section deals with the serial use of files,
then internal file structure and random access
use. Explanatory programming samples follow each
series of frames in this section.

4-1



TERM: FILE

DEFINED IN TSB AS: An area of memory external to the
program where numbers and strings

of characters can be stored and
retrieved. Files are created by,
and belong to, a particular user.

COMMENTS

The user determines the name and size of a file. Files vary
in size from 1 record to a maximum determined by the device
used to store them. The maximum size for files that are to

be SANCTIFIED is 32 records. (See Appendix D.) A record con-
tains between sixty-four and 256 16-bit words.

When a program stores some information in a file, the inform-
ation remains there until it is changed or the file is elimi-
nated. Any program of a particular user can be written to
access this information.

Each program must declare its files with a FILES statement
before it can access them. Each program can access up to 16
different files at one time. Files being accessed by a pro-
gram can be changed by use of the ASSIGN statement.

For each file declared in the program, there is a file pointer
that keeps track of the item in the file currently being accessed
by that program. The RUN command causes all these pointers to be
reset to the beginning of the file. The ASSIGN statement repo-
sitions the pointer to the beginning of a specified file. As

the program reads or writes on a file, the pointer for the file
is moved through the file.

')



SERIAL FILE ACCESS

This program writes all the data items out into the file in serial order.
Each write operation begins where the previous one left off. Then, to
retrieve one of these items, the program resets the pointer to the begin-
ning of the file and reads through the items until it comes to the desired
item. There is only one pointer for each file. When the pointer is repo-
sitioned by either a READ or a PRINT statement, it remains pointing to the

next item in the file until it is repositioned by another file control
statement.

SAMPLE SERIAL FILE ACCESS

OPEN-GHIJK,50 The OPEN command creates a new file.

GHIJK is the name of the file.
The file is 50 records long.

NAM-PROG1

109 FILES GHIJK The FILES statement links the
file into the program. From
now on, the file is referenced
by number; GHIJK is file #1.
This allows programs to use
different files by changing
only the FILES statement.

20p INPUT A,B,C,D

3P0 PRINT #1;A,B,C,D This is a serial file PRINT
statement. It is identical
to the normal PRINT statement
except that a file number
appears and the values of the
variables are written onto the
file, not the terminal.

4-3



SERIAL FILE ACCESS, CONTINUED

4pp INPUT A,B,C,D
5pp PRINT #1;A,B,C,D This PRINT stores the new
values of the variables
immediately following the
previous values in the file.

609 READ #1,1 This is a reset operation;
it resets the pointer for
file #1 to the beginning of
the file.

700 READ #1; H1,H2,H3 This is a serial file READ
statement. It assigns the
first three values in the
file to the three variables

specified.

8PP PRINT H1,H2,H3

90P READ #1; H1,H2,H3,H4,H5 This READs the remaining
five values in the file
into the five variables
given. The values in the

file are not disturbed.

1099 PRINT H1,H2,H3,H4 ,H5
20p9 END

Try this example. It should print out the same numbers you type in.

4-4



OPEN-

EXAMPLES: OPEN-FILE27, 20, 64 return
OPEN-SAMPLE, 128 return

GENERAL FORM:

OPEN- 1 to 6 character file name , number of records in file

OPE- 1 to 6 character file name , number of records in file , record size

OPE- 1 to 6 character file name , number of records in file

PURPOSE

Creates a file with a specified number of records of a specified size, and
assigns it a name.

COMMENTS

The file that is open is accessible only by the user I.D. number that OPENED
it. (NOTE: Unprotected system library files can be read by all users, and
unprotected group files can be read by all members of the group.) The file
remains OPEN until the same user KILLs it.

File names must conform to the same rules as program names.

The size of the file may vary from a minimum of 1 record to a maximum deter-
mined by the peripheral devices on the system, the amount of unused storage,
and the user's personal storage limit.

The size of a record must be between 64 and 256 words. If not specified, the
system assumes 256 words. In any case, each record consumes 256 words of
system storage.

If the system does not have enough storage space for the new file, the OPEN
command is rejected and an error message is printed:

SYSTEM OVERLOAD

4-5



OPEN-, CONTINUED

If the user does not have enough space left for the new file in the amount
set for him by the system operator, the OPEN command is rejected and an
error message is printed:

LIBRARY SPACE FULL

If the name given in the OPEN command equals the name of an existing file
or program, the command is rejected and an error message is printed:

DUPLICATE ENTRY

The OPEN command marks each record of the new file as empty. If the system
is heavily loaded, this process could take several minutes for very large
files.

4-6



EXAMPLE:

GENERAL FORM:

KILL-

KILL-NAMEXX return
KIL-EXMPLE return
KIL-FILE1® return

KILL-file to be deleted

KIL-file to be deleted

PURPOSE

Removes the named file from the user's library and re-
leases the space it occupied for further storage. Users
can only KILL their own files.

COMMENTS

Files have only one version, the stored one.
is KILLed, all the information in it is lost.

When a file

If the file named is currently being accessed by a user
on another terminal, the KILL command is rejected and an
error message is printed:

FILE IN USE

4-7



FILES

EXAMPLES: 19 FILES MATH, SCORE, AND, SQRT, NAMES
2p FILES *GRP, FILE27, SAMPLE
39 FILES MATH, $DATA, * , *

GENERAL FORM:

statement number FILES up to 16 file names separated by commas

PURPOSE

Declares which files will be used in a program; assumes that the files will
be OPENed before the program is RUN.

COMMENTS

Up to four FILES statements can appear in a program, but only 16 files

total can be declared (duplicate entries are legal). The files are assigned
numbers (from 1 to 16) in the order they are declared in the program. In
the EXAMPLES above, MATH is file #1, FILE27 is #7 and DATA is #10.

These numbers are used in the program to reference the files. For instance,
in the same example,

190 PRINT #2; A

would print the value of A into the file named SCORE. This feature allows
most programming to be done independently of the files to be used. The
FILES statements may be added any time before running the program.

4-8



FILES, CONTINUED

Public or group library files to be read (they cannot be written on) must also
be declared in a FILES statement but with a $§ or * preceding the file name.

DATA is a public file in the example; GRP is a group file. When * is used with-
out a program name as one of the arguments in a FILES statement, the position
occupied by the * symbol is reserved for a file to be specified Tater by an
ASSIGN statement. ASSIGN statements are described on the following page.

Users with the same I.D. number can share files, but only one user can write
on a file at a time. I.D. codes beginning with an "A" (e.g., AP67) are an ex-
ception to the rule; they may read or write on files at the same time.



ASSIGN

EXAMPLES: 2P ASSIGN A$, 3, B1, C$
3@ ASSIGN "NEWFL", S2, J
49 ASSIGN "$F2", 6, C, "AX1532"

GENERAL FORM:

statement number ASSIGN file name, file number, return variable, mask

statement number ASSIGN file name, file number, return variable

PURPOSE

To change the file referred to.by a specified file number during the execution
of a program

COMMENTS
The parameters of an ASSIGN statement are:

file name The name of a file -- a literal string of up to six
characters (seven if the first character is $ or *)
enclosed in quotes or a string variable leading to
a literal string. The symbol $ as a first character
indicates a system file; * as a first character in-
dicates a group file.

file number A number, variable or expression whose value is
between 1 and 16, indicating a file position. The
file number should not exceed the number of files
declared in the FILES statements of the program.

return variable One of the following values will be returned to this
variable when the statement is executed, depending

upon the outcome of the execution:

p - the file is available for reading and writing.

1 - the file is available on a read-only basis be-
"cause it is being accessed by another terminal.
For users ApPP through A999, a return code of
1 indicates only that the named file is being
accessed by another terminal. The file is still
available for reading and writing.

4-10



mask

ASSIGN, CONTINUED

2 - the file is available on a read-only basis
because it is a system library or group
library file.

3 - the requested file does not exist or it is pro-
tected (and the user attempting to ASSIGN it
is not the owner).

4 - the file number in the ASSIGN statement is out
of range; it does not correspond to one of the
positions reserved by the FILES statements.

5 - the requested file has records which are larger
than those of the file previously in this
position.

If the value given to the return variable is 3, 4,

or 5, any access to the requested file will cause a
terminal error. If the returned value is 2, any

print attempt to the file will cause a terminal error.
If the returned value is 1, a print attempt by any
user other than AXXX users will cause a terminal error.

An optional parameter that can be used to insure
security of data in the file. Mask can be either a
literal string of up to six characters or a string
variable of up to six characters used to form a mask
through which data is written to or read from the file.
If the same mask is used to read a data item that was
used to write the item, the results are the same value
that was written.

When the ASSIGN statement is executed, the named file replaces the file pre-
viously referenced by the file number in the statement. Subsequent file
references using this number will apply to the new file. Data written to
the old file will be intact.

4-11



SERIAL FILE PRINT

EXAMPLES: 125 PRINT #5; A1,B2,C$
139 PRINT #5; D,E,F, "B,C,D,E"
140 PRINT #M+N; B

GENERAL FORM:

statement number PRINT #file number formula 3

list of data items separated by commas

PURPOSE

Prints variables, numbers, or strings of characters consecutively on the
specified file, starting after the last item previously read or printed.

COMMENTS

The file number formula may be any expression; it is rounded to the nearest
integér (from 1 through 16). If the value is n, then the nth file declared
in the FILES statements (or the file most recently ASSIGNed to the nth
position) is used.

The serial file PRINT always writes the indicated data items into the next

available space in the file. However, since character strings may vary in

length and each string must be wholly contained within a record, some space
in each record may be left unused. You can ca]culate the number of words

occupied by any string with a formula described under "Storage Requirements"
in this section.

After a serial file PRINT, the file pointer is updated so that it points to
the next available space.

4-12



SERIAL FILE PRINT

The information written in a file remains there even when the program
terminates. Therefore, the user can return a day or week later and
access the data at that time. If a program terminates because of an
error or if the user types break, the files may not have been completely
updated.

NOTE: Matrices can also be written on files using a
MAT PRINT # statement described in Section V.

4-13



SERIAL FILE READ

EXAMPLES: 65 READ #5; A,B,C
79 READ #3; B$
80 READ #N; A,B$, C(5,6)
99 READ #(N+1); A,B$,C

GENERAL FORM:

statement number READ #file number formula 3

list of data items separated by commas

PURPOSE

Reads numbers and strings into variables consecutively from the specified
file, starting after the last item read.

COMMENTS

The file number formula is evaluated as in the serial file PRINT.

Both strings and numbers can be read, but the order of variable types must
match the order of data item types exactly. The TYP Function provides a
means of determing the type of the next item.

The serial file READ moves from record to record within a file automatically,
as necessary to find the next data item. After a READ, the file pointer is
updated, and a subsequent READ will start with the next consecutive data
item. Record boundaries and unused portions of records are ignored.

4-14



SERIAL FILE READ, CONTINUED

Matrices can also be read from files using a MAT READ # statement described
in Section V.

NOTE: Following a serial file PRINT, the
pointer must be reset to the begin-
ning of the file before the data that
was just written can be read. This
is done using the reset operation
described on the next page. A serial
READ should not directly follow a
serial PRINT.

4-15



RESETTING

EXAMPLE: 189 READ #1,1
2pP READ #2,1
309 READ #M+N,1

GENERAL FORM:

statement number READ #file number formula , 1

PURPOSE

Resets the file pointer to the beginning of the file specified
by the file number formula.

COMMENTS

READ #N,1 is used after a serial PRINT to prepare for a serial
READ.

NOTE: Do not use PRINT #1,1 to reset, as this
erases the first record of the file.

4-16



THE TYP FUNCTION

EXAMPLES: 199 IF TYP(1)=2 THEN 1999
250 IF TYP (6)=3 THEN 5pp
3pp GO TO TYP(B) of 40P,609,809

GENERAL FORM: TYP may be used as an expression or as
part of an expression; the function form is:

TYP (file number formula)

PURPOSE

Determines the type of the next data item in the specified file so that the
program can avoid a type mismatch on a file READ.

There are three possible responses:

next item is number

next item is character string

next item is "end of file."

COMMENTS

If the file number formula is negated (<0), the TYP function also detects
"end of record" conditions (explained later under "Random Access") and
returns a value of 4 for them.

If the file number formula equals zero, the TYP function references the
DATA statements. In this case, TYP returns these values for the next
data item: 1 = number; 2 = string; 3 for an "out of data" condition.

4-17



LISTING CONTENTS OF A FILE

Here is a sample program that lists a file of unknown contents. It assumes
that the file (DATUMS) has been previously filled serially by some other
program.

NAM - LIST
109
2pp DIM A$[72]
3p0

FILES DATUMS

IF END #1 THEN 1p9Q The IF END statement tells the pro-
gram where to go if it comes to the
end of file #1. Without this state-
ment, the program would quit at the
end of the file and give an error

message.
500 IF TYP(1)=1 THEN 600 TYP checks whether the next data
550 IF TYP(1)=2 THEN 790 item is a number (1) or a string (2).

609 READ #1;A Reads a number from file #1 into
variable A.

PRINT A
GOTO 5p9

READ #1;A$ Reads a string from file #1 into
variable A$.

PRINT A$

GOTO 5¢9

PRINT "FILE LIST COMPLETED" The program comes here when it
reaches the end of file #1.

END

4-18



TERM: END-OF-FILE

If a program attempts to PRINT beyond the
physical end of a file or attempts to READ

more values than are present in the file,
the TSB system detects an end-of-file con-
dition and terminates the program.

COMMENTS

The OPEN command causes end-of-file marks to be written
at the start of every record in the file. End-of-file
marks can also be written by the user (as explained later
under "END").

NOTE: If the user or an error (such as
end-of-file) stops a program
abnormally, it is not possible to
know which file PRINTs of the pro-
gram were in fact performed.

To avoid termination of a program because of end-of-file,

use the IF END statement on the next page. If this is done,
all of the values preceding the end-of-file are transferred

successfully.

4-19



IF END#.. THEN

EXAMPLES: 30p IF END #N THEN 8@p
319 IF END #2 THEN 83p
320 IF END #3 THEN 9999

GENERAL FORM:

PURPOSE

Defines a statement to be branched to if an "end-of-file" occurs on a
specified file.

COMMENTS
The IF END statement defines an exit procedure which remains in effect until
another IF for the same file changes it, or until an ASSIGN statement containing
the same file number is executed.

A different exit procedure can be defined for each file.

IF END is also used with random access to provide exit procedures when an
"end-of-record" occurs. (See "Random Access.")

If a program does not contain an IF END statement for a file and an
"end-of-file" occurs on that file, the program is terminated and an error
message is printed:

END OF FILE/END OF RECORD IN STATEMENT xxx

4-20



PRINT#..END

EXAMPLES: 95 PRINT #N: A,B2,END
199 PRINT #(X+1); R3,S1,N$, "TEXT" , END
119 PRINT #2; G5,H$,P, END

GENERAL FORM:

statement number PRINT #file number formula ; data item list > END

PURPOSE

Places a logical "end-of-file" marker after the last value written on the
file; END is ignored if it is not the last item in the statement.

COMMENTS

The "end-of-file" marker written by this statement is a logical marker; each

file also has a physical end-of-file which marks the physical boundary of
the file.

The "end-of-file" mark is overlaid by the first item in the next serial

PRINT statement. An "end-of-file" condition that aborts the program or

triggers an IF END statement occurs only on an attempted READ beyond the
available data or an attempted PRINT beyond the physical end-of-file.

END and IF END can be used to modify a serial file.

4-21



STRUCTURE OF SERIAL FILES

When a file is OPENed, you can think of it as looking like this:

INFO = |EOF PEOF
4 OPEN-INF0,5

EOF is a mark that shows the end of the data.

PEOF is the physical end of the file, beyond which no data
can be written.

is the position of the file pointer.

When information is written into the file, the pointer moves
and space in the file is used up.

INFO = [A]|B|C|F$| Q1| EOF PEOF

+

199 FILES INFO
2p9 PRINT #1; A,B,C,F$,Q1, END

The file is filled solidly from the beginning.

When more information is PRINTED, it follows the previous
data and the pointer is changed.

INFO = |A]|B|C|F$|Q1]G1]|G2|G$|H$|Z| EOF PEOF

+
3PP PRINT #1; G1,G2,G$,H$,Z,END

4-22



STRUCTURE OF SERIAL FILES, CONTINUED

To read this data, the pointer must be reset.

INFO = [A|B|C|F$|Q1|G1|G2|G$| H$|Z| EOF PEOF

1»

40@ READ #1,1

Now the data can be read.

INFO = |A|B|C|F$|Q1|G1}G2|G$

+
509 READ #1; MI1,M2

M1 now contains the value of A
M2 now contains the value of B

At this point, the program continues to read the data.

INFO = |A|B|C|F$|Q1|G1|G2|G$|H$|Z|EOF PEOF

+
609 READ #1; D1

D1 now contains the value of C

4-23



STRUCTURE OF SERIAL FILES, CONTINUED

However, if you PRINT anything in the file at this point,
the rest of the file is effectively lost as far as serial
access is concerned.
INFO = | A|B|C|D2]| EOF PEOF
+
700 PRINT #1; D2,END
The correct way to modify an item in the middle of serial
file is to READ all the succeeding items, then PRINT them
and the new value out again.
™
INFO = | A|B|C|F$|Q1|G1|G2| G$|H$| Z|EOF PEOF
4
700 READ #1; M$, P1, P2, P3, P$, R$, P4
(READ the values)
750 READ #1,1 (reset the pointer)
8PP READ #1; A, B, C
(move the pointer out to the correct item)
99P PRINT #1; D2  (PRINT the new item)
1999 PRINT #1; P1, P2, P3, P$, R$, P4, END
(PRINT the old values out)
G$|H$|Z|EOF PEOF
+

4-24



EXAMPLE OF SERIAL FILE MODIFICATION

OPEN-DATUMS, 128 When the file is opened, "end-of-file" markers

are written into every record.

NAM-ADDIT

190
209
3p9
499
419
429
43p
449
450
809
859
1509
1699
1650
1709
1759
1809
1909
1950
1960
1979
2009
5099

FILES DATUMS

DIM A$[72]

IF END #1 THEN 1509

REM THIS PROGRAM FIRST FINDS THE END OF THE FILE. IT ASKS THE
REM USER FOR A STRING AND A NUMBER. IF THIS IS NOT THE PHYSICAL
REM END OF THE FILE, IT ADDS THEM TO THE END OF THE FILE.

REM THEN THE PROGRAM ASK THE USER IF HE WANTS TO ADD ANY MORE ITEMS.
REM IF THE USER ANSWERS YES, THE PROGRAM REPEATS THE INPUT AND
REM WRITE LOOP.

READ #1;A$,A

GOTO 899

IF END #1 THEN 2009

PRINT "STRING";

INPUT A$

PRINT "NUMBER";

INPUT A

PRINT #1;A$,A, END

PRINT "MORE";

INPUT A$

IF A$="YES" THEN 1609

STOP

PRINT "PHYSICAL END OF THIS FILE"

END

NOTE: If the file is empty, the first thing the program
finds is an end-of-file. Therefore, it begins
filling the file from the first location.

4-25



EXAMPLE, CONTINUED

The IF END statement (1line 3@P) is changed once the end-of-file marker is
found. The program is then looking for the physical end-of-file.

You can use the 1isting sample program to check the contents of the file.

4-26



TERM: RECORD

DEFINED IN TSB AS: A physical division of a file;
consisting of from 64 to 256
words.

The number of records in a file
is subject to several constraints,
but in no case may it exceed 32767.

COMMENTS

E::k' E E 22;>/
File = |pata |0foaTA |0 DATA 0 /
R 7 R F /42;
4 4 4 4 +
PEOR PEOR  PEOR PEOR PEOF
where PEOR = the physical end of the record.
EOR = the end-of-record marker written by the system.
EOF = the end-of-file marker written by the system.
PEOF = the physical end of the file.

Following the data in a record, there is always an end-of-record
marker. Every record also has a physical end. (When the record is
completely full, this also acts as the logical end-of-record marker.)

During serial access the end-of-record markers act as skip markers
that say to look in the next record for the data item, but during
random access they cause an end-of-file condition. This will be

explained later.

4-27



STORAGE REQUIREMENTS

Numerical data items require two words of storage space per item. If a
full-size record is filled completely with numbers, it contains 128 items.

Strings can be of varying sizes: they require about 1/2 word of
storage per character in the string. The exact formula for the num-
ber of words needed to store a string is:

If the number of characters is odd, then

1 + number of characters in the string + 1
2

If the number of characters is even, then

1 + number of characters in the string
2

Eight 62-character strings will completely fill a 256-word record. Strings
and numbers can be mixed within a record, but each item must fit completely
within the bounds of the record. For example, a 256-word record could con-
tain five strings of 72 characters (each using 37 words) and a maximum of
35 numbers (leaving one word of the record unused).

4-28



MOVING THE POINTER

EXAMPLES: 20p READ #1,N
300 READ #M,N
499 READ #3*J,9

GENERAL FORM:

statement number READ #file number formula , record number formula

PURPOSE

Moves the pointer to the beginning of a specified record within a file;
rounds the file number formula and the record number formula to integers.

COMMENTS

The READ #M,N statement only generates an end-of-file condition at the
physical end of the file, not for end-of-file markers.

After moving the pointer to the start of a record, you can use the serial
READ and PRINT statements normally.

4-29



SAMPLE USE OF READ# M,N

DETERMINE LENGTH OF A FILE

Here is a sample program that determines the number of records in a file.
It uses the READ #M,N statement through the records until it comes to the
physical end of the file.

NAM-LENGTH

19 REM THIS PROGRAM PRINTS OUT THE LENGTH IN RECORDS OF ANY FILE.
20 FILES M

30 REM M IS THE FILE WHOSE LENGTH IS SOUGHT

49 IF END #1 THEN 89

50 FOR R=1 TO 32767

60 READ #1,R

70 NEXT R

8P PRINT "LENGTH IN RECORDS:";R-1

99 END

4-30



SUBDIVIDING SERIAL FILES

Serial files can be divided into smaller serial files by moving the pointer
and using the PRINT END statement. For example, a file of six records could
be treated as two files of three records.

a record
VN
E E
File: ATA | DATA | DATA | O | DATA | OATA | OATA | O
\ _____J J
first subdivision second subdivision

To switch from the first subdivision to the second, use this statement

109 READ #1, 4

since the fourth record is the start of the second subdivision.

When using this technique, you must be careful that you do not PRINT more
data into the subdivision than it will hold. If you PRINT too much, the
data will overflow into the next subdivision and destroy its contents.

A Togical extension of this concept is to make each subdivision equal to a
single record. The TYP function detects end-of-record markers. The random
access versions of PRINT# and READ# (described later) allow you to access
random records within a file without overflowing the bounds of the record.

4-31



USING THE TYP FUNCTION WITH RECORDS

EXAMPLES : 199 GO TO TYP(-1) OF 209, 250, 399, 499
200p A=TYP(-5) + B*2

GENERAL FORM: TYP is a function and can be used as an
expression or a part of an expression.

IYP (-file number formula)

PURPOSE

Returns a code telling the type of the next item in a specified file.

TYP(- X) = 1 for a number
2 for a string
3 for an end-of-file
4 for an end-of-record

COMMENTS

The file number formula must be negated to detect the end of record. If it
is positive or zero, different results are returned. See TYP Function in
this section,

4-32



SAMPLE OF READ# M,N AND TYP(-M)

LIST CONTENTS OF A RECORD

Here is a sample program that lists the exact contents of any record in a
file.

NAM-RLIST

1 REM THIS PROGRAM LISTS THE CONTENTS OF ANY RECORD OF THE FILE.
5 DIM A$[72]

19 FILES PETER

20 IF END #1 THEN 60

39 PRINT "RECORD NUMBER";

49  INPUT R

50 IF R>@ AND R=INT(R) THEN 8¢

60  PRINT "INVALID RECORD NUMBER."
70 GOTO 3p

8¢  READ #1,R

109 GOTO TYP(-1) OF 110,150,220,209
119 PRINT “"NUMBER:";

120 READ #1;X

13 PRINT X

149 GOTO 199

159 PRINT "STRING:";

160 READ #1;A$

17 PRINT A$

189 GOTO 199

209 PRINT "END OF RECORD MARK."
219 STOP

22¢ PRINT "END OF FILE MARK."

230 END

4-33



HOW TO COPY A FILE

Here is a sample program that copies one file into another using only the
statements and functions covered so far: IF END, TYP, FILES, READ #M,N,
serial READ, and serial PRINT.

NAM- COPY
1 REM THIS PROGRAM COPIES FILE #1 INTO FILE #2
19 FILES SAMI, SAM2

20 DIM A$[72]

30 IF END #1 THEN 179

49 IF END #2 THEN 189

50 FOR I=1 TO 32767

60 READ #1,1

78 PRINT #2,1

80 GOTO TYP(-1) OF 99,129,150,168
99  READ #1;X

199 PRINT #2;X

119 GOTO 8¢

120 READ #1;A$

139 PRINT #2;A$

149 GOTO 8¢

159 PRINT #2; END

169 NEXT I

17¢ STOP

189 PRINT "SECOND FILE TOO SMALL"
199 END

4-34



TERM: RANDOM FILE ACCESS

DEFINED IN TSB AS: A READ or PRINT access of a file is
"random" if it specifies a particular
record within the file.

Serial Access: 109 READ #1;A,B,C
(Reads from the file pointer)

Random Access: 1P@ READ #1,5;A,B,C

(Moves to record 5 before reading)

COMMENTS

When files are accessed serially, the record structure of files is ignored.
Serial READs skip over end-of-record markers to the next record and act as
if all data were in a continuous list.

The TSB System does, however, provide statements that take advantage of

_ this record structure. The file pointer can be moved to the beginning of
any record. Also, any record can be READ or PRINTed independently of the
rest of the file using random access versions of READ# and PRINT#. The TYP
function and IF END statement can detect end-of-record conditions. These
extensions to BASIC constitute a random access file capability.

4-35



SAMPLE OF RANDOM FILE ACCESS

This sample program fills each record with two strings of up to 30 charac-
ters each and five numbers. Then it 1ists the contents of any record.

OPEN-RNDFL , 20

NAM-PROG2

199 FILES RNDFL
150 DIM A$(3p),B$(30)
209 IF END #1 THEN 19pp

309 FOR J=1 TO 20 This loop reads in two strings
499  INPUT A$,B$,A,B,C,D,E and five numbers from the user,
509  PRINT #1,J; A$,B$,A,B,C,D,E | then it writes the Jth record
609  NEXT J of the file.

700  PRINT "WHICH RECORD WOULD YOU LIKE TO SEE";

759 INPUT J .

760  READ #1, J; A$,B$,A,B,C,D,E |This section will read and list
770  PRINT A% the contents of record N.

789  PRINT B$

799  PRINT A,B,C,D,E
899 GO TO 799 -
1909 END

4-36



PRINTING A RECORD

EXAMPLES: 165 PRINT #N,X;G2,H,I,"TEXT"
179 PRINT #1,3;X,Y4,Z2,6127,B
175 PRINT #(N+2), (X+2);F,P5
18@ PRINT #2,53A,B,C,D,END

GENERAL FORM:

statement number PRINT #file number formula ,

record number formula ; list of data items

PURPOSE

Prints a specified 1ist of data items into a specific record of a file,
starting at the beginning of the record. (The record number formula
is rounded to the nearest integer.)

COMMENTS

The previous contents of the record are destroyed. An end-of-record marker
is written after the data. If an END occurs in the data list, it acts as
an end-of-record marker too. The random PRINT cannot change the contents
of any record except the one specified. The entire list of data items must
fit within the record. Otherwise, an end-of-file condition occurs which
terminates the program and prints an error message:

END OF FILE/END OF RECORD

An IF END statement establishes an exit procedure. See "IF END" in this
section.

4-37



PRINTING A RECORD, CONTINUED

Matrices are PRINTed using the random version of MAT PRINT# described in
Section V. Note, however, that the matrix must fit within a single record,
so a maximum of 128 numerical items can be printed. If this rule is vio-
lated, an end-of-file occurs.

4-38



READING A RECORD

EXAMPLES: 199 READ #2,33A,B,C3,X$
119 READ #N,2;N1,N2,N3
129 READ #M,N;R2,P7,A$,T(35)
139 READ #(M+1), (N+1);3X,Y,Z

GENERAL FORM:

statement number READ #file number formula

record numbher formula i_list of data items

PURPOSE

Reads data from a specified record of a file, starting at the beginning
of the record. (The file number formula and record number formula
are rounded to integers.)

COMMENTS

The contents of the file are not changed.

If the READ encounters an end-of-record marker before filling all the data
items, an end-of-file occurs. The program is terminated unless an IF END
statement has been defined previously. (See IF END in this section.)

Matrices are READ from records using a random version of MAT READ# described
in Section V. If the READ requests more items than the record contains, an
end-of-file condition occurs.

4-39



MODIFYING CONTENTS OF A RECORD

PRINCIPLE: The contents of a record can be
changed only by READing the entire
record into the program, modifying
the items desired, then PRINTing
it back on the file again.

EXAMPLE: 10p READ #1,5;A,B,C,Z$
20P LET A = Q*2+(M/5)
309 LET Z$ = M$
5P@ PRINT #1,5;A,B,C,Z$

A,B,C, and Z$ are the entire contents of record 5.

DANGER: When the strings are replaced by longer
strings, the result may no longer fit
within a record. If this happens, an
end-of-file condition occurs.

4-40



ERASING A RECORD

EXAMPLES: 32p PRINT #M+N, R+S
330 PRINT #1,2
349 PRINT #12,Q1

GENERAL FORM:

statement number PRINT #file number formula , record number formula

PURPOSE
Erases the contents of a specified record in a file by PRINTing an end-of-
record marker at the beginning of the record.

Moves the file pointer to the start of the specified record.

COMMENTS

Only the contents of the specified record are erased; the rest of the file
is unchanged. The erased record still exists, however, and can be filled
with new data.

Do not confuse this erase operation with the KILL command which permanently
eliminates the entire file.

Here is a sample program that uses the erase operation to erase an entire
file, record by record.

4-41



ERASING A RECORD, CONTINUED

NAM-ERASE

1 REM THIS PROGRAM ERASES A FILE BY ERASING EVERY RECORD
19 FILES X

20 IF END #1 THEN 6¢

30 FOR I=1 TO 32767

49  PRINT #1,1

50  NEXT I

60 END

4-42



UPDATING A RECORD IN A FILE

File programming is simplified if every record of a file has the same data
structure. For example, each record might contain a string (e.g., a
person's name) and a number (e.g., the amount of money he owes). Here is
a sample program that manipulates such a file. The program searches
through the file until it finds a specified string; then it updates the
number in the record to a new value.

NAM-UPDATE

19 FILES DATA
20  DIM A$(72) , B$(72)

39 IF END #1 THEN 160

49  PRINT "NAME";

50  INPUT A$

69  FOR I= 1 TO 32767

79  READ #1, I

89  IF TYP (-1) #2 THEN 150
99  READ #1; B$

109 IF B$#A$ THEN 159

119 PRINT "NEW NUMBER";

129 INPUT N

139 PRINT #1; N

STOP
NEXT 1
PRINT "NAME NOT ON FILE."
END

4-43



AN ALPHABETICALLY ORGANIZED FILE

If the first item of every record in a file is a string, the records can be
ordered alphabetically. Here is a program that inserts a new record where
it alphabetically belongs. The rest of the file must be moved up one record.
In this example, record 1 contains the record number of the last item.

NAM-INSERT
19 FILES DATA 1490 FOR I=N+1 TO R STEP -1

20 DIM G$[72],H$[72] 1590 READ #1,I;H$
30 IF END #1 THEN 29¢ 16@ PRINT #1,I+1;H$
49  READ #1,1;N 179 NEXT I
45 IF END #1 THEN 279 189 PRINT #1,R;G$
50 READ #1,N+2 199 PRINT #1,1;N+1
60  PRINT "STRING"; 209 STOP
70 INPUT G$ 219 L=R
72 IF N#p THEN 89 229 IF F#L THEN 199
74 R=2 225 GO TO 14¢
76  GOTO 18p 230 F=R
80 F=2 249 IF L-F>1 THEN 109
99  L=N+1 250 R=R+1
109 R=INT((F+L)/2) 255 IF L-F#1 THEN 14p
119 READ #1,R;H$ 269 F=F+1
120 IF G$<H$ THEN 219 265 GOTO 1¢p
139 IF G$>H$ THEN 239 27@ PRINT "FILE FULL."
289 STOP
299 N=p

GOTO 45
END

4-44



FILE ACCESSING ERRORS

If a data error occurs while the computer is performing a
requested file read or write, the program will be termi-
nated and one of the following messages will be printed:

BAD FILE READ IN LINE nn
BAD FILE WRITE DETECTED IN LINE nn

As is the case with other errors which terminate a running
program, the specific contents of any file written on dur-
ing execution cannot be easily predicted.

Most of the information in the file on which the data error
occurred may be recoverable. If file errors persist, the
information should be copied item by item or record by re-
cord to another file.

4-45






SECTION V
MATRICES

A matrix is a doubly subscripted array, or a collection of data arranged in rows
and columns. Arrays are described in Section III. This section describes a
series of special instructions used to manipulate matrices. Instructions start-
ing with MAT refer to an entire matrix, or to two or more matrices. Instruc-
tions such as PRINT and INPUT refer to specific elements of the array by row

and column. The DIM statement is used to define the dimensions of the matrix
and to reserve storage space for it. Some typical matrix operations are:

MAT READ A,B,C Read the three matrices, their dimensions having been
previously specified. Data is stored in the matrix
row by row.

MAT INPUT A,B Input matrices A and B from the teleprinter--same re-
strictions as MAT READ.

MAT C = ZER Fi1l C with zeros.

MAT C = CON Fi1ll C with ones.

MAT C = IDN Set up C as an identity matrix.

MAT PRINT A,B;C Print the three matrices, with A and C in the regular
format, but B closely packed.

MAT B = A Set the matrix B equal to the matrix A

MAT C=A+8B Add the two matrices A and B

MATC=A-8B Subtract the matrix B from the matrix A.

MAT C = A*B Multiply the matrix A by the matrix B.

MAT C = TRN(A) Transpose the matrix A.

MAT C = (K)*A Multiply the matrix A by K. K, which must be in
parentheses, may be a formula.

MAT C = INV(A) Invert the matrix A.

MAT PRINT #5;A Print matrix A onto a file.

MAT READ #M,N+2:;D Read matrix D from a file, row by row--same restrictions
as MAT READ.

Use of these statements is described in this section. Formatted printing
of matrices is described in Section VIII.



DIM

EXAMPLES: 119 DIM A (5p), B(2p,20)
120 DIM Z (5,2p)
13p DIM S (5,25)
14p DIM R (4,4)

GENERAL FORM:

statement number DIM matrix variable ( integer ) ...

or

statement number DIM matrix variable ( integer 2 integer ) ...

PURPOSE

Sets upper limits on the amount of working space used by a matrix in the
TBS system.

COMMENTS

The integers refer to the number of matrix elements if only one dimension
is supplied, or to the number of column and row elements respectively, if
two dimensions are given.

A matrix (array) variable is any single letter from A to Z.

Arrays not mentioned in a DIM statement are assumed to have 10 elements if
one-dimensional, or 10 rows and 10 columns if two-dimensional.

The working size of a matrix may be smaller than its physical size. For ex-
ample, an array declared 9 x 9 in a DIM statement may be used to store fewer
than 81 elements; the DIM statement supplies only an upper bound on the num-
ber of elements. When the working size of a matrix is changed using one of

the MAT statements described on the following pages, the values of excluded

positions are lost.

The absolute maximum matrix size is about 4900 elements; a matrix of this
size is practical only in conjunction with a very small program.

5-2



MAT...ZER

EXAMPLES: 395 MAT A = ZER
319 MAT Z = ZER (N)
315 MAT X = ZER (39, 19)
32¢ MAT R = ZER (N, P)

GENERAL FORM:

statement number MAT matrix variable = ZER

or

statement number MAT matrix variable = ZER L expression l

or

statement number MAT matrix variable = ZER ( expression , expression )

PURPOSE

Sets all elements of the specified matrix
@WN equal to @; a new working size may be
established.

COMMENTS

The new working size in a MAT...ZER is an
implicit DIM statement within the limits

set by the DIM statement on the total num-

ber of elements.

Since @ has a logical value of "false",
MAT...ZER is useful in logical initialization.

The expressions in new size specifications should
evaluate to integers. Non-integers are rounded
to the nearest integer value.

5-3



MAT...CON

EXAMPLES: 205 MAT C = CON
219 MAT A = CON (N,N)
220 MAT Z = CON (5,29)
23p MAT Y = CON (50)

GENERAL FORM:
statement number MAT matrix variable = CON

or

statement number MAT matrix variable = CON ( expression )

or

statement number MAT matrix variable = CON ( expression » expression )

PURPOSE

Sets up a matrix with all elements equal to 1;

a new working size may be specified, within the
limits of the original DIM statement on the total
number of elements.

COMMENTS

The new working size (an implicit DIM statement)
may be omitted, as in example statement 205.

Note that since 1 has a logical value of "true",
the MAT...CON statement is useful for logical
initialization.

The expressions in new size specifications should

evaluate to integers. Non-integers are rounded
to the nearest integer value.

5-4



INPUT

EXAMPLES: 609 INPUT A(5)
619 INPUT B(5,8)
62@ INPUT R(
630 INPUT Z(
(

), N§, A(3,3)
,Y), P3, W$
649 INPUT Z(X,Y), Z(X+1, Y+1), Z(X+R3, Y+52)

X
X

GENERAL FORM:

statement number INPUT matrix variable ( expression ) ...

or

statement number INPUT matrix variable ( expression , expression ) ...

PURPOSE

Allows input of a specified matrix element(s) from the teleprinter.

COMMENTS

Expression should evaluate to integers. Non-integers are rounded to the
nearest integer value.

The subscripts (expressions) used after the matrix variable designate
the row and column of the matrix element. Do not confuse these ex-
pressions with working size specifications, such as those following a
MAT INPUT statement.

See MAT INPUT and DIM in this section for further details on matrix
input.

See ENTER, Section III for an additional means of inputting specific
matrix elements.

5-5



MAT INPUT

™
EXAMPLES: 355 MAT INPUT A
360 MAT INPUT B(5)
365 MAT INPUT Z(5,5)
379 MAT INPUT A(N)
375 MAT INPUT B(N,M)
GENERAL FORM:
statement number MAT INPUT matrix variable
or
statement number MAT INPUT matrix variable L expression _l ..
or
statement number MAT INPUT matrix variable L expression , expression l .
PURPQSE
Allows input of an entire matrix from the teleprinter; a new working size may be .
specified, within the 1imits of the DIM statement on total number of elements.
COMMENTS
Do not confuse the size specifications following MAT INPUT with element specifications.
For example, INPUT X(5,5) causes the fifth element of the fifth row of matrix X to be
input, while MAT INPUT X(5,5) requires input of the entire matrix called X, and sets
the working size at 5 rows of 5 columns.
Example statements 36@ through 375 require input of the specified number of matrix
elements, because they specify a new size.
Elements being input must be separated by commas.
"?" is generated by a MAT INPUT statement, regardless of the number of elements.
"??" response to an input item means that more values are required.
MAT INPUT causes the entire matrix to be filled from teleprinter input in the (row,
col.) order: 1,131,2;1,3; etc. ™



PRINTING MATRICES

EXAMPLES: 80P PRINT A(3)

819 PRINT A(3,3);

82p PRINT F(X);E$; C5;R(N)

83@ PRINT G(X,Y)

84@ PRINT Z(X,Y), Z(1,5), Z(X+N, Y+M)
GENERAL FORM:

statement number PRINT matrix variable ( expressiom ) ...

or

statement number PRINT matrix variable ( expression , expression ) ...

PURPOSE

Causes the specified matrix element(s) to be printed.

COMMENTS

Expressions (subscripts) should evaluate to integers.
Non-integers are rounded to the nearest integer
value.

A trailing semicolon packs output into twelve
elements per teleprinter line, if possible. A trail-
ing comma prints five elements per line.

Expressions (subscripts) following the matrix variable
designate the row and column of the matrix element.

Do not confuse these with new working size specifica-
tions, such as those following a MAT INPUT statement.

This statement prints individual matrix elements.
MAT PRINT is used to print an entire matrix.

5-7



MAT PRINT

EXAMPLES: 5Pp MAT PRINT A
505 MAT PRINT A;
515 MAT PRINT A,B;C
52@ MAT PRINT A,B,C;

GENERAL FORM:
statement number MAT PRINT matrix variable

or

statement number MAT PRINT matrix variable s matrix variable ...

PURPOSE

Causes an entire matrix to be printed.

COMMENTS

The MAT PRINT statement causes the matrix elements to be printed row by row
across the page. Each matrix row starts a new teleprinter line. The spac-
ing between row elements is controlled by the use of , and ; in the same
manner as for the PRINT statement. Rows containing more elements than can
be printed on a line are continued on consecutive lines. FEach row of a
matrix is started on a new line and is separated from the previous row by a
blank line. Thus the instruction

MAT PRINT A, B;C

will cause the three matrices to be printed A and C with five components to
a line and B with up to twelve.

Singly subscripted arrays may be interpreted as column vectors. Vectors may
be used in place of matrices, as long as the above rules are observed. Since

5-8



MAT PRINT CONTINUED

a vector like V(I) is treated as a column vector by BASIC, a row vector has
to be introduced as a matrix that has only one row, namely row 1. Thus

DIM X(7), Y(1,5)

introduces a 7-component column vector and a 5-component row vector.

A column vector will be printed one element to the line with double spacing
between lines. A row vector will be printed in the manner indicated by the
form of the statement. For example: if V is a row vector then, "MAT PRINT V"
or "MAT PRINT V," will print V as a row vector, five numbers to the line,
while

MAT PRINT V;

will print V as a row vector with up to twelve numbers to the line.

5-9



READ

EXAMPLES:: 9@ READ A(6)
91 READ A(9,9)
929 READ C(X); P$; R7
93 READ C(X,Y)
949 READ Z(X,Y), P(R2, S5), X(4)

GENERAL FORM:

statement number READ matrix variable ( expression )

or

statement number READ matrix variable ( expression , expression ) ...

PURPOSE

Causes the specified matrix element to be
read from the current DATA statement.

COMMENTS

Expressions (subscripts) should evaluate to
integers. Non-integers are rounded to
the nearest integer.

Expressions following the matrix variable
designate the row and column of the matrix
element. Do not confuse these with working
size specifications, such as those following
MAT INPUT statement.

The MAT READ statement is used to read an

entire matrix from DATA statements. See
details in this section.

5-10



MAT READ

EXAMPLES: 350 MAT READ A
37¢ MAT READ B(5),C,D
389 MAT READ Z (5,8)
399 MAT READ N (P3,Q7)

GENERAL FORM:
statement number MAT READ matrix variable

or

statement number MAT READ matrix Variableli expression l e

or

statement number MAT READ matrix variable ( expression , expression )

PURPOSE

Reads an entire matrix from DATA statements.
A new working size may be specified, within
the Timits of the original DIM statement.

COMMENTS

MAT READ causes the entire matrix to be filled
from the current DATA statement in the (row, col.)
order: 1,1; 1,2; 1,3; etc. In this case the

DIM statement controls the number of elements
read.

5-11



EXAMPLES:

MATRIX ADDITION

JIg MATC =B + A
329 MAT X X+Y
33 MAT P =N+ M

GENERAL FORM:

statement number MAT matrix variable = matrix variable + matrix variable

PURPOSE

Establishes a matrix equal to the
sum of two matrices of identical

dimensions; addition is element-

by-element.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement, if it has
more than 10 elements, or 10 x 10 ele-
ments if two dimensional. Dimensions

must be the same as the component matrices.

The same matrix may appear on both sides
of the = sign, as in example statement 329.

5-12



MATRIX SUBTRACTION

EXAMPLES: 550 MATC = A - B
560 MAT B =B - Z
5790 MAT X = X - A

GENERAL FORM:

statement number MAT matrix variable = matrix variable - matrix variable

PURPOSE

Establishes a matrix equal to the
difference of two matrices of
identical dimensions; subtraction
is element-by-element.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has
more than 10 elements, or 10 x 10 elements
if two dimensional. Its dimension must be
the same as the component matrices.

The same matrix may appear on both sides
of the = sign, as in example statement 56f.



MATRIX MULTIPLICATION

EXAMPLES: 93 MAT Z =B * C
949 MAT X = A* A
950 MAT C = Z * B

GENERAL FORM:

statement number MAT matrix variable = matrix variable * matrix variable

PURPOSE

Establishes a matrix equal to the
product of the two specified matrices.

COMMENTS

Following the rules of matrix multiplication,
if the dimensions of matrix B = (P,N) and ma-
trix C = (N,Q), multiplying B*C results in a
matrix of dimensions (P,Q).

Note that the resulting matrix must have an
appropriate working size.

The same matrix variable may not appear on
el
both sides of the = sign.

5-14



SCALAR MULTIPLICATION

EXAMPLES: 119 MAT A = (5) *
115 MAT C = (1p) *
(
(

129 MAT C
13¢ MAT P

N/3) *
Q7*N5) * R

GENERAL FORM:

statement number MAT matrix variable = ( expression ) * matrix variable

PURPOSE

Establishes a matrix equal to the product
of a matrix multiplied by a specified num-
ber, that is, each element of the original
matrix is multiplied by the number.

CWM\ COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement, if it con-
tains more than 10 elements (10x10 if two
dimensional).

The same matrix variable may appear on
.
both sides of the = sign.

Both matrices must have the same working
size.

5-15



COPYING A MATRIX

EXAMPLES: 4p5 MAT B
419 MAT X
429 MAT Z

GENERAL FORM:

statement number MAT matrix variable = matrix variable

PURPOSE

Copies a specified matrix into a matrix
of the same dimensions; copying is ele-
ment-by-element.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has
more than 10 elements, or 10x10 if two
dimensional. It must have the same di-
mensions as the copied matrix.

5-16



IDENTITY MATRIX

EXAMPLES: 205 MAT A = IDN
219 MAT B = IDN (3,3)
215 MAT Z = IDN (Q5, Q5)
229 MAT S = IDN (6, 6)

GENERAL FORM:

statement number MAT array variable = IDN

or

statement number MAT array variable = IDN ( expression , expression )

PURPOSE
Establishes an identity matrix (all @'s, with

a diagonal of all 1's): a new working size may
be specified.

COMMENTS
The IDN matrix must be two dimensional and square.

Specifying a new working size has the effect of a
DIM statement.

Sample identity matrix:

aan -
- - .
- e s



EXAMPLES:

GENERAL FORM:

MATRIX TRANSPOSITION

959 MAT Z = TRN (A)
969 MAT X = TRN (B)
979 MAT Z = TRN (C)

statement number MAT matrix variable = TRN ( matrix variable )

PURPOSE

Establishes <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>